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1. INTRODUCTION 

This monograph is devoted to the study of' rec11rsi ve procediJres. After 

clarification of' some of' their mathematical properties, a proof' technique 

is developed f'or showing equivalence of' programs containing rec11rsive 

procedlires, and a n11mber of properties of' this technique a.re derived • 
• 

011r study originated with some attempts to develop a generalization 
; 

of' McCarthy's rule of recursion induction [23], which ru.J e can be s11iau,,a

rized as follows: If' one has two functions g and h, which both satisfy 

the .defining equation of' a rec11rsively defined function f, then g(x) = h{x) 

for all those x, f'or which f'(x) is defined. E.g., if' one has f'or f' the 

recursive definition 

f' ( X) "C::i = (x=0+1 ,xxf'(x-1)) 

where '' <:: '' stands for ''is rec11rsi vely defined by'', and where in the right 

ba,nd side we have used McCa.rthy' s notation for conditional expressions 

[23], and if' one has established by some means that g and h satisfy 

g(x) = (x=o+1, xxg(x-1)) 
h(x) = (x.=0~1, xxh(x-1)) 

then one concludes that g{x) = h(x) for all x for which f(x) is defined. 

At f'irst glance one mj ght consider this a rather obvio1Js r1JJ e. How-
• 

ever, when one tries to j 11stify it ma.th~ma.tically, some problems arise. 

In particuJar one is confronted with the question as to what is the pre

cise stat11s of the ''< '' relationship, and what is the connection between 

the '' < '' and ''='' relations. Note that it is certainly not the case that 

''( : '' and ''='' are the same relations. E.g., each function f satisfies 

f(x) = f(x), but it is clearly not true that :for each ..r, we have 

f(x) <: · f(x), since if f were defined recursively in this way, then f 

would be 11ndef'ined f'or all x. 
' 



2 

We were led to the consideration of these proble1ns when we tried to 

apply recursion induction to two problems: An investigation of Ya.nov' s 

· · '' · h .,p al · thms'' axiomatization of the equ1. valence of his logical sc emes 0.1. gori --

[ 39], and an axiomatic treatment of the e411ivalence of while statements• 
• 

Altha. ,.. .. we obtained some pa.rtial results, 011r fra.mework remained 11n!,atis-

factory, precisely because of this problem about the meaning of '' <: ::'' • The 

solution to this was provided by Scott, who both showed what rna.therns-tical 

objects correspond to rec11rsive proced11res • and how to exploit this 
I 

insight in the development o~ a forrr1aJ system in which a proof' r11J e which 

generalizes rec11reion induction plays a central role. 

We can therefore s1Jxnn1arize the contents of 01.1r paper as: The descrip

tion, appl.ication and investigation of' Scott's mathematical theory o:f re

cursive proced11res. (This theory was described for the first time in the 

1.inpublished notes [ 32] • ) 

Scott's approach is based on the fol.lowing central idea: Recursive 

procedures are mini.rro,7, fixed points of' monotonic and continilOUB transfor

tla.tions. This way of l.ooking at proced11res is explained in section 2. In 

~his section we shall take as a starting point an ALGOL-like simple pro

~a;rr1n1i ng language, and we use this as a tool to clarify what the mathe-

matical properties of rec11rsive proced11res are. {The :f11nctional. notation 

we used in this introduction wil.l be t1sed only occasionally in the sequel, 

since the imperative notation of section 2 provides 

to the formal system to be developed in section 3.) 
a better transition 

• 

The notion of rrrlninraZ. fixed point appa.rently presupposes some partial 

ordering, and the use of this ordering, together with the notions of' 

monotonicity and contin11ity, is essential to Scott's theory. 

These notions have in fact a much wider scope in the theory of com

putation than j1Jst the theory of' proced11res , as Scott has shown in a n11m

ber of subsequent papers. For a general treatment see (34]~ for other 

applications [35] a.nd (36]. 

Once it had been cla,rified what procedures ''really are'' , it becamP

possible to devel.op a fo1·111a,l system based on this insight, iia1nely Scott's 

ll-calcul.us, which we describe in section 3. The core of' this for,,,aJ syste1n 

is the µ-induction ruJe, which is a generalization of recursion induction. 

• 



In section 4, we apply the µ-calcull1.s to a large ntimber of eJra111pl.es, 

partly taken from various places in the literature, partly new. We hope 

to d~monstrate in this section that the µ-calcul11s can be t1sed to prove 

results taken from rather divergent s011rces (e.g. vario1.J.s properties of' 

while statements, McCarthy's 91-function) and, thus, to convince the 

reader of its general scope. 

The main result of 01.1r paper follows in sections 5 and 6. We prove 

the completeness of the µ-calcul 11s for a restricted type of' procedures:, 

viz. the ''reguJ ar procedures'', which can be considered as corresponding 
• 

3 

to flow diagrams. The proof is given in two parts. In section 5, we intro-

duce a norma.l form for this restricted class of procedures, and prove that 

each regi1J ar proced11re is equivalent to a reguJ a.r procediJre in normal 

form. In section 6 we show that two reg11J ar proced11res, which may be as

s11med to be in normal form by section 5, can be proved to be equivalent 

in the µ-calculus if and only if they are semantically eq12i val.ent (i.e. , 

they denote the sa.me functions 1.1nder all interpretations). 

Section 7 contains some concl11sions. We mention some ways in which 

the µ-calcuJ 11s has already been extended, and areas which may be of 

interest for future investigation. 

We have tried to make ot1r paper more or less self contained. However, 

we recommend the reader who is not :famj l:i a.r with the problem area of the 

1na.thPmatical theory of computation to read f'irst the classical. papers by 

McCarthy [22,23]. 

1.2. RELATED WORK 

Rectirsion induction was introduced by McCa.rthy [23]. It has been 

applied a,nd generalized in a n11mher of papers, e.g. Cooper [4,5], and 

Kaplan [14]. A variant is Burstall's structural induction [3]. Some steps 

towards Scott's theory were ma.de independently by Morris (25,26]. 

The relationship between procedures and fixed points ( expressed via 

C11rey's Y-operator) has been more or less wel.l known for some time. See 

e.g. Landin [16] and Strachey [37]. However, the mjnimaJity of the fixed 

points was not exploited there. Minimality considerations, including the 

• 
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application of Kna.ster's result (see section 2) were introduced indepen

dently by Park [27] and Bekic [1]; Bekic also obtained the simultaneous 

versus iterated fixed point property, stated in section 2. The Y-operator 

in relation to minimal fixed points is discussed in Scott [35]; for a 

co1n1nent see Park (28]. 

For the results of section 5 a.nd 6 compare Yanov [39], Kaplan [ 13] 

a.nd Ito [ 12], who 1.1ses Salomaa' s complete axiom system for re ar events 
(30]. . 

' 

It m!cy" be of interest to cJ a,rify the relation between 01J:r normal form 

and the one defined by Engeler [9 J • 

.Another attempt at an axiomatic treatment of rec11rsi ve proced11res is 

given in Hoare [ 11 J, who uses ''pre-Scott'' notions in his statement of the 
induction rule. 

A rather different approach is taken by a nurnher of authors who base 

themselves on the predicate calculus. This work originated with Floyd (10], 

and was developed further by Manna, e.g. [17,18] and Cooper (6,7]. See 

also the ''relational theory'' in Scott and de Bakker [32]. 

For references to some extensions of the µ-calculus see section 7. 



2. RECURSIVE PROCEDURES 

In section 3~ we shall present a forma.lism for the treatment of' re

cursive proced1.1res: Scott's µ-calculus. In this section, we give an in

tuitive explanation of some of the notions to be used later, and derive 

some of their properties. 

5 

We shall be concerned with progra.:ms in a simple lang11.age. This lan

guage comprises first o~ all a class of elementary statements, the struc

ture of which is not analyzed in the present context. Next, it has three 

constructions to build up more complex statements from simpler ones, 

starting with the elementary statements. Two of these are straightforward: 

The aorrrposition s1 ;s2 of two statements s 1 and s2 , and the construction 

of the conditional statement (p-rs
1
,s2 ), where pis some boolean expression. 

(Throughout the paper, we shall use McCarthy's notation [23] for condi

tionals, in which (p+s
1
,s2 ) is short for if p then s1 else s2 .) The third 

construction is that of, possibly recursive, proaed:ures which are intro

duced by means of declarations of the form 

( 1 ) procedll!e P; T(P) 

where the procedure body T(P) is some statement which .may contain one or 

more occurrences of P. 

As an instance of (1), we have 

(2) 

where A1 , A2 are elementary statements • 

The reader who is more 1J.sed to a :functional notation may read this 

as the declaration of the :function P(o) by means of the definition 

P ( a ) <:: ( p ( o ) ➔ P ( A 
1 

( cr ) ) , A
2 

( o ) ) 

where '' ¢::: '' sta.nds f'or '' is recursively defined by''. This notation e11tpha

sizes the functionai aspect of statements: A statement S may be considered 

as prescribing a r«aa.pping from a state o of the computation to a new state 

a', or, in functional notation, S(o) = a'. For our purposes, we are not 

' 
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interested in the structure of the state. If one wishes to be more specif

ic, one may think of the state a.s consisting of all variables manipulated 

by the program~ This is the approach taken by McCarthy in [22] with his 

state vectors: E.g. , let the elementa,:c·y statement A be the assignment 

state:me1'l.t x := x+1, let a be the state vector, the x-th component of which 

has the value O, say. Then, the new state vector a'= A(a) is equal to cr 

in all its components, except :for the x-th component which now has the 

value 1. However, such· articulation of the state vector is not considered 

in our paper. All we need is the fact that each statement S deter1ni nes 

some functional relationship between cr and a'. 
The functional approach to state:mt.?nts gives us a way of expressing 

equivalence between two statements : S 1 and s2 are equi val ent if and only 

if the functions associated with them are the same, i.e. , iff 

s1(a) = s2(a), for all cr. 

The next step is the realization of the fa.ct that the :function deter

•i ned by some Smay be pa:etiat., i.e., it rtJB.Y be 1,1ndefined for certain 

ar nts. E.g .. , the statement L: 821?0. L (11sing a.TI exa:rrrple outside our 

lang11e..ge) bas an undefined effect for all a, i.e. , there is no a' such 

that (L:,se;t,,oL) (o) = 0 1 • Also, the statement (p+L:.sotoL,A) is 1.Jndefined 

tor all those a for which p{o) happens to be true. 

Once one has observed this, it becomes nat11ral to introduce• besides 

the relation ''='' of equival,en.ce between statements, a second relationship 

of inclusion, s1 s s2 , meaning that for all those cr for which s1 is de

fined, s2 is also defined, and yields the same answer. For1r1a.J ly, 

By the introduction of the notion of graph of a function, we can give 

another :formulation of the ''c'' relation: -
The graph of the function Sis the set of all pairs (a,o') such that 

a'= S(a). Note that 

a. The graph of L:gotoL is the empty set. 
I ii t t 

b. The graph of s1;s2 is the set of all pairs (a,o') such that there 

exists a with s1(a) = a and s2 (o) = cr'. 
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c. The graph of (p-+S 1 ,s
2

) is the set of all (cr,o') such that either 
• 

(a) p(cr) is true, and s
1

(cr) = a' 

or 

(S) p(o) is false, and s
2

(o) = o'. 

Thus, s
1 

s s
2 

can be phrased as: The graph of s
1 

is included in the graph 

of s2 • 

IT '' h As examples of .S we ?,Ve: 

a. L:gotoL s S , for each S; 

b. (p+L:gotoL,S) s S, for each s. 
It is clea.r that ''c'' deter1,1ines a partial ordering between statements, 

which means in particular that ''s" is reflexive and transitive, and that 

8 C 
1 -

s2 and s2 S s 1 together imply s
1 

The introduction of the ''=t' and ''c'' relations between statements -
gives us the tools to discuss procedures in a proper framework. Consider 

again the procedure declaration 

(3) ro,ced1Jre P; T ( P) • 

According to the usual meaning of procedure decJ a.rations, one may 

replace each call of P, as decla.red by ( 3) , in the program by its body 

T(P); • i.e., one uses the fact that 

(4) P = T(P) • 

For our p1.1rposes, it is convenient to consider T as a transfor111ation 

of statements to statements, or, in other words, as a functional, which 

has functions as arguments and values: For each statement S, T(S) yields 

another statement S'. E.g., if we take the instance of Tin (2), then 

T(S) = (p+A1 ;S,A2 ) = S'. In this terminology, we can now :for1nula.te (3) 

as: P is a fized point of the transformation T. This :fixed point property 

is the :rirst basic :fact to be noted about proced11res. That this is not 

the whole story will be explained by another example, where for the trans

fonoa,tion T we have taken the identity transforrna.tion: 
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(5) 

Of course, it is again true that 

(6) 

i.e .. , (4) is satisfied. However, we expect more from (5): If P1 is called 

in the progra.m> it gives the infinite loop, i.e., it has the same ef:fect 

a.s L:go~?.L, say. Let 11s· give this infinite loop a name: n. Then, we may 

say that (6) is not all we want from ( 5): we want that P 1 = n. Now observe 

tha.t aJ J. statements are fixed points of the identity tra.nsforrr,ation 

(S=S holds for all S) ~ but that n is distinguished among all those state

ments by being the minimal. statement satisfying ( 6) , where minimal is 

meant with respect to the pe.rtial ordering ''.s". This follows :from n .s S 

tor all S. Thus , we have now some evidence that a proced11re P, as declared 

by { 3) in tbe gen.era.l case• ha.s to be not only a. fixed point . of T, but 

ev·en its 11rinimaZ. fi:ced point. Some more evidence is obtained by considering 

;erccedure P · ( p+P A) • 
• , • •••• • •Jdllll' 2 , 2 , 

Ag&in 1 we have a whole class of statements satisfying the :f'unctional 

~quation 

viz. , all statements of the form ( p+S ,A) ,, for arbi tre.ry S. This follows 

from the equivalence of (p-+S,A) and (p+(p+S ,A) ,A), which can easily be 

seen to hold as a result of the properties of conditional statements. 

Again, we choose the minima) element in this class: the statement 

(p+O,A), wr1ich satisfies (p+n ,A) s (p+S ,A), for all S. This choice corre

spond to our idea that (7) declares a. procedure which loops when called 

at a moment when the state a is such that p(a) is true. 

These two examples may ill1Jstrate the general argltment f'or the mini

m] fixed point approach: Consider again the procedure P declared by {3). 
By ( 4), the graph of P must be the same as the graph of T(P). However, 

according to the usual meaning of procedures, there is no reason to expect 



this graph to contajn more pajrs than are necessa1~ in order that it 

satisfy this equality. (That it is always possible to achieve equality 

will be proved below.) 

Th11s, we have as the :first central idea of" our :paper: 

Procedures ape rrrinimaZ fixed points of the trC01,sfowzations given by the 

body of their deaZaration. 

Next, we introduc~ another important aspect of our system, namely 

that the transf'orroations T are monotonic with respect to _s: 

( 8) 

For the simplest transfo:r:·rnations, this will be clear. Consider e.g. 

the :following trans f'ox-rnati ons : 

a. T( S) = S, 

b. T(S) = A;S, for some fixed A, 

c. T(S) = (p~,s•), for some :fixed S'. 

For these cases, (8) reads: 

a. If' s 1 ~ s2 , then s 1 ~ s2 , 

b. If' s, ~ s2, then A;S1 ~ A;S2, 

c. If' s1 ~ s2, then (p-+81,S') c (p~2,S'). 

It is ea.sily verified that these assertions are valid. 

A somewhat more complicated instance o:f ( 8) is :provided by the 
• :following example: 

pro,cedure .. P; T (S ,P) • 

9 

Here the procedure P depends on S, i.e., P = P(S). Hence, P can be con

sidered as a trans:fo:t-mation on s. In this case, (8) becomes: If s 1 c s
2

, 

then P(s 1) S: P(S2 ). We shall at this stage not give the detailed jt1stifi

cation of this and simjlar assertions; this will be postponed to section 3. 

However~ we can already introduce a first important consequence of' the 

monotonicity property. 

First we introduce some notation. In the sequel, we will be interes

ted in the greatest lower bound (g.l.b.) and the least upper bo11nd 

(l.u.b.) of :fandlies of functions, with respect to the partial ordering 
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'' c'' • - The greatest lower bound of a famjly F will be denoted by n{F:F€F}. 

This notation is chosen since it is clea.r that the graph of the greatest 

lower bound of Fis the intersection of the graphs of the functions F € F. 
Simi.larly, for the least upper bo11nd we write U{F:Fe:F}. Note that the 

l.u.b. does not necessarily exist: If F 1 a,nd F 2 a.re such that for some a, 

F such that both F 1 £ F and F2 .s F. However, if the l.u.b. of F does exist 

then, clearly, its graph is the 11nion of the graphs of the :fur1ctions F e: F. 
', 

Now consider the fa:mj.ly of all functions X such that X = T(X). We 

a,,"e interested in its l.u.b. F = n{x:X=T(X) }. We shall prove that F itself 

is a fixed point of T ( an.d, hence, its mj nimal fixed point), i .e., that 

T(F) = F. This will follow :from the following, more general result: Let 

G = n{X:T(X)cX}. We show that -

(9) F = n{X:T(X)=X} = n{X:T(X)£X} = G. 

In this proof, the monotonicity of Twill be essential: 

1. G c Fis clear. -
2. Proof' of F .s G. It is sufficient to show that T(G) = G. 

2a. Proof of T(G) £ G. Let X be such that T(X) c X. Then G c X, and, 

by monotonicity, T(G) s T(X); thus, T(G) c X. We see that T(G) is 

included in all X such that T(X) s X; hence~ T(G) is included in 

the l.u.b. or· all such X, i.e., T(G) ~ G. 
• 

2b. Proof of G £ T(G). Since T(G) c G, we have T(T(G)) £ T(G). But, G 

is minima] with this property; hence, Gs T(G). 

That F = G is in fact an old result in set theory, cf. Kn.aster [ 15] 

end Ta.rski [38]. 

We a.re now in a position to explain recursion induction. Remember 

that rec11rsion 

be defined by 

( 10 )p;rzocedure P 
1

; T(P 
1

) 

and let P 2 , P 
3 

be such that 



( 11 ) 
p2 = T(P2) 

p3 = T(P3) 

1 1 

• 

Then, by recursion induction, we conclude that P2(a) = P3(a) for all 

those a for which P1(a) is defined. The argument for this is the following: 

By (10), P1 is the least function satisfying P1 = T(P 1). Hence, by (11), 

P 1 S P 2 and P 1 £ P 3• By the def"ini tion of £, we have: For all a for which 

P1(o) is defined, P1(o) = P2(a), an~ P1(o) = P3(a). Thus we obtain that, 

for these a, P2(o) = P3(o). 

The transformations T are not only monotonic, they are al.so contin

uous in a sense which we shall make precise presently. The introduction 

of the notion of contin11ity a.rises from another wey of looking at the 

minimal fixed point property of procedures. This other approach is in

spired by the construction of the mjnjma] fixed point of a monotonic and 

continuoi.1s real f11nction f, from [O, 1] to [O, 1], sey. The minima,] fixed 

point ~ of f can be found as 

• 

where f 1 (0) = f(f( ••• f(O) ••• )) • 
' t t I - ) "V 

i times f 

That x0 is a fixed point follows from 

• 

= f'(lim f 1 (0)) = 
• • 14,Qo .. )(X) 1 · >co 

is also minimal: Let x 1 be such that :f(x1) = x 1• Then 

f( 0) < :f(x1) = X 1 

:r2(o) < = X 1 
• 
• 
• 

• 

XO - lim :f1(0) < x, - • 
• 1 too 
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The mj nimal fixed point of a transfo1·tnation T can in a simi la.r way be 

obtained by approximation from below. Consider the sequence 

(12} 

(13) 

Note that, by monotonicity, 

2 n c T(n) c T (n) c ••• - - -
• 

C • • • • -

The sequence o:f pe1·Lial f11nctions ( 12) has a 1. u. b. 
' 

p = 
0 

00 

u 
i=O 

The existence of this l.u.b. for (12) is a result of (13). We assert that 

PO is the mi ni1:3eJ fixed point we are looking for. Clearly, 

l. ➔ oo 

meaning to the continuity for T. This is done as follows: 

T is called continuo1Js if, f'or each sequence 

we have 

(14) 
00 

T( U 
i=O 

00 

X.) = LJ 
l. i=O 

T(X.) 
l. • 

the above proof' 
• given a proper 

J,1st as with our assertion on the monotonicity of T, ( 14) can easily 

e verified :for simple T, involving 

but some her arg,;roent is needed 

only composition ano. conditionals·, 

for those T which themselves involve 

procedures. Again, a further discussion of this is postponed to section 3. 

