
Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands. 

The Mathematical Centre, founded 11th February 1946, is a non-pro.fit institution for the 
promotion of pure and applied mathematics and computer science. it is sponsored ~r the 
Netherlands Government through the Netherlands Organization for the Advancement of 
Pure Research (Z. W.0.). 



MATHEMATICAL CENTRE TRACTS 166 

ABSTRACTION, SPECIFICAT;ON 
AND IMPLEMENTATION 
TECHNIQUES 
WITH AN APPLICATION TO 
GARBAGE COLLECTION 

H.B.M. JONKER$ 

MATHEMATISCH CENTRUM AMSTERDAM 1983 



1980 Mathematics subject classification: 68B0S, 68C05 

1982 Computing Reviews Categories: D. 1.4, D.4.2, F.3.1 
ISBN 90 6196 263 3 

Copyright© 1983, Mathematisch Centrum, Amsterdam 



CONTENTS 

ACKNOWLEDGEMENTS 

SUMMARY 

0. INTRODUCTION 

CONTENTS 

0.1. What this monograph is about 

0.2. Sunnnary of the chapters 

0.3. Useful remarks for the reader 

I • ABSTRACTION 

1.0. Introduction 

I.I. A model for abstraction 

1.2. Abstraction in solving problems 

1.3. Abstraction in classifying problems and their solutions 

1.4. Conclusion 

2. SPECIFICATION 

2.0. Introduction 

2.1. Structures 

2.2. Operations on structures 

2.3. A language for manipulating structures 

2.4. Towards a full-fledged specification language 

2.5. Comparison of structures with other characterizations of 

storage structures 

2.6. Conclusion 

3. IMPLEMENTATION 

3.0. Introduction 

3.1. A simple implementation method 

3.2. An example: the DSW-algorithm 

3.3. Conclus1on 

1. 

1. 

1.1.1. 

V 

I 

4 

7 

9 

10 

15 

19 

27 

29 

33 

42 

57 

65 

78 

81 

83 

86 

90 

113 



4. A STORAGE MANAGEMENT MODEL 

4.0. Introduction 

4.1. Informal discussion 

4. 2. Model 

4.3. Conclusion 

5. A SURVEY OF GARBAGE COLLECTION 

5.0. Introduction 

5.1. Garbage collection 

5.2. Compaction 

5.3. Compacting garbage collection 

5.4. Conclusion 

6. DESIGN OF A STORAGE MANAGER 

6.0. Introduction 

6.1. Model 

6.2. Problem 

6,3. Design 

6.4. Conclusion 

7. DESIGN OF A GARBAGE COLLECTOR 

7.0. Introduction 

7. I. Model 

7.2. Design 

7.3. Implementation 

7.4. Conclusion 

REFERENCES 

LIST OF GARBAGE COLLECTION AND COMPACTION ALGORITHMS 

INDEX 

115 

120 

139 

146 

147 

149 

178 

197 

203 

205 

206 

217 

222 

245 

249 

250 

256 

27 I 

292 

295 

306 

307 



ACKNOWLEDGEMENTS 

The present treatise is a version of my Ph.D. thesis which is based on 

research conducted while I was employed at the Mathematical Centre. I am 

deeply indebted to my thesis advisor F.E.J. K:t>useman Aretz, who carefully 

and uncomplainingly read the many draft versions of my thesis. His kind 

guidance, encouragements and numerous helpful suggestions have been of great 

value in the realization of this work. I am also grateful for the comments 

received from C. Hemerik, J. van Leeuwen, M. Rem and L.A.M. Verbeek. 

I wish to express my gratitude to J.C. van Vliet, who encouraged me in 

writing my thesis and who read several draft versions of the manuscript. 

I thank J.W. de Bakker, who is the head of the Computer Science Department 

of the Mathematical Centre, for the interest shown in my work, and the direc­

tors of the Mathematical Centre for creating the working environment which 

made this research possible and the opportunity to publish my thesis in the 

series Mathematical Centre Tracts. 

H.B.M. Jonkers 





V 

SUMMARY 

This treatise originates from the design of a garbage collector for a 

machine-independent ALGOL 68 implementation. In an attempt to approach the 

design of a garbage collector in a systematic way, one has to face a number 

of problems. First of all, there is the problem of complexity. A garbage 

collector, in its final shape, is a "low-level" routine, which has to 

operate in an extremely complex system. In order to keep this complexity 

under control during each phase of the design process, the use of 

abstPaation is indispensable. Secondly, there is the problem of how to 

describe the garbage collector, and the sys~em in which it is operating, in 

an understandable and precise way and at various levels of abstraction. 

This is the problem of speaifiaation. Finally, there is the question of how 

to get, in a provably correct way, from an abstract specification of the 

garbage collection problem to a working garbage collector. The latter 

brings one to the problem of implementation. 

These three notions - abstraction, specification and implementation -

are the central theme of this treatise. This implies that this treatise can 

be viewed as a study on abstraction, specification and implementation. 

Purpose of this study is the development of simple mathematical concepts 

and methods, putting emphasis on practical applicability. In view of the 

general and fundamental nature of these three notions, their study has been 

lifted out of the limited framework of garbage collection. The subject of 

garbage collection, from which many of the ideas layed down in this 

treatise originated, is mainly used to demonstrate the practical 

applicability of these ideas, 

The above implies that this treatise falls apart into two parts. In 

the first part (Chapters 1-3) a number of ideas concerning abstraction, 

specification and implementation are developed, which in the second part 

(Chapters 4-7) are applied to the subject of storage management in general, 

and to garbage collection in particular. 

On the basis of a simple model for abstraction, Chapter I discusses 

how abstraction can be systematically used in problem solving and in 

classifying large classes of problems and their solutions (in particular, 

"algorithms"). In Chapter 2 the first steps of the development and 

formalization of a specification language for algorithms and data 

structures are taken. A loose version of this language is used in the other 



chapters for the description of algorithms and data structures. Starting 

point is the notion of a "structure", which allows arbitrary data 

structures to be modelled without the use of "pointers". Chapter 3 

describes a simple implementation method for both algorithms and data 

structures, based on a four-step technique of establishing a change of data 

representation. The efficacy of this method (in particular, as a 

verification tool) is demonstrated by means of a derivation of the Deutsch­

Schorr-Waite marking algorithm. 

The purpose of Chapter 4 is the introduction of a model of storage 

management, to be used as the basis of Chapter 5. The formal presentation 

of this model is preceded by a detailed informal discussion. Based on the 

ideas of Chapter I and the model of storage management from Chapter 4, a 

survey of the subject of garbage collection is presented in Chapter 5. 

Starting from two abstract algorithms, the main garbage collection and 

compaction algorithms are derived by means of "correctness-preserving 

transformations". 

The subject of Chapter 6 is the design of a storage management system, 

to be used in the above-mentioned machine-independent ALGOL 68 

implementation. The method used is that of Chapter 3, where an abstract 

model is used to keep complexity under control. The design of the garbage 

collector, which is kept abstract in the system developed in Chapter 6, is 

described in Chapter 7. The approach is analogous to that of Chapter 6, 

except that the process of transformation of the garbage collector is 

carried through up to the level of machine code. 



CHAPTER 0 

INTRODUCTION 

0.1. WHAT THIS MONOGRAPH IS ABOUT 

This monograph is a study on what I believe to be three key-notions of 
computer science: abstraction, specification and implementation. Before 
being more specific let me explain briefly what I mean by "computer 
science". This may avoid unnecessary misunderstandings, since there seems 
to be a considerable and rather fundamental disagreement on the purport of 
the latter term [TRAUB 81], [DIJKSTRA et al. 81]. Computer science, as I 
will look upon it in this monograph, is concerned with the development and 
study of concepts and techniques to facilitate the use of the "computer", 
while abstracting from its physical realization and from the specific 
applications which the computer is used for. The term "computer" is used 
here, not in the sense of a particular device or class of devices, but 
rather in the (abstract) sense of any device or mechanism which is able to 
manipulate data in an effective way. 

The above very general "definition" of computer science does not claim 
to define what computer science is. It serves only to indicate the point of 
view from which I wish to consider computer science in this monograph. I am 
well aware of the fact that by choosing a different angle of vision one can 
reach, with good reason, a different definition. The above definition 
highlights the use of the computer as the ultimate justification of the 
existence of computer science. Consequently, in this monograph we are not 
concerned with what is commonly referred to as "theoretical computer 
science", This does not imply that we shall not touch on issues of 
theoretical interest. The theory, however, is not a goal in itself and will­
be elaborated upon only as far as it is considered useful from a practical 
point of view. On the other hand, the definition also implies that we 
abstract from the specific applications for which the computer is used. 
This monograph, therefore, is not concerned with what is usually called 
"applied computer science" either. 

Having sketched the context in which this monograph should be placed, 
we are now ready to discuss its subject-matter. As stated above, this 
monograph is a study on abstraction, specification and implementation. In 
particular, we shall be concerned with the latter three notions in 
connection with "algorithms" (as abstractions of the "actions" of a 
computer) and "data structures" (as abstractions of the "data" operated 
upon by a computer). The view of computer science expressed above implies 
that we shall focus on the practical aspects of these concepts, i.e., our 
primary interest is in abstraction, specification and implementation 
techniques. 

Techniques for making abstractions, specifications and implementations 
of algorithms and data structures are the basic tools of the (practical) 
computer scientist. The research effort which has gone into the development 
of these tools has been enormous. Numerous researchers have worked on 
various aspects of the subject and this monograph relies heavily on their 
work. Instead of proceeding directly along one of the (many) lines set out 
by others, however, we shall attempt to make a fresh start by giving our 
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own "reconstruction of the facts". This reconstruction will be guided and 
inspired by the work and ideas of many others. In particular I wish to 
refer to the fundamental influence of [DAHL et al. 72]. (For more 
references see the respective chapters.) Yet, the reconstruction is not a 
mere paraphrasing of the ideas of others, since, as is the purpose of a 
reconstruction, it will reveal some new "facts" as well. 

The above implies that this study should be regarded as a "view" of 
abstraction, specification and implementation, and by no means as an 
attempt to solve all problems. (For example, we shall not be concerned with 
"concurrency".) In general, we shall approach the problems from a somewhat 
fundamental point of view, using two guiding principles. The first is the 
principle of simpZiaity. Due to the progress in VLSI-technology the field 
of application of the computer is constantly expanding and the computer is 
used for ever more complex tasks. There seems to be a tendency to try and 
cope with the latter situation through the introduction of ever more 
complex tools. As argued in a most illuminating way in [HOARE 81], the only 
real solution, however, is the pursuit of the utmost simplicity. In this 
monograph we shall therefore be looking for simple concepts and tools. 

Our second guiding principle is the principle of mathematiaaZ rigour. 
Unlike physical phenomena or human beings, computers are essentially 
discrete mathematical objects, i.e., their (abstract) behaviour can be 
described fully by a mathematical theory. This implies that reasoning about 
their behaviour is essentially mathematical reasoning. The theories which 
describe the behaviour of real computers are true monstrosities from a 
mathematical point of view. In order to get the behaviour of such machines 
(and other not yet existing machines) into our mental grip we use 
abstraction and make "models" of the various aspects of this behaviour. If 
these models are to be of any practical value in "controlling" the 
mathematical behaviour of real (or yet to become real) machines, these 
models should be mathematical themselves. The word "model", in the sense of 
a mathematically rigorous abstraction of "reality", will be recurring 
frequently in this monograph. (Notice that we use the word "model" in a 
different sense from mathematical logic [MENDELSON 64].) 

As stated above, our primary interest in this monograph is in (mental) 
tools. There is not much sense in developing tools unless we also use them 
and show that they work. This monograph can therefore be divided into two 
parts. In the first (Chapters 1-3) we will be concerned with the tools by 
themselves. Successively we will consider the tools of abstraction 
(Chapter 1), specification (Chapter 2) and implementation (Chapter 3). In 
the second part (Chapters 4-7) we will present the result of applying the 
tools. The field to which we will apply them is "storage management" in 
general, and "garbage collection" in particular. Garbage collection is a 
most appropriate subject for the application of the tools, since it is 
genera.Uy considered to be of a rather tricky and elusive nature. (As such 
it has for example been chosen as one of the "background problems" of the 
ABSTRACTO project [ABSTRACTO 79].) 

The applications part of this monograph can itself be divided into two 
parts. In the first part we will present the result of applying the tools 
in the aZassifiaation of algorithms. That is, based on a model for storage 
management (Chapter 4), we will present a survey of garbage collection 
algorithms (Chapter 5). In the second part we will present the result of 
applying the tools in the design of algorithms. In particular we apply them 
in the design of a storage management system (Chapter 6) and in the design 
of a garbage collector (Chapter 7) to be used in the latt.er storage 
management system. The structure of this monograph as described above is 
visualized in Figure 0.1. 



Abstrac 
tion 

Specifi 
cation 

Tools 

lmplemen 
tation 

Applications 

A storage 
management 

model 

Classification 

A survey of 
garbage 

collection 

Design 

Design of 
a storage 
manager 

Design of 
a garbage 
collector 

~ ~ ~ ~ 
Figure 0.1 

3 

It is worth noticing that there is little or no connection between the 
order of the chapters and the order in which the subject-matter of this 
monograph has come about. (See the parts of the subject-matter which have 
been published previously [JONKERS 79, 80, 80a, 80b, 81].) It would even be 
wrong to say that the "tools" were there before the "applications". As a 
matter of fact, the question which came first, the "tools" or the 
"applications", is somewhat similar to the problem of the egg and the 
chicken. It was from the interaction of the two that the subject-matter of 
this study has emerged. Though this process of interaction need not 
necessarily converge, I hope that it has reached a state sufficiently 
stable to justify recording it in this monograph. The fact that actually 
triggered the entire process (or, if you like, the excuse for the whole 
enterprise) was the problem of designing a garbage collector for a machine 
independent ALGOL 68 implementation [MEERTENS 81]. Though we shall make 
quite a detour, this problem will eventually be solved (in an 
implementation independent way) in the last chapter of this monograph. 
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0.2. SUMMARY OF THE CHAPTERS 

In this section we shali briefly describe the purpose and contents of 
each chapter. 

0.2.1. Chapter 

The purpose of this chapter is to discuss how abstraction can be used 
as a systematic tool in solving problems ("design") and in the ordering of 
knowledge ("classification"). We introduce a simple model for abstraction 
which allows us to reason about abstraction in a more concrete way than 
usual. For example, on the basis of this model we derive a simple lennna 
stating that, in a certain sense, abstraction can be viewed as "omitting 
details". Then we go into the use of abstraction as a tool in solving 
problems. We discuss how problems can be solved "in the abstract", what 
"good" abstractions are and how abstraction can be used in combination with 
a top-down problem solving technique. In the next section we indicate how 
abstraction can be used in classifying problems and their solutions. We 
discuss how, through a process of "systematic generalization", problems and 
their solutions can be ordered systematically at various levels of 
abstraction. Our particular interest in this monograph is in "algorithmic 
problems", and we discuss how their solutions ("algorithms") can be ordered 
further through "correctness-preserving transformations". (So as to avoid 
any confusion, we note that in this chapter we are not concerned with the 
role of abstraction in "artificial intelligence" (as in [PLAISTED 81]), but 
rather with abstraction as an explicit tool of the human problem solver and 
"taxonomist".) 

0.2.2. Chapter 2 

In this chapter our aim is to describe, or at least lay the 
foundations for, a mathematically rigorous specification method which is 
suitable,for the specification of all (sequential) algorithms and data 
structures normally encountered in programming practice, including those 
algorithms and data structures which involve dynamic and shared data. A 
loose version of this language is used in the other chapters for the 
description of algorithms and data structures. We start off by introducing 
a concept which is believed to be novel: the "structure". It is essentially 
a simple mathematical model of the access properties of a storage 
structure. We show how using this model, storage structures with arbitrary 
sharing and circularities can be characterized without the need to 
introduce pointers. Using a special partial order, three primitive 
operations on structures are defined (among them "creation"). Subsequently, 
we introduce a simple but powerful typeless language for the description of 
arbitrary (deterministic) operations on structures. The semantics of this 
language is defined rigorously in terms of the primitive operations on 
structures. Then, led by an example, we discuss in an informal way how this 
language can be extended into a full-fledged specification language through 
the addition of a type-mechanism and the introduction of abstraction 
facilities and nondeterminism. The chapter is concluded with a comparison 
of "structures" with other characterizations of storage structures (such as 
"Vienna objects" and "graphs"). 
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0.2.3. Chapter 3 

The purpose of this chapter is to describe a simple implementation 
method for algorithms and data structures. The first part of this chapter 
consists of an informal presentation of the method. The method is based on 
a simple four-step technique to accomplish a change of data representation 
in a correctness-preserving way. The quintessence of this technique, which· 
does not require the enhancement of existing verification techniques, is 
the temporary juxtaposition of the old and the new representation. In the 
second part of this chapter we demonstrate the power and flexibility of the 
method (particularly as a verification tool) by giving a "proof by 
construction" of a well-known test case for verification techniques: the 
Deutsch-Schorr-Waite marking algorithm [SCHORR & WAITE 67]. We start by 
giving a definition of the problem, from which a simple though highly 
nondeterministic algorithm is derived almost immediately. Choosing this 
obviously (partially) correct algorithm as a starting point, the Deutsch­
Schorr-Waite marking algorithm is derived in five successive transformation 
"phases", where each phase follows exactly the four-step scheme described 
in the first part of the chapter. 

0.2.4. Chapter 4 

The purpose of this chapter is to introduce a model for storage 
management, which will be used as the basis for the next chapter. As we 
argue in the introduction of this chapter, this model, called a "storage 
management system", can be viewed as an instance of the more general 
concept of a "dynamic system", which is in fact a data structure involving 
highly shared data. The first part of the chapter is devoted to a very 
informal discussion of the subject of storage management. Its purpose is to 
create some familiarity with the basic concepts and to serve as a rationale 
for the storage management model. The intuitive concepts discussed in the 
first part of the chapter are laid down in unambiguous definitions in the 
second part. The concept of a storage management system, considered as a 
"dynamic system", is defined by introducing its "components" and 
postulating a number of "system invariants" which relate the components to 
each other. Associated concepts are defined in terms of the components of 
the system, and operations such as "garbage collection" and "compaction" 
are defined abstractly as internal operations of a storage management 
system. 

0.2.5. Chapter 5 

In this chapter we are concerned with giving a survey of (compacting) 
garbage collection algorithms. The basis of this chapter is the storage 
management model introduced in Chapter 4. The subject is split into three 
parts: (pure) garbage collection (without compaction), compaction and 
compacting garbage collection (the combination of garbage collection and 
compaction). The discussion of garbage collection and compaction algorithms 
is essentially analogous and follows the lines set out in Chapter I: 
Starting point is an abstract algorithm which is a solution to the basic 
problem (defined in Chapter 4). All other algorithms are derived from this 
algorithm by "adding details", both to the problem and to the algorithm. 
Here "adding details" to an algorithm implies applying a correctness­
preserving transformation to the algorithm (establishing some property or 
"detail"). This approach leads to a division of garbage collection 
algorithms into four classes and a division of compaction algorithms into 



6 

two classes. The combination of garbage collection and compaction 
algorithms into compacting garbage collection algorithms is discussed by 
means of a number of examples. Though the survey is not claimed to be 
complete, it contains the major (sequential) algorithms known from 
literature as well as a few algorithms which are believed to be novel. 

0.2.6. Chapter 6 

The subject of this chapter is the design of a storage management 
system for a machine independent ALGOL 68 implementation. The machine on 
which this storage management system is supposed to run is the ''MIAM" 
("Machine Independent Abstract Machine") [MEERTENS 81]. The treatment is 
entirely independent of both ALGOL 68 and the MIAM, however. This is 
accomplished by the introduction of a model of the MIAM, i.e., an 
abstraction of the MIAM capturing the information relevant to storage 
management, and solving the problem "in the abstract". After introducing 
the model of the MIAM, the storage management problem is defined by 
augmenting the model with a number of concepts (such as an "allocation 
function"). The design of a storage management system is then described. 
After going through four systems of increasing efficiency, we use the 
technique described in Chapter 3 to further reduce the overhead of the 
fourth system, resulting in an efficient storage management system. During 
the design, the garbage collection and compaction routine used are 
deliberately kept abstract. 

0.2.7. Chapter 7 

This chapter is concerned with the design of efficient algorithms for 
the garbage collection and compaction routine which were kept abstract in 
the previous chapter. In the same way as Chapter 6 is independent of the 
MIAM and ALGOL 68, this chapter is independent of Chapter 6. That is, a 
model is used to capture the information relevant to the design of the 
garbage collector and compacter. This model is described at the beginning 
of the chapter and the garbage collector and compacter are defined 
abstractly as operations operating on this model. The transformational 
design of efficient algorithms for these operations is then described, 
starting with two algorithms which are derived directly from the definition 
of the operations. In contrast to Chapter 6, the algorithms are transformed 
up to the machine code level (in ten "phases" each). Due to its technical 
nature the last part of this transformation process is not considered as 
"design", but rather as "implementation" and it is therefore treated 
separately from the actual design. The machine code used is the code of a 
very simple hypothetical machine (which can be viewed as an abstraction of 
the MIAM). 



0.3. USEFUL REMARKS FOR THE READER 

The material in this monograph is self-contained to a certain extent. 
The only preliminaries are an elementary knowledge of mathematics and 
computer science. For the former see, for example, Chapter O in 
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[AHO & ULLMAN 72]. The latter consists mainly of a certain familiarity with 
regular languages (for Chapter 2 only) [HOPCROFT & ULLMAN 79], programming 
languages and their implementation [AHO & ULLMAN 77], and the use of 
assertions in the design and verification of programs [DIJKSTRA 76]. No 
knowledge of a particular programming language is required. 

An attempt has been made to keep not only this monograph as a whole, 
but also each separate chapter self-contained. The only exception is 
Chapter 5 (which relies on Section 4.2 of Chapter 4). This implies that 
(with one exception) each chapter can be read without having read any of 
the other chapters. So the reader can pick any combination of chapters he 
likes from the "menu" of Figure 0.1. A minor disadvantage of this approach 
is that sometimes (though not too often) we have to duplicate efforts. 
Furthermore, the above does not imply that there is no connection between 
the chapters. If it is felt appropriate, this connection is indicated by 
remarks and cross-references, which can be skipped by the reader who did 
not read the chapter in question. 

In the presentation of the material a two-level approach will be 
pursued more or less consistently. On the one hand, the material will be 
presented in an informal style, providing ample explanation for new 
concepts and a motivation for design decisions. On the other hand (as 
required by the principle of mathematical rigour), these intuitive 
descriptions will be laid down, as much as possible, in formal (i.e., 
unambiguous) definitions. The formal text is separated from the informal 
text by indenting the former and providing it with a vertical bar in the 
margin. 





1.0. INTRODUCTION 

CHAPTER 1 

ABSTRACTION 
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The ultimate cause of many of the current difficulties in computer 
science lies in the very limited powers of comprehension of the human mind. 
The complexity of the problems encountered in computer science exceeds 
these powers by several orders of magnitude. Apart from having severe 
limitations, the human mind is fortunately also equipped with a tool to 
suit problems to these limitations. This tool is called "abstraction". It 
allows one to reduce the complexity of a problem by "omitting" irrelevant 
details. Dependent on the amount of details omitted, "levels" of 
abstraction can be distinguished. Abstraction is used unconsciously by 
everyone, because thinking would be impossible without it in the first 
place. Faced with the complexity of the problems in computer science, it is 
no longer sufficient to use abstraction unconsciously. The only way out of 
the current problems lies in a conscious and systematic use of abstraction 
as a tool in reducing complexity. The purpose of this chapter is to 
indicate how abstraction can be used as such. 

A science in which abstraction traditionally plays a central role is 
mathematics. First of all, the objects of study in mathematics are 
abstractions and secondly, abstraction is used as an almost self-evident 
tool by every mathematician to apply results from one part of mathematics 
to another part. For example, since a "field" can be viewed as an 
abstraction of the system of real numbers, results from the theory of 
fields can be applied to the theory of real numbers. Yet the role of 
abstraction in computer science is even more important, if possible, than 
in mathematics. The reason is that the amount of detail in practical 
problems, which are at the root of computer science, is usually far-greater 
than in "normal" mathematical problems. On the other hand, these practical 
problems are usually not very interesting from a mathematical point of 
view. Sophisticated mathematical reasoning is generally not required for 
their solution. It is the sheer amount of detail which makes these problems 
difficult. 

So, no matter how great the mathematical genius of a computer 
scientist, abstraction is absolutely vital in solving problems in computer 
science. This becomes even more evident if one realizes that many problems 
in computer science are created by the practitioners of the science 
themselves (as a consequence of the rule that each solution of a problem 
generates a series of new problems). As an example, consider the problem of 
designing a progrannning language, the solution of which creates the problem 
of its implementation. Abstraction cannot only help in constructing a 
solution for the first problem, but also in keeping the complexity of the 
second problem under control. 

Discussions about abstraction are in constant danger of becoming too 
abstract, In order to avoid this danger as much as possible, a model for 
reasoning about abstraction will be introduced in Section I.I. This model 
will be used in Section 1.2 to discuss how abstraction can be used as a 
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systematic tool in solving problems. How abstraction can be used to 
classify problems and their solutions will be discussed in Section 1.3. The 
conclusion of this chapter is contained in Section 1.4. 

I.I. A MODEL FOR ABSTRACTION 

In this section we shall give a definition of the concept of 
abstraction. For that purpose we restrict the domain of our abstractions to 
the objects from mathematics. The reason for this is, that if we are to say 
something concrete about abstraction at all, this should be done in the 
context of some formal model. Furthermore, the restriction imposed is not 
felt as a true restriction: The objects studied in computer science are 
mathematical to a great extent. 

I. I . I. Theories 

The objects which are studied in mathematics are usually called 
"theories". A theory can be viewed as a decidable set of "formulas" 
together with a decidable set of "rules of inference". Since decidability 
is not our primary concern, we shall omit the decidability requirement: 

A formula is a primitive concept. 

A rule Risa pair (P,C), where Pis a finite set of formulas and C is 
a formula. 

An element of Pis called a premiss of R. 

C is called the conclusion of R. 

A theory Tis a pair <F,R>, where Fis a set of formulas and Risa 
set of rules such that all premisses and conclusions of rules in Rare 
formulas in F. 

An element of Fis called a formula of T. 

An element of R is called a rule of T. 

The formulas of a theory stand for assertions, which are valid iff they can 
be "derived" using the rules of the theory. This is more formally defined 
below. Notice that a rule (P,C) with P =¢corresponds to an "axiom". 
Notice also that in practice the rules of a theory are usually given by 
inference schemes, which correspond to infinitely many rules. 

Let T = <F,R> be a theory. 

If Pc F, P finite and CE F, then a derivation of C from Pin Tis a 
finite sequence (P1,C1), ... ,(Pn,Cn) of rules of T such that 
pi c Pu{C1,···,ci-1} (i = 1, ... ,n) and en= C. 

If Pc F, P finite and CE F, then C is said to be derivable from P 
in T if there exists a derivation of C from Pin T. The fact that C 
is derivable from Pin Twill be denoted by P~ C. 
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ACE Fis said to hold in T if¢~ C. 

If CE F holds in T and Dis a derivation of C from¢ in T, then Dis 
called a proof of C in T. 

I. I. 2. Problems 

Well now, what in this context is a "problem"? Mathematicians 
basically have only one problem, and that is finding proofs for their 
assertions. The obvious definition of a problem is therefore a pair <T,A>, 
where Tis a theory and A is a formula of T, the "statement" of the 
problem. In intuitive terms, the problem is to find a proof for A in T. 
Since A need not hold in T, this problem may be "unsolvable". If it is 
solvable, it will generally have more than one "solution": 

A problem Pis a pair <T,A>, where T = <F,R> is a theory and A E F. 

Tis called the theory of P. 

A is called the statement of P. 

A solution of Pis a proof of A in T. 

A problem is solvable if it has at least one solution; otherwise it is 
unsolvable. 

EXAMPLE I.I 

Let T be the theory <F,R> with 

F {a,b,c,d,e,f}, 

R {(¢,a), (¢,b), ({a},c), ({d},e), ({b,c},f), ({b,e},d)}, 

then the problem P = <T,f> is solvable. The following derivation is a 
solution of P: 

(¢,a), (¢,b), ({a},c), ({b,c},f). 

The problem <T,e>, however, is unsolvable. D 

The above definition of a problem may seem strange at first sight. 
How, for instance, can the problem of constructing an algorithm be viewed 
as finding a proof? Suppose the problem is to construct an algorithm S, 
which given the precondition P establishes the postcondition Q. The 
construction of Scan be viewed as constructing a proof for the following 
formula A in a suitable theory T: 

3 S [{P}S{Q}]. 

Here we assume that the theory Tis constructive in the sense that the 
formula A can only be derived by proving that the formula {P}S{Q} holds in 
T for a certain given S. The proof that A holds in T then amounts to 
constructing S. This view of constructing algorithms is even very natural, 
because it considers the construction of the algorithm and the construction 
of its proof of correctness as inseparable. 1A deductive system based on 
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this view is for example described in [MANNA & WALDINGER 80]. 

1.1.3. Abstraction and theories 

We are now in a position to define precisely what we mean by 
"abstraction". First, we shall define what we mean by the fact that a 
theory T1 is an abstraction of a theory T2. In intuitive terms it means 
that there is a correspondence between the formulas in T1 and T2 in such a 
way that if the formula F1 is derivable from the set G1 of formulas in T1, 
then the formula F2, corresponding to F1, is derivable from the set G2, 
corresponding to G1, of formulas in T2. This implies that everything we can 
derive in T1 has an interpretation (or "representation") in T2. The 
interpretation need not be unique. There may be many formulas in T2 which 
correspond to the same formula in T1 (but not the reverse). There may also 
be formulas in T2 which are meaningless in T1 (but, again, not the 
reverse). So the theory T1 can really be considered to be simpler, or more 
"abstract", than T2. The function which indicates the correspondence 
between the formulas of T1 and T2 is called the "abstraction function". As 
can be concluded from the above, it must be a partial and surjective 
function from the set of formulas of T2 into the set of formulas of T1. 

An abstraction function from T2 to T1 is a partial function~: F2 + F1 
such that: 
(I) ~(dom(~)) = F1. 
(2) For each finite G c dom(~) 

and each FE dom(~) 
I ~(G) 7" ~(F) => G7" F. 

1 2 

T1 is said to be an abstraction of T2 if there exists an abstraction 
function from T2 to T1. 

The abstraction relation between theories can easily be seen to be 
reflexive and transitive. It is not a partial order, because it is ~ot 
antisynnnetric. The abstraction relation does have a least and a greatest 
element: The theory<¢,¢> is an abstraction of each theory, and each theory 
is an abstraction of the theory <F,R>, where Fis the set of all formulas 
and R is the set of all rules. 

The fact that a theory T1 = <F1,R1> is an abstraction of a theory 
T2 = <F2,R2> can be proved as follows. First define the abstraction 
function~ from T2 to T1 and prove that~ is a surjection. Then prove that 
T2 "satisfies" the rules of T1: For each rule (P1,C1) of T1 and each finite 
P2 c dom(~) and C2 Edom(~) such that HP2) = P1 and HC2) = C1 prove that 
P27" C2 holds. It is easy to see that this is indeed sufficient. 

2 

EXAMPLE 1.2 

F1 {a,b,c,d}, 

R1 {(¢,a), ({b},c), ({c},d)}, 



13 

F2 {a,b,c,d,e,f,g}, 

R2 {(¢,a), ({a},b)~ ({c},d), ({c},e), ({d,e},f), ({b,f},g}}, 

then T1 is an abstraction of T2 • The following partial function \li: F2 + F1 
is an abstraction function from T2 to T1: 

\li(a) = a, 
\li(b) = a, 
\li(c) b, 
\li(d) undefined, 
\li(e) undefined, 
\li{f) c, 
\li(g) d. 

The proof that \li is indeed an abstraction function from T2 to T1 amounts to 
proving that the following assertions are valid: 

□ 

¢~ a, 
2 

¢~ b, 

{c}~ f, 
2 

{f}~ g. 

1.1.4. Abstraction and problems 

way: 
The concept of abstraction cart be extended to problems in a natural 

An abstraction function from P2 to P1 is an abstraction function from 
the theory T2 to the theory T1 such that A2 E dom(\li) and \li(A2) = A1. 

P1 is said to be an abstraction of P2 if there exists an abstraction 
function from P2 to P1. 

Notice that if the problem P1 is an abstraction of the problem P2 , then the 
fact that P1 is solvable implies that P2 is solvable, but not the reverse. 
If the reverse holds also, P1 will be called a "proper" abstraction of P2 • 
Moreover, if P1 is a proper abstraction of P2, then each solution of P1 
corresponds to at least one solution of P2, but, again, not the reverse. 
Those solutions of P2 which do not correspond to any solution of P1 will be 
said not to be "expressible" in P1 , as defined below. 

I An abstraction P1 of a problem P2 is said to be proper if the fact 
that P2 is solvable implies that P1 is solvable. 
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If P1 is an abstraction of a problem P2 and S = (P1,C1), ••• ,(Pn,Cn) is 
a solution of P2, then Sis said to be expressible in P1 if there 
exists an abstraction function if/ from P2 to P1 such that: 
(I) Piu{Ci} c dom(ifl} (i = 1, ••• ,n). 
(2) ifl(Pi) Ti ifl(Ci) (i = 1, ••• ,n). 

where T1 is the theory of P1. 

1.1.5. Abstraction and omitting details 

In the introduction of this chapter we informally described 
abstraction as "omitting (irrelevant) details". One can wonder whether this 
informal description fits in with the formal definition of abstraction 
given above. The fact that this is indeed so can be seen as follows. 
Consider a "detail" of a problem Pas a formula or rule of the theory of P. 
Let P1 and P2 be problems such that P1 is an abstraction of P2. Then 
(according to Lemma I.I below) there exists a problem P3 which is 
"equivalent" to P2, i.e. P2 and P3 are mutual abstractions, such that all 
formulas and rules of the theory of P1 are contained in the theory of P3 
and the statement of P1 is equal to the statement of P3. The problem P1 can 
thus literally be viewed as being obtained by omitting details from P3 
(which is the "same" as P2). 

LEMMA 1.1 

Let P1 and P2 be problems such that P1 is an abstraction of P2• 
Then there exists a problem P3 such that: 
(I) P2 and P3 are mutual abstractions. 
(2) F1 c F3. 
(3) R1 c R3. 
(4) A1 = A3. 

where Pi= <Ti,Ai> and Ti <Fi,Ri> (i 1,2,3). 

PROOF 

Let Pl and P2 be as above, then there exists a partial function ifl: F2 ➔ F1 
such that: 

(I) ifl(dom(ifl)) = F1. 
(2) For each finite G c dom(ifl) 

and each FE dom(ifl) 
I ifl(G) Ip ifl(F) .. Gl-;;;-T F. 

1 2 
(3) ifl(A2) = A1. 

Without loss of generality we may assume that: 

(4) if/ is 1-1. 
(5) F1 nF2 = 9}. 

(Assumption (4) is allowed because, if F,G E dom(ifl), F + G, G + A2 and 
ifl(F) = ifl(G), then G may be omitted from dom(ifl) without affecting (I), (2) 
and (3).) Let F3 = F1 u (F2 \dom(ifl)} and let 'l': F2 ➔ F3 be defined by: 

if F E dom(ifl), 
'l'(F) 

if FE F2 \dom(ifl), 



15 

then 'l' is a bijection. Let R3 = R1 u {('l'(P),'l'(C)) I (P,C) E R2} and A3 = A1. 
If we define P3 = <T3,A3> with T3 = <F3,R3> then it is not difficult to 
prove that P2 and P3 are mutual abstractions (use 'l' and 'l'-1 as abstraction 
functions). The fact that F1 c F3 , R1 c R3 and A1 = A3 is obvious. 0 

If a problem P1 is an abstraction of a problem P2, the above entitles us to 
say that P1 contains "less detail" than P2. 

1.2. ABSTRACTION IN SOLVING.PROBLEMS 

In this section we are concerned with the question how abstraction can 
help us in solving problems. Let us consider first how problems come into 
existence. Unfortunately problems are not born as pairs <T,A>, where Tis a 
theory and A is a formula of T. Problems spring up in people's minds as the 
result of immensely complex processes of thought. It is probably even true 
that most human problems (and especially "emotional" problems) do not have 
a theory at all. If we restrict our·selves to the more technical problems of 
computer science, it can be defended that each problem has a theory. 

1.2.J. Specification of the problem 

The first thing to do when solving a problem is to model the intuitive 
problem as a formal problem <T,A>, where Tis the theory and A is the 
statement of the problem. The purpose of this "specification" of the 
problem is to make clear in an unambiguous way what the problem is. This 
step is essential to the successful solution of a problem, yet it is often 
omitted. It becomes even more essential if a group of people decide that 
they "have a problem". The specification of the problem can then serve to 
make sure that they are talking about the same things. 

The construction of the specification of the problem already requires 
a fair amount of abstraction. However, this kind of abstraction is a 
transformation from the intuitive world into the formal world, which can 
only be discussed in informal terms. The specification should be both 
"sound" and "complete": All formulas which are derivable in the theory T of 
the problem should be true intuitively, and each formula which holds 
intuitively should be derivable in T. Moreover, the specification should be 
"appropriate": The statement A of the problem should correspond to the 
intuitive conception of the problem. From now on we shall assume that we 
have a sound, complete and appropriate specification of some intuitive 
problem. 

1.2.2. Abstraction from irrelevant details 

Given the problem P1 = <T1,A1>, how can abstraction help us in solving 
this problem? If P1 is the specification of a realistic problem, the theory 
T1 of the problem will probably be extremely complicated. The details of P1 
may be so large in number or so complex, that they entirely obscure the way 
to a solution of P1, i.e. a proof of A1 in T1. It is often easy to see that 
certain details of P1 are completely irrelevant to a proof of A1. Other 
details can be seen to be partly irrelevant in that they are not strictly 
required for a proof of A1, but they can make the proof of A1 simpler. 

What we can do now is to try and construct an abstraction Po of P1. In 
the rules of the theory To of Po we then try to capture those details of T1 
which are thought to be relevant to the proof of A1. Since the theory To of 
Po will differ from the theory T1 of P1, the statement A1 of P1 must be 
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reformulated in Po as A0• The construction of Po should go hand in hand 
with the construction of an abstraction function w from T7 to To with 
w(A1) = Ao. (Notice that the easiest way to dispose of irrelevant formulas 
in T1 is not to contain them in the domain of w.) The problem Po may be . 
expected to be simpler than P1 because we "omitted" the irrelevant details 
from P7. Consequently, a solution for Po is more easily found than for P7. 

1.2.3. Reconstructing the solution of the problem 

Suppose we have found a solution s0 for the problem Po. How can we use 
s0 to obtain a solution for P1? So is a proof of Ao in To, hence So is a 
derivation (P1,c1), ••• ,(Pn,Cll) of Ao from¢ in T0 • (Notice that Cn = Ao.) 
For each F E P1 u {C1 } u ••• u Yn u {Cn} choose a unique 'l'(F) E dom(w) such 
that w('l'(F)) = F and '!'(Ao)= A1 (this is possible because w is a surjection 
on the set F0 of formulas of T0). We know that for each finite Pc dom(w), 
CE dom(w} and (w(P),w(C)) E Ro (where Ro is the set of rules of To) there 
is a derivation of C from Pin T7. (These derivations must be constructed 
when proving that w is an abstraction function from T7 to To.) Hence with 
each rule (Pi,Ci) = (w('l'(Pi)),w('l'(Ci))) a derivation Si of '!'(Ci) from '!'(Pi) 
in T7 can be associated (i = 1, ••• ,n). Since 'l'(Cn) = A7 it is easy to see 
that S7,, •• ,Sn is a derivation of A7 from¢ in T7, i.e. S7, ••• ,Sn is a 
solution of P7. This shows how a solution of Po can be transformed into a 
solution of P7. 

In the above we assumed that we made the abstraction function w 
explicit. This is not always convenient. In practice people often make 
abstractions of problems without making the abstraction function explicit. 
They keep this function somewhere in the back of their minds. Having found 
a solution for the "abstract" problem, they use their. intuitive notion of 
the abstraction function to reconstruct the solution of the "concrete" 
problem. In contrast to the construction sketched in the previous paragraph 
this "solution" need not automatically be correct. No harm is done, 
however, if the "solution" is proved to be correct separately. (Abstraction 
is used then only to find the solution, and not to prove it correct.) 

It is easy to see that if Po is an abstraction of a problem P1 and P1 
is unsolvable, then Po is also unsolvable. If P7 is solvable, P0 may very 
well be unsolvable. It is therefore important not to abstract too much and 
keep abstractions "proper". Even if an abstraction Po of a solvable problem 
P7 is solvable, "overabstraction" may render a solution of Po completely 
useless. The most dramatic example of this is the problem 
Po= <<{A},{(¢,A)}>,A> (where A is an arbitrary formula), which is a proper 
abstraction of each solvable problem P7. A solution of Po (e.g., (¢,A)) 
cannot tell us anything interesting about the solution of P7 (see also 
below). 

1.2.4. Good abstractions 

In order to indicate what a "good" abstraction is let us consider a 
solvable problem P7 = <T7,A7> and an abstraction Po= <To,Ao> of P1 with 
abstraction function w from P7 to Po, Solving P7 consists of finding a 
proof for the following assertion: 

(1) ¢~ A7, 

If we try to solve P7 through the abstraction Po with abstraction function 
w, this amounts to finding proofs for the following assertions (where Ro is 
the set of rules of To): 
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(2) 0 { ¢Ip Ao, 

P~ C (Pc dom(<P), P finite, CE dom(<P), (<P(P),<P(C)) E R0J. 

An abstraction of a problem is a "good" abstraction, if the proofs of the 
assertions (2) are considerably simpler than the proof of assertion(!). It 
becomes clear now why the problem Po= <<{A},{(¢,A)}>,A> is not a good 
abstraction of any problem P1 = <T1,A1> (except the most trivial problems): 
In order to prove that Po is an abstraction of P1 we have to prove that 
¢~ A1 (because (<P(¢),<P(A1J) is a rule of the theory of Po), but the fact 

that we could not prove that ¢Ip A1 was the very reason to make the 
abstraction! 1 

The "art" of abstraction, as it turns out above, consists of finding 
a good balance between the "level" of the abstraction (which should be as 
high as possible) and the complexity of the correctness proof of the 
abstraction (which should be as low as possible). Finding this balance 
requires a certain amount of "training", and, of course, for certain 
"intrinsically complex" problems good abstractions are hard or even 
impossible to find. Yet, even for those problems, the reduction of 
complexity which can be achieved through abstraction should not be 
underestimated. Once a problem is in its abstract form it is much easier to 
discover and survey possible solutions. A problem in its abstract form can 
also more easily be presented to other people and solutions of the abstract 
problem are more likely to be generally applicable. This will be 
demonstrated in Chapters 6 and 7, where a storage management problem will 
be presented and solved in its abstract form. A secondary advantage of 
solving problems "in the abstract" is that it may protect people against 
the apparently ineradicable tendency to create unnecessarily complex 
("tricky") solutions to problems. 

