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INTRODUCTION 

This tract is based on the papers [4], [s], [6], [11] and [12]. 

Together with De Groot, Strecker and Herrlich I studied the back-
• 

ground and some generalizations of the isomorphism principle of [4]. 

The results of these investigations have been or will soon be published 

in [5], [6], [11], [12] and in this 

to these papers. 

tract. In general we will not refer 
' 

Several problems related to the isomorphism principle were solved 

by investigating the notion of compactness from a set-theoretical 
• 

point of view. Alexander's subbase theorem was crucial in this context 

and therefore we give a detailed proof and a set-theoretical reforma

tion of this well known theorem in the first section of the first 

chapter. 

The second section of this chapter contains the definition of the 
• 

compactness operator p which assigns to every collection 6 of subsets 

of a given set X the collection p6 of all subsets of X which are com

pact relative to 6. (In the sequel compactness relative to a system 
• 

will always mean compactness relative to C5 if 6 is considered as a 

closed subbase.) We also introduce an auxiliary operator y which can 

'' '' be called the topology generating operator. We prove that p and y 

generate a finite semigroup under the usual compositions. For a more 

detailed study of this semigroup we refer to [6]. 

In the third section of the first chapter we obtain the most im

portant results of this chapter, namely, a strengthening of Alexander's 

subbase theorem. To 

of subsets of X and 

be explicit, let X be a set, let 6 be a collection 
- 2 -let 6 = p(6 Up (5), then p<5 = p6 and moreover, in 

many important cases (e.g. if 6 is a closed subbase for a Hausdorff · 
-space on X), 6 is the unique maximal collection of subsets of X with 

the property that p<5 = p6. The results of this section are also 

published in [11]. 

In the second chapter we investigate a topological isomorphism 

principle. Following [4] we introduce the notion of a minusspace, which 

is an ordered pair (X,~) consisting of a set X and a collection of sub

sets@ which satisfies the equality y@ =@.We also introduce the notion 

• 

• 
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of an antispace which is a minusspace (X,@) with the property that 

p
2~ =@.The most important class of antispaces is the class of 

topological antispaces or C-spaces. This class is closely related to 

the class of compactly generated spaces and contains, for example, all 
' 

metric spaces and all locally compact Hausdorff spaces. In the first 

section we give a survey of the theory of C-spaces. The results pu

blished in this section are slight generalizations of well known results 

for compactly generated spaces. However, the last proposition of this 

section contains an essentially stronger result and is important for 

the characterization of the compactness operator in the class of C-spaces. 

The second section of this chapter contains, in addition to the 

basic definitions, an application of the third section of chapter I 
' 

which provides some correspondences between the class of all spaces 

in which compact implies closed and the class of all compact antispaces. 

We were able to describe the k-expansions (compare with [1]) in this 

context. 

The main results of the third section of the second chapter are 
' 

published here for the first time. In this section we introduce the 

notion of an.antisubspace. We will consider a characterization of the 

class of all antispaces and of the class of all isomorphic images of 

C-spaces, i.e. the class of * C -spaces, which is based on the notion of 

an antisubspace. Although the class of C-spaces is not closed under the 

fo1,ning of subspaces I it follows that t_he class of all anti spaces and 

·the class of all * C -spaces are both closed under the forming of antisub-

spaces. 

In the third chapter we consider the following problem: Give neces

sary and sufficient conditions for a collection~ of subsets of a given 

set X which guarantee that~ is the collection of all compact subsets 

relative to some family of subsets of X. This problem appeared to be 

difficult and we only give partial solutions to it. We also give in 

this chapter a characterizatiop of the compactness operator Pin the 

class of Tychonoff spaces and in the class of C-spaces. We conclude 

this tract with some problems which are related to the characterization 

of the notion of compactness and which may be used for further inves-

tigations of this subject. • 
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Chapter I 

• 

A generalization of Alexander's theorem 

Alexander's subbase theorem (cf. [7], p. 139) states that a set is 
• 

compact if and only if it is compact with respect to a closed (or open) 

subbase of the topology. (Because of our needs in the following we shall 

prefer to talk about closed subbases). Since every collection of subsets 

generates (as a closed subbase) a topology, we can assign to every col

lection 6 of subsets of a fixed set X the collection p6 of subsets of X 

which consists of all subsets of X which are compact relative to C5. Thus 

we define an operator P which assigns to every collection of subsets of 

some set the family of compact sets relative to that collection of sets. 

This operator is called the compactness operator. 

In the first section, in an introduction to the topic, we give some 

basic definitions and a detailed proof of Alexander's theorem and its 

set-theoretical reformulation which we need in this tract. In the second 

section we study the compactness operator and its basic properties. The 

third section is primarily concerned with deriving a strengthening of 

Alexander's theorem. 
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1. Alexander's subbase theorem 

1.1. Definition. Let (X,X) be a topological space. A collection~ 

of subsets of Xis called a closed base for 2= if and only if every set 

is closed iff it is the intersection of members of~-

A collection 6 of subsets of Xis called a closed subbase for l: 

iff the family of all finite unions of members of 6 is a closed base 

for X. 
, 

1.2. Remark. Any family 6 of subsets of X may serve as a subbase 

for a (uniquely determined) topology l:. (Observe that (5 may be empty). 

This is true because of the fact that in the definition,inter

sections and unions of empty families are pe1,ni tted. (For example, 

if 6 =~,then%= 0,X}). 

However, for later purposes (see in particular theorem 2.5 and the 

remark in 2.4) we would like to avoid this latter convention (see also 

definition 2. 2) • 

To be explicit, we make the following agreement: If 6 is any 

family of subsets of X, then by an intersection (a union) of members 

of 5 we shall always mean an intersection (a union) of a non-empty 

subfamily of 5. If 6 = 0, then the family of all intersections and the 

family of all unions is also empty. 

With this convention it is no longer true that any family (5 of 

subsets of Xis a closed subbase for a topology. Since the only sets 

which might be excluded from the topology are the sets 

and X, we agree that the topology~ generated by 6 will be the topology 

generated by the subbase 6 U 0} U {x} (taking only unions and inter

sections of non-empty families). 

1.3. Definition. A system 6' of subsets of a set Xis called 

centered iff every finite intersection of members of 6' is non-empty. 

A system 6' of subsets is· called centered in A or A-centered, provided 

that~' U {A} is centered, i.e. ,the collection {s n Als E 6'} 

centered. 

' 

• 1S 
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1.4. Definition. Let X be a set and 6 a collection of subsets 

of X. A set ACX is called &co~pact or compact relative to 5 

provided that every A-centered subsystem 6' of 5 has a non-empty 

intersection with A. 

i.e. (n 6') n A J 0 . 

• 

Observe that Ac Xis also &compact if no member of 6 has a 

non-empty intersection with A. (In particular A= Dis &compact). 

1.5. Lemma. Let X be a set and let 6 be an arbitrary system of 
' subsets of X. If 6' is a centered subsystem of 6, then there exists 

• 

a maximal centered subfamily 5 of 6 which contains 5'. 

Proof. The proof of this lemma is a straightforward application 

of Zorn's lemma. 

1 . 6 • Le1r11na ( Key 1 emma) • 
... 

Let 6 be a maximal centered subfamily of a system of sets 6 and 
n -

assume that 6 contains a set S = U Si such that every s1 is a 
i=l -

member of 5. Then at least one of the Si belongs to 6. 

-
Proof. Suppose that no s1 belongs to 6. Then for every i, the 

Therefore 

and 

is not centered and there must exist a finite sub

such that 

n 
< n 
i=l 

n 
< n 
i=l 

n 
en s1k>>· n cu S.) 

k i=l 

(n S )) n s = ~ik 
k 

l. 
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.... 
However, this is a contradiction, since 6 is centered. We conclude 

-that at least one of the s1 must belong to 6. 

1.7. Proposition. If a set Xis compact relative to 

of subsets of X, then it is also compact relative to the 

consisting of all finite unions of members of 6. 

a family 6 
V 

family 5 

V Proof. Suppose that 6' is a centered subsystem of 6. Then 6' 
' 

- V is contained in a maximal centered subsystem S of 6 (cf. 1.5). Since 
-

every member of 6 can be written as a finite union of members of 6 
V (which are also members of 6 ), lemma 1.6 implies that every member 

- .... 
of 6 has a subset which belongs to 6 n 6. -It follows that n 5 = 
= n c~ n 5>. 

• 

-Moreover, (5' c 6 implies that 

-n e c n es·. 

The system~ n 6 is centered and,consequently, (15' J 0 follows from 

the fact that Xis &compact. This proves that X ts compact 

relative to 6v. 

1.8. Proposi,~ion. If a set X is compact relative to a family 5 of 

subsets of X, then Xis also compact relative to the family 

ing of all intersections of members of 5. 
consist-

Proof. Let 6 1 be a centered subfamily of - • Then every member 

of 6' is the intersection of a collection of ~embers of 6. We define 

5' = s) s E 6 & (:H s' E 6' > (S' c S)} • 

5' is centered because 6' is centered. 

Moreover, 6' c 6 and X is &-compact. Consequently n el' I: Ill, and hence 

n 5' I: Ill. This implies that Xis compact relative to • 
• 

1.9. Alexander's subbase theorem. 

A (non-empty) set Xis compact relative to a family 5 of subsets of X 

iff Xis compact relative to the family~ consisting of all intersections 

of finite unions of manbers of 6, i.e., G = (6v)n . 

' 
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Proof. The sufficiency is clear. The necessity follows immediately 

from propositions 1. 7 and 1. 8. 

Topological reformulation. A topological space (X,:r) is compact 

if and only if it is compact relative to an arbitrary closed subbase 
• 

for the topology%. 

1.10. Remark. By relativization one can prove that a subset A of 

a set Xis compact relative to a family 6 of subsets of X iff A • 1S 

compact relative to the family consisting of all intersections of 

finite unions of members of 5. We reformulate this result as follows. 

1.11. Theorem. The family of compact sets relative to a collection 

of subsets 5 of a set Xis equal to the family of compact sets relative 
• 

to the collection consisting of all intersections of finite unions of 

members of 6. 

This theorem is funda,mental throughout this tract • 

• 

• 

• 

I 
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2. The compactness operator 

In this section the compactness operator Pis defined and its 

basic properties are studied. As an aid in the investigation of p 

we define another 

ating'' operator. 

ft 
operator Y which can be called the topology gener-

It will be shown that with the usual compositions 

p and y generate a finite semigroup. Its structure will be determined • 
• 

2.1. Definition. Let X be a (non-empty) set and let 6 be a collec

tion of subsets of X.We denote by pX6 the family of all &compact subsets 

of X. Px willbe considered as an operator defined on the family of all. 

collections of subsets of X. We call PX the compactn_es~ operatQr on X. 

If confusion seems unlikely, we shall write p6 instead of Px6. 

We make two observations. 
1) 

1) px6 is never empty (pxff = ~(X)) . 

2) If 6 C % then p4X c P6. 

2.2. Definition. Let X be a set. If C5 is a collection of subsets 

of X, then we denote by YX6 the collection of all intersections of 

finite unions of m bers of 6. 

