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PREFACE 

It is a well-known fact that the majority of partial differential 

equations cannot be integrated analytically. In these cases it is 

necessary to employ some method of approximation. There exist a large 

number of different approximation methods for solving partial differ

ential equations the most important of which is the method of finite 

differences. 

Finite difference methods were discussed in 1928 in the celebrated paper 

of Courant, Friedrichs and Lewy, but only in recent years, with the 
' 

development of high-speed computing machines, these methods were applied· 
' 

in practical problems on a large scale. Although digital computers per-

fot·m just the same operations as can be perfo1,ned by hand, their speed 

and capacity make it possible to deal with problems which are out of 

the question by hand calculation. 

As the speed of the computer has been increasing, one has attached still 

more complicated problems. However, many of these problems have turned 

out to be very time consuming. In such cases it is desirable to construct 
• 

more efficient difference methods. 

The interest in this problem and related subjects during the last years 

led to a seminar on the stability of difference schemes, which was or

ganized in 1965/'66 at the Mathematisch Centrum at Amsterdam,under the 

supervision of Prof.dr. H.A. Lauwerier and Prof.dr.ir. A. van Wijngaarden. 

The present monograph presents the worked-out lectures given by the 

author at this seminar. 

In the first chapter the basic concepts of the theory of difference 

schemes approximating initial boundary value problems are discussed. By 

presenting the material from an 

possible to give a very compact 

abstract point of view it was found . ,,, 
description of the theory. The main re-

st1l t of this chapter is an equivalence theorem for convergence and sta

bility which holds for an extensive class of difference schemes. 

Chapter II is devoted to the problem of stability of two-level 

difference equations. Several methods are described by which it is pos

sible to weaken the stability conditions of a given difference scheme. 
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In chapter III numerical solution methods for the North Sea 

Problem are investigated. Apart from a few drastically simplified 

models, this problem cannot be solved analytically. However, when 

finite difference methods are used, arbitrary configurations of 

coasts and oceans and arbitrary depth functions may be introduced. 

By applying the theory of the preceding chapters a number of differ-
/ 

ence schemes are constructed which appear to be acceptable with res

pect to their stability properties. 

The last chapter deals with elliptic boundary value problems. The 

solution of such a problem is interpreted as the stationary solution 
• 

of an appropriate initial boundary value problem, and, therefore, 

elliptic boundary·value problems may be solved numerically by apply

ing methods discussed in chapter II. In connection with elliptic 

differential equations these methods are called iterative methods. 
• 

Our considerations are restricted to a special iterative method which 

is called Richardson's method. Some accelerating procedures are given 
• 

which were successfully applied on a computer. 

The author expresses his gratitude to the Board of Directors of 

the ''Stichting Mathematisch Centrum'' for giving him the opportunity 

to carry out the investigations presented in this monograph, and for 

publishing this study in the series ''Mathematical Centre Tracts''. 

Further, it is with great pleasure that the author thanks his 

promotor Prof.dr. H.A. Lauwerier of the University of Amsterdam for 

his stimulating criticism which has been a great help in preparing 

this text. 

He also is indebted to Mr. G.J.R. Forch for many valuable discus

sions. 
• 

Finally, he acknowledges Mr. C.W. de Jager and Mr. M. Murenbeeld 

for correcting the English text, Mrs. H. Roque for the typing of the 

manuscript and Mr. D. Zwarst for the printing and the binding. 
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Chapter I 

INITIAL BOUNDARY VALUE PROBLEMS 

1. Introduction 

In this chapter the main features of the theory of finite differ

ence methods are described. It wi 11 turn out that the fundamental 

problems encountered in thjs theory are those of consistency, conver

gence and stability. 

One is faced with the problem of consistency in approximating the 

continuous problem by a discrete problem. It is natural to require 

that when refining the finite difference approximation, in the limit 

the discrete and continuous problems become equivalent, i.e. the 

£inite difference approximation is required to be consistent with the 

continuous problem. 

However, the consistency of a difference scheme does not guarantee 

that the difference solution approximates the analytical solution. Here, 

the convergence problem arises by way of the conditions for which the 

difference solutions converge to the analytical solution if the differ

ence approximation is refined. 

Theoretically, it suffices to construct consistent and convergent 

difference schemes in order to solve the analytical problem numerical-

1y. However, in actual computation one cannot find the difference 

solution exactly, as one is faced with the phenomenon of round-off 

errors which give rise to a numerical solution instead of the true 

difference solution. The numerical solution may differ considerably 

from the difference solution. Therefore, it is desirable to employ 

difference schemes which are more or less insensitive to such external 

influences. This leads to the problem of the stability of a difference 

scheme. 

This chapter is concluded by an example which illustrates the 

theory of preceding sections. 
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It may be remarked that there already exists extensive literature 

on finite difference methods, for instance the treatises of Forsythe 

and Wasow [1960], Fox (1962], Godunov and Rjabenki [1964], Richtmyer 

[1957], Rjabenki and Filippov [1960] and Saul'yev [1964]. In this 

chapter, however, the 111aterial is presented from a more abstract point 

of view than was done in these works. This has the advantage of pez1nit

ting a more compact description of the finite difference method. 

2. Definition of initial boundary value problems 
' ,,. I o 

' 
In this section we shall give an abstract formulation of a differ-

• 

ential equation with initial and boundary conditions. 

As an example we consider the diffusion equation 

(2.1) - D(x,t) U = H(x,t), 
xx 

for O < x < 1 and O < t < T, with the initial condition 

fort= 0, and the boundary condition 

(2.3) U = ¢(x,t), 

for x = 0 and x = 1. 

This initial boundary value problem may be interpreted as a mapping of 

the unknown function U onto the triple function (U0 ,H,¢), or if we 

wish to include the dependence of U on the difference coefficient D, 

we may describe equations (2.1) - (2.3) by a mapping of U onto 

(U0 ,F,¢), where Fis a vector function with components Hand D. 

We shall describe a general initial boundary value problem by 

such a mapping. 

Let us consider a real interval [O,T], an Euclidean space m of 
m 

dimension m and a domain G with boundary r in~. Let E(G), E(G) and 
m 

E(f) be linear no1·med spaces of scalar or vector functions, respect-

ively defined on the sets of points G_x [O,T], G x [0,T] and 

r x [O,T], where G =GU rand where G x [O,T] denotes the Cartesian 
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product of G and [O,T]. The elements of E(G) and E(G) will be denoted 

by Latin capitals, the elements of E(f) by Greek capitals. Further, 

we consider a linear normed space E0 (G)_of functions u
0 

defined on G. 

The linear operations in the spaces E0 (G), E(G), E(G) and E(r) will be 

denoted by the customary addition and multiplication operations and 
' 

the norms of the elements of these spaces by II I , II 
111 IJ Ir respectively. 

111 , 111 111 G and 

The spaces E0 (G), E(G) and E(f) constitute the space E
0

(G) x E(G) x E(r) 

of elements (U0 ,F,¢) with u0 E E0 (G), FE E(G) and~ E E(f), which is 

a linear nor111ed space with respect to the linear operations 

• 

(2.4) ( U. F ~) + (U' F' ¢') = (U + 
O' ' O' ' 0 

and 

(2.5) 

where a is a scalar, and with respect to the no1111 

(2.6) 

Definition 2.1 

The problem of finding the inverse of a given mapping L_of an unknown 

function U of E(G) onto a known element (u0 ,F,~) of E0 {G) x E(G) x E(f} 

.will be called an initial boundary value problem. 

Initial boundary value problems will be described by the equation 

(2.7) 

The domain of definition and the range of the operator Lare denoted 

by DL and ~L respectively. 

The diffusion equation considered above is an example of an 

initial boundary value problem in the sense of definition 2.1. The 
' 

domain G is the open interval O < x < 1 and r consists of the two 

boundary points x = 0 and x = 1. The spa~es E(G) and E0 (G) are both 

function spaces of scalar functions depending respectively on the 
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variables x and t and on the variable x. Further, we may choose 

1cr> • {t E E(~>I• • O on o} and E(G) ={FE E(~)jF = o on r} if 

F =Hor K(G) •{HE E(~)jH = 0 on r} x {DE E(~)ID = 0 on r} if 

we also wish to include D(x,t) into the data, i.e. if F = (H,D). 

The functions u0 , F and 4' will be called here the initial 

function, the interior funct.ion and the boundary function respectively. 

We remark that an initial value problem for ordinary differential equa

tions taay be c,o.nsidered as a mapping of an element U of E(G) onto an 

ele1aent (U0 ,F) of E0 (G) x E(G). In that case the domain G consists 

of only one p,oint and r is empty. 

' 
In this paper we shall restrict our considerations to well-posed 

problems (co.pare Hadamard [1923] and Lavrientiev [1967]). 

In 0u1· notation such problems may be defined as follows. 

Definition 2.2 

The problem LU== (U0 ,F,t) is said to be well-posed with respect 
-norms in E(G) and E0 (G) x E(G) x E(f) if Lhasa unique inverse 

to the 
-1 

L 

which is continuous in the point (U0 ,F,$). 

3. Defini t,ion of difference schemes 

In general, p.roblea (2. 7) cannot be solved in an explicit way. 

Therefore one associates to (2.7) a discrete problem which can be solved 

by elementary algebraic manipulations. We shall now define the discrete 

analogue of an ini ti.al boundary value problem. 

First, we replace the continuous interval [O,T] by the discrete set 

{tklo - to < tl < < tN - Tt and we define for k - o, 1, N-1 .... ••• - - . . . , 

(3 .. 1) 1 = t -
k k+l t = Max T • 

k k O< <N-1 

G
1 

c G and a finite set of points f C r. 
T 

a finite set of points 

These three point sets consti-

tute a grid or net QT in G - x [O,T], i.e. 
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(3.2) 

u r . 
T where GT = GT 

Let us assume 

that 

that a sequence of nets QT is defined with the property 

(3.3) Lim 
T+Q 

Q is dense in G x [O,T]. 
T 

At this point we introduce linear normed spaces E0 (G ), E(G ), E(G) 
T T T 

and 

the 

E(rT) for each net QT, in the same way as we previously introduced 

spaces E0 (G), E(G), E(G)_and E(r). The elements of these spaces 

are defined on the sets 

respectively. They will be called net functions or grid functions and 

are denoted by small letters u
0

, u, f and¢. 

Definition 3.1 

A mapping R of an unknown net function u of E(G) onto a known element 
T 

(u
0

,f,¢) of E
0

(G) x E(G) x E(f ), which is defined for each net Q, 
T T T T 

will be called a difference scheme. 

Difference schemes will be described by the equation 

(3.4) 

We denote the domain of definition and the range of the operator R by 

DR and ~R. 

that R has 

TI:. 0. 

It will be assumed that DR and ~Rare linear spaces and 
-1 

a unique inverse R which is continuous in ~R for every 

4. Consistency 

So far we have not brought into relation the problems LU= 

= (U0 ,F,~) and Ru= (u0 ,f,¢). We now investigate the conditions for 
, 

which the discrete problem is an approximation of the continuous 

problem. 
• 
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Let [ ]d be the operator which associates to an element U of 

l(G) the values of U in the points of the net Q. These values esta
T 

-
blish the net function [u]d. In the same manner we associate to the 

-functions u
0 

E. E
0

(G), FE E(G) and 4i E E(r) the net functions [U0 Jd, 

(F]d and [t]d. The operator [ ]d will be called the discretization 

operator .. 

The discretized 

be el•ents of 

We shall write 

(4 .. 1) 

e 1 eaen ts [ U] d , [ U O] d , [ F J d and 
-the spaces E(G ), E0 (G ), E(G) 

,: T 'T 

Further, it wi 11 b,e assumed that 

(4.2) C D • 
R 

[~] are assumed to 
d 

and E(r) respectively. 
t 

' 

We are now in a position to compare a discrete problem and a 

continuous problem • 
.... 

Let Ube the solution of the differential problem 

-
(4 .. 3) LU= (U0 ,F,t), 

and let u be the solution of the discrete problem 

(4.4) 

l:f equation (4.4) is a reasonable approximation of equation (4.3), one 
... -

may expect that the net function u = (U]d satisfies a difference 

equation which closely resembles difference equation (4.4). From (4.2) 
... - .... -

we see that u E DR, hence there exists an element (u0 ,f,q,) such that 

(4.5) 

It follows from (4.3) and (4 .. 4) that 

-
(4.6) Ru. 

Equations (4 .4) and (4 .5) differ by the terxn [LU]d - Ru. To evaluate 

this term we intro,duce a norm in the space E0 (G ) x E (G ) x E ( r ) . 
T l' T 



7 

Let II fl, Ill Ill G denote the norms in 
T T 

E(G) and E(r ). 
T T 

We then define the no11n 

(4.7) 
T 

Further, we require that for the elements of [E0 (G)Jd, [E(G)]d and 

[E(f)]d the relations 

(4.8) -+ 

T T 

hold as T-+ 0 (compare Rjabenki and Filippov [1960], p. 12). 

Definition 4.1 · 

- Rul is called the error of the approximation. 

Definition 4.2 

A difference scheme is said to be consistent with an initial boundary 

value problem if the error of the approximation converges to zero as 

T + 0. 

In concrete cases our consistency condition reduces to the 

conditions generally imposed upon the difference scheme in literature 

(cf. Forsythe and Wasow [ 1960] , p. 17, Rjabenki and Filippov [ 1960] , 

p. 12). In practice, consistency in the sense of definition 4.2 is 

easily verified (see section 7 of this chapter). In connection with 

this we note that Lax has given a different definition of consistency 

(compare Lax and Richtmyer [1956] or Richtmyer [1957], p. 43). However, 

for the particular class of problems they consider, their consistency 

definition reduces to consistency in the sense of definition 4.2 

(cf. Richtmyer [1957], p. 56). 

This section is concluded with a figure, which may clarify the 

ideas described above. 
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fig. 4 .1 

The coasistency of a difference scheme does not guarantee the 

convergence of the difference solutions to the analytical solution. 

The approximating difference scheme is only a fox,na.l approximation. 

The following definitions dete1,nine a convergent difference scheme. 

Definition 5 .. 1 

The value of Ill u - ~ Ill is called the discretization error. 

Definition 5.2 

A difference scheme is said to be convergent if the discretization 

error converges to zero as T _,. 0. 

Further, it will be assltmed that for all elements u of [E(G)]d 

(5 .1) ti I u 111 ...,. ti I u II I 
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as T + 0 (compare relations (4.8)). 

According to Rjabenki and Filippov [1960], p. 16 we give the 

following definition which is the discrete analogue of the correspond

ing definition 2.2 for the continuous case. 

Definition 5.3 

The difference scheme Ru =_(u
0

,f,¢) is said to be well posed with 

respect to the no:r·1ns in E(G ) and E
0

(G ) x E(G ) x E(r ) , if for each 
T T ._...T T 

net QT,R has a unique inverse which is uniformly continuous as T + O 

in the point (u
0

,f,~). 

From (4.5) and (4.6) we have immediately 

Theorem 5.1 

A consistent and well-posed difference scheme is convergent. 

If Risa linear operator a stronger statement can be made. 

Theorem 5.2 

- R~ II = 0 (TP) as T -+ 0. Then a consistent, 

linear difference scheme is convergent for all (u0 ,f,~) E ~R if q < p. 

Proof 

From (4.5) and (4.6) we have for linear difference schemes the 

relation 

(5.2) ~ u - u = -- Ru), 

so that 

(5.3) 

where 

(5.4) • 

• 
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(5.5) ti" ... ·11 P· -q q!u - U[; ::: O(t ) 

a11 t ➔ O .. It may now be readily seen that the scheme is convergent 

for p > q .. 

Jtq·uation (5.5) gives a measure for the rate of convergence in the 

••an .. For a discus11ioo of the local rate of convergence we refer to 

Rjabenki and Fi .l ippov [ l 960~] , p.. 20 .. 

6. Stabilitv 
11 mr ,_,,,., •"" ™"¥' • a : .1': • 

In the preceding sections we have given conditions for which a 

difference scheae is t~on\1e.rgent .. In actual computation, however, one 

cannot construct the differ·ence solution exactly, as one is faced with 

the phenomenon of round-off errors which give rise to a numerical 

* solution u instead of the difference solution u. In some cases the 

nuaerical solution may differ considerably from the difference solution .. 

Definition 6 .1 

The value of lllu - u*lll is called the numerical error. 

In practice we would of cou1·se like the difference between the 

analytical and the numerical solution to be smal.l. From the inequality 

(6.1) lllu - ~,,, < lllu* - ulll + lllu - ~IJI 
we see that both the discretization error and the numerical error 

must be small for the net ~ used. In this section we shall discuss 

the numerical error. 

(6.2) 

We assume that the numerical solt1tion * u 

* * * * Ru = (u
0

,f , ♦ ). 

satisfies the scheme 

The numerical error m.ay be interpreted as the result of a perturbation 

of the data (u0 ,f,$) .. To ensure that the numerical error is small, we 
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require that the difference scheme is more or less insensitive to 

perturbations of the data. This leads to the concept of the stability 

of difference schemes. We distinguish stability with respect to the 

initial condition (initial stability), the interior function (inner 

stability) and the boundary conditions (boundary stability) by restrict

ing the perturbations to the spaces E0 (G) x Ox O, Ox E(G) x O and 
T T 

0 x Ox E(fT) respectively - compare Rjabenki and Filippov [1960], p. 15. 

In literature, many definitions of stability are met, each of which dif-
-1 fers by the condition imposed upon the behaviour of the operator R as 

a function of T and T. In this monograph we shall consider stability in 

the sense of Forsythe and Wasow (F-W stability), Rjabenki and ,Filippov 

(R-F stability), Lax and Richtmyer (L-R stability), and O'Brien, Hyman 

and Kaplan (B-H-K stability). 

6 .1 ,Stabili t;x in the ~~nse of Forsythe a_!ld Wasow 

In our notation the stability definition of Forsythe and Wasow 

([1960], p. 32) takes the forrn of 

Definition 6.1 

A linear difference scheme is F-W stable if )jR- 1
(T ,T)fl = O(T -q) as 

T ~ 0 with q > 0 and T constant. 

From (5.3) it follows that a F-W stable scheme is convergent when the 

error of the ·approximation behaves as a certain power p of -r where p > q. 

In practice, F-W stability implies that the numerical error behaves 

as a negative power of T, since we have 

(6 .3) lllu)( - ulll ., 

According to Forsythe and Wasow [1960], p. 32, such a behaviour is 

acceptable in actual computation. In addition, they noted that in 

practice the departure of the numerical solution from the 

solution is, in order of magnitude, either a low power of 

• 

difference 
-1 

T, or an 
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exponential function of 
-1 

T • For a particular class of problems, this 

statement was proved in Kreiss [1962], p. 163. 

6.2 S~ability i,n ~he sense of Rjabenki an_d Fi,l_i,ppov 

Rjabenki and Filippov required that the effect of a perturbation 

of the data upon the difference solution does not increase if the net 

is refined. 

Definition 6.2 

A difference scheme is R-F stable if R-1 (T,T) is unifo11nly continuous 

in the point (u0 ,f,t) as T ➔ 0 with T constant. • 

Thus an R-F stable scheme is identical to a well-posed scheme (cf. 

definition 5.3). From this and theorem 5.1 it follows that a consistent 

difference scheme which is R-F stable is also convergent. 
• 

When the difference scheme is linear, the R-F stability definition 

states that the operators are uniformly bounded as T -+ 0 

with T constant. In fact, this is the stability condition Godunov and 

Rjabenki ([1964], p. 45) imposed upon the difference scheme. 

6.3 Stability in the s~nse of L~~ and Ric~tmy~r 

For a particular class of linear difference schemes described by 

homogeneous step-by-step methods Lax and Richtmyer [ 1956] have given 

a stability definition which is related to the definition of Rjabenki 

and Filippov. We shall extend the definition of Lax and Richtmyer to 

difference schemes of the more general type Ru= (u
0
,f,¢). For that 

purpose we assume the existence of a set of bounded linear operators 

{ ~-1 } 
R (T,T) T with domain and range in E0 (G) x E(G) x E(r) and E(G) 

respectively, and such that 

(6.4) 

for each 

and then 

p. 41 • 

net~· In practice 
-1 

R (T,T) is defined 

one starts with the definition --1 
of R (-r , T) 

by fo:rn1ula (6.4) - compare Richtmyer [1957], 



Definition 6.3 

A linear difference scheme is L-R 

bounded as T ➔ 0 with T constant. 

13 

.... -1 
stable if R (T,T) is unifo1:111ly 

For the particular class of problems considered by Lax and Richtmyer, 

Lax has proved an important theorem which is known as the equivalence 

theorem of Lax (see Richtmyer [1957], p. 45). This theorem states 

that convergence and L-R stability are equivalent. We shall prove a 

similar theorem for schemes of type Ru= (u
0 

,f,¢). The conditions for 

which this theorem is valid will be the same as those required by Lax, 

apart from the consistency condition, compare section 4 • 
• 

Theorem 6.1 

Let the domain of definition of - -1 
the operator R ~ ,T) be a Banach 

.., 
space B. Given a linear initial boundary value problem LU= (U0 ,F,4i) 

which is well posed, and a linear difference scheme Ru= {u
0
,f,,) 

which is a consistent approximation of the continuous problem for 

all elements of B, then L-R stability is a necessary and sufficient 

condition for convergence of the difference scheme for all elements 

of B. 

