

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 1 Ith February 1946, is a non-profit institution for the
promotion of pure and applied mathematics and computer science. It is sponsored by the
Netherlands Government through the Netherlands Organization for the Advancement of
Pure Research (Z. W. 0.).

MATHEMATICAL CENTRE TRACTS

23

ALGOL 60 PROCEDURES IN NUMERICAL ALGEBRA

PART 2

BY

T.J. DEKKER

W. HOFFMANN

2nd. edit ion

MATHEMATISCH CENTRUM AMSTERDAM

1971

1st edition: 1968

PREFACE

We here present a set of ALGOL 60 procedures for calculating eigen
values and/or eigenvectors of real matrices. This set uses some vector
procedures published in part 1, which, moreover, contains a set of
procedures for solving systems of linear equations, for inverting
matrices and for solving linear· 1east-squares problems [3] •

The procedures have been tested on an Electrologica XB computer by
means of the" MC ALGOL 60 system for the x8" of the Mathematical
Centre, Amsterdam, written by F.E.J. Kruseman Aretz.
The texts of the procedures have been edited by the program "ALGOL
editor", written and published by H.L. Oudshoorn, H.N. Glorie and
G.C.J.M. Nogarede (MR 98, Mathematical Centre, Amsterdam, 1968).

In the second edition some minor changes have been introduced,
The texts of the following four procedures have been changed for
the following reasons:
zeroin (mca 2310), for better handling a function which vanishes
on a part of the given interval;
eqilbr (mca 2405), for reducing the possibility of overflow;
baklbr (mca 2406), for avoiding superfluous row interchanges;
comvalqri (mca 2420), for avoiding division (by a possibly vanishing
quantity) in the second (weak) partitioning test.
The other changes are minor corrections outside the procedure texts.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Prof. Dr. Ir. A. van
Wijngaarden and Prof. Dr. F .E.J. Kruseman Aretz for invaluable
suggestions and criticisms, and similarly to Dr. B.J. Mailloux, who,
moreover, carefully read the manuscript and suggested several
improvements.
The authors wish to thank also F.J. van den Bosch, R. van der Horst,
D.P. de Jong, J. van der Velden and Miss C.M.L. Smit for their help in
writing the ALGOL texts and in testing the procedures,
to Mrs. E. Binnenmarsch and Miss T. Collast for typing the manuscript,
and to D. Zwarst and J. Suiker for the printing and binding.

2

CONTENTS

PREFACE
ACKNOWLEDGEMENTS
CONTENTS
NOTATIONS
DEFINITIONS
INTRODUCTION

CHAPTER 23 EIGENSYSTEMS OF REAL SYMMETRIC MATRICES

Section 230
mca 2300
mca 2301
mca 2300
mca 2305
mca 2306

Section 231

mca 2310
mca 2311
mca 2312
mca 2313
mca 2314
mca 2318
mca 2319

Section 232
mca 2320
mca 2321
mca 2322
mca 2323
mca 2327

Householder's transformation
tfmsymtri2
ba.ksymtri2
ttmprevec
ttmsymtri1
ba.ksymtri 1

Ll.near interpolation and inverse
.iteration
zeroin
valsymtri
vecsymtri
eigvalsym2
eigsym2
eigvalsym1
eigsym1

Q,R iteration
qri valsymtri
qrisymtri
qrivalsynf!
qrisym
qrivalsyml

II

2 - 3
4
5
6

7 - 41

8 - 15
8-9

10 - 11
II

12 - 13
14 - 15

17 - 31
20 - 21
22 - 23
24 - 26
28 - 29

II

30 - 31
"

32 - 41
34 - 35
36 - 37
38 - 39
4o - 41

II

3

CHAPTER 24 EIGENSYSTEMS OF REAL MATRICES 42 - 89

Section 240 Wilkinson's transformation and
equilibration 44 - 53

mca 2400 tfmreahes 46 - 47
mca 2401 bakrea.hes1 48 - 49
mca 2402 bakrea.hes2 II

mca 2405 eqilbr 50 - 51
mca 2406 baklbr 52 - 53

Section 241 Sing.le Q,R iteration 54 - 73
mca 2410 reavalqri 58 - 59
mca 2411 reaveches 60 - 61
mca 2412 reaeigval 62 - 63
mca 2413 reascl 64 - 65
mca 2414 reaeig1 II

mca 2415 reaei~ 66 - 67
mca 2416 reaqri 68 - 70
mca 2417 reaeig3 72 - 73

Section 242 ·Double Q,R iteration 74 - 89
mca 2420 comvalqri 76 - 78
mca 2421 comveches 80 - ee
mca 2422 comeigval 84 - 85
mca 2423 comscl II

mca 2424 comeig1 86 - 87
mca 2425 comei~ 88 - 89

REFERENCES 90 - 91
EPILOGUE 1 • EXPERIMENTS USING THE MC ALGOL 60 SYSTEM
FOR THE X8 92
EPILOGUE 2. TES'IMATRICES 93
APPENDIX. TIMES FOR THE MC ALGOL 60 SYSTEM FOR THE X8 94 - 95

4

NOTATIONS

References are given between the square brackets"[" and"]".
" : " denotes the integer division symbol " + " [1 1 3,3.4.2.].
"goto" denotes the same symbol as "go to" "boolean" the same as - _,
"Boolean" [1, 2,3,].
"I" denotes the identity matrix; the order will be clear from the
context,
"'" denotes transposition of a matrix.
Unless stated otherwise, "M" denotes a real matrix, "H" a real
upper-Hessenberg matrix, "T" a tridiagonal real symmetric matrix,
and "n" the order of the matrix considered.
"llxll" ("jjMjj") denotes some norm of the vector x (matrix M).

DEFINITIONS

The "dimension" of an arnzy is the number of its subscripts (see al.so
[1 1 5.2.3.2.)). Thus, we speak about "one-dimensional" and "two-
dimensional." arnzys.
For two-dimensional. arrays as well as for matrices, we use the
following terminology:
the first subscript is called the "row index" and the second the
"column index"; the i-th "I'O'l:i" ("column") is the subset for which the
row (column)index equal.a i; ·
the i-th "subdiagonal." ("superdiagonal.") is the subset for which the
column index minus the row index equal.a i (equal.a -i); the 0-th
subdiagonal. (or superdiagonal.) is cal.led the "main diagonal",
whereas the other subdiagonal.s and superdiagonals are called
"codiagonal.s";

5

the first codiagonal.s are said to be "adjacent" to the ma.in diagonal;
the "upper triangle" ("lower triangle", "strict-lower triangle") is
the subset for which the column index is ::; (is :::, is >) the row index.

A "lower-tria.ngul.a.r" ("upper-tria.ngul.a.r") matrix, is a matrix whose
elements outside its lower (upper) triangle are zero;
a "unit lower-triangu.l.ar" matrix is a lower-triangu.l.ar matrix whose
main diagonal. elements are equal. to 1 • .
An "upp~essenberg" matrix is a matrix whose elements outside its
upper triangle and first subdiagonal. are zero; a tridiagonal. matrix is
a matrix whose elements outside its main diagonal and adjacent
codiagonal.s are zero.
The first subdiagonal. of an upper-Hessenberg matrix (symmetric
tridiagonal. matrix) is simpJ,y called its "subdiagonal" ("codiagonal").

We use the following vector norms [2, p. 55): the "one-norm", i.e. the
sum of the absolute values of the elements of the vector; the
"Euclidean norm", i.e. the square root of the sum of their squares;
and the "infinity norm", i.e. their maximum absolute value.
The "infinity norm" of a matrix is defined as the maximum one-norm
of its rows.

A set of vectors is said to be "numerically independent" if it is not
approximately equal. to a set of linearly dependent vectors.

The "machine precision" is the largest number, p, for which 1 + p =
on the computer (about io-12 for the XB); the "working precision"
roughly equal.a the machine precision.
A "relative tolerance" is a tolerance relative either to a calculated
eigenvalue or to some matrix norm.
Relative tolerances must be chosen smaller than 1, and should be
chosen not smaller than the machine precision.

6

INTRODUCTION

Chapter 23 contains a set of procedures for calculating the
eigenvalues and/or eigenvectors of real synmetric matrices.
Chapter 24 contains a set of procedures for calculating the real or
complex eigenvalues and/or eigenvectors of real matrices.
Of synmetric matrices, onzy the upper triangles need be given;
for these upper triangles, the procedures of chapter 23 use either
the upper triangle of a two-dimensional array (in which case its
remaining part is not used) 6r a one-dimensional array(in which case
no space is wasted).

In each chapter, we give a survey of its contents and some numerical
considerations and comparisons. The chapters are subdivided into
sections in each of which we give a more detailed survey of its
contents and explain the numerical methods used.
Each section contains some procedures for each of which we give,
besides the ALGOL text, a description mentioning the data required,
the results delivered and the nonlocal procedures (except the standard
functions [1, 3.2.4.J) directzy or indirectzy used.

The data are given, and the results are delivered, via the parameters
of the procedures, moreover, some procedures deliver a result as the
value assigned to their identifier. '
Some parameters are used as well for data as for results.
For each formal parallleter specified~ or integer array, we give the
"minimal declaration", i.e. a declaration with the appropriate number
of bound pairs, where each pair indicates the range which is actualzy
used by the procedure. Sometimes not all elements of the array
indicated by the minil!E.l. declaration are used. In the descriptions,
we alvra.ys mention which part is used for the data and which part for
the results, so that it is alvra.ys clear which elements are not used at
all and which elements are left unchanged.

As to the nonlocal procedures used, these are either procedures
published in this volume (and preceding the procedure which uses them),
or procedures published in part 1 [3, chapter 20], or standard
functions [1, 3.2.4.] (which are not mentioned in the descriptions),
or the XS-code procedures TODRUM and FROMDRUM (which are used onzy by
reaei/12 {mca 2415) and comeig2 (mca 2425)).
TODRUM and FROMDRUM perform a transport to or from backing storage.
Let a be a real array with k elements, and pan expression whose value
is a nonnegative integer; then the call "TODRUM(a, p)" transports
array a to the backing storage from locations p through p + 2 X k - 1
(the X8 uses two storage locations per real number), and the call
"FRCJ.IDRUM(a, p)" transports the contents of the backing storage from
locations p through p + 2 X k - 1 to array a,
It is assumed that two-dimensional arrays are stored columnwise, i.e.
the elements of a colUlllil are stored consecutive:cy.

CHAPTER 23

EIGENSYSTEMS OF REAL SYMMETRIC MATRICES

This chapter contains procedures for calculating eigenvalues anajor
eigenvectors of real symmetric matrices, and a procedure (mca 2310)
for finding a zero of a function by means of linear interpolation.
For solving the symmetric eigenproblem, two methods have been chosen
both starting with Householder's transformation (section 230).
In the first method (section 231), the eigenvalues are calculated by
means of iterated linear interpolation, and the eigenvectors by means
of inverse iteration; both processes necessari1-)r converge.

7

The eigenvalues are obtained in monotonical1-)r nonincreasing order.
This method is particular1-)r suitable, if on1-)r some consecutive eigen
values ana/or the corresponding eigenvectors are required. The second
method (section 232) uses QR iteration for calcuJ.ating all eigenvalues
and eigenvectors. Using a suitable "shift" (seep. 32), this process
is convergent [29]. Either method yields eigenvalues and eigenvectors
in reasonable precision, and the eigenvectors obtained are orthogonal
within working precision.
Note, however, that calculated eigenvectors corresponding to close1-)r
clustered eigenvalues mey deviate substantial1-)r from the true
eigenvectors [21 chapter 21 in particular formuJ.a 10.2].
The computation time for either method is roughly proportional to
n cubed, but obvious1-)r depends on the number of iterations required
(see Appendix).
These methods are mutual1-)r competitive as to accuracy and computation
time; both are considerab1-)r faster than and as reliable (with respect
to accuracy obtained) as Jacobi's method [2, p. 26~82 and 343] [23].

Several procedures of this chapter exist in two versions,
distinguished by a 11211 or "1" at the end of the procedure identifier.
The procedures whose identifiers end with 11211 use the upper triangle
of a two-dimensional arrey, declared by ~ a[1 :n, 1 :n], for the
upper triangle of the given symmetric matrix M (or for the data for
Householder's back transformation) [7].
The (i, j)-th element of M is a[i, j] onzy for 1 < i < j < n.
The other elements of a are neither used nor changed.- -
The procedures whose identifiers end with "1" use a one-dimensional
array, declared by array a[1: {n + 1) X n : 2], for the upper triangle
of M (or for the data for Householder's back transformation).
The (i, j)-th element of Mis a[(j - 1) X j : 2 + i] for 1 < i < j < n.
Thus, the space required for the matrix is cut near1-)r in b.aif [To], -
and the time is not great1-)r different.
The procedures "eigs~" and "eigsyml" (section 231) use a separate
two-dimensional array for the eigenvectors of M; on the other hand,
the procedure qrisym (mca 2323) uses the same two-dimensional arrey
for the upper triangle of Mas well as for the matrix of eigenvectors;
thus, qrisym is the most economic one with respect to storage space.

8

comment mca 2300;
:procedure tfmsymtri2(a, n, d, b, bb, em); ~ n; integer n;
~ a, b, bb, d, em;
~ integer i, j 1 r, r1;

real w, x, a1, b01 bbO, d01 machtol, norm;
norm: .. o;
!2!: j: .. 1 ste:p 1 ~ n do
~w:• O;

for i:• 1 ste:p 1 until j do w:= abs(a[i,j]) + w;
for i:a j + 1 ste:p 1 until n do w:- abs(a[j.,i]) + w;
if w > norm then norm: .. w

end;- -- ,
machtol: • em[0] X norm; em[1] : =- ::iorm; r: .. n;
for r1:"' n - 1 steJ - 1 until 1 do
begin d[r]:• a[r,r; x:•"t:iiimiiat(T;' r -2, r, r, a, a);

a1:• a[rl,r]; if sqrt(x) < ma.chtol then
begin bO:• b[rTT:• a1; bbTr1] :=- bO Xbo'; a[r,r] := 1 end
else
begin bbO:• bb[r1] :"' al X a1 + x;

bO:• if a1 > 0 then - sqrt(bbO) else sqrt(bbO);
a1 :=- a[r1,rJ :=- a:i-= bO; w:=- a[r,r] :., 1 / (a1 X bO);
!2!: j:• 1 ste:p 1 ~ r1 do b[j]:= (ta.mma.t(1, j, j, r,
a, a)+ :matma.t(j + 1, r1, j, r, a, a)) X w;
elmveccol(1, rl, r, b1 a, tamvec(1, r1, r, a, b) x wx
.5);
for j:=- 1st? 1 until rl do .
begin elmcol 1, j;--;r;-r, a-;-a, b[j]);
--elmcolvec(l, j, j, a, b, a[j,r])
end;
b[rl] :• bO

~;
r: .. rl

end;
aJil:• a[1 1 1]; a[l,1]:• 1; b[n]:• bb[n]:=- 0

~ tfmsymtri2;

Section 230 Householder's transformation

This section contains procedures for transforming a real symmetric
matrix into a similar tridiagonal one:
tfmsymtri2 and tfmsymtril perform Householder's transformation;
baksymtri2 and baksymtri 1 perform the corresponding back
transformation;

9

tfm.prevec is to be used in combination 'With tfmsymtri2 for calculating
the transforming matrix.

Householder's transforma.tion is an orthogonal similarity
transforma.tion which transforms a symmetric matrix into a tridiagonal
one [2, p. 290 - 299] [4, AP 210 and AP 231] [71 [10].
Let M be a given synmetric matrix of order n, S the transforming
matrix and T the resulting tridiagonal matrix. Since Sis orthogonal
(i.e. its inverse equals S'), we then have T =- S'MS. Matrix S is a
product of n - 1 Householder matrices, these being orthogonal
symmetric :matrices of the form I + suu', where s is a scalar, and u
a column vector. The p-th Householder matrix, p ,. 1,, •• , n - 1, is
chosen in such a wey that the last p elements of u vanish, and the
desired zeroes are introduced in the {n - p + 1)-th column and row of
the matrix. However, if, in this column and row, all elements outside
the main diagonal and the adjacent codiagonals are smaller in absolute
value than the infinity norm of M times the :machine precision, then
the p-th transformation is skipped (i.e. the p-th Householder matrix
is replaced by I).

The data for the back transformation, viz. the vectors u and scalars s
of the Householder :matrices, are overwritten on the upper triangle of
M, the scalars s being delivered on the main diagonal.
For each Householder :matrix+ I, the scalars is negative; if the
transformation is skipped, then +1 is delivered instead of s.

The back transformation transforms a vector x into the vector Sx; if x
is an eigenvector of T, then Sx is the corresponding eigenvector of M.
Starting from the vector v • x, the vector Sx is obtained by
successively replacing v by the p-th Householder matrix times v, for
p • n - 11 ••• , 2,. 1; the resulting vector v then equals Sx,
Similarly, t:f'mprevec calculates the transforming matrix S starting
from I.

Description mca 2300
tfmsymtri2 transforms then-th order symmetric matrix M whose upper
triangle is given in arrey a[1 :n, 1 :n], into a similar symmetric
tridiagonal matrix T.
In arrey em[0: 1] , one must give the ma.chine precision, em[0] •
tfmsymtri2 delivers the main diagonal, the codiagonal and the squares
of the codiagonal elements of Tin arrey d, b, bb[l:n], the remaining
elements b[n] and bb[n] obtaining the value o.
Moreover, the data for the back transformation are delivered in the
upper triangle of a, and em[l]:=- the infinity norm of M.
tfmsymtri2 uses tamvec, mat.mat, tamnat, elmveccol, elmcolvec and
elmcol [3, chapter 20],

10

coDmJ.ent mca 2301;
procedure baksymtri2(a, n, nl, n2, vec); ~ n, nl, n2;
integer n, nl, n2; ~ a, vec;
begin integer i, J, k;

real w;
for J:- 2 srp 1 until n do
begin w:=- a J,J]; if w < Othen

!£::. k:• nl s"liep 1 ~ n2 do elmcol(1, j - 1, k, J, vec, a,
1iamma1i(1, j - 1, J, k, a, vec) x w)

end
~ baksymtri2;

cODmJ.en"li mca 2302;
procedure 1;:f'mprevec(a, n); value n; integer n; array a;
~ in"lieger i, J, Jl, k;

real ab;
jl:• 1;
!2!_ j: .. 2 s"liep 1 ~ n 2:2.
~ !£::. i:• 1 s"lip 1 un"liil jl - 11 j stjp 1 ~ n 2:2.

a[i,Jl]:• O; a jl,j,r;;-1; ab:• a[J,j; if ab< 0 then
!£::. k: .. 1 s1;ep 1 ~ jl 2:2. elmcol(l, jl, k, j, a-;-;:;
ta.mma"li(l, Jl,. j, k, a, a) X ab); j1:• j

end;
for i:• n - 1 s"liep - 1 ~ 1 2:2. a[i,n] :=- O; a[n,n] : .. 1

~ ttmprevec;

Description mca 2301
baksymtri2 should be called a:f'ter ttmsymtri2., and performs the
corresponding back transformation on the columns of

11

~ vec[1 :n., n 1 :n2].
The data for the back transformation., as produced by tfmsymtri2., must
be given in the upper triangle of~ a[l :n., 1 :n].
The resulting vectors of the back transformation are overwritten on
the corresponding columns of vec.
baksymtri2 uses ta.mma.t and elmcol [3., chapter 20].

