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CHAPTER 1 

. INTRODUCTION 

In this monograph we study dynamic progranlITiing models in which the 

transition law is specified by a set of nonnegative matrices. These models 

include e.g. Markov decision processes with additive and multiplicative 

utility function, input-output systems with substitution, controlled 

multitype branching processes, etc. The main objective of this monograph 

is to show that all these models can be studied within one general 

matrix-theoretical framework. This framework will be built up by using 

dynamic prograx,,1,,ing methods and will be based on the theory of sets of 

general nonnegative matrices. This explains the title. 

Methods which have been developed to determine an optimal control • 
in 

' 

the above mentioned models with respect to various types of criterion 

functions, will follow as special cases from such a general framework. As 

an example we may think of a policy iteration method for a Markov decision 

process with respect to some ''sensitive optimality'' criterion or of methods 

to deter1nine equilibri11m prices in a Leontief substitution system. This 

indicates the generality of our model, a model in which the theory of 

generalized eigenvectors and generalized (sub)invariant vectors for sets of 

nonnegative matrices plays a central role. 
In this introductoI"J chapter we first give a short historical review 

of the problem field and a stJ1t1tr1ary of our objectives (section 1 .1). After 

that a more for1,,al description is given of the model to be studied in this 

volume (section 1. 2) • 

Section 1.3 lists a number of examples of models, arising from various 

fields in mathematics and in mathematical economics, which can be written in, 

or easily be transformed into our problem formulation. The contents of the 

subsequent chapters are surt1111a,:-ized in section 1 .4 and a list of notations 

is given in section 1.5. 
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Since the publication 

(BELLMAN [ 5 ] ) , • • interest 1n 

his book Bellman formalized 

• 

' ' ' • 'f'rT1"n. ' ' • 19 5 7 of Bellman s Dynamic Progran111t1.ng in 

dynamic prograJt1111ing has expanded rap idly. In 

the technique of backward induction which 

appeared to be fundamental for the analysis of sequential decision processes. 

In the last chapter of that volume some attention is paid to Markov decision 

processes. A deeper investigation of the use of dynamic progra111n1ing for the 

control of Markov decision processes appeared three years later (HOWARD [29]). 

Also Shapley's paper on stochastic games is now recognized as fundamental 
' 

to this field (SHAPLEY [53]). But, as Denardo remarked, the modern era 

started with the work of Blackwell (compare Denardo' s contribution to the 

panel discussion in PUTERMAN (47]; see also BLACKWELL [8], [ 9]). 

Markov decision processes with additive reward function have been 

studied with respect to several criteria, the classical ones being: 

the expected total reward criterion and the expected average reward criterion. 

More sensitive optjmality criteria have been investigated by VEINOTT [64], 

SJ.ADKY (54], and DENARDO AND ROTHBLUM [ 16]. Often the transition probability 

matrices in these models are allowed to be substochastic, i.e., a positive 

probability for fading of the system is allowed (cf. VEINOTT (64], 

ROTHBLUM [50], [51], HORDIJK [27] and WESSELS [71]). 

Multiplicative Markov decision processes have been studied by HOWARD. 

AND MATHESON [30] and by ROTHBLUM [49]. Other models which are in fact 

closely related (as far as structure is concerned), can be found in e.g. 

MORISHIMA [ 42] or BURMEISTER AND DOBELL [ 12) (Leontief substitution sys t-ems) 

and in PLISKA [46] (controlled multitype branching processes). 

One of the objectives of this monograph is to analyze these models 

by using nonnegative matrix theory instead of probabilistic arguments (note 

that several models, which have been mentioned above, have no probabilistic 

interpretation at all, and that the associated nonnegative matrices are 

not stochastic in general). This takes us to our second subject. Nonnegative 

matrices and more general 

various fields of applied 

• nonnegative operators play an 

mat:hematics, e.g. probability 

important role in 

theory, demography, 

n1merical analysis and mathematical economics. Since the publication of the 

basic work of PERRON [ 45] and FROBENIUS [ 24], [25] an overwhelming number 

of papers appeared in the literature. To mention only a few important ones: 

BIRKHOFF [7 )9 KARLIN [33] and VERE-JONES [65], [66]. Excellent overviews 

may be found in SENETA [52] and in BERMAN AND PLEMMONS [ 6 ] • Finally, some 
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results concerning sets of finite-dimensional nonnegative matrices, closely 

related to some of our own work in part I of this monograph, are given 

in SLADKY [56], [58]. 

We conclude this section with a sketch of problems we examine and 

objectives we pursue in this monograph. T11e book is divided into two parts, 

the first one dealing with finite-dimensional systems, the second one with 

models of countably infinite dimension. Our main objective will be to give 

a systematic treatment of the theory of sets of nonnegative matrices in 

dynamj c prograr,,,,,ing problems and to give a fairly complete analysis of the 

asymptotic behaviour of dynamic progra111111ing recursions. In order to keep 

the exposition lucid and reasonably simple we shall first treat the 

finite-dimensional case. In this case it is possible to develop explicit 

policy-iteration methods, which end after a finite number of steps, in 

order to characterize and to determine matrices which maximize the growth 

of the system. Brief attention will be paid to the continuous-time analogue 

of the above sketched models. 

The second part of this book is devoted to the development of a 

theory for sets of countably infinite nonnegative matrices. Questions 

concerning invariant vectors and optimal contraction factors then arise and 

we shall try to answer them. The reader familiar with CHUNG [13] will 

recognize that some of our results are extensive generalizations of results 

in that volume. Our results are also related to well-known facts in potential 

theory for Markov chains (cf. KEMENY, SNELL AND KNAPP [35], and HORDIJK 

[27]). At several places we shall indicate applications of the results, 

e.g. in the theory of Markov decision processes and strongly excessive 

functions (cf. VAN HEE AND WESSELS [70]), and in the investigation of 

sensitive optimality criteria in controlled Markov chains (cf. SLADKY [54]). 
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1 • 2. Des~r~pt_~on of the model 
' 

In this section a forn,al description is given of the dynamic systems 

to be studied in this monograph. For notations the reader is referred to 

section 1.5. 
Central in the book is the concept of a set of matrices with the 

product property. Let us first give the formal definition. 

-
DEFINITION l. l. Let K be a set of k x m matrices (k,m € lN) and let Pi 

denote the i-th row of a matrix P e: K. Then K has the produat property if 

for each subset V of {1,2, ••• ,k} and for each pair of matrices 

P(l), P(2) e K. the following holds: 

The matrix P(3), defined by 

P( 1). for • € V 1 
l. 

P(3). ·-• 
1 

P(2). for • {1,2, ••• ,k}\V, l. € 
l. 

is also an element of K. □ 

Roughly speaking this means that for i = 1,2, ••• ,k there exists a collection 

C. of row vectors of length m. K is the set of all k x m matrices with the 
l. 

property that their i-th row is an element of C., for i = 1, •.. ,k. 
1 

Next we describe the finite-dimensional models to be studied in part I. 

Let lR.N denote the N-dimensional Euclidean space. The set {1,2, •.• ,N} will 

often be called the state space and is then denoted by S. A nonnegative 

matrix Pis a matrix with all its entries real and nonnegative. Let Know 

denote a finite set of nonnegative N x N matrices with the product property. 

One of our objectives is to obtain infor111a.tion about the asymptotic behaviour 

of the utility vector x(n) (an N-dimensional column vector), obeying the 

d • -· • ynam,.c progra11111,1 ng recurs 1.on · 

(1.2.1) x(n+l) = max P x(n) 
PEK 

n = 0,1,2, ••• 

where the maxim\:rm is taken component-wise and x(O) denotes a fixed strictly 



positive vector. For interpretations of (1.2.1) we refer to section 1.3. 

Here we only remark that the fact that K has the product property implies 

for each n the existence of a matrix P(n) EK such that 

x(n+l) = P(n) x(n) n=0,1,2, ••• 

5 

In chapter 6 we briefly treat the continuous-time analogue of the 

discrete dynamic prograo1:11ing recursion defined above. A central role is then 

played by a collection of so-called ML-matrices with the product property. 

An ML-matrix is a square matrix with all its nondiagonal entries nonnega

tive. Let M denote a finite set of ML-matrices with the product property. 

We are now interested in the asymptotic behaviour of the vector function 

z(t), defined by 

(1.2.2) = max Q z (t) 
QeM 

t E: [O,oo), 

with z(O) fixed, strictly positive (again the maximum is taken component

wise). Note that, since M has the product property, there exist·matrices 

Q(t) E: M such that 

dz 
dt(t) = Q(t) z(t) 

For an example we refer to section 1.3. 

The analysis of these models requires a detailed study of sets of 

nonnegative matrices (resp. sets of ML-matrices) with the product property. 

In part I we shall develop a theory for sets of finite-dimensional matrices, 

in part II infinite-dimensional models are investigated. The results in the 

second part may be viewed as rather far reaching extensions of the R-theory 

for nonnegative matrices, initiated by VERE-JONES [65], (66]. · 

l .. 3.. E.:xamr;l,es 

In this section, we list as examples a n1.1rr,ber of special cases of the 

general models, sketched in the preceding section. 
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1.3.I. Markov decision processes ·with.additive ·reward function 

a. 'file discrete time case 

Markov decision processes have been studied initially by BELLMAN 

[ 4], [ S] and HOWARD [29]. Suppose a system is observed at discrete points 

of time. At each time point the system may be in one of a finite number of 
• • • states, labeled by 1,2, •.• ,N. If, at time t, the system is in state 1, one 

may choose an action, a say, from a finite action space A; this action re

sults in a probability p~. of finding the system in state j at time t+I. 
lJ 

Furthermore a reward r~. is earned when in state i action a is taken and 
1J 

the system moves to state j. Suppose 

N 
a r .. 
l.J I 

j=l 
a < 1 p . . -
l.J 

. .. 
]. , J = 

i.e., a positive probability that the process te1minates is allowed. 

Let v(O). denote the terminal reward in state i and let v(n). be the 
l. l. 

maximal expected return for the n-period problem (i.e. , with n periods to 

go), when starting in state i. For convenience define 

N 
a r = • 
l. I 

j=l 

a 
p .. 

l.J 

a r .. 
l.J 

• 

i = l, .•• ,N; a EA. 

Bellman's optimality prinaipZe implies that the following recursion holds 

for v(n). (cf. BELLMAN [ 5 ]) : 
l. 

(l.3.1) v(n). = 
l. 

a {r. + 
l. 

N 

I 
j=l 

a 
p . . 

1J 
v(n-1).} 

J 
• 
1 = 1, •• ,N. 

Recursion (1.3.1) can be written in vector notation when policies 

are introduced. A policy f is a function from { 1, ••• , N} to A. The set of 

all possible policies is denoted by F. Let P(f) be the (substochastic) ma-
trix with entries f(i) • f i 

i, j = 1 ,2, • • • ,N ; f € F. From these definitions, it i111r11ediately follows 
that the collection of Nx(N+l) matrices 

{(P(f), r(f)) I f e: F} 

has the product property. Instead of (1.3.1) we • may write 

• 



(1.3.2) v(n) • max {r(f) + P(f) v(n-1)} 
fc::F 

r 

where v(n) denotes the vector with components 

troducing a simple du1ae11y variable we obtain 

V (tl) . , 
1 

( l . 3. 3) 
v(n) 

1 

P(f) r(f) 

0 1 

v(n-1) 

l 

n E 1N 

i • I, .•• ,N. By in-

which is an example of the recursion (l.2.1), to be studied in part I of 

this vonograph. 

• • b. The continuous-time case. 

7 

As in the previous example we consider a system with a finite state 

space, {1,2, ... ,N} say, and a finite action space A. Suppose now the system 

is observed continuously. At each time point t E [O,co) the system is allowed 

to make a transition from one state to another one. It will be clear that 

the significant parameters are transition rates rather than transition 

probabilities (cf. CHUNG [13]). 

We ass11me that a controller is allowed to react at each time point 

t 4!! [0,ao). If at time t the system is in state i, and action a E A is •taken 

the system is supposed to make a transition to state j in a short time in-

t.a.-.. al llt with probability ~.a. At+ 0( 11 t} ( · · 1 l\T) Th b b'l' ~JI. v "1 u D. 1., J = , •• , li • e pro a 1. i ty of two 
1J 

or more transitions is of order o(.6t) if 6t is sufficiently small (we say 

that a function h(t) is of order cr(t) fort small if li~ t- 1h(t) = 0). The 
t-+O 

probability of making no transition in a short time interval ~tis then 
N 
\' ""'a equal to J- l q •. lit 

j==l . 1J 

Suppose furthermore that, if the system is in state i at time t and 

action a is chosen, a reward of r:1. per unit time is earned during the time 
11 

that the system remains in state i. If the system moves from state i to 

state j a reward r.~ is received (i,j = 1, ••• ,N). Now, if v(t). denotes the 
l.J l 

maximal expected retur11 in a time interval of length t when starting in 

state i and v(O). denotes the terminal reward in state i, it follows from 
1 

Bellman's optimality principle that for i = 1, ••• ,N and t e [Q,a,): 

N 
V(t:+~t) .• max { ( 1- ! ~. 

1 a€A j=l- iJ 
• 

N 
At) ( r. 3: At + V ( t) • ) + ' l ' q ~ . At ( r ~ ·. + V ( t) . ) } + O' (lit) 

l.1 l j=l 1J l.J J 
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Define for i,j = 1, ••. ,N and a€ A 

,..., a N a a 
q . . 

a 
q •. 

1J 
-a = q .• (j;li) a 

; r. 
l. 

== r .. + l 
r-u a 
q . . r ... 

l.l. l.J 

Them, for i = 1, .•• ,N and t € [O,~), we obtain 

{l.3.4) 
v(t+~t)i - v(t)i 

At 
• ma-,c 

aEA 

a {r. + 
l. 

N 

t 
j=l 

a 
q .. 

l.J 

11. 

v(t) .} + 
J 

j=l 

o(At) 

At 

l.J J.J 

Again, a policy£ is defined as a function from {1, ••. ,N} to A. Let F de-
• • • (£) h • . h . f (i) note the set of all possible policies, Q t e matrix wit entries qij 

and r(f) the vector with components r~(i). If we take the limit in (l.3.4) 
l. 

as At+ 0 we obtain, in vector-notation: 

(I .3.5) 
dv 

0dt( t) == max {r(f) + Q(f) v(t)} 
fe:F 

• t e [0, 00). 

Define a scalar function vN+l(t) = 1 forte [O,m). Then we may write· 

(1.3.6) 

dv 
dt(t) 

dv 
. N+ 1 ( ) 

. dt t 

• max 
f e:F 

Q(f) r(f) v(t) 

t e [0,00), 

0 0 

which is an example of the model to be studied in chapter 6. Note that the 

collection of matrices 

Q{f) r(f) 

a 0 
f E F 

is a collection of ML-matrices with the product property. 

1.3.2. Risk-sensitive Markov decision processes 
t I d lb I I U _ ., ; q I I z I 

Consider once again the discrete-time Markov decision process which 



• 

has been described in part a of example 1.3.1. Suppose now that a decision 

maker represents his risk preference by a utility function u that assigns 

a real number to each of a number of possible out~omes. Thus, if r~ is the 
l. 

expected reward when in state i action a is chosen, the value for the de-
a cision maker is equal to u(r.); if 
l. 

for then-period problem, then the 

u(v(n).). 
1 

v(n). 
l. 

is the maximal expected return 

utility for the decision maker equals 

In example 1.3.1, part a, we treated the case in which u(x) = x for 

each possible return x, which implies risk-indifference. HOWARD AND MATHE

SON [30] treated the case in which the utility function has the following 

form: 

(1.3.7) u(x) = -(sgn y) exp(-yx) 

where Y 0 is called the risk aversion coefficient and sgn y denotes the 

9 

sign of y. A positive value of y indicates risk aversion, a negative value 

indicates risk preference. Note that the function u(.), defined in (1.3.7), 
. . .. 
1s increasing • 

It follows that a stream of rewards has a utility 
' 

-(sgn y) exp(-y(r. +r. + ••• +r. )) 
1 1 1 2 1 n 

Now, let v(n). denote the utility of staying in the system for n periods 
]. 

when starting in state i. Using the concept of ''certain equivalent'', 

HOWARD AND MATHESON [30] showed: 

(1.3.8) 

Defining 

we obtain 

(1.3.9) 

v(n) .. = 
1. 

max 
a€A 

N 

I 
j=l 

a 
p •• 

l.J 

,_ a 
p •. = 

1J 
a 

p •• 
l.J 

a exp(-yr ... ) 
l.J 

v(n). = 
]. 

max 
acA 

N 

I 
j=l 

r.,a 
p •. 

1] 

a 
exp (-yr .. ) 

l.J 

v(n-1). 
J 

v(n-1). 
J 

• ]. = l, •• ,N; nE: lN. 

• 1 = 1, •• ,N; n € lN, 
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• 
,..,, 

or, defining f, F, P(f) and v(n) as usual, 

,.., 
(l.3.10) v(n) = max P(f) v(n-1) 

fe:F 

1.3.3. ~ant.rolled ~u.lt,itype branching processes_ 

n e: lN'. 

Consider a population consisting of individuals of N types, labeled 

1,2, ••• ,N, which is observed at time points 0,1,2, ••.• Each individual 
• 

lives from one such time point to the next, at which moment he produces a 

random n11n,ber of offspring; all these n,1mbers are supposed to be independent• 

At time tan action is chosen (from a finite set A) for each individual. 

Different actions may be chosen for different individuals (possibly of 

the s ante type) • 

• At each time point the state of the system is described by a vector 

(s 1 , ••• ,sN), where 

pi ( t l , • • • , tN I a ) 

s. denotes 
1. 

denote the 

the nt111iber of individuals of type i.. Let 

probability that (as a result of action aeA) 

one individual of type i produces exactly t. individuals of type j, 
J 

j · 1,2, ••• ,N. Suppose furthermore, that, if for an individual of type i 

action a is chosen, a reward r; is earned. It is not hard to verify ~hat 

this system may be described by a Markov decision process with a countable 

state space (cf. PLISKA [46]). 

Note that, in general, different actions may be selected for different 

individuals of the same type. A decision rule that selects t:he same 

action for all individuals of the same type and such that this selection 

is independent of the state (s 1, ••• ,s) is called statia. PLISKA [46] 
N 

showed that the multitype branching process, described above, ·can be con-

trolled by considering only static decision rules, and a collection of 

t . N N . . h h a nonnega ive · x matrices wit t e product property. Let uij denote the 

expected number of individuals of type j among the offspring of one indi

vidual of type i when action a is chosen. Assume 

a 0 < u .. < co 
= l.J 

i,j = 1, •.• ,N; a e A. 

Let, furthermore, x(n)i denote the maximal expected return when we start 

with exactly one individual of type i, no individuals of other types, when 

only static decision rules are considered, and with n periods to go. Then 

obviously 



l 1 

N 
(1.3.11) x(n). = 

1 
max 
ae:A 

{r~ + 
l. I 

a 
u . .. 

1J 
x(n-1) . } 

J 
• 
l. = 1, •• ,N; n e: lN, 

j == 1 

where x(O)i is a terminal reward. If we define a static policy fas a func-

. f { 1 N} t A d U(f) d h • · h • f (i) tion rom , ••• , o , an enotes t e mar.rix wit entries u .. , 
f(") l.J 

while r(f), resp. x(n), are the vectors with components r. 1
, resp. x(n)., 

1 1 
• then we may write 

(1 .. 3.12) x(n) = max {r(f) + U(f) x(n-1)} 
fEF 

n e lN, 

where F denotes the set of all static policies. As before, (1.3.12) can be 

transformed into a recursion of the form (1.2.1): 

x(n) 

1 
= max 

fEF 

U(f) r(f) 

0 1 

x(n-1) 

l 
n E JN. 

It is interesting to note that PLISKA [46] showed that, if both static and 

nonstatic decision rules are considered, the maximal expected return for 

an n-period controlled multitype branching process, when starting in state 

(s 
1

, ..... , sN), and s1Jn11oed over the total n1.1mber of individuals at the start, 

is equal to 

N 

I 
i=l 

s. x(n) . • 
1 1 

Hence there exists a static decision rule which is optimal. It follows that 

these problems can be handled either as a Markov decision process with a 

countable state space or as a more general dynamic prograii1111ing problem with 

a set of finite-dimensional nonnegative matrices with the product property. 

An economic system, consisting of N industries (or resources), is 

controlled at discrete points of time. We ass1i111e presence of a sufficient 

amount of labour (of homogeneous type). Each industry i produces a single 

commodity, also indicated by i (no joint production is allowed). Further

more, there exists a finite set A of alternative technologies for each in-

dustry i. If 

ber of units 

industry i chooses technology ae:A, we denote by p.a .. the n11n1-
l.J 

of commodity j (produced in the previous period) which is 
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, necessary for the production of one unit of 

denotes the amount of labour, necessary for 

d • • h - na cona,to 1.ty 1.. Furt ermore, }{.,._ 
l. 

the production of one unit of 

conn11odi ty i, when technology a is chosen. 
Let w be the (constant) wage rate and let c(n). denote the cost of 

l. 

the production of one unit of cor11111odity i at time point n. We assume 

c(O). > O for i = 1, ••• ,N. Since we may expect that each industry is inte
i 

rested in minimizing its costs, we find 

(1.3.13) C (n). 
1 

• = min 
a€A 

a {wt.+ 
l. 

N 

I 
j=l 

a 
p . . 

1.J 
c(n-1).} 

J 
i == 1, ••• ,N; n e 1N 

(here we ass11med that the production costs of one unit of a cona11odi ty is 

equal to its price on the ma~ket). 

A technology vector f is a function from {l, .•• ,N} to A, which spe-

cifies for each industry a particular technology. The set of all technology 

vectors is denoted by F, P(f) denotes the matrix with entries p~~i) and 

l. 

tions, (1.3.13) can be written as 

(1.3.14) c(n) • { w R.(f) + P(f) c(n-1)} n E lN, 

where c(n) denotes the vector with components c(n)., i = 1, ••• ,N. 
l. 

As before, we find a recursion of the form {1.2.1): 

c(n) 

l 

P(f) 

0 

w.t(f) 

1 

C (n-1) 

1 
n E: lN. 

Here, we have an1 example with ''max'' replaced by ''min''. These models can be 

treated in essentially the sa111e way as the one, introduced in section 1. 2. 

The model, described above, is an example of a Leontief substit:ution system 

(cf. MORISHIMA (41], BURMEISTER AND DOBELL [ 12]). 

In BELLMAN [ 3 ], a multistage decision process is considered where, 

at each stage, one has the choice of one of a finite n11mber of actions, 

1,2, ••• ,K say. The choice of action a E: {1, ••• ,K} results in a probability 

distribution with the following properties: 

a. There is a probability a 
p. that one 

]. 
receives i units and the pro-



cess continues (i = 1,2, ..• ,N); 

b. There is a probability 
• cess terminates. 

a 
p· 

0 
that one receives nothing and the pro-

Now let n be a fixed integer and suppose a decision maker wants to 

maximize the probability that he receives at least a total number of n 

13 

uni ts before the process tern1j,nates. Let u. denote the maximal probability 
J 

of obtaining at least j units before termination of the process, then 

N 

I a .. 
0 max p. u .. J > • 

l. J-1. i=l (I.3.15) a u. --
J 

1 • < 0 .. J = 

,Applying a sjrnple transfo·rmation, this problem can again be written in the 

formulation, introduced in section 1.2. For j = 1,2, •.• ,n we have 

a a u. pl • • • • • • ... • PN u. I 
J J--

] 0 ........ 0 
u. I • I u. 2 J- • J-• • 

0 1 • • • • • • - max - • • .. • • • , 
• • .. • • • • • 

• a • • • • • • • • • • • • • .. • • • • • • • • • • • • • 

uj-N+l 0 . - •• 0 1 0 u. N J-

where we start with 

It follows that the decision maker has to solve an n-step sequential deci

sion problem of type (1.2.1). 

As mentioned already, one of the ma{n objectives of this monograph 

is to analyze the asymptotic behaviour of dynamic prograt11,11ing recursions 

(or quasi-linear equations, cf. BELLMAN [ 3 ]) of type (1.2. l), based on a 

set K of nonnegative square matrices with the product property. It will be clear 

that some insight in the structure of such sets of matrices is fundamental. 

In chapter 2 we first briefly repeat some well-known results concerning 

structure and properties of a single nonnegative matrix. A relatively 

large part of this chapter is devoted to what we will call a generalized 
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eigenvector theory for square nonnegative matrices (cf. ROTHBLUM [48]). 

Chapters 3,4 and 5 deal with sets of finite-dimensional nonnegative ma

trices. In chapter 3 it is shown that a particular block-triangular struc

ture exists for sets of nonnegative matrices which is closely related to 

the behaviour of dynamic progran,111lng recursions of type ( 1 • 2. I). In chap

ter 4, convergence results for these recursions are proved under rather 

special conditions. Indispensable for the analysis in this chapter is a 

result, recently proved by SCHWEITZER AND FEDERGRUEN [61), concerning geo

metric convergence in undiscounted Markov decision processes. The original 

proof of this result is extremely complicated; in appendix 4.A we present 

a new, relatively simple proof, together with some extensions. This geo

metric convergence result plays a key role again in chapter 5, where both 

convergence results for recursions of type (1.2.1) in the most general case 

are proved, and a theory concerning generalized eigenvectors for sets of 

nonnegative matrices with the product property is completed. Key words in 

the analysis are speatral radius, index and generalized eigenvectoPs. Brief 

attention will be paid to estimation methods for these characteristics. 

Typical for the finite case is that all proofs can be given in a construc

tive way; in particular it is possible to develop policy iteration methods 

for the construction of matrices which maximize the ''growth'' of systems 

of type ( 1 • 2 • I ) • 

In chapter 6 we briefly treat the continuous-time analogue of the 

model, studied in chapters 3,4 and 5. There we deal with a set of ML-ma

trices with the product property. Special attention is paid to an expo

nential convergence result for undiscounted continuous-time Markov decision 

processes (appendix 6 .A), which may be viewed as an analogue of the main 

result of appendix 4.A in the discrete-time case. 

Although a theory for sets of nonnegative matrices with the product 

property has been developed mainly for its usefulness in the analysis of 

dynamic progra111r1ting recursions, the results are interesting in themselves; 

they provide a considerable generalization of the classical Perron-Frobe

nius theory. In part II (starting with chapter 7) an attempt is made to 

extend this theory to sets of countably infinite nonnegative matrices. Such 

an extension is relevant in connection with the study of den11r11-arable Markov 

decision processes, invariant vectors for sets of nonnegative matrices etc. 

Chapter 7 is an introductory one in which Markov chains with a counta~le 

state space are discussed. Stiaong ergodicity and the DoebZin condition are 

some of the key concepts in the analysis. Although interes~ing in itself, 
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the results mainly serve to explain and motivate the conditions of the 

theorems, proved in chapter 8. In that chapter the structure of countably 

infinite nonnegative matrices is analyzed; it tu1ns out that a beautiful 

extension of the generalized eigenvector theory, treated in chapter 2, 

exists. Vere-Jones' R-theory (which deals only with irreducible nonnega

tive matrices of countably infinite dimension) is used as a starting point 

(cf. VERE-JONES (65], [66]). The results obtained are related to results 

in potential theory for Markov chains (cf. KEMENY, SNELL AND KNAPP [35]). 

In chapter 9, finally, we return to sets of (countably infinite) nonnega

tive matrices and show how results, similar to those in chapter 3 can be 

obtained. As a by-product of our analysis we obtain a semi-probabilistic 

interpretation of (generalized) eigenvectors and (generalized) invariant 

vectors which seems to be new even in the finite case. 

1.5. Notational conventions 

We shall be concerned with sets of nonnegative matrices with the pro

duct property (cf. definition 1.1). Unless stated otherwise all matrices 

will be square and of a fixed dimension. Throughout part I, N denotes the 

dimension of these matrices. Motivated by the theory of Markov processes 

the set {1,2, ••. ,N} is called the state space and denoted by S. Part II 

deals with matrices of countably infinite dimension; in this case 

S := {1,2, ••• }. 

Matrices will be denoted by capitals P,Q, •.• , (column) vectors by 

lower case letters x,y,u,w, .••• The identity 11,atrix (ones on the diagonal, 

zeros elsewhere) is denoted by I, the vector with all components equal to 

one bye. The null matrix is denoted by Q, the null vector by O. 
• . d - d b n ( n) d h . • - th Then-th power of a matrix P 1.s enote y P; p... enotes t e J.J 

( 1) 1J 
entry of Pn • Instead of p.. we usually write p .•• P. denotes the i-th 

l.J l.J 1. 

row of P. The i-th 
0 

component of a vector xis denoted by x .• We define 
l. 

p := I. 
-

As usual IN denotes the set of positive integers,. lN := 

:= lN U·{O}, m
0 

:=JN
0 

u{00 }. lR is the set of real numbers, 

lNU{ 00}, 

+ 
JR the 

of positive real 

k-fold cartesian 

- + + denotes the 
-

product lR x lR x •.• x lR (k E lN). 

• A nonnegative square matrix Pis a function from S 

set 

.. . 
€ S the matrix P 1.s p •• > 0 for all i,j 

1.J 
tive (positive) we write P ~ Q (P > Q). 

called positive. If Pis nonnega 

We say that P is semi-positive and - -
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write P ~ 0, if P ?-- 0 and P " O. Further11t0re we write P > Q (~ Q, > Q} if 
- - - - = 

P-Q > 0 (~ 0, > 0). Similar definitions apply to vectors. Instead of ''pos-
• - - -

itive vector'' often the words ''strictly positive vector'' will be used. 

The transpose of a matrix Pis denoted by PT; the transpose of a 
T (col1.ENn) vector x is written as x . Subsets of the state space S will be 

denoted by A~B,C,D, •••• If Cc S then by PC the restriction of the square 

ma:trix P to C x C is denoted. Similarly, xC is the restriction of the 

(col1m11,) vector x to C. I.f {I(l), I(2), ••• ,I(r)} denotes a partition of the 

state s:pa,ce S then we often write P (k,t) for the restriction of P to 

I· .. ·(· 'l~}·. ·. I ( •) '"' • " """ t ·t,._ -t P (k. 'k) · ·p1 (k) k· 1 1\, x Jf,,, 111.,~ • ,, ••• 7 r • .PO e 1lf8i• . • , . • , ••• ,r .. 

If P is a s,quare matrix of finite dimension tb•en the s;peet?taZ radius 

of P is defined as the aodulus o·f its largest eigenvalue. Throughout this 

WDuograpa the speetral radius of P is denoted by a (P) • 

Iu chapteJC 6 ML 111•t:rices of finite dimension are considered. An ML

matrix is a squat"e atrix vi.th all its non.diagonal entries nonnegative. The 

»ame is adopted froa 8D'i1TA '[ 52], who uses the word in connection with the 
1"" . 1 . . . i . wor~ of Hetz.· er and Leont1ef 1.n mathemat cal economics. 

Lex.icographical order symbols are used in several chapters. Let 

·(x(i), ••• ,x{n)) and (y(l), ••• ,y(n)) be two sequences of real-valued vectors. 

We say that (x{l), ••• ,x(n)) >- {y(1) 71 ••• ,y(n)) if x(1) > y(l) or if for some 

t c {l, ••• ,u I} holds that x(l) • y(l) fort= 1,2, ••• ,k and x(k+l)>y(k+l). 

Similar definitions hold fort, t, ~, j and~-

Let f(t) and g(t) be real-valued (vector) functions such that g(t)>O 

fort E: lR. Then f(t) • o(g(t)) fort-+ a (a~ 'JR) if lim (g(t).)- 1t(t).=O 
t>a 1 i 

for all i. Furthermore f(t) = O(g(t)) fort+ a if there exists a constant 

c su.ch that f f(t) f < c ( g(t)) for t close to a. -
The symbol := is used to define concepts. The symbol ,.., is used for 

asymptotic equality; for instance x(n) - y(n) for n + co means that for each 

£ > 0 there exists an integer~ such that (l-e;) y(n) ~ x(n) ~ (l+e:) y(n) for 

n!~· The.symbol O denotes. the end of a proof, or the end of the formulation of 

a proposition, leirm!IB or theorem if no proof is given. Also the end of a def-
. . . • . 0 
1111 t1on ts marked by ·• The Kronecker delta o. • is defined by o . . : = l 

iJ 1J 
if i • j, d ij :• 0 if i P j. By If •• jf · the usual sup-not·m is denoted. 
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FINITE-DIMENSIONAL SYSTEMS 
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CHAPTER 2 

NONNEGATIVE MATRICES: A STRUCTURE ANALYSIS 

Any investigation of dynamic progra11111iing recursions of the type 

(1.2.1) x(n); max P x(n-1) 
PEK 

n = 1,2, •.• ; x(O) > 0 

with Ka set of nonnegative square matrices with the product property, en

tails the study of products of nonnegative matrices, or, in the case that 

K'contains only one matrix, of powers of that matrix. Clearly, powers of a 

square nonnegative matrix can be studied by familiar matrix-theoretical 

methods such as Jordan decomposition. The disadvantage of these methods how

ever is that the nonnegativity of the entries is completely ignored. A·graph-
• 

theoretical, rather than a matrix-theoretical, approach appears to be the 

natural answer to this objection (cf. SENETA [52], p. 9-12 and ROTHBLUM 

[48]). The authors mentioned exploit the idea that a square nonnegative 

matrix P of dimension N can be represented by a directed graph with N nodes 

in which a transition from node i to node j is possible if and only if 

p . . > 0 ( i , j = 1 , ••• , N) • 
l.J 

In this chapter a rather detailed analysis of the structure of a single 

square nonnegative matrix is presented. We follow the (graph-theoretical) 

terminology of ROTHBLUM [48), which is strongly motivated by the theory of 

Markov chains. In section 2.1, a brief review of some well-known definitions 

and results will be given (most of them without proof) which can be found:, 

for instance, in SENETA [52] or BERMAN AND PLEMMONS [ 6 ] • We also give s011ie 

in1c11ediate corollaries which will be needed later. In section 2. 2, a funda

mental decomposition result for one square nonnegative matrix is presented 

which describes the hierarchical structure of the underlying graph; this 

decomposition proves to be extremely useful for the analysis of the be

haviour of powers of that matrix (cf. SJ,ADKY [ 58], ZIJM [ 76]). Section 2. 3 

i 
i 
" 
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the structure of so-called gen~ralized • e1.gen-is devoted to an analysis of 

vectors, associated with the spectral radius of a • • square nonnegative matrix, 

whereas section 2.4 relates these results to more familiar concepts in ma

trix theory. 

The results obtained in this chapter imply some i1ii111ediate corollaries 

on the behaviour of the vector x(n), defined by 

x(n) = Pn x(O) n E 1N' ; x(O) > 0, 

where P denotes a square nonnegative matrix. However, the great advantage 

of the methods developed here is that they can be extended to sets of non

negative matrices with the product property, where they yield analogous 

results for dynamic progr ing recursions of the type (1.2.1). In order 

to facilitate the proofs of these extensions, state classifications are 

introduced in section 2.5, and the results of chapter 2 are reformulated in 

ter1cis of these state classifications. In fact, state classifications relate 

in a very precise way the hierarchical structure of the graph, associated 

with a nonnegative matrix, to the behaviour of its powers; they will prove 

to play a key role in the forthcoming analysis. 

Throughout this chapter P denotes a nonnegative N x N matrix; the 

state space Sis defined by S := {1,2, ••• ,N}. 

2.1. Basic tools and definitions 

In this section we briefly review some (mostly ·lvell-known) definitions 

and results concerning the structure of nonnegative matrices. 

We start with a definition. 

~~FINITioN· 2.1. We say that state i has access to state j under P if 

• • > · or some n e O 1, J € • D 
l.J 

Note that:. since p~?)= 1, state i has always access to state i. Definition 
11 

2.1. reflects the idea that the positive-zero configuration of P can be re-

presented by a directed graph. Accordingly, we consider Pas a function from 
+ N N S x S to JR.0 rather than as a linear operator from lR to lR • · 

Powers of square matrices are usually studied in term~ of their eigen

value structure (Jordan decomposition). For nonnegative square matrices an

other approach exists, based on accessibility relations between the states 
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(cf. SENETA [52]). It can be shown that an analysis of the behaviour of 

powers of a square nonnegative matrix becomes much easier if in the under

lying graph any two states have access to each other. 

DEFINITION 2.2. Pis called iPreduaible if any two states have access to each 

other. In all other classes we call P reducible. □ 

This definition implies that a square reducible nonnegative matrix 

can be written in block-triangular form, possibly after a permutation of 

the states. In other words: using the accessibility relations a hierarchical 

structure of the state space can be shown. 

Irreducible nonnegative matrices can be either periodic or aperiodic. 