Using (14) as definition of continuity, we thus have the result that 

for monotonic and continuou.s T, its minimal. fixed point is given by 

The resu.l t that for the procedt1re decla.red by 

we have 



00 

can also be explained in a somewhat different wey. We have to j,mtify the 

two inclusions 

00 

• 

00 • 

P =. U T1 (n) • 
i=O 

The arg,1ment for the first incl11sion is the same as above: We have 

C p -
T(n) S T(P) = P 

• 
• 

• • • 

T1 (n) =- T1 (P) = P 
• 
• 
• 

• 

Hence, for the l.u.b. of' the :Pami ly {n,T(Q) s ••• ,T1
( n), ••• } we have 

00 

Next, we consider the second inclusion: P .s U 
i=O 

According to 

the definition of ''=", this means that, for all a, if' P(cr) is defined, 

say P( a) = cr' , 

What does 

00 • 

then ( U T1 
( n)} ( cr) 

i=O 

it mean that P(cr) is 

- cr' - . 

defined? In order to expla.in this, 

13 

we look at the way in which the prograJr1rner deten·nines P(cr). He applies a. 

ruJ e of rewriting, and in order to deterrnj ne P( a), he tries to deter111ine 

(T(P)) (o). Executing the procedure body for this a.rg11ment mey- lead to 

another ''inner call'' of' P, which then, in til111, is rewritten as T(P), etc. 

Eventu.a,J ly, this rewriting process m11st come to an end, since, otherwise, 

o' would not have been obtained as a result. This can be expressed by 
• 

saying that there exists an i > 1 such that, in the application of T1 (P) 

• 



14 

to the given a, P is not enco11ntered any rriore. Beca.11se 
• 

well replace P in T1 (P} everywhere by fl, i.e. s we 11se 
• • 

this a, (T1 (P)) (cr) = (T1 (n)) (cr) = a'. Then, clearLy, 

which is the desired result. 

of this we may as 

the fact that 9 for 
QC) • 

( U T1 ( n ) ) ( a) = a ' s 

i=O 

Example: Let T(P) = (p+A1;P,A2 ), and let a be such that p(a) ann 

p(A1(a)) are true, but p{A1(A1(a))) is false. Then 

• 

P( o) = (p+A1,; (p+A1; (p+A1 ;P ,A2) ,A2) ,A2) (a) = 
• 

(p+A1;(p+A1;(p-+A1;n,A2),A2),A2) (o) = 

A
2

(A
1

(A1(a))) = a'. 

Finally, we make some remarks on systems of procedures • For explan

atory purposes, it is sufficient to consider a system of two procedur~s 

(15) 
proced11re P 1 ;T 1 (P 1 ,.P 2 ) 

pr,og,edure P 2 ;T2 (P 1 ,P 2 ) 

The minimal fixed point approach in this case means that for P 1 and 

2 we have 

and the analogon of Kn.aster's result (see (9)) is that 

( 17) 

This way of dealing with systP-ms of procedures may be described as 

the simultaneous minjmal fixed point technique. Now it turns out that this 

technique can be replaced by an iterated taking of fixed points. This is 

made precise in the following assertion: Let 



(20) 

(21) 

Then, 

This is shown as follows: By the def"ini tions of Pi anil P2 we have 

P 1
1 = T 1(P1•,·f'l{Y':Y' T (P' Y'}}) T (P' P') = 2 1' = 1 1' 2 

• 

By the mj nj ma.J i ty of P 
1 

a.nd P 2 , we inf"er that P 
1 

Let P~ = n{Y'1 :Y'' = T2 {P 1 ,Y'')}. Since T2 (P 1 ,P2 ) = P2 , 

hence, T1(P1,P2) c T1(P 1,P2 ) = P1, and, from this, 

C p 1 ' S,lltl p 2 ~ p 2 ° 

we have P'' c P · 
2 - 2' 

T 1 ( p 1 ' () { y 11 
: y '' = T 2 ( p 1 'y '' ) } ) S p 1 • 

By ( 18) a.nd (9) (Knaster's result), we see that P1 
T2 (P1,P2 ) S T2 (P 1 ,P2 ) = P2 • 

By (19) and (9), we finally infer that P2 c P2 • 

Thus, (20) and (21) are proved. 

c P 
1 

• From this , 

The f"act that we may replace simul.taneo11.s f"ixed points by iterated 

fixed points provides a simplification of the formal system to be des

cribed in the next section. Before we preceed with this section, we sum

marize the contents of section 2: 
• 

Prooedures are minimal fixed points of monotonia and aontinuous tPans

f onna,tions . 

15 
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3. THE µ-CALCULUS 

The µ-calculus is a fo:r11iaJ system developed for the investigation of 

properties of rec11raive procedures. We shall first describe the well :for11• 

ed fonm.1.J ae of the system ( section 3. 1 ) , then we explain how to interpret 

these fo:r.m11J ae ( section 3. 2) , next we give the axioms and ru] es of infer

ence of the system ( section 3. 3) , we j,1stify the validity of these ( sec

tion 3.4) 1t and finally we give some first applications of the µ-calcul.11s 

(section 3,.5). 

3.1. LAHGUAGE 

In the fonna.l language, we have 

a. Two function constants, denoted by n and E. 

b. Function variables, denoted by any, possibly indexed, upper case letter 

(different from n and E), e.g. A,A1, ••• ,F, ••• ,X,Y, •••• 

c. Predicate variables, denoted by, possibly indexed, lower case letters, 

e.g. P,P1,q,r, •.• • 

We shall in the sequel shorten the words ''function constant'' and ".r.1nction 

variable'' to ''constant'' and •tvaria.ble''. 

( In progra.a,ii ng ter1»j nology: 

a. O corresponds to the undefined statement, E to the a,Artar,iy statement. 

b. Each variable corresponds to sorne elementary statement • 

c .. Each predicate variable corresponds to some boolean expression.) 

We now give the definition of a te:nn in the for:rilaJ language, which 

is the co1Jnterpart of the notion of statement in the progral111r1j ng lang,1Bge. 

D 4>" • .. J e. 1n1 tion .• 1. 
I:, tr nrt :rr:11 I JI I di tl ~•1111, ,, 

a. Each constant or variable is a te.rrn. 

b • If t' 1 and T 2 are tenns, then 't 1 ; 't' 2 is a terxn. 

c. If T 1 and -r2 are terms, and p is a. predicate variable, then (p+-r 
1 

,-r
2

) 
• is a term. 

d. If t is a term and X is a variable, then µX[-r] is a. ter1n. 



Examples: 

Q, E, A
1 

;A
2

, 

A; (p+( q+X,Y) ,z) 
µX(X] 

µX[(p 1+A1;X,(p2+A2 ;µY[(p 1+A1;X,(p2+A2 ;Y,E))J,E))J 

There are three 

ones given in clause 

ways of constructing ter1,1s, starting 

a_. Clause b introduces composition, 

:from the basic 

cla.11se • c gives 

the aonditional terms, and clause d introduces, by means of the var-ic,bZ.e 
-
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binding opePator µ:, terms we shall see presently correspond to proaed1..NB. 

Specifically, µX[-r J denotes the mi.nima.J fixed point of the transformation 

corresponding to the term T , i.e. , µX[ T J corresponds to the procedure de

clared by procedure P;-r(P), where -r(P) is a provisional notation for the 

result of substituting P for all occurrences of X in -r. 

Exa.mples: 

1 • µX[XJ corresponds to the procedi1re declared by pr~<;;ed1Jre P ;P. 

2. µX[ (p+A1 ;X,A2 ) corresponds to the proced1.1re declared by 

procedure P; (p+A1 ;P ,A2 ). 

3. Consider the system of declarations 

~rocedure P1;(p1+A1;P1,(p2+A2 ;P2 ,E}); 

procet;]:u~.e. P 2 ; ( p 1+A1 ;P 2 , ( p 2+A2 ;P 1 ,E)). 

By the results 0£ section 2, in particular (20) and (21), we have: 

(P1,P2 ) = n{(X,Y): X = (p 1+A1;X,(p2+A2 ;Y,E)), 

Y = (p1+A1 ;Y,(p2+A2 ;X,E))} 

and, moreover, 

P 1 = n {X: X = (p,+A, ;X, (p2➔A2 ;n{Y :Y=(p1+A1; Y, (p2-+A2 ;X,E))} ,E))} 

P2 = n{Y:Y = (p 1+A 1 ;Y,(p2➔A2 ;P 1 ,E))} • 

Hence, in the formal language, P 1 corresponds to the ter1n 
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and P 2 to the ter:1n 

µY( (p
1
+A

1 
;Y 1 

(p2+A2 ;µX[ (p1+A1 ;X, (p
2
+A

2 
;µY[ (p

1
+A

1 
;Y, (p

2
+A

2 
;X,E))], 

E))]; 

• 

The use of the µ-operator has the 11s11e.l consequences for the dis-
' 

tinetion between free and· bo1,Jnd variables. In particular, all occurrences 

of X in tJX[,:] are bo1.1nd, and an occ1..1rrence of Y in 't is free if'f it is 

not a bound occiJrrence • 

We aha],J,. use the notation 1: 1[T2/X] for the result of substituting -r
2 

for all free occurrences of X in 't 1 • Again, we have to take the 11s1,aJ 

precautions in a case like µX[ -r 1] ( -r 2 /Y]; this is defined as 

µX'[,- 1[X'/X][i:2/Y]], where X' is some variable which does not occ1.2r free 

Examples: 

X(-r/X] =,: 

(p1+A1 ;X,(p2+A2 ;X,E) )[A/X] = (p
1
+A

1 
;A,(p

2
+A

2
;A,E)) 

µX( (p+A.1 ;X,Y) ][A2 ;X/YJ = µX' [ (p+A
1 

;X' ,A
2 

;X)] 

Using the notation for substitution, we can now describe 

1ow systems of proeed11res f'i t into the lang11s,ge. Consider the 

declarations 

P?;<?~r~,?:~,e, P 1 ; -r 1 (P 1 /X) [P 2 /Y]; 

Pt:.9,~.~~~~,1:.~. P 2 ; T 2 [Pl /X] [P 2 /Y]. 

in general 
• 

proced11re 

Then, in the for:n1al lang1iage we have for the terms corresponding to 

P and P respectively: . 1 2 



The generalization to a system of more than two procedures is straight

forward. 

Terms are used to construct atorrric formulae, formulae and a.ssertions as 

follows: 

Definition 3.2. Let T 1 and T2 be terms. 

a . .An atomic formula is either an equivalence -r
1 

= T
2

, or an. inclusion 

1" 1 C T 2 • 

b. A f ormuZ.a is a list of zero or more atomic forcnulae, written as 

<p 1 ,~2 , ••• ,~n' each ¢i' 1 < i < n, an atomic form:uJa. 

c • .An assertion has the forrn ¢ ~ lJ;, where cp, lJ.i are :fot"Inulae. 

Anticipating the formal rules for interpreting assertions, to be 

given in the next subsection, we can already indicate their intended 
• meaning: 

a. The atomic formulae are the counterparts of the relationships s1 = s2 
and S c S of section 2. 1 "· 2 

b. A formula¢= 4>
1

,'P2 , ••• ,<pn holds iff the conjunction of its elements, 

i.e. ~ 1 A <p 2 A ••• A <pn' holds. · 

c. An assertion <p ~ 1/J holds i:ff ''4> holds implies that 1JJ holds'' holds. 

Examples of assertions: 

1. XcY,YcX~X=Y 

2. ~ µX[ (p-+X,A)] = (p+rt,A) 

(cf. the comments on the proced1Jre declared by equation ( 7) of 

section 2). 

3. A; (p+E,E) - (p+A,A), -
A;(p+E,n) - (p+A,n), (p+A;X,A;X) - A;(p+X,Y) --
A; ( ,E) - ( p-+ft ,A) , -
A; (p+Q ,n) - (p-+n,n). -

19 

In the sequel, we shall occasionally 

The notation for substitution is extended 

assertions: 

in an obvious way from ter111s to 

• 
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(t1, .... ,t )[t/X] 
n 

(T1 = ,:2)[-r/X] 

( T 
1 

£ 1 2 ) [ t /X] 

= (t,[T/X], •.• ,tn[r/X]) 

= (t
1
[T/X] = 1 2 [1/X]) 

= (t 1[t/X] S 1 2[T/XJ) • 

3.2. INTERPRETATION 

We give a set 

a: t ~ ,. 

or rules to give an inte-ppi:aetation I to an assertion 
• 

. 

Let p 1 ,p2 19 ••• ,pi,. . • be the predicate va.riables occurring in a, and let 

A1 ,~,. ,. • ,Ai,. • • be the free variables of a. 

2b • 

2c. 

4. 
4a .. 

4b. 

Choose some domain V. 
With n, associate the nowhere defined function OI: V-+ V. With E, 

associate the identity f•1nction E1 : V + V. ( For all x E V, EI ( x) = x) • 

Associate with ea.ch variable Ai a. partial 

Associate with ea.ch predicate variable pi a. partial :function 
I . 

p. : V + { o, 1}. 
l 

Given the interpretation I or the constants, the A. and the p., we 
1 J. 

now define how to extend I to ter:rns, fonoulae and assertions. 

Interpretation of te:r:ms. 
I I I I I Let 1 1, T2 and p be determined already. Then ( T 

1 
;-r2 } and (p+t 

1
, -r 2 ) 

a.re defined by: Let x E: V. 

is imdef'ined. 

. I( ) I I If r 1 x = y, and 't2 (y) = z, then (1 1;'t2 ) (x) = z. 

If p1 (x) = is 11ndef'ined. 

I . 
If p (x) is 11ndefined. 

O·f' the 



5. 
5a. 

5b. 

6. 

21 

variable X. Then 

n 
x1 : 'V-+V 

i.e., µX[T]I is the g.l.b. of the fa.mi ly o:r all partial :functions 

h . h t· I I w ic sa isfy X = T • 

Interpretation of atomjc formulae. 

( )I. t ·rr I I . T 1 c T2 is rue i T 1 £ t 2 is true, if:r :for all x EV, i:f 

I · I 
t 1(x) = y, then T

2
(x) = y. 

true, • 
1 .e., iff for all x EV, 

if y, then = y, and 

1. f th I ( ) = y, en t 1 x = y . 

Interpretation of for101llae . 
• 

is true iff each~~ is true, 1 < i < n. 
J.. 

Interpretation of assertions. 

An assertion(~~ $) 1 is true iff the implication ~I~ $1 is true. 

An assertion a: ~~$is called valid if(~~ $) 1 is true for all 

interpretations. It should be emphasized that this means that for all 

domains V, and for all choices of paxtial functions for the :free va.riables 

occurring in a (which are then extended in the given way to interpreta

tions I of a), we have that (~ ~ 1.J>)I is true. 

The statement ''~ I- -q; is valid'' is abbreviated to ''~ I= 1'>''. 

For examples of valid assertions, see the examples following 

de:rinition 3.2. in subsection 3.1. Consider the second exa1nple. In pro

gra1n1ning ter:r11inology, its validity asserts that, whatever choice we make 

for the boolean expression p and the e] ementa:r·y statement A (i.e. what

ever functions p1 and AI on V ➔ {0,1} and V ➔ V we choose), it is always 

true that, if P is the :procedure declared by PF,o.cesi11re P; (p+P ,A) , then 

Pis equivalent to ( p+n~A). 

3.3. AXIOMS AND RULES 

We shall not stretch the forrna.Jism to its ljmits: The 11sual fo:r111aJ 

rules for dealing with ~,=,and substitution will not be listed here, let 

• 
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• 

alone syst~ma,tically 11sed. This would detract from the 11nderstana.ing of 

the central part of our fonna.l system, consisting of the fol.lowing a..xio10s 

and rules: 

1. Axioms for composition 

a. J- E;X = X 

b. ~ X;(Y;Z) = 

c. ~ Q ;X = Q 

~ x;n = Q 

X;E 

(X;Y);Z 

• 

' 
• 

= X 

(We have anticipated the associativity of 

around T 1;T 2 in definition 3.1.) 

2. Axioms for c -
a. l- X c X 

b. XS Y, Y S X ~ X = Y 

c. XS Y, Y S Z ~XS Z 

d. ~ n c x 
e. X s Y ~ T £ T[Y/X] 

3. Axioms for conditionals 

a.~ (p+E,E) £ E 
b. •~ (p+(p+X,Y) ,z) = (p+X,Z) 

~ (p+X, (p+Y ,Z)) = (p+X,Z) 

c. ~ (p+(q➔X,Y), (q➔U,V)) = 

( q➔(p+X,U), (p+Y, V)) 

d. (p+X,Y);Z = (p+X;Z,Y;Z) 

4. Axiom for the µ-operator 

~ -r:(1,1X[ -r ]/X] £ µX[ T] 

5. Rule of inference for the µ-operator 

tp I- 4>[0/X] 

1£ ,~., I- ~.E.-r /X] 11 I,. 

tp '-" J[µX[-r]/X] 

'' . '' , , by omjtting parentheses 

provided that X does not occur free in~-

This rule of inference , which will. be called the µ -induction r11J e 1 

is the foundation of the µ-cal.cul11s. 



3.4. JUSTIFICATION 

1. The three axioms for composition assert that 

a.Eis its identity element 

b. It is associative 

c. Q is its zero element 

These three assertions are clearly valid. 
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2. The first three axj_oms for ''s" assert that it is a reflexive, anti

synmietric and transitive relation. Moreover, it is clear that the un

defined function is included in every function. The fifth axiom will 

be disc11ssed below. 

3. Consider the first axiom for conditionals. Observe that for each domain 

V and each x € V, either (p-+E,E)I(x) is undefined (in case pI(x) is 

undefined) or (p+E,E) 1 (x) = x. This proves the validity of ~(p+E,E) £ E. 

Note that replacement of this axiom by ~(p+E,E) = E would be valid 

only if the predicates were interpreted as total :f"'i1nctions on V. 

The validity o:f the other three axioms for conditionals, which a.re 

taken :from McCarthy [23] is also easily verified. 

4. In the language of the µ-calculus, the fixed point property of proce

dttres ( i:f the procedl1re P is dee] a.red by proce_~ur~ P; -r (P) , then 

P = -r(P)) is expressed by µX[-r] = -r[µX[t]/X]. The axiom for the 

µ-operator gives one half of this equi.valence. The other half and the 

minimality o:f µX[-r] will be proved in subsection 3.5. 

5. Before we discuss the µ-induction rule, we first prove the validity of 

the main axiom :for incl1Js ion 

X C y - C L[Y,1X] 

The proof of its validity 

X Cy - LC -r[Y/X] 

amo11nts to showing that each tenn is monotonic in all of its free 

va.riables. It is not di:f:ficu.lt to verify this for those ter.tr1s which 



24 

involve only composition and conditionals. Also, it can be proved that 

such simple terms (without µ 's) a.re continuo11s in all their free vari

ables. These two facts provide the basis for an inductive arg11ment -on 

the complexity of -r- that monotonicity and continuity hold for arbi

tra,:•y -r. Now asstJmP. that T is monotonic and continuous in two of its 

free va.riables, X and Y, say. We indicate our special interest in these 

by writing -r = -r(X,Y). We show that then µY[-r(X,Y)] is monotonic and 

continuous in X. 

