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... ,xn taken to the power c, where cc1R 
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end of a proof 

reference 
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CHAPTER 0. INTRODUCTION. 

In this monograph we shall derive upper bounds for the numbers of 

solutions of diophantine equations taken from several classes. One of 

these classes consists of equations of the type 

(O. I) F(x,y) m in x, yE'll , 

where Fis an irreducible binary form with coefficients in 7l (i.e. a 

homogeneous polynomial in two variables which is irreducible over~) and 

ma non-zero integer. 

If Fis a linear form, F(x,y)=ax+by say, then (0.1) is solvable if 

and only if the gcd d of a and b divides m. Moreover, if (x0,y0) is one 

solution of (0.1), then the other solutions of (O.l) are given by x=x0+tb/~ 

y=y0-ta/d, where t runs through the non-zero integers. 

Also if Fis a quadratic form of positive discriminant D, then (O. I) 

has either none or infinitely many solutions. Using the continued fractions 

expansion of ID one can decide, whether (0.1) is solvable or not and 

compute the solutions of (O.l) if there are any. (cf [Hu],§§J0.8,10.9,11.4, 

I 1.5) 

If Fis a quadratic form of negative discriminant D, F(x,y)=ax2+bxy+ 
2 

cy say, then (O. I) has at most finitely many solutions. For then each 

solution (x,y) of (0.1) satisfies 

2 2 (2ax+by) -Dy 4am, 

hence lyl~l4am/Dl 112 . Dirichlet ([Dir]§§S6-91, see also [Hu], §12.4) gave 

an upper bound for the number of solutions of (0.1). Let D be a negative 

integer with D=O or !(mod 4). There are quadratic forms of discriminant D 

which have integral coefficients with gcd I. These can be divided into 

equivalence classes, where equivalence is defined by unimodular transformat

ions. There are at most finitely many of such classes and in each one we 

choose a fixed representative. Thus we obtain a set {F 1, ... ,Fh} of pairwise 

non-equivalent quadratic forms. For odd primes p, let(.:..) be the usual 
I' 

Legendre symbol. Moreover, put(%)=! if D=l(mod 8) and(%) =-1 if D=5 

(mod 8). Put w=6 if D=-3, w=4 if D=-4 and w=2 if D<-4. Let p 1, •.. ,pt be 
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distinct primes not dividing D and k 1, ••• ,kt positive integers. Dirichlet 

proved that the number of solutions of 

is equal to 

t 
w II 

i=J 

in x,ye:ZZ and id I, ••• ,h} 

The number of solutions of (0.1) does not change when Fis replaced by an 

equivalent form. This implies that for a quadratic form with integral 

coefficients and discriminant D<O and for an integer m with (m,D)=I and 

m=pk1 ••• p:t for distinct primes pi and positive integers ki the equation 

(0.1) has at most 

(0.2) 

solutions. In fact, this holds true also if (m,D)>I. If Fis equivalent to 

x2+xy+y2 and if the primes pi dividing m satisfy pi= J(mod 3) then (0.2) 

can not be improved. In the other cases, the bound (0.2) is not optimal but 

it has the advantage of being independent of the coefficients of F and of 

the primes dividing m. For historical information on (0.2) in case F has 

degree ~2 we refer to [Di 2], ch.2,12,13. 

From now on, we assume that the form F appearing in (0.1) has degree 

at least 3 •. Equation (0.1) is often called the Thue equation, after A. Thu~ 

who showed in 1909 [Th J] that (0.1) has at most finitely many solutions. 

We shall discuss his method later on. Other proofs were given by Th. Skolem 

in 1935 [Sk 3] using p-adic power series, however under weak restrictions 

imposed on F,and by A. Baker in 1967 [B· 2,3], using lower bounds for linear 

forms in logarithms. The methods of Thue and Skolem have the disadvantage 

of being ineffeative, i.e. in general they do not supply an algorithm to 

compute all solutions of (O. J). Baker's method however, .is effeative. Baker 

gave an explicit upper bound for the solutions of (0.1). The estimates in 

his arguments have been improved later. Using a modification of Baker's 

method by Stark [St] and explicit estimates of Loxton and van der Poorten 

[L/P] on linear forms in logarithms and of Siegel [Si 5] and Gyory [Gy] 

on units and regulators, one can show that every solution of (0.1) 

satisfies 
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(0.3) max(lxl,lyl) < exp((4n)SO(n+Z)IDi 112 (loglDl)n+I 

• (IDI l/Z(loglDl)n-l+logA+loglml)) , 

where n is the degree, D the discriminant and A the maximum of the absolute 

values of the coefficients of F. In this thesis we shall be mainly 

interested in upper bounds for the nwnber of solutions of (0. I). We shall 

apply ineffective methods similar to that of Thue, since they seem to lead 

to far better estimates. 

Thue derived his result on the number of solutions of (0.1) from his 

own theorem on the approximation of algebraic numbers by rationals [Th I]: 

let a be an algebraic nwnber of degree n and let K>n/2+1. Then the 

inequality 

(0.4) Ix I -K --a < lyl 
y 

in x,yE2Z with yf0 

has at most finitely many solutions. 

The argument is as follows. Suppose that (0. I) has infinitely many solut

ions. Since Fis irreducible, we have 

where ~E2Z and where a 1,a2 , ..• ,an are algebraic numbers of degree n~3. 

There is no loss of generality in assuming that (0.1) has infinitely many 

solutions (x,y) with 

yf0, I.! - a I '., y I 

These solutions satisfy 

and hence 

for i=2,3, •.. ,n. 

for i=2,3, ••• ,n, 
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where c is a positive constant depending on F only. But this implies that 

which is in view of Thue's result on (0.4) and the inequality n>n/2+1 for 

n~3, possible for at most finitely many pairs (x,y). This contradicts our 

assumption. Hence (O.I) has at most finitely many solutions. 

Thue's results on (O.I) and (0.4) have been improved and generalised 

by several mathematicians. In his thesis, C.L. Siegel [Si I] showed, that 

(0.4) has at most finitely many solutions if K>2n 112 • In 1947/48, F.J. 

Dyson [Dy] and A.O. Gel'fond [Ge 2] independently improved this to K>(2n) 1/~ 

Finally, in 1955, K.F. Roth [Ro] reduced this condition to K>2. The methods 

of Thue, Siegel, ..• , Roth are all ineffective. However, for some special 

equations of type (O. I) modifications of these methods have led or can lead 

to considerable improvements of (0.3). (cf! [Th 2],[B l],[Bo],[Chu 2]). 

Also in his thesis, Siegel considered the approximation of algebraic 

numbers by numbers from a fixed algebraic number field and the consequences 

for diophantine equations. Let F be a binary form of degree n with 

coefficients in some algebraic number field K of degree m and with non

zero discriminant and let y be an integer in K. Siegel((Si !],Satz 5) 

showed that if 

min (s+n/(s+I)) 
s= I, ... , n 

then there are at most finitely many pairs of integers (x,y) in K2 

satisfying 

(0.5) F(x,y) y. 

In 1929, Siegel ([Si 3], zweiter Teil) proved the following extension. 

Let G(x,y) be an absolutely irreducible polynomial with algebraic 

coefficients such that the curve C defined by G(x,y)=O has genus ~I. Then 

C contains at most finitely many points (x,y) for which both x and y 

belong to the algebraic number field Kand for which at least one of x,y 

is an algebraic integer. This result implies that (0.5) has only finitely 

many solutions in integers x,y of K if deg F ~3. 

In 1933, K. Mahler [Ma 1,2] generalised Thue's result in another 

direction. He studied the simultaneous approximation of real algebraic 
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numbers and p-adic algebraic numbers for finitely many primes p by 

rationals. His investigations ([Ma 2],Satz 6) led to this result: for every 

irreducible binary form F of degree ~3 with rational integral coefficients 

there exists a positive constant c, depending on F only, such that the 

number of solutions of 

(0.6) IF(x,y)I in x,y,k1, ••• ,ktE7l with (x,y)=I, 

kl ~o, ••• 'kt~o, 

t+I 
where p 1, ••• pt are distinct primes, is finite and at most equal to c 

Equation (0.6) is often called the Thue-Mahler equation. 

In 1950, C.J. Parry [Pa] studied the simultaneous approximation of 

complex algebraic numbers and of algebraic numbers in the algebraic closure 

of~ for finitely many primes p by numbers taken from a fixed algebraic 
p 

number field K. As a consequence he proved a theorem which is formulated 

precisely in chapter 6.(see also [Pa],pp 77/78). Here we mention a result 

which is in fact equivalent to that theorem: let F be a binary form of 

degree n~3 with integral coefficients in Kand non-zero discriminant and 

let p 1, ••• pt be distinct prime numbers. Define ,(F,K,p 1, ••• ,pt) to be the 

number of fractions x/y such that x and y are integers in K with yrO and 

(O. 7) 

for some non-negative intege~s k 1, ••• kt. Then ,(F,K,p 1, ••• ,pt) is finite 

and bounded above by c~+l, where c0 is a positive constant, depending on F 

and K only. This implies earlier stated results on (0.1),(0.5),(0.6). For 

by Parry's result there are finitely,.many fractions x/y for which x and y are 

integers in K satisfying (0.5) and if (x,y) is a solution of (0.5) with 

yrO then y=y~(x/y,I). Furthermore, each solution of (0.6) with yrO is 

completely determined by x/y up to the sign of y. 

Very recently, the German mathematician G. Faltings [Fa] proved the 

so-called Mordell aonjeature: let K be an algebraic number field and let 

G(x,y)EK[x,y] be an absolutely irreducible polynomial such that the curve 

C:G(x,y)=O has genus at least 2. Then C contains at most finitely many 

points (x,y)EK2• As a consequence, equation (0.5) has at most finitely 

many (not necessarily integral) solutions in x,yEK if F has degree at least 

4. From this, it follows easily.that the number ,(F,K,p 1, ... ,pt) which was 

defined relative to (0.7) is finite in case that n~4. 
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We shall now give a survey of the contents of this monograph. An 

important role will be played by an approximation method which deals with 

.the approximation of numbers of the type Vb/a (where a,b,n are non-zero 

integers with n~3) by rationals. This method is originally due to Thue 

[Th 2] but has been modified later by Siegel [Si 4]. Therefore, we shall 

refer to it as the Thue-Siegel method. For historical remarks about this 

method we refer to [Si 6]. We shall follow Siegel's arguments but instead 

of Siegel's hypergeometric functions we use polynomials. This has the 

advantage of not having to worry about convergence. The essential 

properties of these polynomials are discussed in chapter I. 

In chapter 2, in which only some knowledge of elementary number 

theory is presupposed, we use the Thue-Siegel method to obtain information 

about the solutions of 

(O. 8) in x,yclN with (x,y)=I, 

where a,b,c,n are integers with a>O,bfO,c>O,n~3. It is shown that the 

number of solutions of (0.8) is at most 2nw(c)+4, where w(c) is the number 

of distinct primes dividing c. 

In chapter 3 we consider the equation 

(0.9) F(x,y) in x,yi;:,Z, 

where Fis a binary cubic form with rational integral coefficients and 

positive discriminant D. We show that elements a,S of the field M=~(l-3D) 

exist, as well as linear forms ~,nEM[x,y], such that 

3 3 r-=-
a~ -Sn = 3v-3D•F(x,y) 

identically in x,y. By using this fact in combination with a modified 

version of the Thue-Siegel method we show that (0.9) has at most tu:JeZve 

solutions. 

In chapter 4 we develop some algebraic tools which are needed in the 

chapters thereafter. In particular we introduce valuations and a height 

function similar to Bombieri's in [Bo]. 

In chapter 5 we generalise the Thue-Siegel method. We prove a result 

on the approximation of n-th roots (where n~3) of a fixed number in an 

algebraic number field K by elements of K, in which both archimedean and 



non-archimedean valuations are involved. 

The result of chapter 5 is used in chapter 6. Let K be an algebraic 

number field of degree m. Further, let F be a binary form of degree n~3 

with integral coefficients in K such that F(l,0)10 and such that the 

polynomial F(x,1) has at least three distinct zeros. Let p 1, •.• ,pt be 

distinct primes. We shall show that the number ~(F,K,p 1, .•• ,pt)' which was 

defined relative to (O. 7), does not exceed 

(O. I 0) 

This is an improvement of Parry's result since (0.10) depends on m,n and t 

only. From (0.10) we derive an upper bound for the number of solutions of 

(0.1) which depends on the degree of F and the number of primes dividing m 

only. Such a bound does not exist when Fis a positive definite quadratic 

form (cf (0.2)). We shall prove (0.10) firstly for n=3 by generalising the 

method of chapter 3 and then in general by taking a cubic divisor of Fin 

some extension of K. In the derivation of (0.10) we actually use only 

results on the approximation of cubic roots of a fixed number in an 

algebraic number field by numbers of that field, whereas Parry considered 

the approximation of more general algebraic numbers. 

In chapter 7 we prove some results on diophantine equations which 

can be reduced to a finite number of Thue or Thue-Mahler equations. For 

example we show that if p 1, .•. pt are distinct primes and if a,b are non,

zero integer~, then the number of pairs (x,y)E~z such that both the 

numerators and denominators of x,y are composed of primes from p 1, ..• ,pt 

and such that 

ax+by = 

is at most 296x72t. We shall also show that the number of solutions of the 

equation 

in x,yElN 

is at most (mn)min(m,n). 

7 
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CHAPTER I. PROPERTIES OF THE AUXILIARY POLYNOMIALS. 

In this chapter we shall study some polynomialswhich will be used in 
-I the chapters hereafter. Let m,n be integers with m~O and n~3 and put v=n 

To each m we associate integers r,g with gE{O,I} such that m=Zr+g-1. We 

define 

(I. I) 

r-g(r-v)(r- +v) k 
kIO k r-!-k z for m~I, 

Here it is supposed that the variable z assumes its values in some field 

of characteristic 0. Many of the properties of these polynomials can be 

derived from the theory of hypergeometric functions. Instead of doing this, 

we extend an elementary method of Faddeev. ([D/F], ch.5) 

LEMMA I.I. {i) For m=l,2, •.. we have 

( I. 2) 

where 

(1.3) 

a 
m 

a 
m 

amAm(z)-Sm(l-z)Am-l(z) 

amBm(z)-Sm(l-z)Bm_ 1(z) 

2, 

2r+l Sm= r+v if m 
r+J' r+l 

Zr, 

Zr+ I. 

(ii) For m=2, 3, •.. we have 

zA" (z)+ ( 1-v)A' (z) 
m m 

zB" (z)+(l+v)B' (z) 
m m 

where 

ym=(r-g+v)(r-v) 

ymAm-2(z) ' 

ymBm-2 (z) ' 

PROOF. These identities can be proved easily by showing that the left- and 



the right-hand sides of the expressions given in (1.2), (1.3) are polynom

ials with equal coefficients. For example, we shall prove that 

r-v 
A2r+l(z) = 2A2r(z) --r-(l-z)A2r_/z) for r=l,2, •.• , 

that is 

(1.4) 

_ r-v(r-l+v)(r-1-v) + r-v(r-l+v)(r-1-v) 
r\ k r-1-k r\ k-1 r-k 

for k=O,l, .•• ,r. 

The right-hand side of (1.4) is equal to 

( r+")(r-v )(' 2r-k+v _ r-v r-k+v r-k + r-v ~ k-v) = 
k r-k; r+v r r+v r-v r r+v r-v 

( r+v)(r-v)/2r(r-k+v)-(r-k+v)(r-k)+k(k-v)) = (r+")(r-v). D 
· k r-k)\ r(r+v) k r-k 

Put 

E (z) = I (r-g+v\(2r-g-k)(-z)k ' Fm(z) 
m k=O k ) r-g · 

(1.5) for m=l ,2, ••• , 

9 

PROOF. We shall proceed by induction on m. The lemma can be verified easily 

for m=O,I. Suppose it has been proved for all m~t, where t~2. An easy 

computation shows that 

Hence by (1.2) and by the induction hypothesis lemma 1.2 is valid for 

m=t+I. □ 
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LEMMA 1,3. (i) Put q(m)=nr(nr,r!), Then q(m)A (z) and q(m)B (z) have m m 
rational integral coefficients. 

(ii) Suppose that n is odd and let n* be the maximal positive square-free 

divisor of n. Then there are polynomials C. (z),D. (z) for m=0,1,2, ••• and 
1.m 1.m 

i=I,2 with rational integral coefficients depending on n such that 

( 1.6) 

2 1 /2 2 
Cl ( z ) +n zC? ( z ) , m * _m 

2 1/2 2 
DI ( z ) +n zD 2 ( z ) • 

m * m 

PROOF. Firstly, we shall show that for every pair of integers a,k, 

(I. 7) 

that is, d 1 is a p-adic integer for all primes p. Note that there exists an 

integer d2 such that 

Hence d 1 is a p-adic integer for all primes p dividing n. But for primes p 

not dividing n, (a:)is even p-adically integral. This shows (1.7) completely. 

(I. 7) clearly implies that q(m)Em(z) and q(m)Fm(z), whence q(m)Am(z) 

and q(m)B (z) have rational integral coefficients. By (1.7) we have also 

that E (n3/2z) and F (n312 z) have algebraic integral coefficients for 
m m 

odd n. For let p be a prime such that pt divides n for some positive 
t+l integer t, but p does not. Then p~3. Hence the number of times that p 

divides (nk,k!) equals 

Together with (I. 7) this implies that 

is an algebraic integer. Therefore the coefficients of E (n312z), F (n312z) 
m m 

are algebraic integ~rs. But we have also that the coefficients of these 

polynomials corresponding to even powers of z are rational numbers, while 
1/2 

the coefficients corresponding to odd powers of z are the product. of n* 

and a rational number. By lemma 1.2 this proves lemma 1.3 completely. D 
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LEMMA 1.4. For every non-negative integer m there exists a polynomial V (z) 
m 

with non-negative coefficients such that 

(I. 8) 

( I. 9) 

~ROOF. We shall proceed by induction on m. For m=O,I we may take Vm(z)=I. 

Suppose our lemma has been proved for all m~t, where t~I. We define the 

rational function 

We have to show that Vt+l(z) is a polynomial with non-negative coefficients. 

By (I. 2) we have 

t+I n n 
(1-z) v.t+l(z) = A (z )-zB (z) = t+I t+I 

a/At (zn)-zBt (zn)) - St (1-zn) (At-I (zn)-zBt-l (zn)) 

t n-1 
(1-z) (atVt(z)-1\(l+z+ ••. +z )Vt-I (z)) . 

Hence, on dividing by (1-z)t, 

(I.IO) 

It follows from (1.9) that atVt(l)=nBtVt-l(I). Hence the right-hand side of 

(1.10) is a polynomial divisible by 1-z. This implies that Vt+I (z) is a 

polynomial. 

Note that by ( I. 3) 
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2 n-2 n n)) 
= n z y t+l (At-I (z )-zBt-l (z 

while on the other side, 

d2 n n d2 t+l 
- (At+l(z )-zBt+l(z )) = 2 ((1-z) Vt+l(z)) 
dz2 dz 

(t+l)t(l-z)t-lVt+l(z)-2(t+l)(J-z)tV~+l(z)+(l-z)t+IV~+l(z) 

Hence, .on dividing by (1-z)t-l, 

( I. 11) 
2 2. ~ 

(1-z) V~+l (z)-2(t+l) (1-z)V~+l (z)+(t+l )tVt+l (iJ=n -Y:t+lz_ Vt-l (z). 

·This shows that (t+l)tVt+l(l)=n2yt+IVt-l(I). By our induction hypothesis 

this implies that (1,9) holds for m=t+l. 

We shall now show that ~t+l(z) has non-negative coefficients. Put 

(I. 12) Wt+l(z) = (t+l)Vt+l(z)-(1-z)V~+l(z). 

Then, by ( I. I I), 

(I. 13) 

Put 

Then ~=bk=cic=O for sufficiently large values of k. By (1.13) we have for 

every k~O 

where bk-n+2:=0 for k<n-2. By the induction hypothesis we have ck~O if 

<\+t~O. Hence cic~o for all k. By (1.12) we have 
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which shows that ak~O for all k. This completes the proof of lemma 1.4. D 

PROOF. From 

we obtain 

( I. 14) 

where Rmh(z) is some polynomial. Since the left-hand side of (1.14) is a 

polynomial in zn it must be divisible by (1-zn)m. But one verifies easily 

that Umh(z) has degree at most m. Hence Rmh(z) is a constant. A substitut

ion of z=O in (1.14) yields that this constant is non-zero. Hence z=l is 

the only zero of Umh (z). □ 

LEMMA 1.6. (i) For zE«: we have 

IAm(z)\ s(2rr-grax(l,lzl)r, IBm(z)I s ( 2r;g►ax(l,lzl/-g, 
(1.15) 

lvm(z) I s nm(~:f~~)(r:v)(~)- 1max(l, lzl)r(n-Z)_ 

(ii) For zE«: with I 1-zlsl we have 

(I. I 6) 

PROOF. Note that A (z),B (z),V (z) have non-negative coefficients and 
m m m 

degrees r,r-g,r(n-2) respectively. Hence the sums of the absolute values of 

the coefficients of these polynomials are equal to their values in I. Hence 

( I. 17) 

Iv (z)lsv (!)max(!, lzl)r(n-Z)_ 
m m 
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By lennna 1.2 we have A (l)=B (l)=(Zr-g). Together with (1.9) this implies 
m m r 

(i). 

To show (ii) we note that l1-zl~I implies that lzl~2. Hence 

(I. 18) 

Note that by (1.2) 

Since clearly A0 (2n)zB0 (2n), A1(2n)zB 1(2n) this implies that Am(2n)zBm(2n) 

for all m. Hence by (1.8), 

By (1.18) this implies (ii). - □ 



CHAPTER 2. ON THE EQUATION axn-byn=c. 

§2. I. Introduction. 

In this chapter we shall deal with the diophantine inequality 

(2. I) in x,yEN, (x,y)=l (a,b,nE7l ,a>O, bfO, 

n,:3,CdR ,C;o:I) 

By an approximation method in which the polynomials from the preceding 

chapter are used we shall show the following: 

THEOREM 2.1. Put 

T 
n 

3-(n-2)/n II I/(p-1) n p , 
pin 

Til/2 = ,tnax((n+2)/2(n-3),n/(n-2)) ~or n,:4, 
3 'µn n J' 

a3 = 9, an max((3n-2)/2(n-3),2(n-I)/(n-2)) for n,:4. 