We need the following definition: 

DEFINITION 2.3. Let P be 

pect to Pis defined by 

irreducible. The period 

d. : = g. c. d { n Ip ~1:1) > 0, n € JN } 
1 11. 

d. 
1 

of a state i with res-

i € s. □ 

A proof of the following result can be found in SENETA [52]: 

PROPOSITION 2.1. Let P be irreducible. Then all states have the same period, 

d say, with respect to P. There exists a unique partition {C(l), ••• ,C(d)} 

of S such that i € C(k) and p .. > 0 implies j € C(k+l) if k < d and j € C(l) 
l.J 

if k = d. 0 

Pis said to be ape'Piodic if d = 1, otherwise it is pePiodic with period d. 

Some authors use the word (a)cyclic instead of (a)periodic. 

Powers of square matrices are usually studied by eigenvalue methods. 

The eigenvalues on the spectral circle, i.e •• the eigenvalues with largest 

absolute value, play a special role, in fact they characterize the first

order asymptotic behaviour of Pn for n +~.If Pis nonnegative, these ei

genvalues and their associated eigenvectors possess very nice properties; 

these properties are su11,111arized below in the famous Perron-Frobenius theorem. 

PROPOSITION 2.2. Let P be a square nonnegative matrix and let cr(P) denote 

its spectral radius, i.e., a (P): = max { I)., f I :\ an eigenvalue of P}. Then 

cr(P) itself is an eigenvalue of P with which can be associated semi-posi-
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tive left- and right-,eigenirectora. If P is irreducible these eigenvectors 

are unique up to 11t1ltiplicative constants; furthermore they can be chosen 

strictly positive in this case. If Pis irreducible, a(P) is simple. If 

Pis irreducible with period d then there exist precisely d eigenvalues 

A1, ••• ,~d with f\J • 1, namely\• a(P) exp(i.2wk./d) fork• 1, ••• ,d. 

These eigenvalues are all siaple. D 

For a proof we refer to ·•· CHEE. [ 26] or SENETA [52]. Note that a (P) >IA I 
for any eigenvalue >. ; a(P), if P is irre:ducible and aperiodic. 

"* • • d .h The exist•nce of strictly pos1t1.ve eigenvectors associate • wit the 

apectral redius o(P) of a sq-1a,re aonnegati"Ve matrix P i,yeiediately provides 

us with bouads for the "'l"eetor x(n) • Pn x(O), n • 1,2 •••• , where x(O) is 

any positi-.e •.ctor. Let u 'b,e a strictly positive right-eigenvector,. asso

ciated with a (P), and cboos·e. constants c 1., c 2. > 0 with c u < x(O,) < c u. Then l 1111 · · • 2 

c 1(a(P))n u < x{n} < c 2(o(P))n u 
. - - n e: lN. 

i'M,.i l h . ...1... • " " i1.~ .e resu t su.ggeats t e question: w11at nonnegative matr1.ces possess strict-

ly positive. eigenvectors. Irreducibility is a sufficient: (but certainly not 

neeessary) condition. Before answering this question,. we need a few defini-
• t1ons. 

DEFINITION 2.4. Let D be a proper subset of S. The restriction PD of P to 

D x D is called a principal 1m.nor of P. 0 

For principal minors the following result holds. 

PROPOSITION 2.3. The spectral radius e1(P') of any principal minor P' of P 

d.o,es not exceed the spectral radius a(P) of P. If P is irreducible, we have 

a(P') < a(P); if Pis reducible, then a(P') = a(P) for at least one irre-

ducible princip.al ninor P'. □ 

ror a proof see . , . · , .. CHER [ 26]. 

Reducible nonnegative matrices can be written in block-triangular 

fotm (possibly after permutation of the states) in such a way that the 

blocks on the diagonal are irreducible. This defines a partially hierarchic

al .structure in the underlying graph. The irreducible blocks correspond 

to o la.sass. More foruta l ly: 
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DEFINITION 2.5. A alass of P is a subset C of S such that PC is irredu

cible and such that C cannot be enlarged without destroying the irreduci

bility. C is called basic if cr(PC) = cr(P), otherwise C is called nonhasia 

(in which case o(PC) < cr(P), according to proposition 2.3). O. 

The reader may note that P partitions the state space S into classes, 

C(l) ,C(2), ••• ,C(n) say. If P(i,j) denotes the restriction of P to C(i).x C(j), 

then, possibly after permutation of the states, P can be 

written in the following form: 

(2.1.1) P = 

P ( 1 , 1 ) P ( 1 , 2) . __ . P ( 1 , n) 

P(2,2) .... P(2,n) 
• • 

• 
• 

• 
• • 

• -• 
• -• • 

• 
• 

"th P(i,j) 0 f • • . . 1 b . 11 w1 = _ or 1 > J, 1,J = , •.• ,n. Hence classes can e partia y -
ordered by accessibility relations. We may speak of access to (from) a class 

if there is access to (from) some (or equivalently: any) state in that class. 

DEFINITION 2.6. A class C, associated with P, is called final, if Chas no 

access to any other class. A class C is called initial, if no other class 

has access to C. □ 

The question which class has access to which class is fundamental for 
' 

the investigation of powers of nonnegative matrices. The existence of strict

ly positive eigenvectors also depends completely on the accessibility struc

ture. We have 

PROPOSITION 2.4. P possesses a strictly positive right- (left-) eigenvector 

if and only if its basic classes are precisely its final (initial) classes. 

□ 
For a proof we refer to GANTMACHER [26] again. 

Matrices with strictly positive eigenvectors (and especially their 

powers) have very nice properties as has already been indicated above. 

The following le·1t,i:11a is fundamental for the analysis in the forthcoming sec-
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LJDMA 2.5. Let P have spectral radius a> 0, and let there exist .a strict-

1 . .. 
y pos1t1.ve right-eigenvector, u say, associated with cr. Then there exists a 

nonnegative matrix P*, defined by 

1 
n -k k * lim I p ·- a p • ... 

n+i k-0 ll )CO 

We hav,e n* -= ,-p 11111 aP* and (P*} 2 • p*. FurtherruMOre, p ~. > 0 if and only if 
1J 

j is COQtained in a basic class of P and i has access to j 11nder P. If the 

restrieti.oa of p, to each of ita basic classes is aperiodic, then 

Finally the mtrix (aI-P+P~, is nonsingular. . 

-PlOOJ.. The wtrix P, defined by 

- -l 
p .. • a 

1J 
-I 

u. p •. u. 
l. l.J J 

- -

i,j E: s 

is stoohastia (i.e., 

are well known (cf. 

P > 0, Pe• e). For stochastic matrices the results 
- == 

AND SNELL [34 ]) • By the inverse transfo:r1aation 
-of(•) all results for Pare translated into the corresponding results for 

P. 0 

The matrix P* is the projector on the null-space of (aI-P), along 

the range of crI-P. The matrix (ol-P+P*) is often called the fundamental 

rrta"t::ri:&, corresponding to P (KEMENY AND SNELL (34]) • Note that the res tric

tion of P* to each basic class of Pis strictly positive. 

!ven if a nonnegative reducible matrix P does not possess a strictly 

easy to Ill • • • • • po,s1 ti ve eigenvector, associated w1 th 1. ts 

understand the funnam,ental role of a with 

Tb,e following characterization is useful. 

spectral radius a, it is 

respect to the behaviour 

LJ!MKA 2.6. Let P have spectral radius a. Then 

n 
of P. 
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a. cr = lim II Pnff l/n = inf 
n >oo n 

b • cr = sup { ). J 3 w > Q : Pw ~ Aw} = inf { A I 3 w > Q : - Pw < AW} 
= 

c. For each).> cr there exists a vector w > 0 such that Pw < AW. --

PROOF. a. follows from DUNFORD AND SCHWARTZ [21], p.567, b. follows from 
. -1 a. To establish c., take w = (11.I-P) e. 

•• 1.nates 

If A> cr, w 

Pnx(O) if 

> 0 such that Pw < AW - · .......... a· 1 that ,nw one 1r11111e 1 ate y sees I\ -
x(O) ~ w. A vector w, satisfying w > 0 and Pw ~ Aw, - - -

□ 

dom 

is often called ).-subinvariant (cf. chapter 8 of this monograph) or strongly 

excessive (cf. VAN HEE AND WESSELS [70]); these vectors play an important 

role in stochastic analysis and in potential theory for Markov chains (cf. 

KEMENY, SNELL AND KNAPP [35] or HORDIJK [27]). 

A more detailed analysis of the role of the spectral radius with res

pect to powers of a nonnegative matrix will be given in the next section. 

Accessibility relations between basic (and nonbasic) classes will play a fun

damental role again. We now conclude this section with two le11,1rias which are 

needed in the sequel. 

LEMMA 2.7. Let P be irreducible, let cr be its spectral radius and let x > O. 
I 

Then Px > ox implies Px = crx. Analogously, Px = 
< crx implies Px = ax. --

PROOF. Multiplying Px > crx by the strictly positive left-eigenvector of Ps 

associated with a, yields cr > a, a contradiction. Hence Px = ox. Simjlarly, 

if Px < x. □ 

LEMMA 2.8. Let P have spectral radius cr and suppose Px ~ AX for some real -
A and some real vector x with at least one positive component. Then cr > A. = 

PROOF. Let y := (:>i.I-P)x. Then y < 0. If l > a then 11.I-P is nonsingular and - --
00 

-1 
X = (AI-P) y = l < 0, = -n=O 

which gives a contradiction. Hence o ~ A. -
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In the n-ext section, the structure analysis of reducible 

ces is continued. The concepts introduced there are less 
• • • • • they have a strongly graph-theoretical 1.nterpretation. 

• • nonnegative matri-

f · 1 · . ami ·1.ar; again 

In this section a rather sp·ecific decomposition result for nonnegative 

aatrices is presented, which is based on the already mentioned hierarchical 

structure in the 1,nderlyin.g graph. Recall that classes are partially ordered 

b,y accessibility relations, cf. (2.1. l). We shall show the existence of a 

particular hierarchical order of basic and no·nbasic classes, which is strong

ly related to the behaviour of powers of the associated nonnegative matrix. 

Liet P be a. square m:>nneaative aat:rix (of finite diaension) and let S 

be the tta:te space. Obviously,. th,ere 111.Ust be a strong connection between 

the fa:milia.r Jordan canonical form of P and the partitioning of Sin basic 

and noooasic classes. The number of basic classes for instance is pr,ecisely 

equal to the algebraic multiplicity of the eigenvalue a(P). Namely, if C 

is a baie class of P, then a'(P) is a simple eigenvalue of p,C, and further

mor·e each eigenvalue of PC is an eigenvalue of P (use (2. I • J)). We shal 1 

show that there also exists a relationship between certain chain-structures 

of basic and nonbasic classes and the size of the Jordan-block, associated 

with the spectral radius a(P), if cr(P) is degenerated (cf. PEASE (44]). 

Consider the following example: 

p -
2 

0 

4. 

2 

' 

x(O) • 

and d,efine x(n) • Pn x(O}, n • I, 2,... • Then 

x(n) • 
x(n) 1 

:x(n)2 

m 211 

' 

> 
0 

0 

Notice tbe difference in behaviour between x(n) 1 and x(n)
2

, caused by the 

fact that state 1 has access to state 2 and p 11 and p
22 

are both eq,ial to 

the spectral radius. In ter1trS of classes : the matrix P p,ossesses two basic 
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classes : {l} and {2}, the first one having access to the second one, which 

implies an asymptotic behaviour of the vector x(n) of the form 

x(n)
1 

n 
n2 CJ 

where c 1 and c 2 depend on the starting vector x(O). 

The next example is an extension of the previous one. 

Exa!!fle 2.2. 
- LI 

P= 

2 4 0 

0 l 4 

0 0 2 
x(O)= > 

0 

0 

0 

Now it is easy to verify that for n + 00 
n x(n) = P x(O) obeys 

x(n) 1 
( ) 2nd 

X n 2 rw 2 () ~ 2nd 
X n 3 3 

where again d 1, d2 and d3 are constants, depending on x(O). 

Apparently, the presence of a nonbasic c·lass in a ''chain between two 

basic classes" (definition follows below) does not really influence the 

asymptotic behaviour of x(n) (note that still the first basic class has 

access to the second one, but now via a nonbasic class). It is this rela

tionship, between the position of basic and nonbasic classes and the beha

viour of powers of a nonnegative matrix, that will be studied in this section. 

What we need first is a quantitative indication of the position of a 

class. We start with the definition of a ahain. 

DEFINITION 2.7. By a ahain of al-asses of P we mean a collection of classes 

{C(I), C(2), ••• ,C(n)}, such that p .. > 0 for some pair of states (ik,jk) 
l.kJk 

with ik e C(k), jk € C(k+l), k = 1,2, ••• ,n-l. We say that the chain eta:~ts 

with C(l) and ends with C(n). The length of a chain is the number of basic 

classes it contains. 0 
• 

The position of a class is now defined as follows. 



U'llIFITIOF 2.8. The height (depth) of a class C of P is the length of the 

longest chain which ends (starts) with C. 

To illustrate these definitions consider the following example. 

p - ' ' 

' 
' 

1 4 l O 0 

2 0 0 0 

J 4 

2 4 

2 

D 

Here the lower triangle .. •of P contains only zeros. Each class of P contains 

exactly one state. The following graph shows the positions of these classes 

{B ! basic): 

Q 0 0 
1 -----= 3-----> 4 B 

2 B 5 B 

0 0 
9 • r Class1fy1n.g the classes according to their position, we obtain: 

' Basic classes {2} {4} {5} {3} ' Nonbasic classes {1} ' ' ' 

' 

' ' 

Height 
', 

1 ', . 1 2 0 0 ' ' 
' ' ' ' 

Depth ' 

l 2 1 ' 2 2 

Pinally,we define the degree of a nonnegative matrix. 

ODINITION 2 .. 9. The degree v(P) of P is the length of its longest chain. D 

In all the exa,aq,les v (P) • 2. 

The following decomposition result is now easily established. 

' 

• 
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LEMMA 2.9 •. Let P have spectral radius a and degree v. There exists a parti

tion {D(v), ••• ,D(1),D(O)} of the state space S such that D(k) is the union 

of all classes with depth k, fork 

triction of P to D(k) x D(t), then 

(k !) = 0,1, ..• ,v. !f P ' denotes the res-
p (k,t)= 0 fork ( 0 ) < t k,R. = ,1, ••• ,v. 

= 
A.fter possibly pern1uting the states we may write 

(2.2.1) 

p ( V , v) p ( v , v- I ) • • • • • 

(v-1, v-1) 
p ..... 

• • • • 
• • 

• • • • • • • 
♦ 

P (v, 1) 

p (v-1, I) 

• 
• 
• 
• 

p(l,1) 

P(v,O) 

P(v-1 ,O) 
• 
• 
• 
• 

p(],0) 

p(O,O) 

We have cr(P(k,k)) = a fork= 1, ••• ,v and cr(P(O,O)) < cr (if D(O) 
(k) 

e•pty). Furthermore, there exist vectors u > 0 such that 

(2.2.2) k = l, ••• ,v. 

• 1s not 

PROOF. Since the degree of Pis v, there exist classes with depth k, for 

k = l, ••• ,v, and possibly classes with depth zero (nonbasic classes which 

do not have a.ccessto any basic class). Obviously, a class of depth k has 

no access to a class of depth t > k, hence P(k, R.) = 0 for k < !. Basic --
classes with depth k do not have access to any other class of depth k, 

whereas nonbasic classes with depth k must have access to at least one ba

sic class of depth k. Furthermore, cr(P(k,k)) = cr fork= 1, .•• ," and 

a(P(O,O)) < a by proposition 2.3. and definition 2.5. Proposition 2.4. now 

implies the existence of vectors u(k) > 0 such that (2.2.2) holds for 

Remark. Note that each state in D(k) has access to some state in D(k-1), 

fork= v, v-1, ••• ,2. 

□ 

DEFINITION 2.10. The partition {D(v), D(v-1), ••• ,D(l), D(O)}, such that 

D(k) contains all classes with depth k (k = v, v-1, ••• ,1,0), is called the 

principal partitio·n of S with respect to P. 0 

Consider, once again, the matrix of example 2.3. We find D(2)={1,3,4}, 

D(l) • {2,5}, D(O) = {I. In other words, after permuting the states we have 
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the following structure: 

1 1 0 4 0 

1 1 0 4 
p (2, 2) P (2, 1) 

2 0 4 
p --

2 0 p(l,1) 

2 

Both pC 2 ,z) and P(l,l) possess a strictly positive right-eigenvector, asso-
' 

ciated with eigenvalue 2. If we define an ''aggregated'' state space 

S' = {I' ,2'} with I' = D(l) and 2' = D(2), and an ''aggregated'' matrix P' 

on S' x S' by 

P' = 
2 
0 

4 
2 

then the behaviour of powers of P' is in essence the same as the behaviour 

of powers of P. Note that P' has been investigated in example 1; there we 

saw that the position of the basic classes determined the asymptotic beha

viour of x(n) = Pn x(O) as n 4 ~. More generally we have 

radius cr and degree v and let 
I 

LEMMA 2.10. Let P have spectral 

_{ D (") , D ( v- 1 ) , · ••• , D ( 1 ) , D ( 0) } be the principal partition of S with respect to P. 

Choose x(O) > 0 and let x(n) = Pn x(O), n = 1,2, •.•• Then there exist con-

stants c
1

, 

and 

lim 
Il loo 

< --
n -1 

k-1 

-n 
<J x(n). = 0 

l. 

-n 
cr x(n). < 

l. = i € D(k); k = 

i € D(O). 

The proof of lerr,01a 2.10 is postponed until section 2.3, where it 

l, ... ,v, 

□ 

follows i11n11ediately from a general result concerning the structure of gener-

alized eigenvectors, associated with the spectral radius of 

negative matrix. For a direct proof of ler1u11a 2.10., see ZIJM 

• a square non-

[76]. 
• 

• 
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Len11r1a 2. 10. shows the desired relationship between the behaviour of 

x(n) = Pn x(O) and the position of the classes of P. The concept of ''depth 

of a class C" appears to play a key role, which fleans that the maximal num 

ber of basic classes which can be found in a chain, starting with C, is 

relevant. A relationsbip, completely analogous to(*), exists between the 

height of a class and the behaviour of x(O)TPn, restricted to that class, 

as n ➔ 00 (note that the depth of C with respect to Pis equal to the height 

of C with respect to PT). 

We conclude this section with an extension of le11111ias 2. 9. and 2. 10. 

which will be needed in the sequel. Note that the concepts ''basic 

class'', ''depth'' and ''degree'' are defined with respect to cr(P). However, if 

procedure, i.e. decompose 

this way we finally obtain 

(O O) D(O) ~~and o(P ' ) ~ 0, we may repeat the 
(O 'O) • 1 h C • . • P in exact y t e same way. ont1nu1ng 1n 

2.11. Let P be a square nonnegative matrix. There exist ------L • an integer 

r = r(P) and a partition {I{l), 1(2), ••• ,I(r)} of the state space S, such 

that the following properties hold: 

(2.2.3) 

a. Let P(k,£) denote the restriction of P to I(k) x I(t). 

Then P(k,!) = 0 if k > t; k,! = 1, ••. ,r. 
= 

b. Fork< 1,we have cr(P(k,k)) with equality --
only if each state in I(k) has access to some state in I(t), 

c. There exist strictly positive vectors u(k) such that 

k = 1,2, ... ,r. 

d. Choose x(O) > 0 and let x(n) = Pn x(O) for n = 1,2, •••• 

For each k € {1,2, ••• ,r} define the integer tk by 

t. ·-k .- {t I o < 1 

and Sc:= r-k+l if the minimum does not exist. 

depending on x(O) only, such that 
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n 

t -1 
k 

• 

for i E I (k) , k = 1, •.• , r and n E N. □ 

D~FINITION 2. 11. The partition { I ( 1), I (2), ••• , I (r)}, discussed in le111111a 2. 11 

is called the spectral partition of S with respect to P. 

In the next section we discuss generalized eigenvectors, associated 

with the spectral radius of a square nonnegative matrix. It will appear 

that a strong relationship exists with the decomposition result of le111n1a 2. 9. 

2.3 Generalized 
• • 

• eigenvectors 
i I I P~ • I I 

In the preceding sections we have seen that nonnegative matrices with 

strictly positive eigenvectors have nice properties, in particular with res

pect to their powers (note that for these matrices the integer r(P), defined 

in len1111a 2. 1 l , is equal to one) • One of the most important cases where such 

a strictly positive eigenvector does not exist is the case with the degree 
i 

of P.larger than one. In this case the spectral radius o(P) is degenerated 

as an eigenvalue (i.e., the number of independent eigenvectors associated 

with o(P) is smaller than its algebraic multiplicity), which implies the 

existence of generalized eigenvectors (cf. PEASE [44]). In this section, 

the structure of these generalized eigenvectors is studied and related to 

accessibility relations between basic classes and so to the decomposition 

result of le11,1·1ia 2. 9. 

Let us start with a fortrlcl l definition. 

DEFINITION 2.12. Let P have spectral radius cr and for k e: lN let Nk(P) be 

the null space of (P-crI)k. The index n(P) of Pis the smallest nonnegative 
. k k+l integer k such that N (P) = N (P). D 

If Pis an N x N matrix with spectral radius a and index n, then n ~ N and -
• 

fork> n --

(compare e.g. DUNFORD AND SCHWARTZ (21), p.556). The elements of Nn(P) are 

called generalized eigenvectors. 

raZized eigenvector of order k. 

k __ k-1 If x e N (P)\ N-~ (P), we call x a gene-

j 
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associated with 
• • nice properties .. 

ROTHBLUM [48] showed that generalized eigenvectors, 

the spectral radius of a square nonnegative matrix, have 

Before discussing his results we consider once again the 

2. 1 . 

matrix of example 

Example 2. 1. (continued). Define P, w(l) and w(2) by 

p = 

Then, clearly, 

2 4 
0 2 , w(l) = 

4 
0 

, w(2) = 1 
1 

P w ( 2) = 2w ( 2) + w ( l ) , P w ( I ) = 2w ( l ) . 

• 

Hence w(2) is a generalized eigenvector of order 2. Note that w(2) is strict

ly positive. 

One may wonder whether in general the generalized eigenvector of 

highest order can be chosen strictly positive. It is intuitively clear that 

the position of the·zeros in any generalized eigenvector must be related to 

the block-triangular structure, presented in le111111a 2. 9. The fol lowing result 

can be established (ROTHBLUM [48]). 

) 

THEOREM 2. 12. Let P have spectral radius o and degree v. Then for k = 1, •• , " 

there exist generalized eigenvectors w(k) of order k such that 

(2.3.1) P w(v) = cr w(v) 
• 

(2.3.2) P w(k) = cr w(k) + w(k+l) k = l, ••• ,v-1. 

Let {D(v)~ D(v-1), •.. ,D(l), D(O)} be the principal partition of S with res

pect to P. Then the vectors w(k) can be chosen in such a way that for 

and 

w(k). > 0 
1 

w(k). = 0 
l. 

" for i € \.) D(t), 
.t=k 

k-1 
for i € _, D(t). 

.t=O 
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PROOF. As before, let P(k,.l) denote the restriction of P to D(k) x D(.l), 

and fork= 1,2, .•• ,v define 

p(k,k) 

R(k) := 

p (k, k-1) ••••• 

(k-1,k-1) 
p ..••• 

• • • • • 
• 

• • • 
• • • • 

p.(l_<., 1) 

p (k-1, 1) 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

Noth that R(v) = P. We shall prove, by induction with respect to k, that 

fork= 1,2, ••• ,v there exists a sequence of generalized eigenvectors 

y( l), ••• ,y(k) such that 

(2.3.3) 
R(k) y(!) = o y(.l) + y(t+l) 

R(k) y(k) = cr y(k) 1 

with y(.l). = 0 
l. 

for i € 

t-1 

n=O 
D(n), y(.l). > 0 for 

l. 

= 1, ••• , k-1 

k 
• 
l. € D(n) • 

By lerr1r11a 2. 9 there exists a vector y ( 1), defined on D (0) u D ( 1), such 

that 
, 

R(l) y(l) = a y(l), 

with y(l). = 0 for i E D(O), y(l). > 0 for i E D(l). 
l. ' ' 1 k-1 

defined on _ D(n), 
n=O 

Suppose, there exist vectors x(l), x(2), ••• ,x(k), 

such that 

(2.3.4) R(k-1) x(l) = o x(.l) + x(t+l) .l = 1 , • • • , k- 1 , 

1-1 k-1 
with x(.l). = 0 for i € ._ D(n) and x(t). > 0 for i € _, D(n) (t = l, •• ,k) 

1 n=O 1. n= .l 

We want to find vectors y(l), y(2), •. ,y(k), defined on 

that (2.3.3) holds. It seems natural to take 

k-1 

k 
D(n) , such 

n=O 

y(t). :=x(t). 
1 ]_ 

i € _ D ( n) , !l = 1 , • • • , k • 
n=O 

• 
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f 1 k d n - 0 1 . ( (k) or~= , ••• , an N - , , ••• ,k-1, and y n) the restriction of y(n) to 

D(k) for n • 1, •.• ,k, then (2.3.3) reduces to 

(2 .3. 5) 
• 
• 
• 
• 

• 
• 
• 
• 

= a y (k) (k) 

= a y(k-1) (k) 

• 
• .. 

= a y(l) (k) 

+ y(k)(k) 

• 
• 
• 
• 

+ y(2)(k). 

N h P (k, k) . 1 . . . . d . h ote tat possesses a strict y positive eigenvector, associate wit 

a. By let1 11 11a 2. a. l in the appendix to this chapter, there exists a solution 
(k) (k) . {y(k) , ••• ,y(l) } of (2.3.5) with 

' 

Since the restriction of (P(k,k))* to the basic classes of P(k,k) is • strict-

ly positive (le1,,1,,a 2.5) and since each state in D(k) has access to some 

state in D(k-1), it follows from x(k-l)(k-l) >,O that 

y(k) (k) > 0 • 

We now have found a solution {y(l), .•• ,y(k)} of (2.3.3). Note that, 

if {y(l), ••• ,y(k)} satisfies (2.3.3), then this holds also for 

{w(l), .•• ,w(k)}, defined by 

w(k) = y(k) 

w(t) = y(!) + a w(i+l) == k-1 , k-2, .•• , 1 ; a.E JR • 

Since y(k)(k) > O, we can choose a so large, 

t = 1, ••• ,k. This proves the desired results 

be completed by induction. 

that w(t). > 0 for i € D(k), 
1 

for R(k). The proof can now 

D 

COROLLARY. Let P have spectral radius cr and index v and suppose that each 
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' nonbasic class has access to some basic class. Then there exists a general-

ized eigenvector w(v) of order v, associated with a, such that w(v) > O. D 

It is easily verified that the generalized eigenvector of order 2, 

associated with the matrix P of example 3 in section 2.2, can be chosen 

strictly positive; take e.g. w(2) = e. 
• • • • Theorem 2.12 enables us to show a relationship between the position 

of basic and nonbasic classes of P and the behaviour of the powers of P. 

The following result holds. 

THEOREM 2.13. Let P have spectral radius a and degree v, let 

{D(v), D(\>-1), ••• , D(l), D{O)} be the orincinal nartition of S with respect 

to P, and let {w(v), w(v-1), ••. ,w(l)} be defined as in theorem 2.12. Choose 

x(O) > 2, and let x(n) :== Pn x(O), n = 1,2, •••• Then there exist constants 
c 1,c2 > O, such that 

n-k+l 
(J 

n-k+l a w(k). 
l. 

i e S \ D (O) , n E: lN , 

and 

-n limo x(n). = 0 
l. n ►eo 

, 

i E: D(O). 

PROOF. Let, as before, P(k,!) denote the restriction of P to D(k) x D(!) 

and w(k)(!) the restriction of w(k) to D(i), for all k,1. Hence P(k,t)== 0 

for k < t and w(k) (t) = 0 for k > t. •since a(P(O,O)) < a , there exist 
-

(by le11011a 2.6.c) a nonnegative 

fined on D(O), such that 
real number :\ < a and a vector w(A)· > O, de--

< ). w(:l.). 
= 

Choose w(A) such that P(k,O) w(A) < w (k) (k) for k = 1, .•• , v and let c > 0 = be 

chosen such that x(O). < c w(l). for i € S\D(O) and x(O). < c w(A). for 
1= 1 1= l. 

i € D(O). Then, by induction, it is easily shown that 



X (n) • < 
l. = 

x(n). < 
1 = 

n CA w(:\). 
l. 

n-k+l 
CJ 

37 

i € D(O) 

i e D(1), 1 = 1, ••• ,v. 

The other inequalities are proved similarly. By choosing appreciate c 1 and 

c
2 

the theorem follows. □ 

Le111tla 2.10 in section 2.2 is an ino11ediate corollary of theorem 2.13. 

Theorems 2. 12 and 2. 13 can be extended in the same way as lenactas 2. 9 

and 2. 10 (which were extended to letirirta 2. 11) by decomposition of the matrix 

p(O,O) if D(O) ¥~-Details are left to the reader. 

The results in sections 2.2 and 2.3 and particularly theorem 2.12 can 

be viewed as extensions of the Perron-Frobenius theorem. Instead of using 

familiar matrix-theoretical arguments,we preferred another approach, leading 

to these results. The advantage of a characterization of nonnegative eigen

vectors and generalized eigenvectors in terms of classes and accessibility 

relations between these classes is that it can be extended to sets of non

negative matrices (cf. chapters 3 until 5). Once having proved these exten

sions, convergence results for dynamic progra11111,ing recursions of the type 

(1.2.1) are easily established. These convergence results then also hold 
' 

for the ''one-matrix'' case; we do not discuss them here, since they follow 

i1,111ediately from results in the forthcoming chapters. 

2. 4. Some further results 

In this section, we relate some of the preceding results to concepts 

in more famj liar matrix theory. We saw already that the n1unber of basic 

classes of a square nonnegative matrix Pis equal to the algebraic multi-

1 . .. 
p l.Cl.ty 

v(P) of 

of its eigenvalue cr(P). In this section it is shown that the degree 

a nonnegative matrix Pis equal to its index n(P). Moreover, a 

basis, consisting of nonnegative vectors only, for the algebraic eigenspace 

Nn(P)(P) is constructed. Some of these results have been proved in ROTH

BLUM [48]; however, the proofs given here are completely different. The 

results are not used in the analysis in the forthcoming chapters; we merely 

state them for completeness. 

Theorem 2.12 implies the existence of a generalized eigenvector of 
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order v = v(P) for a nonnegative matrix P with spectral radius cr(P) and 

degree v(P) (i.e. the vector w(l), defined by (2.3.2)). It follows from 

definition 2.12 and theorem 2.12 that v(P) < n(P), the index of P. It is --
not hard to show that n(P) = v(P). First we need 

LEMMA 2.14. Let P have spectral radius o and let {x(l), .•• ,x(m)} be a set 

of generalized eigenvectors such that 

P x(m) = cr x(m) 

(2.4.1) 

P x(k) = cr x(k) + x(k+l) k = 1, .•. ,m 1. 

Let D(O) c S be the union of all classes with depth zero. Suppose D(O) # 0. 
Then 

x(k). = 0 
l. 

i e D(O), k = 1, ..• ,m. 

PROOF. We proceed by backward induction. Note that D(O) #~implies a> 0. 

If P x(m) = o x(m) then 

}: 
jeD(O) 

p .. x(m). = o x(m). 
1J J 1 

i e: D (0) , 

1 1 

for i E D(O) and k = m, m-1, ••• , n+l (with n > 1). Then 

P x(n) = a x(n) + x(n+l) implies 

p .. x(n). = a x(n). 
1J J 1 

Hence x(n). = 0 for i E D(O). 
l. 

--

i e D(O). 

□ 

Now, let P, cr and {x(l), •.• ,x(m)} be defined as in len11na 2.14. From 

(2.4.1) it easily follows that 

(2.4.2) m n-1 (J . Pn x( 1) = x (m). 

• 
• 

Using this, we shal 1 prove : 



THEOREM 2.15. Let P have spectral radius a, degree v and index n. 

Then n == v. 

PROOF. Suppose n > v (recall that n <vis impossible). Let 

{x(l), x(2), •.• ,x(v), x(v+1)} be a set of vectors satisfying (2.4.1) for 

m • v+l. By lemma 2.14 we may choose a constant c > 0 such that 

(2.4.3) -ex ( l) < x( 1) < ex ( 1) 
= 
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with w(l) defined as in theorem 2.12. Since w(l) is a generalized eigenvector 

of order v, we have 

n. ►oo 

Hence, by (2.4.3) and (2.4.2), 

= 0 • 

n>oo 

The conclusion is : n = v. D 

Finally, we show how a basis, consisting of semi-positive generalized 

eigenvectors, can be constructed for the algeb.raic eigenspace Nn (P) (P). 

Recall that the number of basic classes of a square nonnegative matrix P 

is equal to the algebraic multiplicity a of its eigenvalue cr(P). Choose one 

particular basic class C and let B be the set of states which have access 

to C. Note that Cc B, cr(PB) = o(P) and v(PB) = k, where k denotes the 

height of C with respect to P. According to theorem 2.12, there exists a 

generalized eigenvector uB of order k for PB, associated with cr(PB) = o(P), 

which is strictly positive on B (each class in B has access to C). The 

vector u, defined by 

B 
u. i € B 

1 u. --
l. 

0 i € S\B 

is then a semi-positive generalized eigenvector of order k for P, with 

respect to cr(P). Repeating this procedure for all basic classes of P, we 

obtain a set of o. semi-positive generalized eigenvectors. The proof of the 
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fact that these generalized eigenvectors are independent (and hence form 

a basis) is trivial. 

2.5. State classifications 

Before turning to sets of nonnegative matrices with the product 

property we introduce the concept of state classifications, which enables 

us to simplify the proofs in the next chapter considerably. We start with 

two definitions. 

DEFINITION 2.13. Let C be a class of states, associated with P. The 

accessibility set A(C) is then the set of all states to which Chas access. 

□ 
DEFINITION 2.14. We say that a class C associated with P has growth rate 

p and grOuJth index k, if cr(PA) = p and v(PA) = k, where A is the 

accessibility set of C. □ 

Note that, if a(PA) = a(P)~ then the growth index k of C is precisely 

equal to its depth. In fact, in le11,1ria 2. 11 the classes of P are ordered 

according to their growth rate and growth index. The reader may verify that 

the 

A state classification is now defined as follows. 

DEF IN IT ION 2. l 5. A state iES has growth rate p and growth index k, with 

respect to P, if this is so for the class that contains i. 

Notation: (a.(P), v.(P)) = (p,k). 
l. 1. . 

Hence ,in lex,,,r,a 2. 11, we have (cr. (P) , \). (P)) }- (a. (P), v. (P)) for 
- i i J J 

i€I(m), jcI(n) with m ~ n ~ r (here~ means lexicographically greater). 

The following assertions are easily verified. 

P possesses a strictly positive generalized eigenvector of highest 

order if and only if cr.(P) = cr(P) for all jcS. There exists a strictly 
J 

positive right-eigenvector, associated with o(P), if and only if 

(a.(P), v.(P)) = (cr(P), 1) for all jeS. 
J J . 

D 



The names '' growth rate'' and ''growth index'' are suggested by the 

following: let P be a square nonnegative matrix, x(O) be a strictly 

positive vector and let x(n) := Pn x(O). Then 

o. (P) 
J 

= sup { A I 1t > 0 
-n 

; limsup A 
n ➔ oo 

x(n). 
J 

> O}, 

v, (P) 
J 

= sup {k I k € m ; limsup 
n -1 -n 

(k 
1

) (o.(P)) x(n). > O} 
- J J n:-+a, 

(compare lemma. 2.11). 
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In the next chapter, state classifications will be used in order to 

develop iteration procedures for a set K of nonnegative matrices with the 
.... 

product property. The objective then is to find a matrix P such that 

(cr.(P), 
J 

.... 
v. (P)) 

J 
(a. (P) , v. (P)) 

J J 

for all PEK, i.e., a matrix that maximizes the growth of the dynamic system 

(1.2.1). 

, 
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Appendix 2.A. A furtda~ent,~1 s,et ·~f. eguations. 

In this appendix we treat a technical detail, needed for the proof 

of len1111a 2. 12. 

