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FOREWORD 

This book is the posthumous publication of the scientific work of 

A.R. BLOEMENA who died in 1960 at the early age of 32. He started hls 

career as a minlng engineer from the Technical University, Delft, 

Holland, but after practicing for a couple of years he switched to 

mathematical statistics. He joined the Mathematical Centre and developed 

rapidly into a very promising statistical research worker. Soon he was 

appointed deputy chief of the Statistical Department. 

His thesis was nearly finished when he dled. It had still, however, 

to be brought into its final form. This was done by his successor 

W.R. van ZWET. The Mathematical Centre ls very grateful for his work 

which was far more than a mere editorial tas,,, and it ls glad to be able 

to present the main research results of BLOEMENA in the form of' this 

book. 

J. Hernelrljk 
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CHAPTER 1 

1.1. Introduction 

Let be given a set of n points, numbered 1,2, ... ,n, and a (n xn)­

matrix M, with elements mij' satisfying 

(1.1.1) mij mji (i I Jl, 

(1.1.2) mii o, 

(1.1.3) ~ m;j ,;; 1 for each i, 

(1.1.4) O,:;,mij< m. 

In the special case that all mij are integers, the set of points 

and the matrix M can be interpreted as a finite multigraph of n points 

(cf. C. BERGE (1958), D. KOENIG (·1936)), where the number cf joins 

between points i and j ls equal to mij" In this interpretation, mij = 0 

means that there is no join between i and j; assumption (1.1.2) states 

that there are no loops, while assumption (1.1,3) implies that no point 

is isolated. 

We shall sometimes indicate j mij by mi+ and f mi+ by m++· 

From then points two samples are taken. We shall consider two 

cases. 

Case L "non free sampling" : from the points 1, 2, ... , n r 1 and r 2 
points are chosen at random without replacement (r 1+r2 ,:;,n). The r 1 
points will be denoted as black (B) points, the r 2 points as white (W) 

ones, while finally the (n-r 1-r2 ) remaining points are the red (R) ones. 

Case II. 11 free sampling 11 : n independent trials are performed, each 

trial resulting in the event B with probability p 1, in the event W with 

probability p 2 , and in the event R with probability (1-p 1-p2 ). Point 

number i is alotted the colour indicated by the outcome of the 1-th 

trial, 
,,, . .,.) (B) (W) (· ._ ) Consider the _andom variables ~ij '~ij '~ij i,J-1,2,.,.,n 

defined by"'*) 

.,) We shall distinguish random variables from numbers (e.g. the values 
they assume in an experiment) by underlining their symbols. 

""*) By writing spr a (salve probabilitate a) after a statement we shall 
indicate that the statement is true except for an event with 
probability smaller than or equal to a . Hence spr O corresponds to 
11 wlth probab111ty 1 11 • 
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x(B) 
-ii 0 spr 0 

x(W) 
-ii 0 spr 0 

:.Y-11 0 spr 0 

and for i ,f j 

{: 
if point i and j are both black 

if not, 

{ 1 if point i and j are both white 

0 if not, 

C if one of the points i and j is black and 
the other is white 

if not. 

Obviously 
x(B) 
-ij 

= x(B) 
-ji • 

x(W) 
-ij 

= x(W) 
-ji • 

X.ij = Zji • 

Define 

3-B I (B) 
ij 

mij 3-ij' 

( 1.1.5) ½ }: (W) 
ij mij 3-ij • 

X. r mij X.iJ • 
ij 

Now ~Bis twice the number of joins between black points,½ is twice the 
number of joins between white points, whereas x_ is twice the number pf 

joins between black and white points, Notice that if mi 1+1 = mi+1 i = 1 
. ., 1 , 

for i=1,2,.,,,n-1, and mij = 0 otherwise, and if r 1+r2=n, then 2z+1 is 
the number of runs in a sequence of alternatives. 

Define for i,J=1,2, ••• ,n 

(1.1.6) V - x(B) + x(W) v 
-ij - -ij -ij - &ij' 

and 

Obviously 

( 1.1. 7) 
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The statistic v is met in the study of the order - disorder problem 

(cf. A.R. BLOEMENA (1960)) 

A more general variable z of the form 

(1.1.8) 

where ~ij are random variables satisfying 

and for i I j 

z .. 
-ll 

0 spr 0 

but not necessarily connected with points in a graph, will also be 

considered. A symmetry condition that is satisfied by ~B' b,.i• ~ and y 
will also be imposed on~ (cf. section 3,1), which then becomes a useful 

generalization of ~B' b,.i• ~ and y. 

Obviously~. as defined by (1.1.8), is a statistic belonging to the 

class Wof statistics :t:_ that can be expressed as 

(1.1.9) .!i 
n n 
1 }: .l!iJ 

1=1 j=1 

where the random variable$' :!'.:.ij satisfy 

0 spr 0 

and for if J 

The class Wcontains a well-known statistic. Let be given n pairs 

of random variables (,1:!.1 ,yi), (1=1,2, ... ,n), and define for 1 / j 

! 
1 if (.1:!.1 -.1:!_J )(yi -yj) > 0 +2 

.§.ij = 0 if C!:!.i -.1:!.J )(yi -y_J) 0 

1 if C\:.i -.1:!_J )( Yi -yJ) < 0 ' - 2 

and 
spr O, 

then the statistic Q, defined by 

is the statistic of M.G. KENDALL'S rank correlation test (cf. M.G. KENDALL 

(1955)), and belongs to W. 
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A review of records of previous work on the subject will be given 

at the end of this ,section. The next section gives some results on the 
probability distribution of x for small values of r 

-B 1' 
To study the stochastic properties of~' one approach is to study 

its moments. In chapter 2 we develop expressions for the reduced and 

unreduced moments of~. using the theory of graphs. In chapters 3 and 4 

these results are applied to~. and to 2'.B' Ziw• Y... and y_. Chapter 5 deals 
with an application to the problem of a test for randomness. 

For results on runs in a sequence of alternatives we refer to 

H.A. KUIPERS (1957). 

As far as we know the earliest results for the case of a rectangular 

lattice with mij =0 or 1 are given by J.G. KIRKWOOD (1938) in a paper on 

the order-disorder problem. KIRKWOOD states the first moment and 

asymptotic expressions for the second and third cumulant of a simple 

transform of !.B' 
P.A.P. MORAN (1948) considers a "statistical map", equivalent to 

our graph for mij = 0 or 1, where the points are chosen by free and 

non free sampling. He gives for both cases the first and second moments 

of the number of black-black joins, and the third and fourth moments for 

the case of free sampling. He proves the asymptotic normality of 15.B and 

y_ (free sampling) for a rectangular two-dimensional lattice, where there 

are joins between neighbouring points in the direction of both axes (cf. 

also P.A.P. MORAN (1947)). 

There exists a large number of papers on the subject by 

P.V. KRISHNA IYER (1947-1952), dealing with rectangular lattices, where 

either neighbouring points are Joined in the direction of both axes, or 

neighbouring points are joined in the direction of both axes and in 

diagonal directions. The results of KRISHNA IYER are mostly on the first 

four moments or cumulants; statements are made about the asymptotic 

behaviour of the distributions of the statistics. 

Results on the case of a rectangular two-dimensional lattice with 
vacancies (which is in fact a special case of MORAN•s statistical map) 

are given by G.H. FREEMAN (1953), 

A number of exact results for rectangular lattices (non f'ree 

sampling) are described in a. report by G. VAN EEDEN and A.R. BLOEMENA 

(1959), The present study is an outgrowth of this la.st-mentioned report, 

which arose from a study of the distribution of a. statistic, obtained 

in a psychological test (cf. G.A.G. NASS (1960)). 

Editor's note. 

The author was aware of the ex1stence of a. great number of papers on 

the order-disorder problem and, given time, would have revised this 

review of previous work accordingly, The editor has refrained from 
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ooing so because an excellent review of work on the order-disorder 
problem has since become available. The interested reader is referred 
to C. DOMB, On the theory of cooperative phenomena in crystals, Philos. 

Mag. Suppl., 2, No 34, p 149-361, 1960. 
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1.2. The exact distribution of ~B (non free sampling) 

If r 1 is small and the mij's assume only a few unequal values, the 

exact distribution of ~B can be obtained in a simple way. In principle 

the same procedure can be used for larger values of r 1 and for the case 

where the mij's assume a larger number of unequal values, but the amount 

of simple algebra involved becomes rapidly prohibitive. 

To demonstrate the method we deal with the case r 1=3 in some detail. 

For i,} j the mij's are assumed to take three unequal values, b1, b2 and 

b3 . It follows that the random variable :!S._B can assume with non-zero 

probability the values 6b 1, 6b2 , 6b3 , 4b 1+2b 2 , ... , 4b3+2b 2 , 2b 1+2b2+2b3 . 

To avoid notational difficulties we shall assume that the~e ten 

possible values for .lS_B are all unequal. However, if two or more of these 

values do hap:r;en to be equal the distribution of ;:s_B may be calculated 

in exactly the same way by adding the corresponding probabilities. 

It is only necessary to calculate three probabilities, viz. those 

of 2S..B taking the values 6b 1 , 4b 1+2b 2 and 2b 1+2b2+2b3 . The other 

probabilities then follow by symmetry. 

The probability that three given points i,j,k are chosen from n 

points is equal to (n(n-1)(n-2)J- 1 . If points i,J,k are chosen, the event 

"x = 2b + 2b2 + 2b 3 " -B 1 

occurs if and only if one of the following statements is true: 

I : mij b1, mik b2 and mjk bJ 

II: mij b1' mik b3 and rnjk b2 

VI: and 

At most one of these statements can be true for given i,j,k. 

Let v 1, v2 , v 3 be a permutation of the 

indicator which is 1 if rnij =bv 1 ' m1k =bv2 ' 
is 

numbers 1, 2 and J. An 

and mjk 00 bv , and O otherwise 
3 

(b -mij)(b -mij)(b -mik)(b -mik)(b -rnJk)(b_ -m,k) 
\12 "1 "1 " v 1 "2 J 

Thus if one of the statements I,II, ... ,VI is true 
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J.)(b -m .. )(b -m.k)(b -m.k)(b -m.k)(b -m.k) 
v3 lJ v1 l "3 l "1 J \J2 J 

3 3 
1 , 

..,1J1 )}1 ( b.., -bll) 

· 11/w 

( l: means summing over all permutations of the numbers 1,2,3) 
'"1"2"3) . 

while this expression is zero if none of the six statements is true. 

Thus 

(b -mi.)(b ·-m .. )(b -mik)(bv -m.k)(b --m.k)(b -mjk) 
) \/2 J \!3 J J V 1 3 l \J 1 J 112 

3 3 
n(n-1)(n-2) TT TT (bw-b 1,) 

w=1 µ=1 
11/w 

Summing over unequal values of i,j,k and interchanging the order of 

summation gives 

(1.2.1) P[~B=2b 1+2b 2 +2b 3 I r 1 =3] 

I (bu -m1 j)(bu -mij)(b -mik)(b -mik)(b -mjk)(b -mjk) 
)(ijk)/ , :? 3 "1 "3 . "1 "2 

Suppose that among then points there exists at least one triplet of 

points numbered A1 , i-2 , >.3 , such that ml- A = b1' m!. 11 = b 2 and m1 , =b 3 . 
1' 2 r· 3 2' 3 

Then each such triplet contributes 6 identical terms to (1.2.1) viz. one 

for each permutation v 1 ,v 2 ,v 3 . E.g. for v 1=1, v2 =3, v3=2 (take i=12 , 

j=1 1 , k=J. 3 ) there is a term in the numerator of (1.2.1) 

Therefore (1.2.1) can be written 
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(1.2.2) P[!s_B = 2b 1+2b 2+2b3 I r 1 = 3] 

6 L (b 1-mi .)(b2-m .. )(b 1-mik)(b 3-m.k)(b2-m.k)(b3-mjk) 
{i.Jk)f J lJ l J 

If no triplet of points 1' 1 ,>- 2 ,>c 3, can be found such that m>< 1- = b1' 
1' 2 

m,. 11 =b 2,m;\,. =b3, (1.2.1)isequaltozero,andsois(1.2.2). 
1' 3 2' 3 

In exactly the same way one obtains 

(1.2.3) P[~B=4b 1+2b2 I r 1 =3] 

3 I (b2-mij)(b3-mij)(b2-mik)(b3-mik)(b1-mjk)(b3-mjk) 
{i;!k)f 

and 

( 1.2.4) P l!S.B = 6b 1 I r 1 = 3] 

l ( b2-miJ )( b3-mi j )( b2-mik )( b3-mil ) ( b2-mjk )( b3-m 'k) .{J.jk)f . ~ J 

n(n-1)(n-2)(b2-b 1 )3(b3-b 1 ) 3 

The expressions (1.2.2), (1.2.3) and (1.2.4) may be simplified, e.g. the 

numerator of (1.2.4) can be written as 

Now because of (1.1.2) 



I m. j 
( ij )I 1 

I m2i. 
( iJ )I J 

I mij 
ij 

I m21j 
ij 

9 

l: m m 
(ijk)/ ij ik 

l [ l m mik - m21 j] = l m mik - l m12j 
(ij)/ k ij ijk ij ij 

}: mi-
(1Jk)/ J 

l m~j mik I mrj 
ijk 1 ij 

}: m~. 
(ijk)/ lJ 

,;- 2 2 , 4 
L m .. mik - L mij 

ijk lJ ij 

L m 
(ijk)/ ij 

etc. 

For i I j 

( 1.2.5) 

Summing this identity over i and j with i I j gives 

b1b2b3n(n-1) - (b1b2+b 1b3+b2b3 ) l mij + (b 1+b2+b3 ) l miJ 
ij ij 

while multiplying (1.2.5) by m1j and summing gives 

b1b2b3 }: mij - (b1b2+b1b3+b2b3) ImL + (b1+b2+b3) L mrj = l mtj 
ij ij ij ij 

Using these identities the resultsof table 1.2.1 have been obtained. 

Since without loss of generality one of the numbers b1,b2,b3 may .be 

taken to be equal to zero, terms containing a factor b 1b2b3 have been 
omitted. 

For r 1 = 2, .l5.B assumes the values 2b 1, 2? and 2b3 with non-zero 

probability. It is sufficient to calculate PL.i5.B=2b 1 I r 1 =~; the other 
probabilities follow by symmetry. We find 

( 1. 2. 6) 

For the case mij takes only two values, say O or 1 (MORAN 1 s model) 
we have also considered the case r 1 =4. The result is given in 

table 1.2.2. 