Description mca 2302
t:f'm:,Prevec should be called a:f'ter tfmsymtri2 and calculates the
corresponding transforming matrix.
The data for the back transformation., as produced by tfmsymtri2., must
be given in the upper triangle of array a[l:n., 1:n].
The transforming matrix is delivered in the whole of ~ a[1 :n., 1 :n].
t:f'm:,Prevec uses ta.mma.t and el.mcol [3., chapter 20].

12

COilllllent mca 2305;
procedure t:f'maymtril(a, n, d1 b, bb, em);~ n; integer n;
~ a, b1 bb1 d, em;
begin integer i, J, r, rl, p, q, ti, tj;

reals, w1 x1 al, b01 bb01 d01 norm, machtol;
iioriii:- o; tJ:= o;
!2!:, j:=- 1 step 1 ~ n do
begin w::o O;

!2!:, i::a 1 step 1 ~ j do w:=- abs(a[i + tj]) + w;
tj:= tj + j; ti:=- tj + j;
for i:• j + 1 srp 1 1mtil n do
begin w:=- abs(a ti]) Tw;ti:';;""ti + i end;
if w > norm then norm:• w

end·- --_,
machtol:• em[O] X norm; em[l]:= norm; q:= (n + 1) x n: 2; r:= n;
for rl:"' n - 1 stef - 1 1mtil 1 do -
begin p:• q - r; d r] :• a[q]; x:;-vecvec(p + 11 q - 2 1 01 a, a);

al:• a[q - 1]; if sqrt(x) < machtol then
begin bQ; .. b[rfJ:• al; bb[rl]:• bO X bO; a[q]:= 1 end
else
begin bbO:• bb[rl]:=- al X al+ x;

bO:• if al> 0 then - sqrt(bbO) else sqrt(bbO);
al:=- a'[q .- 1] : .. al- bO; w:a a[qr:;:;-1 / (al X bO);
tj: = O;
!2!:, j:=- 1 step 1 ~ rl do
begin ti:= tj + j; s:=- vecvec(tj + 11 ti, p - tj, a, a);

tJ:- ti+ J;

end;

b[j]::a (seqvec(j + 1, rl, tj, p, a, a)+ s) X w;
tj :=- ti

elmvec(l, rl, p, b, a, vecvec(l, rl, p, b, a) x wx .5);
tj:• O;
!2!:, j:=- 1 step 1 ~ rl ~
begin ti:= tj + j; el.mvec(tj + 1, ti, p - tj, a, a, b[j]);

elmvec(tj + 11 ti, - tj 1 a, b, a[j + p]); tj:= ti
end;
b[rl] := bO

end;
q::o p; r:=- rl

end;
d[i"]:• a[l]; a[1):= 1; b[n]:= bb[n]:a 0

~ ttmsynrtri 1;

13

Description mca 2305
tfmsymtril transforms then-th order symnetric n:atrix M whose upper
triangle is given in~ a[l :(n + 1) X n.:. 2] in such a way that the
(i, j)-th element of Mis a[(j - 1) X j : 2 + i] for 1 < i < j < n.
In array em[0:1], one must give the ma.chine precision, em[oJ. -
M:l.trix Mis transformed into a similar synnnetric tridiagonal matrix T.
The ma.in diagonal, the codiagonal and the sg_uares of the codiagonal
elements of Tare delivered in~ d, b, bb[l:n], the remaining
elements b[n] and bb(n] obtaining the value 0.
Moreover, the data for the back transformation are delivered in a, and
em(l]:=- the infinity norm of M.
tf'msynrtril uses vecvec, seg_vec and elmvec [3, chapter 20].

comment mca 2306;
:procedure baksymtri1(a, n, n1, n2, vec); ~ n, n1, n2;
integer n, n1, n2; ~ a, vec;
begin integer j, j1, k, ti, tj;

real w;
~ auxvec[1:n];
!2::_ k:=- n1 step 1 ~ n2 ~
begin !2::_ j:,. 1 step 1 ~ n ~ auxvec[j]: .. vec[j,k];

tj:"' jl :• 1;
for j:• 2 step 1 until n do
begin ti:,. tj + j~ a[ti];

if w < 0 then elmvec(l, j1, tj, auxvec, a, vecvec(1,
TT, tj, auxvec, a) X w); j1:a j; tj:= ti

end;
for j: .. 1 step 1 ~ n ~ vec[j,k]:= auxvec[j]

end-
~ baksymtri 1;

Description mca 2306
baksymtri 1 should be called after tfmsymtri 1 and performs the
corresponding back transformation on the colUIDns of
arrey vec[1 :n, nl :n2].

15

The data for the back transformation, as produced by tfmsymtri 1, must
be given in arrey a[l:(n + 1) X n .!. 2].
The resulting vectors of the back transformation are overwritten on
the corresponding colUIDns of vec.
baksymtril uses vecvec and elmvec [3, chapter 20].

Section 231 Linear interpolation and inverse iteration

This section contains procedures for calculating eigenvalues and.for
eigenvectors of real synu:netric I1E.trices, and a procedure for
calculating a zero of a function:

17

eigvalsyn2 and eigvalsyllll calculate all eigenvalues, or some
consecutive eigenvalues including the largest, of a symmetric l'.IE.trix;
eigsyne and eigsyml calculate the corresponding eigenvectors as well;
valsymtri calculates all, or some consecutive, eigenvalues of a
symmetric tridiagonal I1E.trix;
vecsymtri calculates the corresponding eigenvectors;
zeroin searches for a zero of a function :i.n a given interval.

The method used in zeroin is a mixture of linear interpolation and
extrapolation, and bisection [4, AJ: 200 and AJ: 230] [12] [13] •
If the given function has different sign at the endpoints of the given
interval, then this interval is successivel;y reduced to smaller
intervals in whose endpoints the function still has different sign.
In each step, three points, a, b, c, are involved, where, apart from
possible interchanges, (see below), bis the most recent iterate,
a the previous one, and the 11 contrapoint11 c is the last iterate at
which the function does not have the same sign as at b.
If the absolute value of the function at bis greater than at c, then
b and c are inte,rchanged (in order to simplify the convergence test).
In each step, linear interpolation or extrap~lation is performed
between a and b, yielding a point i,; if i is not between b and the
middle, m, of b and c, then i is replaced by m; moreover,
if abs(b - i) < tol, where tol is a given tolerance, i is replaced by
sign(c - b) X tol + b. This ensures that any two iterates have a
difference not smaller than tol, and that the length of the successive
intervals is reduced by at least tol in each step, so that convergence
is guaranteed, provided the tolerance is not smaller than the machine
precision; the process ends as soon as abs(c - b) < 2 X tol.
Since the interchanges mentioned above occur relativel;y seldom, the
process has a completel;y satisfactory asymptotic behaviour: for
a simple zero of a function having a continuous second derivative,
the order of convergence is (1 + sqrt(5)) / 2, i.e. about 1.6.
If the given function has the same sign at the endpoints of the given
interval, then the interval is reduced by means of bisection (or by
taking sign(c - b) X tol + b as new iterate, if the function (nearJ.;y-)
vanishes at b). If sign change is detected, then the process continues
as above; otherwise, the process ends as soon as abs(c - b) ::;:2 X tol.

The procedure valsyllltri calculates eigenvalues of a symmetric
tridiagonal matrix T by means of the method of Sturm-Givens [2, p. 299
- 315] [6] [8] [10] (11] with linear interpolation [4, AJ: 212 and 232].
Let p(i, x), for i = 0, 1, ••• ,n, denote the i-th principle minor of
T(x) = T - xI, i.e. the determinant of the submatrix consisting of
the first i rows and columns of T(x) (in particular p(0, x) = 1 for
all x). If none of the codiagonal elements of T vanishes, then the
sequence of these principle minors is a Sturm sequence; i.e. for each
x, the number of agreements in sign of consecutive members of this

18

sequence equals the number of eigenvalues of T which are greater than
x, and for each i > 1 the zeroes of p(i, x) are separated by the
zeroes of p(i - 1, x).
Using this property, the eigenvalues of T (which are the zeroes of
p(n, x)) are located not by means of bisection [6] [8] [10] [11], but
by means of linear interpolation (which converges faster) [4, AP 212
and 232] [18]; in valsymtri, the procedure zeroin is used for this
purpose. Moreover, we have incorporated the following idea from [11]
and [18] which simplifies the calculations and avoids overflow of the
real number capacity; instead of the principle minors, the ratios of
successive principle minors, f(i, x) = p(i, x) / p(i - 1, x), are
calculated; these ratios are obtained by the recurrence formula (d[i]
is the i-th main diagonal element and bb[i] the square of the i-th
codiagonal element of T): f(1, x) = d[l] - x,
f(i, x) = d[i] - x - bb[i - 1] / (if abs(f(i - 1, x)) > machtol then
f(i - 1, x) else machtol), i = 2,.::,n; where machtol is a givennorm,
IITI I, of T niiies the machine precision; thus, the number of sign
agreements equals the number of positive ratios f(i, x).
The tolerance for each calculated eigenvalue, lambda, is abs(lambda) x
given relative tolerance+ machtol.

In vecsymtri, an eigenvector of a symmetric tridiagonal matrix T,
corresponding to an approximate eigenvalue, lambda, is calculated by
means of inverse iteration [2, p. 321 - 330] [9] [10].
Starting from some initial vector, x, the linear system (T - lambda
X I)y = x is solved iteratively (by means of Gaussian elimination
with row interchanges), the solution y divided by its Euclidean norm
replacing x each time. If the distance between some approximate
eigenvalues is smaller than machtol, then they are slightly modified
such that the distance between them equals machtol [2, p. 328] [9].
This device, invented by Wilkinson, has the effect that a numerically
independent set of eigenvectors is obtained, since inverse iteration
is very sensitive to small changes in the approximate values of
clustered eigenvalues. If the distance between some eigenvalues is
smaller than I ITI I times a given "orthogonalisation parameter" (which
should be not smaller than the machine precision divided by the
tolerance for the eigenvectors), then in each iteration step, Gram-
Schmidt orthogonalisation [2, p. 242 and 606] is carried out, so that
the eigenvectors obtained are orthogonal within working precision.
Note, however, that the calculated eigenvectors corresponding to a
cluster of eigenvalues may deviate substantially from the true
eigenvectors. If Gram-Schmidt orthogonalisation yields a null vector,
then another initial vector, viz. one of the unit vectors, is chosen
and the iteration is started again; since the unit vectors span the
whole space, at least one of them is not perpendicular to the desired
eigenvector, and, thus, is a suitable initial vector.
The iteration ends, as soon as either the Euclidean norm of the
residue (T - lambda X I)x (this norm is calculated as the reciprocal
of the Euclidean norm of y) is smaller than IITII times the tolerance
for the eigenvectors, or the maximum allowed number of iterations has
been performed. If the tolerance for the eigenvectors is not too small
(it should not be smaller than the relative tolerance for the
eigenvalues), then one or two iterations suffice in most cases.

19

To find eigenvalues of a symmetric matrix M, first Householder's
transformation (section 230) is performed and then valsymtri is
called. Furthermore, to find the corresponding eigenvectors, vecsymtri
is used and then the back transformation (section 230) is carried out.
The Euclidean norm of the eigenvectors delivered equals 1 (within
working precision).

The procedures of this section, except zeroin, use an auxiliary
array em[0:9], or a part of it, in which some data for controlling the
iterations must be given and some by-products are delivered.
A survey of these data and by-products follows:
1) general · .
em[O] is the machine precision; must be given for all procedures.
em[1] is some norm of M or T; must be given for valsymtri and
vecsymtri; the other procedures deliver the infinity norm of M,
produced by tfmsymtri2 or tfmsymtri 1 •
2) for calculating eigenvalues
eml2] must be given for, and em[3] is delivered by all procedures,
except vecsymtri;
em[2] is the relative tolerance for the eigenvalues; more precisely:
the tolerance for each calculated eigenvalue, lambda, is abs(lambda) X
em[2] + em[l] X em[0];
em[3] is the number o~ iterations performed for the calculation of the
eigenvalues.
3) for calculating ei,envectors
em[4], em[6] and em[S must be given for, and em[5], em[7] and em[9]
are delivered by vecsymtri, eigsym2 and eigsyml; moreover, em[5] must
be given for vecsymtri only if n 1 > 1 •
em[4] is the orthogonalisation parameter;
em[5] is the number of eigenvectors involved in the last Gram-Schmidt
orthogonalisation; if, in the calculation of the last eigenvector,
no Gram-Schmidt orthogonalisation is carried out, then this number
equals 1;
em[6] is the tolerance for the eigenvectors; more precisely:
the inverse iteration ends if the Euclidean norm of the residue is
smaller than em[1] X em[6] ;
em[7] is the maximum Euclidean norm of the residues of the calculated
eigenvectors of T;
em[8] is the maximum number of inverse iterations allowed for the
calculation of each eigenvector;
em[9] is the largest number of iterations performed for the
calculation of some eigenvector; the value em[8] + 1 is delivered if
the Euclidean norm of the residue for one or more eigenvectors does
not become smaller than or equal to em[1] X em[6] within em[8]
iterations; nevertheless the eigenvectors l'.llaY then very well be useful,
this should be judged from the value delivered in em[7] or from some
other test.
The tolerances should satisfy em[0] < em[2] < em[6];
the orthogonalisation parameter should satisfy em[4]:::, em[0] / em[6];
For the x8, suitable values of the data to be given in em are:
em[0] = .--12, em[2] = rl0, em[4] = 0.01, em[6] = r-8, em[8] = 5.

20

collllllent mca 2310;
boolean procedure zeroin(x, y, fx, tolx); real x, y, fx, tolx;
begin real a, fa, b, fb, c, fc, tol, m, p,---;r;-
----S::-;""x; fa:= fx; b:= x:= y; fb:= fx;
interpolate: c:= a; fc:= fa;
extrapolate: if abs(fc) < abs(fb) then

begin a:=7i; fa:= fb; x:= b:= c;7'b:= fc; c:= a; fc:= fa
eiic[""fnterchange;
to!:= tolx; m:= (c + b) x .5; if abs(m - b) > tol then
begin p:= (b - a) X fb; if p >O then q:= fa - fb else
--ii'egin q:= fb - fa; p~ - p enr;-

a:= b; fa:= fb; --
x:= b:= if p < abs(q) X tol then (if c > b then b + tol
else b -tol)-else if p < (m---=--i3') Xq then P7""q + b
else m; fb:= fxr-- - --
goto if (if fc > 0 then fb > 0 else fb < 0) then interpolate
else extrapolate -- - -- -

end;--
~ c; zeroin:= if fc > 0 then fb < 0 else fb > 0

end zeroin; - - -- - -- -

21

Description mca 2310
zeroin searches for a zero of a function between the given values of x
and y within a certain tolerance. The function and the tolerance are,
in this order, given by the actual parameters for fx and tolx, which
are expressions depending on the Jensen variable x.
zeroin:= true, if either the function values at the given point x and
y have different sign, or the procedure finds some point in between at
which the sign of the function value differs from that at x and y.
Then zeroin calculates and delivers two values x and y ~ing within
the given interval, having function values of different sign and
satisfying abs(x - y) < 2 X tolx.
Moreover, the absolute-function value is not greater at x than at y,
so that the delivered value of xis the best value for the zero,
If the function has a continuous second derivative, the order of
convergence is about 1.6.
zeroin:• false, if the procedure fails to find points at which the
function values have different sign. Then the delivered values of x
and y satisfy all the above conditions, except the sign change
condition.
One has to take care that tolx is never smaller than the ma.chine
precision. Then in either case the process is completed after a finite
number of steps, an upper bound for the required number of steps
being the length of the given interval divided by the minimum of the
tolerance.

22

comment mca 2311 ;
:procedure valsymtri(d, bb, n, n1, n2, val, em); ~ n, n1, n2;
integer n, nl, n2; array d, bb, val, em;
begin integer k, count;
~ max, x, y, macheps, norm, re, machtol, ub, lb, lambda;

~ :procedure quot;
~ integer IJ, i;

real f;
count:• count+ 1; p:a k; i:• 1; f:• d[l] - x; goto test;

high: i:=- i + 1;
f:• d[i] - x - (if aba(f) > machtol ~ bb[i - 1] / f else
bb[i - 1] / machtol);

test: if f < 0 then p:• p + 1; if p < i then
begin quot:~; lb:• x end -
else
begin g_ IJ > n ~ quot:,. g_ i ,. n /\ f ~ 0 ~ f ~ - max

else
begin g_ i < n ~ goto high;

quot:= if f > 0 then f else max;
if x < u.b then u~x --

end - --
end--

~ quot;

macheps:• em[O]; norm:- em[1]; re: .. em[2];
machtol:=- norm X macheps; max:.,. norm/ macheps; count:= O;
ub:=- 1.1 X norm; lb:=- - ub; lambda:= ub;
f2!. k:• n1 step 1 ~ n2 do
begin x:=- lb; y: .. ub; lb:=- - 1.1 X norm;

zeroin(x, y, quot, abs(x) X re+ machtol);
val[k] :=- lambda:• if x > lambda then lambda else x;
if ub > x then ub:;-if x > y thenx"°eJ.se y --

end;- -- - -- --
em[3] :• count

end valsymtri;

23

Description mca 2311
valsymtri calculates the n1-th to n2-th eigenvalues of then-th order
symmetric tridiagonal matrix T whose ma.in diagonal is given in
~ d[1 :n], and whose squared codiagonal elements are given in
~ bb[1 :n - 1].
The following elements of array em[0: 3] must be given (see also p. 19) •
em[O]: the machine precision;
em[1]: a norm of T;
em[2]: the relative tolerance for the eigenvalues.
The eigenvalues are calculated in monotonicall¥ nonincreasing order
and delivered in array val[n1:n2],; in particular, if nl "'1 and
n2 • n, then all eigenvalues are calculated.
Moreover em[3]:~ the number of iterations performed.
valsymtri uses zeroin (mca 2310).

