
Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11th February 1946, is a non-pro.fit institution for the
promotion of pure and applied mathematics and computer science. it is sponsored ~r the
Netherlands Government through the Netherlands Organization for the Advancement of
Pure Research (Z. W.0.).

MATHEMATICAL CENTRE TRACTS 166

ABSTRACTION, SPECIFICAT;ON
AND IMPLEMENTATION
TECHNIQUES
WITH AN APPLICATION TO
GARBAGE COLLECTION

H.B.M. JONKER$

MATHEMATISCH CENTRUM AMSTERDAM 1983

1980 Mathematics subject classification: 68B0S, 68C05

1982 Computing Reviews Categories: D. 1.4, D.4.2, F.3.1
ISBN 90 6196 263 3

Copyright© 1983, Mathematisch Centrum, Amsterdam

CONTENTS

ACKNOWLEDGEMENTS

SUMMARY

0. INTRODUCTION

CONTENTS

0.1. What this monograph is about

0.2. Sunnnary of the chapters

0.3. Useful remarks for the reader

I • ABSTRACTION

1.0. Introduction

I.I. A model for abstraction

1.2. Abstraction in solving problems

1.3. Abstraction in classifying problems and their solutions

1.4. Conclusion

2. SPECIFICATION

2.0. Introduction

2.1. Structures

2.2. Operations on structures

2.3. A language for manipulating structures

2.4. Towards a full-fledged specification language

2.5. Comparison of structures with other characterizations of

storage structures

2.6. Conclusion

3. IMPLEMENTATION

3.0. Introduction

3.1. A simple implementation method

3.2. An example: the DSW-algorithm

3.3. Conclus1on

1.

1.

1.1.1.

V

I

4

7

9

10

15

19

27

29

33

42

57

65

78

81

83

86

90

113

4. A STORAGE MANAGEMENT MODEL

4.0. Introduction

4.1. Informal discussion

4. 2. Model

4.3. Conclusion

5. A SURVEY OF GARBAGE COLLECTION

5.0. Introduction

5.1. Garbage collection

5.2. Compaction

5.3. Compacting garbage collection

5.4. Conclusion

6. DESIGN OF A STORAGE MANAGER

6.0. Introduction

6.1. Model

6.2. Problem

6,3. Design

6.4. Conclusion

7. DESIGN OF A GARBAGE COLLECTOR

7.0. Introduction

7. I. Model

7.2. Design

7.3. Implementation

7.4. Conclusion

REFERENCES

LIST OF GARBAGE COLLECTION AND COMPACTION ALGORITHMS

INDEX

115

120

139

146

147

149

178

197

203

205

206

217

222

245

249

250

256

27 I

292

295

306

307

ACKNOWLEDGEMENTS

The present treatise is a version of my Ph.D. thesis which is based on

research conducted while I was employed at the Mathematical Centre. I am

deeply indebted to my thesis advisor F.E.J. K:t>useman Aretz, who carefully

and uncomplainingly read the many draft versions of my thesis. His kind

guidance, encouragements and numerous helpful suggestions have been of great

value in the realization of this work. I am also grateful for the comments

received from C. Hemerik, J. van Leeuwen, M. Rem and L.A.M. Verbeek.

I wish to express my gratitude to J.C. van Vliet, who encouraged me in

writing my thesis and who read several draft versions of the manuscript.

I thank J.W. de Bakker, who is the head of the Computer Science Department

of the Mathematical Centre, for the interest shown in my work, and the direc

tors of the Mathematical Centre for creating the working environment which

made this research possible and the opportunity to publish my thesis in the

series Mathematical Centre Tracts.

H.B.M. Jonkers

V

SUMMARY

This treatise originates from the design of a garbage collector for a

machine-independent ALGOL 68 implementation. In an attempt to approach the

design of a garbage collector in a systematic way, one has to face a number

of problems. First of all, there is the problem of complexity. A garbage

collector, in its final shape, is a "low-level" routine, which has to

operate in an extremely complex system. In order to keep this complexity

under control during each phase of the design process, the use of

abstPaation is indispensable. Secondly, there is the problem of how to

describe the garbage collector, and the sys~em in which it is operating, in

an understandable and precise way and at various levels of abstraction.

This is the problem of speaifiaation. Finally, there is the question of how

to get, in a provably correct way, from an abstract specification of the

garbage collection problem to a working garbage collector. The latter

brings one to the problem of implementation.

These three notions - abstraction, specification and implementation -

are the central theme of this treatise. This implies that this treatise can

be viewed as a study on abstraction, specification and implementation.

Purpose of this study is the development of simple mathematical concepts

and methods, putting emphasis on practical applicability. In view of the

general and fundamental nature of these three notions, their study has been

lifted out of the limited framework of garbage collection. The subject of

garbage collection, from which many of the ideas layed down in this

treatise originated, is mainly used to demonstrate the practical

applicability of these ideas,

The above implies that this treatise falls apart into two parts. In

the first part (Chapters 1-3) a number of ideas concerning abstraction,

specification and implementation are developed, which in the second part

(Chapters 4-7) are applied to the subject of storage management in general,

and to garbage collection in particular.

On the basis of a simple model for abstraction, Chapter I discusses

how abstraction can be systematically used in problem solving and in

classifying large classes of problems and their solutions (in particular,

"algorithms"). In Chapter 2 the first steps of the development and

formalization of a specification language for algorithms and data

structures are taken. A loose version of this language is used in the other

chapters for the description of algorithms and data structures. Starting

point is the notion of a "structure", which allows arbitrary data

structures to be modelled without the use of "pointers". Chapter 3

describes a simple implementation method for both algorithms and data

structures, based on a four-step technique of establishing a change of data

representation. The efficacy of this method (in particular, as a

verification tool) is demonstrated by means of a derivation of the Deutsch

Schorr-Waite marking algorithm.

The purpose of Chapter 4 is the introduction of a model of storage

management, to be used as the basis of Chapter 5. The formal presentation

of this model is preceded by a detailed informal discussion. Based on the

ideas of Chapter I and the model of storage management from Chapter 4, a

survey of the subject of garbage collection is presented in Chapter 5.

Starting from two abstract algorithms, the main garbage collection and

compaction algorithms are derived by means of "correctness-preserving

transformations".

The subject of Chapter 6 is the design of a storage management system,

to be used in the above-mentioned machine-independent ALGOL 68

implementation. The method used is that of Chapter 3, where an abstract

model is used to keep complexity under control. The design of the garbage

collector, which is kept abstract in the system developed in Chapter 6, is

described in Chapter 7. The approach is analogous to that of Chapter 6,

except that the process of transformation of the garbage collector is

carried through up to the level of machine code.

CHAPTER 0

INTRODUCTION

0.1. WHAT THIS MONOGRAPH IS ABOUT

This monograph is a study on what I believe to be three key-notions of
computer science: abstraction, specification and implementation. Before
being more specific let me explain briefly what I mean by "computer
science". This may avoid unnecessary misunderstandings, since there seems
to be a considerable and rather fundamental disagreement on the purport of
the latter term [TRAUB 81], [DIJKSTRA et al. 81]. Computer science, as I
will look upon it in this monograph, is concerned with the development and
study of concepts and techniques to facilitate the use of the "computer",
while abstracting from its physical realization and from the specific
applications which the computer is used for. The term "computer" is used
here, not in the sense of a particular device or class of devices, but
rather in the (abstract) sense of any device or mechanism which is able to
manipulate data in an effective way.

The above very general "definition" of computer science does not claim
to define what computer science is. It serves only to indicate the point of
view from which I wish to consider computer science in this monograph. I am
well aware of the fact that by choosing a different angle of vision one can
reach, with good reason, a different definition. The above definition
highlights the use of the computer as the ultimate justification of the
existence of computer science. Consequently, in this monograph we are not
concerned with what is commonly referred to as "theoretical computer
science", This does not imply that we shall not touch on issues of
theoretical interest. The theory, however, is not a goal in itself and will
be elaborated upon only as far as it is considered useful from a practical
point of view. On the other hand, the definition also implies that we
abstract from the specific applications for which the computer is used.
This monograph, therefore, is not concerned with what is usually called
"applied computer science" either.

Having sketched the context in which this monograph should be placed,
we are now ready to discuss its subject-matter. As stated above, this
monograph is a study on abstraction, specification and implementation. In
particular, we shall be concerned with the latter three notions in
connection with "algorithms" (as abstractions of the "actions" of a
computer) and "data structures" (as abstractions of the "data" operated
upon by a computer). The view of computer science expressed above implies
that we shall focus on the practical aspects of these concepts, i.e., our
primary interest is in abstraction, specification and implementation
techniques.

Techniques for making abstractions, specifications and implementations
of algorithms and data structures are the basic tools of the (practical)
computer scientist. The research effort which has gone into the development
of these tools has been enormous. Numerous researchers have worked on
various aspects of the subject and this monograph relies heavily on their
work. Instead of proceeding directly along one of the (many) lines set out
by others, however, we shall attempt to make a fresh start by giving our

2

own "reconstruction of the facts". This reconstruction will be guided and
inspired by the work and ideas of many others. In particular I wish to
refer to the fundamental influence of [DAHL et al. 72]. (For more
references see the respective chapters.) Yet, the reconstruction is not a
mere paraphrasing of the ideas of others, since, as is the purpose of a
reconstruction, it will reveal some new "facts" as well.

The above implies that this study should be regarded as a "view" of
abstraction, specification and implementation, and by no means as an
attempt to solve all problems. (For example, we shall not be concerned with
"concurrency".) In general, we shall approach the problems from a somewhat
fundamental point of view, using two guiding principles. The first is the
principle of simpZiaity. Due to the progress in VLSI-technology the field
of application of the computer is constantly expanding and the computer is
used for ever more complex tasks. There seems to be a tendency to try and
cope with the latter situation through the introduction of ever more
complex tools. As argued in a most illuminating way in [HOARE 81], the only
real solution, however, is the pursuit of the utmost simplicity. In this
monograph we shall therefore be looking for simple concepts and tools.

Our second guiding principle is the principle of mathematiaaZ rigour.
Unlike physical phenomena or human beings, computers are essentially
discrete mathematical objects, i.e., their (abstract) behaviour can be
described fully by a mathematical theory. This implies that reasoning about
their behaviour is essentially mathematical reasoning. The theories which
describe the behaviour of real computers are true monstrosities from a
mathematical point of view. In order to get the behaviour of such machines
(and other not yet existing machines) into our mental grip we use
abstraction and make "models" of the various aspects of this behaviour. If
these models are to be of any practical value in "controlling" the
mathematical behaviour of real (or yet to become real) machines, these
models should be mathematical themselves. The word "model", in the sense of
a mathematically rigorous abstraction of "reality", will be recurring
frequently in this monograph. (Notice that we use the word "model" in a
different sense from mathematical logic [MENDELSON 64].)

As stated above, our primary interest in this monograph is in (mental)
tools. There is not much sense in developing tools unless we also use them
and show that they work. This monograph can therefore be divided into two
parts. In the first (Chapters 1-3) we will be concerned with the tools by
themselves. Successively we will consider the tools of abstraction
(Chapter 1), specification (Chapter 2) and implementation (Chapter 3). In
the second part (Chapters 4-7) we will present the result of applying the
tools. The field to which we will apply them is "storage management" in
general, and "garbage collection" in particular. Garbage collection is a
most appropriate subject for the application of the tools, since it is
genera.Uy considered to be of a rather tricky and elusive nature. (As such
it has for example been chosen as one of the "background problems" of the
ABSTRACTO project [ABSTRACTO 79].)

The applications part of this monograph can itself be divided into two
parts. In the first part we will present the result of applying the tools
in the aZassifiaation of algorithms. That is, based on a model for storage
management (Chapter 4), we will present a survey of garbage collection
algorithms (Chapter 5). In the second part we will present the result of
applying the tools in the design of algorithms. In particular we apply them
in the design of a storage management system (Chapter 6) and in the design
of a garbage collector (Chapter 7) to be used in the latt.er storage
management system. The structure of this monograph as described above is
visualized in Figure 0.1.

Abstrac
tion

Specifi
cation

Tools

lmplemen
tation

Applications

A storage
management

model

Classification

A survey of
garbage

collection

Design

Design of
a storage
manager

Design of
a garbage
collector

~ ~ ~ ~
Figure 0.1

3

It is worth noticing that there is little or no connection between the
order of the chapters and the order in which the subject-matter of this
monograph has come about. (See the parts of the subject-matter which have
been published previously [JONKERS 79, 80, 80a, 80b, 81].) It would even be
wrong to say that the "tools" were there before the "applications". As a
matter of fact, the question which came first, the "tools" or the
"applications", is somewhat similar to the problem of the egg and the
chicken. It was from the interaction of the two that the subject-matter of
this study has emerged. Though this process of interaction need not
necessarily converge, I hope that it has reached a state sufficiently
stable to justify recording it in this monograph. The fact that actually
triggered the entire process (or, if you like, the excuse for the whole
enterprise) was the problem of designing a garbage collector for a machine
independent ALGOL 68 implementation [MEERTENS 81]. Though we shall make
quite a detour, this problem will eventually be solved (in an
implementation independent way) in the last chapter of this monograph.

4

0.2. SUMMARY OF THE CHAPTERS

In this section we shali briefly describe the purpose and contents of
each chapter.

0.2.1. Chapter

The purpose of this chapter is to discuss how abstraction can be used
as a systematic tool in solving problems ("design") and in the ordering of
knowledge ("classification"). We introduce a simple model for abstraction
which allows us to reason about abstraction in a more concrete way than
usual. For example, on the basis of this model we derive a simple lennna
stating that, in a certain sense, abstraction can be viewed as "omitting
details". Then we go into the use of abstraction as a tool in solving
problems. We discuss how problems can be solved "in the abstract", what
"good" abstractions are and how abstraction can be used in combination with
a top-down problem solving technique. In the next section we indicate how
abstraction can be used in classifying problems and their solutions. We
discuss how, through a process of "systematic generalization", problems and
their solutions can be ordered systematically at various levels of
abstraction. Our particular interest in this monograph is in "algorithmic
problems", and we discuss how their solutions ("algorithms") can be ordered
further through "correctness-preserving transformations". (So as to avoid
any confusion, we note that in this chapter we are not concerned with the
role of abstraction in "artificial intelligence" (as in [PLAISTED 81]), but
rather with abstraction as an explicit tool of the human problem solver and
"taxonomist".)

0.2.2. Chapter 2

In this chapter our aim is to describe, or at least lay the
foundations for, a mathematically rigorous specification method which is
suitable,for the specification of all (sequential) algorithms and data
structures normally encountered in programming practice, including those
algorithms and data structures which involve dynamic and shared data. A
loose version of this language is used in the other chapters for the
description of algorithms and data structures. We start off by introducing
a concept which is believed to be novel: the "structure". It is essentially
a simple mathematical model of the access properties of a storage
structure. We show how using this model, storage structures with arbitrary
sharing and circularities can be characterized without the need to
introduce pointers. Using a special partial order, three primitive
operations on structures are defined (among them "creation"). Subsequently,
we introduce a simple but powerful typeless language for the description of
arbitrary (deterministic) operations on structures. The semantics of this
language is defined rigorously in terms of the primitive operations on
structures. Then, led by an example, we discuss in an informal way how this
language can be extended into a full-fledged specification language through
the addition of a type-mechanism and the introduction of abstraction
facilities and nondeterminism. The chapter is concluded with a comparison
of "structures" with other characterizations of storage structures (such as
"Vienna objects" and "graphs").

5

0.2.3. Chapter 3

The purpose of this chapter is to describe a simple implementation
method for algorithms and data structures. The first part of this chapter
consists of an informal presentation of the method. The method is based on
a simple four-step technique to accomplish a change of data representation
in a correctness-preserving way. The quintessence of this technique, which·
does not require the enhancement of existing verification techniques, is
the temporary juxtaposition of the old and the new representation. In the
second part of this chapter we demonstrate the power and flexibility of the
method (particularly as a verification tool) by giving a "proof by
construction" of a well-known test case for verification techniques: the
Deutsch-Schorr-Waite marking algorithm [SCHORR & WAITE 67]. We start by
giving a definition of the problem, from which a simple though highly
nondeterministic algorithm is derived almost immediately. Choosing this
obviously (partially) correct algorithm as a starting point, the Deutsch
Schorr-Waite marking algorithm is derived in five successive transformation
"phases", where each phase follows exactly the four-step scheme described
in the first part of the chapter.

0.2.4. Chapter 4

The purpose of this chapter is to introduce a model for storage
management, which will be used as the basis for the next chapter. As we
argue in the introduction of this chapter, this model, called a "storage
management system", can be viewed as an instance of the more general
concept of a "dynamic system", which is in fact a data structure involving
highly shared data. The first part of the chapter is devoted to a very
informal discussion of the subject of storage management. Its purpose is to
create some familiarity with the basic concepts and to serve as a rationale
for the storage management model. The intuitive concepts discussed in the
first part of the chapter are laid down in unambiguous definitions in the
second part. The concept of a storage management system, considered as a
"dynamic system", is defined by introducing its "components" and
postulating a number of "system invariants" which relate the components to
each other. Associated concepts are defined in terms of the components of
the system, and operations such as "garbage collection" and "compaction"
are defined abstractly as internal operations of a storage management
system.

0.2.5. Chapter 5

In this chapter we are concerned with giving a survey of (compacting)
garbage collection algorithms. The basis of this chapter is the storage
management model introduced in Chapter 4. The subject is split into three
parts: (pure) garbage collection (without compaction), compaction and
compacting garbage collection (the combination of garbage collection and
compaction). The discussion of garbage collection and compaction algorithms
is essentially analogous and follows the lines set out in Chapter I:
Starting point is an abstract algorithm which is a solution to the basic
problem (defined in Chapter 4). All other algorithms are derived from this
algorithm by "adding details", both to the problem and to the algorithm.
Here "adding details" to an algorithm implies applying a correctness
preserving transformation to the algorithm (establishing some property or
"detail"). This approach leads to a division of garbage collection
algorithms into four classes and a division of compaction algorithms into

6

two classes. The combination of garbage collection and compaction
algorithms into compacting garbage collection algorithms is discussed by
means of a number of examples. Though the survey is not claimed to be
complete, it contains the major (sequential) algorithms known from
literature as well as a few algorithms which are believed to be novel.

0.2.6. Chapter 6

The subject of this chapter is the design of a storage management
system for a machine independent ALGOL 68 implementation. The machine on
which this storage management system is supposed to run is the ''MIAM"
("Machine Independent Abstract Machine") [MEERTENS 81]. The treatment is
entirely independent of both ALGOL 68 and the MIAM, however. This is
accomplished by the introduction of a model of the MIAM, i.e., an
abstraction of the MIAM capturing the information relevant to storage
management, and solving the problem "in the abstract". After introducing
the model of the MIAM, the storage management problem is defined by
augmenting the model with a number of concepts (such as an "allocation
function"). The design of a storage management system is then described.
After going through four systems of increasing efficiency, we use the
technique described in Chapter 3 to further reduce the overhead of the
fourth system, resulting in an efficient storage management system. During
the design, the garbage collection and compaction routine used are
deliberately kept abstract.

0.2.7. Chapter 7

This chapter is concerned with the design of efficient algorithms for
the garbage collection and compaction routine which were kept abstract in
the previous chapter. In the same way as Chapter 6 is independent of the
MIAM and ALGOL 68, this chapter is independent of Chapter 6. That is, a
model is used to capture the information relevant to the design of the
garbage collector and compacter. This model is described at the beginning
of the chapter and the garbage collector and compacter are defined
abstractly as operations operating on this model. The transformational
design of efficient algorithms for these operations is then described,
starting with two algorithms which are derived directly from the definition
of the operations. In contrast to Chapter 6, the algorithms are transformed
up to the machine code level (in ten "phases" each). Due to its technical
nature the last part of this transformation process is not considered as
"design", but rather as "implementation" and it is therefore treated
separately from the actual design. The machine code used is the code of a
very simple hypothetical machine (which can be viewed as an abstraction of
the MIAM).

0.3. USEFUL REMARKS FOR THE READER

The material in this monograph is self-contained to a certain extent.
The only preliminaries are an elementary knowledge of mathematics and
computer science. For the former see, for example, Chapter O in

7

[AHO & ULLMAN 72]. The latter consists mainly of a certain familiarity with
regular languages (for Chapter 2 only) [HOPCROFT & ULLMAN 79], programming
languages and their implementation [AHO & ULLMAN 77], and the use of
assertions in the design and verification of programs [DIJKSTRA 76]. No
knowledge of a particular programming language is required.

An attempt has been made to keep not only this monograph as a whole,
but also each separate chapter self-contained. The only exception is
Chapter 5 (which relies on Section 4.2 of Chapter 4). This implies that
(with one exception) each chapter can be read without having read any of
the other chapters. So the reader can pick any combination of chapters he
likes from the "menu" of Figure 0.1. A minor disadvantage of this approach
is that sometimes (though not too often) we have to duplicate efforts.
Furthermore, the above does not imply that there is no connection between
the chapters. If it is felt appropriate, this connection is indicated by
remarks and cross-references, which can be skipped by the reader who did
not read the chapter in question.

In the presentation of the material a two-level approach will be
pursued more or less consistently. On the one hand, the material will be
presented in an informal style, providing ample explanation for new
concepts and a motivation for design decisions. On the other hand (as
required by the principle of mathematical rigour), these intuitive
descriptions will be laid down, as much as possible, in formal (i.e.,
unambiguous) definitions. The formal text is separated from the informal
text by indenting the former and providing it with a vertical bar in the
margin.

1.0. INTRODUCTION

CHAPTER 1

ABSTRACTION

9

The ultimate cause of many of the current difficulties in computer
science lies in the very limited powers of comprehension of the human mind.
The complexity of the problems encountered in computer science exceeds
these powers by several orders of magnitude. Apart from having severe
limitations, the human mind is fortunately also equipped with a tool to
suit problems to these limitations. This tool is called "abstraction". It
allows one to reduce the complexity of a problem by "omitting" irrelevant
details. Dependent on the amount of details omitted, "levels" of
abstraction can be distinguished. Abstraction is used unconsciously by
everyone, because thinking would be impossible without it in the first
place. Faced with the complexity of the problems in computer science, it is
no longer sufficient to use abstraction unconsciously. The only way out of
the current problems lies in a conscious and systematic use of abstraction
as a tool in reducing complexity. The purpose of this chapter is to
indicate how abstraction can be used as such.

A science in which abstraction traditionally plays a central role is
mathematics. First of all, the objects of study in mathematics are
abstractions and secondly, abstraction is used as an almost self-evident
tool by every mathematician to apply results from one part of mathematics
to another part. For example, since a "field" can be viewed as an
abstraction of the system of real numbers, results from the theory of
fields can be applied to the theory of real numbers. Yet the role of
abstraction in computer science is even more important, if possible, than
in mathematics. The reason is that the amount of detail in practical
problems, which are at the root of computer science, is usually far-greater
than in "normal" mathematical problems. On the other hand, these practical
problems are usually not very interesting from a mathematical point of
view. Sophisticated mathematical reasoning is generally not required for
their solution. It is the sheer amount of detail which makes these problems
difficult.

So, no matter how great the mathematical genius of a computer
scientist, abstraction is absolutely vital in solving problems in computer
science. This becomes even more evident if one realizes that many problems
in computer science are created by the practitioners of the science
themselves (as a consequence of the rule that each solution of a problem
generates a series of new problems). As an example, consider the problem of
designing a progrannning language, the solution of which creates the problem
of its implementation. Abstraction cannot only help in constructing a
solution for the first problem, but also in keeping the complexity of the
second problem under control.

Discussions about abstraction are in constant danger of becoming too
abstract, In order to avoid this danger as much as possible, a model for
reasoning about abstraction will be introduced in Section I.I. This model
will be used in Section 1.2 to discuss how abstraction can be used as a

JO

systematic tool in solving problems. How abstraction can be used to
classify problems and their solutions will be discussed in Section 1.3. The
conclusion of this chapter is contained in Section 1.4.

I.I. A MODEL FOR ABSTRACTION

In this section we shall give a definition of the concept of
abstraction. For that purpose we restrict the domain of our abstractions to
the objects from mathematics. The reason for this is, that if we are to say
something concrete about abstraction at all, this should be done in the
context of some formal model. Furthermore, the restriction imposed is not
felt as a true restriction: The objects studied in computer science are
mathematical to a great extent.

I. I . I. Theories

The objects which are studied in mathematics are usually called
"theories". A theory can be viewed as a decidable set of "formulas"
together with a decidable set of "rules of inference". Since decidability
is not our primary concern, we shall omit the decidability requirement:

A formula is a primitive concept.

A rule Risa pair (P,C), where Pis a finite set of formulas and C is
a formula.

An element of Pis called a premiss of R.

C is called the conclusion of R.

A theory Tis a pair <F,R>, where Fis a set of formulas and Risa
set of rules such that all premisses and conclusions of rules in Rare
formulas in F.

An element of Fis called a formula of T.

An element of R is called a rule of T.

The formulas of a theory stand for assertions, which are valid iff they can
be "derived" using the rules of the theory. This is more formally defined
below. Notice that a rule (P,C) with P =¢corresponds to an "axiom".
Notice also that in practice the rules of a theory are usually given by
inference schemes, which correspond to infinitely many rules.

Let T = <F,R> be a theory.

If Pc F, P finite and CE F, then a derivation of C from Pin Tis a
finite sequence (P1,C1), ... ,(Pn,Cn) of rules of T such that
pi c Pu{C1,···,ci-1} (i = 1, ... ,n) and en= C.

If Pc F, P finite and CE F, then C is said to be derivable from P
in T if there exists a derivation of C from Pin T. The fact that C
is derivable from Pin Twill be denoted by P~ C.

I I

ACE Fis said to hold in T if¢~ C.

If CE F holds in T and Dis a derivation of C from¢ in T, then Dis
called a proof of C in T.

I. I. 2. Problems

Well now, what in this context is a "problem"? Mathematicians
basically have only one problem, and that is finding proofs for their
assertions. The obvious definition of a problem is therefore a pair <T,A>,
where Tis a theory and A is a formula of T, the "statement" of the
problem. In intuitive terms, the problem is to find a proof for A in T.
Since A need not hold in T, this problem may be "unsolvable". If it is
solvable, it will generally have more than one "solution":

A problem Pis a pair <T,A>, where T = <F,R> is a theory and A E F.

Tis called the theory of P.

A is called the statement of P.

A solution of Pis a proof of A in T.

A problem is solvable if it has at least one solution; otherwise it is
unsolvable.

EXAMPLE I.I

Let T be the theory <F,R> with

F {a,b,c,d,e,f},

R {(¢,a), (¢,b), ({a},c), ({d},e), ({b,c},f), ({b,e},d)},

then the problem P = <T,f> is solvable. The following derivation is a
solution of P:

(¢,a), (¢,b), ({a},c), ({b,c},f).

The problem <T,e>, however, is unsolvable. D

The above definition of a problem may seem strange at first sight.
How, for instance, can the problem of constructing an algorithm be viewed
as finding a proof? Suppose the problem is to construct an algorithm S,
which given the precondition P establishes the postcondition Q. The
construction of Scan be viewed as constructing a proof for the following
formula A in a suitable theory T:

3 S [{P}S{Q}].

Here we assume that the theory Tis constructive in the sense that the
formula A can only be derived by proving that the formula {P}S{Q} holds in
T for a certain given S. The proof that A holds in T then amounts to
constructing S. This view of constructing algorithms is even very natural,
because it considers the construction of the algorithm and the construction
of its proof of correctness as inseparable. 1A deductive system based on

12

this view is for example described in [MANNA & WALDINGER 80].

1.1.3. Abstraction and theories

We are now in a position to define precisely what we mean by
"abstraction". First, we shall define what we mean by the fact that a
theory T1 is an abstraction of a theory T2. In intuitive terms it means
that there is a correspondence between the formulas in T1 and T2 in such a
way that if the formula F1 is derivable from the set G1 of formulas in T1,
then the formula F2, corresponding to F1, is derivable from the set G2,
corresponding to G1, of formulas in T2. This implies that everything we can
derive in T1 has an interpretation (or "representation") in T2. The
interpretation need not be unique. There may be many formulas in T2 which
correspond to the same formula in T1 (but not the reverse). There may also
be formulas in T2 which are meaningless in T1 (but, again, not the
reverse). So the theory T1 can really be considered to be simpler, or more
"abstract", than T2. The function which indicates the correspondence
between the formulas of T1 and T2 is called the "abstraction function". As
can be concluded from the above, it must be a partial and surjective
function from the set of formulas of T2 into the set of formulas of T1.

An abstraction function from T2 to T1 is a partial function~: F2 + F1
such that:
(I) ~(dom(~)) = F1.
(2) For each finite G c dom(~)

and each FE dom(~)
I ~(G) 7" ~(F) => G7" F.

1 2

T1 is said to be an abstraction of T2 if there exists an abstraction
function from T2 to T1.

The abstraction relation between theories can easily be seen to be
reflexive and transitive. It is not a partial order, because it is ~ot
antisynnnetric. The abstraction relation does have a least and a greatest
element: The theory<¢,¢> is an abstraction of each theory, and each theory
is an abstraction of the theory <F,R>, where Fis the set of all formulas
and R is the set of all rules.

The fact that a theory T1 = <F1,R1> is an abstraction of a theory
T2 = <F2,R2> can be proved as follows. First define the abstraction
function~ from T2 to T1 and prove that~ is a surjection. Then prove that
T2 "satisfies" the rules of T1: For each rule (P1,C1) of T1 and each finite
P2 c dom(~) and C2 Edom(~) such that HP2) = P1 and HC2) = C1 prove that
P27" C2 holds. It is easy to see that this is indeed sufficient.

2

EXAMPLE 1.2

F1 {a,b,c,d},

R1 {(¢,a), ({b},c), ({c},d)},

13

F2 {a,b,c,d,e,f,g},

R2 {(¢,a), ({a},b)~ ({c},d), ({c},e), ({d,e},f), ({b,f},g}},

then T1 is an abstraction of T2 • The following partial function \li: F2 + F1
is an abstraction function from T2 to T1:

\li(a) = a,
\li(b) = a,
\li(c) b,
\li(d) undefined,
\li(e) undefined,
\li{f) c,
\li(g) d.

The proof that \li is indeed an abstraction function from T2 to T1 amounts to
proving that the following assertions are valid:

□

¢~ a,
2

¢~ b,

{c}~ f,
2

{f}~ g.

1.1.4. Abstraction and problems

way:
The concept of abstraction cart be extended to problems in a natural

An abstraction function from P2 to P1 is an abstraction function from
the theory T2 to the theory T1 such that A2 E dom(\li) and \li(A2) = A1.

P1 is said to be an abstraction of P2 if there exists an abstraction
function from P2 to P1.

Notice that if the problem P1 is an abstraction of the problem P2 , then the
fact that P1 is solvable implies that P2 is solvable, but not the reverse.
If the reverse holds also, P1 will be called a "proper" abstraction of P2 •
Moreover, if P1 is a proper abstraction of P2, then each solution of P1
corresponds to at least one solution of P2, but, again, not the reverse.
Those solutions of P2 which do not correspond to any solution of P1 will be
said not to be "expressible" in P1 , as defined below.

I An abstraction P1 of a problem P2 is said to be proper if the fact
that P2 is solvable implies that P1 is solvable.

14

If P1 is an abstraction of a problem P2 and S = (P1,C1), ••• ,(Pn,Cn) is
a solution of P2, then Sis said to be expressible in P1 if there
exists an abstraction function if/ from P2 to P1 such that:
(I) Piu{Ci} c dom(ifl} (i = 1, ••• ,n).
(2) ifl(Pi) Ti ifl(Ci) (i = 1, ••• ,n).

where T1 is the theory of P1.

1.1.5. Abstraction and omitting details

In the introduction of this chapter we informally described
abstraction as "omitting (irrelevant) details". One can wonder whether this
informal description fits in with the formal definition of abstraction
given above. The fact that this is indeed so can be seen as follows.
Consider a "detail" of a problem Pas a formula or rule of the theory of P.
Let P1 and P2 be problems such that P1 is an abstraction of P2. Then
(according to Lemma I.I below) there exists a problem P3 which is
"equivalent" to P2, i.e. P2 and P3 are mutual abstractions, such that all
formulas and rules of the theory of P1 are contained in the theory of P3
and the statement of P1 is equal to the statement of P3. The problem P1 can
thus literally be viewed as being obtained by omitting details from P3
(which is the "same" as P2).

LEMMA 1.1

Let P1 and P2 be problems such that P1 is an abstraction of P2•
Then there exists a problem P3 such that:
(I) P2 and P3 are mutual abstractions.
(2) F1 c F3.
(3) R1 c R3.
(4) A1 = A3.

where Pi= <Ti,Ai> and Ti <Fi,Ri> (i 1,2,3).

PROOF

Let Pl and P2 be as above, then there exists a partial function ifl: F2 ➔ F1
such that:

(I) ifl(dom(ifl)) = F1.
(2) For each finite G c dom(ifl)

and each FE dom(ifl)
I ifl(G) Ip ifl(F) .. Gl-;;;-T F.

1 2
(3) ifl(A2) = A1.

Without loss of generality we may assume that:

(4) if/ is 1-1.
(5) F1 nF2 = 9}.

(Assumption (4) is allowed because, if F,G E dom(ifl), F + G, G + A2 and
ifl(F) = ifl(G), then G may be omitted from dom(ifl) without affecting (I), (2)
and (3).) Let F3 = F1 u (F2 \dom(ifl)} and let 'l': F2 ➔ F3 be defined by:

if F E dom(ifl),
'l'(F)

if FE F2 \dom(ifl),

15

then 'l' is a bijection. Let R3 = R1 u {('l'(P),'l'(C)) I (P,C) E R2} and A3 = A1.
If we define P3 = <T3,A3> with T3 = <F3,R3> then it is not difficult to
prove that P2 and P3 are mutual abstractions (use 'l' and 'l'-1 as abstraction
functions). The fact that F1 c F3 , R1 c R3 and A1 = A3 is obvious. 0

If a problem P1 is an abstraction of a problem P2, the above entitles us to
say that P1 contains "less detail" than P2.

1.2. ABSTRACTION IN SOLVING.PROBLEMS

In this section we are concerned with the question how abstraction can
help us in solving problems. Let us consider first how problems come into
existence. Unfortunately problems are not born as pairs <T,A>, where Tis a
theory and A is a formula of T. Problems spring up in people's minds as the
result of immensely complex processes of thought. It is probably even true
that most human problems (and especially "emotional" problems) do not have
a theory at all. If we restrict our·selves to the more technical problems of
computer science, it can be defended that each problem has a theory.

1.2.J. Specification of the problem

The first thing to do when solving a problem is to model the intuitive
problem as a formal problem <T,A>, where Tis the theory and A is the
statement of the problem. The purpose of this "specification" of the
problem is to make clear in an unambiguous way what the problem is. This
step is essential to the successful solution of a problem, yet it is often
omitted. It becomes even more essential if a group of people decide that
they "have a problem". The specification of the problem can then serve to
make sure that they are talking about the same things.

The construction of the specification of the problem already requires
a fair amount of abstraction. However, this kind of abstraction is a
transformation from the intuitive world into the formal world, which can
only be discussed in informal terms. The specification should be both
"sound" and "complete": All formulas which are derivable in the theory T of
the problem should be true intuitively, and each formula which holds
intuitively should be derivable in T. Moreover, the specification should be
"appropriate": The statement A of the problem should correspond to the
intuitive conception of the problem. From now on we shall assume that we
have a sound, complete and appropriate specification of some intuitive
problem.

1.2.2. Abstraction from irrelevant details

Given the problem P1 = <T1,A1>, how can abstraction help us in solving
this problem? If P1 is the specification of a realistic problem, the theory
T1 of the problem will probably be extremely complicated. The details of P1
may be so large in number or so complex, that they entirely obscure the way
to a solution of P1, i.e. a proof of A1 in T1. It is often easy to see that
certain details of P1 are completely irrelevant to a proof of A1. Other
details can be seen to be partly irrelevant in that they are not strictly
required for a proof of A1, but they can make the proof of A1 simpler.

What we can do now is to try and construct an abstraction Po of P1. In
the rules of the theory To of Po we then try to capture those details of T1
which are thought to be relevant to the proof of A1. Since the theory To of
Po will differ from the theory T1 of P1, the statement A1 of P1 must be

16

reformulated in Po as A0• The construction of Po should go hand in hand
with the construction of an abstraction function w from T7 to To with
w(A1) = Ao. (Notice that the easiest way to dispose of irrelevant formulas
in T1 is not to contain them in the domain of w.) The problem Po may be .
expected to be simpler than P1 because we "omitted" the irrelevant details
from P7. Consequently, a solution for Po is more easily found than for P7.

1.2.3. Reconstructing the solution of the problem

Suppose we have found a solution s0 for the problem Po. How can we use
s0 to obtain a solution for P1? So is a proof of Ao in To, hence So is a
derivation (P1,c1), ••• ,(Pn,Cll) of Ao from¢ in T0 • (Notice that Cn = Ao.)
For each F E P1 u {C1 } u ••• u Yn u {Cn} choose a unique 'l'(F) E dom(w) such
that w('l'(F)) = F and '!'(Ao)= A1 (this is possible because w is a surjection
on the set F0 of formulas of T0). We know that for each finite Pc dom(w),
CE dom(w} and (w(P),w(C)) E Ro (where Ro is the set of rules of To) there
is a derivation of C from Pin T7. (These derivations must be constructed
when proving that w is an abstraction function from T7 to To.) Hence with
each rule (Pi,Ci) = (w('l'(Pi)),w('l'(Ci))) a derivation Si of '!'(Ci) from '!'(Pi)
in T7 can be associated (i = 1, ••• ,n). Since 'l'(Cn) = A7 it is easy to see
that S7,, •• ,Sn is a derivation of A7 from¢ in T7, i.e. S7, ••• ,Sn is a
solution of P7. This shows how a solution of Po can be transformed into a
solution of P7.

In the above we assumed that we made the abstraction function w
explicit. This is not always convenient. In practice people often make
abstractions of problems without making the abstraction function explicit.
They keep this function somewhere in the back of their minds. Having found
a solution for the "abstract" problem, they use their. intuitive notion of
the abstraction function to reconstruct the solution of the "concrete"
problem. In contrast to the construction sketched in the previous paragraph
this "solution" need not automatically be correct. No harm is done,
however, if the "solution" is proved to be correct separately. (Abstraction
is used then only to find the solution, and not to prove it correct.)

It is easy to see that if Po is an abstraction of a problem P1 and P1
is unsolvable, then Po is also unsolvable. If P7 is solvable, P0 may very
well be unsolvable. It is therefore important not to abstract too much and
keep abstractions "proper". Even if an abstraction Po of a solvable problem
P7 is solvable, "overabstraction" may render a solution of Po completely
useless. The most dramatic example of this is the problem
Po= <<{A},{(¢,A)}>,A> (where A is an arbitrary formula), which is a proper
abstraction of each solvable problem P7. A solution of Po (e.g., (¢,A))
cannot tell us anything interesting about the solution of P7 (see also
below).

1.2.4. Good abstractions

In order to indicate what a "good" abstraction is let us consider a
solvable problem P7 = <T7,A7> and an abstraction Po= <To,Ao> of P1 with
abstraction function w from P7 to Po, Solving P7 consists of finding a
proof for the following assertion:

(1) ¢~ A7,

If we try to solve P7 through the abstraction Po with abstraction function
w, this amounts to finding proofs for the following assertions (where Ro is
the set of rules of To):

17

(2) 0 { ¢Ip Ao,

P~ C (Pc dom(<P), P finite, CE dom(<P), (<P(P),<P(C)) E R0J.

An abstraction of a problem is a "good" abstraction, if the proofs of the
assertions (2) are considerably simpler than the proof of assertion(!). It
becomes clear now why the problem Po= <<{A},{(¢,A)}>,A> is not a good
abstraction of any problem P1 = <T1,A1> (except the most trivial problems):
In order to prove that Po is an abstraction of P1 we have to prove that
¢~ A1 (because (<P(¢),<P(A1J) is a rule of the theory of Po), but the fact

that we could not prove that ¢Ip A1 was the very reason to make the
abstraction! 1

The "art" of abstraction, as it turns out above, consists of finding
a good balance between the "level" of the abstraction (which should be as
high as possible) and the complexity of the correctness proof of the
abstraction (which should be as low as possible). Finding this balance
requires a certain amount of "training", and, of course, for certain
"intrinsically complex" problems good abstractions are hard or even
impossible to find. Yet, even for those problems, the reduction of
complexity which can be achieved through abstraction should not be
underestimated. Once a problem is in its abstract form it is much easier to
discover and survey possible solutions. A problem in its abstract form can
also more easily be presented to other people and solutions of the abstract
problem are more likely to be generally applicable. This will be
demonstrated in Chapters 6 and 7, where a storage management problem will
be presented and solved in its abstract form. A secondary advantage of
solving problems "in the abstract" is that it may protect people against
the apparently ineradicable tendency to create unnecessarily complex
("tricky") solutions to problems.

1.2.5. Abstraction and top-down problem solving

Abstraction becomes an even more powerful technique when it is used in
conjunction with a top-down problem solving technique (such as "stepwise
refinement", "structured design", "separation of concerns", "divide _and
rule", which are basically all names for the same technique). Consider a
complex problem <T,A>, which is already in its abstract form. Even though
the problem is in its abstract form, it will generally be impossible to
find a solution in a direct way. We therefore try to find a "decomposition"
of the problem into a number of simpler problems. That is, we choose
problems <T,A1>, ... ,<T,A~>, which are believed to be simpler than <T,A>,
and which are such that 1A1,···,An}f-p A holds. It is easy to see that if

we have solved the problems <T,A1>, ... ,<T,An>, we also have solved <T,A>.
Thus we have reduced <T,A> to a number of simpler problems. (Notice,
however, that the <T,Ai> need not all be solvable, even if <T,A> is
solvable. The <T,Ai> must therefore be chosen with great care.)

Having reduced <T,A> to a number of simpler problems <T,A1>, ..• ,<T,An>,
we can try to solve each <T,Ai>· The solution of <T,Ai>, though simpler
than the solution of <T,A>, may still be difficult • .Since <T,Ai> is a
"subproblem" of <T,A>, we will probably not need the entire theory T for
the solution of <T,Ai>· We can reduce the complexity of <T,Ai> then by
making an abstraction <T',Al> of <T,Ai>, which contains only the relevant
information. If necessary, we can again refine <T 1,Ai> into simpler
problems, etc •• This is schematically pictured in Figure I.I. Notice that,
while going down in Figure I.I, both the "level of decomposition" and the

18

"level of abstraction" increase.

I

6 A/\
I \ / I
I \ / I
I \ / I

6 1Y ti

'
6

/ \ decomposition abstraction

0 "difficult" problem O "simple" problem

Figure I.I

1.2.6. Standard theories and problems

The above iterative process of consecutive decompositions and
abstractions, if "properly" applied, will eventually lead to a solution of
the problem (i.e., if the problem is solvable). Usually it will not be
necessary to go down "all the way" by reducing a problem to absolutely
trivial problems. In each field of science there are certain standard

19

theories and standard problems with known solutions. The most illustrative
example of this is mathematics, where we have a great many very abstract
(and consequently generally applicable) theories like "group theory",
"lattice theory", etc •• Each theory has a number of standard problems
(theorems) with known solutions (proofs). Examples from computer science
are theories such as "parsing theory", "automata theory" or the theory
associated with a given progrannning language. Once a problem has been
reduced to a number of standard problems, there is no use in decomposing
these problems any further. This would only be a waste of time, since the
well-known solutions of these problems can be used.

The above shows how important it is to be familiar with the
fundamental theories of a field of science when solving problems in that
field. The familiarity with such theories can serve as a guide in choosing
the proper decomposition of a problem. Certain subproblems, the
abstractions of which correspond to standard problems, may be "recognized"
in a problem and indicate a way to an overall solution of the problem. A
mathematician will for example recognize a theorem from the theory of
topological spaces in proving a theorem about. complex functions and make
this theorem a component of his proof. A compiler writer will usually
recognize a parsing problem in constructing a compiler and make this
problem a "phase" of his compiler (knowing that the problem can be solved
in a standard way). There is no need to say that the recognition of such
standard problems is greatly facilitated if the level of abstraction is
always kept as high as possible.

1.3. ABSTRACTION IN CLASSIFYING PROBLEMS AND THEIR SOLUTIONS

Each field of a science can usually be divided into a number of
relatively independent subfields, which we shall call "subjects". The field
of "language implementation" of computer science contains for example
subjects such as "parsing", "register allocation", "garbage collection",
etc •• Each subject can be viewed as a collection of "facts", where a fact
is a pair <P,S>, Pis a problem and Sis a solution of P. In the course of
time, with many people working on a subject, the number of facts of a
subject, i.e. the "knowledge" of the subject, may grow enormously. Time has
come then to order this knowledge in a systematic way. Such a systematic
treatment of the subject is not only important to the novice, whose
acquaintance with the subject is greatly facilitated, but also to the
expert, who can use it to widen his view and keep the growing volume of the
subject under control. The purpose of this section is to indicate how
abstraction can be used as a tool in giving such a systematic discussion of
a subject.

1.3.J. Concrete problems

Let us consider a subject as a large class of concrete facts, where
each concrete fact is a pair consisting of a concrete problem and a
concrete solution, i.e. some existing problem and an actually realized
solution of this problem. The subject of "garbage collection" consists e.g.
of facts <P(L,M),G>, where P(L,M) is the problem of garbage collection in
an implementation of a progrannning language Lon a machine Mand G is a
garbage collector. The same concrete problem may have several concrete
solutions. A first approach to discussing a subject would be to separately
discuss each concrete problem together with its concrete solutions.

20

1.3.2. Isolated problems

The approach mentioned above suffers from two major flaws. First, the
number of concrete problems is usually very large, which makes the overall
discussion very long. Secondly, concrete problems generally contain a vast
amount of details that are completely irrelevant to (the solutions of) the
problem. These details may entirely obscure the discussion. This situation
can be repaired by abstracting from the irrelevant details, a process that
will be called isolation of the problem. For each concrete problem P with
concrete solutions s1, ... ,Sn isolation of P amounts to constructing an
abstraction P' of P, which contains only the details relevant to P and to
its solutions s1, ... ,Sn· The latter is very important because it is
generally very simple to make an abstraction P' of Pin such a way that
certain solutions of Pare no longer expressible in P'. By keeping the
solutions S1,· .. ,Sn expressible in P', they can be "translated" into
corresponding solutions s1, ... ,S~ of P'. The problem P' will be called an
isolated problem and the solutions s1, ... ,S~ of P' will be called the
isolated solutions.

The process of isolation of a problem is a highly complex process,
which is far more than just "omitting" irrelevant details. The isolation of
a concrete problem generally asks for a complete reformulation of the
problem, using some complex abstraction function. In the case of garbage
collection, for instance, isolating a concrete problem amounts to
formulating the problem in a way as machine and language independent as
possible. If the process of isolation is properly applied it will be seen
that several isolated problems, corresponding to different concrete
problems, coincide. So, each isolated problem represents a number of
"equivalent" concrete problems.

A second approach to discussing a subject is now to discuss each
isolated problem corresponding to a concrete problem instead of the
concrete problem itself, together with its isolated solutions. This meets
the previously raised objections to the first approach. It also introduces
a new difficulty. The "concepts" that occur in isolated problems are
usually rather abstract, and it may not be trivial at all to recognize what
the correspondence between these concepts and the "concrete concepts" is.
(This correspondence is hidden in the abstraction function.) Consequently,
the discussion may easily become incomprehensible. The obvious way to
prevent this is to illustrate each abstract concept by some "down to earth"
equivalent.

1.3.3. Basic problem

Still the second approach is not very satisfactory. The point is that
the coherence is missing. The subject is reduced to a collection of
isolated problems, which are discussed independently of each other. But
what is the reason to call this collection of problems a "subject"?
Obviously the reason is that these problems "have something in common".
Exploiting this similarity cannot only clarify the discussion a great deal,
it can also save a lot of work. In order to discuss how this should be
done, it is necessary to make more explicit what the problems constituting
a subject "having something in common" means. Intuitively it means that
these problems are instances of the same very general problem. In more
formal terms the meaning is given by the following postulate: There exists
a nontrivial problem P such that Pis a proper abstraction of each isolated
problem of the subject (and therefore also of each concrete problem). This
problem will be called the basic problem and its solutions will be called

21

the basic solutions.
According to Lemma I.I the isolated problems can now be reformulated

in such a way that all formulas and rules of the basic problem are also
formulas and rules of all isolated problems, and moreover, that all
statements of the isolated problems are equal to the statement of the basic
problem. (The isolated solutions should of course be reformulated
simultaneously.) Each solution of the basic problem is now also a solution
of each isolated problem (not the reverse). Yet as a rule such a basic
solution will be so general, that it is of little or no practical value.

A third, more coherent approach to discussing a subject is now ready
at hand. At the beginning of the discussion the basic problem is
introduced. Subsequently each isolated problem is treated as a
specialization of the basic problem. This implies that only the additional
details and solutions of the isolated problems are discussed. (Notice that
specialization is literally a matter of adding details.)

1.3.4. Generalized problems

The above approach exploits the global similarity of the isolated
problems. But there is also something like "local" similarity. Two isolated
problems can be. very much alike and differ only in a few details and
solutions. (Here the word "few" should not be taken too literally, because
it may mean "infinitely many" in practice.) In order to discuss how to
exploit this, consider a set V of isolated problems, which apart from a few
details are the same. Notice that, if <<FB,RB>,AB> is the basic problem,
then each element V of V has the form <<Fv,Rv>,Av> with FB c' Fv, RB C Rv
and AB= Av. As was done with the set of all isolated problems to obtain
the basic problem, it is possible to abstract from the different details of
the isolated problems in V. This amounts to constructing the problem
G = «n V E V [Fv],n V E V [Rv]>,AB>, which contains the coinciding details
of the isolated problems in V. G will be called a generalized problem and
its solutions will be called generalized solutions. Each solution of G is
also a solution of each isolated problem in V. Moreover, since the isolated
problems in V differ only in a few details, G will also differ from the
isolated problems in Vin only a few details. Consequently, a "good"
solution of G is likely to be a good solution of any of the isolated
problems in V. Generalized problems thus provide a way to discuss solutions
of a number of isolated problems together.

The process of grouping problems together and abstracting from their
different details will be called generalization. This process cannot only
be applied to isolated problems, it can also be applied to generalized
problems themselves. By doing so "generalized generalized problems" are
obtained, which will also be called "generalized problems". Then again it
is possible to generalize over (groups of) these problems, etc •• Eventually
this process will yield a hierarchy of generalized problems. If the basic
problem has been chosen properly, it will be at the top of the hierarchy:
It can be viewed as a generalization over all isolated problems. At the
bottom are the isolated problems, which can be viewed as generalizations
over individual isolated problems.

The above leads to a fourth approach to the discussion of a subject.
In this approach the hierarchy of generalized problems is traversed in a
top-down fashion, instead of the bottom-up fashion used during the
generalization process. Each generalized problem, except the basic problem,
can then be discussed as a slightly more detailed specialization of another
generalized problem, ending up in the discussion of the isolated problems.
The solutions of the isolated problems should be moved up as much as

22

possible in the hierarchy. This implies that a solution S of some isolated
problem should be discussed with the highest generalized problem Pin the
hierarchy for which Sis a solution. (S then is automatically a solution of
each generalized problem lower than P.) 1he advantage of this approach is
not only that it limits the efforts of discussing the problems and
solutions which are part of the subject (by combining them into generalized
problems), but also and above all that it clearly reveals the structure of
the subject. It is only through this structure that it is possible to
properly survey the subject.

1.3.5. Systematic generalization

Related to the fourth approach there is a little difficulty. It is
caused by the fact that the grouping of problems together into generalized
problems is far from unique. Indeed the criterion for grouping problems
together was that these problems differed only in a few details. This,
however, is a rather vague criterion, which allows many interpretations. As
a consequence, equally many hierarchies of generalized problems can be
constructed. In practice the situation will probably not be so bad, because
there usually is a "natural" way to group problems together. Still it is a
good thing to know that there exists a unique hierarchy of generalized
problems, which corresponds to a systematic way of generalization. This
unique hierarchy enables us to speak of the structure of the subject. In
addition it has some very pleasant properties.

If J is the (finite) set of all isolated problems of the subject and
<<F3,R3>,A3> is the basic problem, then the standard hierarchy of
generalized problems is defined as the partially ordered set <G,C>, where

G {«n v E v [FvLn v E v [Rv]>,A3> I v c J, v "' ¢},

(P, Q E GJ.

Here, for each problem P, Fp and Rp denote the set of formulas and the set
of rules of the theory of P respectively. The above defines a unique way of
grouping problems together into generalized problems (see Example 1.3).
Notice that the relation Con G is not the same as the abstraction
relation. Though PC Q implies that Pis an abstraction of Q, the reverse
need not hold. Notice also that F3 c n VE J [fv] and R3 c n VE J [Rv] but
not necessarily F3 = n VE J [Fv] and R3 = n VE J [Rv]. It is reasonable,
though, to assume that the basic problem has been chosen in such a way that
the latter holds, or otherwise force the latter to hold by redefining the
basic problem, thus guaranteeing that <<F3,R3>,A3> E G.

EXAMPLE 1.3

Suppose J = {P1,P2,P3,P4 } is the set of all isolated problems and all
Pi (i = 1,2,3,4) have the same set of formulas. We can consider the Pi as
sets of rules then. Let the Pi be given by:

P1 {a,b,c},
P2 {a,b,d},
P3 {a,d,e},
P4 {a,d,f},

where a, b, c, d, e and fare rules. Then the set G of generalized problems
from the standard hierarchy of generalized problems is equal to:

23

G = {{a},{a,b},{a,d},{a,b,c},{a,b,d},{a,d,e},{a,d,f}}.

This defines the grouping which is pictured in Figure 1.2 (where-+ denotes
specialization).

{a}

I\
{a,b} {a,d}

/\/!~
{a,b,c} {a,b,d} {a,d,e} {a,d,f}

Figure 1.2

□

The standard hierarchy of generalized problems satisfies the following
property: For any combination of details occurring in a generalized
problem, there is a unique generalized problem Q containing those details,
such that any generalized problem containing those details is a
specialization of Q. This has the following two pleasant implications:

(1) Each detail needs to be introduced in only one generalized problem Q.
Any other generalized problem containing this detail is a
specialization of Q. This is important because the introduction of a
detail may involve some overhead (such as the introduction of
auxiliary notions).

(2) Each solution based on a set V of details needs to be discussed in
only one generalized problem Q. Any other generalized problem to which
the solution applies (i.e., which contains the details in V) is a
specialization of Q.

These two facts not only save work, but also contribute to a clear
presentation of the subject.

1.3.6. Pruning the hierarchy

Using a hierarchy such as defined above, the application of the fourth
approach will result in a systematic and exhaustive discussion of a
subject. For comprehensive subjects such an exhaustive treatment may easily
fill a library. Usually that is not what is intended. As the ultimate
reason for someone to go into a subject may be taken to be that he has (or
will have) a problem pertaining to the subject. Unless his problem is an
"old" problem, the chance to come across an exact copy of his problem (in
its isolated form) is quite small. Therefore he will look for a proper
generalization of his problem, and solve his problem either by copying a
solution of the generalized problem, by modifying it, or by inventing a

I

24

solution of his own. (This clearly demonstrates that a subject is not
innnutable, but, quite on the contrary, constantly growing. So any
discussion of the subject is necessarily a snapshot of the "state of the
art".) This suggests that, in order to keep the length of the discussion
under control, the hierarchy of generalized problems be "pruned", which
implies that lower parts of the hierarchy are left out of the discussion.
The pruning should be done with great care, so as to avoid the occurrence
of "gaps". Dependent upon the amount of pruning one can distinguish
between:

(1) An introduction to the subject.
(2) A survey of the subject.
(3) A book on the subject.
(4) An encyclopedia of the subject.

As a result the fifth approach to the discussion of a subject is
obtained. Starting with the discussion of the basic problem and its
solutions, a pruned version of the hierarchy of generalized problems is
traversed in a top-down fashion. Each generalized problem, except the basic
problem, is discussed (together with its solutions) as a specialization of
its direct predecessor in the hierarchy. The five approaches are visualized
in Figure 1.3 (where-+ denotes specialization).

1.3.7. Ordering the solutions

The above shows how the problems of a subject can be ordered
systematically. The ordering of the problems induces an ordering on the
solutions as well. The latter ordering, like the former, is based on the
different details of problems and does not work for solutions which are
based on exactly the same details of a problem (these solutions are
associated with the same generalized problem). Apart from details of a
problem there is also something like details of a solution: Two solutions,
even if they are associated with different generalized problems, may be
very much alike. Just like we did for problems, we could try to exploit the
similarity of solutions. This would not only enable us to make the ordering
of solutions complete, but also to clearly indicate the relation between
the various solutions. In order to discuss this we have to be more specific
about the kind of problems and solutions we consider.

The problems discussed in this monograph are mainly "algorithmic
problems", which have the following form: Construct an algorithm S, which
given the precondition P establishes the postcondition Q. We already showed
how an algorithm could be viewed as a "solution" of a "problem", i.e. as a
proof of a formula in a suitable theory. Just like mathematical proofs, one
algorithm can be "simpler" or contain "less detail" than another algorithm.
Unlike mathematical proofs, we are usually not satisfied with simple
algorithms as solutions to algorithmic problems (at least not in practical
situations). The reason is that simple algorithms are generally
"inefficient". The notion of "efficiency" (which, strictly speaking, is
relative to some computation model) is meaningless for mathematical proofs.
(If proofs are written in a language such as AUTOMATH [DE BRUIJN 80] it
might be given a meaning, though.) For algorithms the notion of efficiency
is crucial.

25

••••••••••••••••••••••••••••••••••••• concrete problems

isolated problems

basic problem

generalized problems

pruned hierarchy

Figure I. 3

26

1.3.8. Correctness-preserving transformations

Since most efficient algorithms are necessarily detailed (but not the
reverse!), the construction of an efficient algorithm is usually far from
simple. On the other hand, the construction of a simple but inefficient
algorithm is often relatively easy. An obvious approach to constructing an
algorithm is to start with the simple inefficient algorithm and try to mold
this algorithm into a more efficient algorithm. The tool to be used for
this is the "correctness-preserving transformation" [GERHART 75], which
takes a correct algorithm and transforms it into another correct (and
hopefully more efficient) algorithm. The above approach to algorithm
construction has become rather popular lately. It will be discussed in more
detail in Chapter 3, where a simple method for performing correctness
preserving transformations will be presented and exemplified.

Correctness-preserving transformations are not only useful in the
construction of algorithms, they ·can also successfully be used in the
classification of algorithms [DARLINGTON 78]. Instead of using them
primarily to improve the efficiency of algorithms, we can use correctness
preserving transformations to derive more detailed algorithms from less
detailed ones. As such correctness-preserving transformations can be used
as a tool in ordering solutions in addition to the ordering imposed by the
hierarchy of problems and in discussing the solutions in a coherent and
time-saving way. This works as follows.

Choose some very simple (very "abstract") algorithm Sas the first
solution of the basic problem to be discussed. Usually this algorithm can
easily be seen to be correct. Then discuss all other more detailed
solutions of the basic problem by showing how they can be obtained from S
through correctness-preserving transformations. When going down one level
of abstraction in the hierarchy of problems, discussing the generalized
problem P, the same approach can be used for the discussion of the
solutions associated with P. In contrast to the basic problem, there is no
need to prove the correctness of the algorithm which is chosen as the
starting point of the transformation process: A solution of a
generalization of P (in this case the basic problem) can be chosen as such.
It is even conceivable to choose more than one starting point by deriving a
number of solutions of P directly from different solutions of a
generalization of P (dependent upon the similarity of the former and the
latter solutions). When going down additional levels of abstraction, this
process can be continued until finally "all" solutions of generalized
problems are obtained as transformations of the single abstract algorithm
which was chosen as the starting point.

The entire approach described above will be used in Chapter 5 to
discuss the subject of (compacting) garbage collection. (In fact we will
split the subject into two subjects, "garbage collection" (without
compaction) and "compaction", which will both be discussed as sketched
above.) A final remark is that, in contrast to the ordering of problems,
the ordering of solutions through correctness-preserving (and "detail
increasing") transformations is far from unique, i.e. as far as this
ordering is not implied by the ordering of problems. There are usually
various ways to obtain algorithms from other algorithms through
correctness-preserving transformations (as we will see in Chapter 5), each
of which corresponds to a different order of discussion. The choice of this
order therefore is a rather subtle matter, whereby the guiding principle
should be that the order corresponds to an increase in detail.

27

1.4. CONCLUSION

In the foregoing we discussed how abstraction can be used as a
systematic tool in solving problems and in classifying problems and their
solutions. None of the techniques which were discussed are novel. In a
simplified way they reflect what everyone does automatically when solving a
problem or when trying to grasp a subject. However, "automatically" does
not yet mean "systematically". Making the mechanisms of abstraction
explicit may aid in a more systematic application of these mechanisms. The
result of systematically applying these mechanisms in the fields of storage
management and garbage collection will be presented in Chapters 4-7 of this
monograph. In contrast to the process of abstraction, which by its very
nature is a bottom-up process, the presentation will be top-down. The
latter is the natural way to transfer knowledge (as opposed to gathering
knowledge). Everything which has been said in this chapter about the
preceding process of abstraction could therefore simply be omitted. Yet,
for a better comprehension of the underlying philosophy and as an
incitement to a more systematic use of abstraction this chapter may be
useful.

2.0. INTRODUCTION

CHAPTER 2

SPECIFICATION

29

In each science the need arises to describe the objects which are
being studied. The main purpose of such descriptions or "specifications" is
to serve as a means of communication. Specifications can make sure that
people are talking about the same things. Yet, specifications are more than
that. They can also serve very well as a "feedback" mechanism and handhold
in thinking about problems.

The objects of study in computer science are "algorithms" and "data
structures". The specification problem for algorithms and data structures
differs from specification problems in other fields of science in one
important respect: Apart from communication between people, specifications
are also meant for communication between people and machines, and even for
mutual communication of machines. (Note that the concept of a specification
is used in a broad sense here. "Programs" and "bus standards", for example,
are also considered as specifications, though at a low level of
abstraction.) Machines, as opposed to people, are highly accu~ate, but also
very inflexible listeners. In specifications meant for people (such as
recipes in a cookbook) one can afford to take certain things for granted
(like "boiling an egg"). In specifications meant for machines this is
absolutely out of the question. Specifications of algorithms and data
structures must therefore have mathematical rigour.

The purpose of this chapter is to describe a mathematically rigorous
specification method for algorithms and data structures. This method, in
contrast to several other specification methods, is suitable for the
specification of all (sequential) algorithms and data structures normally
encountered in programming practice. For reasons of time and space the
method will not be elaborated in full detail. The necessary foundations
will be laid and the way to erect a complete building on these foundations
will be indicated. The actual construction of this building is left for
later research.

2.0.1. Specifications and their meaning

In order to provide the mathematical rigour mentioned above it is
essential to make a clear distinction between specifications and the
objects described by them. The lack of this distinction has confused the
discussion on specification methods for data structures for a long time. To
begin with, let us agree on what we use the terms "algorithm" and "data
structure" for. These terms will be used to denote the intuitive concepts
of an algorithm and a data structure, with which each computer scientist is
familiar.

A specification, in informal terms, is a description of an algorithm
or data structure. The requirement of mathematical rigour implies that the
description is written in a formal language, the "specification language".
A specification, therefore, is basically nothing but a finite sequence of
symbols. However, a specification is supposed to "specify" something or, in

30

other words, a specification must have a "meaning". The obvious choice is
to take an algorithm or data structure as its meaning. The requirement of
mathematical rigour, on the other hand, implies that the meaning of a
specification is a mathematical object, which algorithms and data
structures are not (as we agreed on above). Consequently, it makes sense to
distinguish between the "intuitive" and the "formal" meaning of a
specification: The intuitive meaning of a specification is an algorithm or
data structure and the formal meaning is some mathematical object which
"models" the algorithm or data structure. The former can only be described
intuitively, while the latter can be defined rigorously. Of course, the
mathematical models chosen for algorithms and data structures should
correspond to the intuitive concepts as closely as possible.

We have three things now: specifications, their formal meaning and
their intuitive meaning. The first are sequences of symbols in a formal
language, the second are mathematical objects and the third are intuitive
notions.

2.0.2. Implicit and explicit specification methods

There are two fundamentally different approaches to the specification
of algorithms and data structures (cf. [LISKOV & ZILLES 75]). The first,
which we shall call the "implicit" approach, is to describe the properties
which the algorithm or data structure should satisfy in an axiomatic way
(cf. [GOGUEN et al. 78], [GUTTAG & HORNING 78]). The major advantage of
this method is its minimality: Only the essential properties of the
algorithm or data structure are reflected in the specification. There are
also two severe drawbacks. Apart from very simple algorithms and data
structures it is very difficult to construct complete and consistent
specifications. Specifically algorithms and data structures involving
"dynamic" and "shared" data, which are frequently encountered in practice,
are hard to specify. Moreover, implicit specifications are usually far from
easy to comprehend.

The second way of specification, which we shall call the "explicit"
approach, is to choose a "representation" and to describe the algorithm or
data structure directly in terms of this representation (cf. [BERZINS 79]).
This method clearly contrasts with the implicit method as to its advantages
and disadvantages. First of all, specifications are more easily
constructed. If the possibility of dynamic creation and sharing is already
included in the representation chosen, algorithms and data structures
featuring these properties are readily specified. Explicit specifications
also tend to be more readable than implicit specifications. The salient
disadvantage, of course, is the fact that those specifications are not
representation-independent. If one is not very careful "internal" details
of the representation chosen may permeate into the external world and lead
to an "overspecification" of the algorithm or data structure. (Contrast
this with the problem of writing complete implicit specifications.)

It is my firm belief that for realistic applications the future lies
in the explicit approach. A precondition is, that the problem of
representation-dependence is solved satisfactorily. The key to a solution
of this problem lies in the observation that the choice of a representation
need not depend on efficiency considerations. The only criteria in choosing
a representation should be the clarity and naturalness of the
specification. This implies first of all that the representations
themselves must be free of implementation detail, or, in other words, they
should be as abstract as possible. In particular, representations for
algorithms ("control structures") should not include such things as labels

31

and gotos, and representations for data structures should not include such
things as pointers, fixed size storage cells, etc •• On the other hand, the
possibility of dynamic creation and sharing should be inherent (otherwise
many applications are ruled out).

The specification method which will be described in this chapter can
be classified in the category of explicit specification methods. It is
based on a novel kind of representation for data structures, which is
believed to satisfy the requirements mentioned above. These representations
can be viewed as abstract "storage structures" and will be called
"structures", for short. Structures are free of low level concepts such as
pointers and garbage, while at the same time they are general in that they
allow the representation of data structures with arbitrary sharing and
circularities. All useful operations on structures (such as creation and
replacement) can be described in terms of only three primitive operations.
The use of structures is not restricted to specification languages. It is
envisaged that they can successfully be used in definitions of programming
languages as well, especially in definitions of those programming languages
which feature sharing ("aliasing") and dynamic creation of data.

2.0.3. Mathematical models for algorithms and data structures

So far we have not discussed what the formal meaning of a
specification of an algorithm or data structure should be, or, in other
words, which mathematical models we choose for algorithms and data
structures. The generality of the structure concept, which enables all such
things as "values", "objects", "states", "environments", etc. to be
represented by structures, will make it extremely simple to associate
mathematical objects with specifications.

First consider algorithms. The standard mathematical model for
algorithms is the "computable function" (which can be characterized in many
ways, e.g. using Turing machines [TURING 36], lambda calculus [CHURCH 41]
or general recursive functions [KLEENE 36]). In mathematics computable
functions are usually considered as mappings from natural numbers to
natural numbers, but they can easily be extended to mappings from
structures to structures. The formal meaning of a specification of an
algorithm will therefore be a computable function from structures to
structures.

In contrast to algorithms, the question which mathematical model
should be chosen for data structures has been a "hot topic" for a long
time. The introduction of the concept of an "abstract data type"
[LISKOV & ZILLES 74], which is essentially a heterogeneous algebra
[BIRKHOFF & LIPSON 70], seems to have settled the matter more or less. Our
model for data structures is basically an abstract data type, though we
shall view the latter as a homogeneous rather than a heterogeneous algebra.
(The reason for this has to do with the fact that we allow the arguments of
an operation of a data structure to "overlap".) The formal meaning of a
specification of a data structure will be a homogeneous algebra, consisting
of the set of all structures and a number of (computable partial) functions
from structures to structures.

2.0.4. Abstraction facilities

The concept of a structure, which is the only kind of representation
for data structures used in the specification method, enables us to achieve
mathematical rigour in a simple way. The structure concept in itself is a
highly mathematical and abstract concept. If, howeve.r, it were necessary to

32

spell out specifications in terms of primitive structures and primitive
operations on structures, this would make the specification method as a
whole far from abstract. The specification language would be nothing but an
assembly language for an abstract "structure processor" and would not
deserve the title "specification language". The latter title is deserved
only by the the introduction of two abstraction facilities in the language:
one for data structures and one for control structures.

The abstraction facility for data structures is a mechanism to ·
"encapsulate" [ZILLES 73] the representation chosen for a data structure in
a similar way as for example in CLU [LISKOV et al. 77]. This enables data
structures to be specified in terms of other (already specified or still to
be specified) data structures, without relying on the representation chosen
for the latter. Thus "layers" of abstraction can be created and data
structures can be specified in a "modular" way. The abstraction facility
for control structures consists of the possibility to use highly
nondeterministic control structures, up to a level of abstraction where a
complex algorithm can be specified as a single "nondeterministic
assignment" [HAREL et al. 77], which need not even be executable. The
introduction of the former abstraction facility in the language will be
discussed informally, while the introduction of the latter is only touched
on. A more formal treatment of both facilities constitutes one of the
"loose ends" which are left for later research.

2.0.5. From specifications to programs

Even when provided with the above abstraction facilitie&, certain
people will still call the language described in this chapter a programming
language rather than a specification language, and, in part, they are
right. The language suits itself for use at greatly different levels of
abstraction. Used at a high level of abstraction it can be viewed as a
specification language and used at lower levels of abstraction it can be
viewed as a programming language. The advantage of the fact that the same
language can be used as both a specification language and a programming
language should not be underestimated. It enables a uniform approach to the
implementation of algorithms and data structures. Provided one ha·s the
necessary tools (which will be discussed in the next chapter) it is
possible to descend from specifications to programs in a systematic,
stepwise way without having to change the language halfway through.

The virtues of the above approach will be demonstrated in the
succeeding chapters of this monograph. The language used in those chapters
is a loose version of the language described in this chapter. In fact, the
language described in this chapter emerged from the language used in the
other chapters. This chapter can therefore also be viewed as an attempt to
make the semantics of the algorithmic language used throughout this
monograph more precise. This semantics is not trivial due to the fact that
most algorithms and data structures discussed in this monograph incorporate
shared and dynamic data.

The discussion of the specification method in this chapter is
basically bottom-up. First, in Section 2.1 the fundamental concept of a
"structure" is introduced, as well as some related concepts. In Section 2.2
the primitive operations which can be applied to structures are defined. In
Section 2.3 a simple yet powerful language for the manipulation of
structures is introduced and its semantics is defined. The extension of
this language into a full-fledged specification language is discussed in
Section 2.4, together with an example of a specification. This section

33

contrasts with the other sections in that it is very informal, A comparison
of structures to other abstract representations is made in Section 2.5. The
conclusion of this chapter is presented in Section 2.6.

2.1. STRUCTURES

2.1.1. Definition of a structure

The purpose of this section is to define the concept of a "structure".
A structure can be viewed as an abstract "storage structure", which can be
"accessed" through special keys called "accessors". Accessors will be
considered as primitive concepts, usually denoted by strings of letters and
digits. By repeatedly applying accessors to a structure one can follow an
"access path".

An accessor is a primitive concept.

A is the set of all accessors.

A* is the set of all finite sequences of accessors.

A+ is the set of all finite nonempty sequences of accessors.

A is the empty sequence of accessors.

The sequence A1,•••,An of accessors will be denoted by A1,,,An.
The following definition of the concept of a structure is based on the

consideration that a (storage) structure is completely characterized by two
things: First, the collection of all of its access paths and secondly, a
relation which indicates whether two access paths access the same
"substructure". (Notice that the latter is necessarily an equivalence
relation,) Taking into account the properties of access paths as well, we
arrive at the following definition:

A structure Sis a pair <P,=>, where Pc A* and
relation on P such that:
(l)AEP,

- is an equivalence

(2) PA E P => P E P
(3) PA E P A P = Q =>

(P E A*, A E AJ.
QA E p I\ PA = QA (P,Q E P, A E AJ.

APE P will be called a path of S.

= will be called the identification relation of S.

An XE Pl=, i.e. an equivalence class of=, will be called an object
of S.

Sis the set of all structures.

Property (I) states that the empty sequence of accessors is a path of S
(hence Pf¢). Property (2) implies that any prefix of a path of Sis also
a path of S, Property (3) states that equivalent paths have equivalent
continuations. This property of an equivalence relation is known as
"right-invariance". The paths of a structure can be viewed as "names" for
the objects which they represent, As will be seen later, the concept of an

34

object as introduced above is closely related to the intuitive concept of
an object.

There are three trivial examples of a structure, which will be called
the "empty structure", the "convergent structure" and the "divergent
structure" respectively:

~ = <{A},{(A,AJ}> is a structure called the empty structure.

Tc <A*,A* x A*> is a structure called the convergent structure.

Tn <A*,{(P,P) IP EA*}> is a structure called the divergent
structure.

Notice that~ and Tc contain only a single object, while Tn contains an
infinite number of objects (i.e., .if A+~. which we will from now on
assume). Other examples of structures will be discussed below.

EXAMPLE 2.1

Let S = <P,=>, where

p {A,a,b,ba},

{(A,A), (a,a), (a,ba), (ba,a), (ba,ba), (b,b)},

then Sis a structure containing the following objects:

Pl== {{A},{a,ba},{b}}.

Notice that the paths a and ba are "aliases" for one and the same object.

