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This book 1is the posthumous publication of the scientific work of
A.R. BLOEMENA who died in 1960 at the early age of 32. He started his
career as a mining engineer from the Technical University, Delft,
Holland, but after practicing for a couple of years he switched to
mathematical statistics. He Jjoined the Mathematical Centre and developed
rapidly into a very promlising statistical research worker. Soon he was
appointed deputy chief of the Statistical Department.

His thesis was nearly finished when he died. It had still, however,
to be brought into 1its final form. This was done by his successor
W.R. van ZWET. The Mathematical Centre is very grateful for his work
which was far more than a mere editorial task, and 1t is glad to be able

to present the main research results of BLOEMENA in the form of this
book,

J. Hemelri jk
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CHAPTER

1.71. Introduction

lLet be glven a set of n points, numbered 1,2,...,n, and a (n xn)-
matrlx M, with elements mij’ satisfying

(1.1.1) Mgy = Mgy (1 # 3),
(1.1.2) m,, = O,

(1.1.3) § mfj,;1 for each 1,
(1.1.4) Oimijc o ,

In the special case that all mij are integers, the set of polints
and the matrix M can be interpreted as a finite multigraph of n points
(cf. C. BERGE (1958), D. KOENIG (1936)), where the number cf joins
between points 1 and J 1is equal to mij' In this 1nterpretation,‘mij = 0
means that there 1s no joln between 1 and J; assumption (1.1.2) states
that there are no loops, while assumption (1.1.3) implies that no point

18 isolated,

We shall sometimes indicate §=mij by m, . and % my . by m, ..

From the n points two samples are taken, We shall consider two
cases,

Case 1. "non free sampling" : from the points 1,2,...,n T, and Ty
points are chosen at random without replacement (r1+r2;gn). The T 4
pcints wlll be denoted as black (B) points, the r, polnts as white (W)
ones, while finally the (n~r1“P2) remalning points are the red (R) ones.

Case 1I. "free sampling": n independent trials are performed, each
trlal resulting in the event B with pfobability P4, in the event W with
probabllity Pors and 1In the event R wlth probability (1-p1—p2). Point
number 1 1s alotted the colour indicated by the outcome of the i-th
trial.

Consider the random variables“o*Eéﬁ),gig),xij (1,3=1,2,...,n)
defined by **

) We shall distingulsh random variables from numbers (e.g. the values
they assume 1n an experiment) by underlining their symbols.

##) By writing spr a (salve probabilitate a) after a statement we shall
Indicate that the statement 1s true except for an event with
probabllity smaller than or equal to a« . Hence spr 0 corresponds to
"with probability 1",



B
-£§1) = 0 spr O
W
5&1) = spr O
Y4 = O spr O

and for 1 # J

(B) {’1 1f point 1 and jJ are both black
x ==
—1J 0 1f not,
(W) {’1 1f point 1 and J are both white
X =
—1J O 1f not,
1T 1f one of the points 1 and J 1s black and
iy = { the other is white
O 1if not.
Obviously _
L(B) _  (B)
=1 3 =31
(W) _ (W)
..};(...j_d - ...JEJi s
lij = z-ji .
Defline (B)
(B
...}x...B = 1):,1 mij ..513 2
W)
(14:.145) = z m ,.}.S.( S
2y fy 13 A
¥y = 1 m,y.. .
5 13 L

Now x5 18 twlice the number of jolns between black points, y 18 twice the
number of joins between whilte points, whereas y is twice the number of
joins between black and white points. Notice that if m, 14q =My q 4 = 1
o - »
for 1=1,2,...,n-1, and my g = O otherwise, and if r,+r,=n, then sy+1 1s
the number of runs in a sequence of alternatives.
Define for 1i,3=1,2,...,n

(1.1.6) Vyg = 25.&?) + _::c_§‘3') - ¥4
and

v = iIJ My Yy
Obviously

(1.1.7) Vv =Xg tx, - ¥.



The statistic v 1s met 1n the study of the order - discrder problem
(ef., A.R. BLOEMENA (1960))

A more general varliable z of the form

Wi————

1.1.8 z = m, , Z
(1.1.8) 2= oMy zyy s
where 2,4 are random varlables satisfying

2,5 =0 spr O

and for 1 # ]

213 Z41 >

but not necessarlly connected wlth polnts in a graph, wlll also be
considered. A symmetry condition that 1is satisfled by Xps Xy Y and Vv
wlll also be imposed on 2z (cf. section 3.1), which then becomes a useful

generallzation of x., Xigs Yy and v,

Obviously z, as defined by (1.1.8), is a statistic belonging to the
class M of statistics w that can be expressed as

( ) If ?
T 121 gy=q T

where the random variableg‘gij satisfy

Hii = O spr O

and for 1 # J

i1y T g

The class H/ contains a well-known statistic. Let be given n pairs
of random varilables (g.hgi), (1=1,2,...,n), and define for 1 # J

1
+3 1 (uy-u,)(vy-vy) > O
844 = O 1f (uy-u,)(yy-v,) =0
1
-5 if (.‘li“ﬁd)(ii“ij) < 0,
and
844 = O spr O ,

then the statistic S, defined by

S = 2: 8
= ' ~1 3

1s the statistic of M.G. KENDALL's rank correlation test (cf. M.G. KENDALL
(1955)), and belongs to W



A review of records of previous work on the subject will be given
at the end of this section. The next section gives some results on the
probabllity distribution of X for small values of T,

To study the stochastic properties of W, one approach 1s to study
1ts moments. In chapter 2 we develop expressions for the reduced and
unreduced moments of w, using the theory of graphs., In chapters 3 and 4
these results are applied to z, and to Xns Xy ¥ &nd v. Chapter 5 deals

with an application to the ppablem of a test for randomness.
For results on runs in a sequence of alternatives we refer to

H.A. KUIPERS (1957).
As far as we know the earliest results for the case of a rectangulanr

lattice with my 4 = O or 1 are given by J.G. KIRKWOOD (-1938) in a paper on

the order-disorder problem, KIRKWOOD states the first moment and

asymptotlic expressions for the second and third cumulant of a simple
transform of Xp.

P.A.P. MORAN (1948) considers a "statistical map', equivalent to
our graph for m, 3 =0 or 1, where the polnts are chosen by free and
non free sampling. He gives for both cases the first and second moments
of the number of black-black joins, and the third and fourth moments for
the case of free sampling. He proves the asymptotic normality of Xn and
Y (free sampling) for a rectangular two-dimensional lattice, where there
are jolns between neighbouring points in the direction of both axes (cf.
also P.A.P. MORAN (1947)).

There exists a large number of papers on the subject by
P.V. KRISHNA IYER (1947-1952), dealing with rectangular lattices, where
elther nelghbouring points are joined in the direction of both ax '
nelghbouring points are joined in the direction of both axes
dlagonal directions. The results of XKRISHNA IYER are mostly on the first
four moments or cumulants; statements are made about the a
behaviour of the distributions of the 1

Results on the case of a rectangular two-dimensional lattice with
vacancles (which 1s in fact a special case of MORAN's astatistical map )
are given by G.H. FREEMAN (1953). |

A number of exact results for rectangular lattices (non free
sampling) are described in a report by C. VAN EEDEN and A.R. BLOEMENA
(1959). The present study is &n outgrowth of this last-mentioned report,
which arose from a study of the distribution of =& statistic, obtained
in a psychological test (cf. C.A.G. NASS (1960)).

