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INTRODUCTION 

In this thesis our aim is to give a systematic study of a few 

topological generalizations of compactness in Hausdorff spaces. Our 

main interest lies in generalizations that are related to compact

ness with respect to heredity for topological operations, as the 

taking of closed subsets and the fo1·ming of topological products. 

In particular, much effort is made to obtain an intrinsic charac

terization of realcompactness (10] (i.e., a characterization of real

compactness in which we do not use explicitly the special properties 
' 

of real-valued continuous functions). 
• 

When introducing a property of topological spaces, it is natural 

to ask if the property is inherited by closed subsets, open subsets 

and topological products. In general, it is difficult to decide 

whether or not a property satisfies any of these three conditions, 

nevertheless, a criterion which gives a decisive answer in a few 

cases is obtained in Chapter I. The following result is proved 

(theorem 1.1.3.): For a productive property of Hausdorff spaces the 

condition of being open-hereditary and closed-hereditary is equivalent 

with the condition of being hereditary. It is an open question whether 

or not the Hausdorff condition is essential. 

Also in the first chapter, we investigate those properties which 

are closed-hereditary and productive. Let be a property of topolo-

gical spaces . A , -exten:sion of a space X is a space with property 

which contains X as a dense subspace; a -extension yX of a 

space X is called maximal if each continuous map of X into any 

space y satisfying has a continuous extension over yX. A space 

is called ~ -reguiar if it is homeomorphic with a subspace of a 
• 

product of spaces each of them satisfying ,. We have the following 

result (theorem 1.2.1.): A necessary and sufficient condition for a 

property of Hausdorff spaces to allow maximal ~ - extensions for all 

~ -regular spaces is that is closed-hereditary and productive. 
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This result was obtained independently by HERRLICH [ 15] • See also 

( 29] and [ 1 7] . 
Now, let , be the property of compactness. Then a , 

is simply a compacti:fication. Furthe1n1ore, it is well-known 

-extension 

that every 

coapletely regular space X has a (unique) maximal ~ -extension (i . e • 

aaximal ca,,apactification). Namely, the Cech-Stone compactification BX 

satisfies all required conditions. Maximal ~ -extensions have also 

been constructed for the properties realcompactness (Hewitt extension 

ux, see [ 10)) , E-compactness (ENGELKING and MROWKA [ SJ ) , compactness & 

zerodiaens:lonali ty (BANASCHEWSKI [ 3)), and for k-compactness and m-
• 

ul tracoapactness (resp .. , [ 15) and [ 29]) . Our general result includes 

all of the preceding extension methods as special cases. 

In Chapter II we intro,duce two new topological properties. The 

first one, called basiscompactness, is open-hereditary, productive, 

and is possessed by all locally compact Hausdorff spaces. Basiscompact

ness is defined by imposing a compactness condition on a base for the 

topology: If U is an open base for a space X, then X is called 

bo.ais •· ct re"lative to U if for each centered family u 1 c U the 
-collection u

1 
has non empty intersection. A space X 

basis • act if there exists an open base U such that 

• 1S 

X 

called 

is basis-

coapact relative to U. Basiscompactness is a stronger version of 

eubcompactness introduced in [ 11], but it is weaker than cocompact

aess introduced in (12). In metric spaces these three properties are 

equivalent, and give an intrinsic characterization of the notion of 

to,pological comip•leteness. We also prove that basiscompactness is 

invariant for a special kind of mapping: every perfect irreducible 
• 

iaa.ge of a ba.sisc,ompact space is basiscompact (theorem 2 .1. 6.) . It 

is unknO\'llll whether or not such a mapping theorem exists for the 

notions of subcom,pactness and cocompactness. 

The second topological property which we introduce in Chapter II 

is defined by imposing a compactness condition on a closed sub base: 

If 1s a su"bbase for the closed sets of a space x , then x is 

called m-ultr-acom;pact N'lative to 6 (m being an infinite cardinal 
• 
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number) provided that each ultrafilter in X for which n5 
satisfies them-intersection property (i.e. each subcollection of 

cardinal< m has non empty intersection) is convergent. A space is 

called m-uitracompact iff it is m-ultracompact relative to some 

closed subbase for its topology, or, equivalently, if it ism-ultra

compact relative to the (sub)base consisting of all closed sets. 

m-ultracompactness resembles, to some extent, the property of k-com

pactness introduced by HERRLICH [15]: it is closed-hereditary and 

productive, is possessed by all compact spaces, and ~
1
-ultracompact

ness coincides w~th realcompactness in countably paracompact no1mal 

spaces (for the definition of realcompactness see [10]). We also 

prove that m-ultracompactness is a fitting property, i.e., if f 

is a perfect map of a space X onto a space Y, then both or neither 

of X and Y must be m-ultracompact (theorem 2.2.6.). 

If X is ~ 1-ultracompact relative to some subbase 6, then it 

is natural to ask what separation conditions should be put on in 

order that X becomes a realcompact completely regular space. In the 

same way we can ask what conditions we should put on a space X which 

is basiscompact relative to a base U for its open subsets in order 

that X becomes a compact Hausdorff space. The second question is 

easy to solve. A base for the closed subsets of a space X satis-

fies the condition of base-regularity if for each member S E 6 and 

point pl s, there exist s1,s2 E 6 such that sl U s2 = X, P ~ s2, 

Sn s
1 

= 0. It is easy to prove that a T1 -space is compact Hausdorff 

if and only if it is basiscompact relative to a base U for which the 

corresponding closed base 6 = {x \ ulu Eu} satisfies the condition 

of base-regularity. 

Now, let X be a space which is ~ 1-ultracompact relative to a 
• 

closed subbase 5. We must find extra conditions for 6 such that the 

space X becomes a realcompact completely regular space. This is 

certainly the case when is the family of all zerosets of X (see 

[10] page 153). But we are looking for intrinsic conditions for 
t 
• 

Two subsets A and B of a topological space X are screened by a 
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finite collection of subsets iff no member of intersects both 

A and B .. A subbase for the closed sets of a space X satisfies 

the Ngul.a"fi•ity condition (condition of subbase-reguZarity) provided 

that for each S E 5 and x i. S , there exist subsets S1 , • • • , Sn 

screened by a finite subcollection of 6. satisfies the not'lnality 

condition <oondition of subbase-no1, 11aiity) iff each two disjoint members 

of 6 are screened by a finite cover of X consisting of members of 

6. 6 satisfies the aountability condition if each countable cover of 

X by members of. X \ S 1 S E 6} has a countable refinement by members 

of 6. How we have the following result (theorem 3 .1. 8 .) : A T1·-space 

X is a re,a.lc01.tpact completely regular space if and only if it is 

~
1

-ultraconapact relative to a closed subbase which satisfies the 

regularity, noz:"ltality and countability conditions. Note (see 3.1.4.) 

th.at for such a subbase 5, the condition of being ~ 1 -ul tracompact 

r,elative to 5 is equivalent with the condition that each maximal 

cerite:red fatiily of meab·ers of 6 with the countable intersection 

p,li½Qperty bas non empty intersection. lf we work now within the con1p le

menta.ry f:ruework of collections of open sets and open covers, then 

it follows that a sufficient condition for realcompactness of a space 

is pr1esented by the existence of a ' 1nice1
' open subbase with the Lindelo:f 

p!"Opert:, '(i.e. each c<:>ver by members of the subbase has a countable 
• 

subcover). This answers a question which was raised by J. DE GRoor. 

The problem. wb,etber realc·ompsi.ctness is equivalent to the existence 

f .-:1.. tr , . . tt 
o .su~, a Lindelo.f subbase sti 11 remains unsolved. 

In (12) the conditions of subbase-regulari ty and subbase-nonnali ty 

were introduced. X, which 

has a closed subbase 6 satisfying the conditions of subbase-regulari ty 

and subbase-nornality, there exists a Hausdorff compactification 

B (5)X such that the closures in B (6)X of the members of fo11n a 

closed subb,ase for e (6>X. Se·e also [13], [7] and [31]. 

In Chapter Ill we obtain a similar theorem for the realcompact 

case: 
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THEOREM. Let X be a T1-space and 6 be a closed subbase for X 

which satisfies the regularity, no1·1r1ality, and countability conditions. 

Then there exists a completely regular realcompactification U(6)X 

of X with the following properties: 

1. The closures in u(f5)X of the members of form a closed 

subbase for u(t5)X and satisfies the regularity, normality, and count

ability conditions. Each maximal centered family of this collection 

satisfying c.i.p. has non empty intersection in U(6)X. 

2. If S. Ji=l,2, .•. } is a countable subcollection of 
l. with 

empty intersectio~. then their closures in U(6)X have empty inter-

section in u(Ej)X. • 

• 

In Chapter III we also obtain a result which shows that our real

compactification 0(5)X is maximal in a certain respect. 

THEOREM. Let X and Y be T1-spaces, and suppose that and are 

closed subbases for X and Y, respectively, which satisfy the regular-

ity, normality, and 

map of X into Y 

countability conditions. If f 
-1 

such that f (T) E (5 for each 

is a (continuous) 

TE%, then there 

exists a continuous extension of f which carries u(<5)X into 

The final results in Chapter III are applications of the obtained 

realcompactification method. As a typical example we have the follow

ing result: Let X la EA} be a collection of topological spaces 
a 

and X = IT X la EA}. If for a EA, 6 is a closed subbase of X 
a a a 

which satisfies the regularity, no1·1r1ali ty, and countability 

then the subbase 

C E 5 (a E A), 
a 

morphic with II 

of X consisting of the sets 

also satisfies these conditions and 

u (6 > x I a E A} . a a 

-1 
Tr (C) , 

a 
U(6)X 

conditions, 

where 

is homeo-

Here I wish to express my gratitude to the Mathematical Centre, 

Amsterdam, which gave me the opportunity to carry on the investigations 

which are dealt with in this treatise. I am indebted to Dr. G.A. Jensen 

who carefully read the manuscript and corrected it, especially in its 

English expression. Here I wish to thank also Mrs .. H. Roque-de Hoyer 

and Mr. D. Zwarst for typing and printing the manuscript. 



CONVENTIONS 

Tn:rougN>wt titis thesis aZ.Z spaces are considered to be T 7-spaaes, 

witsNaB thtl ~suits are only of practical. use for Hausdorff spaces. 

'' '' f '' t '' E t"'Collection:'"', t•fam:ily'' and system are synonymous or se , 

denotes ••berahip. The empty set will be denoted by 0. 
fie sytnbOls C a,nd :::::> mean ordinary inclusion between sets, they 

do not exclt.ide the possibility of equality. If A and B are sets, 

th•a A\ B rill denote the set of points of A which do not belong 

to a .. • 
• 

llappinp will be considered as left operators and are written on 

t•• le:tt of tb,e a1·g:,•ent. If f is a mapping of X into Y and A c X, 

BC Yit th•a f(A) = f(a) )a EA}, f-
1

(B) = fx E Xjf(x) EB}. 

ltalio la.tin letters stand for cardinals, ~O stands for the 

cardiaal _..ber of a countable set, denotes the cardinal of the 

nt.e_elo,su:re of a set A in a space X will be denoted by AX 

8lllf>l7 A. th,e interior of A in X by AO • 

or 

Collections of sub,sets of a space are indicated by Ger111an_letters; 

it U is a faaily of subsets of a space X, then the symbol UX is 

•••d to d~te the collection of all ir for which U EU. The union 

and i:nter-ee,ction of a family of sets U will be denoted by U U or 

n U • Ntlpe,ctively. Som·etim,es we are concerned with indexed collections 

ot aete, like Xa fa E A}. The union, intersection etc. is then simply 

etc. 

