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PREFACE 

We here present a set of ALGOL 60 procedures for calculating eigen
values and/or eigenvectors of real matrices. This set uses some vector 
procedures published in part 1, which, moreover, contains a set of 
procedures for solving systems of linear equations, for inverting 
matrices and for solving linear· 1east-squares problems [ 3] • 

The procedures have been tested on an Electrologica XB computer by 
means of the" MC ALGOL 60 system for the x8" of the Mathematical 
Centre, Amsterdam, written by F.E.J. Kruseman Aretz. 
The texts of the procedures have been edited by the program "ALGOL 
editor", written and published by H.L. Oudshoorn, H.N. Glorie and 
G.C.J.M. Nogarede (MR 98, Mathematical Centre, Amsterdam, 1968). 

In the second edition some minor changes have been introduced, 
The texts of the following four procedures have been changed for 
the following reasons: 
zeroin (mca 2310), for better handling a function which vanishes 
on a part of the given interval; 
eqilbr (mca 2405), for reducing the possibility of overflow; 
baklbr (mca 2406), for avoiding superfluous row interchanges; 
comvalqri (mca 2420), for avoiding division (by a possibly vanishing 
quantity) in the second (weak) partitioning test. 
The other changes are minor corrections outside the procedure texts. 
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NOTATIONS 

References are given between the square brackets"[" and"]". 
" : " denotes the integer division symbol " + " [1 1 3,3.4.2.]. 
"goto" denotes the same symbol as "go to" "boolean" the same as - _, 
"Boolean" [1, 2,3,]. 
"I" denotes the identity matrix; the order will be clear from the 
context, 
"'" denotes transposition of a matrix. 
Unless stated otherwise, "M" denotes a real matrix, "H" a real 
upper-Hessenberg matrix, "T" a tridiagonal real symmetric matrix, 
and "n" the order of the matrix considered. 
"llxll" ("jjMjj") denotes some norm of the vector x (matrix M). 



DEFINITIONS 

The "dimension" of an arnzy is the number of its subscripts (see al.so 
[1 1 5.2.3.2.)). Thus, we speak about "one-dimensional" and "two-
dimensional." arnzys. 
For two-dimensional. arrays as well as for matrices, we use the 
following terminology: 
the first subscript is called the "row index" and the second the 
"column index"; the i-th "I'O'l:i" ("column") is the subset for which the 
row (column)index equal.a i; · 
the i-th "subdiagonal." ("superdiagonal.") is the subset for which the 
column index minus the row index equal.a i ( equal.a -i); the 0-th 
subdiagonal. (or superdiagonal.) is cal.led the "main diagonal", 
whereas the other subdiagonal.s and superdiagonals are called 
"codiagonal.s"; 
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the first codiagonal.s are said to be "adjacent" to the ma.in diagonal; 
the "upper triangle" ("lower triangle", "strict-lower triangle") is 
the subset for which the column index is ::; (is :::, is >) the row index. 

A "lower-tria.ngul.a.r" ("upper-tria.ngul.a.r") matrix, is a matrix whose 
elements outside its lower (upper) triangle are zero; 
a "unit lower-triangu.l.ar" matrix is a lower-triangu.l.ar matrix whose 
main diagonal. elements are equal. to 1 • . 
An "upp~essenberg" matrix is a matrix whose elements outside its 
upper triangle and first subdiagonal. are zero; a tridiagonal. matrix is 
a matrix whose elements outside its main diagonal and adjacent 
codiagonal.s are zero. 
The first subdiagonal. of an upper-Hessenberg matrix ( symmetric 
tridiagonal. matrix) is simpJ,y called its "subdiagonal" ("codiagonal"). 

We use the following vector norms [2, p. 55): the "one-norm", i.e. the 
sum of the absolute values of the elements of the vector; the 
"Euclidean norm", i.e. the square root of the sum of their squares; 
and the "infinity norm", i.e. their maximum absolute value. 
The "infinity norm" of a matrix is defined as the maximum one-norm 
of its rows. 

A set of vectors is said to be "numerically independent" if it is not 
approximately equal. to a set of linearly dependent vectors. 

The "machine precision" is the largest number, p, for which 1 + p = 
on the computer (about io-12 for the XB); the "working precision" 
roughly equal.a the machine precision. 
A "relative tolerance" is a tolerance relative either to a calculated 
eigenvalue or to some matrix norm. 
Relative tolerances must be chosen smaller than 1, and should be 
chosen not smaller than the machine precision. 
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INTRODUCTION 

Chapter 23 contains a set of procedures for calculating the 
eigenvalues and/or eigenvectors of real synmetric matrices. 
Chapter 24 contains a set of procedures for calculating the real or 
complex eigenvalues and/or eigenvectors of real matrices. 
Of synmetric matrices, onzy the upper triangles need be given; 
for these upper triangles, the procedures of chapter 23 use either 
the upper triangle of a two-dimensional array (in which case its 
remaining part is not used) 6r a one-dimensional array(in which case 
no space is wasted). 

In each chapter, we give a survey of its contents and some numerical 
considerations and comparisons. The chapters are subdivided into 
sections in each of which we give a more detailed survey of its 
contents and explain the numerical methods used. 
Each section contains some procedures for each of which we give, 
besides the ALGOL text, a description mentioning the data required, 
the results delivered and the nonlocal procedures (except the standard 
functions [1, 3.2.4.J) directzy or indirectzy used. 

The data are given, and the results are delivered, via the parameters 
of the procedures, moreover, some procedures deliver a result as the 
value assigned to their identifier. ' 
Some parameters are used as well for data as for results. 
For each formal parallleter specified~ or integer array, we give the 
"minimal declaration", i.e. a declaration with the appropriate number 
of bound pairs, where each pair indicates the range which is actualzy 
used by the procedure. Sometimes not all elements of the array 
indicated by the minil!E.l. declaration are used. In the descriptions, 
we alvra.ys mention which part is used for the data and which part for 
the results, so that it is alvra.ys clear which elements are not used at 
all and which elements are left unchanged. 

As to the nonlocal procedures used, these are either procedures 
published in this volume (and preceding the procedure which uses them), 
or procedures published in part 1 [3, chapter 20], or standard 
functions [1, 3.2.4.] (which are not mentioned in the descriptions), 
or the XS-code procedures TODRUM and FROMDRUM (which are used onzy by 
reaei/12 {mca 2415) and comeig2 (mca 2425)). 
TODRUM and FROMDRUM perform a transport to or from backing storage. 
Let a be a real array with k elements, and pan expression whose value 
is a nonnegative integer; then the call "TODRUM(a, p)" transports 
array a to the backing storage from locations p through p + 2 X k - 1 
(the X8 uses two storage locations per real number), and the call 
"FRCJ.IDRUM(a, p)" transports the contents of the backing storage from 
locations p through p + 2 X k - 1 to array a, 
It is assumed that two-dimensional arrays are stored columnwise, i.e. 
the elements of a colUlllil are stored consecutive:cy. 



CHAPTER 23 

EIGENSYSTEMS OF REAL SYMMETRIC MATRICES 

This chapter contains procedures for calculating eigenvalues anajor 
eigenvectors of real symmetric matrices, and a procedure (mca 2310) 
for finding a zero of a function by means of linear interpolation. 
For solving the symmetric eigenproblem, two methods have been chosen 
both starting with Householder's transformation (section 230). 
In the first method (section 231), the eigenvalues are calculated by 
means of iterated linear interpolation, and the eigenvectors by means 
of inverse iteration; both processes necessari1-)r converge. 
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The eigenvalues are obtained in monotonical1-)r nonincreasing order. 
This method is particular1-)r suitable, if on1-)r some consecutive eigen
values ana/or the corresponding eigenvectors are required. The second 
method (section 232) uses QR iteration for calcuJ.ating all eigenvalues 
and eigenvectors. Using a suitable "shift" (seep. 32), this process 
is convergent [29]. Either method yields eigenvalues and eigenvectors 
in reasonable precision, and the eigenvectors obtained are orthogonal 
within working precision. 
Note, however, that calculated eigenvectors corresponding to close1-)r 
clustered eigenvalues mey deviate substantial1-)r from the true 
eigenvectors [21 chapter 21 in particular formuJ.a 10.2]. 
The computation time for either method is roughly proportional to 
n cubed, but obvious1-)r depends on the number of iterations required 
(see Appendix). 
These methods are mutual1-)r competitive as to accuracy and computation 
time; both are considerab1-)r faster than and as reliable (with respect 
to accuracy obtained) as Jacobi's method [2, p. 26~82 and 343] [23]. 

Several procedures of this chapter exist in two versions, 
distinguished by a 11211 or "1" at the end of the procedure identifier. 
The procedures whose identifiers end with 11211 use the upper triangle 
of a two-dimensional arrey, declared by ~ a[ 1 :n, 1 :n], for the 
upper triangle of the given symmetric matrix M (or for the data for 
Householder's back transformation) [7]. 
The (i, j)-th element of M is a[i, j] onzy for 1 < i < j < n. 
The other elements of a are neither used nor changed.- -
The procedures whose identifiers end with "1" use a one-dimensional 
array, declared by array a[ 1: {n + 1) X n : 2], for the upper triangle 
of M (or for the data for Householder's back transformation). 
The (i, j)-th element of Mis a[(j - 1) X j : 2 + i] for 1 < i < j < n. 
Thus, the space required for the matrix is cut near1-)r in b.aif [To], -
and the time is not great1-)r different. 
The procedures "eigs~" and "eigsyml" (section 231) use a separate 
two-dimensional array for the eigenvectors of M; on the other hand, 
the procedure qrisym (mca 2323) uses the same two-dimensional arrey 
for the upper triangle of Mas well as for the matrix of eigenvectors; 
thus, qrisym is the most economic one with respect to storage space. 
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comment mca 2300; 
:procedure tfmsymtri2(a, n, d, b, bb, em); ~ n; integer n; 
~ a, b, bb, d, em; 
~ integer i, j 1 r, r1; 

real w, x, a1, b01 bbO, d01 machtol, norm; 
norm: .. o; 
!2!: j: .. 1 ste:p 1 ~ n do 
~w:• O; 

for i:• 1 ste:p 1 until j do w:= abs(a[i,j]) + w; 
for i:a j + 1 ste:p 1 until n do w:- abs(a[j.,i]) + w; 
if w > norm then norm: .. w 

end;- -- , 
machtol: • em[ 0] X norm; em[ 1 ] : =- ::iorm; r: .. n; 
for r1:"' n - 1 steJ - 1 until 1 do 
begin d[r]:• a[r,r; x:•"t:iiimiiat(T;' r -2, r, r, a, a); 

a1:• a[rl,r]; if sqrt(x) < ma.chtol then 
begin bO:• b[rTT:• a1; bbTr1] :=- bO Xbo'; a[r,r] := 1 end 
else 
begin bbO:• bb[r1] :"' al X a1 + x; 

bO:• if a1 > 0 then - sqrt(bbO) else sqrt(bbO); 
a1 :=- a[r1,rJ :=- a:i-= bO; w:=- a[r,r] :., 1 / (a1 X bO); 
!2!: j:• 1 ste:p 1 ~ r1 do b[j]:= (ta.mma.t(1, j, j, r, 
a, a)+ :matma.t(j + 1, r1, j, r, a, a)) X w; 
elmveccol(1, rl, r, b1 a, tamvec(1, r1, r, a, b) x wx 
.5); 
for j:=- 1st? 1 until rl do . 
begin elmcol 1, j;--;r;-r, a-;-a, b[j]); 
--elmcolvec(l, j, j, a, b, a[j,r]) 
end; 
b[rl] :• bO 

~; 
r: .. rl 

end; 
aJil:• a[1 1 1]; a[l,1]:• 1; b[n]:• bb[n]:=- 0 

~ tfmsymtri2; 



Section 230 Householder's transformation 

This section contains procedures for transforming a real symmetric 
matrix into a similar tridiagonal one: 
tfmsymtri2 and tfmsymtril perform Householder's transformation; 
baksymtri2 and baksymtri 1 perform the corresponding back 
transformation; 
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tfm.prevec is to be used in combination 'With tfmsymtri2 for calculating 
the transforming matrix. 

Householder's transforma.tion is an orthogonal similarity 
transforma.tion which transforms a symmetric matrix into a tridiagonal 
one [2, p. 290 - 299] [4, AP 210 and AP 231] [71 [10]. 
Let M be a given synmetric matrix of order n, S the transforming 
matrix and T the resulting tridiagonal matrix. Since Sis orthogonal 
(i.e. its inverse equals S'), we then have T =- S'MS. Matrix S is a 
product of n - 1 Householder matrices, these being orthogonal 
symmetric :matrices of the form I + suu', where s is a scalar, and u 
a column vector. The p-th Householder matrix, p ,. 1,, •• , n - 1, is 
chosen in such a wey that the last p elements of u vanish, and the 
desired zeroes are introduced in the {n - p + 1)-th column and row of 
the matrix. However, if, in this column and row, all elements outside 
the main diagonal and the adjacent codiagonals are smaller in absolute 
value than the infinity norm of M times the :machine precision, then 
the p-th transformation is skipped (i.e. the p-th Householder matrix 
is replaced by I). 

The data for the back transformation, viz. the vectors u and scalars s 
of the Householder :matrices, are overwritten on the upper triangle of 
M, the scalars s being delivered on the main diagonal. 
For each Householder :matrix+ I, the scalars is negative; if the 
transformation is skipped, then +1 is delivered instead of s. 

The back transformation transforms a vector x into the vector Sx; if x 
is an eigenvector of T, then Sx is the corresponding eigenvector of M. 
Starting from the vector v • x, the vector Sx is obtained by 
successively replacing v by the p-th Householder matrix times v, for 
p • n - 11 ••• , 2,. 1; the resulting vector v then equals Sx, 
Similarly, t:f'mprevec calculates the transforming matrix S starting 
from I. 

Description mca 2300 
tfmsymtri2 transforms then-th order symmetric matrix M whose upper 
triangle is given in arrey a[1 :n, 1 :n], into a similar symmetric 
tridiagonal matrix T. 
In arrey em[ 0: 1 ] , one must give the ma.chine precision, em[ 0] • 
tfmsymtri2 delivers the main diagonal, the codiagonal and the squares 
of the codiagonal elements of Tin arrey d, b, bb[l:n], the remaining 
elements b[n] and bb[n] obtaining the value o. 
Moreover, the data for the back transformation are delivered in the 
upper triangle of a, and em[l]:=- the infinity norm of M. 
tfmsymtri2 uses tamvec, mat.mat, tamnat, elmveccol, elmcolvec and 
elmcol [3, chapter 20], 
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coDmJ.ent mca 2301; 
procedure baksymtri2(a, n, nl, n2, vec); ~ n, nl, n2; 
integer n, nl, n2; ~ a, vec; 
begin integer i, J, k; 

real w; 
for J:- 2 srp 1 until n do 
begin w:=- a J,J]; if w < Othen 

!£::. k:• nl s"liep 1 ~ n2 do elmcol(1, j - 1, k, J, vec, a, 
1iamma1i( 1, j - 1, J, k, a, vec) x w) 

end 
~ baksymtri2; 

cODmJ.en"li mca 2302; 
procedure 1;:f'mprevec(a, n); value n; integer n; array a; 
~ in"lieger i, J, Jl, k; 

real ab; 
jl:• 1; 
!2!_ j: .. 2 s"liep 1 ~ n 2:2. 
~ !£::. i:• 1 s"lip 1 un"liil jl - 11 j stjp 1 ~ n 2:2. 

a[i,Jl]:• O; a jl,j,r;;-1; ab:• a[J,j; if ab< 0 then 
!£::. k: .. 1 s1;ep 1 ~ jl 2:2. elmcol(l, jl, k, j, a-;-;:; 
ta.mma"li(l, Jl,. j, k, a, a) X ab); j1:• j 

end; 
for i:• n - 1 s"liep - 1 ~ 1 2:2. a[i,n] :=- O; a[n,n] : .. 1 

~ ttmprevec; 



Description mca 2301 
baksymtri2 should be called a:f'ter ttmsymtri2., and performs the 
corresponding back transformation on the columns of 
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~ vec[ 1 :n., n 1 :n2]. 
The data for the back transformation., as produced by tfmsymtri2., must 
be given in the upper triangle of~ a[l :n., 1 :n]. 
The resulting vectors of the back transformation are overwritten on 
the corresponding columns of vec. 
baksymtri2 uses ta.mma.t and elmcol [3., chapter 20]. 

Description mca 2302 
t:f'm:,Prevec should be called a:f'ter tfmsymtri2 and calculates the 
corresponding transforming matrix. 
The data for the back transformation., as produced by tfmsymtri2., must 
be given in the upper triangle of array a[l:n., 1:n]. 
The transforming matrix is delivered in the whole of ~ a[ 1 :n., 1 :n]. 
t:f'm:,Prevec uses ta.mma.t and el.mcol [3., chapter 20]. 
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COilllllent mca 2305; 
procedure t:f'maymtril(a, n, d1 b, bb, em);~ n; integer n; 
~ a, b1 bb1 d, em; 
begin integer i, J, r, rl, p, q, ti, tj; 

reals, w1 x1 al, b01 bb01 d01 norm, machtol; 
iioriii:- o; tJ:= o; 
!2!:, j:=- 1 step 1 ~ n do 
begin w::o O; 

!2!:, i::a 1 step 1 ~ j do w:=- abs(a[i + tj]) + w; 
tj:= tj + j; ti:=- tj + j; 
for i:• j + 1 srp 1 1mtil n do 
begin w:=- abs(a ti]) Tw;ti:';;""ti + i end; 
if w > norm then norm:• w 

end·- --_, 
machtol:• em[O] X norm; em[l]:= norm; q:= (n + 1) x n: 2; r:= n; 
for rl:"' n - 1 stef - 1 1mtil 1 do -
begin p:• q - r; d r] :• a[q]; x:;-vecvec(p + 11 q - 2 1 01 a, a); 

al:• a[q - 1]; if sqrt(x) < machtol then 
begin bQ; .. b[rfJ:• al; bb[rl]:• bO X bO; a[q]:= 1 end 
else 
begin bbO:• bb[rl]:=- al X al+ x; 

bO:• if al> 0 then - sqrt(bbO) else sqrt(bbO); 
al:=- a'[q .- 1] : .. al- bO; w:a a[qr:;:;-1 / (al X bO); 
tj: = O; 
!2!:, j:=- 1 step 1 ~ rl do 
begin ti:= tj + j; s:=- vecvec(tj + 11 ti, p - tj, a, a); 

tJ:- ti+ J; 

end; 

b[j]::a (seqvec(j + 1, rl, tj, p, a, a)+ s) X w; 
tj :=- ti 

elmvec(l, rl, p, b, a, vecvec(l, rl, p, b, a) x wx .5); 
tj:• O; 
!2!:, j:=- 1 step 1 ~ rl ~ 
begin ti:= tj + j; el.mvec(tj + 1, ti, p - tj, a, a, b[j]); 

elmvec(tj + 11 ti, - tj 1 a, b, a[j + p]); tj:= ti 
end; 
b[rl] := bO 

end; 
q::o p; r:=- rl 

end; 
d[i"]:• a[l]; a[1):= 1; b[n]:= bb[n]:a 0 

~ ttmsynrtri 1; 
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Description mca 2305 
tfmsymtril transforms then-th order symnetric n:atrix M whose upper 
triangle is given in~ a[l :(n + 1) X n.:. 2] in such a way that the 
(i, j)-th element of Mis a[(j - 1) X j : 2 + i] for 1 < i < j < n. 
In array em[0:1], one must give the ma.chine precision, em[oJ. -
M:l.trix Mis transformed into a similar synnnetric tridiagonal matrix T. 
The ma.in diagonal, the codiagonal and the sg_uares of the codiagonal 
elements of Tare delivered in~ d, b, bb[l:n], the remaining 
elements b[n] and bb(n] obtaining the value 0. 
Moreover, the data for the back transformation are delivered in a, and 
em(l]:=- the infinity norm of M. 
tf'msynrtril uses vecvec, seg_vec and elmvec [3, chapter 20]. 



comment mca 2306; 
:procedure baksymtri1(a, n, n1, n2, vec); ~ n, n1, n2; 
integer n, n1, n2; ~ a, vec; 
begin integer j, j1, k, ti, tj; 

real w; 
~ auxvec[1:n]; 
!2::_ k:=- n1 step 1 ~ n2 ~ 
begin !2::_ j:,. 1 step 1 ~ n ~ auxvec[j]: .. vec[j,k]; 

tj:"' jl :• 1; 
for j:• 2 step 1 until n do 
begin ti:,. tj + j~ a[ti]; 

if w < 0 then elmvec(l, j1, tj, auxvec, a, vecvec(1, 
TT, tj, auxvec, a) X w); j1:a j; tj:= ti 

end; 
for j: .. 1 step 1 ~ n ~ vec[j,k]:= auxvec[j] 

end-
~ baksymtri 1; 



Description mca 2306 
baksymtri 1 should be called after tfmsymtri 1 and performs the 
corresponding back transformation on the colUIDns of 
arrey vec[ 1 :n, nl :n2]. 
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The data for the back transformation, as produced by tfmsymtri 1, must 
be given in arrey a[l:(n + 1) X n .!. 2]. 
The resulting vectors of the back transformation are overwritten on 
the corresponding colUIDns of vec. 
baksymtril uses vecvec and elmvec [3, chapter 20]. 