□

Before continuing some notations have to be introduced. First, if
S = <P,=> is a structure, then P8 and =swill denote P and= respectively.
Secondly, if Xis an object of a structure Sand Pis a path of S such that
P € X, then, if no confusion can arise, P will denote X. This convention
fits in with the common mathematical practice of denoting equivalence
classes by their representatives, Definitions and lemmas which use this
notation for objects must be proved to be independent of the choice of the
representatives for the objects.

2.1.2. Finite structures

The definition of a structure does not preclude that structures use an
infinite number of accessors or have an infinite number of objects.
Structures that use only a finite number of accessors and have a finite
number of objects constitute an important subclass. The structures in this
subclass will be called the "finite structures":

Let S be a structure.

{A EA I 3 PE Ps [PAE P3]} is called the accessor set of S.

Sis called finite iff the accessor set and the set of objects of S
are finite; otherwise Sis called infirtite.

The empty structure~ is an example of a finite structure, and the
divergent structure TD is an example of an infinite structure. The
convergent structure Tc is infinite if and only if A is infinite.

Finite structures can be pictured in a systematic way as follows:

Drawing algorithm for finite structures

For each object P
I Draw a circle Cp.
For each pair of objects (P,Q)
and each accessor A with PAE Q
I Draw an arrow labelled by A from Cp to~
Label C"x by A.

35

Notice that this drawing algorithm is independent of the choice of the
paths for the objects and that it would never terminate if applied to an
infinite structure. It is easy to see that the picture thus associated with
a finite structure is unique.

EXAMPLE 2.2

The empty structure~ has the following picture:

A

0

Figure 2.1

If A {a,b}, then the picture of the convergent structure Tc is:

Figure 2.2

If we try the impossible and apply the drawing algorithm to the divergent
structure TD with A= {a,b}, then we get:

36

I
' I

a

a b

a b

b a

b

Figure 2.3

The picture of the structure S from Example 2.1 is:

A

A a

Figure 2.4

□

b

b

The above may raise the question what the difference is between a
structure and a rooted graph with labelled edges. There are two crucial
differences. First, the concept of "unreachability" is meaningless in a
structure. Each object has at least one access path. Secondly, objects do
not have a separate identity. An object simply is the collection of its
access paths. These two facts have a number of important consequences which
will be discussed in detail in Section 2.5.

2.1.3. Physical inclusion

Another important observation is that the paths of a structure should
not be considered as "pointers": Though a path can be viewed as a name for
an object, paths are not objects themselves. Instead, the arrows in the
picture of a structure should be regarded as denoting physical inclusion.
Since arbitrary kinds of physical inclusion (such as sharing and

37

circularity) can be modelled in a structure, the need to introduce pointers
will not arise anywhere. The concept of physical inclusion will be made
more precise by introducing three relations on the set of objects of a
structure:

Let S be a structure.
Let P and Q be objects of S.

Pis a direct component of Q iff there is an A EA such that QA E P.

Pis a component of Q iff there is an RE A+ such that QR E P.

Pis contained in Q iff there is an RE A* such that QR E P.

Check that these definitions are independent of the choice of P and Q. If P
is a direct component of Q because QA E P for some A EA, we shall also
call Pa "direct A-component" of Q. The relations "be a component of" and
"be contained in" are both transitive, while the latter is also reflexive.
Neither of them need be an (irreflexive or reflexive) partial order (see
Example 2.3). The meaning of the fact that an object is "cyclic" can be
defined as follows:

I An object of a structure is cyclic iff it is a component of itself.

It is easy to see that cyclic objects contain an infinite number of paths.

EXAMPLE 2.3

Consider the structure S of Figure 2.5.

The objects of Sare:

A = {A},
a = {a},
b = {ab,b},
aa = {P(ba)n
bb = {P(ab)n

/1.

a

Figure 2.5

n ~ 0 APE {aa,abba,bba}},
n ~ 0 APE {aab,abb,bb}}.

38

The three inclusion relations which hold between these objects can be
described schematically as follows (the plus sign indicates where the
relation holds):

Pis a direct component of Q:

ysQ Ji a baabb

X
a

Ii
aa

bb

+

+ +

+ +

+ +

Pis a component of Q:

ys/J X a baabb

X
a

Ii
aa
bb

+

+ +

+ + + + +

+ + + + +

Pis contained in Q:

ysQAabaabb

A

a

Ii
aa

bb

+

+ +

+ + + -

+ + + + +

+ + + + +

The relation "be a component of" is not an irreflexive partial order here,
because it is not irreflexive: aa is a component of itself. The relation
"be contained in" is not a reflexive partial order because it is not
antisymmetric: aa is contained in bb and bb is contained in aa, but
aa f bb. This, of course, is caused by the fact that aa and bb are cyclic
objects. 0

2.1.4. Structures and regular languages

The above example (and especially the expressions for the objects aa
and bb) suggests that there is a relation between structures and regular
languages. Indeed, the objects of finite structures are regular languages.
This can be understood intuitively by considering the picture of a finite
structure as the state diagram of a finite state machine and recalling the
correspondence between finite state machines and regular languages. A
straightforward proof can be obtained by using the fact that each

equivalence class of a right-invariant equivalence relation with a finite
index is a regular language [HOPCROFT & ULLMAN 79]. In the proof sketched
below the relation between left-linear grammars and regular languages is
used:

PROOF

LEMMA 2.1

Let S be a finite structure, then each object of Sis a regular
language over A.

Let P0, ... ,Pn be the objects of S, where P0 A. Let Pk be one of the
objects of S. Construct a left-linear grauunar in the following way:

For each i = O, ... ,n
I Introduce a nonterminal symbol Ni.
For each i,j = O, .•. ,n
and each accessor A with PjA E Pi
I Introduce the production rule Ni+ NjA.
Introduce the production rule No+ A.
Choose Nk as the start symbol.

39

The grauunar constructed this way is left-linear and independent of the
choice of the Pi. More~ver, the language generated by this grammar can be
proved to be equal to Pk (use induction over the path-length in one
direction, and induction over the length of the derivation in the other
direction). The objects Pi therefore constitute left-linear languages.
Since the latter coincide with the regular languages, they are also regular
languages. Notice that the grammars associated with the different objects
above differ only in the choice of the start symbol. D

EXAMPLE 2.4

The left-linear grammars associated with the objects of the structures of
Figures 2.1, 2.2, 2.4 and 2.5 are:

Figure 2.1:
Nonterminals: No (for A).
Production rules: No+ A.
Start symbol: N0 •

Figure 2.2:
Nonterminals: No (for A).
Production rules: No+ Noa, No+ Nob, No+ A.
Start symbol: No.

Figure 2.4:
Nonterminals: No (for A),

N1 (for a),
N2 (for b).

Production rules: No+ A,
N1 + Noa, N1 + N2a,
N2 + Nob.

Start symbol: Nk (k = 0,1,2).

40

□

Figure 2.5:
Nonterminals: N0 (for A),

N1 (for a),
N2 (for b),
N3 (for aa),
N4 (for bb).

Production rules: No+ A,
N1 + N0a,
N2 +Nob, N2 + N1b,
N3 + N1a, N3 + N4a,
N4 + N2b, N4 + N3b.

Start symbol: Nk (k = 0,1,2,3,4).

Due to Lemma 2.1 a regular expression notation can be used for the
objects of all finite structures.

EXAMPLE 2.5

The objects of the structures of Figures 2.1, 2.2, 2.4 and 2.5 can be
denoted by regular expressions as follows:

□

Figure 2.1:
A= A.

Figure 2. 2:
A=(a+bJ*.

Figure 2.4:
A= A,
a a+ ba,
b = b.

Figure 2.5:
A A,
a= a,
b=ab+b,
aa (aa + abba + bba) (ba) *,
bb = (aab+abb+bb)(abJ*.

2.1.5. Structure of objects

The concept of an object as we introduced it is closely related to the
concept of a "dynamic object", as it is normally conceived in computer
science. Dynamic objects are usually considered as "instances" of "values".
Two dynamic objects may be instances of the same value and still be
different. In mathematical models for dynamic objects this problem is
usually solved by associating an "identity", which is an explicit value,
with dynamic objects. As stated before, objects in structures do not have
an explicit identity. It is interesting to see how the identity problem for
them is solved. The objects in a structure can be viewed as instances of
structures (so "structures" correspond to the "values" of dynamic objects).
This is made more precise by the following definition of the "structure" of

41

an object:

If Sis a structure and Pis an object of S, then the structure of P,
which will be denoted by a8 (P), is the structure T defined by:

PT= {Q EA* I PQ E P3},

Q "=-T R ~ PQ =s PR

The proof that Tis indeed a structure and that Tis independent of the
choice of Pis simple. Two different objects can have the same structure
(see Example 2.6). Consequently, they can be viewed as instances of that
structure.

EXAMPLE 2.6

Consider the structure S of Figure 2.6.

I\

Figure 2.6

In this structure we have (using regular expression notation):

A= A,
a= a,
b = b,
aa = aa + aba + ba + bba,
bb = ab +bb.

The structure of a is:

where

P0 = {Q EA* I aQ E P8 } = {A,a,ba,b},

Q =o R ~ aQ =s aR

hence Pol=o = {{A},{a,ba},{b}}.

(Q,R E P 0J,

42

The structure of bis:

where

P1 = {Q EA* I bQ E Ps} = {A,a,ba,b},

Q =1 R ~ bQ =1 bR (Q,R E P1J,

hence P1l=1 = {{A},{a,ba},{b}}.

So a and b have the same structure (the structure of Figure 2.4). 0

EXAMPLE 2.7

Consider the structure S of Figure 2.7.

I\

A b

Figure 2.7

All objects have the same structure:

□

2.2. OPERATIONS ON STRUCTURES

In Section 2.3 a simple language for the specification of operations
on structures and their objects will be introduced. The meaning of these
specifications will be described in terms of three primitive operations,
which will be defined in this section. Apart from these three primitive
operations the general concept of an operation as it will occur in the
specification of an algorithm or data structure will also be discussed.

2.2.1. A partial order on structures

First, a special partial order on the set S of all structures will be
introduced. This partial order will be used in the definition of the three
primitive operations on structures.

43

The partial order Con Sis defined by:

(S,T E SJ.

Here "=s c '=T" means that P =s Q implies P '=T Q for each P,Q E P5. The fact
that C is indeed a (reflexive!) partial order on Sis trivial. In intuitive
terms the fact that SC T means that all paths of Sare also paths of T and
that all paths which are "identified" in Sare also identified in T.

EXAMPLE 2.8

The structures of Figure 2.8 form an ascending sequence:

A
I\

A I I\ .l = 0 C C C

I\
A

A I\

C a b C aCJ=Db C TC

a
a

Figure 2.8

□

EXAMPLE 2.9

If we define the partial order Co on S by:

(S,TES),

then the fact that S Co T means that S is a "partial expansion" of T, as
illustrated by Figure 2.9.

44

/I

a

b

b

/I~ co
a

a

./1~

b

Figure 2.9

□

Notice that the partial orders C and Co are much harder to describe in
terms of graphs than in terms of structures.

2.2.2. The lattice property

The relation C is more than just a partial order: It turns S into a
complete lattice. (A complete lattice is a partially ordered set where each
subset has an infimum.) This is stated in:

LEMMA 2.2

<S,C> is a complete lattice.

PROOF

Let Tc S. The infimum V of Tis given by:

{
<n T € T [PT],n T € T [=T]>

V =

Tc

if T I ¢,

if T = ¢.

The proof that Vis indeed the infimum of Tis simple and is left to the
reader. (First prove that Vis a structure; the rest of the proof is
trivial.) D

45

Notice that the empty structure i and the convergent structure Tc are the
"bottom" and "top" of the complete lattice <S,[>, i.e. i C S C Tc for each
SES. A simple theorem from lattice theory states that apart from an
infimum each subset also has a supremum [BIRKHOFF 67]. The following
definitions are therefore in order:

For each set T of structures the structures inf T and sup Tare
defined by:

inf T

sup T

infimum of T with respect to C,

supremum of T with respect to C.

The above will enable us to define the result of operations on structures
in terms of inf's and sup's of arbitrary sets of structures without having
to worry about the existence of the inf's and sup's.

EXAMPLE 2. I 0

"
Ifs and T A a

" a

then inf{S,T} and sup{S,T}

a b

Figure 2. 10

Check that this is indeed so! D

46

2.2.3. Some other partial orders

Before defining the primitive operations on structures a remark should
be made about some other interesting partial orders on S. The definition of
C can be written as:

s c P ~ P8 c Pp A v P,Q E P8 [P =s Q ~ P =p Q] (S,PcS).

If we reverse the implication sign in this definition we still have a
partial order, call it C1:

s c. P ~ Ps c Pp A v P,Q E P8 [P =p Q ~ P =s Q] (S,P E SJ.

Intuitively S C1 P means that all paths of Sare also paths of P and that
all paths which are "distinguished" in Sare also distinguished in P. The
partial order C1 has both a bottom (the empty structure~) and a top (the
divergent structure Tn). Yet, in contrast to C, it does not turn S into a
complete lattice (see Example 2.11).

EXAMPLE 2.11

Consider the structures in Figure 2.11.

I\ I\

S: A T: A
I\

I\

·(1)' V: j\ W:

Figure 2. I I

Suppose Sand P have an infimum X with respect to C1 • Since VC1 Sand
V C1 P, we have that V C1 X. This implies that a,c E Px and, since a tv c,
also that a tx c. WC1 Sand WC1 Pimply that WC1 X, hence b E Px.
X C1 Sand a =s b imply that a =x b. Analogously, X C1 P and b =pc imply
that b =x c. Using the transitivity of =x we get a =x c, which is in
contradiction with the fact that a tx c. Hence <S,C1> is not a complete
lattice. D

Another partial order of interest, call it C2, is obtained by taking
the intersection of C and C1:

(S,T E SJ.

It is easy to see that <S,C2> is not a complete lattice either (there is
not even a greatest element).

47

All operations which will be introduced below are considered as
partial operators on structures. They may have a number of parameters
(usually objects in the structure to which they are applied, or accessors).
The result of applying the operation F with parameters X1,··•,Xm to the
structure Swill be denoted by {S}F(X1,···,Xm). The notation F(X7, ..• ,Xm)
will be used to denote the (partial) operator ASE S [{S}F(X1,···,Xm)].
Concatenation will be used to denote functional composition of operators.
For example, F(X7, .•• ,Xm)G(Y7, ... ,Yn) denotes the operator
ASE S [{{S}F(X1,•··,Xm)}G(Y7, ... ,Yn)]. This implies that composite
operators can be read from left to right, which enhances readability to a
great extent.

2.2.4. The operation CRE

The first primitive operation on structures which will be introduced
amounts to the "creation" of an object in a structure. The operation,
called CRE, has two parameters P and A.Pis an object in the structure S
to which CRE is applied and A is an accessor such that PA is not a path of
S. The effect of CRE(P,A) is that a new object with~ as its structure is
added as a direct A-component to P. This is pictured in Figure 2.12.

I\ I\

p CRE(P,A)

0

Figure 2.12

The definition of CRE reads:

Let S be a structure. If Pis an object of Sand A EA such that
PA '- P8 , then {S}CRE(P,A) is the following structure:

inf{T E s I s C T, V R E Ps [R =s p => RA E PT]}.

The fact that "less" in the partial order C implies "less identification"
guarantees that a new object is created and not so~e old object is taken as
the new component of P.

48

Though the above definition of CRE is intuitively clear, one may still
wonder whether it really defines the operation pictured in Figure 2.12. In
order to show that this is indeed so, we shall give a different
characterization of the structure {S}CRE(P,A), which more closely fits in
with Figure 2.12.

PROOF

LEMMA 2.3

Let S be a structure, Pan object of Sand A€ A such that PA t Ps.
A characterization of V = {S}CRE(P,A) is given by:

(VI) Pv = Ps u Q.
(V2) =v = =s u {(X,Y) I X,Y € Q}.

where Q = {RA I R € Ps, R =s P}.

Let V = <Pv, =v> as defined by (VI) and (V2), and let W = {S}CRE(P,A). We
first have to prove that Vis a structure, which is left to the reader. If
we define:

T = {P € s I s C P, V R € Ps [R =s p ,. RA € Pp]},

then W = inf T. We shall show that V € T and VC P (P € TJ, or in other
words that V = min T (the minimum of T) and consequently V = W. The fact
that V €Tis obvious. Now let P € T, then

(Tl) SCP.
(T2) V R € Ps [R =s P ,. RA € Pp].

In order to prove that VC P, we have to show that Pv c Pp and =v c =p•

(2)

□

Proof of Pv c Pp:
Let X € Pv, then either X € Ps or X = RA with R € Ps and R ~SP. In
the first case (Tl) implies that X € Pp and in the second case_(T2)
implies that X € Pp,
Proof of =v C =p:
Let X,Y € Pv with X =v Y. There are two cases. The first is that
X.,Y € P8 and X =s Y. (Tl) then implies that X =p Y. The second case is
that X = RxA and Y = RyA with Rx,Ry € Ps and Rx =s Ry =s P.
(Tl) implies that Rx,Ry € Pp and Rx =p Ry. (T2) implies that
RxA,RyA €Pp.Consequently RxA =p RyA, which is the same as X =p Y.

Notice that in contrast to graph models of storage structures creation is a
natural operation in structures. (In graphs nodes are usually "created" by
choosing them from a set of already existing "free" nodes.)

EXAMPLE 2.12

A binary tree can be generated from the empty structure by a sequence of
operations such as:

{J.}CRE(A.,a)CRE(A,b)CRE(b.,a)CRE(ba.,a)CRE(ba,b).

The intermediate and final results of this sequence of operations are
pictured in Figure 2.13.

/1. /1. /1. /1. /1. /1.

0 IA a

a b

Figure 2.13

D

2.2.5. The operation ADD

49

The second primitive operation on structures is like CRE, except that
it adds an already existing object as a direct component to an object. The
operation, called ADD, takes three parameters P, A and Q. P and Qare
objects in the structure S to which ADD is applied and A is an accessor
such that PA is not a path of S. The effect of ADD(P,A,Q) is that Q is
added as a direct A-component to P, which is pictured in Figure 2.14.

/1. /1.

p
ADD(P,A,0:l

p

0
Q

0 ~
Figure 2. 14

50

The definition of ADD is given below.

Let S be a structure. If P and Qare objects of Sand A EA such that
PA l P8 , then {S}ADD(P,A,Q) is the following structure:

inf{P E s I s c P, v R E P8 [R =s P ,. RA E Pp A RA =T Q]}.

The infimum of the same set of structures as in the definition of CRE is
taken here, except that the set is restricted to those structures in which
the paths RA with R =s P and_Q are identified. This guarantee~ that no new
object is created, but that Q is added as a new component to P.

Like we did for {S}CRE(P,A), we shall give another characterization of
the structure {S}ADD(P.,A,Q), so as to strengthen our faith that ADD does
what Figure 2.14 suggests. The characterization of {S}ADD(P,A,Q) will not
be as simple as that of {S}CRE(P,A), which is due to the fact that ADD may
introduce circularities in a structure. These circularities cause an
"explosion" of the number of paths (see Example 2.13).

LEMMA 2.4

Let S be a structure, P and Q objects of Sand A EA such that
PA i P8 . A characterization of V = {S}ADD(P,A,Q) is given by:

(VI) Pv = Ps u Q.
(V2) =v = { rx, YJ E Pv x Pv I HXJ =s ~(Y)}.

where Q = {RAX1A ..• XnAY IRE Ps, R =s P, QY E Ps,
QXi E Ps, QXi =s P (i = 1, ... ,n), n ~ O}

and~: Pv + P8 is defined by:

for XE Ps,

for XE Q with X = RAX1A .•• XnAY as above.

PROOF

Let V = <Pv,=v> as defined by (VI) and (V2), and let W = {S}ADD(P,A,Q).
Check that the mapping~ is well-defined and prove that Vis a structure.
Now let

T = {'.I' E s I s c P, v R E P3 [R =s P ,. RA E Pp A RA =p Q]}.

We shall show that V = min T, which implies that V = W. First, the fact
that VET is obvious. Secondly, let PET, then we have:

(Tl)SCP.
(T2) v R E Ps [R =s P ,. RA E Pp A RA =p Q].

Check that in order to prove that VC Pit is sufficient to prove the
following assertion:

v x E Pv [x E Pp Ax =p ~(XJ].

We shall prove this assertion now. Let XE Pv. Two cases can be
distinguished.

□

51

(I) x E P8•
(Tl) implies that XE PT, and X =T ~(X) since ~(X) = X.

(2) X E Q_.
We know that X = RAX1A ... X;,zAY with RE Ps, R =s P, QY E Ps, QXi E Ps,
QXi =s P (i = 1, ••. ,n) and n ~ O. Using induction and (T2) we can
prove that:

RARAXX1AA •.• xxiAA = PTQ} (i = o, ... ,n).
1 • • • i =T

Together with the fact that QY E PT (since QY E Ps) the above implies
that:

Or, in other words, XE PT and X =T ~(X).

EXAMPLE 2.13

Let S be the structure of Figure 2.15,

Figure 2. 15

then T = {S}ADD(b,a,A) is the structure of Figure 2.16.

Figure 2.16

Notice that ADD(b,a,A.) has turned the finite number of paths in S
(Ps = {A,b}) into an infinite number in T (P{l' = {A;b,ba,bab,baba, ... }). □

52

2.2.6. The operation REM

The third and final primitive operation can be viewed somehow as the
(right) inverse of the other two primitive operations. It amounts to
removing a direct component of an object. The operation, called REM, has
two parameters P and A.Pis an object in the structure S to which RE'M is
applied and A is an accessor such that PA is a path of S. The effect of
REM(P,A) is that the direct A-component of Pis removed from P, as pictured
in Figure 2. 17.

"

REM(P,Al p

0

Figure 2.17

The definition of RE'M is:

Let S be a structure. If Pis an object of Sand A EA such that
PAE Ps, then {S}RE'M(P,A) is the following structure:

sup{T Es IT cs, v RE Ps [R =s P => RA I. PT]}.

Notice that, due to the fact that objects may be shared, REM(P,A) need not
remove the object PA from.S. That is why this object is represented by a
dotted circle in the right part of Figure 2.17. (Strictly speaking the path
name P should also be dotted, because the path P (but not the object P) may
be removed from S by REM(P,A).) In general, REM(P,A) may reduce the number
of objects in a structure by a number varying from zero to all but one (see
Example 2.14).

Like before we shall give another characterization of the structure
{S}REM(P,A) in order to show that the definition given is in conformity
with Figure 2.17.

LEMMA 2.5

Let S be a structure, Pan object of Sand A EA such that PAE P8 •
A characterization of V = {S}REM(P,A) is given by:

(Vl)Pv=Ps\Q.
(V2) =v = ux,YJ E Pv x Pv I x =s Y}.

where Q = {RAX IRE Ps, R =s P, RAX E P5}.

53

PROOF

Let V = <Pv,=v> as defined by (VJ) and (V2), and let W = {S}REM(P,A). Prove
that Vis a structure. Define:

T = {T E s I Tc s, v R E Ps [R =s P _. RA I. PT]},

then W = sup T. We shall show that V = ma.x T (the maximum of T) and ·
consequently V = W. We have to prove that VET and TC V (TE T). The fact
that VET is obvious. Now let TE T, then

(TJ)TCS.
(T2) V R E Ps [R =s P _. RA I. PT].

The proof of TC V falls apart in:

D

(I) Proof of PT c Pv:
Let XE PT and suppose that XI. Pv. Since (Tl) implies that XE Ps,
there must exist an RE Ps, R =s P and YE A* such that X = RAY.
(T2) implies that RA I. PT, hence also RAY I. PT and XI. PT. From this
contradiction can be inferred that XE Pv.

(2) Proof of =Tc =v=
Let X,Y E PT, X =TY, then (Tl) implies that X =s Y. Since X,Y E Pv
(see (I)), this implies that also X =v Y.

EXAMPLE 2. 14

Consider the structure S of Figure 2.18.

I\

Figure 2.18

The effect of REM(a,b) is:

54

I\

Figure 2.19

Notice: the number of objects has not changed. If REM(A,a) is applied
subsequently to the structure of Figure 2.19, we get:

I\

0

Figure 2.20

Notice: all objects but one have "vanished". D

Check that the operations CRE and ADD could have been defined as
follows:

{S}CRE(P,A)

{S}ADD(P,A,Q) = inf{T ES IS CT, PAE PT, PA =T Q},

but that the following definition of REM would not have been correct:

{S}REM(P,A) = sup{T E S I T C S, PA i. PT}.

The three primitive operations introduced in the foregoing are sufficient
to define the semantics of the language which will be introduced in
Section 2.3.

2.2.7. The general concept of an operation

The last part of this section will be devoted to the general concept
of an operation as it will be used in specifications of algorithms and data
structures. An operation F will be considered to operate on a number of
objects P1, ... ,Pn (the "actual parameters") in an enviro~ent E_(which_is
supposed to contain all information "global" to F). Both E and P1, ••• ,Pn
are objects in an "embedding" structure S. (They cannot simply be
considered as structures, because overlapping would then be impossible.
Also, E cannot be identified with the embedding structure S, because

55

~, •.• ,Pn need not be contained in E.) The result of applying Fis a value
V (the "result value") and a new enviE_onmen.!_ G (which may differ from the
old because of "side effects" of F). V and Gare objects in an embedding
~tructure T. (The same remarks made about E and P7, ... ,Pn apply to G and
V.) F could therefore be considered as a function which maps tuples of the
type <S,E,P7, .•. ,Pn> to tuples of the type <T,G,V>. This definition is not
very convenient. Moreover, Sand T may contain a lot of "garbage" (i.e.,
objects which are not contained in E or P7, •.. ,Pn and G or V respectively).
F will therefore be considered somewhat differently as a mapping from
structures of a special kind to structures of a special kind. Assume F has
been specified with th~ forma_! parameters X1,···,Xn (which correspond to
the actual parameters P7, ••. ,Pn above). These formal parameters will be
considered as accessors. F can now be considered as a mapping from
structures to structures as indicated in Figure 2.21. The correspondence
with the objects E, P1,···,Pn, G and V above is indicated in the figure.

/\ /\

F

Figure 2.21

The left structure in Figure 2.21 will be called a "state". A state S
is composed of two objects: the "global state" glo, which corresponds to
the environment prior to the application of F, and the "local state" Zoe,
which contains the actual parameters of F. Note that the formal parameters
X1,··•,Xn of Fare represented in S by the paths Zoe.X7,, .. ,Zoe.Xn. (Since
we have now begun to use accessors composed of more than one letter, dots
will be used in path names to separate accessors if necessary.) The right
structure in Figure 2. 21 will be called a "result". A result R is also
composed of two objects: the "global state" glo, corresponding to the new
environment after application of F, and the "value" val, which represents
the result value of F. This is all more precisely described below.

A state over a set B of accessors is a structure S such that:
(T)°i\n Ps = {gZo, Zoe}.
(2) {A E A I Zoe.A E P8 } = B.

A result is a structure S such that An Ps {gZo,vaZ}.

56

An operation is a mapping F from a set of states over a set Bp of
accessors into the set of results.

The elements of Bp are called the formal parameters of F.

The above definition of the concept of an operation has the disadvantage
that it makes the names of the formal parameters part of the operation. On
the other hand, if we had used the traditional concept of an operation
(= n-ary function) we would have had to commit ourselves to an order for
the formal parameters.

2.2.8. Side effect free, environment independent and static operations

A number of important concepts in connection with operations can now
readily be defined. Let us first consider the effect which an operation F
may have on the environment, i.e. on the component gZo of the state S to
which F is applied. F will be called "side effect free" if the structure of
gZo in Sis the same as the structure of gZo in {S}F. (Notice that this
does not mean that each object P of S contained in gZo is the same (set of
paths) as the object P of {S}F. It does mean that the structure of Pin S
is the same as the structure of Pin {S}F, though.) "Side effect freeness"
is a useful property of operations, but imposing it as a requirement on all
operations is too restrictive for our purposes. Instead, operations will be
forbidden to access objects other than those which are passed as actual
parameters (no "sneak access"). Side effects can only result then from the
fact that the actual parameters share components with the environment.

Next consider the dependence of the result value of Fon the
environment and the actual parameters. F will be called "environment
independent" if the value of F depends only on the structure of Zoe and not
on the structure of gZo. The fact that Fis environment independent does
not mean that the value of F depends only on the structure of its actual
parameters. The value may still depend on the way the actual parameters
overlap. (This overlap is preserved in the structure of Zoe.) If the value
of F depends only on the structure of its actual parameters, F will be
called "static". Being static is a stronger property than being environment
independent (each static operation is environment independent). All
operations which will be encountered in the sequel will be enviroument
independent, but not necessarily static. Operations pertaining to so called
"static data structures" (such as the integers) will all be static and side
effect free. The various concepts are precisely defined below.

Let F be an operation with formal parameters X1,···,Xn.

Fis side effect free iff for each SE dom(F):

Fis environment independent iff for each S,T E dom(F):

Fis static iff for each S,T E dom(F):

2.3. A LANGUAGE FOR MANIPULATING STRUCTURES

2.3.1. Syntax

57

The language which will be defined in this section will allow for the
specification of operations in a typeless way. A program in this language
is supposed to be nothing but a collection of "definitions", where each
definition specifies an operation. The syntax of the language is as
follows:

<definition>
L+ <opname> <parameter list> <body>

<opname>
L+ <accessor>

<parameter list> t ()
(<accessor> {, <accessor>})

<body>
L+ <statement list> return <construct>

<statement list> t <errrpty>
<statement>{; <statement>}

<errrpty>
4

<statement> t <sirrrple statement>
<conditional statement>
<repetitive statement>

<sirrrple statement>

t . <declaration>
<assignment>

<declaration>
L+ let <accessor> := <construct>

<assignment>
½-<path>:= <construct>

<path>
L+ {<accessor> .} <accessor>

<conditional statement>
L+ if <assertion> then <range> else <range> fi

<repetitive statement>--
'--+ while <assertion> do <range> od

<assertion> -
L+ <path>= <path>

<range>
L+ <statement list>

<construct> t <selection>
<creation>
<application>

<selection>
'--+ <path>

<creation> t ()
(<binding>{, <binding>})

<binding>
L+ <accessor> + <path>

58

<application> t <opname> ()
<opname> (<path>{, <path>})

The curly braces"{" and"}" denote zero or more instances of the enclosed
syntactical constructs, The usual (ALGOL-like) context-sensitive rules hold
in this language, except that identifiers may not be redeclared, nor used
before their declaration (as follows from the rules below).

2.3.2. Semantics

In order to define the semantics of the language described above,
meaning functions will be associated with the respective syntactical
constructs, The names of these functions are given below:

~(F): for each opname F,
3(D): for each body D,

Ms(S): for each statement s,
~(R): for each range R,

c(C): for each construct C,
MA(B): for each assertion B.

Mp(F) and M8 (D) are operations in the sense defined in Section 2.2. Ms(S),
MR(R) and Mc(C) are mappings from states to special structures as indicated
in Figure 2.22. MA(B) is a mapping from states into the set of truth values
{true,false}. (N.B. The term "mapping" is always used in the sense of a
partial mapping.)

Before defining the meaning functions two definitions will be
introduced.

The identity mapping J is defined by:

] = A S E S [S],

If Bis a mapping from S into the set of truth values {true,false},
and F1 and F2 are mappings from S to S, then the mappin_g __ --
"if B then F1 else F2 fi" is defined by:

if B then F1 else F2 fi =
A S E S [if {S}B then {S}F1 else {S}F2 fi].

The meaning functions are defined by the following rules:

RULE I (opname)

Let "F" be an opname with the following definition:

where X1,···,Xn are accessors (n ~ 0) and Dis a body, then:

59

A. A.

A. A.

A. A.

A.

t!:..Y.e.Wll

Figure 2.22

60

RULE 2 (body)

Let 11S1; ... ;Sn return C". be a body, where S1,·•·,Sn are statements
(n ~ 0) and C is a construct, then:

RULE 3 (declaration)

Let "let A:= C" be a declaPation, where A is an accessor and C is a
construct, then:

CRE(Zoc,A)M3(A := C).

RULE 4 (assignment)

Let "PA : = C" be an assignment, where PA is a path, A is an access or
and C is a construct, then:

M8 (PA :=CJ= Mc(C)ADD(A,p,loc.P)REM(p,A)ADD(p,A,val)

REM(A,p)REM(A,val).

(See remark below.)

RULE 5 (conditional statement)

Let "if B then R1 else R2 fi" be a conditional statement, where Bis
an assertion and R1 and R2 are ranges, then:

M3(if B then R1 else R2 fi) =
if MA(B) then MR(R1) else MR(R2J fi.

RULE 6 (repetitive statement)

Let "while B do Rod" be a repetitive statement, where Bis an
assertion andR isa range, then:

M3(while B do Rod) =

if MA (BJ then MR(R)M3(while B do R od) else J fi.

RULE 7 (assertion)

Let "P = Q" be an assertion, where P and Qare paths, then:

MA(P = Q) = ;.. S E S [if Zoc.P =s Zoc.Q then true else false fi].

RULE 8 (range)

Let "S1; •.• ;Sn" be a range (n ~ 0), where S1,•··,Sn are statements,
and let A1, ... ,Am be the accessors following the "let" symbol of those
Si which are declarations (i = 1, ... ,n), then:

RULE 9 (selection)

Let "P" be a selection, where Pis a path, then:

Mc(P) = ADD(A, val, loc. P).

RULE IO (creation)

Let 11 (A1 + P1, ••• ,An + Pn)" be a creation, where A1,···,An are
accessors and P1,···,Pn are paths (n ~ 0), then:

Mc((Al + P1, ••• ,An + Pn)) =
CRE(A, val)ADD(val,A1, loc. P1) ••• ADD(val,An, loc. Pn).

RULE II (application)

Let 11F(P1, ••• ,Pn)" be an application, where F is an opname and
P1,···,Pn are paths (n ~ 0). Let F be defined as in Rule I, then:

Here (see Figure 2.23):

61

BEGIN = CRE(A, t)ADD(t,glo,glo)REM(A,glo)ADD(t, loc, loc)REM(A, loc)

ADD(A,glo, t)REM(A, t)ADD(A, loc, val)REM(A, val),

END = ADD(A, t,glo)REM(A,glo)ADD(A,glo, t.glo)

ADD(A, loc, t. loc)REM(A, t).

Observe that the following definition of the meaning of the assignment
"PA : = C11 in Rule 4 would not be correct:

M8 (PA := C) = Mc(C)REM(loc.P,A)ADD(loc.P,A,val)REM(A,val).

The reason is that after REM(loc.P,A) the path loc.P need no longer exist.
The above rules define the semantics of the language in an operational

way. That is, basically they define an automaton which can compute values
of the meaning functions. Due to the occurrence of recursion and loops the
automaton need not terminate for certain arguments of a meaning function
(see Rule I and Rule 6). For those arguments a meaning function is supposed
to be undefined. With this convention it is easy to see that the above
rules define the meaning functions completely.

Another approach would be to define the semantics of the language in a
denotational way. The above rules are then used not to define an automaton,
but a system of continuous operators on a function space (one operator for
each recursive meaning function, i.e. each meaning function with a
recursive equation). The recursive meaning functions are defined as the
components of the simultaneous least fixed point of this system of
continuous operators. The definition of the other (non-recursive) meaning
functions follows directly from the rules. Due to the fact that this
approach requires a rather elaborate mathematical apparatus and that we
would still have to prove that the denotational semantics coincides with
the operational semantics (since the latter is the more intuitive), we will
not use the denotational approach. The construction of a denotational
semantics for the language is believed not to pose any serious problems,
however. For a thorough treatment of denotational semantics the reader is

62

"

BEGIN

"

END

Figure 2.23

referred to [DE BAKKER 80].

2.3.3. Some remarks and examples

"

"

The language defined above is a rudimentary language in many respects.
It is for example not possible to use applications as actual parameters of
operations as in F(G(~)). Language extensions in which this is possible can
readily be defined in terms of the above language, however. This also holds
for the other extensions which we will discuss in the next section. The
language can therefore be viewed as a kernel around which more
sophisticated languages can be constructed (e.g., by "syntactic sugaring").
All necessary primitive algorithmic concepts (such as creation, selection,
replacement, etc.) are included in the language.

The fact that the only test included in the language is a test for the
identity of two objects may at first sight seem strange and even
insufficient. It is for example not possible to test whether two arbitrary
objects have the same structure. It is not even possible to test whether a
given object has i as its structure. Yet, the test for identity of objects
is sufficient (at least for our purposes). ~ince all objects which are

63

manipulated by a program are constructed by that program, the programmer
can take care that he always knows how to take an object apart into its
direct components. The test whether two objects have the same structure can
then be reduced to tests whether their direct components have the same
structure. If the programmer takes care also that all objects are
constructed from primitive objects, the structure of which can be compared
using the identity relation for objects, then it is always possible to
determine whether two objects have the same structure (see Examples 2.15
and 2.16).

EXAMPLE 2.15

We could represent the truth values tPUe and faZse by the structures tPUe
and faZse pictured in Figure 2.24.

true false

Figure 2.24

· Instances of these structures can be constructed by the operations:

TRUE() let e := ()
return (a ➔ e,b ➔ e)

FALSE()= let e := ();
let f := ()
return (a ➔ e,b ➔ f)

Suppose we have an object denoted by path Pin our program, which is known
to have tPUe or faZse as its structure. Whether the structure of Pis tPUe
can now be determined through the test "P.a = P.b". The operations NOT(p),
AND(p,q) and OR(p,q), where p and q denote "boolean" objects, could for
example be defined as follows:

NOT(p) = let r := ();
if p.a = p.b
- then r := FALSE()

else r := TRUE()
fi
return r

64

AND(p,q)

OR(p,q)

□

EXAMPLE 2.16

= let r := ();
if p.a = p. b
- then if q.a = q.b
-- - then r := TRUE()

else r : = FALSE()
fi

else r:= FALSE()
fi
return r

let r := NOT(p);
lets:= NOT(q);
let t := AND(r,s)
return NOT(t)

Suppose we choose to represent the natural numbers as in Figure 2.25. (The
structures true and false and the operations TRUE and FALSE are as in
Example 2.15.)

0 2

I\ I\

I\ I\ 0 = true 0 = false

Figure 2.25

The following operations can then be defined:

□

ZERO() let t := TRUE()
return (zero+ t)

SUCC(n) = let f := FALSE()
return (zero + f,pred + n)

EQUAL(m,n) = let r := ();
if m.zero.a = m.zero.b

then r := n.zero
else if n.zero.a = n.zero.b --- then r := FALSE()

else r := EQUAL(m.pred,n.pred)
fi

fi
return r

65

In the language extension to be discussed in the next section the
responsibility to "remember" how composite objects can be taken apart into
their direct components will be moved entirely from the programmer to the
language rules (by the introduction of a "strong typing" mechanism). More
convenient kinds of assertions will also be introduced there.

2.4. TOWARDS A FULL-FLEDGED SPECIFICATION LANGUAGE

In this section we shall sketch through an example how the language
described in Section 2.3 can be extended to a full-fledged specification
language for algorithms and data structures. The central issue in this
section will be a specification language for data structures. Since in this
specifica.tion language operations of data structures will be expressed in
terms of algorithms, the language could just as well be viewed as a
specification language for algorithms, however.

2.4.1. The meaning of specifications of algorithms and data structures

Before presenting the example we shall discuss which formal meaning
should be attached to specifications of algorithms and data structures.
First, consider algorithms. There are basically two views of algorithms,
which might be called the "functional" and the "procedural" view. Adopting
the functional view implies that algorithms are considered as partial
functions which map "states" to "results", i.e. as "operations" as defined
in Section 2.2. Adopting the procedural view of algorithms implies that
algorithms are considered as partial functions which map "states" to
"states". For our purposes the procedural view of algorithms is the most
convenient. We shall therefore adopt the latter. (Mark, however, that we
maintain the functional view for operations of data structures.) The formal
meaning of a specification of an algorithm will consequently be a partial
function which maps "states" to "states". The procedural view of algorithms
will be maintained throughout this monograph.

Next, consider data structures. It is generally agreed that data
structures are fully characterized by their operations. The formal meaning
of a specification of a data structure will therefore simply be a
collection F of "operations", i.e. partial functions which map "states" to
"results". In more algebraic terms this means that the formal meaning of a

66

specification of a data structure will be considered here as a homogeneous
algebra <S,F>, where Sis the set of all structures and Fis a collection
of operations. This is different from the more usual "heterogeneous
approach" [BIRKHOFF & LIPSON 70], which is caused by the fact that we allow
sharing. We shall show that, if all operations in Fare side effect free
and static (and hence environment independent), this algebra corresponds to
a "normal" heterogeneous algebra with n-ary functions (which is the case
covered by the algebraic specification methods).

2.4.2. An example: the data structure Lisp

In order to suit the previously defined language to a specification
language it will be harnessed by imposing a type mechanism on it. This will
be illustrated through the specification of the data structure Lisp, which
includes the following well-known LISP operations [WEISSMAN 67]: CONS, CAR,
CDR, RPLACA, RPLACD, ATOM and EQ. The natural numbers are used to represent
"atomic values", which implies that the specification also includes the
operations ZERO, SUCC and EQUAL, and an operation EXP for the conversion of
a natural number into a "symbolic expression". The specification of Lisp is
given below.

data structure Lisp

type Nat,Exp

representation

Nat= case zero: Boal of
FALSE: (pred: Nat)
esac

Exp= case atom: Boal of
TRUE: (val: Nat)
FALSE: (car, cd:P: Exp)
esac

operation

ZERO: Nat
precondition TRUE
accesses Nat
return (zero ➔ TRUE)

SUCC(n: Nat): Nat
precondition TRUE
accesses Nat
return (zero ➔ FALSE,pred ➔ n)

EQUAL(m,n: Nat): Bool
precondition TRUE
accesses Nat
return if m.zero

then n.zero
else if n.zero --- then FALSE

else EQUAL(m.pred,n.pred)
fi--

fi

EXP(n: Nat): Exp=
precondition TRUE
accesses Exp
return (atom+ TRUE,val + n)

CONS(x,y: Exp): Exp
precondition TRUE
accesses Exp
return (atom+ FALSE,ear + x,edr + y)

CAR(x: Exp): Exp =
precondition NOT(ATOM(x))
accesses Exp
return x.ear

CDR(x: Exp): Exp
precondition NOT(ATOM(x))
accesses Exp
return x.cdr

RPLACA(x,y: Exp): Exp=
precondition NOT(ATOM(x))
accesses Exp
x.ear := y
return x

RPLACD(x,y: Exp): Exp =
precondition NOT(ATOM(x))
accesses Exp
x.edr :=y
return x

ATOM(x: Exp): Bool
precondition TRUE
accesses Exp
return x.atom

EQ(x,y: Exp): Bool
precondition AND(ATOM(x),ATOM(y))
accesses Exp
return EQUAL(x.val,y.val)

67

68

2.4.3. Types

The specification above first of all contains the name of the data
structure specified, i.e. Lisp. In the part prefixed by~ the "types"
which are used in the specification are listed, i.e. Nat and Exp. The type
BooZ together with its associated operations is supposed to be
automatically included in each specification. A type will be associated
with each syntactical construct in the specification which denotes an.
object. The objects denoted by syntactical constructs of type Twill be
called "objects of type T". Furthermore, with each type Ta
"representation" is associated. The representations of types are defined in
the part prefixed by representation. The definitions have the shape of
PASCAL [JENSEN & WIRTH 74] (variant) record type declarations. In contrast
to PASCAL, the representation of a type T should not be considered to
define the set of "values" of type T. (This set will be defined later.) It
merely defines the way objects of type T may be created, accessed and
modified. Put in more syntactical terms, the representations of types
define the way syntactical constructs of the various types may be used to
form new syntactical constructs. For example, if xis an accessor of type
Nat, then the representation of type Exp gives us the right to write down
the following construct ("creation") of type Exp:

(atom+ TRUE,vaZ + x).

(See the next paragraph on "access rights", however.) It is not allowed, at
least not in the context of this specification, to write down a construct
of type Exp such as:

(atom+ FALSE,car + x,cdr + x).

The representations of types can therefore best be viewed as restrictions
imposed on the use of syntactical constructs. These restrictions (which can
be checked "statically") guarantee that all operations performed on objects
of a type Tare well-defined. They also imply, of course, that the
representation chosen for Tis reflected in the structure of objects of
type T.

2.4.4. Access rights

In the part of the specification prefixed by operation the operations
which can be performed on objects of the different types are specified. An
operation is specified by giving its name, its parameter list, which
contains the formal parameters and their types, and the type of the result
delivered by the operation. Since operations are partial functions a
precondition must also be given. This precondition must hold for the actual
parameters each time the operation is applied. An operation F may be
defined in terms of the operations contained in the data structure
specification only, unless it is explicitly specified to have an "access
right" to a certain type T. In that case the "primitive" operations such as
selection, creation and=, may be applied to objects of type Tin the
definition of F. The types which are "accessible" to an operation are
specified in the clause prefixed by accesses.

Access rights cannot freely be granted. Suppose for instance that an
operation F has an access right to type T2 but not to type T1 and that
objects of type T1 contain components of ty,P_e T2. If there is an operation
of the data structure that takes an object P1 of type T1 as (one of) its

69

parameter(s) and delivers a_component P2 of P1 of tyE_e T2 as its result,
then F can sneakily access P1 through its component P2. These problems can
be eliminated by introducing a special relation on the set of types of a
data structure specification. A type T2 will be called a subordinate type
of a type 1'1 if an object of type T1 can have a component of type T2. Due
to the "strong typing" this relation can be determined effectively for a
given specification. It constitutes a transi~ive relation, but not
necessarily a partial order, on the set of types of a specification. For
the specification of the data structure Lisp this relation is pictured in
Figure 2.26, where 11-<- 11 denotes "is a subordinate type of".

Figure 2. 26

If we now require that for each operation F the following holds:

.If Fuses a type T to which it has no access right,
then F has no access right to any subordinate type of T.

then "sneak access" is impossible. Here the expression "Fuses T" means
that the definition of F contains a syntactical construct of type T. If F
does not use T, F may have access rights to subordinate types of T. -E.g.,
SUCC does not use Exp, but has an access right to the type Nat, which is a
subordinate type of Exp. Note that the relation "be a subordinate type of"
comes in rather naturally if we construct our specifications in a "modular"
fashion (which of course we should).

2.4.5. The meaning of the specification of Lisp

The meaning of each operation is defined in terms of an algorithm
followed by a return clause. As can be seen the algorithms are very simple
(as they should be in a specification). The language used for the
definition of the operations is a somewhat extended version of the language
of Section 2.3. We shall sketch below how the operation definitions in the
specification of the data structure Lisp can be transformed into operation
definitions in the original language, and how these transformed definitions
can be used to assign a meaning to the specification of Lisp.

First, take the "body" of the operation EQUAL:

70

return if m.zero
then n.zero
else if n.zero --- then FALSE

else EQUAL(m.pred,n.pred)
fi

fi

and rewrite it as follows:

let e : = ();
if m.zero

then e := n.zero
else if n.zero --- then e : = FALSE

else e := EQUAL(m.pred,n.pred)
fi

fi
return e

Rewrite each operation definition as exemplified by the definition of the
operation CAR:

which

Here

CAR(x: Exp): Exp =
precondition NOT(ATOM(x))
accesses Exp
return x.car

becomes:

CAR{x) = let r := ();
if NOT(ATOM(x))

then r := x. car
else r := ERROR

fi
return r

ERROR is the "undefined operation",

ERROR while TRUE do od
return ()

for example:

Replace all operation applications at places where they are not allowed in
the original language by accessors, as exemplified by:

if NOT(ATOM(x))
then r := x. car
else r : = ERROR

fi

which becomes:

let u := ATOM(x);
let V := NOT(u);
if V

fi

then :r> := x.ca:r
else :r> := ERROR

Assuming that the truth values true and false are represented by the
structures true and false from Figure 2.24, replace all paths at places
where only assertions are allowed in the original language by assertions,
as exemplified by:

if V

then :r> := x.ca:r
else :r> : = ERROR

fi

which becomes:

if v.a = v.b
then :r> : = x. ca:r
else :r> := ERROR

fi

Finally, provide all applications of operations without parameters with
parentheses, such as:

TRUE

which becomes:

TRUE()

71

Having transformed all operation definitions into the language defined
in Section 2.3, we can use the function Mp to associate an "operation" with
each operation definition (for the boolean operations, use the definitions
given in Example 2.15). The formal meaning of the specification of the data
structure Lisp is now defined by the following set of operations:

{Mp(F) IF= TRUE,FALSE,NOT,AND,OR,ZERO,SUCC,EQUAL,
EXP,CONS,CAR,CDR,RPLACA,RPLACD,ATOM,EQ}.

This set of operations defines a homogeneous algebra <S,FLisp> on the set S
of all structures.

2.4.6. Immutable data structures

In the traditional specification methods for data structures, such as
the algebraic specification methods [GOGUEN et al. 78],
[GUTTAG & HORNING 78], the formal meaning of a specification is usually
defined to be a heterogeneous algebra. This is possible because in these
methods the arguments passed to operations are non-overlapping. Therefore,
these arguments can be viewed as "values" drawn from separate "carriers"
(one for each type) and the operations can be viewed as functions from
Cartesian products of carriers into carriers. We shall show now that the
case covered by the traditional specification methods is a special case of

72

the case covered by our specification method. The special case meant here
is the case that all operations of a data structure are side effect free
and static. A data structure with the latter properties will be called
"iDDnutable". (Notice, by the way, that operations of data structures are
always environment independent: Only objects which are passed as parameters
to an operation can be "seen" by that operation.) All data structures which
can be specified in the traditional methods, such as for example the
natural numbers, are iDDnutable. (Check that the data structure Lisp is not
iDDnutable, but would have been iDDnutable if the operations RPLACA and
RPLACD had been omitted.) As we will show below, a heterogeneous algebra
can be associated with each specification of an iDDnutable data structure.
This algebra corresponds to the algebras normally associated with
traditional specifications.

2.4.7. The carrier of a type

In order to construct the heterogeneous algebra associated with the
specification of an iDDnutable data structure, "carriers" will be associated
with the types of a specification first. These carriers are supposed to
contain the "values" of a type. Since the concept of a carrier of a type is
meaningful for specifications of "mutable" data structures as well, we
shall define it for the types of all specifications.

First, what is a "value" of type T? A value of type T could be viewed
as an object of type T. An object can never be viewed independently of a
structure, however. A value of type T should therefore be regarded as a
structure, i.e. as the structure (or "value") of an object of type T. It
makes sense to consider only objects of type T which can actually be
constructed. So the carrier of type T can be defined as the set of all
structures of objects of type T, which can be constructed by an operation
using exclusively the operations specified in the data structure
specification to which T pertains. According to this definition the carrier
VNat of the type Nat would consist of the structures pictured in
Figure 2.25. The carrier VExp would among many other structures contain the
cyclic structure of Figure 2.27.

/\

cdr

Figure 2.27

This structure can be constructed by the following operation, which uses
the operations of the data structure Lisp only:

CONSTRUCT: Exp =
let x := EXP(ZERO);
x := CONS(x,x)
return RPLACD(x,x)

Notice that the carrier of a type contains only finite structures.

2.4.8. Indistinguishability

73

The above definition of the carrier of a type is not yet fully
satisfactory. The reason is that the elements of a carrier as defined above
cannot really be viewed as "values" in the sense of the traditional
specification methods. They are in fact representations of values. Two
different structures in a carrier may very well represent the same value.
In order to make this more precise we introduce a special relation on the
carrier of a type, called "indistinguishability", which corresponds to
"being representations of the same value".

Two structures V1 and V2 in the carrier of a type Tare
"indistinguishable" if for each operation F with a single parameter of type
T, which can be specified using the operations of the data structure only,
the following holds: When applied to (instances of) V1 and V2, Fis either
defined in both cases or undefined in both cases (where "non-terminating"
is also "undefined"). At first sight this may seem a strange definition. It
becomes less strange if one realizes that the operations of the data
structure are the only operations which may be used to manipulate
(instances of) structures of type T outside the specification of the data
structure, and that being defined or undefined is the only property of
operations which is a priori observable to the outside world. So, for the
outside world there is truly no way to tell two indistinguishable
structures apart. The definition becomes even less strange if one realizes
that the structures true and false in the carrier VBool of Bool are
distinguishable(= not indistinguishable). The following single parameter
operation "distinguishes" them:

DISTINGUISH(b: Bool): Bool
while b do od
return b- -

Consequently, another way to prove that two structures v1 and v2 in the
carrier of a type Tare distinguishable is to construct an operation F with
a single parameter of type T, using only the operations of the data
structure to which T pertains, such that F(V1) yields true and F(V2) yields
false. That is the approach we will adhere to below. Note that
indistinguishability is an equivalence relation.

In Figure 2.28.a two indistinguishable structures contained in VExp
are pictured. (Check that there is indeed no way to distinguish them
through the operations of the data structure Lisp.) The two structures in
Figure 2.28.b, which are also contained in VExp• are distinguishable.

74

I\ I\

2.28.a cdr

0=

I\ I\

2.28.b atom

0=

Figure 2.28

This can be seen by passing either of them (in the shape of an object) as a
parameter to the following operation:

DISTINGUISH(x: Exp): Boal=
lety :=CAR(x);
y :=RPLACA(y,x);
let z := CDR(x);
z:= CAR(z)
return ATOM(z)

75

This operation will deliver the value true when applied to the first and
false when applied to the second structure in Figure 2.28.b. Notice that
the reason why the structures of Figure 2.28.a are not distinguishable
while the structures of Figure 2.28.b are, lies in the fact that there are
no operations to modify atomic objects of type Ex-p, while there are such
operations for non-atomic objects of type Ex-p (viz., the operations RPLACA
and RPLACD). If, however, the operation EQ would have been defined as in
certain LISP implementations by:

EQ(x,y: Ex-p): BooZ
precondition TRUE
accesses Exp
return if x = y
--- - then TRUE

else FALSE
fi

then the structures of Figure 2.28,a would also be distinguishable.
It is obvious now to define a value of type T as an equivalence class

of the indistinguishability relation. The carrier of T can then be
redefined as the quotient of this equivalence relation. In this sense we
will use the concepts of a value and the carrier of a type in the sequel.
Notice that what we did is in fact common mathematical practice. The
rational numbers, for example, are usually defined as equivalence classes
of an equivalence relation defined on the set of all pairs (m,n), where m
and n are integers (and n f O). These pairs can be viewed as
representations of the rational numbers, just like structures can be viewed
as representations for the values of a type.

2.4.9. The meaning of the specification of an immutable data structure

Let us return to the immutable data structures. If we have a
specification of an immutable data structure D, a carrier VT can be
associated with each type T of D, as described above. If Fis an operation
of D with formal parameters x1, •.. ,Xn of types T7,.,.,Tn and delivering a
result of type To, then we know, since Fis ~tatic,_that the structure of
the result of F when applied to the objects PlL"',Prz.._of types T7,,,.,Tn
depends only on the structures of the objects P7, ••• ,Pn. Consequently, F
may be considered as a (partial) function which maps structures V7,, .. ,Vn
of types T7,, .. ,Tn to structures of type T0 • The result of applying F to
V7, •.. ,Vn will be denoted by F(V1, ... ,Vn).

The operation F may not only be considered as a function which maps
structures to structures, it may even be considered as a function which
maps values to values. In order to show this, we have to prove that, if Vi
and Wi are indistinguishable structures of type Ti (i = 1, •.. ,n), then
F(V1,···,Vn) and F(W7, .•• ,Wn) are also indistinguishable. Let Vi and Wi be
indistinguishable structures of type Ti (i = 1, ••. ,n). If F(V7,,,.,Vn) and
F(W7, V2, ..• , Vn) were distinguishable, we could construct an operation which
distinguishes V7 and W7, but V7 and W7 are indistinguishable. So
F(V7,.,.,Vn) and F(W1,V2,···,Vn) are indistinguishable. Analogously, we can
prove that F(W1,V2,, .. ,Vn) and F(W7,W2,V3, ... ,Vn) are indistinguishable,
etc •• Using the transitivity of the indistinguishability relation, we infer
that F(V7,,,.,Vn) and F(W7,.,.,Wn) are indistinguishable.

The above, together with the fact that Fis side effect free, implies
that we can view F as a (partial) function from VT x ••• x VT into VTo·

1 n

76

Instead of the homogeneous algebra <S,Fv> associated with D, we can now
associate the heterogeneous algebra <VT (TE T),Mp (FE Fv)> with D, where
Tis the set of types ("sorts") of D and Mp is the interpretation of the
operation Fas a mapping from values to values.

2.4.10. Behavioural equivalence

In the preceding part of this section we showed how a mathematical
object can be associated with a specification of a data structure. Thus the
necessary mathematical rigour of the specification method can be obtained.
The question remains (even in the case of immutable data structures)
whether the mathematical object associated with a specification defines the
"true" meaning of the specification. Clearly, in our case it does not. We
could for example have specified the data structure Lisp using different
representations for the types. Though the formal meaning of this
specification would be different from the meaning of the specification
given before, we would still feel that both specifications specify the
"same" data structure. Instead of assigning a more abstract formal meaning
to specifications of data structures (as, in fact, we already did for
specifications of immutable data structures), we shall cope with this
problem by introducing a relation between specifications of data
structures. This relation, called "behavioural equivalence" (cf.
[BERZINS 79]), amounts to "specifying the same data structure".

First, let us define the concept of a "signature" of a specification
in the usual way. The signature of a specification 8 will be defined to be
the set of all tuples (F,T1,•··,Tn,To), where Fis the name of an operation
specified in 8, T1,··•,Tn are the types of the formal parameters of F and
To is the type of the result delivered by F. Notice that the formal
parameters, the prec.onditions and the access rights of operations are not
included in the signature of 8. Notice also, that each operation (or
algorithm) which is specified in terms of the operations of 8 only, can
also be viewed as an operation (or algorithm) specified in terms of the
operations of any other specification with the same signature as 8. The
meaning of the operation (or algorithm) may be entirely different in either
case, though.

Two specifications 81 and 82 of a data structure are "behaviour-ally
equivalent" if they have the same signature and if for each parameterless
operation F defined in terms of the operations of 81 (or 82) the following
holds: The result of F according to the formal meaning of 81 is defined iff
the result of F according to the formal meaning of 82 is defined. In view
of the definition of the concept of indistinguishability, this definition
will be clear. If 81 and 82 are behaviourally equivalent, there is really
no way to tell a result produced by the operations of 81 from a result
produced in the same way by the corresponding operations of 82, So 81 and
82 truly display the "same" behaviour. This implies, for example, that each
"assertion"(= parameterless function defined in terms of the operations of
81 or 82 with a boolean result) is valid with respect to 81 iff it is valid
with respect to 82, The above definition of behavioural equivalence is
surprisingly much simpler than the one given in [BERZINS 79].

2.4.11. Nondeterministic creation

We shall conclude this informal section with the discussion of a
number of features which should be added to the language in order to make
it suitable as a general purpose specification language. A feature that
must be added first of all is the possibility to specify nondeterministic

77

operations. This feature is indispensable to the construction of
specifications with a high level of abstraction. The simplest way to
introduce nondeterministic operations is by the addition of a
"nondeterministic creation" to the language, which may be used everywhere
where a "construct" is allowed. For that purpose we first have to introduce
"predicates" in the language, which will allow assertions on objects, for
example in first order predicate calculus, to be used in the language. If P
is such a predicate on objects of type T, a nondeterministic creation might
look as follows:

µ x: T [P(x)]

The effect of the evaluation of this construct is that an arbitrary object
X of type Tis created which satisfies P(X). (Notice that an assignment
with a nondeterministic creation as its right-hand side corresponds to a
"nondeterministic assignment" [HAREL et al. 77 J.)

The body of an operation which should deliver some arbitrary value X
satisfying certain requirements R(X) can now be specified at a high level
of abstraction by:

returnµ x: T [R(x)]

The addition of the nondeterministic creation to the language may make
specifications non-executable, but for specifications this is not really an
objection. Moreover, the semantics of the language must be adjusted, for
example by considering operations as mappings from sets of states to sets
of results instead of mappings from states to results.

Apart from the nondeterministic creation, other nondeterministic
control structures should be added to the language. One could think for
example of for-loops of the kind "For each x satisfying P(x) do ••• " or
guarded cOUD:nands [DIJKSTRA 75]. One should be very careful, though. The
combination of even a few such control structures, though each useful in
itself, may easily create a baroque language. One should therefore aim at
simple but powerful nondeterministic control structures. The
nondeterministic creation is believed to be such a control structure. It
will be used in the ensuing chapters in the form of nondeterministic
assignments such as "Let x be such that P(x)".

2.4.12. Miscellanea

A feature which is also useful is to distinguish "constant" and
"variable" accessors in the language. Constant accessors differ from
variable accessors in that they may not be used as the right-most accessor
in the left-hand side of an assignment. This need not imply that the object
bound to such an accessor is constant (it may contain variable components).
It merely implies that the identity (whatever that may be) of the object
bound to the accessor does not change. This concept of a constant accessor
is easily added to the language. Things become more complicated if we want
to ensure that an object bound to a constant accessor is really constant
(i.e. that its structure is constant).

There are several other useful features which could be added (such as
hidden operations, type parameterization, etc.), but we shall stop the
discussion here. The language which will be used in the other chapters of
this monograph for the expression of algorithms and data structures will
include several of the features which we discussed above. The syntax of
this language will furthermore be different from the language discussed

78

here. (It will be more "natural-language-like", but the correspondence is
easy to establish.) As we tried to demonstrate in the foregoing, the
semantics of this language can be defined precisely and the semantical
problems caused by shared and dynamic data can be solved in a relatively
simple way. Apart from defining the semantics of the language the
construction of a proof system for proving assertions about specifications
is also .necessary. (A good indication that the construction of such a proof
system is indeed feasible is [MANNA & WALDINGER 8Oa],) The presence of such
a proof system is implicitly assumed when we reason about algorithms and
data structures in the sequel. (Strictly speaking a proof system is not
necessary, because we could take the semantics and ordinary mathematics to
prove assertions about specifications. A proof system is almost
indispensable, however, because it makes proofs of correctness considerably
easier, possibly even to such an extent that these proofs can be
constructed or at least verified by a machine.)

2.5. COMPARISON OF STRUCTURES WITH OTHER CHARACTERIZATIONS OF
STORAGE STRUCTURES

The concept of a structure as defined in this chapter is believed to
characterize storage structures in a way more abstract than other methods.
It is believed to capture exactly the access properties of a storage
structure and no more than that. (What else is a storage structure other
than its access properties?) In order to support this assertion we shall
compare structures with other methods of characterizing storage structures.
This will be done by giving a short characterization of a method and by
showing how the structure S of Figure 2.29 would be represented in that
method.

a

Figure 2.29

All characterizations are simplifications of the methods. Yet they are
believed to capture the essential features of the methods. No attempt at
completeness has been made, though the most prominent methods are all
discussed.

2.5.1. Vienna objects

A "Vienna object" [WEGNER 72], [OLLONGREN 74], [STANDISH 78] can be
characterized syntactically as follows:

<object> r+ <atom>
C: ~compound>

<compound>
L..+ (<pair>{, <pair>})

<pair>
L+ [<selector>: <object>]

Here an atom is a primitive object (e.g., an integer) and a selector
corresponds to an accessor. r.i is the "null" object. The structure S of
Figure 2.29 could be represented as follows:

S = ([a : ([b : b])J, [b : ([a : a])]).

79

Vienna objects are basically trees with branches labelled by selectors and
atoms as their leaves. This implies that sharing and circularity can only
be described by introducing a pointer concept,.which is done by allowing
"composite selectors" (paths) to be used as atoms. This introduces all the
disadvantages of pointers such as the danger of "dangling references" and
the fact that an object may have more than one representation. E.g., we
could have represented S also by:

S = ([a : ([b : ([a : a])])],[b : ab]).

Pointers are things which belong to the implementation world. They do not
belong at the level of abstraction required for specifying objects. Using
the structure concept, arbitrarily constructed objects can be described
without the use of pointers.

2.5.2. Graphs

Another well-known characterization of a storage structure is the
graph [ROSENBERG 71], [EARLEY 71], [MAJSTER 77]. Such a graph is a triple
<N, F,R>, where N is a set of nodes (which are the "objects"), F is a
collection of partial mappings from N into N and Risa special node (the
"root"). The structure S could be represented by the graph <N,F,R> with:

N {1,2,3},
F {a, b},
R 1,

where:

a(l) 2, a(2) t, a(3) 2,
b(l) 3, b(2) 3, b(3) t.

Here "t" means "undefined". For the description of sharing and circularity
pointers are not necessary. However, the representation of a storage
structure is far from unique. There are numerous graphs which correspond to
the same structure. Not only may the nodes of a graph be chosen in
different ways (e.g., 3,5,7 instead of 1,2,3), but graphs may also contain
unreachable nodes (as the consequence of operations performed on them).
This leads to all kinds of unnecessary complications in working with graphs
(like performing a garbage collection, which, again, is something that
belongs to the implementation world). Note that, in a certain sense, the

80

nodes of a graph are superfluous: They only act as meeting places of access
paths, which is exactly what objects in a structure are about. Note also
that creation is an unnatural operation in a graph: A node is "created" by
selecting it from a set of already existing "free" nodes.

2.5.3. States of a state machine

A "state machine" [BERZINS 79], [PARNAS 72] can be viewed (in a .very
simplified way) as a triple <N,'f.,R>, where N is a set of "objects", r. is a
set of "state functions" and Risa special object (the "root"). A state
function is a total mapping from N into a set containing such things as
integers, booleans, tuples and sets of objects, etc •• A state machine is
always in a certain "state" cr € L The value of an object in a state can be
determined by applying cr to that object. The structure S could for example
be represented by the following state cr of a state machine <N,r.,R> with
N = {1,2,3, ... } and R = 1:

a(l) {(a, 2), (b, 3)},
a(2) {(b,3)},
a(3) {(a, 2)},
a(n) undefined (n ~ 4).

All disadvantages of graphs apply here too. There is an additional
disadvantage, because objects are no longer pure storage structures, In
order to access an object all kinds of operations (such as selection from a
set) must be performed, which belong to the realm of abstract data types.
This confusion of levels of abstraction is not desired, particularly not if
storage structures are used in the specification of abstract data types as
in [BERZINS 79].

2.5.4. Relational objects

A "relational object" [EARLEY 73], [KENNEDY & SCHWARTZ 75] can be
characterized as follows:

An object is either
(I) An atom.
(2) A set of objects.
(3) A tuple of objects.

Storage structures are characterized in a set-theoretic way here, where an
"atom" may be anything primitive. This approach is somewhat similar to the
state machine approach, which implies that the same disadvantages hold
(most notably, the confusion of levels of abstraction). If we choose the
natural numbers as our atoms, the structure S could be represented by:

S = ({(1,a,2),(1,b,3),(2,b,3),(3,a,2)},1).

This could create the impression that relational objects are the same as
graphs, which is not true. Relational objects are more general than graphs
(each graph can be described as a relational object, but not the reverse).
They have in counnon with graphs, that sharing can only be modelled by
representing objects in some way as primitive values (the natural numbers
above). The prograunning language SETL [KENNEDY & SCHWARTZ 75] even has a
special atomic data type for this purpose.

81

2.6. CONCLUSION

In this chapter we addressed the specification problem for algorithms
and data structures. The basis of our discussion was the novel concept of a
"structure", which is essentially a simple mathematical model of the access
properties of a storage structure. Using this model, storage structures
with arbitrary sharing and circularities can be characterized without the
need to introduce pointers. Creation and replacement become very natural
operations, which cannot produce any "garbage" since the concept of
unreachability is non-existent in a structure.

Due to the fact that structures are general and yet free of such low
level concepts as pointers and garbage, they lend themselves very well to
the basis of a specification language for realistic algorithms and data
structures, including those algorithms and data structures which involve
dynamic and shared data. We indicated how such a language can be
constructed. First, we defined a language for manipulating structures. The
semantics of this language could be defined in a very simple way. Then,
led by an example of a specification, we sketched how this language can be
extended into a full-fledged specification language through the addition of
abstraction facilities. The latter language, though syntactically
different, corresponds to a great extent to the specification language used
in the following chapters.

The language which has been sketched in this section is suited for use
at extremely different levels of abstraction. Instead of a specification
language it could just as well be viewed as a programming language, which
is comparable to other languages featuring abstract data types such as CLU
[LISKOV et al. 77], ALPHARD [WULF et al. 76], EUCLID [LAMPSON et al. 77] or
MODULA [WIRTH 77]. The ideas set out in this chapter may therefore also be
of interest to the design of programming languages. In particular, it is
contended that on the basis of these ideas it is possible to design a
general purpose programming language of a simplicity comparable to PASCAL
[JENSEN & WIRTH 74], but differing from it in three major respects. First,
the language is free of pointers. Secondly, it has an abstract data type
facility as its sole data structuring mechanism. Thirdly, it has. a simple
and rigorous semantics. The design of such a language lies outside the
scope of this monograph, however.

3.0. INTRODUCTION

CHAPTER 3

IMPLEMENTATION

3.0.1. The transformational approach

83

One of the central problems in computer science is the implementation
problem: How to construct an efficient algorithm or data structure from a
given specification. Let us, for the time being, restrict ourselves to
algorithms. A rather promising and increasingly popular approach to the
implementation problem for algorithms is the transformational method. The
basic idea behind the method of algorithm transformation (or "algorithmics"
[MEERTENS 79]) is to start with a simple "abstract algorithm", which can
easily be proved correct but which may be intolerably inefficient. Then a
number of correctness-preserving transformations are applied to the
algorithm, turning it into a more complex "concrete algorithm", which is
still correct and (hopefully) more efficient. The virtues of this approach
are widely known and will not be discussed here. For a short introduction
and survey the reader is referred to [DARLINGTON 79].

The correctness of the abstract algorithm which serves as the starting
point of the transformation process can be proved by conventional means,
e.g. by using the inductive assertion technique [HOARE 69]. If the abstract
algorithm and the problem specification coincide, this step is not even
necessary. Problems arise if an attempt is made to prove that the
transformations applied to the abstract algorithm do not affect the
correctness of the algorithm. The conventional verification methods seem to
fall short here. They are usually extended with rather heavy formal
machinery (see for example [BACK 80]), which increases the complexity of
the verification process considerably.

In this chapter a simple method for the derivation of algorithms
through correctness-preserving transformations will be presented, which
allows us to prove that a transformation is correctness-preserving using
standard verification techniques. As such it could be used to prove the
correctness of the transformations which are used to derive the garbage
collection and compaction algorithms in Chapter 5. Instead of a
verification tool, it could just as well be viewed as a design tool.
(Ideally, it should be used simultaneously as both.) As such it will be
used in Chapter 6.

The method is based on two considerations. First, given the
surrounding intermediate assertions, the correctness of most local
transformations is self-evident. Secondly, global transformations which
amount to a change of representation of a variable (or variables) can be
reduced to a number of local transformations. The method, therefore, is
essentially a way to accomplish a change of data representation in a
correctness-preserving way. It does not cover such global transformations
as recursion removal or loop fusion. As we shall see in Chapters 5-7,
however, the majority of all global transformations which are applied
there, are changes of data representation. ·

84

3.0.2. Transforming algorithms by adding and removing variables

In a nutshell the idea is as follows. Let an algorithm S be given,
which is a correct solution to a certain problem. Suppose S contains a
variable V, which we would like to replace by another variable W with a
more efficient representation. The addition to Sofa number of well
defined assignments to W will not affect the correctness of S. (That is, if·
these assignments have no side effects, which we shall tacitly assume
throughout this chapter.) Having added assignments to W a number of
intermediate assertions, which relate W to other variables in S
(particularly V), can be proved to hold inside S. These intermediate
assertions can be used to replace certain expressions in S by equivalent or
more restrictive ones, which clearly does not affect the correctness of S.
If the proper assignments to W were added to S, it should be possible to
make these replacements in such a way that Vis not used anywhere else but
in assignments to itself. Consequently, V has turned into a "redundant
variable", the assignments to which, may be removed from S without
affecting the correctness of S. (Again, assuming the absence of side
effects.) Thus the global change of variable from V to W can be performed
step by step by the following local transformations: adding assignments to
W, making local replacements and removing assignments to V. Notice that
this scheme works just as well if V and Ware sets of variables instead of
single variables.

The above scheme constitutes a very flexible way of changing the
representation of variables. Since the derivation of many algorithms
amounts to continually changing the representation of variables, it is also
very general. In a derivation of an algorithm according to this scheme only
small steps are taken, which can easily be seen to be correctness
preserving by proving intermediate assertions (if necessary). No
enhancement of existing verification techniques is therefore required, at
least not to convince oneself intuitively of the correctness-preservation
of each step. From a strictly formal point of view such an enhancement is
still necessary, of course. The formalization of the scheme would, among
many other things, require a precise definition of such concepts .as
"correctness-preservation", "redundant variable", "local replacement",
etc •• It is believed that this formalization will not pose any serious
problems. The level of formality required for it is not sought for here.
Things will be kept intuitive, yet sufficiently precise to be confident
about the formal soundness.

3.0.3. Extension to data structures

The method described in this chapter can easily be extended to work
for data structures as well. (In view of the fact that the method is
essentially a way of accomplishing a change of data representation, this
will come as no surprise.) Assume that we use the method described in
Chapter 2 to specify data structures. Following this method a data
structure is specified by choosing representations for its constituent
types and defining the operations of the data structure in terms of
algorithms operating on these representations. The implementation of a data
structure can be viewed as applying correctness-preserving transformations
to the specification of the data structure. These transformations can be
divided into two classes: "algorithmic" and "structural" transformations.

An algorithmic transformation transforms the algorithm through which
an operation is specified. The method described here can be used directly
for such a transformation. A structural transformation transforms the

85

representation of a constituent type of a data structure. A structural
transformation of a type T can be viewed as replacing some of the
"accessors" (see Chapter 2) used in the representation of T by other
accessors. Suppose, for example, we wish to replace the accessor A by
another accessor B. This can be done as follows. Introduce the accessor B
in the representation of T, which implies that each object of type T has an
additional component accessed by B. Subsequently, well-defined assignments
of the kind "X.B := Y", where X denotes an object of type T, can be added
to the operations of the data structure without affecting the correctness
of the (specification of the) data structure. A number of "representation
invariants", which relate B to the other accessors of the representation of
T (particularly A), can then be proved to hold. (Note: The representation
invariants need not hold inside operations that have an access right to T,
but they should hold "between" the operations of the data structure.) The
representation invariants can be used to replace certain expressions in the
operations of the data structure by equivalent or more restrictive ones. If
the proper assignments were added, it should be possible to make these
replacements in such a way that the accessor A is not really used any more
in any of the operations of the data structure. This "redundant accessor"
may then be removed from the representation of T without affecting the
correctness of the data structure. Thus structural transformations can be
applied in essentially the same way as algorithmic transformations.