1.2.5. Abstraction and top-down problem solving 

Abstraction becomes an even more powerful technique when it is used in 
conjunction with a top-down problem solving technique (such as "stepwise 
refinement", "structured design", "separation of concerns", "divide _and 
rule", which are basically all names for the same technique). Consider a 
complex problem <T,A>, which is already in its abstract form. Even though 
the problem is in its abstract form, it will generally be impossible to 
find a solution in a direct way. We therefore try to find a "decomposition" 
of the problem into a number of simpler problems. That is, we choose 
problems <T,A1>, ... ,<T,A~>, which are believed to be simpler than <T,A>, 
and which are such that 1A1,···,An}f-p A holds. It is easy to see that if 

we have solved the problems <T,A1>, ... ,<T,An>, we also have solved <T,A>. 
Thus we have reduced <T,A> to a number of simpler problems. (Notice, 
however, that the <T,Ai> need not all be solvable, even if <T,A> is 
solvable. The <T,Ai> must therefore be chosen with great care.) 

Having reduced <T,A> to a number of simpler problems <T,A1>, ..• ,<T,An>, 
we can try to solve each <T,Ai>· The solution of <T,Ai>, though simpler 
than the solution of <T,A>, may still be difficult • .Since <T,Ai> is a 
"subproblem" of <T,A>, we will probably not need the entire theory T for 
the solution of <T,Ai>· We can reduce the complexity of <T,Ai> then by 
making an abstraction <T',Al> of <T,Ai>, which contains only the relevant 
information. If necessary, we can again refine <T 1,Ai> into simpler 
problems, etc •• This is schematically pictured in Figure I.I. Notice that, 
while going down in Figure I.I, both the "level of decomposition" and the 
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"level of abstraction" increase. 

I 
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0 "difficult" problem O "simple" problem 

Figure I.I 

1.2.6. Standard theories and problems 

The above iterative process of consecutive decompositions and 
abstractions, if "properly" applied, will eventually lead to a solution of 
the problem (i.e., if the problem is solvable). Usually it will not be 
necessary to go down "all the way" by reducing a problem to absolutely 
trivial problems. In each field of science there are certain standard 
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theories and standard problems with known solutions. The most illustrative 
example of this is mathematics, where we have a great many very abstract 
(and consequently generally applicable) theories like "group theory", 
"lattice theory", etc •• Each theory has a number of standard problems 
(theorems) with known solutions (proofs). Examples from computer science 
are theories such as "parsing theory", "automata theory" or the theory 
associated with a given progrannning language. Once a problem has been 
reduced to a number of standard problems, there is no use in decomposing 
these problems any further. This would only be a waste of time, since the 
well-known solutions of these problems can be used. 

The above shows how important it is to be familiar with the 
fundamental theories of a field of science when solving problems in that 
field. The familiarity with such theories can serve as a guide in choosing 
the proper decomposition of a problem. Certain subproblems, the 
abstractions of which correspond to standard problems, may be "recognized" 
in a problem and indicate a way to an overall solution of the problem. A 
mathematician will for example recognize a theorem from the theory of 
topological spaces in proving a theorem about. complex functions and make 
this theorem a component of his proof. A compiler writer will usually 
recognize a parsing problem in constructing a compiler and make this 
problem a "phase" of his compiler (knowing that the problem can be solved 
in a standard way). There is no need to say that the recognition of such 
standard problems is greatly facilitated if the level of abstraction is 
always kept as high as possible. 

1.3. ABSTRACTION IN CLASSIFYING PROBLEMS AND THEIR SOLUTIONS 

Each field of a science can usually be divided into a number of 
relatively independent subfields, which we shall call "subjects". The field 
of "language implementation" of computer science contains for example 
subjects such as "parsing", "register allocation", "garbage collection", 
etc •• Each subject can be viewed as a collection of "facts", where a fact 
is a pair <P,S>, Pis a problem and Sis a solution of P. In the course of 
time, with many people working on a subject, the number of facts of a 
subject, i.e. the "knowledge" of the subject, may grow enormously. Time has 
come then to order this knowledge in a systematic way. Such a systematic 
treatment of the subject is not only important to the novice, whose 
acquaintance with the subject is greatly facilitated, but also to the 
expert, who can use it to widen his view and keep the growing volume of the 
subject under control. The purpose of this section is to indicate how 
abstraction can be used as a tool in giving such a systematic discussion of 
a subject. 

1.3.J. Concrete problems 

Let us consider a subject as a large class of concrete facts, where 
each concrete fact is a pair consisting of a concrete problem and a 
concrete solution, i.e. some existing problem and an actually realized 
solution of this problem. The subject of "garbage collection" consists e.g. 
of facts <P(L,M),G>, where P(L,M) is the problem of garbage collection in 
an implementation of a progrannning language Lon a machine Mand G is a 
garbage collector. The same concrete problem may have several concrete 
solutions. A first approach to discussing a subject would be to separately 
discuss each concrete problem together with its concrete solutions. 
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1.3.2. Isolated problems 

The approach mentioned above suffers from two major flaws. First, the 
number of concrete problems is usually very large, which makes the overall 
discussion very long. Secondly, concrete problems generally contain a vast 
amount of details that are completely irrelevant to (the solutions of) the 
problem. These details may entirely obscure the discussion. This situation 
can be repaired by abstracting from the irrelevant details, a process that 
will be called isolation of the problem. For each concrete problem P with 
concrete solutions s1, ... ,Sn isolation of P amounts to constructing an 
abstraction P' of P, which contains only the details relevant to P and to 
its solutions s1, ... ,Sn· The latter is very important because it is 
generally very simple to make an abstraction P' of Pin such a way that 
certain solutions of Pare no longer expressible in P'. By keeping the 
solutions S1,· .. ,Sn expressible in P', they can be "translated" into 
corresponding solutions s1, ... ,S~ of P'. The problem P' will be called an 
isolated problem and the solutions s1, ... ,S~ of P' will be called the 
isolated solutions. 

The process of isolation of a problem is a highly complex process, 
which is far more than just "omitting" irrelevant details. The isolation of 
a concrete problem generally asks for a complete reformulation of the 
problem, using some complex abstraction function. In the case of garbage 
collection, for instance, isolating a concrete problem amounts to 
formulating the problem in a way as machine and language independent as 
possible. If the process of isolation is properly applied it will be seen 
that several isolated problems, corresponding to different concrete 
problems, coincide. So, each isolated problem represents a number of 
"equivalent" concrete problems. 

A second approach to discussing a subject is now to discuss each 
isolated problem corresponding to a concrete problem instead of the 
concrete problem itself, together with its isolated solutions. This meets 
the previously raised objections to the first approach. It also introduces 
a new difficulty. The "concepts" that occur in isolated problems are 
usually rather abstract, and it may not be trivial at all to recognize what 
the correspondence between these concepts and the "concrete concepts" is. 
(This correspondence is hidden in the abstraction function.) Consequently, 
the discussion may easily become incomprehensible. The obvious way to 
prevent this is to illustrate each abstract concept by some "down to earth" 
equivalent. 

1.3.3. Basic problem 

Still the second approach is not very satisfactory. The point is that 
the coherence is missing. The subject is reduced to a collection of 
isolated problems, which are discussed independently of each other. But 
what is the reason to call this collection of problems a "subject"? 
Obviously the reason is that these problems "have something in common". 
Exploiting this similarity cannot only clarify the discussion a great deal, 
it can also save a lot of work. In order to discuss how this should be 
done, it is necessary to make more explicit what the problems constituting 
a subject "having something in common" means. Intuitively it means that 
these problems are instances of the same very general problem. In more 
formal terms the meaning is given by the following postulate: There exists 
a nontrivial problem P such that Pis a proper abstraction of each isolated 
problem of the subject (and therefore also of each concrete problem). This 
problem will be called the basic problem and its solutions will be called 



21 

the basic solutions. 
According to Lemma I.I the isolated problems can now be reformulated 

in such a way that all formulas and rules of the basic problem are also 
formulas and rules of all isolated problems, and moreover, that all 
statements of the isolated problems are equal to the statement of the basic 
problem. (The isolated solutions should of course be reformulated 
simultaneously.) Each solution of the basic problem is now also a solution 
of each isolated problem (not the reverse). Yet as a rule such a basic 
solution will be so general, that it is of little or no practical value. 

A third, more coherent approach to discussing a subject is now ready 
at hand. At the beginning of the discussion the basic problem is 
introduced. Subsequently each isolated problem is treated as a 
specialization of the basic problem. This implies that only the additional 
details and solutions of the isolated problems are discussed. (Notice that 
specialization is literally a matter of adding details.) 

1.3.4. Generalized problems 

The above approach exploits the global similarity of the isolated 
problems. But there is also something like "local" similarity. Two isolated 
problems can be. very much alike and differ only in a few details and 
solutions. (Here the word "few" should not be taken too literally, because 
it may mean "infinitely many" in practice.) In order to discuss how to 
exploit this, consider a set V of isolated problems, which apart from a few 
details are the same. Notice that, if <<FB,RB>,AB> is the basic problem, 
then each element V of V has the form <<Fv,Rv>,Av> with FB c' Fv, RB C Rv 
and AB= Av. As was done with the set of all isolated problems to obtain 
the basic problem, it is possible to abstract from the different details of 
the isolated problems in V. This amounts to constructing the problem 
G = «n V E V [Fv],n V E V [Rv]>,AB>, which contains the coinciding details 
of the isolated problems in V. G will be called a generalized problem and 
its solutions will be called generalized solutions. Each solution of G is 
also a solution of each isolated problem in V. Moreover, since the isolated 
problems in V differ only in a few details, G will also differ from the 
isolated problems in Vin only a few details. Consequently, a "good" 
solution of G is likely to be a good solution of any of the isolated 
problems in V. Generalized problems thus provide a way to discuss solutions 
of a number of isolated problems together. 

The process of grouping problems together and abstracting from their 
different details will be called generalization. This process cannot only 
be applied to isolated problems, it can also be applied to generalized 
problems themselves. By doing so "generalized generalized problems" are 
obtained, which will also be called "generalized problems". Then again it 
is possible to generalize over (groups of) these problems, etc •• Eventually 
this process will yield a hierarchy of generalized problems. If the basic 
problem has been chosen properly, it will be at the top of the hierarchy: 
It can be viewed as a generalization over all isolated problems. At the 
bottom are the isolated problems, which can be viewed as generalizations 
over individual isolated problems. 

The above leads to a fourth approach to the discussion of a subject. 
In this approach the hierarchy of generalized problems is traversed in a 
top-down fashion, instead of the bottom-up fashion used during the 
generalization process. Each generalized problem, except the basic problem, 
can then be discussed as a slightly more detailed specialization of another 
generalized problem, ending up in the discussion of the isolated problems. 
The solutions of the isolated problems should be moved up as much as 
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possible in the hierarchy. This implies that a solution S of some isolated 
problem should be discussed with the highest generalized problem Pin the 
hierarchy for which Sis a solution. (S then is automatically a solution of 
each generalized problem lower than P.) 1he advantage of this approach is 
not only that it limits the efforts of discussing the problems and 
solutions which are part of the subject (by combining them into generalized 
problems), but also and above all that it clearly reveals the structure of 
the subject. It is only through this structure that it is possible to 
properly survey the subject. 

1.3.5. Systematic generalization 

Related to the fourth approach there is a little difficulty. It is 
caused by the fact that the grouping of problems together into generalized 
problems is far from unique. Indeed the criterion for grouping problems 
together was that these problems differed only in a few details. This, 
however, is a rather vague criterion, which allows many interpretations. As 
a consequence, equally many hierarchies of generalized problems can be 
constructed. In practice the situation will probably not be so bad, because 
there usually is a "natural" way to group problems together. Still it is a 
good thing to know that there exists a unique hierarchy of generalized 
problems, which corresponds to a systematic way of generalization. This 
unique hierarchy enables us to speak of the structure of the subject. In 
addition it has some very pleasant properties. 

If J is the (finite) set of all isolated problems of the subject and 
<<F3,R3>,A3> is the basic problem, then the standard hierarchy of 
generalized problems is defined as the partially ordered set <G,C>, where 

G {«n v E v [FvLn v E v [Rv]>,A3> I v c J, v "' ¢}, 

(P, Q E GJ. 

Here, for each problem P, Fp and Rp denote the set of formulas and the set 
of rules of the theory of P respectively. The above defines a unique way of 
grouping problems together into generalized problems (see Example 1.3). 
Notice that the relation Con G is not the same as the abstraction 
relation. Though PC Q implies that Pis an abstraction of Q, the reverse 
need not hold. Notice also that F3 c n VE J [fv] and R3 c n VE J [Rv] but 
not necessarily F3 = n VE J [Fv] and R3 = n VE J [Rv]. It is reasonable, 
though, to assume that the basic problem has been chosen in such a way that 
the latter holds, or otherwise force the latter to hold by redefining the 
basic problem, thus guaranteeing that <<F3,R3>,A3> E G. 

EXAMPLE 1.3 

Suppose J = {P1,P2,P3,P4 } is the set of all isolated problems and all 
Pi (i = 1,2,3,4) have the same set of formulas. We can consider the Pi as 
sets of rules then. Let the Pi be given by: 

P1 {a,b,c}, 
P2 {a,b,d}, 
P3 {a,d,e}, 
P4 {a,d,f}, 

where a, b, c, d, e and fare rules. Then the set G of generalized problems 
from the standard hierarchy of generalized problems is equal to: 
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G = {{a},{a,b},{a,d},{a,b,c},{a,b,d},{a,d,e},{a,d,f}}. 

This defines the grouping which is pictured in Figure 1.2 (where-+ denotes 
specialization). 

{a} 

I\ 
{a,b} {a,d} 

/\/!~ 
{a,b,c} {a,b,d} {a,d,e} {a,d,f} 

Figure 1.2 

□ 

The standard hierarchy of generalized problems satisfies the following 
property: For any combination of details occurring in a generalized 
problem, there is a unique generalized problem Q containing those details, 
such that any generalized problem containing those details is a 
specialization of Q. This has the following two pleasant implications: 

(1) Each detail needs to be introduced in only one generalized problem Q. 
Any other generalized problem containing this detail is a 
specialization of Q. This is important because the introduction of a 
detail may involve some overhead (such as the introduction of 
auxiliary notions). 

(2) Each solution based on a set V of details needs to be discussed in 
only one generalized problem Q. Any other generalized problem to which 
the solution applies (i.e., which contains the details in V) is a 
specialization of Q. 

These two facts not only save work, but also contribute to a clear 
presentation of the subject. 

1.3.6. Pruning the hierarchy 

Using a hierarchy such as defined above, the application of the fourth 
approach will result in a systematic and exhaustive discussion of a 
subject. For comprehensive subjects such an exhaustive treatment may easily 
fill a library. Usually that is not what is intended. As the ultimate 
reason for someone to go into a subject may be taken to be that he has (or 
will have) a problem pertaining to the subject. Unless his problem is an 
"old" problem, the chance to come across an exact copy of his problem (in 
its isolated form) is quite small. Therefore he will look for a proper 
generalization of his problem, and solve his problem either by copying a 
solution of the generalized problem, by modifying it, or by inventing a 

I 
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solution of his own. (This clearly demonstrates that a subject is not 
innnutable, but, quite on the contrary, constantly growing. So any 
discussion of the subject is necessarily a snapshot of the "state of the 
art".) This suggests that, in order to keep the length of the discussion 
under control, the hierarchy of generalized problems be "pruned", which 
implies that lower parts of the hierarchy are left out of the discussion. 
The pruning should be done with great care, so as to avoid the occurrence 
of "gaps". Dependent upon the amount of pruning one can distinguish 
between: 

(1) An introduction to the subject. 
(2) A survey of the subject. 
(3) A book on the subject. 
(4) An encyclopedia of the subject. 

As a result the fifth approach to the discussion of a subject is 
obtained. Starting with the discussion of the basic problem and its 
solutions, a pruned version of the hierarchy of generalized problems is 
traversed in a top-down fashion. Each generalized problem, except the basic 
problem, is discussed (together with its solutions) as a specialization of 
its direct predecessor in the hierarchy. The five approaches are visualized 
in Figure 1.3 (where-+ denotes specialization). 

1.3.7. Ordering the solutions 

The above shows how the problems of a subject can be ordered 
systematically. The ordering of the problems induces an ordering on the 
solutions as well. The latter ordering, like the former, is based on the 
different details of problems and does not work for solutions which are 
based on exactly the same details of a problem (these solutions are 
associated with the same generalized problem). Apart from details of a 
problem there is also something like details of a solution: Two solutions, 
even if they are associated with different generalized problems, may be 
very much alike. Just like we did for problems, we could try to exploit the 
similarity of solutions. This would not only enable us to make the ordering 
of solutions complete, but also to clearly indicate the relation between 
the various solutions. In order to discuss this we have to be more specific 
about the kind of problems and solutions we consider. 

The problems discussed in this monograph are mainly "algorithmic 
problems", which have the following form: Construct an algorithm S, which 
given the precondition P establishes the postcondition Q. We already showed 
how an algorithm could be viewed as a "solution" of a "problem", i.e. as a 
proof of a formula in a suitable theory. Just like mathematical proofs, one 
algorithm can be "simpler" or contain "less detail" than another algorithm. 
Unlike mathematical proofs, we are usually not satisfied with simple 
algorithms as solutions to algorithmic problems (at least not in practical 
situations). The reason is that simple algorithms are generally 
"inefficient". The notion of "efficiency" (which, strictly speaking, is 
relative to some computation model) is meaningless for mathematical proofs. 
(If proofs are written in a language such as AUTOMATH [DE BRUIJN 80] it 
might be given a meaning, though.) For algorithms the notion of efficiency 
is crucial. 
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Figure I. 3 
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1.3.8. Correctness-preserving transformations 

Since most efficient algorithms are necessarily detailed (but not the 
reverse!), the construction of an efficient algorithm is usually far from 
simple. On the other hand, the construction of a simple but inefficient 
algorithm is often relatively easy. An obvious approach to constructing an 
algorithm is to start with the simple inefficient algorithm and try to mold 
this algorithm into a more efficient algorithm. The tool to be used for 
this is the "correctness-preserving transformation" [GERHART 75], which 
takes a correct algorithm and transforms it into another correct (and 
hopefully more efficient) algorithm. The above approach to algorithm 
construction has become rather popular lately. It will be discussed in more 
detail in Chapter 3, where a simple method for performing correctness­
preserving transformations will be presented and exemplified. 

Correctness-preserving transformations are not only useful in the 
construction of algorithms, they ·can also successfully be used in the 
classification of algorithms [DARLINGTON 78]. Instead of using them 
primarily to improve the efficiency of algorithms, we can use correctness­
preserving transformations to derive more detailed algorithms from less 
detailed ones. As such correctness-preserving transformations can be used 
as a tool in ordering solutions in addition to the ordering imposed by the 
hierarchy of problems and in discussing the solutions in a coherent and 
time-saving way. This works as follows. 

Choose some very simple (very "abstract") algorithm Sas the first 
solution of the basic problem to be discussed. Usually this algorithm can 
easily be seen to be correct. Then discuss all other more detailed 
solutions of the basic problem by showing how they can be obtained from S 
through correctness-preserving transformations. When going down one level 
of abstraction in the hierarchy of problems, discussing the generalized 
problem P, the same approach can be used for the discussion of the 
solutions associated with P. In contrast to the basic problem, there is no 
need to prove the correctness of the algorithm which is chosen as the 
starting point of the transformation process: A solution of a 
generalization of P (in this case the basic problem) can be chosen as such. 
It is even conceivable to choose more than one starting point by deriving a 
number of solutions of P directly from different solutions of a 
generalization of P (dependent upon the similarity of the former and the 
latter solutions). When going down additional levels of abstraction, this 
process can be continued until finally "all" solutions of generalized 
problems are obtained as transformations of the single abstract algorithm 
which was chosen as the starting point. 

The entire approach described above will be used in Chapter 5 to 
discuss the subject of (compacting) garbage collection. (In fact we will 
split the subject into two subjects, "garbage collection" (without 
compaction) and "compaction", which will both be discussed as sketched 
above.) A final remark is that, in contrast to the ordering of problems, 
the ordering of solutions through correctness-preserving (and "detail­
increasing") transformations is far from unique, i.e. as far as this 
ordering is not implied by the ordering of problems. There are usually 
various ways to obtain algorithms from other algorithms through 
correctness-preserving transformations (as we will see in Chapter 5), each 
of which corresponds to a different order of discussion. The choice of this 
order therefore is a rather subtle matter, whereby the guiding principle 
should be that the order corresponds to an increase in detail. 
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1.4. CONCLUSION 

In the foregoing we discussed how abstraction can be used as a 
systematic tool in solving problems and in classifying problems and their 
solutions. None of the techniques which were discussed are novel. In a 
simplified way they reflect what everyone does automatically when solving a 
problem or when trying to grasp a subject. However, "automatically" does 
not yet mean "systematically". Making the mechanisms of abstraction 
explicit may aid in a more systematic application of these mechanisms. The 
result of systematically applying these mechanisms in the fields of storage 
management and garbage collection will be presented in Chapters 4-7 of this 
monograph. In contrast to the process of abstraction, which by its very 
nature is a bottom-up process, the presentation will be top-down. The 
latter is the natural way to transfer knowledge (as opposed to gathering 
knowledge). Everything which has been said in this chapter about the 
preceding process of abstraction could therefore simply be omitted. Yet, 
for a better comprehension of the underlying philosophy and as an 
incitement to a more systematic use of abstraction this chapter may be 
useful. 
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In each science the need arises to describe the objects which are 
being studied. The main purpose of such descriptions or "specifications" is 
to serve as a means of communication. Specifications can make sure that 
people are talking about the same things. Yet, specifications are more than 
that. They can also serve very well as a "feedback" mechanism and handhold 
in thinking about problems. 

The objects of study in computer science are "algorithms" and "data 
structures". The specification problem for algorithms and data structures 
differs from specification problems in other fields of science in one 
important respect: Apart from communication between people, specifications 
are also meant for communication between people and machines, and even for 
mutual communication of machines. (Note that the concept of a specification 
is used in a broad sense here. "Programs" and "bus standards", for example, 
are also considered as specifications, though at a low level of 
abstraction.) Machines, as opposed to people, are highly accu~ate, but also 
very inflexible listeners. In specifications meant for people (such as 
recipes in a cookbook) one can afford to take certain things for granted 
(like "boiling an egg"). In specifications meant for machines this is 
absolutely out of the question. Specifications of algorithms and data 
structures must therefore have mathematical rigour. 

The purpose of this chapter is to describe a mathematically rigorous 
specification method for algorithms and data structures. This method, in 
contrast to several other specification methods, is suitable for the 
specification of all (sequential) algorithms and data structures normally 
encountered in programming practice. For reasons of time and space the 
method will not be elaborated in full detail. The necessary foundations 
will be laid and the way to erect a complete building on these foundations 
will be indicated. The actual construction of this building is left for 
later research. 

2.0.1. Specifications and their meaning 

In order to provide the mathematical rigour mentioned above it is 
essential to make a clear distinction between specifications and the 
objects described by them. The lack of this distinction has confused the 
discussion on specification methods for data structures for a long time. To 
begin with, let us agree on what we use the terms "algorithm" and "data 
structure" for. These terms will be used to denote the intuitive concepts 
of an algorithm and a data structure, with which each computer scientist is 
familiar. 

A specification, in informal terms, is a description of an algorithm 
or data structure. The requirement of mathematical rigour implies that the 
description is written in a formal language, the "specification language". 
A specification, therefore, is basically nothing but a finite sequence of 
symbols. However, a specification is supposed to "specify" something or, in 
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other words, a specification must have a "meaning". The obvious choice is 
to take an algorithm or data structure as its meaning. The requirement of 
mathematical rigour, on the other hand, implies that the meaning of a 
specification is a mathematical object, which algorithms and data 
structures are not (as we agreed on above). Consequently, it makes sense to 
distinguish between the "intuitive" and the "formal" meaning of a 
specification: The intuitive meaning of a specification is an algorithm or 
data structure and the formal meaning is some mathematical object which 
"models" the algorithm or data structure. The former can only be described 
intuitively, while the latter can be defined rigorously. Of course, the 
mathematical models chosen for algorithms and data structures should 
correspond to the intuitive concepts as closely as possible. 

We have three things now: specifications, their formal meaning and 
their intuitive meaning. The first are sequences of symbols in a formal 
language, the second are mathematical objects and the third are intuitive 
notions. 

2.0.2. Implicit and explicit specification methods 

There are two fundamentally different approaches to the specification 
of algorithms and data structures (cf. [LISKOV & ZILLES 75]). The first, 
which we shall call the "implicit" approach, is to describe the properties 
which the algorithm or data structure should satisfy in an axiomatic way 
(cf. [GOGUEN et al. 78], [GUTTAG & HORNING 78]). The major advantage of 
this method is its minimality: Only the essential properties of the 
algorithm or data structure are reflected in the specification. There are 
also two severe drawbacks. Apart from very simple algorithms and data 
structures it is very difficult to construct complete and consistent 
specifications. Specifically algorithms and data structures involving 
"dynamic" and "shared" data, which are frequently encountered in practice, 
are hard to specify. Moreover, implicit specifications are usually far from 
easy to comprehend. 

The second way of specification, which we shall call the "explicit" 
approach, is to choose a "representation" and to describe the algorithm or 
data structure directly in terms of this representation (cf. [BERZINS 79]). 
This method clearly contrasts with the implicit method as to its advantages 
and disadvantages. First of all, specifications are more easily 
constructed. If the possibility of dynamic creation and sharing is already 
included in the representation chosen, algorithms and data structures 
featuring these properties are readily specified. Explicit specifications 
also tend to be more readable than implicit specifications. The salient 
disadvantage, of course, is the fact that those specifications are not 
representation-independent. If one is not very careful "internal" details 
of the representation chosen may permeate into the external world and lead 
to an "overspecification" of the algorithm or data structure. (Contrast 
this with the problem of writing complete implicit specifications.) 

It is my firm belief that for realistic applications the future lies 
in the explicit approach. A precondition is, that the problem of 
representation-dependence is solved satisfactorily. The key to a solution 
of this problem lies in the observation that the choice of a representation 
need not depend on efficiency considerations. The only criteria in choosing 
a representation should be the clarity and naturalness of the 
specification. This implies first of all that the representations 
themselves must be free of implementation detail, or, in other words, they 
should be as abstract as possible. In particular, representations for 
algorithms ("control structures") should not include such things as labels 
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and gotos, and representations for data structures should not include such 
things as pointers, fixed size storage cells, etc •• On the other hand, the 
possibility of dynamic creation and sharing should be inherent (otherwise 
many applications are ruled out). 

The specification method which will be described in this chapter can 
be classified in the category of explicit specification methods. It is 
based on a novel kind of representation for data structures, which is 
believed to satisfy the requirements mentioned above. These representations 
can be viewed as abstract "storage structures" and will be called 
"structures", for short. Structures are free of low level concepts such as 
pointers and garbage, while at the same time they are general in that they 
allow the representation of data structures with arbitrary sharing and 
circularities. All useful operations on structures (such as creation and 
replacement) can be described in terms of only three primitive operations. 
The use of structures is not restricted to specification languages. It is 
envisaged that they can successfully be used in definitions of programming 
languages as well, especially in definitions of those programming languages 
which feature sharing ("aliasing") and dynamic creation of data. 

2.0.3. Mathematical models for algorithms and data structures 

So far we have not discussed what the formal meaning of a 
specification of an algorithm or data structure should be, or, in other 
words, which mathematical models we choose for algorithms and data 
structures. The generality of the structure concept, which enables all such 
things as "values", "objects", "states", "environments", etc. to be 
represented by structures, will make it extremely simple to associate 
mathematical objects with specifications. 

First consider algorithms. The standard mathematical model for 
algorithms is the "computable function" (which can be characterized in many 
ways, e.g. using Turing machines [TURING 36], lambda calculus [CHURCH 41] 
or general recursive functions [KLEENE 36]). In mathematics computable 
functions are usually considered as mappings from natural numbers to 
natural numbers, but they can easily be extended to mappings from 
structures to structures. The formal meaning of a specification of an 
algorithm will therefore be a computable function from structures to 
structures. 

In contrast to algorithms, the question which mathematical model 
should be chosen for data structures has been a "hot topic" for a long 
time. The introduction of the concept of an "abstract data type" 
[LISKOV & ZILLES 74], which is essentially a heterogeneous algebra 
[BIRKHOFF & LIPSON 70], seems to have settled the matter more or less. Our 
model for data structures is basically an abstract data type, though we 
shall view the latter as a homogeneous rather than a heterogeneous algebra. 
(The reason for this has to do with the fact that we allow the arguments of 
an operation of a data structure to "overlap".) The formal meaning of a 
specification of a data structure will be a homogeneous algebra, consisting 
of the set of all structures and a number of (computable partial) functions 
from structures to structures. 

2.0.4. Abstraction facilities 

The concept of a structure, which is the only kind of representation 
for data structures used in the specification method, enables us to achieve 
mathematical rigour in a simple way. The structure concept in itself is a 
highly mathematical and abstract concept. If, howeve.r, it were necessary to 
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spell out specifications in terms of primitive structures and primitive 
operations on structures, this would make the specification method as a 
whole far from abstract. The specification language would be nothing but an 
assembly language for an abstract "structure processor" and would not 
deserve the title "specification language". The latter title is deserved 
only by the the introduction of two abstraction facilities in the language: 
one for data structures and one for control structures. 

The abstraction facility for data structures is a mechanism to · 
"encapsulate" [ZILLES 73] the representation chosen for a data structure in 
a similar way as for example in CLU [LISKOV et al. 77]. This enables data 
structures to be specified in terms of other (already specified or still to 
be specified) data structures, without relying on the representation chosen 
for the latter. Thus "layers" of abstraction can be created and data 
structures can be specified in a "modular" way. The abstraction facility 
for control structures consists of the possibility to use highly 
nondeterministic control structures, up to a level of abstraction where a 
complex algorithm can be specified as a single "nondeterministic 
assignment" [HAREL et al. 77], which need not even be executable. The 
introduction of the former abstraction facility in the language will be 
discussed informally, while the introduction of the latter is only touched 
on. A more formal treatment of both facilities constitutes one of the 
"loose ends" which are left for later research. 

2.0.5. From specifications to programs 

Even when provided with the above abstraction facilitie&, certain 
people will still call the language described in this chapter a programming 
language rather than a specification language, and, in part, they are 
right. The language suits itself for use at greatly different levels of 
abstraction. Used at a high level of abstraction it can be viewed as a 
specification language and used at lower levels of abstraction it can be 
viewed as a programming language. The advantage of the fact that the same 
language can be used as both a specification language and a programming 
language should not be underestimated. It enables a uniform approach to the 
implementation of algorithms and data structures. Provided one ha·s the 
necessary tools (which will be discussed in the next chapter) it is 
possible to descend from specifications to programs in a systematic, 
stepwise way without having to change the language halfway through. 

The virtues of the above approach will be demonstrated in the 
succeeding chapters of this monograph. The language used in those chapters 
is a loose version of the language described in this chapter. In fact, the 
language described in this chapter emerged from the language used in the 
other chapters. This chapter can therefore also be viewed as an attempt to 
make the semantics of the algorithmic language used throughout this 
monograph more precise. This semantics is not trivial due to the fact that 
most algorithms and data structures discussed in this monograph incorporate 
shared and dynamic data. 

The discussion of the specification method in this chapter is 
basically bottom-up. First, in Section 2.1 the fundamental concept of a 
"structure" is introduced, as well as some related concepts. In Section 2.2 
the primitive operations which can be applied to structures are defined. In 
Section 2.3 a simple yet powerful language for the manipulation of 
structures is introduced and its semantics is defined. The extension of 
this language into a full-fledged specification language is discussed in 
Section 2.4, together with an example of a specification. This section 
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contrasts with the other sections in that it is very informal, A comparison 
of structures to other abstract representations is made in Section 2.5. The 
conclusion of this chapter is presented in Section 2.6. 

2.1. STRUCTURES 

2.1.1. Definition of a structure 

The purpose of this section is to define the concept of a "structure". 
A structure can be viewed as an abstract "storage structure", which can be 
"accessed" through special keys called "accessors". Accessors will be 
considered as primitive concepts, usually denoted by strings of letters and 
digits. By repeatedly applying accessors to a structure one can follow an 
"access path". 

An accessor is a primitive concept. 

A is the set of all accessors. 

A* is the set of all finite sequences of accessors. 

A+ is the set of all finite nonempty sequences of accessors. 

A is the empty sequence of accessors. 

The sequence A1,•••,An of accessors will be denoted by A1,,,An. 
The following definition of the concept of a structure is based on the 

consideration that a (storage) structure is completely characterized by two 
things: First, the collection of all of its access paths and secondly, a 
relation which indicates whether two access paths access the same 
"substructure". (Notice that the latter is necessarily an equivalence 
relation,) Taking into account the properties of access paths as well, we 
arrive at the following definition: 

A structure Sis a pair <P,=>, where Pc A* and 
relation on P such that: 
(l)AEP, 

- is an equivalence 

(2) PA E P => P E P 
(3) PA E P A P = Q => 

(P E A*, A E AJ. 
QA E p I\ PA = QA (P,Q E P, A E AJ. 

APE P will be called a path of S. 

= will be called the identification relation of S. 

An XE Pl=, i.e. an equivalence class of=, will be called an object 
of S. 

Sis the set of all structures. 

Property (I) states that the empty sequence of accessors is a path of S 
(hence Pf¢). Property (2) implies that any prefix of a path of Sis also 
a path of S, Property (3) states that equivalent paths have equivalent 
continuations. This property of an equivalence relation is known as 
"right-invariance". The paths of a structure can be viewed as "names" for 
the objects which they represent, As will be seen later, the concept of an 
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object as introduced above is closely related to the intuitive concept of 
an object. 

There are three trivial examples of a structure, which will be called 
the "empty structure", the "convergent structure" and the "divergent 
structure" respectively: 

~ = <{A},{(A,AJ}> is a structure called the empty structure. 

Tc <A*,A* x A*> is a structure called the convergent structure. 

Tn <A*,{(P,P) IP EA*}> is a structure called the divergent 
structure. 

Notice that~ and Tc contain only a single object, while Tn contains an 
infinite number of objects (i.e., .if A+~. which we will from now on 
assume). Other examples of structures will be discussed below. 

EXAMPLE 2.1 

Let S = <P,=>, where 

p {A,a,b,ba}, 

{(A,A), (a,a), (a,ba), (ba,a), (ba,ba), (b,b)}, 

then Sis a structure containing the following objects: 

Pl== {{A},{a,ba},{b}}. 

Notice that the paths a and ba are "aliases" for one and the same object. 

□ 

Before continuing some notations have to be introduced. First, if 
S = <P,=> is a structure, then P8 and =swill denote P and= respectively. 
Secondly, if Xis an object of a structure Sand Pis a path of S such that 
P € X, then, if no confusion can arise, P will denote X. This convention 
fits in with the common mathematical practice of denoting equivalence 
classes by their representatives, Definitions and lemmas which use this 
notation for objects must be proved to be independent of the choice of the 
representatives for the objects. 

2.1.2. Finite structures 

The definition of a structure does not preclude that structures use an 
infinite number of accessors or have an infinite number of objects. 
Structures that use only a finite number of accessors and have a finite 
number of objects constitute an important subclass. The structures in this 
subclass will be called the "finite structures": 

Let S be a structure. 

{A EA I 3 PE Ps [PAE P3]} is called the accessor set of S. 

Sis called finite iff the accessor set and the set of objects of S 
are finite; otherwise Sis called infirtite. 



The empty structure~ is an example of a finite structure, and the 
divergent structure TD is an example of an infinite structure. The 
convergent structure Tc is infinite if and only if A is infinite. 

Finite structures can be pictured in a systematic way as follows: 

Drawing algorithm for finite structures 

For each object P 
I Draw a circle Cp. 
For each pair of objects (P,Q) 
and each accessor A with PAE Q 
I Draw an arrow labelled by A from Cp to~­
Label C"x by A. 
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Notice that this drawing algorithm is independent of the choice of the 
paths for the objects and that it would never terminate if applied to an 
infinite structure. It is easy to see that the picture thus associated with 
a finite structure is unique. 

EXAMPLE 2.2 

The empty structure~ has the following picture: 

A 

0 

Figure 2.1 

If A {a,b}, then the picture of the convergent structure Tc is: 

Figure 2.2 

If we try the impossible and apply the drawing algorithm to the divergent 
structure TD with A= {a,b}, then we get: 
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I 
' I 

a 

a b 

a b 

b a 

b 

Figure 2.3 

The picture of the structure S from Example 2.1 is: 

A 

A a 

Figure 2.4 

□ 

b 

b 

The above may raise the question what the difference is between a 
structure and a rooted graph with labelled edges. There are two crucial 
differences. First, the concept of "unreachability" is meaningless in a 
structure. Each object has at least one access path. Secondly, objects do 
not have a separate identity. An object simply is the collection of its 
access paths. These two facts have a number of important consequences which 
will be discussed in detail in Section 2.5. 

2.1.3. Physical inclusion 

Another important observation is that the paths of a structure should 
not be considered as "pointers": Though a path can be viewed as a name for 
an object, paths are not objects themselves. Instead, the arrows in the 
picture of a structure should be regarded as denoting physical inclusion. 
Since arbitrary kinds of physical inclusion (such as sharing and 
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circularity) can be modelled in a structure, the need to introduce pointers 
will not arise anywhere. The concept of physical inclusion will be made 
more precise by introducing three relations on the set of objects of a 
structure: 

Let S be a structure. 
Let P and Q be objects of S. 

Pis a direct component of Q iff there is an A EA such that QA E P. 

Pis a component of Q iff there is an RE A+ such that QR E P. 

Pis contained in Q iff there is an RE A* such that QR E P. 

Check that these definitions are independent of the choice of P and Q. If P 
is a direct component of Q because QA E P for some A EA, we shall also 
call Pa "direct A-component" of Q. The relations "be a component of" and 
"be contained in" are both transitive, while the latter is also reflexive. 
Neither of them need be an (irreflexive or reflexive) partial order (see 
Example 2.3). The meaning of the fact that an object is "cyclic" can be 
defined as follows: 

I An object of a structure is cyclic iff it is a component of itself. 

It is easy to see that cyclic objects contain an infinite number of paths. 

EXAMPLE 2.3 

Consider the structure S of Figure 2.5. 

The objects of Sare: 

A = {A}, 
a = {a}, 
b = {ab,b}, 
aa = {P(ba)n 
bb = {P(ab)n 

/1. 

a 

Figure 2.5 

n ~ 0 APE {aa,abba,bba}}, 
n ~ 0 APE {aab,abb,bb}}. 
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The three inclusion relations which hold between these objects can be 
described schematically as follows (the plus sign indicates where the 
relation holds): 

Pis a direct component of Q: 

ysQ Ji a baabb 

X 
a 

Ii 
aa 

bb 

+ 

+ + 

+ + 

+ + 

Pis a component of Q: 

ys/J X a baabb 

X 
a 

Ii 
aa 
bb 

+ 

+ + 

+ + + + + 

+ + + + + 

Pis contained in Q: 

ysQAabaabb 

A 

a 

Ii 
aa 

bb 

+ 

+ + 

+ + + -

+ + + + + 

+ + + + + 

The relation "be a component of" is not an irreflexive partial order here, 
because it is not irreflexive: aa is a component of itself. The relation 
"be contained in" is not a reflexive partial order because it is not 
antisymmetric: aa is contained in bb and bb is contained in aa, but 
aa f bb. This, of course, is caused by the fact that aa and bb are cyclic 
objects. 0 

2.1.4. Structures and regular languages 

The above example (and especially the expressions for the objects aa 
and bb) suggests that there is a relation between structures and regular 
languages. Indeed, the objects of finite structures are regular languages. 
This can be understood intuitively by considering the picture of a finite 
structure as the state diagram of a finite state machine and recalling the 
correspondence between finite state machines and regular languages. A 
straightforward proof can be obtained by using the fact that each 



equivalence class of a right-invariant equivalence relation with a finite 
index is a regular language [HOPCROFT & ULLMAN 79]. In the proof sketched 
below the relation between left-linear grammars and regular languages is 
used: 

PROOF 

LEMMA 2.1 

Let S be a finite structure, then each object of Sis a regular 
language over A. 

Let P0, ... ,Pn be the objects of S, where P0 A. Let Pk be one of the 
objects of S. Construct a left-linear grauunar in the following way: 

For each i = O, ... ,n 
I Introduce a nonterminal symbol Ni. 
For each i,j = O, .•. ,n 
and each accessor A with PjA E Pi 
I Introduce the production rule Ni+ NjA. 
Introduce the production rule No+ A. 
Choose Nk as the start symbol. 
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The grauunar constructed this way is left-linear and independent of the 
choice of the Pi. More~ver, the language generated by this grammar can be 
proved to be equal to Pk (use induction over the path-length in one 
direction, and induction over the length of the derivation in the other 
direction). The objects Pi therefore constitute left-linear languages. 
Since the latter coincide with the regular languages, they are also regular 
languages. Notice that the grammars associated with the different objects 
above differ only in the choice of the start symbol. D 

EXAMPLE 2.4 

The left-linear grammars associated with the objects of the structures of 
Figures 2.1, 2.2, 2.4 and 2.5 are: 

Figure 2.1: 
Nonterminals: No (for A). 
Production rules: No+ A. 
Start symbol: N0 • 

Figure 2.2: 
Nonterminals: No (for A). 
Production rules: No+ Noa, No+ Nob, No+ A. 
Start symbol: No. 

Figure 2.4: 
Nonterminals: No (for A), 

N1 (for a), 
N2 (for b). 

Production rules: No+ A, 
N1 + Noa, N1 + N2a, 
N2 + Nob. 

Start symbol: Nk (k = 0,1,2). 
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□ 

Figure 2.5: 
Nonterminals: N0 (for A), 

N1 (for a), 
N2 (for b), 
N3 (for aa), 
N4 (for bb). 

Production rules: No+ A, 
N1 + N0a, 
N2 +Nob, N2 + N1b, 
N3 + N1a, N3 + N4a, 
N4 + N2b, N4 + N3b. 

Start symbol: Nk (k = 0,1,2,3,4). 

Due to Lemma 2.1 a regular expression notation can be used for the 
objects of all finite structures. 

EXAMPLE 2.5 

The objects of the structures of Figures 2.1, 2.2, 2.4 and 2.5 can be 
denoted by regular expressions as follows: 

□ 

Figure 2.1: 
A= A. 

Figure 2. 2: 
A=(a+bJ*. 

Figure 2.4: 
A= A, 
a a+ ba, 
b = b. 

Figure 2.5: 
A A, 
a= a, 
b=ab+b, 
aa ( aa + abba + bba) (ba) *, 
bb = (aab+abb+bb)(abJ*. 

2.1.5. Structure of objects 

The concept of an object as we introduced it is closely related to the 
concept of a "dynamic object", as it is normally conceived in computer 
science. Dynamic objects are usually considered as "instances" of "values". 
Two dynamic objects may be instances of the same value and still be 
different. In mathematical models for dynamic objects this problem is 
usually solved by associating an "identity", which is an explicit value, 
with dynamic objects. As stated before, objects in structures do not have 
an explicit identity. It is interesting to see how the identity problem for 
them is solved. The objects in a structure can be viewed as instances of 
structures (so "structures" correspond to the "values" of dynamic objects). 
This is made more precise by the following definition of the "structure" of 
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an object: 

If Sis a structure and Pis an object of S, then the structure of P, 
which will be denoted by a8 (P), is the structure T defined by: 

PT= {Q EA* I PQ E P3}, 

Q "=-T R ~ PQ =s PR 

The proof that Tis indeed a structure and that Tis independent of the 
choice of Pis simple. Two different objects can have the same structure 
(see Example 2.6). Consequently, they can be viewed as instances of that 
structure. 

EXAMPLE 2.6 

Consider the structure S of Figure 2.6. 