1 • ;Mo;n;o;ton~_ci tx 
Since -r(X,Y) is continuous in Y, we have, using the notation -r(X)(Y) 
for -r ( X, Y) : 

00 

µY[-r(X,Y)] = 
i=O 

where -r(x) 0 (n) = 

-r(X)i+1(n) = 

Thus, in order to prove 

it is sufficient to show, for each i, 

• • 

X C X' -r(x) 1 (n) s ,.-(x' )i(n) • 

We use induction on i. 

a. i = o: x £ X' ~ n s n • is clear. 

b. Ass1,1me the assertion for i. Then 

-r(x)i+1(n) = -r(x,-r(x)i(n)) 
• 

S -r(X' ,-r(X) 1 (0)) 
• 

S T(X' ,-r(X' )J.(n)) 

= -r(X' )i+1 (0) 

where we have used the monotonicity of -r in X, the induction ass1Jmp-
.. 

tion, and the monotonicity of -r in Y. 



An al.ternati ve proof, which does not 11se the contin1Ji,ty of -r can be 

based on Kn.aster's result. Letµ andµ' be short for µY[T(X,Y)] and 

µY[T(X' ,Y)] respectively. We have to show: If X s X', thenµ s µ'. 

By the monotonicity of Tin Y we have 

µ = n{Y: -r(X,Y) CY} -
µ' = n{Y: T(X' ,Y) SY} 

• 
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' 

In order to proveµ c µ', it is suf'ficient to show that, for all Y such 

that T(X' ,Y) c Y, we haveµ c Y. But, if T(X' ,Y) c Y, then 

T(X,Y) c T(X',Y) c Y, by the monotonicity of Tin X. Sinceµ is the 

l.u.b. of all Y such that -r(X,Y) .s Y, we see thatµ .s Y, and the result 

fol.lows 

2. Contin;u.ity 

Let x0 c x1 C • • • C X. C 
- ...... 1. -

We have to show that 

00 

µY[T( LJ X. ,Y)] 
. 0 1 
i= 

• • • • 

00 

=U 
i=O 

µY[-r(X. ,Y)] 
1 

(C:f. definition ( 14) of section 2) or, t1sing the continuity of -r in Y, 

that 
00 00 

j=O i=O j=O 

Since 

CX) 00 00 00 

i=O j=O j=O i=O 

it is sufficient to prove 

00 00 

i=O 

We use induction on j. 
• 

a. If j = O, the assertion is clear. 

b. Assume the assertion for j. Then 
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• 

( ind. ass11mption) 

(cont.in X and Y) 

• 

(mon.in X and Y) 

00 

00 

= T ( -- X., 
. 0 1 i= 

00 00 

--
i=O k=O 

00 

--
i=O k=O 

i=O 

L (X. , 
J. 

--
n=O 

L (X ' n 

00 

--
n=O 

• 

• 

• 

This completes the core of the proof' that each tern1 is monotonic and 

continuous in each of' its :free variables • Ext ens ion to the f'l.11 l proof' 

is straightforward. 

Now that the continuity of each -r has been established, we f'irst of all 

conclude that each T does have a mi nimaJ fixed point, viz. 
00 • 

-r
1

(G); from this it follows that, for each interpretation I, the 
i=O 

definition I o:f µX[-r] as I 
1" }, as given in section 3.2, 

makes sense, since we have now proved that, for each T, the set 

{XI: :x1 = TI} is non empty. 

Secondly, we can now justify the µ-induction rule, which we repeat 

here for convenience: 

VJ ~ ~[n/X] 

VJ , t ~ [ L /X] 

VJ ~ ~[µX[-r]/X] 

provided that X does not occ11r free in lfJ • 
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The inductive pattern in this rule is clarif'ied by phrasing it in

formally as follows: If one wishes to prove an assertion a about a 

procedure µX[T], one shows that 

a. The basis step a(s-2) holds, 

b. If a(X) holds, then a(T(X)) holds, 

and from these two results one then infers that a(µX[T]) holds. 
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For the f'or1ria.l justification of the µ-induction rule, we introduce the 
• • • following notation: 

00 00 0(). 

a. 
i=O i=O i=O 

4> ) , 
n 

00 00 00 

b. 
i=O 

00 00 00 

i=O 

Using this notation, our contin11i ty result reads: If 

X C X C 
0 - 1 

• • • C X. C 
1 

• • • then 

00 

i=O 

00 

= 4>( - X.) 
. 0 1 
1.= 

The validity of' the µ-induction rule then follows easily: 

Suppose 

4>[n/XJ 

$, ~ l: ~[T/X] 

have been proved, or, is a moTe suggestive notation, that 

~(-r(X)) 

hold. Starting from the first result, and repeatedly applying the 

second, we then have 
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~ t(O) 
♦ ·~ ~(t(O)) 

' ~ ~(-r2(0)) 
.. 
• 

.. 

Thus , we conclude that 

i=O 

holds .. By continuity, this means that 

00 .. 
$(.........,., t 1 (0)) 

i=O 

also holds» i.e. , we have 

which is the desired result. 

3.5. FIRST APPLICATIONS 

t . .'if .. f. t . . "e give some 1rs applications of the µ-calculus; many other ex~m · 

plea will be given in section 4. 

1.. · t that µX[t] is the m.i.nimal fixed point of -r. First we show that 

µX[ t] is a fixed point, i . e .. , that 

One ha.lt of this is given by the µ-axiom 



In order to prove 

we 1.1.se the µ-induction rule. We have to establish 

which is clea.r, and: 
• 

X C 't 

which holds by monotonicity. (When we say that an assertion follows 

by monotonicity, we mean that it can be derived from the axiom 

X c Y ~ t c t[Y/X], by suitable application of the other axioms and· 

rules. Usually, this will need some use of the rules for substitution, 

deduction and equivalence, which we have not presented here for.1oally.) 

By the µ-induction rule, from these two assertions we may infer that 

holds • Next we show that µX[ T J is the :rni nj ma,l fixed point , • i.e .. , that 

Y = T[Y/X] µX[ T J C y • 

Again, we llSe the µ-induction r1JJ e. We have 

and, by monotonicity, · 

T C Y • -

From these two assertions, the desired result follows. 

2. Proof of the monotonicity of µX[T] from the monotonicity of T. 

We have to show 

y CY'~ µX[T] C µX[T][Y'/Y] • 

29 
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In order to apply the µ-induction rule, we have to ·prove the two 
• assertions 

and 

Y SY', XS µX[T[Y'/Y]] 
• 

The first is clear. ··By the fixed point property, for the second we can 
• write 

Y SY', XS µX[T[Y'/Y]] 

• • • • and this follows by the monotonicity of Tin X and Y. 

3 • .An elementary property of while statements. Consider the procedure 

decla.red by • 

proced11r~ P; (p+A;P ,E) 

(remember that Eis the identity function, or, in programming termino

logy, the d11nmzy- statement.) The action of this P can be described by: 

Perform A as long asp is true, or, equivalently, as that of the while 

statement while p do A, for which we shall 11se the shorter notation 

p * A. Thus, in 011r formalism, p * A= µX[p+A;X,E)J. We apply theµ

calcu.l11s to prove the following simple property of while sta.teroF!nts: 

a. Proof of =>. By the fixed point property of p * A , we have 
1 

P * A 1 = (p+A;p*A1,E); hence, 

p * A1 ;A2 = (p+A1 ;p*A1 ,E); A2 = (p+A1 ;p*A1 ;A2 ,A2). 

Th1Js, p * A1 ;A2 is a fixed point of -r(X) = (p+A
1 

;X,A
2

). 

Since µX[(p+A1;X,A2 )J is its minimal. fixed point, the result follows. 

b. Proof of S• We apply the µ-induction rule to show 

• 
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That 

For the second step of the µ-induction rule, we have to verify 

• 

C R • -

Using the fixed point property of R, the last assertion follows from 

(This last example, "however simple its result, provides one of the 
• basic steps for the proof of the 

and 6 . The proper 

5 • 11 and 5 • 12) • 

• • generalization 

completeness 

of it can be 

theorem in sections 5 

found in le1n·rna' s 5 • 10 , 



32 

4. 

4 • 1 • WHILE STATEM F!NTS 

A rich so,1rce of, mostly simple, e;yaxriples on program eq11i valence is 

provided by the while statement. First we introduce some auxiliary nota

tion and corresponding a:xi oms. We shall allow conditionals of the for10 

• 

(pl Ap2 +X, Y)' 

(p1vp
2

+X,Y) 

( 'p+X,Y) 

which are characterized by the axioms 

(p1Ap2+X,Y) = (p1+{p2+X,Y),Y) 

(p 1vp2+X,Y) = (p 1+X,(p2➔X,Y)) 

(~p+X,Y) = (p-+Y,X) . 

Note that ''A'' and ''v'' are not co1nn1utative: E.g., 

(p2-+(p 1-+X,Y) ,Y) are not necessarily eq1Jivalent, • since 

some arg,.1mP.nt for which p2 is false. 

(p1-+(p2+X,Y) ,Y) and 

p 1 IIl8¥ be imdefined qr 

Using this notation and the one for while statements introduced in 

section 3.5, we have 

p * A = µX[(p+AX,E)J 

p 1 A p2 *A= µX[(p 1+(p2+AX,E),E)J 

P 1 v p 2 * A = µX[ (p1+AX, (p2+AX,E))] 

'P * A = µX[ (p+E ,AX)] 

The following equivalences all hold for the predicates concerned 

total (~(p-+E,E)=E) and some of them also hold for partial predicates 

( 1-( p+E ,E) C E) : 



1 • 

2. 

3. 

4. 

5. 
6. 

7. 
8. 
9. 
10. 

1 1 • 

= (p-+A;p*A,E) 

p * A = p * p * A 

p *A= p * (A;p*A) 

p * A1;(p-+-A2 ,A3 ) = p 

p * E = (p-+n,E) 

P1 * P2 * E = P1 * E 

P1 * (A;p2*A) = P1 * p1vp2 * A 
• 

p1Ap2 * A;p1 *A= P1 * A 
• 

p 1 * A;p 1vp2 *A= p 1vp2 * A 

12. p 1 * p2 *A= p 1 * (p 1Ap2*A;'p1Ap2*A) 

13. *A= p 1 * (p 1Ap2*A;p1A,p2*A) 

14. 

15. 
etc. 

We shall prove here only examples 1 , 2, 5, 10 and 15; the rema,ining 

ones are left as exercises to the reader. A mechanical way of proving 

these and other equivalences for while statements will follow from the 

completeness proof of sections 5 and 6. 
In our comments, we shall not indicate explicitly use of the axioms 

on composition and conditionals. 

1 • p *A= (p+A;p*A,E). 

This is a direct consequence of the fixed point property (f.p.p.): 
I 

~ p * A = µX[ (p+AX,E)] = (p+AX,E) [µX[ (p+AX,E) ]/XJ = 

(p+A;µX[(p+AX,E)],E) = (p+A;p*A,E) 

2. p * A= p * p * A. 

By the :f.p.p. 

~ p * p *A= (p+p*A;p*p*A,E). 

Also, using the last result of section 3.5., and the f.p.p., 
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p * A;p * p *A= 

µX[(p+AX,E)];p * p *A= 

µX[{p+AX,p*p*A)] = 

µX[(p+AX,(p)p*A;p*p*A,E))J = 

µX[ (p-+AX,E)] = 

p * A. 
• 

Hence, 

~ p * A;p * p *A= p * A. 

Th1.1s, 

~ p * p *A= (p+p*A,E) = (p+(p+A;p*A,E),E) = 
(p+A;p*A,E) = p * A 

which proves the desired result. 

'We have 

~ p * E = µX[(p+EX,E)] = µX[(p-+X,E)] 

a. Proof of 2· By monotonicity and the f.p.p., 

I- ( ,E) S (p+µX[ (p+X,E)] ,E) = µX[ (p+X,E) J 

b. Proof of s_. We apply the µ-induction rule. Thus, we m11st show 

Q c (p+n,E), which is clear, and 

X £ (p+Q,E) ~ (p-+X,E) S (,..._ ,E). 

Assume X c (p+O,E). Then 

t- (p+X,E) .S (p+(p•Sl,E),E) = (p+n,E), 

and the result fol.lows. 

.. generalization of example 5 will be given in lern1·11a. 5. 2. 

Before we give the proofs of 10 and 15, we first list 

results: 

R
1

: µX[µY[T]] = µY[T[Y/X]] 

R2 : ~ µX[A;T] = A;µX[T[AX/X]] 

R3 : Let Y not occur free in T. Then 

~ µX[(p+T,E)J = (p+µX[T[(p+Y,E)/X]],E) 

• • some aux1.l1a1-y 

R4: Let T' be the result of replacing, in T, one or more free occurrences 

of X by µY[-r[Y/X]], where Y is a variable which does not occ,Jr free 
• 
l.n T • 



• 

Then 

~ µX[T] = µX[T']. 

These results can be transliterated back into results on the equiva

lence of programs. We shall do this here for R
1 

and R4. 

R1: 

Let P 1 be the progra.m 

pee;in_ E_roc,edt1r~, P 1 ;P 2 ; 

pr9ced~re P2 ;T(P1 ,P2 ); 

p1 
• 

end 

and let P2 be the program 

pegin procedure P;T(P,P); 
p 

end. 

Then P1 and P2 are equivalent. 

R4: We give only a specific instance. 

Let P 
3 

be the program 

begin proced~e P; 

begi~ .•• P ••• P ••. end; 
p 

end 

and let P4 be the program 

p,egi:p. pr_o,ced~e P; 
.. 

p,egin 

end; 
p 

end. 

• • • 

••• 
p 

••• 

begi~. pro,ced~1r~ Q; 

beg~n ••• Q ••• 

Q 

end 

Then P3 and P4 are equivalent. 

• 

Q ••• end; 

35 
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We prove only R
3

• Call the left hand side P 1 a.nd the right hand side 

P2. 
a. P

1 
c P

2
• 

We apply the µ-induction rule. We have to show 

XS P2 ~ (p+T,E) S P2 . 

By monotonicity, it is sufficient to show 

• 

By the f .p.p., this is the sa;me as 

XS P2 ~ t S t[(p+Y,E)/X][µY[-r[{p+Y,E)/X]]/Y]. 
• 

By a property of subs ti tuti on, and since Y does not occ11r free in T, 

this reduces to 

S t({p+µY[T[(p+Y,E)/X]],E)/X] 

or 

XS P2 ~ t S t[P2 /X] 

which holds by monotonicity. 

b. P2 cP1 • 

By the µ-induction rule, it is sufficient to show 

(p+Y,E) ~ P1 ~ (p+T[(p+Y,E)/X],E) S P1• 

By the f.p.p., this is the same as 

(p+Y,E) £ P1 ~ (p+T[{p+Y,E)/X],E) S (p-+-t[P1/X],E) 

and the result follows by monotonicity. 

(A somewhat more general version of R3 
• • • is given in lemma 

We now proceed with the proof of 

10. If p 1 and p2 are total predicates, then 

( 1) 

• 

First we rewrite the left hand side of (1). Since (p1+E,E) = (p2+E,E) = E, 
we have~ (p1+X,X) = (p2+X,X) = X. Using this, we obtain 

µX[(p 1+(p2+AX,AX),(p2+AX,E))J = 

µX[(p2+(p 1+AX,AX),(p1+AX,E))J = 

µX[ (p2+AX, (p1+AX,E) )J • 

--



37 

Thus, 

(2) 

(What we have shown here is in effect that for total predicates1, ''v'' is a 
• 

commutative operator.) 

For the right hand side of" (1) we write, using the last result of section 

3.5. twice: 

(3) ~ p 2 * A;p 1 * (A;p2*A) = 

µX[(p
2
+AX,µY[(p

1
+A;µZ[(p2+AZ,Y)],E)])J. 

Applying R3 to µY[(p 1+A;µZ[(p2+AZ,Y)],E)] we obtain 

µY[(p 1+A;µZ[(p2+AZ,Y)],E)J = 

(p
1
+µU[A;µZ[(p 2+AZ,(p 1+U,E))J],E). 

By R1 and R
2 

we then have 

~ µY[(p
1
+A;µZ[(p

2
+AZ,Y)],E)] = 

(p1+A;µU[(p2+AU,(p 1+AU,E))J,E). 

Combining this with (3), we see that 

(4) p2 * A;p 1 * (A;p2*A) = 

µX[(p2+AX,(p 1+A;µU[(p2+AU,(p1+AU,E))J,E))J. 

Comparing (2) and (4), we see that we can apply R4; thus, (1) follows. 

Using the notation A* p for A;p * A, result (1) can be phrased concisely 

as: 

Finally, we prove 

15. 

For the le:ft hand side we write, tising R3 and a result similar to exe.1r1ple 

5: 
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P1 * P2 *A= 
µX[(p 1➔µY[(p2+AY,E)];X,E)] = 

µX[(p 1+µY[(p2➔AY,X)],E)] = 

(p 1➔µY[(p2+AY,(p 1+Y,E})],E) = 
(p 1+µY[(p2➔AY,(p 1+n,E))],E). 

Replacing in this result A by p1* A, and using an analogue of R3 , an 

analogue of example 5, and the· conditional axioms, we derive 

*A= 

(p 1-+µY[(p2+µZ[(p 1+AZ,Y)J,(p1+Q,E))J,E) = 

(p 1+(p2➔µZ[{p 1+AZ,(p2~z,(p 1-+n,E)))J,(p 1+Q,E)),E) = 

(p1+(p2+µZ[(p 1+AZ,(p2--+-n,E))J,Q),E). 

Replacing in this result A by p2 * A, 1.1sing s:lmilar arguments as 

above, and the f.p.p., it then follows that 

4.2. A WHILE STATEMENT E ••Joi. LE FROM DIJKSTRA 

In [8], p.31, the following exa,,uple is discussed: 

If the booleans B1 and B2 have no side effects, and if' B2 is un,:if'fected 

either by s1 or s2 , then the following two programs are equivalent: 

if B2 then while B1 do s 1 
else while B1 do s2 

• 

In the µ-calculus, this can be formulated as 

A 

where A will have to reflect the assi.lmptions made above. 



. 

Since no predicate in our formalism is assumed to have side effects, 

Dijkstra's first ass11mption does not concern us. The second ass11mption 

can be formulated as 

A1(p2+X,Y) = (p2+A
1
X,A1Y) 

A2(p2+X,Y) = (p2+A2X,A2Y) . 

As a third ass11mption, no:t ma.de explicit by Dijkstra, we need the 

totality of p2 : 

Thus, our formulation becomes 

(5) 

A 1(p2+X,Y) = (p
2

+A
1
X,A

1
Y), 

A2 (p2+X,Y) = (p2+A2X,A2Y), 

(p2+E,E) = E 

-- • 

It is possible also to assume somewhat less, by using the following 

assertion: 

(6) 

A(p+n,E) = (p+n,A), 

A(p+E,n) = (p+A,n), 

A(p+E,E) = (p+A,A) 

A(p+X,Y) = (p+AX,AY) . 

The proof of (6) goes as follows: 

~ A(p+X,Y) = A(p+(p+X,Y),(p+X,Y)) = 

A(p+E,E)(p+X,Y) = (p+A,A)(p+X,Y) = 

(p+(p+E,n)A,(p+n,E)A)(p+X,Y) = 

(p+A(p+E,n),A(p+n,E))(p+X,Y) = 

(p+A(p+E,n)(p-+X,Y),A(p+Q,E)(p+X,Y)) = 

(p+A(p+(p+X,Y),n),A(p+n,(p+X,Y))) = 

(p+A(p+X,n),A(p+n,Y)) = 

(p+A(p+E,n)X9A(p+n,E)Y) = 

(p.+(p-+,E,n)AX,(p+n,E)AY) = 

( p-+AX,AY). 

39 



4o 

(6) is in fact a special case of a much more general result, the proof 

of which is omitted here. Using (6), we can write for (5): 

A1(p2-+n,E) = (p2+n,A1) 1 

A1 (p2+E,Q) = (p
2

+A
1 

,Q), 

A2(p2-+n,E) = (p2+n,A2), 
• 

A2(p2+E,n) = (p2+A2,n), 

(p2+E,E) = E 

The proof of (5) offers no difficulties: 

Let P1 = (p2+p,*A1,p1*A2). Then 

--

= µZ[(p 1+{p2+A1Z,A2z),E)J 

= µZ[(p 1+(p2+A1z,A2Z),(p2+E,E))J 

= µZ[(p2+(p1+A1Z,E),(p 1+½Z,E))J 

.t A be short for the assumptions of ( 5). 