LEMMA 2.a.1. Let P have spectral radius~ and a strictly positive right-eigen

vector associated with cr. Let, furthermore (r(l), ••. ,r(k-l)) be a given 

sequence of vectors. Then there exists a solution (y(I), ••• ,y(k)) of the 

set of equatlons 

Py(k) 

Py (k- I ) + r (k-1 ) 

(2.a.1) 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

--
--

cr y (k) 

a y(k-1) + y(k) 
• 
• 
• 
• 
• 

• .. 
• 
• 
• 

Py (I) + r( I) = <J y(l) + y(2) 

PROOF. By le1ii111a 2.5, P* exists and (crI-P+P*) is non-singular. Iteration 

of the first equation yields 

so, by definition * of P, 

(2.a.2) p* y(k) = y(k). 

n € lN, 

' 

Multiplying both sides of the equalities (2.a.1) with P*, we obtain 

(2.a.3) * * P r(!-1) = P y(i). 

Now, add the equation 

(2.a.4) p* y(l) = O. 

' 

Then, by combination of (2.a.1), 

to verify that a unique solution 

exists , nam.e ly 

= 2, ••• ,k. 

( 2 • a. 2) , ( 2. a. 3) and ( 2. a. 4) 

(y(l), ••• ,y(k)) of (2.a.1) -

• • it 1.s easy 

(2.a.4) 
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y(k) * - P r(k-1) -
y(k-1) * -1 (crI-P+P ) (r (k-1) + p* r(k-2) - y(k)) 

• • • • • 
• • • • • • • • • • 

y(2) * -1 (r(2) + p* r ( 1) - y (3)) - (crI-P+P) -
y( I) * -1 (r( l) - y(2)). - (crI-P+P ) -

Hence, certainly a (not necessarily unique) solution of (2.a.1) exists. D 

, 
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CHAPTER 3 

SETS OF NONNEGATIVE MATRICES: 

BLOCK-TRIANGULAR STRUCTURES 

In this chapter we deal with a finite set K of nonnegative N xN 

matrices with the product property. In other words: for each i E {1,2, •. ,N} 

there exists a finite set, A. say, of N-dimensional nonnegative row vectors 
1 

and K is the set of all l'JxN-matrices P with P. E A., i = 1, ••. ,N (cf. 
l. 1 

definition 1.1). The set {l, ••• ,N} is called the state space and denoted 

by S. 

In particular, we are concerned with the properties of a nonlinear 

mapping which often appears in a dynamic progra111111ing context and which for 

each vector x E JR N is defined by 

(3.0.1) x-+ max Px 
PeK I 

From definition 1.1 it follows that, for each x € 

~ -P = P(x) € K such that 

I"x = max Px, 
Pe:K 

:m.N 
' 

there exists a matrix 

a property, which is usually referred to as the optimal choice property 

(cf. SENETA[52,). The main objective of this chapter is to show that a 

decomposition result, similar to the one presented in le1r1111a 2.11, exists 

for the nonlinear mapping, defined by (3.0.1). This result will prove to be 

fundamental for the whole monograph. It will be exploited in chapter 4 

in order to analyze the asymptotic behaviour of the dynamic progranlt11ing 
• recursion 

(3.0.2) x(n) ·= max Px(n-1) 
Pe:K 

n = 1,2, ••• ; x(O) > 0, 
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under some restrictions on the set K. In chapter 5 the most general case 

will be treated. Simultaneously, a generalized eigenvector theory, similar 

to the results of theorem 2.12, will be developed for the nonlinear mapping, 

defined by (3.0. 1). 

Intuitively, it will be clear that matrices with maximal spectral 

radius and maximal index will play a special role in recursions of the type 

(3.0.2). Recalling the definitions of growth rate and growth index (cf. 

section 2.5) and the results of ler,11ria. 2.11, one may even conjecture that 
-matrices PE K, for which 

(3.0.3) 
... ... 

(o . (P) , v. (P)) }- (o . (P) , v. (P)) 
1 1 ; 1 1 

i ES, p € K 

ma~imize the asymptotic growth of the vector x(n), defined by (3.0.2), as 

n tends to infinity. In section 3.2, we show how such matrices can be found 

in a constructive way (by developing an iterative procedure). In order to 

keep the exposition transparent (and to demonstrate the techniques that 

will be used), we start with the simple case where all matrices are 

irreducible (section 3.1). The results of this chapter mainly stem from 

SLADKY [58] and ZIJM [75]. 

3.1. Sets of irreducible 
., ,1w1n an 

• • nonnegative matrices 
S • I 0 

' 
Since, by the Perron-Frobenius theorem, a square irreducible non

negative matrix P possesses a strictly positive right eigenvector u, 

associated with its spectral radius o, it is possible to establish bounds 

for the vector x(n), defined by 

x(n) = Px(n-1) n E 1N 9 x(O) > 0. 

This has been observed already in section 2.1; we saw that 

< x(n) 
= 

if c ,c are chosen such that 
l 2 

n E 1N, 



The question we want to investigate in this section is whether similar 

rttaulta can. be obtained for dyl\a·mic prograwaing recursions of the type 

(3.0.2} x(n) • ux Px(n-1) 
P.eK 

D € ]N ; X (Q) > 0, -

if we a,au• that I( consists of irreducible nonnegative matrices only. 

In otbar words: one may w·onder whether there exists a strictly positive 

vector u and a nonnegative real nu1az1ber cr such that 

aax Pu ia au 
Pel< 

If the answer is affirmative, then iE.1anediately the question arises whether 

a seneralited eigenvector theor)!, analogous to the theory presented in 

chaptet' 2, can be developed for sets of reducible nonnegative matrices. 
~ • ' . • . d. . h h . .11.,1.s section 1s meant to give an 1n 1.cat1on t at sue extensions are 

.. .Zl . ..b. • tndeeu poss1. 1 le. The following result has been proved by MANDL AND SENETA 

[ 39]. 

L.IHM! l. l. Let K contain only irreducible matrices and let 
.... 
•QI :• Ml!t {c, (P) I PE"K'}. Then there exists a PE K, with spectral radius; 

.... 
and associated right eigenvector u > 0. such that -

(3.1 .. 1) 
~......, -A .-._.. 

p U • Miit Pu • C1 tt 
P€K. 

PROOF. Consider the following iteration procedure: 

a. Choose P(O) e K arbitrary • 

. b .. For m • 0, 1, 2, .... , choose P(m+ 1) e K such that 

P { m+ l ) u ( 11) • mx Pu ( a) , 
PE:K 

with 

P(m+ 1) • : = P(a) • if 
l. 1. 

(P(m)u(m)). 
l. 

= (max Pu(m)) .• 
K l Pe 

Here u(:m) denotes the strictly positive right eigenvector, 

associated with the spectral radius cr of P(m). 
m 

c. Stop, if P(m+]) = P(m). Define ; := a ,i:i :== u(m) and P = P(m). 
m 

• 
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Obviously P(m+l)u(m) > P(m)u(m) = a u(m) hence a 1 > o by lerr11oa 2.6, = m .. m+ = m 
whereas cr 1 = cr, implies P (m+ 1) u (m) = cr u (m) = P (m) u (m) by lemma 2. 7. m+ m m 
In the latter case we have P(m+l) = P(m). In other words: P(m+l) ~ P(m) 

implies cr 1 > cr, which means that the procedure does not cycle and, m+ m 
hence, ends after a finite number of steps, since K is finite. 

It follows from lem1,1a 3. 1 that for 

(3.0.2) 

we have 

x(n) = max Px(n-1) 
PEK 

if c 1,c2 are chosen such that 

C U < 
l = 

n E ]N ; X (0) > 0 

n E lN, 

D 

Hence, upper and lower bounds for x(n), defined by (3.0.2), exists. A more 

precise description of the asymptotic behaviour of x(n) , for n>~, will be 

given in chapter 4. 

Ler1irr,a 3. 1 shows that it is possible to extend results for one square 
' 

nonnegative matrix to the nonlinear mapping defined by (3.0.1), at least 

under special conditions. In the next section we shall attempt to generalize 

le1a1ua 3. 1 to the case where K is a finite set of (possibly) reducible 

nonnegative matrices with the product property; the procedure in the proof 

of le1uma 3. 1 then appears as a special case of a general iteration procedure • 

3.2. Sets of reducible • matrices 
S. HIP II A' I S 

In section 2. 2, lenn11a 2. 11, we presented a decomposition result for 
• 

square nonnegative matrices which was strongly related to the behaviour 

of their powers. In this section, the extension of this result to sets of 

square nonnegative matrices with the product property is given. The 

existence of such an extension implies that it is possible to establish 

bounds, similar to those in le1·nma. 2. 11 .d, for the vector x(n), defined by 

(3.0.2). 

The precise formulation of the main result of this section reads as 
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follows: 

THEOREM 3.2. Let K be a finite 
• product property. There exists 

set of square nonrLegative matrices with the 

an integer rand a partition {I(l), •.• ,I(r)} 

of the state space S, such that the following properties hold: 

a. Let P(k,!) denote the restriction of P to I(k) x I(!). 

Then P(k,!) = 0 if k > 1 (k,! • l, ••. ,r) for each PE K. 
= 

..... 
b. There exists a matrix Pe Kand strictly positive vectors 

(3.2.1) 

defined on I(k), such that 

where 

.... 

= max 
Pf::K 

.... 

k = 1,2, ••• ,r, 

k = 1,2, ... ,r . 

Fork< 
= l we have ak with equality only if each state 

in I(k) 
..... 

has access to some state in I(i) under P. 

c. Let x{O) > 0 and let x(n) be defined by (3.0.2). For each 

k € {1,2, ••• ,r} let the integer tk be, defined by 

.... .... • • I {j o, ak} if such • • min J > ak+j < a J exists 
tk ·-.-

r-·k+l otherwise. 

Then there· exist positive constants c
1 
,c2 > 0 such that 

< ( n )-1 
= t -1 

k 

.J' 

for i € I(k), k , 
= 1,2, ••• ,r and n E IN • 

The proof of theorem 3.2 will be split up into several le1,,1,,as. Recalling 

the definitions of growth rate and growth index (section 2.5) one easily 
verifies that the . ...... 

matrix P, introduced in theorem 3.2.b, satisfies 
• 

□ 

(3.2.2) (o.(P), v.(P)) ► (o.(P), v.(P)) 
1 l. = l. 1 i e: I (k) ; k = I , ••• , r.; P e K,, 

• 

• 

• 
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since, by ler11111a 2. 6, 

.... 

and P(k,!) = 0 fork> 1 and for all PE K. 
::::: 

This section will be devoted to the development of an iterative 
-procedure for finding such a matrix Pin a constructive way. Note that we 

h,ave to detern1ine both a ''simultaneous block-triangular structure'' for all 

matrices in K arid a set of vectors u(k) (k = 1,2, ••• ,r) such that (3.2.1) 

holds. Analogous to the irreducible case we can construct these vectors by 

an iterative procedure (although the matrices P(k,k) are not irreducible 

in general); however, difficulties arise, if, during an improvement step, 

the block-triangular structure changes. For this reason, we first apply 

a so- called completion procedure: starting with an arbitrary matrix we 

reach, after a finite number of steps, some kind of ultimate block-triangular 

structure. Once having obtained this ultimate structure, we may try to 

improve the eigenvectors. With the resulting matrix we again start a completion 

procedure, etc. 

So theorem 3.2 will be established by constructing an iteration 

algorithm each step of which consists of a completion procedure and an 

improvement procedure. The proof of the fact that these procedures do not 

cycle is rather complicated, therefore it is divided into a number of steps. 

Let us start with a description of the completion procedure. 

_Co;mpleti_o_n pr,oc.~-~-~~-e 

Start: Let P(O) EK be • given. 

Form= 0,1,2, ••• , apply the following iteration step until the stopping 

condition is satisfied. 

Iteration step: By permuting the states, we may write P(m) (the outcome of 

the In th iteration step) in the block-triangular forn1 of len1ii1a 2. 11. Let 

{r 1 (m), ••• ,Irm(m)} be the spectral partition of S with respect to P(m) (cf. 

definition 2.11). 

Now,there are two possioilities. 

a. If, fork = 1,2, ••• ,r -1 and for 
m 

all Pe: K 

r 
m 

p •• = 0 
l.J 

for all i € I (m) 
.l=k+l f, ' 

and all j 
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then we define p·(m+ l) : = P (m) • 

b. If, on the contrary, there exists an integer t, 1 ~ t ~ rm, such 

that, for I< k < t and for all PE K 

Stop: if 

of P (0). 

= 
r 

m 
P •. = 0 

l.J for all i E r1 (m) and all j E Ik(m), 
.t=k+l 

whereas, fork= t, there is a PE k such that 

r 
m 

p •. > 0 
l.J for some i E _ J1 (m) and some j E Ik(m), 

i=k+l 

then we proceed as follows. 

For PE: K, let D(m,P) denote the set of all states which have 

access to Ik(m) under P and let 

D(m) D(m,P). 

Since K has the product property, there exists a matrix,P say, such 
""" that all states in D(m)\It(m) have access to It{m) tinder P. Now, 

determine P(m+l) such that 

r-., 

P. 
l. , 

P(m+l). --·1 
P(m). 

1 
otherwise • 

- -P(m+l) = P(m). Define P(O) := P(m). P(O) is called a completion 

That the completion procedure does not cycle, and hence ends after a 

finite number of steps, is a consequence of the following result. 

LEMMA 3.3. Let P(m) be the matrix, resulting from them th iteration step 

in a completion procedure (m = 0,1,2, ••• ). Then 

" (3.2.3) (cr.(P(m+1)), v.(P(m+l))) > (a.(P(m)), v.(P(m))) 
1 l. = 1 l. Vi E: s, 

with equality for all states if and only if P(m+l) = P(m) • 
• 

• 



PROOF. Suppose 

i -e: It (m). In 

P(m+l) ~ P(m). Let (cr.(P(m)), v.(P(m))) =: 
1 1. 

(P, n) for 

order to simplify notations we define 

D := D(m) 
rm 

E := ( ......, It(m))\D(m) 
i=t 

Now each state in D has access to some state in A under P(m+l). 

P(m+l). = P(m). for i EA it follows that each final class C of 

• Since 

P(m+l) D 
l. 1 

contains a final (and hence basic) class B of P(m)A. Now, there are two 

possibilities: 

either: B c C, in which 
;t 

proposition 2.3 

case cr(P(m+l)C) > cr(P(m+l)B) = cr(P(m)B) = p by 

and the fact that P(m+l)i= P(m). for i EB, 
C i 

or : B = C, in which case o(P(m+l)) = cr(P(m)B) = p. 

Chas access only to classes in E (under P(m+l)). If cr(P(m+l)C) = P, it 
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follows that C = B, in which case 

that 

v.(P(m+l)) =v.(P(m)) for i E: C. It follows 
1. J. 

at_least for all states i in a final class 
D of P (m+ 1) and hence, imu1ediately 

for all states in D. Since P(m+l). = P(m). 
l. 1. 

for i € E, it follows that (3.2.3) 

holds for all states in E. Finally, one easily verifies that (3.2.3) now 

holds for all i ES, again since P(m+l). = P(m). for i € S\D. 
]. J. 

Equality in (3.2.3) for all states holds if and only if 

A\D = It(m) \D(m) = ~, in which case P(m+l) = P(m). 

-Once having obtained a completion P(O) of P(O) (i.e. an ultimate 

block-triangular structure) we try to improve the eigenvectors. This 

improvement procedure reads as follows. 

_In:ierovemen t pro,ce~ure_ 
-Start: Let P(O) be the result of a completion procedure and let 

-

□ 

{I
1
(0), ••• ,Ir (0)} denote the spectral partition of S with respect to P(O). 

eigenvectors, given by (2.2.3). 
- . . 

Set P(r
0

+1) == P(O). Form= r
0
,r

0
-1, ••• ,2,1, apply the following improvement 

step: 
,..,, 

~mprovement step: Suppose we have obtained P(m+l). Determine Pe K such that 
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(3.2.4) 

with 

I 
je:I (0) 

m 

c,.., 

p •• 
1J 

"' -P. :=P(O). 

u(O)~m) 
J 

if 

= max 
PEK 

p .. 
J.J 

I -p (0) .. 

u(O) ~m) 
J 

I 

• 

i € I (0), 
m 

p .. 
1 l. jEI (0) 

m 
1J 

u(O)~m) = 
J j cl (0) 

m 
1J 

Define P(m) by 

-
P(O). 

1. 

,..., 
P(m). = P. 

1 l. 

P(m+l). 
1. 

-Stop: P(l) is called an improvement of P(O). 

-

m-l 
• 
1 € 

k==l 

i E I (0) 
m 

r. 
m 

• 
1. € 

k-m+l 

That P(l) is really an improvement of P(O) follows from a combination of 

the following two results. First we have 

LHMMA 3.4. In the improvement procedure we have form= r 0 ,r0-1, •.• ,2,I: 

(3.2.5) 

PROOF. Let 

, 

(<1.(P(m)), v.(P(m)))) )-. (cr.(P(m+l)), v.(P(m+l))) 
l. 1 = l. l. 

i € s. 

-(cr.(P(O)), 
1 

-v.(P(O))) 
l. 

=: (p, n) for i e I (0). For notational 
m 

convenience define 

A:= I (0) 
m 

E ·-.-
ro 

k-m+1 

Now, let C be a final class of P(m)A. Since, by (3.2.4), 

□ 

l p(m) •• u(O)~m) > 
• A J.J J = 

f - (m) 
l p (O) • • u (0) • 

• A l.J J 
= p u(O) ~m) 

l. 
i EC, 

J€ J€ 

it follows that cr(P(m)C) > p (cf. le11·,[11a 2.6). If cr(P(m)C) = p, then by 
= 

1 eri,,r,a 2. 7 



I p <m) •• 
• A l.J J€ 

u(O)~m) = 
J I 

jeC 
p (m) •. 

l.J 

for all i e C, which implies that 

-P(m). = P(O). = P(m+l). 
1 1 l. 

I 
• JEA 

-
p (O) •. 

1J 

• l EC. 

u(O) ~m) 
J 
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Furth~rmore, Chas possible access only to classes in E under P(m). Since 

the same arguments hold for any final class of P(m)A, it follows that (3.2.5) 

holds for all states in A. By arguments, similar to those in the proof of 

len11r,a 3.3, (3.2.5) now holds for all i ES. 

The following lenur1a is useful in the case that equality holds in 

(3.2.5) for all states. 

LEMMA 3.5. Let K be a finite set of nonnegative square matrices with the 

product property. Let P(O) be a matrix with spectral radius cr, having a 

strictly positive eigenvector u(O). Determine P(l) such that 

with 

Suppose 

(3.2.6) 

P(l) u(O) = max P u(O), 
PEK 

if (P(O)u(O)). 
]. 

( cr. (P (I)) , v. (P (I)) ) = ( o, I) 
l. 1 

I 

= (max 
Pe:K 

P u(O)) .• 
]. 

V i e: S. 

D 

Then there exists a strictly positive eigenvector u(l) for P(l), associated 

with cr, such that 

Furthermore 

u(l). = u(O). for i belonging to a basic class of P(l). 
l. ]. 

u(l) > u(O), --

with equality if and only if P(l) = P(O). 

PROOF. Since (3.2.6) holds, the basic classes of P(l) are precisely its 

• 



fi.nal classes. Hence, a strictly positive eigenvector u( 1), associated with 

a, exists for P(l). As in the proof of let1ttt1a 3.4, one has P(l)i = P(O)i for 

i in a final class of P(l). Hence, a final, basic class of P(l) is also a 

final, basic class of P(O). It follows that u(l) may be chosen such that 

u(1). • u(O). for i belonging to a basic class of P(l). 
l l. 

Now let A denote the set of states that do not belong to a basic class 

of P(J). As 

P ( l ) ( u ( 0 )-u ( l ) ) > p ( u ( 0 )-u ( 1 ) ), 
= 

it follows from u ( 1).. = u (0) • . l l. 
for i ~ S\A, that 

A A 
(u(O) - u(l) ) 

A A 
> p (u(O) - u(l) ) 
= 

If u( l). < u(O). for some i E: A, then lemma 2. 8 implies 
1 l. 

contradicting the definition of A. Hence u(l) 

i € S\A. Finally, u(l) = u(O) implies 

> u(O) if u(l). = u(O). for 
= 1 1 

(3.2.7) max Pu(O) = P(I)u(O) 
PEK 

= au(O) = P(O)u(O), 
' 

i.e., P(l) • P(O). This completes the proof. □ 

Translating this result back to the situation of le111tt1a 3 .4, it follows 

that, if equality holds in (3. 2. 5) for some m E: { r
0

, r 0-1, ••• , 2, 1} and for 

all i e: S, then there exists a vector u(l)(m), defined on I (O), which is 
m 

. 1 . . . strict y positive and which obeys 

p (m) •• u (I) ~m) = 
lJ J 

and 

u(l) ~m) > 
1 = 

u(O)~m) 
1. 

u ( 1) ~m) 
l. 

i EI {O), 
m 

i EI (0), 
m 

• 

states i which belong to any class Cc I (0) 
m 

0 

of P(m) with equality for all 

satisfying cr(P(m)c) = P (here P is defined as in the proof of len1111a 3. 4) • 
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Ve have P(m) = P(m+l) if and only if u ( 1) (m) • (0) (m) • 
u , 1n which case 

{3.2.8) I 
(m) 

p ( m) • . u ( 0) . = 
l.J J 

max 
PE:K 

I p .. 
jEI (0) l.J 

i E: I (0). 
m jE:I (0) 

m m 

The reader may notice that the proof of len1111a 3.1 consists of an 

iterative procedure each step of which is in fact an improvement procedure. 

A completion procedure is not needed at all in the irreducible case where 

the state space cannot be decomposed. 

After finishing an improvement procedure, it may be necessary that 

again a completion procedure is started, since the spectral partition of S 

with respect to the preceding completion does not correspond in general 

to the spectral partition of S with respect to the improvement of this 

preceding completion. 

It is now easy to verify that parts a and b of theorem 3.2 follows by 

applying the algorithm, described below. 

Qptima~,,, g~o~tP. .. i ter~ t,ion Er~c~dure 

Start: Choose P(O) € K. 
Form= 0,1,2, •.. , find a matrix P(m+l) as follows: 

-
!~ .. ~ration st~e: Calculate P(m), the completion of P(m). 

-Find P(m+l), an improvement of P(m). 

S~-~2_: if P(m+l) = P(m). Let {I 1 (m), ••• , I (m) 1 denote the spectral 

associated strictly 

set of 

positive eigenvectors, described in lt-!t11,11ia 2.11 (formula 

and 

D 

It follows itxtrnediately from the le11at1AS 3.3, 3.4 and 3.5 that this iterative 

procedure does not eye le and, hence, ends after a finite n,imher of steps. 
,,,.. 

One easily verifies that the resulting matrix P, the partition {I ( 1), ••• , I (r)} 
(1) (r) and the collection of vectors {u , ••. ,u } are precisely those described 

-in theorem 3.2. It follows from (3.2.2) that P is indeed an ''optimal growth'' 

matrix. We now call {I ( 1 ), ... , I (r)} the speatr-al partition of S with respect to 

the set K. 
The proof of part c of theorem 3 .. 2 is postponed until chapter 5, 

where it follows from a more general result. The reason for including part 

c in the forniulation of theorem 3. 2 is that it shows exactly the relationship 



betw•en the spectral partition of S with respect to /( and the first order 

asyaptotic behaviour of the sequence {x(n); n = 0,1, ..• }, defined by the 

dynaaic progr.iaaing recursion (3.0.2). 

Theorem 3.2 is the generalization of letuma 2.11 to sets of square 

nonnegative utrices with the product property or, more precisely, to the 

nonlinear operator defined by ( 3. 0. l) . Le11.nna 2. 11 in turn has been 

f,oraulated as a slight extension of le11u11as 2.9 and 2.10 where we only 

considered the pr~_!);cipa_l decornposi tion of S with respect to P. Al though it 

may see:• superfluous, we also give the direct generalization of lern11ta 2.9 

to sets of square nonnegative matrices with the product property. This 

fot·1mlation will be used as a starting point in the forthcoming analysis 

concerning generalized eigenvectors for sets of nonnegative matrices. We 

first presented theorem 3.2 because we preferred to give a constructive 

proof by means of an iterative method (which implies that the complete 

state space has to be considered). The following result is the analogue 

of leml'll\a 2.9 for the set K; it follows, of course, i111111ediately from 

theorea 3.2. 

THEOREM 3.6. Let K be a finite set of square nonnegative matrices with the 

product property. Let cr := max {cr(P) f PeK} and let \) := max {v(P) I Pe:K, cr(P)=~}. 

Then there exists a partition {D(v), D(v-1), ••• ,D(l),D(O)} of the state 

space S such that the following properties hold: 

L P (k, t) d h . • ( ) a. et enote t e restriction of P to Dk 

Then P(k,L)= 0 fork< n kn O I " P = •. "-, ,Jt, - , , .... , ' E: 

x D(R.). 

K. 

.... 
b. There exist a matrix P € 

.... ,.. .... 
K, with cr(P) = cr and \>(P) = v, and 

strictly positive vectors ~(k), defined on D(k), such that 

P .... (k,k) "-(k) p(k,k) .... (k) ........ (k) 
u = max u = o u 

P£K 
k = 1,2, •• ,v. 

Fork= O, t, .•• ,v, the set D(k) is the union of all classes with 

depth k, with 

max 
Pe:;K 

.... 
respect to P. Furthermore 

• 

c. Choose x(O) > 0 and let x(n) be defined by 



x(n) • max P x(n-1) 
p 

Then there 
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n € JN. 

> 0 such that 

---(k) 
CU. < 

1 l • 

- -n .... (k) 
o x(n). < c 2u. 

l. = 1. 
i € D (k) ; k = 1 , ••• , v, 

whereas 

lim 
n•)OO 

..... -n a · ·x(n).. = 0 
l. 

i € D (0) • □ 

DEFINITION 3.1. The partition {D('J),D('J-1), ••• ,D(l),D(O)}, introduced in 

theorem 3.6, is called the pr>inaipal partition of S with respect to K. □ 

A direct proof of theorem 3.6 can be found in ZIJM [75]. The proof given 

there is less constructive than the one presented here; the author starts 

with the principal partition of S with respect to Kand then applies the 

improvement procedure a number of times until no further improvement is 

possible. Theorem 3. 2 is then obtained as an ir1111,ediate extension of theorem 

3.6. 

Theorem 3.2 has also been proved by SLADKY [58], using different 

methods. The proof 

in SI,ADKY ( 58) and 

presented here may be viewed as a combination of ideas 

ZIJM [75). The idea 

be found in ST,ADKY [ 58]. The proofs of 

of using state classifications can 

ler1ra1as 3.3, 3.4 and 3.5 (i.e. the 

fact that the two subroutines do not cycle) in their present form are 

taken mainly from ZIJM [75]. 

'nle existence of the principal partition of S with respect to Kand 

its connection with the asymptotic behaviour of certain dynamic progran1111ing 

recursions (expressed in part c of theorem 3.6) will appear to be fundamental 

throughout this monograph. In the next two chapters, we shall use this 

partition extensively in order to establish convergence results for dynamic 

progra1111uing recurs ions of the type (3. 0. 2) • 



CHAPTER 4 

CONVERGENCE OF DYNAMIC 

PROGRAMMING RECURSIONS: THE CASE v= 1 

In the preceding chapter we obtained a decomposition result for the 

finite state space S with respect to a set K of square nonnegative matrices 

with the product property. Its importance derives from the fact (not yet 

proved) that there exists a connection (cf. theorem 3.6.c) with the first 

order asymptotic behaviour of dynamic progra1m11ing recursions of the type 

(4.0.1) x(n) = max P x(n-1) 
PeK 

n € lN; x(O) > 0. 

In particular, if {D(v),D(v-1), ••. ,D(l),D(O)} denotes the principal partition 
• -of S with respect to K (cf. definition 3.1) and cr is defined by 

I 

.... 
cr : = ma1e o (P) 

PtK 

then we claim that positive upper and lower bounds exist for the sequence 

n 
k-1 

-I ... -n 
cr x(n) . 

]. 
i e D(k); k = 1, ..• ,\J. 

Now, although boundedness gives at least a first idea concerning the 

asyniptotic properties of x(n), it is well known that in the ''one matrix'' 

case much stronger results can be proved. Consider - for instance - a square 

irreducible nonnegative matrix P, with spectral radius o, that is aperiodic. 

Then 

-n n 
lim o P x(O) 
n :i,00 

exists and is strictly positive if x(O) ~ Q (exploit the Jordan canonical 

£arm of P, or lerr11i1a 2. 5) • 
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Also, when dealing with reducible matrices, more detailed results concerning 

the asymptotic behaviour of pl\:(O) for n -+- 00 are known (compare e .. g. 

n:ASB [44)). The question arises whether these results can be extended to 

dy'nasic program1i1ing recurs ions of the type ( 4. 0. 1) • 

To answer this question is one of the objectives of part I of this 

monograph. In this chapter we make a first attempt; we treat the case v = J 

or, in other words, the case where the principal partition of S with respect 

to K takes the form {D(l),D(O)}. This means that we assume 

(4.0.2) max { v(P) I p € K, cr(P) == cr} = I, 

1there cr is defined by 

(4.0.3) 
A 

O' := flB)C { O' (P) l p € K}. 

As usual, we start with the case where all P €Kare irreducible (section 

4.1). In section 4.2, we first establish boundedness of dynamic progra1r,n1ing 

recursions, based on a finite set K of general square nonnegative matrices 

with the product property, satisfying ass111t1ption (4. 0. 2). The boundedness 

is then used to prove convergence results for dynamic progra11uning recurs ions, 

again under condition (4.0.2). 

It turns out that in this second section we need some results from 
' 

the theory of nonstationary Markov decision processes. In particular a 

geometric convergence result for undiscounted Markov decision processes, 

recently proved by SCHWEITZER AND FEDERGRUEN [61], appears to be useful. 

In the appendix new proofs for these results are presented (compare also 

ZIJM [78 ]) • 

_4_,_I_._Dy..,_l\!_: _m_i_,,,c__.p...,r_o~g~r_a_•Tnt1_1'1'nc_~~i_n_glllC,..,._r_e_c_u_r __ s_i_· o_n_s_, -~-i_t_· !1_· _1_· r_·,,,_r,_e,_d __ u_,c_i_;o_· ,l_e_· _no __ n_n ___ ~ g_a_t_i_v_e_m_a_t_r ___ i_~ __ e_s, 

As in the preceding chapter, it turns out that, in order to gain 

some insight in the methods to be used, a separate treatment of the 

irreducible case is most helpful. Moreover, the results of this section 

will prove to be fundamental in the forthcoming analysis • 
.... -n 

In this section, it will be show11 that lim a x(n) exists (where 
n >00 

x(n) and 
.... 
a ar-e defined by (4.0.1) and (4.0.3), respectively), when K is a 

set of aperiodic, irreducible nonnegative matrices. Next, brief attention 
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is paid to the periodic case. These cases have been analyzed al ready 

by SLADKY [55]. The following result will be useful. 

LEMMA 4.1. Let P be a square irreducib~e aperiodic nonnegative matrix with 

spectral radius a and let {x(n); n = 0,1,2, ••• } be a set of vectors, such 
-n that cr x(n) is bounded (uniformly for n E JN) • Suppose 

(4.1.1) x(n+l) > P x(n) 
= 

n € lN. 

Then, there exists a vector x, which satisfies 

(4.1.2) lim -n 
cr x(n) 

-1 
= X = O' Px. 

n-),oo 

Furthermore, x(O) ~ 0 implies x > 0. 

PROOF. Since -n 
{o x(n); n = 0,1,2, ••• } is bounded, we may assume the 

existence of finite limit-points for this sequence. Suppose two different 

1 imi t-points a and b exist. Iterating ( 4. 1 • l) yields 

-(n+m) -m m -n 
o x(n+m) > o P a x(n) 

' -- n,m E: ]N. 

Choose n fixed and let m1,m2, .•• be a sequenc~ such that 

lim o-(n+mic) x(n ) = a. By ler11111a 2.5 we find 
k➔>oo 

a > = 
* -n P cr x(n). 

The same conclusion can be obtained for each n € m. Choosing n 1, n 2 , •.• 

such that lim 
k >oo 

Analogously it is proved that 

* b > P a. --

Hence, a> r*p*a = P*a. Since p* > O, a~ P*a implies 
= = 

* * * * 0 < P (a-Pa) =Pa - Pa,= 0 (compare ler,,111a 2.5), a contradiction. Hence 

a= P*a ~ b. Analogously, we find a~ b. Hence a= b. Since a~ P*x(O), we 
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find a > 0 if x(O) ~ Q. - □ 

THEOREM 4.2. Let K be a finite set of square irreducible nonnegative 

'IWltrices YTith the product property. Leto := max {cr(P) I P € K} and assume 
- - .... 

that at least one matrix PE K exists, with cr(P) = cr, that is aperiodic. 

Choose x(O) ~ 0 and let x(n) be defined by (4.0.1) for n = 1,2, ...• Then -

lim 
.... -n cr x (n) 

n, >00 

exists. Let x denote this limit, then x > 0 and -

(4.1.3) 
.... 

max Px = crx. 
P€K 

.... 
PltOOF. By leJT11na 3. 1, there exists a vector u > Q such that 

.... ... .... 
m,ax Pu = cru • 
PEK 

.... 
Without restriction we may take u > x(O). It follows that 

.... -n .... 
0 < cr x(n) < u 

= = n E 1N. 

- t 

Since x(n+l) > Px(n) for all n, le11tt11a 4. l implies the existence of 
,.. _n 

x := lim cr · x(n). Formula (4.1.3) now follows from 
n->00 

"' ,.. - (n+ 1) ... -n 
cr • cr x(n+ 1) = max P cr x(n) 

PEK 

by letting~>~ in both sides of this equality. It has already been 

established in le111,11a 4. 1 that x > 0. 

,.. 
The reader can easily verify that x =cu for some constant c > O, 

where x = lim a -n x(n) and ii is defined in lettl[lla 3. 1. 
n >oo 

The periodic case will not be treated extensively throughout this 

□ 

mono,graph. The proofs follow essentially the same lines, the only 

diffi~ulties arising are of technical or,notational type. The proof of the 

following, periodic, analogue of theorem 4.1 is left to the reader. 

Let K be a finite set of square irreducible nonnegative 
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matrices with the product property. Let;:= max {a(P) I P € K}, let 

d(P) denote the period of P and defined by 

d := g.c.d {d(P) I PE K, cr(P) 
.,.. 

= a} 

Choose x(O) > 0 and let x(n) be defined by (4.0.1) for n = 1,2, •••• 

Then, for i = 0,1, •.. ,d-1, 

lim a -(.t+kd) x(i+kd) 
k ►CO 

exists and is strictly positive. □ 

Theorems 4.2 and 4.3 show that it is indeed possible to establish 

convergence results for dynamic prograu11·11ing recursions of type (4 .0 .1). 

If K consists of exactly one matrix these results are well known. The 

results of this section will prove to be useful in the treatment of more 

complicated, reducible cases. 

4. 2. Converge~ce · o,f • matrices • . , 

In this section we prove that dynamic progranc111ing recursions of type 

(4.0.1), based on a finite set K of possibly reducible nonnegative square 

matrices with the product property, are bounded in some sense if condition 

(4.0.2) holds. To be more precise, if 

(4.0.2) max {_v (P) f 
PEK 

.,.. 
P € K, cr(P) = cr} = 1, 

..... 
with cr = max {cr(P) l P € K}, then for x(n), defined by (4.0.1), we have 

,,.. -n 
sup cr x(n). < m 

n l. 
i € s. 

~ote that this assertion is in fact part c of theorem 3.6 for the case 

~ = 1. Once having obtained boundedness, convergence results are proved 

for recursions of type (4.0.t), again under condition (4.0.2). 

One leu1111a is needed, which may be viewed as the analogue of part c 

of le1i,111a 2. 6. We have 

• 

• 

• 



LEMMA 4.4. Let K be finite and let cr := max {cr(P) I p EK}. Then 

a. 

b. 

(J = inf {A I 3 w > 0 such that 

..... 

max P w 
PEK 

< A w}. --

For each A> a there exists a vector w(A) >Osuch that 

max P w (A) < :\ w (A) . 
Pe:K 
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PROOF. Part a follows irr,u,ediately from lennr1a 2.6. To establish part b, take 

w( "-) : = max 
P€K 

-1 
(>.I-P) e 

The following le11,111a es tab 1 ishes 

We have 

(component-wise). D 

A -n 
boundedness of the sequence cr x(n). 

LEMMA 4.5. Let K be a finite set of square nonnegative matrices with the 

product property, let O <a:= ma~ {cr(P) JP EK} and let the principal 

partition of S with respect to K be {D(l),D(O)} (i.e., (4.0.2) is assumed 

to hold). Then for x(n), defined by (4.0.1), we have 

(4.2.1) 

(4.2.2) 

.... -n 
lim a x(n). = 0 

l. n >oa 

for some positive constants c
1
,c

2
,and 

i E D (O), 

' 

n E lN ; i E D ( 1 ), 

defined as in theorem 3.6. 