Then the inequality (2. I) has at most one solution with 

a 
(2.2) n I nl n max(ax, by ) ;,: µ C 

n 

In the table below we have written down some values of µn and an, 

rounded off to two decimals. 

n 3 4 5 6 7 8 9 10 

µn 1152.20 98.53 10.67 31.59 8.00 13.44 11.39 23.31 

an 9.00 5.00 3.25 2.67 2.40 2.33 2.29 2.25 

ci.n decreases monotonically to 2 if n tends to infinity but µn behaves 

irregularly. However, we have 

(2.3) 

This is clear for S~n~8 while for n,:8 

IS 
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Tn/(n-2) = 1/n II l/(p-J))n/(n-2) 
µn n 3\ Ip 

P n 

2n/(n-2)( l/2)n/(n-2) 3n/2(n-2) < 2 s 3 n!Ip <n -n, 
\ pin 

For most of the applications of theorem 1.2 this upper bound will suffice. 

Theorem 2.1 is an improvement of theorem 3 of [Ev l](p.291), espec

ially in the case n=3. There we showed, that for n=3 (2. I) has at most 

three solutions with max(ax3,lby3 1)~(1.71xl07)c 11 • In the proof of theorem 

2.1 we shall use the polynomials constructed in the preceding chapter. In 

[Ev I] we used hypergeometric functions which are closely related to the 

polynomials from chapter I. Also by means of these hypergeometric funct

ions, Siegel [Si 4] showed, that (2.1) has at most one solution if 

labln/2-1 ~ 4(n II Pl/(p-l))nc2n-2. 

pin 

Hyyro ([Hy 2],Satz l,p.11) generalised Siegel's result in the following 

way: there are constants cr0=cr0 (n)E(0,I], c0=c0 (n,ab)>O with the following 

property: for any pair of real numbers cr,C with cr0scrsl,C>O such that cr=cr0 , 

C>C0 do not hold simultaneously, the equation 

(a,b,nElN, n~3) 

has at most one solution with (x,y)=I, z<Cmax(axn,byn)l-cr and max(axn,byn) 

>G=G(n,cr,C,ab). By choosing cr=I for those values of n for which cr0 (n)<I, 

i.e. n~4, Hyyro obtained.a result similar to but somewhat weaker than 

theorem 2. I • 

We shall also deal with the equation 

(2. 4) in x,yE2'Z (a, b, c, nE2'Z ,n~3, abc,&O) 

For some small values of n and c sharp estimates for the number of solut~ 

ions of (2.4) can be given. Nagell showed that the number of solutions of 

(2.4) in integers x,y with xyfO is at most I if n=3,c=l,3 (with the 

exception of 2x3+y3=3 which has solutions (l,l),(4,-5))[Na I] and at most 

2 if n=3,c=2,4 and a,b odd· [Na 31. Ljunggren [Lj I _,4] showed that (2.4) has 

at most one solution in positive integers x,y if n=4,c=l,2,4,8 and if.n=6, 

c=l,2,3,4,6,a>O,b>O,(ab,c)=I, ab is not a square or cube. of an integer and 



and not divisible by the sixth power of a prime. Domar [Do] showed that 

(2.5) in x,yE(IN (a,b,nElN ,n~5) 

has at most two solutions. While the methods of Nagell and Ljunggren were 

algebraic, Domar showed his result by improving some of the estimates 

Siegel used in (Si 4]. In fact, Domar's result follows immediately from 
n 2 theorem 2.1. For this theorem implies, together with (2;3) and 2 -~ f9r 

n~~. that (2.5) has at most one solutii.on with max(x,y)~2. 
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Let R(n,c) denote the number of residue classes Z(mod c) with 

Zn=l(mod c). We shall derive an upper bound for the number of solutions of 

(2.4) in terms of R(n,c). 

THEOREM 2.2. The number of solutions of 

. (2. 6) 

is bounded above by 

2R(3,c)+4 

R(4,c)+3 

R(5,c)+2 

R(n,c)+I 

in x,yElN, (x,y)=I 

if n=3, 

if n=4, 

( a, b, c, nE2'l, a>O, b#O, c>O, n~3J 

if n=5 (R(5,c)+I if c~25), 

if n~6. 

This is an improvement of theorem I of [Ev I] for n=3,5,6. Using theorem 

2.1 one can show that (2.6) can not have many "large" solutions and by 

congruence considerations one can estimate the number of "small" solutions 

of (2.6) from above. Doing so, one obtains theorem 2.2. 

The following theorem, which is stated without proof, is another 

consequence of theorem 2.1. 

THEOREM 2. 3. The number of solutions of 

( a, b, d, nE7l, a>O, b#O, d>O, n~3, (a, d)=(b, d)= I) 

in integers x,y,z with x>O,y>O, (x,y)=l,O<lzl~d2n/5-I is bounded above by 

3R(3,d)+4 if n=3, 
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2R(4,d)+2 

2R(n,d)+l 

R(7,d)+3 

R(n,d)+2 

if n=4, 

if n=S, 6, 

if n=7, 

if n:e:8. 

Apart from an improvement in case n=3, this result is the same as theorem 2 

of [Ev I]. One can derive theorem 2.3 from theorem 2.1 similarly as theorem 

2 is derived from theorem 3 in [Ev I]. 

Let m,n be given positive integers. We shall give an upper bound for 

R{n,m) in order to replace the bounds in theorem 2.2 by simpler ones. Let 

w(m) be the number of primes dividing m and let Hm) be the number of 
ko k1 k2 k positive integers not exceeding m and coprime tom. Let m=2 p 1 p2 ·••Pss 

where k0 is a non-negative integer, k 1, ••• ,ks are positive integers and 

p 1, ••• ,ps are distinct, odd primes. By elementary number theory we have 

(2. 7) R(n,m) 
k s k· 

R(n,2 O) rr R(n,p.i) • 
i=l i 

Furthermore, it is easy to verify that R(n,p~i)=(n,~(p~i)) for ii{l, ••• ,k} 
k i i k -2 

and that R(n,2 O) is equal to I if k0€{0,1} and to (n,2)(n,2 0 ) if k02:2. 

Hence R(n,2ko) divides ((n,2)n,H2k0)). Together with (2. 7) this implies 

that R(n,m) divides 

w(m) ((n,m,2)n .~(m)) • 

Substituting this into theorem 2,2 we obtain 

COROLLARY. Let a, b, n, k 1, k2, ... , k be integers with a>O, b,'O, n:2:3, k. 2:0 for 
t . i 

i€{l,2, ••• ,t} and Zet p 1,p2, ••• ,pt be distinct primes. Then the equation 

(2. 8) 
n n kl k2 kt 

Jax -by I= p 1 p2 ••·Pt 

has at most 2nt+4 solutions in integers x,y with x>O,y>O, (x,y)=l. 

In chapter 6 we shall see that the number of solutions of (2,8) can 

be estimated from above by a constant depending only on n and t even if 

the exponents k 1, ••• ,kt are considered as variables. 
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§2.2. Lemmas and special cases. 

In this section we shall prove some auxiliary results for the proofs 

of theorems 2.1 and 2.2. We shall also deal with some special cases of 

these theorems. a,b,c,n will denote integers with a>O,b#O,c>O,n~3 and C 

will denote a real with C~l. 

LEMMA 2.1. There are non-zero integers a 1,b 1,c 1, having the same signs as 

~,b,c respectiveZy, with c 1 dividing c and with (a 1,c 1)=(b 1,c 1)=1 such that 

the munber of soZutions of (2.6) does not exceed the number of soZutions of 

la1xn-b 1ynl=c 1 in positive integers x,y with (x,y)=I. 

PROOF. We may assume that (a, b) divides c, for otherwise (2.,6) is not 

solvable. Put a 2=a/(a,b),b2=b/(a,b),c 2=c/(a,b),f 1=(a2,c2),f2=(b2,c2). Let 

(x0,y0 ) be a soluti_on of (2.6). From (a2,b 2)=(x0 ,y0 )=1 it follows easily, 
n n n n n n that (a2,y0)=f 1,(b2,x0)=f2,(a2x0,b 2y0)=(a2,y0)(b2,x0)=f 1f 2=(a2b2,c2). Let 

F 1,F2 ?e the smallest positive integers such that f 1 IF~,f2 1F~. Then F1 IY0 , 

F2 1x0 • Put a1=a2F~/f 1f 2,b 1=b2F~/f 1f 2,c 1=c2/f 1f 2• Then a 1,b 1,c 1 are non-zero 

integers having the same signs as a,b,c respectively such that c 1 le and 

such that (a 1,c1)=(b 1,c1)=1. Furthermore, every solution (x0 ,y0) of 

I n nl . ( / / I n nl ax -by =c corresponds to a solution x0 F2,y0 F1) of a 1x -b 1y =c 1. 

Hence the number of solutions of (2.6) is at most equal to the number of 

solutions of la1xn-b 1ynl=c 1 in positive integers x,y with (x,y)=l which 

proves our lemma. □ 

By lemma 2.1 and by the fact that R(n,c 1)sR(n,c) we may assume that 

(a,c)=(b,c)=l, whence (x,c)=(y,c)=J for every solution (x,y) of (2.6). We 

shall do so in the sequel. Furthermore, we shall distinguish between the 

cases b>O and b<O. There we use the fact that the numbers a 1,b 1 mentioned 

in lennna .2.1 have the same signs as a,b respectively. 

Let S(c) be the set {(x,y)EJN2 I (x,c)=(y,c)=I}. On S(c) we define the 

following congruence relation: (x1 ,y 1),(x2,y2) are congruent mod c if 

x 1y2=x2y 1(mod c), i.e. if x 1/y1=x2;y2(mod c). We denote this by (x 1,y 1) = 

(x2,y2)(mod c). By our assumption on a,b,c all solutions of (2.6) belong to 

S(c). Hence we can divide them into congruence classes mod c. In fact, we 

have 

LEMMA 2.2. The soZutions of (2.6) beZong to at most R(n,c) congruence 

cZasses mod c. 
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PROOF. Let (x0 ,y0) be a fixed solution of (2.6). Then (x0,c)=(y0 ,c)=(a,c)= 

(b,c)=I, hence 

Let (x,y) be an arbitrary solution of (2.6). Then 

This shows that the number of congruence classes of solutions of (2.6) is 

at most equal to the number of solutions of the congruence equation 

Zn=l(mod c) in residue classes Z(mod c), i.e. R(n,c). O 

We put w(x)=axn for every positive integer x and w(x,y)=max(axn,J·bynl) 

for every pair of positive integers x,y. 

PROOF. We have ax~-by~=h 1,ax~-by~=h2, with !h 1 l=lh2 l=c. On solving b from 

this system of linear equations in the unknowns a and b, we obtain 

b 

n n 
h2xl-hlx2 

n n n n 
x2yl-xly2 

For b>O we have 

hence 

( ) > ab n-1 
W x 2 - Z-C . 

If b<O then both h 1 and h2 are positive and we even have 



lh2w(x 1)-h1w(x2)1 s cw(x2), 

hence 

n-1 w(x2) ~ lablc • 

Since ab#I for b<O this proves our lemma. 

We shall now prove theorem 2.1 in some special cases. 

LEMMA 2.4. If (x,y) is a solution of (2.1), then w(x,y)<C if b<O and 
n/(n-1) w(x,y)<C /2 if a=b=I. 
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□ 

PROOF. The lemma is trivial if b<O. If a=b=I, we may assume that x>y. Then 

we have 

n n 1-1/n n-1 Hence it suffices to show that x -(x-1) >2 x for all x~2,n~3. The 
. .n n -n+ I . . n n n-1 -n function f(z)=((z -{z-1) )z has the derivative (z -(z-1) -n(z-1) )z . 

For z>l this derivative is positive, hence f(z) is monotonically increasins 

This implies that 

for x~2,n~3. But from this fact our lemma follows immediately, since 

for n~3. □ 

We see that theorem 2.1 is valid for abSI. We shall now prove theorem 

2.2 in this case. 

LEMMA 2.5. If abs! then (2.6) has at most R(n,c) solutions. 

PROOF. By our assumption that (a,c)=(b,c)=I and by lemma 2.2 it suffices to 

show that (2.6) has at most one solution in each congruence class mod c, 

i.e. that for any two distinct solutions (x1,y 1),(x2,y2) of (2.6) we have 

(x1,y1)t(x2,y2)(mod c). 
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Suppose to the contrary that (2.6) has two congruent solutions mod c, 

(x1,y 1), (x2,y2) say, ordered such that w(x 1)~w(x2). Then by lemma 2.3, 

w(x2)~cn-l if b<O and w(x2)~cn-J;2 if a=b=I. But this is contradictory to 
n-1 n-1 . n/ (n-1 ) lemma 2.4 since c ~c,c /2~c /2 for c~l,n~3. □ 

In the proofs of theorems 2.1 and 2.2 we shall use the following 

lemma. It is assumed that ab~2. 

LEMMA 2.6. Let 8,f be constants with 8>1,f~I. F>ut v=n- 1,K=(n-1)/2. 

(i) If (x,y) is a solution of (2.1) with w(x)~BC, then 

(2.9) 1
1-(~)vII < C(B/(8-l))"v. 

a x nw(x) 

(ii) If (x1,y1),(x2,y2) are two solutions of (2.1) with lx 1y2-x2y 11~f and 

w(x2)~(x1 )~BC, then 

(2. I 0) ( nf)n(s-1)" n-1 w(x2) ~ 2 2C -8- w(xl) • 

PROOF. (i) We have 

Using the inequality of the arithmetic and the geometric mean, it follows 

that 

hence 

11-(~)v~, < -n-(ax_n_)_(-l+-v-~~7-2-(b_y_n_)_K_v 

Since axn/byn~B/(8-1) this implies that 

c(e/ cs:..1>>"v 
nw(x) 

(ii) We have by (i) and-by the fact that ab~2, 
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f s 1x1y2-x2Y1 I = a-2vl:J_- Y21 
\) \) 2V X · X w(x1) w(x2) a x 1x2 · I 2 

\) V 

s a-2v(a/b)v(!1-~ ::HI-~ ::1) 

-v K\) -I -I s (ab) vC(8/(8-I)) (w(x1) +w(x2) ) 

s2 1-vvC(8/(8-l))Kvw(x 1)-l. 

Hence 

□ 

§2.3. Proof of theorem 2.1. 

We assume that a,b,n are integers with a>O,b>O,n?.3,a/bf(u/v)n for 

all u,vEZl (whence ab?.2) and that C is a real with C?.J. We shall show that 

for these values of a,b,n,C, inequality (2.1) has at most one solution 

with w(x,y)?.µ can. This completes the proof of theorem 2.1, for if a>O, 
n 

b<O, then by lemma 2.4 w(x,y)sc, whHe if a/b=(u/v)n for some u,vEZl with 

(u,v)=I, then a=dun,b=dvn for some integer d, whence by lemma 2.4, 

w(x,y) 

Assume on the contrary that (2.1) has two solutions with w(x,y)?. 

µncan, (x 1,y 1),(x2,y2) say, ordered such that w(x2,y2)?.w(x 1,y 1). As in 

§2.2, we put v=n- 1,K=(n-1)/2 and we put also a=(µ/(µ -l))Kv. By symmetry 
n n n 

we may assume that w(x 1,y 1)=w(x 1). Put w1=w(x 1),w2=w(x2). Then 

(2. 11) 

and also 

(2. 12) 

(2.12) follows from 2.6 (ii) with 8=µn,f=J when we have shown that w2?.w 1• 

This holds true indeed for suppose w2<w 1. Then by~?.ax~>ax~. Hence 
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Therefore, by (2.11), 

But this is impossible, since a >n/(n-1) and 
n 

(2. 13) µn <". 8. 

The latter inequality, which will also be used later, is easy to check for 

n<24 and for n<".24 it follows fromµ <".n/3. 
n 

Put 

where '\n(z),Bm(z) are the polynomials defined in chapter I. Let r,g be the 

integers defined by m=2r+l-g with gdO,J}. Put q(m)=nr(nr,r!). We assume 

that m<".2. 

LEMMA 2. 7. Put 

s(m) := q(m)(2rr-g)crn2v(g-l), 

t(m) := q(m)2v(g-l)(l-v)-lcr:(;:~)(r;v);t::), 

P ( ) C v-1 r+v ( 1-g) m := s m w2 w1 , 

(2. 14) 

PROOF. Note that '\n(z) has degree rand that Bm(z) has degree r-g. Hence by 

lemma 1.3 (i) q(m)x2x:-gw~Sm is a rational integer. If SmfO we therefore 

have, by w1=w(x 1,y1), whence lz 11,,;J and by lemma 1.4, lemma 2.6· (i), ab<".2 

and lemma 1.6 (i), 
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q (rn)w~w;+v( l-g) a -v( 2-g) (~)\JI ((~ :~ - 1) Arn (z~) +( 1-z /nvrn (z 1) I 
() v r+v(l-g) 2v(g-1)( (2r-g\ 0 nc lm(r+v\ (r-v\(rn)- 1\( 0 nC)m) 

<qrnw2wl \\r}nw2 + 1t \r+l)\r}\r /\~ 

□ 

LEMMA 2.8. S/O for n?'.3; SrnfO for n=3,m=2,5, 7. 

nn n ~ * ~ * PROOF. Put h=ax 1-by 1, u=l-z 1=h/w 1, E (z)=q(m)A (l-z), F (z)=q(m)B (l-z), 
rn rn m m 

* where q(rn) is the smallest positive rational number such that both 
* * ,.._, ,.._. 

q(rn)Arn(l-z) and q(m)Brn(l-z) have integral coefficients. Let E;(x,y),F;(x,y) 
r~ r~ 

be binary forms which are for x/O equal to x Em(y/x),x Frn(y/x) respectivel~ 

Suppose that Srn=O. Then 

hence 

~ n 
(1-u)Fm(u) 

~ n 
(w 1-h)F~/w1 ,h) 

E (u)n 
rn 

~ n 
w1E;(w1,h) 

( 2. 15) 

Now we have 

~ n ~ n 
E (z) -(1-z)F (z) 

m rn 

n ~ n n n~ n n 
for some polynomial Krn(z). For put z=l-w. (Ern(l-w )) -w (Fm(l-w)) is a 

polynomial in wn which is divisible by A (wn)-wB (wn), hence by (l-w)rn in 
m m 

view of lemma 1.4. But then it must he divisible by (1-w)rn=zrn. Hence by 

(2. 15) 

(2. 16) nr+l mK ( ) w1 u mu 

We shall show that this is impossible for the values of rn,n stated in the 
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lemma, by estimating Km(u) from below and d from above. 

Firstly, we estimate K (u) from below. If n=3 we have 
m 

E2(z)=3-z, 

E/z)=3-2z, 
~ 2 
E5 (z)=54-63z+l4z, 
~ 2 3 
E7(z)=81-135z+63z -7z , 

F2(z)=3, 

F3(z)=3-z, 
~ 2 F5 (z)=54-45z+5z, 
~ 2 3 F7(z)=81-108z+36z -2z , 

-1 
Since lul<µ 3 for n=3 we have 

(2. 1 7) 

In case.. n~4 we have 

2n-(n+l)z 
(n-1,2) 

2n-(n-l)z 
(n-1 ,2) 

K2(z)=9-z, 

K3(z)=2-z, 
2 K_(z)=756-756z+l25z , 

J 2 3 
K7(z)=l62-243z+97z -Sz • 

We shall not compute K3(z) explicitly but we shall derive a lower bound for 

v 100 
(") k K3 ( u) by another method. Note that I u I< 1, whence that ( 1-u) = lk=O k. (-u) 

converges. Moreover, since h>O and u>O, 

u - 3( E/u)-( 1-u) VF /u)) 

= u-3(n-l,2)- 1(2n-(n+l)u-(l-u)v(2n-(n-l)u)) 

( _1 2)-1 I (-ll+l ( v \ (n+l)(k+l) uk 
n ' k=O i+2) k+3 

> -(n-l, 2)-l(v)n+l = n2-l . 
2 3 (n-l,2)6n2 

By (2.13) we have lul<l/8, hence 

-1 
>(n-1,2) lS(n-1)/8. 

Therefore, 

-rr.·7 8 n+l ( )n ~ (n-1,2) 815 6n lS(n-1)/8 . 



Since n24 this implies that 

(2. 18) 

We shall now estimated from above. Put v=(h,w 1), h=vh', w1=vw'. 

Firstly, we consider the case n=3,m=2. Then d divides 

( 2 2) 3 ( 2 2 ) w1 h (9w 1-h),27(w 1-h)w 1 = w1v 27(w'-h')w' ,h' (9w'-h') 

33w I v3 (w' -h' , h' 2) (w' -h' , 9w' -h') (w' 2 , 9w' -h') (w' , h') 2 

3 3 3 w1v (w'-h' ,9w'-h') 

Here we used that for a 1 ,a2,a3 ,a4, 2Z, (a 1a 2 ,a3a4) divides 

(a 1,a3)(a 1,a4)(a2,a3)(a2,a4). Hence if s2=0 for n=3 we have by (2. 16) and 
n n (2. 17), on noting that ax 2-by2fo, 

which is contradictory to (2.11). 
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We shall now consider the other possibilities for m,n. Note that mis 
r -I ~ r~ -I 

odd, hence for zfO Am(z)=z Bm(z ), i.e. Em(l-z)=z Fm(l-z ) (cf (I.I)). Put 

b = E*(w',h'),F*(w',h') . Then d divides m m m 

nr+ I ( ~ n ~ n) v w'E*(w' h') (w'-h')F*(w' h') m ' ' m ' 

nr+I , ~ n) ( ~ n} n v (w' w'-h') [w' F*(w' h') w'-h' E*(w' h') b 
' ' m ' ' m ' m 

Hence 

(2. I 9) 
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In the case n=3, we shall use the following identities: 

These imply 

E1(x,y)-F1(x,y) = -y, 

~ ~ 3 (3x-y)E5(x,y)-(3x-2y)F5(x,y) -4y, 
~ ~ 2 (27x-5y)E5(x,y)-(27x-14y)F5(x,y) = -72xy, 

~ ~ 2 2 E7(x,y)-F7(x,y) = (-27x +27xy-5y )y, 
~ ~ 3 (3x-y)E7(x,y)-(3x-2y)F7(x,y) = (-6x+3y)y 

( 3w' -h' , h' ) / h' , 

(72w'h' 2 ,4h' 3) / (72w',4h')h' 2 / 72h' 2, 

((6w'-3h')h 13 ,27w' 2h'-27h' 2w1+Sh 13) 

3h' 3(2w'-h',27w' 2-27w'h'+Sh' 2) 

3h' 3(2w'-h',7h' 2) 

42h 13 . 

