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FOREWORD

This book is the posthumous publication of the scientific work of
A.R. BLOEMENA who died in 1960 at the early age of 32. He started his
career as a mining engineer from the Technical University, Delft,
Holland, but after practicing for a couple of years he switched to
mathematical statistics. He jolned the Mathematical Centre and developed
rapidly into a very promising statistical research worker., Soon he was
appointed deputy chief of the Statistical Department.

His thesis was nearly finished when he died. It had still, however,
to be brought into its final form. This was done by his successor
W.R. van ZWET. The Mathematical Centre 1s very grateful for hils work
which was far more than a mere editorial tasx, and it 1s glad to be able
to present the main research results of BLOEMENA in the form of this
book.

J. Hemelrljk
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CHAPTER 1

1.1. Introduction

Let be given a set of n points, numbered 1,2,...,n, and a (n xn)-

matrix M, with elements mij’ satisfying
(1.1.1) myg o= Wy (1 # 3)s
(1.1.2) myy = 0,
(1.1.3) I m2 51 for each i

T Mg s
(1.1.4) Ogmy <.

In the special case that all miJ are integers, the set of points
and the matrix M can be interpreted as a finlte multigraph of n polnts
(cf. C. BERGE (1958), D, KOENIG (1936)), where the number cf Jjoins
between points 1 and J is equal to mij‘ In this interpretation, mj_'j =0
means that there i1s no join between i and j; assumption (1,71.2) states
that there are no loops, while assumption (1.1,3) implies that no point
is isolated.

We shall sometimes indicate [ myg by mg, and g my, by m_,.

From the n points two samples are taken, We shall consider two
cases,

Case I, "non free sampling" : from the points 1,2,...,n ry and r,
points are chosen at random without replacement (r1+r2,§n). The ry
points will be denoted as black (B) points, the r, points as white (W)
ones, while finally the (n-r1~r2) remaining points are the red (R) ones,

Case ITI, "free sampling": n independent trials are performed, each
trial resulting in the event B with pfobability P in the event W with
probability Pos and in the event R wilth probability (1—p1—p2). Point
number 1 is alotted the colour indicated by the outcome of the 1-th
trial,

Consider the random variables*) lgﬁ),gég), 1j (i,3=1,2,...,n)
defined by™)

%) We shall distinguish random variables from numbers (e.g. the values
they assume in an experiment) by underlining their symbols.,

#%) By writing spr o (salve probabilitate a) after a statement we shall
indicate that the statement is true except for an event with
probabllity smaller than or equal to o , Hence spr O corresponds to
"with probability 1",



(B)

X3y =0 spr O
(w) _
X34 =0 spr O

iy = 0 spr O

and for 1 # J

(B) { 1 if point 1 and J are both black
X =
=1 0 1if not,
(W) { 1 1if point 1 and J are both white
X =
=1J 0 1if not,
1 1if one of the points 1 and J is black and
Iy = { the other is white
0 1if not.
Obviously ( (B)
B} _ (B
2{_13 -Ec..'ji £l
(w) _ (W)
}_{.j_J - E,ji H
Lig = Lyy -
Define (3)
_ B
Xp = 1):3 Mygy X147
W)
(1.1.5) %, = 1 m, . xt
=W g 1 =13 ¢

= ) mg, Y oo
pA £y 1 Eg

Now Ep is twice the number of joins between black points, Xy is twice the

number of joins between white points, whereas y 1s twice the number of

Joins between black and white points, Notice that if m

for 1=1,2,...,n~1, and miJ

the number of runs in a sequence of alternatives,
Definé for i,J=1,2,...,n

1,141 7 Pigq,1 T
= 0 otherwlse, and 1f r +r,=n, then Fy+1 is

(1.1.6) Yy = zﬁ?) + iﬁ) —
and

7 123 Ty Sy
Obviously
(1.1.7) ¥osxptx, - X



The statistic v 1s met in the study of the order - disorder problem
(cf. A.R. BLOEMENA (1960))

A more general variable z of the form

1.1.8 z = m, , 2
( ) z 123 13 213 -
where Z;4 are random variables satisfying
z;; =0 spr O
and for 1 # j Zyg = Zyy o

but not necessarily connected with points in a graph, will also be
considered. A symmetry condition that is satisfied by Xps Xys ¥ and v
will also be imposed on z (cf. section 3.1), which then becomes a useful
generalization of xg, X,, y and v.

Obviously z, as defined by (1.1.8), is a statistic belonging to the
class W of statistics w that can be expressed as

n n

w E
R JZ’I —id

(1.1.9) W

where the random variabled Eij satisfy
Wiy =0 spr O
and for 1 # J Wy =Wy -

The class }Vﬁcontains a well-known statistlc. Let be given n pairs
of random variables (uy,vy), (i=1,2,...,n), and define for 1 # jJ

tg o Af (yy-ug)(yy-vg) > 0
845 = 0 if (uy-uy)(yy-vy) =0
-3 1f (ug-uy)(yy-vy) <0,
and |
544 = 0 spr O ,

then the statistic §, defined by
s=1 84,
1y 4

18 the statistic of M.G. KENDALL's rank correlation test (cf. M.G. KENDALL
(1955)), and belongs to A



A review of records of previous work on the subject will be glven
at the end of this section. The next section gives some results on the
probability distribution of EB for small values of rq.

To study the stochastic properties of W, one approach is to study
its moments. In chapter 2 we develop expressions for the reduced and
unreduced moments of w, using the theory of graphs. In chapters 3 and 4
these results are applied to z, and to Xps Xy ¥y and v. Chapter 5 deals
with an application to the problem of a test for randomness.

For results on runs in a sequence of alternatives we refer to
H.A. KUIPERS (1957).

As far as we know the earliest results for the case of a rectangular
lattice with miJ==O or 1 are given by J.G, KIRKWOOD (1938) in a paper on
the order-disorder problem, KIRKWOOD states the first moment and
asymptotic expressions for the second and third cumulant of a simple
transform of Xp-

P.A.P. MORAN (1948) considers a "statistical map", equlvalent to
ij==0 or 1, where the polnts are chosen by free and
non free sampling. He gives for both cases the first and second moments
of the number of black-black joins, and the third and fourth moments for
the case of free sampling. He proves the asymptotic normality of Xp and
¥ (free sampling) for a rectangular two-dimensional lattice, where there
are Jjoins between neighbouring points in the direction of both axes (cf.
also P.A.P. MORAN (1947)).

There exists a large number of papers on the subject by
P.V. KRISHNA IYER (1947-1952), dealing with rectangular lattices, where
either neighbouring points are joined in the direction of both axes, or
neighbouring points are joined in the direction of both axes and in
diagonal directions. The results of KRISHNA IYER are mostly on the first
four moments or cumulants; statements are made about the asymptotic
behaviour of the distributions of the statistics.

Results on the case of a rectangular two-dimensional lattice wilth
vacancles (which is in fact a special case of MORAN's statlstical map)
are given by G.H. FREEMAN (1953). )

A number of exact results for rectangular lattices (non free
sampling) are described in a report by C. VAN EEDEN and A.R. BLOEMENA
(1959). The present study is an outgrowth of this last-mentioned report,
which arose from a study of the distribution of a statistic, obtained
in a psychological test (cf. C.A.G. NASS (1960)).

our graph for m

Editor's note.

The author was aware of the existence of a great number of papers on
the order-disorder problem and, given time, would have revised this
revliew of previous work accordingly. The editor has refrained from



doing so because an excellent review of work on the order-disorder
problem has since become available. The interested reader is referred
to C. DOMB, On the theory of cooperative phenomena in crystals, Philos.
Mag. Suppl., 9, No 34, p 149-361, 1960.



1.2, The exact distribution of x

B (non free sampling)

If r
1
exact distribution of Xp can be obtained in a simple way. In principle

is small and the mij's assume only a few unequal values, the

the same procedure can be used for larger values of ry and for the case
where the mij's assume a larger number of unequal values, but the amount
of simple algebra involved becomes rapidly prohibitive,

To demonstrate the method we deal with the case r1=3 in some detail.
For i1 # j the miJ‘s are assumed to take three unequal values, bq, b2 and
b3. It follows that the random variable Xp can assume with non-zero
probabllity the values 6b1, 6b2, 6b3, 4b1+2b2, e s 4b3+2b2, 2b1+2b2+2b
To avoid notational difficulties we shall assume that these ten
are all unequal. However, if two or more of these

3

possib;g_yqlues for Xp
values do hapren to be equal the distribution of Xp may be calculated
in exactly the same way by adding the corresponding probabilities.

It is only necessary to calculate three probabilities, viz. those
of xp taking the values 6b1, 4b1+2b2 and 2b1+2b2+2b3. The other
probabilities then follow by symmetry.

The probability that three given points 1,j,k are chosen from n

points is equal to (n(n—1)(n-2))_1. If points 1,j,k are chosen, the event

" - i
Xg = 2b, * 2b, + 2bg

occurs 1f and only if one of the following statements is true:

I mij = b1, My = b2 and mjk = b3 5
II: mij = bq, My = b3 and ka = b2 R
VI: m1J = b3, My = b,I and mjk = b2

At most one of these statements can be true for given 1,j,k.

Let Vs Voo
indicator which is 1 if my
is

v3 be a permutation of the numbers 1, 2 and 3. An

3 =bv =bv s, and ka =bv , and O otherwise

s M
ik 3

2 2
(b2—b1)(b3—b1)(bq—bg)(bB—bZ)(bq—b3)(bg—b3)

(b, -mij)(bvj—mij)(bvq-mik)(bvB_mik)(bvq_ka)(bv )

Thus 1f one of the statements I,II,...,VI is true



) (b -my5)(by -my )(b, -myy )by, -myy )(b, -my ) (b, -myy )
( 1 2v3) 2 3 1 2 :
"3 3 7
T 1T (50,
w=1 u="1
u#w
( Z means summing over all permutations of the numbers 1,2,3)
(v,]v2v3) :

while this expression is zero if none of the six statements is true,
Thus

P[§_B==2b1+2b2+2b3 A polnts 1,J,k are chosen |r1=:3]

(v1§2v3)(bv2*mi-j )(b\;B"miJ‘)(bvq‘mik)(bvB"mik)(bvq—mjk)(bvgmmjk)

n(n-1)(n-2) f% (by=by,

i‘i:gu

Summing over unequal values of 1,j,k and interchanging the order of

summation glves

(1.2.1) P[£B=2b,l+2b2+2b3| r1=3]
(qu )(1§k)7é( 2 1J)(b i,j)(b 1 ik)(b B_mik)(b\?,}—mjk)(b\)gamjk)
n(n-1)(n-2) f% T%; bw—bu)
g

Suppose that among the n points there exists at least one triplet of
points numbered A 3, such that qu’ bq, mkq,x =b2 and mxg’x =b3.
Then each such triplet contributes 6 identical terms to (1.2.1) viz. one
for each permutation vq,vg,vB. E.g. for v1=1, v2=3, v, =2 (take 1=A2,

J=r,, k=13) there 1s a term in the numerator of (1.2.1)

(by-m ){(by-m )(by-m )(by-m )(b4-m ){(b,y-m )
L P T T U STE S AL e SPR

while for V=3, Vy=2, v3=1 we have (take i=i_,

(byp=m Y(b,-m J(b,-m )(b_~-m Y(b,-m Y(bo-m ).
T U R VR PR I SO PLa b S VAN I YVR 27, A

Therefore (1.2.1) can be written



(1.2.2) P[§B==2b1+2b2+2b3] r,=3] =
6 1 (bg-my ;) (bgmmy )(b )(bgmyy ) (bpmmyy J(bgmmy, )
L= 171 2 ik M3 2 k
(1jk)# / T 3 "3
3 3
n(n-1)(n-2) TT TT (
w="1 u=1
%w
If no triplet of points A_,A,,X,, can be found such that m =b,,
1°72°"3 A1’A2 1
mA’],)‘3 =b,, m)‘g’}‘3 =b3, (1.2.1) is equal to zero, and so is (1.2.2).

In exactly the same way one obtains
(1.2.3) PE&B =4b1+2b2| r, =3] =
Z (bE_mij)(bB-miJ)(bQ_mik)(b3—m1k)(b’l-mjk)(b3‘mjk)

3
(1K) #
n(nm1)(n—2)(b2—b1)2(b3—b1)2(b1—b2)(b3—b2)

and

(1.2.4) PE5B==6b1I r,=3] =

(igk)#(b2-mij)(b3'mij)(bE‘mik)(b3—mik)(b2—mjk)(b3_mjk)

n(n—1)(n—2)(b2—b1)3(b3—b1)3

The expressions (1.2.2), (1.2.3) and (1.2.4) may be simplified, e.g. the
numerator of (1.2.4) can be written as

b3b3n(n 1)(n-2) - 3b b3(b2+b3)(n 2) Z Ly myy ot

2.2, 2
+ 3b2b3(n 2)(33)% miy ot 3bybs (b, +b3) " %k)# mygom

- 6b.b.(batb,) I mS. m,, + 3b.b, I 2 e+
2731727037 Gy 2 T Tk 27315k £ Mg Mk
2 2
= (bt 3) (12 p Mgy My My * 3(by+b ) ) ,om,,om,, +

k) 3 15K)# 1J ik ik

-~ 3(bs+b,) 1 m2 m2 m + z 2 2 .
273 gy B I (i "Ly " M

Now because of (1.1.2)



=~
=
n
i
1
=
n

I omyom, = I [zm m -m2]=zm. my, - I m
(151004 1 Tk Ty | g M Mk 13 1oy M T Ty
2 m2. m,, = L m? m., - ) ms .
(13k)# ij ik 15k ij ik 15 iJ
2 o 2 2 Y
(1§'k);é i Mk~ 15k M5 Mk lzJ My 3
Z my g My m 1 My Myp Mo s ete.
(1ik)# He g M J
For i # J
(1.2.5) (by=my ;) (by=my 4)(bgmmy ;) = O .

Summing this identity over i and J with 1 # J gilves
2 _ 3
babybon(n=1) - (b,]b2+b,lb3+b2b3)iz myy ¥ (b,|+b2+b3)12 myy = 1 my o
J J 13
while multiplying (1.2.5) by m, and summing glves
2 3 4
b.bsb, L m,, - (bbb b.+b.b.)imS, + (b tbotb,} L ml, = I m
17273 T 1727717372737 1R T T T
Using these identities the resultsof table 1.2.7 have been obtained.
Since without loss of generality one of the numbers b1’b2’b3 may .be

taken to be equal to zero, terms contailnling a factor b,]bgb3 have been
omitted.

For r1==2, Xp assumes the values 2b1, 2b, and 2b, with non-zero
probability. It is sufficient to calculate P[?_B::Eb1 |r1==%]; the other
probabilities follow by symmetry. We find

- 2
(b2+b3)33mij ggmij

(1.2.6)  (by=by)(bg-b,).Flxp =2b | v =2] = byby - n(n=1)

For the case mij takes only two values, say O or 1 (MORAN's model)
we have also considered the case r,= 4, The result is given in
table 1.2.2.



Table 1.2.1

n(n-1)(n-2).ca,P[§B = air,l = j] for the case where the my (i # j) assume three unequal values

b4sbys

and b,b,b

= 0, The table provides coefficients of the sums entered in the first column.

3 17273
2b1+2b2+2b3 4b,]+2b2 6b1
2 2
. 2 (b1—b2)2(b1—b3)2(b2-b3) % (bq—b2)3(b1—b3) (by-by) (b3-b1)3(b2-b1)3
+b23b33n(n—1)(n—2)
2 2 2 2 2 B
3§ my -by b33n+b1 by%(by-bg) | =30,70g (bp+bs)(n-1)
2 2 2 2 ~ 2 2,
33 m, by, n-b, b3(b1 b3) +3b,b, (n-1)
2 2.2 2 2 2 3.0, . 2 2
Iomgyomyy -5,%0,%-b ,%b,"-b, %0, +b 4037 420,b55(byth ) +3D,0,(b,+b,)
ijk
igk mi§ m +(by#by+b5) (Db +D 4D +D,b5) —2b1b32—2b2b3(b2+2b3) ~6b,b (D, +b,)
2 2 N
i%k my 5 omy ~(byby+b botbob ) *b5(b+2b5) +3b,b,
_Z‘k My My My +(1b.1+D,) (b#b3) (b+b5) -(b2+b3)2(b,l+b3) -(b2+b3)3
1]
A b_,24b, 240 ,2)-3{ b btb. b b b.) | +(bs+b.)(2b,+b,+3b,) +3(btb, )2
15 my s My My | (T4 ") 3(b byt D otbob otb3 4¥Do*30, o3
2 2 )
igk my g My My +2(b1+b2+b3) —(b1+2b2+3b3) 3(b2+b3)
) mi§ m, 2 mji -1 +1 +1

oL



n(n—ﬂ)(n—Z)(n-3),P[5B =alr, = @] for the case where m

Table 1,2.2

1]

= 0 or 1.

The table provides coefficlents of the sums entered in the first column,

0 2 4 & 8 |10 |12
1 n(n-1)(n-2)(n-3) — — —_ = | |
Lomy, -6n°+18n-14 +6n°-6n+12 | -12n-18 | +20 |— | — |—
iJ
2
(gs mii> 3 -6 = I R N
I m +12n-12 -24n-12 +12n+60 -36 | — | — |—
ijk Y
Y m, . ~hn +12n+24 -12n-72 | +4n+72 | -24 | — |—
1k T
Lomyg -4 +12 -12 | — | — |—
ijk1
my 5 -12 +36 -36 +12 | — | — |—
ijkl
) m, +12 -48 +72 48 | +12 | — |—
ijkl
("2141);£mi'j +3 -12 +18 -12 3| — |—
ij
( ) ) m g -6 +30 -60 +60 | -30| +6 |—
1jk1)#
i}klmij My Mgy My +1 -6 +15 -20 | +15 | -6 |+1

L
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CHAPTER 2

2.1, Graphs

The notion of a graph 1s used in this gtudy in two different ways.
Firstly, as stated in section 1.71. in the case that all mij are non-
negativejntegers,the internal structure of the set of polnts from which
a sample 1s taken, 1s indicated by means of a graph. We shall call this
graph from this point onwards the master-graph. The word "graph'", with-
out further indication, refers to the second type of graphs to be intro-
duced in sectlon 2.2, For thils second purpose we use the word "graph" to
denote k oriented joins, labelled 1,2,...,k between 1 points (2512 2k),
such that no point remains isolated (1s not connected to at least one
other point) and loops do not occur. Multiple Joins are admitted. Such a
graph will be called a (k,1)-graph,.