24

connnent mca 2312;
procedure vecsymtri(d, b, n, n1 1 n2, val, vec, em);~ n, n1 1 n2;
integer n, nl, n2; ~ d1 b, val, vec, em;
begin integer i, j, k, count, maxcount, countllm, orth, ind;

real bi, bi 11 u, w, y I mi 11 lambda, oldlambda, ortheps, va.lspread,
'siir,'" res, ma.xres, oldres, norm, newnorm, oldnorm, machtol, vectol;
a.rrey m, p, q, r, x[1 :n];
boolean [)Y int[1 :n];
norm: • em 1 ; machtol: .. em[0] x norm; valspread: = em[4] x norm;
vectol:=- em[6] X norm; countlim:• em[8]; ortheps:= sqrt(em[O]);
maxcount:• ind:• o; ma.xres:• o;
if nl > 1 then
begin orth:=- em[5]; oldlambda:• val[nl - orth];
----ror k:a nl - orth + 1 step 1 until nl - 1 do

begin lambda::s val[k]; spr:• oldJambda - lambda;

end
end-

if spr < machtol then lambda:= oldla.nibda - machtol;
oldlambda:., lambda°"

ei'se orth: • 1 ;
Tor°k:"' nl step 1 until n2 do
begin l.a.mbda:• val'[kJ;if k> 1 ~

begin spr: .. oldlambda - lambda; if spr < va.lspread then
begin g spr < ma.chtol ~ lambda:= oldlambda - machtol;

orth:"' orth + 1
end
ei'se orth:"' 1

end;--
count:• o; u:= d[l] - lambda; bi:• w: .. b[l];
if abs(bi) < machtol then bi:a machtol;
for i: .. 1 stef 1 untiln- 1 do
begin bi 1 : .. b i +"7'"J; -

if abs(bi 1) < machtol then bi 1 : .. machtol;
if abs(bi) > abs(u) th°eil"
begin mi 1 :•-m[i + 1]T,;"'u," / bi; p[i] := bi;

y:=- q[i]: .. d[i + 1] - l.a.mbda; r[i]:= bil;
u:"' w - mil X y; w:• - mil X bil; int[i]:= true

end --
else
begin mil:= m[i + 1]:• bi/ u; p[i]:= u; q[i]:= w;
--r[i]:=- o; u: .. d[i + 1] - lambda - mil X Wj w:= bil;

int[i]:• false
end; --
x[i]:= 1; bi:• bil

end transform;
p[n] : • if abs(u) < machtol then machtol else u;
q[n]:• r[n]:=- O; x[n]:a 1; goto entry; --

iterate: w:• x[l];
for i: .. 2 stp 1 until n do
begin if int i - TTtiien -

begin u:,. w; w:a""'x!i - 1] := x[i] end
else u: .. x[i]; w:::c x[i] ::z u - m[iJX w

~ alternate;

Description mca 2312
vecsymtri calculates the eigenvectors corresponding to the n1-th to
n2-th eigenvalues of then-th order synmetric tridiagonal matrix T,
whose main diagonal and codiagonal, the latter followed by an
additional element o, are given in array d, b[1 :n].
In Jay em[0:9] one must give the following data (see also p. 19).
em[O : the machine precision;
em[1]: a norm of T;
em(4]: the orthogonalisation parameter;
em[6]: the tolerance for the eigenvectors;

25

em(8J: the maximum number of iterations allowed for the calculation of
each eigenvector.·

If n1 .. 1, then the largest n2 eigenvalues must be given in
~ val[1:n2] in 100notonicalzy nonincreasing order. Then vecsymtri
delivers the corresponding eigenvectors in the columns of
array vec[1 :n, 1 :n2].
Moreover, in em the following results are delivered:
em[5]:• the number of eigenvectors involved in the last Gram-Schmidt
orthogonalisation;
em[7]: .. the maximum Euclidean norm of the residues;
em[9]:a the largest number of iterations performed for the calculation
of some eigenvector;
if, however, for some calculated eigenvector, the Euclidean norm of the
residue remains gt'ea ter than em[1] X em[6] , then em[9] : = em[8] + 1 •

If n1 > 1, then vecsymtri should be preceded by one or more calls of
vecsymtri producing the eigenvectors corresponding to the largest
n1 - 1 eigenvalues. Then, in addition to the data mentioned above, one
must give em[5], as produced by the last call of vecsymtri;
the k-th to n2-th eigenvalues, where k = n1 - em[5], must be given
in arra~ val[k:n2] in monotonicalzy nonincreasing order (the k-th to
(n1 - 1 -th eigenvalues being needed for Wilkinson's device), and the
corresponding eigenvectors up to the (n 1 - 1)-th (which are needed for
the Gram-Schmidt orthogonalisation) in the corresponding columns of
arra;y vec[1 :n, k:n2].
Then vecsymtri calculates the eigenvectors corresponding to the n1-th
to n2-th eigenvalues and delivers them in the corresponding colUllltls of
vec; moreover, results as mentioned above are delivered in em, but
they now concern the calculation of the n1-th to n2-th eigenvectors
onzy.

Swmna.rising, we have: two subsequent calls "vecsymtri (d, b, n, 1,
nl - 1, val, vec, em)" and "vecsymtri (d, b, n, n1, n2, val, vec, em)"
are equivalent to one call "vecsymtri (d, b, n, 1, n2, val, vec, em) 11 ,

except for the results delivered in em[7] and em[9].
vecsymtri uses vecvec, tamvec and elmveccol [3, chapter 20].

26

entry: u:= w:= O;
.f2::. i:= n step - 1 until 1 do
begin y:= u; u: .. x[i] :• (x[IT - q[i] X u - r[i] X w) / p[i];

w:• Y
end next iteration;
newnorm:= sqrt(vecvec(l, n, o, x, x)); if orth > 1 then
begin oldnorm: = newnorm;

.f2::. j := k - orth + 1 step 1 until k - 1 ~
elmveccol(l, n, j, x, vec, - tamvec(l, n, j, vec, x));
newnorm:• sqrt(vecvec(l, n, 01 x, x));
if newnorm < ortheps x oldnorm then
begin ind:• ind+ 1; count:"' 1;--

!2::. i : • 1 step 1 until ind - 1, ind + 1 step 1 until
n do x[i]:= o; x[ind]:= 1; if ind= n then ind:= o;
goto iterate - --

end new" start
end orthogonalisation;
res:= 1 / newnorm; if res> vectol V count= 0 then
begin count:• count+ 1 ; if count < countlim t~

begin .f2::. i:• 1 step luntil n-do x[i]:= xITT X res;
goto iterate

end--
end;-- .
for i:=- 1 step 1 ~ n ~ vec[i,k]:= x[i] X res;
if count> ma.xcount then ma.xcount:=- count;
IT res > maxres then ""'iiiaxres: =- res; old.lambda:= lambda

end;- --
em[5]:• orth; em[7]:• ma.xres; em[9]:a ma.xcount

~ vecsymtri;

cuitlillent mca 2313;
procedure eigvalsyni2(a, n, rn.i.'llval, val, em); value n, numval;
integer n ,numval; [ray a, val, em;
begin ~ b, bb, d 1 :n];

tfrosymtri2(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em)

~ eigvalsyni2;

cumment mca 2314;
procedure eigsyni2(a, n, numval, val, vec, em);~ n, numval;
integer n, numva.l; [ray a, ·va1, vec, em;
begin array b, bb, d 1 :n];

tfrosymtri2(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em);
vecsymtri(d, b, n, 1, numval, val, vec, em);
baksymtri2(a, n, 1, numval, vec)

~ eigsyni2;

29

Description mca 2313
eigvalsym2 calculates the largest numval eigenvalues of then-th order
symmetric :natrix M whose upper triangle is given in ~ a[1 :n, 1: n].
In array em[0:3] the elements with even subscript nru.st be given (see
also p. 19), viz.
em[0]: the :nachine precision;
em[2]: the relative tolerance for the eigenvalues.
eigvalsym2 delivers the first to numval-th eigenvalues of Min
monotonica.J.zy nonincreasing order in array val[l:numval], and the data
for Householder's back transformation in the upper triangle of a.
Moreover,
em[l]: .. the infinity norm of·M;
em[3]: .. the number of iterations performed.
eigvalsyn2 uses tfmsymtri2 (mca 2300), valsymtri and, indirectly, also
zeroin (this section) and tamvec, :natmat, tamma.t, elmveccol, elmcolvec
and elmcol [3, chapter 20].

Desc~tion mca 2314
eigs calculates the largest numval eigenvalues and corresponding
eigenvectors of then-th order symmetric :natrix M whose upper triangle
is given in arra;y a[l_:n, 1 :n]. In~ em[0:9], the elements with
even subscript must be given (see also p. 19), viz.
em[0]: the ma.chine precision;
em[2): the relative tolerance for the eigenvalues;
em[4]: the orthogonalisation parameter;
em[6): the tolerance for the eigenvectors;
em[8]: the :naximum number of inverse iterations allowed for the
calculation of each eigenvector.
eigsym2 delivers the first to numval-th eigenvalues in monotonically
nonincreasing order in~ val[l:numval], the corresponding
eigenvectors in the columns of ~ vec[l :n, 1 :numval], and the data
for Householder's back. transformation in the upper triangle of a.
Moreover,
em[l]: .. the infinity norm of M;
em[3]: .. the number of iterations performed for the calculation of the
eigenvalues;
em[5]:• the number of eigenvectors involved in the la.st Gram-Schmidt
orthogonalisation;
em[7] := the maximum Euclidean norm of the residues of the calculated
eigenvectors (of the transformed matrix);
em[9]:a the largest number of inverse iterations performed for the
calculation of some eigenvector; if, however, for some calculated
eigenvector, the Euclidean norm of the residue re:nains greater than
em[l] X em[6], then em[9]: .. em[8] + 1.
eigsyn2 uses tfmsymtri2 and baksymtri2 (section 230) valsymtri,
vecsymtri and, indirectly, also zeroin (this section) and vecvec,
tamvec, matnat, tamma.t, elmveccol, ellllcolvec and elmcol [3, chapter 20].

30

comment mca 2318;
procedure eigvalayml (a, n, numval, val, em); ~ n, numval;
int7ger n, numval; ~ a, val, em;
begin ~ b, bb, d[1 :n];

tfinsymtril(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em)

~ eigvalsym1;

comment mca 2319;
procedure eigsym1 (a, n, numval, val, vec, em); ~ n, numval;
integer n, numval; [rey a, val, vec, em;
begin arrey b, bb, d 1 :n];

tfinsymtril(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em);
vecsymtri(d, b, n, 1, numval, val, vec, em);
baksymtri1(a, n, 1, numval, vec)

~ eigsyml;

31

Description mca 2318
eigvalsyml calculates the largest numval eigenvalues of then-th order
symmetric matrix M whose upper triangle is given in
~ a[l :(n + 1) X n.:.. 2] in such a way that the (i, j)-th element
of Mis a[(j - 1) X j: 2 + i] for 1 < i < j < n.
In ~ emI 0: 3] the elements with even subscript must be given (see
also p. 19), viz.
em[O]: the machine precision;
em[2]: the relative tolerance for the eigenvalues.
eigvalsyml delivers the 1-st to numval-th eigenvalues of Min
monotonicall;y nonincreasing order in array val[1:numval], and the data
for Householder's back transformation in a.
Moreover,
em[l]:~ the infinity norm of M;
em[3]:~ the number of iterations performed.
eigvalsyml uses t:f'msymtri1 (mca 2305), valsymtri and, indirectly, also
zeroin (this section) and vecvec, seqvec and elmvec [3, chapter 20].

Description mca 2319
eigsyml calculates the largest nunrval eigenvalues and corresponding
eigenvectors of then-th order syimnetric matrix M whose upper triangle
is given in array a[l: (n + 1) X n : 2] in such a way that the
(i, j)-th element of Mis a[(j - 1Tx j : 2 + i] for 1 < i < j < n.
In array em[0:9], the elements with even-subscript must-be given as
for eigs~.
eigsyml delivers the 1-st to numval-th eigenvalues in monotonically
nonincreasing order in~ val[l:numval], the corresponding
eigenvectors in the colunms of array vec[l:n, 1:numval], and the data
for Householder's back transformation in a.
Moreover, in the elements of em with odd subscript, the S8ll1e results
are delivered as by eigs~.
eigsyml uses t:f'msymtri1 and baksymtri1 (section 230), valsymtri,
vecsymtri and,' indirectly, also zeroin (this section) and vecvec,
tamvec, seqvec, elmvec and elmveccol [3, chapter 20].

32

Section 232 QR iteration

This section cont.a.ins procedures for calculating the eigenvalues or
the eigenvalues and eigenvectors of real symmetric matrices:
qrivalsym2 and qrivalsyml calculate all eigenvalues of a symmetric
matrix; qrisym calculates the eigenvectors as well; qrivalsymtri
calculates all eigenvalues of a symmetric tridiagonal matrix;
qrisymtri calculates the eigenvectors as well,

The method used in qrivalsymtri and qrisymtri for calculating the
eigenvalues of a symmetric tridiagonal matrix Tis QR iteration
(14] (15] (16] (17] (18]; our procedures being most similar to those
published in (18] and [16].
In each step, matrix Tis replaced by the similar matrix Q'TQ, where Q
is an orthogonal matrix chosen in such a wa:y that, for some suitable
"shift" s, Q'(T - sI) is an upper-triangular matrix, R (thus, T - sI =
QR, which explains the name of the method) •
The matrices Q and R could be calculated by means of Gram-Schmidt
orthogonalisation (2, p. 242]; hence, it is obvious that Q has
upper-Hessenberg form.

The similar matrix Q'TQ is again symmetric (because Q is orthogonal)
and tridiagonal (because R is upper-triangular and Q has upper
Hessenberg form).
The sequence of iterates T converges to a (nearly) diagonal matrix, D,
similar to the given matrix, so that the main-diagonal elements of D
are (approximately) equal to the required eigenvalues,
As soon as, for some k, the k-th element of the codiagonal of an
iterate T has an absolute value smaller than some tolerance, then this
element is neglected, and matrix T is subdivided into a submatrix of
order k consisting of the first k rows and columns and a submatrix of
order n - k consisting of the last n - k rows and columns of T; these
"principle" submatrices are then considered and handled separately.
Eigenvalues and eigenvectors of submatrices of order 1 or 2 are
calculated directly, so that the process is completed if Tis
subdivided into principle submatrices of order 1 or 2 only. For k =
n - 1, moreover, a weaker criterion, due to Kahan (17] (18], for
subdividing the matrix is applied, which criterion is especially
effective if both the (n - 1)-th and (n - 2)-th elements of the
codiagonal become smaJ.l.

In each step, the shifts is chosen as follows: Let B denote the lower
right 2 by 2 submatrix of the considered principle submatrix of T;
thens equals that eigenvalue of B closest to its last main-diagonal
element. With this choice of s the codiagonal element of B converges
to 0, The convergence is cubic for a simple eigenvalue of T and linear
for a multiple one, However, the iteration is discontinued if a given
maximum allowed number of iterations has been performed.

33

The procedure qrisymtri also calculates the eigenvectors of the
symmetric matrix M = STS', where T is a symmetric tridiagonal matrix
and San orthogonal transformation matrix (cf. section 230) as follows
(16]: in each QR iteration step, a matrix X whose initial value is S
is replaced by XQ in each step; thus on completion of the process, X
is the matrix of eigenvectors of M. In particular, if S = I then the
eigenvectors produced are those of T. The procedure qrivalsymtri is a
square-rootr-free version of the QR method due to Ortega and Kaiser
(14] (15] [18] in contrast to qrisymtri; hence these procedures are
not numerically equivalent as tot.he calculation of the eigenvalues.

The procedures of this section use an auxiliary array em[0:5], or a
part of it, in which some data for controlling the iterations must be
given and some by-products are delivered, A survey of these data and
by-products follows.

1) general
em(O] is t.he machine precision; must be given for qrivalsymtri,
qrivalsym2, qrisym and qrivalsyml.
em(1] is some norm of M or T; must be given for qri valsymtri and
qrisymtri; the other procedures deliver the infinity norm of M,
produced by tfmsymtri2 or tfsymtri 1 •

2) for the QR iteration
em[2] and em14] must be given for, and em[3] and em(51 are delivered
by, all procedures.
em(2] is the relative tolerance for the QR iteration; if the absolute
value of some codiagonal element of the iterated matrix is smaller
than em(l] X em[2], then this element is neglected and the matrix is
subdivided.
em(3] is the maximum absolute value of the codiagonal elements
neglected,
em(4] is the maximum allowed number of QR iterations;
em[5] is the number of QR iterations performed; the value em(4] + 1 is
delivered, if the QR iteration process is not completed within em(4]
iterations.
The tolerance em(2] should be chosen not smaller than em(O].
For the X8, suitable values of the data to be given in em are
em(O] = r-12, em[2] = r-12, em(4] = 5 x n,

34

comment mca 2320;
integer procedure qrivalsymtri(d, bb, n, em); value n; integer n;
~ d, bb, em;
begin integer count, max, nl, k, kl;
--real tol, tol2, macheps2, bbmax, t, r, w, c, s, shift, u, g, t2,

w2, p2, dk, cos2, sin2, oldcos2;
tol:• em[2) X em[l]; tol2:= tol X tol; macheps2:= em[O] ~ 2;
count:=- o; bbmax:"' o; max:• em[4];

in: k:"' n; nl:=- n - 1;
next: k:• k - 1; if k > 0 then

begin g bb[kT2:, tol2 then goto next;
if bb[k] > bbmax then:.bbmax:= bb[k]

end;- --
if k • nl then n:= nl else
begin -- --
twoby2: t:,. d[n) - d[nl]; r:• bb[nl]; if k < n - 2 then

begin w:=- bb[n - 2]; c:"' t X t; s:;-r / (c + w)-; -
g:"' (w + s X c) X s; if g < tol2 then
begin n:"' n - 1; nl :=n - 1; .:!£ g > bbmax ~ bbmax:= g;

goto twoby2
end--

end negligible bb;
ilabs(t) <·tol thens:= sqrt(r) else
begin w:=- 2 / t;g:°; w x r / (sqrt(w X w X r + 1) + 1) end;
if k "'n - 2 then
begin d[n] :=- atiiJ + s; d[nl] := d[nl] - s; n:= n - 2 end
else
begin count: .. count + 1; if count > max then goto end;

shift: .. d[n] + s; if abs{t) < tol th~ --
begin w:"' d[nl] - s; --

if abs(w) < abs(shift) then shift:= w
end;- --
k: .. k + 1; g:• d[k] - shift; t2:= g X g; w2:= bb[k];
p2: = t2 + w2; oldcos2:"' 1 ;
for k:=- k + 1 step 1 until n do
begin kl:= k - 1; si~ /J2.; cos2:== t2 / p2;

dk:• d[k] - shift; u:= (g + dk) X sin2;
d[kl]:a g + u + shift; g:= dk - u;

end;

t2:,. if cos2 < macheps2 then w2 X oldcos2 else g X g
/ cos2; w2:=- bb[k]; p2:a w2 + t.2; bb[kl] := sin2 X p2;
oldcos2:=- cos2

d[n]:= g + shift
end sweep

end;-
if n > 0 then ~ in;

end:em[3]:a sqrt(bbmax); em[5]:= count; qrivalsymtri:= n
~ qrivalsymtri;

35

Description mca 2320
qrivalsymtri calculates all eigenvalues of then-th order symmetric
tridiagonal matrix T whose main diagonal is given in arra;y d[l:n] and
the squares of whose codiagonal elements w1 th an additional last
element Oare given in array bb[l:n].
In jray em[0:5] the following data must be given (see also p. 33):
em[O: the machine precision;
em[l]: a norm of T;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maxinrum allowed nwnber of iterations.
The eigenvalues of Tare delivered ind and the squared codiagonal
elements of the tridiagonal matrix resulting from the QR iteration
are delivered in bb. Moreover,
em[3] :a the maxinn.un absolute value of the codiagonal elements
neglected;
em[5]:a the number of iterations performed.
Furthermore, qrivalsymtri:= O, provided the process is completed
within em[4] iterations; otherwise, qrivalsymtri:= the nuniber, k, of
eigenvalues not calculated, em[5] := em[4] + 1, and only the last n - k
elements of dare approximate eigenvalues of T.