I\ 

Figure 2.6 

In this structure we have (using regular expression notation): 

A= A, 
a= a, 
b = b, 
aa = aa + aba + ba + bba, 
bb = ab +bb. 

The structure of a is: 

where 

P0 = {Q EA* I aQ E P8 } = {A,a,ba,b}, 

Q =o R ~ aQ =s aR 

hence Pol=o = {{A},{a,ba},{b}}. 

(Q,R E P 0J, 
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The structure of bis: 

where 

P1 = {Q EA* I bQ E Ps} = {A,a,ba,b}, 

Q =1 R ~ bQ =1 bR (Q,R E P1J, 

hence P1l=1 = {{A},{a,ba},{b}}. 

So a and b have the same structure (the structure of Figure 2.4). 0 

EXAMPLE 2.7 

Consider the structure S of Figure 2.7. 

I\ 

A b 

Figure 2.7 

All objects have the same structure: 

□ 

2.2. OPERATIONS ON STRUCTURES 

In Section 2.3 a simple language for the specification of operations 
on structures and their objects will be introduced. The meaning of these 
specifications will be described in terms of three primitive operations, 
which will be defined in this section. Apart from these three primitive 
operations the general concept of an operation as it will occur in the 
specification of an algorithm or data structure will also be discussed. 

2.2.1. A partial order on structures 

First, a special partial order on the set S of all structures will be 
introduced. This partial order will be used in the definition of the three 
primitive operations on structures. 
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The partial order Con Sis defined by: 

(S,T E SJ. 

Here "=s c '=T" means that P =s Q implies P '=T Q for each P,Q E P5. The fact 
that C is indeed a (reflexive!) partial order on Sis trivial. In intuitive 
terms the fact that SC T means that all paths of Sare also paths of T and 
that all paths which are "identified" in Sare also identified in T. 

EXAMPLE 2.8 

The structures of Figure 2.8 form an ascending sequence: 

A 
I\ 

A I I\ .l = 0 C C C 

I\ 
A 

A I\ 

C a b C aCJ=Db C TC 

a 
a 

Figure 2.8 

□ 

EXAMPLE 2.9 

If we define the partial order Co on S by: 

(S,TES), 

then the fact that S Co T means that S is a "partial expansion" of T, as 
illustrated by Figure 2.9. 
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/I 

a 

b 

b 

/I~ co 
a 

a 

./1~ 

b 

Figure 2.9 

□ 

Notice that the partial orders C and Co are much harder to describe in 
terms of graphs than in terms of structures. 

2.2.2. The lattice property 

The relation C is more than just a partial order: It turns S into a 
complete lattice. (A complete lattice is a partially ordered set where each 
subset has an infimum.) This is stated in: 

LEMMA 2.2 

<S,C> is a complete lattice. 



PROOF 

Let Tc S. The infimum V of Tis given by: 

{ 
<n T € T [PT],n T € T [=T]> 

V = 

Tc 

if T I ¢, 

if T = ¢. 

The proof that Vis indeed the infimum of Tis simple and is left to the 
reader. (First prove that Vis a structure; the rest of the proof is 
trivial.) D 
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Notice that the empty structure i and the convergent structure Tc are the 
"bottom" and "top" of the complete lattice <S,[>, i.e. i C S C Tc for each 
SES. A simple theorem from lattice theory states that apart from an 
infimum each subset also has a supremum [BIRKHOFF 67]. The following 
definitions are therefore in order: 

For each set T of structures the structures inf T and sup Tare 
defined by: 

inf T 

sup T 

infimum of T with respect to C, 

supremum of T with respect to C. 

The above will enable us to define the result of operations on structures 
in terms of inf's and sup's of arbitrary sets of structures without having 
to worry about the existence of the inf's and sup's. 

EXAMPLE 2. I 0 

" 
Ifs and T A a 

" a 

then inf{S,T} and sup{S,T} 

a b 

Figure 2. 10 

Check that this is indeed so! D 
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2.2.3. Some other partial orders 

Before defining the primitive operations on structures a remark should 
be made about some other interesting partial orders on S. The definition of 
C can be written as: 

s c P ~ P8 c Pp A v P,Q E P8 [P =s Q ~ P =p Q] (S,PcS). 

If we reverse the implication sign in this definition we still have a 
partial order, call it C1: 

s c. P ~ Ps c Pp A v P,Q E P8 [P =p Q ~ P =s Q] (S,P E SJ. 

Intuitively S C1 P means that all paths of Sare also paths of P and that 
all paths which are "distinguished" in Sare also distinguished in P. The 
partial order C1 has both a bottom (the empty structure~) and a top (the 
divergent structure Tn). Yet, in contrast to C, it does not turn S into a 
complete lattice (see Example 2.11). 

EXAMPLE 2.11 

Consider the structures in Figure 2.11. 

I\ I\ 

S: A T: A 
I\ 

I\ 

·(1)' V: j\ W: 

Figure 2. I I 

Suppose Sand P have an infimum X with respect to C1 • Since VC1 Sand 
V C1 P, we have that V C1 X. This implies that a,c E Px and, since a tv c, 
also that a tx c. WC1 Sand WC1 Pimply that WC1 X, hence b E Px. 
X C1 Sand a =s b imply that a =x b. Analogously, X C1 P and b =pc imply 
that b =x c. Using the transitivity of =x we get a =x c, which is in 
contradiction with the fact that a tx c. Hence <S,C1> is not a complete 
lattice. D 

Another partial order of interest, call it C2, is obtained by taking 
the intersection of C and C1: 



(S,T E SJ. 

It is easy to see that <S,C2> is not a complete lattice either (there is 
not even a greatest element). 
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All operations which will be introduced below are considered as 
partial operators on structures. They may have a number of parameters 
(usually objects in the structure to which they are applied, or accessors). 
The result of applying the operation F with parameters X1,··•,Xm to the 
structure Swill be denoted by {S}F(X1,···,Xm). The notation F(X7, ..• ,Xm) 
will be used to denote the (partial) operator ASE S [{S}F(X1,···,Xm)]. 
Concatenation will be used to denote functional composition of operators. 
For example, F(X7, .•• ,Xm)G(Y7, ... ,Yn) denotes the operator 
ASE S [{{S}F(X1,•··,Xm)}G(Y7, ... ,Yn)]. This implies that composite 
operators can be read from left to right, which enhances readability to a 
great extent. 

2.2.4. The operation CRE 

The first primitive operation on structures which will be introduced 
amounts to the "creation" of an object in a structure. The operation, 
called CRE, has two parameters P and A.Pis an object in the structure S 
to which CRE is applied and A is an accessor such that PA is not a path of 
S. The effect of CRE(P,A) is that a new object with~ as its structure is 
added as a direct A-component to P. This is pictured in Figure 2.12. 

I\ I\ 

p CRE(P,A) 

0 

Figure 2.12 

The definition of CRE reads: 

Let S be a structure. If Pis an object of Sand A EA such that 
PA '- P8 , then {S}CRE(P,A) is the following structure: 

inf{T E s I s C T, V R E Ps [R =s p => RA E PT]}. 

The fact that "less" in the partial order C implies "less identification" 
guarantees that a new object is created and not so~e old object is taken as 
the new component of P. 
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Though the above definition of CRE is intuitively clear, one may still 
wonder whether it really defines the operation pictured in Figure 2.12. In 
order to show that this is indeed so, we shall give a different 
characterization of the structure {S}CRE(P,A), which more closely fits in 
with Figure 2.12. 

PROOF 

LEMMA 2.3 

Let S be a structure, Pan object of Sand A€ A such that PA t Ps. 
A characterization of V = {S}CRE(P,A) is given by: 

(VI) Pv = Ps u Q. 
(V2) =v = =s u {(X,Y) I X,Y € Q}. 

where Q = {RA I R € Ps, R =s P}. 

Let V = <Pv, =v> as defined by (VI) and (V2), and let W = {S}CRE(P,A). We 
first have to prove that Vis a structure, which is left to the reader. If 
we define: 

T = {P € s I s C P, V R € Ps [R =s p ,. RA € Pp]}, 

then W = inf T. We shall show that V € T and VC P (P € TJ, or in other 
words that V = min T (the minimum of T) and consequently V = W. The fact 
that V €Tis obvious. Now let P € T, then 

(Tl) SCP. 
(T2) V R € Ps [R =s P ,. RA € Pp]. 

In order to prove that VC P, we have to show that Pv c Pp and =v c =p• 

(2) 

□ 

Proof of Pv c Pp: 
Let X € Pv, then either X € Ps or X = RA with R € Ps and R ~SP. In 
the first case (Tl) implies that X € Pp and in the second case_(T2) 
implies that X € Pp, 
Proof of =v C =p: 
Let X,Y € Pv with X =v Y. There are two cases. The first is that 
X.,Y € P8 and X =s Y. (Tl) then implies that X =p Y. The second case is 
that X = RxA and Y = RyA with Rx,Ry € Ps and Rx =s Ry =s P. 
(Tl) implies that Rx,Ry € Pp and Rx =p Ry. (T2) implies that 
RxA,RyA €Pp.Consequently RxA =p RyA, which is the same as X =p Y. 

Notice that in contrast to graph models of storage structures creation is a 
natural operation in structures. (In graphs nodes are usually "created" by 
choosing them from a set of already existing "free" nodes.) 

EXAMPLE 2.12 

A binary tree can be generated from the empty structure by a sequence of 
operations such as: 

{J.}CRE(A.,a)CRE(A,b)CRE(b.,a)CRE(ba.,a)CRE(ba,b). 



The intermediate and final results of this sequence of operations are 
pictured in Figure 2.13. 

/1. /1. /1. /1. /1. /1. 

0 IA a 

a b 

Figure 2.13 

D 

2.2.5. The operation ADD 
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The second primitive operation on structures is like CRE, except that 
it adds an already existing object as a direct component to an object. The 
operation, called ADD, takes three parameters P, A and Q. P and Qare 
objects in the structure S to which ADD is applied and A is an accessor 
such that PA is not a path of S. The effect of ADD(P,A,Q) is that Q is 
added as a direct A-component to P, which is pictured in Figure 2.14. 

/1. /1. 

p 
ADD(P,A,0:l 

p 

0 
Q 

0 ~ 
Figure 2. 14 
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The definition of ADD is given below. 

Let S be a structure. If P and Qare objects of Sand A EA such that 
PA l P8 , then {S}ADD(P,A,Q) is the following structure: 

inf{P E s I s c P, v R E P8 [R =s P ,. RA E Pp A RA =T Q]}. 

The infimum of the same set of structures as in the definition of CRE is 
taken here, except that the set is restricted to those structures in which 
the paths RA with R =s P and_Q are identified. This guarantee~ that no new 
object is created, but that Q is added as a new component to P. 

Like we did for {S}CRE(P,A), we shall give another characterization of 
the structure {S}ADD(P.,A,Q), so as to strengthen our faith that ADD does 
what Figure 2.14 suggests. The characterization of {S}ADD(P,A,Q) will not 
be as simple as that of {S}CRE(P,A), which is due to the fact that ADD may 
introduce circularities in a structure. These circularities cause an 
"explosion" of the number of paths (see Example 2.13). 

LEMMA 2.4 

Let S be a structure, P and Q objects of Sand A EA such that 
PA i P8 . A characterization of V = {S}ADD(P,A,Q) is given by: 

(VI) Pv = Ps u Q. 
(V2) =v = { rx, YJ E Pv x Pv I HXJ =s ~(Y)}. 

where Q = {RAX1A ..• XnAY IRE Ps, R =s P, QY E Ps, 
QXi E Ps, QXi =s P (i = 1, ... ,n), n ~ O} 

and~: Pv + P8 is defined by: 

for XE Ps, 

for XE Q with X = RAX1A .•• XnAY as above. 

PROOF 

Let V = <Pv,=v> as defined by (VI) and (V2), and let W = {S}ADD(P,A,Q). 
Check that the mapping~ is well-defined and prove that Vis a structure. 
Now let 

T = {'.I' E s I s c P, v R E P3 [R =s P ,. RA E Pp A RA =p Q]}. 

We shall show that V = min T, which implies that V = W. First, the fact 
that VET is obvious. Secondly, let PET, then we have: 

(Tl)SCP. 
(T2) v R E Ps [R =s P ,. RA E Pp A RA =p Q]. 

Check that in order to prove that VC Pit is sufficient to prove the 
following assertion: 

v x E Pv [x E Pp Ax =p ~(XJ]. 

We shall prove this assertion now. Let XE Pv. Two cases can be 
distinguished. 



□ 
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(I) x E P8• 
(Tl) implies that XE PT, and X =T ~(X) since ~(X) = X. 

(2) X E Q_. 
We know that X = RAX1A ... X;,zAY with RE Ps, R =s P, QY E Ps, QXi E Ps, 
QXi =s P (i = 1, ••. ,n) and n ~ O. Using induction and (T2) we can 
prove that: 

RARAXX1AA •.• xxiAA = PTQ} (i = o, ... ,n). 
1 • • • i =T 

Together with the fact that QY E PT (since QY E Ps) the above implies 
that: 

Or, in other words, XE PT and X =T ~(X). 

EXAMPLE 2.13 

Let S be the structure of Figure 2.15, 

Figure 2. 15 

then T = {S}ADD(b,a,A) is the structure of Figure 2.16. 

Figure 2.16 

Notice that ADD(b,a,A.) has turned the finite number of paths in S 
(Ps = {A,b}) into an infinite number in T (P{l' = {A;b,ba,bab,baba, ... }). □ 
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2.2.6. The operation REM 

The third and final primitive operation can be viewed somehow as the 
(right) inverse of the other two primitive operations. It amounts to 
removing a direct component of an object. The operation, called REM, has 
two parameters P and A.Pis an object in the structure S to which RE'M is 
applied and A is an accessor such that PA is a path of S. The effect of 
REM(P,A) is that the direct A-component of Pis removed from P, as pictured 
in Figure 2. 17. 

" 

REM(P,Al p 

0 

Figure 2.17 

The definition of RE'M is: 

Let S be a structure. If Pis an object of Sand A EA such that 
PAE Ps, then {S}RE'M(P,A) is the following structure: 

sup{T Es IT cs, v RE Ps [R =s P => RA I. PT]}. 

Notice that, due to the fact that objects may be shared, REM(P,A) need not 
remove the object PA from.S. That is why this object is represented by a 
dotted circle in the right part of Figure 2.17. (Strictly speaking the path 
name P should also be dotted, because the path P (but not the object P) may 
be removed from S by REM(P,A).) In general, REM(P,A) may reduce the number 
of objects in a structure by a number varying from zero to all but one (see 
Example 2.14). 

Like before we shall give another characterization of the structure 
{S}REM(P,A) in order to show that the definition given is in conformity 
with Figure 2.17. 

LEMMA 2.5 

Let S be a structure, Pan object of Sand A EA such that PAE P8 • 
A characterization of V = {S}REM(P,A) is given by: 

(Vl)Pv=Ps\Q. 
(V2) =v = ux,YJ E Pv x Pv I x =s Y}. 

where Q = {RAX IRE Ps, R =s P, RAX E P5}. 
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PROOF 

Let V = <Pv,=v> as defined by (VJ) and (V2), and let W = {S}REM(P,A). Prove 
that Vis a structure. Define: 

T = {T E s I Tc s, v R E Ps [R =s P _. RA I. PT]}, 

then W = sup T. We shall show that V = ma.x T ( the maximum of T) and · 
consequently V = W. We have to prove that VET and TC V (TE T). The fact 
that VET is obvious. Now let TE T, then 

(TJ)TCS. 
(T2) V R E Ps [R =s P _. RA I. PT]. 

The proof of TC V falls apart in: 

D 

(I) Proof of PT c Pv: 
Let XE PT and suppose that XI. Pv. Since (Tl) implies that XE Ps, 
there must exist an RE Ps, R =s P and YE A* such that X = RAY. 
(T2) implies that RA I. PT, hence also RAY I. PT and XI. PT. From this 
contradiction can be inferred that XE Pv. 

(2) Proof of =Tc =v= 
Let X,Y E PT, X =TY, then (Tl) implies that X =s Y. Since X,Y E Pv 
(see (I)), this implies that also X =v Y. 

EXAMPLE 2. 14 

Consider the structure S of Figure 2.18. 

I\ 

Figure 2.18 

The effect of REM(a,b) is: 
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I\ 

Figure 2.19 

Notice: the number of objects has not changed. If REM(A,a) is applied 
subsequently to the structure of Figure 2.19, we get: 

I\ 

0 

Figure 2.20 

Notice: all objects but one have "vanished". D 

Check that the operations CRE and ADD could have been defined as 
follows: 

{S}CRE(P,A) 

{S}ADD(P,A,Q) = inf{T ES IS CT, PAE PT, PA =T Q}, 

but that the following definition of REM would not have been correct: 

{S}REM(P,A) = sup{T E S I T C S, PA i. PT}. 

The three primitive operations introduced in the foregoing are sufficient 
to define the semantics of the language which will be introduced in 
Section 2.3. 

2.2.7. The general concept of an operation 

The last part of this section will be devoted to the general concept 
of an operation as it will be used in specifications of algorithms and data 
structures. An operation F will be considered to operate on a number of 
objects P1, ... ,Pn (the "actual parameters") in an enviro~ent E_(which_is 
supposed to contain all information "global" to F). Both E and P1, ••• ,Pn 
are objects in an "embedding" structure S. (They cannot simply be 
considered as structures, because overlapping would then be impossible. 
Also, E cannot be identified with the embedding structure S, because 
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~, •.• ,Pn need not be contained in E.) The result of applying Fis a value 
V (the "result value") and a new enviE_onmen.!_ G (which may differ from the 
old because of "side effects" of F). V and Gare objects in an embedding 
~tructure T. (The same remarks made about E and P7, ... ,Pn apply to G and 
V.) F could therefore be considered as a function which maps tuples of the 
type <S,E,P7, .•. ,Pn> to tuples of the type <T,G,V>. This definition is not 
very convenient. Moreover, Sand T may contain a lot of "garbage" (i.e., 
objects which are not contained in E or P7, •.. ,Pn and G or V respectively). 
F will therefore be considered somewhat differently as a mapping from 
structures of a special kind to structures of a special kind. Assume F has 
been specified with th~ forma_! parameters X1,···,Xn (which correspond to 
the actual parameters P7, ••. ,Pn above). These formal parameters will be 
considered as accessors. F can now be considered as a mapping from 
structures to structures as indicated in Figure 2.21. The correspondence 
with the objects E, P1,···,Pn, G and V above is indicated in the figure. 

/\ /\ 

F 

Figure 2.21 

The left structure in Figure 2.21 will be called a "state". A state S 
is composed of two objects: the "global state" glo, which corresponds to 
the environment prior to the application of F, and the "local state" Zoe, 
which contains the actual parameters of F. Note that the formal parameters 
X1,··•,Xn of Fare represented in S by the paths Zoe.X7,, .. ,Zoe.Xn. (Since 
we have now begun to use accessors composed of more than one letter, dots 
will be used in path names to separate accessors if necessary.) The right 
structure in Figure 2. 21 will be called a "result". A result R is also 
composed of two objects: the "global state" glo, corresponding to the new 
environment after application of F, and the "value" val, which represents 
the result value of F. This is all more precisely described below. 

A state over a set B of accessors is a structure S such that: 
(T)°i\n Ps = {gZo, Zoe}. 
(2) {A E A I Zoe.A E P8 } = B. 

A result is a structure S such that An Ps {gZo,vaZ}. 
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An operation is a mapping F from a set of states over a set Bp of 
accessors into the set of results. 

The elements of Bp are called the formal parameters of F. 

The above definition of the concept of an operation has the disadvantage 
that it makes the names of the formal parameters part of the operation. On 
the other hand, if we had used the traditional concept of an operation 
(= n-ary function) we would have had to commit ourselves to an order for 
the formal parameters. 

2.2.8. Side effect free, environment independent and static operations 

A number of important concepts in connection with operations can now 
readily be defined. Let us first consider the effect which an operation F 
may have on the environment, i.e. on the component gZo of the state S to 
which F is applied. F will be called "side effect free" if the structure of 
gZo in Sis the same as the structure of gZo in {S}F. (Notice that this 
does not mean that each object P of S contained in gZo is the same (set of 
paths) as the object P of {S}F. It does mean that the structure of Pin S 
is the same as the structure of Pin {S}F, though.) "Side effect freeness" 
is a useful property of operations, but imposing it as a requirement on all 
operations is too restrictive for our purposes. Instead, operations will be 
forbidden to access objects other than those which are passed as actual 
parameters (no "sneak access"). Side effects can only result then from the 
fact that the actual parameters share components with the environment. 

Next consider the dependence of the result value of Fon the 
environment and the actual parameters. F will be called "environment 
independent" if the value of F depends only on the structure of Zoe and not 
on the structure of gZo. The fact that Fis environment independent does 
not mean that the value of F depends only on the structure of its actual 
parameters. The value may still depend on the way the actual parameters 
overlap. (This overlap is preserved in the structure of Zoe.) If the value 
of F depends only on the structure of its actual parameters, F will be 
called "static". Being static is a stronger property than being environment 
independent (each static operation is environment independent). All­
operations which will be encountered in the sequel will be enviroument 
independent, but not necessarily static. Operations pertaining to so called 
"static data structures" (such as the integers) will all be static and side 
effect free. The various concepts are precisely defined below. 

Let F be an operation with formal parameters X1,···,Xn. 

Fis side effect free iff for each SE dom(F): 

Fis environment independent iff for each S,T E dom(F): 

Fis static iff for each S,T E dom(F): 
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57 

The language which will be defined in this section will allow for the 
specification of operations in a typeless way. A program in this language 
is supposed to be nothing but a collection of "definitions", where each 
definition specifies an operation. The syntax of the language is as 
follows: 

<definition> 
L+ <opname> <parameter list> <body> 

<opname> 
L+ <accessor> 

<parameter list> t () 
(<accessor> {, <accessor>}) 

<body> 
L+ <statement list> return <construct> 

<statement list> t <errrpty> 
<statement>{; <statement>} 

<errrpty> 
4 

<statement> t <sirrrple statement> 
<conditional statement> 
<repetitive statement> 

<sirrrple statement> 

t . <declaration> 
<assignment> 

<declaration> 
L+ let <accessor> := <construct> 

<assignment> 
½-<path>:= <construct> 

<path> 
L+ {<accessor> .} <accessor> 

<conditional statement> 
L+ if <assertion> then <range> else <range> fi 

<repetitive statement>--
'--+ while <assertion> do <range> od 

<assertion> -
L+ <path>= <path> 

<range> 
L+ <statement list> 

<construct> t <selection> 
<creation> 
<application> 

<selection> 
'--+ <path> 

<creation> t () 
(<binding>{, <binding>}) 

<binding> 
L+ <accessor> + <path> 
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<application> t <opname> () 
<opname> (<path>{, <path>}) 

The curly braces"{" and"}" denote zero or more instances of the enclosed 
syntactical constructs, The usual (ALGOL-like) context-sensitive rules hold 
in this language, except that identifiers may not be redeclared, nor used 
before their declaration (as follows from the rules below). 

2.3.2. Semantics 

In order to define the semantics of the language described above, 
meaning functions will be associated with the respective syntactical 
constructs, The names of these functions are given below: 

~(F): for each opname F, 
3(D): for each body D, 

Ms(S): for each statement s, 
~(R): for each range R, 

c(C): for each construct C, 
MA(B): for each assertion B. 

Mp(F) and M8 (D) are operations in the sense defined in Section 2.2. Ms(S), 
MR(R) and Mc(C) are mappings from states to special structures as indicated 
in Figure 2.22. MA(B) is a mapping from states into the set of truth values 
{true,false}. (N.B. The term "mapping" is always used in the sense of a 
partial mapping.) 

Before defining the meaning functions two definitions will be 
introduced. 

The identity mapping J is defined by: 

] = A S E S [S], 

If Bis a mapping from S into the set of truth values {true,false}, 
and F1 and F2 are mappings from S to S, then the mappin_g __ --­
"if B then F1 else F2 fi" is defined by: 

if B then F1 else F2 fi = 
A S E S [if {S}B then {S}F1 else {S}F2 fi]. 

The meaning functions are defined by the following rules: 

RULE I (opname) 

Let "F" be an opname with the following definition: 

where X1,···,Xn are accessors (n ~ 0) and Dis a body, then: 
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A. A. 

A. A. 

A. A. 

A. 

t!:..Y.e.Wll 

Figure 2.22 
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RULE 2 (body) 

Let 11S1; ... ;Sn return C". be a body, where S1,·•·,Sn are statements 
(n ~ 0) and C is a construct, then: 

RULE 3 (declaration) 

Let "let A:= C" be a declaPation, where A is an accessor and C is a 
construct, then: 

CRE(Zoc,A)M3(A := C). 

RULE 4 (assignment) 

Let "PA : = C" be an assignment, where PA is a path, A is an access or 
and C is a construct, then: 

M8 (PA :=CJ= Mc(C)ADD(A,p,loc.P)REM(p,A)ADD(p,A,val) 

REM(A,p)REM(A,val). 

(See remark below.) 

RULE 5 (conditional statement) 

Let "if B then R1 else R2 fi" be a conditional statement, where Bis 
an assertion and R1 and R2 are ranges, then: 

M3(if B then R1 else R2 fi) = 
if MA(B) then MR(R1) else MR(R2J fi. 

RULE 6 (repetitive statement) 

Let "while B do Rod" be a repetitive statement, where Bis an 
assertion andR isa range, then: 

M3(while B do Rod) = 

if MA (BJ then MR(R)M3(while B do R od) else J fi. 

RULE 7 (assertion) 

Let "P = Q" be an assertion, where P and Qare paths, then: 

MA(P = Q) = ;.. S E S [if Zoc.P =s Zoc.Q then true else false fi]. 

RULE 8 (range) 

Let "S1; •.• ;Sn" be a range (n ~ 0), where S1,•··,Sn are statements, 
and let A1, ... ,Am be the accessors following the "let" symbol of those 
Si which are declarations (i = 1, ... ,n), then: 



RULE 9 (selection) 

Let "P" be a selection, where Pis a path, then: 

Mc(P) = ADD(A, val, loc. P). 

RULE IO (creation) 

Let 11 (A1 + P1, ••• ,An + Pn)" be a creation, where A1,···,An are 
accessors and P1,···,Pn are paths (n ~ 0), then: 

Mc( (Al + P1, ••• ,An + Pn)) = 
CRE(A, val)ADD(val,A1, loc. P1 ) ••• ADD(val,An, loc. Pn). 

RULE II (application) 

Let 11F(P1, ••• ,Pn)" be an application, where F is an opname and 
P1,···,Pn are paths (n ~ 0). Let F be defined as in Rule I, then: 

Here (see Figure 2.23): 

61 

BEGIN = CRE(A, t)ADD(t,glo,glo)REM(A,glo)ADD(t, loc, loc)REM(A, loc) 

ADD(A,glo, t)REM(A, t)ADD(A, loc, val)REM(A, val), 

END = ADD(A, t,glo)REM(A,glo)ADD(A,glo, t.glo) 

ADD(A, loc, t. loc)REM(A, t). 

Observe that the following definition of the meaning of the assignment 
"PA : = C11 in Rule 4 would not be correct: 

M8 (PA := C) = Mc(C)REM(loc.P,A)ADD(loc.P,A,val)REM(A,val). 

The reason is that after REM(loc.P,A) the path loc.P need no longer exist. 
The above rules define the semantics of the language in an operational 

way. That is, basically they define an automaton which can compute values 
of the meaning functions. Due to the occurrence of recursion and loops the 
automaton need not terminate for certain arguments of a meaning function 
(see Rule I and Rule 6). For those arguments a meaning function is supposed 
to be undefined. With this convention it is easy to see that the above 
rules define the meaning functions completely. 

Another approach would be to define the semantics of the language in a 
denotational way. The above rules are then used not to define an automaton, 
but a system of continuous operators on a function space (one operator for 
each recursive meaning function, i.e. each meaning function with a 
recursive equation). The recursive meaning functions are defined as the 
components of the simultaneous least fixed point of this system of 
continuous operators. The definition of the other (non-recursive) meaning 
functions follows directly from the rules. Due to the fact that this 
approach requires a rather elaborate mathematical apparatus and that we 
would still have to prove that the denotational semantics coincides with 
the operational semantics (since the latter is the more intuitive), we will 
not use the denotational approach. The construction of a denotational 
semantics for the language is believed not to pose any serious problems, 
however. For a thorough treatment of denotational semantics the reader is 
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" 

BEGIN 

" 

END 

Figure 2.23 

referred to [DE BAKKER 80]. 

2.3.3. Some remarks and examples 

" 

" 

The language defined above is a rudimentary language in many respects. 
It is for example not possible to use applications as actual parameters of 
operations as in F(G(~)). Language extensions in which this is possible can 
readily be defined in terms of the above language, however. This also holds 
for the other extensions which we will discuss in the next section. The 
language can therefore be viewed as a kernel around which more 
sophisticated languages can be constructed (e.g., by "syntactic sugaring"). 
All necessary primitive algorithmic concepts (such as creation, selection, 
replacement, etc.) are included in the language. 

The fact that the only test included in the language is a test for the 
identity of two objects may at first sight seem strange and even 
insufficient. It is for example not possible to test whether two arbitrary 
objects have the same structure. It is not even possible to test whether a 
given object has i as its structure. Yet, the test for identity of objects 
is sufficient (at least for our purposes). ~ince all objects which are 
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manipulated by a program are constructed by that program, the programmer 
can take care that he always knows how to take an object apart into its 
direct components. The test whether two objects have the same structure can 
then be reduced to tests whether their direct components have the same 
structure. If the programmer takes care also that all objects are 
constructed from primitive objects, the structure of which can be compared 
using the identity relation for objects, then it is always possible to 
determine whether two objects have the same structure (see Examples 2.15 
and 2.16). 

EXAMPLE 2.15 

We could represent the truth values tPUe and faZse by the structures tPUe 
and faZse pictured in Figure 2.24. 

true false 

Figure 2.24 

· Instances of these structures can be constructed by the operations: 

TRUE() let e := () 
return (a ➔ e,b ➔ e) 

FALSE()= let e := (); 
let f := () 
return (a ➔ e,b ➔ f) 

Suppose we have an object denoted by path Pin our program, which is known 
to have tPUe or faZse as its structure. Whether the structure of Pis tPUe 
can now be determined through the test "P.a = P.b". The operations NOT(p), 
AND(p,q) and OR(p,q), where p and q denote "boolean" objects, could for 
example be defined as follows: 

NOT(p) = let r := (); 
if p.a = p.b 
- then r := FALSE() 

else r := TRUE() 
fi 
return r 
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AND(p,q) 

OR(p,q) 

□ 

EXAMPLE 2.16 

= let r := (); 
if p.a = p. b 
- then if q.a = q.b 
-- - then r := TRUE() 

else r : = FALSE() 
fi 

else r:= FALSE() 
fi 
return r 

let r := NOT(p); 
lets:= NOT(q); 
let t := AND(r,s) 
return NOT(t) 

Suppose we choose to represent the natural numbers as in Figure 2.25. (The 
structures true and false and the operations TRUE and FALSE are as in 
Example 2.15.) 

0 2 

I\ I\ 

I\ I\ 0 = true 0 = false 

Figure 2.25 

The following operations can then be defined: 



□ 

ZERO() let t := TRUE() 
return (zero+ t) 

SUCC(n) = let f := FALSE() 
return (zero + f,pred + n) 

EQUAL(m,n) = let r := (); 
if m.zero.a = m.zero.b 

then r := n.zero 
else if n.zero.a = n.zero.b --- then r := FALSE() 

else r := EQUAL(m.pred,n.pred) 
fi 

fi 
return r 
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In the language extension to be discussed in the next section the 
responsibility to "remember" how composite objects can be taken apart into 
their direct components will be moved entirely from the programmer to the 
language rules (by the introduction of a "strong typing" mechanism). More 
convenient kinds of assertions will also be introduced there. 

2.4. TOWARDS A FULL-FLEDGED SPECIFICATION LANGUAGE 

In this section we shall sketch through an example how the language 
described in Section 2.3 can be extended to a full-fledged specification 
language for algorithms and data structures. The central issue in this 
section will be a specification language for data structures. Since in this 
specifica.tion language operations of data structures will be expressed in 
terms of algorithms, the language could just as well be viewed as a 
specification language for algorithms, however. 

2.4.1. The meaning of specifications of algorithms and data structures 

Before presenting the example we shall discuss which formal meaning 
should be attached to specifications of algorithms and data structures. 
First, consider algorithms. There are basically two views of algorithms, 
which might be called the "functional" and the "procedural" view. Adopting 
the functional view implies that algorithms are considered as partial 
functions which map "states" to "results", i.e. as "operations" as defined 
in Section 2.2. Adopting the procedural view of algorithms implies that 
algorithms are considered as partial functions which map "states" to 
"states". For our purposes the procedural view of algorithms is the most 
convenient. We shall therefore adopt the latter. (Mark, however, that we 
maintain the functional view for operations of data structures.) The formal 
meaning of a specification of an algorithm will consequently be a partial 
function which maps "states" to "states". The procedural view of algorithms 
will be maintained throughout this monograph. 

Next, consider data structures. It is generally agreed that data 
structures are fully characterized by their operations. The formal meaning 
of a specification of a data structure will therefore simply be a 
collection F of "operations", i.e. partial functions which map "states" to 
"results". In more algebraic terms this means that the formal meaning of a 
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specification of a data structure will be considered here as a homogeneous 
algebra <S,F>, where Sis the set of all structures and Fis a collection 
of operations. This is different from the more usual "heterogeneous 
approach" [BIRKHOFF & LIPSON 70], which is caused by the fact that we allow 
sharing. We shall show that, if all operations in Fare side effect free 
and static (and hence environment independent), this algebra corresponds to 
a "normal" heterogeneous algebra with n-ary functions (which is the case 
covered by the algebraic specification methods). 

2.4.2. An example: the data structure Lisp 

In order to suit the previously defined language to a specification 
language it will be harnessed by imposing a type mechanism on it. This will 
be illustrated through the specification of the data structure Lisp, which 
includes the following well-known LISP operations [WEISSMAN 67]: CONS, CAR, 
CDR, RPLACA, RPLACD, ATOM and EQ. The natural numbers are used to represent 
"atomic values", which implies that the specification also includes the 
operations ZERO, SUCC and EQUAL, and an operation EXP for the conversion of 
a natural number into a "symbolic expression". The specification of Lisp is 
given below. 

data structure Lisp 

type Nat,Exp 

representation 

Nat= case zero: Boal of 
FALSE: (pred: Nat) 
esac 

Exp= case atom: Boal of 
TRUE: (val: Nat) 
FALSE: (car, cd:P: Exp) 
esac 

operation 

ZERO: Nat 
precondition TRUE 
accesses Nat 
return (zero ➔ TRUE) 

SUCC(n: Nat): Nat 
precondition TRUE 
accesses Nat 
return (zero ➔ FALSE,pred ➔ n) 



EQUAL(m,n: Nat): Bool 
precondition TRUE 
accesses Nat 
return if m.zero 

then n.zero 
else if n.zero --- then FALSE 

else EQUAL(m.pred,n.pred) 
fi--

fi 

EXP(n: Nat): Exp= 
precondition TRUE 
accesses Exp 
return (atom+ TRUE,val + n) 

CONS(x,y: Exp): Exp 
precondition TRUE 
accesses Exp 
return (atom+ FALSE,ear + x,edr + y) 

CAR(x: Exp): Exp = 
precondition NOT(ATOM(x)) 
accesses Exp 
return x.ear 

CDR(x: Exp): Exp 
precondition NOT(ATOM(x)) 
accesses Exp 
return x.cdr 

RPLACA(x,y: Exp): Exp= 
precondition NOT(ATOM(x)) 
accesses Exp 
x.ear := y 
return x 

RPLACD(x,y: Exp): Exp = 
precondition NOT(ATOM(x)) 
accesses Exp 
x.edr :=y 
return x 

ATOM(x: Exp): Bool 
precondition TRUE 
accesses Exp 
return x.atom 

EQ(x,y: Exp): Bool 
precondition AND(ATOM(x),ATOM(y)) 
accesses Exp 
return EQUAL(x.val,y.val) 

67 
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2.4.3. Types 

The specification above first of all contains the name of the data 
structure specified, i.e. Lisp. In the part prefixed by~ the "types" 
which are used in the specification are listed, i.e. Nat and Exp. The type 
BooZ together with its associated operations is supposed to be 
automatically included in each specification. A type will be associated 
with each syntactical construct in the specification which denotes an. 
object. The objects denoted by syntactical constructs of type Twill be 
called "objects of type T". Furthermore, with each type Ta 
"representation" is associated. The representations of types are defined in 
the part prefixed by representation. The definitions have the shape of 
PASCAL [JENSEN & WIRTH 74] (variant) record type declarations. In contrast 
to PASCAL, the representation of a type T should not be considered to 
define the set of "values" of type T. (This set will be defined later.) It 
merely defines the way objects of type T may be created, accessed and 
modified. Put in more syntactical terms, the representations of types 
define the way syntactical constructs of the various types may be used to 
form new syntactical constructs. For example, if xis an accessor of type 
Nat, then the representation of type Exp gives us the right to write down 
the following construct ("creation") of type Exp: 

(atom+ TRUE,vaZ + x). 

(See the next paragraph on "access rights", however.) It is not allowed, at 
least not in the context of this specification, to write down a construct 
of type Exp such as: 

(atom+ FALSE,car + x,cdr + x). 

The representations of types can therefore best be viewed as restrictions 
imposed on the use of syntactical constructs. These restrictions (which can 
be checked "statically") guarantee that all operations performed on objects 
of a type Tare well-defined. They also imply, of course, that the 
representation chosen for Tis reflected in the structure of objects of 
type T. 

2.4.4. Access rights 

In the part of the specification prefixed by operation the operations 
which can be performed on objects of the different types are specified. An 
operation is specified by giving its name, its parameter list, which 
contains the formal parameters and their types, and the type of the result 
delivered by the operation. Since operations are partial functions a 
precondition must also be given. This precondition must hold for the actual 
parameters each time the operation is applied. An operation F may be 
defined in terms of the operations contained in the data structure 
specification only, unless it is explicitly specified to have an "access 
right" to a certain type T. In that case the "primitive" operations such as 
selection, creation and=, may be applied to objects of type Tin the 
definition of F. The types which are "accessible" to an operation are 
specified in the clause prefixed by accesses. 

Access rights cannot freely be granted. Suppose for instance that an 
operation F has an access right to type T2 but not to type T1 and that 
objects of type T1 contain components of ty,P_e T2. If there is an operation 
of the data structure that takes an object P1 of type T1 as (one of) its 
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parameter(s) and delivers a_component P2 of P1 of tyE_e T2 as its result, 
then F can sneakily access P1 through its component P2. These problems can 
be eliminated by introducing a special relation on the set of types of a 
data structure specification. A type T2 will be called a subordinate type 
of a type 1'1 if an object of type T1 can have a component of type T2. Due 
to the "strong typing" this relation can be determined effectively for a 
given specification. It constitutes a transi~ive relation, but not 
necessarily a partial order, on the set of types of a specification. For 
the specification of the data structure Lisp this relation is pictured in 
Figure 2.26, where 11-<- 11 denotes "is a subordinate type of". 

Figure 2. 26 

If we now require that for each operation F the following holds: 

.If Fuses a type T to which it has no access right, 
then F has no access right to any subordinate type of T. 

then "sneak access" is impossible. Here the expression "Fuses T" means 
that the definition of F contains a syntactical construct of type T. If F 
does not use T, F may have access rights to subordinate types of T. -E.g., 
SUCC does not use Exp, but has an access right to the type Nat, which is a 
subordinate type of Exp. Note that the relation "be a subordinate type of" 
comes in rather naturally if we construct our specifications in a "modular" 
fashion (which of course we should). 

2.4.5. The meaning of the specification of Lisp 

The meaning of each operation is defined in terms of an algorithm 
followed by a return clause. As can be seen the algorithms are very simple 
(as they should be in a specification). The language used for the 
definition of the operations is a somewhat extended version of the language 
of Section 2.3. We shall sketch below how the operation definitions in the 
specification of the data structure Lisp can be transformed into operation 
definitions in the original language, and how these transformed definitions 
can be used to assign a meaning to the specification of Lisp. 

First, take the "body" of the operation EQUAL: 
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return if m.zero 
then n.zero 
else if n.zero --- then FALSE 

else EQUAL(m.pred,n.pred) 
fi 

fi 

and rewrite it as follows: 

let e : = (); 
if m.zero 

then e := n.zero 
else if n.zero --- then e : = FALSE 

else e := EQUAL(m.pred,n.pred) 
fi 

fi 
return e 

Rewrite each operation definition as exemplified by the definition of the 
operation CAR: 

which 

Here 

CAR(x: Exp): Exp = 
precondition NOT(ATOM(x)) 
accesses Exp 
return x.car 

becomes: 

CAR{x) = let r := (); 
if NOT(ATOM(x)) 

then r := x. car 
else r := ERROR 

fi 
return r 

ERROR is the "undefined operation", 

ERROR while TRUE do od 
return () 

for example: 

Replace all operation applications at places where they are not allowed in 
the original language by accessors, as exemplified by: 

if NOT(ATOM(x)) 
then r := x. car 
else r : = ERROR 

fi 

which becomes: 



let u := ATOM(x); 
let V := NOT(u); 
if V 

fi 

then :r> := x.ca:r 
else :r> := ERROR 

Assuming that the truth values true and false are represented by the 
structures true and false from Figure 2.24, replace all paths at places 
where only assertions are allowed in the original language by assertions, 
as exemplified by: 

if V 

then :r> := x.ca:r 
else :r> : = ERROR 

fi 

which becomes: 

if v.a = v.b 
then :r> : = x. ca:r 
else :r> := ERROR 

fi 

Finally, provide all applications of operations without parameters with 
parentheses, such as: 

TRUE 

which becomes: 

TRUE() 
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Having transformed all operation definitions into the language defined 
in Section 2.3, we can use the function Mp to associate an "operation" with 
each operation definition (for the boolean operations, use the definitions 
given in Example 2.15). The formal meaning of the specification of the data 
structure Lisp is now defined by the following set of operations: 

{Mp(F) IF= TRUE,FALSE,NOT,AND,OR,ZERO,SUCC,EQUAL, 
EXP,CONS,CAR,CDR,RPLACA,RPLACD,ATOM,EQ}. 

This set of operations defines a homogeneous algebra <S,FLisp> on the set S 
of all structures. 

2.4.6. Immutable data structures 

In the traditional specification methods for data structures, such as 
the algebraic specification methods [GOGUEN et al. 78], 
[GUTTAG & HORNING 78], the formal meaning of a specification is usually 
defined to be a heterogeneous algebra. This is possible because in these 
methods the arguments passed to operations are non-overlapping. Therefore, 
these arguments can be viewed as "values" drawn from separate "carriers" 
(one for each type) and the operations can be viewed as functions from 
Cartesian products of carriers into carriers. We shall show now that the 
case covered by the traditional specification methods is a special case of 
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the case covered by our specification method. The special case meant here 
is the case that all operations of a data structure are side effect free 
and static. A data structure with the latter properties will be called 
"iDDnutable". (Notice, by the way, that operations of data structures are 
always environment independent: Only objects which are passed as parameters 
to an operation can be "seen" by that operation.) All data structures which 
can be specified in the traditional methods, such as for example the 
natural numbers, are iDDnutable. (Check that the data structure Lisp is not 
iDDnutable, but would have been iDDnutable if the operations RPLACA and 
RPLACD had been omitted.) As we will show below, a heterogeneous algebra 
can be associated with each specification of an iDDnutable data structure. 
This algebra corresponds to the algebras normally associated with 
traditional specifications. 