Table 1.2.1 

n(n-1)(n-2),ca.P[~B = air 1 = 3] for the case where the mij (if j) assume three unequal values 

o1,b2 ,b3 and b 1o2o3 = O. The table provides coefficients of the sums entered in the first column. 

a 

ca 

1 

I mij 
ij 

I 2 

ij 

mij 

I m 2 
ijk ij 

mik 

mik 

I m 2 2 
ijk ij mik 

l m. m m 
ijk lj ik jk 

l m. ~ m m 
ijk lJ ik jk 

I m 2 
ijk ij 

I m 2 
ijk ij 

2 
mjk 

2 2 
mjk 

2b 1+2b2 +2b 3 

1 . 2 2 2 b (b1-o2) (b4-b3) (b2-b3) 

-b 2b 2_b 2b 2_b 2b 2 
1 2 1 3 2 3 

+(b1+b2+b3)(b1b2+b1b3+b2b3) 

-(b1b2+b1b3+b2b3) 

+(b1+b2 )( b1+b3 )( b2+b3) 

-(b12+b22+b32)-3(b1b2+b1b3+b2b3) 

+2( b 1+b 2 +b 3 ) 

-1 

4b 1+2b2 

i (b1-b2)3(b4-b3)2(b3-b2) 

2 3 2 2 . 
-b2 bJ n+b 1 bJ (o 1-b3 ) 

2 2 2 
+b 2 bJ n-b 1 b 3 (b 1-b3 ) 

+b1b33+2b2b32(b2+b3) 

-2b 1b 3
2 -2b2b 3 (b2 +2b 3 ) 

+b 3 (b 1+2b 2 ) 

-(b2+b3)2(b1+b3) 

+(b 2 +b 3 )(2b1+b 2+3b 3 ) 

-(b 1+2b 2 +3b 3 ) 

+1 

6b 1 

(b3-b1)3(b2-b1)3 

+b 2 3b 33n(n-1)(n-2) 

2 2 ) -3b 2 b 3 (b 2 +b 3 (n-1) 

2 2 
+3b 2 bJ (n-1) 

+3b2b3(b2+b3)2 

-6b2 b 3(b 2 +b 3 ) 

+Jb2 b 3 

-(b2+b3)3 

2 
+3(bc,+b-:,) 

-3( bc,+b-:,) 

+1 

--' 
0 



Table 1,2.2 

n(n-1)(n-2)(n-3).P[z;,B = al r 1 = 4] for the case where mij = 0 or 1. 

The table provides coefficients of the sums entered in the first column. 

a 0 2 4 fr 8 10 12 

1 n(n-1)(n-2)(n-3) - - - - - -
1 m .. -6n2 +18n-14 +6n2-6n+12 -12n-18 +20 - - -
ij lJ 

( I m .. )2 +3 -6 +3 - - - -
ij lJ 

I m .. m.k +12n-12 -24n-12 +12n+60 -36 - - -
ijk lJ l 

Im., m.k m.k -4n +12n+24 -12n-72 +4n+72 -24 - -
ijk lJ l J -' 

-' 

I m .. m.km.l -4 +12 -12 +4 - - -
ijkl lJ l l 

l m .. m. k m .1 -12 +36 -36 +12 - - -
ijkl lJ l J 

}: mi. m.k mjk m, 1 ijkl J L l 
+12 -48 +72 -48 +12 - -

l m .. m.k m. 1 mkl 
(ijkl)f lJ l J 

+3 -12 +18 -12 +3 - -

}. m .. m.l m.k mkl m.k -6 +JO -60 +60 -30 +6 -
(ijkl)f lJ l J l 

iJklmij mik mil mjk mjl mkl +1 -6 +15 -20 +15 -6 +1 
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CHAPTER 2 

The notion of a graph is used in this study in two different ways. 

Firstly, as stated in section 1.1. in the case that all mij are non­

negative integers, the internal s true ture of the set of points from which 

a sample is taken, is lndicated by means of a graph. We shall call this 

graph from this polnt onwards the master-graph. The word "graph", with­

out further indlcatlon, refers to the second type of graphs to be intro­

duced in section 2,2. For this second purpose we use the word _'.'._graph" to 

denote k oriented joins, labelled 1, 2, ... , k between 1 points ( 2 ~ 1 ~ 2k), 

such that no point remains isolated (is not connected to at least one 

other point) and loops do not occur. Multlple joins are admitted. Such a 

graph will be called a (k,1)-graph, 

Each join has a first and a second point, the orientation of the 

join being from the first to the second point, Each point is labelled by· 

means of the labels of all joins beginning or ending 1n this point, with 

a suffix 1 or 2 to the join-label indicating whether the point is its 

first or second point. 

Two graphs are equlvalent if they can be mapped on one another with­

out changing the labelling of the ,Joins and points. Non-equivalent graphs 

are called distinct, This gives a classification of graphs into equival­

~ classes. For the purposes of this study a class of equivalent 

graphs may and will be considered as one graph. 

E.g. consider three graphs as follows. 
1 2 

½, -? 1//1 
The first two graphs are equivalent, the first and tMrd one (and also 

the second and third one) are distinct. 

Two distinct graphs, which can be made equivalent by means of a 

permutation of the join-labels and/or changing orientations in one of the 

two, are said to have the same configuration. This gives a further class­

ification into configuration classes. Omitting the labelling and the 

orientation from a graph, a blank _g£.fil2.h is obtained, Blank graphs 

obtained from distinct graphs with the same configuration will be con­

sidered as identical. Blank graphs, corresponding to different configur­

ation classes, will be called different. Thus there is a 1-1 correspond­

ence between blank graphs and configuration classes. The term 11 configur-
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ation of ~~blank Ara2h 11 will be used to indicate the configuration 

class corresponding to the blank graph, By "configuration of a gra2h" 

is meant the configuration class to which the graph belongs. 

As an example consider the following three blank graphs: 

~ 
The first two are identical, 1. e. they have the same configuration. The 

first and the third one (and also the second an the third one) are dif­

ferent (have a different configuration), 

A blank graph is called connected lf from every point of the graph 

every other point may be reached by travelling along the joins. Regard­

less of the orientation of the joins, a graph is called connected if its 

blank graph is. Every blank graph consists of one or more connected 

com2onents, which have no connectlons between them. This decomposition 

is unique (cf. D. KOENIG, (1936), 15). This holds also for a graph, The 

components of the blank graph of a given graph are the blank graphs of 

its components. 

For a connected (k,1) graph the relation 

holds and there is a finite number, say qk 1 , of different (k,1)-blank 

graphs or configurations, Let c&ai be the 'a-th one of these 
- , ( (l) 

(a-1,2, ... ,qk,l). Notice that the symbol ck,l always refers to a con-

nected graph or a connected com~onent of a graph. In case qk, 1=1, we 

shall write ck 1 instead of ci 11 . 
' ' 

The configuration of a blank graph with h connected components 

( 1 ! h ! [½])can now be indicated symbolically by 

h ( °'1) 

l~1 Cki,li' 
( °'. ) 

if C l ls the configuration of its i-th component. If components with 
kp 

equal configuration occur, this may be written as 

where 

with configuration 

("' . ) 
gj i(nd!cate(a:lt)number of components with configuration Ck/lj' 

By A L g .Ck J 1 will be indicated the number of dis tine t graphs 
j=1 J j' j 

s (aj) 
L gjCk 1 · 

j=1 j' j 
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Theorem 2.1.1. Recursion formula for ..,,.Y 

_Ar(c(aj) ) gj 

k! Jv, g;, ( ~;:l · l 
Proof. 

We first prove 

(2.1.1) 

To obtain the number of distinct graphs with configuration 

the labels 1, ... ,gjkj have to be distributed over gj identical 

(kj,lj)-components of the blank graph. This can be done in 

(2,1,2) 
(g,;k,J ): 

g/ (kj! )gj 

distinct ways, since each of the gj! permutations of the components leads 

to the same (i.e. equivalent) set of graphs in the end. In each component 
( a ) 

a set of kj labels gives rise to%(C 1 Jl ) distinct graphs; thus for 
K j • j 

each distribution of kjgj labels over tne gj components there are 

(2.1.3) 

distinct graphs with the required configuration. The number of distinct 
( a ) 

graphs with configuration gjCkJ~lj is now the product of (2.1,2) and 

(2,1,3), which proves (2.1.1). 
( a j ) 

Now consider g.Ck 1 as the j-th subgraph of 
J j' j 

s (aj) 
l gjCk l . The 

J=1 T J 
distributed overs number of ways in which k labels 1, ... ,k can be 

different blank subgraphs such that the J-th one contains gjkj labels 

(J=1,2, ... ,s) is 

In the j-th subgraph each set of gjkj labels gives rise to 

distinct graphs. Thus 
( Cit • ) 

s ~!VtgjCk Jl .l TT , J 

j=1 (g.k.)! 
J J 

which upon application of (2.1.1) gives the result of the theorem. 
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In order to obtain a recursion ·formula for ./Y( c& a {) too, define , 

(2.1.4) 

Let 

if for at least one i=1,2, ... ,h 

either li.;;, 1 or li,;;, ki +2 . 

h 

I 
i=1 

h I ( (Y, I ) 
be the number of distinct graphs having configuration E C ,i , that 

i=1 ki,li 
arise in adding one oriented join to a given pattern consisting of a 

h ( (Y,i) h I h 
graph having configuration I Ck 1 and of I lf - I li · unlabelled 

i=1 i' i i=1 1=1 

isolated points. As by means of ( 
h (at. ) ) 

Theorem (2.1,1)A I Ck ll can be 
i=1 i' .i (ati)) 

calculated if Ck 1 , (1=1,2, ... ,h) is known, we give only the 
1' 1 

recurrence relation: 

(2.1.5) 
1 ( a ) 

2 rs w7ck+1, 1+1 t=O .. \' 

+ 1 
lc 1 , k 2 

k 1+k2=k 

We shall illustrate the use of these recursion formulae by 

calculating ../Y for configurations up to k = 3. 

can 

All graphs based on one join between two points are equivalent. Thus 

(2.1.6) 

Fork =2, the following configurations are involved 

2c1, 2 

Given one oriented join between two points, two distinct graphs may 

arise in adding one oriented join between the same points: 

1 ,..---....._ 
" .. 
~ 

2 

1 

and 
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thus W(c 2, 2 ;c 1, 2 )=2, and from (2.1.5)A"°(c2 , 2 )= 2. 

Given one oriented join between two points, and an isolated point, four 

distinct graphs arise in adding one join in all possible ways to this 

pattern, such that a graph of configuration c2, 3 arises: 

1 2 1 2 2 1 2 

thus W"(c 2, 3 ;c 1, 2 ) = 4 and K(c 2 , 3 ) = 4 

Application of Theorem 2.1.1 with s=1, g 1=2, k1=1, 1 1=2, m=1 and 

K(c 1, 2 ) = 1 gives %(2c 112 ) = 1. 

Summarizing we find for k=2 

%(c2 2l 
' 

(2.1.7) K(c 2 , 3 ) 

% ( 2C 1 2) , 

2 

4 

For k=3 the following configurations are involved. 

·-• 

Thus e.g. 

( 1) ( 1) 
h('(c3,J+: 2c1,2l 0 W(c3,4; 

( 2) ( 2) 
W'(c3,1r, 2C 'I 2) 8 w( c3, 4, , 

and by (2.1.5) 

(1) (1) 
( C 3, 4) = A"' ( 2C 1, 2 lW( C 3, 4; 

1-1 . . 

c2,3l 2 

c2,3l 4 

1/( 

-"-" ., __ ., 

( 1) . 4; c2 2l 
' 

( 2) 
W'(c3,4' c2 2l , 

0 

0 , 

8 . 
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Also 

while from Theorem 2.1.1 

In this way the following results for k = 3 are obtained 

( 2. 1. 8) 

%( c3, 2) 4 

/V(c~~§) 24 

%(c(2)) 
3,3 8 

%(c(1)) 
3, !f 8 

%(c(2)) 
3,4 24 

%(c1,2+c2,2l = 6 

%(c 1, 2+c 2 , 3 ) = '12 

A ( 3C 1 2 ) = 1 , 

For reference purposes note that for k=1,2, ... 

and therefore 

(2.1,9) 
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2.2, An expression for (L wij)k 

Let wij (i,j=1,2, ... ,n) be real numbers, satisfying 

(2.2.1) 

and for i I j 

(2.2.2) 

From the sum 

n 
(2.2.3) L w ••• w T 

t2k=1 T1' 1 2 T2k-1' 2k 

we consider one term 

(2.2.4) 

The subscripts occur in pairs : (1 2 j_ 1,,2 j), (j=1,2, ... ,k). If for any j 

both subscripts assume the same value, tis equal to zero by (2.2.1). 

These terms can therefore be omitted from (2.2,3). Now consider a term t 

with , 2 j_ 1 I , 2 j (J=1,2, ... ,k). Among the subscripts '·p' 2, ... ,,2k 1 
unequal numbers from 1,2, ... ,n occur (2! l! 2k). Call these 

A 1, A 2 , ... , • l with 

Each of the t 's is equal to one of the /.. 's; let 

then 

t 

In the set of numbers µ 1, u2 , .. ,, \l'k' v 1, v2, ... , "k all numbers 

1,2, ••. ,1 are represented. To each such set of numbers µ 1, u2, ... , ''k' 
v 1,v 2 , ... ,vk - and therefore to each term t - there corresponds a (k,1)­

graph in the following way. Take 1 points, numbered 1,2, ... ,1. Join the 

points numbered \lj and vj. Call this the j-th join with the points 

numbered !lj and "j as first and second point respectively (j=1,2, ... ,k). 
Omit the labels of the points. 

Some examples of the correspondence between a term t and its (k, )­

graph are given in table 2.2.1. 
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Table 2.2.1. Some examples of the correspondence between 

terms (2.2.4) and graphs. 

t ).1 >-2 t lJ 1 \) 1 112 \12 graph corresponding to t 

1 2 ( 1) 
1 

(2) w12 w 1 2 - - ·-· "1' ).2 
1 

W57 5 7 w 1 2 - - ( 1) ·-· (2) 
>-1, "2 

1 
w21 1 2 w 2 1 - - ( 1) ·-· (2) 

>-2, ).1 
~ 

w12w12 1 2 w w 1 2 1 2 ( 1) . . ( 2) 
>-1,"2 ;.1,).2 ~ 

w12w21 1 2 w w 1 2 2 1 ( 1) --1---. (2) • • ;\,I' ).2 l.2, >-1 ~ 
1 2 1 2 1 2 ( 1) 

,------_ 
(2) W35W35 w w ·~· >-1,'-2 ).1,'-2 

From table 2.2.1 the following conclusions can be drawn 

a) Two terms corresponding to equivalent graphs may or may not have the 

same value (cf. examples 1 and 2: terms with unequal values; examples 

1 and 3: terms with equal values; in both cases equivalent graphs). 

b) Two terms corresponding to distinct graphs but with the same configur­

ation may or may not have the same value (cf. examples 4 and 5: terms 

with equal values because of (2.2.2); examples 5 and 6: terms with 
unequal values; in both cases distinct graphs with the same configur­

ation). 

Let e1,e2 , ..• ,e1 be l unequal numbers from { 1,2, ... ,n} and let 

>. 1,>. 2 , ... ,>. 1 be the permutation of e1,e2, ..• ,e1 satisfying 

then the terms 

w,_ , A w,. ,). W). , ). 

ll 4 v1 1J2 "2 lJk vk 

and 
we ,e we ,e w 

ell ,ev 114 V 1 11 2 \12 k k 

have equivalent graphs. This is evident from the way of construction of 

the graphs corresponding to each of the two terms; the labels of the 

points of one graph form a permutation of the labels of the points of 

the other one. As these labels are omitted anyway, both graphs are 

equivalent. 
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Example: 

1 2 
0 ~ 0 ~ 0 

(2) (1) (3) 

1 2 
a -+----- ~ o 

(1) (2) (3) 

From these considerations it follows that two terms then and only 

then correspond to equivalent graphs if they can be written in the form 

and 

where t,p , 2 , ... ,t1 are also unequal numbers from -1,2, ... ,n , with­

out interchanging factors w or subscripts to one w. Therefore the sum 

over all terms in (): wij)k, each of which corresponds to the same graph 

G can be written as 

n n 
(2.2.5) I }: 

91=1 G1=1 

(e1, ... ,e1 )1 

where 1 is the number of points of the graph G. 