Therefore, by (2.19), 

(2.20) 

d v4h 13 / h4 if m=3, 

d v 7s3(72h' 2) 3 / 3603h 7 if m=S, 

d v 1023(42h 13 ) 3 [ 843h 1Q if m=7. 

Since [ax~-by~[sc this yields, together with (2.16),(2.17), 

w1h3 s h4C, 

755w~hS s 3603h 7c, 

161wfh7 s 423h10c, 

w1 s hC s c 2 if m=3, 

w1 s (3603/755) 1/ 2hc 112 s 249c312 if m=S, 

w1 s (84/(161) 1/ 3)hCJ/ 3 ~ l6:C4/ 3 if m=7. 

These inequalities are clearly impossible. 

Finally, we estimated from above for m=3,n~4. Note that 

-1 I -1 b3 = (n-1,2) (2nw'-(n+l)h' ,2nw'-(n-l)h') (n-1,2) 2h'. 

Hence by (2.19), 



Together with (2. 16) and (2. 18) this implies that for n~4, 

n-2 3 7 -n n -n n n+ I w1 h 72(n-1,2) (IS(n-1)/8) S (n-1,2) (2(n-1)) h C, 

hence 

which is clearly impossible. 

LEMMA 2.9. There is a positive integer£ such that 

-v 1-v 

(2. 21) 
£ WI w2 £+I 

s(2£+l)w 1 s C < s(2£+3)w 1 • 

PROOF. We suppose the contrary. Then, by the fact that the sequence 
--- £ 
s(2£+l)w 1 increases monotonically to infinity, 

hence 

(2. 22) 

-v 1-v 
WI w2 

C 

Firstly we consider the case n~4. By (2.12) we have that 

( n )n n-1 ( C)n/(n-1) (n+l)/(n-1) 
2cr C w I s non w I ' 

n 

hence 
2 

□ 

n-1-(n+l)/(n-1) 
WI 

0 n /(n-1). 2n 2 
n(n-3)/{n-1) _n_,_..,,..,....,...,....-,...,- •Cn /(n-1) 

= wl < n(n-2)/(n-l) 

Therefore, 

(2. 23) 
0 n/ (n·· 3).2 (n-1) / (n-3) 

n 
wl <---(~n--~2~)/~(~n--~3~)-

n 

n 

29 
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Since µn~S we have 

0 n/(n-3). 2 (n-1)/(n-3) 
n 

n(n-2)/(n-3) 
( 8 (n-1)/2 1 2)1/(n-3) 

( ) n- -n+ 
$ 7 •2 4 

Moreover, a >n/(n-3). Hence by (2.23), 
n 

But this contradicts (2.11),.wh-ich;,rovesour lemma for n~4. 

We now assume that n=3. We infer from lemma 2.7 and lemma 2.8 with 

m=2 that 

whereas by (2.22), 

This contradiction proves our lemma completely. 

LEMMA 2.10. s(2(r+j)+I)t(2r+I)n-I<Tnr+j for rE:lN,jdI,2}. 
n 

PROOF. Note that 

where 

n-1 s(2(r+j)+I)t(2r+l) R (n) nr+ j ( r+ j ( . ) , ) ( r , ) n-1 rj n n , r+ J • n , r. , 

2r+I 1 n-1 

= ~-a (2(r+J))(0 n (r+v)(r-v)(2r+l)-) 
2 n r+J "7"="v\r+l r r 

For every positive integer k we have 

with 

(nk,k!) = IT po(p)' 
pin 

□ 



hence 

(2. 24) 

00 

o(p) ;s I [kp-j J 
j=I 

k 
<-
p-1 ' 

k(kk') ( II 1/(p-l))k n n , . < n p 
pin 

Therefore, it suffices to show that 

(2.25) 

Since R(n)~R(n) we may restrict ourselves to the case J"=2. 
rl r2 

Note that 

hence 

2 
(4/ 3)n(n-2)/(n-1) 

2 
(4/ 3)n(n-2)/(n-l) _1 

(2.26) 

2 
crn <@ (n-l)/2n < @(n(n-2)/(n-l) )(n-l)/2n @(n-2)/2(n-l) 

First of all we have for n~3, by (2.26), 

3 n-1 
R~~) IOcrncn:::I)) < 10@ 1/2( (8/7~:/2x4r-1 '.!: I l-n+2 

< ( 3-(n-2)/n)n+2. 

Furthermore we have for r~I, by (2.26), 

R(n) 
r+l ,2 --;<n> = 

(2r+6) (2r+S) 0 2 r+l+v. r+l-v. (r+2)(r+I) ( )
n-1 

{r+J)2 n r+2 r+I (2r+3) (2r+2) 
r,2 

( 
2 2 

< 4•0 2 (r+I) -v 
n (2r+2) (2r+3) 

n-1 

) 
-(n-2) 

< 3 • 

This proves (2.25), whence lemma 2.10 completely. □ 
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We shall now complete the proof of theorem 2;1. If i is the integer 

from lemma 2.9 then-.we choose r=i if s21+/0, and r=£-I if otherwise. Then 
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r=t-j+l for some jE{l,2}. By lemma 2.8 and lemma 2.9 we always have r~l and 

in case n=3 we can have j=2 only if r~3. By lemma 1.5 with h=2 we always 

have s2r+l#O. Note that by our choice of rand by the left-hand side 

ipequality of (2.21), 

(2. 27) 

Furthermore by the right-hand side inequality of (2.21) and by lemma 2.10, 

n-1 
Q2r+l 

=G (2 l)C2r+l v v-r-l)n-1 { r+ w2w1 

< s( 2(r+j)+I)t( 2r+l)n-IC(2r+l)(n-l)+lw~+j+l-(n-l)(r+l) 

< Tnr+jc(2n-2)r+nw-(n-2)(r+l)+j =: G .. 
n I J 

If n~4 we have by (2.11) 

< _ ( n 2n-2 -(n-2))r-l n+2 3n-2 -2(n-3) 
Gj - G2 - TnC w1 Tn C w1 s I, 

if n=3 we have in case j=I, 

while in case j=2, 

Hence Q2r+l<l for n~3. Together with (2.27) this contradicts (2.14). But 

then our assumption that (2.1) has two solutions with w(x,y)~µ can must be 
n 

wrong. This completes the prove of theorem 2.1. □ 

§2.4. Proof of theorem 2.2. 

Let a,b,c,n be integers with a>O,b#O,c>O,n~3. By lemma 2. I and lemma 

. 2.5 we may assume that ab~2, (a,c)=(b,c)=I. Moreover, by the results of 

Nagell, Ljunggren and Damar (cf §2.1) we may assume that c~2. 

By lemma 2.3, each congruence class of solutions of (2.6) contains at 

most one solution (x,y) with w(x)<cn-l. Hence by lemma 2.2, (2.6) has at 

most R(n,c) solutions with w(x)<cn-l. If n=3 then each congruence class 

mod c contains at most two solutions with w(x)<27c4/s, whence (2.6) has at 



4 most 2R(3,c) solutions for which w(x)<27c /8. For suppose that (x 1,y 1), 

(x2,y2),(x3,y3) are solutions of (2.6) in the same congruence class, 

ordered such that w(x 1)sw(x2)sw(x3). Then by leITma 2.3 we have w(x2)~c2 

and by lemma 2.6 (ii) with f=C=c,S=2, 

a contradiction. 

By theorem 2.1 (with C=c) (2.6) has at most one solution with 
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w(x)~µ can. Hence we have only to estimate the number of solutions of (2.6) n . 
n-1 a 4 a3 with c sw(x)<µnc ~ if n~4 and 27c /8sw(x)<µ 3c if n=3. 

n-1 . a 
If c 2:µ c n then (2.6) has at most R(n,c)+I solutions. This is the 

n 
case if n=5,c2:25 or n~6,c~5. For by (2.3) we have 

We have also 

µ 
n 

2 
< n 

n-1-a 
s 5 6 

n-1-a 
s 5 n 

n-1-a 
n 

Hence if cs4,n~6, then (2.6) has, by theorem 2. 1, at most one solution 

with max(x,y)2:4. It is easy to check that at most one of the pairs (1,1), 

(1,2),(1,3),(2,1),(2,3),(3,1),(3,2) can be a solution of (2.6). For 

suppose that two of these pairs are say. Then 

However, it is easy to verify that for all possibilities of (x 1,y1),(x2,y2), 

for n~6, 

a contradiction. This proves theorem 2.2 for n~6. 

In the remaining cases, i.e. n=5,cs24 and nE{3,4} we have to show 

that (2.6) has at most one solution if n=5 and at most two solutions if 

n=4 for which cn-lsw(x)<µ can, and at most three solutions for which 
n 

27c4/Ssw(x)<µ 3ca3 if n=3. Therefore we need the following lemma. 
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LEMMA 2.11. Put K(n)=(2312 (2-312n)n}l/(n-2>. Let A,B be aonstants with 

( -I n/ (n-2)} B >A> max 2c,K(n) c . 

Let r be the smaZZest positive integer with 

( 1 (K() -n/(n-2)B)\0 
r ~ S=S(A,B,c) := log og n c-n/(n-2) }, log(n-1) 

log(K(n)c A) 

Then (2.6) has at most r solutions with Asw(x)<B, 

PROOF. Let (x 1,y1),(x2,y2), •.• ,(xr,yr) be solutions of (2.6) such that 

ASw(x1)sw(x2)s ••• sw(xr)<B, We apply lennna 2.6 (ii) with S=2,f=l,C=c. For 

convenience we put 

T = K(n)c-n/(n-2). 

Then we have for iE{l,2, ••. ,r-1}, 

hence 

n-1 
~ (Tw(x.)) • 

l 

This implies that 

TB T ( ) (Tw(xl)) (n-1) 
> w xr ~ 

hence 

(n-l)r-l < log(TB)/log(TA), 

and therefore 

r-1 r-1 
~ (TA) (n-1) , 

r-1 < log faog(TB)/log(TA))/log(n-1), 

which implies lemma 2. II. D 
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We shall apply lemma 2. II with A=cn-l if nE{4,S} but A=27c4/B if n=~ 

while B=µ can. Then clearly the conditions imposed on A,B in lemma 2.11 
n 

are satisfied. If nE{4,S} we have 

(log(K(n)µn)+(an-n/(n-2))1og c)V 
S = log, . log(n-1) \ log K(11) + (n-1-n/ (n-2) )log c 

If n=S, then S<I, since 4log K(5) >log(K(5)µ 5), 4(4-5/3)>a5-5/3. If n=4, 

then S<2, since 32log K(4) >log(K(4)µ 4), 32 (3-4/2)>a4-4/2. Finally, if n=3, 

then 

(
log(K(3)µ 3)+6log c )i/, 

S = log log(K(3)27/8)+log c 1/log 2 < 3 • 

since 2\og(K(3)27/8)>iLog(K(3)µ 3) ~2 3>6. This proves theorem 2.2 completely. 

□ 
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CHAPTER 3. ON THE REPRESENTATION OF INTEGERS BY BINARY CUBIC FORMS OF 

POSITIVE DISCRIMINANT. 

§3.1. Introduction. 

Let F(x,y) be an irreducible binary cubic form with integral 

coefficients and of negative discriminant. Nagell [Na 2] and Delone [De] 

independently showed, that the equation 

(3. I) F(x,y) 

has at most five solutions in integers x,y. This can not be improved, for 
3 2 3 if F(x,y) equals x -xy +y then F has discriminant -23 and (3. I) is 

satisfied by the pairs (1,O),(O,1),(-1,1),(1,1),(4,-3). Delone and Nagell 

proved their result by considering units in the algebraic number field~(£), 

where£ is the real root of F(x, l)=O. In both the proofs of Delone and 

Nagell the fact that~(£) has only one fundamental unit is essential. 

Now suppose that F satisfies the same conditions as above, except 

that its discriminant is positive. Let L=~(E), where£ is some root of 

F(x,l)=O. We can not apply the methods of Delone and Nagell since L has 

two fundamental units. However, it is possible to reduce (3.1) to a set of 

exponential equations to which a p-adic method of Skolem can be applied. 

(cf. [Lj 2],[Av l,2],[Mo]ch.23,[Sk 1,2,3,4]). In this way (3.1) was solved 

f h f ( ) 3 3 2 3 f d" . . 8 d ( ) 3 2 2 2 3 or t e orms F x,y =x - xy +y o iscriminant I an F x,y =x +x y- xy-y 

of discriminant 49 by respectively Ljunggren [Lj 2] and Baulin [Ba]. For 

the first form the six solutions of (3. I) are (l,O),(O,1),(-1,-1),(1,3), 

(-3,-2),(2,-1), while for the second form (3.1) is satisfied by the nine 

pairs (l,O),(O,-l),(-l,t-l),(-l,l),(2,-1),(-1,2),(5,4),(4,-9),(-9,5). Note 
. 2rri/9 -2rri/9 . that for the first form L=~(e +e ), while for the second form 

L m( 2rri/l - 2rri/l) I h f f 1· d B l' . d f =~ e +e • n t e proo so Junggren an au in, use is ma e o 

the explicit values of some fundamental units in a quadratic extension of 

L. So it does not seem easy to derive general results on (3.1) by their 

method. 

It is possible to derive more general, though ineffective results by 

means of a modification of the Thue-Siegel method used in chapter 2. In 

this way, Siegel [Si 3,6] showed that the number of solutions of the 
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inequality 

(3. 2) [F(x,y)I ,s k (kEJN) 

in integers x,y with (x,y)=l,y>O or x=l,y=O is at most 18 if the 

discriminant of Fis sufficiently large compared with k. In a student 

paper from 1949, A.E. Gel'man showed, by refining Siegel's estimates, that 

18 can be replaced by 10.(For a proof we refer to [D/F],ch.S). In 

particular this implies that (3.1) has at most ten solutions if the 

discriminant of Fis large enough. We shall give a uniform upper bound for 

the number of solutions of (3. I). 

THEOREM 3. I. Let F be a bina:l'}J cubic form with integral coefficients and 

non-zero discriminant. Then the equation 

(3. 1) F(x,y) 

has at most twelve solutions in integers x,y. 

As far as I know, no cubic forms Fare known for which (3.1) has more than 

nine solutions and it is like.ly, that our result can be improved. Note that 

the upper bound given in theorem 3. I does not depend on the coefficients of 

F. As we already mentioned in chapter 0 1 we: shall prove· a similar result 

also for forms of degree higher than 3 in chapter 6. 

We shall also derive an analogue of theorem 2.1. Before we can state 

it, we have to introduce some notions. Let F be an arbitrary binary form 

(whose coefficients belong to some field of characteristic zero) and let 

T:(x,y)~(X,Y) be a linear transformation of determinant unity. Put FT(x,y)= 

F(X,Y). An invariant of Fis a rational function I(F) in the coefficients 

of F such that I(FT)=I(F) .for any choice of T. A covariant CF(x,y) is a 

binary form whose coefficients are rational functions in the coefficients 

of F such that CFr(x,y)=CF(X,Y). (cf. [Di l],[Mo] ch,18). In particular, 

the discriminant of a binary form is an invariant. If a form C(x,y). is a 

covariant of a binary form F then we say that it has the cavarianeeproperty. 

We now suppose that Fis a cubic form, F(x,y)=ax3+bx2y+cxy 2+dy3 say. It is 

easy to check, that 
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H(x,y) 

2· 

= _ I ( ,/F cl 2F _ ( cl 2F ) ) 
4\ 3x2 cly2 clxcly 

2 2 
= Ax +Bxy+Cy 

2 (bx+cy) -(3ax+by)(cx+3dy) 

say, is a covariant of F, the so-called quadratic covariant. Since the 

discriminant D of F equals 

2 2 3 3 2 2 b c -4ac -4b d+l8abcd-27a d, 

H is a quadratic form of discriminant B2-4AC=-3D. If D>O and a,b,c,dElR, 

then His positive definite since H(b,-3a)=(b 2-3ac) 2~o. 

DEFINITION. A cubic form F with integral coefficients and of positive 

discriminant is called reduced if its quadratic covariant H is reduced, i.e. 

if c~~IBI. 

Two binary forms F1,F2 with integral coefficients are called 

equivaZent if a unimodular transformation X:=a 11 x+a 12y,Y:=a21 x+a22y (with 

a 11 , .•. ,a22c?Z and a 11 a 22-a 12a 21 =1) exists such that F2 (X,Y)=F 1(x,y). If 

two cubic forms with integral coefficients are equivalent under a uni

modular transformation then their quadratic covariants are equivalent 

under the same transformation by the covariance property. Hence, since 

every positive definite quadratic form is equivalent to a reduced quadratic 

form, every cubic form of positive discriminant is equivalent to a reduced 

cubic form. (cf. [Mo],ch.24). 

THEOREM 3.2. Let F be a reduced, irreducibZe binary cubic form with 

integraZ coefficients and of positive discriminant. Let k be a positive 

integer. Then the inequaZity 

(3.2) IF(x,y) I ec: k 

has at most nine soZutions in integers x,y with (x,y)=l,y~J2 1/ 4k3/~ 

In fact, both theorem 3.1 and theorem 3.2 are consequences of 

THEOREM 3.3. Let F be an irreducibZe binary cubic form with integraZ 

coefficients, positive discriminant D and quadratic covariant H. Let k be 

a positive integer. Then the number of soZutions of the inequaZity 
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(3.2) IF(x,y) I :s k 

in integers x,y with 

(3.3) H(x,y) z f(3D) 1/ 2k 3, (x,y)=l, y>O or x=l,y=O 

is at most 9. 

In the proof of theorem 3 we have used ideas from [D/F],ch.5 and [Si 3,4]. 

It will be similar to the proof of theorem 2. 1 in case n=3. 

§3.2. Proofs of theorem 3.1 and theorem 3.2. 

In this section we shall derive theorem 3.1 and theorem 3.2 from 

theorem 3.3. In the sequel, let F be a binary cubic form with integral 

coefficients, discriminant D and quadratic covariant H. Theorem 3.2 is an 

immediate consequence of theorem 3.3 and the lemma below. 

LEMMA 3.1. If D>O and if Fis reduced and irreducible, then 

(3.4) 

(3.5) 

H(x,y) 

H(x,y) 

> 3. 1 /2 2 - 4 D y for x, yE'll, 

3 1 /2 2 z 2 (3D) y for x, yE'll with I x I z I 2y I . 

2 2 2 PROOF. We may ass:ume that yfO. Put H(x,y)=Ax +Bxy+Cy =y f(z), where z=x/y 
--- 2 
and f(z)=Az +Bz+C. Note that for z=-B/2A, f(z) assumes a minimum on the 

reals which is equal to 3D/4A. Furthermore F, whence H, is reduced, hence 

This implies that f(z)z3D/4n 112=3n 112;4 which is equivalent to (3.4). 

We are now going to prove (3.5). Since f(z) assumes its minimum 

in a point with absolute value not exceeding 1/2, it follows that for 

Ix I z I 2y I, 

f(z) z min(f(2),f(-2)) 4A-2IBl+c 
1/2 4A+C-2(4AC-3D) =: g(A,C). 

We shall minimalise g(A,C) on the (A,C)-plane. Since H is reduced, (A,,C) 

belongsto the set 
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(cf. figure 3.1 ). ln G, g(A,C) assumes its minimum in the point 

((3D) 112;3,5(3D) 112/6). Th{i.s minimum is equal to 3(3D) 112;2 and this 

proves our lemma completely. 

(I, j (3D+ I 
(l,!D) 

C 

't 
(,13D/3,5,13D/6) 

figure 3.1. The set G. 

-+A 

We shall now prove theorem 3. 1. Suppose, that DfO. We may assume, 

that Fis irreducible for otherwise we can write 

F(x,y) 

+l. 

Therefore, 

□ 

It is easy to check, that these relations can be satisfied by at most four 
2 pairs (x,y)E7l . 

From now on, we assume that D>O, that Fis irreducible and reduced 

and that its coefficient of x 3 is positive. By the result of Delone and 

Nagell and by the fact that the number of solutions of (3.1) does not 

change when Fis replaced by an equivalent form, these are no restrictions. 

Note that for every pair of integers (x 1,y 1) with IF(x 1,y 1) l~l and 



y 1>0 or (x1,y 1)=(1,0) exactly one pair of integers (x0,y0) exists with 

F(x0,y0)=1 and (x0 ,y0)=~(x1,y 1). Hence by theorem 3.3, (3.1) has at most 

nine solutions with H(x,y)~3 ✓3D/2. Note that by J.emma 3.1, H(x,y)~3nD/2 

if lxyl~2. We shall show that (3.1) has at most three solutions with \xyls1 

if Fis not equivalent to the form x 3+x2y-2xy2-y3• In view of Baulin's 

result this suffices to.,prove theorem 3.1. 
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First of all, there are at most three solutions of (3.1) in the set 

{(x,y)E7Z2 I 1xls1,lyl=1}. For if (x0,y0) is a solution of (3.1) belonging to 

this set then the pair (-x0,-y0), which is clearly no solution, also 

belongs to it. Hence we may restrict ourselves to the case that (1,0) is a 

solution of (3.1) and we shall do so in the sequel. 

We assume that the number of solutions with y=-1 and lxlsl is not 

less than the number of solutions with y=l and Ix Isl and moreover, that 

there are at least two solutions with y~-1 and lxls1. These are no 

restrictions. Since F(l,0)=1 we have as a consequence, that 

3 F(x,y) = (x+py)(x+qy)(x+ry)-y where p,qE{-1,0,l},p>q,rE?Z. 

If there is a third solution with y=-1, Ix Isl then F(x,y)=x(x-y)(x+y)-y3= 
3 2 3 

x -xy -y has discriminant -23. Hence this is impossible. If there is a 

solution with y=1,lxls1 then 

(x+p)(x+q)(x+r) 2. 