Each join has a first and a second point, the orilentation of the
Join being from the first to the second point. Each point 1s labelled by
means of the labels of all joins beginning or ending in this point, with
a suffix 1 or 2 to the Join-label indicating whether the point is its
firgt or second point,

Two graphs are equivalent if they can be mapped on one another with-
out changing the labelling of the Joins and points. Non-equivalent graphs
are called distinct. This gives a classification of graphs into equival-
ence classes. For the purposes of this study a class of equivalent
graphs may and will be considered as one graph.

E,g., consider three graphs as follows.

1 2
pa A TP
3 3
The first two graphs are equivalent, the first and third one (and also
the second and third one) are distinct.

Two distinct graphs, which can be made equivalent by means of a
permutation of the joln~labels and/or changlng orientations in one of the
two, are said to have the same configuration, This gives a further class-~
ification into configuration classes, Omitting the labelling and the
orientation from a graph, a blank graph is obtained. Blank graphs
obtained from distinct graphs with the same configuration will be con=-
sldered as identical., Blank graphs, corresponding to different configur-

ation classes, will be called different. Thus there 1s a 1-1 correspond-
ence between blank graphs and configuration classes. The term "configur-
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ation of a blank graph" will be used to indicate the configuration
class corresponding to the blank graph. By '"configuration of a graph'

is meant the configuration class to which the graph belongs.

As an example consider the following three blank graphs:

I R S

The first two are identical, i.e. they have the same configuration., The
first and the third one (and also the second an the third one) are dif-
ferent (have a different configuration).

A blank graph is called connected 1f from every point of the graph
every other point may be reached by travelling along the Jjoins. Regard-
less of the orilentation of the Joins, a graph 1s called connected 1f 1its
blank graph is, Every blank graph consists of one or more connected
components, which have no connections between them, This decomposition
is unique (cf. D. KOENIG, (1936), 15). This holds also for a graph. The
components of the blank graph of a given graph are the blank graphs of
its components,

For a connected (k,l) graph the relation
2S13k+1

holds and there is a finite number, say qk,l’ of different (k,l)-blank
graphs or configurations, Let C&?f be the a-th one of these
(u=1,2,...,qk’l), Notice that the symbol Cﬁ?} always refers to a con-
nected graph or a connected component of a graph, In case qk’l=1, we

(1
shall write Ck,l instead of Ck,l'

The configuration of a blank graph with h connected components
(1;11§[%])can now be indicated symbolically by

h (ai)
D
i=1 1271
(ay)
if Ck 11 is the configuration of its i-th component. If components with
i’

equal configuration occur, this may be written as

%
1,7
3’7
(a))
where gj indicates t?e number of components with configuration Ck 1
s (o, 377
By,4,< ) g.Ck Jl ) will be indicated the number of distinct graphs
TR ()
with configuration y g.c, Y
g=1 3 Kyl

(
g; Cy

It e~10

J=1
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Theorem 2.71.1. Recursion formula for A

(ay) &
4CHENDIN
s (e,) 5 1 k,,1 s
J = 1 N =
/V(JE1 gjckjle.) S —i—_l_kjl ; (qugjkj k).
Proof.
We first prove (a,) g
(a)) I ZACE I
(2.1.1) /V(gjckj’lj) = —(—éLJ-ﬂ—!— —-———-J——‘ijl

(a))

To obtain the number of distinct graphs with configuration gJCk 1
3’7

3

the labels 1,...,ngJ have to be distributed over gj identical

(kJ,lj)ucomponents of the blank graph. This can be done in
(2 1 2) _iéiilli__
h {iey1) )
gyt(ky!

distinct ways, since each of the gJ1 permutations of the components leads
to the same (1.e. equivalent) set of graphs in the end. In each component

a
a set of kJ labels gives rise to/4((Ck Jl ) distinct graphs; thus for
J’d

each distribution of ngJ labels over tne gJ components there are

(ay) 18y
(2.1.3) {,4f<c )}
k,,1
J27J
distinct graphs with the required configuration. The number of distinct

[+3
graphs with configuration gJCk Jl is now the product of (2.1.2) and
o1,

(2.1.3), which proves (2.1.1).
oy s (uj)
Now consider g,C as the j-th subgraph of Z g.C . The
J7k ,1J 29 J kJ,l
number of ways in which k labels 1,...,k can be distributed over s
different blank subgraphs such that the j-th one contains gjkj labels

(J=1,2,...,8) is
k!

(gqk)t(Bokp) ! «.n (Bgkg):!

In the j-th subgraph each set of gjkj labels gilves rise to,ﬁf(gJCk 1
5

distinct graphs. Thus 7

)

s (o)) s
J - 1
/V( qu gJij’lJ) “ JW

which upon application of (2.1.1) gives the result of the theorem.
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In order to obtain a recursion formula for,/VKCﬁai) too, define
2

h (al)
1 ¢ =0 if for at least one i=1,2,...,h
= i

(2.1.4) A1 et
either 1, 21 or 1,2 ki+2 .

i

Let
i
W({ 3§ ¢ ;
(i=1 kil 74
h' (ai)
be the number of distinct graphs having configuration 2 Ck, 1! that can
i=1 i*71
arise in adding one oriented join to a given pattern consisting of a
h (a,) ht h
graph having configuration Z Ck 11 and of E li - Z 1, unlabelled
1=1 fi0% 1=1 1=1 "
(ai)

h
isolated points. A? b% means of Theorem (2.1.1)/4r< ) C > can be
a i=1 171 .
calculated if /V(Cklfli), (i=1,2,...,h) is known, we give only the

recurrence relation:

(2.1.5) /V( c(u) ) = 21 ) W'@(a) : C(B) )J((c“” ) +
k+1,1+1 t=0 8 k+1,1+1 * “k,1+t k,l+t
+ .
K4, ky Llplss 11=2,...,ki+1,z 1,=1+1
k1+k2=k
) W( Cl({‘:}l 141 3 § C;(fiz M f Ciﬂii )
81585 ’ i=1 1771 i=1 *1°71

We shall illustrate the use of these recursion formulae by
calculating N for configurations up to k= 3.

All graphs based on one joln between two points are equivalent. Thus
(2.1.6) N (Cc, ,) =1
: 1,2

For k =2, the followlng configurations are involved

B i €

P—
@ ® 6 s @ e @ o

Co,2 Ca 3

3

g 0

Given one oriented joln between two points, two distinct graphs may
arise in adding one oriented join between the same points:

1 1
—r—
o @ and o,
\__/ \_(
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thus Mc2’2;c1,2)=2, and from (2.1.5) A7c, )= 2.

Given one oriented join between two points, and an isolated point, four
distinct graphs arise in adding one join in all possible ways to this
pattern, such that a graph of configuration 02 3 arises:

3

1 2 1 2 2 1 2 1

0 oo @ e © L e ) O s ) s D e @ epoe @

thus %/’(02’3;01’2)=4 and Ac, 3) =4

Application of Theorem 2.1.1 with s=1, g,]=2, k,1=’l, l,]=2, a =71 and
/V(C'],E) =1 gives /V(ch,g) =1,

Summarizing we find for k=2

/V(cz,z) =2
(2.1.7) /‘/(02,3) =4
/V(ec1 5) =1

For k=3 the following configurations are involved.

— T (2)
2
€3,2 3,3 €3, 3

° ° ° o °
(1)
©3,4 Cgl)l €4,2%C2,2
O T @ m—© @ e &
[ — @ ]
@ ]
C1,2+02,3 3C,],2
Thus e.g.
(1) (1) (1)
W’(CB’M,; 201’2) = 0 W(C3’45 C2,3) - N‘(CB:L‘; C2 2) =0
(2) (2) (2)
W(03’4§ 2Cf]’2) =8 V(CBJM’; C2’3) = U )'\/"(C3 L3 02 2) =0,
and by (2.1.5)
(1 (1) (1)
3
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Also

while from Theorem 2.1.1
H(Cq 5+ Cpp) =6

In this way the following results for k=3 are obtained

%(03’2) =4
el
ol s
(2.1.8) /V(cgjg) -8
A ({2 = 2

/V(c1,2+02’2) =6
/V(cq,2+c2’3) = 12
A (50, 5) =1
For reference purposes note that for k=1,2,...
W(C 05 C,0) =2
and therefore

(2.1.9) H (e o) =2
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2.2, An expression for () Wij)k

Let Wy g (1,3=1,2,...,n) be real numbers, satisfying
(2.2.1) wyy =0
and for 1 # j
(2.2.2) Wo, = W,

From the sum

(2.2.3) Iow )= 1 I
2.2.3 ( w,.) = P w el W
ij. H =1 12i=1 T 7o ToK-1 "2k

we conslder one term

(2.2.4) t=w

T T

w ceW .
1272 T30y Tok-17 "ok
The subscripts occur in pairs : (TEJ—1’T2J)’ (J=1,2,...,k). If for any J
both subscripts assume the same value, t 1is equal to zero by (2.2.1).
These terms can therefore be omitted from (2.2.3). Now consider a term t
with T54-1 # 12J (j=1,2,...,k). Among the subscripts TysToseeesToy 1
unequal numbers from 1,254..50 oceur (2215 2k). Call these

A1’A2""’Xl with

Each of the =t's is equal to one of the At's; let

sz-q = AUJ and oy = AvJ (1= Dji 1, 12 Vj 21, j=1,2,...,k),
then
t = w)‘u ay wAu o ...wAu oy ( My # VJ’ J=1,2,...,k).
1 1 2 2 k “k
In the set of numbers Mags Moseees Ws Vs Vosee.s Vo all numbers

1,2,...51 are represented, To each such set of numbers Mg Hoseees My
VsVos...,;V, - and therefore to each term t - there corresponds a (k,1)~
graph in the following way. Take 1 points, numbered 1,2,...,1. Join the
points numbered uJ and v,. Call this the j-th Jjoin with the points
numbered uJ and vj as first and second point respectively (Jj=1,2,...,k).
Omit the labels of the points.

Some examples of the correspondence between a term t and its (k,1)-

graph are given in table 2.2.1.
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Table 2.2.1. Some examples of the correspondence between
terms (2.2.4) and graphs.

t A1 A2 t ug vg (s Vo graph corresponding to t
1
Wo 11 2 w)‘,]’)‘2 1124 - - (1) o o (2)
1
- - L
Weo 517 w)‘/]})‘2 11 2 (1) (2)
1
woq | 112 LSS el 1 - -1 (M) o e (2)
W AW 11 2 |w w 1 2 1 2 (1) ° e (2)
12" 12 Agsdo Ags Ay S
p
W, AW 112 |w w 11 21 2 1 (1) o o (2)
12721 )‘,],)‘2 ).2, A,] M
T
RECLECT IR B A WV UV B B L (1 e (2

From table 2.2.1 the following conclusions can be drawn

a) Two terms corresponding to equivalent graphs may or may not have the
same value (cf. examples 1 and 2: terms with unequal values; examples
1 and 3: terms with equal values; in both cases equivalent graphs).

b) Two terms corresponding to distinct graphs but with the same configur-
ation may or may not have the same value (cf. examples U4 and 5: terms
with equal values because of (2.2.2); examples 5 and 6: terms with
unequal values; in both cases distinct graphs with the same configur-
ation).

Let 91,92,...,91 be 1 unequal numbers from { 1,2,...,n} and let

Xq,kg,...,kl be the permutation of 91,92,...,91 satisfying

A< hp o< <A
then the terms

i "o P WY

Uq V1 U2 VE Uk Vk

and

w W W

e ,0 e, e, Gu » 9,

have equivalent graphs. This 1s evident from the way of construction of
the graphs corresponding to each of the two terms; the labels of the
points of one graph form a permutation of the labels of the points of
the other one. As these labels are omitted anyway, both graphs are

equivalent.
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Example:

1=3, 04=T, O,=4, €;=9, thus A =k, A;=7, A;=0.

1 2

w w =W w —— © e ) il O
Mg Ay T RO (2 (D (3
we o) We o =w74w79 —_— o—(-—-—-—1 -——)—-2 ©
1252 ©1293 ’ ’ (1) (2) (3)

From these considerations it follows that two terms then and only
then correspond to equivalent graphs if they can be written in the form

Yo ,o. Yo ,o ‘Yo ,g
T vq Mo Vo %
and
w w ese W ]
cu,]’cv/l Cu2,Cv2 C”k’cvk
where L5 Losesesty are also unequal numbers from 1,2,...,n , with-
out interchanging factors w or subscripts to one w, Therefore the sum
over all terms in (] wij)k, each of which corresponds to the same graph

G can be written as

K n n

(2.2.5) ) { T w, . G} = 7 ... 1w "
' ] 2] el (2] ,9 ’
J=1 2j-1 23 91=1 91=1 uyT vy v v

(91,-0-;91)#
where 1 1s the number of points of the graph G.

Remark: In general there are several sequences Mg Moseens Wiy
VysVos e eesVy co?responding to the same graph G, e.g. v1=1 v1=2
leads to ® wpeo , but also u1=2 and v1=1, agailn because the

point labels are omitted. For use in the notation (2.2.5) one can
choose one of these sequences., We shall use the one in which the
u's and v's increase in order of appearance. Thus e.g.

Yo e Yo o rather than Wo

w .
126 764595 3294 764,8

3772

Now consider two distinct graphs G1 and G2 with the same configur-
ation, This implies e.g. that the value of 1 is the same for both graphs.
Given a set of numbers A A5, ..., Al from {1,2,...,n} with
A1 < Ae <... <A1, there correspond 1! terms of (2.2,3) to each of the
graphs, viz. the number of permutations of the labels of the points.

Because G1 and G2 have the same configuration, G,l can be made equivalent
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to G2 by means of a permutation of the labels of the joins (which cor-
responds to a permutation of the factors w in TT W ) and by

I teg-rteg
changing the direction of the orientation of some joins (which cor-
responds to interchanging pairs of subscripts to single factors w). A
term of (2.2,3) corresponding to graph G, becomes therefore, with this
permutation of the w's and thils interchange of pairs of subscripts to
single factors w, a term corresponding to graph G2. The value of both
terms is equal, because of (2.2.2). Thus to each of the 1. terms with
graph G1 there corresponds one of the 1! terms with graph GE’ having the
same value, Thus

k k
(2.2.6) I { T w | a } -3 { T w | G } ,
j=1 Teg-12 T2y ] J=1 Toy-1rtoyl @
which shows this sum to be equal for all diétinct graphs having the same
confilguration. The contribution to (2 wiJ.)k of terms correspondlng to a
h o h
given value of 1, and to a given configuration § C L , with § k, =k ,
121 Kyoly 1

h 1="1
1 1, =1, is therefore
1=1

h  (a,) n n
en AL e ) 1 L o e e
1=1 1’71 91—1 91~1 LB LIV
(04 ..0,00 )7
h (ai)
where ,4f Z Ck 1 ) 1s the number of distinct graphs having the con-
i=1 1’71
(o)
figuration 1 c 1 (ef. section 2.1), while the graph
121 Kyaly

corresponding to the set of numbers W ug,..., uk’ “1, VE""’ Vk is
one of the graphs having this configuration, Symbolically we write
(2.2.7) as '

(2.2.8) ,4’( ? ci“iii) z"{ w1 ) i% ciaiii}

1=1 1 =1 1

Summing over all configurations with h connected components, k joins

and 1 points - thils summation will be indicated by Z" h h
P dky=ke, 1 1,=1
i=1 2

summing over all h and 1 gives now [1=1
1
oAl e
(2.2.9) ( W ) - h h ( c )
gﬁ ! Loy I ky=k, I 1,=1 121 Kyoly
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2.3. The quantities {*{ w1 ) s}

Congider the sum

n n
2.3.1 Ces oo B
(2.3.1) [°] 21 (] £1 Weu ’ev wgu ’ev
1 T 1 1 k k

(e,],...,@l)%

where (cf. section 2,2) in the set of numbers VogsHos e asBysV sV sV

all numbers 1,2,...,1 are represented in such a way that the configu-~
h (ai)
ration of the graph corresponding to each term of (2.3.1) is | Cp 71 -
i=1 1271
We now introduce a graph corresponding to a sum
n n
(2.3.2) o £1 g £ weu 8, o weu 8, y
1 1 1 i k k
D)(-

where D™1s a restriction yet to be specified and Moo Mos e was Hps Vs Vos sV
are the same numbers as in (2.3.71). The graph corresponding to the sum
(2.3.2) is obtailned as follows. Take a set of 1 points and label them
1,2,...,1. Join the points labelled My and vy (J=1,2,...,k).
A graph 1s then obtained with labelled points.

If the restriction D" is: "91, 92,..., 91 assume unequal values",
the blank graph corresponding to the sum 1is identical to the blank graph

corresponding to each of the terms of the sum.
If the restrictlon D is defined 6therwise, this 1s not necessarily so.
The value of the sum remains unchanged 1f the order of the w's i1s
changed, and (or) the pair of subscripts to one w 1s interchanged for
some w's. Therefore the value of the sum depends only on the blank graph
corresponding to the sum, the restriction D*, and the point-labels, as
far as they are needed to specify D*.
If the restriction D™ is "91, 92,..., 91 assume unequal values"
the notation for (2.3.2) has been introduced already:

h (o)
(2.3.3) Z*{ w(q)...w(k) |1 Ch il }
i=1 1’71
If the restriction D™ is empty the sum will be indicated as
b (o)
(2.3.4) ) {w“)...w(k)s 1o b } ;
i=1 i’7i
h (ai)
where E Ck 1 1s the configuration of the blank graph corresponding
i=1 1’71

to the sum. Finally if the restriction D* 1s that the subscripts
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6., assume unequal values and no res-

© 1,4+, ,.41 +2 22 7]
1 u

.41 410 ©
u

1

triction is imposed on 0, @ (15u<h), we need only

2]

seees
2 1 +...+lu

1
distinguish between these two sets of point-labels to specify D*, and
write

o4

R R Y

1=1 i’ i=u+ i’
Note that
S G R O S I L
(2.3-6) 2 { w ce oW I 121 cki,li * <i=£+1 Cki’li >}
(1) (gt u (o)
D {w Lot )
o (kgteoodik 1) (k) h (o)
. * 0 e C *
) { w " 1=u+1 Kiolg }

We now remove the restrictions imposed on the sum (2.3.1).