The above justifies the fact that we shall restrict ourselves to
discussing the method as an implementation technique for algorithms. A
comprehensive example of the use of the method as an implementation
technique for data structures can be found in Chapter 6. There the method
is used to transform an abstract machine (which is essentially a data
structure) into a machine with an efficient storage management system.
Furthermore, the emphasis here will be on the verification aspect of the
method, i.e., on the method as a tool to prove the correctness of algorithm
transformations.

The method will be described in detail in the next section. In
Section 3.2 the effectiveness of the method will be demonstrated in the
derivation of a well-known test case for verification techniques:. the
Deutsch-Schorr-Waite marking algorithm [SCHORR & WAITE 67], henceforth
called the DSW-algorithm. In contrast to most other proofs of correctness
of the DSW-algorithm [DE ROEVER 78], [DUNCAN & YELOWITZ 79], [GERHART 79],
[GRIES 79], [KOWALTOWSKI 79], [TOPOR 79], [DERSHOWITZ 80] the most general
form of the algorithm will be chosen here. In Subsection 3.2.1 the problem
will be defined precisely. From the specification given there, a simple
algorithm can be derived almost immediately. This algorithm is presented
and proved correct in Subsection 3.2.2 using the inductive assertion
technique. Then, in five subsequent "phases" (Subsections 3.2.3-3.2.8),
each of which follows exactly the scheme described in Section 3.1, the
DSW-algorithm is derived from this algorithm by correctness-preserving
transformations. The intermediate assertions which are required in this
derivation process are again proved by using the inductive assertion
technique. The algorithmic language used is somewhat informal. In so far as
the semantics of the constructs of this language is not self-evident, this
will be explained. Some concluding remarks are made in Section 3.3.

86

3. 1. A SIMPLE IMPLEMENTATION METHOD

3.1.1. General strategy

In this section a detailed description of the implementation method
will be presented as it will be applied in Section 3.2. We assume the
problem is to construct an (efficient) algorithm which establishes a
certain input-output relation. The first stage is to construct a simple
abstract algorithm Sand prove its partial correctness using the inductive
assertion technique. We assume that the latter is done, as usual, by
inserting intermediate assertions (henceforth called "assertions") in the
algorithm. These assertions will from now on be considered to be part of
the algorithm. (We need them for local replacements.) If sufficiently
abstract, the algorithm Swill probably be highly nondeterministic. Though
it need not necessarily terminate, it must be such that a terminating (and
consequently totally correct) algorithm can be derived from it by
curtailing the nondeterminism.

An iterative process of global correctness-preserving transformations
is now started. The objective of each iteration, or "phase" as we shall
call it, is to make the algorithm S more efficient. This process is
continued until a sufficiently efficient (and therefore terminating)
algorithm results. The rules of the game are that essentially the objective
of a phase is achieved by replacing a set X of old variables of the
algorithm by a set Y of new variables, where X and Y may be arbitrarily
large or small. Two major objectives which can be realized this way are:
reducing nondeterminism and changing the representation of variables. In
the former case we could for example have X = Ill and Y = {V}, where V is a
fresh variable which is used to "control" the nondeterminism. In the latter
case we could for example have X = {V} and Y = {W}, where W is a variable
with a more efficient representation than V. The precise rules of the game
are presented below.

3.1.2. The four steps

Each phase consists of the following four steps (which will be
explained below):

~
Choose fresh variables and insert new assertions (to be made valid)
expressing a relation between the old and new variables.

Step 2

Add assignments to the new variables and using the (old and new)
assertions make replacements so as to make the new assertions valid.
Prove that the new assertions are valid.

Step 3

Using the assertions make replacements so as to improve the algorithm
and remove all assignments to redundant variables.

Step 4

Replace the assertions containing redundant variables by equivalent or
weaker assertions not containing redundant variables~

87

-'. '<" ,, .. · ;", ': i. .

3. I. 2d,. •Step .. ~

h!-1 the. +irst step fre.sl} v,p:i4l:ile\l s1,:re. ii;it:ro411ced and the objective to
be,.icl;li,eyed 1:iy,the t:ra.1-1s+<;>:rmat:ion.phasfi;is,lfidc!own in a number of
asse:rtiqns, which relate these new, v:a:ris1,bles, t:o .. the old variables of the
algo:r,ith!11. Jhey'.are inser,t:ed . .it the appropris1,te ,places in the algorithm.
Th,e.se .isse:rtions need. nqt fully e2epress the ol:ijective to be achieved. (This
is o+te11Jmpossible llllY:W</-Y, ,e,g •. Jf the. <;>bject:;i.ve is to impose "dynamic"
rest:rictions Qn the algo:rithl11.) They need only contain the information
ne~essary to achieve the objective in the next steps.

3. J.2.2. Step 2

The purpose of Step 2 is to make the new assertions valid by adding
ass;i.gl).ID.ents to the new var;i.s1bles., As it tµrns. 94t, it is not always
posslble.to make these newasserti~ns hold solely by adding assignments to
tqe ii.ew variabl~s. ll::'. may be. i;.ecessary. t9 perform a number of replacements
as well, }'his .situation (examples .. of wqich w;i,ll be encountered) occurs
typic;allywith new assertions, which.ire introduced in order to replace
nondete:rministic operatioµs .on the old variables by more deterministic
operat.ions •. New assertions of this type allotv the assertions on the old
varial>l.es to be strengthened. !lel).ce,it is Impossible to make these new
assertions hold solely by addi1-1gassignments.to the new variables.
Replacements iilvolving the old .. va:r;(.ables .must also be performed.

It is obvious to allow replacements 1:i . .ised on the old assertions only
in Step 2. In the case of a restriction of nondeterminism, this implies
that the restriction of the nondeterminism must be accomplished without the
use of the new variables, which are often specifically introduced for that
purpqse. I.f possible at. all, this may ma15,e the restriction of the
nol).determ:i_nism an unnecessarily awkward:affa;i.r. It seems reasonable,
therefo~e, to allow :replai:;.ements b;;L~e.cf on al:r.e!ldy valid new assertions as
well. Yet, this is, still not suffi,c;i,ept. Consider a replacement which is to
be made inside a loop i11 order to m.ikea new assertion, inside that loop,
hold,. Due, to the cyclic na.ture o+ loop.s, tµe correctness of this
replacem(;!nt. may depend on, th,e, new assertion, tl:,.e truth of which the
replacement, .is sup.pgsed to establis,h., ...

The way· out· is to allow replacements in Step 2 which are based on both
the old and new assertions, even if the ;Latter are not yet valid. At first
sight this may seem to introduce ,sic· viciqus· c{rcle and therefore be
incorrect. The surprising thing is.that it is not. (In view of the fact
that the inductive assertion techniq4e is,.b.ased on induction, it may not be
so surprising after all.) This will be proyecf .at· the end of this section.
From a practical point of view it is a great convenience that the new
assertions can be used freely before t:heJr tr4th has been established.
Another question is whether it is realiy necessary from a theoretical point
of view. We shall argue in Subsecti.,on, 3.2.:,.} that in a certain sense it
indeed is. In the derivation of theDSW--:algorithm to be presented, there
are two places where assertions are used before their truth has been
established. Both could have been .avoided,though in one case in a highly
artificial way.

3.1.2.3. ,Step 3

The, tqird step is to ful.ly exploit the new assertion!. to make
replacements in the.algorithm so as t9 achieve the desired objective.
Strictly speaking this could already have been done in the second step, but

88

from a conceptual point of view it is better to separate the replacements
necessary to make the new assertions hold from the other "optimizing"
replacements. The class of replacements allowed will not be defined here.
The only requirement is that the replacements must be very simple and
evidently correctness-preserving. The replacements can be used either to
replace expressions by more efficient ones, or to turn certain variables
into redundant variables. What exactly is meant by a "redundant variable"
will not be defined here. Broadly speaking a variable is redundant in an
algorithm if it is a local variable of the algorithm and it is used in
assignments to itself only. It is obvious that the assignments to such a
variable may be removed from the algorithm without affecting the
correctness.

3.1.2.4. Step 4

In Step 3 all assignments to redundant variables have been removed.
Consequently these variables have turned into "ghost variables" of the
algorithm. Yet, they may (and probably will) still occur in the assertions.
From a strictly formal point of view these assertions no longer hold now.
Simply throwing them away would probably make the remaining assertions too
weak for further use. In Step 4, therefore, new and sufficiently strong
assertions, in which the redundant variables no longer occur, must be
derived from the old assertions to take their place. This could be done in
a systematic way by putting an existential quantifier before each
assertion, quantifying over all redundant variables. It is easy to see that
these derived assertions will hold.

3.1.3. Some remarks

Though the final algorithm obtained by the transformation process
described above is partially correct "by construction", it must still be
proved to terminate. This need not necessarily be done afterwards, but can
be done at some intermediate stage in the derivation. Note that, if
necessary, between two phases or between Steps 2 and 3 additional
assertions can be proved and inserted in the algorithm. Note also that if
we consider the proof of the new assertions in Step 2 as a separate- step,
the steps performed in a phase are almost perfectly syunnetrical:

Step I: Introducing variables &
Strengthening assertions.

Step 2: Adding assignments &
Making replacements.

Proving assertions.

Step 3: Making replacements &
Removing assignments.

Step 4: Weakening assertions &
Eliminating variables.

If desirable, the assertions of the final algorithm can be used to
give an independent proof of correctness of that algorithm. This saves one
the trouble of inventing the assertions required for an independent proof
of correctness. It may turn out, however, that the assertions of the final

algorithm are too weak for that purpose. So, if an independent proof of
correctness of the final algorithm should be possible, care must be taken
to keep the assertions strong enough. The latter is entirely the
responsibility of the algorithm constructor.

89

Since the DSW-algorithm to be derived in Section 3.2 consists of a
single loop, it is more convenient to keep track of the loop invariants
instead of the (intermediate) assertions. In Section 3.2 invariants will
therefore be used instead of assertions. Each invariant corresponds to four
assertions: one i1D1Dediately before the loop, one at the beginning and one
at the end of the loop body, and one ilDIDediately after the loop. If
assertions at other places in the algorithm are required in order to apply
a transformation, they will be derived (in a usually straightforward way)
from the invariants.

3.1.4. On using assertions before they are valid

As we promised above we shall show now that in Step 2 we can indeed
safely use the new assertions for replacement purposes before their truth
has been established. This we shall do by applying Step 2 in a more
circumstantial way. Let S be the algorithm prior to Step 2. Let X be the
set of old variables, and Y the set of new variables introduced in Step I.
Let Pi(X) be the old assertions, and Qi(X,Y) the new assertions introduced
in Step I (i = 1,2, .••). Here the index i denotes a place in the algorithm.
Consider a statement Si(X) in S, prior to which the assertion Pi(X) holds.
This will be denoted as follows:

First of all strengthen Pi(X) to Ri(X), where Ri(X) is the strongest
assertion which holds prior to Si(X) (consequently Ri(X) • Pi(X)):

Insert a nondeterministic assignment "X,Y := [Ri(X) I\ Qi(X,Y)]" prior to
Si(X), which assigns values to the X- and Y-variables in such a way that
Ri(X) I\ Qi(X,Y) holds afterwards. This does not affect the correctness of
the algorithm, because Ri(X) still holds prior to Si(X):

S = ••• {Ri(X)} X, Y := [Ri(X) A Qi(X, Y)]
{Ri(X) A Qi(X,Y)} Si(X) •••

Make replacements in Si(X) based on the validity of Pi(X) (implied by
Ri(X)) and Qi(X,Y) prior to Si(X). Suppose these replacements turn Si(X)
into Ti (X, Y) :

S = ••• {Ri(X)} X, Y := [Ri(X) A Qi(X, YJ]
{Ri(X) A Qi(X, Y)} Ti(X, Y) •••

Make additional replacements in Sand add assignments to Y-variables in
such a way that Qi(X, Y) will hold prior to "X, Y := [Ri(X) I\ Qi(X, YJ]":

S = ••• {Ri(X) A Qi(X,YJ} X,Y := [Ri(X) A Qi(X,Y)]
{Ri(X) " Qi(X, YJ} Ti(X, YJ •••

Remove the nondeterministic assignment "X, Y : = [Ri (X) I\ Qi (X, Y)]":

90

The above sequence of transformation steps is evidently correct and can be
applied simultaneously to all statements of S. In its effect it is the same
as Step 2. Consequently the latter is also correct.

3.2. AN EXAMPLE: THE DSW-ALGORITHM

3.2.1. Problem

Given is a finite set G of objects. Each object is composed of a
finite number of components. The set of all components of an object Xis
denoted by comp(X). Different objects have different components (so objects
do not "overlap"). Associated with each object Xis a unique reference,
denoted by r-ef(X), which is said to refer to X. The unique object which has
reference p associated with it, will be denoted by obj(p). Each component C
of an object contains a value, denoted by val(C). A reference is a value.
Among other values (which we are not interested in here) references may
therefore be contained in components of objects. A component of an object
which contains a reference will be called a branch of the object. The set
of all branches of an object X will be denoted by branches(X) and the
number of branches of X by degree(X). The branches of X are numbered from 1
to degree(X). The i-th branch of X (where 1 ~ i ~ degree(X)) is denoted by
branch(X,i). Objects will be pictured as in Figure 3.1. There is a dummy
object, denoted by null, which is not an element of G. The reference of
null is denoted by nil: nil= ref(n:ull).

comp~nent
'

object ----{000()

Figure 3.1

The set G of objects is closed. This implies that for each reference p
contained in a branch of an object in G, the object referred to by pis
also in G. There is one special object R in G, called the root. G can now
be viewed as a directed graph, where the objects are the nodes and the
references contained in branches are the edges of the graph. An example of
what G may look like is given in Figure 3.2.

R

0
y X

Figure 3.2

The concept of reachability for objects in G is defined by the
following rules:

(I) The root R is reachable.
(2) If Xis a reachable object,

BE branehes(X),
Y = obj(val(BJJ,

then Y is reachable.
(3) An object is reachable on account of the above rules only.

91

For example in Figure 3.2, Xis a reachable object and Y is an unreachable
object.

The problem is to construct an algorithm which determines the set of
all reachable objects. Such an algorithm is traditionally called a "marking
algorithm". For the description of marking algorithms a variable set M of
objects will be introduced. It is the job of a marking algorithm to
establish the truth of the following assertion:

M ={XE GI Xis reachable}.

It follows directly from the definition of reachability that this assertion
is equivalent to the conjunction of the following three assertions:

(Al) R € M.
(A2) V X € M VB E branahes(X) [obj(val(B)) € M].
(A3) V X € M [Xis reachable].

The DSW-algorithm, which is a particular solution to the above problem,
will now be derived in six "phases". In the initial phase (Phase O) a
simple algorithm is constructed, which serves as the starting point.

3.2.2. Phase 0: Getting started

Looking at the definition of reachability one sees that it is almost
an algorithm itself. That is, if we start with M = {R} and repeat the

92

following actions "long enough", M will finally become equal to the set of
reachable objects:

Let X e: M.
If branehes(Xj f ¢

I Let Be: branehes(X).
Let Y = obj(val(B)).
M := Mu{Y}.

Here the operations "Let Xe: M" and "Let Be: branches(X)" select an element
from a set in a nondeterministic way. This nondeterminism can be thought of
as being governed by a "demon". The first part of the derivation of the
DSW-algorithm mainly consists of "exorcising" this demon, i.e. convert it
to determinism.

The question is what "long enough" means. A marking algorithm should
establish the truth of the assertions (Al), (A2) and (A3). The assertions
(Al) and (A3) are initially true and are not affected by the above actions.
Now one could say that "long enough" means: until assertion (A2) holds. The
process need not stop exactly at the point where this assertion holds for
the first time, however (most known marking algorithms do not). Any point
beyond this point will do as a termination point. In order to model this
the following nondeterministic construct will be introduced:

Beyond A
I s.

where Sis a series of actions and A is an assertion. It prescribes that S
must be repeated until some (but not necessarily the first) point where A
holds. Note that prior to an execution of S, the assertion ~A need not
necessarily hold. The termination point is supposed to be chosen
nondeterministically by the demon.

The above construct turns out to be very useful in the derivation of
algorithms. From an algorithm containing this construct a new algorithm can
be derived by replacing the assertion A by another assertion B which is a
sufficient condition for A, i.e. B ~ A. If the old algorithm was partially
correct, so will the new one. Neither of the algorithms needs to terminate,
however. The termination of any algorithm containing the above construct
will depend on the nature of the demon. The demon could for instance be
"unfair" and refuse to choose a termination point even if the termination
condition holds after each iteration. This can be prevented by replacing
the above construct by the deterministic construct:

Until A
I s.

which prescribes zero or more repetitions of S until A holds for the first
time. Note that prior to an execution of S the assertion ~A will now hold.

As indicated above, the nondeterministic algorithms considered here
need not terminate. Therefore some people may not call them algorithms at
all, but here we will. Nondeterministic algorithms are viewed here as
"abstractions" of (more) deterministic algorithms. The demon represents the
part of these abstract algorithms which has been "abstracted away". Certain
terminating and non-terminating algorithms have the same abstraction. So in
the inverse process of abstraction, i.e. the derivation of algorithms, it
is often possible to derive both terminating and non-terminating algorithms
from nondeterministic algorithms. This also applies to the following

93

nondeterministic algorithm which will be chosen as a starting point for the
derivation of the DSW-algorithm:

ALGORITHM I

M := {R}.
Beyond V XE M VB E branahes(X) [obj(val(B)) EM]

Let X E M.
If branahes(X) f ¢

I Let BE branahes(X).
Let Y = obj(val(B)).
M:=Mu{Y}.

The (partial) correctness of this algorithm should be obvious. It can be
established formally by proving that (Al) and (A3) hold immediately before
the loop and are kept invariant by the loop body. Assertions which satisfy
the latter properties will (as usual) be referred to as "invariants". So
for Algorithm I we have:

INVARIANTS

(!.!)REM.
(1.2) V XE M [Xis reachable].

In the sequel the actions occurring in the body of the loop will be
referred to as indicated below:

Let X € M.
If branahes(X) f ¢

I
Let BE branahes(X).
Let Y = obj(val(B)).
M : = Mu {Y}.

visiting X

tracing B

marking Y

All following subsections (except Subsection 3.2.5) will be divided into
four parts, each of which corresponds to one of the four transformation,
steps described in Section 3.1. The next two derivation phases will consist
of limiting the freedom of the demon in such a way, that even though the
algorithm remains nondeterministic, termination is guaranteed.

3.2.3. Phase I: Restricting the tracing of branches

Even if in Algorithm I the beyond-construct was replaced by an until
construct, the algorithm need not terminate. The reason is that there is
too much freedom in the choice of objects to be visited and branches to be
traced. The demon could for instance choose the same object and the same
branch in each iteration of the loop. Consequently the termination
condition would never hold (except in trivial cases). Our primary concern
will therefore be to impose restrictions on the visiting of objects and
tracing of branches in such a way, that the termination condition of
Algorithm I will hold in a finite number of iterations.

What are reasonable restrictions? A general reasonable restriction
which may be imposed on an algorithm is, that it should not do the same
thing twice if once is enough. Let us apply this principle to the tracing
of branches first. It is easy to see that it makes no sense to trace a
branch more than once in Algorithm!. The second time a branch B would be
traced, the object Y referred to by the value of B would already have been
marked. So the following restriction is reasonable:

94

RESTRICTION 1

A branch may be traced only once.

We will now transform Algorithm 1 in such a way that this restriction is
met.

3.2.3.1. Step 1

The enforcement of Restriction 1 introduces a certain overhead. The
demon must be prevented from selecting a branch which has already been
traced. For that purpose a variable set C(X) of branches of X will be
associated with each object X with the following interpretation:

INTERPRETATION 1

For each object XE M, C(X} is equal to the set of branches of X which
have not yet been traced.

This interpretation of C, which is of course strictly informal, can
immediately be translated into a number of invariants for the algorithm to
be derived (by adding C). First of all the obvious invariant:

I INVARIANT 1.3

V XE M [C(X) c branehes(X}].

Secondly, each branch of an object X which is not an element of C(X) has
already been traced. For each branch B which has been traced, the object
referred to by the value of B has been marked. Consequently we have:

I INVARIANT 1. 4

V X E M VB E branehes(X) \ C(X) [obj(vaUB)) E M].

3.2.3.2. ~

Let us now insert assignments to C in Algorithm 1 according to
Interpretation 1, thus making sure Invariants 1.3 and 1.4 hold. First of
all C(X) must be properly initialized for each object X. For the root this
leads to:

ADDITION 1. 1

M := {R} -+

M,C(R) := {R},branehes(R)

For all other objects Y, C(Y) must be initialized to branehes(Y) as soon as
Y is marked for the first time. Whether an object Y is marked for the first
time can be determined by testing whether Yi M prior to marking Y,
resulting in:

ADDITION 1 • 2

M := Mu {Y} -+

If Y i M
I C(Y) := branehes(Y).
M : = Mu {Y}

95

After tracing a branch B of an object X, B must be removed from C(X). This
can be accomplished by:

ADDITION I. 3

Let BE bra:nches(X) -
Let BE branahes(X).
C(X) := C(X) \ {B}

Note that C(X) is well-defined here because XE M. The above additions
transform Algorithm I into Algorithm I* for which besides Invariants I.I
and 1.2 the additional Invariants 1.3 and 1.4 hold, as can easily be
proved:

ALGORITHM I*

M,C(R) := {R},bra:nches(R).
Beyond V XE M VB E bra:nches(X) [obj(vaZ(B)) EM]

Let X E M.
If branches(X) + ¢

Let BE branahes(X).
C(X) := C(X) \ {B}.
Let Y = obj(vaZ(B)).
If y I. M
I C(Y) := bra:nches(Y).
M : = Mu {Y}.

3.2.3.3. Step 3

In this step the invariants will be used to make replacements in
Algorithm I*. Among other things these replacements will be used to enforce
Restriction I. No variables will be made redundant. First, suppose an
object X for which C(X) =¢is visited. All branches of X have then already
been traced, and using Invariant 1.4 it can easily be seen that tracing a
branch B of X has no effect whatsoever on Mor C. Consequently tracing a
branch B of an object X may be omitted if C(X) =¢,which justifies the
following replacement:

REPLACEMENT I . I

branches(X) + ¢ -
C(X) f ¢

Since we are now sure that C(X) +¢,when selecting a branch B of X to be
traced, B can just as well be selected from C(X) (which is a subset of
branahes(X) according to Invariant 1.3) instead of branches(X):

REPLACEMENT 1.2

Let BE bra:nches(X) -
Let BE C(X)

The above two replacements enforce Restriction I. Two more replacements
will be applied in order to "improve" Algorithm I*.

Let us have a look at the termination condition of Algorithm I* (i.e.
assertion (A2)). It follows directly from Invariant 1.4 that this condition
is implied by the simpler condition:

96

V XE M [C(X) = ¢].

The following replacement is therefore in order:

REPLACEMENT I • 3

V XE M VB E branahes(X) [obj(val(B)) EM] -->

V XE M [C(X) = ¢]

Finally, it is easy to see that marking an object Y makes sense only if
Y l M. This leads to the following optimization:

REPLACEMENT I • 4

IfYlM }-I C(Y) := branahes(Y).
M := Mu {Y}

If Y l M
I M,C(Y) :=Mu {Y},branahes(Y)

This concludes the third step.

3.2.3.4. Step 4

In this step possible redundant variables are supposed to be removed.
Since there are none, it suffices to give the final algorithm of this first
transformation phase together with its invariants:

ALGORITHM 2

M,C(R) := {R},branahes(R).
Beyond V XE M [C(X) = ¢]

Let X E M.
If C(X) ,fa ¢

Let BE C(X).
C(X) := C(X) \ {B}.
Let Y = obj(val(B)).
If Y l M
I M,C(Y) := Mu {Y},branahes(Y).

INVARIANTS

(2.1) REM.
(2.2) V XE M [Xis reachable].
(2.3) V XE M [C(X) c branahes(X)].
(2.4) V XE M VB E branahes(X) \C(X) [obj(val(B)) EM].

Note that only Invariant 2.4 is temporarily disturbed inside the loop.

3.2.4. Phase 2: Restricting the visiting of objects

In this phase restrictions will be imposed on the visiting of objects.
Visiting an object Xis useless if all branches of X have already been
traced. A proper restriction would therefore be: only objects X with
C(X) 'F ¢maybe visited. Since in Algorithm 2 at the beginning of a visit
to an object X it is already checked whether C(X) ,fa¢, it is convenient to
weaken this restriction a little and allow for one visit when C(X) = ¢.
This extra visit can then be used to establish that C(X) =¢and take

measures to prevent X being visited again. The following restriction will
therefore be imposed:

RESTRICTION 2

As soon as C(X)

3.2.4. I.~

¢, X may be selected for a visit once, at most.

97

Again the enforcement of the above restriction introduces a certain
overhead. The demon must be prevented from selecting an object X for a
visit for which C(X) =¢and which has already been visited (once) since
C{X) = ¢. This will be accomplished through the introduction of a variable
set U of marked objects.Uhas the following interpretation:

INTERPRETATION 2

U is equal to the set of all marked objects X for which either:
(I) C(X) f ¢, or
(2) C(X) =¢and X has not been selected for a visit since C(X) ¢.

It follows iunnediately from this interpretation of U that the following
invariant should hold:

I INVARIANT 2.5

u CM.

Since for each marked object X, X t U implies that ~(C(X) +¢),we also
have:

I INVARIANT 2. 6

V X .E M \ U [C(X) ¢).

3.2.4.2. Step 2

Assignments to U will now be added to Algorithm 2 according to
Interpretation 2, so as to make Invariants 2.5 and 2.6 hold. First the
initialization of U, which is obvious:

ADDITION 2. I

M,C(R) := {R},branahes(RJ --+
M,C(R),U := {R},branahes(R),{R}

The first (and as will turn out the only) time an object is a candidate for
addition to U is when the object is marked. At the moment an object Xis
marked (for the first and only time) in Algorithm 2, it clearly satisfies
one of the two conditions specified in Interpretation 2. It should
therefore be added to U:

ADDITION 2. 2

M,C{Y) := Mu {Y},branahes(Y) --+
M,C(Y),U :=Mu {Y},branches(Y},U u {Y}

It follows from Interpretation 2 that an object X must be removed from U
the first time it is selected for a visit when C(X) =¢.This can be

98

accomplished by adding an else-part to the conditional clause
"If C(X) 'F </> ••• " in Algorithm 2:

ADDITION 2.3

If C(X) 'F </> l '
1... r

If C(X) ,f, </>

I ...
else
I u :=U\{X}

As soon as an object Xis removed from U, C(X) =</>and will remain so.
Hence X need never be added to U again. All provisions to keep track of U
according to Interpretation 2 have thus been made. The additional
Invariants 2.5 and 2.6 can easily be proved to hold for the algorithm
obtained by applying the above additions to Algorithm 2:

ALGORITHM 2*

M,C(R),U := {R},branehes(R),{R}.
Beyond V XE M [C(X) = </>]

Let XE M.
If C(X) ,f, </>

Let BE C(X).
C(X) := C(X) \ {B}.
Let Y = obj(val(B)).
If Yi M
I M,C(Y),U :=Mu {Y},branches(Y),U u {Y}.

else
I u := u \ {X}.

3.2.4.3. ~

Replacements will now be made to enforce Restriction 2, using the
additional information gathered in the variable U. At first sight
Restriction 2 can easily be enforced by selecting an object X for a visit
from U instead of M. This poses a little problem, however, because U may be
empty. Therefore, first, provisions will be made to ensure that U 'F </> prior
to an iteration of the loop.

Consider the termination condition of Algorithm 2*. It follows from
Invariant 2.6 that this condition is implied by the condition:

u = </>.

So the following replacement is allowed:

REPLACEMENT 2. I

V XE M [C(X)
u = </>

This replacement in itself is not enough to ensure that U 'F </> prior to an
iteration of the loop. It is, if the beyond-construct is replaced by an
until-construct:

REPLACEMENT 2.2

Beyond-->
Until

Restriction 2 is now enforced by:

REPLACEMENT 2.3

Let X E M -->
Let X E U

3.2.4.4. ~

Again no redundant variables occur in the algorithm derived so far.

99

The variables C and U have only been used to restrict nondeterminism and
not to change the representation of other variables. The final algorithm of
this transformation step (and consequently the entire transformation phase)
is therefore equal to the final algorithm of .the previous step:

ALGORITHM 3

M, C(R), U : = {R},branches (R), {R}.
Until U = ¢

Let XE U.
If C(X) ,f, ¢

Let BE C(X).
C(X) := C(X) \ {B}.
Let Y = obj(val(B)).
If Yi M .
I M,C(Y),U :=Mu {.r},branches(Y),U u {Y}.

else
I u := u \ {X}.

INVARIANTS

(3.1) REM.
(3.2) V XE M [Xis reachable].
(3.3) V XE M [C(X) c branches(X)].
(3.4) V XE M VB E branches(X) \ C(X) [obj(vaUB)) EM].
(3.5) Uc M.
(3.6) V XE M\U [C(X) = ¢].

3.2.5. Interlude: Termination

Having restrained the visiting of objects and tracing of branches
drastically and having replaced the nondeterministic beyond-construct by
the deterministic until-construct, Algorithm 3 may be expected to terminate
irrespective of the nature of the (not yet fully exorcised) demon. This
can be established more formally as follows. During each iteration of the
loop in Algorithm 3 a marked object Xis visited. If C(X) ,f, ¢, a branch B
of Xis traced, which has not been traced before, according to
Restriction I. If C(X) =¢,Xis removed from U and will not be visited a
next time according to Restriction 2. Hence the sum of the number of
branches of marked objects, which have already been traced, and the number
of marked objects which will not be visited again, will increase by one
with each iteration of the loop. Translated into more formal terms this
implies that the value of the following expression will increase by one

JOO

with each iteration of the loop:

#(M\U) +i: XE M [#(branehes(X) \C(X)}].

The fact that this is indeed so, can easily be verified. Because of the
finiteness of the number of objects and branches, the value of this
expression has a finite upper bound. Termination of Algorithm 3 is thereby
guaranteed.

The fact that the value of the above expression increases by one with
each iteration of the loop allows an even stronger statement on the
termination of Algorithm 3. The initial value of the above expression is 1.
At termination of Algorithm 3 U =¢and C(X) =¢for each XE M. The final
value of the expression is therefore:

#Q + i: X E Q [#branehes(X}],

where Q is the set of reachable objects. Consequently, Algorithm 3 will
terminate after the following number of iterations:

i: X E Q [1 + degree(X)].

Assuming that all "primitive" operations in Algorithm 3 take a constant
time, the above implies that Algorithm 3 operates in a time which is linear
in the number of reachable objects and the number of branches of reachable
objects. This is as good as we can expect.

3.2.6. Phase 3: Changing the representation of C

In this phase and the following, the exorcising of the demon will be
completed. The remaining places where the demon resides are the operations
"Let XE U" and "Let BE C(X)". Here we shall consider the operation
"Let BE C(X)". The only operations which are performed on C(X) are
initialization, testing for equality to¢, and selecting and innnediately
thereafter removing an element. The following restriction, which eliminates
the demon from "Let B E C(X)", is therefore enforceable:

RESTRICTION 3

Branches are selected and removed from C(X) in the order of their
numbering.

3.2.6.1. ~

Restriction 3 can be complied with by associating a variable counter
k(X) with each marked object X with the following interpretation:

INTERPRETATION 3

For each object XE M, k(X) is the number of the last branch which has
been removed from C(X). If no branches have been removed from C(X)
yet, k(X) = 0.

This interpretation implies that k must first of all satisfy the following
invariant:

I
INVARIANT 3.7

V XE M [O $ k(X) $ degree(X)].

Moreover, Restriction 3 together with Interpretations I and 3 imply that
the following invariant should hold:

I
INVARIANT 3.8

V X E M [C(X)

3.2.6.2. Step 2

{bra:nch(X,i) I k(XJ <is degree(XJ}].

IO I

In this step assignments to k should be added in agreement with
Interpretation 3 in order to make Invariants 3.7 and 3.8 hold. However,
Invariant 3.8 cannot be made to hold without also making some replacements.
The reason is that in contrast to the invariants derived before,
Invariant 3.8 critically depends on the restriction of nondeterminism
(Restriction 3) to be enforced. Invariant 3.8 can therefore only be made to
hold by enforcing that restriction through a replacement first. This is an
example where it is essential that a replacement is used before an
addition.

Let us perform the additions and replacements required to make
Invariants 3.7 and 3.8 hold now. The initialization of k, which should be
done together with the initialization of C, is obvious and leads to the
following additions:

ADDITION 3. I

M,C(R),U := {R},bra:nches(R),{R}--+
M,C(R),U,k(R) := {R},bra:nches(R),{R},O

ADDITION 3.2

M,C(Y),U :=Mu {Y},bra:nches(Y),U u {Y} --+

M,C(Y),U,k(Y) :=Mu {Y},branches(Y),U u {Y},O

The only statement which disturbs Invariant 3.8 is "C(X) := C(X) \ {B}".
An assignment to k(X) should therefore be added to this statement. First we
must make sure, however, that Bis chosen according to Restriction 3,
because otherwise it is impossible to restore Invariant 3.8. According to
Interpretation 3 this can be done by choosing the (k(X) +1)-st branch of X
instead of an arbitrary branch from C(X) for B. It must be assumed, for
that purpose, that Invariants 3.7 and 3.8 hold prior to "Let BE C(X)".
From these invariants and the fact that C(X) f ¢ can be derived that indeed
1 s k(X) +1 s degree(X) and branch(X,k(X) +1) E C(X):

REPLACEMENT 3.1

Let BE C(X) --+

Let B = bra:nch(X,k(X) +1)

Invariant 3.8 is now restored by:

ADDITION 3.3

C(X) := C(X) \ {B} --+

C(X),k{X) := C(X) \ {B},k{X) +1

The above is an example where it is convenient to use the new
invariants for replacements before their truth has been established.
Restriction 3 could have been satisfied without relying on Invariants 3.7

102

and 3.8 by not choosing the (k(X) +1)-st branch of X in Replacement 3.1,
but them-th branch of X, where m = min{i I bra:nch(X,i) E C(X)}. An extra
replacement would then have been required (in the next step) to replace m
by k(X) + 1. The only thing that remains to be done is to prove that
Invariants 3.7 and 3.8 indeed hold, which is left to the reader. This
completes Step 2, in which Restriction 3 was enforced. The algorithm we
have so far is:

ALGORITHM 3*

M,C(R),U,k(R) := {R},branahes(R),{R},O.
Until U = ¢

Let XE U.
If C(X) 'F ¢

Let B = branah(X,k(X) + 1).
C(X),k(X) :a C(X) \ {B},k(X) + 1.
Let Y = obj(val(B)).
If Yi M
I M,C(Y),U,k(Y) :=Mu {Y},branahes(Y),U u {Y},O.

else
I u := u \ {X}.

3.2.6.3. Step 3

In this step C will be turned into a redundant variable. The only
place where the value of C is used in Algorithm 3* is in the test
"C(X) 'F ¢". Invariants 3.7 and 3.8 imply that this test is equivalent to
"k(X) 'F degree(X)", which results in the following replacement:

REPLACEMENT 3.2

C(X) 'F ¢ __,
k(X) + degree(X)

Chas now turned into a redundant variable, the assignments to which may be
removed:

REMOVAL 3.1

C(X),k(X) := C(X) \ {B},k(X) + 1 __,
k(X) := k(X) + 1

REMOVAL 3.2

M,C(Y),U,k(Y) := Mu {Y},bra:nches(Y),U u {Y},O __,
M,U,k(Y) := Mu {Y},U u {Y},O

REMOVAL 3.3

M,C(R),U,k(R) := {R},branahes(R),{R},O--+
M,U,k(R) := {R}, {R}, 0

Finally the following optimizing replacement is made, the omission of which
would be an eye-sore to any right-minded programmer:

REPLACEMENT 3.3

Let B = branah(X,k(X) + 1).
k(XJ := k(X) + 1

k(X) := k(X) +1.
Let B = branah(X,k(X))

3.2.6.4. Step 4

103

The variable C no longer occurs in the algorithm and may be disposed
of. Yet C still occurs in the invariants. New (and preferably equivalent)
invariants must be derived from these invariants. This is a straightforward
matter. The final algorithm and the result of rewriting the invariants is:

ALGORITHM 4

M,U,k(R) := {R},{R},O.
Until U = ¢

Let Xe: U.
If k(X) + degree(XJ

k(X) := k(X) +1.
Let B = branah(X,k(X)).
Let Y = obj(val(B)J.
If YI. M
I M,U,k(Y) :=Mu {Y},U u {Y},O.

else
I u := u \ {X}.

INVARIANTS

(4. I) R e: M.
(4.2) Y Xe: M [Xis reachable].
(4.3) Y Xe: M [O ~ k(XJ ~ degree(XJ].
(4.4) Y Xe: MY i = 1, ... ,k(X) [obj(val(branah(X,i)JJ e: M].
(4.5) Uc M.
(4.6) Y Xe: M\U [k(X) = degree(XJ].

3.2.7. Phase 4: Changing the representation of U

Let us consider the operation "Let Xe: U" now. Apart from this
operation the only operations which are performed on U are adding an object
Y (which is not yet in U) to U and removing the (arbitrarily chosen) object
X from U. This makes the following a feasible restriction:

RESTRICTION 4

Objects are added to and removed from U in a last-in first-out manner.

The purpose of this restriction is, of course, .to be able to implement U
efficiently as a stack.

3.2.7.1. Step I

Introduce a variable stack S of objects. This stack has the following
obvious interpretation:

104

INTERPRETATION 4

S contains the objects in U in the order of their addition to U (the
most recently added object at the top of S).

This interpretation of S implies the following invariant:

INVARIANT 4.7

If S = <X1,··•,Xn> then U = {X1,···,Xn}.

Here <X1,···,Xn> is the stack containing the objects X1,•··,Xn, where Xn is
the top of the stack.

3.2.7.2. ~

Assignments to S should be added according to Restriction 4 and
Interpretation 4, thereby establishing the truth of Invariant 4.7. As in
the second step of the previous phase, this is not possible without making
some replacements as well. All operations modifying U must be accompanied
by operations modifying S. First of all S should be initialized together
with U:

ADDITION 4. I

M,U,k(R) := {R},{R},O -->
M,U,k(R),S := {R},{R},O,<R>

The addition of an element to U should be accompanied by a "push"
operation:

ADDITION 4.2

M,U~k(Y) := Mu {Y},U u {Y},O -->-
M,U,k(Y),S := Mu {Y},U u {Y},O,PUSH(Y,S)

The removal of an element from U (in "U := U \ {X}") poses a problem,
because we can only remove an element from S if that element is at the top
of S (through a "pop" operation). So we must make sure Xis at the top of
S. Invariant 4.7 implies that TOP(S) EU, which justifies the following
replacement:

REPLACEMENT 4.1

Let XE U-->-
Let X = TOP(S)

X can now be popped from S:

ADDITION 4.3

U := U \ {X} -->-
U,S := U \ {X},POP(S)

The above is the second example where it is convenient to use the new
invariants for replacements before their truth has been established. As
with the previous example, Restriction 4 could have been satisfied without
using the new invariants, though in a highly artificial way. This can be
seen as follows. Restrictions 3 and 4 make the algorithm entirely

105

deterministic. This implies that the order of visiting objects is
predefined: It is the order of visiting objects in a depth-first search
[TARJAN 72] of the graph of reachable objects. Consequently "TOP(S)" in
Replacement 4.1 could have been replaced by (a more formal definition of)
"the largest element of U in the depth-first numbering of reachable
objects". Yet another way to avoid the use of Invariant 4.7 in Step 2 is to
consider S temporarily as a sequence instead of a stack. If "POP(S)" in
Addition 4. 3 is replaced by "S - <X>" (= deletion of X from S), then .
Replacement 4.1 can be moved to Step 3. After Replacement 4.1 has been
performed it can then be observed that Sis accessed stackwise only and
hence Smay be turned into a stack. This, however, is a trick which
involves a sneaky change of data type. (The latter can be avoided by
inserting an extra phase in the derivation, but that is also artificial.)

Notice that if we would perform Phase 4 before Phase 3, we would have
an example where it is essential to use the new invariants before their
truth has been established. Instead of being predefined the order of the
objects in the stack S would then be determined by the nondeterministic
order according to which branches are traced. Having lost the information
on the tracing order of branches, it would not be possible in
Replacement 4.1 (which would be Replacement 3.1 then) to replace "TOP(S)"
by an expression such as "the largest element of U in the depth-first
numbering of reachable objects" above. This shows that, unless we resort to
the (retrospective) insertion of extra phases, it is in certain cases
essential to use invariants before they are valid (as we contended in
Section 3.1).

The conclusion of this step is to prove that Invariant 4.7 holds in
the newly derived algorithm. Notice that this requires the proof of an
additional invariant:

I INVARIANT 4.8

All elements of S are different.

The combined proof of Invariants 4.7 and 4.8 is simple (use Invariant 4.5).
Here is the final algorithm of this step:

ALGORITHM 4*

M,U,k(R),S := {R},{R},O,<R>.
Until U = ¢

Let X = TOP(S).
If k(X) I degree(XJ

k(X) := k(X) + 1.
Let B = branch(X,k(XJJ.
Let Y = obj(val(B)).
If YI. M
I M,U,k(YJ,S := Mu{Y},Uu{Y},0,PUSH(Y,SJ.

else
I u,s := u \ {X},POP(SJ.

3.2.7.3. ~

In this step the change of representation from U to S must be
completed by turning U into a redundant variable and by subsequently
removing all assignments to U. The value of U is used in Algorithm 4* only
in the test "U = ¢". Invariant 4.7 implies that this test is equivalent to
"S =<>",where"<>" is the empty stack:

106

REPLACEMENT 4.2

u = ¢ -+
s = <>

Uhas become a redundant variable this way. All assignments to U may be
removed:

REMOVAL 4.1

U,S := U \ {X},POP(S) -+
S := POP(S)

REMOVAL 4.2

M,U,k(Y),S := Mu {Y},U u {Y},O,PUSH(Y,S) -+
M,k(Y),S := Mu {Y},O,PUSH(Y,S)

REMOVAL 4.3

M,U,k(R),S := {R},{R},O,<R> -+
M,k(R),S := {R},O,<R>

3.2.7.4. Step 4

In this step the removal of U must be formally completed by
eliminating U also from the invariants. As in the previous phase this is
straightforward. The final algorithm of this phase together with the
rewritten invariants is given below. For notational convenience the stack S
is occasionally considered to denote the set of its elements in the
invariants.

ALGORITHM 5

M,k(R),S := {R},O,<R>.
Until S = <>

Let X = TOP(S).
If k(X) I degree(XJ

k(X) := k(X) + 1.
Let B = branch(X,k(X)J.
Let Y = obj(val(BJJ.
If YI. M
I M,k(Y),S := Mu {Y}, O,PUSH(Y,S).

else
I s := POP(S).

INVARIANTS

(5.1) REM.
(5.2) V XE M [Xis reachable].
(5.3) V XE M [O $ k(X) $ degree(XJ].
(5.4) V XE M Vi= 1, ••. ,k(X) [obj(val(branch(X,i)JJ EM].
(5.5) Sc M.
(5.6) V XE M\S [k(X) = degree(X)].
(5.7) All elements of Sare different.

107

3.2.8. Phase 5: Changing the representation of S, or: the DSW-idea

In this phase the actual DSW-idea will be applied, which is in fact
nothing but a change of representation. In contrast to the previous changes
of representation (from C to k and U to S) this change of representation is
not accompanied by a reduction of nondeterminism. This would be impossible
in the first place, because, through the successive restrictions enforced
in the previous phases, Algorithm 5 has turned into a completely
deterministic algorithm. No "restrictions" will or can therefore be imposed
in this phase.

In order to demonstrate the DSW-idea let us take a closer look at
Algorithm 5. It is very easy to infer from Algorithm 5 that whenever there
is an object X at the top of the stack Sand an object Y is pushed on top
of it, the k(Xi-th branch of X contains a reference to Y. This makes S look
as shown in Figure 3.3.a. (In this picture objects are assumed to be
composed of exactly four branches.) It amounts to the following invariant
which can easily be proved:

INVARIANT 5. 8

If S = <X7, •• • ,Xn>, then:
(I) Vi 1, ••• ,n-1 [k(Xi) > O].
(2) Vi= 1, ••• ,n-1 [vaUbranah(Xi,k(Xi)))

k(X)

POOd· p

000 000 q

s 0 3 0

0 2 0

000 4

3.3.a 3.3.b

Figure 3.3

The basic DSW-idea is that using two variable references p and q the
situation of Figure 3.3.a can be transformed without loss of information
into the situation of Figure 3.3.b. Here the cross in the fourth branch of
the object at the bottom of the stack is the dunnny reference nil (see
Subsection 3.2.1). The situation of Figure 3.3.b has the ~dvantage over the
situation of Figure 3.3.a that the stack S has become redundant: All

108

operations on Scan be expressed in terms of operations on the variables p
and q and the contents of branches. Put another way: Figure 3.3.b sketches
an implementation of S without any space overhead (apart from the two
variable references p and q).

The application of the DSW-idea to Algorithm 5 raises a little
problem. It is apparently assumed that the value of a component of an
object is variable. Otherwise the transformation from Figure 3.3.a to
Figure 3.3.b would never be possible. Up till now the value of a component
of an object was assumed to be constant. Simply making the function val,
variable and adding modifications of val, (according to Figure 3.3.b) to
Algorithm 5 does not work, however, because these changes may affect the
correctness of the algorithm. The solution, of course, is to introduce
alongside the constant function val, an extra variable function VAL, which
is initially equal to val,, Modifications of VAL may be added freely to
Algorithm 5 because they in no way affect the correctness of the algorithm,
Having added the variables p, q and VAL according to the DSW-idea to
Algorithm 5, the job is then to eliminate the stack Sand the function val,
from the algorithm (using the invariants). Finally, in order to show that
VAL can just as well be replaced by val, (made variable) it must be shown
that the final value of VAL is equal to val,,

3.2.8.1. ~

Let us now introduce the variables p, q and VAL according to the DSW
idea. Using Figure 3,3 as a guide this idea can be translated in the
following invariant which the new algorithm should satisfy:

INVARIANT 5, 9

Let S = <X1, ••• ,Xn> and let Xo = X_1 = n:ul,7,,
Let V = {b!'o:nah(Xi,k(Xi)) Ii= 1, ... ,n-1}.
Then:
(I) p = l'ef (Xn).
(2) q = l'ef(Xn-1),
(3) Vi= 1, ••• ,n-1 [VAL(bl'o:nah(Xi,k(Xi))) = l'ef(X-i;-1Jl,·
(4) V X e: G V C e: aorrrp(X) [C I. V • VAL(C) = val,(C) J.

Note that as implied by this invariant the situation where S <>
corresponds top= nil, q = nil, and VAL= val,,

3.2.8.2. Step 2

Assignments to the variables p, q and VAL must be added to Algorithm 5
in such a way that Invariant 5.9 is satisfied. First the variables should
be initialized properly. VAL is implicitly assumed to be equal to val, at
the beginning of the algorithm. The initialization therefore amounts to:

ADDITION 5. I

M,k(R),S := {R},0,<R> -
M,k(R),S,p,q := {R},0,<R>,l'ef(R),niZ

Invariant 5.9 now holds initially. The only operations which disturb
Invariant 5.9 are the operations which modify S: "S := PUSH(Y,S)" and
"S := POP(S)". Consequently these operations should be accompanied by
modifications of p, q and VAL in order to restore Invariant 5,9.

109

Consider the operation "S := PUSH(Y,S)" firi;t. This operation makes Y
the top element of Sand X the subtop element. The set of branches Vin
Invariant 5.9 is therefore extended by this operation with branah(X,k(X)),
which is denoted by Bin Algorithm 5. This affects parts(!), (2) and (3)
but not part (4) of Invariant 5.9. Part (I) can be restored by assigning to
p the value ref(Y), which is equal to val(B). Part (4) of Invariant 5.9
implies, since Bi V, that val(B) = VAL(B). Part (I) can therefore be
restored by assigning top the value VAL(B). Part (2) can be restored by
assigning to q the value ref(X), which is equal top. Finally, part (3) can
be restored by assigning to VAL(B) the reference of the object "below" X in
S, i.e. the value q. (Notice that this assignment to VAL does not affect
part (4) of Invariant 5.9.) This leads to:

ADDITION 5.2

M,k(Y),S :=Mu {Y},0,PUSH(Y,S) ->-
M,k{Y),S,p,q, VAL(B) :=Mu {Y},0,PUSH(Y,S),VAL(B),p,q

The operation "S := POP(S)" removes the object X at the top of S from
S. In order to investigate the way this operation affects Invariant 5.9 two
cases must be distinguished: the case where S contains a single object and
the case where S contains two or more objects. Consider the former first.
If S contains only one object the set Vin Invariant 5.9 is empty and will
be so after the operation "S := POP(SJ". This implies that parts (3) and
(4) of Invariant 5.9 are not affected. Part (2) is not affected either,
because ref(XoJ = ref(X_1) = nil. Only part (I) must be restored which can
be done by assigning the value ref(X0J = nil top. This covers the first
case.

In the second case S contains two or more objects and consequently
V #¢.Let Y be the subtop element of S, i.e. the object referred to by q,
and let B = branah(Y,k(Y)), then BEV. The effect of the operation
"S := POP(S)" on Vis that Bis removed from V. This does not affect part
(3) of Invariant 5.9 (n decreases by one). It does affect parts (1), (2)
and (4) though. Part (I) can be restored by assigning top the value
ref(Y), which is equal to q. Part (2) can be restored by assigning to q the·
value ref(Z), where Z is the (possibly imaginary) object below Yin S.
Part (3) of Invariant 5. 9 implies that ref(Z) = VAL(branah(Y, k(Y)) r =
VAL(B). So part (2) can be restored by assigning the value VAL(B) to q.
Only part (4) remains. This part of the invariant is disturbed because Bis
removed from V and the assertion VAL(B) = val(B) is not guaranteed to hold.
As a consequence, part (4) can be restored by assigning the value val(B)
to VAL(B). (Notice that this does not affect part (3) of Invariant 5.9.)
According to part (2) of Invariant 5.8, val(B) = val(branah(Y,k(Y))) =
ref(X) = p. So part (3) of Invariant 5.9 can be restored by assigning the
value p to VAL(B).

Immediately before the operation "S := POP(S)" in Algorithm 5 the
assertion S #<>holds. This implies that the distinction between the two
cases considered above can be made by testing whether q = nil or not (see
Invariant 5.9). All in all this amounts to: ·

110

ADDITION 5.3

S := POP(S) -+
If q = nil,
I S,p := POP(S),nii.
else

I Let Y = obj(q).
Let B = branah(Y,k(Y)).
S,p,q,VAL(B) := POP(S),q,VAL(B),p.

The algorithm obtained through the above additions to Algorithm 5 is
given below. Though we made sure Invariant 5.9 is satisfied (not only as a
loop invariant, but "everywhere"), a formal proof is still required. This
proof will be obvious now and is omitted.

ALGORITHM 5*

M,k(R),S,p,q := {R},O,<R>,ref(R),nil,.
Until S = <>

Let X = TOP(S).
If k(X) # degree(X)

k(X) := k(X) +1.
Let B = branah(X,k(X)).
Let Y = obj(vaZ(B)).
If Yi M
I M,k(Y),S,p,q, VAL(B) :=Mu {Y},O,PUSH(Y,S), VAL(B),p,q.

else
If q = nil,
I S,p := POP(S),nii.
else

I Let Y = obj(q). ·
Let B = branah(Y,k(Y)).
S,p,q,VAL(B) := POP(S),q,VAL(B),p.

Before removing Sit should be proved that the effect of the algorithm on
VAL is nil. In other words, it must be proved that the postcondition
VAL= vai holds. Proof: At termination of the algorithm S =<>,which
implies that V =¢in Invariant 5.9. According to part (4) of Invariant 5.9
this implies that VAL= vai.

3.2.8.3. Step 3

In this step the invariants will be applied so as to eliminate Sand
vai from Algorithm 5* through replacements. Invariant 5.9 part (1) implies
that the assertion S =<>is equivalent top= niZ, which results in:

REPLACEMENT 5.1

s = <>-+
p = nil,

Invariant 5.9 part (I) also implies that, if S #<>,then TOP(S) = obj(p).
This gives us:

REPLACEMENT 5.2

Let X = TOP(S)-+
Let X = obj (p)

I I I

Immediately after the statement "Let B = braneh(X,k(X))" the assertion
B t V holds. From part (4) of Invariant 5.9 (which also holds there) can be
inferred that this implies that val(B) = VAL (B), which justifies:

REPLACEMENT 5.3

Let Y = obj(val(B)) -+
Let Y = obj(VAL(B))

The application of the above replacements transform Algorithm 5* into
an algorithm in which val no longer occurs and in which S has become a
redundant variable. The assignments to Scan now be removed:

REMOVAL 5. I

S,p,q,VAL(B) := POP(S),q,VAL(B),p-+
p,q,VAL(B) := q,VAL(B),p

REMOVAL 5.2

S,p := POP(S),nil-+
p := nil

REMOVAL 5.3

M,k(Y),S,p,q,VAL(B) :=Mu {Y},0,PUSH(Y,S),VA.L(B),p,q-+
M, k(Y) ,p,q, VAL(B) := Mu {Y}, 0, VAL(B) ,p,q

REMOVAL 5.4

M,k(R),S,p,q := {R},0,<R>,ref(R),nil -+
M,k(R),p,q := {R};0,ref(R),nil

3.2.8.4. Step 4

In this step Swill be removed from the invariants. Though in the
previous steps the constant function val was removed from the algorithm
together with S, this function need (and should) not be removed from the
invariants (val is part of the problem specification). In contrast to the
previous two phases the rewriting of the invariants containing S, so as to
eliminate S, is far from obvious. Therefore the invariants will not be
rewritten and an existential quantifier will be used to "eliminate" S. The
final algorithm of this phase and of the entire derivation, the DSW
algorithm, is given below together with its invariants, pre- and
postconditions. Strictly speaking the invariants are superfluous now, but
they could be used for an independent proof of correctness, if desired.

112

ALGORITHM 6 (Deutsch-Schorr-Waite)

M,k(R),p,q := {R},O,ref(R),nil.
Until p = nil

Let X = obj(p).
If k(X) I degree(X)

k(X) :=k(X)+l.
Let B = branah(X,k(X)).
Let Y = obj(VAL(B)).
If Y l M
I M,k(Y),p,q,VAL(B) := Mu{Y},O,VAL(B),p,q.

else
If q = nil
I p := nil.
else

I
Let Y = obj(q).
Let B = branah(Y,k(Y)).
p,q,VAL(B) := q,VAL(B),p.

PRECONDITIONS

(6.1) VAL = val.

INVARIANTS

(6.l)REM,
(6,2) V XE M [Xis reachable].
(6.3) V XE M [O ~ k(X) ~ degree(X)].
(6.4) V XE M Vi= 1, ••• ,k(X} [obj(val(branah(X,i))) EM].
(6.5) There is a stack of objects S = <X1,,,.,Xn> such that:
(6.5.1) Sc M.
(6.5.2) V XE M\S [k(X) = degree(X)].
(6.5.3) All elements of Sare different.
(6.5.4) Vi= 1, ... ,n-1 [k(Xi) > O].
(6.5.5) Vi= 1, ... ,n-1 [val(branah(Xi,k(Xi)}) = ref(Xi+1Jl.
(6.5.6) Let x0 = x_1 = null.

Let V = {branah(Xi, k(Xi)) I i = 1, ... , n -1}.
Then:

(6.5.6.1) p = ref(Xn).
(6.5.6.2) q = ref(Xn-1),
(6.5.6.3) Vi= 1, ... ,n-1 [VAL(branah(Xi,k(Xi))) = ref(X'(-1)].
(6.5.6.4) V X E G V C E aomp(X) [C l V .,. VAL(C) = val(C) J.

POSTCONDITIONS

(6.1) M ={XE GI Xis reachable},
(6. 2) VAL = val.

113

3.3. CONCLUSION

There are three different ways to look at the method of implementing
algorithms described and demonstrated in this chapter. The first is from
the point of view of algorithm verification. The method provides a simple
way to prove the correctness of global transformations which amount to
changes of data representation. The correctness of such a transformation is·
proved by decomposing the transformation into a sequence of simple and
evidently correct transformations. No comprehensive "catalogue" of
transformation rules as in [GERHART 75] is required, nor the use of an
"abstraction function" as in [HOARE 72]. The method is also very flexible
in that it allows very complex changes of representation (such as the DSW
transformation) to be proved correct without the need for enhanced
verification techniques.

In connection with the above it is interesting to compare the
correctness proof of the DSW-algorithm given here with other proofs of
correctness of the DSW-algorithm [DE ROEVER 78], [DUNCAN & YELOWITZ 79],
[GERHART 79], [GRIES 79], [KOWALTOWSKI 79], [TOPOR 79], [DERSHOWITZ 80].
The first thing to be noted is that all of the latter (except
[DERSHOWITZ 80]) are proofs of more or less simplified versions of the DSW
algorithm instead of the general DSW-algorithm proved correct here. The
second thing to be noted is that in [DE ROEVER 78], [GRIES 79],
[KOWALTOWSKI 79], [TOPOR 79] the DSW-algorithm is considered as a given
algorithm which is proved correct "independently". Here the DSW-algorithm
is proved correct by proving a simple abstract algorithm correct and
deriving the DSW-algorithm through a number of correctness-preserving
transformations from this algorithm. In fact we proved the correctness of a
number of algorithms (Algorithms 1-6). Consequently the proof given here is
much longer than in the latter four references. We could have chosen
Algorithm 5 (the stack algorithm) as the starting point, however. The
length of• the proof would then have been comparable to the length of an
independent proof. The advantage of the approach pursued here is, that the
correctness proof is "factorized", which makes it more suitable for human
consumption. The only more or less similar approaches are [DERSHOWITZ 80],
[DUNCAN & YELOWITZ 79], [GERHART 79]. In [DERSHOWITZ 80] the DSW-algorithm
is derived in "Knuthian" style [KNUTH 74] from a recursive marking
algorithm. The derivation has only two steps and the proofs are highly
informal. In [DUNCAN & YELOWITZ 79], [GERHART 79] the DSW-algorithm is
derived from an abstract algorithm. In the former "abstract/concrete
mappings" are used to prove the correctness of transformations, while in
the latter the successive algorithms and their assertions are supposed to
be verified mechanically (see also [LEE et al. 79] for the outline of a
proof using a catalogue of correctness-preserving transformations). Both
proofs seem more complicated than the proof given here.

The second way to look at the implementation method described is from
the point of view of algorithm construction. Can the method be of any help
in the process of constructing (deriving) a new algorithm? It would not be
entirely fair to judge this from the derivation of the DSW-algorithm given
here, We knew beforehand what target we were aiming at and carefully
directed the derivation process in order to hit that target. In
constructing a new algorithm the target is unknown, Yet the derivation
method described here is believed to be of help in deriving new algorithms
as well. The first reason is that performing global transformations in a
stepwise way aids in retaining or even gaining insight in the algorithm
under development, which may lead to the discovery of new useful
transformations. The second reason is that the algorithm constructor is

114

invited to try and perform a complex transformation, even if he has only
some intuitive idea of it. He can cast his idea in a number of new
variables and assertions on these variables, and start adding assignments
to the variables and making replacements based on the assertions. If he
does not achieve what he had in mind, too bad. If he does, he need only
prove the assertions he postulated and remove whatever variables he made
redundant.

The third way to consider the method described here is from the
viewpoint of algorithm presentation. Presenting an algorithm by showing how
it can be derived by a number of transformations from a simple algorithm
can add significantly to understandability. This is an inherent advantage
of the transformational method. It adds even more to understandability if
not only the initial algorithm, but also all transformations applied to it
are simple, as in the method described in this chapter. The
transformational method in general is also very suitable for presenting
classes of algorithms. Instead of walking straight ahead to the DSW
algorithm, we could have turned into several side-tracks in the derivation.
If this is done in a systematic way, the entire class of marking algorithms
can be discussed with a minimum of effort and a maximum of coherence. On a
small scale and in a somewhat different context this was done in
[DARLINGTON 78] for sorting algorithms. On a larger scale this will be done
in Chapter 5 for garbage collection and compaction algorithms (though we
shall take bigger steps than in the derivation of the DSW-algorithm).

Let us conclude this chapter with two remarks. First, as discussed in
the introduction, the method can be used for the implementation of data
structures as well. Secondly, the idea of first adding new variables and
then removing redundant ones is also present in [MEERTENS 76] (but only in
connection with deterministic algorithms).

115

CHAPTER 4

A STORAGE MANAGEMENT MODEL

4.0. INTRODUCTION

4.0.1. Mathematics and systematics

An important branch of computer science is the field of programming
language implementation. The latter is usually divided into a number of
"subjects" such as lexical analysis, parsing, bookkeeping, code generation,
code optimization, register allocation, storage management. Some of these
subjects (e.g., parsing) have evolved to systematic disciplines, which are
even referred to as "theories". Other subjects (e.g., storage management)
seem to escape any attempt at systematization. They constitute a more or
less incoherent collection of techniques, a situation which is clearly
reflected in publications on these subjects.

One may wonder what the reason for the above discrepancy is. The
answer appears to be simple. A subject can only truly be systematized if it
is amenable to mathematical treatment. Clearly, a subject such as parsing
is. There exists a simple mathematical model (the "grammar") through which
the parsing problem can be handled in a systematic way. In the terminology
of Chapter I this can be formulated as follows. There is a simple non
trivial mathematical problem (the "basic parsing problem"), which is a
proper abstraction of each problem in the following set:

where

V = {P(L) I L E L},

P(L): the concrete parsing problem for the programming
language L,

L: the set of programming languages.

Now consider the following set of problems:

where

w = {S(L,M) ILE L, ME M},

S(L,M): the concrete storage management problem in an
implementation of a programming language Lon a
machine M,

L: the set of programming languages,
M: the set of machines.

The general feeling seems to be that, in contrast to the set V, there does
not exist a simple non-trivial mathematical problem which is a proper
abstraction of each problem in W. In the absence of such a "basic storage
management problem" a systematic treatment of the subject (as sketched in
Chapter I) is out of the question.

116

The core of the above problem lies not in coruputer science, but in
mathematics. Traditionally, the objects·studied in mathematics are static,
illDllutable entities, the properties of which can be described by a
relatively small number of axioms. The objects studied in parsing theory
meet these qualifications wonderfully well. Storage management systems,
which are the objects of study in storage management "theory", are dynamic
entities with a relatively large number of (also dynamic) properties. These
objects are rather hard to describe in the framework of traditional
mathematics. They can be described very naturally, however, if we extend
this framework with the proper concepts.

4.0.2. Dynamic systems

The concept we need is that of a "dynamic system". There are two
aspects to this concept. First, a dynamic system is a "system", which means
that it is composed of a number of "components". Each component is itself a
dynamic system. Secondly, a dynamic system is "dynamic", which means that
it can be altered by applying "operations" to it. The operations completely
characterize the external "behaviour" of the system. A dynamic system can
be described by specifying its components and expressing each operation in
terms of operations on the components. This would all fit rather well into
the framework of traditional mathematics, if it were not for the fact that
the components of a dynamic system may (and generally will) be highly
interrelated. An operation performed on a component of a dynamic system may
therefore affect other components of that system. This is a rather uncollDllon
situation in mathematics. The obvious way to model a system would be to
define it as the tuple <C1, ••. ,Cn> of its components. However, when
changing the i-th element of this tuple, one is not likely to expect that
any of the other elements changes as well.

There are, of course, ways to overcome the above difficulties within
the traditional mathematical framework. Yet, by doing so we threaten to
fall into· something like the "Turing Tarpit" [WULF 77J. The question is not
if, but how well a dynamic system can be described in a certain framework.
In the case of traditional mathematics the answer appears to be: not well
enough. Since we want dynamic systems to be mathematically rigorous
objects, we therefore have to develop a more powerful mathematical
formalism.

4.0.3. Data structures

A first step to the development of such a formalism is to realize that
a dynamic system is, in fact, nothing but a data structure which involves
highly shared data. The components of a dynamic system correspond to a
representation of the data structure, and the operations which can be
applied to a dynamic system correspond to the operations of the data
structure. The reason why dynamic systems have withstood a satisfactory
mathematical treatment becomes apparent now. The major efforts in the field
of data structure specification have been concerned with non-shared data.
From a programming point of view sharing of data is often an undesirable
situation indeed. In many applications (such as databases) sharing of data
is a natural situation, however. Once we have the ability to specify data
structures with sharing we gain tremendous descriptive power. In
particular, this power can be used to describe dynamic systems in a
mathematically rigorous way.

In Chapter 2 of this monograph we showed how, on the basis of the
concept of a "structure", data structures involving sharing can be

117

specified as mathematical objects. This method can be used innnediately for
the description of dynamic systems. The language which will be used for the
description of dynamic systems in this chapter will be based on this
method, but it can be understood without having read Chapter 2. Though its
semantics will be kept informal, it can be made completely rigorous, if
need be, by the techniques of Chapter 2.

As an example of a dynamic system consider the concept of a "storage
management system" as it will be defined in this Chapter:

Each storage management system H has:

- root(H): constant object,
graph(H): variable set of objects,
store(H): constant set of cells,
repr(H): constant mapping from values to words,
aZZoc(H): variable mapping from objects to sets of cells.

Here objects and cells are dynamic systems "containing" values and words
(which are also dynamic systems), respectively. The above definition
implies that a storage management system His a dynamic system with five
components: root(H), graph(H), store(H), repr(H) and aZZoc(H). Besides
these components, there are a number of operations associated with H, which
can be expressed in terms of operations on the components of H. (The fact
that a component such as store(H) is constant implies that operations may
not alter the set of cells constituting store(H). They may alter the
contents of these cells, though.) There is for example an operation to
initialize the system and an operation which amounts to the creation of a
new object in the system (including the allocation of storage for the
object). In fact, the storage management problem boils down to efficiently
implementing the latter operation in the system.

4.0.4. System invariants

An important concept in relation to dynamic systems is the "system
invariant". (The corresponding concept for data structures is usually
called a "representation invariant".) A system invariant is an assertion
about the components of a dynamic system, which will always hold "between"
two operations performed on the system. It may, however, temporarily be
disturbed "inside" (i.e., during the execution of) such an operation. Given
descriptions of the operations which may be performed on a dynamic system
in terms of operations on the components of the system, the system
invariants are uniquely determined. When describing a dynamic system at the
abstract level, it is often more convenient to give the system invariants
first and then describe the operations which may be performed on the
system, using statements such as "establish assertion A while not affecting
the system invariants". This will also be the style of describing dynamic
systems in the sequel.

A certain analogy between dynamic systems and ordinary mathematical
systems can now be drawn. E.g., a storage management system can be viewed,
in a way, as a 5-tuple <root,graph,store,repr,aZZoc>, which satisfies a
number of axioms (the system invariants). The analogy breaks down only
because the elements of this tuple are variable and interdependent. E.g.,
if we change the contents of a cell in the store, the mapping aZZoc may
also be affected. The analogy does not break down if we see it the other
way around and regard the normal mathematical systems as (special cases of)
dynamic systems. (This, however, should not be interpreted as an attempt to

118

turn mathematics into a branch of computer science!) The concept of a
grannnar from parsing theory could, for example, be described as a dynamic
system in the following way:

Each grammar G has:

- N(G): constant set of nonterminals,
- r,(G): constant set of terminals,
- P(G): constant set of productions,
- S(G): constant nonterminal.

The axioms which a grammar G satisfies correspond to system invariants such
as S(G) E N(G), etc •• These invariants can of course never be violated
since the entire system is constant. As with normal dynamic systems it is
even conceivable to associate operations with a grannnar. One can think for
example of an operation to create (construct) a grammar and an operation
which tests whether a given sequence of terminals is generated by the
grannnar. The parsing problem could then be defined as efficiently
implementing this operation (where, for the sake of convenience, we ignore
the fact that a parser should also produce a parse tree). Moreover, by
making the components of a grammar variable, algorithms which transform the
grammar (for example, into Greibach normal form [AHO & ULLMAN 72], if the
grammar is context-free) can be described.

The above may tempt one to view computer science as the study of
dynamic systems (a computer itself is a dynamic system). Elaborating on
this would carry us a little too far away from the actual subject of this
chapter. The essence of the above is that, just like there is a language of
mathematics, there is also a language of computer science. In this language
we can argue about dynamic systems just like mathematicians can argue about
groups, vector spaces, etc •• This "language of computer science" is of
course nothing new. It is used by almost any computer scientist when
arguing about dynamic phenomena. The way it is used is usually rather
informal. The important observation is that this language can be as exact
as the language of mathematics.

4.0.5. The storage management system

Let us return to the subject of this chapter. In this chapter we shall
describe a well-known dynamic system from the field of programming language
implementation: the storage management system. The purpose is not to give a
systematic treatment of storage management techniques. Such a treatment
would take the size of a book. Instead, we shall focus our attention on one
particular aspect of storage management, called "garbage collection". A
systematic treatment of garbage collection algorithms will be given in the
next chapter. Garbage collection is an internal operation of a storage
management system. (I.e., the operation operates on the components of a
storage management system, but is not "visible". externally.) In order to
define the basic garbage collection problem we first have to define what a
storage management system is. The purpose of this chapter is therefore to
introduce the necessary concepts and set the stage for the discussion of
the garbage collection problem and its solutions in the next chapter.

The above implies that we shall concentrate on the internal aspects of
a storage management system and define it in terms of its components and
system invariants. The external operations of a storage management system
will only be discussed informally. We can afford to do so because we shall
restrict ourselves to traditional garbage collection, which is an operation

119

performed in its entirety between two external operations of the storage
management system. The correctness of this operation is guaranteed if and
only if the operation does not violate any of the system invariants. So it
suffices to consider the system invariants and ignore the external
operations (which, ultimately, determine the system invariants). If we are
to consider parallel ("on the fly") or "spread" garbage collection
operations we would have to make the external operations explicit, because
parts of the garbage collection operation must be inserted in the external
operations.

4.0.6. The two layers of the model

The model of a storage management system which we shall present in
this chapter consists of two layers, an abstract layer (containing the
"root" and the "graph", which is composed of "objects") and a concrete
layer (containing the "store", which is composed of "cells"). Furthermore,
the model includes functions which map the abstract concepts onto the
concrete concepts (the "representation function" and the "allocation
function"). This may seem unnecessarily complex. It is rather usual to
discuss storage management techniques directly in terms of operations on a
machine store. Since, in the end, a storage management algorithm must
operate exclusively on the machine store, it is indeed possible to describe
such an algorithm in terms of operations on the machine store (take the
machine code representation of the algorithm). There is no need to say that
such a low level description will be far from readable. This is aggravated
by the fact that these algorithms often use complicated tricks to save time
and space, thus entirely obscuring the underlying abstract algorithms.
Using the abstract layer of the model we are able to describe the
algorithms in terms of their underlying abstract algorithms, thus
abstracting from the implementation tricks and increasing readability. The
implementation tricks can then be discussed separately, if necessary by
going down to the store (using the representation and allocation function).

There is an even more convincing argument why a single layer approach
to the description of storage management algorithms would not be
appropriate. A storage management algorithm is part of the implementation
of a progrannning language. This implies that the algorithm can be viewed as
(part of) the implementation of an abstract operation from the progrannning
language. In order to prove the correctness of this implementation it must
be possible to argue about the abstract objects of the progrannning language
and the way they are represented in the store. Therefore, without the
abstract layer of the model and the "descent functions" a proof of
correctness of a storage management algorithm (such as a garbage collector)
would be impossible!

We shall start with an informal discussion of the subject of storage
management in Section 4.1. In this somewhat philosophical section the basic
storage management concepts are systematically introduced by tracing the
process of implementing a progrannning language, starting with an abstract
machine defining the language. The purpose of this section is not only to
create some familiarity with the basic concepts, but also to provide a
justification for the storage management model introduced in Section 4.2.
This model anchors the intuitive notions discussed in Section 4.1 in
unambiguous definitions. That is, the concept of a storage management
system and its associated concepts are rigorously defined in Section 4.2.
If desired, Section 4.1 can therefore be skipped. Some final remarks are
made in Section 4.3.

120

4.1. INFORMAL DISCUSSION

4.1.1. Abstract machines

The starting point of each implementation of a progrannning language
should be the definition of the semantics. There are many ways to define
the semantics of a progrannning language. One of them is to describe an
"abstract machine", which can directly execute programs in the language in
question. The semantics of a program is defined by the actions of this
machine when executing the program. ALGOL 68 [VAN WIJNGAARDEN et al. 76] is
an example of a progrannning language, the semantics of which has indeed
been defined this way. The actions of abstract machines can be divided into
"external actions" and "internal actions". The external actions operate on
an "environment" and can be observed by the user. The internal actions
operate on an internal environment of the machine, the so-called "memory",
and remain entirely hidden from the user (see Figure 4.1).

environment

memory

Figure 4.1

There exist many kinds of abstract machines, some less abstract than
others. Broadly speaking, the implementation of a progrannning language will
be more difficult the more abstract its defining abstract machine is. Let
us therefore assume that we have a very abstract machine (what exactly we
mean by this will become clear later). The memory of this abstract machine
can be viewed as a collection of "objects". There are two kinds of objects,
"atomic objects" and "structured objects". An atomic object has a "value",
which is a primitive thing (e.g., an integer). A structured object X has a
"structure", which is a set of objects called the "direct components" of X.
A "component" of Xis a direct component or a direct component of a
component of X.

An object Y will be called a "subobject" of an object X if X .Y or X
is a structured object and Y is a component of X. Objects may arbitrarily
share subobjects. An object may even be a component of itself. If two
objects share a subobject they are said to "overlap". Objects will be
pictured in the following way. An atomic object will be pictured as a
circle, with the value of the object either omitted or pictured inside the
circle. A structured object will be pictured as a circle with outgoing
dotted arrows pointing to the pictures of the direct components of the

object.