J.. Proof of A ~ P 1 £ P 2 • 

AssurnP. A. We first show 

(p2+n,µY[(p 1+A2Y,E)]) £ P
2

• 

Clearly, 

Next, we have to show 

(p2-+n,Y) s P2 ~ (p2+n,(p1+A2Y,E)) c P
2

• 

Applying A and the conditional axioms, we have 

~ (p2-+-0,(p 1+A2Y,E)) = 

(p2+n,(p1+A2(p2+n,Y),E)). 

• 

• 



Applying the f .p.p. a.nd monotonicity, we see that, indeed, 

(p2+Q,Y) S p2 ~ (p2+Q,(p,➔A2(p2-+-n,Y),E)) S 

(p2+(p 1+A1P2 ,E),(p1+A2P2 ,E)) • 

Thus, we have proved 

by the µ-induction rule. 

By syin:metry, we have 

(p2+uX[(p 1+A1x,E)J,n) c P2 • 

Combining these, we obtain 

(p2-+iiX[(p 1+A1X,E)],µY[(p 1+A2Y,E)J) = 

(p2+(p2~X[(p,➔A,x,E)J,n), 

(p2+n,µY[(p 1+A2Y,E)])) 

S (p2-+P2,P2) = P2. 

b. Proof of A ~ P 2 c P 1 • 

Using A, it is easy to verify that 

ZS P1 ~ (p2+(p1+A1Z,E),(p1+A2Z,E)) S 

(p2+(p1+A1P1 ,E),(p1+A2P1,E)) = 

(p
2
+(p1+A1µX[(p 1+A1X,E)],E), 

(p1+A2µY[ (p1+ A2Y ,E)] ,E)) = 

(p2+µX[(p 1+A1X,E)],µY[(p 1+A2Y,E)]) = 

P2. 
The result then follows by the µ-induction rule. 

4.3. A WHILE STA'J'EME:NT E .... LE FROM COOPER 

In [6 J, Cooper considers the following three progra.:,ns: 

P 1 is the progra.m 

1: if p
1

(x) then goto_ 2 else gotq 4; 
2: X := f'(x); 

3 : got,q, 1 ; 

4: if p 2 (y) then goto, 5 else goto 7; 

5: y := g(y); 

6: t 4 go .'2.. ; 

7: halt. 
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P2 is the program 

1 : 

2: 

3: 

4: 
5: 
6: 

7: 

if p
2

{y) then 

y := g(y); 

g9to 1 . , 
a 

if p 1 (x) then 

X ·-.- f(x); 

go:t,o 4; 
halt 

goto 2 else got~ 4; 
JJ n 

goto 5 else go,~9. 7; 

• 

P
3 

is the program 

1 : i:f p 1 (x) then goto 2 else goto 6; 

2: i:f p2{y) then goto 3 else 8~~~. 9; 
3: X ·-.- f'(x) ; 

4: y ·-.- g(y); 

5: got,9 1 ; 

6: i:f p2(x) then goto 7 else e;o,.-t;.p_ 12; 

7: y ·-.- g(y); 

8: s0 -t;.,P 6; 
9: if' p 1 (x} then goto 10 else got,9. 12; 

10: X ·-.- f'(x); 

2: halt. 

He proves the equj vaJ ence o"f' P 1 , P 2 and P 
3 

in the Manna-Floyd f'rar,,e

"ork, using the predicate calcul11s .. (See the references in section 1; for 

this specific exa.tnpJ e, com.pare also Park [27 ,29]. ) 

We show how to transliterate this example into the µ-calcu.111s. 

Let A1 correspond to x := f'(x) and A2 toy:= g(y). 

We note that 

, . 
2. 

A1A2 = A2A1• 

A1 does not change the value 

A2 does not change the value 

hence, 

A 1 (p2➔X,Y) = (p2➔A 1 X,A 1Y) 1 
A2(p 1+X,Y) = (p 1+A2X,A2Y). 

o:f P2, 

of P1, 
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Moreover. it is apparently necessa,-.v to requ1.·re .., .. .., that p
1 

and p
2 

be 

total. 

The 1J-terms corresponding to P 
1 

, P 
2 

and P
3 

are: 

p 1 = p 1 * A1 ;p2 * A2 

p2 = P2 * A2;p1 * A1 

P
3 

= µX[ (p 1-+(p
2

+A1A
2
X,p1*A

1
) ,p

2
*A

2
) J 

In the derivation of the µ-tenr1 f'or P 
3 

we have ttsed the well known 

technique of' associating systems of' recursive procedures with flow chart 

programs. A possible version of this technique runs in this is case as 

follows: To the progra.1n P 
3 

a system of' four proced1Jres is associated, one 

for each occ1.1rrence of a predicate in P 
3

, with the following declarations: 

procedi-1re Pi; (p 1-+P~ ,P 3); 

P~.oc e?-:ure 

proced,u_re, P3; (p2-+A2P 3 ,E); 

pro<:;ed11,re P 4; (p 1-+A
1
P4 ,E). 

According to the method for associating a ter·rr, in the µ-language with 

a system of proced1.1.res, as described in section 3. 1, we obtain for P 3 : 

P 
3 

= µX[ ( p 
1
-+µY[ ( p

2
-+A

1
A

2
X ,µZ[ (p

1 
+A

1 
Z ,E}] )] , 

1J8[(p2+A2S,E)])J 

or, after simplification, and using the* notation for while statements, 

Let A be the list o:f' equivalences 
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A: 

A1A2 = A2A1 

A1(p2+X,Y) = (p2+A1X,A1Y) 

A2(p1+X,Y) = (p1+A2x,A2Y) 

(p1+E,E) = E 

(p
2
+E,E) = E 

• 

Cooper's result ca.n then be :formulated as 

A 

• 

We prove only A~ P1 = P2 ; once this is understood, 

P 1 = P 
3 

h:i,mself'. 

the reader should have 
• 

no difficulty in proving A 

We use the notation 

A• p = p f'or A(p+X,Y) = (p+AX,AY). 

By result (6) o:r section 4.2, we have, f'or p2 total, 

A, 0 P2 = P2 if'f' A,(p2+n,E) = (p2+n,E)A, 

A 1(p2+E,O) = (p
2
+E,O)A

1 
• 

• 'irst we show 

(7) 

Clearly, A1 ;n = O;A1• Also, it is easily seen that 

Next, we show 

(8) 

--



and 

* A • 1 

The second one will :follow from the :first by sy rrn:netry. In order to prove 
• the first, we have to verify whether 

• 

Using A1 ° p2 = p2 , and some manipulations with conditionals, this easily 

follows. 

Replacing, in (7), A
1 

by p
1 

* A
1

, we obtain 

* A1 ;p2 * A2 = 

P2 * A2;p1 * A,. 

Since the assumptions of' (9) :follow :from A, using (7) with the indices 

1 and 2 interchanged, and (8), the proof' of' 

• 1.s complete. 

4.4. REDUCTION OF FLOW CHARTS TO WHILE STATEMF:NTS 

In [2], Bohm and Jacopini study the problem whether and how :f1ow 

charts can be rewritten as while statements. To be more specific, let Lf 
and L be two languages such that 

w 
a. L:f and~ have the sam?. e~ementary statements and the same predicates. 

b. Lf' has composition, conditionals and goto statements. 

c. Lw has composition, conditionals and only while statements (which can, 

of' course, be considered as a restricted type o:f goto statements). 

45 

They conject1.1re that it is not the case that :for each program in Lf' 

there exists an eq1..1ivalent program in Lw. (This conjecture has been proved 
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• 

in the mean time by Scott (31].) Next, they introduce an extension of L 
w 

to L', which has, in addition to L , three special elementa.ry statements w w 
(function constants in our tenoinology), F, T and K, and a special pre-

dicate constant w. These have as intended interpretation: 

F(x) = (x,1) , 
T(x) = (x,O) , 
K((x,1)) = x, 

K((x,O)) = x , 

w((x,1)} = 1 , 

w((x,O)} = 0. 

• 

They then show that each progra,m in Lf is equivalent to a program 

in L ,. w 
We give one of their examples of such an eq11jvalence, and present its 

proof in the µ-calculus. 

First we introduce part of their notation: 

For each p, 12. is defined by 

p = (p+TF ,FT) • 

For each X, (X) is defined by 

(X) = w * X. 

heir equivalence then reads: 

µX[(p-+-E,A 1 (q➔E,A2X))J = 

F(K It (KTT) K(KA1 q (KTr) K(KA2FT))K)K. 

In order to prove this in the µ-calcul.i1s, we need a nurnber of eq,ij -

valences characterizing F, T, Kand w: 

A: 

FK = E , 
TK = E, 

F(w+X,Y) = FX, 

T(w+X,Y) = TY. • 

• 

• 
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Th11s, we have to show 

A~ µX[(p+E,A 1(q~E,A2X))J = 

F(K .E. (KTT) K(KA 1 .9.. (KTT) K(KA
2
FT)) K)K • 

This is done as follows. Assume A. We first define five auxiliary proce

d1J_res: 

( 1) 

(2) 

(3) 

(4) 

(5) 

p = (KTT) 
1 

p2 = (KA2FT) 

p3 = (KA1 !l P1KP2) 
P4 = (K p P1KP3K) 

P
5 

= µX[(p+E,A 1 (q➔E,A2X))J 

Using these definitions, we have 

(6) 

(7) 
(8) 

(9) 

(10) 

( 11 ) 

(12) 

(13) 

(14) 

(15) 

( 16) 

(17) 

(18} 

(19) 

(20) 

(21) 

~ P1 = (w-+KTTP1,E) 

i- TP 1 = T 

~ P 1 = ( w-+-KTT ,E) 

~ p P
1 

= (p+TF,FT)(w-+-KTT,E) 

= (-n-+J ,FT) 

~ E_ P 1K = (~ ,F) 

~ q P
1
K = (q-+-TT,F) 

~ P2 = (w➔KA2FT,E) 

... p P 
1 

KP 
3 

= ( p+TT ,Al ( q-+TT ,A2FT) ) 

,A1 ( q-+T ,A2F)) 

~ P4 = µX[(w➔K( ,A1(q+T,A2F))X,E)] 

P6 = µY[(w➔K(p+T,A 1 (q-+-T,A2FY)),E)] 
~ TP4 = T, TP6 = T 

~ P4 = (w➔K(p+T,A 1 (q+T,A2FP4 )),E) 

( 1) 

(6) ,A 

(6),(7) 

(8) ,A 

(9) ,A 

(10) 

(2) and similar 
to (8) 
( 11 ) , ( 12) .,A 

( 3) , ( 13) and 
s i.milar to ( 8) 

(10),(14),A 
( 15) ,A 
{4),(16) 
def'inition 

(17),(18),A 
(17),(19) 

(18),(20) 
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(22) 

(23) 

(24) 

• 

There remains the proof that 

a. C • -
It is sufficient to show 

FYK C 

This :follows from 

b. ::,. -

(p+E,A1 (q➔E,A2FYK)) ~ 
(p+E,A 1 (q➔E,A2P5 )) • 

~ FP6K = F(w+K(p+T,A1(q-+-T,A2FP6)),E)K = 

(p+E,A1(q+E,A2FP6K)). 

Hence, 

.!'his completes the proof of Bohm and Jacopini 's exa.rnple. 

4.5. MCCARTHY'S 91-FUNCTION 

(18),(19) 

( 17), (22) 

(21) ,(23) 

McCarthy's 91-f11nction has become a wellknown test case in program

ming theory. It has been used in pa.rticular in Manna's work (Manna and 

Pnueli [20 ,21 J, Manna and McCa,rthy [ 19]). 

Its original form is: 

Let, for integer x, 

f(x) = (x>100 + x-10,f(f(x+11))) 

g{x) = (x>100 ~ x-10,91) 

Then f(x) = g(x). 

We shall concern 011rselves with a slight generalization. Let 



f' ( x) = ( x> a ➔ x-b, f' ( f' ( x+b+ 1 ) ) ) 

g'(x) = (x>a x-b,a+1-b) 
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for integer x > O, a> O, b > 1. (We do not allow b = O in order to avoid 

some uninteresting special cases.) 

In order to apply the µ-calculus to obtain the proof of f'(x) = g'(x), 
we have to reflect in some way in our ass11mptions that we are dealing with 

the special doma.in of integers·. This is done as fol.Lows: We introduce 

three function constants s1 , M1 , and A0 , and the predicate constant p0 , 

where s1 stands for the successor function, M1 for the predecessor func-
• tion, A0 for the zero-function, a.nd p0 for the test for zero predicate. 

In other words, s
1

, M
1

, A
0 

and p0 have as intended interpretation over 

the domain N of non-negative integers: 

8 1 (x) = X + 1 

M1 (x) = x - 1 

= undefined 

A
0

(x) = o 

p
0

(x) = o 
= 1 

for all x EN, 
, for all x EN, x f 0 

, for x = 0, 

for all x € N, 
for all x € N, x f 0 

for x = 0 

These four constants are characterized by the list of four equjva

lences A= A
1

,A
2

,A3,A4: 

A,: S
1
M

1 
- E -

A2: s 1A0 
- AO -

A3: AOM1 - n -
A4: µX[(p0➔A0 ,M1 xs 1 )J 

These equivalences are based 

that A4 asserts that the function 

is the identity function. 

- E - • 

on the • axio:trcs of Scott [33]; note 

h , de :fined by h(x) = (x=O➔O,h(x-1)+1), 

A
4 

can be used to prove the following result in the v-calculus which is 

the counterpart of mathematical induction: 
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XF C XG -
F C G -

(see also Milner [24]) 

PROOF. Ass1.mie the two prem:i ses. We show that then ~ F c G :fol.lows. By A4 , 

Thus, by the µ-induction rule, it is sufficient to show 

which is clear, and 

which is easily seen to hold by the two premjses. 

Next, we introduce some other constants, defined in terms of the 

given ones, for repeated addition and subtraction, and for dealing with 

the ''> '' relation. From now on, we ass11me that a, b are given integers , 

H"hich rema.in fixed throughout the proof. Let c = max(a+1 9b). We define 

2c - 2 new function constants s2 ,s3 , ... ,sc, M2 ,M
3

, ••• ,Mc, and c + 1 new 
• predicate constants P>o'P> 1, ••• ,p>c• 

Let, for 1 < y < c, 8 be the equivalence y 

s = s,s, ... s, 
y ,__I __ 1 

~ "v---
• y ti.mes 

Let C be the equivalence y 

M 
y = M

1
M

1 
••• M

1 
( ' > , .. 

y times 

• 

• 

• 



Let 

BC - 82 ,83, ... ,BC -
cc - C ,c , ... ,c -

2 3 C 

Let V
0 

be the equivalence 

and let V be 
'Y 

.. 

• 

V ann. V ( 1 <y<c) can be understood int1.1j ti vely a.s expressing the equi va-
0 y 

lences 

(x>O + X(x),Y(x)) = (x=O + Y(x),X(x)) 

and 

(x>y 

(x=O 

respectively. 

Let Ve be 

X(x) ,Y(x)) = 

Y(x),(x-1>y-1 + X(x-1+1),Y(x-1+1))) 

After these preparations, we are now in a position to foi·mulate McCarthy's 

result as 

( 1 ) .,_ µX[ (p>a ,¾S1:XX).J = 

(p>a+l\,Ao8a+1l\) • 
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The proof of' this is given in two parts. In the first pa.rt, we derive some 

intermediate results, contained in the list E: 

(2) 
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where Eis the list 

E 1: 

E2: 

E3: 

E4: 
E5: 
E6: 

Sb = E 

¾s, = s 1sb 
(p -+E,E) = E 

>a 
(p -+X, ~Y) = (p +X, (p -+Z,Y)) 

>a >a >a 
sb(p>a+X,Y) = sb(p>a-+X, SbY) 

µY[(p -+E,S 1Y)] = (p +E,A0S ~,) 
>a · >a a-r 

and in the second part we show that 

( 3) E ~ µX[(p>a-+ ,SbS1:XX)] = (p>a-+ ,A0Sa+1 ) 

· · A Be Cc Ve · without 1..1s1.ng the elements of , , , again. 

We begin with the proof of (3). 

By the last result of section 3.5., 

I'hus , we can replace ( 3) by 

Call the left hand side P1 and the right hand side P2 • 

a. Proof of P1 c P2 • 

It is sufficient to show that 

We verify whether 

.,.. ¾OP2 c p2 

and 

SbYP2 c P2 ~ sb(p>a+ ,s,Y)P2 ~ P2. 

• 

• 



The first is clear. The second assertion is derived as follows: 

8c,YP2 S p2 Sb(p>a+ ,s,Y)P2 = 

¾(p>a+~,f\5tS1Y)P2 = 

¾ ( p> a+~ p 2' 8b S 1 yp 2) = 

¾(p>a+~_P2,. s, YP2) S 

(p>a+ P2, S1P2) = 

Sb ( P> a +I\ p 2 ,?\ ( P> a I\ ' 8 1 p 2 ) ) = 

¾ ( P>a +1\P 2 •~·p 2) = 

¾f\P2 = 

p2 

b. Proof of~ P2 S P1• 

It is sufficient to show that 

By the µ-induction 

X £ P 1 , X c Sb S ,s 1 

rule, the proof of this 

(p>a+i= ,sbs 1xx) s P 1 , 

(~) 

(assumption) 

(E4) 

(f .p.p.} 

(E3) 

( E, ) 

follows from the proof of 

( p >a+~ , 8c, S 1 XX) £ 8c, p 1P 1 • 

The first concl11s ion of this assertion follows from the f. p. p. In order 

to prove 

we write for the left hand side of its conclusion 

(p>a+l\,¾s,:xx) = (E1) 

¾l\ (p>a+J\,8c,S 1xx) = ( E3) 

sb (p>a+l\ (p>a+f\ ,¾s,xx), I\ (p>a+f\ ,¾s,xx)) = ( E4) 

¾ (p>a.+~ (p> a+f\ ,¾s,xx), ~5r,s 1xx) = (E5) 

¾ (p> a+!\ (p> a+~ ,¾s,:xx) ,s 1xx) 

and for its right hand side 

(f.p.p.) 
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8t, (p>a +l\ ,¾S 1P 1P 1 )P 1 = 

¾<P>a+1\(P>a+1\,¾S1P1P,),s,¾P,P,P,) 

( f .p.p. ,E2) 
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Comparing the results for the le:rt hand side and right hand side, 

and using, from left to right, the ass11mptions X c P 1 , X c P 1, X .s SbP 1P 1, 

and XS P 1, the desired result follows, and the proof of (3) is complete. 

There remains the proof of 

First we derive some consequences from A • 
• 

--
• 

We prove only R1, R
3 

and R
5

. 

Proof of R1: By A4 a.nd the f.p.p., we have 

Proof of R
5

: 

= {p0+A0 ,M1s1 ) = 

(p0+(p0+A0 ,M1s1), (p0+A0 ,M1s1)) = (p0+E,E). 

M1s1 = EM1s1 = (p0+A0 ,M1s1)M1s 1 = (p0+AN 1s 1 ,M1s 1M1s 1) 

(p0-+-Q,M1s1) = (p0+n,(p0+A0 ,M1s 1 )) = (p0➔n,E) • 

s 1 (p0+x,Y) = s 1M1s 1(p0+x,Y) = s 1(p
0
+n,E)(p0+x~Y) = 

s 1(p0+n,(p0+x,Y)) = s 1(p0--+n,Y) = s 1(p0+n,E)Y = 

s 1M
1
s

1
Y = s 1Y. 

We use R1 to R5 in the proofs of E1 to c6 • 

a. The proofs of E1 a.nd E2 are clear. 

E3(o) follows from 
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(p>0+E,E) = (p0+E,E) = E. 

