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INTRODUCT ION

In this thesis our aim is to give a systematic study of a few
topological géneralizations of compactness in Hausdorff spaces. Our
main 1nterest lies in generalizations that are related to compact-
ness with respect to heredity for topological operations, as the
taking of closed subsets and the forming of topological products.

In particular, much effort is made to obtain an intrinsic charac-
terization of realcompactness [10] (i.e., a characterization of real-
compactness in which we do not use explicitly the special properties

of real—-valued continuous functions).

When introducing a property of topological spaces, it is natural
to ask if the property is inherited by closed subsets, open subsets
and topological products. In general, it is difficult to decide
whether or not a property satisfies any of these three conditions,
nevertheless, a criterion which gives a decisive answer in a few
cases is obtained in Chapter I. The following result is proved
(theorem 1.1.3.): For a productive property of Hausdorff spaces the
condition of being open-hereditary and closed-hereditary 1is equivalent
with the condition of being hereditary. It is an open question whether
or not the Hausdorff condition is essential.

Also in the first chapter, we investigate those properties which
are closed-hereditary and productive. Let B be a property of topolo-
gical spaces. A ﬁk“extension of a space X 1is a space with property
';p which contains X as a dense subspace; a P —extension YyX of a
space X 1is called maximal if each continuous map of X into any
space Y satisfying B has a continuous extension 6ver YX. A space
is called *ﬁm-regular if it is homeomorphic with a subspace of a
product of spaces each of them satisfying . We have the following
result (theorem 1.2.1.): A necessary and sufficient condition for a
property of Hausdorff spaces to allow maximal D - extensions for all

ip*-regularfspaces is that P 1s closed-hereditary and productive.
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This result was obtained independently by HERRLICH [15] . See also

the property of compactness. Then a P -extension

compactification. Furthermore, it is well-known that every
regular space X has a (unique) maximal P -extension (i.e.

Namely, the Cech-Stone compactification BX

for the properties realcompactness (Hewitt extension

see [ 10]), E-compactness (ENGELKING and MROWKA [5] ), compactness &

SCHEWSK I [3]), and for k-compactness and -

constructed

1ess (resp., [15] and [29]). Our general result includes

extension methods as special cases.

introduce two new topological properties. The
called basiscompactness, is open-hereditary, productive,

ad by all locally compact Hausdorff spaces. Basiscompact-~

a compactness condition on a base for the

is an open base for a space X, then X 1s called

to |1 if for each centered family 111 — U the
smpty intersection. A space X 1is called

si8compact if there exists an open base || such that X 1is basis-

relative to {]. Basiscompactness is a stronger version of
subcompactness introduced in [1l1], but it is weaker than cocompact-
1127 . In metric spaces these three properties are
intrinsic characterization of the notion of
eteness. We also prove that basiscompactness 1is
special kind of mapping: every perfect irreducible

act space is basiscompact (theorem 2.1.6.). It

and cocompactness.

logical property which we introduce in Chapter II

by imposing a compactness condition on a closed subbase:

for the closed sets of a space X , then X is

& (M being an infinite cardinal
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number) provided that each ultrafilter §§ in X for which IN G
satisfies the M-intersection property (i.e. each subcollection of
cardinal < M has non empty intersection) is convergent. A space 1is
called m-ultracompact iff it 1s m—ultracompact relative to some
closed subbase for its topology, or, equivalently, if it is m-ultra-
compact relative to the (sub)base consisting of all closed sets.
M-ultracompactness resembles, to some extent, the property of k-com-
pactness introduced by HERRLICH [157]: it is closed-hereditary and
productive, 1s possessed by all compact spaces, and xlﬂultracompact-—
ness coincides with realcompactness in countably paracompact normal
spaces (for the definition of realcompactness see [10])¢ We also
prove that M-ultracompactness is a fitting property, i.e., if £

is a perfect map of a space X onto a space Y, then both or neither

of X and Y must be m=-ultracompact (theorem 2.2.6.).

If X 1is NR,-ultracompact relative to some subbase &, then it

1
is natural to ask what separation conditions should be put on & in
order that X becomes a realcompact completely regular space. In the
same way we can ask what conditions we should put on a space X which
is basiscompact relative to a base || for its open subsets in order
that X becomes a compact Hausdorff space. The second question 1is
easy to solve. A base & for the closed subsets of a space X satis-
fies the condition of base—regularity if for each member S € © and
point p € S, there exist 81,82 € & such that SllJ S2 =X, p & Sz,
S Sl = @, It is easy to prove that a Tl-space is compact Hausdorff
if and only if it is basiscompact relative to a base || for which the
corresponding closed base & = {X’\ U!U 611} satisfies the condition
of base-regularity.

Now, let X be a space which 1is 'Rl-ultracompact relative to a
closed éubbase &. We must find extra conditions for & such that the
space X becomes a realcompact completely regular space. This 1s
certainly the case when & 1is the family of all zerosets of X (see
1

[10] page 153). But we are looking for intrinsic conditions for & .

Two subsets A and B of a topological space X are screened by a
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finite collection of subsets § 1iff no member of & intersects both

B. A subbase © for the closed sets of a space X satisfies

A and
reqularity condition (condition of subbase—regu larity) provided
that for each S € & and x £ S, there exist subsets Sl’ c ooy Sn

f]-:i=1,2,,,i....f..,,n} = S and each pair (x,si) is

the

of X such that U {8,
screened by a finite subcollection of &. © satisfies the normality
ondition (econdition of subbase-normali -f;y) iff each two disjoint members

screened by a finite cover of X consisting of members oi

© satisfies the cowntability condition if each countable cover of

S] S € @} has a countable refinement by members

Now we have the following result (theorem 3.1.8.): A Tl‘-space

a realcompact completely regular space if and only if it is

-Rl*ultracact relative to a closed subbase which satisfies the

regu mality and countability conditions. Note (see 3.1.4.)

that for such a subbase &, the condition of being X_ -ultracompact

1
is equivalent with the condition that each maximal

relative to

ed family of members of © with the countable intersection

1on empty intersection. If we work now within the comple-

framework of collections of open sets and open covers, then

llows that a sufficient condition for realcompactness of a space

esented by the existence of a 'nice’ open subbase with the Lindeldf

nembers of the subbase has a countable

This answers a question which was raised by J. DE GROOT.

ubbase-normality, there exists a Haus dorff compactification

such that the closures in B (8)

of the members of & form a
(131, [7] and [31].

e obtain a similar theorem for the realcompact

closed subbase
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THEOREM. Let X be a Tlmspace and © be a closed subbase for X

which satisfies the regularity, normality, and countability conditions.

Then there exists a completely regular realcompactification UG)X

of X with the following properties:

1. The closures in V(&)X of the members of & form a closed
subbase for V(&)X and satisfies the regularity, normality, and count-
ability conditions. Each maximal centered family of this collection
satlisfying c.i.p. has non empty intersection in VU (&)X.

2. If {Si !iml,z, . o } is a countable subcollection of & with
empty intersectiop, then their closures in V(S)X have empty inter-

section in v (@E&)X.

In Chapter III we also obtain a result which shows that our real-

compactification V(&)X is maximal in a certain respect.

THEOREM. Let X and Y be Tl-spaces, and suppose that & and Y are

closed subbases for X and Y, respectively, which satisfy the regular-

i1ty, mnormality, and countability conditions. If f is a (continuous)
-1

map of X into Y such that f (T) € & for each T € ¥, then there

exists a continuous extension of f which carries uv(E&)X into

vElY.

The final results in Chapter III are applications of the obtained
realcompactification method. As a typical example we have the follow-
ing result: Let {Xala - A} be a collection of topological spaces
and X = H{Xala - A}. If for o € A, 6& is a closed subbase of Xa

which satisfies the regularity, normality, and countability conditions,

-1
then the subbase & of X consisting of the sets T (C), where
C € 605 (o € A), also satisfies these conditions and vu(&)X is homeo-

morphic with H{U(@a)xala - A}.

Here 1 wish to express my gratitude to the Mathematical Centre,
Amsterdam, which gave me the opportunity to carry on the investigations
which are dealt with ip this treatise. 1 indebted to Dr. G.A. Jensen
who carefully read the \manuscript and corrected it, especially in its
English expression. Here I wish to thank also Mrs. H. Roqué-de Hoyer

and Mr. D. Zwarst for typing and printing the manuscript.



CONVENTIONS

-hesis all spaces are considered to be T7--Spaces,

only of practical use for Hausdorff spaces.
family" and
empty set will be denoted by #.

!

it te
'system'' are synonymous for set , €

and O mean ordinary inclusion between sets, they

bility of equality. If A and B are sets,
he set of points of A which do not belong

considered as left operators and are written on

the argument. If f is a mapping of X into Y and A C X,
tA) = {f(a)]a € A}, £77® = {x € Xx|£(x) € B}.

Italic 1

atin letters stand for cardinals, RO stands for the

ountable set, R ~denotes the cardinal of the

ure of a set A in a space X will be denoted by A or

erior of A in X by A °

family of subsets of a space X, then the symbol ﬁ 18

UX for which U € 1. The union

@ 8space, then an open (sub)base of X is a (sub)base

a closed (sub)bagse of X is a (sub)base for

©0f X. A subset Z of X 1s called a 3eroset of X

& real-valued cont inuous function f on X such that

} If X is completely regular, then the collection

©f X 1is a closed base of X (see [10] for more informa-




CHAPTER I
INVARIANCES OF TOPOLOGICAL PROPERTIES

1. HEREDITARY PROPERTIES

1.1.1. Recall that a property P of topological spaces is called
productive iff each product of an arbitrary collection of spaces
having P, also has property P; it is called hereditary (respectively,
cZosed;hereditany, open-~hereditary) if each subspace (respectively

closed subspace, open subspace) of a space with P also has P

v

1.1.2. LEMMA. Let ‘P be a property of Tz—spaces which is closed-here-
ditary and productive. If {Xa'a G,A} 1s a collection of subsets of a
T2~space Y and if each Xa satisfies the property P, then D =

f {Xala < A} satisfies the property ‘%.