PROOF. As usual, for Pe: K let P(k,.t) denote the restriction of P to 

D(k) xD(.t), for k,.t = 0,1. Then P(O,J) = Q for all P. Since -
max {cr(P(O,O)) I PcK} <~,there exists a A<; and a vectorw().) > 0, 

defined on D(O), such that 

max P(O,O) w().) < }.. w().) • 
== 

Pc.K 

Choosing c > 0 such that x(O). < cw(A). 
l. = 1. 

for i € D(O), we find 

"'-n n- -n 
cr x(n). < cA a w(A) 

1. = 
n € lN ; i e: D (0), 

which establishes ( 4. 2. 1), since x (n) > 0 for all n. -
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Choosing c 1 > 0 such that 

i e D ( l ), 

and recalling that 

P
(l,1) 

max 
.... ( 1) 
u 

PEK 

the left inequality in (4.2.2) follows i1,111,ediately from 

x(n)(l) > 
-- max 

PE:K 
n = 1,2, •.• , 

where x(n) (l) denotes the restriction of x(n) to D(l). Finally, if we choose 

w(A) > 0 and~ such that 

.... ( 1) 
u ' 

x(O). < aw (A) .. 
l. = 1. 

i e: D(O), 

x(O). < a~~l) 
l. = 1 

i e: D(l), 

then, by induction, we obtain , 

""'n x(n). < a{cr + 
l. = 

; n- l / ( I_"~ - 1 ) } ~ ~ 1 ) < 
1 = i € D(l), 

for an appropriate choice of c 2• □ 

A natural way to prove convergence of a sequence of (finite-dimensional) 

vectors (or scalars) is to establish boundedness first, after which one has 

to show that no two different limit-points exist. This method was followed 

Ln the proof of theorem 4.2 and will also prove to be useful here. Before 

.ve can formulate the main result of this section it is necessary to extend 

the definition of aperiodicity to reducible nonnegative square matrices. 

)EFINITION 4. 1. A square nonnegative matrix P is called aper-iodie if the 

~estriction of P to each of its basic classes is aperiodic. □ 
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The following result is now fundamental. 

THEOREM 4.6. Let K be a finite 

product property, let a := max 

set of square nonnegative matrices with the 

{ cr ( P) I P E K} and 1 et { D ( 1 ) , D ( 0) } be the 

principal partition of S with respect to K. Finally, assume that each 
..... 

matrix PE K, for which cr(P) = cr, is aperiodic. Then there exists a vector 

x ~ O, with x. = 0 for i E D(O) and x. > O:.for i E D(l), such that 
1 1 

(4.2.3) lim 
n-+<x> 

A -n 
o x(n) = x, 

where x(n) is defined by (4.0.1). Furthermore, the vector x obeys 

(4.2.4) max Px = ax. 
PEK 

PROOF. For convenience we define x(n) 

that 

-lim x(n). = 0 
1 n >co 

..... -n 
:= a x(n). We know from lertiitta 4 .5 

i e: D(O). 

Hence we concentrate on the states of D(l). Since (4.2.2) holds, we can 

define finite-valued vectors a and b (component-wise) by 

-
a:= limsup x(n), 

n >oo 

-
b := liminf x(n). 

n )CO 

Suppose a 2: b (note that b > 0 and that a.= b. = 0 for i E D(O)). Choose =- 1 1 

a sequence{~; k = 0,1,2, •.. } such that 

lim 
k•►OO 

and such that lim x(n.-1) 
k ►CO l< 

- -exists. Define x := lim x(~-1). 

-Then x > band i. = b. = O for i E D(O). Since K is finite, there exist 
= l. 1. -a matrix P and 

such that for 1 = O,I,2, ••• 

(4.2.5) 
.,.. -1 

= a max P x(°k.(i)-1). 
PEK 
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For 1 + 00 , we obtain 

- -1- ""'-1 -
b=a Pi >a Pb. --

,,..., 
Analogously, we find that for some Pe K 

,.. -1 ,.._, 
a< cr Pa. --

-Since P was found as an optimal matrix in (4.2.5), we also have 

"'-1-- ""-1"" b > cr Px > o Pb. - -- -

Combining these results we conclude 

(4.2.6) a-b 
""-1...., 

~ a P (a-b), -

and, since a.= b. = 0 for i E D(O), (4.2.6) reduces to 
1. 1 

where a(l) and b(l) denote the restriction of a and b to D(l). Since we 

assumed b s a, it follows from le111111a 2. 8 that a (P( 1' 1)) = o. Furthermore, 

since there exists a vector ~(l) > O, defined on D(l), such that 

,...,(1 1) .... (1) < p , u 
-- max 

PE.K 

A -(1) 
= a u 

(cf. theorem 3.6.b), it follows that each basic class of P(l,l) is final 

(compare the proof of lem111a 2. 7). Let C be any basic class of P( 1 ' 1) • Since 

and since 

C 
x(n) 

cr, it follows from le1111n.a 4. 1 that 

n E lN, 

a, = b. for i EC. 
J_ J_ 

Let, finally E c D(l) denote the set of states in D(l) which are not 

contained in a basic class of P(l,l). Then, by the results just obtained, 

b s a implies bE ~ aE, and from (4.2.6): 

E E a -b 

• 
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which implies 

of E, we must 

...... E ~ 

CJ (P ) ;:. cr by leiri111a 2. 8. Since this contradicts the definition -
conclude that a= b. 

It follows i1rnnediately from (4.2.2) that a. > 0 for i E D(l). 
1. 

Finally, (4.2.4) follows from 

- -a x(n+l) = -max P x(n) 
PEK 

by letting n tend to infinity. 

It is well known that in the ''one-matrix'' case the convergence of 
-. -n 
a x(n) to its limit vector xis geometric, i.e. there exist constants 

p < 1 and c > 0 such that for all n 

n 
< C p 
= 

□ 

A 

(a lower bound for op is given by the modulus of the subdominant eigenvalue 

of the matrix involved). It turns out that the same result holds for a 

set K of square nonnegative matrices with the product property, the proof 

however is essentially harder; it is related to a geometric convergence 

result for undiscounted Markov decision processes (cf. SCHWEITZER AND 

FEDERGRUEN [61]), which will be treated extensively in the appendix to this 

chapter. The next theorem can be proved by using the results of this 

appendix. We have 

THEOREM 4.7. Under the conditions of theorem 4.6 there exist constants 

p < 1 and c > 0 such that 

where x : == lim 
n ► oo 

A -n 
o x(n). 

n 
< C p 
= 

PROOF. Let - ""'-n - (k) x(n) := cr x(n) and let x(n) , 
-

n E ]N, 

X 
(k) denote the restriction 

' ,,,.. 
of x(n), x to D(k), k = 0,1. Since, for some A< a and some w(A) > 0, 

defined on D(O), we have (cf. lemma 4.4) 

::\ w(::\), 
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it follows that i(n)(O) tends to O geometrically (choose~> 0 such that 
-

x(O)i ~ cw(A)i for i € D(O), ~hen x(n)i ~ 
-Furthermore, since lim x(n) = x and 

n >00 

to verify that for n ~ n0 , say, we have 

x(n+l) = max P x(n), 
PEKI 

where K1 is defined by 

.... 
K 1 : = {P E K I P x = o x}. 

· n .... -n c ).. o w(A). for i E 
1 

D (0) ) • 

since (4.2.4) holds, it • 1s easy 

• For states i E D (I) , and. for n ~ n 0 , recursion (4.0.1) can be written as 

(4.2.7) -x(n+l). 
1 

\' .... -I 
= max { l o p •• 

PeK
1 

jED(l) · l.J 

; < n) • + I ~ - t p . . 
J jED(O) l.J 

-
X (n) . } • 

J 

By (4.2.4) and the fact that x(l) > O, the following transformation can be 

applied. Define 

-1 .,.. -1 
p •. 

l.J 
•- X . - . 

l. 
(J p .. x. 

l.J J 

,v -1 -
x(n). := x. x(n). 

l. l. l. 

,v 

r(P,n). 
l. 

.,.. -1 
·- (J . - -1 \ 

x. l p .• 
1. jeD(O) iJ 

Then (4.2.7) can be written as 

,..,, 

,..., 
x(n+l). = 

l. 
{ I 

j ED ( 1) 

,..., 
p •. 

l.J 

x(n). 
J 

,.., 

x(n). 
J 

i,j E D(l), p € K, 

i € D(l), n ~ n 0 , 

i € D(l), n > 
= 

,.._, 

+ r(P, n).} 
l. 

• 
1 E D(I), 

Since r (P, n) i tends to zero geometrically, for n-+ oo~ for each P E K
1 

and for 

each i e D( 1 ), and since 

is a set of stochastic matrices, theorem 4.a.5 of the appendix can be 
,..,,, 

applied now to establish geometric convergence of x(n).. to 1 for n -+00, 
(1) , (I) 1 

i e-D(l). Hence x(n) tends to X geometrically. □ 

• 



Periodic analogues of these theorems can be proved again. Let, as 

before, 

(J ·-.- max {o(P) J PE K}, 

and define 

,v 

K : .... {P E K I a (P) -= o} • 

,..., 
Now, let some P € K have k basic classes, B(l), ••• ,B(k), and let dR.(P) 

B (i) . denote the period of P , fort= 1, •.• ,k. Define 

(4.2.8) 

,..,, 
This can be done for each P € K. Finally, let 

(4.2.9) d := g.c.d. {d(P) l -.J 

P c K}. 

Then the following theorem may be formulated (the proof is left to the 

reader). 
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- -THEOREM 4.8. Let K, a and d be defined as above. Suppose condition (4.0.2) 

holds. Then there exist vectors w(!) ~ 0 (t = 0,1, •.• ,d-l) such that for 

x(n), defined by (4 .O. I), the following holds: 

(4.2.10) 
...... -(t+kd) 

lim cr x(t+kd) = w(t) t = 0,1, ••• ,d-l. 
k >oo 

Furthermore, the following relationship holds: 

(4.2.11) -max P w(l) = a w(i+l) 1 = 0 , 1 , ••• , d- I • 
PcK 

where w(d) := w(O). □ 

Again, it can be proved that the convergence in (4.2.10) is geometric. 

In chapter 5, more general results concerning the asymptotic behaviour of 

x(n) for n -+ 00 will be proved. The results of this section (in particular 

theorerr1s 4.6 and 4.7) will serve as a first step in the analysis of the 

general case. 
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• 

Appendix ~ .A. Geometric convergence in und,iscounted 

d • • Markov ecision processes. 

In this appendix we deal with a finite set K of stochastia N.x N 

matrices. As before the state space is denoted by S. With each PE Ka 
sequence of vectors {r(n,P) In= 0,1,2, •.• } is associated such that the 

set of matrices 

(4.a. l) {(P, r(O,P), r(l,P), ••. ) I PE K} 

has the product property. Furthermore, it is assumed that for each P the 

sequence r(n,P) has a limit r(P), and that 

(4.a.2) IJ r(n,P) - r(P) II 
n 

< ap = P E K, n e: JN0 , 

for some a> O, and some p, 0 < p < 1. It follows that the set of N x (N+l) 
= 

• matrices 

(4.a.3) { (P, r (P)) I P € K} 

also has the product property. 

Now consider the following dynamic progran,,ning recursion: 

(4.a.4) v(n+I) = max {r(n,P) + P v(n)} 
PeK 

where v(O) is arbitrary. 

The problem, to be solved in this appendix, can be stated as follows: 

what is the asymptotic behaviour of v (n) for n -+ 00 ? 

In the case that r (n, P) = r (P) for n E m0 and for each P e: K, the 

answer to this question can be found in SCHEITZER AND FEDERGRUEN [60], [61 ]. 

By a slight extension of their results also the more general problem 

(concerning the asyn~totic behaviour of v(n), defined by (4.a.4)) can be 

solved. Nevertheless, we prefer to give a separate treatment of the problem 

in this appendix, especially because the proofs in the two references 

mentioned above are relatively complicated and can be simplified considerably. 

The proofs in this appendix are mainly based on ZIJM (78]. 

The following ler1mra is needed (cf. DERMAN (17 ]) . 



LEMMA 4.a.1. Let Kand {r(P) I PE K} be defined as above. Define g* by 

(4.a.5) * g. : = 
l. 

max 
PEK 

(P*r(P)). 
l. 

• l. € s, 

....., 
where P* is defined as in lenm~ 2.5. Then there exists a P € K such that 

,.., 
g* = P*r(P). Furthermore 

(4.a.6) ~ max Pg*= Pg*= g* 
PEK 

Now consider the dynamic progran,111ing recursion 

(4.a. 7) x(n+J) = max {r(P) + P x(n)} 
PEK 

where x(O) is arbitrary. BROWN [11] proved 

LEMMA 4.a.2. For x(n), defined by (4.a.7), and g*, defined by (4.a.5), 

there exists a constant B > 0 such that 

Ir X ( n) - ng* I ' ~ B - n € ]No. 

Now, if we compare the recursions (4.a.4) and (4.a.7) and if we take 

v(O) = x(O), then it is easy to see (cf. (4.a.2)) that 

(4.a.8) JI v(n) - x(n) II < Cl 
= 

n-1 

l 
k=O 

k 
p 

-1 
< a(l-p) , --

which, together with le11r11La 4.a.2, implies that {v(n)-ng* I n = O, 1, ••• } 

is also bounded. 

The following result will be proved. 

LEMMA 4.a.3. Let each Pe K be aperiodic. Then there exists a vector~, 

depending on v (O), such that: 

(4.a.9) lim (v(n) - ng*) 
n )oa 

Define K1 := {P €KI Pg* = g*}. Then w* obeys 

( 4 • a • 10) ma~ { r ( P) + Pw*} = w* + g* • 
PEK1 

□ 

□ 
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PROOF. We have seen that the vector w(n), defined by 

w(n) := v(n) - ng* 

is bounded. Note that (4.a.4) can be written as 

(n+l)g* + w(n+l) = max {r(n,P) + nPg* + P w(n)} 
PEK 

Obviously, for n sufficiently large, n ~ n 0 say, only matrices P € K 1, can 

be optimal in then-th step. By (4.a.6) and the definition of K1 ,the 

equation above reduces to 

(4.a.11) g* + w(n+l) = max {r(n,P) + P w(n)} 
PEKl 

Define 

b := limsup w(n), 
n >oo 

a:= liminf w(n). 
n-¼«> 

Now, let n 1,n2, ••. be a sequence such that 

lim w(~+l) = b, 
k~ 

and such that x := lim w(~) exists. Then 
k >'° 

x ~ b. Putting n = 

and letting k ➔ 00 we obtain (using 4.a.2) 

g*+ b 

..... 

< max {r(P) 
= PEKl 

Determine PE K1, such that 

.... ..... 

+ p b}. 

r(P) +Pb= max {r(P) +Pb}. 
PEK 1 

• 

Then, by induction, it follows that 

m-1 
(4.a.12) mg* + b ~ ·}: Pkr(P) + P~ - k=O 

-

m € lN. 

in (4.a.11) 



On the other hand, by iteration of (4.a.11), we find 

(4.a.13) 
m-1 

m g* + w ( n+m) ~ l - k=O 

-k ,.. .... m 
P r(n+m-k-1, P) + P w(n) n > = 

Combining (4.a.2), (4.a.12) and (4.a.13), it is easily shown that 
• 

b - Pmb < w(n+m) -
.... m 

- P w(n) -

Choose a sequence (ml , m2, ••• ) such that 

~ 00 ..... .... n 1 b P*b < P*w(n) - a - + exp --
• k=O 

m-k-1 
p 

lim w + = a. 
k~ n ~ 

k 
p e 

Finally, taking n = n 1+l, n 2+I, ••. we obtain 

.... 
b - P*b < a - P*b. --

e 

Then, obviously, 

n > no· --
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hence b < a. It follows that a= b. Define w* :=a.Then, (4.a.10) follows = 
in1•1tediately from (4. a. 11), if n tends to infinity. □ 

The main objective of this appendix is to show ~hat, under the 

aperiodicity assumption, the convergence of v(n) - ng* to wt' is geometric. 

Since (4.a.10) holds, we may define 

K2 :={PE K1 I r(P) + P w* = w* + g*}. 

Furthermore, let 

e(n) := w(n) - w* = v(n) - ng* - w* 

Since lim e(n) = 0 by len11,1a 4.a.3 and since (4.a.2) holds, it follows that 
n ► oc 

for n sufficiently large, n > n say, (4.a.11) reduces to. 
= 

(4.a.14) e(n+l) = max {r(n,P) - r(P)) + P e(n)} 
PEK2 

-n > n. 
= 

We have to prove that the convergence of {e(n) f n = n, ~+I, ... } to zero 

is geometric. In order to simplify this proof, we first treat the case 

where r(n, P) = r(P) for all n E m0 and for all P c: K. We have 

-



74 

LEMMA 4.a.4. Let g* be defined by (4.a.5). Let r(n,P) = r(P) for n E m0 • 

Choose x(O) e: lR.N and let x(n) be defined by (4.a.7). If each PE K is 

aperiodic, then 

• 

x* := lim (x(n) - ng*) 
n >oo 

exists, and the convergence of (x (n) - nq*) to x* (::or n + 00 ) is aeometric. 

PROOF. The existence of lim (x(n) - ng*) follows from lennna 4 .. a.3 with 
n >oa 

' 

x(n) = v(n), r(n,P) = r(P) for all n E JN
0 

and for all P € K. In this 

case (4.a.14) becomes 

(4.a.15) e(n+l) = max P e(n) 
PEK2 

-
n > n = , 

with lim·e(n) = O. We have to prove that this convergence is geometric. 
n >oo 

Since all matrices are stochastic, it follows in,1r1ediately from 

lim e(n) = 0 and (4.a.15) that e(n) cannot be strictly positive or strictly 
n >oo -negative for n ! n. Now, define 

C(n) = {i ES l 

D(n) = {i € S I 

e(n). > O} 
l. 

e(n). < 0} 
l. 

-C ( n) = S \ C ( n) , 

-D(n) = S\D(n). 

We shall prove that there exists an integer t and a constant EE 

with O < E:: 1, such that -

1 • 

Proof of 1. 

max 
iES 

• min 
ie:S 

e(n+t). 
l. 

e(n+t). 
1 

< ( 1-e) --

> ( 1-e) --

max 
ie:S 

e(n). 
1 

e(n) • 
1 

-n > n, --

-n > n. --

- - -Suppose C(n) ~ (J (otherwise the result holds trivially). Define R(n)= C(n) 
-and for n > n recursively 

• 

R(n) I 
j e:R (n-1) 

• 

p .. = 1}. 
1.J 
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Clearly R(n) c C(n). If 
-

k,R- E IN with n < k < ! --

R(n) #~for n = ~ + 2N, then R(k) = 
~ ~ + 2N, since there exist at ·most -

for some 

nonempty 

subsets of S. Define ·R := R(k) = R(i). By definition of R(n) there exists 

a finite sequence of matrices P(k+l), P(k+2), •.. ,P(1) such that for Q, 

defined by Q := P(£) P(t-1) ..• P(k+l), we have 

q .. = 1 
1J i E R. 

Leto := min e(k). Then o > 0. From the definition of e(n) it follows 
iER 

iu1n1ediately that 

e(k+m(t-k)). > o > 0 
1 = i E R,m E lN, 

contradicting the fact that lim e(n) = 0. It follows that R(n) =~for 
n➔co 

- N . 
n = n + 2 • Now define t ·-.- and let E(P(l)P(2) ••• P(t)) be defined as 

the smallest positive entry of the matrix 

P(l)P(2) ••• P(t). 

Finally, define 

(4.a. 16) : = min { E: ( P ( 1 ) P ( 2) . • • P ( t) ) I P ( 1 ) , P ( 2) , . . • , P ( t) E K 2 } . 

Then O < e < 1 and, since R(n+t) = ~, = 

-max 
• ieS 

e(n+t). < 
1 = maJC 

ieS 

-
e (n) •• 

1 

- -The same result can be obtained when starting with C(n+l), C(n+2), ••• 
-Since t and€ do not depend on n, part l follows. 

Proof of 2. 
- - -Suppose D(n) i ~ (otherwise the result holds trivially). Define U(n) := D(n) 

-and for n > n recursively 

U(n) = {i € s I l 
jeU(n-1) 

Then U(n) c D(n) and U(n) = (J for n 

p .. = 1 for all P € K2}. 
1J 

arguments similar to those 
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used in the proof of l (however, notice the difference in the definitions 
N of R(n) and U(n)) .. It follows that, fort:= 2, there exists a sequence 

...., ...., 
P(l), P(2), ...... ,P(t) such that the matrix Q, defined by Q :• P(t)P(t-1) •. P(1) 

obeys 

I > 0 
j{D(n) 

for all i ~ S. Defining c as in (4.a.16), it follows that 

- -min e(n+t) 1 ~ i,s 
( 1-e) e ( n) ... 

l. 

-Since t and t do not depend on n, 2 follows. 

Combining 1 and 2 we obtain 

(sax e(n+mt) .-min e(n+mt).) < (l-£)m(ma:x 
·s 1 · 1. = ·s 1! 1eS 1€ 

-for n > n, 
11111 

m E: JN0 • This completes the proof since 

e(n) .- min 
l. • s 1 E: 

0 <e::< I. 
= 

e(n).) 
1 

□ 

Once havin.g proved lemma 4.a.4, we are ready to handle the more 

general case where we deal with a sequence {r(n,P); n = 0,1, ••• } which 

converges to r(P) geometrically for each P £ K. Recall that we have to show 

that e(n), defined by 

e(n) :• v(n) - ng* - w*, 

tends to zero geometrically (where each P ~ K2 is assumed to be aperiodic). 

By l"uut..a 4.a.3 it is known that lim e(n) = 0. Furthermore, it has been -
observed that n·, oo. 

{4.a.14) e(n+l) • max {r(n,P) - r(P) + P e(n)} 
Pe:K 

2 
- ...., 

Cho•ose k > n. Define e(k,n) by 
= 

,.., ,.., 
e(k,n) • max P e(k,n-1) 

PtK2 
,.., 

-n > n. 
= 

-
k > n, n € 1N , 

with e(k,O) := e(k). It follows from le11:l111a 4.a.3 and the fact that all 

matrices in K2 
-are aperiodic that lim e(k,n) exists (take r(n,P) = 0 in 



le1nma 4. a. 3 for al 1 n and P) . Denote this limit by e (k), then ler111,1a 4. a. 4 

implies the existence of constants c > 0 and o < l such that 

(4.a.17) II e(k,n) - e(k) II -
k > n, n E 1N, --

with c and c independent of k (compare the proof of le1,011a 4.a.4). Using 

(4.a.2), it follows that 

(4.a. 18) fl e(k+n) - ;(k,n) JI k 
< exp --

n-1 
I 

£=0 

Hence, for n tending to infinity, we find 

(4.a.19) II ~(k)JI ~ k -1 
ap ( 1-p) -

-

-k > n, - n € m. -

-k > n. = 

77 

Fork= n and n ~ n, combination of (4.a.17), (4.a.18) and (4.a.19) yields -

II eczn) If ~ II e(2n)-;cn,n) II + 11 ;<n,n)-e(n) 11 + 11 ;cn) II < 
== 

n -1 n n -1 < exp (1-p) +co+ ap (1-p) -n > n. --

With := {max(p,o)} we obtain 

II e(2n) If -

which establishes the geometric convergence of {e(n); n = 0,1,2, •.. } to 

zero (note that If e(2n+l) II ~ II e(2n) II ) • Formally, s1101a1ing up we have 

the following theorem. 

THEOREM 4.a.5. Let each PE K be aperiodic. Let r(n,P), r(P) be defined as 

in the beginning of this appendix and let (4.a.2) hold. Then there exist 

vectors g* and w* such that for v(n), defined by (4.a.4), 

lim (v(n) - ng*) = w*, 
n )co 

and the convergence is geometric. □ 

Theorem 4.a.5 has proved its usefulp.ess already in the oroof of 

theorem 4.7. It will play a key role in the analysis in chapter 5 where 

convergence results for general recursions of type (4.0.1) will be proved. 



CHAPTER 5 

SENSITIVE ANALYSIS OF GROWTH 

In ch.apter 3, it has been shown that a fundamental partition 

{D(v), D(v-1), ••• ,D(l), D(O)} of the state space Sexists, with respect to 

a finite set K of square nonnegative matrices with the product property. 

Theorem 3.6 .. c expresses the relationship between this fundamental partition 

and the first order asymptotic behaviour of x(n), defined by 

(5.0. l) x(n+l) = max P x(n) 
PE:K 

x(O) > 0; n E 1N • 

In chapter 4, the behaviour of x(n) for n ~m has been analyzed in more 

detail; convergence results have been proved for the case v= l • The general 

case (with no restrictions on v) will be treated in this chapter. It turns 

out that in this general case there exist vectors y( 1), y(2), .•• ,Y (v) such 

that, under some aperiodicity assumptions, 

(5.0.2) l' 
n .... n-"+ I n .... n- l .... n 11 x(n)-{(v- 1)cr y(v)+ ••• +( 1)a y(2) + a y(l)} 

n 
< cp 
= 

.... 
for some constants c > 0 and p < a, with cr := max {a(P) Ip€ K}. In order 

to prove (5.0.2) • we have to solve a set of ''nested'' functional equations, 

a technical detail which will be treated in the appendix of this chapter. 

Section 5.1 is devoted to the proof of (5.0.2). In section 5.2, this 

result will be used to prove structural properties of generalized 

eigenvectors of the mapping, defined by 

(5.0.3) x -.> max Px 
Pe:K 

X E 

In particular, 

Section 5.3 is 

an analogue of theorem 2.12 will be proved for this mapping. 
-devoted to some procedures for estimating a,v, and the 



vectors y(l),y(2), ..• ,y(v) in (S.0.2). 

5. 1 • . ~o~vergence r_esul ts 

general ca_se .. 

In the special 

vector x, defined by 

cases, treated in the preceding chapter, the .limit 
... -n 

x := lim a x(n), obeys 
n >oo 

.... 
max Px = ax. 
PEK 

This result is completely in accordance with the ''one-matrix'' case with 

index equal to one. It is well known that in the general case (without 

restrictions on the index) generalized eigenvectors also play a role in 

the asymptotic expansion of Pnx(O) for n -+ 00 • If P is aperiodic, then 

n n n-v+l n n-1 n P x(O) = 
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with cr := a(P), v = v(P), p < a and y(k) a generalized eigenvector of 

order k, associated with a (exploit the Jordan canonical forrn of P; compare 

e.g. PEASE [44]). 

In this section we show that analogous results can be obtained for 

dynamic progra111111ing recurs ions of the form 

(5. 0. l) x(n+l) = max P x(n) 
PEI< 

x(O) > 0; n € m , 

with Ka finite set of square nonnegative matrices with the product property. 

The main result of this section can be form~lated as follows (cf. ZIJM [76]): 

-THEOREM 5.1. Let a := max {cr(P) I P E K} and let {D(v), ••• ,D(l) ,D(O)} be 

the principal partition of S with respect to K (v E lN). Suppose that all 
..... 

matrices P € K with o(P) = a and ~(P) = v are aperiodic. Then there exist 
..... 

unique vectors y(l),y(2), ••• ,y(v), and constants c > O, p < cr, such that 

for the sequence x(n), defined by (S.O.I), the following holds 

(S.1.1) n e: JN. 

The vectors y(k) satisfy 
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y(k). > 0 
l. 

y(k). = 0 
l. 

Further1nore, the following relationship holds : 

.,.. 
(5.1.2.v) max P y(v) = a y(v) 

PEK 
..... 

(5.1.2.i) max P y(t) = C1 y(t) + y(i+l) 

Pe:Kt+l 

with 

K :={PE KI 
'\) 

.... 
P y(v) = a y(v)} , 

i € D.(k), k = J, ••• ,v, 

k-1 
D(f), k = l, ••• ,v. 

= "- l , v- 2 , ••• , I , 

9- =v-1 , v- 2 , ..... , 2 , 1 • 

PROOF. The proof will be given by induction with respect to v. For v=l the 

results follow from theorem 4.6. Now assume that theorem 5.1 holds for 

v = 1,2, ••. ,t-l and let the principal partition of S with respect to K 

be given by {D(t), ••. ,D(l),D(O)}. As before, we define for each PE Kand 

form= 1,2, ••• ,t 

• 

p (m,m) p (m, m · l) ..... p (m, 1) p(m,O) 

p(m 1 , In ., ~ ~ • • p (m- 1 , l ) p(m-1,0) 
• • • • 

p(m) • • • • • • • "" • • • .. • 
• • • • 

· .. P(l, 1) p ( l, O) 

P(O,O) 
• 

where, as usual, P(k,t) denotes the restriction of P to D(k) x D(t), for 

k,! = 0,1, ••• ,t. Note that P(t) = P for all PE K. 
By the induction hypothesis there exist vectors w(l),w(2), ••• ,w(t-l), 

with 

w(k). > 0 
1 

w(k) .. = 0 
l. 

i € D(k), k = 1, .... ,t-1, 

k-1 
i e: U D ( .t) , k = l , ...... , t-1, 

!l=O 
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.... 
such that for some constants c 1 ,c2 and p, with p < cr, the following holds 

(5.1.3) 
n ... n-t+2 

< x(n).-{( 2 )a w(t-1).+ .. + = l. t- l. 

.... n 
CJ w(l).} < 

l. = 

These vectors w(l),w(2), •.• ,w(t-l) satisfy 

( 5 • 1 • 4 • ( t- 1 ) ) max 
PcK 

..... 

t-1 
i E .._,,, · D ( i) , n € lN • 

9.,=0 

(5.1.4.£) max P(t-l)w(t) ~ 
PEHt+l 

a w(t) + w(t+l) t = t-2, ••• , 2, 1 , 

where H£ c: K denotes the set of matrices that maximize the left-hand side 

of (5.1.4.t) (t = t-1,t-2, •.• ,2, 1). 

We want to find vectors y(l), y(2), ••. y(t) such that (5.1.1) and 

(5.1.2) hold for v = t. Since the asymptotic behaviour of x(n)., for n-+®, 
1 

is already completely determined by (S.1.3), for i E S\D(t), it follows 

that we must choose 

(5.1.5) y(k). w(k). ·-.-
1. l. 

• 

(5.1.6) y(t). ·- 0 .-
1 

Then, obviously, K1 c rl1 fort= 1,2, .•• ,t-I 

remains, is the determination of 

Using (5.1.5), (S.1.6) and 

w(k). =0 
1. 

it follows that we must have 

(5.1.7.t) 

(S.1.7.k) 

max 
PEK 

t-1 

PE~+l t=k 

y(k). for i 
l. 

t-1 
• D ( .t) , k l , 2, •. t-1 , 1. € --

t=O 

t-1 
• V D ( t) . 1. € 

t=O 

(K
1 

is defined by(*)). What 

E D ( t) , k = 1 , 2, ••• , t. 

k-1 
i € V D(t), k = l, .• ,t-1, 

t=O 

=; y(t)(t), 

k = t-1, •.• , l , 
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where y(k)(t) denotes the restriction of y(k) to D(t), fork= 1,2, ••• ,t, 

and w(k)(t) the restriction of w(k) to D(£), fork,£= 1, .•• ,t-1. 

By the induction hypothesis w(t-l)(t-J) >a.Furthermore, by theorem 
..... 

3.6, there exists a matrix PE K such that each state in D(t) has access 

to some state in D(t-1) under P. Note that P(t,t) possesses a strictly 
..... 

positive right-eigenvector, associated with cr (cf. theorem 3.6.b). Applying 

lein1r1a 2.5 we obtain 

that 

with 

there 

It now follows from theorem 5.a.1, in the appendix of this chapter, 

there exists a solution {y(t)(t) , .•• ,y(2)(t), y(1)(t)} of (5. 1.7), 

y(t) (t) > 0, y(i)(t) uniquely determined for£= 2, ... ,t, whereas 

is some freedom in the choice of y(l)(t). 

Recalling the definitions of y(k). for i € 
:L 

t-] 

u D(!) and k = 1, •.• ,t 
R,=0 

(cf. (5.1.5) and (5.1.6)), it follows that we have found a solution 

{y(t),y(t-1), ••• ,y(2),y(l)} of (5.1.2). 

Next, we must show that this solution satisfies (5.1.1), where we 

allow a possible change in the value of y(l)(t). 

Define 

First, the boundedness of the sequence 

be established. Note that by (5.1.2) 

(5.1.8) max P z(n) = z (n+ l). 
PE:K2 

.... -n 
{o (x(n)-z(n)); n = 0,1,2, •.• } will 

Since lim n n 
(k) /(k-1) 

n >oo 

00 , there exists an integer n
0

, such that 

(5.1.9) max P z(n) = 
PEK 

P z(n) 

Furthermore, it is possible to choose a constant a.> 0 such that 
• 

(5.1.10) i E D ( t), 

since y(t)i > 0 for i E D(t). Obviously, we also have for n ~ n
0 

• 



(5. l • 11) -n max P(z(n)+ acr y(t)) = max P(z (n) + 
PeK2 

(note 

PEK 

= z(n+l )+ - n+l 
CLO y(t) 

that J(t). = 0 for i E S\D(t)). 
1 

Finally, we choose B such that 

-n 
acr y(t)) = 

( 5 • 1 • 1 2) max 
PEK2 

{p (t,t-1) (t-1)+ P(t,O) (O)} e .•• 4 e < B~ y(t) (t) 
= 

(where e(f) is the restriction of e to D(£), t = 0,1, ..• ,t-1). 

Combining (S.1.3), (5.1.10), (5.1.11) and (5.1.12), it is easy to 

show (by induction) that, for i E D(t) and n > n
0

, 

(5.1.13) x(n). < 
1 = z(n). + 

1 

n-n -1 
- 0 .... -1 
a (1-pcr ) y(t) .• 

l. 

On the other hand, we may choose a constant c > O, such that 

(5. 1 • 14) x(O). > y(l). - o y(t). = z(O). - o y(t). 
1= 1 1 1 1. 

i € D ( t), 

and since for n > 0 
= 
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(5.1.15) - n - n .... n+l max P(z(n) - ocr y(t)) ~ max P(z(n)-ocr y(t)) = z(n+l)-ocr y(t), 
PEK - PEK2 

it follows inductively, by combining (5.1.3), (5.1.8), (S.l.12), (5.1.14) 

and (5.1.15) that 

(5.1.16) x(n). > z(n).-
-1 

-n """'n --I ocr y(t).-sc 1cr (1-pcr ) y(t). 
1. = 1. 1 1 

Combination of (5.1.13) and (S.1.16) yields the boundedness of 
- -n 

{er (x(n).-z(n).) ; n = 0,1,2, ••• }, for i E D(t). 
1 1 

If we define 

'( 5. 1 • I 7) - -n z(n) := z(n) - a y(l) 

then it follows in1111ediately that {~ -n (x(n). -
1 

also bounded for i E D(t). 

-z (n) .) ; n = 0, l, ..• } is 
1 

Up to now we have detern1ined unique vectors y(t) ,y(t-1), ••• ,y(2), 

as part of a solution of (S.1.2) for v = t, such that for some c > 0 
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n € JN. 

Now define, for n e lNO , 

(5.1.19) v(n) :• x(n) - - x(n) -z(n). 

From the induction hypothesis we know that 

t-1 
• .... -n 

l1m o v(n). • y(l). 
1 1. 

~ ur- 1=0 

Further·&m0re, the sequence 

i E: D(t). What r~mains is 

...., _n 
{a v(n).; n = 0,1,2, ••• } is bounded for 

l. 

the proof that the sequences converge geometrically 

to some v., for n~00 • 
l. 

Note that (5. I. 18) implies that for some n 1 E: lN , and n ~ n 1 , we have 

- -max P(z(n)+v(n)) = max P{z(n)+v{n)) 
PEK PE:K2 

Since for n > 0 . = , 

-z(n+l)+v(n+l) = x(n+l) = max Px(n) 
PcK 

we find 

) { .... n 
v(n+l • max Pv(n) - a y(2)} 

PE:K2 

Let 

- -n v ( n) : • a v ( n) 

Then we obtain 

- An 
• z(n+l)-a y(2) + max Pv(n). 

• max P(z(n)+v(n)), 
PE:K 

PeK2 

- .,.,_l - .-..-J 
v(n+l) • ms~ {a Pv(n) - a y(2)} 

PeK2 
- (k) 

Let v(n) denote the restriction of v(n) to D(k) (k • 1,2, ••• ,t; n e: JN). 