Proof 

• 
l. • e. 

First we prove that a convergent scheme is necessarily L-R stable, 

the operators {R-1
(T ,T)} are unifo1·1nly bounded as T ➔ 0 with T 

T 

constant. Using the theorem of Banach-Steinhaus it is sufficient to 
--1 

prove that R (T,T)(U0 ,F,<I>) is unifo1·1nly bounded as T-+ O, where 

(U0 ,F,~) is an arbitrary element of the Banach space B. 

Let [ Jd(T') denote the discretization operator corresponding to t 
T • 

Then it follows from form~la (6.4) together with the convergence oz the 

scheme and the condition that the initial boundary value problem is 

well posed, that 

(6 .5) = Lim Lim 
T➔O T '-+O 

• 

--



= Lim 
T-+() 
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= Lim lllulll = I 1u111 < 00 

-r ➔O 

for each element of B. This proves the L-R stability of the difference 

scheme. 

We now prove that, 
-

Let u = 
... -1 ... ... --
R (U0 ,F,¢) and 

conversely, L-R stability implies convergence. 
-1 U = R (U

0
,F,~). Then we have by the consistency 

and L-R stability of the scheme 

(6.6) L.im JI Ju - ~ Ill = Lim Lim 

= Lim 
T-+Q 

T-+Q T '-+Q 

< Lim II R·-l (T , T)II 
T-+Q 1-+Q 0 

= Lim 
T-+O 

-
F - F, 

--

From this theorem it follows that R-F stability implies L-R stability, 

so that one should require L-R stability instead of R-F stability in order 

to guarantee convergence. However, in all examples known to the author in 

which L-R stability is proved, one has actually proved R-F stability 

(compare for instance the examples given by Richtmyer [1957]). Therefore, 

it should be of interest to know when L-R stability and R-F stability 

are equivalent. For instance, it is possible to prove the following 

theorem. 

Theorem 6.2 

Let the conditions of theorem 6.1 be satisfied and let for each.T > 0 
s® 

Further, let 

Then L-R stability and R-F stability are equivalent when the subspaces 

A are unifo1,nly bounded in T. 

Proof 

We have 

11 R -l { -c , T) I = Sup --
(u0 , f, cp)E [A]d 



-- Sup 
(U0 ,F,<l>)EA 

< c Sup 
(U0 ,F,¢)EA 

15 

--1 
< c R (T,T) Sup(I (U

0
,F,<t>)lf. 

A 

From this we see that L-R stability implies R-F stability. 

The converse follows from theorem 6.1. 

As an example we consider the case where E
0

(G), E(G) and E(f) 

are the spaces of all functions which are continuous on G, G x [O,T], 

and on r x [O,T] respectively. These spaces are Banach spaces with 

respect to the nonns 

(6. 7) Max 
G 

-- Max 
ax[ 0, T] 

Max 
rx[O,T] 

It can easily be verified that B = E0 (G) x E(G) x E(f) is a Banach 

space with respect to the norm defined by (2.6) and (6.7). 

In the same manner we define maximum norn1s in the spaces E0 (GT) , 

'E(f ), E(G) and E(G). 

E(G ) , 
T 

T T 

For this example the conditions of theorem 6.2 can easily be satisfied. 

6.4 Stability in the sense of O'Brien, Hyman and Kaplan 

If the net QT is refined and Tis kept constant, the F-W, R-F 

and L-R stability conditions guarantee a certain insensitivity to 

perturbations of the data. However, nothing is said about the calcu

lation of the difference solution u on a fixed net QT. Let us consider 

step-by-step methods, i.e. processes in which u is constructed by suc

cessively calculating its level functions uk which are fo11ned by the 

values of u in the points GT x tk. For large values of Nit is impor

tant to know the behaviour of the perturbations as a function of tk in 

order to derive conditions which prevent an accumulation of round-off 

errors at the end of the step-by-step method. To describe the develop-
• 
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ment of the round-off errors we consider the behaviour of II R -l (T, T)II 
as a function of T, where l is kept constant (cf. O'Brien, Hyman and 

Kaplan [1951]). 

Definition 6 • .f 

• 

A difference scheme is B-H-K stable if 
-1 

R (T, T) is uni fo1·1nly continuous 

in the point (u
0

,f,~) as T + 00 with T constant. 

This stability condition prevents an accumulation of the perturbations 

at the end of a step-by-step method and is, therefore, very important 

from the practical point of view. • 

In their paper, O'Brien, Hyman and Kaplan distinguished weak and 

strong sta~ility. These fonns of stability may be interpreted as initial 

stability and inner or boundary stability. 

Finally, we note that the concept of linear instability introduced 

by O'Brien, Hyman and Kaplan, may be expressed by the foxmula 

(6 .8) 

with q > 0 and T constant. This concept may be compared with the F-W 

stability where IIR-1 (-r,T)II behaves as a negative power of T as T + O. 

7. An example 

In this section we shall illustrate the theory of the preceding 

sections by a simple example. It will be shown how one may construct 

difference schemes and improve the accuracy in certain cases. Further, 

a difference scheme will be given which yields the exact analytical 

solution of the differential problem, but which is an unstable scheme 

in the sense of O'Brien, Hyman and Kaplan. Finally, it will be shown 

that a stability condition which guarantees stability with respect to 

one norm, may 1 ead to ins tabi 1 i ty with res pee t to another no1·111. 

Let us consider the differential equation 

(7.1) 
• 
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-for O < t < T with the initial condition U = u
0 

fort= o. 
In_this example the domain G consists of only one point, r is empty, 

E(G) is a space of scalar functions depending on t, and E
0

(G) is the 

real axis or, if desired, the complex plane. Evidently, the problem 
-is of the type LU= (u0 ,F). 

The net Q will 
T 

be defined by points 

and T = TIN, and the difference scheme Ru 

equations 

(7.2) 

- -

where k = 0,1, ... ,N 

is defined by the 

• 

In these equations we have uk = u(tk), u1 = U(t1 ) and p > O; a, Band 

Y are parameters which have to be dete1·1nined in such a way that the 

scheme is a consistent approximation of the initial value problem. We 

remark that the value of u
1 

may be found within any order of accuracy 
-p by using a Taylor expansion of U in the point t = 0 and by deter-

mining the coefficients from equation (7.1). 

7 .1 Consistency 

Let us assume that DL consists of functions which are differentiable 
-a sufficient number of times. Then, by substituting U into (7.2) and 

..., 

expanding U in the point t = tk, we find fork= 1, 2, ..• , N-1 the 

equation 

(7 .3) (a. (1 + T dt + 

where 

1 2 
T 

2 

-

+ ••• > + a + Y <1 - T d t 

• 
t=t . k 

1 2 a2 
+ 

2 
T 



FI"Om this we obtain 

(7 .. 4) 
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-
u + 

k 
( a. - Y)T 

3! 
1 

The error of the approximation is given by 

(7.5) 

-

-

3 a3 ~ 
+ • . • . 

so that f - f must converge to zero as T ➔ 0 for all k. Since the 
k k 

and difference scheme does not depend on the values of fk for k - 0 -
- ..., -

for k N, may define f = fo and f :::= fN. The values of fk - fk - we - 0 N -
k - 1' 2, N-1 depend on the class C of functions u under - - •• J 

consideration. 

Let NL be the space of functions which are solutions of the homogeneous 

differential equation, • 1.e. 

We consider the following two cases: 

(a) NL_i_s_c __ o_n_t_a_i_n_e_d ___ in __ C. Let us choose 

(7.6) 1 
a+ 8 + y - 1 = O, a - y - - = O. 

Substitution of (7.6) into (7.4} yields as T ➔ 0 the expression 

-(7.7a) 1 a2 
= 2 (20.T - l)T 2 

+ 0(-r ) • 

From this we conclude that the choices 20.T - 1 = 0(1) as T ➔ O and 
' 

p > 1 together with (7.6) lead to a first order approximation, and 

the choices 2aT - 1 = O(T) and p > 2 together with (7.6) lead to a 

second order approximation. 

(b) C is contained in NL. Here we use the fact that 

we obtain 

- -= - U. From (7.4) 
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-
(7.7b) 

1 3 -(a - Y)T + •.. Ju. 
k 

In this simple case it is possible to choose a, 8 and yin such a way 

that the error of the approximation is zero for all T, i.e. 

(7 .8) a= 1, S = - exp(-T), Y = o. 

The difference scheme becomes 

(7.9) 
• 

• -which leads to the analytical solution u. However, in the homogeneous 

case the coefficients a, Sand Y as defined by (7.8), give rise to 

only a first order approximation. 

It is possible to construct a difference scheme which solves the homo

geneous case exactly and which approximates the inhomogeneous case 

with second order accuracy. Substitute (7.6) into (7.7b), then 

- = [2CXT -
2! 

-

T 2 + _2_a_T~--1_ T 3 _ _1_ 
4 ! 5 ! 

It is easily verified that fk = 0 for 

2 4 
T T 

+ + 3! 5! • • • Sinh T - T (7.10) 2CXT 1 - -- - -3 cosh 1 • 
T -

T T 

2! + 4! + ••• 

On the other hand, we have 

(7.11) 2aT - 1 ~ 1 
3 

T as T + 0, 

so ·that the inhomogeneous case is approximated with second order 

accuracy. 

7.2 Stab~lity ' 

We shall study the stability of the scheme which arises from 
• 

(7.6), i.e. the scheme 
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(7.12) 

where 

p = 20.T - 1. 

It is convenient to write this scheme in the equivalent form 

(7.13) 

p--r 
=2.;,._-u+ 

p+l k 

1 
vk+l = b uk, 

1-p 
l+p 

b V + 
k 

2T 
p+l 

where k = 1, 2, ... , N-1 
' 

p ~ -1 and where bis a parameter~ O. 
' 

-+ 
Introducing the vec_tor wk with components uk 

-+ 
and vk, the vector gk 

with components fk and O, and the matrix A, where 

2 

(7.14) A -- 1 

b 

and setting 
• 

(7.15) 

p-T 
p+l 

I = 

b 
1-p 

l+P 

0 

2T 
E, 

p+l 

' 

where Eis the identity matrix, we may write the difference scheme as 

(7.13') 

-+ -+ ➔ 
This scheme is of the type Rw = (w1 ,g). 

Next we define in the space E(GT) of 
-

in terrr1s of the norm in E0 (GT) : 

(7 .16) 111;111 = 
➔ 

Max II wk II. 
k 

➔ 

difference solutions w a norm 

It can be proved that (see chapter II, section 3.1 and section 4) 

(7.17) 

We now discuss the cases of initial and inner stability • 

• 
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(a) Initial sta.bil~~Y.· It i.s clear from inequality (7.17) that the 
. T wr :• q 10 l II If • .,. I I 

condi ti.on 

fl Ab < 1 + 0 ( t) as T ➔ 0 

+ 
guarantees R-F stability with respect to w1 , and that 

guarantees B-H-K stability in the weak sense. 

The not"t'.11 of A depends on the nor1n we choose in E0 (GT) . Let us consider 

the no1"ltls 

(7.18) 11: II = k p 
= 2 00 ' . ' 

When p = 2 the norm of A is the spectral norm. By choosing 

b =. (1 + p)/(1 - P) and lol < l,the matrix A becomes symmetric, 

so that flAl!
2 

is equal to the spectral radius a (A) of A. In this case 

we derive that 

(7.19) IAll2 :: 1 

I IAI 12 < 1 

for 

1 
for 

2 

1 
p = 2 T' 

T < p < 1. 

For p < 0 we have instability. The case p > 1 may be investigated by 

using the relation 

* o (AA ) , 

* A being the conjugate transpose of A, which holds for any matrix A. 

However, in section 3.2 of chapter II we shall give a less laborious 

metho•d of analysis .. 

When p = 00 the norm of A is the maximum no1,n. Choosing b = 1 we find 

that 

II Al 1 + 2 
,:- -2P 

for 0 < < 1 - p T' - l+P 2 00 

(7 .. 20) 

II AJ,1 CX) 1 for 
1 

1' < < 1. - p -
2 
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From (7.19) and (7.20) it follows that, with respect to the spectral 

no11n as well as the 

and B-H-K stability 

• maximum 
1 

for 2 T 

norm, there is R-F stability for O < P < 1 

< p < 1. This implies that the scheme arising 

from (7.10) is not B-H-K stable, although it yields the analytical 

solution in the homogeneous case. 

(b) _I_~ner s-:tabili ty. From (7 .17) we derive that the scheme is R-F 

stable when 

II All < 1 + 0 (T) as -r ➔ 0 

and B-H-K stable in the strong sense when 

11 All < 1. 

Thus R-F stability with respect to the initial condition implies 

R-F stability with respect to the inhomogeneous te1~1, irrespective 

whether the spectral or the maximum norm is used for A. However, 

the results (7.19) and (7.20) indicate that 
1 

for - -r < p 
2 

< 1 the scheme 

is only B-H-K stable when the spectral norm is used. In fact, for 

nonn in the sense of O'Brien, Hyman and Kaplan. This shows that stabili

ty_depends on the choice of norms in the function spaces E0 (GT) and 

E(G ). 
T 

• 



Chapter II 

TWO-LEVEL DIFFERENCE EQUATIONS 

1. Introduction 

In the preceding chapter we have discussed three important con

cepts, viz. con~istency, convergence and stability, which provide 

conditions for the successful application of the method of finite 
' 

differences to initial boundary value problems. 

In this chapter we shall consider these conditions more closely for 

a particular class of difference schemes which are called step-by-step 

methods and which are described by two-level difference equations. In 

most cases the consistency condition is easily satisfied and we shall 

concentrate our attention to the R-F stability in order to guarantee 

convergence and to the B-H-K stability for preventing accumulation 

of round-off errors. 

We begin with analysis of stability. For stationary step-by-step 

methods a simple algebraic criterium is derived which guarantees B-H-K 

stability. The case of R-F stability is more difficult and requires 

further attention. For general stationary schemes a necessary criterium 

for R-F stability is given, which is known as von Neumann's condition. 

By restricting the class of difference schemes in an appropriate way 

we are able to reduce the problem of R-F stability to an algebraic 

problem in matrix theory. This results in a number of criteria which 

are sufficient for R-F stability. 

In many cases the R-F stability conditions which have to be imposed 

upon the net Q in 
T 

order to guarantee convergence are rather unattractive 

in actual computation. For instance, if we are not content with the 

accuracy we have obtained, we may decide to refine the 

is often necessary to refine the set of 

net G. Then it 
T 

to a much greater 

extent than accuracy would require. For that reason it is desirable to 
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aoften the stability conditions of the difference scheme. The main 

part of this chapter will be concerned with appropriate transformations 

of the difference scheme in order t,o make the stability conditions less 

stringent .. We consider 

(a) the aethod of non-uniform time steps, 

(b) the method of implicit difference schemes, 

(c) the method of dissipative terms. 

(a) The use of non-uniform time steps will be investigated for schemes 

in which a certain difference operator has either real or imaginary 

eigenvalues. The case of real eigenvalues reduces essentially to a 

well-known method which uses Chebyshev polynomial operators and which 

was developed for the iterative solution of elliptic boundary value 

problems. See Flanders and Shortley [1950], Young [1953] or Forsythe 

and Wasow (1960], p. 227 .. This method was used by Yuan'Chzhao-Din [1958] 

to construct R-F stable schemes for the solution of self-adjoint para

bolic initial boundary value problems (compare Saul •yev [1964] and 

Franklin [1959]). However, his method is not B-H-K stable in the strong 

sense and, as the method has the property that the perturbations of 

the difference solution, due to the round-off errors associated with the 

application of the Chebyshev polynomial operators, are 11ot at random, 

this method may lead to a large accumulation of round-off errors. We 

shall slightly modify the method to guarantee B-H-K stability in the 

strong sense .. 

In the case of imaginary eigenvalues it turns out that the time steps 

have to be chosen complex. This implies that one has to use twice as 

much storage 1·oom as was needed for the original scheme. However, the 

stability conditions are considerably softened .. The method can be 

applied to transport problems, for instance the North Sea Problem 

discussed in chapter I I I, and yields seemingly new diffex·ence schemes. 

(b) It will be shown that a very general class of difference schemes 

can be transformed into implicit difference schemes which are uncon

ditionally B-H-K stable and which unconditionally satisfy von Neumann's 

criteriua. However, this practical advantage has to be paid for by 

solving a matrix equation at each time step. Fortunately, such matrix 

• 
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equations are not ill conditioned so that fast converging iteration 

methods may be applied (see chapter IV). 

(c) The effect of methods (a) and (b) may be interpreted as the intro

duction of viscosity terms of increasing order into the original scheme. 

This suggests the consideration of other types of dissipative terms. 

In this chapter the effect of an inertia te1111 will be studied. 

2. Two-level for1nulae 

Let E(GT) and E(r) be subspaces of E(G) consisting of functions 
T N N T 

which are zero on ~ T x tk} 0 and G_r x_{ tk} 0 respectively, and ·1et 

E0 (GT) and E0 (r T) be subspaces of E0 (G-r) consisting of functions which 

are zero on rT and GT. Further, let the functions uk, fk and ¢k for 

k = 0, 1, ... , N be net functions lying in E
0

(G1") and defined by the 

values of u, f and in the points of the net G-r x tk. Clearly we have 

fk E E 0 (GT) and ¢k E E0 (rT) fork= O, 1, ... , N. The functions uk, 

fk and ¢k are called level functions. 

We now define a difference scheme by the two-level fo1·111ula 
• 

(2 .1) 

where Ak, Ik and Bk are linear operators uniforinly bounded as T ➔ 0 

with domain in E0 (GT), E 0(GT) and E0 (r T) respectively and range in 

E (G). It is clear that (2.1) describes a difference scheme in the 
0 T 

sense of definition 2.1 of chapter I. 

As soon as the data u 0 , f and ¢ are given one may step-by-step 

construct the difference solution u from the level functions uk, fk 

and ~k- Most difference approximations of linear initial boundary 

value problems can be reduced to schemes of type (2.1). 

In order to study the stability properties of (2.1) we write 

(2 .2) 

where POk' Qk and Skare operators defined by 

• 
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(2 .3) 
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1 

II A for 0 < 
m 

m=k 

1 for 

k+l 

L plk 11-1 fl-1' 
l=l 

k+l 

l=l 

1 < k 

1 > k, 

Since the difference scheme is linear, the stability depends 

behaviour of llR-1
11· as a function of 1' and T. We shall relate 

to the no1ms of POk' Qk and Sk. For that purpose we define 

upon the 
' 

(2.4) 

Throughout this monograph it will be assumed that the no1111 in 

is expressed in this way. Further, we define the quantities 

(2.5) I I PO 111 = Max 11 PO kl I , 
k 

IIIQ Ill = Max II Qkll , 
k 

lllsll 

E(G ) 
T 

where II P Oki! , II Q I and II ski! denote the nor1ns of P Ok, Qk and Sk. 

From chapter I, fo1-rnula (4.7), and fo1"1r1ulae (2.2), (2.4) and (2.5) 

we find 

(2.6) ll I s l 11 > • 

The quantities II\P0 Ill, IIIQ Ill and Ills 11 deterinine the initial, the inner 

and the boundary stability respectively. We shall investigate these 

quantities seperately in the following sections. 

This section is concluded with some examples of difference 

schemes of type (2.1). 

Example 2.1 

Consider the scheme defined in section 7 of the preceding chapter. 

This scheme was reduced (compare fo111tula . (7 .13')) to equation (2 .1) 
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without boundary conditions. 

Example 2.2 

Many linear partial differential equations in time t and space 
➔ 

coordinate x can be reduced to the form 

- --(2.7) ut =DU+ F, 

~ ➔ 
where Dis a differential operator in x defined in a domain G. Let 

be an initial function defined on G, let F ➔ = 0 for x Er and let~ 
-+ 

be a boundary function such that = 0 for x E G and 

-u = 
• 

➔ 

for X E r. 
Further, let we choose the points kT on the t-axis and a net 

G. Then, by replacing the differential quotients in (2.7) by 
~ quotients defined by the values of U in 

obtain the consistent difference scheme 

(2 .8) 

~ 

the netpoints of Q, 
T 

G U r in 
T T 

difference 

we may 

where Dis a difference analogue of Din G , 1 
T 

+ -rD = 0 in r , I 
T 

= "T 

and E+q>k = cpk+l· 

Difference schemes of type (2.8) are very important and the greater 

part of our consideration will deal with such schemes. 

3. Stability with respect to the initial condition 

In this section stability will mean stability with respect to the 

initial condition. This form of stability is extensively investigated 

in literature and many authors restrict their stability considerations 
. 

completely to stability with respect to the initial condition. We men-

tion Esch [1960], Kreiss [1962], Richtmyer [1957], Saul'yev [1964] and 
' 

Todd [1956]. 

We shall merely give an outline of the theory of stability analysis 

and we shall restrict our considerations to the reduction of the 

stability problem to a problem in matrix theory. 



3.1 Non-stationar~ oper~tors Ak 

Let us define 
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(3.1) 111 A II I = Max 11 Akll · 
k 

Theorem 3.1 

For difference scheme (2.1) we have the following stability criteria. 

< 1 + O(T ln -r) 

< 1 + O(T) 
• 

--> --
--> --

F-W stability. 

R-F stability. 

(a) 

(b) 

(c) 

IIIA 11 

IIIAI I 
IIIA Ill < 1 

as T-+ O 

as T-+ 0 

as T ➔ 0 --> -- B-H-K stability (weak stability). 