36

comment mca 2321;
integer procedure qrisymtri(a, n, d, b, bb, em); value n; integer n;
arrey a, d, b, bb, em;
begin integer i, j, jl, k, m, ml, count, max;

real bbmax, r, s, sin, t, c, cos, oldcos, g, p, w, tol, to12,
lambda., dkl, ao, a 1;
tol:• em[2] x em[l]; tol2:= tol x tol; count:= O; bbmax:= o;
max:• em[4]; m:= n;

in: k:• m; ml:"' m - 1;
next: k: .. k - 1; if k > 0 then

begin if bb[kT> tol2 then goto next;
ifbb[k] > bbmax thenbbmax: .. bb[k]

end;- --
if k .. ml then m:= ml else
begin -- --
twby2: t:= d[m] - d[ml]; r:= bb[ml];

if k < m - 2 then
begin w:=- bb[m - 2]; c:a t X t;

s:= r / (c + w); g:= (s X c + w) X s; if g < tol2 then
begin m:=- m - 1; ml:=- m - 1; if g > bbiiiax then
--bbmax:= g; goto twoby2 - --
end

end negligible bb;
Uabs(t) < tol thens:=- sqrt(r) else
be~n w:=- 2 / t;s;"; w X r / (sqrt(w x w x r + 1) + 1) end;
if .. m - 2 then
begin d[m] :=- d[m] + s; d[ml] := d[ml] - s;
--i:: ... - s / b[ml]; r:= sqrt(t x t + 1); cos:= 1 / r;

sin:"' t / r; rotcol(l, n, ml, m, a, cos, sin); m:= m - 2
end
else
begin count:= count + 1 ; if count > max then goto end;

lambda:= d[m] + s; ifabs(t) < tol then --
begin w:= d[ml] - s; --

if abs(w) < abs(lambda) then lambda:=- w
end;-
k:=- k + 1; t:• d[k] - lambda; cos:= 1; w:= b[k];
p:= sqrt(t X t + wx w); jl:= k;
~ j: = k + 1 step 1 ~ m do
begin oldccs:= cos; cos:= t / p; sin:= w / p;

dkl:a d[j] - lambda; t:= oldcos X t;

end;

d[j 1] ; .. (t + dkl) X sin X sin + lambda + t;
t:= cos x d..~1 - sin x w x oldcos; w:= b[j];
p:= sqrt(t X t + w X w); g:• b[jl]:== sin X p;
bb[jl]:= g X g; rotcol(l, n, jl, j, a, cos, sin);
jl :=- j

d[m] ; ... cos X t + lambda; g t < 0 then b[ml] := - g
end qrstep

end;-
if m > 0 ~ goto in;

end: em[3]:= sqrt(bbmax); em[5]:= count; qrisymt~i:= m
~ qrisymtri;

37

Description mca 2321
qrisymtri calculates all eigenvalues of then-th order symmetric
tridiagonal matrix T whose main diagonal is given in array d[1 : n], and
whose codiagonal elements with an additional last element O are given
in array b[1 :n] with the squares thereof in array bb[1 :n].
Moreover, qrisymtri calculates the eigenvectors of M = STS', where Sis
the orthogonal transformation matrix given in array a[1 :n, 1 :n] (e.g.
as produced by tfmsymtri2 and tfmprevec, section 230).
In j.ray em[l :5], the following data must be given (see also p. 33):
em[l : a norm of T;
em[2]: the relative toleranc~ for the QR iteration;
em[4]: the maximum allowed number of iterations.
The eigenvalues of T (and thus also of M) are delivered ind and the
eigenvectors of Min the corresponding colUJJlrls of a. The codiagonal of
the tridiagonal matrix resulting from the QR iteration is delivered in
b, and the squares of these codiagonal elements in bb.
Moreover,
em[3):= the maximum absolute value of the codiagonal elements
neglected,;
em[5]:= the number of QR iterations performed.
Furthermore, qrisymtri:= o, provided the process is completed within
em[4] iterations; otherwise, qrisymtri:= the number, k, of eigen
values, not calculated, em[5]:=- em[4] + 1, and only the last n - k
elements of' d and colUJJlrls of a are approximate eigenvalues and eigen
vectors of M.
qrisymtri uses rotcol [3, mca 2031].

38

comment mca 2322;
integer :procedure g_rivalsym2(a, n, val, em);~ n; integer n;
~ a, val, em;
begin~ b, bb[1 :n];

tfmsymtri2(a, n, val, b, bb, em);
g_rivalsym2:= g_rivalsymtri(val, bb, n, em)

~ g_ri valsym2;

39

Description mca 2322
qrivalsym2 calculates all eigenvalues of then-th order symmetric
matrix M whose upper triangle is given in array a[1 :n, 1 :n].
In array em[0: 5], the elements with even subscript must be given (see
also p. 33) viz.
em[0]: the machine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maxinrum allowed number of iterations.
The calculated eigenvalues of Mare delivered, in array val[l:n], and
the data for Householder's back transformation in the upper triangle
of a,
em[l]:,. the infinity norm of M;
em[3]:= the maxinrum absolute value of the codiagonal elements
neglected;
em[5]:"' the number of iterations performed.
Furthermore, qrivalsym2:= o, provided the QR iteration is completed
within em[4] iterations; otherwise, qrivalsym2:"' the number, k, of
eigenvalues not calculated, em[5]:=- em[4] + 1, and only the last n - k
elements of val are approximate eigenvalues of M.
qrivalsym2 uses tfmsymtri2 (mca 2300), qrivalsymtri (mca 2320) and,
indirectly, also tamvec, mat.mat, ta.mmat, elmveccol, elmcolvec and
elmcol [3, chapter 20].

4o

comment mca 2323;
integer procedure qrisym(a, n, val, em);~ n; integer n;
~ a, val, em;
begin ~ b1 bb[1 :n];

tfmsymtri2(a, n, val, b, bb1 em); tfmprevec(a, n);
qrisym:~ qrisymtri(a, n, val, b, bb1 em)

~ qrisym;

comment mca 2327;
integer procedure qrivalsyml(a, .n, val, em);~ n;
integer n; ~ a, val, em;
begin ~ b1 bb[l : n];

tfmsymtril(a, n, val, b, bb, em);
qrivalsyml:= qrival.symtri(val, bb, n, em)

~ qri valsym 1;

41

Description mca 2323
qrisym calculates all eigenvalues and eigenvectors of then-th order
synmietric matrix M whose upper triangle is given in array a[1 :n, 1 :n].
In array em[0:5], the elements with even subscript must be given
(see also p. 33), viz.
em[0]: the machine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of iterations.
The calculated eigenvalues of Mare delivered in array val[1:n] and
the eigenvectors of Min the corresponding columns of array a[1:n, 1:n].
Moreover,
em[1] : ,. the infinity norm of M;
em[3] :=- the maximum absolute value of the codiagonal elements
neglected;
em[5]:x the number of iterations performed.
Furthermore, qrisym:• o, provided the process is completed within
em[4] iterations; otherwise, q_risym:• the number, k, of eigenvalues
not calculated, em[5]:= em[4] + 1, and only the last n - k elements
of val and columns of a are approximate eigenvalues and eigenvectors
of M.
q_risym uses tfmsymtri2, tfnrprevec (section 230), qrisymtri (mca 2321)
and, indirectly, also tamvec, matmat, tammat, elmveccol, elmcolvec,
elmcol and rotcol [3,. chapter 20].

Description mca 2327
qrivalsym1 calculates all eigenvalues of then-th order synmietric
matrix M whose upper triangle is given in array a[1: (n + 1) X n .:. 2]
in such a way that the (i,j)-th element of Mis a[(j - 1) X j : 2 + i]
for 1 < i < j < n. -
In array eiii[0:5], the elements with even subscript must be given as
for qrivalsym2.
The calculated eigenvalues of Mare delivered in array val[1:n] and
the data for Householder's back transformation in a. Moreover, in the
elements of em with odd subscript, the same results are delivered as
by qrivalsynf!.
Furthermore, q_rivalsyml:,. o, provided the QR iteration is completed
within em[4] iterations; otherwise, qrivalsyml:= the number, k, of
eigenvalues not calculated, em[5] := em[4] + 1, and only the last n - k
elements of val are approximate eigenvalues of M.
qrivalsyml uses tfmsymtri1 (mca 2305), qrivalsymtri (mca 2320) and,
indirectly, also vecvec, seqvec and elmvec [3, chapter 20].

42

CHAPTER 24

EIGENSYSTEMS OF REAL MATRICES

This chapter contains procedures for calculating eigenvalues and/ or
eigenvectors of real matrices. To solve the eigenproblem the matrix is
first equilibrated by means of a diagonal similarity transformation
and the equilibrated matrix is transformed into an upper--Hessenberg
matrix by means of a stabilized triangular transformation (section
240).

The eigenvalues of an upper--Hessenberg matrix are calculated by means
of QR iteration in one of two variants, viz. single QR iteration, to be
used if all eigenvalues are real (section 241), and double QR
iteration for finding real and complex eigenvalues (section 242).
Unfortunate:cy-, the QR-iteration process is not always convergent;
counterexa.m_ples of matrices having real eigenvalues on:cy- are not
known to the authors; for counterexamples of matrices having complex
eigenvalues, seep. 74.

For the calculation of the eigenvectors, two methods have been chosen,
viz. inverse iteration and a more direct method. The inverse iteration
converges rapid:cy- in near:cy- all cases, whereas the direct method does
not perform any iteration process after the QR iteration. We have
programmed the inverse iteration in a version for real eigenvectors
(section 241) and one for complex eigenvectors (section 242), but the
direct method on:cy- for real eigenvectors (section 241),; the version of
the latter for complex eigenvectors would also be useful, and is not
included because it is not yet conr_pleted.

When the processes converge, they yield eigenvalues and eigenvectors
in reasonable precision, provided that the matrix is not too ill
conditioned with respect to its eigenvalue and eigenvector problems
[2, chapter 2].
A measure for the sensitivity of an eigenvalue of a matrix M to small
changes in its elements is the quantity k =- I lxl I I IYI I / ly'xl, where
x and y are the corresponding (suitab:cy- chosen if the eigenvalue is
muJ.tiple) eigenvectors of M and M'. If M is (approximate:cy-) equal to a
nondiagonalisable matrix, then k is much larger than 1 for some of its
eigenvalues, and Mis ill-conditioned with respect to both its eigen
value and eigenvector problems [2, p. 69].
If, on the other hand, the quantities k are not much larger than 1 for
all eigenvalues of M (in particular, the quantities k are equal to 1
for normal ma.trices, i.e. ma.trices having a unitary matrix of eigen
vectors), then Mis well-conditioned with respect to its eigenvalue
problem, the eigenvalues obtained by our procedures have a reasonable
precision, and the eigenvectors obtained are almost always numerical:cy
independent.

43

Note, however, that a matrix which is well-conditioned with respect
to its eigenvalue problem, may be ill-conditioned with respect to its
eigenvector problem, this being the case if the matrix has closely
clustered eigenvalues; the calculated eigenvectors corresponding to
such eigenvalues roa;y very well deviate substantially from the true
eigenvectors.

The computation time is roughly proportional ton cubed, but obviously
depends on the number of iterations required (see Appendix). Inverse
iteration and the direct method for calculating eigenvectors are
competitive as to accuracy and computation time.
It is worth remarking, however, that, in our limited experience, the
eigenvectors obtained by the direct method are numerically not worse,
and sometimes better, independent than those obtained by inverse
iteration.

As to the calculation of eigenvalues, the Q,R iteration appears to be
much faster than the nondeflating methods using Hyman's formula for
evaluating the characteristic polynomial [2, p. 426] and a standard
iteration process (e.g. linear interpolation [4, AP 239], or
Laguerre's method [20] [24] [25]) for locating the eigenvalues. A quite
different ty:pe of method for calculating eigenvalues and eigenvectors
is Eberlein's method [26] (2, p. 568] [27], which seems to be quite
satisfactory.

As to the memory space required for our procedures, we consider only
then by n arrays used, since the size of the one-dimensional arrays
is negligible. The procedures reaeigval (mca 2412) and comeigval (mca
2422), which calculate only eigenvalues, use only one n by n array for
the given matrix and as working space. The procedures reaeig1 (mca
2414) and comeig1 (mca 2424), which moreover, calculate the eigen
vectors by means of inverse iteration, use three n by n arrays, one
for the given matrix, one for the eigenvectors, and a local one as
working space; the procedures reaeig2 (mca 2415) and comeig2 (mca
2425), which are numerically equivalent to reaeig1 and comeigl, use
only one n by n array for the given matrix, as working space and for
the eigenvectors, but they use also 2 X n I} 2 reai number locations on
backing storage as working space. The procedure reaeig3 (mca 2417),
which calculates the eigenvalues and eigenvectors by means of Q,R iter
ation followed by the direct method, uses two n by n arrays, one for
the given matrix and as working space, and one for the eigenvectors.

44

Section 240 Wilkinson's transformation and equilibration

This section contains a procedure for transforming a matrix into a
similar upper-Hessenberg matrix, a procedure for equilibrating a
matrix, and procedures for performing the corresponding back
transformations:
tfmreahes transforms a matrix into a similar upper-Hessenberg matrix
by means of Wilkinson's transformation;
ba.kreahesl (bakreahes2) performs the corresponding back transformation
on a vector (on the columns of a matrix);
eqilbr equilibrates a matrix by means of a diagonal similarity
transformation;
baklbr performs the corresponding back transformation on the co1Ullll1s
of a matrix.

Wilkinson's transformation is a triangular similarity transformation
with stabilizing row and column interchanges [2, p. 353 - 368]
transforming a matrix into an upper-Hessenberg matrix [20] [22] •
Let M be a given real matrix and H the resulting upper-Hessenberg
matrix. The transforming matrix is the product of a permutation matrix,
P, and a unit lower-triangular matrix, L; thus, H satisfies Pili= MPL.
The nondiagonal elements in the first column of Lare 01 and the row
and column interchanges (which determine P) are chosen in such a way
that the absolute value of each element of Lis at most 1.
These conditions permit a direct calculation 'of the natrices H, Land
P in n - 1 steps.
Let U denote the upper triangle of H, and Q the strict-lower triangle
of the matrix ML - LU. Apart from the stabilizing interchanges, the
r-th step (r ~ 1, ••• ,n - 1) is as follows.
The data for the r-th step are the first r columns of u, the second to
r-th columns of the strict-lower triangle of L (the first column of L
is trivial), the r-th column of Q (which column equals the (r + 1)-th
column of the lower triangle of L times the r-th element of the
subdiagonal of H), and the last n - r columns of M.
(For the first step, these data are equal to M, since the first main-
diagonal element of U equals that of M, and the elements of the first
column of Q equal the corresponding elements of M.)
Using these data, the r-th step produces the r-th element of the sub
diagonal of H and the (r + 1)-th column of the strict-lower triangle
of L (which are written over the corresponding elements of the r-th
column of Q) and the (r + 1)-th columns of U and Q (which are written
over the corresponding elements of the (r + 1)-th column of M).
As to the stabilizing row and column interchanges, the r-th step
starts with the selection of the r-th "pivot", i.e. an element of the
r-th column of Q having maximum absolute value (and which is going to
be the r-th element of the subdiagonal of H); then the r-th "pivotal
index", pr (i.e. the row index of the r-th pivot), is delivered in an
auxiliary array (for the sake of the back transformation);
subsequently, the r-th row and column of the data array are inter
changed with the pr-th ones, and then the results of the r-th step
sketched above are produced. If, however, all elements in the r-th
column of Q below the first subdiagonal have absolute value smaller
than the infinity norm of M times the machine precision,

then these elements are replaced by O (so, the (r + 1)-th column of
L - I is the null vector) and, as an indication, the r-th pivotal
index is replaced by o. The corresponding back transformation
transforms a vector x into the vector PLx; if xis an eigenvector of
H, then PLx is the corresponding eigenvector of M.

In eq_ilbr, the matrix Mis eq_uilibrated by means of Osborne's diagonal
similarity transformation possibly with interchanges [19]. This
transformation should be performed before the transformation to
Hessenberg form.
A matrix Mis said to be "equilibrated", if each column of M bas
(nearly) the same Euclidean norm as the corresponding row of M.
The transforming diagonal matrix, D, and the eq_uilibrated matrix are
calculated iteratively:
in each step a certain column of the matrix is multiplied by, and the
corresponding row divided by, a factor which is chosen in such a way
that the considered column and row obtain (roughly) the same Euclidean
norm (in fact, the factor is rounded to the nearest integral power
of 2, in order to prevent rounding errors in the eq_uilibrated matrix,
assuming binary floating point arithmetic); the columns and rows are
handled in cyclic order. If the matrix does not contain columns or
rows whose off-diagonal elements are (nearly) o, then the process
(with unrounded factors) converges, and in practice a few steps are
needed to obtain a reasonably eq_uilibrated matrix [19].
If all off-diagonal elements of some considered column (row) are O or
nearly o, then this column (row) is interchanged with the first
nonzero column (last nonzero row) of the matrix, and, in order to bave
a similarity transformation, the corresponding rows (columns) are also
interchanged; then for the further eq_uilibration, the submatrix is
considered which does not contain such zero columns and rows and the
corresponding rows and columns. The eq_uilibration process is continued
until, in a whole cycle no factor> 2 or< 0,5 and no zero column or
row is found, or until (n + 1) X n : 2 rows and columns bave been
considered, -

The corresponding back transformation transforms a vector x into the
vector Dx and performs the corresponding interchanges; if xis an
eigenvector of the eq_uilibrated matrix, then the resulting vector is
the corresponding eigenvector of the original DRtrix.