Ignoring the inequalities on e.g. 91 leads to

n
(2.3.7) PP Wg g eV
04=1  8=T Ty’

(84s---,8_1)F

where the blank-graph corresponding to the sum still has the configu-
h (ai)

ration § C .- The difference between (2.3.7) and (2.3.1) consists
121 Kyoly

of {1~1) sums like {(2.3.1), but where in the j-th one ©; 1s replaced by

QJ (J=1,...,1-1). The configuration of the graphs corresponding to the

J-th sum can be obtained from the graph (with the labelled points)
corresponding to the sum (2.3.1) by making points 1 and j coincide,
The following three cases may arise.

h (ui)

1) In the graph with configuration Z C polnts 1 and j are con-
121 Kpoly

nected by a Join. This means that 91 and ej occur as subscripts to
one w. Taking 91=9J the sum concerned 1s equal to zero by (2.2.1)
and 1s therefore omitted.

2) Points 1 and j belong to one connected component, say to the one
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wlth configuration Ci:jiq, but are not connected by a join. Making
points 1 and j coincide, the configuration thus arising is of the
B) h (ai)
form ckq:11‘1 + o Cki’li
3) Points 1 and j belong to different connected components, say to
(a)) (a,)
Ck1,11 and Ckg’lg respectively.
The configuration of the graph obtained by making points 1 and ]
coincide 1is of the form cieik L ela % ciaii
1772 T1 72 i=3 1771

Thus (2.3.1) in which 1 ©'s had to be unequal, 1s expressed as a number
of sums in each of which (1-1) ©'s have to be unequal. Repeating this
procedure of removing lnequalities imposed on summation indices leads to
h (a,)
He
(2.3.8) § { w(q).,.w(k) | 1 ¢ 1 } =
1

121 Kysl

h 1 h h' '
% 1 ' (a ) (u )
h h i 1
Loobe b e o A( oo, o Ck',l‘)'
h'=1 1'=2h FECRE LY g 1=1 1071 1=1 f10y
: h' (ay)
N ERIECIES SRS
121 Kyoly
b (a3) h' (ay)
The coefficients X Ck 13 ) Ck' l') are defined by
1=1 171 i=1 171
(2.3.8) only for the case
h2h',
h n' ‘
(2.3.9) D k= 1 ky =k,
i=1 i=1
b b
1, =121 = 1
1=1 1 121 1
A (o) h' (ey)
If for two configurations ] C, 7 and [ Cp17y1 any of the

i=1 1’71 i=1 i’71
relations (2.3.9) does not hold we define
b (o) h' (ay)
(2.3.10) Y ( oo, t) s 1 oot ): 0.
i=1 i°7i i=1 i’71
It is evident from the description given that even if (2.3.9) is satis-
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fied, (2.3.710) continues to hold if the blank graphs with configurations

h (ai) h' (ai)
Cyx 7y and ) Cy17yr are different, and the latter cannot be
1=1 i’7i 1= 12+

obtained from the former by making points coincide., This is certainly

h' (ui
the case 1f either E Cku 1! has a component containing less than

i=1 i°71

h (ai)
min (k., ko,...,k_) joins or z o has a component containing
1 %2 h k,,1,
i=1 i’7i
more than max (k%, ké,...,ké-) joins. This proves
Lemma 2.3.1
h (ui) h' (ui)
If for two configurations I Ck 1 and Z Ckx 1! (2.3.9) is
1="1 1271 1=1 i+71

satisfied, then

AL o) 5§ oaith) -

1 1 =
121 Koy 7oy kyely
if either
(2.3.11) min (k,,ky,..,ky) > min (k4 ké,...,kgl)
or
1 1

(2.3.12) max (kc;, Ky,..,ky) > max (kg ké,...,khx) .

Consider again the sum'(é.3.1) with k replaced by (k+g) and 1 by
(1+2g). Suppose that the graph corresponding to the sum has confilguration

? o) g
g 4
1o kgl 1,2 "2
h h
where k, 2 2 for i=1,2,...,h , 121 ky =k, 1{1 1,=1 . Let the labelling of

the points of the graph be as follows. The points of the g connected
components with configuration C,,’2 carry the numbers 1 and 2; 3 and 4;..
...3; 2g - 1 and 2g respectively,

This means that e.g. the summation-subscripts 91 and 92 occur as sub-
scripts to one w, and both occur only once in the product., The other

1 points of the graph carry the numbers 2g+1, 2g+2, ..., 2g+l. In our
shorthand notation (2.3.1) is written

* k+
(2.3.13) ) { w(q)...w( g)
Now remove the inequalities imposed on 91 and 92 .
The inequality 91#92 imposed on (2.3.13) can be dropped without (2.,3.13)
changing in value, as 91 and 92 occur as subscripts to one w,.

(a,)

h
Eq ki1, T B0, }

i i

Ignoring the inequalities on 91 and 92 leads to



. * h (e,
(2.3.1%4) ) { w(q)...w(k+g) I( i£1 Ckifll + (g—1)01’2) + 01’2 },
which by (2.3.6) is equal to
* - h o (e,)
(2.3.15) j% Wy i {w“)...w(Lc+g R i£1 Ckifli + (e=1)C, 5 }

The difference between (2.3.15) and (2.3.13) consists of sums like
(2.3.1) for each of the following cases

16405 6 i, ©14pg and 6y = 9y (J=3,4..., 1+2g)
i1 84 =904 and & # 35 Oy +evs ©)i0, (J=34..., 1+2g)
iii o, = eJ.1 and o, = QJE (j1, Jp = 3,4,..., 1+2g).

We start with the (1+2g—2)2 sums corresponding to ili. The (1+2g-2) sums
with
=0

G,] 2=9J ( J=314:---: l+2g)

are ldentically equal to zero by (2.2.1). The 2(g-1) sums corresponding
to

@1 = 93 92 = Qu
91 = 94 92 = 93
91 = 95 92 = 96
O1 = O 9 = Oy
b (o
all have a graph with the configuration § C 71 *Cpp (g-2)C1 5 s
i=1 1’71 i V ’

thus giving as a contributivn to the difference between (2.3.15) and
(2.3.13)

. h
2e-1) I wl Dl ot ey o e 20y )

i

There are 4(g-1)(g-2) sums, viz. corresponding to
91 = 93 s 62 = @5, 96,..., 92g,
(-),I = 94 y 92 = 95, 96,..., ng’
0, =05, Oy =05, 0, 6., 6,

.
.

©1 = €gs O = 935 Osen, 65y o

all corresponding to graphs with configuration
(a;)  (2)
In

i
c +c
12 Kyl 35

ol + (g—3)c,|’2 » thus giving as a contribution to the
i
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difference between (2.3.15) and (2.3.13)

b (o) (2)
»* 1 k+ i
be-1)(e-2) T (WD w98 | T o7t wer, v (em3)0y )
i=1 1’71
There are 4(g-1)1 sums in iii, viz.
e, = 93, Opsenes egg P 92g+1’ 92g+2""’ 928+1
8, = 92g+1’ 92g+2""’ 92g+l 5 84 = 93, Oysenns 92g 5
h (a;)
corresponding to graphs with a configuration z Ciw 1% + (g-2)C "
129 ki’li 1,2
£ h o h ¥
where kiz 2, g ki = k+2 and ] 17 = 1+2 .
i=1 i=1

The multiplicity with which sums corresponding to graphs with configu-

h (o)
ration § C Wi + (g-2)cC occur may be denoted by
ky,1 1,2
121 fy0ty s
h o (ay) ho (e})
i i
4(g-1) /%O ( ; Cy 1, 5L Ck*,l*) , where ./%0( ; ) does not depend
i=1 i1 1=1 i’71
on g.
Finally there are 1(1-1) sums in iii, viz,
04 = Opge1r Cogiprever Opgr1s 9 = Opgiqr Opgupsees Gpgirs 8478
h™ (a;
corresponding to graphs with a configuration Z Ck» 1t (g-—‘l)C1 o s
1=1 1°71 ’
" n* h*
where h-15h Sh, k22 , z k¥ = k+1 and I 1% = 1, The multiplicity
i & i “ i
i=1 i=1
b (ay) h* (aof
2./”1 ( I Cp il ) Ck*il“) with which sums corresponding to graphs
i=1 1’71 i=1 1771
B (o))
with configuration 2 C, w0 + (g=1)C occur does not depend on g.
124 ki’li 1,2

With regard to 1 and i1i the 4(g-1) sums with
R T R . LI TRTRPRW

91 = 93, 94,..., GQg s 92 # 93, 94,..., 91+2g

h (ey)
correspond to graphs with configuration Z [ 11 + C, o, + (g—E)C1 o
121 Kyely 723 :
thus contributing to the difference between (2.3.15) and (2.3.13)

% h (“)
R R I RS RPN O B
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The 21 sums corresponding to the remaining cases in 1 and 1i, viz.
&) e &)

04 # 835 Oysevis Op4py s 92 = Opg4q0 Opgipreees Ogul
1 = Cogsqs Oogips-es Opgi1 5 9 # O35 Oupsens Opipg :
correspond to graphs with a configuration
e ; ;
Cpw 1% t+ (g-1)C where k%322 K = k1 1% = 141 ,
124 ki, 13 1,2 ° i Tyoq 1 ?yeg 1
b (ay) b (ef)
while again the multiplicity 2. M ( I ¢ ;1 Cpw'qw ) with which
2 k,,1 k¥, 1
i=1 1’71 i=1 1°71
h (a¥)
sums corresponding to graphs with configuration Z Cpse qee + (g~1)C
129 ki,li 1,2
occur does not depend on g.
h (ai
We have now established for a configuration E C with
121 Kyoly
h h
) ky = k, ¥ li =1 and g>0
i=1 i=1
* h (o)
(2.3.16) 1 {w“)...w(“g)l I ¢, b e, } =
i=1 1771 ’
h (e.)
» 1) (k+g-1) i
Vow, L] { WD | I ¢ + (g-1)C r
1y 121 Kioly 12
b (e)
* 1 k+ i
- 2(g-1) § { w1 wlkre) oy i1 *Cop * (B82)C, 5 } +
i=1 1°71
wg (1) h (o
k+g) 1
- uten) U W et ey e (eR)ey 5 ) 6
1Eq kgl 2,3 1,2
. 2
1) k) (oy)
- wg-1)(g-2) 1wl Ml # 0y + (6300, |
121 ki, 1 3,4 1,2
) h (o) h (af)
- i(g-1) I h i o( Che 11, 5 k"il*)
I 22, ] ki=k+2, ] 17=1+2] i=1 Ti'7i i=1 st
. i . i
i=1 i=1
b (o)
* 1 k+g i
») { w( )...w( e) J.{ Ckf’lx + (g~2)01’2} +
° i=1 i’71
2 h " . . h (o) - 0" (ef)
-2y h ne B D N R N
s=1 h=h+s-2 Lk;;:; 2, 1 Kf=k+1, ) 17=l+s-1| i=1 1’71 i=1 "177d

i=1 i
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We now prove

Lemma 2,3.2
h (ai) h' (ui)
Given two configurations Z C and Z Cyt t and two non-
k.,1 ky,1
i=1 i’7i i=1 1073
negative integers g and g', such that
a) kj22,1=12,...,h and k;j22,1="12,...,h',
h h'
b) gt lki=g"+ [kj=k+g,
1=1 i=1
h h'
c) g+ L1, 228 + ] 1 ,
i=1 i=1
then
h (o) h' ay )
i i 1
. + c =
A(iL Ckpo1y T2 5L Oy 8 1’2>
0 if 0gg<g'
= h (a,) h' (a))
g) A( 1 oty + (e ; : 2
A g~g )C I Coio if g2g'20
(g i=1 ki’li 1,2 ° 1=1 ki,li [
Proof

The lemma 1s obvious for Of g¢< g' since the number of components
of a blank graph having configuration 01,2 cannot increase when points
are made to coincide (cf. the remark leading to lemma 2,3.71). As the
lemma is trivial for g'=0 we consider g2g'> 0 . Apply (2.3.8) to both
sides of (2.3.16) and consider the coefficients of

(1) (k+g) ' (ay) |
2.3.1 P .
(2.3.17) ) { W W L Gl * 802 }

As (2.3.17) is equal to
_ h' (o))
i.wij ) { wl 1) (lere=1) | leflu + (g
ij i’71

"1)01,2]’

the coefficient of (2.3.17) in the expression obtained by applying
(2.3.8) to the first sum in the righthand member of (2.3.16) is equal to

i=1

h (o)) h'  (ay)

1

A ( ¢,y o+ (g-1)C ;Y o¢ v+ (gr-1)c )
121 Kyoly 1,2 121 Kioly 1,2

Thus one obtains the recurrence relation
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.
—
+
g
Q
-

n
e
Q
5~
- @
- -
o
+
o8]

Q
JN
no
S
il

i=1 i’71 i 1
h (ai h' (uj‘_) 1
-2(g-1 i£1 Cki’li +Ch ot (8-2)C, 5 s 12{1 Cki’li + g C’I,E) +
(o)) h' (ol
i 1 0
-u(g—ﬂ)ﬁ( _2: cki’li + Cy 3 + (g—Q)C,] o i2='1 Ckithle + g c,|,2> +
h o (ay) (2) h' (o)
i 1 i
~4(g- -2 + - +g'c +
4(g ’1)(g )ﬂ(i£1 C i’li 03’4 + (g 3)0,] o 3 g/] ijl_ll;_ g 1’2>
ho (o) b (o))
1 1
-4(g-1) | h h M(Zc 50D Cpwge ) .
22, L kr=ke2, § 1%=142] © O\M2q Kioly Togoq R
= =1
h  (a}) h' (o] '
A(i—’l Cpiag * (B0 5 L Oy e 01'2) i
2 h " ho (o) n* (o)
1 1
-2 3 J n™ n* (ic ZC«.%).
s=1 Hifirs-2 |Kf2 2, | K=+, | 1‘*=1+s—1_[/‘4s 121 Kyody 7 ogzq KLy
1=1 1=1
" (af) ht (a)
i .- . 1 !
'/Q( 1£1 Cipay T (5164, 5 1£1 Cjay T E C1’2>

For O<g'=g one obtains from (2.3.18) using the first part of the
lemma (1.e. the case where O0Sg<g') and (2.3.10)

h (e) bt (ay)
1 1 . 1 1 =
A (i£’1 Cki’li fEfee 1);1 C“i’li TEC2 ) )
b (ay) h' (ay)
_ 1 v . i r -
_/4<i£1 Cki’li +(8'-1)C, 55 izq Ck."L’lf:_ + (g 1)cq’2)

repeating thls procedure
i t
A ot E i)
1=1 i°71 1=1 i’71
which proves the second part of the lemma for g=g'. Suppose the lemma
is true for O<g' 2gsg'+r-1 (r21); we shall then prove it to be
true for g=g'+r too.
1

For g ,f,g:,g!ﬂ’—ﬂ it follows from the lemma (which was supposed

to be true for these values of g)

(2.3.19) A(1 o) P oo
2.3.19 ( C + gC H C,i 1 +g'C >
129 Kyolg 1207 g2y TRysly 12
h (a n' (a.)
g ‘ N : i
- -g"I /4<1;_-’] Cki’ll + (g—/‘)cfl’g 5 iz_”l Cki’li + (g /I)C/l 2)-
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Now take g=g'+r in (2.3.48) and apply (2.3.719) tc all but the
first term of the righthand member of (2.3.18). This leads to

b (o)) , n' (a)) '
(2.3.20) A ( 121 Cki’li + (g}+r)cq’2 ; 121 Cki’li +8'Cq ) =
/Q(ii1 Ciz?ii + (g'-f-r'—’])C,I 53 12; Ciz%li + (g"ﬂ)Cq 2) +
+ g';?‘1 [ _2(g'+r—2)/Q(iiinZfil+ C, 2+(g +r~j)Cq,g,ig'Ckz%li+(g—1)cq’2>+
- Mg'ﬁ_?)ﬂ(iiqcf‘:ii + G, 3+(g‘+r~3)c,] 5 ii;cl(:il, +(g'—’l)C,] 5 ) +
- u(g'+r-2)(g'+r—3)/4(iz1cizfii+ c;?i+(g;'+r—4)c1 o ;ii;ci2%5i+-(gtﬂ)01)2)+
- Hete) Z“[k;,:e, 1 i =kcr2, i lI=1+gf/ﬂ°(1iﬂciziii ’ 1iqci;§i§> :
1=1 1=1 *.
/Q(i}iqcigi; + (g'+r'~3)C,]’2 f ;Z:C(Z{Lii + (gl—’l)C,l’E) +
i 2si1 61§+s~2 Z“Ly;: 2, §*k§=k+1, ?*1;=1+s—11/“5<1§10iz§i1 ’ 1§:Ci;§if)
1=1 1=1
./?(ii:cig?i? + (g'+r-2)C, 5 1i;ciz%ii + (g'"ﬂ)C1’2>] .

For g' >1 the terms inside the square brackets in (2.3.20) are
by (2.3.18) equal to

/4 h i 1 h' (G:;-)
+ +r- v+ '-1)C +
(1£1Cki’11 (8 =100y 5 1£10ki’li tet-) 1’2)
h (a,) h' (e;)
i t - 1 L.
- /4 (i£1cki’li + (g'+r 2)0,1’2 3 12=1Cki’l£ + (g 2)01,2) B

thus from (2.3.20) the following recursion relation is obtalned
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. | b (o) B' (a3)
i ' L '
(2.3.21) Y chki’li + (g'+r)C 5 5 izqcki’l. teCyo) *
i= ’ = i
1
h (0.) h' (G)
'4r-1 1 ; N -
- ('H' %)A (1§10k1;11 * (g'+1"—'])C1’2 ’ i?—"lck;li_:l'i " (g 1)C1:2 ) i

e gee)e, 5 B ¢ (e2)e,, ) - O
+ (g +r- ; v+ (g -2)C =
1 1,2 121 ki’li 1,2

For g'=1, (2.3.21) remains valid 1f the last term is simply
omitted, thus giving

a, ) n' (a;)

=
+
3
Q
Ry
“
n
e
Q
~
[,
w
=
S

Taking g'=2,3,... successively, the result of the second part of
the lemma is found for g=g'+r. By induction the second part of
lemma 2.3.2 then follows.