Proof 

(3.2) 

The theorem follows immediately from the inequality 

Max 
k 

Example 3.1 

We shall investigate the equation 

- ... -
(3.3) U - U + aU = F 

t xx 

-for O < x < 1 and O < t < T with the initial condition U = u0 fort= 0, 
- -

and the boundary conditions U 
X 

-+ bU =~in x = 0 and u =¢,in X = 1. 

The parameters a and bare real. 

We choose a net 

= (j.;,k1) where 

Q in which the net 
1' 

, = 1/m, T = TIN, j 

X 

points are given by (xj,tk) = 
= 0, 1, ... , m and k = O, 1, 

The value of~ is expressed in terms of 1 by the relation 

(3.4) 

where r is a constant. 

-- ' r 

. . . , 

We may construct the following consistent difference approximation . 

• 

N . 
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r - b 
-1 

T) [ ruk + (1 - 2r -

r ( r - b 
-1 

T) X f -
+ k r - b 

uk+l = rX_uk + (1 - 2r - aT)u + rX u + Tf in J·-1 2 m 1 k +k k -, , ... ,-, 

+ (1 - 2r - aT)X uk + ru + TX f + 
- k - k 

in j=m, 

where X+ is defined by X+uk(j~) = uk((j+1)~). 

Choosing the maximum norm in E0 (GT) we obtain for the matrix A the 

bound • 

(3.6) 11 A 1100 = Max { 1 , r I r - b T I - l } ( 2 r + l 1 - 2 r - a T I ) • 

Applying theorem 3.1 we may derive that for b < 0 the scheme is R-F 

stable when 

(3.7) 

and B-H-K stable when 

(3.8) 1 r < 
-2 

1 r < 
-2 

1 
-

2 
aT, a> O. 

There is no R-F stability for b > O, but there is B-H-K stability in 

the cases 

(3.9) 1 1 
r < 2 - 2 aT, a> 0, -r > 

(3.10) 1 1 
r _< 2 - 2 aT, a> O, 

3.2 Stationary op~rators A 

4r 
2 , 

b 

< T < 

When A does not depend on k, the stability criteria given in theorem 

3.1 may be weakened in a number of cases. · 
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Throughout this section it will be assumed that in the finite 

· dimensional space E
0 

(GT) a no1111 is defined according to an inner

product in E
0

(GT). Then we may represent the bounded linear operator 

A with respect to an arbitrary orthonormal base in E0 (GT) by a matrix 

which will also be denoted by A. 

From (2.3) and (2.5) we have 

(3.11) Max JI Ak II, 
O< k<N-1 

where N = T/-r • If II AN If is uniformly bounded as T ➔ 0 or T ➔ oo, then 

is unifor·1nly bounded as T ➔ 0 or T ➔ co. Note that the c.ri teria 

given in theorem 3.1 were derived from the requirement that, as 

T-+ 0 or T + oo, II IN is uniformly bounded for all k. 

When the matrix A is normal, i.e. when AA* = A*A where A* is the 

conjugate transpose of A, then this condition on II AN II reduces to the 

criteria of theorem 3.1, since 

(3.12) 

where cr(A) is the spectral radius of A. 

In general, however, we have 

(3.13) 

Therefore, we may find weaker stability criteria than indicated by 

theorem 3.1 in the stationary case. 

Lemma 3.1 

Let N = TIT and let p be the largest order of all diagonal submatrices 

J of the Jordan normal fo1·n1 J of A with cr (J ) = 0 (A) . Then, as -r ➔ o r r 
or T + oo 

(3.14) 

where v depends on -r , but does not depend on T . 

• 
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Proof 

According to Varga [1962], p. 64, we have for large values of N 

(3 .. 15) ( N ) 
p-1 

o(A) N-p+l 
' 

where v' is a positive constant which only depends on the matrix A. 

In fact, v' satisfies the inequality 

(3 .16) 1 

where Sis a nonsingular matrix related to A by the -1 
equation J = SAS . 

called the condition number of the matrix A (cf. Varga 
• 

[1962], p. 65). Thus v' is bounded by a quantity which does not depend 

on T. 

The 

fo1::1nula. 

N 
binomial coefficient ( 

1
) may 

p- be transfo1·med by Stirling's 

For large values of N we have 

(3.17) ( N ) _ v , , Np-1 
p-1 ' 

where \.> '' is a constant not depending on N. 

Substituting (3.17) into {3.15) and setting\.> 'v'' = v we obtain (3.14). 

Theorem 3.2 

Let µ{A) be the maximal multiplicity of 

la .I = o(A). Then scheme (2.1) is B-H-K 
J 

or if cr (A) < 1 • 

Proof 

the e i gen values a . 
J 

stable if a (A) < 1 

of A with 

and µ (A) = 1, 

Applying lemma 3.1 with o(A) < 1 and µ(A)= 1, i.e. p <µ(A)= 1, 

we for T ➔ 0. This is also the 

case if a(A) < 1 and µ(A) arbitrary. 

Note that we have linear instability if a(A) < 1 and p > 1, and 

exponential instability if cr(A) > 1. Thus cr(A) < 1 is a necessary 

condition for stability. 
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This theorem will be needed in the stability analysis of a diffe

rence scheme for the North Sea Problem, which is discussed in chapter 

III. 

When Tis kept constant and T tends to zero, formula (3.14) may be 

used to investigate F-W and R-F stability. From (3.14) and (3.16) we 

deduce for F-W and R-F stability the necessary criteria cr(A) < 

< 1 + O(t ln t) and a(A) < 1 + O(t) respectively, as t ➔ 0. In order 

to obtain sufficient criteria we have to know something about the 

behaviour of v as a function of T. From formula (3.16) we see that this 

behaviour is deter1r1ined by the matrix S. 

Theorem 3.3 

Let the condition number of the matrix A be uniformly bounded as T ➔ O. 

Then scheme (2.1) is F-W stable if a(A) < 1 + O(T ln -r) as T 7 0 and 

R-F stable if a(A) < 1 + O(T) as t ~ 0 and µ(A)= 1. 

Proof 

The theorem follows immediately from lemma 3.1, formula (3.16) and 

the assumptions of the theorem. 

In general, the analysis of the condition number of A as a function 

oft is difficult. However, when R-F stability is investigated, the 

following lemma may simplify the analysis. 

Lemma 3.2 

Let A= B(T) + TC(t) 
N where B (T) and C(T) are uniformly bounded as T ➔ O. 

N 
Then A is unifo:r·1nly bounded as T + 0. 

A proof of this lemma may be found in Strang [1964]. 

As an example we consider difference schemes in which the operator 

A is of the form 

(3.18) A(T); A(O) + TC(T), 

where A(O} and C(T) are matrices of constant order and C(T) is uniformly 

bounded as T + O. Such difference schemes arise from ordinary differ-
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ential equations. The condition number of A(O) does not depend on T. 

Therefore, according to lemma 3.2 and theorem 3.3, the scheme is R-F 

stable provided that a(A(O)) < 1 and µ(A(O)) ~ 1. 

In the case of difference schemes for partial differential equations 

the order of A is not constant, but tends to infinity as T ➔ O. However, 

in some important cases it is possible to reduce the stability problem 
A 

for the matrix A to an equivalent problem for a matrix A of constant 

order. 

Let us consider the elements e
0 

of E
0

(GT) of the form 

• 

where v 0 is a (vector) function of E
0

(GT) with values for the, say n, 
(1) {n) . h d components v0 , •.. , v

0 
whic do not depen 

➔➔ 

on the net 
➔ 

point x. of 
J 

the net G, and where s(w,x.) is a scalar function 
T J ➔ 

defined on G, 
T 

➔ 
which depends on a vector parameter w lying in the x-plane. Further, 

let A be an operator with the property that • 

(3 .19) 

A ➔ ➔ A ➔ 

where A(w) is an x n mRtrix which depends on w. A(w) is called the 

amplification matrix. For the scalar functions 
➔ ➔ ➔ ➔ 

we define an inner-product (s(w1 ,xj),s(w2 ,xj)) by summing the values 
➔ ➔ ➔ ➔ 

of s(w1 ,xj) s(w2 ,xj) over all net points (the bar denotes the conjugate 

value), and for functions of E0 (GT) we define an inner-product by sum

ming the the inner-products between the corresponding components from 

1 ton. 

Theorem 3.4 

Let A satisfy (3.19), where the functions 

orthonormal set for the components of the 

the following inequality holds: 

➔ ➔ } s(w,x.) ➔ form 
J w 

functions u 0 of 

Sup 
➔ 

w 

..... k -+ 
A (w) . 

• 

a complete, 
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Proof 

we may represent an element u0 of E0 (GT) in the for1n 

➔ 

uo = vo(w) 
➔ 

w 

➔➔ 

s(w,x .) • 
J 

From the definitions of the inner-products and the fact that the functions 

{s(;:,~.)}-+ are orthonormal, it follows that 
J w 

Hence 

\ -k ➔ -+ -+-+ 
= (l A (w)v0 (w)s(w,x.), 

➔ J ➔ 

--

w w 

➔ 

w 

..... k ➔ -+ -+-+ 2 

= Sup 11 Ak (;>II 2 
. 0 

--

➔ 

w 

➔ 

w 

➔ 1 
w 

II Akll = Sup 
..... k ➔ 

Sup II A (w)II · 
uo =1 ➔ 

w 

By means of this theorem we may reduce the R-F and F-W stability 

problem 
.-.k -+ 

matrices A (w). Applying fo1-,r1ula (3 .14) to the analysis of the 
... ➔ 

to A(w) we 
--1 

Sand S , 

still have a factor v which depends on T, but the matrices 

occurring in the upper bound of v, are now of fixed order n. 

This may simplify the problem considerably. For instance, by applying 
-➔ '"' ➔ theorem 3.3 to the amplification matrix A(w) we see that, when A(w) 

➔ 
has eigenvectors which are unifor111ly independent as T -+ O for al 1 w 

(i.e. the deter1ninant of the matrix having the normalized eigenvectors 
..... -+ + 

of A(w) as columns, is bounded away from zero uniformly in T and w), 
➔ 

then Vis uniformly bounded as T ➔ 0 for all w. We obtain the R-F stability 
"" ➔ ➔ 

condition O(A(w}) < 1 + O(T) as T ➔ 0 for all w. 

This stability condition was given by Richtmyer ([1957], p. 64) for diffe

rence schemes satisfying equation (3.19) for the set 



35 

➔ -+ (3.20) 
-+ ➔ 

s(w,x.) = 
J 

exp(iw•x.). 
J 

➔ -+ -+ 
Here w •x . denotes the inner-product of w and 

J 
criteria given by Richtmyer ([1957], chapter 

-+ 
X . • 

J 
IV) 

The other stability 

also hold in the 

general case considered above. Each of these criteria lead to the 

condition 

(3.21) o(A) < 1 + O(T) as T-+ o. 

Thus, they merely indicate that the necessary condition (3.21) (von 

Neumann's condition) is also sufficient for R-F stability. 

In the following subsections we restrict our considerations to suffi-
• 

cient conditions for B-H-K stability and to von Neumann's necessary 
' 

condition. If R-F stability is considered, we shall neglect the terms 

O(T) in A. 

Example 3.2 

Consider the scheme defined in chapter I by fo1111ulae (7 .13'), 

(7.14) and (7.15). In this example the matrix A was given by 

A = 

where b /; O. 

p-1: 
2 

p+l 

1 
b 

1-p 
b 

l+p 

0 
' 

The eigenvalues of A are given by 

Cl. = 
p - T + 1 - 2pT + 

p + 1 

2 
T 

• 

1 
From this we may deduce that there is B-H-K stability for p > 2 T 

(theorem 3.2). Applying theorem 3.3 we find R-F stability for p > 0. 

Recalling that 

the conditions 

a first analysis given in chapter I, section 7 led to 
1 
2 

T < p < 1 and O < p < 1 respectively, it may be con-

eluded that the considerations in this section have led to weaker 

stability conditions. 
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3.3 The method of non-uniform real time steps 

In this section we shall consider difference schemes of the special 

type (2.8), i.e. the matrix A is of the form 

(3.21) A= 1 + TD. 

It will be assumed that D does not depend on k and that the eigenvalues 

o_, j = 1, ... , m, of D satisfy the inequality 
J 

(3.22) - a (D) = a < cS 
m - m-1 

< • • • < 0 = 
1 - 00 < o. 

This type of difference schemes arises from initial boundary value 

problems for parabolic differential equations (compare example 3.3). 
' 

Applying theorem 3.2 we obtain the result that the condition 

(3.23) T < 
2 

o (D) 

is sufficient for B-H-K stability. If (3.23) holds as T + O, then von 

Neumann's condition, necessary for R-F stability, is also satisfied. 

For relatively large values of cr(D), condition (3.23) will lead to 

inconveniently small time steps T. In such cases it is desirable to 

improve the stability. We shall discuss a method by which the stability 

condition is considerably weakened. 

From the theory of the iterative solution of elliptic boundary 

value problems we take the following method (see for instance Forsythe 

and Wasow [1960], p. 226). The operator A is replaced by a polynomial 

of degree n in TD, 

(3.24) 

-1 .e. 

P (TD) = 1 + T D + 
n 

n n 
+ .... +STD, 

n 

where 82 , ••• Sn are real parameters which are unifonnly bounded as 

T + O. Clearly, the scheme 

(3.25) uk 1 = P (TD)u + n k 

approximates the same continuous problem as the scheme uk+l = (1 + -rD)uk. 

The eigenvalues of the operator P (TD) are given by p (To.), j = 
n n J 

= 1, 2, •.. , m ( see figure 3 .1) • 
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• 

• 

fig. 3.1 

I 
I 

' 

1 

.. , .. --~ 
-TO 

0 

TO 

We require that 

that 

cr (P (TD)) 
n 

< 1 where Tis as large as possible. Observing 

we are led to the following problem. 

Given are positive numbers c and b with c < b, and a positive number 

a
0 

less than 1. The problem is to find a polynomial ~(o) of degree n 

in cS such that 

(3.26) 

(3.27) 

(3 .28) 

Q (0) = 1, 
n 

~ (0) as large as possible. 

Let Q (o) be such a polynomial, then we set 
n 

(3 .29) c = cS O, b = o (D) , P <-re> = n 
• 



by which we obtain for 

(3.30) 

38 

P (TD) the spectral 
n 

radius 

Scheme (3.25) satisfies the stability condition 

(3.31) T < Q' (0) , 
n 

where Q~(O) will appear to depend on the value of a. 0 • 

In order to solve problem (3.26) - (3.28) we consider a related 

problem occurring in the theory of iterative processes, namely ~o find 

a polynomial Q (o) satisfying (3.26) which has a minimal maximum 
n 

norm 

over a given negative interval. The solution of this problem was given 

by Markov (see Forsythe and Wasow [1960], p. 227). 

Theorem 3.5 

Given the positive numbers a and b (a< b). The polynomial 

-1 
C (a,b,o) = T 

n n 
(b + a + 26) 

b - a ' 

where T is the Chebyshev polynomial cos(n arccos w), has of all poly
n 

nomials Q (6) of degree n in o satisfying Q (0) = 1, a minimal maximum 
n n 

norm over the interval -b < o < -a. 

We now prove that such a transformed Chebyshev polynomial is also the 

solution of problem (3.26) - (3.28). 

Theorem 3.6 

Given the positive 
-1 (b number a. - T -

0 n b 
polynomials Qn (0) 

numbers a , 
+ a). Then - a 

of degree n 

band c, satisfying a< c < b, and the 

the polynomial C (a,b,6) has of all 
n 

in o, satisfying Q (0) = 1 and IQ (o)I < n n 
< a 0 for -b < 6 < -c, the largest derivative in 6 = O. 

Proof 

The extrema of C (a,b,o), including the boundary extrema in the 
n 

points = -a and o =-bare alternatively +a0 and -a
0 

(see figure 

3.2). 
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C (a,b,o) 
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fig. 3.2 

y 

l 

' 

Leto= -o be the point in which the curve y = C (a,b,o) assumes its 
n 

first non-boundary extremum negatively from o = -a moving along the 

O-axis, and suppose that -o < -c 

divides the rectangular domain R 

<-a.Then, the curve y = C (a,b,o) 
n 

bounded by the lines y = + a
0

, 

o = -6 and o = -b into n disjunct domains (see figure 3.2). 

Let Q (o) be a polynomial satisfying the conditions of the theorem n 
and the inequality Q'(o) > C'(a,b,o) in o = O. Now Q (o) intersects 

n n n 
the curve y = C (a,b,o) at least twice outside the domain Rand intern 
sects y = C (a,b,o) n-1 times in R unless one or more points of intern 
section coincide with the non-boundary extrema of C (a,b,o). Since 

n 
Q (o) cannot leave R for -b < o < -o, we have in the latter case 

n 
second order points of intersection. This implies that the polynomial 

V(O) = C (a,b,o) - Q (o) has n+l zeroes. This contradiction excludes 
n n 

the possibility that Q'(o) > C'(a,b,o) in 6 = O. 
n n 

If the derivatives in o = 0 are equal and Q (o) i C (a,b,o), we have 
n n 

a second order point of intersection in o = O, which leads to the same 

contradiction. This proves the theorem for -o < -c. 

The case -c < -8 is proved analogously. 

Theorem 3.7 

Let a and b satisfy the inequalities O <a< c0 and b > cr(D). Then the 

following approximations hold for the scheme uk+l = Cn(a,b,D)uk. 
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(3.33) 

T -
2n2 

b 
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th(2n a) 
b -----,a<< b, 

2n 
a 
b 

-1 a 
o(Cn(a,b,D)) - cosh (2n b), a<< b. 

Further, the scheme is B-H-K stable and satisfies von Neumann's condition 

if a> O, or equivalently if 

(3.34) 
• 

Proof 

T < 2n2 

b 
• 

Applying theorem 

solves problem (3.26) 

have 

3.6 we see that the polynomial Q (C) = C (a,b,o) n n 
- (3.28). From the definition of C (a,b,O) we n 

Cl 
0 

-1 b + a), = cosh (n ln ~;::::;--~;=; 
b - a 

We now use the approximation 

ln 
b -

• 

C'(a,b,O) 
n 

a 

a 
b 

th(ln 
b + a) 

2n2 b - a -- • b 
2n 

a 
b 

Substituting this into the expressions for a. 0 and C~(a,b,O) and using 

fo:r·1nulae (3.30) and (3.31) we are led to the approximations (3.33) and 

(3.32) respectively. 

The second part of the theorem follows immediately from (3.32), 

(3.33) and theorem 3.2. 

It may be remarked that (3.32) implies that Tb is uniformly bounded 

as T + 0, so that, as T + 0, P (To) is a uni f or,nly bounded polynomial 
n 

on a unifo1mly bounded interval -Tb< TO< -To
0 

< O. Therefore, the 

coefficients of P (TO) are unifo1·111ly bounded which proves the consistn 
ency of the scheme. 
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In order to compare the time steps of the original and the new 

scheme we introduce the effective time step 

(3.35) T 
eff 

th(2n a) 
T 2n b =-=------n b 

a 

b 

(for each time step the computational labour of the new scheme is 

roughly n times as great as the labour of the original scheme). 

Choosing that we have gained a factor 

n th(2n b) in computation time over the original scheme 

(compare condition (3.23)). In figure 3.3 the behaviour of . 

( 2 a)/(2 a) -1 ( a) f a . th n b n b ·and cosh 2n b as unctions of 2n b 1s illus-

trated. 

1 

0 

-1 
cosh (2n 

b 

• • 
• 
' • 
• 
• 
a 
1 

th(2n 

2n 
a 
b 

fig. 3.3 

For a= 0 the gain factor assumes its maximal value n. The corresponding 

difference scheme uk+l = Cn(O, a(D),D)uk was employed by Yuan'Chzhao-Din 

(see Saul'yev [1964], p. 317) to solve initial boundary value problems 

for parabolic differential equations. Such schemes are R-F stable as 

well as B-H-K stable (in the weak sense) provided that the problem is 

self-adjoint. Otherwise, we are not sure that the scheme is B-H-K stable 

in the weak sense, but it is certainly unstable in the strong sense 

(see section 4). Therefore, we prefer to choose a> O, which guarantees 

B-H-K stability in the weak sense as well as 

for111ula (3.33) or figure 3.3). Because th(2n 

in the strong sense (see 
a a 
b)/(2n· b) varies slow-
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ly for small values of 2n 

change much by choosing a 

a b' the effective time step -reff will not 

small positive value for a. 

In actual application of the method we shall use the fact that 

C (a,b,o) has real zeroes, 
n 

real linear factors of the 

so that C (a,b,o) can be factorized 
n 

fo1•111 1 - o/z1 , where z 1 is a zero of 

C (a,b,cS). 
n 

From the definition of C {a,b,o) we derive that 
n 

(3.36) 
1 1 

zl = - 2 (a+ b) - 2 
21+1 

(a - b)cos 2n n, 

into 

where 1 = o, 1, . . . , n-1. The difference scheme ass11mes the fo1·m 
• 

(3.24') 

n-1 
TI 

r=O 
(1 + 

where the numbers w (the so-called relaxation parameters) have the 
-1 r 

values -z
1

, 1 = O, 1, .•. , n-1. The scheme (3.24) is uniquely 

determined when we are given the correspondence r = r(l) for 

1 = O, 1, •.. , n-1. With regard to the storage room in the computing 

machine, the factorized form is very suitable. 

