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PREFACE

We here present a set of ALGOL 60 procedures for solving systems of
linear equations, for inverting matrices and for solving linear least—
squares problems, The procedures use single-length scalar-product
procedures and no iterations are applied for improving the solutions.
In the future, we plan to present a corresponding set using double—
length scalar-product procedures and applying iterations for improving
the solutions, and a set for calculating eigenvalues and eigenvectors
of matrices,

The procedures have been tested on an Electrologica X8 computer by
means of the "MC ALGOL 60 system for the X8" of the Mathematical
Centre, Amsterdam, written by F., E, J. Kruseman Aretz.

Only the procedures meca 2000 to 2005 of section 200 are available as
EL X8-machine—code procedures,

The texts of the procedures have been edited by an ALGOL editing
program written by H, L, Oudshoorn, H, N, Glorie and

G. C. J. M, Nogaredel12].

In the second edition some minor errors have been corrected,
Three of these corrections concern errors in the texts of rnkelm
(mca 2110), detbnd (mea 2120) and detsolbnd (meca 2122) which were
related to the handling of the row norms in the pivot selection,
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NOTATIONS

References are given between the square brackets "[" and "]".
" : " denotes the integer division symbol " + " [1,3.3.4.2.].
"goto" denotes the same symbol as "go to", [1,4.3.].

"0™ denotes a null vector; the number of elements will be clear from
the context.

" min " (" max ") denotes the function whose value is the minimum
(maximum) value of its two operands.

The prime symbol " ! " denotes transposition of a matrix.

" M " denotes the matrix considered and " n " denotes its order,
unless stated otherwise.

DEFINITIONS

The "dimension" of an array is the number of its subscripts (see also
[1,5.2.3.2.]). Thus we speak about "one—dimensional" and "two—
dimensional" arrays. The first subscript of a two—dimensional array is
called the "row index" and the second the "column index".

The i-th "row" ("column") of a two—dimensional array is the set of its
elements for which the row (column) index equals i.

The "upper triangle" of a matrix or of a two—dimensional array is the
set of its elements for which the first subscript does not exceed the
second.

A "unit triangular" matrix is a triangular matrix whose diagonal
elements are equal to 1.

We use the following vector norms [2, p.80] [3, p.55] : the "one—
norm", i.e. the sum of the absolute values of the elements of the
vector; the "Euclidean norm", i.e. the square root of the sum of their
squares; and the "infinity-norm", i.e. their maximum absolute value.
We use the following matrix norms : the "infinity-norm", i.e. the
maximum one-norm of its rows; the "maximum-norm", i.e. the maxinum
absolute value of its elements. The maximum-norm of a positive
semidefinite symmetric matrix obviously equals the maximum of its
diagonal elements.

The "machine precision" is the largest number, p, for which 1 + p = 1
on the computer (about p—12 for the X8).

A "relative tolerance" is a tolerance relative to some vector or
matrix norm. Relative tolerances must be chosen smaller than one, and
should be chosen not smaller than the machine precision.



INTRODUCTION

Chapter 20 contains a set of procedures for vector operations, Most of
these are used in the subsequent chapters; some procedures of section
201 and 203 will be used in procedures for calculating eigenvalues and
eigenvectors (to pe published), A vector is given either in a one—
dimensional array or in a row or column of a two—dimensional array,.
In the former case, we often use the same name for the vector as for
the array if the whole array is used for the vector,

Capter 21 contains a set of procedures for solving linear systems and
for inverting matrices, The matrix is given in a two—dimensional
array, the columms and rows of which correspond with the colums and
rows of the matrix, A band matrix, however, is given in a one-
dimensional array. For details, see sections 212 and (for the
positive~definite symmetric case) 222,

Chapter 22 deals with the special case of positive—definite symmetric
matrices and, moreover, contains a section for solving linear least=—
squares problems, Of symmetric matrices and upper—triangular matrices
only the upper triangle will be given or delivered, either in the
upper triangle of a two-dimensional array (in which case the
remaining part of the array is not used) or in a one—dimensional
array [8], In the latter case, the (i, j)=th element of the matrix
is, for i < j, the array element whose subscript equals

(3=1)x7J : 2+ i, Thus, the memory space occupied by the matrix is
cut nearly in half, A drawback is that the elements in a row of the
upper triangle are not linear functions of the running subscript, so
that special procedures for the vector operations are needed.

In each chapter, we give a survey of its contents and some numerical
considerations and comparisons, The chapters are subdivided into
sections in each of which we give a more detailed survey of its
contents and explain the numerical methods used. Each section contains
one or more procedures, For each procedure, we give a description

in which the required data, the delivered results and the (directly or
indirectly) used nonlocal procedures are mentioned, The data of the
procedures are given by actual parameters whose corresponding formal
parameters are either specified real or integer and called by value,
or specified array or integer array and called by name, The results of
the procedures are delivered either as the value assigned to the
procedure identifier (of type real or integer), or in arrays
corresponding to formal parameters specified array or integer array.
Some arrays are used as well for data as for results.

For each formal parameter specified array or integer array, we give
the "minimal declaration", i.,e. a declaration with the appropriate
number of bound pairs, where each pair indicates the range which is
actually used by the procedure, Of course, the declaration of the
corresponding actual parameter may contain smaller lower bounds and
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greater upper bounds. (The descriptions of the procedures of sections
202 and 203 contain two minimal declarations of the same parameter
with the meaning that the declaration of the corresponding actual
parameter has to include both of them.) Sometimes not all elements of
the array indicated by the minimal declaration are used. In the
descriptions, we always mention which part is used for the data and
which part for the results, so that it is always clear which elements
are not used at all and which elements are left unchanged. Only in
some cases shall we explicitly state that some elements are left
intact, if it is important for the applications.



CHAPTER 20
VECTOR OPERATIONS

This chapter contains procedures for calculating scalar products, for
adding a multiple of a vector to another vector, for interchanging two
vectors and for rotating two vectors,

Each of the vectors is given by means of a pair of subscript bounds
and either a two—dimensional array identifier with a row or columm
number or a one—dimensional array identifier, The procedures which use
only one—dimensional arrays, have some extra facilities, Some of these
procedures handle rows of upper— triangular or symmetric matrices
given in a one—dimensional array, which are represented in a special
way, viz, with linearly increasing spacing of the successive elements.
Compared with the technique of defining the vectors by means of
subscripted variables explicitly depending on a bound variable, as is
common for scalar product procedures [1,4,7.2, and 5.4.2,]1 [5] [6]
[10], our technique is less flexible, but more efficient (at least in
the MC ALGOL 60 system for the X8); moreover, our procedures may well
be written as machine—code procedures in which the elements of the
vectors are selected more efficiently on account of their equidistant
(or linearly increasing) spacing in the memory, As to the lesser
flexibility, instead of ohe procedure we need a set of procedures for
the most important applications. As to the machine-code procedures,

if explicit bound variables were used, the more efficient element
selection would be possible only if the subscripts were linear (or,

in the case of linearly increasing spacing, quadratic) functions of
the bound variable, but this requirement is easily violated and
difficult to check,

Our procedures avoid this difficulty.
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comment mca 2000; :
real procedure vecvec(l, u, shift, a, b); value 1, u, shift;
integer 1, u, shift; array a, Db;
begin integer k; real s;
g:= 03
for k:= 1 step 1 until u do s:= a[k] X b[shift + k] + s;
vecvec:= 8
_eﬂd; vecvec;

comment mca 2001;
real procedure matvec(l, u, 1, a, b); value 1, u, i; integer 1, u, 1i;
array a, b; :
begin integer k; real s;

s:= 03

for k:= 1 step 1 until u do s:= a[i,k] X b[k] + s; matvec:=s
S.lld'_ matvec;

comment mca 2002;
real procedure tamvec(l, u, i, a, b); value 1, u, i; integer 1, u, i;

array a, b;
begin integer k; real s;
g:= 03

for k:= 1 step 1 until u do s:= al[k,i] X b[k] + s; tamvec:= s
end tamvec;

comment meca 2003;
real procedure matmat(l, u, i, Jj, a, b); value 1, u, i, J;
integer 1, u, 1, Jj; array a, b;
begin integer k; real s;
g:= 03
for k:= 1 step 1 until u do s:= a[i,k] X blk,j] + s; matmat:=s
_e:gg matmat;

comment mca 2004;
real procedure tammat(l, u, 1, Jj, a, b); value 1, u, 1, J;
integer 1, u, 1, j; array a, b;
begin integer k; real s;
s:= 03

for k:= 1 step 1 until u do s:= alk,i] X b[k,j] + s; tammat:= s
end tammat;
comment meca 2005;
real procedure mattam(l, u, 1, Jj, a, b); value 1, u, i, J;
integer 1, u, i, Jj; array a, Db;
begin integer k; real s;
s:= 03
for k:= 1 step 1 until u do s:= a[i,k] X b[j,k] + 8; mattam:= s

end mat H



Section 200 Scalar products

The procedures of this section calculate the scalar product of two
vectors, each of which is given either as (a part of) a one-
dimensional array or as row or column of a two—dimensional array. If
the lower bound of the running subscript is greater than the upper
bound, then O is delivered as scalar product.

The lower and upper bound of the running subscript are given by two
parameters;

vecvec and seqvec feature the additional possibility of shifting the
range of the running subscript of the second vector; in scaprdil,
moreover, the spacings of the vectors are arbitrary constants; in
seqvec the spacing of the successive elements of the first vector
increases linearly. (The latter procedure is used for symmetric or
upper—triangular matrices given in one—dimensional arrays.)

In the MC ALGOL 60 system for the X8 the procedures meca 2000 to 2005
are available as machine—code procedures (which are about 7 times
faster than the corresponding equivalent ALGOL procedures, see
Appendix).

Description mca 2000
vecvec:= scalar product of the vectors given in array al[l:u] and
array b[shift + 1 : shift + ul.

Description mea 2001
matvec:= scalar product of the row vector given in array a[i:i, 1:u]
and the vector given in array b[l:ul.

Description mca 2002
tamvec:= scalar product of the columm vector given in
array a[l:u, i:1] and the vector given in array b[l:u].

Description mca 2003
matmat:= scalar product of the row vector given in array al[i:i, 1l:u]
and the column vector given in array bl[l:u, j:jl.

Description mca 2004
tammat:= scalar product of the column vectors given in
array all:u, 1:1] and array bl[l:u, j:jl.

Description meca 2005
mattam:= scalar product of the row vectors given in array ali:i, 1l:ul
and array b[Jj:J, L:ul.
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comment mca 2006; :
real procedure seqvec(l, u, il, shift, a, b); value 1, u, il, shift;
integer 1, u, il, shift; array a, b;
begin real s;
8:= 03
for 1:= 1 step 1 until u do
begin s:= a[il] X"O[1 + shift] + s; 1l:= 11 + 1 end;
seqvec:= 8
end seqvec;

comment mca 2008;
real procedure scaprdl{la, sa, lb, sb, n, a, b);
value la, sa, 1b, sb, n; integer la, sa, 1b, sb, n; array a, b;
begin integer k;
real s;
8:= 0;
for k:= 1 step 1 until n do
bPegin s:= alla) X bL1b] + 8; la:= la + sa; lb:= 1b + sb end;
scaprdl:= s -
_e_n_c_l_ scaprdl;
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Description mca 2006

seqvec:= scalar product of the vectors given in

array al1l : 11 + (u+ 1 =1) X (u=1) : 2] and

array blshift + 1 : shift + ul], where the elements of the first vector
are alil + (J + 1 =1) X (§=1) : 2] for j =1,..., u.

Description mca 2008

scaprdl := scalar product of the vectors given in

array almin (la, la + (n = 1) X sa) : max (la, la + (n = 1) X 8a)]
and array blmin (1b, 1b + (n = 1) X sb) : max(lb, 1b + (n = 1) x sb)],
where the elements of the vectors are

alla + (j = 1) X sal] and b[1b + (§j = 1) X sb] for j = 1,..., n.
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comment mca 2010;

procedure elmvec(l, u, shift, a, b, x); value 1, u, shift, x;
integer 1, u, shift; real x; array a, b;

for 1:= 1 step 1 until u do a[l]:= a[l] + b[1 + shift] X x;

comment meca 2011;
procedure elmveccol(l, u, 1, a, b, x); value 1, u, 1, x;

integer 1, u, i; real x; array a, b;
for 1:= 1 step 1 until u do ail]:= a[l] + b[1,1] X x;

comment mca 2012;

procedure elmcolvec(l, u, i, a, b, x); value 1, u, i, x;
integer 1, u, i; real x; array a, b;

for 1:= 1 step 1 until u do all,i]:= a[l,i] + b[1] X x;

comment mca 2013;

procedure elmcol(l, u, i, J, a, b, x); value 1, u, 1, J, x;
integer 1, u, i, j; real x; array a, b;

for 1:= 1 step 1 until u do al[l,i]:= a[l,i] + b[1,j] x x;

comment mca 201k4;

procedure elmrow(l, u, 1, j, a, b, x); value 1, u, i, j, x;
integer 1, u, i, Jj; real x; array a, b;

for 1:= 1 step 1 until u do ali,1]:= a[1,1] + b[j,1] X x;

comment mca 2019;
integer procedure maxelmrow(l, u, 1, j, a, b, x); value 1, u, i, Jj, x;
integer 1, u, i, j; real x; array a, b;
begin integer k;
real r, s;

s:= 0;

for k:= 1 step 1 until u do

begin r:= ali,k]:= a[i,k] + b[j,k] X x; if abs(r) > s then
begin s:= abs(r); l:= k end -

end;
maxelmrow:= 1
end maxelmrow;
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Section 201 Elimination

The procedures of this section perform a Gaussian elimination on a
vector. More precisely, a multiple of one vector is added to another
vector., Fach vector is given either as a one—dimensional array or as
row or columm of a two—dimensional array. The lower and upper bound of
the running subscript are given by two parameters; elmvec features
the additional possibility of shifting the range of the running
subscript of one vector.

