

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11th February 1946, is a non-profit institution for the
promotion of pure and applied mathematics and computer science. It is sponsored by the
Netherlands Government through the Netherlands Organization for the Advancement of
Pure Research (Z.W.0.).

MATHEMATICAL CENTRE TRACTS
23

ALGOL 60 PROCEDURES IN NUMERICAL ALGEBRA

PART 2

BY

T.J. DEKKER
W. HOFFMANN

2nd. edition

MATHEMATISCH CENTRUM AMSTERDAM

1971

1st edition: 1968

PREFACE

We here present a set of ALGOL 60 procedures for calculating eigen—
values and/or eigenvectors of real matrices, This set uses some vector
procedures published in part 1, which, moreover, contains a set of
procedures for solving systems of linear equations, for inverting
matrices and for solving linear least—squares problems [3].

The procedures have been tested on an Electrologica X8 computer by
means of the " MC ALGOL 60 system for the X8 " of the Mathematical
Centre, Amsterdam, written by F.E.J, Kruseman Aretz.

The texts of the procedures have been edited by the program "ALGOL
editor'", written and published by H.L. Oudshoorn, H,N, Glorie and
G.C.JM, Nogarede (MR 98, Mathematical Centre, Amsterdam, 1968),

In the second edition some minor changes have been introduced.

The texts of the following four procedures have been changed for
the following reasons:

zeroin (mea 2310), for better handling a function which vanishes

on a part of the given interval;

eqilbr (mea 2L05), for reducing the possibility of overflow;

baklbr (meca 2406), for avoiding superfluous row interchanges;
comvalgri (mea 2L420), for avoiding division (by a possibly vanishing
quantity) in the second (weak) partitioning test.

The other changes are minor corrections outside the procedure texts.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Prof, Dr. Ir, A. van
Wijngaarden and Prof, Dr, F,E,J, Kruseman Aretz for invaluable
suggestions and criticisms, and similarly to Dr, B.J. Mailloux, who,
moreover, carefully read the manuscript and suggested several
improvements,

The authors wish to thank also F,J. van den Bosch, R, van der Horst,
D,P, de Jong, J., van der Velden and Miss C,M,L, Smit for their help in
writing the ALGOL texts and in testing the procedures,

to Mrs, E, Binnenmarsch and Miss T, Collast for typing the manuscript,
and to D, Zwarst and J, Sulker for the printing and binding,

CONTENTS

PREFACE

ACKNOWLEDGEMENTS

CONTENTS
NOTATIONS
DEFINITIONS
INTRODUCTION

Section 230
nmea 2300
mea 2301
mea 2302
mea 2305
mea 2306

Section 231

mea 2310
mea 2311
mea 2312
mca 2313
mea 2314
mea 2318
nmea 2319

Section 232
mea 2320
mea, 2321
meca, 2322
mea 2323
mea 2327

CHAPTER 23 EIGENSYSTEMS OF REAL SYMMETRIC MATRICES

Householder's transformation

tfmsymtri2
baksymtri2
tfmprevec

tfmsymtril
baksymbtriil

Linear interpolation and inverse
-1teration

zeroin
valsynmtri
vecsymtri
eigvalsym?
eigsym2
eigvalsymi
eigsymi

QR iteration
qrivalsymtri
qrisymtri
qrivalsym?
qrisym
qrivalsyml

2-3
L

2

6

7=
8 - 15
8-9
10 - 1
12 - 13
i~ 15
17 — 31
20 — 21
22 - 23
2h — 26
28 - 29
30 — 31
32 — 41
34 - 35
36 — 37
38 - 39

CHAPTER 24 EIGENSYSTEMS OF REAL MATRICES

Section 240

mea, 2400
mea 2401
mea 2402
mea. 2405
mea 2406

Section 241
mea 2410
mea 2411
mea 2412
mea 2413
mea 2414
mea 2415
mea, 2416
mea 2417

Section 242
mea, 2420
mea 2421
mea, 2422
mea, 2423
mea 242k
mca 2425

REFERENCES

Wilkinson's transformation and
equilibration

tfmreahes

bakreahesi

bakreahes2

eqilbr

baklbr

Single QR iteration
reavalqri

reaveches

reaeigval

reascl

reaeigl

reaelgl

reaqri

reaeigl

‘Double QR iteration

comvalqri
comveches
comeigval
comscl
comeigl
comeig?

EPILOGUE 1. EXPERIMENTS USING THE MC ALGOL 60 SYSTEM

FOR THE X8

EPILOGUE 2. TESTMATRICES
APPENDIX. TIMES FOR THE MC ALGOL 60 SYSTEM FOR THE X8

42 — 89

b — 53
L6 - 47
48 — 49
50 — 51
52 — 53
54 — 73
58 — 59
60 — 61
62 — 63
6l — 65
66 — 67
68 — 70
7 -17T3
Th - 89
76 — 78
80 - 82
8h — 85
86 — 87
88 — 89
90 — 91
92
93

b — 95

NOTATIONS

References are given between the square brackets "[" and "]".

" ; " denotes the integer division symbol " + " [1, 3.3.4.2.].
"goto" denotes the same symbol as "go to", "boolean" the same as
"Boolean" [1, 2.3.]. .
"I™ denotes the identity matrix; the order will be clear from the
context. :

"1 denotes transposition of a matrix.

Unless stated otherwise, "M" denotes a real matrix, "H" a real
upper-Hessenberg matrix, "T" a tridiagonal real symmetric matrix,
and "n" the order of the matrix considered.

"l x| ["™ ("|[M]]|") denotes some norm of the vector x (matrix M).

DEFINITIONS

The "dimension" of an array is the number of its subscripts (see also
[1, 5.2.3.2.]). Thus, we speak about "one—dimensional" and "two—
dimensional" arrays.

For two—-dimensional arrays as well as for matrices, we use the
following terminology:

the first subscript is called the "row index" and the second the
"colum index"; the i~th "row" ("colum") is the subset for which the
row (column)index equals i; '

the i~th "subdiagonal ("superdiagonal") is the subset for which the
column index minus the row index equals i (equals —i); the O-th
subdiagonal (or superdiagonal) is called the "main diagonal',

whereas the other subdiagonals and superdiagonals are called
"codiagonals";

the first codiagonals are said to be "adjacent" to the main diagonal;
the "upper triangle" ("lower triangle", “"strict—lower triangle") is
the subset for which the column index is < (is >, 1s >) the row index.

A "lower—triangular" ("upper—triangular") matrix, is a matrix whose
elements outside its lower (upper) triangle are zero;

a "unit lower—triangular" matrix is a lower—triangular matrix whose
main diagonal elements are equal to 1. .

An "upper-Hessenberg" matrix is a matrix whose elements outside its
upper triangle and first subdiagonal are zero; a tridiagonal matrix is
a matrix whose elements outside its main diagonal and adjacent
codiagonals are zero.

The first subdiagonal of an upper-Hessenberg matrix (symmetric
tridiagonal matrix) is simply called its "subdiagonal” (“codiagonal").

We use the following vector norms [2, p. 55]: the "one-norm", i.e. the
sum of the absolute values of the elements of the vector; the
"Euclidean norm", i.e. the square root of the sum of their squares;
and the "infinity norm", i.e. their maximum absolute value.

The "infinity norm" of a matrix is defined as the maximum one—norm

of its rows.

A set of vectors is said to be "numerically independent" if it is not
approximately equal to a set of linearly dependent vectors.

The "machine precision" is the largest number, p, for which 1 + p =1
on the computer (about y—12 for the X8); the "working precision"
roughly equals the machine precision.

A "relative tolerance" is a tolerance relative either to a calculated
eigenvalue or to some matrix norm.

Relative tolerances must be chosen smaller than 1, and should be
chosen not smaller than the machine precision.

INTRODUCTION

Chapter 23 contains a set of procedures for calculating the
elgenvalues a.nd/ or elgenvectors of real symmetric matrices.

Chapter 24 contains a set of procedures for calculating the real or
complex eigenvalues a.nd/ or eigenvectors of real matrices.

0f symmetric matrices, only the upper triangles need be given;

for these upper triangles, the procedures of chapter 23 use either
the upper triangle of a two—dimensional array (in which case its
remaining part is not used) or a one-dimensional array(in which case
no space 18 wasted).

In each chapter, we give a survey of its contents and some numerical
considerations and comparisons. The chapters are subdivided into
sections in each of which we give a more detailed survey of its
contents and explain the numerical methods used.

Each section contains some procedures for each of which we give,
besides the ALGOL text, a description mentioning the data required,
the results delivered and the nonlocal procedures (except the standard
functions [1, 3.2.4.]) directly or indirectly used.

The dats are given, and the results are delivered, via the parameters
of the procedures, moreover, some procedures deliver a result as the
value assigned to their identifier.

Some parameters are used as well for data as for results.

For each formal parameter specified array or integer array, we give the
"minimal declaration”, i.e. a declaration with the appropriate nunber
of bound pairs, where each pair indicates the range which is actually
used by the procedure. Sometimes not all elements of the array
indicated by the minimal declaration are used. In the descriptions,

we always mention which part is used for the data and which part for
the results, so that it is always clear which elements are not used at
all and which elements are left unchanged.

As to the nonlocal procedures used, these are either procedures
published in this volume (and preceding the procedure which uses them),
or procedures published in part 1 [3, chapter 20], or standard
functions [1, 3.2.4.] (which are not mentioned in the descriptions),
or the X8-code procedures TODRUM and FROMDRUM (which are used only by
reaelg? (meca 2415) and comeig? (meca 2L425)).

TODRUM and FROMDRUM perform a transport to or from backing storage.
Let a be a real array with k elements, and p an expression whose value
is a nonnegative integer; then the call "TODRUM(a, p)" transports
array a to the backing storage from locations p through p + 2 X k — 1
(the X8 uses two storage locations per real number), and the call
"FROMDRUM(a, p)" transports the contents of the backing storage from
locations p through p + 2 X k — 1 to array a.

It is assumed that two—dimensional arrays are stored columwise, i.e.
the elements of a column are stored consecutively.

CHAPTER 23
EIGENSYSTEMS OF REAL SYMMETRIC MATRICES

This chapter contains procedures for calculating eigenvalues and/or
eligenvectors of real symmetric matrices, and a procedure (mca 2310)
for finding a zero of a function by means of linear interpolation.
For solving the symmetric eigenproblem, two methods have been chosen
both starting with Householder's transformation (section 230).

In the first method (section 231), the eigenvalues are calculated by
means of iterated linear interpolation, and the eigenvectors by means
of inverse iteration; both processes necessarily converge.

The eigenvalues are obtained in monotonically nonincreasing order.
This method 1s particularly sultable, if only some consecutive eigen—
values and/ or the corresponding eilgenvectors are required. The second
method (section 232) uses QR iteration for calculating all eigenvalues
and eigenvectors. Using a suitable "shift" (see p. 32), this process
is convergent [29]. Either method yields eigenvalues and eigenvectors
in reasonable precision, and the eigenvectors obtained are orthogonal
within working precision.

Note, however, that calculated elgenvectors corresponding to closely
clustered elgenvalues may deviate substantially from the true
elgenvectors [2, chapter 2, in particular formuls 10.2].

The computation time for either method is roughly proportional to

n cubed, but obviously depends on the nunber of iterations required
(see Appendix).

These methods are mutually competitive as to accuracy and computation
time; both are considerably faster then and as reliable (with respect
to accuracy obtained) as Jacobi's method [2, p. 266-282 and 343] [23].

Several procedures of this chapter exist in two versions,
distinguished by a "2" or "1" at the end of the procedure identifier.
The procedures whose identifiers end with "2" use the upper triangle
of a two-dimensional array, declared by array al1l:n, 1:n], for the
upper triangle of the glven symmetric matrix M (or for the data for
Householder's back transformation) [7].

The (1, j)—th element of M is a[i, j] only for 1 <1 < j <n.

The other elements of a are neither used nor changed.

The procedures whose ldentifiers end with "1" use a one—dimensional
array, declared by array al1:(n + 1) X n : 2], for the upper triangle
of M (or for the data for Householder®s back transformation). :
The (1, j)—th element of M 18 a[(j — 1) X j : 2 +1] for 1 <1 < J <n.
Thus, the space required for the matrix is cut nearly in half [10],
and the time is not greatly different.

The procedures "eigsym2" and "eigsyml" (section 231) use a separate
two—dimensional array for the eigenvectors of M; on the other hand,
the procedure qrisym (mca 2323) uses the same two—dimensional array
for the upper triangle of M as well as for the matrix of elgenvectors;
thus, qrisym is the most economic one with respect to storage space.

8

comment mca 2300;
procedure tfmsymtri2(a, n, d, b, bb, em); value n; integer n;
array a, b, bb, d, em;

begin integer 1, j, r, ri;

real w, X, al, bO, bbO, dO, machtol, norm;

norm:= Q;
for j:= 1 step 1 until n do
begin w:= 0;

for i:= 1 step 1 until j do w:= abs(ali,j]) + w;
for i:= J + 1 step 1 until n do w:= abs(alj,1]) + w;
if w > norm then norm:= w
end; -
machtol:= em[0] X norm; em[1]:= norm; r:= n;
for ri:=n — 1 step — 1 until 1 do
begin d[r]:= a[r,r]; x:= tammat(1, r -2, r, r, a, a);
al:= a[ri,r]; 1f sgrt(x) < machtol then
begin bO:= b[rT]:= al; bb[r1]l:= b0 X b0; a[r,r]:= 1 end
else
begin bbO:= bb[ri]li= al X al + x;
DO:= if al > O then — sqrt(bb0) else sqrt(bb0);
al:= a[ri,r]:= al — b0; w:= a[r,r]:= 1 / (al X b0);
for j:= 1 step 1 until r1 do b[J]:= (tammat(1, Jj, J, r,
a, a) + matmat(j + 1, r1, J, r, a, a)) X w;
elx;weccol(], rl, r, b, a, tamvec(l, rl, r, a, b) X w X
«5);
for j:= 1 step 1 until r1 do
oL(

begin elmeol(1, J, J, r, &, a, b[J]);
elmcolvec(l, J, J, &, b, ali,r])
end;
blri1l:= vO
end;
ri=ri

end;
a[7]):=al1,1]1; al1,1]:= 1; b[nl:= bb[n]l:= 0
end tfmsymtril;

Section 230 Householder's transformation

This section contains procedures for transforming a real symmetric
matrix into a similar tridiagonal one:

tfmsymtri2 and tfmsymtril perform Householder's transformation;
baksymtri2 and baksymtril perform the corresponding back
transformation;

tfmprevec is to be used in combination with tfmsymtri2 for calculating
the transforming matrix.

Householder's transformation is an orthogonal similarity
transformation which transforms a symmetric matrix into a tridiagonal
one [2, p. 290 — 299] [4, AP 210 and AP 231] [7] [10].

Let M be a given symmetric matrix of order n, S the transforming
matrix and T the resulting tridiagonal matrix. Since S is orthogonal
(i.e. its inverse equals S'), we then have T = S'MS. Matrix S is a
product of n — 1 Householder matrices, these being orthogonal
symmetric matrices of the form I + suu’, where s is a scalar;, and u
a colum vector. The p—th Householder matrix, p = 1,..., n — 1, is
chosen in such a way that the last p elements of u vanish, and the
desired zeroes are Introduced in the (n — p + 1)~th colum and row of
the matrix. However, if, in this columm and row, all elements outside
the main diagonal and the adjacent codiagonals are smaller in absolute
value than the infinity norm of M times the machine precision, then
the p-th transformation is skipped (i.e. the p—th Householder matrix
is replaced by I).

The data for the back transformation, viz. the vectors u and scalars s
of the Householder matrices, are overwritten on the upper triangle of
M, the scalars s being delivered on the main diagonal.

For each Householder matrix + I, the scalar s is negative; if the
transformation is skipped, then +1 is delivered instead of s.

The back transformation transforms a vector x into the vector Sx; if x
is an eigenvector of T, then Sx is the corresponding eigenvector of M.
Starting from the vector v = X, the vector Sx is obtained by
successively replacing v by the p—th Householder matrix times v, for
P=n—1, o0y 2, 13 the resulting vector v then equals Sx.
Similarly, tfmprevec calculates the transforming matrix S starting
from I.

Description meca 2300

tfusymtri2 transforms the n—th order symmetric matrix M whose upper
triangle is given in array a[l:n, 1:n], into a similar symmetric
tridiagonal matrix T.

In array em{0:1], one must give the machine precision, em[O].
tfmsymtri2 delivers the main diagonal, the codiagonal and the squares
of the codiagonal elements of T in array d, b, bb[1:n], the remaining
elements b[n] and bb[n] obtaining the value O.

Moreover, the data for the back transformation are delivered in the
upper triangle of a, and em[1]:= the infinity norm of M.

tfmsymtri2 uses tamvec, matmat, tammat, elmveccol, elmcolvec and
elmcol [3, chapter 20].

10

comment mca 2301;
procedure baksymtri2(a, n, nl, n2, vec); value n, nl, n2;
integer n, ni, n2; array a, vec;
begin integer 1, Jj, k;
resl w;
for j:= 2 step 1 until n do
begin w:= alj,Jjl; 1f w < O then
for k:=nl step 1 until n2 do elmcol(1, J — 1, k, j, vec, a,
tamat(1, J — 1, J; k, a, vec) X w)
end
end baksymtri2;

conment mca 2302;
procedure tfmprevec(a, n); value n; integer n; array a;
begin integer 1, Jj, J1, k;
real ab;
Jli= 1;
for j:= 2 step 1 until n do
begin for i:= 1 step 1 until j1 — 1, J step 1 until n do
a[1,d1]:= 0;7alJ1,JT]:= 1; ab:= a[J,3]; if ab < O Then
for k:= 1 step 1 until J1 do elmcol(l, J1, k, J, a, a,
tammat(1, j1, J, k, a, a) X ab); Jl:=]
end;
for 1:=n — 1 step — 1 until 1 do a[i,n]:= 0; a[n,n]:= 1
end Tfmprevec; ‘

11

Description mca 2301

baksymtri2 should be called after tfmsymtri2, and performs the
corresponding back transformation on the colums of

array vec[1:n, nil:n2].