Finally, we remark that scheme (3.24') may be interpreted as the 

original scheme with non-unifo1·m real time steps w • 
r 

We investigate for the two-dimensional diffusion equation 

... -
ut = ~u + F 

the Dirichlet problem for the square of side n. 

On a grid with rectangular meshes of sides~ and n we define at the 

internal net points the difference operator D by the fozmula 

(3.37) D = 
+ a + y X 

- + 
a + 2 

- 2 + X - + X - y 
+ 

- 2 + y -
+ ------ -------8 + 2 

where X and Y represent translations+~ and+ n along the x-axis 
+ + 

and the y-axis respectively (compare example 3.1). The parameters 

a and 8 are weight parameters. It is obvious from the structure of D 
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that (3.37) represents a difference analogue of the Laplace operator~

If a= 8 = ~, then (3.37) reduces to the usual five-point Laplace 

difference operator (cf. Forsythe and Wasow [1960], p. 192). However, 

it will turn out that more appropriate choices for a and B can be made. 

We write the opera tor D in the fo:r·in 

(3. 38) 

where the coefficients L. are defined by 
]. 

2 
+ p - y), 

2 
- p ) ' 

(3.39) - 1), 

-2 
E; y , 

+ X ) -

--
et + 2 

2 
+ p 

B 
2' P = t;/n. s + 

y ) -

A consistent difference scheme for the initial boundary value 

problem under consideration is of the for1n (see example 2 .1) 

In order to apply the method of non-uniform real time steps the eigen-

values of D have to be negative. The eigenfunctions of Dare given by 

(3.40) 

1T 
where n = 1, 2, ..• , 

values by 

(3.41) o = L + 
n,m 4 

e = sin nj' sin mln, n,m 

- 1 and m = 1, 2, ... , 1T - 1, and the eigen-
n 

cos cos nt,: cos mn. 

We are interested in the extrema of o • Since o is a harmonic 
n,m n,m 

function of the variables cos n~ and cos mn in the region 

(3.42) - cost;< cos n~ <cos~'~ cos n < cos mn < cos n, 
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o assumes its extrema at the boundary of this region, and because 
n,m 

6 is a linear function of cos n~ and cos mn along these boundaries, 
n,m 

the extrema are assumed in the corner points A(cos ~, cos n), 

B(- cos~, cos n), c(- cos~, - cos n) and D(+ cos~, - cos n). 

From (3.39) and (3.40) we find that 

- --

• 

(3.43) 

2 
2 + [-l_+_P __ -_Y pq~2] 

2 
2P 

2 
p 

- 2Y q] 

- 3y)p + 
2 3+2p -3y 
2 q 

p 

-
2 

_l_+~p __ -_y_ pq~ 

2p2 

where 

-2 -2 
p = 2(1 - cos ~)s , q = 2(1 - cos n)n • 

For small values of~ and bounded values of p and y we have 

(3.43') o ~ -2 
A ' 

-2 
- - 4~ , oc ... - 2 -2 

and o ... - 4(2y-1-p )~ 
D 

as first approximations. To guarantee that the eigenvalues 

negative we require that 

(3.44a) 
1. 2 

y > 2 (1 + p ) • 

Assuming that t > n, i.e. P > 1, we obtain 

(3.45) o - 2, a (D) ... 
0 

-2 2 2 
4, Max(p ,2y-1-p ). 

o are n,m 

Formulae (3.23) and (3.32) indicate that it is desirable to choose a(D) 
• 

as small as possible. Therefore we shall require that 
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(3.44b) 1 ( p2) y < 2 1 + 

which results in the approximation cr(D) - 4p 2 ~-2 = 4n-2 • Substitution 

of this value for b into (3.35) yields for small values of nn 

1 2 1 2 2 2 4 4 
(3.46) Teff ~ 2 nn [l - 3 an n + O(a n n )], 

where O <a< 2. 

It may be 

(a. = f3 = 00 

remarked that the usual five-point difference fon11ula 
2 -2 

or Y = 1 + P ) leads to cr(D) - Sn resulting in effective 

time steps which .are twice as small as the time step (3.46). One may 

object that the values of y satisfying (3.44a) and (3.44b) generally 

give rise to nine-point formulae, which are roughly twice as labor-
2 

ious as the five-point formula with y = 1 + p • However, by choosing 
2 . 

· y = P = 1 we also obtain a five-point for,nula, while (3.44a) and 

(3.44b) are still satisfied. 

3.4 The method of non-uniform complex time steps 

A second important class of initial boundary value problems leads 

to operators of type A= 1 + TD where D has imaginary eigenvalues 

o = iy J. = . . ' J J 
1, 2, . . . , m. Such difference schemes arise from trans-

port problems (see Richtmyer [1957], chapter VII). 

The eigenvalues a. 
J 

(3 .47) 

of A are given by 

1 + 
2 

T 

Clearly, there is no B-H-K stability. 

Leto satisfy the inequality 
j 

Ct.= 1 + TO. 
J J 

2 
y .. 

J 

= 1 + 

(3.48) 0 < a (D) , j = 1, 2, ••• , m. 

Then, von Neumann's condition is satisfied if, as T ~ O, 

(3.49) 'T < C 

<12(D) , 

• 

so that 

where c does not depend on T. In most cases this is a very stringent 



condition .. For instance, let 1/a(D) be proportional to the space step 

(. (co.pare chapter III) .. Then, 1f we are not content with the accuracy 
1 C by a factor 2 , which involves a obtained, we may decide to 

reduction oft by a factor 

reduce 
l 
4 • In auch cases it may be desirable to 

soften the stability conditions. 

As in the preceding subsection the operator A is replaced by a 

polyncmaial operator 

P (tD) 
n 

z 1 + tD + . • . + 

The eigenvalues of this operator are given by the values of p (TO)= 
n j 

' m. Unlike to the situation in the 

preceding subsection, these values here a.re complex. We have the 

.fol lowi.ng theorem. 

Theorem 3 .. 8 

Let ~(z) be a polynoaial of degree n in z which has the fo1m 

(3.50) 
. 2 

Q (z) = (1 - 8 z + 8 z + 
n 2 4 

and let b(n) be a positive number independent of -r such that ~(z) is 

leas than 1 for O < z < b(n). Then, the scheme uk+l = Pn (-rD)uk is 

B-H-K stable and satisfies von Neumann's condition if 

(3.51) T < 

Proof 

·b(n) 
o(D) • 

Let us define the numbers 

is easily verified that 

2 2 
zj = 1 yj, j = 1, 2, ... , m. Then it 

Thus, if (3 .. 51) is satisfied we have 

(3.52) o(P (-rD)) = Max 
n , 

J 

This proves the theorem (compare theorem 3.2). 
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We shall now discuss the construction of Q (z) for n = 2, 3 and 4, 
n 

with the extra requirement that bis as large as possible. 

The polynomial Q
2

(z) 

In the case n = 2, Q (z) assumes the fo11r, 
n 

It is easily verified that we may take 

282 - 1 
• 

b -- , 
82 

2 
• 

• 

provided maximal value of bis assumed for 8
2 

= 1. 

Hence we obtain for the scheme 

(3. 54) = (1 +TD+ 

the stability condition 

(3.55) T < 1 
cr {D) • 

It is not possible to factorize the operator P
2

(TD) in real, linear 

factors. In fact, we have 

(3. 54 ') 

1 
where -r1 2 = 2 (1 + i 3)-r. Scheme (3.54) may be interpreted as the , 
original scheme with non-unifon11, complex time steps. 

In the case n = 3 we have 

(3.56) 

The inequality Q3 (z) < 1 leads, for O < z < b, to the inequality 

(3. 57) (82 - 28 )z + 1 - 28 0 2 3 2 < • 
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From the conditions we deduce that 

(3. 58) 

Let us write (3.57) in the equivalent form 

(3 .. 57') 
1 2 3 - -) + z (B -
z 3 

< 1. 

In the 8
2

8
3
-plane this inequality represents the interior of an ellipse 

with its centre in the point (
1 1 ) and a horizontal axis of length 2/z z' z 

(see figure 3.4). The shaded region in figure 3.4 consists of points 
• 

satisfying (3.58) and (3.57') . 

• 

1/z 

I 

I 
I 
I 
I 

1/s •----------•-----L--
I 

• . , ., 
' . ,,, 

,' ~ ~ ~ ,~ ,. 
' • • __ .,_, -

. _,,,. . ,... . .•• ,,__. 

• 

= 1 0 2 83 2 µ2 

'-----al----------------
li'z 1/2 

fig. 3.4 

It is clear from the figure that b assiimes its maximal value for 

s 
2 

1 1 
= 2 and S3 = 4 , namely the value b = 4. We obtain the difference 

scheme 

(3.59) 

with the stability condition • 
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2 
O(D) • 

In order to save storage room one may use the factorized for111 

(3.59') T D)(l - 1 
zo 4 

where z 0 is the real root of the equation 

(z0 - - 1.56). 

The polynomial Q
4

(z) 
• 

3 
z 

2 
+ 2z + 4z + 4 = 0 

Analogously to the considerations given for Q
3

(z) we obtain for n = 4 

the scheme 

(3.61) ( 1 D l 2D2 
U = +T +-T + 

k+l 2 
1 3 3 
G T D + 

with the stability criterium 

(3.62) T < 
2 2 
a (D) • 

In practice one should use the factorized fonn 

1 
24 

(3.61') uk+l = (1 + pTD + 
2 2 2 2 

q 'T D ) ( 1 + r'T D + s T D ) u k, 

where p, q, rands have the approximate values 

(3.63) p = .9148, q = .2646 , r = .0852 1 s = .1575. 

From theorem 3.8 it follows that the difference schemes we have 

constructed are B-H-K stable and satisfy von Neumann's condition. A 

further advantage over the original scheme is the linear dependence 
' 

of 'T upon 1/o(D) (compare condition 3.49)). 

In order to compare the effectiveness of the schemes 

uk+l = Pn(TD)uk we introduce the effective time step 

(3.64) 'T 
eff 

-- T 

n • 
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t"ra. the condi t.ion:s (3.55), (3 .. 60) and (3 .62) we obta.in respectively 

(3.65) 
0 .. 5 

l < -- , 
eff a (D) 

0.66 
l < 
eff o(D) ' 

o .. 71 
Teff < a(D) • 

In the numerical treatment of the North Sea Probl · (chapter III) 

shall deal with a di.fference scheme which may be improved by the 

method of non-unifot11'1 complex time steps. 

Instead of employing polynomial opera tors P (-r D) to soften the n , 
stabi li tj,' conditions, one May stabilize the scheme uk+l = (1 + t D)uk 

by using implicit schemes, i.e. 

(3.66) (1 - tC)uk+l = (1 + r(D - C))uk, 

where C is a difference operator not depending on k .. Such schemes are 

of type (2 .. 1) with 

(3 .. 67) 

Theorem 3.9 

Let the op,erators C and D have the same set of eigenfunctions with 

eigenvalues y. and 6. respectively. Then scheme (3.66) is B-H-K stable 
J J 

and satisfies von Neumann's condition if T satisfies the inequality 

(3 .. 68) 

Proof 

The 

Max 
j 

eigenvalues aj of the operator A are given by 

1 - -r (y . - o . ) 
a 9 ~ -ii ,_it: --·-•--Jz_ill -HI _.:;,J_ 

J 1 - -ry 
j 

• 

< o. 

The theorem is proved if o(A) < 1. This condition reduces to (3.68) 

as may be verified by direct computation. 

• 
l 
' . 
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Theorem 3.10 

Every difference scheme u = (1 + TD)uk with Rec.< O and o. i o 
k+l J - J 

for j = 1, 2, .•. , m can be transformed into an implicit scheme which 

is B-H-K stable and satisfies von Neumann's condition for unrestricted 

time intervals. 

Proof 

From theorem 3.9 it follows that, if 

(3.69) Reo . < 0, 
J . I~ . 12 -u 2(ReY .Reo. + Imy .Imo.) 

J J J J J 
< o, j = 1, 2, • • • ' m ' 

' 
then scheme (3 .66) _is B-H-K stable and satisfies von Neumann's condition 

for unrestricted time intervals T. 

The first condition of (3.69) is satisfied by hypothesis. 

The second condition may be satisfied by choosing 

(3.70) C = qD, q > 
1 
2 • 

It may be remarked that the implicit scheme we constructed above 

is unconditionally stable, at the cost of the solving of the equations 

(3.71) (1 - TC)uk+l = gk, k = O, 1, 2, •.. , N-1, 

where gk is a kno~n function. The numerical solution of such matrix 

equations is a large and widely studied subject (see for instance 

Varga [1962]). In chapter IV we shall study iterative methods for 

solving matrix equations. 

Finally, we observe that the condition Rea.< O of theorem 3.10 
J 

is related to a similar condition one has to impose upon ordinary 
• 

differential equations in order to guarantee stability in the sense 

of Lyapunov (cf. Cesari [1959], p. 21). 

3.6 Introduction of dissipative terms 

In the subsections 3.3 and 3.4 we have stabilized a given difference 

scheme uk+l = (1 + TD)uk by replacing the operator 1 + TD by a poly-
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nomial operator 

such polynomial 

2 2 n n 
P (TD) = 1 + TD + 13 

2
-r D + . . • + S T D • Physically, 

n n 
operators may be interpreted as the operator 1 + l' n 

to which viscosity te1·rns of increasing order are added (cf. Saul' yev 

[1964], p. 41). In the case of implicit difference schemes we replaced 

1 + TD by the operator A defined by formula (3.67). This operator may 

also be interpreted as the original operator plus viscosity terms. 

Expansion of A in a formal Taylor series yields 

(3.72) A= 1 
2 3 

+ T D + T DQD + l' DQDQD + ••• , 

where Q is defined by DQ = C. The viscosity terms are more general 

than the terms occurring in the polynomial P (TD). In literature, 
n 

. 

Q is called the artificial viscosity (cf. Lax and Wendroff [1960]). 

In the following chapter we shall discuss a difference scheme which is 

stabilized considerably by introducing a viscosity terin of second 
. ~ 2 order, 1.. e. a te1·111 of the form T DQDuk. 

Other types of dissipative te1ms are also possible. 

In chapter III, section 5 we shall need an artificial friction te:nn. 

In this section the effect of an artificial intertia term will be 

discussed. 

Let us change the scheme uk+l = (1 + T D)uk to the three-level 

scheme 

(3.73) 
2 

"C 

where c is a parameter which is unifor1nly bounded as T O. This 

scheme is still a consistent approximation of equation (2.7) (for 

simplicity the inhomogeneous te1·1n and the boundary conditions are 

neglected). We write (3.73) in the form 

(3.73') + (1 - B)u , 
k-1 

where 

4c =----1 + 2c and y = 2 
1 + 2c · 
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By introducing the vector vk with components uk and u and the 
k-1' 

operator 

S + yD 1 - S 
(3.74) A= 

1 0 

the difference scheme reduces to the two-level scheme 

(3. 75) 

➔ 

The initial function v1 of this scheme is composed of the net functions 

and u
1

, where u 1 may be found from the fo1111ula 
• 

The eigenvalues a of A satisfy the equation 

(3. 76) a2 
- (S + yo)a + S - 1 = o, 

where o represents the eigenvalues of D. 

u = (1 
1 

We consider the two important cases of negative and imaginary eigenvalues 

• 

Theorem 3.11 

Let the eigenvalues of D be negative. Then, scheme (3.75) is B-H-K 

stable and satisfies von Neumann's condition if 

(3. 77) T < 
4c 

o (D) • 

Proof 

If the coefficients of the quadratic equation 

are real, and if they satisfy the inequalities 
• 

P < 1, 1 - S + P > o, 1 + S + P > o, 

- sa. + P = 0 

then the roots of the equation are within the unit circle. Application 

of this criterium to equation (3.76) yields the conditions 
• 

( 3. 78) a< 2, -yo> o, 2s +yo> o . 

• 
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In figure 3.5 we have 

illustrated the region of points 

(Y,8) which satisfy the inequalities 

(3.78) (shaded part of the figure). 

From the definition of Sandy the 

theorem follows immediately. 

Comparing this criterium with the criteria derived in section 3.3, 

we see that three-level scheme (3.73') admits arbitrary time steps T. 
' 

However, one needs t•wice as much storage room as the two-level schemes 

given in section 3.3 require. Further, when the net is refined we 

still have to choose T proportional to 1/o(D). Therefore, only when 

a rough knowledge of the analytical solution is needed, the three

level formula may be preferred over the two-level formula. 

It may be remarked that the three-level scheme proposed by du Fort 

and Frankel [1953] for the one-dimensional diffusion equation as well 

as the generalization to two-dimensional diffusion equations by Saul'yev 

[ 1964], p. 157, are special cases of scheme (3.73'). 

We now consider the case where D has non-zero, imaginary eigen

values .. 

Theorem 3.12 

Let the eigenvalues of D be imaginary and let the eigenfunctions be 

linearly independent. Then, scheme (3.75) is B-H-K stable and satis

fies von Neumann's condition if 

(3. 79) T < 
·1 
a (D) • 

Proof 

We introduce 'the real variable z = -iyo, where c is an eigenvalue 

of D. The eigenvalues a of A are given by 
• 

• 



(3.80) • 
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(1 - 1 
4 S2 

- S + iSz). 

It is easily verified that for z = 2 and Bi O the eigenvalues a are 

outside the unit circle. However, for zl < 2 and B = 0 we have that 

I I 11 . 
a. = 

2 
1Z + 1 - = 1. 

Hence we shall choose B = O, i.e. c = 0 and y = 2T. 

From the definition of z we see that von Neumann's condition is satis

fied for T < 1/rr(D). 

Further, using the condition imposed on the eigenfunctions of D, we 
• 

see that for lzl < 2, the eigenfunctions of A are all linearly independ

ent, i.e. µ(A)= 1. From this and theorem 3.2 we deduce that the scheme 

is B-H-K stable if T < 1/a (D). 

Comparing the stability criteriurn of theorem 3.12 with the crite

ria given in section 3.4 (see formula (3.65)), we see that the three

level scheme admits slightly larger time steps than the method of non

uniform complex time steps. However, the last method also guarantees 

B-H-K stability when D has dependent eigenfunctions. On the other hand, 

the three-level scheme has accuracy O(T 
2 ) in T , where the two-level 

fo1·1nulae have accuracy 0(1"). 

An example of a difference scheme which may be successfully trans

formed into a three-level fo:n11ula is given in the following chapter. 

3.7 Concluding remarks 

In the preceding subsections we have given criteria which guaran

tee that the difference scheme is B-H-K stable (in the weak sense) and 

satisfies von Neumann's condition as well. In most cases these criteria 

only consist of an inequality for the time step T. Our first remark is 

that the strict observance of these inequalities is not necessary in 

order to satisfy von Neumann's condition. For future reference we 

summarize the von Neumann conditions associated with the methods of 



56 

non-unifonn time steps, implicit difference schemes, and of three

level schemes. 

Type of the method 

Non-unifo1·1n time steps 

• 

Implicit differenc~ schemes 

Three-level schemes 

TABLE 3.1 

Von Neumann's condition 

real eigenvalues T < 

imag.eigenvalues T < 

2n2 

a (D) 
as T ➔ 0 

,--
\/ b (n) 
a (D) 

as T ➔ 0 

. 2 ' T[lo .1 -2(Rey.Reo .+Imy .Imo.)]+ Max 
• 

J 
. J J J J J 

real eigenvalues 

imag.eigenvalues 

+ 2Rec .} < 0 as T ➔ 0 
J 

4c 
T _< a(D) 

1 
T _< a(D) 

as T ➔ 0 

as T ➔ 0 

We recall that in these conditions it is assumed that terms of order T 

are omitted in the operator A. 

Secondly, we remark that these conditions are not changed when 

Dis allowed to have an eigenvalue equal to zero, which was excluded 

in the preceding subsections. 

Finally, when D has a zero eigenvalue with multiplicity 1, then 

theorems 3.7, 3.8, 3.9, 3.11 and 3.12 still guarantee B-H-K stability. 

4. Stability with respect to the inhomogeneous terms and the boundary 

conditions 

In the preceding section we discussed the stability with respect 

to the initial condition, which was deter1nined by the opera tor PO• 

We expressed a number of stability cri~eria in terms of the operators • 
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In this section we shall consider the stability with respect to the 

inhomogeneous te~1n and the boundary conditions. These kinds of 

stability are dete1·1nined by the operators Qk and Sk respectively 

(see fo1·1nula (2.3)). Using the nor111 definition (2.4), we are only 

concerned with the behaviour of the quantities [IIQII = Max IQ I 
k k 

and 11s[I = Max llskll. We shall give estimates for IIIQ[JI and IIJsJII 
k 

in te1·111s of the operators ~, Ik and Bk. 

In analogy to the definition of I IAIII we define 

(4.1) . I I I 111 = Max 
l 1 

• 

Theorem 4.1 

If the operators Ak are non-stationary we have 

(4.2) A 

Al 
N 

, 

where N = TIT, and if they are stationary we have 

(4.3) 
k 

or 

(4.4) 
N 

l(IQIII < C(-r>lll1l(I L lp-l [a(A)]
1

, 
1=0 

• 

where C(T) is a function of T (and not of T) and pis the largest 

order of all diagonal submatrices J of the Jordan normal fo:rirt J of 
r 

A with cr(J) = a(A). 
r 

Further, the s rune inequalities hold for ll I SI I when I is rep laced by B. 