46

coimnent mca 2400;
procedure tfmreahes(a, n, em, int);~ n; integer n; array a, em;
integer~ int;
begin integer i, j, j1, k, 1;

reals, t, machtol, macheps, norm;
array b[0:n - 1];
macheps:= em[0]; norm:= o;
!2!:_ i: .. 1 step 1 ~ n do
begins:• 0;

!2!_ j:• 1 step 1 ~ n dos: .. s + abs(a[i,j]);
ifs> norm then norm:• s

end;- --
em[1]: .. norm; machtol:= normx macheps; int[1]:= 0;
!2!:_ j:"' 2 step 1 ~ n do
begin j1 := j - 1; 1: .. 0; s:= machtol;

for k:= j + 1 Sr].) 1 until n do
begin t:• abs(a k,j1J); if t >s ~

end

begin 1: .. k; s:= t ~
end;
if l f 0 then
begin ,!! abs(a[j, j 1]) < s then

begin icbrow(1, n, j, l, a); ichcol(1, n, j, l, a) ~
else 1:= j; t:= a[j,j1];
fork:"' j + 1 step 1 ~ n do a[k,j1] := a[k,j1] / t

end
else
for k:= j + 1 step 1 ~ n do a[k,j1] :=i 0;
!2!:_ i:= 1 step 1 ~ n ~ bTI - 1]:= a[i,j]:= a[i,j] + (if
l .. 0 then 0 else matmat(j + 1, n, i, j1, a, a)) -
matvecn-;-if j1 < i - 2 then j1 else i - 2, i, a, b);
int[j]:= 1- -- --

~ tfureahes;

Description mca 24oO
tfrnreahes transforms then-th order matrix M given in
array a[1 :n, 1 :n] into a similar upper-Hessenberg matrix H.
In~ em[0:1], one must give the machine precision, em[O],

47

Matrix His delivered in the upper triangle and the first subdiagonal
of a, the (nontrivial elements of the) transforming matrix in the
remaining part of a, and the pivotal indices in
integer arrj int[1 :n].
Moreover, em 1]:= the infinity norm of M.
t:f'mreahes uses matvec, matmat, ichcol and ichrow (3, chapter 20].

48

comment mca 24-ol;
procedure bakreahesl (a, n, int, v); ~ n; integer n; array a, v;
integer~ int;
~ integer i, l;

real w;
array x[1 :nJ;
for i:= 2 step 1 until n do x[i - 1]:= v[i];
for i : • n step - T""imtil 2 do
begin v[i]:• v[iJ +""iiiatvec(T; i - 2, i, a, x); l:= int[i];

if l > i then
begin w:•vl:'iJ; v[i]:=- v[l]; v[l]:= w ~

end
~ bakreahesl;

comment mca 2402;
procedure bakreahes2(a, n, nl, n2, int, vec); ~ n, nl, n2;
integer n, nl, n2; ~ a, vec; integer array int;
~ integer i, 1, k;

array u[l mJ;
!.2!, i: = n step - 1 ~ 2 ~
begin !.2!, k:= i - 2 step - 1 until 1 do u[k + 1] := a[i,k];

!.2!, k:= nl step 1 ~ n2 do vecTI',k] := vec[i,k] +
tamvec(2, i ~ 1, k, vec, u); l:• int[i];
if l > i then icbrow(nl, n2, i, 1, vec)

end - --
~ bakreahes2;

Description mca 2401
ba.kreahes1 should be called after tflllreahes, and performs the
corresponding back transformation on the vector given as
~ v[1 :n].
The transforming matrix and the pivotal indices, as produced by
tfmreahes, must be given in the part below the first subdiagonal of
array a[1 :n, 1 :n] and in integer ~ int[1 :n].
The resulting vector of the back transformation is overwritten on v.
ba.kreahes1 uses matvec [3, mca 2001].

Description mca 24o2
ba.kreahes2 should be called after tfmreahes, and performs the
corresponding back transformation on the columns of
array vec[l:n, n1 :n2].
The transforming matrix and the pivotal indices, as produced by
tfmreahes, must be given in the part below the first subdiagonal of
array a[1 :n, 1 :n] and in integer array int[1 :n].
The resulting vectors of the back transformation are overwritten on
the corresponding columns of vec,
ba.kreahes2 uses tamvec and ichrow [3, chapter 20].

50

comment mca 2405;
procedure eqilbr(a, n, em, d, int); value n; integer n; ~ a, em, d;
integer array int;
begin in~ i, im, i1, p, q, j, t, count, exponent, ni;
----r-eal c, r, eps, omega, factor;

procedure move(k); value k; integer k;
begin real di; --
--ni: = q - p; t:= t + 1; if k ,I, i then

begin ichco1(1, n, k, i-;-a); ichrow(1, n, k, i, a); di:= d[i];
---a[i] := d[k]; d[k] := di
end

end move;

factor:= 1 / (2 X ln(2)); comment more generally: ln(base);
eps:= em[0]; omega:= 1 / eps; t:= p:= 1; q:= ni:= i:= n;
count:= (n + 1) x n: 2;
for j:= 1 step 1 untTl n do
tie'gin d[j] := 1; imITT:= Oend;
Tcir:r:= if i < q then i + 1"erse p while count> 0 A ni > 0 do
tie'gin count:= count - 1 ; im: ~ - 1 ;"IT:= i + 1 ;
--c:= sqrt(ta.mmat(p, im, i, i, a, a)+ta.mmat(i1, q, i, i, a, a));

r:= sqrt(mattam(p, im, i, i, a, a)+mattam(i1, q, i, i, a, a));
if c x omega< r X eps then
oegin int[t]:;;;" i; move(pj';p:= p + 1 end
e!s'e"if r x omega< c X eps then
beg:fn1nt[t] := - f; move(q); q:= q - 1 end
eise"
'5eg!n exponent:= ln(r / c) x factor;
---i:f abs (exponent) > 1 then

oegin ni:= q - p; c:=~ exponent; r:= 1 / c;
---a[i] := d[i] X c;

for j:= 1 step 1 until im, 11 step 1 until n do
tie'gin a[j, i] : = a[J;"!Jx c; a[i-;-IT: = aTT;JT x rend

end--
eise ni:= ni - 1

end--
end--

end eqilbr;

Description mca 2405
eq_ilbr transforms the n-th order matrix given in ar]ay a[1 :n, 1 :n]
into a similar eq_uilibrated matrix. In~ em[0:0, one nmst give
the machine precision.
The eq_uilibrated matrix is delivered in a, the main diagonal of the
transforming diagonal matrix in array d[1 :n], and information

51

defining the possible interchanging of some rows and the corresponding
colUllll'ls in integer array int[1 :n].
eq_ilbr uses tammat, mattam, ichcol and icbrow [3, chapter 20].

52

comment mca 2406;
procedure baklbr(n, n1, n2, d, int, vec); value n, n1, n2;
integer n, n1, n2; array d, vec; integer array int;
begin integer i, j,~, q;
--real di;

~1 ; q: = n;
for i:= 1 step 1 until n do
begin di:=aTT]; ITaI + lthen
-----r'or j:= n1 step 1 until~do vec[i,j]:= vec[i,j] x di;

F= int[i];-- --- -
if k > 0 then p:= p + 1 eise if k < 0 then q:= q - 1

end;- -- -- - --
Tor i:= p - 1 + n - q step - 1 until 1 do
begin k: = int[i]; if k """5"""0' then-- -
---,;egin p:= p -TT if k +p"""then ichrow(n1, n2, k, p, vec) end

else"" - --
'oegI n q:= q + 1; if -k ,f, q then ichrow(n1, n2, - k, q, vec)
~

end
end '6alu.br;

Description mca 2406
baklbr should be called a.f'ter eqilbr and performs the corresponding
back transformation on the columns of array vec[l:n, nl:n2].
The main diagonal of the transforming diagonal matrix and the
information defining the possible interchanging of some rows and
columns, as produced by eqilbr, must be given in ~ d[l :n] and
integer ~ int[1 :n].
The resulting vectors of the back transformation are written over
the corresponding columns of vec.
baklbr uses ichrow [3, mca 2ce2].

53

54

Section 241 Single QR iteration

This section contains procedures for calculating eigenvalues and/or
eigenvectors of real matrices having real eigenvalues only:
reaeigval calculates the eigenvalues, and reaeig1, reaei~ and reaeig3
the eigenvalues and eigenvectors of a real matrix;
reavalqri calculates the eigenvalues of a real upper-Hessenberg
matrix, and reaqri the eigenvectors as well;
reaveches calculates an eigenvector corresponding to a given real
eigenvalue of a real uppeHiessenberg matrix;
reascl normalizes a given matrix of real eigenvectors.

The method used (in reavalqri and reaqri) for calculating the real
eigenvalues of an upper-Hessenberg matrix H, is Francis' "single" QR
iteration [21] [2, p 515 - 543].
In each step, the matrix His replaced by the similar matrix Q'HQ,
where Q is an orthogonal matrix chosen in such a way that, for some
suitable "shift" s, Q'(H- sI} is an upper-triangular matrix, R (thus,
H - sI = QR, which explains the name of the method) •
The matrices Q and R could be calculated by means of Gram-Schmidt
orthogonalisation [2, p. 242]; hence, it is obvious that Q has upper
Hessenberg form.
The similar matrix Q'HQ is again an upper-Hessenberg matrix (because
R is upper-triangular and Q has upper-Hessenberg form).
If the given matrix has real eigenvalues only, then, in most cases,
the sequence of iterates H converges to a (nearJ.;y-) upper-triangular
matrix, u, similar to the given matrix, so that the diagonal elements
of U are (approximately) the required eigenvalues.
As soon as, for some k, the k-th element of the subdiagonal of an
iterate H has an absolute value smaller than some tolerance, then this
element is neglected and His partitioned into 4 submatrices, H11,
H12, H21, H22, consisting of the first k (H11, H12) or last n - k
(H21, H22) rows of Hand the first k (Hll, H21) or last n - k (H12,
H22) columns of H; H21 is the null matrix and H12 pleys a role only
for the calculation of eigenvectors (seep. 55); subsequently, the
"principle" submatrices Hl 1 and H22 are considered and handled
separately; eigenvalues of submatrices of order 1 or 2 are calculated
directly, so that the process is completed if successive partitionings
have led to principle subma.trices all of order 1 or 2.

In each step, the shifts is chosen as follows: let B denote the lower
right 2 by 2 submatrix of the considered principle subma.trix of H;
thens equals that eigenvalue of B closest to its last main-diagonal
element if the eigenvalues of B are real, and otherwise s equals the
real part of the eigenvalues of B.
If the subdiagonal element of B converges to O, then the convergence
is quadratic for a simple eigenvalue of Hand linear for a multiple
one. However, convergence cannot be guaranteed for all cases, although
no counter-example of a real matrix having only real eigenvalues is
known to the authors; the iteration is therefore discontinued if a
given maximum allowed number of iterations has been performed.

For the calculation of eigenvectors of an upper-Hessenberg matrix H,
we have chosen alternative methods, viz. inverse iteration, and a
"direct" method linking up with the QR iteration.
The procedure reaveches calculates an eigenvector of H corresponding
to a given approximate real eigenvalue, lambda, by means of inverse
iteration [2, p. 619 - 628] [4, AP 240] [22]. Starting from the
initial vector, x, all of whose elements are 1, the linear system

55

(H - lambda X I)y = x is solved iteratively (by means of Gaussian
elimination with row interchanges), the solution y divided by its
Euclidean norm replacing x each time. The iteration ends either if the
Euclidean norm of the residue (H - lambda X I)x (this norm is
calculated as the reciprocal of the Euclidean norm of y) is not larger
than a given norm of H times the tolerance for the eigenvectors, or if
the maximum allowed number of iterations has been performed.
If the tolerance for the eigenvectors is not too small then one or
two iterations suffice in most cases.

To find in reaeigval, reaeig1 and reaeig2 the eigenvalues of a n:atrix
M having real eigenvalues only, M is first equilibrated and
transformed to a similar upper-Hessenberg matrix H (section 240), the
eigenvalues are then calculated by calling reavalqri, and finally the
calculated eigenvalues are sorted into monotonically nonincreasing
order.
Furthermore, to find in reaeig1 and reaeig2 the eigenvectors,
Wilkinson's device [2, p. 328 and 628] [9] [22] is first applied;
i.e. approximate eigenvalues having a distance smaller than "machtol"
(= infinity norm of M equilibrated times the machine precision) are
slightly modified such that the distance between them equals machtol.
(This device has the effect that, for reasonably conditioned matrices,
a numerically independent set of eigenvectors is almost always
obtained, since inverse iteration is very sensitive to small changes
in the approximate values of closely clustered eigenvalues.)
Subsequently, the eigenvectors of Hare calculated by calling
reaveches; these vectors are then back-transformed to the
corresponding eigenvectors of M (section 240), and normalized (by
calling reascl) such that, in each eigenvector, an element of maximum
absolute value equals 1.

The other, "direct", method for calculating the eigenvectors of an
upper-Hessenberg matrix H is used by reaqri, and works as follows.
In each QR iteration step, the corresponding rotation is performed on
some matrix X whose initial value is I; i.e. Xis replaced by XQ in
each step (in this process the submatrices H12 produced by the
partitionings of Hare also involved); thus, on completion of the QR
iteration, Xis the product of orthogonal matrices Q transforming the
given matrix H into the similar upper-triangular matrix U produced by
the QR iteration, i.e. HX = XU.
Subsequently, the eigenvectors, v, of U are calculated directly by
solving the corresponding triangular system of linear equations.
If the distance between any two diagonal elements of U (which are
approximate eigenvalues of H) is smaller than n:achtol, then they are
slightly modified such that the distance between-them equals n:achtol.
This modification is necessary for preventing division by zero.

Finally, the eigenvectors v of U are replaced by the vectors Xv, which
a.re the corresponding eigenvectors of H.
If H is not too ill-conditioned with respect to its eigenvalue
problem, then this method yields numerically independent eigenvectors
(sometimes better than inverse iteration; and is competitive with
inverse iteration as to accuracy and computation time (seep. 43)).

To find (in reaeig3) the eigenvalues and eigenvectors of a matrix M
having only real eigenvalues, Mis first equilibrated and transformed
to a similar upper-Hessenberg matrix H (section 240); the eigenvalues
and eigenvectors of Hare then calculated by calling reaqri, and
finally the eigenvectors of·H are back-transformed to the
corresponding eigenvectors of M (section 240), and normalized (by
calling reascl) such that, in each eigenvector, an element of ma.xifillm
absolute value equals 1 • The procedure reaeig3 does not sort the
eigenvalues.

The procedures of this section, except reascl, and those of the next
section, except comscl, use an auxiliary array em[0:9] (or a part of
it), in which some data for controlling the iterations must be given
and some by-products are delivered.
A survey of these data and by-products follows.

1) general
em[OJ is the machine precision; must be given for all procedures;
em[l] is some norm of Mor H; must be given for reavalqri, reaveches,
rea.qri, comvalqri and comveches; the other procedures deliver the
infinity norm of M equilibrated,

2) for the QR iteration
em[2] and em(4] must be given for, and em(3] and em[5] are delivered
by, all procedures, except reaveches and comveches.
em[2] is the relative tolerance for the QR iteration;
if the absolute value of some subdiagonal element is smaller than
em[1] X em(2], then this element is neglected and the matrix is
partitioned;
em[3] is the maximum absolute value of the subdiagonal elements
neglected;
em[4] is the maxinrum allowed number of QR iterations;
em[5] is the number of QR iterations performed; the value em[4] + 1 is
delivered if the QR iteration process is not completed within em(4]
iterations.

57

3) for the inverse iteration
em[6] and em(S] must be given for, and em(7] and em(9] are delivered
by, reaveches, reaeigl, reaeig2, comveches, comeigl and comeig2.
em(6] is the tolerance for the eigenvectors; more preciseJ.;y-, the
inverse iteration ends if the Euclidean norm of the residue vector is
smaller than em[1] X em[6] ;
em[7] is the maximum Euclidean norm of the residue vectors of the
calculated eigenvectors of H;
em[8] is the maximum number of inverse iterations allowed for the
calculation of each eigenvector;
em[9] is the largest nwnber of inverse iterations performed for the
calculation of some eigenvector; the value em[8] + 1 is delivered, if
the Euclidean norm of the residue for one or more eigenvectors remains
larger than em[l] X em[6] during em[8] iterations; nevertheless the
eigenvectors may then very well be useful - this should be judged from
the value delivered in em[7] or from some other test.

The tolerances should satisfy em[O] < em[2] < em[6].
For the x8, suitable values of the data to be given in em are
em[O] = m-12, em[2] = ID-12, em[4] = 10 X n, em[6] = m-8, em[8] = 5.

comment mca 2410;
integer procedure reavalqri(a, n, em, val); value n; integer n;
array a, em, val;
begin integer n1, i, i1, j, q, max, count;

real det, w, shift, kappa, nu, mu, r, tol, delta, machtol, s;
iii'aciitol:= em[O] X em[1]; tol:= em[1] x em[2]; max:= em[4];
count:= o; r:= o;

in: n1:=- n - 1;
for i:=- n, i - 1 while (if i > 1 then abs(a[i + 1,i]) > tol else
false) do q:= i; if q > lthen --
begin if abs(a[q,q- 1]) > r then r:= abs(a[q,q - 1]) end;
if q = n then
begin valTnT:'= a[n,n]; n:= n1 ~
else
begin delta:= a[n,n] - a[n1,n1]; det:= a[n,n1] X a[n1,n];

if abs(delta) <machtol thens:=- sqrt(det) else
begin w: = 2 / delta; s: ="""'w"'x w X det + 1; --

s: = if s < 0 then - delta X ,5 else w X det / (sqrt(s)
+1)- --

end;
if q = n1 then
begin val[n] :.= a[n,n] + s; val[n1] := a[n1,n1] - s; n:= n - 2
encr-
e.i:se
begin count:= count+ 1; g count> max then goto out;

shift:= a[n,n] + s; if abs(delta) < tol then
begin w:"' a[n1,n1] -s; --

if abs(w) < abs(shift) then shift:,. w
end;- --
a[q,q]:= a[q,q] - shift;
for i:= q step 1 until n - 1 do
begin i1:= i + 1; a[i1,i1]:= a'fi1 1 i1] - shift;

kappa:= sqrt(a[i,i] 4 2 + a[i1,i] 4 2);
if i > q then

end;

begin a[i,i - 1] := kappa X nu; w:= kappa x mu end
else w:= kappa; mu:= a[i,i] / kappa;
mi:'; a[i1,i] / kappa; a[i,i]:= w;
rotrow(i1, n, i, i1, a, mu, nu);
rotcol(q, i, i, i1, a, mu, nu);
a[i,i]:= a[i,i] + shift

a[n,n - 1]:= a[n,n] X nu; a[n,n]:= a[n,n] X mu+ shift
end

end;-
if n > 0 then goto in;

out:em[3]:= r;emT5J:= count; reavalqri:= n
~ reavalqri;

Description mca 2410
reaval4ri caJ.culates the eigenvalues of then-th order upper
Hessenberg matrix H given in array a[1 :n, 1 :n], provided that all
eigenvalues of Hare real.
In Jay em[0:5], the following data must be given (see also p. 56):
em[0: the machine precision;
em[1]: norm of H;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of iterations.
The eigenvalues of Hare delivered in array va1[1:n].
Moreover, the Hessenberg part of a is altered;
em[3]:=- the maximum absolute value of the subdiagonal elements
neglected;
em[5]:• the number of iterations performed.