Section 231 Linear interpolation and inverse iteration 

This section contains procedures for calculating eigenvalues and.for 
eigenvectors of real synu:netric I1E.trices, and a procedure for 
calculating a zero of a function: 
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eigvalsyn2 and eigvalsyllll calculate all eigenvalues, or some 
consecutive eigenvalues including the largest, of a symmetric l'.IE.trix; 
eigsyne and eigsyml calculate the corresponding eigenvectors as well; 
valsymtri calculates all, or some consecutive, eigenvalues of a 
symmetric tridiagonal I1E.trix; 
vecsymtri calculates the corresponding eigenvectors; 
zeroin searches for a zero of a function :i.n a given interval. 

The method used in zeroin is a mixture of linear interpolation and 
extrapolation, and bisection [ 4, AJ: 200 and AJ: 230] [ 12] [ 13] • 
If the given function has different sign at the endpoints of the given 
interval, then this interval is successivel;y reduced to smaller 
intervals in whose endpoints the function still has different sign. 
In each step, three points, a, b, c, are involved, where, apart from 
possible interchanges, (see below), bis the most recent iterate, 
a the previous one, and the 11 contrapoint11 c is the last iterate at 
which the function does not have the same sign as at b. 
If the absolute value of the function at bis greater than at c, then 
b and c are inte,rchanged (in order to simplify the convergence test). 
In each step, linear interpolation or extrap~lation is performed 
between a and b, yielding a point i,; if i is not between b and the 
middle, m, of b and c, then i is replaced by m; moreover, 
if abs(b - i) < tol, where tol is a given tolerance, i is replaced by 
sign(c - b) X tol + b. This ensures that any two iterates have a 
difference not smaller than tol, and that the length of the successive 
intervals is reduced by at least tol in each step, so that convergence 
is guaranteed, provided the tolerance is not smaller than the machine 
precision; the process ends as soon as abs(c - b) < 2 X tol. 
Since the interchanges mentioned above occur relativel;y seldom, the 
process has a completel;y satisfactory asymptotic behaviour: for 
a simple zero of a function having a continuous second derivative, 
the order of convergence is (1 + sqrt(5)) / 2, i.e. about 1.6. 
If the given function has the same sign at the endpoints of the given 
interval, then the interval is reduced by means of bisection (or by 
taking sign(c - b) X tol + b as new iterate, if the function (nearJ.;y-) 
vanishes at b). If sign change is detected, then the process continues 
as above; otherwise, the process ends as soon as abs(c - b) ::;:2 X tol. 

The procedure valsyllltri calculates eigenvalues of a symmetric 
tridiagonal matrix T by means of the method of Sturm-Givens [2, p. 299 
- 315] [6] [8] [10] (11] with linear interpolation [4, AJ: 212 and 232]. 
Let p(i, x), for i = 0, 1, ••• ,n, denote the i-th principle minor of 
T(x) = T - xI, i.e. the determinant of the submatrix consisting of 
the first i rows and columns of T(x) (in particular p(0, x) = 1 for 
all x). If none of the codiagonal elements of T vanishes, then the 
sequence of these principle minors is a Sturm sequence; i.e. for each 
x, the number of agreements in sign of consecutive members of this 
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sequence equals the number of eigenvalues of T which are greater than 
x, and for each i > 1 the zeroes of p(i, x) are separated by the 
zeroes of p(i - 1, x). 
Using this property, the eigenvalues of T (which are the zeroes of 
p(n, x)) are located not by means of bisection [6] [8] [10] [11], but 
by means of linear interpolation (which converges faster) [4, AP 212 
and 232] [18]; in valsymtri, the procedure zeroin is used for this 
purpose. Moreover, we have incorporated the following idea from [11] 
and [18] which simplifies the calculations and avoids overflow of the 
real number capacity; instead of the principle minors, the ratios of 
successive principle minors, f(i, x) = p(i, x) / p(i - 1, x), are 
calculated; these ratios are obtained by the recurrence formula (d[i] 
is the i-th main diagonal element and bb[i] the square of the i-th 
codiagonal element of T): f(1, x) = d[l] - x, 
f(i, x) = d[i] - x - bb[i - 1] / (if abs(f(i - 1, x)) > machtol then 
f(i - 1, x) else machtol), i = 2,.::,n; where machtol is a givennorm, 
IITI I, of T niiies the machine precision; thus, the number of sign 
agreements equals the number of positive ratios f(i, x). 
The tolerance for each calculated eigenvalue, lambda, is abs(lambda) x 
given relative tolerance+ machtol. 

In vecsymtri, an eigenvector of a symmetric tridiagonal matrix T, 
corresponding to an approximate eigenvalue, lambda, is calculated by 
means of inverse iteration [2, p. 321 - 330] [9] [10]. 
Starting from some initial vector, x, the linear system (T - lambda 
X I)y = x is solved iteratively (by means of Gaussian elimination 
with row interchanges), the solution y divided by its Euclidean norm 
replacing x each time. If the distance between some approximate 
eigenvalues is smaller than machtol, then they are slightly modified 
such that the distance between them equals machtol [2, p. 328] [9]. 
This device, invented by Wilkinson, has the effect that a numerically 
independent set of eigenvectors is obtained, since inverse iteration 
is very sensitive to small changes in the approximate values of 
clustered eigenvalues. If the distance between some eigenvalues is 
smaller than I ITI I times a given "orthogonalisation parameter" (which 
should be not smaller than the machine precision divided by the 
tolerance for the eigenvectors), then in each iteration step, Gram-
Schmidt orthogonalisation [2, p. 242 and 606] is carried out, so that 
the eigenvectors obtained are orthogonal within working precision. 
Note, however, that the calculated eigenvectors corresponding to a 
cluster of eigenvalues may deviate substantially from the true 
eigenvectors. If Gram-Schmidt orthogonalisation yields a null vector, 
then another initial vector, viz. one of the unit vectors, is chosen 
and the iteration is started again; since the unit vectors span the 
whole space, at least one of them is not perpendicular to the desired 
eigenvector, and, thus, is a suitable initial vector. 
The iteration ends, as soon as either the Euclidean norm of the 
residue (T - lambda X I)x (this norm is calculated as the reciprocal 
of the Euclidean norm of y) is smaller than IITII times the tolerance 
for the eigenvectors, or the maximum allowed number of iterations has 
been performed. If the tolerance for the eigenvectors is not too small 
(it should not be smaller than the relative tolerance for the 
eigenvalues), then one or two iterations suffice in most cases. 
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To find eigenvalues of a symmetric matrix M, first Householder's 
transformation (section 230) is performed and then valsymtri is 
called. Furthermore, to find the corresponding eigenvectors, vecsymtri 
is used and then the back transformation (section 230) is carried out. 
The Euclidean norm of the eigenvectors delivered equals 1 (within 
working precision). 

The procedures of this section, except zeroin, use an auxiliary 
array em[0:9], or a part of it, in which some data for controlling the 
iterations must be given and some by-products are delivered. 
A survey of these data and by-products follows: 
1) general · . 
em[O] is the machine precision; must be given for all procedures. 
em[ 1 ] is some norm of M or T; must be given for valsymtri and 
vecsymtri; the other procedures deliver the infinity norm of M, 
produced by tfmsymtri2 or tfmsymtri 1 • 
2) for calculating eigenvalues 
eml2] must be given for, and em[3] is delivered by all procedures, 
except vecsymtri; 
em[2] is the relative tolerance for the eigenvalues; more precisely: 
the tolerance for each calculated eigenvalue, lambda, is abs(lambda) X 
em[2] + em[l] X em[0]; 
em[3] is the number o~ iterations performed for the calculation of the 
eigenvalues. 
3) for calculating ei,envectors 
em[4], em[6] and em[S must be given for, and em[5], em[7] and em[9] 
are delivered by vecsymtri, eigsym2 and eigsyml; moreover, em[5] must 
be given for vecsymtri only if n 1 > 1 • 
em[4] is the orthogonalisation parameter; 
em[5] is the number of eigenvectors involved in the last Gram-Schmidt 
orthogonalisation; if, in the calculation of the last eigenvector, 
no Gram-Schmidt orthogonalisation is carried out, then this number 
equals 1; 
em[6] is the tolerance for the eigenvectors; more precisely: 
the inverse iteration ends if the Euclidean norm of the residue is 
smaller than em[ 1 ] X em[ 6] ; 
em[7] is the maximum Euclidean norm of the residues of the calculated 
eigenvectors of T; 
em[8] is the maximum number of inverse iterations allowed for the 
calculation of each eigenvector; 
em[9] is the largest number of iterations performed for the 
calculation of some eigenvector; the value em[8] + 1 is delivered if 
the Euclidean norm of the residue for one or more eigenvectors does 
not become smaller than or equal to em[ 1 ] X em[ 6] within em[ 8] 
iterations; nevertheless the eigenvectors l'.llaY then very well be useful, 
this should be judged from the value delivered in em[ 7] or from some 
other test. 
The tolerances should satisfy em[0] < em[2] < em[6]; 
the orthogonalisation parameter should satisfy em[4]:::, em[0] / em[6]; 
For the x8, suitable values of the data to be given in em are: 
em[0] = .--12, em[2] = rl0, em[4] = 0.01, em[6] = r-8, em[8] = 5. 
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collllllent mca 2310; 
boolean procedure zeroin(x, y, fx, tolx); real x, y, fx, tolx; 
begin real a, fa, b, fb, c, fc, tol, m, p,---;r;-
----S::-;""x; fa:= fx; b:= x:= y; fb:= fx; 
interpolate: c:= a; fc:= fa; 
extrapolate: if abs(fc) < abs(fb) then 

begin a:=7i; fa:= fb; x:= b:= c;7'b:= fc; c:= a; fc:= fa 
eiic[""fnterchange; 
to!:= tolx; m:= (c + b) x .5; if abs(m - b) > tol then 
begin p:= (b - a) X fb; if p >O then q:= fa - fb else 
--ii'egin q:= fb - fa; p~ - p enr;-

a:= b; fa:= fb; --
x:= b:= if p < abs(q) X tol then (if c > b then b + tol 
else b -tol)-else if p < (m---=--i3') Xq then P7""q + b 
else m; fb:= fxr-- - --
goto if (if fc > 0 then fb > 0 else fb < 0) then interpolate 
else extrapolate -- - -- -

end;--
~ c; zeroin:= if fc > 0 then fb < 0 else fb > 0 

end zeroin; - - -- - -- -
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Description mca 2310 
zeroin searches for a zero of a function between the given values of x 
and y within a certain tolerance. The function and the tolerance are, 
in this order, given by the actual parameters for fx and tolx, which 
are expressions depending on the Jensen variable x. 
zeroin:= true, if either the function values at the given point x and 
y have different sign, or the procedure finds some point in between at 
which the sign of the function value differs from that at x and y. 
Then zeroin calculates and delivers two values x and y ~ing within 
the given interval, having function values of different sign and 
satisfying abs(x - y) < 2 X tolx. 
Moreover, the absolute-function value is not greater at x than at y, 
so that the delivered value of xis the best value for the zero, 
If the function has a continuous second derivative, the order of 
convergence is about 1.6. 
zeroin:• false, if the procedure fails to find points at which the 
function values have different sign. Then the delivered values of x 
and y satisfy all the above conditions, except the sign change 
condition. 
One has to take care that tolx is never smaller than the ma.chine 
precision. Then in either case the process is completed after a finite 
number of steps, an upper bound for the required number of steps 
being the length of the given interval divided by the minimum of the 
tolerance. 
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comment mca 2311 ; 
:procedure valsymtri(d, bb, n, n1, n2, val, em); ~ n, n1, n2; 
integer n, nl, n2; array d, bb, val, em; 
begin integer k, count; 
~ max, x, y, macheps, norm, re, machtol, ub, lb, lambda; 

~ :procedure quot; 
~ integer IJ, i; 

real f; 
count:• count+ 1; p:a k; i:• 1; f:• d[l] - x; goto test; 

high: i:=- i + 1; 
f:• d[i] - x - (if aba(f) > machtol ~ bb[i - 1] / f else 
bb[i - 1] / machtol); 

test: if f < 0 then p:• p + 1; if p < i then 
begin quot:~; lb:• x end -
else 
begin g_ IJ > n ~ quot:,. g_ i ,. n /\ f ~ 0 ~ f ~ - max 

else 
begin g_ i < n ~ goto high; 

quot:= if f > 0 then f else max; 
if x < u.b then u~x --

end - --
end--

~ quot; 

macheps:• em[O]; norm:- em[1]; re: .. em[2]; 
machtol:=- norm X macheps; max:.,. norm/ macheps; count:= O; 
ub:=- 1.1 X norm; lb:=- - ub; lambda:= ub; 
f2!. k:• n1 step 1 ~ n2 do 
begin x:=- lb; y: .. ub; lb:=- - 1.1 X norm; 

zeroin(x, y, quot, abs(x) X re+ machtol); 
val[k] :=- lambda:• if x > lambda then lambda else x; 
if ub > x then ub:;-if x > y thenx"°eJ.se y --

end;- -- - -- --
em[3] :• count 

end valsymtri; 
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Description mca 2311 
valsymtri calculates the n1-th to n2-th eigenvalues of then-th order 
symmetric tridiagonal matrix T whose ma.in diagonal is given in 
~ d[ 1 :n], and whose squared codiagonal elements are given in 
~ bb[1 :n - 1]. 
The following elements of array em[ 0: 3] must be given ( see also p. 19) • 
em[O]: the machine precision; 
em[1]: a norm of T; 
em[2]: the relative tolerance for the eigenvalues. 
The eigenvalues are calculated in monotonicall¥ nonincreasing order 
and delivered in array val[n1:n2],; in particular, if nl "'1 and 
n2 • n, then all eigenvalues are calculated. 
Moreover em[3]:~ the number of iterations performed. 
valsymtri uses zeroin (mca 2310). 



24 

connnent mca 2312; 
procedure vecsymtri(d, b, n, n1 1 n2, val, vec, em);~ n, n1 1 n2; 
integer n, nl, n2; ~ d1 b, val, vec, em; 
begin integer i, j, k, count, maxcount, countllm, orth, ind; 

real bi, bi 11 u, w, y I mi 11 lambda, oldlambda, ortheps, va.lspread, 
'siir,'" res, ma.xres, oldres, norm, newnorm, oldnorm, machtol, vectol; 
a.rrey m, p, q, r, x[ 1 :n]; 
boolean [)Y int[ 1 :n]; 
norm: • em 1 ; machtol: .. em[ 0] x norm; valspread: = em[ 4] x norm; 
vectol:=- em[6] X norm; countlim:• em[8]; ortheps:= sqrt(em[O]); 
maxcount:• ind:• o; ma.xres:• o; 
if nl > 1 then 
begin orth:=- em[5]; oldlambda:• val[nl - orth]; 
----ror k:a nl - orth + 1 step 1 until nl - 1 do 

begin lambda::s val[k]; spr:• oldJambda - lambda; 

end 
end-

if spr < machtol then lambda:= oldla.nibda - machtol; 
oldlambda:., lambda°" 

ei'se orth: • 1 ; 
Tor°k:"' nl step 1 until n2 do 
begin l.a.mbda:• val'[kJ;if k> 1 ~ 

begin spr: .. oldlambda - lambda; if spr < va.lspread then 
begin g spr < ma.chtol ~ lambda:= oldlambda - machtol; 

orth:"' orth + 1 
end 
ei'se orth:"' 1 

end;--
count:• o; u:= d[l] - lambda; bi:• w: .. b[l]; 
if abs(bi) < machtol then bi:a machtol; 
for i: .. 1 stef 1 untiln- 1 do 
begin bi 1 : .. b i +"7'"J; -

if abs(bi 1) < machtol then bi 1 : .. machtol; 
if abs(bi) > abs( u) th°eil" 
begin mi 1 :•-m[i + 1 ]T,;"'u," / bi; p[i] := bi; 

y:=- q[i]: .. d[i + 1] - l.a.mbda; r[i]:= bil; 
u:"' w - mil X y; w:• - mil X bil; int[i]:= true 

end --
else 
begin mil:= m[i + 1]:• bi/ u; p[i]:= u; q[i]:= w; 
--r[i]:=- o; u: .. d[i + 1] - lambda - mil X Wj w:= bil; 

int[i]:• false 
end; --
x[i]:= 1; bi:• bil 

end transform; 
p[n] : • if abs( u) < machtol then machtol else u; 
q[n]:• r[n]:=- O; x[n]:a 1; goto entry; --

iterate: w:• x[l]; 
for i: .. 2 stp 1 until n do 
begin if int i - TTtiien -

begin u:,. w; w:a""'x!i - 1] := x[i] end 
else u: .. x[i]; w:::c x[i] ::z u - m[iJX w 

~ alternate; 



Description mca 2312 
vecsymtri calculates the eigenvectors corresponding to the n1-th to 
n2-th eigenvalues of then-th order synmetric tridiagonal matrix T, 
whose main diagonal and codiagonal, the latter followed by an 
additional element o, are given in array d, b[ 1 :n]. 
In Jay em[0:9] one must give the following data (see also p. 19). 
em[O : the machine precision; 
em[1]: a norm of T; 
em(4]: the orthogonalisation parameter; 
em[6]: the tolerance for the eigenvectors; 

25 

em(8J: the maximum number of iterations allowed for the calculation of 
each eigenvector.· 

If n1 .. 1, then the largest n2 eigenvalues must be given in 
~ val[1:n2] in 100notonicalzy nonincreasing order. Then vecsymtri 
delivers the corresponding eigenvectors in the columns of 
array vec[ 1 :n, 1 :n2]. 
Moreover, in em the following results are delivered: 
em[5]:• the number of eigenvectors involved in the last Gram-Schmidt 
orthogonalisation; 
em[7]: .. the maximum Euclidean norm of the residues; 
em[9]:a the largest number of iterations performed for the calculation 
of some eigenvector; 
if, however, for some calculated eigenvector, the Euclidean norm of the 
residue remains gt'ea ter than em[ 1 ] X em[ 6] , then em[ 9 ] : = em[ 8] + 1 • 

If n1 > 1, then vecsymtri should be preceded by one or more calls of 
vecsymtri producing the eigenvectors corresponding to the largest 
n1 - 1 eigenvalues. Then, in addition to the data mentioned above, one 
must give em[5], as produced by the last call of vecsymtri; 
the k-th to n2-th eigenvalues, where k = n1 - em[5], must be given 
in arra~ val[k:n2] in monotonicalzy nonincreasing order (the k-th to 
(n1 - 1 -th eigenvalues being needed for Wilkinson's device), and the 
corresponding eigenvectors up to the (n 1 - 1 )-th ( which are needed for 
the Gram-Schmidt orthogonalisation) in the corresponding columns of 
arra;y vec[ 1 :n, k:n2]. 
Then vecsymtri calculates the eigenvectors corresponding to the n1-th 
to n2-th eigenvalues and delivers them in the corresponding colUllltls of 
vec; moreover, results as mentioned above are delivered in em, but 
they now concern the calculation of the n1-th to n2-th eigenvectors 
onzy. 