PROOF. Let X = II{X [a € A] and let A C X be given by 4 = {x € X|
mo(x) = WB(x),'Va,B S A} (here ﬂa is the natural projection of X
onto ,Xa). Define a mapping f of D onto A by the conditions
Wa(f(p)) = p, V& € A, f is continuous, since the map f followed

by projection ﬂa is the inclusion map of D into Xa..Moreover,

1f U 1is an open set of D then there exists an open set U' of Y
such that U' 1 D = U which implies f(U) = ﬂgl(U* N Xa) N A for
each &, It follows that f(U) 1is open in A and consequently f is
a homeomorphism. So it remains to show that A has property B.

X has property P since each Xa has property P and ’$ is produc-
tive.By the Hausdorff property of Y it follows that A is closed in

X, so A also has property P since P is closed-hereditary.

1.1.3. THEOREM. (See also [17] and [29]). Let P be a property of
Tz—spaces which is productive. Then the following conditions are
equivalent:

(i) P 1is open-hereditary and closed-hereditary,

(ii) P is hereditary.
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ok

of the foregoing theorem is that if P is

which is open hereditary, closed-hereditary,
X | 8 possessed by all compact T o~ spaces, then ‘.\3 is
etely regular space.
n serve as a test for deciding whether or not
f T —spaces is inherited by open subsets, closed subsets

2
products. Consider the properties C = compactness,

I

being a Kk—-space

compactness, CC = cocompactness [ 1 2] » K

alcompactness [ 10]. The following table is filled

on whether the property at the head of the

onsider, for instance, the property of being a k-space,

easy to see that this property is closed-hereditary and

restrict ourselves to Hausdorff spaces).

1ly) compact Tz-space is a k*é,pace. However, we

at there exist completely regular spaces which are not k-spaces.
the

property of being a k-space is not productive.

RUBLEM. Up to the present we have not succeeded in constructing

aces which is open-heredit ary, closed-hereditary

and which is not a hereditary property. Thus the
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question remains open whether or not, in 1.1.3., the Hausdorff

condition is essential.

2. MAXIMAL ‘B -EXTENSIONS

1.2.1. Recall that if P 1is a topological property, then a P -
extension of a space X is a space with property ‘P which contains
X as a dense subspace. A P ~extension YX of a space X is called
maximal iff each continuous map of X into any space Y satisfying

‘]3 has a continuous extension over YX.

A maximal - P -extension YX of a space X is uniquely determined
(i.e. determined up to a homeomorphism) by X, and we have 7YX = X
1f and only if X has property P.

A space is called P -regular iff it is homeomorphic with a sub-

space of a product of spaces each of them satisfying B.

ILEMMA. If ¢ is a continuous map of a T _-space Y into a space Z

2
whose restriction to a dense set X 1is a homeomorphism, then ¢

carries Y \\ X into 2Z \ ¢ X).

PROOF. E.g. [10] page 92.

1)

THEOREM. If P is a property of T_-spaces, then the following

2
statements are equivalent:

(a) Each P —regular space possesses a maximal P -extension,

(b) P is productive and closed-hereditary.

1) This result was obtained independently by HERRLICH [15] . See also [ 17]
and [29] . Parts of it are contained in KENNISON [24] and HUSEK [20] (see

the notes on page 19 of this thesis).
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Let P be a topological property which satisfies

productive: Let {Xa]a S A} be a collection of spaces

X = H{Xa-!a € A}. By assumption X possesses a maximal
¥YX such that each projection map ﬂa: X > Xa has a

m i YX > X, . Let j:YX >X be defined by the

' E(x) (o € A). It is easy to see that j 1is the

hence by the preceding lemma YX \ X =60, i.e.,

is closed-hereditary: Let X be a closed subset of a

. The inclusion map i of X into Y has

i* which carries YX into Y (YX  Dbeing

B -extension of X). By the preceding lemma, the preimage

osed set X of Y under i*¥ is X; hence X 1is closed

= X. It follows that X has property B.

be a topological property which is productive and

X be a P ~-regular space. Denote by M

488 of all spaces with property ‘;3 which contain a continuous

lense subspace. By identifying homeomorphic copies,
et with cardinality < exp exp |X|. For each Y €uf, let
the set of all continuous mappings of X into Y. For
be the (Y,f)-th projection of the product
L There exists e;:a:::a.ctly’r one continuous map
Ty £) c 1 = f for all projection maps
2gular, 1 1s a homeomorphism of X into P.
YX the closure in P of i(X). Then, by construction,

cimal -extension of X.

a property of completely regular spaces, then the

equivalent:

1s closed-hereditary, Productive, and is possessed by all

ct Tzﬂspaces.

ry completely régular space pOossesses a maximal ‘15 —-—extension
(which is cor

pletely regular).
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PROOF. Substitute for P in the preceding theorem the property P &
complete regularity.

1.2.2. NOTES. 1. If we take for P the property of compactness, then
(a) = (b) in this corollary is precisely the Cech-Stone extension
theorem. 1f we take for ® the property of realcompactness then (a)

= (b) immediately yields the existence of a maximal realcompactification

UX for every completely regular space X (Hewitt extension theoren
cf. [10]).

The above corollary can also be applied to get results of ENGELKING
and MROWKA [ 5] on E-compactness, and of BANASCHEWSKI [3] on compactness
and zerodimensionality. See also [15] and [29].

2. In [24] KENNISON defined the concept of P -reflection, which is
more general than the concept of maximal ‘P -extension. A space YX

is called a P -reflection of a space X iff 1) yX is a space with
property P, 2) there is a continuous map Yy of X onto a dense sub-
set of YX, 3) for every continuous map f of X into any space Y
satisfying ‘P, there exists a continuous map £ YyX - Y with the pro-
perty f oy = f. It is shown in [ 24] that under the hypothesis that

P is closed—hereditary and productive, there exists a B -reflection
YX for each Hausdorff space X. See also [20], [17] and [16]. However,
in [24] we get no information under what circumstances YX is a maxi-
mal P -extension of X.

3. The existence of maximal P -extensions may be reformulated in cate-
gorical language. Indeed, the construction of a maximal P -extension
YX of a space X yields a covariant functor which is adjoint to the
corresponding forgetfullfunctor (cf. [6] for the definition of cate-

gory, functor, etc.).

1.2.3. If £ 1is a continuous map of a space X onto a TZ*Space Y,

then it is well-known that the mapping h: X * X X Y defined by

h(x) = (x,f(x)) is a homeomorphism of X onto a closed subspace

(usually called the graph of f) of X X Y. The following lemma gener-

alizes this result.
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LEMMA. Let X and Y be topological spaces, f a continuous map of

X onto Y, and A, B subsets of X and Y, respectively, such that
....1 ‘

f (B) = A. If Y 1is a Hausdorff space then the mapping h defined

by h(x) = (x,f(x)) is a homeomorphism of A onto a closed subspace
of X X B.

PROOF. It is easy to see that h is a homeomorphism of A into X X B;
hence it suffices to show that h(A) is closed in X X B. Let

g: X X B> Y X B be defined by g(x,y) = (f(x),y). Since Y 1is a
Hausdorff space D = {(y,y) ly c B} is closed in Y X B; hence

. -1
h(A) = g (D) 1is closed in X x B.

1.2.4. From the preceding lemma we derive the following result:

THEOREM. Let B be a property of Tzﬂspaces which is inherited by
closed subsets and invariant for the taking of finite topological
products. If f 1is a continuous map from a space X with property
D onto a Tz—space Y, then the inverse image under f of each sub-

set of Y with property P, also satisfies T.

1.2.5. Following the terminology used in [ 18] a property P of topo-
logical spaces is called an almost-fitting property (respectively
firtting property) if whenever f is a perfect 1) map of a completely
regular space X onto a completely regular space Y, then X has
property if (respectively if and only if) Y has .

Compactness, local compactness, paracompactness and countable
paracompactness are examples of fitting properties (see [18]). Real-

compactness 1is an example of an almost-fitting property.

)
. A mapping f of a space X into a space Y will be called perfect
if f is continuous, closed (the images of closed sets are closed) and
the inverse image$ of points are compact.
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The following theorem gives a criterion for deciding whether or

not some property is an almost-fitting property.

THEOREM. Let ‘@ be a property of topological spaces. Suppose that P
l1s closed-hereditary, and suppose that for every (completely regular)

space Y satisfying P, the product of Y with any compact T._-space

2
has property 9. Then P 1is an almost-fitting property.

PROOF. Let Y be a completely regular space satisfying P and £ a
perfect map of a completely regular space X onto Y. We must show
that X has property D. Let f be the continuous extension of f
which carries BX "into BY (BX and BY denoting the Cech-Stone
compactifications of X and Y, respectively). A well-known theorem
of Henriksen and Isbell states that _fml(Y) = X (see [18]). Hence by
1.2.3., X 1is homeomorphic with a closed subspace of BX X Y. The

theorem now follows from the assumptions we made on the property $P.

