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LIST OF SYMBOLS AND NOTATIONS, OTHER THAN OF LOCAL USE.

Apart from the notations listed here, we shall use the notations

introduced in chapter 4.

5 2 N 2

_UB
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20 ’ZZSO , etc.

p

AcB, BoA
aecA

afA

A\B

A UA u...uAn

1772

AlnAZn...nAn

(Al

*
R

REXI""’Xn]

K,L,M4, etc.

Ok

K(al,...,an)

the set of natural numbers (i.e. {1,2,...})

the set of (rational) integers

the set of rational numbers

the set of real numbers

the set of p-adic numbers, i.e. the p-adic completion
of @

the set of complex numbers

the set of algebraic numbers (i.e. the algebraic
closure of @)

the set of non-negative integers, the set of non-—

positive integers, etc.

the empty set

A is a subset of B

a belongs to A

a does not belong to A

the elements of A not belonging to B

the union of Al""’An

the intersection of Al""’An

the number of elements of the finite set A
the set of all non-zero elements of R, where R is a
ring, field etc.

the set of polynomials in the variables X seeenX

n
with coefficients in R

algebraic number fields

the ring of integers of the algebraic number field X
the smallest field extension of K containing Apseees
a

n
the degree of L over K, where L is a fiald extension



a,b, etc.

w,P, etc.

lal

o

(ml, ,mn)
ml|m2|m3
a,2a, 2, .
f(xl, »X )
¢l

)

n

ol
pln pln

Z , I, max, min
oA acA oe€A oeA

z , I, max, min
alA  ofA afA  ofA

of K
ideals in some algebraic number field
prime ideals in some algebraic number field

the ideal in K generated by a feesl (if confusion

]’
is unlikely we omit the subscript K)

isomorphisms (by these we mean injective homomorphisms)
of an algebraic number field in @

valuations

the largest integer not exceeding o

the complex conjugate of the complex number a

the positive gecd of the integers Myseee,m
the integer m, divides my, m, divides mg,
the ideal a] divides a2’ a2 divides a3, .

the value of the real function f in the variables Xs
SaX taken to the power c, where ceR
the inverse function (mapping) of the bijective

function (mapping) f

a(o-1)...(a-n+1)/n! for ae@, neNN

1 for ae€, n=0

0 for aeC, neZ<0
the sum,product respectively taken over all primes p
dividing n

the sum, product, maximum, minimum respectively taken
over all elements o of A

the sum, product, maximum, minimum respectively taken

over all elements o of some given sel which do not

belong to A

end of a proof

iSi 1| (example) reference
n 1 . . n, n,__ . .
ax -by l = ¢ in X,y¢Z, (x,y)=1 the equation ‘ax -by |=c in coprime
(a>0,b#0,c>0,n23) integers x,y, where a,b,c,n are

(cxample)

integers with a>0,b#0,c>0,n>3.
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For each page we give the symbols which are introduced or defined on
that page and which are used throughout the remainder of the chapter. The

symbols introduced in chapter 4will also be used in the chapters thereafter.
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CHAPTER 0. INTRODUCTION.

In this monograph we shall derive upper bounds for the numbers of
solutions of diophantine equations taken from several classes. One of

these classes consists of equations of the type
(0.1) F(x,y) =m in x,yeZ ,

where F is an irreducible binary form with coefficients in Z (i.e. a
homogeneous polynomial in two variables which is irreducible over @) and
m a non-zero integer.

If F is a linear form, F(x,y)=ax+by say, then (0.1) is solvable if
and only if the gcd d of a and b divides m. Moreover, if (xo,yo) is one

+tb/d,

solution of (0.1), then the other solutions of (0.1) are given by X=X
y=y0—ta/d, where t runs through the non-zero integers.

Also if F is a quadratic form of positive discriminant D, then (0.1)
has either none or infinitely many solutions. Using the continued fractions
expansion of VD one can decide, whether (0.1) is solvable or not and
compute the solutions of (0.1) if there are any. (cf [Hul,§§10.8,10.9,11.4,
11.5)

If F is a quadratic form of negative discriminant D, F(x,y)=ax2+bxy+
cy2 say, then (0.1) has at most finitely many solutions. For then each

solution (x,y) of (0.1) satisfies
(Zax+by)2—Dy2 = 4am,

hence IylSIAam/Dll/z. Dirichlet ([Dir]88§86-91, see also [Hul, §12.4) gave
an upper bound for the number of solutions of (0.1). Let D be a negative
integer with D=0 or 1(mod 4). There are quadratic forms of discriminant D
which have integral coefficients with gecd 1. These can be divided into
equivalence classes, where equivalence is defined by unimodular transformat-
ions. There are at most finitely many of such classes and in each one we
choose a fixed representative. Thus we obtain a set {Fl""’Fh} of pairwise
non-equivalent quadratic forms. For odd primes p, let (JJ be the usual
Legendre symbol. Moreover, put (g)=l if D=1(mod 8) and (gJ =-1 if D=5

(mod 8). Put w=6 if D=-3, w=4 if D=-4 and w=2 if D<-4. Let PyseesPy be



distinct primes not dividing D and kl""’kt positive integers. Dirichlet

proved that the number of solutions of

k k
Fi(x,y) = p]]...ptt in x,yeZ and ie{l,...,h}
is equal to
k. .
t i j
w I Z G?—
i=1 j=0 ¥#

The number of solutions of (0.1) does not change when F is replaced by an
equivalent form. This implies that for a quadratic form with integral
coefficients and discriminant D<0 and for an integer m with (m,D)=1 and
m=p?1..;ptt for distinct primes p; and positive integers ki the equation

(0.1) has at most
(0.2) 6(k]+1)...(kt+1)

solutions. In fact, this holds true also if (m,D)>1. If F is equivalent to
x2+xy+y2 and if the primes p; dividing m satisfy piE 1(mod 3) then (0.2)
can not be improved. In the other cases, the bound (0.2) is not optimal but
it has the advantage of being independent of the coefficients of F and of
the primes dividing m. For historical information on (0.2) in case F has
degree <2 we refer to [Di 2], ch.2,12,13.

From now on, we assume that the form F appearing in (0.1) has degree
at least 3..Equation (0.1) is often called the Thue equation, after A. Thue,
who showed in 1909 [Th 1] that (0.1) has at most finitely many solutions.
We shall discuss his method later on. Other proofs were given by Th. Skolem
in 1935 [Sk 3] using p-adic power series, however under weak restrictions
imposed on F,and by A. Baker in 1967 [B' 2,31, using lower bounds for linear
forms in logarithms. The methods of Thue and Skolem have the disadvantage
of being ineffective, i.e. in general they do not supply an algorithm to
compute all solutions of (0.1). Baker's method however, is effective. Baker
gave an explicit upper bound for the solutiomns of (0.1). The estimates in
his arguments have been improved later. Using a modification of Baker's
method by Stark [St] and explicit estimates of Loxton and van der Poorten
[L/P] on linear forms in logarithms and of Siegel [Si 5] and Gydry [Gy]
on units and regulators, one can show that every solution of (0.1)

satisfies



50(n+2)lD|]/2 n+l

(0.3) max (x|, |yl) < eXP((4ﬂ) (loglDl) .

-(In} ]/2(1og|D|)n—l+1ogA+log|ml)> ,

where n is the degree, D the discriminant and A the maximum of the absolute
values of the coefficients of F. In this thesis we shall be mainly
interested in upper bounds for the number of solutions of (0.1). We shall
apply ineffective methods similar to that of Thue, since they seem to lead
to far better estimates.

Thue derived his result on the number of solutions of (0.1) from his

own theorem on the approximation of algebraic numbers by rationals [Th 11]:
let o be an algebraic number of degree n and let x>n/2+1. Then the
inequality

(0.4) |§-a] < yl™  in x,yeZ with y#0

has at most finitely many solutions.

The argument is as follows. Suppose that (0.1) has infinitely many solut-

ions. Since F is irreducible, we have

F(x,y) = B(x-a]yI(x—azy)..{(x—any) .

where BfcZ and where o, ,0 .,0_ are algebraic numbers of degree nz3.
1 n

g0t
There is no loss of generality in assuming that (0.1) has infinitely many

solutions (x,y) with

y#0, |§-a1[ < |$-—ai| for i=2,3,...,n.

‘%-ai 2 —;—(|§—ai|+l§—al|> z ;—|ui—a1| for i=2,3,...,n,
and hence
Il = 1FGey) | 2 18l y1*E o [ E-a, .o B |

> cly!n|§ﬂ-al‘,



where ¢ is a positive constant depending on F only. But this implies that

Eoa | < dmle!
- b
y 1 ly]n

which is in view of Thue's result on (0.4) and the inequality n>n/2+l for
n23, possible for at most finitely many pairs (x,y). This contradicts our
assumption. Hence (0.1) has at most finitely many solutions.

Thue's results on (0.1) and (0.4) have been improved and generalised
by several mathematicians. In his thesis, C.L. Siegel [Si 1] showed, that
2 1n 1947748, F.3.
Dyson [Dy] and A.0. Gel'fond [Ge 2] independently improved this to K>(2n)]

(0.4) has at most finitely many solutions if k>2n
/2
Finally, in 1955, K.F. Roth [Ro] reduced this condition to x>2. The methods
of Thue, Siegel,..., Roth are all ineffective. However, for some special
equations of type (0.1) modifications of these methods have led or can lead
to considerable improvements of (0.3). (cf.[Th 21,[B 1],[Bol,lChu 21]).

Also in his thesis, Siegel considered the approximation of algebraic
numbers by numbers from a fixed algebraic number field and the consequences
for diophantine equations. Let F be a binary form of degree n with
coefficients in some algebraic number field K of degree m and with non-
zero discriminant and let y be an integer in K. Siegel({Si 1],Satz 5)

showed that if

n = me min (s+n/(s+1))
then there are at most finitely many pairs of integers (x,y) in K2

satisfying
(0.5) F(x,y) = v.

In 1929, Siegel ([Si 3], zweiter Teil) proved the following extension
Let G(x,y) be an absolutely irreducible polynomial with algebraic
coefficients such that the curve C defined by G(x,y)=0 has genus 2l. Then
C contains at most finitely many points (x,y) for which both x and y
belong to the algebraic number field K and for which at least one of x,y
is an algebraic integer. This result implies that (0.5) has only finitely
many solutions in integers x,y of K if deg F 23.

In 1933, K. Mahler [Ma 1,2] generalised Thue's result in another

direction. He studied the simultaneous approximation of real algebraic



W

numbers and p-adic algebraic numbers for finitely many primes p by
rationals. His investigations ([Ma 21,Satz 6) led to this result: for every
irreducible binary form F of degree 23 with rational integral coefficients
there exists a positive constant c, depending on F only, such that the

number of solutions of

K ke
| Py in x,y,kl,...,kteﬂl with (x,y)=1,

k,20,...,k 20,

(0.6) IF(x,y)] = p

t+1

where P;>-+-p,_ are distinct primes, is finite and at most equal to c

Equation (0.6; is often called the Thue-Mahler equation.

In 1950, C.J. Parry [Pal studied the simultaneous approximation of
complex algebraic numbers and of algebraic numbers in the algebraic closure
of Qp for finitely many primes p by numbers taken from a fixed algebraic
number field K. As a consequence he proved a theorem which is formulated
precisely in chapter 6.(see also [Pal,pp 77/78). Here we mention a result
which is in fact equivalent to that theorem: let F be a binary form of
degree n23 with integral coefficients in K and non-zero discriminant and
let PpseeePy be distinct prime numbers. Define W(F,K,p],...,pt) to be the
number of fractions x/y such that x and y are integers in K with y#0 and
k kt

0.7 N @Gy | =0, e,

K/Q

for some non-negative integers kl""k . Then W(F,K,pl,...,pt) is finite

t

t+l . P .
, where c, is a positive constant, depending on F

0 0
and K only. This implies earlier stated results on (0.1),(0.5),(0.6). For

and bounded above by c

by Parry's result there are finitely many fractions x/y for whichx and y are
integers in K satisfying (0.5) and if (x,y) is a solution of (0.5) with
y#0 then Y=ynF(x/y,1). Furthermore, each solution of (0.6) with y#0 is
completely determined by x/y up to the sign of y.

Very recently, the German mathematician G. Faltings [Fal proved the .
so—-called Mordell conjecture: let K be an algebraic number field and let
G(x,y)eKlx,y] be an absolutely irreducible polynomial such that the curve
C:G(x,y)=0 has genus at least 2. Then C contains at most finitely many
points (x,y)eKz. As a consequence, equation (0.5) has at most finitely
many (not necessarily integral) solutions in x,yeK if F has degree at least
4. From this, it follows easily.that the number W(F,K,pl,...,pt) which was

defined relative to (0.7) is finite in case that n24.



We shall now give a survey of the contents of this monograph. An
important rdle will be played by an approximation method which deals with
the approximation of numbers of the type 9573.(where a,b,n are non-zero
integers with n23) by rationals. This method is originally due to Thue
[Th 2] but has been modified later by Siegel [Si 4]. Therefore, we shall
refer to it as the Thue-Siegel method. For historical remarks about this
method we refer to [Si 6]. We shall follow Siegel's arguments but instead
of Siegel's hypergeometric functions we use polynomials. This has the
advantage of not having to worry about convergence. The essential
properties of these polynomials are discussed in chapter 1.

In chapter 2, in which only some knowledge of elementary number
theory is presupposed, we use the Thue-Siegel method to obtain information

about the solutions of
(0.8) ]axn—byn| =c in x,yeIN with (x,y)=I1,

where a,b,c,n are integers with a>0,b#0,c>0,n23. It is shown that the

(c)

number of solutions of (0.8) is at most 20" +4, where w(c) is the number
of distinct primes dividing c.

In chapter 3 we consider the equation
(0.9) F(x,y) =1 in x,yeZ ,

where F is a binary cubic form with rational integral coefficients and
positive discriminant D. We show that elements o,B of the field M=Q(v-3D)

exist, as well as linear forms &,neM[x,y], such that

a£3—8n3 = 3/-3DF(x,y)

identically in x,y. By using this fact in combination with a modified
version of the Thue-Siegel method we show that (0.9) has at most twelve
solutions.

In chapter 4 we develop some algebraic tools which are needed in the
chapters thereafter. In particular we introduce valuations and a height
function similar to Bombieri's in [Bol.

In chapter 5 we generalise the Thue-Siegel method. We prove a result
on the approximation of n-th roots (where n>3) of a fixed number in an

algebraic number field K by elements of K, in which both archimedean and



non-archimedean valuations are involved.

The result of chapter 5 is used in chapter 6. Let K be an algebraic
number field of degree m. Further, let F be a binary form of degree n23
with integral coefficients in K such that F(1,0)#0 and such that the
polynomial F(x,1) has at least three distinct zeros. Let PiseeesPy be
distinct primes. We shall show that the number W(F,K,pl,...,pt), which was
defined relative to (0.7), does not exceed

15((Pur1)? 2(Dm(ern)
(0.10) 7 + 6x7

This is an improvement of Parry's result since (0.10) depends on m,n and t
only. From (0.10) we derive an upper bound for the number of solutions of
(0.1) which depends on the degree of F and the number of primes dividing m
only. Such a bound does not exist when F is a positive definite quadratic
form (cf (0.2)). We shall prove (0.10) firstly for n=3 by generalising the
method of chapter 3 and then in general by taking a cubic divisor of F in
some extension of K. In the derivation of (0;10) we actually use only
results on the approximation of cubic roots of a fixed number in an
algebraic number field by numbers of that field, whereas Parry considered
the approximation of more general algebraic numbers.

In chapter 7 we prove some results on diophantine equations which
can be reduced to a finite number of Thue or Thue-Mahler equatioms. For
example we show that if Pys..-P are distinct prlmes and if a,b are non-
zero integers, then the number of pairs (x, y)em such that both the
numerators and denominators of x,y are composed of primes from Pyse+esP

t
and such that

ax+by = 1

is at most 296X72t. We shall also show that the number of solutions of the

equation

x -y =1 in x,yeN (m22,n22,mn26)

is at most (mn)mln(m,n).



CHAPTER 1. PROPERTIES OF THE AUXILIARY POLYNOMIALS.

In this chapter we shall study some polynomialswhich will be used in
the chapters hereafter. Let m,n be integers with m20 and n23 and put v=n_].
To each m we associate integers r,g with ge{0,1} such that m=2r+g-1. We

define

r-g
r-g+v)fr-v\ k - r-v)/r-g+v\ k
k )Q*k)z > Bm(Z) ) < Kk )(r~g—k>z for m21,

A (2)
m k=0

1l
P
| o~
o
N

(1.1)
Ao(z) =1, BO(Z) =0 .

Here it is supposed that the variable z assumes its values in some field
of characteristic 0. Many of the properties of these polynomials can be
derived from the theory of hypergeometric functions. Instead of doing this,

we extend an elementary method of Faddeev. ([D/FJ], ch.5)

LEMMA 1.1. (Z) For m=1,2,... we have

Am+](z) = amAm(z)—Bm(l-Z)Am_l(Z) s

(1.2) _ _ _
B .1(2) =0 B (2)-8 (1-2)B _,(z) ,
where
= = IV =
o) = 2, Bm - if m = 2r,
(1.3) -
r+ _THY . -
am TR Bm = f m 2r+1.,

(21) For m=2,3,... we have

zA0 (2)+(1-v)A' (2) = v A ,(2) ,

zBI'l'](Z)+(l+v)Bl;l(Z) = YpBp—2(2) »
where

ym=(r—g+v)(r—v) .

PROOF. These identities can be proved easily by showing that the left- and



the right-hand sides of the expressions given in (1.2), (1.3) are polynom-

ials with equal coefficients. For example, we shall prove that

A, (2) = 2A2r(z)-£%!(l—z)A

2r+1 (z) for r=1,2,...,

2r-1

that is

[r+v)r=v) _
an  (PNE)
2 r=1+v)r-v) _ r-vfr-l+v\fr-1-v o IV r-1+v\/r-1-v
k r-k r k r-1-k r k-1 r-k
for k=0,1,...,r.

The right-hand side of (1.4) is equal to

r+v r—v\'zr—k+v _I-v r-ktv r-k r-v k_k-v) _
k r-k, r+v r r+v r-v r r+v r-v

(r+v. -V’ 2r(r—k+v)—(r-k+v)(r—k)+k(k—v)> - (r+v><r—v>
Tk r-k r(r+v) k r-k/ ° a

Put

T [r-g+v\2r-g- IS8 (r-v)(2r-g—k k
SORA G G COME XN (o G2

(1.5) for m=1,2,...,

Eo(z) =1, Fo(z) =0 .
LEMMA 1.2. Em(z)=Am(]-z), Fm(z)=Bm(l-z) for m=0,1,....

PROOF. We shall proceed by induction on m. The lemma can be verified easily
for m=0,1. Suppose it has been proved for all m<t, where t22. An easy
computation shows that

E (z) = atEt(z) - BtzEt_](z), F (z).

t+1 (z) = atFt(z)-BtzF

t+l t=1

Hence by (1.2) and by the induction hypothesis lemma 1.2 is valid for
m=t+1. 0
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LEMMA 1,3. (Z) Put q(m)=nr(nr,rl). Then q(m)Am(z) and q(m)Bm(z) have
rational integral coefficients.

(ii) Suppose that n is odd and let n, be the maximal positive square-free
divisor of n. Then there are polynomials Cim(z)’Dim(z) for m=0,1,2,... and

i=1,2 with rational integral coefficients depending on n such that

Am(l—n3/2z) = Clm(z2)+n]/2209m(22L
(1.6) 3/2 . /2 2
Bm(l-n z) = Dlm(z )+n N zD2 (z7).

PROOF. Firstly, we shall show that for every pair of integers a,k,

(1.7) : a“>nk(n k) ez,
that is, d1 is a p-adic integer for all primes p. Note that there exists an
integer d2 such that
k
1 2 k!

Hence d] is a p-adic integer for all primes p dividing n. But for primes p

; is even p-adically integral. This shows (1.7) completely.

(1.7) clearly implies that q(m)E (z) and q(m)Fm(z), whence q(m)Am(z)

not dividing n,

and q(m)B (z) have rational integral coefficients. By (1.7) we have also
that E (n3/2z) and F (n3/ z) have algebralc integral coefficients for
odd n. For let p be a prime such that p divides n for some positive
integer t, but pt+] does not. Then p23. Hence the number of times that p

divides (nk,k!) equals

X
p-1

ke
2 2

Z [kp 37 <k Z pJ =
j=1 j=1

Together with (1.7) this implies that
3/2.k k, k -
()@ D% = (2) @k @) @k, ™ @k

3/22)

is an algebraic integer. Therefore the coefficients of Em(n3/zz), Fm(n
are algebraic integers. But we have also that the coefficients of these

polynomials corresponding to even powers of z are rational numbers, while
the coefficients corresponding to odd powers of z are the product of n]/2

and a rational number. By lemma 1.2 this proves lemma 1.3 completely. 0
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LEMMA 1.4. For every non-negative integer m there exists a polynomial Vm(z)
with non-negative coefficients such that

(1.8) A (z")-28 (") = (1-2)"V_(2),
_ mfr-g+v)r-v) /(m
e )

PROOF. We shall proceed by induction on m. For m=0,1 we may take Vm(z)=1.

Suppose our lemma has been proved for all mst, where t>1. We define the

rational function
(z )- th+1(z )

(l—z)tH ‘

A
Vs (2) =

We have to show that Vt+](z) is a polynomial with non-negative coefficients.
By (1.2) we have

t+1
t+l

(1-2) (z) = A (Z%)-2B . (%) =

t+1 t+l

a (A (2M)-2B_(z"M) - 8 (1-2") (o _  (zM)-2B__ (") =
(1-2)" (@, V, (2)-6, (+z+...+2" DV _ (2))
Hence, on dividing by (]-z)t,

(1.10) -2V, (2) = oV, ()-8, (+z+...+2" DV, (2).

It follows from (1.9) that atVt(l)=nBtVt_1(l). Hence the right-hand side of

(1.10) is a polynomial divisible by 1-z. This implies that Vt+](z) is a

polynomial.

Note that by (1.3)

d2

Ty (2B
dz

")

t+l

22n2N, &nﬁnﬁrlﬂn

e+ (") -

t+l
_ 2 2n-1_, n, _ -1_, n
n“z Bt+1(z ) n(n+l)z Bt+1( )

nzzn—z((l—v)AL+1(zn)+znA' (zM- z((l+v)B l(z )+z Bt+1(zn))>



R R (YN ot SN Co))

n-2 t-1
="y, ,,% (1-2) Vt—l(z)’

while on the other side,

d2 n
—5 ( t+1(z )= th+1(z )) = ———((1- )

dz dz

t+l
t+l

(z)) =

t+l

(e+)te(1-2) Ty (z)—2(t+l)(l—z)tVE+1(z)+(l-z) v (2) .

t+l t+l

Hence, on dividing by (1- z)t 1

(1.11) (1-2) V (z)_z(t'H)(]_Z)Vé.'.](z)+(t+1)tvt+](an2¥t+1z.r‘l—2Vt—](Z)'

t+1

-This shows that (t+])tVt+l(l)=n2Y (1). By our induction hypothesis

t+1Ve-1
this implies that (1.9) holds for m=t+l.