According to our agreement in remark 1.2, in this definition 

unions and intersections of empty families are not allowed. (Note that 
, 

2.3. Remark. Observe that both YX and PX are mappings from the set 

~(~(X)) l) into itself. Therefore we may consider compositions between 

those operators which are defined in the usual way as compositions of 

mappings. 

In particular we obtain powers of operators. If we let 

then we define for every natural number n 

for every collection 6 of subsets of X. The collection is called 

1} 
The power-set of a set X will be denoted by ~(X). 
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the collection of 6-squarecompact subsets of x. 
Observe that 

Y is any set such 

YX6 is independent of x 
that l)5c Y, then Y 6 = y 

in the following sense: If 

YX6. 

We will usually omit the index X in the notation of both single 

and composite operators. 

From these definitions it is immediate that 

(1) y 0 y = y 

i.e. y(y(5) = y6 for every 6. 

Furthe111iore, theorem 1.11, which is itself a refo:nnulation of Alexan-
' 

der's theorem,can be formulated as 

(2) p O y = p 

i.e. p(y6) = p(5 for every 6. 

2.4. Lemma. Let X be a set and let 6 be a collection of subsets 

of X. Assume that C is an &canpact set and Eis CS-squarecompact. Then 

C n Eis both &compact and 5-squarecompact. 

i.e. (C 
2 E p6 & E E p (5) 

2 
(C n E E pS n p 6) • 

Proof. (i) Suppose that~• is a subsystem of p6 which is centered 

in C n E. Then~' U fc} is a subsystem of pS which is centered in E, 

and so the fact that Eis &squarecompact implies that 

This intersection is equal to 

< n ~' ) n < c n E) 

and therefore C n Eis squarecompact. 

(ii) Let (5' be a subsystem of <5 which is centered in C n E. Then 
• 

the system 

s'' = s n c Is E e>' l 

u::.. of~• is a subsystem of PQ, since every member o is the intersection of 

a set of 6 and a set which is compact relative to <5. Furthe1-more, the 

system e" is centered in E and thus 
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en 6''> n E -i. 0, 

en 6'> n cc n E> ~ 0, 

which implies that C n Eis compact relative to 6. The two parts to

gether prove the lemma. 

It is well known that finite unions of compact sets are compact 

and in certain (but not all!) topological spaces (e.g. Hausdorff 

spaces) also the intersection of a (non-empty~) collection of compact 

sets is compact. The next theorem shows that in any space finite 

unions and arbitrary intersections of squarecompact subsets are again 

squarecompact. 

2.5. Theorem. Let X be a set and let S be a collection of subsets 

f h f f P
2

c: · b f P 2
.c: d o X. Ten a finite union o members o ~ 1s a mem er o ~ an 

2 
every intersection of a (non-empty!) subfamily of P 6 is a member 0£ 

2 
p 6. 

The content of the preceding theorem can also be fo1mulated as 

2 2 
(3) y O p = p 

• i.e. 
2 2 

y(p 5) = p 6 for every S . 

2 
Proof. p 6 is the collection of compact sets relative to P5 and 

2 2 therefore a finite union of members of p (5 is a member of p 6. 

of 

To 
2 

p 5, 

prove the second assertion, let~• be a non-empty subfamily 
2 and let E0 = n ~'. We will show that EO belongs top 6. Note 

first 

be no 

that if E0 is empty,then it is squarecompact since there can 

subsystem of p6which is centered in E
0

• Thus we may assume 

is not empty. Let~• be a subsystem of p6 which is centered in 

In order to prove that 

we introduce another centered system, namely, 

~·· = {c n E le E ~, & E E <S:' } • 

that 

Every member of (['' is 5-compact by lemma 2 .4. Let E b b 
1 ea mem er of 
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~•, then (S:'' is centered in E1 • From the fact that E
1 

is 5-square

compact it follows that 

We conclude that 

This proves our theorem. 

2.6. Proposition. Let X be a set and let 6 be a collection of 
3 

subsets of X. Then p5 c p 6 • 
• 

Proof. Let CE p6 and let~• be a (non-void) subcollection of 

p
26 which is centered in C. By lemm~ 2.4 the system 

is a subsystem of P6. Moreover, if E1 is an arbitrary member of 

1111 ' (c: p 2£::\ then 1t1C'' i d ~ ~, ~ s centered in E1 an so 

It follows that 

Consequently C 

c n <1 ' > n c = n ~·' = < n ~·' > n E1 ~ n . 

3 
E P 5 and hence 

2.7. Theorem. If Xis a set and 5 is a collection of subsets of 

X ,then 

p25 = 4 
p 6. 

Proof. Proposition 2.6 applied to P5 yields 

P
26 C P

45. 

To prove the opposite inclusion, we suppose that E is a member 
4 

of P 5 and C' is a subsystem of P6 which is centered in E. Then by 
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proposition 2.6, ~• 
3 c p 5 and therefore 

en "' > n E 1= n. 
2 4 2 

This implies that EE P 6 and P 6 C P 6. 
4 2 

We conclude that P 6 = P 6. 
we may restate the preceding theorem as follows 

(4) p4 2 = p • 

2 .8. Rem.ark. In this section we have found four relations between 

P and Y 

. (1) y O y = y' 

(2) p o- y = p J 

(3) y 
2 2 

0 p = p J 

2 
= p • 

It is now easily verified that p and y generate a se1nigroup with 

the following multiplication table. 

y y YP 
2 

p p 

2 3 
p p 

3 3 2 
p p p 

2 
YP yp p 

2 
p 

p 

3 
p 

2 
p 

3 p 
3 

p 

3 p 

p 

2 p 

3 p 

2 
p 

2 
p 

In this table y is a right unity, and 

Associativity follows from the definition. 

yp 

yp 

2 
p 

3 
p 

2 
p 

2 
p 

2 
p is an idempotent. 

We now exhibit an exan1ple of a set X together with a collection 6 
. 

of subsets such that all elements of the corresponding s igroup are 
• 

distinct. It is clear that in this exa11q,le 5 cannot generate a Hausdorff 

topology, since in that case we always have yp = P. 

Bx!!!J~l.~. Let X be the cartesian product of the set of all ordinals 

less than the first 11ncountable one and a two point set. We will denote 
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the points of X by (a,s). Let 6 be the collection of subsets of X 

which consists of all singletons and of all sets S which are the 

inverse image,under the canonical projection,of closed subsets of 

the ordinals in the order-topology. This collection 6 is not closed 

under finite unions and hence y(5 is not equal to 6. The collection 

P6 consists of all subsets of X whose image,under the canonical mapping 

into the set of ordinals with the order-topology, is compact. The collec

tia1 YP6 consists of precisely all of the countable subsets of X, and the 

collection P2
6 consists of all finite subsets of X and hence every sub

set of Xis a member of P36. 

It follows that all collections are distinct. • 

This example shows that in general there do not exist other 

defining relations between P and Yin the semigroup than the four 

which are mentioned above. 

We conclude this section with some further results concerning 

the operator P and its powers. 

Note that the next two propositions are closely related to 2.4. 

2.9. Proposition. Let X be a set and let 6 be a collection of 
11 

subsets of X. If n is any natural number, G E 6 and E E P 6 then 

Proof. (By induction on n). 

Since it is well known that the intersection of an element of 6 

and an element of P6 is again an element of P5, the assertion is clear 

if n = 1. 

Suppose next that the assertion is true for all natural numbers 
n-1 

< n - 1. Let~• be a subcollection of P S which is centered in 

G n E. To prove that • 
• 

en rs:'> n CG n E> 

we define • 

ct' = { c n GI c E <s:'} • 

By the induction hypothesis this collection is n-1 
a subcollection of p 6. 
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11 Since ·~ 
n 

is centered in E and E E P 6 it follows that 

en ~''> n E ~ 0, 

i.e. (n ~•) n (G n E) I= 0. 

Consequently 

Remark. Observe that from Alexander's lemma it follows that 

(G E y5) & (E E P ~ ⇒ (G n E E p n5), 

since P 1\5 = P ~ for every 6 . 
• 

• 

2 ~10 ... Pr?fOSi tion. Let X be a (non-void) set and let 5 be a 

collection of subsets of X. 

If EE P
26 and FE P

3
5,then En FE P'5. 

Proof. Suppose that E 
2 E P (5 and If 5' is a subsystem of 

5 which is centered in En F, then the system 

2 3 
is centered in F. 5' is a subsystem of P 5 (cf. 2.9) and FE P 6. 

Thus we have 

en 5' > n <E n F> = en 6'> n F 1= n. 

We conclude that En Fis &compact,which proves this proposition. 

,2.11. Corolla!:Y• For every set X and every collection 6 of subsets 

of X we have 

• 

Proof. Follows immediately from 2.6 and 2.10. 

• 

2.12. Remark. It is well known that a subset of a topological space 

is compact if and only if this set is compact in its relative topo1ogy. 

We can ask now whether or not this statement remains true when compact 
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is replaced by squarecompact. We now give an example which shows that 

in general this is not true. 

Exampl~. Consider a sequence fp.} 
1 

converging to a point p 0 . In 

this sequence with the usual topology, all finite sets and all sets 

containing p 0 are closed, compact and squarecompact, whereas the set 

p. 11 ~ o} is not squarecompact. 
1 

The subspace {p. Ii~ o} is discrete in the relative topology. 
1 

Therefore, every subset of this subspace, and in particular the set 

{p. 11 ~ o} itself ,is squarecompact in this subspace. 
1 

• 

' 
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3. A s~r~ngthening o~ ~lexander 's theore~ 

In this section we investigate the following question. Given a 
-

collection (5 of subsets of a (non-empty) set X, which collections 6 

of subsets of X satisfy the conditions 

- -
5 C 6 and P6 = Pei? 

-
According to Alexander's theorem one can always take 5 = y(5. 

We shall strengthen this result and give necessary and sufficient 
-

conditions which guarantee that there exists a maximal collect ion 6 

with the required properties . 

• 

3 .1. Le11maa. Let X be a set and let 5 and % be two collections of 

subsets of X. Then 

PS n P% = P (6 U %) 

- ... 
if and only if for all C, S and T 

- -((C EP6n PZ) & (S EY6) & (T Ey%)) 

- -⇒ ( (C n s E PZ) & (C n T E p5)). 

Proof. To see the necessity,suppose first that there exist a set 
-
S € YES and a set C E P6 n P!l such that 

C n S i P:t. 

-
This means that C n Sis non-empty and that there exists a subfamily 

l:' of % which is centered in C n S and which has the property that 

cnx·> n cc n s> = fJ, 

... 
or equivalently c en x· > n s> n c = fJ. 

%' U { s} is a subsystem of Y (6 U %) · which 

C i:. PY (6 U ~ • 

It follows from Alexander's theorem that 

C I:. P (5 U 2:) • 

Therefore 

is centered in C and hence 
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In the same way we can prove that if there exist a set CE p6 n p:[ 
-

and a set TE YZ such that 
... 
T n C I:. p(5 

• 

then we have that 

P6 n P% ~ P (6 U 2:). 

The two parts together prove the necessity of the condition. 
- ... 

To see the suf:ficiency,asst1me that for all C, S and T such that 

- -
C E PS n PX, S E y6, T E y% -

it is true that 

- -
C n T E Pei and C n S E p2;. 

A set which is not a member of P5 n PX is either not 6-oompact or not 

%-compact and so clearly cannot be compact relative to 6 U %. This implies 

that 
(i) P(6 U :t) Cp6 n P~. 