1.2.6. If P 1is a property defined on the class of completely regular

spaces such that 1) every compact T, -space has property ‘]}, 2) P is

2
closed-hereditary and productive, then we know from the corollary 1in
1.2.1. that every completely regular space X has a (uniquely deter-
mined) maximal ‘P —-extension YX. It is natural to ask whether or not
it is true that 7YX is homeomorphic with a subspace of B8X.
We will now show that this is indeed the case.

For each continuous map f of X onto a dense subset of a space
Y !satisfying ‘]3, let f be the continuous extension of f which
carries BX onto RBY. Using the results in 1.1.2. and 1.2.4., 1t 1is
easy to see that 6X =) {?1 (Y) lY has property P; f: X > Y 1is
continuous; f(X) dense in Y} is a maximal ‘p -extension of X

which (by uniqueness of 7YX) is homeomorphic with YX.

1.2.7. THEOREM. Let ‘}3 be a property of completely regular spaces.

Then the following conditions are equivalent:
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is possessed by every space consisting of a single point;

‘ﬁ is invariant for the taking of arbitrary (resp., finite,
countable) intersections, and P satisfies the condition that

for each space Y satisfying P, the product of X with any

compact T,-space has property DP.

2
is closed-hereditary, productive (resp. invariant for finite,

ntable products), and is possessed by all compact Tz—spaces.

ompact Tz-spaces , 18 closed-hereditary.

be a space satisfying P and Y a closed subspace of X.

compact extension of X. -fax and X are subsets of aX

B; hence their intersection, which equals Y, has pro-

(i) = (ii). It is almost obvious that P 1is possessed

all compact Tz-spaces. Indeed, if C 1is a compact T_—space and S

2
space consisting of a single point, then by assumption C X S has pro-

and this space is homeomorphic with C.

It follows from the preceding lemma that P 1is closed-hereditary.

Let us now show that is productive. Let { Xalcx S A} be a collection

of completely regular spaces each of them satisfying P (finite pro-
nd countable products are treated similarly), and let X =

. € A} . Each projection map Tfa of X onto ch has a continuous
extension ‘Hg which carries BX into Bxa. For o € A, set X(@g) =
wg"'l(xa) . By 1.2.3. each X(a) 1is homeomorphic with a closed subspace
of BX X Xu and hence satisfies the property P. Our assumption yields

e

that X' = () {X(cx)’fa c A} also satisfies P. But X is densely em-

bedded in X' and the mapping i¥: X' >+ X defined by the conditions

L.

(i¥(x)), = mE(x) @ € A) 1is continuous and is the identity on X. Conse-
quently it follows from the lemma in 1.2.1. that X' = X, i.e. X |has
property 3.

(ii) = (i). This follows at once from 1.1.2.
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EXAMPLE. The property of paracompactness is not invariant for the taking

of finite intersections.

Indeed, 1t is well-known that paracompactness is not invariant for
the taking of finite topological products (see [23] ). Hence, it follows
that condition (ii) in 1.2.7. is not satisfied for the property of para-
compactness. Since the product of a paracompact space and a compact
Tz-space is again a paracompact space (see [27] ), it follows from

1.2.7. that paracompactness is not invariant for the taking of finite

intersections.



CHAPTER 11

PACTNESS AND m-ULTRACOMPACTNESS

jous chapter we have seen that those topological pro-

which are closed-hereditary and productive are of special

theory of extensions of mappings. In this chapter we

two new topological properties. The first one, called
pen-hereditary and productive. The second one,
ed M-ultracompactness, is closed-heredit éry and productive. Both
defined by imposing a kind of compactness condition
topology. Later (Chapter III), it will be shown

by imposing certain separation conditions on the subbase, we

. equivalence with compactness and realcompactness.

& space and \l an open base for its topology. X 1is

members of U y the collecti on 8
X 1is called ba

has non empty intersection.

"I

t8compact if there exists a base U for its

X 1is basiscompact relative to 1.
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2.1.2. If X 1s a space which is basiscompact relative to some base

11 for its open sets, then we can ask what separation conditions we

should put on 11 in order that X becomes a compact Hausdorff space.

A base & for the closed sets of a space X is said to satisfy

the condition of base-regularity if for each point p of X and

S €© not containing p, there exists Sl’SZ € & satisfying

— — o . I; " . .
s, Us, =X, p é S,» SN s, =6 (5,,S,) is called a 8creening of the
pair (p,S). A base U for the open sets of a space X is called
base-regular if the corresponding closed base {X \ UIU S 11} satis-
fies the condition of base-regularity.

Now we have the following result:

THEOREM. A Tl--space is a compact Hausdorff space if and only if it is

basiscompact relative to a base which is base-regular.

PROOF. Sufficiency. Let X be a Tl*—-space and U1 a base for the

topology that is base-regular relative to which X is basiscompact.

Set © = {X\ UlU €U}. X is a Hausdorff space, for if p and q

are different points of X, then by the T, -property of X, there

1
exists S € & such that p € S, q € S, and a screening (Sl,Sz) of
(p,S) by members of &. It follows that X \ S, and X \ S, are

disjoint neighborhoods of p and q, respectively.

Now, let 51 be a centered system of members of &. In order to prove
the compactness of X, it is sufficient to prove that © has non

1
empty intersection in X. Define 111 c Ul by the condition U, =

{U€eU|sc U for some S € 61} . Obviously l, 1is a centered iystem

of members of U; thus by basiscompactness of X relative to U,
there exists p € N ffl and hence it suffices to prove that p € (N 61.
Let us suppose that there exists S €<51 such that p £ S. Since U
is base-regular, there exists a screening (81,82) of (p,S) by
members of &. We have S C X \ S1 and p £ m However, by con-

struction, X \ S1 € 111, thus p € N El" This gives the desired contra-

diction.

Necessity: This is immediately clear.
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mpact Hausdorff space 1s basiscompact relative

B R

PROPOSITION. a. The property bas iscompactness is 1 nherited by

b. Each open subset of a regular

topological products.
c. The property of basiscompact-

‘ {X 'a € A} is a collection of topological spaces,

o
X =

nd U the base for the product topology of .X consist-

ets of the form H{ U, la c A} where Ua is a member of

for finitely many ©¢ € A and U, = X, for the remaining indices

We will show that X 1is basiscompact relative to U. Let 3 be a

1. For each o € A, the collection
1)

is a centered system of members of ua and consequent-

. exists p, €N {TUlU €5} for each o. Let p be the

of X whose a'th conrdinate equals P, - Then p 1is in the

is a regular space which is basiscompact relative to a base
topology and if O is an open subset of X, then O 18
scompact relative to the base consisting of the elements of U

whose closures in X are contained in O.

2.1.2. and a that each product of real lines 1is

——

c. 7 It follows fronm

mpact. Since the space Q of rational numbers is homeomorphic

a closed subspace of such a product (see [_10]) it suffices to

is not basiscompact. Suppose, on the contrary, that @

basiscompact relative to a base U for its open subsets. Take an

generality we may suppose that Xa c U for each o € A.
o
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enumeration r,,r,,...,r ,... of Q. Obviously there exists U, cUu

such that r, & Ul while Ul # 0. If for 1 < k < n Uk €U is
' U C
already defined such that U Up 1> K Uy # @ for

k =2,...,n, then, take some rational number r € U which is not
n

rkEU

n+1} and let Un+1 be a member of |l with the pro-

= . C: oy
perties r € Un+1 Un+1 o Un’ l‘n+1 & Un+1' The so0 constructed

in {rl,...,r

collection {Un‘nxl,z, . } 1s a centered system of members of U
and ﬂ{“ﬁnfnml,2,...} = {) {Un[n=1,2,...} = #. This contradicts the

assumption that Q 1is basiscompact relative to U.

2.1.4. PROPOSITION. Every basiscompact space is basiscompact relative
to a base which is élosed under finite unions. In fact, if X is
basiscompact relative to U then X is also basiscompact relative

to LIV (i.e. the collection of subsets of X which are finite unions

of members of U).

PROOF . Suppose, on the contrary, that there is a centered system
< 1V  such that N 5 = . Using Zorn's lemma we can easily prove
that there exists a maximal centered system @& of members of LIV
which contains J. If {§ = {F |a € A}, then for fixed @ € A, there
exists a finite subcollection {Ui! 1=1,2,.. ..,n} of U such that

F, = U {Uiliﬂl,z, .o ,n} €3 <€ @. By maximality of @, we can select

an index i (1 < i < n) such that u, € @; let us denote this U, by

U, - By assumption we have ) {Eala S A} c N {Fa]a € A} = #; thus basis-

compactness of X relative to U yields the existence of a finite

subcollection {U sU ,...,U } of {U IOL & A} with empty intersection.
1 2 k
Since Ua € @, this contradicts the fact that @ is a centered system.
i

2.1.5. Recall that an open set O of a topological space is called
regular open provided that 00 =0. A space is called semiregular if

it has a base consisting of regular open sets.

PROPOS ITION. Every semiregular basiscompact space is basiscompact

relative to a base consisting of regular open sets.
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X be a semiregular space which 1S basiscompact relative

~ a base 11 for its topology. Denote by U ' the collection
, ) U & u}; by the seu iregularity of X 1t follows that U is also

for the
{ U |U € Ill} be a centered system (111 c U). Then 1.11 is

topology. We will show that X is basiscompact relative

~entered system, since for each finite subcollection {Ul y o o s ,Un}

, —0 —0O

1 _
assumption we have N { U ! U cU 1} # 6 . Since U = U , wWe a lso

U € Ul} £ 8, proving that X 1is basiscompact relative to

Recall that a mapping f from a space X onto a space Y 1is

led pérfect if it is continuous, closed (the images of closed sets

is called

ieible if f£(S) # Y for each proper closed subset S of X.

f is a perfect irreducible map of a basiscompact space

nto a space Y, then Y 1is basiscompact.

roving this theorem we first mention a few properties of perfect

reducible mappings, which are known from the literature.

of completeness we also give the proofs.