It X i,s a sp,aceJ then an open (sub)base of X is a (sub)base 

for tit• open sets of X; a cZ.osed (sub)base of X is a (sub)base for 

the cloaed sets of X.. A subset Z of X is called a zeros et; of x 
if tbe1n1 exists a real-valued continuous function f on x such that 

of seraeets of X is a closed base of X (see [ 10] for more inf oz·ma
t ion). 

• 
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CHAPTER I 

INVARIANCES OF TOPOI.DGICAL PROPERTIES 

1. HEREDITARY PROPERTIES 

1.1.1. Recall that a property of topological spaces is called 

produoti·ve iff each product of an arbitrary collection of spaces 

having ~, also has property ~; it is called hereditary (respectively, 

oZosed-heredita:ry, open-heredita.Py) if each subspace (respectively 

closed subspace, open subspace) of a space with also has ~. 

1.1.2. LEMMA. Let be a 

ditary and productive. If 

property of 

{x la EA} 
a 

T2 -spaces which is closed-here

is a collection of subsets of a 

T
2
-space Y 

n {xa.la EA} 
and if each X

0 
satisfies the property~' then 

satisfies the property ~-

D = 

PROOF. Let X = rr{x la EA} and let ~ c X be given by t = {x E xi a 

na(x) = ne(x), Va,S EA} (here na is the natural projection of X 

onto Xa). Define a mapping f of D onto by the conditions 

~a(f(p)) = p, Va EA. f is continuous, since the map f followed 

by projection n is the inclusion map of D into X. Moreover, a a 
if U is an open set of D then there exists an open set U' of Y 

such that U' n D = U which implies f(U) = n-1 (U' n X) n ~ for 
a a 

each a. It follows that f(U) is open in ~ and consequently f is 

a homeomorphism. So it remains to show that has property l· 
X has property since each 

tive.By the Hausdorff property 

X 
a 

of 

has property and 

Y it follows that 

is produc- • 

is closed in 

X, so also has property since ~ is closed-hereditary. 

1.1.3. THEOREM. (Seealso[17] and[29]). Let be a property of 

T2 -spaces which is productive. Then the following conditions are 

equivalent: 

(1) ~ is open-hereditary and closed-hereditary, 

(ii) ~ is hereditary. 
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(ii). Let X be a subset of a space y with property 

Y \ {p}Jp E Y \ x}, i.e., x is an intersection of open 

aubapae•• of Y. By asstapt ion each open subset of Y has P rope rt Y 

aad by the preceding lemma each intersection of spaces satisfying 

a:1110 bas 1· Consequently X has property ~-

(ii)• (1). This is illll~diately clear. 

1 .. 1 .. 4 .. easy cons,equence of the foregoing theorem is that if 
• 1S 

a ~, · .. ·· .... · rt• o,f T -snaoes which is nnen hereditary, closed-hereditary, r . . .;: . . 2 r .... l"" 

p . •. · .. ctiYe, and 1~ possessed by all compact T2 -spaces, then 

P••••••d by e,r,ery completely regular space. 

is 

Tats corollary can serve as a test for deciding whether or not 

inherited by open subsets, closed subsets 

or topolo11ical products. Consider the properties C = compactness, 

LC • looal compactness, CC = cocom.pactness [12], K = being a k-space 

[13], ead IC = realc .·. actness [10]. The following table is filled 

out + or -, dependin.g on whether the property at the head of the 

oelWIG ie or is not of the sort listed on the left. 

C 1£ cc K RC 
. . . 

' ! 

! eloaed-heredi tary + + + + -. 

' open-hereditary - + + + ' -
' . ' 

/ _. . • 
' ' 

pro,ductive + - + - + 
' 

. '" . . 

• 

lf W'e coo:sider, for instance, the property of being a k-space, 

then :it is easy to see that this property is closed-hereditary and 

open-hereditary (if we restrict ourselves to Hausdorff spaces). 
• 

is a k-space. However, we Moreover, each (locally) compact T
2
-space 

known that there exist completely regular spaces which are 

the property of being a k-space is not productive. 

not k-spaces. 

1.1 .. 5. PROBLEM. Up to the present we have not succeeded · in constructing 
a property o.f T 1 -spaces which is 

aad P~otive, and which is not 

open-hereditary, closed-hereditary 

a hereditary property. Thus the 
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question remains open whether or not, · 1 1 3 th H d ff in ... , e aus or 
condition is essential. 

2. MAXIMAL ~ -EXTENSIONS 

• 

1.2.1. Recall that if is a topological property, then a ~ -

extension of a space X is a space with property which contains 

X as a dense subspace. A ~ -extension yX of a space X is called 

ma.ximal iff each continuous map of X into any space Y satisfying 

has a continuous extension over YX. 

A maximal · ~ -extension YX of a space X is uniquely determined 

(i.e. deterinined up to a homeomorphism) by X, and we have YX = X 

if and only if X has property ~. 

A space is called ~ -PegulaP iff it is homeomorphic with a sub

space of a product of spaces each of them satisfying ~-

. 

LEMMA. If is a continuous map of a T2-space y into a space 

whose restriction to a dense set X is a homeomorphism, then 

carries Y \ X into Z \ $(X). 

PROOF. E.g. [10] page 92. 

THEOREM. i) If is a property of 

statements are equivalent: 

T -spaces, then the following 
2 

(a) Each ~ -regular space possesses a maximal ~ -extension, 

(b) is productive and closed-hereditary. 

z 

l) This result was obtained independently by HERRLICH [15). S,ee also [17] 
and (29] . Parts of it are contained in KENNISON [24] and HUSEK [20] (see 
the notes on page , 9 of this thesis). 
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PROOF. (a) • (b) • Let 

the condition (a). 

be a topological property which satisfies 

is be a collection of spaces First. , 

having , and X. rr{x
0

(a EA}. By assumption X possesses a maximal 

, -extension has a TT : X ➔ X 
a a 

cont 1nuous ext ens ion 1'f : YX + X . Let j : YX + X 
0. a. 

be defined by the 

is the -(j(x)) = • (x) (a EA). It 
a a 

,CQ,lld it ions is easy to see that • 

J 

identity on X, hence b,y the pr,eceding lemma YX \ X = 0, i.e., 

YX • X. 'Coasequently, X: has property V· 

, is closed-hereditary: Let X be a closed subset of a 

space Y satisfying ,. The inclusion map i of X into Y has 

a continuous extension i* which carries YX into Y (YX being 

-extension of X). By the preceding lemma, the preimage 

of tbe closed set X of Y under • 1S X· hence X J is closed 

in lX • i.e.. YX :m: X. It fol lows that X has property ~. 

(b) • (a), • Let a topological property which is productive and 

elosed-heredi tary • and let X be a 

the class of all spaces with property 

-regular space. Denote by 

which contain a continuous 

illap of X as a dense subspace. By identifying homeomorphic copies, 

J6~comes a set with cardinality < exp exp Ix I. For each Y E~, let 

C(X, Y) be the set of all continuous mappings of X into Y. For 

f €. C(X, Y), let w · .. f) be the (Y, f)-th projection of the product 

space P = II{YC,(X, · Y E · ' • There exists exactly one continuous map 

i: X + P with the property Tr (Y, f) o i = f for all projection maps 

1r (Y, f) • Sine@ X is ~ -regular, i is a homeomorphism of X into P. 

Denote by yX the closure in P of i (X) . Then, by construction, 

yX is the desired maximal -extension of X. 

COROLLARY.. If l is a property of completely regular spaces, then the 

following statements ar,e equivalent: 

(a) 1} is closed-hereditary, productive, and is possessed by all 

(b) 

compact T2-spaces. 

Every completely regular space possesses a maximal ~ -extension 

(which is com.pletely regular). 



PROOF. Substitute for 

complete regularity. 
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in the preceding theorem the property 

1.2.2. NOTES. 1. If we take for the property of compactness, then 

(a) ⇒ (b) in this corollary is precisely the Cech-Stone extension 

theorem. If we take for . 

the property of realcompactness then (a) 

⇒ (b) immediately yields the existence of a maximal realcompactification 

ux for every completely regular space X (Hewitt extension theorem 

cf. [ 10]). 

The above coro·11ary can also be applied to get results of ENGELKING 

and MROWKA [5] on E-compactness, and of BANASCHEWSKI [3] on compactness 

and zerodimensionali ty. See also [15] and [29] . 

2. In [24] KENNISON defined the concept of ~ -reflection, which is 

more general than the concept of maximal ~-extension.A space yX 

is called a ~ -reflection of a space X iff 1) yX is a space with 

property ~, 2) there is a continuous map y of X onto a dense sub

set of YX, 3) for every continuous map f of_ X into any space Y 

satisfying ~' there exists a continuous map f: yX ➔ Y with the pro

perty f O y = f. It is shown in [24] that under the hypothesis that 

is closed-hereditary and productive, there exists a ~ -reflection 

YX for each Hausdorff space X. See also [20], [17] and [16]. However, 

in [24] we get no info1-n1ation under what circumstances YX is a maxi

mal ~ -extension of X. 

3. The existence of maximal ~ -extensions may be reformulated in cate

gorical language. Indeed, the construction of a maximal ~ -extension 

YX of a space X yields a covariant functor which is adjoint to the 

corresponding forgetfullfunctor (cf. [ 6] for the definition of cate

gory, functor, etc.). 

1.2.3. If is a continuous map of a space X onto a T
2
-space Y, 

then it • well-known that the mapping h: X ➔ X X y defined by l.S 
• 

h(x) - (x,f (x)) is a homeomorphism of X onto a closed subspace -
(usually ca11ed the graph of f) of Xx Y. The following lemma gener

alizes this result. 
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LEMMA. Let X and Y be topological spaces, f a continuous map of 

X onto Y, and A, B subsets of X and Y, respectively, such that 
-1 

f (B) = A. If Y is a Hausdorff space then the mapping h defined 

by h(x) = (x,f(x)) is a homeomorphism of A onto a closed subspace 

of Xx B. 