Editor's note,

The author was aware of the existence of g great number of papers on
the order-disorder problem and, given time, would have revised this
review of previous work accordingly. The editor has refrained from



dolng so because an excellent review of work on the order-disorder
problem has since become avallable. The interested reader is referred
to C. DOMB, On the theory of cooperative phenomena in crystals, Philos.
Mag. Suppl., 9, No 34, p 149-361, 1960.
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(v1§2v3) (bveﬂmij)(bvBPmiJ)(bvqwmik)(buBHmik)(buqﬂmjk)(bvgﬂmQR)
— *%%k f%. o = 1 ,
w=1 u=" oM
M Fw
( ) means summlng over all permutations of the numbers 1,2,3)

(u1u2u3)
while thls expression is zero if none of the six statements is true.
Thus

P[XB-2b1+2b2+2b3.A points 1,J,k are chosen 'r 3] =

I (bveﬂmij)(bVB“miJ)(bvqﬂmik)(DVB“mik)(bvqﬂka)(bveﬂmjk)

3 3
n(n-1)(n-2) '[:f TT (by-b,)

Summing over unequal values of 1,J,k and interchanging the order of
summatlion glves

(1.2.1) P _}__{__B-Qb,l+2b2+2b3 : r,=3] =
) ) (b, -m )(b, -m, ,)(b, -my, )(b, -m, )(b, -m.)(b, -m, )
_(349p¥3) (1 3K)# B A T e O A I P I
_ 3 _ _
n(n-1)(n-2) TT TT (b,-b,)
w="] u="
M Fw
Suppose that among the n polnts there exists at least one triplet of
points numbered A ,A 3> such that m, ==b1, m, ----b2 and m, 3.
1’ 2 1’ 3 2’ 3

Then each such triplet contributes 6 identical terms to (1.2.1) viz. one

for each permutation Vs VosV3- E.g. for v, =1, v,=3, v3-2 (take 1=2,,
J=2,, kmk3) there is a term in the numerator of (1.2.1)

(b My )(b2_ A )(b My )(bg”mx A )(bq“mx ‘A )(b3"ml A )

3 Aas iy Aos 02 3 o+ "3 12 3 12 %3

while for v,=3, v,=2, vy=1 we have (take 1=A3, J=Xs5, k=1,)

(be—m )(b -m, )(bB-m )(b ~m )(b3-m

Y(b.,-m ) .
Ags Ao 2352 A3 2 A3, 2 e Ags A

AosAqtt e T An, Ay

Therefore (1.2.1) can be written



(1.2.2) Plxg =2b +2by+2b, | v =3] =

6 -m b-m, ,){(b_ .~ DL- b~ b ~

n(n-1)(n-2)

If no triplet of points l1,l2,h3, can be found such that my ==tnp
1272
qu,Amez, m12’3‘3 =b3, (1.2.1) 1s equal to zero, and so 1is (1.2.2).

In exactly the same way one obtains
(1.2.3) P@B =4b +2b, | r, =3] =

2715 (257115 )i (B i) (04710 (0570

2

n(n-1)(n=2)(by=b4)2(b,b,) (b 1=by) (b,-by)
and

(1.2.4) P&C_B-T-6b,]lr,}==3] =

£ 27y (P37 y )Py ) (B oy (B gy ) (D37 gy )

n(n~1)(n~2)(b2-b1)3(b3-b1)3

The expressions (1.2.2), (1.2.3) and (1.2.4) may be simplified, e.g. the
numerator of (1.2.4) can be written as

bgb%n(nwﬂ)(n~2) - 3bgb§(b2+b3)(n-2) I om, o+

(13)#
2, 2, 2 | 2
+ 3b.b-(n-2) ): m + 3b,b,(b,+b,) E m m +
273 (13)# 1 23772 737 (1yk)g LI ik
- . 2 2 2

- 3 2 2
(b2+b3) (igk)# mij My, ka + 3(b2+b3) (igk)# mijmik mjk:+'

2 2 2 2 2

- 3(b.+b,) 1 mS, mS,_ m,_ + m<. m<. m<. .
2703 (151)4 13 "1k Tyk (150)4 13 ik Mgk

Now because of (1.1.2)



! my, = }
(15)¢ 19 4y A
2 2
(5%)# LT M
) m,, my, = ) [:X m, , m,, - m ']!“ ) m,, m,, - ¥ me
(13k)¢ 13 1k T | g td Tk 13 Pk 13 Tk T T
(1§k)# mfj Tk ~ 1§k mfj M1k ~ ﬁ% mij
y 2 2 _ ) 2 2 4
(1K) 4 13 Mk 15K M1y Mk E% My 3
(1§k)# mij mik mjk = 1§k mij My mJk . etc.
For 1 # J
(1.2,5) (b1-mij)(b2-mij)(b3”mij) = 0 .

Summing this identity over 1 and J with 1 # j gives

L _ . 2 _ 7 3
b b,y n(n-1) (b1b2+b,lb3+b2b3)izd my o+ (b"+b2+b3)123 my, = iIJ myy

while multiplying (1.2.5) by my and summing gives

< 3 b
b_,b,b m - (b b,+b_b.+b,.b_ )i m + (b,+by+b_.) ) m?7, = ] m .
Using these identities the resultsof table 1.2.1 have been obtained.

Since wlthout loss of generality one of the numbers b,‘,be,b3 may .be

taken to be equal to zero, terms containing a factor b1b2b3 have been
omltted.

For r1:=2,‘£B assumes the values 2b,, 2b, and 2b3 with non-zero
probabllity. It is sufficient to calculate P[§B==2b1]r1==%]; the other
probabilities follow by symmetry. We find

| 2
(b2+b3)i): myy - 1{ my 4
(1.2.6) (bg—bq)(b3~b1).P[55 =2b, | r,=2] = by, - IR B 3 E

n(n-1)

For the case my takes only two values, say O or 1 (MORAN's model)
we have also considered the case r1==4. The result is given in
table 1.2.2,.



Table 1.2.1

il

n(n~1)(n~2),ca, Xp alr1 = j] for the case where the miJ (1 # J) assume three unequal values

and b_b.b

3 19203 O, The table provides coefficients of the sums entered in the first column,

H

b,,b,,b

 Hbgtedy - o

2b +2b2+2b

3
(b.,-

l 2 2 2
5 (b,]"bg) (b,]“bB) (b2~b3)

1 | - +b23b33n(n~1)(nw2)

_ f | 2. 3 2 2 5 - i
£% myy | _ -b, b, 3n4b,%0,%(by-b,) | =30,7b5"(by*b5) (n=1)

- 2 ' 2, 2 2 | 2, 2
Ea mg _ by b3 n-b,"ba(by-by) | +3b,"by"(n-1)

) my g My -b12b22-b12b32-b22b32 ; +b1b33+2b2b32(b2+b3) 5 +3b2b3(b2+b3)2

13k

2 ? - 2 ;
1§k g " #(bgtbytby)(Dybytbybytbyby) | -2bby"-2b5b,(by+2b 5 ) | -60pby(bpts)

2 2 _ _
1§k my s m ~(bby+b 1by+byb, ) 5 +b,( b 4+2b,) o +3b,b,

_ ; 0 ; 3
Mk ™l +(b+05)(b4#b5)(by+b,) ~(bgtb5) (b ytd,) -(byths)

o 2

> #05°)=3(b b +b b +b,b ) | +(by+0;)(2b,¥b,¥3b,) +3(by+b,)

> . >
L omymym -(b 740 LPALELERAPLE p¥P3

ik

Lomyymy my | +2(b_#b,4b, ) _ -(b.4#2b,+3b,) _ -3(byb,)

> o2 2 | ' .
X m m, ka _ -1 +1 . +1

OL



n(n-1)(nw2)(n~3).P[§B = a|r'1 = %] for the case where my gy = 0 or 1,

The table provides coefficlients of the sums entered in the flirst column,

2 | v | e |8 |wlwe

R PR .
I m, | -6n%+1Bn-14 | +6n2-6n+12 | -12n-18 | 420 |— | —
5 : = | |

( : miﬁ) " AN I i A Bl
+12n-12 . obn-12 | +12n460 | -36 | — | — |—
~4n | +12n+24 -12n-72 | +4n+72 | -24 | — |—