3 2 2 3 If x=-1, then p=O,q=-1,r=2 and F(x,y)=x +x y-2xy -y. If x=O then p=1,q=-I, 

r=-2 and F has discriminant -87. Finally, if x=1, then p=l,q=O,r=O and F 

has discriminant -23. Hence there are no solutions with y=1,lxlsl. It 

follows that (3.1) has at most three solutions with lxyls1 if F satisfies 

the conditions mentioned above. This completes the proof of theorem 1. D 

For the sake of completeness we mention that there are infinitely 

many reduced forms F for which (3.1) has three solutions with H(x,y)<3nD/2 

Take 

F(x,y) 3 2 2 3 x +ax y-(a+3)xy +y (aE7Z). 
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Then F has quadratic covariant (a2+3a+9) (x2-xy+y2) and discriminant 

(a2+3a+9) 2• It is easy to check that.Fis irreducible and that (1,0),(0,l), 

(-1,-1) are solutions of (3.1). For these solutions one has H(x,y)=n 112 • 

(3;1) has at most one solution with H(x,y)<!(3D) 112 if Fis 

irreducible and of positive discriminant. For by the covariance property 

of H we may assume that Fis reduced. Hence, by lemma 3. I, H(x,y)~3(3D)112;2 

if lxyl~2. Furthermore, H(::!:_l,O)=A,H(O,::!:_l)=C,H(::!:_l,::!:_l)~A-IBl+C and 

If D exceeds some absolute constant, D0 
similar to theorem 3.3, that theorem 3.3 with 

lower bound (3/2)(3D) 112 in (3.3) is replaced 

say, then one can prove, 

k=l holds true even if the 
1/2 

by ½(3D) . Hence for D~D0 , 

(3.1) has at most ten solutions. In fact, one can show that n0 can be 

taken equal to 6xJo 10 but we shall not work this out here. 

§3.3. Preliminaries to the proof of theorem 3.3. 

Also for later purposes, we shall state some general properties of 

binary cubic forms. Let K be a field of characteristic O and let F(x,y) be 

a cubic form with coefficients in K, say 

F(x,y) 
3 2 2 3 ax +bx y+cxy +dy 

The quadratic covariant of F was defined by 

2 2 Ax +Bxy+Cy, 

where 

(3. 6) A 
2 b -3ac, B bc-9ad, C 

Let D denote the discriminant of F. Then H has discriminant -3D. Another 

covariant of F, the cubic covariant, is defined by 

G(x,y) 

where 

oF 3H 
ax ay 



(3. 7) 
3 2 2 2 a'=9abc-2b -27a d, b 1=6ac -b c-9abd, 

c'=9acd+bc2-6b 2d, d'=27ad2+2c3-9bcd. 

LEMMA 3.2. In the above notation, let M=K(l-3D). There are a pair of 

constants a,SEM and a pair of linear forms ~,nEM[x,y] of determinant 

unity such that for some choice of the square root of -3D: 

(3. 8) 

(3.9) 

(3. IO) 

~3 _ G+3✓=Tri° F O 3 
a, - 2 , ... n 

a~3-sn3 = 31-3D F , 

G-3/:Tri" F 
2 

H3 = a~ 3sn3, H = -✓-3D ~n-

PROOF. Choose l-3D such that B+l-3Df0 and put 

2C 
X Y• 

B+l-3n 

Since H has discriminant -3D it follows that the linear tran.sformation 

(x,y)1+(~,n) has determinant unity and that 

H = -l-3D ~n. 

Put 

~ 3 ~ 2 ~ 2 ~ 3 
a~ +b~ n+c~n +dn := F(x,y). 

,....,, ,....,, ,...,, ,..., 
Then a,b,c,dEM and by the covariance property of Hand by (3.6), 

(3. 11) 
~2 ~~ ~2 ~ r-=-b -3ac = O, c -3bd = 0, bc-9ad -v-3D. 

Hence 
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Therefore, bc=O and together with (3.11) this yields that b=~=O, ;d=l-3D/9. 

Thus we have, by the invariance of D and the covariance property of G, 

F(x,y) F(~,n) 
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Now we put a=31-3D ;, B=-31-3D d. Then clearly a,8EM, 

This proves our lemma. Note that as a by-product we obtained the well-known 

identity 

□ 

In the sequel we shall use some facts about quadratic fields. (cf 

[La],ch.1,4). We shall apply the preceding theory with K=(Jl,a,b,c,dE?l ,D>O. 

Thus M=(Jl(l-3D) is an imaginary quadratic field, which is supposed to be 

contained. in a:. Furthermore we put 

It is easy to check that 00 is a subring of OM' on noting that D=B2 (mod 4), 

i.e. D=O,l(mod 4) and that (m+nl-3D)/2E0M if and only if m=nD(mod 2). 

Furthermore, 

(3. 12) :>t E 00 if and only if A E OM, :>t-I E ?Zl-3D. 

This implies that 

(3. 13) !:>ti 

3 3 Note that by (3.8) and (3.10) a,(x,y) and Bn(x,y) are complex conjugate 

elements of 00 for every pair of rational integers (x,y). Furthermore we 

have 

PROOF. For convenience, we put ,.=,(x.,y.),n.=n(x.,y.) for i=l,2. Note that 
i i i i i i 

-✓-3o, 1 n 2 and -✓-3o,2 n 1 are cube roots of the complex conjugate algebraic 

integers a,fsn; and a,~Bni respectively which belong to Mand that the 

product of these numbers is equal to H(x 1,y 1)H(x2,y2)>0. Hence l-3o, 1n2 
and ✓-3o,2 n 1 are complex _conjugate elements of OM. Furthermore, since the 
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transformation (x,y)i+(E;,n) has determinant unity, 

(3. 14) 

By (3.12) this implies that ✓-3DE; 1 n 2 E00 • 

Since aS(E; 1n1) 2E; 2n2=H(x 1,y 1) 2H(x2,y2)>0 and lat;~l=lsn~I for i=l,2 we 

1 21121 2 2 l.: have aE; 1E; 2 = Sn 1n2 , and hence at; 1E; 2 ,sn 1n2 are complex conJugates. There-

fore it suffi~es to show that at;ft; 2E00• We put £1=E;(l,0),£ 2=E;(0,l). Then 
"2" b . 1· b' . f 3 2 2 3 . h as1s 2 can e written as a 1.near com 1.nat1.on o a£ 1,a£ 1£2,a£ 1£2,a£ 2 wit 

. 1 . 1 ff' ' ' ff' 3 2 rati.ona 1.ntegra coe 1.c1.ents. Hence 1.t su · ices to show that a£ 1,a£ 1£2, 
2 3 3 3 a£ 1£2 ,a£ 2 belong to 00 • Note that a£ 1,a£ 2 are algebraic integers and that 

a£f£2,a£ 1£~ are also algebraic integers since they are cube roots of 
32 3 3 32 (a£ 1) a£ 2,a£ 1(a£ 2) respectively. Furthermore by (3.8), 

3 3 2 2 2 2 3 3 a£ 1x +3a£ 1£2x y+3a£ 1£2xy +a£ 2y 3 3 a(£ 1x+£ 2y) = aE;(x,y) 

a 1 +3a ✓="3n 3 3 b'+b/::m 2 3 2 X + 2 X y+ 
c'+c/::m 2 d'+3d✓='3D 3 

2 xy + 2 y 

. 3 2 2 3 Since a,b,c,d,a',b',c',d' are rational integers, a£ 1,a£ 1£2,a£ 1£2,a£2 
belong to 00. This completes the proof of lemma 3.3. D 

§3.4. Proof of theorem 3.3. 

We shall prove theorem 3.3 similarly to theorem 2.1 for n=3 but we 

have to be more careful in our estimates. We put ~=3D and for every pair 

of rational integers (x,y), 

3 I Sn (x,y) I 3/2 
H(x,y) • 

We have to show that there are at most nine pairs of rational integers 

(x,y) such that 

(3. 15) w ~ (t)3/2~3/4k9/2, lat;3-Sn31 ~ 3k~l/2, 

(x,y)=I and y>0 or x=l and y=0. 

It is known that 49,81,148 are the three smallest positive integers which 

are discriminant of an irreducible cubic form and that for these values of 

D only one equivalence class of cubic forms exists. (cf. footnotet onp.46') 
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Hence by the results of Ljunggren and Baulin, we may assume that D2148 if 

k=l and D249 otherwise, i.e. ~2444 if k=l and ~2147 if k22. 

Let 01,0 2 ,0 3 be the three cube roots of S/~. We say that a solution 

(x,y) of (3.5) is related to Bi if 

I 1-0 n(x,y) I = min \ 1-0 n(x,y) I 
i s(x,y) jE{l ,2,3} j t.:(x,y) 

We shall show that at most three solutions of (3. 15) can be related to a 

0 .• We assume the contrary, i.e. that there is a cube root 0 of S/a to 
l. 

which at least four solutions of (3.15) are related, (x_ 1,y_ 1),(xO,yO), 

(x 1,y 1),(x2,y2) say, ordered such that w(xi+l'Yi+l)2w(xi,yi) for i=-1,O,l. 

LEMMA 3.4. (i) If (x,y)is a solution of (3.15) related to 0, then 

(3. 16) I 1-0.:!J.J 
c.: 

11 kl~ 
< ---3 w 

(ii) If (x' ,y' ), (x" ,y") are distinet solutions of (3. 15) related to 0 and 

if w(x",y")2w(x',y'), then 

(3.17) w(x" ,y") 2(0 · !48)3w(x' ,y' ) 2• 

PROOF. I shall use an argument which was suggested to me by F. Beukers. 

Note that by (3.15), 

3 \1-~\ ~ 
a~ 

(3. 18) 
w 

Since ~l/4k 7/ 2?.444 114 >2 3123-l/ 2, we have by (3.18) and the lower bound for 

tln [D/F] on p. 159 a table is given of rings of discriminant D with 

O<D~l296 with a unit element which are contained in rings of integers of 

cubic fields. This table can also be considered as a table of equivalence 

classes of cubic forms of positive discriminant for Delone and Faddeev 

showed in ch. 2 of [D/lil that there exists a bijective mapping of equivalence 

classes of irreducible cubic forms onto the rings described above which 

preserves the discriminant. This table shows that the class of discriminant 
· . 3 2 2 3 49 1.s represented by x -x y-2xy +y, the class of discriminant 81 by 

3 2 3 3 2 2 3 x -3xy -y and that of 148 by x -x y-3xy +y. 
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w given in (3.15), 

I I - af3 :331 $ -.....-2~3~/ .,...2 ~~ 
s 3 1/21:,1/4k7/2 

< I. 

3 3' 3 3 
Sincelf3n /al; J =I, this implies that larg(f3n /al; )l<rr/3.(cf. figure 3.2 

below). Hence, by the fact that (x,y) is related toe, 

figure 3.2. 

(ii) Put l;'=l;(x',y'),n'=n(x',y'),w'=w(x',y'),l;"=l;(x",y"),n"=n(x",y"), 

w"=w,x",y"). We have la.Sl=t, 312 , hence by (3.14) and (3.16), 

✓1:, laf3l 113 s laf3l 113 11;'n"-l;"n'I = (w 1w") 113 !e~:-ef,[ 

s (w'w") 113( I 1-e~: I +j t-e~:: [) < (1,1'w") 113 ~✓!:,(w'-l+w"-I). 

This implies that 

W'+w" 3 ( I ")2/3 > rrk w w • 

1/3 -2/3 3 2 3 
Put p=kw" w' , h(z)=z -3z /rr+k /w'. Then h(p)>O, Note that h(z) 

assumes a local maximum for z=O and a local minimum for z=2/rr. Clearly, 

h(O)>O. (cf. figure 3.3 on the following page). By (3.15) and the fact that 

k 3121:,314~444 3!4 we have 

(3. I 9) 
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Hence 

h(2/n) 

Therefore, h(z) has two zeros, p1,p 2 say, with p1<p2, such that h(z) is 

positive for O<z<p 1 and z>p2, and negative for p1<z<p2• It is impossible 
-1/3 that p<p 1• For since w"2:w' we have p2:kw 1 and, by (3.19), 

Hence p>p2• Furthermore we have p22:0.948 since by (3.19), 

This proves lennna 3.4 completely. □ 

h{z) 

i 
0 

figure 3.3. Graph of h(z). 

Put w.=w(x.,y.),l;.=l;(x.,y.),n.=n(x.,y.) for i=l,2 and° z 1=en 1/i; 1• On 
i i i i i i i i i 

applying lemma 3.4 (ii) twice we have, by the lower bound for w in (3.15), 

(3.20) 

Furthermore, on applying lennna 3.4 (ii) once again, 

(3.21) 

·1et A (z) ,B (z) be the polynomials defined in chapter. I (with n=3) 
m m 



and let r,g be the integers defined by m=2r+l-g with gE{O,l}. We assume 

that m~2. 

LEMMA 3,5. Put 

If E fo, then 
m 

(3.22) 

PROOF. Put y=-a6/l-3D,o=-S/6 ✓-3D, Then, by the fact that aS=-( ✓-3n) 3 (cf. 
-- 3 3 r-=-
(3.10)), y =a,o =S,yo=-v-3D,o/y=6. Furthermore, we put F=F(x 1,y 1), 

~=F!=n/as3, We shall consider the number 
I 

fl 
m 

We assume that E, whence fl is non-zero. 3 r 3 The numbers (as 1) Am ( z1) and 
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3 r-g 3 m m 
(as 1) Bm(z 1) belong to 00 • For by lemma 1.3 (ii) with n=3 we have, using 

that max(2deg c1m,2deg c2m+l)~r,l-3DE00 , 

(asf)rAm(zf) = (asf)rAm(l-33/2~) = (asffqm(~2)-~ ✓3(asffsm(~2) 

= (as 3)rC (-F2D/ (as 3) 2)-Fl-3D(as3f-lr~ (-F2D/ (as 3) 2) E 00 I Im I I -Zm I 

and similarly, (asf)r-gBm(zf)EOO. 

Firstly, we consider the ca~that mis odd, Then, by (1,1), Bm(z)= 
r -I 3 3 3 r 3 3 r 3 

z Am(z ) for z/0. Hence, by as 1=Sn 1, (as 1) Am(z 1) and (as 1) Bm(z1) are 

conjugate elements of 00 . Furthermore, by the proof of lemma 3.3, ✓=':ms 1 n 2 
and ✓-3Ds2 n 1 are conjugate elements of 00 • Hence, by (3.12), 

(3.23) fl 
m 

Secondly, we assume that mis even, It follows at once from lemma 3.3 

and o3=s, that 
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3 Furthermore we may assume that A i'lZ. For suppose the contrary. Then A= 
m m 

pA for some third root of unity p, Furthermore, by (3.10) and yo=-l-3D, 
m 

y~i and oni are complex conjugates for iE{l,2}. Hence by lemma 3.3, 

ei: 
m 

* Hence 8l: has degree at most 2 over M. But this is impossible, since l: EM 
m m 3 

since Fis irreducible and since M(8) contains a zero of F(x,1). Hence Am 

/.'lZ. This implies by (3. 13) that 

Together with (3.23) this yields that for all values of m with m2:2, 

(3.24) IA I 2: 2-g/3/:,1/2-g/3. 
m 

We shall now estimate I Ami from above. By lz 1 l=l, lemma 1.4, lemma 

3.4 (i) and lemma 1.6 (i) we have 

2 2-g/3 ( )km,r+l/2-g/2 1/3 -r-2(1-g)/3 
+ 3. T m Ll w2 w 1 • 

Together with (3.24) this proves lemma 3.5. □ 



LEMMA 3.6. E fO for mE{2,3,5,7}. 
m 

3 3 3 
PROOF. We shall proceed similarly as in lemma 2.8. Put h=a~ 1-sn 1,w1=a~ 1, 
--- 3 
u=h/w1=I-z 1• Then h,w1EOM. Note that by (3.18), (3.20) and the fact that 

65/2k8?.4445/2, 

(3.25) 
-6 

< IO • 

As in lemma 2.8 we put E (z)=q*(m)A (I-z),F (z)=q*(m)B (I-z), where q*(m) 
m m m m * 

is the smallest positive rational number such that both q (m)A (1-z) and 
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* ~ m ~ 
q (m)Bm(I-z) have rational integral coefficients. The forms E;(x,y),F;(x,y) 

are defined similarly as in lemma 2.8. Finally, let Km(z) be the 

polynomial defined by E (z)n-(1-z)F (z)n=zmK (z). Let d be the ideal in 
~m 3 m ~ m 3 

OM generated by (w 1-h)F;(w1,h) and w1E;(w1,h) If Em=O then we have, 

completely similar as in the proof of lemma 2.8, 

(3.26) 

By (3.25) we have, similar to (2.17), 

(3.27) 

The arguments used in the proof of lemma 2.8 in order to estimated from 

above can be used here as well if we work in a finite extension of Min 

which the ideal generated by w1 and his principal. Thus we obtain 

(3. 28) 

Note that if y1,y2 are elements of OM with <y 1>~<y2>, then Jy 1 Jsjy 2 J. 

Hence by (3.26),(3.27),(3.28) and 

we have 

O < la~;-sn;I s 3kt. 112 , lw 11 = w1, lhl s 3kt. 112 , 

t,.?. 147, t,.?. 444 if k=l 
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8w f I h I 2 s 6 3w 1 I h I 3 • 3M 1 / 2 , 

WI s 33 ihl•3k6 112 s 35k 26 s 35444-2k96 3 < k96 3 
if m=2, 

w 1 I h I 3 s I h I 4 • 3k6 1 I 2 , 

w1 S 9k26 S 9x444-zkg6 3 < k963 
if m=3, 

wt I h I 7 s I h I 1 O 84 3 • 3k6 1 / 2 , 

w1 S (3k6l/Z) 4/ 334 S 3413x84x444- 7/ 3k963 < k963 
if m=7, 

provided that ~m=O for one of the values of m given in the lemma. But these 

inequalities clearly contradict (3.20). This proves lemma 3.6. D 

LEMMA 3.7. There are rational integers t 1,i2 with Js.R. 1si 2si 1+1 such that 

11+1/3 -1 2/3 .R,1+4/3 
o(2.R. 1+J)w 1 s k w2 < o(2.R. 1+3)w 1 , 

(Z n) .R.2 < k-1,-1/3 2/3 (Z' Z) .R.2+! a ~2 w1 _ u w2 < a ~2+ w1 

(3.29) 

PROOF. For the sake of completeness, we put o(O)=o(l)=O. Then the 

sequences o(Z.R.+l)w~+l/ 3 and o(2.R.)w~ increase monotonically to infinity and 

their terms with .R.=O are equal to 0, Hence there exist non-negative 

integers i 1,i2 satisfying (3.29). Firstly, we shall show that .R. 1~1. We 

assume the contrary, i.e. 

(3.30) 

Note that by (3,21),(3.20) and 6~147, 

~2 a(2)k6 113w1w;213 s o(2)k36 113o.948-2wi 113 

s o(2)0.948-zxJ47-Z/ 3k36wil/ 3 < k36wil/ 3 < I. 

Furthermore, by (3.30),(3.20) and kl/Z6l/ 6~444 1! 6 , 

(2)1 2,5/6 1/3 -1 
T c u w2 WI 
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But these facts are contradictory to lemma 3.5 and lemma 3.6 in case m=2. 

We shall now show that t 1st2st1+J. Suppose that t 1~t 2+1. Then 

( 2t 2+2) t2+4/ 3 < k-1 2/3 < 2-2/3,1/3(2t2+2) i2+l 
t 2+I 1rw1 - w2 - LI t 2+I 1rw1 ' 

hence 

-1 -1/3 2/3 
k t, w2 

hence 

which is also impossible. This completes the proof of lemma 3.7. D 

Now we shall prove theorem 3.3. Let t 1,t2 be the integers defined in 

lemma 3.7. We choose r=t 1,g=O,m=2t 1+1 if E2i 1+1fo, but r=t2,g=l,m=2t2 
otherwise. Then we have by lemma 3.7 that lm-(2t 1+I)lsI. Hence, by lemma 

1.5, E fO. Note that by lemma 3.6, m is even implies that r~4.and m~8. 
m 

Furthermore we have, by our definitions of t 1,t2,r,g,m, 

(3.31) () r+(l-g)/3 -1 -g/3 2/3 ( 2) r+l+(l-g)/3 
CJ m w I s k t, w2 < CJ m+ w I • 

The left-hand side inequality of (3.31) clearly implies that ~msl. We shall 

now show that, SI. Then we have a contradiction with lemma 3.5. This shows 
m 

that (3.15) can not have four solutions which are related toe, i.e. that 
2 theorem 3.3.is valid. Note that, by k 8~444,r-3g>O, and by the right-hand 

side inequality of (3.31), 

' m 
( )km,r-g/6 1/3 -r-2(1-g)/3 

1 m LI w2 w1 
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where 

( 
2 3 \1/(t-g) 

nm o(m+2),(m) 444 g-r) 

((2r+2)(3(r-g+l/3xr-l/3)(2r+l-g)-l)Zrr4r+3-2g4443g-r)r-g 
r+l 2\ r-g+l r r 

By (3.20) it suffices to show that Dm~7. But this is easy, since for every 

integer n with n=2s+l-h, wheres and hare integers with hE{O,I} and s>O, 

(2s+4) (2s+3) (s+l-h+I /3) (s+l-1/3)/ (2s+3-h) (2s+2-h))2 rr4 444-I 
(s+2)(s+2) (s+2-h)(s+I) (s+2-h)(s+l) 

< 4rr4444-l((s-h+4/3)(s-2/3))2 < 4rr4444-l < I 
(2s-h+3)(2s-h+2) ' 

whereas 

n3 = (i)(«4~3)(2{3)(~)-1)2rr7444-l < 0.3, 

D8 = ((1sOX¥1013)(1lf3)(~r1)\17444-ly/3 < 6.8. 