Then in particular 

(5. I • 20) v(n+l) (t) '{ ..... -1,.,(t, t)-( ) (t) • max O r V n 
PeK 

2 

+ r{n,P)} 
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where, for each P c K2 and n c lN , r (n,P) is defined by 

It follows from the definition of v(n) and the induction hypothesis that, 

for each PE K2 , r(n,P) converges geometrically to r(P) for n ➔~, where 

r(P) is for each PE K2 defined by 

Since K
2 

C K 
t it follows that, for all 

;-1 p(t, t)y(t) (t) = y(t) (t) 

(recall that y(t)(t) > 0). From (5.1.5) and multiplication of (5.1.7.l) 
with (P(t,t))*, it follows that 

( 5 • 1 • 2 1 ) max ( P ( t ' t) ) * r ( P) = O • 
PEK2 

By a transformation, similar to the one used in the proof of theorem 4.7, 

K2 is transformed in a set of stochastic matrices. By combination of 

(5.1.20) and (5.1.21) with the geometric convergence result of appendix 

4.A (theorem 4.a.S), it follows that there exists a vector v(t), defined 

on D (t), such that {v(n) (t) ; n = 0, 1, 2, ••• } converges to v (t) geometrical 1y, 

for n +c». Recalling the definitions of v(n) and v(n) (cf. (5. l .19)), we find 
-that for some constants c3 > 0 and o < cr • 

(5. 1. 22) 

for all n € lN • 

For n-+-co, (5.1.20) becomes 

v ( t) = max {~ - l P ( t' t) v ( t) + r (P)}, 
PE:1<2 

or, recalling the definition of r(P), 

11 < -
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( 5. 1. 23) 
Pel<2 

Recall that the vectors y(t) (t), y(t) (t-l) , ••• y(t)(2) are uniquely determined 

· (5.1.5) and (5.1.6) fork,£= 1, ••• ,t-1, it follows from (S.I.22) and 

(5.1.23), together with the induction hypothesis, that theorem 5.1 holds 

for " = t. 

By induction the theorem holds for each v. □ 

Theorem 5.1 yields rather strong results concerning the asymptotic 

behaviour of dynami.c progran:iining recurs ions of the type 

(5.0. ]) x(n+l) := max Px(n) 
PEK 

x(O) > O, n E lN, 

at least under suitable aperiodicity assumptions. The reader may note that 

oart c of theorem 3.6 follows in11r1ediately from theorem 5. l, since 

k = 1,2, ... ,v. 

A number of well-known results concerning the asymptotic behaviour 

of value functions of Markov decision processes follow as special cases 

from theorem 5.1. As an example, we consider a model, arising from the 

study of sensitive optimality criteria in Markov decision processes. This 

model has been studied in VAN DER WAL [68] (compare also VAN DER WAL AND 

ZIJM [69], and ZIJM [77]). 

Consider (for fixed k E lN0 ) the following dynamic progran1n1ing recursion 

(5.l.24) v(n+l) =max{(~) r(P) + Pv(n)} 
PeK 

where K denotes a finite set of stochastic N x N matrices, r (P) and v(n) 

We ass11me v(O) > 0, r (P) > 0. Furthermore, the 
= -

set of N x (N+ l) matrices 

{ (P, r (P)) I P E K} 

is supposed to have the product property. 

are 
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VAN DER WAL (68] showed that there exist vectors y(l),y(2), .• ,y(k+2), 

and a constant p < 1, such that 

(5. 1 . 25) v(n) (n~). 

However, by a simple trick, (5.I.24) can be reformulated as 

v(n+ 1) p r(P) v(n) 

(n+l) l I {n) 
k k • • 
• • • • 
• • • • - max • n € 1Na • - • • • • • PEK • • • 
• • • • 
• • • • • • 

(n+l) • • 
(n) I l 1 I 

1 1 1 

Hence, (5.1.25) follows ii11111ediately from theorem 5.1 (with v = k+2). 

Recursions of type (5.1 .24) play an important role in the study of 

so-called k-average optimality criteria in Markov decision processes, a 

concept introduced by SLADKY [54], as an extension of Veinotts' overtaking 

optimality criterion (VEINOTT (63], compare also SLADKY [57]). Note that 

fork= 0, we obtain the geometric convergence result of SCHWEITZER AND 

FEDERGRUEN (61] again (cf. appendix 4.A). Furthermore, the reader may 

verify that, for this example, equations (5.1.2) turn into the well-known 

policy-iteration equations fork-average optimal policies (cf. also 

SLADKY [54]). 

The reader may note that theorem 5.1 can be extended by decomposing 

D(O) again, etc. etc. We then obtain results concerning the asymptotic 

behaviour of x(n) with respect to the spectral partition of S (compare 

theorem 3.2). 

Also ''periodic analogues'' of theorem 5. 1 may be formulated. Details 

will not be given here. However, the reader may note, that a set K of 
• square nonnegative matrices with the product property can easily be transformed 

into an equivalent 
,..., 

set K, in which the aperiodicity assumptions of theorem 

5.1 are fulfilled for each matrix. Apply the following data transfot:riiation 

(cf. SCHWEITZER [59]): 
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-P • 6P + (1-6)a(P)I (O < o < 1) • 

...., 
Clearly, class-structures and chain-structures of P and Pare completely 

~ -identical, but each Pis aperiodic. P possesses the same (generalized) 

eigenvectors as P, and 

~ a(P) • a(P) 

* ..... 
'nt th ~f· P . t P ""ur ermore, 1. . exis s, exists and?= P*. 

The results concerning the asymptotic behaviour of x(n), for n -..oo, 
-can b,e used to obtain estimates for cr, as we 11 as for the vectors 

y(l),y(2), ••• ,y(v), deter11;,ined in theorem 5.1. This topic will be treated 

in section 5.3. First, some attention is paid to an analogue of theorem 2.12 

for sets of nonnegative matrices with the product property. 

As part of theorem 5.1 a solution {y(l) ,y(2), ••• ,y(v)} of the. system 

of equations (5.1.2) was obtained with 

(5.2.1) 

(5. 2. 2) 

y{k). > Q 
l 

y(k). = 0 
l 

i e D(k), k = 1,2, •• ,v, 

k-1 
i e V D (R,) , k • l, 2, •• , v. 

t=O 

However, note that, if {y(1),y(2), ••• ,y(v)} is a solution of (5.1.2)!l 

then so is {w(l),w(2), ••• ,w(v)}, defined by 

w(v) := y(\J) 

(5.2.3) 

w(k) := y(k) + aw(k+l) k • v-1,v-2, ••• ,1, 

where a can be chosen arbitrarily. In view of (5. I • 1) and (5. 2. 2) a can be 

chosen so large!l that 

\) 

(5.2.4) w(k). > 0 • V D (!) ' k = 1,2, ••• ,v, 1 € 
1 

R.•k 
k-1 

(5.2.5) w(k). a 0 • V D(R.), k = 1,2, ••• ,v. 1 € 
1 

1=0 



Furthermore, the reader may verify that for a sufficiently large 

(5.2.6) max p w(.t) 

Pe:K £+ I 
= max P w(!) = 

PEKt+2 
• • • == max P w ( 1) = 1, ••• ,v. 

Pe:K 

Combination of (5.2.3), (5.2.4), (5.2.5) and (5.2.6) yields the 
following theorem: 

-
THEOREM 5.2. Let cr := max {a(P) I PE K} and let {D(v), •.• ,D(l},D(O)} 

• be the principal partition of S with respect to .I<.. Then there 

set of semi-positive vectors {w(v), ..• ,w(2),w(l)}, such that 
exists a 

..... 
max F w( v) = crw (v) 
Pel<. 

.... 
max Pw(k)= crw(k) +w(k+l) 
Pel<. 

k == v-1, •.• ,2,1. 

Fork= v,v-1, .•• ,2,l we have 

V 
w(k). > 0 • 

D ( R.) ' l. € 1 
R.=k 
k-1 

w(k). = 0 • D(R.) • □ 1 E l. 
.t=O 
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Theorem 5.2 is the analogue of theorem 2.12, for the set K. A direct 

proof (without using theorem 5.1) has been given by ZIJM [75]. The proof 

given there is constructive; it uses an iteration method which is also the 

basi$ of the results in appendix 5.A. The aperiodicity assumption (cf. 

theorem 5.1) can be removed. 

characteristics. 
5 I t 

We have seen that the consecutive generalized eigenvectors appearing 

in the asymptotic expansion of x(n) (defined by (S.0.1)), for n+oo, can 

be obtained from functional equations of the type (5.1.2). However, in 

large scale syst~ms, it requires an enormous amount of work to solve these 

equations. One wonders whether cheap approximation methods exist for 

obtaining these generalized eigenvectors. By cheap we mean relatively cheap 

compared with exact methods. 

The most important growth characteristic to be estimated is the 

spectral radius ; = max { O"(P) f P e K}. Several methods have been developed. 
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MANDL [38), for instance, developed a bisection procedure, of which each 
-st·ep results into an upperbound S and a lowerbound ct for cr. Defining 

n n 
" := j(cx +B) he examines, whether there exists a strictly positive, finite n n n 
solution x = x(A) of 

n 

(5.3.1) A X = n {e+Px}. 

-If such a solution exists then clearly a < A (le111111a 2.6), otherwise 
n -

cr >A. In the first case we take = n 
case ~ -'-- l .. : = B , a 1 : = A • . . n'T · n n+ n 

·=' • I\ ' n 
·-,... .- ..... ' n 

in the second 

ZIJM [74] also uses (5.3.1) to determine a sequence {A; n = 1,2, ••• }, n .,.. 
which tends to a from above. Using in each step the solution x(A ), a better 

n 
approximation A 1 is calculated. Instead of x(A ), also approximations of 

n+ n 
x(A) can be used for updating A (see also ZIJM (73]). 

n n -SLADKY [55] gives upper- and lowerbounds for a when K contains only 

aperiodic, irreducible matrices. These bounds are based on theorem 4.2. 

To be precise we have: 

LEMMA 5.3. Let all matrices in K be irreducible, let a := max {a(P) ( PE K} 
-and let a PE K exist,with a(P) = a, which is aperiodic. Let x(n) be defined 

by (5.0.1), with x(O) > O. Then, for a and 8 , defined by 
n n 

we have 

and 

(5.3.2) 

a n 
• := nu.n 

ie:S 

maic 
ie:S 

> a 
= n 

(x(n+J)./x(n).) 
l. l. 

(x(n+I)./x(n).) 
l. l. 

lim Cl 
n = lim B 

,.. 
= rr Va 

n 

PROOF. Since 

x(n+2) = max 
PEK 

Px(n+l) > a. 
= n max 

PE:K 

• 

Px(n) = a 
n 

n € lN, 

n € JN, 

n € lN, 

x(n+l) 
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it follows that a 1 >a. Similarly, one has S + 1 < 6. 
n+ = n n 1 = n 

Furthermore, by theorem 4.2, 

(5.3.3) lim 
.... -n 
cr x(n) = x > 0, 

n )oOO 

and this convergence is geometric. This implies (5.3.2). □ 

The reader may verify that the proof of le11111ia 5. 3 only depends on the 

existence of a strictly positive vector x, such that (5.3.3) holds, rather 

than on the irreducibility assumption. As a consequence, (5.3.2) remains 

valid whenever (5.3.3) holds. An important case, in which (5.3.3) is 

fulfilled, is the case of a conmuniaating set (cf .. BATHER [ ) ]) • 

DEFINITION 5. 1. K is said to be communicating if for each i, j E S there 

exists a PE K (depending on i and j), such that i has access to j under P. D 

LEMMA 5.4. If K is 

Pe K, with o(P) = 
cor1,1uunicating, and if there exists an aperiodic matrix 
.... ,,,... -n 
cr, then lim a x(n) = x > O, where x(n) satisfies (5.0.1). 

n )oo 

PROOF. Let {D(v), ••• ,D(l),D(O)} be the principal partition of S with 

respect to K. If v > 1 or if D(O) :,) (iJ, K is not coru,rtunicating. Hence v = 1 

and D(O) = ~ . By theorem 4.6 the result follows. □ 

A co1111ut1nicating set can also be defined in terms of the inaidenee matrix 

of K. 

DEFINITION 5.2. The inaidence matrix T of K is defined by 

l if p. . > 0, for some P € K 
1J 

t .. = 
l.J 

i,j € s. 
0 otherwise 

It follows inmiediately that K is co111111unicating if and only if its 

incidence matrix Tis irreducible. 

□ 

Leri1ma 5.4 implies that also in the comrnunicatinq case one can 

obtain upper- and 1.owerbounds for cr. In general, we can determine all 

classes of the incidence matrix T, C(l),C(2), .•• ,C(m) say. With each P € K 
,..,,, 

we may associate a matrix P, as follows 
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for all i,j € S.; 

Note that·~ 
' 

1' • • 
1J 

0 

" 

,-., 

an~. P 

' 

if i,j e C(k), for some k e: {1.,2, •.• ,n} 
• 

" . ' . 
otherwise .. 

-

. ' • 

't '!l .· 1 
.~-'\. ,.,• ··~ f 

• 

possess th~ sa~e 

~, 
., ,,,,, '', . ,., 

1/, '11'-~, .., 
-~, ' . 

eigenvalues (P € K). Let 
• 

K =={pr p € K}. It is e4'sily verif:l~d 
- I ~ 

that max (v(P) f P € K, o(P), 
·, k 

( compare the proof of lern1na 5 .. 4) 
• 

Choose x(O) > 0 

' ,.., ..., -
x(n+l) := max P x(n) 

• ,..,, ...., 
Pe:K 

Clearly, the restriction of all Pe: K to C(k) x C(k) gives a 

co1,1titunicating set, for k = I, 2, ••• ,m. Define 

and 

- ..., (k) 
(l ·-. - min (x(n+l). / x(n).) n 

(l 
n 

:= 

ie:C (k) 1. j 1 

,.., ,.., 
(x(n+l). / x(n).) max 

ie:C (k) 

(k) 
max Cl n k= 1, . . , m 

l. l. 

Then, clearly, 

.,.. 
(5.3.4) a < a < S 

n = = n 

and 

.,.. 
(5.3.5) lim (l - lim Sn - CJ - - • • n . ' n >00 n ► oo !" 'lb .t ,., 

~ ., ' } 

,I .... 

k z 

k = 

max 
k= 1, .. ,m 

J' ••• ,m; n E 

l, .. . ,m; n E 

• 

.... 
= ... a) ~. 1 

In this sharp • for way, es ti.mates O' are obtained. Note that the convergence 

in (5.3.5) is geometric (although the original matrices Pe: K may have 

index larger than one) • ·~· 

Let us return to the original!' EJ~t K of square nonnegative ,ria trices 

with the product property. Choose 

• 

' 
'f • 

-~ • ---,., ' 
. - ... 

• 



(5. 0. 1) x(n) := max Px(n-1) 
PEK 

n € lN. 

Define, for n € IN0 , differences 0 1 
!:,. x ( n) , ~ x ( n) , 

2 /:,. x(n) , ••• by 

0 
6 x(n) : = x(n) 

k-1 
!:,. x(n+l) 

k-1 
- I:,. x(n) k E IN. 

Under appropriate aperiodicity assumptions x(n) obeys 

x(n) n - n-v+ I n .... n- 1 .... n n = ( v- l ) cr Y ( V) + • • • + ( l ) CT y ( 2) + a y ( 1 ) + 0 ( p ) 

.... 
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(n >oc) 

with p < cr and y{l),y(2), •.• ,y(v) as in theorem 5.1. Furthermore, define 

y(k) := ; -k+l y(k) k = 1,2, .•• ,v, 

• 

-x(n) - -n : = a x(n) 

Then, clearly 

- n - n - ..... -1 n x(n) = (v_ 1)y(v)+ ••• +( 1)y(2)+y(I)+ O((po ) ) 

It is readily verified that 

-y(v) 
.... -1 n 

+ 0( (po ) ) 

In the same way we find from 

that 

- .... -1 -n = y ( v-1 ) + 0 ( (per ) ) 

In general, if we define for n e 1N 
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(v-1) v-1 -
h (n) :• A ¥(n) 

and for k > I 

then a simple calculation shows that 

(v-k) - ... -1 n 
h (n) • y(v-k+l) + O((pa ) ) k = 1, • •• ,v (n>») 

• 

In order to dete1mine how good a particular estimate is and to 
-

specify upper- and lowerbounds for the vectors y(k), k = l, ••• , v, one 

should have an upp,erbound for p. A rough upperbound can be obtained from 

the proof of lemma 4.a.4 in appendix 4.A. In general, however, the 

detert1ljnation of sharp upperbounds for p still remains an open problem. 

Furtherc1!.0re, estimation methods like the one described above are not very 

efficient in rluc11erical sense if v is large (caused by the loss of significant 

digits). It seems to us that 
. . f asyu~tot1c expansion o x(n) 

large parts of an ''estimation theory'' for the 

still have to be developed; this section is 

only meant as a first attempt. The topic, however, appears to 

increasing importance, e.g., in studying sensitive optjmality 

Markov decision processes (cf. SLADKY (57], VAN DER WAL [68]). 

be of 
• • • criteria in 
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A,PP.~t1;dix 5 .A. Nes t,ed functional _equations_ 

The proof of theorem 5.1 requires the exiscence of a solution of a 

set of ''nested'' functional equations (cf. (5. I. 7)). In this appendix it is 

proved that such a solution does indeed exist and that it can be found in 

a constructive way. The proof is based on a generalization of Howard's 

policy iteration algorithm for the average reward criterion in Markov 

decision processes (cf. HOWARD [29], see also MILLER AND VEINOTT [82]). 

We now state the problem to be solved in this appendix. Let K denote 

a finite set of nonnegative N x N matrices with the product property, 
.... 

let cr := max {cr(P) I p EK} 

such that 

and suppose that there exists a vector u > O, 

-
(5.a. 1) 

A A. ""A 

max Pu= Pu= cru 
PeK 

.... -
for some Pe K with cr(P) = cr. 

Let t e lN, t ~ 2 and suppose that for each P c K. there exists a set -
of vectors {r(l,P), r(2,P), ••• ,r(t-l,P)}. It is assumed that the set of 

N x (N+t-1) matrices 

(5.a.2) { (P, r ( 1 , P) , ••• , r ( t-1 , P)) I P e K} 

also possesses the product property. 

Finally, suppose that 

(5.a.3) -* .... 
P r(t-1,P) > 0 

(note that p* is well defined, by le11·1111.a 2.5). 

The problem we investigate in this appendix is whether a solution of 

the following set of functional equations exists • 

• 

(5.a.4.t) 

' ' .. 

(5. a. 4 ( t- l)) 
• 
• 
• 
• 
• 
• 

(5. a. 4. 1) 

• 

max {Px(t)} 
P€k 

max {Px(t-1) 
PE:Kt : 

• 
• 

max Px( 1) 
PeK2 

.... 
= ax(t) 

..... 
+ r ( t- 1 , P) } == ax ( t- .1 ) 

• 
• 
• 
• 
• 

+ r(l,P)} 

• 
• 
• 
• 
• 

+ x(t) 
• 
• 
• 
• 
• 

+ x(2) 
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where K1 c K denotes the set of all matrices that maximize the left hand 

side of (5.a.4.1) (i = t,t-1, ••• ,2,1). Hence Kt~ Kt-I~ •••• ~ K1• 

The following result holds: 

............. 
YtlEOREM 5.a~ 1. Let K, P, cr, u and t be given as above. Let for each P € K 

a set {r(l,P), .•• ,r(t-1,P)} be defined, again as above. Suppose (5.a.1) 

and (5.a.3) are fulfilled, and assume that the set of matrices, given in 

(5.a.2), has the product property. 
- - -Then there exists a solution (x(t), x(t-1), ••• ,x(l)) of (5.a.4), with 

i(t), i(t-1), •.. ,x(2) unique, whereas there is some freedom in the choice 
- -of x(l). Furthermore, the vector x(t) is strictly positive. 

PROOF. The existence will be proved by means of an iterative procedure • 
.... 

Define P(O) := P. The set of equations 

..... 
P(O)x(t) = ax(t) 

.... 
P(O)x(t-1) + r(t-1,P(O)) = ax(t-1) + x(t) 

• 
• 
• 

P(O)x(I) + r(l,P(O)) 

P(O)*x(l) 

.... 
• 
• 
• 

= ax( l) 

= 0 

+ x(2) 

possesses a unique solution (x(t,O), x(t-1,0), ••• ,x(l,O)), with 

x(t,0)= P(O)*r(t-1,P(O)) > 0 (compare the proof of le1t1t11a 2 .. a. l). 

Determine P(l) € K such that 

(5. a. 5. t) P(l)x(t,O) = max {Px(t,O)} 
PE:K 

(5 .a.5. t-1) P(l)x(t-1,0) + r(t-1,P_(l)) = {Px(t-1,0) + r(t-1,P)} 
• 
• 
• 

(5.a.5.1) 

• 
• 
• 

P(l)x(I,O) 

• 
• 
• 

+ r(l,P(l)) 

• 
• 
• 

= max {Px( l ,O) 
PE:H2 

• 
• • 

• 
+ r ( 1, P)}, 

where H1 c K denotes the set of all matrices that maximize the right-hand 

side of (5.a.5.1) (i = t,t-1, ••• ,2,1). We choose P{l) := P(O) if P(O) € H1• 

Define vectors w(t,O), w(t-1,0), •.• ,w(l,O), such that 
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.... 
(5. a. 6. t) P(l)x(t,O) = crx(t,0) + lP(t,O) 

' ' 

.... 
(5. a. 6. ( t-1) p (}) X ( t-1 , 0) + r ( t- l , P ( 1 ) ) - crx(t-1,0)+ x(t,O) + ¢(t-l ,0) -

• • • • • • • • • • • • • • • • • • 
P(l)x(l,O) 

..... 
(5.a.6.1) + r(l,P(l)) - ox ( l, 0) + x(2, O) + $ ( 1 ,0). -

.... 
From P(O)x(t,O) ~ ax(t,O) and (5.a.5.t) it follows that ¢(t,O) > O. 

= -
If ¢(1,0)i = 0 fort= t,t-1, ••• ,k+l, then w(k,O)i ~ 0 (i ES, 1 ~ k ~ t). 

Furthermore, 

.... 
P(l)x(t,O) > crx ( t, 0) = > 0 ' 

which implies that cr(P(I)) = cr, and,moreover, that each nonbasic class of 
' 

P(l) has access to some basic class. Since u > 0 and 

- .... -. 
P(l)u < a u, --

each basic class of P(I) must be final. Hence, by proposition 2.4, P(l) 
.... 

possesses a strictly positive right eigenvector associated with cr. As in 

the proof of le11,01a 2. a. 1, it follows that a unique solution 

{x(t,1), x(t-1,1), ••• ,x(l,1)} of the following equations exists: 

.... 
(5. a. 7. t) P(l)x(t) = crx(t) 

.... 
(5.a. 7. (t-1)) P(l)x(t-1) + r(t-1,P(l)) = crx(t-1) + x(t) 

• 
• • 
• 

(5.a.7.1) 

(5.a.7.0) 

• 
• 
• 
• 

P(l)x(I) 

* P(l) x(l) 

• 
• 
• 
• 

+ r(l ,P(l)) 

It will be proved that 

.... 

• 
• 
• 
• 

= ox( I) 

0 • 

• 
• 
• 
• 

+ x(2) 

(5.a.8) (x(t,1), x(t-1,1), •• ,x(l,1)) t (x(t,O), x(t-1,0), •• ,x(l,O)), -

with equality if and only if P(l) = P(O). 

The proof of (5.a.8) consists of three steps. First we prove 

x(t,1) > x(t,O). 
= 



PROOF of (*): Let D c s be the set of states, which belong to a basic class 

1 -

(5.a.9) > P(l)*x(t,O) 

(cf. le&M 2.5). From (5.a.7.t) and (5.a.7.(t-1)) we derive 

(5.a. 10) x(t, I) * * • P ( 1 ) x ( t, 1 ) = P ( 1 ) r ( t- 1 , P ( 1 ) ) • 

Since •<t,O) > 0, (5.a.6.t) yields 
= -

* P(l) x(t,O) > x(t,O). 
= 

A combination of (5.a.9), (5.a.10) and (5.a.11) shows (•). 

The second assertion to be proved is the following: 

x(t, !) • x(.t,O) for k+l < t ~ t ==>x(k, 1) > x(k,O) k:,=t-1, •• ,2, 1. 
. - - = 

PROOF of (**): Define y(t) := x(.t, 1) - x(t ,0) for t = t, t-1, ••• , 1 • Combining 

(5 .• a. 6•.!) and (5. a. 7. t) we find 

... 
P(l)y(t) = oy(1) + y(!+l) - w(t,O) = t, t-1 , ••• , 1 • 

Hence, y(l) = 0 for k+l ~ ! ~ 

hence P (0) e Hk+ 1• It follows. 

t implies ~(1,0) = 0 for k+l S ! St and - -
that tP (k,O) > 0, while furthermore = -

.... 
(5. a. 12) P( 1) y(k) == oy(k) - ,P (k,O). 

Multiplying both sides of (S .. a.12) with P(t)* yields P(l)*\fJ(k,O) = 0. 

Since 1P(k,O) > 0, we find (cf. letrmta 2.5) 
= -

{5.a.13) tP(k,O). • 0 
1 

For k > 2 we reason as -
* for i e D, hence P(l) 

* (5 • a .. 7 • (k-1 ) ) by P ( 1 ) 

• 
1 e: D. 

follows: q, (k~O) i = 0 for i E D implies lJJ (k-1, O) i ~ 0 

lli(k-1,0) ~ Q. Multipl-ying (5.a.6.(k-1)) and 

and subtracting the two resulting equations yields 

• 
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P(l)*y(k) - P(I)*w(k-1,0) = 0. 

On the other vand, (5.a.12) implies (recall that w(k,O) ~ 0) 
-

P(l) y(k) < y(k). 
= 

Hence, y(k) > P ( 1 ) * y (k) > 
= = P(l)*tlJ(k-1,0);?;; O. This proves (•*) for k > 2. - --

Fork= l, (S.a. 13) implies that we may choose P(l). := P(O). for i ED. 
1. 1. 

In that case P(I)~ = P(O)~ for i € D, hence x(l,l). = x(l,O). for i € D 
1. 1. 1. 1. 

(since the values of x(l,l). for i ED are completely determined by P(I)., 
1 

1 r(l,P(l))i for i € D). Using lerr:u11a 2.5, it follows that 

P(l)*x(l, 1) = P(l)*x(l ,O). 

Combining (5.a.12), the fact that ~(1,0) > 0, and the definition of y(l), 
= -

we find that 

y(l) ~ P(I)*y(l) = O. -

This proves(**) fork= 1. 

Finally, we need 

x(!,l) = x(t,0) for!= t,t-1, •• ,2,1 if and only if P(l) = P(O). 

PROOF of(***): As above, y(!) = 0 fort= t,t-1, •• ,1 implies $(£,0) = 0 

fort= t,t-1, ••• ,1, in which case P(O) € H
1

, hence P(l) := P(O). The 

inverse implication is trivial. 

Combination of (•), (**)and(***) now shows that (5.a.8) holds, with 

equality if and only if P(l) = P(O). 

It is now easy to define ·an iterative procedure, based on a repeated 

application of equations of the kind (5.a.5) and (5.a.7). In fact we studied 

the first step of such a procedure. Since K is finite, this procedure stops 

after a finite number of steps, m say, if we use P(m) = P(m-1) as the 

stopping condition. The final solution {x(t ,m), ••• ,x( 1,m)}, say, 

satisfies (5.a.4)~ and x(t,m) > 0. 

certainly 

□ 



CHAPTER 6 

CONTINUOUS-TIME DYNAMIC PROGRAMMING MODELS 

In the preceding chapters we studied discrete-time systems, specified 

by a finite set K of square nonnegative matrices with the product property. 

In particular, the following dynamic progra1r11njng recursion was analyzed: 

(6.0.1) x(n) = max Px(n-1) 
PEK 

n e: 1N , x(O) > 0. 

By subtracting x(n-1) on both sides of the equation, we obtain 

(6.0.2) x(n)-x(n-1) = max (P-I)x(n-1) 
Pe:K 

Note that the set of matrices 

(6.0.3) {(P-I) I PEK} 

n e: 1N , x(O) > 0. 

also has the product property. Each matrix P-I is an example of a so-called 

ML-matrix (note that P ~ Q). An ML-matrix is a square matrix with all its 

nondiagonal entries nonnegative (cf. definition 6.1). 

In this chapter we study the continuous-time analogue of the nonlinear 

difference equation (6.0.2). This continuous-time analogue reads as follows 

(cf. HOWARD [29], MILLER [40], (41]): 

(6.0.4) max Qx(t) t e [0,00 ), x(O) > O, 
Qe:M 

where M is a set of ML-matrices with the product property and x(.) : [0, 00)-+lRN. 

Note that we do not assume that Q+I > 0 for all Q e: M. However, since Mis 
= 

finite and since each Q E M is a ML-matrix (the for1,1al definition is given 

in section 6.1), there exists ana'·>O such that Q+al > 0 for all Q E: M. = == 



As expected, we have to study nonlinear differential equations, 

instead of nonlinear difference equations. For an example the reader is 

referred to section 1.3 (example 1.3.1.b). 

In section 6.1 we briefly review some basic theory of ML-matrices. 

l O l 

Section 6.2 is devoted to the model in which all matrices are irreducible. 

Results for the more general case are given in section 6.3. Not all proofs 

are given in detail (since the techniques are more or less analogous to the 

discrete-time case), we only indicate the essential steps. One of these 

essential steps, exponential convergence in continuous-time, undiscounted 
Markov decision processes will be treated in more detail (appendix 6.A); 

the result given there can be viewed as the continuous-time analogue of 

the geometric convergence result of appendix 4.A. 

6.1. ML-matrices 

In this section we present some results concerning ML-matrices which 

will be needed later. First the formal definition. 

D;EFI~J;T~ON 6. l • An N x N matrix Q is cal led an ML-matrix if 

q •• > 0 
l.J = 

for i j; i,j € s, 

where, as usual, S denotes the state space (S := {1,2, .•• ,N}). 

If Q is an ML-matrix, it follows that there exists a (nonunique) Ct 

such that Q+aI > 0. - -- -

D 

ML-matrices play a role in a wide variety of areas, for instance, 

input - output models in mathematical economics, Markov processes and 

especially queueing problems in probability theory. They are named after 

Metzler and Leontief in connection with their work in mathematical economics 

(cf. SENETA [ 52]) • 

Let Q be an MI...-matrix. Consider the following differential equation 

(6.1.1) dx(t) :,=: Qx(t) 
·dt 

t E [o,~); x(O) > 0, 

with x(t) a vector function from [ 0 ,«>) to JRN • It is well known that the 

solution of (6.1.1) can be written as 
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(6. I • 2) 

with 

(6.1.3) 

x(t) = exp(tQ)x(O) 

oo tk k 
exp(tQ) · := l , Q 

k=O k. 

t € [0, 00 ), 

t E [Q,00 ) • 

Since I and Q co1r111n1te, it follows easily from (6 .1 .3) that 

exp(tQ) = exp(-atI)exp(t(Q+aI)) = exp(-at)exp(t(Q+aI)). 

By choosing a sufficiently large, it follows that 

exp(tQ) > 0 
= = 

Moreover, if all row-s,Jms of Q are equal to zero, then exp(tQ) is stochastic. 
' 

Furthet11>0re, note that 

exp((t+s)Q) = exp(tQ)exp(sQ) s,t E (0, 00). 

In the discrete-time case we have seen that the spectral radius of 

a square nonnegative matrix P plays a dominant role in recursions of type 

x(n) = Px(n-1), x(O) > 0. and n € lN • In connection with differential 
• 

equations of type (6.1.1), a different eigenvalue becomes important. Let 

Q be an ML -1natrix. Define 

(6.1.4) T(Q) := max {Re(A) I A an eigenvalue of Q}, 

where Re{).) denotes the real part of ). • Let Q+a I > 0 for some a > 0. It 
= = 

follows it1i111ediately that 

-r(Q) = o(Q+aI) - a. 

This shows that -r(Q) is an eigenvalue of Q and, moreover, that Re().) < -r(Q) 

for any eigenvalue A of Q with A# T(Q). 

DEFINITION 6.2. Let Q be an ML-matrix and let T(Q) be defined by (6.1 .4). 

The value T(Q) is called the dominant eigenvalue of Q. O 
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In general, T = T(Q) is not the spectral radius of Q, however, exp(tT) 

is the spectral radius of exp(tQ). Therefore, we may expect T to play a 

dominant role in the asymptotic behaviour of x(t), given in (6.l .1), 

for t -+- 00 • 

DEFINITION 6.3. An ML-matrix Q is called irreducible if for each pair 

i,j ES there exist states i 1,i 2 , •.• ,ik ES, with i # i
1 

~ ••• I ik # j, 
such that 

□ 

The following result is an in11nediate consequence of the Perron

Frobenius theorem and the relationship between ML-matrices and square 
• • nonnegative matrices. We have: 

PROPOSITION 6.1. Let Q be an ML-matrix with dominant eigenvalue T. With T 

can be associated nonnegative left- and right-eigenvectors. If Q is 

irreducible,. these eigenvectors are unique up to multiplicative constants 

and can be chosen strictly positive. 0 

The index of an ML-matrix is defined in an analogous way as for a 

nonnegative matrix (cf. definition 2.12). 

DEFINITION 6.4. Let Q be an ML-matrix with dominant eigenvalue T and let 
k k 

N (Q) be the null space of (Q-TI) for k E 1N O• The index v (Q) of Q is the 

□ 

It will be clear that all results concerning block-triangular 

structure, eigenvectors and 

matrix (with respect to its 

generalized eigenvectors of a square 

spectral radius) can be translated 

• nonnegative 

straightforwardly into corresponding results for ML matrices (with respect 

to its dominant eigenvalue). The same holds for all results concerning sets 

of nonnegative matrices with the product property (cf. chapter 3 and section 

5.2). The reformulation of these results will be left to the reader . 
• 

Now let Q be an irreducible ML-matrix and suppose Qi-al~ 2· 
If Q is irreducible, then clearly 

n 
l (Q + aI) k > Q -k=l 
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for n sufficiently large. Since 

exp{tQ) = exp(-at) 1 (Q+aI) , 
k=O k. 

it follows that exp(tQ) > 

period of exp(tQ) is I. 

O if Q is irreducible and t > 0. Hence, the --

The following result is important (compare also ler11c11a 2 .5). 

PROPOSITION 6.2. If Q is an ML-matrix with dominant eigenvalue T and index 

equal to one, then 

lim {exp(-tT)exp(tQ)} 
t400 

exists. If this limit is denoted by Q*, then Q* > 0 and QQ* = Q*Q = TQ*. = = 
If Q is irreducible, we have Q* > O. --

A proof of proposition 6.2 is easily given by transforming Q into its 

Jordan canonical form (cf. PEASE [44)). The following corollary holds: 

COROLLARY. Q*exp(tQ) = exp(tQ)Q* = exp(tT)Q*, 

Finally, we prove a side result which will be needed in the next 
• section. 

LEMMA 6.3. Let Q be an ML-matrix and let x(.) b.e a differentiable vector 

function, satisfying 

t € [ 0 ,00) • 

Then 

x(t) ~ exp(tQ)x(O) -

PROOF. Define u(.) N 
: [ 0 ,oo ) + lR by 

• 

□ 

□ 



u(t) := dx(t) - Qx(t) 
dt 

Then u(t) > 0 fort> 0 and 
= - = 

t 
x(t) = exp(tQ)x(O) + f0 exp((t-s)Q)u(s)ds 
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t € [ O,oo),. 

t € [ 0 ,oo) . 

Since , u(s) ::, 0 and exp ( (t-s) Q) > 0 for s < t, the result follows. D - - - - -- - -

In the next section, we turn to continuous-time dynamic progran1111ing 

models and study the asymptotic behaviour of the vector function x(t), 

for t➔ ro, where x(t) is defined by 

(6.0.4) dx 
dt(t) = max Qx(t) 

QcM 
t € [O,~); x(O) > O, 

with Ma finite set of ML-matrices with the product property. The following 

result deals with the question of existence and uniqueness of a solution 

x(.) of (6.0.4): For a proof,. see BELLMAN [ 5 ]. 

PROPOSITION 6.4. There exists a uniaue solution x(.) of (6.0.4) . .. 

In fact, Bellman established for a more general situation the 

existence of a continuous function x(.) : [O,~) +RN that satisfies (6.0.4) 

almost everywhere. Since the maximum of a finite number of continuous 

functions is again continuous, proposition 6.4 follows (cf. ZIJM (80]). 

One more remark has to be made. Let x(.) on [O,~) be defined by 

(6.0.4) and let a be such that 

(6.1.5) Q+aI > 0 = = 

Define y (.) on [ 0 ,o:i) by 

(6.1.6) 

Then 

y(t) = exp(at)x(t) 

~(t) = 
dt exp (at) (a.x ( t) + 

for all Q € M. 