To prove the opposite inclusion, assume that there exists a set c
0 

which is a member of P~ n Pei but not a member of p (5 U 2:). Then there . 

exists a system@ c 6 U % with the property that@ is c~ntered in c0 , 

whereas 

We now define two disjoint subsystems of@ with union@ as follows: 

and 

Since 

@ C 6 
s 

and since Q}s is centered in c
0

, the fact that c
0 

is &compact implies 

that 
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Since c0 E pl; n p(5 and 

en@ > E y<S 
s 

we have by assumption that 

C E PZ. 
s 

Therefore, it follows from 

and 

en @ > n c = en @ ) n en @
5
> n c0 = t s t 

that @t cannot be centered in C • 
s 

Consequently, there exists a finite 

subsystem of @t, call it 

{ Gti Ii = 1, ••• , n} , 

such that 

Now let 

n 
< n 
i=l 

C = t 

Gt.> nc 
1 S 

n 
< n 
i=l 

The set Ct cannot be empty, because@, and therefore @t,is centered 

in c0 • 

Since c0 E Pei n 
n 

P% and ( n 
i=l 

Ct E PS .. 

Therefore it follows from 

E Y%,we have by assumption that 
• 
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and 

n 
<n@ > s n < n 

i=l 

n 
= < n 

i=l 
n C 

s 
--

that ~s cannot be centered in Ct. 

Consequently there exists a finite subsystem 

such that 

It follows that 

The system 

G .,j = 1, ••• , m}, 
SJ 

m 

< n 
j=l 

m 

< n 
j=l 

G .) 
SJ 

n 
< n 
i=l 

of@, call it 
s 

is a finite subsystem of@ which has an empty intersection with c0 and 

so is not centered in c
0

• This is a contradiction. 

We conclude that 

(ii) p5 n p% C p(5 U %) • 

From (1) and (ii) it follows that 

p'5 n p% = P cs u %> • 
• 

3.2. Co,rollary. If X is a set and 6 and% are two systems of sub

sets of X with the property that P6 = P%, then 

P (6 U %) = P5 = P:t. 
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Proof. Let C E pS n p~ (= p6 = pX°). 

If S E Y6, then 

S n C E PX= P6. 

(The intersection of an &closed set and an &compact set is &compact). 

Similarly, if T E YX, then T n C E P(5 = P%. 

Thus the conditions of the preceding lemma are fulfilled. Hence 

P (6 U 2:) = P6 n P% = P<5 = Pl:°. 

3.3 .. Remark. a finite collection of systems of subsets 

of a given set X such that 

• 

P61 = P6j for all i and j, 

then it follows from the preceding corollary that 

P (U 6.) = P6. for all j. 
. 1 J 
1 

• 

The question arises whether or not the same conclusion is valid for an infinite 

show by means of the following example that this 

need not be the case 

Example. Let X be an infinite set. For every subset A of X we define 

a collection of subsets 6A as follows: 

Thus 6A consists of the set A and all sets that contain exactly one 

point. Then p(5A is the power-set of X and so 

for all ACX and B c X. 

On the other hand, since it is also the case that 
• 

is the power-set of X,it follows that 
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consists of all finite subsets of X and hence 

We also show that there is no maximal collection of subsets of X 

with the property that every subset of Xis compact relative to this 
-

collection. For, suppose that 6 is a maximal collection of subsets such 
- -

that P6 is the power set of X. Then 6 cannot contain every subset of 
-X and so there exists a subset A such that A£ 6. Then the collection 

-6A which is defined above has the property that p<5A = p5 and therefore 

- -
P(6 USA)= p(S {cf. 3.2). 

• 

• -
This contradicts the assumption that 6 is maximal. We conclude that for 

every infinite set X there are collections 6 of subsets such that there 
-

does not exist a maximal collection (5:::) 6 with the property that 
-

P6 = P6. (In the preceding example,take for instance 6 = 0). 

3.4. Theorem. Let X be a set. For every family 6 of subsets of X 

we have 

2 
p(5 = Py (6 U P C5) • 

Proof. In proposition 2.6 we found that 
3 

p(5 c p (5 or 

2 
pe n P <P S> = p6. 

The intersection of a member of p(5 and a member of y(5 is a member of 
3 

Pe5 and hence a member of P 6. Lemma 2.4 implies that the intersection 
2 

of a member of yp (5 and a member of P6 is a member of PC5 and therefore 

all conditions of 3.1 are fulfilled. It follows that 

• 

An application of Alexander's theorem (PY - P) yields the required 

results. 

Alternative proof. This theorem can also be proved using the 

following 
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I,c~mma (P. Bacon) . 

If 6 and% are collections of subsets of a set X, then 

P <5 u ~ = 06 n r:t n 0 < { s n TI s E a & T E ~} > • 

Proof. If C E 0 (6 U Z), then C is &compact and l:'-compact. Moreover, 

C E t1 Y (5 U X) and this implies that C is compact relative to the family 

consisting of all intersections of a member of (5 with a member of l:. 

We conclude that 

P <6 u ~> c oe n 0% n P < { s n TI s E s & T E z} > • 

In order to prove the opposite inclusion we assume that . 
f 

• 

n E P6 n P!t n P < { s n TI s E cs & T E x} > 

and that~ is a subsystem of 6 U !:t'. which is centered in D. If@ consists 

merely of members of 6 or merely of members of % ,then from D E PS n PZ .it fol

lows that (n @) n D .J. 0. If @ consists of members of both 6 and %,then 

we select s1 E 6 n @ and T'1 E ~ n @. Then the system 

is a subsystem of 

{s n Tis E (5 & TE :r}, 

which is centered in D and satisfies the equality 

n @' = n @. 

It follows that 

en @) n n = en QI'> n n ~ fl .. 

We conclude that in every case (n @) n D ~ 0. Consequently 

D E P (5 U X) 
• 

and therefore 

P ces u :o => PS n P:t n Pc{ s n Tl s E e & T E :r} >. 

This proves the lemma. 



21 

Proof of theorem 3.4. If we 2 
replace~ by D 6,then we obtain 

2 
P (6 U r (5) = 

Proposition 2.6 and proposition 2.9 imply that 

• 

Hence we have 

2 
P(6 UP 5) = p(5 

and from Alexander's lemma it follows that 

2 
p(5 = py((5 U P 6). 

3.5. Remark. This theorem can be seen as a strengthening of 
- 2 

Alexander's theorem. The family <5 = y((5 UP 6) contains the collection 

y6 and all finite subsets of X. Moreover, at the end of this section we 
~ 

will prove that in many cases 6 is the largest family of subsets of X ... 
with the property that P6 = P6. 

3.6. ~roposition. For every collection of subsets 6 of a set X, 

the following relation holds: 

2 3 
= P (p 6 U P 5). 

• 

Proof. We first show that 

p(6 U p5) 
2 = p6 n P cs, 

then we show that the rest of the equalities follow from 2.11. From 

proposition 2.9 and Alexander's 

of a member of y(5 with a member 

hence 

theorem it follows that the intersection 
2 2 

of p. y(5 n py6 is a member of p y<5, and 

• 

• 
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em the otber hand, let D be a aemb,er of yp6 and let E be a member of 

f.'.l, 2e n oES. Then then, is a system of sets ~ C p6 such that n ~ = D. 
2 

If c € ~, then C n B E t) 6 by lemna 2 .4, and therefore 

D n I = (n { C n E f C E i:}) 
2 

E 0 5 

C be an arbitrary member of (S:, 
1 

and fr- 1..-.a 2.4 it follows that 

n n 1 = c1 n en n E) E p6. 

Fr, . ( 1) J ( i 1) and 1..-,a 3 .1 we conclude that 

2 = P6 n o s. 

Now if we apply this equality to o6 we find 

2 2 3 2 
t)(,)6 U P 6) • P S n o 6 = PS n P 6 (cf. 2 .11). 

Horeo•1er, applying the same equality to 
2 

P 6 yields 

a 3£'\ 3c: 4c:: P(P e u P ~=Pon Po= 

3c:: 2 2 = ~) o n P s = P6 n o s. 

This proves the proposi tio,n. 

The following propo,si tion deals with the problem of determining 

conditions on a set X and a collection of subsets 6 which guarantee 
- -

that there exists a aaxim.al family 6 with the property that PS = PE5. 
' -

Proa proposition 3.2 it is clear that if 6 is such a maximal family, 
- -then E5c6, and the family 6 is the only maximal fa:mtly, so the 

-greatest, with P6 = Pe. 

,~ •.? .. ~ Pr~:o~_i t101:1. Let X be a set and let 6 be a collection of 

subsets of X. If we define 
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% = {AIA ex & (VC E p6)(A n CE pS)}, 

then a necessary and sufficient condition for the existence of a 
~ ~ 

maximal family 6 with the property that p(5 = n5 is that p:[ = p6. 
-In this case 6 = :C. 

Proof. To see the necessity, suppose that there exists a maximal 
- --

family 6 with the property that p6 = p'5. We prove that%= 6 and 

p'5 = p:[. 

Let TE Z. Then {T} is a collection of subsets of X and every 

subset of Xis compact relative to {T}. It follows easily that 

-
p5 n P T} = p6 = p(5. 

--
Let c 0 be a member of p(5 and let s 0 

be a member of y(5. Clearly 

c0 n s0 E p{T}. 

Since TE% we also have 

Hence we may apply lemma 3.1 to obtain 

- ... 
p(6 U = p(5 = p'5. 

.... 
~ From the assumption that '5 is maximal it follows that TE '5 and hence 

-:te 6. 

-

• 

Now we suppose that there exists an s0 E '5 such that s0 i %. Then 

by definition of :C there exists a set c0 E P6 such that 

-
From this it • to that c0 

p(5 which contradicts the 1S easy see 
- ... 

assumption that p6 = p6. We conclude that 6 C %. 
- -

Therefore%= 6 and p% = p(5 = p(5. 

To see the sufficiency, suppose that p(5 = PZ. We will prove that 

contains every system 6' with the property that PS'= p(5. 

Suppose that S' is a member of such a system <5'. Then 
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(S' n c ') E p(5' for every c' E P6' . 

Since p(5' = pS we have by definition S' E %. This proves that 

contains every system 6 1 with p(5 = P6' and so% is the unique maximal 

collection of subsets of X with the property that it has the same 

collection of compact sets as 6. This proves the proposition. 

3.8. Theorem. Let X be a set. For any collection 6 of subsets 

of X we have that 

(p(5 C p
2<5) => (6 C p

2~). 

Moreover, these conditions imply that 

2 Proof. Since PS C P <5, every centered subsystem of P6 has a non-

empty intersection. It follows that XE P
26 and proposition 2.9 implies 

that 6 C P
26. 

If we put 

then we must prove 

of p
25 is a member 

2: = {A I eve E P6> <A n c E p(5)} , 

2 that P 6 = !t. Lemma 2.4 implies that every member 

of%. 

Conversely, let T E %. Since every centered subsystem of P6 has 

a non-empty intersection,it follows easily that every subsystem of p6 

which is centered in T has a non-empty intersection with T. This proves 
.. 2,c.: ..,. 2 

that T E p '.;;.J and so 4- = p 6. 