The data for the back transformation, as produced by tfmsymtri2, must
be given in the upper triangle of array al[i:n, 1:n].

The resulting vectors of the back transformation are overwritten on
the corresponding columms of vec.

baksymtri2? uses tammat and elmcol [3, chapter 20].

Description mca 2302 -

tfmprevec should be called after tfmsymbtri2 and calculates the
corresponding transforming matrix.

The data for the back transformation, as produced by tfmsymtri2, must
be given in the upper triangle of array ali:n, 1:n].

The transforming matrix is delivered in the whole of array al1:n, 1:n].
tfmprevec uses tammat and elmcol [3, chapter 20].

12

corment mca 2305;
procedure tfmsymtril(a, n, d, b, bb, em); value n; integer n;
array a, b, bb, d, em;
begin integer i, Jj, r, rl, p, q, ti, tJ;
real 8, w, X, al, b0, bbO, d0, norm, machtol;
norm:= 0; tj:= O;
for j:= 1 step 1 until n do
begin w:= O;
for 1:= 1 step 1 until J do w:= abs(ali + £j]) + w;
tji=tJ + J; tis=tj + §;
for 1:= j + 1 step 1 until n do
begin w:= abs(alti]) ¥ w; ti:= ti + 1 end;
if w > norm then norm:= w
end;
machtol:= em[0] X norm; em[1]:= norm; q:= (n + 1) X n : 2; r:=n;
for rii=n — 1 stef - 1 until 1 do

begin p:= q — r; dlr]:= alql; x:= vecvec(p + 1, ¢ — 2, 0, a, a);
al:i= a[q — 1]; if sqrt(x) < machtol then
begin bO:= b[r1T:= al; bb[r1]:= b0 X b0; alql:= 1 end
else
begin bbO:= bb[ri]l:= al X al + x;
DO:= if aj > O then — sqrt(bb0) else sqrt(bbo);
al:= alq.— 1]:= al — b0; w:= a[q]:= 1 / (al X b0);
tj:= 03
for j:= 1 step 1 until r1 do
begin ti:= tj + Jj; 8:= vecvec(tj + 1, ti, p — tJ, a, a);

Tii= t1 + J;
bl[jl:= (seqvec(j + 1, r1, tj, D, &, &) + 8) X w;
ti= ti

end;

elmvec(1, rl1, p, b, a, vecvec(l, rl, p, b, a) X wX .5);

tji= O3

for j:= 1 step 1 until r1 do
begin ti:= tj + J; elmvec(tj + 1, ti, p — tJ, a, a, b[jl);
elmvec(td + 1, ti, — tJ, a, b, alj + pl); tj:= ti
end;
blri1l:= b0
end;
q:= p; ri=1r]

d;
%IfT]:- al[1]; al[1]:= 1; b[n]:= bb[n]:= 0
end tfmsymtril;

13

Description mca 2305

tfmsymtril transforms the n—th order symmetric matrix M whose upper
triangle is given in array a[1:(n + 1) X n : 2] in such a way that the
(i, J)-th element of Misal[(j - 1) X j:2+i] for 1 <1< Jj<n.
In array em[0:1], one must give the machine precision, em[0].
Matrix M is transformed into a similar symmetric tridiagonal matrix T,
The main diagonal, the codiagonal and the squares of the codiagonal
elements of T are delivered in array d, b, bb[1:n], the remaining
elements b[n] and bb[n] obtaining the value O.

Moreover, the data for the back transformation are delivered in a, and
em[1]:= the infinity norm of M.

tfmsymtril uses vecvec, seqvec and elmvec [3, chapter 20].

h

comment meca 2306;
procedure baksymtrii(a, n, nl, n2, vec); value n, nl, n2;
integer n, nl, n2; array a, vec;
begin integer j, j1, k, ti, tJ;
real w3
auxvec[1:n];
for k:= nl step 1 until n2 do
begin for ji= 1 step 1 until n do auxvec[j]:= vec[j,k];
= Jli= 1;
for j:= 2 step 1 until n do
begin ti:= tJ + J5 wi= a[ti];
1f w < 0 then elmvec(1, j1, tJj, auxvec, a, vecvec(l,
JT, tj, auxvec, a) X w); jl:= j; tj:= ti

end;
for j:= 1 step 1 until n do vec[j,k]:= auxvec[J]
end.

end ﬁsymt‘.ri‘l H

15

Description mca 2306

baksymtril should be called after tfmsymtril and performs the
corresponding back transformation on the colurms of

array vec[1:n, ni:n2].

The data for the back transformation, as produced by tfmsymtril, must
be glven in array a[1:(n + 1) X n : 2],

The resulting vectors of the back transformation are overwritten on
the corresponding columms of vec.

baksymtril uses vecvec and elmvec [3, chapter 20].

7

Section 231 Linear interpolation and inverse iteration

This section contains procedures for calculating eigenvalues a.nd/ or
eigenvectors of real symmetric matrices, and a procedure for
calculating a zero of a function:

eigvalsyn? and eigvalsyml calculate all eigenvalues, or scome
consecutive eigenvalues including the largest, of a symmetric matrix;
eigsyn2 and eigsyml calculate the corresponding eigenvectors as well;
valsymbri calculates all, or some consecutive, eigenvalues of a
symmetric tridiagonal matrix;

vecsymtri calculates the corresponding eigenvectors;

zeroin searches for a zero of a function in a given interval.

The method used in zeroin is a mixture of linear interpolation and
extrapolation, and bisection [4, AP 200 and AP 230] [12] [13].

If the given function has different sign at the endpoints of the given
interval, then this interval is successively reduced to smaller
intervals in whose endpoints the function still has different sign.

In each step, three points, a, b, c, are involved, where, apart from
possible interchanges, (see below), b is the most recent iterate,

a the previous one, and the "contrapoint” c is the last iterate at
which the function does not have the same sign as at b.

If the absolute value of the function at b is greater than at c, then
b and ¢ are interchanged (in order to simplify the convergence test).
In each step, linear interpolation or extrapolation is performed
between a and b, ylelding a point i; if i is not between b and the
middle, m, of b and ¢, then i is replaced by m; moreover,

if abs(b — i) < tol, where tol is a given tolerance, i is replaced by
sign(c — b) X tol + b. This ensures that any two iterates have a
difference not smaller than tol, and that the length of the successive
intervals is reduced by at least tol in each step, so that convergence
is guaranteed, provided the tolerance is not smaller than the machine
precision; the process ends as soon as abs(c — b) <2 X tol.

Since the interchanges mentioned above occur relatively seldom, the
process has a completely satisfactory asymptotic behaviour: for

a simple zero of a function having a continuous second derivative,

the order of convergence is (1 + sqrt(5)) / 2, 1. e. about 1.6.

If the given function has the same sign at the endpoints of the given
interval, then the interval is reduced by means of bisection (or by
taking sign(c — b) X tol + b as new iterate, if the function (nearly)
vanishes at b). If sign change is detected, then the process continues
as above; otherwise, the process ends as soon as abs(c —b) <2 X tol.

The procedure valsymtri calculates eigenvalues of a symmetric
tridiagonal matrix T by means of the method of Sturm-Givens [2, p. 299
—315] [6] [8] [10] {11] with linear interpolation [4, AP 212 and 232].
Let p(i, x), for 1 = 0, 1,...,n, denote the i~th principle minor of
T(x) =T — xI, i.e. the determinant of the submatrix consisting of

the first i rows and colums of T(x) (in particular p(0, x) = 1 for
all x). If none of the codiagonal elements of T vanishes, then the
sequence of these principle minors is a Sturm sequence; i.e., for each
X, the number of agreements in sign of consecutive members of this

18

sequence equals the number of eigenvalues of T which are greater than
x, and for each 1 > 1 the zeroes of p(i, x) are separated by the
zeroes of p(i — 1, x).

Using this property, the eigenvalues of T (which are the zeroces of
p(n, x)) are located not by means of bisection [6] [8] [10] [11], but
by means of linear interpolation (which converges faster) [4, AP 212
and 232] [18]; in velsymtri, the procedure zeroin is used for this
purpose, Moreover, we have incorporated the following idea from [11]
and [18] which simplifies the calculations and avoids overflow of the
real number capacity; instead of the principle minors, the ratios of
successive principle minors, f(i, x) = p(i, x) / p(i =1, x), are
calculated; these ratios are obtained by the recurrence formula (ali]
is the i=~th main diagonal element and bb[i] the square of the i~th
codiagonal element of T): £(1, x) = al1] = x,

(i, x) = dl1] = x = bb[1 = 1] / (if abs(f(i = 1, x)) > machtol then
f(1 = 1, x) else machtol), 1 = 2,.5.,n; where machtol is a given norm,
I|T]|, of T TImes the machine precision; thus, the number of sign
agreements equals the number of positive ratios f(i, x).

The tolerance for each calculated eigenvalue, lambda, is abs(lambda) X
given relative tolerance + machtol,

In vecsymtri, an eigenvector of a symmetric tridiagonal matrix T,
corresponding to an approximate eigenvalue, lambda, 1s calculated by
means of inverse iteration [2, p. 321 = 330] [9] [10].

Starting from some initial vector, x, the linear system (T = lambda
X I)y = x is solved iteratively (by means of Gaussian elimination
with row interchanges), the solution y divided by its Euclidean norm
replacing x each time, If the distance between some approximate
eigenvalues is smeller than machtol, then they are slightly modified
such that the distance between them equals machtol [2, p. 328] [9].
This device, invented by Wilkinson, has the effect that a numerically
Independent set of eigenvectors is obtained, since inverse iteration
is very sensitive to small changes in the approximate values of
clustered eigenvelues, If the distance between some elgenvelues is
smeller than ||T|| times a given "orthogonalisation parameter" (which
should be not smaller than the machine precision divided by the
tolerance for the eigenvectors), then in each iteration step, Gram—
Schmidt orthogonalisation [2, p., 242 and 606] 1s carried out, so that
the elgenvectors obtained are orthogonal within working precision,
Note, however, that the calculated eigenvectors corresponding to a
cluster of eigenvalues may deviate substantially from the true
eigenvectors, If Gram=Schmidt orthogonalisation yields a null vector,
then another initial vector, viz, one of the unit vectors, is chosen
and the iteration 1s started again; since the unit wvectors span the
whole space, at least one of them is not perpendicular to the desired
elgenvector, and, thus, is a suitable initial vector.

The lteration ends, as soon as either the Euclidean norm of the
residue (T = lambda X I)x (this norm is celculated as the reciprocal
of the Euclidean norm of y) is smeller than ||T|] times the tolerance
for the eigenvectors, or the maximum allowed number of iterations has
been performed, If the tolerance for the eigenvectors is not too small
(it should not be smeller than the relative tolerance for the
eigenvalues), then one or two iterations suffice in most cases.

19

To find eigenvalues of a symmetric matrix M, first Householder's
transformation (section 230) is performed and then valsymtri is
called. Furthermore, to find the corresponding eigenvectors, vecsymtri
is used and then the back transformation (section 230) 1s carried out.
The Euclidean norm of the eigenvectors delivered equals 1 (within
working precision).

The procedures of this section, except zeroin, use an auxiliary

array em[0:9], or a part of it, in which some data for controlling the
iterations must be given and some by—products are delivered.

A survey of these data and by—products follows:

1) general .

em[O] 18 the machine precision; must be given for all procedures.
em[1] is some norm of M or T; must be given for valsymtri and
vecsymtri; the other procedures deliver the infinity norm of M,
produced by tfmsymtri2 or tfmsymtriil.

2) for calculating eigenvalues

en[2] must be given for, and em[3] is delivered by all procedures,
except vecsymtri;

em[2] is the relative tolerance for the eigenvalues; more precisely:
the tolerance for each calculated eigenvalue, lambda, is abs(lambda) X
em[2] + em[1] X em[0];

em[3] is the number of iterations performed for the calculation of the
elgenvalues.,

3) for calculating eigenvectors

em[4], em[6] and em must be given for, and em[5], em[7] and em[9]
are delivered by vecsymtri, eigsym and eigsyml; moreover, em[5] must
be given for vecsymtri only if nil > 1.

em[4] is the orthogonalisation parameter;

em[5] is the number of eigenvectors involved in the last Gram-Schmidt
orthogonalisation; if, in the calculation of the last eigenvector,

no Gram-Schmidt orthogonalisation is carried out, then this nunber
equals 1;

em[6] is the tolerance for the eigenvectors; more precisely:

the inverse iteration ends if the Euclidean norm of the residue is
smaller than em[1] X em[6];

em[7] is the maximum Euclidean norm of the residues of the calculated
elgenvectors of T;

en[8] is the maximum number of inverse lterations allowed for the
calculation of each eigenvector;

em[9] 1s the largest number of iterations performed for the
calculation of some eigenvector; the value em[8] + 1 i1s delivered if
the Euclidean norm of the residue for one or more eigenvectors does
not become smaller than or equal to em[1] X em[6] within em[8]
iterations; nevertheless the eigenvectors may then very well be useful,
this should be judged from the value delivered in em[7] or from some
other test.

The tolerances should satisfy em[0] < em[2] < em[6];

the orthogonalisation parameter should satisfy em[4] > em[0] / em[6];
For the X8, suitable values of the data to be given in em are:

em[0] = y-12, em[2] = 410, em[4] = 0.01, em[6] = -8, em[8] = 5.

20

comment meca 2310;
boolean procedure zeroin(x, y, fx, tolx); real x, y, fx, tolx;
begin real a, fa, b, b, ¢, fc, tol, m, p, a3
T a:= x; fai= £x; bi= x:= y; fbi= £x;
interpolate: c:= a; fci:= fa;
extrapolate: if abs(fc) < abs(fb) then
begin a:= b; fa:= fb; x:= b:= C; fbi= fc; ci= a; fci= fa
‘end Interchange;
Tol:= tolx; m:= (c + b) X .5; if abs(m — b) > tol then
begin pt= (b — a) X fb; 1f p > 0 then q:= fa — fb else
T begin q:= fb = fa; p:= — D end; .
a:= b; fa:= fb; T
X:= bi= if p < abs(q) X tol then (if ¢ > b then b + tol
else b — tol) elge if p< (M =Db) XqthenDd/ q+ b
else m; fb:= fx;
2oto 1f (if fe > O then fb > O else fb < 0) then interpolate
‘else extrapolate ~— .~ T - -
end;
¥i= c; zeroln:= if fc > O then fb < 0 else fb > O
end zeroin; - - - -

21

Description mca 2310

zeroin searches for a zero of a function between the given values of x
and y within a certain tolerance. The function and the tolerance are,
in this order, given by the actual parameters for fx and tolx, which
are expressions depending on the Jensen variable X,

zeroin:= true, if either the function values at the given point x and
¥ have different sign, or the procedure finds some point in between at
which the sign of the function value differs from that at x and y.
Then zeroin calculates and delivers two values X and y lying within
the given interval, having function values of different sign and
satisfying abs(x — y) <2 X tolx.

Moreover, the sbsolute function value is not greater at x than at y,
so that the delivered value of x is the best value for the zero.

If the function has a continuous second derivative, the order of
convergence is about 1.6.

zeroin:= false, 1f the procedure fails to find points at which the
function values have different sign. Then the delivered values of x
and y satisfy all the above conditions, except the sign change
condition.

One has to take care that tolx is never smaller than the machine
precision. Then in either case the process is completed after a finite
number of steps, an upper bound for the required number of steps
being the length of the given interval divided by the minimum of the
tolerance.

22

comment mea 2311;
procedure valsymtri(d, bb, n, nl, n2, val, em); value n, ni, n2;
integer n, nl, n2; array d, bb, val, em;

begin integer k, count;

real max, X, y, macheps, norm, re, machtol, ub, lb, lambda;

real Rrocedure quot;
_& integer Py 1;

’
count-- count + 1; p:i=k; i:= 1; f:= d[1] — x; goto test;
nigh: i:= 1 + 1;
fi= d[1] — x — (if aba(f) > machtol then bb[i — 1] / £ else
bb[1 — 1] / machtol);
test: 1f £ <O then pi=p + 1; if p <1 then
egin quot‘= max; lb:= x end

else
begin if p > n then quot:= if 1 = n A f <O then f else — max
else

_g& if 1 <n then goto high;
quot:= if £f>0 then f else max;
if X < Ub then ub:= x
end
end
end quot;

macheps:= em[0]; norm:= em[1]; re:= em[2];

machtol:= norm X macheps; max:= norm / macheps; count:= O;

ub:= 1.1 X norm; lb:= — ub; lambda:= ub;

for k:=nl step 1 until n2 do

begin x:i= 1lb; y:= ub; lb:= — 1.1 X norm;
zeroin(x, y, quot, abs(x) X re + machtol);
vallk]:= lambda:= if x > lambda then lambda else x;
if ub > x then ub:= if x > y then x else y

end;

em[3]:= count

end valsymtri;

23

Description meca 2311

valsymtri calculates the nl—th to n2-th eigenvalues of the n—th order
symmetric tridiagonal matrix T whose main diagonal is given in

array d[1:n], and whose squared codiagonal elements are given in
array bb[1:n — 1],

The following elements of array em[0:3] must be given (see also p.19).
em[0]: the machine precision;

em[1]: a norm of T;

em[2]: the relative tolerance for the eigenvalues.

The eigenvalues are calculated in monotonically nonincreasing order
and delivered in array val[ni:n2]; in particular, if nl =1 and

n2 = n, then all eigenvalues are calculated.

Moreover em[3]:= the number of iterations performed.

valsymtri uses zeroin (mca 2310).