This completes the proof of theorem 3.3. □ 
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CHAPTER 4. SOME FACTS FROM ALGEBRAIC NUMBER THEORY, 

From this chapter on, it is supposed that the reader is familiar 

with the basic concepts of algebraic number theory, as can be found in the 

first six chapters of Lang's book,[La I]. In this chapter we shall develop 

some techniques which will be needed later. Apart from the notations 

listed at the beginning of this monograph, we shall use the notations 

introduced in this chapter throughout the remainder of this thesis. 

§4,1. Ideals and primes, 

Let K be an algebraic number field, By ideals in K we shall mean 

fractional ideals, i.e. finitely generated OK-modules, whereas integral 

ideals will mean ideals in the ring OK in the usual sense. We put 

I(K): the multiplicative group of ideals in K; 

S(K): the set of prime ideals in K, 

As is well-known, I(K) is generated by S(K). That is, for every aEI(K) we 

have 

(4. I) 
w (a) 

a= IT pp , 
pES(K) 

where the numbers wp(a) are integers, uniquely determined by a, of which 

at most finitely many are non-zero, If a=<a> we shortly write wp(a) instead 

of wp(<a>), 

Let L be a finite extension of K. Let p,P be prime ideals in K,L 

respectively, such that P divides pOL. We say that Plies abov~ p and we 

denote this by Pip, Furthermore we put 

Then 

(4.2) 

e(P/p) = wp(pO1 ), the ramij'iaation index of P, 

r(P/p) = [OL/P:OK./p], the residue alass degree of P. 

L e(P/p)f(P/p) 
PTP 

[L:K] , 
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where P runs through all prime ideals in L lying above p. If Lis a Galois

extension of K, then all prime ideals P lying above pare conjugate over 

K, i.e. they can be transformed into each other by means of a K

automorphism of L. Then the numbers e(P/p),f(P/p) do not depend on P, 
Let E(K) be the set of ~-isomorphisms of K into~- Such an 

isomorphism is called real if it maps K into JR and complex otherwise, If 

oEE(K) is complex, its conjugate o is defined by cr(a)=o(a) for aEK. We 

divide E(K) into subsets consisting of either one real or a pair of 

conjugate complex isomorphisms. Such subsets are called infinite primes, 

whereas prime ideals are called finite primes. Thus we have 

S(K): the set of finite primes, 

and we put 

S00 (K): the set of infinite primes, 

S(K) = S(K)uS00 (K): the set of all primes on K. 

We shall denote primes, either finite or infinite on~ by the letter p, 

on a fixed algebraic number field by v and, if confusion may arise, on an 

extension of this field by V. An infinite prime is called real if it 

consists of a real isomorphism and complex otherwise. If r 1 denotes the 

number of real, and r 2 the number of complex primes on an algebraic 

number field K we clearly have 

(4. 3) [K:~]. 

We say that a prime Von an extension L of K lies above the prime v 

on Kif it lies above v in the sense of prime ideals in the finite case 

or ~fit contains continuations of ~-isomorphisms of K belonging to v in 

the infinite case, We denote this by vJv. Note that by (4.2) and by the 

fact that each ~-isomorphism of K can be extended to exactly [L:K] ~

isomorphisms of L, at most [L: K] primes on L ly above a fixed prime on K, 

If L/K is Galois all primes on L lying above a fixed prime on Kare 

conjugate over K. In the infinite case this means the following: two 

infinite primes v 1,v2 on Lare called conjugate if a K-automorphism.,of L 

exists such that all elements of v2 are given by ,o, where o runs through 



the elements of v1• Finally we note that for Galois-extensions L/K either 

all primes on L lying above a fixed infinite prime on Kare real or they 

are all complex. 

§4.2. Norms, polynomials, discriminants. 
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Let K be an algebraic number field as usual and let f(x 1, ••• ,xr) be a 

polynomial in r variables with coefficients in K. The content off with 

respect to K, denoted by eK(f), is defined to be the ideal in K generated 

by the coefficients off. If eK(f)=OK then we call f primitive. If Lis a 

finite extension of K then 

(4.4) 

(4.5) 

In case that both f and g are primitive, this can be proved similarly to 

Gauss' lemma. In the general case one can extend K to a field Lin which 

both e1 (f) and e1 (g) are principal ideals with generators 61,6 2 say. Then 

both f/6 1 and g/6 2 are primitive, hence their product fg/6 102 is. This 

shows the general case. 

As is well-known, the norm of an element aEK is defined as 

II a ( a) 
OEE(K) 

There is a suitable generalisation for ideals. The norm of an integral 

ideal a is defined as 

If a is not integral, then a is the quotient of two integral ideals, b/e 

say. We put 

This is well-defined and we have 
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(4.6} NK(ab) = NK(a)NK(b) for a,bEI(K), 

( 4. 7) NK(<a.>) INK/a/a.) I for * 
Cl.EK ' 

(4. 8) NL (aOL) NK(a)[L:K] for aEl(K), L/K finite, 

(4.9) NK(a)OM II o(a)OM for ad(K), M/(Q Galois, M:::,o(K) for 
OEE(K) 

od(K). 

We shall apply this together with (4.5) to the following situation. 

Let a<A*and put k=(Q(a), 

T(a) T (a) II (z-o (a.)). 
OEE(k) 

Fa. is called the minimal polynomial of a. Clearly Fa is an irreducible 

polynomial with coefficients in (Q. By the preceding theory, one can show 

that Fa is primitive, whence has integral coefficients. For in general we 

have by (4.5) for every polynomial f(z)=S(z-a 1) ••• (z-ar) with S,a. 1, .•• ,a.r 

in some algebraic number field K, 

(4. I 0) 

Hence, if Mis an extension of k containing all conjugates of a, we have by 

(4.9), 

c...(F ) 
M a. 

We shall use (4.10) also in order to derive a useful identity 

involving discriminants of polynomials. Let r be an integer with r~2 and 

let S,a. 1, ••• ,a.r be a·lgebraic numbers. The discriminant of f(z)= 

S(z-a.1) ••• (z-ar) is given by 

D(f) 
Zr-2 2 

S II (a..-a..) • 
i>j ]_ J 

Since D(f) is symmetrical in a. 1, .•• ,a.r it can be expressed entirely in 

terms of the coefficients off. Now suppose that f(z)EK[z] for some 

a°lgebraic number field K and that a. 1, .•• ,a.r are pairwise distinct. The 

primitive discriminant off with respect to K is defined as the ideal 

(4. I I) 
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Let M be an algebraic number field containing ~ 1, ••• ,ar. By (4.10) we have 

the following identity of ideals in M: 

(4. I 2) 

( -I -I )2 IT <1,a.> <1,a.> <a.-a.> • 
i>j l. J l. J 

This implies that dM(f) is an integral ideal not depending on 8. It follows 

easily that dK(f) is an integral ideal not depending on 8 for every 

algebraic number field K containing the coefficients off. 

§4.3. Valuations. 

On~ we have the following primes: the prime numbers which are 

usually identified with the finite primes and the infinite prime consisting 

of the identity on~ which is usually denoted by p00 • For every prime we 

define a valuation: 

lal = lal for ae:~, the ordinary absolute value; 
Poo -w (a) * 

lal = p P for ae:~, IOI = O, the ordinary p-adic 
p p 

valuation, if p is a<,prime number. 

By the unique factorisation on~ we have the product fol'f11UZa: 

(4. I 3) IT la I = I 
pe:s(~) P 

* for ae:~. 

It is possible to generalise this for algebraic number fields. 

Firstly, we define valuations for ideals. Let K be an algebraic number 

field of degree m. We define for pe:S(K)· and ae:I(K): 

By this definition, we have 

(4.14) 

By (4.1) and (4.6) we have the product fol'f11UZa for ideais: 
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(4. 15) I • 

We now define valuations on K. For aEK we put 

-w (a)/m 
for v=pES(K): la! NK(p) p if af-0, I oJ = 0; 

V V 

for vES00 (K): Jal V 
!a(a)ld(v)/m for some GEV, where d(v)=I 

if Vis real and d(v)=2 otherwise, 

Since by (4. 7), 

(4. 16) 

we have by (4.15) the product fornruZa: 

(4. I 7) IT I a I 
- V VES (K) 

* I for aEK, 

We shall often use the following corollaries of the product formula, 

If Sis a finite collection of primes containing all infinite ones and if 

a is a so-called S-unit, i.e. Jal =I for viS then clearly 
V 

(4.18) IT I a I 
V VES 

I • 

* If aEOK and Sis a collection of primes which contains all infinite primes 

but is not necessarily finite then 

(4.19) IT I a I 
VES V 

The following important properties of these valuations may be noted, 
* If aEK, then Jal f-1 for at most finitely many v. If L/K is a Galois 

V 

extension, if VES(K), and if v1,v2 are primes on L lying above v, then 

either v1,v2 are conjugate prime ideals, or conjugate real primes, or 

conjugate complex primes, Hence we have for some K-automorphism T of L: 

(4.20) for aEL, 

In order to simplify estimates in which both finite and infinite 

primes appear, we introduce the following notations: 
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(4.21) s(v) 0 if vES(K); s(v) 

Then we have 

(4.22) 2 s (v) = 2 s (v) = I, 
VES(K) VESOO(K) 

(4.23) la 1+ .•• +a j ,;:; rs(v)max( la 1 I , ... , la I ) for a 1, ••• ,arEK r V V r V 
and vES(K). 

§4.4. Heights. 

* Let K be an algebraic number field. The height of aEK is defined as 

(4.24) h(a) = II max(l,lal ). 
- V VES(K) 

In fact, the height does not depend on K, hence it can be considered as a 

height function on A*. For put k=~(a), 

d = dega= [k:~J. L(a) = II max(l,icr(a)I). 
OEE(k) 

Each ~-isomorphism cr of k can be extended to exactly [K:k] ~-isomorphisms 

of K, Hence 

( ) 1/[K:~] 1/d l1 max(l,lal) = II max(I,h(a)I) = L(a) , 
VESOO(K) TEE(K) 

whereas by (4.14),(4,15) and (4,8), 

II max(I, !al ) 
VES(K) V 

II l<I,a>I NK(<l,a>)-l/[K:~J 
VES(K) V 

Nk(<J,a>k)-1/d T(a)l/d. 

Therefore, 

(4.25) 

Note that by (4.25), algebraic numbers which are conjugate over~ 

have the same height. Furthermore, if r,sE?l* with (r,s)=I then T(r/s)=ls I, 

L(r/s)=max(I,lr/sl), hence 
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(4.26) h(r/s) = max(lrl, Isl). 

* Finally, we mention another useful expression for the height. Let s,n€K. 

Then it follows easily from the product formula (4.17) that 

( 4. 2 7) h(s/n) = II max(lsl ,lnl ). 
V€S(K) V V 

* LEMMA 4.1. Let CL,8,CL 1, ••• ,Clr€A ,ne?L. Then 

(4. 28) 

(4.29) 

(4.30) 

(4. 31) 

h(Cln) = h(Cl) lnl, 

h(Cl 1Cl2 ••• Clr) s h(Cl 1)h(Cl2) ••• h(Clr), 

h(Cl8)~h(Cl)/h(8), h(Cl/8)~h(Cl)/h(8), 

PROOF. Let K be an algebraic number field containing CL,8,CL 1, .•• ,Clr. Let 

vES(K). Note that by (4.27), h(Cl-l)=h(CL). Hence in the proof of (4.28) we 

may assume that n~O. By (4.23) and (4.22) we have 

max(l,IClnl) = max(l,ICLI )n, 
V V 

max(l,1Cl1Cl2 ••• Cl I ) s max(l,1Cl 11 )max(l,1Cl2 1 ) ••• max(l,ICl I), rv v v rv 

max(I, 1Cl 1+ ... Cl j ) s max(l,rs(v)max(ICl 1 I , ... , la I )} r V V r V 

s rs(v)max(l,ICl1lv,••••IClrlv) 

s(v) I , I I s r max ( I , Cl I I ) ... max (I , Cl ) • 
V r V 

Now (4.28),(4.29) and (4.31) follow by taking the product over all v. 

( 4. 30) follows from ( 4. 29) by noting that h(8) =h (8-I) and 

□ 

LEMMA 4. 2. Let C be a positive number and let d be a positive integer. Then 

the number of aZgebraia numbers of degree at most d and height at most C is 

bounded above by 

d d d+I 
2 ((2C) +I) • 

PROOF. Let Cl be an algebraic number of degree d'sd and height sc. Let Cl 1, 

••• ,Cld' be the conjugates of Cl and suppose that these numbers belong to~-



(4.32) 

a 
r 

la I r 

Let Ga(z)=oFa(z), where 

oE{-1,I} is chosen such 

where bd'+l= ..• =bd=O if 

a . .. • a. 
l. 

r 
for r=l,2, ... ,d'. 

F (z) is the minimal polynomial of a and where 
a d 

that Ga(O)>O. Suppose that Ga(z)=b0+b 1z+ ... +bdz , 

d>d'. By (4.32) and (4.25) we have 

lbi\,,; T(a)max(I,\a 1 \, ..• ,lad,\) 

,,; 2d-lL(a)T(a) ,,; 2d-lh(a)d,,; _!_(2C)d 
2 

for i=O,I, ..• ,d. 

iforeover, biE2'Z for i=O, .•. ,d and b0>0. Hence we have at most 
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possibilities for the polynomial Ga(z). Since every polynomial Ga(z) has at 

most d zeros, this proves lemma 4.2. □ 
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CHAPTER 5. AN APPROXI11ATION THEOREM. 

§5.J. Introduction. 

In chapter 2 we considered the equation axn-byn=c in integers x,y. We 

showed that solutions of this equation satisfy the inequality 

(5. I) 

where c 1 is some positive constant depending on n and c. In chapter 3 we 

met a similar inequality. The equation F(x,y)=I in integers x,y, where Fis 

a binary cubic form of positive discriminant D was transformed into an 
3 3 ,-=-

equation as -Sn =3v-3D, where a,S are constants and s,n variables in the 

field ~(l-3D). We showed that s,n satisfy 

(5.2) 

3 
where 8 =S/a and where c2 is some absolute constant. In this chapter we 

shall consider systems of diophantine inequalities which may be considered 

as generalisations of (5. I), (5. 2). The result we obtain here will be used 

to derive upper bounds for the number of solutions of equations of the 

Thue-Mahler type. 

Apart from the notations in chapter 4 we shall use the notations 

below. 

K is an algebraic number field; 

w is a non-zero element of K; 

n is an integer with n23; 

Lis a finite extension of K containing all n-th roots of w; 
Sis a finite set of primes on K; 

{8v}vES is a set of fixed n-th roots of w which belong to L; 

B,C are constants with B>l/2+ 1/n and C2J; 

{r } Sis a set of positive constants with I 5rv =B; 
V VE VE * 

W(~) is a function on K* such that W(z)2h(wzn) for all zEK. 

(The reader is warned that Sand S(K) are distinct sets). For every VES, 



we choose a continuation of I. I to Land this continuation is fixed in 
V 

the sequel. This continuation is also denoted by I. I . 
V 

(5. 3) 

We consider the following system of inequalities: 

r 
I 1-e zl ~ (CW(z)- 1) v 

V V 
(vES) * in ZEK • 
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We shall derive an upper bound for the number of solutions of (5.3) with 

W(z) sufficiently large, by applying a generalisation of the method used in 

chapter 2 and chapter 3. Since this method is a modification of Thue's 

method [Th 1,2], we have to assume that B>n- 1(I+n/2). It is very likely, 

that by an adaptation of Roth's method ([Ro], see also [D/R],[Ri]) results 

can be obtained on (5.3) for all B>2/n. 

THEOREM 5. I. Suppose i 0 is the smallest integer such that 

(5. 4) 

and k is the largest integer such that 

(5.5) 
log(1+2ni0 (nB-2)/(n-2)) 

k<-----------log (nB-1) 

Then (5.3) has at most k solutions with 

(5.6) 

REMARK I. For specific choices of n,B,C,W(z) it might be possible to 

obtain a better result than the one given in theorem 5. I, but that would 

not essentially improve upon the results which we shall derive from theorem 

5.1. 

REMARK 2. For n~9, we have i 0=2,k=l. To prove this, it suffices to show 

that 

(5. 7) 
4n 2 

n_2 (nB-2)+1 ~ (nB-1) for n~9, B > 1/2 + 1/n. 

Note that the left-hand side of (5. 7) is a function in B with derivative 
2 

4n /(n-2), whereas the right-hand side has derivative 2n(nB-I). It is 

easy to check that. for n~9 and B>l /2 + I /n, 
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2 
4n < 2n(nB-I) n-2 -

and that for n?:9 and B=l/2+ 1/n, 

4n 
n-2(nB-2)+1 

n2 2 2n+I s 4 = (nB-1) • 

This proves (5.7). 

§5.2. Proof of theorem 5.1. 

We shall use the same notations as in §5.1. Furthermore, we put 

2n+2n IT pl/(p-l), D=2CB. 
pjn 

The following lemma will be used in chapter 6 as well. 

LEMMA 5.1. Suppose z', z" az,e two distinct solutions of (5.3) suah that 

W(z')sW(z"). Then 

(5. 8) 

PROOF. Put W'=W(z'),W"=W(z") and for every vES(K) 

I w Iv I z' -z" I 
E =------v ____ v ____ _ 

v (max(l,lwz'nl )max(l,jwz"nl ))\/ 
V V 

I e z'-e z" I V V V 
= max (I , I e z I I )max (I , I e z11 I ) 

V V 
for vES. 

By (4.23),(5.3) and the fact that W''?:W' we have for vES, 

Ev s 2s(v)max01-evzt, j1-evz"~) 

r r 
s 2s(v)max(CW'-1,CW''-1) v = 2s(v\cw'-I) v 

For vl.S we have the trivial estimate E s2s (v). Hence by the fact that z' ,fz" 
V 

and by (4.17),(4.22), 

IT E s 2(CW'-I )B s 
VES(K) V 

DW'-B 
' 
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which proves lemma 5.1. □ 

We now assume that (5.3) has k+l solutions satisfying (5.6), z1,z2, 

... ,zk+l say, ordered such that W(z. )sW(z. ) ... sW(z. ), where (j 1, ..• , 
JI l2 lk+l 

jk+l) is some permutation of (1,2, •. :,k+l) with j 1=1,jk+l=2. Put 

We have 

(5.9) IT pl/(p-1) s n(n-1)/(n+I)_ 

Pin 
This is clear for ns6. For n~7 we have 

IT PI/(p-1) 

Pin 
s (n,2) rr pl/(p-I) s 

p\n 
pf,2 

By (5.9) we have 

Hence, 

(5. IO) 

2 (n+4)(n+l)n2n ~ 4x 22nun+l. 
n 

by (5.6), 

By lemma 5.1 we have for iE{I, ... ,k}, 

-n/ (nB-2) D W. 
li+I 

hence 

(5. I I) 

LEMMA 5.2. Let r be a positive integer and let A2r+l(z),B2r+l(z) be the 

polynomials constructed in chapter 1. Put 
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(5. 12) 

PROOF. Put 

q(2r+l)AZr+l(z), Hr(z) 

q(2r+l)V2r+l(z), 

where q(2r+l)=nr(nr,r!) and where VZr+l(z) is the polynomial constructed in 

lemma 1.4. By lemma 1.3 (i), Gr(z) and Hr(z) have rational integral 

coefficients and as a consequence of Gauss' lemma, Tr(z) also has. Note 

that by (2.24), 

(5. 13) 

Furthermore, by (5.6), w2~w1~c and hence, by (5.3), 

11-e z1 I s 1, 11-e z2 1 s I V V V V for vES. 

These inequalities imply that 

(5. 14) ( ) 
1 s(v) 

max IG (wzn1)1 ,IT (9 z1)1 s (-2ur) r v r v v n for VES. 

If vis finite, this follows immediately from the fact that s(v)=O, that 

je z1 I s1,je z2 1 sl and that G and T have v-adically integral V V V V r r 
coefficients. If vis infinite, then (5.14) follows from (5.13), lemma 1.6 

(ii), the fact that G ,T have rational coefficients and that lal = r r v 
la(a)ls(v) for all aEK and for some ~-isomorphism a of Kin~- Similarly, 

we have by lemma 1.6 (i), 

(5. 15) 

Put 
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F = je z2G ((8 z1)n)-8 z 1H ((8 z 1)n)I for vES, 
V V r V V r V V 

Firstly, we assume that vES. Then by lemma 1.4, (4.23) and (5.14), 

F j(e z2-I)G (wzn1)+(1-8 z 1/r+IT (8 z1)1 
V V r V rv V 

s 2s(v)max(l1-8 z21 jG (wzn1)1 ,11-8 z1[2r+l[T (8 z1)1) 
V vr V V V rv V 

Hence by (5. 3), 

(5. I 6) 

Secondly, we assume that vi.S. Then by (5.15) and (4.23), 

Hence 

(5. I 7) r s (v) [ n [ r+v I n [ v F s(U) max(l,wz 1 ) max(l,wz2 ) 
V n V V 

for vi.S. 

By the assumption of lemma 5.2 we have F fO. Hence by the product 
V 

formula (4.17), (4.22),(5.16) and (5.17), 

II F = IIF•IIF 
vES(K) v VES v vi.S v 

s Urmax(cw-21,(cw-11) 2r+l)B II (max(I,[wzn1[ )v+rmax(I,[wzn21 )v) 
n vi.S v v 

s u:max(cw; 1 ,(cw~ 1) 2r+l)Bh(wz~)v+rh(wz~)v 

□ 

LEMMA 5.3. There is a unique integer i with i~i0 such that 
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(5. I 8) 

PROOF. Since the sequence (UnW1) 1 increases monotonically to infinity if 1 

tends to infinity, it suffices to show that 

This is equivalent to 

By (5.1 I) it suffices to show that 

which is the same as 

By (5.10) it is sufficient to show, comparing the exponents of Un,D 

respectively and neglecting the factor 4, 

n+I ((nB-l)k+l_nlo-1) 
2nB-n-2 

n+I ((nB-l)k+l_ni 0-1) 
2nB-n-2 

These inequalities are equivalent to 

(5. I 9) 

(5.20) 

(nB-1 l+l 

(nB-1 )k+I 

2nB-l 
~ l+nlo~, 

nB-2 
~ 1+2n1 0 n-Z 

respectively. Note that (5.19) is weaker than (5.20) since 

2nB-I 
--< 

n+I 
2(nB-2) 

n-2 for B > 1/2 + 1/n. 