2.4.7. The carrier of a type 

In order to construct the heterogeneous algebra associated with the 
specification of an iDDnutable data structure, "carriers" will be associated 
with the types of a specification first. These carriers are supposed to 
contain the "values" of a type. Since the concept of a carrier of a type is 
meaningful for specifications of "mutable" data structures as well, we 
shall define it for the types of all specifications. 

First, what is a "value" of type T? A value of type T could be viewed 
as an object of type T. An object can never be viewed independently of a 
structure, however. A value of type T should therefore be regarded as a 
structure, i.e. as the structure (or "value") of an object of type T. It 
makes sense to consider only objects of type T which can actually be 
constructed. So the carrier of type T can be defined as the set of all 
structures of objects of type T, which can be constructed by an operation 
using exclusively the operations specified in the data structure 
specification to which T pertains. According to this definition the carrier 
VNat of the type Nat would consist of the structures pictured in 
Figure 2.25. The carrier VExp would among many other structures contain the 
cyclic structure of Figure 2.27. 

/\ 

cdr 

Figure 2.27 



This structure can be constructed by the following operation, which uses 
the operations of the data structure Lisp only: 

CONSTRUCT: Exp = 
let x := EXP(ZERO); 
x := CONS(x,x) 
return RPLACD(x,x) 

Notice that the carrier of a type contains only finite structures. 

2.4.8. Indistinguishability 
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The above definition of the carrier of a type is not yet fully 
satisfactory. The reason is that the elements of a carrier as defined above 
cannot really be viewed as "values" in the sense of the traditional 
specification methods. They are in fact representations of values. Two 
different structures in a carrier may very well represent the same value. 
In order to make this more precise we introduce a special relation on the 
carrier of a type, called "indistinguishability", which corresponds to 
"being representations of the same value". 

Two structures V1 and V2 in the carrier of a type Tare 
"indistinguishable" if for each operation F with a single parameter of type 
T, which can be specified using the operations of the data structure only, 
the following holds: When applied to (instances of) V1 and V2, Fis either 
defined in both cases or undefined in both cases (where "non-terminating" 
is also "undefined"). At first sight this may seem a strange definition. It 
becomes less strange if one realizes that the operations of the data 
structure are the only operations which may be used to manipulate 
(instances of) structures of type T outside the specification of the data 
structure, and that being defined or undefined is the only property of 
operations which is a priori observable to the outside world. So, for the 
outside world there is truly no way to tell two indistinguishable 
structures apart. The definition becomes even less strange if one realizes 
that the structures true and false in the carrier VBool of Bool are 
distinguishable(= not indistinguishable). The following single parameter 
operation "distinguishes" them: 

DISTINGUISH(b: Bool): Bool 
while b do od 
return b- -

Consequently, another way to prove that two structures v1 and v2 in the 
carrier of a type Tare distinguishable is to construct an operation F with 
a single parameter of type T, using only the operations of the data 
structure to which T pertains, such that F(V1) yields true and F(V2) yields 
false. That is the approach we will adhere to below. Note that 
indistinguishability is an equivalence relation. 

In Figure 2.28.a two indistinguishable structures contained in VExp 
are pictured. (Check that there is indeed no way to distinguish them 
through the operations of the data structure Lisp.) The two structures in 
Figure 2.28.b, which are also contained in VExp• are distinguishable. 
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This can be seen by passing either of them (in the shape of an object) as a 
parameter to the following operation: 

DISTINGUISH(x: Exp): Boal= 
lety :=CAR(x); 
y :=RPLACA(y,x); 
let z := CDR(x); 
z:= CAR(z) 
return ATOM( z) 
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This operation will deliver the value true when applied to the first and 
false when applied to the second structure in Figure 2.28.b. Notice that 
the reason why the structures of Figure 2.28.a are not distinguishable 
while the structures of Figure 2.28.b are, lies in the fact that there are 
no operations to modify atomic objects of type Ex-p, while there are such 
operations for non-atomic objects of type Ex-p (viz., the operations RPLACA 
and RPLACD). If, however, the operation EQ would have been defined as in 
certain LISP implementations by: 

EQ(x,y: Ex-p): BooZ 
precondition TRUE 
accesses Exp 
return if x = y 
--- - then TRUE 

else FALSE 
fi 

then the structures of Figure 2.28,a would also be distinguishable. 
It is obvious now to define a value of type T as an equivalence class 

of the indistinguishability relation. The carrier of T can then be 
redefined as the quotient of this equivalence relation. In this sense we 
will use the concepts of a value and the carrier of a type in the sequel. 
Notice that what we did is in fact common mathematical practice. The 
rational numbers, for example, are usually defined as equivalence classes 
of an equivalence relation defined on the set of all pairs (m,n), where m 
and n are integers (and n f O). These pairs can be viewed as 
representations of the rational numbers, just like structures can be viewed 
as representations for the values of a type. 

2.4.9. The meaning of the specification of an immutable data structure 

Let us return to the immutable data structures. If we have a 
specification of an immutable data structure D, a carrier VT can be 
associated with each type T of D, as described above. If Fis an operation 
of D with formal parameters x1, •.. ,Xn of types T7,.,.,Tn and delivering a 
result of type To, then we know, since Fis ~tatic,_that the structure of 
the result of F when applied to the objects PlL"',Prz.._of types T7,,,.,Tn 
depends only on the structures of the objects P7, ••• ,Pn. Consequently, F 
may be considered as a (partial) function which maps structures V7,, .. ,Vn 
of types T7,, .. ,Tn to structures of type T0 • The result of applying F to 
V7, •.. ,Vn will be denoted by F(V1, ... ,Vn). 

The operation F may not only be considered as a function which maps 
structures to structures, it may even be considered as a function which 
maps values to values. In order to show this, we have to prove that, if Vi 
and Wi are indistinguishable structures of type Ti (i = 1, •.. ,n), then 
F(V1,···,Vn) and F(W7, .•• ,Wn) are also indistinguishable. Let Vi and Wi be 
indistinguishable structures of type Ti (i = 1, ••. ,n). If F(V7,,,.,Vn) and 
F(W7, V2, ..• , Vn) were distinguishable, we could construct an operation which 
distinguishes V7 and W7, but V7 and W7 are indistinguishable. So 
F(V7,.,.,Vn) and F(W1,V2,···,Vn) are indistinguishable. Analogously, we can 
prove that F(W1,V2,, .. ,Vn) and F(W7,W2,V3, ... ,Vn) are indistinguishable, 
etc •• Using the transitivity of the indistinguishability relation, we infer 
that F(V7,,,.,Vn) and F(W7,.,.,Wn) are indistinguishable. 

The above, together with the fact that Fis side effect free, implies 
that we can view F as a (partial) function from VT x ••• x VT into VTo· 

1 n 



76 

Instead of the homogeneous algebra <S,Fv> associated with D, we can now 
associate the heterogeneous algebra <VT (TE T),Mp (FE Fv)> with D, where 
Tis the set of types ("sorts") of D and Mp is the interpretation of the 
operation Fas a mapping from values to values. 

2.4.10. Behavioural equivalence 

In the preceding part of this section we showed how a mathematical 
object can be associated with a specification of a data structure. Thus the 
necessary mathematical rigour of the specification method can be obtained. 
The question remains (even in the case of immutable data structures) 
whether the mathematical object associated with a specification defines the 
"true" meaning of the specification. Clearly, in our case it does not. We 
could for example have specified the data structure Lisp using different 
representations for the types. Though the formal meaning of this 
specification would be different from the meaning of the specification 
given before, we would still feel that both specifications specify the 
"same" data structure. Instead of assigning a more abstract formal meaning 
to specifications of data structures (as, in fact, we already did for 
specifications of immutable data structures), we shall cope with this 
problem by introducing a relation between specifications of data 
structures. This relation, called "behavioural equivalence" (cf. 
[BERZINS 79]), amounts to "specifying the same data structure". 

First, let us define the concept of a "signature" of a specification 
in the usual way. The signature of a specification 8 will be defined to be 
the set of all tuples (F,T1,•··,Tn,To), where Fis the name of an operation 
specified in 8, T1,··•,Tn are the types of the formal parameters of F and 
To is the type of the result delivered by F. Notice that the formal 
parameters, the prec.onditions and the access rights of operations are not 
included in the signature of 8. Notice also, that each operation (or 
algorithm) which is specified in terms of the operations of 8 only, can 
also be viewed as an operation (or algorithm) specified in terms of the 
operations of any other specification with the same signature as 8. The 
meaning of the operation (or algorithm) may be entirely different in either 
case, though. 

Two specifications 81 and 82 of a data structure are "behaviour-ally 
equivalent" if they have the same signature and if for each parameterless 
operation F defined in terms of the operations of 81 (or 82) the following 
holds: The result of F according to the formal meaning of 81 is defined iff 
the result of F according to the formal meaning of 82 is defined. In view 
of the definition of the concept of indistinguishability, this definition 
will be clear. If 81 and 82 are behaviourally equivalent, there is really 
no way to tell a result produced by the operations of 81 from a result 
produced in the same way by the corresponding operations of 82, So 81 and 
82 truly display the "same" behaviour. This implies, for example, that each 
"assertion"(= parameterless function defined in terms of the operations of 
81 or 82 with a boolean result) is valid with respect to 81 iff it is valid 
with respect to 82, The above definition of behavioural equivalence is 
surprisingly much simpler than the one given in [BERZINS 79]. 

2.4.11. Nondeterministic creation 

We shall conclude this informal section with the discussion of a 
number of features which should be added to the language in order to make 
it suitable as a general purpose specification language. A feature that 
must be added first of all is the possibility to specify nondeterministic 
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operations. This feature is indispensable to the construction of 
specifications with a high level of abstraction. The simplest way to 
introduce nondeterministic operations is by the addition of a 
"nondeterministic creation" to the language, which may be used everywhere 
where a "construct" is allowed. For that purpose we first have to introduce 
"predicates" in the language, which will allow assertions on objects, for 
example in first order predicate calculus, to be used in the language. If P 
is such a predicate on objects of type T, a nondeterministic creation might 
look as follows: 

µ x: T [P(x)] 

The effect of the evaluation of this construct is that an arbitrary object 
X of type Tis created which satisfies P(X). (Notice that an assignment 
with a nondeterministic creation as its right-hand side corresponds to a 
"nondeterministic assignment" [HAREL et al. 77 J.) 

The body of an operation which should deliver some arbitrary value X 
satisfying certain requirements R(X) can now be specified at a high level 
of abstraction by: 

returnµ x: T [R(x)] 

The addition of the nondeterministic creation to the language may make 
specifications non-executable, but for specifications this is not really an 
objection. Moreover, the semantics of the language must be adjusted, for 
example by considering operations as mappings from sets of states to sets 
of results instead of mappings from states to results. 

Apart from the nondeterministic creation, other nondeterministic 
control structures should be added to the language. One could think for 
example of for-loops of the kind "For each x satisfying P(x) do ••• " or 
guarded cOUD:nands [DIJKSTRA 75]. One should be very careful, though. The 
combination of even a few such control structures, though each useful in 
itself, may easily create a baroque language. One should therefore aim at 
simple but powerful nondeterministic control structures. The 
nondeterministic creation is believed to be such a control structure. It 
will be used in the ensuing chapters in the form of nondeterministic­
assignments such as "Let x be such that P(x)". 

2.4.12. Miscellanea 

A feature which is also useful is to distinguish "constant" and 
"variable" accessors in the language. Constant accessors differ from 
variable accessors in that they may not be used as the right-most accessor 
in the left-hand side of an assignment. This need not imply that the object 
bound to such an accessor is constant (it may contain variable components). 
It merely implies that the identity (whatever that may be) of the object 
bound to the accessor does not change. This concept of a constant accessor 
is easily added to the language. Things become more complicated if we want 
to ensure that an object bound to a constant accessor is really constant 
(i.e. that its structure is constant). 

There are several other useful features which could be added (such as 
hidden operations, type parameterization, etc.), but we shall stop the 
discussion here. The language which will be used in the other chapters of 
this monograph for the expression of algorithms and data structures will 
include several of the features which we discussed above. The syntax of 
this language will furthermore be different from the language discussed 
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here. (It will be more "natural-language-like", but the correspondence is 
easy to establish.) As we tried to demonstrate in the foregoing, the 
semantics of this language can be defined precisely and the semantical 
problems caused by shared and dynamic data can be solved in a relatively 
simple way. Apart from defining the semantics of the language the 
construction of a proof system for proving assertions about specifications 
is also .necessary. (A good indication that the construction of such a proof 
system is indeed feasible is [MANNA & WALDINGER 8Oa],) The presence of such 
a proof system is implicitly assumed when we reason about algorithms and 
data structures in the sequel. (Strictly speaking a proof system is not 
necessary, because we could take the semantics and ordinary mathematics to 
prove assertions about specifications. A proof system is almost 
indispensable, however, because it makes proofs of correctness considerably 
easier, possibly even to such an extent that these proofs can be 
constructed or at least verified by a machine.) 

2.5. COMPARISON OF STRUCTURES WITH OTHER CHARACTERIZATIONS OF 
STORAGE STRUCTURES 

The concept of a structure as defined in this chapter is believed to 
characterize storage structures in a way more abstract than other methods. 
It is believed to capture exactly the access properties of a storage 
structure and no more than that. (What else is a storage structure other 
than its access properties?) In order to support this assertion we shall 
compare structures with other methods of characterizing storage structures. 
This will be done by giving a short characterization of a method and by 
showing how the structure S of Figure 2.29 would be represented in that 
method. 

a 

Figure 2.29 

All characterizations are simplifications of the methods. Yet they are 
believed to capture the essential features of the methods. No attempt at 
completeness has been made, though the most prominent methods are all 
discussed. 

2.5.1. Vienna objects 

A "Vienna object" [WEGNER 72], [OLLONGREN 74], [STANDISH 78] can be 
characterized syntactically as follows: 



<object> r+ <atom> 
C: ~compound> 

<compound> 
L..+ (<pair>{, <pair>}) 

<pair> 
L+ [<selector>: <object>] 

Here an atom is a primitive object (e.g., an integer) and a selector 
corresponds to an accessor. r.i is the "null" object. The structure S of 
Figure 2.29 could be represented as follows: 

S = ([a : ([b : b])J, [b : ([a : a])]). 
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Vienna objects are basically trees with branches labelled by selectors and 
atoms as their leaves. This implies that sharing and circularity can only 
be described by introducing a pointer concept,.which is done by allowing 
"composite selectors" (paths) to be used as atoms. This introduces all the 
disadvantages of pointers such as the danger of "dangling references" and 
the fact that an object may have more than one representation. E.g., we 
could have represented S also by: 

S = ([a : ([b : ([a : a])])],[b : ab]). 

Pointers are things which belong to the implementation world. They do not 
belong at the level of abstraction required for specifying objects. Using 
the structure concept, arbitrarily constructed objects can be described 
without the use of pointers. 

2.5.2. Graphs 

Another well-known characterization of a storage structure is the 
graph [ROSENBERG 71], [EARLEY 71], [MAJSTER 77]. Such a graph is a triple 
<N, F,R>, where N is a set of nodes (which are the "objects"), F is a 
collection of partial mappings from N into N and Risa special node (the 
"root"). The structure S could be represented by the graph <N,F,R> with: 

N {1,2,3}, 
F {a, b}, 
R 1, 

where: 

a(l) 2, a(2) t, a(3) 2, 
b(l) 3, b(2) 3, b(3) t. 

Here "t" means "undefined". For the description of sharing and circularity 
pointers are not necessary. However, the representation of a storage 
structure is far from unique. There are numerous graphs which correspond to 
the same structure. Not only may the nodes of a graph be chosen in 
different ways (e.g., 3,5,7 instead of 1,2,3), but graphs may also contain 
unreachable nodes (as the consequence of operations performed on them). 
This leads to all kinds of unnecessary complications in working with graphs 
(like performing a garbage collection, which, again, is something that 
belongs to the implementation world). Note that, in a certain sense, the 
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nodes of a graph are superfluous: They only act as meeting places of access 
paths, which is exactly what objects in a structure are about. Note also 
that creation is an unnatural operation in a graph: A node is "created" by 
selecting it from a set of already existing "free" nodes. 

2.5.3. States of a state machine 

A "state machine" [BERZINS 79], [PARNAS 72] can be viewed (in a .very 
simplified way) as a triple <N,'f.,R>, where N is a set of "objects", r. is a 
set of "state functions" and Risa special object (the "root"). A state 
function is a total mapping from N into a set containing such things as 
integers, booleans, tuples and sets of objects, etc •• A state machine is 
always in a certain "state" cr € L The value of an object in a state can be 
determined by applying cr to that object. The structure S could for example 
be represented by the following state cr of a state machine <N,r.,R> with 
N = {1,2,3, ... } and R = 1: 

a(l) {( a, 2), (b, 3)}, 
a(2) {(b,3)}, 
a(3) {(a, 2)}, 
a(n) undefined (n ~ 4). 

All disadvantages of graphs apply here too. There is an additional 
disadvantage, because objects are no longer pure storage structures, In 
order to access an object all kinds of operations (such as selection from a 
set) must be performed, which belong to the realm of abstract data types. 
This confusion of levels of abstraction is not desired, particularly not if 
storage structures are used in the specification of abstract data types as 
in [BERZINS 79]. 

2.5.4. Relational objects 

A "relational object" [EARLEY 73], [KENNEDY & SCHWARTZ 75] can be 
characterized as follows: 

An object is either 
(I) An atom. 
(2) A set of objects. 
(3) A tuple of objects. 

Storage structures are characterized in a set-theoretic way here, where an 
"atom" may be anything primitive. This approach is somewhat similar to the 
state machine approach, which implies that the same disadvantages hold 
(most notably, the confusion of levels of abstraction). If we choose the 
natural numbers as our atoms, the structure S could be represented by: 

S = ({(1,a,2),(1,b,3),(2,b,3),(3,a,2)},1). 

This could create the impression that relational objects are the same as 
graphs, which is not true. Relational objects are more general than graphs 
(each graph can be described as a relational object, but not the reverse). 
They have in counnon with graphs, that sharing can only be modelled by 
representing objects in some way as primitive values (the natural numbers 
above). The prograunning language SETL [KENNEDY & SCHWARTZ 75] even has a 
special atomic data type for this purpose. 



81 

2.6. CONCLUSION 

In this chapter we addressed the specification problem for algorithms 
and data structures. The basis of our discussion was the novel concept of a 
"structure", which is essentially a simple mathematical model of the access 
properties of a storage structure. Using this model, storage structures 
with arbitrary sharing and circularities can be characterized without the 
need to introduce pointers. Creation and replacement become very natural 
operations, which cannot produce any "garbage" since the concept of 
unreachability is non-existent in a structure. 

Due to the fact that structures are general and yet free of such low 
level concepts as pointers and garbage, they lend themselves very well to 
the basis of a specification language for realistic algorithms and data 
structures, including those algorithms and data structures which involve 
dynamic and shared data. We indicated how such a language can be 
constructed. First, we defined a language for manipulating structures. The 
semantics of this language could be defined in a very simple way. Then, 
led by an example of a specification, we sketched how this language can be 
extended into a full-fledged specification language through the addition of 
abstraction facilities. The latter language, though syntactically 
different, corresponds to a great extent to the specification language used 
in the following chapters. 

The language which has been sketched in this section is suited for use 
at extremely different levels of abstraction. Instead of a specification 
language it could just as well be viewed as a programming language, which 
is comparable to other languages featuring abstract data types such as CLU 
[LISKOV et al. 77], ALPHARD [WULF et al. 76], EUCLID [LAMPSON et al. 77] or 
MODULA [WIRTH 77]. The ideas set out in this chapter may therefore also be 
of interest to the design of programming languages. In particular, it is 
contended that on the basis of these ideas it is possible to design a 
general purpose programming language of a simplicity comparable to PASCAL 
[JENSEN & WIRTH 74], but differing from it in three major respects. First, 
the language is free of pointers. Secondly, it has an abstract data type 
facility as its sole data structuring mechanism. Thirdly, it has. a simple 
and rigorous semantics. The design of such a language lies outside the 
scope of this monograph, however. 
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CHAPTER 3 

IMPLEMENTATION 

3.0.1. The transformational approach 
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One of the central problems in computer science is the implementation 
problem: How to construct an efficient algorithm or data structure from a 
given specification. Let us, for the time being, restrict ourselves to 
algorithms. A rather promising and increasingly popular approach to the 
implementation problem for algorithms is the transformational method. The 
basic idea behind the method of algorithm transformation (or "algorithmics" 
[MEERTENS 79]) is to start with a simple "abstract algorithm", which can 
easily be proved correct but which may be intolerably inefficient. Then a 
number of correctness-preserving transformations are applied to the 
algorithm, turning it into a more complex "concrete algorithm", which is 
still correct and (hopefully) more efficient. The virtues of this approach 
are widely known and will not be discussed here. For a short introduction 
and survey the reader is referred to [DARLINGTON 79]. 

The correctness of the abstract algorithm which serves as the starting 
point of the transformation process can be proved by conventional means, 
e.g. by using the inductive assertion technique [HOARE 69]. If the abstract 
algorithm and the problem specification coincide, this step is not even 
necessary. Problems arise if an attempt is made to prove that the 
transformations applied to the abstract algorithm do not affect the 
correctness of the algorithm. The conventional verification methods seem to 
fall short here. They are usually extended with rather heavy formal 
machinery (see for example [BACK 80]), which increases the complexity of 
the verification process considerably. 

In this chapter a simple method for the derivation of algorithms 
through correctness-preserving transformations will be presented, which 
allows us to prove that a transformation is correctness-preserving using 
standard verification techniques. As such it could be used to prove the 
correctness of the transformations which are used to derive the garbage 
collection and compaction algorithms in Chapter 5. Instead of a 
verification tool, it could just as well be viewed as a design tool. 
(Ideally, it should be used simultaneously as both.) As such it will be 
used in Chapter 6. 

The method is based on two considerations. First, given the 
surrounding intermediate assertions, the correctness of most local 
transformations is self-evident. Secondly, global transformations which 
amount to a change of representation of a variable (or variables) can be 
reduced to a number of local transformations. The method, therefore, is 
essentially a way to accomplish a change of data representation in a 
correctness-preserving way. It does not cover such global transformations 
as recursion removal or loop fusion. As we shall see in Chapters 5-7, 
however, the majority of all global transformations which are applied 
there, are changes of data representation. · 
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3.0.2. Transforming algorithms by adding and removing variables 

In a nutshell the idea is as follows. Let an algorithm S be given, 
which is a correct solution to a certain problem. Suppose S contains a 
variable V, which we would like to replace by another variable W with a 
more efficient representation. The addition to Sofa number of well­
defined assignments to W will not affect the correctness of S. (That is, if· 
these assignments have no side effects, which we shall tacitly assume 
throughout this chapter.) Having added assignments to W a number of 
intermediate assertions, which relate W to other variables in S 
(particularly V), can be proved to hold inside S. These intermediate 
assertions can be used to replace certain expressions in S by equivalent or 
more restrictive ones, which clearly does not affect the correctness of S. 
If the proper assignments to W were added to S, it should be possible to 
make these replacements in such a way that Vis not used anywhere else but 
in assignments to itself. Consequently, V has turned into a "redundant 
variable", the assignments to which, may be removed from S without 
affecting the correctness of S. (Again, assuming the absence of side 
effects.) Thus the global change of variable from V to W can be performed 
step by step by the following local transformations: adding assignments to 
W, making local replacements and removing assignments to V. Notice that 
this scheme works just as well if V and Ware sets of variables instead of 
single variables. 

The above scheme constitutes a very flexible way of changing the 
representation of variables. Since the derivation of many algorithms 
amounts to continually changing the representation of variables, it is also 
very general. In a derivation of an algorithm according to this scheme only 
small steps are taken, which can easily be seen to be correctness­
preserving by proving intermediate assertions (if necessary). No 
enhancement of existing verification techniques is therefore required, at 
least not to convince oneself intuitively of the correctness-preservation 
of each step. From a strictly formal point of view such an enhancement is 
still necessary, of course. The formalization of the scheme would, among 
many other things, require a precise definition of such concepts .as 
"correctness-preservation", "redundant variable", "local replacement", 
etc •• It is believed that this formalization will not pose any serious 
problems. The level of formality required for it is not sought for here. 
Things will be kept intuitive, yet sufficiently precise to be confident 
about the formal soundness. 

3.0.3. Extension to data structures 

The method described in this chapter can easily be extended to work 
for data structures as well. (In view of the fact that the method is 
essentially a way of accomplishing a change of data representation, this 
will come as no surprise.) Assume that we use the method described in 
Chapter 2 to specify data structures. Following this method a data 
structure is specified by choosing representations for its constituent 
types and defining the operations of the data structure in terms of 
algorithms operating on these representations. The implementation of a data 
structure can be viewed as applying correctness-preserving transformations 
to the specification of the data structure. These transformations can be 
divided into two classes: "algorithmic" and "structural" transformations. 

An algorithmic transformation transforms the algorithm through which 
an operation is specified. The method described here can be used directly 
for such a transformation. A structural transformation transforms the 
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representation of a constituent type of a data structure. A structural 
transformation of a type T can be viewed as replacing some of the 
"accessors" (see Chapter 2) used in the representation of T by other 
accessors. Suppose, for example, we wish to replace the accessor A by 
another accessor B. This can be done as follows. Introduce the accessor B 
in the representation of T, which implies that each object of type T has an 
additional component accessed by B. Subsequently, well-defined assignments 
of the kind "X.B := Y", where X denotes an object of type T, can be added 
to the operations of the data structure without affecting the correctness 
of the (specification of the) data structure. A number of "representation 
invariants", which relate B to the other accessors of the representation of 
T (particularly A), can then be proved to hold. (Note: The representation 
invariants need not hold inside operations that have an access right to T, 
but they should hold "between" the operations of the data structure.) The 
representation invariants can be used to replace certain expressions in the 
operations of the data structure by equivalent or more restrictive ones. If 
the proper assignments were added, it should be possible to make these 
replacements in such a way that the accessor A is not really used any more 
in any of the operations of the data structure. This "redundant accessor" 
may then be removed from the representation of T without affecting the 
correctness of the data structure. Thus structural transformations can be 
applied in essentially the same way as algorithmic transformations. 

The above justifies the fact that we shall restrict ourselves to 
discussing the method as an implementation technique for algorithms. A 
comprehensive example of the use of the method as an implementation 
technique for data structures can be found in Chapter 6. There the method 
is used to transform an abstract machine (which is essentially a data 
structure) into a machine with an efficient storage management system. 
Furthermore, the emphasis here will be on the verification aspect of the 
method, i.e., on the method as a tool to prove the correctness of algorithm 
transformations. 

The method will be described in detail in the next section. In 
Section 3.2 the effectiveness of the method will be demonstrated in the 
derivation of a well-known test case for verification techniques:. the 
Deutsch-Schorr-Waite marking algorithm [SCHORR & WAITE 67], henceforth 
called the DSW-algorithm. In contrast to most other proofs of correctness 
of the DSW-algorithm [DE ROEVER 78], [DUNCAN & YELOWITZ 79], [GERHART 79], 
[GRIES 79], [KOWALTOWSKI 79], [TOPOR 79], [DERSHOWITZ 80] the most general 
form of the algorithm will be chosen here. In Subsection 3.2.1 the problem 
will be defined precisely. From the specification given there, a simple 
algorithm can be derived almost immediately. This algorithm is presented 
and proved correct in Subsection 3.2.2 using the inductive assertion 
technique. Then, in five subsequent "phases" (Subsections 3.2.3-3.2.8), 
each of which follows exactly the scheme described in Section 3.1, the 
DSW-algorithm is derived from this algorithm by correctness-preserving 
transformations. The intermediate assertions which are required in this 
derivation process are again proved by using the inductive assertion 
technique. The algorithmic language used is somewhat informal. In so far as 
the semantics of the constructs of this language is not self-evident, this 
will be explained. Some concluding remarks are made in Section 3.3. 
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3. 1. A SIMPLE IMPLEMENTATION METHOD 

3.1.1. General strategy 

In this section a detailed description of the implementation method 
will be presented as it will be applied in Section 3.2. We assume the 
problem is to construct an (efficient) algorithm which establishes a 
certain input-output relation. The first stage is to construct a simple 
abstract algorithm Sand prove its partial correctness using the inductive 
assertion technique. We assume that the latter is done, as usual, by 
inserting intermediate assertions (henceforth called "assertions") in the 
algorithm. These assertions will from now on be considered to be part of 
the algorithm. (We need them for local replacements.) If sufficiently 
abstract, the algorithm Swill probably be highly nondeterministic. Though 
it need not necessarily terminate, it must be such that a terminating (and 
consequently totally correct) algorithm can be derived from it by 
curtailing the nondeterminism. 

An iterative process of global correctness-preserving transformations 
is now started. The objective of each iteration, or "phase" as we shall 
call it, is to make the algorithm S more efficient. This process is 
continued until a sufficiently efficient (and therefore terminating) 
algorithm results. The rules of the game are that essentially the objective 
of a phase is achieved by replacing a set X of old variables of the 
algorithm by a set Y of new variables, where X and Y may be arbitrarily 
large or small. Two major objectives which can be realized this way are: 
reducing nondeterminism and changing the representation of variables. In 
the former case we could for example have X = Ill and Y = {V}, where V is a 
fresh variable which is used to "control" the nondeterminism. In the latter 
case we could for example have X = {V} and Y = {W}, where W is a variable 
with a more efficient representation than V. The precise rules of the game 
are presented below. 

3.1.2. The four steps 

Each phase consists of the following four steps (which will be 
explained below): 

~ 
Choose fresh variables and insert new assertions (to be made valid) 
expressing a relation between the old and new variables. 

Step 2 

Add assignments to the new variables and using the (old and new) 
assertions make replacements so as to make the new assertions valid. 
Prove that the new assertions are valid. 

Step 3 

Using the assertions make replacements so as to improve the algorithm 
and remove all assignments to redundant variables. 

Step 4 

Replace the assertions containing redundant variables by equivalent or 
weaker assertions not containing redundant variables~ 
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3. I. 2d,. •Step .. ~ 

h!-1 the. +irst step fre.sl} v,p:i4l:ile\l s1,:re. ii;it:ro411ced and the objective to 
be,.icl;li,eyed 1:iy,the t:ra.1-1s+<;>:rmat:ion.phasfi;is,lfidc!own in a number of 
asse:rtiqns, which relate these new, v:a:ris1,bles, t:o .. the old variables of the 
algo:r,ith!11. Jhey'.are inser,t:ed . .it the appropris1,te ,places in the algorithm. 
Th,e.se .isse:rtions need. nqt fully e2epress the ol:ijective to be achieved. (This 
is o+te11Jmpossible llllY:W</-Y, ,e,g •. Jf the. <;>bject:;i.ve is to impose "dynamic" 
rest:rictions Qn the algo:rithl11.) They need only contain the information 
ne~essary to achieve the objective in the next steps. 

3. J.2.2. Step 2 

The purpose of Step 2 is to make the new assertions valid by adding 
ass;i.gl).ID.ents to the new var;i.s1bles., As it tµrns. 94t, it is not always 
posslble.to make these newasserti~ns hold solely by adding assignments to 
tqe ii.ew variabl~s. ll::'. may be. i;.ecessary. t9 perform a number of replacements 
as well, }'his .situation (examples .. of wqich w;i,ll be encountered) occurs 
typic;allywith new assertions, which.ire introduced in order to replace 
nondete:rministic operatioµs .on the old variables by more deterministic 
operat.ions •. New assertions of this type allotv the assertions on the old 
varial>l.es to be strengthened. !lel).ce,it is Impossible to make these new 
assertions hold solely by addi1-1gassignments.to the new variables. 
Replacements iilvolving the old .. va:r;(.ables .must also be performed. 

It is obvious to allow replacements 1:i . .ised on the old assertions only 
in Step 2. In the case of a restriction of nondeterminism, this implies 
that the restriction of the nondeterminism must be accomplished without the 
use of the new variables, which are often specifically introduced for that 
purpqse. I.f possible at. all, this may ma15,e the restriction of the 
nol).determ:i_nism an unnecessarily awkward:affa;i.r. It seems reasonable, 
therefo~e, to allow :replai:;.ements b;;L~e.cf on al:r.e!ldy valid new assertions as 
well. Yet, this is, still not suffi,c;i,ept. Consider a replacement which is to 
be made inside a loop i11 order to m.ikea new assertion, inside that loop, 
hold,. Due, to the cyclic na.ture o+ loop.s, tµe correctness of this 
replacem(;!nt. may depend on, th,e, new assertion, tl:,.e truth of which the 
replacement, .is sup.pgsed to establis,h., ... 

The way· out· is to allow replacements in Step 2 which are based on both 
the old and new assertions, even if the ;Latter are not yet valid. At first 
sight this may seem to introduce ,sic· viciqus· c{rcle and therefore be 
incorrect. The surprising thing is.that it is not. (In view of the fact 
that the inductive assertion techniq4e is,.b.ased on induction, it may not be 
so surprising after all.) This will be proyecf .at· the end of this section. 
From a practical point of view it is a great convenience that the new 
assertions can be used freely before t:heJr tr4th has been established. 
Another question is whether it is realiy necessary from a theoretical point 
of view. We shall argue in Subsecti.,on, 3.2.:,.} that in a certain sense it 
indeed is. In the derivation of theDSW--:algorithm to be presented, there 
are two places where assertions are used before their truth has been 
established. Both could have been .avoided,though in one case in a highly 
artificial way. 

3.1.2.3. ,Step 3 

The, tqird step is to ful.ly exploit the new assertion!. to make 
replacements in the.algorithm so as t9 achieve the desired objective. 
Strictly speaking this could already have been done in the second step, but 
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from a conceptual point of view it is better to separate the replacements 
necessary to make the new assertions hold from the other "optimizing" 
replacements. The class of replacements allowed will not be defined here. 
The only requirement is that the replacements must be very simple and 
evidently correctness-preserving. The replacements can be used either to 
replace expressions by more efficient ones, or to turn certain variables 
into redundant variables. What exactly is meant by a "redundant variable" 
will not be defined here. Broadly speaking a variable is redundant in an 
algorithm if it is a local variable of the algorithm and it is used in 
assignments to itself only. It is obvious that the assignments to such a 
variable may be removed from the algorithm without affecting the 
correctness. 

3.1.2.4. Step 4 

In Step 3 all assignments to redundant variables have been removed. 
Consequently these variables have turned into "ghost variables" of the 
algorithm. Yet, they may (and probably will) still occur in the assertions. 
From a strictly formal point of view these assertions no longer hold now. 
Simply throwing them away would probably make the remaining assertions too 
weak for further use. In Step 4, therefore, new and sufficiently strong 
assertions, in which the redundant variables no longer occur, must be 
derived from the old assertions to take their place. This could be done in 
a systematic way by putting an existential quantifier before each 
assertion, quantifying over all redundant variables. It is easy to see that 
these derived assertions will hold. 

3.1.3. Some remarks 

Though the final algorithm obtained by the transformation process 
described above is partially correct "by construction", it must still be 
proved to terminate. This need not necessarily be done afterwards, but can 
be done at some intermediate stage in the derivation. Note that, if 
necessary, between two phases or between Steps 2 and 3 additional 
assertions can be proved and inserted in the algorithm. Note also that if 
we consider the proof of the new assertions in Step 2 as a separate- step, 
the steps performed in a phase are almost perfectly syunnetrical: 

Step I: Introducing variables & 
Strengthening assertions. 

Step 2: Adding assignments & 
Making replacements. 

Proving assertions. 

Step 3: Making replacements & 
Removing assignments. 

Step 4: Weakening assertions & 
Eliminating variables. 

If desirable, the assertions of the final algorithm can be used to 
give an independent proof of correctness of that algorithm. This saves one 
the trouble of inventing the assertions required for an independent proof 
of correctness. It may turn out, however, that the assertions of the final 



algorithm are too weak for that purpose. So, if an independent proof of 
correctness of the final algorithm should be possible, care must be taken 
to keep the assertions strong enough. The latter is entirely the 
responsibility of the algorithm constructor. 

89 

Since the DSW-algorithm to be derived in Section 3.2 consists of a 
single loop, it is more convenient to keep track of the loop invariants 
instead of the (intermediate) assertions. In Section 3.2 invariants will 
therefore be used instead of assertions. Each invariant corresponds to four 
assertions: one i1D1Dediately before the loop, one at the beginning and one 
at the end of the loop body, and one ilDIDediately after the loop. If 
assertions at other places in the algorithm are required in order to apply 
a transformation, they will be derived (in a usually straightforward way) 
from the invariants. 

3.1.4. On using assertions before they are valid 

As we promised above we shall show now that in Step 2 we can indeed 
safely use the new assertions for replacement purposes before their truth 
has been established. This we shall do by applying Step 2 in a more 
circumstantial way. Let S be the algorithm prior to Step 2. Let X be the 
set of old variables, and Y the set of new variables introduced in Step I. 
Let Pi(X) be the old assertions, and Qi(X,Y) the new assertions introduced 
in Step I (i = 1,2, .•• ). Here the index i denotes a place in the algorithm. 
Consider a statement Si(X) in S, prior to which the assertion Pi(X) holds. 
This will be denoted as follows: 

First of all strengthen Pi(X) to Ri(X), where Ri(X) is the strongest 
assertion which holds prior to Si(X) (consequently Ri(X) • Pi(X)): 

Insert a nondeterministic assignment "X,Y := [Ri(X) I\ Qi(X,Y)]" prior to 
Si(X), which assigns values to the X- and Y-variables in such a way that 
Ri(X) I\ Qi(X,Y) holds afterwards. This does not affect the correctness of 
the algorithm, because Ri(X) still holds prior to Si(X): 

S = ••• {Ri(X)} X, Y := [Ri(X) A Qi(X, Y)] 
{Ri(X) A Qi(X,Y)} Si(X) ••• 

Make replacements in Si(X) based on the validity of Pi(X) (implied by 
Ri(X)) and Qi(X,Y) prior to Si(X). Suppose these replacements turn Si(X) 
into Ti ( X, Y) : 

S = ••• {Ri(X)} X, Y := [Ri(X) A Qi(X, YJ] 
{Ri(X) A Qi(X, Y)} Ti(X, Y) ••• 

Make additional replacements in Sand add assignments to Y-variables in 
such a way that Qi(X, Y) will hold prior to "X, Y := [Ri(X) I\ Qi(X, YJ]": 

S = ••• {Ri(X) A Qi(X,YJ} X,Y := [Ri(X) A Qi(X,Y)] 
{Ri(X) " Qi(X, YJ} Ti(X, YJ ••• 

Remove the nondeterministic assignment "X, Y : = [Ri (X) I\ Qi (X, Y)]": 
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The above sequence of transformation steps is evidently correct and can be 
applied simultaneously to all statements of S. In its effect it is the same 
as Step 2. Consequently the latter is also correct. 

3.2. AN EXAMPLE: THE DSW-ALGORITHM 

3.2.1. Problem 

Given is a finite set G of objects. Each object is composed of a 
finite number of components. The set of all components of an object Xis 
denoted by comp(X). Different objects have different components (so objects 
do not "overlap"). Associated with each object Xis a unique reference, 
denoted by r-ef(X), which is said to refer to X. The unique object which has 
reference p associated with it, will be denoted by obj(p). Each component C 
of an object contains a value, denoted by val(C). A reference is a value. 
Among other values (which we are not interested in here) references may 
therefore be contained in components of objects. A component of an object 
which contains a reference will be called a branch of the object. The set 
of all branches of an object X will be denoted by branches(X) and the 
number of branches of X by degree(X). The branches of X are numbered from 1 
to degree(X). The i-th branch of X (where 1 ~ i ~ degree(X)) is denoted by 
branch(X,i). Objects will be pictured as in Figure 3.1. There is a dummy 
object, denoted by null, which is not an element of G. The reference of 
null is denoted by nil: nil= ref(n:ull). 

comp~nent 
' 

object ----{000() 

Figure 3.1 

The set G of objects is closed. This implies that for each reference p 
contained in a branch of an object in G, the object referred to by pis 
also in G. There is one special object R in G, called the root. G can now 
be viewed as a directed graph, where the objects are the nodes and the 
references contained in branches are the edges of the graph. An example of 
what G may look like is given in Figure 3.2. 



R 

0 
y X 

Figure 3.2 

The concept of reachability for objects in G is defined by the 
following rules: 

(I) The root R is reachable. 
(2) If Xis a reachable object, 

BE branehes(X), 
Y = obj(val(BJJ, 

then Y is reachable. 
(3) An object is reachable on account of the above rules only. 
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For example in Figure 3.2, Xis a reachable object and Y is an unreachable 
object. 

The problem is to construct an algorithm which determines the set of 
all reachable objects. Such an algorithm is traditionally called a "marking 
algorithm". For the description of marking algorithms a variable set M of 
objects will be introduced. It is the job of a marking algorithm to 
establish the truth of the following assertion: 

M ={XE GI Xis reachable}. 

It follows directly from the definition of reachability that this assertion 
is equivalent to the conjunction of the following three assertions: 

(Al) R € M. 
(A2) V X € M VB E branahes(X) [obj(val(B)) € M]. 
(A3) V X € M [Xis reachable]. 

The DSW-algorithm, which is a particular solution to the above problem, 
will now be derived in six "phases". In the initial phase (Phase O) a 
simple algorithm is constructed, which serves as the starting point. 

3.2.2. Phase 0: Getting started 

Looking at the definition of reachability one sees that it is almost 
an algorithm itself. That is, if we start with M = {R} and repeat the 
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following actions "long enough", M will finally become equal to the set of 
reachable objects: 

Let X e: M. 
If branehes(Xj f ¢ 

I Let Be: branehes(X). 
Let Y = obj(val(B)). 
M := Mu{Y}. 

Here the operations "Let Xe: M" and "Let Be: branches(X)" select an element 
from a set in a nondeterministic way. This nondeterminism can be thought of 
as being governed by a "demon". The first part of the derivation of the 
DSW-algorithm mainly consists of "exorcising" this demon, i.e. convert it 
to determinism. 

The question is what "long enough" means. A marking algorithm should 
establish the truth of the assertions (Al), (A2) and (A3). The assertions 
(Al) and (A3) are initially true and are not affected by the above actions. 
Now one could say that "long enough" means: until assertion (A2) holds. The 
process need not stop exactly at the point where this assertion holds for 
the first time, however (most known marking algorithms do not). Any point 
beyond this point will do as a termination point. In order to model this 
the following nondeterministic construct will be introduced: 

Beyond A 
I s. 

where Sis a series of actions and A is an assertion. It prescribes that S 
must be repeated until some (but not necessarily the first) point where A 
holds. Note that prior to an execution of S, the assertion ~A need not 
necessarily hold. The termination point is supposed to be chosen 
nondeterministically by the demon. 

The above construct turns out to be very useful in the derivation of 
algorithms. From an algorithm containing this construct a new algorithm can 
be derived by replacing the assertion A by another assertion B which is a 
sufficient condition for A, i.e. B ~ A. If the old algorithm was partially 
correct, so will the new one. Neither of the algorithms needs to terminate, 
however. The termination of any algorithm containing the above construct 
will depend on the nature of the demon. The demon could for instance be 
"unfair" and refuse to choose a termination point even if the termination 
condition holds after each iteration. This can be prevented by replacing 
the above construct by the deterministic construct: 

Until A 
I s. 

which prescribes zero or more repetitions of S until A holds for the first 
time. Note that prior to an execution of S the assertion ~A will now hold. 