Swmna.rising, we have: two subsequent calls "vecsymtri (d, b, n, 1, 
nl - 1, val, vec, em)" and "vecsymtri (d, b, n, n1, n2, val, vec, em)" 
are equivalent to one call "vecsymtri ( d, b, n, 1, n2, val, vec, em) 11 , 

except for the results delivered in em[7] and em[9]. 
vecsymtri uses vecvec, tamvec and elmveccol [3, chapter 20]. 
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entry: u:= w:= O; 
.f2::. i:= n step - 1 until 1 do 
begin y:= u; u: .. x[i] :• (x[IT - q[i] X u - r[i] X w) / p[i]; 

w:• Y 
end next iteration; 
newnorm:= sqrt(vecvec(l, n, o, x, x)); if orth > 1 then 
begin oldnorm: = newnorm; 

.f2::. j := k - orth + 1 step 1 until k - 1 ~ 
elmveccol(l, n, j, x, vec, - tamvec(l, n, j, vec, x)); 
newnorm:• sqrt(vecvec(l, n, 01 x, x)); 
if newnorm < ortheps x oldnorm then 
begin ind:• ind+ 1; count:"' 1;--

!2::. i : • 1 step 1 until ind - 1, ind + 1 step 1 until 
n do x[i]:= o; x[ind]:= 1; if ind= n then ind:= o; 
goto iterate - --

end new" start 
end orthogonalisation; 
res:= 1 / newnorm; if res> vectol V count= 0 then 
begin count:• count+ 1 ; if count < countlim t~ 

begin .f2::. i:• 1 step luntil n-do x[i]:= xITT X res; 
goto iterate 

end--
end;-- . 
for i:=- 1 step 1 ~ n ~ vec[i,k]:= x[i] X res; 
if count> ma.xcount then ma.xcount:=- count; 
IT res > maxres then ""'iiiaxres: =- res; old.lambda:= lambda 

end;- --
em[5]:• orth; em[7]:• ma.xres; em[9]:a ma.xcount 

~ vecsymtri; 





cuitlillent mca 2313; 
procedure eigvalsyni2( a, n, rn.i.'llval, val, em); value n, numval; 
integer n ,numval; [ray a, val, em; 
begin ~ b, bb, d 1 :n]; 

tfrosymtri2(a, n, d, b, bb, em); 
valsymtri(d, bb, n, 1, numval, val, em) 

~ eigvalsyni2; 

cumment mca 2314; 
procedure eigsyni2(a, n, numval, val, vec, em);~ n, numval; 
integer n, numva.l; [ray a, ·va1, vec, em; 
begin array b, bb, d 1 :n]; 

tfrosymtri2(a, n, d, b, bb, em); 
valsymtri(d, bb, n, 1, numval, val, em); 
vecsymtri(d, b, n, 1, numval, val, vec, em); 
baksymtri2(a, n, 1, numval, vec) 

~ eigsyni2; 
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Description mca 2313 
eigvalsym2 calculates the largest numval eigenvalues of then-th order 
symmetric :natrix M whose upper triangle is given in ~ a[ 1 :n, 1: n]. 
In array em[0:3] the elements with even subscript nru.st be given (see 
also p. 19), viz. 
em[0]: the :nachine precision; 
em[2]: the relative tolerance for the eigenvalues. 
eigvalsym2 delivers the first to numval-th eigenvalues of Min 
monotonica.J.zy nonincreasing order in array val[l:numval], and the data 
for Householder's back transformation in the upper triangle of a. 
Moreover, 
em[l]: .. the infinity norm of·M; 
em[3]: .. the number of iterations performed. 
eigvalsyn2 uses tfmsymtri2 (mca 2300), valsymtri and, indirectly, also 
zeroin (this section) and tamvec, :natmat, tamma.t, elmveccol, elmcolvec 
and elmcol [3, chapter 20]. 

Desc~tion mca 2314 
eigs calculates the largest numval eigenvalues and corresponding 
eigenvectors of then-th order symmetric :natrix M whose upper triangle 
is given in arra;y a[l_:n, 1 :n]. In~ em[0:9], the elements with 
even subscript must be given ( see also p. 19), viz. 
em[0]: the ma.chine precision; 
em[2): the relative tolerance for the eigenvalues; 
em[4]: the orthogonalisation parameter; 
em[6): the tolerance for the eigenvectors; 
em[8]: the :naximum number of inverse iterations allowed for the 
calculation of each eigenvector. 
eigsym2 delivers the first to numval-th eigenvalues in monotonically 
nonincreasing order in~ val[l:numval], the corresponding 
eigenvectors in the columns of ~ vec[l :n, 1 :numval], and the data 
for Householder's back. transformation in the upper triangle of a. 
Moreover, 
em[l]: .. the infinity norm of M; 
em[3]: .. the number of iterations performed for the calculation of the 
eigenvalues; 
em[5]:• the number of eigenvectors involved in the la.st Gram-Schmidt 
orthogonalisation; 
em[7] := the maximum Euclidean norm of the residues of the calculated 
eigenvectors (of the transformed matrix); 
em[9]:a the largest number of inverse iterations performed for the 
calculation of some eigenvector; if, however, for some calculated 
eigenvector, the Euclidean norm of the residue re:nains greater than 
em[l] X em[6], then em[9]: .. em[8] + 1. 
eigsyn2 uses tfmsymtri2 and baksymtri2 ( section 230) valsymtri, 
vecsymtri and, indirectly, also zeroin (this section) and vecvec, 
tamvec, matnat, tamma.t, elmveccol, ellllcolvec and elmcol [3, chapter 20]. 
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comment mca 2318; 
procedure eigvalayml (a, n, numval, val, em); ~ n, numval; 
int7ger n, numval; ~ a, val, em; 
begin ~ b, bb, d[ 1 :n]; 

tfinsymtril(a, n, d, b, bb, em); 
valsymtri(d, bb, n, 1, numval, val, em) 

~ eigvalsym1; 

comment mca 2319; 
procedure eigsym1 (a, n, numval, val, vec, em); ~ n, numval; 
integer n, numval; [rey a, val, vec, em; 
begin arrey b, bb, d 1 :n]; 

tfinsymtril(a, n, d, b, bb, em); 
valsymtri(d, bb, n, 1, numval, val, em); 
vecsymtri(d, b, n, 1, numval, val, vec, em); 
baksymtri1(a, n, 1, numval, vec) 

~ eigsyml; 
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Description mca 2318 
eigvalsyml calculates the largest numval eigenvalues of then-th order 
symmetric matrix M whose upper triangle is given in 
~ a[l :(n + 1) X n.:.. 2] in such a way that the (i, j)-th element 
of Mis a[(j - 1) X j: 2 + i] for 1 < i < j < n. 
In ~ emI 0: 3] the elements with even subscript must be given ( see 
also p. 19), viz. 
em[O]: the machine precision; 
em[2]: the relative tolerance for the eigenvalues. 
eigvalsyml delivers the 1-st to numval-th eigenvalues of Min 
monotonicall;y nonincreasing order in array val[1:numval], and the data 
for Householder's back transformation in a. 
Moreover, 
em[l]:~ the infinity norm of M; 
em[3]:~ the number of iterations performed. 
eigvalsyml uses t:f'msymtri1 (mca 2305), valsymtri and, indirectly, also 
zeroin (this section) and vecvec, seqvec and elmvec [3, chapter 20]. 

Description mca 2319 
eigsyml calculates the largest nunrval eigenvalues and corresponding 
eigenvectors of then-th order syimnetric matrix M whose upper triangle 
is given in array a[ l: (n + 1) X n : 2] in such a way that the 
(i, j)-th element of Mis a[(j - 1Tx j : 2 + i] for 1 < i < j < n. 
In array em[0:9], the elements with even-subscript must-be given as 
for eigs~. 
eigsyml delivers the 1-st to numval-th eigenvalues in monotonically 
nonincreasing order in~ val[l:numval], the corresponding 
eigenvectors in the colunms of array vec[l:n, 1:numval], and the data 
for Householder's back transformation in a. 
Moreover, in the elements of em with odd subscript, the S8ll1e results 
are delivered as by eigs~. 
eigsyml uses t:f'msymtri1 and baksymtri1 (section 230), valsymtri, 
vecsymtri and,' indirectly, also zeroin (this section) and vecvec, 
tamvec, seqvec, elmvec and elmveccol [3, chapter 20]. 
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Section 232 QR iteration 

This section cont.a.ins procedures for calculating the eigenvalues or 
the eigenvalues and eigenvectors of real symmetric matrices: 
qrivalsym2 and qrivalsyml calculate all eigenvalues of a symmetric 
matrix; qrisym calculates the eigenvectors as well; qrivalsymtri 
calculates all eigenvalues of a symmetric tridiagonal matrix; 
qrisymtri calculates the eigenvectors as well, 

The method used in qrivalsymtri and qrisymtri for calculating the 
eigenvalues of a symmetric tridiagonal matrix Tis QR iteration 
(14] (15] (16] (17] (18]; our procedures being most similar to those 
published in (18] and [16]. 
In each step, matrix Tis replaced by the similar matrix Q'TQ, where Q 
is an orthogonal matrix chosen in such a wa:y that, for some suitable 
"shift" s, Q'(T - sI) is an upper-triangular matrix, R (thus, T - sI = 
QR, which explains the name of the method) • 
The matrices Q and R could be calculated by means of Gram-Schmidt 
orthogonalisation (2, p. 242]; hence, it is obvious that Q has 
upper-Hessenberg form. 

The similar matrix Q'TQ is again symmetric (because Q is orthogonal) 
and tridiagonal (because R is upper-triangular and Q has upper
Hessenberg form). 
The sequence of iterates T converges to a (nearly) diagonal matrix, D, 
similar to the given matrix, so that the main-diagonal elements of D 
are (approximately) equal to the required eigenvalues, 
As soon as, for some k, the k-th element of the codiagonal of an 
iterate T has an absolute value smaller than some tolerance, then this 
element is neglected, and matrix T is subdivided into a submatrix of 
order k consisting of the first k rows and columns and a submatrix of 
order n - k consisting of the last n - k rows and columns of T; these 
"principle" submatrices are then considered and handled separately. 
Eigenvalues and eigenvectors of submatrices of order 1 or 2 are 
calculated directly, so that the process is completed if Tis 
subdivided into principle submatrices of order 1 or 2 only. For k = 
n - 1, moreover, a weaker criterion, due to Kahan (17] (18], for 
subdividing the matrix is applied, which criterion is especially 
effective if both the (n - 1 )-th and (n - 2)-th elements of the 
codiagonal become smaJ.l. 

In each step, the shifts is chosen as follows: Let B denote the lower 
right 2 by 2 submatrix of the considered principle submatrix of T; 
thens equals that eigenvalue of B closest to its last main-diagonal 
element. With this choice of s the codiagonal element of B converges 
to 0, The convergence is cubic for a simple eigenvalue of T and linear 
for a multiple one, However, the iteration is discontinued if a given 
maximum allowed number of iterations has been performed. 
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The procedure qrisymtri also calculates the eigenvectors of the 
symmetric matrix M = STS', where T is a symmetric tridiagonal matrix 
and San orthogonal transformation matrix (cf. section 230) as follows 
(16]: in each QR iteration step, a matrix X whose initial value is S 
is replaced by XQ in each step; thus on completion of the process, X 
is the matrix of eigenvectors of M. In particular, if S = I then the 
eigenvectors produced are those of T. The procedure qrivalsymtri is a 
square-rootr-free version of the QR method due to Ortega and Kaiser 
(14] (15] [18] in contrast to qrisymtri; hence these procedures are 
not numerically equivalent as tot.he calculation of the eigenvalues. 

The procedures of this section use an auxiliary array em[0:5], or a 
part of it, in which some data for controlling the iterations must be 
given and some by-products are delivered, A survey of these data and 
by-products follows. 

1) general 
em(O] is t.he machine precision; must be given for qrivalsymtri, 
qrivalsym2, qrisym and qrivalsyml. 
em( 1 ] is some norm of M or T; must be given for qri valsymtri and 
qrisymtri; the other procedures deliver the infinity norm of M, 
produced by tfmsymtri2 or tfsymtri 1 • 

2) for the QR iteration 
em[2] and em14] must be given for, and em[3] and em(51 are delivered 
by, all procedures. 
em(2] is the relative tolerance for the QR iteration; if the absolute 
value of some codiagonal element of the iterated matrix is smaller 
than em(l] X em[2], then this element is neglected and the matrix is 
subdivided. 
em(3] is the maximum absolute value of the codiagonal elements 
neglected, 
em(4] is the maximum allowed number of QR iterations; 
em[5] is the number of QR iterations performed; the value em(4] + 1 is 
delivered, if the QR iteration process is not completed within em(4] 
iterations. 
The tolerance em(2] should be chosen not smaller than em(O]. 
For the X8, suitable values of the data to be given in em are 
em(O] = r-12, em[2] = r-12, em(4] = 5 x n, 
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comment mca 2320; 
integer procedure qrivalsymtri(d, bb, n, em); value n; integer n; 
~ d, bb, em; 
begin integer count, max, nl, k, kl; 
--real tol, tol2, macheps2, bbmax, t, r, w, c, s, shift, u, g, t2, 

w2, p2, dk, cos2, sin2, oldcos2; 
tol:• em[2) X em[l]; tol2:= tol X tol; macheps2:= em[O] ~ 2; 
count:=- o; bbmax:"' o; max:• em[4]; 

in: k:"' n; nl:=- n - 1; 
next: k:• k - 1; if k > 0 then 

begin g bb[kT2:, tol2 then goto next; 
if bb[k] > bbmax then:.bbmax:= bb[k] 

end;- --
if k • nl then n:= nl else 
begin -- --
twoby2: t:,. d[n) - d[nl]; r:• bb[nl]; if k < n - 2 then 

begin w:=- bb[n - 2]; c:"' t X t; s:;-r / (c + w)-; -
g:"' (w + s X c) X s; if g < tol2 then 
begin n:"' n - 1; nl :=n - 1; .:!£ g > bbmax ~ bbmax:= g; 

goto twoby2 
end--

end negligible bb; 
ilabs(t) <·tol thens:= sqrt(r) else 
begin w:=- 2 / t;g:°; w x r / (sqrt(w X w X r + 1) + 1) end; 
if k "'n - 2 then 
begin d[n] :=- atiiJ + s; d[nl] := d[nl] - s; n:= n - 2 end 
else 
begin count: .. count + 1; if count > max then goto end; 

shift: .. d[n] + s; if abs{t) < tol th~ --
begin w:"' d[nl] - s; --

if abs(w) < abs(shift) then shift:= w 
end;- --
k: .. k + 1; g:• d[k] - shift; t2:= g X g; w2:= bb[k]; 
p2: = t2 + w2; oldcos2:"' 1 ; 
for k:=- k + 1 step 1 until n do 
begin kl:= k - 1; si~ /J2.; cos2:== t2 / p2; 

dk:• d[k] - shift; u:= (g + dk) X sin2; 
d[kl]:a g + u + shift; g:= dk - u; 

end; 

t2:,. if cos2 < macheps2 then w2 X oldcos2 else g X g 
/ cos2; w2:=- bb[k]; p2:a w2 + t.2; bb[kl] := sin2 X p2; 
oldcos2:=- cos2 

d[n]:= g + shift 
end sweep 

end;-
if n > 0 then ~ in; 

end:em[3]:a sqrt(bbmax); em[5]:= count; qrivalsymtri:= n 
~ qrivalsymtri; 
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Description mca 2320 
qrivalsymtri calculates all eigenvalues of then-th order symmetric 
tridiagonal matrix T whose main diagonal is given in arra;y d[l:n] and 
the squares of whose codiagonal elements w1 th an additional last 
element Oare given in array bb[l:n]. 
In jray em[0:5] the following data must be given (see also p. 33): 
em[O: the machine precision; 
em[l]: a norm of T; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maxinrum allowed nwnber of iterations. 
The eigenvalues of Tare delivered ind and the squared codiagonal 
elements of the tridiagonal matrix resulting from the QR iteration 
are delivered in bb. Moreover, 
em[3] :a the maxinn.un absolute value of the codiagonal elements 
neglected; 
em[5]:a the number of iterations performed. 
Furthermore, qrivalsymtri:= O, provided the process is completed 
within em[4] iterations; otherwise, qrivalsymtri:= the nuniber, k, of 
eigenvalues not calculated, em[5] := em[4] + 1, and only the last n - k 
elements of dare approximate eigenvalues of T. 
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comment mca 2321; 
integer procedure qrisymtri(a, n, d, b, bb, em); value n; integer n; 
arrey a, d, b, bb, em; 
begin integer i, j, jl, k, m, ml, count, max; 

real bbmax, r, s, sin, t, c, cos, oldcos, g, p, w, tol, to12, 
lambda., dkl, ao, a 1; 
tol:• em[2] x em[l]; tol2:= tol x tol; count:= O; bbmax:= o; 
max:• em[4]; m:= n; 

in: k:• m; ml:"' m - 1; 
next: k: .. k - 1; if k > 0 then 

begin if bb[kT> tol2 then goto next; 
ifbb[k] > bbmax thenbbmax: .. bb[k] 

end;- --
if k .. ml then m:= ml else 
begin -- --
twby2: t:= d[m] - d[ml]; r:= bb[ml]; 

if k < m - 2 then 
begin w:=- bb[m - 2]; c:a t X t; 

s:= r / (c + w); g:= (s X c + w) X s; if g < tol2 then 
begin m:=- m - 1; ml:=- m - 1; if g > bbiiiax then 
--bbmax:= g; goto twoby2 - --
end 

end negligible bb; 
Uabs(t) < tol thens:=- sqrt(r) else 
be~n w:=- 2 / t;s;"; w X r / (sqrt(w x w x r + 1) + 1) end; 
if .. m - 2 then 
begin d[m] :=- d[m] + s; d[ml] := d[ml] - s; 
--i:: ... - s / b[ml]; r:= sqrt(t x t + 1); cos:= 1 / r; 

sin:"' t / r; rotcol(l, n, ml, m, a, cos, sin); m:= m - 2 
end 
else 
begin count:= count + 1 ; if count > max then goto end; 

lambda:= d[m] + s; ifabs(t) < tol then --
begin w:= d[ml] - s; --

if abs(w) < abs(lambda) then lambda:=- w 
end;-
k:=- k + 1; t:• d[k] - lambda; cos:= 1; w:= b[k]; 
p:= sqrt(t X t + wx w); jl:= k; 
~ j: = k + 1 step 1 ~ m do 
begin oldccs:= cos; cos:= t / p; sin:= w / p; 

dkl:a d[j] - lambda; t:= oldcos X t; 

end; 

d[j 1] ; .. (t + dkl) X sin X sin + lambda + t; 
t:= cos x d..~1 - sin x w x oldcos; w:= b[j]; 
p:= sqrt(t X t + w X w); g:• b[jl]:== sin X p; 
bb[jl]:= g X g; rotcol(l, n, jl, j, a, cos, sin); 
jl :=- j 

d[m] ; ... cos X t + lambda; g t < 0 then b[ml] := - g 
end qrstep 

end;-
if m > 0 ~ goto in; 

end: em[3]:= sqrt(bbmax); em[5]:= count; qrisymt~i:= m 
~ qrisymtri; 