But (5.20) follows from (5.5). This proves our lemma. □ 

n 
Let 1 be the integer defined in lemma 5. 3. We put r=l if. z2A2l+l (wz 1) 
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fz 1B2£+l(wz~) and r=£-l otherwise. Note that always r21. By lemma 1.5 with 
n n 

h=2 we have z2A2r+l(wz 1)fz1B2r+l(wz 1), hence we may apply lemma 5.2. Note 

that by (5.18), 

We shall now show that 1 <l, thus contradicting lemma 5.2 and thus showing 
r 

that (5.3) can not have k+l solutions satisfying (5.6~. By the right-hand 

side inequality of (5.18) we have 

(5.21 ) 

-1 
1 s UrCB(2r+l)Wv+r-B(2r+l)(WvCB(U W )£+l)(nB-l) 

r n 1 1 n 1 
-1 

5 UrCB(2r+l)Wr-B(2r+l)(CBUr+2Wr+2+B} (nB-1) 
n 1 n 1 

(u~Br+2CB((2nB-2)r+nB)w;B(2nB-n-2)r-(nB2-2B-2))(nB-l)-l 

Put A=UnB/( 2nB-2)cB. Note that n+2>2n2B/(2nB-2) for B>l/2 + 1/n and that 
n 

2n+2n IT pl/(p-l) s 2n+2n2 s 4x2 2n for n24. 
pin 

Hence by (5.10), 

(5.22) 
= A2n/(2nB-n-2) 

Furthermore we know, by (5.4), B>2/n and r2£o-l, that 

and hence 

B 2 < B (nB >2 - nB ( (2 B 2) + B) n r+ - n r +2ri:B=z - 2nB- 2 n - r n , 

2n 2 (2nB-2)r+nB - 2 B 2(B(2nB-n-2)r+nB -2B-2) 
n -n- 2 

= -2r-(n-2)/2- 2t2n-B~:--i) s -2(r-£o+l) s O, 

2 
B(2nB-n-2)r+nB -2B-2 > O. 

Together with (5.21),(5.22) this yields 
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'.> I, 

This completes the proof of theorem 5.1. □ 
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CHAPTER 6. ON THE NUMBER JF SOLUTIONS OF THE TRUE-MAHLER EQUATION. 

§6.1. Introduction. 

Let K be an algebraic number field of degree m and let r 1,r2 denote 

the numbers of real and complex primes on K respectively. Let F be a binary 

fona of degree n with coefficients in OK such that F(l,O)fO and such that 

the polynomial F(x,1) has at least three distinct zeros in /A.. Furthermore, 

let p 1, ... ,/\ bet distinct prime ideals in K. (t might be zero, now and in 

the sequel). We shall deal with the generalised Thue-Mahler equation 

(6. I) <F(x,y)> 

* We call zEK a solution fraction of (6,1) if there is a solution (x,y,k 1, •• 

• ,kt) of (6.1) with x/y=z. Note that in case K=~ there is a one-to-one 

correspondence between solutions of (6.1) with (x,y)=I and y>O and solution 

fractions x/y of (6.1). Apart from the case that t=O and K=~ or an 

imaginary quadratic number field, there are infinitely many solutions of 

(6.1) corresponding to a given solution fraction. In this chapter we shall 

show that the number of solution fractions of (6.1) can be bounded above 

by a number depending only on m,n,t and not on the coefficients of F, the 

prime ideals p1, •• ,pt and invariants of K other than its degree. For 

technical reasons, it is more convenient to consider instead of (6. I), 

(6.2) < F(x,y) > 
n 

c.K (F)<x,y> 

Solution fractions of (6.2) are defined in a similar way as solution 

fractions of (6. I) and clearly, the number of solution fractions of (6.1) 

is at most equal to the number of solution fractions of (6.2). 

Let f(z) be a polynomial with coefficients in K which has degree n 

and at least three distinct zeros in A. Instead of (6.2) we may consider 

the equation 

(6.3) 
< f (z) > 

n 
c.K (f)< I, z> 

For suppose that f(z)=F(z,I). Then f(z) has degree n since F(l,O)fO, 

Furthermore, there is a one-to-one correspondence between solutions 
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(z,k1, ••• ,kt) of (6.3) and solution fractions z of (6.2). We shall prove 

the following 

THEOREM 6.1. Let f(z)EK[z] be· a polywmial of degree n whiah has at lea~t 

three distinat zeros in IA. Then the number of solutions o/ (6. 3) is at most 

15(lJ)m+I) 2 2(;)(r1+r2+t) 
7 + 6x7 

Let F(x,y)ElZ[x,y] be a binary form of degree n such that F(x, I) is a 

polynomial with at least three distinct zeros and let p1, ••• ,pt be distinct 

prime numbers. Theorem 6.1 implies that the number of solutions of 

(6.4) 

is at most 

IF(x,y)I in x,yElZ with (x,y)=l ,x;&O,y>O and 

kl, ••• ,ktElZ~O 

Under the restrictions that F has non-zero discriminant and that F(l,O);&O, 

F(O,l);&O, Lewis and Mahler [L/M] showed, using Mahler's p-adic generalisat

ion [Ma 1,2] of Siegel's approximation method [Si I], that the number of 

solutions of (6.4) is at most 

where c 1,c2,c3 are absolute constants and where His the maximum of the 

absolute values of the coefficients of F. Lewis and Mahler gave explicit, 

but very complicated expressions for c 1,c2,c3• In contrast to our bound, 

the bound of Lewis and Mahler depends on the coefficients of F, but if n is 

large compared with H the bound of Lewis and Mahler is sharper than ours. 

By theorein 6.1 with K=~ and t=O, the equation 

(6. 5) F(x,y) 

(where Fis as in (6.4)) has at most 
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solutions, where we have taken under consideration both possibilities for 

the sign of y if n is even. Tartakovskii [Ta] stated without proof that for 

irreducible forms F of degree n~4, (6.5) has at most 235n6 solutions. 

In case that K~~• no other explicit bound for the number of solutions 

of (6.3) is known. Only Parry [Pa](pp. 77/78) has proved some results in 

this direction, by an algebraic generalisation of Mahler's p-adic 

approximation method. For example he proved the following: 

let F be a binary form as in (6.1), let p1, ••• ,pt be given prime 

numbers and let DK be the disariminant of K. Let S be a set of pairs 

(x,y)withx,yc;;O; suah that no two pairs (x 1,y1),(x2 ,y2) both belong to S 

if x 1/x2=y1/y2=e for some unite. Then the number of pairs (x,y)c;;S with 

NK(<x,y>)~IDKl 112 suah that INK/~(F(x,y))I is aomposed solely of p 1, ••• ,pt 

is at most c5+1, where c0 is a aonstant depending on F and K only ani not 

on the number and ahoiae of p 1, ••• , Pt• 

Parry did not give an explicit value for c0 . Note that by theorem 6.1, c0 
can be replaced by a constant depending on Kand the degree of F only. 

( ) n * . In case that f z =1-wz, where wc;;K ,theorem 6.1 can be improved. 

* THEOREM 6.2. Let n be an integer with n~3, let wc;;K and let p1, .•• ,pt be 

given prime ideals. Put 

- 16n-2(16n-2)(8n+l5)/(8n-17) 
U(n) - Sn-17 8n+l5 • 

Then 

(i) the number of solutions of the equation 

(6. 6) 

• h ( n) n+IO . 1.,)1.,t h wz ~3 1,s at most 

r +r +t 
2(nU(n)) 1 2 

and 
· · h b , · ( ) . h ( n) n+IO • (1,1,) t e num er of so,,utwns of 6.6 w1,t h wz <3 1,s at most 
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The number U(n) decreases to 4 if n tends to infinity. In the table below 

some values of U(n) are given, rounded off to two decimals. 

(6. 7) 
n 3 4 5 6 7 8 9 

U(n) 16.49 9.85 7.82 6.84 6.26 5.88 5.60 

Using the result of theorem 6.2, it is possible to derive upper 

bounds for the number of solutions of equations of the type ym=f(x) in x,y 

E?l (where mE?l ,mc2,f(x)E?l[xJ) and for laxr-bysl=p~1.,.p~t in x,yEZl with 

(xr,ys) not divisible by an lcm(r,s)-th power >I and k 1, ... ,ktE?l2:0 (where 

r,sElN ,rsc6,a,bEZt and p1, ... ,pt are fixed prime numbers.). By methods 

described in [Si 2]and[LeV 2], ym=f(x) can be reduced to finitely many 

equations of the type axn-Syn=y with a,S,y constants and x,y integral 

variables in some algebraic number field K. Mahler [Ma 5]pointed out, that 

laxr-bysl=pl 1 ••. pkt can be reduced to finitely many equations of the type 

<axn-Syn>=p 11 ••• p!t where x,y are integral variables, a,S constants and 

p1, ••• ,pt fixed prime ideals in some algebraic number field Kand where t 1 , 

••• ,it are non-negative, integral variables. 

First of all, we shall prove theorem 6.1 for n=3. By combining some 

techniques Mahler introduced in p-adic approximation theory (cf.[Ma 1,2], 

[L/M]) with techniques from chapter 3 we shall reduce (6.3) to finitely 

many systems of inequalities of type (5.3) with n=3 and then apply theorem 

5.1. The general result is derived from the result in case n=3. Equations 

of type (6.6) can be reduced tci systems of inequalities of type (5.3) for 

all values of n with n23. This brings about the fact that our upper bound 

for the number of solutions of (6.6) has a better dependence on n than that 

of (6.3). The proof of theorem 6.2 follows the same lines as that of 

theorem 6. I and we shall sketch it briefly at the end of this chapter. 

Furthermore we shall prove the following result in a similar way as 

theorem 6. I. 

THEOREM 6.3. Let f be a polynomiaZ of degree nc3 with coefficients in K 

and non-zero discriminant. Let A be a constant with Acl. If 

(6. 8) 

then the inequaU ty 
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(6.9) 

has at most 

solutions. 

This generalises previous results of Siegel [Si 4] on the inequality 

Jaxn-bynJsc (cf.§2. I) and Siegel [Si 3], Delone, Faddeev and Gel'man [D/F] 

on the inequality IF(x,y) lsk, where Fis a binary form with coefficients 

in 7Z and positive discriminant (cf,§3.l). For a discussion of possible 

refinements in case n>3 we refer to the remarks after the proof of theorem 

6.3. 

Using theorems 6.1 and 6.3 it is also possible to derive results on 

the number of solutions of the equation 

(6. l O) F(x,y) y 

* where yEOK and where Fis as in (6.l). In the theorem below, wK(y) denotes 

the number of distinct prime ideals in K dividing <y>. 

THEOREM 6.4. (i) The number of solutions of (6.10) is at most 

( 
1s((~)m+1) 2 2(~)(r 1+r2+wK(y))) 

n 7 + 6x7 , 

(ii) Suppose that F has non-zero discriminant D(F). If 

(6, 1 l) 
Sn(n-1)/6 

JNK/a/D(F)) I ? J 13m NK/(Q(y) I , 

then (6.10) has at most 

solutions. 

Note that the bound given in the first part of theorem 6.4 depends on wK(y), 

n,m,r 1,r2 only, while the second part of theorem 6.4 states that if 

INK/(Q(D(F)) I exceeds some constant depending on m,n and INK/(Q(y) J, then the 
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number of solutions of (6.10) can be estimated from above by a constant 

depending on n,r 1,r2 only. In 1974, Chudnovsky [Chu 17 claimed that bounds 

of similar type could be derived under similar conditions by means of a 

method of Gel'fond[Ge I] from 1934 on linear forms of two logarithms of 

algebraic numbers near to unity. As far as I know, Chudnovsky has never 

published a proof of his claim. Theorem 6.4 will be derived as a corollary 

from theorems_6,l and 6.3 later. 

§6.2. Preliminaries to the proofs of theorems 6. I and 6.3 in the case n=3. 

As before, K is an algebraic number field of degree m with r 1 real 

and r 2 complex primes, p1, ••• ,pt are distinct prime ideals in Kand A is a 

real constant with A?l. We consider 

(6. 12) 

and 

(6. 1 3) 

<f(z)> 

N ( <f(z)> ) < A 
K c.K(f)<I ,z>3 -

* in zEK 

simultaneously, where in both (6.12) and (6. 13), f(z)EK[z] is a polynomial 

of degree 3 with only simple zeros. We define the binary form f*(x,y) such 
* 3 * that f (x,y)=y f(x/y) for yfO. Then f and f have the same discriminant, 

which we denote by D. Let M=K(l-3D). Let s0=S00 (K)u{p 1, ••. ,pt}' where p1, ••• 

/'.\ are the prime ideals from (6.12) and let T0 be the set of primes on M 

lying above the primes from s0• 

We apply lemma 3.2 to f*(x,y). Let a,S be the constants, and let ~.n 
be the linear forms constructed there, Then a,SEM and ~,wM[x,y]. We put, 

if confusion can not arise, 

Let a be the ideal in M defined by 

(6.14) a 

Then by (3.9), 



(6. 15) 

Solutions (z,k1, ••• ,kt) of (6.12) will be shortly denoted by z. Let 

z be such a solution. Then we have by (4,14),(6.12) and (6.15), for every 

VtT0, 

Hence by the product formula (cf.(4.17)) and (4.14), 

(6. I 6) 

If z is a solution of (6.13) then by (6.15) and (4.8), 

3 3 
N__,( <a,1-Bn1> ) $ ~(3a)/M:KJ. 
-M CM(f)3<1,z>3 ' 

Hence by (4.14),(4.16) and the product formula for ideals (4.15), 

(6. I 7) 
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Let S be an arbitrary, but finite subset of S(K) containing all 

infinite primes. Let T be the set of primes on M lying above the primes in 

S. Put 

Note that (6.12),(6.13) are equivalent to (6.16), (6.17) respectively. 

These inequalities are special cases of 

(6. 18) 

where Pis a constant with P~I. For we obtain (6.16) by taking P=l,S=S0 
and applying the product formula (4. 17) and (6.17) by taking P=Al/m,S=S (K). 

00 

In the remainder of this section we shall study (6.18). We shall consider 
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only solutions of (6.18) belonging to the set 

KO= {zEK[s(z,I)n(z,l)fO}. 

Since s,n are linear forms, we exclude at most two solutions of (6.18). 

For every zEK0 we put 

(6. 19) r;; r;; (z) 

and 

(6.20) 

~5 (z) is a kind of height function with the property that 

(6.21) 

This can be proved as follows. Let the ideals b1,b2 be defined by 

Let M' be an extension of Min which <l,z>M' and ~M,(f) are principal 

ideals, with generators A1,A 2 respectively. Let G(x,y),H(x,y) be the cubic 

and quadratic covariant of f*(x,y) respectively. It is easy to check that 
-3 -1 -1 -2 -1 -1 

the numbers G*=A 2 G(A 1 z,A 1 ),H*=A 2 H(A 1 z,A 1 ) are algebraic integers. By 
-3 -1 -1 3 -3 -1 -1 3 

(3.8) and (3.10) the numbers A2 as(A 1 z,A 1 ) , A2 Sn(A 1 z,A 1 ) are the 

roots of the equation 

whence are algebraic integers. These numbers generate b10M 1 ,b20M, 

respectively, hence b1,b2 are integral ideals in M. But this implies by 

(4. 2 7) that 

3 
h (uir;; ) 
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= n n_iax(laF;f Iv, lsnf Iv> x 
VET 3 

x V~T(max(lb 1lv,lb2 lv>(lcM(f)lvmax(1,lzlv>)) 

s n8 (z). 

Let e1,e2,e 3 be the cube roots of wand let L be the smallest Galois 

extension of K containing M(e 1,e2,e3). For every VET we choose a fixed 

continuation of I-Iv to L which is also denoted by I-Iv• 

LEMMA 6.1. Let z be a soZution of ( 6.18) with zEK0• Put 

~ = ~(z) = max{ min (1,11-e.r;lv),min (1,11-e~\-ll ))\ 
'1sis3 1. 1SjS3 J V 

fol' VET. Then 

(6. 22) 

PROOF. First of all, we prove that for each VET, 

(6.23) l1-w1.;3 lv?: l3lv2-3s(V)max(l,lw1.;3 1v)m~n(J,l1-6ir;lv> 
]. 

We suppose that l1-e 11.;lvsl1-ei1.;lv and that 6i=pi-le 1 for i=2,3, where p is 

a primitive third root of unity. This is clearly no restriction. By (4.23) 

we have for i=2,3, 

(6. 24) 

Furthermore, we have either le 11.;lvs2s(V), which implies that 

2-s(V)max(l, le 1r;lv)sl; or le 11.;lv>2s(V), which implies by (4.23) that 

Therefore, 
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Together with (6.24) this yields that 

This proves (6.23). As a consequence we have 

I 3 3 I 3s (V) -I I 31. I 31 -I UV:= a~ 1-sn 1 v•2 l3lv max( a~ 1 V' Sn 1 V) 

~ min (I, I 1-0.clv). 
I :si:s3 i 

It follows in a similar way, by interchanging a,S and ~1,n 1, that 

Hence ~:SUV for VET. Therefore, by (6.20) and (6. IS), 

II UV 
VET 3 

s( II l3lv)- 1• II la~~-Sn~lv· II 0c.M(Olvmax(I,lzlv)) x 
VET VET ViT 

-1 
X S1 8 (z) 

□ 

We shall now show that every solution of (6.22) satisfies one of 

finitely many given systems of inequalities of type (5.3). Therefore we use 

the following technical lemma, which is a slight improvement of a result 

used by Mahler in [Ma 1,2]. 

LEMMA 6. 2. Let B be a reaZ number with I /2 < B<l and Zet q be a positive 

integer. Let F1, •.. ,F ,A be positive reaZ numbers with F.:SI for j=l, ... ,q 
q q J 

and II. I F. :s A. Put 
J= J 
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There exists a q-tupZe (r 1, ••• ,r) with r.:e::o for j=l, ••• ,q and I-~ 1 r. =B, 
q J q-1 J- J 

which can be chosen from a set of at most R(B) · of such tuples which 

depends on Band q onZy and does not depend on F.,h, such that for j=I, .•• , 
J 

q: 

(6.25) 
r. 

F. s A J 
J 

PROOF. If q=I we may take the I-tuple (B), so we shall restrict ourselves 

to the case q.::2. Let u be the integer defined by 

(6.26) (q-l)B/(1-B) s u < (q-l)B/(1-B) + I. 

Then u.::I. We shall show that the set of q-tuples 

Vo ={(r1•···r )lr.=f.B/u, f.EZZ>Ofor j=l, ••• ,q,. r•f.=u} 
q J J J - j=I J 

satisfies the conditions of our lemma. Clearly, V0 does not depend on Fj,A 

and moreover, rj:e::o for j=l, ••• ,q, Ij~I rj=B for (r 1, ••• ,r4 )EV0 • In the 

remainder of the proof we shall assume that A<I, which is no restriction 

at all. 

Now we show that (6.25) holds for some tuple (f 1, ••• ,r )EV0 • There 

are non-negative reals $1, ••• ,$ such that F.=A$j and I. 4 1 : . .::I. Define 
q J J= J 

integers g. by 
J 

(6.27) 

Then g . .::0 and by (6.26), 
J 

Hence 

u$./B 
J 

for j=l, ••• ,q. 

There are integers f. such that Osf.sg. and '.4 1 f. =u. For these integers we 
J J J l J= J 

have (Bf 1/u, ••• ,Bf4/u)EV0 and by (6.27), 

Bf./u 
F. s A J 

J 
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In order to complete the proof of lemma 6.2, we shall estimate the 

number of elements of V0 from above. Note that by (6.26), 

IV I = (u+q-1\ $ (<q-1)/(1-B)+I) 
0 q-1} q-1 

Hence it suffices to show that 

(6. 28) ( (q-1)/(1-B)+I) $ R(B)q-1 
q-1 for I /2 < B<l ,qE?l ,q?::2. 

It is possible to show (6-.28) for large values ·of q by means of Stirling's 

formula 

for x->oo, 

where r(x) denotes Euler's r-function. Proceeding like this, one can even 

show that 

hence (6.28) can not be essentially improved. However, we shall prove 

(6.28) completely in an elementary way. 

Put x=B/(I-B),h=q-1. Then (6.28) is equivalent to 

(6. 29) 

Note that for h=l, 

while for h=2, 

x+2 < 2(x+I) 

for x>I, hElN. 

-I X 
$ (l+x) (l+x ) , 

Hence we may assume that h?::3. We shall use the following inequality: 

(6. 30) for yElR , gE lN with y::::g+4. 

(6.30) can be proved by induction on g. First of all, suppose g=I. Then 



85 

X<CS, hence 

YY-- -1 y-l 4 7(y\ 
y- l = y ( 1 + (y- 1 ) ) <C y ( 5 / 4) > 3\ l )" 

(y-1) 

Suppose that (6.30) has been proved for g=p-1, where p<C2. Then we have for 
-1 w-1 

g=p, by the fact that the function (1-w ) decreases monotonically for 

w>l, 

We shall now prove (6.29) for h<C3. Note that h(x+l)=h+xh<Ch+3, hence by 

(6. 30) 

(h(x+l)+l\_ h(x+l)+l (h(x+l)) < ( 4/))(h(x+l)) 
\ h J- h \ h-1 - x+ \ h-1 

3 (h (x+ I ) ) h (x+ l ) 
s: 7(x+4/3) 

(hx+l)hx+l(h-l)h-1 
h-1 hx+l 

= lcx+4/3) h (hx) (l+x)h(l+x)x-hx-1 
7 (h-1 )h-1 (hx+l )hx+l 

3 ( -1) h-1 ( - 1 ) hx+ 1 = 7(1+4/3x) l+(h-1) 1-(hx+l) x 

-1 x h 
x ( ( 1 +x) (I +x ) ) 

-1 -1 x h -1 x h 
s: e xe ( ( 1 +x) ( 1 +x ) ) = ( (I +x) (I +x ) ) . 

This proves lemma 6.2 completely. □ 

For each vES we choose a fixed prime in T lying above v and the set 
+ - + 

of these primes is denoted by T. Furthermore, we put T =T\T. Note that 

T-=~ if M=K. 