Ass11mi ng E ( a-1), we have 

--
= E. 

c. 

duction on a and b. 

c1. E(0,1) follows from R4 • 
• 

c2. Proof of E(a-1,1) ~ E(a,1). Assume E(a-1,1). For the left hand side 

of E(a, 1), we have 

--
(p0+n,M1(p>a-1+s 1x,Y)) 

and for the right hand side of E(a,1): 

~ (p +X,M1(p +Z,Y)) = >a >a 
(p0+n,M1(p>a,... 1-+s 1x,s 1M1(p>a+Z,Y))) 

(p0-+n,M1(p>a-,+s 1x,(p>a+Z,Y))). 
To establish E(a,1), it is thus sufficient to show that 

• 

This follows from 

E(a-1,1) ~ (p ,➔u,(p +V,W)) = (p +U,W) · >a- >a >a-1 
which is derived as follows: 

>a- >a 
(p>a-1+U,(p0+w,M1(p>a- 1+s 1v,s 1w))) = 

(p>a-1+U,(p0+W,(p>a-1+x,M1(p>a-1+s 1v,s 1w)))) = (E(a-1,1)) 

(p 
1
+u, (p

0
+w, (p 

1
+x,M_1s1w))) = 

>a- >a-
(p>a-1+U,(p0+w,M1s1w)) = 

(p>a-1+U,(p0+E,M1s1)w) = 

( p> a- 1 +U, W) • 

c3. From c
1 

and c
2

, the proof of E(a,1) can be constructed :for each given 

a. 

c4. The proof of E(a,b-1) ~ E(a,b) is sjmilar to the above ones, and 

therefore omitted. 
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d. Proof of E5 .. 

d 1. Using mathematical induction on b, one first shows that 

~ ¾<P>b-1+X,Y) = sbx 

where, for b = 1, R5 is used. 

d2. Using mathematical induction on b again, one shows that 

~ l\sb = (p>b-1+E,n) 

using R3 for the basis step. 

d3 .. Using these results, we prove E5: 

~ ¾ (p>a➔X,?\ Y) = (by d2) 

s._ (p ➔X,(p b 1+E,n)Y) = 
7) >a. > -

(by d 1) 

Sb(p>b-1+(p>a+X,(p>b-1➔Y,n)),Z} = 

S.. (p b 1+(p +X,Y),Z) = 
-b > - >a 

(by d 1) 

(p +X,Y). 
>a 

e .. Proof a :f E 6 • 

We use mathematical induction on a. The proof of the basis step 

)... µY[(p>O+E,s,Y)] = (p>O+E,Aos,) 

offers no difficulties. 

Assumte E6(a-1). For the right ha.nd side of E6(a) we write 

~ (p>a+E,AOSa+1) = 

(po+Ao8a.+1 'M1 (p>a-1+81 ,s,Ao8a+1)) = (A2) 

(pO+(p>a-1+S1 ,Ao8a+1) ,M1 {p>a-1+S1 ,Ao8a+1)) = 
(p0+{p>a-l+E,A0Sa)s 1 ,M1 (p>a-l-+E,A0sa)s 1) = (E6(a-1)) 

(p0+µZ[ (p>a-1+E,s 1z) Js1 ,M1µZ[ {p>a-1-+E,s 1z) Js 1). 

(We have specially indicated use of A2 here, since this is the only 

place in the proof of the 91-function where this axiom is 11sed.) 

There remains the proof of 

(4} --

Call the left hand side P1 and the right hand side P2 . 

For P 1 ve have 



Let P3 be defined by 

Then we can write for P 2 : 

(a) Proof of P1 s P2 • 

It-is sufficient to show 

(pO+P3,M1P3) 
From the ass11mption 

Y c (po+P3,M1P3) 
we derive 

s,Y s s,(po+P3,M1P3). 
Hence, by R5 , 

s 1Y c s 1M1P
3 

= P
3

• 

• 

C -

Using this last result ann the f.p.p., we see that, indeed, 

• 

~ (p0+s 1Y,M1(p>a-1+s 1,s1s 1Y)) s 
(po➔P3,M,(p>a-1➔s,,S1P3)) • 

(e) Proof 0~ p2 C P,. 

(5) 

We have to verify 

(p0+z,M1z) s P1 ~ (p0+(p>
8

_ 1+s1,s1z), 

M1(p>a-1+s1,s1z)) c P1• 

For P 1 we have 

~ P 1 = (p0+s1P1 ,M1(p>a-1+s 1 ,s1s 1P 1)). 

Hence, 

Th11s, 
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(6) 

(7) 

= (p0+(p>a-1+s 1~s 1s 1P 1),M1(p>a-,+s 1,s1s 1P1 )) 

= (p0+s 1s1P 1,M1(p>a-,+s 1 ,s 1s 1P 1)). 

Also, from the ass11mption 

(p0-+-Z,M1Z) s P1 , we derive, as above 

• 

Using (6), we write for (5) 
(p0-+-Z,M1z) s P 1 ~ (p0+s 1z,M1 (p>a-1+s 1 ,s 1z)) s 

(p0+s 1s 1P 1 ,M1(p>a-1+s 1 ,s 1s 1P 1)). 

That this last assertion holds follows from (7). 

This completes the proof of E6 ; hence, the proof of (2), and, with 

this. the proof of the generalization of McCarthy's 91-f'unction, i.e. of 

(1), is completed. 
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5. RE TERMS AND THEIR NO FORM 

In this section, we introduce a subset of the set of terms o:f 011r 

forma.1. language, viz. the set of reguZar terms. Intuitively, the reC'P'\-...ar 

terms correspond to flow charts, the predicate boxes of which are labelled 

by elements of 011r set of predicate variables , and the action boxes of 

which are labelled by 011r set of function variables. It is well known that 

each such flow chart can be represented by a system of recursive proce

dures (see e.g. McCa,rthy [22]). This system can then in tt1rn be represent

ed by a term in the µ-language, in the way described in section 3.1, and 

such a term will then be a regula.r tenn. It is also well known that there 

is not a one-one correspondence between such flow charts and ( systems of) 

rec11rs i ve procedures (or, equivalently, between fl.ow charts and ter1ns in 

the µ-lang11age): No flow chart corresponds e.g. to µX[(p+A 1XA.2 ,E)J. Since 

the equivalence problem for flow charts of the indicated type is decidable 

(this follows e.g. from Yanov [39]), one may look for a compl.eteness theo

rem for the µ-calculus restricted to reg1.1J ar terrns. The compl.eteness theo

rem we shall prove in this and the next section is the following: 

Let Tl and T 2 be reguZar terms. Then 

T = 1 

In words, = T 2 is a valid assertion, 
. I 
1.e., Tl 

the same function in all interpretations I, if and only 

theorem of' the µ-calculus. 

Note that this result is only a special case of the general problem: 

If we know that~~~ is valid, can we then always obtain a proof of 

~~$as a theorem of the µ-calculus? It has been proved by Scott [33] 

that the answer to this general ~uestion is negative. (Clearly, the vali

dity of the µ-calculu~, as justified in section 3.4, guarantees that if 

~~$is a theorem of the µ-calculus, then~~~ is a valid assertion.) 

The present section contains the first half of our proof of the 

completeness theorem for regular terxns. After the definition of these 

ter1,1s, we introduce a normal form for them, derive a number of properties 
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of regular ter:10s in no1-:rnal fo:t·m, and show that each 

valent to a regula.r terrn in nor·,nal fo1·111. In section 

for o 1, o 2 regular te11ns in no1•tnal f'o1·1r•, we have 

• • reguJ ar ter,ri is e qliJ -

6, we then prove that~ 

• 

Definition 5.2 gives the definition of a regu.1ar ter10; it 'llses defi

nition 5.1, in which the notion of a tenn being regular in a variable is 
• 

introduced. 

DEFINITION 5.1 

a.Xis regular in X. 

b. If T 1 does not contain X free, and T2 is regular in X, then T
1 

and 
• 

T 1 ; T 2 a.re regular in X. 

c. If -r 1 and T 2 are regula,r in X, then ( p-+--r 1, -r 2 ) is regular in X, :for each 
• • predicate va.r1.able :p. 

d. If' -r is regular in X and -c is regula,r in Y, then µY[T] is regular in 

X, for each variable Y. 

Examples. 

1 • .AX and µY[( p+AY ,X)] a.re reguJ a,r in X. 

2. XA, (p+A1XA2 ,E) and µZ[(p+ZX,E)] are not regular in X. 

DEFINITION 5.2 

a. Each constant or variable is regular. 

b. If -r 1 and -r2 are regular, then T 1 ;-r2 and (p+-r 1 ,-r2 ) are regular, for 

each predicate variable :p. 

c. If -r is regular and -r is regular in X, then µX[-r] is regular. 

Examples. 

1 • AX and µ Y [ ( p+AY ,X)] a.re regul a,r. 

2. µX[XA], µX[(p➔A 1XA2 ,E)J and µZ[(:p+ZX,E)J are not regular. 

We now proceed with the definition of a norrna.l forJn for regular 

terros. One part of this definition is for technical convenience. This 

concex"l.ls the notions introduced in definitions 5. 3, 5.4 and 5. 5. By 
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technicaJ. convenience we mean that a proo:f o:f the completeness theorem 

which does not 11se these notions in some way might well be possible. An

other pa.rt, however, sePrns to be essential, viz. that property of regula.r 

te1·r,is which a:m.ounts to the f"act that for each ter1n µX[ T 
1 
J; "t' 

2 
there exists 

-r' such that ~ µX[T 1 J ;-r2 = µX[-r' J. This is the property which was already 

indicated in the third example of section 3.5, played an important role 

in the proofs of section 4, and which will be stated precisely in lemmas 

5.10, 5.11 and 5.12. 

Before we present the de:fini tion o:f nornia.l fo110 for regular ter10s, 

we :first give the :following auxiliary definitions: 

DEFINITION 5.3 

A term T mey- be free from a predicate p. 

a. Each constant or va.riable is free from p. 

b. A; -r is free from p, for each va.riable A aod term T. 

c. If T 1 and -r 2 are free from p, then ( q-+-r 1 , -r
2

) is free :from p, for each 

predicate variable g_ which is different from p. 

Examples. 

1. E, .AX, and ( q-+A( p+X,E), n) a.re free from p. 

2. ( q-+( p-+A 1 ,A2 ) ,A
3

) and µX[X] are not free :from p. 

Semantically, if a te1·1n -r is free from p, then, for each interpreta

tion I with domain 

depend on pI(x). A 

V, and for each x c: V, TI(x) may be assumed not to 

more 

the course of the proof 

precise statement of this fact will be given in 

of the completeness theorem (Le:rciroa 6.4.) Ro11ghly 

speaking, we want to be able to reduce a certain a,rgt1ment on (p-+a
1 

,o
2

) to 

a.rg11ments on o 1 and o2 • In 011r approach, this is, in general, allowed only 

if o 1 
• in:fer 

and o2 
from~ 

are free from p. To be more specific, we want to be able to 

c a'', where cr' and a'' 
a.re derived from cr in a certaj n way to be stated below. This inference is 

not allowed in general: Although e.g.~ (p-+(p-+-n,E),Q) c n is val.id, it is 

not true that~ (p-+n,E) c n is valid. 

Note that no procedure is said to be free from p {this is aga.jn a 

matter of convenience) and that, for q + p, ( q-+T 
1

, -r
2

) is free from p iff 
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both t' 1 and ,:2 a.re free from p. 

Next we introduce the concepts of a (diMatly) open occurrence of' a 

variable in a te:rm (definition 5.4) and of a va.riable being 

a terin (definition 5.5). The main application of the notion 

open occ11rrence can be fo11nd in Lerr11tra.s 5. 1 and 5. 2. For the 

shielding compare the third remark :following the definition 

:forrri (definition 5. 6). 
• 

DEFINITION 5. 4 

shielded by 

of a directly 
• notion of 

of' normal 

A variable X may occ11r (directly) open in a terta -c which is reguJ a,r 

in X. 

a. X occurs directly open in (p+X,T2 ) or in (p+-r
1
,x), :for each p, -r

1
, -r

2
• 

b. I:f X occurs ( directly) open in T 1 or -r 2 , then X occurs (directly) open 

in (p+-r 1,-r2 ) for each p. 

c. If X occ11rs directly open in T, then X occurs open in T. 

d. If X occ11r$ open in T, then X occ11rs open in A; T, f'or each variable A 

(which is+ X, by regu.la.rity). 

e. If X occurs open in T, then X occurs open in µY[,:J, f'or each Y + X 

(where Tis regular in Y). 

DEFINITION 5.5 

Let T be regular in X. T is saj d to shield X if:f T contains no open 

occurrences of X. 

Examples. 

1. X occt1rs directly open ( and, hence, o:pen) in (p+X,E) and in 

(p+( q+X,A1) ,A
2
). 

~. X occtlrs open (but not directly open) in (p-+A1(q-+X,E),A2 ) and in 

µY[(p+AY ,X)]. 

3. X does not occur open in X or in (p-+A1X,µY[(q-+A 2Y,A
3
X}J). 

Note that X shields X, that A;T shields X iff' T shields X, that 

(p+-r 1 ,T2 ) shields X if'f' Tl and T2 shield X, and that µY[T] shields X if'f' 

T shields X. 



First consequences of definitions 5 .. 4 and 5 .. 5 are lexmna.s 5. 1 and 5 .. 2: 

Let ,: be regu,1 ar in X. Let t' be the result of replacing, 

or more directly open occurrences of X by t .. Then~ l = t'. 

• 1n t, one 

PROOF .. This follows easily by suitable application o:f the s.x.ioms on con

ditionals. 

Examples: 

1. (p-+X,E) = (p-+(p+X,E),E) 

2. ~ (p+(q➔X,A 1 ),A2 ) = 

(p➔(q-+(p+(q➔X,A 1 ),A2 ),A 1 ),A2 ). 

We prove the second example. First we need an au.xiliary result: 

(p-+(q+(p+X,Y),z),T) = (p+(q+X,Z),T). 

This is shown as follows: 

(P1""(q➔(p+X,Y),z),T) = 

(p-+(p+(q-+(p+X,Y) ,Z), (q+(p-+X,Y) ,z)) ,T) = 

(p➔(q-+(p+(p+X,Y),(p-+X,Y)),(p+Z,Z)),T) = 

(p➔(q➔(p-+X,Y),(p-+Z,Z)),T) = 

(p-+(p+(q-+X,Z),(q➔Y,Z)),T) = 

(p-+( q➔X,Z) ,T) .. 

Reple,cing in this auxiliary result X by ( q-+X ,A1 ) , Y by A
2

, Z by A
1 

and 

T by A2 we obtain 

Hence, 

(p-+(q+(p+(q-+X,A1),A2),A1),A2) = 

(p-+(q+(~+X,A1),A1,A2 ) . 

(p-+(q-+(p+(q+X,A1),A2),A1),A2) = 

(p➔{ q+X ,A1} ,A2). 
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5.2 

Let "[ be regula.r in X. Let -r ' be the result of' replacing, in "[ , one 

or more directly open occurrences of X by n. Then~ ~X[T] = µX[T']. 

Examples: 

1. l- µX[(p+X,E)] = µX[{ .... ,E)] 

--
µX[(p+(q+O,A 1),A2X)] . 

• 

PROOF. If T has no directly open occ1.Jrrences of X, we have nothing to 

prove. Otherwise, let Y1 , Y2 be two variables which do not occur free in 

't. Then there exists -r'' such that -r = -r''[X/Y 1 ][X/Y
2

J, where -r'' is re ...... ar 

in Y1 and Y2 , and Y1 occurs directly open in T". (In example 2 above, 

T'' = (p-+(q+Y 1 ,A1),A2Y2 )). It is sufficient to show that 

• a. => 1.s clear. 

b. Proof of'=· Applying the µ-induction rule twice, we see that it is 

sufficient to show that 

y2 = µY2[ T ''['2/Y 1 J J 
Let T' 1

' = µY2[-r''[n/Y 1]]. Then 

Thus, we have to show 

Since Y 1 occ11rs directly open in T'', we have, 1.Jsing lerrr,na. 5. 1, 

T '' c n /Y J [ T ' ' ' /Y J = T '' [ T ' ' ' /Y J [ -r ' ' ' /Y J 1 2 1 2 • 
The desired result then follows by monotonicity. 

We are now in a position to give the definition of a regliJ ar te1·1a in 

nor•inal f or1r1 : 

DEFINITION 5.6 

a. Each constant or variable is in nor1r1al for1n. 



b. I:f a is in normal :forin, then A;cr is in no1·1aal forrri, :for each variable 

A. 

c. If cr 1 and 

(p-+a
1

,o
2

) 

• o 2 are 1n nonr,e.l :form, and are both free from p I then 
• • is 1n no1·111al force, , for each p • 
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d. If cr is in norrr1al :form, a is regtll ar in X, a shields X, and o is not a 

procedure, then µX[cr J is in nortnal for1n. 

Examples: 
• 

1. Q, E, A, A1(p+A2 ,A
3
), µX[(p+.AX,E)J, 

µX[(p
1
+A

1
µY[(p+A

2
Y 1 A

3
X)] 1E)] 

• are in norinal :f orttt. 

2. (p+A1 ,A2 )A
3

, (p+(p+A,E) ,E), (p+1JX[X],E), 

µX[XA], µX[µY[E]] 1 µX[(p+X,E)], 

µX[ (p+A( q➔X ,E) ,E)], µX[X] ;A 

are not in no:t·1t1al :f o:r·tn. 

Rema.rks: 

1. A regt1l ar terrn in normal forrn will also be called a no1·tt1a.l tex·1,1. o, o 1 , 

a' etc. always stand for noJ·raal te1·rns. 

2. Some of' the general forr,1s of reguJ ar tercns which are not in nox·inaJ.. f'o1·rt1 

are: (p+-r 1 ,-r2 ) ;-r 3 , Q;-r or E;-r, µX[t 1 ];-r2 , (p-+(p+i- 1 ,i-2 ) ,-r
3

) and its 

analogues, (p+µX[-r 1J,-r2 ) and similarly, µX[µY[-r]J, and µX[-r], where -r 

contains one or more open occurrences of X. 

Some instances of such terms not in norroal f'or1·0, and their correspon

ding equivalent terms in nor1r1al forrti a.re 

(p-+A1,A2)A3 and (p-+A1A
3

,A2A
3
), 

n;A and n, 
E;A and A, 

µX[{p-+A 1X,E)JA2 and µX[(p+A 1X,A2)J, 
(p+(p-+A1,A2),A3) and (p-+A1,A

3
), 

{p+llX[(p-+AX,E) ],E) and (p-+AµX[(p+AX,E)],E}, 

µX[1JY[(p-+A 1X,A2Y)]J and µX[(p➔A 1 X,A2µY[(p+A 1 X,A2Y)J)J, 
µX[ (p-+A(p+X,E ),E)] and (p+AµU[ (:p+AU ,E)] ,E). 

3. If 1JX[o] is in normal fo1111, we want o[µX[cr]/X] also to be in norxr1a,l 

:form. Without the restriction on shielding in clause d, this would not 
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be true in general. See 

µX[T] = µX[(p+A(p-+X,E),E)] and 

-r[µX[-r]/X] = 

(p-►A(p+µX[ (p-+A(p+X,E) ,E)] ,E) ,E). 

Since ( p+µX[ • J ,E) is not in norrnaJ for1n, the whole last terrn is not in 

normal form. 

Before we can give the proof that each regular term is equivalent to 
• 

a no:rmal term, we need a number of properties o:r norrnal terms, contained 

in lPmmas 5.3 to 5.12. 

5.3 

Let cr 1 , cr2 be normal tert11s, let a 1 be regular in X and shield X. Then 

a. a 1[o2/X] is a normal term. 

b. If cr 1 is free from p, and cr 1 f X, then a 1[cr2/x] is free from p, for each 

variable p. 

PROOF. We use induction on the complexity of cr1 , to prove both statements 

simultaneously. 

1. If cr 1 is a constant or variable, both statements are clear. · 

2. Let cr 1 = A;a 11 , for some variable A(f X, by regularity). 

Since a 11 is regular in X and shields X, we have that a
11

[cr
2

/X] is a 

norina.l term, by the induction hypothesis. Since (A;a 
11

) [cr
2

/X] = 

= A;(a11 [cr2/X]), statement a follows. Statement bis clear • 

• Let a 1 = (q➔a 11 ,cr 12 ). Since a 11 and cr12 axe regu]ar in X and shield X, 

both a 1 1 [ cr 2 /X J and a 12 [ a 2/X J are norroa.l terms , by the induction hypo

thesis is for a. Since a 1 shields X, both a 11 f X and a
12 

+ X. Since 

cr 11 and a 12 a.re free from q, we have that o 11 [cr2/x] and a
12

[o
2
/X] a.re 

free from q, by the induction~ othesis for b. Since (q➔a 11 ,cr 12 )[cr2/X] 
= (q➔a 11 [o2/X], cr 12[cr2/X]), statement a :follows. As to b, if p = q, we 

have nothing to prove. Otherwise, suppose that (q➔a 11 ,o 12 ) is :free from 

p. Then a 11 , cr 12 are free from p, and both are+ X. Thus, a
11

[cr
2

/X] 

and cr 12(a2/X] are free from p, by the induction b,.,,._othesis :for b. Thus, 

(q+a 11 ,a12 )[a2/x] is free from p. 