EXAMPLE 4.1

Consider Figure 4.2.

X

0
' '

b , ' , '

t5' \0

Figure 4.2

121

This figure shows a structured object X with two direct components, five
components and six subobjects, three of which are atomic objects. The two
direct components of X overlap: They share the atomic object with value 5.

□

Note: The above concept of an object, though closely related, is not the
same as the concept of an object defined in Chapter 2 (see Subsection
2.1.1).

4.1.2. Creation and modification of objects

There are basically two kinds of operations which the abstract machine
can perform. First, it can "create" a new object (together with its
subobjects). This operation amounts to extending the memory of the abstract
machine with a new object, which may have arbitrary size. Secondly, the
abstract machine can "modify" an existing object. For an atomic object this
amounts to changing the value of the object. For a structured object it
amounts to changing the structure of the object. The fact that the above
are the only two kinds of operations performed by the abstract machine
implies that objects are never removed from the memory. Consequently, the
number of objects in the memory is nondecreasing.

Apart from a few "low level" programming languages, like BASIC, the
number of objects which are created during the execution of a program on
the corresponding abstract machine may be astronomical. In view of the
hypothetical nature of abstract machines, the question where all these
objects come from is merely of philosophical interest. A usual approach is
to assume that the abstract machine has an inexhaustible supply of unused
objects, from which one is picked each time an object is created. A more
satisfactory answer to the question "where objects come from" can be found
in Chapter 2. (Note: The abstract machine described in Section 2.3 has a
memory from which objects can also disappear. In fact, they do so
automatically once they are no longer used. This machine can easily be

122

redefined in such a way that all objects, once they are created, remain in
memory for ever, thus conforming to the above view of abstract machines.)

4.1.3. Concrete machines

The above implies that an abstract machine has an effectively infinite
memory, containing objects of the most varying sizes. How different is the
"concrete machine" which the implementer of a programming language is faced
with! This machine has a finite memory, containing a relatively small
number of entirely identical atomic objects, called "cells". The value or
"contents" of a cell is a "word", which is an integer in some predetermined
range. Moreover, a unique integer is associated with each cell, called the
"address" of the cell. The set of all addresses of cells in the memory
usually constitutes a subrange of the integers (say from l tor). The
memory of the concrete machine can therefore be viewed as a row of
consecutive cells (see Figure 4.3).

cells I 11111 111 1111 I I I I I I I I
' t addresses

Figure 4.3

It is the duty of the implementer to make the concrete machine, as far
as its external behaviour is concerned, behave like the abstract machine
associated with the progrannning language L to be implemented, The user who
offers a program in L to the concrete machine will then see this machine
behave as prescribed by the semantics of L (i.e., if the implementation is
correct).

Although the external behaviour of the concrete machine during the
execution of a program in the implemented language is entirely prescribed,
the implementer is free to choose the internal behaviour of the concrete
machine: The user cannot observe anything of what is going on inside the
machine. In view of the widely differing structure of the memories of the
abstract and concrete machine, this freedom is indispensable. It enables
the implementer to represent the objects and operations of the abstract
machine by objects and operations of the concrete machine in whatever way
he sees fit.

4.1.4. The allocation invariants

In implementations the most complicated representations are used.
Simplified somewhat, they all amount to the following. An object from the
memory of the abstract machine is represented by a set of cells, a so
called "location". The location representing the object X will be denoted
by alloc(X). We shall assume that an atomic object is represented by a
single cell. (This is in no way essential, but it makes the discussion
easier.) The value of an atomic object is represented by a word (the
contents of a cell). The word representing the value V will be denoted by

123

repr(V). The operations of the abstract machine are represented by
operations of the concrete machine in such a way that the following
"allocation invariants" are not disturbed, In these invariants vaUX)
denotes the value of the atomic object X and aont(C) denotes the contents
of the cell C:

Allocation Invariants

(Al) If Xis an atomic object
then aont(aiioa(X)) = repr(val(X)).

(A2) If Xis a subobject of Y
then aiioa(X) c aiioa(Y).

(A3) If X and Y do not overlap
then aUoa(X) n aUoa(Y) ¢,.

In (Al) an automatic conversion from a location {C} containing a single
cell C to the cell C is implicitly assumed. The above implies that running
a program on the concrete machine can be viewed as running it on the
abstract machine while keeping the allocation invariants valid.

The above is a simplification in many respects. For certain abstract
machines (such as the one described in Section 2.3) efficient
implementations would be out of the question if we really had to stick to
the allocation invariants. We shall solve this, not by reformulating the
allocation invariants, but by modifying the abstract machine in such a way
that the allocation invariants can be satisfied efficiently. The modified
abstract machine can be viewed as an "intermediate machine" placed between
the abstract and the concrete machine. This intermediate machine is less
abstract than, although still rather close to, the abstract machine. In
particular it is very close to the traditional abstract machines used in
definitions of programming languages such as ALGOL 68. Therefore we shall
identify this intermediate machine with the abstract machine.

In the next subsections we shall discuss which modifications are
necessary to be able to represent the operations of the abstract machine
efficiently by operations of the concrete machine, according to the
allocation invariants. The imaginary authority which guards over the
allocation invariants during the execution of a program will be called the
"storage manager". It is obvious that the storage manager will need some
kind of bookkeeping. This bookkeeping contains the necessary information
concerning the locations of objects. So, broadly speaking, it corresponds
to the "allocation function" aiioa. The efficiency of the implementation
depends for a considerable part on the efficiency of this bookkeeping.

4.1.5. Modifying objects

As stated above, the abstract machine can perform two kinds of
operations: creation and modification. Consider modification first. The
modification of the value of an atomic object X c.an only disturb
Invariant (Al). This invariant can be restored by modifying the contents of
the cell aUoa(X) accordingly, which does not require any updating of the
bookkeeping of the storage manager. (Notice that due to Invariant (A3)
changing the contents of the cell aiioa(X) does not affect Invariant (Al)
for other atomic objects.)

The sit,)ation is less simple for the modification of the structure of
a structured. object ,•:-;ch may disturb both Invariant (A2) and (A3). These
invariants c.an only be i::esco:ce!l. i>y "i.·2;21~.locating" a number of objects in
the memory of the concrete machine, i.e., by assigning new locations to

124

these objects in accordance with Invariants (A2) and (A3). This can, in
principle, be done without the need to ·"move" atomic objects. Expensive
"copy" operations (so as to restore Invariant (Al)) can thus be avoided,
but the price to be paid for this is a more complex updating operation of
the bookkeeping of the storage manager.

EXAMPLE 4.2

Consider the objects V, W, X, Y and Zin Figure 4.4.

y

V W X ,W
0------0------0/

0
z

Figure 4.4

Suppose these objects have been assigned the following locations (a, b, c,
d and e denote different cells):

aUoa(V)
aUoa(W)

· aUoa(X)
aUoa(Y)
aUoa(Z)

{a,b,a,d},
{b,a,d},
{a,d},
{d},
{e}.

Let cont(d) = PepP(l) and aont(e) = PepP{2). Check that the allocatton
invariants hold. Suppose the structure of the object Xis changed,
resulting in the situation of Figure 4.5.

y

V w X
CD

0------0-----0
'
'-,~

z

Figure 4.5

125

The allocation invariants can be restored in basically two ways. The first
is to update alloc (the bookkeeping of the storage manager) as follows:

aUoc(V) := {a,b,c,e}.
aUoc(W) := {b,c,e}.
alloc(X) := {c,e}.

This requires no copying of the contents of cells, in contrast to the
second way of restoring the allocation invariants:

□

aUoc(Y) := {e}.
alloc(Z) := {d}.
cont(d) := repr(2).
cont(e) := repr(l).

4.1.6. The reference

The above implies that there is a trade-off between the efficiency of
updating the bookkeeping of the storage manager and the amount of copying
to be done. No matter which choice is made, however, frequent modifications
of the structure of a complex object would make any program run like a
snail. Fortunately, there is a way out: the "reference". The idea is to
represent a component Y of an object X not by the object Y itself, but by
an atomic object Y' with a value that represents the object Y uniquely: the
reference of Y. Changing the structure of X, i.e., replacing Y as a
component of X by another object Z, then amounts to replacing the value of
Y' by the reference of z. This is a matter of modifying the value of an
atomic object, which, as we already saw, can be implemented efficiently. In
pictures a reference to an object X will be represented by an unbroken
arrow pointing to the picture of X.

EXAMPLE 4.3

Using references the objects from Figure 4.4 could be represented as
follows:

y

0------0------0-- ---✓
0
z

Figure 4.6

'Changing the structure of the object X as in Example 4. 2 amounts to
changing the value of Y' as follows:

126

y

V w X y• CD
0-----0------o-----~

z

Figure 4.7

In contrast to Example 4.2 this disturbs Invariant (Al) only, which can be
remedied by modifying the contents of the cell alloa(Y') in the appropriate
way. 0

It may be tempting to represent each direct component of a structured
object as an atomic object with a reference as its value. This is certainly
conceivable, but there is a limit, since this way of representing objects
will make certain operations less efficient (in particular "random access"
operations and copy operations on large objects). In practice, therefore,
the choice will be somewhere in the middle (though there are extremes,
compare for example arbitrary LISP and BASIC implementations). Anyway, we
shall assume that the choice has already been made for us. This implies
that we introduce the reference concept in the abstract machine by
associating a reference as a unique value with each object. The reference
of an object is said to "refer" to that object and an atomic object having
a reference as its value will be called a "reference object".

Notice that the fact that an object X has a reference object as its
component with a value referring to an object Y does not imply that Y is a
component of X: A reference is just an ordinary value. At the more abstract
level, which we have just abandoned, Y would be considered as a component
of X, however. Notice also that efficiency is the only reason for
introducing references. The allocation invariants can be satisfied without
the introduction of references, even if circularities in objects occur.
(Note that two objects which are mutual components must be assigned
identical locations then.) This shows that the reference is truly an
implementation concept. It is basically an "address" in abstract disguise,
which need not occur in defining abstract machines of programming
languages. The fact that it does occur in many such abstract machines (such
as the hypothetical ALGOL 68 computer) is caused by the fact that many
programming languages have the reference built in as a language concept.

4.1.7. Elimination of structural circularities

Now that we have introduced references, it is reasonable to forbid
circularities in the structure of objects. These circularities can most
conveniently be modelled using references,

EXAMPLE 4.4

Consider the object X from Figure 4.8, which has two circular direct
components:

X

,o,
\

ct~:~~i)
I
I
I

' I

cb
I

'

cb
Figure 4.8

127

This object can be represented without structural circularities as follows:

D

, \ , , , ,

0

,

X

0 , , ,

Figure 4.9

\

0

The above implies that the relation of "being a subobject of" will from now
on be considered as a (reflexive) partial order. We could go even further
by requiring that the relation of "being a direct component of" constitutes
a tree structure (or better, a "forest structure") on the set of objects
(as in Figure 4.9), thus ensuring that the direct components of an object
do not overlap. This, however, would go too far:

EXAMPLE 4.5

Consider the object X from Figure 4. 10.

128

' I
I I

cb-------6----- --©
Rz

Figure 4. 10

This object represents a matrix (a 2-dimensional array) with value(;;),

where R1 and R 2 are the rows and C1 and C2 are the columns of the matrix.
Clearly X has no tree structure. Representing X as a tree structure using
references (so-called "edge vectors" [AHO & ULLMAN 77]) is not desirable in
many implementations either, because it may slow down either row access,
column access or both, in an unacceptable way. D

The fact that the relation of "being a subobject of" is a partial order
makes this i:elation correspond to the more earthly relation of "being
physically included in". This will be used to picture objects in a
different way from now on. Instead of circles they will be denoted by
arbitrary closed curves, and physical inclusion instead of dotted arrows
will be used to denote the relation of "being a subobject of".

EXAMPLE 4.6

The objects pictured in Figures 4.2, 4.9 and 4.10 are now pictured as
follows:

X

Figure 4. 2:

X

Figure 4.9:

Figure 4. 10:

D

4.1.8. Accessing objects

X

~
~
Figure 4. 11

129

Before turning to the creation of objects, it is useful to discuss in
greater detail how objects are manipulated by the abstract machine. The
only way for the abstract machine to manipulate, or "use", an object is by
"accessing" it. The machine has two mechanisms for accessing objects.
First, given a structured object X, the machine can access a direct
component of X. This operation is called "selection". Secondly, given a
reference object Y, the machine can access the object referred to by the
value of Y. This operation is called "dereferencing". By repeatedly
applying selection and dereferencing operations, the machine (controlled by
the program) can follow "access paths" (see Figure 4.12).

0

Figure 4.12

selection

dere.ferencing

130

In order to be able to access even a single object this way, "starting
points" are required: There must be objects which are a priori accessible
to the abstract machine, i.e., without having to follow an access path
first. Without loss of generality we may assume there is one such object,
called the "root".

4.1.9. Creating objects

The creation of an object must be accompanied by "allocating" a
location to the object, i.e., assigning a location to the object in
accordance with the allocation invariants. If the new object contains old
objects as its components, this location may be scattered all over the
memory of the concrete machine, which can make the bookkeeping of the
storage manager extremely complex. It is reasonable, therefore, to require
that newly created objects do not contain any of the old objects as their
components. This requirement, as a matter of fact, is only reasonable
because we have references: Old components of new objects can always be
represented by reference objects.

The above implies that objects are created in units which we shall
call "nodes". These units of creation can be discerned in each
implementation, where they have names such as "blocks", "activation
records", "data areas", etc •• Creating a node amounts to creating an object
(the node itself) together with all of its components. Since both the node
and its components are new, none of the objects thus created will overlap
with any of the old objects. However, by modifying the structure of a node
after it has been created old objects can in principle still be contained
as components in a node. A rigorous way to avoid this is to forbid the
structure of a node (and consequently, the structure of any object) to be
modified. This solution is not always preferable (cf. variant records in
PASCAL). A more liberal solution is to allow only internal modifications of
the structure of a node, i.e., modifications involving subobjects of the
node only. The latter solution, which is adopted in the majority of
implementations, will also be adopted here.

The memory of the (ever less abstract) abstract machine can now be
viewed as a collection of non-overlapping nodes, where each object is a
subobject of precisely one node. In order to distinguish the memory of the
abstract machine from the memory of the concrete machine we shall call the
former the "graph" and the latter the "store". An example of what the graph
may look like is given in Figure 4.13, which pictures a graph with six
nodes. The root, which we shall always assume to be a node, is indicated by
R. This picture shows that the memory of the abstract machine can indeed be
viewed as a graph, albeit a rather unusual one.

Due to the fact that nodes are non-overlapping we are able to impose
the requirement that nodes be assigned "compact" locations, i.e., locations
consisting of consecutive cells. This obvious way of simplifying the
bookkeeping of the storage manager is used in almost all implementations.
Notice that requiring all objects to be assigned compact locations would in
general go too far. (Check that it is impossible.to assign compact
locations to all subobjects of the object X in Figure 4.10 without
violating the allocation invariants.)

We are now in a position to make a first naive attempt at designing a
storage manager. Let us assume for simplicity's sake that objects have a
constant structure· (i.e., objects are not "breathing"). The only
interesting problem then is the allocation of stor.age for a new node. Let
the term "free storage" denote the set of all cells in the store which are
not part of a location assigned to an object. Allocating storage for a new

131

R

Figure 4.13

node could be done as follows. Initially.the entire store consists of free
storage. Each time a node is created a compact location of the proper size
is "chopped" off the leftmost end of the free storage and assigned to the
node.

4.1.10. Destruction of objects

The simple scheme given·above requires a minimum of bookkeeping by the
storage manager. However, it brings one face to face with one of the two
central problems of storage management very soon: the finiteness of the
store. In most programs objects are created at a rate which, using the
above scheme, would cause a "storage overflow" in less than no time. This
situation has been anticipated in many programming languages: Apart from
operations to create and modify objects, these languages also have (more or
less implicit) operations tolldestroy" objects. Consequently, during the
execution of programs in those languages "live" and "dead" objects can be
distinguished. E.g., when leaving a block in ALGOL 60 all objects
(variables) which have been created in that block are destroyed and hence
they are no longer alive outside that block.

Observe that destruction, like the reference, is really an
implementation concept. From a purely semantical point of view there is no
need to introduce an operation to destroy objects. Since destruction is
included as an operation in many programming languages and since it is
important from an implementation point of view, we shall introduce
destruction as a third operation in our abstract machine. The operation
should not be interpreted as terminating the existence of an object,
however. It should merely be viewed as appending the label "dead" to an
object, which implies that the object is no longer used by the program.
Since nodes are the units of creation it is obvious to choose them as the
units of destruction as well. When destroying a node all of its components
are destroyed with it. This implies that objects and their components are
always destroyed at the same time, thus avoiding complications caused by
live objects having dead components.

An obvious adjustment of the above simple sto~age management scheme is
to "deallocate" the location of a node at the moment the node is destroyed.
This means that the node is scratched from the bookkeeping of the storage

132

manager and that the cells of its location are returned to the free
storage. Storage which would have been occupied by dead objects in the
first scheme can be reused this way. Yet, uncontrolled allocation and
deallocation of storage can make the free storage look like Swiss cheese, a
phenomenon which is known as "fragmentation". This cannot only make the
bookkeeping of the storage manager most inefficient, it can also lead to a
situation that allocation of storage for an object is impossible, even
though the overall size of the free storage is more than sufficient.
Fragmentation is the second central problem of storage management (besides
the finiteness of the store). This problem has been anticipated in many
programming languages as well, particularly in those which feature a "block
structure" (such as ALGOL 60). In those languages objects have nested
lifetimes, which implies that they are created and destroyed in a last-in
first-out ("last-created first-destroyed") manner. In implementations of
these languages the free storage can be kept compact by using a "stack" for
the allocation of storage [RANDELL & RUSSELL 64].

4.1.11. Dangling references

In connection with references and the.destruction of objects an
important problem crops up. After the destruction of an object other live
objects can in principle still contain references to the object. These so
called "dangling references" are of course not supposed to be used for
accessing the dead object. (The meaning of the label "dead" appended to an
object is that the object is no longer used. Accessing it would be in
contradiction with that.) There are several methods to prevent the use of
dangling references in the abstract machine:

(1) Make it impossible for the user to lay hands on the reference of an
object with a finite lifetime.
This is the simplest, but also the most restrictive method of
preventing the use of dangling references. This method is for example
used in PASCAL.

(2) Make sure that if an object X contains the reference of an object Y,
then the lifetime of Xis contained in the lifetime of Y.
This method is used in ALGOL 68, where it gives rise to a number of
rules which are known as the "scope rules".

(3) Check during execution of the program for the use of dangling
references.
This is a less restrictive method than (1) and (2), but it is rather
expensive (especially as far as execution time is concerned). That is
probably the reason why it is seldom used.

(3) Leave the responsibility to the user.
This is the most liberal, but also the most unsafe method, which is
used for example in PL/I.

The first two methods do not only prevent the use of dangling references,
they even prevent the occurrence of them. That is the standpoint we shall
take here too: We assume that dangling references do not occur in the
graph.

4.1.12. Objects with infinite lifetimes

Even if fragmentation can be avoided completely, the scheme of
deallocating dead nodes will not be sufficient for many programming
languages (among them LISP, PASCAL, ALGOL 68). The reason is that programs

133

in these languages can create objects which are never destroyed. Common
names for these objects are "dynamic objects" (PASCAL) and "heap objects"
(ALGOL 68). Although the lifetimes of these objects will be "infinite"
(= lasting till the end of the execution of the program), the time they are
used will often not. Extensive use of these objects may lead to exhaustion
of the free storage very soon. The only way to avoid this is to equip the
storage manager with the ability to deallocate storage, which is occupied
by live, but no longer used nodes. The crucial problem in this is: How does
the storage manager determine that a live node is no longer used?

Before discussing some solutions to the above problem two questions
will have to be answered. The first is what we mean by the fact that a node
is no longer used. Clearly, it should mean that none of its subobjects is
used any more. Only then can the storage occupied by the node be
deallocated safely. The second question is when the storage manager should
establish that a live node is no longer used. Ideally this happens at the
moment the node (i.e., one of its subobjects) is used for the last time.
The storage occupied by the node could immediately be deallocated then. At
the moment a node is used for the last time, however, it is generally not
known that this is indeed the last time, because the use or non-use of the
object may depend on things still to happen. So it is inevitable that the
nop-usage of~ node is established $ome time later.

4.1.13. User controlled deallocation

The oldest solution to the problem is based on the assumption that the
user knows best when a node is no longer used. The user is therefore
enabled to give hints in his program as to which nodes are no longer used.
Most language implementations featuring this scheme are very credulous and
interpret the hint as a deallocation command. (Apart from ignoring it,
there is not much else they can do.) This may give rise to a phenomenon
which is very similar to the dangling reference. After deallocating a live
node, other live nodes can still contain references to the deallocated
node. Erroneously using these references to access the node will generally
end up in disaster in the concrete machine. These references, which will be
called "dangling pointers", are not the same as dangling references.
Dangling references are of a semantical nature, because they arise from the
destruction of an object, which is an operation prescribed by the
semantics. Avoiding dangling references is a job of the language designer.
Dangling pointers are of an implementation-technical nature, because they
arise from "robbing" a node of its location in the store, while
semantically the node lives on. Avoiding dangling pointers is a job of the
language implementer.

4.1.14. Reference counting

The above solution is not only unsafe, but also delegates a part of
the task of the storage manager to the user, which is undesirable. A second
solution is based on the following line of argument. Apart from the root
the machine can only use a node X if it has the disposal of its reference
or the reference of one of its components. If none of the nodes of the
graph contains a reference to a subobject of X, it is certain that Xis no
longer used. This leads to a method where a counter, a so-called "reference
count", is associated with each node, counting the number of references to
subobjects of the node [COLLINS 60]. Upon copying a reference to a
subobject of the node the counter must be increased, and upon destroying
("overwriting") a reference to a subobject of the node the counter must be

134

decreased by one. As soon as the counter reaches zero, no more references
to subobjects of the node exist. As a consequence, the node cannot be used
any more and the storage occupied by the node can be deallocated. This is a
safe method, but it introduces a considerable time and space overhead, even
if no storage can or need be deallocated. Moreover, the method fails if
circular references can occur [McBETH 63].

EXAMPLE 4.7

Consider the nodes X and Yin Figure 4.14.

X a

Figure 4.14

If outside the nodes X and Y no references to subobjects of X and Y occur
in the graph, the counters of X and Y will remain equal to 1 for ever.
Hence the storage occupied by X and Y will never be released, even though X
and Y cannot be used any more. D

4.1.15. Reachability

The reason why the above method fails is that it is based on the
assumption that (a subobject of) a node can be accessed as long as
references to it exist. This assumption is false. Apart from the root
(which is "accessible" by definition) an object Xis only accessible if
there exists another accessible object Y such that either Y is a structured
object and Xis a direct component of Y (in which case X can be accessed by
accessing Y followed by a selection) or Y is a reference object and the
value of Y refers to X (in which case X can be accessed by accessing Y
followed by a dereferencing operation). In less recursive terms this means
that an object X can only be accessed if there exists an access path to X
emanating from the root. Objects for which such a path exists will be
called "reachable". How objects can become "unreachable" is demonstrated in
the following example.

EXAMPLE 4.8

Suppose the graph consists of three nodes R, X and Y as pictured in
Figure 4.15, where R is the root.

135

Figure 4.15

According to this figure all nodes are reachable. By modifying the value of
Ras follows:

vaURJ := ref(Y),

the situation of Figure 4. 16 is obtained.

R

X~Y

Figure 4. 16

The node X has become unreachable now. D

Note that the fact that a node is unreachable does not imply that the
storage occupied by the node may safely be deallocated: The node may have
reachable components. Only if all subobjects of a node are unreachable, may
the storage occupied by the node be deallocated. Nodes, all subobjects of
which are unreachable, will be called "isolated". Check that there are four
unreachable nodes and two isolated nodes in Figure 4.13. Another thing
which should be noted is that deallocating an isolated node may introduce
dangling pointers. As far as the user is concerned these dangling pointers
are harmless, because they are contained in unreachable objects. The
implementer, though, should beware of them.

EXAMPLE 4.9

Suppose Figure 4.17 is a picture of the graph, where R is the root.

136

R X Y

O 0-{f"0-· 0 O
Figure 4. 17

The node Yin this picture is isolated and may be deallocated. By doing so
a dangling pointer will arise in X. □

Dead nodes are always isolated (otherwise, assuming that the root is always
alive, we would have dangling references). Live nodes which are subject to
being destroyed will normally not become unreachable (let alone isolated)
during their lifetime, because if they cannot be accessed there is no way
to destroy them from the program either.

4.1.16. Garbage collection

The concept of reachability is the basis of a third method to
determine whether a node is still used or not. This method is called
"garbage collection" and will be the subject of the next chapter. (The
first description of this method can be found in [McCARTHY 60]; see also
[McCARTHY et al. 65].) In this method the storage manager is supposed to
have a special "employee", the so-called "garbage collector", which is
charged with the tracing and deallocation of isolated nodes. The time-table
of this employee was traditionally as follows. As long as the storage
manager has sufficient free storage, the garbage collector is in a state of
rest, When the storage manager runs out of free storage, the garbage
collector is activated. It is its job to trace all isolated nodes and to
deallocate the storage occupied by these nodes. After the garbage collector
has completed its job, the storage manager can resume its work with a fresh
(and hopefully sufficient) supply of free storage.

Garbage collection is a safe method which, in contrast to the
reference counting scheme, will also work if circular references occur.
Furthermore, the method (in its traditional form) will only introduce a
time overhead if the free storage really gets exhausted. The main drawback
of garbage collection in its traditional form is, that during a garbage
collection (which may take a considerable time) the execution of the
program is suspended. In time-critical applications this may be an
insurmountable objection. This objection can be obviated by changing the
time-table of the garbage collector. Instead of activating the garbage
collector when need arises, it is made to work continuously. This implies
that the program and the garbage collector work in parallel. However, in
order to obtain the necessary synchronization, a considerable overhead is
required. This overhead is only justified if either the continuity of the
execution of the program is essential, or the overhead can be eliminated
through dedicated hardware.

In contrast to traditional garbage collection the subject of parallel
garbage collection can hardly be considered as a well-explored field of
programming language implementation. Since we are primarily interested in
giving a systematic treatment of a relatively well-established field of
computer science and not in exploring a new field, we shall restrict
ourselves to traditional garbage collection here (and in the next chapter).

For parallel garbage collection the interested reader is referred to
[MULLER 75], [STEEL 75], [WADLER 76], [DIJKSTRA et al. 78].

137

Another method of avoiding a prolonged interruption of the execution
of a program, consists of "spreading" the garbage collection process over
the entire storage allocation process. Each time a piece of storage is
allocated a few steps of a garbage collection are performed. An algorithm
based on this idea is described in [BAKER 78] (main drawback: a "double
store" is required). Another interesting possibility is to combine garbage
collection with reference counting [DEUTSCH & BOBROW 76], [BARTH 77],
[WISE & FRIEDMAN 77]. Neither of these methods will be discussed here.

4.1.17. Some complications

In practice, the job of a garbage collector is more complicated than
we described. First, it is often the case that the garbage collector is not
the only employee of the storage manager. Using the different lifetime
properties of objects the storage manager may have several employees, each
of which takes care of the storage management for a certain class of
objects. In order to avoid that the garbage collector interferes with the
work of the other employees, it should be ~nambiguously clear what belongs
to the competence of the garbage collector and what does not, Since we are
primarily concerned with garbage collection, we shall do away with this
problem by assuming that garbage collection is the only strategy used for
the deallocation of objects and that there are no objects which the garbage
collector should a priori keep its hands off.

A second complication is the following. Suppose all but a few small
subobjects of a huge node become unreachable. Then a very large part of the
storage occupied by the node will not be used any more. Yet this storage
cannot be deallocated, because the node is not isolated.

EXAMPLE 4.10

For the sake of this example, extend PASCAL with a standard function ref,
which delivers the reference of an object. Consider the following program:

type row = array [1 • • 10000] of integer;
var p: tinteger;
begin

var r: trow;
begin
~w(r);

p := ref(rt[l]);

end

In the inner block an object X of type row is created and its reference is
assigned tor. The reference of the direct component X[l] of Xis assigned
top. At exit of the inner block the object r is destroyed, and only one
reference to a subobject of X remains (viz., the value ref(X[l]) contained
in p). Consequently X[l] is the only one out of 10000 components of X that
is reachable outside the inner block. D

138

In pathological cases the above may cause the garbage collector to
return empty-handed, even if the major part of the store is not used.
Basically this problem can be solved in two ways. (Note that in PASCAL
implementations it is usually not a problem, because references to
components of objects (variables) do not occur as values in PASCAL.) The
first is to deallocate objects in a more subtle way. Instead of
deallocating objects nodewise, they are deallocated individually. In
abstract terms this implies that there is an operation which "peels" (a
number of) the outer unreachable subobjects off a node, thus transforming
the node into a number of smaller nodes (see Figure 4.18).

Before peeling:

After peeling:

~
Figure 4. 18

The problem with this peeling operation is that it should not violate
system invariants such as: Nodes occupy compact locations and do not
overlap. This makes it a rather intricate and highly implementation
dependent operation, which is a potential source of garbage collector
errors. Generally speaking it is therefore better to choose the second
solution: decreasing the size of the nodes. This solution makes large nodes
fall apart into a number of smaller nodes, which can be deallocated
individually. We shall assume that the latter solution has been chosen, or
in other words: We stick to the nodewise deallocation of objects.

4.1.18. Compaction

Another complication is caused by the fact that, in order to simplify
their bookkeeping, many storage managers keep the free storage compact.
However, the free storage as it will be after a garbage collection will
generally not be compact. The locations deallocated by the garbage
collector are usually scattered all over the store. Consequently, the free
storage will display a high degree of fragmentation. A garbage collector,
therefore, is quite often combined with a "compacter" which "compacts" the
free storage. This combination of a garbage collector and a compacter is
called a "compact(ify)ing garbage collector".

It is the job of a compacter to reallocate the nodes in the store in

139

such a way that a compact free storage results. In doing so the compacter
is usually assumed not to affect the "layout" of an object, i.e., the
relative position of the location of the object inside the location of the
node of which the object is a subobject. The compacter can accomplish this
most easily by "shifting" objects nodewise in the store and by "copying"
the contents of the cells of the old location of a node to the cells of the
new location.

The above may give the impression that compaction is a trivial matter.
The reason why it is not is connected with the way references of objects
are represented in the store. In most implementations the representation of
the reference of an object depends on the location occupied by the object.
By reallocating a node the representation of the reference of each
subobject of the node is changed. Therefore, all cells containing
representations of these references must be "updated" by the compacter.

The fact that, in contrast to other values, the representation of the
reference of an object is variable could be modelled by making the
representation function repr variable (like the allocation function alloe)
and introducing a system invariant which reflects the dependence of repr on
alloe. It is more convenient to keep repr constant, however. This is
possible if we make the (reasonably general) assumption that the reference
V of an object Xis represented by the address of the leftmost cell of the
location occupied by X, augmented with some constant C(V). The constant
C(V) represents the part of the representation of V which is independent of
the location of X. If we now reinterpret repr(V) as C(V), the function repr
is constant. A consequence of this reinterpretation of repr is that
Allocation Invariant (Al) must be rewritten. It falls apart into two
invariants, one for atomic objects containing references and one for atomic
objects containing values other than references (see Section 4.2).

In a virtual storage environment, garbage collection makes hardly any
sense without compaction. The reason for this is that in such an
environment storage is not really a scarce resource, However, the larger
the size of the storage in use, the more access of it will slow down
(through "page faults"). A garbage collection followed by a compaction may
then be used to reduce the size of the storage in use, thus speeding up
storage access.

It is also possible that the question of whether or not a garbage
collection must be followed by a compaction is dependent on certain
conditions which cannot be checked beforehand. For instance, if a "free
storage list" is used for allocating storage, a failure to find a compact
location of the proper size in the free storage list may be used to trigger
a garbage collection. If after this garbage collection a location of the
proper size still cannot be found, a compaction may help. Otherwise a
compaction is not necessary (though, in order to avoid frequent garbage
collections, it may be wise to perform a compaction if the fragmentation of
the free storage has become large). This kind of garbage collector will be
called a "conditionally compacting garbage collector".

4. 2. MODEL

The concepts which were discussed informally in the previous section
will now be defined precisely. This implies that we shall introduce a model
of a storage management system, This model will serve as the basis for the
next chapter. Conceptually it consists of three parts: a framework (or
"representation" in terms of Chapter 2), a number of properties ("system
invariants") and a number of definitions.

140

4.2.1. Framework

The framework of the model is presented below:

Each storage management system H has:

- root(H): constant object,
- gra:ph(H): variable set of objects,
- store(H): constant set of cells,
- repr(H): constant mapping from values to words,
- alloc(H): variable mapping from objects to sets of cells.

Each object X has:

- ref(X): constant value,
- kind(X): constant element from {atomic,structured},
If kind(X) = atomic

I - sort(X): constant element from {scalar,reference},
- val(X): variable value,

If kind(X) = structured
I - struct(X): constant set of objects.

Each value V has:

- kind(V): constant element from {scalar,reference},
If kind(V) = reference
I - obj(V): constant object.

Each cell C has:

- addr(C): constant word,
- cont(C): variable word.

A word is an integer.

The above defines for example the concept of an object as a dynamic
system X with two direct components ref(X) and kind(X) and a number of
additional direct components, which are dependent on kind(X). If kind(X)
atomic there are two additional direct components sort(X) and val(X),
otherwise there is one additional direct component struct(X). The adjective
"constant" of a direct component implies that the direct component itself
may not be changed, though components of it (if variable) may. E.g., obj(V)
of a value V with kind(V) = reference may not be changed through a
statement such as "obj(V) := X", but if obj(V) is an object with
kind(obj(V)) = atomic, then a statement such as "vaUobj(V)) := 5" is
allowed.

4.2.2. Definitions and invariants

For ease of description we shall from now on assume that we have only
one storage management system H which is a representative of all storage
management systems. All properties and concepts which are associated with H
can be associated with each storage management system. This saves us the
trouble of starting each definition with "For each storage management
system H ... ". The dependency of definitions on H will not be reflected in
the notation. The system invariants which occur below should be read as
axioms. They are prefixed by the capital letter S followed by a number. All
objects, values, etc. are implicitly assumed to be finite.

His a storage management system.

root(HJ is called the root and will be denoted by R.

graph(HJ is called.the graph and will be denoted by G.

store(HJ is called the store and will be denoted. by S.

I 41

repr(HJ is called the representation function and will be denoted by R.

alloc(H) is called the allocation function and will be denoted by A.

The following definitions and system invariants are related to values and
objects in general.

A scalar value is a value V with kind(V) = scalar.

A reference value is a value V with kind(V) = reference.

If Vis a reference value, then Vis said to refer ,to obj(V).

If Xis an object, then ref(X) is called the reference of X.

An atomic object is an object X with kind(X) = atomic.

A scalar object is an atomic object X with sort(X) = scalar.

A reference object is an atomic object X with sort(X) = reference.

If Xis an atomic object, then val(X) is called the value of X.

A structured object is an object X with kind(X) = structured.

If X is a structured object, then struct(X) is called the structure
of X.

An object Xis said to be a direct component of an object Y if Y is a
structured object and XE struct(Y).

The fact that an object is a component of an object is defined by the
following rules (X, Y and Z denote objects):

(I) If Xis a direct component of Y,
then Xis a component of Y.

(2) If Xis a component of Y,
Y is a direct component of Z,

then Xis a component of z.
(3) An object is a component of an object on account of the above

rules only.

An object Xis said to be a subobject of an object Y if Xis a
component of Y or X = Y.

The set of all subobjects of an object Xis denoted by sub(X).

Two objects X and Y are said to be disjoint if sub(X) nsub(Y) = ¢;
otherwise they are said to overlap.

142

An atom of an object Xis a subobject of X, which is an atomic object.

The set of all atoms of an object Xis denoted by atoms(X).

A branch of an object Xis an atom of X, which is a reference object.

The set of all branches of an object Xis denoted by branches(X).

The degree of an object X, denoted by degree(X), is the number of
branches of X.

(SI) If Xis an object,
then ref(X) is a reference value.

(S2) If Xis an object,
then obj(ref(X)) = X.

(S3) If V is a .:eference value,
then ref(obj(V)) = V.

(S4) If Xis a scalar object,
then val(X) is a scalar value.

(SS) If Xis a r.eference object,
then val(X) is a reference value.

(S6) If X is a ::;tructured object,
then struct(X) f. ¢.

(S7) If X and Y are objects,
X is a component of Y,

then Y is uDt a component of X.

Invariants (S2) and (S3) state that the reference of an object X refers to
X and is unique. Invai:iant (S7) implies that the relation of "being a
subobj ect of" between objects is a (reflexive) partial order. The following
definitions and properties are concerned with objects in the graph G.

A node is an element of G.

A subnode is a subobject of a node.

(SB) REG.

(S9) If Xis a node,
then Xis a structured object.

(SIO) If X and Y are nodes, X f. Y,
then X and Y are disjoint.

(Sil) If Xis a subnode,
Y is a branch of X,

then obj(val(Y)) is a subnode.

Invariant (S9) is not essential. It is postulated for the sake of

143

convenience only. (It does not limit generality in any way.)
Invariant (SIi) amounts to the absence of dangling references in the graph.

If Xis a subnode, then node(X) is the unique node Y such that Xis a
subobject of Y.

The fact that an object is reachable is defined by the following rules
(X and Y denote objects):

(I) R is reachable.
(2) If Xis reachable,

Xis a structured object,
YE struat(X),

then Y is reachable.
(3) If Xis reachable,

Xis a reference object,
Y = obj(val(X)),

then Y is reachable.
(4) An object is reachable on account of the above rules only.

A node Xis called isolated if all subobjects of X are unreachable.

Check that all reachable objects are subnodes. The following definitions
and invariants are concerned with the store S.

If C is a cell, then add:r(C) is called the address of C.

If C is a cell, then aont(C) is called the contents of C.

A location is a nonempty subset of the store.

A location Lis called compact if {add:r(C) ICE L} is a subrange of
the integers.

The size of a location L, denoted by size(L), is the number of
elements of L.

The left address of a location L, denoted by left(L), is defined by:

left(L) = min{add:r(C) ICE L}.

The right address of a location L, denoted by right(L), is defined by:

right(L) = maz{add:r(C) ICE L}.

(S12) Sf¢.

(S13) If C,D ES, Cf D,
then addr(C) f add:r(D).

(S14) Sis compact.

If A E {addr(C) ICES}, then aell(A) is the unique cell CE S with
add:r(C) = A.

144

If Lis a location and N is an integer such that:

left(S) - left(L) ~ N ~ right(S) -right(L),

then the location shift(L,N) is defined by:

shift(L,N) = foeU(a.ddr(C) +NJ I C E L}.

The definitions and invariants concerned with the representation function R
and the allocation function A are given below.

(SIS) dom(RJ = {V I Vis a value}.

(S16) There are nodes X1,···,Xn (n ~ 0) such that
dom(A) = sub(X1J u ••• u sub(Xn).

(S17) If XE dom(A),
then A(X) f ¢.

(S18) If XE dom(A),
then A(X) c S.

(S19) If XE dom(A),
X is a node,

then A(X) is compact.

(S20) If XE dom(A),
Xis an atomic object,

then size(A(X)) = 1.

(S21) If Xis a reachable object,
then XE dom(A).

(S22) If Xis a reachable scalar object,
then cont(A(X)) = R(val(X)).

(S23) If Xis a reachable reference object,
Y = obj(val(X)),

then cont(A(X)) = R(vaUX)) + left(A(Y)).

(S24) If X,Y E dom(A),
Xis a subobject of Y,

then A(X) c A(Y).

(S25) If X,Y E dom(A),
X and Y are disjoint,

then A(X) n A(Y) = ¢.

If XE dom(A), then Xis said to occupy the location A(X).

The free storage is the subset F of the store, defined by:

F ={CE SI V XE dom(A) [Ci A(X)]}.

The storage management system is said to be compact if the location
S \ F, where F is the free storage, is compact and
lej't(S \ F) = left(SJ.

145

If XE dom(A), Y = node(X), then the layout of X, denoted by
layout(X), is defined by: ---

layout(X) = {addr(C) - left(A(Y)) I C E A(XJ}.

Here dom (F) denotes the domain of the mapping F (F = R, A). (Mappings are
considered as partial functions.) Invariant (S16) reflects that storage is
allocated and deallocated nodewise. Invariant (S2O) states that an atomic
object occupies a location containing a single cell. If convenient (as in
Invariants (S22) and (S23)), this location is identified with the cell
contained in it. Invariants (S22)-(S25) are the Allocation Invariants from
Subsection 4.1.4, except that Allocation Invariant (Al) has been restricted
to reachable objects and has been split into two invariants ((S22) and
(S23)). Notice that in a compact storage management system the free storage
is (arbitrarily) located in the right part of the store.

4.2.3. Operations

Garbage collection, compaction and compacting garbage collection will
now be defined as abstract operations which can be applied to a storage
management system.

COLLECT GARBAGE is an operation, called garbage collection, which may
be applied to a storage management system. It is defined as follows:
- Remove all subobjects of isolated nodes from dom(A).

COMPACT is an operation, called compaction, which may be applied to a
storage management system. It is defined as follows:
- Change A(X) for a number of XE dom(A),
- Change cont(C) for a number of CE S,
in·such a way that:
- The system invariants are not affected,
- The layout of objects in dom(A) is not affected,
- The compactness of the storage management system is established.

COLLECT GARBAGE & COMPACT is an operation, called compacting garbage
collection, which may be applied to a storage management system.
It is defined as follows:
- Remove all subobjects of isolated nodes from dom(A),
- Change A(X) for a number of XE dom(A),
- Change cont(C) for a number of CE S,
in such a way that:
- The system invariants are not affected,
- The layout of objects in dom(A) is not affected,
- The compactness of the storage management system is established.

Check that COLLECT GARBAGE does not affect the system invariants or the
layout of objects in dom(A). Notice also that neither of the operations
changes G or the value of atomic objects (though "temporary" changes are
allowed).

4.2.4. On the relation with Chapter 2

We shall conclude this section with a number of remarks concerning the
relation of the model presented above with Chapter 2. Dynamic systems are
called "data structures" in Chapter 2. The concepts such as "storage

146

management system", "object", "value", etc. correspond to things called
"types" in Section 2.4. The only types which are not defined are the types
"integer" and the parameterized types "set of type" and "mapping from typel
to type2". These types (and some others like the parameterized types "bag
of type" and "stack of type") are implicitly assumed to have been defined
in the obvious way. No access rights to any of these implicit types exist.
Values of these types can only be manipulated through their associated
operations (e.g., sets by selection, union, intersection, equality, etc.).
The notation used here differs from the notation used in Chapter 2. E.g.,
instead of "H.gra:ph" we w--rite "gra:ph(H)".

An important point is the use of the"=" operator. This operator will
be used in two different ways. First, if X and Y are dynamic systems to the
components of which we have access (such as "objects"), "X = Y" will denote
that X and Y are "identical". This was denoted by "X = Y" in Chapter 2. The
fact that X and Y are identical implies that all components of X and Y are
also identical. The converse is not true, since dynamic systems have a
"hidden identity". Secondly, if X and Y are dynamic systems which we may
manipulate through their external operations only (such as "integers"),
"X = Y" will denote that X and Y are "equal". For the integers this was
denoted by "EQUAL(X,Y)" in Chapter 2. In contrast to identity, equality is
an ordinary external operation provided by the "designer" of a dynamic
system.

The fact that different dynamic systems may have identical components
is important in relation to making abstractions of dynamic systems. A way
of making an abstraction of a dynamic system is to "forget" some of its
direct components. By doing so for a number of dynamic systems some of
them, which differed formerly in at least one component, may become
identical in all components. The latter systems are generally not supposed
to be identified, however. As a simple example, consider the concept
(dynamic system) of a value as defined above. This is an abstraction of the
concept of a (simple) value as it occurs in programming languages. Examples
of values are integers, booleans, reals and references. Here we are only
interested whether a value is a reference or not, and if so, to which
object it refers. Therefore, a "scalar value", i.e., a value which is not a
reference, has only one component which indicates that the value is not a
reference. If values with identical components would be identified, only
one scalar value would be possible, which is clearly undesirable. In our
approach we have a potentially infinite number of scalar values.

4. 3. CONCLUSION

The main purpose of this chapter was to define the abstract concept of
a storage management system and its related concepts. Since the usefulness
of this model will have to be demonstrated in the next chapter, conclusions
will be deferred till there. Harking back to the introduction of this
chapter, one "metaconclusion" seems justified here, however: The given
collection of definitions and invariants closely resembles a mathematical
theory. The only thing that seems to be missing are the theorems. We could
have added a number of them without great difficulty, but most of them
would be self-evident and hardly worth mentioning. This is more or less
typical for all dynamic systems: They constitute comprehensive, but from a
mathematical point of view rather uninteresting theories. What makes them
interesting is the fact that unlike "static" mathematical theories,
operations can be applied to them. The control of their complexity then
becomes a difficult and challenging problem.

147

CHAPTER 5

A SURVEY OF GARBAGE COLLECTION

5.0. INTRODUCTION

In Chapter 4 the subject of garbage collection was discussed as one of
the solutions to the storage management problem. In this chapter
(compacting) garbage collection will be discussed as a problem in its own
right using the storage management model from Chapter 4 as a basis. This
implies that a survey of garbage collection algorithms will be given.
Though no claim for completeness is made, the survey will include the major
algorithms known from literature.

The interesting aspect of the garbage collection problem is the fact
that a garbage collector has to work under a severe storage constraint.
Like every algorithm the garbage collector needs a certain (generally
unpredictable) working space. Since, in the end, the store is the only data
structure available to the garbage collector, this working space must be
found in the store. At the moment the garbage collector is called, however,
free storage is usually very scarce: The lack of free storage was the very
reason for calling the garbage collector. This situation has led to the
design of ingenious garbage collectors, which "encode" their working space
in the store with little or no space overhead.

Both garbage collection and compacting garbage collection will be
discussed here. The compacting garbage collection problem can be decomposed
into a garbage collection and a compaction problem. The first two sections
of this chapter will therefore deal with garbage collection and compaction
algorithms respectively. The decomposition of a compacting garbage
collector into a garbage collector and a compacter is only a "conceptual
decomposition". It is analogous to the decomposition of a compiler into
"phases": lexical analysis, parsing, semantical analysis, code generation,
etc •• By "merging" these phases (such as in a one-pass compiler) a
considerable increase in efficiency can be obtained. The same applies to
merging garbage collection and compaction algorithms into compacting
garbage collection algorithms. This merging will be discussed in another
section.

5.0.J. Classification of the problems and algorithms

The discussion of the garbage collection and compaction problems and
their solutions (the algorithms) will follow the lines sketched in
Chapter I. The definitions of the abstract operations COLLECT GARBAGE and
COMPACT from Chapter 4 will be regarded to define the "basic garbage
collection problem" and the "basic compaction problem" respectively. More
concrete versions of these problems are classified by giving the additional
details they satisfy. An example is the garbage collection problem where
all references refer to nodes. Here the additional detail is: "all
references refer to nodes". The details should not be viewed as additional
system invariants, but merely as assertions which are known to hold prior
to the garbage collection or compaction operation. These assertions may
allow a more efficient solution of the problem.

148

Starting from an abstract algorithm which is a solution to the basic
problem, all algorithms will be derived through correctness-preserving
transformations. Like the problems, the algorithms will be classified by
giving (a number of) details they satisfy. These details are usually
assertions about the run-time behaviour of the algorithms, such as:
"objects are marked inunediately after they are traced". Each algorithm will
be denoted by a label of the kind 11110.a". Here 11 E {GJC} denotes the
problem to which the algorithm is a solution (G for garbage collection and
C for compaction), o is a sequence of capital letters which denote the
details of the problem and a is a sequence of capital letters which denote
the details of the algorithm. For example, Algorithm GN.DT is a solution of
the garbage collection problem if all references refer to nodes (detail N).
The algorithm uses nodes as marking units (detail D) and marks them
inunediately after they are traced (detail T). Notice that an algoritP.m
labelled 110.a is a solution of each 11-problem with details o' ~ o. In some
cases asterisks will be used to denote simple implementations of
algorithms. For example, Algorithm GN.DTER* is derived from Algorithm
GN.DTER using a simple implementation of the variable T from Algorithm
GN.DTER.

5.0.2. On the description of the algorithms

The algorithms will be described in a more or less informal language.
The semantics of this language will generally be intuitively clear. If
necessary, explanation will be provided. From a more formal point of view
the semantics of the algorithmic language used may not be so clear at all.
This is due to the fact that the algorithms operate on dynamic systems
(data structures) with highly shared components. How the semantics of this
language can be formalized is demonstrated in Chapter 2, where the
semantics of a language is defined which can be viewed as a "kernel" for
the language used here. The extension of this kernel to a language such as
the one used here is also discussed in Chapter 2.

Each algorithm will be considered to operate on the storage management
system H introduced in the previous chapter. All other variables used by an
algorithm, except possibly a few local variables, will be listed at the top
of the algorithm. Recursion will not be used in the algorithms. The
variables listed at the top of an algorithm therefore indicate the working
space required for the algorithm. The required working space for a garbage
collection or compaction algorithm, as we already saw, is an important
datum.

No proof of correctness of the algorithms described will be given. The
first reason for this is conciseness. The second reason is that the
algorithms which will be described here are derived by transforming more
fundamental algorithms. Starting points are a few abstract algorithms which
can almost inunediately be seen to be correct. Proving the correctness of an
algorithm is now reduced to proving that the transformations applied in the
derivation of the algorithm are correctness-preserving. It will not be
difficult for the reader to convince himself intuitively of the
correctness-preservation of most of these transformations. If a more
rigorous proof of correctness-preservation of a transformation is required,
the reader is referred to Chapter 3, where a simple method to do so is
described. This method can be used for many (but not all) of the
transformations applied here. The method is demonstrated in Chapter 3 in a
fully elaborated derivation and proof of correctness of Algorithm
GNK.DTER*** (without RELEASE4; see Subsection 5.1.5).

149

In Section 5.1 a survey of garbage collection algorithms will be given
as described above. Section 5.2 discusses the compaction problem in the
same way. In Section 5.3 various ways of merging garbage collection and
compaction algorithms into compacting garbage collectors are discussed.
This section contrasts with the other two sections in that it merely
presents a number of examples, instead of a hierarchy of algorithms. For
reasons of conciseness only short comments on most algorithms in all three
sections will be given, together with references to the literature (when
appropriate). Concluding remarks are made in Section 5.4.

5.1. GARBAGE COLLECTION

5.1.1. General discussion

5.1.1.1. Marking

According to the definition of the operation COLLECT GARBAGE in the
previous chapter, it is the job of a garbage collector to determine for
each node X if Xis isolated and if so, to.deallocate all storage occupied
by (subobjects of) X. In order to determine that a node is isolated, the
garbage collector must determine that each subobject of the node is
unreachable. It is not difficult to see that, in essence, the only way to
determine that an object is unreachable is to generate the entire set of
reachable objects and check whether the object is in it or not. Since
generation of this set is expensive it is of course not very wise to
perform this operation for each object over again. The best thing to do is
to generate the set once and to "mark" reachable objects as such. This
"marking information" can subsequently be used to determine whether a node
is isolated or not. The marking information generally introduces a space
overhead. If objects should be marked individually, this overhead may be
overwhelming (see Example 5.1).

EXAMPLE 5. I

Suppose for a moment that it is possible to take "subarrays" of arrays in
PASCAL. For example, if x has been declared as follows:

var x: array [0 .. 9] of integer;

then x[3 .• 5] is the subarray of x, composed of the atomic objects x[3],
x[4] and x[5]. Then a one-dimensional array of length n has n(n + 1)/2
subarrays, which are all distinct objects. If objects should be marked
individually, the space overhead for the marking information of the array
would be proportional to n(n + 1)/2, which is intolerable. (This becomes
even worse in the case of multidimensional arrays.) D

In order to determine whether a node is isolated it is not always
necessary to know whether each individual subobject of the node is
reachable or not. Therefore it makes sense not to mark all objects, but
only a "sufficiently large" subset of the set of objects. The elements of
this subset will be called the "marking units". The choice of the marking
units is highly implementation dependent. In most garbage collectors,
however, only one of the following four alternatives is chosen:

150

(I) Objects.
(2) Atomic objects.
(3) Reference objects.
(4) Nodes.

Depending on the marking units chosen, four kinds of garbage collection
algorithms will be distinguished, which will be referred to as garbage
collection algorithms using "object marking", "atom marking", "reference
marking" and "node marking", respectively.

Of the four ways of marking, object marking is the most natural: The
concept of reachability has been defined for objects, and not exclusively
for atomic objects, reference objects or nodes. As we shall see, all
garbage collection algorithms using atom, reference and node marking can be
derived from those using object marking. In this general discussion of
garbage collection we shall therefore choose object marking as our basis.

5.1.1.2. The job of a garbage collector

The job of a garbage collector (using object marking) is to mark all
reachable objects and subsequently deallocate all storage occupied by nodes
which do not have a marked subobject. In order to describe this more
formally an abstract variable M, representing the set of marked objects, is
introduced. The job of the garbage collector can now be described as
follows:

M :={XI Xis a reachable object}.
RELEASE 1.

where

RELEASE1:
For each node XE dom(A)

I If Mnsub(X) = ¢
I dom(A) := dom(A) \ sub(X).

Most garbage collection algorithms which are described in literature deal
only with the first part of the job of a garbage collector (marking
reachable objects). These algorithms are therefore usually called "marking
algorithms". Here we shall include the second part of the job of a garbage
collector (releasing storage) in all algorithms, because it is an
inseparable part of these algorithms: When transforming an algorithm this
part may have to be transformed as well. The particular ways of releasing
storage (i.e., the implementation of the above for-loop) will not be
discussed. The reason is that releasing storage is the simplest and
generally the least time-consuming part of a garbage collector. Moreover,
it depends on the kind of bookkeeping used by·the storage manager, which is
highly implementation dependent. We shall therefore focus on marking and
neglect the time required to release storage in complexity considerations.

Using a somewhat finer grain than above, the job of a garbage
collector can be described, in a still very abstract way, as follows:

M := ¢.
While not sufficient

I Let X be a reachable object.
M := Mu {X}.

RELEASE1.

151

Here "sufficient" is some condition implying that each reachable object is
contained in M. The above "algorithm" is still far away from a practicable
garbage collection algorithm. Let us first focus our attention on the
statement "Let X be a reachable object".

5.1.1.3. Visiting and tracing

In order to be able to select an arbitrary reachable object, we must
possess knowledge concerning the reachability of objects. In view of the
generative nature of the definition of reachability, the only way to obtain
this knowledge is to generate it. We shall model this by introducing a
variable set Q_, containing the objects "known" to be reachable. We have to
do two things now: generate the set of reachable objects in Q_, and mark the
objects in Q_ (i.e., put them in M).

It may seem obvious to identify Q_ and M. However, at this very
abstract level it makes sense to distinguish clearly between the act of
discovering that an object is reachable, which is usually called the
"tracing" of the object, and the act of marking the object. As we shall see
later, there are sensible algorithms in which these operations are indeed
separated.

The way to generate the set of reachable objects in Q_ follows almost
innnediately from the definition of reachability. First, we know that the
root R is reachable, so initially Q_ = {R}. Then, repeatedly, objects in Q_
are "visited". During the visit to an object X the following is done. If X
is a structured object, then an arbitrary direct component Y of Xis chosen
and put in Q_. We shall call this "tracing by selection". If X is a
reference object, then the object Y referred to by the value of Xis
determined and put in Q_. This will be called "tracing by dereferencing". If
Xis a scalar object, nothing is done.

We can now decompose a marking algorithm into two more or less
independent processes: A "tracer", which "fills" Q_, and a "marker", which
marks the objects in Q_. These two processes are merged sequentially in the
following algorithm, using the "either-or construct", which arbitrarily
selects one of its two alternatives:

Algorithm G

Variables:
M: set of objects,
Q_: set of objects.

Action:
M,Q_ := ¢,{R}.
While not sufficient

Let X E Q_.
Either
I M := Mu {X}.
or

Case
I.Xis a structured object

I Let YE struct(X).
Q_ := Q_u {Y}.

2. Xis a reference object

I Let Y = obj(val(X)).
Q_ := Q_u {Y}.

3. Xis a scalar object
I Skip.

RELEASE1.

]~--->-> marking X

1---+ visiting X

}- tracing Y

}- tracing Y

152

What is meant by "tracing", "marking" and "visiting" an object is indicated
in the algorithm.

Algorithm G will be chosen as the basis for the derivation of all
other garbage collection algorithms, including those which do not use
object marking. The algorithm is still very abstract, not in the least
because the loop does not have a proper termination condition. Even if the
loop had a proper termination condition, the algoritb,m need not terminate.
The reason is that there is simply too much freedom in the marking,
visiting and tracing of objects. We shall impose a number of restrictions
now, such that Algorithm G can be made to terminate.

5.1.1.4. Restrictions on Algorithm G

Let us first discuss the marking of objects. In Algorithm G the
marking of objects proceeds entirely independently from the visiting and
tracing of objects. A reasonable restriction of the anarchy prevailing in
Algorithm G is to link the former process to the latter, i.e., combine the
marker with the tracer. There are two plausible ways to do so. The first is
to mark objects when they are traced, and the second is to mark objects
when they are visited. Each choice gives rise to a different branch in the
hierarchy of algorithms which can be derived from Algorithm G. Only these
two choices will be considered here. They are represented by the algorithm
details T and V to be presented in Subsection 5.1.1.7. Notice that in both
choices a reachable object Xis processed in the following order:

trace X + mark X + visit X.

In the first choice "trace X" and "mark X" are combined, and in the second
choice "mark X" and "visit X" are combined. The distinction between
"marking after tracing" and "marking before visiting" is essentially the
same as that noticed in [THORELL! 72].

Next, consider the visiting and tracing of objects. It is easy to see
that in Algorithm Git does not make sense to visit a structured object
again, once all of its direct components have been traced. Neither does it
make sense to visit an atomic object again. The following are therefore
reasonable restrictions:

Restrictions on the visiting and tracing

of objects in Algorithm G

(1) Case 1 may not be chosen more than once for each combination
of X and .Y.

(2) Case 2 may not be chosen more than once for each X.
(3) Case 3 may not be chosen more than once for each X.

The above restrictions imply that atomic objects are visited at most once
and structured objects are visited at most as many times as their number of
direct components. We shall adhere to these restrictions as well as
possible. As far as garbage collection algorithms using object marking are
concerned, we can even satisfy them entirely. In the algorithms using other
ways of marking we shall have to compromise, as we shall see. The danger of
relaxing the restrictions is clearly demonstrated by the following example.

153

EXAMPLE 5.2

The following algorithm (which marks objects immediately after they are
traced) is a properly terminating garbage collection algorithm using object
marking, derived from Algorithm G:

Variables:
M: set of objects,
B: boolean.

Action:
M,B := {R},true.
While B

B := false.
For each Xe: M

Case
I.Xis a structured object

I For each Ye: struat(X)

l If YI. M
I M,B :=Mu {Y},tru.e.

2. Xis a reference object

I Let Y = obj(va'l(X)).
If YI. M
I M,B :=Mu {Y},tru.e.

3. Xis a scalar object
I Skip.

RELEASE1.

This algorithm is a generalization of Algorithm A in [KNUTH 68]. It clearly
does not meet the above restrictions. In the worst case the algorithm makes
O(n2) visits to objects, where n is the number of reachable objects. D

5.1.1.5. Status information

In order to let Algorithm G meet the above three restrictions some
extra bookkeeping is necessary. First of all, the algorithm muse be able to
select an X which may still be visited. This is not enough, though. -When
visiting a structured object X, it must be possible for the algorithm to
select a direct component Y of X, which has not been traced in any visit of
X before. All this will be modelled by an abstract variable T, which is a
bag (or "multiset") of pairs (X, VJ, where X is an object and V is a set of
direct components of X. The information contained in Twill be referred to
as the "status information". Roughly speaking, the fact that (X,V) ET
means that X may still be visited and if Xis a structured object that the
direct components Ye: V of X have not yet been traced in any previous visit
to X. If Xis an atomic object, Vis always empty. Supposing the
restrictions are satisfied, Algorithm G can now be made to terminate by
choosing the test "T =¢"as the termination condition (instead of
"sufficient").

The reason for choosing a bag instead of a set for Tis mainly, that
the only operations which are performed on Tare adding and removing
elements, where (in principle) the same element may occur more than once in
T (particularly in those algorithms which do not satisfy all three
restrictions given above). This kind of bag can easily be implemented, for
example as a stack or queue.

The introduction of the variable T in Algorithm G will make the.
variable Q redundant, as we shall see. Thus two kinds of space overhead

154

remain: the marking and status information, represented by the abstract
variables Mand T. This, however, does not constitute the only garbage
collector overhead.

5.1.1.6. Type information

A third kind of overhead has to do with the answer to the following
questions:

How can the garbage collector determine
(I) whether an object is a structured, reference or scalar object?
(2) the direct components of an object?
(3) the object referred to by a reference?

The information required to determine (I), (2) and (3) will be referred to
collectively as the "type information". The type information associated
with a certain object will be called the "type" of the object. The type
information, though present in the graph, need not be present in the store.
(If it is, for purposes other than garbage collection, that is fortunate.)
For reasons of efficiency each implementer will try to include in the store
as little information from the graph as possible. Yet, since the garbage
collector ultimately has to operate exclusively on the. store, there must be
a way for the garbage collector to get hold of the type information. There
are basically three ways to solve this problem:

(I) Object typing.
In this solution a value is associated with each object, which can be
used by the garbage collector to get hold of the type information.
This value is typically represented by a pointer contained in the
location occupied by the object, which points to a piece of encoded
type information in the store. Object typing generally requires an
overhead per object. This overhead can be reduced to an overhead per
node in case only references to nodes occur in the graph (problem
detail N, see Subsection 5.1.1.7).

(2) Reference typing.
Here a value is associated with each reference contained in the graph,
which enables the garbage collector to determine the type of the
object referred to by the reference. Thus the garbage collector can
find the type of an object traced by dereferencing. For an object Y
traced by selecting a component of an object X, the garbage collector
must be able to derive the type of Y from the type of X. Reference
typing requires an overhead per reference object, which is generally
much better than an overhead per object. Reference typing does not
work, however, if the structure of objects is variable.

(3) Type tracking.
In this approach the garbage collector is supposed to be able to
derive the type of an object Y, traced either by selecting a direct
component of a structured object X or dereferencing a reference object
X, from the type of X. Knowing the type of the root, the garbage
collector can calculate the type of each reachable object. For that
purpose the garbage collector will have to keep track of the types of
objects in T. If there is a "static" relation between the types of X
and Y (such as in "strongly typed" languages like ALGOL 68) that might
be the only space overhead this method requires. If there is a
"dynamic" relation between the types of X and Y, parts of the type
information must still be contained in the store, which may give

unpleasant complications. Moreover, this approach has the drawback
that the garbage collector must have an intimate knowledge of the
structure and representation chosen for objects. A slight change in
the structure or representation of objects may require the entire
garbage collector to be rewritten.

155

Notice that if all objects have the same structure (such as in pure LISP)
the type information need not cause any overhead at all.

It appears from the above that a garbage collection algorithm requires
a (space) overhead which is caused by three kinds of information:

(1) Marking information.
(2) Status information.
(3) Type information.

Limiting the overhead caused by the marking, status and type information is
one of the essential parts of garbage collector design. Various ways to
achieve this will be discussed in the sequel.

5.1.1.7. Garbage collection details

We shall now give the details which will be used to classify the
different garbage collection problems and algorithms. First we present the
problem details, which will be explained together with the algorithms that
use them.

Garbage collection problem details

N: If Xis a reachable reference object,
then obj(val(X)) is a node.

K: If Xis a node,
then the branches of X are numbered from 1 to degree(X).
The i-th branch of Xis denoted by branch(X,i) (1 sis degree(X)).

This is a surprisingly small number of details. The reason for this is that
the garbage collection problem as we defined it is rather abstract. It is
concerned (almost) exclusively with the abstract layer of the storage
management model. At this high level of abstraction few details can be
distinguished. Still, all garbage collection algorithms can be expressed at
this level of abstraction (with the addition of the above details, if
necessary). The compaction problem is less abstract than the garbage
collection problem. It is concerned with the concrete layer of the model
(the store) as well. Accordingly, the number of compaction problem details
will be higher (see Subsection 5.2.1.5).

The garbage collection algorithms will be. classified according to the
following details:

Garbage collection algorithm details

A: The marking operation of a structured object is modelled by an
empty action.

B: The marking operation of a structured object is modelled by marking
all of its atoms.

156

C: The marking operation of an object other than a reference object is
modelled by an empty action.

D: The marking operation of an object other than a node is modelled by
an empty action.

T: Objects are marked innnediately after they ara traced.

V: Objects are marked innnediately before they are visited.

E: During a visit to an object all of its direct components are
traced.

S: Atomic objects are visited innnediately after they are traced.

Q: Objects having no branches are visited innnediately after they are
traced.

R: Objects other than reference objects are visited innnediately after
they are traced.

H: Objects traced through selection are visited innnediately after they
are traced.

F: Reference objects are flagged when they are visited.

Details A, B, C and Dare used to derive the algorithms using atom marking
(details A and B), reference marking (detail C) and node marking (detail D)
respectively from Algorithm G. Details T and V were already discussed. The
other details will be discussed with the algorithms featuring them. Notice
that not all combinations of the details make sense.

The four classes of garbage collection algorithms (using object, atom,
reference and node marking, respectively) will now be discussed in four
separate subsections (5.1.2-5.1.5).

5.1.2. Garbage collection algorithms using object marking

As we discussed in Subsection 5.1.1, object marking is the most
natural way of marking. It is also the least usual way of marking. The
reason for this is that the overhead caused by the marking information may
be tremendous, as demonstrated in Example 5.1. There are, on the other
hand, situations where application of this kind of marking is very well
conceivable (for example, if nodes have a tree structure). We already
discussed one garbage collection algorithm using node marking: Algorithm G.
This very abstract algorithm will be the starting point for the derivation
of all other garbage collection algorithms.

The algorithm details relevant to garbage collection algorithms using
object marking are T, V, E and S. The sensible combinations of these
details lead to the hierarchy of algorithms pictured in Figure 5.1. All of
these algorithms will be described below. This is to illustrate how
algorithms can be derived from other algorithms by "adding" details. For
garbage collection algorithms using atom, reference and node marking not
all algorithms in the hierarchies in question will be described. The
derivation of the algorithms which are not described is either trivial, or
may be accomplished in a way similar to the derivation of the algorithms
presented below.

157

G

/~
G.T G.VE

I~ l
G.TE G.TS G.VES

~I
G.TES

Figure 5. I

The first algorithm to be discussed is derived from Algorithm G by
marking objects as soon as they are traced· (according to detail T) and
imposing the restrictions on the visiting and tracing of objects through
the introduction of the variable T. (Notice that, in fact, the restrictions
are implicit details.) It is easy to see that the variable Q then becomes
redundant and can be removed, resulting in:

Algorithm G.T

Variables:
M: set of objects,
_T: bag of pairs (object, set of direct components).

Action:
M,T := {R},{(R,struat(R))}.
While T f ¢

Get (X,V) from T.
Case
I.Xis a structured object
IfVf¢

I Get Y from V.
T := Tu {(X,V)}.
INSPECT(Y).

2. Xis a reference object

I Let Y = obj(val(X)).
INSPECT(Y).

3. Xis a scalar object
I Skip.

RELEASE1•

INSPECT(Y):
Case
I. Y is a structured object

I IfYiM
I M,T := Mu {Y},Tu {(Y,struat(Y))}.

2. Y is an atomic object

I IfYiM
I M, T : = M u {Y} 'Tu {(Y, ¢)}.

158

Here the operation "Get Y from V" is a shorthand for:

Let Y E V.
V := V \ {Y}.

(Analogously for "Get (X, V) from T".)
The first question that arises in relation to the implementation of

Algorithm G.T is, how to implement the set M of marked objects. Since in
object marking it must be possible to mark each individual object, probably
the best way to do it here is to make room for a flag in each location
occupied by an object, indicating whether the object is marked or not. As
already mentioned, this may cause a considerable overhead. In cases where
this overhead is prohibitive it is therefore better not to use object
marking.

A second question is how to implement the bag T. The obvious
implementation for Tis a stack (though a queue is also conceivable). This
stack can either be kept in a separate location in the store or, by
reserving extra room in each object location, as a linked list through
these locations. The latter may involve an enormous space overhead. The
objection to the former is that the maximum size of the stack is usually
not known beforehand. The entries in the stack must represent pairs (X,V),
where Xis an object and Vis a set of direct components of X. Using a
separate stack, X can be represented by a pointer and, if the direct
components of X are removed from Vin a predefined order, V can be
represented by an integer.

A first way to reduce the overhead caused by the status information is
demonstrated in Algorithm G.TE. This algorithm is derived from Algorithm
G.T by combining the separate visits to trace the direct components of an
object into a single visit (detail E). Thus a number of operations on Tare
saved. Furthermore, this detail enables T to be chosen as a bag of objects,
instead of a bag of pairs (object, set of direct components), because the
second element of a pair has become superfluous. Combining visits to
objects is a useful and generally applicable technique to reduce garbage
collector overhead. Many variations of this technique will be met.

Algorithm G.TE

Variables:
M: set of objects,
T: bag of objects.

Action:
M,T := {R},{R}.
While T f ¢

Get X from T.
Case
I.Xis a structured object

I
For each YE struct(X)

I If YI. M
I M,T := Mu {Y},Tu {Y}.

2. Xis a reference object

I
Let Y = obj(val(XJ).
If YI. M
I M,T :=Mu {Y},Tu {Y}.

3. Xis a scalar object
I Skip.

RELEASE 1.

159

A second way to reduce the overhead caused by the status information
is to visit atomic objects immediately after they are traced, instead of
putting them in T first (detail S). This implies that after tracing an
(unmarked) atomic object, the (possibly zero-length) access path emanating
from the object is followed until either a marked or a structured object is
encountered (see Example 5.3). This saves an add and remove operation on T
per reachable atomic object and it makes only structured objects occur (as
the first elements of pairs) in T.

EXAMPLE 5.3

Consider Figure 5.2.

X y z
I

'

0 0--0-----0-----0 0 0
Figure 5.2

Upon tracing the unmarked scalar object X there is no need to put it in T:
X need only be marked. Upon tracing the unmarked reference object Y there
is also no need to put it in T: The garbage collector can traverse the
chain of references emanating from Y, while marking the objects in the
chain, until a marked or structured object Z is encountered. No objects,
except possibly Z, need be put in T during this traversal. D

Algorithm G.TS

Variables:
M: set of objects,
T: bag of pairs (object, set of direct components).

Action:
M,T := {R},{(R,struct(R))}.
While T ,f, ¢

Get (X,V) from T.
Get Y from V.
IfV,f,¢
I T : = Tu {(X, V)}.
While Y is a reference object and Yi M

I M :=Mu {Y}.
Y := obj(val(Y)).

If Y i M

I M:= Mu{Y}.
If Y is a structured object
I T := Tu {(Y,struct(Y))}.

RELEASE1 •

Combining details E and S leads to Algorithm G.TES, which can either
be derived from Algorithm G.TE by imposing detail S, or from Algorithm G.TS
by imposing detail E.

160

Algorithm G.TES

Variables:
M: set of objects,
T: bag of objects.

Action:
M,T := {R},{R}.
While T ,fa ¢

Get X from T.
For each YE struct(X)

While Y is a reference

I M := Mu {Y}.
Y := obj(val(Y)).

If Y t M

I M :=Mu{Y}.
If Y is a structured
I T := Tu {Y}.

RELEASE1.

object and Y t M

object

In all previous algorithms, objects are marked as soon as they are
traced (detail T). A second approach, as we already discussed, is to mark
objects immediately before visiting them (detail V). This implies that upon
tracing an object it is put in T first. When the object is fetched from T
for the first time, it is checked whether the object has already been
marked. If not, the object is marked and subsequently visited. In order to
avoid unnecessary tests to determine whether the object is actually visited
for the first time, it makes sense to combine all visits to the object into
a single visit. Detail V therefore occurs in combination with detail E
only. By imposing details V and E and the restrictions concerning the
visiting and tracing of objects on Algorithm G (using the variable T), the
following algorithm can be derived, from which the variable Q has
disappeared:

Algorithm G.VE

Variables:
M: set of objects,
T: bag of objects.

Action:
M,T := ¢,{R}.
While T ,fa ¢

Get X from T.
If X t M

M : = Mu {X}.
Case
I.Xis a structured object

I For each YE struct(X)
I T := Tu {Y}.

2. Xis a reference object

I Let Y = obj(val(X)).
T : = Tu {Y}.

3. Xis a scalar object
I Skip.

RELEASE 1.

A comparison of Algorithm G.TE and G.VE is worthwhile. For that
purpose consider a reachable object X. In both algorithms Xis traced the

161

same number of times. Upon tracing X for the first time in Algorithm G.TE a
test is performed to see whether XE M (answer: no), Xis marked and Xis
put in T. Some time later Xis fetched from T and subsequently visited.
Upon tracing X for the first time in Algorithm G.VE Xis put in T
immediately. After a while Xis fetched from T, a test is performed to see
whether XE M (answer: no), Xis marked and subsequently visited. So, in
contrast to Algorithm G.TE marking and visiting Xis .done on the same
occasion in Algorithm G.VE. Since both marking and visiting an object will
involve accessing the object and the accesses can be combined in Algorithm
G.VE, Algorithm G.VE can be regarded as being more efficient than Algorithm
G.TE in this respect. This only applies to the actions related to the first
time an object is traced. Upon tracing an object X for the k-th time
(k > 1), Algorithm G.TE tests whether XE M, finds X to be marked and
proceeds. Algorithm G.VE puts X in T first. After fetching X from T some
time later it tests whether XE M, finds X to be marked and proceeds. The
conclusion is that Algorithm G.VE will only be more efficient than
Algorithm G.TE if the majority of reachable objects is traced only once.
(This is so if large parts of the graph have a tree structure.) In most
cases Algorithm G.TE will be more efficient than Algorithm G.VE, not only
with respect to time but also space: The size of Twill generally be larger
in Algorithm G.VE than in Algorithm G.TE. Notice also that, in contrast to
Algorithm G.TE, in Algorithm G.VE objects may occur more than once in the
bag T (which excludes an implementation of T as a linked list through the
locations of objects in T, unless tests for double occurrences of objects
in Tare performed).