Proof 

From the definition of the operator we obtain 

k+l 
I I 

11 t II =1 
• 
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k+l 
< Su 

111 f I =1 l=l 

By using (2.4) and (4.1) this reduces to 

k+l 
(4.5) - IIPl 1. 

l=l 

For non-stationary operators Ak we may write 

• 

from which we derive the inequality (4.2). 
, 

For stationary operators A inequality (4.5} reduces to 

N-1 
(4.5') II Q I < Ill I 11 I II A I • 

l=O 

The estimate (4.3) follows immediately from (4.5'). 

In order to prove (4.4) we write 

N-1 N-1 
II A I = I (l l-p [O (A) J-1 11 A I ) l p-l [O (A) J 1 < 

1=0 l=O 

N-1 
< Max (ll-p[a(A)J- )A I) lp-l[cr(A)J1 • 

1 l=O 

From for1nula (3 .14) it follows that the first factor of the right 

member of this inequality is bounded by a function of T which does 

not depend on T. This proves (4.4). 

It is clear that the same inequalities hold for Ill sl I when we 

replace 11 I Ill by Ill B Ill . 

Theorem 4.2 

If the boundary conditions are of the first kind, then scheme (2.1) is 

stable with respect to the boundary conditions. 
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Proof 

It is easily seen from fo11nula (2.3) that for first kind boundary 

conditions 

so that 

111s111 =l. 

This proves the theorem . 

• 

Example 4.1 

Using estimate (4.3) we see that difference schemes of,type (2.8) 

are both F-W and R-F stable with respect to the inhomogeneous tenn 

whenever the schemes are F-W and R-F stable respectively with respect 

to the initial condition. Further, since the boundary conditions in 

{2.8) are of the first kind, we have F-W, R-F and B-H-K stability 

with respect to the boundary conditions. In order to have B-H-K 

stabil1 ty with respect to the inhomogeneous ter111 (strong stability) 

it is not sufficient to require merely stability with respect to the 

initial condition (weak stability). From theorem 4.1 we derive for 

non-stationary processes the condition IIIAIII < 1 and for stationary 

processes the condition o(A) < 1. Note that for o(A) = 1 we have 

linear instability when p = 1 and instability when p > 1. In connection 

with this we mention the special case discussed in subsection 3.3, 

where the operator D had negative eigenvalues. Such schemes were 

stabilized by replacing the operator A= 1 + TD by the Chebyshev 

polynomial operator 

schemes of the form 

(4.6) 

C (a,b,D) with a> 
n 

• 

0 and b > o(D). This led to 

• 

where I= T and where Tis given by formula (3.32). In order to 

guarantee strong stability we require that cr(c (a,b,D)) < 1. 
n From 

fo1111ula (3 .32) it follows that we must choose a > 0 (see figure 3 .3 

in subsection 3.3). • 
• 
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In practice, one uses the fact that tl1e polynomial C (a, b, 6) has real 
n 

zeroes and one actually applies the following scheme (compare fo1·mula 

(3.37)). 

.+.(r+l) 
(4.6') (1 + + I r '+' k ' 

r = O, 1, ... ' n-1 
' 

• 

where I = w , and where r r · 
homogeneous te11I1 and the 

f (r) d ""(r) d" . k an o/k are 1scretizat1ons 

boundary te1:~1n at time t (r) = t + 
k k 

• 

of the 
r 

r=O 
w . 

r 

• in-

These fo11nulae are slightly more accurate than (4.6) and more convenient 

from the computational point of view. However, scheme (4.6') has the 

disadvantage that the numerical solution uk is affected by systematic 

round-off errors rather than by random round-off errors. For large 

values of n this phenomenon may destroy the solution completely 

(numerical instability). In van der Houwen [1967 cJ the problem of 

numerical stability is discussed and arrangements of the relaxation 

parameters w are given, which keep the systematic error small. 
r 

Nevertheless, it is desirable that scheme (4.6') is strongly stable, 

i.e. a > O. 

Example 4.2 

Consider the difference scheme defined by fo1mula (3.5) for the 

one-dimensional diffusion equation in the interval O < x < 1. In this 

case we have 

I= -
r - b 

T 
X+, B = ~~--7=~E+ 

r - b 

I= -r, B = 0 in internal net points, 

I=-rX,B= - in x. = l. 
J. 

in X. = 0, 
J 
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In example 3.1 we have given conditions with respect to the maximum 

norm which 

function (b < 0 and 

initial 

from the 

estimate (4.3) that these conditions also guarantee R-F stability 

with respect to the inhomogeneous te:r.·m. However, since B = 0 ( T) 

we derive from (4.3) that ll]slll < 0(1/ T), so that we only have 

F-W stability with respect to the boundary function~. 

Further, we see from (3.6) that the maximum norm of A is never less 

than 1, hence we have no strong stability with respect to the maximum 

IlOI"IIl. 
• 

• 

' 



Chapter III 

THE NORTH SEA PRO BI ,F!M 

1. Introduction 

The analytical discussion of the non-stationary motion of a 

shallow sea subjected to a windfield meets with considerable diffi-
• 

culties. In a sequence of papers concerning the analytic computation 

of the water elevation of the North $ea (see van Dantzig and Lauwe

rier [1960 a], [1960 b] and Lauwerier[l960 a], [1960 b], [1960 c], 

[1961 a], [1961 b]), one had to simplify the mathematical model by 

neglecting the influence of irregularities of the coast and the 

influence of the Channel leak stream. In fact, the North Sea model 

considered in these papers was a rectangle bounded on three sides 

by coasts and bordering on an infinitely deep ocean on the remaining 

side.·Further, the depth was assumed either to be uniform or to in

crease exponentially in the direction of the ocean. In Lauwerier 

and Damste [1963] a difference scheme was constructed in order to 

deal with more realistic models for the North Sea Problem. This 

scheme, however, was subject to very stringent stability conditions. 

In this chapter it will be shown that this scheme can be stabi

lized by applying the method of non-uniform complex time steps and 

the method of dissipative terms developed in the preceding chapter. 

This will result in three explicit difference schemes satisfying 

stability conditions which are acceptable from the computational 

point of view. 

It will turn out that the friction due to the bottom stress 

plays an important role in the stability properties of the schemes. 

Since the friction will damp the perturbations of the data, we shall 

be interested in the stability of the schemes when friction is omitted. 

Scheme I, which is obtained by the method of non-unifo:rm complex time 

steps and scheme III, a variant of the three-level scheme discussed 
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in the preceding chapter, remain stable for vanishing bottom stress. 

Scheme II, which is a variant of a scheme given by Fischer, becomes 

unstable. We compensate for this by introducing an artificial friction 

te1·1r1 in those cases where the bottom friction is small or absent. 

2. The mathematical model 

2.1 The parti~l differential equations 

The mathematical model for the North Sea Problem considered in 
' this chapter, is an initial boundary value problem for the following 

• 

two equations (cf. van Dantzig and Lauwerier [1960 aJ or Veltkamp 

[1960]). 

(2.1) 

where 

a w ➔ ➔ 

AW - mw - - --at 

a ➔ z div w, - --at 

t is the time coordinate, 
➔ 

➔ 

gh grad Z + F, 

W is the horizontal component of the velocity of the water, 

averaged in vertical direction from bottom to surface, 

Z is the elevation of the water surface with respect to its 

equilibrium position, 

is the surface stress due to the windfield, 

is a coefficient of friction, 

is the coefficient of Coriolis, 

g is the constant of gravity, 

h is the depth function, 

T denotes a rotation through a rightangle in the horizontal 

plane in the positive sense, 

grad,div are defined in the horizontal plane. 

The first of these equations constitutes the equation of the motion of 
' 

➔ ➔ . 
the sea. The terms - AW, - nTw and -gh grad Z represent the forces 
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caused by the friction at the bottom of the sea, the rotation of the 

earth and the deviation from the equilibrium position of the water 

surface. 

The second equation is the equation of continuity. 

2.2 The boundary conditions 

The sea is bounded by oceans and coasts. The oceanic part of the 

boundary will be denoted by 

conditions are as follows. 

r and the coastal part by 
oc 

r. The boundary 
C 

The elevation Z .is prescribed along r 
oc' 

(2.2) z = z oc 

• 
l.. e. 

➔ 

(cf. Veltkamp [1960], p. 11) and the stream Wis defined along 

the equation of motion. 

Along the coasts one has the condition 

(2.3) W = 0 n , 

+ 

r by 
oc 

where W n 
is the component of Win the direction normal to the coast. 

We shall derive the equation for the stream along r. 
C 

Then, the 

elevation follows from the equation of continuity. 
➔ 

Let c be the unit vector tangential (in the positive sense) to the 
a ➔ + 

coast.. Fonning the inner-product between &t W and c we obtain from 

(2.1) 

0 ➔➔ + ➔ ➔ ➔ ➔ ➔➔ 
at ( C • W) = - A( C • W) - Q( c • TW) - gh ( c • t:7 Z) + ( c • F) • 

By (2.3) we find for the stream along r 
C 

a+ ➔ ➔➔ ➔ ➔➔ at (c • W) = - A(c • W) - gh(c • VZ) + (c • F), 

so that 

(2.3') 
➔ + ➔ ➔ ➔ ➔➔ -a-t W = - AW - gh(c • VZ)c + (c • F)c. 

When the initial state of the sea is given, equations (2.1), (2.2) and 

(2.3) completely determine the subsequent motion of the sea (Veltkamp 

[1960], p. 12). 
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Clearly the North Sea Problem is an initial boundary value problem 

in the sense of definition 2.1 (chapter I). {W;z} is the unknown 

function, F;O} is the inhomogeneous term, and {(~•Y}~;o} and {F;Z } 
OC 

represent the boundary function along the coast and the ocean respect-

ively. 

Introducing rectangular coordinates x and yin the horizontal 
-plane and defining the operator D by 

-(2.4) D =· 

• 

- A 

- n 

- a 
gh ax 

in non-boundary points, 

-(2.5) D = 
• 

along the coast and by 

-(2.6) D = 

along the ocean, 

- A 

0 

-

- A 

a 
gh ax 

- n 

0 

- ). 

- a 
gh ay 

0 

- A 

- a 
gh ay 

- A 

0 

-

-

gh ax 

a 
gh ay 

0 

➔ 
- gh s (c •'v) 

➔ 

- gh c(c•'v) 

-

-

0 

gh ax 

gh ay 

0 

we may express the North Sea Problem by the initial value problem 

(2. 7) 

where 



u 

V 

along r , and where 
C 

F 
1 

F 
2 

0 
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+ 
in non-boundary points, G = 

F 
l 

F 
2 

z 
oc. 

al.ong r . 
oc 

1 2 

c(sF +cF ) 
.l 2 

0 

Her·e, (U,V), (P"1 ,F2) and (s,c) are 
-+ 

the components in the x,y-plane of w, 
+ + ➔ 

F and c r·espectively. Note that we have inserted in G both the inhomo-

geneous and the boundary te11n. 

➔ 

If the windfield F does not depend on time and if we 

(cf. Veltkamp (1960]), then the motion of the sea becomes 

take Z = O 
oc 

stationary 

fort+• .. The stationary state is governed by the equation 

.... + + 
(2.8) D S + G = O. 

Introducing a streamfunction 11 by means of 

(2 .. 9) u = - V = -ax 

(cf. van Dantzi.g and Lauwerier [1960 b]), we may reduce equation (2 .8) 

to an elliptic equation with oblique boundary conditions along the 

ocean. 

r Alit A 
at 

B 
a4> 

C, + + --dX ay 
(2. 8') 

• 0 along r at 
Q a• r - + - Fl along - - -c' ay dX oc' 

where + n 

+ 
and where C = VxF -

In the following chapter, where elliptic boundary value problems are 

treated, we discuss numerical methods to solve problem (2.8'). 
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3. The characteristic criterium 

Before constructing difference approximations of the North Sea 

Problem (2.8) we derive from the characteristics of equation (2.8) a 

criterium for the time steps Tk' which has to be satisfied by every 

difference scheme (cf. Forsythe and Wasow [1960], p. 18). 

The characteristic equation of the North Sea Problem is given by 

det 

• 

0 

pl+ q 0 

0 

0 

\/

1 gh 0 

0 

0 

gh 0 0 0 

+ r O 0 gh 

0 gh 0 

' 

= o, 

where p, q and r ar~ the direction cosines of the line elements 

(dt,dx,dy) perpendicular to the characteristic directions (cf. Forsythe 

and Wasow [1960], p. 384). This equation may be reduced to 

2 2 2 
p(p - gh q - gh r) = O, 

which is satisfied by line elements parallel to the x,y-plane and the 

line elements parallel to the generators of the cone 

gh 
2 

X - gh 
2 

y - 0 - . 

Hence the characteristics are given by directions parallel to the t-axis 

and parallel to the generators of the cone 

(3.1) 

From (3.1) it follows that a characteristic line element (dt,dx,dy) 

satisfies the relation 

(3.2) dt = • 

We shall investigate the effect of this relation on difference 

approximations of the North Sea Problem. Let us assume that the differ

ence scheme is of the foi:1n 

(3.3) 

• 
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where 
➔ 

= [ s J = 
k d 

(cf. chapter II) and where inhomogeneous 
➔ 

teims are neglected. Further, we assume that in the point x 0 the vector 
➔ ➔ ➔ 

the vector functions in points x. 
k J 

➔ + 
the domain of 

➔ 

dependence of the difference solution in the net point (x0 ,tk+l). 

Therefore, we have from (3.2) the necessary condition 

(3.4) 
p 

• 
gh 

This criterium for the time step Tk is called the characteristic crite-

• r1um. 
• 

4. The use of non-uniform complex time steps (scheme I) 

In this section we construct a difference scheme for the North Sea 

Problem using the polynomial method discussed in chapter II, section 3.4. 

In the x,y-plane we define a rectangular net with spatial steps 

and n, and with respect to this net we define difference operators D 
X 

and D which are consistent approximations 

a respectively. We assume that the 

of the differential operators 
a Y 
°ax and ay operators D and D make no 

X y 
use of net points outside the boundary r U f . Hence D and D will 

C OC X y 
depend on the net point~- in 

J 
which they are applied, accordingly 

whether~- is a boundary point or not. Further, 
J 

D which arises from D by replacing a and a by ax ay -

we define the operator 

D and D. Clearly 
X y 

Dis a consistent approximation of D. Let us consider the difference 

scheme 

(4.1) :::; (1 + 

(compare ex. 2.2 of chapter II). We shall now discuss the stability of 

this scheme. 

The usual procedure in stability analysis is to find the eigen

values of the operator D. In this case, however, the operator Dis too 

complicated. 

We shall follow another approach of the s·tabili ty problem. Let us ex-
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tend the net over the whole x,y-plane and let us define on this ex

tended net a difference scheme with constant coefficients which 

equals the given difference scheme (4.1) at the net point 
+ 
X. Of 

J -+ 
origj.nal net (x. E G U r ) .we may add such a local difference 

J T 'T 
-+ 

the 

scheme to each net point x. of G Ur . The difference scheme which 
J T T 

is actually applied may be considered as a combination of these local 

schemes. It is assumed that a given difference scheme is stable when 

its local difference schemes are stable (O'Brien, Hyman and Kaplan 

[1951], p. 226, Rjabenki and Filippov [1960], p. 64 and Leendertse 

[1967]). In most· stability investigations one neglects the influence 

of the boundary conditions and restricts the considerations to the 
• 

local stability of the internal net points (cf. Fischer [1959], p. 62, 

Lauwerier and Damste [1963], p. 172, and Harris and Jelesnianski [1964], 

p. 420). 

The internal local stability of scheme (4.1) was investigated 
a 

by Fischer [1959] for the central difference approximation of a 
d X 

and - average central difference 

approximation. These approximations are particular cases of the 

general difference approximation 

(4.2) D 
X 

--
aY + b + aY 

+ -
2a + b 

X - X 
+ -

' D y 
--

aX+ + b + aX_ Y+ - Y_ 

2a + b 2n ' 

where X+ and Y+ are translations defined in example 3.1 of chapter II, 

and where a and bare real parameters which are not both equal to zero. 

For a= 0 and b = 0 we have the central and the average central dif~er-
-+ 

ence form, respectively. The eigenfunctions of the local operator D(xj) 
-+ 

with x. E G are given by 
J T 

(4.3) 
-+ ➔ -+ -+ 
d

0
(w) exp[i(w•x)], 

-+ -+ 
where x runs through all net points and w is a two-dimensional vector 

➔ -+ -+ -+ 
index with components w

1 
and w

2
. The vector d

0
(w) depends on xj and w, 

and is an eigenvector of the matrix 

• 



(4.4) 
.... + + 
D(x., w) = 

J 
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- A 

- A , 

• -1. 0 

where i8
1 

and i8 2 are eigenvalues of 
+ + 

ing to the eigenfunctions exp i{w•x) 

the operators D and D correspond-
x y 

• A straightforward computation 

leads to the expressions 

(4.5) 0 
1 

--
sin w1 t(b + 2a cos 

(b + 2a)C: 

sin w
2

n(b + 2a cos w1 ~) 

(b + 2a)n 

+ 

• 

It is easily seen that the eigenvalues of D(x .) 
J 

are given by the eigen-
.... ➔ + 

values of the matrix D(x.,w). These eigenvalues determine the stability 
J + 

of scheme (4.1) in the point x .. The analysis of Lauwerier [1963] 
J 

resulted in the following conditions for the B-H-K stability 

(4.6) ,. < 
2 2 

gh(~ + n ) 
with 

2A 
1' < , 2 

A + 

These conditions lead to unacceptably small time steps. This is due 

to the small North Sea value of A. In a realistic model we have 

(4. 7) A -
-1 

sec , n - 125 
-6 -1 

10 sec , g - 10 m 
-2 

sec , 

h = 200 m and ~ == n = 2 1 O 
4 

m, • 

max 

which lead to T ~ 5 sec. For calculations where Tis 20 to 60 hours, 

this time step will require a large amount of computation time. 

We note that the scheme is R-F stable under less stringent conditions. 

To show this we neglect the friction and Coriolis terms in 

(according to lemma 3.2, chapter II). 
➔ 

The eigenvalues o(w) 

➔ 
D(x .) 

J 
of the 

➔ 

reduced operator n
0

(xj) are identical to the eigenvalues of the 

corresponding amplification 

(4. 8) 

.... ➔ ➔ 

matrix n0 (xj ,w), • i.e. 

-+ o (w) = 
2,3 

+ i 

• 

h(c 2 + g 1 

• 



71 

Applying formula (3.49) of chapter II we find that von Neumann's 

necessary condition is satisfied when 

(4.9) 

where 

(4.10) 

1" < 

Max 
➔ 

w 

C 

2 
gh(o

1 

and where c is a· constant 
.... -➔ ➔ 

verified that D
0

(x.,w) is 
J. 

which does not depend on T. It is easily 

a normal matrix, hence condition (4.9) is 

also sufficient for R-F stability 
-+ 

• in . ➔ 
the net point x .• 

J 
The value of cr(n0 (xj)) depends on ~, n, a and b, and will be discussed 

at the end of this section. For the moment we only remark that -r de

pends quadratically on~ and n, which means that halving the values of 

~ and n implies a four times smaller value of the time step. 

The considerations above indicate that it is desirable to look for 

difference schemes which are more appropriate in actual computation. 
-+ 

For1nula (4.8) shows that the eigenvalues of n
0

(xj) - . are imaginary. 

This immediately suggests the application of the method of non-unifo11n 

complex time steps discussed in chapter II, section 3.4. For instance, 

we may define the scheme (scheme I) 

(4.11) 
1 2 2 

+TD+-T D 
2 

1 3 3 
+ GT D 

1 
+ 

24 
4 4 -+ 

T D ) sk + 

(compare formula (3.61) of chapter II). According to theorem 3.8 and 

for1nula (3 .62) of chapter I I, the necessary and sufficient condition 

for R-F stability in the internal net point 

(4.12) T < 

Note that T now depends linearly on ~ and n • 

➔ 

X. is 
J 

• 
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Next we discuss the B-H-K stability of scheme I . 
..... ➔ ➔ 

The eigenvalues o of the matrix D(x.,w) satisfy the equation 
J 

(4.13) 

and the eigenvalues a of scheme I are given by 

(4.14) ex = 
1 

1 +TO+ -
2 

2 .l'2 
T u + 

1 3,{'3 
6 T u + 

1 
24 

4.r4 
'T u • 

Assuming that both AT and nT are small with respect to 1 we may 

approximate in (4.14) the eigenvalues o by (compare Fischer [1959]) 

(4.15) 
➔ o 

3
(w) 

2, 
- - l 1i. + i 

2 
02) + n2 _ 1 ).2 

2 4 • 

We remark that for A= 0 and Q = 0 these expressions represent the 

exact solution of equation (4.13). 

Let us consider the case where A= 0 or A<< O. Then we may neglect 
-+ 

the real parts in the expressions for o(w) and we obtain the condition 

(4 .16) . • 

If A cannot be neglected with respect ton, we divide the eigenvalues 
2 2 2 2 + o
2

) < AT and T gh(c
1 

+ o
2

) > AT 

respectively. In the first case we see from (4.15) that ITol << 1, 

so that a - 1 +TO.These eigenvalues are the eigenvalues of scheme 

(4.1). An analysis along the lines of Lauwerier [1963] yields the 

conditions 

(4.17) 'I < 

(4.18) 1' < 

A 

0 2) , 
+ 2 

' 2 
A + 

The first condition is satisfied by the assumption above, the second 

condition is identical to the second condition of (4.6) . 
• 

In the second case we have 

• 
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2 2 
T gh(o 1 + ri2T 2 _ 1 2 2 > 

i\G 4 A T _ 
2 2 

AT + Q T AT • 

Since AT << V >.. T' << 1 we see from ( 4 .15) that the real parts of T cS may 

be neglected, which yields condition (4.16). 