2y

cdmment mea 23123

;p_rocedure vecsymtri(d, b, n, nl, n2, val, vec, em); value n, nl, n2;
integer n, nl, n2; array d, b, val, vec, em;

begin integer i, j, k, count, maxcount, countlim, orth, ind;

real bl, bil, u, w, y, mil, lambda, oldlambda, ortheps, valspread,
s8pr, res, maxres, oldres, norm, newnorm, oldnorm, machtol, vectol;
array m, p, @, T, x[1:n];
boolean array int[1:n];
norm: = em[1]; machtol:= em[0] X norm; valspread:= em[4] X norm;
vectol:= em[6] X norm; countlim:= em[8]; ortheps:= sqrt(em[0]);
maxcount:= ind:= O; maxres:= 0;
if n1 > 1 then
begin orth:= em[5]; oldlambda. vallnl — orth];
for ki:=nl — orth + 1 step 1 until n1 — 1 do
begin lembda:= vallk]; spr:= oldlembda — lambda;
if spr < machtol then lambda:= oldlanbda — machtol;
oldlambda:= lambda
end
end ™
else orth:= 1;
for k:= nl step 1 until n2 do
__@ lambda:= vallkl; if kK> 1 then
begin spr:= oldlambds — lambda; . if spr < valspread then
begin if spr < machtol then Tanbda:= oldlambda — machtol;
orth:= orth + 1

end
else orth:= 1
end;—
count:= 0; u:= d[1] — lambda; bi:= w:= b[1];
if abs(bi) < machtol then bi:= machtol;
fori=-1 step 1 until o — 1 do
begin bil:=Db[1 + 1];
if absébi‘l) < machtol then bil:= machtol;
if abs(bi) > abs(u) then
begin mil:= m[1 + 1]3= u / bi; p[i]:= bi;
vi= q[i]:= d[1i + 1] — lambda; r[i]:= bil;
W= w—1mil X y; wi=—=mil X bil; int[i]:= true

end
else
begin mil:= m[i + 1]:=bi / u; pli]:= u; q[il:=
riil:= 0; ui= dfi + 1] — lanbda — mil1 X w; w=b11,
int[1]:= fa.lse
end;
X[T1]:= 1; bi:= bil
end transform;
pln]:= if abs(u) < machtol then machtol else u;
q[n]:= ﬂ'n] = O, x[n]:= 1; goto entry;
iterate: wi= x[1]
for i:=2 te 1 until n do
begin if 1'n‘tf2 — 7] Then —
begin ui= w3 wi= x[1 — 1]:= x[1] end
else u:= x[1]; wi= x[1]:=u — m[1T X W
end alternate;

25

Description mca 2312

vecsymbri calculates the eigenvectors corresponding to the ni—th to
n2—th eigenvalues of the n—th order symmetric tridiagonal matrix T,
whose main diagonal and codiagonal, the latter followed by an
additional element O, are given in array d, b[1:n],

In array em[0:9] one must give the following data (see also p. 19).
em[O]: the machine precision;

em[1]: a norm of T;

em[4]: the orthogonalisation parameter;

em[6]: the tolerance for the eigenvectors;

em[8]: the maximum number of iterations allowed for the calculation of
each eigenvector. ' ‘

If n1 = 1, then the largest n2 eigenvalues must be given in

array val[1:n2] in monotonically nonincreasing order. Then vecsymtri
delivers the corresponding eigenvectors in the columns of

array vec[1:n, 1:n2].

Moreover, in em the following results are delivered:

em[5]:= the number of eigenvectors involved in the last Gram—-Schmidt
orthogonalisation;

em[7]:= the maximum Euclidean norm of the residues;

em[9] := the largest number of iterations performed for the calculation
of some eigenvector;

1f, however, for some calculated eigenvector, the Euclidean norm of the
residue remains greater than em[1] X em[6], then em[9]:= em[8] + 1.

If n1 > 1, then vecsymtri should be preceded by one or more calls of
vecsymtri producing the eigenvectors corresponding to the largest

nl — 1 eigenvalues. Then, in addition to the data mentioned above, one
mst give em[5], as produced by the last call of vecsymtri;

the k~th to n2—th eigenvalues, where k = nl1 — em[5], must be given

in array vallk:n2] in monotonically nonincreasing order (the k—th to
(n1" = 1)=th eigenvalues being needed for Wilkinson's device), and the
corresponding eigenvectors up to the (n1 — 1)—th (which are needed for
the Gram-Schmidt orthogonalisation) in the corresponding columms of
array vec[1:n, k:n2].

Then vecsymtri calculates the eigenvectors corresponding to the nil—th
to n2—-th elgenvalues and delivers them in the corresponding colums of
vec; moreover, results as mentioned above are delivered in em, but
they now concern the calculation of the nl—th to n2—th eigenvectors

only.

Summarising, we have: two subsequent calls “"vecsymtri (d, b, n, 1,

nl — 1, val, vec, em)" and "vecsymtri (d, b, n, nl, n2, val, vec, em)"
are equivalent to one call "vecsymtri (d, b, n, 1, n2, val, vec, em)",
except for the results delivered in em[7] and em[9].

vecsymtri uses vecvec, tamvec and elmveccol [3, chapter 20].

26

entry: ut= wi= O;

for i:=n step — 1 until 1 do
begin y:= u; u:= x[TTe= (x[T] — q[i] X w — r[i] X w) / pli];
Wi=y
end next iteration;
newnorm:= sqrt(vecvec(1, n, 0, X, x)); if orth > 1 then
begin oldnorm:= newnorm;
for j:=k —orth + 1 step 1 until k — 1 do
elmveccol(1, n, j, X, vec, — tamvec(1, n, j, vec, x));
newnorm:= sqrt(vecvec(l, n, 0, x, x));
if newnorm < ortheps X oldnorm then
begin ind:= ind +:1; count:= 1;
for i:= 1 step 1 until ind — 1, Ind + 1 8tep 1
n do x[i]:=0; x[Ind]:= 1; if ind = n then ind:= 0;
goto iterate
end new start
end orthogonalisation;
res:= 1 / newnorm; if res > vectol V count = O then
begin count:= count + 1; if count < countlim then
begin for i:= 1 step 1 until n do x[i]:= X[1] X res;
goto lterate
end T
end; -
for 1:= 1 step 1 until n do vec[i,k]:= x[1] X res;
if count > maxcount then maxcount:= count;
if res > maxres then maxres:= res; oldlambda:= lambda

end;
em[5]:= orth; em[7]:= maxres; em[9]:= maxcount

end vecsymtri;

(222
$248

comment mca 2313;
procedure eigvalsym2(a, n, numval, val, em); value n, numval;
integer n ,numval; array a, val, em;
begin array b, bb, d[1:nl;
tfmsymtri2(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em)
end eigvalsyn?;

comment mca 2314; v
procedure eigsym2(a, n, numval, val, vec, em); value n, numval;
‘integer n, numval; array a, val, vec, em;
begin array b, bb, d[1:nl;
tfmsymtri2(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em);
vecsymtri(d, b, n, 1, numval, val, vec, em);
baksymtri2(a, n, 1, numval, vec)
end elgsym?;

29

Description mca 2313

eigvalsym2 calculates the largest numval eigenvalues of the n—th order
symmetric matrix M whose upper triangle is given in array a[i:n, 1:n].
In array em[0:3] the elements with even subscript must be given (see
also p. 19), viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the eigenvalues.,

eigvalsym2 delivers the first to numval-th eigenvalues of M in
monotonically nonincreasing order in array val[l:numvall], and the data
for Householder's back transformation in the upper triangle of a.
Moreover, .

en[1]:= the infinity norm of M;

em[3]:= the number of iterations performed.

eigvalsym? uses tfmsymtri2 (mca 2300), valsymtri and, indirectly, also
zeroin (this section) and tamvec, matmat, tammat, elmveccol, elmcolvec
and elmcol [3, chapter 20].

Description mea 231h4

elgsyn? calculates the largest numval eigenvalues and corresponding
eigenvectors of the n—th order symmetric matrix M whose upper triangle
is given in array all:n, 1:n]. In array em[0:9], the elements with
even subscript must be gilven (see also p. 19), viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the eigenvalues;

em[4]: the orthogonalisation parameter;

em[6]: the tolerance for the eigenvectors;

em[8]: the maximum number of inverse iterations allowed for the
calculation of each elgenvector.

eigsym? delivers the first to numval—th eigenvalues in monotonically
nonincreasing order in array vell[l:numval], the corresponding
elgenvectors in the colums of array vec[t:n, T:numvall, and the data
for Householder's back transformation in the upper triangle of a.
Moreover,

em[1]:= the infinity norm of M;

em[3]:= the nunber of iterations performed for the calculation of the
eilgenvalues;

em[5]:= the number of eigenvectors involved in the last Gram—Schmidt
orthogonalisation;

em[7]:= the maximum Euclidean norm of the residues of the calculated
eigenvectors (of the transformed matrix);

em[9]:= the largest number of inverse iterations performed for the
calculation of some eigenvector; if, however, for some calculated
eigenvector, the Euclidean norm of the residue remains greater than
em[1] X em[6], then em[9]:= em[8] + 1.

eigsym? uses tfmsymtri2 and baksymtri2 (section 230), valsymtri,
vecsymtri and, indirectly, also zeroin (this sec'bion$ and vecvec;
tamvec, matmat, tammat, elmveccol, elmcolvec and elmcol [3, chapter 20].

30

comment mca 2318;
procedure eigvalsymi(a, n, numval, val, em); value n, numval;
integer n, numval; ar a, val, em;
begin array b, bb, dl1:n];
tfmsymtrii(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em)
end eigvalsymil;

corment mca 2319;
procedure elgsymi(a, n, numval, val, vec, em); value n, numval;

integer n, numval; array a, val, vec, em;

begin array b, bb, dli:n];
tfmsymtrii(a, n, d, b, bb, em);
valsymtri(d, bb, n, 1, numval, val, em);
vecsymtri(d, b, n, 1, numval, val, vec, em);
baksymtrii(a, n, 1, numval, vec)

end eigsymi;

31

Description mca 2318
eigvalsyml calculates the largest numval eigenvalues of the n—th order
symmetric matrix M whose upper triangle is given in

a[l:%n + 1) X n : 2] in such a way that the (i, j)—th element
ofMisal(j—1)XxJji2+1i]l for 1 <i<Jj<m.
In array em[0:3] the elements with even subscript must be given (see
also p. 19), viz.
em[0]: the machine precision;
em[2]: the relative tolerance for the eigenvalues.
elgvalsyml delivers the 1—st to numval—th eigenvalues of M in
monotonically nonincreasing order in array valll:numval], and the data
for Householder's back transformation in a.
Moreover,
em[1]:= the infinity norm of M;
em{3]:= the nunber of iterations performed.
elgvalsyml uses tfmsymtril (mca 2305), valsymtri and, indirectly, also
zeroin (this section) and vecvec, seqvec and elmvec [3, chapter 20].

Description mea 2319

eligsyml calculates the largest numval eigenvalues and corresponding
eigenvectors of the n—th order sy-mmetric matrix M whose upper triangle
is given in array a[1:(n + 1) X n : 2] in such a way that the

(1, j)=th element of M is a[(J — 17>< jJi2+ilfor1<i<j<n.
In array em[0:9], the elements with even subscript must be given as
for eigsym2.

eigsyml delivers the 1-st to numval-th eigenvalues in monotonically
nonincreasing order in array val[1:numval], the corresponding
eigenvectors in the columms of array vee[1:n, 1:numval], and the data
for Householder's back transformation in a.

Moreover, in the elements of em with odd subscript, the same results
are delivered as by eigsyn2.

eigsyml uses tfmsymtril and baksymtrit (section 230), valsymtri,
vecsymtri and, indirectly, also zeroin (this section) and vecvec,
tamvec, seqvec, elmvec and elmveccol [3, chapter 20].

32

Section 232 QR iteration

This section contains procedures for calculating the eigenvalues or
the eigenvalues and eigenvectors of real symmetric matrices:
qrivalsym? and qrivalsymi calculate all eigenvalues of a symmetric
matrix; qrisym calculates the eigenvectors as well; qrivalsymtri
calculates all eigenvalues of a symmetric tridiagonal matrix;
qrisymtri calculates the eigenvectors as well.

The method used in qrivalsymtri and qrisymtri for calculating the
elgenvalues of a symmetric tridiagonal matrix T i1s QR iteration

[14] [15] [16] [17] [18]; our procedures being most similar to those
published in [18] and [16].

In each step, matrix T is replaced by the similar matrix Q'TQ, where Q
is an orthogonal matrix chosen in such a way that, for some suitable
"shift" 8, Q'(T — sI) is an upper—triangular matrix, R (thus, T — sI =
QR, which explains the name of the method).

The matrices Q and R could be calculated by means of Gram—Schmidt
orthogonalisation [2, p. 242]; hence, it is obvious that Q has
upper-Hessenberg form.

The similar matrix Q'TQ is again symmetric (because Q is orthogonal)
and tridiagonal (because R is upper—triangular and Q has upper—
Hessenberg form).

The sequence of iterates T converges to a (nearly) diagonal matrix, D,
similar to the glven matrix, so that the main—diagonal elements of D
are (approximately) equal to the required eigenvalues.

As soon as, for some k, the k—~th element of the codiagonal of an
iterate T has an absolute value smaller than some tolerance, then this
element 18 neglected, and matrix T is subdivided into a submatrix of
order k consisting of the first k rows and columns and a submatrix of
order n — k consisting of the last n — k rows and colums of T; these
"principle" submatrices are then consldered and handled separately.
Eigenvalues and eigenvectors of submatrices of order 1 or 2 are
calculated dlrectly, so that the process is completed if T is
subdivided into principle submatrices of order 1 or 2 only. For k =

n — 1, moreover, a weaker criterion, due to Kahan [17] [18], for
subdividing the matrix is applied, which criterion is especially
effective if both the (n — 1)~th and (n — 2)—~th elements of the
codiagonal become small.

In each step, the shift s is chosen as follows: Let B denote the lower
right 2 by 2 submatrix of the considered principle submatrix of T;
then 8 equals that elgenvalue of B closest to its last main—diagonal
element., With this choice of s the codiagonal element of B converges
to 0. The convergence is cubic for a simple eigenvalue of T and linear
for a multiple one, However, the iteration is discontinued if a given
maximum allowed number of iterations has been performed.

33

The procedure qrisymtri also calculates the eigenvectors of the
symmetric matrix M = STS', where T is a symmetric tridiagonal matrix
and S an orthogonal transformation matrix (cf. section 230) as follows
[16]: in each QR iteration step, a matrix X whose initial value is S
is replaced by XQ in each step; thus on campletion of the process, X
is the matrix of eigenvectors of M. In particular, if S = I then the
elgenvectors produced are those of T. The procedure qrivalsymtrl is a
square—~root—free version of the QR method due to Ortega and Kaiser
[14] [15] [18] in contrast to qrisymtri; hence these procedures are
not numerically equivalent as to the calculation of the eigenvalues.

The procedures of this section use an auxiliary array em[0:5], or a
part of it, in which some data for controlling the iterations must be
gilven and some by—products are delivered. A survey of these data and
by—products follows.

1) general

em[0] 1s the machine precision; must be given for grivalsymtri,
qrivalsym?, qrisym and qrivalsymi.

em[1] is some norm of M or T; must be glven for qrivalsymtri and
qrisymtri; the other procedures deliver the infinity norm of M,
produced by tfmsymtriZ2 or tfsymtriil.

2) for the QR iteration

em[2] and em[lL] must be given for, and em[3] and em[5] are delivered
by, all procedures.

em[2] 1s the relative tolerance for the QR iteration; if the absolute
value of some codiagonal element of the ilterated matrix is smaller
than em[1] X em[2], then this element is neglected and the matrix is
subdivided.

em[3] is the maximum absolute value of the codiagonal elements
neglected.

em[4] is the maximum allowed number of QR iterations;

em[5] is the number of QR iterations performed; the value em[4] + 1 is
delivered, 1f the QR iteration process is not completed within em[}4]
iterations.

The tolerance em[2] should be chosen not smaller than em[0O].

For the X8, suitable values of the data to be given in em are

em[0] = 12, em[2] = 12, em[4] = 5 X n.

34

comment mca 2320;
integer procedure qrivalsymtri(d, bb, n, em); value n; integer n;
array d, bb, em;
begin integer count, max, nl, k, ki;
Teal tol, tol2, macheps2, bbmax, t, r, w, ¢, 8, shift, u, g, t2,
we, p?, dk, cos2, sin2, oldcos2;
tol:= em[2] X em[1]; tol2:= tol X tol; macheps2:= em[0] A 2;
count:= O; bbmax:= 0; max:= em[4];
in: k:=n; nl:=n - 1;
next: k:i=k — 1; if k > O then
begin if bb[k] > tol2 Then goto next;
if bb[k] > bbmax then bbmax:= bb[k]

end;
if k = nl1 then n:= nl else
begin

twoby2: t:= d[n] — d[n1]; r:=bb[n1]l; if k <n — 2 then
begin wi=bb[n — 2]; ci= t X t; s:=r / (c + w);
gi= (w+ 8Xc) X s; if g < t0ol2 then
begin ni=n — 13 nl:=n — 1; 1f g > bbmax then bbmax:= g;
goto twoby2
end ~
end negligible bb;
IF abs(t) < tol then s:= sart(r) else
begin w:=2 / t; s:t=wx r / (sart{w X wX r + 1) + 1) end;
if k = n — 2 then
begin d[n]:= dln] + 8; d[ni1l:= d[n1] — 83 n:=n —2 end
else
begin count:= count + 1; if count > mex then goto end;
shift:= d[n] + s; if abs(t) < tol then
begin wi= d[ni1] - s;
if abs(w) < abs(shift) then shift:= w

end;
k:i=k + 1; g:= d[k] — shift; t2:= g X g; w2:= bb[k];
PRi= t2 + w2; oldcos2:= 1;

for ki= k + 1 step 1 until n do

begin ki:= k — 1; sinZ:= w2 / p2; cos2:= t2 / p2;
dk:= d[k] — shift; u:= (g + dk) X sin2;
d[k1]:= g + u + shift; g:= dk — u;
t2:= 1f cos2 < macheps2 then w2 X oldcos2 else g X g
/ cosB; w2:=bblk]; p2:= w2 + t2; bb[k1]:= sin2 X p2;
oldcos2:= cos2
end;
d[n):= g + shift
g_ng_ sweep
end;
if n > O then goto in;
end: em[3]:= sqrt(bbmax); em[5]:= count; qrivalsymtri:=n
end qrivalsymtri;

35

Description meca 2320

qrivalsymtri calculates all eigenvalues of the n—th order symmetric
tridiagonal matrix T whose main diagonal is given in array d[1:n] and
the squares of whose codiagonal elements with an additional last
element O are given in array bb[1:n].

In ar em[0:5] the following data must be given (see also p. 33):
em[0]: the machine precision;

em[1]: a norm of T;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of iterations.