An obvious optimization can be obtained by visiting atomic objects
immediately after they are traced (detail S). Thus Algorithm G.VES is
obtained where T contains only structured objects.

Algorithm G.VES

Variables:
M: set of objects,
T: bag of objects.

Action:
M,T := ¢,{R}.
While T ,f, ¢

Get X from T.
If X l M

M := Mu{X}.
For each YE str>uat(X}

While Y is a reference object and Y l M
I M := Mu {Y}.

Y := obj(val(Y}).
Case
I. Y is a structured object
I T := Tu {Y}.
2. Y is an atomic object

I IfYiM
I M := Mu {Y}.

RELEASE1.

In each algorithm presented here (except Algorithm G) the number of
(more or less) primitive operations performed is proportional to the number
of tests of the kind "Xi M". (Check this.) This implies that the number of
these tests performed in an algorithm is a good indication for the time-

162

complexity of the algorithm. Assuming that the number of objects, of which
an object is a direct component, is bounded by a constant, check that all
algorithms operate in a time O(n), where n is the number of reachable
objects. Check also that if structured objects have a tree structure and at
least two direct components, we can even take the number of reachable
atomic objects for n. O(n) garbage collection algorithms are as good as we
can expect.

·5.1.3. Garbage collection algorithms using atom marking

In implementations featuring references to components of nodes, atom
marking is the most frequently used way of marking. The main reason for
that is probably that atomic objects in the graph and cells in the store
are somewhat analogous. This makes algorithms using atom marking easier to
implement in terms of operations on the store. From a conceptual point of
view, on the other hand, atom marking is more complex than object marking.
In atom marking it is not possible to mark structured objects individually.
This implies that a marking operation on a structured object must in some
way be modelled in terms of marking operations on the atoms of the object,
which leads to a number of complications.

The job of a garbage collector using atom marking is to mark all
reachable atomic objects and subsequently use this information to
deallocate all storage occupied by isolated nodes. Having marked all
reachable atomic objects, the garbage collector can determine whether a
node is isolated by inspecting all of its atoms and seeing if one of them
is marked. The marking information will be represented by an abstract
variable M. Instead of a set of objects, this variable is a set of atomic
objects now. Using M the job of the garbage collector can be described as
follows:

where

M :={XI Xis a reachable atomic object}.
RELEASE 2.

RELEASE 3:
For each node XE dam(A)

I If Mn atams(X) = ¢
I dam (A) : = dam (A) \ sub (X J •

Notice that in contrast to object marking the overhead caused by the
marking information is limited: A typical way to implement Mis to reserve
a bit in each cell of the store, indicating whether the atomic object
located there is marked or not. Another frequently used possibility,
especially if there is no room for mark bits in the cells of the store, is
to reserve a compact location in the store to ·be used as a "bit map". Each
cell of the store is mapped onto a bit in this piece of storage, which can
be used as a mark bit for the cell.

The garbage collection algorithms using atom marking will be derived
from those using object marking by imposing either detail A or B. Using the
other details (except C and D) in the list of algorithm details given in
Subsection 5.1.1.7, a rather complex hierarchy of algorithms can be
constructed. Not all algorithms constituting the hierarchy will be
discussed. Instead a representative subset of these algorithms will be
discussed. Using these algorithms as a basis it will not be difficult to
reconstruct the other algorithms in the hierarchy. The method of discussion

of the algorithms will be the same as with the garbage collection
algorithms using object marking.

163

The first algorithm to be discussed can be derived immediately from
Algorithm G.T by replacing the marking operation of a structured object by
an empty action (detail A):

Algorithm G.AT

Variables:
M: set of atomic objects,
T: bag of pairs (object, set of direct components).

Action:
M,T := ¢,{(R,struct(R))}.
While T f, ¢

Get (X,V) from T.
Case
1. Xis a structured object

IfVf,¢

I Get Y from V.
T:=Tu{(X,V)}.
INSPECT(Y).

2. Xis a reference object

I Let Y = obj(val(X)).
INSPECT(Y).

3. Xis a scalar object
I Skip.

RELEASE 2.

INSPECT(Y):
Case
1. Y is a structured object
I T := Tu {(Y,struct(Y))}.
2. Y is an atomic object

I IfYI.M
I M,T :=Mu {Y},T u {(Y,¢)}.

This algorithm (in a "tuned" and usually recursive form) has been the basis
of several garbage collection algorithms designed for ALGOL 68
implementations [BRANQUART & LEWI 71], [MARSHALL 71], [WODON 71],
[ROBSON 74]. One of the complications inherent in atom marking is already
apparent from this algorithm: Upon tracing a structured object Y it is not
possible to determine whether Y has been traced or even visited before.
Consequently, the first of the three restrictions mentioned in Subsection
5.1.1.4 is not satisfied in the above algorithm (nor in any of the other
algorithms using atom marking). Each time a structured object is traced it
will also be visited (as many times as its number of direct components).
Check that the other two restrictions from Subsection 5.1.1.4 are still
satisfied, thus guaranteeing the termination of the marking process.

There are various ways to speed up Algorithm G.AT. A first way is to
combine the tracing and visiting of the components of a (structured) object
X with the visit to X (details E and H). A second way is to visit all
atomic objects immediately after they are traced (detail S). A third way is
to visit all objects without branches immediately after they are traced
(detail Q). All these optimizations are included in the following
algorithm:

164

Algorithm G.ATEHSQ

Variables:
M: set of atomic objects,
T: bag of objects.

Action:
M,T := ¢,{R}.
While T ,f ¢

Get X from T.
For each YE atoms(X)

While Y is a reference object and Yi M

I M:=Mu{Y}.
Y := obj(val(Y)).

Case
1. Y is a structured object

If branches(Y) = ¢
For each Z E atoms(Y)

I IfZiM
I M := Mu {Z}.

else
I r := r u {Y}.

2. Y is an atomic object

I If Yi. M
I M : = Mu {Y}.

RELEASE 2.

This algorithm requires the possibility of directly determining the set of
atoms (or, in lower level terms, the location) of an object, which causes
an overhead when used with "type tracking" (see Subsection 5.1.1.6). The
fact that it must be possible to determine that an object has no branches
may also introduce some overhead.

As with the algorithms using object marking, a distinction can be made
between "marking after tracing" and "marking before visiting" algorithms.
An example of the latter kind is given below.

Algorithm G.AVE

Variables:
M: set of atomic objects,
T: bag of objects.

Action:
M,T := ¢,{R}.
While T ,f ¢

Get X from T.
Case
1. Xis a structured object

I For each YE struct(X)
I r := r u {YL

2. Xis a reference object
If X i. M

I
M:= Mu{X}.
Let Y = obj(val(X)).
T:=Tu{Y}.

3. Xis a scalar object

I If Xi. M
I M : = Mu {X}.

RELEASE 2.

165

This algorithm can be derived from Algorithm G.VE by imposing detail A.
Remarks analogous to those made in comparing Algorithms G.TE and G.VE apply
to a comparison of Algorithms G.ATE (which has not been discussed, but can
easily be derived from Algorithm G.AT) and G.AVE.

In all algorithms discussed so far the marking operation of a
structured object was modelled by an empty action (detail A). Another
approach is to model the operation by marking all atO!llS of the object
(detail B). This approach is not without problems, because the marking
information can no longer be used to determine whether a reference object
has been traced before. This is compensated for somewhat by the fact that
unnecessary visits to objects traced by dereferencing can be avoided by
testing if all their atoms are marked. Using a rather complex
transformation the following algorithm featuring detail B can be derived
from Algorithm G.TS:

Algorithm G.BTS

Variables:
M: set of atomic objects,
T: bag of pairs (object, set of direct components).

Action:
M,T := atoms(R),{(R,struct(R))}.
While T f ¢

Get (X,V) from T.
Get Y from V.
If VI¢
I T := Tu {(X, VJ}.
Case
1. Y is a structured object
I T := Tu {(Y,struct(Y))}.
2. Y is a reference object

Y := obj(vaZ(Y)).
While Y is a reference object and Yi M

I M := Mu {Y}.
Y := obj(vaZ(YJJ.

Case
1. Y is a structured object

Let B = false.
For each Z E atoms(Y)

I IfZiM

I M := Mu {Z}.
B := true.

If B
I T := Tu {(Y, struct(Y))}.

2. Y is an atomic object

I IfYtM
IM :=Mu{Y}.

3. Y is a scalar object
I Skip.

RELEASE 2.

This algorithm has been described (in a more concrete form) in
[WEGBREIT 72]. Apart from the first restriction from Subsection 5.1.1.4 the
algorithm does not satisfy the second restriction either (i.e., reference
objects may have to be visited and dereferenced more than once).

166

EXAMPLE 5.4

Consider Figure 5.3, where X, x1 , x2 and Y are as yet unmarked objects,
which are reachable through the references V and W.

V W

Figure 5.3

If Xis traced (through V) before X2 (through W) in Algorithm G.BTS, then
X1 and X2 are marked and (X,struct(X)) is put in T, which guarantees that
some time later X2 will be visited and dereferenced. If, after tracing X,
X2 is traced through W, X2 is found to be marked and will not be visited a
second time. If, however, x2 is traced through W before Xis traced through
V, then x2 is marked, visited and dereferenced, all atoms of Y are marked
and (Y,struct(Y)) is put in T. If thereupon Xis traced through V, the atom
X1 of Xis found to be unmarked. Hence X1 is marked and (X,struct(X)) is
put in T. The consequence of the latter is that some time later X2 will be
visited and dereferenced for the second time. In contrast to the first time
all atoms of Y are now found to be marked and (Y,struct(Y)) is not put in T
again. D

Check that even though reference objects are visited and dereferenced more
than once, Algorithm G.BTS is still guaranteed to terminate.

The fact that in algorithms featuring detail B, references may have to
be "followed" more than once, may have a serious impact on the efficiency
of these algorithms. It is not so much the dereferencing operation itself
which may take a considerable time, but the testing of all atoms of th~
object referred to by a reference, to see whether all these atoms ace
marked (which they always are after the reference has been followed for the
first time). The algorithms of this kind can therefore be speeded up
considerably if reference objects are "flagged" as soon as they are
visited (detail F). The flag associated with a reference object can then be
used to avoid visiting and dereferencing the object more than once. The
price to be paid for this is a space overhead per reference object. This
price may be nil if there is a spare bit in the locations (cells) occupied
by reference objects. The following algorithm is an example where this
principle is applied. The flags are represented by an abstract variable F,
which is a set of reference objects.

Algorithm G.BTEHF

Variables:
M: set of atomic objects,
T: bag of objects,
F: set of reference objects.

Action:
M,T,F := atoms(R),{R},¢.
While T f- ¢

Get X from T.
For each YE branahes(X)

If Y I. F
F := Fu {Y}.
Let Z = obj(val(Y)).
Let B = false.
For each WE atoms(Z)

I If w I. M

I M := Mu {W}.
B := true.

If B
I T := Tu {Z}.

RELEASE 2.

167

This algorithm, in fact, uses a mixture of atom and reference marking (see
Subsection 5.1.4).

Though Algorithm G.BTEHF can be considered to be rather efficient, it
will still perform O(n2J tests of the kind "XI. M" in its worst case
behaviour, where n is the number of reachable atomic objects. This
assertion holds for all algorithms using atom marking, even if all objects
have a tree structure. The reason for this is that each time an object is
traced, all of its atoms must be inspected to see if one of them is
unmarked. Though in practice things may not prove that bad, it makes sense
to use one of the other kinds of marking whenever (efficiently) possible.

EXAMPLE 5.5

Consider the tree structured object X in Figure 5.4, which is reachable
through the reference V only.

V

Figure 5.4

X can easily be generalized to an object with n atoms. Check that all
algorithms using atom marking presented here perform O(n2) tests of the
kind "Y I. M" on the atoms of X. □

168

5.1.4. Garbage collection algorithms using reference marking

Reference marking is a rather unusual, yet interesting way of marking.
In algorithms using reference marking, only the reachable reference objects
are marked. This implies that after marking the fact of whether or not a
node is isolated can only be determined by inspecting all marked reference
objects to see whether they contain a reference to a .subobject of the node.
This indirect way of determining whether a node is isolated or not makes
algorithms using reference marking not very suitable for use as stand-alone
garbage collection algorithms. In combination with compaction algorithms,
efficient compacting garbage collectors can be constructed (see Subsection
5.3).

The marking information in the algorithms using reference marking will
be represented by a variable set M of reference objects. Using M the job of
a garbage collector using reference marking can be described as follows:

where

M :={XI Xis a reachable reference object}.
RELEASE 3.

RELEASE 3:
For each node XE dam(A), X f R

I If {obj(vaUY)) I YEM} nsub(X)
I dam (A) : = dam (A) \ sub (X J •

Notice that the overhead caused by the marking information can be
considerably less than with atom marking, let alone object marking. If
references are represented by addresses and an address does not occupy a
full word, the space overhead may even be nil: One of the redundant bits in
the cell occupied by a reference object can be used to indicate whether the
object is marked or not. Notice also that the complicated test to see
whether a node is isolated can be performed efficiently, if each time a
reference Vis followed during the marking process, the node containing
abj(V) is "flagged". This technique, by the way, can also be used when
using object or atom marking. It requires an extra space overhead per node
X (for the flag of X) and per reference object Y (in order to determine
nade(abj(val(Y))) from val(Y)).

Garbage collection algorithms using reference marking will be derived
from those using object marking by imposing detail C. The hierarchy of
algorithms which can be obtained using the other details listed in
Subsection 5.1.1.7 is again rather complex. Because of the rather limited
applicability of reference marking only a few algorithms from this
hierarchy will be discussed.

Modelling the marking operation of an object which is not a reference
object by an empty action (detail C) in Algorithm G.T leads to:

Algorithm G.CT

Variables:
M: set of reference objects,
T: bag of pairs (object, set of direct components).

Action:
M,T := ¢,{(R,struct(R))}.
While T f ¢

Get (X,V) from T.
Case
I.Xis a structured object

If V f ¢

I Get Y from V.
T := Tu{(X,V)}.
INSPECT(Y).

2. Xis a reference object

I Let Y = obj(vaZ(X)).
INSPECT(Y).

3. Xis a scalar object
I Skip.

RELEASE 3.

INSPECT(Y):
Case
I. Y is a structured object
I T := Tu {(Y,struct(Y))}.
2. Y is a reference object

I IfY/M
J M,T := Mu{Y},Tu{(Y,¢)}.

3. Y is a scalar object
I T := Tu {(Y,¢)}.

This algorithm satisfies only the second of the three restrictions from
Subsection 5.1.1.4. Check that it terminates nevertheless.

169

The inefficiencies caused by repeatedly and unnecessarily visiting
structured and scalar objects in Algorithm G.CT can be greatly reduced by
combining the visits to the structured and scalar components of an object X
with the visit to X (details E and R). This results in the following
algorithm, where only reference objects occur in the bag T:

Algorithm G.CTER

Variables:
M: set of reference objects,
T: bag of reference objects.

Action:
M,T := branches(R),branches(R).
While T f ¢

Get X from T.
Let Y = obj(vaZ(X)).
For each Z E branches(Y)

I IfZ/M
I M,T := Mu{Z},Tu{Z}.

RELEASE 3.

This simple algorithm has been described in [ZAVE 73], where the bag T
is implemented as a linked list, requiring a space overhead per reference

170

object. Reference typing is used in order to be able to determine the
branches of an object referred to by a reference, requiring an additional
overhead per reference object. This overhead is only acceptable if the
number of reference objects as compared to the total number of atomic
objects is not too large (as in ALGOL 68, but not in LISP).

The algorithms using reference marking, like the algorithms using atom
marking, all use a quadratic time in their worst case behaviour. I.e., in
pathological cases (see Example 5.5) they perform O(n2) tests of the kind
-"X I. M", where n is the number of reachable reference objects.
Nevertheless, garbage collectors using reference marking can be
considerably faster than those using atom marking. The O(n2) garbage
collection time is the penalty to be paid for the reduction of the space
overhead of the marking information and the occurrence of references to
arbitrary subnodes. The garbage collection time can be reduced to O(n)
either by increasing the space overhead caused by the marking information
(using object marking) or by putting restrictions on the occurrence of
references in the graph. The latter will be done in the next subsection.

5.1.5. Garbage collection algorithms using node marking

In implementations of many programming languages (especially list
processing languages) only references to nodes occur in the graph (problem
detail N). This is true for example for LISP, where the concept of a
garbage collector originated. If references refer only to nodes the problem
of garbage collection is simplified to a great extent. The reason for this
is that the graph has a much simpler structure: It can be viewed as a graph
in the pure graph-theoretical sense. Moreover, garbage collection can be
much more efficient: By choosing nodes as marking units the space overhead
can be reduced to a nodewise overhead, which is usually better than an
overhead per object, atomic object or reference object, while a garbage
collection can still be performed in a time linear in the total number of
branches of reachable nodes. Therefore, if all references contained in the
graph refer to nodes, node marking is the marking method of choice in a
garbage collector.

Strictly speaking, node marking cannot be applied if references also
refer to components of nodes. The reason is, first of all, that the marking
information would be insufficient to determine which nodes are isolated:
Nodes which are not marked may have reachable components. This problem
could be solved by "flagging" nodes as soon as one of their subobjects is
traced, in the same way as discussed in Subsection 5.1.4. The second and
more important reason is that the garbage collector would still need a way
to indicate that an arbitrary object has already been visited (otherwise
the algorithm may not terminate). The latter would amount to object marking
instead of node marking, however. The situation can be "remedied" by
letting the garbage collector look at references in a way different from
that of the program. That is, the garbage collector considers a reference
of an object as referring not to the object, but to the node of which the
object is a subobject. From the garbage collector point of view all
references now refer to nodes and node marking can be applied.

The problem with the above approach is that reachability from the
program point of view and reachability from the garbage collector point of
view are two different things now. An object which is reachable from the
program point of view will always be a subobject of a node which is
reachable from the garbage collector point of view. The converse is not
true. A node which is reachable from the garbage collector point of view
need not necessarily contain a subobject which is reachable from the

171

program point of view. Consequently, the garbage collector may fail to
deallocate storage occupied by objects which are truly garbage from the
program point of view. This may have disastrous effects (see Example 5.6).

EXAMPLE 5.6

Suppose Figure 5.5 is a picture of the graph.

R X Y z

(Q___B~-O 0--([0
Figure 5.5

From the program point of view only the root Rand one direct component of
the node X are reachable. When using node marking, the garbage collector
would consider the entire node X, and consequently the nodes Y and Z, to be
reachable. The nodes Y and Z are thus preserved, even though they are pure
garbage. D

An extra overhead is also introduced because of the different way
references are interpreted by the program and the garbage collector. (The
garbage collector must be able to determine the node, in which an object
referred to by a reference is contained.) Yet, depending upon the specific
implementation, these drawbacks may very well be outweighed by the
simplicity and efficiency gained by the use of node marking. Though in all
algorithms using node marking the graph will be assumed to contain only
references to nodes, these algorithms may also be applied in the case of
references to components of nodes, provided one uses the garbage
collector's interpretation of reachability.

In the algorithms using node marking, the marking information will be
represented by a variable set M of nodes. Using M, the job of a garbage
collector using node marking is described by:

where

M := {X \Xis a reachable node}.
RELEASE 4.

RELEASE 4:
For each node XE dom(A)

I If XI. M
I dom(A) : = dom(A) \ sub(X).

As can be seen, the test whether a node is isolated is very simple: Being
isolated is equivalent to being unreachable, which is equivalent to being
unmarked. The marking information is typically implemented by a mark bit in
the location of a node. If there is no room for that and all nodes have the
same size, a bit map can also be used. (See also Algorithm GNK.DTEH*.)

172

From the hierarchy of garbage collection algorithms using node marking
(which all feature detail D) only the most important algorithms will be
discussed. The first algorithm to be discussed can be derived directly from
Algorithm G.T by adding detail N to the problem and imposing detail Don
the algorithm:

Algorithm GN.DT

Variables:
M: set of nodes,
T: bag of pairs (object, set of direct components).

Action:
M,T := {R},{(R,struct(R))}.
While T f ¢

Get (X,V) from T.
Case
1. Xis a structured object

If Vf¢
Get Y from V.
T := Tu {(X,V)}.
Case
1. Y is a structured object
I T := Tu {(Y,struct(Y)}}.
2. Y is an atomic object
I T :=Tu {(Y,¢)}.

2. Xis a reference object

I Let Y = obj(val(X)).
If YI. M
I M,T := Mu{Y},Tu{(Y,struct(Y))}.

3. Xis a scalar object
I Skip.

RELEASE4 •

The above algorithm satisfies the second and third restriction from
Subsection 5.1.1.4. The first restriction is only partially met (i.e., for
nodes X and their direct components Y).

The only reason to trace and visit separately the direct components
of an object in Algorithm GN.DT is to find the branches of the object. This
way of tracing and visiting objects makes the algorithm suitable for use
with type tracking. If it is possible to determine the branches of a node
directly (possibly at the expense of some space overhead) Algorithm GN.DT
can be speeded up substantially. Directly determining (tracing) the
branches of a node amounts to tracing all components of a node during a
visit to the node. In doing so it makes sense to either stop the tracing at
the branches of the node and visit nodes immediately after they are traced
(details E and R), or visit the branches immediately after they are traced
and stop the tracing at the nodes (details E and H). Notice that these two
possibilities exclude each other. To start with, consider the first
possibility:

Algorithm GN.DTER

Variables:
M: set of nodes,
T: bag of reference objects.

Action:
M,T := {R},bPanahes(R).
While T 1' r/)

Get X from T.
Let Y = obj(vaL(X)).
If Yi M

IM:=Mu{Y}.
For each Z € bPanahes(Y)
IT:=Tu{Z}.

RELEASE4.

This algorithm is the basis of many practical garbage collection
algorithms. We shall therefore discuss a number of important variants of
this algorithm, which are of increasing concreteness.

173

An important question is raised by the implementation of the bag T. A
naive implementation of T (such as a linked list) requires a space overhead
per reference object, which may be prohibitive in case of a high "density"
of reference objects. Due to problem detail N the space overhead caused by
the implementation of T can be reduced to a nodewise overhead (in contrast
.to Algorithm G.CTER). In order to illustrate this, Twill first be
implemented in terms of two variables U and C, where U is a bag of nodes
and C is a (partial) mapping from nodes to sets of reference objects,
according to the following implementation invariants:

C(X) c bPanahes(X) (X € U).

T = {Y € C(X) IX€ U}.

Thus the following algorithm is obtained (which is essentially Algorithm 3
from Chapter 3):

Algorithm GN.DTER*

Variables:
M: set of nodes,
U: bag of nodes,
C: mapping from nodes to sets of reference objects.

Action:
M,U,C(R) := {R},{R},bPanahes(R).
While U 'F r/)

Let X € U.
I£ C(X) 1' r/)

Get Y from C(X).
Let Z = obj(vaL(Y)).
If Z i M
I M,U,C(Z) := Mu{Z},Uu{Z},bPanahes(Z).

else
I u := u \ {X}.

RELEASE4.

A more concrete version of this algorithm can be obtained by implementing U
as a stack S, introducing problem detail Kand implementing Casa mapping

174

k from nodes to integers, according to the following implementation
invariants:

Ifs

C(X) {branch(X,i) I k(X) < i $ degree(X)} (XE U).

This results in the following algorithm (which is essentially Algorithm 5
·from Chapter 3):

Algorithm GNK.DTER**

Variables:
M: set of nodes,
S: stack of nodes,
k: mapping from nodes to integers.

Action:
M,S,k(R) := {R},<R>,O.
While S ,f <>

Let X = TOP(S).
If k(X) ,f degree(X)

k(X) := k(X) + 1.
Let Y = branch(X,k(X)).
Let Z = obj(vaZ(Y)).
If z I. M
I M,S,k(Z) := Mu {Z},PUSH(Z,S) ,o.

else
I s := POP(S).

RELEASE4 •

This algorithm can be viewed more or less as the "depth-first marking
paradigm". It is a frequently used algorithm, which is usually described in
its recursive form (concealing the stack S). The algorithm requires only a
nodewise space overhead: The integer k(X) associated with a node Xis small
($ degree(X)) and can be assumed to occupy a constant space (independent of
X). The surprising thing is that the space overhead caused by the stack and
the marking information can be eliminated (almost) entirely. This is
sketched below.

It is easy to infer from Algorithm GNK.DTER** that if there is an
object X on top of the stack and an object Y is pushed on top of it, then
the k(X)-th branch of X contains the reference of Y as its value. This
observation implies that between two strokes of the marking process the
stack S looks as pictured in Figure 3.3.a (where all nodes are assumed to
have four branches). Using two variable values p and q this situation can
be transformed without loss of information into the situation of Figure
3.3.b. The cross in this picture is a dummy value, which will be denoted by
niZ. In Figure 3.3.b the stack S has become entirely superfluous. The
garbage collection algorithm based on this idea has become known as the
"Deutsch-Schorr-Waite algorithm" and was first described in
[SCHORR & WAITE 67].

The Deutsch-Schorr-Waite algorithm can be derived very easily from
Algorithm GNK.DTER** by expressing the operations on Sin terms of the
implementation of Sas sketched in Figure 3.3.b. The operations on S
performed in Algorithm GNK.DTER** and their "translations" are given below:

S := <R> --r
p,q := ref(R),niZ

s # <>->
P # nil

Let X = TOP(S) ->
Let X = obj(p)

S := PUSH(Z,S) ->-
p,q,val(Y) := val(Y),p,q

S := POP(S) ->
If q = nil
Ip:= nil.
else

I
Let Y = obj(q).
Let Z = branch(Y,k(Y)).
p,q,val(Z) := q,val(Z},p

175

The fact that 0 ~ k(X) ~ degree(X) for each marked node X, and the fact
that k(X) is not affected for any unmarked node X, can be used to encode M
in the mapping k: Simply initialize all k(X) to degree(X} +1 (or any other
number< 0 or> degree(X)). The test "XI. M" is then equivalent to
"k(X) = degree(X) +1", making M redundant. Thus, through a simple
substitution process we obtain the Deutsch-Schorr-Waite algorithm (see also
Algorithm 6 in Chapter 3):

Algorithm GNK.DTER***

Variables:
k: mapping from nodes to integers,
p,q: values.

Action:
Let nil be a scalar value.
For each node XE dom(A)
I k(X} := degree(X) + 1.
p,q,k(R) := ref(R),nil,0.
While p # nil

Let X = obj(p).
If k(X) # degree(X)

k(X) := k(X) + 1.
Let Y = branch(X,k(X}).
Let Z = obj(val(Y)).
If k(Z) = degree (Z) + 1
I p,q,val(Y),k(Z) := val(Y),p,q,0.

else
If q = nil
Ip== nil.
else

I Let Y = obj(q).
Let Z = branch(Y,k(Y)).
p,q,val(Z) := q,val(Z),p.

RELEASE4.

RELEASE4:
For each node XE dom(A)

I If k(X) = degree(X) + 1.
I dom(A) := dom(A) \ sub(X).

176

Notice that, while traversing the nodes in RELEASEl, the counter k(X) of
each (reachable) node X can be re-initialized to deg:r>ee(X) + 1. If the
storage manager takes care that, when creating an object X, k(X) is set to
deg:r>ee(X) + 1 as well, the initialization loop for k at the beginning of the
algorithm can be skipped.

A new phenomenon can be observed in this algorithm. In all algorithms
discussed before none of the components of the storage management system H
was affected (not even temporarily), except A (as prescribed by the
definition of COLLECT GARBAGE). As a,consequence of this all system
invariants are satisfied everywhere in these algorithms. In the above
algorithm, apart from A, the graph G is also affected: In the algorithm the
value of reference objects is changed, thus disturbing a number of system
invariants (for example, (S5)). We had better be sure that the changes made
in Gare only temporary and that at the end of the algorithm, G is the same
as before (thus at the same time restoring the system invariants). The fact
that proving this, and the correctness of the above algorithm in general,
is not a sinecure is demonstrated by the comprehensive literature on the
subject [DE ROEVER 78], [DUNCAN & YELOWITZ 79], [GERHART 79], [GRIES 79],
[KOWALTOWSKI 79], [TOPOR 79], [DERSHOWITZ 80]. A detailed proof of
correctness of the above algorithm (withou~ RELEASEl and the implementation
trick for M) can also be found in Chapter 3.

Let us now consider the second way of speeding up Algorithm GN.DT,
i.e., the introduction of details E and H. Instead of nodes (as in
Algorithm GN.DTER) reference objects are then visited immediately after
they are traced:

Algorithm GN.DTEH

Variables:
M: set of nodes,
T: bag of nodes.

Action:
M,T := {R},{R}.
While T ,f, ¢

Get X from T.
For each Y € br>anahes(X)

I Let Z = obj(val(Y)).
If z ,t M
I M,T := Mu{Z},Tu{Z}.

RELEASE4.

This is essentially the algorithm described in [THORELL! 72], p. 560. Like
Algorithm GN.DTER this algorithm is the basis of many practical garbage
collection algorithms. It has the advantage over Algorithm GN.DTER that the
bag T contains nodes instead of reference objects, which makes it easy to
see that the algorithm requires only a nodewise space overhead. A
particularly efficient implementation of Algorithm GN.DTEH is possible if T
is implemented as a stack in linked list representation. (Check that nodes
do not occur twice in T.) The marking information can then be encoded in
the "link field" of a node, as described in:

Algorithm GNK.DTEH*

Variables:
i: mapping from nodes to values,
p: value.

Action:
Let nil and urunarked be different scalar values.
For each node XE dom(A)
I i(X) := urunarked.
p,i(R) := ref(R),nil.
While p ,f, nil

Let X = obj(p).
p := i(X).
Fork= 1 to degree(X)

Let Y = branah(X,k).
Let Z = obj(val(Y)).
If i(Z) = urunarked
I p,i(Z) := ref(Z),p.

RELEASE~*.

RELEASE~*:
For each node XE dom(A)

I If i(X) = urunarked
I dom(A) := dom(A) \ sub(X).

177

This algorithm is the first part of the so-called "LISP 2 garbage
collector" (see the solution of Exercise 2.5.33 in [KNUTH 68]). Notice that
the initialization loop for i can again be eliminated (see the remark below
Algorithm GNK.DTER***). Notice also that if we had used a queue discipline
instead of a stack discipline for the implementation of T, a list of all
reachable nodes emanating from the root R would have remained after the
marking phase (see [THORELLI 72], p. 563). This list could be used to speed
up RELEASE~*.

It is interesting to compare Algorithm GNK.DTEH* (LISP 2) with
Algorithm GNK.DTER*** (Deutsch-Schorr-Waite). The first ·thing to· be noted
is that Algorithm GNK.DTEH* will generally be considerably faster than
Algorithm GNK.DTER***. There are basically two reasons for this. Thi first
is that in Algorithm GNK.DTEH* all branches of a node are visited at the
same time while in Algorithm GNK.DTER*** they are visited on separate
occasions. The latter requires the recording (in the variable k) of
information concerning the branches of a node still to be visited. The
second reason is the rather complicated implementation of the stack S (from
Algorithm GNK.DTER**) in Algorithm GNK.DTER***. Though this implementation
causes no space overhead, the coding and decoding operations used are
rather expensive. (This can be compensated for somewhat by using Algorithm
GNK.DTER** with a small finite stack Sand changing to Algorithm
GNK.DTER*** if this stack is full [SCHORR & WAITE 67].) In Algorithm
GNK.DTEH* the bag T (from Algorithm GN.DTEH) is implemented in a simple and
efficient way, albeit that this implementation requires a space overhead.

This brings us to the space requirements of both algorithms. At first
sight there does not seem to be much difference: Both algorithms require
space for a mapping from nodes to values. These mappings are typically
implemented by reserving space in the location of each node X, in which
(the representation of) k(X) or i(X) is stored. The difference is that k(X)
is an integer in the range (O,degree(X) + 1), while i(X) is an arbitrary
scalar or reference value. If the number of branches of nodes is small (for

178

example 2, as in pure LISP), k(X) can often be encoded in a few unused bits
in the location of X. If the number of branches of nodes is large, or even
potentially infinite, a full extra cell in the location of X will be
necessary to store k(X). An extra cell will usually also be necessary to
store l(X). Swmnarizing, we can say that Algorithm GNK.DTER*** should only
be preferred to Algorithm GNK.DTEH* if speed is not all important and if
the number of branches per node Xis so small, that the counter k(X) causes
little or no space overhead.

The last garbage collection algorithm to be discussed is an example of
an algorithm which combines marking with visiting instead of tracing
(detail V):

Algorithm GN.DVEH

Variables:
M: set of nodes,
T: bag of nodes.

Action:
M,T := 121,{R}.
While T la 121

Get X from T.
If Xi M

M := Mu {X}.
For each YE bPanahes(X)

I Let Z = obj(vaZ(Y)).
T:=Tu{Z}.

RELEASE 4.

This algorithm corresponds to the algorithm described in [THORELL! 72],
p. 556. Remarks analogous to those made in comparing Algorithms G.TE and
G.VE (see Section 5.1.2) apply to a comparison of Algorithms GN.DTEH and
GN.DVEH.

All algorithms which have been discussed in this subsection perform
O(n) tests of the kind "Xi M", where n is the number of reachable
reference objects(= total number of branches of reachable nodes). Check
that, except for Algorithm GN.DT, the number of these tests performed in an
algorithm is proportional to the number of "primitive" operations performed
(i.e., operations which can be implemented in such a way that they take
0(1) time). The reason why this is not so for Algorithm GN.DT is that the
branches of a node are determined indirectly there. If the branches of a
node can be determined directly, garbage collection using node marking
takes O(n) time, which makes it the fastest of the four methods (when
applicable). Still, there are considerable differences in speed between the
various algorithms using node marking, as we have seen.

5. 2. COMPACTION

5.2.1. General discussion

5.2.1.1. Moving

The definition of the operation COMPACT as given in Chapter 4 implies
that it is the job of a compacter to establish the compactness of a storage
management system by reallocating objects and changing tne·· contents of
cells, while not affecting the system invariants and the layout of objects.
The fact that a compacter has to change the locations allocated to objects

179

and the contents of cells so as to establish the compactness of the storage
management system implies that, in principle, many system invariants and
the layout of many objects may be disturbed during a compaction. The
problems caused by this are greatly reduced if a compaction is performed in
terms of simple operations which do not affect any system invariants or the
layout of any objects. Unfortunately, such simple (in the sense of easily
implementable) operations do not exist. An operation which comes very close
is the following. It "moves" a node (and all of its components) to a new
·location not occupied by another node, thereby copying the contents of the
old location to the new location. This basic operation will be used in all
compaction algoritD.ms to be discussed:

MOVE(X,a):
Precondition:

Xis a node, XE dom(A),
a is an integer, left(S) ~a~ left(A(X)),
For each node YE dom(A), Y f X
I A(Y)nshift(A(X),a-Zeft(A(X))) =¢.

Action:
Let b = Zeft(A(X)).
Let s = b - a.
For each YE sub(X)
I A(Y) := shift(A(Y),-s).
For i Oto size(A(X))-1

I Let C = aeU(a+i).
Let D = aeU(b + i).
aont(C) := aont(D).

The effect of MOVE(X,a) is that the node Xis moved to a location with left
address a. The operation is defined for moves to the left only. It could
have been defined for moves to the right as well, but we shall not need the
latter in any of the algorithms to be discussed. The reason, of course, is
that a compacter must move all nodes to a compact location in the left part
of the store (see the definition of "compact" storage management system).
Notice that MOVE is indeed a "simple" operation: The abstract operations on
A reduce to empty actions in most (but not necessarily all)
implementations. What remains is the copying of a block of storage, for
which many concrete machines even have special instructions.

5.2.1.2. Updating

The operation MOVE, as can be checked without great difficulty, does
not affect the layout of any objects, while it violates only one system
invariant: (S23). (We assume, of course, that MOVE is only used when its
precondition is satisfied.) This invariant is concerned with the
representation of references in the store. It ·states that the reference of
an object Y is represented in the store by a "pointer" to the location of
Y, where a pointer is an address(= Zeft(A(Y))) augmented with (constant)
additional information(= R(:r•ef(Y)}). This is pictured schematically in
Figure 5.6.a, where R(ref(Y)) = 0 for each node Y.

180

5.6.a S: ----1
- -- -

._.,......~~~~~~~+,~-------------------------------------
5.6.b S:

5.6.c S:

Figure 5.6

If we choose the obvious compaction approach and simply move all nodes as
far to the left as possible, the violations of system invariant (S23) are
characterized by Figure 5.6.b: Instead of pointing to the new locations of
objects (as prescribed by system invariant (S23)), pointers still point to
the old locations. The compacter will therefore have to llupdate" all
pointers in the store ~o as to restore system invariant (S23), resulting in
the situation of Figure 5.6.c.

The above description of the work of a compacter gives rise to a
number of questions. The first is in which order the nodes should be moved
by the compacter, so as not to violate the precondition of MOVE. This
precondition implies that a node may only be moved to a location which does
not overlap with the location of any of the other nodes. The simplest way
to achieve this is to move nodes in the order from left to right. So, first
the leftmost node is moved as far to the left as possible, then the
leftmost but one, etc •• This method has the pleasant property that the
order of nodes in the store is preserved. The method is so-called "genetic
order preserving" [TERASHIMA & GOTO 78]. This does not only have advantages
in a virtual storage environment (where it may prevent "thrashing"), but it
also enables the implementer to make use of the fact that nodes have a
fixed order in the store. If we assume certain things concerning the size
of (the locations of) nodes, or if we assume that nodes are moved to a
separate free part of the store (see details E and Vin Subsection 5.2.1.5)
other ways to move nodes safely are conceivable. In algorithms where we
wish to keep the order of moving nodes abstract, we shall use the term
"moving order" to denote an arbitrary safe order of moving nodes.

The work of a compacter can now be described more precisely, though
very abstractly, by the following algorithm:

Algorithm C

Variables:
a: integer.

Action:
a:= l,eft(S).
For each node XE dom(A) in moving order

I MOVE(X,a).
a : = a + size (A(X)) •

For each reachable reference object X

I Let Y = obj(val,(X)).
cont(A{X)) := R(vaUX)) + 7,eft(A(Y)).

In the first for-loop nodes are moved and in the second, pointers are
updated, i.e., system invariant (S23) is restored.

5.2.1.3. Bookkeeping

181

Algorithm C may give the impression that compaction is a trivial
affair. The reason why it is not is that in a concrete implementation the
compacter must operate exclusively on the store S. In order to apply the
above algorithm the abstract components G, Rand A of the storage
management system H must be "eliminated" from the algorithm. This
elimination, though highly implementation dependent, is rather obvious (as
it was for the garbage collection algorithms discussed) except for the part
of the algorithm where pointers are updated. In that part the location A(Y)
of an object Y must be determined, which is obtained by dereferencing the
reference object X. In terms of operations on the store this amounts to
reading the contents P of A(X) and using P to determine the location of Y.
Since Y has been moved, by "location of Y" we mean the new location of Y.
P, however, is a pointer to the old location of Y. This raises the problem
of how to determine the new location of an object from a pointer to its old
location. The information necessary to solve this problem must be built up
by the compacter itself and will be called the "updating information". The
process of building-up this information will be referred· to as
"bookkeeping".

As can be inferred from the above, the work to be done by a compacter
splits up into three "phases":

(1) Bookkeeping.
In this phase the updating information is built up.

(2) Moving.
All nodes are moved to their new locations.

(3) Updating.
Using the updating information all pointers are updated.

This is only a "conceptual decomposition". In practice these phases can be
merged in many ways, as we shall see.

5.2.1.4. Some remarks

There is a minor problem, which has to do with the location of the
root. All objects are accessed through access paths emanating from the
root. This implies that after a compaction the concrete machine must know
where to find the location of the root. The simplest way to achieve this is
to give the root a fixed location in the leftmost part of the store, as in

182

Figure 5.6. None of the compaction algorithms which will be discussed in
the sequel will make any assumptions as to the location of the root,
however, though all of the algorithms keep the root in the leftmost part of
the store if it is already there (which is a consequence of the
precondition of MOVE). If the root is not in the leftmost part of the
store, the algorithms will generally move the root. The compacter should
then let the concrete machine know where the location of the root is. How,
is left open here.

The main overhead of a compacter is caused by the updating
information. Apart from that, there is also information involved in a
compacter which is comparable to the type and status information in a
garbage collector. For the required type information, the compacter can
usually rely entirely on the type information for the garbage collector,
which is already there. This also applies to the status information, except
that the space requirements for this kind of information are often much
less than in the garbage collector. Space reserved for the status
information of the garbage collector can then be used for other purposes
(such as storing updating information). The compaction algorithms will
therefore be classified according to the way the updating information is
represented. This leads to a classification of compaction algorithms in two
classes which will be discussed in Subsections 5.2.2 and 5.2.3.

The number of compaction algorithms which will be discussed is
considerably less than the number of garbage collection algorithms
discussed in Section 5.1. The reason for this is not that there is less
literature on compaction algorithms than on garbage collection algorithms.
Quite the contrary, there is more literature on the former than on the
latter. The reason is that in compaction algorithms, even more than in
garbage collection algorithms, there is the opportunity to use low level
implementation tri·cks ("pointer juggling"). If however, we remove the low
level implementation "sauce" from the algorithms, only a few really
different algorithms remain. These are the algorithms which will be
discussed. The removal of the implementation sauce has the pleasant side
effect of making the algorithms more digestible. The implementation tricks
will be discussed separately with the algorithms in which they can be used.
Each implementer will be able to make the translation from abstract to
concrete algorithm using the trick described. In some cases, the concrete
algorithm will also be described.

5.2.1.5. Compaction details

The details which will be used to classify the different compaction
problems and algorithms are given below. They will be explained the first
time they are used.

Compaction problem details

V: For each node XE dom(AJ
I left(SJ +!:YE G ndom(AJ [size(A(YJJ] ~ left(A(XJJ.

E: There is an integer N such that
for each node XE dom(AJ

I size(A(XJJ = N,
size(SJ = 0 (mod NJ,
left(A(XJJ-left(SJ = 0 (mod NJ.

L: If Vis a reference value,
then R(VJ = O.

D: If Xis a reference object, XE dom(A),
then Xis reachable.

N: If Xis a reachable reference object,
then obj(val(X)) is a node.

S: If Xis a reachable reference object,
Y = obj(val(X)),

then left(A(Y)J ~ left(A(XJJ.

183

H: Each node XE dom(A) has a component, denoted by head(X), which is
a scalar object.

R: If Xis a node, XE dom(A),
then aell(left(A(X))) is occupied by a branch of X.

Compaction algorithm details

F: The updating information is represented by a relocation map.

B: The updating information is represented by branch sets.

G: The order of nodes in the store is preserved.

M: The bookkeeping phase is combined with the moving phase.

U: The bookkeeping phase is combined with the updating phase.

P: The moving_phase is combined with the updating phase.

5.2.2. Compaction algorithms using a relocation map.

In the first class of compaction algorithms to be discussed the
updating information is represented by a mapping F, which maps the address
of a cell in the old location of a node to the address of the corresponding
cell in the new location of the node, as indicated in Figure 5.7.

new location old location
of node X of node X

S:

I ~ ~
f f

cell(F(a)) cell(a)

Figure 5.7

The three phases of a compacter which uses such a "relocation map" are
described by the following algorithm:

184

Algorithm C.F

Variables:
F: mapping from integers to integers,
a: integer.

Action:
Bookkeeping:

F,a := ¢,left(SJ.
For each node XE dom(A) in moving order

Let b = Zeft(A(X)).
Let s = b - a.
For each cell CE A(X)
I F(addr(C)) := addr(C) -s.
a := a+size(A(X)).

Moving:
a := Zeft(S).
For each node XE dom(A) in moving order

I MOVE(X,a).
a:= a+size(A(X)).

Updating:
For each reachable reference object X

I Let b = cont(A(XJ) - R(vaUXJ J.
aont(A(XJ J := R(vaUXJ J + F(b).

This algorithm will be the basis for all other algorithms to be
discussed in this subsection. Its implementation raises a series of
questions. In the bookkeeping and moving phase all nodes in the store are
"visited" in some unspecified safe order (which, of course, is assumed to
be the same in both phases). A first question is how the compacter is able
to "find" the nodes in the store. There are many (obvious) solutions to
this problem, of which we mention only two. First, the garbage collector
can build a linked list of the nodes in the store in moving order (usually
from left to right). This need not cost extra space if the free space
between the nodes in the store or the vacant space for the status
information of the garbage collector is used to build this list. Secondly,
the marking information left behind by the garbage collector can be_used to
find the nodes in the store.

In the updating phase all reachable reference objects are visited. If
nodes do not contain any type information and also the type information is
not known statically, the reachable reference objects must in principle be
visited in the same way as in the garbage collector (i.e., by keeping track
of status and type information). In all other cases it is possible to visit
nodes one by one (as in the other phases) and upon visiting a node, visit
all of its reachable branches. This implies that it must be possible to
tell whether an arbitrary branch of a node is reachable or not, which can
(possibly) be done by using the marking information of the garbage
collector. Check that this is not necessary if there are no dangling
pointers in the store (as with problem detail D). The updating phase can
then be implemented as follows:

Updating:
For each node XE dom(A)

I
For each YE branahes(X)

Let b = aont(A(Y)) - R(vaUY)).
I aont(A(Y)) := R(vaUY)) + F(b).

185

It will not be difficult to check now that, in principle, it is
possible to implement Algorithm C.F in such a way that it takes O(n) time,
where n is the total number of cells occupied by nodes in the store. The
space requirements for such an implementation would also be O(n): At least
n cells are required to store F, which is absolutely prohibitive in most
implementations. We shall now discuss a number of ways to reduce the space
overhead caused by F. As we have already seen with gqrbage collection
algorithms, the reduction of the space overhead will go at the expense of
either the speed or the generality of the algorithm.

If the old locations of nodes do not overlap with their new locations
(problem detail V) it is possible to store Fin the old locations of nodes,
thus reducing the space overhead to zero. Typically, this situation occurs
when compacting in a virtual storage environment from one "semispace"
[FENICHEL & YOCHELSON 69] to another. In order to implement F this way, the
bookkeeping and moving phase must be combined, as described in:

Algorithm CV.FM

Variables:
a: integer.

Action:
a := left(S).
For each node XE dom(A)

Let A A(X).
Let b = Zeft(A).
Lets= b-a.
MOVE(X,a).
For each cell CE A
I cont(C) := addr(C) - s.
a := a+size(A).

For each reachable reference object X

I Let b = cont(A(X)) - R(vaUX)).
cont(A(X)) := R(vaUX)) +cont(ceU(b)).

Notice that the requirement that nodes must be visited "in moving order"
has been omitted: Any order will do. The implementation trick for F"used in
this algorithm is essentially the same as used in all so-called "list
moving algorithms" [FENICHEL & YOCHELSON 69], [HANSEN 69], [CHENEY 70],
[REINGOLD 73], [CLARK 76] (see also Section 5.3), the only difference being
that the latter algorithms are concerned with the "LISP case" instead of
the general case of references to arbitrary subobjects of nodes. Note that
in the former case (where problem detail N applies) the statement:

For each cell CE A
I cont(C) := addr(C) - s.

can be replaced by:

cont(cell(b)) := a.

Another oppurtunity to implement F without any space or time overhead
arises when all nodes occupy locations of the same size Nat boundaries of
the kind (Zeft(S) + k * N), where k ;;:: 0 (problem detail E). The idea is that,
if n is the number of nodes in the store, only those nodes need be moved
which occupy a location with left address ;;:; b, where b = left(S) + n * N:
They fit exactly in the "holes" (of size N) with left address< b. The

186

locations abandoned by the moved nodes are never overwritten and can be
used to implement F according to the following implementation invariant:

V c E dom(F) [F(c) = if c < b then c else cont(ceU(c)) fi].

If, furthermore, all references refer to nodes (detail N), if there are no
unreachable reference objects (detail D) and if R(V) = 0 for all references
V (detail L) then the following algorithm can be derived:

Algorithm CENDL.FM

Variables:
a,b: integer.

Action:
a,b := left(SJ,right(SJ +1.
While a< b

While OCCUPIED(a)
I a :=a+N.
While FREE(b)
lb:=b-N.
If a < b

I
Let X = NODE(b).
MOVE(X,a).
cont(cell(b}) := a.

a,b := left(S),a.
While a < b

Let X = NODE(a).
For each YE branches(X)

I Let c 7 cont(A(Y)).
Ifc2?:b
I cont(A(Y)) := cont(cell(c)).

a:= a+N.

OCCUPIED(a):
a E {addr(CJ I C E U X E dom(A) [A(X)]}.

FREE(a):
a I. {addr(CJ ICE U XE dom(AJ [A(X)]}.

NODE(a):
The node XE dom(A) such that left(A(X)) = a.

This algorithm has been described in [HART & EVANS 64], [BOBROW 68]. When
used in a virtual storage environment the algorithm has the disadvantage
that it affects the order of nodes in the store in a rather wild way.

If neither problem detail V or E applies, implementation of F without
space or time overhead becomes more difficult. In the case of references
referring only to nodes, a reasonably space efficient implementation of F
is possible, provided that nodes are not moved before all pointers to them
have been updated, such as in the following algorithm:

Algorithm CNDL,FG

Variables:
F: mapping from integers to integers,
a: integer.

Action:
F,a := ¢,Zeft(SJ.
For each node XE dom(A) from left to right

I Let b = Zeft(A(X)).
F(b) := a.
a : = a + size (A(X)) •

For each node XE dom(A) from left to right

I For each YE bra:nches(X)

I Let b = cont(A(Y)).
cont(A(Y)) := F(b).

a:= Zeft(S).
For each node XE dom(A) from left to right

I MOVE(X,a).
a :=a+size(A(X)).

187

Due to the fact that nodes are not moved before all pointers to them have
been updated, F can be implemented by reserving a cell in the location of
each node X, in which the new value of Zeft(A(X)) is stored, If, for
instance, the leftmost cell of the location of a node is chosen for this
purpose, "F(b)" can systematically be replaced by "cont(ceU(b))" in the
above algorithm. The algorithm obtained this way is the compaction
algorithm used in the LISP 2 garbage collector (see [KNUTH 68], p. 602),
where it is combined with garbage collection algorithm GNK.DTEH*. The space
reserved in each node for the implementation of the mapping l in Algorithm
GNK.DTEH* can then be re-used for the implementation of F. Anyway, the
space overhead caused by Fin Algorithm C.F can be reduced to a nodewise
overhead in Algorithm CNDL.FG without deteriorating the speed of the
algorithm. Check that it is possible to divide the updating phase over both
the bookkeeping and moving phase in Algorithm CNDL.FG, thus reducing the
number of "scans" of the store to two instead of three. (This need not
necessarily improve the speed of the algorithm, because pointers must now
be inspected twice instead of once, in order to see whether they point to
the right or to the left.)

The implementation methods for F discussed so far all amount to
implementing Fas an array, viz., the store itself. The algorithms based on
these implementations operate in O(n) time, where n is the total number of
cells occupied by nodes, but they either require extra space or are
applicable in special cases only. We shall show now that, even in the most
general case, it is possible to implement F without any (significant) space
overhead. The price to be paid for this is an O(n log n) compaction time.

Prior to a compaction the part of the store occupied by nodes can be
viewed as a collection of compact locations with one or more free cells
between them. These locations will be called "blocks" (see Figure 5.8). It
is not difficult to see that if nodes are moved in the order from left to
right in Algorithm C.F, then (after the bookkeeping phase) the value
(addr(C) - F(addr(C))) for each cell C in a given block B will be the same:
It is the number of cells that B will be moved to the left. This number
will be called the "shift" of B (see Figure 5.8). By recording the shift of
Bin F(Zeft(B)) instead of recording the new address of each cell CE Bin
F(addr(C)) the space requirements for F can be reduced considerably as
described in Algorithm C.FG below.

)88

,,. -- -'---v---' '---v---' ~
block

shift = 0

Algorithm C.FG

Variables:

block
shift = 3

Figure 5.8

block
shift = 4

F: mapping from integers to integers,
a,t: integer.

Action:
Bookkeeping:

F,a,t := ¢,Zeft(S),-1.
For each node XE dom(A) from left to right

Let b = Zeft(A(X)).
Let s = b - a.
If s > t
I F(b),t := s,s.
a:= a+size(A(X)).

Moving:
a:= Zeft(S).
For each node XE dom(A) from left to right

I MOVE(X~a).
a:= a+size(A(X)).

Updating:
For each reachable reference object X

Let b = cont(A(X)) - R(vaUX)).
Let c = max{d E dom(F) Id~ b}.
Lets= F(c).
cont(A(X)) := cont(A(X)) -s.

block
shift = 6

The number of entries in Fin this algorithm is equal to the number m of
blocks in the store. Since each block, except possibly the leftmost, has at
least one free cell immediately at its left, the free storage contains at
least m - 1 cells. This implies that if each entry of F can be encoded in a
single cell, the implementation of F need not cause any space overhead
(apart from a small constant space): F can be encoded (almost) entirely in
the free storage.

Though the implementation of F need not cause any space overhead, the
process of updating a pointer has become more complex in Algorithm C.FG. In
order to find the shift of a block into which a (naked) pointer b points,
the domain of F must be searched for the maximal element d with d ~ b. The
efficiency of this searching operation depends entirely on the
implementation of F. A number of these implementations will now be
discussed.

A first way to implement F [WEGBREIT 72] is to perform the updating
phase before the moving phase and record F (c) in ce Z Z (c - 1) for each

189

c E dom(FJ. This is possible because each c E dom(F) is the left address of
a block, so cell(c -1) belongs to the free storage (where we assume for
convenience's sake that cell(left(S)) is also free). Determining the
maximal valued E dom(F) such that d ~ b for a given pointer b then amounts
to searching the first free cell at the left of cell(b). This searching
process makes compaction essentially an O(n2) process though a considerable
speed-up can be obtained by using a small amount of ~xtra storage
[WEGBREIT 72]. If there is sufficient room in a cell, or if the holes
between blocks are always sufficiently large, the cells containing the
values of F can be arranged in a binary tree, reducing compaction time to
O(n log n). An efficient method to do so has been described in
[TERASHIMA & GOTO 78]. When using this kind of implementation of F, the
combination of phases will generally be awkward, though not impossible.

A second way to implement F [HADDON & WAITE 67] is to represent Fas a
table, which contains pairs of the kind (c,F(c)) (c E dom(FJJ. If these
pairs fit in a single cell and if the bookkeeping and moving phase are
combined, the table can be constructed in the hole between the blocks which
have been moved and those which have not: If m blocks have been moved, this
hole will contain at least m -1 cells, while F contains m entries. Since
this hole moves to the right during the combined bookkeeping and moving
phase, the table "rolls" through the store. Though, in principle, this
rolling is a linear process [HADDON & WAITE 67] it shuffles the entries in
the table. Sorting is therefore necessary to restore the order of the
entries, so as to enable binary searching. Both the sorting and the binary
searching imply that compaction using this kind of implementation of Fis
an O(n log n) process. Methods to reduce the degree of shuffling of the
table and to speed up searching, using the extra free storage outside the
table, are described in [WAITE 73], [FITCH & NORMAN 78].

5.2.3. Compaction algorithms using branch sets

The second class of compaction algorithms to be discussed differs
entirely from the first. Instead of using a relocation map, the updating
information is represented by associating a set B(X) of referenc·e objects
with each node X. This set contains all reference objects with a value
referring to a subobject of X, as indicated in Figure 5.9.

B(X)

(

X

Figure 5.9

190

The three phases of a compacter which uses these "branch sets" are
described by the following algorithm, in which the moving phase is preceded
by the updating phase for reasons to become clear later:

Algorithm C.B

Variables:
B: mapping from nodes to sets of reference objects,
a: integer.

Action:
Bookkeeping:

B := {(X,¢) I Xe: G ndom(A)}.
For each reachable reference object X

I Let Y = node(obj(val(X))).
B(Y) := B(Y) u {X}.

Updating:
a:= left(S).
For each node Xe: dom(A) in moving order

Let b = left(A(X)).
Let s = b -a.
While B(X) f ¢

I Get Y from B(X).
aont (A(Y)) : = aont(A(Y)) - s.

a := a+size(A(X)).
Moving:

a:= left(S).
For each node Xe: dom(A) in moving order

I MOVE(X,a).
a:= a+size(A(X)).

In contrast to Algorithm C.F the reachable reference objects are now
visited in the bookkeeping phase. The same remarks made about the way of
visiting these reference objects in Subsection 5.2.2 apply here. Notice
that in the updating phase nodes could just as well be visited in reverse
moving order, provided we use the variable a in the reverse way as well.
(This remark, by the way, also applies to the bookkeeping phase of
Algorithm C.F.)

At first sight the implementation of Algorithm C.B may seem to require
a considerable space overhead. First, from a reference value V it must be
possible to determine the node containing obj(V). This will generally
require a space overhead per reference object. Secondly, a straightforward
implementation of the branch sets (for example, as linked lists) will also
require a considerable space overhead per reference object. All this
overhead will usually be unacceptable, unless the density of reference
objects is small. We shall show now, however, that it is often possible to
eliminate the overhead almost entirely. For that purpose we shall assume,
for the time being, that references refer to nodes only (thus eliminating
the first kind of space overhead). Algorithm C.B can then be written as
follows:

Algorithm CN.B

Variables:
B: mapping from nodes to sets of reference objects,
a: integer.

Action:
Bookkeeping:

B := { (X,¢) I X E G n dom(AJ}.
For each reachable reference object X

I Let Y = obj(val(X)).
B(Y) := B(Y) u {X}.

Updating:
a:= left(S).
For each node XE dom(A) in moving order

Let c = R(ref(X)) + a.
While B(X) f ¢

I Get Y from B(X).
cont(A(Y)) := c.

a :=a+size(A(X)).
Moving:

a:= left(S).
For each node XE dom(A) in moving order

I MOVE(X,a).
a:= a+size(A(X)).

I 91

In order to show how the branch sets can be implemented in a space
efficient way, let us for each node XE dom(A) choose an arbitrary atom of
X, which will be denoted by head(X). Immediately after the bookkeeping
phase in Algorithm_CN.B the situation for a node X and its associated
branch set B(X) can be pictured as in Figure 5.10.a.

B(X)

5. IO.a

5.10.b

heap(X)
I

' ® o o Ox
J

0 0 Ox

Figure 5.10

The situation can be transformed in such a way that the reference objects
in B(X) constitute a linked list, where the new value of head(X) refers to
the head of the list and the old value of head(X) acts as a list
terminator (see Figure 5.10.b). This transformation can be applied to all
nodes X simultaneously and without loss of information if and only if
head(X) is not itself a reference object, i.e., if head(X) is a scalar

192

object, Let us for the time being assume that this condition is satisfied
or, in other words, that problem detail H applies. This assumption, by the
way, is not unrealistic. It is often necessary to endow a node with
information concerning its type or size. An extra atom introduced in a node
X for this purpose is a good candidate for head(X).

Figure 5.10 now sketches an implementation of the branch sets without
any space overhead. This trick, which is somewhat similar to the Deutsch
Schorr-Waite trick discussed in Subsection 5.1.S, is in fact age-old: It is
essentially the same trick as used in one-pass assemblers to handle forward
references [WILKES et al. 57]. The literature on the use of this trick in
compaction algorithms is of a rather recent date [FISHER 74],
[THORELL! 76], [DEWAR & McCANN 77], [HANSON 77], [MORRIS 78], [JONKERS 79].
One thing which one should bear in mind when using this trick is the fact
that in a real implementation the linked lists do not consist of reference
objects (which are abstract things), but of the cells occupied by these
reference objects. This implies that a node X may never be moved if one of
its branches is still contained in the B(Z) of some node Z (with possibly
X = Z):

Additional precondition for MOVE(X,a)

branches(X) n U Z E G n dom(A) [B(Z}] = ¢.

It is easy to see that Algorithm CN.B satisfies this requirement (but only
because we made the updating phase precede the moving phase). Thus, by
rewriting Algorithm CN.B using the implementation trick for the branch sets
a three-phase compacter can be obtained. For reasons of efficiency it is
useful to combine phases, however. The following algorithm combines the
updating phase with both the bookkeeping phase. and the moving phase and
does not violate the additional precondition for MOVE:

Algorithm CND. BGUP

Variables:
B: mapping from nodes to sets of reference objects,
a: integer.

Action:
B,a := {(X,¢) IX E Gndom(A)},left(S).
For each node XE dom(A) from left to right

UPDATE(X,a).
For each YE branches(X)

I Let Z = obj(val(Y)).
B(Z) : = B(Z) u {Y}.

a:= a+size(A(X)).
a:= left(S).
For each node XE dom(A) from left to right

I
UPDATE(X,a).
MOVE(X,a).
a := a+ size(A(X)).

UPDATE(X,a):
Let c = R(ref(X)) + a.
While B(X) f ¢

I Get Y from B(X).
cont(A(Y)) := c.

This is the abstract version of the algorithm described in [JONKERS 79].

193

Just like we showed for the Deutsch-Schorr-Waite algorithm, a more concrete
version of this algorithm can be obtained from the abstract version through
a simple substitution process. For that purpose let us assume that problem
detail H applies. Using Figure 5.10 for guidance the operations on the
abstract variable B can be translated as follows:

B := {(X,111) IX€ Gndom(AJ}-+
Skip

B(Z) := B(Z) u {Y} -+
Let H = head(Z).
val(Y),val(H) := val(H),ref(Y)

While B(X) ~Ill-+-
Let H = head(X).
While val(H) is a reference value

Get Y from B(X) -+-
Let Y = obj(val(H)).
val(Y),val(H) := ref(X),val(Y)

Thus the following algorithm can be derived from Algorithm CND.BGUP:

Algorithm CNDH.BGUP*

Variables:
a: integer.

Action:
a:= Zeft(S).
For each node X € dom(A) from left to right

UPDATE(X,a).
For each Y € bra:nahes(X)

I Let Z = obj(val(Y)).
Let H = head(Z).
val(Y),val(H) := val(H),ref(Y).

a:= a+size(A(X)).
a:= Zeft(S).
For each node X € dom(A) from left to right

I UPDATE(X,a).
MOVE(X,a).
a:= a+size(A(X)).

UPDATE(X,a):
Let a = R(r,ef(X)) + a.
Let H = head(X).
While val(H) is a reference value

I Let Y = obj(val(H)).
val(Y),val(H) := ref(X),val(Y).
aont(A(Y)) := a.

Like the Deutsch-Schorr-Waite algorithm, this algorithm makes temporary
changes in the graph G, thus affecting a number of system invariants
(besides system invariant (S23)).

An even more concrete version of the above algorithm can be obtained
by translating the operations on the graph Gin terms of operations on the
store S. This is a highly implementation dependent affair which will be
omitted. One thing should be noted, though. In Algorithm CNDH.BGUP* the

194

fact that it can be established whether the value of head(X) is a scalar or
a reference value, is used, In low level terms this implies that it must be
possible to distinguish the representation of the original value of head{X)
(i.e., aont(A{head(X)))) from the representation of a reference value
(i.e., a pointer). If this should not be possible, it can be achieved
artificially by using an extra mark bit in each pointer, if available.

Algorithm CNDH.BGUP* is based on the assumption that each node X has
an atom head{X) which is a scalar object. Even if we drop this assumption
and choose an arbitrary atom of X for head(X), the described implementation
trick for the branch sets can be applied. An additional problem is then to
take care that not at the same time B(X) +¢and head(X) € B(Z) for some Z.
In order to achieve this it is sufficient to keep the following assertion
invariant:

Additional invariant for nodes X € dom(A)

B(X) + ¢ • bra:nches(X) n U Z € G n dom(AJ [B(Z)] = ¢.

Notice that this invariant can only be satisfied if phases are combined, as
in the following algorithm, which also satisfies the additional
precondition for MOVE:

Algorithm CND.BGMUP

Variables:
B: mapping from nodes to sets of reference objects,
a: integer.

Action:
Lets= I: X € G ndom(A) [size(A{X))].
B,a := {(X;¢) IX€ Gndom(A)},left{S)+s.
For each node X € dom{A) from right to left

a := a - size(A(X)).
UPDATE(X,a).
For each Y € bra:nches{X)

Let Z = obj(val(Y)).
If left(A(Z)) < left(A(X))
I B(Z) := B(Z) u {Y}.
else

I IfZ=X
I aont(A{Y)) := R(ref(X)) +a.

a:= lej't(S).
For each node X € dom(A) from left to right

UPDATE'(X,a).
MOVE(X,a).
For each Y € branahes(X)

I Let Z = obj(val(Y)).
If left(A(Z)) > left(A(X))
I B(Z) := B(Z) u {Y}.

a := a+size(A{X)).

UPDATE(X,a):
Let a = R(ref(X)) +a.
While B(X) + ¢

I Get Y from B(X).
aont(A(Y)) := a.

This ingenious algorithm is an abstract version of the algorithm described

195

in [MORRIS 78]. Notice that in the first phase of the algorithm the nodes
in the store are visited in the order from right to left instead of left to
right. Notice also that if all pointers point to the left (problem
detail S), large parts of the algorithm can be skipped. The algorithm then
corresponds to the algorithm described in [FISHER 74].

The operations on the abstract variable B can again be translated in
terms of the implementation sketched in Figure 5.10. The only difference
now is the translation of the test "B(X) 1' ¢", which amounts to:

val(head(X)) is a reference value and
obj(val(head(X))) is not a node.

(Note that an object can never be both a reference object and a node, since
nodes are structured objects.) In practice (i.e., in the store) this test
usually cannot be implemented without some overhead. It can always be
implemented at the expense of an extra bit per pointer. The actual
translation of Algorithm CND.BGMUP is left to the reader.

It is not difficult to see that, using the implementation trick for
the branch sets, Algorithms CN.B, CND.BGUP and CND.BGMUP can be implemented
in such a way that they operate in a time O(n), where n is the total number
of cells occupied by nodes, and require a space overhead of at most one bit
per pointer. Furthermore, Algorithms CND.BGUP and CND.BGMUP demonstrate
that the entire compaction process can be performed in two phases. This
raises the question which of these two algorithms should be preferred.

Though both algorithms operate in O(n) time, Algorithm CND.BGMUP will
generally be slower than Algorithm CND.BGUP for the following reasons:

(I) Reference objects are visited twice instead of once.
(2) Extra te·sts are performed to determine the direction a pointer is

pointing in.
(3) Nodes are visited in different orders in the two phases.
(4) The total number of cells occupied by nodes must be determined

beforehand.

The space overhead of both algorithms is the same. A point in favour of
Algorithm CND.BGMUP is that it is more generally applicable, because for
its implementation we do not have to rely on problem detail H (see also
below). The conclusion therefore is that, unless problem detail H does not
apply, Algorithm CND.BGUP should be preferred to Algorithm CND.BGMUP.

There is a realistic situation where we can even do better than
Algorithm CND.BGUP. Suppose detail H applies and we also have an unused
cell in the location of each node, for example because this cell has been
used by the garbage collector to store status information. We can use this
cell to store a relocation map, thus enabling a combination of the branch
set and relocation map compaction techniques. This idea is exploited in the
following algorithm, where the relocation map 'is used to update pointers to
the left and branch sets are used to update pointers to the right:

196

Algorithm CND.BFGU

Variables:
B: mapping from nodes to sets of reference objects,
F: mapping from nodes to integers,
a: integer.

Action:
B,F,a := {(X,¢) I XE G ndom(A)},¢,left(S).
For each node XE dom(A) from left to right

Let a = R(ref(X)) + a.
While B(X) t- ¢

I Get Y from B(X).
eont(A(Y)) := a.

F(X) := a.
For each YE branehes(X)

Let Z = obj(val(Y)).
If left(A(Z)) $ left(A(X)) I eont(A(Y)) := F(Z).
else
I B(Z) := B(Z) u {Y}.

a:= a+size(A(X)).
a:= left(S).
For each node XE dom(A) from left to right

I MOVE(X,a).
a:= a+size(A(X)).

Notice that the relocation map F has been defined in a slightly more
abstract way than in Subsection 5.2.2. This algorithm (which was only
discovered when writing Chapter 7) has the advantage over Algorithm
CND.BGUP that it has a separate moving phase which can be optimized
extremely (using "block moves"; see also Chapter 7). The extra tests to
determine the direction of pointers in Algorithm CND.BFGU pay off in the
immediate updating of pointers to the left. The only disadvantage of
Algorithm CND.BFGU as compared with Algorithm CND.BGUP is that the former
requires a space overhead and therefore is less generally applicable than
the latter.

So far we have restricted ourselves to the case of references
referring to nodes only (problem detail N). Let us now consider the general
case of references to arbitrary subobjects of nodes (Algorithm C.B). The
implementation of the branch sets and the implementation of the expression
"node(obj(vaUX)))" will then, in general, require an additional space
overhead. Yet, there are situations where this space overhead may be
eliminated to a great extent. Suppose, for reasons other than compaction,
it must be possible, given a reference value V, to determine node(obj(V)).
A frequently used way to achieve this is to represent references in an
"enriched" way. For example, a reference to a subobject Y of a node X may
be represented by an address-offset pair:

(left(A(X)), left(A(Y)) - left(A(X))).

The first element of this pair can be employed to implement the branch sets
through the trick described above. The compacter, in fact, can treat all
references as if they refer to nodes by considering only the address part
of pointers. Provided that pointers are enriched it is easy to see,
therefore, that Algorithms CND.BGUP, CND.BGMUP and CND.BFGU can be
generalized to the case of references to arbitrary subobjects of nodes

197

without causing any significant time or space overhead.
Algorithm CND.BGMUP can be adjusted in such a way that it is

applicable in the general case without any additional time or space
overhead, even if pointers are not enriched (which is a second point in
favour of Algorithm CND.BGMUP as compared with Algorithm CND.BGUP). This
can be explained as follows. Consider the state of the graph as pictured in
Figure 5.11.a, where the order from left to right corresponds to the order
according to which atomic objects are located in the store.

5. 11. a

S. 11. b

Figure 5.11

If we replace each reference value Vin Figure 5.11.a by a reference value
referring to the leftmost atom of obj(V), if we remove all objects except
atomic objects and if we replace each atomic object X by a node containing
X as its single component, then the situation of Figure 5.11.b is obtained.
We can perform a compaction now as if the graph had the shape of Figure
5.11.b. It is not difficult to see that this compaction will (under ~ertain
conditions) have the same effect on the store as when the graph had the
shape of Figure 5.11.a. Since references refer to nodes only in Figure
5.11.b, Algorithm CND.BGMUP can be used (but not Algorithm CND.BGUP, let
alone Algorithm CND.BFGU). This unstructured application of Algorithm
CND.BGMUP cannot be expressed well in terms of the graph of Figure 5.11.a.
It can in fact only be expressed in terms of operations on the store, which
is done in [MORRIS 78]. In using this low level version of the algorithm
one should be very careful to make sure that it has the desired high level
effect.

5.3. COMPACTING GARBAGE COLLECTION

As can be inferred from the definition of the operation
COLLECT GARBAGE & COMPACT, the effect of a compacting garbage collection
should be equal to the effect of a garbage collection followed by a
compaction. The simplest way to construct a compacting garbage collector is
therefore to independently construct a garbage collector and a compacter,
and join the two together. The overhead, both in time and space, required
for a compacting garbage collector can often be reduced considerably,

198

however, if the garbage collector and the compacter are tuned to each
other and their actions are combined. A precondition for such a combination
is that we know beforehand that a compaction must be performed, and do not
let this depend on the outcome of the garbage collection (such as in a
"conditionally compacting garbage collector").

In this section we shall discuss through a number of examples how
garbage collectors and compacters can be efficiently combined. Since the
garbage collection and compaction algorithms used in these examples have
already been discussed (at least in their abstract form), only short
comments on the examples will be given, including references to literature.
The algorithms will be denoted by the label "G&C" followed by a number of
problem details (so no algorithm details are specified). The problem
details are chosen from the garbage collection and compaction problem
details (see Subsections 5.1.1.7 and 5.2.1.5).

A general remark which can be made is that compaction algorithms using
a relocation map are not very suitable to be merged with garbage collection
algorithms. The reason is (see Algorithm C.F) that in the bookkeeping phase
of these compaction algorithms the nodes in the store must be visited in
moving order. This moving order can usually only be determined after the
garbage collection has been completed. There is one exception. If the old
locations of nodes cannot be overwritten by the new locations (problem
detail V) any order will do as a moving order. In particular, if we assume
that references refer to nodes only (problem detail N), the order according
to which nodes are visited by the garbage collector can be chosen. Upon
tracing a node for the first time, the garbage collector can immediately
move the node to its new location and update the pointer through which the
node was traced. Upon tracing the node after the first time, only the
pointer in question need be updated. Thus garbage collection and compaction
can be performed in a single phase.

The compacting garbage collection problem with additional details V
and N is also known as the "list moving problem" [REINGOLD 73], [CLARK 76],
though the latter problem is usually restricted to the case of LISP-like
nodes. The "list copying problem" [LINDSTROM 74], [FISHER 75], [ROBSON 77],
[CLARK 78] is the same as the list moving problem except that the contents
of the old locations of nodes may not be destroyed. Each list copying
algorithm will do as a list moving algorithm, but is unnecessarily
complicated for the purpose of moving a list. List copying algorithms will
therefore not be discussed. List moving algorithms typically require no
additional storage (though old versions [FENICHEL & YOCHELSON 69],
[HANSEN 69] did, because they used recursion). The algorithm described
below is a generalization of [CHENEY 70] (without the "cdr encoding"). It
is essentially a combination of garbage collection Algorithm GN.DTEH and
compaction Algorithm CV.FM. The bag T from Algorithm GN.DTEH is implemented
as a queue and the set Mis implemented by using the fact that the first
cell of the location of a node contains the representation of a reference
(problem detail R) and that old and new representations of references can
easily be distinguished (assuming problem detail 1):

Algorithm G&CNVRL

Variables:
a,b: integer.