-y +12 -2 | s | — | — '

m | 12 | 436 36 | o+ |— | — |—
) mij my mJk m, +12 i -48 +72 -48 . +12 | — [—
I oomyyomyyomyy my ? +3 12 | 418 2 | 43| — |—
L Mgy Mg Mgy Mg My :

) iy My ™1 M3k ™31 Pkl

LL
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CHAPTER 2

2.1, Graphs

The notion of a graph 1s used i1n thils study 1n two different ways,
Firstly, as stated in section 1.1. in the case that all m, 4 are non-
negative integers, the internal structure of the set of polnts from which
a sample 1s taken, 1s indicated by means of a graph. We shall call this
graph from this point onwards the master-graph. The word "geraph', with-
out further 1indication, refers to the second type of graphs to be intro-
duced in section 2.2. For this second purpose we use the word ''graph'" to
denote k oriented joins, labelled 1,2,...,k between 1 points (22132 2k),
such that no point remains isolated (1s not connected to at least one
other point) and loops do not occur. Multiple Jjoins are admitted. Such a
graph will be called a (k,l)~graph.

Each Join has a first and a second point, the orientation of the
Join being from the first to the second point. Each point is labelled by
means of the, labels of all joins beginning or ending in this point, with
a suffix 1 or 2 to the jolin-label indicating whether the point is its

first or second point.

Two graphs are equivalent 1f they can be mapped on one another with-
out changing the labelling of the Joins and points. Non-equlvalent graphs
are called distlinct, This gives a classification of graphs into equival-
ence classes. For the purpocses of this study a class of equivalent
graphs may and wlll be considered as one graph.

E.g. conslder three graphs as follows.
“

The first two graphs are equivalent, the first and third one (and also
the second and third one) are distinct.

Two distinct graphs, which can be made equivalent by means of a
permutation of the jJoin-labels and/or changing orientations in one of the
two, are sald to have the same configuration. This gives a further class-
“flcation into configuration classes. Omitting the labelling and the

*lentatlon from a graph, a blank graph is obtained., Blank graphs

-ailned from distinct graphs with the same configuration will be con-
ered as ldentical. Blank graphs, corresponding to different configur-~
on classes, will be called different. Thus there 1s a 1-1 correspond-

e between blank graphs and configuration classes. The term "configur-
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ation of a blank graph! will be used to indicate the configuration
class corresponding to the blank graph. By "configuration of a graph"

1s meant the confliguration class to which the graph belongs.,

As an example conslder the following three blank graphs:

The first two are lidentical, 1.e. they have the same conf'lguration. The
first and the third one (and also the second an the third one) are dif-
ferent (have a different configuration),.

A blank graph 1s called connected if from every point of the graph
every other polnt may be reached by travelling along the Jolns. Regard-
less of the orlentation of the Joins, a graph is called connected if 1its
blank graph 1ls. Every blank graph consists of one or more connected
components, which have nc¢ connections between them. This decomposition
is unique (cf. D. KOENIG, (1936), 15). This holds also for a graph. The
components of the blank graph of a given graph are the blank graphs of
its components.

For a connected (k,l1) graph the relation
2213 k+1

holds and there 1s a finite number, say qk 12 of different (k,1l)-blank
graphs or configurations. Let C( 2 be the a-th one of these

(a=1, 2,.,.qu l) Notice that the symbol Cﬁ % always refers to a con-
nected graph or a connected comgonent of a graph In case qk 1“1 we

hll ' . n i - {2 f’"
sha write C <, 1 instead of k,l‘

The configuration of a blank graph with h connected components
(1§}L§['])cannow be indicated symbolically by

(a,)

| &

C
1=1 Ky.14°
(ai)
if Ck 1 1s the confilguration of 1ts i-th component., If components with
1271
equal configuration occur, this may be written as
(a,)
Z &y Cy I,
Kyrds
(a )
where gj indicates t?e number of components with configuration C
S (c €301
Ew:ﬂf( Z gj " J )will pe indicated the number of dlstinct graphs
J=1 J? J < (a,)
wlth conflguratlon ) gjck Jl .
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Theorem 2.1.1. Recurslon formula for A

Proof,.

We flrst prove

(2.1.1)

e, )
I Ky d;
the labels 1,.*.,ngJ,h§ve to be distributed over:gj 1dentical
(kj,lj)ncomponents of the blank graph, This can be done in

To obtain the number of distinct graphs wlth configuration

(g.k,).
(2.1.2) -mﬂnlmimfgw

(k)Y

gyt(lkyl)
distinct ways, since each of the 53 permutations of the components leads
to the same (i.e. equivalent) set of %rasaha in the end. In each component
a set of kJ labels glives rise to ./((C ) distinet graphs; thus for

J’ J

each dilstribution of k,ng labels over tne gJ. components there are

(2.1.3)

distinct graphs with the required configuration. The number of distinct

(a

)
graphs with configuration 53 " 'j 1s now the product of (2.1.2) and

J’J
(2.1.3), which proves (2.1.1).

(a, ) 8 (aJ)
Now consider gJ " as the j-th subgraph of |} gJ " . The
J”’ J J=1 J’ J

number of ways in which k labels 1,...,k can be distributed over s

different blank subgraphs such that the Jj-th one contains 53 1 labels
(qu,g,.ﬁ.,ﬂ) 1s
k!
(quq)i(gzkg)i * o (gsks)z
(u )
In the j-th subgraph each set of gJ 3 labels gilves rise to l )
distinct graphs. Thus J
(a,)
3 (o)) s Aescy 1))
( Z gJ ) - K ! W "—""""'"—""1"_'1—‘ 3
Ky21; J=" (g4k )

which upon application of (2.1.1) glves the result of the theorem.
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In order to obtain a recursion formula for;(cﬁaz) too, define

n (ay)
(2.1.4) ( ) Ck 1 = QO if for at least one 1i=1,2,....,h
1=" 171
elther li <1 or li& ki+2 )
Let
H
C(ai) ' g C(ai) )
¢ 11 9
ki’li i1=" ki’li
' (al)

be the number of distinct graphs having configuration } Ck' yt that can
1=" 1771
arise in adding one oriented Joi? t? a gilven pattern consisting of a
h o ht n
graph having configuration ) Ck il and of ) li - ) l1 ~unlabelled
1=" 1771 1="1 1="1

h (ay)
isoclated points. As by means of Theorem (2.1.1) .( ) C. il) can be
i=1 1771 '

(a,)
calculated 1f,/V(Ckifli), (1i=1,2,...,h) 1s known, we glve only the

recurrence relation:

( C(a)

k+1,1+1) - £ :

(2.1.5)

We shall illiustrate the use of these recursion formulae by
calculating./yﬁfor configurations up to k= 3.

All graphs based on one Jjoin between two points are equivalent. Thus

(2.1.6) '"(01’2) = 1

For k =2, the following configurations are involved

e @ S
@wa S winat §  —cm— ) <@ o
Cr 2 Ca 3 2C4 2

Glven one oriented jolin between two polnts, two distinct graphs may.
arise in adding one oriented jolin between the same polnts:

] g
M
e @ and @’quhxw
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thug}/?02’2501,2)==2, and from (2,1.5)'(02’2)ﬂ=2,

Given one oriented join between two points, and an isolated point, four
dlstinct graphs arise in adding one Join in all possible ways to this
pattern, such that a graph of configuration 02 3 arlses:

2

1 2 1 e 2 g 2 1

G e G s & @ el G vt & D unnipunen @ maDune 5 @ oG & "

thus 7-/"(02,3;01’2) = 4 and 1(02,3)m y

Application of Theorem 2.1.1 with s=1, gme, k,i-—-’l, l,,mQ, a =71 and
/V(C'Iﬁ) =1 gives /V(zc,,,e) = 1.

summarizing we find for k=2

A (Cy 5) =2
(2.1.7) A (Cp,5) = ¥

For k=3 the following configurations are involved.