It is easily verified that the eigenfunctions corresponding to the 

eigenvalues a. are linearly independent, hence the conditions (4'.16) 

and (4.18) are sufficient conditions. 

➔ 
We now discuss the spectral radius of the matrix n

0
(x.) as a 

➔ J 
function of~, n, a and b, i.e. the function cr(n0 (xj)) = a(~,n,a,b) . 

• 

Theorem 4.1 

The function a(~,n,a,b) satisfies the relations 

(4.19a) 

(4.19b) 

(4.20) 

(4.21) 

Proof 

cr(~,n,a,O) < cr(~,n,a,b), 

cr(~,n,a,b) < cr(~,n,o,b), 

gh/Min(~,n), 

cr(~,n,O,b) = (1/ 2 + 1/n ) gh. 

• 

Inequality (4.19b) and equation (4.21) are obvious from (4.5) and 

(4 .10). 

Inequality (4.19a) follows from the fact that the function 

-

+ -

2a (l 
b+2a 

2a 
b+2a 

decreases for every set of fixed values of w
1

, w
2 

and a, when b 

decreases. 

Finally, for.b = 0 we have 

• 
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+ 

which is a harrnonic function of 
. 2 

sin w1 ~ and 

maximum value is reached at the boundary of 

domain. This leads to equation (4.20). 

2 
n ' 

From this theorem we see that condition (4.16) is most restrictive 

for the central difference fo1·n1 (a = 0), namely 

(4.16') 
2 2 

T < --------, 
n 

• 

• 

and least restrictive for the average central difference forn1 (b = O), 

namely 

(4.16'') T < _2 __ ~--_M_i_n_(_~ ..... , _n __ ) 
• 

gh 

The central difference form is most widely used in practice, as 

the computational labour is minimal. The average central difference 

fo1-m is roughly twice as laborious and was first used by Lauwerier 

and Dam.ste [1963 ]. For both approximations scheme I has the property 

that in net points where the stream is evaluated, the values of the 

elevation are not needed. Further, the average central difference fo1n1 

has the additional advantage that in half of all the net points neither 

stream r1or elevation values are needed, so that the computational 

labour per time step is roughly equal for the two approximations and 
--------:----=----=---:-'"' 

Min(t2/n 2 , n2/t2 ) the total amount of labour will be a factor 1 + 

in favour of the average central difference fo1,n. 

Finally, for the characteristic criterium of scheme I we refer 

to section 7. 
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5. Introduction o:f dissipative te1111s (scheme II) 

By introducing an artificial viscosity and friction telin into 

scheme (4.1) we shall construct a difference scheme (scheme II) 

which satisfies still weaker stability conditions. 

Omit ting the ter111s of order T we define scheme I I by the fo1·111ula 

(5.1) 

where Q is a 3 x 3 matrix, • 
J.. e. 

(5.2) . Q = ' 

2 ➔ 
with real entries to be defined later. The ter1n T D0 QD0 sk represents 

an artificial viscosity term (compare Lax and Wendroff [1960] and 

chapter II, section 3.6 of the present paper). Scheme (5.1) clearly 

is consistent with (2.7) for A= n = O. 

For practical reasons we require that (5.1) can be written as 

-+ 
(5.1') (1 - TC) sk+l = (1 + 1" (D -

0 

where the upper non-diagonal matrix elements of the matrix operator 

Care zero. From the relation 

(1 - TC) = 

we derive that 

which leads to the operator 

(5.3) C = 

-

0 

0 

(1 + 

0 

0 

= 0 

- gh (q
2

D +r
2

D ) 
. X y 

0 

0 

0 

• 
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We investigate the R-F stability of scheme (5.1) in the internal 

net point 
➔ 

x .• We have 
J 

➔ 

The eigenvalues a of A0 (xj) satisfy the equation 

(5.4) det[a(l -
-➔ ...... ➔ ➔ -➔ 

1 + 

= o, 

- ➔ 
where C(w) is the amplification matrix corresponding to C. 

A direct computation leads to the following expressions for the eigen-

values a.. 

(5.5) 

where 

• 

, 

S = 2 -
2 2 

T gh(q O + 
l 1 

P = S - 1 + 

s2 - 4P 

2 + 0 ) • 
2 

' 

The eigenvalues a. satisfy the inequality !al < l (von Neumann's 

condition) when 

P < 1, 1 - S + P > O, l + S + P > O. 

This results in the criterium 

< 2gb + 

1 2 2 + 
2 

T gh (o
1 

Choosing q 1 = r 2 = 1 and r 1 = - q 2 we obtain the least restrictive 

condition for -r, • i.e. 

(5 .. 6) T < 2 
• 

➔ 

It is easily verified that the eigenfunctions of A
0

(xj) are linearly 

independent, hence condition (6.5) also is sufficient for R-F stability 
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➔ 

in the point X . • 
J 

In order to compare condition (5.6) with the R-F stability 

condition (4.12) for scheme I we introduce the effective time step 

Teff (cf. formula (3.65) of chapter II). 

For scheme I we find T = T/4 and for scheme II, owing to the eff 
triangular form of the operator C, Teff = T. From this it follows 

that we have gained a factor 2 2 - 3 in computation time. 

Next we define the complete scheme II by the formula 

' ➔ ➔ 

(5.1') (1 - TC)s = 
k+l 

(1 + T(D - C))sk + T(l -

• 

This scheme is a consistent approximation of equation (2.7) and is 
➔ 

R-F stable in the point x. when T satisfies condition (5.6). 
J 

We shall discuss the B-H-K stability of scheme II. 

First we note that for q 2 = 0 and a= O, Fischer [1959] obtained the 

following conditions for B-H-K stability. 

(5.7) 
1 l AT+ 

- 2 

gh 
T < , 

where~= n. For all practical purposes the first condition of (5.7) 

reduces to 

(5. 7') T < • 

We shall show, however, that it has certain advantages to include 

additional viscosity terms Tq2 Dyuk+l and -Tq2Dxvk+l in the fo1111ula for 

the elevation zk+l' and to use average central differences instead of 

central differences. 

The method of analysis will be that of Lauwerier [1963], which uses 

the Hurwitz-criterium to guarantee that the eigenvalues a of the 
..... ➔ ➔ 

matrix A(x., w) 
J 

the equation 

(5.8) 

are within the unit circle. The eigenvalues a satisfy 
• 

det[(a - 1)(1 -
..... ➔ ..... + ➔ 

TC(w)) .- TD(x.,w)] = o. 
J 
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This equation may be reduced to 

(5.8') ) 3 . 
(a. - 1 + bl (et 

where 

+ 2AT, 

+ AT -

2 2 
= T gh(o

1 
+ 2 o )AT. 

2 

From the Routh-Hurwitz criteria we derive that the roots a of (5.8') 
' 

are within the unit circle when 

(5.9) 
- 3b 

3 
> o, 

- b + b ) 
2 3 

> o, 

(compare 

For o2 + 
1 

Lauwerier and Damste [1963] and Leendertse [1967]). 

o2 ~ 0 these conditions reduce to 
2 

(5.10) T < 
2 

1 -
1 AT - 1 n 2 2 q2 T, T < 

wi tl1 

(5.11) - • 

For a detailed analysis of the inequalities (5.9) we refer to v.d. Houwen 

(1966]. 

(5. s''> 

We have a 
1 

--

(a - l)(a2 - 2(2 - AT)a. + -r 2 (A 2 + n2 ) - 2AT + 1) = o. 

< 2>-/(). 2 + n2 ). This 
' involves no further conditions (see (5.10)). 
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Since we have now proved that, if (5.10) and (5.11) are satisfied, all 

eigenvalues are within the unit circle with the exception of one 

which is on the unit circle, it follows from theorem 3.2, chapter II, 
➔ 

that scheme II is B-H-K stable in the point x .. 
J 

In practice the first condition of (5.10) reduces to the R-F 

stability condition (5.6) and is identical to Fischer's condition 

(5.7') for the central difference form. As was already observed in 
2 2 2 2 -

the preceding section we gain a factor 1 + Min(l; /n , n /~ ) = .2 

by using the average central difference forn1. 

The second condi~ion of (5.10) corresponds to Fischer's second condition. 

If A is comparable with n neither condition is a restriction of the time 
• 

step T. If A<< n the conditions are identical. Presently, we shall 

discuss this case further. 

Fischer's third condition excludes calculations at the equator. From 

our analysis it follows, however, that this condition is not necessary 

to guarantee B-H-K stability. Finally, we remark that condition (5.11) 

hardly is a restriction of the value of q 2 . 

Comparing scheme II with scheme I we conclude that scheme I is to 

be preferred when A<< n, and scheme II is to be preferred when A 

and n are of the same order of magnitude. This suggests the introduction 

of an artificial friction term into scheme II for models where A<< n. 
Let us replace A by A= A+ rT where r is a constant not depending on T. 

Since the additional friction term vanishes for T + O, the difference 

scheme remains a_consistent approximation of the analytical problem. 

We shall choose A in such a way that condition t5.6) is not less 

restrictive than the second condition of (5.10), • 
l.. e. 

2 
> • 

A2 n2 ➔ 

+ o(D0 (xj)) 

➔ 

For small values of f2/a(n
0
(xj)) this leads to 

(5.12) A > • 
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Assuming that we use time steps near to their upper bound we obtain 

for r the value (compare van der Houwen [1967 a]) 

(5 .13) r = Max(O, 

In connection with this it is interesting to investigate a difference 

scheme proposed by Miss Sielecki [1967]. The scheme may be interpreted 

as Fischer's scheme in which for both the elevation and the stream 

field the most recent values are used. In the same manner we can modify 

scheme II which results in scheme (5.1') where C is now given by 

0 

(5 .14) 
. 

C = 

- gh(D -q
2

D ) 
X y 

-

0 

0 

gh (q
2

D +D ) 
X y 

0 
• 

0 • 

0 

This transformation has the main effect of increasing the bottom stress 

and decreasing the Coriolis force in they direction. To see this we 
➔ -+ 

express the new operator A(x.) in terms of the operator 
J 

A(x .) 
J 

ing to scheme II. We find for q 2 = 0 

0 

(5 .15) 
-+ -+ 2 

A(x .)=A(x .)+rlT 
J J 

-iS°2AT gh D 
y ·' 

0 

-n 

gh D 
y 

0 

i gh D 
X 

2 
1" ghD D 

X y 

correspond-

• 

Thus in they direction the friction A transforms to A= A - n2
T 

and the coefficient of Coriolis transforms ton= n - nAT. We may 

expect, therefore, that for A= 0 this scheme satisfies weaker stabi

lity conditions than scheme II. In fact, we have for A= q
2 

= 0 the 

eigenvalue equation 

(5.16) 

where 

b 
1 

--

-2 
(a - l)(a + (b - 2)a + 1) = O, 

1 

2 
+ n >. 
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The eigenvalues are given by 

(5 .17) 1 - 1 
2 

b . + 
1 

They are all on the unit circle if 0 < b 
1 

< 4, or equivalently if 

(5 .18) 1' < 
2 2 - • 

+ 
This condition is sufficient for B-H-K stability in the net point X . • 

J 

We conclude 

of the operators 

this section with a discussion of the damping effect 
+ 

A(x _) when the dissipative friction terins are omitted. . J 
Let A= 0 or A= O, then we obtain from (5.8') the equation 

( 5. 8 ,,, ) (ct 

with the solutions 

(5 .19) 
• 

From (5.10) it 

(5.20) 

2 
- 1) (a. + (b

1 
- 2) a + 1 -

< b
2 

so that 

b + b ) = 0 
1 2 

2 2 + n ,. . 

illustrated the behaviour of 
2 lo.I as a function 

> 0 and q
2 

= O. The time step Tis given by 
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l+Q TII 

1 

1 
4 
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fig. 5.1 -•· ..... _ scheme I 

----- scheme II with q 2 > 0 

••... scheme II with q2 = 0 (Fischer's scheme) 

common 

• 

From the figure we see that for q
2 

= O, i.e. for Fischer's scheme, all 

eigenf~nctions will increase with time, while for q
2 

> 0 the greater 

part of the eigenfunctions is damped. In connection with this it is 

interesting to consider the spectrum of scheme I. From the theory 

given in chapter II, section 3.4 we derive that 

(5.21) 

' 
= 1 -

1 
+--

576 

+ 

hence no eigenfunction can increase with time (see figure 5.1) . 

• 

• 

• 

6. Three-level schemes (scheme III) 

Harris and Jelesnianski [1964] considered the following difference 

scheme • 

(6.1) + 2T + 2T 
• 



83 

This scheme is identical to the scheme which arises from (4.1) by apply

ing the method of chapter II, section 3.6. From theorem 3.12 of chapter 

II we derive that von Neumann 1 s condition is satisfied when 

(6.2) T < 
1 

• 

.... ➔ ➔ 

Since D0 (xj,w) is normal this condition also is sufficient for R-F 
➔ 

stability in the point x .. 
J 

In order to derive conditions for the B-H-K stability we consider 

the eigenvalue equation of scheme (6.1), i.e. 

2 ..... ➔ ➔ 
det[a - 2T D(x.,w)a - 1] = O. 

J 

' 

(6 .3) 

For A= 0 this equation reduces to 

(6.3') 2 4 2 2 2 2 2 2 
(a - 1)(a - 2(1 - 2T gh(o 1+o 2 ) - 2T n )a + 1) = o. 

If 

(6 .4) T < 1 1 -

then we have three different roots on the unit circle. This proves the 

B-H-K stability of scheme (6.1) (compare condition (4.16) for scheme I). 

We may expect that for A# 0 the eigenvalues a will lie within the unit 

circle which will improve the stability. 

Next we consider the following three-level scheme (scheme III) 

(6.5) 
-1 

2c + T(l - TC) D = 2 . 
2c + 1 

➔ 
s -

k 
2c - 1 
2c + 1 + 

2T 
2c + 1 

where C is defined by (5.14) and c is a parameter independent of T. 

This scheme arises from scheme (5.1'), (5.14) by adding an inertia term 

(see subsection 3.6 of chapter II). The eigenvalues 8 of the operator 

(1 - I may o. 
We find 
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b (1 -
1 

Since these eigenvalues are not imaginary theorem 3.12 of chapter 

cannot be applied. We shall investigate the eigenvalues a of the 

amplification matrix of scheme (6.5). From equation (3.76) of chapter 

II we derive 

(6.7) 
2c + 1" 0 . 

a =----J + 
j 2c + 1 

2c + 'To . 2 
-

From this relation it follows that 

• 

(6. 7') 

Hence we must choose c > O. 

2c - 1 
al= l, 2c + 1 . 

2c - 1 
2c + 1' 

j = 1, 2, 3. 

In figure 6 .1 we have plotted a function o:f b1 for 

some values of c. Note that scheme (6.5) reduces to scheme (5.1'), 

(5.14) if c = .5 is substituted. 

c=O c=0.2 c=0.25 
=0 .. 3 

c=0.4 

1 C 0.5 
I 

I 
I 

• I 
I I 
I 
I I 

0.6 I C 
' • ' 0.55 ------- ------- I I I 

I ' • ' I I 
I 

' 
I 

I I 
I t 

I 
I j 
I 

I • I 
I I I 
I • 

0 1 b
0

(.4) 4 
bl 

fig. 6.1 

• 
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The scheme is stable for O < c < .5 provided that T is sufficiently 

small, i.e. 

(6. 8) T < 
2 -+ 

where b0 {c) is the non-zero value of b1 for which Max(la
2

1, la
3

1) = 1. 

For c = .5 the admissable time step T becomes maximal. However, in this 

case none of the eigenfunction components is damped in actual computation • 
• 

For O < c < .5 the greater part of the eigenfunctions will decrease with 

time (see figure 6.1). 

We conclude this section with a figure which illustrates the behaviour 

of the function 

2 ------ - - - - - - - - - - - - - - - - - - - - - - - - - - -

• 

0 

fig. 6.2 

I 
I 

I 
I 
t 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 

0.5 C 

7. A survey of the stability properties of scheme I, II and III 
• 

In this section the results derived in the preceding sections are 

summarized. In table 7.1 we have listed the conditions for the local 

stability with respect to the initial condition in non-boundary points. 

The R-F stability conditions do not depend on A and n. From these 

conditions one may infer to R-F stability with respect to the inhomo-
➔ 

geneous te1~1n g. 

, 

• 
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The B-H-K stability conditions are weakened by an increase of A, 

but they are strengthened by an increase of Q. In general, if 

we may expect that weak stability implies strong stability. 

/:. 0 

TABLE 7 .1 

Stability conditions for the average central difference fOl"Ui with ~=n 

Scheme I Scheme II 

Effective time step T - T eff 

Characteristic cri te-rium 

R-F stability condition 

Additional B-H-K stability T < 213A_ T < Al(A2+n2 ) 

condition for A~ n T < 2Al(A2+n2 ) 

Additional B-H-K stability none unstable 

condition for A= 0 

Damping effect for A= 0 

Storage room 

linearly 

unstable 

6 components 

• 

unstable 

3 components 

• 

Scheme III 

T ~ T 
eff 

T < 

0 < C < .5 

none 

none 

linearly 

unstable 

6 components 



Chapter IV 

ELLIPTIC DIFFERENTIAL EQUATIONS 

1. Introduction 

In the previous chapters we have discussed finite difference 

methods to solve linear initial boundary value problems. This enables 
• 

us to find the numerical solution of important classes of hype~bolic 

and parabolic differential equations. Matters are different for ellip

tic differential equations. Such equations lead to pure boundary 

value problems to which the preceding theory cannot directly be applied. 

However, if the solution of an elliptic boundary value problem is inter

preted as the stationary solution of an appropriate initial boundary 

value problem, then such problems can be treated by the methods of 

chapter II • 
• 

Here we shall consider the method of non-uniform real time steps 

to solve elliptic boundary value problems. In literature, this method 

is known as Richardson's method (cf. Forsythe and Wasow (1960], p. 226) 

or the Chebyshev iterative method (cf. Varga [1962], p. 138). Several 

authors have proposed accelerating procedures for Richardson's method 

to improve the convergence of the level functions uk to the stationary 

solution u. These accelerating procedures are based on the elimination 
00 

of the fundamental modes of the error uk - u
00

• The elimination method 

given by Shortley [1953] eliminates in succession the fundamental modes 

by means of operators which are linear in the operator D. As will be 

shown in subsection 3.2 of this chapter, Shortley's method may be 

improved considerably by replacing the linear operators by Chebyshev 

operators of well-defined degree. We shall prove that of all poly

nomial elimination operators, these Chebyshev operators are optimal 

with regard to the rate of convergence of the scheme. Further, we 

shall investigate non-polynomial elimination operators, which have 

' 
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certain interesting properties not possessed by polynomial operators. 

Basic for the elimination methods mentioned above, is the knowledge 

of the eigenvalues of the fundamental modes. We shall give formulae 

in order to calculate these fundamental ·cor first) eigenvalues. These 

fo1111ulae are less laborious than the method given by Flanders and 

Shortley [1950]. • 

• 

It may be remarked that Stiefel has given an elimination method in 

which the knowledge of the first eigenvalues is not necessary. How

ever, experiments reported by Frank [1960] turned out to be unsatis

factory. 

• 

2. Definition of iterative processes 

In this section the theory of the well-known iterative method 

called Richardson's method is reviewed. In order to make this method 

compatible with the theory given in chapter I and II, the solution of 

an elliptic boundary value problem will be interpreted as the station

ary solution of an initial boundary value problem. Then, Richardson's 

method of first degree is identical to -the method of non-uniform real 

time steps discussed in section 3.3 of chapter II, and Richardson's 

method of second degree is a special, non-stationary version of 

scheme (3.73'), chapter II. 

2.1 Richardson'~ method of first degree 
• 

Let us assume that the difference solution of the discrete 

elliptic boundary value problem is given by the stationary solution 

of the scheme 
• 

(2.1) TD)u + Tg , 
k 0 

where g0 does not depend on k. This scheme is of the type discussed 

in section 2 of chapter II with -rg0 representing the terms If and 
k k 

Bk <f>k. The stationary solution of (2.1) satisfies the equation 

(2 .2) nu 
00 

+ g0 = o. . 
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Without loss of generality it can be assumed that D has real eigen-

values cS., 
J 

place D by 

j = 1, 2, •.. , m only. For, otherwise we can always re-
~ 

DD * * and g 0 by D g0 , where D is the adjoint operator of D. 

Throughout this section we shall make the additional assumption that 

(2.3) -o(D) = o < o < ••• < c = -o < O 
m - m-1 - - 1 0 · 

The application of the method of non-uniform real time steps (see 

chapter II, section 3.3 and example 4.1) results in the following 

iteration method. 