It f be a perfect map of a space X onto a space Y and

base for the topology

collection

of X which is closed under finite unions.

{Y \ £(X\ U) iU < 11} constitutes a base for the

-1
f (p) yields the existence of a finite

W .,..,U | of {Uq lq € 27 (p)} which covers £ l(p).

n
2 | {quchml,Z, ...,n} c U and Y \ f(X \ U) 1is an
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ILEMMA 2. Let X and Y be topological spaces and f a perfect map
of X onto Y. Then there exists a closed subset S of X such that

the restriction map fIS is a perfect irreducible map of S onto Y.

PROOF. Let § = {Fala € A} be the family of all closed subsets of X
with the property f(Fa) = Y. Define a partial order < on 3§ such that

« . < : ——
the inequality Fa F8 holds iff }3‘B C Fa' Let ‘,31 {Fa]a € Al - A}
be an arbitrary chain of § and y an arbitrary point of Y. Then
-1 -1
{Fa N £ (y) !Ot € Al} is a centered system and compactness of f ~ (y)

. - -1 .
ylelds N {Fa'ae Al} N £ (y) % ﬂ, 1.€e. 8 {Fuld - Al} GS Thus 81
has an upper bound in {§. Using Zorn's lemma, we conclude that {§ has
a maximal element S. The restriction map flS is a perfect irreducible

map of S onto Y.

ILEMMA 3. Let f be a closed irreducible map of a space X onto a space
Y. If O is an open set of X, then f£f(0) =Y\ f£f(X\ O0).

PROOF. It suffices to prove f£(0) m It is evident that
flEx\ o) u ful(Y N\ f(X\ O0))] =Y, and since f is an irreducible
map, it follows that (X \ O) U fﬂl(Y \ £f(X\ 0)) =X, i.e.,

OocC f_l (Y\ £f(X \ O)). Thus from the closedness of f, we conclude that

f(O) c Y\ £X\ 0)).

PROOF OF THE THEOREM.

Let X be a basiscompact space and f a perfect irreducible map of

X onto Y. It follows from 2.1.4. that X 1is basiscompact relative
to a base 11 which is closed under finite unions. By lemma 1 the
collection Hl = {Y \ £fX\ U) U € U} is a base for the topology of
Y. We shall prove that Y is basiscompact relative to H!l.

Let § = {Y\ £X\ W|v eu,} be a centered system of members of HI.
Then it is easy to see that ul is a centered system of members of 1].

Indeed if there would exist U "Un - 111 with empty intersection,

1°°°
then {X \ Ul’ .o X\ Un} is a cover of X. Consequently
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{f(x \ Ul),,.,,f(x \ Un)} is a cover of f(X) =Y 1i.e.
n 1Y \ £(x \ U)f1 <ix n} = @, which is impossible. Basiscompact-
_ N udlr <2

ness of X relative to U yields the existence of a point p 1in
M {G!U & ul}, Hence f(p) € N {f(UlU - 111} . However by the previous
lemma we have f(U) = Y \ f(X\ U) for each U €U ; thus

f(p) €N {¥Y\ £X

th@ﬂrem .

AR

UIU - 111} = {S This completes the proof of the

It is an open problem whether or mnot the above result remains

valid for arbitrary perfect mappings (not necessarily irreducible).

Note that every perfect image of a basiscompact metrizable space is

basiscompact (this? follows at once from 2.1.6., lemma 2 and the next

)

theorem

2.1.7. THEOREM. A metrizable space is basiscompact if and only if it

gically complete.

PROOF. Necessity (compare with [11]). Let (M,p) be a basiscompact

metric space. Let (M*,p) denote the (metric) completion of (M,p).

We will show that M 1is a G(S -subset of M*, which yields a proof
of this part of the theorem by the ALEXANDROFF-HAUSDORFF theorenm.
Let U

M 1is basiscompact. Define for each i = 1,2,... ,ui = {U & U,ldiam
1

U < -i-'} . Observe that for each 1i, U.i is an open base for M, thus

u is a cover of M. For each U €U, let U* be an open set of

a base for the metric topology of M relative to which

M* such that U* (N M = U. Since M is dense in M*, the diameters

of U and U* are equal. Define 0’{ = U {U*lU S ui}; we shall prove
= N {of]i=1,2,...}. Trivially Mcn {o*]i=1,2,...}. Let us

suppose that there exists a point p in N {0¥|i=1,2,...} which is

that

not an element of M. For each i, select a member U € U‘i with
i
the property p € U’{ The collection {Ui! i=1,2,.. } 1s a centered

system of

members of U ; hence basiscompactness of M relative to

U vyields N {l_fidl i=1,2,.. } A B. Let us suppose that q is a point
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of N {U?|iml,2,.,.}. Clearly p # q and because the diameters of the
U; tend to zero, there exists a natural number n such that P € U*
n
and the closure in M* of U* is disjoint from q. It follows that
—M* | 3
a €n {Ug llﬂ1,2,...} = N ﬁﬁ?lrml,z,‘,,} (since M 1is dense in M%),

This gives the desired contradiction.

Sufficiency. We first note that a zerodimensional completely metrizable
space M 1s basiscompact. Indeed, by virtue of the zerodimensionality
of M, there exists for each i a cover \11 of M consisting of
pairwise disjoint clopen sets each of diameter <« -} (see [26] page 22).
Thus M 1s basiscompact relative to {ui Iiwl,z, . } If M 1is an
arbitrary (not necessary zerodimensional) completely metrizable space,
then a theorem of'MORITA (see [27] 0r’[28] for a simpler proof) states
that M 1is the image of a zerodimensional completely metrizable space
under a perfect mapping f. By virtue of lemma 2 we may suppose that

f 1is an irreducible mapping. Hence, M being a perfect irreducible image

of a basiscompact space is basiscompact by theorem 2.1.6.

2.1.8. An obvious modification of the proof of 2.1.7., yields the follow-

ing more general result.

THEOREM. A regular space is a completely metrizable space if and only

if it is basiscompact relative to a 0-locally finite base for its

topology.

2.1.9. THEOREM. Each basiscompact regular space is a Balre space.

PROOF. Let {Ailiml,z, .. } be a countable collection of nowhere dense
closed subsets of a regular space X which is basiscompact relative

to a base {1 for its topology. Let O be a non empty open set of X.
By induction we construct for each k = 1,2,... non empty elements Uk

of |1 with the properties Ei - Ui-—l and Ui N Ai = @B for
i=1,2,...,k. For k =1, let U1 be some non empty element of 1y whose

closure is contained in O and which is disjoint from Al’ If UJ for
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ready defined with the desired properties, then let

r hich i t 3 define U, as
U which is not 1n Ak and Kk

which satisfies p ¢ Uk C Uk - Uk-—l’ Uk N Ak = @.
The collection {Uk B k=1,2,.. } thus defined is a centered system of mem-
Thus, by basiscompactness of X relative to |1, it follows
,2,...} = ﬂ{Uk[kml,Z,...} £ . The construction of the
li=1,2,...} =8 and D < O. Thus

is a dense subset of X. This completes the proof

any infinite cardinal number m. m-ultracompactness resembles, to some

the property k-compactness introduced by HERRLICH [15] , and

H

Rl" the property almost-realcompactness introduced by FROLIK

m=-ultracompactness is closed-hereditary and productive, it is possessed

by all compact spaces, and Rl-ultracompactness coincides with realcom-
countably paracompact normal spaces. Furthermore, m-ultra-

ess is a fitting property, i.e., if f 1is a perfect map of a

space X onto a space Y, then both or neither of X and Y must be

amily of subsets of a topological space X has the m—inter—

roperty (m being an infinite cardinal number) provided that

every subcollection of cardinal < m has non empty intersection. If

1s a closed subbase for a space X, then X is called m-ultracom-

pdc
‘3.“-.‘.:
i

to & 1iff each ultrafilter {§ in X, for which

8 N % satisfies the m-intersection property, is convergent. A space
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X 4 s called m-ultraqcompact if there exists a closed subbase & for

jts T opology such that X 1is m—-ultracompact relative to &.

> 2.2 - It is obvious that compactness 1s equivalent with xowultra-

pactness. There also exist relationships between Rl-ultracompact-

ness and realcompactness. Indeed, a completely regular space is real-

-p_a_ct 1ff it 1is Rl-ultracompact relative to the (sub)base consist-

ing ©O* all zerosets ([10, page 153]). In chapter III we shall generalize
this result and obtain separation conditions for a subbase & such that
™ —13 1 tracompactness relative to & 1mplies realcompactness and complete

regularity (see theorem 3.1.8).

2 =2 _3B. If a space X 1is Multracompact relative to some closed sub-
base &S, then it is easy to prove that each maximal centered family
of members of & with the m—intersection property has non empty inter-
section. In the next chapter we prove (for m = Rl) that under certain
conditions on & the latter statement also implies the former (lemma

3.1 .4 .). Although we do not know whether or not this is true for

arbi txrary subbases we still have the following result.

PROPOSITION. Let X be a space and & a closed subbase for X with
the prxroperty that each subcollection of & with the m-intersection

propexty has non empty intersection. Then X 1is m-ultracompact rela-

tive tTo 6.