As indicated above, the nondeterministic algorithms considered here 
need not terminate. Therefore some people may not call them algorithms at 
all, but here we will. Nondeterministic algorithms are viewed here as 
"abstractions" of (more) deterministic algorithms. The demon represents the 
part of these abstract algorithms which has been "abstracted away". Certain 
terminating and non-terminating algorithms have the same abstraction. So in 
the inverse process of abstraction, i.e. the derivation of algorithms, it 
is often possible to derive both terminating and non-terminating algorithms 
from nondeterministic algorithms. This also applies to the following 
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nondeterministic algorithm which will be chosen as a starting point for the 
derivation of the DSW-algorithm: 

ALGORITHM I 

M := {R}. 
Beyond V XE M VB E branahes(X) [obj(val(B)) EM] 

Let X E M. 
If branahes(X) f ¢ 

I Let BE branahes(X). 
Let Y = obj(val(B)). 
M:=Mu{Y}. 

The (partial) correctness of this algorithm should be obvious. It can be 
established formally by proving that (Al) and (A3) hold immediately before 
the loop and are kept invariant by the loop body. Assertions which satisfy 
the latter properties will (as usual) be referred to as "invariants". So 
for Algorithm I we have: 

INVARIANTS 

(!.!)REM. 
(1.2) V XE M [Xis reachable]. 

In the sequel the actions occurring in the body of the loop will be 
referred to as indicated below: 

Let X € M. 
If branahes(X) f ¢ 

I 
Let BE branahes(X). 
Let Y = obj(val(B)). 
M : = Mu {Y}. 

visiting X 

tracing B 

marking Y 

All following subsections (except Subsection 3.2.5) will be divided into 
four parts, each of which corresponds to one of the four transformation, 
steps described in Section 3.1. The next two derivation phases will consist 
of limiting the freedom of the demon in such a way, that even though the 
algorithm remains nondeterministic, termination is guaranteed. 

3.2.3. Phase I: Restricting the tracing of branches 

Even if in Algorithm I the beyond-construct was replaced by an until­
construct, the algorithm need not terminate. The reason is that there is 
too much freedom in the choice of objects to be visited and branches to be 
traced. The demon could for instance choose the same object and the same 
branch in each iteration of the loop. Consequently the termination 
condition would never hold (except in trivial cases). Our primary concern 
will therefore be to impose restrictions on the visiting of objects and 
tracing of branches in such a way, that the termination condition of 
Algorithm I will hold in a finite number of iterations. 

What are reasonable restrictions? A general reasonable restriction 
which may be imposed on an algorithm is, that it should not do the same 
thing twice if once is enough. Let us apply this principle to the tracing 
of branches first. It is easy to see that it makes no sense to trace a 
branch more than once in Algorithm!. The second time a branch B would be 
traced, the object Y referred to by the value of B would already have been 
marked. So the following restriction is reasonable: 
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RESTRICTION 1 

A branch may be traced only once. 

We will now transform Algorithm 1 in such a way that this restriction is 
met. 

3.2.3.1. Step 1 

The enforcement of Restriction 1 introduces a certain overhead. The 
demon must be prevented from selecting a branch which has already been 
traced. For that purpose a variable set C(X) of branches of X will be 
associated with each object X with the following interpretation: 

INTERPRETATION 1 

For each object XE M, C(X} is equal to the set of branches of X which 
have not yet been traced. 

This interpretation of C, which is of course strictly informal, can 
immediately be translated into a number of invariants for the algorithm to 
be derived (by adding C). First of all the obvious invariant: 

I INVARIANT 1.3 

V XE M [C(X) c branehes(X}]. 

Secondly, each branch of an object X which is not an element of C(X) has 
already been traced. For each branch B which has been traced, the object 
referred to by the value of B has been marked. Consequently we have: 

I INVARIANT 1. 4 

V X E M VB E branehes(X) \ C(X) [obj(vaUB)) E M]. 

3.2.3.2. ~ 

Let us now insert assignments to C in Algorithm 1 according to 
Interpretation 1, thus making sure Invariants 1.3 and 1.4 hold. First of 
all C(X) must be properly initialized for each object X. For the root this 
leads to: 

ADDITION 1. 1 

M := {R} -+ 

M,C(R) := {R},branehes(R) 

For all other objects Y, C(Y) must be initialized to branehes(Y) as soon as 
Y is marked for the first time. Whether an object Y is marked for the first 
time can be determined by testing whether Yi M prior to marking Y, 
resulting in: 

ADDITION 1 • 2 

M := Mu {Y} -+ 

If Y i M 
I C(Y) := branehes(Y). 
M : = Mu {Y} 
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After tracing a branch B of an object X, B must be removed from C(X). This 
can be accomplished by: 

ADDITION I. 3 

Let BE bra:nches(X) -
Let BE branahes(X). 
C(X) := C(X) \ {B} 

Note that C(X) is well-defined here because XE M. The above additions 
transform Algorithm I into Algorithm I* for which besides Invariants I.I 
and 1.2 the additional Invariants 1.3 and 1.4 hold, as can easily be 
proved: 

ALGORITHM I* 

M,C(R) := {R},bra:nches(R). 
Beyond V XE M VB E bra:nches(X) [obj(vaZ(B)) EM] 

Let X E M. 
If branches(X) + ¢ 

Let BE branahes(X). 
C(X) := C(X) \ {B}. 
Let Y = obj(vaZ(B)). 
If y I. M 
I C(Y) := bra:nches(Y). 
M : = Mu {Y}. 

3.2.3.3. Step 3 

In this step the invariants will be used to make replacements in 
Algorithm I*. Among other things these replacements will be used to enforce 
Restriction I. No variables will be made redundant. First, suppose an 
object X for which C(X) =¢is visited. All branches of X have then already 
been traced, and using Invariant 1.4 it can easily be seen that tracing a 
branch B of X has no effect whatsoever on Mor C. Consequently tracing a 
branch B of an object X may be omitted if C(X) =¢,which justifies the 
following replacement: 

REPLACEMENT I . I 

branches(X) + ¢ -
C(X) f ¢ 

Since we are now sure that C(X) +¢,when selecting a branch B of X to be 
traced, B can just as well be selected from C(X) (which is a subset of 
branahes(X) according to Invariant 1.3) instead of branches(X): 

REPLACEMENT 1.2 

Let BE bra:nches(X) -
Let BE C(X) 

The above two replacements enforce Restriction I. Two more replacements 
will be applied in order to "improve" Algorithm I*. 

Let us have a look at the termination condition of Algorithm I* (i.e. 
assertion (A2)). It follows directly from Invariant 1.4 that this condition 
is implied by the simpler condition: 
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V XE M [C(X) = ¢]. 

The following replacement is therefore in order: 

REPLACEMENT I • 3 

V XE M VB E branahes(X) [obj(val(B)) EM] -->­

V XE M [C(X) = ¢] 

Finally, it is easy to see that marking an object Y makes sense only if 
Y l M. This leads to the following optimization: 

REPLACEMENT I • 4 

IfYlM }-I C(Y) := branahes(Y). 
M := Mu {Y} 

If Y l M 
I M,C(Y) :=Mu {Y},branahes(Y) 

This concludes the third step. 

3.2.3.4. Step 4 

In this step possible redundant variables are supposed to be removed. 
Since there are none, it suffices to give the final algorithm of this first 
transformation phase together with its invariants: 

ALGORITHM 2 

M,C(R) := {R},branahes(R). 
Beyond V XE M [C(X) = ¢] 

Let X E M. 
If C(X) ,fa ¢ 

Let BE C(X). 
C(X) := C(X) \ {B}. 
Let Y = obj(val(B)). 
If Y l M 
I M,C(Y) := Mu {Y},branahes(Y). 

INVARIANTS 

(2.1) REM. 
(2.2) V XE M [Xis reachable]. 
(2.3) V XE M [C(X) c branahes(X)]. 
(2.4) V XE M VB E branahes(X) \C(X) [obj(val(B)) EM]. 

Note that only Invariant 2.4 is temporarily disturbed inside the loop. 

3.2.4. Phase 2: Restricting the visiting of objects 

In this phase restrictions will be imposed on the visiting of objects. 
Visiting an object Xis useless if all branches of X have already been 
traced. A proper restriction would therefore be: only objects X with 
C(X) 'F ¢maybe visited. Since in Algorithm 2 at the beginning of a visit 
to an object X it is already checked whether C(X) ,fa¢, it is convenient to 
weaken this restriction a little and allow for one visit when C(X) = ¢. 
This extra visit can then be used to establish that C(X) =¢and take 



measures to prevent X being visited again. The following restriction will 
therefore be imposed: 

RESTRICTION 2 

As soon as C(X) 

3.2.4. I.~ 

¢, X may be selected for a visit once, at most. 
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Again the enforcement of the above restriction introduces a certain 
overhead. The demon must be prevented from selecting an object X for a 
visit for which C(X) =¢and which has already been visited (once) since 
C{X) = ¢. This will be accomplished through the introduction of a variable 
set U of marked objects.Uhas the following interpretation: 

INTERPRETATION 2 

U is equal to the set of all marked objects X for which either: 
(I) C(X) f ¢, or 
(2) C(X) =¢and X has not been selected for a visit since C(X) ¢. 

It follows iunnediately from this interpretation of U that the following 
invariant should hold: 

I INVARIANT 2.5 

u CM. 

Since for each marked object X, X t U implies that ~(C(X) +¢),we also 
have: 

I INVARIANT 2. 6 

V X .E M \ U [C(X) ¢). 

3.2.4.2. Step 2 

Assignments to U will now be added to Algorithm 2 according to 
Interpretation 2, so as to make Invariants 2.5 and 2.6 hold. First the 
initialization of U, which is obvious: 

ADDITION 2. I 

M,C(R) := {R},branahes(RJ --+ 
M,C(R),U := {R},branahes(R),{R} 

The first (and as will turn out the only) time an object is a candidate for 
addition to U is when the object is marked. At the moment an object Xis 
marked (for the first and only time) in Algorithm 2, it clearly satisfies 
one of the two conditions specified in Interpretation 2. It should 
therefore be added to U: 

ADDITION 2. 2 

M,C{Y) := Mu {Y},branahes(Y) --+ 
M,C(Y),U :=Mu {Y},branches(Y},U u {Y} 

It follows from Interpretation 2 that an object X must be removed from U 
the first time it is selected for a visit when C(X) =¢.This can be 
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accomplished by adding an else-part to the conditional clause 
"If C(X) 'F </> ••• " in Algorithm 2: 

ADDITION 2.3 

If C(X) 'F </> l ' 
1... r 

If C(X) ,f, </> 

I ... 
else 
I u :=U\{X} 

As soon as an object Xis removed from U, C(X) =</>and will remain so. 
Hence X need never be added to U again. All provisions to keep track of U 
according to Interpretation 2 have thus been made. The additional 
Invariants 2.5 and 2.6 can easily be proved to hold for the algorithm 
obtained by applying the above additions to Algorithm 2: 

ALGORITHM 2* 

M,C(R),U := {R},branehes(R),{R}. 
Beyond V XE M [C(X) = </>] 

Let XE M. 
If C(X) ,f, </> 

Let BE C(X). 
C(X) := C(X) \ {B}. 
Let Y = obj(val(B)). 
If Yi M 
I M,C(Y),U :=Mu {Y},branches(Y),U u {Y}. 

else 
I u := u \ {X}. 

3.2.4.3. ~ 

Replacements will now be made to enforce Restriction 2, using the 
additional information gathered in the variable U. At first sight 
Restriction 2 can easily be enforced by selecting an object X for a visit 
from U instead of M. This poses a little problem, however, because U may be 
empty. Therefore, first, provisions will be made to ensure that U 'F </> prior 
to an iteration of the loop. 

Consider the termination condition of Algorithm 2*. It follows from 
Invariant 2.6 that this condition is implied by the condition: 

u = </>. 

So the following replacement is allowed: 

REPLACEMENT 2. I 

V XE M [C(X) 
u = </> 

This replacement in itself is not enough to ensure that U 'F </> prior to an 
iteration of the loop. It is, if the beyond-construct is replaced by an 
until-construct: 



REPLACEMENT 2.2 

Beyond-->­
Until 

Restriction 2 is now enforced by: 

REPLACEMENT 2.3 

Let X E M -->­
Let X E U 

3.2.4.4. ~ 

Again no redundant variables occur in the algorithm derived so far. 
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The variables C and U have only been used to restrict nondeterminism and 
not to change the representation of other variables. The final algorithm of 
this transformation step (and consequently the entire transformation phase) 
is therefore equal to the final algorithm of .the previous step: 

ALGORITHM 3 

M, C(R), U : = {R},branches (R), {R}. 
Until U = ¢ 

Let XE U. 
If C(X) ,f, ¢ 

Let BE C(X). 
C(X) := C(X) \ {B}. 
Let Y = obj(val(B)). 
If Yi M . 
I M,C(Y),U :=Mu {.r},branches(Y),U u {Y}. 

else 
I u := u \ {X}. 

INVARIANTS 

(3.1) REM. 
(3.2) V XE M [Xis reachable]. 
(3.3) V XE M [C(X) c branches(X)]. 
(3.4) V XE M VB E branches(X) \ C(X) [obj(vaUB)) EM]. 
(3.5) Uc M. 
(3.6) V XE M\U [C(X) = ¢]. 

3.2.5. Interlude: Termination 

Having restrained the visiting of objects and tracing of branches 
drastically and having replaced the nondeterministic beyond-construct by 
the deterministic until-construct, Algorithm 3 may be expected to terminate 
irrespective of the nature of the (not yet fully exorcised) demon. This 
can be established more formally as follows. During each iteration of the 
loop in Algorithm 3 a marked object Xis visited. If C(X) ,f, ¢, a branch B 
of Xis traced, which has not been traced before, according to 
Restriction I. If C(X) =¢,Xis removed from U and will not be visited a 
next time according to Restriction 2. Hence the sum of the number of 
branches of marked objects, which have already been traced, and the number 
of marked objects which will not be visited again, will increase by one 
with each iteration of the loop. Translated into more formal terms this 
implies that the value of the following expression will increase by one 
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with each iteration of the loop: 

#(M\U) +i: XE M [#(branehes(X) \C(X)}]. 

The fact that this is indeed so, can easily be verified. Because of the 
finiteness of the number of objects and branches, the value of this 
expression has a finite upper bound. Termination of Algorithm 3 is thereby 
guaranteed. 

The fact that the value of the above expression increases by one with 
each iteration of the loop allows an even stronger statement on the 
termination of Algorithm 3. The initial value of the above expression is 1. 
At termination of Algorithm 3 U =¢and C(X) =¢for each XE M. The final 
value of the expression is therefore: 

#Q + i: X E Q [#branehes(X}], 

where Q is the set of reachable objects. Consequently, Algorithm 3 will 
terminate after the following number of iterations: 

i: X E Q [1 + degree(X)]. 

Assuming that all "primitive" operations in Algorithm 3 take a constant 
time, the above implies that Algorithm 3 operates in a time which is linear 
in the number of reachable objects and the number of branches of reachable 
objects. This is as good as we can expect. 

3.2.6. Phase 3: Changing the representation of C 

In this phase and the following, the exorcising of the demon will be 
completed. The remaining places where the demon resides are the operations 
"Let XE U" and "Let BE C(X)". Here we shall consider the operation 
"Let BE C(X)". The only operations which are performed on C(X) are 
initialization, testing for equality to¢, and selecting and innnediately 
thereafter removing an element. The following restriction, which eliminates 
the demon from "Let B E C(X)", is therefore enforceable: 

RESTRICTION 3 

Branches are selected and removed from C(X) in the order of their 
numbering. 

3.2.6.1. ~ 

Restriction 3 can be complied with by associating a variable counter 
k(X) with each marked object X with the following interpretation: 

INTERPRETATION 3 

For each object XE M, k(X) is the number of the last branch which has 
been removed from C(X). If no branches have been removed from C(X) 
yet, k(X) = 0. 

This interpretation implies that k must first of all satisfy the following 
invariant: 

I 
INVARIANT 3.7 

V XE M [O $ k(X) $ degree(X)]. 



Moreover, Restriction 3 together with Interpretations I and 3 imply that 
the following invariant should hold: 

I 
INVARIANT 3.8 

V X E M [C(X) 

3.2.6.2. Step 2 

{bra:nch(X,i) I k(XJ <is degree(XJ}]. 

IO I 

In this step assignments to k should be added in agreement with 
Interpretation 3 in order to make Invariants 3.7 and 3.8 hold. However, 
Invariant 3.8 cannot be made to hold without also making some replacements. 
The reason is that in contrast to the invariants derived before, 
Invariant 3.8 critically depends on the restriction of nondeterminism 
(Restriction 3) to be enforced. Invariant 3.8 can therefore only be made to 
hold by enforcing that restriction through a replacement first. This is an 
example where it is essential that a replacement is used before an 
addition. 

Let us perform the additions and replacements required to make 
Invariants 3.7 and 3.8 hold now. The initialization of k, which should be 
done together with the initialization of C, is obvious and leads to the 
following additions: 

ADDITION 3. I 

M,C(R),U := {R},bra:nches(R),{R}--+ 
M,C(R),U,k(R) := {R},bra:nches(R),{R},O 

ADDITION 3.2 

M,C(Y),U :=Mu {Y},bra:nches(Y),U u {Y} --+ 

M,C(Y),U,k(Y) :=Mu {Y},branches(Y),U u {Y},O 

The only statement which disturbs Invariant 3.8 is "C(X) := C(X) \ {B}". 
An assignment to k(X) should therefore be added to this statement. First we 
must make sure, however, that Bis chosen according to Restriction 3, 
because otherwise it is impossible to restore Invariant 3.8. According to 
Interpretation 3 this can be done by choosing the (k(X) +1)-st branch of X 
instead of an arbitrary branch from C(X) for B. It must be assumed, for 
that purpose, that Invariants 3.7 and 3.8 hold prior to "Let BE C(X)". 
From these invariants and the fact that C(X) f ¢ can be derived that indeed 
1 s k(X) +1 s degree(X) and branch(X,k(X) +1) E C(X): 

REPLACEMENT 3.1 

Let BE C(X) --+ 

Let B = bra:nch(X,k(X) +1) 

Invariant 3.8 is now restored by: 

ADDITION 3.3 

C(X) := C(X) \ {B} --+ 

C(X),k{X) := C(X) \ {B},k{X) +1 

The above is an example where it is convenient to use the new 
invariants for replacements before their truth has been established. 
Restriction 3 could have been satisfied without relying on Invariants 3.7 
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and 3.8 by not choosing the (k(X) +1)-st branch of X in Replacement 3.1, 
but them-th branch of X, where m = min{i I bra:nch(X,i) E C(X)}. An extra 
replacement would then have been required (in the next step) to replace m 
by k(X) + 1. The only thing that remains to be done is to prove that 
Invariants 3.7 and 3.8 indeed hold, which is left to the reader. This 
completes Step 2, in which Restriction 3 was enforced. The algorithm we 
have so far is: 

ALGORITHM 3* 

M,C(R),U,k(R) := {R},branahes(R),{R},O. 
Until U = ¢ 

Let XE U. 
If C(X) 'F ¢ 

Let B = branah(X,k(X) + 1). 
C(X),k(X) :a C(X) \ {B},k(X) + 1. 
Let Y = obj(val(B)). 
If Yi M 
I M,C(Y),U,k(Y) :=Mu {Y},branahes(Y),U u {Y},O. 

else 
I u := u \ {X}. 

3.2.6.3. Step 3 

In this step C will be turned into a redundant variable. The only 
place where the value of C is used in Algorithm 3* is in the test 
"C(X) 'F ¢". Invariants 3.7 and 3.8 imply that this test is equivalent to 
"k(X) 'F degree(X)", which results in the following replacement: 

REPLACEMENT 3.2 

C(X) 'F ¢ __, 
k(X) + degree(X) 

Chas now turned into a redundant variable, the assignments to which may be 
removed: 

REMOVAL 3.1 

C(X),k(X) := C(X) \ {B},k(X) + 1 __, 
k(X) := k(X) + 1 

REMOVAL 3.2 

M,C(Y),U,k(Y) := Mu {Y},bra:nches(Y),U u {Y},O __, 
M,U,k(Y) := Mu {Y},U u {Y},O 

REMOVAL 3.3 

M,C(R),U,k(R) := {R},branahes(R),{R},O--+ 
M,U,k(R) := {R}, {R}, 0 

Finally the following optimizing replacement is made, the omission of which 
would be an eye-sore to any right-minded programmer: 



REPLACEMENT 3.3 

Let B = branah(X,k(X) + 1). 
k(XJ := k(X) + 1 

k(X) := k(X) +1. 
Let B = branah(X,k(X)) 

3.2.6.4. Step 4 
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The variable C no longer occurs in the algorithm and may be disposed 
of. Yet C still occurs in the invariants. New (and preferably equivalent) 
invariants must be derived from these invariants. This is a straightforward 
matter. The final algorithm and the result of rewriting the invariants is: 

ALGORITHM 4 

M,U,k(R) := {R},{R},O. 
Until U = ¢ 

Let Xe: U. 
If k(X) + degree(XJ 

k(X) := k(X) +1. 
Let B = branah(X,k(X)). 
Let Y = obj(val(B)J. 
If YI. M 
I M,U,k(Y) :=Mu {Y},U u {Y},O. 

else 
I u := u \ {X}. 

INVARIANTS 

(4. I) R e: M. 
(4.2) Y Xe: M [Xis reachable]. 
(4.3) Y Xe: M [O ~ k(XJ ~ degree(XJ]. 
(4.4) Y Xe: MY i = 1, ... ,k(X) [obj(val(branah(X,i)JJ e: M]. 
(4.5) Uc M. 
(4.6) Y Xe: M\U [k(X) = degree(XJ]. 

3.2.7. Phase 4: Changing the representation of U 

Let us consider the operation "Let Xe: U" now. Apart from this 
operation the only operations which are performed on U are adding an object 
Y (which is not yet in U) to U and removing the (arbitrarily chosen) object 
X from U. This makes the following a feasible restriction: 

RESTRICTION 4 

Objects are added to and removed from U in a last-in first-out manner. 

The purpose of this restriction is, of course, .to be able to implement U 
efficiently as a stack. 

3.2.7.1. Step I 

Introduce a variable stack S of objects. This stack has the following 
obvious interpretation: 
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INTERPRETATION 4 

S contains the objects in U in the order of their addition to U (the 
most recently added object at the top of S). 

This interpretation of S implies the following invariant: 

INVARIANT 4.7 

If S = <X1,··•,Xn> then U = {X1,···,Xn}. 

Here <X1,···,Xn> is the stack containing the objects X1,•··,Xn, where Xn is 
the top of the stack. 

3.2.7.2. ~ 

Assignments to S should be added according to Restriction 4 and 
Interpretation 4, thereby establishing the truth of Invariant 4.7. As in 
the second step of the previous phase, this is not possible without making 
some replacements as well. All operations modifying U must be accompanied 
by operations modifying S. First of all S should be initialized together 
with U: 

ADDITION 4. I 

M,U,k(R) := {R},{R},O -->­
M,U,k(R),S := {R},{R},O,<R> 

The addition of an element to U should be accompanied by a "push" 
operation: 

ADDITION 4.2 

M,U~k(Y) := Mu {Y},U u {Y},O -->-
M,U,k(Y),S := Mu {Y},U u {Y},O,PUSH(Y,S) 

The removal of an element from U (in "U := U \ {X}") poses a problem, 
because we can only remove an element from S if that element is at the top 
of S (through a "pop" operation). So we must make sure Xis at the top of 
S. Invariant 4.7 implies that TOP(S) EU, which justifies the following 
replacement: 

REPLACEMENT 4.1 

Let XE U-->-
Let X = TOP(S) 

X can now be popped from S: 

ADDITION 4.3 

U := U \ {X} -->-
U,S := U \ {X},POP(S) 

The above is the second example where it is convenient to use the new 
invariants for replacements before their truth has been established. As 
with the previous example, Restriction 4 could have been satisfied without 
using the new invariants, though in a highly artificial way. This can be 
seen as follows. Restrictions 3 and 4 make the algorithm entirely 
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deterministic. This implies that the order of visiting objects is 
predefined: It is the order of visiting objects in a depth-first search 
[TARJAN 72] of the graph of reachable objects. Consequently "TOP(S)" in 
Replacement 4.1 could have been replaced by (a more formal definition of) 
"the largest element of U in the depth-first numbering of reachable 
objects". Yet another way to avoid the use of Invariant 4.7 in Step 2 is to 
consider S temporarily as a sequence instead of a stack. If "POP(S)" in 
Addition 4. 3 is replaced by "S - <X>" (= deletion of X from S), then . 
Replacement 4.1 can be moved to Step 3. After Replacement 4.1 has been 
performed it can then be observed that Sis accessed stackwise only and 
hence Smay be turned into a stack. This, however, is a trick which 
involves a sneaky change of data type. (The latter can be avoided by 
inserting an extra phase in the derivation, but that is also artificial.) 

Notice that if we would perform Phase 4 before Phase 3, we would have 
an example where it is essential to use the new invariants before their 
truth has been established. Instead of being predefined the order of the 
objects in the stack S would then be determined by the nondeterministic 
order according to which branches are traced. Having lost the information 
on the tracing order of branches, it would not be possible in 
Replacement 4.1 (which would be Replacement 3.1 then) to replace "TOP(S)" 
by an expression such as "the largest element of U in the depth-first 
numbering of reachable objects" above. This shows that, unless we resort to 
the (retrospective) insertion of extra phases, it is in certain cases 
essential to use invariants before they are valid (as we contended in 
Section 3.1). 

The conclusion of this step is to prove that Invariant 4.7 holds in 
the newly derived algorithm. Notice that this requires the proof of an 
additional invariant: 

I INVARIANT 4.8 

All elements of S are different. 

The combined proof of Invariants 4.7 and 4.8 is simple (use Invariant 4.5). 
Here is the final algorithm of this step: 

ALGORITHM 4* 

M,U,k(R),S := {R},{R},O,<R>. 
Until U = ¢ 

Let X = TOP(S). 
If k(X) I degree(XJ 

k(X) := k(X) + 1. 
Let B = branch(X,k(XJJ. 
Let Y = obj(val(B)). 
If YI. M 
I M,U,k(YJ,S := Mu{Y},Uu{Y},0,PUSH(Y,SJ. 

else 
I u,s := u \ {X},POP(SJ. 

3.2.7.3. ~ 

In this step the change of representation from U to S must be 
completed by turning U into a redundant variable and by subsequently 
removing all assignments to U. The value of U is used in Algorithm 4* only 
in the test "U = ¢". Invariant 4.7 implies that this test is equivalent to 
"S =<>",where"<>" is the empty stack: 
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REPLACEMENT 4.2 

u = ¢ -+ 
s = <> 

Uhas become a redundant variable this way. All assignments to U may be 
removed: 

REMOVAL 4.1 

U,S := U \ {X},POP(S) -+ 
S := POP(S) 

REMOVAL 4.2 

M,U,k(Y),S := Mu {Y},U u {Y},O,PUSH(Y,S) -+ 
M,k(Y),S := Mu {Y},O,PUSH(Y,S) 

REMOVAL 4.3 

M,U,k(R),S := {R},{R},O,<R> -+ 
M,k(R),S := {R},O,<R> 

3.2.7.4. Step 4 

In this step the removal of U must be formally completed by 
eliminating U also from the invariants. As in the previous phase this is 
straightforward. The final algorithm of this phase together with the 
rewritten invariants is given below. For notational convenience the stack S 
is occasionally considered to denote the set of its elements in the 
invariants. 

ALGORITHM 5 

M,k(R),S := {R},O,<R>. 
Until S = <> 

Let X = TOP(S). 
If k(X) I degree(XJ 

k(X) := k(X) + 1. 
Let B = branch(X,k(X)J. 
Let Y = obj(val(BJJ. 
If YI. M 
I M,k(Y),S := Mu {Y}, O,PUSH(Y,S). 

else 
I s := POP(S). 

INVARIANTS 

(5.1) REM. 
(5.2) V XE M [Xis reachable]. 
(5.3) V XE M [O $ k(X) $ degree(XJ]. 
(5.4) V XE M Vi= 1, ••. ,k(X) [obj(val(branch(X,i)JJ EM]. 
(5.5) Sc M. 
(5.6) V XE M\S [k(X) = degree(X)]. 
(5.7) All elements of Sare different. 
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3.2.8. Phase 5: Changing the representation of S, or: the DSW-idea 

In this phase the actual DSW-idea will be applied, which is in fact 
nothing but a change of representation. In contrast to the previous changes 
of representation (from C to k and U to S) this change of representation is 
not accompanied by a reduction of nondeterminism. This would be impossible 
in the first place, because, through the successive restrictions enforced 
in the previous phases, Algorithm 5 has turned into a completely 
deterministic algorithm. No "restrictions" will or can therefore be imposed 
in this phase. 

In order to demonstrate the DSW-idea let us take a closer look at 
Algorithm 5. It is very easy to infer from Algorithm 5 that whenever there 
is an object X at the top of the stack Sand an object Y is pushed on top 
of it, the k(Xi-th branch of X contains a reference to Y. This makes S look 
as shown in Figure 3.3.a. (In this picture objects are assumed to be 
composed of exactly four branches.) It amounts to the following invariant 
which can easily be proved: 

INVARIANT 5. 8 

If S = <X7, •• • ,Xn>, then: 
(I) Vi 1, ••• ,n-1 [k(Xi) > O]. 
(2) Vi= 1, ••• ,n-1 [vaUbranah(Xi,k(Xi))) 

k(X) 

POOd· p 

000 000 q 

s 0 3 0 

0 2 0 

000 4 

3.3.a 3.3.b 

Figure 3.3 

The basic DSW-idea is that using two variable references p and q the 
situation of Figure 3.3.a can be transformed without loss of information 
into the situation of Figure 3.3.b. Here the cross in the fourth branch of 
the object at the bottom of the stack is the dunnny reference nil (see 
Subsection 3.2.1). The situation of Figure 3.3.b has the ~dvantage over the 
situation of Figure 3.3.a that the stack S has become redundant: All 
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operations on Scan be expressed in terms of operations on the variables p 
and q and the contents of branches. Put another way: Figure 3.3.b sketches 
an implementation of S without any space overhead (apart from the two 
variable references p and q). 

The application of the DSW-idea to Algorithm 5 raises a little 
problem. It is apparently assumed that the value of a component of an 
object is variable. Otherwise the transformation from Figure 3.3.a to 
Figure 3.3.b would never be possible. Up till now the value of a component 
of an object was assumed to be constant. Simply making the function val, 
variable and adding modifications of val, (according to Figure 3.3.b) to 
Algorithm 5 does not work, however, because these changes may affect the 
correctness of the algorithm. The solution, of course, is to introduce 
alongside the constant function val, an extra variable function VAL, which 
is initially equal to val,, Modifications of VAL may be added freely to 
Algorithm 5 because they in no way affect the correctness of the algorithm, 
Having added the variables p, q and VAL according to the DSW-idea to 
Algorithm 5, the job is then to eliminate the stack Sand the function val, 
from the algorithm (using the invariants). Finally, in order to show that 
VAL can just as well be replaced by val, (made variable) it must be shown 
that the final value of VAL is equal to val,, 

3.2.8.1. ~ 

Let us now introduce the variables p, q and VAL according to the DSW­
idea. Using Figure 3,3 as a guide this idea can be translated in the 
following invariant which the new algorithm should satisfy: 

INVARIANT 5, 9 

Let S = <X1, ••• ,Xn> and let Xo = X_1 = n:ul,7,, 
Let V = {b!'o:nah(Xi,k(Xi)) Ii= 1, ... ,n-1}. 
Then: 
(I) p = l'ef (Xn). 
(2) q = l'ef(Xn-1), 
(3) Vi= 1, ••• ,n-1 [VAL(bl'o:nah(Xi,k(Xi))) = l'ef(X-i;-1Jl,· 
(4) V X e: G V C e: aorrrp(X) [C I. V • VAL(C) = val,(C) J. 

Note that as implied by this invariant the situation where S <> 
corresponds top= nil, q = nil, and VAL= val,, 

3.2.8.2. Step 2 

Assignments to the variables p, q and VAL must be added to Algorithm 5 
in such a way that Invariant 5.9 is satisfied. First the variables should 
be initialized properly. VAL is implicitly assumed to be equal to val, at 
the beginning of the algorithm. The initialization therefore amounts to: 

ADDITION 5. I 

M,k(R),S := {R},0,<R> -
M,k(R),S,p,q := {R},0,<R>,l'ef(R),niZ 

Invariant 5.9 now holds initially. The only operations which disturb 
Invariant 5.9 are the operations which modify S: "S := PUSH(Y,S)" and 
"S := POP(S)". Consequently these operations should be accompanied by 
modifications of p, q and VAL in order to restore Invariant 5,9. 
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Consider the operation "S := PUSH(Y,S)" firi;t. This operation makes Y 
the top element of Sand X the subtop element. The set of branches Vin 
Invariant 5.9 is therefore extended by this operation with branah(X,k(X)), 
which is denoted by Bin Algorithm 5. This affects parts(!), (2) and (3) 
but not part (4) of Invariant 5.9. Part (I) can be restored by assigning to 
p the value ref(Y), which is equal to val(B). Part (4) of Invariant 5.9 
implies, since Bi V, that val(B) = VAL(B). Part (I) can therefore be 
restored by assigning top the value VAL(B). Part (2) can be restored by 
assigning to q the value ref(X), which is equal top. Finally, part (3) can 
be restored by assigning to VAL(B) the reference of the object "below" X in 
S, i.e. the value q. (Notice that this assignment to VAL does not affect 
part (4) of Invariant 5.9.) This leads to: 

ADDITION 5.2 

M,k(Y),S :=Mu {Y},0,PUSH(Y,S) ->-
M,k{Y),S,p,q, VAL(B) :=Mu {Y},0,PUSH(Y,S),VAL(B),p,q 

The operation "S := POP(S)" removes the object X at the top of S from 
S. In order to investigate the way this operation affects Invariant 5.9 two 
cases must be distinguished: the case where S contains a single object and 
the case where S contains two or more objects. Consider the former first. 
If S contains only one object the set Vin Invariant 5.9 is empty and will 
be so after the operation "S := POP(SJ". This implies that parts (3) and 
(4) of Invariant 5.9 are not affected. Part (2) is not affected either, 
because ref(XoJ = ref(X_1) = nil. Only part (I) must be restored which can 
be done by assigning the value ref(X0J = nil top. This covers the first 
case. 

In the second case S contains two or more objects and consequently 
V #¢.Let Y be the subtop element of S, i.e. the object referred to by q, 
and let B = branah(Y,k(Y)), then BEV. The effect of the operation 
"S := POP(S)" on Vis that Bis removed from V. This does not affect part 
(3) of Invariant 5.9 (n decreases by one). It does affect parts (1), (2) 
and (4) though. Part (I) can be restored by assigning top the value 
ref(Y), which is equal to q. Part (2) can be restored by assigning to q the· 
value ref(Z), where Z is the (possibly imaginary) object below Yin S. 
Part (3) of Invariant 5. 9 implies that ref(Z) = VAL(branah(Y, k(Y)) r = 
VAL(B). So part (2) can be restored by assigning the value VAL(B) to q. 
Only part (4) remains. This part of the invariant is disturbed because Bis 
removed from V and the assertion VAL(B) = val(B) is not guaranteed to hold. 
As a consequence, part (4) can be restored by assigning the value val(B) 
to VAL(B). (Notice that this does not affect part (3) of Invariant 5.9.) 
According to part (2) of Invariant 5.8, val(B) = val(branah(Y,k(Y))) = 
ref(X) = p. So part (3) of Invariant 5.9 can be restored by assigning the 
value p to VAL(B). 

Immediately before the operation "S := POP(S)" in Algorithm 5 the 
assertion S #<>holds. This implies that the distinction between the two 
cases considered above can be made by testing whether q = nil or not (see 
Invariant 5.9). All in all this amounts to: · 
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ADDITION 5.3 

S := POP(S) -+ 
If q = nil, 
I S,p := POP(S),nii. 
else 

I Let Y = obj(q). 
Let B = branah(Y,k(Y)). 
S,p,q,VAL(B) := POP(S),q,VAL(B),p. 

The algorithm obtained through the above additions to Algorithm 5 is 
given below. Though we made sure Invariant 5.9 is satisfied (not only as a 
loop invariant, but "everywhere"), a formal proof is still required. This 
proof will be obvious now and is omitted. 

ALGORITHM 5* 

M,k(R),S,p,q := {R},O,<R>,ref(R),nil,. 
Until S = <> 

Let X = TOP(S). 
If k(X) # degree(X) 

k(X) := k(X) +1. 
Let B = branah(X,k(X)). 
Let Y = obj(vaZ(B)). 
If Yi M 
I M,k(Y),S,p,q, VAL(B) :=Mu {Y},O,PUSH(Y,S), VAL(B),p,q. 

else 
If q = nil, 
I S,p := POP(S),nii. 
else 

I Let Y = obj(q). · 
Let B = branah(Y,k(Y)). 
S,p,q,VAL(B) := POP(S),q,VAL(B),p. 

Before removing Sit should be proved that the effect of the algorithm on 
VAL is nil. In other words, it must be proved that the postcondition 
VAL= vai holds. Proof: At termination of the algorithm S =<>,which 
implies that V =¢in Invariant 5.9. According to part (4) of Invariant 5.9 
this implies that VAL= vai. 

3.2.8.3. Step 3 

In this step the invariants will be applied so as to eliminate Sand 
vai from Algorithm 5* through replacements. Invariant 5.9 part (1) implies 
that the assertion S =<>is equivalent top= niZ, which results in: 

REPLACEMENT 5.1 

s = <>-+ 
p = nil, 

Invariant 5.9 part (I) also implies that, if S #<>,then TOP(S) = obj(p). 
This gives us: 

REPLACEMENT 5.2 

Let X = TOP(S)-+ 
Let X = obj (p) 
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Immediately after the statement "Let B = braneh(X,k(X))" the assertion 
B t V holds. From part (4) of Invariant 5.9 (which also holds there) can be 
inferred that this implies that val(B) = VAL (B), which justifies: 

REPLACEMENT 5.3 

Let Y = obj(val(B)) -+ 
Let Y = obj(VAL(B)) 

The application of the above replacements transform Algorithm 5* into 
an algorithm in which val no longer occurs and in which S has become a 
redundant variable. The assignments to Scan now be removed: 

REMOVAL 5. I 

S,p,q,VAL(B) := POP(S),q,VAL(B),p-+ 
p,q,VAL(B) := q,VAL(B),p 

REMOVAL 5.2 

S,p := POP(S),nil-+ 
p := nil 

REMOVAL 5.3 

M,k(Y),S,p,q,VAL(B) :=Mu {Y},0,PUSH(Y,S),VA.L(B),p,q-+ 
M, k(Y) ,p,q, VAL(B) := Mu {Y}, 0, VAL(B) ,p,q 

REMOVAL 5.4 

M,k(R),S,p,q := {R},0,<R>,ref(R),nil -+ 
M,k(R),p,q := {R};0,ref(R),nil 

3.2.8.4. Step 4 

In this step Swill be removed from the invariants. Though in the 
previous steps the constant function val was removed from the algorithm 
together with S, this function need (and should) not be removed from the 
invariants (val is part of the problem specification). In contrast to the 
previous two phases the rewriting of the invariants containing S, so as to 
eliminate S, is far from obvious. Therefore the invariants will not be 
rewritten and an existential quantifier will be used to "eliminate" S. The 
final algorithm of this phase and of the entire derivation, the DSW­
algorithm, is given below together with its invariants, pre- and 
postconditions. Strictly speaking the invariants are superfluous now, but 
they could be used for an independent proof of correctness, if desired. 
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ALGORITHM 6 (Deutsch-Schorr-Waite) 

M,k(R),p,q := {R},O,ref(R),nil. 
Until p = nil 

Let X = obj(p). 
If k(X) I degree(X) 

k(X) :=k(X)+l. 
Let B = branah(X,k(X)). 
Let Y = obj(VAL(B)). 
If Y l M 
I M,k(Y),p,q,VAL(B) := Mu{Y},O,VAL(B),p,q. 

else 
If q = nil 
I p := nil. 
else 

I 
Let Y = obj(q). 
Let B = branah(Y,k(Y)). 
p,q,VAL(B) := q,VAL(B),p. 

PRECONDITIONS 

(6.1) VAL = val. 

INVARIANTS 

(6.l)REM, 
(6,2) V XE M [Xis reachable]. 
(6.3) V XE M [O ~ k(X) ~ degree(X)]. 
(6.4) V XE M Vi= 1, ••• ,k(X} [obj(val(branah(X,i))) EM]. 
(6.5) There is a stack of objects S = <X1,,,.,Xn> such that: 
(6.5.1) Sc M. 
(6.5.2) V XE M\S [k(X) = degree(X)]. 
(6.5.3) All elements of Sare different. 
(6.5.4) Vi= 1, ... ,n-1 [k(Xi) > O]. 
(6.5.5) Vi= 1, ... ,n-1 [val(branah(Xi,k(Xi)}) = ref(Xi+1Jl. 
(6.5.6) Let x0 = x_1 = null. 

Let V = {branah(Xi, k(Xi)) I i = 1, ... , n -1}. 
Then: 

(6.5.6.1) p = ref(Xn). 
(6.5.6.2) q = ref(Xn-1), 
(6.5.6.3) Vi= 1, ... ,n-1 [VAL(branah(Xi,k(Xi))) = ref(X'(-1)]. 
(6.5.6.4) V X E G V C E aomp(X) [C l V .,. VAL(C) = val(C) J. 

POSTCONDITIONS 

(6.1) M ={XE GI Xis reachable}, 
(6. 2) VAL = val. 
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3.3. CONCLUSION 

There are three different ways to look at the method of implementing 
algorithms described and demonstrated in this chapter. The first is from 
the point of view of algorithm verification. The method provides a simple 
way to prove the correctness of global transformations which amount to 
changes of data representation. The correctness of such a transformation is· 
proved by decomposing the transformation into a sequence of simple and 
evidently correct transformations. No comprehensive "catalogue" of 
transformation rules as in [GERHART 75] is required, nor the use of an 
"abstraction function" as in [HOARE 72]. The method is also very flexible 
in that it allows very complex changes of representation (such as the DSW­
transformation) to be proved correct without the need for enhanced 
verification techniques. 

In connection with the above it is interesting to compare the 
correctness proof of the DSW-algorithm given here with other proofs of 
correctness of the DSW-algorithm [DE ROEVER 78], [DUNCAN & YELOWITZ 79], 
[GERHART 79], [GRIES 79], [KOWALTOWSKI 79], [TOPOR 79], [DERSHOWITZ 80]. 
The first thing to be noted is that all of the latter (except 
[DERSHOWITZ 80]) are proofs of more or less simplified versions of the DSW­
algorithm instead of the general DSW-algorithm proved correct here. The 
second thing to be noted is that in [DE ROEVER 78], [GRIES 79], 
[KOWALTOWSKI 79], [TOPOR 79] the DSW-algorithm is considered as a given 
algorithm which is proved correct "independently". Here the DSW-algorithm 
is proved correct by proving a simple abstract algorithm correct and 
deriving the DSW-algorithm through a number of correctness-preserving 
transformations from this algorithm. In fact we proved the correctness of a 
number of algorithms (Algorithms 1-6). Consequently the proof given here is 
much longer than in the latter four references. We could have chosen 
Algorithm 5 (the stack algorithm) as the starting point, however. The 
length of• the proof would then have been comparable to the length of an 
independent proof. The advantage of the approach pursued here is, that the 
correctness proof is "factorized", which makes it more suitable for human 
consumption. The only more or less similar approaches are [DERSHOWITZ 80], 
[DUNCAN & YELOWITZ 79], [GERHART 79]. In [DERSHOWITZ 80] the DSW-algorithm 
is derived in "Knuthian" style [KNUTH 74] from a recursive marking 
algorithm. The derivation has only two steps and the proofs are highly 
informal. In [DUNCAN & YELOWITZ 79], [GERHART 79] the DSW-algorithm is 
derived from an abstract algorithm. In the former "abstract/concrete 
mappings" are used to prove the correctness of transformations, while in 
the latter the successive algorithms and their assertions are supposed to 
be verified mechanically (see also [LEE et al. 79] for the outline of a 
proof using a catalogue of correctness-preserving transformations). Both 
proofs seem more complicated than the proof given here. 