The eigenvalues of T are delivered in d and the squared codiagonal
elements of the tridiagonal matrix resulting from the QR iteration
are delivered in bb, Moreover,

em[3]:= the maximum absolute value of the codiagonal elements
neglected;

em[5]:= the nunber of iterations performed.

Furthermore, qrivalsymtri:= O, provided the process 1s completed
within em[4] iterations; otherwise, grivalsymtri:= the number, k, of
eigenvalues not calculated, em[5]:= em[4] + 1, and only the last n — k
elements of d are approximate eigenvalues of T.

36

comment mca 2321;
integer procedure qrisymtri(a, n, d, b, bb, em); value n; integer n;
array a, d, b, bb, em;
begin integer i, J, j1, k, m, ml, count, max;
real bbmax, r, 8, sin, t, c, cos, oldcos, g, p, W, tol, tol2,
lambda, dk1, ald, al;
tol:= em[2] X em[1]; t0l2:= tol X tol; count:= O; bbmax:= 0;
max:= em[4]; m:= n;
in: ki= m; mi:=m~ 1;
next: k:= k — 13 if k > O then
begin if bb[k] > tol2 Then goto next;
1f bb[k] > bbmax then bbmax:= bb[k]

end;
if k = ml then m:= mi else
begin

twoby2: t:= d[m] — d[m1]; r:= bb[m1];
if k <m — 2 then
begin wi= bb[m — 2]; c:= t X t;
sit=r / (c+ w; gi=(8Xc+ w) X s; if g < tol2 then
begin m:=m — 1; mi:=m ~ 1; if g > bbmax then
bbmax:= g; goto twoby2

end
end negligible bb;
if abs(t) < tol then s:= sqrt&r) else
begin wi=2 / t; si=wX r / (sari{w X wX r + 1) + 1) end;
if k = m — 2 then :
begin d[m]:= dlm] + 8; d[mi]:= d[m1] — s;

ti=— 8/ blml]; ri=sqrt(t X t + 1); cos:= 1/ r;

sin:= t / r; rotcol(1, n, ml, m, a, cos, 8in); m:=m — 2

else
egin count:= count + 1; if count > max then goto end;
lambda:= d[m] + s; if abs(t) < tol then
begin wi= d[m1] — s;
if abs(w) < abs(lambda) then lambda:= w
end;
Ki= k + 1; t:= d[k] — lambda; cos:= 1; w:= b[k];
pi=8qrt(t X t + wX w); jli= k;
for j:=k + 1 step 1 until m do
begin oldecos:= cos; cos:= % / p; sin:= w/ jeH
dk1:= d[j] — lambda; t:= oldcos X t;
d[j1]:= (t + dk1) X sin X sin + lambda + t;
ti= cos X dk1 — sin X w X oldcos; w:= b[j];
pi= sqri(t X t + wX w); g:=b[j1]:= 8in X p;
bb[j1]:= g X g; roteol(l, n, j1, Jj, a, cos, sin);

o

Jli=§
end;
d[m]:= cos X t + lambda; if t < O then blmi]:= - g
end qrstep

end

if m > O then goto in;
end: em[3]:= sqrt(bbmax); em[5]:= count; qrisymtri:=m
end qrisymtri;

37

Description mea 2321

qrisymtri calculates all eigenvalues of the n—th order symmetric
tridiagonal matrix T whose main diagonal 1s given in array d[1:n], and
whose codiagonal elements with an additional last element O are given
in array b[1:n] with the squares thereof in array bb[1:n].

Moreover, qrisymtri calculates the eigenvectors of M = STS'!, where S is
the orthogonal transformation matrix given in array al[1:n, 1:n] (e.g.
as produced by tfmsymtri? and tfmprevec, section 230).

In array em[1:5], the following data must be given (see also p. 33):
em[T]: a norm of T;

em[2]: the relative tolerance for the QR iteration;

em{4]: the maximum allowed number of iterations.

The eigenvalues of T (and thus also of M) are delivered in 4 and the
eigenvectors of M in the corresponding columms of a. The codiagonal of
the tridiagonal matrix resulting from the QR iteration is delivered in
b, and the squares of these codlagonal elements in Dbb.

Moreover,

em[3]:= the maximum absolute value of the codiagonal elements
neglected;

em[5]:= the nunber of QR iterations performed.

Furthermore, qrisymtri:= O, provided the process is completed within
em[4] iterations; otherwise, grisymtri:= the number, k, of eigen—
values, not calculated, em[5]:= em[4] + 1, and only the last n — k
elements of d and colums of a are approximate eigenvalues and eigen—
vectors of M.

qrisymtri uses rotcol [3, mca 2031].

38
comment meca 2322;
integer procedure qrivalsym@(a, n, val, em); value n; integer n;
array a, val, em;
begin array b, bb[1:n];
tfmsymtri2(a, n, val, b, bb, em);
qrivalsym?:= qrivalsymtri(val, bb, n, em)
end qrivalsym2;

39

Description mca 2322

qrivalsym2 calculates all eigenvalues of the n—th order symmetric
matrix M whose upper triangle is given in array a[1:n, 1:n].

In array em[0:5], the elements with even subscript must be given (see
also p. 33) viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of iterations.

The calculated eigenvalues of M are delivered, in array vall1:n], and
the data for Householder's back transformation in the upper triangle
of a. . ‘

em[1]:= the infinity norm of M;

em[3]:= the maximum absolute value of the codiagonal elements
neglected;

em[5] := the number of iterations performed.

Furthermore, qrivalsym2:= O, provided the QR iteration is completed
within em[l4] iterations; otherwise, qrivalsym2:= the number, k, of
eigenvalues not calculated, em[5]:= em[4t] + 1, and only the last n — k
elements of val are approximate eigenvalues of M.

qrivalsym? uses tfmsymtri2 (meca 2300), qrivalsymtri (meca 2320) and,
indirectly, also tamvec, matmat, tammat, elmveccol, elmcolvec and
elmcol [3, chapter 20].

lm .

comment mca 2323;
integer procedure qrisym(a, n, val, em); value n; integer n;
a, val, em;
begin array b, bb[1:n];
tfmsymtri2(a, n, val, b, bb, em); tfmprevec(a, n);
qrisym:= gqrisymtri(a, n, val, b, bb, em)
end qrisym;

comment mea 2327;
integer procedure qrivalsymi(a, n, val, em); value n;
integer n; array a, val, em;
begin array b, bb[1 : nl;
tfmsymtrii(a, n, val, b, bb, em);
qrivalsyml:= gqrivalsymtri(val, bb, n, em)
end qrivalsymi;

Ly

Description meca 2323

qrisym calculates all eigenvalues and eigenvectors of the n—th order
symmetric matrix M whose upper triangle is given in array a[i:n, 1:n].
In array em[0:5], the elements with even subscript must be given
(see also p. 33), viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of iterations.

The calculated eigenvalues of M are delivered in array val[i:n] and
the eigenvectors of M in the corresponding columms of array al1:n, 1:n].
Moreover, ,

em[1]:= the infinity norm of M;

em[3]:= the maximum absolute value of the codiagonal elements
neglected;

em[5]:= the nunber of iterations performed.

Furthermore, qrisym:= O, provided the process is completed within
em[4] iterations; otherwise, qrisym:= the number, k, of eigenvalues
not calculated, em[5]:= em[4] + 1, and only the last n — k elements
of val and colums of a are approximate eigenvalues and eigenvectors
of M,

grisym uses tfmsymtri2, tfmprevec (section 230), gqrisymtri (meca 2321)
and, indirectly, also tamvec, matmat, tammat, elmveccol, elmcolvec,
elmcol and rotecol [3, chapter 20].

Description mca 2327

qrivalsyml calculates all eigenvalues of the n—th order symmetric
matrix M whose upper triangle is given in array a[l:(n + 1) X n : 2]
in such a way that the (i,j)—th element of M is a[(j — 1) X j : 27+ 1]
for 1 <1< j<n.

In array em[0:5], the elements with even subscript must be given as
for qrivalsym2,

The calculated eigenvalues of M are delivered in array vall1l:n] and
the data for Householder's back transformation in a. Moreover, in the
elements of em with odd subscript, the same results are delivered as
by qrivalsyn2,

Furthermore, qrivalsyml:= O, provided the QR iteration is completed
within em[l4] iterations; otherwise, qrivalsyml:= the number, k, of
elgenvalues not calculated, em[5]:= em[4] + 1, and only the last n — k
elements of val are approximate eigenvalues of M.

qrivalsyml uses tfmsymtril (mca 2305), qrivalsymtri (mca 2320) and,
indirectly, also vecvec, seqvec and elmvec [3, chapter 20].

CHAPTER 24
EIGENSYSTEMS OF REAL MATRICES

This chapter contains procedures for calculating eigenvalues and / or
elgenvectors of real matrices. To solve the eigenproblem the matrix is
first equilibrated by means of a diagonal similarity transformation
and the equilibrated matrix is transformed into an upper-Hessenberg
mﬁtg'ix by means of a stabilized triangular transformation (section
240).

The eigenvalues of an upper-Hessenberg matrix are calculated by means
of QR iteration in one of two variants, viz. single QR iteration, to be
used if all eigenvalues are real (section 241), and double QR

iteration for finding real and complex eigenvalues (section 242).
Unfortunately, the QR—lteration process is not always convergent;
counterexamples of matrices having real eigenvalues only are not

known to the authors; for counterexamples of matrices having complex
elgenvalues, see p. Th.

For the calculation of the elgenvectors, two methods have been chosen,
viz. inverse iteration and a more direct method. The inverse iteration
converges rapidly in nearly all cases, whereas the direct method does
not perform any iteration process after the QR lteration. We have
programmed the inverse iteration in a version for real eigenvectors
(section 241) and one for complex eigenvectors (section 242), but the
direct method only for real eigenvectors (section 241); the version of
the latter for complex eigenvectors would also be useful, and is not
included because it is not yet completed.

When the processes converge, they yleld eigenvalues and eigenvectors
in reasonable precision, provided that the matrix is not too ill-
conditioned with respect to its eigenvalue and eilgenvector problems
[2, chapter 2].

A measure for the sensitivity of an eigenvalue of a matrix M to small
changes in its elements is the quantity k = ||x|| ||y|| / |y'x|, where
x and y are the corresponding (suitably chosen if the eigenvalue is
multiple) eigenvectors of M and M', If M is (approximately) equal to a
nondiagonalisable matrix, then k is much larger than 1 for some of its
elgenvalues, and M is ill-conditioned with respect to both its eigen—
value and eigenvector problems [2, p. 69].

If, on the other hand, the quantities k are not much larger than 1 for
all eigenvalues of M (in particular, the quantities k are equal to 1
for normal matrices, i.e. matrices having a unitary matrix of eigen—
vectors), then M is well-conditioned with respect to 1ts eigenvalue
problem, the eigenvalues obtained by our procedures have a reasonable
precision, and the elgenvectors obtained are almost always numerically
independent.

L3

Note, however, that a matrix which is well—conditioned with respect
to its eigenvalue problem, may be ill—conditioned with respect to its
eigenvector problem, this being the case if the matrix has closely
clustered eigenvalues; the calculated eigenvectors corresponding to
such eigenvalues may very well deviate substantially from the true
eigenvectors.

The computation time is roughly proportional to n cubed, but obviously
depends on the number of iterations required (see Appendix). Inverse
lteration and the direct method for calculating eigenvectors are
competitive as to accuracy and computation time.

It is worth remarking, however, that, in our limited experience, the
eigenvectors obtained by the direct method are numerically not worse,
and sometimes better, independent than those obtained by inverse
iteration.

As to the calculation of eigenvalues, the QR iteration appears to be
much faster than the nondeflating methods using Hyman's formula for
evaluating the characteristic polynomial [2, p. 426] and a standard
iteration process (e.g. linear interpolation [4, AP 239], or
Laguerre's method [20] [24] [25]) for locating the eigenvalues. A quite
different type of method for calculating eigenvalues and eigenvectors
is Eberlein's method [26] [2, p. 568] [27], which seems to be quite
satisfactory.)

As to the memory space required for our procedures, we consider only
the n by n arrays used, since the size of the one—dimensional arrays
is negligible. The procedures reaeigval (mca 2412) and comeigval (mca
2422), which calculate only eigenvalues, use only one n by n array for
the given matrix and as working space. The procedures reaeigl (meca
241L4) and comeigl (meca 242L4), which moreover, calculate the eigen—
vectors by means of inverse iteration, use three n by n arrays, one
for the given matrix, one for the eigenvectors, and a local one as
working space; the procedures reaeigl (mca 2415) and comeig? (mca
2425), which are numerically equivalent to reaeigl and comeigl, use
only one n by n array for the given matrix, as working space and for
the eigenvectors, but they use also 2 X n /i\ 2 real number locations on
backing storage as working space. The procedure reaeig3 (mca 2417),
which calculates the eigenvalues and eigenvectors by means of QR iter—
ation followed by the direct method, uses two n by n arrays, one for
the given matrix and as working space, and one for the eigenvectors.

Ly

Section 240 Wilkinson's transformation and equilibration

This section contains a procedure for transforming a matrix into a
similar upper-Hlessenberg matrix, a procedure for equilibrating a
matrix, and procedures for performing the corresponding back
transformations:

tfireahes transforms a matrix into a similar upper-Hessenberg matrix
by means of Wilkinson's transformation;

bakreahes! (bakreahes?) performs the corresponding back transformation
on a vector (on the colums of a matrix);

eqilbr equilibrates a matrix by means of a diagonal similarity
transformation; :

baklbr performs the corresponding back transformation on the columms
of a matrix.

Wilkinson's transformation is a triangular similarity transformation
with stabilizing row and column interchanges [2, p. 353 — 368]
transforming a matrix into an upper—Hessenberg matrix [20] [22].

Let M be a given real matrix and H the resulting upper-Hessenberg
matrix., The transforming matrix is the product of a permutation matrix,
P, and a unit lower—triangular matrix, L; thus, H satisfies PIH = MPL.
The nondiagonal elements in the first colum of L are O, and the row
and column interchanges (which determine P) are chosen in such a way
that the absolute value of each element of L is at most 1.

These conditions permit a direct calculation of the matrices H, L and
P in n — 1 steps.

Let U denote the upper triangle of H, and Q the strict—lower triangle
of the matrix ML — IU, Apart from the stebilizing interchanges, the
r—th step (r = 1,...,0 — 1) is as follows.

The data for the r—th step are the first r columms of U, the second to
r—th colums of the strict—lower triangle of L (the first columm of L
is trivial), the r—th columm of Q (which colum equals the (r + 1)=th
colum of the lower triangle of L times the r—th element of the
subdiagonal of H), and the last n — r colums of M.

(For the first step, these data are equal to M, since the first main—
diagonal element of U equals that of M, and the elements of the first
column of Q equal the corresponding elements of M.)

Using these data, the r—th step produces the r—th element of the sub-
diagonal of H and the (r + 1)=th colum of the strict—lower triangle
of L (which are written over the corresponding elements of the r—th
colum of Q) and the (r + 1)=th colums of U and Q (which are written
over the corresponding elements of the (r + 1)—=th colum of M).

As to the stabilizing row and colurmm interchanges, the r—th step
starts with the selection of the r—th "pivot", i.e. an element of the
r—th column of Q having maximum absolute value (and which is going to
be the r—th element of the subdiagonal of H); then the r—th "pivotal
index", pr (i.e. the row index of the r—th pivot), is delivered in an
auxiliary array (for the sake of the back transformation);
subsequently, the r~th row and column of the data array are inter—
changed with the pr—th ones, and then the results of the r—th step
sketched above are produced. If, however, all elements in the r—th
colum of Q below the first subdiagonal have absolute value smaller
than the infinity norm of M times the machine precision,

b5

then these elements are replaced by O (so, the (r + 1)=th colum of
L — I is the null vector) and, as an indication, the r—th pivotal
index is replaced by O. The corresponding back transformation
transforms a vector x into the vector Plx; if x is an eigenvector of
H, then PLx is the corresponding eigenvector of M.

In eqilbr, the matrix M is equilibrated by means of Osborne's diagonal
similarity transformation possibly with interchanges [19]. This
transformation should be performed before the transformation to
Hessenberg form.

A matrix M is said to be "equilibrated", if each colum of M has
(nearly) the same FEuclidean norm as the corresponding row of M.

The transforming diagonal matrix, D, and the equilibrated matrix are
calculated iteratively:

in each step a certain columm of the matrix is multiplied by, and the
corresponding row divided by, a factor which is chosen in such a way
that the considered column and row obtain (roughly) the same Fuclidean
norm (in fact, the factor is rounded to the nearest integral power

of 2, in order to prevent rounding errors in the equilibrated matrix,
assuming binary floating point arithmetic); the colurms and rows are
handled in cyclic order. If the matrix does not contain columns or
rows whose off-diagonal elements are (nearly) O, then the process
(with unrounded factors) converges, and in practice a few steps are
needed to obtain a reasonsbly equilibrated matrix [19].

If all off—diagonal elements of some considered colum (row) are O or
nearly O, then this colum (row) is interchanged with the first
nonzero column (last nonzero row) of the matrix, and, in order to have
a similarity transformation, the corresponding rows (columns) are also
interchanged; then for the further equilibration, the submatrix is
considered which does not contain such zero columns and rows and the
corresponding rows and columns. The equilibration process is continued
until, in a whole cycle no factor > 2 or < 0.5 and no zero columm or
row is found, or until (n + 1) X n : 2 rows and colums have been
considered. -

The corresponding back transformation transforms a vector x into the
vector Dx and performs the corresponding interchanges; if x is an
eigenvector of the equilibrated matrix, then the resulting vector is
the corresponding eigenvector of the original matrix.