PROOF . Let {§ be an ultrafilter in X such that J{ N & satisfies
the 77—intersection property. Let us suppose that, on the contrary, {
Ihras mno limit point in X. Since the collection {X \ S[S € 6} is a
subbase for the open sets of X, there exists for each p € X a
subba sicneighborhood X \ Sp of p which is not a member of .
It Follows that {X \ Spi p € X} is a cover of X and consequently
(1 { Sp' P € X} = @#. By assumption there exists a subcollection

{ Spa l o c A} of {Sp]p - X} of cardinality < m with empty inter-
Section. This contradicts that JF N & sati?sfies the m—-intersection

PTroperty.



satisfies the m-intersection

a space 1s m-ultracompact if and

only if each m-ultrafilter is convergent.

let {3 be an m—ultrafilter in a space X and f: X >Y a
ous mapping. The collection g = { £ (F) IF ¢ {S} constitutes a

igs a base for an ultrafilter @' in X.

RC It is obvious that
{Sa la € A} be a family of closed sets of ®' with cardinal < 7.
rly every Scx intersects every f(F) (F ¢ ¥) . Consequently, every

-1 .
f (Sa) is a non e
of . Since 38 1is an m-ultrafilter, {f (S )'Ot - A} is a subcollec-
tion of § and {f"l(sa) la € A} # 8. 1t follows that {sa!a e Al

empty intersection.

For every cardinal m the property m-ultracompactness

is closed-hereditary and productive.

PROOF. Let {Xa!c: - A} be a collection of M-ultracompact spaces and
let X = II{X(Ja = A} For an m-ultrafilter § in X, let Sa =
= {‘H‘F?:F € 5} for a € A. By the previous lemma, each § o is a base

for ar

m-ultrafilter iIn xa which is convergent to a point P, in

. The point p of X whose a'th coordinate is P, is a 1limit

point of §; hence §§ 1is a convergent filter.

Now let X be an m-ultracompact space and Y a closed subspace of X.

We will show that Y is m—ultracompact. Suppose that § is an m—-ultra-

filter in Y. The preceding lemma shows that {§ 1is a base for an m-

ultrafilter {§' in X which is convergent, to some p € X. Clearly
. - ' :' Y - . .

PeEN EiF €N }C N {-f |F € g} Hence § 1is a convergent filter in

Y. This completes the proof of the theoren.
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2.2.6. THEOREM. Every space Y which is the perfect image of some
m-ultracompact space X wunder a mapping f 1is mM-ultracompact. More-

over, m-ultracompactness is a fitting property.

PROOF. Let {} be an arbitrary m-ultrafilter in Y and & an ultra-
filter in X which contains the family fﬂl(ﬁ) = {f”l(F) !F - {5} We
shall first prove that & is an mM-ultrafilter in X. Let us suppose
that there exists a family & of closed members of & of cardinal

< m with empty intersection. Without loss of generality we may suppose
that 5 1is closed under finite intersections. The members of f(§) =
= {f(S) !S - 6} are closed subsets of Y and they intersect each
member of [{. Consequently, f(O) — {§ and we are able to choose

P €N £(®&) since § is an m-ultrafilter in Y. Now {f-l(p) N s|s c s
1s a centered system in X and so compactness of f“l(p) yields

M {f_l(p) N S IS - 6} # @#. Hence N & # B, which contradicts our assump-
1ili'-G'Il«-le'ze space X Dbeing m—ultracompact implies N (EX #~ ﬁ, and conse-

qQuently, ni # B. The second statement follows from 1.2.5.

2.2.7. THEOREM. (compare with [15]). For each cardinal number N,
There exists a completely regular space Toz which 1is ‘&a”ultracompact

but not RB*ultracompact for B < a,.

Il

{g]e

an ordinal < wa}, endowed with the usual order topology, 1s a space

PROOF. If Ra is not a limit cardinal then the collection Tor.

which is Raﬂ-ultracompact but not z{B-ultracompact for B < a. Indeed,
it is wellknown that there exists exactly one free ultrafilter {§ in

T . ¢ .
o (y 1s an Ra-—-l

_ -ultrafilter but not an Ra"ultrafi’.lter.
I1f Ra is a limit cardinal number, then let Ra = sup {RY!Y c I‘} where

each RY is a non 1limit cardinal smaller than Rcz' Define 'I‘Y for

Yy € ' as above, and let TQ1 = I {TY“Y € I'}. It is obvious that Ta is

b{awultracompact, for it is the product of xu-ultracopact spaces. T(1

is not Rg-ultracompact for B < a. Indeed, if on the contrary there

exists B < a such that Tcx is xB-—ultraCOPact, then let Y ¢ I' satis-
fy B < vy < a . Since TY is a closed subspace of T it follows that

TY is RB-ultra.copact, which is impossible. The theorem now follows.
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a countably paracompact normal space X, the follow-

92 92 8. THEORENM
ing conditions are equivalent
1. X is realcompact

2. X 1s xl*ultracompact

imal centered system P of open sets for which

A

9® satisfies the countable intersection property, the inter-

section ’5 is non empty (i.e., X 1is almost-realcompact

in the sense of ['_9]).

1 => 2. Recall (cf. [10] page 153) that a space is realcompact iff
each ultrafilter, for which the collection of zerosets satisfies the

-ountable intersection property, is convergent.

2 => 3, Let ® be a maximal centered family of open sets. By Zorn's

lemma there exists an ultrafilter ¥ which contains ® as a subcollec-

tion.We shall prove that @ is an xlﬂultrafilter. Then it will follow
that ¢ is convergent, and in particular, N ‘33 # . Let us suppose, on
the contrary, that there exists a countable collection {Si ’iml,z, . ”}
of closed members of {§J with empty intersection. The family

{X \ Si !1:1,2, . } is obviously a countable cover of X which, by
virtue of the countable paracompactness of X (see [27]) has a count-
able closed refinement {TJ, ij::l,z, cee }

Since ‘5 satisfies the countable intersection property, there exists

a natural number k such that T intersects each member of ‘5

k
Select a natural number 1 such that Tk c X\ S1 or, equivalently,
T, N Sl = @, and let O be an open neighborhood of Sl whose closure
is disjoint from T, (use the normality of X). By maximality of <,

we have O € ® and consequently, O is a member of ‘5 which does not

intersect Tk. This gives the desired contradiction.

3 => 1. This was already proved by FROLIK 9] .

2.2,9. THEOREM. Let f be a perfect map of a space X onto a space

Y and suppose that X 1is countably paracompact and normal. Then Y

1s realcompact if and only if X 1is realcompact.
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PROOF. A well known result states that Y is countably paracompact

and normal. So the theorem follows from 2.2.6. and 2.2.8.

2.2.10. NOTES. 2.2.9. was first proved by FROLIK [ 9] (he stated

2.2.9. for normal spaces, but in the proof he essentially used count-

able paracompactness).

It is an open problem whether or not every closed continuous image

of a realcompact space is realcompact, or even whether the condition ofl
countable paracompactness in 2.2.9. can be dropped. In this context we

note a recent result of ISIWATA [22] which states that a closed continu

ous image of a locally compact countably paracompact norma

space is realcompact.
It is also an open problem whether or not the equivalence 1n

remains satisfied if we drop the condition of countable paracompactness.




CHAPTER I1II

REALCOMPACTIFICAT ION METHOD

LE)X

pace. For closed subbases of X we consider

iamely the conditions of subbase-regularity

a precise definition see 3.1.1. of this thesis),

such that in case X 1is completely regular, then

ets of X 1is a (sub)base which satisfies the con-

1rity and subbase—normality. In general, how-
will not be closed under the set theoretical opera-

nite unions and finite intersections.

has proved that if & 1is a subbase for the

pace X, which satisfies the conditions of subbase-

rmality, then there exists a Hausdorff compact-

such that 1) the closures in B(@E&)X of the

closed subbase for B(&)X, 2) every two disjoint

disjoint closures in B(8)X. In particular, if we

family of all zerosets, then the construction insures

coincides with the éech-St one compactification of X.
section

an analogous result is obtained for the real compact

closed subbase for a space X which satisfies the

e-regularity and subbase-normality, and moreover,
countablility condition, then there exists a (unique)

e gl 1 ar rea 1 CON p acti f 1 cati on U (@) X O f X wi T h t h e f O 1 1 ow=
r@rties: 1) The closures in

© has empty intersection in X,

(O)X have empty intersection i n vw®)Xx,
asic construction of U(&)X

l1s as follows: Let B(®)X be the



39

compactification of X described above. For each countable cover ]
of X by members of &, consider the subspace of B(&)X which is the |
union of the closures in R(&)X of the members of 1].
The intersection of all these subspaces, when {1 1is running through
all the countable covers of X by members of &, yields our real-
compactification V(&)x.

As in the previous result we have U(E&)X = X if and only if each
maximal centered family of members of & with the countable intersection
property has non empty intersection, this yields an intrinsic characteri-

zation of realcompactness which seems to be new.

3.1.1. Two subsets A and B of a topological space X are said to
be screened by a finite family & of subsets of X if & covers X

and each element of ® meets at most one of A and B.

A subbase © for the closed sets of a space X satisfies the
condition of subbase—regularity if for each S € & and x £ S, there
4+ +--» S_ of X such that U {sili=1,z,...,n} = S
and each pair (X’Si) is screened by a finite subcollection of &,

exist subsets S

© satisfies the condition of subbase-normality if each two disjoint

elements of & are screened by a finite subcollection of &,

If no confusion is possible, then, instead of saying that a subbase
& satisfies the condition of subbase-regularity, we simply will say
that ©& satisfies the regularity condition. The expression condition
of subbase-normality will be abbreviated in a similar way. Note, that
the condition of subbase-regularity (subbase-normality) is weaker than

the condition of base-regularity introduced in Chapter I1I, section 2.