PROOF. It is easy to see that h is a homeomorphism of A into X x B; 

hence it suffices to show that h{A) is closed in Xx B. Let 

g(x,y) (f(x),y). Since y • g: X X B -+- y X B be defined by - 1S a -
Hausdorff D = {Cy,y)fyEB} • closed • y X B; hence space 1S in 

' 

g-l(D) 
• 

h(A) • closed • X X B. - 1S 1n ' - • 

• 

1.2.4. From the preceding lemma we derive the following result: 

THEOREM. Let be a property of T 2-spaces which is inherited by 

closed subsets and invariant for the taking of finite topological 

products. If f is a continuous map from a space X with property 

~ onto a T2-space Y, then the inverse image under f of each sub

set of Y with property ~, also satisfies ~-

1.2 .5. Following the tenni:aology used in [18] a property ~ of topo

logical spaces is called an al;most-fit'ting property (respectively 
1) fitting property) if whenever f is a perfect map of a completely 

regular space X onto a completely regular space Y, then X has 

property if (respectively if and only if) Y has ~-

Compactness, local compactness, paracompactness and countable 

paracompactness are examples of fitting properties (see [18]). Real

compactness is an example of an almost-fitting property. 

l) A mapping f of a space X into a space Y will be called perfect 
if f is continuous, closed (the images of closed sets are closed) and 
the inverse image$of points are compact. 
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The fo1lowing theorem gives a criterion for deciding whether or 

not some property is an almost-fitting property. 

THEOREM • Let be a property of topological spaces. Suppose that 

is closed-hereditary, and suppose that for every (completely regular) 

space Y satisfying ~, the product of Y with any compact T
2
-space 

has property ~· Then ~ is an almost-fitting property. 

PROOF. Let Y be a completely regular space satisfying and f a 

perfect map of a completely regular space X onto Y. We must show 
• 

that X has property ~- Let f be the continuous extension .of f 

which carries Bx •into BY (BX and BY denoting the Cech-Stone 

compactifications of X and Y, respectively). A well-known theorem 

of Henriksen and Isbell states that f-l (Y) = X (see [18]). Hence by 

1 . 2. 3. , X is homeomorphic with a closed subspace of BX x Y. The 

theorem now follows from the assumptions we made on the property ,. 

1.2.6. If is a property defined on the class of completely regular 

spaces such that 1) every compact T2 -space has property ~, 2) is 

closed-hereditary and productive, then we know from the corollary in 

1.2.1. that every completely regular space X has a (uniquely deter-

mined) maximal -extension YX. It is natural to ask whether or not 

it is true that YX is homeomorphic with a subspace of BX • 
• We will now show that this is indeed the case. 

For each continuous map f of X onto a dense subset of a space 

Y satisfying 
• 

~, let f be the continuous extension of f which 

carries ex onto SY. Using the results in 1.1.2. and 1.2.4., it is 

easy to see that ox = n {f l (Y) IY has property ~; f: X -+ Y is 

continuous; f(X) dense in Y} is a maximal -extension of X 

which (by uniqueness of YX) is homeomorphic with YX • 

• 

1.2. 7. THEOREM. Let be a property of completely regular spaces. 

Then the .fo1lowing conditions are equivalent: 
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(i) , is possessed by every space consisting of a single point; 

J is invariant for the taking of arbitrary (resp., finite, 

countable) intersections, and 1 satisfies the condition that 

for each space Y satisfying 1, the product of Y with any 

compact T2 -space has property ~-

(ii) ~ is closed-hereditary, productive (resp. invariant for finite, 

countable products), and is possessed by all compact T 2 -spaces. 

I,KMUA. A property of completely regular spaces which is invariant 
' 

for the taking of finite intersections and which is possessed by all 

compact T2 -spaces, is closed-hereditary. 

PROOF. Let X be a space satisfying and Y a closed subspace of X. 

Let be a compact extension of X. Yax and X are subsets of ax 

each satisfying 1}; hence their intersection, which equals Y, has pro

perty l· 

PROOF OF THE THEOREM. (i) ~ (ii). It is almost obvious that is possessed 

by all compact T2 -spaces. Indeed, if C is a compact 

a space consisting of a single point, then by assumption 

T2-space and S 

C x S has pro-

perty and this space is homeomorphic with C. 

It follows from the preceding lemma that ~ is closed-hereditary. 

Let us now show that is productive. Let {x la E A} be a collection 
a. 

of completely regular spaces each of them satisfying ~ (finite pro-

ducts and countable products 

n{xalo. E A}. Each projection 

extension lf* a. which carries 

are treated similarly), and let X = 

map 

sx 
1T a 
into 

of X 

BX. 
a 

onto 

For 

X 
a 

a E 

has a continuous 

A, set X (a) = 
-1 'IT! (X

0
). By 1.2.3. each X(a) is homeomorphic with a closed subspace 

of Bx x Xa and hence satisfies the property 1.p. Our assumption yields 

that X' = n {x(a)fa EA} also satisfies ~- But X is densely em-

bedded in X' and the mapping i*: X' -+ X defined by the conditions 

( i *(x) )0 = n~ (x) (a E A) is continuous and is the identity on X. conse-

quently it follows from the lemma in 1.2 .1. that X' - X 1.· e x - ' . . has 

property 1P· 
(ii)= (i). This follows at once from 1.1.2. 
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EXAMPLE. The property of paracompactness is not invariant for the taking 

of finite intersections. 

Indeed, it is well-known that paracompactness is not invariant for 

the taking of finite topological products (see [23]). Hence, it follows 

that condition (ii) in 1.2.7. is not satisfied for the property of para

compactness. Since the product of a paracompact space and a compact 

T2-space is again a paracompact space (see [27]), it follows from 

1.2.7. that paracompactness is not invariant for the taking of finite 

intersections. 
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BASISCOMPACTNESS AND m-ULTRACOMPACTNESS 

In the pr·evious chapter we have seen that those topological pro

perties which are closed-hereditary and productive are of special 

interest in the theory of extensions of mappings. In this chapter we 

aball introduce two new topological properties. The first one, called 

ba.siscQ11paetness, is open-hereditary and productive. The second one, 
' 

cal led m-ul tracompactness, is closed-hereditary and productive. Both 
' 

properties &l""e define,d by imposing a kind of compactness condition 

on a subbase for the topology. Later (Chapter III), it will be shown 

th-.t by iaposing certain separation conditions on tl1e sub base, we 

obtain equivalence with compactness and realcompactness. 

In this section we introduce the notion of basiscompactness which 

is, roughly s,pilaking, a wt::ak fo1111 of compactness relative to some open 

beae of the space. Basiscompactness is a stronger version of subcompact

aosa introduced in [11], but it is weaker than cocompactness introduced 

in (11]. For metric spaces, these three properties are equivalent and 

give iatrinsic characterizations of the notion of topological complete

ness (see also (8] and [30]). We also prove that basiscompactness is an 

invariant for perfect irreducible mappings (for the properties subcom

pac,tness and coeoapactness this is an open question). 

2.1.1. Let X 

called basi· 
be a space and U an open base for its topology. x 

ct l'~Zative to U provided that for each centered 

• 
l.S 

syst m [J of members of U, the collection (S has non empty intersection. 

A spac,e X is called basisoo.mpaat if there exists a base u for its 

topology such that X is basiscom.pact relati t U · , · ve o . 
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2.1.2. If X is a space which is basiscompact relative to some base 

tl for its open sets, then we can ask what separation conditions we 

should put on U in order that X bee es a compact Hausdorff space. 

A base 5 for the closed sets of a space X is said to satisfy 

the condition of base-regularity if for each point p of X and 

SES not containing p, there exists s1 ,s2 E (5 satisfying 

s1 U s2 = X, pl s2 , 

pair (p,S). A base 

base-regular if the 

Sn s1 = 0. (S1 ,s2 ) is called a screening of the 

U for the open sets of a space X is called 

corresponding closed base tX \ ulu Eu} satis-

fies the condit~on of base-regularity. 

Now we have the following result: • 

• 

THEOREM. A T1 -space is a compact Hausdorff space if and only if it is 

basiscompact relative to a base which is base-regular. 

PROOF. Sufficiency. Let X be a T1-space and U a base for the 

topology that is base-regular relative to which X is basiscompact. 

Set 5 = {x \ ulu Eu}. X is a Hausdorff space, for if p and q 

are different points of 

exists SE 6 such that 

(p,S) by members of 6. 

X, then by the T1-property of 

p ~ S, q ES, and a screening 

It follows that X \ s2 and 

disjoint neighborhoods of p and q, respectively. 

X, there 

(S1 ,s2 ) of 

X \ s1 are 

Now, let 5 1 be a centered system of members of <5. In order to prove 

the compactness of X, it is sufficient to prove that 6 1 has non 

empty intersection in X. Define u1 ell by the condition U1 = 
{u E UJs CU for some SE 61 }. Obviously U1 is a centered system 

of members of U; thus by basiscompactness of X relative to U, 

there exists p En U1 and hence it suffices to prove that p En 6
1

• 

Let us suppose that there exists SE 6 1 such that pl S. Since U 

is base-regular, there exists a screening (S1 ,s
2

) of (p,S) by 

members of 6. We have Sc X \ s 1 and pi X \Si. However, by con

struction, X \ s1 E U1 , thus pin U1 . This gives the desired contra

diction. 

Necessity: This is immediately clear! 
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PROPOBITIOK. A locally compact Hausdorff space is basiscompact relative 

to the b.ase consisting of the open sets with compact closure. 

P··ROOw . - .. - - 'C • Obvious. 

2 .. 1.3. PROPOSITION. a. The property basiscompactness is inherited by 

arbitrary topological products. ~. Each open subset of a regular 

b&eiscoapact space is basiscompact. c. The property of basiscompact-

ness is in general not inherited by closed subspaces. 

PBOOP.. a . Suppose . {x la EA} is a collection of topological spaces, 
a. 

X = • 

each Xa being basiscompact relative to a base U . Let 
(l 

n{xala EA} and U the base for the product topology of .X consist-

ing of all sets of the fo1111 rr{u la EA} where is a member of 
Cl 

U for finitely many· a E A and U = X for the remaining indices 
a Cl 0. 

G,. W. will show that X is basiscompact relative to u. Let be a 

centered system of members of t,t • For each a. E A, the 

t u u· lu· E o··}· '"f ' : ' 0 ' a . . . is a centered 

ly, there exists 

system of lJle:mbers of 

p E n { 1T U I U E t"C} f Or each a a u 

u 1) 

a. 
a.. Let 

point of X whose a 1 th co0rrli na te equa 1 s 

c loaures of the members of r§. 

p . Then p 
(l 

collection 

and consequent

P be the 

is in the 

b. If X is a regular space which is basiscompact relative to a base 

U for its topology and if O is an open subset of X, then O is 

basiscompact relative to the base consisting of the elements of U 

whose closures in X are contained in O. 
2) 

c.. It follows from 2.1.2. and a that each product of real lines is 

basisccapact. Since the space Q of rational numbers is homeomorphic 

with a closed subspace of such a product (see [10]) it suffices to 

sh. o.w thet Q 1·s not bas· t S • · ·· 1scompac . uppose, on the contrary, that Q 

is ba.siscompact relative to a base U for its open subsets. Take an 

1) 

2) 
Without 

COMpare 

loss of generality we may suppose that 

with [ 12] . 