Lemma 2.3.3

r+s
u -
u£O /@( 2r01’2 + tcg’2 + SCE,3 s (’c\«u)ca’2 + (r+s u)Cg’3 ) yo o=

= (-1 (2r)t (1-y)%(2-y)"
r!

Proof
Consider the sum

(2.3.22) Z* { w(q)...w(gp+25+2t) | 2rcC + tC

1,2 2,2 * 80y 3 } g

In the summation 4r+3s+2t summation-subscripts are involved, viz. the
number of points of the graph corresponding to the sum. Let the poilnts
of the graph be numbered as follows. The first and second points of
the connected components with configuration 01’2 are 1 and 2; 3 and 4; ..
.3 br-1 and Y4r respectively; the points of the connected components
2,3 are br+1, 4r+2 and 4r+3; ...; Ubr+3s-2, br+3s-1
and 4r+3s, where each time the second number refers to the point where

with configuration C

the two joins of the component meet. Finally the points of the connected
components with configuration C are 4r+3s+1 and 4r+3s+2 ; ...
4r+3s+2t-1 and 4r+3s+2t.

In (2.3.22) remove the inequalities on the summation-indices

2,2

94r+35+2t—1 and 94r+3s+2t.
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Then
(2.3.23) Z*{w~(1)...w(2r+25+2t) | arc, o+ tCy 5+ SC2,3} =

- 3 W?j z*{ W(ﬂ)-..w(2r+2s+2t—2) |

13 2r0q,p * (821005 o + 50 5 }+

- sums corresponding to graphs having at least
one connected component with three or more joins.

Apply (2.3.16) to both sides of (2.3.23), collect the coefficients of

1 { w(“)'__w(2r+ES+2t) | (t+u)Cy 5 + (p+S~u)C2’3}

or (what is just the same)

2 (1) (er+2s+2t-2) .
iij Wi N { w W | (t+u )C2

+ (r+s-u)cC

:2 2}3} ’

and apply (2.3.12) to obtain

(2.3.24) f%(2r01’2 + tCE’2 + 8C

= /4(21"(3,],

0,3 (t+u)C2’2 + (r+5nu)02’3) =

o ¥t (t—1)02’2 + scg’3 B (t+u~1)02’2 + (r+s-u)02’3) 5

repeating this procedure,

= /2(2?01’2 +8Ch 4 3 uCy 5 ¥ (r+s-u)C2’3) .

Consider now
(2.3.25) E*{ W) (erees) | 2r01’2 + 502’3} s

where the points of the connected components with configuration Cq 2 and
3
0213 are numbered as before. Removing the inequalities on 94r+3s—2’

eur+38_1 and 94r+33 leads to

(2.3.26) Z“{ Wl y(2re2s) | erc, , + sC

2,3 } -

#( (1) (er+25-2) .
1§k myy My ) { w( ...w( | 2r01’2 + (s 1)02,3 } +

-1 { wl L lBreee) arCy o + Cp p * (8-1)Cp 4 } "

2

il

- sums corresponding to graphs having at least
one connected component with three or more joins.

The second term in the righthand member of (2.3.26) arises in taking

94r+33—2 = 94r+js in (2.3.25). Apply (2.3.16) to both sides of (2.3.20)
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and collect the coefficients of

¥ {w(’l)“.w(Er+23) | uCy, , + (rﬁ-s-u)C2 3} s

or, what amounts to the same, of

1 2r+2s-2
igk My gy ) {w( )w( r+2s-2) | uCg’2 + (r+s—u—’1)C2’3}

and apply (2.3.12):

(2.3.27) /@(2rc1,2 + 502’3 ; uC?’2 + (r+s~u)C2’3)

il

A( 2rey 5 + (8-1)Cp 5 5 uCy , + (r’+s-u—’l)02’3) +

R(2rc, 5 +Cpp+ (82100, 5 5 uCy 5 + (r'+s—u)02’3)

by (2.3.24)

I

-/4( Er*C,],

,4( ZJr'C,l’2 + (s--’l)C2J3 B (u-’I)CE’2 + (r+s-u)02’3) .

o * (s—’I)CQ’3 B u02,2 + (r+s—u—’l)02’3) +

Introduclng the abbreviation

f

1ﬁ(s,u) - A (EPC,I’2 + 302’3 ; uC2’2 + (r+s-u)02’3)

(2.3.27) can be written (with the obvious modifications for u=0 and

u=r+s):
(2.3.28) f‘r(s,u) = f‘r.(s—’l,u) - f‘r,(s-’l,u—’l) for O<u<r+s ,
fp(s,o) = I‘P(s-1,0) ,
f (s,r+s) = - fr(s—’l, r+s-1)
It follows from (2.3.28) that
r+s u r+s--1 u r+s u
I f.(s,u)y” = ) f(s=1,u)y" - i £(s=-1u-1)y" =
u=0 u=0 u="1
r+s-1 u
=(1-y) 1 f.(s-hu)y .
r
u=0
Repeating this procedure gives
r+s r
s u
(2.3.29) I ra(s,uw)y” = (1-9)° [ r.(0,u)y

u=0 u=0
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Finally consider
(2.3.30) 2*{ W (o) | erc, 2}

where the points of the connected components with configuration C
are numbered as before. Similar to (2.3.23) we find if the inequalities

on © and egr are removed

2r-1

z*{ w(1)._-w(2r) I.2rc1’2} = i% wij'Z*{ w(j)...w(gr_

1,2

2) | (er-1)c, 2} +

- 2(2r-1) 2"{ WD w(er) (2r-2)C, , + cg’g} +

- W(2r-1) z“{ T B C- )

2,3}

- sums corresponding to graphs with at least

one connected component with three or more joins.

+

Apply (2.376) to both sides of this equation and collect the coefficlents

of
) { w(1)...w(2r) | u02’2 + (1"—u)02,3 }

Thus for O<u<r , using (2.3.12)

fP(O,u) = A (EPC1 o 3 u02 ot (r—u)C2,3)
= - 2(2r-1) (QQP 2)01 o * C2,2 ; 1,102,2 + (r-u)Cg’B)
- 4(2r-1) ( 2r-2)C, 5 *+ Gy 4 5 UGy 5 * (r-u)CE’B)
= - 2(2r-1) A ((2r-2) P (u=1)0y 5+ (r—u)CQ’B)
- 4(2r-1) A ((2r-2) +Cp 3 5 uGy 5 + (r-u)Cp, 5
= - 2(2r—1)fr_1(0,u—1) - 4(2r-1)fr_1(1,u) =
2.3.2
by (2.3.28) +2(2e-1)f,_1(0,u=1) - 4(2r-1)r__,(0,u)
For u=0 and r
£.(0,0) = - M(?r—ﬂ)frnq(o,o),
fr(O,r) = 2(2r—1)fr_1(0,r—1)
Thus
r u r-1 u
L of(ou)y” = -2(2r-1)(2-y) I r._,(0,u)y
= u=0

Repeating this procedure gives
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u=0

r . 1
L0yt = (<)@ (erea)(2rea) a2 L e (0,u
u=

Now f1(0,0) and f
(2.1.7) with k=2

1(0,1) are found easily by applying (2.2.9) and

2
( ) wij) = 1 Wyge Tt /7?02’3)(12 )%wijwik +u/7102’2)<12)%W§j =

(1Jk1)# Jjk J
U ow.w .+ 4 Y wow, +2 1wl
(1gk1)# TEL O (gi)g PR gy
2 2
No . =
! ( iZJ ) b iijwi J
2
(1jk)#w13wik Ekwljwik zle
thus
2 2
(i}kl)%‘”ij‘”kl =(in.‘“’13) -4 i?jkwijwik +e 123‘”13
Comparing with (2.3.8) we find
£,(0,0) = /4(201,2 5 Cpg) = -
£00,1) = A2c, , 50, ) = 2
Thus
r
(2.3.31) Zof‘r(O,u)yu = (-1)7. 2(2r-1)(er-3)...3.1 (2-y)" =
u=
(2r):
= (-7 (2-y)¥
r!

The lemma now follows from (2,3.24), (2.3.29) and (2.3.31).

Lemma 2.3.4

If for 1,j=1,2,...,n, wij; 0O and Z wijé ¢ , where ¢ 1s a constant
J

not depending on 1 and n, then

h (ea,)
) {w(”...w(k) | 1o, ili} = oY

Proof.

101
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the lemma is proved if it is shown that

(2.3.32) I {w“)...w(k) | cfﬁ}: & (n)

f'or every k, 1 and o

For k=1 and 1=2 (2.3.32) is true, because

1)
) { wl | ¢ } = Jw,, 2 ecn
1,2 1j ij

For k > 1 consider first the case l=k+1. Now cl({“&ﬂ

5

a graph containing no circuits; it is a tree (cf. D.KOENIG (1936), 53).

Each tree contains at least two points to which only one join is con~
nected (cf. D.KOENIG (1936), 49), Let one of these points be labelled k+1.

This means that the summation-subscript 9k+1 occurs only once as a

is a configuration of

subscript to the w's. Summing over 9k+1 gives

) { w(q)...w(k) | C(a) } < ¢} {w(q)...w(k_1) | CLB) K } .

k, k+1 = -

where the graph with configuration C&?% K * 1s obtalned from Cﬁa&+1

3 3
by taking the point labelled k+1 away together with the join connected
to it. The remaining graph 1s again a tree. Repeatlng this procedure

leads in k-1 steps to

(2.3.33) I {wlD. k) Cf:liﬂ} P R S
which proves (2.3.32) for l=k+1.

Now consilder a graph with configuration C&ui , with 2 1<k+1. In
3
this graph one can take k-1+1 joins away, such that a tree CI§% 1 remains
3
with 1-1 joins and 1 points (D.KOENIG é1936), 53). Let the joins that can
w

be taken away correspond to w( then

w(q)...w(k) < K1 w(q)...w(l'ﬂ)
Summing over the 1 summation-subscripts involved gives

R Nl PR PR I

which by (2.3.33) proves (2.3.32).
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CHAPTER 3

3.1. The moments of z

In section 2.2 the starting-point has been the set of numbers wij'
However, the development given in sectlon 2.2 does not change 1f the

Wij are random variables, thus ﬂij . Only (2.2.1) should be replaced by

(3.1.1) Wiy =0 , spr 0

Thus analogous to (2.2.3) we have

(3.1.2) (1w )* i i
3.1.2 W = e W el W
4y T4 =1 =S e - TTok-1° T2k
Now take
(3.1.3) Wy g £ myy 2y (1,3=1,2,..,n) ,

where 244 are the random variablesintroduced in section 1,
then (cf, 1.1.8)

z= l m,z, .= L W
2z 1y 13 =y 1y

Consider one term of (3.1.2)

(3.1.4) W w el W
TqrTo T30 Ty Tok-12Tok

which by (3.1.3) is equal to

(3.1.4") m ..om .z cee Z
REERE Tok-12 "ok T2 Tok-10 T2k

where we assume 051 # ) (J=1,2,...,k). Among the 2k subscripts
T sTose..s Ty, 1 unequal numbers from 1,2,...,1 occur (22152k). Call

these A A, with

122 esty
,‘<A2< sve < Al

Each of the t's 1s equal to one of the A's., Let

To5-1 T Au. and Toy T A (3=1,2,...,k)
J
then (3.1.4') is equal to

(3.1.5) My e My a s Ey s By
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The product
m e m
A, s by A
LR e TV
will be called the m-part of (3.1.5),
the product

A, s A =X s
L "k Yk
the z-part.
To the set of numbers “1:"2:---’“k’ VisVoseeasVy T and therefore
to the m-part and the z-part of (3.1.5) - there corresponds a graph,

as Indicated in section 2.2.

As shown by examples 1,2 and 3 and 4,5 and 6 of Table 2.2.71
(replace w by m), the m-parts of two terms of (3.1.2) corresponding to
equivalent graphs may or May not have the same value. Also the m-parts
of two terms of (3.1.2) corresponding to distinct graphs, but with the
same configuration, may or may not have the same value,

Regarding the z-part of the terms of (3.1.2) we introduce the

following

symmetry assumption:

For k=1,2,..., the expectation of the z-part of a term of (3.1.2)
depends only on the configuratlon of the graph which corresponds
to that term.

Examples (cf. Table 2.2.1):

1) Bz, = EEBT , as beth z., and 2o have a graph with
configuratione 0.
2 2 2 . 2 .
2) Ez5, = E£35 » as both z3, 2,5, 2., and 235 ¥ Z3g Z35
T
have a graph with configurationo\~—/9.

(B) (W)
It will be shown in later sections that in fact 513 R ﬁij 5 Xij

and lij satisfy this symmetry assumption.
If the configuration of the graph corresponding to (3.1.5) is
h (ai)
Ck 1 the expectation of the z-part will be written symbolically
i=1 1’71
as h o (o)
E(_z_(/l)...g_(k) I ¢ ll)
i=1 i’7i
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k
The contribution to Egk = E( zﬂij) of terms corresponding
1j
h (o)
to a glven value of 1, and to a given configuration z Ck il B
h h i=1 7171
(Ix, =k, I 1, =1), is now by (2.2.7), (2.2.8) and the symmetry
j=1 1 1=1 1
assumption equal to
h (a,) n n
i -
J4((1£1Ck1’11) ) 21 e 21 Pl e, t¥e, e, T
1 1 Y10 ¥ ko Yk
(04...,00)F

h (o) n n
=,4rQ; c, ! ) I .. Iom ...m Ez c..z =
Lkl g by e 2 0, 0 6 .6 29 L0 25,0

(642,08 )¢

h ((X ) h (0. ) n n
- i£1ckifli)E(g(1)...g(k)| L Oy ili)ez T P

Bled oy oo Bty ey oy 7L
= /y1;£10k1’11)E(£ AR 1£1Cki’li) 1 { m' L m | 'Zﬂcki’li } ,

where the graph corresronding to the numbers Wslns sty v1,v2,...,vk
h (ai)

is one of the graphs having the configuration Z Ck 1
1=1 "1°71

Summing over all configurations with k joins gives

1
2 |2] h (a
(3.1.6)  mf- ] [z]z b o (1ot )
1=2 h=1 ) ky =k, ) 1,=1 i=1 %1071
Li=1 1=1 "
(1) (k) )y o (1) () B L)
E(z . '1210 1’11) L [m m 1£10k1’ll}
) ] ht (o)
Applying (2.3.8) and defining for a configuration § Crtyt
1=1 %1744

hl
with | 1; =1', inzk and 121
=1

i=1 i
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1
(k) h' (ey) ['2‘ o h (o)
1. 9 ' 'i 1 = :
(3 7) 1,1 (ig Cki:li ) h§=: ! }il k, =k, lf 1.=1 /V( 1;_101{1,11)
L=t Tazat
(1) 00, B ler) Polmal Rl
: E(g_ ez L 11)}%(1& Yt 1£10ki’11) ,
and for 1<1' (cf.(2.3.9) and (2.3.10))
(k) h' (o)
(3.1.8) 91’1.( zqckiili) = 0 ,
it follows from (3.1.6) that
" kooo2k a0 , 2k (k) ¢ h' (o)
. o = 1 1 1.
(3.1.9) R rfk:ffk, 5 1 L 1,l<i£10ki,li)
LE=1 i=1 1

3.2. The reduced moments of z

From (3.1.9) it follows that

1
k-2 JEI‘_‘&] k+g! +h!
k 2 o

Bzm = 1 )

1
1

h h
1 1'=2h'+2g' I ky=k-g',kj22, ] 1{:1'—2g
i=1 i=1 _

2k (k) ¢/ h' (a) . 1 ' (ay) :
L2, 1'(1£ Cuiiay T E C1,2> L {m( SRt Lo ve o2}

+ 2(2;)2}((1{01’2) Z{m(1)...m(k)| kcq,z}.

Thus
Kk
me s Bem) = 1 C0Y(Y) et -
- u;&]
S By [k (1) v (1) a(v) - 2[2
= -1 v
T (D o) T e E
k-v+g'+h' 2k-2v (k-v) h' (o
" ' ' Z 2 ' C, .+ ' 'c )
l'ZEh'+2g' _?ki:l{—v—g',k:’i;&}flizl'—2g' 120 1s1 <12=1 k1’11+g 1.2

[1=1 1=1
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- h' (ay) .
{0t Fei) e

él;:;\);,zk-zv((k““)cq,g) L { n{ (k) (k-v)Cq,Q} .