4. Let o1 = µY[cr 11 J. Since Q11 is regular in X and shields X, a
11

[a
2

/X] 

is a norma,l te1·:in, by induction. We have µY[o 11 J[o
2
/X] = µY[o

11
[o

2
/X]], 

ass11rni ng that Y does not occur free in o
2

, and, moreover, a 
11 

[o
2
/X] 

shields Y. Thus, µY[o 11 [cr2/X]] is a nor1ne.l term. This proves a. Since 

no proced11re is free from p, b is trivially satisfied. 

COROLLARY 5.3 

• 

If µX[o] is a no1·,nal term, then cr[1,1X[o]/X] is a normal tenr1 which is 

not a. procedure. 
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PROOF. Follows f"rom lemma 5. 3 and the fact that, if µX[o] is a norrual terrn, 

then o is not a procedure. 

5.4 

I:f o is a normal terrr1 which is regular in X, then, :for each variable 

A, cr[AX/X] is a normal terra, regular in X and shielding X. 

PROOF. Follows easily f"rom the definition of' shielding. 

For the next two lernma.s, we need the notion of sw-te1wz of a nor,:r,a.l teno. 

In this definition, we use the following notation: If T is a set of' tercoa 

{ L 1 , L 2 , ••• , Ln}, then T[ T /X] is the set of terms 

{L 1[L/X], T2[-r/X], ••• ,Tn[-r/X]}. 

DEFINITION 5.7 

The set I: (a) of all subter10s of' a normal te1·1c1 cr is def'ined by 

1. t(cr) = {n} u r
0
(a). 

2.1. Io(n) = {Q}, Eo(E) = {E}, Eo(A) = {A}. 

2.2. t 0 (A;cr) = {A,A;cr} u r0 (o) 

2.3. t 0 ((p+o 1,a2 )) = r
0

(o
1

) u r
0

(cr
2

) u 

{ (p+o' ,cr'') Io' e: 1:
0

(0
1
), o'' e: r

0
(o

2
)}. 

2.4. r 0 (~X[crJ) = {~X[oJ} u r 0 (cr) u r 0 (o)[µX[cr]/XJ. 
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Remarks: 

1 • 

2. 

3. 

For each t(o) • finite set. o, lS a 

For each a, a t: Eo(o). 
It • convenient to have '2 subterm of each te:t·1:o (hence cls,1se lS as a. 

and to have e.g. (p+a 1,a2 ) as a. subterm of (p-+-(p+a 1 ,o3 ),o2 ) (hence 

clause 2. 3). 

4. Since o t: i:
0
(a), we have a[µX[o]/X] e I 0 (a)[µX[o]/X] s r 0 (µX[a]). 

1 ) 

5.. The notion of subterm will be of importance in a certain terrrti nation 

argannent in section 6. 

For each no1:1r1e.J ter1r1 µX[a] there exists a o', such that ~ µX[o] = 

a' not a procedure, and a' a subterm of µX[a]. 

PROOF. Follows from corolla,1-y 5. 3, definition 5. 7 and the remarks fol.low

ing it. 

Let a 1 , a2 be two nox·ma.l ternts. There exist a', a'' such that, for 

each predicate variable p, 

a • ( p+o 
1 

, o 
2 

) = ( p+a ' , a'' ) • 
b. (p)o' ,at') is a norms.) ter111. 

c. a' , a'' are subte1·1,1s of o 1 , a 2 respectively. 

PROOF .. We show the existence of o • ; the proof for a'' is simj la.r. We use 

induction on the complexity of a 1 • By le11u11a. 5. 5 1 we may ass\1me that a 1 is 

not a proced,1re. If a 1 is a. constant or variable, or if a 1 has the forxn 

A; a 1 1 , then a 1 is clearly free from p, and a' = a 1 • Now suppose 

a1 = (q+o11 ,a12), for some predicate variable q. 

If q • p, we have 



• 

Since a 11 has less complexity than cr 1 , there exists, by induction, a nor

mal a' ' ' , free :from p, such that cr' ' ' is a subter10 of a 11 , and such that 

statement of the lemma :follows. 

If q + p, we use the eq11i valence 

By the induction hypothesis, applied to (p-+a
11

,a
2

) and {p+cr
12

,o
2
), 

there exist a''', a'V such that 

1. a''', cr'v are free from p. 

2 • ( p-ro ' ' ' , a 2 ) , 
•v (p-ra ,a

2
). 

'V a are subterrns of a 11 , cr 12 respectively. 

Then 

(p+(q+cr11'cr12),cr2) = 

(p+(q+(p-+cr11'cr2),(p+cr12'a2)),o2) = 
(p+(q+(p+cr''' ,o2 ),(p+o'v,cr2 )),a

2
) = 

the statement of the leroc,,a :f"ollows • 
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In the proof of lemma 5.8, which is one of the two key results in the 

proof' of the norxr,al fo:r·ia. theorem, we need the following a.uxili a,1-y l.e1c1rt1a.: 

LEMMA 5.7 

Let cr 1 , o2 be terros which do not contain U, V, W or S free. Then 

µX[ (p+cr
1 

,cr
2
)] = 

(p+µU[o 1[(p~U,µV[o2[(p-+U,V)/X]])/X]], 

µW[cr 2[(:p+-µS[o 1[(p+S,W)/X]],W)/X]]). 
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PROOF. The straightforward , but somewhat tedious proof of this le,r1,c1a is 

left to the reader. A special case of lemma 5.7 was proved as result R3 
of section 4.1. 

Example: 

~ µX[(p+A 1 {q➔X,E), A2 (r ►X,E))J = 

(p+µU[A
1 

( q➔(p-►U ,_µV[A2 (r➔(p➔U ,V) ,E)]) ,E)], 

µW[A
2

( r > (p-+µS [A
1 

( g_➔( p-►S ,W) ,E) J, W) 1E) J) • 
• 

The idea behind this l~mm~ may become clear if one constructs the 

µ-terxo for the procedure P 1 which is declared by the system 

proc~d~re, P1;(p+P2 ,P3 ); 

pr:9ce,d1.J::e P 2 ; a 1 [P 1 /X]; 

procedure P2;a2[P2/XJ. 

Let a be a nor1na.l terrn which is regular in X and which is not a pro

cedure. There exists a normal tenn a', a' not a procedure~ such that 

- ,.,. ' - V • 

PROOF. Note that µX[a] itself is not necessarily a nor1r1~l terr:n, since a 

rnay contain open occurrences o:f X. 

We use an auxiliaJ·y :ft1nction a (X ,a) which is defined for a as in the 

statement of the leitana by 

a. a(X,E) = a(X,Q) = a(X,A) = a(X,A;a) = O. 
b. a(X,X) = 00. 

c. a(X,(p+a 1 ,a ) = 111,1a.:x-(a(X 1 a 1) 1a(X,a
2
)). 

Examples are 

a{X,(p+X,E)) =~,and 



Since neither a
1 

nor a
2 

• • in clause c is a procedure, 

a non-negative integer, or~. First we consider the case 

This case occurs i:ff' either 

a. a = X, or 

b. a contains one or more directly open occurrences o:f X. 

a(X,cr) is either 

that a.(X,a) = 00. 

In case a, we u.se µX[X] = n, in case b we apply lemm1=1. 5. 2, yielding 

~ µX[cr] = µX[cr'], where cr' results :from cr by replacing all directly open 

occ11rrences of X in a by n. Then, a(X,o') < 00. 

' 

Next, we give the proof :for a(X,o) <~by induction on the integer 

a(X,o). (See also the exa.,r,ple following this proof.) 

a. a(X,o) = O. If a= E, nor A, the statement follows immediately. If' 
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a= A;cr1 , we apply~ µX[A;o 1J = A;µX[a 1[AX/X]J (see result R
2 

of section 

4. 1.) By lemma 5. 5, we may ass1.1me that a 1 is not a procedt1.re. Then, by 

lemma 5. 4, µX[ er 1 [AX/X] J is in no1·,,1al f'orxo, and the desired result fol.

lows. 

b. a(X,cr) = n > O. From the definition of a(X,o) it follows that then 

a = (p+a 1 ,o2 ). By lemma. 5. 7, we have 

µX[ (p-+o 
1 

,o
2
)] = 

(p+µU[o 1[(p+U,µV[o 2[(p-+U,V)/X]])/X]], 

µW[.J). 

First we consider µV[o2 [ (p+U, V) /X] J. If o2 [ (p+U, V) /X] is not in no:c·,r,a.l fox·m, 

it can be brought into nor1na.J forrn by s11itable application of the con

ditional axioms. Let the result be o2. Consider µV[o2]. Clearly, cr2 is not 

a procedure, and, also, a(v,o2) < n. Thus, by the induction hypothesis, 

Next, consider µU[o 1[(p-+U,cr2)/X]]. Again, after suitable application of 

the conditional axioms, we obtain a norn1a.l o1, such that .... a
1
[(p+U,a;)/X] = 

oi, a1 not a proced11re. Al.so, a(u.,a;) < n. Thiu;, by induction, there 

exists a nor1nal terrn o;' such that µU[o;] = o;•. Similarly, we derive 

µW[. J = o2'', for some nor1oal cr2''. Then µX[(p+a 1 ,o2 ) J = (p+o;' ,o2''). 
From the construction it follows that a~' and 0 2

1 ' are free from p. Hence, 

( n-+o'' a' ' ' ) · ~. 1, 2 1S 

This completes 
in nor1nal f 01·n1. 

the proof of le1runa. 5. 8. 
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Exa,tt1;ple : 

We derive the nonna.l fox,a of 

We have 

Also, 

.., µX[ (p-+( q-+A(p+X ,E) ,E) ,X)] = 

µX[(p+(q+A(p+X,E),E),n)J = 

(pJµU[(q+A(p+(p+U,µV[O]) ,E) ,E) ], 

µW(O]) • 

µU[(q+A(p+(p+U,µV[n]),E),E}] = 

µU( ( q-+A(p+U ,E) ,E)] = 

(q-+\,lV[A(p+{q+V,µW[EJ),E)J, µS[E]) = 

( q-+AµV( ( p+{ q+AV ,E) ,E)] ,E) • 

Thus, the desired norma,.J forsn is 

(a(X,a) = co) 

(a(X,a') = 2) 

(a(U,a'') = 1) 

The next group of lero1r1a,s contains the second key result to be used 

in the proof of the norma.l forrn theorem. They are concerned with the re

duction of a term µX[a 1J;a2 to an eq,Jivalent norroe.l te1-rr, 1,.1X[a']. This re

duction is based on the following def'ini tion: 

DEFINITION 5 .8 

Let t be a f'ini te (possibly e1npty) set of variables I and let a 1 , a2 
be norrna.J te:r·r·tts. 

• • a 1 o o2 is defined by 
t 

a.no a2 = 0 1 

t 
b. E o o2 = o2 , 

t 



c. AO 02 = A, if A Et 
~ 

A;a2 :. i:f At ;, 

d. (A;a 11 ) o o2 = A;(o
11 

o a
2
), 

~ ; 

e. (p+a11 ,a12 ) o o2 = (p+a11 o a
2

,o
12 

~ t 

provided that o
2 

does ' . not contain X :free. 

5,.9 
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If o 1 is reg1JJ ar in x. a 1 shields X, a 
1 

not a proced11re I o 
2 

does not contain X free, 

shields X and is not a procedure. 

is not a proced1Jre , ..... a2 is 

then a1 o o2 is reg12J ar in X, 
{X} 

PROOF •. Follows easily from definition 5 .8. 

Lenunas 5. 10 and 5. 11 are preparatory to lemrna, 5. 12 9 which contains 

the main result on the ''o'' operation. 
~ 

5. 10 

Let a 1 be a norx,1al terru which is reguJ,ar in X, let o
2

, a
3 

be nonnaJ 

terins which do not contain X free I and l.et ~ be a :finite set of' variables 

such that X t ~. Then 

o
1 

0 a
2 

C 

~ 

PROOF. We 11se induction on the complexity of a
1

• 

a. o1 = o. 
Since O o o2 = n, this case is clear. 

~ 

b. o1 = E. 

Then a 1 

since o2 does not contain X free. • 
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c. a 1 = A f X. 

Then (A. o a2 )[o3/X] =A .. o o.2 • and 
tu{X} ~u{X} 

A o o2 = A 
~ 

d. a 1 = X. 

o a2 , and the assertion follows. 
~u{X} 

Since X o a2 = X;o2 (because of X t t), and 
~ 

(X o a2 )[a
3

/X] = X[a
3
Jx] ·= a

3
, the result follows from 

~u{X} , 

e. a 1 = A;a11 • 

Note that A + X by regt1J a.ri ty. Then 

(A;o11 ) o o2 = A;(o 11 oo2 ), and 
. ~ ; 

~u{X} ~u{X} 

Since 

X;o2 c 
t tu{X} 

holds by the induction hypothesis, the result follows by monotonicity. 

f. a 1 = (p+a11 ,cr12). 

This is simjlar to case e. 

g. a 1 = µY[a 11 ]. 

We have to show 

or, by definition 5.8, 

or, by definition of substitution, 

tu{Y} tu{X,Y} 

Since, by the induction~ othesis, 

the desired result follows from the fact that 



µY[-r,J c µY[-r2] 

which holds provided that Y does not occur free int. 

This completes the proof of lPmma 5.10. 

LEMMA 5.11 

• 

Let a., 1 < i < n+1, be re~ar in 
l. 

norirta.l ter,11 which does not conta.j n any 

each x1 ,X2 , ••• ,Xn a,nd 

of the X. free. Then 
J. 

PROOF. Induction on the complexity of on+,· 

a. an+1 
Then 

b. an+1 
Then 

=nor crn+ 1 = E. 

the result is clear. 

=A+ X., i = 1,2, ••. ,n. 
J. 

an+, o a 
{X1 ,X2 , ••• ,Xn} 

and 

on+ 1[o 1/x1J[a2 /x2 J ••• [on/Xn];o ~ A;a, 

whence the result. 

c. on+1 

Then 

= X., for some i, 1 < i < n. 
l. 

on+, o o 
{x1 , ••• ,xn} 

= x .• 
1 

and 

let o be a 

on+ 1[o1/x1J[a2 /x2 J ••• [o
0

/Xn];o = a.;a. The result 
l. 

then follows from 

x1 c a 1;a, x2 c a2 ;a, ••. ,xn c an;a x. c a.;a. 
l. l. 

d. an+i = A;o'. 

Follows easily • • by the induction othesis and monotonicity. 

e. an+l = (p+o' ,a''). 

Sin1i lar to d. 

f. on+,= µY[o'J. 

We have to show 
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x 1 s a1 ;a, x2 s a2 ;cr, ••• ,xn c on;a 

µY[o'J o as ~Y[a'J[o1/x1J[a2/x2 J •.. [on/Xn];cr. 
{X1 ,x2 , ••• ,Xn} 

By definition 5.8, and the definition of' substitution, this reduces to 

By the µ-induction rule, it is suf'f'icient to show 

a' o a c -
{X1 ,X2 , ••• ,Xn ,Y} 

o'[a1/x1J[a2/x2 J ••• [an/Xn][µY[o'[a 1/x1J[o2 /x2 J ••• [crn/Xn]J/YJ;o 

where we have used the f.p.p. of 

It can be seen that the last assertion holds by the induction hypothesis, 
• • • since it 1s of the form 

-x1 s a 1;a, x2 s cr2 ;cr, ••• ,Xn c an;a, Y s a;a 

This completes the proof' of lexima 5. 11 • 

LEMMA 5.12 

Let a 1 , a2 be two norr,,a,J ter1us. Then 
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PROOF. Induction on the complexity of o 1 • For the cases where o
1 

is not a 

proced11re, the arg11ment is similar to the proofs o:f ].pmmas 5. 10 and 5. 11. 

There remains the proof of 

or> by definition 5.8, 

• 

{X} 
= µX[ a 1 1 J; o 2 • 

a. Proof of c. -
By the µ-induction rule, we have to show 

X c µX[o 11 J;o2 ~ a 11 o o2 s µX[a
11

J;o
2 {X} 

or 

This assertion follows from lemma 5.11, with n = 1. 

b. Proof of =>. -
By the µ-induction rule, we have to show 

µX[a 11 o o2 J ~ a 11 ;o2 s µX[o
11 

o o
2

J. 
{X} {X} 

Since, by the induction hypothesis of lemma, 5. 12, 

and since 

the assertion follows from lemma 5.10 with~ 

Th.is completes the proof of lei·nrna. 5.12. 

We have now collected eno 

the norn1al. f orrn theorem: 

'l'HH;OREM (Noi·xoal fo?·n1 theorem) 

results to proceed with the proof of 

For each regular term -r there exists a norroa.l ter1n a such that 

l- -r = a. 
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PROOF. We use induction on the complexity of T. 

a. 

b. 

b 1. 

If ,: is a constant or variable, then T is itself in no1--rnal_ foi~rn. 

T = 1:1 ;i:2. 

By the induction hypothesis, there exist normal a 1 , a 2 such that 

I- ,: 1 = o 1 , i.,. T 2 = o-2 • We show that there exists a no1~rr,al a such that 

i.,. cr 1;o2 = cr. We use induction on the complexity of a 1 • 

a,= n. 
• 

Then~ a 1;a2 = n; hence, a= n. 
b2. a 1 = E. 

b3. 

Then 

a 1 = A. 

- (J • - , 2 
hence, (J = 

Then cr 1 ;a2 = A;o2 , which is in normal form, and we take a = A;a2 • 

. b4. o 
1 

= A; cr 
1 1 

• 

Then cr 1;cr2 = (A;o11 );cr2 = A;(a11 ;o2 ). By the induction hypothesis on 

the complexity of o
1

, there exists a' such that~ cr11 ;o2 =a'. Thus, 

we can take a = A;a'. 

b5. cr1 = (p-+-cr 11 ,a
12

). 

b6. 

We 

lemma 5.6, there exist cr' '' ,cr'v such that ~ (p+o' ,o'') = (p-+o' '' ,a'V), 

and (p+cr' '' ,cr' v) is in no:nua.l form. Thus, we can take cr = (p+cr'' ',a' v). 

cr 1 = µX[a 11 J. 
Then a 1 ; a 2 = µ X[ cr 1 1 J ; cr 2 • By le1n,na 5 • 12 , ,- µX[ a 1 1 J ; o 2 = 

hence, by definition 5.8, ~ µX[cr 11 J;cr2 = µX[o 11 o o2 J. 
{X} 

We 

may assume that o2 does not contain X free and is not a :procedure. 

By lemma 5 .9, a 11 o o2 is regular in X, shields X, a.nd is not a pro
{X} 

cedure. Af'ter, if necessary, applying the conditional axioms, 

a o 
11 {X} 

• • a 2 is in nor111a.J forso. Then µX[ a 11 o er 2 J is in noi•111aJ f'orto, and 
{X} 

we can take o = µX[a 11 o o2J. 
{X} 

This completes the proof of case b. 



C • 1' = ( p+-r 1 , T 2 ) • 

By the induction hypothesis, there exist no1-1nal a 
1

, o
2 

such that 

~ T = 1 
(p+o' ,a'') is a non11al term, and that ~ (p+a1 ,cr2 ) = {p-+cr" ,cr''). Thus, 

~ 1' = ( p-+O' I , O' tt) • 

d. -r = µX[ T 
1
]. 

By the induction hyi:,othesis, there exists a no:t·mal a 1 such that 
• 

~ 1' 1 = cr 1 • It can be verified that, i:f T 1 is regular in X, then o 1 
is regular in X. By lemma 5.5, we may assuro~ that a 1 is not a proce

dure. Application of lemma 5.8 to µX[cr 1 J yields the desired result. 