X EU 
Ct. Cl 

for each ex E A. 
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enumeration r 1 ,r2 , ... ,rn,··· of Q. Obviously there exists u
1 

EU 

such that r 1 i u1 while u1 '/f 0. If for 1 < k < n Uk EU is 

already defined such that Uk c Uk-l' rk ~ Uk, Uk~ 0 for 

k = 2, ••. ,n, then, take some rational number r E U which is not 
n 

in and let U be a member of U with the pro-n+l 

perties r E Un+l c. Un+l c Un' rn+l ~ Un+i· The so constructed 

collection U ln=l,2, ... } is a centered system of members of U n 
and n U I n=l, 2, •.• } = n { U I n=l, 2, .... } = 0. This contradicts the n n 
assumption that Q is basiscompact relative to U . 

• 

2.1.4. PROPOSITION. Every basiscompact space is basiscompact relative 
• 

to a base which is closed under finite unions. In fact, if X is 

basiscompact relative to U then X is also basiscompact relative 

to UV (i.e. the collection of subsets of X which are finite unions 

of me111bers of U). 

PROOF. 

t5 cuv 
Suppose, on the contrary, that there is a centered system 

such that n t, = 0. Using Zorn's lemma 

that there exists a maximal centered system G 

we can easily prove 

of members of UV 

which contains t5. If a = { F I a. E A} ' then for fixed 
Cl 

a E A, there 

exists a finite subcollection {u.li=l,2, ... ,n} of U such that 
1 

@, we can select 

an index i (1 < i < n) such that u
1 

E @; let_us denote this u
1 

by 

U • By assumption we have n U I a E A} c n { F I a. E A} = 0; thus basis-a a. a 
compactness of X relative to U yields the existence of a finite 

subco1 lect ion of 

Since Ua E @, this contradicts the fact that 
i 

with empty intersection. 

is a centered system. 

2 .1.5. Recall that an open 

reguZar open provided that 

set 
-::-0 
0 

0 of a topological space is called 

= 0. A space is called semiregular if 

it has a base consisting of regular open sets. 

PROPOSITION. Every semi regular basis compact space is basis compact 
• 

relative to a base consisting of regular open sets. 



PROOF. Let 

to a base U 

i U 
0

1 U E U } ; by 
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be a semiregular space which is 

b U t 
for its topology. Denote y 

basiscompact relative 

the collection 

the semiregulari ty of X it follows that U' is also 

a base for the top,ology. We will show that X is basiscompact relative 

· U .. U E u
1

} b•e a centered system 011 CU). Then U1 is to U'. Let 

also a centered system, since for each finite subcollection 

of tt, the assertion u
1 

n ... n Un = 0 

have n f u0 IU E U1 } ~ 8, proving that X 

• 

0 0 d.. 
imp 1ieS U n • • • n U = V • 

1 _ -o- n 
~ 0. Since U = U , we also 

is basiscompact relative to 

• 

• 
.2 .1.6. Recall that a mapping f from a space X onto a space y 1S 

called perftBot if it is continuous, closed ( the images of closed sets 

are closed) and the inverse images of points are compact. f is called 

i.r1!'1flldw:ribl8 if f (S) ~ Y for each proper closed subset S of X. 

·.; ; ·:UM. !f f is a perfect irreducible map of a basiscompact space 

onto a space Y, then Y is basiscompact. 

Before proving this theorem we first mention a few properties of perfect 

and perfect irreducible mappings, which are known from the 11 terature. 

Por the sake of c011pleteness we also give the proofs. 

I . A 1. Let f be a perfect map of a space X onto a space Y and 

U a base for the topology of X which is closed under finite unions. 

Then the collection tY\ f(X\ u)lu EU} constitutes a base for the 

topology of Y .. 

PROOF. Let 
-1 

of f (p) 

0 

let 

be a neighborhoo•d of a point p in 

u 
q be a basicneighborhood of q 

Y. For each point 

which is mapped into 
-1 

0 by f. The compactness of f (p) yields the existence of a 

q 

subcollection } of {u lq E f 1 (p)} which covers n q 

finite 
-1 f (p). 

By asst1mption is an 

open set of y satisfying p E Y \ f(X \ U) c o. 
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LEMMA 2. Let X and Y be topological spaces and f a perfect map 

of X onto Y. Then there exists a closed subset S of X such that 

the restriction map fls is a perfect irreducible map of S onto Y. 

PROOF. Let O = {Fala EA} be the family of all closed subsets of X 

with the property f(F
0

) = Y. Define a partial order< on ~ such that 

the inequality Fa< FB holds iff FS C Fa. Let 31 = 

be an arbitrary chain of and y 

yields 

is a centered 

n f-1 (y) ~ 0, 

an arbitrary point of Y. Then 

f f -l(y) system and compactness o 

i.e. n Fala E Al} E ~- Thus 01 
has an upper bound in 0- Using Zorn's lemma, we conclude that ;J has 

• 

a maximal element S. The restriction map fls is a perfect irreducible 
• 

map of S onto Y. 

3. Let f be a closed irreducible map of a space X onto a space 

Y. If O is an open set of X, then f(O) = Y \ :f (X \ 0). 

PROOF. It suffices to prove f(O) c Y \ f(X \ 0). It is evident that 

f[(X \ 0) U f- 1 (Y \ f(X \ O))] = Y, and since f is an irreducible 

-1 
map, it follows that (X \ 0) U f (Y \ f (X \ 0)) = X, i.e., 

O c: f-l (Y \ f (X \ O)) . Thus from the closedness of f, we conclude that 

f (0) C Y \ f (X \ 0)) . 

PROOF OF THE THEOREM. 

Let X be a basiscompact space and f a perfect irreducible map of 

X onto Y. It follows from 2.1.4. that X is basiscompact relative 

to a base U which is closed under finite unions. By lemma 1 the 

collection FU = {y \ f (X \ U)) lu EU} is a base for the topology of 

Y. We shall prove that Y is basiscompact relative to FU. 
Let rs= {y \ f(X \ U) lu E ul} be a centered system of members of FU. 

Then it is easy to see that u1 is a centered system of members of U. 

Indeed if there would exist u1 , ... ,Un E u1 with empty intersection, 

then is a cover of X. Consequently 
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is a cover of f(X) == Y • 
l.. e. 

n { Y \ f (X \ U ) I 1 < i < n} == 
i 

0, which is impossible. Basiscompact-

ness of X relative to U yields the existence of a point p in 

Hence f (p) E n f (U I U E U
1
}. However by the previous 

lemma we have f (U) = y \ f (X \ U) _for each U E U1 ; thus 

of the f(p) En 
theorem . 

. It is an op•en problem whether or not the above result remains 

valid for arbitrary perfect mappings (not necessarily irreducible). 

Note that every perfect image of a basiscompact metrizable space is 
• 

ba.siscom.pact (this follows at once from 2 .1. 6., lemma 2 and the next 

theorem) .. 

2.1.7. THEOREM. A metrizable space is basiscompact if and only if it 

is topologically complete. 

PROOF. Necessity {com.pare with [ 11]). Let (M ,P) be a basiscompact 

metric space. Let (M*,P) denote the (metric) completion of (M,p). 

We will show that M • 
l.S a G

0 
-subset of M*, which yields a proof 

of this part of the theorem by the ALEXANDROFF-HAUSOORFF theorem. 

Let U be a base for the metric topology of M relative to which 

M is bas iscom.pact. Define for 

u < 
1 

is a cover of M. For each 

each 

i' u. 
l 

i = 1 , 2 , ... ,u . = 
1 

• 
1.s an open base 

U E U I dj aro. 

for M, thus 

U EU, let U* be an open set of 

M* such that U* n = U. Since M is dense in M*, the diameters 

of U and U* are equal. Define O* = U U* I U E U.} ; we shall prove 
i 1 

that M Trivially Mc n 01li=l,2, ... }. Let us 

suppose that there exists a point p in n or I i=l, 2, ... } which is 

not an e1ement of M. For each i, select a member U. EU. with 
l. 1 

the property PE u,1 • The collection {u li=l 2 } 1·s a centered i , J • • • 

system of members of U; hence basiscompactness of 

u yields suppose that 

M 

q 

relative to 

is a point 
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of p ~ q and because the diameters of the 

U* • 
l. n such that p EU* tend to zero, there exists a natural number 

and the closure in M* of 

= n 
U* n is disjoint from 

,,_. I i=l, 2, ... } 
l. 

(since 

n 
q. It follows that 

M is dense in M*). 

This gives the desired contradiction. 

Sufficiency. We first note that a zerodimensional completely metrizable 

space M is basiscompact. Indeed, by virtue of the zerodimensionality 

of M, there exists for each • 
l. a cover of M consisting of 

1 pairwise disjoint clopen sets each of diameter< 1 (see (26] page 22). 

Thus M is basiscompact relative to u {u 1 li=l,2, ••• }. If M is an 

arbitrary (not necessary zerodimensional) completely metrizable space, 
• 

then a theorem of MORITA (see [27] or [28] for a simpler proof) states 

that M is the image of a zerodimensional completely metrizable space 

under a perfect mapping f. By virtue of lemma 2 we may suppose that 

f is an irreducible mapping. Hence, M being a perfect irreducible image 

of a basiscompact space is basiscompact by theorem 2.1.6. 

2.1.8. An obvious modification of the proof of 2.1.7. yields the follow

ing more general result. 

THEOREM. A regular space is a completely metrizable space if and only 

if it is basiscompact relative to a a-locally finite base for its 

topology. 

2.1.9. THEOREM. Each basiscompact regular space is a Baire space. 

PROOF. Let Aili=l,2, ••• } be a countable collection of nowhere dense 

closed subsets of a regular space X which is basiscompact relative 

to a base U for its topology. Let O be a non empty open set of X. 

By induction we construct for each k = 1,2, ••• non empty elements Uk 

of U w,ith the.properties 

i=l,2, ••• ,k. Fork= 1 1 let 

closure is contained in 0 

U C U and U n A. = 0 for 
i i-1 i i 

u
1 

be some non empty element of 

and which is·disjoint from ~· If 

whose 

for 
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l < j < k is already defined with the desired properties, then let 

p be some point of Uk-l which is not in 

being an element of 11 which satisfies 

Ak and define Uk as 

p E Uk c Uk C uk-1' Uk n 
The collection thus defined is a centered system of mem-

bers 

that 

of u. Thus, by basiscompactness of X relative to U, it follows 

of the 

is a dense subset of X. This completes the proof 

In this section we define the concept of m-ul tracompactness for 

any infinite cardinal number m. m-ul tracompactness resembles, to some 

extent, the pr·operty k-compactness introduced by HERRLICH [ 15] , and 

form = ~l' the property almost-realcompactness introduced by FROLIK 

( 9]. 

m-ul tracoa:pactness is closed-hereditary and productive, it is possessed 

by all compact .spaces, and ~
1
-ul tracompactness coincides with real com

pactness in countably paracompact nox·mal spaces. Furthe1·n1ore, m-ul tra

c pactness is a fitting property, i.e., if f is a perfect map of a 

sp,ace X onto a space Y, then both or neither of X and Y must be 

m-ul trac • act. 