• 

(2.4) 
(r+l) 

Uk = (1 + 

where k = 0, 1, .•. , N-1 and where the relaxation parameters w are 
r 

defined by formula (3.36) of chapter II. Iteration method (2.4) may 

be written more compactly as 

(2.4 1
) 

with 

(2.5) h(n) = 
0 

, 

n-1 n-1 
TI 

l=l r=l 
(1 + w D) w lgO + w lgO. r r- n-

For considerations on convergence it is convenient to introduce 

. the error functions vk and 

(2.6) - u 00' r = O, 1, ' . • . , n ' 

k=O, 1, ••• , N. 

From (2.2) and (2.4) it follows that vk satisfies the homogeneous 

scheme 

(2.7) vk+1 
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Assuming that n does not depend on k we obtain for the initial error 

vN the estimate 

For alb<< 1, O <a< o
0 

and b > o(D) we derive from lemma 3.1 and 

theorem 3.7 of chapter II 

(2.9) 

where vis a constant and pis the largest order of all diagonal 

submatrices J 
r 

= O(C (a,b,D)). 
n 

(2 .10) 

• 

of the Jordan no1=mal f 01,n J 

From (2.8) and (2.9) we see 

a = o , b = o (D) 
0 

of C (a,b,D) with a(J) = n r 
that llvNrl is minimized by 

for given values of n and N. Compare figure 3.3 of chapter II. 

Forniulae (2 .4) and (2 .10) define Richardson• s method of first degree 

(or order). 

The greater part of the literature about Richardson's method 

deals with the case where Dis a definite symmetric matrix (c£. Young 

[ 1953] , Forsythe and Wasow [ 1960] and Varga [ 1962]) • In that case, 

or more generally when Dis a no1wal matrix with negative eigenvalues, 

approximation (2. 9) is valid for N = 1, 2, ••• with p = v = 1. For 

non-normal matrices (2.9) is valid for sufficiently large va1ues of N. 
(r) 

Finally, note that the iterants uk (r ~ O, n) do not necessarily 

approximate 

a practical 

u. For large values 
QO of n this may be disadvantageous from 

point of view. 

2. 2 ~~ch_ardson :.s. method of second desree 
• 

Let us consider the three-level scheme defined by 

(2 .11) 

= ca 
r 

' 

+ Y D)u(r) +
r k 

• 

(1 -

r = 1, 2, •.. , n-1, 
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where k = O, 1, ... , N-1 and where the parameters 6 and y still 
r r 

have to be determined. If N = 1 and if B and y do not depend on r, 
r r 

this scheme is equivalent to the three-level scheme discussed in 

chapter II, section 3.6. It has been shown there, that such station

ary schemes are stable when 

• 

(2.12) B < 2, y > O, 28 - ya(D) > O, 

and it is easily seen that these conditions also guarantee convergence 

when the scheme is used as an iteration process (compare figure 3.5 

in chapter II). However, one may construct a non-stationary iteration 

method which converges faster than any stationary method. 
• (r) . (r) 

error vk of the 1terant uk in terms of the We express the. 
(O) . 

error vk , 1.e. 

where Q (D) is a polynomial operator of degree r in D satisfying the r 
relations 

= 1, 

(2.14) 

B )Q 
1

(D). 
r r-

If Q (D) = C (a,b,D), then (2.13) reduces to (2.7) for r = n, so that n n 
the iteration methods (2.4) and (2.11) will result in the same se-

quence of 

c1 (a,b,D) 

(2.15) 

C 1 (a,b,D) 
r+ 

The operators 

1 + 
2 

D, -- b-a 

4 
(2w + -- 0 b-a 

C (a,b,D) 
r 

Tr(wo) 
D) 

Tr+l (wo) 

Tr-1 ( wO) 
- T (w) C 1 (a,b,D), 

r+l O r-
• 

satisfy the relations 

C (a,b,D) 
r 



where w0 = (b+a)/(b-a). Thus, if 

2 
b-a' 

r = 1, 2, •.• , n-1, 

Tr (wO) 

Tr+l (wO) 
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4 
b-a 

then the operators Q (D) are . r identical to the Chebyshev operators 

C (a, b, D) for r = 0, 1, ••• , n. 
r 

As in the first order Richardson process we set a= c0 and b = o(D) 

obtaining Richardson's method of second degree (compare Frank (1960] 

and Varga [ 1962] , · p. 137) • 

Note that in the second order process the interinediate results 
• 

may also be used as approximations to the limit function u
00

, 

contrary to the first order process. On the other hand, the second 

order process requires twice as much storage as needed for the first 

order process. 

2.3 The rate of convergence 

In .order to compare the convergence properties of different 

iterative processes, Young [1954] introduced the average rate of 

convergence of an iterative method. According to Young the average 

rate of convergence of the methods (2.4) and (2.11), (2.16) is 

defined by 

provided that O <a< o0 and b > o(D). 

We shall call an iterative method convergent when the average rate of 

convergence for nN iterations is positive and divergent when it is 

negative. • 

Theorem 2 .1 

Richardson's method is convergent if D has negative eigenvalues and if 
• 

n and N are sufficiently large. 

• 
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Proof 

To simplify the formulae it will be assumed that 

(2.18) a<< b, exp(- 2n 
a 
b) << exp(2n 

Then, we derive from (2.9) and (2.17) 

(2 .19) R(n,N) -
1 

ln[cosh(2n 
n 

- 2 
a 

b 
- 1 

nN 

If n and N are chosen sufficiently large the method becomes convergent • 
• 

Since Richardson's method arises for a= o
0 

and b = o(D), we have proved 

the convergence of Richardson's method. 

We obtain for norntal matrices D (p = v = 1) the familiar fo1-mula 

(2.20) R(n,N) - 2 
a 
b 

1 
- - ln 2 .. 

n 

Compare Forsythe and Wasow [1960], p. 231 • 
• 

Since (2.20) holds for any positive integer N, R(n,N) may be maximized 

by choosing N = 1. For a given value of the total number of iterations 

nN this may lead to large values of n. Unfortunately, the numerical 

stability of the first order Richardson method depends strongly on the 

distribution of the relaxation parameters w, particularly when n is 
r 

large. Therefore, if one decides to apply the linear form of Richardson's 

method, one has to order the relaxation parameters very carefully. This 

problem was discussed by Young (cf. Young [1953] or Forsythe and Wasow 

[1960], p. 234). For the special arrangement of the relaxation para

meters Young recommended, he got convergence for a case where 
• 

a(D)/o
0 

- 162 and n = 40. The iteration process was repeated (N > 1) 

until the desired accuracy was obtained. However, this reduces the 

average rate of convergence, so that it should be desirable to use an 

arrangement which .allows us to take N = 1. 

In connection with this we remark that in van der Houwen [1967 c] an 

arrangement of w may be found which proved to be numerically stable 
r 
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for a case where cr(D)/o 0 ~ 1296 and n = 80. 

Note that the second order Richardson method is numerically stable. This 

follows from the fact that the coefficients S and y defined by (2.16) 
r r 

satisfy the stability conditions (2.12). 

If D is a non-no:r-mal matrix, fo11r1ula (2 .19) holds for sufficiently 
• 

large values of N. However, if the eigenfunctions of Dare linearly independ-

ent, we may derive a lower bound for the average rate of convergence 

for nN iterations which holds for N = 1, 2, ..•. Let 

(2.21) • 

m 

j=l 
C .e., 

J J 
• 

where e. 
• 

is an eigenfunction corresponding to o. and c. is a scalar. 
J J J 

Further, let II v0 fl = 1. Then we have 

(2.22) 
N 

cr (C (a, b ,D) 
n 

Su 
Iv 

m 

=1 j=l 

From (2.9), (2.17), (2.18) and (2.22) we find the inequality 

m 

I C . I . 
J 

(2.23) R(n,N) > 2 
a 

b 
- 1 

nN 
ln[2N Su 

=1 j=l 
}c.lJ, N = 1, 2, •••• 

J 

This result proves that Richardson's method is also convergent when 

N = 1 and when n is sufficiently large, provided that the eigenfunctions 

of Dare linearly independent. 

Note that for relatively small values of nN the average rate o:f converg
m 

ence for nN iterations depends strongly on the values of v or Jc.I. 

These values 

the operator D (cf. Varga [1962], p. 65). Therefore, if one is faced 

with an ill-conditioned set o:f eigenfunctions, it is recornmended to 

remove the ill-conditioned components from the starting error v
0 

(compare Coolen and van der Houwen (1968]). 

Finally, we remark that, for a fixed value of N, R(n,N) is an 

increasing function of n bounded by 

(2.24) R( 00 ,N) - 2 a. 
b • 

R(00 ,N) will be called the asymptotic rate of convergence. 
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3. Acc_~lerating procedures 

From (2.19) we see that Richardson's method converges very slow

ly for large values of the so-called P-condition number P = o(D)/8
0 

(see Forsythe and Wasow [1960], p. 227). Unfortunately, in iterative 

solution methods of elliptic boundary value problems one is nearly 

always faced with ill-conditioned matrices D, i.e. p >> 1. Therefore, 

it is desirable to construct accelerating procedures. 

3 .1 The reduction-elimination method 

The essence· of Richardson's method was the reduction of all eigen

function components_ ej of the initial error v
0 

by applying N times the 

operator C (a,b,D) = C (o0 ,o(D),D). This means that the eigenfunction 
n n 

components of v 
O 

are simultaneously reduced. 

One point of departure in accelerating Richardson's method is to reduce 

the eigenfunction components in two phases. In the first phase the eigen

functions ej with -b < oj < -a and a> c0 are reduced (reduction phase) 

and in the second phase the remaining components are eliminated 

(e1imination phase). If Dis not a normal matrix and has no independent 

set of eigenfunctions, this reduction-elimination method may be repeat

ed N times where N is sufficiently large. 

Let us represent the effect of the reduction-elimination method 

upon the error vk by the formula 
• 

(3 .1) 

* where n and n are the numbers of iterations of the reduction and the 

elimination phase respectively. Then the average rate of convergence 

* for (n + n )N iterations is given by 

(3 .2) * R(n,n ,N) = -

' 

1 

* (n + n )N 

N *1 lnllA (n,n ) I. 

Further, let us assume that the reduction is achieved by the Chebyshev 

operator 

(3. 3) 

• 
C (a,b,D) and 

n 
let 

* cr(A(n,n )) = e: 0. . 
0 O' 
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where t:
0 

is the contribution of the elimination opera.tor and a.0 is the 

maximum nor·m of C (a,b,6) over the interval [-b,-a] (compare fo1-a1ula 
n 

(3.33) of chapter II). Applying lemma 3.1 of chapter II we obtain 

(3.2') * R(n,n ,N) ... 2 
a 
b 

- 1 

* (n+n )N 

> d b > o(D) and where it is 
0' - . 

For the asymptotic rate of convergence 

* a 
N -1 2n b + ln EO 

ln[v2 NP ] - -------

ass,uned that 

* R( 00 ,n ,N) we 

* n+n 

(2.18) is satisfied. 

again find 2 alb, 

but as a > o
0 

this value is largel'" than the value obtained for Richard

son's method. In practice, however, the effect of a finite value of n 
• 

is to reduce the average rate of convergence below its asympto~ic 

value. Therefore, it is important to construct for a given value of 

* alb eli11ination methods for which the value of 2n alb+ ln £ 0 is 

as small as possible. 

Shortley [1953] suggested an elimination method for the case 
(n) 

where vk is known to be a linear combination of just the first two 

eigenfunctions of D. As will be shown in subsection 3 .. 2., however, this 

method leads to large values of EO which may reduce the asymptotic 

rate of convergence considerably in actual computation. 

Two other methods were proposed by Stiefel. However, these 

methods tur11ed out to be unsatisfactory when tried on a computer 

(cf. Frank (1960)). 

In the following subsections we propose two elimination methods 

which were used successfully on a computer. 

Throughout this section we shall assume that (2.18) is satisfied 

and that the eigenvalues of the eigenfunctions to be eliminated are 

known (methods to calculate these eigenvalues are given in section 4). 

Further, we drop the condition that all eigenvalues of Dare negative, 

but we shall not allow more than a few positive eigenvalues. 
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3.2 Elimination methods of first degree 

In our analysis of the rate of convergence of the reduction

elimination method we shall introduce a function s(o) such that the 

values of s(o) in 6 = o ., j = 1, 2, ..• ,mare the eigenvalues of 
* J 

A(n,n ). This function will be called the spectrum function of the 

reduction-elimination method. It turns out that s(o) is a rapidly 

oscillating function of o. For this reason it is convenient to use 

the envelope of s(c) rather than s(o) itself. We introduce a function 

e:(o) such that 
• 

(3.4) 
• 

• 

For E(o)a
0 

the envelope of ls(o) I may be chosen. 

We now define the reduction-elimination method of first degree 

by the scheme 

(3.5) 

where 

the 

* The operator A(n,n) is here given by 

(3 .6) 

and the eigenvalues of A(n,m1 ) 

m 
1 

(3.7) s(o) - II (1 -
j=l 

ml 

IT (1 -
j=l 

-1 o. D)C (a,b,D) 
J n 

are given by the values of s(o .), where 
J 

-

Since s(oj) = 0 for j = 1, 2, .•. , m1 , the corresponding eigenfunctions 

are eliminated from the error 

j = 1, 2, ... , m1 , we obtain from fo11nula • (3 .2') the result 



a 
b 

l -

2m 
- di ., 
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m 
a+ ln[(o(D)) 1/ IT 
b 

• n 

n + m 
1 

' 

I o . I J 
,, J 

• 

The elimination method given by Shortley [1953] may be reduced to 

that represented by (3.5) when m1 = 2 is substituted. 

The operator A(n,,.1 ) has the property that the eigenfunction 

(n) · 1 i · 1 components of vk corresponding to arge negat ve e1genva ues of D 
' 

are strongly amplified .. If these components are weakly represented 

in the initial error v
0 

and if they are not introduced by round-off 

errors, then this selective amplification is rather convenient and 

the actual rate of convergence of scheme (3.5) will be larger than 

predicted by fot"mula (3 .8). If, however, these components are strong

ly represented in v0 , or if they are introduced during the iteration 

process, which is very likely in first order methods considered here, 

then it is desirable to smooth the effect of the elimination operators 

upon the spectrum of 

general scheme 

C (a,b,D). For that purpose 
n 

(n) 
Cn(a,b,D)uk + h(n) 

Uk -- ' 0 
(3.5·) 

* (n) + h(n) u = E *(D)u , k+l n k 0 

we consider the more 

where is defined in the same 
(n) 

manner as h0 and where E *(D) 
n 

is a polynomial operator of degree 

conditions 

(3.9) 

* n in D which satisfies the 
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Theorem 3.1 

Let 

b(cos( ~) - 1) -
)( 

>< 
2n. 

(3 .10) a.=----~------- • 
J iT 

cos( *) + 1 
• 2n . 

J 

* Then the polynomial C -M-(a.,b,o) satisfies 
n. J 

J 

the conditions 

(3 .11) )( * C *(a.,b,O) = 1, C *(a.,b,o .) = O. 
n. J n. J J 

J J 

Further, of all polynomials Q *(o) of 
n. 

* degree n. satisfying 
J 

J 
(3.12) Q*(O) =l, 

n. 
J 

)( 

Q *(c . ) = O, 
n. J 

J 

• 

the polynomial C *(a.,b,o) has the smallest maximum norm over the 
n. J 

J 
interval [-b,-aJ, provided that 

(3.13) * 1 n < - ;r 
j - 4 

3b 
a + o . • 

J 

It is clear that C*(a.,b,O) 
n. J 

= 1. Further, by substituting n = 
J 

* n., 
J 

* a= aj and 1 = 0 into the formula for the zeroes of C (a,b,o), which was 
n 

given by formula (3.36) of chapter II, we find z 0 = 
)f 

first zero of C*(aj 1 b,o). 
n. 

J 

oj, i.e. 6j is the 

In order to prove the minimax property, we assume the existence 

of a polynomial 

• 

(3.14) 

Q *(o) 
n. 

J 

• 

of degree * n. 
J 

in o satisfying (3.12) and the 

• 

where II denotes the maximum nonn over the interval [-b,-aJ. 

Let us define the polynomial 
• 
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V(o) 

V(o) has positive values in those points of the interval [-b,-a] where 

* C *(aj, b, o) assumes values in 
nj nj * 

the points where it 
nj 

Moving from o = 61 in the negative direction along the a-axis, the 

first extreme value -le '"'"<a~,b,o~I is reached at the point 

(3.15) 
• 

-

n J 
j 

= - 6 = l (b -
2 

- 1 (b + 
2 

For a< 6 the polynomial V(o) assumes nj extreme values 
• 

j 
Since these values are alternatively negative and positive, V(o) has at 

* least 

* in the points o = O and 6 = oj. Hence V(o) has at least nj + 1 zeroes. 

* On the other hand V(o) is at most of degree nj, 

zeroes. This contradiction eliminates the existence of a polynomial 

~*(o) satisfying (3.12) and (3.14) and therefore proves the minimax 

j * 
property of C ~(aj,b,o). 

nj 

We still have to consider the condition a< o. Substituting 

(3.10) into {3.15) we derive the inequality 

• 

2(b - (b -
1T 

a)cos( *) - (b - a) < 0, 

2nj 

which is satisfied for 

1 - 1 + Sc. 1 +. 1 + 8cj J cos( 
1T 

*) < < "" , " 111111 

4cj 4cj 2n. 
J 

where 

b + o 
C = _Tl ____ j 

j b - a 

a + o . 
=l+ .,J-1+---

b - a b • 

This last inequality is approximately s~tisfied when 



- l < cos ( Tr ) 
2 - )( 

2n. 
J 

or equivalently when 

* 1 1 _< nj _< 4 1T 
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< 1 - 2 
3 

3b 
a + c5 . • 

J 

a + 6 
• 

J 
b ' 

* * For a given value of n. satisfying (3.13), the operator C *(a.,b,D) 
J n. J 

J 
defined by theorem 3.1 is the ''best'' operator to eliminate the eigen-

* function corresponding too .. If n. does not satisfy (3.13), the operator 
* J J 

C ~a.,b,D) still eliminates this eigenfunction, but the theorem does 
n. J J , 

not indicate whether that operator is the ''best'' operator which could be 

used. 

* Let us define the operator A(n,n) by the formulae 

(3.16) 

* A(n,n) = 

E -M-(D) = 
n 

m 
)( 

n --
j=l 

E *(D) C ( a , b , D) , 
n n 

* C *( aj , b , D) , 
n. 

J 

* n .• 
J 

Obviously the polynomial E ~cS) satisfies condition (3.9). 
* n 

to scheme (3.5). 

Theorem 3.2 

(3.17) 2 a+ [arccos 
b 

W. -
J 

Tr 
bTI sin(

2 
) 

X. 

2x. (b+O .) 
J J 

2 
1-w 

j 

Jtg(x. arccos 
J 

w.) = O, 
J 

j = 1 , 2 , • • • , m1 , 



where 

(3 .18) W .. = 
J 
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7T 
b cos(2x_) 

J 
b + o. 

J 

- 6 • 

J 
• 

* Then, for fixed values of N and n+n the average rate of convergence 

* for N(n + n) iterations of method (3.5'), (3.16) is maximized by 
* 1 

Proof 

The rate of· convergence of method (3.5'), (3.16) may be approxi-

mated by the formula (compare (3.8)) • 

• 

* a 1 ln[v2NNp-l] (3. 8 1
) R(n,n ,N) ... 2 -

b * (n+n )N 

ml 
* a * 2n + ln a(c ><(aj,b,D)) 

b 
j=l n. 

J -
* • 

n + n 

* . 
For constant values of N and n + n this expression depends on the last 

* te1111. R(n,n ,N) is maximized when this tern1 is minimized. Let us consider 

* the stationary values of R(n,n ,N). These are reached for those values 

* of nj which satisfy the equations 

(3 .19) 

2 

* n = 
j 

ln a 

* 

* (C (a.,b,D)) = 
x. J 

J 

• 

From the definition of C (aj,b,D) we derive 
x. 

J 

• 

o, j = 



(3.20) 
d 

dx. 
J 

ln cr 

• 

* (C (a.,b,D)) 
X. J 

J 

• 

where w. is defined by (3.18). 
J 
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d 
ln - -- dx. 

J 

d 
ln - -- dx. 

J 

= Carccos 

T 
X. 

T 
X. 

J 

W. -
J 

J 

( 

b + * a. 
( J) --

b * - a. 
J 

b cos(·JT) o. -2x. J 
J ) 

b + o. 
J 

1T 
bn s in ( 2x . ) 

_____ __.::::J;___J 

2 1-w 
j 

--

By means of this fo11nula we have calculated the function 
d * -

. X. J 
J J 

listed in table 3.1. 

For a constant value of b/o. this function 
* J 

so that R(n,n ,N) has negative derivatives 

* 

The results are 

decreases when x. increases, 
J 

with respect to the varia-

hles n., j = 1, 2, ... , m1 in its stationary points. 
J * 

Therefore, the 

dete1-mined by rate of convergence is maximized by the values of n. 
J 

(3.19), i.e. determined by equation {3.17). 