• 

(Q + aI}y(t) t E [Q,co) 

□ 



Hence, instead of (6.0.4), we may study a system which is specified by a 

set of nonn~gat,ive, matrices with the product property. Sometimes, this 

obvious observation simplifies proofs considerably • 

• ML-matrices .. 
' 

In this section M denotes a finite set of irreducible :MI..-matrices 

with the product property. Furthermore, 
...... 
T 1s defined by 

(6.2.1) 

where ,: (Q) denotes the dominant eigenvalue of Q, Q € M. 

As in the preceding chapters, the analysis of systems of the kind 

(6.0.4) = max Qx(t) 
QEM 

t € [0,m); x(O) > O, 

is relatively simple, if M contains only irreducible matrices. The 

methodology, used to prove convergence results in the general case, can be 

made completely transparent already in this case. 

A first result is the following: 

.... 
6.5. Let x(.) be given by (6.0.4) and let T be defined -------

• as in (6.2.1) • 
.... 

Then the function exp(-tT)x(t) is bounded fort€ [0, 00). 

PROOF. Recall that, without 

Q e M. Since, by le1101ta 3. 1, 

that 

(6.2.2) 
.-ia,A A A_._ 

Qu • ma,c Qu = Tu, 
QEM 

loss of generality, we may assume Q ~ Q for all - -
"" • , A 

there exist a Q € M and a vector u > 0, such 

it follows from leittrtia 6. 3 and the fact that -exp(tQ) > 0 fort> 0 that 
= 

x(t) t € [0,00)' 

.... 
On the other hand, let x(O) ~ c2u. Since x(.) is continuous, there 

exists for eachE>O a t 1 = t 1(e) > 0 such that 



(6.2.3) t 1 := sup { t I x(t) 

Suppose t 1 < oo. Since Q ~ 2 for all Q E M it foll.ows that 

Hence 

dx 
dt(t) = max Qx(t) 

QEM 

A --. 

~ (c2+g)exp(tT)Tu 

- .... -
x(t) - x(O) ~ (c 2+E)exp(tT)u - (c

2
+g)u 

-In other words, since x(O) ~ c
2
u, we find 

x(t) - - -~ (c2+E)exp(tT)u - EU 

By the continuity of x(.), we conclude that t
1
= 00 , hence 

(6.2.4) fort€ [0, 00). 

Since (6.2.4) holds for each € > O, the result follows. 
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□ 

A 

Convergence of exp(-tT)x(t) for t•)oo can be proved along the same lines 

as in the discrete case, by using proposition 6.2, its corollary and le11nna 

6.5. We have 

-
THEOREM 6. 6. Let x(.) and T be defined as in le1111c1a 6. 5. Then 

.... 
lim exp (-t-r)x(t) 

exists and is strictly positive • 

.... 
PROOF. Since exp(-tT)x(t) is bounded on [0, 00), we may define 

.... 
a:= liminf exp(-tT)x(t), 

t >OO 

.... 
b := limsup exp(-tT)x(t). 

t >oo 

- .... -Let Q € M satisfy (6.2.2), hence -r(Q) = -r. For t,s E (0, 00 ) with t > s 

we have 
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exp(-ti)x(t) = exp(-(t-s)=?)exp(-sT) x(t) ~ 

Choosing a sequence (t 1,t2 , ••• ) 

lim 
k➔ oo 

we find (cf. proposition 6.2): 

a > Q* exp(-sT)x(s). 
= 

we conclude 

with lim 
k >oo 

= 00 and 

• 

with lim sk = 00 and 
k.-+oo 

-
Analogously, we find b ::, Q*a. As in the proof of le111n1a 4. l, we -
a=b (note that Q* > Q). The property a> 0 follows from x(O) > -
and a > Q*x(O). 

= 

conclude 

o, q* > Q -

One may wonder whether the convergence, proved in theorem 6.6, 

exponential, analogously to the geometric convergence result in the 

discrete-time case. If M contains only one matrix, the a.nswer to this 

question is clearly affir11,ative. It turns out that also in general such an 

• 
l.S 

exponential convergence result exists for continuous-time Markov decision 

processes. Details will be given in appendix 6.A. The translation from 

the stochastic case to our more general situation is straightforward. We 

return to this question in the next section where we deal with sys te1·,1s 

specified by a set of (possibly) reducible ML-matrices with the product 

property. 
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6. 3. Sys,,tems, w~ th ML-matrices: the generB;,1 case. 

In this section we formulate the continuous-time analogues of the 

results of section 4.2 and section 5.1. The proofs of the results in this 

section will not be given in detail: they proceed along the same lines as 

in the discrete-time case. 

In this section, M denotes a set of general (i.e. possibly reducible) 

ML-matrices with the product property. Let T be defined by 

(6.3.1) T := max {T(Q) I Q E M}' 

and define v by 

(6.3.2) v : = max {" ( Q) I Q E M , T ( Q) = T } 

(cf. definition 6.4). 

We are interested in the asymptotic behaviour of x(t), for t~ 00 , where 

x(t) obeys 

(6.0.4) max 
QEM 

Qx(t) 

Let us first treat the case v = 1 • 

t € [O,~); x(O) > O. 

.... 
THEOREM 6.7. Let M, -r, v and x(.) be given as above. Suppose v = 1. Then 

there exists a semi-positive vector x, such that 

-lim exp(-tT)x(t) = x. 
t-kX> 

PROOF. Without loss of generality, we may ass1Jme that Q ~ 2, for all Q E. M. 

Let {D(l),D(O)} be the principal partition of S with respect toM. By theorem 

3.6, there exists a vector u ~ 0, with u. = 0 for i € D(O), u. > 0 for 
- 1 1 

i E D(l), such that 

.(6.3.3) -max Qu = Tu 
QEM 

Let Q(k,t) denote the restriction of Q to D(k) xD(t), fork,£= O, 1. Then 

Q(O,l) = O for all Q EM and 
= 

• 
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max 
QEM 

M h · ' .... d · 1 · · w ( O) , such that oreover, t ere exist a /\ < T an a strict y pos1.t1.ve vector 

(6.3.4) max Q(O,O)w(O) 
QEM 

Choose c > 0 such that x(O). < cu. for i € D(l) and x(O). < cw~O) for i E D(O). 
l. = 1 l. = l. 

As in the proof of len:m1a 6 .5, one can show that 

(6.3.5) i € D(O), t e: [0, 00), 

which implies that 

lim 
t )00 

.... 
exp(-tT)x(t). = 0 

l. 
i € D(O), 

.... 
and that this convergence is exponential (of order at least exp(t··(A-T)). 

Let u(l) be the restriction of u to D(l) (hence u(l) > O) and choose 

a. such that 

Again, by methods analogous to those in the proof of lexu1ua 6.5, and by use 

of (6.3.5), it can be shown that 

(6.3.6) x(t). < 
l. = 

- Cl (exp(tT))(c + ---
.... 

(1-exp((A-T)t)))u. 
l. 

i € D(l). 
T-A 

Combining (6.3.5) and (6.3.6), we have established boundedness of 
-exp(-tT)x(t) on [O,~). Convergence to a vector x can be proved in exactly 

the same way as in the proof of theorem 

classes 

4.6, 

(cf. preceding section for the basic 

of theorem 4.6, it follows from x(O) > 0 that 

by using the results of the 

theorem 6.6). As in the proof 

x. > 0 for i E D(l). D 
l. 

In chapter 4 we showed that for discrete systems the convergence is 

geometric (cf. theorem 4.7), by exploiting a result from the theory of 

controlled Markov processes (appendix 4.A). An analogous result exists 

for continuous-time Markov decision processes; the main difficulty in 

proof appears to be the fact that no upperbound exists for the number 

• its 

of 

changes of the maximizing matrix in a fixed, finite time interval. This 
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implies that one has to determine a contraction factor which is independent 

of this number of changes. In the appendix to this chapter, we present a 

rather detailed treatment of the subject; here we only show how this 

exponential convergence result can be exploited in order to establish 
.... 

exponential convergence of exp(-tT)x(t), fort ►~, in the • • s1tuat1.on, 
described in theorem 6.7. 

Let x denote the limit vector, obtained in theorem 6.7. Hence 

(6.3.7) -lim exp(-tT)x(t) = x. 
t )00 

Note that 

(6.3.8) 
d .... ,,,.. ,,,.. ,,,.. 
dt (exp(-tT)x(t)) +-rexp(-tl')x(t)=max Qexp(-tT)x(t) 

Qe:M 

From (6.3.7) and (6.3.8) it follows that 

lim 
t )00 

d. -
dt (exp (-tT)x(t)) 

exists. Since xis a fixed vector, we conclude 

lim 
t) 00 

d .... 
dt (exp(-tT)x(t)) = O. 

• 

Let t·> 00 in (6.3.8). Then we find 

.... 
(6.3.9) max Qx = Tx. 

QEM 

Now, (6.3.8) and (6.3.9) together imply that fort sufficiently large, 

t ~ t 1 say, we only deal with matrices Q EM such that 

-·( 6 • 3 • 10) Qx = TX• 

be the restriction of x(t) to D(i), and x(i) rhe restriction of x to D(i), 

i = 0,1. Recall that x(l) > O. Obviously, we have 

(6.3.11) 
(I) 

dx (t) 
dt 

= max {Q(l,l)x(t)(l)+Q(l,O)x(t)(O)} 
Qt::Ml 
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Now 
. -(1,1) 

define Q , i(t) and r(t,Q) by 

_(l,1) ·-q. . . -
1J 

-1 
x. (q .• 

1 l.J 

.... 
- Tc5., .)x. 

1.J J 

I 

1 1 jED(O) iJ 

Q E M
1

; i,j € D(l), 

i E D(I), 

t c [O,~); i E D(l), 

Using these transformations, (6.3.11) can be written as 

(6.3.12) 

• • is now a set of generators for a continuous-time 

Markov decision process 

1 im r ( t, Q) = 0 Q E M l , 
t )00 

the results of appendix 6 .A now in11nediately imply exponential convergence 

of i(t)(l) to a constant vector, fort ➔~. Translating back, we obtain 

'tHEOREM 6 .. 8. The convergence, proved in theorem 6.7, is exponential. D 

Once having obtained this exponential convergence result, the most general 

case (with no restrictions on the size of v) can be analyzed along the 

lines of section 5.1 (compare the proof of theorem 5.1). Below we formulate 

the final result concerning the asymptotic behaviour of x(t) for t ► 00 • The 

proof is left to the reader. 

" THEOREM 6 .9 .. Let M., T, v and x(.) be given as above. Then there exist a 

partition {D(v),D(v-1), ••• ,D(J),D(O)} of the state space Sand a collection 

of vectors {x(v),x(v-1), ••• ,x(I)}, with 

and 

x(k). > 0 
1 

x(k). = 0 
1 

for i E D(k), k = v,v-1, .•• ,l, 

k-1 
for i E _ D(i), k = v,v-1, •• ,1, 

t=O 
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such that 

- -v-1 
x(t) = t 

(v-1) ! 
- t exp(tT)x(v)+ •• +-

1 ! 
exp(tT)x(2)+exp(tT)x(l)+O(exp(At)) 

-for t ➔ 00 , where A < -r. 

Furthermore, the vectors x(v),x(v-1), ••• ,x(l) satisfy 

(6.3.13.v) 

(6.3.13.k) 

max Qx(v) 
Q~M 

max 
QE +1 

Qx(k) 

-= -rx(v), 

-
= TX (k) + x(k+l) k = v-1 , ••• , 2, l , 

where denotes the set of matrices that maximize the left-hand side in 

( 6. 3. 13. k) , for k = v , v-1 , ••• , 1 • □ 

With theorem 6.9 we have completed the analysis of the asymptotic 

behaviour of x(t), for t·>00 • It will be clear that no iteration methods for 

finding a matrix Q € M maximizing the growth of the system need to be 

developed; these methods can be copied almost 

chapter 3. We emphasize the fact that results 

directly from the results in 

for average reward and total 

discounted reward Markov decision processes with finite state space, finite 

action space and continuous time axis can be established iro111ediately by 

applying the results of the present chapter. Also sensitive optimality 

criteria in continuous-time Markov decision processes can be analyzed by 

methods developed here (in a forthcoming publication attention will be 

paid to these matters). What remains to be done is the proof of exponential 

convergence in continuous-time Markov decision processes with the average 

reward criterion. Appendix 6.A will be devoted to a derivation of this 

result, which is indispensible in the proof of theorem 6.9 (compare also 

the proof of theorem 5.1). 
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AJ?et;n~~.?', ~-,. ~. E!ponen ~~,•-1 c<?:1:ve;rgeri¢,e, •.irt, · ,¢,6?-i. ti~ud,ll;s ~.ti~~ ,Ma~~~v 

de,c~si,on pro,c,esses .• 

This appendix deals with undiscounted, continuous-time Markov decision 

processes. These processes have been studied by a large ntlDlber of authors, 

compare e.g. HOWARD [29), MILLER [40], [41], BATHER [ 2 ], DOSHI [20], DE 

LEVE, FEDERGRUEN AND TIJMS [14], [15] and VAN DER DUYN SCHOUTEN [67]. 

In this appendix, both the state space Sand the action space A are supposed 

to be finite. Our objective is to prove an exponential convergence result, 

analogous to the geometric convergence result for discrete-time Markov 

decision processes (cf, SCHWEITZER AND FEDERGRUEN [61] ·and appendix 4.A). 

A detailed description of a continuous-time Markov decision process 

has been given in section 1.3 (examples 1,3,1,b). Here we only recall the 

fact that the optimal return v(t) for an interval of length t obeys 

(6.a.l) dv(t) 
dt 

• 

• malC {r(Q) 
QtM 

+ Qv(t)} 

with v(O) chosen arbitrarily. M is a finite set of ML ,,,atrices, such that 

(6.a.2) q •. - 0 
• S lJ Jc: 

i € s, Q EM. 

Furthermore, r(Q) denotes a reward vector, associated with Q (Q £ M). The 

set of N x (N+l) matrices 

{ (Q, r (Q)) f Q e M} 

is assumed to have the product property. 

We are interested in the asymptotic behaviour of v(t), for t-+ca. 

A few preliminary results are needed. 

LEMMA 6.a.l. Let Q be an ML-matrix such that Qe • O. The solution of 

(6.a.3) • r(Q) + Qy(t) t E: [O , 00 ) 

(with y(O) given) can be written as 

(6.a.4) y(t) • tg - (exp(tQ)-I)w + (exp(tQ))y(O), 



where g and w satisfy 

Qg = 0 

(6.a.5) 

r(Q) + Qw = g 

Remark. As in appendix 2.A it follows that a solution of (6.a.5) exists. 

The reader easily verifies that, if (g,w) is a solution of (6.a.5), then 

g is uniquely determined by 

g = Q*r(Q) 
• 

• 

(use proposition 6.2 with T = 0). Obviously, w is not unique, since, if 

xis an eigenvector of Q associated with T = O, then w+ax also satisfies 

the second equation of (6.a.5). However, since 

(exp(tQ)-I)x = 0 

Y(t) is still uniquely deter111ined by (6.a.4). 

PROOF OF LEMMA 6 .a. 1. A constructive proof of (6 .a.4) can be given by 

matrix-theoretical methods and will not be carried out in detail here. 
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fact a generalized eigenvector 
,..., 

of order 2, associated with the eigenvalue O of the matrix Q, defined by 

Q :• Q r(Q) 

0 0 

Exploiting the Jordan canonical form of Q, it can be shown that 

. exp(tQ) 
,..,, 

• exp(tQ) == 
0 

Since (6.a.3) can be written as 

..!!l.c t) 
dt: 

0 

Q 

0 

tg - (exp(tQ)-I)w 

• 
1 

r(Q) y(t) 

t c [0, 00), 

0 l 
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the result fol lows ir,1,ijediately. □ 

LEMMA 6.a.2. There exists a unique solution v(.) of (6.a.l) on [0, 00
). 

PROOF. See BELLMAN [ 5 ] • 0 

LEMMA 6.a.3. Let v(.) be the solution of (6.a.l). Then 

v(t) > y(t,Q) -
Q EM; t € [Q,ro), 

where y(.,Q) is the solution of (6.a.3) with y(O) := v(O). 

PROOF. The result fol lows from lei11111a 6. 3, y (0)-v(O) = 0 and 

d dt(v(t)-y(t)) ~ Q(v(t)-y(t)) Q € M; t E [0,00). 

LEMMA 6.a.4. There exists a solution (g,w) of the set of equations 

(6.a.6) 

max {Qg} 
QEM 

= 0 

max {r(Q) + Qw} = g 
Qe:Ml 

with M1 := {Q €MI Qg = O}. The vector g is unique, and 

g = ma1e Q*r(Q) 
QEM 

(component-wise). 

□ 

PROOF. The result fol lows, after some trans£ ortr,a tions, from the corresponding 

result for stochastic matrices (compare (4.a.6) and (4.a.10) in appendix 

4.A). 0 

LEMMA 6.a.5. Let (g,w) be a solution of (6.a.6) and let v(.) be the solution 

of (6.a.1). Then there exists a constant c > 0 such that 

II v(t)-tglf ~ c - t E [O,oo). 

.... 
PROOF. Choose Q € M such that 
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-Qg 0 

.... 
r(Q) -+ Qw = g. 

Then 

.... - .... ..... .... 
exp(tQ)r(Q) + exp(tQ)Qw = exp(tQ)g = g t € [O,co). 

For t ► 00 we find (cf. proposition 6.2) 

Ler1,1,1a 6. a. l and ler11111a 6. a. 3 now imply 

v(t)-tg 
.... 

> exp(tQ)v(O) -= 
- -(exp(tQ)~I)w(Q) = 

.... ..... 
= exp(tQ)v(O) - (exp(tQ)-I)w, 

which shows that v(t)-tg is bounded from below. 

In order to find an upperbound, we reason as follows. Note that for 

B su;ficiently large we have 

(6.a. 7) max {r(Q)+Q(w+Sg)} 
Q(M 

= max {r(Q)+Q(w+Sg)} 
QeM 1 

= g. 

• 

Choose a> 0 such that Q+o.I > 0 for all Q E M. By a simple transformation = = 
of (6.a.1), we obtain fort€ [O,~) 

(6.a.8) d 
dt (exp(at)v(t)) = max {exp(at)r(Q)+(Q+a.I)exp(at)v(t)}. 

QeM 

Finally choose y such that 

(6.a.9) v(O) < w + Bg + ~e 
== 

Combining (6.a.7), (6.a.8) and (6.a.9), it is easy to verify, by a method 

analogous to that in the proof of lenreoa 6 .5, that 

v(t) < w + Bg +ye+ tg 
== 

t € [0, 00). 
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By choosing c appropriately, the result follows. D 

Lemma 6.a.5 is the continuous-time analogue of lemma 4.a.2 (compare also 

BROWN [11]). LEMBERSKY (81] established a stronger result, i.e. the convergence 

of v(t) - tg* for t ➔ 00 • Another proof of this result can be found in ZIJM [80). 

Below we give an outline of the method of proof, used in [80]. 

LEMMA 6.a.6. Let v(.) be the solution of (6.a.1) and let g* := 

Then 

* max Q r(Q). 

exists. 

lim 
t-+oo 

QEM 

* (v (t) - tg ) 

PROOF. Define w(t) :== v(t) - tg* and M
1 

enough, t~ t 1 say, (6 .. a.1) reduces to 

: = {QEM I Qg* = 0}. For t large -

Let 

* dw 
g + dt (t) 

a:= liminf w(t), 
t ➔ 00 

b := limsup w(t). 
t ➔ 00 

+ Qw(t)}. 

It can be shown (cf. ZIJM (80)) that 

max {r(Q) 
QEM1 

} * . + Qa ~ g ~ max {r(Q) 

QEMl 
+ Qb} 

and the rest of the proof follows the lines of that of theorem 4 .6. 

We have now established the existence of vectors g* and 

(6 .a.10) * g 

and such that 

lim 
t-+«> 

* : == max Q r ( Q) , 

QEM 

(v(t) - tg*) = * w , 

w* , with 

□ 
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where v(.) satisfies (6.a.1). Clearly, (gt', w=tc) is a solution of (6.a.6). 

Now let 

M2 : = { Q e: M I Qg" = 0, r ( Q) +Qt.I" = gtc} , 

and define 

e(t) := v(t)-t~--w" 

Fort sufficiently large, t > 
= 

(6.a.11) 

where 

( 6. a. l 2) 1 im e ( t) = 0 • 
t) 

Qe(t), 

te: [0, 00). 

-t say, (6.a.1) reduces to 

Our objective is to show that this convergence is exponential. The following 

result, essentially due to MILLER [40], will prove to be helpful. 

LEMMA 6.a. 7. Let M be a finite set of ML r11atrices with the product property, 

such that Qe = Q for all Q € M Let x(.) satisfy 

= max Qx(t) 
QEM 

with x(O) chosen arbitrarily. 

Then, for each t, there exist a positive integer n (depending• on t), 

numbers t 0,t 1, ••• ,tn with O = t 0 < t 1 < •••• < tn-l < 

Q(l),Q(2), ••• ,Q(n) e M, such that fork= 1,2, ••• ,n~ 

t = t, and matrices 
n 

□ 

MILLER [40) proves that, for a continuous-time Markov decision process, 

there exists an optimal dee is ion rule with only a finite number of ''switching 

points" (i.e. time points where the optimal matrix changes) on each finite 

time interval. For our purpose the lec1r,,ia as formulated above is sufficient. 

Now, let us return to the equations (6.a.11) and (6.a.12). Define 
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C(t) :• {i e S I e(t). > o} 
l. 

D(t) := {i e S f e(t). < O} 
l. 

C' (t) = S\C(t), 

D' (t) = S\D(t). 

Clearly, (6.a.11) and (6.a.12) together imply that C(t) :/: S,D(t) IS for 
-t > t 

= 
(since e(t) > O would imply lim e(t) > O; compare the proof of 

t > ..... 
le1n[1:1a 6.5 with T = 0 and u = e). The next lerr1r1,a shows that max e(t). . s ]. 

1.€ 

decreases exponentially to zero. 

6 · · · numbers LEMMA .a.8. There exist positive a and E such that 

-N 
e:s max e(t+s). < (J-exp(-as) ]. - N.' 

)max 
ieS 

e (t). 
l. 

s > o, t > t 
i€S - = = 

(where N denotes the number of states in S). 

-

□ 

-PROOF. If C(t) • ~, the le111rt1.a. follows trivially. Suppose C(t) ~~-Choose 

a such that a+q .. > 0 for all Q e M2 , 
11. -R(O) = C(t) and 

i.€ S. Define R(n) recursively by 

R(n) := {i e S f 3Q e M2: 2 (ao •. +q •• ) 
j/R(n-1) l.J l.J 

= O} n e: lN. 

If R(n) {: (J, then, since M2 has the product property, the.re exists a Q E'. M.
2 

such that, simultaneously for all i e R(n), we have 

(6.a.13) l Cao .• +4 •• ) - o • 
jiR(n-1) l.J l.J 

From the choice of a it follows that R(n) c R(n-1). If for some n > l we ., 
have R(n) • R(n-1) and R(n) #~then (6.a.13) becomes 

L 
jiR(n) 

q •• = 0 
1J 

which implies (by 6.a.2) 

(6.a.14) l (exp(tQ))i. == I 
jeR(n) J 

i € R(n), 

i e: R(n); t € (0, 00). 

But, if (6.a.14) holds for Q € M2, then, -since R(n) c R(O) and R(O) = C(t), 
max e(t). cannot converge to zero for t-+ co. We conclude 
ie:S 1 

• 



R(n) c R(n-1) 
~ 

n € lN. 

But then, R(n) = ~ for n > N. By definition of R(n) we find --

· I ((aI+Q(l)) •••• (o.I+Q(n))) •. > 0 
jlR(O) 1 J 
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for each n-tuple (Q(l),Q(2), ••• ,Q(n)) with n ~ N. Since M2 is finite, there 
• ex1s ts a constant e: > 0 such that 

I ((al+Q(l)) ••.• (al+Q(N))) .. 
j/R(O) 1 J 

> e: --

For n > N we have furthermore -
, 

exp(t Q(l))exp(t2Q(2)) ••••• exp(t Q(n)) = 
l n 

= exp ( -a ( t 1 + ••• + t n) ) exp ( t 1 ( a I +Q ( 1 ) ) ) ••• exp ( t n ( a I +Q ( n) ) ) ~ 

k 1 k k1 k 
(aI+Q(l)) ••• (qI1-Q{n}) n t.1 .•• t n . n 

Hence, for each n > N and each n-tuple (Q(l), ••• ,Q(n)), it follows that 
= 

l ( exp ( t 
1 

Q ( l)) ••• exp ( t Q (n))) .. ~ 
j/R(O) n i.Jk k 

~ exp ( -a ( t 1 + ••• + t 
O

) ) l e: 
k 1+ •• • +kn =N 

= exp(-a(t 1+ ••• +tn)) e: 

N 
(tl+. • .+tn) 

N! 

t .1 t n 
l •.. • n 

k 1 ! .. k ! n· 

-

• 1 € s. 

Using lerinsta 6 .a. 7 and the fact that R(O) = C(t), it follows that 

-max 
• ieS 

e(t+s). < 
1. = ( 1-exp(-as) 

N 
£S 

N• • 
)max 

ie::S 

-e(t). 
l. 

s > o. -

Since the same result can be obtained for every starting point t, with 
-t > t, the lert1n1a now follows. = 

By similar arguments, one may show (compare the second part of the 

□ 

• 
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proof of 1 ~11,m;a 4 • a .. 4) : 

. - . b 0 LEMMA 6 .. a.9. There exist positive n®i-ers a, 

choose i 

e(t+s). 
1. 

> (1-exp(-as) 
= 

+ + e 1R and 8 e: 1R such that 

)nri n 
ie:S 

such that 

e(t). 
1 

cSsN 
S := .max {min(exp(-as) 

N! 
, exp(-as) 

N 
e:s 

N~ O<s<w 

• min(exp(-cis) 'exp(-o.s) 
-N es 
N! 

) . 

- -Then s > 0, 8 > 0 and for t ~ t 

-e(t+s). 
1. 

-

-- min e(t+s). . s l. 1€ 

< (1-B)(max e(t). -
= ie:S 1 

} 

-s > 0, t > t. = = 

• min 
ie:S 

e(t).), 
1 

0 

which shows that the convergence in (6.a.12) is exponential. Combining the 

results, we have found: 

THEOREM 6.a .. 10. Let v(.) be the solution of (6.a.1). Then there exist vectors 

g* and w* such that 

lim (v(t)-tg*) • ~, 
t-+oo 

and this convergence is exponential. 0 

Up to now we have considered Markov decision processes with a fixed 

reward, vector r(Q), associated with each Q € M. Let us now suppose that 

for each Q a continuous vector function r(Q,.): [O,=) +JRN is defined 

sucr1 tl1a t for some c > 0 and y > O 

{6.a. JS) If r(Q,t) - r(Q) fl < c exp(-yt) 
= Q EM, t € [O,co). 

Further11ketre, for each t E: [0 11
00), the set of N x(N+l) matrices 

{(Q,r(Q,t)) IQ EM} 



is assumed to have the product property. 

Consider the following nonlinear differential equation 

(6.a. 16) max 
QEM 

{r(Q,t) + Qu(t)} 

where u(O) is arbitrarily chosen. 

t E (0, 00), 

Then, by methods similar to those used in appendix 4.A, and tak!ng 

into account (6.a.15), the following theorem can be proved. 
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THEOREM 6.a.11. There exists a unique solution u(.) of (6.a.16). Furthermore 

there exist vectors g* and w*, with g* defined by (6.a.10), such that 

lim (u(t) - tg*) = w*, 
t) 

and this convergence is exponential. 

It is this final result which has to be used in the proofs of 

theorem 6.8 and, especially, theorem 6.9. 

• 

' 

□ 



PART II 

COUNTABLY INFINITE-DIMENSIONAL SYSTEMS 



CHAPTER 7 

COUNTABLE STOCHASTIC MATRICES: 

STRONG ERGODICITY AND THE DO EBLIN CONDITION 

This chapter is introductory. Its objective is to introduce some 

important characterizations of stochastic matrices of countably infinite 

dimension (or, shortly, countable stochastic matrices). The introduction 

of these characterizations is felt to be fundamental for a good appreciation 

of the conditions needed to establish a theory for count:able nonnegative 

matrices, analogous to the one for finite matrices developed in chapter 2. 

These conditions are related to the concept of strong ergodicity in a 

Markov process with one recurrent class, and to the Doeblin condition in 

a Markov process with more than one recurrent class. In section 7. I these 

concepts are introduced and some important features of Markov processes, 

satisfying these conditions, are discussed. In section 7.2 we pay special 

attention to the relationship between strong ergodicity, the Doeblin 

condition and the mean recurrence time. Also relationships with higher 

recurrence moments are investigated. 

7. l. ~-~,:i-.~:is ,e;rgod.~<:_ity ap.~, -~~e_ D·o,ebl .. in, c_ondition •. 
' 

We start with a brief review of the main ideas in the theory of 

homogeneous Markov processes on a countable state space that are important 

in the sequel. All these ideas are treated extensively in CHUNG (13]. 

Next,the concepts of strong ergodicity and the Doeblin condition are 

discussed. Important references with respect to these notions are DOEBLIN 

[18], DOOB [19], HORDIJK [27], ISAACSON AND LUECKE [31], ISAACSON AND 

MADSEN [32], NEVEU [43] and WIJN . [72], and some of the references 

given there. 

Consider the following stochastic process. An autonomous system may 

be in any state of a countable state space S. If at time t ( t e IN0) the 



system is in state i, then 

of observing the system in 

I 
j e:S 

p •. = 1 
1.J 

p. . denotes the 
l.J 

state j at time 
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probability (independent oft) 

t+l. Assume 

i € s. 

Hence, the transition law of the process is specified by a countable 

stochastic matrix P. Such a process is called a homogeneous discrete-time 

Markov process or (in this chapter) shortly: a Markov process. 

N h ( n) . l.Jh b b • 1 • f b • • . f ote tat p .. 1st e pro a 1. 1.ty o eing in state J a tern 
l.J 

when starting in state i. Furthermore, by definition 

(7. 1 • 1) 
(n) 

piA := 

for a subset Ac S. 
' 

(n) 
p •. 

1.J i € s, 

(0) and p. . : = o .... 
1J l.J 
• • transitions, 

An important concept, extremely helpful in characterizing the structure 

of a Markov process, is a ta.boo probability. Let H be a subset of the state 

spaces. Define the taboo 
l.J 

(7.1.2) 
(0) 

P ·-H ij .-

0 •• 
1J if i H, j E S 

0 if i e H, j E S, 

and for n > 1 : 
= 

(7.1.3) 
(n) 

P ·-H • • • 
1J t 

i1,••,in-llH 
i,j € s. 

Hence, for n > 
1J 

• • 1. to J 
• 1.n n steps, without entering Hin the meantime (note that i,j EH is allowed). 

His called a taboo set. If His empty, it is omitted from the notation; 
• • if H consists 

(n) 
{,e,}Pij • 

of a single state, H ={!}say, we write 
1J 

Choose j e S fixed and define 

(7.1.4) 
" 

(n) 
: •= • p •. 

J l.J 

or, more generally, 
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(7.1.5) f~n) 
iH I 

j€H 

(n) 
H

p ... 
l.J 

These values are often called first-entrance probabilities. A first-

entrance taboo probability can be defined by 
1] 

(7.1.6) 
1J 

where jH denotes {j} u H. Notice that 

(7. l • 7) f (n) = 
iH 

n € ]NQ ; i, j E S, 

n E 

• • First-entrance probabilities are useful tools for characterizing 

the state space Sofa Markov process. Let FiH denote the probability that 

the system reaches the set H, when starting in state i. Then obviously 

00 

(7.1.8) 2 i E S 
n=O 

(note that Clearly, Fili~ 1, since FiH is a probability. 

DEFINITION 7.1. A state i ES is called recurrent if 

if F. . < 1 • 

F . . 
l..l.. 

= l, and transient 

D 
l..l. 

Extensions of these concepts to a collection of Markov cl1ains are given in 

RORDIJK [27]. A further classification can be obtained by considering 

00 

(7. 1 • 9) f
(n) 

n iH i € s. 

DEFINITION 7.2. A state i ES is called positive recu:rrent if 

m .. < 00 ; i,t is called nuZZ. recurrent if F •. = 1 and m .. = q:,. 

F •• = 1 and 
l..l.. 

l.l.. l..l. l..l.. 

Definitions of (ir)reducibiZit;y, (a)penodiaity, classes, etc. can 

be copied directly from the correspoading definitions in the finite

dimensional case. A Markov process is called (ir)reduaible, (a)periodic, 

etc., if this is so for its corresponding stochastic matrix. 

A proof of the next result can be found in CHUNG [13) • 

• 

PROPOSITION 7.1. With respect to an irreducible Markov process either 

D 

all states are recurrent or all states are transient. In case of recurrence, 
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either all states are positive recurrent or all states are null recurrent. D 

In view of proposition 7. 1 we speak of a r:eou:r1:1ent and tran.sient 

process, respectively. In case of recurrence, we speak of a positive 

recurrent and a null recurrent process, respectively. 

If FiH > 0 for some i e S, H c S, then 

necessary to reach H from i, under the condition that H will indeed be 

reached. If F ... = 1 (i.e., if state i is recurrent), then m .. is called the 
1.1. 1.1 

mean recurrence time. In this case we have 

00 

m = ,. . 
1.1 I 

n=O 

00 

I 
k==n+l 

00 

I 
n=O 

n 
< i- I 

k=O 

00 

1 + I 
n=l 

(n) 
• ,p . . 

:J. 1J 

Remark. In order to avoid possible confusion, we remark that several authors 

(e.g. HORDIJK (27]) define miH by 

00 

l I 
n=O j/H 

(n) 
Hp ... 

l.J i € s, H Cs. 

The reader may note that this definition is equal to our defini~ion (7.1.9) 

if and only if FiH = l and i l H. In the sequel miH is defined as in (7.1.9). 

Higher moments will also be needed in the sequel. Let 

(7.1.10) l 
n=k 

(l) f . S H FiH~ miH = miH or l. e , 
be used for more detailed classifications of 

k e :JN0 , i £ s, H c s . 

c S. Clearly these moments can 

the states. 

Well known is the following property (cf. CHUNG [13]): 

PROPOSITION 7.2. Let P be a stochastic matrix. Then 

(7.1.11) lim 1 
n+t n )::o 

exists (element-wise). Let Q denote this limit and let the Markov process 

with transition matrix P be irreducible. If this process is transient ot 

null :recurrent, then Q = O; if it is positive recurrent, then --
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-1 > 0 m •• 
JJ 

i,j € s □ 

Let P be a countable stochastic matrix. The definition of the period 

of a state i ES can be copied from definition 2.3. As in the finite case 

one can prove that all states have the same period if Pis irreducible 

(cf. proposition 2.1). Hence we may speak of an (a)periodic, irreducihle 

matrix P and of the (a)periodic, irreducible Markov process, induced by P. 

If Pis irreducible and aperiodic, then the matrix Q, defined in proposition 

7. 2, sat is fies 

(7. l • 12) Q == lim pn . 

Note that Q is a matrix with equal rows. 

If Pis reducible, then the state space Scan be partitioned uniquely 

into a collection of subsets {C(l), C(2), ••• }, where C(k) denotes an 

irreducible set of states which cannot be enlarged without destroying its 

irreducibility (k € JN). As before C(k) is called a class; we say that C(k) 

is final if p .. = 0 for all i E C(k), j € S\C(k) (k E :IN). Furthermore, a 
1J 

class C(k) is called recurrent if F •• = 1 for some (and hence each) state 
· 11 

i E C(k), otherwise C(k) is called transient. Positive recurrent and 

nuiz recurrent classes are defined analogously. Note that a recurrent class 

C must be final, since p •. > 0 for some i EC and some j e S\C implies 
l.J 

F .. < I, contradicting the recurrence of i (recall that Pis stochastic). 
1.1. 

A proof of the next result can be found in CHUNG [13]. 

PROPOSITION 7.3. Let P be a countable stochastic matrix. Then 

Finally, 

1. limp~~)= 0 if j is transient or null recurrent (i,j ES). 
n ).CO l.J 

2. If j is positive recurrent, then 

1 . 1 
1.m n+l 

n~ 

n 

I 
k=O 

(k) 
p •• 

l.J 
-1 = F .. m .• 

l.J JJ 

If in addition j is aperiodic, then 

lim 
n >oo 

(n) 
p .. 

l.J 
-1 = F .. m .• 

l.J JJ 

• • l.,J € s. 