Remark: In general there are several sequences µ 1, u2 , •.. , l'k' 

v1,v 2,.,.,vk corresponding to the same graph G, e.g. u 1=1 v 1=2 

leads to o 1 o, but also u1=2 and v1=1, again because the 

point labels are omitted. For use in the notation (2.2.5) one can 

choose one of these sequences. We shall use the one in which the 

u 1 s and v•s increase in order of appearance. Thus e.g. 

Now consider two distinct graphs c1 and c2 with the same configur­

ation. This implies e.g. that the value of 1 is the same for both graphs, 

Given a set of numbers 111':i. 2 , ... , , 1 from {1,2, ... ,n} with 

A 1 < 11 2 < ••• < i. 1 , there correspond 1 ! terms of ( 2. 2. 3) to each of the 

graphs, viz. the number of permutations of the labels of the points. 

Because c1 and c2 have the same configuration, c1 can be made equivalent 



21 

to G2 by means of a permutation of the labels of the joins (which car­

responds to a permutation of the factors win TT w 
j '2j-1'' 

) and by 

changing the direction of the orientation of some joins ( cor-

responds to interchanging pairs of subscripts to single factors w). A 

term of (2.2.J) corresponding to graph o1 becomes therefore, with this 

permutation of thew's and this interchange of pairs of subscripts to 

single factors w, a term corresponding to graph G2 . The value of both 

terms is equal, because of (2.2.2). Thus to each of the l'. terms with 

graph G1 there corresponds one of the l! terms with graph G2 , having the 

same value. Thus 

(2.2.6) 

which shows this sum to be equal for all distinct graphs having the same 

configuration. The contribution to (I w1 j)k of terms corresponding to a 
h (rn1 ) h 

given value of 
h 

1, and to a given configuration l Ck 1 , with l: k 1 = k , 
1=1 i' i 1=1 

l 11 = 1, is therefore 
1=1 

(2.2.7) 

h 
where }: 

1=1 

figuration 

n n 
1 I 

81=1 81=1 

(e1 , ... ,e1 JI 

the number of distinct graphs having the con-

( ) 
C (cf. section 2.1), while the graph 
ki'li 

corresponding to the set of numbers ~1 , µ 2 , ... , µk' v 1, v2 , ... , vk is 

one of the graphs having this configuration. Symbolically we wrtte 

( 2. 2. 7) as 

(2.2.8) 

Summing over all configurations with h connected components, k ,ioins 

and 1 points - thts summation wUl be indicated by I" h h 
I l: 1. =l 

summing over all h and l gives now l.1=1 1=1 l .J 

(2.2.9) 
2k [ ½1 
1 1 

1=2 h=1 
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,* (1) (k)I 2.3. The quantities L { w ... w ... } 

Consider the sum 

n 
(2.3.1) I we ,e · .. we ,e 

8 i= 1 \11 "1 µk "k 

(e 1, ... ,e1 )1 

where (cf. section 2.2) in the set of numbers 

all numbers ~,2, ... ,1 are represented in such 
11 1'\J2'''' 1 µk,"1'"2•···•vk 
a way that the configu-

ration of the graph corresponding to each term of (2.3.1) is 
h ( cti) 

i~1 Cki, 1 i. 
We now introduce a graph corresponding to a~ 

(2.3.2) 

D"" 

where D""is a restriction yet to be specified and \J 1 ,u2 , ... ,llk,v 1,v 2 , .. ,vk 

are the same numbers as in (2.3.1). The graph corresponding to the sum 

(2.3,2) is obtained as follows. Take a set of 1 points and label them 

1,2, ... ,1. Join the points labelled uj and vj , (j=1,2, ... ,k). 

A graph is then obtained with labelled points . .. 
If the restriction D is: "e1 , e2 , ... , e1 assume unequal values", 

the blank graph corresponding to the sum is identical to the blank graph 

corresponding to each of the terms of the sum. 

If the restriction is defined otherwise, this ls not necessarily so. 

The value of the sum remains unchanged if the order of the w•s ls 

changed, and (or) the pair of subscripts to one w is interchanged for 

some w•s. Therefore the value of the sum depends only on the blank graph 

corresponding to the sum, the restriction n*, and the point-labels, as 

far as they are needed to specify n•. 
If the restriction n* is "8 1 , e2 , ... , 8 1 assume unequal values" 

the notation for (2.3.2) has been introduced already: 

(2.3,3) 

If 

(2.3.4) 

where 

({ w(1l ... w(lc) 
h ( "1) } I Cki,li 1=1 

the restriction is empty the sum will be indicated as 

{ w(1) __ ,w(k) 
h ( "1) } I I Clci,li i=1 

h ( °'· ) I C l 
1=1 lei, 

is the configuration of the blank graph corresponding 

to the sum. Finally if the restriction n"' is that the subscripts 
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91 + +l +1 , e1 + +l +2 , ... , e1 assume unequal values and no res-
1 u 1 . · · u 

tric tion is imposed on e1, e2 , ... , e1 + +l ( ·1 ;S u < h), we need only 
1 '· · u 

distinguish between these two sets of point-labels to specify n*, and 

write 

( 2. 3. 5) 

Note that 

u ( "1) 
L C\ l 

1=1 i' 1 

{ w( 1) ... w(k) 
u ( "1) h (c,1) )} (2,3.6) r1· I L C 

+ CJ+1 clci,li 1=1 ki,11 

{ 
r 1 l (k1+ .•. +ku) u ( c,i) 

} 1 w ... w }: C 
1=1 ki,11 

,.. { (k1+ •.. +ku+1) (k) h ( "'1) } . . }: w ... w I r C 
i=u+1 ki, li 

We now remove the restrictions imposed on the sum (2,3,1). 

Ignoring the inequalities on e.g. e1 leads to 

n n 
(2.J.7) l l we e ..• we El ' 

81=1 81=1 1J1' "1 Ilk' Ilk 

( e 1, ... '81-1) f 

where the blank-graph corresponding to the sum still has the configu-

h ( "'1) 
ration }: C The difference between (2.3.7) and (2.3.1) consists 

1=1 ki,li' 

of (1-1) sums like (2,3.1), but where in the j-th one •\ is replaced by 

ej (j=1_,. .. ,l-1). The configuration of the graph:3 corresponding to the 

j-th sum can be obtained from the graph (with the labelled points) 

corresponding to the sum (2.3.1) by making points 1 and j coincide. 

The following three cases may arise. 

1) 
h ( c,i) 

In the graph with configuration r C points 1 and j are con-
1=1 ki'li 

nected by a join. '.l.'his means that E\ and 8. occur as subscripts to 
J 

one w. Taking e1=8j the sum concerned is equal to zero by (2.2.1) 

and is therefore omitted. 

2) Points 1 and j belong to one connected component, say to the one 
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( ti 1) 
with configuration Ck 1 , but are not connected by a join. Making 

1' 1 

points 1 and j coincide, the configuration thus arising is of the 

(8) h (ai) 
C + I C 
k1,l1- 1 i=2 ki' 1 i . 

3) j belong to different connected components, say to 

( 1'.12) 
C respectively. 

k2,12 

The configuration of the graph obtained by 

( B) 
coincide is of the form 

Ck1+k2, 11+12-1 + 

Thus (2.J.1) in whlch 1 e's had to be unequal, is expressed as a number 

of sums in each of which (1-1) e's have to be unequal. Repeating this 

procedure of removing inequalities imposed on summation indices leads to 

(2.J,8) r*{w( 1 l.""w(k) £ c~aii }= 
1=1 1' i 

h l 

t l t h' h' 

I I I 1 1 =1 1 

h 1 =1 l 1 =2h 1 

[1=1 
k:i =k, 

1=1 1 ..J 

{ w(1l, •• w(k) 
h' (ti~) } . 1 I I Ck, 1 I • 

1=1 1'' 1 

A( h (a .. ) 
The coefficients l C 1 

1=1 ki' 1 i 

(2.J.8) only for the case 

h ! h' 
' 

h h' 
(2.J.9) I k. 1 k' k 

' 1=1 l i=1 i 

h h' 
l: 11 1 ~ 1' I 

i=1 i=1 

If for two configurations 

relations 

(2.J.10) 

(2.J.9) does not hold 

( a. ) 
C l 
ki,li 

1' 
i 

h 
(ai) 

A( i~1 
C 
ki'li 

~I (c,~) 
L ck, 1' 

i=1 i' i 

h' 
( C<~) ) I Ck, l' . 

1=1 1' i 

any of the 

It is evident from the description given that even if (2.J.9) is satis-
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fied, (2.3.10) continues to hold if the blank graphs with configurations 

h (ai) h' (a~) 
l: Ck and I C , , are different, and the latter cannot be 

1=1 i' 1=1 ki,li 

obtained from the former by making points coincide, This is certainly 

h 1 ( a~ ) 
the case if either I Ck, 1 , has a component containing less than 

1=1 i' i 

has a component containing 

( I I I ) more than max k1' k 2 , ... , , joins. This proves 

Lemma 2.3.1 

If for two configurations 

satisfied, then 

if either 

(2,3.11) 

or 

(2.3.12) 

and 
h' (a~) 
I Ck, l' 

1=1 j_' i 

0 

(2.3.9) is 

Consider again the sum (2.3. 1) with k, replaced by (k+g) and l by 

( 1 +2g). Suppose that the graph corresponding to the sum has configuration 

? (al) 
l Ck l + gC 1 2 ' ' 

1=1 1' 1 ' 

h 
where k 1 ,;;, 2 for 1=1,2, ... ,h, l k 1=k, 

1=1 

h 
l l =l . Let the labelling of 

1=1 i 

the points of the graph be as follows. The points of the g connected 

components with configuration c1 2 carry the numbers 1 and 2; 3 and 4; .. 

... ; 2g - 1 and 2g respectively,' 

This means that e.g. the summation-subscripts 9 1 and 0 2 occur as sub•· 

scripts to one w, and both occur only once in the product. The other 

l points of the graph carry the numbers 

shorthand notation (2,3,1) is written 

h 
(2.3.13) I 

1=1 

2g+1, 2g+2, ... , 2g+l. In our 

Now remove the inequalities imposed on 0 1 and 92 . 

The inequality e1/e2 imposed on (2.3.13) can be dropped without (2,3,13) 

changing in value, as 9 1 and 8 2 occur as subscripts to one w. 
Ignoring the inequalities on 8 1 and e2 leads to 
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(2.3.14) 

which by (2.3.6) is equal to 

(2.3.15) }: w.j. 1*{w( 1 l ... l'/k+g- 1 ) 1 
lJ l i="I 

The difference between (2.3.15) and (2.3.13) 

(2.3.1) for each of the following cases 

i 81 I 83' 84, Q ,. ~ :, 81+2g and 82 = 8. 
,l 

ii 81 8. and· 82 I 83' 84, w ~ ~ , 81+2g J 
iii 81 8. and 82 8. 

J 1 J2 

consists of sums like 

j 3,4, ... , 1+2g) 

,j 3,4jl~W8$ 1+2g) 

( j 1, j2 3,4, .. ,, 1+2g). 

We start with the (1+2g-2) 2 sums corresponding to iii. The (1+2g-2) sums 

wH1l. 

j = 3, 4, ... , 1 +2g) 

are identically equal to zero by (2.2,1). The 2(g-1) sums corresponding 

to 

83 82 G!f 

e, 94 g2 83 

81 85 82 86 

81 G2g 82 8 2g-1 

all have a graph with the configuration 
h ( a 1 ) 
L ck J + c2 2 + ( g- 2 )c 1 2 , 

1=1 1•·1 ,, ' 

thus giving as a contribution to the difference between (2.3.15) and 

(2.3.13) 

2(g-1) ;:*{ w( 1 l ... w(k+g) I r c(ai) .,. c2,2 + (g-2)c.1,2.} 
1=1 · ki'li 

There ·are 4( g-1 )( g-2) sums, viz. corresponding to 

e,"' 83 83 85, 86, ... ' 82g' 

0, 84 82 85, 86, ... , 82g' 

81 85 82 83' 84, ·07, ... ' 82g' 

all corresponding to graphs with configuration 

h ( a1 ) ( 2) 

1f1 Cki,li + c3 ,4 + (g-3)c 1 , 2 , thus giving as a contribution to the 
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difference between (2,3.15) and (2.J.13) 

"'"f (1) (k) h (a.) (2) } 
4(g-1)(g-2) I w ... w +g I iL1 ck1~11 + c3,4 + (g-3)c1,2 . 

There are 4(g-1)1 sums in iii, viz. 

91 e3' eir, ... , e2g e2 92g+1' e2g+2' ... , e2g+1 

8 1 82g+1' 82g+2'···, 82g+1 8 1 83• 84,···, 82g 

h ( a;) 
corresponding to graphs with a configuration I Ck* 1 • + (g-2)c 1, 2 , 

i=1 i' i 

h 
where ki;;, 2, I k~ = k+2 and 

i=1 

'rhe multiplicity with which sums corresponding to graphs with c onfigu-

h (a~) 
ration l ck~ l* + (g-2)c 1 ? occur may be denoted by 

i=1 i' i ' -

) does not depend 

on g. 

Finally there are 1(1-1) sums in iii, viz. 

8 1 = 82g+1' 82g+2•···• 82g+1' 8 2 = 82g+1' 

corresponding to graphs with a configuration 

h* h* 
where h-1 ~ h" ~ h, kI';;, 2 , I k1 = k+1 and ): 

1=1 1=1 
1. The multiplicity 

h" (o.i) ) I Ck* 1• with which sums corresponding to graphs 
i=1 i' 1 

h * (a~) 
I ck" 1• + (g-1)c 

i=1 i' i 1• 2 
with configuration occur does not depend on g. 

With regard to i and ii the 4(g-1) sums with 

e1 / e3, e4, ... , e1 +2 g e2 e3, e4, ... , e2g 

e1 e3, 1:14, ..• , e2g e2 / 0 3 , 0 4 , ... , e1+2g 

h ( "1) 
correspond to graphs with configuration I C 1 + c2 3 + (g-2)C 1 2 , 

i=1 ki' i ' ' 

thus contributing to the difference between (2.J.15) and (2.J.13) 
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The 21 sums corresponding to the remaining cases in i and ii, viz. 

8 1 / 83• 84,·••J 81+2g 82 8 2g+1' 82g+2''"'' 82g+l 

8 1 = 82g+1' 82g+2,···, 82g+1, 8 2 I 8 3• 84,···, 81+2g 

correspond to graphs with a configuration 

h (a~) h 
L Ck~ 1 ~ + (g-1)c 1, 2 , where k1~ 2 , ): k1 

i=1 l' l i=1 

while again the multiplicity 2 . .Af2 (_I 
l=1 

sums corresponding to graphs with configuration 

occur does not depend on g. 