The second way to look at the implementation method described is from 
the point of view of algorithm construction. Can the method be of any help 
in the process of constructing (deriving) a new algorithm? It would not be 
entirely fair to judge this from the derivation of the DSW-algorithm given 
here, We knew beforehand what target we were aiming at and carefully 
directed the derivation process in order to hit that target. In 
constructing a new algorithm the target is unknown, Yet the derivation 
method described here is believed to be of help in deriving new algorithms 
as well. The first reason is that performing global transformations in a 
stepwise way aids in retaining or even gaining insight in the algorithm 
under development, which may lead to the discovery of new useful 
transformations. The second reason is that the algorithm constructor is 
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invited to try and perform a complex transformation, even if he has only 
some intuitive idea of it. He can cast his idea in a number of new 
variables and assertions on these variables, and start adding assignments 
to the variables and making replacements based on the assertions. If he 
does not achieve what he had in mind, too bad. If he does, he need only 
prove the assertions he postulated and remove whatever variables he made 
redundant. 

The third way to consider the method described here is from the 
viewpoint of algorithm presentation. Presenting an algorithm by showing how 
it can be derived by a number of transformations from a simple algorithm 
can add significantly to understandability. This is an inherent advantage 
of the transformational method. It adds even more to understandability if 
not only the initial algorithm, but also all transformations applied to it 
are simple, as in the method described in this chapter. The 
transformational method in general is also very suitable for presenting 
classes of algorithms. Instead of walking straight ahead to the DSW­
algorithm, we could have turned into several side-tracks in the derivation. 
If this is done in a systematic way, the entire class of marking algorithms 
can be discussed with a minimum of effort and a maximum of coherence. On a 
small scale and in a somewhat different context this was done in 
[DARLINGTON 78] for sorting algorithms. On a larger scale this will be done 
in Chapter 5 for garbage collection and compaction algorithms (though we 
shall take bigger steps than in the derivation of the DSW-algorithm). 

Let us conclude this chapter with two remarks. First, as discussed in 
the introduction, the method can be used for the implementation of data 
structures as well. Secondly, the idea of first adding new variables and 
then removing redundant ones is also present in [MEERTENS 76] (but only in 
connection with deterministic algorithms). 
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CHAPTER 4 

A STORAGE MANAGEMENT MODEL 

4.0. INTRODUCTION 

4.0.1. Mathematics and systematics 

An important branch of computer science is the field of programming 
language implementation. The latter is usually divided into a number of 
"subjects" such as lexical analysis, parsing, bookkeeping, code generation, 
code optimization, register allocation, storage management. Some of these 
subjects (e.g., parsing) have evolved to systematic disciplines, which are 
even referred to as "theories". Other subjects (e.g., storage management) 
seem to escape any attempt at systematization. They constitute a more or 
less incoherent collection of techniques, a situation which is clearly 
reflected in publications on these subjects. 

One may wonder what the reason for the above discrepancy is. The 
answer appears to be simple. A subject can only truly be systematized if it 
is amenable to mathematical treatment. Clearly, a subject such as parsing 
is. There exists a simple mathematical model (the "grammar") through which 
the parsing problem can be handled in a systematic way. In the terminology 
of Chapter I this can be formulated as follows. There is a simple non­
trivial mathematical problem (the "basic parsing problem"), which is a 
proper abstraction of each problem in the following set: 

where 

V = {P(L) I L E L}, 

P(L): the concrete parsing problem for the programming 
language L, 

L: the set of programming languages. 

Now consider the following set of problems: 

where 

w = {S(L,M) ILE L, ME M}, 

S(L,M): the concrete storage management problem in an 
implementation of a programming language Lon a 
machine M, 

L: the set of programming languages, 
M: the set of machines. 

The general feeling seems to be that, in contrast to the set V, there does 
not exist a simple non-trivial mathematical problem which is a proper 
abstraction of each problem in W. In the absence of such a "basic storage 
management problem" a systematic treatment of the subject (as sketched in 
Chapter I) is out of the question. 
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The core of the above problem lies not in coruputer science, but in 
mathematics. Traditionally, the objects·studied in mathematics are static, 
illDllutable entities, the properties of which can be described by a 
relatively small number of axioms. The objects studied in parsing theory 
meet these qualifications wonderfully well. Storage management systems, 
which are the objects of study in storage management "theory", are dynamic 
entities with a relatively large number of (also dynamic) properties. These 
objects are rather hard to describe in the framework of traditional 
mathematics. They can be described very naturally, however, if we extend 
this framework with the proper concepts. 

4.0.2. Dynamic systems 

The concept we need is that of a "dynamic system". There are two 
aspects to this concept. First, a dynamic system is a "system", which means 
that it is composed of a number of "components". Each component is itself a 
dynamic system. Secondly, a dynamic system is "dynamic", which means that 
it can be altered by applying "operations" to it. The operations completely 
characterize the external "behaviour" of the system. A dynamic system can 
be described by specifying its components and expressing each operation in 
terms of operations on the components. This would all fit rather well into 
the framework of traditional mathematics, if it were not for the fact that 
the components of a dynamic system may (and generally will) be highly 
interrelated. An operation performed on a component of a dynamic system may 
therefore affect other components of that system. This is a rather uncollDllon 
situation in mathematics. The obvious way to model a system would be to 
define it as the tuple <C1, ••. ,Cn> of its components. However, when 
changing the i-th element of this tuple, one is not likely to expect that 
any of the other elements changes as well. 

There are, of course, ways to overcome the above difficulties within 
the traditional mathematical framework. Yet, by doing so we threaten to 
fall into· something like the "Turing Tarpit" [WULF 77J. The question is not 
if, but how well a dynamic system can be described in a certain framework. 
In the case of traditional mathematics the answer appears to be: not well 
enough. Since we want dynamic systems to be mathematically rigorous 
objects, we therefore have to develop a more powerful mathematical 
formalism. 

4.0.3. Data structures 

A first step to the development of such a formalism is to realize that 
a dynamic system is, in fact, nothing but a data structure which involves 
highly shared data. The components of a dynamic system correspond to a 
representation of the data structure, and the operations which can be 
applied to a dynamic system correspond to the operations of the data 
structure. The reason why dynamic systems have withstood a satisfactory 
mathematical treatment becomes apparent now. The major efforts in the field 
of data structure specification have been concerned with non-shared data. 
From a programming point of view sharing of data is often an undesirable 
situation indeed. In many applications (such as databases) sharing of data 
is a natural situation, however. Once we have the ability to specify data 
structures with sharing we gain tremendous descriptive power. In 
particular, this power can be used to describe dynamic systems in a 
mathematically rigorous way. 

In Chapter 2 of this monograph we showed how, on the basis of the 
concept of a "structure", data structures involving sharing can be 
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specified as mathematical objects. This method can be used innnediately for 
the description of dynamic systems. The language which will be used for the 
description of dynamic systems in this chapter will be based on this 
method, but it can be understood without having read Chapter 2. Though its 
semantics will be kept informal, it can be made completely rigorous, if 
need be, by the techniques of Chapter 2. 

As an example of a dynamic system consider the concept of a "storage 
management system" as it will be defined in this Chapter: 

Each storage management system H has: 

- root(H): constant object, 
graph(H): variable set of objects, 
store(H): constant set of cells, 
repr(H): constant mapping from values to words, 
aZZoc(H): variable mapping from objects to sets of cells. 

Here objects and cells are dynamic systems "containing" values and words 
(which are also dynamic systems), respectively. The above definition 
implies that a storage management system His a dynamic system with five 
components: root(H), graph(H), store(H), repr(H) and aZZoc(H). Besides 
these components, there are a number of operations associated with H, which 
can be expressed in terms of operations on the components of H. (The fact 
that a component such as store(H) is constant implies that operations may 
not alter the set of cells constituting store(H). They may alter the 
contents of these cells, though.) There is for example an operation to 
initialize the system and an operation which amounts to the creation of a 
new object in the system (including the allocation of storage for the 
object). In fact, the storage management problem boils down to efficiently 
implementing the latter operation in the system. 

4.0.4. System invariants 

An important concept in relation to dynamic systems is the "system 
invariant". (The corresponding concept for data structures is usually 
called a "representation invariant".) A system invariant is an assertion 
about the components of a dynamic system, which will always hold "between" 
two operations performed on the system. It may, however, temporarily be 
disturbed "inside" (i.e., during the execution of) such an operation. Given 
descriptions of the operations which may be performed on a dynamic system 
in terms of operations on the components of the system, the system 
invariants are uniquely determined. When describing a dynamic system at the 
abstract level, it is often more convenient to give the system invariants 
first and then describe the operations which may be performed on the 
system, using statements such as "establish assertion A while not affecting 
the system invariants". This will also be the style of describing dynamic 
systems in the sequel. 

A certain analogy between dynamic systems and ordinary mathematical 
systems can now be drawn. E.g., a storage management system can be viewed, 
in a way, as a 5-tuple <root,graph,store,repr,aZZoc>, which satisfies a 
number of axioms (the system invariants). The analogy breaks down only 
because the elements of this tuple are variable and interdependent. E.g., 
if we change the contents of a cell in the store, the mapping aZZoc may 
also be affected. The analogy does not break down if we see it the other 
way around and regard the normal mathematical systems as (special cases of) 
dynamic systems. (This, however, should not be interpreted as an attempt to 
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turn mathematics into a branch of computer science!) The concept of a 
grannnar from parsing theory could, for example, be described as a dynamic 
system in the following way: 

Each grammar G has: 

- N(G): constant set of nonterminals, 
- r,(G): constant set of terminals, 
- P(G): constant set of productions, 
- S(G): constant nonterminal. 

The axioms which a grammar G satisfies correspond to system invariants such 
as S(G) E N(G), etc •• These invariants can of course never be violated 
since the entire system is constant. As with normal dynamic systems it is 
even conceivable to associate operations with a grannnar. One can think for 
example of an operation to create (construct) a grammar and an operation 
which tests whether a given sequence of terminals is generated by the 
grannnar. The parsing problem could then be defined as efficiently 
implementing this operation (where, for the sake of convenience, we ignore 
the fact that a parser should also produce a parse tree). Moreover, by 
making the components of a grammar variable, algorithms which transform the 
grammar (for example, into Greibach normal form [AHO & ULLMAN 72], if the 
grammar is context-free) can be described. 

The above may tempt one to view computer science as the study of 
dynamic systems (a computer itself is a dynamic system). Elaborating on 
this would carry us a little too far away from the actual subject of this 
chapter. The essence of the above is that, just like there is a language of 
mathematics, there is also a language of computer science. In this language 
we can argue about dynamic systems just like mathematicians can argue about 
groups, vector spaces, etc •• This "language of computer science" is of 
course nothing new. It is used by almost any computer scientist when 
arguing about dynamic phenomena. The way it is used is usually rather 
informal. The important observation is that this language can be as exact 
as the language of mathematics. 

4.0.5. The storage management system 

Let us return to the subject of this chapter. In this chapter we shall 
describe a well-known dynamic system from the field of programming language 
implementation: the storage management system. The purpose is not to give a 
systematic treatment of storage management techniques. Such a treatment 
would take the size of a book. Instead, we shall focus our attention on one 
particular aspect of storage management, called "garbage collection". A 
systematic treatment of garbage collection algorithms will be given in the 
next chapter. Garbage collection is an internal operation of a storage 
management system. (I.e., the operation operates on the components of a 
storage management system, but is not "visible". externally.) In order to 
define the basic garbage collection problem we first have to define what a 
storage management system is. The purpose of this chapter is therefore to 
introduce the necessary concepts and set the stage for the discussion of 
the garbage collection problem and its solutions in the next chapter. 

The above implies that we shall concentrate on the internal aspects of 
a storage management system and define it in terms of its components and 
system invariants. The external operations of a storage management system 
will only be discussed informally. We can afford to do so because we shall 
restrict ourselves to traditional garbage collection, which is an operation 
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performed in its entirety between two external operations of the storage 
management system. The correctness of this operation is guaranteed if and 
only if the operation does not violate any of the system invariants. So it 
suffices to consider the system invariants and ignore the external 
operations (which, ultimately, determine the system invariants). If we are 
to consider parallel ("on the fly") or "spread" garbage collection 
operations we would have to make the external operations explicit, because 
parts of the garbage collection operation must be inserted in the external 
operations. 

4.0.6. The two layers of the model 

The model of a storage management system which we shall present in 
this chapter consists of two layers, an abstract layer (containing the 
"root" and the "graph", which is composed of "objects") and a concrete 
layer (containing the "store", which is composed of "cells"). Furthermore, 
the model includes functions which map the abstract concepts onto the 
concrete concepts (the "representation function" and the "allocation 
function"). This may seem unnecessarily complex. It is rather usual to 
discuss storage management techniques directly in terms of operations on a 
machine store. Since, in the end, a storage management algorithm must 
operate exclusively on the machine store, it is indeed possible to describe 
such an algorithm in terms of operations on the machine store (take the 
machine code representation of the algorithm). There is no need to say that 
such a low level description will be far from readable. This is aggravated 
by the fact that these algorithms often use complicated tricks to save time 
and space, thus entirely obscuring the underlying abstract algorithms. 
Using the abstract layer of the model we are able to describe the 
algorithms in terms of their underlying abstract algorithms, thus 
abstracting from the implementation tricks and increasing readability. The 
implementation tricks can then be discussed separately, if necessary by 
going down to the store (using the representation and allocation function). 

There is an even more convincing argument why a single layer approach 
to the description of storage management algorithms would not be 
appropriate. A storage management algorithm is part of the implementation 
of a progrannning language. This implies that the algorithm can be viewed as 
(part of) the implementation of an abstract operation from the progrannning 
language. In order to prove the correctness of this implementation it must 
be possible to argue about the abstract objects of the progrannning language 
and the way they are represented in the store. Therefore, without the 
abstract layer of the model and the "descent functions" a proof of 
correctness of a storage management algorithm (such as a garbage collector) 
would be impossible! 

We shall start with an informal discussion of the subject of storage 
management in Section 4.1. In this somewhat philosophical section the basic 
storage management concepts are systematically introduced by tracing the 
process of implementing a progrannning language, starting with an abstract 
machine defining the language. The purpose of this section is not only to 
create some familiarity with the basic concepts, but also to provide a 
justification for the storage management model introduced in Section 4.2. 
This model anchors the intuitive notions discussed in Section 4.1 in 
unambiguous definitions. That is, the concept of a storage management 
system and its associated concepts are rigorously defined in Section 4.2. 
If desired, Section 4.1 can therefore be skipped. Some final remarks are 
made in Section 4.3. 
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4.1. INFORMAL DISCUSSION 

4.1.1. Abstract machines 

The starting point of each implementation of a progrannning language 
should be the definition of the semantics. There are many ways to define 
the semantics of a progrannning language. One of them is to describe an 
"abstract machine", which can directly execute programs in the language in 
question. The semantics of a program is defined by the actions of this 
machine when executing the program. ALGOL 68 [VAN WIJNGAARDEN et al. 76] is 
an example of a progrannning language, the semantics of which has indeed 
been defined this way. The actions of abstract machines can be divided into 
"external actions" and "internal actions". The external actions operate on 
an "environment" and can be observed by the user. The internal actions 
operate on an internal environment of the machine, the so-called "memory", 
and remain entirely hidden from the user (see Figure 4.1). 

environment 

memory 

Figure 4.1 

There exist many kinds of abstract machines, some less abstract than 
others. Broadly speaking, the implementation of a progrannning language will 
be more difficult the more abstract its defining abstract machine is. Let 
us therefore assume that we have a very abstract machine (what exactly we 
mean by this will become clear later). The memory of this abstract machine 
can be viewed as a collection of "objects". There are two kinds of objects, 
"atomic objects" and "structured objects". An atomic object has a "value", 
which is a primitive thing (e.g., an integer). A structured object X has a 
"structure", which is a set of objects called the "direct components" of X. 
A "component" of Xis a direct component or a direct component of a 
component of X. 

An object Y will be called a "subobject" of an object X if X .Y or X 
is a structured object and Y is a component of X. Objects may arbitrarily 
share subobjects. An object may even be a component of itself. If two 
objects share a subobject they are said to "overlap". Objects will be 
pictured in the following way. An atomic object will be pictured as a 
circle, with the value of the object either omitted or pictured inside the 
circle. A structured object will be pictured as a circle with outgoing 
dotted arrows pointing to the pictures of the direct components of the 



object. 

EXAMPLE 4.1 

Consider Figure 4.2. 

X 

0 
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b , ' , ' 
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Figure 4.2 
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This figure shows a structured object X with two direct components, five 
components and six subobjects, three of which are atomic objects. The two 
direct components of X overlap: They share the atomic object with value 5. 

□ 

Note: The above concept of an object, though closely related, is not the 
same as the concept of an object defined in Chapter 2 (see Subsection 
2.1.1). 

4.1.2. Creation and modification of objects 

There are basically two kinds of operations which the abstract machine 
can perform. First, it can "create" a new object (together with its 
subobjects). This operation amounts to extending the memory of the abstract 
machine with a new object, which may have arbitrary size. Secondly, the 
abstract machine can "modify" an existing object. For an atomic object this 
amounts to changing the value of the object. For a structured object it 
amounts to changing the structure of the object. The fact that the above 
are the only two kinds of operations performed by the abstract machine 
implies that objects are never removed from the memory. Consequently, the 
number of objects in the memory is nondecreasing. 

Apart from a few "low level" programming languages, like BASIC, the 
number of objects which are created during the execution of a program on 
the corresponding abstract machine may be astronomical. In view of the 
hypothetical nature of abstract machines, the question where all these 
objects come from is merely of philosophical interest. A usual approach is 
to assume that the abstract machine has an inexhaustible supply of unused 
objects, from which one is picked each time an object is created. A more 
satisfactory answer to the question "where objects come from" can be found 
in Chapter 2. (Note: The abstract machine described in Section 2.3 has a 
memory from which objects can also disappear. In fact, they do so 
automatically once they are no longer used. This machine can easily be 
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redefined in such a way that all objects, once they are created, remain in 
memory for ever, thus conforming to the above view of abstract machines.) 

4.1.3. Concrete machines 

The above implies that an abstract machine has an effectively infinite 
memory, containing objects of the most varying sizes. How different is the 
"concrete machine" which the implementer of a programming language is faced 
with! This machine has a finite memory, containing a relatively small 
number of entirely identical atomic objects, called "cells". The value or 
"contents" of a cell is a "word", which is an integer in some predetermined 
range. Moreover, a unique integer is associated with each cell, called the 
"address" of the cell. The set of all addresses of cells in the memory 
usually constitutes a subrange of the integers (say from l tor). The 
memory of the concrete machine can therefore be viewed as a row of 
consecutive cells (see Figure 4.3). 

cells I 11111 111 1111 I I I I I I I I 
' t addresses 

Figure 4.3 

It is the duty of the implementer to make the concrete machine, as far 
as its external behaviour is concerned, behave like the abstract machine 
associated with the progrannning language L to be implemented, The user who 
offers a program in L to the concrete machine will then see this machine 
behave as prescribed by the semantics of L (i.e., if the implementation is 
correct). 

Although the external behaviour of the concrete machine during the 
execution of a program in the implemented language is entirely prescribed, 
the implementer is free to choose the internal behaviour of the concrete 
machine: The user cannot observe anything of what is going on inside the 
machine. In view of the widely differing structure of the memories of the 
abstract and concrete machine, this freedom is indispensable. It enables 
the implementer to represent the objects and operations of the abstract 
machine by objects and operations of the concrete machine in whatever way 
he sees fit. 

4.1.4. The allocation invariants 

In implementations the most complicated representations are used. 
Simplified somewhat, they all amount to the following. An object from the 
memory of the abstract machine is represented by a set of cells, a so­
called "location". The location representing the object X will be denoted 
by alloc(X). We shall assume that an atomic object is represented by a 
single cell. (This is in no way essential, but it makes the discussion 
easier.) The value of an atomic object is represented by a word (the 
contents of a cell). The word representing the value V will be denoted by 
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repr(V). The operations of the abstract machine are represented by 
operations of the concrete machine in such a way that the following 
"allocation invariants" are not disturbed, In these invariants vaUX) 
denotes the value of the atomic object X and aont(C) denotes the contents 
of the cell C: 

Allocation Invariants 

(Al) If Xis an atomic object 
then aont(aiioa(X)) = repr(val(X)). 

(A2) If Xis a subobject of Y 
then aiioa(X) c aiioa(Y). 

(A3) If X and Y do not overlap 
then aUoa(X) n aUoa(Y) ¢,. 

In (Al) an automatic conversion from a location {C} containing a single 
cell C to the cell C is implicitly assumed. The above implies that running 
a program on the concrete machine can be viewed as running it on the 
abstract machine while keeping the allocation invariants valid. 

The above is a simplification in many respects. For certain abstract 
machines (such as the one described in Section 2.3) efficient 
implementations would be out of the question if we really had to stick to 
the allocation invariants. We shall solve this, not by reformulating the 
allocation invariants, but by modifying the abstract machine in such a way 
that the allocation invariants can be satisfied efficiently. The modified 
abstract machine can be viewed as an "intermediate machine" placed between 
the abstract and the concrete machine. This intermediate machine is less 
abstract than, although still rather close to, the abstract machine. In 
particular it is very close to the traditional abstract machines used in 
definitions of programming languages such as ALGOL 68. Therefore we shall 
identify this intermediate machine with the abstract machine. 

In the next subsections we shall discuss which modifications are 
necessary to be able to represent the operations of the abstract machine 
efficiently by operations of the concrete machine, according to the 
allocation invariants. The imaginary authority which guards over the 
allocation invariants during the execution of a program will be called the 
"storage manager". It is obvious that the storage manager will need some 
kind of bookkeeping. This bookkeeping contains the necessary information 
concerning the locations of objects. So, broadly speaking, it corresponds 
to the "allocation function" aiioa. The efficiency of the implementation 
depends for a considerable part on the efficiency of this bookkeeping. 

4.1.5. Modifying objects 

As stated above, the abstract machine can perform two kinds of 
operations: creation and modification. Consider modification first. The 
modification of the value of an atomic object X c.an only disturb 
Invariant (Al). This invariant can be restored by modifying the contents of 
the cell aUoa(X) accordingly, which does not require any updating of the 
bookkeeping of the storage manager. (Notice that due to Invariant (A3) 
changing the contents of the cell aiioa(X) does not affect Invariant (Al) 
for other atomic objects.) 

The sit,)ation is less simple for the modification of the structure of 
a structured. object ,•:-;ch may disturb both Invariant (A2) and (A3). These 
invariants c.an only be i::esco:ce!l. i>y "i.·2;21~.locating" a number of objects in 
the memory of the concrete machine, i.e., by assigning new locations to 
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these objects in accordance with Invariants (A2) and (A3). This can, in 
principle, be done without the need to ·"move" atomic objects. Expensive 
"copy" operations (so as to restore Invariant (Al)) can thus be avoided, 
but the price to be paid for this is a more complex updating operation of 
the bookkeeping of the storage manager. 

EXAMPLE 4.2 

Consider the objects V, W, X, Y and Zin Figure 4.4. 

y 

V W X ,W 
0------0------0/ 

0 
z 

Figure 4.4 

Suppose these objects have been assigned the following locations (a, b, c, 
d and e denote different cells): 

aUoa(V) 
aUoa(W) 

· aUoa(X) 
aUoa(Y) 
aUoa(Z) 

{a,b,a,d}, 
{b,a,d}, 
{a,d}, 
{d}, 
{e}. 

Let cont(d) = PepP(l) and aont(e) = PepP{2). Check that the allocatton 
invariants hold. Suppose the structure of the object Xis changed, 
resulting in the situation of Figure 4.5. 

y 

V w X 
CD 

0------0-----0 
' 
'-,~ 

z 

Figure 4.5 
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The allocation invariants can be restored in basically two ways. The first 
is to update alloc (the bookkeeping of the storage manager) as follows: 

aUoc(V) := {a,b,c,e}. 
aUoc(W) := {b,c,e}. 
alloc(X) := {c,e}. 

This requires no copying of the contents of cells, in contrast to the 
second way of restoring the allocation invariants: 

□ 

aUoc(Y) := {e}. 
alloc(Z) := {d}. 
cont(d) := repr(2). 
cont(e) := repr(l). 

4.1.6. The reference 

The above implies that there is a trade-off between the efficiency of 
updating the bookkeeping of the storage manager and the amount of copying 
to be done. No matter which choice is made, however, frequent modifications 
of the structure of a complex object would make any program run like a 
snail. Fortunately, there is a way out: the "reference". The idea is to 
represent a component Y of an object X not by the object Y itself, but by 
an atomic object Y' with a value that represents the object Y uniquely: the 
reference of Y. Changing the structure of X, i.e., replacing Y as a 
component of X by another object Z, then amounts to replacing the value of 
Y' by the reference of z. This is a matter of modifying the value of an 
atomic object, which, as we already saw, can be implemented efficiently. In 
pictures a reference to an object X will be represented by an unbroken 
arrow pointing to the picture of X. 

EXAMPLE 4.3 

Using references the objects from Figure 4.4 could be represented as 
follows: 

y 

0------0------0-- ---✓ 
0 
z 

Figure 4.6 

'Changing the structure of the object X as in Example 4. 2 amounts to 
changing the value of Y' as follows: 
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y 

V w X y• CD 
0-----0------o-----~ 

z 

Figure 4.7 

In contrast to Example 4.2 this disturbs Invariant (Al) only, which can be 
remedied by modifying the contents of the cell alloa(Y') in the appropriate 
way. 0 

It may be tempting to represent each direct component of a structured 
object as an atomic object with a reference as its value. This is certainly 
conceivable, but there is a limit, since this way of representing objects 
will make certain operations less efficient (in particular "random access" 
operations and copy operations on large objects). In practice, therefore, 
the choice will be somewhere in the middle (though there are extremes, 
compare for example arbitrary LISP and BASIC implementations). Anyway, we 
shall assume that the choice has already been made for us. This implies 
that we introduce the reference concept in the abstract machine by 
associating a reference as a unique value with each object. The reference 
of an object is said to "refer" to that object and an atomic object having 
a reference as its value will be called a "reference object". 

Notice that the fact that an object X has a reference object as its 
component with a value referring to an object Y does not imply that Y is a 
component of X: A reference is just an ordinary value. At the more abstract 
level, which we have just abandoned, Y would be considered as a component 
of X, however. Notice also that efficiency is the only reason for 
introducing references. The allocation invariants can be satisfied without 
the introduction of references, even if circularities in objects occur. 
(Note that two objects which are mutual components must be assigned 
identical locations then.) This shows that the reference is truly an 
implementation concept. It is basically an "address" in abstract disguise, 
which need not occur in defining abstract machines of programming 
languages. The fact that it does occur in many such abstract machines (such 
as the hypothetical ALGOL 68 computer) is caused by the fact that many 
programming languages have the reference built in as a language concept. 

4.1.7. Elimination of structural circularities 

Now that we have introduced references, it is reasonable to forbid 
circularities in the structure of objects. These circularities can most 
conveniently be modelled using references, 



EXAMPLE 4.4 

Consider the object X from Figure 4.8, which has two circular direct 
components: 

X 

,o, 
\ 

ct~:~~i) 
I 
I 
I 

' I 

cb 
I 

' 

cb 
Figure 4.8 
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This object can be represented without structural circularities as follows: 

D 

, \ , , , , 

0 

, 

X 

0 , , , 

Figure 4.9 

\ 

0 

The above implies that the relation of "being a subobject of" will from now 
on be considered as a (reflexive) partial order. We could go even further 
by requiring that the relation of "being a direct component of" constitutes 
a tree structure (or better, a "forest structure") on the set of objects 
(as in Figure 4.9), thus ensuring that the direct components of an object 
do not overlap. This, however, would go too far: 

EXAMPLE 4.5 

Consider the object X from Figure 4. 10. 
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Figure 4. 10 

This object represents a matrix (a 2-dimensional array) with value(;;), 

where R1 and R 2 are the rows and C1 and C2 are the columns of the matrix. 
Clearly X has no tree structure. Representing X as a tree structure using 
references (so-called "edge vectors" [AHO & ULLMAN 77]) is not desirable in 
many implementations either, because it may slow down either row access, 
column access or both, in an unacceptable way. D 

The fact that the relation of "being a subobject of" is a partial order 
makes this i:elation correspond to the more earthly relation of "being 
physically included in". This will be used to picture objects in a 
different way from now on. Instead of circles they will be denoted by 
arbitrary closed curves, and physical inclusion instead of dotted arrows 
will be used to denote the relation of "being a subobject of". 

EXAMPLE 4.6 

The objects pictured in Figures 4.2, 4.9 and 4.10 are now pictured as 
follows: 

X 

Figure 4. 2: 

X 

Figure 4.9: 



Figure 4. 10: 

D 

4.1.8. Accessing objects 

X 

~ 
~ 
Figure 4. 11 
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Before turning to the creation of objects, it is useful to discuss in 
greater detail how objects are manipulated by the abstract machine. The 
only way for the abstract machine to manipulate, or "use", an object is by 
"accessing" it. The machine has two mechanisms for accessing objects. 
First, given a structured object X, the machine can access a direct 
component of X. This operation is called "selection". Secondly, given a 
reference object Y, the machine can access the object referred to by the 
value of Y. This operation is called "dereferencing". By repeatedly 
applying selection and dereferencing operations, the machine (controlled by 
the program) can follow "access paths" (see Figure 4.12). 

0 

Figure 4.12 

selection 

dere.ferencing 
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In order to be able to access even a single object this way, "starting 
points" are required: There must be objects which are a priori accessible 
to the abstract machine, i.e., without having to follow an access path 
first. Without loss of generality we may assume there is one such object, 
called the "root". 

4.1.9. Creating objects 

The creation of an object must be accompanied by "allocating" a 
location to the object, i.e., assigning a location to the object in 
accordance with the allocation invariants. If the new object contains old 
objects as its components, this location may be scattered all over the 
memory of the concrete machine, which can make the bookkeeping of the 
storage manager extremely complex. It is reasonable, therefore, to require 
that newly created objects do not contain any of the old objects as their 
components. This requirement, as a matter of fact, is only reasonable 
because we have references: Old components of new objects can always be 
represented by reference objects. 

The above implies that objects are created in units which we shall 
call "nodes". These units of creation can be discerned in each 
implementation, where they have names such as "blocks", "activation 
records", "data areas", etc •• Creating a node amounts to creating an object 
(the node itself) together with all of its components. Since both the node 
and its components are new, none of the objects thus created will overlap 
with any of the old objects. However, by modifying the structure of a node 
after it has been created old objects can in principle still be contained 
as components in a node. A rigorous way to avoid this is to forbid the 
structure of a node (and consequently, the structure of any object) to be 
modified. This solution is not always preferable (cf. variant records in 
PASCAL). A more liberal solution is to allow only internal modifications of 
the structure of a node, i.e., modifications involving subobjects of the 
node only. The latter solution, which is adopted in the majority of 
implementations, will also be adopted here. 

The memory of the (ever less abstract) abstract machine can now be 
viewed as a collection of non-overlapping nodes, where each object is a 
subobject of precisely one node. In order to distinguish the memory of the 
abstract machine from the memory of the concrete machine we shall call the 
former the "graph" and the latter the "store". An example of what the graph 
may look like is given in Figure 4.13, which pictures a graph with six 
nodes. The root, which we shall always assume to be a node, is indicated by 
R. This picture shows that the memory of the abstract machine can indeed be 
viewed as a graph, albeit a rather unusual one. 

Due to the fact that nodes are non-overlapping we are able to impose 
the requirement that nodes be assigned "compact" locations, i.e., locations 
consisting of consecutive cells. This obvious way of simplifying the 
bookkeeping of the storage manager is used in almost all implementations. 
Notice that requiring all objects to be assigned compact locations would in 
general go too far. (Check that it is impossible.to assign compact 
locations to all subobjects of the object X in Figure 4.10 without 
violating the allocation invariants.) 

We are now in a position to make a first naive attempt at designing a 
storage manager. Let us assume for simplicity's sake that objects have a 
constant structure· (i.e., objects are not "breathing"). The only 
interesting problem then is the allocation of stor.age for a new node. Let 
the term "free storage" denote the set of all cells in the store which are 
not part of a location assigned to an object. Allocating storage for a new 
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R 

Figure 4.13 

node could be done as follows. Initially.the entire store consists of free 
storage. Each time a node is created a compact location of the proper size 
is "chopped" off the leftmost end of the free storage and assigned to the 
node. 

4.1.10. Destruction of objects 

The simple scheme given·above requires a minimum of bookkeeping by the 
storage manager. However, it brings one face to face with one of the two 
central problems of storage management very soon: the finiteness of the 
store. In most programs objects are created at a rate which, using the 
above scheme, would cause a "storage overflow" in less than no time. This 
situation has been anticipated in many programming languages: Apart from 
operations to create and modify objects, these languages also have (more or 
less implicit) operations tolldestroy" objects. Consequently, during the 
execution of programs in those languages "live" and "dead" objects can be 
distinguished. E.g., when leaving a block in ALGOL 60 all objects 
(variables) which have been created in that block are destroyed and hence 
they are no longer alive outside that block. 

Observe that destruction, like the reference, is really an 
implementation concept. From a purely semantical point of view there is no 
need to introduce an operation to destroy objects. Since destruction is 
included as an operation in many programming languages and since it is 
important from an implementation point of view, we shall introduce 
destruction as a third operation in our abstract machine. The operation 
should not be interpreted as terminating the existence of an object, 
however. It should merely be viewed as appending the label "dead" to an 
object, which implies that the object is no longer used by the program. 
Since nodes are the units of creation it is obvious to choose them as the 
units of destruction as well. When destroying a node all of its components 
are destroyed with it. This implies that objects and their components are 
always destroyed at the same time, thus avoiding complications caused by 
live objects having dead components. 

An obvious adjustment of the above simple sto~age management scheme is 
to "deallocate" the location of a node at the moment the node is destroyed. 
This means that the node is scratched from the bookkeeping of the storage 
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manager and that the cells of its location are returned to the free 
storage. Storage which would have been occupied by dead objects in the 
first scheme can be reused this way. Yet, uncontrolled allocation and 
deallocation of storage can make the free storage look like Swiss cheese, a 
phenomenon which is known as "fragmentation". This cannot only make the 
bookkeeping of the storage manager most inefficient, it can also lead to a 
situation that allocation of storage for an object is impossible, even 
though the overall size of the free storage is more than sufficient. 
Fragmentation is the second central problem of storage management (besides 
the finiteness of the store). This problem has been anticipated in many 
programming languages as well, particularly in those which feature a "block 
structure" (such as ALGOL 60). In those languages objects have nested 
lifetimes, which implies that they are created and destroyed in a last-in 
first-out ("last-created first-destroyed") manner. In implementations of 
these languages the free storage can be kept compact by using a "stack" for 
the allocation of storage [RANDELL & RUSSELL 64]. 

4.1.11. Dangling references 

In connection with references and the.destruction of objects an 
important problem crops up. After the destruction of an object other live 
objects can in principle still contain references to the object. These so­
called "dangling references" are of course not supposed to be used for 
accessing the dead object. (The meaning of the label "dead" appended to an 
object is that the object is no longer used. Accessing it would be in 
contradiction with that.) There are several methods to prevent the use of 
dangling references in the abstract machine: 

(1) Make it impossible for the user to lay hands on the reference of an 
object with a finite lifetime. 
This is the simplest, but also the most restrictive method of 
preventing the use of dangling references. This method is for example 
used in PASCAL. 

(2) Make sure that if an object X contains the reference of an object Y, 
then the lifetime of Xis contained in the lifetime of Y. 
This method is used in ALGOL 68, where it gives rise to a number of 
rules which are known as the "scope rules". 

(3) Check during execution of the program for the use of dangling 
references. 
This is a less restrictive method than (1) and (2), but it is rather 
expensive (especially as far as execution time is concerned). That is 
probably the reason why it is seldom used. 

(3) Leave the responsibility to the user. 
This is the most liberal, but also the most unsafe method, which is 
used for example in PL/I. 

The first two methods do not only prevent the use of dangling references, 
they even prevent the occurrence of them. That is the standpoint we shall 
take here too: We assume that dangling references do not occur in the 
graph. 

4.1.12. Objects with infinite lifetimes 

Even if fragmentation can be avoided completely, the scheme of 
deallocating dead nodes will not be sufficient for many programming 
languages (among them LISP, PASCAL, ALGOL 68). The reason is that programs 
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in these languages can create objects which are never destroyed. Common 
names for these objects are "dynamic objects" (PASCAL) and "heap objects" 
(ALGOL 68). Although the lifetimes of these objects will be "infinite" 
(= lasting till the end of the execution of the program), the time they are 
used will often not. Extensive use of these objects may lead to exhaustion 
of the free storage very soon. The only way to avoid this is to equip the 
storage manager with the ability to deallocate storage, which is occupied 
by live, but no longer used nodes. The crucial problem in this is: How does 
the storage manager determine that a live node is no longer used? 

Before discussing some solutions to the above problem two questions 
will have to be answered. The first is what we mean by the fact that a node 
is no longer used. Clearly, it should mean that none of its subobjects is 
used any more. Only then can the storage occupied by the node be 
deallocated safely. The second question is when the storage manager should 
establish that a live node is no longer used. Ideally this happens at the 
moment the node (i.e., one of its subobjects) is used for the last time. 
The storage occupied by the node could immediately be deallocated then. At 
the moment a node is used for the last time, however, it is generally not 
known that this is indeed the last time, because the use or non-use of the 
object may depend on things still to happen. So it is inevitable that the 
nop-usage of~ node is established $ome time later. 

4.1.13. User controlled deallocation 

The oldest solution to the problem is based on the assumption that the 
user knows best when a node is no longer used. The user is therefore 
enabled to give hints in his program as to which nodes are no longer used. 
Most language implementations featuring this scheme are very credulous and 
interpret the hint as a deallocation command. (Apart from ignoring it, 
there is not much else they can do.) This may give rise to a phenomenon 
which is very similar to the dangling reference. After deallocating a live 
node, other live nodes can still contain references to the deallocated 
node. Erroneously using these references to access the node will generally 
end up in disaster in the concrete machine. These references, which will be 
called "dangling pointers", are not the same as dangling references. 
Dangling references are of a semantical nature, because they arise from the 
destruction of an object, which is an operation prescribed by the 
semantics. Avoiding dangling references is a job of the language designer. 
Dangling pointers are of an implementation-technical nature, because they 
arise from "robbing" a node of its location in the store, while 
semantically the node lives on. Avoiding dangling pointers is a job of the 
language implementer. 

4.1.14. Reference counting 

The above solution is not only unsafe, but also delegates a part of 
the task of the storage manager to the user, which is undesirable. A second 
solution is based on the following line of argument. Apart from the root 
the machine can only use a node X if it has the disposal of its reference 
or the reference of one of its components. If none of the nodes of the 
graph contains a reference to a subobject of X, it is certain that Xis no 
longer used. This leads to a method where a counter, a so-called "reference 
count", is associated with each node, counting the number of references to 
subobjects of the node [COLLINS 60]. Upon copying a reference to a 
subobject of the node the counter must be increased, and upon destroying 
("overwriting") a reference to a subobject of the node the counter must be 
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decreased by one. As soon as the counter reaches zero, no more references 
to subobjects of the node exist. As a consequence, the node cannot be used 
any more and the storage occupied by the node can be deallocated. This is a 
safe method, but it introduces a considerable time and space overhead, even 
if no storage can or need be deallocated. Moreover, the method fails if 
circular references can occur [McBETH 63]. 

EXAMPLE 4.7 

Consider the nodes X and Yin Figure 4.14. 

X a 

Figure 4.14 

If outside the nodes X and Y no references to subobjects of X and Y occur 
in the graph, the counters of X and Y will remain equal to 1 for ever. 
Hence the storage occupied by X and Y will never be released, even though X 
and Y cannot be used any more. D 

4.1.15. Reachability 

The reason why the above method fails is that it is based on the 
assumption that (a subobject of) a node can be accessed as long as 
references to it exist. This assumption is false. Apart from the root 
(which is "accessible" by definition) an object Xis only accessible if 
there exists another accessible object Y such that either Y is a structured 
object and Xis a direct component of Y (in which case X can be accessed by 
accessing Y followed by a selection) or Y is a reference object and the 
value of Y refers to X (in which case X can be accessed by accessing Y 
followed by a dereferencing operation). In less recursive terms this means 
that an object X can only be accessed if there exists an access path to X 
emanating from the root. Objects for which such a path exists will be 
called "reachable". How objects can become "unreachable" is demonstrated in 
the following example. 

EXAMPLE 4.8 

Suppose the graph consists of three nodes R, X and Y as pictured in 
Figure 4.15, where R is the root. 
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Figure 4.15 

According to this figure all nodes are reachable. By modifying the value of 
Ras follows: 

vaURJ := ref(Y), 

the situation of Figure 4. 16 is obtained. 

R 

X~Y 

Figure 4. 16 

The node X has become unreachable now. D 

Note that the fact that a node is unreachable does not imply that the 
storage occupied by the node may safely be deallocated: The node may have 
reachable components. Only if all subobjects of a node are unreachable, may 
the storage occupied by the node be deallocated. Nodes, all subobjects of 
which are unreachable, will be called "isolated". Check that there are four 
unreachable nodes and two isolated nodes in Figure 4.13. Another thing 
which should be noted is that deallocating an isolated node may introduce 
dangling pointers. As far as the user is concerned these dangling pointers 
are harmless, because they are contained in unreachable objects. The 
implementer, though, should beware of them. 

EXAMPLE 4.9 

Suppose Figure 4.17 is a picture of the graph, where R is the root. 
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R X Y 

O 0-{f"0-· 0 O 
Figure 4. 17 

The node Yin this picture is isolated and may be deallocated. By doing so 
a dangling pointer will arise in X. □ 

Dead nodes are always isolated (otherwise, assuming that the root is always 
alive, we would have dangling references). Live nodes which are subject to 
being destroyed will normally not become unreachable (let alone isolated) 
during their lifetime, because if they cannot be accessed there is no way 
to destroy them from the program either. 

4.1.16. Garbage collection 

The concept of reachability is the basis of a third method to 
determine whether a node is still used or not. This method is called 
"garbage collection" and will be the subject of the next chapter. (The 
first description of this method can be found in [McCARTHY 60]; see also 
[McCARTHY et al. 65].) In this method the storage manager is supposed to 
have a special "employee", the so-called "garbage collector", which is 
charged with the tracing and deallocation of isolated nodes. The time-table 
of this employee was traditionally as follows. As long as the storage 
manager has sufficient free storage, the garbage collector is in a state of 
rest, When the storage manager runs out of free storage, the garbage 
collector is activated. It is its job to trace all isolated nodes and to 
deallocate the storage occupied by these nodes. After the garbage collector 
has completed its job, the storage manager can resume its work with a fresh 
(and hopefully sufficient) supply of free storage. 