37 

Description mca 2321 
qrisymtri calculates all eigenvalues of then-th order symmetric 
tridiagonal matrix T whose main diagonal is given in array d[ 1 : n], and 
whose codiagonal elements with an additional last element O are given 
in array b[ 1 :n] with the squares thereof in array bb[ 1 :n]. 
Moreover, qrisymtri calculates the eigenvectors of M = STS', where Sis 
the orthogonal transformation matrix given in array a[ 1 :n, 1 :n] (e.g. 
as produced by tfmsymtri2 and tfmprevec, section 230). 
In j.ray em[l :5], the following data must be given (see also p. 33): 
em[l : a norm of T; 
em[2]: the relative toleranc~ for the QR iteration; 
em[4]: the maximum allowed number of iterations. 
The eigenvalues of T (and thus also of M) are delivered ind and the 
eigenvectors of Min the corresponding colUJJlrls of a. The codiagonal of 
the tridiagonal matrix resulting from the QR iteration is delivered in 
b, and the squares of these codiagonal elements in bb. 
Moreover, 
em[3):= the maximum absolute value of the codiagonal elements 
neglected,; 
em[5]:= the number of QR iterations performed. 
Furthermore, qrisymtri:= o, provided the process is completed within 
em[4] iterations; otherwise, qrisymtri:= the number, k, of eigen
values, not calculated, em[5]:=- em[4] + 1, and only the last n - k 
elements of' d and colUJJlrls of a are approximate eigenvalues and eigen
vectors of M. 
qrisymtri uses rotcol [3, mca 2031]. 
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comment mca 2322; 
integer :procedure g_rivalsym2(a, n, val, em);~ n; integer n; 
~ a, val, em; 
begin~ b, bb[1 :n]; 

tfmsymtri2(a, n, val, b, bb, em); 
g_rivalsym2:= g_rivalsymtri(val, bb, n, em) 

~ g_ri valsym2; 
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Description mca 2322 
qrivalsym2 calculates all eigenvalues of then-th order symmetric 
matrix M whose upper triangle is given in array a[ 1 :n, 1 :n]. 
In array em[ 0: 5], the elements with even subscript must be given ( see 
also p. 33) viz. 
em[0]: the machine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maxinrum allowed number of iterations. 
The calculated eigenvalues of Mare delivered, in array val[l:n], and 
the data for Householder's back transformation in the upper triangle 
of a, 
em[l]:,. the infinity norm of M; 
em[3]:= the maxinrum absolute value of the codiagonal elements 
neglected; 
em[5]:"' the number of iterations performed. 
Furthermore, qrivalsym2:= o, provided the QR iteration is completed 
within em[4] iterations; otherwise, qrivalsym2:"' the number, k, of 
eigenvalues not calculated, em[5]:=- em[4] + 1, and only the last n - k 
elements of val are approximate eigenvalues of M. 
qrivalsym2 uses tfmsymtri2 (mca 2300), qrivalsymtri (mca 2320) and, 
indirectly, also tamvec, mat.mat, ta.mmat, elmveccol, elmcolvec and 
elmcol [3, chapter 20]. 
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comment mca 2323; 
integer procedure qrisym(a, n, val, em);~ n; integer n; 
~ a, val, em; 
begin ~ b1 bb[ 1 :n]; 

tfmsymtri2(a, n, val, b, bb1 em); tfmprevec(a, n); 
qrisym:~ qrisymtri(a, n, val, b, bb1 em) 

~ qrisym; 

comment mca 2327; 
integer procedure qrivalsyml(a, .n, val, em);~ n; 
integer n; ~ a, val, em; 
begin ~ b1 bb[l : n]; 

tfmsymtril(a, n, val, b, bb, em); 
qrivalsyml:= qrival.symtri(val, bb, n, em) 

~ qri valsym 1; 
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Description mca 2323 
qrisym calculates all eigenvalues and eigenvectors of then-th order 
synmietric matrix M whose upper triangle is given in array a[ 1 :n, 1 :n]. 
In array em[0:5], the elements with even subscript must be given 
(see also p. 33), viz. 
em[0]: the machine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of iterations. 
The calculated eigenvalues of Mare delivered in array val[1:n] and 
the eigenvectors of Min the corresponding columns of array a[1:n, 1:n]. 
Moreover, 
em[ 1 ] : ,. the infinity norm of M; 
em[3] :=- the maximum absolute value of the codiagonal elements 
neglected; 
em[5]:x the number of iterations performed. 
Furthermore, qrisym:• o, provided the process is completed within 
em[4] iterations; otherwise, q_risym:• the number, k, of eigenvalues 
not calculated, em[5]:= em[4] + 1, and only the last n - k elements 
of val and columns of a are approximate eigenvalues and eigenvectors 
of M. 
q_risym uses tfmsymtri2, tfnrprevec (section 230), qrisymtri (mca 2321) 
and, indirectly, also tamvec, matmat, tammat, elmveccol, elmcolvec, 
elmcol and rotcol [3,. chapter 20]. 

Description mca 2327 
qrivalsym1 calculates all eigenvalues of then-th order synmietric 
matrix M whose upper triangle is given in array a[ 1: (n + 1) X n .:. 2] 
in such a way that the (i,j)-th element of Mis a[(j - 1) X j : 2 + i] 
for 1 < i < j < n. -
In array eiii[0:5], the elements with even subscript must be given as 
for qrivalsym2. 
The calculated eigenvalues of Mare delivered in array val[1:n] and 
the data for Householder's back transformation in a. Moreover, in the 
elements of em with odd subscript, the same results are delivered as 
by qrivalsynf!. 
Furthermore, q_rivalsyml:,. o, provided the QR iteration is completed 
within em[4] iterations; otherwise, qrivalsyml:= the number, k, of 
eigenvalues not calculated, em[5] := em[4] + 1, and only the last n - k 
elements of val are approximate eigenvalues of M. 
qrivalsyml uses tfmsymtri1 (mca 2305), qrivalsymtri (mca 2320) and, 
indirectly, also vecvec, seqvec and elmvec [3, chapter 20]. 
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CHAPTER 24 

EIGENSYSTEMS OF REAL MATRICES 

This chapter contains procedures for calculating eigenvalues and/ or 
eigenvectors of real matrices. To solve the eigenproblem the matrix is 
first equilibrated by means of a diagonal similarity transformation 
and the equilibrated matrix is transformed into an upper--Hessenberg 
matrix by means of a stabilized triangular transformation (section 
240). 

The eigenvalues of an upper--Hessenberg matrix are calculated by means 
of QR iteration in one of two variants, viz. single QR iteration, to be 
used if all eigenvalues are real ( section 241), and double QR 
iteration for finding real and complex eigenvalues (section 242). 
Unfortunate:cy-, the QR-iteration process is not always convergent; 
counterexa.m_ples of matrices having real eigenvalues on:cy- are not 
known to the authors; for counterexamples of matrices having complex 
eigenvalues, seep. 74. 

For the calculation of the eigenvectors, two methods have been chosen, 
viz. inverse iteration and a more direct method. The inverse iteration 
converges rapid:cy- in near:cy- all cases, whereas the direct method does 
not perform any iteration process after the QR iteration. We have 
programmed the inverse iteration in a version for real eigenvectors 
(section 241) and one for complex eigenvectors (section 242), but the 
direct method on:cy- for real eigenvectors (section 241),; the version of 
the latter for complex eigenvectors would also be useful, and is not 
included because it is not yet conr_pleted. 

When the processes converge, they yield eigenvalues and eigenvectors 
in reasonable precision, provided that the matrix is not too ill
conditioned with respect to its eigenvalue and eigenvector problems 
[2, chapter 2]. 
A measure for the sensitivity of an eigenvalue of a matrix M to small 
changes in its elements is the quantity k =- I lxl I I IYI I / ly'xl, where 
x and y are the corresponding (suitab:cy- chosen if the eigenvalue is 
muJ.tiple) eigenvectors of M and M'. If M is (approximate:cy-) equal to a 
nondiagonalisable matrix, then k is much larger than 1 for some of its 
eigenvalues, and Mis ill-conditioned with respect to both its eigen
value and eigenvector problems [2, p. 69]. 
If, on the other hand, the quantities k are not much larger than 1 for 
all eigenvalues of M (in particular, the quantities k are equal to 1 
for normal ma.trices, i.e. ma.trices having a unitary matrix of eigen
vectors), then Mis well-conditioned with respect to its eigenvalue 
problem, the eigenvalues obtained by our procedures have a reasonable 
precision, and the eigenvectors obtained are almost always numerical:cy
independent. 



43 

Note, however, that a matrix which is well-conditioned with respect 
to its eigenvalue problem, may be ill-conditioned with respect to its 
eigenvector problem, this being the case if the matrix has closely 
clustered eigenvalues; the calculated eigenvectors corresponding to 
such eigenvalues roa;y very well deviate substantially from the true 
eigenvectors. 

The computation time is roughly proportional ton cubed, but obviously 
depends on the number of iterations required (see Appendix). Inverse 
iteration and the direct method for calculating eigenvectors are 
competitive as to accuracy and computation time. 
It is worth remarking, however, that, in our limited experience, the 
eigenvectors obtained by the direct method are numerically not worse, 
and sometimes better, independent than those obtained by inverse 
iteration. 

As to the calculation of eigenvalues, the Q,R iteration appears to be 
much faster than the nondeflating methods using Hyman's formula for 
evaluating the characteristic polynomial [2, p. 426] and a standard 
iteration process (e.g. linear interpolation [4, AP 239], or 
Laguerre's method [20] [24] [25]) for locating the eigenvalues. A quite 
different ty:pe of method for calculating eigenvalues and eigenvectors 
is Eberlein's method [26] (2, p. 568] [27], which seems to be quite 
satisfactory. 

As to the memory space required for our procedures, we consider only 
then by n arrays used, since the size of the one-dimensional arrays 
is negligible. The procedures reaeigval (mca 2412) and comeigval (mca 
2422), which calculate only eigenvalues, use only one n by n array for 
the given matrix and as working space. The procedures reaeig1 (mca 
2414) and comeig1 (mca 2424), which moreover, calculate the eigen
vectors by means of inverse iteration, use three n by n arrays, one 
for the given matrix, one for the eigenvectors, and a local one as 
working space; the procedures reaeig2 (mca 2415) and comeig2 (mca 
2425), which are numerically equivalent to reaeig1 and comeigl, use 
only one n by n array for the given matrix, as working space and for 
the eigenvectors, but they use also 2 X n I} 2 reai number locations on 
backing storage as working space. The procedure reaeig3 (mca 2417), 
which calculates the eigenvalues and eigenvectors by means of Q,R iter
ation followed by the direct method, uses two n by n arrays, one for 
the given matrix and as working space, and one for the eigenvectors. 
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Section 240 Wilkinson's transformation and equilibration 

This section contains a procedure for transforming a matrix into a 
similar upper-Hessenberg matrix, a procedure for equilibrating a 
matrix, and procedures for performing the corresponding back 
transformations: 
tfmreahes transforms a matrix into a similar upper-Hessenberg matrix 
by means of Wilkinson's transformation; 
ba.kreahesl (bakreahes2) performs the corresponding back transformation 
on a vector (on the columns of a matrix); 
eqilbr equilibrates a matrix by means of a diagonal similarity 
transformation; 
baklbr performs the corresponding back transformation on the co1Ullll1s 
of a matrix. 

Wilkinson's transformation is a triangular similarity transformation 
with stabilizing row and column interchanges [2, p. 353 - 368] 
transforming a matrix into an upper-Hessenberg matrix [20] [22] • 
Let M be a given real matrix and H the resulting upper-Hessenberg 
matrix. The transforming matrix is the product of a permutation matrix, 
P, and a unit lower-triangular matrix, L; thus, H satisfies Pili= MPL. 
The nondiagonal elements in the first column of Lare 01 and the row 
and column interchanges (which determine P) are chosen in such a way 
that the absolute value of each element of Lis at most 1. 
These conditions permit a direct calculation 'of the natrices H, Land 
P in n - 1 steps. 
Let U denote the upper triangle of H, and Q the strict-lower triangle 
of the matrix ML - LU. Apart from the stabilizing interchanges, the 
r-th step (r ~ 1, ••• ,n - 1) is as follows. 
The data for the r-th step are the first r columns of u, the second to 
r-th columns of the strict-lower triangle of L (the first column of L 
is trivial), the r-th column of Q ( which column equals the (r + 1 )-th 
column of the lower triangle of L times the r-th element of the 
subdiagonal of H), and the last n - r columns of M. 
(For the first step, these data are equal to M, since the first main-
diagonal element of U equals that of M, and the elements of the first 
column of Q equal the corresponding elements of M.) 
Using these data, the r-th step produces the r-th element of the sub
diagonal of H and the (r + 1 )-th column of the strict-lower triangle 
of L (which are written over the corresponding elements of the r-th 
column of Q) and the (r + 1)-th columns of U and Q (which are written 
over the corresponding elements of the (r + 1 )-th column of M). 
As to the stabilizing row and column interchanges, the r-th step 
starts with the selection of the r-th "pivot", i.e. an element of the 
r-th column of Q having maximum absolute value (and which is going to 
be the r-th element of the subdiagonal of H); then the r-th "pivotal 
index", pr (i.e. the row index of the r-th pivot), is delivered in an 
auxiliary array (for the sake of the back transformation); 
subsequently, the r-th row and column of the data array are inter
changed with the pr-th ones, and then the results of the r-th step 
sketched above are produced. If, however, all elements in the r-th 
column of Q below the first subdiagonal have absolute value smaller 
than the infinity norm of M times the machine precision, 



then these elements are replaced by O (so, the (r + 1)-th column of 
L - I is the null vector) and, as an indication, the r-th pivotal 
index is replaced by o. The corresponding back transformation 
transforms a vector x into the vector PLx; if xis an eigenvector of 
H, then PLx is the corresponding eigenvector of M. 

In eq_ilbr, the matrix Mis eq_uilibrated by means of Osborne's diagonal 
similarity transformation possibly with interchanges [19]. This 
transformation should be performed before the transformation to 
Hessenberg form. 
A matrix Mis said to be "equilibrated", if each column of M bas 
(nearly) the same Euclidean norm as the corresponding row of M. 
The transforming diagonal matrix, D, and the eq_uilibrated matrix are 
calculated iteratively: 
in each step a certain column of the matrix is multiplied by, and the 
corresponding row divided by, a factor which is chosen in such a way 
that the considered column and row obtain (roughly) the same Euclidean 
norm (in fact, the factor is rounded to the nearest integral power 
of 2, in order to prevent rounding errors in the eq_uilibrated matrix, 
assuming binary floating point arithmetic); the columns and rows are 
handled in cyclic order. If the matrix does not contain columns or 
rows whose off-diagonal elements are (nearly) o, then the process 
(with unrounded factors) converges, and in practice a few steps are 
needed to obtain a reasonably eq_uilibrated matrix [19]. 
If all off-diagonal elements of some considered column (row) are O or 
nearly o, then this column (row) is interchanged with the first 
nonzero column (last nonzero row) of the matrix, and, in order to bave 
a similarity transformation, the corresponding rows (columns) are also 
interchanged; then for the further eq_uilibration, the submatrix is 
considered which does not contain such zero columns and rows and the 
corresponding rows and columns. The eq_uilibration process is continued 
until, in a whole cycle no factor> 2 or< 0,5 and no zero column or 
row is found, or until (n + 1) X n : 2 rows and columns bave been 
considered, -

The corresponding back transformation transforms a vector x into the 
vector Dx and performs the corresponding interchanges; if xis an 
eigenvector of the eq_uilibrated matrix, then the resulting vector is 
the corresponding eigenvector of the original DRtrix. 
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coimnent mca 2400; 
procedure tfmreahes(a, n, em, int);~ n; integer n; array a, em; 
integer~ int; 
begin integer i, j, j1, k, 1; 

reals, t, machtol, macheps, norm; 
array b[0:n - 1]; 
macheps:= em[0]; norm:= o; 
!2!:_ i: .. 1 step 1 ~ n do 
begins:• 0; 

!2!_ j:• 1 step 1 ~ n dos: .. s + abs(a[i,j]); 
ifs> norm then norm:• s 

end;- --
em[1]: .. norm; machtol:= normx macheps; int[1]:= 0; 
!2!:_ j:"' 2 step 1 ~ n do 
begin j1 := j - 1; 1: .. 0; s:= machtol; 

for k:= j + 1 Sr].) 1 until n do 
begin t:• abs(a k,j1J); if t >s ~ 

end 

begin 1: .. k; s:= t ~ 
end; 
if l f 0 then 
begin ,!! abs(a[ j, j 1]) < s then 

begin icbrow(1, n, j, l, a); ichcol(1, n, j, l, a) ~ 
else 1:= j; t:= a[j,j1]; 
fork:"' j + 1 step 1 ~ n do a[k,j1] := a[k,j1] / t 

end 
else 
for k:= j + 1 step 1 ~ n do a[k,j1] :=i 0; 
!2!:_ i:= 1 step 1 ~ n ~ bTI - 1]:= a[i,j]:= a[i,j] + (if 
l .. 0 then 0 else matmat(j + 1, n, i, j1, a, a)) -
matvecn-;-if j1 < i - 2 then j1 else i - 2, i, a, b); 
int[j]:= 1- -- --

~ tfureahes; 



Description mca 24oO 
tfrnreahes transforms then-th order matrix M given in 
array a[ 1 :n, 1 :n] into a similar upper-Hessenberg matrix H. 
In~ em[0:1], one must give the machine precision, em[O], 
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Matrix His delivered in the upper triangle and the first subdiagonal 
of a, the (nontrivial elements of the) transforming matrix in the 
remaining part of a, and the pivotal indices in 
integer arrj int[ 1 :n]. 
Moreover, em 1]:= the infinity norm of M. 
t:f'mreahes uses matvec, matmat, ichcol and ichrow (3, chapter 20]. 
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comment mca 24-ol; 
procedure bakreahesl (a, n, int, v); ~ n; integer n; array a, v; 
integer~ int; 
~ integer i, l; 

real w; 
array x[ 1 :nJ; 
for i:= 2 step 1 until n do x[i - 1]:= v[i]; 
for i : • n step - T""imtil 2 do 
begin v[i]:• v[iJ +""iiiatvec(T; i - 2, i, a, x); l:= int[i]; 

if l > i then 
begin w:•vl:'iJ; v[i]:=- v[l]; v[l]:= w ~ 

end 
~ bakreahesl; 

comment mca 2402; 
procedure bakreahes2(a, n, nl, n2, int, vec); ~ n, nl, n2; 
integer n, nl, n2; ~ a, vec; integer array int; 
~ integer i, 1, k; 

array u[l mJ; 
!.2!, i: = n step - 1 ~ 2 ~ 
begin !.2!, k:= i - 2 step - 1 until 1 do u[k + 1] := a[i,k]; 

!.2!, k:= nl step 1 ~ n2 do vecTI',k] := vec[i,k] + 
tamvec(2, i ~ 1, k, vec, u); l:• int[i]; 
if l > i then icbrow(nl, n2, i, 1, vec) 

end - --
~ bakreahes2; 



Description mca 2401 
ba.kreahes1 should be called after tflllreahes, and performs the 
corresponding back transformation on the vector given as 
~ v[1 :n]. 
The transforming matrix and the pivotal indices, as produced by 
tfmreahes, must be given in the part below the first subdiagonal of 
array a[ 1 :n, 1 :n] and in integer ~ int[ 1 :n]. 
The resulting vector of the back transformation is overwritten on v. 
ba.kreahes1 uses matvec [3, mca 2001]. 