In the first part of the righthand member change

g' into g'®- v, and g'* into g' ,
then 1' into 1'™- 2v, and 1'™ into 1', and
finally 1 into 1™ - 2v and 1™ into 1, and interchange the order of

s 1
summation over v and g . Then:

! -l(—-g.| 1 1
W (RO R FUCTIN Mt i

g =0 v= h'=1 1'=2h'+2g'
. 2 (k=) n' (s])
.1 n || Rt v 1 ool L CpriyrHe'-v)C, o).
Liquf't:k‘g,ki; 2’1£111=1 -2g' 1=pv2 17@vs1 -2 <1=1 kysdy s )
1 k h | | 3 v [k v
3 {nlD. .l 1Yt S A (%) {E(Z( e, 2)}
(k=-v)
-2 2k-2v,2k-2v ((k“’)cq,g) o1 { ml 1) (k) l kCq o }
For 12 1'
(k-v) B (a!)
(3.2.2) 2 1-2v,1' -2y (iz,]ckifli * (g"")cuz)
[%]i\) Z" h 5 /V(If C(uJ) )I (/]) (k'\))l lilc(al) )
= h o) e(zt L .
h=h'tg'-v  J ky=k-v, } 1.=1-2v ‘=21 Ki0lp (i £ 121 ko ly
1=1 " =11
h (ui) h' (ai)
A (1£1Cki,li ’ iéqcki,li (e '“)01,2>
1 k-
Bl [ . b (ay)
1 Lorgeg b }21 Kk, =k-g, k. 2 2 }21 1,=1-2g ”(izﬂckifll ey 2)
g=g' h—h'—[5§5:l Lika T B = LT
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A

i’71

1
(a!)
ki,l

+ (g'—v)01’2 ).

h
+ (g—v)C1’2 3 gqc

1
1
The lower summation-limit for g i1s determined by the fact that
for g <g' the coefficient 44 is equal to zero by lemma 2.3.2. The lower
summation-limit for h 1s determined as follows. We recall from section

2.3 that the coefficientg@ # 0 only if the configuration

n' (sl) ()
‘Z Ckl,lf + (g'~v)01’2 can be obtained from E Cy k., 1. + (g—v)qug
i=1 "1°71 i=1 71’71

by making points coincide. In this process the total number of components

o !
must have decreased by at least [?~5—ij] Y

2
so h'+gi-v 3 h+g—v—E?%§J:q , or h 2 h'+E£%§J:q— (g-g') = h'—E%?y].
h
By theorem 2.1.1, because of k; 22 and qu =k-g ,

h (ai) (k-v)! h (ai)
/V( ié Cp by + (g—v)C1’2)= oot /V(iéqck ’l) ,

I R | e-v)i{k-g)! i
h (a,) (k-g')! h (a;)
s i ! - —_— & * ) s
<1£1cki’li " (e )01’2> (g-g')!(k-g)! <1£10k1’11
thus
B (o) (k=v)!(g-g')! b (a)
/V<i£1cki’li T eI 2> (k-g')! (g-v)! ”(1210“1’11 " lee )01’2)'

Applying this and lemma 2.3.2 to (3.2.2), changing g into g"+g', and

. 5-¢' -k—ﬂ'
|(‘(ui) + (g = [L] [ ]<kv)

£=0 non —[5]

h (a.)

g* into g, gives

[} 1
oo b ,/V<‘Z k.1, T 8% 2)'
I ky=k-g-g',k; 22, ] 1,=1-2g-2¢ 1=1 71001 ’
Li:ﬂ b 1= _J

ho (a,) h' (o)) o (ey)

i i (1) (k—v
ic +2C., o3 L Coo ‘>. E(g A | ¢ +Hgrg'-v)C ) .
129 Kpoly 72T 2Tk s 121 Ky l1 1,2

In the same way one finds

gaéi:;i,Qk—Qv ((k"“)cq,g) = E<£(1)~--1(k_v) ](k°”)C1’2)
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By applying these results to (3.2.1), it follows after some rearrangement
that

k-2 [:k—égl k+g'+h'

(3.2.3) we I 1 D A U T -0
g'=0 hi=1 1'=2h'+2g 'Lki: -g'uk 2 2,i£111=1 ‘2%__‘ <g)
k_ !
s kg ogeel] ok
R ERON ch{.ii. re'ip) 1] )
1=1 "0 ’ =0 h=h'~[%] 1=2h+2g+2g’
" h (e,)
I n h /V(Xckil +g012>.
k,=k-g-g',k, 22, | 1,=1-2g-2g' 129 Kioly g
Li.;n sHEElg 22, 1 1ym1-Re2 )
b (o) h' (a) g e 1 Y
A (1=1Ck1:11 * 80,2 izqcki’lj') vio(_q) (%) {E("Z”( ! |Cq’2)}
kev) , B (ey) ,
E(E(q) gt lizqc“;li " e +g—v)01’2) ’

+ Z{m(?).m(k)lkcq’g }

Y

.liom)v(l\f){E@( 1)|Cﬂ,2)}v E(E.( Rt (k*“)Cq,E)

This expression for uk will prove to be useful in studying the asymptotic
behaviour of the distribution of xgp , %, and y .

3.3. The moments of Xp and Xy - non free sampling

It 1s obvious that the moments of X, can be obtained from those of
g by changing T, into rs. It is therefore sufficient to consider the
moments of xn. In this section we write x for xgy and r for r,.

B
For 1 # j
Eﬁij = PE§1J=1] = P[points i and j are chosen] =
= P[Point iis chosen] . P[Point j is chosen| i is chosen] =
]
_r ra o ort
n n-1 n!?
Thus
- rie ) e )
(3.3.1)  Ex= E Ilm x .= Lm Ex . ==5 Lmn, =<5 lm.
1] 1j=1] 14j ij7=1] n'2 143 J n 13 J
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b (a) h h
In general for a configuration | Ch with § k= k, ) =1,
121 Kyt 121 121
h (e,)
(3.3.2) E(ﬁ(q)...g(k) ) Cy il ) = P [l given points are choseé] =
121 Koty
1
_orp{r-1)...(r-1+1) _ r'l
T n{n-1). .. (n-1+1) a7

which shows that the symmetry assumption introduced in section 3.1
holds for x. In this chapter we assume that r always satisfies r21.

E£2 is obtained by applying (3.1.6). There are 3 configurations
involved for k=2,

e

©

1) = 2c

@ Q 1,2
Ty
By (3.3.2) E(lc_“) x(2) 2c, 2>= Lo by (2.1.7) A(ec, L) = 1,
3 n' 3
thus giving a contribution to ELE of
b vy
r; 1 { m(1) u(2) | 2¢c } = I m, ;M
;TH 1,2 ;Tﬂ-(ijkl)% ikl
2) o ° o = C2’3
'3
By (3.3.2) E(l(” x 2) o 3) ”,3 ;0 by (2.1.7) A (c, 3) =4,
3 I 3
2

thus gilving a contribution to Ex™ of

13 ' '
R CARCIDWE

SN
3) ar® = Cg’g
12
1 2 r’
m (3.3.2) () LB e, o) <5 s w2 Koy, ) = 2
thus giving a contribution to ELQ off
1D 12
re = (1) (2) r’ 2
2 s ) { m m | C = 2 ] mS
n!2 2,2 n'2 (19)# ij
Therefore
Ty 1 1o
) ! !
(3.3.3) Ex" =% E - :
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In order to illustrate the use of (3.1.9), we calculate first
by means of lemma 2,3.3.

/Q(cg’2 5 Cp o) =

AlCy 55 Cp ) = -1 Ay 5505 5) = 1
,4(201’2 ; 02,2) = 42 ,4(201’2 ; c2’3) = -4 s
while by lemma 2.3.2 /Q(2C,]’2 3 201’2) = 1
Thus
(2) (1) ,(2) r'?
9,2 (Co0) =Acy) Bz 2 | 0o, JAC,, 2 5 Cp 0) - RE]
(2) i3
-@3 2 (02,2) = -4 ;—"—3— )
(2) Ltk
Dy, (Ch ) = 2 L
(2) pt3
95,35 (Ca3) = Hm
n
(2) o
Pu,3 (62,3 = -
(2) r,;u
D),y (20, 5) = =T
k) 5 n
(2)
and all other & N (...) are equal to zero.
Finally apply (3.1.9):
' '3 ' 12 13 th
2 r 2 r r 2 r r r 2
(3.3.4) BEx® = —=ppm, < ”(F - n’t) kg, 2(;@ BN ER n—szr)}jmi; :

This result could have been obtained from (3.3.3) by simple reasoning.
From (2.2.9) it follows for k=2

2

2 2
.3.5 = Em) = m,.m,. +2 ) m,
(3.3.5) m, . <ij ij ij ik (19)7 13

.. 4
(ifﬁl)%mlJmkl ' (i§k>%
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while

il

2 ) 2 2
M4 ; mij> = (g?)%mijmik + % My

Summing over 1 gives

) e, = 7O ooom o+ 1 me ,
LMy Lt T T
and because myy = 0]
(3.3.6) CImc, = I mom, + I m°
1M (ge)# YR (g B
Also
(3.3.7) 2 = Inf

RVt

Applying (3.3.5), (3.3.6) and (3.3.7) to (3.3.3) leads directly to
(3.3.4).

To derive an expression of the variance of x, one could use (3.2.3);
in this case it is easier to obtain 02 directly from (3.3.4) and
(3.3.1). Easy algebra gives

2
13,0 m 12, 2 ,
(3.3.8) o - EEL74EL311 z<;ni+ "uit> +2 S (n'BZ m?j - m§+) .
2

n i iJ

If for all 1 my 1s a constant, the first term of 52 is equal
to zero.

From (3.1.6), (3.3.2) and (2.1.8) the third moment is easily found
to be

(3.3.9) Ex3 _'gr!6 I SEM)
.3.9) x7 = = m, .m o.m. o+ 12 = m, .m, m
- n* (ijkluv);! 1j k1l uv !’1'5 (ljklu)ié iJ7ik 1u
+6r! I mem +8r!u I mym . m +24r1u § m,o.m,om. o+
n!E (15k1)# 1kl nzﬁ (ijkl)iij ik il n!H (15k1)# 1571k 41
i3 i3
+8E52 I momm, +2 5 7 P, 4% § md
n'd (1) HHOI T TRt (s T (4

Removing the inequalities on the summations one obtains the result
tabled in the left-hand part of table 3.3.1.



Table 3.3.1 :

Two expressions

mlm
(1 o)

.:rl,: Lnlu'\
191 B 1 ]

+ 24

- 24

+ 12

+61} - 12
+ 8 - 24
+ 24 - 48
- 24 + 24
- 96} + 120

- 48

+ 16

+ 24

- 24

8h




Table 3.3.2 :

An expression for Ex .

ez ‘Vf/yj

©®
ol o«
g
+ 1/16
+ 3/2
+ 3/4
+ 3
+ 2 -2
+ 6
+ 6 -6
15 Mk Mk + 2
T3
13 Mik Mye M T 12
+ 12 - 12
+ 1 -4 + 1
w1 - 2 + 1
- 3/4
+ 12 - 12
15 Mk ™51 Ma + 3
+ 6 - 2u + 6
+ 6 - 12 +6
1J Mig My + 12 - 12
+ 6 - 12 + 6
+ U - 20 + 20 - U
+ - 12 + 3
+ /2 - +9 -} + 1/2

75’5/&@3
f::;:jﬁ———ﬂ—'

/4ﬁ;/
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The right-hand part of the table is obtained by some simplifi-
catlons. The third reduced moment is now only a matter of easy algebra.

th m 3
(3.3.10)  w, = 8 2K (n-ep+3){<m _ﬁ>
3 ne H i+ N
13, 12 m, . \2
- 2k PHIEHHI!’ {(2r—3)n - 8ot 9}m++ g(mif“ “:';t) *
'3 12 m
+ 2y AT (n-2r+1) ] m® (m _._it)
n 19 13 \Ti+ N
£3 13
+ 8§ AT m,, my, m +
N 25 M Mk M
te 12
ook B {ne—(4r+1)n+4r‘2+4}2 mgj +
n* 13
+ 24 r,!“ n-r)'? ! m..m  m +
! R I B S b
n 1j
12 1e
. -r)° 2 2 2
- 122—!%—11—;%‘{n - 3(2r-1)n + 6r ~l+}m+Jr 1):3 mij +

12, 2
- 8 tT(e‘r;TrnL'G {(3r2—14r‘+’15)n2 - (7r2-35r433)n - 2r° - Br + 18} m3,

For the special case: my oy independent of 1, u3 reduces to a
simpler expression:

13,13
(3.3.11)  uy = 83-:(]%63)—— Lomymyemy

13k
12 12
+4r——i—‘;—%£)—{n2— (4r+1)n +4r2+4}2 ng +
n' i3
r'?(n-r)'? [ 2 2 2
- 12 —,ig———,-g———{n - 3(2r-1)n + 6r° - 4} m,, ) myy ot
n"- n° ij
12 12
-8 (E—,é—n);—r% {(1”—3)1’1E - (r'g—5r~3)n - 5r2} m§r+
n n’

The fourth moment of x has been calculated and tabled in table 3.3.2.
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3.4. The moments of xj and x, - free sampling

Again the moments of ﬁw can be obtained from those of x by
changing Py into p2. It 1s sufficient therefore to consider only the

moments of xn. We write x for xp and p for p,.

B B
For 1 # 3§
(3.4.1) Eﬁij = P[;iquj = P[?oints i and J are chogen] =
= P[point iis chosen]- P[point j is chosen]
2
= p.p = D

In general

h (ey)
(1) (k) 1 i i _ 1
(3.4.2) E(g '3 Iiéﬂcki’li = P[} given points are choseﬁ] P,
h
where Z 1i =1
1=1
So
(3.4.3) Ex = m_p°
B = mip“ + 2 Emfj-pgﬁ—p)g ) mf+~p3(1-p)
iJ 1
thus
(3.4.4) 62 = 2p2(1-p) {(1—p) mej +2p 1 m§+ } .
' iJ i
In the same way
2 - 2
uy = 4p=(1-p) { 2p (1-2p) g m + 6p°(1-p) ggmijmi+mj+ +
+ (1- ) Z m + 6p(1-p)(1-2p) 1§ ne m +
b 1™ k™ 5k ' PrEM

—p)(1-2p)2 Y m3
+ (1-p)(1-2p) 1%“’13}
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3.5. The moments of y - non free sampling

In order to calculate
E(X(ﬂ__'l(k)l ;Ci“ii )
i=1 71’71

take a point Pi of the i-th connected component as a reference point.
Colour Pi white, next all points connected by a join to Pi are coloured
black, then all points connected by a join to these black points are
coloured white. Repeat this procedure. If one arrives at a point which
has already been given one colour, but should be coloured by the
just-mentioned rule in the other colour as well, then we conclude that
the i1-th connected component 1s non-bichromatic.

If no such situation arises onearrives at a stage where all points
of the 1-th component have been allotted to one of the colours, viz.

Ti points are of the same colour as the reference point, and

1i - Ti points are of the other colour. In this case the i~th component

is called bichromatic. If all components of a graph are bichromatic, the
graph 1is called bichromatic; a graph is non-bichromatic if at least one

of 1ts components is non-bichromatic.

The decision whether a graph is bichromatic or not does not depend
on a particular cholce of the reference point, but only on the fact
whether a graph contains cycles of odd length (in which case it is
non-bichromatic, cf. C. BERGE, 1958, 31) or not. It is therefore a
property of the configuration, and we shall speak of bichromatic and
non-bichromatic configurations accordingly.

Define
h (ai)
1 ir  J Cy 71 1s bichromatic,
. 53< % (ay) ) i=1 %1771
C =
121 Koy
0O 1if not
Obviously
(a,) h (e,)
i
(3.5.1) ﬁ,({c 1 = TTﬁB(c )
121 Ki014 1=1 \ Kisly

() N

An example of a non-bichromatic configuration is 03 3 = o )
b

Now consider the expectation of a product of y's, whose graph has the
(2)
3,3

configuration C

E Yo Lq3 L3 = P[l12=1 n Yq3=1 0 123=“:]



52

However the event 'y =1 n 113=1 n 123=1" is impossible, because

1s non-bichromatic, thus

)
3’3
E<1<1) x(z) K(S) I Cg?;) =0 ,

h
and in general for a non-bichromatic configuration ) Ck

2
of the fact that C(

(3.5.2) E(X(”...x(k) |

1) .

= -] o
B ) (1 ()
Choose the point indicated as (1) as the reference point. Colour this

Consider as an example of a bichromatic configuration C

point white and then colour the other points according to the above-
mentioned procedure. To the points (2), (3) and (4) the colour black

is allotted. Thus t=1, 1l-t =3 . One might alsocolour the reference
point black, then again one arrives at 1 =1, 1-71 =3. Now the expectation
of a product of y's, whose graph has the confilguration ngi is

E¥ap L3 Lqy = P[X12=1 n Yy3=1 0 Y—'m:q =

P[£1p71 0 2431 0 yqy=1 0 point 11swnite | +

+

P[112=1 n X_»]3=1 n 114=’] n point 1 1is black] .

The event "y =1 n X,|3=1 N yqu=1n point 1 1is white" occurs only when

in the random sample of size r from n points 1l-7 = 3 given points

1
(viz. 2, 3 and 4) are included, while in the sample of size r,

v = 1 given point (viz. point 1) is included. Thus
P[112=’l n 1,13=’I N X/,q:" N point 1 is white] = T

The event " =1 n =1 N =1 n point 1 is black" occurs only when
L2 L3 Ly

in the sample of size r, t = 1 given point is included, and in the

1

sample of size r l-1= 3 given points. Thus

2
Ty réB
P[y_,]g:’l n y_,]B=’] N yqu=1 N point 1 is black] = T

n



53

Therefore
(1) r}dr )+ ppl3
E<1(1) M(2) ,z(3) | C3’4> _ Inte 172

and in general for a bichromatic confilguration Ci z
3

(a) P!TP! T4 p r
(3.5.3) E(x(q)---x(k) | ck,l) - £ i1 —=

h |
The corresponding result for a bichromatic configuration Z Ck
i=1

ai)
1ol
is slightly more complex. Let the statement ”Pi=b1ack” (c.q. white) mean
that the colouring procedure applied to the i~th connected component

starts with colouring P; black (c.q. white); 1t ends up with 1, black

(white) and 1y-7; white (black) points.
Let p, =0 or 1 (1=1,2,...,h) and let the statement
" h h 1"
(3.5.4) ! oy (Py=black) + ] (1-e,) (P =white)
i=1 =1

mean that for an 1 for which I 1 the statement "Pi=b1ack” holds,
g = 0 the statement ”Pi=white". Then (3.5.4)
means that after colouring the points of the configuration

and for an i for which o

(1—91)(11—11) points are black, and

il =~
©
-
oy
+
[ aecl=d

1 1=1

h h
£1(1_pi)1i + 121 o (15-74) points are white.

Now consider the event

¥ .Y = B
where the configuration of the graph corresponding to the product of y's
(“1)
is k. .1
i=1 71771

The event

Xﬂq)...x(k) =1 a (3.5.4)

occurs only if in the sample of r1 black points
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h h
E P Tyt 1£1(1_pi)(li_11)

given points are included, and in the sample of rs white points

oy

1

L

h
1(1-01)11 + iL]pi(li—ri)

given points are included.