Description meca 2010
elmvec adds x times the vector given in array b[shift + 1 : shift + ul
to the vector given in array al[l:ul.

Description mca 2011
elmveccol adds x times the column vector given in array b[l:iu, i:i] to
the vector given in array all:ul.

Description mca 2012
elmcolvec adds x times the vector given in array b[l:u] to the column
vector given in array a[l:u, i:i].

Description meca 2013
elmcol adds x times the colum vector given in array bl[l:u, j:j] to
the column vector given in array al[l:u, i:i].

Description mca 2014
elmrow adds x times the row vector given in array b[j:j, 1l:ul to the
row vector given in array a[i:i, l:ul.

Description mca 2019

maxelmrow adds x times the row vector given in array blj:j, L:ul to
the row vector given in array al[i:i, l:u].

Moreover, maxelmrow:= the value of the second subscript of an element
of the new row vector in array a which is of maximum absolute value.
If, however, 1 > u, then maxelmrow:= 1.
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comment mca 2020;
procedure ichvec(l, u, shift, a); value 1, u, shift;
integer 1, u, shift; array a;
begin real r;
for L:= 1 step 1 until u do
Pegin r:= alli; alll:= a[T + shift]; all + shift]:= r end
end Tchvec; -

comment meca 2021;
procedure icheol(l, u, 1, J, a); value 1, u, 1, j; integer 1, u, i, J;
array a;
begin real r;
for 1:= 1 ste 1 untiludo
'begin r:=all,1]; all,1]:= a[l,3]; all,jl:= r end
end icheol; -

comment mca 2022;
procedure ichrow(l, u, i, J, a); value 1, u, i, Jj; integer 1, u, i, J;
array a;
begin real r,
for 1:= 1 st 1 until u do
begin r:= =2 i sali,1]:= alj,1]; alj,1l]:= r end
end Tchrow;

comment mca 2023;
procedure ichrowecol(l, u, i, J, a); value 1, u, i, J;
integer 1, u, i, Jj; array a;
begin real r;

J‘:'orl--ls luntiludo

begin r:= ali,1]; ali,1]:= al1,3]; all,jl:= r end
end Tchroweol; -

comment meca 2024;
procedure ichsegvec(l, u, il, shift, a); value 1, u, i1, shift;
integer 1, u, 11, shift; array a;
begin real r;
for l:= 1 step 1 until u do
begin r:= a[ill; a[ill:= all + shift]; a[l + shift]:= r;
il:= i1l + 1
end
end ichseqvec;

comment mca 2025;

procedure ichseq(l, u, il, shift, a); value 1, u, i1, shift;
integer 1, u, il, shift; array a;

begin real r,

= 1 st 1 until u do
begin r: a[l T]; alill:= alil + shift]; a[il + shift]:=
=il + 1
end
end ichseq;
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Section 202 Interchanging

The procedures of this section interchange the elements of two
vectors. Each vector is given either as (a part of) a one—dimensional
array or as row or colum of a two—dimensional array. The lower and
upper bound of the running subscript are given by two parameters;
ichvec and ichseqvec feature the additional possibility of shifting
the range of the running subscript of the second vector; in ichseqvec
and ichseq the spacing of the successive elements of one or both of
the vectors increases linearly. (The latter procedures are used for
symmetric matrices given in one—dimensional arrays.)

Description meca 2020
ichvec interchanges the elements of the vector given in array a[l:u]
and array a[shift + 1 : shift + ul.

Description meca 2021
ichcol interchanges the elements of the columm vectors given in

array a[l:u, 1:1] and array a[l:u, j:jl.

Description mca 2022
ichrow interchanges the elements of the row vectors given in

array a[i:1, 1l:u] and array alj:j, l:ul.

Description meca 2023
ichrowcol interchanges the elements of the row vector given in
array ali:i, 1:u] and the columm vector given in array a[l:u, j:jl.

Description mea 2024

ichseqvec interchanges the elements of the vectors given in
array a[il : 11 + (u+ 1= 1) X (u~1) : 2] and

array a[shift + 1 : shift + ul, where the elements of the first
vector are a[il + (J + 1 = 1) X (J = 1) : 2] for j =1,..., u.

Description meca 2025

ichseq interchanges the elements of the vectors given in
array a[il : 11 + (u+ 1 - 1) X (u—~1) : 2] and

array alshift + il : shift + 11+ (u+ 1= 1) X (u=-1) : 2],
where the elements of the vectors are

alil + (J+1-1) %X (§J—-1) : 2] and

alshift + 11+ (J+1-1) x (j—1) : 2] for j = 1,..., u.
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comment meca 2031;
procedure rotcol(l, u, i, Jj, a, ¢, 8); value 1, u, 1, j, c, s;
integer 1, u, i, Jj; real c, s; array a;
begin real x, y;
for 1:= 1 step 1 until u do
begin x:= a[l,1]; y:= a[l,3]; a[l,i]l:=xX ¢c +y X s;
all,jli=yXc—-xXs
end
end rotcol;

comment mca 2032;
procedure rotrow(l, u, i, J, a, ¢, s); value 1, u, 1, Jj, ¢, s;
integer 1, u, i, J; real ¢, s; array a;
begin real x, y;
for l:= 1 step 1 until u do
begin x:= a[1,1]; y:= al[Jj,1]; ali,l]:=x X c + y X 8;
ald,llit=yX ec=xX 8
end
end rotrow;
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Section 203 Rotation

The procedures of this section perform a rotation on two vectors, x
and y (say); i.e. the two vectors are replaced by cx + sy and ey — sX,
where ¢ and s are two given real values. Each vector is given as row
or column of a two—dimensional array. The lower and upper bound of the
running subscript are given by two parameters. (These procedures are
to be used in procedures for calculating eigenvalues and eilgenvectors
(to be published).)

Description meca 2031

rotcol replaces the colum vector x given in array a[l:u, i:i] and the
colum vector y given in array a[l:u, j:j] by the vectors cx + sy and
cy — sX.

Description mca 2032

rotrow replaces the row vector x given in array a[i:i, 1l:u] and the
row vector y given in array alj:j, l:u] by the vectors cx + sy and
cy — sx,
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CAPTER 21
LINEAR SYSTEMS AND MATRIX INVERSION

This chapter contains procedures for solving systems of linear
equations and for matrix inversion. Moreover, section 211 contains a
procedure for calculating the rank of a matrix and a procedure for
solving a homogeneous linear system.

In section 210 triangular decomposition with partial pivoting is used
and in section 211 Gaussian elimination with complete pivoting. The
procedures of section 212 solve linear systems whose matrices are in
band form, by means of Gaussian elimination with partial pivoting.

In exceptional cases, partial pivoting may yield useless results, even
for well—conditioned matrices; this may occur only for large matrices
whose order (or in the case of band matrices, band width) is not much
smaller than the number of binary digits in the number representation
[2, p.97] [3, p.212]. Complete pivoting, however, always yields good
results for well—conditioned matrices; a "condition number" (i. e. a
norm of the matrix times a norm of its inverse) is a measure of the
relative accuracy of the solution [2, p.91]. Moreover, complete
pivoting is indispensable for calculating the rank of a matrix and for
solving homogeneous systems.

For large order n the computation time for solving linear systems and
for matrix inversion is proportional to n cubed.

Complete pivoting requires some extra time for the pivot selection,
which, for large n, is a nearly constant (small) fraction of the total
computation time. In. the MC ALGOL 60 system for the X8, the partial
pivoting procedures of section 210 are much faster than the complete
pivoting procedures of section 211, because the procedures meca 2000 to
2005 are available in machine—code.

The procedures of section 212, for solving linear systems whose
matrices are in band form, save a considerable amount of computation
time and memory space, if the band width is much smaller than n. For
large matrices, the computation time is proportional to n X band width
X the number of diagonals on or to the left of the main diagonal.
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Section 210 Triangular decomposition with partial pivoting

This section contains procedures for solving linear systems and for
inverting matrices:

detsol solves a system of linear equations and calculates the
determinant of the system;

detinv calculates the inverse and the determinant of a matrix;

det calculates the determinant of a matrix;

8ol solves g system of linear equations and inv inverts a matrix,
provided the matrix is given in the triangularly decomposed form
produced by det, One call of det followed by several calls of sol may
be used to solve several linear systems having the same matrix but
different right hand sides,

The method used in det is triangular decomposition with stabilizing
E-gviz [in‘:ll:ef'g?anges, also called "partial pivoting" [2, p.115] [3, p.201]
> .
The method yields a lower=triangular matrix L and a unit upper—
triangular matrix U such that the product LU equals the given matrix M
with permuted rows.
The process is performed in n steps. The k=th step, kK = 1,,.., N,
produces the k~th columm of L; subsequently, the "pivot" is selected
in this column; the pivotal row and the k—th row of M (and thus also
of L) are interchanged; finally, the k=th row of U 1s produced. That
element of the k—th column of L is chosen as pivot, whose absolute
value divided by the Euclidean norm of the corresponding row of M is
maximal, Thus, matrix M is "equilibrated"' in this pivoting strategy
such that the rows effectively obtain unit Euclidean norm, No test for
singularity of M is performed,
The determinant equals the product of the diagonal elements of L or
minus this value, if the number of proper interchanges is odd.

After the triangular decomposition, sol obtains the solution x of the
linear system Mx = b by first permuting the elements of b in the same
way as the rows of M, then calculating y such that Ly equals b with
permuted elements (forward substitution), and finally calculating x
such that Ux = y (back substitution).

The method used in inv is as follows, The inverse, X, of the product
IU is calculated from the conditions that XL be a unit upper—
triangular matrix and UX a lower—triangular matrix [4, p.34=38].
Subsequently, in correspondence with the interchanges applied on the
rows of M, the same interchanges are carried out in reverse order on
the columms of X, in order to obtain the inverse of M,
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comment meca 21003 )
real procedure det(a, n, p); value n; integer n; array a;
integer array p;
begin integer i, k, k1, pk;
real 4, r, s;
array v[i:n];
for i:= 1 step 1 until n do v[il:= 1 / sqrt(mattam(1, n, 1, i,
a, a)); d:= 1;
for k:= 1 step 1 until n do
i

begin r:= = 1; kii=k — 15
for i:= k step 1 until n do
begin a[i,k_r‘E:= alT,k] — matmat(1, k1, i, k, a, a);
s:= abs(ali,k]) X v[i]; if s > r then
begin r:= 8; pki= 1 end ~
end lower; .
pIkl:= pk; vipkl:= vlk]; s:= alpk,k]; d:= s X d;
if pk ¥ k then
begin d:= — a; ichrow(1, n, k, pk, a) end;
for 1:=k + 1 step 1 until n do alk,1]T= (alk,1] — matmat(1,
lﬁ:k, i, a, ay) 5 s

end luj;
det:= d
end det;

comment mea 2101;
procedure sol(a, n, p, b); value n; integer n; array a, b;
integer array p;
begin integer k, pk;
real r;
for k:= 1 step 1 until n do
Pegin r:= b]ki; pk:= plkl;
T blkl:= (blpk] — matvec(1, k — 1, k, a, b)) / alk,k];
if pk % k then blpk]l:=r
end;
FTor k:=n step — 1 until 1 do bl[k]:= b[k] — matvec(k + 1, n, k,
a, b) -
g_rﬁ s01;

comment mca 2102;

real procedure detsol(a, n, b); value n; integer n; array a, b;

begin integer array pli:n];
detsol:= det(a, n, p); sol(a, n, p, b)

gz_l_g detsol;
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Description mca 2100

det:= determinant of the n—th order matrix M given in

array al1:n, 1:n], and the triangular decomposition of M is performed.
The resulting lower—triangular matrix and unit upper—triangular matrix
with its unit diagonal omitted are overwritten on a.

The pivotal indices are delivered in integer array p[i1:n].

det uses mattam, matmat and ichrow (chapter 20).

Description meca 2101

sol should be called after det and solves the linear system Mx = Db,
where M is the n—th order matrix whose triangularly decomposed form
and pivotal indices, as produced by det, are given in

array al[l:n, 1:n] and integer array pl[1:n], and where b is the vector
glven as array b[1:n]. The solution vector x is overwritten on b.

801 leaves a and p intact, so that, after one call of det, several
calls of sol may follow for solving several systems having the same
matrix but different right hand sides.

80l uses matvec (mca 2001).