In applications, the 

table 3.1 as soon as b/O. 
J 

)( 

optimal value of n. 
J 

is known. Then, the 

follows from table 3.2 (compare section 5). 

can be derived from 

* value of a (C ~<a. ,b,D)) 
n. J 

J 



x. 
J 

b/6. 
J 

-100 

- 95 

- 90 

- 85 

- 80 

- 75 

- 70 

- 65 

- 60 

- 55 

- 50 

- 45 

- 40 

- 35 

- 30 

- 25 

- 20 

- 15 

- 10 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
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TABLE 3.1 

Values of the function -
d 

dx. 
ln o 

J 

1 2 3 4 5 6 

2.6 1.1 0.71 0.54 0.44 0.38 

2.6 1.1 0.71 0.54 0.45 0.38 

2.6 1.1 0.71 0.54 0.45 0.39 

2.6 · 1 .1 0.71 0.54 0.45 0.39 

2.6 1.1 0.71 0.55 0.45 0.39 
• 

2.6 1.1 0.71 0.55 0.46 0.40 

2.6 1.1 0.72 0.55 0.46 0.40 

2.6 1.1 0.72 0.56 0.46 0.41 

2.6 1.1 0.72 0.56 0.47 0.41 

2.6 1.1 0.73 0.56 0.47 0.42 

2.6 1.1 0.73 0.57 0.48 0.43 

2.6 1.1 0.74 0.58 0.49 0.44 

2.6 1.1 0.74 0.59 0.50 0.45 

2.6 1.1 0.75 0.60 0.51 0.46 

2.6 1.1 0.76 0.61 0.53 0.48 

2.6 1.1 0.78 0.63 0.55 0.51 

2.6 1.1 0.80 0.66 0.59 0.55 

2.6 1.2 0.84 0.71 0.64 0.61 

2.7 1.2 0.92 0.80 0.75 0.72 

- 32 0.90 0.43 0.13 -0.16 -0.64 

- 63 0.98 0.56 0.33 0.17 0.03 

- 95 1.0 0.60 0.39 0.26 0.15 

-130 1.0 0.62 0.42 0.30 0.20 

-160 1.0 0.63 0.44 0.32 0.23 
-190 1.0 0.64 0.45 0.33 0.25 
-220 1.0 0.65 0.46 0.34 0.26 
-250 1.0 0.65 0.47 0.35 0.27 
-280 1.0 . 

0.66 0.47 0.36 0.28 
-310 1.0 0.66 0.47 0.36 0.28 

* (C (a.,b,D)) 
X. J 

J 

7 8 9 10 

0.34 0.31 0.29 0.27 

0.34 0.31 0.29 0.28 

0.35 0.32 0.30 0.28 

0.35 0.32 0.30 0.29 

0.35 0.33 0.31 0.29 

0.36 0.33 0.31 0.30 

0.36 0.34 0.32 0.30 

0.37 0.34 0.32 0.31 

0.37 0.35 0.33 0.32 

0.38 0.36 0.34 0.33 

0 .39 0.37 0.35 0.34 

0.40 0.38 0.36 0.35 

0.41 0.39 0.38 0.36 

0.43 0.41 0.39 0.38 

0.45 0.43 0.42 0.41 

0.48 0.46 0.45 · 0.44 
' 

0.52 0.50 0.49 0.49 

0.58 0.57 0.56 0.55 

0.70 0.69 0.68 0.68 

-3.7 1.3 0.37 -0.02 

-0.13 -0.34 -0.83 -9.2 

0.05 -0.05 -0 • .1.6 -0.34 

0.12 0.05 -0.02 -0.11 

0.16 0 .. 10 0.04 -0.02 

0.18 0.13 0.08 0.03 

0.20 0.15 0.10 0.06 

0.21 0.16 0.12 0.08 

0.22 0.17 0.13 0.10 

0.23 0.18 0.14 0.11 



n. 
J 1 

b/6. 
J 

-100 99 

- 95 94 

- 90 89 

- 85 84 

- 80 79 

- 75 74 

- 70 69 

- 65 64 

- 60 59 

- 55 54 

- 50 49 

- 45 44 

- 40 39 

- 35 34 

- 30 29 

- 25 24 

- 20 19 

- 15 14 

- 10 9 

10 11 

20 21 

30 31 

40 41 

50 51 

60 61 

70 71 

80 81 

90 91 

100 100 
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TABLE 3 .2 

* Values of the function cr(C *(a.,b,D)) 
n. J 

J 

2 3 4 5 6 7 8 

20 8.6 4.6 2.8 1.9 1.3 0.95 

19 8.1 4.4 2.7 1.8 1.2 0.89 

18 7.7 4.1 2.5 1.7 1.2 0.83 

1 :j' 7.2 3.9 2.4 1.6 1.1 0.77 

16 6.8 3.6 2.2 1.5 1.0 0.72 
. 

15 6.3 3.4 2.1 1.3 0.93 0.66 

14 5.9 3.1 1.9 1.2 0 .85 0.60 

13 5.4 2.9 1.7 1 .. 1 0.77 0.54 

12 5.0 2.7 1.6 1.0 0.69 0.48 

11 4.5 2.4 1.4 0.92 0.62 0.43 

9.9 4.1 2.2 1.3 0.82 0.54 0.37 

8.9 3.7 1.9 1.1 0.71 0.47 0.32 

7.8 3.2 1.7 0.97 0.61 0.40 0.26 

6.8 2.8 1.4 0.82 0.51 0.32 0.21 

5.8 2.3 1.2 0.67 0.40 0.25 0.16 

4.7 1.9 0.94 0.52 0.31 0.19 0.12 

3.7 1.4 0.70 0.38 0.21 0.13 0.08 

2.7 1.0 0.47 0.24 0 .13 0.07 0.04 

1.6 0.58 0.25 0.11 0.06 0.03 0.01 

2.6 1.4 1.0 1.0 1.5 6.5 2.4 

4.6 2.2 1.4 1.1 1.0 1.1 1.3 

6.7 3.1 1.9 1.4 1.1 1.0 1.0 

8.7 4.0 2.4 1.7 1.3 1.1 1.0 

11 4.9 2.9 2.0 1.5 1.2 1.1 

13 5.7 3.4 2.3 1.7 1.4 1.2 

15' 6.6 3.9 2.6 1.9 1.5 1.3 

17 7.5 4.3 2.9 2.1 1.7 1.4 

19 8.4 4.8 3.2 2:3 1.8 1.5 

21 9.3 5.3 3.5 2.6 2.0 1.6 

9 10 

.. 

0.70 0.53 

0.66 0.50 

0.61 0.46 

0.57 0.42 

0.52 0.39 

0.48 0.35 

0.43 0.32 

0.39 0.28 

0.35 0.25 

0.30 0.22 

0.26 0.19 

0.22 0.15 

0.18 0.12 

0.14 0.10 

0.11 0.07 

0.08 0.05 

0.05 0.03 

0.02 0.01 

0.01 0.00 

1.2 1.0 

2.3 22 

1.1 1.4 

1.0 1.1 

1.0 1.0 

1.1 1.0 

1.1 1.0 

1.2 1.1 

1.3 1.2 

1.4 1.2 
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3.3 Elimination methods of second degree 

Since operators of type C (a,b,D) can be generated by second 
n 

order formulae, we may formulate scheme (3 .5 ') in te11ns of second 

order equations. The average rate of convergence is not changed, 

but the method is less sensitive to round-off errors (see section 2.3). 

In this subsection another second order elimination method will be 

discussed, which essentially uses the fact that the reduction process 

is of second degree. 

Consider the scheme 

• 

(n) 
Cn(a,b,D)uk + 

h(n) 
Uk -- 0 ' • 

(3.21) • 

uk+l - + (1 - + ygo, -

(n) 
where uk 

(n-1) . 
and uk are constructed with the second order scheme 

defined by equations (2.11) and (2.16). We will choose the 

Sand Y such that one or two eigenfunctions are eliminated 

Theorem 3.3 

Let q(6) be defined by 

(3.22) q(o) = b +a+ 26 + 2 ab+ o(b+a) 
• 

parameters 
(n) 

from vk . 

Then the first eigenfunction component e 1 is approximately eliminated 

from the error 

(3 .23) B -
yo

1
q(o

1
) + 1 

1 - q(o
1

) 
, 

and both the first and the second eigenfunctions are eliminated from 
(n) 

vk if the additional relation 

(3.24) y -

is satisfied. 
• 



• 
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Proof 

The operator associated with scheme (3.21) is given by 

(3.25) * A(n,n) = (S + yD)C (a,b,D) + (1 
n - S)C 1 (a,b,D). 

n-

If y /; 0 we set 

The eigenvalues 

* n = 1 and 

* of A(n,n) 

* if y = 0 we set n = O. 

are defined by s(o.) 
J 

where 

{3.26) s(o) = (S + yo)C (a,b,o) + (1 - S)C 1 (a,b,o). n n-

Let 

(3.27) w(o) = b +a+ 20 
b - a 

and let >-a.Then it can be derived from the definition of 

C (a,b,o) that 
n 

(3 .28) C (a,b,o) -
n 

w(o) + 

w(O) + 

n 
- 1 n - [q(o>J • 
- 1 

It is easily verified that (3.23), (3.26) and (3.28) result in 

s(o
1

) - 0 and that (3.23), (3.24), (3.26) and (3.28) result in 

s(o1) - s(o2) - o. 
This proves the theorem. 

Theorem 3.4 

Let the function E(o) be defined by 

(3.29) 

where 

exp(2 
c

1 
= y(y + 4(1 - S) 

b - a ' 

exp(2 
c

2 
= Y(2(1-S)(b+a) 

b - a 
+ 28) + 4S(l-S) 

exp(2 

b - a 
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exp(2 
c = 82 + 2$(1-B)(b+a) 

3 b - a 
2 + (1-s) exp(4 

Then, the spectrum function s(o) of scheme (3.20) satisfies the 

inequality 

(3.4) 

• 

Proof 

From (3.26) we have for -b < o < -a 

(3.26') s (o) - [ (S+yo )cos (n arccos w (o )) + (1-S )exp (-2 

• 

cos ( (n-1) arccos w( o) )] a 0 • 

This expression may be written as 

(3 .26 11
) s(o) • [A cos(n arccos w(o)) + B sin(n arccos w(o))]a

0
, 

where 

A = $ + yo + ( 1-S ) exp ( 2 

B = (1-B) exp(2 w(o)) • 

From this last relation we obtain the inequality 

Substitution of A and B yields inequality (3.4) where e(o) is defined 

by (3.29). 

• 

From theorem 3.4 it follows that the quantity E
0 

defined by (3.3) 

satisfies the inequality 

(3. 30) e: 
0 

< Max E(o) = 
-a(D)<o<-a 

Max 
-<J(D)<o<-a 

• 
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Therefore, as soon as the coefficients c • c and c are dete11nined 
l' 2 3 ' 

the average rate of convergence may be evaluated by means of fo11nula 

(3.2') and (3.30). An example of this method is given in section 5 

of this chapter. 

3.4 Extr~polation formula of Ljusternik 

In this subsection we consider a special case of scheme (3.21), 

where y = 0 and 8 is deterrrlined by (3 .23). The elimination fo11nula 

may be interpreted as an extrapolation fo1·mula and is related to the 

extrapolation formula used by Ljusternik to accelerate stationary 
• 

processes (cf. Forsythe and Wasow [1960], p. 219). 

From theorem 3 ~4 and fo1~nula (3 .30) it follows that 

(3.31) 

provided that S < 0 or 8 > 1. For all practical purposes we have by 

(3.23) that Isl >> 1, so that neglecting the computational labour of 

* the extrapolation process (n = 0) the following inequality is ob-

tained 

(3.32) R(n,O,N) > 2 a 
b 

1 
nN • 

As was already remarked in subsection 3.2, the rate of convergence 

may be improved by applying some smoothing operator. 

Here, the effect of the operator 1 + wD will be considered. The function 

£(0) transforms into 

(3.33) 

The stationary values of £{a) are reached in the points 

o = - 1/3w - 2c3/3c2 (see figure 3.1). 

= - 1/w and 



I 

I 

I 
I 
I 
I 

I 

I I l+wo I I 
I 

I 
I 
I 

I 

-cr(D) 

' 

' 

c2o+c3 

- 1 

w 
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c2o+c3 

l+wo 

fig. 3.1 

The optimal value of w is determined by the equation 

(3.34) e:(-cr(D)) 
1 = e::(-
3w 

I 
I 

I 
I 
I I 1 
I I 

I 
I 

I 
I I 
I I 

-a 0 

Introducing the variables x = wc3/c2 and c = c 2cr(D)/c
3 

this equation 

may be. written as 

(3.34') 2 3 (4 - 27(1-c)c x + (54(1-c)c 2 
- 12)x + (3 - 27(1-c))x - 4 = o. 

For all practical purposes we have c >> 1, so that (3.34') reduces to 

(3.34'') 27(cx)
3 

- 54(cx) 2 + 27cx - 4 = O. 

This equation has one real root ex= 4/3, thus 

(3.35) 

For e: we find 
0 

(3.36) 

w = 
ex 

cr (D) 
4 =---3cr (D) • 

-

and for the rate of convergence we find 

(3.37) R(n,1,N) > 2 a 
b 

- 1 
(n+l)N 

' 

b - ln 9 

2(n+1) • 
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4. ~valuation of the firs~ !igenvalues of the oper~tor D 

In the preceding section we have assumed that the eigenvalues of 

D outside the interval [-b,-a] are known. This could be a disadvantage 

of the reduction-elimination method. However, it is possible to eva

luate these eigenvalues during the iteration process. We shall derive 

formulae which yield approximate values of the eigenvalues correspond

ing to the dominant eigenfunctions without much computational labour. 

These formulae are applied at the end of the reduction phase of the 

first cycle. Throughout this section it will be assumed that D has a 

complete set of eigenfunctions. 

• 

4.1 General method 

If n is sufficiently large, 

the subspace spanned by the eigenfunctions 

(4.1) = C (a,b,D) 
n 

m 

I 
j=l 

' 

into 
ml . 

e } J i.e. . . 1 J J= 

j=l 
C (a,b,o.)c.e., 

n J J J 

where c., 
J 

. . . ' mare the coefficients of the eigenfunction 

expansion of the initial error v 0 • 

for j = 1, 2, .•. , m1-l. Hence it is expected that 

(4.2) j = 1 , 2, ••• , m
1 

-1 • 

We shall assume that (4.2) is satisfied and that we have constructed 
(n) 

a class of known functions w1 which have the same property as v 0 . 

Thus 

(4 .3) w -1 
j=l 

rl ( o . ) c . e . , 
J J J 

where r
1

(o) is a known function of o such that 

(4.4) 
J J 

For instance, we may define the class 
, • 

1 , 2 , . . . , m1 -1 • 

where 



w2 --
(4 .5) 

w3 --
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Du(n-1) 
0 + go, 

(n) (n-1) 
uo - u 

0 ' 

(n-2) 
- u 

0 • 

In order to calculate the eigenvalue o1 we form the two equations 

• 

' 

(4.6) 

where we have assumed 

norin. Elimination of 

arbitrary 

equation for o
1

: 

(4.6') det = o. 

I I I 2 
W 1 II I 

In those cases where the eigenfunctions ej, j = 1, 2, •.• , m1 are 

successively eliminated, we repeat the preceding argument as soon as 

• e1 1S eliminated be calculated, 

which enables us to remove the eigenfunction e
2

, etc. 

In scheme (3.21) - (3.24), however, it is necessary to know the 

values of o1 and o2 
Then by eliminating 

(4. 7) 

simultaneously. Let e 1 and e
2 

be orthono2,nal. 
2 2 

c1 and c2 from the equations 

r2(0 > 2 + 
1 1 cl 

2 2 - f ,, ( 0 ) C + 
1 1 1 

r2 cS > 2 
1 I ( 2 C2 J 

r2 (o > 2 
1'' 2 c2, 

we obtain a second equation, namely 
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(4.7') det = o. 

Here, II II denotes an inner product norm. 

Equation (4.7') together with equation (4.6') dete1111ines the eigenvalues 

62. 

In the following subsections, fo1mulae will be given which yield 
• 

approximate values for the first eigenvalue o
1

. 
' 

• 

4.2 The first order scheme 

For the first order process the functions w1 defined by (4.5) may 

be writ ten as 

(4 .8) 

= Dv(n) ~ 
0 

= Dv(n-1) _ 
0 

o1 Cn(a,b,o1 ) 

l+wn_lol 

(n-1) 
- V 

0 

(n-2) 
- V 

0 
= w Dv(n-2) = 

n-2 O 

As an example, we apply fo1-mula (4.6') to the functions w1 and w2 • We 

obtain for o1 the simple expression 

(4 .9) 0 -1 
1 

w n-1 
- 1). 

In the same manner other expressions may be obtained • 
• 

Note that the functions w
2 

and w
3 

are linearly dependent. Hence w3 may 

be dropped in (4.8). 
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4.3 The second order scheme 

In this case the functions w1 are approximated by 

n 

(4.10) 

• 

• 

where the function q(o) is defined by (3.22). 

Here, the functions w1 are linearly independent. 

Let us apply fo11nula (4 .6') to the functions w1 and w2 • Then we find 

(4.11) • 

This may be written as 

(4.12) ~ ~ l [ ( 
u 1 4 a + b) .._~ - 2(a+b) + ( a -

w2 

The same result is obtained when w1 and 

respectively. For other expressions for 

[1967 b]. 

are replaced by 

we refer to van 

w3 and w4 , 

der Houwen 

Finally, we note that the formulae derived from (4.8) or (4.10) 

are valid for negative as well as positive eigenvalues o1 . 

5. The Dirichlet problem 

In this section we shall apply the methods proposed in the preceding 

sections to a well-known problem in the theory of elliptic boundary 

value problems, namely the Dirichlet problem for the Poisson equation 

defined in a square of side n. This problem may be solved numerically 
• 
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by the difference scheme discussed in example 3.3 of chapter II. We 

have shown that the difference scheme may be represented by a five

point fo1,nula with 

(5.1) 00 - 2 , 
-2 

a (D) ... 4~ , 

where~ is the mesh length along both the x and they axis. The P

condition number of this scheme is given by 2~-2
• We recall that the 

P-condition number of the scheme commonly used to solve this problem 

is twice as large. 

Further, it may be deduced from formula (3.41) of chapter II that 

(5.2) 

for small values of~-

We shall calculate the average rate of convergence for~= w/20. 

First we consider Richardson's method. 

is given by fo11nula (2 .19) with a = -o - 2 
1 

The rate of convergence 

and b = cr(D) - 4~-2 - 162. 

Since the operator Dis represented by a symmetric matrix D, we have 

p = v = 1 and we may choose N = 1. This results in 

(5.3) R(n,l) - 0.222 -
0

·
693 

. 
n 

Next we apply the reduction-elimination method with a= 5 and 

b = 162, where the remaining eigenfunction e 1 is eliminated by a 

linear operator, i.e. we apply scheme (3.5) with m1 = 1. From fo1~nula 

(3.8) it follows that 

(5.4) R(n,1,1) 
5.439 

- 0.351 - --- . 
n + 1 

Hence, after about 37 iterations this last method becomes faster than 

Richardson's method. 

The average rate of convergence can be improved still more by 

replacing the linear elimination operator by the Chebyshev operator 

* C ~a ,b,D) defined by the theorems 3.1 and 3.2. From table 3.1 we 
n1 1 * * 

see that n
1 

= 7 is the optimal value of n 1 . Further, from table 3.2 

* we have cr(C
7

(a
1

, b,D)) - 1 ,so that applyJing. formula (3.8') for m1 = 1 
• 

• 

we find 
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(5.5) 
3.150 

R(n,7,1) - 0.351 - 7 · n + 

Note that the value n
1 

= 7 satisfies 

* 
the condition 

~ 9.8. Thus the operator c7 (a
1

,b,D) is the 't '' . best polynomial operator 

which can be applied (see formula (3.13)). 

Finally, we consider the second order scheme (3.21) where Sis 

defined by (3.23), and where we have substituted a= 5, b = 162 and 

61 - -2. For each value of o the function E(o) defined by theorem 3.4 

is a function of the pararoeter y. Further, we have for large values 

of n 
• 

Max E(o). 
• -1s2<0<-s 

In figure 5.1 we have plotted 10€(-5), €(-162) and £ 0 as functions of y 

for -1/10 < Y < 1. 

O ( Y ) =€ ( -16 2) 

10€(-5) 

y 
-0.10 0.16 0.8 

fig. 5.1 

• 
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For Y - .16 the function s 0 (y) assumes a minimum value 

(5.6) 

Substitution of (5.6) into (3.2') leads to 

(5.7) R(n,1,1) ~ 0.351 - 3.562 . 
n + 1 

A slightly better rate of convergence is obtained when elimination is 

achieved by the smoothed extrapolation method discussed in subsection 

3.4. The extrapolation forn1ula contributes the number £ 
0 

(0) - 30 .3 
• 

which is reduced to e: 0 (0) - 10 .1 when the smoothing 

is applied. The av~rage rate of convergence becomes 

(5.8) R(n,1,1) -
• 

0.351 - 3.357 • 
n + 1 

operator l-4D/3cr(D) 

The accelerating methods discussed in this chapter were all tested 

on the EL XS computer of the Mathematical Centre of Amsterdam. The 

numerical results were in good agreement with the theory. 

In van der Houwen [1967 d] the polynomial elimination method was 

applied to the problem discussed in this section. The elimination of 

one and two eigenfunctions was treated. The corresponding eigenvalues 

were calculated by for111ulae indicated in section 4. 

In Coolen and van der Houwen [1968] the same method was applied to a 

non-symmetrical matrix equation. A comparison was made with the 

successive overrelaxation method of Young. 

Second order elimination methods were tested in van der Houwen [1968] 

for both the symmetrical and the non-symmetrical problem • 

• 
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