Description mca 24o2 
ba.kreahes2 should be called after tfmreahes, and performs the 
corresponding back transformation on the columns of 
array vec[l:n, n1 :n2]. 
The transforming matrix and the pivotal indices, as produced by 
tfmreahes, must be given in the part below the first subdiagonal of 
array a[ 1 :n, 1 :n] and in integer array int[ 1 :n]. 
The resulting vectors of the back transformation are overwritten on 
the corresponding columns of vec, 
ba.kreahes2 uses tamvec and ichrow [3, chapter 20]. 
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comment mca 2405; 
procedure eqilbr(a, n, em, d, int); value n; integer n; ~ a, em, d; 
integer array int; 
begin in~ i, im, i1, p, q, j, t, count, exponent, ni; 
----r-eal c, r, eps, omega, factor; 

procedure move(k); value k; integer k; 
begin real di; --
--ni: = q - p; t:= t + 1; if k ,I, i then 

begin ichco1(1, n, k, i-;-a); ichrow(1, n, k, i, a); di:= d[i]; 
---a[ i] := d[k]; d[k] := di 
end 

end move; 

factor:= 1 / (2 X ln(2)); comment more generally: ln(base); 
eps:= em[0]; omega:= 1 / eps; t:= p:= 1; q:= ni:= i:= n; 
count:= (n + 1) x n: 2; 
for j:= 1 step 1 untTl n do 
tie'gin d[ j] := 1; imITT:= Oend; 
Tcir:r:= if i < q then i + 1"erse p while count> 0 A ni > 0 do 
tie'gin count:= count - 1 ; im: ~ - 1 ;"IT:= i + 1 ; 
--c:= sqrt(ta.mmat(p, im, i, i, a, a)+ta.mmat(i1, q, i, i, a, a)); 

r:= sqrt(mattam(p, im, i, i, a, a)+mattam(i1, q, i, i, a, a)); 
if c x omega< r X eps then 
oegin int[t]:;;;" i; move(pj';p:= p + 1 end 
e!s'e"if r x omega< c X eps then 
beg:fn1nt[ t] := - f; move(q); q:= q - 1 end 
eise" 
'5eg!n exponent:= ln(r / c) x factor; 
---i:f abs (exponent) > 1 then 

oegin ni:= q - p; c:=~ exponent; r:= 1 / c; 
---a[ i] := d[ i] X c; 

for j:= 1 step 1 until im, 11 step 1 until n do 
tie'gin a[ j, i] : = a[J;"!Jx c; a[ i-;-IT: = aTT;JT x rend 

end--
eise ni:= ni - 1 

end--
end--

end eqilbr; 



Description mca 2405 
eq_ilbr transforms the n-th order matrix given in ar]ay a[ 1 :n, 1 :n] 
into a similar eq_uilibrated matrix. In~ em[0:0, one nmst give 
the machine precision. 
The eq_uilibrated matrix is delivered in a, the main diagonal of the 
transforming diagonal matrix in array d[ 1 :n], and information 
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defining the possible interchanging of some rows and the corresponding 
colUllll'ls in integer array int[ 1 :n]. 
eq_ilbr uses tammat, mattam, ichcol and icbrow [3, chapter 20]. 
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comment mca 2406; 
procedure baklbr(n, n1, n2, d, int, vec); value n, n1, n2; 
integer n, n1, n2; array d, vec; integer array int; 
begin integer i, j,~, q; 
--real di; 

~1 ; q: = n; 
for i:= 1 step 1 until n do 
begin di:=aTT]; ITaI + lthen 
-----r'or j:= n1 step 1 until~do vec[i,j]:= vec[i,j] x di; 

F= int[i];-- --- -
if k > 0 then p:= p + 1 eise if k < 0 then q:= q - 1 

end;- -- -- - --
Tor i:= p - 1 + n - q step - 1 until 1 do 
begin k: = int[ i]; if k """5"""0' then-- -
---,;egin p:= p -TT if k +p"""then ichrow(n1, n2, k, p, vec) end 

else"" - --
'oegI n q:= q + 1; if -k ,f, q then ichrow(n1, n2, - k, q, vec) 
~ 

end
end '6alu.br; 



Description mca 2406 
baklbr should be called a.f'ter eqilbr and performs the corresponding 
back transformation on the columns of array vec[l:n, nl:n2]. 
The main diagonal of the transforming diagonal matrix and the 
information defining the possible interchanging of some rows and 
columns, as produced by eqilbr, must be given in ~ d[l :n] and 
integer ~ int[ 1 :n]. 
The resulting vectors of the back transformation are written over 
the corresponding columns of vec. 
baklbr uses ichrow [3, mca 2ce2]. 
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Section 241 Single QR iteration 

This section contains procedures for calculating eigenvalues and/or 
eigenvectors of real matrices having real eigenvalues only: 
reaeigval calculates the eigenvalues, and reaeig1, reaei~ and reaeig3 
the eigenvalues and eigenvectors of a real matrix; 
reavalqri calculates the eigenvalues of a real upper-Hessenberg 
matrix, and reaqri the eigenvectors as well; 
reaveches calculates an eigenvector corresponding to a given real 
eigenvalue of a real uppeHiessenberg matrix; 
reascl normalizes a given matrix of real eigenvectors. 

The method used (in reavalqri and reaqri) for calculating the real 
eigenvalues of an upper-Hessenberg matrix H, is Francis' "single" QR 
iteration [21] [2, p 515 - 543]. 
In each step, the matrix His replaced by the similar matrix Q'HQ, 
where Q is an orthogonal matrix chosen in such a way that, for some 
suitable "shift" s, Q'(H- sI} is an upper-triangular matrix, R (thus, 
H - sI = QR, which explains the name of the method) • 
The matrices Q and R could be calculated by means of Gram-Schmidt 
orthogonalisation [2, p. 242]; hence, it is obvious that Q has upper
Hessenberg form. 
The similar matrix Q'HQ is again an upper-Hessenberg matrix (because 
R is upper-triangular and Q has upper-Hessenberg form). 
If the given matrix has real eigenvalues only, then, in most cases, 
the sequence of iterates H converges to a (nearJ.;y-) upper-triangular 
matrix, u, similar to the given matrix, so that the diagonal elements 
of U are (approximately) the required eigenvalues. 
As soon as, for some k, the k-th element of the subdiagonal of an 
iterate H has an absolute value smaller than some tolerance, then this 
element is neglected and His partitioned into 4 submatrices, H11, 
H12, H21, H22, consisting of the first k (H11, H12) or last n - k 
(H21, H22) rows of Hand the first k (Hll, H21) or last n - k (H12, 
H22) columns of H; H21 is the null matrix and H12 pleys a role only 
for the calculation of eigenvectors (seep. 55); subsequently, the 
"principle" submatrices Hl 1 and H22 are considered and handled 
separately; eigenvalues of submatrices of order 1 or 2 are calculated 
directly, so that the process is completed if successive partitionings 
have led to principle subma.trices all of order 1 or 2. 

In each step, the shifts is chosen as follows: let B denote the lower 
right 2 by 2 submatrix of the considered principle subma.trix of H; 
thens equals that eigenvalue of B closest to its last main-diagonal 
element if the eigenvalues of B are real, and otherwise s equals the 
real part of the eigenvalues of B. 
If the subdiagonal element of B converges to O, then the convergence 
is quadratic for a simple eigenvalue of Hand linear for a multiple 
one. However, convergence cannot be guaranteed for all cases, although 
no counter-example of a real matrix having only real eigenvalues is 
known to the authors; the iteration is therefore discontinued if a 
given maximum allowed number of iterations has been performed. 



For the calculation of eigenvectors of an upper-Hessenberg matrix H, 
we have chosen alternative methods, viz. inverse iteration, and a 
"direct" method linking up with the QR iteration. 
The procedure reaveches calculates an eigenvector of H corresponding 
to a given approximate real eigenvalue, lambda, by means of inverse 
iteration [2, p. 619 - 628] [4, AP 240] [22]. Starting from the 
initial vector, x, all of whose elements are 1, the linear system 
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(H - lambda X I)y = x is solved iteratively (by means of Gaussian 
elimination with row interchanges), the solution y divided by its 
Euclidean norm replacing x each time. The iteration ends either if the 
Euclidean norm of the residue (H - lambda X I)x (this norm is 
calculated as the reciprocal of the Euclidean norm of y) is not larger 
than a given norm of H times the tolerance for the eigenvectors, or if 
the maximum allowed number of iterations has been performed. 
If the tolerance for the eigenvectors is not too small then one or 
two iterations suffice in most cases. 

To find in reaeigval, reaeig1 and reaeig2 the eigenvalues of a n:atrix 
M having real eigenvalues only, M is first equilibrated and 
transformed to a similar upper-Hessenberg matrix H (section 240), the 
eigenvalues are then calculated by calling reavalqri, and finally the 
calculated eigenvalues are sorted into monotonically nonincreasing 
order. 
Furthermore, to find in reaeig1 and reaeig2 the eigenvectors, 
Wilkinson's device [2, p. 328 and 628] [9] [22] is first applied; 
i.e. approximate eigenvalues having a distance smaller than "machtol" 
(= infinity norm of M equilibrated times the machine precision) are 
slightly modified such that the distance between them equals machtol. 
(This device has the effect that, for reasonably conditioned matrices, 
a numerically independent set of eigenvectors is almost always 
obtained, since inverse iteration is very sensitive to small changes 
in the approximate values of closely clustered eigenvalues.) 
Subsequently, the eigenvectors of Hare calculated by calling 
reaveches; these vectors are then back-transformed to the 
corresponding eigenvectors of M (section 240), and normalized (by 
calling reascl) such that, in each eigenvector, an element of maximum 
absolute value equals 1. 

The other, "direct", method for calculating the eigenvectors of an 
upper-Hessenberg matrix H is used by reaqri, and works as follows. 
In each QR iteration step, the corresponding rotation is performed on 
some matrix X whose initial value is I; i.e. Xis replaced by XQ in 
each step (in this process the submatrices H12 produced by the 
partitionings of Hare also involved); thus, on completion of the QR 
iteration, Xis the product of orthogonal matrices Q transforming the 
given matrix H into the similar upper-triangular matrix U produced by 
the QR iteration, i.e. HX = XU. 
Subsequently, the eigenvectors, v, of U are calculated directly by 
solving the corresponding triangular system of linear equations. 
If the distance between any two diagonal elements of U (which are 
approximate eigenvalues of H) is smaller than n:achtol, then they are 
slightly modified such that the distance between-them equals n:achtol. 
This modification is necessary for preventing division by zero. 



Finally, the eigenvectors v of U are replaced by the vectors Xv, which 
a.re the corresponding eigenvectors of H. 
If H is not too ill-conditioned with respect to its eigenvalue 
problem, then this method yields numerically independent eigenvectors 
(sometimes better than inverse iteration; and is competitive with 
inverse iteration as to accuracy and computation time (seep. 43)). 

To find (in reaeig3) the eigenvalues and eigenvectors of a matrix M 
having only real eigenvalues, Mis first equilibrated and transformed 
to a similar upper-Hessenberg matrix H (section 240); the eigenvalues 
and eigenvectors of Hare then calculated by calling reaqri, and 
finally the eigenvectors of·H are back-transformed to the 
corresponding eigenvectors of M (section 240), and normalized (by 
calling reascl) such that, in each eigenvector, an element of ma.xifillm 
absolute value equals 1 • The procedure reaeig3 does not sort the 
eigenvalues. 

The procedures of this section, except reascl, and those of the next 
section, except comscl, use an auxiliary array em[0:9] (or a part of 
it), in which some data for controlling the iterations must be given 
and some by-products are delivered. 
A survey of these data and by-products follows. 

1) general 
em[OJ is the machine precision; must be given for all procedures; 
em[l] is some norm of Mor H; must be given for reavalqri, reaveches, 
rea.qri, comvalqri and comveches; the other procedures deliver the 
infinity norm of M equilibrated, 

2) for the QR iteration 
em[2] and em(4] must be given for, and em(3] and em[5] are delivered 
by, all procedures, except reaveches and comveches. 
em[2] is the relative tolerance for the QR iteration; 
if the absolute value of some subdiagonal element is smaller than 
em[ 1] X em(2], then this element is neglected and the matrix is 
partitioned; 
em[3] is the maximum absolute value of the subdiagonal elements 
neglected; 
em[4] is the maxinrum allowed number of QR iterations; 
em[5] is the number of QR iterations performed; the value em[4] + 1 is 
delivered if the QR iteration process is not completed within em(4] 
iterations. 
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3) for the inverse iteration 
em[6] and em(S] must be given for, and em(7] and em(9] are delivered 
by, reaveches, reaeigl, reaeig2, comveches, comeigl and comeig2. 
em(6] is the tolerance for the eigenvectors; more preciseJ.;y-, the 
inverse iteration ends if the Euclidean norm of the residue vector is 
smaller than em[ 1 ] X em[ 6] ; 
em[7] is the maximum Euclidean norm of the residue vectors of the 
calculated eigenvectors of H; 
em[8] is the maximum number of inverse iterations allowed for the 
calculation of each eigenvector; 
em[9] is the largest nwnber of inverse iterations performed for the 
calculation of some eigenvector; the value em[8] + 1 is delivered, if 
the Euclidean norm of the residue for one or more eigenvectors remains 
larger than em[l] X em[6] during em[8] iterations; nevertheless the 
eigenvectors may then very well be useful - this should be judged from 
the value delivered in em[7] or from some other test. 

The tolerances should satisfy em[O] < em[2] < em[6]. 
For the x8, suitable values of the data to be given in em are 
em[O] = m-12, em[2] = ID-12, em[4] = 10 X n, em[6] = m-8, em[8] = 5. 



comment mca 2410; 
integer procedure reavalqri(a, n, em, val); value n; integer n; 
array a, em, val; 
begin integer n1, i, i1, j, q, max, count; 

real det, w, shift, kappa, nu, mu, r, tol, delta, machtol, s; 
iii'aciitol:= em[O] X em[1]; tol:= em[1] x em[2]; max:= em[4]; 
count:= o; r:= o; 

in: n1:=- n - 1; 
for i:=- n, i - 1 while (if i > 1 then abs(a[i + 1,i]) > tol else 
false) do q:= i; if q > lthen --
begin if abs(a[q,q- 1 ]) > r then r:= abs(a[q,q - 1]) end; 
if q = n then 
begin valTnT:'= a[n,n]; n:= n1 ~ 
else 
begin delta:= a[n,n] - a[n1,n1]; det:= a[n,n1] X a[n1,n]; 

if abs(delta) <machtol thens:=- sqrt(det) else 
begin w: = 2 / delta; s: ="""'w"'x w X det + 1; --

s: = if s < 0 then - delta X ,5 else w X det / (sqrt(s) 
+1)- --

end; 
if q = n1 then 
begin val[n] :.= a[n,n] + s; val[n1] := a[n1,n1] - s; n:= n - 2 
encr-
e.i:se 
begin count:= count+ 1; g count> max then goto out; 

shift:= a[n,n] + s; if abs(delta) < tol then 
begin w:"' a[n1,n1] -s; --

if abs(w) < abs(shift) then shift:,. w 
end;- --
a[q,q]:= a[q,q] - shift; 
for i:= q step 1 until n - 1 do 
begin i1:= i + 1; a[i1,i1]:= a'fi1 1 i1] - shift; 

kappa:= sqrt(a[i,i] 4 2 + a[i1,i] 4 2); 
if i > q then 

end; 

begin a[i,i - 1] := kappa X nu; w:= kappa x mu end 
else w:= kappa; mu:= a[i,i] / kappa; 
mi:'; a[i1,i] / kappa; a[i,i]:= w; 
rotrow(i1, n, i, i1, a, mu, nu); 
rotcol(q, i, i, i1, a, mu, nu); 
a[i,i]:= a[i,i] + shift 

a[n,n - 1]:= a[n,n] X nu; a[n,n]:= a[n,n] X mu+ shift 
end 

end;-
if n > 0 then goto in; 

out:em[3]:= r;emT5J:= count; reavalqri:= n 
~ reavalqri; 



Description mca 2410 
reaval4ri caJ.culates the eigenvalues of then-th order upper
Hessenberg matrix H given in array a[ 1 :n, 1 :n], provided that all 
eigenvalues of Hare real. 
In Jay em[0:5], the following data must be given (see also p. 56): 
em[0: the machine precision; 
em[1]: norm of H; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of iterations. 
The eigenvalues of Hare delivered in array va1[1:n]. 
Moreover, the Hessenberg part of a is altered; 
em[3]:=- the maximum absolute value of the subdiagonal elements 
neglected; 
em[5]:• the number of iterations performed. 
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Furthermore, reaval4ri:= o, provided that the process is completed 
within em[4] iterations; otherwise, reavalqri:= the number, k, of 
eigenvalues not caJ.culated, em[5] :=- em[4] + 1, and onfy- the last n - k 
elements of val are approxims.te eigenvalues of H. 
reaval4ri uses rotcol and rotrow [3, section 203]. 