% o T
C ct)
3,2 3,3

I
Qo
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Also

while from Theorem 2., 1. 1

V(G2 * Cpp) = €

In this way the following results for k=3 are obtained

(2.1.8)

and therefore

(2.1.9)
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2.2, An expression for () wi!)k

Let Wy g (1, j=1,2,...,n) be real numbers, satisfying
(2.2.1) Wiy =0

and for 1 # J

(2.2,2) wiJ = w‘ji .
From the sum
) (1 w, )%= 3 ;
(2.2.3 Wy g = e ) Wy o eeeW,
1. 11=1 rgkm1 1 2 2k-1° 2k
we conslder one term
(2.2.4) t = w W ce oW .
T2 T T3s Ty Tok-1° T2k

The subscripts occur in pairs : “25-1’ TEJ)’ (J=1,2,...,k). If for any J
both subscripts assume the same value, t is equal to zero by (2.2.1).
These terms can therefore be omitted from (2.2.3). Now consider a term t
with Toy-1 # o4 (j=1,2,...,k). Among the subscripts TasToseeesTy, 1
unequal numbers from 1,2,...,n occur (22125 2k). Call these

A1312,,,,,l1 with

Each of the +tts 1s equal to one of the i '!'s; let
T = Au and 12J = A (1“§ Djé 1, 1 & ”Jilx J=1,2,...,K),

then

u J}iv Wl :Av "'wl s A ( uJ # v‘j’ .j-“'"’!;a,.,,,k).
17 Y1 M2 VYo Ve Vk

In the set of numbers Mgy Hoseees Wi v1, Voseeos Yy all numbers
1,2,...,1 are represented, To each such set of numbers Mas Moseees My,

v. - and therefore to each term t - there corresponds a (k,1)-

VasVos -V

graph in the following way. Take 1 polnts, numbered 1,2,...,1. Jolin the
points numbered uJ and "3" Call this the j-th join with the polints
- numbered My and vy as first and second point respectively (j=1,2,...,k).

Omit the labels of the points.
Some examples of the correspondence between a term t and its (k,1)-

graph are glven 1in table 2.2.1.
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Table 2.2.71. Some examples of the correspondence between

%graph corresponding to t€
(1) Q@  semmearemiren (2)

(1) s (2)

(1) (2)
(1) (2)
(1) (2)
(1) (2)

From table 2.2.17 the following conclusions can be drawn

a) Two terms corresponding to equivalent graphs may or may not have the
same value (cf. examples 1 and 2: terms with unequal values: examples
1 and 3: terms with equal values; in both cases equivalent graphs).

b) Two terms corresponding to distinct graphs but with the same configur-
ation may or may not have the same value (cf. examples 4 and 5: terms
with equal values because of (2.2.2); examples 5 and 6: terms with
unequal values; in both cases distinct graphs with the same configur-
ation).

Let 91,92,‘,,,91 pe 1 unequal numbers from { 1,2,...,n} and let
A1’A2""’ll be the permutation of 91992,.,.991 satisfying

then the terms

and

have equivalent graphs. This 1s evlident from the way of construction of
the graphs corresponding to each of the two terms; the labels of the
points of one graph form a permutatlion of the labels of the polnts of
the other one. As these labels are omitted anyway, both graphs are
equivalent,
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Example:

1=3, 9"!“"’:7: 92”“: 8,=9, thus A mua Anr=1, A,=9,

3

"X g0 Ag Wx,,,AB =Wy, 7 Wy, —

i

o YT YT, T T )

64,0, 04,0, T (2 T (3)

2

From these considerations it follows that two terms then and only
then correspond to equlvalent graphs 1f they can be written in the form

W ¢ o o W
9u1, 9“1 9u2, 9\’2 eukl evk

and

where Lqs &pseee, 8y are also unequal numbers from 1,2,...,n , with-
out interchanging factors w or subscripts to one w. Therefore the sum

over all terms 1n (Z wij)k, each of which corresponds to the same graph
G can be written as |

Kk n n
(2¢2¢5) Tr W,t T l G} = z & o & Z we e t##w '
’ - - - 3 e ,g 2
J=1 2y=tay 6931 6= gty M’ Vg

(845 - ++487)F

where 1 i1s the number of points of the graph G.

Remark: In general there are several seqQquences Was Moseaey My,

VqsVos e eesVy cozl-respcnding to the same graph G, e.g. u1~*-=‘1 v,‘mz
leads to 6 ——p——wo , bDut also u,lme and v1==1, again because the

point labels are omitted. For use in the notation (2.2.5) one can
choose one of these sequences, We shall use the one in which the
u's and v'!'s increase in order of appearance, Thus e.g,.

we o rather than w

W w o
8.4+ ©; 05,8, "0,,6,

129 94,
Now consider two c%istinct graphs G, and G&2 wlth the same configur-

ation. This implies e.g. that the value of 1 1s the same for both graphs.

Given a set of numbers AgsAoseees Al from {1,2,...,n} with

A, € Ay <... <Ay, there correspond 1! terms of (2.2.3) to each of the

graphs, viz. the number of permutations of the labels of the points.

Because G.1 and (}2 have the same configuratlon, G,' can be made equlivalent
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to G, by means of a permutation of the labels of the joins (which cor-

regsponds to a permutation of the factors w in || WTE 1’12) and by

changing the direction of the orientation of sgﬁe joins (wgich cor-

responds to 1nterchanging pairs of subscripts to single factors w). A
term of (2.2.3) corresponding to graph G, becomes therefore, with thils
permutation of the w's and this interchange of pairs of subscripts to
single factors w, a term corresponding to graph Gg. The value of both
terms 1s equal, because of (2.2.2). Thus to each of the 1! terms with

graph 01 there corresponds one of the 1! terms with graph GE’ having the

gsame value. Thus

k
T w.

9=1 ‘23-12T23

k
(2.2.6) TT w

L g=1  T235-1"723

which shows thls sum to be equal for all diétinct graphs having the same

configuration. The contribution to (} wij)k of terms cgrresponding to a
' h (a h
1

given value of 1, and to a given configuration ] C_~, , with |} k, =k,
h i=1 71771 1="
} 1, =1, 1s therefore
1=1 1
y ? (a,) ? E
(2.2.7) ( “k,,1, a e ,e, ""Ye ,6 ‘
- 214 ) = = ’
1=1 1771 9_1--‘1 Gl 1 W'V, uk’ Vi

h (ay)
figuration { C 1 (cf. section 2.1), while the graph
1=1 Kysly

corresponding to the set of numbers M4 Voseons My Vﬂg “2,..ﬁ, “k 1s

one of the graphs having thls configuration. Symbolically we write
(2.2.7) as

(2.2.8)

Summing over all configurations with h connected components, k Jjoins

and 1 points - this summation will be 1indicated by {a % ? -

=K, 1,=1

summing over all h and 1 gives now | 1= 1 1=1 . ]

17

" K {ﬁ" . | . A ? C(ai)

( gﬁ 1J 1£2 héq ! } ky=k, ] 1,=1 1=1 K101y

=1 Ti=1 7 |
i=1 7171 ¢
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& Y '
2.3. The quantities X { w(']),..w(k) | ... } .

Consider the sum

Il I
(2*3‘1) Z a % 3 2 w * $ & w
- - e ,© e ,0. ?