EXAMPIES. 1. The family of all closed sets of a regular space is a
closed (sub)base which satisfies the regularity condition,'

2. The family of all closed sets of a normal space is a closed (sub)
base which satisfies the regularity and normality conditions (cf. [10]

page 17).
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X be a set and C be a family of mappings of X 1into R with

he following properties:

C separates points

b. C contains all constant mapplngs

c. fec= |f]ecC

d. f,g € C => Af + ug € C (A,u € R)

fecCc, f(x) #0 for all x € X => -:-Lf-ec,

= {{X € le(x) = 0} 'f S C} constltutes a

L g

jo

Then the collection €&

se for a topology on X which satisfies the regularity and normal-

ity conditions. In particular, it follows that the family of all zero-

a completely regular space is a subbase which satisfies the regu-

and normality conditions.

3.1.2. The following theorem (AARTS and DE GROOT [‘_1,13]) states that
the existence of a closed subbase which satisfies the regularity and

rormality conditions implies complete regularity.

EM. Let & be a closed subbase for a space X which satisfies
the regularity and normality conditions. Then there exists a Hausdorff
compactification B(&)X of X with the following properties:

1. The closures in B (&)X of the members of & form a closed

bbase for B(8)X, which satisfies the regularity and normality con-
ditions.

2. Every two disjoint members of & have disjoint closures in

1)

KETCH OF THE PROOF . We consider the collection M of all maximal

L]

centered families of members of &; if u € M then we define u as

the collection of members of & which intersect each member of .

Such an obtained collection u 1is called a linked system. If & is

A

not closed under finite intersections, then in general yu is not a

centered system. However, it easily follows from the normality condi-

tion of § that every two members of u have non empty intersection.

1)

This proof is due to J. DE GROOT [13]. Another way of proving this theorem
was earlier pointed out by J.M. AARTS [1].
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Now, let RB(®)X = {Glp € M} and for each S € &, g
The collection {S*]S S 6} is a subbase for a topology on

if we identify each point x € X with the 1inked system

then X becomes a dense subspace of B(®)X. For the star operator,

can easily prove the following identities: S — S*, S* N T*
SﬂTmﬂ;S{U...US*:B(@X iff S, U ... US = X. Thus,
n 1 n ’

regularity and normality conditions of & and the fact that for each

=B (®)X 1)
S €S we have S C S (©) C S* ) , 1t easily follows that the closures

i

in B(®)X of the members of & form a closed subbase of

satisfies the regularity and normality conditions. One

each (maximal) centered system of members of

section in B(®)X. Thus B(®X is a Hausdorff compactification of

with the desired properties. The theorem now follows.

3.1.3. A subbase & for the closed sets of a space X

countabi li Tty con dition iff each countable cover of X by members of
{X \ S !S € 6} has a countable refinement by mq

mbers of

EXAMPLE 1. In a countably paracompact norm

closed sets is a closed (sub)base which satisfies the countabili

condition. In a completely regular space, the family of all zerosets
ility condition

is a closed (sub)base which satisfies the countab

PROOF. For the first statement, note that a space 1s countably
compact iff each countable open cover has a countable
ment. For the second statement, note that

is a countable union of zerosets.

LE 2. The subbase defined in 3.1.1.

ability condition.

1) As was pointed out by J. de Groot, in genera 1 it is not true that S¥*
equal to the closure in B(®X of S.
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3.1.4. Recall that if & 1is a family of subsets of a topological
space X, then a centered system {8 of members of & is prime iff

each finite cover of X by members of & contains a member of 1 .

LEMMA. Let & be a closed subbase for a space X which satisfies the
regularity, normality and countability conditions. Then the followiling
conditions are equivalent:
(i) Every maximal centered system of members of & with c.1.p.
(countable intersection property) has non empty intersection.
(ii) Every prime centered system of members of & with c.i.p.
has non empty intersection.
(iii) Every ultrafilter {§ for which 3 N & has c.i.p. is convergent, ;

i.e., X 1s Rl-ultracompact relative to @&.

PROOF. (i) ==> (ii). Let ;3 be a prime centered system of members of
© with the countable intersection property. §§ 1is contained 1in some
maximal centered system & of members of &; hence, it suffices to
show that ®& has the countable intersection property.

Suppose, on the contrary, that there exists a countable subcollection
{Gilizl,z, . o } of @ with empty intersection. Since & satisfilies the
countability condition, the countable cover {X \ Gi{iﬁl,z, - } has a
countable refinement {Snfnxl,z, .. } consisting of members of &. For

each n =1, 2, ... select an 1index :i'.n such that Sn C X\ Gri and a
n

finite cover (sjn of X by members of & which screens Sn and G:i. .

n

Since 8% is prime, for n = 1, 2, ..., there exists E €@, such that

E € J. Obviously, E N G, # @ since @ 1is a centered system, and so
n

E NS = #g. It follows that N {En!nzl,z, : } = @#. This contradicts

the fact that §} has the countable intersectlion property.

(ii) ==> (iii). Let {8 Dbe an ultrafilter in X for which % NG

has c.i.p. Obviously, 3 N & 1is a prime centered system that has c.i.p.,
and by hypothesis N ([ N &) # f. Let us suppose that p E N (5 N &) ;

it is enough to show that ;3§ is convergent to p. Suppose, on the
contrary, that there exists a neighborhood U of p which is not a

member of §. Since {X \ S‘ S € <E5} is a subbase for the open sets of
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X, there exists a finite collection Sl’ « ooy Sn € & such that
PecV=n {X\ Siiimlszu..,n}c U. Clearly, V € § and since {§
1s closed under finite intersections, there exists i (1L < i < n)

such that X\ S, € 8. It follows that S. 1is a member of I N G

which does not contain p. This contradicts the fact that p €N (g N ©)
(iii) ==> (i). Let {§ be a maximal centered system of members of &
with c.i.p.; if (¢ 1is some ultrafilter which contains the family %,
then by maximality of 8 it follows that @G N & = 3. Consequently @ NG
has the countable intersection property. Thus N 3 £ f, since @ is

convergent.

REMARK. If & 1is a closed subbase for a space X which satisfies the

regularity condition, and if 3 is a prime (maximal) centered systen
0of members of &, then it is always true that N § consists of at most
one point. Indeed, if p € N§{§ and if q 1is a point of X which 1is
different from p, then there exists S € X such that p € S, q € S

and a finite cover {Sl’ ooy O } of X by members of & which

n
screens S and q. Since {§ is prime, there exists 1 (1 < i < n)
such that S, € §. Obviously p € S, and q '4 S;- Thus S is a

member of 5 which does not contain g¢q, 1.e., @ £ N 1K

section property has non empty intersection. A realcompactification
of a space X is a realcompact space which contains X as a dense
subspace.

A well known theorem (of Hewitt and Shirota) states that the real-
compact completely regular spaces are precisely those spaces which are
homeomorphic with a closed subspace of a product of real lines. In par-
ticular, every metrizable space of non measurable cardinal is real-

compact (see [10]).
T+ is well-known that every completely regular space X possesses

reqlcompactification

a realcompactification vuX (the so called Hewt tt
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—uX
with the following properties: 1) {Z IZ is zeroset of X} is

for the closed sets of uX, 2) if a countable family of zerosets

of X has empty intersection in X, then their closures in uX have

empty intersection in UX. The following theorem generalizes this result:

HEOREM. Let X be a Tl-s pace and & a closed subbase for X

es the regularity, normality and countability conditions.

a completely regular realcompactification V()X of

vith the following properties:

The closures in V(&)X of the members of & form a closed

;e for V(E)X which satisfies the regularity, normality and

ountability conditions. Each max imal centered system of members of

this collection with c.i.p. has non empty intersection in v(&E)X.
2. If {Si] :1:1,2,...} is a countable subcollection of & with

empty intersection, then their closures in V(&)X have empty inter-

section in v({©&)X.

&)X = Z be the Hausdorff compactification of X de-

ribed in 3.,1.2.Denote by ¢ = {U,} the family of all countable covers
of X by members of ©. We will show that Y = {UUZJU € 8} 1is a
realcompactification of X with the desired properties, which we then
denote by uv(&)X. It is obvious that Y 1s a realcompactification of
X, since it is the intersection of o-compact subspaces of Z (note

that by virtue of 1.1.2. the i)roperty realcompactness is invariant for

the taking of arbitrary intersections).

the fact that %Z is a closed subbase for Z (theorem 3.1.2.),

From

_ ~Z
easily follows that & N Y 1s a closed subbase for Y. From

3.1.2. we also easily deduce that éY satisfies the regularity and

normality conditions. For the normality condition, note that if EY

and T are two disjoint members of & , then -§Z and ?z are dis-
_ —7Z — —
members of & . Thus a screening of (SZ, TZ) by members of

~Z Ql m &
& induces a screening of (SY, TY) by members of EY.

| =Y
I.et us verify that & also satisfies the countability condition.
_ < Y 1
Let {Y \ S !S e S } be a countable cover of Y by members of

{y\ s*|s e 8}. obviousiy, {(x \ s|s ¢ 61} is a countable cover of
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X and since & satisfies the countability condition, it has a count-
able closed refinement ¥ consisting of members of &. The special

definition of the subspace Y of Z immediately yields that EY is

a countable cover of Y by members of -éY and EY is a refinement
_ —Y 1 — —

of {Y \ S IS € & } For, if TY - IY for some T € g, then there

—Y

. 1 . =
exists S € & such that TC X\ S, and so by 3.1.2.-2 T C Y\ SY.