60 

connnent mca 2411; 
procedure reaveches(a, n, lambda, em, v); ~ n, lambda; integer n; 
~ lambda; array a, em, v; 
begin integer 1, 11, j, count, max; 

realm, r, norm, machtol, tol; 
boolean~ p[l :n]; 
norm:=- emllJ; machtol:=- em[O] x norm; tol:= em[6] x norm; 
max:• em[8]; a[l,1]:= a[l,1] - lambda; 

gauss: !£!: i:=- 1 step 1 until n - 1 do . 
begin 11:• i + 1; r:= a[i,i]; m:=- a[il,i]; 

if abs(m) < machtol then m:= machtol; p[i]:= abs(m)::; abs(r); 
if p[i] then --
begin a[il,i]:=- m:= m / r; 

for j:• 11 stef 1 until n do a[il,j]:= (g j > 11 then 
a[il,j] else a 11,'JT=-'°lambda) - m X a[i,j] 

end --
else 
begin a[i,i]:=- m; a[il,i]:= m:= r / m; 
~ j:=- 11 step 1 ~n do 
begin r:=- (:!!, j > 11 ~ a[11,j] else a[il,j] - lambda); 

a[il,j]:= a[i,j] - m X r; a[i,jJ:= r 
end 

end 
end gauss; 
Ir'abs{a[n,n]) < machtol then a[n,n] := machtol; 
for j:= 1 step 1 ~ n do v[j]:= 1; count:=- o; 

forward: count:=- count+ 1; if count> max then goto out; 
!2!.i:= 1 step 1 ~n-= 1 ~ ----
begin i 1 : "" i + 1; 

if p[i] then v[il]:= v[il] - a[il,i] X v[i] else 
begin r::""vTil]; v[il]:,. v[i] - a[il,i] X r;vTf]:= r ~ 

end forward; 
backward: for i:"' n r? -1 until 1 do v[i] :=- (v[i] - matvec(i 

+ 1, n;-T, a, v) a[i,i]; r:=- 17 sqrt(vecvec(l, n, o, v, v)); 
!£!: j:=- 1 step 1 ~ n do v[j]:=- v[j] X r; 
if r > tol then goto forward; 

out:em[7]:=- r; em[9~count 
end reaveches; 
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Description mca 2411 
reaveches calculates the eigenvector corresponding to the real 
eigenvalue lambda of the n,-th order upper-Hessenberg matrix H given in 
~ a[l:n, 1:n]. 
In Jay em[0:9], the following data must be given (see also p. 56,57). 
em[0: the machine precision; 
em[l]: a norm of H; 
em[6]: the tolerance for the eigenvectors; 
em[8]: the maximum allowed number of iterations. 
The calculated eigenvector is delivered in array v[l:n]. 
Moreover, the Hessenberg part of a is altered; 
em[7]:=- the Euclidean norm, llrll, of. the residue of the calculated 
eigenvector; 
em[9] :=- the number of iterations performed. 
If, however, 11 r I l remains larger than em[ 1 ] x em[ 6] during em[ 8] 
iterations, then em[9]:=- em[8] + 1. 
reaveches uses vecvec and matvec [3, section 200]. 
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coD11J1ent mca 2412; 
integer procedure reaeigva.l(a, n, em, val);~ n; integer n; 
array a, em, val; 
begin integer i, j; 

real r; 
integer arrrr int, into[ 1 :n]; 
~ d[l:n; 
eq:[lbr(a, n, em, d, into); tfmreahes(a, n, em, int); 
j:= reaeigva.l:"' reavalqri(a, n, em, val); 
~ i: =- j + 1 step 1 ~ n ~ 
for j:"' i + 1 rep 1 untiJ, n do 
begin if val[j > vaiITTthen -
----Segin r:a val[i]; vaiITT:= val[j]; val[j]:= r ~ 
end 

~ reaeigva.l; 
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Description mca 2412 
reaeigval calculates the eigenvalues of then-th order matrix M given 
in array a[ 1 :n, 1 :n], provided that all eigenvalues of M are real. 
In array em[ 0: 5], the elements with even subscript must be given 
(see also p. 56). 
em[O]: the machine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of iterations, 
The eigenvalues of Mare delivered in array val[l:n] in monotonically 
nonincreasing order. 
Moreover, the elements of a are altered; 
em[l]:= the infinity norm of M equilibrated; 
em[3]:= the IIRXimum absolute value of the subdiagonal elements 
neglected; 
em[5]:= the number of iterations performed. 
Furthermore, reaeigval:= o, provided that the process is completed 
within em[4] iterations; otherwise, reaeigval:= the nuniber, k, of 
eigenvalues not calculated, em[5] := em[4] + 1, and only the last n - k 
elements of val are approximate eigenvalues of M. 
reaeigval uses eqilbr, tfmreahes (section 240) and reavalqri (mca 2410) 
and, indirectly, also matvec, matmat, tammat, mattam, ichcol, ichrow, 
rotcol and rotrow [3, chapter 20], 
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comment mca 2413; 
procedure reascl(a, n, nl, n2); ~ n, nl, n2; integer n, nl, n2; 
array a; 
begin integer i, j; 

real s; 
for j : = n 1 step 1 until n2 do 
begin s:= O; 

for i: = 1 stp 1 until n do 
begin if abs a[i,ID> abs[s) ~ s:= a[i,j] end; 
ifsfo~ 
for i:= 1 step 1 ~ n ~ a[i,j] := a[i,j] / s 

end 
end reascl; 

comment mca 2414; 
integer procedure reaeigl(a, n, em, val, vec); ~ n; integer n; 
array a, em, val, vec; 
begin integer i, k, max, j, l; 

real residu, r, machtol; 
array d, v[ 1 :n], b[ 1 :n, 1 :n]; 
integer array int, intO[l:n]; 
residu:= O; max:= o; eqilbr(a, n, em, d, into); 
tfureahes(a, n, em, int); 
.f2!. i := 1 step 1 ~ n ~ 
for j:= (g i "'1 ~ 1 ~ i - 1) step 1 until n do b[i,j]:= 
a[i,j]; k:= reaeig1:= reavalqri(b, n, em, van;-
!2!. i:= k + 1 step 1 ~ n do 
.f2!. j : = i + 1 jtep 1 until n ~ 
begin g_ val[ j > valITTthen 

begin r:= val[i]; valTIT:"= val[j]; val[j) := r end 
end; 
machtol:= em[O] x em[1]; 
.f2!. l:= k + 1 step 1 ~ n do 
begin if l > 1 then 

begin if val[l - 1) - val[l] < machtol then val[l]:= val[l -
--1 ]-:= machtol 
~; 
.f2!. i:= 1 step 1 ~ n do 
for j:= (if i = 1 then 1 else i - 1) sjep 1 until n do 
b[i,j] := a[i,j]; reaveches(b, n, val[l , em, v;; -
if em[7] > residu then residu:= em[7); 
if em[9] > max thenmax:= em[9]; 
for j:= 1 step 1 until n do vec[j,l]:= v[j] 

end; 
eml7]:= residu; em[9]:= max; bakreahes2(a, n, k + 1, n, int, vec); 
baklbr(n, k + 1, n, d, into, vec); reascl(vec, n, k + 1, n) 

~ reaeigl; 



Description mca 2413 
reascl normalizes the (non-nul.l) columns of array a[l:n, nl:n2] in such 
a way that, in each column, an element of maximum absolute value 
equals 1. The normalized vectors are "Written over the corresponding 
columns of a. 

Description mca 2414 
reaeigl calculates the eigenvalues, provided that they are all real, 
and the eigenvectors of then-th order matrix M given in 
~ a[l :n, 1 :n]. 
In array em[0:9], the elements with even subscript nmst be given (see 
also p. 56, 57), viz. 
em[O]: the ma.chine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of QR iterations; 
em[6]: the tolerance for the eigenvectors; 
em[8]: the maximum number of inverse iterations allowed for the 
calculation of each eigenvector. 
The eigenvalues of Mare delivered in array val[l:n] in monotonically 
decreasing order, with the corresponding eigenvectors in the columns 
of arrar vec[ 1 :n, 1 :n]. 
Moreover, the elements. of a are altered; 
em[l]:= the infinity norm of M equilibrated; 
em[3]: .. the maximum absolute value of the subdiagonal elements 
neglected; 
em[5]:~ the number of QR iterations performed; 
em[7]: .. the maximum Euclidean norm of the residues of the calculated 
eigenvectors (of the transformed matrix); 
em[9]:=- the largest number of inverse iterations performed for the 
calculation of some eigenvector. 
Furthermore, reaeigl:= O, provided that the QR iteration process is 
completed within em[4] iterations; otherwise, reaeigl:= the number, k, 
of eigenvalues not calculated, em[5]:= em[4] + 1, and only the last 
n - k elements of val and columns of vec are approximate eigenvalues 
and eigenvectors of M; similarly, if, for some calculated eigenvector, 
the Euclidean norm of the residue relllains larger than em[ 1 ] X em[ 6], 
then em[9]:= em[8] + 1. 
reaeigl uses eqilbr, tfmreahes, bakreahes2, baklbr (section 240), 
reavalq_ri, reaveches and reascl (this section), and, indirectly, also 
vecvec, matvec, tamvec, matmat, tann:nat, mattam, ichcol, ichrow, rotcol, 
and rotrow [3, chapter 20]. 



66 

coilllllent mca 2415; 
integer procedure reaeig2(a, n, em, val); value n; integer n; 
array a, em, val; 
begin integer i, k, max, j, l; 

real residu, r, machtol; 
a.rra;v: d, v[l:n]; 
integer~ int, intO[l :n]; 
residu:= o; max:• O; eqilbr(a, n, em, d, intO); 
tfmreahes(a, n, em, int); 'ltJDRUM(a, 2 X n X n); 
l:= reaeig2:= reavalqri(a, n, em, val); 
f2:: i: = 1 + 1 step 1 ~ n do 
for j:= i + 1 rep 1 until n do 
begin g val[ j > vaiITTthen -

begin r:= val[i]; val[i] := val[j]; val[j] := r end 
end; 
machtol:= em[O] x em[l]; 
fork:= 1 + 1 (tep 1 until n do 
begin FROMDRUM a, 2 xri"x'"n);if k > 1 then 

end; 

begin .!f val[k - 1] - val[k.J < machtol then val[k] := val[k -
1] - machtol 

end; 
reaveches(a, n, val[k], em, v); 
if em(7] > residu then residu:= em[7]; 
if em[9] > max thennruc:= em[9]; bakreahes1(a, n, int, v); 
TODRUM(v, (k - iTx n X 2) 

em[7]:= residu; em[9]: .. max; FROMDRUM(a, O); 
baklbr(n, 1 + 1, n, d, into, a); reascl(a, n, 1 + 1, n) 

~ reaeig2; 



Description mca 2415 
reaeig2 calculates the eigenvalues, provided that they are all real, 
and the eigenvectors of the n-th order matrix M given in 
~ a[l :n, 1 :n]. 
In~ em[0:9] the elements with even subscript must be given as 
for reaeigl. 
The eigenvalues of M are delivered in ~ val[ 1 :n] in I10notonically 
decreasing order with the corresponding eigenvectors in the columns of 
a. The eigenvectors are also delivered in the first n 4 2 real number 
locations of the backing storage, and the next n 4 2 real number 
locations of the backing storage are altered. 
Mo:i;-eover, in the elements of em with odd subscript, the same results 
are delivered as by reaeigl. 
Furthermore, reaeis;2:• o, provided that the QR iteration process is 
completed within em[4] iterations; otherwise, reaeig2:"' the number, 
k, of eigenvalues not calculated, em[ 5] : =- em[ 4] + 1, and only the last 
n - k elements of val and columns of a are approximate eigenvalues and 
eigenvectors of M; similarly, if, for some calculated eigenvector, 
the Euclidean norm of the residue remains larger than em[ 1 ] X em[ 6], 
then em[9l:• em[8] + 1. 
reaeig2 uses eqilbr, tfno:-eahes, bakreahes 1, baklbr ( section 240) , 
reavalqri, reaveches, reascl (this section), the X8-code procedures 
TODRUM and FROMDRUM {see introduction), and, indirectly, also vecvec, 
matvec, mat.mat, ta.mmat, mattam, ichcol, ichrow, rotcol and rotrow [3, 
chapter 20] • 
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comment mca 2416; 
integer :procedure reaqri(a, n, em, val, vec); value n; integer n; 
~ a, em, val, vec; 
begin integer m1, i, i 1, m, j, q, rua.x, count; 

real w, shift, kappa, nu, mu, r, tol, s, machtol, eJJnax, t, 
delta, det; 
array tf[l:n]; 
machtol:= em[O] x em[l]; tol:= em[1] x em[2]; max:= em[4]; 
count:= O; eJJnax:= O; m:= n; 
£2:: i := 1 steJ 1 ~ n ~ 
begin vec[i,i := 1; 
~ j:= i + 1 step 1 ~ n ~ vec[i,j]:= vec[j,i]:= O 

end; 
in: ml:= m - 1; 

for i:= m, i - 1 while (if i > 1 then abs(a[i + 1,i]) > tol else 
false) do q:= i; if q > lthen -- -
begin if abs(a[q,q- 1]) ·>eliiiax then eJJnax:= abs(a[q,q - 1]) 
end; 
if q = m then 
begin vall:Iiil:= a[m,m]; m:= ml ~ 
else 
begin delta:= a[m,m] - a[m1,m1]; det:= a[m,ml] X a[ml,m]; 

if abs(delta) < machtol thens:~ sqrt(det) else 
begin w:'" 2 / delta; s:•WX w X det + 1; --

s:= if s < 0 then - delta X .5 else w x det / (sqrt(s) 
+ 1)- - -- --

end; 
if q = ml then 
begin a[m,m] := val[m] : .. a[m,m] + s; 

a[q,q]:= val[q]:= a[q,q] - s; 

end 
else 

t:= if abs(s) < machtol then (s +delta)/ a[m,q] else 
a[q,iiiJ / s; r:= sqrt(t Xt+ 1); nu:= 1 / r; 
mu:= - t X nu; a[q,m]:= a[q,m] - a[m,q]; 
rotrow(q + 2, n, q, m, a, mu, nu); 
rotcol( 1, q - 1, q, m, a, mu, nu) ; 
rotcol(l, n, q, m, vec, mu, nu); m:= m - 2 

begin count:= count+ 1; if count> max then goto end; 
shift:= a[m,m] + s; ifabs(delta) < tolthen 
begin w::a a[ml,ml] -s; --

if abs(w) < abs(shift) then shift:= w 
end;-
a[q,q]:= a[q,q] - shift; 



Description mca 2416 
reaqri calculates the eigenvalues, provided that they are all real, 
and the eigenvectors of then-th order uppel'.'-J!essenberg matrix H given 
in array a[1:n, 1:n]. 
In array em[0:5], the following data must be given (see also p. 56). 
em[~e machine precision; 
em[1]: a norm of H; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of QR iterations. 
The eigenvalues of Hare delivered in array val[1:n], with the 
corresponding eigenvectors in the columns of array vec[1:n, 1:n]. 
Moreover, the elements of the uppel'.'-J!essenberg part of a are altered; 
em[3]:= the maximum absolute value of the subdiagonal elements 
neglected; 
em[5]:= the number of QR iterations performed. 
Furthermore, reaqri:= O, provided that the process is completed within 
em[4] iterations; otherwise, reaqri:= the number, k, of eigenvalues 
not calculated, em[5]:= em[4] + 1, only the last n -k elements of val 
are approximate eigenvalues of H, and no useful eigenvectors are 
delivered. 
reaqri uses matvec, rotcol and rotrow [3, chapter 20]. 
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for i:= q step 1 until ml do 
begin il:= i + l;a'(Ii",il]:= a[il,il] - shift; 
--kappa:= sqrt(a[i,i] t 2 + a[il,i] t 2); 

end; 

if i > q then 
begin a[i,i - 1] := kappa X nu; w:= kappa x mu ~ 
~ w:= kappa; mu:= a[i,i] / kappa; 
nu:= a[il,i] / kappa; a[i,i]:= w; 
rotrow(il, n, i, il, a, mu, nu); 
rotcol(l, i, i, il, a, mu, nu); 
a[i,i]:= a[i,i] + shift; 
rotcol(l, n, i, il, vec, mu, nu) 

a[m,ml]:= a[m,m] X nu; a[m,m]:= a[m,m] X mu+ shift 
end 

end•_, 
g m > 0 ~ goto in; 
for j:== n jtep - 1 until 2 do 
begin tf[j : .. 1; t:= a[j,j]; 

end; 

~ i: • j - 1 step - 1 until 1 do 
begin delta:= t - a[i,i~ 

tf[i]:= matvec(i + 1, j, i, a, tf) / (if abs(delta) < 
machtol then machtol else delta) -

end; -- --
Tori:= 1 step 1 until n do vec[i,j]:= matvec(1, j, i, vec, 
tf) -- -

end: em[3]:= ellllax; em(5]:= count; reaqri:= m 
~ reaqri; 
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comment mca 2417; 
integer procedure reaeig3(a, n, em, val, vec); value n; integer n; 
~ a, em, val, vec; 
begin integer i; 

real s; 
Integer a]y int, into[ 1 :n]; 
array d[ 1 :n ; 
eqilbr(a, n, em, d, into); tfmreahes(a, n, em, int); 
i:= reaeig3:= reaqri(a, n, em, val, vec); if i = O then 
begin ba.kreahes2(a, n, 1, n, int, vec); -

baklbr(n, 1, n, d, into, vec); reascl(vec, n, 1, n) 
end 

~ reaeig3; 



Description mca 2417 
reaeig3 calculates the eigenvalues, provided that they are all real, 
and the eigenvectors of then-th order matrix M given in 
~ a[ 1 :n, 1 :n]. 
In array em[0:5], the elements with even subscript must be given 
(see also p. 56), viz, 
em[0]: the machine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: ~he maxinrum allowed number of QR iterations, 
The eigenvalues of Mare de],ivered in array va1[1:n], with the 
corresponding eigenvectors in the columns of array vec[1:n, 1:n]. 
Moreover, the elements of a are altered; 
em[ 1] := the infinity norm of M eq_uilibrated; 
em[3]:"' the maxinrum absolute value of the subdiagonal elements 
neglected; 
em[5]: ... the number of QR iterations performed, 
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Furthermore, reaeig3:=- o, provided that the QR iteration process is 
completed within em[4] iterations; otherwise, reaeig3:= the number, k, 
of eigenvalues not calculated, em[5]:= em[4] + 1, only the last n - k 
elements of val are approximate eigenvalues of M, and no useful 
eigenvectors are delivered. 
reaeig3 uses eq_ilbr, tflnreahes, bakreahes2, baklbr (section 240), 
reaq_ri and reascl (tl::\is section), and, indirectly, also matvec, 
tamvec, matmat, tammat, mattam, ichcol, ichrow, rotcol and rotrow [3, 
chapter 20], 
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Section 242 Double QR iteration 

This section contains procedures for calculating real or complex 
eigenvalues and/or eigenvectors of real ma.trices: 
comeigval calculates the eigenvalues, and comeig1 and comeig2 the 
eigenvalues and eigenvectors of a real matrix; 
comvalqri calculates the eigenvalues of a real upper-,Hessenberg 
matrix; comveches calculates the eigenvector corresponding to a given 
complex eigenvalue of a real upper-Hessenberg matrix; 
comscl normalizes a given matrix of real or complex eigenvectors. 

The method used in corovalqri for calculating the eigenvalues of a real 
upper-Hessenberg matrix H, is Francis' "double" QR iteration [21] 
[2, p. 528-537]. 
A double QR iteration step is (ma.thematically) equivalent to two 
successive single iteration steps (see section 241) in which the 
shifts are either both real or each others complex conjugate; thus, a 
double QR iteration step again yields a real upper-,Hessenberg matrix 
as next iterate. 
In each double step, the shifts are chosen approximately equal to the 
eigenvalues of the lower right 2 by 2 subma.trix of the considered 
principle subma.trix of H. 
The shifts are chosen not exactly equal to these eigenvalues in an 
attempt to avoid nonconvergence of the iteration. In fact, the shifts 
are equal to the eigenvalues mentioned plus the square root of the 
product of the last two subdiagonal elements of H times the machine 
precision. 
Hence, one can influence the process by his choice of the 
"ma.chine precision" given in em(O]. 