Garbage collection is a safe method which, in contrast to the 
reference counting scheme, will also work if circular references occur. 
Furthermore, the method (in its traditional form) will only introduce a 
time overhead if the free storage really gets exhausted. The main drawback 
of garbage collection in its traditional form is, that during a garbage 
collection (which may take a considerable time) the execution of the 
program is suspended. In time-critical applications this may be an 
insurmountable objection. This objection can be obviated by changing the 
time-table of the garbage collector. Instead of activating the garbage 
collector when need arises, it is made to work continuously. This implies 
that the program and the garbage collector work in parallel. However, in 
order to obtain the necessary synchronization, a considerable overhead is 
required. This overhead is only justified if either the continuity of the 
execution of the program is essential, or the overhead can be eliminated 
through dedicated hardware. 

In contrast to traditional garbage collection the subject of parallel 
garbage collection can hardly be considered as a well-explored field of 
programming language implementation. Since we are primarily interested in 
giving a systematic treatment of a relatively well-established field of 
computer science and not in exploring a new field, we shall restrict 
ourselves to traditional garbage collection here (and in the next chapter). 



For parallel garbage collection the interested reader is referred to 
[MULLER 75], [STEEL 75], [WADLER 76], [DIJKSTRA et al. 78]. 
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Another method of avoiding a prolonged interruption of the execution 
of a program, consists of "spreading" the garbage collection process over 
the entire storage allocation process. Each time a piece of storage is 
allocated a few steps of a garbage collection are performed. An algorithm 
based on this idea is described in [BAKER 78] (main drawback: a "double 
store" is required). Another interesting possibility is to combine garbage 
collection with reference counting [DEUTSCH & BOBROW 76], [BARTH 77], 
[WISE & FRIEDMAN 77]. Neither of these methods will be discussed here. 

4.1.17. Some complications 

In practice, the job of a garbage collector is more complicated than 
we described. First, it is often the case that the garbage collector is not 
the only employee of the storage manager. Using the different lifetime 
properties of objects the storage manager may have several employees, each 
of which takes care of the storage management for a certain class of 
objects. In order to avoid that the garbage collector interferes with the 
work of the other employees, it should be ~nambiguously clear what belongs 
to the competence of the garbage collector and what does not, Since we are 
primarily concerned with garbage collection, we shall do away with this 
problem by assuming that garbage collection is the only strategy used for 
the deallocation of objects and that there are no objects which the garbage 
collector should a priori keep its hands off. 

A second complication is the following. Suppose all but a few small 
subobjects of a huge node become unreachable. Then a very large part of the 
storage occupied by the node will not be used any more. Yet this storage 
cannot be deallocated, because the node is not isolated. 

EXAMPLE 4.10 

For the sake of this example, extend PASCAL with a standard function ref, 
which delivers the reference of an object. Consider the following program: 

type row = array [1 • • 10000] of integer; 
var p: tinteger; 
begin 

var r: trow; 
begin 
~w(r); 

p := ref(rt[l]); 

end 

In the inner block an object X of type row is created and its reference is 
assigned tor. The reference of the direct component X[l] of Xis assigned 
top. At exit of the inner block the object r is destroyed, and only one 
reference to a subobject of X remains (viz., the value ref(X[l]) contained 
in p). Consequently X[l] is the only one out of 10000 components of X that 
is reachable outside the inner block. D 
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In pathological cases the above may cause the garbage collector to 
return empty-handed, even if the major part of the store is not used. 
Basically this problem can be solved in two ways. (Note that in PASCAL 
implementations it is usually not a problem, because references to 
components of objects (variables) do not occur as values in PASCAL.) The 
first is to deallocate objects in a more subtle way. Instead of 
deallocating objects nodewise, they are deallocated individually. In 
abstract terms this implies that there is an operation which "peels" (a 
number of) the outer unreachable subobjects off a node, thus transforming 
the node into a number of smaller nodes (see Figure 4.18). 

Before peeling: 

After peeling: 

~ 
Figure 4. 18 

The problem with this peeling operation is that it should not violate 
system invariants such as: Nodes occupy compact locations and do not 
overlap. This makes it a rather intricate and highly implementation 
dependent operation, which is a potential source of garbage collector 
errors. Generally speaking it is therefore better to choose the second 
solution: decreasing the size of the nodes. This solution makes large nodes 
fall apart into a number of smaller nodes, which can be deallocated 
individually. We shall assume that the latter solution has been chosen, or 
in other words: We stick to the nodewise deallocation of objects. 

4.1.18. Compaction 

Another complication is caused by the fact that, in order to simplify 
their bookkeeping, many storage managers keep the free storage compact. 
However, the free storage as it will be after a garbage collection will 
generally not be compact. The locations deallocated by the garbage 
collector are usually scattered all over the store. Consequently, the free 
storage will display a high degree of fragmentation. A garbage collector, 
therefore, is quite often combined with a "compacter" which "compacts" the 
free storage. This combination of a garbage collector and a compacter is 
called a "compact(ify)ing garbage collector". 

It is the job of a compacter to reallocate the nodes in the store in 
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such a way that a compact free storage results. In doing so the compacter 
is usually assumed not to affect the "layout" of an object, i.e., the 
relative position of the location of the object inside the location of the 
node of which the object is a subobject. The compacter can accomplish this 
most easily by "shifting" objects nodewise in the store and by "copying" 
the contents of the cells of the old location of a node to the cells of the 
new location. 

The above may give the impression that compaction is a trivial matter. 
The reason why it is not is connected with the way references of objects 
are represented in the store. In most implementations the representation of 
the reference of an object depends on the location occupied by the object. 
By reallocating a node the representation of the reference of each 
subobject of the node is changed. Therefore, all cells containing 
representations of these references must be "updated" by the compacter. 

The fact that, in contrast to other values, the representation of the 
reference of an object is variable could be modelled by making the 
representation function repr variable (like the allocation function alloe) 
and introducing a system invariant which reflects the dependence of repr on 
alloe. It is more convenient to keep repr constant, however. This is 
possible if we make the (reasonably general) assumption that the reference 
V of an object Xis represented by the address of the leftmost cell of the 
location occupied by X, augmented with some constant C(V). The constant 
C(V) represents the part of the representation of V which is independent of 
the location of X. If we now reinterpret repr(V) as C(V), the function repr 
is constant. A consequence of this reinterpretation of repr is that 
Allocation Invariant (Al) must be rewritten. It falls apart into two 
invariants, one for atomic objects containing references and one for atomic 
objects containing values other than references (see Section 4.2). 

In a virtual storage environment, garbage collection makes hardly any 
sense without compaction. The reason for this is that in such an 
environment storage is not really a scarce resource, However, the larger 
the size of the storage in use, the more access of it will slow down 
(through "page faults"). A garbage collection followed by a compaction may 
then be used to reduce the size of the storage in use, thus speeding up 
storage access. 

It is also possible that the question of whether or not a garbage 
collection must be followed by a compaction is dependent on certain 
conditions which cannot be checked beforehand. For instance, if a "free 
storage list" is used for allocating storage, a failure to find a compact 
location of the proper size in the free storage list may be used to trigger 
a garbage collection. If after this garbage collection a location of the 
proper size still cannot be found, a compaction may help. Otherwise a 
compaction is not necessary (though, in order to avoid frequent garbage 
collections, it may be wise to perform a compaction if the fragmentation of 
the free storage has become large). This kind of garbage collector will be 
called a "conditionally compacting garbage collector". 

4. 2. MODEL 

The concepts which were discussed informally in the previous section 
will now be defined precisely. This implies that we shall introduce a model 
of a storage management system, This model will serve as the basis for the 
next chapter. Conceptually it consists of three parts: a framework (or 
"representation" in terms of Chapter 2), a number of properties ("system 
invariants") and a number of definitions. 
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4.2.1. Framework 

The framework of the model is presented below: 

Each storage management system H has: 

- root(H): constant object, 
- gra:ph(H): variable set of objects, 
- store(H): constant set of cells, 
- repr(H): constant mapping from values to words, 
- alloc(H): variable mapping from objects to sets of cells. 

Each object X has: 

- ref(X): constant value, 
- kind(X): constant element from {atomic,structured}, 
If kind(X) = atomic 

I - sort(X): constant element from {scalar,reference}, 
- val(X): variable value, 

If kind(X) = structured 
I - struct(X): constant set of objects. 

Each value V has: 

- kind(V): constant element from {scalar,reference}, 
If kind(V) = reference 
I - obj(V): constant object. 

Each cell C has: 

- addr(C): constant word, 
- cont(C): variable word. 

A word is an integer. 

The above defines for example the concept of an object as a dynamic 
system X with two direct components ref(X) and kind(X) and a number of 
additional direct components, which are dependent on kind(X). If kind(X) 
atomic there are two additional direct components sort(X) and val(X), 
otherwise there is one additional direct component struct(X). The adjective 
"constant" of a direct component implies that the direct component itself 
may not be changed, though components of it (if variable) may. E.g., obj(V) 
of a value V with kind(V) = reference may not be changed through a 
statement such as "obj(V) := X", but if obj(V) is an object with 
kind(obj(V)) = atomic, then a statement such as "vaUobj(V)) := 5" is 
allowed. 

4.2.2. Definitions and invariants 

For ease of description we shall from now on assume that we have only 
one storage management system H which is a representative of all storage 
management systems. All properties and concepts which are associated with H 
can be associated with each storage management system. This saves us the 
trouble of starting each definition with "For each storage management 
system H ... ". The dependency of definitions on H will not be reflected in 
the notation. The system invariants which occur below should be read as 
axioms. They are prefixed by the capital letter S followed by a number. All 
objects, values, etc. are implicitly assumed to be finite. 



His a storage management system. 

root(HJ is called the root and will be denoted by R. 

graph(HJ is called.the graph and will be denoted by G. 

store(HJ is called the store and will be denoted. by S. 
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repr(HJ is called the representation function and will be denoted by R. 

alloc(H) is called the allocation function and will be denoted by A. 

The following definitions and system invariants are related to values and 
objects in general. 

A scalar value is a value V with kind(V) = scalar. 

A reference value is a value V with kind(V) = reference. 

If Vis a reference value, then Vis said to refer ,to obj(V). 

If Xis an object, then ref(X) is called the reference of X. 

An atomic object is an object X with kind(X) = atomic. 

A scalar object is an atomic object X with sort(X) = scalar. 

A reference object is an atomic object X with sort(X) = reference. 

If Xis an atomic object, then val(X) is called the value of X. 

A structured object is an object X with kind(X) = structured. 

If X is a structured object, then struct(X) is called the structure 
of X. 

An object Xis said to be a direct component of an object Y if Y is a 
structured object and XE struct(Y). 

The fact that an object is a component of an object is defined by the 
following rules (X, Y and Z denote objects): 

(I) If Xis a direct component of Y, 
then Xis a component of Y. 

(2) If Xis a component of Y, 
Y is a direct component of Z, 

then Xis a component of z. 
(3) An object is a component of an object on account of the above 

rules only. 

An object Xis said to be a subobject of an object Y if Xis a 
component of Y or X = Y. 

The set of all subobjects of an object Xis denoted by sub(X). 

Two objects X and Y are said to be disjoint if sub(X) nsub(Y) = ¢; 
otherwise they are said to overlap. 
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An atom of an object Xis a subobject of X, which is an atomic object. 

The set of all atoms of an object Xis denoted by atoms(X). 

A branch of an object Xis an atom of X, which is a reference object. 

The set of all branches of an object Xis denoted by branches(X). 

The degree of an object X, denoted by degree(X), is the number of 
branches of X. 

(SI) If Xis an object, 
then ref(X) is a reference value. 

(S2) If Xis an object, 
then obj(ref(X)) = X. 

(S3) If V is a .:eference value, 
then ref(obj(V)) = V. 

(S4) If Xis a scalar object, 
then val(X) is a scalar value. 

(SS) If Xis a r.eference object, 
then val(X) is a reference value. 

(S6) If X is a ::;tructured object, 
then struct(X) f. ¢. 

(S7) If X and Y are objects, 
X is a component of Y, 

then Y is uDt a component of X. 

Invariants (S2) and (S3) state that the reference of an object X refers to 
X and is unique. Invai:iant (S7) implies that the relation of "being a 
subobj ect of" between objects is a (reflexive) partial order. The following 
definitions and properties are concerned with objects in the graph G. 

A node is an element of G. 

A subnode is a subobject of a node. 

(SB) REG. 

(S9) If Xis a node, 
then Xis a structured object. 

(SIO) If X and Y are nodes, X f. Y, 
then X and Y are disjoint. 

(Sil) If Xis a subnode, 
Y is a branch of X, 

then obj(val(Y)) is a subnode. 

Invariant (S9) is not essential. It is postulated for the sake of 
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convenience only. (It does not limit generality in any way.) 
Invariant (SIi) amounts to the absence of dangling references in the graph. 

If Xis a subnode, then node(X) is the unique node Y such that Xis a 
subobject of Y. 

The fact that an object is reachable is defined by the following rules 
(X and Y denote objects): 

(I) R is reachable. 
(2) If Xis reachable, 

Xis a structured object, 
YE struat(X), 

then Y is reachable. 
(3) If Xis reachable, 

Xis a reference object, 
Y = obj(val(X)), 

then Y is reachable. 
(4) An object is reachable on account of the above rules only. 

A node Xis called isolated if all subobjects of X are unreachable. 

Check that all reachable objects are subnodes. The following definitions 
and invariants are concerned with the store S. 

If C is a cell, then add:r(C) is called the address of C. 

If C is a cell, then aont(C) is called the contents of C. 

A location is a nonempty subset of the store. 

A location Lis called compact if {add:r(C) ICE L} is a subrange of 
the integers. 

The size of a location L, denoted by size(L), is the number of 
elements of L. 

The left address of a location L, denoted by left(L), is defined by: 

left(L) = min{add:r(C) ICE L}. 

The right address of a location L, denoted by right(L), is defined by: 

right(L) = maz{add:r(C) ICE L}. 

(S12) Sf¢. 

(S13) If C,D ES, Cf D, 
then addr(C) f add:r(D). 

(S14) Sis compact. 

If A E {addr(C) ICES}, then aell(A) is the unique cell CE S with 
add:r(C) = A. 
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If Lis a location and N is an integer such that: 

left(S) - left(L) ~ N ~ right(S) -right(L), 

then the location shift(L,N) is defined by: 

shift(L,N) = foeU(a.ddr(C) +NJ I C E L}. 

The definitions and invariants concerned with the representation function R 
and the allocation function A are given below. 

(SIS) dom(RJ = {V I Vis a value}. 

(S16) There are nodes X1,···,Xn (n ~ 0) such that 
dom(A) = sub(X1J u ••• u sub(Xn). 

(S17) If XE dom(A), 
then A(X) f ¢. 

(S18) If XE dom(A), 
then A(X) c S. 

(S19) If XE dom(A), 
X is a node, 

then A(X) is compact. 

(S20) If XE dom(A), 
Xis an atomic object, 

then size(A(X)) = 1. 

(S21) If Xis a reachable object, 
then XE dom(A). 

(S22) If Xis a reachable scalar object, 
then cont(A(X)) = R(val(X)). 

(S23) If Xis a reachable reference object, 
Y = obj(val(X)), 

then cont(A(X)) = R(vaUX)) + left(A(Y)). 

(S24) If X,Y E dom(A), 
Xis a subobject of Y, 

then A(X) c A(Y). 

(S25) If X,Y E dom(A), 
X and Y are disjoint, 

then A(X) n A(Y) = ¢. 

If XE dom(A), then Xis said to occupy the location A(X). 

The free storage is the subset F of the store, defined by: 

F ={CE SI V XE dom(A) [Ci A(X)]}. 

The storage management system is said to be compact if the location 
S \ F, where F is the free storage, is compact and 
lej't(S \ F) = left(SJ. 
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If XE dom(A), Y = node(X), then the layout of X, denoted by 
layout(X), is defined by: ---

layout(X) = {addr(C) - left( A(Y)) I C E A(XJ}. 

Here dom (F) denotes the domain of the mapping F (F = R, A). (Mappings are 
considered as partial functions.) Invariant (S16) reflects that storage is 
allocated and deallocated nodewise. Invariant (S2O) states that an atomic 
object occupies a location containing a single cell. If convenient (as in 
Invariants (S22) and (S23)), this location is identified with the cell 
contained in it. Invariants (S22)-(S25) are the Allocation Invariants from 
Subsection 4.1.4, except that Allocation Invariant (Al) has been restricted 
to reachable objects and has been split into two invariants ((S22) and 
(S23)). Notice that in a compact storage management system the free storage 
is (arbitrarily) located in the right part of the store. 

4.2.3. Operations 

Garbage collection, compaction and compacting garbage collection will 
now be defined as abstract operations which can be applied to a storage 
management system. 

COLLECT GARBAGE is an operation, called garbage collection, which may 
be applied to a storage management system. It is defined as follows: 
- Remove all subobjects of isolated nodes from dom(A). 

COMPACT is an operation, called compaction, which may be applied to a 
storage management system. It is defined as follows: 
- Change A(X) for a number of XE dom(A), 
- Change cont(C) for a number of CE S, 
in·such a way that: 
- The system invariants are not affected, 
- The layout of objects in dom(A) is not affected, 
- The compactness of the storage management system is established. 

COLLECT GARBAGE & COMPACT is an operation, called compacting garbage 
collection, which may be applied to a storage management system. 
It is defined as follows: 
- Remove all subobjects of isolated nodes from dom(A), 
- Change A(X) for a number of XE dom(A), 
- Change cont(C) for a number of CE S, 
in such a way that: 
- The system invariants are not affected, 
- The layout of objects in dom(A) is not affected, 
- The compactness of the storage management system is established. 

Check that COLLECT GARBAGE does not affect the system invariants or the 
layout of objects in dom(A). Notice also that neither of the operations 
changes G or the value of atomic objects (though "temporary" changes are 
allowed). 

4.2.4. On the relation with Chapter 2 

We shall conclude this section with a number of remarks concerning the 
relation of the model presented above with Chapter 2. Dynamic systems are 
called "data structures" in Chapter 2. The concepts such as "storage 
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management system", "object", "value", etc. correspond to things called 
"types" in Section 2.4. The only types which are not defined are the types 
"integer" and the parameterized types "set of type" and "mapping from typel 
to type2". These types (and some others like the parameterized types "bag 
of type" and "stack of type") are implicitly assumed to have been defined 
in the obvious way. No access rights to any of these implicit types exist. 
Values of these types can only be manipulated through their associated 
operations (e.g., sets by selection, union, intersection, equality, etc.). 
The notation used here differs from the notation used in Chapter 2. E.g., 
instead of "H.gra:ph" we w--rite "gra:ph(H)". 

An important point is the use of the"=" operator. This operator will 
be used in two different ways. First, if X and Y are dynamic systems to the 
components of which we have access (such as "objects"), "X = Y" will denote 
that X and Y are "identical". This was denoted by "X = Y" in Chapter 2. The 
fact that X and Y are identical implies that all components of X and Y are 
also identical. The converse is not true, since dynamic systems have a 
"hidden identity". Secondly, if X and Y are dynamic systems which we may 
manipulate through their external operations only (such as "integers"), 
"X = Y" will denote that X and Y are "equal". For the integers this was 
denoted by "EQUAL(X,Y)" in Chapter 2. In contrast to identity, equality is 
an ordinary external operation provided by the "designer" of a dynamic 
system. 

The fact that different dynamic systems may have identical components 
is important in relation to making abstractions of dynamic systems. A way 
of making an abstraction of a dynamic system is to "forget" some of its 
direct components. By doing so for a number of dynamic systems some of 
them, which differed formerly in at least one component, may become 
identical in all components. The latter systems are generally not supposed 
to be identified, however. As a simple example, consider the concept 
(dynamic system) of a value as defined above. This is an abstraction of the 
concept of a (simple) value as it occurs in programming languages. Examples 
of values are integers, booleans, reals and references. Here we are only 
interested whether a value is a reference or not, and if so, to which 
object it refers. Therefore, a "scalar value", i.e., a value which is not a 
reference, has only one component which indicates that the value is not a 
reference. If values with identical components would be identified, only 
one scalar value would be possible, which is clearly undesirable. In our 
approach we have a potentially infinite number of scalar values. 

4. 3. CONCLUSION 

The main purpose of this chapter was to define the abstract concept of 
a storage management system and its related concepts. Since the usefulness 
of this model will have to be demonstrated in the next chapter, conclusions 
will be deferred till there. Harking back to the introduction of this 
chapter, one "metaconclusion" seems justified here, however: The given 
collection of definitions and invariants closely resembles a mathematical 
theory. The only thing that seems to be missing are the theorems. We could 
have added a number of them without great difficulty, but most of them 
would be self-evident and hardly worth mentioning. This is more or less 
typical for all dynamic systems: They constitute comprehensive, but from a 
mathematical point of view rather uninteresting theories. What makes them 
interesting is the fact that unlike "static" mathematical theories, 
operations can be applied to them. The control of their complexity then 
becomes a difficult and challenging problem. 
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CHAPTER 5 

A SURVEY OF GARBAGE COLLECTION 

5.0. INTRODUCTION 

In Chapter 4 the subject of garbage collection was discussed as one of 
the solutions to the storage management problem. In this chapter 
(compacting) garbage collection will be discussed as a problem in its own 
right using the storage management model from Chapter 4 as a basis. This 
implies that a survey of garbage collection algorithms will be given. 
Though no claim for completeness is made, the survey will include the major 
algorithms known from literature. 

The interesting aspect of the garbage collection problem is the fact 
that a garbage collector has to work under a severe storage constraint. 
Like every algorithm the garbage collector needs a certain (generally 
unpredictable) working space. Since, in the end, the store is the only data 
structure available to the garbage collector, this working space must be 
found in the store. At the moment the garbage collector is called, however, 
free storage is usually very scarce: The lack of free storage was the very 
reason for calling the garbage collector. This situation has led to the 
design of ingenious garbage collectors, which "encode" their working space 
in the store with little or no space overhead. 

Both garbage collection and compacting garbage collection will be 
discussed here. The compacting garbage collection problem can be decomposed 
into a garbage collection and a compaction problem. The first two sections 
of this chapter will therefore deal with garbage collection and compaction 
algorithms respectively. The decomposition of a compacting garbage 
collector into a garbage collector and a compacter is only a "conceptual 
decomposition". It is analogous to the decomposition of a compiler into 
"phases": lexical analysis, parsing, semantical analysis, code generation, 
etc •• By "merging" these phases (such as in a one-pass compiler) a 
considerable increase in efficiency can be obtained. The same applies to 
merging garbage collection and compaction algorithms into compacting 
garbage collection algorithms. This merging will be discussed in another 
section. 

5.0.J. Classification of the problems and algorithms 

The discussion of the garbage collection and compaction problems and 
their solutions (the algorithms) will follow the lines sketched in 
Chapter I. The definitions of the abstract operations COLLECT GARBAGE and 
COMPACT from Chapter 4 will be regarded to define the "basic garbage 
collection problem" and the "basic compaction problem" respectively. More 
concrete versions of these problems are classified by giving the additional 
details they satisfy. An example is the garbage collection problem where 
all references refer to nodes. Here the additional detail is: "all 
references refer to nodes". The details should not be viewed as additional 
system invariants, but merely as assertions which are known to hold prior 
to the garbage collection or compaction operation. These assertions may 
allow a more efficient solution of the problem. 
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Starting from an abstract algorithm which is a solution to the basic 
problem, all algorithms will be derived through correctness-preserving 
transformations. Like the problems, the algorithms will be classified by 
giving (a number of) details they satisfy. These details are usually 
assertions about the run-time behaviour of the algorithms, such as: 
"objects are marked inunediately after they are traced". Each algorithm will 
be denoted by a label of the kind 11110.a". Here 11 E {GJC} denotes the 
problem to which the algorithm is a solution (G for garbage collection and 
C for compaction), o is a sequence of capital letters which denote the 
details of the problem and a is a sequence of capital letters which denote 
the details of the algorithm. For example, Algorithm GN.DT is a solution of 
the garbage collection problem if all references refer to nodes (detail N). 
The algorithm uses nodes as marking units (detail D) and marks them 
inunediately after they are traced (detail T). Notice that an algoritP.m 
labelled 110.a is a solution of each 11-problem with details o' ~ o. In some 
cases asterisks will be used to denote simple implementations of 
algorithms. For example, Algorithm GN.DTER* is derived from Algorithm 
GN.DTER using a simple implementation of the variable T from Algorithm 
GN.DTER. 

5.0.2. On the description of the algorithms 

The algorithms will be described in a more or less informal language. 
The semantics of this language will generally be intuitively clear. If 
necessary, explanation will be provided. From a more formal point of view 
the semantics of the algorithmic language used may not be so clear at all. 
This is due to the fact that the algorithms operate on dynamic systems 
(data structures) with highly shared components. How the semantics of this 
language can be formalized is demonstrated in Chapter 2, where the 
semantics of a language is defined which can be viewed as a "kernel" for 
the language used here. The extension of this kernel to a language such as 
the one used here is also discussed in Chapter 2. 

Each algorithm will be considered to operate on the storage management 
system H introduced in the previous chapter. All other variables used by an 
algorithm, except possibly a few local variables, will be listed at the top 
of the algorithm. Recursion will not be used in the algorithms. The 
variables listed at the top of an algorithm therefore indicate the working 
space required for the algorithm. The required working space for a garbage 
collection or compaction algorithm, as we already saw, is an important 
datum. 

No proof of correctness of the algorithms described will be given. The 
first reason for this is conciseness. The second reason is that the 
algorithms which will be described here are derived by transforming more 
fundamental algorithms. Starting points are a few abstract algorithms which 
can almost inunediately be seen to be correct. Proving the correctness of an 
algorithm is now reduced to proving that the transformations applied in the 
derivation of the algorithm are correctness-preserving. It will not be 
difficult for the reader to convince himself intuitively of the 
correctness-preservation of most of these transformations. If a more 
rigorous proof of correctness-preservation of a transformation is required, 
the reader is referred to Chapter 3, where a simple method to do so is 
described. This method can be used for many (but not all) of the 
transformations applied here. The method is demonstrated in Chapter 3 in a 
fully elaborated derivation and proof of correctness of Algorithm 
GNK.DTER*** (without RELEASE4; see Subsection 5.1.5). 
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In Section 5.1 a survey of garbage collection algorithms will be given 
as described above. Section 5.2 discusses the compaction problem in the 
same way. In Section 5.3 various ways of merging garbage collection and 
compaction algorithms into compacting garbage collectors are discussed. 
This section contrasts with the other two sections in that it merely 
presents a number of examples, instead of a hierarchy of algorithms. For 
reasons of conciseness only short comments on most algorithms in all three 
sections will be given, together with references to the literature (when 
appropriate). Concluding remarks are made in Section 5.4. 

5.1. GARBAGE COLLECTION 

5.1.1. General discussion 

5.1.1.1. Marking 

According to the definition of the operation COLLECT GARBAGE in the 
previous chapter, it is the job of a garbage collector to determine for 
each node X if Xis isolated and if so, to.deallocate all storage occupied 
by (subobjects of) X. In order to determine that a node is isolated, the 
garbage collector must determine that each subobject of the node is 
unreachable. It is not difficult to see that, in essence, the only way to 
determine that an object is unreachable is to generate the entire set of 
reachable objects and check whether the object is in it or not. Since 
generation of this set is expensive it is of course not very wise to 
perform this operation for each object over again. The best thing to do is 
to generate the set once and to "mark" reachable objects as such. This 
"marking information" can subsequently be used to determine whether a node 
is isolated or not. The marking information generally introduces a space 
overhead. If objects should be marked individually, this overhead may be 
overwhelming (see Example 5.1). 

EXAMPLE 5. I 

Suppose for a moment that it is possible to take "subarrays" of arrays in 
PASCAL. For example, if x has been declared as follows: 

var x: array [0 .. 9] of integer; 

then x[3 .• 5] is the subarray of x, composed of the atomic objects x[3], 
x[4] and x[5]. Then a one-dimensional array of length n has n(n + 1)/2 
subarrays, which are all distinct objects. If objects should be marked 
individually, the space overhead for the marking information of the array 
would be proportional to n(n + 1)/2, which is intolerable. (This becomes 
even worse in the case of multidimensional arrays.) D 

In order to determine whether a node is isolated it is not always 
necessary to know whether each individual subobject of the node is 
reachable or not. Therefore it makes sense not to mark all objects, but 
only a "sufficiently large" subset of the set of objects. The elements of 
this subset will be called the "marking units". The choice of the marking 
units is highly implementation dependent. In most garbage collectors, 
however, only one of the following four alternatives is chosen: 
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(I) Objects. 
(2) Atomic objects. 
(3) Reference objects. 
(4) Nodes. 

Depending on the marking units chosen, four kinds of garbage collection 
algorithms will be distinguished, which will be referred to as garbage 
collection algorithms using "object marking", "atom marking", "reference 
marking" and "node marking", respectively. 

Of the four ways of marking, object marking is the most natural: The 
concept of reachability has been defined for objects, and not exclusively 
for atomic objects, reference objects or nodes. As we shall see, all 
garbage collection algorithms using atom, reference and node marking can be 
derived from those using object marking. In this general discussion of 
garbage collection we shall therefore choose object marking as our basis. 

5.1.1.2. The job of a garbage collector 

The job of a garbage collector (using object marking) is to mark all 
reachable objects and subsequently deallocate all storage occupied by nodes 
which do not have a marked subobject. In order to describe this more 
formally an abstract variable M, representing the set of marked objects, is 
introduced. The job of the garbage collector can now be described as 
follows: 

M :={XI Xis a reachable object}. 
RELEASE 1. 

where 

RELEASE1: 
For each node XE dom(A) 

I If Mnsub(X) = ¢ 
I dom(A) := dom(A) \ sub(X). 

Most garbage collection algorithms which are described in literature deal 
only with the first part of the job of a garbage collector (marking 
reachable objects). These algorithms are therefore usually called "marking 
algorithms". Here we shall include the second part of the job of a garbage 
collector (releasing storage) in all algorithms, because it is an 
inseparable part of these algorithms: When transforming an algorithm this 
part may have to be transformed as well. The particular ways of releasing 
storage (i.e., the implementation of the above for-loop) will not be 
discussed. The reason is that releasing storage is the simplest and 
generally the least time-consuming part of a garbage collector. Moreover, 
it depends on the kind of bookkeeping used by·the storage manager, which is 
highly implementation dependent. We shall therefore focus on marking and 
neglect the time required to release storage in complexity considerations. 

Using a somewhat finer grain than above, the job of a garbage 
collector can be described, in a still very abstract way, as follows: 

M := ¢. 
While not sufficient 

I Let X be a reachable object. 
M := Mu {X}. 

RELEASE1. 
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Here "sufficient" is some condition implying that each reachable object is 
contained in M. The above "algorithm" is still far away from a practicable 
garbage collection algorithm. Let us first focus our attention on the 
statement "Let X be a reachable object". 

5.1.1.3. Visiting and tracing 

In order to be able to select an arbitrary reachable object, we must 
possess knowledge concerning the reachability of objects. In view of the 
generative nature of the definition of reachability, the only way to obtain 
this knowledge is to generate it. We shall model this by introducing a 
variable set Q_, containing the objects "known" to be reachable. We have to 
do two things now: generate the set of reachable objects in Q_, and mark the 
objects in Q_ (i.e., put them in M). 

It may seem obvious to identify Q_ and M. However, at this very 
abstract level it makes sense to distinguish clearly between the act of 
discovering that an object is reachable, which is usually called the 
"tracing" of the object, and the act of marking the object. As we shall see 
later, there are sensible algorithms in which these operations are indeed 
separated. 

The way to generate the set of reachable objects in Q_ follows almost 
innnediately from the definition of reachability. First, we know that the 
root R is reachable, so initially Q_ = {R}. Then, repeatedly, objects in Q_ 
are "visited". During the visit to an object X the following is done. If X 
is a structured object, then an arbitrary direct component Y of Xis chosen 
and put in Q_. We shall call this "tracing by selection". If X is a 
reference object, then the object Y referred to by the value of Xis 
determined and put in Q_. This will be called "tracing by dereferencing". If 
Xis a scalar object, nothing is done. 

We can now decompose a marking algorithm into two more or less 
independent processes: A "tracer", which "fills" Q_, and a "marker", which 
marks the objects in Q_. These two processes are merged sequentially in the 
following algorithm, using the "either-or construct", which arbitrarily 
selects one of its two alternatives: 

Algorithm G 

Variables: 
M: set of objects, 
Q_: set of objects. 

Action: 
M,Q_ := ¢,{R}. 
While not sufficient 

Let X E Q_. 
Either 
I M := Mu {X}. 
or 

Case 
I.Xis a structured object 

I Let YE struct(X). 
Q_ := Q_u {Y}. 

2. Xis a reference object 

I Let Y = obj(val(X)). 
Q_ := Q_u {Y}. 

3. Xis a scalar object 
I Skip. 

RELEASE1. 

]~--->-> marking X 

1---+ visiting X 

}- tracing Y 

}- tracing Y 
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What is meant by "tracing", "marking" and "visiting" an object is indicated 
in the algorithm. 

Algorithm G will be chosen as the basis for the derivation of all 
other garbage collection algorithms, including those which do not use 
object marking. The algorithm is still very abstract, not in the least 
because the loop does not have a proper termination condition. Even if the 
loop had a proper termination condition, the algoritb,m need not terminate. 
The reason is that there is simply too much freedom in the marking, 
visiting and tracing of objects. We shall impose a number of restrictions 
now, such that Algorithm G can be made to terminate. 

5.1.1.4. Restrictions on Algorithm G 

Let us first discuss the marking of objects. In Algorithm G the 
marking of objects proceeds entirely independently from the visiting and 
tracing of objects. A reasonable restriction of the anarchy prevailing in 
Algorithm G is to link the former process to the latter, i.e., combine the 
marker with the tracer. There are two plausible ways to do so. The first is 
to mark objects when they are traced, and the second is to mark objects 
when they are visited. Each choice gives rise to a different branch in the 
hierarchy of algorithms which can be derived from Algorithm G. Only these 
two choices will be considered here. They are represented by the algorithm 
details T and V to be presented in Subsection 5.1.1.7. Notice that in both 
choices a reachable object Xis processed in the following order: 

trace X + mark X + visit X. 

In the first choice "trace X" and "mark X" are combined, and in the second 
choice "mark X" and "visit X" are combined. The distinction between 
"marking after tracing" and "marking before visiting" is essentially the 
same as that noticed in [THORELL! 72]. 

Next, consider the visiting and tracing of objects. It is easy to see 
that in Algorithm Git does not make sense to visit a structured object 
again, once all of its direct components have been traced. Neither does it 
make sense to visit an atomic object again. The following are therefore 
reasonable restrictions: 

Restrictions on the visiting and tracing 

of objects in Algorithm G 

(1) Case 1 may not be chosen more than once for each combination 
of X and .Y. 

(2) Case 2 may not be chosen more than once for each X. 
(3) Case 3 may not be chosen more than once for each X. 

The above restrictions imply that atomic objects are visited at most once 
and structured objects are visited at most as many times as their number of 
direct components. We shall adhere to these restrictions as well as 
possible. As far as garbage collection algorithms using object marking are 
concerned, we can even satisfy them entirely. In the algorithms using other 
ways of marking we shall have to compromise, as we shall see. The danger of 
relaxing the restrictions is clearly demonstrated by the following example. 
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EXAMPLE 5.2 

The following algorithm (which marks objects immediately after they are 
traced) is a properly terminating garbage collection algorithm using object 
marking, derived from Algorithm G: 

Variables: 
M: set of objects, 
B: boolean. 

Action: 
M,B := {R},true. 
While B 

B := false. 
For each Xe: M 

Case 
I.Xis a structured object 

I For each Ye: struat(X) 

l If YI. M 
I M,B :=Mu {Y},tru.e. 

2. Xis a reference object 

I Let Y = obj(va'l(X)). 
If YI. M 
I M,B :=Mu {Y},tru.e. 

3. Xis a scalar object 
I Skip. 

RELEASE1. 

This algorithm is a generalization of Algorithm A in [KNUTH 68]. It clearly 
does not meet the above restrictions. In the worst case the algorithm makes 
O(n2 ) visits to objects, where n is the number of reachable objects. D 

5.1.1.5. Status information 

In order to let Algorithm G meet the above three restrictions some 
extra bookkeeping is necessary. First of all, the algorithm muse be able to 
select an X which may still be visited. This is not enough, though. -When 
visiting a structured object X, it must be possible for the algorithm to 
select a direct component Y of X, which has not been traced in any visit of 
X before. All this will be modelled by an abstract variable T, which is a 
bag (or "multiset") of pairs (X, VJ, where X is an object and V is a set of 
direct components of X. The information contained in Twill be referred to 
as the "status information". Roughly speaking, the fact that (X,V) ET 
means that X may still be visited and if Xis a structured object that the 
direct components Ye: V of X have not yet been traced in any previous visit 
to X. If Xis an atomic object, Vis always empty. Supposing the 
restrictions are satisfied, Algorithm G can now be made to terminate by 
choosing the test "T =¢"as the termination condition (instead of 
"sufficient"). 

The reason for choosing a bag instead of a set for Tis mainly, that 
the only operations which are performed on Tare adding and removing 
elements, where (in principle) the same element may occur more than once in 
T (particularly in those algorithms which do not satisfy all three 
restrictions given above). This kind of bag can easily be implemented, for 
example as a stack or queue. 

The introduction of the variable T in Algorithm G will make the. 
variable Q redundant, as we shall see. Thus two kinds of space overhead 
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remain: the marking and status information, represented by the abstract 
variables Mand T. This, however, does not constitute the only garbage 
collector overhead. 

5.1.1.6. Type information 

A third kind of overhead has to do with the answer to the following 
questions: 

How can the garbage collector determine 
(I) whether an object is a structured, reference or scalar object? 
(2) the direct components of an object? 
(3) the object referred to by a reference? 

The information required to determine (I), (2) and (3) will be referred to 
collectively as the "type information". The type information associated 
with a certain object will be called the "type" of the object. The type 
information, though present in the graph, need not be present in the store. 
(If it is, for purposes other than garbage collection, that is fortunate.) 
For reasons of efficiency each implementer will try to include in the store 
as little information from the graph as possible. Yet, since the garbage 
collector ultimately has to operate exclusively on the. store, there must be 
a way for the garbage collector to get hold of the type information. There 
are basically three ways to solve this problem: 

(I) Object typing. 
In this solution a value is associated with each object, which can be 
used by the garbage collector to get hold of the type information. 
This value is typically represented by a pointer contained in the 
location occupied by the object, which points to a piece of encoded 
type information in the store. Object typing generally requires an 
overhead per object. This overhead can be reduced to an overhead per 
node in case only references to nodes occur in the graph (problem 
detail N, see Subsection 5.1.1.7). 

(2) Reference typing. 
Here a value is associated with each reference contained in the graph, 
which enables the garbage collector to determine the type of the 
object referred to by the reference. Thus the garbage collector can 
find the type of an object traced by dereferencing. For an object Y 
traced by selecting a component of an object X, the garbage collector 
must be able to derive the type of Y from the type of X. Reference 
typing requires an overhead per reference object, which is generally 
much better than an overhead per object. Reference typing does not 
work, however, if the structure of objects is variable. 

(3) Type tracking. 
In this approach the garbage collector is supposed to be able to 
derive the type of an object Y, traced either by selecting a direct 
component of a structured object X or dereferencing a reference object 
X, from the type of X. Knowing the type of the root, the garbage 
collector can calculate the type of each reachable object. For that 
purpose the garbage collector will have to keep track of the types of 
objects in T. If there is a "static" relation between the types of X 
and Y (such as in "strongly typed" languages like ALGOL 68) that might 
be the only space overhead this method requires. If there is a 
"dynamic" relation between the types of X and Y, parts of the type 
information must still be contained in the store, which may give 



unpleasant complications. Moreover, this approach has the drawback 
that the garbage collector must have an intimate knowledge of the 
structure and representation chosen for objects. A slight change in 
the structure or representation of objects may require the entire 
garbage collector to be rewritten. 
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Notice that if all objects have the same structure (such as in pure LISP) 
the type information need not cause any overhead at all. 

It appears from the above that a garbage collection algorithm requires 
a (space) overhead which is caused by three kinds of information: 

(1) Marking information. 
(2) Status information. 
(3) Type information. 

Limiting the overhead caused by the marking, status and type information is 
one of the essential parts of garbage collector design. Various ways to 
achieve this will be discussed in the sequel. 

5.1.1.7. Garbage collection details 

We shall now give the details which will be used to classify the 
different garbage collection problems and algorithms. First we present the 
problem details, which will be explained together with the algorithms that 
use them. 

Garbage collection problem details 

N: If Xis a reachable reference object, 
then obj(val(X)) is a node. 

K: If Xis a node, 
then the branches of X are numbered from 1 to degree(X). 
The i-th branch of Xis denoted by branch(X,i) (1 sis degree(X)). 

This is a surprisingly small number of details. The reason for this is that 
the garbage collection problem as we defined it is rather abstract. It is 
concerned (almost) exclusively with the abstract layer of the storage 
management model. At this high level of abstraction few details can be 
distinguished. Still, all garbage collection algorithms can be expressed at 
this level of abstraction (with the addition of the above details, if 
necessary). The compaction problem is less abstract than the garbage 
collection problem. It is concerned with the concrete layer of the model 
(the store) as well. Accordingly, the number of compaction problem details 
will be higher (see Subsection 5.2.1.5). 

The garbage collection algorithms will be. classified according to the 
following details: 

Garbage collection algorithm details 

A: The marking operation of a structured object is modelled by an 
empty action. 

B: The marking operation of a structured object is modelled by marking 
all of its atoms. 
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C: The marking operation of an object other than a reference object is 
modelled by an empty action. 

D: The marking operation of an object other than a node is modelled by 
an empty action. 

T: Objects are marked innnediately after they ara traced. 

V: Objects are marked innnediately before they are visited. 

E: During a visit to an object all of its direct components are 
traced. 

S: Atomic objects are visited innnediately after they are traced. 

Q: Objects having no branches are visited innnediately after they are 
traced. 

R: Objects other than reference objects are visited innnediately after 
they are traced. 

H: Objects traced through selection are visited innnediately after they 
are traced. 

F: Reference objects are flagged when they are visited. 

Details A, B, C and Dare used to derive the algorithms using atom marking 
(details A and B), reference marking (detail C) and node marking (detail D) 
respectively from Algorithm G. Details T and V were already discussed. The 
other details will be discussed with the algorithms featuring them. Notice 
that not all combinations of the details make sense. 

The four classes of garbage collection algorithms (using object, atom, 
reference and node marking, respectively) will now be discussed in four 
separate subsections (5.1.2-5.1.5). 

5.1.2. Garbage collection algorithms using object marking 

As we discussed in Subsection 5.1.1, object marking is the most 
natural way of marking. It is also the least usual way of marking. The 
reason for this is that the overhead caused by the marking information may 
be tremendous, as demonstrated in Example 5.1. There are, on the other 
hand, situations where application of this kind of marking is very well 
conceivable (for example, if nodes have a tree structure). We already 
discussed one garbage collection algorithm using node marking: Algorithm G. 
This very abstract algorithm will be the starting point for the derivation 
of all other garbage collection algorithms. 