(64 -0, )7

where (cf. section 2.2) in the set of numbers Mgs¥oseeesMysV asVas...,Vy
all numbers 1,2,...,1 are represented in such a way that the configu-

h (s, )
ration of the graph corresponding to each term of (2.3.1) is ) Ck 11 .

i=1 i’71
We now introduce a graph corresponding to a sum

(2.3.2) 9 s & @ We ’e 5

E
W
” & & 2 . g

Dﬂ-
where D" is a restriction yet to be speclified and Wgs¥Bos e M sVasVssea sV
are the same numbers as in (2.3.1). The graph corresponding to the sum
(2.3.2) is obtained as follows. Take a set of 1 points and label them
1,2,...,1. Join the points labelled M and vy s (j=1,2,...,k).
A graph 1s then obtalned with labelled points.

If the restriction D" is: "e,‘, 92,.. . s 91 assume unequal values",
the blank graph corresponding to the sum 1s identical to the blank graph
corresponding to each of the terms of the sum,

If the restriction D" is defined c;therwise, this 18 not necessarily so.

| The value of the sum remains unchanged 1f the order of the w's 1is
changed, and (or) the pair of subscripts to one w 1s interchanged for
some w'!s, Therefore the value of the sum depends only on the blank graph
corresponding to the sum, the restriction D"', and the point-labels, as
far as they are needed to specify D,

If the restriction D~ is "8, ©55..., 6, assume unequal values"
the notation for (2.3.2) has been introduced already:

(2.3.3) Z*{w(")...w(k) |

If the restriction D" is empty the sum will be indicated as

h (o)
, (1) (k) !
(2.3.4) SR TR S N B
1=" 1°71
h (ai)
where X Ck 1 1s the confiiguration of the blank graph corresponding
1=1 1771

to the sum. Finally 1f the restriction D" is that the subscripts
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91*+"'+lu+1 5 el +"'+1u+2 088 Gl agssume unequal values and no res-

1 1
triction is imposed on 91, 92,..., 911+"’+lu (1L£u<h), we need only
distinguish between these two sets of point-labels to speclfy D“, and
write
| u (m ) h (m ) 3
% {1 k i 1 ;
(2«3:5) 2 { W( )- ;uw( ) l Z Ck ’l + ( “z Ck ,l o
1= 1771 i=u+"1 1771
Note that
u (a,) h (a, ) a
(2.3.6) Z* { w(ﬂ)'“w(k) ! Ck i1 +( ) Cx 11 | ) y =
i=1 71°71 i=u+1 “1°°1 /7
(k +o. . +k ) u  (a,)
| 1 ¢ 7, :
i=1 1271
(k) P (ui)
o = W ! c k l o
i=u+"1 i’71

We now remove the restrictions imposed on the sum (2.3,1).
Ignoring the inequalities on e.g. 91 leads to

n n
(2.3.7) L eee L Wg g e.Wg o
91#1 91#1 u1’ V. ukﬁ vk

(eqtr»-:glﬂq)#

where the blank-graph corresponding to the sum still has the configu-

h  (a,)
ration ) C, 11 .- The difference between (2.3.7) and (2.3.1) consists
i=1 i?71

of (1-1) sums like (2.3.1), but where in the j-th one 91 is replaced by
95 (J=1,...,1-1). The configuration of the graphs corresponding to the

j-th sum can be obtained from the graph (with the labelled points)
corresponding to the sum (2.3.1) by making points 1 and J coincide.
The following three cases may arise.

h (qi)

1) In the graph with configuration )} C, ©y points 1 and J are con-
1i=1 1’71

nected by a Jjoin. This means that 91 and ©, occur as subscripts to

J

one w. Taking ©,=6, the sum concerned is equal to zero by (2.2.1)

J
and is therefore omitted.

2) Points 1 and jJ belong to one connected component, say to the one
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wlith configuration Ci:jiq, but are not connected by a Jjoin. Making
points 1 and j coincide, the configuration thus arising 1s of the
. (8) h (ai)
form Ck1,11*1 + 1£2 Cki,li :
3) Points 1 and J belong to different connected components, say to
(aq) (ag)
Ck 1 and Ck 1. respectively.
1771 2® 72
The configuration of the graph obtained by making points 1 and J
coinclide is of the form Cisik 1 +1_-19 * ? Ciai) . .
1727 71 72 1=3 i°71

Thus (2.3.1) in which 1 ©'s had to be unequal, 1s expressed as a number
of sums 1in each of which (1-1) €'s have to be unequal. Repeating this
procedure of removing inequalities imposed on summation indices leads to

(2.3.8) ):""{ w1 (k) rz’ -
1=1
h 1 h h' ,
Z Z I‘l h* | n' . a ' (G 1) ) (?i ) Ay
h'=1 1'=2h' |_1_£1 Ky =K, 1§=1 ; ,..1_1 | ( 1§=1 cki’li ’ 1£~1 ° 1-*11)

are defined by

h (a,) h'  (a,)
If for two configurations ] C_ °, and ] C,.t"y' any of the
1="] 1271 1=1 ™1°71%
relations (2.3.9) does not hold we define
h (o) h' (ay)
(2.3.10) /4( I ¢, %7 5 1 Cpt™y ).—a-.o :
1=1 1°71 1=1 1771

It 1s evldent from the description given that even if (2.3.9) is satis-
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fied, (2.3.10) continues to hold if the blank graphs with configurations

h (ay) h'  (a)
] c.°; and I C_. 11
= 1?71 1=" 1’71
obtained from the former by making points colncide. This 1s certalnly
h' (al)
the case 1f either )} C,.:
1= X0l

are different, and the latter cannot be

1+ has a component containing less than
i

in (k,, k k, ) Joi ? c(mi)
min s 9 e o oy oins or
{

more than max (k%, k2*°"’k£') joins. This proves

has a component contalilning

Lemma 2.3, |

h (a, ) h (a,)
i i
If for two configurations } Ci. 71 and § Cr 17y (2.3.9) is
1="1 i’ 71 i=" 1271
satlafied, then
h (ai) h' (ui)
( 1 Ok 1, 5 b Ci 1’)‘“ 0
1="1 1271 1= i°71
if elither
(2.3.11) min (k. ,kK5,..,k,) > min (k., Kpseouskyt)
or
(2.3.12) max (k,, Ky,..,k ) > max (Kas Koseooskyt)

Consider again the sum'(é.3.1) with k replaced by (k+g) and 1 by
(1+42g). Suppose that the graph corresponding to the sum has configuration

Pt e
+ o .
1=1 Kisly 1,2 77
h h
where k, 2 2 for 1=1,2,...,h , {1 k, =k, 121 l,=1 . Let the labelling of
i= ==

the points of the graph be as follows. The points of the g connected
components with configuration 01 ~» carry the numbers 1 and 2; 3 and 4;..

el 2 - 1 and 2g respectively.

This means that e.g. the summation-subscripts 91 and 92 occur as Ssub-
scripts to one w, and both occur only once in the product., The other

1l points of the graph carry the numbers 2g+1, 2g+2, ..., 2g+l. In our

shorthand notation (2.3.1) is written

z“{ WD etE) o)

(2.3.13)
1 ki’li

+ gc,‘,g } .

I} &1

1

Now remove the lnequalities Imposed on 9 and 92
The inequality eqfe imposed on (2.3.13) can be dropped without (2.3.13)

changing 1In value, as 91 and 92 occur as subscripts to one w.