Next, we show that every maximal centered family of members of

—Y '
S possessing c.1.p. has non empty intersection in Y. Let 61 be a
subcollection of & such that é’f is a maximal centered family of

members of &  with the countable intersection property. By compact-

ness of 2Z, there exists a point p in Z which is in the intersec-
tion of §;. It is enough to show that p € Y, whence it follows that

P &N 61. For each countable cover (I of X by members of &, the

collection EY is a countable cover of Y by members of EY. Thus

—Y
by maximality of &,, each 1l contains a member S such that
—Y — —_— —_ ‘
S € EY, which i1mplies that p € SZ. Thus p € N {U U.Z!U. - 5}, l1.e.,

p € Y.

PROOF OF 2. let 61 be a countable subcollection of & with empty

intersection. Then {X \ SlS - 61} is a cover of X which has a
countable refinement g by members of &. The construction of Y
immediately yields that EY is a cover of Y. Thus the intersection
N {Y N\ aleT - I} is empty. For each T € § there exists S ¢ 61 .
such that T cC X\ S which implies S C X \\ T and also s’ c Y]_\ “'I-"Y,
and so we conclude that the closures in Y of the members of & have

empty intersection in Y. This completes the proof of the theoren.

i

3.1.7. REMARKS. 1. If & is a subbase which is closed under finite
(countable) intersections then a different construction of u(@®)X
is possible. (This is the case when O is the family of all zero-
sets of a completely regular space.)

We consider the collection of all maximal centered systems of
members of & with the countable intersection property. Those cen~

tered systems which have empty intersection serve as new points and are
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added to the space X. By choosing a suitable topology for the enlarged
space, an extension X* 1is obtained, from which we easily prove that
it satisfies the conditions 1. and 2. of the previous theorem.

The results in the next section yield a method to prove that Xk is

neomorphic with V(8§)X; hence X* 1is realcompact. (A direct proof

of the realcompactness of X* seems difficult).
The above method of extension of a space X to a space X* was
carried out by ALO and SHAPIRO [2]. However, they did not presuppose

any separation condition on & and so their construction did not yield

a realcompactification method.

9. If & 1is closed under countable intersections, then a sligﬁtly

stronger version of condition 2. of the previous theorem 1s satisfied.

For each countable subcollection {Si’i:‘-l,z, . . } of &, we have

s {Ei!i=1’2"“} = ]s_ ijml,z,.. f (H denoting the closure in vV(E&)X).

i

PROOF. If S =N {Si‘iml,z,“,}, then it is sufficient to prove that
N {Eiliml,z,...} - §. et p be a point of N {gi!iml{,z,.. } and
suppose, on the contrary, that p £ S. According to the regularity
condition of % there exist Tl’ e . ooy Tk &€ & such that
penﬁillf_ij_k} and n{“fillg_if_k}n'é':ﬂ. Now,

N {81!1&1,2,...} N N {Till < i f_k} = @, but we do have p € N {EJ_‘
i=1,2, } N N ﬁi ’1 <i < k}. This contradicts condition 2 of the

previous theorem.

3. If the subbase & satisfies the condition that each maximal cen-

tered family of members of © with the countable intersection proper-

ty has non empty intersection, then v (&)X = X.

PROOF. Suppose, on the contrary, that p € v(@)X \ X = Y\ X. Define

51 C & by the condition 61 = {S - gfp - 5} . According to condition 2.
of the previous theorem, the collection 61 1s a prime centered system
of members of & with the countable intersection property.

Thus by 3.1.4. N & £28. If q €N G,» then obviously p 4 q, and
there exists S ¢ & such that p ¢ S and ¢ [ 4 S. However, since

S € 61, this contradicts q € N 61.
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3.1.8. The third remark in 3.1.7. together with 3.1.4. yields the

following intrinsic characterization of realcompactness.

THEOREM. A T1-space X 1is a realcompact completely regular space

if and only if there exists a closed subbase ® for its topology

that satisfies the regularity, normality and countability conditions,
and moreover satisfies the condition that each maximal centered family

of members of & with c.i.p. has non empty intersection.

REMARK. Under the hypotheses of the first three conditions, the latter

1s equivalent with X is Rl-ultracompact relative to &.

3.1.9. If & 1is a *closed subbase for X, then & satisfies the strong
regularity condition iff each S ¢ & and x € S are screened by a
cover of X consisting of two members of &. & satisfies the strong
no—mality condition iff each two disjoint members of & are screened
by a cover of X consisting of two members of &.

Note that if & 1is a closed base and not only a subbase, then
the conditions of strong regularity and strong normality of & are
equivalent to the conditions of base-regularity and base-normality
introduced in Chapter II Section 2. Furthermore, note that the family
of zerosets of a completely regular space is a closed (sub)base which
satigflies the strong regularity and strong normality conditions.

The following theorem géneralizes the result stating that a
completely regular space is realcompact iff for each maximal centered
family 9 of cozerosets for which *5 has c.i.p., the intersection

M 5 is non empty. See also theorems 2.1.2. and 2.2.8,

THEOREM. Let & be a complemented 1} closed subbase for a space X

which satisfies the strong regularity, strong normality, and countabi-

lity conditions. Denote by {1 the collection {X \ S! S €
Then the following statements are equivalent:
1. For each maximal centered system u,l of members of | for

which El has the countable intersection property, we have

nulaé@.

1) is called complemented if S ¢ § implies X\ S € &.

A subbase &
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2 FEach maximal centered system of members of © which satisfies

the countable intersection property has non empty intersection.

PROOF. 1 => 2. Let Y = V(&)X be the realcompactification of X
described above. It is enough to show that Y = X, whence it follows
from 3.1.7. Remark 3 that & satisfies condition 2. Suppose, on the

contrary, that p € Y\ X. Let u, be the subcollection of {] consist-
=Y

ing of those sets U for which p ¢ U . If U 1is some member of U

which intersects each finite subcollection of Lll then each basic-

—Y,
neighborhood in Y of p of the form (O {X \ S . !1:-"-1,2, . .,n} where

X \ Si € “1 for i=1, 2, ..., n, 1lntersects I]} Thus p ¢ —I:T'Y‘ proving
that ul is a maximal centered system of members of 1. If {Ui}

i=1,2,. } is a countable subcollection of ul’ then {_Uﬂztiml,z, .. }

ig a countable subcollection of % (& 1is complemented). Thus from

the special property of the realcompactification Y, we conclude that

N {”ﬁ};fixl,z,...} ;4 A . By assumption there exists a point q 1n N 1,W1,)1C

Obviously p # q. Using the strong regularity condition of the subbase

{ngS - 6} of Y we can easily see that there exists S € & such that
P € Y\ EY while q 1is not in the closure in Y of Y \ -§Y. Thus q

is not in the closure in X of X \ S since X is dense in Y. Hence,
X \ SX is a member of ﬁ"); which does not contain ¢q. This is a contra-

diction, and it proves the first part of the theoremn.

2 ==> 1. Let U'1 be a maximal centered system of members of 11, and
suppose that condition 1. is satisfied. Let [§ be some ultrafilter in
X which contains the collection ul; we shall prove that {5 N &® satis-

fies the countable intersection property. Then by lemma 3.1.4., it fol-
lows that g 1s convergent, and in particular it follows that ﬁ_l 0.
Let us suppose that {Sili:l,z, . o } ls a countable subcollection of

3 N © with empty intersection. Then the family {X \ Sil 1=1,2,.. }
obviously is a countable cover of X which, by virtue of the counta-

bility condition for O, possesses a countable refinement I = {T’
i

i=1,2,.. } by members of &. Since ﬁ-]_ satisfies the countable inter-

section property, there exists a natural number k such that T

k
intersects each member of ffl,
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Select a natural number 1 such that Tk C X\ s1 . Since & satis-

fies the strong normality condition, there exists S and T ¢ & such

that TkC T, Slc S,Tnslzﬁ,sr\’l‘kaﬁ, S U T = X. Obviously,

S, “X\NTeu NG =U;, and X\ TQNT

dicts the fact that Tk intersects each member of ﬁ_l' Thus the

= @. This, however, contra-

proof

of the theorem is complete.

REMARK. Observe that in the proof of 2 ==> 1 we do not use that

is complemented.

2. MAXIMALITY OF v (&)X

3.2.1. The following theorem generalizes the result which states that

a continuous map of a completely regular space X into a completely

regular space Y has a continuous extension over the Hewitt rea lcom

pactifications of X and Y (cf. [10]).

THEOREM. Let X and Y be Tl-spaces, and suppose that &

are closed subbases for X and Y, respectively, which satisfy the

regularity, normality, and countability conditions. If £ 1is a
| “l N e
t £ (T €S

(continuous) map from X into Y with the property tha

for each T € ¥, then there exists a continuous extension f* of £

which carries v(@&)X into v(@)Y.