We shall now show that Vt+](z) has non-negative coefficients. Put

(1.12) (2) = (e+DV ()= (=-2)V{  (2).

t+1 t+1

Then, by (1.11),

(1.13) (2)-(1-2)W' (z) = nzyt+1z“’2v (2).

t+] t+1

Put

Vt+1(z) = E az Vt_l(z) = E bkz , wt+l(z) = Z CZ -

Then ak=bk=ck=0 for sufficiently large values of k. By (1.13) we have for

every k=20

+n2Y b

(tt)e, = (k+l)e t+1 k-n+2

k+1

where b :=0 for k<n-2. By the induction hypothesis we have c, 20 if

k-n+2° k-
ck+]20. Hence c, 20 for all k. By (1.12) we have

k



(k+t+l)ak = (k+l)ak+]+ck,

which shows that akZO for all k. This completes the proof of lemma 1.4, [

LEMMA 1.5. Am(z)Bm+h(z)#Am+h(z)Bm(z) for z#1, myheZ, m20, he{l,2}.
PROOF. From

Am(zn)—zBm(zn) = (l—z)me(z),

A D28 () = (l-z)m+th+h(z)

we obtain
(1.14) Umh(zn) = Am(zn)Bm+h(zn)-Am+h(zn)Bm(zn) = Rmh(z)(l—z)m,

where Rmh(z) is some polynomial. Since the left-hand side of (1.14) is a
polynomial in 2" it must be divisible by (l-zn)m. But one verifies easily
that Umh(z) has degree at most m. Hence Rmh(z) is a constant. A substitut-
ion of z=0 in (1.14) yields that this constant is non-zero. Hence z=1 is

the only zero of Umh(z). ]

LEMMA 1.6. (Z) For zeC we have
|a_(2)] S(er_g>maX(1,IZI)r, I8 ()] < (zr;g)naX(l,IZI)r_g,

-1
ARSI n“‘(ﬁl%f;)(r?)(‘;‘) max(1,|z])" ®72),

(11) For zeC with |1-z|<l we have

(1.15)

(1.16) |Am(2n)i5<2i:g>2nr:|Bm(zn)|5(2ﬁ:g)2n?’le(Z)IS(Zi:g)znr-

PROOF. Note that Am(z),Bm(z),Vm(z) have non-negative coefficients and
degrees r,r-g,r(n-2) respectively. Hence the sums of the absolute values of

the coefficients of these polynomials are equal to their values in 1. Hence

(1.17) IAm(z)|5Am(l)max(l,lz|)r,|Bm(z)|§ Bm(l)max(l,lzl)r—g,

|Vm(z)|SVm(l)max(l,Izl)r(n_z).
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By lemma 1.2 we have Am(l)=Bm(l)=<2i:g>. Together with (1.9) this implies
(id.

To show (ii) we note that [l1-z|<l implies that |z|<2. Hence

(1.18) la_(z"[sa 2™, [B_(zM)[<B (2", |v_(2)|sv_(2) .

Note that by (1.2)

n, . n n_ oM
Am+](2 ) = amAm(Z )+Bm(2 1)Am_]k2 )

ny _ n n_ n
B (2D =B (2)+8 (27 -1)B _,(27).

Since clearly Ao(Zn)ZBO(Zn), A](Zn)ZBl(Zn) this implies that Am(2n)2Bm(2n)
for all m. Hence by (1.8),

_ n,_ n n nr _ (2r-g\,nr
v (2) = |Am(2 )-2B_(2 )| <A (27) <A (1)2 -( . )2 .

/

By (1.18) this implies (ii). ° ]



CHAPTER 2. ON THE EQUATION ax"-by =c.

§2.1. Introduction.

In this- chapter we shall deal with the diophantine inequality

(2.1) Iaxn—byn| <C in x,yeN, (x,y)=1 (a,b,neZ ,a>0,b#0,
n23,CeiR ,C21) .

By an approximation method in which the polynomials from the preceding

chapter are used we shall show the following:
THEOREM 2.1. Put

T =3 @2/ pl/(P"l)’

pln
by T;l /2, w 1Jtrr:aX((n+2)/2(n-3) ,n/ (n-2))

for nz4,

a, = 9, o max{(3n-2)/2(n-3),2(n-1)/ (n-2)) for n24.

Then the inequality (2.1) has at most one solution with
o
n

(2.2) max(axn,|byn|) > unC

In the table below we have written down some values of u and a s

rounded off to. two decimals.

n 3 4 | 5 6 7 8 9 10
U 1152.20(98.53 [10.67 |31.59 | 8.00 {13.44 (11.39 {23.31

¢, 9.00 | 5.00 | 3.25 | 2.67 | 2.40 | 2.33 | 2.29 | 2.25

@ decreases monotonically to 2 if n tends to infinity but v behaves

irregularly. However, we have
2
(2.3) vy < n~ for n25.

This is clear for 5<n<8 while for n=28



wo= Tn/(n—Z) - l(n I p]/(P'1)>D/(n—2)
3

n n p|n
) 2n/;n-2)(n I p1/2>n/(n—2) < n3n/2(n-—2) <
.pln

For most of the applications of theorem 1.2 this upper bound will suffice.
Theorem 2.1 is an improvement of theorem 3 of [Ev 11(p.291), espec-
ially in the case n=3. There we showed, that for n=3 (2.1) has at most
three solutions with max(ax3,|by3|)2(1.7IXI07)CII. In the proof of theorem
2.1 we shall use the polynomials constructed in the preceding chapter. In
[Ev 1] we used hypergeometric functions which are closely related to the
polynomials from chapter 1. Also by means of these hypergeometric funct-

ions, Siegel [Si 4] showed, that (2.1) has at most one solution if

lalbln/z_1 > 4(n ' 1/(p-1)) Zn— .

pln

Hyyro ([Hy 2],Satz 1,p.11) generalised Siegel's result in the following
way: there are constants 99=% (n)e (0,11, C C (n,ab)>0 with the following
property: for any pair of real numbers o,C w1th GOSOSI,C>O such that 0=04,

C>C0 do not hold simultaneously, the equation

Iaxn'bynl =2z in x,y,zehl (a,b,nelN, nx3)

has at most one solution with (x,y)=1, z<Cmax(axn,byn)l_0 and max(axn,byn)
>G=G(n,0,C,ab). By choosing o=1 for those values of n for which Go(n)<1,
i.e. n24, Hyyro obtained.a result similar to but somewhat weaker than
theorem 2.1.

We shall also deal with the equation
(2.4) axn—byn =c in x,yeZ (a,b,c,neZ ,n23,abc#0)

For some small values of n and c sharp estimates for the number of solut-—.
ions of (2.4) can be given. Nagell showed that the number of solutions of
(2.4) in integers x,y with xy#0 is at most 1 if n=3,c=1,3 (with the

exception of 2x3+y3=3 which has solutions (1,1),(4,-5))[Na 1] and at most
2 if n=3,c=2,4 and a,b odd'[Na 3l. Ljunggren [Lj 1,4] showed that (2.4) has
at most one solution in positive integers x,y if n=4,c=1,2,4,8 and if n=6,

c=1,2,3,4,6,a>0,b>0, (ab,c)=1, ab is not a square or cube of an integer and



and not divisible by the sixth power of a prime. Domar [Do] showed that
n., n .
(2.5) |ax -by | =1 in x,yeN (a,b,neN ,n25)

has at most two solutions. While the methods of Nagell and Ljunggren were
algebraic, Domar showed his result by improving some of the estimates
Siegel used in [Si 4]. In fact, Domar's result follows immediately from
theorem 2.1. For this theorem implies, together with (2.3) and annz for
n25, that (2.5) has at most one solution with max(x,y)=22.

Let R(n,c) denote the ngmber of residue classes Z(mod c) with
ZnEl(mod c). We shall derive an upper bound for the number of solutions of

(2.4) in terms of R(n,c).

THEOREM 2.2. The mumber of solutions of

- (2.6) |axn—byn| =c in x,yelN, (x,y)=1
(a, by c,neZ, a>0, b#0, c>0,n23)

18 bounded above by

2R(3,c)+4 if n=3,
R(4,c)+3 if n=4,
R(5,c)+2 if n=5 (R(5,c)+] Zf c=225),
R(n,c)+1 if n=26.

‘This is an improvement of theorem 1 of [Ev 1] for n=3,5,6. Using theorem
2.1 one can show that (2.6) can not have many "large" solutions and by
congruence considerations one can estimate the number of "small" solutionms
of (2.6) from above. Doing so, one obtains theorem 2.2.

The following theorem, which is stated without proof, is another

consequence of theorem 2.1.

THEOREM 2.3. The number of solutions of

ax"-by" = dz  (a,b,d,neZ, a>0,b#0, d>0,n>3, (a,d)=(b,d)=1)

2n/5-1

in integers x,y,z with x>0,y>0, (x,y)=1,0<]|z|<d 8 bounded above by

3R(3,d)+4 if n=3,



2R€4,d)+2 if n=4,
2R(n,d)+1 1f n=5, 6,
R(7,d)+3 if n=7,
R(n,d)+2 if n28.

Apart from an improvement in case n=3, this result is the same as theorem 2
of [Ev 1]. One can derive theorem 2.3 from theorem 2.1 similarly as theorem
2 is derived from theorem 3 in [Ev 11].

Let m,n be given positive integers. We shall give an upper bound for
R¢n,m) in order to replace the bounds in theorem 2.2 by simpler ones. Let

w(m) be the number of primes dividing m and let ¢(m) be the number of
positive integers not exceeding m and coprime to m. Let m=2k0p$lp§2...pﬁs

where ko is a non-negative integer, k],...

P,s..-sp_ are distinct, odd primes. By elementary number theory we have
1 s P

,kS are positive integers and

Koy o ki
2.7) R(n,m) = R(n,2 0) I R(n,p,t) .
i=1 t
Furthermore, it is easy to verify that R(n,p iy= (n, ¢(p iy)) for ig{l,...,k}

and that R(n,2 O) is equal to 1 if k e{0,1} and to (n, 2)(n Zko 2) if k022.

Hence R(n,2 0) divides ((n,2)n,¢(2 0)) Together with (2.7) this implies
that R(n,m) divides
s

((m, 20 ™, 0(2%0) 1 665D = ((um, 20" ™ ,0m)) .

i=1

Substituting this into theorem 2.2 we obtain

COROLLARY. et a,b,n,k,k,,

ie{1,2,...,t} and let PysPgs+-esP, be distinet primes. Then the equation

...,kt be integers with a>0,b#0,n23,ki20 for

n, ng _ ki k2 kt
(2.8) |ax -by | = Py Py +ePy

has at most 2n +4 solutions in integers x,y with x>0,y>0, (x,y)=I.

In chapter 6 we shall see that the number of solutions of (2.8) can
be estimated from above by a constant depending only on n and t even if

the exponents kl""’kt are considered as variables.



§2.2. Lemmas and special cases.

In this section we shall prove some auxiliary results for the proofs
of theorems 2.1 and 2.2. We shall also deal with some special cases of
these theorems. a,b,c,n will denote integers with a>0,b#0,c>0,n23 and C

will denote a real with C2I.

LEMMA 2.1. There are non-zero integers a b,c having the same signs as

1° 1’
ghcwwwﬁww,Mﬁcl&%ﬁmcawwﬁhwpﬂkwpaﬁlwﬂtMt
the number of solutions of (2.6) does not exceed the number of solutions of
|a1xn—blyn|=c1 in positive integers x,y with (x,y)=1.

PROOF. We may assume that (a,b) divides c, for otherwise (2.6) is not
solvab;e. Put 32=a/(a,b),b2=b/(a,b),c2=c/(a,b),f]=(az,c2),f2=(b2,c2). Let
(xo,yo) be a solution of (2.6). From (az,b2)=(x0,yo)=] it follows easily,
ny_ ny_ n ny_ n ny_ =
that (az,yo) f],(bz,xo) fz,(azxo,bzyo) (aZ’yO)(bZ’XO) f]f2 (aZbZ’CZ)' Let
Fl’
F |x . Put a =a Fn/f f ,b.=b Fn/f f.,c
2'70 1 727°2°7172271 2717122
integers having the same signs as a,b,c respectively such that cl|c and

F, be the smallest positive integers such that fllF?’f2|F2' Then Fllyo,

=c2/f1f2. Then al,bl,c1 are non-zero

such that (al,cl)=(b1,cl)=l. Furthermore, every solution (xo,y ) of

Iaxn—bynl=c corresponds to a solution (XO/FZ’YO/FI) of,lalxn—blyn| =c,.
Hence the number of solutions of (2.6) is at most equal to the number of
solutions of |a1xn-b]ynl=cl in positive integers x,y with (x,y)=1 which

proves our lemma. O

By lemma 2.1 and by the fact that R(n,cl)SR(n,c) we may assume that
(a,c)=(b,c)=1, whence (x,c)=(y,c)=1 for every solution (x,y) of (2.6). We
shall do so in the sequel. Furthermore, we shall distinguish between the
cases b>0 and be. There we use the fact that the numbers a],b] mentioned
in lemma 2.1 have the same signs as a,b respectively.

Let S(c) be the set {(x,y)e]N2 | (x,e)=(y,c)=1}. On S(c) we define the
following congruence relation: (x],y]),(xz,yz) are congruent mod c if

X yZExzyl(mod c), i.e. if xl/yLExz/yz(mod c). We denote this by (xl,yl) =

1
(xz,yz)(mod c). By our assumption on a,b,c all solutions of (2.6) belong to
S(c). Hence we can divide them into congruence classes mod c. In fact, we

have

LEMMA 2.2. The solutions of (2.6) belong to at most R(n,c) congruence

classes mod c.
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PROOF. Let (x ) be a fixed solution of (2.6). Then (xo,c)=(y0,c)=(a,c)=

0°Yo
(b,c)=1, hence

(xo/yo)n = (b/a) (mod c).

Let (x,y) be an arbitrary solution of (2.6). Then

n

(*o
\—;—) =1 (mod c).
o
This shows that the number of congruence classes of solutions of (2.6) is

at most equal to the number of solutions of the congruence equation

ZnEl(mod c) in residue classes Z(mod c), i.e. R(m,c). 0

We put w(x)=axn for every positive integer x and w(x,y)=max(axnﬁbynb

for every pair of positive integers x,y.

LEMMA 2.3. Let (%x,,y,),(x,,y,) be solutions of (2.6) such that (x,,y,) =
————— 1771 2’72 1’71

(xz,yz)(mod c) and w(x2)2w(xl). If ab=1 then w(x2)2cn—1/2 and 1f ab#l then
W(Xz)ZCn_]
n—
2
this system of linear equations in the unknowns a and b, we obtain

PROOF. We have ax?—by?=h],ax by;=h2, with |h1|=|h2I=c. On solving b from

h xn—hlx

b =

NBIN B

1
xl'l n_xn
2Y17%1Y

Since XY 15X Y,
n_n

n_n n
Ixzy1 xly2|2c » hence

are positive integers with |x,y, -X >c we have
1727%2%1

|ab}c™.

v

|h2w(x])—h1w(x2)|
For b>0 we have
|h2w(x1)—h1w(x2)[ < c(w(x1)+w(x2)) < 2cw(x2),

hence

wix,) > a—zbc“".

If b<0 then both h1 and h, are positive and we even have

2
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Ihzw(xl)—hlw(xz)l < cw(xz),
hence
n-1
w(xz) > |lablc .

Since ab#1 for b<0 this proves our lemma. O
We shall now prove theorem 2.1 in some special cases.

LEMMA 2.4. If (x,y) 8 a solution of (2.1), then w(x,y)<C if b<0 and
wie,y) <™ @D 2 i ambel,

PROOF. The lemma is trivial if b<0. If a=b=1, we may assume that x>y. Then
we have

[ xn—yn > xn—(x—])n.

Hence it suffices to show that xn—(x—l)n>21_1/nxn—’

function f(z)=((zn--(z-'1)ﬂ)z_n+1

for all x22,n23. The
. . -1, -

has the derivative (zn—(z—l)n—n(z-l)n )z n

For z>1 this derivative is positive, hence f(z) is monotonically increasing

This implies that

n -n+1

- x=-DMHx ™ s (2%-1)2

for x22,n23. But from this fact our lemma follows immediately, since

n -n+1 1 1-1/n

2™-1)2 =2(1-2"") > 2exp(-(2"-1)"") > 2

for n23. 0

We see that theorem 2.1 is valid for ab<l. We shall now prove theorem

2.2 in this case.
LEMMA 2.5. If ab<l then (2.6) has at most R(n,c) solutions.

PROOF. By our assumption that (a,c)=(b,c)=1 and by lemma 2.2 it suffices to
show that (2.6) has at most one solution in each congruence class mod c,

i.e. that for any two distinct solutions (xl,y]),(x ) of (2.6) we have

2°Y2
(x],yl)f-(xz,yz)(mod c).
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Suppose to the contrary that (2.6) has two congruent solutions mod c,
(Xl’yl)’(xz’YZ) say, ordered such that w(xl)sw(xz). Then by lemma 2.3,
w(xz)zcn_ if b<0 and w(x )ch_¥/2 if a=b=1. But this is contradictory to

lemma 2.4 since cn_lzc,cn_1/22cn/(n—l)/2 for c21,n23. 0

In the proofs of theorems 2.1 and 2.2 we shall use the following

lemma. It is assumed that ab22.

LEMMA 2.6. Let B,f be constants with B>1, f21, Put v=n-],K=(n-1)/2.
(2) If (x,y) is a solution of (2.1) with w(x)2BC, then

b vy
ey )2

(i) If (Xl ,Yl), (xzayz
w(xz)zw(x])zsc, then

L e/ -1’
nw (x) .

) are two solutions of (2.1) with [x]yz—x2y1|2f and

N/, \K _
(2.10) w(x,) 2 2(%) (B—Bi) wx )" L

PROOF. (i) We have

|axn—byn|

!avx—bvyl =

(axn)1-v+(axn)2—v(byn)v+'_‘+(byn)]—v

Using the inequality of the arithmetic and the geometric mean, it follows

that
Iavx_va| < n :i n, kv ’
n(ax ) “(by")
hence
v
‘1_(g>‘% < n (1+é§/2 n.kv °
\ n(ax") (by™)

Since axn/bynss/(s—l) this implies that
(2)x
a) x

(ii) We have by (i) and- by the fact that ab22,

<

c(8/(B=1)""

nw (x)
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£ . xlyz"x2y1| =2y

< = a
w(x )Vw(x )Y ava X
1 2 172

AR
X%,

(ab) ™ ve(8/ (B-1)" wx ) T 4w ™)

IA

+

a—2v(a/b)v(

IA

<2'™ve(s/ (B-1) Vw7

Hence

w(xz) > 2(%)1(%—7 w(xl)n_]. O

§2.3. Proof of theorem 2.1.

We assume that a,b,n are integers with a>0,b>0,n23,a/b#(u/v)n for
all u,veZ (whence ab22) and that C is a real with C=1. We shall show that
for these values of a,b,n,C, inequality (2.1) has at most one solution
with w(x,y)ZunCan. This completes the proof of theorem 2.1, for if a>0,
b<0, then by lemma 2.4 w(x,y)<C, while if a/b=(u/v)n for some u,veZ with

(u,v)=1, then a=dun,b=dvn for some integer d, whence by lemma 2.4,
w(x,y) = ldlmax(lux|®, lvyl™ =< ld]lc/a)™ @Dy < /@Dy

Assume on the contrary that (2.1) has two solutions with w(x,y) 2

2,yz)Zw(x],yl). As in

unCan, (xl,yl),(x%,yz) say, ordered such that w(x
,k=(n-1)/2 and we put also Un=(un/(un_]))Kv' By symmetry

§2.2, we put v=n"

we may assume that w(x],y])=w(x1). Put w]=w(xl),w2=w(x2). Then
o

(2.11) w2 C n

and also
n o n-1

(2.12) w2 2 2(%;-6) W1

(2.12) follows from 2.6 (ii) with B=un,f=l when we have shown that wzzw].

This holds true indeed for suppose LON Then byZZax?>ax;. Hence
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n n
2 ax,-ax 2 nax

n n (n-1)/n
g 2@ Tax, 2mnax, 2W, :

c s by;—ax

Therefore, by (2.11),

[¢1
unC oo w, < w(xz,yz) < w2+C < 2C

n/ (n-1)
| .

But this is impossible, since an>n/(n-l) and

v
®

(2.13) My

The latter inequality, which will also be used later, is easy to check for
n<24 and for n>24 it follows from unZn/B.

Put
vy y y
_ 1 _ 72 ny -1 n _
z, = (—) —, Sm =3 Am(z]) - Bm(zl) for m=1,2,...,
1 2 1
where A (z), B (z) are the polynomials defined in chapter 1. Let r,g be the
1ntegers deflned by m=2r+l-g with ge{0,1}. Put q(m)-n (n r!). We assume
that m>2.

LEMMA 2.7. Put

s(m) := q(m)(zr g) N \’(g—l),

t(m) := q(m)Zv(g_])(l—v)nlo:(;:Y)(r;v)/(?) ,

=1 r+v (1 g) r (1-v) (1-g)

Pm := s(m)C W)

Q := t(m)Cm
If Sm#o then

(2.14) 1 < va+(l—v)Qm.

PROOF. Note that A (z) has degree r and that B (z) has degree r-g. Hence by
lemma 1.3 (i) q(m)x X gwlsm is a rational integer. If smfo we therefore

have, by w —w(xl,yl), whence |z]l$1 and by lemma 1.4, lemma 2.6'(i), ab>2

1
and lemma 1.6 (i),

1 q(m)wv r+v(l-g) -v(Z—g)|S l
m
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q(m)w 2 1]:+v(1 g) -\)(2—g)(b !(( )._.—1>A (z Y+(1-2z ) Vm(z])’

B v r+v(l )\)( N[ for \ n +/ m fr+V\ [fr=V\ (m I\/U_n_(im
a2 ED (AL L ED )0 &)

va + (]—v)Qm. | 0

LEMMA 2.8. 33#0 for n23; Sm#O for n=3,m=2,5, 7.

PROOF. Put h=ax?—by?, u=]-z?=h/w], Em(z)=d?m)Am(1-z), Fm(z)=d?m)3m(1—z),
where d?m) is the smallest positive rational number such that both
&im)Am(]—z) and i?m)Bm(]—z) have integral coefficients. Let Eé(x,y),%;(x,y)
be binary forms which are for x#0 equal to erm(y/x),erm(y/x) respectively.
Suppose that Sm=0. Then
Yoo Vi~
;i—Emm - ;me(“)’

hence

by; (1-u)Fm(u)“ (w]—h)Fg(w],h)

~ n ~ n

ax Em(u) le$(w],h)
_ T n__ n

Put d—((wl h)F;(wl,h) ’W]EQ(wl’h) ). Then

nr+l
w

| Em(u)“-(1-u)Fm(u)“ = w]E$(wl,h)n—(w]—h)fa(w],h)n

(2.15)
n, n
d(ax2 by2)
Now we have
~ n ~ n_ m
Em(z) (1 z)Fm(z) =z Km(z)
for some polynomial Km(z). For put z=|—wq (Em(]_wn))n_wn(gm(]_wn))n is a
polynomial in w" which is divisible by Am(wn)—me(wn), hence by (l-w)m in
view of lemma 1.4. But then it must be divisible by (]—w)m=zm. Hence by

(2.15)

(2.16) wf“‘z)r+ghmxm(u) = ?r+1 mK (u) d(axg-by;).

We shall show that this is impossible for the values of m,n stated in the
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lemma, by estimating Km(u) from below and d from above.

Firstly, we estimate K (u) from below. If n=3 we have
m

E ,(2)=32, f (2)=3, K,(2)=9-2,
E (z) 3-2z, F (z) =3-z, K (z)=2-z,
E (z) =54~ 63z+14z , FS(Z) =54~- 452+52 s K (z) 756- 756z+1252 .

5 (2)=81-1352+63z 2.3, F J(2)= =81-1082+362°-22>, K (2)=162-2432+97z 23,3
Since |u|<u;] for n=3 we have
(2.17) [Kz(u)|>8, |K3(u)]>l, |K5(u)]>755, |K7(u)|>161.

In case n24 we have

~ _ 2n~(n+l)z = _ 2n—(n-1)z
B3(2) = =017y 0 B3 = T

We shall not compute K (z) explicitly but we shall derive a lower bound for
K3(u) by another method. Note that [ul<1, whence that (I-u) -Z ()( u)

converges. Moreover, since h>0 and u>0,

u'f’(ES(u)—(l—u)VFB(u))
u3a-1,2) 7 (20- @+ u- (1-0) ¥ (20- (a-1)w))

-1 k+1 (n+1) (k+1)
(n-1,2) Z -n G{ )-—————————- u
k=0 k+3
vin+l n -1

-1
“(n-lyz) < =
23 (n-1,2)6n°

By (2.13) we have |ul|<1/8, hence

v

B, >@-1,27 15@-1/8, [Fyw| >@-1,27 15@-1)/8.