We have now established for a configuration 

h 
): 

i=1 
1. = 1 

l 
and g > 0 

,*{ ( 1) (k+g) I ~ c(cii) ( 2. 3 . 16 ) l W ••• w L k 
1=1 i' 

l wi .• f'{w('l) __ .w(k+g-1) I I 
ij J i=1 

- 2(g-1) ({ w( 1 l ... w(k+g) I I 
1=1 

with 

- 4(g-1) ({ w( 1 ) ... w(k+g) I I c~"1I + c2 , 3 + (g-2)c 1 , 2 l + 
1=1 i' i f 

( 2) 
+ c3,4 + (g-3)c1,2}+ 

+ 



29 

We now prove 

Lemma 2.3.2 

Given two configurations 

negative integers g and g', such that 

h' 
and I 

i=1 

a) i 

h 

1,2, ... , h and k~;;, 2, 1 1,2, ... , h 1
, 

b) 

C) 

then 

Proof 

g + I ki 
i=1 

h 
2g + L 11 

i=1 

h' 
g' + l k: 

i=1 l 

h' 
;;, 2g I + L 1: 

i=1 l 

if O,:; g < g' 

if g;;,g',;:O 

The lemma 1s obvious for O! g < g' since the number of components 

of a blank graph having configuration c1 2 cannot increase when points 

are made to coincide ( cf. the remark leadi~g to lemma 2. 3 .1). As the 

lemma is trivial for g'=O we consider g,;; g' > 0 . Apply (2.3.8) to both 

sides of (2.3.16) and consider the coefficients of 

(2.3. 17) 
h' (0.1') 

' { w( 1)_ •• w(k+g) I ' ' 1 
L i;1 ck{,l~ + g c1,2 

As (2.3.17) is equal to 

_I,wij 
lJ 

the coefficient of (2,3.17) in the expression obtained by applying 

(2.3,8) to the first sum in the righthand member of (2,3,16) is equal to 

h 1 (a{) 
L ck, 1' +(g'-1)c12) 

1=1 1' i ' 

Thus one obtains the recurrence relation 
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( 2. 3. 18) 

-2(g-1JA( it 
( "·) h' ( "~) 

+ g'c1,2) C l 
+ c2,2 + ( g·-2 )C }: Ck, 1 1 + 

ki,li 1,2 i=1 i, i 

h (ai) h' (ai) 
+ g'c1,2) -4(g-1)A( 1 C + c2,3 + (g-2)C1 2 ; I ck' l' + 

i=1 ki'li , i=1 i, i 

2 h 

- 2 I * I 
s=1 h=h+s-2 

For 0 <g'=g one obtains from (2.3.18) using the first part of the 

lemma (i.e. the case where 0,:;g<g') and (2.3.10) 

h (ai) h' (a~) 
A(l: ck 1 ,g'C12; l ck'l 1 +g'c12)= 

i=1 1'1 '1=1 i'i ' 

A( h (a 1 ) h 1 

- l C + (g'-·1)c L 
- i=1 ki,li 1, 2 1=1 

repeating this procedure 

( Cli ) h I ( ().1) 

cki,11 ; i~1 cki,l~) = A( I 
1=1 

which proves the second part of the lemma for g=g'. Suppose the lemma 

is true for 0 <g' ,:;gj.g'+r-1 (rl 1); we shall then prove it to be 

true for g=g'+r too. 

For g' ,:; g,:; g' +r-1 1 t follows from the lemma ( which was supposed 

to be true for these values of g) 
(a.) 

ck/ Ii + gc1, 2 (2.3.19) 
h' ( a 1 ) ) I C i I 0 

k' 1 1 + g c1 2 = 
i= 1 "i' i ' 
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Now take g=g'+r in (2,3.18) and apply (2,3.19) tc, all but the 

first term of the righthand member of (2.3.18). This leads to 

(2.3.20) 

g' +r-1 
+--­

g' 

2 h 
- 2 }: "): 

s=1 h=h+s-2 

For g' > 1 the terms inside the square brackets in (2.3.20) are 

by (2.3.18) equal to 

thus from (2.3.20) the following recursion relation is obtained 
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(2,J.21) 

+ g'+r-1 n(h (al) , 
~g n l ck l + (g +r-2)C1 2 

1=1 1' 1 ' 
0 

For g' =1, (2.J.21) remains valid if the last term is s:lmply 

omitted, thus giving 

A( h (a.) h' (a~) 

+ 0 1,2) l C l + (r+'l)C 1 2 l Ck, I 

1=1 ki' 11 ' 1=1 i' 

) . 
Taking g'=2,J, ... successively, the result of the second part of 

the lemma is found for g=g'+r. By induction the second part of 

lemma 2.J.2 then follows. 

Lemma 2.3,l 

Proof 

(-1)r lliJ.! (1-y)s(2-y)r . 
rt 

Consider the sum 

(2.J.22) , .. { ( 1) (2r+2s+2t) I , } 
1, w . .. w 2rc1,2 + tc2,2 + sc2,3 

In the summation 4r+Js+2t summation-subscripts are involved, viz. the 

number of points of the graph corresponding to the sum. Let the points 

of the graph be numbered as follows. The first and second points of 

the connected components with configuration c 1 2 are 1 and 2; 3 and 4; 

... ; 4r-1 and 4r respectively; the points of t~e connected components 

with configuration c 2 , 3 are 4r+1, 4r+2 and 4r+3; ... ; 4r+Js-21 4r+Js-1 

and 4r+Js, where each time the second number refers to the point where 

the two joins of the component meet. Finally the points of the connected 

components with configuration c 2 2 are 4r+Js+1 and 4r+Js+2, ... , 

4r+Js+2t-1 ~nd 4r+3s+2t. ' 

In (2.J.22) remove the inequalities on the summation-indices 

8 4r+Js+2t-1 a nd 8 4r+Js+2t. 
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Then 

( 2. 3. 23) 

- sums corresponding to graphs having at least 
one connected component with three or more joins. 

Apply (2.3.16) to both sides of (2.3.23), collect the coefficients of 

l: { w c 1 l ... w ( 2r +2 s +2 t l 

or (what is just the same) 

I wfj l: { w(1) .. _,)2r+2s+2t-2) I (t+u-1)C2,2 + (r+s-u)c2,3} 
ij 

and apply (2.3.12) to obtain 

A(2rc 1, 2 + tc2 , 2 + sc2 , 3 ; (t+u)c2 , 2 + (r+s-u)c2, 3 ) 

A(2rc 1, 2 + (t-1)c2 , 2 + sc2 , 3 ; (t+u-1)c2 , 2 + (r+s-u)c 2, 3 ) 

repeating this procedure, 

= A(2rc 1 , 2 + sc2, 3 

Consider now 

( 2. 3. 25) , " { ( 1 ) . ( 2r +2 s ) I } , w ... w 2rc 1, 2 + sc 2, 3 

where the points of the connected components with configuration c 1, 2 and 

c 2 , 3 are numbered as before. Removing the inequalities on e 4r+3s_2 , 

84r+3s_i and e 4r+3s leads to 

(2,3.26) 

, ,*{ (1) {2r+2s-2) 
l, m1 j mik' l w ... w 

ijk . 
+ 

,·""{ (1) (2r+2s) 12 c +c 
t, w • • .w r 1,2 2,2 + 

sums corresponding to graphs having at least 
one connected component with three or more joins. 

The second term in the righthand member of (2.3.26) arises in taking 

94r+3s- 2 = e4r+js in (2.3.25). Apply (2.3.16) to both sides of (2.J.26) 



and collect the coefficients of 

, {w(1l ... w(2r+2s) I ( ) } L uc 2 , 2 + r+s-u c 2 , 3 

or, what amounts to the same, of 

l m .. m.l. l { w( 1) ... w(2r+2s-2) 
ijk lJ l{ 

and apply (2.3.12): 

(2.3.27) A( 2rc 112 + sc 213 ; uc 212 + (r+s-u)c 2, 3 ) 

A(2rc 1, 2 + (s-1)c 2, 3 ; uc 212 + (r+s-u-1)c 2, 3 ) + 

A( 2rc 1, 2 + c 212 + (s-1)c 2 , 3 ; uc 2, 2 + (r+s-u)c 2, 3 ) 

by (2.3,24) 

A ( 2rC 1, 2 + ( s-1) C 2 , 3 uc 2 2 + (r+s-u-1)C 2 3 ) + 
, ' 

- A( 2rc 1, 2 + (s-1)c 2 , 3 (u-1)c 2, 2 + (r+s-u)c 2, 3 ) 

Introducing the abbreviation 

rr(s,u) = A (2rc 1, 2 + sc 2 , 3 ; uc 2 , 2 + (r+s-u)c 2, 3 ) 

(2.3.27) can be written (with the obvious modifications for u=O and 

u=r+s): 

( 2. 3. 28) 

l fr(s,u) fr(s-1,u) 

fr(s,O) f'r(s-1 1 0) 

fr( s,r+s) 

It follows from (2.J.28) that 

r+s 
): fr(s,u)yu 

u=O 

r+s-1 
(1-y) I fr(s-1,u)yu 

u=O 

Repeating this procedure gives 

( 2. 3. 29) 

- fr(s-1,u-1) for O < u < r+s 

- fr(s-1, r+s-1) 

r+s 
- I 

U=1 

r 
I 

u=O 

f' (s-1,u-1)yu 
r 

, 



F+nally consider 

(2.3.30) 
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, * { ( 1) ( 2r ) } 
1., w ... w I 2rC 1 , 2 

where the points of the connected components with configuration c 1 2 
are numbered as before. Similar to (2.3.23) we find if the inequalities 

on e2r_ 1 and e2r are removed 

I*{w( 1 l ... w( 2r) I 2rc 1 , 2 }= /jwij_f'{w(:1l ... w( 2r- 2 ) I (2r-1)c 1, 2 } + 

- 2(2r-1) (' { w( 1 ) ... w( 2r) (2r-2)c 1, 2 + c 2, 2 } + 

- sums corresponding to graphs with at least 
one connected component with three or more joins. 

Apply (2,3~6) to both sides of this equation and collect the coefficients 

of 

1· { w ( 1 ) ... w ( 2r ) I ( ) } L uc 2 , 2 + r-u c 2 , 3 

Thus for O < u < r , using ( 2. 3. 12) 

fr(O,u) _ }/; (2rc1,2; uc2,2 + (r-u)c2,3) 

- 2(2r-1) A((2r-2)c 1, 2 + c 2 , 2 uc 2, 2 + (r-u)c 2, 3 ) + 

by ( 2. 3. 28) 

For u=O and r 

Thus 

- 4(2r-1) A((2r-2)c 1 2 
' 

- 2(2r-1) A((2r-2)C 1 2 , 

4( 2r·-1)fr_ 1( 1,u) - 2(2r-1)fr_ 1(o,u-1) 

+ 2(2r-1)fr_ 1(o,u-1) - 4(2r-1)fr_ 1(0,u) 

--2( 2r-1 )( 2-y) 

Repeating this procedure gives 

+ 
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r . 1 
t fr(O,u)yu = (-1)r-1 2r-1 (2 ~)(2 3) 3(2 )r-1 ' f (o ) u l r- , r- . . . -y l 1 , u y . 

u=O u=O 

Now f 1(0,0) and f 1(0,1) are found easily by applying (2.2.9) and 

(2.1.7) with k=2 

( l wi.)2 = l wiJwkl + A'(c2 3l I wijwik +A(c2 2l I wfj = 
J (ijkl)I , (ijk)I ' (iJ)I 

Now 

thus 

- L w w + 4 l w1 .w.k + 2 l w2
1 j 

- (ijkl)I ij kl (ijk)I. J l (ij)/ 

l: w~. 
(ij)flJ 

L w .. w.k 
(ijk)/ lJ l 

l: w .. w. k - L w~. 
ijk lJ l ij lJ 

Comparing with (2.3.8) we find 

'I'hus 

(2.3,31) 

f 1(o,o) A(2c 1, 2 c 2 , 3 ) - 4 

f 1(0,1)=A(2c 12 c 22 ) +2 
' ' 

(-1)r. 2r(2r-1)(2r-3) ... 3.1 (2--y)r 

r ( 2r) ! r 
(-1) -- (2-y) 

r! 

The lemma now follows from (2.3.24)., (2.3.29) and (2.3.31). 

Lemma 2.3.4 

If for i,j=1,2, ... ,n, 

not depending on i and n, then 

Proof. 

As 

l { w( 1! .. w(k) I iI/~;~IJ = 111 l { w ( 

and ~ w1 j;; c , where c is a constant 
J 
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the lemma is proved if it is shown that 

(2.3,32) (.r( n) 

for every k, land~ 

For k=1 and 1=2 (2.3.32) is true, because 

I w .. ~ en 
ij lJ 

Fork• 1 consider first the case l=k+1. Now ci:l+1 is a configuration of 

a graph containing no circuits; it is a tree (c~ D.KOENIG (1936), 53). 

Each tree contains at least two points to which only one join is con­

nected (cf. D.KOENIG ( 1936), 49). Let one of these points be labelled k+1. 

This means that the summation-subscript ek+ 1 occurs only once as a 

subscrlpt to thew's. Summing over ek+ 1 gives 

(S) (~) 
where the graph with configuration Ck- 1,k, is obtained from ck,k+1 
by taking the point labelled k+1 away together with the join connected 

to it. The remaining graph is again a tree. Repeating this procedure 

leads in k-1 steps to 

(2,3.33) 

which proves (2.3.32) for l=k+1. 

Now consider a graph with configuration ct'{ , with 2~ l < k+1. In 

this graph one can take k-1+1 joins away, such that a tree Cl~( 1 remains 

with 1-1 joins and 1 points (D.KOENIG l1936), 53). Let the joins that can 

be taken away correspond to w( 1 >, ... ,w k), then 

(1) (k) w ... w k-1+'1 (1) (1-1) 
C W •• ,W 

Summing over the 1 summation-subscripts involved gives 

(1) (k) (tx) 
w ••• w I ck 1 

' 

k-1+1 
C 

which by (2.3.33) proves (2.3.32). 
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CHAPTER 3 

3.1. The moments of~ 

In section 2.2 the starting-point has been the set of numbers wij" 

Howeve~ the development given in section 2.2 does not change if the 

wij are random variables, thus _l!ij . Only (2.2.1) should be replaced by 

(3.1.1) 0 , spr O 

Thus analogous to (2.2.3) we have 

(3.1.2) 

Now take 

(3.1.3) (i,J=1,2, .. ,n) 

where ~ij are the random variables introduced in section 1, 

then (cf. 1.1.8) 

Consider one term of (3.1.2) 

(3.1.4) 

which by (3.1.3) is equal to 

(3.1.4') m t ... 
'1' 2 

where we assume t 2 j_ 1 ,f , 2 j (j~1,2, ... ,k). Among the 2k subscripts 

, 1, , 2 , ... , r 2k 1 unequal numbers from 1, 2, ... , l occur ( 2 ! 1 ! 2k). Call 

these A1,A2,···•A1 with 

Each of the ,'sis equal to one of the l's. Let 

T2j-1 

then (3.1.4') is equal to 

( 3 .1. 5) 

and t 2J" = 1-
v j 

( j=1,2, ... ,k) 
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The product 

ml. ,11 ... m,, ). 
ll1 "1 lJk' "k 

will be called them-part of (J.1.5), 
the product 

the z-part. 

To the set of numbers u1,JJ2 , ... ,1Jk' 

to them-part and the z-part of (J.1.5) 

as indicated in section 2.2. 

"1•"2'""'"k and therefore 

there corresponds a graph, 

As shown by examples 1,2 and 3 and 4,5 and 6 of Table 2.2.1 

(replace w by m), them-parts of two terms of (3,1.2) corresponding to 

equivalent graphs may or may not have the same value. Also them-parts 

of two terms of (J.1.2) corresponding to distinct graphs, but with the 

same configuration, may or may not have the same value. 

Regarding the z-part of the terms of (3.1.2) we introduce the 

following 

symmetry assumption: 

For k=1,2, ... , the expectation of the z-part of a term of (J.1.2) 

depends only on the configuration of the graph which corresponds 

to that term. 

Examples (cf. Table ?.2.1): 

and 

h 
): 

i='I 

as 

1) 

2) 

It 

v .. 
-iJ 

.t &s beth anU have a graph with 

configuration o--©. 