This completes the proof of the normal :fo1·tn theorem. 

19 
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6 .. COMPLETENESS THEOREM 

6.1. OUTLINE OF THE PROOF 

This section is devoted to the proof of the main result of this 

paper: 

THEOREM (Completeness theorem) • 
• 

Let t 1 , t 2 be regular te1·1ns • Then 

• 

(Reme~ber that, in general,~ w holds iff' {~ ~ ~) 1 is true for all in

terpretations I (see section 3.2), and that t ~~holds iff ~~$is a 

theorem of the µ-calculus.) 

PROOF 

1. Proof of<:::: ... This follows from the validity of the l,1-calcull.ts, as dis

c11.ssed in sections 2 and 3. 4. 

2. Proof of ~- By the no1·'rt1al fo1·1u theorem, it is sufficient to show that 

( 1) 

w-here a 1, o2 are no11x1a.J te:rn1s. 

Note that equivalent te:x·xus may well have di f:ferent nor1r1a,l f'ot"lns (e.g. , 

µX[(p+AX,E)] and (p+AµX[(p+AX,E) J ,E)). 

The proof of ( 1 ) proceeds essentially by an inductive arg1.1ment on the 

compl.exi ty of o 1 • However, inte:r".lnediate steps in this proof will be of the 

:more general forrr1 

(2) :::: · > ~ ~ a c a 
1 - 2 

where consists of the accum:ul.a.ted hypotheses which are generated by 01Jr 

treatment of proced1lres, and which will allow 11s, at s1.1i table stages in 

the proof, to apply the µ-induction rule. 
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- 2 

First we give a precise description o:f the struct11re of" the assertions 

4>{~) (called no::t1maZ asse:rations), which structure is dete:r"Ioined by the way 

in which the successive hypotheses concerning procedures are generated. 

Secondly, we shall introduce a complexity meas1Jre r for an assertion 

ct>( ). This measure involves the complexity of both o
1 

and tin cp( ). 

Then• in order to prove 4> ( ) ::: :>,cp ( ,-) :for no:r·1nal assertions , we shall pro-

ceed by a case analysis o:f the various forms which a
1 

and a
2 

in cp( ) can 

have, as deter:rnj ned by the normal form theorem, and we shall show that 

in each case, <P{~) :><P(l-) can be seen to hold on the basis of one of three 

arguments (A1 , A
2 

or A
3
): 

:false, i.e., there 

pretation I for which (t ~ 

Example:~~ Es n. 

exists at 
I cr

1 
s cr2 ) 

• least one inter-

does not hold. 

: ~(~) can be seen to be a theorem of the µ-calculus 

directly. 

Exa,mple: ~ ~ A s A. 

A3 : Ass11rn~ that cp( ) holds. We exhibit 

such that the following conditions are satisfied: 

cp ( i) ( ~) is a norxnal assertion, 1 < i < n. 

cp(i)(~) has less complexity than~(~), 1 < i < n. 

< n. 

< n, 

From • together, we ~an infer 

~( .... ) . 

The following pict11re ill11strates argi1ment A
3

: 

1 

2. 4 
J. 

) 3. 
1 

) 
• : : ·=· > • • • • • 

~(n)( ) <p(n)( ) 
• 
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In order to show 1, we prove 2.(for each i), and 4, and, 
l. 

• as s 1.1· ...... ,o J ng 

that 3. holds ( this is the induction ass1unption, since, f'or each 
l. 

has less complexity than~(~)), we then have the desired result • 

Example of • 
l.S ~ 01 C 0'2• 

Details of this example will be given below, in particular in len,roa 6. 3. 

6.2. N ASSERTIONS 

-
We now give the definition, of a normal assePtion. This definition will 

• 

become clearer if it is considered together with the case analysis to be 

given below, in particular with the treatment of procedt1res ( cases 6, 1 -
and 8). Moreover, the definition is followed by an inf'or1na.l explanation. 

DEFINITION 6. 1 

An assertion is a normal assertion if:f 

1 • o 1 and o 2 are norrnal te1·ros • 

2. ~ = w1 ,~2 , .•• ,~m' m > O. We use the convention that, if m = O, then~ 

is the empty list. If m > 1 1 then we req1.Ji re, for each i, 1 < i < m, 

a. W - = x. c p. 
0

, X. c p. 
1 

, ••• ,X. c p. , n. > O. 
1 l. l. 1 1 - l. t l. - l. ,ni l. 

b. Each p . • , 0 < j < n. , is a no1:·111al ter1u; p • 0 1.,J J. 1, 
is a no:rroal teriu of 

the for1n µX. [p .. J. 
l. l. 

c. a 1 is reg,11 ar in Xi and shields 

d. p. is re '"""'"ar in X., 1 < j < m, 
1 J 

e. Xi does not occt1r free in a2 or 

:f. If j f k, then p • • + p. k1 1 < 

X .• 
J. 

and shields X., 1 < j < 
J 

• • • 
in any P . k, 1 < J < i , 

J , 
j ,k < n .• 

l. l. ,J _1.. 
g. o1 and pi ,o are subter:rns of p 1 ,o; 

h. 

a2 ann p •• , 1 < j < n., are subterms of p 1 1• 

< n .• 
1 

m. 

0 < k < n .• 
- J 

We give an int11i ti ve exposition of the vario11s points ta.ken into 

account in this definition. Firstly, we distinguish two aspects in the 

conditions imposed upon the nor:mal assertions, viz., those related to the 

application of the ~-induction rule, and those related to the tennination 

of the inductive arg11rnent described via argtiroents A1, A2 and A
3 

above. 



Conditions 2f and 2g belong to the second category, the remaining ones 

to the first. 
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The conditions of' definition 6.1 will be discussed by means of a 

simple example. In our treatment of this example, we shall not be complete 

- the full arg·ument · follows in tbe case analysis below - but we give only 

a first sketch. 

Consider the following assertion: 

(3) µ x 1 [ • • . µ x2 [ • • • x 1 • ,. • x
2 

• • • J • • • J c a 
2 

( -v ) 

P2 

First we reduce this (case 6 below) to 

( 4) x
1 

C 

(In the complete proof' of' this and the following reduction steps, a.rg1,1ment 

A3 has to be verified.) 

(4) is in turn reduced to (case J below): 
r a 

(5) X 1 =. µX1 [ p 1 J ,x, £ 

~, 

Note that ~1 has the form prescribed by conditions 2a and 2b of de-

The continuation of the process now depends on the pa.rticular :fc,1n1 of P 1 • 

In generals a successive reduction takes place; e.g., i:f P 1 and a2 are 

of the fo1·r1, A;p 1 and A;a2 respectively 1 we reduce (5) to 

P t CO' 
1 2 I 

(cf. lemma 6.3 and case 4 below; note that 

and a2 respectively), and if p 1 

to both 

• 1s of the 

p; and o 2 are subte1·1ris of p 1 
forrn (p ►p 1,p ;•) we reduce ( 5) 

• 
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and 

where a2 
and that 

pf C 0' 1 

1 - 2 

t L P ,, c a'' 
1 F 1 - 2 

subter10s 

Eventually, these and similar re.ductions will at some stage have reduced 

(5) to, a.o., 

(6) 

where 

We a.re now 

is a subterm of' a
2

• 

in a situation where 

ble , and we derive 

case 6 and then ,case .. I are again applica-

( 1 ) C ""'(1) 
""2 • 

• Successive reduction of p2 will at some stage lead • to the assertion 

. 8) 

( 2) . 
o2 l.S 

iow there ax~ two 

Then, clearly, 

possibilities: 

X c 0( 2) 
1 - 2 

X c 0( 2 ) 
1 - 2 

holds , and we have reached an end point in our inductive arg1..1roP.nt 

S 02 · a2. 

Then we continue the process with another application of c~se , and we 

reduce (8) to 



(9) x, c µX,[p1],X1 s 

P C 0( 2 ) 
1 - 2 • 

• Successive reduction of p 1 will then lead to, a.o.s 

(10) 

µX [p] C 0( 3 ) 
2 2 - 2 

• 

' 

C (J(i) 
- 2 
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with 0( 3 ) a subterm 
2 Now case 8 applies: We encounter a proced11re 

(µX2 [P 2 ]) which has already appeared before in the process (as 

from the presence of x2 s µX2 [p 2 J in the list of ass1Jroptions) • 

reduce ( 10) to 

( 1 1 ) C n-(1) 
- v2 

etc. 

ca.n be seen 

We then 

0(3) 
2 

We now 11se this e::,ra;mple to disc11ss the conditions of definition 6. 1. 

It is easily seen that the ass11mptions ~, ,(1)2 , ••• which a.re successively 

generated are indeed of the for·n1 prescribed by conditions 2a and 2b. It 

is also of' importance to note that, in general, the n11mher of ~. which 
1 

will be generated is bounded by 
' 

a. For the assertion ( 3),. the maximt1m numl:>er o:f ''nested'' proced1Jres • 
in 

a,; 

b. For the assertions ( 4) , ( 5) 1 ••• , ( 11) 1 the maxi m111n n,1ml:>er o:f ''nested'' 

procedures in p 1 , 0 • 

This 1oaxi m11m n11mber is certainly bounded by the total. n11rober o:f 

subter10s in o 1 a.nd p 1 , 0 respectively. This fact I which will be applied 

below in definition 6.2. case c (definition of s1 (~}) is of importance 

in the te1·1r1i nation a:rg1Jment. See for this the coinrrients on the 11se o:f the 

complexity measure r of a norr,ia.J assertion in section 6. 3. 
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Next, we consider clauses 2c and 2d of definition 6.1. These condi

tions are vacuo1Jsly satisfied :for assertion ( 3), and can easily be seen 

to hold for the remaining assertions. E.g., in (5), P1 is regular in X1 

and shields x
1

, since µX
1 
[p 1 J is in normal :for1n. 

As to condition 2e, by suitable rewriting o:f bound variables, we may 

ass1.1m€ that none o:f the bot1nd variables of o 1 in ( 3) occ1Jrs :free in o2 • 

two facts imply that none of the X. occurs :free in any of the p. k' :for 
1 J, 

k > 1. The absence of free occurrences of X. in p. 0 , 1 < j < i, is ill11s-
1 J, 

trated in our example by the absence of free occurrences of x2 in µX 1[p 1J 

(in assertions (7), ... ,(11)). Again, this can be achieved in the general 

case by a suitable rewrite. 

For condition 2f compare the treatment of assertion (8): No addition 

of a new asstAtoption to some~
l. 

takes place, if this assuw~tion is identi-

cal. to some assumption already contained in the list ~- • Therefore, we 
l. 

know that, at each stage, all p .. contained in~- are different. 
1,J 1 

Next, we disc1Jss cond.i tion 2g. Consider e.g. assertion ( 11). From the 

construction which led from ( 3) to ( 11) we see that 
• subterxo of µX2[p2] • • which • subterJrl a. P2 l.S a which l.S a subtern1 of' p1 l.S a 

• 

of µX
1
[p

1
J = p

1 0 • 
(2) ( 1 ) 

b. • • subterx,1 which • subter.r1J 02 which l.S a of 0'2 l.S a 

of P2 - P1,1• -

From these two facts we conclude that condition 2g is satisfied. 

Combination of conditions 2f' and 2g implies the following: 

At each stage 1 we know an upper bound for the number of' elements in each 

or. if' P111 is not yet present (cf. assertions (3) or (4)), by "1 + the 

n1.1mher of subterins in cr~. This fact is used in definition 6.2 1 cla1.1se c 

{definition of S (~)) and in the termination argument (cf. section 6.3). r 
Finally, we consider condition 2h. Applied e.g. to the assertion (11), 

this condition states that the following assertions all hold: 

C p 1,2 

and 



or, specifically, 

( 12) 

( 13) 

( 14) 

(15) 

(16) 

P2 .s ux2[p2J 

P C (J(1) 
2 - 2 • 

That assertions ( 12) to ( 16) hold, can be seen from the ''history'' 

of the derivation of' (11): (12) is clear from the fixed point property 

and monotonicity ( since ~ 
1 

contains the ass,1,,rption x
1 

c µX
1 
[p 

1
], we have 

P1 c P1[µX 1[P 1]/X1J; hence, p 1 c µX 1[p 1J),(13) is implied by (5), (14) by 

( 9) , ( 15) follows also by the f .p .p. and monotonicity, and ( 16) follows 

from (7). 

This exaeyle illustrates the function of condition 2h. 

For each given assertion which occurs at some stage in the inductive ar

g11ment (by repeated 11se of A3), condition 2h states the validity of' a 

number of' assertions which precede the given assertion in the inductive 

process. As will be seen in the precise treatment of' case 6, case 7 and 

cas~ 8 below, we m11st have the validity of these preceding assertions 

avail.able, in order to be able to verify,. at s11i table moments, a.rg11mf=!nts 

A3.3 and A3_4• 
This transfer of' inf'o1·mation on the history of' the derivation of' an 

assertion to a property of' the assu·rII.Ptions of' the assertion, by means 

of' condition 2h, allows us to do without the complications of the (im

plicity present) tree-like structure of' the inductive argument. 
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6.3. COMPLEXITY OF NORMAL ASSERTIONS 

The next definition introduces some notation for a nor1na.] assertion, 

which will be used in the discussion of' its complexity . 

• 

DEFINITION 6.2 

Let ,<I=) = 

tion 6 .1. We define 

a 1 £ cr2 be a nor1naJ assertion, as described in detini-
• 

a. X( ♦) = {X1,~, ••• ,Xm} 

b. L ( ♦) = 
a 

c. s1 ( ♦) = 

m 
(n.+1) 

. 1 l. 1= 

= lt<a1>1, 

if m > 1 

if m = 0 

= ltCP 1 1)1, , 
= jr(a2)I, 

if m > 1 and n
1 

otherwise 

> 1 

Here, I I: (a) j is 1.1sed to denote the number of elements in the set !(a) 

of all subte:x·,11s of' o. See definition 5. 7. 

d. L ( ♦) = S.,($)(1+8 (4>)) max .J.. r 

e. L { ♦) = L ( ♦} - L (~) g ma~ a 

We now give the motivation for the definition of the complexity 

r ( ♦) of a nox·111al 

6.4 below. 

Consider a sequence of' reduction steps as illustrated in the exwnple 

above. In general, we have, starting with the nortual a.ssertion ♦ ( ) = 
♦ (1)(~): 

,(1)( ) t(1) ( 1) ( 1) - a, C 0 - - 2 

,<2)( ) - ¢1(2) (2) C 0( 2 ) - a, - 2 
• 
• 
• 

,(i)(~) - t(i) (i) 
C 

(i) - a, 02 -
• 
• 
• 
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(i) '-4,.&.- (i+1) 

• Clearly, i is not sufficient to use as such a measure simply 

and 

(i+1) . 
a 1 _ = P 

1 
• Therefore, a,nother entity must be ta.ken into account in order 

to roake the inductive argument go thro1.1gh. For this, we use the function 
• 

as defined in clause e of definition 6.2, by L ($) = L (4>) -. g rnax 
The idea behind its introduction is the following: We com.pare the 

• • 
,.__ f · • 1 1+1 . nurover o elements 

this n1Jmher either remains the sa.roe, or it increases. However, this in

crease cannot go on indefinitely: At each stage, it is possible to predict 

the 

length L ( q> ( 1 )) -cf. def'ini tion 6. 2, clause b- and the upper bo11nd f'or the 

+ 
( .) max . r 

L ( cp 1 
) is deter1ni ned a.s follows • max 

We note that ~ mey grow in two weys: 

a. Some ~. in ~ may be extended by the add.i tion of another ass11rr1ption 
l. 

X. c p. + 
1 

• Condition 2f' of de:fini tion 6. 1 ens1.1res that in this newly 
1 i,n. 

J. 

added hypothesis, p. +l is different from all previously added 
J. ,n. 

l. 

P. . , 1 < j < n .. 
l. ,J J. 

(Cf. the reduction from (8) to (9) above.} Since, 

by condition 2g of definition 6.1, all pi ,j are subtex·1r,s of' p 1 , 1 , it 

follows that the Dumber of elements in Cb. is bounded by 1 + S ( ♦) • A 
J. r 

proviso has to be ma.de for the case that p 111 is not yet present. Then 

the ex8JDple above , this holds :ror assertions ( 3) and ( 4) • ) From the 

wS3 in which assumptions a.re added to t -,case 1 above- it will follow 

that in the possibly added assumption x1 s P 1 , 1 , p 1 , 1 will be either 

cr
2 

itself, or a subterm of a
2

• This explains the second alternative 

in the def'inition o~ S (~). r 
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b. A newt 1 may be added to~= ~,.~2 , •.. ,~. An upper bound for the m1 m 
n1Jmber of times such an addition can occur, is given by the total n11m-

ber of' subterrns in p 1 ,o, or, in case 4> is empty, in cr 1 • 

Now we assert -and we shall have to verify this at each stage in the 

case analysis below- that, if' according to argt.Jment A3 , the proof of 
. i+1) =⇒ i+1) 

then L (,(i+i)) < L (,(i)). In order to verify this, we must show in 
g g 

each 

(a} 

( B) 

• 

max 

After these explanations, the definition of the complexity r(~) will 

offer no difficulties. First we give the definition of the complexity 

y( a) of a nor,nal terin a. This is the same notion we used already in 

section 5, but which is defined here forma]ly for completeness sake. 

DEFINITION 6.3 

Let a be a norrua.l tertn. 

a. If o is a constant or variable, then y(a) = 1. 

b. y(A;o) = 1 + y(o). 
c. y((p+o

1
,o

2
)) = 1 + y(a

1
) + y(o

2
). 

d. y(µX[o]) = 1 + y(o). 

DEFINITION 6.4 

o 1 c o2 be a nor1nal assertion. 

r(~) is defined as a pair: 

The ordering between these pairs is the lexicographical one: 

Let: 

( 1) 
C o

2 

C 0( 2 ) 
2 • 



Then 

(a) 

<s) 

6 . 4 • AUXILIARY LEMM:A.S 

Before we proceed with the case analysis in section 6.5, we first 
• 

collect in a ni1rober of' leroma.s so.me results to be used below. 

LEM:MA 6.1 

a. C CJ -
b. 

c. .A C A -
d. ~ » X .S cr .... X c 0 

PROOF. Clea.r. 

LEMJ,.1A 6 • 2 

None of the following nor·roal assertions <I>( ) holds: 

a. E C Q -
b. EC A -
c. E c A·o - , 
d. 

PROOF. a is clea.r. As to b, c and d, select some interpretation I with 

domajn V, and x € V, such that AI(x), AI(x), and p1 (x) respectively are 

undefined, and, if' necessary, . , f'or X. EX(~), (cf. def.6.2) is unde-r i i 
fined on V. Since E (x) = x, the lemma follows. 

LEMMA 6. 3 1) 

a2 be a nonnal assertion. Let a2 be neither a 
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variable nor a procedure. If a
2 

has the fo1·rr1 a
2 

= A;o21 , define <P as 

--
--

cr 11 S a 12 • Otherwise, define 

0 11 s n. 

Then 4> ( ) ___..,> q> ( 1 ) ( ) holds • 

PROOF. 

a. a 2 = A;o
21

• • 

We have to show: 

A;a11 s A;a21 ::::: > <P 

Suppose~ a 11 s 0 21 does not hold. Then 

I 0 with domain V
0

, satisfying t, and some 

there exists an interpretation 

x0 € V
0

, such that 

Io Io 
a 11 (x

0
) = y, and cr

21
(x

0
) y. 