Therefore,

)(n 1-k) v~ n-1-k

-3~ - rl Kk
Ky(w) =u ~ (E5(w)=(17v)F 4 (w) 253(11) (1-u Fy(u)

> (1-u) (n-1,2) ™ (0®-1) /60 n (15 (a-1)/8)""!

> (01,25 " 22 (15(a-1)/8)"
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Since n24 this implies that
(2.18) Kyu) > 7%(n-l,2)_n(15(n—l)/8))n :

We shall now estimate d from above. Put v=(h,wl), h=vh', w]=vw'.

Firstly, we consider the case n=3,m=2. Then d divides

(wlgﬁ(wl,h)B,(wl—h)Eﬁ(wl,h)3]= [w?thz(h/w]),(wl—h)Fé(wl,h)3)

1]

w](h2(9w|—h),27(w]—h)w?] = wlv3(27(w'—h')w'z,h'2(9w'—h')]

33w|v3(w'-h',h'2)(w’—h',9w'—h')(w'2,9w'-h')(w',h')2

33w]v3(w'—h',9w'-h') = 33wlv3(w'—h',8h')

63w1h3.

Here we used that for a],az,a3,aa&ﬂ ,(a]az,a3a4) divides

(al,a3)(a],34)(az,a3)(az,a4). Hence if 52=0 for n=3 we have by (2.16) and

(2.17), on noting that axg—by;#o,

8wfh2 < 63w1h3C, w, £ 27hC < 27C2 < u3C9

which is contradictory to (2.11).

We shall now consider the other possibilities for m,n. Note that m is
odd, hence for z#0 Am(z)=erm(z—l), i.e. Em(l—z)=zrfm(l-z_])(cf (1.1)). Put
bm= Eé(w',h'),i&(w',h') . Then d divides

v (Bt ™, (=) Fx (et n ")
m m
vnr+l(w',w'-h')(w',F*(w',h')n)(w'—h',E*(w',h')n)bn
m m m
- nr+l , > 1\ "_n' ® [ ENERY
v (w ,Fx(0,h") ) {w'-h JEx(h',h") )bm

1 ~ ~
= Tt (w',F$(o,1)“)[w'—h',F$(0,1)“)b;

Hence

(2.19) a | v"T a0, ™ .
m m
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In the case n=3, we shall use the following identities:

E*(x,y)-fg(x,y) = -y,

(3x-Y)E§(x,y) (3x- 2y)F§(x,y) = -4y ,
(27x—5y)E§(x,y) (27x—14y)F§(x,y) = —72xy ,

E%(x,y)-Fs(x,y) =
(3x-y)E5(x,y) - (3x-2y) F5(x,y)

These imply

(-27x%+27xy~5y2)y,
= (—6x+3y)y3.

b, | (3w'-n',h") | n',
by | 2?0y | (72w, annt? | 7me?
b, | ((6w'-3n")n'> 274" Zhr o7 2y +5h'3)
| 3h'3(2w -h', 27w 2=27w"h' 450" 2)
| 3n (2w -n',7n'%)
| 4203
Therefore, by (2.19),
_ d|v h'3 | h4 if m=3,
(2.20) d| v 753(72n' %) | 360%n’  if m=s,
a | v1923w2n3)3 | 863010 if n=7.

Since Iax;-by;[sc this yields, together with

3 4 2

hC <

(2.16),(2.17),

wlh <hg C, W, < if m=3,
755w2h5 < 360°h7C, w, < (360 /755)'/2 c'/? < 249c%? if mes,
161w?h7 < 42%0'%, w < 86760 Hnc!’? < 16643 g mer.

1

These inequalities are clearly impossible.

Finally, we estimate d from above for m=3,n24. Note that

= (n-1,2)_l(2nw'-(n+l)h',an'-

Hence by (2.19),

(@-Dh") | @-1,2)""on'.



n n+]

Bl | (a-1,2) ™ (2(n-1)) h

d | @1, @@-1))

Together with (2.16) and (2.18) this implies that for n24,

n 2 3 7 n n+]

(-1, ) "U5@-1)/8)" < (0-1,2) *(2(a-1))"n

hence
1/ (n-2) n/ (n-2)
2 16 n- 2 1/ (n-2)
G (,5) a7
1/2 a
which is clearly impossible. a

LEMMA 2.9. There is a positive integer & such that
w—vwl—v
(2.21) sQuDw < ——F— < 53wy

PROOF. We suppose the contrary. Then, by the fact that the sequence

2 . . . ..
s(25L+1)w1 increases monotonically to infinity,

w_vw]_v 1-v
1 72 <sB)w, =2 no w.,
-c 1 n

hence

(2.22) W n/ (n-1)_(n+1)/ (n=1)
. : .

By < Z(nonC)

Firstly we consider the case n24. By (2.12) we have that

n
(_Jl_> Wln_l < (nonc)n/(n-l)wl(n+1)/(n_1)’

29

20 C
n
hence
cn2/(n—l).2n 2
wn-l-(n+1)/(n-1) - n(n-3)/(n-1) . _n .ot / (n-1)
1 1 nn(n-2)7(n—l) -
Therefore,
on/(n"3),2(n'1)/(n-3)
(2.23) w, <R ./ @=3)

1 n(n—Z)/(n'3)
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Since un28 we have

n/ @-3)_, (@-1)/ (@-3) - -
o 2 . ((ﬁ) (n 1)/2.2n_]4_n+2>1/(n 3)
.n(n-Z)/ (n-3) T\

< .
un

Moreover, an>n/(n-3). Hence by (2.23),

But this contradicts (2.11), which proves our lemma for n24.
We now assume that n=3. We infer from lemma 2.7 and lemma 2.8 with

m=2 that 3<P2+2Q2. However, by (2.11),(2.12) we have

-2/3

J
|

9 = 303Cw1w2 S.;o3CwIZ

_ -2/3 3 3 -1/3 ]/3
= 303 ( 3 ) C W, < 2C <1,

2
—2/3(20 C) -4/3
3 )"

whereas by (2.22),

1 22 1/3 -1 1/3 2 ]/2 5/2 5/2 -1/3
Q2 =3 030 Wy Tw < 3 (30 ) v < 1.
This contradiction proves our lemma completely. 0

LEMMA 2.10. s(2(r+j)+1)t(2r+1)n_]<Tzr+3 for relN,jell,2}.

PROOF. Note that

s@(r+j)+ D+ = RE?)nnr+j[nr+j,(r+j)!)(nr,r!)n-l,

where

2r+1 . 1 n-1
R _ 1 (2(r+)) r+v\[r-v\/2r+1
r]j 2 % r+] I-v \r+1 r r :
For every positive integer k we have

. a5,y = 1 p8®),

with % i
) g
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MP)<j£fkp ]<P4,
hence
(2.24) 2@ k) < (n 1 pl/(p-l))k _

pln

Therefore, it suffices to show that

(2.25) 'RE?) < (7 @D/nynr+j
Since RE?)SREE) we may restrict ourselves to the case j=2.
Note that
2
L 5o @) D@7l ,
n (4/3)3/4_] (4/3)n(n_2)/(n~1)2_1
hence
-1/ @2/ @D @-D/20  n (@-2)/20-1)
(2.26) o <é§ < éﬁ _ 69

First of all we have for n23, by (2.26),

3 n-1
() _ /On(n-i-l)) (8)1/2((8/7)3/2x4>n—] —nt+2
R12 = 100n\—-—-;?-— < 10 7 ———5&—-— < 11
< (3—(n-2)/n)n+2.

Furthermore we have for r2l, by (2.26),

R(n) n-1
r+1,2 _ (2r+6) (2r+5) <02 r+l+y | rHl-v, (r+2) (r+l) )
R(n) (r+3)2 n r+2 r+l  (2r+3)(2r+2)
r,2
2 9 n-1 )
L2 (r+1)"=v 2,,n-1 _ 2(n-1),-(n-2)
<4 on<z§;;§3?§;:§7-) < a2,
< 3”@,
This proves (2.25), whence lemma 2.10 completely. 0

We shall now complete the proof of theorem 2.1. If % is the integer

from lemma 2.9 then.we choose r=% if 522+1#0, and r=£-1 if otherwise. Then
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r=f-j+] for some je{1,2}. By lemma 2.8 and lemma 2.9 we always have r=l and
in case n=3 we can have j=2 only if r23. By lemma 1.5 with h=2 we always
have 82r+1#0' Note that by our choice of r and by the left-hand side
inequality of (2.21),

wv—l
2

= s(2r+1)wTva—]wv < s(2£+1)w%C

(2.27) ) 1

Vv
Porsl wp < L

Furthermore by the right-hand side inequality of (2.21!) and by lemma 2.10,

n
QZ

2r+1 v _v-r-1\n-1
Yo

-1
r+l =(t (2r+1)C

n—lC(2r+1)(n-1)+lwr+j+1—(n—1)(r+l)

< s(2(r+j)+1)t(2r+1) 1

< T:r+jc(2n—2)r+nw-(n—2)(r+])+j

] e j-
If n>4 we have by (2.11)

n 2n—2w-(n—2))r—l Tn+203n—2w—2(n—3) <1,

€, =6 = (Tnc 1 n I
if n=3 we have in case j=1,

_ 34 ~1.r=1_47 -1
Gj = GI (T3C v, ) T3C v,

<1,

while in case j=2,

3.4 -1,r=-3_11_15 =2
3 2 (T3C v, ) T3 C v,

[}
]
(2}
]

< 1.

Hence Q2r+1<l for n23. Together with (2.27) this contradicts (2.14). But
then our assumption that (2.1) has two solutions with w(x,y)ZunCOtn must be

wrong. This completes the prove of theorem 2.1, a

§2.4. Proof of theorem 2.2.

Let a,b,c,n be integers with a>0,b#0,c>0,n23. By lemma 2.1 and lemma
2.5 we may assume that ab2>2, (a,c)=(b,c)=1. Moreover, by the results of
Nagell, Ljunggren and Domar (cf §2.1) we may assume that c22.

By lemma 2.3, each congruence class of solutions of (2.6) contains at
most one solution (x,y) with w(x)<cn_l. Hence by lemma 2.2, (2.6) has at
most R(n,c) solutions with w(x)<cn-1. If n=3 then each congruence class

mod c contains at most two solutions with w(x)<27c4/8, whence (2.6) has at
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most 2R(3,c) solutions for which w(x)<27c4/8. For suppose that (xl,y]),
(xz,y7),(x3,y3) are solutions of (2.6) in the same congruence class,
ordered such that w(xl)Sw(xz)Sw(x3). Then by lerma 2.3 we have w(x2)2c2

and by lemma 2.6 (ii) with f=C=c,B=2,
\3
wixg) = z(-;—;-%w(xz)z > 27c%/8,

a contradiction.

By theorem 2.1 (with C=c) (2.6) has at most one solution with
w(x)>u c n. Hence we have only to estlmate the number of solutions of (2.6)
with ™ <w(x)<u % if n24 and 27c /8<w(x)<u3 ®3 if n=3.

If ¢ n-l, ncOLn then (2.6) has at most R(m,c)+1 solutions. This is the

case if n=5,c225 or n26,c25. For by (2.3) we have

2 n—l—a6 n—-1-o n-1-a
u <n“<s <5 T<e ™ for n26,c>5.

We have also
for n=6.

Hence if c<4,n26, then (2.6) has, by theorem 2.1, at most one solution
with max(x,y)24. It is easy to check that at most one of the pairs (1,1),
(1,2),(1,3),(2,1),(2,3),(3,1),(3,2) can be a solution of (2.6). For
suppose that two of these pairs are solutions, (x y ),(xz,yz) say. Then
cly ey, c ] +X2|
1<ldl = —————, lslbl=————-———
|-yt Lot

However, it is easy to verify that for all possibilities of (xl,yl),(xz,yzx
nn _nn ., 0, N 0 _n
|x]y2 x2y1| > 4 m1n(x]+x2,yl+y2) for n26,
a contradiction. This proves theorem 2.2 for n26.
In the remaining cases, i.e. n=5,c<24 and ne{3,4} we have to show
that (2.6) has at most one solution if n=5 and at most two solutions if

. -1 o . .
n=4 for which c" Sw(x)<unc N and at most three solutions for which

27c4/8Sw(x)<u3ca3 if n=3. Therefore we need the following lemma.
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LEMMA 2.11. Put K(n)=(2Y/2273/20)™) 1 D) 1ot o B be constants with

B >A > max[Zc,K(n)_]cn/(n-z)).

Let r be the smallest positive integer with

-n/ (n-2)
r 2 S=S(A,B,c) := 1og(1°g(K(n)C_ 7 _Z)B)}/éog(n—l) .
log(K(n)c n/in A)

Then (2.6) has at most r solutions with A<w(x)<B.

PROOF. Let (x],yl),(xz,yz),...,(xr,yr) be solutions of (2.6) such that
ASw(x])Sw(xz)S...Sw(xr)<B. We apply lemma 2.6 (ii) with B=2,f=1,C=c. For

convenience we put
T = K(n)c_n/(n_z).

Then we have for ie{1,2,...,r-1},

w(x.

i+1

o\ -« n-1 n-2 n-1
) 2 2<§E> 2 w(xi) =T w(xi) .

hence
Ty, ) 2 (Twe)™ '
This implies that
TB > Tw(x ) 2 (Tw(xl))(n_l)r_1 > (TA)(n_])r—l,
hence
(n-1)""" < 10g(TB)/10g(TA),
and therefore
r-1 < log(1og(TB)/log(TA))/log(n—]),

which implies lemma 2.11. a
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We shall apply lemma 2.11 with A=cn_1 if ne{4,5} but A=27c4/8 if n=3
while B=unca“. Then clearly the conditions imposed on A,B in lemma 2.11

are satisfied. If ne{4,5} we have

S = 1og(
\

log(R(n)u )+(a_-n/(n-2))log c
log K(n) +(n-1-n/ (n-2)) log C>/1Og(n--1)

If n=5, then S<I, since 4log K(5) >10°(K(5)u5), 4(4- 5/3)>a -5/3. If n=4,
then S<2, since 3210g K(4) >1og(K(4)p4), 3 (3~ 4/2)>a -4/2. Flnally, if n=3,
then

1og(K(3)u3)+6log c
S = log <1og(K(3)27/8)+1og P )/102; 2 < 3,

since 2310g(K(3)27/8)>mog(K(B)u3),23>6. This proves theorem 2.2 completely.
0
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CHAPTER 3. ON THE REPRESENTATION OF INTEGERS BY BINARY CUBIC FORMS OF
POSITIVE DISCRIMINANT.

§3.1. Introduction.

Let F(x,y) be an irreducible binary cubic form with integral
coefficients and of negative discriminant. Nagell [Na 2] and Delone [Del

independently showed, that the equation
(3.1) F(x,y) =1

has at most fZve solutions in integers x,y. This can not be improved, for
if F(x,y) equals x3—xy2+y3 then F has discriminant -23 and (3.1) is
satisfied by the pairs (1,0),(0,1),(-1,1),(1,1),(4,-3). Delone and Nagell
proved their result by considering units in the algebraic number field Q(e),
where € is the real root of F(x,1)=0. In both the proofs of Delone and
Nagell the fact that Q(e) has only one fundamental unit is essential.
Now suppose that F satisfies the same conditions as above, except
" that its discriminant is positive. Let L=Q(e), where € is some root of
F(x,1)=0. We can not apply the methods of Delone and Nagell since L has
two fundamental units. However, it is possible to reduce (3.1) to a set of
exponential equations to which a p-adic method of Skolem can be applied.
(cf. [Lj 2],[Av 1,2],[Mo]lch.23,[Sk 1,2,3,4]). In this way (3.1) was solved
for the forms F(x,y)=x3—3xy2+y3 of discriminant 81 and F(x,y)=x3+x2y—2xy%§3
of discriminant 49 by respectively Ljunggren [Lj 2] and Baulin [Bal. For
the first form the six solutions of (3.1) are (1,0),(0,1),(-1,-1),(1,3),
(-3,-2),(2,-1), while for the second form (3.1) is satisfied by the nine
pairs (1,0),(0,-1),(=1,+1),(=1,1),(2,~-1),(-1,2),(5,4), (4,-9),(-9,5). Note

2ni/9+e—2ni/9

that for the first form L=Q(e ), while for the second form

L=Q(e2ﬂ1/7+e-2ﬂ1/7

the explicit values of some fundamental units in a quadratic extension of

). In the proofs of Ljunggren and Baulin, use is made of

L. So it does not seem easy to derive general results on (3.1) by their
method.

It is possible to derive more general, though ineffective results by
means of a modification of the Thue-Siegel method used in chapter 2. In

this way, Siegel [Si 3,6] showed that the number of solutions of the
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inequality
(3.2) IF(x,y)| <k (kelN)

in integers x,y with (x,y)=1,y>0 or x=1,y=0 is at most 18 if the
discriminant of F is sufficiently large compared with k. In a student
paper from 1949, A.E. Gel'man showed, by refining Siegel's estimates, that
18 can be replaced by 10.(For a proof we refer to [D/Fl,ch.5). In
particular this implies that (3.1) has at most ten solutions if the
discriminant of F is large enough. We shall give a uniform upper bound for

the number of solutions of (3.1).

THEOREM 3.1. Let F be a binary cubic form with integral coefficients and

non-zero diseriminant. Then the equation
(3.1) F(x,y) = 1

has at most twelve solutions in integers x,y.

As far as I know, no cubic forms F are known for which (3.1) has more than
nine solutions and it is likely, that our result can be improved. Note that
the upper bound given in theorem 3.1 does not depend on the coefficients of
F. As we already mentioned in chapter O, we: shall prove'a similar result
also for forms of degree higher than 3 in chapter 6.

We shall also derive an analogue of theorem 2.1. Before we can state
it, we have to introduce some notions. Let F be an arbitrary binary form
(whose coefficients belong to some field of characteristic zero) and let
T:(x,y)P»(X,Y) be a linear transformation of determinant unity. Put FT(x,y)=
F(X,Y). An Zmvariant of F is a rational function I(F) in the coefficients
of F such that I(FT)=I(F).for any choice of T. A covariant CF(x,y) is a
binary form whose coefficients are rational functions in the coefficients
of F such that CFT(x,y)=CF(X,Y). (cf. [Di 1],[Mo] ch.18). In particular,
the discriminaunt of a binary form is an invariant. If a form C(x,y) is a
covariant of a binary form F then we say that it has the covariance property.
We now suppose that F is a cubic form, F(x,y)=ax3+bx2y+cxy2+dy3 say. It is

easy to check, that
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H(ny) ==

5
32 BZF _ 82F
2 x93y

a2 _> ) = (bx+ey) 2~ (3ax+by) (cx+3dy)

}_\_F

9x~ 0y

= Ax2+Bxy+Cy2

say, is a covariant of F, the so-called quadratic covariant. Since the
discriminant D of F equals

b2e?-4ac3-4b3d+18abcd-27a24d2,

H is a quadratic form of discriminant BZ—AAC=—3D. If D>0 and a,b,c,deR,

then H is positive definite since H(b,—3a)=(b2-3ac)220.

DEFINITION. A cubic form F with integral coefficients and of positive
discriminant is called reduced if its quadratic covariant H is reduced, i.e

if C2A2|B].

l’FZ with integral coefficients are called
equivalent if a unimodular transformation X:=al]x+a12y,Y:=a21x+322y (with

=1) exists such that FZ(X,Y)=F1(x,y). If

Two binary forms F

all,...,azzeZZ and a]1a22_a12a21
two cubic forms with integral coefficients are equivalent under a uni-
modular transformation then their quadratic covariants are equivalent
under the same transformation by the covariance property. Hence, since
every positive definite quadratic form is equivalent to a reduced quadratic
form, every cubic form of positive discriminant is equivalent to a reduced

cubic form. (cf. [Mol,ch.24).

THEOREM 3.2. Let F be a reduced, irreducible binary cubic form with
integral coefficients and of positive discriminant. Let k be a positive

integer. Then the inequality

(3.2) IF(x,y)| <k

has at most nine solutions in integers x,y with (x,y)=1,y2|2]/4k3/?

In fact, both theorem 3.1 and theorem 3.2 are consequences of

THEOREM 3.3. Let F be an irreducible bimary cubic form with integral
coefficients, positive diseriminant D and quadratic covariant H. Let k be

a positive integer. Then the number of solutions of the inequality



(3.2) [Fx,y) | <k

in integers x,y with

1/2k3

(3.3) Hoy) 2 200 AS, (,y)=1, y20 or x=1,y=0

18 at most 9.
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In the proof of theorem 3 we have used ideas from [D/FJ],ch.5 and [Si 3,4].

It will be similar to the proof of theorem 2.1 in case n=3.

§3.2. Proofs of theorem 3.1 and theorem 3.2.

In this section we shall derive theorem 3.1 and theorem 3.2 from
theorem 3.3. In the sequel, let F be a binary cubic form with integral
coefficients, discriminant D and quadratic covariant H. Theorem 3.2 is an

immediate consequence of theorem 3.3 and the lemma below.

LEMMA 3.1. If D>0 and if F is reduced and irreducible, then

(3.4) H(x,y) 2 %D”zyz for x,yeZ,
(3.5) H(x,y) > %{3D)1/2y2 for x,yeZ with |x|2|2y].

PROOF. We may assmme that y#0. Put H(x,y)=Ax2+Bxy+Cy2=y2f(z), where z=x/y
and f(z)=Az2+Bz+C. Note that for z=-B/2A, f(z) assumes a minimum on the
reals which is equal to 3D/4A. Furthermore F, whence H, is reduced, hence

A% <ac < %(AAC—BZ) = D.

This implies that f(z)23D/4DI/2=3D1/2/

We are now going to prove (3.5). Since f(z) assumes its minimum

4 which is equivalent to (3.4).

in a point with absolute value not exceeding 1/2, it follows that for
Ixl2]2yl,

1/2

f(z) 2 min(£(2),£(-2)) = 4A-2|B|+C = 4A+C-2(4AC-3D) 1 g(A,C

We shall minimalise g(A,C) on the (A,C)-plane. Since H is reduced, (A,C)
belongs to the set

).
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2 2
G = {(A,C)eR” |12A<C, A“>4AC-3D20}.

(cf. figure 3.1 ). In G, g(A,C) assumes its minimum in the point

((3D)l/2/3,5(3D)1/2/6). This minimum is equal to 3(3D)l/2/2 and this
proves our lemma completely. 0
(1,1 (3D+1)
(1,3D)
A“=4AC-3D
c (/3D/3,5/3D/6)
T
(/p, D)
A=1 I
AXC
(1,3/3D (3/3D,3/3D) é%ﬁﬁ
—2a

figure 3.1. The set G.

We shall now prove theorem 3.1. Suppose, that D#0. We may assume,

that F is irreducible for otherwise we can write
F(x,y) = (a,x+a,y) (b x2+b xy+b y2)
’ 1 2 1 2 3

for some integers a],az,bl,bz,b3. Hence solutions of (3.1) must satisfy

- 2 2 _
a1x+a2y = +1, blx +b2xy+b3y = +1.
Therefore,

agb]x2+a2b2x(a]xrl)+b3(a]x11 )2 = :@% .
It is easy to check, that these relations can be satisfied by at most four
pairs (x,y)ezz.

From now on, we assume that D>0, that F is irreducible and reduced
and that its coefficient of x3 is positive. By the result of Delone and
Nagell and by the fact that the number of solutions of (3.1) does not
change when F is replaced by an equivalent form, these are no restrictions.

Note that for every pair of integers (xl,y]) with |F(x1,y1)]=l and
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yl>0 or (xl,yl)=(l;0) exactly one pair of integers (x ) exists with

4
F(xo,y0)=] and (xo,y0)=i(x],y]). Hence by theorem 3.3? (2.1) has at most
nine solutions with H(x,y)23/§572. Note that by lemma 3.1, H(x,y)23/§572
if |xyl22. We shall show that (3.1) has at most three solutions with |xy|<I
if F is not equivalent to the form x3+x2y—2xy2—y3. In view of Baulin's
result this suffices to.prove theorem 3.1.

First of all, there are at most three solutions of (3.1) in the set
{G,y)ez? |1x121, yl=1}. For if (x

this set then the pair (-x

0,yo) is a solution of (3.1) belonging to

O,-yo), which is clearly no solution, also
belongs to it. Hence we may restrict ourselves to the case that (1,0) is.a
solution of (3.1) and we shall do so in the sequel.