Description mca 2102

detsol:= determinant of the n—th order matrix M given in

array a[1:n, 1:n], and the triangular decomposition of M is performed.
Moreover the linear system Mx = b is solved, where vector b is given
as array b[1:n]. The solution vector x is overwritten on b, and the
triangularly decomposed form of M is overwritten on a.

detsol uses det, sol and, indirectly, also mattam, matmat, matvec and
ichrow (chapter 20).
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corment

meca 2103;

procedure inv(a, n, p); value n; integer n; array a; integer array p;

begin integer Jj, k, kl;

real r;

array vli:n];

for

ki=n step — 1 until 1 do

Pegin k1:= k + 13

end;
for
for

for j:=n step — 1 until k1 do

begin alJj,k1]:= v[JT; v[jl:= = matmat(k1, n, k, j, a, a) end;
r:= alk,k]; .

for ji=n step — 1 until k1 do

begin alk,jl:= v[jl; v[jl:= — matmat(ki, n, j, k, a, a) / r
end;

vlk]:= (1 — matmat(kl, n, k, k, a, a)) / r

Ji=n step — 1 until 1 do a[Jj,1]:= v[jl;
ki=n — 1 step — 1 until 1 do

begin ki:= p[kT; if k1 ¥k then ichecol(1, n, k, ki, a) end

end inv;

comment

mea 2104;

real procedure detinv{a, n); value n; integer n; array a;

begin integer array pli:nl;
detinv:= det(a, n, p); inv(a, n, p)
end detinv;
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Description meca 2103

inv should be called after det and calculates the inverse of the
matrix whose triangularly decomposed form and pivotal indices, as
produced by det, are given in array a[1:n, 1:n] and

integer array p[1:n]. The calculated inverse is overwritten on a.
inv uses matmat and ichcol (chapter 20).

Description mea 2104

detinv:= determinant of the n—th order matrix given in

array al1:n, 1:n]. Moreover, the inverse of this matrix is calculated
and overwritten on a.

detinv uses det, inv and, indirectly, also mattam, matmat, ichrow and
ichcol (chapter 20).
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Section 211 Elimination with complete pivoting

This section contains procedures for calculating the rank of a matrix,
for solving linear systems and for inverting matrices:

rnksolelm solves a system of linear equations and calculates the
determinant of the system;

invelm calculates the inverse and the determinant of a matrix;

rnkelm calculates the rank of a rectangular matrix;

solelm solves a system of linear equations and solhom calculates a
solution of a homogeneous system, provided the matrix is given in the
Gaussian—eliminated form produced by rnkelm.

One call of rnkelm followed by several calls of solelm may be used to
solve several linear systems having the same matrix but different
right—hand sides. By means of successive calls of solhom one can
obtain a complete linearly independent set of solutions of a
homogeneous system.

The method used, in rnkelm, is Gaussian elimination with complete
pivoting [2, p.97] [3, p.212] which yields a lower—triangular matrix L
and a unit upper—triangular matrix U such that the product LU equals
the given matrix M with permuted rows and columms. Let M have n rows
and m colums. The elimination is performed in at most min(n, m)
steps. In the k—th step, k = 1,..., min(n, m), a "pivot" is selected
from the remaining submatrix having n —~k + 1 rows and m — k + 1
columns; then the pivotal row is interchanged with the k—th row and
the pivotal column with the k—th columm; subsequently, the k—th
"unknown" is eliminated-in the last n — k rows. The pivot is selected
in such a way that its absolute value divided by the one—norm of the
corresponding row of M is maximal, Thus, matrix M is "equilibrated" in
this pivoting strategy such that the rows effectively obtain unit one—
norm, If all elements of the remaining submatrix are smaller in
absolute value than a given relative tolerance times the one-norm of
the corresponding row of M, then the elimination is discontinued and
the previous step number is delivered as the rank of M.

After the Gaussian elimination, solelm obtains the solution x of the
linear system Mx = b by calling sol (mca 2101) and then interchanging
the elements of the solution vector produced by sol in "reverse
correspondence" with the interchanges of the columms of M; i.e. the
same interchanges are carried out in reverse order.
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In solhom, a solution x of the homogeneous system Mx = 0, where M is
an n X m matrix of rank r, is obtalned as follows. Let V be the
r—th order upper—triangular matrix consisting of the first r columms
of the matrix U produced by rnkelm and W the r X (m — r) matrix
consisting of the remaining part of the first r rows of U (the other
rows of U are negligeable). First, the system Vy = minus the k—th
colum of W, where k is a given positive integer <m — r, is solved
(back subtitution). Then the vector y and the k—th unit (m — r) —
vector are combined to form a single m—vector; its elements are then
interchanged in reverse correspondence with the interchanges of the
columns of M, in order to obtain a solution vector x. The solution
vectors thus obtained for k = 1,..., m — r form a complete set of
linearly independent solution vectors of the homogeneous system.

The method used in invelm is Gauss—Jordan elimination with complete
pivoting. This method introduces the zeros not only below but also
above the main diagonal. At each stage, the element of greatest
absolute value of the remaining submatrix is chosen as pivot. (Here,
the matrix is not equilibrated, because this would not leave the
inverse invariant.) After completing the elimination, the rows and
colums are interchanged in reverse correspondence with the
interchanges of the columms and rows of M.
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comment mca 2110; :
integer Procedure rnkelm(a, n, m, aux, ri, ci); value n, m;
integer n, m; array aux; integer array ri, ci;
begin integer 1, 3, P, 4, T, T, Jerits
Teal crit, rnorm, max, aid, det, eps, minpiv, pivot;
array norm[1:nl;
criti= 03
for p:= 1 step 1 until n do
Pegin rnorm:= max:= apbs(alp,1]1); jerit:= 1;
Tor q:= 2 step 1 until m do
Pegin aid:= abs(alD,q]); Tnorm:= rnorm + aid;
T if aid > max then
Pegin max:= aid; jerit:= q end
ends— -
norm[pl:= rnorm:= 1 / rnorm; if max X rmorm > crit then
begin crit:= max X rnorm; i:= p; Jj:= jcrit end
end; -
eps:= aux[0]; det:= 1; minpive= crit;
for r:= 1 step 1 until n do
Pegin if crit < eps then goto rank; rl:=r + 1;
if crit < minpiv then minpiv:= crit; if i # r then
Pegin det:= = det; norml[il:= norm[r]; Ichrow(1 m, r, i, a)
end;
IF j # r then
begin deti= = det; ichcol(1, n, r, j, a) end;
rilrl:= 1; cilrl:= §; pivot:= alr,r]; deti= det X pivot;
crit:= 0; if r1 < m then ‘
begin for g:= r1 step 1 until m do alr,ql:= alr,q] / pivot;
or p:= rl1 stép 1 until n do -
begin jeriti= maxelmrow(ri, m, p, r, a, a, — alp,rl);
aid:= abs(alp,jerit]) X normlpl; if aid > crit then
begin crit:= aid; i:= p; ji= jerit end -
end -
end —
end elimination;
TiI=n+ 13
rank: rnkelm:= r — 1; aux[1]:= 1 / minpiv; aux[2]:= crit;
aux[3]:= det
_e_r_1_é_t rnkelm;
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Description meca 2110 :

rnkelm:= rank, r, of the n X m matrix M given in array a[1l:n, 1:m].

In array aux[0:3] one must give a relative tolerance, aux[0].

The Gaussian—eliminated form of M is overwritten on a, and the pivotal
row and column indices are delivered in integer array ri, cil[i:r].
Moreover,

aux[1]:= reciprocal of the minimum absolute value of "pivot / one-norm
of the corresponding row of M";

aux[2]:= maximum absolute value of "element of the remaining

(n —r) X (m — r) submatrix / one—norm of the corresponding row of M"
if r < min(n, m), and otherwise 0;

aux[3]:= determinant of the principal submatrix of order r.

rnkelm uses maxelmrow, ichrow and ichcol (chapter 20).
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comment mca 2111; :
procedure solelm(a, n, ri, ci, b); value n; integer n; array a, b;
integer array ri, cij
begin integer r, cir;

real w;

solla, n, ri, b);

for ri=n step — 1 until 1 do

begin cir:= cilr]; If cir ¥ r then

begin wi= blr]; olr]:= blcIr]; bleirl:= w end

end
end solelm;

comment meca 21123
integer procedure rnksolelm(a, n, aux, b); value n; integer n;
array a, aux, b
begin integer rank;
integer array ri, ci[i:n];
rank:= rnksolelm:= rnkelm(a, n, n, aux, ri, ci);
if rank = n then solelm(a, n, ri, ci, b)
end rnksolelm;

comment mca 21133
procedure solhom(a, rank, m, k, ci, x); value rank, m, k;
integer rank, m, k; array a, x; integer array ci;
begin integer r, rk;
real w;
rk:= rank + k;
for r:= rank step — 1 until 1 do x[r]:=
r, a, x) + a[r,rk]); -
for r:= rank + 1 step 1 until m do x[r]:
for r:= rank step — 1 until 1 do
begin k:= ci[r]; if k  r then
begin wi= x[r]; x[r]:=x[k]; x[kl:= w end

(matvec(r + 1, rank,

0; x[rk]:= 1;

end
end solhom;
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Description mea 2111 .

Solelm should be called after rnkelm (but only if the rank delivered
equals n), and solves the linear system Mx = b, where M is the n—th
order matrix whose Gausslan—eliminated form and pivotal row and column
indices, as produced by rnkelm, are given in array a[1:n, 1:n] and
integer array ri, ci[1:n], and where b is the vector given as

array b[1:n].

The solution vector x is overwritten on b, and sol leaves the other
data invariant, so that, after one call of rnkelm, several calls of
solelm may follow for solving several systems having the same matrix
but different right—hand sides.

solelm uses sol (mea 2101) and, indirectly, also matvec (mca 2001).

Description mca 2112

rnksolelm:= rank, r, of the n—th order matrix M given in

array al[1:n, 1:n].

In array aux[0:3] one must give a tolerance, aux[0].

If r = n, the linear system Mx = b is solved, where b is the vector
given as array b[1:n], and the solution vector x is overwritten on b.
The Gaussian—eliminated form of M is overwritten on a.

Moreover,

aux[1]:= reciprocal of the minimum absolute value of "pivot / one-norm
of the corresponding row of M";

aux[2]:= 03

aux[3]:= determinant of M,

If, however, r < n, then no solution is calculated and the effect of
rnksolelm is the same as that of rnkelm,

rnksolelm uses rnkelm, solelm and, indirectly, also sol (mea 2101),
matvec, maxelmrow, ichrow and ichcol (chapter 20).

Description mea 2113

solhom should be called after rnkelm and calculates the k—th solution
vector of the homogeneous system Mx = O, where M is the matrix whose
Gausslan—eliminated form (or rather its first rank rows) and pivotal
column indices, as produced by rnkelm, are given in

array a[1: rank, 1:m] and integer array ci[1: rank], rank being the
rank of M delivered by rnkelm, The given integer k must satisfy

1 <k <m - rank.

The solution vector is delivered as array x[1:m].

Calling solhom consecutively with k = 1,..., m — rank, one obtains a
complete set of linearly independent solution vectors of the
homogeneous system.,

solhom uses matvec (meca 2001).
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comment mca 2114;
real procedure inve]m(a, n, aux); value n; integer n; array a, aux;
begin integer p, q, r, 1, J;
real t, w, det, pivot, co, tol, max;
Integer array ri, ci[l:n];
it= j:i= 1; pivot:= abs(al1,1]);
for p:= 1 step 1 until n do
for q:= 1 step 1 until n do if abs(alp,q]) > pivot then
begin i:= p; J:= q; pivot:= abs(alp,qal) end;
max:= pivot; det:= 1; co:= 0; tol:= aux[0] X max;
for r:=1 step 1 until n do
begin if pivot < tol Then
begin det:= 0; aux[1]:=—1r + 1; goto exit end;
If1 § r then
begin det:= — det; ichrow(1l, n, r, i, a) end;
If J # r then -
begin deti= — det; ichcol(1, n, r, j, a) end;
rilr]:= i; cilrl:= j; wi= alr,r]; det:= det X w;
alr,rli= 1/ w;
for q:=n step — 1 until r + 1, r — 1 step — 1 until 1 do
alr,ql:= alr,q] / w; pivot:= 0; -
for p:= 1 step 1 until r — 1 do
begin t:= — alp,r]; alp,rl:= 0; elmrow(l, n, p, r, a, a, t)

end;
for p:=r + 1 ste 1u.ntilng9_
begin t:= — alp,r]; alp,r]:= 0; elmrow(1, r, p, r, a, a, t);

q:= maxelmrow(r + 1, n, p, r, a, a, t);
if abs(alp,q]) > pivot then
begin i:= p; J:= q; pivot:= abs(a[p,q]) end
end
end elimination;
for p:=n step — 1 until 1 do
begin for qi= 1 step 1 until n do if abs(al[p,q]) > co ‘then co:=
— abs(alp,al); Tri= cilpl; 1f T ¥ p then ichrow(1, n, p, r, a)
end;
'f"-o_r'q=nstep—1until‘l do
begin r:= rilql; ifr rq then icheol(1, n, q, r, a) end;
aux[1):= max X co;
exit: invelm:= det
end invelm;
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Description mca 2114 :

invelm:= determinant of the n—th order matrix M given in

array a[1:n, 1:n]. In array aux[0:1] one must give a relative
tolerance, aux[0].

The inverse of M is calculated and overwritten on a, and aux[1]:= the
product of the maximum-norm of M and that of its calculated inverse,
this being a condition number of M.

If, however, M is singular (more precisely, if, at some stage, the
absolute value of the pivot is smaller than aux[0] X the maximum-norm
of M), then the calculation is discontinued, invelm:= 0, and aux[1]:=
minus the rank of M.

invelm uses elmrow, maxelmrow, ichrow and ichcol (chapter 20).