• • 1.,J € s. 

F .. = 1 if i and j belong to the same recurrent class. l.J □ 
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Let us take a closer look at a special type of Markov process, namely 

a process that has exactly one final class. Such a process is called ergodic 

if this final class is aperiodic and positive recurrent. The same adjective 

is used to describe the associated transition matrix P. The following, 

stronger, definition can be found in ISAACSON AND LUECKE [31 ]. 

DEFINITION 7.3. A stochastic matrix Pis called strongly ergodic if 

( 7" l • 13) 1 im I I Pn -QI I = 0, 
n~ 

where Q is a stochastic matrix with identical rows and [J. -II denotes the 

usual sup-norm. □ 

DEFINITION 7.4. The delta coeffic:ient of a stochastic matrix Pis defined 

by 

o(P) := l - inf 
i,k€S j€S l.J 

□ 

ISAACSON AND MADSEN [ 32) proved 

LEMMA 7.4. A stochastic matrix Pis strongly ergodic if and only if o(Pn) < 1 

for some n £ ]N .. D 

Another characterization of strong ergodicity follows from 

LEMMA 7.5. A stochastic matrix Pis strongly ergodic if and only if there 

exists a states ES, a constant E >0 and an n 0 € lN, such that 

(7 .. 1 .. 14) inf 
iE:S 

PROOF. If Pis strongly ergodic then 

sup fp~n)_q I< 
. l.S SS = sup 

• l. ]. 

n > --

Hence {7.1.14) holds for each states with q > 0 (take e = }q ). 
ss ss 

On the other hand, if (7 .. 1.14) holds for the triple (s,e,n0), then 

" 
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which implies strong ergodicity, according to le1111na 7. 4. D 

The characterization of strong ergodicity, given in le,,,1,1a 7.5, will 

prove to be very useful in the sequel. Analogously we define Cesaro strong 

ergodicity. 

• 

DEFINITIO~ 7.5. A stochastic matrix Pis called Cesaro strongly ergodic 

if there exists a state s € S, a constant e: > 0 and an n
0 

E m, such that 

inf 
ieS 

1 
n+l 

n 
}: 

k=O 
> e: n > 
= = 

Strong ergodicity and Cesaro strong ergodicity are important tools 

for analyzing Markov processes with one final class. For processes with 

more than one final class there exists an analogue of the concept of 

strong ergodicity (cf. DOOB (19], ~TEVEU (43), HORDIJK (27]), 

DEFINITION 7.6. A stochastic matrix Pis said to satisfy the Doeblin 

condivion if for some finite subset Ac S, some e: > 0 and some n e 1N 

□ 

inf 
ie:S 

P
(n) > e: 
.A • 1 = □ 

Clearly, a Markov process with a transition probability matrix satisfying 

the Doeblin condition possesses at most a finite number of final classes. 

One may wonder how small the set A can be chosen. The next definition is 

relevant. 

DEFINITION 7.7. A set of reference states of a Markov process is a subset 

B c S which contains exactly one state from each recurrent class and no 

other states. □ 

The above-mentioned question can now be answered in the aperiodic case. 

LEMMA 7.6. Let P be the transition matrix, associated with a Markov chain 

each recurrent class of which is aperiodic. Then P satisfies the Doeblin 

condition if and only if 

(7.1 .. 15) inf > e: --



for some finite set of reference states B, some£> 0 and some integer 

no > 0 .. 

PROOF .. Obviously we only have to prove the ''only if'' part. Suppose P 

satisfies the Doeblin condition, • 
1.. e .. ' suppose 

(7.1.16) inf 
• 1 
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for some finite set A, some 6 > 0 and some k E ]N. Clearly P possesses at 

least one, and at most a finite number of final classes C(I), C(2), ••. ,C(r), 

say. Let A(!l) := A n C(R.) (1 = 1,2, ••• ,r). Then 

(k+n) 
p .• 

1J = I 
hEC(!l) 

l 
je:A(.fl) 

which implies that each class C(l) is positive recurrent (!l =1,2, ... ,r), 

by proposition 7.2 and (7.1.12). Furthermore, S\(C(l) u ••• uC(r)) contains 

no recurrent class, since each recurrent class is final. Choose tR, E C(t) 

for !l = 1,2, ..• ,r, then B := {t 1, t 2 , ••• ,tr} is a set of reference states. 

Each state i ES has access to B. This certainly holds for each state in 

the finite set A. Hence, by the aperiodicity, there exists a constant p > 0 

and an integer n > 0 such that (cf. proposition 7.3) = 

-j EA, n > n. = 

Since 

(k) 
p .. 

l.J i € s , n t:: mo , 

(7 .. I. 15) follows i1111.t1ediately with n0 
-:= n + k and e = po. □ 

Le11,,11a 7. 6 shows that, in the aperiodic case, the Doeb lin condition 

is the analogue of strong ergodicity in the case that more than one final 

class exists (cf. len11,1a 7 .. 5). When assuming the Doeblin condition we may 

restrict ourselves to a set of reference states. If the aperiodicity 

assumption is removed, we obtain 

LEMMA 7.7. A stochastic matrix P satisfies the Doeblin condition if and 

only if there exists a finite set of reference states B, a constant e > 0 
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-and an n € lN, such that 

(7.1.17) inf 
ie:S 

l 
n+l k=O· 1.B 

-> e:: n > n. 
= = 

PROOF. Suppose (7.1.17) holds. It is easy to construct a finite set A such 

that 

Combining (7.1.17) and (7.1.18) we find 

Hence, the Doeblin condition holds. The proof of 

is similar to that of lenu1td 7. 6 and will be left 

-i € B; n = 0,1, ••• ,n. 

i € s. 

the inverse implication 

to the reader. □ 

Hence, also in the periodic case, we may restrict ourselves to a set 

of reference states when asstuning the Doeblin condition. Note that (7. l. 17) 

is the analogue of Cesaro strong ergodicity for the case of more than one 

final class. In the next section the notion of a set of reference states 

Bis used to study relations between the Doeblin condition and the moments 

7.2. Doeblin condition and mean recurrence time. 

In this section it is shown that the Doeblin condition is equivalent 

to uniform boundedness of the expected time, necessary to enter a set of 

reference states. Relations with higher moments are also investigated. 

First we have: 

THEOREM 7.8. Let P be a countable stochastic matrix. Then P satisfies the 

Doeblin condition if and only if there exists a nonempty, finite set of 

reference states B, such that 

inf 
• 

FiB = 1 
l. 

and 
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sup m. B < 00 • 
• 1. 
1 

PROOF. ''only if'' .. Suppose P satisfies the Doeblin condition. By le1111na. 7. 7 

we know that there exists a nonempty, finite set of reference states B such 

that for some E > 0 and some n0 € m0 we have 

inf 1 
. n+l 
1. 

It follows that 

hence 

(7.1 .. 19) 

sup l 
i j¢B 

lim sup 
k >oo 

.. 
1 

n 

I > E 

k=O 

(n) < 
B

P •• 
l.J = 

I 
j/B 

(kn) < 
BP •• 

1J = 

Since, for each i ES, 

I 
j/B 

(n) 
BP ... 

1.J 

lim 
k4<l0 

k 
( ]-£) 

is nonincreasing inn, it follows that 

From 

lim sup I 
• n >00 1 j/B 

n 

l 
k=O 

f (k) + 
iB t 

j/B 

n > n 
= o· 

= 0 

n > 1, i € S, --

it now follows that FiB = I for all i ES. Furthermore 

(X) 00 00 00 

( 7 .. 1. 20) I 
n=I 

I 
n=O 

I 
k=n+l 

= 1 + I 
n=l 

I 
j/B 

(n) 
B
,p •• 

1.:J 

since FiB = l for all i ES. Using (7~1.19) and the fact that 

is noninc~easing inn, we conclude: 

. i € s, 
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sup 
• 

m < 00 iB • 
l. 

''if''. Suppose now that FiB = 1 and miB i c for all i €Sand for some 

constant c > 0 and a nonempty, finite set of reference states B. Since, 

for each i ES, 

00 

I 
k=n+l 

f (k) 
iB 

is nonincreasing inn, it follows that for each o, 0 < o < 1, there exists 

an integer n0 = n0 (o) > O, such that 

sup l 
i jtB 

(n) 
BP •• 

l.J 

00 

= sup I 
i k=n+l 

(use (7.1.20) and the fact 

It follows that 

n 
inf I 

i k=O 
1-0 

< c for all i ES). --

n > n • 
= 0 

In particular, for each i € S there exists a nonnegative integer k = k(i), 

k ~ n0, such that • 

(7.1.21) 

Furthermore, it is easy to find a finite set A, such that 

( 7. 1 • 22) 

Combining (7.1.21) and (7.1.22), we conclude 

for all i € S. 

Hence, the Doeblin condition holds (cf. definition 7. 6). 0 

The following result relates the Doeblin condition to higher moments. 

THEOREM 7.9. Let B be a set of reference states. Let FiB = 1 for all i € S. 

Then 



sup m.B 
. 1 

< 00 <=> sup 
• 

< 00 

1 1 

PROOF. Suppose 

sup 
• 
1 

Since FiB = I, this implies (cf. 7.1.20)) 

00 

sup l 
(n) 

BP •• 
1J • 

l. n=l 

Choose a E lN and let 

sup 
• 

(ex) 
m. iB 

< 00 

l. 

Then 

00 

00 > sup ( (a) + l I 
(n) 

miB BP· • l.J • n=l j,!B l. 
00 

- sup 
(k+l-a) 

+ -
• n=l l. 

00 00 

f~n+k+l-a.) = - sup I - l.B • n=O k=a. l. 

(<l)) 
mjB --

1 
(n) 

BP •• 
1] 

j/B 
00 

sup I 
• n+k=a 1 

00 

for all k c:: lN • 

00 

--
k==a a JB 
n+k (n+k+I-cx) 
I riB --

R.,=a. 

00 

= sup l n+k+l 
et+ 1 

f (n+k+l-ot) 
iB = sup ~ ( r ) f ~ ( r+ 1 ) - (a+ 1 ) ) = 

l l a+ 1 1.B i n+k=et 

= sup 
• 
l. 

(here we used n+l 
k 

n 
= I 

t=k.,..J 

R.. 
k-J fork 

By induction it is proved that 

sup < 00 

• 
l. 

• 
l. r=a+ 

> 1 , n > k- I) • 
= 

The reverse implication is trivial. 

for al 1 k € lN . 
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□ 

COROLLARY. A stochastic matrix P satisfies the Doeblin condition if and only 

if there exists a nonempty finite set of reference states B such that 

(7. 1 • 23) F iB = l for all i € S, 
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and 

(7. 1 • 24) sup < 00 for all k € lN • 
• 
1 

PROOF. Inn11ediately from theorem 7. 8 and theorem 7. 9. □ 

Note that a finite stochastic matrix trivially satisfies the Doeblin 

condition and hence (7.1.23), (7.1.24). Roughly speaking, one might say 

that a countable stochastic matrix satisfying the Doeblin condition behaves 

more or less the same as a finite stochastic matrix. 

It will appear that many of the definitions given in this chapter 

can be extended to general (i.e. not necessarily stochastic) matrices of 

countably infinitedimension (compare the next two chapters). Moreover, we 

will meet several conditions which, translated to the stochastic case, 

take the form (7. 1. 23), . (7. I. 24). The notion of a ''set of reference states'' 

will play a basic role again in chapter 8. Once being familiar with the 

analysis of countable stochastic matrices, we hope that the results for 

general nonnegative matrices of countably infinite dimension will become 

more transparent. This has been the main reason for writing this introductory 

chapter, in spite of the fact that most of the results will be well known 

to readers familiar with stochastic analysis; as far as we know only the 

notion of a set of reference states, lerr1111as 7. 6 and 7. 7, and theorem 7. 9 

(and its corollary) are new. 



CHAPTER 8 

A-THEORY FOR COUNTABLE NONNEGATIVE MATRICES 

In this chapter we investigate the possibility of extending the 

results of chapter 2 to matrices of countably infinite dimension. Apart 

from being interesting in itself such an extension would be important in 

several fields of application that require the assumption of a countable 

state space (e.g., in queueing theory). Moreover, once having established 

an extension to systems with countable state space one may hope that at 

least some light is shed on systems with a more general state space, i .. e., 

systems where we deal with general nonnegative linear operators. 

VERE-JONES [65), [66] showed that the Perron-Frobenius theorem can 

be extended to irreducible nonnegative matrices of countably infinite 

dimension. A basic role in his analy.sis is played by the parameter R, 

the cor1m,a0n convergence radius of the series 

I 
n•O 

(n) 
p .. 

l.J 
n z i,j ES, 

where Pis a countable irreducible nonnegative matrix and Sa countable 

set of states. In section 8.1 we review the fundamental results of this 

I-theory (SENETA [52]). Next, the theory is extended to general nonnegative 

f;IAtrices; we show how a ''generalized eigenvector theory'', analogous to the 

one in chapter 2, can be developed (section 8.2). The results will prove 

to be of particular importance in the use of certain contraction properties 

of nonnegative matrices and for the construction of so-called S-subinvariant 

vectors. The construction of generalized eigenvectors, in this chapter 

called generalized R-invariant vectors, requires some ass1,t1rq,tions on the 

nonnegative matrix P; in section 8.3 we will give a separate discussion of 

these as91mq,tions and relate them to results of the preceding chapter .. 

The methodology, used in chapter 8, has been deeply influenced by the 
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treatment of countable Markov chains in CHUNG (13]. As in the preceding 

chapter, concepts like first-entrance transition, recurrence, etc. will 

appear to play a fundamental role. In addition, semi-probabilistic 

interpretations of invariant vectors and generalized invariant vectors can 

be given. 

8. 1 • Countable irreducible 
W 1 I I 1 I 7 

This section is devoted to a brief exposition of the main ideas of 

Vere-Jones' treatment of countable irreducible nonnegative matrices. In 

addition we give some preliminary results which will be needed in the sequel. 

Throughout this chapter we work under the following assumption. 

Assumption 1. For each nonnegative matrix P we suppose 

(n) 
p. . < 00 

1J. i,j E S, n e: 1N. 

Let P be a countable irreducible nonnegative matrix. Consider the 

following power series 

P •• (z) := 
l.J 

00 

I 
n=O 

(n) 
p •. 

l.J 
n z i,j e: s. 

Let R .. denote the convergence radius of P .. (z). One can show that for all 
l.J l.J 

i,j,s,t e S we have 

R •• = R t , 
l.J s 

if Pis irreducible. The proof uses inequalities of the kind 

(8.1.1) p~t;+k+t) > 
l.J = 

and the fact that for some fixed k and t 

by the 

proved 

> o, > 0 

irreducibility of P. Hence R •• < R • The inverse inequality is 
1.J = st 

similarly. This shows the desired result. 

It follows that the series P .. (z), i, j e: S have a co11rr11on convergence 
1J 
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radius R. R will be called the conve:Pgence parameter of P. Throughout this 
• section we assume 

The reader may note that for finite nonnegative matrices R is equal 

to the reciprocal of the spectral radius .. SENETA [52] shows that R < 00 

by applying a theorem on supet111ultiplicative functions, due to KINGMAN [37]. 

We follow another way by introducing so-called 

finiteness of R then follows 

first-entrance transition 
• power ser-ies; the as a by-product. 

(n) (n) (n) Let H be a subset of S. We define quantities Hp .. , f .. , f.H and 
1.J l.J 1. 

in exactly the same way as in chapter 7 (compare (7.1.2) until (7.1.6)) 1J 
for i,j E S, n E lN0 • We speak of taboo-transition values and fi-:rast-entrance 

transition values (note that the use of the word ''probability'' is not allowed 

in the present context). Now consider the power series F .. (z), defined by 
1. J 

F •• (z) := 
l.J 

00 

I 
n=O 

i,j ES. 

Obviously, F .. (z) has convergence radius at least equal to R since 
(n) (n) l.J . .. 

f.. < p.. for all n E IN0 , 1.,J € S. Furthermore, it follows from l.J = 1J 

(n) 
p .. 

1.J 

n 

= i: 
k=O 

(n-k) 
p. # 

JJ 
i,j E S, n E lN 

(this is the first-entrance decomposition, cf. CHUNG [13]), that 

(8.1.2) P •. (z) = o •. + F .. (z)P .. (z) 
1J l.J 1J JJ 

i,j E s,lzl < R. 

In particular 

(8.1.3) F .. (z) = (P .. (z)-1)/P .. (z) 
11. 1.1 1.1 

i "E s, I z I < R, 

which implies that 

(8.1 .. 4) F •. (R-) : == 1 im F •. ( z) < 1 .. 
11 R 11 = Z-+-

The next le1mna. follows irratiediately from (8.1.4). 

LEMMA 8.1. The convergence parameter R of a countable irreducible nonnegative 

matrix Pis finite. □ 
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We use (8.1.4) to classify the states, as follows: 

DEFINITION 8.1. Let P be a countable, irreducible, nonnegative matrix with 

convergence parameter R. Then state i ES is called R-reaurrent if 
' 

F .. (R-) = 1 and R-transient if F .• (R-) < 1. 
11 11. 

It follows from (8.1.3) that i is R-transient if and only if 

P .. (R-) <~.Using this result and inequalities of the kind (8.1.1), one 
11 

easily establishes the following le1i1n1a. 

□ 

LEMMA 8.2. Let P be countable and irreducible with convergence parameter R. 

Then, either all states are R-recurrent or all states are R-transient. 

The matrix Pis then called R-recu.:rrent, or R-transient, respectively. O 

The reader easily_verifies the following equality: 

(8.1.5) F •. (z) = z 
1J 

zp .. 
1J 

• • l.,J € s, I z I < R. 

Since for O < z < R the series F .. (z) is increasing in z for all i,j e S, 
l.J 

we have 

hence 

F •• (z) < R 
1J = 

F •• (R-) < R 
l.J = :t 

F ,, • (R-) + Rp •. 
~J l.J 

p .. n F n • (R-) 
• ].A, .x,J 
J 

+ Rp •• 
l.J 

Using the same argument, we find 

F •• (R-) 
l.J 

> z 
= 

hence, by Fatou' s lemma 

Combining these results yields 

zp •. 
l.J 

+ Rp •• 
l.J 

i,j € S, 0 < z < R, = 

i,j e: s, 0 < z < R, 

• • 1.,J € s. 



• 

(8.t.6) F •. (R-) = R 
l.J 

and in particular 

= JJ = 

P•n Fn.(R-) + Rp .. 
]. ;(, ,.If,, J 1 J i,j ES, 

F tj (R-) • J,£ € s, n € m. 

(Obviously, (8.1.6) follows in,,uediately from (8.1.5) by the Monotone 

Convergence Theorem. The proof of (8.1.6) is given in detail since it is 

typical for several proofs to follow). 

Using the irreducibility of P, we conclude 

0 < !,j ES. 

The following result is fundamental. 

THEOREM 8.3. Let P be irreducible with convergence parameter R. Fix some 

states€ Sand define the vector u by 

u. : = o. + ( 1-o. ) F. (R-) 
1 l.S 1S 1S 

i ES. 

Then 

RPu < u --

with equality if and only if Pis R-recurrent. If xis any semi-positive 

vector such that BPx < x for some a> O, then x > 0 and B < R. Moreover 
= - = 

(8.1.7) 
x. 
_1. > F. (8) 
X = l.S 

s 
i € s. 
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PROOF. RPu < u follows irr11,1ediately from (8. 1. 6). If P is R-recurrent then -
RPu = u since F (R-) = 1 = u in that case. If BPx < x for some x ~ 0 and ss s = 
B > O, then x > 0 by the irreducibility of P. Suppose > R. Choose a such 

that R <a< 8. Then 

00 00 

I n n 
1ct. p X < --n=O 

I 
n=O 

n -n -1 -1 
a B x = ( 1-a B ) x , 
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hence in particular 

(n) 
P •• 
l.j 

n 
(1 < GO i,,j € s, 

contradicting the fact that a> R. Hence B ! R. 

• 
1 

Finally we prove (8.1.7). Clearly the result holds for i = s. Suppose 

s. By induction we show that for all m € lN0 and i :/- s 

(8 .. 1 .. 8) 
x. m (k) k l. r > f. f3 , 
X - J.S k-0 s 

which implies the desired result. Form= l the result holds since 

and 

:x. > 8p .. x = Bf~l) x 
l • 18 S l.S S 

i € s. 

-Suppose (8.1.8) holds form= m > 1. Then 
= 

-
m 

f~k) Skx X. > f3L p . . X. > Sp. X + B l p •. i: --l. = • l.J J - 1S S l.J JS s j,'s k=l J 

== 13f~l)x + 
iii+) 

f~k) Skx 
m+l 

f~k) k l I - 8 X , -lS S l.S s l.S s k=2 k=l 

hence (8.1.8) holds for all m. 0 

The proof of theorem 8.3 follows also from a combination of several 

results in SENETA [52]. The method used above will also prove to be useful 

in the next section. 

The reader may note that the vector u plays the role of a strictly 
-1 

positive eigenvector, associated with R , if Pis R-recurrent (recall that 
-I 

for finite matrices R is equal to the spectral radius). Theorem 8.3 also 

shows the nature of these eigenvectors (their elements being power series 

of first-entrance transition values, calculated at the convergence 

parameter R). 

DEFINITION 8.2. Let P be a countable nonnegative matrix and let x be a 

semi-po$itive vector such that for some constant 13 > 0 

BPx < x. -
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Then the vector xis called B-subinvariant. If SPx = x then xis called 
• • B--invar-ian-t. □ 

It is well known that a strictly positive eigenvector of a finite 

nonnegative square matrix must be associated with its spectral radius 

(cf. BRAUER [IO]). The reader may wonder whether it is possible for a 

countable irreducible nonnegative 

spectrum with modulus larger than 

following example shows. 

matrix P to have values in its point 
- l . ff. . h R • The answer 1s a 1.rr,,at1.ve as t e 

Example 8.1. Let S := {1,2, ••• } and let P be a stochastic matrix defined 

by 

1-p. l = 1., 
l 

i+l +p -1. l+p 
; p .. = 0 for j ~ 1,i+l 

1.J i € s, 

with O < p < 1. Obviously, Pis irreducible and aperiodic. We have 

n 
- l+p - ----

l+p 

- 1-p 
F I , 1 ( z) - 1 +p 

n n+l 
p -p 

J+pn 
- )·-p n 

1 - I - p 
l+p 

00 

l (pz)n 
n=l 

= ( 1 _+p) ( 1 .:-.P z) 
l+p-2pz ' 

n ~ lN • 

l+p • 
hence R = 2P • Furtherr11ore, F 1 , 1 (R-) = 1 , hence P is R-recurrent. It 1.s 

not hard to verify that the vector x, defined by 

x. 
1. 

i-1 i 
- p +p 
- . - I 1. l+p 

is a strictly positive solution of 

Px = -1 
R X = 2p 

1 x. +p 

i C: s, 

-1 
If p < 1, then R < 

• d • h R-l associate wit , 

1. Hence, there exists a strictly positive eigenvector 
-1 

although R is smaller than the spectral radius of P, 

This is impossible for finite-dimensional nonnegative matrices. □ 

A further classification of the states can be obtained by taking 
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into account the series m •. (z), defined by 
1.J 

m •• (z) := 
1J 

00 

2 
n=l 

• • 1.J E S, f z f < R. 

DEFINITION 8.3. Let P be an irreducible R-recurrent nonnegative matrix. 

Then state i ES is called R-positive if 

m .. (R-) = lim m .. (z) < ~, 
1.1. R 11. z+ 

otherwise i is called R-nulZ. □ 

As before one may prove that either all states of an irreducible 

R-recurrent nonnegative matrix are R-positive or all states are R-null 

(cf. VERE-JONES [65]). We speak of an R-positive (R-nulZ) matrix. The reader 

may verify that the matrix P of example 8.1 is R-positive for O < p < I. 

For the analysis in the next section also higher moments are needed. 

Define m~~)(z) by 
1J 

00 

E : 
n=k 

f~:1+1-k)zn+l-k 
l.J 

k € lN0 ; i, j € s; I z I < R. 

(I) 
m. . (z) 

1.J 
= m .. (z). The following result holds. 

l.J 

LEMMA 8.4. Let P be irreducible with convergence parameter R. Let 
.m(. k_) (R-") f k • • < 00 or € ]N ; 1, J E S. Then for k > 1 

l.J = 
• 

(~.1.9) (k-1) 
m.... (R-) 

l.J + R 

PROOF. As in the proof of theorem 7.9 we find fork> 1 

(k) 
m •• (z) = 

l.J 
(k-1) 

m. • (z) + 
1J 

00 

I 
n=l 

n z 

from which it is i111111ediately deduced that 

--
(n) (k-1) 

·P•n. mn. (z) J ]..a:, ~ J 

• • l'.,J € s. 

i,j € S, lzl c:·R, 

(k-1) ( ) m.. z 
l.J 

+ z i,jES,lzl<R. 

The proof is completed in the same way as the proof of (8.1.6). □ 
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The moments m~~)(R-) will play a crucial role in the construction of 
l.J 

so-called generalized R-invariant vectors (the equivalent of generalized 

eigenvectors, associated with the spectral radius, in the infinite 

dimensional case). Moreover, they are ''minimal'' in a sense, similar to the 

quantities F .. (R-) (compare 8.1.8), as .is shown by the next theorem. 
l.J 

THEOREM 8.5. Let P be irreducible with convergence parameter Rand let there 

exist nonnegative vectors y(O), y(l), y(2), ••• such that for some B > 0 the 

following holds 

y(O). B l y(O). • € s, > p . . l. 
l. - l.J J - jES (8.1.10) 

y(k). > y(k-1). B r p •. y(k). k € lN, • 
€ s, + l. 

1 = l. 1J J j,'s 

where y(O) ~ 0 ands is some fixed chosen state in S. Then y(k) > 0 for 

k E lN0 and B ;; R. Furthermore, if y (Q) is norn1alized in such a way that 

y(O) = 1, then 
s 

(8.1.11) y(k). > m~k)(S) 
1. • l.S 

PROOF. By theorem 8.3 it follows .that y(O) > 0 and S ~ R. Since y(k) -
fork~ I, it follows by induction that y(k) > O, k E lN0 . By (8.1.7) 

we have 

y(O). > F .. (B) = m~O) (S) 
1. = l.J l.S 

• l. € s, 

if y(O) =I.Suppose (8.1.11) holds fork= a. Iteration of (8.1.10) 
s 

yields (recall that y(a+I) > O) 

00 

I 
n=J 

> y(k-1) = 

(compare the proof of le111ma 8. 4) . Hence (8. I. 11) holds for k = ct+ 1 • By 

induction the proof is completed. D 

The reader may note that, if the conditions of theorem 8.5 are 

fulfilled for B = R, the result implies the existence of all moments 

l.S 
where vectors y(O), y(l), y(2), •.• are relatively easy to obtain, whereas 
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calculation of the moments m~k)(R-) may become a hard, or even impossible 
1S 

job. The functions y(O), y(1), y(2), ••• are often called Lyapunov funo~ions; 

HORDIJK [28 J uses these functions to analyze (sets of) stochastic • matrices 

(cf. al so VA?:-1 HEE, HORDIJK A!'JD VA!,J DER {"JAL [ 83] ) . In addition, equations of 

the }~ind (8 .1. 10) are usually called a Lyapunov function criterion. 

With theorem 8.5 we conclude the analysis of countable irreducible 

nonnegative matrices and turn to the reducible case. In particular we will 

make an attempt to extend the generalized eigenvector theory of chapter 2 

to the infinite-dimensional situation. The moments m~~)(R-) will play a 
l.J 

fundamental role in this analysis. 

8.2. Countable reducible 
lzt t 11 II 

• • nonn_egat;1-ve_ matri_ces. 

In this section we shall discuss countable reducible nonnegative 

matrices and give conditions guaranteeing the existence of strictly 

positive R-subinvariant vectors. Moreover, we discuss 8-subinvariant vectors 

and generalized R-invariant vectors (the equivalent of the generalized 

eigenvectors, considered in chapter 2, for the infinite dimensional case). 

The for11tal definition follows below. Under some special conditions, related 

to the Doeblin condition for stochastic matrices, these generalized 

R-invariant vectors can be chosen nonnegative. All conditions needed appear 

to hold trivially in the finite case so that the results of this section 

extend those of chapter 2. 

Before continuing, we have to specify what we mean by the convergence 

parameter R of a reducible nonnegative matrix P. As before, consider the 
• power series 

p •. ( z) = 
1J 

00 

I 
n=O 

(n) 
p . . 

1J 
n 

z i,j ES, 

and let R •. be the convergence radius of P .. (z). Define the convergenae 
1J 1J 

parameter R of P by 

R := inf R ..• 
• . l.J 
l., J 

We have seen that in the irreducible case R .. =Rall i,j € S. Obviously, 
1J 

this does not hold in general for reducible matrices. As in the finite case, 

we may partition the state space S into a number of subsets C(l), C(2), ••• , 

such that the restriction of P to C(k) xC(k) is irreducible and such that 
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the C(k) cannot be enlarged without destroying this irreducibility. As 

before, the subsets C(k) are called classes; these classes are partially 

ordered by accessibility relations and we may speak of a coria11on convergence 

1J 
show, by methods similar to those of the 

easy to 

preceding section, that for two 

classes C(k) and C(£) with k I l we have 

R. ·=Rt i,s € C(k); j,t € C(l). 
1J S 

Hence we may speak of a COii11,1on convergence radius R (k, .2.). This has been 

noticed by TWEEDIE (62], who also proved 

(8. 2. 1) 

As usual, we say that a class C is final if no state in Chas access 

to any state in S\C. Furthermore, we say that a class in C is R-transient3 

R-nuZZ or R-positive if this holds for some (and hence each) state in C. 

In this section we will work under some restrictions concerning the 

structure of the nonnegative matrix P (which may be considerably relaxed; 

compare the last section of this chapter), in order to simplify the proofs. 

Assumptions 1 and 2 of the preceding section are supposed to hold, together 

with 

Assum.ption 3. P partitions s into a finite number of classes. 

First, the structure of S-subinvariant vectors of Pis investigated. 

Analogous to theorem 8.3 the following result holds. 

THEOREM 8.6. Let P be a countable nonnegative matrix with convergence 

parameter R. Let C(l), C(2), •.. ,C(k) be the final classes with respect to P. 

Choose a state t 1 E C(f) (£ = 1,2, ••• ,k) and suppose 

(8.2.2) F. (R-) < oo 
it 

R, 

Let the vector u(R-) be defined by 

u(R-). := 
1 

( 1-o. t ) F • t (R-)} 
1. t 1. l 

for all i ES, t = l, .• ,k. 

i € s. 
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Then 

(8.2.3) RPu(R-) < u(R-), --

with strict equality if and only if all final classes are R-recurrent. 

Furthercnore, if x is a semi-positive B-subinvariant vector with xt > 0 

( t = I, 2, ••• , k) , then 

(8.2.4) x. > 
l. = 

k 

I 
!=] 

<Rand 
Jl 

= 

i € s. □ 

The proof 

8.3 and is left 

of theorem 8.6 is completely analogous to that of theorem 
• 

to the reader. Note that F (6) = 0 for Jl ~ n, Jl,n = 1, .. ,k. 
tJltn 

In the next section a separate discussion will be devoted to condition 

(8.2.2); in particular it will be shown that this condition, and hence the 

theorem, is independent of the choice of the set { t 1, t 2 , ••• , tk}; we only 

must have t! € C(!) for = 1, •.• ,k. 

The question arises what can be said if the conditions of theorem 8.6 

are not fulfilled, i.e., if (8.2.2) does not hold. In the finite case this 

question has been answered in ter[11s of structural properties of generalized 

eigenvectors (cf. theorem 2.12). In order to develop a theory for generalized 

eigenvectors, chain-structures of the underlying graph associated with the 

nonnegative matrix have been investigated. It seems reasonable to conjecture 

that such a structure can also be exploited in the case, where we deal 

with a countable state space. 

Let {C(l), C(2), •.• ,C(n)} be a set of classes of a nonnegative matrix 

P of countably infinite dimension, such that for each k E {1, ••• ,n-1}\ there 

exists a pair of states i.j (depending on k), with i € C(k), j e C(k+l) 

and p .. > O. Analogous to the finite case we call such a sequence a chain, 
l.J 

that sta.x,ts with C(l) and ende with C(n). The length of a chain is now 

defined as the number of R-recurrent classes it contains. As before we have 

DEFINITION 8.4. The index~ of a nonnegative matrix P with convergence 

parameter R is defined as the length of its longest chain. The depth of a 

cZass C is the length of the longest chain which starts with C. The depth 

vi of a state i is the depth of the class to which i belongs. D 

The notion of a set of refePence states will appear to be useful in 
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is defined as follows: 
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DEFI}.:ITIO}; 8.5. Let P be a countable nonnegative matrix with convergence 

parameter R. A set of Peferenae states Bis a subset of S, which contains 

exactly one state from each R-recurrent class and no other states. D 

Analogous to the concept of generalized eigenvectors we have in 

the infinite-dimensional case 

DEFINITION 8.6. A generalized R-invariant vector of order k (k E JN) 

vector x such that (I-RP)kx = 0 and (I-RP)k-lx j 0. 

• 
l.S a 

□ 

Using these definitions a theorem concerning the existence of 

generalized R-invariant vectors, similar to theorem 2.12, can be formulated. 

Before establishing this result we need the following 

LEMMA 8.7. Let P be a nonnegative matrix with convergence parameter Rand 

let H cs. Define 

00 

(k) 
H

m •• (z) := 
l.J L 

n=k 

n (n+l-k) n+l-k 
k Hfij z k E lN O ; i , j E S , ( z I < R. 

As usual, we write HF •• (z) instead of and Hm .. (z) instead of 
( 1) 

H
m •. (z). 1J . 

1J l.J 1J 

The following equalities hold (jH denotes {j} uH). 

l 
• • 

HF •• (R-) = R pit HFtj(R-) + Rp .. l,J 
1J l.J tijH 

(k) (k-1) (R-) I 
(k) • • 

+ R Hmtj (R-) l., J Hm .. (R-) - pit - Hmij 1] t,!jH 

(whenever these moments exist). 

PROOF. Analogous to the proof of (8.1.6) and that of ler11t'11a 8.4. 

One technical remark has to be made. 

Remark. Let H c S and let { t 
1

, ••• , tk} c H, { n 1 , ••• , I\.} c JN0 , and 

{a. 1, ••• ,ak} c IR. Suppose 

€ s, 

€ s, k € lN 

D 
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< (JO i € S, t = l, ••. ,k, 

and define the vector x by 

i € s. 

In the proof of theorem 8.8 on generalized R-invariant vectors we will use 

the vector x', defined by 

From lerrnria 8. 7 it is easily deduced that 

(8.2.5) R p •. 
lJ 

x! • x! - x. 
J l. l. 

i € s. 

i € s. 

row we are ready to prove the generalization of theorem 2.12. 

THEOREM 8.8. Let P be a countable nonnegative matrix with convergence 

parameter Rand index v. Let B be a set of reference states and suppose 

(8.2.6) i € S , t E B , k = 0, I , •• , v. 

Then there exist vectors w(l), w(2), ••• ,w(v), with w(k) > 0 if v. • k and 
1 

w(k). • 0 if v. < k (k = 1,2, ••• ,v; i ES), such that 
l 1 

RPw(v) = w(v) 

(8.2.7) 

RPw(k) = w(k) + w(k+l) k = 1, ... , v-1 . 

PRQ,QF. Let D(k) contain all states with depth k and let B(k) := B n D(k) 

(k • 0,1, ••• ,v). Note that B(O) =~.Define y(v,t) by 

y(v,t). := BF. (R-) i € S, t E: B(v). 
1 1t 

(8.2.8) RPy(v,t) = y(v,t) t E B(v). 
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Next, define y(v-J,t) by 

Cl 
st 

t y(v,s). 
1 

i € S , t e: B ( v- I ) ,. 

where cxst 

y (v- l, t) . 
1. 

hence 

is detern1ined such that y(v-1,t) = 0 for s € B\{t}. Note that 
s 

= 0 for i € s\(D(v) U D(v-1)) and for i E B(v-1)\ {t} and that 

y(v,s)' = Bm (R-) = m (R-) = O r rs rs r,s E B(v), r Is, 

s E B(v), t e B(v-1). 

It follows from (8.2.5), BFtt(R-) = 1 forte B(v-1), and the choice of 

cx
8

t that 

RPy(v-1, t) = y(v-1, t) + l cx
5

t y·('V,s) 
SEB (v) 

t € B(v-1). 

Hence each y(v-1,t) is a generalized R-invariant vector of order 2. 

Continuing in this way, we define fork= v-1,v-2, ••• ,2,l: 

y(k, t). := 
1. 