46

comment

mea 2400;

procedure tfmreahes(a, n, em, int); value n; integer n; array a, em;

integer

array int;

begin integer i, J, j1, k, 1;

real s, t, machtol, macheps, norm;

array b[0:n — 1];
macheps:= em[0]; norm:= O;

for i:= 1 step 1 until n do
begin 8:= 03

end;

for j:= 1 step 1 until n do s:= s + abs(ali,Jl);
if 8 > norm then norm:= 8)

em[1]:= norm; machtol:= norm X macheps; int[1]:= O;

for

Ji=2 step 1 until n do

begin ji:= § — 1; Li= 0; 8:= machtol;

end

for k:= j + 1 step 1 until n do
begin t:= abs(alk,j117; if t > s then
begin 1i= k; s:=t end
end;
If 1 40 then
begin if abs(alj,j1]) < s then
begin ichrow(1, n, J, I, a); ichcol(1, n, j, 1, a) end
else l:= Jj; t:=alj,j1];
for ki= J + 1 step 1 until n do alk,j1l:= alk,j1]1 / ¢

else '

for ki= j + 1 step 1 until n do alk,j1]:= 0;

for 1:= 1 step 1 until n do bl — 1]:= a[1,jl:= a[i,J] + (if
I = 0 then O else matmat(J + 1, n, 1, j1, a, a)) — -
matvec(1, if J1 <i —2 then j1 else 1 — 2, i, a, b);
int[jli= I -

end tfmreahes;

k7

Description mea 2400

tfmreahes transforms the n—th order matrix M given in

array a[1:n, 1:n] into a similar upper-Hessenberg matrix H,

In array em[0:1], one must give the machine precision, em[0].

Matrix H is delivered in the upper triangle and the first subdiagonal
of a, the (nontrivial elements of the) transforming matrix in the
remaining part of a, and the pivotal indices in

integer array int[1:n].

Moreover, em|1]:= the infinity norm of M.

tfmreahes uses matvec, matmat, ichcol and ichrow [3, chapter 20].

L8

comment mca 2401;
procedure bakreahesli(a, n, int, v); value n; integer n; array a, v;
integer array int;
begin integer i, 1;
real w;
array x[1:n];
for 1:= 2 step 1 until n do x[1i — 1):= v[i];
for 1:=n step — T until 2 do
begin v[ili= v[i] + matvec(1, 1 -2, 1, a, x); l:= int[i];
if 1 > i then
begin wi= v[1]; v[il:= v[1]; v[1]:= w end
end '
end bakreahesi;

‘comment mea 2402 3
procedure bakreahes2(a, n, nl, n2, int, vec); value n, nl, n2;
integer n, nl, n2; array a, vec; integer array int;

begin integer 1, 1, k;
array ull:nl;
for 1:=n step — 1 until 2 do

begin for ki= 1 — 2 8tep — T until 1 do ulk + 1]:= a[1,k];
for k:= nl step T until nZ do veel[i,k]:= vec[i,k] +
tamvec(2, i — 1, k, vec, u); Ll:= int[i];

if 1 > 1 then ichrow(nl, n2, i, 1, vec)

end
end bakreahes2;

k9

Description meca 2401

bakreahesl should be called after tfmreahes, and performs the
corresponding back transformation on the vector given as

array v[i:n].

The transforming matrix and the pivotal indices, as produced by
tfmreahes, must be given in the part below the first subdiagonal of
array a[1:n, 1:n] and in integer array int[1:n].

The resulting vector of the back transformation is overwritten on v.
bakreahesl uses matvec [3, mea 2001].

Description meca 2402

bakreahes? should be called after tfmreahes, and performs the
corresponding back transformation on the colums of

array vec[1:n, ni:n2].

The transforming matrix and the pivotal indices, as produced by
tfmreahes, must be given in the part below the first subdiagonal of
array al1:n, 1:n] and in integer array int[1:n].

The resulting vectors of the back transformation are overwritten on
the corresponding colums of vec.

bakreahes? uses tamvec and ichrow [3, chapter 20].

50

comment meca 2L05;
procedure eqilbr(a, n, em, d, int); value n; integer n; array a, em, d;
Tnteger array int;
begin Integer i, im, i1, p, q, j, t, count, exponent, nij;
~ real ¢, r, eps, omega, factor;

procedure move(k); value k; integer k;

begin real di;

T nit=q-=p; ti=t + 1; if k £ 1 then
begin icheol(1, n, k, i, a); ichrow(l, n, k, i, a); di:= dalil;
—Ar1]:= alkl; alki:="a1
end :

end move;

factor:= 1 / (2 X 1n(2)); comment more generally: 1ln(base);
eps:= em[0]; omega:= 1 / €ps; t:i= p:= 1; q:= ni:= i:= n;
count:= (n + 1) X n : 2
for j:= 1 step 1 untIl n do
Begin dl[j1T= T; imE[JT:= T end;
Tor 1:= if 1 < q then i + 17else p while count > O A ni > 0 do
'B'—in count:= count — 1; im:= 1 = 13 11:= 1 + 1;
— c:= sqrt(tarmnatgp, im, 1, i, a, ;+tammat(i1, qa, i, i, a, a));
r:= sqrt(mattam(p, im, i, i, a, a)+mattam(i1, q, i, i, a, a));
if ¢ X omega < r X eps then
Pegin int[t]:= 1; move(P); pi= p + 1 end
else if r X omega < ¢ X eps then
PegIn Int[t]:= — 13 move(q); q:= q — 1 end
else -
BegIn exponente= ln(r / c) X factor;
~— If abs(exponent) > 1 then
Pegin nit= q — p; c:= exponent; ri=1 / c;
T dli]l:= ali] X ec;
for j:= 1 step 1 until im, i1 step 1 until n do
begin alj,ITt= alT;IT X c; al13Ti= alT,3T X T end
end
else nit= ni =1
end —
end —

end eqilbr;

51

Description meca 2405

eqilbr transforms the n—th order matrix given in array a[i:n, 1:n]
into a similar equilibrated matrix. In array em[0:0], one must give
the machine precision.

The equilibrated matrix is delivered in a, the main diagonal of the
transforming diagonal matrix in array d[1:n] , and information
defining the possible interchanging of some rows and the corresponding
colums in integer array int[1:n].

eqilbr uses tammat, mattam, ichcol and ichrow [3, chapter 20].

52

conment mca 24063
procedure baklbr(n, ni, n2, d, int, vec); velue n, nl, n2;
Integer n, nl, n2; array 4, vec; integer array rreay int;
begin Tnteger i, J, K, D, @ -
— re B
p:=1; q:=n;
for i:= 1 8tep 1 until n do
begin di:= d[1]; IF I + T then
Tor j:= nl step 1 until ™2 do vec[i,jle= veel[1,j] x di;
k= int[1];—
ifk>0thenp:=p+ 1 else ifk<0thenq:=q-‘|
end;”
For i:t=p =1 + n—qs’cep-—1 until 1 do
begin k:= int[i]; if ¥ > 0 then
—_'B'egin pi= p = T; if k D Then ichrow(nl, n2, k, p, vec) end
else

begin q:= q + 1; if =k # q then ichrow(nl, n2, — k, q, vec)
en
end

end Paklbr;

53

Description mca 2406

baklbr should be called after eqilbr and performs the corresponding
back transformation on the columns of array vec[1:n, n1:n2].

The main diagonal of the transforming diagonal matrix and the
information defining the possible interchanging of some rows and
colums, as produced by eqilbr, must be given in array d[1:n] and
integer array int[1:n].

The resulting vectors of the back transformation are written over
the corresponding columms of vec.

baklbr uses ichrow [3, mea 2022].

54

Section 241 Single QR iteration

This section contains procedures for calculating eigenvalues and/or
eigenvectors of real matrices having real eigenvalues only:

reaeigval calculates the eigenvalues, and reaeigl, reaeigl and reaeig3
the eigenvalues and eilgenvectors of a real matrix;

reavalqri calculates the eigenvalues of a real upper-Hessenberg
matrix, and reaqri the eigenvectors as well;

reaveches calculates an eigenvector corresponding to a given real
eigenvalue of a real upper-Hessenberg matrix;

reascl normalizes a given matrix of real eigenvectors.

The method used (in reavalqri and reaqri) for calculating the real
eigenvalues of an upper-lessenberg matrix H, is Francis' "single" QR
iteration [21] [2, p 515 — 543].

In each step, the matrix H is replaced by the similar matrix Q'HQ,
where Q is an orthogonal matrix chosen in such a way that, for some
suitable "shift" s, Q'(H — sI) is an upper—triangular matrix, R (thus,
H — s8I = QR, which explains the name of the method).

The matrices Q and R could be calculated by means of Gram—Schmidt
orthogonalisation [2, p. 242]; hence, it is obvious that Q has upper—
Hessenberg form.

The similar matrix Q'HQ is again an upper-Hessenberg matrix (because
R is upper—triangular and Q has upper-Hessenberg form).

If the given matrix has real eigenvalues only, then, in most cases,
the sequence of iterates H converges to a (nearly) upper—triangular
matrix, U, similar to the given matrix, so that the diagonal elements
of U are (approximately) the required eigenvalues.

As soon as, for some k, the k—~th element of the subdiagonal of an
iterate H has an absolute value smaller than some tolerance, then this
element 1s neglected and H is partitioned into 4 submatrices, Hil,
H12, H21, HR2, consisting of the first k (H11, H12) or last n — k
(H21, H22) rows of H and the first k (H11, H21) or last n — k (H12,
He2) columns of H; H21 is the null matrix and H12 plays a role only
for the calculation of eigenvectors (see p. 55); subsequently, the
"principle" submatrices H11 and H22 are considered and handled
separately; elgenvalues of submatrices of order 1 or 2 are calculated
directly, so that the process is completed 1f successive partitionings
have led to principle submatrices all of order 1 or 2.

In each step, the shift s is chosen as follows: let B denote the lower
right 2 by 2 submatrix of the considered principle submatrix of H;
then s equals that eigenvalue of B closest to its last main—diagonal
element if the eigenvalues of B are real, and otherwlise s equals the
real part of the elgenvalues of B.

If the subdiagonal element of B converges to O, then the convergence
is quadratic for a simple eigenvalue of H and linear for a multiple
one. However, convergence cannot be guaranteed for all cases, although
no counter—example of a real matrix having only real eigenvalues is
known to the authors; the lteration is therefore discontinued if a
given maximum allowed number of iterations has been performed.

55

For the calculation of eigenvectors of an upper-Hessenberg matrix H,
we have chosen alternative methods, viz. inverse iteration, and a
"direct" method linking up with the QR iteration.

The procedure reaveches calculates an eigenvector of H corresponding
to a given approximate real eigenvalue, lambda, by means of inverse
iteration [2, p. 619 — 628] [k, AP 240] [22]. Starting from the
initial vector, x, all of whose elements are 1, the linear system

(H — lambda X I)y = x is solved iteratively (by means of Gaussian
elimination with row interchanges), the solution y divided by its
Euclidean norm replacing x each time. The iteration ends either if the
Euclidean norm of the residue (H — lambda X I)x (this norm is
calculated as the reciprocal of the Euclidean norm of y) is not larger
than a given norm of H times the tolerance for the eigenvectors, or if
the maximum allowed number of iterations has been performed.

If the tolerance for the eigenvectors is not too small then one or
two iterations suffice in most cases.

To find in reaeigval, reaeigl and reaeigl the eigenvalues of a matrix
M having real eigenvalues only, M is first equilibrated and
transformed to a similar upper-Hessenberg matrix H (section 240), the
eigenvalues are then calculated by calling reavalqri, and finally the
calculated elgenvalues are sorted into monotonically nonincreasing
order. .

Furthermore, to find in reaeigl and reaeig? the eigenvectors,
Wilkinson's device [2, p. 328 and 628] [9] [22] is first applied;
i.e. approximate eigenvalues having a distance smaller than "machtol"
{= infinity norm of M equilibrated times the machine precision) are
slightly modified such that the distance between them equals machtol.
{This device has the effect that, for reasonably conditioned matrices,
a numerically independent set of eigenvectors is almost always
obtained, since inverse iteration is very sensitive to small changes
in the approximate values of closely clustered eigenvalues.)
Subsequently, the eigenvectors of H are calculated by calling
reaveches; these vectors are then back—transformed to the
corresponding eigenvectors of M (section 240), and normalized (by
calling reascl) such that, in each eilgenvector, an element of maximum
absolute value equals 1.

The other, "direct", method for calculating the eigenvectors of an
upper-Hessenberg matrix H is used by reaqri, and works as follows.

In each QR iteration step, the corresponding rotation is performed on
some matrix X whose initial value is I; i.e. X is replaced by XQ in
each step (in this process the submatrices H12 produced by the
partitionings of H are also involved); thus, on completion of the QR
iteration, X 1s the product of orthogonal matrices Q transforming the
glven matrix H into the similar upper—triangular matrix U produced by
the QR iteration, ili.e. HX = XU.

Subsequently, the eigenvectors, v, of U are calculated directly by
solving the corresponding triangular system of linear equations.

If the distance between any two diagonal elements of U (which are
approximate eigenvalues of H) is smaller than machtol, then they are
slightly modified such that the distance between-them equals machtol.
This modification is necessary for preventing division by zero.

56

Finally, the eigenvectors v of U are replaced by the vectors Xv, which
are the corresponding eigenvectors of H.

If H is not too ill—conditioned with respect to its eigenvalue
problem, then this method yields numerically independent eigenvectors
(sometimes better than inverse iteration; and is competitive with
inverse iteration as to accuracy and computation time (see p. 43)).

To find (in reaeig3) the eigenvalues and eigenvectors of a matrix M
having only real eigenvalues, M is first equilibrated and transformed
to a similar upper—Hessenberg matrix H (section 240); the eigenvalues
and eigenvectors of H are then calculated by calling reaqri, and
finally the eigenvectors of H are back—transformed to the
corresponding eigenvectors of M (section 240), and normalized (by
calling reascl) such that, in each eigenvector, an element of maximum
absolute value equals 1. The procedure reaeig3 does not sort the
eigenvalues,

The procedures of this section, except reascl, and those of the next
section, except comscl, use an auxiliary array em[0:9] (or a part of
it), in which some data for controlling the iterations must be given
and some by—products are delivered.

A survey of these data and by—products follows.

1) general

em[0] is the machine precision; must be given for all procedures;
em[1] is some norm of M or H; must be given for reavalqri, reaveches,
reaqri, comvalqri and comveches; the other procedures deliver the
infinity norm of M equilibrated.

2) for the QR iteration

em[2] and em[4] must be given for, and em[3] and em[5] are delivered
by, all procedures, except reaveches and comveches.

em[2] is the relative tolerance for the QR iteration;

if the absolute value of some subdiagonal element 1s smaller than
em[1] X em[2], then this element is neglected and the matrix is
partitioned;

em[3] is the maximm absolute value of the subdiagonal elements
neglected;

em[4] is the maximm allowed number of QR iterations;

em[5] is the number of QR iterations performed; the value em[4] + 1 is
delivered if the QR iteration process is not completed within em[}4]
iterations,

57

3) for the inverse iteration

em[6] and em[8] must be given for, and em[7] and em[9] are delivered
by, reaveches, reaeigl, reaeigl, comveches, comeigl and comeig2.

em[6] is the tolerance for the eigenvectors; more precisely, the
inverse iteration ends if the Euclidean norm of the residue vector is
smaller than em[1] X em[6];

em[7] is the maximm Euclidean norm of the residue vectors of the
calculated eigenvectors of H;

em{8] is the maximum number of inverse iterations allowed for the
calculation of each eigenvector;

em[9] is the largest number of inverse iterations performed for the
calculation of some elgenvector; the value em[8] + 1 is delivered, if
the Euclidean norm of the residue for one or more eigenvectors remains
larger than em[1] X em[6] during em[8] iterations; nevertheless the
eigenvectors may then very well be useful — this should be judged from
the value delivered in em[7] or from some other test.

The tolerances should satisfy em[0] < em[2] < em[6].
For the X8, suitable values of the data to be given in em are
em[0] = y-12, em[2] = y—~12, em[4] = 10 X n, em[6] = -8, em[8] = 5.

58

comment meca 2410;
integer procedure reavalqri(a, n, em, val); value n; integer n;

axrr

a, em, val;

begin integer nil, i, i1, j, q, max, count;

in:

real det, w, shift, kappa, nu, mu, r, tol, delta, machtol, s;
machtol:= em[0] X em[1]; tol:= em[1] X em[2]; max:= em[4];
count:= 0; r:= 0;
nl:=n - 1;
for i:=mn, i — 1 while (if i > 1 then abs(a[i + 1,1]) > tol else
false) do q:= i; if ¢ > T then .
begin if abs(alq,q — 1]) > r Then r:= abs(alq,q — 1]) end;
if q =n then
begin valln]:= a[n,n]; n:= n1 end
else
begin delta:= a[n,n] — a[nl,n1]; det:= a[n,n1] X a[ni,n];
if abs(delta) < machtol then s:= sqrt(det) else
begin wi= 2 / delta; s:= wX w X det + 1;
s:=)_i_f_ 8 < 0 then — delta X .5 else w X det / (sqrt(s)
+ 1

£nd;
if q =nl then
begin valln]:= aln,n] + s; valln1]:= a[nl,n1] — s; n:=n -2
end
else
begin count:= count + 1; if count > max then goto out;
shift:= a[n,n] + s; if abs(delta) < tol then
begin w:= a[ni,nl] —s;
if abs(w) < abs(shift) then shift:= w
end;
ala,ql:= alq,q] — shift;
ip:g_i:= q step 1 until n — 1 do
Begin 11:= 1 + 15 alil,11):= al11,11] — shift;
kappa:= sart(ali,i] A 2 + a[i1,1] A 2);
if 1 > q then
begin a[i,I — 1]:= kappa X nu; w:= kappa X mu end
else w:= kappa; mu:= a[i,1] / kappa;
nu:= a[i1,1] / kappa; al[i,i]:= w;
rotrow(il, n, i, i1, a, m, nu);
rotcol(q, i, i, i1, a, mu, nu);
a[i,i]:= a[i,1] + shift
end;
“aln,n - 1]:= aln,n] X nu; aln,n]:= aln,n] X mu + shift
end
end;
if n > O then goto in;

out: em[3]:= ¥; em[5]:= count; reavalqri:= n
end reavalqri;

29

Description meca 2410

reavalqri calculates the eigenvalues of the n—th order upper—
Hessenberg matrix H given in array al1:n, 1:n], provided that all
eigenvalues of H are real.

In array em[0:5], the following data must be given (see also p. 56):
em[0]: the machine precision;

em[1]: norm of H;

em[2]: the relative tolerance for the QR iteration;

em[l4]: the maximum allowed number of iterations.