We assume that the number of solutions with y=-1 and |x|<l is not
less than the number of solutions with y=1 and |x|<l] and moreover, that
there are at least two solutions with y=-1 and |x|<l. These are no

restrictions. Since F(1,0)=1 we have as a consequence, that
F(x,y) = (x+py)(x+qy)(x+ry)—y3 where p,qe{-1,0,1},p>q,reZ.

If there is a third solution with y=-1,|x|<l then F(x,y)=x(x—y)(x+y)—y3=
x3-xy2-y3 has discriminant -23. Hence this is impossible. If there is a

solution with y=1,|x|<l then
(x+p) (x+q) (x+1r) = 2.

If x=-1, then p=0,q=-1,r=2 and F(x,y)=x3+x2y—2xy2—y3. If x=0 then p=1,q=-1,
r=-2 and F has discriminant -87. Finally, if x=1, then p=1,q=0,r=0 and F
has discriminant -23. Hence there are no solutions with y=1,|x[<l. It
follows that (3.1) has at most three solutions with |xy|<l1 if F satisfies

the conditions mentioned above. This completes the proof of theorem 1. [
For the sake of completeness we mention that there are infinitely
many reduced forms F for which (3.1) has three solutions with H(x,y)<3V3D/2

Take

F(x,y) = x3+ax2y—(a+3)xy2+y3 (aezz).
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Then F has quadratic covariant (az+3a+9)(x2—xy+y2) and discriminant

(a2+3a+9)2. It is easy to check that F is irreducible and that (1,0),(0,1),
(-1,-1) are solutions of (3.1). For these solutions one has H(x,y)=D1/2.

(3.1) has at most one solution with I-I(x,y)<%(3D)l/2 if F is

irreducible and of positive discriminant. For by the covariance property

IA%Z

of H we may assume that F is reduced. Hence, by lemma 3.1, H(x,y)=3(3D)
if |xyl|22. Furthermore, H(+1,0)=A,H(0,+1)=C,H(+1,+1)>A~|B|+C and

/2 1/2

a-Blsc 2 ¢ = (a0 /% = 2apesD)' /2 '5(31))'/2.

If D exceeds some absolute constant, D, say, then one can prove,

0
similar to theorem 3.3, that theorem 3.3 with k=1 holds true even if the

lower bound (3/2)(3D)]/2 in (3.3) is replaced by %(3D)]/2. Hence for D=2D

0’
(3.1) has at most ten solutions. In fact, one can show that D0 can be

taken equal to 6><1010 but we shall not work this out here.

§3.3. Preliminaries to the proof of theorem 3.3.

Also for later purposes, we shall state some general properties of
binary cubic forms. Let K be a field of characteristic 0 and let F(x,y) be
a cubic form with coefficients in K, say

F(x,y) = ax3+bx2y+cxy2+dy3.

The quadratic covariant of F was defined by

2 2 2.\2
1/9°F 3°F _(3°F 2 2
H(x,y) ="—/——”'—“—‘v———> ) = Ax"+Bxy+Cy ,
Noxl a2 \0%BY
where
2 2
(3.6) A = b"-3ac, B = be-9ad, C = c"-3bd.

Let D denote the discriminant of F. Then H has discriminant -3D. Another
covariant of F, the cubic covariant, is defined by

oF 0H oF oH

G(x,¥) = == 5= — =+ == =a'x>

+3b'x2y+3c'xy2+d'y3,

where
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(3.7 a'=9abc-2b°-27a%d, b'=6ac’~b’c-9abd,
c'=9acd+bc?-6b%d, d'=27ad’+2c -9bed.

LEMMA 3.2. In the above wotation, let M=K(V-3D). There are a pair of
constants a,BeM and a pair of linear forms &,neMlx,yl of determinant

unity such that for some choice of the square root of -3D:

N _3/=35
(3.8) agd = 2521752113, g = SIIE
(3.9) ag-gnd = 3/ D F,
(3.10) B =ag’8n’, H = -/-3 &n.

PROOF. Choose v-3D such that B+/-3D#0 and put

- V-
E(X,Y) = ! (AX+B+ 2 3D Y)’ Tl(X,Y) = x"_g'c-_y .
v=3D B+v=3D

Since H has discriminant -3D it follows that the linear transformation

(x,y)»(E,n) has determinant unity and that
H = -/-3D &n.
Put
F(g,n) = Z£3+g£2n+gin2+5n3 = F(x,y).
Then ;,g,z,EeM and by the covariance property of H and by (3.6),
(3.11) 52-33¢ = 0, o2-3bd = 0, be-9ad = -/=3D.
Hence

0 = 5%¢%-9abed = be (be-9ad) = -bev=3m.

Therefore, be=0 and together with (3.11) this yields that §=c=0, 2d=/=3D/9.

Thus we have, by the invariance of D and the covariance property of G,

~ ~ 3 ~3 ~2~2
F(x,y) = F(g,n) = aEB+dn3, G(x,y) = 3#—3D(a£3—dn3), D= -27a°d
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Now we put o=3v-3D g, B=-3v-3D E. Then clearly a,BeM,

a£3—8n3 = 3/-3D F, a53+8n3 = G, a£38n3 = H3.

This proves our lemma. Note that as a by-product we obtained the well-known
identity
4H3 = G2+27DF2. 0
In the sequel we shall use some facts about quadratic fields. (cf
[Lal,ch.1,4). We shall apply the preceding theory with K=Q,a,b,c,deZ ,D>0.
Thus M=Q(v¥-3D) is an imaginary quadratic field, which is supposed to be
contained in €. Furthermore we put

_ m+nv-3D
0, = ===

EOM]m,nEZ}.
It is easy to check that 00 is a subring of OM’ on noting that DEBz(mod 4),
i.e. D=0, I(mod 4) and that (m+nV—3D)/260M if and only if m=nD(mod 2).

Furthermore,

(3.12) A\ € 0y if and only if X e O, A=A € ZV=-3D.
This implies that

(3.13) AL > Im Al > /3D if A € O\Z .

Note that by (3.8) and (3.10) ag(x,y)3 and Bn(x,y)3 are complex conjugate
elements of 00 for every pair of rational integers (x,y). Furthermore we

have

LEMMA 3.3. Let (xl,y ), (x ) be pairs of'rational integers Then the

Y
2°72
numbers v-3D¢ E(xy5y INn(xy57,5)50E(x 5y ) £(x2,y2) s Bn(xp,y)) n(xz,y2

belong to 00.

PROOF. For convenience, we put E E(x »Y; ),n n(xi,yi) for i=1,2. Note that
/:EBE n, and /_Eﬁtz | are cube roots of the complex conjugate algebraic
1ntegers aglsnz and aE%Bn? respectively which belong to M and that the

)>0. Hence /-3DE

product of these numbers is equal to H(xl,y])H(xz,y2 1Mo

and V—3Dg2n] are complex conjugate elements ofOM. Furthermore, since the
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transformation (x,y)»(£,n) has determinant unity,

(3.14) V—3D€ln2—f—3D52nl = V~3D(x1y2—x2yl) € ZV-3D.
By (3.12) this 1mp11es that v- 3D£]n2 0°
Since aB(E nl) 52 2 H(xl,y ) H(xz,y2)>0 and ]a53|-|8n | for i=1,2 we

have la£1£2|—|8n1nzl, and hence aElEZ,Bn]nZ are complex conjugates. There-
fore it suffices to show that a& E eO We put € —5(1 0),¢e —E(O 1). Then
ag 52 can be written as a 11near comblnatlon of ael,as]sz,ue €550€, with

rational integral coefficients. Hence it suffices to show that QEH0E €y

ae eg,ueg belong to 00. Note that ae?,aeg are algebraic integers and that
ue%ez,aele% are also algebraic integers since they are cube roots of

(as3)2ae3,ae (ae3) respectively. Furthermore by (3.8),

33, .2 2 2.2 33 _ 3 3
aelx +3aelezx y+3uelezxy toeyy” = a(e1x+52y) = af(x,y)

a'+3av-3D 3 ., b'+bv-3D 2 c'+cV/-3D _ 2 d'+3dv-3D 3
= 5 x"+3 > x y+3 5 xy + > y .

Since a,b,c,d,a',b',c',d' are rational integers, as?,aezez,ae e%,aeg

belong to 00. This completes the proof of lemma 3.3. a

§3.4., Proof of theorem 3.3.

We shall prove theorem 3.3 similarly to theorem 2.1 for n=3 but we
have to be more careful in our estimates. We put A=3D and for every pair

of rational integers (x,y),
3 3 3/2
w = w(x,y) = |eE@x,y)”| = |Bn(x,y)"| = H(x,y) 2,

We have to show that there are at most nine pairs of rational integers
(x,y) such that
3 3 1/2
, |ag3-gn3| < 3’2,
(x,y)=1 and y>0 or x=1 and y=0.

3/2
(3.15) w = (%) 34912

It is known that 49,81,148 are the three smallest positive integers which
are discriminant of an irreducible cubic form and that for these values of

D only one equivalence class of cubic forms exists. (cf. footnotef on p.48%)
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Hence by the results of Ljunggren and Baulin, we may assume that D148 if
k=1 and D249 otherwise, i.e. A2444 if k=1 and A2147 if k=22.

Let © be the three cube roots of B/a. We say that a solution

1’62’63
(x,y) of (3.5) is related to ei if

-0, LG5Y)

_o NG,y _ .
‘1 0, ——% min l i E(x,y)

i&(x,y) je{1,2,3
We shall show that at most three solutions of (3.15) can be related to a
ei. We assume the contrary, i.e. that there is a cube root 6 of B/a to
which at least four solutions of (3.15) are related, (x_l,y_l),(xo,yo),

(xl,yl),(xz,yz) say, ordered such that w(xi+l,y )Zw(xi,yi) for i=-1,0,1.

i+1
LEMMA 3.4. (Z) If {x,y)%s a solution of (3.15) related to 0, then

g _mkV/A
(3.16) l] ezl < BT .

(i7) If (x',y"), x",y") are distinct solutions of (3.15) related to 6 and
if 0",y 20E',y") , then

3
(3.17) w",y") 2(9;%ﬁ§> w(X',Y')2~

PROOF. I shall use an argument which was suggested to me by F. Beukers.
Note that by (3.15),

(3.18) ]1 §-“—3—] < e/
w
af
Since A1/4k7/2?4441/4>23/23_1/2, we have by (3.18) and the lower bound for

tIn [D/FJ] on p.159 a table is given of rings of discriminant D with
0<D<1296 with a unit element which are contained in rings of integers of
cubic fields. This table can also be considered as a table of equivalence
classes of cubic forms of positive discriminant for Delone and Faddeev
showed in ch.2 of [D/F] that there exists a bijective mapping of equivalence
classes of irreducible cubic forms onto the rings described above which
preserves the discriminant. This table shows that the class of discriminant
‘49 is represented by x3—x2y—2xy2+y3, the class of discriminant 81 by

x3—3xy2—y3 and that of 148 by x3-x2y—3x§2+y3.
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w given in (3.15),

3 3/2
"' §ﬂ§1 d7é'f§h”77‘ < 1.
13 3

Since|Bn3/u€3I =1, this implies that Iarg(Bn3/a£3)i<ﬂ/3.(cf. figure 3.2
below). Hence, by the fact that (x,y) is related to 6,

| <1kv/A

"3 w

12 < largoD)| = Hare855)] <3 5112
ag

figure 3.2.

(ii) Put E'zg(x"y')’n'=n(x"y')’w'r-u’(x"yl),£||=g(xll’yl|)’n|'=n(x",y||)
w"=wx",y"). We have luSl=A3/2, hence by (3.14) and (3.16),

/b = 181" < lagl P lermgmnt = e 3ol - ol
< (m'w")]/3<|l e” [+]1- eF" ) < a3 —k/A( Tl
This implies that
w'+m" > 1T—3k(w'w")2/3°
Put p=kw"1/3m'_2/3, h(z)=z3—322/ﬂ+k3/w'. Then h(p)>0. Note that h(z)

assumes a local maximum for z=0 and a local minimum for z=2/mw. Clearly,

h(0)>0. (cf. figure 3.3 on the following page). By (3.15) and the fact that
k3/2A3/424443/4

we have

(3.19) o' > 9993743,



Hence
R(2/1) = (2/m)3-@3/m) /M2 e < 0.

Therefore, h(z) has two zeros, P|sP, 53Y, with P <Py> such that h(z) is

ositive for O<z<p, and z>p,, and negative for p <z<p
P 1 2 s D

9 It is impossible

that P<p,; - For since w'"2w' we have p2kuw' and, by (3.19),

_ 3 W1/
5y 3

Hence p>p,. Furthermore we have p,20.948 since by (3.19),
2 2

h(0.948) = 0.9483—(3/ﬂ)0.9482+k3/m' < 0.

This proves lemma 3.4 completely. . )
—
h(z)
0 E7n P
Py 2 —z

figure 3.3. Graph of h(z).

Put wi=w(xi,yi),£i=g(xi,yi),ni=n(xi,yi) for i=1,2 and z]=9n1/£1. On

applying lemma 3.4 (ii) twice we have, by the lower bound for w 1in (3.15),

9 9 3/2 4
(3.20) N Z/0.948 o Ly )4 , 0.9487/(3 A3/4k9/2 > %0,
170 & -1°7-1 O 2

Furthermore, on applying lemma 3.4 (ii) once again,

3
(3.21) o, z<°'948) wl.

k 1

‘Let Am(z),Bm(z) be the polynomials defined in chapter 1 (with n=3)
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and let r,g be the integers defined by m=2r+l-g with ge{0,1}. We assume
that m>2.

LEMMA 3.5. Put

n n
_ 2 3, _ 1 3
Zm = —gz Am(zl) _EI Bm(zl) >

-1
o(m)='n2_2g/3(if),r(m) = 2g/3—13“m<r;%gi{3)<r—i/3)<?> s

/3wf+(1-g)/3m—2/3, r—g/6m;/3w-r-2(l-g)/3'

T = g
g o(m)kA 9 )

ﬂm = T(m)kmA
If Zm#O, then

S

(3.22) 1 < w3 T

w|—

PROOF. Put y=-06/v-3D,8=-8/6v-3D. Then, by the fact that d8=~(V—3D)3
(3.10)), Y3=a,63=B,y6=—/—3D,6/y=6. Furthermore, we put F=F(x],yl),
;=F/:57a€?. We shall consider the number

= e (e Byg, (o1,

We assume that Zm’ whence A is non-zero. The numbers (a& ) A (z ) and
(aE )r gB (z ) belong to 0 . For by lemma 1.3 (ii) with n—3 we have, using
that max(2deg C p»>2deg C, +l)<r V—BDEO
3/2

DA (D) = eD"a (1-3¥70) = (agdFq_(tH)-t/3(ae g (D)

= e, ¥/ @) P -/ (0 G, (-FD/ (@t D) € 0

and similarly, (ug3)r_gB (z3)eO .

Flrstly, we consider the case that m is odd Then, by (1 l), B (z)=
z A (z ) for z#0. Hence, by aél Bn], (aE ) A (z ) and (uE ) B (z ) are
conjugate elements of‘OO. Furthermore, by the proof of lemma 3.3, /_Eﬁtlnz
and /:Sﬁézn] are conjugate elements of 00. Hence, by (3.12),

(3.23) A V=3DE 1My (ag ) A (z )-v- 3D£2n (aE ) B (z ) € ZvV-3D.

Secondly, we assume that m is even. It follows at once from lemma 3.3

and 63=B, that
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3 3. r-1 3.\3
A= <6n (aE ) A (z )-6n aE 1Eo(@E])" B (zl)> € 00-

Furthermore we may assume that A;gfz. For suppose the contrary. Then l\m=
p—/; for some third root of unity p. Furthermore, by (3.10) and yé=-v-3D,
YEi and Sni are complex conjugates for ie{1,2}. Hence by lemma 3.3,

3,-r -1 —
p(agl) "(vE€,) A

m 1 2 m

D)

p(ae?)'rwaz)"(w ()™ e -vE oy (60T B (4] )

3(r-1)

(22,2 = ety facte )2 78 %)) € e

. . . . *
Hence BZm has degree at most 2 over M., But this is impossible, since ZmeM ,
since F is irreducible and since M(8) contains a zero of F(x,1). Hence A3

¢Z . This implies by (3.13) that

TN S

Together with (3.23) this yields that for all values of m with m>2,

(3.24) |n | = 278/3,1/278/3,
m

We shall now estimate IAmI from above., By |zI[=l, lemma 1.4, lemma

3.4 (i) and lemma 1.6 (i) we have

- -8 /3,173 ( ) (o)™
Mgl = o) ) ‘ T, NEH D) Tal®)

LJEF(m8)/3,1/3 (Zr—g)ﬂAllzw—l

<9 “2 \r )73 2 7
-1
r+(1-g)/3 1/3/.1_15\ m/2 -m .m{r-g+1/3\r-1/3\m
+wl Wy \3 A @ -3 r-g+1 r r
- %-Z—g/3c(m)kAl/2w7+(1_g)/3w;2/3 +

. %ﬂz—g/3T(m)kmAr+l/2—g/2w1/3w;r—2(]-g)/3'

2

Together with (3.24) this proves lemma 3.5. 0
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LEMMA 3.6. zm#o for me{2,3,5,7}.

PROOF. We shall proceed similarly as in lemma 2.8. Put h=a£?—8n?,w]=a£?,

u=h/w =1—z3. Then h,wIEOM. Note that by (3.18), (3.20) and the fact that

1
87 282404512,

w2 _ .
33?7577

3 3 -6

(3.25) lul < <10
73444772

As in lemma 2.8 we put Em(z)=q*(m)Am(l—z),fm(z)=q*(m)Bm(1;z), where q*(m)
is the smallest positive rational number such that both q (m)Am(l—z) and
q*(m)Bm(l-z) have rational integral coefficients. The forms Ea(x,y),ia(x,y)
are defined similarly as in lemma 2.8. Finally, let Km(z) be the
polynomial defined by Em(z)n—(l—z)%m(z)n=mem(z). Let d be the ideal in

~ 3 ~ 3
OM generated by (wI h)F%(wl,h) and w E&(wl,h) . If Zm—O then we have,

1
completely similar as in the proof of lemma 2.8,

r+g

r+g m 3.3
(3.26) <, “h K (u)> > d<aa2 Bny>, W,

thm(u) € OM'
By (3.25) we have, similar to (2.17),
(3.27) ]Kz(u)[ > 8, IK3(u)l > 1, |K5(u)| > 755, IK7(u)| > 161.

The arguments used in the proof of lemma 2.8 in order to estimate d from
above can be used here as well if we work in a finite extension of M in

which the ideal generated by w, and h is principal. Thus we obtain

1

(3.28) d > <63wlh3> if m=2, d > <h® if m=3,
310

d > <3603n7> if m=5, d > <8>h > if m=7.

Note that if YI’YZ are elements of OM with <y
Hence by (3.26),(3.27),(3.28) and

I>D<Y2>’ then IY] Ilezl .

0 < ag-gn3| < 32, Ju| =, Inl < 3072,

1’
A > 147, & > 44h4 if k=]

we have
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8wf1h12 < 63w In3+3kal/? |
if m=2,
w, < 33|hl°3kA1/2 < 3%k% < 3244472003 < 1OA3
w1|h13 < Inl%skal/?
_ if m=3,
o, < ok < oxaas 203 < a3
wflhl5 < Inl7360% 30! /2 |
if m=5,
o < (a1 72)3/2560372 < (3x360) 3/ 2444797493 < 93
wiinl” < nl"084 30’2
_ if m=7,
E Gral /24384 < 3% 3xgunans 343 < 193

provided that Xm=0 for one of the values of m given in the lemma, But these

inequalities clearly contradict (3.20). This proves lemma 3.6. 0

LEMMA 3.7. There are rational integers 2152 with 1<2 SL,<8 +1 such that

2 ]
L +1/3 % +4/3
020, +1)w. | <k w23 <5 43 ,
*he 2 +3)e,
(3.29) . / o
2 -1.-1/3 2/3 2
0(222):1)1 <k A wy T < 0(222+2)wl .

PROOF. For the sake of completeness, we put 0(0)=0(1)=0. Then the

2+1/3

sequences 0(2£+1)m and o(Zl)wT increase monotonically to infinity and

their terms with 2=0 are equal to 0., Hence there exist non-negative
],22 satisfying (3.29). Firstly, we shall show that 2]21 We
assume the contrary, i.e.

integers %

3/2 2 3/2 2

(3.30) < (0(3)k) Wy

= (27k)

Note that by (3.21),(3.20) and A2147,

]/3w -2/3 3 1/3

2 -1/3
1“2 |

0.948"

[1]
L}

o (2)kA g(2)k™A

< 9(2)0.948 2x147

A

—2/3k3Am;]/3 < k3Aw;1/3 <1,

1/2A1/6 1/6’

Furthermore, by (3.30),(3.20) and k 2444

- (223’6 ;/3 (2) (21 )1/2k5/2A5/6m;1/3

2
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< 1(2)(2n)]/2444—]/6k3Aw;1/3 9,3 -1,1/3

< (6.7k7A w, ) < 1.

But these facts are contradictory to lemma 3.5 and lemma 3.6 in case m=2.

We shall now show that 21S22311+1. Suppose that 21222+l. Then

L +4/3 2, +1
(%f%:f)ﬂw 2 < "1,203 < 2—2/3A1/3<222+2)ﬂw 2
2

1 2 Lo+1 701 ’

hence

w, < A4,
which is clearly impossible. If 22221+2 then
L.+2 L.+2
281 +1 1 -2/3 (28+4\ 1 -1,-1/3 2/3
( 21+’>nwl <2 n\ g, +2 W <k A Wy
B VENEINY: m21+4/3
21"‘1 1 ’
hence
w < 2H2Z 1,
which is also impossible. This completes the proof of lemma 3.7. g

1’22 be the integers defined in

20, +1 2
otherwise. Then we have by lemma 3.7 that lm—(221+1)|sl. Hence, by lemma

Now we shall prove theorem 3.3. Let &
lemma 3.7. We choose r=21,g=0,m=221+1 if I #0, but r=lz,g=l,m=2£
1.5, Zm#O. Note that by lemma 3.6, m is even implies that r24.and m28.

Furthermore we have, by our definitions of ll,lz,r,g,m,

r+(1-g)/3 < k_lA_g/3w§/3 < o(m+2)w

(3.31) o (mw! el (172)/3,

The left-hand side inequality of (3.31) clearly implies that Emsl. We shall
now show that ﬂmsl. Then we have a contradiction with lemma 3.5. This shows
that (3.15) can not have four solutions which are related to 6, i.e. that
theorem 3.3.is valid. Note that, by k2A2444,r~3g>0, and by the right-hand
side inequality of (3.31),

-r-2(1-g)/3

- m,r-g/6 1/3
“m T(m)k A w2 W,
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br+3-2g 2r g- r) 1/2
I

< (o(m+2)r(m) k

1/2 (t-g)/2
< (0(m+2)1(m) (2838~ r(k9A3)r'gm%’r) (Q Wndw” 1 ) ,

where

_ A/ (r-g)
2 = (0(m+2)T(m)24443g r)

1
_ ([2r+2 r—g+l/3 r-1/3 2r+l-g -l 2ﬂ4r+3—2g4443g—r e
r+l r-g+l r :

By (3.20) it suffices to show that QmS7. But this is easy, since for every

integer n with n=2s+l-h, where s and h are integers with he{0,1} and s>0,

Qs+1--h Qs—h
n+2 n
(Zs+4)(2s+3)/(s+1—h+l/3)(s+l—l/3) (2s+3~-h) (2s5+2~- h)) *a44 -1

(s+2) (s+2) \ (s+2-h) (s+1) (s+2-h) (s+1)

*
(s=h+4/3) (s-2/3)\" . 4, ~1
(2s-h+3)(2s—h+27> < amiash Co<

< 4n4444"(

whereas

-1\2
(53413 2/3Y(3 Tl
3 ° <2><5( 2 )( 1 )(1) ) Tadh < 0.3,
-1\2 1/3
_((10Y/3(10/3\(11/3Y/8 17,, -1 .
98'«5)(?( 4 )( 4 )(4> > 4k ) 6.8.