Ignoring the lnequalities on 91 and 92 leads to



(2.3.14) z"‘{ wl 1), g (Kk*e) l(:l

which by (2.3.6) is equal to
[ (1) (k+tg=1) )

(2.3.15) Q% Wige L

The difference between (2.3.15) and (2.3.13) conslists of sums like
(2.3.1) for each of the following cases

i | — — 4,.,,, l+2
1 6, #65, 8, ..., 8,5, and & 9, ( J = 3, g)

-_— » = . o @ 1+
11 6, =0, and 6, # 63, O, ... O, (3 =3,4%..., 1+2g)
iil :gﬂ = 931 and 92 = 932 (J’I’ 32 = 3:“’3-*": l+28)*

We start with the (l+eg~2)2 sums corresponding to 1ii. The (1+2g-2) sums
with

0, = 8, = 93 ( J = 3,4,..., l1+2g)

are ldentically equal to zero by (2,2,1). The 2(g-1) sums corresponding
to

91 = 93 @2 = Gu
®q = &y 9y = 65
91 = 95 92 = 96
04 = 8¢ O = Opg_1
, h  (ay) .
all have a graph with the configuration L, Che 71 %t 02%2 + (352)01’2 )

1771
thus giving as a contributicn to the difference between (2.3.15) and
(2.3.13)

_ h (a, )
" + _
2(g-1) } | w(1)...w(k g) i 1{1 gkifli T 02,2 * (5“2)01,2

There are 4(g-1)(g-2) sums, viz. corresponding to
9,1 &= 93 ) 92 o 953 96;’;:-’ 92
e,'::eu . 92&'95, 96,..., 92

I
O

9, = 95 » 6

»

" ¢« 600

g, = ng, 5 93, eu,,..., 92&_2,

all correspondlng to graphs with configuration

h (“i) (2)
izq Cki,li T 03,4 " (3“3)01,2 » thus giving as a contribution to the
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difference between (2.3.15) and (2.3.13)

There are 4(g-1)1 sums in 1ii, viz.

©9 = O35 Oysevns B » O = Oppyq0 Oogipr-es Cpgyg
©1 = O2g+1> 2gsar--cs O2gs1 v ©9 = O35 Oys..-s 8y ’
h (a;)
corresponding to graphs with a configuration ) Cp ooy T (ng)cq 5 3
i=1 1’71 ‘
h h
where k¥2 2, ] k¥ =k+2 and §| 17 = 1+2 .
1 i 1
1=" 1=
The multiplicity with which sums corresponding to graphs with configu-
h (a;)
ration §] C,w .s + (g-2)C occur may be denoted by
k, ,1 1,2
1=1 €171 4
(a 1) h (“I)
4(g-1) Co 1, ; Cku-,ln-) , where o( ; ) does not depend
i°71 i=1 i°71
on g.
Finally there are 1(1-1) sums in ii1, viz.
©9 = Oog4ar Cogypreces Opgpu1s O = O5o0qs Opgpiniees Oppygs .76;
Y 3t
h (ai)
corresponding to graphs with a configuration ) Cpw 10 + (8-1)C, 5
i=" S 2
3 _ h” h*
where h-1%fh gh, k®*z22 , ] k¥ =k+1and |} 17 = 1. The multiplicity
1 1 i
i1=1 i=1
h (ai) h™ (3;)
2./"(,] ( ) Cve 1. 3 ) Ciom l"’) with which sums correspondlng to graphs
1="1 i1 1=1 i’71
h* (o)
with conflguration { C,w 9 + (g-1)C occur does not depend on g.
5= ki’li 1,2

With regard to 1 and 11 the 4(g-1) sums with
91 ?é 93, 9}4,..., 91+2g 9 92 - 93, GL}""’ 928

i

91 W-GB, 9q,,;,’ 923 9 92?4933 94;;.-, 91+2g

h (a, )
1
correspond to graphs with configuration 151 Cki’li + 02’3 -+ (g-2)01,2 ’

thus contributing to the difference between (2.3.15) and (2.3.13)
h (ai)

sg-1) I {wl L wliere) L%k, 1, Y G,z T (872)C 5 -
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The 21 sums corresponding to the remaining cases in 1 and 1i, viz,

6, 7 93, Oysevss 91-}-23 > O = 923+1’ e2g+2*"“" ©t? 928"'1
©1 = Oogiqs Cpgiorcees Opgiy 5 O #F O3, Oyl 8y o, ’
correspond to graphs with a configuration
P ool s e o=
_ e 13 T (g£-1)C , where = K+1 17 = 141
124 TkY,13 1,2 PP ‘
h o (a])
while again the multiplicity 2. .M ) C_x" % ) with which
> k ’l
1=1 1771
h (a;)

sums corresponding to graphs with configuration § C »

occur does not depend on g.

H

.wik+8) )rjl ol

-+ 2
Ea Tk, gC 4 o

h (@
. .owlkre=1) | Z C( 1) + (g-1)C, 4 } +

| k h o (ay)
| " ot +8)| 151 Ckixli +Cy 3 + (&-2)C, E’} i
- 4(g-1)(g-2) Z“w“?..wik*@ | i'zl (ui) (2)

1="1
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We now prove

Lemma 2,.3.2
h (ai) h' (ni)
Gilven two configurations ) Cve 1 and |} Cio 1" and two non-
1 =" 1’71 1="1 123
negative 1Integers g and g’, such that
a) kKj22 , 1 =12,..., h and k,22,1=12,..., h',
h h'
b) g+ )L kg =g + ] ki=k+g,
i="1 1="
h h'
c ) 2g+21132g'+):11 ,
1= 1=1
then
kz'l' (a!) |
+ gC s C, 1 t + g C ) =
1, 2 g2q Ky { 1,2
if O g< g
- h  (a,) h' (a,)
1 ' i
L C + (g-g )C D N :) if g>2g' >0
(1=1 Kysdy 1,2 7 4249 kKys14) o =
Proof

The lemma is obvious for 0% g<g' since the number of components
of a blank graph having configuration 01’2 cannot 1lncrease when polints
are made to coincide (cf. the remark leading to lemma 2.3.1). As the
lemma is trivial for g'=0 we consider g2g'> 0O . Apply (2.3.8) to both
sides of (2.3.16) and consider the coefficients of

h' (a,)

Ckr 1"

(2.3.17) ) { w1 w(kre) RIS

+ 3'01’2} .

As (2.3.17) 1s equal to

h' (a;)
1 K+g- 1 i 1
ESWiJ ° 2 { W( 2..W( TE ) Ii£1 gki,li + (S “1)01’2} ’

the coefficlient of (2.3.17) in the expression obtained by applying
(2.3.8) to the first sum in the righthand member of (2.3.16) is equal to
h (“1) h' (Gi)

)Q ( 12 C + (3*1)0 : Z C v+ (g'-1)C )
1=1 3014 1,2 121 Ki014 1,2

Thus one obtalns the recurrence relation



=
# h (a;)
-4(g-1) I i L Crwlie) .
Lkiﬁ 2, 1=1 1’1
A (ay) . )
ke, 7 (g-2)C4 5 ; ‘ki,1; T B8Cq2) 7
2 h " "
RS R h
s=1 h=h+s-2 |ki2 2, 1 k{=k+1,
1=1
h™  (a%)
ﬂ( ] Cpw
1=1 1771

For O <g'=g one obtains from (2.3,.18) using the first part of the
lemma (l.e. the case where 0fZg<g') and (2.3.10)

' (a})

h
I Ci tr + g'C )
L, k), 1,2

h  (a,) h' (a))
i ' i '
m/@({c +(g'=1)C, » 53 I Coityr + (g'-1)C )=

repeating this procedure

' '
AT o s §oeat)
1=1 i’71 1= 1771

which proves the second part of the lemma for g=g'. Suppose the lemma

1s true for O<g' <gsg'+r-1 (r21); we shall then prove it to be
true for g=g +r too,

For g 2g<g +r-1 1t follows from the lemma (which was supposed

h
(2*.?“19) .4' ( Z Ck 1 T 504’2 H );_ C
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Now take g=g +r in (2.3.18) and apply (2.3.19) tc all but the
first term of the righthand member of (2.3.18). This leads to