2 .2 .1. A faai.ly of subsets of a topological space X has the m-inter-

seotion pl"opePty (m being an infinite cardinal number) provided that 

every subeollection of cardinal < m has non empty intersection. If 

is a closed subbase for a space X, then X is called m-ultracom-
pact r-e Zati VB to iff each ultrafilter in X, for which 

On~ satisfies them-intersection property, is convergent. A space 
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::i. s called m-uZtr>aaompact if there exists a closed subbase 

:t. ts topology such that X is m-ultracompact relative to 5. 

for 

It is obvious that compactness is equivalent with ~ -ultra-
0 

~<••npactness. There also exist relationships between ~ 1 -ultracompact

l"l.eS s and realcompactness. Indeed, a completely regular space is real

~001pa.c t iff it is ~ 1 -ultracompact relative to the (sub)base consist-

:t, x:1.g o £ all zerosets (( 10, page 153]). In chapter I II we shall generalize 

'tb.:i.. _8 result and obtain separation conditions for a subbase such that 

~ -,:a 1- tracompactness relative to 
''1 

implies realcompactness and complete 

~ei-::111.s.rity (see theorem 3.1.8). 
• 

2. 2 ... 3. If a space X is m-ultracompact relative to some closed sub-

base 6, then it is easy to prove that each maximal centered family 

<_►· £ 1i1e1nbers of with them-intersection property has non empty inter-

s.-,cti->n. In the next chapter we prove (form= ~ 1 ) that under certain 

<''!< >Xl. d. :it ions on the latter statement also implies the fo1111er (lemma 

3 . :J.. _ 4 . ) . Al though we do not know whether or not this is true for 

.:;1 x·bi t:rary subbases we still have the following result. 

PROPOSITION. Let X be a space and 

the p ,&operty that each subcollection of 

a closed subbase for X with 

with them-intersection 

p:a::·• ,pe:rty has non empty intersection. Then X is m-ul tracompact rela

t iv~ to 5. 

J?RCW •F. Let be an ultrafilter in X such that ~ n 6 satisfies 

th. 111--intersection property. Let us suppose that, on the contrary, tJ 
h s .1..1.0 1imi t point in X. Since the collection { X \ SIS E 6} is a 

s•1.bb-11 se for the open sets of X, there exists for each P E X a 

su.bba1 sicneighborhood X \ S p 
of 

It ':fc -llows that x \ s IP E x} p 

p which is not a member of 

is a cover of X and consequently 

n { s Ip E x} p 
= 0. By ass\1mption there exists a subcollection 

SPa. I Ct E A} of of cardinality< m with empty inter-

.s e< !. t :ion. This contradicts that t3 n 6 satisfies the m-intersection 

Pr< •p •=:, rty. 
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2 .2 .4. We shall say that an ul trafil ter l) in a space X is an m

uttrafi lter (m being an infinite cardinal number) provided that the 

11 ti f l d b f rt sat1·sf1·es them-intersection 
co ec on o c ose melll ers o u 

property. Then 1 t is obvious that a space is m-ul tracompact if and 

only if each m-ultrafilter is convergent. 

l,RMMA. Let be an ni ul trafil ter in a space X and f: X -+ Y a 

continuous mapping. The collection = { f (F) IF E i]} cons ti tut es a 

base for an m--ultrafilter in Y. 

PROOF. It is obvious that is a base for an ultrafilter • 
1.n x . 

Let be a family of clos
1

ed sets of with cardinal< m. 

Clearly every 
, 

intersects every f(F) (FE Q). Consequently, every 

is a non empty closed subset of X which meets every member f-1 {S) 
a 

of t§. Since 3 is an m-ultrafilter, {f-1 (s >la EA} is a subcollec-

tion of n and n {f-1 (s >la EA}~~. 
a 

a. 
It follows that {s la.EA} a. 

has non empty intersection. 

2.2.5. THEOREM. For every cardinal m the property m-ultracompactness 

is closed-hereditary and productive. 

PROOF. Let {x fa EA} a 
be a collection of m-ultracompact spaces and 

let X = n{x la EA}. For 
a 

== {waF tF E ij} for a E A. 

an m-ultrafilter • 
in X, let 

By the previous lemma, each 

0 (l = 

is a base 

for an m-ultrafilter in X 
a 

which is convergent to a point in 

X. Tbe point p of X 
a 

whose a' th coordinate is is a limit 

point of t3; hence ~ is a convergent filter. 

Now let X b1e an m ul tracompact space and Y a closed subspace of x. 
We will show that Y is m-ultracompact. Suppose that is an m-ultra-

filter in Y. The preceding lemma shows that 

ul trafil ter {J' in X which is convergent, 

is a base for an m-

to some PE X. Clearly 
• 1s a convergent filter in 

Y. This completes the proof of the theorem • 

• 
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2.2.6. THEOREM. Every space Y which is the perfect image of some 

m-ultracompact space X under a mapping f is m-ultracompact. More

over, m-ultracompactness is a fitting property. 

PROOF. Let be an arbitrary m-ultrafilter in Y and ~ an ultra-

£ilter in X which contains the family f-1 Ql) = 

shall first prove that is an m-ultrafilter in X. Let us suppose 

that there exists a family of closed members of of cardinal 

< m with empty intersection. Without loss of generality we may suppose 

that 15 is closed under finite intersections. The members of 

t<s> Is E es} • are closed subsets of y and they intersect each 
' 

member of ~- Consequently, f(i!:>) c G and we are able to choose 
• 

PE n f(6) since is an m-ultrafilter in Y. Now f-
1 (p) n sis Ee} 

i t d t d f f -l (p) . ld s a cen ere sys em in X an so compactness o yie s 

n {f-1
(p) n sis E 6} ~ 0. Hence n 6 ~ 0, which contradicts our assump

tion.The space X being m-ultracompact implies n ~X ~ 0, and conse

quently, ntyy ~ 0. The second statement follows from 1.2.5. 

2.2.7. THEOREM. (compare with [15]). For each cardinal number N
0 

there exists a completely regular space 

but not ~e-ultracompact for 8 < a.. 

T 
a 

which is ~ -ultracompact a. 

PROOF. If ~a. is not a limit cardinal then the collection 

an ordinal< w }, endowed with the usual order topology, is 
a. 

Ta.= {~I~ 
a space 

which is ~ -ul tracompact but not 
a 

~ 8-ultracompact for S < o.. Indeed, 

it is wellknown that there exists exactly one free ultrafilter 

T • is an ~ 1-ultrafilter but not an N -ultrafilter. a a- a 
I£ No. is a limit cardinal number, then let Na = sup 

each ~Y is a non limit cardinal smaller than ~a· Define TY 

~Er as above, and let T = TI r}. It is obvious that 
a 

in 

r} where 

for 

T is a. 
N -ultracompact, for it is the product of 

a 
~ -ul tracompact 

a. 
spaces. T 

a 
is not ~ 

8
-ul tracompact for 8 < a. Indeed, if on the contrary there 

exists 8 < a. such that Ta. is ~ 
8
-ul tracompact, then let Y E r sa tis

£y $ < Y <a. Since T y 
• 1S ~ 8-ul tracompact, 

is a closed subspace of 

which is impossible. The 

T 
a 

it follows that 

theorem now follows. 
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2 .2 .. 8 .. THEOREM. In a countably paracompact nor111al space X, the follow

in.g conditions are equivalent 

1. X is realcompact 

2. X is ~ 1-ultracompact 

3. For every maximal centered system t) of open sets for which 

satisfies the countable intersection property, the inter

section n 1) is non empty (i.e., X is almost-realcompact 

in the sense of [ 9] ) • 

PROOF. The pattez•n of proof is 1 => 2 > 3 > 1. 

1 > 2. Recall (cf. (10] page 153) that a space is realcompact iff 

each ultrafilter, for which the collection of zerosets satisfies the 
• 

countable intersection property, is convergent. 

2 

1 

> 3. Let Ci) be a maximal centered family of open sets. By Zorn's 

a there exists an ultrafilter £3 which contains as a subcollec-

tion.We shall prove that U is an N1-ultrafilter. Then it will follow 

that is convergent, and in particular, n 1) #- 0. Let us suppose, on 

the contrary, that there exists a countable collection {s. li=l,2, .•• } 
1 

of closed members of f, with empty intersection. The family 

is obviously a countable cover of X which, by 

virtue of the countable paracompactness of X (see [27]) has a count

able closed refinement {T. lj=l, 2, ••• } • 
J 

Since 'l) satisfies the countable intersection property, there exists 

a natural nt1mber k such that T k intersects each member of ~

Select a natural number 1 such that Tk c X \ s1 or, equivalently, 

T n k Sl = 0, and let 0 be an open neighborhood of 
• 1S disjoint from Tk (use the no11nali ty of X). By 

we have 0 E 1:l and consequently, 0 • a member of 1S 

intersect Tk. This gives the desired contradiction. 

3 :::: > 1. This was already proved by FROLIK [ 9] • 

s1 whose closure 

maximality of ~. 
which does not 

2.2.9. THEOREM. Let f be a perfect map of a space X onto a space 

Y and suppose that X is countably paracompact and no1111al. Then y 

is realcompact if and only if X is realc.ompact. 
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PROOF. A well known result states that Y is countably paraco1upact 

and no1·rnal. So the theorem follows from 2.2.6. and 2.2.8 • 

• 

2.2.10. NOTES. 2.2.9. was first proved by FROLIK [91 (he stated 

2.2.9. for normal spaces, but in the proof he essentially used count

able paracompactness). 

It is an open problem whether or not every closed continuous image 

of a realcompact space is realcompact, or even whether the condition of 

countable paracompactness in 2.2.9. can be dropped. In this context we 

note a recent result of ISIWATA [ 22] which states that a closed continu-
' 

ous image of a locally compact countably paracompact norm.al realcompact 
' 

space is realcompact. 

It is also an open problem whether or not the equivalence in 2.2.8. 

remains satisfied if we drop the condition of countable paracompactness. 



CHAPTER III 

A GENERAL REALCOMPACTIFICATION METHOD 

l . ., ·Ta llt&AICOM:PACT I FICA T 1 ON u {el) X 

:, ~ 1 111 0,, Let J: be a T1 -space. For 

t11l!O -.paration 0012di tions, namely 

closed subbases of X we consider 

the conditions of subbase-regularity 

and subba.••-noi•.ality (for a. precise definition see 3.1.1. of this thesis). 

~ definition• are such that in case X is completely regulaF, then 

t~• fi1MB:11y ot sero,sets of X is a (sub)base which satisfies the con-

di. t '°"" of subbase-regulari ty and subbase-normali ty. In general, how-

Ol.lr eubba.sea will not be closed under the set theoretical opera-

ti.oaa ol: tak:ins finite unions and finite intersections. 