This completes the proof of theorem 3.3. ]



CHAPTER 4. SOME FACTS FROM ALGEBRAIC NUMBER THEORY.

From this chapter on, it is supposed that the reader is familiar
with the basic concepts of algebraic number theory, as can be found in the
first six chapters of Lang's book.[La 1]. In this chapter we shall develop
some techniques which will be needed later. Apart from the notations
listed at the beginning of this monograph, we shall use the notations

introduced in this chapter throughout the remainder of this thesis.

84,1, Ideals and primes.

Let K be an algebraic number field. By ideals in K we shall mean
fractional ideals, i.e. finitely generated OK—modules, whereas integral

ideals will mean ideals in the ring OK in the usual sense. We put

I(K): the multiplicative group of ideals in K;
S(K): the set of prime ideals in K.

As is well-known, I(K) is generated by S(K). That is, for every aeI(K) we
have

w_(a)
(4.1) a= 1 pP 7,

peS (K)
where the numbers wp(a) are integers, uniquely determined by a, of which
at most finitely many are non-zero. If d=<o> we shortly write wp(u) instead
of wp(<a>).
Let L be a finite extension of K. Let p,P be prime ideals in K,L

respectively, such that P divides pOL. We say that P lies abovg p and we

denote this by P|p. Furthermore we put

e(P/p)
£(P/p)

wP(pOL), the ramification index of P,

[OL/P:OY/p], the residue class deqree of P.
Then

(4.2) % e(P/p)E(P/p) = [L:K] ,
Plp
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where P runs through all prime ideals in L lying above p. If L is a Galois-
extension of K, then all prime ideals P 1lying above p are conjugate over
K, i.e. they can be transformed into each other by means of a K-
automorphism of L. Then the numbers e(P/p),£(P/p) do not depend on P.

Let E(K) be the set of Q-isomorphisms of K into €. Such an
isomorphism is called real if it maps K into R and complex otherwise. If
oeE(K) is complex, its conjugate o is defined by o(a)=0(a) for aeK. We
divide E(K) into subsets consisting of either one real or a pair of
conjugate complex isomorphisms. Such subsets are called infinite primes,

whereas prime ideals are called finite primes. Thus we have
S(K): the set of finite primes,
and we put

S,(K): the set of infinite primes,

S(K) = S(K)uSm(K): the set of all primes on K.

We shall denote primes, either finite or infinite on Q by the letter p,
on a fixed algebraic number field by v and, if confusion may arise, on an
extension of this field by V. An infinite prime is called real if it
consists of a real isomorphism and complex otherwise. If r denotes the

1

number of real, and r, the number of complex primes on an algebraic

2
number field K we clearly have

(4.3) r1+2r2 = [K:Q].

We say that a prime V on an extension L of K lies above the prime v
on K if it lies above v in the sense of prime ideals in the finite case
or if it contains continuations of Q-isomorphisms of K belonging to v in
the infinite case. We denote this by Vlv. Note that by (4.2) and by the
fact that each Q-isomorphism of K can be extended to exactly [L:K] Q-
isomorphisms of L, at most [L:K] primes on L ly above a fixed prime on K.
If L/K is Galois all primes on L lying above a fixed prime on K are
conjugate over K. In the infinite case this means the following: two
infinite primes VI’VZ on L are called conjugate if a K-automserphism.rtof L

exists such that all elements of V2 are given by 10, where o runs through
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the elements of Vl' Finally we note that for Galois—extensions L/K either
all primes on L lying above a fixed infinite prime on K are real or they

are all complex.

84,2, Norms, polynomials, discriminants.

Let K be an algebraic number field as usual and let f(xl,...,xr) be a
polynomial in r variables with coefficients in K. The content of f with
respect to K, denoted by CK(f), is defined to be the ideal in K generated
by the coefficients of f. If CK(f)=0K then we call f primitive. If L is a

finite extension of K then

(4.4) CL(f) = CK(f)OL.
Moreover, if f,geK[xl,...,xr] then
(4.5) cg(f8) = cp(fle,(8).

In case that both f and g are primitive, this can be proved similarly to
Gauss' lemma. In the general case one can extend K to a field L in which

both cL(f) and cL(g) are principal ideals with generators 61,6 say. Then

2
both f/61 and g/é2 are primitive, hence their product fg/6162 is., This

shows the general case.

As is well-known, the norm of an element 0eK is defined as

N (o) = I o(a)
K/Q ceE(K)

There is a suitable generalisation for ideals. The norm of an integral

ideal a is defined as
Ne(@ = [0p/al.

If a is not integral, then @ is the quotient of two integral ideals, b/c

say. We put
Np(@) = NK(b)/NK(C).

This is well-defined and we have



58

(4.6) NK(ab) = NK(a)NK(b) for a,beI(K),
4.7) N (<a>) = [Ngp ()| for aek’,
(4.8) N @) = N @™ for aex), L/K finite,
(4.9) NK(a)OM = 1 o(a)OM for aeI(K), M/Q Galois, Moo (K) for
ogeE(K)
oeE(K).

We shall apply this together with (4.5) to the following situation.
Let adk*and put k=Q(a),

T(@) = N (<I,>)' , F (2) = T@ T (z-0(x)).
k o
oeE(k)
F is called the minimal polynomial of a. Clearly F is an irreducible
polynomial with coefficients in Q. By the preceding theory, one can show
that Fa is primitive, whence has integral coefficients. For in general we
have by (4.5) for every polynomial f(z)=8(z-al)...(z-ar) with B,al,...,a

r
in some algebraic number field K,

(4.10) e (£) = <B><l,a >...<l,a >.

1

Hence, if M is an extension of k containing all conjugates of o, we have by
(4.9),

-1
cM(Fu) = Nk(<1,a>k) OM il <1,0(a)>M = OM.
oeE(k)
We shall use (4.10) also in order to derive a useful identity
involving discriminants of polynomials. Let r be an integer with r22 and
let B,al,...,ar be algebraic numbers. The discriminant of f(z)=

B(z-al)...(z—ar) is given by

D(f) = Bzr_Z_H_(ai-aj)z.
i>]
Since D(f) is symmetrical in U seessl it can be expressed entirely in
terms of the coefficients of f. Now suppose that f(z)eK[z] for some
algebraic number field K and that G see.a are pairwise distinct. The
primitive discriminant of f with respect to K is defined as the ideal

-2r+2

(4.11) dK(f) = cK(f) <D(f)>K.
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Let M be an algebraic number field containing Gpseens By (4.10) we have

the following identity of ideals in M:

r =2r+2 2p=2 9
(4.12) d (£) = {<p> 1 <1,a.> <B> I <a,-o.>
M >7i i 7]
i=1 i>j

= 1 (<1,ai>_l<!,a.>~l<a.—a.>)2.
i>j J 1]
This implies that dM(f) is an integral ideal not depending on B, It follows
easily that dK(f) is an integral ideal not depending on B for every

algebraic number field K containing the coefficients of f.

§4,3, Valuations.

on Q@ we have the following primes: the prime numbers which are
usually identified with the finite primes and the infinite prime consisting
of the identity on @ which is usually denoted by p_. For every prime we

define a valuation:

la] = la| for ael@, the ordinary absolute value;
loclp = p-wP(a) for aem*, IOlp = 0, the ordinary p-adic

valuation, if p is avprime number,
By the unique factorisation on @ we have the product formula:

(4.13) I Jal_ =1 for ueQ*.
pes@ P
It is possible to generalise this for algebraic number fields.
Firstly, we define valuations for ideals. Let K be an algebraic number
field of degree m. We define for peS(K) ' and aeI(K):

-w_(a)/m
lalp = N () .

By this definition, we have

(4.14) |<a1,...,ar>K|p = max(lullp,...,lurlp) for o ,...,a ek,

By (4.1) and (4.6) we have the product formula for ideals:
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(4.15) NK(a>'/m T lal_=1.
pes (K)

We now define valuations on K. For aeK we put

-w_(a)/m
N () P if a0, l0] = 0;

lo(a) |4V /m

if v is real and d(v)=2 otherwise.

for v=peS(K): Ia]v

for veS_(K): lalv for some ocev, where d(v)=1

Since by (4.7),

= 1 lo|®

(4.16) N (<o>) = |
veSm(K)

H

Yk/q

we have by (4.15) the product formula:

(4.17) T Jal_ =1 for aek”,
veS(K) v
We shall often use the following corollaries of the product formula.
If S is a finite collection of primes containing all infinite ones and if

o is a so-called S-untit, i.e. Ialv=1 for v¢S then clearly

(4.18) Ilal =1,
veS v

* . . . 3 . 3 . 3 .
If anK and S is a collection of primes which contains all infinite primes

but is not necessarily finite then

(4-19) I Ialv > 1,
veS

The following important properties of these valuations may be noted.
*
If aeK , then Ialv#l for at most finitely many v. If L/K is a Galois

extension, if veS(K), and if V],V are primes on L lying above v, then

2
either V],V2 are conjugate prime ideals, or conjugate real primes, or
conjugate complex primes. Hence we have for some K-automorphism t of L:

(4.20) lalv

= IT(a)IV for aeL.
2 1

In order to simplify estimates in which both finite and infinite

primes appear, we introduce the following notations:
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(4.21) s(v) =0 if veS(K); s(v) d(v)/m if veS_(K).

Then we have

(4.22) I} s(wv) = ) s =1,
veS(K) veS_ (K)
(4.23) |ot1+...+otr|v < rs(v)max(la]|v,...,|ar|v) for al,...,areK

and veS(K).

§4.4, Heights.
Let K be an algebraic number field. The height of aeK’ is defined as
(4.24) h(a) = T max(l,la[v).
veS(K)

In fact, the height does not depend on K, hence it can be considered as a

height function on A*. For put k=Q(a),

d = dega= [k:Q]l, L(a) = I max(l,lo(a)]).
oeE (k)

Each @Q-isomorphism o of k can be extended to exactly [K:k] @-isomorphisms

of K. Hence

I max(l,lal ) =< I maX(l,lT(a)l)>]/[K:Q]= L(a)”d,
veS (K) M teE(K)
whereas by (4.14),(4.15) and (4.8),
il max(l,lalv) = I |<|’&>|v - NK(<1,a>)-l/[K:Q]

veS (K) veS(K)
14 p@yt/d,

-1
Nk(<1,a>k)

Therefore,

(4.25) h(a) = (L(a)T(d))I/d-

Note that by (4.25), algebraic numbers which are conjugate over Q@
have the same height. Furthermore, if r,serrwith (r,s)=1 then T(x/s)=]|sl,

L(r/s)=max(l,|r/s|), hence
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(4.26) h(r/s) = max(|rl,]|sl]).

. . . *
Finally, we mention another useful expression for the height. Let &,neK .

Then it follows easily from the product formula (4.17) that

(4.27) h(g/n) = I max(lg]l ,Inl ).
veS (K)

me4J.Mt%&aP”U%diMZJMn

(4.28) he™ = hew ',

(4.29) h(a]az...ar) < h(al)h(az)...h(ar),

(4.30) h(aB)=h(a)/h(B) , h(a/B)=h(a)/h(B),

(4.31) h(a’+...+ar) < rh(al)...h(ar) if a1+...+ar#0.

PROOF. Let K be an algebraic number field containing a,B,a],...,ar. Let

veS(K). Note that by (4.27), h(a—])=h(u). Hence in the proof of (4.28) we
may assume that n20. By (4.23) and (4.22) we have

max (1, [a”] ) = max(1,lal )",

max(l,]a]az...arlv) < max(l,|alIv)max(l,|a2[V)...max(l,|ar|V),

max(l,|u1+...ar[v) < max[l,rs(v)max(]al|v,...,|ar|v)}
< rs(v)max(1,|a1|V,...,|ar|v)
< rs(v)max(l,|uliv)...max(l,[a | ).

r'v

Now (4.28),(4.29) and (4.31) follow by taking the product over all v.
(4.30) follows from (4.29) by noting that h(B)=h(B-l) and

h(a) = h(aBB™') < h(aB)h(R). 0

LEMMA 4.2. Let C be a positive number and let d be a positive integer. Then
the number of algebraic numbers of degree at most d and height at most C is
bounded above by

a+1
%[(Zc)dﬂ)

PROOF. Let o be an algebraic number of degree d's<d and height <C. Let s

..50,, be the conjugates of a and suppose that these numbers belong to C.
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1 1_
Put f(z)=(z-u])...(z—ad,). Then f(z)=zd +alzd ]+...+ad, say, where

a =+ z A, «..0, for r=1,2,...,d'.
1<i <,..<i_=<d'
1 r
'

Since there are at most Ci)tuples (il,...,ir), we have that

r

(4.32) |a_| < (‘1’) max le, ..., | < 297 L(0).

1si<...<i <da' 1 Ly
1 r

Let Ga(z)=6Fa(z), where Fa(z) is the minimal polynomial of o and where
§e{-1,1} is chosen such that Ga(0)>0. Suppose that Ga(z)=b0+blz+...+bdzd,

where b ..=bd=0 if d>d'. By (4.32) and (4.25) we have

ar+1”-

IN

|bil T(a)max(l,lall,...,lad,l)
271 ()T () < 297!

IA

n(? < %(zc)d for i=0,1,...,d.

Moreover, bile for i=0,...,d and b0>0. Hence we have at most
d d+1
s@0 (@) < 2(20)%)

possibilities for the polynomial Ga(z). Since every polynomial Ga(z) has at

most d zeros, this proves lemma 4.2. 0



CHAPTER 5. AN APPROXIMATION THEOREM.

§5.1. Introduction.

. . n ..
In chapter 2 we considered the equation ax —byn=c in integers x,y. We
showed that solutions of this equation satisfy the inequality

1/n
b -1
(5.1) [1—(;) %1 < c]max(laxn|,|bynl) s

where c is some poéitive constant depending on n and c. In chapter 3 we
met a similar inequality. The equation F(x,y)=1 in integers x,y, where F is
a binary cubic form of positive discriminant D was transformed into an
equation a£3—6n3=3/:55; where o,B are constants and &,n variables in the

field Q(V-3D). We showed that £,n satisfy
n 3-1
(5.2) ]1-e-€—| < czla;; |7,

where 63=B/a and where c, is some absolute constant. In this chapter we

shall consider systems o% diophantine inequalities which may be considered
as generalisations of (5.1),(5.2). The result we obtain here will be used
to derive upper bounds for the number of solutions of equations of the
Thue-Mahler type.

Apart from the notations in chapter 4 we shall use the notations

below.

K is an algebraic number field;

€

is a non-zero element of K;

n is an integer with n23;

L is a finite extension of K containing all n-th roots of w;
S is a finite set of primes on K;

{ev}ves is a set of fixed n-th roots of w which belong to L;
B,C are constants with B>1/2+1/n and C21;
{Pv}ves is a set of positive constants with EVESFV =B; .
W(z) is a function on K such that W(z)=h(wz ) for all zeK .

(The reader is warned that S and S(K) are distinct sets). For every veS,
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we choose a continuation of I.Iv to L and this continuation is fixed in
the sequel. This continuation is also denoted by l'lv'
We consider the following system of inequalities:

(5.3) l1-6 2| < (CW(z)"‘)FV (veS) in zek'.

We shall derive an upper bound for the number of solutions of (5.3) with
W(z) sufficiently large, by applying a generalisation of the method used in
chapter 2 and chapter 3. Since this method is a modification of Thue's
method [Th 1,2], we have to assume that B>n_1(l+n/2). It is very likely,
that by an adaptation of Roth's method ([Rol], see also [D/R],[Ril]) results
can be obtained on (5.3) for all B>2/n.

THEOREM 5.1. Suppose & is the smallest integer such that

0

1 n2—8n—4
(5.4) 9,0 > max<2, -Z(n—f) +m)>

and k is the largest integer such that

10g(1+2n20(nB—2)/(n—2))
log (nB-1)

(5.5) k <

Then (5.3) has at most k solutions with

-1
(2nB-n-2)
(5.6) W(z) > <2(n+l)(n+4)(nCB>2n>

REMARK 1. For specific choices of n,B,C,W(z) it might be possible to
obtain a better result than the one given in theorem 5.1, but that would
not essentially improve upon the results which we shall derive from theorem
5.1.

REMARK 2. For n29, we have £
that

O=2,k=l. To prove this, it suffices to show

(5.7) é%%(nB—2)+l < (nB—-I)2 for n29, B > 1/2+1/n.

Note that the left-hand side of (5.7) is a function in B with derivative
4n2/(n—2), whereas the right-hand side has derivative 2n(nB-1). It is
easy to check that for n29 and B>1/2 +1/n,



4n2
=7 < 2n(nB-1)

and that for n>9 and B=1/2+1/n,
4n n2 2
n—_—z—(nB—Z)+1 = 2n+l < T = (nB-1)".

This proves (5.7).

§5.2. Proof of theorem 5.1.

We shall use the same notations as in §5.1. Furthermore, we put

Ly =2 p!/ @71 poacB,
p[n

The following lemma will be used in chapter 6 as well.

LEMMA 5.1. Suppose z',z'" are two distinet solutions of (5.3) such that
W(z'")sW(z"). Then

(5.8) W(z") > p Mw(z")ET,

PROOF. Put W'=W(z'),W'=W(z") and for every veS(K)

Vi n
. levlz 2,

6nax(1,[wz'n|v)max(l,|wz"nlv))v

|6 z'-6_z"|
v vV _V for veS.

- max(l,lez'Iv)max(l,lez"lv)

By (4.23),(5.3) and the fact that W'2W' we have for veS,

=
N

< ZS(V)max(h—sz'L, h—evz"L)

r T
25w ™ oV o= 8 gy v

IA

)

For v¢S we have the trivial estimate EVSZS . Hence by the fact that z'#z"

and by (4.17),(4.22),

@)™ < (hwzMhw"M)V = 1 B < 2eawTHE < ow 7B,

veS (K)
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which proves lemma 5.1. a
We now assume that (5.3) has k+1 solutions satisfying (5.6), Z152ys
say, ordered such that W(z. )sW(z. ) ...sW(z. ), where (j, 5.0,
1 ] Jk+1 1
=2. Put

. ,Zk.‘.1

Jk+l) is some permutation of (1,2,...,k+1) with J]=1,Jk+1

Wi = w(zi) for i=1,2.

We have

(5.9 !/ D) =D/ (1)
pln

This is clear for n<6. For n27 we have

1 p1/(p-1) < m,2) 1 p1/(p-1) < (2n)1/2 <34 ¢ o@D/ (@+1)
pln pln
p#2
By (5.9) we have
2(n+4)(n+1)n2n > 4)(22nU:11+1.

Hence, by (5.6),

-1
> (4Un+1D2n)(2nB—n—2) .

(5.10) Wl N

By lemma 5.1 we have for ie{l,...,k},

p 0/ (@B-2), S (D—n/(nB—z)w. >nB—1’
Jivr N Ii
hence
(5.11) p ™ @B-2), -0/ (B-2)y )(HB-I)k
. 2 = \ ]l -

LEMMA 5.2. Let r be a positive integer and let A (z) be the

2r+1(z)’32r+1
polynomials constructed in chapter 1. Put

o = UrCBwv-Bwv+r, y = UrCB(2r+l)vav+r-B(2r+1).
r n 2 1 r n 21
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n
If z2A2r+1(mz Yz B2 +](mzl)_. then
(5.12) 1 < max(@r,wr) .
PROOF. Put
G (2) = qQr+D4, . (2), H (2) = qQ2r+)B,  (2),

Tr(z) q(2r+1)V2r+1(z),

where q(2r+1)=nr(nr,r!) and where V2r+1(z) is the polynomial constructed in
lemma 1.4. By lemma 1.3 (i), Gr(z) and Hr(z) have rational integral
coefficients and as a consequence of Gauss' lemma, Tr(z) also has. Note
that by (2.24),

(5.13) (2r+1)<2r) 2%F ( i p]/(p ”) p(a¥2)r=1 %Ug .
Furthermore, by (5.6), wzzw]zc and hence, by (5.3),
ll-evz]lv <1, |1—evz2|V <1 for ves.

These inequalities imply that

- n r s(v)
(5.14) max(lGr(mzl)|v,|Tr(6 z )I ) f—Un) for veS.

If v is finite, this follows immediately from the fact that s(v)=0, that
6.z | <1,|6 2z | <1 and that G_ and T_ have v-adically integral

villy v'2'v r r
coefficients. If v is infinite, then (5.14) follows from (5.13), lemma 1.6
(ii), the fact that G T have rational coefficients and that lal
lo(a )ls( v) for all aeK and for some Q-isomorphism ¢ of K in C. Slmllarly,
we have by lemma 1.6 (i),

s(v)

(5.15) max([Gr(wz?)]v,|Hr(sz)|v) < [%UZ) . max(],[wz?lv)r for v¢s.

Put

_ ) n,_ n -
= levlzzGr(wzl) z]Hr(u)zl)lV for veS(K).
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Then
= |6 2.6.(® z)M-6 zH (6 z)M| for ves
vi2r vl vilr vl v :

Firstly, we assume that veS. Then by lemma 1.4, (4.23) and (5.14),

_ _ n _ 2r+l
F o= ](evz2 DG, (wz])+(1-0_z)) Tr(evzl)[
2r+1
< 2*nax([1-0_z,| e @] ,[1-6 2, |27 1 (8 2] )
2r+l
< (Uz)s(v)maxﬂl—evzzlv,[ -0 | r )
Hence by (5.3),
) “1 =1 2r+y ]
(5.16) (Ur)S v max (CW, , (CW, ) Y for ves.
Secondly, we assume that v¢S. Then by (5.15) and (4.23),
F < Zs(v)max(|ng[:|Gr(mz?)l |mz l lH (wz )| )
< (U;)S(v)(max(l,|wz?lv)max(l,[ng|v))vmax(l,]wz?lv)r.
Hence
(5.17) P, < (0)° max(1, [uz]] )" Vmax(1, Juz)] )Y for vés.

By the assumption of lemma 5.2 we have FV#O. Hence by the product
formula (4.17), (4.22),(5.16) and (5.17),

l= 1 F = IF-IF

veS®K) ¥ wves Y vés V

< U max[CW ,(CW 1)2r+1) I (max(l,lwzn| )v+rmax(1,[wzn| )v)

2 1'v 2'v
vés

< Urmax( ,(cw 1)2r+1) h (0 n)v rh(wzn)v
n 2 2
r V+r v -1,2r+l _

<UWWm max (CW, W, ,(cw ) )B = max (e ,¥ ). 0

LEMMA 5.3. There is a unique integer % with 228, such that
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B

2 - v, B-v 2+1
(5.18) (Unw]) <C >

w] W < (Unwl) .

PROOF. Since the sequence (Unwl)l increases monotonically to infinity if 2

tends to infinity, it suffices to show that

D W, W

=1 =v _B-v
1 72

Lo
> (Unwl) .
This is equivalent to

D-n/(nB-Z)ngowT£o+1:

>

D—n(nB—])/(nB—Z)wnB—l
2

By (5.11) it suffices to show that

—n/(nB—Z)Unlown20+l

k+1
- B-2 B-1
(o B2y ) @B-D atoyntot,

which is the same as

@B " ngg- n((@B-1)**1-1)/ (aB-2)
1 .