(2.3.20) /4( kﬁ c(ai) (g +r)C 1)[:11 c(gi) 'C
. S <+ £ +r 3 S ¥ £ ) =
1=" ki’li * 1,e 1= ki!li 1,2
h (a,) h' (a])
i : i !
A C + (g +I‘-'1)C ; I C,.1 I (g —’])C ) +
(I, %%, 1, SIS >
g'+r-" h (a,) * h' (e ,
+- -2(g'+r-2) ( } C + C, ~+{(g'+r-3)C ; L Cov i H(g-1)C :)+
gl in,} k ,1i 2,2 .132 im1 ki,li 132
h' (ai) |
t A -
(2) h' (ay)
i '
3,q+(g'+r-’+)c1,2 ,1£ Cki’li+ (8*’1)01,2)-}-

2 h " -
" ° 21 l"'kzax-i—s 2 z Lkn > D ? k™ =k+1 lf"l* l+s ‘1_1 s
Bm ot - et 9 = 3 o -—
1 1=1 * 1= *
h™ (af)
,/@( ) C ot + (g'+r-2)C :
1= ki’li 1,2 5

For g' >1 the terms inside the square brackets in (2.3.20) are
by (2.3.18) equal to

-+ (g +tr- ’ ot '+ (g - ) +
i=1 ki:li 1,2 1=" ki’li 1,2
7 h (a,) h' (ay)
1 ' 1 | '
_ ﬂ z C + ( g +r*2)c ; z C ! s + (g -E)C ) J
(1#: kys1y 1,2 7 424K dy 1,2

thus from (2.3.20) the following recursion relatlion 1ls obtained



For gtm’l, (2.3.21) remalns valid if the last term 1s simply
omitted, thus glving

Taking g'=2,3,... successively, the result of the second part of
the lemma 1s found for g=g +r. By induction the second part of
lemma 2.3.2 then follows.

Lemma 2.

u

JPE—
A—

Proof
Consider the sum

(2.3.22) )

( w(1) ‘w(2P+28+2t) | 2rc

+ tC +

# ©

1,2 2,2 * 80y 3

In the summation 4r+3s+2t summation-subscripts are involved, viz. the
number of points of the graph corresponding to the sum. Let the points
of the graph be numbered as follows. The first and second points of
the connected components with configuration 01,2 are 1 and 2; 3 and 4;:; ..
...; 34r-1 and Y4r respectively; the points of the connected components
with configuration 02,3 are 4r+1, 4r+2 and 4r+3; ...:; 4r+3s-2, 4r+3s-1

and 4r+3s, where each time the second number refers to the point where

the two Joins of the component meet. Flnally the points of the connected
components with configuration C, , are 4r+3s+1 and br+3s+2 ; .

. >
hr+3g+2t-1 and 4r+3s+2t.

In (2.3.22) remove the inequalitlies on the summation-indices

»
* 4 ’

Our+3s+2t-1 309 Oyniagiot .
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T%gn

(2.3.23) {“{w(")...w(‘?r+23+2t) | 2rcC + tC

1,2 2,2

) W’fj zn-{ w1 (2r+2s+2t-2) | oprC
1J

- sums corresponding to graphs having at least
one connected component with three or more joins.

7.2 * (t-1)C

!ﬂnﬂyf(2,3.16) to both sides of (2.3.23), collect the coefficients of

W(1)”‘w(2r+2s+2t) | (t+u)C2’2 + (r+s~u)02,3}

or (what 1s Jjust the same)

) ij ) { W1 (2r+2s+2t-2) |

p) (tru-1)Cp 5 + (r+s-u)Cy 5|

and apply (2.3.12) to obtain

(2.3.24) ~-(2r01’2 + tCz’z + 302’3 » (t+U)02,2 -+ (P+S*U)02’3) =

= jQ(Qrcq,e + (t~1)02’2 +8Cy 5 ; (t+u~1)02,2 + (r+s~u)02’3) s

repeating this procedure,

= /4(21'01’2 +8C, 5 5 uCy 5 + (r+a-u)02’3) .

Consider now
_ o (1) (2r+2s) _
(2-3.25) z {:W oo o W l 2rc1,2 + 502,3}‘ s

where the poilnts of the connected components with configuration C,l 5 and
>

(12,.,3 are numbered as before. Removing the inequalities on 94r+33~2’

gur+3s~1 and 94r+3s leads to

(2.3.26) Z“{ w(1),..w(2P+23) | 2rC, , + sC, 3 } =

e

wf (1 (2r+2s-2 _
i§k myy myye L { (1) W2re2s-2) | org o (8-1)C5 5 } i

- }_‘*{ w(1)...w(2r+23) | 21*01’2 + C2,2 + (3—1)02,3} +

~ sums corresponding to graphs having at least
one connected component with three or more Jjoins.

The second term in the righthand member of (2.3.26) arises in taking
94r+3s-2 = eur+33 in (2.3.25). Apply (2.3.16) to both sides of (2.3.26)



and collect the coefficlents of

) {w(ﬂ)“'w(2r+2a) | ucC + (r+s-u)C

=23 |

2.2

or, what amounts to the same, of

1, 2r+28-2
igkmijmik. E { w( ),_;w( r+2s-2) l ucz’e + (r+s-u~1)02,3}

and apply (2.3.12):

(2327) /Q(Qrcq’e + 802,3 - UC2,2 + (1“+8-L1)02,3)

i

A(Ercq,e + (3#1)02,3 3 uCy 5 + (r'+s~u-’l)02,3) +
- /Q(ErC%E + 0232 + (3-1)02’3 H uci_,ﬂ2 + (r+s-u)02,3)

by (2.3.2%)

]

24(21?0,1,2 + (8"‘)02,3 : u02,2 + (r+s-~u-—’l)02’3) +

g ( 2?01’2 + (3—1)02’3 ; (‘-1”7)02’2 + (r+s-u)02’3) .

Introducing the abbreviétion
fr,(s,u) = /Q (2?0,1’2 + 302’3 : u02,2 + (r+s-—u)C2,3)

(2.3.27) can be written (with the obvious modifications for u=0 and
u=r+s):

(2.3.28) f.(s,u) = fr(s-—-’l,u) -~ f‘r( s-1,u-1) for O<u<r+s
fr(s,O) = fr(s-1,0) ,
fr(s,r+s) = - £ _(8-1, r+s-1) .

It follows from (2.3.28) that

r+s r+s-"] r+s

y f (s,u)yu = ) f (s-1 u)yu - ) f (s-»---’l_i,,l.,z--’l)y""1 =
u=0 r u=0 r ’ u="1 r
r+8—"] | u
= (1-y) I f.(s-1uly" .
u=0
Repeating thls procedure glves
r+s 4 s T
(2.3.29) L f.(s,u)y” = (1-y)° I f_(0,u)y"

u=0 U=
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Filnally consider
(2.3.30) 2*{ w(ﬂ...w(gr) | 2rC, 2}

where the polnts of the connected components with configuration 01 5
are numbered as before. Similar to (2.3.23) we find 1if the 1nequalities
on ©,, 4, and 6,  are removed

I“{ w(q)..,w(er) | 121'*0,',2} = i}:J wij*}:*{ w(,’[).,.w(gr_g) l (21'-—-’1)01,2} +

- 2(2r-1) E*{ w(q).;.w(er) I (2r~-2)c1 > + 02 2} +

f w1 w(2r) | (2r-2)01’é + 02’3} +

- sums corresponding to graphs with at least
one connected component with three or more jolns.