Thus

p [, 5

Lo ]
. p,T +
129 2142

10 (3.5.4)] =

h h
1(1"’1)(11'*1)} !{121(1"’1)’1 * i£1°1(li"i)}
il ‘T2

§
n.l

Summing over all values of PysPos.. leads to the expectation of

g )

Incorporating (3.5.2) we thus obtain for an arbitrary configuration
h (ay)
C i

121 Kioly

3Py

h
21-1=1,

h
, with ) ky =k,
1=1 1

i

This result shows that the symmetry assumption introduced in section 3.1

holds for y .
Thus e.g.
2r..r
2
E.\XiJ 12 4
and
2r r
12
(3.5.6) By = 15 Mt
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Also
Hrégrég
E Xij Iy = T (1,3,k,1) #
12 2
r.r +r.r
_ Ao 1 T2 .
E Xij i = ———:3—— (1,J,k) #
B -
Liy = 72

EXQ can readily be calculated in the same way as Eig in section 3.3
From EEE and (3.5.6) 1t follows that

br r m 2
(3.5.7) o° = —;;ﬂg>[§ (mi+ - —Jtt) { n(r1+r2-2) - 4r1r2 gty t 2} +

+ z'mij {(n-rq—re)(n—j) + 2(?1—1)(r2-1)} +

5 { -n° + n(r1+r2+3) - 2ryry, -, -ry - 2 }]
n(n-1)

For reference purposes note that for a connccted component C

1,2
li—Ti = Ti =
Thus
ho(a,) h (a,) 1 1
(3.5.8) E(M(q) .X(k+g) | 1c, il + 8C, 2) = 2gj3< I c. ™y > v
121 f10701 s 121 %1271/ 5,20 5 =0
{1 o ) T (modny + 1 ooy(3pm1y)
¢ p.T, + T-p, )(1, -1 + g !{ T1-p, )T, + o, (1,~7 + g }
i=q 11 g2 T } L) L
I‘,] .I"2
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3.6. The moments of y - free sampling

o

For a configuration Ci i

a1l - () - )
Since for free sampling
(1) ) B )y B (1) (ky) | L%)
E(x oy | —1Ck1’11> T E(X_ - | C, 11> s

i=1
we have

i=

i=1 "1’ 1 i=1
E.g
Elij = 291'92 3

thus
(3.6.2) Ey = 2ppom,,
Also

2 2 -
(3-6-3) g = upqu(p1+p2_4p1p2) g mi+ + 4p1p2(1*p1—p2+2p1p2) ggmij

3.7. A property of the random variables lij

If in a blank graph to eacn polnt an even number of jolns are
connected, the graph will be said to have an even-joined configuration.
If a configuration is not even-joilned, it will be called odd-joined.

Theorem 3.7.71.

Let r, = n-ry, then 1in the case of non free sampling,

h o,
( 0 1if ] c, | 1s odd-joined,
T

i=1 71’71
1
or (and) 1= ) 1,>n
i 3
R B R AR 1=
!(, Elx . F1¢, 71 )=
=0\ =1 K101 h (a))
1 o g p z C i is even-joined
121 Kyoly

h
and 1=_z 1;5n.
~ i=1
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Proof.
Consider

(3.7.1) Eve o X o, :
M1 v Yo VK

1 1
where in the set of numbers {u%,né,...,u&,v%,vé,...,vk} (UB%VJ,J=1,2,-uk)

all numbers 1,2,...,1 are represented and where Cqslos-..sby are
1 unequal numbers from ({1,2,...,n}. We suppose 1<n. As shown in
section 2.2. there corresponds a graph to (3.7.1). Let the configuration
of this graph be odd-joined, which means that there is at least one point
of the graph, which is connected by an odd number, say t, joins to

s other points (1<t sk, 1<sgmin(l-1,t) ). This means with regard

to (3.7.1) that there i1s at least one ¢, say Sy occurring as a subscript
1
to t factors v, while s other ¢'s, say ¢ ,0 ,...,¢L occur each
- o @ %s+1
together with ¢ as a subscript to at least one factor v (o,,0,,...,0
aq - 1772 s+1
are unequal numbers from {1,2,...,1}). As the expectation (3.7.71) depends

only on the configuration, it 1s equal to

(3.7.2) E Xeu|:9“: '.'Xeu"eu' s
1 1 k k
where 91,92,...,91 is some permutation of ;1,42,...,§1 (ef. section 2.2.).
Choose
0,=f , 6,=L_ 4, ... , © =L B
1 @, 2 8p s+1 Ggiq
and for Gs+2, Qs+3, cee s 91 a permutation of the remaining ¢'s. With

this choice of the permutation, 91 occurs in (3.7.2) as a subscript to
t factors v, the other subscripts of these v's being 9?,...,es+1 N
each at least once.

Now permuting factors v and interchanging subscripts to one v
does not change the value of (3.7.2). By carrying out this procedure in
a sultable way, one can write for (3.7.2)

(3.7.3) E 191’9v ...zgq,ev xeu 0, ..xeu 0, )
1 t t+1 t+1 k k
where among the set of numbers {“1’“2""’Vt) all numbers 2,3,...,(s+1)

v

occur and among kg 45 My osee.s ¥y sV } all numbers 2,3,...5,1 .

,I,\’E,...
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(1 (2)

Let @ be the set with elements 6,6 .,9, and let @ and ®

32 1
be two given subsets of @ , of 1,l and 1-1,-1 elements respectively

(1) (2) (1) (2)
such that @ ne =@ and @ U @ = € . We remind of the fact

that 92,93,..
points of the master graph (cf. section 1.1.). Consider the event E:
the points of the master graph, whose numbers are elements of & 1 are
black and those whose numbers are elements of ®(2) are white. As r,
points of the master graph are chosen at random from n points and are

.,91 are unequal numbers from {1,2,...,n}, and refer to

coloured black, while the remaining ones are coloured white

!11 !(1—11—1)
(/I) (2) I',[ (n_rzl)
(3-7-4) P[E’ e , @ ] = n!(l_r])
For j = t+1,t+2,...,k
(B) (w)
o, .6, T Ze o, "X e, "o .0
J J J J
takes, conditionally on E, the value +1 1if both eu and @v belong
(1) (2) / J

to € , or both to @& , and -1 otherwise.

Conditionally on E

k
(3.7.5) v
313;1 —euj’e j

takes the value +1 or -1 , depending on whether an even or an odd

\Y

number of the v's take a value -1
Suppose (3.7.5) takes the value +1

T s+

(1) (2)
to & , while 912+2,912+3,...,GS+1 belong to & .

Let out of 92,@3,.. 2] l2 ©'s , say 92,93,...,912+1 belong

If the point of the master graph with number 9,I belongs to the black
points, the probablility of this event being conditionally on E

r1—11

n-1+1

then also conditionally on E

(376) X@ o ;---:l@1’9

1292 1,41

take the value +1 , and



(3.7.7)

4;

e
Sl 12O 85y

1 >

take the value -1 . The value of

t
(3.7.8) v
ng 91-6v,

is therefore completely determined on the said condition.
Suppose this value is +1

If, however, 91 belongs to the white points, the probability of this
event being on the condition E

n-r —1+11+1

1
n-1+1

then each of the v's in (3.7.0) is equal to -1, and each of those

in (3.7.7) is +1 . The value of (3.7.8) is therefore (-1)% times the
value 1t assumes in the case where e,I is black. As t is odd, the value
of (3.7.8) 1s now -1 . Thus conditionally on E

(3.7.9) Vg

is equal to +1 1if and only if 91 1s black, and 1s equal to -1 1if and
only i1f @, is white. Hence the ecxpectation of (3.7.9), conditional on E

is
r-,]—l,I ) n—r1—1+11+1
n-1+1 n-1+1

PE.;1 1s black | E] - P[§2 is white | E] =

(1 (2

Multiplication with P[ﬁ] ® s © glves as the contfi?ution to the
2

]

expectation of (3.7.9) for the given sets @ and

! 1 H(1-1,-1 11 1(1-1
r1(11+ )(n~r1) (1-1,-1) ol (1-1)

'l 'l
n n

Multiplying by (; ) and summing gives the contribution to
1

o, 1 2
§ (n ) E(g‘q)...yﬁk) | ? Ci l) ) for the given sets ®( : and 9( ):

r,=0 \"1 121 Kyo 1y
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H(1,+1) H(1-1,-1) 11 H(1-1.)
1 ~ 1 1 1
) (n ) 1 nTr B} Tf (n ) r, (n-r,) )
s \r [ & r [ -
rq—O 1 n rq—O 1 n
n—l+11+1 n—1+11
- ) <r r_:l_q >- ) (rnj ) = ol ool g
r =141 171 r.=l, 1771

The same result is obtained if (3.7.8) is -1, and also if (3.7.5) is
supposed to be -1, and (3.7.8) either ~1 or +1 . It holds therefore

for every pair of sets 2] (1), 9(2) with ®(1)n 6(2)=¢ and 6<1)U 9(22:8,

and thus holdﬁ in general, As the part of theorem 3.7.1 relating to

the case 1= 2 li> n is trivial, this proves the first part of the
i=1

theorem.

To prove the second part note that a graph with an even-joined
confilguration can be decomposed into elementary cycles, which are cycles
which may have points but no jJoins in common. (cf. D.KOENIG, (1936)).
Such a decomposition does not need to be unique.

Consider again (3.7.1) and suppose the graph (in which the point-
labels are retained) corresponding to 1t to have an even-jolned
configuration. Decompose the graph into elementary cycles. Permute
factors v in (3.7.1) -which means also: permute the join-labels of the
graph - in such a way that the Joins of one of the elementary cycles are
numbered ’1,2,...,11 in this order (joins 1 and l1 being connected to
one point). This permutation procedure leads to the expectation (if
necessary with interchanging subscripts to single factors v)

(3.7.10) E v v .

which is equal to (3.7.1). The value of (3.7.10) is not changed if

Cq’gg""’cl are permuted. Let 91,92,...,91 be the permutation of
C,],C2,...,Cl with 91= Cuq s @2: EV% 3 e 3 911= CV|1, » , while
1
aini Th
911+1’911+2""’9k form some permutation of the remaining t's. en

(3.7.1) is equal to

&=

.. .. o
b
2773 14 141 V141 M vk
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To prove the second part of the lemma it is sufficient to show that
this expectation is equal to one. Again this is true if

(3.7.11) P[v v " v
Te.8, Yo,,0,7 Ye) Lo, To, e

1 v

11+1 11+1

<
=
x‘\a
()
<
~
fl
RN
L
]
N

Now r, points of the master graph are chosen from the n points and

ar? 3oloured(b%ack, while the remaining ones are coloured white. Let
1 2
e and ® be the two subsets of 8§ = {©4,...,8;), such that those

©ts which correspond to black points are elements of @ , and those

(2)

which correspond to white points are elements of @& . We now prove that

(3.7.12) v v -
-9 ,,0 —92,93 —Qt,9t+1

(1) (2)
takes the value +1 1if 91 and 9t+1 belong both to @& , or both to 8

and -1 otherwlse. For t=1 this is evident from

(B) (W)
+ X -

%o,,0, " To,,0,

Assume (3.7.712) to be true for all positive values of t smaller than

or equal to t, (t,21). We then show it to hold for t,+1 as well.
For t=t1+1

1 1

(3.7.13) v v - =lvy LV v .
€429 702,05 O +17 % 42 09" 0 5% i et1+1’9t1+2

(1 (1)
Now if 6, ¢ ® and 6, ¢ 0} the first part cf the second
1
member of (3.7.13) is +1 by assumption, The second part is +1 if
1

(1) (2)

(1) 2
2] e @ and 8 e @ , or if @ e @ and ©, & @ . Thus
€ t1f2

1 42
(1) (1
ir e e 2] (3.7.13) is equal to +1 if RIS ® . In the same way
_ (2) (2)
one shows that if ©6,¢ 8 , (3.7.13) is equal to +1 if also O, o€ 8
1

1+’l

1

This proves that (3.7.13) 1s equal to +71 if 6, and 6,

(1)
same set @

1+2 pbelong to the

In the same way the -1 part of the statement regarding (3.7.713) is
proved.
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By induction the result connected with (3.7.12) follows. In particular

takes the value +1 spr O, because 91 appears at the beginning and the
end of the sequence of subscripts. Thus the products of v's corresponding
to each elementary cycle of the graph take the value +1 spr O,

1 2
conditionally on @( ) and ®( ).

2 1 2 1 2
®( ) satisfying 8( )n 8( ) = @ and 9( ) u 9( ) =8 ., Thus (3.7.11)
follows. This finishes the proof of Theorem 3.7.1.

)

1
This holds for every pair 9( and

The author stated this property of the random variables vy in a
study concerning the ISING model of ferromagnetism (A.R. BLOEMENA (1960))
where it was used to derive the high temperature expansion of the
partition function.
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CHAPTER 4

4.1, Tendency towards the normal distribution (non free sampling)

Theorem 4.1.1.

i If r, and n tend to infinity in such a way that

2 .,
—r—l"--—-b():) and "ﬁ" = 1 - &

where ¢ 1s a constant independent of i1 and n, then in the case of
non free sampling the distributlon of
(xp - Exp) o(xg

tends to the standard normal one. EiB and 02(§B) are given by (3.3.1)
and (3.3.8) with r replaced by r.

11 If in part 1 r, is replaced by T, and %p by iy the corresponding

result for Xy is obtained.

Theorem 4,<,2.

If Ty, Ty and n tend to infinity in such a way that

r.r r
—ng--——+ 0 and - ST -€,

iA

-
1

)

T2
n

for some €3> 0, and if for all 1

Mip =€ >

where ¢ is a constant independent of i and n, then in the case of
non free sampling the distribution of

(¥ - By) o (y)”"

tends to the standard normal one. Ey and 02(1) are given by (3.5.6)
and (3.5.7).
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Note that the assumption m,, <c may be combined with (1.1.3) and

i+
(1.1.4) to give
1 3 Z mfj < m§+ = c2 for all i, so
J
n £ 1 mij <1 m§+ = ¢ n
Cig b
|
from m§+ 2 1 we also have
n S § My, =M, < cn
We introduce the abbreviations
= A < <
my(n) == m,_, ; 1amy(n) sc
2 2
(4.1.1) my(n) = o iZJ my, 15 my(n) 5 ¢,
_ay 2 2
m3(n) =5 E mi, 12 m3(n) = C
2
We also note that m,(n) - mg(n) = 23 m - Der %2 0
: 3 1 noy i+ n “

To prove theorem 4.1.1 we start from (3.2.3) and show that ukoﬂk
tend to the moments of the standard normal distribution. First we

consider (writing x and r 1lnstead of xp and rq)

(4.1.2) A = vi;(_q)v(%) [ E(i(q) 401:2) }

(7). ko)

v

ui)
(L e IO )’

h h
where ] k; = k-g-g' , k;22 and )) 1, = 1-2g-2g' . In the appendix
i=1 1=1

asymptotic expressions for A are gilven for the case where EL%:EJAW~+OD.

Since the assumptions of the theorem also imply e ;rll’;1 we may

simplify these expregsions slightly to obtain



1 1 1
' 1 _p\58' lezgt=1 _ l-zg8¢
(4.1.3) A= F%(.g.) (_2.2_2)2 +O<r 5 " 1) =0(r 28 1) )
28

if g' is even, and

1,
(%.1.4) a=0lr & 24,71

if g' is odd.

Also, from (3.3.8) we find that

119 of - 2 Z82 f(ominy(n) + aotorendin)] -+ 02) - 0%

n-r
since & g =

oy -
1 ; ¢° cannot be G’(—i—) since me(n);’l and m3(n)-mi(n) 2 0.

For each value of g'= 0,1,...,k-2,k there is a sum of flnitely many
terms in (3.2.3) contributing to u, (the last term in (3.2.3) corresponds
to g'=k, ht=0). For odd values of g' such a sum is by lemma 2,3.4 and
(4.1.4)

11
l-ng!—m
U(r 5 2‘nh'+g'—l> ’

whereas for even values of g' it 1is

1
(7( rl_Egl .nh‘+g'-l>

Furthermore the summation-indices in (3.2.3) satisfy the following
inequalities:

1-2g-2g' 2 2h 2 2h'-2[%]
hence 1 2 2h'+g+2g’

We start by considering sums in (3.2.3) corresponding to odd values
of gt'. According to the above they are

1

2
As %—e-oo and ht' 2 [%&'] 2 %&—'— , they are



or, as g'21and g20

L d 2
O’< n? 2] 0l n?6" = o(uk) .

The sums corresponding to even values of g' are

2h'+g+ig' oo
r 2 .n ht-g-g'

Among these, sums having h' g E———%-'—-—l are

1 1 1
kigige' -1 -gk-gp8' 3
Cir
or, as g'2 0 and g2 O

1, .1 1
P Y -
U(rk_q.n 2 2>= U(rﬁq.n?.ol(): a(ok)

The remalning sums for g' even have h! -—[-L—(—_ég-'-] = _k__-ég_'_ which implies that
k 1s even. However, the summation over h in (3.2.3) is then

3

L—ésL_[%] <h s [&:g;s_]

which is empty if g is odd, and implies h = 5‘-%:5—'- if g is even. We note
that for these sums the contribution of the remainder term in (4.1.3) is

[ LI _1
(7<r2h +g+%% 1.n~h—g—g'> _ (j<rl‘"1.n EK) - (7<r_1.ok)= o(d¥)

and that, consequently, we may restrict our attention to the contribution
of the leading term in (4.1.3).

So far we have shown that for odd values of k all (finitely many)
terms in (3.2.3) are a’(ok) or

(4.1.6) lim ukc_k =0 for k odd.