In the same wa:y as in the single QR iteration, an iterate His 
partitioned into 4 submatrices if, for some k, the absolute value of 
the k-th element of its subdiagonal does not exceed some tolerance; 
moreover, a weaker criterion due to Francis [21] for partitioning the 
matrix is applied, which criterion is especially effective if two 
adjacent subdiagonal elements become small. 
Subsequently, the two principle subma.trices produced by the 
partitioning are considered and handled separately; the process is 
completed when the successive partitionings have led to principle 
submatrices all of order 1 or 2 (cf. section 241). 
In almost all cases, the double QR iteration with the choice of the 
shifts as mentioned above converges; i.e. the last element of the 
subdiagonal of the considered principle submatrix of H converges to O, 
the convergence being quadratic for simple eigenvalues, and linear for 
multiple ones. 
However, convergence does not alwa:ys occur; counter-examples are the 
n-th order permutation ma.trices (n > 2), whose first-subdiagonal 
elements and (1, n)-th element are 1, and whose other elements are O; 
these ma.trices are invariant with respect to (single or double) QR 
iteration (the shifts being 0) (2, p. 521]. 
The iteration (in comvalqri) is discontinued if~ given maximum 
allowed number of iterations has been performed. 
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In comveches, an eigenvector corresponding to a given approximate 
complex eigenvalue, kappa (a lambda+ i X mu), of a real 
upper--Ressenberg matrix His calculated by means of inverse iteration 
[2, p. €i29-633] [22]. Starting from the initial vector, x, having all 
elements equal to 11 the linear system (H - kappa X I)y =xis solved 
iteratively (by means of Gaussian elimination with row interchanges), 
and the solution y divided by its Euclidean norm replaces x each time; 
the computation is performed using complex numbers where necessary. 
The Gaussian elimination yields a complex upper-triangular matrix, u, 
with real main diagonal; the real parts of the elements are stored in 
the upper triangle, and the iIJl1'1,ginary parts in the strict-lower 
triangle of the arrey in which H was given. If the i-th and (i + 1)-th 
row were interchanged in the i-th Gaussian elimination step, then the 
i-th row of U is real thereby making this step and the corresponding 
step of the back substitution twice as fast as otherwise. 
The iteration ends either if the Euclidean norm of the residue 
(H - kappa X I)x (this norm is calculated as the reciprocal of the 
Euclidean norm of y) is not greater then a given norm of H times the 
tolerance for the eigenvectors, or if the maximum allowed number of 
iterations has been performed. If the tolerance for the eigenvectors 
is not too small, then one or two iterations suffice in most cases. 
Our method is the first of the 4 alternatives mentioned in 
[2, p. 629-630]; the second alternative requires much more time and 
space, the third does not converge to an eigenvector of H, and the 
fourth alternative, used in [22], requires about the same computation 
time and twice as much memory space. 

To find (in comeigval, comeig1 and comei*) the eigenvalues of a real 
matrix M, Mis first equilibrated and transformed to a similar real 
upper-Hessenberg matrix H ( section 240), and then the eigenvalues are 
calculated by calling comvalqri. 
Furthermore, to find (in comeig1 and comei*) the eigenvectors, 
Wilkinson's device [2, p. 328 and 628] [9] [22] is first applied; 
i.e. approximate eigenvalues having a distance smaller than some 
tolerance are slightly modified such that the distance between them 
equals that tolerance. (This device has the effect that a numerically 
independent set of eigenvectors is almost always obtained, provided 
that the matrix is not too ill-conditioned with respect to its 
eigenvalue problem, since inverse iteration is very sensitive to 
small changes in the approximate values of closely clustered 
eigenvalues.) 
Subsequently, the eigenvectors of Hare calculated by calling 
reaveches for the real eigenvalues of H, and comveches for the others; 
these vectors are then back-transformed to the corresponding 
eigenvectors of M (section 240; note that the real and imaginary 
parts of a complex eigenvector are each back-transformed in the same 
way as a real eigenvector); 
finally, the eigenvectors of Mare normalized (by calling comscl) such 
that, in each eigenvector, an element of maximum modulus equals 1. 
The procedures of this section, except comscl, use an auxiliary 
~ em[0:9] (or a part of it) in which some data for controlling 
the iterations must be given and some by-products ·are delivered. 
A survey of these data and by-products is given in section 241(p. 56). 



comment mca 2420; 
integer procedure conrvalqri(a, n, em, re, im); value n; integer n; 
array a, em, re, im; 
begin integer i, j, p, q, max, count, n1, p1, p2, imin1, i1, i2, i3; 
--real disc, sigma, rho, g1, g2, g3, psi1, psi2, aa, e, k, s, norm, 

machtol2, tol, w; 
boolean b; 
norm:= em[1 ]; machtol2:= (em[O] x norm) ,+. 2; tol:= em[2] X norm; 
max:= em(4]; count:= o; w:= o; 

in: for i:= n, i - 1 while (if i > 1 then abs(a[i + 1,i]) > tol else 
Taise) do q:= i; ITq> lthen -- --
begin iTabs(a[q,q- 1]) >~hen w:= abs(a[q,q - 1]) end; 
TI'cfYn - 1 then -- -
oegin-n1: = n =-r;" if q = n then 
---i)egin re[n]:= a[n,n]; im[n]:= o; n:= n1 end 

end 

~ -
'6egiri sigma:= a[n,n] - a[n1,n1]; rho:= - a[n,n1] X a[n1,n]; 
--aisc:= sigma~ 2 - 4 x rho; if disc> 0 then 

end -

begin disc:= sqrt(disc); - --
--s:= - 2 X rho/ (sigma+ (if sigma> O then disc 

else - disc)); re[n]:= a[n,n] + s; - -
re[n1] := a[n1 ,n1] - s; im[n] := im[n1] := 0 

end 
else 
oeg'In re[n]:= re[n1]:= (a[n1,n1] + a[n,n]) / 2; 
--rm[n1] := sqrt( - disc) / 2; im[n] := - im[n1] 
end; 
n::;;n-2 

else 
oeg'In count:= count+ 1; if count> max then goto out; n1:= n - 1; 
--sigma:= a[n,n] + a[nf;ri1] + sqrt(abs"{a[n1 ,n - 2] X a[n,n1]) 

X em[O]); rho:= a[n,n] X a[n1,n1] - a[n,n1] X a[n1,n]; 
for i: = n - 1 , i - 1 while ( if i - 1 > q then abs ( a[ i, i - 1 ] 
xa[i1,i] X (abs(a[i,TT+a[TI,i1] - sigma)+ abs(a[i + 
2,i1]))) > abs(a[i,i] X ((a[i,i] - sigma)+ a[i,i1] X a[i1,i] 
+ rho)) X tol else false) do p1:= i1:= i; p:= p1 - 1; 
p2:= p + 2; -- --- -
for i:= p step 1 until n - 1 do 
begin iminl := i -1;'11 := i +7"; i2:= i + 2; if i = p then 
---i)egin g1 := a[p,p] x (a[p,p] - sigma) + a[p,p1] X afpr,p] 

--+ rho; g2:= a[p1,p] x (a[p,p] + a[p1,p1] - sigma); 
if p1 < n1 then 
begin g3:= a[p1,p] X a[p2,p1]; a[p2,p]:= 0 end 
~g3:= O 

end--
else 
oeg'In g1:= a[i,imin1]; g2:= a[i1,imin1]; 
--g3:= if i2 < n then a[i2,imin1] else O 
end; - - --



Description mca 2420 
corrrvalqri calculates the eigenvalues of then-th order upper
Hessenberg matrix H given in array a[ 1 :n, 1 :n]. 
In jray em[0:5], the following data must be given (see also p. 56). 
em[O : the machine precision; 
em[l]: a norm of H; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of QR iterations. 
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The real and imaginary parts of the eigenvalues of Hare delivered in 
array re, im[ 1 :n], the members of each nonreal complex conjugate 
pair being consecutive. · 
Moreover, the elements of a are altered; 
em[3] := the maximum absolute value of the subdiagonal elements 
neglected; 
em[5]:= the number of iterations performed. 
Furthermore, comvalqri:= o, provided that the process is completed 
within em[4] iterations; otherwise, comvalqri:= the number, k, of 
eigenvalues not calculated, em[5]:= em[4] + 1, and onzy the last n - k 
elements of re and im contain approximate eigenvalues of H. 
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end 
end;-

k:= if gl > 0 then sqrt(gl 4 2 + ~ 4 2 + g3 4 2) else -
sqrtlgl 4 2 + ~ 2 + g3 4 2); b:= abs(k) > machtol2; 
aa:= g b then gl / k + 1 else 2; 
psi 1 := g b ~ ~ / (gl +kJ else o; 
psi2:= if b then g3 / (gl + k) else O; 
if i + qthen a[i,iminl]:= if i = p then - a[i,iminl] 
else - k;-- - --
for j:= i step 1 until n do 
begin e:= aa X (a[i,j] + pail X a[il,j] + (if i2::;: n 

then psi2 x a[i2,j] else O)); 
a[i,j]:= a[i,j]..: e;""a[Il,j]:= a[il,j] - pail Xe; 
if i2 < n then a[i2,j):= a[i2,j) - psi2 x e 

end;- - --· 
~ j: = q step 1 until (g i2 ::;: n ~ i2 else n) do 
begin e:= aa X (an:;IT + psil X a[j,il] + (if i2::;: n 

then psi2 X a[j,i2] else O)); 
a[j,i]:= a[j,i) - e;a[J,il):= a[j,il) - pail x e; 
if i2 < n then a[j,i2):= a[j,12] - psi2 Xe 

end;- - --
if i2 < nl then 
begin i3:= 1+3; e:= aa X psi2 X a[i3,i2); a[i3,i]:= - e; 

a[i3,i1):= - psil Xe; 
a[i3,i2]:= a[i3,i2) - psi2 x e 

end . 

if n > O then goto in; 
out:em[3):= w;emT5J:= count; comvalqri:= n 
~ comvalqri; 
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comment mca 2421; 
procedure comveches( a, n, lambda, mu, em, u, v) ; ~ n, lambda, mu; 
integer n; ~ lambda, mu; array a, em, u, v; 
begin integer i, 11, j, count, max; 

real aa, bb, d, m, r, a, w, x, y, norm, machtol, tol; 
array g, f[l :n]; 
boolean lrfl p[l:n]; 
norm:=- em 1; machtol:=- em[O] X norm; tol:= em[6] x norm; 
max:=- em[8]; 
for i:=- 2 steT 1 until n do 
begin f[i - 1 ; .. a[i,i - TI; a[i, 1]: = 0 end; 
aa:=- a[l,1] - lambda; bb:=- - mu; -
for i:=- 1 step 1 until n - 1 do 
begin 11:=- i + l;""'jii:";"°f[i]; ifabs(m) < machtol then m:= machtol; 

a[i,i]:=- m; d:=- a.a I} 2 +bb ~ 2; p[i]:=- abs(m) < sqrt(d); 
if p[i] then 
begin coiiiiii'eiit a[i,j]Xfactor and a[il,j]-a[i,j]; 

f[iJ :=- r:"' m X aa / d; g[i] := a:= - m X bb / d; 
w:= a[il,i]; x:=- a[i,11]; a[il,i]:= y:= x X s + wx r; 
a[i,11]:= x:=- x X r - wx s; a.a:= a[il,11] - lambda - x; 
bb:=- - mu - y; 
for j : .. i + 2 sjep 1 until n do 
begin w:= a[j,i ; x:,,. a[i,j];a[j,i]:= y:= XX a+ W X r; 

a[i,j]:=- x:= x X r - wx a; a[j,11]:= - y; 
a[il,j]:=- a[il,j] - x 

end 
end-
else 
begin comment interchange a[il,j] and a[i,j]-a[il,j]Xfactor; 

f[iJ:=- r:= a.a/ m; g[i]: .. a:= bb / m; 
w:=- a[il,il] - lambda; aa:"' a[i,11] - r x w - a X mu; 
a[i,11]: .. w; bb:=- a[il,i] - a X w + r X mu; 
a[il,i]: ... - mu; 
for j : .. i + 2 stjp 1 until n do 
begin w:= a[il,j; a[il,JJ:= a[i,j] - r X w; a[i,j]:= w; 

a[j,11]:= a[j,i] - s X w; a[j,i]:= 0 
end 

end-
end;-
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Description mca 2421 
comveches calculates the eigenvector corresponding to the complex 
eigenvalue lambda+ i X mu of then-th order upper-Hessenberg matrix 
H given in I§1 a[ 1 :n, 1 :n]. 
In ~ em 0:9 the following data must be given (see also p. 56,57). 
emI0]: the machine precision; 
em[l]: a norm of H; 
em[6]: the tolerance for the eigenvectors; 
em[8]: the maximum allowed number of iterations. 
The real and imaginary parts of the calculated eigenvector are 
delivered in arrey u, v[l:n]. 
Moreover, the elements of a are altered; 
emI7J:• the Euclidean norm, \ lrl l, of the residue of the calculated 
eigenvector; 
em[9]:• the number of iterations performed. 
If, however, l l r l l remains larger than em[ 1 ] x em[ 6 J during em[ 8] 
iterations, then em[9J:• em[8] + 1. 
comveches uses vecvec, matvec and tamvec [3, section 200]. 
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p[n] :=- true; d:• aa ,t 2 + bb ,t 2; if d < machtol ,t 2 ~ 
begin aa:=- machtol; bb:• o; d:= machtol ,t 2 end; 
a[n,n] : .. d; f[n] :=- aa; g[n] :"' - bb; -
for i:=- 1 step 1 until n do 
begin u[i]:=- 1; v[iJ:• 0 end; 
count:=- o; 

forward: g count > max ~ goto outm; 
!2!:, i:"' 1 r? 1 ~ n do 
begin if p i then 

begin w:=- v[IT; v[i] :"' g[i] X u[i) + f[i) X w; 
u(i]:=- f[i] x u[i] - g[i] x w; if i < n then 
begin v[i + 1] :"' v[i + 1] - v[iT; 

u[i + 1]:=- u[i + 1] - u[i] 
end 

end 
else 
begin aa:=- u[i + 1]; bb:• v[i + 1]; 

u[i + 1]:=- u[i] - (f[i] X aa - g[i] x bb); u[i]:= aa; 
v[i + 1]:=- v[i] - (g[i] X aa + f[i] X bb); v[i]:= bb 

end 
end furward; 

backwd: !2!:, i:"' n step - 1 ~ 1 do 
begin 11:• i + 1;. 
--u[i]:• (u[i] - matvec(il, n, i, a, u) + (if p[i] then 

tamvec(il, n, 1, a, v) else a[i1 1 i] X v[iTI)) / a[i,i]; 
v[i]:=- (v(i] - matvec(iT;ri, i, a, v) - {if p[i] then 
tamvec(il, n, i, a, u) ~ a[il,i] x u[iTT)) / a[i,i] 

end backward; 
normairse: w:• 1 / sqrt(vecvec(l, n, O, u, u) + vecvec(l, n, o, 

v, v)); 
!2!_ j:= 1 step 1 ~ n do 
begin u[j] :• u[j] X w; v['3T:=- v[j] X w end; 
co\Ult:= count+ 1; if w > tol then goto forward; 

outm: em[7]:=- w; em[9]::-count -- --
~ comveches; 
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comment mca 2422; 
integer procedure comeigval(a, n, em, re, im); value n; integer n; 
array a, em, re, im; 
begin integer~ int, intO[l :n]; 
~ d[l:n]; 
eqilbr(a, n, em, d, into); tfmreahes(a, n, em, int); 
comeigval:= comvalqri(a, n, em, re, im) 

end comeigval; 

comment mca 2423; 
procedure comscl(a, n, nl, n2, im); ~ n, nl, n2; integer n, nl, n2; 
array a, im; 
begin integer i, j, k; 

real s, u, v, w; 
for j:=- nl step 1 until n2 do 
begin s:=- O; if imr.IT1' 0 then 

begin for i:=- 1 steJ 1 until n do 
begin u:=- a[i,j 1' 2+a[i,j+ 1] 1' 2; if u > s then 

begins:• u; k:=- i ~ 
end; 
ifs f O then 
begin v:= a[k,j] / s; w:=- - a[k,j + 1] / s; 

for i:=- 1 s[ep 1 until n do 
begin u:z a i,j];""""s:":"'"a[i;J + 1 ]; 

a[i,j] :=- u X V - s X w; 
a[i,j + 1] ;:s U X W + S X V 

end 
end;-
j:=- j + 1 

end 
else 
begin .f2!. i:=- 1 tP 1 until n do 

begin if abs a i,j];>abs(aj" then s:"' a[i,j) end; 
if s fo then --

end 
end-

end coiiiscl; 

.!2!, i:"' 1 step 1 ~ n do a[i,j]: .. a[i,j] / s 
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Description mca 2422 
comeigval calculates the eigenvalues of then-th order matrix M given 
in array a[ 1 :n, 1 :n]. 
In array em[0:5], the elements with even subscript must be given (see 
also p. 56). 
em[O]: the machine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of QR iterations. 
The real and imaginary parts of the eigenvalues of Mare delivered in 
~ re, im[1:n], the members of each nonreal complex conjugate pair 
being consecutive. 
Moreover, the elements of a are altered; 
em[1]:= the infinity norm of M equilibrated; 
em[3]:= the maximum absolute value of the subdiagonal elements 
neglected; 
em[5]:3 the number of QR iterations performed. 
Furthermore, ~omeigval:= 01 provided that the process is completed 
within em[4] iterations; otherwise, comeigval:= the number, k, of 
eigenvalues :::iot calculated, em[ 5]: = em[ 4] + 1, and ~nly the last n - k 
'!lements of re and :Lm contain approximate eigenvalues of M. 
comeigval uses eqilbr, tfmreahes (section 240), comvalqri (mca 2420) 
and, indirectly, also matvec, mat.mat, tam:na.t, mattam, ichcol and 
ichrow [3, chapter 20]. 