Action:
a,b := left(S),left(S).
Let C = cell(left(A(R))).
MOVE(R,b).
cont(C) := b.
b : = b + size (A(R)).
While a f b

Let X = NODE(a).
a :=a+size(A(X)).
For each YE branches(X)

Let c = cont(A(Y)).
LetD=ceU(c).
If cont(D) ;;: b

Let Z = NODE(c).
MOVE(Z,b).
cont(D) := b.
b := b+size(A(Z)).

cont(A(Y)) := cont(D).
dom(A) := dom(A) \ {X E dom(A) I left(A(X)) ;;: b}.

NODE(a):
The node XE dom(A) such that left(A(X)) = a.

199

The list moving algorithms described in [REINGOLD 73], [CLARK 76] are LISP
tuned variations of this algorithm. They use garbage collection Algorithm
GN.DTER rather than Algorithm GN.DTEH, where the bag Tis implemented in
the old locations of nodes as a stack in linked list representation.
[CLARK 76] is essentially the same as [REINGOLD 73], except that the use of
the stack and the updating of pointers is optimized in the former.

Compaction algorithms using branch sets, in contrast to those using a
relocation map, can be combined very well with garbage collection
algorithms. In the bookkeeping phase of these compaction algorithms all
reachable reference objects are visited, which is also done in a garbage
collection algorithm. Therefore these visits can be combined. An example of
this is the following algorithm, which is a combination of Algorithm
GNK.DTER** and Algorithm CN.B:

200

Algorithm G&CNK

Variables:
M: set of nodes,
S: stack of nodes,
k: mapping from nodes to integers,
B: mapping from nodes to. sets of reference objects,
a: integer.

Action:
M,S,k(R) := {R},<R>,O.
B := {(X,¢>) I X E G ndom(A)}.
While S 'F <>

Let X = TOP(S).
If k(X) 'F degree(X)

k(X) := k(X) +1.
Let Y = branah(X,k(X)).
Let Z = obj(val(Y)).
If z i M
I M,S,k(Z) := Mu{Z},PUSH(Z,S),O.
B(Z) := B(Z) u {Y}.

else
I s := POP(S).

a:= Zeft(S).
For each node XE dom(A) from left to right

If Xi M
I dom(A) := dom(A) \ sub(X).
else

Let a = R(ref(X)) + a.
While B(X) 'F ¢>

I Get Y from B(X).
aont(A(Y)) := a.

a:= a+size(A{X)).
a:= Zeft(S).
For each node XE dom(A) from left to right

I MOVE(X,a).
a := a+size(A(X)).

This is the abstract version of the algorithms described in [THORELL! 76],
[DEWAR & McCANN 77], [HANSON 77]. The latter algorithms differ only in the
way the variables Sand k are implemented. The variable Mis implemented in
all three algorithms using the following invariant of the first while loop:

For each node XE dom(A)
I X € M .. B(X) 'F ¢> V X = R.

The variable Bis implemented using problem detail Hand the trick
described in Subsection 5.2.3. Notice that if upon visiting a node X the
original value of head(X) is required, the entire list emanating from
head(X) must be traversed.

201

In [DEWAR & McCANN 77] an explicit (bounded) stack is used for the
implementation of both Sand k. [THORELL! 76], [HANSON 77] use an extra
atom per node for the implementation of Sand k. [HANSON 77] uses the extra
atom for a linked list representation of S, while [THORELL! 76] uses the
extra atom to store k and as a list head for the implementation of B. Both
exploit the fact that if X = TOP(S) and Y = 1'0P(POP(S)), then
branch(Y,k(Y)) is terminating the list emanating from head(X). In
[HANSON 77] this is used to recover k(Y) and in [THORELL! 76] this is used
to recover Y when popping S. The list traversals necessary for this make
the algorithms operate in O(n2) time in the worst case. The list traversals
can be avoided at the expense of a second extra atom per node. This makes
it rather surprising that Algorithm GN.DTEH has not been used instead of
Algorithm GNK.DTER**. The former is not only faster than the latter, it
also requires only a single extra atom per node in combination with
Algorithm CN.B to obtain an O(n) three-phase compacting garbage collector
(see also Chapter 7).

The two compacting garbage collection algorithms discussed above are
based on problem detail N (though Algorithm G&CNVRL can easily be
generalized). We shall now present an algorithm which is applicable in the
general situation of references to arbitrary subobjects of nodes. The idea
behind this algorithm is as follows. At the end of a garbage collection
algorithm using reference marking, the marking information M consists of
the set of all reachable reference objects, which is exactly the union of
all branch sets after the bookkeeping phase of Algorithm C.B. Assuming
problem detail L, the branch sets can be recovered from M by using the
following property:

For each node XE dom(A)
I B(X) {YEM I Zeft(A(X)) ~ cont(A(Y)) ~ right(A(X))}.

Efficient use of this property can only be made if the elements of Mare
sorted according to increasing contents. This is done in the following
algorithm, which can be viewed as a combination of Algorithm G.CTER and
Algorithm C.B. The variable M from Algorithm G.CTER is represented in this
algorithm by a variable set L of reference objects using the following
invariants:

M LuTandLnT ¢.

202

Algorithm G&CL

Variables:
L,T: set of reference objects,
a,k: integer.

Action:
L,T := ¢,branahes(RJ.
While T # ¢

Let XE T.
L, T : = L u {X}, T \ {X}.
Let Y = obj(val(XJJ.
For each Z E branahes(Y)

I IfZI.LuT
I T := Tu {Z}.

Let Y1,•·•,Yn be the elements of L, ordered in such a way that
aont(A(Yi)) $ aont(A(Yi+iJJ (i 1, •.• ,n -1).
a,k := left(SJ,1.
For each node XE dom(A) from left to right

Let b left(A(X)J.
Lets b-a.
Let f. k.
While k $ n and aont(A(Yk)J $ right(A(XJJ

I aont(A(Yk)) := aont(A(Yk)) -s.
k := k+l.

If f. = k and X # R
J dam(A) := dom(AJ \ sub(X).
else
I a:= a+size(A(XJ).

a:= left(SJ.
For each node XE dom(AJ from left to right

I MOVE(X,a).
a : = a + size (A(X J J •

This is the algorithm described in [ZAVE 73], where the sets Land Tare
implemented as linked lists. The space overhead per reference object
required for the implementation of Land T can be reduced by using the fact
that L n T = ¢, while the test "Z I. Lu T" can be performed cheaply using the
same trick as in Algorithm GNK.DTEH* (though in [ZAVE 73] an explicit mark
bit is used). The sorting of the elements of L can be done efficiently
using the radix list sort [KNUTH 73]. In [ZAVE 73] the first pass of the
sort is combined with the operations on L (using a multi-linked-list
representation for L).

The use of garbage collection Algorithm G.CTER makes Algorithm G&CL
operate in an O(n2J worst case time, where n is the number of reachable
reference objects. An O(n log n) time overhead is also introduced because
of the necessary sorting. Furthermore, a considerable space overhead per
reference object is required. The algorithm, on the other hand, is
applicable in the case of references to arbitrary subobjects of nodes. Yet,
the use of a combination of Algorithms G.CTER and C.B in a way similar to
Algorithm G&CNK may deserve consideration instead, requiring no sorting and
about the same space overhead. We shall conclude this section with the
presentation of another combination of Algorithms G.CTER and C.B. The
algorithm to be presented shows that, even in the most general case, it is
possible to perform an entire compacting garbage collection in only two
phases. Since the algorithm visits reference objects twice instead of once
and since it does not have a separate moving phase (which is "impossible"

203

in a two-phase compacting garbage collector) it need not necessarily be
more efficient than a three-phase combination of Algorithms G.CTER and C.B
analogous to Algorithm G&CNK, however. The algorithm is presented without
connnent below.

Algorithm G&C

Variables:
M,T: set of reference objects,
B: mapping from nodes to sets of reference objects,
a: integer.

Action:
M,T,B := bra:nches(R),branahes(R),{(X,r/J) IX E Gndom(A)}.
While T r r/J

Get X from T.
Let Y = obj(val(X)).
For each Z E branahes(Y)

I IfZiM
I M,T := Mu{Z},Tu{Z}.

Let Z = node(Y).
If left(A(Z)) s left(A(X))
I B(Z) : = B(Z) u {X}.

a:= left(S).
For each node XE dom(A) from left to right

If B(X) = r/J and X r R I dom(A) := dom(A) \ sub(X).
else

Let b = left(A(X)).
Let s ,;, b-a.
While B(X) r r/J

I Get Y from B(X).
aont(A(Y)) := aont(A(Y)) - s.

MOVE(X,a).
a := a+size(A(X)).
For each YE branahes(X)

If Y E M

I Let Z = node(obj(val(Y))).
If left(A(Z)) > left(A(Y))
I B(Z) := B(Z) u {.Y}.

5.4. CONCLUSION

In this chapter we have made an attempt to systematically order (a
substantial part.of) the existing knowledge in the field of garbage
collection, according to the lines sketched in Chapter I. The key to the
success of this enterprise was the storage management model introduced in
the previous chapter. This model has turned out to be sufficiently concrete
to enable the definition of the garbage collection and compaction problem,
as well as sufficiently abstract to allow for the description of widely
differing garbage collection and compaction algorithms in an implementation
independent way.

In certain respects the model can be criticized, though. The model
includes a number of simplifications, such as: there is only one root,
there are no objects with fixed locations, atomic objects occupy exactly
one cell, cells contain (unbounded) integers, there are no alignment

204

restrictions, etc •• The purpose of these simplifications is, of course, to
keep the model, and consequently the algorithms, as simple as possible.
Though the model could certainly be extended to eliminate a number of the
simplifications, it is felt that each implementer is perfectly capable of
undoing these simplifications when adjusting an algorithm to his particular
implementation.

A criticism which is related to the above is that the algorithms which
we have described are too abstract, too far away from "real" garbage
collectors. Indeed, almost all algorithms which we have presented are more
abstract than their counterparts in literature. The reason is that (helped
by the model) we have systematically tried to catch the essence of an
algorithm and dispose of irrelevant detail. This increases both the
applicability and the legibility of the algorithms. It also increases the
distance to an implementation. Still, as with the simplifications in the
model, it is felt that each implementer can easily bridge the gap from
abstract algorithm to concrete implementation. The abstract algorithm is
even believed to make the process of implementing a (compacting) garbage
collector easier and more reliable. The abstract algorithm is easy to
understand and can act as a handhold in keeping the implementation process
in one's mental grip. At the same time it provides the implementer with the
necessary freedom to choose an efficient implementation.

The fact that we could describe the algorithms as abstractly as we
did, can be attributed for the major part to the language which we have
used. This was not a fixed, and consequently inflexible, programming or
specification language, but rather a loose algorithmic language which we
were free to extend whenever we felt like it. The latter is similar to the
way mathematicians introduce new notations whenever they find it useful to
do so. As we have tried to argue in the introduction of Chapter 4, the
resemblance to mathematics goes further than this. The language used by
mathematicians and the language used here for the description of the
algorithms and data structures (in particular, the model) are both loose,
but precise. The fact that the language is indeed precise we have tried to
demonstrate in Chapter 2, where the first steps to a formalization of this
language are taken.

205

CHAPTER 6

DESIGN OF A STORAGE MANAGER

6.0. INTRODUCTION

The usual way to obtain a portable implementation of a programming
language Lis to construct a compiler C, which translates programs in L
into code for an "abstract machine" M [ELSWORTH 79]. The latter is a
hypothetical machine, which is designed in such a way that it is easily
implementable on a large class E of existing machines. Given the compiler
C, the job of an implementer is then, apart from installing C, to implement
Mon his particular machine M'. If M' EE, this involves only a minor
overhead. The price to be paid for portability is thus kept to a minimum.

In each implementation of a programmi~g language the problem of
storage management must be solved. Let us consider this problem in the
context of the above approach to programming language implementation. A
first way to "solve" the problem is to pass it to the implementer of the
abstract machine M. This implies that the operations which have to do with
storage management are kept abstract in M, much like the way in which they
are kept abstract in the programming language L. The advantage of this
approach is twofold. First, the problems of code generation and storage
management are separated entirely. The designer of the code generator need
not get engaged in the details and intricacies of a storage management
system. This greatly simplifies the design of the code generator. Secondly,
each implementer can design a storage management system of his own. Since
he can tailor this storage management system to his particular machine, it
will probably be quite efficient. On the other hand, the design and
implementation of a storage management system may involve a considerable
overhead in the implementation of the abstract machine M. This, of course,
is in contradiction to the requirement that M should be easily
implementable.

The way out is not to change the abstract machine M, but instead
provide it with a standard storage management system written in a subset of
the instruction code of M. Such a storage management system can be viewed
as an implementation of those instructions of M, which relate to storage
management, in terms of simpler instructions of M. The two advantages
mentioned above are retained this way. Code generation and storage
management remain separated, and each implementer is still free to design
his own storage management system. If the overhead of designing and
implementing a storage management system is considered to be too large,
however, the standard storage management system can be used. The only
remaining disadvantage is that, because the standard storage management
system is machine independent, it is probably not optimally efficient on
each existing machine. A careful design of the system may _remove a great
deal of this objection.

This chapter deals with the problem of designing a (standard) storage
management system as described above. It will be demonstrated by means of
an example, how this problem can be tackled in a systematic way. The
example is not artificial, it is taken from the construction of an ALGOL 68
[VAN WIJNGAARDEN et al. 76] compiler which has been under development at

206

the Mathematical Centre. In this compiler the above approach is pursued.
The abstract machine used in this compiler is called the "MIAM" ("Machine
Independent Abstract Machine") [MEERTENS 81]. The treatment will be such
that no knowledge of either ALGOL 68 or the MIAM is required.

Let us first discuss the problem in general terms. The nature of a
storage management system to be designed for an abstract machine depends to
a large extent on the operations performed by the abstract machine. The
first thing to do therefore is to investigate which requirements are
imposed by the abstract machine on a storage management system and also
which properties of the abstract machine can be used to make the storage
management system more efficient. For all but simple abstract machines this
is a complicated job. The point is that one easily gets mixed up in all
kinds of details of the abstract machine, which are completely irrelevant
to the storage management problem. The only way to avoid this is to bring
about a "separation of concerns". That is, an abstraction of the abstract
machine should be made, which contains only those details of the abstract
machine which are or may be relevant to the storage management problem. In
such a (usually rather rudimentary) model of the abstract machine the
problem of storage management can be studied in isolation, which makes the
problem much easier to grasp.

Apart from the latter, there are a number of additional advantages.
First of all a storage management system designed this way is in a sense
generally applicable. It cannot only be used with the abstract machine it
was designed for, it can also be used with any other machine that "fits"
the model. So it is machine independent in a double sense. The second
advantage is that it aids to a modularization of the process of compiler
construction. Through the model the storage management problem can be
presented to someone (for example, a specialist in designing storage
management systems), who need not know anything of the programming language
or abstract machine in question. Finally, it allows a non-trivial storage
management system to be discussed as it is in this chapter, without
perishing in a host of implementation details.

As mentioned before, the method will be demonstrated by the design of
a machine independent storage management system for the abstract machine
MIAM, which is used in a machine independent ALGOL 68 implementation. In
the next section the model of the MIAM will be presented (after which one
can forget about the MIAM completely). Then the storage management problem
will be formulated in Section 6.2. The design of an efficient machine
independent storage management system will be described in Section 6.3. The
conclusion of this chapter is contained in Section 6.4.

6. I. MODEL

6.1.1. Data structures

Let us first look at the data structures upon which MIAM programs
operate. Considered at the lowest level these data structures are merely
pieces of storage. Here a more abstract look will be taken at them. They
will be considered as abstract objects, which are called "areas". Different
areas correspond to disjoint pieces of storage. There are two kinds of
areas, called "locales" and "blocks":

An area is either a locale or a block.

207

Speaking in technical terms a locale corresponds to an "activation record"
and a block corresponds to a "data area". That is, if during the execution
of an ALGOL 68 program the range S showed in Figure 6.1 is entered, a
locale L will be created in the MIAM, after which we say that "control
resides in L". On arrival at the declaration of the array A a block B (for
the elements of A) will be created. We shall say that B is "created in L".

s

I
I
I
I

~

[1:n] int A;

I
I

end

Figure 6. I

Areas have a number of entities associated with them. First consider
locales:

Each locale L has:

- status(L): variable status,
- type(L): constant type,
- scope(L): constant integer,
- establisher(L): constant locale.

status(L), type(L), scope(L) and establisher(L) will be called the
"status", "type", "scope" and "establisher" of L, respectively. The status
of L indicates whether Lis "alive" or "dead":

A status is an element from the set {alive,dead}.

Intuitively speaking a locale is alive if control resides in it or if
control will ever return to it. Otherwise the locale is dead. The type of L
is a value, the exact nature of which is complet~ly irrelevant here. The
only thing we need to know is that the (machine independent) type of L
determines the (machine dependent) size of the piece of storage
corresponding to L. The scope of Lis the ALGOL 68 scope of the range
corresponding to L. The latter is an integer which indicates the lifetime
of the locale (the larger the scope, the shorter the locale will live). The
establisher of L corresponds to what is usually called a "dynamic link". It
is the locale where control resided innnediately before control was
transferred to L. For instance, if in Figure 6.1 prior to entering the
range S control resides in the locale Mand entry of the range S results in

208

the creation of a locale L, then estabZisher(L) M.
Next consider blocks:

Each block B has:

- status(B): variable status,
- type(B): constant type,
- scope(B): variable integer,
- generator(B): variable locale.

status(B), type(B), scope(B) and generator(B) will be called the "status",
"type", "scope" and "generator" of B, respectively. The status, type and
scope of Bare analogous to the corresponding entities associated with
locales. The generator of Bis the locale in which B was created. For
instance, if in Figure 6.1 entry of the range Sand execution of the
declaration of A resulted in the creation of a locale Land a block B
respectively, then immediately after that generator(B) = L. The reason why
the scope and generator of a block are variable and not constant entities
will be discussed later.

The above covers the discussion of areas. However, areas are not the
only data structures which are of interest-to the storage management
problem. One of the more exotic features of ALGOL 68 is the possibility of
specifying that certain parts of a program should be executed in parallel,
where synchronization can be done through "semaphores" [DIJKSTRA 68].
Programs using this feature will be called "parallel programs". The other
"normal" programs will be called "sequential programs". In order to model
parallellism neatly, the concept of a "process" must be introduced. As
opposed to areas, processes do not correspond to separate pieces of
storage. They are "embedded" in locales.

Let us first discuss processes informally. In general a number of
processes will be active simultaneously during the execution of a program
on the MIAM, where each process has its own control. Only when executing a
sequential program is there only one active process. Suppose control of the
active process Presides in the locale L corresponding to the range Sin
Figure 6. 2. When control arrives at the parallel clause "par (Sl,S2·,S3)",
which specifies that Sl, S2 and S3 should be executed in parallel, t_hree

s

b.mJ
I
I
I
I
I
I
I
I

12if(S1, S2, S3);
' I
I
I
I
I
I
I

md

Figure 6.2

209

new active processes Pl, P2 and P3 (corresponding to S1, S2 and S3) will be
created, while P becomes inactive until Pl, P2 and P3 are completed. That
is, P "ramifies" over Pl, P2 and P3. We shall say that Pl, P2 and P3 are
"created by Pin L".

The concept of a process will now be defined more precisely:

Each process P has:

- mode(P): variable mode,
- origin(P): constant locale,
- environ(P): variable locale,
- spawner(P): constant process.

mode(P), origin(P), environ(P) and spawner(P) will be called the "mode",
"origin", "environ" and "spawner" of P, respectively. The mode of P
indicates whether Pis "active", "spawned" (= ramified over a number of
processes) or "completed":

I A mode is an element from the set {aative,spawned,aompleted}.

The origin of Pis the locale in which P was created and the environ of P
is the locale in which control of P currently resides. The spawner of Pis
the process which created P. For instance, in the example discussed in the
previous paragraph, spawner(Pl) = spawner(P2) = spawner(P3) = P.

From the data structure point of view the model of the MIAM can now be
regarded as a collection of four variables:

The model consists of:

- L: variable set of locales,
- 8:. variable set of blocks,
- P: variable set of processes,
- R: variable process.

The variables L, B and P represent the set of all locales·, blocks· and
processes respectively which have so far been created during the execution
of a program. The variable R has to do with the fact that the MIAM is a
sequential machine. Only one process at a time can be executed on the MIAM,
which implies that parallellism must be "serialized". The variable R
indicates which (active) process is currently being executed. R will be
called the "running process" and the environ of R will be called the
"current environ".

Prior to the execution of a program the following holds:

210

Initially:

- L {Lal,
- B ID,
- p {Po},
- R Po,
where Lo is a locale such that:

- status(Lo) = alive,
type(Lo) = ~,
saope(Lo) = O,
establisher(Lo) Lo,

and Po is a process such that:

- mode(Po) = aative,
- origin(P0) = Lo,
- environ(Po) = Lo,
- spaumer(Po) = Po.

Here"~" denotes some unspecified type. The locale Lo, which will stay
alive during the entire execution of a program, will be called the "initial
locale". The process Po will be called the "initial process".

This completes the data structure part of the MIAM model. A thing one
can argue about is whether the data structures described capture all
information relevant to the storage management problem. An important
concept that seems to be missing is that of a "reference" between areas, or
put more abstractly, the concept of "reachability". This is an important
concept because of the occurrence of "heap objects" in ALGOL 68, which
correspond to areas with "infinite" lifetimes (their scope is zero). The
only effective way to cope with the storage management problems caused by
these objects is the use of a "garbage collector" (see Chapter 4, Section
4.1). The design of a garbage collector is a problem in its own right,
which will not be discussed in this chapter. The concept of reachability
will therefore not be introduced in the model. Instead a garbage collection
operation will be introduced as a primitive operation in the problem
definition. The design of a garbage collector, i.e., the implementation of
the latter primitive operation, will be discussed in the next chapter.

6.1.2. Operations

Let us now look at the operations performed by the MIAM. They can be
modelled in terms of operations on the data structures described above.
Before doing so a few definitions will be introduced.

Definition $A and <n
$A and <A are relations on the set of all' locales, defined as follows
(Land Mare locales):

L $A M .,. 3 n ~ 0 [L = establishern(M)],

L <A M .,. L $A M A L ,f M.

Definition srr and <n

srr and <u are relations on the set of all processes, defined as
follows (P and Qare processes):

PsnQ.,. 3n~O [P spa.wnern(Q)],

P <n Q .. P sn Q " P ,; Q.

211

Here "estabUshern(M)" and "spa.wnern(Q)" denote the result of applying
establisher and spaimer n times to Mand Q respectively. So in other words,
~A and snare the reflexive and transitive closures of the relations
"L = estabUshe!'(M)" and "P = spa.wner(Q)" respectively, while <A and <n are
the antireflexive contractions of SA and Sn respectively. Note that all
four relations are constant. Restricted to the sets Land P they are
variable, however (because Land Pare variable). To illustrate these
relations, consider Figure 6.3 which shows a possible state of the machine.
That is, it shows the locales, blocks and processes in L, Band P
respectively at a certain point of the execution of a program. In this
figure among other things the following holds:

Lo <AL, Lo <A E, ~(L SAE VE SAL),

Po <n P, Po <n R, ~(P Sn RV R Sn P).

As can be seen from this figure the locales in Land the processes in P
each constitute a tree. If Lis a locale in L, the set of all locales Min
L with M SAL constitutes a list, which is usually called the "dynamic
chain" emanating from L. The dynamic chain emanating from the current
environ will be called the "current dynamic chain".

The first operation which will be introduced corresponds to entering a
range in ALGOL 68. It reads as follows:

ESTABLISH(t):
Precondition:

t is a type.
Action:

Let E = environ(R).
Let L be a locale such that:
- status(L) = alive,
- type(L) = t,
- saope(L) = saope(E) +l,
- establisher(L) = E.
L := Lu {L}.
environ(R) := L.

It amounts to creating a fresh, living locale~ of type t. Hence
status(L) = alive and type(L) = t. The scope of this locale must be one
larger than the scope of the current environ E (it is "newer" than E).
Since control will be transferred from E to L, establishe!'(L) should be
equal to E. L must then be added to Land control must be transferred to L
(by making L the new current environ).

The second operation corresponds to leaving a range in ALGOL 68 (the
range corresponding to the current environ):

212

establisher generator spawner

8
origin environ

Figure 6.3

FINISH:
Precondition:

environ(R) + origin(R).
Action:

Let E = environ(R).
environ(R) := estabLisher(E).
status(E) := dead.
For each B € B with generator(B) = E
I status(B) := dead.

213

The precondition environ(R) + origin(R) is explained by the fact that
control of the running process R cannot be transferred beyond the locale in
which R was created. When leaving the range corresponding to the current
environ E, control must be transferred from E to the "old" current environ.
That is, environ(R) must be changed into estabLisher(E). This turns E into
a dead area, but also all blocks which were created in E (the blocks B with
generator(B) = E). The status of all these areas should therefore be
changed into dead.

The third operation to be discussed is concerned with the creation of
blocks:

GENERATE(t, L):
Precondition:

tis a type,
L € L, L SA environ(R).

Action:
Let B be a block such that:
- status(B) = aLive,
- type(B) = t,
- saope(B) = saope(L),
- generator(B) = L.
B:=Bu{B}.

It describes the creation of a fresh, living block B of type tin the
locale L, which should be in the current dynamic chain (the precondition
L SA environ(R)). During this operation control can be thought to b~
temporarily transferred from the current environ to L. The block B will
live as long as L, and therefore the scope of B should be equal to the
scope of L. Because Bis created in L, the generator of B should be equal
to L. The actual creation of Bis accomplished by adding B to B. A thing to
be noted here is that blocks corresponding to ALGOL 68 heap objects are
created in the initial locale Lo (through GENERATE(t,L0)). Consequently,
these blocks have scope zero.

The fourth operation is somewhat trickier than the ones met with
before in the sense that it does not correspond directly to any ALGOL 68
operation. It is an operation which is concerned with efficiency. The point
is that it is sometimes useful to be able to extend the lifetime of a
(large) block, for example to prevent an expensive copy operation. A
typical example is found in passing result values of procedures. This
lifetime extension is exactly what the following operation accomplishes:

214

KEEP(B,L):
Precondition:

BE B, generator(B) = environ(R),
LE L, L f Lo, L <A environ(R).

Action:
generator(B) := L.
scope(B) := scope(L).

·rt extends the lifetime of the block B to that of the locale L, with the
restriction that B must have been created in the current environ and L must
belong to the current dynamic chain. This amounts to changing generator(B)
to L. Since the scope of an area indicates its lifetime, in addition to
this the scope of B must be changed to the scope of L. This explains why
the scope and the generator of a block are variable.

The fifth operation corresponds to entering an ALGOL 68 parallel
clause:

SPAWN(n):
Precondition:

n > 0.
Action:

Let Q be a set of n processes such that for each PE Q:
- mode(P) = active,
- origin(P) = environ(R),
- environ(P) = environ(R),
- spawner(P) = R.
P:=PuQ.
mode(R) := spawned.
Let P E P with mode(P) active.
R := P.

Through this operation, n fresh, active processes are created. Each process
Pin the set Q of these new processes is created in the current environ,
with control of P initially residing in the current environ. The creator of
each Pis the running process R. Hence origin(P) = environ(P) = environ(R)
and spawner(P) = R. The set Q of new processes is then added to P. After
that, the running process is made to be spawned and an arbitrary active
process P (for example from Q) is made to be the new running process.

The sixth operation relates similarly to the operation SPAWN(n) as
FINISH relates to ESTABLISH(t). It corresponds to leaving a constituent
statement of an ALGOL 68 parallel clause:

COMPLETE:
Precondition:

environ(R) = origin(R), Rf P0•
Action:

mode{R) := completed.
Let S = spawner(R).
Let Q ={PEPI spawner(P) = S}.
If VP E Q [mode(P) = completed]
I mode(S) := active.
Let PEP with mode(P) = active.
R := P.

This operation "completes" the current running process R. The precondition
is that control of R has returned to the locale in which R was created and

215

that R is not the initial process. Having changed the mode of R to
completed, the process S which created R is determined. This is a spawned
process, which should be made active if all processes created by it (all
processes in the set Q) are completed. Then, an arbitrary active process P
must be selected and made to be the new running process.

The seventh operation is concerned with the situation of the running
process running into an impassable semaphore:

SWITCH:
Precondition:

3 PEP [Pf R, mode(P) = active].
Action:

Let PEP with Pf Rand mode(P) = active.
R := P.

If the running process is halted by an impassable semaphore, R must be
changed to an active process which is not. The operation SWITCH models this
change of running process by selecting an arbitrary active process Pf R
and assigning P to R. The precondition of SWITCH takes care that the choice
of Pis always well-defined. Of course, even if the precondition of SWITCH
is satisfied, there may not, in reality, exist an active process P which is
not waiting before an impassable semaphore ("deadlock"). Instead of the
operation SWITCH the program is then supposed to be aborted.

The ALGOL 68 equivalent of the eighth and final operation is a jump to
some global label. Its definition reveals the disruptive nature of the
"goto":

JUMP(L,P):
Precondition:

LE L, L ~A environ(R),
p E P, p ~II R,
origin(P) ~AL ~A environ(P).

Action:
R := P.
mode(R) := active.
environ(R) := L.
For each MEL with L <AM
I status(M) := dead.
For each BE B with L <A generator(B)
I status(B) := dead.
For each Q E P with P <rr Q
I mode(Q) := corrrpleted.

Lis the locale corresponding to the range where the label to be jumped to,
occurs.Pis the process which takes over control by jumping to the label.
The fact that the label to be jumped to, must be "visible" implies that
L ~A environ(R) and P ~IT R. Furthermore, L should be a locale to which
control of P has access: origin(P) ~AL ~A environ(P). The jump is
accomplished by making P the running process, changing the mode of R (= P)
to active and then transferring control to L. Through this jump to the
locale L of process P the lives of all locales and blocks which were
created "after" L (the locales M with L <AM and blocks B with
L <A generator(B)) are aborted. The status of these areas must therefore be
changed to dead. Also, all processes which were started "after" P (the
processes Q with P <rr Q) are aborted, which amounts to changing their mode
to corrrpleted.

216

The entire model of the MIAM has now been introduced. From a storage
management point of view the execution of any program on the MIAM can be
modelled by a sequence of the operations described above. Not bothered by
irrelevant details, the job is to design a storage management system for
this model. In so doing, it should be assumed that any sequence of the
above operations is allowed as long as the preconditions are not violated.

6.1.3. Invariants

Before going deeper into the problem of storage management it is
worthwhile to take a closer look at the model •. The model satisfies a number
of invariants ("system invariants" in the terminology of Chapter 4), which
are listed below. They can be proved by showing that they hold initially
and by checking that each operation, assuming its precondition holds, does
not affect them. This is a simple job, which is left to the reader.

Invariants for Ln
(Kl) Ln € L.
(K2) status(Ln) = alive.
(K3) saope(Ln) = o.
(K4) establisher(LnJ = Ln.

Invariants for Pn

(OJ) Pn € P.
(02) mode(Pn) f aompleted.
(03) origin(PnJ = Ln.
(04) spai,m,er(PnJ = Pn.

Invariants for R

(RI) R € P.
(R2) mode(R) = aative.

Invariants for locales L € L

(LI} establisher(L) € L.
(12) Ln 5.A L.
(13) If status(L) = alive

I status(establisher(L)) = alive.
(14) If status(L) = alive

I There is a P € P such that

I mode(P) = aative.
L 5.A environ(P).

(15) If L f Ln
I saope(L) = saope(estabZisher(L)) +1.

Invariants for blocks B € B

(Bl) generator(B) € L.
(B2) status(B) = status(generator(B)).
(B3} saope(B) = saope(generator(B)).

Invariants for processes P € P
(Pl) origin(P) € L.
(P2) environ(P) € L.
(P3) spa:umer(P) € P.
(P4) Po SIJ P.
(PS) orig1,n(P) SA environ(P).
(P6) If mode(P) f aorrrpLeted

I status(environ(P)) = aLive.
(P7) If mode(P) ~ aorrrpLeted, P ~ Po

I mode(spa:umer(P)) = spa:umed.
origin(P) = environ(spa:umer(P)).

(PB) If mode(P) = spa:umed

I There is a Q € P such that

I spa:umer(Q) = P.
mode(Q} ~ aorrrpLeted.

217

From these invariants can be inferred that the relations SA and srr
indeed impose a tree structure on Land P with treetops Lo and Po
respectively, as was indicated in Figure 6.3. The set of all living locales
in L constitutes a subtree with treetop Ld of the tree imposed by SA on L.
The leaves of this subtree are formed by the environs of the active
processes. Analogously, the set of all not yet completed processes in P
constitutes a subtree with treetop Po of the tree imposed by srr on P. The
leaves of this subtree are the active processes. Notice that the invariants
imply that the operation "Let P € P with mode(P) = active" in COMPLETE is
well-defined. Notice also that dead areas and completed processes are
really "garbage" in the model: They are not referenced or used in any other
way any more.

An important special case is that of sequential programs. In
sequential programs the operations SPAWN(n), COMPLETE and SWITCH will not
occur. It is easy to see that no processes will be created then, which
amounts to the following invariant:

I Invariants for sequential programs

(SI) P = {Po}.

Together with Invariant (L4) this invariant implies that the living locales
in L constitute a single linear list (the "dynamic chain") as indicated in
Figure 6.4. The locales in Las a whole, however, need not constitute a
linear list (but a tree).

6.2. PROBLEM

In this section the storage management problem is supposed to be
defined. However, in the model as we described it there is no storage
management problem. Areas which are created in the model simply appear out
of the blue. The question of where they come from is completely irrelevant.
The storage management problem is a problem which arises only in the
impLementation of the abstract machine. When implementing the abstract
machine on a real machine the creation of an area must be modelled by
"allocating" a piece of storage to it. In contrast to the number of areas
the amount of storage is limited. It is here that the storage management
problem arises. In order to arrive at the point where the storage
management problem can be formulated, we will start implementing (the model

218

Figure 6.4

of) the abstract machine described before. The method of "adding and
removing variables", which has been described in detail in Chapter 3, will
be used for that purpose. In a nutshell this method amounts to the
following. An algorithm (or a machine) is implemented by adding extra
variables, and assignments to these variables, to the algorithm. This
creates redundancy in the algorithm which enables certain expressions
containing the "old" variables of the algorithm to be replaced by
equivalent expressions containing the "new" variables. When applied in a
systematic way, the old variables of the algorithm can be turned into
"ghost variables", which may be removed from the algorithm. Thus an
implementation of the algorithm in terms of the new variables is obtained.
The method will be applied here by augmenting the model with an extra
variable (the "allocation function"). Moreover, an abstract operation on
this variable will be introduced. This operation is supposed to model or
"implement" the creation of an area, which is expressed in its
specification. The operation is inserted in the model at those points where
areas are created. The storage management problem can then be defined as
implementing this operation as efficiently as possible. In so doing, a
number of primitive operations on the allocation function are allowed,
which may be inserted throughout the model. In particular, an attempt
should be made to "remove" as many abstract variables (such as for example

219

the "status" of areas) from the implementation. Thus the overhead caused by
the storage management system is kept to a minimum.

The first thing that needs to be done is to introduce some model of a
"store". This model should conform as closely to the store of the MIAM and
the stores of existing machines as possible. We will assume the store to be
a row of "cells" labelled by "addresses", which are integers O, ••• ,N - 1.
Here N is some (large) machine dependent integer. A set of consecutive
cells in the store will be called a "field" and the number of ceils in a
field F will be denoted by size(F). See Figure 6.5. Though this model of a
store does not cover segmented memories, it is sufficiently general to be
called machine independent.

field

~

cells 111111111rm1111111
' ' addresses 0 N-1

Figure 6.5

In an implementation of the abstract machine on a real machine the
creation of an area A must be modelled by "allocating" a field in the store
to it, which the area is from then on said to "occupy". This will be made
more precise by introducing a new variable F, called the "allocation
function", into the model:

I
The model is augmented with:

- F: variable mapping from areas to fields.

The domain of F (which is also variable) will be denoted by dom(F). It
contains those areas which are "located"(= occupy a field) in the store.
The value of F can be changed by a number of primitive operations only,
which will be discussed in the sequel. Note that the domain of F contains
only locales and blocks, and no processes. Processes, as stated before, are
"embedded" in areas. This means that the storage occupied by a process Pis
part of the storage occupied by an area, to wit the origin of P.

The allocation function F must satisfy two obvious invariants. First
of all, fields occupied by different areas may not overlap. Secondly, areas
must occupy a field of the "proper" size. The· size of the field occupied by
an area will usually depend on the type of the area. The dependency need
not be unique, however. It may be useful to implement certain areas of a
given type differently from other areas of that type. Areas of the same
type may therefore occupy fields of different sizes. We shall model this by
associating an additional entity with each area A, the "size" of A (denoted
by size(A)), which indicates the size of the field to be occupied by A. We
shall assume here that the size of the field occupied by an area will not
change during the execution of the program. So the size of an area is
constant:

220

Each locale Lis augmented with:

- size(L): constant integer.

Each block Bis augmented with:

- size(B): constant integer.

The two invariants which F must satisfy can now be formulated as follows:

Invariants for F

(FI)

(F2)

For each area A,B E dom(F)
I A f B ,. F(A) n F(B) = ¢.
For each area A E dom(F)
I size(F(A)) = size(A).

These are global invariants for F, not to be violated by any operation on
F. In the initial situation the following should hold:

Initially:

- dom(F) = {L0},
- size{F(L0)) = size(L0).

In other words, at the beginning of the execution of a program the initial
locale should be the only area located in the store and occupy a field of
the proper size (see the initial state of the model). The invariants for F
are thus trivially satisfied in the initial situation.

The next thing to do is to introduce an abstract operation on F, which
models the creation of an area. It should allocate a field in the store to
a (new) area A and will be denoted by ALLOCATE(A). It should do so,
however, by means of the primitive operations (to be) defined on F
exclusively. This is specified below:

ALLOCATE(A):
Precondition:

A is an area, A I. L u B.
Action:

Establish the truth of the assertion A E dom(F) by means of the
primitive operations defined on F.

The operation ALLOCATE(A) should be inserted at those points in the
model where areas are created. It should therefore be added to the
operations ESTABLISH(t) and GENERATE(t,L). At the same time this gives us
the opportunity to associate the proper size with an area being created:

ESTABLISH(t):
Precondition:

t is a type.
Action:

Let E = environ(R).
Let L be a locale such that:
- status(L) = alive,
- type(L) = t,
- scope(L) = scope(E) +1,
- establisher(L) = E,
- size(L) = ~.
ALLOCATE (L) •
L : = Lu {L}.
environ(R) := L.

GENERATE(t,L):

221

Precondition:
tis a type,
LE L, L ~A environ(R).

Action:
Let B be a block such that:
- status(B) = alive,
- type(B) = t,
- scope(B) = scope(L),
- generator(B) = L,
- size(B) = ~.
ALLOCATE (B) .
B := Bu{B}.

Here"~" is some implementation dependent integer, which depends on the
type t.

Before formulating the problem there remains only one thing to be
discussed: the set of primitive operations allowed on F. We shall discuss
these operations by investigating how ALLOCATE(A) can be implemented. The
effect of ALLOCATE(A) should be that A is added to the domain of F. So the
first operation we need is an operation to extend the domain of F with an
area. Due to the invariants for F and the finiteness of the store this may
be impossible, however. First of all, it may be impossible to find a field
F of "free cells"(= cells not occupied by areas) such that size(F) =
size(A), even though the total number of free cells is more than
sufficient. This is due to a phenomenon known as "fragmentation". Secondly,
the total number of free cells may simply be insufficient ("storage
overflow").

The first problem (fragmentation) can be coped with by introducing an
operation to "move" areas in the store from one field to another, i.e.,
change the value of F(A) for certain A E dom(F). Thus small fields of free
cells can be united into larger fields. A thing to be borne in mind with
this is that in practice moving areas is an expensive operation, because
all "pointers" to or into moved areas must be "updated". The second problem
(storage overflow) can only be dealt with by allowing areas to be
"deallocated" too, i.e., to be removed from the domain of F. Of course only
areas which are no longer used by the program should be deallocated.

What are "no longer used" areas? One thing we know for sure is that
dead areas are not used any more. So dead areas can be deallocated with
impunity. Yet even the deallocation of all dead areas may not help. The
only escape then is to deallocate no longer used living areas too. The

222

latter areas are considerably harder to detect than dead areas. The use of
a "garbage collector" is required for that. The design of a garbage
collector will not be discussed in this chapter. Consequently, an
unspecified primitive operation COLLECT GARBAGE on Fis introduced. This
operation is supposed to deallocate all no longer used areas (including all
dead areas), while it may also move areas. It is a very expensive operation
which should only be used as a last resort. As far as certain properties of
COLLECT GARBAGE are important or even essential to the storage management

· system to be designed, these properties' will be postulated in the form of
"Requirements for COLLECT GARBAGE". If even a garbage collection does not
help, the only way out is to abort the program.

The above accounts for the following list of primitive operations
allowed on F:

Primitive operations on F

(I) Adding an area to dom(F).
(2) Changing the value of F(A) for a number of A E dom(F).
(3) Removing a number of A E dom(F) with status(A} = dead from dom(F).
(4) COLLECT GARBAGE.

In all this it is implicitly assumed that the operations do not violate the
Invariants for F.

The storage management problem now boils down to:

Problem

Implement ALLOCATE(A) efficiently.

The word "implement" must be taken in a broad sense here. This implies not
only that ALLOCATE(A) must be expressed in terms of the primitive
operations on F, but also that operations on F may be inserted anywhere in
the model in order to make the implementation more efficient. The
collection of all operations on F thus added to the model constitutes the
"storage management system".

We require that efficiency of the storage management system to be
designed, should primarily be achieved for sequential programs. The
rationale behind this is that ALGOL 68 was not specifically designed as a
language for writing parallel programs. The majority of programs written in
ALGOL 68 is purely sequential. It is therefore reasonable that the use of
parallellism costs a little extra.

The design of an efficient storage management system will be started
in the next section.

6.3. DESIGN

A general approach to the design of a storage management system is to
divide the areas into a number of classes, dependent on certain properties.
For each class a special storage management strategy is used, which
exploits the properties of the areas in that class. Let us assume n classes
C1,•••,Cn of areas are distinguished. Then the allocation function F can
correspondingly be written as F = F1 u ••• u Fn, where dom(Fi) c Ci
(i = 1, ••. ,n). Let us call the set of all cells occupied by the areas in
dom(Fi) the "region" of Fi. The job is to implement the operation
ALLOCATE(A) efficiently in terms of operations on the Fi. These operations
may be chosen freely from the set of primitive operations defined on F. If

223

the operations are applied arbitrarily, a comprehensive bookkeeping is
necessary in order to ensure the invariants for the allocation function are
satisfied. This bookkeeping can be simplified greatly if the regions of the
Fi are kept "compact"(= constituting a field). In that case only
operations may be performed on the Fi, which do not disturb the compactness
of the regions.

We shall comply with the above by abstractly modelling each Fi as a
"pile" Ui. A pile is a stack of areas which (apart from PUSH and POP) has a
number of additional operations defined on it (to be discussed later). If a
pile U contains the areas A1, ..• ,Am in the order from bottom to top, this
will be denoted by U = <A1, •.. ,Am>· A pile U = <A1, ... ,Am> can be "located"
in the store in two different ways as indicated in Figure 6.6. Here the
areas Ai occupy contiguous fields of size(Ai) cells.

u

bottom top

u

top bottom

Figure 6.6

It is useful to dwell briefly on what we did above. We represented the
allocation function Fas a (yet to be fixed) number of piles U1,,,.,Un. On
the one hand this can be viewed as a matter of abstraction: we abstracted
from the store. This has the advantage that it makes life a lot easier. We
do not need to talk in such "low level" terms as "cells", "addresses",
"fields", etc. any more. A minor drawback is the fact that everything we
said about F must now be translated in terms of the piles U1,·•·,Un. Since
the correspondence between F and U1, ... ,Un is obvious, this will be
omitted. Note that F can only be reconstructed from the U1,···,Un after
locating the latter in the store. On the other hand the things we did above
can be viewed as a matter of concretion (the inverse of abstraction): we
made a certain choice concerning the structure of the allocation function.
This was a design decision in order to reduce the problems caused by the
invariants for the allocation function. It also reduces the freedom of
design, of course.

Up to two piles can be accommodated efficiently in the store (in the

224

case of two piles: one at each end of the store). Though storage management
systems with a larger number of piles are certainly conceivable, we shall
restrict ourselves to a maximum of two piles. The following are plausible
choices:

(1) One pile for all areas.
(2) Two piles, for locales and blocks.
(3) Two piles, for areas with scope> 0 and for areas with scope= O.

The first choice does not exploit the different properties of areas. It may
therefore not be expected to result in an efficient storage management
system. The second choice exploits the differences between locales and
blocks. This may lead to an efficient storage management scheme for locales
(in the absence of parallellism locales have nested lifetimes), but for
blocks (which may occupy the majority of the storage) it is just as bad as
the first choice. The third choice seems the most appropriate here. It
closely (but not entirely) fits in with the difference between ALGOL 68
stack and heap objects. This alternative will therefore be chosen.

The above implies that we have two piles Sand Hin our storage
management system. S contains the areas w~th scope> 0 and H those with
scope= O. We assume they are located in the store as indicated in
Figure 6.7.

s H

scope > 0 scope= 0

Figure 6.7

As with the allocation function F the piles Sand H must satisfy a
number of invariants. First, the fact that Sand H correspond to (the
domain of) a mapping (viz., F) implies that no area may occur twice in S
and H. Secondly, the Invariants for F must be translated into invariants
for Sand H. Invariant (Fl) boils down to the fact that the sum of the
sizes of the areas in Sand H must be less or equal to the size N of the
store. Invariant (F2) need not nor can be expressed any more. (This
invariant is incorporated in the correspondence between F and the piles S
and H.) Thirdly, Sand H should contain only areas with scope> 0 and
scope= 0 respectively. So we have:

Invariants for Sand H

(Ul)

(U2)
(U3)

(U4)

If .s = _<A1,··.-,Arrz~• H "'.' ~+1,···,Aii>
I ,z,,f,J .. A,z,,f,AJ. (,z,,J-1, ••• ,n).
I: A € S u H [size {A)] ~ N.
For each A € S
I scope{A) > O.
For each A € H
I scope{A) O.

225

For notational convenience the piles Sand Hare considered here
occasionally as the sets of their elements. The translation of the initial
situation for Finto the initial situation for Sand H leads to:

Initially:

- s <>,
- H= <Lo>•

In this situation the Invariants for Sand Hare trivially satisfied.
During the further design of the storage management system care must

be taken that Invariants (Ul)-(U4) are not violated. These invariants could
be violated in two ways. First of all, the operations of the abstract
machine might violate Invariants (U3) and (U4). Invariants (U3) and (U4)
use the scope of areas, which is variable for blocks. However, the only
operation that may affect the scope of an area is KEEP(B,L) and this
operation will never change the scope of an area from> 0 into= 0 or vice
versa (use Invariants (12) and (15) and the fact that L ~ Lo). The
Invariants for Sand H can therefore never be violated by any operation of
the abstract machine. The second way the invariants could be violated is
because of some operation on Sor H that we insert into the model. It
should be checked in each individual case that such an operation does not
violate the Invariants for Sand H.

An operation that could violate the Invariants for Sand Hin
particular is COLLECT GARBAGE. The informal "definition" of COLLECT GARBAGE
states that it removes all no longer used areas (including all dead areas)
from the domain of the allocation function F. Speaking in terms of the
piles Sand H this implies that COLLECT GARBAGE removes all no longer used
areas from Sand H. In this process the remaining areas in Sand H could in
principle be shuffled arbitrarily. They could even be transferred from S to
Hor vice versa (thus violating Invariant (U3) or (U4)). This will be
prevented by the following requirements:

Requirements for COLLECT GARBAGE

(I) No areas are added to S.
(2) No areas are added to H.

It is easy to see that these two requirements are sufficient to let
COLLECT GARBAGE "respect" the Invariants for S and H. Apart from these two
requirements a third will be imposed which is not strictly necessary:

I Requirements for COLLECT GARBAGE

(3) The order of the remaining areas in Sand His not affected.

It states that the garbage collector must be "genetic order preserving",
which is a desirable property of garbage collectors [TERASHIMA & GOTO 78].
Why this is so will come up soon. Notice that the removal of a number of
areas from Sand H may affect the compactness of the regions of Sand H.
Consequently, the garbage collector must perform a "compaction" in order to
restore the situation of Figure 6.7. This need not be expressed in the
Requirements for COLLECT GARBAGE because COLLECT GARBAGE is considered as
an operation on the "abstract" piles S and H here. It follows directly from
the correspondence between Sand Hand the allocation function F.

Let us now attempt to design a first storage management system.

226

6.3.1. The initial system

The obvious way to obtain a usable storage management system is as
follows. Storage can only be allocated to an area A if there is enough room
between the piles Sand Hin the store. The room between Sand H (measured
in cells) will be denoted by FREE:

I FREE:
N-"I:.A € SuH [size(A}].

If FREE< size(A) there is not enough room and a garbage collection is used
to make room. If after the garbage collection there is still not enough
room, the program is aborted. Otherwise storage can be allocated in Sor H
(using a PUSH operation), dependent on the scope of A. This leads to:

System 1

ALLOCATE(A):
Lets= size(A).
If FREE< s

I COLLECT GARBAGE.
If FREE< s
I ABORT.

Case
1. scope{A) > 0
I PUSH(A,S).
2. scope(A) = 0
I PUSH(A, H).

Notice that all operations performed on Sand H correspond to legal
(primitive) operations on the allocation function F. Notice also that the
Invariants for Sand Hare not violated.

The above storage management system is not very satisfactory for a
number of reasons. One of them is the following. Suppose during the
execution of a program the situation is reached where a garbage collection
delivers only a small amount of free storage (just about sufficient to
proceed). Then it will probably be necessary to perform a garbage
collection very soon again, which may once more deliver only a small amount
of free storage, etc •• Since a garbage collection is a time-consuming
operation, this may lead to the situation where the majority of the
execution time of a program is spent collecting garbage before the program
is finally aborted. This will be remedied in the next subsection.

6.3.2. Avoiding successive garbage collections

The problem of successive garbage collections can be solved by
requiring that the garbage collector delivers a minimum number of free
cells, which will be denoted by minfree. This number should be large enough
to let the program proceed undisturbed for some time after a garbage
collection. Thus we obtain:

System 2

ALLOCATE(A):
Lets= size(A).
If FREE < s

I COLLECT GARBAGE.
If FREE < m=(s,minfree)
I ABORT.

Case
I. seope(A) > O
I PUSH(A,S).
2. seope(A) = O
I PUSH(A, HJ.

227

This removes one objection to System I. There is another severe objection
to both Systems I and 2, however. For the deallocation of areas both
systems rely entirely on garbage collection, which does not make them very
efficient. We will do something about that now.

6.3.3. Restraining the use of the garbage collector

Checking the list of primitive operations defined on the allocation
function F we see that the only way to deallocate areas other than through
a garbage collection, is the deallocation of dead areas. Dead areas may
be removed freely from the piles Sand H. As far as the pile His concerned
this does not bring us any further, because in H no dead areas occur (this
follows from Invariants (U4), (K2), (L2), (LS), (B2), (B3) and the fact
that H c Lu B). So all dead areas in Su H occur in S. It would not be very
wise to allow dead areas to be deallocated arbitrarily inside S, because
that would require an expensive "compaction" in order to restore the
compactness of the region of S. Dead areas can be popped from the top of S
with impunity, however. This gives us a cheap mechanism to deallocate areas
behind the garbage collector's back.

The question is, where in the model the operation to pop dead areas
from S should be inserted. The most natural places to do so seem to be
those places where areas are "destroyed". If a destroyed area happens to
reside at the top of S, the area and all dead areas "below" it can
immediately be popped from S. An operation RELEASE, which does just that,
will therefore be introduced. It will be inserted in the operations FINISH
and JUMP(L,P), which are the only machine operations that destroy areas:

FINISH:
Precondition:

environ(R) # origin(R).
Action:

Let E = environ(R).
environ(R) := establisher(E).
status(E) := dea.d.
For each BE B with generator(B) E
I status(B) := dea.d.
RELEASE.

228

JUMP(L,P):
Precondition:

L € L, L $A environ(R),
P € P, P $II R,
origin(PJ $AL $A environ(PJ.

Action:
R := P.
mode(R} := aative.
environ(R} := L.
For each M € L with L <AM
I status(M} := dead.
For each B € B with L <A generator(B}
I status(BJ := dead.
For each Q € P with P <rr Q
I mode(Q} := aompleted.
RELEASE.

Notice that at all places where ALLOCATE(A) and RELEASE occur all system
invariants hold (the invariants need only hold between two machine
operations) •

Storage management system 3 now looks as follows:

System 3

ALLOCATE(A):
Lets= size(A).
If FREE< s

I COLLECT GARBAGE.
If FREE< ma:x:(s,minfree)
I ABORT.

Case
1. saope(AJ > 0
I PUSH(A,S).
2. saope(A) = 0
I PUSH(A, HJ.

RELEASE:
While DEADTOP
I POP(SJ.

The predicate DEADTOP in this system is defined as follows:

I DEADTOP:
Sf<> and status(TOP(SJJ = dead.

Here the "and" is used as a "McCarthy operator" and TOP(S) is the area at
the top of S. If all areas which appear in Shave nested lifetimes, this
scheine will keep S free from dead areas. It may therefore be expected to
work rather efficiently for say ALGOL 60 type ALGOL 68 programs. The only
operations which may (temporarily) impede the effectiveness of this scheme
are GENERATE(t,L), where L f Lo and L f environ(R), KEEP(B,L) and SWITCH.
The latter will occur in parallel programs only, while the other two may be
expected to be used not too frequently (by a good code generator). Whatever
operations are performed, the above scheme will always work correctly.
Notice that Requirement (3) for COLLECT GARBAGE is essential to the
effectiveness of the scheme.

229

Though System 3 is a major improvement over System 2, it still depends
rather heavily on garbage collection as a deallocation tool (especially in
parallel programs). The role of the garbage collector can be diminished
further, as we will demonstrate.

6.3.4. Further restraining the use of the garbage collector

Suppose in ALLOCATE(A) we run out of storage ({.e., FREE < s). It may
very well appear (especially if few areas with scope= 0 are used) that
a relatively large part of the store is occupied by dead areas in S. The
number of "dead cells" in S will be denoted by DEAD:

I DEAD:
~ A e S, status(A) = deail [size(A)].

It is profitable then, not to perform a full garbage collection, but simply
to remove all dead areas from S (which implies compacting the region of S).
A primitive operation COMPACT which accomplishes this will therefore be
introduced:

I COMPACT:
Remove all A e S with status(A) = dead from S
order of the remaining areas in S.

while preserving the

The implementation of COMPACT will be discussed in Chapter 7, together with
the implementation of COLLECT GARBAGE. Notice that the operation on the
allocation function F corresponding to COMPACT is expressible in the
primitive operations defined on F. Notice also that COMPACT does not
violate the Invariants for S andH and that the operation is "genetic order
preserving".

The operation COMPACT is considerably cheaper than COLLECT GARBAGE.
The reason for this is that an expensive "marking phase", such as in the
garbage collector, is not necessary in COMPACT. Moreover, the compaction
(as opposed to a garbage collection) is strictly local to the pile S: Due
to the "scope rules" of ALGOL 68 the fact that area A contains a pointer to
area B implies that saope(A) ~ saope(B). Consequently, areas in H do not
contain pointers to areas in S, which implies that areas in Smay be moved
without having to update any pointers in areas in H.

If mindeail denotes the (possibly dynamically determined) minimum
number of dead cells in S for which a compaction is more profitable than a
garbage collection, then the new storage management system looks as
follows:

230

System 4

ALLOCATE(A):
Lets= size(A).
If FREE < s

If DEAD~ max(s,mindead)
I COMPACT.
else

I COLLECT GARBAGE.
If FREE< max(s,minfree)
I ABORT.

Case
1. scope(A) > 0
I PUSH(A,S).
2. scope(A) = 0
I PUSH(A, HJ.

RELEASE:
While DEADTOP
I POP(S).

The number DEAD in this system can be determined by traversing S once. In
traversing Sit must be determined for each area AES whether A is dead or
not. The assumption in all this is, as it is in COMPACT and DEADTOP, that
in a real implementation it is possible to determine the status of an area
in S. What are the consequences of this assumption?

Areas as we described them have a number of entities associated with
them (such as "status", "type", "scope", etc.). Except for the "size" these
are abstract entities which are used in the definition of the abstract
machine. Each implementer of the abstract machine will try to implement
these entities as efficiently as possible, and if possible he will even
avoid implementing certain entities. A number of the entities must be
implemented anyway: the type and size of an area (for the garbage collector
and the compaction routine), the scope of an area (for scope checks) and
the establisher of a locale (in order to return to the proper locale after
leaving a range). Other than for reasons of storage management the status
of an area and the generator of a block need not be implemented.

In System 4, however, the status of an area is apparently supposed to
be implemented. For locales this could be done by letting FINISH and
JUMP(L,P), which are the only two operations that destroy areas, mark dead
locales as such. For blocks this is not so simple. The best way to
determine whether a block Bis dead seems to be to use Invariant (B2) and
check whether generator(B) is marked as dead or not. Yet this implies that
the generator of a block must also be implemented. This overhead deprives
System 4 of some of its attractiveness. It would be nice if the overhead
could be eliminated, and indeed for sequential programs it can. We can use
the redundancy caused by the introduction of the allocation function (in
the shape of the piles Sand H) to turn the status of an area and the
generator of a block into "redundant variables" of the storage management
system. This will be shown and proved in the next subsection. After that we
will consider the general case of both sequential and parallel programs.

Before continuing, two more requirements on the garbage collector will
be imposed. From the requirements introduced so far absolutely nothing can
be inferred as to which areas are or are not deallocated by the garbage
collector. There are certain areas for which it is easy to see that they
are (or should be) or are not (or should not be) deallocated by the garbage

231

collector. In particular all dead areas will be deallocated by the garbage
collector. (This was already stated informally.) Furthermore, the living
locales will not be deallocated in a garbage collection. (They are
"reachable" because control will, or should at least be able to return to
them.) The following additional requirements, which allow us to use that
information, will therefore be imposed on the garbage collector:

Requirements for COLLECT GARBAGE

(4) All dead areas are deallocated.
(5) No living locales are deallocated.

A number of additional invariants (which hold between two operations
of the abstract machine) can now be proved for System 4. In order to
formulate them more easily, the following relation on the set of areas in S
will be introduced:

Definition <s

<sis a relation on the set of areas in S, defined as follows:

If S = <A1,•••,An>
I Ai <s Aj # i < j (i,j = 1, .•• ,n).

Due to Invariant (Ul) this relation is well-defined, The fact that A <s B
implies that A is "below" Bin S. The following invariants hold:

Invariants for Sand H

(US) s u H C Lu B.
(U6) For each L E L with status(L) = alive

ILESUH.
(U7)

(US)

(U9)

For each L E Sn L with establisher(L) ; Lo

I establisher(L) ES.
establisher(L) <s L.

For each B E S n B

I generator(B) ES.
generator(B) <s B.

If s 'f <>
I status(TOP(S)) = alive.

Invariant (US) is based on Requirements (I) and (2) for COLLECT GARBAGE. It
allows us to use all Invariants for Land B for areas in Sand H. Invariant
(U6) is based on Requirement (5) for COLLECT GARBAGE. Notice that it
implies that Lo EH and LES for each LE L with L; Lo and status(L) =
alive. Invariants (U7) and (US) are based on Requirements (I) and (3)-(S)
for COLLECT GARBAGE. The informal argument for their truth is simple. The
establisher of a locale Lis created before the locale itself. Therefore
establisher(L) will occur below Lin S. The same applies to the generator
of a block Band the block itself. The only operation that might violate
the relation generator(B) <s Bis KEEP(B,L), However, prior to KEEP(B,L)
the following holds for the new generator L of B: Lo 'f L <A environ(R) =
generator(B). With Invariant (U7) this implies that L <s generator(B) <s B.
Finally, Invariant (U9) is based on Requirements (I) and (4) for
COLLECT GARBAGE and the fact that dead areas are immediately popped from S.
The (simple) formal proof of Invariants (US)-(U9) is left to the reader.

232

6.3.5. Removing overhead in the sequential case

In this subsection we shall assume that only sequential programs are
executed on the abstract machine. So the operations SPAWN(n), COMPLETE and
SWITCH wi 11 not occur and Invariant (SI) wi 11 hold, i.e. , P = {Po}. The
living locales in L then constitute a single dynamic chain, which emanates
from environ(P0J (see Figure 6.4). Together with the.Invariants for Sand H
this implies that the store looks like Figure 6.8. In this figure the
circles represent the locales in the dynamic chain. Notice that if SF<>
there is always a living locale at the bottom of S, which amounts to the
following invariant:

Invariants for sequential programs

(S2) If S <A1, ... ,An> with n > 0
I A1 EL and status(A1) = alive.

This invariant cannot be derived from the invariants formulated so far, but
must be proved independently. It depends critically on the fact that dead
areas are popped from Sas soon as they occur on the top of S.

s H

~
I
I

environ(P.,l

Figure 6.8

The locales indicated in Figure 6.8 are all alive. But what can we say
about the "liveliness" of the other areas in S? We know there is a relation
between the scope of an area and its lifetime. This relation is somewhat
obscured by the operations GENERATE(t,L) and KEEP(B,L). Can the scope of an
area be used, anyway, in order to determine whether the area is dead or
not? In order to answer this question the genetic order relation <5 must be
examined more closely.

Consider a living locale Lin Sand another locale M "above" Lin S,
i.e., L <5 M. At the moment M was created L was already in Sand alive. So
just after the creation of M both Land M belonged to the dynamic chain of
which M was the beginning. This implies that at that moment L <AM. Yet,
since the relation <A is constant, the assertion L <AM will hold forever.
This amounts to the following invariant:

Invariants for sequential programs

(S3) For each L E Sn L with starus(L)
and each M E S n L
I L <s M .. L <AM.

233

alive

Next consider a living locale Lin Sand a dead block B above i in S. Let
G = generator(B) and suppose that G <s L. From Invariant (B2) we know that
G is dead. At the moment L was created G was already in Sand also dead
(otherwise Invariants (S3) and (13) would lead to a contradiction). Since B
was created after L this implies that B was created when G was already
dead. From this and Invariant (B2) can be concluded that at the moment B
was created, apparently generator(B) ~ G. Consequently, the operation
KEEP(B,G) must have been applied some time thereafter. The precondition of
KEEP(B,G) says that G <A environ(R), which implies that starus(G) = alive,
however. From this contradiction it can be concluded that the assertion
G <s L can never hold. Since G ~ L this leads to the conclusion that
L <s G, which is expressed in the following invariant:

Invariants for sequential programs

(S4) For each L E Sn L with starus(Li = alive
and each B E Sn 8 with starus(B) = dead
I L <s B .. L <s generator(B).

A more formal proof of the above invariants is left to the mistrustful
reader.

Invariants (S2), (S3) and (S4) give us additional information on the
relation <s which can be used profitably. Before showing this a definition
is introduced. For each area A in S the "base" of A (denoted by base(A}) is
defined to be the first living locale equal to or below A in S:

Definition base(A) for sequential programs

For each AES
I base(A) = maa:{L E Sn L I L ss A, starus(L) = alive}.

<s
Notice that because of Invariant (S2) the base of an area in Sis always
well-defined. The following invariant can now be derived from Invariants
(S3) and (S4):

PROOF

Invariants for sequential programs

(SS) For each AES
I starus(A) = dead * saope(A) > saope(base(A)).

Let AES and let L = base(A). If A= L the proof is trivial. If A~ L, and
hence L <s A, a number of cases must be distinguished. This is done
schematically below.

234

D

A E Lu B.
If status(A) = dead

If A E L

I L <A A.
scope(A) > scope(L).

If A E B
L <s generator(AJ.
L <A generator(A).
scope(generator(A)) > scope(L).
scope(A) > scope(L).

scope(A) > scope(L).
If scope(A) > scope(L)

If A E L
If status(A) = alive

I L = A.
Contradiction.

status(A) = dead.
If A E B

If status(A) = alive
status(generator(A)) = alive.
generator(A) <s A.
generator(A) ss L.
generator(A) sA L.
scope(generator(A)) s scope(L).
scope(A) s scope(L).
Contradiction.

status(A) = dead.
status(A) = dead.

status(A) = dead ~ scope(A) > scope(L).

(Inv. (US))

(Inv. (S3))
(Inv. (LS))

(Inv. (S4))
(Inv. (S3))
(Inv. (LS))
(Inv. (B3))

(Def. base (A))
(L <s A)

(Inv. (B2))
(Inv. (US))

(Def. base(A))
(Inv. (S3))
(Inv. (15))
(Inv. (B3))

(scope(A) > scope(L))

Invariant (SS) allows us to turn the status of an area and the
generator of a block into redundant variables of the (augmented) model. In
the entire model the generator of a block is only used to keep track of the
status of areas and the status of an area is only really used in the
storage management operations ALLOCATE(A) and RELEASE. It is therefore
sufficient to show that the status of an area can be removed from these
operations (see System 4). First consider RELEASE. In this operation the
status of an area is used in the predicate DEADTOP only, which should be
true iff S #<>and status(TOP(S)) = dead. It is easy to infer from
Invariant (SS) that if S # <>, the assertion:

status(TOP(S)) dead

is equivalent to:

scope(TOP(S)) > scope(environ(R)).

Consequently DEADTOP can be determined as follows:

Determination of DEADTOP for sequential programs

If s = <>
\ DEADTOP := false.
else

I Let T = TOP(SJ.
Let E = environ(R).
DEADTOP := scope(T) > scope(E).

235

Next consider ALLOCATE(A). In this operation the status of an area is used
in the determination of the number DEAD of dead cells in Sand in COMPACT
(but not in COLLECT GARBAGE). From Invariants (S2) and (S5) (and a few more
invariants) it can be inferred that the number DEAD can be determined as
follows (see also Figure 6.8):

Determination of DEAD for sequential programs

Let A1,·•·,An be such that S = <A1,···,An>·
s := 0.
k := n.
L := environ(R).
While k > 0

While Ak # L

I If scope(Ak) > scope(L)
I s := s + size(Ak).
k:=k-1.

L := establisher(LJ.
k := k-1.

DEAD := s.

While traversing S this way, dead areas could at the same time be marked as
such. This would make it simple for COMPACT to determine whether an area is
dead or not without using the status of the area.

The above shows that neither the status of an area nor the generator
of a block need be implemented, thus avoiding a time and space overhead.
That is, if only sequential programs are executed on the abstract machine.
The latter assumption will be dropped in the next subsection.

6.3.6. Removing overhead in the general case

In the previous subsection we showed that in the sequential case we
could do away with the status of an area and the generator of a block
entirely in System 4. But what if the actions SPAWN(n), COMPLETE and SWITCH
occur? Invariant (S5) will no longer hold then and the trick used to
implement the status of an area free of charge cannot be applied any more.
However, an invariant analogous to Invariant (S5) could be formulated,
which relates the status of areas created by the same process to their
scope. In order to implement the status of an area through this invariant
it must be possible to determine for each area in S by which process it has
been created. In the sequential case this is obvious, because there is only
one process. In the parallel case it is far from obvious, because there may
be many processes and the areas created by a specific process may be
scattered all over S. This is aggravated even more by the fact that after a
process P has been completed, areas created by P may be left behind in S.
The extra bookkeeping necessary to apply the generalization of the
implementation trick for the status of an area may thus become rather
complicated and may cause a considerable overhead (which it was supposed to

236

avoid). It is therefore better to look for another solution.
In Section 6.2 it was stated that efficiency of the storage management

system to be designed, should primarily be achieved for sequential
programs. This implies that it is reasonable if the use of parallellism
costs a little extra. It would not be reasonable if the overhead connected
with parallellism had a negative effect on the efficiency of sequential
programs. The "easy" way to avoid the latter is to h{lve two storage
management systems: one for sequential and one for parallel programs. Yet,
having two different storage management systems is not a very desirable
situation. Let us see how we can avoid it.

Suppose that, instead of being able to determine by which process an
area has been created, it were possible to determine whether the area has
been created by the initial process Po or not. The latter, of course, is
much easier to implement than the former. Let A0 be the class of areas
created by Po and A1 the class of areas created by other processes. For all
areas in A0 the implementation trick for the status can be used (through an
invariant analogous to Invariant (S5)). This implies that in the sequential
case (where A1 =¢)the storage management system is just as efficient as
before. For the areas in A1 something more complicated must be done. The
simplest way to implement the status of the areas in A1 seems to be as
follows. Let FINISH and JUMP(L,P) (which are the only operations that
destroy areas) mark dead locales in A1 as such. This makes determination of
the status of a locale in A1 trivial. The status of a block Bin A1 can be
determined by using the fact that status(B) = status(generator(B))
(Invariant (B2)). This implies that the generator of blocks in A1 must be
implemented.

The scheme sketched above results in a storage management system,
which for sequential programs is just as efficient as before. An overhead
is introduced in parallel programs exclusively, and even then only when the
program is really working in "parallel mode" (inside a parallel clause).
The overhead, at first sight, seems to be acceptable. The price to be paid
for all this is an increase of the complexity of the system. The question
is whether the increase of complexity outweighs the gain in efficiency or
not. An alternative would be, not to use the implementation trick for the
status of areas in A0 , but to implement the status of areas in A0 just like
the status of areas in A1, This results in a uniform approach, but also
introduces an overhead in sequential programs. E.g., for all blocks the
generator must now be implemented. This could be compensated for by not
implementing the scope of blocks explicitly. The fact that, according to
Invariant (B3), scope(B) = scope(generator(B)) for each block B can then be
used to determine the scope of a block. The latter, however, makes scope
checks more complicated and less efficient. Though one can certainly argue
about it, we will let efficiency considerations prevail and choose for the
original approach. It will be elaborated below.

The first thing we need is some way to distinguish areas created by Po
from other areas. For that purpose we associate an extra entity with each
locale and block:

Each locale Lis augmented with:

- kind(L): constant kind.

Each block Bis augmented with:

- kind(B): variable kind.

A kind is an element from the set {simple,extended}.

237

If A is an area, then kind(A) will be called the "kind" of A. If an area
has been created by Po, its kind will be sirrrple, which implies that its
status and generator (if it is a block) need not be implemented. The
reverse will not hold. There are two reasons for that. First of all, for
areas with scope= O, which need not be created by Po, neither the status
nor the generator need be implemented: Their status is invariably alive and
their generator (for blocks) is invariably equal to PO• The kind of these
areas will therefore also be chosen to be sirrrple. Secondly, we wish the
following invariant to hold (why this inv,ariant is useful will be seen
soon):

I Invariants for blocks B € B
(B4) kind(B) = kind(generator(B)).

This invariant may be disturbed by the operation KEEP(B,L). So it must be
possible to change the kind of a block, which is the reason that the kind
of a block is variable. The change of kind of a block, as we will see, is
only from extended to sirrrple. If the reverse were also possible, this would
(in view of the constant size of areas) annihilate the advantages of the
distinction between simple and extended areas.

The model must be extended according to the above. First, the
following should hold in the initial situation:

Initially:

- kind(L0J = sirrrple.

Note that it is now absolutely necessary that areas with scope= 0 have
kind = sirrrple (see Invariant (B4)). Next, when areas are created they
should get the proper kind. A locale should get kind= sirrrple iff R =Poat
the moment of its creation, while a block should assume the kind of its
generator. This amounts to the following additions to the operations
ESTABLISH(t) and GENERATE(t,L):

ESTABLISH(t):
Precondition:

tis a type.
Action:

Let E = environ(R).
Let L be a locale such that:
- status(L) = alive,
- type(L) = t,
- saope(L) = saope(E) + 1,
- establisher(L) = E,
- size(L) = •
If R = Po I - kind(L) = sirrrple.
else
I - kind(L) = extended.
ALLOCATE (L) •
L := Lu {L}.
environ(R) := L.

238

GENERATE(t,L):
Precondition:

tis a type,
LE L, L $A environ(R).

Action:
Let B be a block such that:
- status(B) = alive,
- type(B) = t,
- saope(B) = saope(L),
- generator(B) = L,
- size(B) = ~,
- kind(B) = kind(L).
ALLOCATE(B) •
B := Bu {B}.

Invariant (B4) is trivially satisfied initially and is not violated by
GENERATE(t,L). The only operation which might violate Invariant (B4) is
KEEP(B,L). This is remedied by the following addition to KEEP(B,L):

KEEP(B,L):
Precondition:

BE B, generator(B) = environ(R),
LE L, L + Lo, L <A environ(R).

Action:
generator(B) := L.
saope(B) := saope(L).
kind(B) := kind(L).

Apart from Invariant (B4) the following invariants can now be proved:

Invariants for Lo

(KS) kind(Lo) = simple.

Invariants for Po

(05) kind(environ(P0)) = simple.

Invariants for locales LE L

(L6) If kind(L} = simple
I kind(establisher{L)) = simple.

Invariants for processes PEP

(P9) If P + Po

I For each LE L with origin(P) <AL
I kind(L) = extended.

Furthermore, if we define the set T to be the set of simple areas in S:

I Definition T

T ={AES I kind(A) = simple}.

then the following analogues of Invariants (S2)-(S4) can be proved:

Invariants for Sand H

(UIO) If S = <A1, .•. ,An> with n > 0 and T f ¢
I A1 E T n L and status(A1 J = alive.

(UI I) For each L E T n L with status(L) = alive
and each M E T n L
Ii

(Ul2) For
and
I L

<s M => L <1i. M.
each L E T n L with status (L)
each BE TnB with status(B)
<s B => L <s generator(B).

alive
dead

If we (re)define the "base" of an area in T as follows:

Definition base(A)

For each A E T
I base(A) = m={L E T n L I L ~SA, status(L) = alive}.

<s

then the following analogue of Invariant (S5) can be derived from
Invariants (UII) and (Ul2):

Invariants for Sand H

(Ul3) For each A ET
I status(A) = dead ~ scope(A) > scope(base(A)).

239

The proofs of Invariants (UIO)-(Ul3) are (almost) entirely analogous to the
proofs of Invariants (S2)-(S5), hence they are omitted.