The eigenvalues of H are delivered in array valli:n].

Moreover, the Hessenberg part of a is altered;

em[3]:= the maximum absolute value of the subdiagonal elements
neglected;

em[5]:= the nunber of iterations performed.

Furthermore, reavalqri:= O, provided that the process is completed
within em[l4] iterations; otherwise, reavaldqri:= the number, k, of
eigenvalues not calculated, em[5]:= em[4] + 1, and only the last n — k
elements of val are approximate eigenvalues of H.

reavalqgri uses rotcol and rotrow [3, section 203].

60

corment mca 2411;
procedure reaveches(a, n, lambda, em, v); value n, lambda; integer n;
real lambda; array a, em, V;
begin integer 1, i1, J, count, max;
real m, r, norm, machtol, tol;
boolean ar pl1:n];
norm:= eml1]; machtol:= em[0] X norm; tol:= em[6] X norm;
max:= em[8], a[1,1]:= a[1,1] — lambda;
gauss: for i:= 1 step 1 untiln — 1 do
begin 11:= 1 ¥ 1; r:= al[i,i]; m:= a[il, il;
if abs(m) < machtol 't.hen m:= machtol; pl[i]:= abs(m) < abs(r);
:Lf pli] then
begin a[IT,1]:= m:=m / r;
for j:= 11 step 1 until n do a[i1,J]:= (if j > 11 then
alil,d] else a.l 1,971 = lambda) — m X a[1;3]
end
else
begin a[i,il:= m; alil,il:=m=r / m;
for j:= i1 step 1 until n do
begin r:= (If § > IT then ali1,j] else al[i1,j] — lanbda);
alil,jli= ali,j] Tm X r; a[l,J =T
end
end
end gauss;
if abs(aln,n]) < machtol then a[n,n]:= machtol;
For j:= 1 step 1 until n do v[jl:= 1; count:= O;
forward: count:= count + 1; if count > max then goto out;
for 1:= 1 step_ 1 until n=1 do
begin ile= i + 1,
if pli] then v[i1]:= v[11] — a[11,1] X v[i] else
begin r:= v[11]; v[1i1]l:= v[i] - a[11 1] X r; v[il:=r end
end forward;
backward: for i:=n step — 1 until 1 do v[i]:= (v[i] — matvec(i
+ 1, n, 1, a, v) a[i,i 3 ri= 1/ sqrt(vecvec(1, n, 0, v, v));
for J:= 1 step 1 until n do v[jl:= v[j] X r;
If r > tol then goto rorward;

out: em[T]:= r; eml9]:= count

end reaveches;

61

Description mca 2411

reaveches calculates the eigenvector corresponding to the real
elgenvalue lambda of the n—th order upper—Hessenberg matrix H given in
array a{1:n, 1:n].

In array em[0:9], the following data must be given (see also p. 56,57).
em[0]: the machine precision;

em[1]: a norm of H;

em[6]: the tolerance for the eigenvectors;

em[8]: the maximum allowed number of iterations.

The calculated eigenvector i1s delivered in array v[i:n].

Moreover, the Hessenberg part of a is altered;

em[7]:= the Fuclidean norm, ||r||, of the residue of the calculated
eigenvector;

em[9]:= the number of iterations performed.

If, however, ||r|| remains larger than em[1] X em[6] during em[8]
iterations, then em[9]:= em[8] + 1.

reaveches uses vecvec and matvec [3, section 200].

62

comment meca 2412;
integer procedure reaeigval(a, n, em, val); value n; integer n;
array a, em, val;
begin integer i, Jj;
real r;
integer array int, intO[1:n];
array d[1:n];
eqilbr(a, n, em, d, int0); tfmreahes(a, n, em, int);
Jji= reaeigval:= reavalgri(a, n, em, val);
for i:= j + 1 step 1 until n do
for ji=1 + 1 step 1 until n do
begin if valljT > valli] then
begin r:= valli]; vallil:= valljl; valljl:=r end
end
end Treaeigval;

63

Description meca 2412

reaeigval calculates the eigenvalues of the n—th order matrix M given
in array all:n, 1:n], provided that all eigenvalues of M are real.

In array em[0:5], the elements with even subscript must be given

(see also p. 56).

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of iterations.

The eigenvalues of M are delivered in array vall1:n] in monotonically
nonincreasing order.

Moreover, the elements of a are altered;-

em[1]:= the infinity norm of M equilibrated;

em[3]:= the maximum absolute value of the subdiagonal elements
neglected;

em[5]:= the number of iterations performed.

Furthermore, reaeigval:= 0, provided that the process is completed
within em[4] iterations; otherwise, reaeigval:= the nunmber, k, of
eigenvalues not calculated, em[5]:= em[l4t] + 1, and only the last n — k
elements of val are approximate eigenvalues of M.

reaeigval uses eqilbr, tfmreahes (section 240) and reavalqri (mca 2410)
and, indirectly, also matvec, matmat, tammat, mattam, ichcol, ichrow,
rotcol and rotrow [3, chapter 20].

6l

comment mea 2413;
procedure reascl(a, n, nl, n2); value n, nl, n2; integer n, nl, n2;
array a;

'begin integer i, J;

real s;
for j:=nl step 1 until n2 do
begin s:= 0;

for 1:=1 step 1 until n do
begin if abs(a[i,J]) > abs(s) then s:= al[i,j] end;
if s # 0 then
For i:= 17 step 1 until n do ali,jl:=ali,5] / s
end)
end reascl;

comment meca 241k4;
integer procedure reaeigl (a, n, em, val, vec); value n; integer n;
array a, em, val, vec;
begin integer i, k, max, Jj, 1;
real residu, r, machtol;
array d, v[1:nl, b[1:n,1:n];
integer array int, intO[1:n];
residu:= O; max:= O; eqilbr(a, n, em, 4, int0);
tfmreahes(a, n, em, int);
for i:= 1 step 1 until n do
for j:= (if 1 = 1 then 1 else 1 — 1) step 1 until n do b[i,J]):=
ali,jl; k:= reaeigl:= reavalgri(b, n, em, val); -
for i:=k + 1 step 1 until n do
for j:=1 + 1 step 1 until n do
I >

begin if val[JT > valli] then
begin r:= vall[i]; valli]:= valljl; valljl:=r end
end;

machtol:= em[0] X em[1];
for l:=k + 1 step 1 until n do
begin if 1> 1 then
begin if val[l — 1] — val[l] < machtol then val[l]:= val[l -
1] — machtol
gnd;
for i:= 1 step 1 until n do
for ji= (1f 1 = 1 then 1 else 1 — 1) step 1 until n do
bli,3]:= ali,jl; reaveches(b, n, val[l], em, v); -
if em[7] > residu then residu:= em[7];
if em[9] > max then max:= em[9];
for j:= 1 step T until n do vec[J,1]:= v[J]
end;
em[7]:= residu; em[9]:= max; bakreahes2(a, n, k + 1, n, int, vec);
baklbr(n, k + 1, n, 4, int0, vec); reascl(vec, n, k + 1, n)
end reaeigl;

65

Description mca 2413

reascl normalizes the (non—null) colums of array a[1:n, n1:n2] in such
a way that, in each column, an element of maximum absolute value

equals 1. The normalized vectors are written over the corresponding
colums of a.

Description mca 2414

reaeigl calculates the eigenvalues, provided that they are all real,
and the eigenvectors of the n—th order matrix M given in

array al[1:n, 1:n]. :

In array em[0:9], the elements with even subscript must be given (see
also p. 56, 57), viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of QR iterations;

em[6]: the tolerance for the eigenvectors;

em[8]: the maximum number of inverse iterations allowed for the
calculation of each eigenvector.

The eigenvalues of M are delivered in array val[1:n] in monotonically
decreasing order, with the corresponding eigenvectors in the columns
of array vec[1:n, 1:n].

Moreover, the elements of a are altered;

em[1]:= the infinity norm of M equilibrated;

em[3]:= the maximum absolute value of the subdiagonal elements
neglected;

em[5]:= the number of QR iterations performed;

em[7]:= the maximum Euclidean norm of the residues of the calculated
eigenvectors (of the transformed matrix);

em[9]:= the largest number of inverse iterations performed for the
calculation of some eigenvector.

Furthermore, reaeigl:= O, provided that the QR iteration process is
completed within em[4] iterations; otherwise, reaeigl:= the number, k,
of eigenvalues not calculated, em[5]:= em[4t] + 1, and only the last
n — k elements of val and columns of vec are approximate eigenvalues
and elgenvectors of M; similarly, if, for some calculated elgenvector,
the Euclidean norm of the residue remains larger than em[1] X em[6],
then em[9]:= em[8] + 1.

reaelgl uses eqilbr, tfmreahes, bakreahes2, baklbr (section 240),
reavalqri, reaveches and reascl (this section), and, indirectly, also
vecvec, matvec, tamvec, matmat, tammat, mattam, ichcol, ichrow, rotcol,
and rotrow [3, chapter 20].

66

corment meca 2415;
integer procedure reaeigl(a, n, em, val); value n; integer n;
array a, em, val;
begin integer i, k, max, j, 1;
real residu, r, machtol;
g d, v[1:nl;
integer array int, intO[1:n];
residu:= 0; max:= O; eqilbr(a, n, em, d, int0);
tfmreahes(a, n, em, int); TODRUM(a, 2 X n X n);
1l:= reaeigl:= reavalqri(a, n, em, val);
for i:=1 + 1 step 1 until n do
fOI‘J =1+ 1 ste 1 until n do
be in if valljT > valli [Then
begin 1= val[i], vallil:= val[j]; vallj]:= r end
end;
machtol:= em[0] X em[1];
for k:= 1 + 1 step 1 until n do
be inFRDMDRUMza, 2X7n X n); if k > 1 then
begin if vallk — 1] — val[k] < machtol then vallk]:= vallk —
7] = machtol
end;
reaveches(a, n, vallk], em, v);
if em[7] > residu then residu:= em[7];
IT em[9] > max then max:= em[9]; bakreahesi(a, n, int, v);
TODRUM(v, (k — T) X n X 2)
end;
em[7]:= residu; em[9]:= max; FROMDRUM(a, O);
baklbr(n, 1 + 1, n, d, int0, a); reascl(a, n, 1 + 1, n)
end reaeigl;

67

Description mca 2415

reaeig? calculates the elgenvalues, provided that they are all real,
and the eigenvectors of the n—th order matrix M given in

array al1:n, 1:n].

In array em[0:9] the elements with even subscript must be given as
for reaeigl.

The eigenvalues of M are delivered in array val[1:n] in monotonically
decreasing order with the corresponding eigenvectors in the columns of
a. The eigenvectors are also delivered in the first n A 2 real number
locations of the backing storage, and the next n /}\ 2 real nunber
locations of the backing storage are altered.

Moreover, in the elements of em with odd subscript, the same results
are delivered as by reaeigl.

Furthermore, reaelgl:= 0, provided that the QR iteration process is
completed within em[4] iterations; otherwise, reaeigl:= the number,

k, of eigenvalues not calculated, em[5]:= em[4] + 1, and only the last
n — k elements of val and colums of a are approximate eigenvalues and
eigenvectors of M; similarly, if, for some calculated eigenvector,

the Euclidean norm of the residue remains larger than em[1] X em[6],
then em[9]:= em[8] + 1.

reaeig? uses eqilbr, tfmreahes, bakreahesl, baklbr (section 240),
reavalqri, reaveches, reascl (this section), the X8-code procedures
TODRUM and FROMDRUM (see introduction), and, indirectly, also vecvec,
matvec, matmat, tammat, mattam, ichcol, ichrow, rotcol and rotrow [3,
chapter 20].

68

comment meca 2416;
integer procedure reagri(a, n, em, val, vec); value n; integer n;

a, em, val, vec;

begin integer mil, i, 11, m, J, q, max, count;

in:

real w, shift, kappa, nu, mu, r, tol, s, machtol, elmax, 1,
delta., d<[et, I;
array tfl1:n];
machtol:= em[0] X em[1]; tol:= em[1] X em[2]; max:= em[4];
count:= 0; elmax:= 0; m:= n;
for i:= 1 step 1 until n do
'begin vec[i,i]:= 1,
for ji=1 + 1 step 1 until n do vec[i,J]:= vec[J,il:= 0
end;™
mii=m~ 1;
for i:=m, i — 1 while (if i > 1 then abs(a[i + 1,1]) > tol else
false) doq:=1; Ifq>1 - 'then
Pegin if T abs(alq,q — 1]) > elmax then elmax:= abs(al[q,q — 1])
end;
if q = m then
begin vallm]:= a[m,m]; m:= mi end
else
begin delta:= a[m,m] — a[ml,m1]; det:= a[m,ml] X a[mi,m];
if abs(delta) < machtol then s:= sqrt(det) else
begin wi= 2 / delta; s:= w X wX det + 1;
8: =)if 8 < O then — delta X .5 else w X det / (sqrt(s)
+ 1

F

end;

If q = o then

begin a[m,m]:= val[m]:= a[m,m] + s;

alg,q]:= val[q] = al[q,q] - s;

t:= if abs(s) < machtol then (s + delta) / alm,q] else
alq,m] / s; ri= sqrt(t X T + 1); nu:= 1 / r;
mii= — t X nu; alg,m]:= alq,m] — a[m,q];
rotrow(q + 2, n, q, my, a, mu, nu);
rotecol(1, ¢ — 1, q, m, a, mu, nu);
rotcol(1, n, @, m, vec, mi, nu); m:=m — 2

end

else

begi count:= count + 1; if count > max then goto end;
shift:= a[m,m] + s; if abs(delta) < Tol then
begin w:= a[ml,m1] - s;
if abs(w) < abs(shift) then shift:=
end;
ala,qal:= alq,q] — shift;

69

Description meca 2416

reaqri calculates the eigenvalues, provided that they are all real,
and the eigenvectors of the n—th order upper—Hessenberg matrix H given
in array a[1:n, 1:n].

In array em[0:5], the following data must be given (see also p. 56).
em[O]% the machine precision;

em[1]: a norm of H;

em[2]: the relative tolerance for the QR iteration;

em[4]: the meximum allowed number of QR iterations.

The eigenvalues of H are delivered in array vell1:n] , with the
corresponding elgenvectors in the columms of array vec[1:n, 1:n].
Moreover, the elements of the upper-Hessenberg part of a are sltered;
em[3]:= the maximum sbsolute velue of the subdiasgonal elements
neglected;

em[5]t= the nunber of QR iterations performed,

Furthermore, reaqri:= O, provided that the process is completed within
em[4] iterations; otherwise, reaqri:= the number, k, of eigenvalues
not calculated, em[5]:= em[4] + 1, only the last n — k elements of val
are approximate eigenvalues of H, and no useful elgenvectors are
delivered,

reagri uses matvee, rotcol and rotrow [3, chapter 20],

T0

for i:=q step 1 until ml1 do
begin il:=1 + 13 a[il,i‘l]:: a[il,il] — shift;
kappa:= sart(ali,i] A 2 + a[il,i] A 2);
if 1 > q then
begin a[i,i — 1]:= kappa X nu; w:= kappa X m end
else w:= kappa; mu:= a[i,i] / kappa;
nu:= a[il,i] / kappa; a[i,i]:= w;
rotrow(il, n, i, 11, a, m, nu);
rotcol(1, i, i, i1, a, mu, nu);
ali,i]:= a[i,1] + shift;
rotcol(1, n, i, i1, vec, mu, nu)
end; :
alm,mi]:= alm,m] X nu; almym]:= a[m,m] X mu + shift
end
ends
£m>0then goto inj
for j:=n step — 1 until 2 do
begin tf[jl:= 1; t:= ald,dl3
for i:= j — 1 step — 1 until 1 do
begin delta:= t — ali,1T;
tf[1]:= matvee(i + 1, J, i, a, tf) / (if abs(delta) <
machtol then machtol else delta)
end — —
for i:= 1 step 1 until n do vec[i,jl:= matvec(1, J, i, vec,
53]
end;
end: em[3]:= elmax; em[5]:= count; reaqri:=m
e_n_g reaqri;

72

comment mca 2417;
integer procedure reaeig3(a, n, em, val, vec); value n; integer n;
array a, em, val, vec;
begn integer i;
real s;
integer a int, int0[1:n];
array d[1:n];
eqilbr(a, n, em, d, int0); tfmreahes(a, n, em, int);
i:= reaeig3:= reagri(a, n, em, val, vec); if i = O then
begin bakreahes2(a, n, 1, n, int, vec);
baklbr(n, 1, n, d, int0, vec); reascl(vec, n, 1, n)

end
end reaeig3;

3

Description mca 2417

reaeigl calculates the eigenvalues, provided that they are all real,
and the eigenvectors of the n—th order matrix M given in

array a[1:n, 1:n].

In array em[0:5], the elements with even subscript must be given
(see also p. 56), viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of QR iterations.

The eigenvalues of M are delivered in array val[1:n], with the
corresponding eigenvectors in the columms of array vec[1:n, 1:n].
Moreover, the elements of a are altered;

em[1]:= the infinity norm of M equilibrated;

em[3]:= the maximum absolute value of the subdiagonal elements
neglected;)

em[5]:= the number of QR iterations performed.

Furthermore, reaeig3:= O, provided that the QR iteration process is
completed within em[4] iterations; otherwise, reaeig3:= the number, k,
of eigenvalues not calculated, em[5]:= em[4] + 1, only the last n — k
elements of val are approximate eigenvalues of M, and no useful
eigenvectors are delivered.

reaelg3 uses eqilbr, tfmreahes, bakreahes2, baklbr (section 240),
reaqri and reascl (this section), and, indirectly, also matvec,
tamvec, matmat, tammat, mattam, icheol, ichrow, rotcol and rotrow [3,
chapter 20].

Th

Section 242 Double QR iteration

This section contains procedures for calculating real or complex
eigenvalues and/or eigenvectors of real matrices:

comeigval calculates the eigenvalues, and comeigl and comeig? the
elgenvalues and eigenvectors of a real matrix;

comvalgri calculates the elgenvalues of a real upper-Hessenberg
matrix; comveches calculates the eigenvector corresponding to a given
complex eigenvalue of a real upper-Hessenberg matrix;

comscl normalizes a given matrix of real or complex eigenvectors.