Let zEKO and choose for each VET+ 8VE{8 1,e 2,e 3} such that J 1-8vslv 

is minimal. Let vES and suppose that there are two primes V-, V' in T lying 

above v, where VET+ and V'ET-. Then [M:K]=2 and there is a unique 

K-automorphism a of M which maps l-3D onto -✓=Ti:J. By (3.8) we have cr(a~~)= 
3 

f3n 1, hence 

(6.31) 3 
a (ws ) 

-1 -3 
w ½ 



86 

(where NM/K denotes. the norm of M over K). By (4. 20) we have 

for AEM. 

Moreover, since L/K is a Galois extension and since the continuations of 

1- Iv and J. Iv, to L which were chosen on p.81 are equal on K, there are 

primes W,W' on L which are conjugate over Kand a constant c such that I- Iv 

=J./i ,J.lv,=/.1~,. Hence by (4.20) there exists a continuation 'vof a to 

L such that 

for AEL. 

for i=l,2,3. 

I -I -11 I I Hence, on noting that l-8i 1; Vis minimal if and only if 1-eii:; V is 

minimal, 

(6.32) 

We now apply lemma 6.2 to (6.22). Lets be the number of primes in S. 

Then we have for every B with l/2<B<I and for every zEK0 satisfying (6.22) 

that there exists a tuple (r ) S of non-negative numbers with l Sr =B, 
V VE I VE V 

belonging to a set of at most R(B)s- of such tuples which depends on Band 

s but not on z, such that 

for vES. 

(where the product in the left-hand side is taken over all primes V lying 

above v). For every VET lying above vES we put rv=rv/n(v), where n(v) is 

the number of primes lying above v. Then, by (6.32), 
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hence 

(6.33) 

s-1 
The tuple (rV)VET can be chosen from at most R(B) possibilities. 

The tuple (8V)VET i.s completely determined by the tuple (8V)VET+ and by 

NM/K(s). Note that \T+\=s and that for each VET+, eV is equal to one of the 

three cube roots of win L. By (6.31), NM/K(s) is equal to one of the three 
-J 

cube roots of NM/K(w ). Hence the tuple (8V)VET can be chosen from at most 

3s+ I ·b · 1 • • C b. . h b b . possi i ities. om ining tea ove arguments we o tain: 

LEMMA 6.3. Let B be a real with 1/2 <B<l, let s=ISI and put R(B)= 
-1 B/(B-1) • . . s+l s-1 (1-B) B • There ex~sts a set cons~st~ng of at most 3 R(B) 

tuples of the type ((eV)VET'(rV)VET) with 8VEL,8~=w,rv~o for VET and 

LvET r V =B, with the following property: every zEK0 satisfying (6. 18) 

satisfies (6.33) for at least one of these tuples. 

We shall need the following improvement of lemma 5.l. 

LEMMA 6. 4. Let z', z" be distinct solutions of (6. 33) with z', z"EK0 and 

n5 (z")~n5(z'). Then 

(6.34) f6 (1-B)/2]3 
S , 3B-1 

~ 3B+l B nS (z ) 
l 2 P 

and 

(6.35) 

PROOF. Put 1;;=1;(z',l),nj=n(z',J),s'=s(z'),n'=n5(z'), 1; 111=i;(z",1),n'{=n(z",J), 

s"=s (z"), fl"=n 5 (z"). For each VET we put 

Note that the linear transformation (x,y) ➔(i;,n) has determinant unity and 

that a6=-(1=3i5) 3 (cf. lemma 3.2). Hence by the product formula (4. 17) and 

(6. I 4), 

II (laSI 113 \z'-z" \ ) 
VET V V 
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Hence, by (6.20), 

(6.36) ti 112 s II (lasl 113 ii::'n11 -i;''n' I L(n'n11 ) 113- II (w'w")- 113 • 
S VET V 1 1 1 1 V VET V V 

Note that for each VET, by a trivial estimate, 

(6. 3 7) 

For each VET we have also 

la.SI 113 1i::'n11 -i:: 11 n' l V l 1 1 1 V 

This implies, together with (6.37),(6.33), n11 ~n• and the fact that for real 

numbers a,b,c min(a,max(b,c))=max(min(a,b),min(a,c)), 

I a. s I 1 1 3 1 i; ' n 11 -i; 11 n ' I V · 1 1 1 1 V 

$ zs(V)(' ")1/3, I cl 'I 11 e "I)) wVwV min,l,max l-0Vs V' - Vs V 

$ Zs (V) (wv<"v) 1 / 3max (min( 1' 11-evs' IV) ,min (I' I 1 -0vs11 Iv)) 

s 2s(V) (w~wV)l/3(8P/:isQ'-l)fv. 

Therefore, QY (6.36), on taking the product over all VET, 

which proves (6.34), 

We are now going to prove (6.35). Note that by (6.36) and (6.37), 

on taking the product over all VET, 



Hence, by (6.34), 

l 5: 2n"l/3ll;l/2(23B+lPBLl;(l-B)/2Q"l/3) l/(3B-1) 

= (iPLl;ln")B/(3B-l). 

This proves (6.35). 

From lemma 6.4 the following useful corollary can be derived 

(compare lemma 2.11). 

(l-B)/2 -3B-l -B 3/(3B-2) 
LEMMA 6.5. Put T = (L1 5 2 P ) • Let u0,u1 be constants 

with T- 1<u0<u 1• Then the nW11her of solutions of (6.33) with U05:n 5 (z)<U 1 
is at most r, where r is the largest integer with 

log(log(TU1)/log(TU0)) 
r < 1 + ---------log(3B-l) 

PROOF. Let z1, ... ,zr0 be solutions of (6.33) with ziEK0 for i=l, .•. ,r0 , 

and 

for i=l, ... ,r0 , 

hence 

Therefore, 

log(log(TU 1)/log(TU0)) 

rO-l < log(3B-1) 

which proves our lemma. 

§6.3. Proofs of theorems 6.1 and 6.3 in the case n=3. 

In this section the same notations are used as in the preceding 
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sections. Furthermore we choose B=0.846. Note that B>l/2+1/3=5/6. We 

shall deduce theorems 6.1 and 6.3 from the lemma below. To avoid confusion 

we agree that when speaking of (6.33) we shall always mean (6.33) with B= 

0.846. 

LEMMA 6.6. (i} (6.33) has at most 30 solutions in zeK0 uJith 

(6.38) 

(ii) If &8~(13P)~ then the number of solutions of (6.33) in zeK0 is at most 

32. 

PROOF. We apply theorem 5.1 with n=3,B=0.846,C=8P&~/ 2 and W(~)=n8 (z) to 

(6.33). Note that by (6.22), W(~)~h(w~3). Also~ is a bilinear function of 

z, hence to each value of~ corresponds at most one value of z. If we 

restrict ourselves to those solutions of (6.33) with n8(z)~C=8P&~12 , then 

(6.33) is equivalent to a system of inequalities of type (5.3) in the 

variable~- For our choice of B we have that io =64 (where i 0 is defined 

by (5.4)) and k=l2 (where k is defined by (5.5)).Hence by theorem 5.1, 

(6.33) has at most twelve solutions in zEK0 with 

(6.39) 

We shall now count the solutions of (6.33) with n8 (z)<U 1• Note that 

if Tis the constant defined in lemma 6.5 then 

(3(1-B) 3B ) ( 6B 3B ) 
log(TUJ) = ~(3B-2) + 6B-5 log &S + \68-5 - 3B-2 log p + 

(6.40) + (-18B+28_3(3B+l))lo 2 +6log3 
\ 6B-5 3B-2 g 6B-5 

~ 33.825log &8 + 62.073log P + 467.313. 

Firstly we prove (i). We apply lemma 6.5 with u1 as defined in (6.39) 

and with u0=(1/2)7 7•5P5 , B=0.846. Then 

3(1-B) 3B 12B+I 
2 (3B-2) l'og &S + (S - 3B-2) log p + (7• Slog 7 - 3B-2 :log 2) 

~ 0.42log &8 + 0.28log P+ 0.226, 

(6. 4 I) 3B-I I .538. 



Hence by (6.40), 

log(log(TU1)/log(TU0)) 
I + ----,-----,-,,=-~---

log (3B-1) 

(
33. 825 log llS +62. 073 log P+46 7. 313)/ 

< I + log O. 42 log ll8+0. 28 log P+O. 226 log I. 538 

s + log(467.313/0.226)/log 1.538 = 18. 73 ••• 
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This implies that (6.33) has at most 12+18=30 solutions satisfying (6.38). 

Now we prove (ii). Note that, by (6.35), (6.33) has at most one 

solution with n8 (z)<ll8/64P. We apply lemma 6.5 with u1 as in (6.39) and 

with u0=!i 8/64P,B=0.846. Put Q=ll8/P4• Then 

(6.42) 

-5 -20 5 On noting that PSl3 Q, !i8~13 Q, we deduce from (6.40) that 

Moreover, 

log (TU I) s 33. 825 (5 log Q -20 log 13) + 62. 073(1og Q -5 log 13) ·+ 

+ 467.313 

s 231.198 log Q- 2063.945. 

Hence by (6.41),(6.42) and P~I, 

I + 
log(log(TU1)/log(TU0)) 

log(3B-1) 

1 (231.198 log Q-2063.945 )if1 1 538 
+ og \ 1 • 42 log Q - I 7. 834 r. og • 

( 231.198x5 log 13 -2063.945)1/1 1 538 
+ log 1 .,42x5 log 13 - I 7. 834 1/ · og • 

19.06 •.• 

Therefore, (6.33) has at most 12+1+19=32 solutions in z€K0 if ll8~(13P) 5• 

This completes the proof of lemma 6.6. D 
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1/m PROOF OF THEOREM 6.3 FOR n=3. Let P=A (where mis the degree of the 

algebraic number field K) and S=S00 (K). Suppose that (6.8) holds with n=3. 

Then we have by (4. 15),(4.8) and (6. 14) that 

l\i(a) 2/[M: 111] 

:?: N (d (f)) 1 /m 
K K 

N (3d (f))l/m 
K K 

Hence by lemma 6.6 (ii), (6.33) has at most 32 solutions in zEKO. Note that 

for B=O.846, R(B)=(l-B)-lBB/(B-l)<49/3. Hence by lemma 6.3, there are at 

most (9/49)72 (ri+rz) distinct systems (6.33) such that each solution z of 

(6.13) (or (6.17)) belonging to KO satisfies at least one among these. 

Hence the. total number of solutions of (6.13) (including the ones with 

~1n1=O) is at most 

This proves theorem 6.3 for n=3. □ 

PROOF OF THEOREM 6.1 FOR n=3. We apply lemma 6.6 (i) with P=l and S=SO, 

where s0 is the set consisting of the prime ideals appearing in (6. 12) and 

the infinite primes on K. Thus we obtain, in combination with lemma 6.3, 

R(B) <1;.9/3 and (6.21), that the number of solutions of (6.12) with zEKO, 

h(ws 3):2:1 7· 5;2 is at most 

We state this as a lemma for later purposes. 

LEMMA 6. 7. Let f(z) be a poZynomiaZ with coefficients in Kand of degree 3 

with onZy simpZe zeros. Let a,S be the constants and Zet ~,n be the Zinear 

forms corresponding to the cubic form y3f(x/y) as constructed in Zemma 3.2. 

Let p 1, ••• ,pt be distinct prime ideaZs in K. Then the nwnber of soZutions 

of 

(6. 12) 

with 
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(6.43) 

is at most 

It is possible to derive an upper bound for the number of remaining 

solutions of (6.12) by counting the algebraic numbers of degree at most 2m 

and height at most 77· 5;2. However, by another method it is possible to 
3 3 3 -1 

improve this. Note that either wi; EK or, by (6.31), wr; and (wi;) are 

. K I b h h b K·.--wr 3+(wr 3)-l b 1 K conJugate over . n ot cases, t e num er ~ ~ e ongs to , 

provided that ZEK0• Observe that for given K, there are at most two 
3 possible values for wr;, hence at most six for I; and therefore at most six 

for z. Furthermore, by (4.28) and (4.31), we have for the solutions of 

(6.12) not satisfying (6.43) that either zEK\K0 or 

Hence by lemma 4.2 the number of solutions of (6.12) which do not satisfy 

(6.43) is at most 

2 
:,; 7 1S(m+l) • 

This completes the proof of theorem 6.1 for n=3. 

§6.4. Proofs of theorems 6.1, 6.3 and 6.4. 

D 

First of all, we shall prove theorems 6.1 and 6.3 in the general 

case, i.e. for all integers n with n~3. As usual, K is an algebraic 

number field with r 1 real and r 2 complex primes. We shall assume that the 

polynomial f(z) appearing in both theorem 6.1 and theorem 6.3 is manic, 

i.e. has leading coefficient equal to 1, which is clearly no restriction. 

When speaking of a divisor off we shall mean a manic polynomial with 

coefficients in some extension of K which divides f. 

Let K" be the smallest extension of K containing the zeros of f. In 

order to prove theorems 6.1 and 6.3 in the general case, we choose a 

suitable divisor g off. In the case of theorem 6.1 we choose for g(z) an 

arbitrary cubic divisor off with non-zero discriminant. Clearly, we may 
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assume that g(z) has its coefficients in K". In the case of theorem 6. 3 we 

have to be more careful. Note that in that case, f has non-zero 

discriminant. Since f has degree n, f has n distinct zeros in K", 1; 1, ••• , l;n 

say. For each pair of zeros 1;.,1;. with i/j we put 
]_ J 

d .. 
<i;i -1;/K" 

1-J 

Then by (4. I 2), 

(6.44) 

Let g(z) be 

say. Then 

an arbitrary cubic divisor of f(z), g(z)=(z-1;. )(z-1;. )(z-1;. ) 
1- 1 1-2 1-3 

(6.45) 

Let G be the collection of all cubic divisors off. Then by (6.44) and 

(6.45), 

Now we choose g as the cubic divisor of f for which NK" (dK" (g)) is maximal. 

Then, by the fact that jGj=(~}, 

(6.46) 

Thus we have chosen a suitable divisor g off both in the case of theorem 

6.1 and of theorem 6.3. 

Let K' be the smallest extension of K containing the coefficients of 

g. Then 

(6. 4 7) 

3 2 For let g(z)=z +az +Sz+y and let a be a K-isomorphism of K'. Then a is 

completely determined by its action on a,S,y. Since a(a),a(S),a(y) are 

the elementary symmetrical functions of three of the zeros off, we have 

at most (~} possibilities for the triple (a(a),a(S),a(y)) and hence at 

most (~} for a. 
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Note that f(z)=g(z)k(z) for some polynomial k(z)EK'[z]. Hence, by 

(4.5), 

Both ideals in the right-hand side of this equality are integral, hence 

(6.48) 

Using (6.46), (6.47), (6.48) it is not difficult to complete the proofs of 

theorem 6.1 and theorem 6.3. 

PROOF OF THEOREM 6.1. Let P1, ... ,Pu be the prime ideals in K' lying above 

the prime ideals p 1, .•. ,pt appearing in (6.3). By (6.48), for each solution 

(z,k 1, ... ,kt) of (6.3) there are non-negative integers £ 1, ... ,tu such that 

(6.49) 

By (6.47), [K' :(Qh(~)m,u$(~)t and K' has at most (~) (r 1+r2) infinite primes. 

Hence by theorem 6. 1 in case n=3 the number of solutions of (6.49) in zEK* 
I*) • (even in zEK and R- 1, ..• ,R-uE?Z;,,0 is at most 

15 ((~)m+l) 2 2(;) (r 1+r2+t) 
7 + 6x7 . 

This completes the proof of theorem 6.1. □ 

PROOF OF THEOREM 6.3. Put A'=A[K':KJ_ Then by (6.48) and (4.8), we have for 

each solution z of (6.9), 

(6.50) $A'. 

Furthermore, by (6.46), (4.8) and (6.8), 

NK,(dK, (g));,, NK,(dK,(f))6/n(n-l) 

;,, (13[K' :(Q]A')5. 

N (d (f))6[K':K]/n(n-l) 
K K 
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Since K' has at most (~)(r 1+r2) infinite primes, we have by theorem 6.3 in 

case n=3 that (6.50) has at most 

solutions in zEK* (even in zEK'*). This proves theorem 6.3 completely. D 

We have just made some very rough estimates. Firstly, we counted in 

fact the solutions of (6.49),(6.50) respectively in K' instead of K. It 

would be of interest to refine our arguments in such a way that an upper 

bound for the number of solutions in K can be derived which is essentially 

better than ours. Secondly, it is possible to improve theorem 6.3 in 

several cases. For if f(z) has all its zeros in K then the factor (~} in 

the upper bound for the number of solutions of (6.9) can be dropped. If we 

have the other extremal case, i.e. [K":K]=n! then all ideals 
-I -3 

<g(z)>K.,c.K.,(g) <I,z>K" with g belonging to the set G of cubic divisors 

off are conjugate over K for zEK. Hence the number 

does not depend on the choice of g. We have also that 

Hence, if g is any cubic divisor of f and if K' is the smallest extension 

of K containing the coefficients of g, we have by (6.47) and (n; 1);(;}=3/~ 

( <f(z)>K' ) 
3/n 

3/n Therefore, the constant A' appearing in (6.50) can be replaced by A' . 

Furthermore, we have that (6.46) holds for all gEG (even with equality). 

Hence, arguing similarly as in the proof of theorem 6.3, we have that (6.9) 

has at most 

solutions in zEK* even if 
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provided that [K" :K]=n!. 

PROOF OF THEOREM 6.4. Let F(x,y) be the binary form appearing in (6.1). 

Then F(l,0)#0. Put f(z)=F(z,I),A=INK/~(y)I/NK(cK(f)). Then f has degree n 

and at least three distinct zeros. We assume that (6.10) is solvable. Then 

A~!. Clearly for each solution (x,y) of (6. IO) we have 

(6.51) 

Moreover, if p 1 •... ,pt are the prime ideals in K dividing <y> then for 

each solution (x,y) of (6.10) there are non-negative integers k 1, ... ,kt 

such that 

(6.52) <f(x/y)> 

* For every zEK there are at most n solutions (x,y) of (6.10) such 

that x/y=z. For suppose (x 1,y 1),(x2,y2) are solutions of (6.10) with x 1/y 1 
* =x 2/y2. Then there is a oEK such that x2=ox 1,y2=oy 1. But then 

hence on=!. Therefore, we have at most n possibilities for o. In view of 

(6.52), the first part of theorem 6.4 follows easily from theorem 6.1. 

Now we suppose that F has non-zero discriminant D(F). Then, by (4.11), 

Now the second part of theorem 6.4 follows easily from (6.51) and theorem 

6.3. □ 

§6.5. Sketch of the proof of theorem 6.2. 

As before, let K be an algebraic number field of degree m with r 1 
real and r 2 complex primes, let WEK*, let nELZ with n~3 and let p1, ••• ,pt 

be distinct prime ideals in K. Put S=S00 (K)u{p 1, ... ,pt}. Let e1, ... ,0n be 
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then-th roots of wand put L=K(8 1, ... ,8n). For every valuation 1- Iv on K 

with vES we choose a fixed extension to L which is also denoted by I. I . We 
V 

consider the equation 

(6.6) 

Solutions (z,k 1, ... ,kt) of (6.6) are shortly denoted by z. 

For every solution z of (6.6) we have that II-wznl =max(!, lwznl ) for 
V V 

viS. By the product formula (4. 17), every solution z of (6.6) satisfies 

(6.53) II 11-wznl II max(!, lwznl ) = I. 
VES v viS v 

* Completely similar to (6.23) one can show that for zEK ,vES, 

Hence by (6.53), solutions of (6.6) satisfy 

II (lnl 2-ns(v) min (I,II-8.zl )} II max(I,lwznl) s I. 
vES v Jsisn i v vES(K) v 

Therefore, by (4.19) and (4.22), 

(6.54) II min (1,II-8.zl) s 2nh(wzn)- 1. 
vES ISiSn i v 

Let B be a real with 1/2 <B<l and put s=r 1+r2+t. By lemma 6.2 there 

exists a set of at most R(B)s-l=((I-B)-IBB/(B-l))s~l s-tuples (f) S with 
V VE * 

r :2:0 for vES and I 5 r =B, such that each solution z of (6.54) with zEK 
V VE V 

satisfies at least one of the systems of inequalities 

r 
min ( I , I I -8. z I ) s ( 2nh (wzn) - 1) v 

Jsisn i v 
for vES. 

We finally obtain, that each solution z of (6.6) satisfies a system of 

inequalities of the type 

(6.55) for VES, 

where ev is an n-th root of w, belonging to L. Clearly, for each 8v we have 



at most n possibilities. Since we have at most R(B)s-l possibilities for 

the tuple (r )vES, the tuple ((8) S,(r) S) can be chosen from a set 
V -l S V VE V VE 

of at most R(B) (nR(B)) of such tuples, which does not depend on z. 
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Put B=l/2 + 1/(n- 1/8), C=2n. Then R(B)=U(!l.). Hence the first part of 

theorem 6.2 follows if we have shown that each system of inequalities 

(6.55) has at most 2U(n) solutions in zEK*with h(wzn)z3n+lO_ The proof of 

this fact is rather elaborate and we shall give only a brief sketch of it. 

Put A (2(n+l)(n+4)( CB)2n)l/(2nB-n-2) ( . h h . h l = n wit t e Just c osen va ues 

for Band C). The solutions z of (6.55) with h(wzn)23n+IO are divided into 

two classes: 

I: the solutions with h(wzn)zA; 

II: the solutions with 3n+IO$h(wzn)<A. 

The number of solutions in class I can be estimated from above by means of 

theorem 5.1, on noting that all solutions of (6.55) in class I satisfy 

h(wzn)>C, whence \1-8 z1' $ 1 for r >O By remark 2 f §5 I clas I vv v· 0 ·• s 
contains at most one solution if nz9. The number of solutions in class II 

can be estimated from above by means of lemma 5.1, using the same type of 

argument as in lemma 2.1 I or lemma 6.6. It follows in fact, that the number 

of solutions in class II is at most 6 if nz9. Since U(n)>4 for all nz3, it 

suffices to prove that the union of the classes I and II contains at most 

2U(n) solutions for 3$n$8. This can be done by straightforward computation. 