\) 

}: 
n=k+l 

I a t y(n,s) '. s l. sEB(n) 
i E S, t e B (k) , 

with cx
8

t chosen such that y(k, t) 
s 

= 0 for s € B\{t}. Hence 

s e: B(k+l), t € B(k), 

a = { F (R-) -
st B st }: 

rEB(k+l) 

s € B(k+2), t € B(k), 

etca From (8.2.5), BFtt(R-) = l fort E: B(k) and the choice of ast' we find 

(8.2.9) " 
RPy(k,t) = y(k,t) + l 

n==k+l 
}: 

seB(n) 
cx

5
t y(n,s) t e: B (k) ; k : 1, •• , v- 1, 

which implies that y(k,t) is a generalized R-invariant vector of order 

v-k+l. Finally, define 
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w(l) :• l y(l,t), 
teE ( l) 

and for k • 1, 2, .... , v- I : 

w(k+l) :• RPw(k) - w(k) .. 

Then the vectors w(k) satisfy (8.2.7) (combine (8.2.8) and (8.2.9)). 

Trivially we have 

Furthermore, 

w( I). == 
l. I 

tE:B(l) 

k-1 
i € V D(l) .. 

.t=O 

i € D(I), 

hence w(l). > 0 for i E D(I). Also notice that fork= 1,2, •.• ,v-1 
l. 

F (R ) 
B st - = F (R-) 

s st 
s ~ B(k+l), t € B(k), 

and since each s E B(k+l) has access to at least one t c: B(k), we conclude 

that for such a pair (s,t) 

a
8

t = F t(R-)/y(k+I,s)' = F t(R-)/m (R-) > 0. 
s s. s s s ss 

By induction it then follows in11nediately that 

w(k). > 0 
l. 

i E D (k) ; k = l , 2 , • • , ", 

and the proof is complete. 

The generalized R-invariant vectors, constructed in the proof of 

theorem 8.8, are not necessarily nonnegative. In order to establish the 

existence of nonnegative generalized R-invariant vectors, we need one 

additional assumption. First a definition: 

DEFINITIO~ 8.7. Let Hand A be two subsets of S. Define 

(n) 
HOAfij 

• for 1. 

0 



·(compare also (7. l. 7) ), and let 

00 

l 
n=k 

n 
R 

f (n+l-k) n+l-k 
H iA z 

The following result now holds. 
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THEOREM 8.9. Let P,R,v,B,B(l),B(2), .•. ,B(v) be defined as in theorem 8.8 

and its proof, and suppose 

i ES; k = 1, ••• ,v, 

and 

(8. 2 .. 1 l) i e S; k,i = 1, •.. ,v, 

where c is some positive constant. 

Then the vectors w(l),w(2), •.. ,w(v), satisfying (8.2.7), can be 

chosen nonnegative. 

PROOF. Since B(k) c Band since two different states in B(k) do not have 

access to each other, it follows that 

I 
jEB(k) 

(i) 
B

m. . (R-) 
1.J 

i € s; k, i = 11
, ••• , V. 

Hence the conditions (8.2.10) and (8.2.11) certainly imply (8.2.6). 

Furthermore, note that (8.2.11) implies 

(8.2.12) < C i e: s;h,1 = 1, ••• ,v, 

• since 

i e s, h e m0 • 

Finally, if {w(l),w(2), ••• ,w(v)} is a set of vectors satisfying (8.2.7), 

then also {x(l),x(2), •.• ,x(v)}, defined by 
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x(v) :• w(\)) 

x(k) :• w(k) + ax(k+l) k = v-l,v-2, .• ,2,1. 

Since (8.2.12) holds, a can be chosen so large that x(k) ~ 0 for 

k • v,v-1, ••• ,2, 1 (compare section 5.2). This proves the theorem. O 

Theorem 8.8 and theorem 8.9 together constitute the natural 

generalization of theorem 2.12 to the countably infinite dimensional case. 

The results also show the nature of the generalized eigenvectors, discussed 

in chapter 2 (i.e., each generalized eigenvector is a linear combination 

of certain power series, based on taboo-transition values and calculated 

at the convergence parameter). Again, it can be shown that the conditions 

do not depend on the particular choice of B ( l) ,B (2), ••• ,B (\J). Furthernt0re, 

there exists a strong relationship between assumption (8.2.11) and the 

Doeblin condition for stochastic matrices. In the final section of this 

chapter some attention is paid to this correspondence. 

8.3. Discussion of the conditions ·of the theorems 8.6, 8.8 and 8.9. 

In this section we discuss in more detail the conditions 

appearing in the theorems of the preceding section. In particular, we discuss 

formulas (8.2.2), (8.2.6), (8.2. JO), (8.2.11) and assumption 3. Our objective 

is to elucidate the nature of these conditions which, although looking rather 

artificial, are in fact natural extensions of properties which hold trivially 

in the finite case. Finally, some relaxations of assumption 3 are uriefly 

discussed. 

Before starting this discussion we need one important property of 

countable irreducible nonnegative matrices. 

LEMMA 8.10. Let P be irreducible with convergence parameter R, and suppose 

that for some state t €Sand some k € ]NO 

(8.3.1) 

Then 

m (k) (R-) 
tt 

< co • 



(8.3.2) m~~) (R-) 
l. J 

< 00 for all i,j ES. 

PROOF. The proof will be given by induction with respect to k. Fork= 0 

the result follows from lenm1a 8.2 and repeated application of 
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I p •. F. t (R-) + Rp. > R 
l.J J it= l p .. F. t (R-) 

• l.J J 
• 
1 e: S. 

j=t J 

by using the irreducibility of P (note that Ftt(R-) ~ 1). Suppose the result 

holds for n = O, I:, ••• ,k-1 and let (8.3.1) hold. Define 

(n) 
nF •• (z) := 
A, 1J 

d n 
dz ,,F •• (z) 

$,, 1] 

It is not hard to verify the equivalence 

(8.3.3) < 00 

Also the following relationship is easily established 

(8.3.4) F •. (z) = nF •• (z) + .F.n(z) Fn.(z) 
l.J )(., l..J J l.x.. >:..J 

Differentation of (8.3.4) (k times) yields 

(8.3.5) F~~)(z) = 
l.J 

k 

I 
n=O 

k (n) { • F.n z) n j l..lt. 

i,j,t ES. 

i,j,i € s • 

Now fix s ES, s ¥ t. Take i = j = t and t =sin (8.3.5). Since 

and 

(8.3.6) 

F(k) (R-) 
s tt 

F (k) (R-) 
tt 

< F(k)(R-) 
tt 

< 00 => 

we find from (8.3.1), (8.3.3), (8.3.5), and the induction hypothesis, that 

(8.3.7) 

and 

0 < F(k) (R-) 
st 

< 00 
I 
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(8.3.8) a < F(k)(R-) 
t ts 

Taking i = f = t, j =sin (8.3.5) we find 

(8.3.9) 

Since 

and 

F(n)(R-) 
s tt 

--

< F(n) (R-) 
tt 

k 

I 
!=] 

n E lN, n ~ k, 

it follows from (8.3.1), (8.3.3), (8.3.6), (8.3.8), (8.3.9), and the 

induction hypothesis, that 

(8.3.10) 0 < 

Taking i·= = s, j =tin (8.3.5), we find analogously from (8.3.7), that 

F(k)(R-) 
t ss 

< oo, 

and, finally, by taking i = j = s, t =tin (8.3.5), we conclude to 

(8.3.11) F(k) (R-) 
ss 

Now, chooser ES. By taking i = j = s' f 
• = r in (8.3.5) we find 

(8.3. 12) F{k)(R-) 
rs 

Since rands have been chosen arbitrarily and since (8.3.3) holds, we 

conclude 

(8.3.2) m~~) (R-) 
1J 

< 00 for all i,j e: S. 

The proof of lennna 8.10 has been given in detail as it is typical 

for proofs of this kind of results.Not all proofs of forthcoming results 

□ 
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will be given in full since they use essentially the same techniques. 

Next, we discuss assumption (8.2.2) of theorem 8.6. Recall that 

we have chosen one state t 1 in each final class C(t) (1 = 1, ••• ,k) and that 

we assumed 

(8.2.2) for al 1 i € S, l = 1, ... , k. 

The following lem111a states that this condition is independent of the 

choice of t 1 EC(!) (~ = 1, ••• ,k). 

LEMMA 8.11. Let P have convergence parameter Rand let C be a final class 

with respect to P. Then for all i ES, s,t cc, 

PROOF. By use of 

F. t (z) + tF. (z) F (z) 
S 1 1S St 

and 

F. (z) = tF. (z) + F .. t(z) Ft
5

(z) 
1S 1S S 1 

the result follows i111111ediately, since 0 < F (R-) < 00 

st and 0 < F (R.;...) < 00 0 
ts • 

Remark. If i and j are elements of an initial class C and t belongs to a 

final class D ~ C, then 

F.t(R-) > F .. (R-) F.t(R-). 
1 = 1J J 

Since O < F .. (R-) < w, it follows that we need (8.2.2) only for one state i 
1.J 

in each initial class of P. 

Similar remarks can be made with respect to condition (8.2.6): 

LEMMA 8.12. Let P have convergence parameter Rand index v. Let A and B 

be two different sets of reference states. Suppose that for some k € lN 
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(8 .. 3.13) 

Then also 

(8.3.14) 

(k) m. (R-) < 00 

A 1S 

< (IQ 

for al 1 i E S, s E: A. 

for all i ES, t e:B. 

PROOF. The proof can be given by a combination of the methods used in the 

proofs of 1 eu•ittta 8. 10 and leninia 8. 11 • We wi 11 not present it in detail but 

only indicate the essential parts. 

Ifs and t belong to the same R-recurrent class, then 

< 00 , 

by (8.3.13). Len1-1,aa 8. IO now implies 

m (k) (R-) 
ts 

Furthermore, ifs and t belong to an R-recurrent class C, and r to 

an R-recurrent class D, such that C has access to D, then, by methods 

sim:i lar to those used in the proof of len1111a 8. 10, we obtain 

m(k)(R-) 
s,E ir 

where Eis defined by 

< 00 => m~k)(R-) 
t,E 1r 

< co 

E :• {i EA I i ~ s, i has access to s}. 

for all i E: S, 

Hence, E contains precisely those states in A with depth larger than the 

depth of s (cf. definition 8.4). 

The proof of (8.3.14) now follows by consecutive substitution of a 

state from A by a state from B (belonging to the same R-recurrent class), 

until A is completely replaced by B. 0 

RPmark. As before, it can be shown that (8.2.6) is needed only for one 

state i in each initial class of P. 

With respect to the conditions (8.2.10) and (8.2.11) the following 

remarks can be made. For each i e S let v. denote the depth of i 
l. 

• 
• 
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(cf. definition 8.4). Fork= 0,1, ..• ,v-l define 

B(k) := {i €BI v. = k} 
l. 

E(k) := {i € S I vi~ k and i; B\B(k)} 

(the sets B(k) were defined in the proof of theorem 8.8 already). 

If for all i ES 

k = 1, ... ,v, 

then conditions (8.2.10) and (8.2.11) imply that PE(k) (the restriction of 

P to E(k) xE(k)) is equivalent to a stochastic matrix satisfying the 

Doeblin condition. This can be seen by using the similarity transformation 

Fork= 1,2, ••• ,v let 

D(k) := {i Es I "· = k}. 
1. 

i ,j E E (k) • 

Th . . 1 D (k) . . 1 h • . . f . en, 1.n part1.cu ar, P 1s equ1va ent to a stoc ast1.c matrix sat1.s y1.ng 

the Doeblin condition. Since the Doeblin condition holds trivially in the 

finite case, it follows that the conditions (8.2.10) and (8.2.11) are 

always fulfilled with respect to finite-dimensional nonnegative matrices. 

By theorem 7.8 it is sufficient to assume (instead of (8.2.11)) 

(8.3.15) i E S; k = 1 , ••• , v, 

for some positive constant c. 

However, note that for the construction of generalized R-invariant 

vectors assumption (8.2.6) is already sufficient. Condition (8.2.11) or 

(8.3.15) (which will be called the unifo1>n1 boundedness conditions) are only 

needed to obtain semi-positive generalized R-invariant vectors. 

Let us take once again a closer look at condition (8.2.6) and try to 

explain its meaning. As before, let 
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B(k) := {t €Bf "t = k} 

Note that (8.2.6) implies that 

Since 

or 

m (R-) < 00 

ss 

F (z) = F (z) + F (z) F t(z) 
st s st ss s 

F t(z) = F t(z) s s s 
-1 

(1-F (z)) 
ss 

w,e find, multiplying with R-z and taking limits 

lim (R-z) F (z) = 
st 

z-+-R 
F (R-) /F ( l ) (R-) 

s st ss 

Here we used (8.3.3) for n = 1. Similarly 

Since 

lim 
z-+R 

it follows that 

(8.3.16) 

k {R-z) F (z) < 00 
st 

< 00 

k = l, ••• ,v. 

s e B(v), t e B(v-1) 

s E B (v). 

lzl < R, 

1zl < R, 

< 00 

s € B ( v) , t € B ( v-k) ; k = 1 , • • , v • 

• 

s ~ t, lz) < R, 

s € B ( v) , t € B ( v-k + 1 ) ; k = 1, ... , v. 

An interpretation of (8.2.16) can also be given in terros of last-exit and 

fir>et-entranae transition values. Last exit tz,ansition values R. ~~) are 

defined by 
l.J 

(n) 
• p •• 
l. l.J 

• • 
l. t J 



Define L . . ( z ) by 
l.J 

(8.3.17) L •. (z) := 
l.J 

00 

l 
n=O 

n z • • 1,J 
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E S, lzf < R. 

A complete analysis of countable irreducible nonnegative matrices can be 

given by means of the power series L .. (z) instead of F .. (z) (cf. SENETA [52]). 
1J l.J 

In particular, it can be shown that for an irreducible R-recurrent 
• • T 

nonnegative matrix P the vector y, defined by 

y. := L . (R-) 
]. tl. 

(with t.some fixed state) satisfies 

T T 
Y = y RP. 

More general, it is easy to show that 

i € s, 

I L. (R-) p .. F.t(R-) 
Sl. 1J J 

s € B ( v) , t E B ( v- 1 ) • 
• 
1€ D (V) 

je:D(v-l) 

Hence, assumption (8.2.6) (which implies F (R-) <®for s € B(v) and 
s st 

tEB(v-1) gives in fact a relationship between the nondiagonal blocks of P 

and the left and right R-invariant vectors of the diagonal blocks. 

We conclude this section with a few remarks concerning assumption 3 

in section 8.2. With respect to theorem 8.6 it is obvious that only the 

finiteness of the n,unber of final classes has to be assumed. Similarly, 

we need in theorem 8.8 only finiteness of the number of R-recurrent classes 

(an infinite number of R-transient classes may be allowed). In fact, even 

the case \J = is allowed;. in that case we only assume that it is 

to define some ''depth-structure'' for the matrix P, i.e. to define 

for each class. 

possible 

a depth 



CHAPTER 9 

A-THEORY FOR SETS OF COUNTABLE NONNEGATIVE MATRICES 

In this final chapter, some of the results of chapter 8 are extended 

to sets of countable nonnegative matric~s. The reader may expe·ct a 

generalization of the results obtained in chapter 3, concerning strictly 

positive eigenvectors and block-triangular structures. Also, a generalization 

of the results of section 5.2, concerning generalized eigenvectors, is 

formulated. The proof of this final result is rather technical; therefore 

it will not be given here. The techniques are based on methods used to 

prove the existence of solutions to the optimality equations in average 

reward denumerable state Markov Decision Chains (cf. ZIJM (84]). 

The results of this chapter are of particular importance for the 

analysis of Markov decision processes with a countable state space. For 

instance, it is possible to find (almost) optimal contraction factors, which 

is useful for determjning sharp bounds for the value of such a process 

(cf. WESSELS [71], VAN HEE AND WESSELS [70]). 

In section 9.1 we treat the relatively simple case, where the system 

is co1n1nunicating (compare definition 5. 1). Some results of this section 

can also be found in KENNEDY (36]. More general situations are treated in 

section 9.2; we show how, under some restrictions, the results of section 3.2 

can be generalized. Furthermore, some partial results are given concerning 

a possible extension of the generalized eigenvector theory for sets of 

nonnegative matrices (cf. section 5. 2). We conclude with some co10111ents. 

• In this section we deal with a set K of countable nonnegative 

with the product property. It is assumed that K is ao"UrtUniaating (cf. 

5.1). Since this notion plays a basic role in this section, we repeat 

definition. 

matrices 
• • • defin1. ti.on 

• 1.ts 



DF.FINITION 9.1. K is called oommuniaating if for i,j € S there exists a 

matrix P € K such that i has access to j under P. 

Throughout this chapter we suppose: 

00 

Assumption I. K is compact (regarded as a subset of lR with the usual 

topology of element-wise convergence). 

If we define an operator 

X -> sup Px 
PEK 

00 

X € ]R' 
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□ 

then assumption 1, together with the fact that K has the product property, 
,-..; 

implies that for each x there exists a P € K such that 

(9 • 1 • 1 ) Px = sup Px, 
PEK 

a property which is referred to as to the optima.l ohoice property 

(cf. SENETA [52], and the introduction of chapter 3). 

In order to develop an R-theory for sets of nonnegative matrices, we 

first have to specify what we mean by R. Define a strategy~ as a sequence 

of ri1atrices, ,r := (P(l), P(2), ••• ) with P(.t) E K, 9.. € JN. The n-th step 

transition value t~~)(,r) is defined as the ij-th element of the matrix 
l.J 

P(l)P(2) .•• P(n). Let TI denote the set of all strategies. Define 

(9. I • 2) 

and let t~~) := 
1] 

this chapter we 

sup 
ire IT 

i,j € S, n € ]N, 

o •• for i,j ES. In order to avoid trivialities, throughout 1J . 
work under 

< 00 for all i,j € S, n € lN. 

Let R .. denote the convergence radius of the series 
l.J 

00 

I i,j € s, 
n=O 

then we define the convergence paraameter R of K by 
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(9. 1 • 3) R := inf R . • 
iJ 

In order to avoid trivialities we suppose (compare also chapter 8): 

Assumption 3. R > O. 

The following result can be proved by methods similar to those used 

in the one-matrix case (cf. KENNEDY (36]). 

LEMMA 9. I. Let K be co1c111,unicating. Then 

(9.J.4) 

and 

(9.1.5) 

For each strategy 1T we define 

T •• (1T,Z) := 
l.J 

00 

I 
n=O 

T •• (z) := sup T .• (1T,z) 
l.J l.J 1T 

R •• 
l.J 

= R for all i,j ES. 

i,j € s, 

i,j € s. 

Now, it is easy to show (cf. KENNEDY [ 36]): 

LEMMA 9. 2. Let I< be con1Inunicating and let R be defined by (9. J .. 3) • Then 

R is the cQ1111i1on convergence radius of al 1 

PROOF. Let a •• be the convergence radius 
1J 

Clearly a .. > R. If a .. > R, then choose 
l.J = l.J 

R < y < B < a •.• 
l.J 

Define a constant c > 0 by 

co 

c := sup I 
1T n=O 

Then certainly 

sup 
1T 

an 
µ < C = 

series T .. (z), i,j ES. 
l.J 

of T •. (z) for some 1J . i,j € s. 
8 and y such that 

D 



Hence 

co 

I 
n=O 

n 
y 

• 

00 

< C -- I 
n=O 

contradicting the fact that y > R. Hence ex •• = R. 
l.J 

Taboo tParisition values can be defined again. Let H c S be some 

taboo set and let Tr= (P(I), P(2), ..• ) be some strategy. For i,j € S set 

0 •• if • t H, • s l. J € l.J 
(9.1.6) ·-.-

1.J 
0 if • EH, • s, l. J € 

and for n > l : --
• 
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□ 

(9 • 1 • 7) 
l.J 

·. - l p ( l ) . • p ( 2) • . • • • p ( n) . . 
• • J l.l.] 1 11 2 1. 1J 

• • 1.,J € s. 
11,•·,1.n-l~H n-

if 
1.J 

H = {k}. Furthermore, define 

C9 • l • 8) 
(n) 

Hf. . ( n) : = 
l.J 

(n) 
.Ht •• (n) 
J l.J 

.. . 
1.' J € S, n E IN0 , 

where jH denotes {j} u H. Finally, let 

(9.1.9) 

(9.1.10) 
• 

H
F • • ( z , Tr) : = 

l.J 

CX) 

I 
n=O 

H
F .. (z) 

l.J 
:= sup 

1T 

(n) n 
Hf. . (7T) z 

1.J 

H
F .• (z, 7r) 

1.J 

i,j € s, 

i,j € s. 

The next resu 1 t has been proved by KENNEDY [ 36] in the corn,nunica ting 

case, but it is easy to verify that it holds in general. Since the methodology 

is typical for several proofs to follow, we five a complete proof. We have 

LEMMA 9.3. Let K have convergence parameter R. Then 

(9. l • 1 I) F •. (R-) := sup {R 
1.J PEK 

F n • (R-) + R p • . } 
NJ l.J 

i,j € s. 

PROOF. For each strategy Tr= (P(l), P(2), ••• ), we define -rr(n) by 
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(9. l • 12) 
(n) 

1f :• (P(n), P(n+l), ••• ) 

Obviously, we have for lzl < R 

ClO 

f ~ 1:) ( 1T) 1 F •• (z) = sup 
1J 1.J 

7f n=l 
00 

I }: {z • sup pit 
t,'j n=l 1f 

P F ,,J. (z) it 7,, 

On the other han.d, if we define 

n 
sup l 

,r k=l 

n z 

n 
z 

+ z p •. }. 
lJ 

n € ]N. 

+ z p .. } < -l.J -

i,j e: S, n € lN, 

h b · d · 0 th t t n us1.·ng the optimal choice property, ten y 1n uct1on w1 respec o , 

we find for lzl < R: 

• S1nc.e 

co 

sup r 
'R' k.=1 

< sup -

= sup {z 
p 

(k) 
f. . (,r) 
lJ 

00 

k 
z 

I 
(k) 

f. . (11') 
11' k=n+l l.J 

- sup 
1T 

k 
z < 

= 

+ z p ... } 
1J 

n 
f~~) (1r) k 

I < z 
l.J = k=l 

00 

t~~) k 
I z , 

l.J k==n+l 

n > 2. --

and since the la.st term tends to zero for n + 00 , we conclude by Fatou' s 

le11m• that for all P ~ K: 

F •• (z) > z 
l.J -

F,,.(z) 
7,,J 

+ z p ..• 
l.J 

• • 
1 'J E s, I z I < R. 

Conbining the results, we conclude • 

F •. (z) • sup { z 
1.J PeK 

F,,.(z) + z p .. } 
~J l.J 

• • 
l., J ES, lzl < R. 

That this result holds for z = R follows now in the same way as in the 

proof of (8.1.6). □ 

In the proof of the next leni11La we will meet s'tatio i.e ..... · strategies. A 

strategy ll' is cal led stationary if '7T == (P, p, p, ••• ) , with p e: K. If 1r is 
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. - 11 • (n) . d ( n) ( ) stationary, we usua y write p.·. ins tea of t.. ,r , 
( ) 1J 1.~1 . instead of 

fi~ (~), F .. (z,P) instead of F •• (z,n), etc. 
J 1J 1J 

With respect to the power series F .. (z) the following holds: 
l.J 

LEMMA 9. 4. Let K be coir1111unicating with convergence pa:rameter R. Then for 

all i,j € S 

and 

F (R-) < 1 
• • 
i1 --

F •. (R-) < co. 
l.J 

PROOF. Choose j E S fixed. In the proof of le1111r1a 9 .3 we found that 

F .. ( z) = sup { z 
l.J PEI< 

Fn .(z) + z p •. } 
>:, J l.J 

i ES, lzf < R. 

Hence, by the optimal choice property, there exists a Pe K such that 

F •. (z) 
l.J 

= z 

Iteration yields 

F •. (z) = 
l.J 

n-1 

I 
k=l 

p.,, Fn.(z) + z p .. 
i JI, )(, J l. J 

n + z 

Now, for fzl <a< R, we find 

(n) 
• p • n J l. .lC, 

Hence 

F tj (a) < F .• (a) < 00 

= 1J 

which tends to zero for n ~ 00 • We conclude 

(9.1.13) F ... (z) = 
l.J 

00 

I 
k=l 

i € S, Jzf < R. 

J l. 

i E s, I z I < R. 
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Now, since 

we find 

F .• (z,P) < 1 
JJ lzl < R, 

b . ·1 . JJ = 
ar 1.trar1. y, this holds for each j € S. By iteration of (9. 1. 11) and by the 

co1i11tit1nicatingness of K, it now follows it111r1ediately that F •. (R-) < 00 for all 
l.J • • i,J Es. D 

COROLLARY. R < ~. 

The results of le1111i1a 9.4 suggest a classification of the states, 

similar to the one given in chapter 8. 

DEFINITION 9.2. State i e Sis 

R-tra:nsient if F .. (R-) < 1. 
1.1 

called R-reaurrent if F .. (R-) = I and 
l.l. 

□ 

□ 

We point out that the analogue of lertntta. 8. 2 does not hold in general, 
. . - . . . 
1. e., in a c.011mrun1.cat1.ng system we 11,ay have both R-recurrent and R-transient 

states. However, the following result is easily verified: 

LEMMA 9. 5. Let K be co1,1111unicating with convergence parameter R. 

Let s € S be R-recurrent and let K 
1 

c K denote the set of matrices P that 

obey 

+ R p. 
l.S 

i € s. 

If K1 is still conmiunicating, then all states are R-recurrent. □ 

KENNEDY [36] proved leo11na 9 .5 under the condition that K contains only 

irreducible nonnegative matrices. His proof remains valid under our (weaker) 

condition. 

The next theorem is fundamental. It gives a characterization of the 

convergence parameter Rand of a-(sub)invariant vectors, similar to the one 

presented in section 8.1. 

THEOREM 9. 6. Let K be cor111.11unicating with convergence parameter R. Choose 

s E: S and define the vector u > 0 by 
• 



(9.1.14) 

Then 

(9.1.15) 

u. : = o • + ( l -cS. ) F. (R-) 
1 1S 1S 1S 

R sup Pu 
p 

< u, 
= 

with equality if and only ifs is R-recurrent. 

i € s. 

If x is a semi-positive vector such that for some S > 0 

(9.1.16) B sup P x 
p 

< x, 
= 

then x > 0 and B < R. Further 1nore 

(9. 1 • 17) 
x. 

1 

x. 
J 

--

> F .. (B) = 1J i,j € s. 
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PROOF. As in chapter 8. Compare also KENNEDY [36] and HORDIJK [27], ch. 8. 

The vector x satisfying (9.1.16) is called a B-subinvariant vector 

for the set K. If strict equality holds in (9.1.16) we speak of a 

a-invariant vector. 

Note that for Jzl < R: 

F
1
.J. (z) = sup F .. (z,P) 

PEK l.J 
i,j € s 

(compare (9. 1.13)). Analogous to the proof of (8.1.6) one can show that 

(9 • 1 • 18) F .• (R-) = sup F •• (R-,P) 
iJ PEK l.J 

i,j ES. 

• 

Take j ES fixed. One may wonder whether there exists a PE K such that 

F •. (R-) = F .• (R-, P) 
l.J 1J 

for all i € S. 

Moreover, if R(P) denotes the convergence parameter of P, does there exist 

a P € K such that 

R = R(P) ? 
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This section will be concluded with a theorem, stating that under certain 

conditions a positive answer to these questions exists. First, we define 

(9.1.19) m .. (z,P) := 
l.J I 

n=l 

(n) n 
nf .. (P)z 

l.J 
i,jES; PEK. 

THEOREM 9. 7. Let K have convergence parameter R and let all P E K be 

irreducible. Let s ES be R-recurrent and suppose 

(9.1.20) sup 
PEK 

m (R- P) < 00 • ss , 

Then there exists a PE K such that 

R(P) = R 

and 

(9.1.21) F. (R-) = F. R-, P) 
l.S l.S 

PROOF. Define 

Since 

and since 

F(n) (R- P) = 
ss , 

m (R-,P) = 
ss 

n 

I 
k=1 

00 

I 
n=O 

{F (R-,P) - F(n) (R- P)} 
ss ss ' 

(n) 
F (R- P) - F (R- P) ss , ss , 

for all iES. 

• • • • 1.s non1ncreas111g 1.n n, for all P, it follows from (9.1.20) that F(n) (R-,P) 
ss 

• • is converging 

establish the 

is continuous 

a P such that 

It is easy to to F (R-, P) uniformly in P, for n ➔ 00 • 
ss 

continuity of F(n) (R-,P) as a function of P. Hence F (R-,P) 
ss ss 

in P. Assumption 1 and (9.1.18) now imply that there ~Aists 

(9.1.22) F (R-,P) = F (R-) = 1. ss ss 
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Hence R(P) =Rand Pis R-recurrent. Formula (9.1.21) now follows easily 

from theorem 6.2 in SENETA [52]. 

9.2. Sets of reducible nonnegative matrices. 

D 

In this final section the results of section 3.2 are extended to 

countable reducible nonnegative matrices. Furthermore, we discuss extensions 

of the generalized eigenvector theory for sets of nonnegative matrices 

(cf. section 5.2). 

Let K be a set of countable nonnegative matrices with the 

product property and let R be its convergence parameter (cf. (9.1.3)). 

Assumptions 1,2 and 3 of section 9.1 are supposed to hold, together with 

Assumption 4. There exists a finite set nc S and a positive vector c such 

that 

0 < F iD (R-, P) < 00 for all i Es, PE K. 

The reader may verify that under assumption 4 each P has at most lol 
R-recurrent classes (where lnl denotes the cardinality of D). Furthermore, 

for each Pa set of reference states B(P) (cf. definition 8.5) can be chosen 

such that B (P) CD. 

The next theorem deals with the existence of strictly positive 

R-(sub)invariant vectors. We have: 

THEOREM 9.8. Let K have convergence parameter 

i, j ED. Then there exist a positive integer n 

such that the vector u, defined by 

(9.2.1) u. 
J. 

. -. -
n 

1 
1=1 

{6. 
l.S Q, + 

(1-o. )F. (R-) 
l.S i l.S Q, 

R and let F .. (R-) < co for all 
l.J 

and states s
1
,s2 , ... ,sn in D 

iES 

is strictly positive and R-subinvariant for the set K. Furthermore, u is 

R-invariant if and only if each state s 2 (i= 1, ••• ,n) is R-recurrent. 

(9.2.2) 

Let x > 0 be 8-subinvariant for the set K, then a~ R and 

x. ~ 
l. 

n 
' 

I 
2=1 

-

i ES. 
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PROOF. Clearly, the incidence matrix of K has a finite number of final 

classes, C(l) ,C(2), .... ,C(n) say. Choose s E C{,Q,) for Q, = 1,2, ••• ,n, then 
Q, 

assumption 4, (9.1.18) and the condition in the theorem imply 

(9.2 .. 3) F. (R-)<oo i ES, i= 1, ... ,n. 
1.S Q, 

Note that C(,Q,) is a communicating class with respect to K. The results can 

now be proved in the same way as theorem 9.6. 

It is clear that in the situation, described in theorem 9.8, all 

eventually existing R-recurrent classes of a matrix P must be final. 

□ 

Next, we turn to the more general case where nonfinal R-recurrent 

classes may exist. If K has convergence parameter R, then obviously R~R(P) 

for all PE K. Let v(P) denote the index of P (cf. definition 8.4) and let 

(9.2.4) v := sup {v(P) IP EK, R(P) = R}. 

Obviously, assumption 4 implies that \) ~ ID I• Note that v ;S 1 if the 

conditions of theorem 9 .. 8 hold. 

Before establishing the analogue of theorem 3.6, i.e. the block

triangular decomposition result, we first state formally 

Assumption 5. Let B{P) denote a set of reference states of P, chosen such 

that B (P) CD (for all PE K) . For all i ES and s E B (P), let 

(9.2.5) 

The following result holds: 

THEOREM 9.9. Let K have convergence parameter Rand 

( 9. 2. 4) • Suppose v > 0. Then there exist a partition 

of the state spaces, and strictly positive vectors 

such that for some 

(9.2.6) R sup P (k,k) u (k) = 

PEK 
RP (k,k)u (k) = .... (k) 

u 

let v be defined by 

{ D ( v ) , D ( v-1 ) , ••• , D ( O) } 
.... ( V) .... ( V-1 ) .... ( 1 ) 
u ,u , ... ,u I 

k=l, ••• ,v. 

(As usual, P(k,t) d t th t · eno es e res r1.ction of P to D (k) x D ( .Q,), for all p EK; 



k,£=0, ... ,v). 

Furthermore 

--

... 
and P can be chosen such that each state in 

,A 

in D(k-1) under P (k = v,v-1, ••• ,2). 

PROOF. Define for each i E S 

'\ . -
V • • -

l. 
sup {v.(P) 

l. 

for all PE K, k < 9., 

D(k) has access to some state 

where v. (P) denotes the depth of i under P (cf. definition 8.4). Let 
l 

D(k) := {iES I v. 
1. 

= k} k = 0,1, ... ,v. 

Obviously, D(v),D(v-1), •.. ,D(l),D{O) partitions S uniquely, while 
(k IR,) 

furthermore P = 0 for k < £; k, i = 0, 1, .•• , v. --
For each k (k = 1, 2, ••• , ) , the set of matrices {p (k,k) PE K} 
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satisfies the assumptions of Theorem 9.8, hence (9,2,6) follows immediately • 
.... 

The definition of v implies that P can be chosen such that each state in 
... 

D(k) has access to some state in 

completes the proof. 

D(k-1) under P (k=v,v-1, ..• ,2). This 

Also theorem 5.2 can be extended to the infinite dimensional case. 

Define for all i, j E S, H c S and PE K: 

(z,P) := 

Next we make 

00 

I 
n=k 

n f(n+1-k) (P)zn+l-k 
k H ij 

k EN. 

Assumption 6. Let B ( p) be defined as in assumption 5, for each P E K. For 

all iES and SE B(P), let 

(9 .. 2.7) sup 
PEK 

(k) 
( ) m. (R-,P) 

BP 1S 
< 00 

where vis defined by (9.2.4). 

k=l, •.• ,v, 

0 
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Then the following result can be established: 

THEOREM 9.10. Let K have convergence parameter Rand let v be defined by 

(9.2.4). suppose v > O and let {D(v) ,o(v-1), ••• ,D(l) ,D(O)} be defined as 

theorem 9.9. Then there exist semi-positive vectors w(l) ,w(2), ••. ,w(v) 

such that 

(9.2.8) R sup Pw ( 1) = w ( 1 ) , 

PEK 

( 9 .. 2 .. 9) R sup Pw ( i) = w ( 9..) + w ( Q.-1 ) 

PEKt-1 

!l=-2, .... ,v, 

P E f( , RPw ( fl) = W ( 9.-) + w { 1 -1 ) } , 
£-1 

t m:: 2, ••• , v .. For ! = 1, 2, .... , v we have furthermore 

w(fl..).>0 
1. 

w(t). = 0 
l. 

for i E D ( Q,) , 

Q.-1 
for i E D (k) • 

k=O 

The proof if theorem 9.10 is rather technical and will not be given here. 

The following elements are essential. For each PE K, with R (P) = R and 

□ 

v(P) m v, theorem 8.8 can be applied in order to establish the existence of 

generalized R-invariant vectors w(l,P),w(2,P), •.. ,w(v,P). When normalized 

appropriately, these vectors are continuous as functions of P by assumption 6 

(compare also the proof of theorem 9. 7) • E.."<ploiting this, theorem 9 .10 can be 

established by methods similar to those used in ZIJM (84], with respect to 

the proof of the existence of solutions to the average cost optimality 

equations in a denumerable state Markov Decision Chain. 

A few concluding remarks are in place. With respect to the assumptions 

5 and 6 the reader may notice that these conditions are in fact natural 

extensions of similar conditions in the preceding chapter. All remarks 

made in section 8.3 can also be made with respect to tl1ese conditions. 

Strictly positive $-invariant vectors are treated extensively in 

a paper by VAN HEE AND WESSELS [70], where they give a lower bound for 
-1 s 

which is, unfortunately, normdependent. The question whether p, defined by 

P • -.- sup 
PEK 

sup 
. . s 1., JE 

limsup 
n ➔ QO 
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-1 
is a lower bound for S , was already answered in the negative by Van Hee 

-1 and Wessels. It is easily shown that the right answer has to be R , where 

R is defined by (9.1.3) (compare also theorem 9.8). 

Finally, we note that applications of strictly positive 8-subinvariant 

vectors can be found in WESSELS [71] • 

• 
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