> UnlOD
n

By (5.10) it is sufficient to show, comparing the exponents of Un’D

respectively and neglecting the factor 4,

n+l

k+1
EEE:E:E((nB_]) *nlo—]) 2 nlg,
k+1
n+l oyl n((nB-1) "~ -1)
Fapamz (BN mnko-1) 2 EEEEE—S

These inequalities are equivalent to

K+l 2nB-1
(5.19) (nB-1) 2 1+nfg T
(5.20) (mB-1)**! > 14200222

respéctively. Note that (5.19) is weaker than (5.20) since

2nB-1 < 2(nB-2)
n+l n-2

for B > 1/2+1/n. -

But (5.20) follows from (5.5). This proves our lemma. 0

Let % be the integer defined in lemma 5.3. We put r=% if.zzA2£+](wz?)
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#z]B21+](mzn) and r=%-1 otherwise. Note that always r2l., By lemma 1.5 with

h=2 we have z2A2 +](wz )#z B

that by (5.18),

2r+l(mzrll), hence we may apply lemma 5.2. Note

We shall now show that Wr<1, thus contradicting lemma 5.2 and thus showing
that (5.3) can not have k+l1 solutions satisfying (5.6). By the right-hand
side inequality of (5.18) we have

¥ <UC

r B(2r+1) v+r-B(2r+l) 2+14 (nB-1) "
. W) {w cB W) )

(5.21) UrCB(2r+1) r- B(2r+])(CBUr+2 T+2+B}(nB-])

_ (UnBr+ZCB((2nB—2)r+nB)w—B(2nB-n—2)r—(nB2-2B-2)>(nB—])
n 1

-1

nB/ (2nB- 2) B

Put A= U . Note that n+2>2nzB/(2nB—2) for B>1/2 +1/n and that

n+2n I p1/(p—1) < 2n+2n2

<4x2® v =2 < 4x2™™ for n24,

U3 > n
pln
Hence by (5.10),
_1 -
W (U 9 -2n n+l(2CB)2n)(2nB-n 2) _ (Un+2c2nB}(2nB n-2)
1 n
(5.22) 2 -1
S (Uin B/(ZnB-Z)CZnB)(ZnB—n—Z) _ A2n/(2nB-n—2)‘

Furthermore we know, by (5.4), B>2/n and r2%p-1, that

nBr+2 < nBr +.nB)

nB
TmB-7 - Zap-p(20B-2)r+nB),

2n 2
(2nB-2)r+nB - 5—3;7;—7(B(2nB n-2)r+nB -2B-2)

n -8n-4

= -2r-(n-2)/2 m <

2(1‘ 2«0+])
and hence

B(2nB—n—2)r+nB2—2B—2 > 0,

Together with (5.21),(5.22) this yields



© 72

v < ( a(20B-2)r+nB A—-Zn/(2nB-n—2))B(2nB—n-2)r+nBz—2B—2)(nB—l y~!

< 1,

This completes the proof of theorem 5.1. 0
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CHAPTER 6. ON THE NUMBER OF SOLUTIONS OF THE THUE-MAHLER EQUATION.

§6.1. Introduction.

Let K be an algebraic number field of degree m and let rsTy denote
the numbers of real and complex primes on K respectively. Let F be a binary
fona of degree n with coefficients in OK such that F(1,0)#0 and such that

the polynomial F(x,1) has at least three distinct zeros in A. Furthermore,
let Prseeesby be t distinct prime ideals in K. (t might be zero, now and in
the sequel). We shall deal with the generalised Thue-Mahler equation

k k

(6.1) <FGx,y)> = p,lop,t

*
in x,yeOK, kl,...,ktezzo.
We call zeK' a solution fraction of (6.1) if there is a solution (X’y’kl"'
"kt) of (6.1) with x/y=z. Note that in case K=Q there is a one-to-one
correspondence between solutions of (6.1) with (x,y)=1 and y>0 and solution
fractions x/y of (6.1). Apart from the case that t=0 and K=Q or an
imaginary quadratic number field, there are infinitely many solutions of
(6.1) corresponding to a given solution fraction. In this chapter we shall
show that the number of solution fractions of (6.1) can be bounded above
by a number depending only on m,n,t and not on the coefficients of F, the
prime ideals pl,..,pt and invariants of K other than its degree. For

technical reasons, it is more convenient to consider instead of (6.1),

<Fe,y)> _ 1k

t . *
(6.2) PPy in x,yeOK, K seeerk €Z

ey (F)<x, " 20

Solution fractions of (6.2) are defined in a similar way as solution
fractions of (6.1) and clearly, the number of selution fractions of (6.1)
is at most equal to the number of solution fractions of (6.2).

Let f(z) be a polynomial with coefficients in K which has degree n
and at least three distinct zeros in A. Instead of (6.2) we may consider

the equation

<f(z)> _ p]]...ptt in zek, Kiseoosk eZ

(6.3) €25 -

n
cK(f)<1 , >

For suppose that f(z)=F(z,1). Then f(z) has degree n since F(1,0)#0.

Furthermore, there is a one-to-one correspondence between solutions
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(z’kl""’kt) of (6.3) and solution fractions z of (6.2). We shall prove
the following

THEOREM 6.1. Let f(z)eK[z] be a polynomial of degree n which has at lLeast

three distinct zeros in M. Then the number of solutions of (6.3) is at most

2 n
15((3)m+1) 2(%) (r +r_+t)
7 3 +6X73 1 72
Let F(x,y)eZlx,ylbe a binary form of degree n such that F(x,1) is a
polynomial with at least three distinct zeros and let Pyse-esPy be distinct
prime numbers. Theorem 6.1 implies that the number of solutions of
kl kt
(6.4) IF(x,y)| = Py ++-P, in x,yeZ with (x,y)=1,x#0,y>0 and

k ,...,ktez2

1 0

is at most

15((3)+1)° 2(3) (e+1)
7 + 6x7 .

Under the restrictions that F has non-zero discriminant and that F(1,0)#0,
F(0,1)#0, Lewis and Mahler [L/M] showed, using Mahler's p-adic generalisat-—
ion [Ma 1,2] of Siegel's approximation method [Si 1], that the number of
solutions of (6.4) is at most

c.v/n
cl(nH) 2, (c3n)t+],

where c;sc are absolute constants and where H is the maximum of the

23
absolute values of the coefficients of F. Lewis and Mahler gave explicit,

but very complicated expressions for ¢ sCysC In contrast to our bound,

3*
the bound of Lewis and Mahler depends on the coefficients of F, but if n is
large compared with H the bound of Lewis and Mahler is sharper than ours.

By theorem 6.1 with K=Q and t=0, the equation
o *

(6.5) F(x,y) =1 in x,yeZ

(where F is as in (6.4)) has at most

2 n
(PO a0y
\

6x7
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solutions, where we have taken under consideration both possibilities for
the sign of y if n is even. Tartakovskii [Tal] stated without proof that for
irreducible forms F of degree n24, (6.5) has at most 235n6 solutions.

In case that K;Q, no other explicit bound for the number of solutions
of (6.3) is known. Only Parry [Pal(pp.77/78) has proved some results in
this direction, by an algebraic generalisation of Mahler's p-adic

approximation method. For example he proved the following:

let F be a binary form as in (6.1), let PlsveesPy be given prime
numbers and let D be the discriminant of K. Let S be a set of pairs
2,y2) both belong to S
if x]/x2=yl/y2=e for some unit e. Then the number of pairs (x,y)eS with
NK(<x,y>)5IDK}1/2 such that |N

(x,y)withx,yeOZ such that no two pairs (xl,yl),(x

K/Q(F(X’y))l is composed solely of Pys...sP,

i8 at most C8+l, where C_ s a constant depending on F and K only and not

0
on the rumber and choice of Plsee+sPye

Parry did not give an explicit value for C.. Note that by theorem 6.1, C

0
can be replaced by a constant depending on K and the degree of F only.

0
In case that f(z)=l—wzn, where weK*,theorem 6.1 can be improved.

THEOREM 6.2. Let n be an integer with n23, let wek and let Pl,...,Pt be

given prime ideals. Put

Un) = 16n=2(16n=2 (8n+15)/(8n-17)
? 8n-17\8n+15 .

Then

(1) the number of solutions of the equation

n
(6.6) ez > pll...ptt in zeK*, k

veesk €72
n ? * Tt
<l,wz >

1 20

n+10

with h(wz")=3 18 at most

T o+r tt
2(aU(n)) 12

and

(i) the mumber of solutions of (6.6) with h(wz™)<3™10

18 at most

(2x37*10) @ )?
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The number U(n) decreases to 4 if n tends to infinity. In the table below

some values of U(n) are given, rounded off to two decimals.

n 3 4 5 6 7 8 9
U(n) 16.49 | 9.85 7.82 6.84 6.26 5.88 5.60

6.7)

Using the result of theorem 6.2, it is possible to derive upper
bounds for the number of solutions of equations of the type ym=f(x) in x,y
€Z (where meZ ,m22,f(x)eZ[x]) and for Iaxr—bysl=p1](1..p1:t in x,ye€Z with
(xr,ys) not divisible by an lem(r,s)-th power >1 and kl“..,ktezzo(where
r,selN ,rsZ6,a,b€Z* and Pyse.»P are fixed prime numbers.). By methods
described in [Si 2Jand[LeV 2], ym=f(x) can be reduced to finitely many
equations of the type axn—Byn=Y with a,B,y constants and x,y integral
variables in some algebraic number field K. Mahler [Ma 5]pointed out, that

k]...pkt can be reduced to finitely many equations of the type

|ax"-by® |=p
<otxn-6yn>=)0]]...ptt where x,y are integral variables, a,B constants and
PraecesPy fixed prime ideals in some algebraic number field K and where Zl,
""lt are non-negative, integral variables.

First of all, we shall prove theorem 6.1 for n=3. By combining some
techniques Mahler introduced in p-adic approximation theory (cf.[Ma 1,2],
[L/M]) with techniques from chapter 3 we shall reduce (6.3) to finitely
many systems of inequalities of type (5.3) with n=3 and then apply theorem
5.1. The general result is derived from the result in case n=3. Equations
of type (6.6) can be reduced to systems of inequalities of type (5.3) for
all values of n with n23, This brings about the fact that our upper bound
for the number of solutions of (6.6) has a better dependence on n than that
of (6.3). The proof of theorem 6.2 follows the same lines as that of
theorem 6.1 and we shall sketch it briefly at the end of this chapter.

Furthermore we shall prove the following result in a similar way as

theorem 6.1.

THEOREM 6.3. Let f be a polynomial of degree n23 with coefficients in K
and non-zero discriminant. Let A be a constant with A2l. If
(6.8) N (£) 2 (13" (D6

then the inequality
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(6.9) N (f——EELEZZ—;) < A in zeK*
QK(f)<1,z>
has at most
Z[n)(r +r,.)
6x7 3 1 2
solutions.

This generalises previous results of Siegel [Si 4] on the inequality
|ax"-by™|<C (c£.52.1) and Siegel [Si 31, Delone, Faddeev and Gel'man [D/F]
on the inequality |F(x,y)l|<k, where F is a binary form with coefficients
in Z and positive discriminant (cf.§3.1). For a discussion of possible
refinements in case n>3 we refer to the remarks after the proof of theorem
6.3.

Using theorems 6.1 and 6.3 it is also possible to derive results on

the number of solutions of the equation
(6.10) F(x,y) = v in x,yeoz,

where yeoz and where F is as in (6.1). In the theorem below, wK(y) denotes

the number of distinct prime ideals in K dividing <y>.

THEOREM 6.4. (7) The number of solutions of (6.10) is at most

15((“)“1*‘1)2 2(3) (x +r, +w, (v))
n<7 3 rexy ¥ 12K )

(i) Suppose that F has non-zero discriminant D(F). If

5n{n-1)/6

6.11) N, (DE)]| 2 [13" N, ()] s

K/Q K/Q

then (6.10) has at most
Z[H)(r +r,.)
6nx7 3 1 2

solutions.,

Note that the bound given in the first part of theorem 6.4 depends on wK(YL
only, while the second part of theorem 6.4 states that if
(y)|, then the

n,m,r, T

|N

2
(D(F))| exceeds some constant depending on m,n and |N

K/Q K/Q
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number of solutions of (6.10) can be estimated from above by a constant
depending on n,r T, only. In 1974, Chudnovsky [Chu 11 claimed that bounds
of similar type could be derived under similar conditions by means of a
method of Gel'fond[Ge 1] from 1934 on linear forms of two logarithms of
algebraic numbers near to unity. As far as I know, Chudnovsky has never
published a proof of his claim. Theorem 6.4 will be derived as a corollary

from theorems.6.1 and 6.3 later.

§6.2. Preliminaries to the proofs of theorems 6.1 and 6.3 in the case n=3.

As before, K is an algebraic number field of degree m with r, real

and r, complex primes, p],...,Pt are distinct prime ideals in K and A is a

real constant with A>1. We consider

k k
(6.12) ___f££521_§ = pll...ptt in zeK*,k],...,kt€Z>0
e (£)<1,z> h
K
and
(6.13) NK(—-—L(Z)?—) <A in zeK'

3
cK(f)<1,z>

simultaneously, where in both (6.12) and (6.13), f(z)eK[z] is a polynomial
of degree 3 with only simple zeros. We define the binary form f*(x,y) such
that f*(x,y)=y3f(x/y) for y#0. Then f and £° have the same discriminant,

which we denote by D. Let M=K(Y-3D). Let SO=Sw(K)U{P],...,pt}, where Pisees

pt are the prime ideals from (6.12) and let T, be the set of primes on M

0
lying above the primes from SO'

We apply lemma 3.2 to f*(x,y). Let o,B be the constants, and let &,n
be the linear forms constructed there. Then a,B €M and £,neMlx,yl. We put,

if confusion can not arise,

£, = &(z,1), n = n(z,1), w= g/a.
Let a4 be the ideal in M defined by
(6.14) a = cM(f)—2</:§BSM.

Then by (3.9),
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<“5?'B”i>M
(6.15) = 3a

3 3
QM(f) <l,z>M

<f(z)>M

3
CM(f)<],z>M

Solutions (Z’kl""’kt) of (6.12) will be shortly denoted by z. Let
z be such a solution. Then we have by (4.14),(6.12) and (6.15), for every

VET,,
3

- |3a|V|CM(f)|3max(l,|z| )

3 3
|ag7-8n7 1y

v

Hence by the product formula (cf.(4.17)) and (4.14),

3
3,3
(6.16) I |ag7-8n7loe T (e, (£)]| max(l,1zl)) T [3al, = 1.
ver 1M 'ty v v

0 0 0
If z is a solution of (6.13) then by (6.15) and (4.8),
3,

| ) .
L) < N (Ba)a
cM(f)3<1,z>3 M

3
<ag;=8n [M:K]

5

Hence by (4.14),(4.16) and the product formula for ideals (4.15),

3
3 3
(6.17) I |a£ -8n | - I (|c (f)[ max(1,|z] )]
ves_ay ' ' Vwesany M7V v

< NM(Ba)l/[M:Q]AI/[K:Q].

Let S be an arbitrary, but finite subset of S(K) containing all
infinite primes. Let T be the set of primes on M lying above the primes in

S. Put
-2 -1
A= T lal_“= 1 |3d ()], .
S ygr Vo yer MW

Note that (6.12),(6.13) are equivalent to (6.16), (6.17) respectively.

These inequalities are special cases of

3 3 3 1/2
(6.18) I |a£1—Bn]|V' i (]cM(f)|Vmax(1,|z|V>) <(m |3|V)PAS ,
VeT VET VeT
where P is a constant with P21. For we obtain (6.16) by taking P=l,S=S0
and applying the product formula (4.17) and (6.17) by taking P=A]/m,S=Sw(KL

In the remainder of this section we shall study (6.18). We shall consider
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only solutions of (6.18) belonging to the set
Ky = {zeK|E(z,1)n(z,1)#0}.

Since &,n are linear forms, we exclude at most two solutions of (6.18).

For every zeKO we put
(6.19) ¢ =1t(2) = n,/E,
and
o2l s 021+ 1 (e (o )’
(6.20) Q. (z) = 1 max(|ag , | Bn Yo 1 (e, (f) | max(1,]z]_)
S VeT 1'Vv 1'V V4T M A \Y4

Qs(z) is a kind of height function with the property that
3
(6.21) Qs(z) 2 h(wz).

This can be proved as follows. Let the ideals bl,b2 be defined by

<a£3> <3n3>
b - "M b - "M
3°? 2
M

1 3

3
cM(f) <l,z>

3
cM(f) <l,z> M

Let M' be an extension of M in which <1,z>M, and QM,(f) are principal

ideals, with generators AI,A respectively. Let G(x,y),H(x,y) be the cubic

2
and quadratic covariant of f*(x,y) respectively. It is easy to check that
the numbers G*=A;3G(A;]z,ATl),H =A;2H(AIIZ,A£]) are algebraic integers. By
(3.8) and (3.10) the numbers A; ag(x;lz,x;l) , A;3Bn(AIIz,A;1)Sare the

roots of the equation
2 3
X —G*X+H* = 0,

whence are algebraic integers. These numbers generate bloM"bZOM'

respectively, hence b],b2 are integral ideals in M. But this implies by
(4.27) that

h(gd) = I maX(IaE?|V,|Bn?lv)
VeS (M)
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3 3
I max(la& ] ,an | ) x
VeT ' 1'V 1'v

3
.o (max(!b 16103 (lew (8) | max (1, 1 21.)) )
VAT 1'v 2'v M \Y \Y)

A

< QS(Z).

Let 6,,60 63 be the cube roots of w and let L be the smallest Galois

1°72°
extension of K containing M(61,62,63). For every VeT we choose a fixed
continuation of I'IV to L which is also denoted by |.[V.

LEMMA 6.1. Let z be a solution of (6.18) with zeK,. Put

= (z) = max( min (1,|1-6.z|.), min (1, 1—671 -l \
mV v \M<i<3 | 1 |V 1<j<3 | J ¢ |V)/
for VeT. Then
1/2 -1
(6.22) il (z) < 8PA. “Q.(2)
Veva s s

PROOF. First of all, we prove that for each VeT,

-3s(V)

(6.23) Il—w;3lv > I3IV2 max(l,|wc3lv)min(l,[l-9iclv) .

We suppose that Il-elclvs|l—6iclv and that 6i=pl_16 for i=2,3, where p is

1
a primitive third root of unity. This is clearly no restriction. By (4.23)

we have for i=2,3,

[l—eiclv = max(ll—eiclv,|l-9];|V)
6.2 = maX(ll-ol—191C|V,Iplul-elllv,ll-eiC|V)
6.24 . .
-s(V -1 1-
> 27 Wnax(|1-0"7 [ 6, 2] s 110 71

= 2_S(V)I]—pi_l|Vmax(l,|61;|v).

s(V)

Furthermore, we have either |9]C|VS2 , which implies that

Z_S(V)max(l,lelc|v)sl; or ISIC[V>25(V), which implies by (4.23) that

lo,cly = 11-8,z-1], = 2° Dnax(1, [1-8 2] ) = 22V |1-0 t] .

Therefore,
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-s(V)

|1-9]§|V 22 max(l,Ielclv)min(],]l—61;|v).

Together with (6.24) this yields that

3
l1=we”|y = [1-8 2l [1-0,2] [ 1-82
> 2733 [1op | [1-02 | max (1, [0, 2] ) *min (1, [ 178, 2] )

= 2_3S(V) IBIvmax(l, |wc3lv)min(]’ l ]_e]clV)°

This proves (6.23). As a consequence we have

3s(V -1 3 3 -1
.23s( )I3IV maX(laEIIV,IBn][v)

jes)
|

3 3
= lagi=8nly

v

min (1, |1-68.z]_).
1<i<3 | i¥lv

It follows in a similar way, by interchanging o, and E],n], that

1 —][ ).

Uy = min (1,|1—ej 4

1<5<3 v

Hence mVsUV for VeT. Therefore, by (6.20) and (6.18),

I < IIU
VeTmv VeT v

3
-1 3 3
= 8( I ]3] ) o II |a£ -Bn l o I ﬂ (f)] max (1, | z] » X
VeT v VeT ! v VET u v v
x ag(2)”!
1/2 -1
< 8PAS Qs(z) 0

We shall now show that every solution of (6.22) satisfies one of
finitely many given systems of inequalities of type (5.3). Therefore we use
the following technical lemma, which is a slight improvement of a result

used by Mahler in [Ma 1,2].

LEMMA 6.2. Let B be a real number with 1/2 <B<l and let q be a positive
integer. Let Fl""’Fq’A be positive real numbers with Fjs] for j=l,...,q

and 1.% F. <A Put
3=17]

R(B) = (1—3)'133/(3'1)
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There exists a q-tuple (F eesT ) with T >0 fbr j=l,...,q and z J =B,
which can be chosen from a set of at most R(B) of such tuples whzch
depends on B and q only and does not depend on Fj,A, such that for j=1,...,

q:
(6.25) Fj <pd

PROOF. If g=1 we may take the l-tuple (B), so we shall restrict ourselves
to the case q22. Let u be the integer defined by

(6.26) (q=1)B/(1-B) < u < (q=1)B/(1-B) +1.
Then uxl. We shall show that the set of g-tuples

VO ={(1"1,...I‘q)|I‘j=ij/u, fjeZZo for j=1,...,q, §'fj=u}
satisfies the conditions of our lemma. Clearly, VO does not depend on F_, A
and moreover, FjZO for j=l,...,q, zjgl Fj=B for (Fl,...,Fq)eVO. In the
remainder of the proof we shall assume that A<l, which is no restriction
at all.
Now we show that (6.25) holds for some tuple (P],.",Fq)eV There
are non-negative reals ¢1,.. ,¢ such that F ‘A¢J and z ql ¢ 2], Define

integers gj by
(6.27) u¢j/B-l < gj < u¢j/B for j=l,...,q.
Then ngO and by (6.26),

% gj > uB_{( g ¢.]—q > uB_]—q 2 u-1.
j=1

Hence

o~
(]

v

[~

j=1
There are integers f. such that Osijgj and ng] fj =u. For these integers we

have (Bfl/u,...,qu/u)eV0 and by (6.27),

Bf./u
]

F. <A
J
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In order to complete the proof of lemma 6.2, we shall estimate the

number of elements of VO from above. Note that by (6.26),

v | = (a1 o /(q-l)/(l—B)H) _

ol =Uqm1 )50 T

Hence if suffices to show that
(6.28) <(q")/<1'3)+’) < @I for 1/2 <B<l,qez ,q22.

q-1

It is possible to show (6.28) for large values of q by means of Stirling's

-1
r(x) ~ V2nxlzzl> for x-w,

where I'(x) denotes Euler's I'-function. Proceeding like this, one can even

formula

show that
lim log((q—l)/E:_B)+])/&og q = R(B)
qe d

hence (6.28) can not be essentially improved. However, we shall prove
(6.28) completely in an elementary way.

Put x=B/(1-B),h=q-1. Then (6.28) is equivalent to

(6.29) (h(x::)+])

h
<(l+x)(l+x ')X> for x>1, helN.

I

Note that for h=1,

<h(x:f)+'> = x+2 < 2(x+1) < (I+x) (14x )%,

while for h=2,

[h(x+1)+1

2
. ) = (2x+3) (2x+2)/2 < 4(x+1)° < ((1+x)(|+x"i)x> .

Hence we may assume that h23. We shall use the following inequality:
: y
(6.30) (g) < ';;-——‘lg;_—g*g for yeR,gelN with y2g+4.
(y-8)" “g

(6.30) can be proved by induction on g. First of all, suppose g=l. Then
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x25, hence

A y-1
y _ iy 4 Iy
T y(+G-1") =y > §<1).

Suppose that (6.30) has been proved for g=p-1, where p22. Then we have for
-lw

g=p, by the fact that the function (l-w ) -1 decreases monotonically for

(Y) _ z(y-l>5 3y g-»¥7! _3 v (1-y !
P/ PP TR (o ) VPP T ()RR (1P
y

y .
)y_Ppp

w>l,

lw

IA

7
(y-p
We shall now prove (6.29) for h23. Note that h(x+1)=h+xh>h+3, hence by
(6.30)

(h(x+1)+1\_ h(x+1)+1 /h(x+1)> (h(x+1)
\ n )' o\ no ) S ATy

I

h(x+1)
S(xr4/3) ~RE2L)

(hx+l)hX+](h—])h_l

e ()1

- S
()BT (g ) PP

h(1+x)x—hx—1

=-%(x+4/3) 1+x)

= %(]’F[&/BX) (1+(h—])-])h_1 (I_(hX+l)_1)hX+1X

x () (14x %)

In

-1 -1.x h -1.x h
exe  ((1+x) (1+x )7) = ((1+x) (1+x )

This proves lemma 6.2 completely. 0

For each veS we choose a fixed prime in T lying above v and the set
- +
of these primes is denoted by . Furthermore, we put T =T\T . Note that
T =¢ if M=K.
+
Let zeK0 and choose for each VeT eve{61,62,63} such that ]I-GVCIV
is minimal. Let veS and suppose that there are two primes V,V'in T lyiug
+ - .
above v, where VeT and V'e€T . Then [M:K]=2 and there is a unique
, . 3
K-automorphism ¢ of M which maps v-3D onto -v-3D. By (3.8) we have o(ug])=
Sn?, hence

1 -3

(6.31) o(wCS) =w 0, (wCB) =1,

Ny/k
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(where N denotes the norm of M over K). By (4.20) we have

M/K

IAIV' = IG(X)IV for AeM.