PROOF. If no confusion is possible, then we denote closures in

and V()Y by the symbol . |
Let p be an arbitrary point of v(®)X. Denote by I,

#

tion of ¥ consisting of those sets T for which p € [

collection 11 has the countable intersectipn property, for if

{?i ’.iml,z, . . } is a countable subcollection of Il and N

-1 . ;
131,2""} — ﬂ’ then N {f | (T‘i)|1m1,2,.“}
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llection of ¥ which is a cover of V(E)Y, then the collection

is a cover of V(G)X. Hence, there exists

I — —
such that p € 1 (Tj)’ and we have Tj - Il. By

and 3.1.6., we can define f*(p) =N "il' The mapping

is an extension of £, for if p ¢ X, then we have

¥|p € fﬂl(T)} = N {_f cI|p € £ (T)} = £*(p). Therefore

virtue of 3.1.4.

it remains to show that f* is cont inuous. Let x be an arbiltrary

f*(x) € y(X)Y, and let T be some member

point of 5
of ¥ such that £*(x) € 2(@Y\ T. In order to prove the continuity
of f* it suffices to show that there exists a neighborhood of x
which is mapped into v(®&)Y \ T by f* (note that by 3.1.6, the

collection {UCI)Y \ ?IT - I} is a subbase for the open sets of v (ID)Y).

f*(x) £ T there exists a decomposition of T into Gl’ cesy G

Since "
such that each pair (£*(x) ’Gi) is screened by a finite cover
{ﬂfi, .uoy .’f;(i)} of V()Y by members of Y. For each i, let “'f‘-;,

j=1, 2, ..., k(i) be the elements of this collection which do not

U =0 {vEx \ U {f"lcfri';:)ll < 3 < k@l <i<nl.

Then U 1is a neighborhood of x which is mapped into V(I)Y \ T by

f*, This completes the proof' of the theorem.

3.2.2. An obvious modification of the proof of the foregoing theorem

yields the following more general result (this generalizes a result

X and Y be Tl-spaces and suppose that ¥ 1is a closed

subbase of Y wﬁich satisfies the regularity, normality and countability

conditions. If f is a continuous map from a dense subset Z of X 1in-
.. . -1
to Y such that {Clx(f (Ti))l i=1,2,...} =@ for each countable sub-

collection {Til i=1,2,.. } of ¥ with empty intersection in Y, then
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I has a continuous extension which carries X into U(T)Y.

3.2.3. COROLLARY. Let X be a Tlﬂspace and & a closed subbase for

X which satisfies the regularity, normality and countability conditions.
The extension V(G)X of X which is constructed in theorem 3.1.6. is
essentially unique in the sense that if H(@&S)X 1is any extension of X
satisfying conditions 1. and 2. of 3.1.6., then there exists a homeomor-
phism of V(&)X onto u(B)X which leaves X pointwise fixed.
Furthermore, we have u(&)X =X if and only if every maximal centered

family of members of & with c.1.p. has non empty intersection. in X.

3.2.4. EXAMPLE. If X is a Lindeldf space, then for each closed subbase
© which satisfies the regularity, normality and countability conditions,
we have U(8)X = X. This statement does not generally hold in arbitrary
realcompact spaces. Indeed, if X is a discrete space of cardinal > RO,
then let & be the collection of singleton points and complements of
singleton points in X. It is easy to see that & satisfies all condi-
tions required and W(E)X is homeomorphic with the one point compacti-

fication of X.

3.2.5. THEOREM. Let {Xala e'h} be a collection of topological spaces
and X = H{Xaia € A}. Suppose that for o €& A,fsa is a closed subbase
ality and countability

for ZXQ which satisfies the regularity, norm

conditions.
=1
Then the collection & consisting of the sets ﬂa (C), where ﬂcx is

the natural projection onto the a'th coordinate space and C a member
of ‘5a3 is a closed subbase for X which satisfies the regularity,

normality and countability conditions. Furthe:
_ . 1)
is homeomorphic with Vv (&)X .

PROOF. One easily Qerifies that & 1is a closed subbase for X which

satisfies the regularity, normality and countability conditions.

1)

In fact we prove even more, namely, that there exists a homeomorphis
which leaves X pointwise fixed.

"ETER % d el
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By 3.2.1., for each & € A, there exists a continuous extension "n‘g

of T which carries uv(§)X into u(@ﬂ)xa. Define i*: v(&)X ~
M{v(g )x_|o € A} by the conditions (i*(x)), = mk(x) (@ € A). Theorem
3.2.2. gives a method to extend the inclusion map j of X 1into

V(S)X to a continuous mapping Jj*: H{U(C‘Ba)xal& € A} > v(&)X. The com-
position map Jj* ° i* has the property that it leaves the dense set X
pointwise fixed. Consequently Jj* ° i* 1is the identity map of v(B)X,

By applying the same argument to i* o j¥* the theorem now follows.

3 GENERALIZED LINDELOF SPACES

3.3.1. Let & be a subbase for the closed sets of a topological space X.
& is called a Lindelb‘f subbase for X if it has the following pyoperties:
1. & satisfies the strong regularity condition
2. & satisfies the normality condition
3. Each centered family of members of & with the countable inter-
section property has non empty intersection.
A space X is called a generalized Lindeldf space provided that there

exists a Lindelof subbase for its closed sets.

3.3.2. THEOREM. a) Every regular Lindelof space is a generalized Linde-
16f space, b) every topological product of generalized Lindelof spaces
is a generalized Lindelof space, c) every discrete space of cardinal

<R 1s a generalized Lindelof space.

PROOF. a). If X 1is a regular Lindeldf space, then the family of all
closed subsets and the family of all zerosets are examples of Lindeldf
subbases for X. Thus X 1is a generalized Lindelof space.

b). Suppose that {Xala - A} is a collection of generalized Lindelof
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spaces and X = I{X |a € A}, For o € A, let & be a Lindeldf subbase

o

for Xa and let & be the subbase for X consisting of all sets of
-1 |

the form T (C), where ™ 1s the natural projection into the «a'th

coordinate space and C a member of 6&' It is easy to see that &
satisfies conditions 1. and 2. Now, let &' Dbe a subcollection of &
with the countable intersection property; we will show that N &' £ 8.
For o ¢€ A, let 6(; be the subcollection of F"cx consisting of thve sets
'naS for which S € &'.

It is easy to see that 6’5;{ satlisfies the countable intersection pro-
perty and, by assumption, there exists P_ € N&' for each a € A.

The point p of X whose q'th coordinate is g is in the inter-
section of &'. ;

c). Let D be a discrete space of cardinal <X, we may suppose that D
1s a subset of the real numbers. If & 1is the collection of subsets of
the form {x - Dix > a}, {x - DIX < a}, {X - D’X 2 a}, {X € D!x = a}

(a € R), then & 1is a Lindeld6f subbase for the space D.

3.3.3. THEOREM. Every generalized Lindelof space is a realcompact com-

pletely regular space.

PROOF. Let & be a Lindeldof subbase for the closed sets of a space X.
It is obvious that & satisfies the regularity and normality conditions,
hence X 1is completely regular by 3.1.2. We shall prove that & satis-
fies the countability condition, whence it follows from 3.1.8. that X
is realcompact. Let {X \ S. | i=1,2,.. } be a countable cover of X and
suppose that Si - 6’5“ :fc?r i=1, 2, ... . For fixed i =1, 2, ... and
for each p, let {Sl,Tl} be a two element cover of X by members of

p b i
© which screens p and S,;. The collection {X \ Tp!p € X} is

an open
cover of X which has a countable subcover {X \ T;n!nml,z, . } ,_

(Using the dual of 3. of the definition of Lindelof subbase). The col-
lection {S:ml i,n=1,2,.. } is a countable refinement of {X \ Sil

i=1,2,...} and consists of members of 6.
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3.3.4. THEOREM. lLet X Dbe a countably paracompact normal space and
suppose that there exists a subbase & for the closed sets which
satisfies only the condition that every maximal centered system of
members of & satisfying c.i.p. has non empty intersection. Then X

is realcompact.,

PROOF. This is obvious from 2.2.3. and 2.2.8,.

PROBLEM. The foregoing theorems in this section show that most of our
known realcompact spaces are also generalized Lindelof spaces. Profes-
sor de Groot has raised the question whether every realcompact complete-
ly regular space is a generalized Lindelof space. Up to the: present

we have not succeeded in solving this problem and thus in generalizing

theorem 3.1.8.
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ERRATA

page line
12 5 for X read &
for =S rTread DS
16 2 for Xm{Y\{pHp EY\X} read Xmﬂ{Y\{pHp EY\X}
31 2 below for of 111 read of U
34 9 for in X read 1in Y
39 16 for X read ©
for = S rTread > S
40 13 for AARTS and DE GROOT [1,13] read AARTS [1]
40 24 for SKETCH OF THE PROOF read For the case that ©

satisfies the stronger regularity condition defined on
page 47 we give the following SKETCH OF THE PROOF (for
the general case see [1] p. 17).

48 Replace the proof of 1 = 2 by the following elementary proof

PROOF. Let 61 be a maximal centered system of members of © with

the countable intersection property. Let U be the collection
consisting of all U € U for which there exists S € & such that

S C U. Finally, let ul be a maximal centered family of members of

U that contains U'. We will show that Lll has c.i.p. whence it

follows that N El # # and also N & # #. Assume that, on the

contrary, {“ﬁiliml,z, . o } is a countable subcollection of 1.11 with

empty intersection. Since & 1is complemented, by virtue of the
countability condition for & , there exists a countable refinement
{Snlnml,z, .. } of the cover {X \ “U*i‘iml,z, .}. By maximality of

51 there are indices m and j such that S € 6‘1 and S N UJ = @,

Let (Sl,Sz) be a two element screening of the pair (Sm,ﬁj)

(Sl’SZ € © . Then, by definition, X \ Sz is a member of 111 which
does not intersect U.,. This is impossible, and it proves the first

J
part of the theorem.

55 25 for [12] J. DE GROOT and J.M. AARTS read [12] J.M. AARTS