2 2 both 2 and 2 
E.~12 E~35 ' as if.12 ~12 -"-12 if.35 - z z -···-35 -35 

have graph with -a configuration o........_,,o. 

will be shown in later sections that in fact ( B) 
~ij ' 

( w) 
~ij , X-1j 

satisfy this symmetry assumption. 

configuration of the graph corresponding to (3.1.5) is If the 

( ex. ) 
C l 
kl' 1 1 

, the expectation of the z-part will be written symbolically 

h (a.)) L C l 
1=1 kj_• 



40 

The contribution to of terms corresponding 

to a given value of 1, and to a given configuration 

h h 

h (a1 ) 
l Ck 1 ' 

1=1 i' i 

(L k1 = k, l 11 = 1), is now by (2.2.7), (2.2,8) and the symmetry 
1=1 1=1 
assumption equal to 

where the graph corresrondlng to the numbers u1, , ... ,uk, v1,v 2 , ... ,vk 

h ( Cli) r C 
1=1 ki,ll 

is one of the graphs having the configuration 

Summing over all configurations with k joins gives 

(3,1,6) 

Applying (2.J.8) and defining for a configuration 

h' h' 
with l: 1 I = 1 I ' I k1' = k 

i=1 i 1=1 
and 1 ! l 1 



(3.1,7) 

and for l < l' ( cf. ( 2. 3. 9) and ( 2. 3. 10)) 

(3.1.8) 0 

it follows from (3.1.6) that 

k 2k 
(3.1.9) I I I z:" h' h 1 

): ki=k, I l1=l 1 

2k ( k) h' ( c, '. ) ) 

I 21 1 1 ,( I ck' i 1' · 
1=2 ' 1=1 i' 1 h'=1 1'=2h 

11-.=1 1=1 _J 

. I { m(1) __ ,m(ld 

3.2. The reduced moments of~ 

From (J.1.9) it follows that 

k-2 t2gJ k+g'+h' 

l: ,! , , 
h' = 1 1 =2h +2g 

\U I 

I.. h I ' i 0 ! ! r I k1=k-g ,k. ~ 2, I l.=l -2g 
ll_=1 l 1=1 l _J 

i: 
g'=O 

2k ( k ) ( h ' ( c, ~ ) , ) { ( 1 ) ( k ) h ' ( a~ ) , I ~1 1 , I c,_, 1 , t G c1 ,, I m .... m I I , , + g c 1 2 
1=2 ' 1=1 "i' i ,c i=1 ' • 

(k) ( ) { (1) (le) } 
+ !i)2k,2k kc1,2 I m ... m I kC1,2 . 

Thus 
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(k-v) ( ) 
. $ 2k-2v,2k-2v (k-v)C1,2 

In the first part of the righthand member change 

g' into g'*- v, and g'* into g' 

then 1 1 into 1••- 2v, and 1 1 " into l', and 

finally 1 into 1* - 2v and 1* lntu 1, and Interchange the order of 

summation over v and g'. Then: 

(3.2.1) 

For l,;:, J.' 

( 3. 2. 2) 

[½]-v 
= L 

h=h'+g'·-V 

[½] 
}: 

g=g' 

k+g' +h' 

r 
1'=2h'+2g' 
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( 
h ( Cli ) h I ( Cl ; ) 

. A .L ck. 1 + (g-v)C1 2; l Ck,ll' + (g'-v)C1 2 
l=1 l' i ' 1=1 i' i ' 

) . 
The lower summation-limit for g is determined by the fact that 

for g <g' the coefficient A is equal to zero by lemma 2.3.2. The lower 

summation-limit for his determined as follows. We recall from section 

2.3 that the coefficient.A IO only if the configuration 

can be obtained from 
l'. ( "1 i 

1=··1 

by making points coincide. In thls process the tutal number of components 

[ g-132,'+1]' must have decreased by at least 

so h'+g'-v ~ h+g-v-[g-~•+1], or h ~ h'+[g-r+1} (g-g') 

thus 

h 
By theorem 2.1.1, because of k1 ,;;, 2 and l: k. =k-g , 

1=1 l 

(k-g'); 

(g-z' )'.(k-g)'. 

,_fi:£.'] 
h l 2 . 

( 
h (a1 ) ) (k-v)'.(g-g'); ( h ( ) ) 

..Ali l ck 1 + (g-v)c1,2 = (k- •)'( - )' ..IV ._I_.1ck.,l. + (g···g')C1,2. 
1=1 i' i g , g \l , l l l 

Applying this and lem~a 2.3.2 to (J.2.2), changing g into g and 

into g, gives 

( k-v) 
2 l-2v,l'-2v 

In the same way one finds 

[½lg' [k-rgJ 
l l (k-v) 

g=O ' [""] k-g' , h=h - ~ 
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By applying these results to (3.2.1), it follows after some rearrangement 

that 

( 3. 2. 3) " l: h' h I 

L k'=k-g',k!.;.2, L l 1 =1 1 -2g' 
U.=1 i l i=1 i _j 

{ ( 1) ( k) h 1 
( c,.i ) } . l m •.. m I l ck, l , + g ' C 1, 2 

i=1 i' i 

k-g 1 ~k-f-!L] 2k 

I }: I 
g=O h=h' -[ !] 1=2h+2g+2g' 

This expression for µk will prove to be useful in studying the asymptotic 

behaviour of the distribution uf _!'.:.B, 3w and y 

3,3. The moments of ~Band 3w non free sampling 

It is obvious that the moments of 41 can be obtained from those of 

~B by changing r 1 into r 2 . It is therefure sufficient to consider the 

moments of .!'.:.B. In this section we write _!'.:. for ~B and r for r 1 . 

For if j 

E.is.ij P[~1.J=1] P[points i and J are chosen] 

r[point i is chosen] . P[?oint .J is chosen I i is chosen] 

r r-1 
n n-1 

·rhus 

( 3. 3. ✓1) I l m .. Ex 1 . 
r!2 

I 
r!2 

l: Ex E j~ij "'"T2 m .. =~ 
ij irj lJ - J n ifj 

lJ ij 



45 

In general for a configuration 

(3.3.2) 

which shows that the symmetry assumption introduced in section 3.1 

holds for !.• In this chapter we assume that r always satisfies r ~ 1. 

Ex2 is obtained by applying (3.1.6). There are 3 configurations 

involved for k=2. 

1) 

2) 

3) 

o--o 

•--o 2c1,2 

( ) E(!.( 1) By 3.3.2 ~ 
( 2) ) ! 4 

X I 2C = 74 - 1,2 n! 

thus giving a contribution to Ex 2 of 

0--0--0= c2,3 

By (3.3.2) E(!.( 1) !.(2) I c2,3) 
r!3 

= I:! 3 

thus giving a contribution to E.?f.2 of 

·O• = c2 2 
' •2 

By (3.3.2) E(!.( 1 ) 25.( 2 ) I c 2 , 2) = ~; 2 

thus giving a contribution tu Ex 2 of 

by ( 2. 1. 7) ../V( 2C 1 2 ) , 

r!4 
!4 I m .. mkl 
n• (ijkl)f lJ 

r!3 
4 .-3 l m.jm.k 

n• (ijk);' l l 

r! 2 2 
2 .-2 I m .. 

n• (ij);' lJ 

Therefore 

( 3. 3. 3) Ex 2 r 14 , r!3 , r! 2 2 
= -,-,-;- t., m .. mkl + 4 -.-3 L mi .mik + 2 .-2 l mi . 

n:'+ (ijkl)/ lJ n· (ijk)/ J n· (ij)/ J 

1, 

4 , 

2 , 
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In order to illustrate the use of (3.1.9), we calculate first 

by means of lemma 2,3.3. 

Acc2 2 c2 2) 1 , , 

.A(c2,3 c2,2l -1 A(c2,3 c2, 3) 1 

);! ( 2C 1 2 c2,2l +2 )t ( 2C1 2 c2, 3) --4 , , 

while by lemma 2.3.2 ./4! ( 2C 1, 2 2C 1 2) = 1 , 

Thus 

(2) r!3 
.®3,2 (c2,2l - 4 ;:;TI" 

( 2) r!4 
S1f 2 (c2 2) 2~ , , n· 

( 2) r'3 
~ 3, 3 (c2,3l 4 ;:;TI" 

( 2) r!4 
$ 4, 3 (c2,3l - 4 --.-if n· 

( 2) r ! I+ 
®4 4 ( 2C 1, 2) --

~ ' 
( 2) 

and all other 21) ( ... ) are equal tu zero. 

Finally apply (3.1.9): 

(3.J.4) 

This result could have been obtained from (3.3.3) by simple reasoning. 

From (2.2,9) it follows for k=2 

( 3. 3. 5) m2 = ( I ·)2 = 
++ ij J 

l m .. mkl + 4 l 
(ijkl)f lJ . (ijk)f 

+ 2 I m~. 
(ij)f lJ 
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while 

= ( I mi .)
2 

j J 

Summing over i gives 

l l mi jm 1 + l: mi2 j 
i (jk)/ - iK ij 

and because mii = 0 

(3,3,6) 

Also 

(3,3,7) 

l m. m + L m2 
(ijk)/ lj ik (ij)/ ij 

I m2 
(ij)/ ij 

Im~. 
ij lJ 

Applying (3,3.5), (3,3,6) and (3.3.7) to (3,3,3) leads directly to 

(3,3,4). 

To derive an expression of the variance of x, one could use (3.2,3); 

in this case it is easier to obtain o 2 di rec tly--from ( 3. 3. 4) and 

(3.3.1). Easy algebra gives 

(3.3,8) 0 2 = 4r!~hn-r) 
n 

If for all i mi+ is a constant, the first term of o 2 is equal 

to zero. 

From (3.1.6), (3,3,2) and (2.1.8) the third moment is easily found 

to be 

r!6 r!5 
!b l: m. . mkl m + 12 ,-5 L m. m m + 
n' (ijkluv)/ lJ UV n· (ijklu)/ lj ik lu 

r!4 2 r!4 1'!4 
+ 6 ---;,, L m. jmkl + 8 '" l mijmikm. 1 + 24 --,,, }: mi .m m + 

n: 4 (ijkl)/ l n: 4 (ijkl),p l n' 4 (ijkl)/ J ik ,Jl 

r! 3 r! 3 
+ 8 ,-3 l m .. mikm 'k + 24 ·----,,;-

n' (ijk)/ lJ · J n•_j 
L m2ijmik + 4 l m~. 

(ijk)/ (ij)/ lJ 

Removing the inequalities on the summations one obtains the result 

tabled in the left-hand part of table 3,3.1. 



Table 1,_l, 1 

~;J~c ::: I:; 
>-< C -::>-<~C ::;>-<l::.'c 

m++ ~ mi+ + 12 
l 

m++ _I_ 
2 + 6 - 12 m .. 

lJ 
lJ 

I mr + 8 - 24 
. lT 
l 

l m .. m. , m ·+ + 24 - 48 
ij lJ lT J 

J: m .. m.k m.k + 8 - 24 + 24 
ijk lJ l J 

Z.,j mij mi+ 
+ 24 - 96 + 120 

l mi' + 4 
ij J 

- 24 + 52 - 48 

Two expressions for E.2S_3 . 

11 :}, :~q.s I I'< C 

>-<, 

+ 1 

- 12 

I 

+ 6 

+ 16 

+ 24 

- 8 

- 48 

I 

+ ·16 I + 4 

} {·, :l 
+ 6 

+ 8 

+ 24 

+ 8 

+ 24 - 24 

- 8 + 4 

~}, 

+ 12 

- 8 

':?,>-<rC 

+ 1 

.jcc 

CD 
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m++ 

2 , 2 
m++ L mi+ 

i 

2 , 2 
m++ .'•. mij 

lJ 

( I m~ )
2 

i l+ 

m++ ~ mf + 
l 

m++ l m. . m. + m . + 
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l m~. m m 
ijk lJ ik k+ 

l m~. m m 
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I m3 
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}: m2 2 
ijk ij mik 

I m4 
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T.he right-hand part of the table is obtained by some simplifi­

cations. The third reduced moment is now only a matter of easy algebra. 

,4 

I ( m _ m++)3 (3.3,10) ll3 8 r· (n-r) ( - 2r + 3) + ,5 n i+ n n' 

'3 1 2 
{(2r-3)n 9} m++ ( m++]2 - 24 r· (n-r{ - Br + I m - -

n 12 n 1 i i+. n 

+ 24 r 13 (n-r) 12 
(n - 2r + 1) ): 2 ( m++ ) + 

n!6 mij mi+ - --
ij n 

+ 

+ 

r 12(n-r) 12 { 2 2 2 2 } 3 - 8 , 2 2 -,5 (3r -14r+15)n - (7r -35r+33)n - 2r - 15r + 18 m++ 
(n· ) n· 

For the special case: mi+ independent of 1, µ 3 reduces to a 

simpler expression: 

(3.3,11) 113 8 r!3(n-r) 13 I mij mik mjk + 
n!6 ijk 

+ 4 r! 2 (n-r) 12 
{n2 

2 
+ 4 } }: 3 

n!6 
- ( 4r+1 )n + 4r mij + 

ij 

12 r 12(n-r~ 12 { 2 2 4} m++ I 2 - n - 3(2r-1)n + 6r - mij 
n 12 n 1 ij 

- 8 
r! 2(n-r) 12 

(n!2)2 n!6 
(r-3)n - (r -5r-3)n - Sr { 2 2 2} 3 

m++ 

+ 

+ 

The fourth moment of~ has been calculated and tabled in table 3,3.2. 



50 

3,4. The moments of ~Band¼ free sampling 

Again the moments of¼ can be obtained from those of ~B by 

changing p 1 into p 2 . It is sufficient therefore to consider only the 

moments of 2S_B. We write 2S. for ~Band p for p 1 . 

For i I j 

( 3. 4. 1) 

So 

( 3. 4. 3) Ex 

P[~ij=1] = P[points i and j are chosen] 

P[point i is chosen]• P[point j is chosen] 

p.p p2 

given points are chosen] 

2 24 ,2 2 2 ,2 3 
Ex m++P +2Lmij'p(1-p) +4lmi+•p(1-p) 

ij i 

thus 

( 3. 4. 4) 

In the same way 

+ 2p(1-p) 2 L mijm.km'k + 6p(1-p)('l-2p) Im12jm'+ + 
ijk l J ij l 

2 3 l 
+ ('1-p)(1-2p) Imi.J 

ij ,] 

1 p 
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J.5. The moments of z non free sampling 

In order to calculate 

take a point Pi of the i-th connected component as a reference point. 

Colour Pi white, next all points connected by a join to Pi are coloured 

black, then all points connected by a join to these black points are 

coloured white. Repeat this procedure. If one arrives at a point which 

has already been given one colour, but should be coloured by the 

just-mentioned rule in the other colour as well, then we conclude that 

the i-th connected component is non-bichromatic. 

If no such situation arises onearrives at a stage where all points 

of the i-th component have been allotted to one of the colours, viz. 

Ti points are of the same colour as the reference point, and 

li - 'i points are of the other colour. In this case the i-th component 

is called bichromatic. If all components of a graph are bichromatic, the 

graph is called bichromatic; a graph is non-bichromatic if at least one 

of its components is non-bichromatic. 

The decision whether a graph is bichromatic or not does not depend 

on a particular choice of the reference point, but only on the fact 

whether a graph contains cycles of odd length (in which case it is 

non-bichromatic, cf. C. BERGE, 1958, 31) or not. It is therefore a 

property of the configuration, and we shall speak of bichromatic and 

non-bichromatic configurations accordingly, 

Define 

if' is bichromatic, 

if not. 