59

Furthermore, reaval4ri:= o, provided that the process is completed
within em[4] iterations; otherwise, reavalqri:= the number, k, of
eigenvalues not caJ.culated, em[5] :=- em[4] + 1, and onfy- the last n - k
elements of val are approxims.te eigenvalues of H.
reaval4ri uses rotcol and rotrow [3, section 203].

60

connnent mca 2411;
procedure reaveches(a, n, lambda, em, v); ~ n, lambda; integer n;
~ lambda; array a, em, v;
begin integer 1, 11, j, count, max;

realm, r, norm, machtol, tol;
boolean~ p[l :n];
norm:=- emllJ; machtol:=- em[O] x norm; tol:= em[6] x norm;
max:• em[8]; a[l,1]:= a[l,1] - lambda;

gauss: !£!: i:=- 1 step 1 until n - 1 do .
begin 11:• i + 1; r:= a[i,i]; m:=- a[il,i];

if abs(m) < machtol then m:= machtol; p[i]:= abs(m)::; abs(r);
if p[i] then --
begin a[il,i]:=- m:= m / r;

for j:• 11 stef 1 until n do a[il,j]:= (g j > 11 then
a[il,j] else a 11,'JT=-'°lambda) - m X a[i,j]

end --
else
begin a[i,i]:=- m; a[il,i]:= m:= r / m;
~ j:=- 11 step 1 ~n do
begin r:=- (:!!, j > 11 ~ a[11,j] else a[il,j] - lambda);

a[il,j]:= a[i,j] - m X r; a[i,jJ:= r
end

end
end gauss;
Ir'abs{a[n,n]) < machtol then a[n,n] := machtol;
for j:= 1 step 1 ~ n do v[j]:= 1; count:=- o;

forward: count:=- count+ 1; if count> max then goto out;
!2!.i:= 1 step 1 ~n-= 1 ~ ----
begin i 1 : "" i + 1;

if p[i] then v[il]:= v[il] - a[il,i] X v[i] else
begin r::""vTil]; v[il]:,. v[i] - a[il,i] X r;vTf]:= r ~

end forward;
backward: for i:"' n r? -1 until 1 do v[i] :=- (v[i] - matvec(i

+ 1, n;-T, a, v) a[i,i]; r:=- 17 sqrt(vecvec(l, n, o, v, v));
!£!: j:=- 1 step 1 ~ n do v[j]:=- v[j] X r;
if r > tol then goto forward;

out:em[7]:=- r; em[9~count
end reaveches;

61

Description mca 2411
reaveches calculates the eigenvector corresponding to the real
eigenvalue lambda of the n,-th order upper-Hessenberg matrix H given in
~ a[l:n, 1:n].
In Jay em[0:9], the following data must be given (see also p. 56,57).
em[0: the machine precision;
em[l]: a norm of H;
em[6]: the tolerance for the eigenvectors;
em[8]: the maximum allowed number of iterations.
The calculated eigenvector is delivered in array v[l:n].
Moreover, the Hessenberg part of a is altered;
em[7]:=- the Euclidean norm, llrll, of. the residue of the calculated
eigenvector;
em[9] :=- the number of iterations performed.
If, however, 11 r I l remains larger than em[1] x em[6] during em[8]
iterations, then em[9]:=- em[8] + 1.
reaveches uses vecvec and matvec [3, section 200].

62

coD11J1ent mca 2412;
integer procedure reaeigva.l(a, n, em, val);~ n; integer n;
array a, em, val;
begin integer i, j;

real r;
integer arrrr int, into[1 :n];
~ d[l:n;
eq:[lbr(a, n, em, d, into); tfmreahes(a, n, em, int);
j:= reaeigva.l:"' reavalqri(a, n, em, val);
~ i: =- j + 1 step 1 ~ n ~
for j:"' i + 1 rep 1 untiJ, n do
begin if val[j > vaiITTthen -
----Segin r:a val[i]; vaiITT:= val[j]; val[j]:= r ~
end

~ reaeigva.l;

63

Description mca 2412
reaeigval calculates the eigenvalues of then-th order matrix M given
in array a[1 :n, 1 :n], provided that all eigenvalues of M are real.
In array em[0: 5], the elements with even subscript must be given
(see also p. 56).
em[O]: the machine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of iterations,
The eigenvalues of Mare delivered in array val[l:n] in monotonically
nonincreasing order.
Moreover, the elements of a are altered;
em[l]:= the infinity norm of M equilibrated;
em[3]:= the IIRXimum absolute value of the subdiagonal elements
neglected;
em[5]:= the number of iterations performed.
Furthermore, reaeigval:= o, provided that the process is completed
within em[4] iterations; otherwise, reaeigval:= the nuniber, k, of
eigenvalues not calculated, em[5] := em[4] + 1, and only the last n - k
elements of val are approximate eigenvalues of M.
reaeigval uses eqilbr, tfmreahes (section 240) and reavalqri (mca 2410)
and, indirectly, also matvec, matmat, tammat, mattam, ichcol, ichrow,
rotcol and rotrow [3, chapter 20],

64

comment mca 2413;
procedure reascl(a, n, nl, n2); ~ n, nl, n2; integer n, nl, n2;
array a;
begin integer i, j;

real s;
for j : = n 1 step 1 until n2 do
begin s:= O;

for i: = 1 stp 1 until n do
begin if abs a[i,ID> abs[s) ~ s:= a[i,j] end;
ifsfo~
for i:= 1 step 1 ~ n ~ a[i,j] := a[i,j] / s

end
end reascl;

comment mca 2414;
integer procedure reaeigl(a, n, em, val, vec); ~ n; integer n;
array a, em, val, vec;
begin integer i, k, max, j, l;

real residu, r, machtol;
array d, v[1 :n], b[1 :n, 1 :n];
integer array int, intO[l:n];
residu:= O; max:= o; eqilbr(a, n, em, d, into);
tfureahes(a, n, em, int);
.f2!. i := 1 step 1 ~ n ~
for j:= (g i "'1 ~ 1 ~ i - 1) step 1 until n do b[i,j]:=
a[i,j]; k:= reaeig1:= reavalqri(b, n, em, van;-
!2!. i:= k + 1 step 1 ~ n do
.f2!. j : = i + 1 jtep 1 until n ~
begin g_ val[j > valITTthen

begin r:= val[i]; valTIT:"= val[j]; val[j) := r end
end;
machtol:= em[O] x em[1];
.f2!. l:= k + 1 step 1 ~ n do
begin if l > 1 then

begin if val[l - 1) - val[l] < machtol then val[l]:= val[l -
--1]-:= machtol
~;
.f2!. i:= 1 step 1 ~ n do
for j:= (if i = 1 then 1 else i - 1) sjep 1 until n do
b[i,j] := a[i,j]; reaveches(b, n, val[l , em, v;; -
if em[7] > residu then residu:= em[7);
if em[9] > max thenmax:= em[9];
for j:= 1 step 1 until n do vec[j,l]:= v[j]

end;
eml7]:= residu; em[9]:= max; bakreahes2(a, n, k + 1, n, int, vec);
baklbr(n, k + 1, n, d, into, vec); reascl(vec, n, k + 1, n)

~ reaeigl;

Description mca 2413
reascl normalizes the (non-nul.l) columns of array a[l:n, nl:n2] in such
a way that, in each column, an element of maximum absolute value
equals 1. The normalized vectors are "Written over the corresponding
columns of a.

Description mca 2414
reaeigl calculates the eigenvalues, provided that they are all real,
and the eigenvectors of then-th order matrix M given in
~ a[l :n, 1 :n].
In array em[0:9], the elements with even subscript nmst be given (see
also p. 56, 57), viz.
em[O]: the ma.chine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of QR iterations;
em[6]: the tolerance for the eigenvectors;
em[8]: the maximum number of inverse iterations allowed for the
calculation of each eigenvector.
The eigenvalues of Mare delivered in array val[l:n] in monotonically
decreasing order, with the corresponding eigenvectors in the columns
of arrar vec[1 :n, 1 :n].
Moreover, the elements. of a are altered;
em[l]:= the infinity norm of M equilibrated;
em[3]: .. the maximum absolute value of the subdiagonal elements
neglected;
em[5]:~ the number of QR iterations performed;
em[7]: .. the maximum Euclidean norm of the residues of the calculated
eigenvectors (of the transformed matrix);
em[9]:=- the largest number of inverse iterations performed for the
calculation of some eigenvector.
Furthermore, reaeigl:= O, provided that the QR iteration process is
completed within em[4] iterations; otherwise, reaeigl:= the number, k,
of eigenvalues not calculated, em[5]:= em[4] + 1, and only the last
n - k elements of val and columns of vec are approximate eigenvalues
and eigenvectors of M; similarly, if, for some calculated eigenvector,
the Euclidean norm of the residue relllains larger than em[1] X em[6],
then em[9]:= em[8] + 1.
reaeigl uses eqilbr, tfmreahes, bakreahes2, baklbr (section 240),
reavalq_ri, reaveches and reascl (this section), and, indirectly, also
vecvec, matvec, tamvec, matmat, tann:nat, mattam, ichcol, ichrow, rotcol,
and rotrow [3, chapter 20].

66

coilllllent mca 2415;
integer procedure reaeig2(a, n, em, val); value n; integer n;
array a, em, val;
begin integer i, k, max, j, l;

real residu, r, machtol;
a.rra;v: d, v[l:n];
integer~ int, intO[l :n];
residu:= o; max:• O; eqilbr(a, n, em, d, intO);
tfmreahes(a, n, em, int); 'ltJDRUM(a, 2 X n X n);
l:= reaeig2:= reavalqri(a, n, em, val);
f2:: i: = 1 + 1 step 1 ~ n do
for j:= i + 1 rep 1 until n do
begin g val[j > vaiITTthen -

begin r:= val[i]; val[i] := val[j]; val[j] := r end
end;
machtol:= em[O] x em[l];
fork:= 1 + 1 (tep 1 until n do
begin FROMDRUM a, 2 xri"x'"n);if k > 1 then

end;

begin .!f val[k - 1] - val[k.J < machtol then val[k] := val[k -
1] - machtol

end;
reaveches(a, n, val[k], em, v);
if em(7] > residu then residu:= em[7];
if em[9] > max thennruc:= em[9]; bakreahes1(a, n, int, v);
TODRUM(v, (k - iTx n X 2)

em[7]:= residu; em[9]: .. max; FROMDRUM(a, O);
baklbr(n, 1 + 1, n, d, into, a); reascl(a, n, 1 + 1, n)

~ reaeig2;

Description mca 2415
reaeig2 calculates the eigenvalues, provided that they are all real,
and the eigenvectors of the n-th order matrix M given in
~ a[l :n, 1 :n].
In~ em[0:9] the elements with even subscript must be given as
for reaeigl.
The eigenvalues of M are delivered in ~ val[1 :n] in I10notonically
decreasing order with the corresponding eigenvectors in the columns of
a. The eigenvectors are also delivered in the first n 4 2 real number
locations of the backing storage, and the next n 4 2 real number
locations of the backing storage are altered.
Mo:i;-eover, in the elements of em with odd subscript, the same results
are delivered as by reaeigl.
Furthermore, reaeis;2:• o, provided that the QR iteration process is
completed within em[4] iterations; otherwise, reaeig2:"' the number,
k, of eigenvalues not calculated, em[5] : =- em[4] + 1, and only the last
n - k elements of val and columns of a are approximate eigenvalues and
eigenvectors of M; similarly, if, for some calculated eigenvector,
the Euclidean norm of the residue remains larger than em[1] X em[6],
then em[9l:• em[8] + 1.
reaeig2 uses eqilbr, tfno:-eahes, bakreahes 1, baklbr (section 240) ,
reavalqri, reaveches, reascl (this section), the X8-code procedures
TODRUM and FROMDRUM {see introduction), and, indirectly, also vecvec,
matvec, mat.mat, ta.mmat, mattam, ichcol, ichrow, rotcol and rotrow [3,
chapter 20] •

68

comment mca 2416;
integer :procedure reaqri(a, n, em, val, vec); value n; integer n;
~ a, em, val, vec;
begin integer m1, i, i 1, m, j, q, rua.x, count;

real w, shift, kappa, nu, mu, r, tol, s, machtol, eJJnax, t,
delta, det;
array tf[l:n];
machtol:= em[O] x em[l]; tol:= em[1] x em[2]; max:= em[4];
count:= O; eJJnax:= O; m:= n;
£2:: i := 1 steJ 1 ~ n ~
begin vec[i,i := 1;
~ j:= i + 1 step 1 ~ n ~ vec[i,j]:= vec[j,i]:= O

end;
in: ml:= m - 1;

for i:= m, i - 1 while (if i > 1 then abs(a[i + 1,i]) > tol else
false) do q:= i; if q > lthen -- -
begin if abs(a[q,q- 1]) ·>eliiiax then eJJnax:= abs(a[q,q - 1])
end;
if q = m then
begin vall:Iiil:= a[m,m]; m:= ml ~
else
begin delta:= a[m,m] - a[m1,m1]; det:= a[m,ml] X a[ml,m];

if abs(delta) < machtol thens:~ sqrt(det) else
begin w:'" 2 / delta; s:•WX w X det + 1; --

s:= if s < 0 then - delta X .5 else w x det / (sqrt(s)
+ 1)- - -- --

end;
if q = ml then
begin a[m,m] := val[m] : .. a[m,m] + s;

a[q,q]:= val[q]:= a[q,q] - s;

end
else

t:= if abs(s) < machtol then (s +delta)/ a[m,q] else
a[q,iiiJ / s; r:= sqrt(t Xt+ 1); nu:= 1 / r;
mu:= - t X nu; a[q,m]:= a[q,m] - a[m,q];
rotrow(q + 2, n, q, m, a, mu, nu);
rotcol(1, q - 1, q, m, a, mu, nu) ;
rotcol(l, n, q, m, vec, mu, nu); m:= m - 2

begin count:= count+ 1; if count> max then goto end;
shift:= a[m,m] + s; ifabs(delta) < tolthen
begin w::a a[ml,ml] -s; --

if abs(w) < abs(shift) then shift:= w
end;-
a[q,q]:= a[q,q] - shift;

Description mca 2416
reaqri calculates the eigenvalues, provided that they are all real,
and the eigenvectors of then-th order uppel'.'-J!essenberg matrix H given
in array a[1:n, 1:n].
In array em[0:5], the following data must be given (see also p. 56).
em[~e machine precision;
em[1]: a norm of H;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of QR iterations.
The eigenvalues of Hare delivered in array val[1:n], with the
corresponding eigenvectors in the columns of array vec[1:n, 1:n].
Moreover, the elements of the uppel'.'-J!essenberg part of a are altered;
em[3]:= the maximum absolute value of the subdiagonal elements
neglected;
em[5]:= the number of QR iterations performed.
Furthermore, reaqri:= O, provided that the process is completed within
em[4] iterations; otherwise, reaqri:= the number, k, of eigenvalues
not calculated, em[5]:= em[4] + 1, only the last n -k elements of val
are approximate eigenvalues of H, and no useful eigenvectors are
delivered.
reaqri uses matvec, rotcol and rotrow [3, chapter 20].

70

for i:= q step 1 until ml do
begin il:= i + l;a'(Ii",il]:= a[il,il] - shift;
--kappa:= sqrt(a[i,i] t 2 + a[il,i] t 2);

end;

if i > q then
begin a[i,i - 1] := kappa X nu; w:= kappa x mu ~
~ w:= kappa; mu:= a[i,i] / kappa;
nu:= a[il,i] / kappa; a[i,i]:= w;
rotrow(il, n, i, il, a, mu, nu);
rotcol(l, i, i, il, a, mu, nu);
a[i,i]:= a[i,i] + shift;
rotcol(l, n, i, il, vec, mu, nu)

a[m,ml]:= a[m,m] X nu; a[m,m]:= a[m,m] X mu+ shift
end

end•_,
g m > 0 ~ goto in;
for j:== n jtep - 1 until 2 do
begin tf[j : .. 1; t:= a[j,j];

end;

~ i: • j - 1 step - 1 until 1 do
begin delta:= t - a[i,i~

tf[i]:= matvec(i + 1, j, i, a, tf) / (if abs(delta) <
machtol then machtol else delta) -

end; -- --
Tori:= 1 step 1 until n do vec[i,j]:= matvec(1, j, i, vec,
tf) -- -

end: em[3]:= ellllax; em(5]:= count; reaqri:= m
~ reaqri;

72

comment mca 2417;
integer procedure reaeig3(a, n, em, val, vec); value n; integer n;
~ a, em, val, vec;
begin integer i;

real s;
Integer a]y int, into[1 :n];
array d[1 :n ;
eqilbr(a, n, em, d, into); tfmreahes(a, n, em, int);
i:= reaeig3:= reaqri(a, n, em, val, vec); if i = O then
begin ba.kreahes2(a, n, 1, n, int, vec); -

baklbr(n, 1, n, d, into, vec); reascl(vec, n, 1, n)
end

~ reaeig3;

Description mca 2417
reaeig3 calculates the eigenvalues, provided that they are all real,
and the eigenvectors of then-th order matrix M given in
~ a[1 :n, 1 :n].
In array em[0:5], the elements with even subscript must be given
(see also p. 56), viz,
em[0]: the machine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: ~he maxinrum allowed number of QR iterations,
The eigenvalues of Mare de],ivered in array va1[1:n], with the
corresponding eigenvectors in the columns of array vec[1:n, 1:n].
Moreover, the elements of a are altered;
em[1] := the infinity norm of M eq_uilibrated;
em[3]:"' the maxinrum absolute value of the subdiagonal elements
neglected;
em[5]: ... the number of QR iterations performed,

73

Furthermore, reaeig3:=- o, provided that the QR iteration process is
completed within em[4] iterations; otherwise, reaeig3:= the number, k,
of eigenvalues not calculated, em[5]:= em[4] + 1, only the last n - k
elements of val are approximate eigenvalues of M, and no useful
eigenvectors are delivered.
reaeig3 uses eq_ilbr, tflnreahes, bakreahes2, baklbr (section 240),
reaq_ri and reascl (tl::\is section), and, indirectly, also matvec,
tamvec, matmat, tammat, mattam, ichcol, ichrow, rotcol and rotrow [3,
chapter 20],

74

Section 242 Double QR iteration

This section contains procedures for calculating real or complex
eigenvalues and/or eigenvectors of real ma.trices:
comeigval calculates the eigenvalues, and comeig1 and comeig2 the
eigenvalues and eigenvectors of a real matrix;
comvalqri calculates the eigenvalues of a real upper-,Hessenberg
matrix; comveches calculates the eigenvector corresponding to a given
complex eigenvalue of a real upper-Hessenberg matrix;
comscl normalizes a given matrix of real or complex eigenvectors.