The status of a simple locale, the status of a block and the generator
of a simple block can now be turned into redundant variables. As in the
sequential case it suffices to show this for the determination of DEADTOP
and DEAD. Consider DEADTOP first. Invariant (Ul3) implies that if Sf<>
and kind(TOP(S)) = simple, the assertion:

status(TOP(S)) dead

is equivalent to:

scope(TOP(S)) > scope(environ(P0JJ.

If kind(TOP(S)) = extended, two cases must be distinguished. First, if
TOP(S) is a locale its status can be determined directly. Secondly, if
TOP(S) is a block, its status is equal to the status of its generator G
(Invariant (B2)). The status of G, again, can be determined directly,
because kind(G) = extended (Invariant (B4)). Notice that if Invariant (B4)
did not hold, it would be much more difficult to determine the status of G.
The above implies that DEADTOP can be implemented as follows:

240

Determination of DEADTOP

If S = <>
I DEADTOP := false.
else

Let T = TOP(S).
If kind(T) = sirrrple

I Let E = erwiron(PoJ.
DEADTOP := saope(T) > saope(E).

else
If T € L I DEADTOP := status(T) = dead.
else

I Let G = generator(T).
DEADTOP := status(G) = dead.

Invariants (UIO) and (Ul3) imply that the number of dead cells in Scan be
determined as follows:

Determination of DEAD

Let A1, ••• ,An be such that S <A1,•··,An>·
s := 0.
k := n.
L := erwiron(P0J.
While k > 0

While k > 0 and A~ ,J L
If kind(Ak) = surrple

I If saope(Ak) > saope(L)
I s := s + size(Ak).

else
If Ak € L

I If status(A~) = dead
Is :=s+si.ze(Aki·

else

I Let G = generator(Ak).
If status(G) = dead
Is :=s+size(Ak).

k:=k-1.
I£ k > 0

I L:= establisher(L).
k := k-1.

DEAD := s.

We have shown above, that in order to implement System 4 in the
general case of both sequential and parallel programs neither the status of
a simple area nor the status of a block nor the generator of a simple block
need be implemented. We will formally complete the design by removing these
variables from the model.

6.3.7. Stripping the model

The removal of redundant variables from the model starts with a
reduction of the entities associated with locales and blocks.

Each locale L has:

- type(L): constant type,
- scope(L): constant integer,
- establisher(L): constant locale,

size(L): constant integer,
- kind(L): constant kind,
If kind(L) = extended
I - status(L): variable status.

Each block B has:

- type(B): constant type,
- scope(B): variable integer,
- size(B): constant integer,
- kind(B): variable kind,
If kind(B) = extended
I - generator(B): variable locale.

241

The entities associated with processes remain the same. The initial state
of the model is reduced only as far as the. initial conditions for Lo are
concerned:

Initially:

- type(Lo) ,
scope(LOJ = O,

- establisher(LO) = Lo,
- size(LO) = ~,
- kind(LoJ = sirrrple.

Next, the redundant variables must be removed from the operations of the
(no longer entirely) abstract machine. For the operations ESTABLISH(t),
FINISH and GENERATE(t,L) this is straightforward. These operations are
given below.

ESTABLISH(t):
Precondition:

t is a type.
Action:

Let E = environ(R).
Let L be a locale such that:
- type(L) = t,
- scope (L) = scope (E) + 1,
- establisher(L) = E,
- size(L) = ~,
If R = Po I - kind(L) = simple.
else

I - kind(L) = extended,
- status(L) = alive.

ALLOCATE'(L).
L := Lu {L}.
environ(R) := L.

242

FINISH:
Precondition:

en:viron(R) # origin(R).
Action:

Let E = environ(R).
environ(R) := establisher(E).
If kind(E) = extended
I status(E) := dead.
RELEASE.

GENERATE(t,L):
Precondition:

tis a type,
LE L, L SA environ(R).

Action:
Let B be a block such that:
- type(B) = t,
- scope(B) = scope(L),
- size(B) = ~,
- kind(B) = kind(L),
If kind(L) = extended
I - generator(B) = L.
ALLOCATE(B).
B:=Bu{B}.

In removing the redundant variables from the operation KEEP(B,L) an
interesting problem arises. The precondition of KEEP(B,L) contains a
condition on the generator of B. However, in the new model the generator of
B need not exist ·(to wit, if kind(B) = sirrrple). We can do two things now.
First, we can simply do away with the preconditions of operations. They are
not supposed to be implemented (as run-time checks) anyway. They are only
meant for the code generator, who must make sure they are satisfied
whenever an operation is used. Secondly, we can replace the condition on
the generator of B by an equivalent one which does not use the generator of
B if kind(B) =simple.The latter seems the more elegant solution, which we
will choose here. It requires the proof of an additional invariant (in the
"old" model):

Invariants for Sand H

(Ul4) For each L € T n L with status(L) = alive
and each B € T n B
I generator(B) = L ~ L <s B and scope (BJ = scope (L).

This invariant can be derived from the invariants already formulated (in
particular from Invariant (UII)). The generator of a simple block can now
also be removed from the precondition of KEEP(B,L):

KEEP(B,L):
Precondition:

BE B, LE L, L # Lo, L <A environ(R),
If kind(B) sirrrple I environ(R) <s Band saope(B) = saope(environ(R)}.
else
I generator(B) = environ(R).

Action:
saope(B) := saope(L).
kind(B) := kind(L).
If kind(B) = extended
I generator(B) := L.

243

The operations SPAWN(n), COMPLETE and SWITCH remain entirely the same. This
leaves only the operation JUMP(L,P). Suppose that prior to JUMP(L,P) the
assertion R = Po holds (i.e., the program is in "sequential mode"). From
the fact that P srr Po (see the precondition of JUMP(L,P)) and Po srr P
(Invariant (P4)) we know that P = Po, Consequently, the actions:

R := P.
mode(R) := aative.

in the definition of JUMP(L,P) reduce to dummy actions. Though this is not
so for the action:

environ(R) := L.

it also applies to the rest of the actions in the definition of JUMP(L,P),
except to RELEASE; of course. First consider:

For each MEL with L <AM
I status(M) := dead.

This action can be removed because the following assertion (which is not
disturbed by "environ(R) := L") holds prior to JUMP(L,P):

For each MEL with L <AM
I status(M) = alive =+ kind(M) = sirrrple.

Next, the action:

For each BE B with L <A generator(B)
I status(B) := dead.

can be removed because the status of a block is a redundant variable.
Finally, the action:

For each Q E P with P <n Q
I mode(Q) := aorrrpleted.

can be removed because P (= Po) is the only process in P which is not yet
completed. If RI Po prior to JUMP(L,P) the required changes in JUMP(L,P)
are obvious. All in all we get:

244

JUMP(L,P):
Precondition:

L € L, L sA environ(R),
p € P, P srr R,
origin(P) SAL SA environ(P).

Action:
If R = Po I environ(R) := L.
else

R := P.
mode(R) := aative.
environ(R) := L.
For each M € L with L <AM and kind(M}
I status(M) := dead.
For each Q € P with P <rr Q
I mode(Q) := aompZeted.

RELEASE.

extended

The only thing that remains to be done is the rewriting of the
invariants. That is, the redundant variables must also be removed from the
invariants. This is a straightforward matter which will be omitted. The
"stripping" of the model is herewith completed. Yet, the system is still in
a rather abstract form. The final implementation of the system in "hard
code", which is a purely technical matter, will be discussed in the next
subsection.

6.3.8. Final implementation

In the introduction we stated that the storage management system
should be written in a subset of the code of the abstract machine. Up till
now we only have a description in terms of algorithms which operate on the
abstract variables of the (enhanced) machine model. In order to obtain a
storage management system written in abstract machine code, the entire
model must be mapped back to the abstract machine. There are two aspects to
this mapping.

First of all, there is the data structure aspect. A layout for the
data structures of the model must be designed. This layout specifies how
the entities associated with locales, blocks and processes are implemented
as subfields of the fields occupied by these data structures in the store
of the abstract machine. Note that in reality there are more entities
associated with locales, blocks and processes than we discussed here. We
discussed only those entities which were of interest to the storage
management problem. The design of such a layout is not difficult.
Optimizations are often possible by combining different entities in the
same subfield. Having defined a layout, the referencing or changing of an
entity associated with a locale, block or process can be translated
directly into an instruction of the abstract machine which accesses the
corresponding subfield (using a "pointer" and an "offset").

Secondly, there is the control structure aspect. Most of the control
structures used in the algorithms (such as while-loops) can be translated
directly into abstract machine code. The only two control structures for
which the translation is not entirely trivial are the two for-loops in
JUMP(L,P). Using the (rewritten) invariants one can transform the
definition of JUMP(L,P) into the following more readily translatable form:

JUMP(L,P):
Precondition:

LE L, L SA environ(R),
p E P, p $II R,
origin(P) SAL SA environ(P).

Action:
If R = Po I environ(R) := L.
else

Let E = environ(P).
R := P.
mode(R) := active.
environ(R) := L.
If P f Po

M := E.
While M f L

I status(M) := dead.
M := establisher(M).

Q :={SEP I spawner(S) P, mode(S) f completed}.
While Q # ¢

Let Q E Q.
Q:=Q\{Q}.
mode(Q) := completed.
M := environ(Q).
While M # origin(Q)

I status(M) := dead.
M := establisher(M).

Q := Qu {S E P I spawner(S) Q, mode(S) # completed}.
RELEASE.

In the other algorithms several optimizations are possible too.

245

The translation of the algorithms into abstract machine code will thus
not pose any serious problems. The only operations which cannot be
translated directly are COLLECT GARBAGE and COMPACT. The design of
efficient algorithms for these operations (based on the specifications
given previously) will be treated in the next chapter.

6. 4. CONCLUSION

The implementation of a programming language is a highly complex
process. In order to keep this process under control a "divide and rule"
approach is mandatory. The job should be divided into clearly interfaced
sub-tasks, which should be as independent of each other as possible. The
division should be made with great care in order to keep the implementation
as efficient as possible. One of the sub-tasks is the construction of a
storage management system. In this chapter it has been demonstrated through
an example that indeed the design of a storage management system can be
viewed as a relatively independent part of the language implementation
process. The interface with the other parts of the implementation consisted
of an abstract model, which contained exactly the information relevant to
the storage management problem and no more than that. It allowed us to
approach the problem in a systematic and rigorous way, up to a level of
formality which allowed proofs of correctness. Since all irrelevant details
were discarded, the design process remained transparent and things could be
kept relatively simple. The final result of the design process was an

246

efficient storage management system. The majority of the techniques used in
this system are certainly not novel. The primary goal of this chapter was
not to demonstrate some fancy storage management technique. Its main
purpose was to demonstrate a technique to design a storage management
system in a systematic way.

Apart from a number of advantages already mentioned in the
introduction, the major advantage of the method demonstrated in this
chapter over the more usual ("classical") approach to the design of storage

·management systems (such as described in [KNUTH 68], [BRANQUART & LEWI 71],
[GRIES 71], [HILL 74]) is considered to be the fact that it forces one to a
separation of concerns. In the process of designing a storage management
system for an implementation of a programming language Lon a machine Ma
number of concerns can be distinguished, which were clearly separated
before:

(1) The programming language L.
(2) The machine M.
(3) The definition of the problem.
(4) The design of the algorithms.
(5) The implementation of the system.

Concerns (I) and (2) are often not well separated. In any but a purely
interpretive implementation a storage management system should not be
designed for (the machine corresponding to) the programming language L, but
for the machine Minto which code programs in Lare translated. The
operation KEEP(B~L), which does not correspond to any ALGOL 68 construct,
demonstrates this clearly. Of course, if the abstract machine approach is
pursued, there will usually be a certain correspondence between Land M
(the more abstract the machine is, the closer this correspondence will
generally be), Good abstract machines (or better, their definitions) should
be such that they can be implemented without using information on the
programming language Lor the way programs in Lare translated into code
for M. Admittedly, with the MIAM [MEERTENS 81] we were in a rather
fortunate position in this respect. During the design process we only
seldom needed a reference to ALGOL 68.

The third concern, the definition of the problem, is usually either
omitted or taken for granted. Lacking a simple model free of irrelevant
detail it is indeed not easy to define precisely what the storage
management problem amounts to. Yet an unambiguous statement of the problem
is essential to the reliability of the system to be developed, For example,
if we had not clearly defined what operations on the allocation function
were allowed, we might have erroneously deallocated living areas.

Concerns (4) and (5) are most often confused. It is generally accepted
that in designing an algorithm (or a program) one should keep the algorithm
(or the program) free from implementation detail as long as possible. It
enables one to keep a clear view of the algorithm under development. Thus
possible improvements of the algorithm are discovered more easily. An
example of this was the discovery of Invariant (S5), which enabled a
substantial improvement of the efficiency of the storage management system.
It is questionable whether this invariant would ever have been discovered
(let alone that it could have been proved) if we had not kept the system as
abstract as we did. The separation of concerns (4) and (5) also helps in
keeping the presentation of the algorithms digestible. Interspersing an
algorithm with implementation details can make the algorithm utterly
unreadable.

A sixth concern could be added to the above list of separated

247

concerns: the design of the garbage collector. This concern was separated
because it constitutes a problem so different from the rest of the design
that it justifies a separate treatment. The fact that this concern could be
separated shows the power of the technique.

249

CHAPTER 7

DESIGN OF A GARBAGE COLLECTOR

7.0. INTRODUCTION

In this chapter we shall design efficient algorithms for the
operations COLLECT GARBAGE and COMPACT described (very) abstractly in
Chapter 6. The treatment will be entirely independent of Chapter 6, using
the same approach as in Chapter 6 to obtain independence of the abstract
machine MIAM and ALGOL 68. That is, the interface with Chapter 6 will be
laid down in a model. The model constitutes the basic data structure upon
which the operations COLLECT GARBAGE and COMPACT will be defined. It
constitutes what might be called. a "concretized abstraction" of the model
described in Chapter 6. This implies that,. on the one hand, the former can
be viewed as an abstraction of the latter in that only the relevant
information from the latter is contained in the former. For example, we
shall abstract from the distinction between "locales" and "blocks", and
even forget about "processes" entirely. On the other hand, the model can be
viewed as a "concretion" of the model from Chapter 6 in that it is
augmented with a number of concepts which were regarded as "irrelevant" to
the problem under consideration in Chapter 6. For example, we shall
introduce the concept of a "branch" of an area and, associated with it, the
concept of "reachability".

The model to be introduced bears a close resemblance to the general
storage management model described in Chapter 4 (which was used for the
description of the class of "all" garbage collection and compaction
algorithms), though we have tailored it to our specific application. It
differs from the model described in Chapter 6 in the following way. We
shall not introduce "external" operations (such as ESTABLISH(t), FINISH,
etc.) and subsequently prove the invariants of the model. Instead, the
invariants will be introduced as postulates (as in Chapter 4).

The model will be introduced in Section 7.1. For the reader of
Chapter 6, the correspondence of this model with that of Chapter 6 will be
indicated. After introducing the model, the problem will be defined in the
same section by giving abstract definitions of the operations
COLLECT GARBAGE and COMPACT. These definitions will comply with the
definitions of COLLECT GARBAGE and COMPACT given in the previous chapter,
including the "Requirements for COLLECT GARBAGE". In Section 7.2 the design
of efficient algorithms for the latter operations by means of a process of
transformation will be described. The transformation process will result in
two efficient algorithms (for COLLECT GARBAGE and COMPACT, respectively).

The final algorithms from Section 7.2, though efficient(ly
implementable), are still abstract in a number of respects. First of all,
they use certain abstract parts of the model. Secondly, they are formulated
in terms of abstract variables and "high level" control structures. In the
end the algorithms will have to operate exclusively on the store (which is
part of the model) and will have to be formulated in machine code (in order
to execute them). The elimination of the abstract parts of the model from
the algorithms and the translation of the algorithms into "hard code"

250

(which involves additional design decisions) is a rather straightforward
affair, which could be omitted (as we did in Chapter 6)\ Still, having made
a long journey to abstract worlds it is felt appropriate to conclude this
monograph with a safe return to earth. In Section 7.3 we shall therefore,
by way of illustration, perform the "final implementation" of the
algorithms and translate them into machine code.

The obvious choice for the machine code would be (a subset of) the
code of the abstract machine MIAM [MEERTENS 81], on the store of which the
operations COLLECT GARBAGE and COMPACT are supposed to operate. The model
introduced in Section 7.1, however, enables us to view the algorithms for
COLLECT GARBAGE and COMPACT as general purpose runtime routines
("utilities"), which are independent of the MIAM. Instead of the code of
the MIAM, which most readers will be unfamiliar with, a very simple code
for a hypothetical machine will be used, in which to formulate the final
versions of the algorithms. The latter machine code, the meaning of which
can be described in a few lines, can be viewed as a simplified version of
(a subset of) the code of the MIAM. The conclusion of this chapter can be
found in Section 7.4.

7. I. MODEL

7.1.1. Framework

As in Chapter 6, the abstract objects which programs operate upon will
be called "areas". Areas are the units of allocation and deallocation (so
they correspond to the "nodes" of Chapter 4).

Each area A has:

- status(A): constant element from {alive,dead},
- size(A): constant integer,
- atoms(A): constant set of atoms.

status(A) and size(A) will be called the "status" and "size" of A,
respectively. The elements of atoms(A) will be called the "atoms" of A. The
status of A indicates whether or not A has been "destroyed" by the program.
The size of A indicates the size of the "field" (see Figure 6. 5 in
Chapter 6) which A occupies in the store (to be introduced below). The
atoms of A are the elementary components of A:

Each atom X has:

- offset(X): constant integer,
- kind(X): constant element from {Zeaf,branoh},
If kind(X) = leaf
I - value(X): constant integer,
If kind(X) = branch
j - target(X): constant area.

offset(X), kind(X), value(X) and target(X) will be called the "offset",
"kind", "value" and "target" of X, respectively. The offset of Xis the
displacement of the location of X within the field of the (unique) area of
which Xis an atom. There are two kinds of atoms, which are called "leaves"
and "branches", respectively. A leaf has a value, which is an integer. A
branch "refers" to an area, to wit its target. Though programs may change
the values of leaves and the targets of branches, the operations

251

COLLECT GARBAGE and COMPACT are supposed to leave these entities
unaffected, which is the reason why they are defined to be constant. Atoms
are supposed to occupy a single "cell" in the store. A cell C is merely a
container of a value (an integer), which is called the "contents" of C:

I
Each cell Chas:

- aont(C): variable integer.

The framework of the model (i.e., the model without the definitions and
invariants) is now described by a collection of four variables:

The model consists of:

- L: constant area,
- S: variable sequence of areas,
- H: variable sequence of areas,
- C: constant sequence of cells.

Here L, which will be called the "root", corresponds to the initial locale
Lo from Chapter 6. Sand H correspond to the "piles" Sand H from
Chapter 6. C represents the "store" (which was kept implicit in the model
of Chapter 6) •

7.1.2. Definitions and invariants

The definitions and invariants which hold in the model will now be
presented. The invariants are prefixed by the capital letter I followed by
a number. The following definitions and invariants are concerned with areas
in general and the root Lin particular.

If A is an area, then the set lea:oes(A) of atoms is defined by:

lea:oes(A) = {X € atoms(A) I kind(X) = leaf}.

If A is an area, then the set branahes(A) of atoms is defined by:

branahes(A) ={XE atoms(A) I kind(X) = branch}.

(II) For each area A,B
I A "F B ~ atoms(A) n atoms(B) ¢.

(12) status(L) = alive.

(13) For each area A with status(A)
and each X € branahes(A)
I status(target(X)) = alive.

alive

The fact that an area is reachable is defined by the following rules:

(I) Lis reachable.
(2) If A is a reachable area,

XE branahes(A),
B = target(X),

then Bis reachable.
(3) An area is reachable on account of the above rules only.

An area is unreachable if it is not reachable.

252

Invariant (Il) states that different areas do not "overlap" (i.e., do not
share atoms). Invariant (12) corresponds to Invariant (K2) from Chapter 6.
The absence of "dangling references" (i.e., references from live areas to
dead areas) is expressed in Invariant (13). The root Lis the starting
point for all access paths to other areas, as reflected in the definition
of the concept of "reachability". Notice that Invariants (12) and (13)
imply that reachable areas are always alive.

We now turn to the sequences Sand Hof areas:

(I4) If S = <A1, •.• ,Am> and H = <Am+1,···,An>
I i ,f, j => Ai ,f, Aj (i,j = 1, .•• ,n).

(IS) If H = <A7, ... ,An>
In> 0 and A7 = L.

(I6) For each A E Su H with status(A)
and each XE branches(A)
I target(X) E Su H.

(17) For each A EH
I status(A) = alive.

(IS) For each A EH with A 'FL
and each XE branches(A)
I target(X) EH.

alive

Invariant (I4) corresponds to Invariant (UI) from Chapter 6. It must be
formulated, not only because Sand H contain different areas, but also
because sequences may, in principle, contain multiple occurrences of their
elements. Invariant (IS) expresses the fact that in the model of Chapter 6
the initial locale is invariably at the bottom of the pile H.

Invariant (16) states that live areas in Su H do not contain "dangling
pointers" (i.e., references to already deallocated areas). In this
invariant (and elsewhere, if convenient) the sequences Sand Hare
considered as the sets of their elements. Invariant (16) can be explained
as follows. Dangling pointers can arise only because of the deallocation of
areas. Apart from the areas deallocated by COLLECT GARBAGE, all areas
deallocated in the model of Chapter 6 are dead areas. Due to the absence of
"dangling references" (Invariant (13)) this can never give rise to the
occurrence of dangling pointers in live areas, though dangling pointers may
occur in other dead areas. Notice that Invariant (16), together with
Invariants (I2) and (IS), implies that all reachable areas are contained in
Su H.

Invariant (17) is a direct translation of a "fact" from the model of
Chapter 6, in contrast to Invariant (IS). The latter invariant states that
there are no references from areas in H\ {L} to areas in S. This invariant
is due to the "scope rules" of ALGOL 68, which (almost) entirely carry over
to the MIAM. (See also the remarks in Subsection 7.1.4.)

Definitions and invariants concerned with the store Care given below.

The integer N is defined to be the number of cells in C.

If C = <Co,···,CN-1> and a E {O, ••• ,N-1}, then cell(a) is the cell Ca·

(19) For each a,b E {O, ••• ,N-1}
I a ,f, b => ceU(a) ,f, cell(b).

I If CE C, then addr(C) is the unique a E {O, •.• ,N-1} such that
ceU(a) = C.

253

Invariant (19) states that the cells in the store Care all different, and
therefore have a unique "address".

Finally, we introduce the concepts and invariants related ·to the
representation of areas in the store.

(110) For each area A
I size(A) > 0.

i (Ill) For each area A
and each XE atoms(A)
I O ~ offset(X) < size(A).

(112) For each area A
and each X,Y E atoms(A)
I X # Y .,. offset(X) # offset(Y).

(113) LA ES u H [size(A)] ~ N.

The integer PTR(A) for areas A E Su H is defined by the following
rules:

(I)

(2)

If S = <A1, •.• ,Am> and A= Ak
I PTR(A) =Li= 1, ••• ,k-1 [size(Ai)].
If H = <B1, ••• ,B~> and A= Bk .
I PTR(A) = N- L 1, = 1, ••• ,k [s1,ze(Bi)].

The cell LOC(X) for atoms X E U A E Su H [atoms(A)] is defined by:

LOC(X) = ceU(PTR(A) + offset(X)),

where A is the unique area A E S u H such that X E atoms (A).

(114) For each A E Su H with status(A)
and each XE Zeaves(A)
I cont(LOC(X)) = value(X).

(115) For each A E Su H with status(A)
and each XE branches(A)
I cont(LOC(X)) = PTR(target(X)).

alive

alive

An area A is represented by a field F of size(A) cells in the store.
Invariant (110) guarantees that Fis not empty. An atom X of A is
represented by a cell C with displacement offset(X) from the leftmost cell
of F. Invariant (Ill) makes sure that C is contained in F. The requirement
that different atoms of A occupy different cells in Fis expressed in
Invariant (112). In accordance with Chapter 6, the areas in Sand Hare
supposed to be located in the store as indicated in Figure 7.1. The
requirement that all areas must fit in the store is formulated in
Invariant (113) (cf. Invariant (U2) from Chapter 6). A reference to an area
A is represented by the address of the leftmost cell of the field of A and
is denoted by PTR(A). The cell representing an atom X of an area is denoted
by LOC(X). (Capital letters are used for PTR and LOC to give warning that
they are variable functions: They are affected by operations on Sand H.)
Invariants (114) and (115) define how the value of a leaf and the target of

254

Figure 7.1

a branch of an area are represented in the store. Notice that these
invariants are defined for all live areas in S u H and not exclusively for
the reachable areas. (The importance of this will become clear in
Section 7.2.) Notice also that none of the invariants implies that all
cells in the field of an area A are occupied by atoms of A. There may be
"free" cells in the field of A, which can, for example, be used as
workspace for COLLECT GARBAGE and COMPACT.

7.1.3. Operations

In the model which has been presented above, the operations
COLLECT GARBAGE and COMPACT can be specified as follows:

COLLECT GARBAGE:
Let Q = {A € Su H I A is unreachable}.
S,H := S \·Q,H \ Q.
Restore the invariants of the model by changing the contents of
cells in C.

COMPACT:
Let Q ={A€ SI status(A} = dead}.
s := s \ Q.
Restore the invariants of the model by changing the contents of
cells in C.

Here the operation "S := S \ Q'' implies that all areas from the set Q which
occur in the sequence Sare removed from S, while the order of the
remaining areas in S is not affected (analogously for "H := H \ Q"). Notice
that the operations COLLECT GARBAGE and COMPACT are quite different from
the operations with the same name defined in Chapter 4.

It is easy to see that the above definitions comply with 4 of the 5
"Requirements for COLLECT GARBAGE" and the definition of COMPACT from
Chapter 6. Since we have abstracted from the difference between "locales"
and "blocks" Requirement (5) for COLLECT GARBAGE has become meaningless.
Requirement (5) should be satisfied when incorporating the garbage
collector to be developed here, in the storage management system of
Chapter 6. It can be satisfied by keeping all live locales reachable (which
they should be anyway; see the remark preceding Requirements (4) and (5)
for COLLECT GARBAGE).

The design of efficient algorithms for COLLECT GARBAGE and COMPACT
will be discussed in Section 7.2. We shall conclude this section with a
number of remarks which provide additional information concerning the
relation of the above model to ALGOL 68, the MIAM and the model from

Chapter 6. These remarks do not add anything to the model and can be
skipped by the reader who prefers the "sec" model.

7. 1.4. Some remarks

255

The "status" of an area, which was removed as a component from certain
areas in Chapter 6, has returned in our model. This does not imply that the
algorithms for COLLECT GARBAGE and COMPACT to be designed can only be

"incorporated in the storage management system of Chapter 6 if the status is
re-introduced as a component of all areas. In the system of Chapter 6 a
call of COLLECT GARBAGE or COMPACT is always preceded by a traversal of S
to determine the number of dead cells in S (see System 4). During this
traversal dead areas can be marked as such, thus providing the necessary
information on the status of areas. (Areas in Hare always alive; see
Invariant (17).)

In ALGOL 68 references to arbitrary subobjects of objects are allowed.
Consequently, the MIJ\M features references to arbitrary subareas of areas.
We have ignored this fact in the model: The branches of an area refer to
areas and not to subareas of areas. This implies that the design decision
to use "node marking" (see Subsection 5.1.5) has already been incorporated
in the model. The advantage of node marking is its simplicity and time
efficiency. Furthermore, the requirement that it must be possible to
determine the area which a reference "points in" does not cost us anything
extra: This information is already contained in references in the MIAM
(where it is used for "scope checking"). The only remaining disadvantage of
node marking (in this case) is that the garbage collector is more
"conservative" than we might wish: It need not necessarily remove all areas
from the store which are unreachable from the program point of view (see
Example 5.6 in Subsection 5.1.5). A great deal of this objection can be
removed by the code generator, who has control over the representation of
ALGOL 68 objects in the store of the MIAM.

The "scope rules" of ALGOL 68 imply that there are no references from
an object X to an object Y if scope(X) < scope(Y). Analogously, in the MIJ\M
there are no references from an area A to an area B if scope(A) < scope(B).
This assertion, however, applies only to "ALGOL 68 references" in the MIAM.
Apart from the latter there are also other kinds of references in the MIAM,
such as the references corresponding to the "establisher" of a locale or
the "environ" of a process. Most of these references also satisfy the scope
rules, but some of them do not. (For example, the "environ" reference of a
process does not satisfy the scope rules because a process is embedded in
its "origin".) In so far as references from blocks to other areas are
concerned the scope rules are fully satisfied, which justifies
Invariant (18). (All areas in H, except L, are blocks.)

Invariant (18) permits L to contain references to areas in S. If L
contained no references to areas in S, all areas in S would be deallocated,
which is usually not intended. Prior to initiating a garbage collection or
compaction the storage manager is therefore sup-posed to store the "base
pointers" through which all areas in Sand Hare accessed in L (if not
already in L). In particular, L should contain a reference to the "running
process".

As a final remark we note that unreachable live areas can occur not
only in H, but also in S. This is due to the way "local generators" may be
used in ALGOL 68.

256

7.2. DESIGN

In this section we are concerned with the design of efficient
algorithms for the operations COLLECT GARBAGE and COMPACT. The algorithms
will be designed through a process of transformation, starting with very
abstract and obviously correct algorithms. For reasons of space·,
correctness proofs of the transformations are omitted. The transformation
steps taken are generally so small, however, that it is simple to check
their correctness (if not self-evident}. In the rare case of a "large"
transformation step, the necessary assertions (invariants) for a proof of
correctness will be provided. In taking design decisions we shall to some
extent rely on basic knowledge concerning garbage collection and compaction
techniques (to be found in Chapter 5).

This section will be divided into two subsections, which are concerned
with the design of algorithms for COLLECT GARBAGE and COMPACT respectively.
The design of an algorithm for COMPACT is partly analogous to the design of
an algorithm for COLLECT GARBAGE and will therefore be discussed in a less
detailed way than the latter.

7.2.1. COLLECT GARBAGE

7.2.1.1. A straightforward algorithm

It is the job of COLLECT GARBAGE to delete all unreachable areas from
the sequences Sand Hand restore the invariants of the model by changing
the contents of cells in C. Inspection of the invariants tells us that only
Invariants (114) and (I15) are violated by the deletion of all unreachable
areas from Sand H (because the remaining areas in Sand H occupy new
fields in the store). The obvious way to restore these invariants leads to
the following algorithm (in which we use the fact that all reachable areas
are alive):

COLLECT GARBAGE1:
Variables:

None.
Action:

Let Q = {A E Su H I A is unreachable}.
S, H : = S \ Q, H \ Q.
For each A E S u H
and each XE Zecwes(A)
I cont(LOC(X)) := value(X).
For each A E Su H
and each X E br•anches(Aj
I cont(LOC{X)) := PTR(target(X)).

Notice that the two for-loops may be interchanged. More than that, they may
even be "fused" arbitrarily.

7.2.1.2. Preserving the allocation information

The above algorithm, though evidently correct, has no practical value
whatsoever. The reason is that it has been formulated almost exclusively in
abstract terms. In order to turn the algorithm into a practical algorithm
the abstract parts must be transformed in such a way that only operations
on (the cells in) the store C remain. This implies, for example, that in
the final algorithm the abstract "value" of a leaf X, which is used in

COLLECT GARBAGEz, will have to be extracted from the
from Invariant (114) that this is possible: Prior to
cell formerly occupied by X contains the value of X.
problem since after the statement:

S,H := S\Q_,H\Q.

257

store. Indeed, we know
the first for-loop the
Still, we run into a

all information concerning the old fields of areas has been lost. First of
all, we shall therefore reformulate COLLECT GARBAGE1 in such a way that
this "allocation information" is preserved. We shall do this by moving the
above statement to the end of the algorithm. This has the conceptual
advantage that Sand H, and consequently PTR(A) for areas A, and LOC(X) for
atoms X, are constant in the entire algorithm except in the last statement.
The values which P2'R(A) and LOC(X) will have at the end of the algorithm
will be denoted by PTR*(A) and LOC*(X) respectively. The reformulation of
COLLECT GARBAGE1 (which is almost straightforward) leads to:

COLLECT GARBAGE2:
Variables:

None.
Action:

Let Q_ = {A e: Su H I A is unreachable}.
For each A e: (Su HJ \ Q_
and each Xe: ieaves(A)
I aont(LOC*{X)) := vaiue(X).
For each A e: (Su HJ \ Q_
and each Xe: bronahes(A)
I aont(LOC*(X)) := PTR*(ta:rget(X)).
S,H := S\Q.,H\Q..

PTR*(A):
Case
I. S = <A1, ••• ,Am> and A =Ak
I I: i = 1, ..• , k - 1, Ai I. Q_ [size (Ai)].
2. H = <B1,·••,Bn> and A= Bk
I N-I: i = 1, ••• ,k, Bi I. Q_ [size(Bi)].

LOC*(X):
aeU(PTR*(A) +offset(X)),
where A is the unique area A e: Su H such that X E atoms(A).

7.2.1.3. Preserving the information contained in the fields of areas

It is tempting to replace the abstract "vaiue(X)" in the first for
loop of COLLECT GARBAGE2 by the more concrete "aont(LOC(X))". We have to be
careful, though, since the original contents of LOC(X) may already have
been "overwritten". In general, a statement such as:

aont(LOC*{X)) := aont(LOC(X))

will destroy the information originally contained in LOC*(X). This may not
only be information concerning the values of leaves, but also information
concerning the targets of branches or special information for the garbage
collector (contained in the "free" cells of fields). All information of
interest is contained in the fields of reachable areas (the rest is
"garbage"). It makes sense, therefore, in the first for-loop of

258

COLLECT GARBAGE2 to "move" entire areas, i.e., copy the contents of their
old fields to their new fields, instead of copying the contents of the
locations of leaves only. It is easy to see that this can be accomplished
without loss of information if the (reachable) areas in Sare moved in
order from left to right (in the store) and those in Hin order from right
to left (in the store) as described in the following transformed version of
COLLECT GARBAGE2:

COLLECT GARBAGE3:
Variables:

None.
Action:

Let Q. = {A E Su H I A is unreachable}.
Let A1,•••,Am be such that S = <A1,•··,Am>·
Let B1,,,.,Bn be such that H = <B1,·••,Bn>•
Fork= 1 tom

I If Ak I:. Q.
I MOVEt(Ak,PTR*(Ak)).

Fork= 1 ton

I If Bk I:. Q.
j MOVE4(Bk,PTR*(Bk)).

For each A E (Su HJ \ Q.
and each XE bPanahes(A)
I aont(LOC*(X)) := PTR*(taPget(X)).
S,H := S\Q.,H\Q..

MOVEt(A,a):
Let b = PTR(A).
For i = 0 to size(A) -1
I aont(aeU(a+ i)) := aont(aeU(b + i)).

MOVE4(A,a):
Let b = PTR(A).
For i = size(A) -1 down to 0
I aont(aeU(a+i)) := aont(aeU(b+i)).

Notice that COLLECT GARBAGE3 is a correct implementation of COLLECT GARBAGE
(the definition) but not of COLLECT GARBAGE2: Because the contents of all
cells in the old field of an area (including the contents of "free" cells)
are copied to the new field of the area, COLLECT GARBAGE3 may change the
contents of cells which were not affected by COLLECT GARBAGE2• Yet we shall
call the transformation from COLLECT GARBAGE2 to COLLECT GARBAGE3
"correctness-preserving", since it is the definition of COLLECT GARBAGE
which determines the correctness of the algorithm.

7.2.1.4. Preserving the updating information

Now let us consider the last for-loop in COLLECT GARBAGE3 , where
"pointers" (i.e., the contents of cells occupied by branches) are
"updated". In this loop the abstract "target" of a branch Xis used. In the
final algorithm the information concerning the target of X must again be
extracted from the store. We know from Invariant (115) and the fact that
areas have been moved that this information is contained in LOC*(X) and
consists of the integer PTR(taPget(X)), i.e., a pointer to the old field of
target(X). Since areas have been moved, however, the necessary information
to derive PTR*(taPget(X)) from PTR(taPget(X)) will generally have been

259

lost. We have the choice now, either to collect and store that information
prior to moving the areas, or to perform the updating of pointers before
the moving of areas instead of afterwards. The first choice amounts to the
use of a "relocation map" (see Subsection 5.2.2), which gives rise to
complex algorithms. We "know" we can do better than that and therefore
choose the second option. This implies that the last for-loop is moved to
the point innnediately before the "moving phase". Since at that point areas
have not yet been moved, "LOC*(XJ" must be replaced by "LOC(XJ":

COLLECT GARBAGE4:
Variables:

None.
Action:

Let Q = {A E Su H I A is unreachable}.
Let A1,···,Am be such that S <A1,··•,Am>·
Let B1, ... ,Bn be such that H = <B1,···,Bn>.
For each A e: (Su HJ \ Q
and each Xe: branches(AJ
I cont(LOC(XJJ := PTR*(target(XJJ.
Fork= 1 tom

I If Ak i Q
I MOVEt(Ak,PTR*(AkJJ.

Fork= 1 ton

I If Bk i Q
I MOVE~(Bk,PTR*(BkJJ.

S,H := S\Q,H\Q.

7.2.J.5. Marking reachable areas

Having rearranged the operations in the proper way, we are now in a
position to try and "improve" the algorithm by adding (abstract) variables
(which will again be removed in Subsection 7.3.1). The first problem is how
to determine efficiently the set Q of unreachable areas. This will, as
usual, be accomplished indirectly by "marking" all reachable areas. For
that purpose a variable set M of areas is introduced. The marking of
reachable areas is now abstractly described by the statement:

M := {A E Su H I A is reachable}.

By putting this statement at the beginning of COLLECT GARBAGE4, expressions
such as "A e: (S u HJ \ Q", "Ak i Q" and "Bk i. Q" can be replaced by "A e: M",
"Ak EM" and "Bk EM", respectively. This would not take us any further,
unless we "refine" the above assignment to Mand replace it by a "marking
algorithm". Here we appeal to knowledge of garbage collection algorithms
(see Chapter 5) and choose (in this case) the most efficient "node marking"
algorithm we know of (see Algorithm GN.DTEH in Subsection 5.1.5). This
algorithm, which requires an auxiliary variabl~ set T of areas, is
incorporated in:

260

COLLECT GARBAGE5:
Variables:

M: set of areas,
T: set of areas.

Action:
Let Q = {A € Su H I A is unreachable}.
Let A1, ••• ,Am be such that S = <A1,·••,Am~•
Let B1, ••. ,Bn be such that H = <B1,··•,Bn>.
M, T : = {L} , {L} •
While T I ¢

Get A from T.
For each X € branahes(A)

I Let B = target(X).
If B i M
I M,T :=Mu {B},Tu {B}.

For each A € M
and each XE branahes(A)
I aont(LOC(X)) := PTR*(target(X)).
Fork= 1 tom

I If Ak € M
I MOVEeJAk,PTR*(AkJJ.

Fork= 1 ton

I If Bk E M
I MOVE~(Bk,PTR*(Bk)).

S,H := S\Q,H\Q.

Here "Get A from T" is equivalent to:

Let A E T.
T := T\ {A}.

Notice that we did not remove Q from the algorithm. The reason for this is
not only that Q is used in the definition of PTR*, but also that it
relieves us from the duty of transforming the statement ·"S,H := S \ Q,H \ Q"
each time we transform M. (In the final algorithm the latter entirely
abstract statement reduces to an empty action anyway.)

7.2.J.6. Calculating PTR*(A)

A second problem is caused by the calculation of the PTR*(A) (A€ M).
It is easy to see that the calculation of these values in the moving phase
can be accomplished in an overall O(n) time (where n = #M). The calculation
of the PTR*(A) in the updating phase poses a problem, however. A
straightforward application of the definition of PTR*(A) to calculate
PTR*(target(X)) from aont(LOC(X)) (= PTR(target(X)}) would result in an
O(n2) time for a garbage collection. A way to avoid this is to calculate
all PTR*(A) for A€ Monce and for all and store these values "somewhere",
say in F(A), where Fis a variable mapping from areas to integers.
(Typically, Fis implemented by storing F(A) in a free cell of the field of
A for A€ M.) Using F, the updating of pointers can be described by:

F := ¢.
For each A e: M
I F(A) := PTR*(A).
For each A e: M
and each Xe: bPanches(A)
I aont(LOC(X)) := F(ta:l'get(X)).

261

As can be seen, this solution will cost us an extra •iscan". Another
solution is, after calculating PTR*(A), not to store PTR*(A) but to use it
immediately to update all pointers to A. If we define the set of branches
B(A) for each area A e: M by:

B(A) ={Xe: U Be: M [bPanahes(B)] I ta:l'get(X) = A},

this can be described by:

For each A e: M

I Let a= PTR*(A).
For each Xe: B(A)
I aont(LOC(X)) := a.

At first sight it seems that we do hot need an extra scan now. However, we
are faced with the problem of determining the sets B(A) (A e: M).
Calculation of the B-sets "on the spot" would be unacceptably inefficient,
so we shall have to determine and store them beforehand. This raises the
question of whether it is possible to store the B-sets efficiently at all.
Again, we appeal to knowledge concerning garbage collection techniques to
contend that these "branch sets" can be stored efficiently, even without
any space overhead at all (see Subsection 5.2.3). Turning B into a variable
function which maps areas to sets of branches, the construction of the
B-sets can be described by:

B := {(A,¢) I A e: (Su HJ \ QJ.
For each A e: M
and each Xe: bPanahes(A) I Let B = t<II'get(X).

B(B) := B(B) u {X}.

This amounts to an extra scan, which would invalidate the advantage of the
B-solution over the F-solution. Let us consider more closely what we do in
the above loop, however: For each reachable area A and each branch X of A
the target B of Xis determined and then Xis put in B(B). Apart from the
latter, that is exactly what is done during marking! The construction of
the B-sets can therefore be combined most efficiently with the marking
phase, as described in the following version of COLLECT GARBAGE (cf.
Algorithm G&CNK in Section 5.3):

262

COLLECT GARBAGEe:
Variables:

M: set of areas,
T: set of areas,
8: mapping from areas to sets of branches.

Action:
Let Q = {A E Su H I A is unreachable}.
Let A1, ... ,Am be such that S = <A1,···,Am>·
Let B1,···,Bn be such that H = <B1,···,Bn>.
M,T,B := {L},{L},{(A,¢) I A E s u H}.
While T ,fa ¢

Get A from T.
For each XE branches(A)

Let B = target(X).
If BI. M
I M,T := Mu {B},Tu {B}.
B(B) := B(B) u {X}.

For each A E M
Let a= PTR*(A).
While B(A) ,fa ¢

I Get X from B(A).
cont(LOC(X)) := a.

For k = 1 tom

I If Ak E M
/ MOVE1(Ak,PTR*(Ak)).

Fork= 1 ton

I If Bk E M
/ MOVE4(Bk,PTR*(Bk)).

S, H : = S \ Q, H \ Q.

Notice that we have formulated the updating part of the algorithm in such a
way that at the end of the algorithm B(A) ¢ for each A E S u H.

7.2.1.7. Removing PTR* from the algorithm

In the two for-loops of the moving phase of the above algorithm the
calculation of the values PTR*(A) for A EM can be accomplished in an
overall O(n) time by keeping track of a counter during the traversal of S
and H. This assertion also applies to the updating phase, if we traverse S
and Hin a way similar to the moving phase. In contrast to the moving phase
we can choose the direction of traversal of the sequences Sand H: either
from first to last element, or from last to first element. The obvious
choice may seem to be to use the order from first to last, as we (perforce)
did in the moving phase. For S this traversal order is indeed obvious, but
for Hit is not. The reason for this is that a reference to an area A is
represented by the address of the leftmost cell of the field of A. This
makes it extremely simple, given a pointer to an area A, to find the
pointer of the area immediately to the right of A in the store. Unless we
introduce an overhead, finding the pointer of the area immediately to the
left of A in the store is much more difficult. The natural order of
traversing Sand His therefore from left to right in the store, which for
H means from last to first element (see Figure 7.1).

The above raises a question concerning the traversal of Hin the
moving phase. There the traversal order is the "difficult" order from first
to last. How are we going to implement that? Fortunately, the "easy"
traversal of Hin the updating phase can be used to make the reverse

263

traversal in the moving phase, and even the moving of areas itself,
extremely simple and efficient (see Subsection 7.3.1). There is another
problem, though. When starting to traverse Hin the updating phase, we have
to know the value PTR*(B) for the first marked area B to be encountered in
H. This value is equal to:

PTR*(B) = N-r. A E HnM [size(A)]
N- (r-a),

where r r. A EM [size(A)]
and a r. A E Sn M [size(A}].

This implies that PTR*(B) can be determined by keeping track of r during
the marking phase and traversing S before Hin the updating phase to
determine a. All this leads to the following algorithm in which PTR* no
longer occurs:

COLLECT GARBAGE7:
Variables:

M: set of areas,
T: set of areas,
B: mapping from areas to sets of branches,
a,r: integer.

Action:
Let Q = {A E Su H \ A is unreachable}.
Let A1, ••• ,Am be such that S = <A1,···,Am>·
Let B1, •.• ,Bn be such that H = <B1,···,Bn>.
M,T,B,r := {L},{L},{(A,¢) I A E SuH},size(L).
While T -1- ¢

Get A from T.
For each XE branches(A)

Let B = target(X).
If B ,t M
I M,T,r := Mu{B},Tu{B},r+size(B).
B(B) := B(B) u {X}.

a:= 0.
Fork= 1 tom

I If Ak E M

\
UPDATE(Ak,a).
a := a+ size(Ak).

a:= N- (r-a).
Fork= n down to 1

I If Bk E M

\
UPDATE(Bk,a).
a := a+ size(Bk).

a:= O.
For k = 1 to m

I If Ak E M

I MOVE.e_(Ak,a).
a :=a+size(Ak).

a:= N.
Fork= 1 ton

I If Bk E M

\
a:= a-size(Bk).
MOVE11,(Bk,a).

S, H : = S \ Q, H \ Q.

264

UPDATE(A,a):
While B(A) f ¢

I Get X from B(A).
cont(LOC(X)) := a.

Check that, if each "primitive" operation (such as "Get A from T") takes
0(1) time, the algorithm operates in O(m + n) time, wh.ere:

m #(SuH),
n I: A E SuH, A is reachable [size(A)].

Here "S" and "H" denote the initial values of S and H.
We shall stop the design here. Though the algorithm still contains

many abstract expressions, the transformation of these expressions into
concrete expressions is almost entirely a purely technical matter, which
will no longer be called "design", but rather "implementation". The
transformation process of the algorithm will therefore be continued in
Subsection 7.3.1. The above description of the garbage collector is
believed to be suitable for inclusion in the accompanying documentation of
the compiler in which the garbage collector is used. The algorithm is still
reasonably readable, in contrast to the final product of Subsection 7.3.1.

7. 2. 2. COMPACT

7.2.2.1. A straightforward algorithm

The operation COMPACT should delete all dead areas from Sand restore
the invariants of the model by changing the contents of cells in C.
Inspection of the invariants tells us that, again, only Invariants (114)
and (115) are violated by the deletion of all dead areas from S. A
straightforward restoration of these invariants leads to:

COMPACT1:
Variables:

None.
Action:

Let Q = {A e SI sta-tus(A)
s := s \ Q.
For each A E Su H
and each XE Zeaves(A)
I cont(LOC(X)) := value(X).
For each A E Su H
and each XE branches(A)

dead}.

I cont(LOC(X}) := PTR(target(X)).

7.2.2.2. Limiting the restoration overhead of the invariants

A first observation is that the statement:

s := s \ Q

only "partly" violates Invariants (114) and (115) in that it keeps the
following assertions invariant:

265

For each A E H
and each XE leaves(A)
I cont(LOC(X)) = value(X).

For each A E H \ {L}
and each XE branches(A)
I cont(LOC(X)) = PTR(target(X)).

The invariance of the second assertion is based critically on the fact that
there are no references from areas in H\{L} to areas in S (Invariant (18)).
The above implies that COMPACT1 can be rewritten as follows:

COMPACT 2:
Variables:

None.
Action:

Let Q ={AES I status(A)
s := s \ Q.
For each AES
and each XE leaves(A)
I cont(LOC(X)) := value(X).
For each A E S u {L}
and each XE branches(A)

dead}.

I cont(LOC(X)) := PTR(target(X)).

7.2.2.3. Preserving the allocation information

In a first attempt to replace the abstract entities in the above
algorithm by values extracted from the store, we run into the same problems
as in COLLECT GARBAGE1: First of all, after the statement:

s := s \ Q

all information on the old fields of areas has been lost. This problem will
be solved in the same way as in COLLECT GARBAGE 2, i.e., by moving .the above
statement to the end of the algorithm. Expressions of the kind "PTR{A)" for
areas A and "LOC(X)" for atoms X must then be replaced by expressions
denoting the values which PTR(A) and LOC(X) will have after the removal of
dead areas from S. These values will again be denoted by PTR*(A) and
LOC*(X) respectively. The other necessary modifications of the algorithm
are obvious and lead to:

COMPACT3:
Variables:

None.
Action:

Let Q ={AES I status(A) = dead}.
For each A E S \ Q
and each XE leaves(A)
I cont(LOC*(X)) := val-ue{X).
For each A E (S\Q} u{L}
and each XE branches(A)
I cont(LOC*(X)) := PTR*(target(X)).
S:=S\Q.

266

PTR* (A):
Case
I. S = <A1, ... ,Am> and A = Ak
[Li= 1, ..• ,k-1, Ai I. Q [size(Ai)].
2. H = <B1,···,Bn> and A= Bk
[N-L i = 1, ... ,k [size(Bi)].

LOC*(X):
celUPTR*(A) +offset{X)),
where A is the unique area A E Su H such that X E atoms (A).

7.2.2.4. Preserving the information contained in the fields of areas

A second problem is the possible loss of information because of the
overwriting of the original contents of cells in the fields of live areas.
As in COLLECT GARBAGE3 we shall solve this problem by rewriting the first
for-loop in such a way that the live areas in Sare "moved" in order from
left to right to their new fields, as described in:

COMPACT 4:
Variables:

None.
Action:

Let Q ={AES I stai:;us{A) dead}.
Let A1,···,Am be such that S = <A1,···,Am>·
Fork= 1 tom

I If Ak i. Q
I MOVEt(Ak,PTR*(Ak)).

For each A E (S\Q} u{L}
and each XE branches(A)
[cont(LOC*(X)) := PTR*(target(X)).
S:=S\Q.

MOVEt(A,a):
Let b = PTR(A).
For i = 0 to size(A) -1
I cont(cell(a+i)) := cont(cell(b+i)).

7.2.2.5. Preserving the updating information

A third problem is the fact that in the above algorithm the
information necessary to derive PTR*(target(X)) from PTR(target(X))
(= cont(LOC(X)) according to Invariant (115)) has been lost. Again we can
either store that information before moving the areas, or perform the
updating of pointers before moving the areas. For the same reasons as
before we shall choose the latter:

COMPACT5:
Variables:

None.
Action:

Let Q ={AES I status(AJ = dead}.
Let A1, ... ,Am be such that S = <A1,···,Am>·
For each A E (S \ Q) u {L}
and each XE branches(AJ
I cont(LOC(XJJ := PTR*(target(XJJ.
For k = 1 to m

I If Ak I. Q

S !=M~~fr:Ak,PTR*(AkJJ.

267

Notice, by the way, that if Invariant (115) had been defined for reachable
areas only (cf. Invariant (S23) in Section 4.2) it would be impossible to
extract PTR(target(XJJ (and hence PTR*(target(XJJ) from LOC(XJ for each
branch X of an unreachable live area. Consequently, the first for-loop
would have to be restricted to the reachable areas A E (S \ QJ u {L},
requiring the tracing of all reachable areas in S, as in the marking phase
of COLLECT GARBAGE. The tracing of the dead areas in Sis considerably
simpler and does not require an expensive marking phase.

7.2.2.6. Calculating PTR*(AJ

Now that we have arranged the operations in the proper order, we can
start improving the algorithm by adding abstract variables to the
algorithm. Not having a marking problem, we can immediately turn to the
problem of efficiently calculating the PTR* (AJ (A E (Su HJ \ QJ. Again it is
easy to see that the calculation of these values in the moving phase can be
accomplished in an overall O(nJ time (where n = #(S\Q}). As to the
calculation of the PTR*(AJ in the updating phase, we can first of all
observe that PTR*(AJ = PTR(AJ for each A EH. Using Invariant (115) we can
therefore rewrite the updating phase of COMPACT5 as follows:

For each A E (S \ QJ u {L}
and each XE branches(AJ

I Let B = target(XJ.
If B I. H
I cont(LOC(XJJ := PTR*(BJ.

Thus the problem of calculating the PTR*(AJ is reduced to the calculation
of the PTR* (BJ for B E S \ Q in the updating phase.

As discussed in Subsection 7.2.1.6 there are basically two ways to
calculate efficiently the PTR*(BJ in the updating phase. The first is to
construct a mapping F which maps each A E S \ Q to PTR*(AJ. This makes the
updating phase fall apart into the following two loops:

F := ¢.
For each A E S \ Q
I F(AJ := PTR*(AJ.
For each A E (S\Q}u{L}
and each XE branches(AJ

I Let B = target(XJ.
If B i H
I cont(LOC(XJJ := F(BJ.

268

The second way is to construct a mapping B which maps each A € S \ Q to the
set of all branches X with target{X) =A.This also makes the updating
phase fall apart into two loops:

B:={(A,¢) IAES\Q}.
For each A € (S \ Q) u {L}
and each X € bra:nches(A)

I Let B = target(X).
If Bi. H
I B(B) := B(B) u {X}.

For each A E S \ Q

I Let a= PTR*(A).
For each X € B(A)
I cont(LOC(X)) := a.

In COLLECT GARBAGE6 the construction loop of B was disposed of by combining
it with the marking phase. The absence of a marking phase in COMPACT5 makes
this impossible now. Consequently, the reason why the B-solution was
preferred over the F-solution in Subsection 7.2.J.6 is not valid here. Are
there any other reasons to prefer either of the two solutions?

A point against the F-solution seems to be that it requires a space
overhead, while we know that the B-solution does not require any space
overhead at all. Upon closer scrutiny, however, the F-solution does not
introduce a space overhead either: The space required for the
implementation of the set Tin COLLECT GARBAGE? is vacant in COMPACT5 and
can be used for the implementation of F. Moreover, we know (see Chapter 5)
that in both the F- and B-solution we can reduce the number of scans of the
store from three to two by dividing the actual updating scan over the
"construction scan" and the moving scan. The latter has the disadvantage
that the moving scan becomes more complicated and cannot be optimized very
well, as would be possible with a separate moving scan (using a "block
traversal and moving" technique, see Section 7.3). If possible, the number
of scans should therefore be reduced to two by combining the construction
and the updating scan, leaving the moving scan unaffected.

It is not difficult to see that an efficient combination of the scans
as suggested above is impossible if we stick to either the F- or B-
solution. But what if we use both solutions? Is it possible to have the
best of both worlds? Indeed it is surprising that it is. In order to show
this let A € S \ Q and let X be a branch with target(X) = A, which is
involved in the updating process. The best of the F-world is that if Xis
visited after A then cont(LOC(X)) can be updated immediately since F(A) has
been assigned the value PTR*(A). The best of the B-world is that if Xis
visited before A we can make sure that cont(LOC(X)) is updated (when A is
visited) by putting X in B(A). Consequently, by using F to update
cont(LOC(X)) for branches X which are visited after their targets, and by
using B to update cont(LOC(X)) for branches X which are visited before
their targets, we can update all pointers in a single scan. Only we must be
careful with the root L, for which we defined neither F(L) nor B(L) (since
L € H). The latter case is therefore treated separately in the following
version of COMPACT:

COMPACT6:
Variables:

B: mapping from areas to sets of branches,
F: mapping from areas to integers.

Action:
Let Q ={AES I status(A) = dead}.
Let A1, ... ,Am be such that S = <A1,···,Am>·
B,F := {(A,¢) I A E s \ Q},¢.
For each XE branches(L)

I Let B = target(X).
If BI. H
I B(B) := B(B) u {X}.

For each A E S \ Q
Let a = PTR* (A) .
While B(A) f ¢

I Get X from B(A).
cont(LOC(X)) := a.

F(A) := a.
For each X E br•anches(A)

Let B = target(X).
If B I. H

If B E dom(F) I cont(LOC(X)) := F(B).
else
I B(B) := B(B) u {X}.

For k = 1 to m

I If Ak I. Q
S !=M~V~~'.Ak,PTR*(Ak)).

269

Notice that we use the test "BE dom(F)" to determine whether B has been
visited or not and that we have taken care that B(A) = ¢ for each A E S \ Q
at the end of the algorithm. The correctness of the rewritten updating
phase (which is far from obvious) can be proved by using the following
invariants of the second for-loop and the fact that at the end of the loop
dom(F} = S \ Q:

dom(F) c S \ Q.

For each A E dom(F)
For each XE P(A)
I cont(LOC(X)) = PTR*(A).
B(A) = ¢.
F (A) = PTR* (A).

For each A E (S \ Q) \ dom(F)
I B(A) = P(A).

where, for each area A:

P(A) = {X E branches(B} I B E dom(F) u {L}, target(X) = A}.

270

7.2.2.7. Removing PTR* from the algorithm

The calculation of the PTR*(A) in the updating phase can be
accomplished in an overall O(n) time by visiting the areas in S \ Q in the
(obvious) order from left to right and keeping track of a counter. The same
holds for the moving phase, which makes the removal of PTR* from the
algorithm extremely simple. The fact that the areas in S \ Q are visited in
order from left to right enables us to replace the test "B E dom(F)" by

·"PTR(B) s PTR(A)". If we also "remove" Q from any but the first and last
statement of the algorithm, this leads to:

COMPACT 7:
Variables:

B: mapping from areas to sets of branches,
F: mapping from areas to integers,
a: integer.

Action:
Let Q ={AES I status(A) = dead}.
Let A1,···,Am be such that S = <A1,···,Am>·
B,F := {(A,¢) I A ES, status(A) = alive},¢.
For each XE branches(L)

I Let B = target(X).
If B i. 1-/
I B(B) ;= B(B) u {X}.

a:= 0.
Fork= 1 tom

If status(Ak) = alive
While B(Ak) f ¢

I Get X from B(Ak).
cont(LOC(X)) := a.

F(Ak) := a.
For each XE branches(Ak)

Let B = target(X).
If B i. H

If P2'R(B) 5 PTR(Ak)
[cont(LOC(X)) := F(B).
else
I B(B) := B(B) u {X}.

a := a+ size(Ak).
a:= 0.
Fork= 1 tom

alive
I

If status (Ak)

I MOV1':1:,(Ak,a).
a:= a+size(A1)•

S := S\Q.

Check that, assuming that each "primitive" operation takes 0(1) time, the
algorithm operates in O(m + n) time, where:

m #S,
n = Z:A E Su{L}, status(A) = alive [size(AJL

Here "S" and "H" denote the initial values of Sand H.
The design of the algorithm will be concluded here. The further

transformation ("implementation") of the algorithm will be described in
Subsection 7,3.2.

271

7,3. IMPLEMENTATION

In this section we shall "implement" the two algorithms derived in the
previous section, i.e., we shall translate them into code for a very simple
von Neumann machine, which will be described using conventional terminology
below. The memory of the machine is the store C of our model. Apart from
that, the machine has a number of registers, denoted by a,b,a, ••• , which
can contain integers and may be used as index registers. The instructions
·of the machine have three kinds of operands: sources, destinations and
labels. A "source" is an integer (denoted by 0,1,2, ••.), the contents of a
register (denoted by a,b,a, •••) or the contents of a register-addressed
memory cell (denoted by [a],[b],[a], •••). A "destination" is a register
(denoted by a,b,a, •••) or a register-addressed memory cell (denoted by
[a],[b],[a], •••). A "label" is either a subroutine label (denoted by a name
in capital letters), which uniquely identifies a subroutine address in the
code, or a branch label (denoted by Ll,L2,L3, ••.), which uniquely
identifies a branch address in the code, The instructions and their meaning
are described below, wheres, d, P and L denote a source, destination,
subroutine label and branch label, respectively.

COPY,s,d:
AJJD,s,d:
SUB,s,d:
PROC,P:
CALL,P:
RETURN:
LABEL,L:
GOTO,L:
IFa.,s1,s·2,L:

d := B,

d := d+s.
d := d-s.
Defines subroutine label P.
Subroutine call of P,
Return from subroutine.
Defines branch label L.
Branch to L.
If the relation a. holds between s1 and s2,
then branch to L,
where a. GT,GE,EQ,NE,LE,LT,
meaning >, .: , =, +, :S, < , respectively.

The indexed addressing mode ([a],[b],[a], •••) is allowed with the COPY
instruction only.

The remarks made in the beginning of Section 7.2 apply more or less to
this section as well. The section will be divided into two subsections
dealing with the implementation of COLLECT GARBAGE7 and COMPACT7 on the
above machine respectively,

7. 3. 1 • COLLECT GARBAGE

7.3.1.1. Optimizing the moving of areas

In Subsection 7.2.1.7 we discussed the fact that in the moving phase
of COLLECT GARBAGE7 the areas in Hare visited in the "difficult" order
(from right to left). Preparations should therefore be made in the updating
phase to make the traversal of Hin the moving phase easier. These
preparations, which can be extended to S, can be exploited to make the
entire moving phase much more efficient than it would be in a
straightforward implementation of COLLECT GARBAGE7• First of all, it is
reasonable to assume that after some time during the execution of a program
a certain "residuum" of reachable areas will originate at the bottom of S
and H. Areas in this residuum need not be moved. The size.of the residuum
in Sand H can be determined cheaply in the updating phase. Secondly,
contiguous marked areas and contiguous unmarked areas constitute chunks in

272

Sand H, which will be called "blocks" and "gaps" respectively. Instead of
moving one marked area at a time and skipping one unmarked area at a time
it would greatly increase efficiency if areas are moved "blockwise" and
skipped "gapwise" in the moving phase. Arrangements to this end can also be
made cheaply in the updating phase.

The technique which will be used to implement the above optimizations
is more or less standard: In the updating phase infonnation is stored in
the cells of a gap (which are all garbage) concerning the size of the gap
and the size of the (possibly empty) block following the gap. In
particular, we shall use the "first" cell of a gap to store the address of
the "last" cell of the gap and we shall use the last cell of the gap to
store the size of the block immediately following the gap, as indicated in
Figure 7.2 (in which the fields of marked areas are shaded).

s

-Jun;-@.@-=
f s1 s2 s3 t
p s

H

I

0' I

h q

Figure 7.2

The above technique works well only if gaps of size 1 cannot occur. A
sufficient condition for the absence of gaps of size 1 is the absence of
areas of size 1. In view of the overhead to be contained in the fields of
areas (such as type information) the latter is a reasonable assumption.
Although we could make things work for gaps of size 1 as well, we shall
turn the latter from an assumption into a fact by adding the following
invariant to the model:

I (116) For each area A
I size (A) ,f 1.

The rewriting of the updating and moving phase to employ the technique
sketched above is simple. The rewritten updating and moving phase are

273

incorporated in the eighth version of COLLECT GARBAGE presented below. In
this algorithm the variables p and q are used to record the address of the
"top" of the residuum in Sand H respectively (see Figure 7.2). The text
between the double braces"{{" and"}}" is comment.

COLLECT GARBAGEa:
Variables:

M: set of areas,
T: set of areas,
B: mapping from areas to sets of branches,
a,b,a,d,k,p,q,r: integer.

Action:
Let Q. = {A E Su H I A is unreachable}.
Lets= LA ES [size(A)].
Leth= N-L A E H [size(A}].

{{Mark all reachable areas and construct the branch sets.}}
M,T,B,r := {L},{L},{(A,¢) I A ES u H},size(L).
While T 'F ¢

Get A from T.
For each XE branahes(A)

Let B = target(X).
If B l M
I M,T,r := Mu{B},Tu{B},r+size(B).
B(B) := B(B} u {X}.

{{Update all pointers to areas in Sand prepare to move.}}
a,b,d := 0,0,s.
PROCESS BLOCK.
p := b.
While b 'F s

a:= b.
PROCESS GAP.
aont(aeU(a)) := b -1.
a := b.
PROCESS BLOCK.
aont(aeU(a-1)) := b-a.

{{Update all pointers to areas in Hand prepare to move,}} -
a,b,a,d := N- (r-a),h,h,N.
PROCESS BLOCK.
While b 'F N

aont(aeU(b)) :=b-a.
a := b.
PROCESS GAP.
aont(aeU(b -1)) := a.
a:= b.
PROCESS BLOCK.

q := a.
{{Move the areas in S.}}

a,b := p,p.
While b 'F s

b := aont(aeZZ(b)).
k := aont(aeZZ(b)).
b:=b+l.
While k > 0

I aont(aeZZ(a)) := aont(aeZZ(b)).
a,b : = a+ 1,b + 1.
k := k-1.

274

{{Move the areas in H.}}
a,b := q,q.
While b # h

b := b-1.
b := cont(cell(b)).
k := cont(cell(b)).
While k > 0

I
a,b := a-1,b-1.
cont(cell(a)) := cont(cell(b)).
k :=k-1.

{{RQlllove the unreachable areas.}}
S, H : = S \ Q_, H \ Q_.

PROCESS BLOCK:
While b # d and AREA(b) EM

Let A= AREA(b).
While B(A) # ¢

I Get X from B(A).
cont(LOC(X)) := a.

k := size(A).
a,b := a+k,b+k.

PROCESS GAP:
While b # d and AREA(b) l M

I Let A = AREA(b).
k := size(A).
b :=b+k.

ARE'A(b):
The area A E Su H with PTR(A) = b.

7.3.1.2. Removing the abstract concepts from the algorithm

We shall now remove the abstract variables and other abstract concepts
from COLLECT GARBAGE8, thus making the algorithm suitable for a direct
translation into machine code. As we shall see, the model will have to be
extended by a number of invariants concerning the representation of the
abstract concepts in the store. A first observation is concerned with what
we called the "type information" and the "status information" in Chapter 5
(represented by the branches of an area and the variable T respectively).
For the representation of these two kinds of information space must be
reserved in the store. We shall accomplish this by reserving a free cell
for either kind of information in the field of an area. We shall assume
that the offsets of these cells are the same for all areas. The offsets
will be denoted by type (for the cell containing the type information) and
link (for the cell containing the status information). The offsets are
"defined" by means of the following additional invariant:

(117) There are integers, denoted by type and link, such that
type # link.
For each area A

I Os type,link < size(A).
type, link f. {offset(X) I X E b1°anches(A) }.

275

The cell TYP(A) for areas A E Su H is defined by:

TYP(A) = ceU(PTR(A) +type).

The cell LNK(A) for areas A E Su H is defined by:

LNK(A) = ceU(PTR(A) +Zink).

Notice that Invariant (117) makes Invariant (116) redundant.
First consider the type information. For.a given area A, this

information consists of the set of all offsets of branches of A. It will be
represented by a pointer, stored in the cell TYP(A), which points to a
"template". This template is a piece of storage, containing the information
concerning the offsets of branches of A. There are many ways to represent
these templates. Which way of representation is appropriate depends to a
great extent on implementation details. Since this section is only meant as
an illustration of how a garbage collector can be implemented from an
abstract description such as given by COLLECT GARBAGE7, we shall choose a
simple, yet reasonably general approach. The implementation of the garbage
collector on the MIAM, as a matter of fact, would require a more
complicated representation of the templates (due to the occurrence of areas
with a "dynamic" type).

The representation of the templates is pictured in Figure 7.3.

area

I If I I 11 I I l I I l I
I I I 1
o I -type

' ' '

s

Figure 7.3

template

As can be seen, the first cell of a template associated with an area A
contains the size of A. Strictly speaking the size information does not
belong to the type information, but containing the size information in the
templates saves us the trouble of reserving yet another free cell in the
field of an area. The latter, of course, pays off only if there is a many
to-one correspondence between areas and templates. The second cell of the

276

template contains the number of branches of A. It is immediately followed
by cells containing the offsets of these branches (in arbitrary order).
This is all more formally described in the following invariant:

(I18) For each A ,;: Su H
Let n = #bPa:nahes(A).
Lett= aont(TYP(A)).
0 s t s N- n - 2.
aont(aeU(t)) = size(A)..
aont(aeU(t + 1)) = n.
{aont(aeU(t + 2 + k)) I O s k < n}

{offset(X) IX,;: bPa:nahes(A)}.

The obvious place to store the templates is in a free part of the
field of the root L, thus making sure that the templates are not moved and,
consequently, that the contents of TYP(A) need not be updated in a garbage
collection. Apart from not overlapping the cells occupied by atoms of L,
this free part of the field of L should not overlap TYP(L) and LNK(L)
either, as expressed in the invariant below:

(119) For each A ,;: Su H
Let n = #bPa:nahes(A).
Lett= aont(TYP(A)).
PTR(L) st.
Let T = {aeU(a) I ts a< t+n+2}.
T n {LOC(X) I X ,;: atoms(L)} = !ll.
TYP(L),LNK(L) i T.

Notice that Invariants (118) and (119) are not violated by COLLECT GARBAGEs
(though, without Invariant (119), Invariant (118) would have been).

The above invariants allow us to remove the abstract bPa:nahes and size
of an area from the algorithm (using a function BRANCH, which, analogous to
the function AREA in COLLECT GARBAGE8, maps an address b to the branch X
with addP(LOC(X)) = b). The abstract taPget of a branch can also be removed
(through Invariant (115)). What remains are the abstract variables M, T and
B. Let us first of all consider T, for the implementation of which we have
already reserved a free cell LNK(A) in the field of each area A. This free
cell will be used to implement T as a linked list, where the (new) variable
tacts as a pointer to the head of the list. The only "problem" is how to
indicate the end of the list. The solution to this problem will be deferred
temporarily.

Next, consider the variable B. For each area A ,;: Su H the set B(A)
will be implemented in the standard way as a linked list, where the cell
TYP(A) acts as a list head (see Figure 5.10). A requirement for the use of
this implementation trick is that we can efficiently distinguish the
original contents of TYP(A) (= a pointer to a template) from the address of
a cell occupied by a branch. The simplest way to satisfy this requirement
is to demand that all templates are stored in cells to the right of cells
occupied by branches of L, say in the cells aeU(M) through aeU(N-1) (see
Figure. 7. 4).

277

L

f f f
M N

Figure 7.4

The test of whether a given address a is a pointer to a template or the
address of a "branch cell" then reduces to "a 2: M". The following invariant
and definition authenticate this trick:

(120) There is an integer, denoted by M, such that
For each XE bra:nches(L)
I addr(LOC(X)) < M.
For each A E S u H
I cont(TYP(A));;,: M.

The implementation of B does not introduce any space overhead at all. There
is a small time penalty, however: When visiting an area A with B(A) I¢ in
the marking phase, we have to traverse the linked list emanating from
TYP(A) in order to find the pointer to the template of A (which we need to
find the branches of A). Check that this time overhead is O(n), where n is
the total number of branches of reachable areas.

Finally, consider the variable M, representing the "marking
information". There are (at least) two ways to implement- M without any
space overhead at all. The first (cf. Algorithm GNK.DTEH* in Chapter 5) is
to initialize each LNK(A) for A E Su H before the marking phase to some
value unmarked outside the address range 0, ••• , N - 1. Since marking an area
A is always accompanied by adding A to T and since the latter implies that
the contents of LNK(A) are changed into a value inside the address range,
the test "A E M" can be replaced by "cont(LNK(A)) I unmarked" (assuming
that cont(LNK(A)) is not changed when A is removed from T). The second way
is to use the following invariant which holds during the marking phase:

For each A E S u H
I A E M ~ B(A) I ¢ V A = L.

This invariant, together with the chosen implementation for B, implies that
the test "A E M" can be replaced by "cont(TYP(A)) < M or PTR(A) = PTR(L)".
Since the second method does not require any initialization (which cannot
be avoided in the first implementation of M since LNK(A) is also used for
the implementation of the variable Fin COMPACT7 , see Subsection 7.3.2) we
shall choose this implementation of M.

The fact that we have to perform the test "PTR(A) = PTR(L)" each time
we test that A EM, is a nuisance. We can dispose of this test by
initializing B(L) to {B} at the beginning of the marking phase, where Bis
a "dunnny branch" with target(B) = L. A proper candidate for B (or better,

278

LOC(B)) is the cell LNK(L). The only function of this cell in the
implementation of Tis, that it should contain the end of list indicator.
By pretending that LNK(L) contains a pointer to Land initializing B(L) as
indicated, LNK(L) will contain (and continue to contain during the entire
marking phase) a pointer u to the template of L. This pointer makes a fine
end of list indicator, since it can be distinguished from a pointer to an
area A E Su H by the test "u <!: M". That is, provided we add the following
invariant:

I (121) PTR(L) < M.

Thus the list termination "problem" for the implementation of Tis also
solved (i.e., the test "T f, ¢" can be implemented as "t < M").

The above describes informally how COLLECT GARBAGEa can be stripped of
abstract concepts. A systematic, stepwise translation of COLLECT GARBAGEa
according to the implementations sketched above, including a proof of
correctness of the implementations, is a tedious, though not really
difficult process (to which the method described in Chapter 3 is ideally
suited). Only the final result of this process is presented below. The
reader is invited to check the correctness of the translation given. In
particular, it should be checked that none of the new invariants is
violated.

COLLECT GARBAGE9:
Variables:

a,b,a,d,k,p,q,:r>, t,u,v: integer.
Action:

Let Q = {A E Su H I A is unreachable}.
Lets= LA ES [size(A)].
Leth= N-L A E H [size(A)].
Let .t = N- size(L).

{{Mark all reachable areas and construct the branch sets.}}
u := aont(aell,(l+type)).
aont(aell(l+ link)) := u.
aont(aeU(l+type)) := l+ link.
t := .e..
:r> := aont(aell(u)).
While t < M

a := t.
t : = aont (ae U (t + link)) •
u := aont(aeU(a +type)).
While u < M
I u := aont(aell(u)).
k := DEGREE(u).
While k > 0

b := a+OFFSET(u,k).
a:= aont(aell(b)).
v := aont(aeU(a +type)).
If V <!: M

I aont(aeU(a + link)) := t.
t := a.
:r> := ;r, + SIZE(a).

aont(aell(b}) := v.
aont(aeU(a + type)) := b.
k:=k-1.