32



33

Section 212 Band matrices

The procedures of this section solve a system of linear equations
whose matrix is in band form and / or calculate the determinant of a
band matrix:

detsolbnd solves a system of linear equations and calculates the
determinant of the system;

detbnd calculates the determinant;

solbnd solves a system of linear equations whose matrix is given in
the Gaussian—eliminated form produced by detbnd.

One call of detbnd followed by several calls of solbnd may be used to
solve several linear systems having the same matrix, but different
right—hand sides.

The method used is Gaussian elimination with stabilizing row
interchanges (partial pivoting) [2, p.94] [3, p.204] [7]. Complete
pivoting is superfluous if the band width is small (certainly if it
is much smaller than the number of binary digits in the nunber
representation).

If the given matrix M has 1w nonzero codiagonals to the left and rw
to the right of the main diagonal, then the Gaussian elimination
yields a unit lower—triangular band matrix L of Gaussian multipliers
having lw nonzero codiagonals, and an upper—triangular band matrix U
of the resulting equivalent system having lw + rw nonzero codiagonals.
The Gaussian elimination is performed in n steps. In the k—th step,

k =1,..., n, a "pivot" is selected in the k—th colum of the
remaining submatrix of order n — k + 1 (which colum contains at most
1w + 1 nonzero elements); then the pivotal row is interchanged with
the k—=th row; subsequently, the k—th "unknown" is eliminated in the
last n — k rows (at most the first lw rows of which are involved).
The pivot is selected in such a way that its absolute value divided by
the Euclidean norm of the corresponding row of M, is maximal, Thus,
matrix M is "equilibrated" in this pivoting strategy such that the
rows effectively obtain unit Euclidean norm.

If M is singular (i.e. if, in some step, the absolute value of the
pivot is smaller than a given relative tolerance times the Euclidean
norm of the corresponding row of M), then the elimination is
discontinued and O is delivered as the determinant value.

The solution x of the linear system Mx = b is obtained by carrying out
the corresponding eliminations on b, thereby yielding a vector y
(say), and then solving the system Ux = y (back subtitution).
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comment mca 21203 .
real procedure detbnd(a, n, 1w, rw, aux, m, p); value n, 1w, rw;
integer n, lw, rw; integer array p; array a, m, aux;
begin integer i, j, k, kk, kk1, pk, mk, ik, lwl, £, q, w, w1, w2, iw,
nrw;
real r, s, norm, eps, min, det;
array v[1:n]l;
= LTw; det:= 1; wis= 1w + rw; wi= wl + 1; w2i= w = 2; iw:= O;
nrw:=n — rw; lwle= 1w + 1; q:= 1w = 1;
for i:= 2 step 1 until 1w do
begin qi=q = 1; Twi= iw + wi;
or ji= iw = q step 1 until iw do aljl:= 0
end; - -
norms= 03 iws= = w2; q:=nrw + w=1; ji= rw — 1;
for i:= 1 step 1 until n do
begin iw:s= 1w + w3 if i < 1wl then iw:= iw = 1;
T 1= v[i]l:= sqrt{vecvec(iw, Iw + (if i < 1w then j + i else
if i > nrw then q — i else w1), O, a, a)); -
If r > norm then norm:= r
end;

eps:= aux[0]; min:= 1; kki= = w1; mk:= — 1w}
if £ > nrw then w2:= w2 + nrw — 3

Tor k:= 1 sfep 1 until n do

begin E f<n then f:= £ + 1; ik:= kk:= kk + w; mk:= nk + 1lw;
T s:= abs(alkk]) / vlk]; pki= k; kkl:= kk + 13

for i:= k + 1 step 1 until f do
begin ik:= ik ¥ wi; mlmk + i = k]
r:= abs(r) / v[il; if r > s then
begin s:= r; pk:= i end
end; -
If s < min then min:= s; if s < eps then
Pegin detbnd:= 0; aux[1]:=1 = k; aux[2]:= 8; goto end end;
If T > nrw then w2:= w2 — 1; plk]:= pk; if pk ¥ k then ~—
Pegin vIpk]:= v[ik]; pk:= pk = k; -
— 1chvec(kkl, kk1 + w2, pk X w1, a); det:= — det;
ri= mlmk + pk]; mlmk + pk]:= al[kk]; alkk]l:= r

end
else r:= alkk]; det:= r X det; iw:= kkl1; lwls= £ — k + nk;
for i:= mk + 1 step 1 until 1wl do
Pegin mlil:= s:=mli] 7 r; iw:= Iw + wlj
— elmvec(iw, iw + w2, kk1 — iw, a, a, — s)
end
end;
aux[1]:= 1 / min; detbnd:= det; aux[2]:= min;
end:
9_{12. detbnd;
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Description mea 2120 :

detbnd:= determinant of the n—th order band matrix M having 1w
codiagonals to the left and rw to the right of the main diagonal, and
which is given in array a[1: (1w + rw) X (n — 1) + n] in such a way
that the (1,J)—th element of M is a[(lw + rw) X (i — 1) + j] for
i=1y.e., nand j =mx(1, i~ 1w),..., min(n, 1 + rw). The values of
the remaining elements of a are irrelevant. In array aux[0:2], one
must give a relative tolerance, aux[0].

The upper—triangular band matrix U resulting from the Gaussian
elimination is delivered in a such that the (i, j)—th element of U is
al(lw + rw) X (1 = 1) + j] for 1 = 1,..., n and

jJ=1,..., min(n, 1 + 1w + rw); the matrix L, of Gaussian
mltipliers, is delivered in array m[1 : lw X (n —2) + 1] such that
the i~th multiplier of the j—th step is m[lw X (Jj — 1) + 1 — j]

for j = 1ye.., n—1andi=Jj+1,..., mn(n, j+ 1w);

the pivotal indices are delivered in integer array pli:nl.

Moreover,

aux[2]:= minimum absolute value of "pivot / Euclidean norm of the
corresponding row of M";

aux[1]:= 1 / aux[2].

If, however, M is singular, then the Gaussian elimination is
discontinued, detbnd:= 0, aux[1]:= minus the previous step nunber,
and aux[2]:= absolute value of the last (rejected) pivot / Euclidean
norm of the corresponding row of M.

detbnd uses vecvec, elmvec and ichvec (chapter 20).
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comment mca 2121;

procedure solbnd(a, n, lw, rw, m, p, b); value n, lw, rw;
integer n, lw, rw; integer array p; array a, b, m;

begin integer f, i, k, kk, w, wi, w2, shift;

f:= 1wy shifti= — lw; wl:= 1w — 1;
for k:= 1 step 1 until n do
begin if £ <n then f:= f + 1; shift:= shift + wi; i:= p[kl;
s:= b[1]; if 1 # k then
begin b[1]%= b[k]; Bk]:= s end;
elmvec(k + 1, f, shift, b, m, — 8)
end;
wiit=lw + rw; wi=wl + 1; kk:=(n + 1) X w— wl; w2:i=— 1;
shift:=n X wi;
for k:=n step — 1 until 1 do
begin kk:= kk — w; shift:= shift — wi;
if w2 < wl then w2:= w2 + 1;
blkl:= (b[k] = vecvec(k + 1, k + w2, shift, b, a)) / alkk]
end
end solbnd;
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Description mca 2121

solbnd should be called after detbnd (but only if the determinant is
not zero), and solves the linear system Mx = b, where M is the n—th
order band matrix having lw codiagonals to the left and rw to the
right of the main diagonal, and whose Gaussian—eliminated form and
pivotal row indices, as produced by detbnd, are given in

array a[1 : (lw + rw) X (n = 1) +nl, m[1 : v x (n -=2) + 1] and
integer array pl1:nl, and where b is the vector given as array b[1:n].
The solution vector x is overwritten on b.

solbnd leaves a, m and p invariant, so that, after one call of detbnd,
several calls of solbnd may follow for solving several systems having
the same band matrix but different right—hand sides.

solbnd uses vecvec and elmvec (chapter 20).




38

comment mca 2122;
Teal procedure detsolbnd(a, n, 1w, rw, aux, b); value n, 1w, rw;
integer n, 1w, rw; arra.y a, b, aux;
Pegin integer i, j, k, KK, kk1, pk, ik, 1wl, £, q, w, w1, w2, iw,
nrw, sEITt;
real r, s, norm, eps, min, det; array m[O:1w], v[1:nl;
Ti= 1w; det:= 1; wlet= 1w + rwy wi= Wl + 13 w2i= w = 2; iws= 0;
nrws=n = rw; lwl:= 1w + 1; q:= 1w = 1;
. for i:= 2 step 1 until 1w do
Pegin q:=q = 1; Twi= 1w + wi;
Tor ji= iw = q step 1 until iw do aljl:=0
end’
norm:= 0; iw:= —~ w2; Qi=nrw + w = 1; ji= rw — 13
for i:= 1 step 1 until n do
’E—in iwe= 1w + w; if 1 < 1wl then iw:= iw = 1;
— ri= v[i]:= sqrt.ﬁecvec(iw, Tw + (if i < 1w then j + i else
if 1 > nrw then g — i else w1), 0, a, a));
If r > norm then norm:= r

end,
eps:= aux[0]; min:= 1; kkei= — wi;
if £ > nrw then w2:= w2 + - T3

Tor k= 1 sfep 1 until n d

begln if £ < n then fi= f + 1; ik:= kk:= kk + w3
— 8:= abs(alkk]) / v[k], pki= k3 kkl:= kk + 13
for i:= k + 1 step 1 until f do
Pegin ik:= ik ¥ wi; mlT = k]:= r:= alik]; alik]l:= 0;
1= abs(r) / vlil; if r > s then
begin s:= r; pki= i e end
end;

If s < min then min:= s; if s < eps then
Pegin detsolbnd:= 0; aux[Tl:= 1 — k; auxl2]:= s; goto end
end;
IF £ > nrw then wli= w2 — 1; if pk # k then
Pegin vipk]T= vik]l; r:= blk]; "'B[k]-— b[PET; blpkl:= r;
T pk:= pk - k; ichvec(kk1, kkl + w2, pk X wl, a);
det:= — det; r:= mlpk]; mlpkl:= alkk]; alkkl:= r
end
else r:= alkk]; det:= r X det; iw:= kk1; lwl:= £ = k;
Tor is= 1 step 1 until 1wl do
begin m[i]T=8:= W1l / r; Tr:= iw + wi;
—  elmvec(iw, iw + w2, kk1 — iw, a, a, = 8);
blk + i]:= bk + 1] - blk] x s

end
end;”
aux(1]:= 1 {min; detsolbnd:= det; aux[2]:= s;
kk:= (n + 1) X w = w3 w2:= = 1; shift:= n X wi;
for k:= n step — 1 until 1 do

Pegin kki= Kk — w; sShift:= shift — wi;
T 1f w2 < w1 then w2:= w2 + 1}
Blk]:= (b[k]T = vecvec(k + 1, k + w2, shift, b, a)) / alkk]
end;
end:s™
E_IE detsolbnd;
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Description mca 2122

detsolbnd:= determinant of the n—th order band matrix M having 1lw
codiagonals to the left and rw to the right of the main diagonal, and
which is given in array a[1 : (lw + rw) X (n — 1) + n] in such a way
that the (1, j)—th element of M is a[(lw + rw) X (L — 1) + j] for
i=1,...,nand j=mx(1, i - 1w),..., min(n, 1 + rw). The values of
the remaining elements of a are irrelevant. In array aux[0:2], one
must give a relative tolerance, aux[0].

The solution vector x of the linear system Mx = b, where b is the
vector given as array b[1:n], is calculated and overwritten on b.

The upper—triangular band matrix U resulting from the Gaussian
elimination is overwritten on a (in the same way as in detbnd).
Moreover,

aux[2]:= minimum absolute value of "pivot / Euclidean norm of the
corresponding row of M";

aux[1]:= 1 / aux[2].

If, however, M is singular, then the Gaussian elimination 1s
discontinued, detbnd:= O, aux[1]:= minus the previous step number,
aux[2]:= absolute value of the last (rejected) pivot / Euclidean norm
of the corresponding row of M, and no solution vector is calculated.
detsolbnd uses vecvec, elmvec and ichvec (chapter 20).
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CHAPTER 22
POSITIVE DEFINITE SYMMETRIC LINEAR SYSTEMS AND MATRIX INVERSION.

This chapter contains procedures for solving systems of linear
equations and for matrix inversion, provided the matrix is positive
definite symmetric. Moreover section 221 contains procedures for
calculating the rank and solving a homogeneous system whose matrix is
positive definite symmetric, and section 224 contains procedures for
solving linear least squares problems.

In sections 220 and 222 (the latter section deals with band matrices)
the ordinary Cholesky method is used and in section 221 Cholesky with
pivoting along the main diagonal. The latter method is indispensable
for determining the rank of singular positive semidefinite symmetric
matrices and for solving homogeneous systems.,

Section 224 uses Householder transformations with pivoting [10].

For large order n, the computation time for solving linear systems and
for matrix inversion is proportional to n cubed, and about one half
of the time required for the general case (sec chapter 21).

Pivoting along the main diagonal requires extra computation time which
is proportional to n squared, and, thus, small with respect to the
total time for (very) large n.