Obviously 

(J.5.1) 

<l 

An example of a non-bichromatic configuration is /\ o--o 

Now consider the expectation of a product of z 1 s, whose graph has the 
( 2) 

configuration c3, 3 

E 
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However the event 11 .,z.12=1 n .,z.13 =1 n .,z.23 =1" is impossible, because 

of the fact 
( 2) 

that c3 , 3 is non-bichromatic, thus 

E (.,z.( 1 ) _:r( 2 ) ;r( 3 ) I c~~~) = o 
and in general for a non-bichromatic configuration 

(3.5.2) 

( 3) 

" 
( 1) 

Consider as an example of a bi chromatic configuration c3 4 = " -- " -- o 
., (2) (1) (4) 

Choose the point indicated as (1) as the reference point. Colour this 

point white and then colour the other points according to the above­

mentioned procedure. To the points (2), (3) and (4) the colour black 

is allotted. Thus •=1, 1- T =3 . One might also colour the reference 

point black, then again one arrives at , =1, 1-• =3. Now the expectation 

of a product of .,z. 1 s, whose graph has the configuration C~~J is 

P [ .,z.12=1 n ;z.13 =1 n .,z.14 =1 n point 1 is white J + 

+ P[ ;z.12=1 n x_13 =1 n x.1i+=1 n point 1 is black J 
The event 11 _y_12=1 11 .,z.13 =1 11 z14 =1 11 point 1 is white" occurs only when 

in the random sample of size r 1 from n points 1-• = 3 given points 

(viz. 2, 3 and 4) are included, while in the sample of size r 2 
, = 1 given point (viz. point 1) is included. Thus 

The event "i.12=1 n .,y_13 =1 11 .,z.14=1 n point 1 is black" occurs only when 

in the sample of size r 1 , = 1 given point is included, and in the 

sample of size r 2 1- • = 3 given points. Thus 
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Therefore 

r;3r2 + r 1rb3 
I 

n· 

( " ) 
and in general for a bichromatic configuration ck,l 

(J.5.J) 

'l'he corresponding result for a bichromatic configuration 
h (a. ) 
I C l 

1='1 ki'li 

is slightly more complex. Let the statement 11 P1 =black 11 (c.q. white) mean 

that the colouring procedure applied to the i-th connected component 

starts with colouring Pi black (c.q. white); it ends up with t 1 black 

(white) and 1 1 -t 1 white (black) points. 

Let pi = 0 or 1 (1=1,2, ... ,h) and let the statement 

h h 
(J.5.4) 1 "1 ( Pi=black) + l (1-Pi) ( P1 =white) 

i=1 l=1 

mean that for an i for which pi = 1 the statement 11 P1 =blac!{ 11 

and for an i for which pi 

means that after colouring 

Now consider the event 

O the statement "Pi=white". Then 

the points of the configuration 

points are black, and 

points are white. 

( 1) (k) 
X. ... X. 1 

holds, 

(J.5.4) 

where the conflguration of the graph corresponding to the product of y 1 s 

f c("i) 
is 1=1 kj_,11 

The event 

occurs only if in the sample of r 1 black points 
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given points are included, and in the sample of r2 white points 

h h 
I(1-p.)T. + I Pi ( - Ti) 

i=1 l l i=1 

given points are included. 

Thus 

1 n (3.5.4)] 

i{J,-tiTi + it(1-pi)(li-,i)} 

r1 

Summing over all values of P1'P 2 , .. .,Ph leads to the expectation of 

Y...(1) __ .y___(k)_ 

Incorporating 

h 
! { I p 

1=1 
r 1 

(J.5.2) we thus 

h 

I ki = k ' 
i=1 

obtain for an arbitrary configuration 

h 
):l.=l, 

i=1 l 

! 1 
n 

h h 
'{ l (1-P.)T. + l P.(1.-1.)} 

1=1 l l i=1 l l l 

This result shows that the symmetry assumption introduced in section 3,1 

holds for y___ 

Thus e.g. 

and 

(3,5,6) E y_ 
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Also 

(1,j,k,l) / 

(1,j,k) / 

Ez.2 can readily be calculated in the same way as Ez;.2 in section 3.3 . 
From Ez.2 and (3.5.6) it follows that 

For reference purposes note that for a connected component c112 

··\='1"'1. 

Thus 

, h (ex.) ). 
( 3. 5. 8) Ef .z5 1 ) ..• z. ( k+g l I I ck i 1 + gC 1 2 = 

\ i='I 1' 1 ' 

h 
where I 

1=1 

h 
k and I 1. 

i=1 l 

n!(1+2g) 

1 

+ 
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3.6. The moments of y free sampling 

For a configuration 

El( 1 ) (k)lc(c:,)) 
\Y · · ·Y k, 1 

Since for free sampling 

E(z( 1 ) ... y( k) I J/~:~ ;J = 1~1 E(:t( 1 ) .. . i ki) I c~:~ ;J 
we have 

E.g. 

thus 

(3.6.2) 

Also 

(3.6,3) 2 
0 

E")L 

3.7, A property of the random variables 

h 
L k.=k 

i=1 l 

If in a blank graph to eacit point an even number of joins are 

connected, the graph will be said to have an even-joined configuration. 

If a configuration is not even-joined, it will be called odd-joined. 

Theorem 3.7.1. 
Let r 2 = n-r 1 , then in the case of non free sampling, 

n . ( ( h (a.) ') i:(n)E~(1l ... x_k)I Ic i 

O r1 ·-1k.,li r 1= l- l 

0 
h 

u I 
1=1 

or (and) 
h 

l= L L > n, 
i=1 l 

n h (a. ) 
2 if I c l is even-joined 

1=1 ki,li 
h 

ano l= l: ~ n. 
i='I 



Proof. 

Consider 

(3.7.1) 
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where in the set of numbers {u1,µ2, ... ,u~,v;,v;, ... ,v~l (µ'./v'.,j=1,2, .. ,k) 
,J J 

all numbers 1,2, ... ,1 are represented and where 1;1'1; 2 , ... ,, 1 are 

1 unequal numbers from {1,2, ... ,nl. We suppose l;;n. As shown in 

section 2.2. there corresponds a graph to (3.7.1). Let the configuration 

of this graph be odd-joined, which means that there is at least one point 

of the graph, which is connected by an odd number, say t, joins to 

s other points (1;:;t;;k, 1,:;s;;min(l-1,t) ). This means with regard 

to (3.7.1) that there is at least one c, say i; , occurring as a subscript 
"1 

tot factors y, whiles other c•s, say,; ,C , ... ,i; 
"2 "3 "s+1 

occur each 

together with~ as a subscript to at 
"1 

least one factor~ (a 1,"2•···,"s+1 

are unequal numbers from {1,2, ... ,U). As the expectation (J.7.1) depends 

only on the configuration, it is equal to 

(3.7.2) 

where e1,e2 , ... ,e1 is some permutation of ,; 1,r. 2 , ... ,r. 1 (cf. section 2.2.). 

Choose 

and for es+2 , 8 8 +3 ' ... , e 1 a permutation of the remaining ,; 1 s. With 

this choice of the permutation, e1 occurs in (3.7.2) as a subscript to 

t factors y, the other subscripts of these v•s being e 2 , ... ,es+1 , 

each at least once. 

Now permuting factors y and interchanging subscripts to one y 
does not change the value of ( 3. 7. 2). By carrying out this procedure i_n 

a suitable way, one can write for (3.7.2) 

(3.7.3) 

where among the set of numbers v 1,v 2 , ... ,"tl all numbers 2,J, ... ,(s+1) 

occur and among {µt+ 1'µt+ 2 , ... ,µk' v 1 ,v 2 , ... ,vk} all numbers 2,J, ... ,l. 
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(1) (2) 
Let 9 be the set with elements e2 ,e3, ... ,e1 and let 0 and ® 

be two given subsets of®, of 1 1 and 1-1 1-1 elements respectively 

(1) (2) (1) (2) 
such that 9 n 9 = ¢ and E) u 0 = 9 . We remind of the fact 

that e2 ,e3, ... ,e1 are unequal numbers from {1,2, .... ,n}, and refer to 

points of the master graph (cf. section 1.1. ). Consider the event E: 

the points of the master graph, whose numbers are elements of e ( 1 ) are 

black and those whose numbers are elements of 9( 2 ) are white. As r 1 
points of the master graph are chosen at random from n points and are 

coloured black, while the remaining ones are coloured white 

(3.7.4) 

For j t+1, t+2,.,., k 

takes, conditionally on E, the value 
( 1) ( 2) 

to 8 , or both to S , and -1 

Conditionally on E 

( 3. 7 .5) 

!11 !(1-11-1) 
r 1 (n-r 1 ) 

+1 if both E\.1 
j 

otherwise. 

and e belong 
"j 

takes the value +1 or -1, depending on whether an even or an odd 

number of the _y:_•s take a value -1. 

Suppose (3.7.5) takes the value +1 

to 
( 1) 

8 , while e1 +2 ,e1 +3, ... ,es+1 belong to 
2 2 

If the point of the master graph with number e1 belongs to the black 

points, the probability of this event being conditionally on E 

then also conditionally on E 

take the value +1, and 
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take the value -1 . The value of 

( 3. 7. 8) 

is therefore completely determined on the said condition. 

Suppose this value is +1 . 

If, however, e1 belongs to the white points, the probability of this 

event being on the condition E 

n-r 1-1+1,1+1 

n-1+1 

then each of the ~•sin (3.7.ci) is equal to -1, and each of those 

in (3.7.7) is +1 . The value of (3.7.8) is therefore (-1)t times the 

value it assumes in the case where e1 is black. Ast is odd, the value 

of (J.7.8) is now -1 . Thus conditionally on E 

is equal to +1 if and only if 8 1 is black, and is equal to -1 if and 

only if 01 is white. Hence the expectation of (3.7.9), conditional on E 
is 

Multi plication 

expectation of 

Multiplying by 

n-1+1 n-11-"I 

(1) (2), 
with PG,: I® , 0 J gives as the contribution to the 

( 1) (2) 
(3.7.9) for the given sets 8 and 9 

! 1 
n 

( n ) and summing gives the contribution to 
r1 

( "I ) 
for the given sets €J and 

( 2) 
El 



60 

n-1 n-1 
2 - 2 0 

The same result is obtained if (3.7.8) is -1, and also if (3.7.5) is 

supposed to be -1, and (3.7.8) either -1 or +1 . It holds therefore 

for every pair of sets 0 ( 1 ), e( 2 ) with e( 1 )1'l e( 2 )=¢ and ec 1 t e( 2 le, 

and thus holds in general. As the part of theorem 3.7.1 relating to 
h 

the case l=_ l li > n is trivial, this proves the first part of the 
].=1 

theorem. 

To prove the second part note that a graph with an even-joined 

configuration can be decomposed into elementary cycles, which are cycles 

which may have. points but no joins in common. (cf. D.KOENIG, (1936)). 

Such a decomposition does not need to be unique. 

Consider again (3.7.1) and suppose the graph (in which the point­

labels are retained) corresponding to it to have an even-joined 

configuration. Decompose the graph into elementary cyc1es. Permute 

factors yin (3.7.1) -which means also: permute the join-labels of the 

graph - in such a way that the joins of one of the elementary cycles are 

numbered 1,2, ... ,1 1 in this order (joins 1 and 1 1 being connected to 

one point). This permutation procedure leads to the expectation (if 

necessary with interchanging subscripts to single factors v) 

( 3. 7. 10) 

which is equal to (3.7.1). The value of (3.7.10) is not chan~ed if 

i; 1 ,r;2 , ... ,i;1 are permuted. Let e1'e2 , ... ,e1 be the pel'mutaUon of 

r,;1,r,;2, ... ,i;l with 81= r,;µ1' 82= i;"1, ... , 011= i;v\'.1-1 while 

e1 +'1'8l +2 , ... ,ek form some permutation of the remaining i; 1 s. Then 
1 1 

(3.7.1) is equal to 
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To prove the second part of the lemma it is sufficient to show that 

this expectation is equal to one. Again this is true if 

Now r 1 points of the master graph are chosen from then points and 

are coloured black, while the remaining ones are coloured white. Let 
(1) (2) 

(9 and El be the two subsets of 8 = { e 1, ... , e1 I, such that those 
( 1 ) 

8 1 s which correspond to black points are elements of 8 , and those 

1. 

( 2) 
which correspond to white points are elements of €) . We now prove that 

(3.7.12) 

( 1) ( 2) 
takes the value +1 if e 1 and 9t+1 belong both to 8 or both to 0 

and -1 otherwise. For t=1 this is evident from 

Assume (3.7.12) to be true for all positive values oft smaller than 

or equal to t 1 (t 1 ;:. 1). We then show it to hold for t 1 +1 as well. 

For t=t 1+1 

('I) (1) 
Now if e 1 i!. 0 and et 1 +- 1 i!. 0 the first part cf the second 

member of (3.7.13) ii +1 by assumption. The :oecond part is +1 if 
( 2) ( 1) 

et +1 .. e and et +2 t 
1 

,,(1) ,,(2) . ·ct 
"' , or i r €\ + 1 e. "" ar, i!. ® . Thus 

1 1 
( 1) 

6 (3.7.13) is equal to +1 

( 2) 
one shows that if e 1 e. S , (3.7.13) is equal to 

In the same way 

1-1 if also et+?'- 0 
1 ~ 

( 2) 

This proves that (3.7.13) is equal to +1 if 

( i) 
and e belong to the 

t,1+2 

same set e 

In the same way the -1 part of the statement regarding (3.7.13) is 

proved. 
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By induction the result connected with (3.7.12) follows. In particular 

takes the value +1 spr O, because e1 appears at the beginning and the 

end of the sequence of subscripts. Thus the products of ;l:_ 1 S corresponding 

to each elementary cycle of the graph take the value +1 spr O, 
(1) (2) (1) 

conditionally on 8 and 0 . This holds for every pair E) and 
(2) (1) (2) (1) (2) 

9 satisfying 8 11 0 = ¢ and 6 u 0 ~ 8. Thus (3.7.11) 

follows. This finishes the proof of 'rheorem 3. 7 .1. 

The author stated this property of the random variables ;l:_ij in a 

study concerning the ISING model of ferromagnetism ( A. R. BLOEMENA ( 1960)) 

where it was used to derive the high temperature expansion of' the 

partition function. 
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CHAPTER 4 

4.1. Tendency towards the normal distribution (non free sampling) 

Theorem 4.1.1. 

i If r 1 and n tend to infinity in such a way that 

2 
r1 
n --+CO and 1 - £ 

for some&> O, and if for all i 

where c is a constant independent of i and n, then in the case of 

non free sampling the distribut.lon of 

-1 
(.is.B - E.JS.B) a (.is.Bl 

tends to the standard normal one. E.JS.B and cr 2(.is.B) are given by (J.J.1) 
and (3,3,8) with r replaced by r 1 . 

ii If in part i r 1 is replaced by r 2 , and .is.B by .2S,.i• the corresponding 

result for .2S,.i 1s obtained. 

Theorem 4.1.2. 