{{Update all pointers to areas in Sand prepare to move.}}
a := 0.
b := O.
d := s.
PROCESS BLOCK.
p := b.
While b # s

C := b.
PROCESS GAP.
cont(ceU(c)) := b-1.
a := b.
PROCESS BLOCK.
cont (ee U (e - 1)) : = b - a.

{{Update all pointers to areas in Hand prepare to move.}}
a := N- (r-a).
b := h.
C := h.
d := N.
PROCESS BLOCK.
While b # N

cont(aeU(b)) := b-a.
a:= b.
PROCESS GAP.
cont(eeU(b-1)) := c.
C := b.
PROCESS BLOCK.

q := c.
{{Move the areas in S.}}

a := p.·
b := p.
While b # s

b := cont(aell(b)).
k := cont(cell(b)).
b:=b+l.
While k > 0

cont(cell(a)) := cont(cell(b)).
a:=a+l.
b := b+l.
k := k-1.

{{Move the areas in H.}}
a:= q.
b := q.
While b ,fa h

b :=b-1.
b := cont(cell(b)).
k := cont(cell(b)).
While k > 0

a:= a-1.
b := b-1.
cont(cell(a)) := cont(cell(b)).
k := k-1.

{{Remove the unreachable areas.}}
S, H : = S \ Q, H \ Q.

279

280

PROCESS BLOCK:
While b # d and cont(ceU(b + type)) < M

u := cont(ceU(b+type)).
While u < M

I v:= cont(cell(u)).
cont(cell(u)) := a.
u := v.

cont(cell(b + type)) := u.
k := SIZE(b).
a := a+k.
b := b+k.

PROCESS GAP:
While b 'F d and cont(cell(b +type)) ~ M

I k := SIZE(b).
b :=b+k.

SIZE(b):
cont(cell (cont (cell(b +type)))).

DEGREE(u):
cont(cell(u + 1)).

OFFSET(u,k):
cont(cell(u + k + 1)).

7.3.1.3. The final translation

The translation of COLLECT GARBAGE9 into code for the machine
described in the beginning of Section 7.3 is straightforward. In the
translation given below we have chosen specific values for type and link,
as described by:

I (122) type= 1, link= 0.

The registers of the machine which are used are a, b, c, d, h, k, · L, m, n,
p, q, r, s, t, u, v and w. These registers correspond to the variables of
COLLECT GARBAGE9, except for w, which is used as a general purpose working
register, and m, n, s, hand l, which should initially contain the values
M, N, s, hand l from COLLECT GARBAGE9, respectively. This is indicated in
the algorithm below by initialization statements for the registers m, n, s,
hand l. At the end of the algorithm, sand h will contain a pointer to the
new top of Sand H respectively, while m, n and l are not affected. For
reasons of clarity the statements have been rearranged somewhat. (The
statement "S,H := S \ Q,H \ Q" has returned to its old place.)

COLLECT GARBAGE10:
Registers:

a,b,c,d,h,k,l,m,n,p,q,r,s,t,u,v,w.
Action:

m := M.
n := N.
s := r: A E S [size(A)].
h := N-r: A E H [size(A)].
l := N- size(L).
Let Q = {A E Su H I A is unreachable}.

S,H := S\Q_,H\Q_.
CALL,COLG.

PROC,COLG
CALL,MARK
CALL,UPDS
CALL,UPDH
CALL,MOVS
CALL,MOVH
RETURN

PROC,MARK
COPY,l,w
ADD,1,w
COPY, [w],u
COPY,u,[l.J
COPY,l, [w]
COPY,l,t
COPY,[u],r

LABEL,Ll
IFGE,t,m,L6
COPY, t,a
COPY,[t],t
COPY,a,w
ADD,1,w
COPY, [w],u

LABEL,L2
IFGE,u,m,L3
COPY, [u],u
GOTO,L2

LABEL,L3
ADD,1,u
COPY, [u],k

LABEL,L4
IFLE,k,0,Ll
ADD,1,u
COPY, [u],b
ADD,a,b
COPY,[b],c
COPY,c,w
ADD,1,w
COPY, [w],v
IFLT,v,m,L5
COPY,t,[c]
COPY,c, t
COPY, [v],w
ADD,W,l"

LABEL,L5
COPY,v,[b]
COPY,c,w
ADD,1,w
COPY,b,[w]
SUB,1,k
GOTO,L4

LABEL,L6
RETURN

281

282

PROC,UPDS
COPY, O,a
COPY, 0, b
COPY,s,d
CALL,BLKG
COPY,b,p

LABEL,L7
IFEQ,b,s,LB
COPY,b,c
CALL,GAPG
COPY,b,w
SUB, 1, w
COPY,w,[c]
COPY,b,c
CALL,BLKG
COPY,b,w
SUB,c,w
SUB,1,c
COPY,w,[c]
GOTO,L?

LABEL,LB
RETURN

PROC,UPDH
COPY,r,w
SUB,a,w
COPY,n,a
SUB,w,a
COPY,h,b
COPY,h,c
COPY,n,d
CALL,BLKG

LABEL,L9
IFEQ, b, n, Ll 0
COPY,b,w
SUB,c,w
COPY,w, [b]
COPY,b,c
CALL,GAPG
COPY,b,w
SUB,1,w
COPY,c, [w]
COPY,b,c
CALL,BLKG
GOTO,L9

LABEL,LlO
COPY,c,q
RETURN

PROC,BLKG
LABEL,Lll

IFEQ,b,d,L13
COPY,b,w
ADD,1,w
COPY,[w],u
IFGE,u,m,L13

LABEL,L12
COPY, [u],v
COPY,a, [u]
COPY,v,u
IFLT,u,m,L12
COPY,b,w
ADD,1,w
COPY,u,[w]
COPY, [u],k
ADD,k,a
ADD,k,b
GOTO,L11

LABEL,L13
RETURN

PROC,GAPG
LABEL,L14

IFEQ,b,d,L15
COPY,b,w
ADD,1,w
COPY,[w],u
IFLT,u;m,L15
COPY, [u],k
ADD,k,b
GOTO,L14

LABEL,L15
RETURN

PROC,MOVS
COPY,p,a
COPY,p,b

LABEL,L16
IFEQ,b,s,LlB
COPY, [b],b
COPY,[b],k
ADD,1,b

LABEL,L17
IFLE,k,O,L16
COPY, [b], [a]
ADD,1,a
ADD,1,b
SUB,1,k
GO1.'O,L17

LABEL,LlB
COPY,a,s
RETURN

283

284

PROC,MOVH
COPY,q,a
COPY,q,b

LABEL,L19
IFEQ,b,h,L21
SUB,1,b
COPY,[b],b
COPY, [b],k

LABEL,L20
IFLE,k,O,L19
SUB,1,a
SUB,1,b
COPY, [b], [a]
SUB,1,k
GOTO,L20

LABEL,L21
COPY,a,h
RETURN

7.3.2. COMPACT

7.3.2.1. Optimizing the moving of areas

As we did for COLLECT GARBAGE7 , we shall first of all optimize the
moving phase of COMPACT7• In contrast to the moving phase of
COLLECT GARBAGE7, only the (live) areas in Sare moved in COMPACT7• The
technique which will be used to optimize the moving of the areas in Sis
the same as described in Subsection 7.3.1.1. This implies that we use the
updating phase to determine the "residuum" in S (recorded in the variable
p) and to organize Sin "gaps" and "blocks", as indicated in Figure 7.2.
The blockwise moving of the areas in Sis then entirely the same as in
COLLECT GARBAGE8• This is all described in COMPACT8, where, of course, we
assume that Invariant (116) is valid.

COMPACT a:
Variables:

B: mapping from areas to sets of branches,
F: mapping from areas to integers,
a: integer.

Action:
Let Q. = {A E S I status(A) = dead}.
Lets= LA ES [size(A)].

{{Process all pointers from L to areas in S.}}
B,F := {(A,¢>) I A E S, status(A) = alive},¢>.
For each XE branahes(L)

I Let B = target(X).
If B i H
I B(B) := B(B) u {X}.

{{Update all pointers to areas in Sand prepare to move.}}
a,b := o,o.
PROCESS BLOCK.
p := b.
While b f s

a:= b.
PROCESS GAP.
aont(aeU(a)) := b-1.
a := b.
PROCESS BLOCK.
aont (ae l Z(a - 1)) : = b - a.

{{Move the areas in S.}}
a,b := p,p.
While b f s

b := aont(aell(b)).
k := aont(aell(b)).
b :=b+l.
While k > 0

I aont~:ell(a)) := aont(aell(b)).
a,b .- a+l,b+l.
k := k-1. .

{{Remove the dead areas.}}
s := s \ Q.

PROCESS BLOCK:
While bf sand sta-tus(AREA(b)) = alive

Let A = AREA(b).
While B(A) f ¢

I Get X from B(A).
aont(LOC(X)) := a.

F(A) := a.
For each XE branahes(A)

Let B = target(X).
If B l H

If PTR(B) ~ PTR(A)
I aont(LOC(X)) := F(B).
else
I B(B) := B(B) u {X}.

k := size(A).
a,b := a+k,b+k.

PROCESS GAP:
While bf sand status(AREA(b)) = dea.d

I Let A = AREA(b).
k := size(A).
b :=b+k.

AREA(b):
The area A E Su H with PTR(A) = b.

285

286

7.3.2.2. Removing the abstract concepts from the algorithm

The removal of the abstract concepts from COMPACT8 is in many respects
the same as it was for COLLECT GARBAGE8 (see Subsection 7.3.1.2). We shall
copy Invariants (117)-(121), thus providing simple implementations for the
branches and size of an area. For the variable B the same implementation
will be chosen as in COLLECT GARBAGE9, though there is no need to introduce
a "dummy branch" now. The only new problems are the removal of the status

· of an area (in S) and the variable F. The obvious way to implement Fis to
use the cell LNK(A) for the recording of F(A) for each AES. The status of
an area in Swill be implemented by the following additional invariant:

I (123) For each AES
I status(A) = dead ~ cont(LNK{A)) = N.

Check that this invariant is not violated by COLLECT GARBAGE9 (and
consequently not by COLLECT GARBAGE10). Check also that COMPACT9, which is
presented below, does not violate any of the additional invariants.

COMPACT 9:
Variables:

a,b,c,d,e,k,p,u,v: integer.
Action:

Let Q ={AES I status(A) = dead}.
Lets= LA ES [size(A)].
Leth= N-L A EH [size(A)].
Let l = N - size(L).

{{Process all pointers from L to areas in S.}}
u : = cont(celU l +type)).
k : = DEGREE(u).
While k > 0

a : = l + OFFSET(u, k).
b := cont(cell(a)).
If b < h

I cont(celU a)) := cont(ceU(b +type)).
cont(cell(b + type)) := a.

k := k-1.
{{Update all pointers to areas in Sand prepare to move.}}

a := 0.
b := o.
PROCESS BLOCK.
P := b.
While b f s

C := b.
PROCESS GAP.
cont(celUc)) := b-1.
C := b.
PROCESS BLOCK.
cont (ce l Uc - 1)) • - b - c.

{{Move the areas in S.}}
a:= p.
b := p.
While b 1' s

b := aont(aeLl(b)).
k := aont(aeLL(b)).
b := b+l.
While k > 0

aont(aeLL(a)) := aont(aeLL(b)).
a:= a+l.
b := b+l.
k:=k-1.

{{Remove the dead areas.}}
s := s \ Q..

PROCESS BLOCK:
While b ;, s and aont(aeU(b + Unk)) ;, N

u := aont(aeU(b+type)).
While u < M

I v := aont(aeLL(u)).
aont(aeLL(u)) := a.
u := v.

aont(aeU(b+type)) := u.
aont(aeU(b + Unk)) := a.
k := DEGREE(u).
While k > 0

d := b+OFFSET(u,k).
e := aont(aeLL(d)).
If ·e < h

If e !> b I aont(aeU(d)) := aont(aeU(e + Unk)).
else

I aont(aeU(d)) := aont(aeU(e+type}).
aont(aeU(e + type)) := d.

k:=k-1.
k := SIZE(b).
a:= a+k.
b := b+k.

PROCESS GAP:
While b ;, s and aont (ae U (b + Unk)) = N

I k := SIZE(b).
b := b + k.

SIZE(b):
aont(aeU(aont(aeU(b +type}}}).

DEGREE(u):
aont(aeU(u + 1)).

OFFSET(u, k):
aont(aeU(u + k + 1)).

287

288

7.3.2.3. The final translation

The translation of COMPACT9 into machine code, assuming the validity
of Invariant (122) (besides (Il)-(121) and (123)), is again
straightforward. The registers of the machine which are used are a, b, c,
d, e, h, k, l, m, n, p, s, u, v and w. The registers a, b, c, d, e, k, p, u
and v correspond to the variables of COMPACT9. As to. the registers w, m, n,
s, hand l the same remarks apply as made in Subsection 7.3.1.3. The labels
used in the code are chosen in such a way that the code is "compatible"
with that of COLLECT GARBAGE10, thus enabling the integration of
COLLECT GARBAGE10 and COMPACT10 (see the next section). Among other things,
this implies that the subroutine MOVS is identical to the subroutine of the
same name used in COLLECT GARBAGE10· The statement "S := S \ Q" has been
moved to its old place.

COMPACT 10:
Registers:

a, b, c, d, e, h, k, l,m, n,p, s, u, v, w.
Action:

m := M.
n := N.
s :=LA ES [size(AJ].
h := N-L A EH [size(AJ].
l := N- size(L).
Let Q ={AES I status(A) dead}.
s := s \ Q.
CALL,COMP.

PROC,COMP
CALL,UPDL
CALL,UPDC
CALL,MOVS
RETURN

PROC,UPDL
COPY,l,w
ADD, 1,w
COPY, [w],u
ADD,1,u
COPY,[u],k

LABEL,L22
IFLE,k,O,L24
ADD,1,u
COPY, [u],a
ADD,l,a
COPY, [a],b
IFGE,b,h,L23
COPY,b,w
ADD, 1, w
COPY,[w],[a]
COPY,a,[w]

LABEL,L23
SUB,1,k
GOTO,L22

LABEL,L24
RETURN

PROC,UPDC
COPY,O,a
COPY,O,b
CALL,BLKC
COPY,b,p

LABEL,L25
IFEQ,b,s,L26
COPY,b,a
CALL,GAPC
COPY,b,w
SUB,1,w
COPY,w,[a]
COPY,b,a
CALL,BLKC
COPY,b,w
SUB,a,w
SUB,1,a
COPY,w, [a]
GOTO,L25

LABEL,L26
RETURN

289

290

PROC,BLKC
LABEL,L27

IFEQ,b,s,L34
COPY,[b],t
IFEQ,t,n,L34
COPY,b,w
ADD,1,w
COPY, [w],u

LABEL,L28
IFGE,u,m,L29
COPY, [u], v
COPY,a, [u]
COPY,v,u
GOTO,L28

LABEL,L29
COPY,u,[w]
COPY,a, [b]
COPY,u,v
ADD,1,v
COPY,[v],k

LABEL,L30
IFLE,k,O,L33
ADD,1,v
COPY,[v],d
ADD,b,d
COPY,[d],e
IFGE,e,h,L32
IFGT,e,b,L31
COPY,[e],[d]
GOTO,L32

LABEL,L31
COPY,e,w
ADD,1,w
COPY, [w], [d]
COPY,d,[w]

LABEL,L32
SUB,1,k
GOTO,L3O

LABEL,L33
COPY,[u],k
ADD,k,a
ADD,k,b
GOTO,L27

LABEL,L34
RETURN

PROC,GAPC
LABEL,L35

IFEQ,b,s,L36
COPY, [b], t
IFNE,t,n,L36
COPY,b,w
ADD,1,w
COPY, [w],u
COPY,[u],k
ADD,k,b
GOTO,L35

LABEL,L36
RETURN

PROC,MOVS
COPY,p,a
COPY,p,b

LABEL,Ll6
IFEQ,b,s,LlB
COPY, [b],b
COPY, [b], k
ADD,1,b

LABEL,Ll?
IFLE,k,0,L16
COPY, [b], [a J
ADD,1,a
ADD,1,b
SUB,1,k
GOTO,Ll-7

LABEL,LlB
COPY,a,s
RETURN

291

292

7. 4. CONCLUSION

In this chapter we have described the transformation of the operations
COLLECT GARBAGE and COMPACT from their specification to their final
implementation. This transformation process was preceded and accompanied by
the construction of a "theory" (the model). The importance of the latter
cannot be emphasized enough. First of all, the model_ allowed us to
unambiguously specify the problem in a way entirely independent of
Chapter 6. Secondly, due to the fact that the model contained only relevant
information, the complexity of the design process could be kept under
control relatively easily. Thirdly, all design decisions (such as the
representation of the "templates") upon which algorithms were based, had to
be recorded in the model. The (final) model therefore provides all
information necessary to incorporate the machine code routines for
COLLECT GARBAGE and COMPACT correctly in a given storage management system.

The fourth and most important virtue of the model was, that it ensured
that we were always on firm ground: At each stage of the transformation
process correctness proofs were possible. The main reason why we omitted
them was lack of space. Moreover, the transformations used were often (but
not always) so simple that, when proving the correctness of these
transformations, we would have felt like mathematicians might feel, having
to prove that 1 +1 = 2 (or worse, that 111 +111 = 222). In relation to this
it is worth noting that the first versions of COLLECT GARBAGE10 and
COMPACT10 were, in fact, incorrect, which was discovered in a vain attempt
to execute them. Upon inspection the errors appeared to have been made in
the final transformation phase: one was a clerical error and the other was
the result of an unjustified attempt to make a local optimization. This
shows that certain transformations (in particular those from
COLLECT GARBAGE9 to COLLECT GARBAGE10 and from COMPACT9 to COMPACT10) can
be performed better by a machine, not because they are difficult, but
because the amount of detail involved in them can easily confuse a human
being.

It is not difficult to check that, assuming the execution of an
instruction takes 0(1) time, the machine code routines for COLLECT GARBAGE
and COMPACT operate in O(m + n) time, where m and n are the integers defined
at the end of Subsections 7.2.1.7 and 7.2.2.7 (for COLLECT GARBAGE -and
COMPACT respectively). This makes the asymptotic behaviour of these
routines as good as we can expect. The routines are also believed to be
faster than most other linear time garbage collection and compaction
routines. The compaction routine used is believed to be novel (see
Algorithm CND.BFGU in Chapter 5) and was discovered only in "redoing" the
original design (which was based on Algorithm CND.BGUP from Chapter 5) and
carefully judging each design decision. The discovery of this compaction
algorithm can be credited for the major part to the transformational method
we used in the design.

We shall conclude this chapter by giving a full listing of the machine
code for COLLECT GARBAGE and COMPACT. This listing not only marks the end
of this chapter and the end of this monograph, it is also a symbol for that
which triggered the research reported in this monograph: the complexity of
garbage collector design. The listing in itself is meaningless, of course,
unless embedded in the appropriate theory.

293

PROC,COLG LABEL,L6 IFGE,u,m,Ll3 SUB,1,a IFEQ,t,n,L34
CALL,MARK RETURN LABEL,L12 SUB,1,b COPY,b,w
CALL,UPDS PROC,UPDS COPY,[u],v COPY,[b],[a] ADD,1,w
CALL,UPDH COPY,O,a COPY,a, [u] SUB,1,k COPY,[w],u
CALL,MOVS COPY,O,b COPY,v,u GOTO,L20 LABEL,L28
CALL,MOVH COPY,s,d IFLT,u,m,L12 LABEL,L21 IFGE,u,m,L29
RETURN CALL,BLKG COPY,b,w COPY,a,h COPY, [u], V

PROC,COMP COPY,b,p ADD,1,w RETURN COPY,a, [u]
CALL,UPDL LABEL,£? COPY,u,[w] PROC,UPDL COPY,v,u
CALL,UPDC IFEQ,b,s,LB COPY,[u],k COPY,l,w GOTO,L28
CALL,MOVS COPY,b,c ADD,k,a ADD,1,w LABEL,L29
RETURN CALL,GAPG ADD,k,b COPY, [w],u COPY,u,[w]
PROC,MARK COPY,b,w GOTO,Lll ADD,1,u COPY,a, [b]
COPY,l,w SUB,1,w LABEL,Ll3 COPY, [u], k COPY,u,v
ADD,1,w COPY,w,[c] RETURN LABEL,L22 ADD, 1, V
COPY, [w],u COPY,b,c PROC,GAPG IFLE, k, O,L24 COPY, [v],k
COPY,u,[l] CALL,BLKG LABEL,L14 ADD,1,u LABEL,L30
COPY,l,[wJ COPY,b,w IFEQ,b,d,L15 COPY, [u],a IFLE,k,O,L33
COPY,l,t SUB,c,w COPY,b,w ADD,l,a ADD,1,v
COPY, [u],r SUB,1,c ADD,1,w COPY,[a],b COPY,[vJ,d
LABEL,Ll COPY,w, [a] COPY, [w],u IFGE,b,h,L23 ADD,b,d
IFGE,t,m,L6 GOTO,L? IFLT,u,m,Ll5 COPY,b,w COPY, [d],e
COPY,t,a LABEL,LB COPY, [u],k ADD,1,w IFGE,e,h,L32
COPY,[t],t RETURN ADD,k,b COPY,[w],[a] IFGT,e,b,L31
COPY,a,w PROC,UPDH GOTO,L14 COPY,a,[w] COPY, [e J, [d]
ADD,1,w COPY,r,w LABEL,L15 LABEL,L23 GOTO,L32
COPY,[w],u SUB,a,w RETURN SUB,1,k LABEL,L31
LABEL,L2 COPY,n,a PROC,MOVS GOTO,L22 COPY,e,w
IFGE-,u,m,L3 SUB,w,a COPY,p,a LABEL,L24 ADD,1,w
COPY,[u],u COPY,h,b COPY,p,b RETURN COPY,[w],[d]
GOTO,L2 COPY,h,c LABEL,Ll6 PROC,UPDC COPY,d,[w]
LABEL,L3 COPY,n,d IFEQ,b,s,L18 COPY,O,a LABEL,L32
ADD,1,u CALL,BLKG COPY,[b],b COPY,O,b SUB,1,k
COPY, [u], k LABEL,L9 COPY, [b],k CALL,BLKC GOTO,L30
LABEL,L4 IFEQ,b,n,LlO ADD,1,b COPY,b,p LABEL,.L33
IFCE,k, O,Ll COPY,b,w LABEL,Ll? LABEL,L25 COPY, [u:l,k
ADD,1,u SUB,c,w IFLE,k,O,L16 IFEQ,b,s,L26 ADD,k,a
COPY,[u],b COPY,w,[b] COPY,[b],[a] COPY,b,c ADD,k,b
ADD,a,b COPY,b,c ADD,1,a CALL,GAPC GOTO,L27
COPY,[b],c CALL,GAPG ADD,1,b COPY,b,w LABEL,L34
COPY,c,w COPY,b,w SUB,1,k SUB,1,w RETURN
ADD,1,w SUB,1,w GOTO,Ll? COPY,w,[c] PROC,GAPC
COPY, [w],v COPY,c, [w] LABEL,LlB COPY,b,c LABEL,L35
IFLT,v,m,L5 COPY,b,c COPY,a,s CALL,BLKC IFEQ,b,s,L36
COPY, t, [a] CALL,BLKG RETURN COPY,b,w COPY,[b],t
COPY,c,t GOTO,L9 PROC,MOVH SUB,c,w IFNE, t, n, L36
COPY,[v],w LABEL,LlO COPY,q,a SUB,1,c COPY,b,w
ADD,w,r COPY,c,q COPY,q,b COPY,w, [a] ADD,1,w
LABEL,L5 RETURN LABEL,L19 GOTO,L25 COPY, [w],u
COPY,v,[b] .PROC,BLKG IFEQ,b,h,L21 LABEL,L26 COPY,[u],k
COPY,c,w LABEL,Lll SUB,1,b RETURN ADD,k,b
ADD,1,w IFEQ,b,d,L13 COPY,[b],b PROC,BLKC GOTO,L35
COPY,b,[w] COPY,b,w COPY,[b],k LABEL,L27 LABEL,L36
SUB,1,k ADD,1,w LABEL,L20 IFEQ,b,s,L34 RETURN
GOTO,L4 COPY, [w],u IFLE, k, 0,£19 COPY,[b],t

295

REFERENCES

[ABSTRACTO 79]
Examples for IFIP WG2.1, Meeting, Brussels (1979).

[AHO & ULLMAN 72]
AHO, A.V., & ULLMAN, J.D., The Theory of Parsing, Translation,
and Compiling, Volume 1: Parsing, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1972).

[AHO & ULLMAN 77]

[BACK 80]

[BAKER 78]

[BARTH 77]

AHO, A.V., & ULLMAN, J.D., Principles of Compiler Design,
Addison-Wesley Publishing Company, Reading, Massachusetts (1977).

BACK, R., Correctness Preserving Program Refinements: Proof
Theory and Applications, MC Tract 131, Mathematical Centre,
Amsterdam (1980).

BAKER, H.G., Jr., List processing in real time on a serial
computer, Communications of the ACM 21 (1978), 280-294.

BARTH, J.M., Shifting garbage collection overhead to compile
time, Communications of the ACM 20 (1977), 513-518.

[BAUER & BROY 79] ·
BAUER, F.L., & BROY, M., (Eds.), Program Construction,
International Summer School, Springer-Verlag, Berlin (1979).

[BAUER & EICKEL 74]
BAUER, F.L., & EICKEL, J., (Eds.), Compiler Construction,
Springer-Verlag, New York (1974).

[BERKELEY & BOBROW 64]
BERKELEY, E.G., & BOBROW, D.G., (Eds.), The Programming Language
LISP: Its Operation and Applications, Information International,
Inc., Cambridge, Massachusetts (1964).

[BERZINS 79]
BERZINS, V.A., Abstract Model Specifications for Data
Abstractions, Ph.D. Thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts (1979).

[BIRKHOFF 67]
BIRKHOFF, G., Lattice Theory, American Mathematical Society
Colloquium Publications, Volume XXV, American Mathematical
Society, Providence, Rhode Island (1967).

[BIRKHOFF & LIPSON 70]
BIRKHOFF, G., & LIPSON, J.D., Heterogeneous algebras, Journal of
Combinatorial Theory 8 (1970), 115-133 •.

296

[BOBROW 68]
BOBROW, D.G., Storage management in LISP, In [BOBROW 68a].

[BOBROW 68a]
BOBROW, D.G., (Ed.), Symbol Manipulation Languages and
Techniques, North-Holland Publishing Company, Amsterdam (1968).

[BRANQUART & LEWI 71]
BRANQUART, P., & LEWI, J., A scheme of storage allocation and
garbage collection for ALGOL 68, In [PECK 71].

[CHENEY 70]
CHENEY, C.J., A nonrecursive list compacting algorithm,
Connnunications of the ACM 13 (1970), 677-678.

[CHURCH 41]

[CLARK 76]

[CLARK 78]

CHURCH, A., The calculi of lambda-conversion, Annals of
Mathematical Studies, 6, Princeton University Press, Princeton
(1941).

CLARK, D.W., An efficient list-moving algorithm using constant
workspace, Connnunications of the ACM 19 (1976), 352-354.

CLARK, D.W., A fast algorithm for copying list structures,
C=unications of the ACM 21 (1978), 351-357.

[COLLINS 60]
COLLINS, G.E., A method for overlapping and erasure of lists,
Connnunications of the ACM 3 (1960), 655-657.

[DAHL et al. 72]
DAHL, O,J., DIJKSTRA, E.W., & HOARE, C.A.R., Structured
Progrannning, Academic Press, London (1972).

[DARLINGTON 78]
DARLINGTON, J., A synthesis of several sorting algorithms, Acta
Informatica II (1978), 1-30.

[DARLINGTON 79]
DARLINGTON, J., Program transformation: an introduction and
survey, Computer Bulletin 22, 2 (1979), 22-24.

[DE BAKKER 80]
BAKKER, J.W. de, Mathematical Theory of Program Correctness,
Prentice-Hall International, Inc., London (1980).

[DE BAKKER & VAN VLIET 81]
BAKKER, J.W. de, & VLIET, J.C. van, (Eds.), Algorithmic
Languages, North-Holland Publishing Company, Amsterdam (1981).

[DE BRUIJN 80]
BRUIJN, N.G. de, A survey of the project AUTOMATH, In
[SELDIN & HINDLEY 80].

[DE ROEVER 78]
ROEVER, W.P. de, On backtracking and greatest fixpoints, In
[NEUHOLD 78].

[DERSHOWITZ 80]
DERSHOWITZ, N., The Schorr-Waite marking algorithm revisited,
Information Processing Letters 11 (1980), 141-143.

[DEUTSCH & BOBROW 76]

297

DEUTSCH, L.P., & BOBROW, D.G., An efficient, incremental,
automatic garbage collector, Communications of the ACM 19 (1976),
522-526.

[DEWAR & McCANN 77]
DEWAR, R.B.K., & McCANN, A.P., MACRO SPITBOL - a SNOBOL4
compiler, Software-Practice and Experience 7 (1977), 95-113.

[DIJKSTRA 68]
DIJKSTRA, E.W., Cooperating sequential processes, In [GENUYS 68].

[DIJKSTRA 75]
DIJKSTRA, E.W., Guarded commands, nondeterminacy and formal
derivation of programs, Communications of the ACM 18 (1975),
453-457.

[DIJKSTRA 76]
DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1976).

[DIJKSTRA et al. 78]
DIJKSTRA, E.W., LAMPORT, L., MARTIN, A.J., SCHOLTEN, C.S., &
STEFFENS, E.M.F., On-the-fly garbage collection: an exercise in
cooperation, Communications of the ACM 21 (1978), 966-975.

[DIJKSTRA et al. 81]
DIJKSTRA, E.W., KRUSEMAN ARETZ, F.E.J., LUNBECK, R.J., & REM, M.,
Aan wie het regardeert!, Letter to the Dutch computing science
community (1981).

[DUNCAN & YELOWITZ 79]
DUNCAN, A.G., & YELOWITZ, L., Studies in abstract/concrete
mappings in proving algorithm correctness, Proceedings of the
Sixth Colloquium on Automata, Languages and Programming, Graz,
Austria (1979), 218-229.

[EARLEY 71]
EARLEY, J., Toward an understanding of data structures,
Communications of the ACM 14 (1971), 617-627.

[EARLEY 73]
EARLEY, J., Relational level data structures for programming
languages, Acta Informatica 2 (1973), 293-309.

[ELSWORTH 79]
ELSWORTH, E.F., Compilation via an intermediate language,
Computer Journal 22 (1979), 226-233.

298

[FENICHEL & YOCHELSON 69]
FENICHEL, R.R., & YOCHELSON, J.C., A LISP garbage-collector for
virtual-memory computer systems, Communications of the ACM 12
(1969), 611-612.

[FISHER 74]
FISHER, D.A., Bounded workspace garbage collection in an address
order preserving list processing environment, Information
Processing Letters 3 (1974), 29-32.

[FISHER 75]
FISHER, D.A., Copying cyclic list structures in linear time using
bounded workspace, Communications of the ACM 18 (1975), 251-252.

[FITCH & NORMAN 78]
FITCH, J.P., & NORMAN, A.C., A note on compacting garbage
collection, Computer Journal 21 (1978), 31-34.

[GENUYS 68]
GENUYS, F., (Ed.), Programming Languages, Academic Press, London
(1968).

[GERHART 75]
GERHART, S.L., Correctness-preserving program transformations,
Conference Record of the Second ACM Symposium on Principles of
Programming Languages, Palo Alto (1975), 54-66.

[GERHART 79]
GERHART,·S.L., A derivation-oriented proof of the Schorr-Waite
marking algorithm, In [BAUER & BROY 79].

[GOGUEN et al. 78]

[GRIES 71]

[GRIES 79]

GOGUEN, J.A., THATCHER, J.W., & WAGNER, E.G., An initial algebra
approach to the specification, correctness and implementation of
abstract data types, In [YEH 78].

GRIES, D., Compiler Construction for Digital Computers, John
Wiley & Sons, New York (1971).

GRIES, D., The Schorr-Waite graph marking algorithm, Acta
Informatica 11 (1979), 223-232.

[GUTTAG & HORNING 78]
GUTTAG, J.V., & HORNING, J.J., The algebraic specification of
abstract data types, Acta Informatica 10 (1978), 27-52.

[HADDON & WAITE 67]
HADDON, B.K., & WAITE, W.M., A compaction procedure for variable
length storage elements, Computer Journal 10 (1967), 162-165.

[HANSEN 69]
HANSEN, W.J., Compact list representation:·definition, garbage
collection, and system implementation, Communications of the ACM
12 (1969), 499-507.

299

[HANSON 77]
HANSON, D.R., Storage management for an implementation of
SNOBOL4, Software-Practice and Experience 7 (1977), 179-192.

[HAREL et al. 77]
HAREL, D., PNUELI, A., & STAVI, J., A complete axiomatic system
for proving deductions about recursive programs, Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, Boulder,
Colorado (1977).

[HART & EVANS 64]

[HILL 74]

[HOARE 69]

[HOARE 72]

[HOARE 81]

HART, T.P., & EVANS, T.G., Notes on implementing LISP for the
M-460 computer, In [BERKELEY & BOBROW 64].

HILL, U., Special run-time organization techniques for ALGOL 68,
In [BAUER & EICKEL 74].

HOARE, C.A.R., An axiomatic basis for computer progrannning,
Communications of the ACM 12 (1969), 576-580.

HOARE, C.A.R., Proof of correctness of data representations, Acta
Informatica 1 (1972), 271-281.

HOARE, C.A.R., The emperor's old clothes, ACM Turing award
lecture,·Communications of the ACM 24 (1981), 75-83.

[HOPCROFT & ULLMAN 79]
HOPCROFT, J.E., & ULLMAN, J.D., Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley Publishing Company,
Reading, Massachusetts (1979).

[JENSEN & WIRTH 74]
JENSEN, K., & WIRTH, N., PASCAL User Manual and Report, Springer
Verlag, Berlin (1974).

[JONKERS 79]
JONKERS, H.B.M., A fast garbage compaction algorithm, Information
Processing Letters 9 (1979), 26-30.

[JONKERS 80]
JONKERS, H.B.M., Garbage collection, In [VAN VLIET 80].

[JONKERS 80a]
JONKERS, H.B.M., Deriving algorithms by adding and removing
variables, Report IW 134, Mathematical Centre, Amsterdam (1980).

[JONKERS 80b]
JONKERS, H.B.M., Designing a machine independent storage
management system, Report IW 148, Mathematical Centre, Amsterdam
(1980).

300

[JONKERS 81]
JONKERS, H.B.M., Abstract, storage structures, In
[DE BAKKER & VAN VLIET 81].

[KENNEDY & SCHWARTZ 75]

[KING 74]

KENNEDY, K., & SCHWARTZ, J., An introduction to the set
theoretical language SETL, Computers & Mathematics with
Applications I (1975), 97-119.

KING, P.R., (Ed.), Proceedings of an International Conference on
ALGOL 68 Implementation, Winnipeg (1974).

[KLEENE 36]

[KNUTH 68]

[KNUTH 73]

[KNUTH 74]

K.LEENE, S.C., General recursive functions of natural numbers,
Mathematische Annalen 112 (1936), 340-353.

KNUTH, D.E., The Art of Computer Progrannning, Volume I:
Fundamental Algorithms, Addison-Wesley Publishing Company,
Reading, Massachusetts (1968). ·

KNUTH, D.E., The Art of Computer Progrannning, Volume 3: Sorting
and Searching, Addison-Wesley Publishing Company, Reading,
Massachusetts (1973).

KNUTH, D.E., Structured progrannning with goto statements,
Computing Surveys 6 (1974), 261-301.

[KOWALTOWSKI 79]
KOWALTOWSKI, T., Data structures and correctness of programs,
Journal of the ACM 26 (1979), 283-301.

[LAMPSON et al. 77]
LAMPSON, B.W., HORNING, J.J., LONDON, R.L., MITCHELL, J.G., &
POPEK, G.L., Report on the Programming Language EUCLID, SIGPLAN
Notices 12, 2 (1977).

[LEE et al. 79]
LEE, S., ROEVER, W.P. de, & GERHART, S.L., The evolution of list
copying algorithms and the need for structured program
verification, Conference Record of the Sixth ACM Symposium on
Principles of Progrannning Languages, San Antonio (1979), 53-67.

[LINDSTROM 74]
LINDSTROM, G., Copying list structures using bounded workspace,
Communications of the ACM 17 (1974), 198-202.

[LISKOV et al. 77]
LISKOV, B., SNYDER, A., ATKINSON, R., & SCHAFFERT, C.,
Abstraction mechanisms in CLU, Communications of the ACM 20
(1977), 564-576.

301

[LISKOV & ZILLES 74]
LISKOV, B., & ZILLES, S., Programming with abstract data types,
Proceedings of a Symposium on Very High Level Languages, SIGPLAN
Notices 9, 4 (1974), 50-59.

[LISKOV & ZILLES 75]
LISKOV, B.H., & ZILLES, S.N., Specification techniques for data
abstractions, IEEE Transactions on Software.Engineering SE-I
(1975), 7-19.

[MAJ STER 77]
MAJSTER, M.E., Extended directed graphs, a formalism for
structured data and data structures, Acta Informatica 8 (1977),
37-59.

[MANNA & WAI.DINGER 80]
MANNA, Z., & WAI.DINGER, R., A deductive approach to program
synthesis, Transactions on Programming Languages and Systems 2
(1980), 90-121.

[MANNA & WAI.DINGER 80a]
MANNA, z., & WAI.DINGER, R;, Problematic features of programming
languages: a situational-calculus approach, Part l: Assignment
statements, Technical Note 226, SRI International, Menlo Park,
California (1980).

[MARSHALL 71]
MARSHALL, S., An ALGOL 68 garbage collector, In [PECK 71].

[McBETH 63]
McBETH, J.H., On the reference counter method, CO!IBllUnications of
the ACM 6 (1963), 575.

[McCARTHY 60]
McCARTHY, J., Recursive functions of symbolic expressions and
their computation by machine, Part I, CODDllunications of the ACM 3
(1960), 184-195.

[McCARTHY et al. 65]
McCARTHY, J., et al., LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Massachusetts (1965).

[MEERTENS 76]
MEERTENS, L.G.L.T., From abstract variable to concrete
representation, In [SCHUMAN 76].

[MEERTENS 79]
MEERTENS, L.G.L.T., Abstracto 84: the next generation,
Proceedings of the 1979 Annual Conference of the ACM, Detroit
(1979), 33-39.

[MEERTENS 81]
MEERTENS, L.G.L.T., Definition of an abstract ALGOL 68 machine,
To appear, Mathematical Centre, Amsterdam.

302

[MENDELSON 64]
MENDELSON, E., Introduction to Mathematical Logic, Van Nostrand
Company, Inc., Princeton, New Jersey (1964).

[MORRIS 78]
MORRIS, F.L., A time- and space-efficient garbage compaction
algorithm, Communications of the ACM 21 (1978), 662-665.

"[MULLER 75]
MULLER, K.G., On the Feasibility of Concurrent Garbage
Collection, Ph.D. Thesis, Technical University, Delft, The
Netherlands (1975).

[NEUHOLD 78]
NEUHOLD, E.J., (Ed.), Formal Descriptions of Programming
Concepts, North-Holland Publishing Company, Amsterdam (1978).

[OLLONGREN 74]
OLLONGREN, A., Definition of Programming Languages by
Interpreting Automata, Academic Press, London (1974).

[PARNAS 72]

[PECK 71]

PARNAS, D.L., A technique for software module specification with
examples, Communications of the ACM 15 (1972), 330-336.

PECK, J.E.L., (Ed.), ALGOL 68 Implementation, North-Holland
Publishing Company, Amsterdam (1971).

[PLAISTED 81]
PLAISTED, D.A., Theorem proving with abstraction, Artificial
Intelligence 16 (1981), 47-108.

[RANDELL & RUSSELL 64]
RANDELL, B., & RUSSELL, L.J., ALGOL 60 Implementation, Academic
Press, London (1964).

[REINGOLD 73]
REINGOLD, E.M., A nonrecursive list moving algorithm,
Communications of the ACM 16 (1973), 305-307.

[ROBSON 74]
ROBSON, J.M., Garbage collection with limited stack size, In
[KING 74].

[ROBSON 77]
ROBSON, J.M., A bounded storage algorithm for copying cyclic list
structures, Communications of the ACM .20 (1977), 431-433.

[ROSENBERG 71]
ROSENBERG, A.L., Data graphs and addressing schemes, Journal of
Computer and System Sciences 5 (1971), 193-238.

303

[SCHORR & WAITE 67]
SCHORR, H., & WAITE, W.M., An efficient machine-independent
procedure for garbage collection in various list structures,
Connnunications of the ACM 10 (1967), 501-506.

[SCHUMAN 7 6]
SCHUMAN, S.A., (Ed.), New Directions in Algorithmic Languages,
IRIA, Rocquencourt (1976).

[SELDIN & HINDLEY 80]
SELDIN, J.P., & HINDLEY, J.R., (Eds.), To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, Academic Press,
London (1980).

[STANDISH 78]

[STEEL 75]

STANDISH, T.A., Data structures - An axiomatic approach, In
[YEH 78].

STEEL, G.L., Jr., Multiprocessing compactifying garbage
collection, Connnunications of the ACM 18 (1975), 495-508.

[TARJAN 72]
TARJAN, R., Depth-first search and linear graph algorithms, SIAM
Journal on Computing, Volume 1 (1972), 146-160.

[TERASHIMA & GOTO 78]
TERASHIMA, M., & GOTO, E., Genetic order and compactifying
garbage collectors, Information Processing Letters 7 (1978),
27-32.

[THORELLI 72]
THORELLI, L., Marking algorithms, BIT 12 (1972), 555-568.

[THORELLI 76]

[TOPOR 79]

[TRAUB 81]

THORELLI, L., A fast compactifying garbage collector, BIT 16
(1976), 426-441.

TOPOR, R.W., The correctness of the Schorr-Waite list marking
algorithm, Acta Informatica 11 (1979), 211-221.

TRAUB, J.F., (Ed.), Quo vadimus: Computer science in a decade,
Connnunications of the ACM 24 (1981), 351-369.

[TURING 36]
TURING, A.M., On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical
Society, Series 2, 42 (1936), 230-265.

[VAN VLIET 80]
VLIET, J.C. van, (Ed.), Colloquium Capita Implementatie van
Progrannneertalen, MC Syllabus 42, Mathematical Centre, Amsterdam
(1980).

304

[VAN WIJNGAARDEN et al. 76)
WIJNGAARDEN, A. van, MAILLOUX, B.J., PECK, J.E.L., KOSTER,
C.H.A., SINTZOFF, M., LINDSEY, C.H., MEERTENS, L.G.L.T., &
FISKER, R.G., Revised Report on the Algorithmic Language
ALGOL 68, Springer-Verlag, New York (1976).

[WADLER 76)

[WAITE 73)

WADLER, P.L., Analysis of an algorithm for 'real time garbage
collection, COllllllunications of the ACM 19 (1976), 491-500.

WAITE, W.M., Implementing Software for Non-numeric Applications,
Prentice-Hall, Englewood Cliffs, New Jersey (1973).

[WEGBREIT 72)
WEGBREIT, B., A generalised compactifying garbage collector,
Computer Journal 15 (1972), 204-208.

[WEGNER 72)
WEGNER, P., The Vienna Definitio~ Language, Computing Surveys 4
(1972), 5-63.

[WEISSMAN 67)
WEISSMAN, C., LISP 1.5 Primer, Dickenson Publishing Company,
Inc., Belmont, California (1967).

[WILKES et al. 57)

[WIRTH 77)

WILKES, M.V., WHEELER, D.J., & GILL, S., The Preparation of
Programs for an Electronic Digital Computer, Second Edition,
Addison-Wesley, New York (1957).

WIRTH, N., MODULA: a language for modular multiprogrammi.ng,
Software-Practice and Experience 7 (1977), 3-35.

[WISE & FRIEDMAN 77)

[WODON 71)

[WULF 77)

WISE, D.S., & FRIEDMAN, D.P., The one-bit reference count, BIT 17
(1977), 351-359.

WODON, P.L., Methods of garbage collection, In [PECK 71).

WULF, W.A., Languages and structured programs, In [YEH 77).

[WULF et al. 76)

[YEH 77)

WULF, W.A., LONDON, R., & SHAW, M., An introduction to the
construction and verification of ALPHARD programs, IEEE
Transactions on Software Engineering SE-2 (1976), 253-264.

YEH, R.T., (Ed.), Current Trends in Programming Methodology,
Volume I, Software Specification and Design, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1977).

[YEH 78]

[ZAVE 73]

YEH, R.T., (Ed.), Current Trends in Programming Methodology,
Volume IV, Data Structuring, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1978).

ZAVE, D.A., A fast compacting garbage collector, Technical
Report, Sperry Univac (1973).

305

[ZILLES 73]
ZILLES, S.N., Procedural encapsulation: a linguistic protection
technique, Proceedings of an ACM SIGPLAN-SIG0PS Interface
Meeting, SIGPLAN Notices 8, 9 (1973), 140-146.

306

LIST OF GARBAGE COLLECTION AND COMPACTION ALGORITHMS

C 181
C.B 190
C.F 184
C.FG 188
CENDL.FM 186
CN.B 191
CND.BFGU 196
CND.BGMUP 194
CND.BGUP 192
CNDH.BGUP* 193
CNDL.FG 187
CV.FM 185
G 151
G.AT 163
G.ATEHSQ 164
G.AVE 164
G.BTEHF 167
G.BTS 165
G.CT 169
G.CTER 169
G.T 157
G.TE 158
G.TES 160
G.TS 159
G.VE 160
G.VES 161
GN.DT 172
GN.DTEH 176
GN.DTER 173
GN.DTER* 173
GN.DVEH 178
GNK.DTEH* 177
GNK.DTER** 174
GNK.DTER*** 175
G&C 203
G&CL 202
G&CNK 200
G&CNVRL 199

307

INDEX

Abstract algorithm 83, 86
abstract data type 31, 80
abstract layer of storage management

model 119
abstract machine 120, 205, 246

abstraction of 206
implementation of 217
model of 206

abstract/concrete mapping 113
abstraction 9, 223, 249

concretized 249
good 16
layer of 32
level of 9, 18
model for 10

abstraction from irrelevant details
15, 20

abstraction function 12, 13, 113
abstraction of abstract machine 206
abstraction of algorithm 92
abstraction of problem 13

proper 13
abstraction of theory 12
access path 129, 134
access right 68
accessible object '134
accessible type 68
accessing an object 129
accessor 33, 85

constant 77
redundant 85
variable 77

accessor set of structure 34
activation record 130, 207
active process 209
actual parameter 54
adding and removing variables

method of 83, 86, 218
addition of object 49
address 126, 219
address of cell 122, 143
algebra

heterogeneous 31, 66, 76
homogeneous 31, 66, 71, 76

algebraic specification method 71
ALGOL 60 131, 132, 228
ALGOL 68 3, 120, 123, 126, 132, 133,

154, 163, 170, 205, 206, 208,
210, 213, 224, 228, 229, 246,
249, 252, 254, 255

ALGOL 68 compiler 205
ALGOL 68 scope rules 132, 229, 252,

255

algorithm 1, 29
abstract 83, 86
abstraction of 92
concrete 83
Deutsch-Schorr-Waite marking 85,

90, 113, 174, 177, 193
list-moving 185
marking 91, 150, 259
nondeterministic 92
storage management 119

algorithm detail
compaction 182
garbage collection 155

algorithmic problem 24
algorithmic transformation 84
algorithms

classification of 26
mathematical models for 31

aliasing 31
allocation 130, 217, 219
allocation function 119, 123, 141,

218, 219, 223
invariants for 219, 223

allocation information 257, 265
allocation invariant 123, 139, 145
allocation unit 250
ALPHARD 81
applied computer science
appropriate specification of problem

15
area 206, 250

atom of 250
base of 233, 239
creation of 218
dead 207
destruction of 227, 250
extended 237
live 207
no longer used 221
reachable 251
simple 237
size of 219, 250
status of 230, 250, 255
unreachable 251

area with 'infinite lifetime 210
assertion 76, 86

intermediate 83, 84, 86
assignment 83

nondeterministic 32, 77
atom 80, 250

kind of 250
offset of 250
target of 250

308

value of 250
atom marking 150, 162

garbage collection using 162
atom of area 250
atom of object 142
atomic object 120, 141

moving of I 24
value of 120, 141

AUTOMATH 24

Base of area 233, 239
base pointer 255
BASIC 121, 126
basic compaction problem 147
basic garbage collection problem 147
basic parsing problem 115
basic problem 20
basic solution 21
basic storage management problem 115
behaviour of dynamic system 116
behavioural equivalence 76
beyond construct 92
bit map 162, 171
block 130, 187, 206, 208, 241, 249,

272, 284
creation of 207
generator of 208, 230
kind of 236
scope of 208
status of 208
type of 208

block move 196
block structure 132
block traversal and moving 268
blockwise moving 272, 284
bookkeeping 181
branch 250

dummy 277
target of 258

branch cell 277
branch of object 90, 142
branch set 189, 199, 261
branch sets

compaction using 189
implementation of 191

Carrier of type 71, 72
catalogue of transformation rules

113
cell 119, 122, 140, 219, 251

address of 122, 143
branch 277
contents of 122, 143, 251
dead 229
free 221, 254

change of representation 83

characterization uf storage
structures 78

circularity 79, 126
structural 126

classification 2. 147
classification of algorithms 26
classification of problems 19
closed set of objects 90
CLU 32, 81
compact location 130, 143
compact region 223
compact storage management system

144
compacter 138

genetic order preserving 229
phases of 181

compacting garbage collection 145,
147, 197

compacting garbage collector 138
conditionally 139, 198

compaction 26, 138, 145, 147, 178,
225, 227

compaction algorithm detail 182
compaction detail 182
compaction problem

basic 147
compaction problem detail 182
compaction using branch sets 189
compaction using relocation map 183
complete lattice 44
complete specification of problem 15
completed process 209
component of dynamic system 116
component of object 37, 90, 120, 141
composite selector 79
computable function 31
computer I
computer science I

applied 1
language of 118
theoretical I

concept 20
concrete 20

conclusion of rule 10
concrete algorithm 83
concrete concept 20
concrete fact 19
concrete layer of storage management

model 119
concrete machine 122
concrete problem 19
concrete solution 19
concretion 223, 249
concretized abstraction 249
concurrency 2
conditonally compacting garbage

collector 139, 198
constant accessor 77
contained 37
contents of cell 122, 143, 251
control structure 244
convergent structure 34
copy operation 124, 126
copying 139
correctness

partial 86
correctness-preservation 84
correctness-preserving

transformation 26, 83, 86,
148, 258

creation
dynamic 31
nondeterministic 77

creation of area 218
creation of block 207
creation of locale 207
creation of object 47, 121, 130
creation of process 209
current dynamic chain 211
current environ 209
cyclic object 37

Dangling pointer 133, 135, 184, 252
dangling reference 79, 132, 143, 252
data area 130, 207
data structure I, 29, 84, I 16, 145,

244
innnutable 72
mutable 72
representation of 116
static 56

data structures
mathematical models for 31

dead area 207
dead cell 229
dead object 131
deadlock 215
deallocation 131, 221

user controlled 133
deallocation unit 250
decomposition

level of 17
decomposition of problem 17
degree of object 142
demon 92

unfair 92
denotational semantics 61
depth-first marking 174
depth-first search 105
dereferencing 129

tracing by I 51
derivable formula 10

derivation of formula 10
descent function 119
design 2

309

design of garbage collector 247, 249
design of storage management system

246
design of storage manager 205
destination 27i
destruction of area 227, 250
destruction of object 131
detail 14, 148

compaction 182
compaction algorithm 182
compaction problem 182
garbage collection 155
garbage collection algorithm 155
garbage collection problem 155

details
abstraction from irrelevant IS,

20
omitting irrelevant 14, 20

Deutsch-Schorr-Waite marking
algorithm 85, 90, I 13, 174,
177, 193

direct component of object 37, 120,
127, 141

disjoint 141
distinguishability 73
divergent structure 34
divide and rule 17, 245
drawing algorithm for finite

structures 35
dummy branch 277
dynamic chain 211, 217, 232

current 211
dynamic creation 31
dynamic link 207
dynamic object 40, 133
dynamic system 116, 145, 148

behaviour of 116
component of 116
operation of 116

dynamic type 275

Edge vector 128
efficiency 24
empty structure 34
encapsulation 32
enrichment of pointer 196
environ

current 209
environ of process 209
environment 120
environment independent operation

56, 72
equality 146

310

equivalence relation
right-invariance of 33, 39

establisher of locale 207
EUCLID 81
explicit specification method 30
expressible solution of problem 14
extended area 237
external action 120
external behaviour 122

Fact 19
concrete 19

field 219, 250
finite state machine 38
finite structure 34, 38, 73
finite structures

drawing algorithm for 35
finiteness of store 131, 221
flagging 156, 166, 168
formal meaning of specification 30
formal parameter 55, 56
formula 10

derivable 10
derivation of 10
proof of II

formula of theory 10
fragmentation 132, 138, 221
free cell 221, 254
free storage 130, 144, 147, 226
free storage list 139
function

abstraction 12, 13, 113
allocation 119, 123, 141, 218,

219, 223
computable 31
descent 119
general recursive 31
invariants for allocation 219,

223
meaning 58, 61
representation 119, 141
state 80

Gap 272, 284
gapwise skipping 272
garbage 217, 257
garbage collection 2, 26, 79, 118,

136, 145, 147, 149
compacting 145, 147, 197
on-the-fly 1 19
parallel 119, 136
spread 119, 137
survey of 147
traditional 136

garbage collection algorithm detail
155

garbage collection detail 155
garbage collection problem

basic 147
garbage collection problem detail

155
garbage collection using atom

marking 162
garbage collection using node

marking 170
garbage collection using object

marking 156
garbage collection using reference

marking 168
garbage collector 136, 147, 210, 222

compacting 138
conditionally compacting 139, 198
design of 247, 249
genetic order preserving 225
job of 150
LISP-2 177, 187
space overhead of 155
working space for 147, 148

general recursive function 31
generalization 21

systematic 22
generalized problem 21
generalized problems

hierarchy of 21
standard hierarchy of 22

generalized solution 21
generator

local 255-
generator of block 208, 230
genetic order

preservation of 180, 225, 229
genetic order preserving compacter

229
genetic order preserving garbage

collector 225
ghost variable 88, 218
global state 55
global transformation 83
good abstraction 16
good solution 21
goto 215
granunar 115, 118

left-linear 39
graph 79, ·90, 119, 130, 141

node of 79
Greibach normal form 118

Heap object 133, 210, 213, 224
heterogeneous algebra 31, 66, 76
hidden identity 146
hidden operation 77
hierarchy of generalized problems 21

standard 22
hold 11
homogeneous algebra 31, 66, 71, 76
hypothetical ALGOL 68 computer 126

Identification relation of structure
33

identity 146
hidden 146

identity mapping 58
identity of object 36, 40
iIIIIIlutable data structure 72
implementation 83

prograIIIIIling language 115, 120,
205

implementation of abstract machine
217

implementation of branch sets 191
implementation of marking

information 158, 162
implementation of relocation map

185, 187
implicit specification method 30
indexed addressing mode 271
indistinguishability 73
inductive assertion technique 83, 86
inference scheme 10
infimum 45
infinite lifetime

area with 210
object with 132

infinite structure 34
initial locale 210, 251
initial process 210
instance of value 40
intermediate assertion 83, 84, 86
intermediate machine 123
internal action 120
internal behaviour 122
internal operation 118
intuitive meaning of specification

30
invariant 89, 93

allocation 123, 139, 145
loop 89
representation 85, 117
system 117, 216

invariants for allocation function
219, 223

irrelevant details
abstraction from 15, 20
omitting 14, 20

isolated node 135, 143, 149
isolated problem 20
isolated solution 20

Job of garbage collector 150

Kind 236
kind of atom 250
kind of block 236
kind of locale 236

Label 271
lambda calculus 31
language

programming 32, 115
regular 38
specification 29, 32, 65
strongly typed 154

language of computer science 118
last-in first-out 103, 132
lattice

complete 44
layer of abstraction 32
layer of storage management model

abstract 119
concrete 119

layout 244
layout of object 139, 145
leaf 250
left address of location 143
left-linear graIIIIIlar 39
level of abstraction 9, 18
level of decomposition 17
lifetime

area with infinite 210
object with infinite 132

lifetime extension 213
link field 176
LISP 66, 126, 132, 155, 170, 178,

185, 198, 199
LISP-2 garbage collector 177, 187
list-copying problem 198
list-moving algorithm 185
list-moving problem 198
live area 207
live object 131
local generator 255
local replacement 84
local state 55
local transformation 83
locale 206, 207, 241, 249

creation of 207
establisher of 207
initial 210, 251
kind of 236
reachable 231
scope of 207
status of 207
type of 207

located 219, 223

311

312

location 122, 143
compact 130, 143
left address of 143
right address of 143
size of 143

location of root 181
loop invariant 89

Machine
abstract 120, 205, 246
abstraction of abstract 206
concrete 122
finite state 38
implementation of abstract 217
intermediate 123
model of abstract 206
object of state 80
state 80
state of state 80
Turing 31
von Neumann 271

marking 93, 149, 151, 259
atom 150, 162
depth-first 174
garbage collection using atom 162
garbage collection using node 170
garbage collection using object

156
garbage collection using

reference 168
node 150, 170, 255, 259
object l50, 156
reference 150, 168

marking after tracing 152
marking algorithm 91, 150, 259

Deutsch-Schorr-Waite 85, 90, 113,
174, 177, 193

marking before visiting 152
marking information 149, 277

implementation of 158, 162
marking phase 229
marking unit 149
mathematical models for algorithms

31
mathematical models for data

structures 31
mathematical rigour 2, 29
mathematics 9, 115
meaning function 58, 61
meaning of specification 29, 65, 75,

76
formal 30
intuitive 30

memory 120
method

algebraic specification 71

explicit specification 30
implicit specification 30
transformational 83, 114

method of adding and removing
variables 83, 86, 218

MIAM 206, 246, 249, 250, ,252, 254,
255, 275

mode 209
indexed addressing 271

mode of process 209
model 2, 249, 250

storage management 115
model for abstraction 10
model of abstract machine 206
model of storage management system

139
modification of object 121, 123
MODULA 81
moving 178, 179, 192, 221, 258, 266

blockwise 272, 284
moving of atomic object 124
moving order 180
moving phase 259, 272
mutable data structure 72

Natural number 64
no longer used area 221
node 130, 142, 250

isolated 135, 143, 149
unreachable 149

node marking 150, 170, 255, 259
garbage collection using 170

node of graph 79
nondeterminism 86.

reduction of 86, 99, IOI,. 107
nondeterministic algorithm 92,
nondeterministic assignment 32, 77
nondeterministic creation 77
nondeterministic operation 76

Object 90, 119, 120, 140
accessible 134
accessing an 129
addition of 49
atom of 142
atomic 120, 141
branch of 90, 142
component of 37, 90, 120, 141
creation of 47, 121, 130
cyclic 37
dead 131
degree of 142
destruction of 131
direct component of 37, 120, 127,

141
dynamic 40, 133

heap 133, 210, 213, 224
identity of 36, 40
layout of 139, 145
live 131
modification of 121 123
reachable 91, 134, 143
reallocation of 123
reference 126, 141
reference of 90, 141
relational 80
removal of 52
scalar 141
stack 224
structure of 41, 120, 141
structured 120, 141
subobject of 120, 127, 141
type of 154
unreachable 91, 134
value of 90
value of atomic 120, 141
Vienna 78

object marking 150, 156
garbage collection using 156

object of state machine 80
object of structure 33
object typing 154
object with infinite lifetime 132
objects

closed set of 90
occupy 144, 219
offset 244
offset of atom 250
omitting irrelevant details 14, 20
on-the-fly garbage collection 119
operation 54, 56, 65, 71

copy 124, 126
environment independent 56, 72
hidden 77
internal 118
nondeterministic 76
random access 126
side effect free 56, 72
static 56, 72

operation of dynamic system 116
operation on structure 42, 47
operational semantics 61
optimizing replacement 88
ordering of solutions 24
origin of process 209
overabstraction 16
overlap 31, 56, 90, 120, 141, 252
overspecification 30

Page fault 139
parallel garbage collection 119, 136
parallel program 208, 236

parallellism 236
parameter

actual 54
formal 55, 56

parsing 115
parsing problem

basic 115
partial correctness 86

313

partial expansion of structure 43
partial order on structures 42, 46
PASCAL 81, 130, 132, 133, 137, 138,

149
path of structure 33
peeling 138
phase

marking 229
moving 259, 272

phases of compacter 181
physical inclusion 36, 128
pile 223, 251
PL/I° 132
pointer 36, 79, 179, 221, 244, 258

base 255
dangling 133, 135, 184, 252
enrichment of 196

portability 205
predicate 77
premiss of rule 10
preservation of genetic order 180,

225, 229
problem 11

abstraction of 13
algorithmic 24
appropriate specification of 15
basic 20
basic compaction 147
basic garbage collection 147
basic parsing 115
basic storage management 115
complete specification of 15
concrete 19
decomposition of 17
expressible solution of 14
generalized 21
isolated 20
list-copying 198
list-moving 198
proper abstraction of 13
reconstruction of solution of 16
solution of 11
solvable 11
sound specification of 15
specialization of 21
specification of 15
statement of 11
storage management 217

314

theory of II
unsolvable I I

problem detail
compaction 182
garbage collection 155

problem solving
top-down 17

problems
classification of 19
hierarchy of generalized 21
solving 15
standard hierarchy of generalized

22
process 208, 209, 249

active 209
completed 209
creation of 209
environ of 209
initial 210
mode of 209
origin of 209
running 209
spawned 209
spawner of 209

process of transformation 249, 256
program

parallel 208, 236
sequential 208, 217, 236

programming language 32, 115
programming language implementation

I 15, 120, 205
proof of formula II
proof system 78
proper abstraction of problem 13

Random access operation 126
reachability 91, 134, 170, 210, 252
reachable area 251
reachable locale 231
reachable object 91, 134, 143
reallocation of object 123
reconstruction of solution of

problem 16
reduction of nondeterminism 86, 99,

IOI, 107
redundant accessor 85
redundant variable 84, 88, 230
refer 90, 126, 141, 250
reference 125, 210

dangling 79, 132, 143, 252
reference count 133
reference counting 133, 137
reference marking 150, 168

garbage collection using 168
reference object 126, 141
reference of object 90, 141

reference typing 154, 170
reference value 141
region 222

compact 223
register 271, 280, 288
regular language 38
relational object 80
releasing storage 150
relocation map 183, 198, 259

compaction using 183
implementation of 185, 187

removal of object 52
replacement 84

local 84
optimizing 88

representation 30, 68
change of 83

representation function 119, 141
representation invariant 85, 117
representation of data structure 116
representation of value 73
residuum 271, 284
restrictions on visiting and tracing

152
result 55, 65
result value 55
right address of location 143
right-invariance of equivalence

relation 33, 39
root 90, I 19, I 30, I 4 I , 251

location of 181
rule 10

conclusion of 10
premiss of 10

rule of theory 10
running process 209

Scalar object 141
scalar value 141
scope checking 255
scope of block 208
scope of locale 207
scope rules

ALGOL 68 132, 229, 252, 255
selection 129

tracing by 15 I
selector

composite 79
semantics

denotational 61
operational 61

semaphore 208, 215
semispace 185
separation of concerns 17, 206, 246
sequential program 208, 217, 236
serialize 209

SETL 80
sharing 31, 79, 116
shift 187
shifting 139
side effect 55
side effect free operation 56, 72
simple area 237
simplicity 2
size of area 219, 250
size of location 143
skipping

gapwise 272
sneak access 56
solution

basic 21
concrete 19
generalized 21
good 21
isolated 20

solution of problem 11
expressible 14
reconstruction of 16

solutions
ordering of 24

solvable problem 11
solving problems 15
sort 76
sound specification of problem 15
source 271
space overhead of garbage'collector

155
spawned process 209
spawner of process 209
specialization of problem 21
specification 29

formal meaning of 30
intuitive meaning of 30
meaning of 29, 65, 75, 76

specification language 29, 32, 65
specification method

algebraic 71
explicit 30
implicit 30

specification of problem 15
appropriate 15
complete 15
sound 15

spread garbage collection 119, 137
stack 103, 107, 132
stack object 224
standard hierarchy of generalized

problems 22
standard storage management system

205
standard theory 18
state 55, 65

global 55
local 55

state function 80
state machine 80

object of 80
state of 80

state of state machine 80
statement of problem 11
static data structure 56
static operation 56, 72
status 207
status information 153, 182, 274
status of area 230, 250, 255
status of block 208
status of locale 207
stepwise refinement 17
storage

free 130, 144, 226
releasing 150
virtual 139

storage management 2, 115, 205
storage management algorithm 119
storage management model 115

abstract layer of 119
concrete layer of 119

storage management problem 217
basic 115

315

storage management system 117, 118,
140, 148, 205, 222

compact 144
design of 246
model of 139
standard 205

storage manager 123, 205
design of 205

storage overflow 131, 221
storage structure 31, 33, 78
storage structures

characterization of 78
store 119, 130, 141, 219, 251

finiteness of 131, 221
strong typing 65
strongly typed language 154
structural circularity 126
structural transformation 84
structure 31, 33, 78

accessor set of 34
block 132
convergent 34
divergent 34
empty 34
finite 34, 38, 73
identification relation of 33
infinite 34
object of 33
operation on 42·, 47

316

partial expansion of 43
path of 33

structure of object 41, 120, 141
structure of subject 22
structured design 17
structured object 120, 141
structures

drawing algorithm for finite 35
partial order on 42, 46

subject 19, 115
structure of 22

subnode 142
subobject of object 120, 127, 141
subordinate type 69
subproblem 17
substructure 33
supremum 45
survey of garbage collection 147
symbolic expression 66
system 116

behaviour of dynamic 116
compact storage management 144
component of dynamic 116
design of storage management 246
dynamic 116, 145, 148
model of storage management 139
operation of dynamic 116
proof 78
standard storage management 205
storage management 117, 118, 140,

148, 205, 222
system invariant 117, 216
systematic generalization 22
systematics 115

Target of atom 250
target of branch 258
template 275
termination 92, 99
termination condition 92
theoretical computer science
theory 1 0, 115

abstraction of 12
formula of 10
rule of 10
standard 18

theory of problem 11
thrashing 180
top-down problem solving 17
tracing 93, 151

marking after 152
tracing by dereferencing 151
tracing by selection 151
traditional garbage collection
transformation

algorithmic 84

136

correctn~ss-preserving 26, 83,
86, 148, 258

global 83
local 83
process of 249, 256
structural 84

transformation rules
catalogue of 113

transformational method 83, 114
traversal order 262
truth value 63
Turing machine 31
Turing Tarpit 116
type 68, 146

accessible 68
carrier 71, 72
dynamic 275
subordinate 69
value of 68, 71, 72

type information 154, 182, 274
type of block 208
type of locale 207
type of object 154
type parameterization 77
type tracking 154, 164, 172
typing

object 154
reference 154, 170

Unfair demon 92
unit

allocation 250
deallocation 250
marking 149

unreachability 36
unreachable area 251
unreachable node 149
unreachable object 91, 134
unsolvable problem 11
until construct 92
updating 139, 179, 221, 258
updating information 181, 266
user controlled deallocation 133

Value 73, 140
instance of 40
reference 141
representation of 73
result 55
scalar 141
truth 63

value of atom 250
value of atomic object 120,
value of object 90
value of type 68, 71, 72
variable

141

ghost 88, 218
redundant 84, 88, 230

variable accessor 77
variables

method of adding and removing
83, 86, 218

variant record 130
Vienna object 78
virtual storage 139
visiting 93, 151

marking before 152
visiting and tracing

restrictions on 152
von Neumann machine 271

Word 122, I 40
working space for garbage collector

147, 148

317

MATHEMATICAL CENTRE TRACTS
I T. van der Wall. Fixed and al,,,,,.t fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes, part
I: model and method 1964.
4 G. de Leve. Gen~ralized Markovian decision processes, part
II: probabilistic background 1964.
5 G. de Leve, H.C. Tijms, P J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
10 E.M. de Jager. Applications of ,l;stributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definitian of programming
languages with an application to the definition of ALGOL 60.
1967.
17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part I. 1968.
18 R.P. van de Riel. Formula manipulation .in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.
21 E. Wattel. The compactness operator in set theory and
topolog>·. 1968.
22 T J. Dekker. ALGOL 60 procedures in numerical algebra,
part I. 1968.
23 T J. Dekker, W. Hollmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J. W. de Bakker. Recursive procedures. 1971.
25 E.R. Pal!rl. Representations of the Lorentz group and projec
tive geometry. 1969.
26 European Meeting 1968. Selected statistical papers. part I.
1968.
27 European Meeting 1968. Selected statistical papers. part II.
1968.
28 J. Oosterhof!. Combination of one-sided statistical tests.
1969.
29 J. Verhoell. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution fanctions. 1970.
32 L. de Haan. On regular variation and its application to the
weak ('onvergence of sample extremes. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. I 970.
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal junc
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1911.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes. G. Zoutendijk. MC-25 Informatica
Symposium. 1911.
38 W.A. Verloren van Themaal. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis ofls,S) inventory models. 1972.
41 A. V erbeek. Superextensions of topological spaces. 1972.
42 W. Vervaal. Success epochs in Bernoulli trials (with applica
tions in number theory). f972.
43 F.H. Ruymgaan. Asymptotic theory of rank tests for
independence. 1913.

44 H. Bart. Meromorphic operator valued functions. 1973.
45 A.A. Balkema. Monotone transformations and lirmt laws.
1973.
46 R.P. van de Riel. ABC ALGOL. a portable language for
formula manipulation systems, part I: the language. 1973.
47 R.P. van de Riel. ABC ALGOL, a portable language for
formula manipulation systems, part 2: /he compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Stntzoll, C.H. Lindsey, LG.LT. Meertens, R.G.
Fisker (eds.). Revised report an the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I:
theory of designs, finite geometry and coding theory. 1914.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. I 914.
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficien~v con•
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gtlbel. Queueing models involving buffers. 1915.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1915.
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever. Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lome
fanctions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1919.
74 H.J.J. le Riele. A theoretical and computational stu4Y of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. I 977.
76 M. Rem. Associons and the closure statement; 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential.families. 197R.
78 E. de Jonge, A.C.M. van Rooij. /11troductw11 to R,e.,:
spaces. I 977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical sti,4)· of stiff two-point boundary
problems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part I. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part 2. 1976.
83 L.S. van Benthem Juuing. Checking Landau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthio (?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen, M. Veldhorsl. Torrix I, a program
ming system for operations on vectors and matrices over arbi
trary fields and oJ variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic.games. 1981.
91 J.M. Geysel. Transcendence in fields of positive characteris
tic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory.
1977.
94 A. Bijlsma. Simultaneous approximations in transcendenral
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitanyi. Lindenmayer systems: structure, languages,
and growth functions. 1980.
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. I 984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Interfaces between computer science and operations
research. 19'78.
100 P.C. Baayen, D. van Duis!, J. Oosterholf (eds.). Proceed
ings bicentennia/·congress of the Wiskundig Genootschap, part
/. 1979.
IOI P.C. Baayen, D. van Dulst, J. Oosterholf (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
2. 1979.

J~~8~- van Dulst. Reflexive and superreflexive Banach spaces.

103 K. van Ham. Classifying infinitely divisible distributions
by functional equations. lln!f.
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979.
I 05 R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 1982.
:~9~. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera•
tor equations ~y imbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science Ill, part J. 1979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science JI/, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, part/: historical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part JI: an implemen
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1979.
113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restrictecl alternatives. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures JI,
part /. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures ll.
part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
stale space. 1979.
118 P. Groeneboom. Large deviations and asymptotic efficien
cies. 1980.
119 F.J. Peters. Sf':rse matrices and substructures. with a novel
implementation ojflnite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. 1980.

(~M- Yuhasz. Cardinalfunctions in topology - ten years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980.
127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicialflxed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function ofa graph. 1980.
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981.
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna
tional conference on ALGOL 68. I 981.
135 J.A.G. Groenendijk, T.M.V. Janssen. M.J.B. Stokhof
(eds.). Formal methods in the study of language, part/. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part JJ. 198 I.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van d~r WaJ, Stochastic dynamic programming, succes
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point hypothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogenies for certain ~ypes of
Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topologr and order
structures, part 1. 1981.
143 J.M. Schumacher. Dynamic feedback infinite- and
infinite-dimensional linear systems. 1981.
144 P. Eijgenraam. The solution of initial value problems using
interval arithmetic; formulation and analysis of an algorithm
1981.
145 A.J. Brentjes. Multi-dimensional continued fraction algo•
rithms. 1981.
146 C. V. M. van der Mee. Semigroup and jllctorization
methods in transport theory. 1981.
147 H.H. Tigelaar. Identification and informative sample size.
1982.
148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek. W.A.J. Luxemburg.
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium
in honour of A. C. Zaanen. I 982.
150 M. Veldhorst. An analysis q_f sparse matrix storage
schemes. l 982.
151 R.J.M.M. Does. Higher order asymptolics for simple linear
rank statistics. 1982.
152 G.F. van der Hoeven. Projections of lawless sequences.
1982.
153 J.P.C. Blanc. Application of the theory of boundary value
problems in the analysis of a queueing model wilh paired ser
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory. part /. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part JJ. 1982.
156 P.M.G. Apers. Query processing and data a/location in
distributed database systems. l 983.
157 H.A.W.M. Kneppers. The covariant classification oftwo
dimensional smooth commutative formal groups over an a/ge
braica/~y closed field of positive cl,aracteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 1. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction, specification and implemen
tation techniques, with an application to garbage collection.
1983.
167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 2. I 983.

CW/ TRACTS
1 O.H.J. Epema. Surfaces with canonical hyperplane sections.
1984.
2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension in terms of negligibility. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical
~ysrems. 1984.
4 J. Koene. Minimal cos/ flow in processing networks, a primal
approach. 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie
groups. 19M.
6 A.P.W. Bohm. Datajlow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984.
9 C.P.J. Koymans. Models of the lambda calculus. 1984.