Description mca 2423 
comacl normalizes the eigenvectors corresponding to the complex 
eigenvalues whose imaginary parts are given in array im[n1 :n2]. 
The corresponding eigenvectors must be given in the colunms of 
array a[1:n, n1:n2] as follows: 
each real eigenvector must be given in a ~olumn whose corresponding 
element of im equals 0; 
the real and imaginary part of each complex eigenvector must be given 
in consecutive columns whose corresponding elements of im are 
not equal too. 
The eigenvectors are normalized in such a wa;y that, in each 
eigenvector, an element of maximum modulus equals 1. 
The normalized eigenvectors are written over the corresponding given 
eigenvectors. 
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coil'IIllent mca 2424; 
integer procedure comeig1(a, n, em, re, im, vec); ~ n; integer n; 
~ a, em, re, im, vec; 
~ integer i, J, k, pj, itt; 

real x, y, max, neps; 
'iirray ab[1 :n, 1 :n], d, u, v[1 :n]; 
integer array int, int0[1:n]; 

procedure transfer; 
begin integer i, j; 

!£::. i :• 1 step 1 ~ ri do 
for j : "' ( if i ,. 1 then 1 else i - 1 ) step 1 ~ n ~ 
ab[i,j] : .. a[i,j] - --

~ transfer; 

eqilbr(a, n, em, d, intO); tfmreahes(a, n, em, int); transfer; 
k:=- comeig1:= comvalqri(ab, n, em, re, im); neps: .. em[O] X em[1]; 
max:"' o; itt:m O; 
for i:"' k + 1 jtep 1 until n do 
begin x:=- re[i ; y:• im[i]; pj:=- o; 
again: for j:=- k + 1 rj} 1 until i - 1 do 

begin if ((x - re j !}, 2°+TY - im[JT) I} 2 < neps 4 2) ~ 
begin if pj ,. j ~ neps: .. em[2] X em[1T else pj: .. j; 

x::c x + 2 x neps; ~ again 
end 

end;-
re(i]::c x; transfer; if y + O then 
begin comveches(ab, n;-re[i], im[i], em, u, v); 

for j: .. 1 step 1 until n do vec[j,i]:= u[j]; i:= i + 1; 
re[i]: .. x - -

end 
eise 
begin reaveches(ab, n, x, em, v) end; 
for j :"' 1 step 1 until n do vec[j;IT:=- v[j]; 
if em[ 7] > max theniiiax: "'em[ 7]; 
ITt:=- if itt > em[9] then itt else em[9] 

end; - -- --
em[7J:• max; em[9]:=- itt; bakreahes2(a, n, k + 1, n, int, vec); 
baklbr(n, k + 1, n, d, into, vec); comscl(vec, n, k + 1, n, im) 

~ comeig1; 
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Description mca 2424 
comeigl calculates the eigenvalues and eigenvectors of then-th order 
matrix M given in ~ a[ 1 :n, 1 :n]. 
In array em[0:9], theelements with even subscript must be given (see 
also p. 56,57), viz. 
em[0]: the ma.chine precision; 
em[2]: the relative tolerance for the QR iteration; 
em[4]: the maximum allowed number of QR iterations; 
em[6]: the tolerance for the eigenvectors; 
em[8]: the maximum number of iterations allowed for the calculation of 
each eigenvector. 
The real and imaginary parts of the eigenvalues are delivered in 
a.rra_y re, im[ 1 :n], the members of each nonreal complex conjugate pair 
'tieing consecutive; the eigenvectors are delivered in the columns of 
~ vec[l:n, 1:n], an eigenvector corresponding to a real 
eigenvalue being in the corresponding column, and the real and 
imaginary part of an eigenvector corresponding to the first member of 
a nonreal complex conjugate pair being in the two consecutive columns 
corresponding to this pair. (The eigenvectors corresponding to the 
second members of nonreal complex conjugate pairs are not delivered, 
since they are simpJ.y the complex conjugate of those corresponding to 
the first members of such pairs.) 
Moreover I the elements of a are altered; 
em[l]:= the infinity riorm of M equilibrated; 
em[3] := the maximum absolute value of the subdiagonal elements 
neglected; 
em[5] :=- the number of QR iterations performed; 
em[7] :"' the maximum Euclidean norm of the residues of the calculated 
eigenvectors (of the transformed matrix); 
em[9] := the largest number of inverse iterations performed for the 
calculation of some eigenvector. 
Furthermore, comeigl:• 01 provided that the QR iteration process is 
completed within em[4] iterations; otherwise, comeigl :• the number, k1 

of eigenvalues not calculated, em[5]:=- em[4] + 11 and on].y the last 
n - k elements of re and im, and the last n - k columns of vec contain 
approximate eigenvalues and eigenvectors of M; similarJ.¥, if, for some 
calculated eigenvector, the Euclidean norm of the residue remains 
greater than em[l] X em[6] during em[8] iterations, then 
em[9]:= em[8] + 1. 
comeigl uses eqilbr, t:f'mreahes, bakreahea2 and baklbr (section 240) 1 

reaveches (mca 2411), comvalqri, comveches and comscl (this section), 
and, indirectJ.¥1 also vecvec, matvec, tamvec, matma.t, twnma.t, mattam, 
ichcol and ichrow (3, chapter 20]. 
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coilD!lent mca 2425; 
integer procedure comei~(a, n, em, re, im); ~ n; integer n; 
array a, em, re, im; 
begin integer i, j, k, pj, s1, itt; 

real x, y, max, neps; 
arrey d, u, v[1:n]; 
integer arrey int, int0[1:n]; 
s1:• 2 X n X n; eqilbr(a, n, em, d, intO); 
tfmreahes(a, n, em, int); 'IODRUM(a, s1); 
k:a comei~:a comvalqri(a, n, em, re, im); FROMl)RUM(a, s1); 
neps:• em[O] x em[l]; max:•·O; itt:= o; 
for i:a k + 1 rep 1 until n do 
begin x:• re[i ; y:• imTi]; pj::or o; 
again: for j:= k + 1 [tj} 1 until i - 1 do 

begin if ( (x - re j 4 2-i7"y - imC:IT) 4 2 < neps 4 2) then 
begin i!, pj • j ~ neps := em[2] X em[ 1T ~ pj: = j; 

x:"' x + 2 X neps; goto again 
end 

end;-
re[i] :• x; if y f O then 
begin comveciies( a, n-;-I=e'[ i], im[ i], em, u, v); 

FROMDRUM(a, al); bakreahesl(a, n, int, u); 
'IODRUM(u, 2 X n X (i - 1)); 1: .. i + 1; re[i]:= x 

end 
else 
b:.f;n reaveches(a, n, x, em, v); FROMDRUM(a, al) end; 
b eahesl(a, n, int, v); 'IODRUM(v, 2 x n x (1 - TIT; 
if em[7] > max then max:= em[7]; 
Itt:• if itt > em[9] then itt else em[9] 

end; - -- --
em[7]:=- max; em[9]:=itt; FROMDRUM(a, o); 
baklbr(n, k + 1, n, d, into, a); comscl(a, n, k + 1, n, im) 

!:E.!! comei~; 



Description mca 2425 
comeig2 calculates the eigenvalues and eigenvectors of then-th order 
matrix M given in ~ a[ 1 :n, 1 :n]. 
In array em[0:9], the elements with even subscript must be given as 
for comeigl. 
The real and imaginary parts of the eigenvalues are delivered in 
array re, im[l:n], and the eigenvectors in the columns of a in the 
same wa:y as by comeigl. 
The eigenvectors are also delivered in the first n ~ 2 real number 
locations of the backing storage; the next n ~ 2 real number locations 
of the backing storage are altered. 
Moreover, in the elements of em with odd subscript, the same results 
are delivered as by comeigl. 
Furthermore, comeig2:= 0, provided that the QR iteration process is 
completed within em[4] iterations; otherwise, comeig2:= the number, k, 
of eigenvalues not calculated, 
em[5]:= em[4] + 1, and only the last n - k elements of re and im, and 
the last n - k columns of a contain approximate eigenvalues and 
eigenvectors of M; similarly, if, for some calculated eigenvector, the 
Euclidean norm of the residue remains greater than em[l] X em[6] 
during em[8] iterations, then em[9] := em[8] + 1. 
comeig2 uses eqilbr, tfurea.hes, bakrea.hesl and baklbr (section 240), 
reaveches (mca 2411),. comvalqri, comveches and comscl (this section), 
the XS-code procedures 'IDDRUM and FROMDRUM ( see introduction), and, 
indirectly, also vecvec, matvec, tamvec, matrna.t, tamma.t, mattam, 
ichcol and ichrow [3, chapter 20]. 



90 

REFERENCES 

1 • P. Naur (ed.), Revised report on the algori tbmic language 
.ALGOL 60 ( 1962). 

2. -J. H. Wilkinson, The algebraic eigenvalue problem 
(Clarendon Press, Oxford 1965). 

3. T. J. Dekker, ALGOL 60 procedures in numerical algebra, part 1 
(Mathematical Centre Tracts 22, Amsterdam 1968). 

4. T. J. Dekker (ed.), Series AP 200 
(Mathematical Centre Amsterdam 1962-1965). 

5. A. s. Householder and F. L. Bauer, On certain methods for 
expanding the characteristic polynomial, 
Num. Math. 1(1959) 29-37, 

6. w. Givens, Numerical computation of the characteristic values 
of a real symmetric matrix 
(Oak Ridge National Laboratory, DRNL-1574, 1954). 

7, J. H. Wilkinson, Householder's method for symnetric matrices, 
Num. Math. 4( 1962) 354-361. 

8. J. H. Wilkinson, Calculation of the eigenvalues of a 
symnetric tridiagonal matrix by the method of bisection, 
Num. Math. 4( 1962) 362-367. 

9. J. H. Wilkinson, Calculation of the eigenvectors of a 
symnetric tridiagonal matrix by inverse iteration, 
Num. Math. 4( 1962) 36&-376. 

10. P. Naur, Eigenvalues and eigenvectors of real symnetric 
matrices, .ALGOL progr8ll1Illing cont. no. 9, BIT4(1964) 120-130. 

11. W. Barth, R. s. Martin and J. H. Wilkinson, Calculation of the 
eigenvalues of a symnetric tridiagonal matrix by the method of 
bisection, Num. Math. 9(1967) 386--393. 

12. J. H. Wilkinson, Two algorithms based on successive linear 
interpolation (Stanford University, Techn. rep. no. CS 60, 1967). 

13. T. J. Dekker, Finding a zero by means of successive linear 
interpolation, to appear in Proc. Symp. on Constructive 
aspects of the fundamental theorem of algebra, 
Rtischlikon, Switzerland (1967). 

14. J. M. Ortega and H. F. Kaiser, The LL I and QR methods for 
symnetric tridiagonal matrices, Comp. J; 6(1963) 99-101. 



91 

15. P.A. Businger, Algoritbm 253, Eigenvalues of a real symmetric 
matrix by the QR method, Comm. ACM 8(1965) 217--218. 

16. P.A. Businger, Algoritbm 254, Eigenvalues and eigenvectors of 
a real symmetric matrix by the QR method, 
Comm. ACM 8(1965) 218--219. 

17. W. Kaban, When to neglect off-diagonal elements of symmetric 
tridiagonal matrices 
(Stanford University, Tecbn. rep. no. CS 42, 1966). 

18. W. Kahan and J. Varah, Two working algori tbms for the 
eigenvalues of a symmetric tridiagonal matrix 
(Stanford University, Tecbn. rep. no. CS 43, 1966). 

19, E. E. Osborne, On preconditioning of matrices, 
J. ACM 7(1960) 33i>--354, 

20. B. Parlett, Laguerre's method applied to the natrix eigenvalue 
problem, Math. Comp. 18(1964) 464-485. 

21. J. G. Francis, The QR transformation, parts 1 and 2, 
Comp. J. 4(1961) 265--271 and 332-345. 

22. J.M. Varah, Eigenvectors of a real matrix by inverse 
iteration (Stanford University, Techn. rep. no. CS 34, 1966). 

23. H. Rutishauser, The Jacobi method for real symmetric matrices, 
Num, Math, 9(1966) 1-10. 

24. T. J. Dekker, Newton-Laguerre iteration 
(Mathematical Centre, Amsterdam, MR 82, 1966). 

25, T. J. Dekker, Newton-Laguerre iteration, Programmation en 
Mathematiques mumeriques. (c.N.R,S,, Paris, 1966) 189--200. 

26. P. J. Eberlein, A Jacobi-like method for the computation of 
eigenvalues and eigenvectors of an arbitrary matrix, 
J, SIAM 10(1962) 74-88. 

27, P. J, Eberlein and J, Boothroyd, Solution to the eigenproblem 
by a norm reducing Jacobi type method, 
Num. Math. 11 ( 1968) 1-12. 

28. J.B. Rosser, C, Lanczos, M,R. Hestenes and W. Karush, 
Separation of close eigenvalues of a real symmetric matrix, 
J. Res, Nat. Bur. Standards 47(1951) 291--297, 

29, J. H. Wilkinson, Global convergence of tridiagonal QR 
algoritbm with origin shifts, to appear in Linear Algebra 
and its applications, Vol, 1 no. 3. 



92 

EPIIDGUE 1 

EXPERIMENTS USING THE MC ALGOL 60 SYSTEM FDR THE X8. 

In this epilogue we give our results for a number of well-known 
matrices. 
a) The matrix W21+ of Wilkinson [2, p. 308]. 

eigsym2 and qrisym delivered all eigenvalues in at least 9 digits. 
The eigenvectors were normalized to Euclidean length 1. The first 
and second eigenvector lied in the subspace spanned by the first 
and second correct eigenvectors, but were rotated by about 10 
degrees; the same holds for the third and fourth eigenvectors. The 
fifth and sixth eigenvectors corresponded in 2 digits to the 
correct eigenvectors, the seventh and eighth in 5, the ninth 
and tenth in 7, and the others in at least 9 digits. 
The computation has taken 11,5 seconds with eigsym2 and 13.0 
seconds with qrisym. 

b) One of Rutishauser's matrices of order 44 [23]. 
It took eigsym2 109.3 seconds to deliver all eigenvalues and eigen
vectors; the eigenvalues nUlllbered 1,15,20,21, ••• ,30,44, and the 
eigenvectors nWllbered 1,15,28,29,30,44, (which are given by 
Rutishauser) were correct in at least 9 digits, 

c) Rosser's matrix of order 8 [28]. 
Both eigsyni2 and qrisym delivered the following results: the 
eigenvalues numbered 1,2,3,5,8 were correct in 11 digits, number 4 
in 10, 6 in 8 and 7 in 9 digits. The eigenvectors were correct in 
6 to 7 digits. The computation time was 2.1 seconds with eigsym2 
and 1. 7 seconds with qrisym. 

d) A matrix of order 10 [21]. 
Both reaeig1 and reaeig3 delivered all eigenvalues and eigenvectors 
in 5.5 seconds. The eigenvalues agreed in 9 digits with those given 
by Francis. We could not check the eigenvectors, but the ma.xi!IE.l 
component of all residual vectors, devided by the matrix norm, was 
,9ir11 with reaeigl and -5.w-11 with reaeig3. 

e) A matrix of order 16 [26]. 
It took comeig1 17 seconds to deliver all eigenvalues and eigen
vectors. 
The eigenvalues were correct in at least 10 digits. 

f) A matrix of order 40 [26]. 
It took comeig1 198 seconds to deliver all eigenvalues and 
eigenvectors. 
The eigenvalues were correct in at least 9 digits. 
(The results given in Eberlein's paper should be multiplied by a 
factor 10). 



EPIIlJGUE 2 

TES'IMATRICES. 

In this epilogue we will mention the sets of testmatrices we used to 
obtain the time formulas in the Appendix. 
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These matrices have the property that all eigenvalues, or all 
eigenvalues and the set of eigenvectors, can be chosen arbitrarily. 
The matrices used for establishing the formulas for the procedures 
of CHAPTER 23 are ma.trices M,. XDX of the order n .. 2 ~ k, where k is 
an integer ranging from 1 to 6. 
The matrices X,. X(k) are defined by the recurrence relation 

X(k+1) ,. 1/sqrt(2) ( 
X(k) X(k)) 

X(k) -X(k) 
for k 2: o, 

x(o) being the identity matrix of order 1. Consequently XX = I. 
Moreover, the columns of X are the eigenvectors of Mand the elements 
of the diagonal matrix Dare the eigenvalues of M. 

The testmatrices for the procedures of CH.APTER 24 were ma.trices of the 
form M • XDY or Y'DX' of order n, n ranging from 12 to 30. 
D is a diagonal matrix and XY • I. The matrices X depend on a parBJlleter 
p, and are defined in the following wey-: 
X[i, j],. p - min(n - 11 n - j) for 1 • 1, ••• ,n; j • 1, ••• ,n - 1. 
X[i, n] • 1 for i .. 1, ••• ,n. 
0bv:l.ously, the columns of X are the eigenvectors of M; the angles 
between these eigenvectors can be varied by the choice of p. We choose 
p"' 10 t k, where k is an integer ranging from 1 to 6. 
Y, the inverse of X, is of tridiagonal form with diagonal d, sub
diagonal b and super diagonal c. 
d[i] • --2 for i .. 2, ••• ,n - 1; d[1] • -1, d[n] = - p. 
b[i] • 1 for i • 1, ••• ,n - 2; b[n - 1] • p. 
c[i] • 1 for i • l, .•. ,n - 1. 
The rows of Y are the eigenvectors of M', which, as can be seen 
immediately, are all but one independent of p. 
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APPENDIX 

TIMES FOR THE MC ALGOL 60 SYSTEM FOR THE X8. 

In this appendix, we give practical fo:nnulas for the computation 
times in milliseconds of those procedures published above which 
calculate the eigenvalues, or the eigenvalues and eigenvectors, of a 
general symmetric or asylllmetric real matrix. 
The computation time for the major procedures of this booklet obviously 
depends not only on the order n of the matrix but also on the number 
of iterations required. We give approximate time fo:nnulas depending on 
n only, because the number of iterations required is closely related to 
the condition of the matrix and the desired precision, and is there
fore not known in advance. Calling the respective procedures with a 
relative precision of n, the number of QR-iterations proved to 
be about 2Xn, and the number in valsynrtri about 1 ~n. 
The formulas have been obtained by fitting a third degree polynomial 
by the method of least squares to the computation times for our 
sets of testmatrices (seep. 93). The tests were performed on an 
Electrologica XS computer using the MC ALGOL 60 system for the x8, 
in which system the procedures mca 2000 to 2005 are available as 
machine-code procedures [3). 

The following results have been obtained: 
CHAPTER 23 EIGENSYSTEMS OF REAL SYMMETRIC MATRICES. 

mca 2313 eigvalsym2 .3n 3 + 15n 2 msec. 
mca 2314 eigsym2 .7n 3 + 25n 2 II 

mca 2318 eigvalsyml .3n 3 + 12n 2 II 

mca 2319 eigsyml .7n 3 + 20n 2 II 

mca 2322 qrivalsym2 .3n 3 + 6n 2 II 

mca 2323 qrisym 2.1n 3 + 8.5n 2 II 

mca 2327 qrivalsyml .3n 3 + 5n 2 II 

CHAPTER 24 EIGENSYSTEMS OF REAL MATRICES. 

mca 2412 reaeigval ,.~r msec. 
mca 2414 reaeigl 2.7n 3 II 

mca 2417 reaeig3 3.5n 3 II 

mca 2422 comeigval 1.6n 3 II 

mca 2424 comeigl 3.0n 3 II 

Notes 
a) Comparing mca 2414 and mca 2417, one might say that reaeig1 is much 

faster than reaeig3. Taking into account the number i of 
QR iterations, the formulas would be the following: 

mca 2414 reaeigl 1.4n 4 3 + .7in 4 2 msec. 
mca 2417 reaeig3 .4n I} 3 + 1.6in I} 2 msec. 

Thus, when the number of iterations is small (relative ton), 
reaeig3 will be faster than reaeigl. 



b) For reaeig2 and comeig2, no time fo:nmlas are given, because 
these procedures are the same as reaeig1 and comeig1, apart from 
the use of a backing storage. 

The formulas presented in this appendix, with the exception of 
those for mca 2422 and mca 2424 can be used for an estimation of 
the computation time, which, for most matrices, will not deviate 
from the actual computation time by more than ten percent. 
Due to the effect that the number i of QR iterations is 
somewhat more sensitive to the distibution •Of the eigenvalues if 
they are complex, the time formulas for mca 2422 and mca 2424 are 
of limited value only. 
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