Let I 1 be the following interpretation: V
1 

= V
0 

x 1 i V0 • On V0 , r 1 is defined to coincide with we define 

I, 
A (x

1
) = 

clause 2c 

x0 • Note that, since A;a 11 is regular in each Xi E X(q>) (by 

of definition 6. 1), A 1, X( 4>); hence, we are not restricted in 
• 

• 
01.1r choice 

r 1 I 1 r
1 

r
1 for A . l·Te then have: (A;a11 ) (x

1
) = a 11 (A (x

1
)) = 

r, 
= a,,cxo>· Since XO€ Vo, 

I 1 I I 
-- Thu~s , I 1 contra-

diets the validity of <P A;a 11 S A;a21 • 

J. o2 cannot be written as A;a21 • 
• We have four possibilities for o2 : n. E, A'·a' or (n+a' o'') We . , 2' ~· t • give 

the proof of the third case, the other ones being similar. Assume 

c n does not hold. Then 

O = y1 Let 

defined {by clause 2e of definition 6.1, the choice for A' 1 is not 

restricted by <P), and let r 1 be as r0 on V
0

• This r
1 

contradicts the 

validity or t 

llD-• 



LEMMA 6.4 

Let o 1 , a 2 be norrt1al ten,is , both of' which are free f'rom p. Then the 

following holds : 

IO 
For all interpretations I 0 with domain v

0
, and all x

0 
E v

0
, if 

x 1 E V 1 such that 

11 
a. a 1 (x1 ) =y. 

r, 
b. p (x1 ) = 1. 

c. For all g_ f P, 

d. If 

defined, 

is 1Jndefined. 

Moreover, there also exists an interpretation r 2 , which satisfies a, c, 
. I 

d (WJ. th I 1 replaced by r 2 ), and b': p 2(x
1

) = O. 
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The ma.in statement of this lemma can be phrased as: If o is free from 
I 

p, then for each x0 and r
0 

we can find x 1 

IO 
the same result as a (x0 ), but, moreover, we are free to choose 

I I 
:f'or 

PROOF. We prove only the existence of r 1 ; the proof for r 2 follows by 

syJ11111etry. We use induction on the complexity or the pair (a
1 

,o2). The full 

proof will not be given, but only three representative cases. 

1. a 1 = A;o 11, a2 = A' ;a21. 

Choose r 1 and V1 as follows: V1 = V0 u {x1}, for some x1 t V0 . r 1 
r

1 
1

0 
r

1 
r 0 coincides with r

0 
on v0 , A (x1) = A (x

0
), A' (x1 ) = A' (x

0
) 1 

r 1 r 1 I 0 
p (x1 ) = 1, and for all q + p, q (x1 ) = q (x0 ) (or both a.re 11n-

IO 
defined). Assume (A;o 11 ) (x0 ) = y. We verify a, b, c and d. We have 



2. 

2. 1. 

2.2. 

• 

--

= y, where we have used the fact that I 1 coincides r 0 
r, 

on V
0

• b and c are clear. As to a., if' (A' ;cr21 ) (x1 ) = y, then 

Io I Io I 1 I 1 _ 
= (XO) ) = o: 21 ( A 1 

( x 1 ) ) - y. 

0 2 = (q+o21' 0 22). . 

IO 
Let cr

1 
(x

0
) = y. Two cases arise: 

Io ro 
q (x

0
) is defined, say q (x0 ) = 1. We apply the induction hypothesis 

to the pair ( o 
1
,o21 ), both of' which are free :from p. Th11s, there 

I 1 I 1 
exi~ts r

1 
and x

1 
E V1 such that a 1 (x1 ) = y, p (x1 ) = 1, 

r
1 

r
0 

r (x
1

) = r (x
0
), for all 

r
1 

r
0 cular, q (x

1
) = g_ (x0 ) = 1, and, if' 

r + p (or both are 
r, 

021 (x,) 

This proves clauses a, b and c. As to 
r 1 I 1 

o2 (x
1

) = y. Then (q+cr21 ,cr22 ) (x
1

) = 

r 1 r
0 o21 (x

1
) = y. Hence, o21 (x0 ) = y, by the induction hypothesis. From 

. Io . Io 
this, a

2 
(x

0
) = (q+cr21 ,o22 ) (x0 ) = y follows. 

I 
• to the pair 

(cr 1,a21 ). The ai-g,~ment is the sa.me as for 2.1, apa.rt from the fact 
• • that clat1se d is tri-

• 

vially satisfied. 

a1 = (q➔cr 11 ,a 12 ) • 

I 0 I I 
Then either 1 or = O. Assume 

the first. Apply the induction hypothesis to the pair (a11 ,a2 ), both 

of which are free from p. This yields an r 1 and x
1 

€ v1 , such that 

r 1 . r 1 r 1 r 
a11 (x1) = y, p (x

1
) = 1, (or both are undefined), 

. r 1 r 0 r 1 
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hence, cla11se a. Clauses b, c and d a.re cl.ear. 

LEMMA 6 .5 

Let q, ( ) = 

such that 

. . ' '' a be a normal assertion. There exist a ,a 

a. o' , a'' are subterm.s of a, and ( p-+a ' , a'' ) • 
l.S a nor:tnal te:r•r11 .. 

b. ~ ( p➔cr' , cr'') - (p+cr ,a). - • 

c. Let <P(1)( ) - <P ~ a, C a' -
) - 4> 02 C a'' -

Then cp (~) ) 

cf>(~) ; ) . 

PROOF. Ass1,JroP. 

(p+o 1 ,o2 )) c (p~cr,o); hence, we 

5.6 1 there exists a no1·tr1al te::r"IU (p-+0' 1 0'') such that'== (p-+cr',o'') = (p+a,a), 

with o' , a'' subter,ns of a. Hence , 

( 17) 

Ass11me that, 

XO € Vo such 

e.g. I 4) 

that I 0 

0 11 co' does not hold. Then there exists r
0 

and 
Io Io 

By lemma 6.4, there exists r 1 and 
I 

r, 
x 1 E V1 such that p (x 1 ) = 1, a.nd 

regular 

all X. E X( q,) , it 
i I 

can be verified that r 1 r, 
= CJ 11 (x1 ) = y. Hence, by 

in all x. e X(q,) and shields 
1 

al.so satisfies 4>. Th1Js, 
r, 

( 17 ) 1 ( p+a t I CJ'' ) ( X l ) = 

r, 
CJ' ( x 1 ) = y. Then, 

IO 
by lP-mma 6.4, a' (x0 ) = y. 

Contradiction. 

6.5. CASE ANALYSIS 

After the preparations of the preceding sections, we are 

tion to give the proof of the completeness theorem: If cp(~) = 

is a no1.·roa.J assertion, then 

• • in a pos1-
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(18) • 

By lemma 5. 5, we mey assume that a2 is not a proced11re. Since 

we may also ass12me that a2 is not a variable. Moreover,. after suitable 

rewriting of bound variables, we may ass11mP. that in no terrr1 a.re there two 

occ11rrences of ter1os µX[a 1J and µX[a
2

] with the same bound variable X. 

(E.g. 11 a tertri 1JX[ ••• µX[a'] ••• µX[a''J ••• ] is rewritten as 
• 

µX[ ••• µY[o'[Y/X]] ••• µZ[o''[Z/X]] ••• ].) 

CASE 1 • a 1 = Q • 

We have to show: 

C O _: --> 4> t-- C CJ'. -

By lemma 6. 1, a.rgi1ment A2 applies. 

CASE 2. a, = E. 

2. 1. 02 - Q. Follows by lettu11a 6.2 and arg,,ment A1. -
2.2. 02 - E - . Follows by leroro.R. 6., and arg11ment A2 •. 
2.3 a2 = A;a21 . Follows by len,,,,a 6.2 and arg11ment A,. 
2.4. (12 - (p+a21' 0 22>· Follows by le1t1xna 6.2 a.nd a.rg11ment A,. -

CASE 3. er 1 - A, A '- X( q,) • -
Since A = A;E, we ca,n apply the argument which follows in case 4. (The 

case that a 1 = X, X € X(~) follows as case 7.) 

CASE 4. cr
1 

= A;cr
11

• 

Note that At x(,), since cr 1 is reguJar in all elements of x(,). By 
lerrana 6.3 1 either cr

2
_ = A;a

21
, a.nd 

>r cr2 cannot be written as A;cr
21

, and 

.. 

We have to verify A3_1 to A
3

_4• 

• 

a C n • 11 - a, 
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• 1s not changed, we have 

nothing to verify for clauses 2a, 2b, 2d, 2f and 2h of definition 6.1. 
Cla1Jse 2c follows ,.,...from the fact that, if A;o 11 is regular in X and shields 

X, then a 11 is reg1JJ ar in X and shields X. I:f Xi does not occ11r free in 

A; a 21 , then it does not occur free in cr 21 ; hence, clause 2e. Cla1,1se 2g 

:follows since cr 11 is a subterm of' A;cr
11

, and since cr21 and f2 are subterrt1s 

of' A;cr21 and o2 respectively •. 

--
-- or 

-- a a ' 
ve 

follows. 
g g 

That cp ( ) , : : ~ cp ( 1 ) ( ~ ) follows from lemma 6 • 3. 

We have to show that 

• 

This follows by monotonicity. 

( B) 
• 

~ -1- A;cr 11 c A;n 
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CASE 5. a 1 = {p--+-o 11 ,o 12). 

Let a', cr'' be as in the proof of lemma 6. 5. Let 

-- Ca' 

-- C 0'' • -

the use of the fact that a' and o'' are subter·tt1.s of o2 • 

A3.2: 

A3_3: 

This is again similar to case 4. 

Follows by lemma 6.5. 

A3_4: 
• • Clea.r, by monotonicity . 

CASE 6. o1 = µX[o 11 J, and X ¢ X(~). 

Then 

(a} X does not occur free in 0 11 • Let 

• 

(a) • X does occur free in cr 11 • 

le prove that 

• 

4 above. Note 

is a normal assertion. Clauses 2a, 2b and 2c are clear. 

After rewriting, if necessary, we m9¥ asstrme that X 1 does not occ11r 
m+ 

free in o2 nor in any p. k' 1 < j < 
J, 

mal i. ty of <p (~), this yields clause 

Pm+ 1 is regular • • 
in Xm+l and shields 

m,O < k < n .• Together with the nor-
J-m.._._· . , ) . 

X 
1

, and since X 
1 

does not occur 
m+ m+ 
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free in p., 1 < i < m 
l. 

(by cla1.1se 2e), cla1.1se 2d follows from the norroa.li-

ty of q> (~). Clause 2f' is tri via.lly satis:fied. Cla1;se 2g follows from the 

normal i ty of cp ( ~) and the :fact that Xm+ 
1 

and cr 
2 

are subte1,os of' 

µXm+ 1[cr 11 J (since Xm+l occurs :free in a 11 ) and cr2 respectively. The proof 

of' 2h :follows :from the normality of~(~) and the fact that 

• 

which is clear f'rom monotonicity and the f.p.p. 

max rna.x 

we have L (q,) 
g g 

A3 .. 3 : That q, (,- is clear. 

A3. 4: 
• i.e. 

Since Xm+ 1 does not occur free in 

for Xm+ 1 yields 

follows. 

CASE 7. a 1 = X., f"or some 
l. 

X. € X( 4>) • 
l. 

Then 4> ( ) is of the :for1rl 

C µ.[p.],X. 
- l. J.. l. 

We distingw sh two cases: 

C p. 1 t • • • ,X. 
l., l. 

(a} 02 = p. . , 
1.,J 

:for some j, 1 < j < n .• 
]. 

Then, by lemma 6.1, argument A2 applies. 

Since L (cp) < 
a 

C p. ,fP•+1'••,(p i,n. 1. m 
l. 



100 

a
2 

+ p . . , for all j • 1 < j < n. . . 1,J l. 

Let p. +i = o2 , and let, for O < 
l. ,n. 

1 

t1,···,t. ,,x. 
1- l 

We assert that A
3 

applies. 

A3• 1 : For ea.ch j, 0 < j < ni + 1 , 

• J < n.+1, 
1 

p. C p • • • 
l. l. ,J 

and 2b of definition 6. 1 are clear. Clauses 

norrtLa-1 ity of <p (~) .. Clause 2f' follows, since 

2c, 2d and 2e follow from the 

a 2 + p .. , 1 < j < n .• Since 
l ,J l. 

pi is a subterm of Pi,O and Pi,n.+1 
l. 

(=o2 ) is a subter1n of' o2 , cla:1Jse 2g 

follows from the nox·:cuali ty of ~ ( ) • The proof of 2h follows 11nder A
3

• 
3

• 

A3_ 2: Since Lma.x( $) ma.x , a a 

L ( ♦) > L (,(j)). 
g g 

(19) t,, ... ,«>. ,,x. C µX.[p.],X. C p. ,, ••• ,x. s. 
1- J. - 1 l. 1 - J.., 1 

p. 
l. ,n .. 

1 

p • C p • " 1 - 1,J 

• 0 < J < n. • 
l 

Since none of Xi+1, ••• ,Xm occurs free in ~,, ••• ,~i' from~( ) we derive 

(20) t 
1 

, ••• , 4>. 
1 
,x. c µX. [p .. ] ,x. 

1- l - l. l 1 

Combination of ( 19) and ( 20) yields 

C p. 
l. ,n. 

J.. 

1 1 , ••• ,t. 
1
,x. c µX.[p.J,x. 

1- 1 - 1 1 l. 
S P.. 1 , ••• ,x. S. 

l.' 1 
p. 
1,n. 

1 

Tb1Js , A fortiori , 

t 1 , •••• t. 1 ,x. c lJX .. [P-J,X. c p. 1 , ••• ,x. 
l.- l. - 1 1 1 - 1, 1 

C p. t - 1,n. 
1 

1 

X .. C a2 i -



(n.+1) 
which proves clause 2h of the no1'.1i1al i ty of cp 1 

( ) , and 

(n.+1) 
which proves cp 1 

( ). 

(n. ) 
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) , ••• ,4> l. ( ) hold :follows :from clat1se 2h of' the nor1nali ty of 

q, ( ) • 

A3_4: 

holds, f'or 

• 

• holds, for each J, 0 

0 < j < n. +1. 
J. 

< j < n.+1, 
l. 

Since none of' Xi+ 1 , ••• ,Xm occ11rs f'ree in ~,, ••• ,$i, we also have 

(21) ~,, ... ,~ .. , ,x. C µX. [p. ],X. C 
J.- l. - J. l. J. 

p. C p. • 
l. - l. ,J 

p • C p • • 
l. - l. ,J 

for O < j < n.+1. 
l. 

• 

Since Xi does not occur free in ~,, .•• ,~i-l' we can apply the µ-induction · 

rule, yielding 

~ µX. [p. J C p. . 
l. l. - l. ,J 

• 
, 0 < J < n.+1 • 

l. 

In particular, for j = n. +1, 
l. 

µX. [p.] C p. 1 ( =02) • 
l. l. - l. ,n. + 

l. 

From this, t (l-) , • i.e., 

1,, ... ,~. ,,x. c µX.[p.],X. c p. ,, ••• ,x. 
1.- J. J. 1 l. J., l. 

follows. 

C p • I 
J. ,n. 

l. 

x. 
J. 
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CASE 

<I> ( ) then has the forro 

t,, ... ,41. ,,x. 
l.- l. 

some XE X(~), say X = x .. 
l. 

C µX.[p.]:,X. C 
l. l. l. 

p . 1 , • • • ,X. C p. , 
J.. 1. i,n. 

. # l. 

µX. [p.] c 02 
J. l. 

with pi= 0 11 • Let 

as 

We verify A
3

• 

p. 1 
l. ,n. + 

l. 

= a
2

, and let 

c µX. [p. ] ,x. c p. 
1 

, ••• ,x. c 
l. l. l. i, l. 

t. 1, •.• ,t 1+ m 

A3_1 ! This is similar to case 7. 

< n.+1 
l. 

be defined 

• 0 < J :, g g , < n. +1. 
l. 

Also, y(p.) < y{µX.[p.J) • 
1 l. l. 

Ass11me cf., ( ) • This implies that 

t
1

, ••• ,t. 1 ,x. c µX.[p.J,x. c p. 
1

, ••• ,x. 
1.- l. l. l. l. J. , l. 

C p • t 1,n. 
J. 

holds • The proof of q, ( ~) ~ j < n. +1, is then si1tti lar to that 
- 1 

of A3_3 in case 7. 

A3 • 4: Asslwe 
• from this 

µX. [p. ] C p . • , 
l. l. l.,J 

and, a fortiori, taking j = ni+1, 

0 < j < n.+1 
J. 

t,, ... ,t. ,,x. C µX.[p.],X. C p. , •••• ,x. 
l.- l. l. J. l. - J. , l. 

C p • t 
i ,n. 

l. 

µX. [p.] c a2 
]. ]. -
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i.e. , cp ( .... ) holds. 

This completes the case analysis of the proof of ( 18). Thtts, the proof of 

the completeness theorem is completed. 
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7. CONCLUSIONS 

Ever since their first appearance in a n11rnber of' progra;mmi ng la.ng1lages, 

rec\1rsi ve proced11res have been a much disc11ssed concept. Initially, their 

practical feasibility was hotly debated, as caused by the alleged difficul

ties in their implementation. This arg1Jment settled down after some years 
1 

and interest t1.Jrned to investigations centring a.round the question of what 
• 

type of problems are particularly sujted for recursive formulation. In pa-

ra.11 el with this, the first proof technique (rec1Jrsion induction) for pro

ving eq,1i valence of procedures was proposed, and then applied and extended 

in a number of papers (see the references in section 1.2). Recently, as 

part of the current heigthened activity in the field o:f the theory of' pro

granrrni ng, more e.x:phasis has been given to the cla.rification of' the mathe

matical properties of recursive procedures. 

With the present paper, in which we have explained Scott's theory 

( sections 2 and 3), applied it to vario1.1s examples ( section 4) , and inves

tigated some of its properties (sections 5 a.nd 6), we hope to have contri

buted to this clarification. 

It will not have escaped the readers attention that we have dealt 

only with a restricted case of rec11rsive procedures, viz. 1 those which 

be called ''mona,di c'', i.e., in which only functions of one variable occur. 

Extensions to a treatment of the general case -functions of more than one 

variable- have been made in two directions: 

a. Milner [24] has developed a generalization of the µ-calcul11s in which 

the f'1Jnctions concerned are polyadic, i.e.,. they are interpreted as 

f'1Jn ct ions from 111' -+ rf1, for arbi tra17 integer n, m > O. In this f'orroa.

li sm, he is also able to deal with assignxnent statements. 

b. As mentioned in section 1, Scott has exploited the notions of' monotoni

city and contirit1ity in a framework where a number of problems in the 

theory of computation can be dealt with in a very general way. Central 

to this approach is the idea of b1,1i lding a hierarchy of' domains. Star

ting with some initial domaj~n '00 , which is provided with a stritabl.e 
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partial ordering, one constructs domains V
0 
➔ V

0
, V

0 
➔ (V

0
+V

0
), 

(V0-+V0 ) -+ (V
0

-+V0 ), etc. Each V' -+ V'' consists of all continuous func

tions :from V' to V''. This gives -among many other results- a nat11ral 

way of dealing with fl.lllctions of more than one variable. E.g., a func

tion of' two variables is considered as an element of V -+ ( V+V). In 1m

published notes Scott has shown how to extend the µ-calcul.11s to such 

structures. 

The ''monadic'' µ-calculus also offers a n1.1mber of problems for her 

investigation. To the list o:f applications in section 4, many more might 

be added. Us11ally, the interesting part will be to develop a special set 

o:f a.xi oms, adapted to a specific problem area. After one has obtajned some 
• • experience with the µ-calcultl..S, the forrc•al proofs themselves are mostly 

straightforward. As a further e:,ca,·m;ple, we have a system for dealing with 

symbol manipulation, which we pl8ll. to publish in a forthcoming paper. 

The r,e.gul,ar procedures of' sections 5 and 6 are clea,rl.y the best 1mder

stood type o:f procedures. As a first extension of 011r completeness proof, 

one mi.ght wish to incorporate Yanov's shift distributions [39]. These are 

easily formulated as assumptions in the µ-calculus: If a certain variable 

A does not change the value of' the predicate p, one ass11mes A(p+X,Y) = 

(p+AX,AY) (cf'. section 4.2). Some modifications will have to be made in 

the completeness proof", in order to deal with these assl.1raptions. 

One might also be interested in implementing the strategy of the 

proo:f as a computer program. completeness 

Another • possible extension is the introduction of compound predicates, 

in particula.r> of" having predicates which themselves are defined as rec11r

si ve (boolean) procedures. 

Almost nothing is known about 

ced11res. If' the µ-calculus were to 

• general properties 

play a pa.rt in the 

of' non-re gill ar pro

solution of' the many 

open problems in this area, we would have achieved one of 011r roai..n goals. 
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