The method used in comvalqri for calculating the eigenvalues of a real
upper-Hessenberg matrix H, 1s Francis' "double" QR iteration [21]

[2, p. 528-537].

A double QR iteration step is (mathematically) equivalent to two
successive single iteration steps (see section 2l41) in which the
shifts are elther both real or each others complex conjugate; thus, a
double QR iteration step again yields a real upper-Hessenberg matrix
as next iterate.

In each double step, the shifts are chosen approximately equal to the
eigenvalues of the lower right 2 by 2 submatrix of the considered
principle submatrix of H.

The shifts are chosen not exactly equal to these eigenvalues in an
attempt to avoid nonconvergence of the iteration. In fact, the shifts
are equal to the eigenvalues mentioned plus the square root of the
product of the last two subdiagonal elements of H times the machine
precision.

Hence, one can influence the process by his choice of the

"machine precision" given in em[0].

In the same way as in the single QR iteration, an iterate H is
partitioned into 4 submatrices if, for some k, the absolute value of
the k—th element of its subdiagonal does not exceed some tolerance;
moreover, a weaker criterion due to Francis [21] for partitioning the
matrix is applied, which criterion is especially effective if two
adjacent subdiagonal elements become small.

Subsequently, the two principle submatrices produced by the
partitioning are considered and handled separately; the process is
completed when the successive partitionings have led to principle
submatrices all of order 1 or 2 (cf. section 241).

In almost all cases, the double QR iteration with the choice of the
shifts as mentioned above converges; i.e. the last element of the
subdiagonal of the considered principle submatrix of H converges to O,
the convergence being quadratic for simple eigenvalues, and linear for
multiple ones.

However, convergence does not always occur; counter—examples are the
n—th order permutation matrices (n > 2), whose first—subdiagonal
elements and (1, n)=th element are 1, and whose other elements are 0;
these matrices are invariant with respect to (single or double) QR
iteration (the shifts being 0) [2, p. 5R21].

The iteration (in comvalqri) is discontinued if a given maximum
allowed nunber of iterations has been performed.

>

In comveches, an eigenvector corresponding to a given approximate
complex eigenvalue, kappa (= lambda + i X mu), of a real
upper-Hessenberg matrix H is calculated by means of inverse iteration
[2, p. 629-633] [22]. Starting from the initial vector, x, having all
elements equal to 1, the linear system (H — kappa X I)y = x is solved
iteratively (by means of Gaussian elimination with row interchanges),
and the solution y divided by its Euclidean norm replaces x each time;
the camputation is performed using complex numbers where necessary.
The Gaussian elimination yields a complex upper—triangular matrix, U,
with real main diagonal; the real parts of the elements are stored in
the upper triangle, and the imaginary parts in the strict—lower
triangle of the array in which H was given. If the i—th and (i + 1)—th
row were interchanged in the i—th Gaussian eliminatiaon step, then the
i-th row of U is real thereby msking this step and the corresponding
step of the back substitution twice as fast as otherwise.

The iteration ends either if the Euclidean norm of the residue

(H — kappa X I)x (this norm is calculated as the reciprocal of the
Euclidean norm of y) is not greater then a given norm of H times the
tolerance for the elgenvectors, or if the maximum allowed number of
iterations has been performed. If the tolerance for the elgenvectors
is not too small, then one or two iterations suffice in most cases.
Our method is the first of the 4 alternatives mentioned in

[2, p. 629-630]; the second alternative requires much more time and
space, the third does not converge to an eigenvector of H, and the
fourth alternative, used in [22], requires sbout the same computation
time and twice as much memory space.

To find (in comeigval, comeigl and comeigl) the eigenvalues of a real
matrix My, M is first equilibrated and transformed to a similar real
upper—Hessenberg matrix H (section 240), and then the eigenvalues are
calculated by calling comvalqri.
Furthermore, to find (in comeigl and comeigl) the elgenvectors,
Wilkinson's device [2, p. 328 and 628] [9] [22] is first applied;
1. e. approximate eigenvalues having a distance smaller than some
tolerance are slightly modified such that the distance between them
equals that tolerance. (This device has the effect that a numerically
independent set of eigenvectors is almost always obtained, provided
that the matrix is not too ill-conditioned with respect to its
eligenvalue problem, since inverse iteration is very sensitive to
small changes in the approximate wvalues of closely clustered
eigenvalues.) '
Subsequently, the elgenvectors of H are calculated by calling
reaveches for the real elgenvalues of H, and comveches for the others;
these vectors are then back—transformed to the corresponding
elgenvectors of M (section 240; note that the real and imaginary
parts of a complex elgenvector are each back—transformed in the same
way as a real elgenvector);
finally, the eigenvectors of M are normalized (by calling comscl) such
that, in each eigenvector, an element of maximum modulus equals 1.
The procedures of this section, except comscl, use an auxiliary
em[0:9] (or a part of it) in which some data for controlling
the iterations must be gliven and some by—products -are delivered.
A survey of these data and by—products is given in section 241(p. 56).

76

comment mca 2420;
integer procedure comvalqri(a, n, em, re, im) 3 value n; integer n;

array a, em, re, im;
begin integer i, j, P, q, max, count, nl, pl, p2, imin1, i1, 12, i3;

ing

~ real disc, sigma, rho, g1, g2, g3, psi1, pei2, aa, e, k, 8, norm,
machtol2, tol, w;
boolean b;
norm:= em[1]; machtol2:= (em[0] X norm) A 2; tol:= em[2] X norm;
max:= em[4]; count:= 0; w:= 0;
for it=n, 1 — 1 while (if i > 1 then abs(ali1 + 1,1]) > tol else
Talse) do q:= i; ITF q@ > T then
begin iT abs(alq,qd — 1]) >"Ww Then w:= abs(alq,q — 1]) end;
TFq>7n =1 then -
begin nlt=n = 1; if @ = n then

begin re[n]:= aln,n]; imnl:= 0; n:= n1 end

else -

PegIn sigma:= a[n,n] — aln1,n1]; rho:= — a[n,n1] x aln1,nl;

T disc:= sigma A 2 = Lk X rho; if disc > O then

begin disc:= sqrt(disc); - -

8:= — 2 X rho / (sigma + (if sigma > 0 then disc
else — disc)); reln]:= a[n,n] + s;
Teln1]:= a[nl,nl] — s; im[n]'— im[n1]:= 0

end
else
begin re[n]:= re[n1]:= (a[n1,n1] + a[ln,n]) / 2
"_'Im[m]-— sqrt(— disc) / 2; imln]:= — im[rﬂ]
end;
ni=n=-2
end
end
else
begin count:= count + 1; if count > max then goto out; nl:i=n — 1;
sigma:= a[n,n] + a[n1 Sn1] + sart(abslalni,n = 2] x aln,n1])
X em[0]); rho:= a[n,n] x alni,n1] = aln,n1] x alnl,nl;
for it=n=—=1, 1 =1 while (if 1 =1 > q then abs(ali,i = 1]
Xal11,1] x (abs(al1,IT+ a[IT,11] — Sigma) + abs(ali +
2 11])5) > abs(ali1,i] x ((ali,i] — sigma) + a[1,11] x al[i1,1i]
+ rho)) X tol else false) do pli= 11:= 13 pi= pl = 1;
p2i=p + 2;
for i:= p step 1 until n = 1 do
Begin iminTi= 1 =73 T1:= 1 + T3 12:= 1 + 2; if 1 = p then
T begin gl:= a[p,p] X (alp,p] — sigma) + al[P,p1] X alpT,Dp]
¥ rho; g2:= alpl,p] x (alp,p] + alpl,pl] — sigma);
if pl < nl then
begin g3:= El_p'f,p] x alp2,p1]; alp2,pl:= 0 end

eIse g3:= 0
end —
else

begin gl:= a[i,imin1]; g2:= a[i1,imin1];
T g3:= if 12 < n then a[i2,imin1] else O
end; - -

T

Description mca 2420

comvalqri calculates the eigenvalues of the n—th order upper—
Hessenberg matrix H given in array a[l:n, 1:n].

In ar em[0:5], the following data must be given (see also p. 56).
em[O]: the machine precision;

em[1]: a norm of H;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of QR iterations.

The real and imaginary parts of the eigenvalues of H are delivered in
array re, im[1:n], the members of each nonreal complex conjugate
pair being consecutive. ‘

Moreover, the elements of a are a.ltered,

em[3]:= the maximum absolute value of the subdiagonal elements
neglected;

em[5]:= the number of iterations performed.

Furthermore, comvalqri:= O, provided that the process is completed
within em[4] iterations; otherwise, comvalgri:= the number, k, of
elgenvalues not calculated, em[5]:= em[4] + 1, and only the last n — k
elements of re and im contain approximate eigenvalues of H.

18

k=
s

aa:= if b then gl

psil

if g1 > O then sqrt(gl A2 + 2 A 2 + g3 A 2) else —

art(gl A2 + 2 12 + g3 A 2); b:= abs(k) > machtolZ;

k + 1 else 2;

~

:= if b then & / (&1 * k) else 0;
psi2:= if b then g3 / (g1 + k) else 0;

if i +§_then ali,imin1]:= if i = p then — ali,imin1]
else — k;

for j:= 1 step

1 until n do

begin e:= aa X (ali,J] + psil X a[il,j] + (if i2 <n
then psi2 X a[i2,j] else 0));
ali,dl:=ali,j] = e; alil,jl:= ali1,j] — psil X e;

end;

if i2 <n then a[i2,j]:= a[i2,j] — psi2 X e

for j:= q step 1 until (if i2 < n then i2 else n) do
begin e:= aa X (alj,i] + psil X a[J,11] + (if i2 <n
then psi2 X a[j,i2] else 0));

alj,ili= alj,1] — e; alg,illi= alj,i1] — psil X e;
if 12 <n then a[j,i2]:= a[j,i2] — psi2 X e

end;

if 12 < nl then
begin i3:= 1

end
end
end;

ali3,i1]:
al[13,12]:

+

if n > O then goto in;
out: em[3]:= w; em[5]:= count; comvalgri:=n

end comvalqri;

3; e:= aa X psi2 X al[i3,i2]; a[i3,i]l:= — e;
- psil X e;
al[i3,i2] — psi2 X e

80

comment mca 2421;
Rrocedure comveches(a, n, lambda, mu, em, u, v); value n, lambda, mu;
integer n; real lambda, mu; array a, em, U, V;
begin in’c.eger i, 11, J, count, max;
real aa, bb, dy my ry, 8, Wy X, ¥y, norm, machtol, tol;
arrg,x g, fl1:n];
boolean array p[1:nl;
norm:= em[1]; machtol:= em[0] X norm; tol:= em[6] X norm;
max:= em[8],
for 1:=2 step 1 until n do
begin f[1 = 15 = ali,1 — 1]; a[1,1]:= 0 end;
aa.:a[l 1] — lambda; bb:= — mu;
for 1:= 1 step 1 until n — 1 do
begin il:= 1 + 13 me= £[1]; if T abs(m) < machtol then m:= machtol;
ali,1]:= m; di=aa A 2 + bb A 2; p[il:= abs(m) < sqrt(d);
if pl[i] then . [Lt 11s
beg}n comment & i,jMXfactor and alil,jl-ali,jl;
f[ilt=r:i=mX aa / d; glil:i= 8:=—mX Dbb / 4
wis al[i1,1]; x:= al1,11]; al[il,i]:i=y:=x X 8 + wX 13
ali,11]:= xt= X X r — w X 8; aa:= a[i1,11] — lambda - x;
bbi= — mu - y3
for ji=1i+2 8 1 until n do
begin wi= alJ,T] Xi= all,jl; ald,ili=yi=xX 8 + wX r;
ali,jli=mxt=x X r —wX 8; alj,11]:= — y;
al11,3]:= al11,J] - x

begin comment interchange a[i1,J] and a[i,j]—a[il,J]Xfactor,
f[I]i= r:=aa / m; g[i]l:= 8:=Dbb / m
wi= a[i1,i1] — lambda; aa:= a[i,il] —rXw-—8Xm;
ali,11]:= w; bb:= a[i1,i] — 8 X w + r X mu;
a[i1 1]:= — mu;
forjai+25 1 until n do
beginw:a[i],.ﬂ alIT,31:=al1,3] —r X w; ali,jl:= w;
alj,11]:= a[d;i] -8 Xxw; alj,1]:=0
end

end;

81

Description mca 2421
comveches calculates the eigenvector corresponding to the complex
eigenvalue lambda + 1 X mu of the n—th order upper-Hessenberg matrix

H given in array a[1:n, 1:n].

In em[0:9] the following date must be given (see also p. 56,57).
em[0]: the machine precision;

em[1]: a norm of H;

em[6]: the tolerance for the elgenvectors;

em[8]: the maximum allowed number of iterations.

The real and imaginary parts of the calculated eigenvector are
delivered in array u, v[1:n].

Moreover, the elements of & are altered;

em[7]:= the Euclidean norm, ||r||, of the residue of the calculated
elgenvector;

em[9]:= the number of iterations performed.

If, however, ||r|| remains larger than em[1] X em[6] during em[8]
iterations, then em[9]:= em[8] + 1.

comveches uses vecvec, matvec and tamvec [3, section 200].

plnl:= true; d:=aa A2 + bb A 2; if 4 < machtol A 2 then
begin aa:= machtol; bb:= 0; d:= machtol A 2 end;
aln,n]:= d; f[n]:= aa; g[nl:= — bb;
for 1:= 1 step 1 until n do
begin u[i]:= 1; v[il:= 0 end;
count:= O;
forward: E count > max then goto outm;
for i:= 1 step 1 until n do
begin if pli] then
begin wi= V[1]; v[1]:= g[1] X u[1] + £[1] X w;
ulile= £[1] x u[i] — g[i] X w3 if 1 <n then
begin v[i + 1l:= v[i + 1] = v[1T; -
ufi + 1]:=uf[d + 1] — u[i]

begin aa:= u[i + 1]; bbr= v[1 + 1];
u[i + 1]:= uf[i] — (£[1] X aa — g[i] X bb)
v[i + 1]:= v[1] - (g[1] X aa + f[1] X Dbb)

3 uli]
3 viil:

bb
end
end forward;
backward: for 1:=n step — 1 until 1 do
begin i1:=1 + 1;.
u[i1]:= (u[i] — matvec(il, n, i, a, u) + (if p[i] then
tamvec(il, n, i, a, v) else a[i1,1] X v[iT])) / al1,1];
v[il:= (v[1i] — matvec(i1, n, i, a, v) — (if p[i] then
tamvec(il, n, i, a, u) else a[i1,1] X u[1T])) / ali,i]
end backward;
normalise: w:= 1 / sqrt(vecvec(1, n, 0, u, u) + vecvec(l, n, O,
vy V));
for j:= 1 step 1 until n do
begin u[31T= u[JIX w; v[3T:= v[j] X w end;
count:= count + 1; i1f w > tol then goto forward;
outm: em[T]:= w; em[9]:= count
end comveches;

8l

comment mca 2422;
integer procedure comeigval(a, n, em, re, im); value n; integer n;
array a, em, re, im;
begin integer array int, intO[1:n];
dl1:n};
eqilbr(a., n, em, d, int0); tfmreahes(a, n, em, int);
comeigval:= comvalgri(a, n, em, re, im
end comeigval;

comment mea 2423;
Brocedure comscl(a, n, ni, n2, im), value n, nl, n2; integer n, nl, n2;
array a, im;
begin integer i, j, k;
real 8, u, Vv, W;
for Ji=nl step 1 until n2 do
begins:O, ifiml l;othen

begin for i:=1 step 1 until n do
begin u:= a[I ,'35 A2+ al1,j+ 11 A2 if u> s then

begin s:= u; ki= 1 end
end;
If s $ O then
begin v:= alk,j] / s; wi= —alk,j + 1] / 8;
for i:= 1 step 1 until n do
begin u:= a[i,j]; 8:= ali,g + 1];
a[i,,j]:uXv—sxw,
ali,j +1li=uXxw+s8Xv

else

begin for i:= 1 step 1 until n do
begin if abs(ali,j]] > abs(s) then s:= ali,j] end;
if 8 ¥ O then
for 1:= 1 step 1 until n do a[i,Jl:=ali,j] / s

end

end
end comscl;

85

Description meca 2422

comeigval calculates the eigenvalues of the n—th order matrix M given
in array a[l:n, 1:n].

In array em[0:5], the elements with even subscript must be given (see
also p. 56).

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of QR iterations.

The real and imaginary parts of the eigenvalues of M are delivered in
array re, im[1:n], the members of each nonreal complex conjugate pair
being consecutive,

Moreover, the elements of a are altered;

em[1]:= the infinity norm of M equilibrated;

em[3]:= the maximm absolute value of the subdiagonal elements
neglected;

em[5]:= the number of QR iterations performed.

Furthermore, comeigval:= O, provided that the process is completed
within em[4] iterations; otherwise, comeigval:= the number, k, of
elgenvalues not calculated, em[5]:= em[4] + 1, and only the last n — k
elements of re and 1m contain approximate eigenvalues of M.

comeigval uses eqilbr, tfmreahes (section 240), comvalgri (mca 2420)
and, indirectly, also matvec, matmat, tammat, mattam, ichcol and
ichrow [3, chapter 20].

Description mca 2423

comscl normalizes the eilgenvectors corresponding to the complex
elgenvalues whose imaginary parts are given in array im[ni:n2].

The corresponding eigenvectors must be given in the colums of
array a[1:n, n1:n2] as follows:

each real eigenvector must be given in a column whose corresponding
element of im equals O;

the real and imaginary part of each complex eigenvector must be given
in consecutive columms whose corresponding elements of im are

not equal to O.

The eigénvectors are normalized in such a way that, in each
elgenvector, an element of maximum modulus equals 1.

The normalized eligenvectors are written over the corresponding given
elgenvectors.