If r 1 , r 2 and n tend to infinity 10 such a way that 

and 

for some c > 0, and if for all i 

m. < C 
l+ = 

where c is a constant independent of i and n, then in the case of 

non free sampling the distribution of 

2 tends to the standard normal one. Ey and a ( y) are given by ( 3. 5. 6) 

and (3,5, 7). 
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Note that the assumption mi+,:;. c may be combined with ( 1. 1. 3) and 

( 1.1.4) to give 

f 2 .?. rom mi+_ 1 we also have 

We introduce the abbreviations 

m1(n) 1 
=rim++ 

( 4. 1. 1) m2(n) .1 I 2 
n ij 

mij 

m3(n) ..1 L 2 
n i 

mi+ 

We also note that 

for all i, so 

1 ! m.}n) .:£ C 

1 .:i m2(n) .:i 
2 

C 

1 .:i m3(n) .:i c2 

1 l ( m - m ++)
2 

> 0 
n i 1+ n = 

-k To prove theorem 4.1.1 we start from (3.2.3) and show that ukcr 

tend to the moments of the standard normal distribution. First we 

consider (writing 25. and r instead of' 25.B and r 1 ) 

( ~. 1. 2) A 

h h 
where l k1 = k-g-g' , k1 ! 2 and I 1 i = l-2g-2g' . In the appendix 

i=1 i=1 
asymptotic expressions for A are given for the case where r(n-r) ----i,CD 

n . 
n-r Since the assumptions of the theorem also imply ~ .:i 11-- ! 1 we may 

simplify these expressions slightly to obtain 
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(4.1,3) A 
1 1 I 

~ ( r) ( n-r)~ 
(~• )! n -2 •rn 

if g• is even, and 

(4.1.4) A ( 1-Jg,_.'.!. ) 
(J 2 2 -1 

r .n. 

if g' is odd. 

Also, from (3,3,8) we find that 

( 4.1.5) 2 
Cl 

since t < n-r < 1 
= n = 

For each value of g•= 0,1, ... ,k-2,k there is a sum of finitely many 

terms in (3.2.3) contributing to µk (the last term in (3.2.3) corresponds 
to g'=k, h 1 =0). For odd values of g• such a sum is by lemma 2.3.4 and 

( 4. 1. 4) 

whereas for even values of g• it is 

Furthermore the summation-indices in (3.2,3) satisfy the following 

inequalities: 

1 - 2g - 2g 1 ! 2h ! 2h 1 - 2 [ ~ 

hence 1 ~ 2h • + g + 2g 1 

We start by considering sums in (3.2.3) corresponding to odd values 

of g'. According to the above they are 

( 2h 1 +g+4g 1 -.'.!. CT 2 2 -h 1 -g-g 1 
r .n ) 

As 
r2 

and h• ~ [¥]! .!£x they are n-+CD 2 ' 
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or, as g';:, 1 and g,?_O 

er( rk. n -~-i) = (J( n ~;_ 09 = k cr( cr ) 

The sums corresponding to even values of g• are 

Among these, sums having h' < k::.B..'..::j 
- 2 

are 

1<> ( ··1 1 k) v r .n .o = 
k 

0- ( CJ ) 

[~J ~ The remaining sums for g' even have h 1 ~ 2 = 2 which implies that 

k is even. However, the summation over h in ( 3. 2. 3) is- then 

which is empty if g is odd, and implies h = ~ if g is even. We note 

that for these sums the contribution of the remainder term in (4.1.3) is 

and that, consequently, we may restrlcl our attention to the contribution 

of the leading term in (4.1.3). 

So far we have shown that for odd values of k all (finitely many) 

terms in (3.2.3) are 0(ok) or 

( 4. 1. 6) 0 fork odd. 

For even values of k only those terms remain to be considered having 

I hf __ k-o-' and g even ; g even ; - 7t'- . k-o--o-t 
h=~-



h• 
As k-g' = }: k1 , k1 ~ 2 , it 

1=1 h 
(3.2,3); also k-g-g• = }: k 

1=1 i 
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follows that k1 = 2 , i = 1,2, ... , k2g' in 

k 2 i ld k 2 - ~ , 1 ~ , y e s 1 = , i - 1, 2, ... , 2 

h• (a') 
Hence the configuration }: Ck, 11 , 
h, 1=1 i' i 

h' 
in (3.2.3), with }: k1 = k-g', 

1=1 

I 11= l•-2g• , can be written 
1=1 

whereas the configuration 

is found to be 

h ( a1 ) h h 
l ck l, with l k1=k-g-g 1 , l l1=1-2g-2g 1 , 

1=1 i' i i=1 1=1 

l 1 1 ( k-i-,:-g-t=g•-l)C + (1-k-g-g' )C 2 2 2 2,2 2,3 

As by (4,1.1) 

}: { m( 1 l ... m(k) lg•c 1, 2 + (1k~g•-1')c 2 , 2 + (l'-k-g')c 2 , 3 }= 
( ) l'-k-g' .m3 n 

we obtain from ( 3. 2. 3) and ( 4. 1. 3) ( terms with 1 > 1k4g+;g' vanish) 

... 
where l denotes a summation over even values only. 
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By theorem 2.1.1 and (2.1.7) 

( ) , 1-k-g-g' k-g' . 2 

and by lemma (2.3.3) (terms with l' > 1-½g vanish) 

lk+J,g l 
2 2 n~1 1 1 I fi:'(k-t-,;-g+-,;-g 1 -1)c +(1-k-g-g 1 )c +gc~, 2 l'=k+g' 2 2 2 2,2 2,3 , 

lk~1. I 1' 
1 1 ) 2 '2g - l 1 -k-g 1 _ 

(kt,;,.g'-l')C +(l 1 -k-g 1 )C .m2 (n) .m3(n) -2 2 2,2 2,3 

Substitution in (4.1.7) gives 

( 4. 1. 8} 

k k I .lk 1 1 , 
-g 2 "2g"2g 

I" r• 1 
g 1 =0 g=O l=k+g+g' 

Summing over 1 and setting a =½g' , b = Jg we have 

)l:f r)k+a +2b 
( n) ·\ n 



or 

( 4. 1. 9) lim 
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-1k k! 2 2 

(~)! 

k + O' ( Cl ) 

fork even. 

Thus, the moments of (~-~)Cl- 4 tend to the moments of the standard 

normal distribution. As these moments determine the distribution uniquely 

(cf. M.G. KENDALL and A. STUART (1958), 111) the result of theorem 4.1.1 

is proved (loc.cit.,115). 

The proof of theorem 4.1.2 will be seen to be closely analogous to 

the foregoing proof. As the random variable y_ is not affected by inter­

changing the sample sizes r 1 and r 2 we may assume without loss of 

generality that r 1 ~ r 2 . In the appendix it is shown that in this case 

(4.1.10) 

A= J~(-1)v(~'){E(z< 1 l1c1,2)r E(y_( 1 l .... ;t_(k-v) I iLc~:~~/ (g'+g-v)c1,2)= 
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if g I is even, 

and 

( 4. 1. 11) if g' is odd. 

From (3.5.7) we find 

( 4. 1. 12) 02(.,y_) 

r1 r2 
from 11 .;;1-E and 11 !1-E it follows that either n(n-r ) or 2r1r2 is 

not o-(n2 ), hence { n(n-r 1-r2 ) + 2r 1r 2 } is not <7(n 2 ). Since m2 (n) .=:; 1 and 

both terms inside the square brackets are non-negative, 0 2 (.,y_) cannot be 

+ 

As we did in the proof of theorem 4.1.1, we start from (3.2.3) and 

evaluate the order of magnitude of the contribution to uk f'or each value 

of g'. For odd values of g' this contribution is by lemma 2.3.4 and 

( 4. ·1. 11) 

whereas for even values of g' it is 

Making use of the same inequalities for the summation-indices as we did 

in the foregoing proof, we start with sums in (3.2.3) corresponding to 

odd values of g'. As h.':; h' - [ ;gJ;:. h 1 - ~ and :; ! 1 these sums are 
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r2 
from 1 i:. 2h 1 +g+2g I and n < 1 we find that they are 

or as h 1 < [~~ < ~' ' = 2 j = 2 

since g' ,::.1 and g,;:. 0, they are 

For even values of g' and h 1 ~ k-~'-1 we find that the sums are 

or, as g' ~0 and g,;:.0, 

~I The remaining sums for even values of g' have h 1 = 2 which implies 

that k is even. As was shown in the proof of theorem 4.1.1 this also 
.t.::.E.::.g' means chat g is even and h = 2 . Foe these sums the contribution of 

the remainder term i r, ( i+. "I. 10) ls easily seen to be 

as a result we may confine our attention tu the contribution of the first 

term of (4.1.10). 

1rJ1us we have shown that for c;dd values or k 

(4.1.13) 0 (k odd) 

for even values of k we may follow the proof of theorem 4.1.1 from 

(4.1.6) onwards if we replace the leading term of (4.1.3) by the first 

term of (4.1.10). 
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(ik+;g+;g 1 -1)c2 , 2 + (1-k-g-g' )c2 , 3 is bichromatic and 

has 

this means replacing 

by 

in (4.1.8). Following the proof of theorem (4.1.1) to the end we then 

obtain 

or 

( 4. 1. 14) 
_ _1k 

k! 2 2 

(Jk)'. 

This completes the proof of theorem 1,. 1.2. 

( k even) 
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•4.2. Tendency towards the normal distribution (free samplingJ. 

Theorem 4.2.1. 

1 If n tends to infinity and p 1 varies in such a way that 

and p 1 ,::: 1 - £ 

for some £ > 0, and if for all i 

where c is a constant independent of i and n, then in the case of 

free sampling the distribution of 

2 tends to the standard normal one. E~B and o (~B) are given by (3.4.3) 
and (3.4.4) with p replaced by p 1 . 

ii If in part 1 p,1 is replaced by p2 , and ~B by 2Sw' the corresponding 

result for is obtained. 

Theorem 4.2.2. 

If n tends to infinity and p 1 and p2 vary in such a way that 

and p 1 ~ 1 - £ 

for some t > 0, and ii' for all i 

where c is a constant independent of land n, then in the case of 

free sampling the distribution of 

2 
tends to the standard normal one. EL and o (L) are given by (3.6.2) 

and (3.6,3), 

We omit the proofs of these theorems, as they are closely analogous 

(and simpler) then thoie of the corresponding theorems of section 4.1. 



4.3. Tendency towards the compound Poisson-distribution 

Theorem 4. 3. 1. 

i If, as r 1 and n tend to infinity, 

2 A , O<J.<OO 

h=1, 2, ... , 

and for all a and k;:, 2 

0 

and if for all i and j 

where c 1 is a constant independent of i, j and n, then in the non 

free sampling case the distribution of ;2'..B tend,s to a compound 

Poisson-distribution with moment-generating function 

exp { , 1 
h=1 

Assumption (4.3.1) is satisfied e.g. if for all i 

where c 2 does not depend on i and 

thus e.g. when c 2 does not depend on n. 

ii The corresponding result for the free sampling case is obtained 
r1 

if n is replaced by p 1 in part i. 

iii By replacing _;s_B and r 1 or p 1 by ~Wand r 2 or 

results for 2Sw are obtained. 

the corresponding 
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Theorem 4.J.2. 

i If, as r 1 , r 2 and n tend to infinity, 

lim h=1,2, ... , 
m-1-+ 

and for all a, k!2 and v=1,2 

(4.J.2) 0 

and if for all i and j 

where c 1 is a constant independent of i, j and n, then in the non 

free sampling case the distribution of ;.:L tends to the compound 

Poisson-distribution with moment-generating function 

Assumption (4.J.2) is satisfied e.g. if for all 1 

mi+ ! 02 

where C 2 does not depend on i and 

111r: )c 2 = 0 v=1,2 

thus e.g. when 02 does not depend on n. 

ii The corresponding result for tne free sampling case ls obtained by 
r 1 r2 

replacing 11 and n by p 1 and p 2 in part i. 

We note that as m++~n by (1.1.J) and (1.1.4) (cf. 4.1.1), the 

condition lim(:'..:lfm = 2,, O < /.. < m, of theorem 4.3.-1 implies that 
n / ++ 

r 'I 
limn= O. Likewise, in theorem ~.J.2 the condition lim 

O<>.<oo, as r1' r 2_and n tend to infinity, ensures that 
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To prove theorem 4.3.1 we shall first establish four lemmata. 

Lemma i+. 3 . 1 

If the assumptions of theorem 4.3.1, part i are satisfied, then for 

1 >2, all"', and all k( !1-1), 

Proof 

1 
r "I 

lirn 1 
n 

{ (1) (k) ("')} l rn ... rn Jck,l 0 

If 1 = k+1 the lemma is true by assumption. If 1 < k+1, a graph having 

configuration cS~{ has k-1+1 independent circuits. One can choose in this 

case k-1+1 joins, such that if they are taken away, a tree remains (cf. 

D. KOENIG (1936), 53). Consider now 

m(1) __ ,m(k) 

where the cofresponding graph has configuration cS"'{· Let the k-1+1 joins 

(1) (k)' 
that can.be taken away correspond torn , ... ,rn . Then 

Therefore, summing 
1 

(rn1 ) gives 

over the 1 summation subscripts and multiplying by 

1 
r1 

o < -T 
n 

1 
,k-1+1.:J.,{ (1) (1-1) 1/al } 

~ c1 1 I. m · · ,m 1-1 1 
n , 

where the right hand side tends to zero by (4.3.1). This proves 

lemma 4.J.1. 

Lemma 4.J.2 

If the assumptions of theoren 4.J.1, part 
h ( "'. ) h 

all configurations ): Ck \ , with I k. = k , 
i=1 i' i i=1 l 

at least one li> 2 (i=1,2, ... ,h) 

i are satisfied, then 
h 
I 1. = 1 , for which 

i=1 l 

for 
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l'roof 

(4.3.3) 

h 

TT 
1=1 

For every 1 such that li = 2 ( 4. 3, 3) contains a factor 

( 4. 3. 4) 

for every i such that li > 2 (at least one such i exists) (4.3.3)contains 
a factor which for n--..oo tends to zero by lemma 4,3,1. This proves 

lemma 4,3.2. 

Lemma 4.3.3 

For k=1,2, ... , and 1=2,4, ... ,2k 

s s 
where 2 }: gi = 1 , and }: ig1 = k 

1=1 1=1 

Proof 

Evident by (4.3.3) and (4.3.4). 

Lemma 4.3.4 

If the assumptions of theorem 4.3.1, part i hold, then for every 
h ( a1 ) h h 

configuration l Ck 1 , with l k1 = k , }: 1. = 1 , 
1=1 i' i 1=1 1=1 l 
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Proof 

The difference 

consists of sums of the type 

h' r1 
where l 1 ! = 1' < 1. As - tends to zero, each of these contributions 

1=1 l n 
tends to zero by lernrnata 4.3.2 and 4.3,3. This proves lemma 4.3.4. 

Now we have by (3.1.6), writing _l5. for _l5.B' and r for r1' 

., k ( t 
kf 1 ~! Um E l.l5. I 

k=1 

( h ( o.i) J .% l C 
i=1 kl,l 

by (3.3.2) 

"' -k zk 
I 2 kT 

k=1 

by lemma 4.3,1+ 

I 
k=1 

k z 
k! 

lim E(2'.c_( 1) •. 