The method used in corovalqri for calculating the eigenvalues of a real
upper-Hessenberg matrix H, is Francis' "double" QR iteration [21]
[2, p. 528-537].
A double QR iteration step is (ma.thematically) equivalent to two
successive single iteration steps (see section 241) in which the
shifts are either both real or each others complex conjugate; thus, a
double QR iteration step again yields a real upper-,Hessenberg matrix
as next iterate.
In each double step, the shifts are chosen approximately equal to the
eigenvalues of the lower right 2 by 2 subma.trix of the considered
principle subma.trix of H.
The shifts are chosen not exactly equal to these eigenvalues in an
attempt to avoid nonconvergence of the iteration. In fact, the shifts
are equal to the eigenvalues mentioned plus the square root of the
product of the last two subdiagonal elements of H times the machine
precision.
Hence, one can influence the process by his choice of the
"ma.chine precision" given in em(O].

In the same wa:y as in the single QR iteration, an iterate His
partitioned into 4 submatrices if, for some k, the absolute value of
the k-th element of its subdiagonal does not exceed some tolerance;
moreover, a weaker criterion due to Francis [21] for partitioning the
matrix is applied, which criterion is especially effective if two
adjacent subdiagonal elements become small.
Subsequently, the two principle subma.trices produced by the
partitioning are considered and handled separately; the process is
completed when the successive partitionings have led to principle
submatrices all of order 1 or 2 (cf. section 241).
In almost all cases, the double QR iteration with the choice of the
shifts as mentioned above converges; i.e. the last element of the
subdiagonal of the considered principle submatrix of H converges to O,
the convergence being quadratic for simple eigenvalues, and linear for
multiple ones.
However, convergence does not alwa:ys occur; counter-examples are the
n-th order permutation ma.trices (n > 2), whose first-subdiagonal
elements and (1, n)-th element are 1, and whose other elements are O;
these ma.trices are invariant with respect to (single or double) QR
iteration (the shifts being 0) (2, p. 521].
The iteration (in comvalqri) is discontinued if~ given maximum
allowed number of iterations has been performed.

75

In comveches, an eigenvector corresponding to a given approximate
complex eigenvalue, kappa (a lambda+ i X mu), of a real
upper--Ressenberg matrix His calculated by means of inverse iteration
[2, p. €i29-633] [22]. Starting from the initial vector, x, having all
elements equal to 11 the linear system (H - kappa X I)y =xis solved
iteratively (by means of Gaussian elimination with row interchanges),
and the solution y divided by its Euclidean norm replaces x each time;
the computation is performed using complex numbers where necessary.
The Gaussian elimination yields a complex upper-triangular matrix, u,
with real main diagonal; the real parts of the elements are stored in
the upper triangle, and the iIJl1'1,ginary parts in the strict-lower
triangle of the arrey in which H was given. If the i-th and (i + 1)-th
row were interchanged in the i-th Gaussian elimination step, then the
i-th row of U is real thereby making this step and the corresponding
step of the back substitution twice as fast as otherwise.
The iteration ends either if the Euclidean norm of the residue
(H - kappa X I)x (this norm is calculated as the reciprocal of the
Euclidean norm of y) is not greater then a given norm of H times the
tolerance for the eigenvectors, or if the maximum allowed number of
iterations has been performed. If the tolerance for the eigenvectors
is not too small, then one or two iterations suffice in most cases.
Our method is the first of the 4 alternatives mentioned in
[2, p. 629-630]; the second alternative requires much more time and
space, the third does not converge to an eigenvector of H, and the
fourth alternative, used in [22], requires about the same computation
time and twice as much memory space.

To find (in comeigval, comeig1 and comei*) the eigenvalues of a real
matrix M, Mis first equilibrated and transformed to a similar real
upper-Hessenberg matrix H (section 240), and then the eigenvalues are
calculated by calling comvalqri.
Furthermore, to find (in comeig1 and comei*) the eigenvectors,
Wilkinson's device [2, p. 328 and 628] [9] [22] is first applied;
i.e. approximate eigenvalues having a distance smaller than some
tolerance are slightly modified such that the distance between them
equals that tolerance. (This device has the effect that a numerically
independent set of eigenvectors is almost always obtained, provided
that the matrix is not too ill-conditioned with respect to its
eigenvalue problem, since inverse iteration is very sensitive to
small changes in the approximate values of closely clustered
eigenvalues.)
Subsequently, the eigenvectors of Hare calculated by calling
reaveches for the real eigenvalues of H, and comveches for the others;
these vectors are then back-transformed to the corresponding
eigenvectors of M (section 240; note that the real and imaginary
parts of a complex eigenvector are each back-transformed in the same
way as a real eigenvector);
finally, the eigenvectors of Mare normalized (by calling comscl) such
that, in each eigenvector, an element of maximum modulus equals 1.
The procedures of this section, except comscl, use an auxiliary
~ em[0:9] (or a part of it) in which some data for controlling
the iterations must be given and some by-products ·are delivered.
A survey of these data and by-products is given in section 241(p. 56).

comment mca 2420;
integer procedure conrvalqri(a, n, em, re, im); value n; integer n;
array a, em, re, im;
begin integer i, j, p, q, max, count, n1, p1, p2, imin1, i1, i2, i3;
--real disc, sigma, rho, g1, g2, g3, psi1, psi2, aa, e, k, s, norm,

machtol2, tol, w;
boolean b;
norm:= em[1]; machtol2:= (em[O] x norm) ,+. 2; tol:= em[2] X norm;
max:= em(4]; count:= o; w:= o;

in: for i:= n, i - 1 while (if i > 1 then abs(a[i + 1,i]) > tol else
Taise) do q:= i; ITq> lthen -- --
begin iTabs(a[q,q- 1]) >~hen w:= abs(a[q,q - 1]) end;
TI'cfYn - 1 then -- -
oegin-n1: = n =-r;" if q = n then
---i)egin re[n]:= a[n,n]; im[n]:= o; n:= n1 end

end

~ -
'6egiri sigma:= a[n,n] - a[n1,n1]; rho:= - a[n,n1] X a[n1,n];
--aisc:= sigma~ 2 - 4 x rho; if disc> 0 then

end -

begin disc:= sqrt(disc); - --
--s:= - 2 X rho/ (sigma+ (if sigma> O then disc

else - disc)); re[n]:= a[n,n] + s; - -
re[n1] := a[n1 ,n1] - s; im[n] := im[n1] := 0

end
else
oeg'In re[n]:= re[n1]:= (a[n1,n1] + a[n,n]) / 2;
--rm[n1] := sqrt(- disc) / 2; im[n] := - im[n1]
end;
n::;;n-2

else
oeg'In count:= count+ 1; if count> max then goto out; n1:= n - 1;
--sigma:= a[n,n] + a[nf;ri1] + sqrt(abs"{a[n1 ,n - 2] X a[n,n1])

X em[O]); rho:= a[n,n] X a[n1,n1] - a[n,n1] X a[n1,n];
for i: = n - 1 , i - 1 while (if i - 1 > q then abs (a[i, i - 1]
xa[i1,i] X (abs(a[i,TT+a[TI,i1] - sigma)+ abs(a[i +
2,i1]))) > abs(a[i,i] X ((a[i,i] - sigma)+ a[i,i1] X a[i1,i]
+ rho)) X tol else false) do p1:= i1:= i; p:= p1 - 1;
p2:= p + 2; -- --- -
for i:= p step 1 until n - 1 do
begin iminl := i -1;'11 := i +7"; i2:= i + 2; if i = p then
---i)egin g1 := a[p,p] x (a[p,p] - sigma) + a[p,p1] X afpr,p]

--+ rho; g2:= a[p1,p] x (a[p,p] + a[p1,p1] - sigma);
if p1 < n1 then
begin g3:= a[p1,p] X a[p2,p1]; a[p2,p]:= 0 end
~g3:= O

end--
else
oeg'In g1:= a[i,imin1]; g2:= a[i1,imin1];
--g3:= if i2 < n then a[i2,imin1] else O
end; - - --

Description mca 2420
corrrvalqri calculates the eigenvalues of then-th order upper
Hessenberg matrix H given in array a[1 :n, 1 :n].
In jray em[0:5], the following data must be given (see also p. 56).
em[O : the machine precision;
em[l]: a norm of H;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of QR iterations.

77

The real and imaginary parts of the eigenvalues of Hare delivered in
array re, im[1 :n], the members of each nonreal complex conjugate
pair being consecutive. ·
Moreover, the elements of a are altered;
em[3] := the maximum absolute value of the subdiagonal elements
neglected;
em[5]:= the number of iterations performed.
Furthermore, comvalqri:= o, provided that the process is completed
within em[4] iterations; otherwise, comvalqri:= the number, k, of
eigenvalues not calculated, em[5]:= em[4] + 1, and onzy the last n - k
elements of re and im contain approximate eigenvalues of H.

78

end
end;-

k:= if gl > 0 then sqrt(gl 4 2 + ~ 4 2 + g3 4 2) else -
sqrtlgl 4 2 + ~ 2 + g3 4 2); b:= abs(k) > machtol2;
aa:= g b then gl / k + 1 else 2;
psi 1 := g b ~ ~ / (gl +kJ else o;
psi2:= if b then g3 / (gl + k) else O;
if i + qthen a[i,iminl]:= if i = p then - a[i,iminl]
else - k;-- - --
for j:= i step 1 until n do
begin e:= aa X (a[i,j] + pail X a[il,j] + (if i2::;: n

then psi2 x a[i2,j] else O));
a[i,j]:= a[i,j]..: e;""a[Il,j]:= a[il,j] - pail Xe;
if i2 < n then a[i2,j):= a[i2,j) - psi2 x e

end;- - --·
~ j: = q step 1 until (g i2 ::;: n ~ i2 else n) do
begin e:= aa X (an:;IT + psil X a[j,il] + (if i2::;: n

then psi2 X a[j,i2] else O));
a[j,i]:= a[j,i) - e;a[J,il):= a[j,il) - pail x e;
if i2 < n then a[j,i2):= a[j,12] - psi2 Xe

end;- - --
if i2 < nl then
begin i3:= 1+3; e:= aa X psi2 X a[i3,i2); a[i3,i]:= - e;

a[i3,i1):= - psil Xe;
a[i3,i2]:= a[i3,i2) - psi2 x e

end .

if n > O then goto in;
out:em[3):= w;emT5J:= count; comvalqri:= n
~ comvalqri;

80

comment mca 2421;
procedure comveches(a, n, lambda, mu, em, u, v) ; ~ n, lambda, mu;
integer n; ~ lambda, mu; array a, em, u, v;
begin integer i, 11, j, count, max;

real aa, bb, d, m, r, a, w, x, y, norm, machtol, tol;
array g, f[l :n];
boolean lrfl p[l:n];
norm:=- em 1; machtol:=- em[O] X norm; tol:= em[6] x norm;
max:=- em[8];
for i:=- 2 steT 1 until n do
begin f[i - 1 ; .. a[i,i - TI; a[i, 1]: = 0 end;
aa:=- a[l,1] - lambda; bb:=- - mu; -
for i:=- 1 step 1 until n - 1 do
begin 11:=- i + l;""'jii:";"°f[i]; ifabs(m) < machtol then m:= machtol;

a[i,i]:=- m; d:=- a.a I} 2 +bb ~ 2; p[i]:=- abs(m) < sqrt(d);
if p[i] then
begin coiiiiii'eiit a[i,j]Xfactor and a[il,j]-a[i,j];

f[iJ :=- r:"' m X aa / d; g[i] := a:= - m X bb / d;
w:= a[il,i]; x:=- a[i,11]; a[il,i]:= y:= x X s + wx r;
a[i,11]:= x:=- x X r - wx s; a.a:= a[il,11] - lambda - x;
bb:=- - mu - y;
for j : .. i + 2 sjep 1 until n do
begin w:= a[j,i ; x:,,. a[i,j];a[j,i]:= y:= XX a+ W X r;

a[i,j]:=- x:= x X r - wx a; a[j,11]:= - y;
a[il,j]:=- a[il,j] - x

end
end-
else
begin comment interchange a[il,j] and a[i,j]-a[il,j]Xfactor;

f[iJ:=- r:= a.a/ m; g[i]: .. a:= bb / m;
w:=- a[il,il] - lambda; aa:"' a[i,11] - r x w - a X mu;
a[i,11]: .. w; bb:=- a[il,i] - a X w + r X mu;
a[il,i]: ... - mu;
for j : .. i + 2 stjp 1 until n do
begin w:= a[il,j; a[il,JJ:= a[i,j] - r X w; a[i,j]:= w;

a[j,11]:= a[j,i] - s X w; a[j,i]:= 0
end

end-
end;-

81

Description mca 2421
comveches calculates the eigenvector corresponding to the complex
eigenvalue lambda+ i X mu of then-th order upper-Hessenberg matrix
H given in I§1 a[1 :n, 1 :n].
In ~ em 0:9 the following data must be given (see also p. 56,57).
emI0]: the machine precision;
em[l]: a norm of H;
em[6]: the tolerance for the eigenvectors;
em[8]: the maximum allowed number of iterations.
The real and imaginary parts of the calculated eigenvector are
delivered in arrey u, v[l:n].
Moreover, the elements of a are altered;
emI7J:• the Euclidean norm, \ lrl l, of the residue of the calculated
eigenvector;
em[9]:• the number of iterations performed.
If, however, l l r l l remains larger than em[1] x em[6 J during em[8]
iterations, then em[9J:• em[8] + 1.
comveches uses vecvec, matvec and tamvec [3, section 200].

82

p[n] :=- true; d:• aa ,t 2 + bb ,t 2; if d < machtol ,t 2 ~
begin aa:=- machtol; bb:• o; d:= machtol ,t 2 end;
a[n,n] : .. d; f[n] :=- aa; g[n] :"' - bb; -
for i:=- 1 step 1 until n do
begin u[i]:=- 1; v[iJ:• 0 end;
count:=- o;

forward: g count > max ~ goto outm;
!2!:, i:"' 1 r? 1 ~ n do
begin if p i then

begin w:=- v[IT; v[i] :"' g[i] X u[i) + f[i) X w;
u(i]:=- f[i] x u[i] - g[i] x w; if i < n then
begin v[i + 1] :"' v[i + 1] - v[iT;

u[i + 1]:=- u[i + 1] - u[i]
end

end
else
begin aa:=- u[i + 1]; bb:• v[i + 1];

u[i + 1]:=- u[i] - (f[i] X aa - g[i] x bb); u[i]:= aa;
v[i + 1]:=- v[i] - (g[i] X aa + f[i] X bb); v[i]:= bb

end
end furward;

backwd: !2!:, i:"' n step - 1 ~ 1 do
begin 11:• i + 1;.
--u[i]:• (u[i] - matvec(il, n, i, a, u) + (if p[i] then

tamvec(il, n, 1, a, v) else a[i1 1 i] X v[iTI)) / a[i,i];
v[i]:=- (v(i] - matvec(iT;ri, i, a, v) - {if p[i] then
tamvec(il, n, i, a, u) ~ a[il,i] x u[iTT)) / a[i,i]

end backward;
normairse: w:• 1 / sqrt(vecvec(l, n, O, u, u) + vecvec(l, n, o,

v, v));
!2!_ j:= 1 step 1 ~ n do
begin u[j] :• u[j] X w; v['3T:=- v[j] X w end;
co\Ult:= count+ 1; if w > tol then goto forward;

outm: em[7]:=- w; em[9]::-count -- --
~ comveches;

84

comment mca 2422;
integer procedure comeigval(a, n, em, re, im); value n; integer n;
array a, em, re, im;
begin integer~ int, intO[l :n];
~ d[l:n];
eqilbr(a, n, em, d, into); tfmreahes(a, n, em, int);
comeigval:= comvalqri(a, n, em, re, im)

end comeigval;

comment mca 2423;
procedure comscl(a, n, nl, n2, im); ~ n, nl, n2; integer n, nl, n2;
array a, im;
begin integer i, j, k;

real s, u, v, w;
for j:=- nl step 1 until n2 do
begin s:=- O; if imr.IT1' 0 then

begin for i:=- 1 steJ 1 until n do
begin u:=- a[i,j 1' 2+a[i,j+ 1] 1' 2; if u > s then

begins:• u; k:=- i ~
end;
ifs f O then
begin v:= a[k,j] / s; w:=- - a[k,j + 1] / s;

for i:=- 1 s[ep 1 until n do
begin u:z a i,j];""""s:":"'"a[i;J + 1];

a[i,j] :=- u X V - s X w;
a[i,j + 1] ;:s U X W + S X V

end
end;-
j:=- j + 1

end
else
begin .f2!. i:=- 1 tP 1 until n do

begin if abs a i,j];>abs(aj" then s:"' a[i,j) end;
if s fo then --

end
end-

end coiiiscl;

.!2!, i:"' 1 step 1 ~ n do a[i,j]: .. a[i,j] / s

85

Description mca 2422
comeigval calculates the eigenvalues of then-th order matrix M given
in array a[1 :n, 1 :n].
In array em[0:5], the elements with even subscript must be given (see
also p. 56).
em[O]: the machine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of QR iterations.
The real and imaginary parts of the eigenvalues of Mare delivered in
~ re, im[1:n], the members of each nonreal complex conjugate pair
being consecutive.
Moreover, the elements of a are altered;
em[1]:= the infinity norm of M equilibrated;
em[3]:= the maximum absolute value of the subdiagonal elements
neglected;
em[5]:3 the number of QR iterations performed.
Furthermore, ~omeigval:= 01 provided that the process is completed
within em[4] iterations; otherwise, comeigval:= the number, k, of
eigenvalues :::iot calculated, em[5]: = em[4] + 1, and ~nly the last n - k
'!lements of re and :Lm contain approximate eigenvalues of M.
comeigval uses eqilbr, tfmreahes (section 240), comvalqri (mca 2420)
and, indirectly, also matvec, mat.mat, tam:na.t, mattam, ichcol and
ichrow [3, chapter 20].

Description mca 2423
comacl normalizes the eigenvectors corresponding to the complex
eigenvalues whose imaginary parts are given in array im[n1 :n2].
The corresponding eigenvectors must be given in the colunms of
array a[1:n, n1:n2] as follows:
each real eigenvector must be given in a ~olumn whose corresponding
element of im equals 0;
the real and imaginary part of each complex eigenvector must be given
in consecutive columns whose corresponding elements of im are
not equal too.
The eigenvectors are normalized in such a wa;y that, in each
eigenvector, an element of maximum modulus equals 1.
The normalized eigenvectors are written over the corresponding given
eigenvectors.