Moreover, since L/K is a Galois extension and since the continuations of

and l.[ to L which were chosen on p.81 are equal on K, there are

-1y and |-,
primes W,W' on L which are conjugate over K and a constant c such that |'IV
=|.|S ’|'IV'=|'I§'° Hence by (4.20) there exists a continuation T, of ¢ to

L such that
Mg = ITV(A)]V for AeL.

By (6. 31) there is a permutatlon (J],JZ,J ) of (1 2,3) such that T (GJ )=
-1_-1

1 1
6, ¢, -{T (8N /K(c>) . Put 0y,=(1, Lo V() - Then
-1 -1 3,-1/3
-0, clye = D1=67"e7 g = luc® Iy P 1m0
o for i=1,2,3.

]1—eji; |V = ]1—eiclv
Hence, on noting that II—GEIE—IIV is minimal if and only if ]l—ei;]V is
minimal,
(6.32) mv(z) = mv,(z) = max(min(l,II—GVC|V),min(],|l—9V,C|V,)].

We now apply lemma 6.2 to (6.22). Let s be the number of primes in S.
Then we have for every B with 1/2 <B<1 and for every zEKO satisfying (6.22)

of non-negative numbers with ) =B,

s-1

that there exists a tuple (T ) eS

of such tuples which depends on B and

veS
belonging to a set of at most R(B)

s but not on z, such that

T
/29 (z)fl) v for vesS.

1
Tm, < (8PAg
\ vmV

{where the product in the left-hand side is taken over all primes V lying

above v). For every VeT lying above veS we put T =Fv/n(v), where n(v) is

\4
the number of primes lying above v. Then, by (6.32),

r
m < (seal/%a (7)Y

b
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hence
=1 I1V
(6.33) min(1, [1-6,z]) < (BPASQS(Z) ) for VeT.

The tuple (T) can be chosen from at most R(B)s-_l possibilities.

V’'VeT
The tuple (Gv)VeT is iompletely determined by t&e tuple (eV)VET+ and by
(z). Note that IT |=s and that for each VeT , 6

v is equal to one of the

(z) is equal to one of the three

Ny/k

three cube roots of w in L. By (6.31), NM/K

-1
c:ET roots of NM/K(w ). Hence the tuple (eV)VeT can be chosen from at most

3 possibilities. Combining the above arguments we obtain:

LEMMA 6.3. Let B be a real with 1/2 <B<1, let s=|S| and put R(B)=

(I-B)—lBB/(B_l). There exists a set consisting of at most 3S+]R(B)S_]
: . 3

tuples of the type ((eV)VeT’(FV)VeT) with eveL,ev-m,ero for VeT and

zVeT FV=B, with the following property: every zeKO satisfying (6.18)

satisfies (6.33) for at least one of these tuples.
We shall need the following improvement of lemma 5.1.

LEMMA 6.4. Let z', z" bedistinet solutions of (6.33) with z',z"eK0 and
Qs(z")zﬂs(z'). Then

A(1-B)/2y3
S ( )3B-I
(6.34) R.(2") 2 || Q.(2'
S (23B+]PB S
and
(6.35) ﬂs(z") > As/64P .

PROOF. Put 5;=5(Z',1),n;=n(z',1),C'=§(Z'),Q'=QS(Z'). gr=e(z", 1),n=n(z",1),
€"=§(Z"),Q"=Qs(z"). For each VeT we put

"3
Pl

_ 3 3 3
wy = max(|ag) [y, 80} 7], wy = max(lag) |, [8n
Note that the linear transformation (x,y)+(£,n) has determinant unity and
that 0L8=—(V-3D)3 (cf. lemma 3.2). Hence by the product formula (4.17) and

(6.14),

1/3
n (lagl,'7|g"n"-
VeT v 11

1/3
E"n’l ) = 1 (iaB| ‘z'—z"| )
171V VeT v \Y
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= 1 (lagly?[ar-2] )
VET -1
> 1 Ial -H [Ic (f)| max(l | 2" |V)max(l,|z"lv)]
VET Vé -1
]/2

GCM(f)|Vmax(l Iz ] Jmax (1, [z | ))

Hence, by (6.20),

(6.36) 2/ < 1 aae|‘/3 tgtint | ) <aran /3 J G

Vel

-1/3

Note that for each VeT, by a trivial estimate,

s(V) v, 1/3
2 (mvmv) .

IA

(6.37) |U-B|l/3[5' "_ u l|

For each VeT we have also

laB| ]/3|E' " 6"n'| Iag;3lvlagvll3|v|evgv__evcnlv

< ZS(V)(m6m$)]/3

max(|1—6vc'lv,|1—9VC"|V)

This implies, together with (6.37),(6.33), 2"2Q" and the fact that for real

numbers a,b,c min(a,max(b,c))=max(min(a,b),min(a,c)),

|aBl]/3[

E' n Eunv l

IN

2S(V)(m¢w§)1/3min<x,max(|1—evc'lv,]x—evc"}v))
2S(V) 1/3

I

i
( l ")

max(min(l,[]—evc'IV),min(l,|l—6Vc"|v))

S(V) 1/3(

-y Ty
8eagR' ) U .

IA

Therefore, by (6.36), on taking the product over all VeT,

2t 2@ram ™3 2(8PA’/2 e,

which proves (6.34),
We are now going to prove (6.35). Note that by (6.36) and (6.37),
on taking the product over all VeT,

1/3

AIS/Z < 2(2'Q")



Hence, by (6.34),

| < ZQ"]/3A;1/2(23B+1PBA;(1-B)/2Q"1/3)]/(BB_])
= 65,=1 o0 B/ (3B-1)
= (2%pag ") .
This proves (6.35).

From lemma 6.4 the following useful corollary can be derived

(compare lemma 2.11).

B et w3/ (3B-2)
LEMMA 6.5. Put T = (s B)/2,=38-15-By . Let Uy,U, be constants
with T_]<U0<U]. Then the number of solutions of (6.33) with UOSQS(z)<Ul

is at most r, where r is the largest integer with

10g(10g(TU])/1og(TU0))

L Tog (3B-1)

PROOF. Let z,,...,2_ be solutions of (6.33) with z.eK K for i=l,...,r..
—_— 1 rg i™0 0

and

Uy

IN

QS(zl) < ... 2 Qs(zro) < U].

Put Qi=QS(zi) for i=1,...,r By (6.34) we have

o
3B-1 .
Q. ) b3 (TQi) for 1—1,...,r0,

1+

hence

Therefore,

log(log(TU])/log(TUo))
Tt < Tog(3B-1)  °

which proves our lemma.

§6.3. Proofs of theorems 6.1 and 6.3 in the case n=3.

In this section the same notations are used as in the preceding
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sections. Furthermore we choose B=0.846. Note that B>1/2+1/3=5/6. We
shall deduce theorems 6.1 and 6.3 from the lemma below. To avoid confusion
we agree that when speaking of (6.33) we shall always mean (6.33) with B=
0. 846.

LEMMA 6.6. (Z) (6.33) has at most 30 solutions in zeKO with

(6.38) 2g(2) > %X77°5P5.

(i1) If ASZ(13P)~) then the number of solutions of (6.33) in zekK, i8 at most
32.

PROOF. We apply theorem 5.1 with n=3,B= O 846,C= 8PA1/2 and w(t;)=ﬂs(z) to

(6.33). Note that by (6.22), W(C)>h(mc ). Also 7 is a bilinear function of

z, hence to each value of ¢ corresponds at most one value of z. If we
1/2
S

(6.33) is equivalent to a system of inequalities of type (5.3) in the

restrict ourselves to those solutions of (6.33) with Qs(z)ZC=8PA , then
variable g. For our choice of B we have that % =64 (where % is defined
by (5.4)) and k=12 (where k is defined by (5.5)).Hence by theorem 5.1,

(6.33) has at most twelve solutions in zEK0 with

1/2 B)6>]/(6B_5).

(6.39) 2 (z) > U := <228 (3¢8pag

1
We shall now count the solutions of (6.33) with Sls(z)<U1. Note that

if T is the constant defined in lemma 6.5 then

(3B-2) 6B-5 B-5 3B-2

(18B+28 3(3B+1) 6log 3
(e85 352 /°8% * TGB-3

< 33.825log AS + 62.073log P + 467.313.

1og('I‘U1) = i(]—_.lé-)—+ 3B >1ogA +(-6—6-§—~ 3B >10gP +

(6.40)

Firstly we prove (i). We apply lemma 6.5 with U] as defined in (6.39)
7. 5 5

and with U =(1/2)7 , B=0.846. Then
_ 3(1-B) . _12B+]
1og(TUO) = 3038-2) log AS + (5- 3B 2)1ogP+ (7.5lo0g 7 I3 log 2)

> 0.42log AS+ 0.28log P+0.226,

(6.41) 3B-1 = 1.538.



Hence by (6.40),

log(log(TU])/log(TUO))
log (3B-1)
33.8251ogAS+62.0731ogP+467.313
< 1°g( 0.42 Tog A +0. 28 Log P+0.276 )/1°g' 538

1 +

< 1 + 1log(467.313/0.226)/1og 1.538 = 18.73..
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This implies that (6.33) has at most 12+18=30 solutions satisfying (6.38).

Now we prove (ii). Note that, by (6.35), (6.33) has at most one
solution with @ (z)<A /64P. We apply lemma 6.5 with U as in (6.39) and

with UO—A /64P, B 0. 846 Put Q=A /P Then

(6.42) Q = 13°p.

On noting that PS]3—5Q, ASZI3_20Q5, we deduce from (6.40) that

Log (TU,) < 33.825(5 log Q -20 log 13) + 62.073(log Q=5 log 13) +

+ 467.313
<231.198 log Q - 2063.945.
Moreover,
1og(TU0)
-(30-B) _(.38B _(3(3B+1)
'(2(33—2) "‘) log Ag (33—2* 1> log P (——33_2 +6) log 2
_ _3B-1 _ 3(3B+1) _
= 7(38-2) 1°8 ¢ Q+—§§7—>mg22 1.42 log Q -17.834 .

Hence by (6.41),(6.42) and P21,

1og(1og(TUl)/log(TU0))

I+ Tog (35-1)
931.198 log Q -2063. 945
s ’+]ﬂg( 1Ja1£f§—n.%4 )ﬁﬁg‘538

231.198%5 log 13 -2063.945 -
<1+ log( T.42%5 Tog 13- 17.834 log 1.538 19.06...

Therefore, (6.33) has at most 12+1+19=32 solutions in zeKO

This completes the proof of lemma 6.6.

if ASZ(13P)5.
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1/m

PROOF OF THEOREM 6.3 FOR n=3. Let P=A ' (where m is the degree of the

algebraic number field K) and S=Sw(K). Suppose that (6.8) holds with n=3.
Then we have by (4.15),(4.8) and (6.14) that

2/[M:q] 1/0M:Q]_

1
= N, (3d, (£)) = N (3d (£))
1/m

- /m
g = Ny(@
1/m

5
NK(dK(f)) > (134 ™.

[\

Hence by lemma 6.6 (ii), (6.33) has at most 32 solutions in zeK.. Note that

Z1_B/(B-1) 0
for B=0.846, R(B)=(1-B) B <49/3. Hence by lemma 6.3, there are at
most (9/49)7%(T1¥72)

(6.13) (or (6.17)) belonging to KO

Hence the total number of solutions of (6.13) (including the ones with

distinct systems (6.33) such that each solution z of

satisfies at least one among these.

Eln]=0) is at most

2(r, +r,) 2(r +r,.)
2+ 2x32x7 L2 <exy 12,
49
This proves theorem 6.3 for n=3. 0

PROOF OF THEOREM 6.1 FOR n=3. We apply lemma 6.6 (i) with P=1 and S=SO,
where S0 is the set consisting of the prime ideals appearing in (6.12) and
the infinite primes on K. Thus we obtain, in combination with lemma 6.3,

R(B) <49/3 and (6.21), that the number of solutions of (6.12) with zeK

h(wC3)277'5/2 is at most

o’

2(r, +r +t) 2(r, +r, +t)
ﬁ%x30x7 727 cexy 12

We state this as a lemma for later purposes.

LEMMA 6.7. Let £(2) be a polynomial with coefficients in K and of degree 3
with only simple zeros. Let o,B be the constants and let &,n be the linear
forms corresponding to the cubic form y3f(x/y) as constructed in lemma 3.2 .
Let Pyseees Py be distinet prime ideals in K. Then the number of solutions
of

<f(z)>K k k

(6.12) 3 =P, P, in zeK*, k

3
CK(f)<1,z>K

5 ...,kteZZ

1 0

with
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3
(6.43) E(z,n(z,1) 0, h/ﬂ‘(—z’—'%> > 2x77"3
ag(z,1)

18 at most

2(r, +r, +t)
ex7 1 2 .

It is possible to derive an upper bound for the number of remaining
solutions of (6.12) by counting the algebraic numbers of degree at most 2m
and height at most 77'5/2. However, by another method it is possible to
improve this. Note that either mC3EK or, by (6.31), w£3 and (ch)_] are
conjugate over K. In both cases, the number K:=wC3+(wC3)_1 belongs to K,

provided that zeK. . Observe that for given k, there are at most two

o
possible values for m;3, hence at most six for ¢ and therefore at most six
for z. Furthermore, by (4.28) and (4.31), we have for the solutions of
(6.12) not satisfying (6.43) that either zeK\KO or

h(k) < 2h(wz )? < -'2—x715.

Hence by lemma 4.2 the number of solutions of (6.12) which do not satisfy

(6.43) is at most
15\m +1 15( +1)2
2+ 6xg((7 )™ < 7

This completes the proof of theorem 6.1 for n=3. a

§6.4. Proofs of theorems 6.1, 6.3 and 6.4.

First of all, we shall prove theorems 6.1 and 6.3 in the general
case, i.e. for all integers n with n23. As usual, K is an algebraic
number field with r real and r, complex primes. We shall assume that the
polynomial f(z) appearing in both theorem 6.1 and theorem 6.3 is monic,
i.e. has leading coefficient equal to 1, which is clearly no restriction.
When speaking of a divisor of f we shall mean a monic polynomial with
coefficients in some extension of K which divides f.

Let K" be the smallest extension of K containing the zeros of f. In
order to prove theorems 6.1 and 6.3 in the general case, we choose a

suitable divisor gof £f. In the case of theorem 6.1 we choose for g(z) an

arbitrary cubic divisor of f with non-zero discriminant. Clearly, we may
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assume that g(z) has its coefficients in K". In the case of theorem 6.3 we
have to be more careful. Note that in that case, f has non-zero
discriminant. Since f has degree n, f has n distinct zeros in K", c],...,cn
say. For each pair of zeros gi,cj with i#j we put

d,. = <Ci_cj>K" .
1] <1’Ci>K"<l’Cj>K"
Then by (4.12),
2
(6.44) d.(£) = 1d;.
K .. 1]
i>]

Let g(z) be an arbitrary cubic divisor of f(z), g(z)=(z—ci1)(z—ciz)(z-—ci )
3
say. Then

2 2 2
(6.45) dK"(g) = di1i2d12i3di3i1'
Let G be the collection of all cubic divisors of f. Then by (6.44) and

(6.45),

2 2 .2 n-2
do. d . = dK"(f) .

I dKu(g) = it dij jk ki

geG 1<i<j<ks<n
Now we choose g as the cubic divisor of f for which NK"(dK"(g)) is maximal.
Then, by the fact that [G|=(3),

(6:46)  Neu(du(8)) > Nu (e ()7 E7D,

Thus we have chosen a suitable divisor g of f both in the case of theorem
6.1 and of theorem 6.3.
Let K' be the smallest extension of K containing the coefficients of

g. Then

(6.47) [K':K] s@)

For let g(z)=z3+azz+Bz+y and let 0 be a K-isomorphism of K'. Then 0 is
completely determined by its action on o,8,y. Since o(a),0(B),0(y) are
the elementary symmetrical functions of three of the zeros of f, we have
at most (g] possibilities for the triple (o(a),0(B),0(y)) and hence at

most (g) for o.
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Note that £(z)=g(z)k(z) for some polynomial k(z)eK'[z]. Hence, by
(4.5),

<£(z)>, _( <g(2)>p, \ ( <k(Z)>K. \

n-3 °
K'

'CKI (f)<1yz>~n| ¥'Kl (g)<] sZ>3 / \CKV (k)<1’Z>

K'

Both ideals in the right-hand side of this equality are integral, hence

<g(z)> , <f(z)> ,
(6.48) L5 -
cK,(g)<1,z>K, cK,(f)<1,z> .

Using (6.46), (6.47), (6.48) it is not difficult to complete the proofs of

theorem 6.1 and theorem 6.3.

PROOF OF THEOREM 6.1. Let Pl""’Pu be the prime ideals in K' lying above

the prime ideals PiseeesPy appearing in (6.3). By (6.48), for each solution
(Z’k1’°"’kt) of (6.3) there are non-negative integers 21,...,2u such that

<g(z)>,, 2 2
(6.49) — et
CKI (g)<1’Z>K'

By (6.47), [K':Q]S(g)m,us[g)t and K' has at most (g)(r]+r2) infinite primes.

Hence by theorem 6.1 in case n=3 the number of solutions of (6.49) in zeK*

. * .
(even in zeK' ) and 9.1,...,£u6220 is at most
2 n
15((%)m+1) 2(%) (x,+r +t)
7 3 + 6x7 3 172 .
This completes the proof of theorem 6.1. g
[K':K]

PROOF OF THEOREM 6.3. Put A'=A . Then by (6.48) and (4.8), we have for

each solution z of (6.9),

<g(z)>,,
(6.50) NK,/ K

In
Z

\QKI (g)<l, Z>13<v
Furthermore, by (6.46), (4.8) and (6.8),

6/n(n-1) 6[K':XK]/n(n-1)

v

NKv (dK' () NK' (dK' (£))

(IBEK':QJA')S.

= N (d ()

v
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Since K' has at most (g)(rl+r2) infinite primes, we have by theorem 6.3 in
case n=3 that (6.50) has at most

2(“)(r +r,.)
6x7 3 1 2

. . * . * .
solutions in zeK (even in zeK' ). This proves theorem 6.3 completely. [

We have just made some very rough estimates. Firstly, we counted in
fact the solutions of (6.49),(6.50) respectively in K' instead of K. It
would be of interest to refine our arguments in such a way that an upper
bound for the number of solutions in K can be derived which is essentially
better than ours. Secondly, it is possible to improve theorem 6.3 in
several cases. For if f(z) has all its zeros in K then the factor {g) in
the upper bound for the number of solutions of (6.9) can be dropped. If we
have the other extremal case, i.e. [K'":K]=n! then all ideals
<g(Z)>K"CK"(g)_]<l,z>;3 with g belonging to the set G of cubic divisors

of f are conjugate over K for zeK. Hence the number

<g(z)>,u
N —— )

3
C'Kll (g)<1 b Z>K"

does not depend on the choice of g. We have also that
n—1
2
I g(z) = £(2) .
geG

Hence, if g is any cubic divisor of f and if K" is the smallest extension
n-1

of K containing the coefficients of g, we have by (6.47) and ( 2 )/(2]=3/q
3

[ <g(2)>ps . ( <£(2)>, ) /n

\ 3 ) k'

N
n
ch(g)<];z> \CK,(f)<l,PK,

K'
K'

Therefore, the constant A' appearing in (6.50) can be replaced by A'3/n.

Furthermore, we have that (6.46) holds for all geG (even with equality).
Hence, arguing similarly as in the proof of theorem 6.3, we have that (6.9)
has at most

2(“)(r +r,_)
gx7 (312

. . * .
solutions in zeK even if
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5n(n-1)/6
S m, 3/n
N (de (£)) = (137°47"7) ,

provided that [K":K]=n!.

PROOF OF THEOREM 6.4. Let F(x,y) be the binary form appearing in (6.1).
Then F(1,0)#0. Put f(z)=F(z,l),A=|NK/Q(y)I/NK(CK(E)). Then f has degree n

and at least three distinct zeros. We assume that (6.10) is solvable. Then

A>1. Clearly for each solution (x,y) of (6.10) we have

(6.51) N [ <EGly)> A.
cK(f)<1,X/y>n’

Moreover, if Pysee.sb, are the prime ideals in K dividing <y> then for
each solution (x,y) of (6.10) there are non-negative integers kl,...,k

t
such that

k k
(6.52) _=fEy> Lot

e (D)<l x/y>" ]

*
For every zeK there are at most n solutions (x,y) of (6.10) such

that x/y=z. For suppose (x],yl),(x ) are solutions of (6.10) with x]/yI
*

2’72
=x2/y2. Then there is a 6¢K such that x2=6xl,y2=6yl. But then

y = F(Xz’yz) = GnF(xl,y]) = &%,

hence §"=1. Therefore, we have at most n possibilities for 8. In view of
(6.52), the first part of theorem 6.4 follows easily from theorem 6.1.
Now we suppose that F has non-zero discriminant D(F). Then, by (4.11),
-2n+2
TN o (D(F)) |

5n(n-1)/6 n
(0 /M (e (£)) = (13"8)

N (@ () = N (e, (£)) k/0

5n(n-1)/6

v

m
(13 INK/(n

Now the second part of theorem 6.4 follows easily from (6.51) and theorem
6.3. 0

§6.5. Sketch of the proof of theorem 6.2.

As before, let K be an algebraic number field of degree m with r

real and r, complex primes, let weK*, let neZ with n23 and let p],...,pt

be distinct prime ideals in K. Put S=Sw(K)U{p1,...,pt}. Let 61,...,9n be
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the n-th roots of w and put L=K(91,...,6n). For every valuation I'lv on K
with veS we choose a fixed extension to L which is also denoted by l'lv' We

consider the equation

<l—wzn> - k] k

t . *
(6.6) p] ...pt in zeK ,kl,...,kteﬂ

n >0 °
<l,wz >

Solutions (z,kl,...,kt) of (6.6) are shortly denoted by z.
For every solution z of (6.6) we have that ll—wznlv=max(1,]wzn|v) for

v#S. By the product formula (4.17), every solution z of (6.6) satisfies

(6.53) i ll-wzn] Il max(],lwznlv) =1,
veS v vés

Completely similar to (6.23) one can show that for zeK*,veS,

|1—wzn|v > InIVZ—nS(V)max(l,|wzn] ) min (l,ll—eizlv).

1<i<n

Hence by (6.53), solutions of (6.6) satisfy

I (Inl 2—ns(v) min (1 |1-6.z| )) I max(l lmznl ) < 1.
veS v 1<is<n ’ T veS(K) ’ v

Therefore, by (4.19) and (4.22),

(6.54) 1 min (1,]1-0,2] ) < 2"z

veS 1<i<n

Let B be a real with 1/2 <B<l and put s=rj+ry+t. By lemma 6.2 there

exists a set of at most R(B)S_]=((I—B)_]BB/(B—]))S;] s—-tuples (FV) with

veS
FVZO for veS and ZVES FV=B, such that each solution z of (6.54) with zeK

satisfies at least one of the systems of inequalities

T
min (1,|]—9.z| ) < (Znh(mzn)_]) v for veS.
1<i<n v

We finally obtain, that each solution z of (6.6) satisfies a system of

inequalities of the type
n n, -1 I1v
(6.55) min(l,]l—evzfv) < (2 h(wz ") ) for vesS,

where evis an n-th root of w, belonging to L. Clearly, for each ev we have
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P . -1 ey
at most n possibilities. Since we have at most R(B)S possibilities for

VE? 4 s veS’(rv)ves
of at most R(B) (nR(B))~ of such tuples, which does not depend on z.