Finally,we remark that 3.4 implies that in this case 
3 

p(5 = p 6. 

• 

' 

Theorem 3.8 and proposition 3.7 show that there are families of sub-· 

sets 6 such that the family derived in 3.4 is maximal with respect to the 

properties of containing 5 and having the same compact sets as 6. It is 

easy to see that the conditions of theorem 3.8 are ful~illed for every 

closed subbase of a space in which compact implies closed, in particular 

a Hausdorff space. 
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Chapter II 

Anti spaces 

This chapter is mainly concerned with establishing and investigating 

a one to one correspondence between two classes of antispaces. This one to 

one correspondence is based on two equalities of the previous chapter, i.e. 
2 2 4 2 

yp = p and P = P • For our purposes it is more convenient to consider 

minusspaces (cf. def. 2.1) rather than topological spaces. In particular we 

consider those minusspaces in which the collection of squarecompact subsets 

coincides with the collection of closed subsets of the space and we call 

such a space an antispace. There exists a natural one to one mapping from 

the class of antispaces onto itself which assigns to every antispace another 

space on the same set in which the collection of compact subsets of 

the original space coincides with the collection of closed subsets 

of the second space. 

The most important class of antispaces is the class of topological 

antispaces or C-spaces which is closely related to the class of compactly 

generated spaces. 

We give a survey of the theory of C-spaces in the first section. 

In the second section we introduce the notion of an antispace and 

establish the correspondence between C-spaces and compact antispaces (also 

* called C -spaces), together with some basic properties. 

The third section is devoted to subspaces and sumspaces of C-spaces 

* and C -spaces. In this section we also introduce the notion of an antisub-

space, which enables us to characterize the class of all antispaces. 
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1. C-spaces 

1.1. Definition. A topological space (X,%> is called a C-space 

provided that a subset of the space is closed iff it has a compact 

intersection with every closed compact subset of the space. 

A topological space is called a CC-space provided that every 

compact subset of the space is closed. 

Observe that every Hausdorff space is a CC-space. 

The definition of a C-space is closely related to the well known 

definitions of a k-space and of a compactly generated space (cf. [3], 

[4], [9] p. 5). A topological space is called a k-space provided that 
A I 

a subset in the space is closed iff it has a closed intersection with 

every closed compact subset of the space. A HausdorfI k-space is 

called a compa~tly generated space. 
l 4 I 

1.2. Proposition. A topological space Xis a C-space if and 

only if it is a CC-space and a k-space. 

Pro,of. Let X be a C-space. If c
0 

is a compact subset of X, 

then it has a compact intersection with every closed compact set and 

so is closed. It follows that Xis a CC-space. 

If A is a subset of X v~ich has a closed intersection with 

every closed compact subset of X, then it has a compact intersection 

with every closed compact subset of X and hence is closed. This means 

that X is .a k-space. 

Conversely, let X be a CC-k-space and let A be a subset of X 

which has a compact intersection with every closed compact subset of 

the space. Then from the fact that X is a CC-space it follows that 

A has a closed intersection with every closed compact subset of the 

space. Then A is closed, because 

Xis a C-space. 
• 

X ls a k-space. This proves that 

1.3. ~roeosition. A CC-space which satisfies the first axiom of 

countability is a Hausdorff C-space {compare with [7] p. 231 and [9] 
p. 5, 6). 

Proof. Let 

p and q are two 
X be a first countable CC-space and suppose that 

points of the space that have no disjoint neighbourhoods. 

• 



Let 

{ u. Ii E N} 
l. 

be a countable neighbourhoodbase 

V. Ii E N} 
l. 

be such a neighbourhoodbase at q. 

{ X . I i E N} SU ch that X • E V. n u . 
1 l. l. l. 

a 
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at p such that U. 1 c U and let 
1.+ i 

We choose a sequence of points 

and ~ q. This sequence 

converges to both p and q, and hence p} is not closed. How-

ever, x.}.EN U 
l. l. 

p} is compact. This is a contradiction, since X 
• 

• 

is a CC-space. It follows that X is a Hausdorff space. 

Let A be a non-closed subset of X. Then there exist an accumu

lation point p of A which does not belong to A and a sequence 

Pili EN} in A which converges top. Then {pi} U p} is compact and 

hence closed but its intersection with A is not compact. It follows 

that there exists a closed compact subset of X which has a non-compact 

intersection with A. Therefore, X must be a C-space. 

1.4. Proposition. A locally compact CC-space is a C-space (compare 

with (9],p. 5, 6 and [7] p. 231). 

Proof. Suppose that X is a locally compact CC-space and 

that A is a subset of the space such that An C is compact for every 

closed compact set C. If pis a point of the space which is not a 

member of A, then p has a compact neighbourhood C which is closed 
p 

since Xis a CC-space. By assumption An C is closed and does not 
p 

contain p, which implies that C \ A is still a neighbourhood of p. 
p 

Hence p is not an accumulation point of A and it follows that A 

contains all of its accumulation points. Therefore A is closed and 

X is a C-space • 
• 

1.5. Corollary. Every compact CC-space is a C-space. 

In a compact CC-space, the collection of closed sets coincides 

with the collection of compact sets. Therefore every strictly coarser 
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topology on the underlying set cannot be CC and every strictly finer 

topology fails to be compact. We now introduce the notion of maximal 

compactness and prove that a space is maximal compact if and only if 

it is compact CC (cf. [a], (3]). 

1.6. Definition. A topological space (X,X) is called maximal 

~ompact provided that Xis compact relative to the topology%, but 

fails to be compact in every strictly finer topology. 

1.7. Proposition. A topological space (X,!l> is maximal compact 
' 

if and only if it is compact CC (cf. [8]). 
• 

Proof. Suppose that (X,%> is maximal compact, and let C be an 

arbitrary compact subset of (X,%). In order to prove that C is closed, 

we suppose that@' is a subsystem of the collection of closed subsets 

of (X,:t) such that@' U c} is centered. Then 

en Q,' > n c 1= 0. 

If we denote the collection of closed sets by@, then Xis compact 

relative to@, to@ U c} and also toy(@ U c}). This collection 
• 

y(@ U c}) is the collection of closed subsets of a topology on X 

which is finer than (or equal to) the topology%. From the assumption 

that (X,~ is maximal compact it follows that@= y(@ U c}) and so 

C E @. 

We conclude that every maximal compact space is a compact CC-space. 

Conversely, we have seen in 1.5 that every compact CC-space is a 

maximal compact space. 

1.8. Proposition. The one point compactification of a C-space 

is a maximal compact space. 
• 

Proof. Let (X,%) be a non-compact C-space and let 

which is not a member of X. Now we define the topology 

p be a point 

%* on X U {p} 

in the usual * way. % contains every set of !t, and the complements 
. * 

closed compact subsets of X. Of course (XU {p}, % ) is compact • 

• 

of 
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that C is a compact 

in (X U {p}, ~~) by 

subset of (XU {p}, If Cc X, then it is closed 

D be 

definition. Therefore we suppose 

an arbitrary closed compact subset of (X,:0. If 
that p E C. Let 

C n Dis empty, 
then C n Dis compact in (X""' If C n D _L d ,._J. ~ v then we suppose that (I' 

is a subsystem of the collection of closed subsets of (X,!t) which is 

centered in C n D. Then the system 

@'' = G u { p } I G E "t } 
• a subcollection of p} J * J.S the collection of closed sets • (XU ~) 1n 

and it • also centered in C n D. J.S Since Xis a C-space Dis closed 
and C (X U p} J * is compact • 

~ ) . 1n It follows that 
• 

< n @'' > n c n n ~ tS • 

The set D does not contain the point p since it is a subset of X and so 

<n @'> n cc\ p}) n n ~ 0. 

Therefore, in both cases,if C n D ~~or if C n D = 0,we have 

(C \ {p }) n D is compact in (X,%). Hence the set c \ {p} has a 

that 

compact 

intersection with every closed compact subset of (X,X). It follows that 

proposition (cf. 1.7). 

1.9. Remark. The preceding proposition shows that the class of 

C-spaces is not merely a class containing all locally compact Haus

dorff spaces, but also a generalization of this class, since every 

member of the class has a one point compactification within the class. 

Moreover, it follows from 1.3 that every metrizable space is a C-space. 

Every C-space is completely determined by its collection of com

pact sets. This property suggests that there is a relationship between 

the compactness operator and the class of C-spaces, and also a relation

ship with the class of compactly generated spaces. 

Finally we observe that the class of maximal compact spaces can be 

considered as a generalization of the class of compact Hausdorff spaces, 

since in both classes the collection of compact subsets coincides with 

the collection of closed subsets and in both classes every one to one 
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continuous function from a member of the class into a member of the 

class is a homeomorphism. 

1.10. Proposition. Let y be a subspace of the C-space X 

If Y is open or closed in the topology of X, then Y is a C-space 

(compare with [1]). 

Proof. Let Y be a closed subset of X and let A be a subset of 

Y which has a compact intersection with every closed compact subset of 

Y. Then A 

subset of 

closed in 

has also a compact intersection with every closed compact 

X 

y 

and hence A is closed in x. This implies that A is 
• 

and so y is a c-space. 

Suppose that Y is open in X and that G0 is the complement of 

Yin X. Let A be a subset of Y which has a compact intersection with 

every closed compact subset of Y. In order to prove that A is 

closed in y it suffices to prove that AU G0 is closed in X. 

Suppose that AU G0 is not closed in 

closed compact subset c
0 

of X such that 

x. Then there exists a 

is not compact. Therefore there exists a system of closed sets@' 

X which is centered in (AU G
0

) n c
0 

and such that 

< n @' > n CA u o0> n c 
O 

= s. 

• in 

Since G0 is closed and c0 is compact, G0 n c 0 is a compact subset of 

X and, therefore, there exists a finite subsystem of@' 
1 

G. ·Ii 1 2 1 1 = ' ' ... , n , 

with the property that 

If we define 

n 
< n 
i=l 

G.) 
1 

n 
= < n 

i=l 
G.) 

1. 
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then clearly c
2 

is a closed compact subset of Y. Then by assumption 

the set An c
2 

is compact. On the other hand,it follows easily that Q}' 

is centered in A n c2 , whereas 

This is a contradiction which shows that AU a
0 

is closed in X. 

Therefore A is closed in 

proves the theorem. 

y and so y must be a C-space. This 

• 

• 
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2."Minusspaces and antispaces 

2.1. Definition. An ordered pair (X,@) consisting of a set X and 

a collection~ of subsets of Xis called a minusspace iffy@=@ (i.e. the 

collection @ is closed under the forming of finite unions and arbitrary 

intersections of non-empty subfamilies of@.@ is called a minustopology 

for X. The members of@ are called the closed subsets of (X,@) and the 

complements of members of@ are called open subsets of the minusspace. 

Observe that (X,ye) is a minusspace for every collection 6 of subsets 

of X. 

tt tt • '' . . ft 2.2. Remark. In the sequel a space will mean a minusspace. 

However, if confusion with ''topological space'' is likely, we will use 

the words minusspace or topological space. Recall that in a minus

space it is not necessary that the empty set and the entire 

set are closed. This is a consequence of the definition of the operator 

y. In the following we shall occasionally use notions such as '' tf subspace , 

'' h. ,, ,, t . homeomorp ism, con 1nuous f t . ,, '' t . t '' unc ion, quo ien space when we 
• 

deal with minusspaces. The definitions of these notions are completely 

analogous to the corresponding definitions for topological spaces and 

so we shall not fornLulate them explicitly. The definitions of C-space, 
! 