2k [½] 
I I I 11 

1=2 h=1 

2lc [ ½] 
I I 

1=2 h=1 

by lemmata 4.3.2 and 4.3.3 

2k le 

k 
2k [½] 

2-k 
II z I I I h h k! 1=2 h=1 L k. =k, l l.=l 

[1=1 l 1=1 l . .J 

k) h ( o.1) ) ({ m(1) ... m(k) h ( "1) } 
I I C I l C = 
1=1 kl,li i=1 kl' 1i 

h 
I k. =k, 

l1,=1 l 

r!l *{ (1) (k) h (a.)} 
llm --.-1 l m ... m I ): C J. 

n· i=1 ki'li 

1 

l: I 
1=2 s=·l 

1 even 

I s i s 
I g. =0, I 

[J.=1 l c i=1 

,2 fr 
l=1 
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1 by Theorem 2.1.1 and (2.1.9) and by changing 2 into 1: 

k k 
L l }: 

1=1 s=1 

}: 
1=1 

., ( ,. ,. i)l }: _1_ .,. }: mi z 
1=1 l ! i=1 i ! 

.. i 

{ .. mi z } 
exp >. }: 1! 

i=1 
- 1 

Defining 

for all n, 

the main result of theorem 4.3.1, part i is proved. 

r1c2 
If mi+! c 2 , c 2 independent of i and lim -n- = O, then by (2.3,33) 

'{ (1) (k) (m) } 
L m ... m I ck,k+1 

Thus for k ~ 2 

r~+ 1 ' { ( 1) ( k) ( m ) } 
k+1 L m ... m l ck,k+1 

n 

r 1c2 r 1 
If c2 is also independent of n, lim -n- = O since n tends to zero. 

We'have proved part i of theorem 4.3.1. Part ii can be proved in the 
r1 

same way. In fact replacing 11 by p1 in the proof of part i, transforms 

it into a proof for part ii. Part 111 follows by symmetry. 

The proof of theorem 4.3.2 follows very closely the one of 

theorem 4.3.1, and is therefore omitted. We only point to the fact that 

1-T T T 1-T 

{ ( 1 ) (k) h (a1 ) } ( h (a1 )) h {(~) 1 ~r2) 1\~)tr2)1 i} E y ... y I l ck 1 1:1153 l ck 1 TT n n n n . 
i=1 1' 1 1=1 i' i 1=1 



4·. 4. The degenerate case 

Theorem 4.4.1. 

If n tends to infinity and if 

if moreover for all i 

2 r 
_J_ - 0 n , 
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where c is a constant independent of i and n, then in the non free 

sampling case in the limit z;_B = 0 spr 0. 

Theorem 4.4.2. 

If n tends to infinity and if 

-o ·' 

if moreover for all i 

where c is a constant independent of i and n, then in the non free 

sampling case in the limit Y... = 0 spr 0. 

Theorem 4.4.3. 

If n tends to infinity and if 

2 
np 1 - 0 , 

if moreover for all i 

where c is a constant independent of i and n, then in the free 

sampling case in the limit ~B = 0 spr 0. 

Theorem 4.4.4. 

If n tends to infinity and if 

if moreover for all i 
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where c is a constant independent of i and n, then in the free 

sampling case in the limit z = 0 spr 0. 

We prove theorem 4.4.1. Using the abbreviations (4.1.1) it follows from 

(3.3.1) and (3.3.8) that 

and 

Since m1(n) and m2 (n) remain bounded as n tends to infinity (cf. (4.1.1)) 

both E2S_B and cr 2 (2S_B) tend to zero. The result of the theorem now follows 

from the BIENAYME - CHEBYCHEV inequality. The proof of the other theorems 

proceeds in exactly the same way. 
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CHAPTER 5 

5.1. A test for randomness 

The theory of the preceding sections can be applied to a testing 

problem which often arises in relation to ecological and virological 

studies. 

Consider e.g. an agricultural experiment carried out with the aim 

of studying the occurrence of a disease with a certain kind of crop. If 

the way in which the disease ls transmitted is not known one may be able 

to obtain information about this question by studying the geographical 

distribution of the diseased plants among the healthy ones. If this 

distribution is a random one the conclusions drawn about the mechanism 

of the disease would be different from those for the case where the 

diseased plants tend to cluster. Let us consider the case where the 

plants are grown at the corners of a rectangular lattice. To test the 

hypothesis H0 that the r 1 diseased plants occur at random among then 

plants one may proceed as follows. For every disea~ed plant one counts 

how many of its direct neighbours are diseased as well. Addition of these 

numbers gives the test statistic xB. If H0 is true the value of the test 

statistic is an observation of a random variable ~B' defined by (1.1.5), 
where 

{ 1 

0 

if plants i and j are direct neighbours, 

if not. 

Large values of the test statistic lead to rejection of H0 • Alternatively 

one can execute the test with a statistic y, corresponding toy, defined 

by ( 1. 1. 5). 

This method of testing randomness has been described by several authors, 

e.g. H. TODD (1940), P.A.P. MORAN (1948) and P.V. KRISHNA IYER. 

A detailed example of an application is given by G.H. FREEMAN (1953). 
Using the results obtained in the preceding sections the test 

procedures may be elaborated. If the inoculum of the disease is 

transmitted by e.g. insects a diseased plant influences not only its 

direct neighbours, but also -· to a lesser extent - the other plants in 

the neighbourhood. In such cases the test might gain in power if the 

test statistic not only takes account of pairs of diseased plants, that 

are direct neighbours. In fact it is only natural to define the value 

of mij such that it is in some relation to the distance between plants i 

and j. 
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From the published examples of applications of tests of randomness 

it is apparent that the non free sampling case is the more important 

one. For not too small values of E.1f.B and Ez, the fact that under the 

hypothesis tested both random variables are approximately normally 

distributed can be used to determine approximate critical values. 

In order to examine the_ consistency of the test based on !_B for the 

non free sampling case we define (cf. section 1.1) 

P(i) probability that point i is black 

P( i, j) 

etc. 

probability that points i and j are both black, 

Any hypothesis, i.e. a specification of a random mechanism that' chooses 

r 1 points to be col9ured black, determines a set of values for the 

probabilities P( i), P( i, j), . . . . In the non free sampling case H0 

implies 

P( i) 

(5.1.1) 

P( i, j ) 

We now prove 

Theorem 5.1.1. 

.:.1 
n 

r 1(r1-1) 

n(n-1) , etc., 

If r 1 and n'tend to infinity in such a way that 

r1 
£ ~ n ~ 1-E 

for some£ >O, and if for all i 

(i,j=1,2, ... ,n, i/j). 

where c is a constant independent of i and n, then in the case of non 

free sampling the one-sided test based on the statistic !.Band a 
critical zone consisting of large values of xB, is consistent for those 

alternative hypotheses satisfying 

(5.1.2) 

( 5. 1. 3) 

(5.1.4) 

P(i) = i = 1,2, ... ,n, 

1 

n -2 2 mij{ P( i I j) - P( i)} - oo 
ij 

CJ(n) • 
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Proof 

Let H• f H0 be a hypothesis satisfying (5.1.2), (5.1.3) and (5.1.4). 
2 

Replace r 1 and ~B by rand~ and denote I H0 ), E(~ I H 1 ), o (~ I ) 
and o2(x IH•) by 1-', µ 1 , o2 and 0 12 respectively. The condition ;;, c 

implies (cf. section 4.1) 

( 5. 1. 5) 

and (cf. 4.1.5) 

( 5. 1. 6) 

Now 

n ~ 
2 

~ C n , 

a 

( 5. 1. 7) ,2 
0 l mijmk1{P(1,j,k,1) - P(i,j)P(k,l)} + 

(ijkl),i 

+ 4 . r m1 jmik{P(i,j,k) - P(i,j)P(i,k)} + 
(lJK),;-f 

by (5.1.4) and (5.1.5). Also 

( 5 .1.8) 

r 1 
n ij 

£. 1 
n ij 

by (5.1.2) and (5.1.5). Hence for any fixed a, 

(5.1.9) lim 
n--i.cc 

µ 1 -µ-ao 
I 

0 

~ co 

The probability of not rejecting if H1 is true is 

for n- co 



by the BIENAYME-CHEBYCHEV inequality and ( 5, 1. 9), which proves the 
theorem. 

An analogous result may be proved for the test based on the 

statistic~ and for the case of free sampling. 
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APPENDIX 

In order to derive an asymptotic expression for 

h h 
with I k. = k-g-g' and r 1 = l-2g-2g' , for the cases z = 

1=1 l 1=1 i 
and non free sampling, use is made of the expansion 

( A. 2) 1 o g r ( x +a ) V) 

1 1 j+1 
(x+a-2 ) log x •·· x + 210g 2n + l (-1) 

j=1 

and .:s. = ;z_ 

,i,. +1 (a) 

j(j+1)xj 

for x-co. Here i!>j(z) is the j-th BERNOULLI polynomial defined by 

lj(z) is a polynomial of degree j in z, the coefficient of zj being 

equal to 1. The first three are 

• 0 ( z) 1 

( A. 3) • 1( z) 
1 = z - 2 

<l>2( z) z 2 - z + J 
( cf. E.T. WHITTAKER and G.N. WATSON (1915) chapter 13, where a slightly 

different version of these polynomials is discussed). 

First we consider the case .:s. = ~B 

such a way that 

(A.4) 
n 

we show that if g' is even 

If r 1 and n tend to infinity in 
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and if g' is odd 

( A.6) 

During the proof we shall writer instead of r 1. 

By (3.3.2) and (A.2) we have in this case 

A 

J~{-1)v(~') exp[(v+1){1og r(r+1)- log r(n+1)} + 

+ v{l~g r(n-1) - log r(r-1)} +log r(n-1+2v+1) - log r(r-1+2v+1)] = 

since 
1 ' 

n-g•-1 ~ r-g• -1 < (n-r)2g r-1 - rn . 

Defining 

(A.7) 

and 

( A. 8) 

we have 

We note that, because of (A.4), 

( A. 9) 

and hence 

by ( A. 4). 

(it is not"' (n-r:) ) 
nrJ 
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a 0 (r,n) er(~-:-) 
(A. 10) a 1(r,n) (J(1~-;) and 

as(r,n) = er(~) for s;;;, 2 . s-1 nr 

Expanding the exponentials in the last expression for A, we find 

(A, 11) 

as 

To every sequence of non-negative integers h 0 ,h 1, ... ,hg'+1 , all 

less than g 1 +1, there corresponds a term Tin (A.11) 

1 
h"T s 

.r 

g'+1 

o s=2 s 
-(h +h 1+ I (s-1)h )) 

because of (A.10). Furthermore we note the identities 

0 if p < g I 

(A. 12) 

if P = g I 

which are easily established by differentiating both members of 

g' 
L (-1)v(~') evx 

v=O 

p times with respect to x and setting x = 0. By ( A. 12) only those terms T 
g'+1 

having sfo sh 8 ;;;, g' contribute to (A.11). 

O' I +1 
Suppose therefore that such a term T has 0 I 

s=O 



Then 

T 
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g'+1 
~ E shs ~ p, with equality if and only if pis even, 

s=2 

hs = 0 for s ,/ 2. Also 

g'+1 
If g• and pare both odd, then p.;: 2 I hs + 1, and hence 

s=2 

if g' is odd and pis even, then p~ g 1 +1, and 

which, together with (A.11) proves (A.6). 

if g' and pare both even, but p.;:g 1 +2, then 

if p=g', even, but 

T 
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'The only remaining term for even values 
g•+ 1 1 1 

of g• has p=g' L h =~p=-g' 
· ' s=2 s 2 2 • 

1 and hence h2 = 2g 1 , h 8 =0 for s-/2. Since the remainder term in (A.11) is 
also 

() .!l::E. 2 (i( ).'.lg'-1 

rn · 
rl-2) 

l , 
n 

we have, if g' is even, 

From (A.J) and (A.7) - (A.9) we find 

which proves (A.5). 

n-r (J (n-r) - 2 • rn + :r-
r n 

1-2) r 

7 by (A.12). 

Next we turn to the case ~=y_. If r 1 ,:;.r2 as r 1, r 2 and n tend to 

infinity we show that, if g' is even 

-B(h (cii)) (h+g~g' 1-g-g'-h -1) - L C,. 1 . (J r 1 . r 2 . n , 
1=1 "·1' i 

and if g' is odd 

(A. 14) 

The fact that we suppose r 1 ~r 2 does not imply any loss of generality. 

By (3.5.8) we have in this case 
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) ( 
h h 

t )+g+g 1 -\l ! }: ( 1-p. ), + l P.( 
i 1=1 l i 1=1 l 

.r2 

h ( °'1) ~ If the configuration IC is non-bichromatic, i.e. 
1=1 kl,li 

the result of (A.13) and (A.14) is of course trivial. Suppose therefore 

that ~( 1 C~ °'i ~ \ = 1 and hence that 
1=1 i' i J 

(A. 15) i 1,2, ... ,h 

Consider a term B of A corresponding to fixed values of P1,P 2 , ... , 

Introducing the abbreviations 

h h 
l P1•1 + l ( 1-P:!)( 

1=1 1=1 
and 

h h 
Z:(1-pi)ti+ LP(l-·,.) 

1=1 1=1 i i l 

and applying (A.2) we find 

B 2g'+g r(-1) 11(g') r"r" expflog r(r 1+1)-1og r(r 1--M1-g-g'+v+1) + 
v=O " 1 2 L 

+ log r(r2+1) - log r(r2-M2-g-g'+v+1) •· 11{1og r(n+1) - log r(n-1)} + 

•·· log r(n+1) +log r(n-1+2v+1)] 

s 
\l + s 

where ajs, bjs and cjs are defined by 



(A. 16) 

and 

where 

( A, 17) 

We note that 
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j+1 
l a. vs 

s=O JS 

l-2g-2g' , independent of 

cr(r~ 1 ) for s 0,1 

o-(r~s+1) for s > 2 

Expanding the exponentials in the expression for B we obtain 

(A. 18) 
,f+g' 

B = (2r~?) 
' n , 

g'+1 
TT 

s=O 

. +'I 
Jt s 

L C v 
s=O js 

'"( h+g-1 1-g-g'-h -1) + u r 1 .r2 .n 

To every sequence of non-negative integers h 1,h2 , ... ,hg'+1 , all less 

than g'+1, there corresponds a term Tin (A.18), and 

_ g 1 +1 g'+1 

[ 
I sh] h+g+g'-h-h-L (s-1)h 

g' "(g'). s=O 8 ( 0 1 s=2 8 1-g-g' -h -1) T = L (-1) " v . (J r 1 .r2 .n . 
v=O 
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g'+1 
By (A.12) we only have to consider terms T having p = }: sh ~ g'. 

s=O s g'+1 
We recall that 2 I h ! p with equality if and only if pis even, 

s 
1 s=2 

h 2 = 2p and h 8 = 0 for s / 2. Using the same procedure as we did for ~ = 2S_B , 
we find that for odd values of g 1 all terms Tare 

since this also holds for the remainder term in (A.18) it holds for B 
too. 

For even values of g', Tis 

1 
( 

h+g"2g' -1 1-g-g' -h 
(J' r 1 .r2 .n -1 ) 

' 
1 • h 1 1 d h O f ..t2 un ess p = g , 2 = ~ an s = or s r- • 

Summing terms B over all values of P1,P 2, ... ,Ph we obtain (A.14) if 

g• is odd. If g' is even, we have for a bichromatic configuration 

A + 

By (A.3), (A.'16) and (A.17) 

d2(r.l,r2,n) = - J (r11 + r: *) + 0(r~2) 

and as a result we may change d2(r 1,r2 ,n) into _1.(-1... + -1... _!±.)for g' ~2 2 r 1 r 2 n 

without affecting the order of the remainder term (for g' = 0 this is 

trivially true). Since this is independent of P 1,P 2 , ... ,Ph we may now 

carry out the summation over these indices to obtain the result of (A.13). 
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