Put B=1/2+1/(n- 1/8),C=2n. Then R(B)=U(n). Hence the first part of

the tuple (FV) the tuple ((GV) ) can be chosen from a set

theorem 6.2 follows if we have shown that each system of inequalities
(6.55) has at most 2U(n) solutions in zeK%with h(wzn)23n+lo. The proof of
this fact is rather elaborate and we shall give only a brief sketch of it.
Put A=(2(n+1)(n+4)(nCB)2n]1/(2nB—n—2) (with the just chosen values
for B and C). The solutions z of (6.55) with h(wzn)23n+10

two classes:

are divided into

I: the solutions with h(wzn)zA;
II: the solutions with 3n+105h(wzn)<A.
The number of solutions in class I can be estimated from above by means of
theorem 5.1, on noting that all solutions of (6.55) in class I satisfy
h(wzn)>C, whence Il-evziv < 1 for Fv>0. By remark 2 of §5.1, class I
contains at most one solution if n29. The number of solutions in class II
can be estimated from above by means of lemma 5.1, using the same type of
argument as in lemma 2.11 or lemma 6.6. It follows in fact, that the number
of solutions in class II is at most 6 if n29. Since U(n)>4 for all n23, it
suffices to prove that the union of the classes I and II contains at most
2U(n) solutions for 3<n<8. This can be done by straightforward computation.
The proof of the second part of theorem 6.2 is an immediate
consequence of lemma 4.2, for by that lemma, the number of algebraic

. . n+l
numbers with degree at most m and height at most 3 0 does not exceed

n+10\m )m+l

2
2(2x3™ 10 pet0y (e D)7

1
< E(ZXB

while for each given value of wzn, there are at most n solutions z of (6.6).

g

REMARK. From the sketch of the proof given above it is clear that it is
advantageous, to choose B as small as possible, for then R(B) is small. By
the result given in theorem 5.1, we have to choose B larger than 1/2+1/n.
If we would have a result of the same type as/theorem 5.1, but with a lower
1/2

bound for B in the order of o(l) (e.g. B>2n in case of Siegel's method

or B>2/n in case of Roth's method) B could be chosen such that R(B)
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decreases to 1 for n going to infinity.
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CHAPTER 7. SOME APPLICATIONS.

In the first part of this chapter we shall consider linear equations
in two S-units. These can be transformed into certain Thue-Mahler equations.
In the second part we shall deal with a special case of Catalan's equation
xm—yn=1 in x,y,m,neN\{1}, namely the case where m,n are fixed. We shall
reduce this equation to finitely many equations of the type (6.6). The same
procedure can be followed for equations of the type ym=f (x) in x,yeZ (where
f(x)eZlx] and meIN\{1}) and [axm-byn|=p1](1 .. .plf:t in X,5,K 50 ,kteZ (where
a,b,m,neZ ,ab#0,m>1,n>1,mn26 and Pys--+»p, are distinct primes). (cf.§6.1).

However, in case of Catalan's equation we have less technical difficulties.

PART I. ON EQUATIONS IN S-UNITS.

§7.1. Introduction.

In 1961, Lewis and Mahler proved the following ([L/MI,pp.360-362):

let Pyj2sssPysPyps e esPysPaps ceesPg be fixzed distinct primes of
which the smallest and the largest are P and Q say. Then the equation
X

X X X

X X
11 Ir 21 2s _ 731 3t .
(7.1) Piyp Py +p2] ceePpg T Pgy ee:PyL N x”,...,thezzo
has at most
r+s
/ log Q r+s+t+l
\c](r+s) 1ogP> * €2

solutions, where c are absolute constants.

1° €2
In the proof of this fact they proceeded in the following way. Let n be a
fixed integer with n23. For each integer xij appearing in (7.1) define

integers Xij,Yij with Yije{O,l,...,n—l} such that xjj=nXj;j+Yjj. Then, on

. _ Y Yir ,_ Yo Yos - X11 Xir v %21 2s
putting a p]l ...plr ,b P2] -..pzs » X P” ---P]r s Y p21 "‘pzs s one
obtains

X X
n..n _ 1 3t
(7.2) aX +bY " = LERETES Fong
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Note that we have at most nr+s possibilities for the pair (a,b). Clearly,
from upper bounds for the number of solutions of equations of the type
(7.2) one can derive an upper bound for the number of solutions of (7.1).
Lewis and Mahler considered it as a problem of great interest to
decide whether the number of solutions of (7.1) can be bounded above by a

constant depending on r,s,t only and not on the primes Piyse However

eesPa,.
3t
there is a second method of dealing with (7.1) which together with the

result of Lewis and Mahler on the number of solutions of the Thue-Mahler

equation (cf.§6.1 or [L/M]) yields such a bound. Put X=p?%1...pT%r,
Y=p’2‘]21...p’2‘§3, F(X,Y)=XY(X+Y), where (x|,...,%5 ) isa solution of (7.1).

Then clearly,

x X, X X, X X
(7.3) F(X,Y) = pl}1...pllrpzfl...p253p3?]...p33t.

Note that F(X,Y) is a binary cubic form of non-zero discriminant and that
an upper bound for the number of solutions of (7.3) in positive integers
X,Y with (X,Y)=1 induces the same upper bound for the number of solutions
of (7.1). We can not directly apply the result of Lewis and Mahler on the
Thue-Mahler equation since F is divisible by both X and Y. But this
difficulty can be solved by replacing F by an equivalent form which is not
divisible by X or Y, for example (X+Y)(X+2Y)(2X+3Y). Now the result of
Lewis and Mahler yields, that the number of solutions of (7.1) can be
estimated from above by a constant depending on r+s+t only.

We shall generalise the second method of dealing with (7.1) and apply
it to more general equations. Let K be an algebraic number field of degree
m with r real and r, complex primes. Let S be a finite set of primes on K,
containing the infinite primes. An S-unit is an element ceK with the
property that |a|v=l for every v¢#S. We shall deal with the following

equation:
(7.4) Ax+uy = 1 in S-units x,yek,

where A,y are, for the time being, non-zero elements of K. When both sides
of (7.1) are divided by the right-hand side of (7.1) we obtain an equation
of type (7.4) with K=Q,A=u=1 and S={pm,p]],...,p3t} where p_ denotes the
infinite prime on Q.

Under very restrictive conditions imposed on A,u, Gyory [Gy] derived
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a sharp upper bound for the number of solutions of (7.4), both in the

archimedean and in the p-adic case. He showed the following:

let B be an algebraic integer such that a, :=BX, a,:=Bu are algebraic
integers. Let S be a finite set of primes on K consisting of I+, infinite
and t finite primes. Suppose the finite primes of S ly above prime numbers
inZ of which the largest equals P. Let e be a real number with O<e<l. Put

M= T |ai]v for i=1,2, M = T [B]_.

veS veS
If rnini Mi ! 7e and log M>C, where C is an effectively computable constant
depending on €,P,K and t only, then (7.4) has at most r]+r2+4t solutions.+

Gyory gives an explicit, but very complicated expression for C. We
shall derive an upper bound for the number of solutions of (7.4) which is
not as sharp as that of Gyory, but only under the restriction that A,u are

algebraic integers in K.

THEOREM 7.1. Let S be a finite set of primes on K, containing all infinite
primes and exactly t finite primes. Let A,u be non-zero elements of OK'
Then

(2) (7.4) has at most

2(r, +r +t)
6x7 1 72

solutions with
h(Ax/uy) 2 206

and
(i7) (7.4) has at most

2
412@D

tThe reader is warned, that Gyory's notations differ from ours. For example
s yory

he uses valuations ]L L which are exactly the m—th powers of ours, where m

is the degree of K. We have rewritten Gyory's result in our notationms.
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solutions with
h(Ax/uy) < 206.

The upper bound in theorem 7.1 depends on r»r ,t only and does not depend

2

on A,u. It would be of interest to derive such an upper bound for the

number of solutions of (7.4) if A,u are arbitrary non-zero numbers in K.
In the special case K=Q we have the following generalisation and

improvement of the result of Lewis and Mahler on (7.1).

THEOREM 7.2. Let a,b be non-zero rational integers. Let Prs-eesPy be
distinet prime numbers. Then the number of pairs of rational numbers (x,y)
for which the absolute values of the numerators and denominators are
composed of primes from {pl,...,pt} and for which

(7.5) ax+by = 1

is at most

296x72E,

§7.2. Proofs of theorems 7.1 and 7.2.

PROOF OF THEOREM 7.1. We shall use the same notations as in §7.1. Thus K

is an algebraic number field of degree m with r real and r, complex
primes, A,u are non-zero integers in K and S is a finite collection of
primes given by Sw(K)U{pl"”’pt}’ where Pyseeesb, are distinct prime
ideals. Put F(x,y)=xy(Ax+uy). If (x,y) is a pair of S-units satisfying
(7.4) then there exists an S—unit 8§ such that dx,éyeOK. But S must belong to
the integral ideal generated by A and u, hence <A,p> is solely composed of
prime ideals from pl,...,pt. This in turn implies thap

(7.6) —Eey> 1t

<A,u><x,y>3

for certain non-negative integers kl""’k . Since F(1,0)=0, we can not

t
directly apply the theory of chapter 6. In order to avoid this difficulty,
we choose a rational integer k such that F(l,k)#0 and k is not an S-unit.

Put F*(x,y)=F(x,kx+y). Then F*(],0)¢O. Furthermore, it is easy to check,
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that CK(F*)=CK(F)=<A,u> For any solution (x,y) of (7.4), define numbers

K
x',y"' such that x'=x,y'=y-kx and put z=x'/y'. Then to every value of z
corresponds at most one pair of S-units (x,y) with Ax+uy=1. In view of

(7.6) we have for every pair of S-units (x,y) satisfying (7.4),

(7.7) <F *(z,1)> _ 1 t
—— T3 =Py Py
CK(F )<1,z>

.,k _. Since F*(z,l) is a polynomial

1’ t
of degree 3 in z we can apply theorem 6.1. However, we can derive a better

for certain non-negative integers k

result by applying lemma 6.7 directly. Let a,B be the constants and let &,
n be the linear forms corresponding to F(x,y) as constructed in lemma 3.2.
Let a*,B*,E*,n* be the constants, linear forms respectively, corresponding
in the same way to F*(x,y). By lemma 6.7, there are at most 6X72(r1%r2+t)
numbers z in K satisfying (7.7) such that
*

(7.8) £ (2, 0" (2,1) # 0, h(9;§155112§\ SN LN
B n (z,1)

~.

Now a£3,8n3 can be expressed in terms of invariants and covariants of F

(cf. (3.8)). Hence
uE(x,y)3 =a*£QX',y')3, Bn(x,y)3 = B*n*(X',y')3.

By (7.8),(7.7) and the fact that every z corresponds to at most one solut-
ion (x,y) of (7.4), the number of pairs of S-units (x,y) satisfying (7.4)

and

ai(x,Y)3) s 147.5

(7.9) w€ ey YonCey)® # 0, 8 ;
Bn(x,y)

is at most
2(r1+r2+t)
(7.10) 6x7 .

Note that F has a non-zero discriminant, namely (Au)z, and quadratic

covariant
2 2 22 2
(7.11) H(x,y) = A x"uxy+u"y" = (Ax-puy) (Ax-puy),

where p is a primitive third root of unity. By (3.10), a£3 and Bn3 are the
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cubes of linear forms whose product equals H. Furthermore, by (3.9),
3.3
ag”™-Bn" = :QV—3XUF(x,y)

is a cubic form whose coefficient of x3 equals 0. Hence we have by (7.11),

for suitably chosen p,
3 3 3 2 .3
(7.12) ag” = (Ax-puy)~, Bn~ = (Ax-p uy)~.
Let L be a finite extension of K, containing the third roots of
unity. Then, for every VeS(L) and for x,yeK* with (Ax/uy)3#l we have by

(4.23),

max( I AX'DUY I v’ | Ax=p zuy IV)

2 2
max (| Ax=puy |, [Ax=p uy| s [0 Ax-puy )
z—s(V)

v

-1 2
max (|1-p ]Vlkxlv,lp ‘D|VIUYIV)
sy

v

-plvmax(lkxlv,luy|v)-

Hence, by (7.12),(4.27),(4.22) and the product formula (4.17),

3 3
h(2§§> = /hii§:931_)\ = 1 max(|XX-DUY|3,IAX‘DZUY|3)
\gn Ax—p Uy VeS(L)
=3s(V) 3 3 3
> I (2 [1-p | max (| Ax|, luyl ))
VeS(L) v v v

& hOx/uy)’.

7.5,1/3

By (7.9),(7.10) and the fact that (8x(1/2)x7
2(ry+rp+t)

) =205.79..., (7.4) has
at most 6x7 solutions with h(Ax/uy)=206. This proves the first
part of theorem 7.1. The second part follows immediately from lemma 4.2
for by that lemma, the number of algebraic numbers of degree at most m and

height at most 206 is at most
m m . mtl (m+1)2
3(4]2 +1) < 412 . 0

PROOF OF THEOREM 7.2. Let S]={p],...,pt},S={pm}USI. We have to show that

the number of solutions of
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(7.13) ax+by = 1 in S-units x,y

t

is at most 296><72 . If (7.13) is solvable, then the gcd of a and b must be

composed solely of primes from S,. Moreover, if a and b have divisors which

are composed solely of primes frém Sl’ these can be absorbed by x,y
respectively. Hence it is no restriction to assume that a,b are coprime to
each other and to Py-- Py and we shall do so in the sequel.

Let (x,y) be a solution of (7.13). We define integers x',y' such that
x/y=x"/y',y'>0 and (x',y')=1. Then x',y' are uniquely determined by x,y.
Moreover, every solution (x,y) of (7.13) is uniquely determined by x/y,

whence by x',y'. By (4.26) and by our assumptions on a,b we have
h(ax/by) = max(lax'|,|by'l) 2 max(lx'l,y").

Hence by theorem 7.1 (i) with X=a,u=b,K=Q,S=Slu{pm}, the number of solut-
ions of (7.13) with

max(|x'l,y") 2 206

is at most

6x72t2 = 294x72F,

Let SO be a fixed subset of S]. We shall consider solutions of (7.13)

with the following properties:

(7.14) max(|x'|,y"') < 205, x' is composed solely of primes from SO’

y' is composed solely of primes from SI\SO'

Note that x',y' are completely determined by the integers wp(x'),wp(y') for
peS] (cf.84.1) and by the sign of x'. For each solution of (7.13) satisfy-

ing (7.14) and for each peS1 we have

log 205

Al
» 0= wp(y ) < log 2

Let s=|SOl. Then, taking into account the two possibilities for the sign of

x', the number of solutions of (7.13) satisfying (7.14) is at most
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.. log205\*
" TTog 2 >

N

S t=-s
of 14+ Llog 205 ) (1+ log 205 \ _
Tog2 /\ log 2 /

Since S1 has at most 2° possible subsets S., the number of solutions of

0,
(7.13) with max(|x'|,y')<205 is at most
log 205
2(2[+ Tes 7 )) < 2x7°
This completes the proof of theorem 7.2. g

PART II. ON THE EQUATION OF CATALAN.

§7.3. Introduction.

In 1844, Catalan [Cal conjectured that the equation
(7.15) xp-yq =1 1in x,y,p,q€Z , x>1,y>1,p>1,q>1

has no other solution than x=3,y=2,p=2,q=3. No one has been able to prove
this yet. In 1953, Cassels [C 1] independently made the weaker conjecture
that (7.15) has at most finitely many solutions and this was proved by
Tijdeman [Tij] in 1976. Several special cases of (7.15) have been
considered. Wall [W ] showed in an elementary way that (x,y,p,q)=(3,2,2,3)
is the only solution of (7.15) for which p>1,q>! and x,y are primes.
LeVeque ([LeV 1] showed that for each given pair of integers x,y at most
one pair (p,q) exists with p>1,q>1 and xp-yq=1.

We shall consider the case that p,q are fixed integers, m,n

respectively say, with m>l,n>!, i.e. we shall consider the equation
(7.16) x -y =1 in x,yeZ , x>1,y>1.

Several results on special cases of this equation are known. In 1738, Euler
[Eu] showed that for m=2,n=3 the only solution of (7.12) is x=3,y=2. V.A.
Lebesgue [Le] showed in 1850 that (7.16) is unsolvable for n=2 (hence for

n even) and m#3. Nagell [Na 1] showed in 1921 that (7.16) ia unsolvable

for m=3 or for m#2,n=3. Chao Ko [ChK] showed in 1967 that (7.16) has no
solutions for m=2 (hence for m even) and n#3. Hyyro [Hy 1] showed in 1964,
by using a result of Davenport and Roth [D/R], that for m>2,n>2,mn26,

(7.16) has no more than exp(631m2n2) solutions. As an application of
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theorem 6.2 we shall improve Hyyro's result.

THEOREM 7.3. The number of solutions af
(7.16) x -y =1 in x,yeZ with x>1,y>1,
where myn are integers with m>l,n>1, is at most

(mn)min(m,n).

§7.4. Proof of theorem 7.3.

In the proof of theorem 7.3 we shall assume that m,n are distinct.
.. .. . s . . n
This is no restriction, for if x,y are positive integers with x —yn=l,

n-1

then 12(y+1)n—yn2ny >n, which is impossible for n22. Secondly, we assume

that m,n are prime numbers with m25,n>5. By the historical remarks made in
2mi/r

§7.3 this is also no restriction. For every integer r23 we put Kr=Q(e )
and we define hr to be the class number of Kr' We shall need two lemmas.
The first is due to Cassels and is stated without proof (for a proof we
refer to [C 1] or [Hy 1]) and the second is a rather bad estimate for h

in case that r is a prime.

LEMMA 7.1. If (x,y) is a solution of (7.16) then nlx,m|y.

LEMMA 7.2. Let r be a prime number with r23. Then hrs(r/3)r.

PROOF OF LEMMA 7.2. We shall prove the lemma by combining some estimates

which can be' found in literature. Let K denote an algebraic number field
of degree m with T real and r, complex primes. Let h,R,D denote the class
number, regulator and discriminant of K respectively and let w denote the

number of roots of unity in K. Then we have the following estimates:

2R 0.461140. 1
(7.17) =22 0.04xe " OTLE T2
m-1
(7.18) h < 4R 1271 (2m) er(P—"‘—-l“i’—_g]—'—IlL) ip1/2,

where b = (1+(10g n)/2-+(r2/m)1og 2]-1.

The first is due to Zimmert ([Zil,Korollar, p.375) and the second to Siegel
([si 5],Satz 1).
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We now prove lemma 7.2 We assume that r is a prime with r223., Since

h_=1 for r<23 (cf [Wal,p.204) this is no restriction. Put K2=

Q(eZﬁi/r+e—2ni/r

). Then Ki is the maximal totally real subfield of Kr' Let
Rr be the regulator of Kr and Rf that of Ki. Then

> p(F=3)/2;8
r r

R

(For this, and the other properties of cyclotomic fields we shall use in
the sequel, we refer to [Wal,ch.!,2,4). On noting that for K=K§ we have
m=rl=(r—])/2,r2=0,w=2 this implies by (7.17) that

-1
1(.1/2 0.23y"
(7.19) R_ 2 33(2 e )

For K=Kr we have w=2r,r1=0,r =(r—])/2,m=r-],|D]=rr—2,b=(l+(1og(2n))/2)_],
hence by (7.18) and (7.19),

h_ < 400x(2my~ T/ 2571727023y r=1

« ( e(r-2)logr )r—2 (r-2)/2
(x=2)(1+(log(2m/72)) *©

2
< 400(]+(1og£2w))/2\ 21/2,0.235 3172,

r
2—1/2e—0.23e

) rr/Z(log r)r—Z

X
((2n>"2(1+<1og<2w>/2)

< 89037 "™ 2 (10g £ )T 72,
It is easy to check that this is smaller than (r/3)r for r223. d
. _ 27mi/m
We are now going to prove theorem 7.3. Put p=e and let ¥ be the

prime ideal in Km generated by 1-p. Then all numbers l—pk (k=2,3,...,m~1)
also generate ) and we have
m-1

(7.20) P = <m>.

Let (x,y) be a solution of (7.16). Then we have by lemma 7.1,

x-1 = x°=1 = yn = 0(mod m).

Hence by (7.20), wp(x—l)Zm-] and wp(x—p)=wp(x—pz)=...=1. But this implies
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by (7.20) that in Z

m

(7.21) wm<xx:ll) =1, w (x1) = -I(mod n).

Furthermore, by (7.20),

<x—l,§—:l> D<x~l,x—p><x—l,x—p2>...<x—1,x—pm_l>

x—1
> o >
and similarly,
x-1
<x- > .
X=0 s > <m>

Hence if ¢ is a prime ideal in Km with ¢#p we have wq(x—l)qu(x—p)EO(mod n).
Together with (7.21) and the fact that wp(x—p)=l this yields that there
exists a positive integer £ and an integral ideal b in Km such that

(7.22) x-1 = m“_lgn, <x-p> = <1—p>bn.

There are at most hm ideal classes in Km whose n-th power is the
principal ideal class. Choose in each of *these classes a fixed ideal and
choose a fixed generator of each of the n-th powers of these ideals. Let G
be the set of these generators. Then G has cardinality at most hm' Let a
be the ideal which was chosen in the ideal class of b and let o be the
eKm, hence by (7.22),

n
chosen generator of @ . Then b=a<n. > for some n

1 1

<X-p> = <1—p><an?>,
i.e.
n
(7.23) X=p = €(l-p)oml
for some unit € in 0, .
Let po=eﬂl/m and let {51,...,88} be a system of fundamental units in

Km, where s=(m—-3)/2. There exist rational integers kO’kl""’k with
s

Osk0s2m-1 such that
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Put k.=nf.+q. for i=0,1,...,s, where Zi€ZZ,qie{O,l,...,n—l} and let e'=

90,91 9s. o f0t s
Pg epleeee Sy el=p Vel e S, Then, by (7.23),
(7.24) x=p = (1-p)e'an’,

where n=e"n1. Put z=£/n,w=mn_]/(1—p)s’a. Then w belongs to the set

PSS Yo %1 Y
= {m /(!-p)BpO € +eegg |BeG,u0,ul,...,uSe{0,1,...,n—1} }

(m-1)/2,
m

which has cardinality at most n . Now we have by (7.22),(7.24) and

<x-1,x-p>=<l-p> that

(7.25) <l-pz™ - <(1—p)e'unn—mn_]£n> =><x-p—(x—1)> -0
<l,wz™> <(1—p)s'ann,mn_]£n> <x=p,x-1> K

By theorem 6.2 (i) with K=Km,t=0,r]=0,r2=(m—l)/2 there are at most
2 (au@)) @ 1/2

distinct values of z satisfying (7.25) for which

n

+10
h(wz o ,

) 23
where

U(n) = 16n-2 ‘]_én_—_% (8n+15)/(8n-17)
8n—17\8n+15 .

Now we have that (x—I)/(x—p)=mzn, hence x and y are completely determined
by w and z. Moreover, since (x-1)/(l1-p),(x-p)/(1-p) are algebraic integers

whose difference equals -1, we have by (4.22),(7.22),(4.16),m25,[NKm/Q(]—pﬂ

)

=m,

[

h(ﬁ;l) I max
P veS(K) \
n-1_n

o R :,N (93:1§3>
I-p |v Km/Q 1-p

- I max( x-1
V) veSw(K) 1-p
1/ (m-1)

x—1

X—p
I-p|v?

I-p

v’ |1

|x=p
-p

v

1
veSw(K)
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_ mn—l—]/(m-l)in > mn—ZEn.

Hence, in view of the upper bound for the cardinality of H, the number of
solutions of (7.16) with

£ > 3l+]0/nm2/n-l

is at most

Z(HU(H))(m—l)/?.n(m-l)/th - 20(n) (m—l)/znm—lhm.

Therefore, by the fact that mZS,nZS,U(n)l/

2<3 for n25, by lemma 7.2 and
since x,y are completely determined by &, the total number of solutions of

(7.16) is at most

} _ 3,.-3/5
31+10/552/5=1 o anym=ly o (3__"5___ + L)(sn)“’h
n (3x5)° P "

< (3n)mhm < (mn)™.

. o .. m .
It can be shown in a similar way, by factorising x =yn+l in Kn’ that

the number of solutions of (7.16) can also be bounded above by (mn)n. Hence

min (m,n)

(7.16) has at most (mn) solutions. This proves theorem 7.3. 0
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