The procedures exist in two versions; one version uses the upper
triangle of a two—dimensional array for the matrix and the other a
one—dimensional array, so that, in the latter case, the memory space
occupied by the matrix is cut nearly in half [8]. In the one—
dimensional array, the elements of the upper triangle of the matrix
are equidistant in the columns but not in the rows, so that special
procedures for handling these rows are needed.

In the MC ALGOL 60 system for the X8, a large positive definite
symmetric matrix given in a two—dimensional array is inverted faster
than one given in a one—dimensional array, because the procedures

mea 2000 to 2005 are available in machine—code, but mca 2006 is not.
A similar statement holds for solving many (at least n/2, say) linear
systems having the same positive definite symmetric matrix, but
different right—hand sides.

The procedures of section 222, for solving linear systems with
positive definite symmetric band matrices, save a considerable amount
of computation time and memory space, if the band width is much
smaller than n.

For large matrices, the computation time is proportional to n X the
square of the band width.
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Section 220 Cholesky decomposition without pivoting

Mhis section contains procedures for solving linear systems and for
inverting matrices, provided the matrices are positive definite
symmetric:

detsolsym? and detsolsyml solve a system of linear equations and
calculate the determinant of the system;

detinvsym? and detinvsymi calculate the determinant and inverse of a
matrix;

detsym?2 and detsyml calculate the determinant of a matrix.

The other procedures of this section are to be used in combination
with detsym2 or detsyml for solving a linear system (or several
systems having the same matrix but different right—hand sides) or for
inverting a matrix.

The method used is Cholesky's square—root method without pivoting

[2, p.117] [3, p.229] [4] [5] [B]. If the given symmetric matrix M is
positive definite, then the method yields an upper—triangular matrix
U, the "Cholesky matrix" of M, such that U'U equals M; moreover, the
determinant of M is delivered, calculated as the product of the
squares of the diagonal elements of U (and, thus, always positive).
The process is completed in n stages, each stage producing a row of U,
However, the process is discontinued if at some stage, k, the k—th
diagonal element of M minus the sum of the squared elements of the
k~th colum of U (the sqrt of this quantity being the k—th diagonal
element of U) is not positlve, meaning that M, perhaps modified by
rounding errors, is not positive definite. In that case, instead of
the determinant, minus the last stage number k is delivered.

The solution of the linear system U'Ux = b is obtained by solving
U'y = b {forward substitution) and Ux = y (back substitution).

The inverse, X, of U'U is obtained from the condition that UX be a
lower—triangular matrix whose main diagonal elements are the
reciprocals of the diagonal elements of U [4, p. 34-38].

The procedures mca 2200 — 2204 use the upper triangle of a two—
dimensional array al1:n, 1:n] in which the upper triangle of M or U
must be given and the upper triangle of U or X is delivered., Thus,
ali, j] is the (i, j)—th element of the matrix only for i < j. The
elements ali, j] for i > j are neither used nor changed.

The procedures mca 2205 — 2209 use a one—dimensional

array al[1 : (n + 1) X n : 2] in which the upper triangle of M or U
must be glven and the upper triangle of U or X is delivered in such a
way that the (i, j)—th element of the matrix is a[(J - 1) X j : 2 + 1]
for 1 <1< Jj<n.
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comment mca 22003
real procedure detsym2(a, n); value n; integer n; array a;
begin integer k, j; real r, d4;
B e i
for k:= 1 gtep 1 until n do
begin r:= alk,k] = tammat{1, k — 1, k, k, &, a); if r <0 then
begin detsym2:= — k; goto end end;
di=r X d; alk,k]l:= r:= sart(r);
for j:=k + 1 step 1 until n do alk,jl:= (alk,j] — tammat(1,
k"]:J:k:a: )/r
end;
detsyn:= d;
end:
end detsym2;

comment mesa 2201;

procedure solsym2(a, n, b); value n; integer n; array a, b;

begin integer 1;

~ for i:= 1 step 1 until n do b[i]:= (b[1] — tamvee(1, i — 1, 1,
a, b)) / ali,il;
for i:=n step — 1 until 1 do b[il:= (b[i] — matvee(i + 1, n, 1,
a, b)) / ali,i]

end solsym?;

comment meca 2202;
real procedure detsolsym2(a, n, b); value n; integer n; array a, b;
begin real det;
detsolsym2:= det:= detsym2(a, n);
if det > O then solsym2(a, n, b)
end detsolsym2,

comment mca 2203;
Erocedure invsym2(a, n); value n; integer n; array a;
begin real r; integer i, j, i1; array uli:n];
for i:=n step — 1 until 1 do
begin r:= T/ ali,iT; i1:= T + 1;
for j:= 11 step 1 until n do uljl:= ali,j];
For j:=n step — 1 until 171 do al[i,jl:= — (tamvec(il, J, J,
a, u) + matvec(j + 1, n, j, a, u)) X r;
al1,1]:= (r — matvee(il, n, i, a, u)) X r

end
end invsym2;

comment mca 220L;
real procedure detinvsym2(a, n); value n; integer n; array a;
begin real det;

detinvsym2:= det:= detsym2(a, n); if det > O then invsym2(a, n)
end detinvsym2; - -
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Description mca 2200

detsym2:= determinant of the n—th order p031t1ve definite symmetric
matrix M whose upper triangle is given in array a[1:n, 1:n].

Moreover, the Cholesky matrix of M is calculated and overwritten on
the upper triangle of a.

If, however, M is not positive definite, the Cholesky decomposition is
discontinued and detsym2:= minus the last stage number,

detsym2 uses tammat (mca 2004),

Description mca 2201

solsym? solves the n~th order linear system U'Ux = b, where U is the
upper-triangular matrix, given in the upper triangle of

array al1:n, 1:n], and b is the vector given as array b[1:n].

The solution vector x is overwritten on b.

If U is the Cholesky matrix of a positive definite symmetric matrix M,
as produced by detsym2, then the calculated solution vector x is the
solution of the linear system Mx = b.

solsym2 leaves the elements of a invariant, so that after one call of
detsym2 several calls of solsym2 may follow for solving several
linear systems having the same matrix but different right-hand sides,
solsym2 uses matvec and tamvec (section 200).

Description mca 2202

detsolsym2:= determinant of the n—th order positive definite symmetric
matrix M whose upper—triangle is given in array al1:n » 1:n].

Moreover, detsolsym? solves the linear sysTem Mx = b, where the vector
b is given as array b[1:n]. The solution vector x is overwritten on b
and the Cholesky matrix of M is overwritten on the upper triangle

of a, If, however, M is not positive definite, then the Cholesky
decomposition is discontinued, no solution is calculated, and
detsolsym2:= minus the last stage number,

detsolsym2 uses detsym2, solsym2 and, indirectly, also matvec, tamvec
and tammat (section 200),

Description mca 2203

Invsym? calculates the inverse, X, of the matrix U'U, where U is the
upper-triangular matrix given in the upper triangle of

array al1 tn, 1:n]. The upper triangle of X is overwritten on a.
Invsym? uses matvec and tamvec (section 200),

Description mca 2204

detinvsym2:= determinant of the n-—th order positive definite
symmetric matrix M whose upper triangle is given in array all:n, 1:n],
Moreover, the upper triangle of the inverse of M is calculated and
overwritten on a,

If, however, M is not positive definite, the Cholesky decomposition is
discontinued and detinvsym?:= minus the last stage number,

detinvsym?2 uses detsym?, invsym? and, indirectly, also matvec, tamvec
and tammat (section 200).
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comment mca 2205;
real procedure detsyml(a, n); value n; integer n; array a;
begin integer 1, Jj, k, kk, kj, low, up;
real 4, r;
d:= 1; kk:= O;
for k:= 1 step 1 until n do
beginkk kk + k; low:=kk — k + 13 up:= kk — 13
r:= a[kk] — vecvec(low, up, 0, a, a); if r < O then
begin detsyml:= — k; goto end end;
di= d X r; alkk]:= r:= sart(r); kj:= kk + k;
for j:=k + 1 ste 1 until n do
begin alkjl:= (alkj] = vecvec(Iow, up, kj — kk, a, a)) / r;
kj:=kj + J
end
end;™ -
detsyml:= d;
end:
end detsymi;

comment mca 2206;
procedure solsyml(a, n, b); value n; integer n; array a, b;
begin integer i, ii;

ii:= O3

for i:= 1 step 1 until n do

begin ii:= ii + 13
b[i]:= (b[i] — vecvee(t, i — 1, ii — 1, b, a)) / aliil]

end;

for i:=n step — 1 until 1 do

begin b[i] b[i] —seqvec(i + 1, n, ii + i, 0, a, b)) / a[iil;
T df:= 41 -4

end

end solsyml;

comment mea 22073
real procedure detsolsymi(a, n, b); value n; integer n; array a, b;
begin real det;
detsolsyml:= det:= detsyml(a, n);
if det > O then solsymi(a, n, b)
end detsolsymil;
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Description mca 2205

detsyml:= determinant of the n—th order positive definite symmetric
matrix M whose upper triangle is given in

array a[1 : (n + 1) X n : 2],

Moreover, the Cholesky matrix of M i1s calculated and overwritten on a.
If, however, M is not positive definite, the Cholesky decomposition is
discontinued and detsyml:= minus the last stage nunmber.

detsym] uses vecvec (mca 2000).

Description mca 2206

solsyml solves the n—th order linear system U'Ux = b, where U is an
upper—triangular matrix, given in array a[1 : (n + 15 Xn:2]andb
is glven as array bl1:n].

The solution vector x is overwritten on b.

If U is the Cholesky matrix of a positive definite symmetric matrix M,
as produced by detsyml, then the calculated solution vector x is the
solution of the linear system Mx = D,

solsyml leaves the elements of a invariant, so that after one call of
detsyml several calls of solsyml may follow for solving several linear
systems having the same matrix but different right—hand sides.

solsyml uses vecvec and segvec (section 200).

Description meca 2207

detsolsyml:= determinant of the n—th order positive definite symmetric
matrix M whose upper triangle is given in

array al1 : (n+ 1) xn : 2],

Moreover, detsolsyml solves the linear system Mx = b, where the vector
b is given as array bl[1:n].

The solution vector x is overwritten on b and the Cholesky matrix of M
is overwritten on a.

If, however, M is not positive definite, then the Cholesky
decomposition is discontinued, no solution is calculated, and
detsolsyml:= minus the last stage number.

detsolsyml uses detsyml, solsyml and, indirectly, also vecvec and
seqvec (section 200).
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comment mea 2208; '
p_rocedure invsy'ml(a, n); value n; integer n; array a;
begin integer 1, 1i, 11, j, iJ, JJ;
real r;
array ull:n];
ili=(n+1)Xn:2;
for i:=n step — 1 until 1 do
begin ri= 1/ al11]y L1:= 1+ 1; 1j:= 11 + 1;
for j:= 11 step 1 until n do
begin uljl:="alijl; 1ji= 1 + J end;
for j:=n step — 1 until i1 do
begin jji:=1j — 15 1j:=1J - §;

alijl:= — (vecvec(il, j, jj — J, u, a) + seqvec(j + 1,
n, jj+J, 0, &, u)) Xr
end;
alii]:= (r — seqvec(il, n, ii + 1, 0, a, u)) X r; ii:=ii — 1

end
end invsymi;

comment mca 22093
real procedure detinvsymi{a, n); value n; integer n; array a;
begin real det;

detinvsyml:= det:= detsyml{a, n); if det > O then invsymi(a, n)
end detinvsyml; - -
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Description meca 2208

invsym] calculates the inverse, X, of the matrix U'U, where U is an
upper—triangular matrix, given in array a[t : (n + IS Xn: 2],

The upper triangle of X is overwritten on a.

invsyml uses vecvec and seqvec (section 200).

Description mca 2209

detinvsyml:= determinant of the n—th order positive definite symmetric
matrix M whose upper triangle is given in

array al1 : (n + 1) xn : 2],

Moreover, the upper triangle of the inverse of M is calculated and
overwritten on a.

If, however, M is not positive definite, then the Cholesky
decomposition is discontinued and detinvsymi:= minus the last stage
number,

detinvsyml uses detsyml, invsyml and, indirectly, also vecvec and
seqvec (section 200).
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Section 221 Cholesky decomposition with pivoting

This section contains procedures for calculating the rank of matrices,
for solving linear systems and for inverting matrices, provided the
matrices are positive definite symmetric:

rnksym20 and rnksymi1O calculate the rank of a matrix;

rnksolsym20 and rnksolsyml0O moreover solve a linear system, and
ronkinvsym20 and rnkinvsymiO invert a matrix;

solsymhom solves a system of homogeneous linear equations.

The other procedures of this section are to be used in combination
with rnksym20 or rnksyml0 for solving a linear system (or several
linear systems having the same matrix but different right—hand sides)
or for inverting a matrix.

The method used is Cholesky's square—root method (see section 220)
with pivoting along the main diagonal. If the given symmetric matrix M
is positive semidefinite, then the method yields an upper—triangular
matrix U, the "pivot—Cholesky matrix" of M, such that the product U'U
equals M with permuted rows and colums. If the rank, r, of M is
smaller than the order n, then the last n — r rows of U (nearly)
vanish. .