The proof of the second part of theorem 6.2 is an immediate 

consequence of lemma 4. 2, for by that .lemma, the number of algebraic 
. n+IO 

numbers with degree at most m and height at most 3 does not exceed 

while for each given value of wzn, there are at most n solutions z of (6.6). 

□ 

REMARK. From the sketch of the proof given above it is clear that it is 

advantageous, to choose Bas small as possible, for then R(B) is small. By 

the result given in theorem 5.1, we have to choose B larger than 1/2 + 1/n. 

If we would have a result of the same type as theorem 5.1, but with a lower 

bound for Bin the order of o(I) (e.g. B>2n-l/Z in case of Siegel's method 

or B>2/n in case of Roth's method) B could be chosen such that R(B) 
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decreases to 1 for n going to infinity. 



101 

CHAPTER 7. SOME APPLICATIONS. 

In the first part of this chapter we shall consider linear equations 

in two S-uni ts. These can be transformed in to certain Thue-Hahler equations. 

In the second part we shall deal with a special case of Catalan's equation 

xrn-yn=l in x,y,rn,nEJN\{l }, namely the case where rn,n are fixed. We shall 

reduce this equation to finitely many equations of the type (6.6). The same 

procedure can be followed for equations of the type yrn=f(x) in x,yEZl (where 

[ J { } I rn n I k I kt . ( f(x)EZZ x and rnE1N\ I ) and ax -by =pl ..• pt 1.n x,y,k 1, ... ,ktEZl where 

a,b,m,nEZl ,ab;laO,rn>l,n>I,rnn~6 and p 1, ... ,pt are distinct primes). (cf.§6.1). 

However, in case of Catalan's equation we have less tecknical difficulties. 

PART I. ON EQUATIONS INS-UNITS. 

§7.1. Introduction. 

In 1961, Lewis and Mahler proved the following ([L/M],pp.360-362): 

let P11:···,P1r'P21'· .. ,P2s,P 31 , ... ,p3t be fixed distinct pr>imes of 
which the smallest and the largest are P and Q say. Then the equation 

(7. I) 

has at most 

solutions, where c 1,c2 are absolute constants. 

In the proof of this fact they proceeded in the following way. Let n be a 

fixed integer with n~3. For each integer x .. appearing in (7.1) define 
l.J 

integers Xij,Yij ~ith YijE{O, l, ..• ,n-1} such that Xij=nXij+Yij· Then, on 
· - YJ I YJr - Yz1 Yzs - XJ I XJr - Xz1 Xzs 

putting a-pl I ·•·P1r ,b-p21 ···Pzs ,X-pl I ·· ·P1r ,Y-p21 ···Pzs ' one 
obtains 

( 7. 2) 
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N h h r+s "b · 1 · . f h . ( b) 1 1 ote tat we ave at most n possi i ities or t e pair a, • C ear y, 

from upper bounds for the number of solutions of equations of the type 

(7.2) one can derive an upper bound for the number of solutions of (7.1). 

Lewis and Mahler considered it as a problem of great interest to 

decide whether the number of solutions of (7.1) can be bounded above by a 

constant depending on r,s,t only and not on the primes p 11 , ••• ,p3t. However 

there is a second method of dealing with (7.1) which together with the 

result of Lewis and Mahler on the number of solutions of the Thue-Mahler 

equation (cf.§6.1 or [L/M]) yields such a bound. Put X=p7JI ••• p7~r, 

Y=p;f 1 • •• p;;s, F(X, Y)=XY(X+Y), where (x 1 I' ••• ,x3t) is a solution of (7. I). 

Then clearly, 

(7.3) F(X,Y) 

Note that F(X,Y) is a binary cubic form of non-zero discriminant and that 

an upper bound for the number of solutions of (7.3) in positive integers 

X,Y with (X,Y)=l induces the same upper bound for the number of solutions 

of (7.1). We can not directly apply the result of Lewis and Mahler on the 

Thue-Mahler equation since Fis divisible by both X and Y. But this 

difficulty can be solved by replacing F by an equivalent form which is not 

divisible by X or Y, for example (X+Y){X+2Y)(2X+3Y). Now the result of 

Lewis and Mahler yields, that the number of solutions of (7.1) can be 

estimated from above by a constant depending on r+s+t only. 

We shall generalise the second method of dealing with (7.1) and apply 

it tQ more general equations. Let K be an algebraic number field of degree 

m with r 1 real and r 2 complex primes. Let S be a finite set of primes on K, 

containing the infinite primes. An S-unit is an element aEK with the 

property that lal =I for every viS. We shall deal with the following 
V 

equation: 

(7.4) :>..x+µy in S-units x,yEK, 

where:>..,µ are, for the time being, non-zero elements of K. When both sides 

of (7.1) are divided by the right-hand side of (7.1) we obtain an equation 

of type (7 .4) with K=(Q,:>..=µ=l and S={p00 ,p 11 , ••• ,p3t} where p00 denotes the 

infinite prime on (Q. 

Under very restrictive conditi.ons impoi;pd on :>..,µ, Gyory [Gy] derived 



a sharp upper bou~d for the number of solutions of (7.4), both in the 

archimedean and in the p-adic case. He showed the following: 
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let S be an algebraic integer such that a 1 :=SA,a2:=Sµ are algebraic 

integers. Let S be a finite set of primes on K consisting of r 1+r2 infinite 

and t finite primes. Suppose the finite primes of Sly above prime numbers 

in'ZZ of which the largest equals P. Let e be a real number with 0<esl. Put 

M. = ll la, I 
l. VE:S l. V 

for i=I, 2, M rr IS I • 
V 

VE:S 

1-e 
If mini Mi sM and log !1>C, where C is an effectively computable constant 

depending on e,P,K and t only, then (7.4) has at most rtr2+4t solutions. t 

Gyory gives an explicit, but very complicated expression for C. We 

shall derive an upper bound for the number of solutions of (7.4) which is 

not as sharp as that of Gyory, but only under the restriction that A,µ are 

algebraic integers in K. 

THEOREM 7. I. Let S be a finite set of primes on K, containing all infinite 

primes and exactly t finite primes. Let A,µ be non-zero elements of OK. 

Then 

{i) (7. 4) has at most 

solutions with 

h(h/µy) ~ 206 

and 

(ii) (7.4) has at most 

tThe reader is warned, that Gyory's notations differ from ours. For example 

he uses valuations 11--1~ which are exactly the m-th powers of ours, where m 

is the degree of K. We have rewritten Gyory's result in our notations. 
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solutions with 

h(h/µy) < 206. 

The upper bound in theorem 7.1 depends on r 1,r2,t only and does not depend 

on A,µ. It would be of interest to derive such an upper bound for the 

number of solutions of (7.4) if A,11 are arbitrary non-zero numbers in K. 

In the special case K=~ we have the following generalisation and 

improvement of the result of Lewis and Mahler on (7.1). 

THEOREM 7.2. Let a,b be non-zero rational integers. Let p 1, ... ,pt be 

distinct prime nwnbers. Then the nwnber of pairs of rational nu~bers (x,y) 

for which the absolute values of the nwnerators and denominators are 

composed of primes from {p 1, ... ,pt} and for which 

(7.5) ax+by 

is at most 

§7.2. Proofs of theorems 7.1 and 7.2. 

PROOF OF THEOREM 7. I • We shall use the same notations as in § 7. 1 . Thus K 

is an algebraic number field of degree m with r 1 real and r 2 complex 

primes, A,11 are non-zero integers in Kand Sis a finite collection of 

primes given by S (K)u{p 1, ..• ,p }, where p1, ••• ,p are distinct prime 
00 t t 

ideals. Put F(x,y)=xy(Ax+µy). If (x,y) is a pair of S-units satisfying 

(7.4) then there exists an S-unit o such that ox,oyEOK. But o must belong to 

the integral ideal generated by A andµ, hence <A,µ> is solely composed of 

prime ideals from p1, ••• ,pt. This in turn implies that 

(7.6) 
<F(x,y)> 

3 <A,µ><x,y> 

for certain non-negative integers k 1, ..• ,kt. Since F(l,O)=O, we can not 

directly apply the theory of chapter 6. In order to avoid this difficulty, 

we choose a rational integer k such that F(l,k)#O and k is not an S-unit. 

Put F*(x,y)=F(x,kx+y). Then F*(l,0)#0. Furthermore, it is easy to check, 
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* that eK(F )=eK(F)=<A,µ>K. For any solution (x,y) of (7.4), define numbers 

x' ,y' such that x'=x,y'=y-kx and put z=x' /y'. Then to every value of z 

corresponds at most one pair of S-units (x,y) with Ax+µy=I. In view of 

(7.6) we have for every pair of S-units (x,y) satisfying (7.4), 

( 7. 7) * <F (z, I)> 
* 3 eK (F )<I' z> 

. * for certain non-negative integers k 1, ..• ,kt. Since F (z,l) is a polynomial 

of degree 3 in z we can apply theorem 6.1. However, we can derive a better 

result by applying lemma 6. 7 directly. Let a,S be the constants and let~. 

n be the linear forms corresponding to F(x,y) as constructed in lemma 3.2. 

* * * * Let a ,S .~ ,n be the constants, linear forms respectively, corresponding 
* 2(r 1+rz+t) in the same way to F (x,y). By lemma 6. 7, there are at most 6x7 . 

* numbers z in K satisfying (7. 7) such that 

( 7. 8) lx11.s 
2 • 

3 3 Now a~ ,Sn can be expressed in terms of invariaats and covariants of F 

(cf. (3.8)). Hence 

3 * * 3 3 a~(x,y) = a ~ (x' ,y') , Sn(x,y) * * 3 S n (x' ,y') . 

By (7.8),(7. 7) and the fact that every z corresponds to at most one solut

ion (x,y) of (7.4), the number of pairs of S-units (x,y) satisfying (7.4) 

and 

(7.9) 

is at most 

(7. IO) 

Note that F has a non-zero discriminant, namely (Aµ) 2 , and quadratic 

covariant 

( 7. I I) H(x,y) 
2 2 2 2 Ax +Aµxy+µ y 

where pis a primitive third root of unity. 3 3 
By (3.10), a~ and Sn are the 
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cubes of linear forms whose product equals H. Furthermore, by (3.9), 

3 3 ,;;,., 
a~ -Sn = ~3v-3AµF(x,y) 

3 is a cubic form whose coefficient of x equals 0. Hence we have by (7.11), 

for suitably chosen p, 

( 7. I 2) 2 3 (>.x-p µy) . 

Let L be a finite extension of K, containing the third roots of 
- * 3 unity. Then, for every VES(L) and for x,yEK with (>-x/µy) fl we have by 

(4.23), 

max ( I h-pµy IV' I >-x-/µy Iv) 

= max(l>-x-pµylv, l>-x-p 2µylv, IP 2>-x-pµy[V) 

-s (V) I -I I 2 ~ 2 max( 1-p lvl>-xlv, P -plvlµylv) 

-s(V} 
~ 2 II-pl~ax(l>-xlv,lµylv). 

Hence, by (7.12),(4.27),(4.22) and the product formula (4.17), 

I 3 
= S h (>.x/µy) . 

By (7.9),(7.10) and the fact that (8x(J/2)x7 7"5) 113=205. 79 ... , (7.4) has 

at most 6x72 (r1+r 2+t) solutions with h(>-x/µy)~206. This proves the first 

part of theorem 7. I. The second part follows immediately from lemma 4.2 

for by that lemma, the number of algebraic numbers of degree at most m and 

height at most 206 is at most 

PROOF OF THEOREM 7.2. Let s1={p 1, .•. ,pt},S={p00 }us 1• We have to show that 

the number of solutions of 

□ 
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(7. 13) ax+by = in S-uni ts x, y 

is at most 296x72t. If (7.13) is solvable, then the gcd of a and b must be 

composed solely of primes from s 1• Moreover, if a and b have divisors which 

are composed solely of primes from s 1, these can be absorbed by x,y 

respectively. Hence it is no restriction to assume that a,b are coprime to 

each other and to p1 ••• pt and we shall do so in the sequel. 

Let (x,y) be a solution of (7.13). We define integers x' ,y' such that 

x/y=x'/y',y'>O and (x',y')=I. Then x',y' are uniquely determined by x,y. 

Moreover, every solution (x,y) of (7. 13) is uniquely determined by x/y, 

whence by x',y'. By (4.26) and by our assumptions on a,b we have 

h(ax/by) = max( I ax' I, lby' I) ;;: max( Ix' I ,y'). 

Hence by theorem 7.1 (i) with \=a,µ=b,K=~,S=S 1u{p00}, the number of solut

ions of (7. 13) with 

max( Ix' I ,y') ;;: 206 

is at most 

Let s0 be a fixed subset of s 1• We shall consider solutions of (7.13) 

with the following properties: 

(7. I 4) max(lx' l,y') s 205, x' is composed solely of primes from s0, 

y' is composed solely of primes from s 1\s0 • 

Note that x',y' are completely determined by the integers w (x'),w (y') for 
p p 

pES 1 (cf.§4. I) and by the sign of x'. For each solution of (7.13) satisfy-

ing (7.14) and for each pES 1 we have 

0 s w (x' ) s log 205 0 s w (y' ) s 
p log 2 ' p 

log 205 
log 2 

Let s=ls0 i. Then, taking into account the two possibilities for the sign of 

x', the number of solutions of (7.13) satisfying (7.14) is at most 
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2( I+ log 205 )s (I+ log 205 ~ t-s = 2( I+ log 205 )t 
log 2 , log 2 / log 2 

Since s1 has at most 2t possible subsets s0 , the. number of solutions of 

(7.13) with max(lx' l,y'):!>205 is at most 

This completes the proof of theorem 7.2. 

PART II. ON THE EQUATION OF CATALAN. 

§7.3. Introduction. 

In 1844, Catalan [Ca] conjectured that the equation 

(7. 15) in x,y,p,qE2'l, x>l ,y>l ,p>l ,q>I 

□ 

has no other solution than x=3,y=2,p=2,q=3. No one has been able to prove 

this yet. In 1953, Cassels [C I] independently made the weaker conjecture 

that (7.15) has at most finitely many solutions and this was proved by 

Tijdeman [Tij] in 1976. Several special cases of (7.15) have been 

considered. Wall [W] showed in an elementary way that (x,y,p,q)=(3,2,2,3) 

is the only solution of (7.15) for which p>l,q>l and x,y are primes. 

LeVeque [LeV I] showed that for each given pair of integers x,y at most 

one pair (p,q) exists with p>l,q>I and xp-yq=I. 

We shall consider the case that p,q are fixed integers, m,n 

respectively say, with m>l,n>I, i.e. we shall consider the equation 

(7.16) m n 
X -y in x,yE2'l, x>l,y>I. 

Several results on special cases of this equation are known. In 1738, Euler 

[Eu] showed that for m=2,n=3 the only solution of (7.12) is x=3,y=2. V.A. 

Lebesgue [Le] showed in 1850 that (7.16) is unsolvable for n=2 (hence for 

n even) and mf3. Nagell [Na I] showed in 1921 that (7.16) ia unsolvable 

for m=3 or for mf2,n=3. Chao Ko [ChK] showed in 1967 that (7. 16) has no 

solutions for m=2 (hence form even) and nf3. Hyyro [Hy I] showed in 1964, 

by using a result of Davenport and Roth [D/R], that for m~2,n~2,mn~6, 

(7.16) has no more than exp(631m2n2) solutions. As an application of 



theorem 6.2 we shall improve Hyyro's result. 

THEORill1 7.3. The number of solutions af 

(7. I 6) 
m n 

X -y in x,yE'll with x>I,y>l, 

where m,n are integers with m>l,n>l, is at most 

(mn)min(m,n). 

§ 7. 4. Proof of theorem 7. 3. 

In the proof of theorem 7.3 we shall assume that m,n are distinct. 

This is no restriction, for if x,y are positive integers with xn-yn=I, 
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h I ( I )n n n-l h" h . . "bl f ten ? y+ -y ?ny cu, w ic is impossi e or n?2. Secondly, we assume 

that m,n are prime numbers with m?S,n?S. By the historical remarks made in 
2rri/r §7.3 this is also no restriction. For every integer r?3 we put Kr=m(e ) 

and we define h to be the class number of K. We shall need two lemmas. 
r r 

The first is due to Cassels and is stated without proof (for a proof we 

refer to [C I] or [Hy I]) and the second is a rather bad estimate for hr 

in case that r is a prime. 

L&\JMA 7.1. If (x,y) is a solution of (7.16) then njx,m!y. 

LEMMA 7.2. Let r be a prime number with r?3. Then h ~(r/3)r. 
r 

PROOF OF LEMMA 7.2. We shall prove the lemma by combining some estimates 

which can b~ found in literature. Let K denote an algebraic number field 

of degree m with r 1 real and r 2 complex primes. Let h,R,D denote the class 

number, regulator and discriminant of K respectively and let w denote the 

number of roots of unity in K. Then we have the following estimates: 

(7. I 7) 

(7. 18) h < 
\m-1 

4wR-12-r1(2rr)-rz(belogllDI I IDll/2, 
m- I 

where b = (!+(log rr)/2 + (r/m)log 2 )-I. 

The first is due to Zimmert ([ZiJ,Korollar, p.375) and the second to Siegel 

([Si SJ,Satz I). 
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We now prove lemma 7.2.We assume that r is a prime with r2".23. Since 

h =I for r<23 (cf [Wa],p.204) this is no restriction. Put K@= 

~(eZrri/r+e-Zrri/r). Then K@ is the maximal totally real subf~eld of K. Let 
r r 

Rr be the regulator of Kr and R: that of K:. Then 

R 
r 

(For this, and the other properties of cyclotomic fields we shall use in 

the sequel, we refer to [Wa],ch.1,2,4). On noting that for K=K@ we have 
r 

m=r 1=(r-I)/2,r2=0,w=2 this implies by (7.17) that 

(7. I 9) 

r-2 -I 
For K=Kr we have w=2r,r 1=o,r2=(r-1)/2,m=r-1,IDl=r ,b=(l+(log(2rr))/2) , 

hence by (7.18) and (7. 19), 

( e(r-2)1og r )r-Z (r-2)/2 
x (r-2)(l+(log(2rr))/2) r 

2 
< 4oo(l+(log(2rr))/2) 21/2e0.23(2rr)l/2,X 

\ e , r 

( 2-l/2e-0.23e ) r/2 r-2 
x ----,--,------- r ( log r ) 

(2rr) 112 (J+(log(2rr)/2) 

-r r/2 r-2 
< 890x3 r (log r) • 

It is easy to check that this is smaller than (r/3)r for r2".23. □ 

2rri/m 
We are now going to prove theorem 7.3. Put p=e and let p be the 

k 
prime ideal in Km generated by 1-p. Then all numbers 1-p (k=2,3, •.. ,m-l) 

also generate p and we have 

(7.20) 
m-1 

p <m>. 

Let (x,y) be a solution of (7.16). Then we have by lemma 7.1, 

2 
Hence by (7.20), wp(x-l)~m-1 and wp(x-p)=wp(x-p )= ••. =!, But this implies 



by (7.20) that in 7l 

( 7. 21) 

Furthermore, by (7.20), 

I, w (x-1) - -!(mod n). 
m 

xm-1 2 m-1 
<x-1, x-l > :::><x-1,x-p><x-I,x-p > ... <x-1,x-p > 

m-1 :::, p = <m> 

and similarly, 
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Hence if q is a prime ideal in K with qfp we have w (x-l)=w (x-p)=O(mod n). 
m q q 

Together with (7.21) and the fact that wp(x-p)=I this yields that there 

exists a positive integer s and an integral ideal bin K such that 
m 

(7.22) x-1 n-1 n 
m s , <x-p> 

There are at most hm ideal classes in Km whose n-th power is the 

principal ideal class. Choose in each of ~hese classes a fixed ideal and 

choose a fixed generator of each of then-th powers of these ideals. Let G 
be the set of these generators. Then G has cardinality at most h. Let a 

m 
be the ideal which was chosen in the ideal class of band let a be the 

chosen generator of an. Then b=a<n 1> for some n1EKm, hence by (7.22), 

<x-p> 

i.e. 

(7.23) x-p 

for some unit E in OK. 
11i/m ·1n 

Let p0=e and let {E 1, ... ,Es} be a system of fundamental units in 

Km, where s=(m-3)/2. There exist rational integers k0 ,k 1, ••. ,ks with 

Q$k0$2m-l such that 
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£ = 

(7. 24) x-p 

n-1 
where n=£"n 1• Put z=l;/n,w=rn /(1-p)E'a. Then w belongs to the set 

which has cardinality at most n(m-I)/ 2h. Now we have by (7.22),(7.24) and 
m 

<x-1,x-p>=<l-p> that 

(7.25) 
n n-1 n <(1-p)E'an -m I;> 
n n-1 n 

<(1-p)E'an ,m I;> 

<x-p-(x-1 )> = O 
<x-p,x-1> Km 

By theorem 6.2 (i) with K=Km,t=O,r 1=o,r2=(m-I)/2 there are at most 

2(nU(n)) (m-I)/ 2 

distinct values of z satisfying (7.25) for which 

where 

= 16n-2(16n-2)(8n+l5)/(8n-17) 
U(n) Sn-17 8n+l5 

Now we have that (x-1)/(x-p)=wzn, hence x and y are completely determined 

by wand z. Moreover, since (x-1)/(1-p),(x-p)/(I-p) are algebraic integers 

whose difference equals -I, we have by (4.22),(7.22),(4.16),m~S, IN~/~(I-p)J 

=rn, 

h(.~) x-p 



113 

n-1-1/(m-I) n n-2 n =m I; ?:m I;. 

Hence, in view of the upper bound for the cardinality of H, the number of 

solutions of (7. 16) with 

is at most 

1/2 
Therefore, by the fact that m?:5,n?:5,U(n) <3 for n?:5, by lemma 7.2 and 

since x,y are completely determined by I;, the total number of solutions of 

(7.16) is at most 

It can be shown in a similar way, by factorising xm=yn+l in Kn' that 

the number of solutions of (7.16) can also be bounded above by (mn)n. Hence 
min(m n) . (7.16) has at most (mn) ' solutions. This proves theorem 7,3. D 
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