CC-space, etc. for minusspaces are precisely the same as the definitions 

for topological C-spaces, resp. ,CC-spaces; we merely have to replace 

the word topological space by minusspace. The definition of a minusspace 

is equivalent to the definition of a topological space for many classes 

of spaces that are usually studied. If a space contains two disjoint 

closed sets,then the empty set is closed and if a space contains two 

disjoint open sets,then the entire set is closed. Every C-minusspace 

is a topological space because both the empty set and the entire set 

have a compact intersection with every closed compact set and hence 

they must be closed. 

Every topological space is a minusspace and every minusspace can 

be changed into a topological space by the adjunction of the empty set 

and the entire set to the collection of closed subsets. Almost every 

theorem for topological spaces, resp. , for minusspaces can be ref 01·1nu-
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lated for minusspaces, resp., for topological spaces with occasionally 

a comment on the empty set and the entire set. 

If we define the closure of a set A to be the set of all points 

p such that every open set which contains p intersects A, then the 

notion of a minusspace has the disadvantage that the closure 

of a set in the space need not be closed. Indeed,the closure of a set is 
' 

not closed if and only if the set is dense (i.e.,every non-empty open 

subset intersects it) and the entire set is not closed. Observe that in 

this case the closure of a set is not the intersection of all closed 

sets containing the given set. 

We now refonnulate theorem 1.2.5 in the following way: 

2.3. Theorem. If Xis a set and if 6 is a collection of subsets 

of X, then p
2

6 is a collection of closed sets in a minusspace on X. 

2.4. Definition. An unordered pair of minusspaces on the same set 

(X,@1 ),(X,@2)} is called an antipair if and only if @
2 

= P@i and 

@1 = p~2 • A member of an antipair is called an antispace and if 

{(X,~},(X,@2 )} is an antipair, then (X,@i_) is called the anti-image 

of (X,@2 ) and conversely. 

2.5. Remark. From the definition it follows that (X,@) is an nti-
2 

space if and only if p@ =@ and,in this case,the unordered pair 

{(X,@), (X, p@)} is an antipair. By definition this is the only antipair 

which contains (X,@) and so every antispace (X,@) has a unique anti

image, i.e., (X,P@). Observe that 0 E @ for every anti space (X,@). 

2 
2.6. Theorem. If (X,@) is an arbitrary minusspace,then (X,P @) is 

3 
an antispace and its anti-image is (X,P @). 

Proo£. Follows immediately from theorem I.2.7 and the preceding 

remark. 

This theorem remains valid for every set X and every collection 

of subsets 6, i.e.,(X,p 2(5) is an antispace and its anti-image is 

(X,p
36). This follows from I.1.9. 
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2.7. Definition. A minusspace (X,@) is called compact provided 

* that XE P~. A compact antispace is called a C -space. 

2.8. Theorem. For every minusspace (X,@) the following statements 

are equivalent. 

(i) (X,@) is a C-space. 

(ii) (X,@) is a topological space and an antispace. 

* (iii) There exists a C -space (X,R) such that PR=@. 

(iv) (X,@) is a CC-antispace. 

Proof. The pattern of proof is (i) =(ii)= (iii)= (iv)= (i). 

(i) = (ii). Suppose that (X,@) is a C-space. Then it is a· topolog

ical space (cf. 2.2). Every compact subset of the space is closed 

(cf. 1.2) and so every centered system of compact sets has a non-empty 

intersection, which implies that the set X itself is squarecompact. 

From I.2.9 it follows that every closed set is squarecompact, i.e. 

@ C P2
@. 

In order to prove that every squarecompact set is closed, we take 

any squarecompact set A. It follows from I.2.4 that A has a compact 

intersection with every compact (and hence closed) subset of (X,@). 

A is closed since (X,@) is a C-space. This implies that every square

compact subset of (X,@) is closed. We conclude that (X,@) is a topolog

ical antispace. 

(ii)= (iii). Suppose that (X,@) 

(X,P@) is also an antispace, and from 

(X,P@) is a compact antispace, 

* image of this C -space. 

• 1.e. a 

Then is a topological antispace. 

X E@ = p
2

@ it follows that 

* C -space and (X,@) is the anti-

(iii)= (iv). Let (X,R) be a compact antispace with the property 

that @ = P St. Then (X,@) is an antispace (cf. 2 .5). (X, §t) is a compact 

antispace which implies that~ c p~ =@.Therefore p@ = R c: @, which 

means that (X,@) is a CC-space. This proves that (X,@) is a CC-antispace. 

(iv)= (i). Suppose that (X,@) is a CC-antispace and suppose that 

A is a subset of X which has a compact intersection with every compact 

subset of (X,@). Let~' be a system of compact subsets which is centered 

in A, and let c0 be a member of~•. Then~' can be considered as a 
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system of closed sets which is centered in c
0 

n A. The set c
0 

n A is 

compact and therefore 

This implies that A is squarecompact and hence A is closed. It follows 

that (X,@) is a C-space. 

. 

2.9. Remark. From this theorem it follows that the class of C-
~ 

spaces is closely related to the class of C -spaces. There exists a 

well defined one to one correspondence between these classes, nam~ly, 
X 

every C -space is the anti-image of one and only one C-space and 

conversely. Every antispace dete1mines its anti-image completely and 

therefore every property of the anti-image corresponds to some proper

ty of the original antispace. The topology on a C-space is (not 

necessary strictly) finer than the minus-topology on the corresponding 

* C -space because the identity function is continuous. 

It is easy to see that a space is maximal compact if and only if 

* it is both a C-space and a C -space. (Observe that a maximal compact 

space is a compact antispace.) In this case the space is the anti

image of itself and its antipair consists of two identical spaces. 

It seems reasonable to ask if every antispace is a C-space or 
)E 

a C -space. The answer to this question is in the negative. It is even 

possible to find an antipair consisting of two homeomorphic minusspaces 

such that neither is a C-space. We show this in the following examp,le. 

Example. Let X be the set of real n11mbers and let @ be the 

collection of all subsets of X which are bounded to the left and 

closed in the usual real-line topology.It is easy to see that (X,G) 

is a minusspace. A subset A of (X,@) is a member of p@ if and only 

if it is bounded to the right and closed in the usual topology on X. 

Therefore (X,@), (X,p@)} is an antipair consisting of two homeomorphic 

spaces. Clearly, neither is a C-space, since every C-space is a topo-

logical space. 

• 
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2.10. Prq:>osition. If (X,@) is a CC-space, then (X,p@) 
• r 

• 
1S a 

* C -space. 

Proof. By def ini ti on P@ c @ and hence 
2 2 

p@ c p @. Therefore X E p @, 

since every centered subsystem of p@ has a non-void intersection. Now 

theorem I.3.8 implies that@cp
2@and from I.3.4 it follows that 

3 P@ = P @. We conclude that (X,P@) is a compact anti space, which 

proves the proposition. 

2.11. Proposition. 
* C -space. 

2 
If (X,P @) is a C-space, then (X,p@) • is a 

Proof. (X,P 2@) is a C-space and hence a CC-space. This implies 
2 3 that P @ => P @:::) P@ (cf. I.2.6). We may apply again I .3.8 and I .3.4 

and the proposition can be proved in the same way as the preceding 

proposition. 

2.12. Theorem. If (X,@) is an arbitrary minusspace, then 
2 * (X,P@ n P @) is a C -space. 

Proof. Clearly (X,Y(@ Up@)) is a CC-minusspace and from I.3.6 

it follows that P@ n P
2

@ is its collection of compact subsets. Now the 

theorem follows from 2.10. 

2.13. Corollary. If (X,@) is an arbitrary minusspace, then 

(X,P (P@ n P 2
@)) is a C-space. 

2.14. Remark. It is well known that for every Hausdorff space 

(X,%) there exists a uniquely defined k-space {X ,t) with the same 

collection of compact sets (cf. [7] p. 241, [1]). (X ,:t) is the image ... 
of (X,%) under a one-to-one continuous mapping. We shall call (X,%) 

the k-e~eans~on of (X,%). This k-expansion is usually defined in the 

following equivalent way: 

If (X,Z) is a (topological) Hausdorff space, and@ is its collection 

of closed sets, then we define the k-expansion as the topological 

space which has the collection 



37 

-
'2S = A. I < v c E P (j) c A n c E @> l 

as its collection of closed sets. It is easy to see that the k-expansion 

of any Hausdorff space is a C-space. 

The preceding corolla.1.-~ now suggests the following definition of 
-

the C-expansion (X,@) of any minusspace (X,CS): 

@ = P (P@ n P 2 @). 

-
It follows that the identity mapping from (X,~) to (X,QJ) is 

continuous. Furthe1·more, i:f (X,@) is a CC-space, or even if (X,p(I) 

* -is a C -space, then P@ and P@ are identical collections of sets (cf. 

I .3 .8). It· is easy to see that if the k-expansion of a topological 

space is defined, then it coincides with the C-expansion. 
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3. Supspaces and sumspa~~~ ~f a~tispaces 

In this section we study the one-to-one correspondence between 

* the class of C-spaces and the class of C -spaces which we found in 
* 2.9. We will prove theorems in the theory of C -spaces with corre-

spond to theorem 1.8 and 1.10 in the theory of C-spaces. In the theory 
*· of c -spaces we will define the notion of an antisubspace which corre-

sponds to the notion of a (topological) subspace in the theory of 

c-spaces. We show that the correspondence between C-spaces and c..,..~ 
spaces is not entirely invariant under the taking of subspaces and 

antisubspaces. The notion of an antisubspace is also useful for the 
• 

investigation of minusspaces in general. For example, we shall give a 

characterization of the class of antispaces which is based on the 

notion of an antisubspace. 

3.1. Definition. A minusspace (X,@) is an antisubspace of the 

minusspace (Y,5) iff X c Y and 

@ = GI G c x & G E 5} . 

@ is called the anti-relative minustopology on X and the identity 

mapping from (X,~) into (Y,6) is called an anti-embedding. 

Remark. Observe that the relative minustopolo~y on Xis defined, 

as usual, by 

@ = x n sl s E s}. 

In this case (X,~) is called a minussubspace of (Y,5>. 

Furthermore, if (X,@) is an antisubspace of (Y,6>, then Ac Y 

is &compact implies that A n X = A \ (Y \ X) is @-compact, since 

every centered subsystem of@ is a centered subsystem of 5. 

The following theorem corresponds to 1.8. 

* 3.2. Theorem. Every C -space can be anti-embedded in a maximal 

compact space by the adjunction of one single point. 

* Proof. Let (X,G) be an arbitrary C -space and let p be a point 

which is not an element of X. We define Y =XU pl and 
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It is easy to see that (X,@) is an antisubspace of the minusspace 

(Y ,6) . 