The process is performed in at most n stages. At the k—th stage, the
k—th row and column are interchanged with the p[k]—th row and column
(thus preserving the symmetry), the k—th "pivotal index" pl[k] being
chosen in such a way that the diagonal elements of U turn out to be
monotonically nonincreasing, and then the k—th row of U is produced.
The process is terminated if at some stage, k, the k—th pivot (i. e.
the maximum diagonal element of the remaining submatrix of order

n —k + 1, the sqrt of this quantity being the k—th diagonal element
of U) 1s negative or smaller than some tolerance, viz. a given
relative tolerance times the maximum diagonal element of M (the
maximum diagonal element being equal to the maximum-norm of M, if M is
positive semidefinite). If no such k exists, then n is delivered as
the rank of M. Otherwise, the maximum absolute value of the elements
of the remaining submatrix of order n — k + 1 is calculated. If this
is smaller than twice the tolerance, then k — 1 is delivered as the
rank of the positive semidefinite matrix M; otherwise, M is apparently
not positive semidefinite, and, instead of the rank, the value — k is
delivered.

The solution of the linear system Mx = b is obtained by first
interchanging the elements of b in the same way as the rows (and
columms) of M, subsequently performing forward and back substitution
(see section 220) and finally carrying out the same interchanges in
reverse order ("reverse correspondence") on the elements of the
solution vector,

The inverse of U'U is obtained by calling invsym2 or invsymi (section
220). Then, the inverse of M is obtained by interchanging the rows and
columns in reverse correspondence with the interchanges of the rows
and columns of M,
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A homogeneous linear system Mx = O, where M 18 an n—th order positive
semidefinite symmetric matrix of rank r, is obtained as follows.

Let V be the r—th order upper—triangular matrix consisting of the
first r colums of the pivot—Cholesky matrix U of M and W the

r X (n — r) matrix consisting of the remaining part of the first r
rows of U (the other rows of U are negligeable). First, the system
VY = — W 1s solved (back substitution). Then Y and the (n — r)-=th
order identity matrix are combined to form a single r X n matrix; its
rows are then interchanged in reverse correspondence with the
interchanges of the rows and columms of M. The columns of the
resulting matrix form a complete linearly independent set of solution
vectors of the homogeneous system.

The procedures mca 2210 — 2214 and 221a use the upper triangle of a
two—dimensional array a[1:n, 1:n] in which the upper triangle of M or
U must be given and the upper triangle of U or X is delivered.

Thus ali, j] is the (i, j) — th element of the matrix only for i < j.
The elements ali, j] for i > j are neither used nor changed. (Only
mca 221a delivers a rectangular matrix involving some elements in the
lower triangle of a as well.)

The procedures mca 2215 — 2219 use a one—dimensional array

al1 : (n+ 1) X n : 2] in vhich the upper triangle of M or U must be
glven and the upper triangle of U or X is delivered, in such a way
that the (i, j)—th element of the matrix is a[(j — 1) X § : 2 + i] for
1<1<J<n, -
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comment mca 2210;
integer procedure rnksym20(a, n, p, aux); value n; integer n;
integer array p; array a, aux;
begin integer k, 1, j, pk; real w, max, m, t, r, d, norm, epsnorm;
d:= 1; norm:= O;
for i:= 1 8 1 until n do if a[i,1] > norm then norm:= a[i,i];
epsnorm: = auxio] X norm; auxl1]:= norm; m:= 03
for k:= 1 steg 1 until n do
begin max: epsnorm,
for Je=k ste 1 until n do if a[j,j] > max then
begln max:= alj,Jjl; pki= J end,
if max < epsnorm then
begin for i:= k step 1 until n do
begin‘b::absaii“ ft>mthenm=t,
for j:=1 + 1 ste T until n do
begin t:= a[1,3]: '.= ali,J] — tammat(1, k — 1, i, J,
a, a); t:=abs(t); if t > m then m:= ¢

end

end;
goto end
end;

T'] = pk; d:= d X max; if pk $ k then
begin ichcol(1, k — 1, k, pk, a);
ichrowcol(k + 1, pk — 1, k, vk, a);
ichrow(pk + 1, n, k, vk, a); alpk,pkl:= a[k,k]
end;
alk,k]:= r:= sqrt(max);
for j:=k + 1 step 1 until n do
begin wi= alk,J]:= (alk,j] — tamat(1, k - 1, k, J, a, a)) /
rs a[J:J] =a -j:J] —WXW
end
end;
ki=n + 1;
end: aux[2]:= m; aux[3]:= 4;
rnksym20:= 1f m <2 X epsnorm then k — 1 else — k
end rnksym20;

comment mca 2211;
procedure solsym20(a, n, p, b); value n; integer n; integer array p;
array a, b;
begin integer i, pi; real r;
fori = 1 step 1 until n do
begin r:= B[1]; pi:= pl1]5
T bli]:= (blpi] — tamvec(1, 1 — 1, i, a, b)) / ali,i];
if pi $1 then blpili=r
end,
for i:=n step — 1 until 1 do b[il:= (b[i] — matvec(i + 1, n, 1,
a, b)) / ali,il;
for i:=n step — 1 until 1 do
begin pi:= pli]; if pi # 1 Then
T Dbegin r:=b[iT; b[1]:= bIpil; blpil:= r end
end ""
end 801sym20;
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Description meca 2210

rnksym20:= rank, r, of the n—th order positive semi—definite symmetric
matrix M whose upper triangle is given in array a[1:n, 1:n].

In array aux[0:3], one must given a relative tolerance, aux[0].

The pivot-Cholesky matrix of M is overwritten on the upper triangle
of a, and the pivotal indices are delivered in integer array pli:r].
Moreover,

aux[1]:= the maximum diagonal element of M;

aux[2]:= the maximum absolute value of the elements of the remaining
submatrix of order n — r if r < n, and otherwise O;

aux[3]:= determinant of the principal submatrix of order r.

However, if M is not positive semidefinite, then rnksym20:= minus the
last stage number.

rnksym20 uses tammat, ichcol, ichrow and ichrowcol (chapter 20).

Description meca 2211

solsym20 should be called after rnksym20 (but only if the rank equals
n), and solves the n—th order linear system Mx = b, where M is the
positive definite symmetric matrix whose pivot—Cholesky matrix and
pivotal indices, as produced by rnksym20, are given in the upper
triangle of array al1:n, 1:n] and in integer array pl1:n], and where b
is the vector given as array b[1:n].

The solution vector x is overwritten on b.

s0lsym20 leaves a and p invariant; so that after one call of rnksym20
several calls of solsym20 may follow for solving several linear
systems having the same matrix but different right—~hand sides.
solsym20 uses matvec and tamvec (section 200).
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comment meca 2212;
integer procedure rnksolsym20(a, n, b, aux); value n; integer n;
array a, b, aux;
begin integer rank;
integer array pl1:nl;
rnksolsym20: = rank:= rnksym20(a, n, p, aux);
if rank = n then solsym20(a, n, p, b)
end rnksolsym20;

comment mca 2213;
procedure invsym20(a, n, p); value n; integer n; integer array p;
array a;
begin integer 1, Jj, pi;
real r;
invsyn2(a, n);
for i:=n step — 1 until 1 do
begin pi:= plil; if pi F i Then
begin icheol(1, i -1, i, pi, a);
ichroweol(i + 1, pi — 1, 1, pi, a);
ichrow(pi + 1, n, i, pi, a); r:=a[i,il;
ali,i]:= alpi,pil; alpi,pili=r

end
end
end invsym20;

comment mca 2214;
integer procedure rnkinvsym20(a, n, aux); value n; integer n;
array a, aux;
begin integer rank;
integer array pl1:n];
rnkinvsym20:= rank:= rnksym20(a, n, p, aux);
if rank = n then invsym20(a, n, p)
end rnkinvsym 20;
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Description mca 2212

rnksolsym20:= rank, r, of the n—th order positive semidefinite
symmetric matrix M whose upper triangle is given in array a[1:n, 1:n].
In array aux[0:3] one must give a relative tolerance, aux[0].

If r = n, the linear system Mx = b is solved, where b is the vector
given as array b[1:n], and the solution vector x is overwritten on b.
The pivot—Cholesky matrix of M is overwritten on the upper triangle
of a. Moreover,

aux[1]:= the maximum diagonal element of M;

aux[2]:= 0;

aux[3]:= determinant of M.

However, if 1 <r <n (M positive semidefinite) or r < 0 (M not
positive semidefinite), then no solution vector is calculated and the
results of rnksolsym20 are the same as those of rnksym20.

rnksolsym20 uses rnksym20, solsym20 and, indirectly, also matvec,
tamvec, tammat, ichcol, ichrow and ichrowcol (chapter 20).

Description mca 2213

invsym20 should be called after rnksym20 (but only if the rank equals
n), and calculates the inverse, X, of the n—th order positive definite
symmetric matrix M whose pivot—Cholesky matrix and pivotal indices, as
produced by rnksym20, are given in the upper triangle of

array a[1:n, 1:n] and in integer array p[1:n].

The upper triangle of X is overwritten on a.

invsym20 uses invsym2 (mca 2203), ichcol, ichrow, ichrowcol

(section 202) and, indirectly, also matvec and tamvec (section 200).

Description mca 2214

rnkinvsym20:= rank, r, of the n—th order positive semi—definite
symmetric matrix M whose upper triangle is given in array al1:n, 1:n].
In array aux[0:3] one must give a relative tolerance, aux[0].

If r = n, the upper triangle of the inverse of M is calculated and
overwritten on a.

Moreover,
aux[1]:= the maximum diagonal element of M;
aux[2]:= 0;

aux[3]:= determinant of M.

However, if 1 <r <n (M positive semidefinite) or r < 0 (M not
positive semidefinite), then no inverse is calculated and the results
of rnkinvsym20 are the same as those of rnksym20.

rnkinvsym20 uses rnksym20, invsym20 and, indirectly, also invsym2
(mca 2203), matvec, tamvec, tammat, ichcol, ichrow and ichrowcol
(chapter 20).
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comment mca 221a;
integer procedure solsymhom20(a, n, aux); value n; integer n;
array a, aux;
begin integer i, pJj, Jj, rank;
real r;
integer array p[i:n];
solsymhom?0:= rank:= rnksym20(a, n, p, aux); if rank > O then
begin for i:= rank + 1 step 1 until n do - -
for j:= rank + 1 step 1 until n do al[i,jl:= if i = j then 1
else O;
for i:= rank step — 1 until 1 do
begin r:= — a[i,il;
for j:= rank + 1 step 1 until n do ali,jl:= (ali,j] +
matmat(i + 1, rank, i, j, &, a)) / r
end;
for j:= rank step — 1 until 1 do
begin pj:= p[Jl; if pj ¥ J then ichrow(rank + 1, n, j, pj, a)
end
end
end solsymhom20;




25

Description mca 221a

solsymhom20 solves the homogeneous linear system whose n—th order
positive semidefinite symmetric matrix M is given in the upper
triangle of ar al1:n, 1:nl.

In array aux|,0:3i one must glve a relative tolerance, aux[O].
solsymhom20:= rank, r, of M, calculated by means of rnksym20.
Subsequently, a complete set of n — r linearly independent solution
vectors of the homogeneous linear system is calculated and delivered
in the last n — r colums of a. The first r columns of the pivot—
Cholesky matrix of M are delivered in the first r columms of a.
Moreover, the same results are delivered in aux as by rnksym20.
However, if rnksym20 delivers a negative (integral) value, indicating
that M is not positive semidefinite, no solution of the homogeneous
system is calculated and only the results of rnksym20 are delivered.
solsymhom?0 uses rnksym20, matmat, ichrow and, indirectly, also
tammat, ichcol and ichrowcol (chapter 20).
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comment mca 2215;
integer procedure rnksymi0(a, n, p, aux); value n; integer n;
integer array p; array a, aux;
begin integer k, pk, kk, kj, pp, i, J, JJ, t, low, up;
real norm, epsnorm, m, max, d, r, w;
d:= 1; norm:= 0; kk:= O;
for k:=1 step 1 until n do
begin kk:= Kk + k; if alkk] > norm then norm:= a[kk] end;
epsnorm: = aux[0] X norm; aux[1]:= norm; m:= 0; kk:= 0;
for k:= 1 step 1 until n do
begin max:= epsnorm; t:= kk;
for j:=k step 1 until n do
begin t:= T + §; If alt] > max then
begin max:= a[t]; pki= j; pp:= t end

end,
if max < epsnorm then
begin for i:=k step 1 until n do
beginkk kk + 1; Tow:i=kk — 1 + 13
r:= abs(alkk]); if r > m then m: r; kj:=kk + 1i;
for ji=1 + 1 step 1 until n do
begin r:= alkjT:= a[kj] — vecvec(low, up, kj — kk,
a, a); r:=abs(r); if r > m then m:= r;
kj:=kj + J
end
end;
goto end
end;
kk kk + k; low:=kk — k + 1; up:= kk — 1; plk]:= pk;
= d X max; if pk # k then
begin ichvec(Iow, up, pp — pk — kk + k, a);
" ichseqvec(k + 1, pk — 1, kk + k, pp — pk, a);
ichseq(pk + 1, n, pp + k, vk — k, a); alppl:= a[kk]

end;
alkk]:= r:= sqrt(max); kj:= kk + k; jj:= kk;
for ji=k + 1 step 1 until n do
begin w:= a[kjT:= (alkj] — vecvec(low, up, kj — kk, a, a)) /
r; Jii= 33 + 3s a[JJ] =aljj]l —wXx w; kji=kj +
end
end;™
ki=n + 1;
end: aux[2]:= m; aux[3]:=
rnksymiO:= _i_{ m<2X e_psnorm then k — 1 else — k
end rnksym10; -
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Description meca 2215

rnksymlO:= rank, r, of the n—th order positive semidefinite symmetric
matrix M whose upper triangle is given in

array al1 : (n+ 1) X n : 2], In array aux[0:3] one must give a
relative tolerance, aux[07.