For even values of k only those terms remain to be considered having

-l Kege—gt
g'! even ; g even ; h'=5—2—g—- and h=——%—-g-
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P22
i=

ht
As k-g'= [ ki , k
i=1

it follows that kj=2 , 1=1,2,... k-g' 4,

in>=2 , yields kize L i=1,2,... k-g-g! '

k)
(3.2.3); also k-g-g'= [ ky , k
i=1

ht (al) n'

Hence the configuration | ¢, '), in (3.2.3), with § k| =k-g',
o 121 Kis1i 121

Z 1i= 1'-2g!' , can be written
i=1
1
(%k*'é'g‘-l')cg,E + (1'-k-g')Cy 5

h (ui) h
whereas the configuration Cp Ty » with ]
3 ] i =

h
kj':k“g"g" 2 li=1”2g-—2g',
i=1 71’71 i=1 1=1

is found to be
1.1
(Fkrgerge -1)C, 5 + (1-k-g-g')C; 4

As by (4.1.1)

) { n( ), k) lgrey o+ (‘%‘K*‘%E'"l')c2,2 * (ll“k—gl)czﬁ} B

we obtain from (3.2.3) and (4.1.3) (terms with 1> %k+1g+%g' vanish)

2
kK Skidgr
P 1, .1 3, .1 ,
e =Kt=g! Ktzgt -1 R
(4.1.7) w, = ) ) (k) ne 2 .nx(n)g'.m (n)2 e .nl(n)l’ k-g'
k g!'=0 1'=k+g' € 1 2 3
ot B
kgt glpeipe!
) ) /V(( kdg itz -1)C. . + (l-k-g-g')C, , + gC )
o0 lokigsg B 2,2 2,3 1,2

Spadaido ke (Bl k-
-/4((21“—2‘%*58‘ 1)02’2+(l k-g g')02’3+g01,2 ; (ks 1')02,2+(1' k g;')Czs3 .

-_%.'.-‘_(.g)l <-e.9.:£)%g' v o(o¥)

rn

e
where z denotes a summation over even values only.
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By theorem 2.1.1 and (2.1.7)

3

/Afggk+%g+%g'—l)02 o * (1-k-g-g')Cp 5 * €Cq 5 >=

and by lemma (2.3.3) (terms with 1'>1 —%g vanish)

3.1
plpe! 311
1 g Qek+§g+§g'"l)02,2 * (1-k-g-g')Cy 5 + 804 5 s
ik i 1 !
-1 kgl
30 o 24128 11-k-g
(2k+§g' 1')02,2 + (1'-k g')Cg,3 . mg(n) .m3(n)

mUtL_\

1 , oo 1 l-K-g-gt
= (_”l)Eg -(—ii;‘— mg(n)2 e (mB(n)—mz(n)) e <2m3(n)—m2(n)>
8)!

Substitution in (4.1.7) gives
1.1
k k-g! %k+2—g1—é-g'

(4.1.8) wu_ = R ' T
- g'io gio 1=k§g+g' (78')!(38)! (Brgede’ -1)! (1-k-g-g')!

1,.1 3.1
sK+sg! g' ktzg+sg' -1 l-k-g-g'
2 n(n) my(n)2 202 (gmB(n)-Emg(n)> (m



1
=k
_ 2 k! 2k > a-r @ /v k+a
= a£0 al(%k—a)l n (—2m1(n).—g—) (ﬁ)
2 =k-a
. ek 2 2%
! - - k
= (;k)f (—z—) {2(m3(n)~m1(n))ﬁ%£)- + mz(n)<ﬂa-r‘—> } + (o) =
1
_ ki 2-%k [éﬁfiﬂlﬁl{(n—r)m (n) + 2r<m (n)-m (rlﬂ}] & + o(ak) =
(zk)! n’ ¢ o
it
= $: - 2 2 oK 4 a(ak) ,
(5k):
or
2
(4.1.9) 1lim uka_k = ?: o “ for k even.
(zk):

Thus, the moments of (E-Ei)o_q tend to the moments of the standard

normal distribution., As these moments determine the distribution uniquely
{cf. M.G. KENDALL and A. STUART {1958), 111) the result of theorem 4.1.1
is proved (loc.cit.,115}.

The proof of theorem 4,1.2 will be seen to be closely analogous to
the foregoing proof. As the random variable y is not affected by inter-
changing the sample sizes ry and r, we may assume wilthout loss of

generality that r, Sr In the appendix it is shown that in thils case

=2
(4.1.10)
S I EON () IO R C N S PSS TN B
. s g+ h iy Ty ] -7y
(o) [ miE) @@

D oa 8 h+g-+%g'—’l l-g-g'-h
;—+_«77>} + 0 r, Ty .n ) =
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1
h (a,) h+g+sg! l-g-g'-h
=RB( ] Cx il >. 0<?1 2 Ty .n_%> if g' is even,
/\i=1 101y

and

11

h (a,) htgtsg! -z l-g-g'-h

(4.1.11) A =@(2 ¢, 1 ).O’(r,] & B, .n'l> 1f g' 1s odd.
121 Ki0ly

From (3.5.7) we find

(4.1.12) o
r
= P; 2 Bn(n—rq—r2)+2r1r2}m2(n) + {n(r1+r2)—4r1r2}{m3(n)—m?(n)}] +
KCORKACOR
r

r

1 2 . R
from 7;—;1-5 and - 21-e 1t follows that either n(n—rq—rg) or 2r1r2 is
%)

not d(ng), hence {n(n—rq-re) +2r1r2} is not ¢(n Since m2(n) 21 and

both terms inside the square brackets are non-negative, og(x) cannot be
r s
- .
As we did in the proof of theorem 4.1.1, we start from (3.2.3) and

evaluate the order of magnitude of the contributlon to My for each value
of g'. For odd values of g' this contribution 1s by lemma 2.3.4% and

(4%.1.11)
i 1
h+g+§g'—§ l-g-g'-h ht+g'-1
(7 l",l .I'E .n »

whereas for even values of g' 1t is
1
h+g+§g' l-g-g'-h ht'+g'-1
Olr, Ty .n

Making use of the same i1nequalities for the summation-indices as we did
in the foregoing proof, we start with sums in (3.2.3) corresponding to

r
odd values of g'. As h2h' - [é%g 2 h'-~ %g and ;j-;ﬂ these sums are
2

h'+%g+%g'—% l-hv_%gﬂgn ht4gt -1
l",l .l"‘2 .n H
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r
from 1 Z2h'+g+2g' and -n—2 <1 we find that they are

1.1 1 1
<rh'*§g*§g'-§ hiigete! -h‘-g-g')
1 ' ’

o r, .n
r.r
or, as h';[—k—ég-] :k—éa and i 2——+oo,

since g' 21 and g 2 0, they are
1, 1 14,1 1, 1 1 1 i
o B2 2% TE 2.2 72 KL o (oK)
1 .To . q o .
For even values of g' and h'g kogl-1 we find that the sums are

1,11 1.1 1 1 i 4
o SKpETp DRty KRR
I",I .1’2 . 3

S e 1, .1 1 1-1
o o3 7 BT 4 (.2 B k K
r r, “.n = r,~.r,%.n%.0 = e(a™) .

The remaining sums for even values of g' have h's= %g' which implies
that k 1s even. As was shown in the proof of theorem 4,1.1 this also
means that g is even and h=£_—%:-5'. For these sums the contribution of
the remainder term in (4.71.10) 1s easlily seen to be

as a result we may confine our attention to the contribution of the first
term of (4.1.10).

Thus we have shown that for odd values of k
-k
(4,.1.13) lim MO = 0 , (k odd) ;
for even values of k we may follow the proof of theorem 4,1,1 from

(4.1.6) onwards if we replace the leading term of (4.1.3) by the first
term of (4.1.10),
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()
Tl :(§k¥%+g'djc

Dt g + (1l-k-g-g')C is bichromatic and

. 1)’:1 (o
Since C
121 Kyl 2,2 2:3

i (-

i=1
‘ik'i-j 1 I'
Ctsg ! -1 2 2\l -k-g-g!'
2r1r2 2r'ee’2 r1r2+r1r2
= n2 - 3 3

n

has

this means replacing

by

3,.3..3 1
=k t-l 2 2\1-k-g-g' =8
<2r1ré>a 2°°2 (rhr2+r1r2> {_1 (1 1 —EJ}Q
r, r

3 n

n

in (4.1.8). Following the proof of theorem (4.1.1) to the end we then
obtain

1
. -k | Yy r

k.

e T ey 2" [ 3 [{n(“—r?ﬂﬂ?) ' QPWPE}mE(n) ’

5 n

PN
—
=
—
P
L
| NS—
+
Q
—

a
=
]

+ {n(r1+?2)— 4r1r2>}{m3(n) - m

Ay
1
_ 1k. 22k e(e)
(k).
or
1
-mk
- 1
(4.1.14) limw o'k - K272 (k even)
k (1k)v
i) !

This completes the proof of theorem 4.1.2.
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4,2, Tendency towards the normal distribution (free sampling)

Theorem 4,2,1.

1 If n tends to infinity and Py varies 1in such a way that
2
np,—* 00 and P4 <1 - €

for some € > 0, and if for all 1

where ¢ 1s a constant 1lndependent of i1 and n, then in the case of
free sampling the distribution of

(BC.B - E}_B) U(EB)—,]

tends to the standard normal one. Ex, and 02(58) are given by (3.%.3)

and (3.4.4) with p replaced by Py

ii If in part 1 by is replaced by Pos and Xp by e the corresponding
result for Xy is obtained.

Theorem 4,2,2.

If n tends to infinity and 2 and Py vary in such a way that
nppy——> 00 and P4 - 1 -€ , Po =1 -¢

for some € >0, and if for all 1

m S e,

i+

where ¢ 1s a constant independent of 1 and n, then in the case of
free sampling the distribution of
-1
(L - Ey) o(x)

tends to the standard normal one. Ey and °2(l) are given by (3.6.2)
and (3.6.3).

We omit the proofs of these theorems, as they are closely analogous
(and simpler) then those of the corresponding theorems of section 4.7,



4.3.

T4

Tendency towards the compound Polsson-distribution

Theorem 4.3.1.

i If, as T, and n tend to infinity,
2
. (T4
11m<7>m++ = 2 3 Q<X <00 5
I nf
e N
1im =— = nF h=1,2, B
L
and for all a« and k2 2
Kk+1
r (a)
im (1) (1 (k) -
(4.3.1) llnl( = ) ) {m ...m | Chd | = o ,
and if for all i and J
<
miy S Cq
where Cq is a constant independent of i, j and n, then in the non
free sampling case the distribution of %ﬁB tends to a compound
Poisson-distribution with moment-generating function
© k k o h
4 1 * 7
2 7 1im E(ji ) = exp {A 2 m ~w-}
K=0 ¢ 2=B e h ht
Assumption (4.3.1) is satisfled e.g. 1f for all i
Mip = Co
where Cy does not depend on 1 and
r
1
1imT02=O »
thus e.g. when co does not depend on n,
i1 The corresponding result for the free sampling case 1s obtailned
r
if 79 1s replaced by P4 in part 1.
iii By replacing 5B and r'1 or p, by iy and rs or pg, the corresponding

results for Xy are obtained.
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Theorem 4.3.2.
i If, as Ty To and n tend to infinity,

1"11"2
lim 5 M =1, O<xr<c00 |
n
zh
mij
um M o nr h=1,2,... ,
m++

and for all a, k2 2 and v=1,2

k+1 (a)

(4.3.2) v () a6 o

and 1f for all i and j

mij'<'01 3

where ¢ is a constant independent of i, j and n, then in the non

free sampling case the distribution of %}L tends to the compound
Poisson-distribution with moment-generating function

@ _k k
E % lim E(';‘,‘L) = exp { A

® h
. Lomgrl

k h=1

Assumption (4.3.2) 1s satisfled e.g. if for all 1
my 4 < Cor

where Co does not depend on i and

r
11m(—nl)c2 =0 , v=1,2 ,

thus e.g. when Co does not depend on n.

ii The corresponding result for the free sampling case is obtained by
r r
replacing —nl and _ng by Py and <P in part 1.

We note that as m,_2n by (1.1.3) and (1.1.4) (cf. 4.1.1), the

o
r, 2
condition lim(—;l—)m++ =22, 0<A<®, of theorem 4.3.1 implies that
r, rr,
lim - = 0. Likewise, in theorem 4.3.2 the condition 1lim s—m,, = A,
n
r r

0<Xr<o00, as ry, Ty and n tend to infinity, ensures that 1im—r—]1=limT12—= 0.
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To prove theorem 4.3.1 we shall first establish four lemmata.

Lemma 4.3.1

If the assumptions of theorem 4.3.1, part 1 are satisfied, then for
1>2, all o, and all k( 21-1),

Proof
If 1=k+1 the lemma 1s true by assumption. If 1< k+1, a graph having

configuration C&“% has k-1+1 independent circuits. One can choose in this
3
case k-1+1 joins, such that if they are taken away, a tree remains (cf.

D. KOENIG (1936), 53). Consider now

nl 1)

2

»

where the corresponding graph has configuration Ciu%. Let the k~1+1 joins
k)

that can be taken away correspond to m(l),...,m( . Then

0 m(q)...m(k) < cﬁ—l+1 m(q)...m(l_q)

Therefore, summing over the 1 summation subscripts and multiplying by
1

r
<—nl) glves

o < i’i;{ () a0 )
P nl m .. .m ,

< k=141 v (1) (1-1) .(8)
.1 } < ;T Z{ m ...m | Cl«ﬂ,l },

1

where the right hand side tends to zero by (4.3.1). This proves
lemma 4.3.1.

Lemma 4.3.2
If the assumptions of theoren 4.3.1, part i are satisfied, then for

h a. h h

all configurations J C\ 11 , with [k, =k, ) 1; =1, for which
1=1 %1071 1=1 i=1

at least one 1, > 2 (i=1,2,...,h)
rl
1
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Proof
1
r h (a,)
(4.3.3) —~ I {m(1)...m(k) | 1t } =
n 1=1 1’71
. ( ) ) )
h r kaot, .tk A+ (k. +..+k, a
=an{mo -1 V4 11011}
i=1 n i 1°71
with k=0 .
For every 1 such that 1, =2 (4.3.3) contains a factor
k
i
w3 It vl izmij "
(%.3.4) 5 lmy o= mm, . A 2am :
n- ij n m,, i

for every i such that 1,>2 (at least one such 1 exists) (4.3.3)contains
a factor which for n—oo tends to zero by lemma 4.3.41. This proves
lemma 4.3,2.

Lemma 4.3.3
For k=1,2,... , and 1=2,4,,..,2k
1 1 1
r s %= 5 s g
1 1 2 i
lim (——n ) Z{m( ). om0 |iz1gici,2} = 227 iI Iq(mf) ,

s s
where 2 § g; =1, and ) igy =k .
i=1 1=1

Proof
Evident by (4.3.3) and (4.3.4).

Lemma 4.3.4
If the assumptions of theorem 4.3.1, part i hold, then for every

b (o h h
configuration [ ¢ 7, , with [ ky=k , ] 1;,=1,
=1 “10°1 1= 121
Py () ) B olen) PN e () (o, B ler)
lim (——- Z{m l.o.m ) Cp 11 } = lim <7T—> ) { m' .m P Ic, } .
n i=1 1271 1=1 %1771
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Proof
The difference

<;§jl[z {m(1)-..m(k) Iiiqci:fii }— z*{ ol i ¢

consists of sums of the type

ht
where 2 li =1'<1. As 7% tends to zero, each of these contributions
i=1

tends to zero by lemmata 4.3.2 and 4.3.3. This proves lemma 4.3.4.

Now we have by (3.1.6), writing x for x,, and r for v

B
3]
7 55 1 K = v -k EE 2 (]
k£1 o Ltim E(Ei) - kzq 2 Kt 1£g h£1 E L=k, ? 1,1
[1=1 i=1 " |
ar(§oitd ) wn s(e 000 1§ o) ) 1 el et ) o Y
i=1 l—(i,l ESS (i kg1 . A ki;li
by (3.3.2) [1
. ok | = . .
= E 2_k E: ) % I h h /4/( ) Ci ii )
k=1 * 1=2 h=1 [ ky=k, [ 1,=1 18 kyo 1y
[i=" 1=1 " _]
r (1 (k) i
lim :. ) { m m ]1zﬂcki’li}

by lemma 4.3.4

1
2k [—
@ K zk 2 W h (ui
= z 2 - E Z Z h h A/ 2 Ck 1
k=" : 1=2 h=1 1 ky =k, ] 1,=1 i=1 *i71
i=1 i=1 _
1 h (o)
o (1) (k) 1 -
llm(n) Z{m ..m I.ECK ,l.} =
i=1 1’71
by lemmata 4.3.2 and 4.3.3
11
w Kk 2k Kk s 5 5 8 g,
-k 2.2
TS S S SR /V(Zglclg>2)‘ﬂ”(m’l*)l=
k=1 *° 1=2 s=1 ! g;=5, 1 ig =k 1=1 ’ 1=1
1 even [1=1 i=1 "
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by Theorem 2.1.1 and (2.1.9) and by changing into 1:

b k k s m’* gi
A N . R ks
k=1 1=1 s=1 I gy=1, I 1gy= 1=1 8 :
L1=1 1=1
® w w18
11 . xlﬂ-—i,—<mﬁ)l=
1=1 Ig=1 1=1 B1-
[1=17 |
= o m¥ziyl @ mzt
= Z'/]—(AZ i): exp{k): L }—’1
121 20\ gzq 121 M
"~ Defining
1 [¢]
E(Eg) =1 for all n,
the main result of theorem 4.3.1, part 1 1s proved.
ricy
If m, S Cs o, cy independent of 1 and lim = = 0, then by {(2.3.33)
(0, alk) L) k-1
HnlD. I Cea] = ©2 i}:.mij
J
Thus for k 22
k+1 k-1 _2
()0 L) fa%) i,
nk+’l 2{ Peem lck,k+’l} A\ 2 Mt 0

If co is also 1ndependent of n, lim

r.c r
3 2 - 0 since ;1 tends to zero,.

we ‘have proved part i of theorem 4.3.1. Part ii can be proved in the

r
same way. In fact replacing 7} by P4 in the proof of part i, transforms
it into a proof for part ii. Part iil follows by symmetry.

The proof of theorem 4,3.2 follows very closely the one of
theorem 4.3.1, and is therefore omitted. We only point to the fact that

st o) s ] ) )R ()Y,
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4.4, The degenerate case

Theorem 4.4.1.
If n tends to infinity and if
2

|
n

)

—3 O

s

if moreover for all i

m = ¢,

i+

where ¢ 1s a constant independent of i and n, then in the non free

sampling case in the limit §B==O spr O.