In order to prove that (Y,5) is a compact space, we assume 

that 6' is a centered subsystem of 5. If 6' does not contain a member 

of G, then n 6' contains p and thus the intersection of 5' is not 

empty. If (S' contains a member G0 of@, then the system 

is centered and has the same intersection as the system 5'. f!S' is a 
2 

subsystem of@. (For, if A E@ = pX@ and BE PX~,then according to 
2 

lemma I.2.4 we have both An B E p(i and An B Ep @ = @.) (X,(i) is 
liE 

a C -space and hence a compact space. It follows that 

0 ~ n tS' = n es· . 

We conclude that (Y,6) is compact. 

In order to prove that (Y ,5) is a CC-space, we ass1ime that A is 

a compact subset of (Y ,5). If A contains p, then (A \ f p}) must be 

compact relative to (JJ (cf. remark 3 .1) and hence A is a m(::mber of 6. 

If A does not contain p, then A is a subset of X which is compact 
2 

relative to P@. Therefore A E P @, i.e.,A E ~. Consequently in both 

cases A E 6, and we conclude that (Y,6) is a compact CC-space (hence 

a topological space) and so by 1. 7 is a maximal compact space. 

3.3. Le a. A minusspace (X,G) is an antispace if and only if 

the following two conditions are satisfied: 

(i) There exists a minusspace (X,5) such that G = p6. 

(ii) QI contains every subset of X which has a ti-closed intex· · 

section with every (i--compact subset of (X,00. 

Pro,of. Suppose that (X,QJ) is an antispace. Then 
2. 

QI= p G and Ci 

is the collection of co111pact subsets in (X,p@). If a set A has a 

closed intersection with every G-coinpact subset of X, then it is 

easily verified that A is P(i-compact, i.e. ,A E P (pQJ) = @. 

Conversely, suppose that (X,@) is a minusspace which satisfies 

both conditions. Then (i = P6 for some collection l5 of subsets of X. 
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Hence . 

2 
@ C p @. and therefore 

In order 
3 

A E P 5 and A 
2 n C is a member of P6 = @ for every set C E p 6 (cf. 

I.2.10). Therefore A has an intersection belonging to@ with every 
2 

member of P@ and this implies that A is closed. Hence p @ c @ and we 

conclude that (X,@) is an antispace. 

3.4. Theorem. An antisubspace of an antispace is an antispace 

* * and an antisubspace of a C -space is a C -space. 

. 

Proof. The proof of this theorem will be carried out by showing 

that properties (i) and (ii) of 3.3 and the property of compactness 

for minusspaces are inherited by antisubspaces. 

Let (X,@) be a minusspace and let (Y,0) be an antisubspace of 

(X ,@). 

(i) Suppose that@= P6 for some collection 6 of subsets of X. 

Then 6 generates a minusspace (X,Y5). The minussubspace (Y,6') of 

(X,Y6) with the relative minustopology has the family 

P5' = { c I c c Y & c E P6} 

as its collection of compact subsets, but this collection is equal to 

0 by definition. We conclude that if G is the collection of compact 

subsets in some minusspace on X, then O is the collection of compact 

subsets in some minusspace on Y. 

(ii) Suppose that@ contains every subset of X which has a 

closed intersection with every member of pX@. If c
0 

is a subset of X 

which belongs to PX@, then every subsystem of members of@ which is 

centered in c0 has a non-void intersection with c
0

• Therefore every 

subsystem of members of O which is centered in c
0 

has a non-empty 

intersection with c0 , and we conclude that c0 is compact relative 

to a. Since every member of 3 is contained in Y it follows that 
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Now let B be a subset of Y such that B has an intersection 

belonging to with every member of p • Then also 

B n A E @ for al 1 A E p • 

Moreover, according to the preceding observation, 

C n Y E P . for all C E pX@. 

Consequently, 

B n C = (B n Y) n C = B n (Y n C) E@ 

for all C E PX@. 

Therefore BE@. Since B c Y this implies BE a. 
• 

From (i), (ii) and lemma 3.3 we conclude that (Y,0) is an antispace 

whenever (X,@) is an antispace. 

(iii) Now suppose that Xis compact relative to~- Then every cent

ered subsystem of@ has a non-empty intersection with X and hence every · 

centered subsystem of O has a non-empty intersection with Y. Thus Y is 

compact relative to fl. 
~ 

This means that (Y,0) is a compact antispace, i.e.,a C -space 

* whenever (X,@) is a C -space. 

3.5. Corollary. If (X,@) is a C-space and (Y,(5) is a subspace of 
* (X,@), then (Y,pQJ) is both a C -space and an antisubspace of (X,p@) 

[although (Y,5) does not need to be a C-space ]. 

3.6. Proposition. If (X,@) is a minusspace and (Y,(5) is an anti

subspace of (X,@) with the property that X \ Y is compact relative to 

@, then 

p 6 = y 

and (Y,YP6) is a minussubspace of (X,YP@). 

Proof. The collection 6 is contained in@. Therefore, if C is 

compact relative to @, then every non-empty subsystem. of 5 which is 

centered in Chas a non-empty intersection with C. This inter~ection 
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is contained in Y and hence C n Y is compact relative to 6. Therefore 

Next we suppose that K is a member of Py6, but KU (X \ Y) 

is not a member of PX@. Then there exists a subsystem@' of@ which 

is centered in KU (X \ Y) with the property that 

en@'> n ex u ex\ Y>> = n. 

In particular 

en@'> n ex\ Y> = n, 

and from the assumption that X \YE PX@' it follows that there exists 

a finite subfamily 

o.11 = 1, 2, .•. , n}, 
1 

of@' with the property that 

n 
If we let n 

i=l 
o0 E 5. The system 

n 
< n 
i=l 

G.) 
1 

n (X \ Y) = 0. 

~i' then G0 c Y. Since G0 E@ this implies that 

is a subsystem of 5 which is centered in K. From the assumption that 

K is &compact it follows that 

n ~ en @''> n x = en ~· > n <K u ex \ Yl >. 

This is a contradiction. Consequently, if KE Py6, then 

K U (X \ Y) _E PX@. We conclude that 

and so 



43 

It now follows easily that (Y,ypy6) is a subspace of (X,YPX@}. 

3.7. Theorem. Every antispace can be anti-embedded in a C-space 

by the adjunction of one single point. Moreover, every antispace can 

be ~mbedded in a ~ompact antispace by means of adjoining one point. 

Proof. Let (X,@) be an antispace and suppose that pis a point 

which is not in X. Define Z =XU {p}. In order to find a minustopol

ogy 6 on Z such that (Z,6) is a C-space which contains (X,@) as an 
.... 

antisubspace, we first define a minustopology 6 on z. Then we con-
-

struct 5 by means of (5. 
~ 

Define: {5 = y((I U C U 
- -

First we observe that (Z,6) is a CC-space. For, if A is an & 
~ 

compact subset of Z, then A is also @-compact and hence AU {p} E 6. 

If p EA this means that A E 6. If p ~ A then it follows easily from 
-the definition of (5 that A is also 
- 411V' ,...., ""' 

In both casee A E (5, and we conclude that pzf5 c (5, i.e., (Z, S) is a 

CC-space. 

From 2.13 it 
2-

follows that (Z,P 6) is a C-space. If we consider 
-X as a subset in the minusspace (Z,6), then the induced anti-relative 

topology in X equals@; if we consider X as a subset in the minus-
2~ 

space (Z,p (5),. then we denote by O the induced anti-relative topology 
-

on X. Furthe1more, Z \ X = p} is compact, both in (Z,6) and in 
2~ 

(Z,P 6). From proposition 3.6 it follows that 

p@ = { c n x I c e pS 1 

and 

~ ~ 3~ 
Since (Z,6) is a CC-space, the proof of 2.11 implies that ,:,6 = P 6 

2 2 
and hence we conclude that p@ = Pi) and so P @ = P (J. The space (X ,0) 

2~ 
is an antisubspace of the antispace (Z,P 6) and thus theorem 3.4 implies 

that (X ,(J) is an antispace. Therefore we have 

2 2ri . 
@=P~=Pu=U 
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2 
and {X,@) is an antisubspace of the C-space (X,0 5>. 

We have proved now that every antispace can be anti-embedded in 

a C-space. Since (X,~) is an antispace, the space (X,YP@) = (X,P@) is 
2 2 

its anti-image. Moreover, since YP = P , we have 
3~ 3~ 

(Z,yn (5) = (Z,P (5) = 
... -

= (Z,yp6) = (Z,p(5): Consequently 3.6 implies that (X,P@) is a subspace 
~ ~ 

of (Z,p6), while (Z,P6> is the anti-i~age of a C-space and hence a 

* C -space. 

The constructed compact antispace can be called the one point 

compactification of the antispace (X,P@). Observe that the collection 
' 

of all complements of members of P@ n@ is precisely the collection 
-of all open sets of (Z, p5) which contain p. 

' 

3.8. Corollary. (i). The class of all antispaces is precisely 

the class of all antisubspaces of C-spaces and is precisely the 

class of all open subspaces of * C -spaces. 

(ii). The anti-image of an antisubspace of a 

* C -space is equal to the C-expansion of the corresponding subspace 

of the corresponding C-space • 
• 

• 

(X,@). Then both 

(iii). Let (Y,5) be a subspace of 

(Y, p6) and (Y, p
2
6) are anti spaces and 

a C-space 
2 

(5 C p (5. 

Proof. Assertion (i) follows i1n1nediately from 3 .4 and 3. 7, (ii) 

follows from 3.5. Assertion (iii) is an easy consequence from (ii) 

and 2.10. It indicates another definition of a subspace of a C-space, 
2 

namely, (Y,p 6) can be considered as a C-subsp,ace of (X,@) (compare 
. 

with [10]). We will not investigate this notion any further in this 

treatise. 

3.9. Definition. 
a a a of minusspaces 

such that X a n XS = fj if et -;/; B. Let X = U X • 
a.EA a 

• minus-

space. It is called the minussum of 
a a a 

2) If 5 = Y( U @a), then also (X,5.) is a minusspace. It is called 
aEA 

the antisum of the collection 
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Remark. If the collection A is finite, and if 0 E for all a, 

then the minussum corncides with the antisum, but if A 1s infinite 

and if 0 E @
0 

for all a, then the minustopology defined by the minus

sum is strictly finer than the minustopology induced by the antisum. 

If @ is an arbitrary closed set in the antis11m, then G n X = fJ for 
Cl 

all but a finite number of a.'s. Observe that if{(X ,Ci )}are antispaces, 
Cl (l 

then 0 E@ 
a 

for all a, since 0 is always squarecompact. If{(x ,G )} · a a 
are topological spaces, then the minussum coincides with the usual 

topological s11m. 

3 .10. Theorem. The minuss1.1m and the antis11m of a disjoint 

collection of antispaces are both antispaces. The anti-image of the 

minussum of a collection of antispaces equals the antis1.1m of the anti

images of that collection of antispaces. 

Proof. be an arbitrary collection of disjoint 

antispaces which is indexed by the set A. Let (X,@) be their minussu11, 

and assume that (X,6) is the antis11m of the collection of their anti

images: 

For 

PX 
a. 

a 

convenience in the remainder of the proof, we use P0 to denote 
2 2 

and p
0 

to denote PX. 
a. 