86

comment mca 2424;
integer procedure comeigi(a, n, em, re, im, vec); value n; integer n;
a, em, re, im, vec;
Begin integer 1, J, k, pJ, itt;
real X, ¥y, max, neps;
array ab[1:n,1:nl, 4, u, v[1:n];
integer array int, intO[1:n];

procedure transfer;
beggn integer i, Jj;
- for i:= 1 step 1 until n do
for ji= (if 1 = 1 then 1 else i — 1) step 1 until n do
a_.bTi:-j]:“ a[i,]]

end transfer;

eqilbr(a, n, em, d, int0); tfmreahes(a, n, em, int); transfer;
k:= comeigl:= comvalqri(ab, n, em, re, im); neps:= em[0] X em[1];
max:= O3 itt:= O;
for i:= k + 1 step 1 until n do
begin x:= re[1]; y:= Im[1]; pj:= 0;
again: for j:=k + 1 step 1 until 1 — 1 do
begin if ((x—reljlé A2+ (y — in[JT) A 2 < neps A 2) then
begin if pj = J then neps:= em[2] X em[1] else pj:= J;
X:= X + 2 X neps; goto again
end
end;
rel[i]l:= x; transfer; if y % O then
begin comveches(ab, n, re[il, Tm[i], em, u, v);
for J:= 1 step 1 until n do vec[j,i):= u[jl; 1:=1 + 1;
reli]i= x
end
else
begin reaveches(ab, n, x, em, v) end;
For Ji= 1 step 1 until n do vee[J,1]:= v[jl;
if em[7] > max then max:= em[7];
itti= if 1tt > em[9] then itt else em[9]
end;
em[7]:= max; em[9]:= 1tt; bakreshes2(a, n, k + 1, n, int, vec);
baklbr(n, k + 1, n, d, int0, vec); comscl(vec, n, k + 1, n, im)
end comeigl;

87

Description meca 242L

comeigl calculates the eigenvalues and eigenvectors of the n—th order
matrix M given in array a[i:n, 1:n].

In array em[0:9], the elements with even subscript must be given (see
also p. 56,57), viz.

em[0]: the machine precision;

em[2]: the relative tolerance for the QR iteration;

em[4]: the maximum allowed number of QR iterations;

em[6]: the tolerance for the eigenvectors;

em[8]: the maximum number of iterations allowed for the calculation of
each eigenvector. '

The real and imaginary parts of the eigenvalues are delivered in
array re, im[1:n], the menbers Of each nonreal complex conjugate pair
being consecutive; the eigenvectors are delivered in the columns of
array vec[1:n, 1:n], an eigenvector corresponding to a real
eigenvalue being in the corresponding column, and the real and
imaginary part of an eigenvector corresponding to the first member of
a nonreal complex conjugate pair being in the two consecutive columns
corresponding to this pair. (The eigenvectors corresponding to the
second menbers of nonreal complex conjugate pairs are not delivered,
since they are simply the complex conjugate of those corresponding to
the first members of such pairs.)

Moreover, the elements of a are altered;

em[1]:= the infinity norm of M equilibrated;

em[3]:= the maximum absolute value of the subdiagonal elements
neglected;

em[5]:= the number of QR iterations performed;

em[7]:= the maximum Euclidean norm of the residues of the calculated
eigenvectors (of the transformed matrix);

em[9]:= the largest number of inverse iterations performed for the
calculation of some eigenvector.

Furthermore, comeigl:= O, provided that the QR iteration process is
completed within em[4] iterations; otherwise, comeigl:= the number, k,
of eigenvalues not calculated, em[5]:= em[4] + 1, and only the last
n — k elements of re and im, and the last n — k colums of vec contain
approximate eigenvalues and eigenvectors of M; similarly, if, for some
calculated eigenvector, the Euclidean norm of the residue remains
greater than em[1] X em[6] during em[8] iterations, then

em[9]:= em[8] + 1.

comeigl uses eqilbr, tfmreahes, bakreahes2 and baklbr (section 240),
reaveches {(mca 2411), comvalqri, comveches and comscl (this section),
and, indirectly, also vecvec, matvec, tamvec, matmat, tammat, mattam,
icheol and ichrow [3, chapter 20].

88

comment mea 2425;
integer procedure comeigl(a, n, em, re, im); value n; integer n;
array a, em, re, im;
begin integer i, J, k, pj, 81, 1tt;
real X, y, maX, neps;
array d, u, v[1:nl;
integer arrasy int, intO[1:n];
Blim 2 X 0 X n; eqilbr(a, n, em, d, int0);
tfmreshes(a, n, em, int); TODRUM(a, s1);
k:= comeigl:= comvalari(a, n, em, re, im); FROMDRUM(a, s1);
neps:= em[0] X em[1]; max:=0; itt:= 0;
for i:=k + 1 step 1 until n do
begin x:= re[iT; y:= Im[i]; pj:= O;
again: for j:i=k + 1 step 1 until 1 — 1 do
begin if ((x — reljls AZ+ (y — 1n[J]) A 2 < neps A 2) then
begin if pj = j then neps:= em[2] X em[1] else pj:= J;
Xi= X + 2 X neps; goto again
end
end;
re[il:= x; 1f y 4 O then
begin comveches(a, n, re[il, im[1], em, u, v);
FROMDRUM(a, s1); bakreahesi(a, n, int, u);
TODRUM(uy @ X n X (1 — 1)); 1:=1 + 1; re[1]:=x

end
else
begln reaveches(a, n, x, em, v); FROMDRUM(a, 81) end;
b"a%}'eahem(a, n, int, v); TODRUM(v, 2 X n X (1 = T1));
if em[7] > max then max:= em[T7];
TTt:= if 1tt > em[9] then itt else em[9]
end;
em[7]:= max; em[9]:= itt; FROMDRUM(a, 0);
baklbr(n, k + 1, n, d, int0, a); comscl(a, n, k + 1, n, im)
end comeig?;

89

Description mea 2425

comeig? calculates the eigenvalues and eigenvectors of the n—th order
matrix M given in array al[1l:n, 1:n].

In array em[0:9], The elements with even subscript must be given as
for comeigl.

The real and imaginary parts of the eigenvalues are delivered in
array re, im[1:n], and the eigenvectors in the colums of a in the
same way as by comeigl.

The eigenvectors are also delivered in the first n A 2 real number
locations of the backing storage; the next n /t\ 2 real number locations
of the backing storage are altered. .

Moreover, in the elements of em with odd subscript, the same results
are delivered as by comeigl.

Furthermore, comeigl:= O, provided that the QR iteration process is
completed within em[l4] iterations; otherwise, comeigl:= the number, k,
of eigenvalues not calculated,

em[5]:= em[l4t] + 1, and only the last n — k elements of re and im, and
the last n — k colums of a contain approximate eigenvalues and
eigenvectors of M; similarly, if, for some calculated eigenvector, the
Euclidean norm of the residue remains greater than em[1] X em[6]
during em[8] iterations, then em[9]:= em[8] + 1.

comeig? uses eqilbr, tfmreshes, bakreahesl and baklbr (section 240),
reaveches (mca 2411), comvalqri, comveches and comscl (this section),
the X8-code procedures TODRUM and FROMDRUM (see introduction), and,
indirectly, also vecvec, matvec, tamvec, matmat, tammat, mattam,
ichcol and ichrow [3, chapter 20].

90

REFERENCES

1.

2,

10.

11.

12,

13.

1k,

P. Naur (ed.), Revised report on the algorithmic language
ALGOL 60 (1962).

J. H. Wilkinson, The algebraic eigenvalue problem
(Clarendon Press, Oxford 1965).

T. J. Dekker, ALGOL 60 procedures in numerical algebra, part 1
(Mathematical Centre Tracts 22, Amsterdam 1968).

T. J. Dekker (ed.), Series AP 200
(Mathematical Centre Amsterdam 1962-1965).

A. S. Householder and F. L. Bauer, On certain methods for
expanding the characteristic polynomial,
Num. Math. 1(1959) 29-37.

W. Givens, Numerical computation of the characteristic values
of a real symmetric matrix
(0=k Ridge National Laboratory, ORNL~15Thk, 1954).

J. H. Wilkinson, Householder's method for symmetric matrices,
Num. Math. 4(1962) 354-361.

J. H. Wilkinson, Calculation of the eigenvalues of a
symetric tridiagonal matrix by the method of bisection,
Num. Math. 4(1962) 362-367.

J. H. Wilkinson, Calculation of the eigenvectors of a
symmetric tridiagonal matrix by inverse iteration,
Num. Math. 4(1962) 368-376.

P. Naur, Eigenvalues and eigenvectors of real symmetric
matrices, ALGOL programming cont. no. 9, BITH(1964) 120-130.

W. Barth, R. S. Martin and J. H. Wilkinson, Calculation of the
elgenvalues of a symmetric tridiagonal matrix by the method of
bisection, Num. Math. 9(1967) 386-393.

J. H. Wilkinson, Two algorithms based on successive linear
interpolation (Stanford University, Techn. rep. no. CS 60, 1967).

T. J. Dekker, Finding a zero by means of successive linear
interpolation, to appear in Proc. Symp. on Constructive
aspects of the fundamental theorem of algebra,

Rischlikon, Switzerland (1967).

J. M. Ortega and H. F. Kaiser, The LL' and QR methods for
symmetric tridiagonal matrices, Comp. J. 6(1963) 99-101.

15,

16.

17.

18.

19.

20.

21.

22,

23.

2k,

25.

26.

27.

28.

29.

91

P. A. Businger, Algorithm 253, Eigenvalues of a real symmetric
matrix by the QR method, Comm. ACM 8(1965) 217-218.

P. A. Businger, Algorithm 254, Eigenvalues and eigenvectors of
a real symmetric matrix by the QR method,
Comm. ACM 8(1965) 218-R219.

W. Kahan, When to neglect off-diagonal elements of symmetric
tridiagonal matrices
(Stanford University, Techn. rep. no. CS 42, 1966).

W. Kahan and J. Varah, Two working algorithms for the
eigenvalues of a symmetric tridiagonal matrix
(Stanford University, Techn. rep. no. CS 43, 1966).

E. E. 0Osborne, On preconditioning of matrices,
J. ACM T(1960) 338-35k4.

B. Parlett, Laguerre's method applied to the matrix eigenvalue
problem, Math. Comp. 18(1964) 464485,

J. G. Francis, The QR transformation, parts 1 and 2,
Comp. J. 4(1961) 265-271 and 332-345.

J. M. Varah, Eigenvectors of a real matrix by inverse
iteration (Stanford University, Techn. rep. no. CS 34, 1966).

H. Rutishauser, The Jacobi method for real symmetric matrices,
Num. Math. 9(1966) 1-10.

T. J. Dekker, Newton—Laguerre iteration
(Mathematical Centre, Amsterdam, MR 82, 1966).

T. J. Dekker, Newton—Laguerre iteration, Programmation en
Mathematiques mumeriques. (C.N.R.S., Paris, 1966) 189-200.

P, J. Eberlein, A Jacobi-like method for the computation of
eigenvalues and eigenvectors of an arbitrary matrix,

J. SIAM 10(1962) Th4-88.

P. J. Eberlein and J. Boothroyd, Solution to the eigenproblem
by a norm reducing Jacobi type method,
Num. Math. 11(1968) 1-12.

J. B. Rosser, C, Lanczos, M.R. Hestenes and W. Karush,
Separation of close eigenvalues of a real symmetric matrix,
J. Res. Nat. Bur. Standards 47(1951) 291-297.

J. H., Wilkinson, Global convergence of tridiagonal QR
algorithm with origin shifts, to appear in Linear Algebra
and its applications, Vol, 1 no. 3.

92

EPILOGUE 1

EXPERIMENTS USING THE MC ALGOL 60 SYSTEM FOR THE X8.

In this epilogue we give our results for a number of well-known
matrices.

a)

d)

The matrix W21+ of Wilkinson [2, p. 308].

eigsym? and qrisym delivered all eigenvalues in at least 9 digits.
The eigenvectors were normalized to Euclidean length 1. The first
and second eigenvector lied in the subspace spanned by the first
and second correct eigenvectors, but were rotated by about 10
degrees; the same holds for the third and fourth eigenvectors. The
fifth and sixth eigenvectors corresponded in 2 digits to the
correct eigenvectors, the seventh and eighth in 5, the ninth

and tenth in 7, and the others in at least 9 digits.

The computation has taken 11.5 seconds with eigsym2 and 13.0
seconds with qrisym.

One of Rutishauser's matrices of order 44 [23].

It took elgsym2 109.3 seconds to deliver all eigenvalues and eigen—
vectors; the eigenvalues nunbered 1,15,20,21,...,30,44, and the
eigenvectors numbered 1,15,28,29,30,44, (which are given by
Rutishauser) were correct in at least 9 digits.

Rosser's matrix of order 8 [28].

Both eigsym2 and qrisym delivered the following results: the
eigenvalues numbered 1,2,3,5,8 were correct in 11 digits, number L
in 10, 6 in 8 and 7 in 9 digits. The eigenvectors were correct in
6 to 7 digits. The computation time was 2.1 seconds with eigsym2
and 1.7 seconds with gqrisym.

A matrix of order 10 [21].

Both reaeigl and reaeig3 delivered all eigenvalues and eigenvectors
in 5.5 seconds. The eigenvalues agreed in 9 digits with those given
by Francis. We could not check the elgenvectors, but the maximal
component of all residual vectors, devided by the matrix norm, was
.9y~11 with reaeigl and .5,~11 with reaeig3.

A matrix of order 16 [26].

It took comeigl 17 seconds to deliver all eigenvalues and eigen—
vectors.

The eigenvalues were correct in at least 10 digits.

A matrix of order 4O [26].

It took comeigl 198 seconds to deliver all eigenvalues and
eigenvectors.,

The eigenvalues were correct in at least 9 digits.

(The results given in Eberlein's paper should be multiplied by a
factor 10).

93

EPIIOGUE 2
TESIMATRICES.

In this epllogue we will mention the sets of testmatrices we used to
obtain the time formulas in the Appendix.

These matrices have the property that all eigenvalues, or all
elgenvalues and the set of eigenvectors, can be chosen arbitrarily.
The matrices used for establishing the formulas for the procedures
of CHAPTER 23 are matrices M = XDX of the order n = 2) k, where k is
an integer ranging from 1 to 6.

The matrices X = X(k) are defined by the recurrence relation

X(k) X(k)
X(k+1) = 1/8qrt(2) for k > 0,
X(k) —x(k)

X(0) being the identity matrix of order 1. Consequently XX = I.
Moreover, the colums of X are the eigenvectors of M and the elements
of the dlagonal matrix D are the elgenvalues of M,

The testmatrices for the procedures of CHAPTER 24 were matrices of the
form M = XDY or Y'DX' of order n, n ranging from 12 to 30.

D is a diagonal matrix and XY = I. The matrices X depend on a parameter
p; and are defined in the following way:

X[1, j] =p—min(n —1i, n—=J) for 1 = 1,.e.yn; J = 1500050 — 1,

X[1, n] =1 for 1 = 1,...,n.

Obviously, the columns of X are the eigenvectors of M; the angles
between these eigenvectors can be varied by the choice of p. We choose
p =10 /f\ k, where k is an integer ranging from 1 to 6.

Y, the inverse of X, is of tridiagonal form with diagonal d, sub—
diagonal b and super diagonal c.

afi] = 2 for 1 = &,...,n — 1; d[1] = =1, d[n] =1 - p.

b[i] = 1 for 1 = 1,...,0n —2; b[n — 1] = p.

c[i] =1 for 1 = 1,...,n — 1.

The rows of Y are the eigenvectors of M'!, which, as can be seen
immediately, are all but one independent of p.

ok

APPENDIX
TIMES FOR THE MC ALGOL 60 SYSTEM FOR THE X8.

In this appendix, we give practical formulas for the computation

times in milliseconds of those procedures published above which
calculate the eigenvalues, or the eigenvalues and eigenvectors, of a
general symmetric or asymmetric real matrix.

The computation time for the major procedures of this booklet obviously
depends not only on the order n of the matrix but also on the number
of iterations required. We gilve approximate time formulas depending on
n only, because the number of iterations required is closely related to
the condition of the matrix and the desired precision, and is there—
fore not known in advance. Calling the respective procedures with a
relative precision of 9, the number of QR—iterations proved to

be about 2xn, and the number in valsymtri about 15xn.

The formulas have been obtained by fitting a third degree polynomial
by the method of least squares to the computation times for our

sets of testmatrices (see p. 93). The tests were performed on an
Electrologica X8 computer using the MC ALGOL 60 system for the X8,

in which system the procedures mca 2000 to 2005 are available as
machine—code procedures [3].

The following results have been obtained:
CHAPTER 23 EIGENSYSTEMS OF REAL SYMMETRIC MATRICES.

mea 2313 eigvalsym2 SBnA3 + 15n A2 msec.
mea 2314 elgsym? MmA3 + 25n A2 "
mea 2318 eigvalsymi Sn A3 4+ 12n A2 "
mea 2319 elgsymi A3 + 20n A2 "
mea 2322 qrivalsym2 SnA3 + 6nAR "
mca 2323 arisym 2, In A3 +8.5nA2 "
meca 2327 qrivalsyml A3 + 5nA2 "
CHAPTER 24 EIGENSYSTEMS OF REAL MATRICES.

mea, 2412 reaeigval tdn A3 msec.
mea 2414 reaeigl 2.7 A 3 "
mea, 2417 reaeigl 3.5n A3 "
mea, 2422 comeigval 1.6n A 3 "
mea, 2424 comeigl 3.0n A 3 "
Notes

a) Comparing mca 2414 and mca 2417, one might say that reaeigl is much
faster than reaeig3. Taking into account the number i of
QR iterations, the formulas would be the following:
mea, 2414 reaeigl 1dn A3 + .7in A2 msec.
meca 2417 reaeigl An A3 + 1.6in A2 msec.
Thus, when the number of iterations is small (relative to n),
reaelg3 will be faster than reaeigl. .

95

b) For reaeig? and comeig2, no time formlas are given, because
these procedures are the same as reaeigl and comeigl, apart from
the use of a backing storage.

The formulas presented in this appendix, with the exception of
those for meca 2422 and mea 2424 can be used for an estimation of
the computation time, which, for most matrices, will not deviate
from the actual computation time by more than ten percent,

Due to the effect that the number i of QR iterations is

somewhat more sensitive to the distibution of the eigenvalues if
they are complex, the time formulas for meca 2422 and mca 2424 are
of limited value only,