Theorem 4.4,2,

If n tends to infinity and if

112 o,
if moreover for all 1
Mip = ¢

where ¢ is a constant independent of 1 and n, then in the non free
sampling case in the limit y =0 spr O.

Theorem 4.4.3.
If n tends to infinity and if

np§ — 0,

if moreover for all 1

my, S co,

where ¢ is a constant independent of 1 and n, then in the free
sampling case in the limit %p =0 spr O.

Theorem 4, 4. 4.
If n tends to infinity and if
np192 — O s
if moreover for all i

m
i+

BA
o
-
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where ¢ is a constant independent of 1 and n, then in the free
sampling case in the limit y=0 spr O.

We prove theorem 4,4, 1, Using the abbreviations (4.1.1) 1t follows from
(3.3.1) and (3.3.8) that

r1(r1—1)

- 2r1(r -1)
Exp & ————m, (n) and o (

Xg)w
Since mq(n) and m2(n) remain bounded as n tends to infinity (cf. (%.1.1))
both Exy and 02(§B) tend to zero. The result of the theorem now follows

from the BIENAYME - CHEBYCHEV inequality. The proof of the other theorems
proceeds in exactly the same way.
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CHAPTER 5

5.1. A test for randomness

The theory of the preceding sections can be applied to a testing
problem which often arises 1in relation to ecological and virological
studies.

Consilder e.g. an agricultural experiment carried out with the aim
of studylng the occurrence of a disease with a certain kind of crop, If
the way 1in which the disease 1is transmitted i1s not known one may be able
to obtain information about this question by studylng the geographical
distribution of the diseased plants among the healthy ones. If this
distribution is a random one the conclusions drawn about the mechanism
of the disease would be different from those for the case where the
diseased plants tend to cluster. Let us consider the case where the
plants are grown at the corners of a rectangular lattice. To test the
hypothesis HO that the r1 diseased plants occur at random among the n
plants one may proceed as follows. For every diseased plant one counts
how many of its direct neighbours are diseased as Qell. Addition of these
numbers gives the test statistic Xg- If HO is true the value of the test
statistic 1s an observation of a random variable Xps defined by (1.1.5),
where

1 1if plants 1 and j are direct neighbours,
e - |

0 1if not.

Large values of the test statistic lead to rejection of HO, Alternatively
one can execute the test with a statistlc y, corresponding to y, defined
by (1.1.5).
This method of testing randomness has been described by several authors,
e.g. H. TODD (1940), P.A.P, MORAN (1943) and P.V. KRISHNA IYER.
A detailed example of an application is given by G.H. FREEMAN (1953).
Using the results obtained in the bpreceding sections the test
procedures may be elaborated. If the inoculum of the disease is
transmitted by e.g. insects a diseased plant influences not only its
direct neighbours, but also - to a lesser extent - the other plants in
the neighbourhood. In such cases the test might gain in power if the
test statistic not only takes account of pairs of diseased plants, that
are direct neilghbours, In fact it 1s only natural to define the value
of my such that i1t is in some relation to the distance between plants 1
and J.
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From the published examples of applications of tests of randomness
it is apparent that the non free sampling case 1s the more important
one. For not too small values of EEB and Ey, the fact that under the
hypothesis tested both random variables are approximately normally
distributed can be used to determine approximate critical values.

In order to examine the consistency of the test based on xp for the

non free sampling case we define (cf., section 1.1)

P(1) = probability that point i is black
P(1,5) probability that points 1 and J are both black,
ete.,

Any hypothesls, i.e. a specification of a random mechanism that' chooses
r, points to be coloured black, determines a set of values for the

probabilities P(1), P(1,J), ... . In the non free sampling case Hy
implies
r
P
P(1) = —
{5.1.1)
rylrq-1) s
P(1,J) = GEO R ete., (i,3=1,2,...,n, 1#j).

We now prove

Theorem 5.1.1.

If r, and n tend to infinity in such a way that

4
Tq

E;—-—n

1~€

BA

for some € >0, and if for all i

m,_<c

1+

where ¢ is a constant independent of i and n, then in the case of non

free sampling the one-sided test based on the statistic Xp and a

critical zone consisting of large values of Xpgs is consistent for those

alternative hypotheses satisfying

(5.1.2) P(i) = — , i=1,2,...,n,

LN

(5.1.3) n 2 ) miJ{P(ilj) - f(i)} ey 00 FOP Ne—s00, and
1j

m, . P(1, m ,104,5) - P(k,1)} = O(n) .
(5.1.4) Lomgren) I mgrUan) - ma1)} - O6)
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FProof

Let H' # H, be a hypothesis satisfying (5.1.2), (5.1.3) and (5.1.4%).
Replace ry and Xp by r and x and denote E(é_]HO), E(x | H), 02(5 [Ho)
and cg(i |H') by Wy, W', 02 and 0'2 respectively. The condition mi, ¢
implies {cf. section 4.,1)

2 2 2
(5.1.5) n g gg miy s E m{, s,
n “m_++ :‘Cﬂ s
and (cf. 4.1.5)
a
(5.1.6) o = 0 (n°)
Now
2
5.1. o'< = ) P(i,3,k,1) - P(1,3)P(k,1
(5.1.7) (ijkl);émijmkl{ (1,d,k,1) - P(1,5)P(k, 1)} +
4 L m.om ,3,k) - P(1,J)P(4,k
+ (iJk);é iJ ik{P(i J k) ( J) ( )} +
2 1 n?, p(1, 1-p(1,0)) = O
£ 2 Lo (1,0 (1,00} (n)
by (5.1.4) and (5.1.5). Also
(5.1.8) o yo= ) miJ{P(i,j) - g 221 } =
1J
© 5 Lmgfrtatn -5} ool
= gizj miJ{P(iU) - P(i)} + 01 s

by (5.1.2) and (5.1.5). Hence for any fixed a,

(5.1.9) 1im HDEmdo o
N OC g

The probability of not rejecting HO if H' is true is
X-p X=u' u- ' tag }
Pl =0 < T e e e
[ s = a] P [ o' = s

1
ag
X=u'
s e[

i

1
g

2
u'—u‘acj < (___QL__ ) p——ye) ffor n-—— 0O
= |

v
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by the BIENAYME—CHEBYCHEV inequality and (5.1.9), which proves the
theorem.

An analogous result may be proved for the test based on the
statistic y and for the case of free sampling.
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APPENDIX

In order to derive an asymptotic expression for

(A.1)
' v h (a;)
1) (1) (k=v) i
A = % (-1)“(3') {E(z( lc )} E(z ) .z | Jc + (gt +g-v)C
vao Y = 1,2 - = 124 ki,li 1,2 )
h h
with Z k., = k-g-g' and Z 1i = 1-2g-2g' , for the cases 2z =Xp and z=y
1=1 % 1=1 -

and non free sampling, use is made of the expansion

(_1 _.__J..-_".’.]_a

(A.2) log r(x+a) o (x+a—%) log x = x + %log 2 + ) -
1 J(g+1)xY

le~18

J
for x-+co. Here QJ(z) is the Jj-th BERNOULLI polynomial defined by
tetz E

et—ﬂ J=0

tj .
QJ(Z)ST 3

¢J(z) is a polynomial of degree J 1n z, the coefficient of zY being
equal to 1. The first three are

(A.3) ¢1(z) =z - %

©
no
—

[
~

]

N

1

N

+
(o) PRN

( c¢f. E.T. WHITTAKER and G.N. WATSON (1915) chapter 13, where a slightly
different version of these polynomials is discussed).

First we consider the case z=%g . If r, and n tend to infinity in

such a way that
r (n-r,)
(A.4) A1 s oo
n
we show that if g' is even

(A.5) 1, P |
e o) o (2 (2

1
(&
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and if g' is odd

(8.6) A= 0((“;;“1)%% .ri: >

During the proof we shall write r instead of r

noj

10
By (3.3.2) and (A.2) we have in this case

g r r v
A = (_1)v<g') 1-2v/ \2 -

v% (7))

%O(-ﬂ)“(%'> exp[@v+1){log r{r+1) - log r(n+1)} +

V==

i

+ v{lég r(n-1) - log F(r—ﬂ)} +log F(n-1+2v+1) - log F(r—l+2v+1i] =

1

g v 1 g! - Jt1
y (-1 (% ) exp[} log % + .Zq LG€§:33~{(v+1)¢J+1(1) - V¢j+1(’1) +

fl

v=0 j=
jg
1 .1 n-r 2 -1
®j+1(2v—l+’l)}<;3 :;3) + 0((;—;) r )]’
._gl
since n &' "1 ¢ p7E'-T < (%55)2 r by (A.4)
Defining
3+ 5
(A.7) (vi1)ey (1) = vey y(=1) - ey j(2v-141) = s£0 agv
and
g' J+1
(A.8)  a/(r,n) = I oo, (,i- i.) ,
JEmax(1,s-1) j(g+1) ¢° rd n?
we have

We note that, because of (A.lL),

(A.9) ;1—3 - —1J— = O’(?—'F—) s (it 1is not o(%) )y,

n nr

and hence



ao(r',n) 0’(%) s
(A.10) a,l(r,n) = U(%?) , and
as(r,n) = 0’(—3—;—1_’—1> for sz 2
nr

Expanding the exponentials in the last expression for A, we find

o B Lo 0 et o)

o (oten) ™ = o(() ) (),

To every sequence of non-negative integers ho’h’l""’hg'ﬂ-’l , all

less than g!'+1, there corresponds a term T in (A.11)

g'+1
h
1 g . S0 g'+1 h
=0 1 s
T = (z) (_1)v(g) .8 T (a (r,n)> -
n vZO v s=0 Mg s
g'+1 gl +1 +1

1
§ sh J h, -(h_+h .+ ] (s-1)h_)
- (I‘_)l g‘(_,])v(g") v5=0 s U((n-r’)s=0 s r o Tg2e s
=z ) N . - . s
v=0
because of (A.10). Furthermore we note the identities
0 if peg

g’ Vg vp -
(A.12) {O( 1) (v > |
(—’l)g g if p=g!'

which are easily established by differentiating both members of

g' g' '
X v VX
(1= = T nY(E) e
v=0

p times with respect to x and setting x=0. By (A.12) only those terms T

gl +1
having |} sh, 2 g' contribute to (A1),

s=0

g'+1
Suppose therefore that such a term T has y sh_=p2g'.

s=0
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gl+1 g+
Then 2 § hg 2 N shy $ P , with equality if and only if p is even,
s=2 5=2

h2=;p and h =0 for s# 2., Also

g!+1 1 gl+1 g!+1
1 1 h+h+Xh-2p 2ph+2h L shy
o= g'_) /n-r\2P n—r) s=2 " s=2 s=0
h n/ "\ rn ‘\'n .
: *EM
1 —p h . -
= O’((E)l.(h—r')?p.( n ) s=2 ° (n—r>h0+h’1 r hO) =
n rn r(n-r) ‘Y'n .
g+
L 4 o~ Z h
~¢((z L fn-r 2P n =2 B
- n/ \'rn ‘\r(n-r :
g!+1
If g' and p are both odd, then p 2z 2 Z hs + 1 , and hence
8=

1 1 1 1
T o= (g_)l (n-r)§g| ( n )'2— -0 (n—r)§g|_§ pi-1 .
n rn r{n-r) rn nl
if g' is odd and p 1s even, then p2 g'+1, and
1,1 1,1
o - ollE Lonor\28' s o((n-r 28'7y pl-]
- n/ '\ rn - rn : 1 ’
n
which, together with (A.11) proves (A.6).
gl +1

If g' is even and p is odd, then pzg'+land p 2 2 | hg + 1, hence
s=2

1 1 1 1
! /n-r\28' 2 2 —r\2&' -1 pl-®
v o((B) (2 =) ) - o (B )

if g' and p are both even, but p 2g'+2, then

soo(=] () - o ()

if p=g', even, but -;—p 2 Z h, + 1, then

- o((5) (5 ) - (BT )
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gl +1
‘The only remalning term for even values of g' has p=g', Z hs =
=2
" and hence h2=-%g', h =0 for s #2. Since the remainder term in (A.11) is

also
1
@ n-rYg8' "1 pl-2
( rn . nl ’

we have, 1f g' 1s even,

b= () () o (et 0[5 ) -

(I. <§>1 <a2(r,n))%g‘ . 0((%)%8'4. p1;2> (.

n

|~

-

hY)

i

From (A.3) and (A.7) - (A.9) we find
n-r n-r
3.2(1",1’1) = "‘2.‘}";‘ +O(;§;—) 5

which proves (A.5).

Next we turn to the case z=y . If r ir, as r,, r, and n tend to
infinity we show that, if g' 1s even

(A.13) . )
. g+g! -1 T, LW T -1,
A 253( ? C(ai) ) g <2r1r%> f%{<£1> 1 1(22) l+.<il) i(£3> 1 1}
121 Kot/ (Je )i\ W 1=q\ 0 n n/oAn
1(1 .1 4\28 htgzg'-1 l-g-g'-h -1
1‘“(;«1 T, h +O{rq T2 ")
1,
( YEI (o) ‘) h+gsg'  l-g-g'-h —l)
= C .(?(r T .n
129 K101y 1 2 ’
and 1f g' is odd
1,1
h (e,) h+g+s8' -5 1l~g-g'-h —l)
- 1 2 2
(A.14) A _@(izqcki’li). (7<r1 Ty .n

The fact that we suppose rqg‘rg does not imply any loss of generality.

By (3.5.8) we have in this case
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g! 172
i v= <“ ) n’(n-1)" ' =0 EO

h h h h
oL egtt L (1m0 (1, - )+g+g'—v> !<2 (1-py )yt § oo (1,1 )+g+g'-v>
<111111 ERASE IS ik 10T e P T
1 -Fo

n!(1—2\1)

h (ui) h (ai)
If the configuration z Ck is non-blchromatic, 1.e. Z C = 0,
1 i

121 Kyoly 1=1 Kyl
the result of (A.13) and (A.14) 1s of course trivial. Suppose therefore
h (o)
that %‘(X Cy 11 = 1 and hence that
1=1 71’71
(A.15) T8 oy 8 11 s 1= 1,2,...,h .

Consider a term B of A corresponding to fixed values of PgsPoseensPpy -
Introduclng the abbreviations

M

h
q = Mqleqoppseney) = eyt (1=py ) (1y-1y) and

+
[ tsg
N

h
o = My(p 05, .nas0,) = E

h
(1'01)11 + iqui(limTi) 3

1

and applying (A.2) we find

gf
(s v !
B = 2878 Ugo(-—’t) <%) r}’lr’g exp[log F(r,+1) - log T(r ~M,-g-g'+v+1) +

+

log I'(r'2+1) - log F(rz-Mg-g—g'ﬂH-']) - u{log r(n+1) - log F(n—’l)} +

- log F(n+1) +log F(n—1+2u+’l)] =

g g g' _ydy ¢ :
-1
REETIION (") expl:J;nr1 séoajsv '

where ajs 5 bjs and st are defined by



)3t
Sscon [%m“

-1 J+1
St [t

1 J+1
Sy [

.16)

By (A.15) Mizh; as M +M
PhsPos ...y Py WE have

r
and
B - <2r’1"2)g+g' I"I:q I’ZI

n2 nl—?g—Qg'

where
(A.17) d(rq,rp,n)

We note that

ds(l",},l"g,h)

Expanding the exponentials

(A.18) W

gtg! 2
<21"1r’2\ Ty T
5
n

B = / nl—2g—2g'

To every sequence of non-negative integers hq,h2,..
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341

) - ¢J+1(1_M1_g"g’+“)] = Z ajsvs 2
S I

) - °J+1(1'M2'g‘g'+viJ = sEObjsv s

j+1
¢j+1(1) +v¢J+1(~1) +¢J+1(1—1+2v{] = Szocjsvs .

1-2g-2g' , independent of

+ (7(r2+g'1.r%-g'g'_h.n—l) s

= %| (a..r:d+p, r3d
JEmax(1,8-1) I8 1 Js 2

-o(7)

0<r%s+1) for s

+c n_J)

Js

for s

i
O
“
A

Bv
N

il

in the expression for B we obtain

h
sT s
7 [ds(rq,r2,n).v ] +
h+g-1 _l-g-g'~h -1
(r’,I .To .n .

.,h , all less

g'+1

than g'+1, there corresponds a term T in (A.18), and

g'+1
h+g+g'—ho—h1—szg (s-1)hg lgegrn
. U<}1 .Tp .

2.
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g!+1
By (A.12) we only have to consider terms T having p = § shy 2 ¢g'.
g+ 5=0
We recall that 2 Z hs £ p with equality if and only if p is even,
5=2

h2=-;—p and hs= 0 for s#2. Using the same procedure as we did for z=ZXZp
we find that for odd values of g' all terms T are

.
k]

h+g+%g'—-;— l-g~g'~-h =1

r, Ty .n
since this also holds for the remainder term in (A.718) it holds for B
too.

For even values of g', T is
htgigg' =1 l-g-g'~h -1
O, Ty .n s

unless p=g', h2=%g' and h, =0 for 82,

Summing terms B over all values of PysPosee.s ) We obtain (A,14) 1if
gt is odd, If g' 1s even, we have for a bichromatic configuration

M M 1
gtg! 1 2 =g’
. _15_,_L—<2r';1"2> i] )E] %1_2.%1_ (dg(r,l,re,n))2 +
('é‘g'): n 0 4=0 0, =0 n-"<B7<E

htgigg -1 l-g-g'-h -1
+ U(r,l Ty .n .

By (A.3), (A.716) and (A.17)

[\S1 JEN
ja g =g

dg(l”,],l”g,h) = -

(&5 e -w) e o()

1/ 1 4
and as a result we may change d2(r1,r2,n) into =~ 'é—('r? + ;—2— - —5) for gt 22
without affecting the order of the remainder term (for g'= 0 this is
trivially true). Since this is independent of B 4sPpsec.,Py WE MY NOW

carry out the summation over these indices to obtain the result of (A.713).
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