In order to prove that 6 = PX@ and @ = PXS we prove in succession 

(i) Let s E (5 and let @' be a subsystem of @ which is centered 

ins. Clearly Smay be written in the fo1m 

s = C 
ao 

u ... u C ' a 
n 
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wh•r• C0 
i 

E o a 
1t1 Consbt'tuen t ly @' must ~a . . ...,"" be centered in at least one 

1 
of the sets C0 • 

j 

•, a 1 , , , , • , Consequentl'Y ' • ':• _,- I , _' ', v . ., I, .• ,_, '', ' 

i 
We may assume it is C • Now let 

ao 

0 

and since E P ao 

.s ;1:. <n G'> n c
0 

c en G' > n s 
0 

and hence S E Px"· We conclude that 6 c PX@. 

1 t fol lows that 

• 

(ii) We first observe that 0 E (1
0 

for every a., since (Xa. ,@a) is an 

qtispace .. Consequently ~ c@ for every a. Now, let T be a subset of X 

which is not a aem.ber of (5. Then either there exists an index 8 such 

that T n Xe ~ Pa ·"'3, or we can define an infinite subset A0 of A such 

that ·r, n· X I: ~ if a e·· A In a . o • the first ~ase it follows from Ga C (I, 

that there exists a subsystem @13 of "'3 which is centered in T n x8 , 

whereas 

Since every ••ber of @a. is contained in x8 we have 

and we conclude that TI:. Px"· 
In the second case we choose a point p E X n T for every a E A

0
. a a 

p 
a 

Since (X6 ,'16) is an antispace, Psis squarecompact and hence closed in 

(x8 ,C1a) for every 8 E A0 • Therefore P
0 

is a closed subset of (X,<J). 

From the ass,mtption that A0 is infinite it follows that the collection 
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is centered in T. However 

= f). 

Consequently T in both cases and hence nx@ c6. 

U na Ci 
a. EA et 

(iii) Let G and suppose that~' is a subsystem of 

which is centered in G. Then~• is centered and it follows that there 

exists an a.0 , such that 

2 
= p 

ao • 

Therefore (n ~•) n G ~ 0, and hence 

We conclude that Cl c PX6. 

p 
a 

@ ) = 
a 

@ ) 
a 

(iv) Suppose that G i @. Then there exists an index 8 such that 

antispace, this means exactly 

not compact relative to p
8 

@
8

• 

From PS @8 C 6 it now follows that G E_ pXS and so pX(5 C @. 

3.11. Remark. It is easy to see that the minussum of a collection 

of C-spaces is a C-space. In this case the minussum is equal to the 

topological sum of these spaces. Therefore the antisum of a collection 

* * of C -spaces is a C -space. However a minussum of an infinite collection 

* * of C -spaces is never a C -space. This yields another method to construct 

antispaces, e.g.; a minusspace with cofinite topology can be considered 

as the antisum of a collection of one point spaces, and hence it is a 

* C -space. Its anti-image is the discrete space with the same cardinality. 

Furthe1·1nore, if 

then the collection of compact subsets of their minuss11m induces the 

same minus topology as the ant isum of the fa.mi ly of spaces { (X0 , YP a Ga)\ 0 , 

and also the collection of compact subsets of their antisum induces the 

same topology as the minussum of the fa.mily of spaces { (X0 , YPo. @0 ) t. 
These statements can be proved similar to the proof of 3.10. 

We wi 11 conclude this chapter with some propositions and remarks 

on continuous functions, quotient spaces and productspaces. 
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3.12. Definition. If X and y are two minusspaces, then a 

function f: x -+ y is called a k-mape_ing provided that the inverse 

image under f of a compact subset in 

x. 

y is a compact subset of 

3.13. Proposition. If (X,@) and (Y,6) are antispaces, then a 

function f from (X,@) to (Y,(5) is continuous, if and only if f is a 

k-mapp ing from (X, p@) to (Y ,P 5) • 

Proof. Assume that f is a continuous function from (X,@) to (Y,6). 

Then the inverse image of a member of <5 is a member of@. Since 

p 25 = 6 and p 2@ = @ this means that the inverse image of a member of 

is a member 

from (X ,P @) to (Y ,P t5) • 

The converse is proved similarly. 

is a k-mapping 

3.14. P_r9Pos;tion. If the CC-space (Y,'5) is a quotientspace of a 
• 

C-space (X,@), then (Y,6) is a C-space.(This is a corollary of [7] p.240.) 

Proof. Let f be a quotient mapping from (X,@) onto (Y,5) and 

suppose that Sis a subset of Y which has a compact intersection with 

every closed compact subset of (Y,(5). If we assume that Sis not closed, 

then f-1 [s] is not closed either and hence there exists a compact subset 

C of (X,~) such that C n f-1 [s] is not compact in (X,@). The set 
-1 

C n f [s] is a non-compact subset of C. C is compact and hence closed. 
-1 

Consequently, C n f [s] is not closed. Therefore there exists a point 

pin the closure of C n f-1[s] which does not belong to C n f- 1 [s]. 
-1 

It follows that p EC and hence p ~ f [s]. This implies that 

The set f[C] is compact in (Y,6) and hence f[C] n Sis compact and 

closed in (Y,5) and therefore 

is closed in (X,@). Furthermore Cc f-1 [f[C]] and hence pis in the 
-1 

closure off [Sn f[C]]. This is a contradiction. We conclude that 
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Sis closed if and only if S has a compact intersection with every 

closed compact subset of (Y,5) and hence (Y,6) is a C-space. 

3.15. Remark. This proposition can be seen as a corollary of the 

well known result that the quotient spaces of a k-space are k-spaces 

(cf. [7]). It is natural to ask if every quotient space of a C-space 

is a C-space or, in particular, if a closed continuous image of a c
space is a C-space. By means of the following counterexample we will 

show that this is not the case. 

_Example. Consider the space consisting of two convergent 
• 

sequences and q respec~ 
1 1 0 

tively.It is easy to see that this space is a C-space. 

Let r 1 ji EN} be a sequence converging to two points r 0 and r~. 

Now we can define a mapping f which maps both pi and qi onto ri for 

every i ~ 0 and which maps p 0 onto r 0 and q 0 onto r®. It is easy to 

see that f is a closed continuous mapping, but the quotient space is 
• 

not a C-space. 
• 

Until now we have not mentioned product spaces of C-spaces. We 

can investigate a notion of C-product by defining the C-product of 

a collection of C-spaces as the C-expansion of the usual topological 

prodµct of those spaces. This is actually carried out by N.E. Steenrod 

[10] forthe case of Hausdorff C-spaces. We shall not carry this inves-

tigations any further in this treatise. 

• 

• 
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Chapter III 

Characterization of the notion of com;pactness 
I S 

In this chapter we investigate three problems concerning the 

notion of compactness in the class of Tychonoff spaces, in the class 

of C-spaces and in the class of all minusspaces. In the first section 

a characterization of the class of all compact Hausdorff spaces is 

given. The characterization is in terms of heredity for certain 

topological operations. 

The second problem concerns the characterization of the compact

ness operator. We will give conditions for an arbitrary operator 

defined on the collection of closed subsets of a Tychonoff space, 

resp., a C-space to be the compactness operator. 

In the second section of this chapter we investigate the third 

probl ..... which can be fo1·mulated as follows: Let X be a set and let CS: 

be a collection of subsets of X. Find necessary and sufficient condi

tions for ~which guarantee that~ is the collection of all compact 

subsets relative to a suitably chosen system 6 of subsets of X. Observe 

that, without loss of generality, 6 may be a minustopology or a topol

ogy on X. 

We conclude this section with a set of unsolved problems. 
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1. Characterization of compac~. spaces and ~he comp3;,,ctncss. ?Pcra_t_!>_!· 

1.1 • Theorem ( DE GROOT) • Let r be a class of topologi ca 1 sp,1 c·t.'!'-

which satisfies the following conditions: 

( i) Th e topological product of any collect ion of members c, f r· 

is a member of r. (Productively closed). 

(ii) Every closed subspace of a member of r is a member of r·. 
(Hereditarily closed). 

(iii) If XE rand YE rand if Xis a subspace of Y, then xis 

a closed subspace of Y. (Absolutely closed). 

(iv) Every closed continuous image of a member of r is a member 

of r. 
(v) The class r contains a space consisting of more than one 

point. 
• 

Then r is precisely the class of all compact Hausdorff spaces. 

Proof. First we prove that every member of the class is Hausdorff. 

Suppose that X is a member of r, then X x X is also a member of r (cf. 

condition (i)). The subspace of Xx X consisting of all points 

{(x,x) Ix Ex} is homeomorphic with X itself and hence a member of r. 

Condition (iii) implies that this subspace is closed in Xx X and so 

the space Xis a Hausdorff space. We conclude that every member of 

r is a Hausdorff space. 

Next we prove that the class of all compact Hausdorff spaces is 

a subclass of r. Let X be a member of r which consists of more than one 

point (cf. condition (v)). Since Xis Hausdorff it contains a closed 

discrete subspace consisting of two points. From condition (ii) it 

follows that the discrete space consisting of two points is a member 

of r. The Cantor set is homeomorphic with the countable product of 

discrete two point spaces, and so according to (i) it is a member of r. 

The closed unit interval is a closed continuous image of the Cantor 

space and hence it is contained in r (cf. condition (iv)). Moreover, 

every product of closed unit intervals is contained in r (cf. condition 

( i)) and since every compact Hausdorff space is a closed subspace of a 

product of closed intervals, it follows that every 
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compact Hausdorff space belongs tor. 

Next we prove that every member of r is a compact Hausdorff space. 

We know already that every member is Hausdorff; we only have to prove 

that every member is compact. Suppose that (Y,X) is a member of r 
and suppose that .G

1 
and G

2 
are two disjoint closed subsets of (Y ,=c). 

We define a mapping f from Y into the power set of Yin the following 

way: 
• 

( i) f (p) = G
1 

i ff p E G1 , 

(ii) f(p) = G2 iff p E G2 , 

' 

Then the set f[Y] can be supplied with the quotient topology :C' with 

respect to Y and f. It is then easy to see that the function f is a 

closed continuous mapping from (Y,2) onto its quotient space (f[Y],X'). 

We conclude that ( f (Y] , %') is a member of r and hence a Hausdorff space. 

In particular there exist two disjoint neighbourhoods U and V of the 

points f[G1 ] and f[G2] in the topological space (f[Y],X'). It follows 
-1 -1 · 

that f [U] and f [v] are disjoint neighbourhoods of the closed sets 

G1 and G2 in (Y, ~. Hence we conclude that (Y, !t) is no1·1nal. Therefore 

(Y,!l) has a Cech-Stone compactification (z,3). Since (Z,3) is a compact 

Hausdorff space it belongs tor. Then it follows from condition (iii) 

that (Y ,2:) is closed in (Z ,3). This means that (Y, ~ coincides with 

(Z,3) and consequently is a compact Hausdorff space. 

1.2. Theorem. If we have for every set X an operator ox from 

~(~(X)) into itself, then ax coincides with Px for the collection of 

all closed subsets of all Tychonoff spaces if and only if cr meets the 

following requirements: 

(i) : If@ is the collection of closed sets in a Tychonoff space 

(X,%) then crX@c @.(Closedness condition). 

(ii) : If (A,~A) is a subspace of (X,%) and @A is the collection 

of closed subsets of {A,2:A) then aA@A = fclc CA & CE ax@}. 

(Subspace condition). 