In (1) M1lT8 has proved that if 6 is a subbase for the 

eleeed ••ts of a space X, which satisfies the conditions of subbase

re111lar:l ty and subbase-normal i ty, then there exists a Hausdorff compact-

8 (ES)X of X such that 1) the closures in 6 ((5)X of the 

e fora a closed sub base for S (6)X, 2) every two disjoint 

• IMtra of e 
t•• tor e 

have disjoint closures in In particular, if we 

the family of all zerosets, then the construction insures 

Cech-Stone compactification of X. coincides with the 

la this section an analogous result is obtained for the real compact 

e is a closed subbase for a space X which satisfies the 

condt. tio,na of subbase-regulari ty and subbase-no1111al i ty, and moreover, 

aati11f:lea a certain countability condition, then there exists a (unique) 

e .· letel:, rer;ular realcompactification u ((5)X of x with the follow

ing p,rop,erties: l) The closures in u (E))X of the members of for111 a 
' 

closed subba.se for \J ('5)X; each maximal centered family of this callee-
tion wt th the countable intersection property has 

I) If a countable tami. ly of members of 6 
non empty intersection, 

has empty intersection 
then their closures in u(6)X have empty intersection in u{6)X. 

Th•• basic construction of U(6)X is as follows: Let S(6)X 

in X, 

be the 
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compactification of X described above. For each countable cover U 

of X by members of 6, consider the subspace of S(6)X which is the 

union of the closures in B(6)X of the members of u. 
The intersection of all these subspaces, when u is running through 

all the countable covers of X by members of 6, yields our real

compactification 0(6)x. 

As in the previous result we have U(6)X = X if and only if each 

maximal centered family of members of with the countable intersection 

property has non empty intersection, this yields ari intrinsic characteri

zation of realcompactness which seems to be new • 

• 

3.1.1. Two subsets A and B of a topological space X are said to 

be screened by a finite family of subsets of X if covers X 

and each element of meets at most one of A and B. 

A subbase for the closed sets of a space X satisfies the 

condition of subbase-pegutarity if for each SE 6 and x ls, there 

exist subsets s1 , .•• , Sn of X such that U {s
1

11=1,2, ... ,n} = S 

and each pair (x,Si) is screened by a finite subcollection of 6. 

satisfies the aondition o.f subbase-nomia'lity if each two disjoint 

elements of are screened by a finite subcollection of 6. 

If no confusion is possible, then, instead of saying that a subbase 
• 

satisfies the condition of subbase-regularity, we simply will say 

that satisfies the regularity condition. The expression '' condition 

of subbase-normality'' will be abbreviated in a similar way. Note, that 
' 

the condition of subbase-regularity (subbase-normality) is weaker than 

the condition of base-regulari_ty introduced in Chapter II, section 2 • 
• 

• 

LES. 1. The family of all closed sets of a regular space is a 

closed (sub)base which satisfies the regularity condition. 

2. The fami.ly of all closed sets of a normal space is a closed (sub) 

base which satisfies the regularity and no1·1nali ty conditions (cf. [ 10] 

page 17). 
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3. Let x be a set and C be a family of mappings of X into R with 

the fol lowing properties: 

a. C separates points -
b. C contains all constant mappings 

c. f EC > ltl EC 
d • f , g E C > >. f + µ g E C ( A , µ E R) 

e. f EC, f(x) ~ 0 
1 

for all x EX => f EC. 

Then the collection -- x E Xjf(x) = o}lf E c} constitutes a 

subbase for a topology on X which satisfies the regularity and normal

ity conditions. In particular, it follows that the fa1nily of all zero-
• • 

sets of a completely regular space is a subbase which satisfies the regu

larity and normality conditions. 

3 .1.2. The following theorem (AARTS and DE GROOT ( 1, 13]) states that 

the existence of a closed subbase which satisfies the regularity and 

normality conditions implies complete regularity. 

THEOREM. Let be a closed subbase for a space X which satisfies 

the regularity and nox,nali ty conditions. Then there exists a Hausdorff 

compactification S((5)X of X with the following properties: 

1. The closures in S(6)X of the members of form a closed 

subbase for 8 ((5)X, which satisfies the regularity and nor1nali ty con

ditions. 

2. Every two disjoint members of 6 have disjoint closures in 

13 <es>x. 
• 

SKET'CH OF THE PROOF l) • We consider the collection M of all maximal 

centered families of men1bers of 6; if µ E M then we define 

the collection of members of 

Such an obtained collection 

which intersect each member of 

is called a linked system. If 

as 
' 

µ. 
• 
1S 

not closed under finite intersections, then in general µ is not a 

centered system. However, it easily follows from the no1·mali ty condi-

tion of that every two members of µ have non empty intersection. 

1) 
This proof is due to J. DE GROOT [13] A th f . no er way o proving this theorem 
was earlier pointed out by J.M. AARTS [ 1] . 
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Now, let S('5)X = {µ(µ 
The collection {S*JS E 6} 

if we identify each point 

EM} and for each S Et5, S* = {µIs Eµ}. 
is a subbase for a topology on 8 (6)X, and 

X EX with the linked system {s € elx E sl, 
then X becomes a dense subspace of S(6)X. For the star operator, we 

can easily prove the following identities: Sc S*, S* n T1lt = 8. iff 

Sn T = 0; S* U ••. U S* = f3(6)X 1 n iff 

regularity and 

S E 6 we have 

normality conditions of 

S c S f3 ((S)X C S* l) , it 

s1 U ••• U S
0 

= X. Thus, by the 

C5 and the fact that for eaeb. 

easily follows that the closures 

in 8(6)X of the members of 5 fo1·m a closed subbase of which 

satisfies the regularity and nox·mality conditions. One can prove that 

each (maximal) centered system of members of has non empty inter-

section in f3(6)X. Thus f3(6)X is a Hausdorff compactification of X 

with the desired properties. The theorem now follows. 

3.1.3. A subbase for the closed sets of a space X satisfies the 

countabili~y condition iff each countable cover of X by aeabers of 

X \ S IS E 6} has a countable refinement by m&mbers of 6. 

LE 1. In a countably paracompact normal space, the family of all 

closed sets is a closed (sub)base which satisfies the countability 

condition. In a completely regular space, the family of all zerosets 

is a closed (sub)base which satisfies the countability condition • 
• 

• 

PROOF. For the first statement, note that a space is countably para

compact iff each countable open cover has a countable closed refine

ment. For the second statement, note that every cozeroset of a flpaee 

is a countable union of zerosets. 

• 

:RXAMPLE 2. The subbase defined in 3.1.1. Bxa.mmple 3 satisfies the CO\Ult

ability condition. 

l) As was pointed out by J. 
equal to the clos·ure in 

de Groot, 
8(6)X of 

in general 
s. 

it is not true taat P ta 



42 

3.1.4. Recall that if is a family of subsets of a 

space X, then a centered system t3 of members of 

topological 

is prime iff 

each finite cover of X by members of contains a member of (5 . 

LEMMA. Let be a closed subbase for a space X which satisfies the 

regularity, nor1nali ty and countability conditions. Then the following 

conditions are equivalent: 
• 

(i) Every maximal centered system of members of with • c.1.p. 

(countable intersection property) has non empty intersection. 

(ii) Every prime centered system of members of 

has non empty intersection. 
• 

with c. i. p. 

• 

(iii) Every ultrafilter for which (§ n f5 has c. i .p. is convergent, .. · 

i.e., X is ~ 1-ultracompact relative to (5. 

PROOF. (i) => (ii). Let be a prime centered system of members of 

with the countable intersection property. is contained in some 

maximal centered system of members of 6; hence, it suffices to 

show that has the countable intersection property. 

Suppose, on the contrary, that there exists a countable subcollection 

G. li=l,2, ... } of with empty intersection. Since e, satisfies the 
1 

countability condition, the countable cover {x \ Gili=l,2, .•. } has a 

countable refinement {snln=l,2, ... } consisting of members of (5. For 

each n = 1, 2, ••. select an index • 
1 such that S C X \ G. and a 

• n n 1 
n 

finite cover of X by members of which screens s 
n 

and G. • 
1 

n 
Since t'.; is prime, for n = 1, 2, ... , there exists such that 

Obviously, E n G. i 0 n i 

• since 
. 

is a centered system, and so 
n 

En n Sn= 0. It follows that n {Enln=l,2, ... } = 0. This contradicts 

the fact that has the countable intersection property. 

(ii) => (iii). Let be an ultrafilter in X for which t5 n 6 

has c.i.p. Obviously, tJ n ~ is a prime centered system that has c.i.p., • 

and by hypothesis n (£; n ~) ~ 0. Let us suppose that p E n ((5 n (5) ; 

it is enough to show that ~ is convergent to p. Suppose, on the 

contrary, that there exists a neighborhood U of p which is not a 

member of (;. Since { X \ SIS E 6} is a subbase for the open sets of 

, 
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X, there exists a finite collection 

P E V = n { X \ Si j i=l, 2, ••• , n} c U .. 

S S E c such that 1 ' · · · ' n '~.) 
Clearly, V ~ 0 and since 

is closed under finite intersections, there exists i (1 < i < n) 

It follows that S. 
1 

is a member of a n 6 such that X \ Si ~ t5. 
which does not contain p. This contradicts the fact that p E n (t) n 6) 

(iii) > ( i) . Let be a maximal centered system of members of 

with c. i. p. ; if • is some ultrafilter which contains the family 

then by maximality of it follows that @ n 5 = 3. Consequently 

has the countable intersection property. Thus n ~ J 0, since @ 

convergent. 
• 

• 

• 
1S 

REMARK. If is a closed subbase for a space X which satisfies the 

regularity condition, and if is a prime (maximal) centered system 

of members of <5, then it is always true that n O consists of at most 

one point. Indeed, if p En and if q is a point of X which is 

different from p, then there exists SC X such that p ES, q ~ S 

s } 
n 

of X by members of which and a finite cover 

screens S and q. Since is prime, there exists i (1 < i < n) 

such that 

member of 

E f§. Obviously PE s. 
1 

which does not contain 

and q ~Si.Thus 

q, i.e., q ~ n r;. 
s 

i 
is a 

3 .. 1. 5. Recall that a topologi·cal space is called realaompaat provided 

that every maximal centered family of zerosets with the countable inter

section property has non empty intersection. A reaZaanpaatifiaation 

of a space X is a realcompact space which contains X as a dense 

subspace. 

A well known theorem (of Hewitt and Shirota) states that the real-

compact completely regular spaces are precisely those spaces which are 

homeomorphic with a closed subspace of a product of rea 1 lines. In par

ticular, every metrizable space of non measurable cardinal is real-

compact (see [10]). 

It is well-known that every completely regular space X possesses 

a realcompactification uX (the so called Hewitt reaZaompaatifiaation 
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-ux, 
of X) with the following properties: 1) Z Z is zeroset of x} is 

a base for the closed sets of uX, 2) if a countable family of zerosets 

of X has empty intersection 

empty intersection in ux. The 

in X, then their closures in uX have 
. 

following theorem generalizes this result: 

3 .1. 6. THEOFJ:M ~ Let X be a Tl-space and a closed subbase for X 

which satisfies the regularity, no1·mali ty and countability conditions. 