The pivot—Cholesky matrix of M is overwritten on a and the pivotal
indices are delivered in integer array p[1:r].

Moreover,

aux[1]:= the maximum diagonal element of M;

aux[2]:= the maximum absolute value of the elements of the remaining
submatrix of order n — r if r < n, and otherwise 0O;

aux[3]:= determinant of the principal submatrix of order r.

However, if M is not positive semidefinite, then rnksymiO:= minus the
last stage number.

rnksym10 uses vecvec, ichvec, ichseqvec and ichseq (chapter 20).
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corment mca 2216;
procedure solsym10(a, n, p, b); value n; integer n; array a, b;
integer array p;
begin integer i, ii, pil; real s;
ii:= 03
for i:= 1 step 1 until n do
Pegin s:= blii; pili= plil; id:= 41 + i;
blil:= (blpi] — veevec(l, 1 — 1, ii — i, b, a)) / a[iil;
if pi # 1 then blpil:= s
end; T
for i:=n step — 1 until 1 do
begin b[1]%= (b[i] = seqvec{i + 1, n, 11 + 1, 0, &, b)) / aliil;
jit=11 - 1
end;
for i:=n step — 1 until 1 do
begin pi:= pli]l; if pi # i then
Pegin s:= b[i]; bli]:= blpil; blpil:= 8 end
end T
end solsym10;

comment mca 22173
integer procedure rnksolsymiO(a, n, b, aux); value n; integer n;
array a, b, aux;
begin integer rank; integer array pli1:nl;
rnksolsym10:= rank:= rnksymiO(a, n, p, aux);
if rank = n then solsymiO{a, n, p, b)
end rnksolsym10; ’

comment mca 2218;
procedure inveym10(a, n, p); value n; integer n; integer array p;
array a;
begin integer i, ii, pi, pp; real r;
invsymi(a, n); ii:=(n + 1) X n : 2;
for i:=n step — 1 wntil 1 do ~
begin pi:= plil; if pi F i then
begin pp:= (pi + 1) X pi : 2;
~ ichvec(ii — 1 + 1, i1 = 1, pp— pi — ii + 1, a);
ichseqvec(i + 1, pi = 1, 11 + i, pp — pi, a);
ichseq(pi + 1, n, pp + i, pi — i, a); r:= aliil;
al[i1il:= a[ppl; alppl:=1r
end;
1= 11 - 1
end
end Invsym10;

comment mca 2219;
integer procedure rnkinvsymiO(a, n, aux); value n; integer n;
array &, aux;
begin integer rank; integer array pli1:n];
rnkinvsym10:= rank:= rnksymiO{a, n, p, aux);
if rank = n then invsymiO(a, n, p)
ﬂ rnkinvsym 10;
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Description mca 2216

solsyml0O should be called after rnksymiO (but only if the rank equals
n), and solves the n—th order linear system Mx = b, where M is the
positive definite symmetric matrix whose pivot—Cholesky matrix and
pivotal indices, as produced by rnksymi0, are given in

array a[1 : (n + 1) X n : 2] and in integer array p[1:n], and where b
is the vector given as array b[i:n].

The solution vector x is overwritten on b.

-80lsym10 leaves a and p invariant, so that after one call of rnksymiO
several calls of solsyml10 may follow for solving several linear
systems having the same matrix but different right—hand sides.
s0lsyml10 uses vecvec and seqvec (section 200).

Description mca 2217

rnksolsymiO:= rank, r, of the n—th order positive semidefinite
symmetric matrix M whose upper triangle is given in

array a[1 : (n+ 1) Xn:2].

In array aux[0:3] one must give a relative tolerance, aux[0].

If r = n, the linear system Mx = b is solved, where b is the vector
given as array b[1:n], and the solution vector x is overwritten on b.
The pivot—Cholesky matrix of M is overwritten on a.

Moreover, aux[1]:= the maximum diagonal element of M; aux[2]:= 0;
aux[3]:= determinant of M.

However, if 1 <r <n (M positive semidefinite) or r < 0 (M not
positive semidefinite), then no solution vector is calculated and the
results of rnksolsymliO are the same as those of rnksymioO.
rnksolsyml0 uses rnksyml0, solsymlO and, indirectly, also vecvec,
seqvec, ichvec, ichseqvec and ichseq (chapter 20).

Description mca 2218

invsym10 should be called after rnksymlO (but only if the rank equals
n), and then calculates the inverse, X, of the n—th order positive
definite symmetric matrix M whose pivot—Cholesky matrix and pivotal
indices, as produced by rnksymiO, are given in

array a[1 : (n + 1) X n : 2] and in integer array p[1:n].

The upper triangle of X is overwritten on a.

invsym10 uses invsyml (mca 2208), ichvec, ichseqvec, ichseq

(section 202) and, indirectly, also vecvec and seqvec (section 200).

Description mca 2219

rnkinvsymlO:= rank, r, of the n—th order positive semidefinite
symmetric matrix M whose upper triangle is given in

array a[1 : (n + 1) X n : 2],

In array aux[0:3] one must give a relative tolerance, aux[0].

If r = n, the upper triangle of the inverse of M is calculated and
overwritten on a.

Moreover, aux[1]:= the maximum diagonal element of M; aux[2]:= 0;
aux[3]:= determinant of M.

However, if 1 <r <n (M positive semidefinite) or r < 0 (M not
positive semidefinite), then no inverse is calculated and the results
of rnkinvsyml10 are the same as those of rnksymioO.

rnkinvsyml10 uses rnksymlO, invsymlO and, indirectly, also invsymi
(meca 2208), vecvec, seqvec, ichvec, ichsegvec and ichseq (chapter 20).
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Section 222 Cholesky decomposition for band matrices

The procedures of this section solve a system of linear equations
and / or calculate the determinant of a matrix, provided the matrix is
a positive definite symmetric band matrix:

detsolsymbnd solves a system of linear equations and calculates the
determinant of the system;

detsymbnd calculates the determinant of a matrix;

solsymbnd solves a linear system whose matrix is given in the
Cholesky—decomposed form produced by detsymbnd.

One call of detsymbnd followed by several calls of solsymbnd may be
used to solve several linear systems having the same matrix but
different right—hand sides.

The method used is Cholesky's square—root method without pivoting (see
section 220 and [9]). If the given symmetric band matrix M is positive
definite, then the method yilelds an upper—triangular band matrix U,
the "Cholesky matrix" of M, such that U'U equals M; moreover, the
determinant of M 18 delivered, calculated as the product of the
squares of the diagonal elements of U (and, thus, always positive).
The number of nonzero diagonals of U is the same as that of the upper
triangle of M. The process is completed in n stages, each stage
producing a row of U, However, the process is discontinued if at some
stage, k, the k—th diagonal element of M minus the sum of the squared
elements of the k—th column of U (the sqrt of this quantity being the
k—th diagonal element of U) is not positive, meaning that M, perhaps
modified by rounding errors, is not positive definite. In that case,
instead of the determinant, minus the last stage number k is
delivered.

The solution of the linear system U'Ux = b is obtained by solving
U'y = b (forward substitution) and Ux = y (back substitution).

The procedures of this section use a one—dimensional

array al1 :(n — 1) X w + n] for the upper triangle of M and U, where
n is the order of the matrix and w the number of non—zero codiagonals
above the main diagonal; the (i, j)—th element of matrix M or U is
al(j—1) Xw+ 1]l for j = 1,..., nand i = max(1, j —w),..., j; the
other elements of a are neither used nor changed.
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comment mca 2220;

real procedure detsymbnd(a, n, w); value n, w; integer n, w; array a;
begin integer Jj, k, Jjmax, kk, kj, wl, start;

real r, det;

l, Jmax:= w; wli=w + 1; kk:= — w;

fo =1 step 1 until n do
beginifk+w>nthen Jma.x Jmax — 1; kk:= kk + wi;
start:i= kk — k + 13

r:= a[kk] — vecvec(if k < w1 then start else kk — w, kk —

1, 0, a, a); if r <O then
begin detsymbnd =—Kk; 501:0 end end;

det:= r X det; alkk]l:= r:= sqrt(r); kj:= kk;

for j:= 1 step 1 until jmax do

begin kj:=kj + w;
alkjl:= (a[kJ] — vecvec(if k + j < wl then start else kk

-w+ J, kk ‘1:k-j—kk,a,5-))7

8‘

detsymbnd:= det;
end:
end detsymbnd;

comment mca 2221;
rocedure solsymbnd(a, n, w, b); value n, w; integer n, w; array a, b;
begin integer i, k, imax, kk, wil;
kki= —w; wi:t=w + 13
for k:= 1 step 1 until n do
begin kk:= kk + wl;
— olk]:= (b[k] — vecvec(if k < wl then 1 else k — w, k — 1, kk
~k, b, a)) / alkk]
end;
imax:= — 1;
for k:=n step — 1 until 1 do
Pegin if imeX < w then imax:= imax + 1;
b[k]:= (b[k] — scaprdi(kk + w, w, k + 1, 1, imax, a, b)) /
alkk]; kk:= kk — wi
end
end solsymbnd;

comment mca 2222;
real procedure detsolsymbnd(a, n, w, b); value n, w; integer n, w;
array a, b
begin real det;
detsolsymbnd:= det:= detsymbnd(a, n, w);
if det > O then solsymbnd(a, n, w, b)
end detsolsymbnd;
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Description mca 2220

detsymbnd:= determinant of the n—th order positive definite symmetric
band matrix M having w codiagonals on each side of the main diagonal,
and whose upper triangle is given in array a[1 : (n - 1) X w + nl.
Moreover, the Cholesky matrix of M is calculated and delivered in a.
If, however, M is not positive definite, then the Cholesky decom—
position is discontinued, and detsymbnd:= minus the last stage number.
detsymbnd uses vecvec (mca 2000).

Description mca 2221

solsymbnd solves the n—th order linear system U'Ux = b, where b is the
vector given as array b[1 : n], and U is the upper—triangular band
matrix having w codiagonals, and which is given in

array a[1 : (n — 1) X w + nl.

The solution vector x is overwritten on b.

If U is the Cholesky matrix of a positive definite symmetric band
matrix M, as produced by detsynbnd, then the calculated solution
vector x is the solution of the linear system Mx = D,

solsymbnd leaves the elements of a invariant, so that after one call
of detsymbnd several calls of solsymbnd may follow for solving several
linear systems having the same matrix but different right—hand sides.
solsymbnd uses vecvec and scaprdl (section 200).

Description mca 2222

detsolsymbnd:= determinant of the n—th order positive definite
symmetric band matrix M having w codiagonals on each side of the main
diagonal, and whose upper triangle is given in

array a[1 : (n - 1) X w + n]. ‘

Moreover, the solution vector x of the linear system Mx = b, where b
is the vector given as array b[1:n], is calculated and overwritten on
b, and the Cholesky matrix of M is delivered in a.

If, however, M is not positive definite, then the Cholesky
decomposition is discontinued, no solution is calculated, and
detsolsynbnd:= minus the last stage number.

detsolsynbnd uses detsymbnd, solsymbnd and, indirectly, also vecvec
and scaprdil (section 200).
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Section 224 Least—squares problems

This section comtains procedures for solving linear least—squares
problems:

lsqgdecsol calculates the solution x of a least—squares problem Mx — b
and, moreover, the main diagonal of the inverse of the product M'M;
lsgdec performs the Householder triangularisation of M and calculates
its rank;

1sgsol and 1lsqdglinv are to be used in combination with lsgdec for
solving a linear least—squares problem (or several problems having the
same matrix M but different right—hand sides) or for calculating the
main diagonal of the inverse of M'M,

Apart from some changes and adaptations to our vector procedures,
lsqdec and 1sqsol have been derived from [10]. However, our procedures
do not perform iterations for improving the solution; these iterations
would be of limited value, as is pointed out in [11].

The method is Householder triangularisation with column interchanges.
Let M have n rows and m colunms; lsqdec produces an n—th order
orthogonal matrix Q and an n X m upper—triangular matrix R such that R
equals QM with permuted columms., Matrix Q is the product of at most m
orthogonal symmetric n—th order "Householder matrices", which are of
the form I — sww', where I is the identity matrix, w a colum vector
and s a scalar. Matrix M is reduced to R in (at most) m stages. In the
k—th stage, the desired zeroes are introduced in the k—th column of
the matrix as follows: first the "pivotal" columm, i. e. the columm
having maximum Euclidean norm, is selected from the remaining
(n—-X%X+1) X (m—k + 1) submatrix, and the pivotal and the k—th
colums are interchanged; then the k—th Householder matrix is
calculated and postmultiplied by the remaining submatrix.

The k—th Householder matrix is chosen such that this
postmultiplication introduces the desired zeroes in the k—th column,
and the first k — 1 elements of w are zero.

If at some stage k the Euclidean norm of the pivotal columm is smaller
than some tolerance, viz. a given relative tolerance times the maximum
of the Euclidean norms of the columms of M, then the process is
discontinued, and k — 1 is delivered as the rank of M; otherwise, the
rank equals m.