' 
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(iii): For every operator A which assigns to the collection of 

closed subsets of every Tychonoff space another collection 

of subsets of the same space and which satisfies (i) and 

(ii) (with a replaced by A) then o ~::)AG 
X X 

for the collection@ of closed sets in every Tychonoff 

space (X,%>. (Maximality condition). 

Proof. Let a be an operator satisfying (i), (ii) and (iii). We 

prove that ax@= PX@ for the collection@ of closed subsets of every 

Tychonoff space (X ,~. We observe that every compact subset of a 

Tychonoff space is closed and hence PX(@) c @. This means, that p 
• 

sati~fies condition (i). It is also well known that a subset of a 

topological space is compact if and only if it is compact in its 

relative topology. This implies that P satisfies condition (ii). We 

now apply (iii) to P and a and obtain 

for the collection@ of closed subsets of every Tychonoff space. 

On the other hand, we know that for every compact Hausdorff 

space P@ @ and therefore condition (i) implies that for cODq>act 

Hausdorff spaces p@::, a@ .. From the fact that every Tychonoff space 

can be embedded in a compact Hausdorff space and from condition (ii) 

it follows. that p A@A ::) o A@A for every subspace (A,%A) of a caapact 

Hausdorff space (X ,%) • 

We conclude that p@::) cr@ for every Tychonof:f space and hence 

p = on this class. 

1. 3. Remark. The preceding theorem remains true if we replace the 

class of Tychonoff spaces by separable metric spaces. This follows 

easily fr01n the fact, that every separable metric space can be embedded 

in the Hilbert cube - which is a compact metric space. 

It is not known if the theorem is true for CC-spaces since it is 

still an open question whether or not every CC-space can be embedded 

in a maximal compact space. 
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1.-f. Theorem .. If we have for every set 

i<,(X)) into itself, then ax coincides with 

X an operator a from 
X 

PX for the collections 

of all closed subsets of all C-spaces iff a meets the following 

requ1rea1ents: 

I 

(i) If Ci is the collection of closed sets in 
. 

then o '3 c @. ( Closedness condition) • X 

any C-space (X @) 
1 ' 

(ii) lf (A,QJA) is an open subspace of (X,<i), then a A@A = 

= · .. cf C c A & C E ox@ . (Open subspace condition). 

(111) For every operator A which assigns to the collection of 

clo,sed sub,sets in every C-space another collection of 

subsets of the same space and which satisfies (i) and (11) 

(with a replaced· by .X), then AG) c cr(i for the 

collection '5} of closed subsets of every C-space. (Maximality 

condition). 

Proof. The proof of this theorem is similar to the proof of 1.2; 

tt '' '' ., merely have to replace com.pact Hausdorff by maximal compact and 

tt '" '' '' ' subspace by open subspace • Then the theorem follows from II.1.8 and 

II.l.10 •. 

1.5. Remark. This theorem remains true if we replace the notion 
• 

tt It t t 
of C-spaoe by the notion of locally compact 

,, 
Hausdorff space. At 

this m.Ql\~nt we do not know a method for characterizing the compactness 

operator in the class of all topological spaces. 
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2. ~ol le,c,t_i ons_ o_f . compact sub~ets_ ~~d E robl~ns 

In this section we will make some remarks on the following 

problem: Given a set X, characterize all collections ~ of subsets of 

X which are the collections of compact subsets relative to some other 

family of subsets of X. This problem seems to be difficult and re

mains unsolved in its generality. However, we start this section with 

some necessary conditions for the collections~- Furthenaore a 

characterization of all collections~ which are the collections of 

compact subsets of antispaces is derived as a corollary of the 

previous chapter. 

2.1. Proposition. Let X be a set and let~ be a collection of 

subsets of X such that ~ is the collection of compact subsets in some 

topology 

(i) 

(ii) 

on X. Then 
2 

p ~ ::) cs:. 
The intersection of a member of (s: with a member of P~ is a 

member of Ci. 

(iii) Every infinite member of~ contains an infinite proper sub-

set which is also a member of CS:. 

(iv) (s: is closed under the taking of finite unions and every 
• 

finite subset A of Xis a member of~-

Proof. CS: = p@ for some collection G of subsets of X. Without loss 

of generality we may assume that @ is the collection of closed subsets 

in some topology on X. Now the first assertion is precisely propo•si tion 

I .2 .6 and the second assertion is precisely lemma I .2.4. In order to 

prove (iii) we ass11me that A is an infinite memb,er of ti which does not 

contain a proper infinite subset belonging to ([. For every G E O we 

have that G n A belongs to (S:, which implies that G n A is finite or 

G n A = A. Now let B be an arbitrary proper subset of A. Then G fl B 

is :finite or G n B = B for every G E @. This means that B is 8-oompaot 

and hence a member of ~- So from the assumption that no infinite 

subset of A belongs to P@ = ~, we have derived that every subset of A 

belongs to P@ = (i. This is a contradiction. Consequently for every 

' 
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• 

infinite set A E ~ there exists a proper subset of A which is infinite 

and which is a member of CS:. 

The fourth assertion is well known. 

2.2. Remark. It is easy to see that condition (i) of the preceding 

proposition follows from condition (ii). If we assume that Y~ =~then 

condition (ii) also implies condition (iii). 

Furtherrnore we show by means of a counterexample that the conditions 

of 2.1 are not sufficient. 

Example. Let X be an uncountable set and let CS: be the collection 
• 

of all countable subsets of X. Then pCS: consists of all finite subsets 
2 

of X and every subset of Xis a member of p CS:. Hence conditions (i) and 

(ii) are fulfilled. It is easy to see that CS: also satisfies conditions 

(iii) and (iv) of 2.1. 

In order to prove that~ is not the collection of compact subsets 

relative to any family 6, we assume that 6 is a collection of subsets 
' 

of X and that p6 = CS:. 

From Alexander's theorem it follows that we may assume without loss of 

generality that y6 = 6. The set X itself is not compact and hence there 

exists a nest ?)lee> such that 0 i m and n ~=~-Now choose a point 

p 1 E X and a set N1 E ?Jl such that p
1 

I:. N
1

• Then we choose a point 

p 2 E N1 and a set N2 E ?JI such that p
2 

l:. N
2

• We proceed by choosing 

pi E N1_1 and 

00 

c n 
i=l 

It follows that the set {P1 };=l is countable but not &-compact. This is 

a contradiction. We conclude that there exist no collection of subsets 

of X such that P6 = ~-

2.3. Proposition. A collection~ of subsets of a set Xis the 

collection of compact subsets of an antispace x if and only if (X,~ 
• 

is an antispace. A collection of subsets~ of a set Xis the collection 
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of compact 

space. 

sets of some CC-space on X if and only if (X,t.D is a 

Proof. Follows immediately from II.2.5 and II.2.10. 

2.4. Problems. 

* C -

(i) Is it possible to embed an arbitrary CC-space in a maximal 

compact space? 

(ii) If Xis a set and 6 is a collection of subsets of X, does 

P6 = yp(5 imply that p6 = p
36? 

(iii) If Xis a set and 6 is 
2 

that P6 = YP6 and P 6 C PC5, does 

a collection of subsets of X 

this imply that XE P6? 

such 

(iv) Let X be 

YPX6 = px6. Let A E 
3 

member of PA%, where 

minustopology on A? 

a set, and a collection of subsets such that 

true that under these conditions A is a 

3: is the collection of closed sets in the relative 

Remark. It is easy to see that (ii) is equivalent with (iii) & (iv). 

(v) Let (X,:0 and (Y, ~ be two C-spaces. Is it true that the 

intersection of two compact sets of their topological product 1s compact 

in the product topology? 

-



5 - -

, 8 • 

A. ARHANGEL'SKII 

A. ARHANGEL'SKII. 

P. van EMDE BOAS et al. 

J. de GROOT. 

J. de GROOT, 

G.E. STROCKER, 

E. WATTEL. 

J. de GROOT, 

H. HERRLICH, 

G.E. STRECKER, 

E. WATTEL. 

J.L. KELLEY. 

N. SMYTllE, 

C.A. WILKINS. 

E.H. SPANIER. 

REFERENCES 

Bi compact sets and the topolocv of 11pac·~R 

Dokl. Akad. Nauk. SSSR. 150 ( lMJ) p. 9'-12. 

Soviet Mathematics i (1963) p .. 561-~64 .. 

On embeddings of T 1 spaces 1 n bica11pact T 
1 

spaces of the same weight. Bull .. Acad .. Pol. 

des Sci. 14 (1966) p. 361-361 .. 

De onderlinge afhankelijkheid van een aan

tal topologische axiom.a' s die verband b01.1-
' 

den met het k-ax:ioma. Ma.thematisch C•nt:rua 

Amsterdam. Report WN 18 (1985),. 

An isomorphisa principle in general topo-

logy. Bull. 

465-467. 

Am. Math. Soc. 73 (1967) p. 
111; Qi I' 1 

The compactness operator in general topo

logy .Proc. 2nd. Symposiua on Topology 

Prague. (1967) p. 161-163. 

Compactness as an operator .. Iesued for 

publication. 

General Topology. Va.n Nostrand 1955. 

Minimal Hausd.orff and aa:xiaaal ea.pact 

spaces. Journ. Aus tr. Ma th. loe.. 3 ( 1.963) 

p. 167-171. 

Algebraic topology, llac Gr&tr""llill (1966). 
• 



10 

11 

12 

N. E. STEENROD. 

G.E. STR~KER, 

E. WATTEL, 

H. HERRLICH, 

J. de GROOT. 

E. WATTEL, 

G.E. STR~KER. 

60 

A convenient category of topological 

spaces. Mich. Math. Journal 14-2 (1967) 

p. 133-152. 

Strengthening Alexander's subbase theorem. 

To appear in Duke Math. Journal. 

On the compactness operator in general 

topology. Mathematisch Centrum Amsterdam. 

Report WN 22 (1966). 
• 



61 

SUBJECT INDEX 

Alexander's theorem 

anti-embedding 

anti-image 

antipair 

• 

anti-relative minustopology 

antispace 

antisubspace 

antisum 

Bacon's lemma 

CC-space 

centered system 

C-expansion 

closed base 

closed subbase 

closed subset of a minusspace 

closure 

compact relative to 

compactly generated space 

compact minusspace 

compactness operator 

• 

4 C-space 

* 38 C -space 

33 C-subspace 

33 

38 

33 

38 

44 

20 

26 

2 

37 

2 

2 

32 

33 

3 

26 

34 

6 

k-expansion 

Key lemma 

k-mapping 

k-space 

maximal compact space 

• minus space 

minus subspace 

-minussum 

minus topology 

open subset of a minusspace 

operator y 

operator p 

relative minustopology 

&compact 

squarecompact relative to 5 

&squarecompact 

26 

34 

44 

36 

3 

48 

26 

28 

32 

38 

44 

32 

32 

6 

6 

38 

3 

7 

7 



I 

I • 
' 

ERRATUM • 

• 

II. 3.15 

Since the quotient mapping mentioned in example II. 3.15 is not 

closed, the question whether or not all closed continuous images of 

C-spaces are C-spaces is still open. 

A quotient space of a C-space is a C-space iff every inverse 

image of a compact set is closed. (cf. II. 1.2 and II. 3.14.) 