Then there exists a completely regular realcompactification u(Ej)X of 

X with the following properties: 

1. The closures in u(C5)X of the members of form a closed 

subbase for U(6)X which satisfies the regularity, nor1nali ty and 

countability conditions. Each maximal centered system of members of 

this collection with c.i.p. has non empty intersection in u((S)X. 

2. If is a countable subcollection of with 

empty intersection, then their closures in U(6)X have empty inter

section in U((5)X. 

P'ROOF. Let a ((5)X = Z be the Hausdorff compactification of X de-

scribed in 3.l.2.Denote by = {u} the family of all countable covers 

of x by aanbers of 6. We will show that Y = n {u uzlu E o} • 
1S a 

realcompactification of X with the desired properties, which we then 

denote by u(l5)X. It is obvious that Y is a realcompactification of' 

X, since it is the intersection of a-compact subspaces of Z (note 
• 

that by virtue of 1.1.2. the property realcompactness is invariant for 

intersections). the taking of arbitrary 

From the fact that 6Z 

it easily follows that 

is a closed subbase for z (theorem 3.1.2.), 
-z 
6 n Y is 

3.1.2. we also easily deduce that 

a closed subbase for Y. From 

~Y satisfies the regularity 

normality conditions. For the normality condition, note 

and Ty are two disjoint members of e;Y, then SZ and 

if 

are dis-

by members of 

6y· 

is a countable cover of 
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X and since satisfies the countability condition, it has a count-

able closed refinement consisting of members of 6. The special 

definition of the subspace Y of z immediately-yields that 'X,.Y is 

a countable cover of Y by members of rr::::.y and rry i f i t v ~ .s a re nemen 

of 

exists 

Next, we show that every maximal centered fa.mily of members of 

possessing c.i.p. has non empty 

6y 
1 

intersection in Y. Let be a 

subcollection of 

members of 6Y 

such that is a maximal centered family of 

with the countable intersection property. By compact-
• 

which is in the in.tersec

tion of rsz. It is enough to show that p E Y, whence it follows that 
-y 1 

z 

PE n (51 . For each countable cover u. 
collection Uy is a countable cover of 

of 

maximality of 
-Y 

-Y 
6 1 , each U. contains a 

-z E 6 1 , which implies that PE S .. Thus 

PE Y. 

X 

y 

by members of_6, the 

by members of 5y. Thus 

member S _such that 

PE n {u u z lu E o}, • 
1. e., 

PROOF OF 2. Let 5 1 be a countable subcollection of with empty 

intersection. Then {x \ sis E G1 } is a cover of X which has a 

countable refinement members of 5. The construction of y 

immediately yields that is a cover of Y. Thus the intersection 

n Y\TYITE%} is empty. For each T E l: there exists _s E 6
1 

T and also Sy C Y \ Ty, 
• 

such that TC X \ S which implies SC X \ 

and so we conclude that the closures in y 
1 

6 have 

empty intersection in Y. This completes the proof of the theorem. 
I 

3.1.7. REMARKS. 1. If is a subbase which is closed under finite 

· (countable) intersections then a different construction of u (E5.)X 

is possible. (This is the case when 

sets of a completely regular space.) 

is the family of all .zero-

We consider the collection of all maximal centered systems of 

members of with the countable intersection property .. Those cen-

tered systems which have empty intersection serve as new points and are 
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• 

added to the space X. By choosing a suitable topology :for the enlarged 

space, an extension X* is obtained, from which we easily prove that 

it satisfies the conditions 1. and 2. of the previous theorem. 

The results in the next section yield a method to prove that X* 
• 1S 

homeomorphic with u {e,)X; hence X* is real compact. (A direct proof 

of the realcompactness of X* seems difficult). 

The above method of extension of a space X to a space X* was 

carried out by ALO and SHAPIRO ( 2] • However, they did not presuppose 

• 

any separation condition on and so their construct ion did not yield 

a realcompactification method • 
• 

' 

2. If 6 is closed under countable intersections, then a slight1y 
• 

stronger version of condition 2. of the previous theorem is sat~sfied. 

For each countable subcollection {s. li=l,2, •.• } of 6, we have 
l 

S. i=l,2, ... 
l 

( denoting the closure in u ((5) X) • 

PROOF. If S = n { S. I i=l, 2, ••. }, then it is sufficient to prove that 
l 

be a point of and 

suppose, on the contrary, that p ~ S. According to the regularity 

condition of there exist Tl, .•. ' such that 

P E n f'r. I 1 < i < k} and 
1 

n 
< i 

T.11 < i 
1 

< k} = 0, 
Now, 

but we do have p En {s. I 
1 

1=1, 2, ••• } n n T. I 1 < 1 < 
1 

This contradicts condition 2 of the 

previous theorem. 

3. If the subbase satisfies the condition that each maximal cen-

tered family of members of with the countable intersection proper-

ty has non empty intersection, then u (6}X = X. 

PROOF. Suppose, on the contrary, that p E_u (e;)X \ X = Y \ X. De:f ine 

6 1 c 6 by the condition e;1 = {s E SIPE s}. According to condition 2. 
of the previous theorem, the co11ection e1 is a prime centered system 

of members of 

Thus by 3.1.4. 

there exists 

6 with the countable intersection property. 

n 5i # 0. If 
' SES such that 

q E n e,
1

, then obviously p I:- q, and 

p ES and qi S. However, since 

s E 0i, this contradicts q En (51 • 
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3.1.8. The third remark in 3.1.7. together with 3.1.4. yields the 

following intrinsic characterization of realcompactness. 

THEOREM. A T1-space X is a realcompact completely regular space 

if and only if there exists a closed subbase for its topology 

that satisfies the regularity, nor1nali ty and countability conditions, 

and moreover satisfies the condition that each maximal centered family 

of members of with c.i.p. has non empty intersection. 

REMARK. Under the hypotheses of the first three conditions, the latter 

is equivalent with X is ~ 1-ultracompact relative to 5. 
• 

3.1.9. If is a closed subbase for X, then satisfies the strong 
reguZarity condition iff each SE 6 and x ~ S are screened by a 

cover of X consisting of two members of 6. 6 satisfies the strong 

normality aondition iff each two disjoint members of 

by a cover of X consisting of two members of (5. 

are screened 

Note that if is a closed base and not only a subbase, then 

the conditions of strong regularity and strong normality of are 
"' 

equivalent to the conditions of base-regularity and base-normality 

introduced in Chapter I I Section 2. Furthei:1nore, note that the family 

of zerosets of a completely regular space is a closed (sub)base which 

satisfies the strong regularity and strong no:x·mali ty conditions • 
• 

The following theorem generalizes the result stating that a 

completely regular space is realcompact iff for each maximal centered 

family of cozerosets for which has c.i.p., the intersection 

n i) is non empty. See also theorems 2.1.2. and 2.2.8. 

THEOREM. Let be 
1) 

a complemented closed subbase for a space X 

which satisfies the strong regularity, strong no1111ality, and countabi

lity conditions. Denote by U.. the collection {x\ sjs E 6}-

Then the following statements are equivalent: 

1. For each maximal centered system u.1 of members of U for 

has the countable intersection property, we have 

1) 
A subbase is called aomplemented if S E G implies X \ S E s. 
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2. Each maximal centered system of members of 6 which satisfies 

the countable intersection property has non empty intersection. 

PROOF. 1 =.> 2. Let Y = u(e)x be the realcompactification of X 

describ,ed above. It is enough to show that Y = X, whence it follows 

from 3.1.7. Remark 3 that satisfies condition 2. Suppose, on the 

contrary, that p E Y \ X. Let 

ing of those sets U for which 

u1 be the subcollection of U consist
-Y 

p EU. If U is some member of U 

neighborhood in 

which intersects each finite subcollection of U1 then each basic
y 

y of p of the form n {x \ -s. li=l,2, ... ,n} where 
1 . -Y . 

for i = 1, 2, ... , n, intersects U. Thus p EU proving 
• 

is a maximal centered system of members of u. If { u. I 
• 

that u1 
i=l, 2, ... } is a countable subcollection of u1 , then 

y . 1 
{-u. I 1=1 , 2, ..• } 

1 

is a countable subcollection of 6 (6 is complemented). Thus from 

the special property of the realcompactification Y, we conclude 

n {~(i:1,2, ... } I 0. By assumption there exists a point q in 
i 

that 
-x n tt1. 

Obviously p /; q. Using the strong regularity condition of the subbase 

{syls Es} of Y we can easily see that there exists such that 

p E Y \ Sy while q is not in the closure in y of Thus q 

is not 

X \ SX 
in the closure in_ X of X \ S since X is dense in Y. Hence, 

is a member of UX which does not contain q. This is a contra-
1 

diction, and it proves the first part of the theorem. 

2 > 1. Let be a maximal centered system of members of U, and 

suppose that condition 1. is satisfied. Let be some ultrafilter in 

X which contains the collection u1 ; we shall prove that (5 n 6 satis-
., 

fies the countable intersection property. Then by lemma 3.1.4., it fol-

lows that is convergent, and in particular it follows that n u1 ~ 0. 

Let us suppose that { S . I i=l , 2 , ... } 
1 

is a countable subcollection of 
• 

tS n (5 with empty intersection. Then the family {x \ sili=l,2, •.. } 

obviously is a countable cover of X which, by virtue of the counta

bility condition for 6, possesses a countable refinement ~ = T. I 
1 

i =1, 2, ... } by members of 6. Since satisfies the countable inter-

section property, there exists a natural number k such that Tk 

intersects each member of U 
1· 
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1 such that Since sat is-Select a natural number 

fies the strong nor111ali ty 

that Tk C T, s
1 

c S, T n 
sl C X \ T E u n [S = ul 

condition, there exists S and TE 5 such 

S1 = 0, Sn Tk = 0, SU T = X. Obviously, 

diets the fact that 

and X \ T n Tk = 0. This,_however, contra-

intersects each member of u
1

. Thus the proof 

of the theorem is complete. 

REMARK. Observe that in the proof of 2 > 1 we do not use that 
• 1.s complemented. 

• 

• 

2. MAXIMALITY OF u(E5)X 

3.2.1. The following theorem generalizes the result which states that 

a continuous map of a completely regular space X into a c.om.pletely 

regular space Y has a continuous extension over the Hewitt realcOll)

pactifications of X and Y (cf. [ 10]). 

THEOREM. Let X and Y be T 
1 
-spaces, and suppose that and 

are closed sub bases for X and Y, respectively, which satisfy the 

regularity, normality, and countability conditions. If 
• 

is a 
-1 

(continuous) map from X into Y with the property that f {T) E E5 

:for each T E ~, then there exists a continuous extension f* of f 

which carries u (6)X into u {l:)Y. 