86

coil'IIllent mca 2424;
integer procedure comeig1(a, n, em, re, im, vec); ~ n; integer n;
~ a, em, re, im, vec;
~ integer i, J, k, pj, itt;

real x, y, max, neps;
'iirray ab[1 :n, 1 :n], d, u, v[1 :n];
integer array int, int0[1:n];

procedure transfer;
begin integer i, j;

!£::. i :• 1 step 1 ~ ri do
for j : "' (if i ,. 1 then 1 else i - 1) step 1 ~ n ~
ab[i,j] : .. a[i,j] - --

~ transfer;

eqilbr(a, n, em, d, intO); tfmreahes(a, n, em, int); transfer;
k:=- comeig1:= comvalqri(ab, n, em, re, im); neps: .. em[O] X em[1];
max:"' o; itt:m O;
for i:"' k + 1 jtep 1 until n do
begin x:=- re[i ; y:• im[i]; pj:=- o;
again: for j:=- k + 1 rj} 1 until i - 1 do

begin if ((x - re j !}, 2°+TY - im[JT) I} 2 < neps 4 2) ~
begin if pj ,. j ~ neps: .. em[2] X em[1T else pj: .. j;

x::c x + 2 x neps; ~ again
end

end;-
re(i]::c x; transfer; if y + O then
begin comveches(ab, n;-re[i], im[i], em, u, v);

for j: .. 1 step 1 until n do vec[j,i]:= u[j]; i:= i + 1;
re[i]: .. x - -

end
eise
begin reaveches(ab, n, x, em, v) end;
for j :"' 1 step 1 until n do vec[j;IT:=- v[j];
if em[7] > max theniiiax: "'em[7];
ITt:=- if itt > em[9] then itt else em[9]

end; - -- --
em[7J:• max; em[9]:=- itt; bakreahes2(a, n, k + 1, n, int, vec);
baklbr(n, k + 1, n, d, into, vec); comscl(vec, n, k + 1, n, im)

~ comeig1;

87

Description mca 2424
comeigl calculates the eigenvalues and eigenvectors of then-th order
matrix M given in ~ a[1 :n, 1 :n].
In array em[0:9], theelements with even subscript must be given (see
also p. 56,57), viz.
em[0]: the ma.chine precision;
em[2]: the relative tolerance for the QR iteration;
em[4]: the maximum allowed number of QR iterations;
em[6]: the tolerance for the eigenvectors;
em[8]: the maximum number of iterations allowed for the calculation of
each eigenvector.
The real and imaginary parts of the eigenvalues are delivered in
a.rra_y re, im[1 :n], the members of each nonreal complex conjugate pair
'tieing consecutive; the eigenvectors are delivered in the columns of
~ vec[l:n, 1:n], an eigenvector corresponding to a real
eigenvalue being in the corresponding column, and the real and
imaginary part of an eigenvector corresponding to the first member of
a nonreal complex conjugate pair being in the two consecutive columns
corresponding to this pair. (The eigenvectors corresponding to the
second members of nonreal complex conjugate pairs are not delivered,
since they are simpJ.y the complex conjugate of those corresponding to
the first members of such pairs.)
Moreover I the elements of a are altered;
em[l]:= the infinity riorm of M equilibrated;
em[3] := the maximum absolute value of the subdiagonal elements
neglected;
em[5] :=- the number of QR iterations performed;
em[7] :"' the maximum Euclidean norm of the residues of the calculated
eigenvectors (of the transformed matrix);
em[9] := the largest number of inverse iterations performed for the
calculation of some eigenvector.
Furthermore, comeigl:• 01 provided that the QR iteration process is
completed within em[4] iterations; otherwise, comeigl :• the number, k1

of eigenvalues not calculated, em[5]:=- em[4] + 11 and on].y the last
n - k elements of re and im, and the last n - k columns of vec contain
approximate eigenvalues and eigenvectors of M; similarJ.¥, if, for some
calculated eigenvector, the Euclidean norm of the residue remains
greater than em[l] X em[6] during em[8] iterations, then
em[9]:= em[8] + 1.
comeigl uses eqilbr, t:f'mreahes, bakreahea2 and baklbr (section 240) 1

reaveches (mca 2411), comvalqri, comveches and comscl (this section),
and, indirectJ.¥1 also vecvec, matvec, tamvec, matma.t, twnma.t, mattam,
ichcol and ichrow (3, chapter 20].

88

coilD!lent mca 2425;
integer procedure comei~(a, n, em, re, im); ~ n; integer n;
array a, em, re, im;
begin integer i, j, k, pj, s1, itt;

real x, y, max, neps;
arrey d, u, v[1:n];
integer arrey int, int0[1:n];
s1:• 2 X n X n; eqilbr(a, n, em, d, intO);
tfmreahes(a, n, em, int); 'IODRUM(a, s1);
k:a comei~:a comvalqri(a, n, em, re, im); FROMl)RUM(a, s1);
neps:• em[O] x em[l]; max:•·O; itt:= o;
for i:a k + 1 rep 1 until n do
begin x:• re[i ; y:• imTi]; pj::or o;
again: for j:= k + 1 [tj} 1 until i - 1 do

begin if ((x - re j 4 2-i7"y - imC:IT) 4 2 < neps 4 2) then
begin i!, pj • j ~ neps := em[2] X em[1T ~ pj: = j;

x:"' x + 2 X neps; goto again
end

end;-
re[i] :• x; if y f O then
begin comveciies(a, n-;-I=e'[i], im[i], em, u, v);

FROMDRUM(a, al); bakreahesl(a, n, int, u);
'IODRUM(u, 2 X n X (i - 1)); 1: .. i + 1; re[i]:= x

end
else
b:.f;n reaveches(a, n, x, em, v); FROMDRUM(a, al) end;
b eahesl(a, n, int, v); 'IODRUM(v, 2 x n x (1 - TIT;
if em[7] > max then max:= em[7];
Itt:• if itt > em[9] then itt else em[9]

end; - -- --
em[7]:=- max; em[9]:=itt; FROMDRUM(a, o);
baklbr(n, k + 1, n, d, into, a); comscl(a, n, k + 1, n, im)

!:E.!! comei~;

Description mca 2425
comeig2 calculates the eigenvalues and eigenvectors of then-th order
matrix M given in ~ a[1 :n, 1 :n].
In array em[0:9], the elements with even subscript must be given as
for comeigl.
The real and imaginary parts of the eigenvalues are delivered in
array re, im[l:n], and the eigenvectors in the columns of a in the
same wa:y as by comeigl.
The eigenvectors are also delivered in the first n ~ 2 real number
locations of the backing storage; the next n ~ 2 real number locations
of the backing storage are altered.
Moreover, in the elements of em with odd subscript, the same results
are delivered as by comeigl.
Furthermore, comeig2:= 0, provided that the QR iteration process is
completed within em[4] iterations; otherwise, comeig2:= the number, k,
of eigenvalues not calculated,
em[5]:= em[4] + 1, and only the last n - k elements of re and im, and
the last n - k columns of a contain approximate eigenvalues and
eigenvectors of M; similarly, if, for some calculated eigenvector, the
Euclidean norm of the residue remains greater than em[l] X em[6]
during em[8] iterations, then em[9] := em[8] + 1.
comeig2 uses eqilbr, tfurea.hes, bakrea.hesl and baklbr (section 240),
reaveches (mca 2411),. comvalqri, comveches and comscl (this section),
the XS-code procedures 'IDDRUM and FROMDRUM (see introduction), and,
indirectly, also vecvec, matvec, tamvec, matrna.t, tamma.t, mattam,
ichcol and ichrow [3, chapter 20].

90

REFERENCES

1 • P. Naur (ed.), Revised report on the algori tbmic language
.ALGOL 60 (1962).

2. -J. H. Wilkinson, The algebraic eigenvalue problem
(Clarendon Press, Oxford 1965).

3. T. J. Dekker, ALGOL 60 procedures in numerical algebra, part 1
(Mathematical Centre Tracts 22, Amsterdam 1968).

4. T. J. Dekker (ed.), Series AP 200
(Mathematical Centre Amsterdam 1962-1965).

5. A. s. Householder and F. L. Bauer, On certain methods for
expanding the characteristic polynomial,
Num. Math. 1(1959) 29-37,

6. w. Givens, Numerical computation of the characteristic values
of a real symmetric matrix
(Oak Ridge National Laboratory, DRNL-1574, 1954).

7, J. H. Wilkinson, Householder's method for symnetric matrices,
Num. Math. 4(1962) 354-361.

8. J. H. Wilkinson, Calculation of the eigenvalues of a
symnetric tridiagonal matrix by the method of bisection,
Num. Math. 4(1962) 362-367.

9. J. H. Wilkinson, Calculation of the eigenvectors of a
symnetric tridiagonal matrix by inverse iteration,
Num. Math. 4(1962) 36&-376.

10. P. Naur, Eigenvalues and eigenvectors of real symnetric
matrices, .ALGOL progr8ll1Illing cont. no. 9, BIT4(1964) 120-130.

11. W. Barth, R. s. Martin and J. H. Wilkinson, Calculation of the
eigenvalues of a symnetric tridiagonal matrix by the method of
bisection, Num. Math. 9(1967) 386--393.

12. J. H. Wilkinson, Two algorithms based on successive linear
interpolation (Stanford University, Techn. rep. no. CS 60, 1967).

13. T. J. Dekker, Finding a zero by means of successive linear
interpolation, to appear in Proc. Symp. on Constructive
aspects of the fundamental theorem of algebra,
Rtischlikon, Switzerland (1967).

14. J. M. Ortega and H. F. Kaiser, The LL I and QR methods for
symnetric tridiagonal matrices, Comp. J; 6(1963) 99-101.

91

15. P.A. Businger, Algoritbm 253, Eigenvalues of a real symmetric
matrix by the QR method, Comm. ACM 8(1965) 217--218.

16. P.A. Businger, Algoritbm 254, Eigenvalues and eigenvectors of
a real symmetric matrix by the QR method,
Comm. ACM 8(1965) 218--219.

17. W. Kaban, When to neglect off-diagonal elements of symmetric
tridiagonal matrices
(Stanford University, Tecbn. rep. no. CS 42, 1966).

18. W. Kahan and J. Varah, Two working algori tbms for the
eigenvalues of a symmetric tridiagonal matrix
(Stanford University, Tecbn. rep. no. CS 43, 1966).

19, E. E. Osborne, On preconditioning of matrices,
J. ACM 7(1960) 33i>--354,

20. B. Parlett, Laguerre's method applied to the natrix eigenvalue
problem, Math. Comp. 18(1964) 464-485.

21. J. G. Francis, The QR transformation, parts 1 and 2,
Comp. J. 4(1961) 265--271 and 332-345.

22. J.M. Varah, Eigenvectors of a real matrix by inverse
iteration (Stanford University, Techn. rep. no. CS 34, 1966).

23. H. Rutishauser, The Jacobi method for real symmetric matrices,
Num, Math, 9(1966) 1-10.

24. T. J. Dekker, Newton-Laguerre iteration
(Mathematical Centre, Amsterdam, MR 82, 1966).

25, T. J. Dekker, Newton-Laguerre iteration, Programmation en
Mathematiques mumeriques. (c.N.R,S,, Paris, 1966) 189--200.

26. P. J. Eberlein, A Jacobi-like method for the computation of
eigenvalues and eigenvectors of an arbitrary matrix,
J, SIAM 10(1962) 74-88.

27, P. J, Eberlein and J, Boothroyd, Solution to the eigenproblem
by a norm reducing Jacobi type method,
Num. Math. 11 (1968) 1-12.

28. J.B. Rosser, C, Lanczos, M,R. Hestenes and W. Karush,
Separation of close eigenvalues of a real symmetric matrix,
J. Res, Nat. Bur. Standards 47(1951) 291--297,

29, J. H. Wilkinson, Global convergence of tridiagonal QR
algoritbm with origin shifts, to appear in Linear Algebra
and its applications, Vol, 1 no. 3.

92

EPIIDGUE 1

EXPERIMENTS USING THE MC ALGOL 60 SYSTEM FDR THE X8.

In this epilogue we give our results for a number of well-known
matrices.
a) The matrix W21+ of Wilkinson [2, p. 308].

eigsym2 and qrisym delivered all eigenvalues in at least 9 digits.
The eigenvectors were normalized to Euclidean length 1. The first
and second eigenvector lied in the subspace spanned by the first
and second correct eigenvectors, but were rotated by about 10
degrees; the same holds for the third and fourth eigenvectors. The
fifth and sixth eigenvectors corresponded in 2 digits to the
correct eigenvectors, the seventh and eighth in 5, the ninth
and tenth in 7, and the others in at least 9 digits.
The computation has taken 11,5 seconds with eigsym2 and 13.0
seconds with qrisym.

b) One of Rutishauser's matrices of order 44 [23].
It took eigsym2 109.3 seconds to deliver all eigenvalues and eigen
vectors; the eigenvalues nUlllbered 1,15,20,21, ••• ,30,44, and the
eigenvectors nWllbered 1,15,28,29,30,44, (which are given by
Rutishauser) were correct in at least 9 digits,

c) Rosser's matrix of order 8 [28].
Both eigsyni2 and qrisym delivered the following results: the
eigenvalues numbered 1,2,3,5,8 were correct in 11 digits, number 4
in 10, 6 in 8 and 7 in 9 digits. The eigenvectors were correct in
6 to 7 digits. The computation time was 2.1 seconds with eigsym2
and 1. 7 seconds with qrisym.

d) A matrix of order 10 [21].
Both reaeig1 and reaeig3 delivered all eigenvalues and eigenvectors
in 5.5 seconds. The eigenvalues agreed in 9 digits with those given
by Francis. We could not check the eigenvectors, but the ma.xi!IE.l
component of all residual vectors, devided by the matrix norm, was
,9ir11 with reaeigl and -5.w-11 with reaeig3.

e) A matrix of order 16 [26].
It took comeig1 17 seconds to deliver all eigenvalues and eigen
vectors.
The eigenvalues were correct in at least 10 digits.

f) A matrix of order 40 [26].
It took comeig1 198 seconds to deliver all eigenvalues and
eigenvectors.
The eigenvalues were correct in at least 9 digits.
(The results given in Eberlein's paper should be multiplied by a
factor 10).

EPIIlJGUE 2

TES'IMATRICES.

In this epilogue we will mention the sets of testmatrices we used to
obtain the time formulas in the Appendix.

93

These matrices have the property that all eigenvalues, or all
eigenvalues and the set of eigenvectors, can be chosen arbitrarily.
The matrices used for establishing the formulas for the procedures
of CHAPTER 23 are ma.trices M,. XDX of the order n .. 2 ~ k, where k is
an integer ranging from 1 to 6.
The matrices X,. X(k) are defined by the recurrence relation

X(k+1) ,. 1/sqrt(2) (
X(k) X(k))

X(k) -X(k)
for k 2: o,

x(o) being the identity matrix of order 1. Consequently XX = I.
Moreover, the columns of X are the eigenvectors of Mand the elements
of the diagonal matrix Dare the eigenvalues of M.

The testmatrices for the procedures of CH.APTER 24 were ma.trices of the
form M • XDY or Y'DX' of order n, n ranging from 12 to 30.
D is a diagonal matrix and XY • I. The matrices X depend on a parBJlleter
p, and are defined in the following wey-:
X[i, j],. p - min(n - 11 n - j) for 1 • 1, ••• ,n; j • 1, ••• ,n - 1.
X[i, n] • 1 for i .. 1, ••• ,n.
0bv:l.ously, the columns of X are the eigenvectors of M; the angles
between these eigenvectors can be varied by the choice of p. We choose
p"' 10 t k, where k is an integer ranging from 1 to 6.
Y, the inverse of X, is of tridiagonal form with diagonal d, sub
diagonal b and super diagonal c.
d[i] • --2 for i .. 2, ••• ,n - 1; d[1] • -1, d[n] = - p.
b[i] • 1 for i • 1, ••• ,n - 2; b[n - 1] • p.
c[i] • 1 for i • l, .•. ,n - 1.
The rows of Y are the eigenvectors of M', which, as can be seen
immediately, are all but one independent of p.

94

APPENDIX

TIMES FOR THE MC ALGOL 60 SYSTEM FOR THE X8.

In this appendix, we give practical fo:nnulas for the computation
times in milliseconds of those procedures published above which
calculate the eigenvalues, or the eigenvalues and eigenvectors, of a
general symmetric or asylllmetric real matrix.
The computation time for the major procedures of this booklet obviously
depends not only on the order n of the matrix but also on the number
of iterations required. We give approximate time fo:nnulas depending on
n only, because the number of iterations required is closely related to
the condition of the matrix and the desired precision, and is there
fore not known in advance. Calling the respective procedures with a
relative precision of n, the number of QR-iterations proved to
be about 2Xn, and the number in valsynrtri about 1 ~n.
The formulas have been obtained by fitting a third degree polynomial
by the method of least squares to the computation times for our
sets of testmatrices (seep. 93). The tests were performed on an
Electrologica XS computer using the MC ALGOL 60 system for the x8,
in which system the procedures mca 2000 to 2005 are available as
machine-code procedures [3).

The following results have been obtained:
CHAPTER 23 EIGENSYSTEMS OF REAL SYMMETRIC MATRICES.

mca 2313 eigvalsym2 .3n 3 + 15n 2 msec.
mca 2314 eigsym2 .7n 3 + 25n 2 II

mca 2318 eigvalsyml .3n 3 + 12n 2 II

mca 2319 eigsyml .7n 3 + 20n 2 II

mca 2322 qrivalsym2 .3n 3 + 6n 2 II

mca 2323 qrisym 2.1n 3 + 8.5n 2 II

mca 2327 qrivalsyml .3n 3 + 5n 2 II

CHAPTER 24 EIGENSYSTEMS OF REAL MATRICES.

mca 2412 reaeigval ,.~r msec.
mca 2414 reaeigl 2.7n 3 II

mca 2417 reaeig3 3.5n 3 II

mca 2422 comeigval 1.6n 3 II

mca 2424 comeigl 3.0n 3 II

Notes
a) Comparing mca 2414 and mca 2417, one might say that reaeig1 is much

faster than reaeig3. Taking into account the number i of
QR iterations, the formulas would be the following:

mca 2414 reaeigl 1.4n 4 3 + .7in 4 2 msec.
mca 2417 reaeig3 .4n I} 3 + 1.6in I} 2 msec.

Thus, when the number of iterations is small (relative ton),
reaeig3 will be faster than reaeigl.

b) For reaeig2 and comeig2, no time fo:nmlas are given, because
these procedures are the same as reaeig1 and comeig1, apart from
the use of a backing storage.

The formulas presented in this appendix, with the exception of
those for mca 2422 and mca 2424 can be used for an estimation of
the computation time, which, for most matrices, will not deviate
from the actual computation time by more than ten percent.
Due to the effect that the number i of QR iterations is
somewhat more sensitive to the distibution •Of the eigenvalues if
they are complex, the time formulas for mca 2422 and mca 2424 are
of limited value only.

95