In 1sgsol, the least—squares solution x of the problem Mx — b is
obtained by first calculating y = Qb, then solving the triangular
system consisting of the first m equations of Rx = y (back
substitution), and finally interchanging the elements of x in "reverse
correspondence" with the interchanges of the colums of M, i. e. the
same interchanges are carried out in reverse order. As by—product the
last n — m elements of y are delivered; the sum of the squares of
these elements is approximately equal to the square of the Euclidean
norm of the residue vector Mx — Db.

In 1sqdglinv, the main diagonal of M'M is obtained by calculating the
inverse of R, from this the main diagonal of the inverse of R'R, and
then interchanging the calculated diagonal elements in reverse
correspondence with the interchanges of the columns of M.
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comment mca 2240;
integer procedure lsqdec(a, n, m, aux, aid, ci); value n, m;
integer n, m; array a, aux, aid; integer array ci;
begin integer J, k, kpiv;
real beta, sigma, norm, w, eps, akk, aidk;
array sum[1:m];
norm:= O; lsqdec:= m;
for k:= 1 step 1 until m do
begin w:= sumlk]:= tammat{1, n, k, k, a, a);
if w > norm then norm:= w
end;
wi= aux[1]:= sqrt(norm); eps:= aux[0] X w;
for k:= 1 step 1 until m do
begin sigma:= sumlk]; kpiv:= k;
for j:=k + 1 step 1 until m do if sum[j] > sigma then
begin sigma:= sumi.j]; kpiv:= J end;
if kpiv ¥ k then
begin sum{kpiv]:= sum[k]; ichcol(1, n, k, kpiv, a) end;
ci[k]:= kpiv; akk:= alk,k]; sigma:= tammat(k, n, k, k, a, a);
wi= sqri(sigma); aidk:= aid[k]:= if akk < O then w else — w;
if w < eps then
begin lsqdec:= k — 1; goto enddec end;
betar= 1 / (sigma — akk X aidk); alk,k]:= akk — aidk;
for j:=k + 1 step 1 until m do
begin elmcol(k, n, Jj, k, a, a, — beta X tammat(k, n, k, J,
a, a)); sum[jl:= sum[j] — alk,j] A 2

end
end for k;
enddec: aux[2]:= w
end lsqdec;
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Description meca 2240

lsqdec:= rank, r, of the n X m matrix M given in array al1:n, 1:m].
In array aux[0:2] one must give a relative tolerance, aux[0].

The pivotal colurm indices are delivered in integer array ci[1 : rl,
the (r first) diagonal elements of the upper—triangular matrix R in
array aid[1 : r], and the other elements of the upper triangle of R in
array a, together with the vectors w of the Householder matrices.
Moreover,

aux[1]:= the maximum Euclidean norm of the columns of M,

aux[2]:= the absolute value of the r—th diagonal element of R.
lsqdec uses tammat, elmcol and ichcol (chapter 20).
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comment mca 2241;
procedure 1lsqsol(a, n, m, aid, ci, b); value n, m; integer n, m;
array a, ald, b; integer array ci;
begin integer k, cik;
real w;
for k:= 1 step 1 until m do elmveccol(k, n, k, b, a, tamvec(k,
n, k, a, b (aidlk] X alk,k]));
for k:= m step — 1 until 1 do b[k]:= (b[k] — matvec(k + 1, m, k,
a, b)) / aldlkl; -
for k:=m step — 1 until 1 do
begin cik:= cilk]; If cik ¥ k then
Degin wi= blk]; blk]:= bleIk]; bleik]l:= w end
end -
end Tszsol;

comment mca 2242;
procedure lsqdglinv(a, m, aid, ci, diag); value m; integer m;
array a, ald, diag; integer array ci;
begin integer j, k, cik;
real w;
for k:= 1 step 1 until m do
begin diaglkl:= 17/ aidlk];
for j:=k + 1 step 1 until m do diag[jl:= — tamvec(k, j — 1,
J, 2, diag) / aidljl; dlaglklt= vecvec(k, m, 0, diag, diag)
end;
for k:=m step — 1 until 1 do
begin cik:= cilk]; If cik ¥ k then
begin w:= diaglk]; diag[kl:= diaglcik]; diag[cik]:= w end
end
end Tsqdglinv;

comment mca 2243;
integer procedure lsqdecsol(a, n, m, aux, diag, b); value n, m;
integer n, m; array a, aux, diag, b;
begin integer rank;
array aid[1:m];
integer array cil[1:ml];
rank:= lsqdecsol:= lsqdec(a, n, m, aux, aid, ci);
if rank = m then
begin 1sqdglinv(a, m, aid, ci, diag); lsqsol(a, n, m, aid, ci, b)
end
end Tsqdecsol;
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Description mca 2241

Tsqsol should be called after lsqdec (but only if the rank equals m),
and calculates the least—squares solution x of Mx — b, where b is the
vector given as array b[1:n], and M is the n X m matrix whose
Householder~triangularised form R, with the vectors w of the
Householder matrices and the pivotal indices, as produced by lsgdec,
are given in array al1:n, 1:m], aid[1:m] and integer array cil1:m].
The solution Vector x is overwritten on the first m elements of b, and
the last n — m elements of y are overwritten on the last n - m
elements of b,

1sgsol leaves the elements of a, aid and ci intact, so that, after one
call of lsqdec, several calls of 1sgsol may follow for solving several
least—squares problems having the same matrix M but different right—
hand sides b,

1sqsol uses matvec, tamvec and elmveccol (chapter 20).

Description mca 2242

Tsqdglinv should be celled after lsqdec (but only if the rank equals
m), and calculates the main diagonal of the inverse of M'™, where M is
the matrix whose Householder—triangularised form R with the pivotal
indices, as produced by lsqdec, are given in

array a[1:m, 1:m], aidl1:m] and integer array cil1:m].

The calculated main diagonal is delivered in array diag[1:m]; the
elements of a, aid and ci are left intact.

1sqdglinv uses vecvec and tamvec (section 200).,

Description mca 2243

Tsqdecsol:= rank, r, of the n X m matrix M given in array a[1:n, 1:ml.
In array aux[0:2] one must give a relative tolerance, auxl[0],

If r = m, then the least=squares solution x of Mx — b, where b is the
vector given as array bl1:n], is calculated and overwritten on the
first m elements of b; the last n — m elements of y are overwritten on
the last n — m elements of b; moreover, the main diagonal of the
inverse of M'™ is delivered in array diag[1:ml.

However, if r < m, then no solution and main diagonal are calculated,
and the elements of b and diag are left unchanged,

In either case,

aux[1]:= the maximum Euclidean norm of the colums of M,

aux[2]:= the absolute value of the r—th diagonal element of R, and the
elements of a are altered,

lsqdecsol uses lsgdec, lsgsol, lsgqdglinv and, indirectly also vecvec,
matvec, tamvec, tammat, elmveccol, elmcol and ichcol (chapter 20),
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APPENDIX
TIMES FOR THE MC ALGOL 60 SYSTEM FOR THE X8.

In this appendix we give practical formulas for the computation times
in milliseconds of the procedures published above. The coefficients of
these formulas have been obtained from tests on an Electrologica X8
computer using the MC ALGOL 60 system for the X8, in which system the
procedures mca 2000 to 2005 are avallable as machine—code procedures.
For comparison we moreover give the formulas for the computation times
of the nonmachine—code ALGOL 60 procedures meca 2000 to 2005 and of the
procedures of section 210 using them. The coefficients of the time
formulas have a relative precision of at most one or two digits.

CHAPTER 20 VECTOR OPERATIONS

Here n is the nunber of elements used in each vector, thus,
n=u-1+ 1, except for scaprdl.

Section 200 Scalar products

machine—code ALGOL 60
meca 2000 vecvec .085 X n + 1.1 LbEXxn+ .9
mea 2001 matvec .085 X n + 1.2 Shxn+ .9
mea 2002 tamvec 085 X n + 1.2 Shxn+ L9
mea 2003 matmat .085 X n + 1.4 63X 1n + 1.0
mea 2004 tammat .085 X n + 1.4 .63 Xn+ 1.0
mea, 2005 mattam .085 X n + 1.4 63X n+ 1.0
mea 2006 segvec .50 X n + 1.0
mea 2008 scaprdl 53X n+ 1.1
Section 201 Elimination
meca. 2010 elmvec b1 Xn+ 1.1
mea 2011 elmveccol 69X n o+ 1.1
mea 2012 elmeolvec 18X n o+ 1.1
meca 2013 elmeol BT Xn+ 1.2
mea 2014 elmrow BT Xn+ 1.2
mca 2019 maxelmrow O X n + 1.3
Section 202 Interchanging
mca 2020 ichvec Bl Xn+ LT
mea 2021 icheol 1.1 X n + .8
mea 2022 ichrow 1.1 X n + .8
mes, 2023 ichrowecol b xn+ .8
mea 2024 ichseqvec Bixn+ .8
mca 2025 ichseq 84 xn+ .8
Section 203 Rotation
mca 2031 rotcol 1.40X n + 1.3
mea 2032 rotrow : 140X n + 1.3
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CHAPTER 21 LINEAR SYSTEMS AND MATRIX INVERSION

The formulas for this chapter hold for nonsingular matrices, unless

stated otherwise.

Section 210 Triangular decomposition with partial pivoting

mea 2100 det
mea 2101 sol
meca 2102 detsol
meca, 2103 inv
mea, 2104 detinv

Section 211 Elimination with complete pivoting

meca 2000 to 2005
in machine—code
033X n+3.4)xnj2

(

(.09% X n + 4,

(.03 2

(.061 X n 2
2

X
3Xn+ 3.5) X

+ X
(.09% X n + 6.8) X

BBBB

5)
5)
3.1)
8)

mca 2000 to 2005
in ALGOL 60

The formula for rnkelm holds, if n and m are nearly equal and the rank
equals min(n, m); the formula for solhom holds, provided the rank is
not much smaller than m,

mea, 2110 rnkelm
meca 2111 solelm
meca 2112 rnksolelm
meca 2113 solhom
mea 2114 invelm

(.51 Xn+ L4,2) XnX (m—n/3)
(.100X n + 4.8) xn

(.34 Xxn+2.9)xnAj2

(.046 X rank + 2.9) X rank
(.95 Xxn+57)XnA2

Section 212 Band matrices

Here w is the band width, thus, w = 1w + rw + 1.
The formulas for this section hold only if w is much smaller than n.

meca 2120 detbnd
mca 2121 solbnd
meca, 2122 detsolbnd

(.56 X 1w + 2.3) X wX n

(7 Xlw+ .1 Xrw+4.2) Xn

(.55 X lw + 2.9) X wX n



CHAPTER 22 POSITIVE DEFINi‘I'E SYMMETRIC LINEAR SYSTEMS AND MATRIX
INVERSION

The formulas for this chapter hold for nonsingular matrices, unless
stated otherwilse.

Section 220 Cholesky decomposition without pivoting

mea, 2200 detsym2 (.016Xn+1.2) xXnA2
mea 2201 solsym2 §.092 Xn+Uh.1) Xn
mea 2202 detsolsym? 016X n+ 1.3) XnA2
mea 2203 invsym2 (.032 Xn+1.7)XnA2
meca 2204 detinvsym? (.08 X n +2.9) Xn A2
mca 2205 detsymi (.016 X n+ 1.0) XnA2
mea 2206 solsyml (.30 Xn+3.3) Xn
mea 2207 detsolsyml (.016 X n + 1.3) xnA2
mea 2208 invsymi (.10b X n+ 1.4)xnAp2
mea, 2209 detinvsymi (.120X n +2.4) X n A2
Section 221 Cholesky decomposition with pivoting

The formula for solsym20 ‘holds s 1f the rank equals n — 1.

mea 2210 rnksym20 (.016 X n+2,6) xnA2
mea 2211 solsym20 (.092 X n + 5.6) Xn

mea 2212 rnksolsym20 (.016 X n + 2.7) X n A 2
mea 2213 invsym20 (.032 Xn+2.8) XxnA2
mea 2214 rnkinvsym20 (.08 X n + 5.4) X n A 2
mea 221a solsymhom20 (.016 X n + 2,9) X n A 2
meca 2215 rnksymi0 (.016 X n +2.0) XnA2
mea 2216 solsymiO (.30 Xn+54.8) Xn

mea 2217 rnksolsymlO0 (.016 X n +2.3) Xn A 2
mca 2218 invsymi0 (.10bXn+2.2) XxXnAp2
mea 2219 rnkinvsymi0  (.120 X n + 4.2) X n A 2

Section 222 Cholesky decomposition for band matrices

The formulas for this section hold only if w is much smaller than n.
mca 2220 detsymbnd (L036 X w+2.4) XwXn

mea 2221 solsymbnd (.67 X w+ L4.8) xn

meca 2222 detsolsymbnd (.036 X w + 3.1) X wX n

Section 224 Least—squares problems

The formulas for this section hold, if n > m and the rank equals m.

mea 2240 lsqdec (.50 Xm+2.2) XmX (n—m/3)
mea 2214 1sqsol (.75 Xm+1.0) Xn

mea 2242 1sqdglinv (016X m+1.1) XxmA2

meca 2243 1lsqdecsol (.50 Xm+L4,1) XxmX (n—m/3)
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