PROOF. If no confusion is possible, then w,e denote closures in u(f:5.)X 

and u (X)Y by the symbol • 

Let p be an arbitrary point of u((5)X. Denote by 
I 

t ion of l: consisting of those sets T for which 

~ 1 

P E 

the subcolleo-
---It . 
f (T). The 

collection X1 
{ T . I ·1 =1 , 2 , • • • 

has the countable intersection property, for if 

1 

1=1 '2 , ••• } = 0' 

is a 

then 

3.1.6. we also have 

' 

countable subcollection of 2:1 and n {T1 f 

I t n 1 n {f (Ti)li=l,2, •.. } ="·which is_impossible 

since p must be1ong to this set. The centered system. %1 
is also a 
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prime centered system. Indeed, if {Tklk=l,2, .... ,n} is a finite sub-

-
collection of % which is a cover of u~)Y, then the collection 

{f 1 (T )!k=l,2, ... ,n} is 
k 

a cover of v(6)X. Hence, 
-1 

there exists 

j (1 < j < n) such that p E f (T.), and we have 
J 

virtue of 3.1.4. and 3.1.6., we can define f*(p) 

T j E l:1 • 

= n 2:1 • The 

By 

mapping 

f*: u (.c::)x ~ u et)Y is an extension of f, for if p E X, then we have 
v 1 - - -1 "' 

f(p) En {TE %IP E f- (T)} = n {TE %IP E f (T)} = f*(p). Therefore 

it remains to show that f* is continuous. Let x be an arbitrary 

point of u (6)X such that f* (x) E U ~)Y, and let T be some member 

of such that. f* (x) E Ll (2:}Y \ T. In order to prove the continuity 

of f* it suffices to show that there exists a neighborhood of x 

which is mapped int·o_ ,> (X)Y \ T by f* (note that by 3 .1. 6, the 

collection { v (2:)Y \ TIT E l:} is a subbase for the open sets of u (l:}Y). 

Since f* (x) I:. T there exists a decomposition of T into 

such 
. i 
T , 

1 

that 

. . . , 
j = 1, 2, 

each pair 

T1 } of 
n(i) 
... , k(i) 

intersect x . 

Define 

(f*(x),G.) is screened by a finite cover 
1 

u(2:)Y by members of ~- For each i, let 

be the elements of this collection which do 

• • • J 

-i 
T.' 

J 
not 

G n 

Then U is a neighborhood of x which is mapped into u(:t:)Y \ T by 
. 

f*. This completes the proof of the theorem. 

3.2.2. An obvious modification of the proof of the foregoing theorem 

yields the following more general result (this generalizes a result 

of ENGELKING ( 4] ) : 

THEOREM. Let X and Y be T1 -spaces and suppose that is a closed 

subbase of Y which satisfies the regularity, normality and countability 

conditions. If f is a continuous map from a dense subset z of X 

• 

to Y such that for each countable sub-

collection { T. I i=l ,2, •.. } of z 
1 

with empty intersection in Y, then 
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f has a continuous extension which carries X into u(!t)Y. 

3.2.3. COROLLARY. Let X be a T1-space and a closed subbase for 
' 

X which satisfies the regularity, nor1nali ty and countability conditions. 

The extension U((5)X of X which is constructed in theorem 3.1.6. is 

essentially unique in the sense that if µ(e)X is any extension of X 

satisfying conditions 1. and 2. of 3.1.6., then there exists a homeomor

phism of V(6)X onto µ(5)X which leaves X pointwise fixed. 

Furthern1ore, we have µ((S)X = X if and only if every maximal centered 
• 

family of members of (5 with c.i.p. has non empty intersection.in X • 

• 

• 

• 

3.2.4. E LE. If X is a Lindelof space, then for each closed subbase 

which satisfies the regularity, nox,11ali ty and countability conditions, 

we have U(E,)·X = X. This statement does not generally hold in arbitrary 

realcompact spaces. Indeed, if X is a discrete space of cardinal 

then let be the collection of singleton points and complements 

> ~O' 

of 

singleton points in X. It is easy to see that satisfies all condi-

tions required and U((5)X is homeomorphic with the one point compacti

fication of X. 

3.2.5. THEOREM. Let {x la EA} be a collection of topological spaces a. . 
and X = rr{x la E A}. Suppose that for a E A, 6 is a closed subbase 

a. a 
for X which satisfies the regularity, no1-m.ali ty and countability 

(l 

conditions. 
-1 

Then the collection consisting of the sets 1T (C), where 
(l 

1r is 
(l 

the natural projection onto the a'th coordinate space and C a member 

of 6, is a closed subbase for X a. 
which satisfies the regularity, 

normality and count ability conditions. Furthermore, n L . (6 ) X I a E A} 1\.1 a a I . 

is homeomorphic with 'V (6)X l) . 

PROOF. One easily verifies that is a closed subbase for X which 

satisfies the regularity, nox·mali ty and countability conditions. 

l} 
In fact we prove 
which leaves X 

even more, namely, 
pointwise fixed .. 

that there exists a homeomorphis.in 
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By 3.2.1., for each a EA, there exists a continuous extension 

of ~ which carries u{5)X into u(E5 )X . Define a a a 
rr{u(e5 )X la EA} by the conditions (i*(x)) = TI*(x) 

u({5)X -+ 

( a E A) • Theorem 
a a a a 

3.2.2. gives a method to extend the inclusion map j of X into 

v (5)X to a continuous mapping j *: II { u ((Sa) x
0 
I a. E A} -+ u(t5)X. The com-

J.* 0 1·* posit ion map has the property that it leaves the dense set 

pointwise fixed. Consequently •• J 

By applying the same argument to 

.. . 
3 . GENERALIZED LINDELOF SPACES 

0 i* is the identity map of 

the theorem now follows. 

X 

3. 3 .1. Let be a subbase for the closed sets of a topological space X. 

is called a Undelof suhbase for X if it has the following properties: 
-

1. (5 satisfies the strong regularity condition 

2. satisfies the normality condition 

3. Each centered family of members of with the countable inter-

section property has non empty intersection. 

A space X is called a generalized Lindelof space provided that there 

exists a Lindelof subbase for its closed sets. 

3.3.2. THEOREM. a) Every regular Lindelof space is a generalized Linde

lof space, b) every topological product of generalized Lindelof spaces 

is a generalized Lindelof space, c) every discrete space of cardinal 

< ~ is a generalized Lindelof space. 

PROOF. a). If X is a regular Lindelof space, then the family of all 

closed subsets and the family of all zerosets are examples of Lindelof 
' 

subbases for X. Thus X is a generalized Lindelof space. 

b). Suppose that {x I a E A} is a collection of generalized Lindelof 
a 
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spaces and X =TIX la.EA}. For 
a. a E A, let 6 be a LindelHf subbase 

a 
for X and let 

-1 
6 be the subbase for X consisting of all sets of 

the 
a 

forrrt ,r (C) , where 
0. 

coordinate space and C 

1T 
a 

is the natural projection into the a'th 

6. It is easy to see that 6 
a 

a member of 

satisfies conditions 1. and 2. Now, let 15' be a subcollection of 5 

with the countable intersection property; we will show that n 6' ~ 0. 

For a EA, let 6' be the subcollection of consisting of the sets 
a 6 a 

7T s 
a. 

for which S E 6'. 

It is easy to see that· satisfies the countable intersection pro-

perty and, by asst1mption, there exists p En 6' for each a EA. 
a a 

The point p of X whose a'th coordinate is is in the inter-
' 

section of 6' . 

c) . Let D be a discrete space of cardinal < ~, we may suppose that D 

is a subset of the real numbers. If (5 is the collection of subsets of 

the f o r11t { x E D I x > a} , { x E D I x < a} , { x E D I x > a} , { x E D I x < a} 

(a E R), then is a Lindelof subbase for the space D. 

3.3.3. THEOREM. Every generalized Lindelof space is a realcompact com

pletely regular space. 

PROOF. Let be a Lindelof subbase for the closed sets of a space X. 

It is obvious that satisfies the regularity and normality conditions, 

hence X is completely regular by 3.1.2. We shall prove that satis-

fies the countability condition, whence it follows from 3.1.8. that X 

is realcompact. Let {x\ s.li=1,2, ... } be a countable cover of X and 

suppose that S. 
1 

E 6 for 
1 

i = 1, 2, ... • For fixed i = 1, 2t ••• and 

for each p, let {Si Ti} 
p' p 

be a two element cover of X by members of 

which screens p and s .. The collection {x \ T
1 1P Ex} is an open 

1 _p 

cover of X which has a countable subcover 

(Using the dual of 3. of the definition of Lindelof subb.ase). The col-

lection is a countable refinement of 
pn 

i=l, 2, ... } and consists of memb,ers of 6. 

' 
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3.3.4. THEOREM. Let X be a countably paracompact normal space and 

suppose that there exists a subbase for the closed sets which 

satisfies only the condition that every maximal centered system of 

members of satisfying c.i.p. has non empty intersection. Then X 

is realcompact. 

PROOF. This is obvious from 2.2.3. and 2.2.8. 

PROBLEM. The foregoing theorems in this section show that most of our 

known realcompact spaces are also generalized Lindelof spaces. Profes

sor de Groot has raised the question whether every realcompact complete

ly regular space is a generalized Lindelof space. Up to the-present 

we have not succeeded in solving this problem and thus in generalizing 

theorem 3.1.8. 

• 
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5 

2 

2 below 

9 

16 

13 

24 

for X read 

for = S read s 

for X = {Y \ {P}IP E y \ x} read X = n{Y \ {P}IP E y \ x} 

for of read 

for in read 

for X read 

for = S read 
• 

of 

• in 

s 

u 

y 

for AARTS and DE GROOT [1,13] read AARTS [1] 

for SKETCH OF THE PROOF read For the case that 

satisfies the stronger regularity condition defined on 

page 47 we give the following SKETCH OF THE PROOF (for 

the general case see [1] p. 17). 

~eplace th~ proof of 1 ⇒ 2 by the foll~wing elementary_Eroof. 

PROOF. Let 61 be a maximal centered system 

U t 
the countable intersection property. Let 

of members of with 

be the collection 

consisting of all U EU for which there exists SE 6 such that 

Sc U. Finally, let u1 be a maximal centered family of members of 

U that contains_U'. We will show that U1 has c.i.p. whence it 

follows that n U1 ~ 0 and also n 6 1 ~~-Assume that, on the 

contrary, with 

empty intersection. Since C5 is complemented, by virtue of the 

countability condition for <5, there exists a countable refinement 

cover 

6
1 

there are indices m and j such that Sm E 6i and Sm n Uj = ~. 
Let (S

1
,s

2
) be a two element screening of the pair (Sm,Uj) 

(s
1

,s
2 

E 6). Then, ~Y definition, X \ s 2 is a member of U1 which 

does not intersect U .• This is impossible, and it proves the first 
J 

part of the theorem. 

25 for [12] J. DE GROOT and J.M. AARTS read [12] J.M. AARTS 