Apply (2.326) to both sides of this equation and collect the coefficients
of

) { w(q)...w(gr) l uCy 5 + (r'----u)Cg_,”3

Thus for O<u<r , using (2.3.12)

£ (0,u) R (2::‘01’2 ; uC, 5 + (r-u)C, 4 ) =

= - 2(2r-1) A((2r-2)c, 5, + C, 5 5 UGy 5 + (r-u)Cy ) +
- 4(2r-1) /Q((EP-E)C%Q + 02’3 j uCy o (rwu)Ce’B) =
= - 2(2r-1) /Q((2r-2)01’2 ; (u=1)Cy p + (r-u)Cy 5 ) +
- 4(2r-1) K ((2?-2)C1’2 t+ Cy 3 5 U, 5 + (r-u)Cy 5 =
= - 2(2r~1)fr“1(0,u-1) - 4(2r-ﬂ)fr~1(1,u) =
by (2.3.28) = + 2(2r~1)fr_q(0,u*1) - 4(2r*1)fP“1(0,u)
For u=0 and r
fP(O,O) = - M(Er-ﬂ)fr_1(0,0) ,
fr(O,r) = 2(2r~1)fr‘1(0,r—1) :
Thus
r U - u
L f£.(0,u)y” = -2(2r-1)(2-y) 1 f,._,(0,u)y
- u=0 u=0Q

Repeating this procedure gilves
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1
T - - -
) f‘I,(O,,,u);i,r"'1 = (-1 1277 (2r-1)(2r-3)...3(2-y)" ) f‘,!(O,u)yu.
u=0 u=0

Now fq(0,0) and r,!(o,ﬂ) are found easily by applying (2.2.9) and
(2.1.7) with k=2

' 2 - ' ] C 2 =
(Trag)™ = (gl et * 200 g e =71 02,20 5 0
2
= 2 W + 4 z W, W + 2 z W
(1gk1)f 2R T TGy 2 T gy
2 2
NOt ==
> (5%)#”13 fgwij
2
(igk);‘ijwik = 1§k‘“’1jw1k - izjwij
thus
__ e 2
(1Jk1)#wi.jwkl = ( 1):JW1J) - A 1§kwijw1k t e 1):J”1J

Comparing with (2.3.8) we find

£,(0,0) = A(2C, 5 5 C5 5) = - &
£4(0,1) = K (20, 5 5 Cp p) = +2
Thus
r
(2.3.31) Zorr(o,u)y“ = (-1)F. 2F(2r-1)(2r-3)...3.1 (2-y)F =
u=
(2r)!
= (-1)" - (2-y)F
r!

The lemma now follows from (2.3.24), (2.3.29) and (2.3.31).

Lemma 2.3.4
If for 1,]3)=1,2,...,n0, Wi.j"?" O and Z wijgc , Where ¢ 1s a constant
J

not depending on 1 and n, then

) = (nh)
Proof.
N ho(a)y B (kob.t,t1) ) (ay)
_ (1) (k) L @, T 1+,¢+ 1_1+1 k1+"+ki a,
) {w ) w '1£10k1’1i} s );{w W | Ckfli}
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the lemma 18 proved if it is shown that

wik) et

[ (1)
W k,1 §

(2.3.32) )

for every k, 1 and o

» %

For k=1 and 1=2 (2,3.32) is true, because

) = ) wW,, S cn .
1y 1
For k > 1 consider first the case 1l=k+1., Now C£Q&+ﬂ 1s a configuration of
iadr 4

a graph containing no circults; it is a tree (cf. D.KOENIG (1936), 53).
Each tree contains at least two points to which only one Join is con-

nected (cf. D.KOENIG (1936), 49). Let one of these points be labelled k+1.
This means that the summation-subscript Gk+1 occurs only once as a
subscript to the w's. Summing over 6, ,, 8lves

(1) k) (L (1) G- GLB)

I { e = T | Cr-tkf
n cl8) (a)

where the graph with configuration Ck-1,k » 18 obtained from Ck,k+1

by taking the point labelled k+1 away together with the join connected

to 1t. The remalning graph is again a tree. Repeating this procedure
leads in k-1 steps to

(2.3.33) )

which proves (2.3.32) for 1l=k+1.

Now consider a graph with configuration Cl({a% s with 2< 1< k+1, In
3

this graph one can take k-1+1 joins away, such that a tree C(B) - remains

1-1,1
with 1-1 joins and 1 points (D.KOENIG 21936), 53). Let the joins that can
be taken away correspond to w

D.
(l),,..,w k), then
wl 1) (k) s oK1t () (1-1)

-

Summing over the 1 summation-subscripts involved gives

y { W) (k) | C( *) } < K 1ty

J1)
k,1 [ =

S(151) | G48) } ,

1-1,1

which by (2.3.33) proves (2.3.32).



CHAPTER 3

3.1. The moments of z

In sectlion 2.2 the starting-point has been the set of numbers Wi,j"
However, the development given 1n section 2.2 does not change 1f the
Wy 3 are random varliables, thus Wyg - Only (2.2.1) should be replaced by

(3.1.1) w,y =0 , spr 0 .

Thus analogous to (2.2.3) we have

n n
(3~1¢2) Z W k = X - I W s e W
(~1J i") T, =1 T, =1 1772 Tt2k-1? T2k
1 2k
Now take
(3"'1'3) .."!'.iJ £ miJ E..ij (193“1s2:**£n) 9

where 2z 4 4 8re the random varlableslintroduced in section 1,
then (ecf. 1.1.8) |

z = ) miJ ?..1‘1 = 1 .“!.13

1] 1J
Consider one term of (3.1.2)
(3-1'#) -"it T ET r, "~ °° ET T
172 374 ck-1? "2k
which by (3.1.3) is equal to
(3.1.4") m_ . ...m .z e Z
I EAP Tok-12"2k | T T T2 k-1 T2k

where we assume tEJ__,' # T2J (J=1,2,...,k). Among the 2k subscripts
TasToseeesTo, 1 unequal numbers from 1,2,...,1 occur (221 %22k). Call
these 11,12,...,l1 with

A1<12<... "Al .

Each of the 1's 18 equal to one of the A's. Let

Toyq = AUJ and T, = A (J=1,2,...,k)
then (3.1.4') is equal to

(3*1*5) ml j)g B ml ,A. "'"Z""A s A -t | 3A
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The product
m o s o 1M1
A 5 A A A
M"Y Mk VK
wlll be called the m-part of (3.1.5),
the product

the z~-part.

To the set of numbers uq,uzﬁ.,.guk, vq,veg...,vk - and therefore
to the m~-part and the z-part of (3.1.5) - there corresponds a graph,
as indicated 1n section 2.2.

As shown by examples 1,2 and 3 and 4,5 and 6 of Table 2.2.1
(replace w by m), the m-parts of two terms of (3.1.2) corresponding to
equivalent graphs may or may not have the same value. Also the m-parts
of two terms of (3.1.2) corresponding to distinct graphs, but with the
same configuration, may or may not have the same value,

Regarding the z-part of the terms of (3.1.2) we introduce the

following

symmetry assumption:

For k=1,2,..., the expectation of the z-part of a term of (3.1.2)
depends only on the configuration of the graph which corresponds

to that term.

Examples (cf. Table 2.2.1):

1) E2 ., = 3557 , as bcth z,., and 2c- have a graph with

configuratione

_ 2 .2 2 2
2) Ez,, = 3535 , as both 2z, 2z,,2,, and Z35 ¥ Z3g Z3g

e.

e
have a graph with conflguratione o .

(B), (W)
It will be shown 1n later sections that in fact X372 X347 Xy

and‘y_iJ satlsfy this symmetry assumptlion,
If the configuration of the graph corresponding to (3.1.5) 1is
h  (a,)
E Ck s the expectation of the z-part will be written symbolically

1=" 1771

as h (a,)
E(_Z_(’])..._.’?:_(k) l Z ck 1 _ )
1=1 1’71
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