The algorithm details relevant to garbage collection algorithms using 
object marking are T, V, E and S. The sensible combinations of these 
details lead to the hierarchy of algorithms pictured in Figure 5.1. All of 
these algorithms will be described below. This is to illustrate how 
algorithms can be derived from other algorithms by "adding" details. For 
garbage collection algorithms using atom, reference and node marking not 
all algorithms in the hierarchies in question will be described. The 
derivation of the algorithms which are not described is either trivial, or 
may be accomplished in a way similar to the derivation of the algorithms 
presented below. 
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Figure 5. I 

The first algorithm to be discussed is derived from Algorithm G by 
marking objects as soon as they are traced· (according to detail T) and 
imposing the restrictions on the visiting and tracing of objects through 
the introduction of the variable T. (Notice that, in fact, the restrictions 
are implicit details.) It is easy to see that the variable Q then becomes 
redundant and can be removed, resulting in: 

Algorithm G.T 

Variables: 
M: set of objects, 
_T: bag of pairs (object, set of direct components). 

Action: 
M,T := {R},{(R,struat(R))}. 
While T f ¢ 

Get (X,V) from T. 
Case 
I.Xis a structured object 
IfVf¢ 

I Get Y from V. 
T := Tu {(X,V)}. 
INSPECT(Y). 

2. Xis a reference object 

I Let Y = obj(val(X)). 
INSPECT(Y). 

3. Xis a scalar object 
I Skip. 

RELEASE1• 

INSPECT(Y): 
Case 
I. Y is a structured object 

I IfYiM 
I M,T := Mu {Y},Tu {(Y,struat(Y))}. 

2. Y is an atomic object 

I IfYiM 
I M, T : = M u {Y} 'Tu {(Y, ¢)}. 
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Here the operation "Get Y from V" is a shorthand for: 

Let Y E V. 
V := V \ {Y}. 

(Analogously for "Get (X, V) from T". ) 
The first question that arises in relation to the implementation of 

Algorithm G.T is, how to implement the set M of marked objects. Since in 
object marking it must be possible to mark each individual object, probably 
the best way to do it here is to make room for a flag in each location 
occupied by an object, indicating whether the object is marked or not. As 
already mentioned, this may cause a considerable overhead. In cases where 
this overhead is prohibitive it is therefore better not to use object 
marking. 

A second question is how to implement the bag T. The obvious 
implementation for Tis a stack (though a queue is also conceivable). This 
stack can either be kept in a separate location in the store or, by 
reserving extra room in each object location, as a linked list through 
these locations. The latter may involve an enormous space overhead. The 
objection to the former is that the maximum size of the stack is usually 
not known beforehand. The entries in the stack must represent pairs (X,V), 
where Xis an object and Vis a set of direct components of X. Using a 
separate stack, X can be represented by a pointer and, if the direct 
components of X are removed from Vin a predefined order, V can be 
represented by an integer. 

A first way to reduce the overhead caused by the status information is 
demonstrated in Algorithm G.TE. This algorithm is derived from Algorithm 
G.T by combining the separate visits to trace the direct components of an 
object into a single visit (detail E). Thus a number of operations on Tare 
saved. Furthermore, this detail enables T to be chosen as a bag of objects, 
instead of a bag of pairs (object, set of direct components), because the 
second element of a pair has become superfluous. Combining visits to 
objects is a useful and generally applicable technique to reduce garbage 
collector overhead. Many variations of this technique will be met. 

Algorithm G.TE 

Variables: 
M: set of objects, 
T: bag of objects. 

Action: 
M,T := {R},{R}. 
While T f ¢ 

Get X from T. 
Case 
I.Xis a structured object 

I 
For each YE struct(X) 

I If YI. M 
I M,T := Mu {Y},Tu {Y}. 

2. Xis a reference object 

I 
Let Y = obj(val(XJ). 
If YI. M 
I M,T :=Mu {Y},Tu {Y}. 

3. Xis a scalar object 
I Skip. 

RELEASE 1. 
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A second way to reduce the overhead caused by the status information 
is to visit atomic objects immediately after they are traced, instead of 
putting them in T first (detail S). This implies that after tracing an 
(unmarked) atomic object, the (possibly zero-length) access path emanating 
from the object is followed until either a marked or a structured object is 
encountered (see Example 5.3). This saves an add and remove operation on T 
per reachable atomic object and it makes only structured objects occur (as 
the first elements of pairs) in T. 

EXAMPLE 5.3 

Consider Figure 5.2. 

X y z 
I 

' 

0 0--0-----0-----0 0 0 
Figure 5.2 

Upon tracing the unmarked scalar object X there is no need to put it in T: 
X need only be marked. Upon tracing the unmarked reference object Y there 
is also no need to put it in T: The garbage collector can traverse the 
chain of references emanating from Y, while marking the objects in the 
chain, until a marked or structured object Z is encountered. No objects, 
except possibly Z, need be put in T during this traversal. D 

Algorithm G.TS 

Variables: 
M: set of objects, 
T: bag of pairs (object, set of direct components). 

Action: 
M,T := {R},{(R,struct(R))}. 
While T ,f, ¢ 

Get (X,V) from T. 
Get Y from V. 
IfV,f,¢ 
I T : = Tu {(X, V)}. 
While Y is a reference object and Yi M 

I M :=Mu {Y}. 
Y := obj(val(Y)). 

If Y i M 

I M:= Mu{Y}. 
If Y is a structured object 
I T := Tu {(Y,struct(Y))}. 

RELEASE1 • 

Combining details E and S leads to Algorithm G.TES, which can either 
be derived from Algorithm G.TE by imposing detail S, or from Algorithm G.TS 
by imposing detail E. 
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Algorithm G.TES 

Variables: 
M: set of objects, 
T: bag of objects. 

Action: 
M,T := {R},{R}. 
While T ,fa ¢ 

Get X from T. 
For each YE struct(X) 

While Y is a reference 

I M := Mu {Y}. 
Y := obj(val(Y)). 

If Y t M 

I M :=Mu{Y}. 
If Y is a structured 
I T := Tu {Y}. 

RELEASE1. 

object and Y t M 

object 

In all previous algorithms, objects are marked as soon as they are 
traced (detail T). A second approach, as we already discussed, is to mark 
objects immediately before visiting them (detail V). This implies that upon 
tracing an object it is put in T first. When the object is fetched from T 
for the first time, it is checked whether the object has already been 
marked. If not, the object is marked and subsequently visited. In order to 
avoid unnecessary tests to determine whether the object is actually visited 
for the first time, it makes sense to combine all visits to the object into 
a single visit. Detail V therefore occurs in combination with detail E 
only. By imposing details V and E and the restrictions concerning the 
visiting and tracing of objects on Algorithm G (using the variable T), the 
following algorithm can be derived, from which the variable Q has 
disappeared: 

Algorithm G.VE 

Variables: 
M: set of objects, 
T: bag of objects. 

Action: 
M,T := ¢,{R}. 
While T ,fa ¢ 

Get X from T. 
If X t M 

M : = Mu {X}. 
Case 
I.Xis a structured object 

I For each YE struct(X) 
I T := Tu {Y}. 

2. Xis a reference object 

I Let Y = obj(val(X)). 
T : = Tu {Y}. 

3. Xis a scalar object 
I Skip. 

RELEASE 1. 

A comparison of Algorithm G.TE and G.VE is worthwhile. For that 
purpose consider a reachable object X. In both algorithms Xis traced the 
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same number of times. Upon tracing X for the first time in Algorithm G.TE a 
test is performed to see whether XE M (answer: no), Xis marked and Xis 
put in T. Some time later Xis fetched from T and subsequently visited. 
Upon tracing X for the first time in Algorithm G.VE Xis put in T 
immediately. After a while Xis fetched from T, a test is performed to see 
whether XE M (answer: no), Xis marked and subsequently visited. So, in 
contrast to Algorithm G.TE marking and visiting Xis .done on the same 
occasion in Algorithm G.VE. Since both marking and visiting an object will 
involve accessing the object and the accesses can be combined in Algorithm 
G.VE, Algorithm G.VE can be regarded as being more efficient than Algorithm 
G.TE in this respect. This only applies to the actions related to the first 
time an object is traced. Upon tracing an object X for the k-th time 
(k > 1), Algorithm G.TE tests whether XE M, finds X to be marked and 
proceeds. Algorithm G.VE puts X in T first. After fetching X from T some 
time later it tests whether XE M, finds X to be marked and proceeds. The 
conclusion is that Algorithm G.VE will only be more efficient than 
Algorithm G.TE if the majority of reachable objects is traced only once. 
(This is so if large parts of the graph have a tree structure.) In most 
cases Algorithm G.TE will be more efficient than Algorithm G.VE, not only 
with respect to time but also space: The size of Twill generally be larger 
in Algorithm G.VE than in Algorithm G.TE. Notice also that, in contrast to 
Algorithm G.TE, in Algorithm G.VE objects may occur more than once in the 
bag T (which excludes an implementation of T as a linked list through the 
locations of objects in T, unless tests for double occurrences of objects 
in Tare performed). 

An obvious optimization can be obtained by visiting atomic objects 
immediately after they are traced (detail S). Thus Algorithm G.VES is 
obtained where T contains only structured objects. 

Algorithm G.VES 

Variables: 
M: set of objects, 
T: bag of objects. 

Action: 
M,T := ¢,{R}. 
While T ,f, ¢ 

Get X from T. 
If X l M 

M := Mu{X}. 
For each YE str>uat(X} 

While Y is a reference object and Y l M 
I M := Mu {Y}. 

Y := obj(val(Y}). 
Case 
I. Y is a structured object 
I T := Tu {Y}. 
2. Y is an atomic object 

I IfYiM 
I M := Mu {Y}. 

RELEASE1. 

In each algorithm presented here (except Algorithm G) the number of 
(more or less) primitive operations performed is proportional to the number 
of tests of the kind "Xi M". (Check this.) This implies that the number of 
these tests performed in an algorithm is a good indication for the time-
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complexity of the algorithm. Assuming that the number of objects, of which 
an object is a direct component, is bounded by a constant, check that all 
algorithms operate in a time O(n), where n is the number of reachable 
objects. Check also that if structured objects have a tree structure and at 
least two direct components, we can even take the number of reachable 
atomic objects for n. O(n) garbage collection algorithms are as good as we 
can expect. 

·5.1.3. Garbage collection algorithms using atom marking 

In implementations featuring references to components of nodes, atom 
marking is the most frequently used way of marking. The main reason for 
that is probably that atomic objects in the graph and cells in the store 
are somewhat analogous. This makes algorithms using atom marking easier to 
implement in terms of operations on the store. From a conceptual point of 
view, on the other hand, atom marking is more complex than object marking. 
In atom marking it is not possible to mark structured objects individually. 
This implies that a marking operation on a structured object must in some 
way be modelled in terms of marking operations on the atoms of the object, 
which leads to a number of complications. 

The job of a garbage collector using atom marking is to mark all 
reachable atomic objects and subsequently use this information to 
deallocate all storage occupied by isolated nodes. Having marked all 
reachable atomic objects, the garbage collector can determine whether a 
node is isolated by inspecting all of its atoms and seeing if one of them 
is marked. The marking information will be represented by an abstract 
variable M. Instead of a set of objects, this variable is a set of atomic 
objects now. Using M the job of the garbage collector can be described as 
follows: 

where 

M :={XI Xis a reachable atomic object}. 
RELEASE 2. 

RELEASE 3: 
For each node XE dam(A) 

I If Mn atams(X) = ¢ 
I dam ( A) : = dam ( A) \ sub ( X J • 

Notice that in contrast to object marking the overhead caused by the 
marking information is limited: A typical way to implement Mis to reserve 
a bit in each cell of the store, indicating whether the atomic object 
located there is marked or not. Another frequently used possibility, 
especially if there is no room for mark bits in the cells of the store, is 
to reserve a compact location in the store to ·be used as a "bit map". Each 
cell of the store is mapped onto a bit in this piece of storage, which can 
be used as a mark bit for the cell. 

The garbage collection algorithms using atom marking will be derived 
from those using object marking by imposing either detail A or B. Using the 
other details (except C and D) in the list of algorithm details given in 
Subsection 5.1.1.7, a rather complex hierarchy of algorithms can be 
constructed. Not all algorithms constituting the hierarchy will be 
discussed. Instead a representative subset of these algorithms will be 
discussed. Using these algorithms as a basis it will not be difficult to 
reconstruct the other algorithms in the hierarchy. The method of discussion 



of the algorithms will be the same as with the garbage collection 
algorithms using object marking. 
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The first algorithm to be discussed can be derived immediately from 
Algorithm G.T by replacing the marking operation of a structured object by 
an empty action (detail A): 

Algorithm G.AT 

Variables: 
M: set of atomic objects, 
T: bag of pairs (object, set of direct components). 

Action: 
M,T := ¢,{(R,struct(R))}. 
While T f, ¢ 

Get (X,V) from T. 
Case 
1. Xis a structured object 

IfVf,¢ 

I Get Y from V. 
T:=Tu{(X,V)}. 
INSPECT(Y). 

2. Xis a reference object 

I Let Y = obj(val(X)). 
INSPECT(Y). 

3. Xis a scalar object 
I Skip. 

RELEASE 2. 

INSPECT(Y): 
Case 
1. Y is a structured object 
I T := Tu {(Y,struct(Y))}. 
2. Y is an atomic object 

I IfYI.M 
I M,T :=Mu {Y},T u {(Y,¢)}. 

This algorithm (in a "tuned" and usually recursive form) has been the basis 
of several garbage collection algorithms designed for ALGOL 68 
implementations [BRANQUART & LEWI 71], [MARSHALL 71], [WODON 71], 
[ROBSON 74]. One of the complications inherent in atom marking is already 
apparent from this algorithm: Upon tracing a structured object Y it is not 
possible to determine whether Y has been traced or even visited before. 
Consequently, the first of the three restrictions mentioned in Subsection 
5.1.1.4 is not satisfied in the above algorithm (nor in any of the other 
algorithms using atom marking). Each time a structured object is traced it 
will also be visited (as many times as its number of direct components). 
Check that the other two restrictions from Subsection 5.1.1.4 are still 
satisfied, thus guaranteeing the termination of the marking process. 

There are various ways to speed up Algorithm G.AT. A first way is to 
combine the tracing and visiting of the components of a (structured) object 
X with the visit to X (details E and H). A second way is to visit all 
atomic objects immediately after they are traced (detail S). A third way is 
to visit all objects without branches immediately after they are traced 
(detail Q). All these optimizations are included in the following 
algorithm: 
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Algorithm G.ATEHSQ 

Variables: 
M: set of atomic objects, 
T: bag of objects. 

Action: 
M,T := ¢,{R}. 
While T ,f ¢ 

Get X from T. 
For each YE atoms(X) 

While Y is a reference object and Yi M 

I M:=Mu{Y}. 
Y := obj(val(Y)). 

Case 
1. Y is a structured object 

If branches(Y) = ¢ 
For each Z E atoms(Y) 

I IfZiM 
I M := Mu {Z}. 

else 
I r := r u {Y}. 

2. Y is an atomic object 

I If Yi. M 
I M : = Mu {Y}. 

RELEASE 2. 

This algorithm requires the possibility of directly determining the set of 
atoms (or, in lower level terms, the location) of an object, which causes 
an overhead when used with "type tracking" (see Subsection 5.1.1.6). The 
fact that it must be possible to determine that an object has no branches 
may also introduce some overhead. 

As with the algorithms using object marking, a distinction can be made 
between "marking after tracing" and "marking before visiting" algorithms. 
An example of the latter kind is given below. 

Algorithm G.AVE 

Variables: 
M: set of atomic objects, 
T: bag of objects. 

Action: 
M,T := ¢,{R}. 
While T ,f ¢ 

Get X from T. 
Case 
1. Xis a structured object 

I For each YE struct(X) 
I r := r u {YL 

2. Xis a reference object 
If X i. M 

I
M:= Mu{X}. 
Let Y = obj(val(X)). 
T:=Tu{Y}. 

3. Xis a scalar object 

I If Xi. M 
I M : = Mu {X}. 

RELEASE 2. 
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This algorithm can be derived from Algorithm G.VE by imposing detail A. 
Remarks analogous to those made in comparing Algorithms G.TE and G.VE apply 
to a comparison of Algorithms G.ATE (which has not been discussed, but can 
easily be derived from Algorithm G.AT) and G.AVE. 

In all algorithms discussed so far the marking operation of a 
structured object was modelled by an empty action (detail A). Another 
approach is to model the operation by marking all atO!llS of the object 
(detail B). This approach is not without problems, because the marking 
information can no longer be used to determine whether a reference object 
has been traced before. This is compensated for somewhat by the fact that 
unnecessary visits to objects traced by dereferencing can be avoided by 
testing if all their atoms are marked. Using a rather complex 
transformation the following algorithm featuring detail B can be derived 
from Algorithm G.TS: 

Algorithm G.BTS 

Variables: 
M: set of atomic objects, 
T: bag of pairs (object, set of direct components). 

Action: 
M,T := atoms(R),{(R,struct(R))}. 
While T f ¢ 

Get (X,V) from T. 
Get Y from V. 
If VI¢ 
I T := Tu {(X, VJ}. 
Case 
1. Y is a structured object 
I T := Tu {(Y,struct(Y))}. 
2. Y is a reference object 

Y := obj(vaZ(Y)). 
While Y is a reference object and Yi M 

I M := Mu {Y}. 
Y := obj(vaZ(YJJ. 

Case 
1. Y is a structured object 

Let B = false. 
For each Z E atoms(Y) 

I IfZiM 

I M := Mu {Z}. 
B := true. 

If B 
I T := Tu {(Y, struct(Y))}. 

2. Y is an atomic object 

I IfYtM 
IM :=Mu{Y}. 

3. Y is a scalar object 
I Skip. 

RELEASE 2. 

This algorithm has been described (in a more concrete form) in 
[WEGBREIT 72]. Apart from the first restriction from Subsection 5.1.1.4 the 
algorithm does not satisfy the second restriction either (i.e., reference 
objects may have to be visited and dereferenced more than once). 
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EXAMPLE 5.4 

Consider Figure 5.3, where X, x1 , x2 and Y are as yet unmarked objects, 
which are reachable through the references V and W. 

V W 

Figure 5.3 

If Xis traced (through V) before X2 (through W) in Algorithm G.BTS, then 
X1 and X2 are marked and (X,struct(X)) is put in T, which guarantees that 
some time later X2 will be visited and dereferenced. If, after tracing X, 
X2 is traced through W, X2 is found to be marked and will not be visited a 
second time. If, however, x2 is traced through W before Xis traced through 
V, then x2 is marked, visited and dereferenced, all atoms of Y are marked 
and (Y,struct(Y)) is put in T. If thereupon Xis traced through V, the atom 
X1 of Xis found to be unmarked. Hence X1 is marked and (X,struct(X)) is 
put in T. The consequence of the latter is that some time later X2 will be 
visited and dereferenced for the second time. In contrast to the first time 
all atoms of Y are now found to be marked and (Y,struct(Y)) is not put in T 
again. D 

Check that even though reference objects are visited and dereferenced more 
than once, Algorithm G.BTS is still guaranteed to terminate. 

The fact that in algorithms featuring detail B, references may have to 
be "followed" more than once, may have a serious impact on the efficiency 
of these algorithms. It is not so much the dereferencing operation itself 
which may take a considerable time, but the testing of all atoms of th~ 
object referred to by a reference, to see whether all these atoms ace 
marked (which they always are after the reference has been followed for the 
first time). The algorithms of this kind can therefore be speeded up 
considerably if reference objects are "flagged" as soon as they are 
visited (detail F). The flag associated with a reference object can then be 
used to avoid visiting and dereferencing the object more than once. The 
price to be paid for this is a space overhead per reference object. This 
price may be nil if there is a spare bit in the locations (cells) occupied 
by reference objects. The following algorithm is an example where this 
principle is applied. The flags are represented by an abstract variable F, 
which is a set of reference objects. 



Algorithm G.BTEHF 

Variables: 
M: set of atomic objects, 
T: bag of objects, 
F: set of reference objects. 

Action: 
M,T,F := atoms(R),{R},¢. 
While T f- ¢ 

Get X from T. 
For each YE branahes(X) 

If Y I. F 
F := Fu {Y}. 
Let Z = obj(val(Y)). 
Let B = false. 
For each WE atoms(Z) 

I If w I. M 

I M := Mu {W}. 
B := true. 

If B 
I T := Tu {Z}. 

RELEASE 2. 
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This algorithm, in fact, uses a mixture of atom and reference marking (see 
Subsection 5.1.4). 

Though Algorithm G.BTEHF can be considered to be rather efficient, it 
will still perform O(n2J tests of the kind "XI. M" in its worst case 
behaviour, where n is the number of reachable atomic objects. This 
assertion holds for all algorithms using atom marking, even if all objects 
have a tree structure. The reason for this is that each time an object is 
traced, all of its atoms must be inspected to see if one of them is 
unmarked. Though in practice things may not prove that bad, it makes sense 
to use one of the other kinds of marking whenever (efficiently) possible. 

EXAMPLE 5.5 

Consider the tree structured object X in Figure 5.4, which is reachable 
through the reference V only. 

V 

Figure 5.4 

X can easily be generalized to an object with n atoms. Check that all 
algorithms using atom marking presented here perform O(n2) tests of the 
kind "Y I. M" on the atoms of X. □ 
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5.1.4. Garbage collection algorithms using reference marking 

Reference marking is a rather unusual, yet interesting way of marking. 
In algorithms using reference marking, only the reachable reference objects 
are marked. This implies that after marking the fact of whether or not a 
node is isolated can only be determined by inspecting all marked reference 
objects to see whether they contain a reference to a .subobject of the node. 
This indirect way of determining whether a node is isolated or not makes 
algorithms using reference marking not very suitable for use as stand-alone 
garbage collection algorithms. In combination with compaction algorithms, 
efficient compacting garbage collectors can be constructed (see Subsection 
5.3). 

The marking information in the algorithms using reference marking will 
be represented by a variable set M of reference objects. Using M the job of 
a garbage collector using reference marking can be described as follows: 

where 

M :={XI Xis a reachable reference object}. 
RELEASE 3. 

RELEASE 3: 
For each node XE dam(A), X f R 

I If {obj(vaUY)) I YEM} nsub(X) 
I dam ( A) : = dam ( A) \ sub ( X J • 

Notice that the overhead caused by the marking information can be 
considerably less than with atom marking, let alone object marking. If 
references are represented by addresses and an address does not occupy a 
full word, the space overhead may even be nil: One of the redundant bits in 
the cell occupied by a reference object can be used to indicate whether the 
object is marked or not. Notice also that the complicated test to see 
whether a node is isolated can be performed efficiently, if each time a 
reference Vis followed during the marking process, the node containing 
abj(V) is "flagged". This technique, by the way, can also be used when 
using object or atom marking. It requires an extra space overhead per node 
X (for the flag of X) and per reference object Y (in order to determine 
nade(abj(val(Y))) from val(Y)). 

Garbage collection algorithms using reference marking will be derived 
from those using object marking by imposing detail C. The hierarchy of 
algorithms which can be obtained using the other details listed in 
Subsection 5.1.1.7 is again rather complex. Because of the rather limited 
applicability of reference marking only a few algorithms from this 
hierarchy will be discussed. 

Modelling the marking operation of an object which is not a reference 
object by an empty action (detail C) in Algorithm G.T leads to: 



Algorithm G.CT 

Variables: 
M: set of reference objects, 
T: bag of pairs (object, set of direct components). 

Action: 
M,T := ¢,{(R,struct(R))}. 
While T f ¢ 

Get (X,V) from T. 
Case 
I.Xis a structured object 

If V f ¢ 

I Get Y from V. 
T := Tu{(X,V)}. 
INSPECT(Y). 

2. Xis a reference object 

I Let Y = obj(vaZ(X)). 
INSPECT(Y). 

3. Xis a scalar object 
I Skip. 

RELEASE 3. 

INSPECT(Y): 
Case 
I. Y is a structured object 
I T := Tu {(Y,struct(Y))}. 
2. Y is a reference object 

I IfY/M 
J M,T := Mu{Y},Tu{(Y,¢)}. 

3. Y is a scalar object 
I T := Tu {(Y,¢)}. 

This algorithm satisfies only the second of the three restrictions from 
Subsection 5.1.1.4. Check that it terminates nevertheless. 

169 

The inefficiencies caused by repeatedly and unnecessarily visiting 
structured and scalar objects in Algorithm G.CT can be greatly reduced by 
combining the visits to the structured and scalar components of an object X 
with the visit to X (details E and R). This results in the following 
algorithm, where only reference objects occur in the bag T: 

Algorithm G.CTER 

Variables: 
M: set of reference objects, 
T: bag of reference objects. 

Action: 
M,T := branches(R),branches(R). 
While T f ¢ 

Get X from T. 
Let Y = obj(vaZ(X)). 
For each Z E branches(Y) 

I IfZ/M 
I M,T := Mu{Z},Tu{Z}. 

RELEASE 3. 

This simple algorithm has been described in [ZAVE 73], where the bag T 
is implemented as a linked list, requiring a space overhead per reference 
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object. Reference typing is used in order to be able to determine the 
branches of an object referred to by a reference, requiring an additional 
overhead per reference object. This overhead is only acceptable if the 
number of reference objects as compared to the total number of atomic 
objects is not too large (as in ALGOL 68, but not in LISP). 

The algorithms using reference marking, like the algorithms using atom 
marking, all use a quadratic time in their worst case behaviour. I.e., in 
pathological cases (see Example 5.5) they perform O(n2 ) tests of the kind 
-"X I. M", where n is the number of reachable reference objects. 
Nevertheless, garbage collectors using reference marking can be 
considerably faster than those using atom marking. The O(n2 ) garbage 
collection time is the penalty to be paid for the reduction of the space 
overhead of the marking information and the occurrence of references to 
arbitrary subnodes. The garbage collection time can be reduced to O(n) 
either by increasing the space overhead caused by the marking information 
(using object marking) or by putting restrictions on the occurrence of 
references in the graph. The latter will be done in the next subsection. 

5.1.5. Garbage collection algorithms using node marking 

In implementations of many programming languages (especially list 
processing languages) only references to nodes occur in the graph (problem 
detail N). This is true for example for LISP, where the concept of a 
garbage collector originated. If references refer only to nodes the problem 
of garbage collection is simplified to a great extent. The reason for this 
is that the graph has a much simpler structure: It can be viewed as a graph 
in the pure graph-theoretical sense. Moreover, garbage collection can be 
much more efficient: By choosing nodes as marking units the space overhead 
can be reduced to a nodewise overhead, which is usually better than an 
overhead per object, atomic object or reference object, while a garbage 
collection can still be performed in a time linear in the total number of 
branches of reachable nodes. Therefore, if all references contained in the 
graph refer to nodes, node marking is the marking method of choice in a 
garbage collector. 

Strictly speaking, node marking cannot be applied if references also 
refer to components of nodes. The reason is, first of all, that the marking 
information would be insufficient to determine which nodes are isolated: 
Nodes which are not marked may have reachable components. This problem 
could be solved by "flagging" nodes as soon as one of their subobjects is 
traced, in the same way as discussed in Subsection 5.1.4. The second and 
more important reason is that the garbage collector would still need a way 
to indicate that an arbitrary object has already been visited (otherwise 
the algorithm may not terminate). The latter would amount to object marking 
instead of node marking, however. The situation can be "remedied" by 
letting the garbage collector look at references in a way different from 
that of the program. That is, the garbage collector considers a reference 
of an object as referring not to the object, but to the node of which the 
object is a subobject. From the garbage collector point of view all 
references now refer to nodes and node marking can be applied. 

The problem with the above approach is that reachability from the 
program point of view and reachability from the garbage collector point of 
view are two different things now. An object which is reachable from the 
program point of view will always be a subobject of a node which is 
reachable from the garbage collector point of view. The converse is not 
true. A node which is reachable from the garbage collector point of view 
need not necessarily contain a subobject which is reachable from the 
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program point of view. Consequently, the garbage collector may fail to 
deallocate storage occupied by objects which are truly garbage from the 
program point of view. This may have disastrous effects (see Example 5.6). 

EXAMPLE 5.6 

Suppose Figure 5.5 is a picture of the graph. 

R X Y z 

(Q___B~-O 0--([0 
Figure 5.5 

From the program point of view only the root Rand one direct component of 
the node X are reachable. When using node marking, the garbage collector 
would consider the entire node X, and consequently the nodes Y and Z, to be 
reachable. The nodes Y and Z are thus preserved, even though they are pure 
garbage. D 

An extra overhead is also introduced because of the different way 
references are interpreted by the program and the garbage collector. (The 
garbage collector must be able to determine the node, in which an object 
referred to by a reference is contained.) Yet, depending upon the specific 
implementation, these drawbacks may very well be outweighed by the 
simplicity and efficiency gained by the use of node marking. Though in all 
algorithms using node marking the graph will be assumed to contain only 
references to nodes, these algorithms may also be applied in the case of 
references to components of nodes, provided one uses the garbage 
collector's interpretation of reachability. 

In the algorithms using node marking, the marking information will be 
represented by a variable set M of nodes. Using M, the job of a garbage 
collector using node marking is described by: 

where 

M := {X \Xis a reachable node}. 
RELEASE 4. 

RELEASE 4: 
For each node XE dom(A) 

I If XI. M 
I dom( A) : = dom( A) \ sub(X). 

As can be seen, the test whether a node is isolated is very simple: Being 
isolated is equivalent to being unreachable, which is equivalent to being 
unmarked. The marking information is typically implemented by a mark bit in 
the location of a node. If there is no room for that and all nodes have the 
same size, a bit map can also be used. (See also Algorithm GNK.DTEH*.) 
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From the hierarchy of garbage collection algorithms using node marking 
(which all feature detail D) only the most important algorithms will be 
discussed. The first algorithm to be discussed can be derived directly from 
Algorithm G.T by adding detail N to the problem and imposing detail Don 
the algorithm: 

Algorithm GN.DT 

Variables: 
M: set of nodes, 
T: bag of pairs (object, set of direct components). 

Action: 
M,T := {R},{(R,struct(R))}. 
While T f ¢ 

Get (X,V) from T. 
Case 
1. Xis a structured object 

If Vf¢ 
Get Y from V. 
T := Tu {(X,V)}. 
Case 
1. Y is a structured object 
I T := Tu {(Y,struct(Y)}}. 
2. Y is an atomic object 
I T :=Tu {(Y,¢)}. 

2. Xis a reference object 

I Let Y = obj(val(X)). 
If YI. M 
I M,T := Mu{Y},Tu{(Y,struct(Y))}. 

3. Xis a scalar object 
I Skip. 

RELEASE4 • 

The above algorithm satisfies the second and third restriction from 
Subsection 5.1.1.4. The first restriction is only partially met (i.e., for 
nodes X and their direct components Y). 

The only reason to trace and visit separately the direct components 
of an object in Algorithm GN.DT is to find the branches of the object. This 
way of tracing and visiting objects makes the algorithm suitable for use 
with type tracking. If it is possible to determine the branches of a node 
directly (possibly at the expense of some space overhead) Algorithm GN.DT 
can be speeded up substantially. Directly determining (tracing) the 
branches of a node amounts to tracing all components of a node during a 
visit to the node. In doing so it makes sense to either stop the tracing at 
the branches of the node and visit nodes immediately after they are traced 
(details E and R), or visit the branches immediately after they are traced 
and stop the tracing at the nodes (details E and H). Notice that these two 
possibilities exclude each other. To start with, consider the first 
possibility: 



Algorithm GN.DTER 

Variables: 
M: set of nodes, 
T: bag of reference objects. 

Action: 
M,T := {R},bPanahes(R). 
While T 1' r/) 

Get X from T. 
Let Y = obj(vaL(X)). 
If Yi M 

IM:=Mu{Y}. 
For each Z € bPanahes(Y) 
IT:=Tu{Z}. 

RELEASE4. 

This algorithm is the basis of many practical garbage collection 
algorithms. We shall therefore discuss a number of important variants of 
this algorithm, which are of increasing concreteness. 
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An important question is raised by the implementation of the bag T. A 
naive implementation of T (such as a linked list) requires a space overhead 
per reference object, which may be prohibitive in case of a high "density" 
of reference objects. Due to problem detail N the space overhead caused by 
the implementation of T can be reduced to a nodewise overhead (in contrast 
.to Algorithm G.CTER). In order to illustrate this, Twill first be 
implemented in terms of two variables U and C, where U is a bag of nodes 
and C is a (partial) mapping from nodes to sets of reference objects, 
according to the following implementation invariants: 

C(X) c bPanahes(X) (X € U). 

T = {Y € C(X) IX€ U}. 

Thus the following algorithm is obtained (which is essentially Algorithm 3 
from Chapter 3): 

Algorithm GN.DTER* 

Variables: 
M: set of nodes, 
U: bag of nodes, 
C: mapping from nodes to sets of reference objects. 

Action: 
M,U,C(R) := {R},{R},bPanahes(R). 
While U 'F r/) 

Let X € U. 
I£ C(X) 1' r/) 

Get Y from C(X). 
Let Z = obj(vaL(Y)). 
If Z i M 
I M,U,C(Z) := Mu{Z},Uu{Z},bPanahes(Z). 

else 
I u := u \ {X}. 

RELEASE4. 

A more concrete version of this algorithm can be obtained by implementing U 
as a stack S, introducing problem detail Kand implementing Casa mapping 
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k from nodes to integers, according to the following implementation 
invariants: 

Ifs 

C(X) {branch(X,i) I k(X) < i $ degree(X)} (XE U). 

This results in the following algorithm (which is essentially Algorithm 5 
·from Chapter 3): 

Algorithm GNK.DTER** 

Variables: 
M: set of nodes, 
S: stack of nodes, 
k: mapping from nodes to integers. 

Action: 
M,S,k(R) := {R},<R>,O. 
While S ,f <> 

Let X = TOP(S). 
If k(X) ,f degree(X) 

k(X) := k(X) + 1. 
Let Y = branch(X,k(X)). 
Let Z = obj(vaZ(Y)). 
If z I. M 
I M,S,k(Z) := Mu {Z},PUSH(Z,S) ,o. 

else 
I s := POP(S). 

RELEASE4 • 

This algorithm can be viewed more or less as the "depth-first marking 
paradigm". It is a frequently used algorithm, which is usually described in 
its recursive form (concealing the stack S). The algorithm requires only a 
nodewise space overhead: The integer k(X) associated with a node Xis small 
($ degree(X)) and can be assumed to occupy a constant space (independent of 
X). The surprising thing is that the space overhead caused by the stack and 
the marking information can be eliminated (almost) entirely. This is 
sketched below. 

It is easy to infer from Algorithm GNK.DTER** that if there is an 
object X on top of the stack and an object Y is pushed on top of it, then 
the k(X)-th branch of X contains the reference of Y as its value. This 
observation implies that between two strokes of the marking process the 
stack S looks as pictured in Figure 3.3.a (where all nodes are assumed to 
have four branches). Using two variable values p and q this situation can 
be transformed without loss of information into the situation of Figure 
3.3.b. The cross in this picture is a dummy value, which will be denoted by 
niZ. In Figure 3.3.b the stack S has become entirely superfluous. The 
garbage collection algorithm based on this idea has become known as the 
"Deutsch-Schorr-Waite algorithm" and was first described in 
[SCHORR & WAITE 67]. 

The Deutsch-Schorr-Waite algorithm can be derived very easily from 
Algorithm GNK.DTER** by expressing the operations on Sin terms of the 
implementation of Sas sketched in Figure 3.3.b. The operations on S 
performed in Algorithm GNK.DTER** and their "translations" are given below: 

S := <R> --r 
p,q := ref(R),niZ 



s # <>->­
P # nil 

Let X = TOP(S) ->­
Let X = obj(p) 

S := PUSH(Z,S) ->-
p,q,val(Y) := val(Y),p,q 

S := POP(S) ->­
If q = nil 
Ip:= nil. 
else 

I 
Let Y = obj(q). 
Let Z = branch(Y,k(Y)). 
p,q,val(Z) := q,val(Z},p 
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The fact that 0 ~ k(X) ~ degree(X) for each marked node X, and the fact 
that k(X) is not affected for any unmarked node X, can be used to encode M 
in the mapping k: Simply initialize all k(X) to degree(X} +1 (or any other 
number< 0 or> degree(X)). The test "XI. M" is then equivalent to 
"k(X) = degree(X) +1", making M redundant. Thus, through a simple 
substitution process we obtain the Deutsch-Schorr-Waite algorithm (see also 
Algorithm 6 in Chapter 3): 

Algorithm GNK.DTER*** 

Variables: 
k: mapping from nodes to integers, 
p,q: values. 

Action: 
Let nil be a scalar value. 
For each node XE dom(A) 
I k(X} := degree(X) + 1. 
p,q,k(R) := ref(R),nil,0. 
While p # nil 

Let X = obj(p). 
If k(X) # degree(X) 

k(X) := k(X) + 1. 
Let Y = branch(X,k(X}). 
Let Z = obj(val(Y)). 
If k(Z) = degree (Z) + 1 
I p,q,val(Y),k(Z) := val(Y),p,q,0. 

else 
If q = nil 
Ip== nil. 
else 

I Let Y = obj(q). 
Let Z = branch(Y,k(Y)). 
p,q,val(Z) := q,val(Z),p. 

RELEASE4. 

RELEASE4: 
For each node XE dom(A) 

I If k(X) = degree(X) + 1. 
I dom(A) := dom(A) \ sub(X). 
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Notice that, while traversing the nodes in RELEASEl, the counter k(X) of 
each (reachable) node X can be re-initialized to deg:r>ee(X) + 1. If the 
storage manager takes care that, when creating an object X, k(X) is set to 
deg:r>ee(X) + 1 as well, the initialization loop for k at the beginning of the 
algorithm can be skipped. 

A new phenomenon can be observed in this algorithm. In all algorithms 
discussed before none of the components of the storage management system H 
was affected (not even temporarily), except A (as prescribed by the 
definition of COLLECT GARBAGE). As a,consequence of this all system 
invariants are satisfied everywhere in these algorithms. In the above 
algorithm, apart from A, the graph G is also affected: In the algorithm the 
value of reference objects is changed, thus disturbing a number of system 
invariants (for example, (S5)). We had better be sure that the changes made 
in Gare only temporary and that at the end of the algorithm, G is the same 
as before (thus at the same time restoring the system invariants). The fact 
that proving this, and the correctness of the above algorithm in general, 
is not a sinecure is demonstrated by the comprehensive literature on the 
subject [DE ROEVER 78], [DUNCAN & YELOWITZ 79], [GERHART 79], [GRIES 79], 
[KOWALTOWSKI 79], [TOPOR 79], [DERSHOWITZ 80]. A detailed proof of 
correctness of the above algorithm (withou~ RELEASEl and the implementation 
trick for M) can also be found in Chapter 3. 

Let us now consider the second way of speeding up Algorithm GN.DT, 
i.e., the introduction of details E and H. Instead of nodes (as in 
Algorithm GN.DTER) reference objects are then visited immediately after 
they are traced: 

Algorithm GN.DTEH 

Variables: 
M: set of nodes, 
T: bag of nodes. 

Action: 
M,T := {R},{R}. 
While T ,f, ¢ 

Get X from T. 
For each Y € br>anahes(X) 

I Let Z = obj(val(Y)). 
If z ,t M 
I M,T := Mu{Z},Tu{Z}. 

RELEASE4. 

This is essentially the algorithm described in [THORELL! 72], p. 560. Like 
Algorithm GN.DTER this algorithm is the basis of many practical garbage 
collection algorithms. It has the advantage over Algorithm GN.DTER that the 
bag T contains nodes instead of reference objects, which makes it easy to 
see that the algorithm requires only a nodewise space overhead. A 
particularly efficient implementation of Algorithm GN.DTEH is possible if T 
is implemented as a stack in linked list representation. (Check that nodes 
do not occur twice in T.) The marking information can then be encoded in 
the "link field" of a node, as described in: 



Algorithm GNK.DTEH* 

Variables: 
i: mapping from nodes to values, 
p: value. 

Action: 
Let nil and urunarked be different scalar values. 
For each node XE dom(A) 
I i(X) := urunarked. 
p,i(R) := ref(R),nil. 
While p ,f, nil 

Let X = obj(p). 
p := i(X). 
Fork= 1 to degree(X) 

Let Y = branah(X,k). 
Let Z = obj(val(Y)). 
If i(Z) = urunarked 
I p,i(Z) := ref(Z),p. 

RELEASE~*. 

RELEASE~*: 
For each node XE dom(A) 

I If i(X) = urunarked 
I dom(A) := dom(A) \ sub(X). 
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This algorithm is the first part of the so-called "LISP 2 garbage 
collector" (see the solution of Exercise 2.5.33 in [KNUTH 68]). Notice that 
the initialization loop for i can again be eliminated (see the remark below 
Algorithm GNK.DTER***). Notice also that if we had used a queue discipline 
instead of a stack discipline for the implementation of T, a list of all 
reachable nodes emanating from the root R would have remained after the 
marking phase (see [THORELLI 72], p. 563). This list could be used to speed 
up RELEASE~*. 

It is interesting to compare Algorithm GNK.DTEH* (LISP 2) with 
Algorithm GNK.DTER*** (Deutsch-Schorr-Waite). The first ·thing to· be noted 
is that Algorithm GNK.DTEH* will generally be considerably faster than 
Algorithm GNK.DTER***. There are basically two reasons for this. Thi first 
is that in Algorithm GNK.DTEH* all branches of a node are visited at the 
same time while in Algorithm GNK.DTER*** they are visited on separate 
occasions. The latter requires the recording (in the variable k) of 
information concerning the branches of a node still to be visited. The 
second reason is the rather complicated implementation of the stack S (from 
Algorithm GNK.DTER**) in Algorithm GNK.DTER***. Though this implementation 
causes no space overhead, the coding and decoding operations used are 
rather expensive. (This can be compensated for somewhat by using Algorithm 
GNK.DTER** with a small finite stack Sand changing to Algorithm 
GNK.DTER*** if this stack is full [SCHORR & WAITE 67].) In Algorithm 
GNK.DTEH* the bag T (from Algorithm GN.DTEH) is implemented in a simple and 
efficient way, albeit that this implementation requires a space overhead. 

This brings us to the space requirements of both algorithms. At first 
sight there does not seem to be much difference: Both algorithms require 
space for a mapping from nodes to values. These mappings are typically 
implemented by reserving space in the location of each node X, in which 
(the representation of) k(X) or i(X) is stored. The difference is that k(X) 
is an integer in the range (O,degree(X) + 1), while i(X) is an arbitrary 
scalar or reference value. If the number of branches of nodes is small (for 
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example 2, as in pure LISP), k(X) can often be encoded in a few unused bits 
in the location of X. If the number of branches of nodes is large, or even 
potentially infinite, a full extra cell in the location of X will be 
necessary to store k(X). An extra cell will usually also be necessary to 
store l(X). Swmnarizing, we can say that Algorithm GNK.DTER*** should only 
be preferred to Algorithm GNK.DTEH* if speed is not all important and if 
the number of branches per node Xis so small, that the counter k(X) causes 
little or no space overhead. 

The last garbage collection algorithm to be discussed is an example of 
an algorithm which combines marking with visiting instead of tracing 
(detail V): 

Algorithm GN.DVEH 

Variables: 
M: set of nodes, 
T: bag of nodes. 

Action: 
M,T := 121,{R}. 
While T la 121 

Get X from T. 
If Xi M 

M := Mu {X}. 
For each YE bPanahes(X) 

I Let Z = obj(vaZ(Y)). 
T:=Tu{Z}. 

RELEASE 4. 

This algorithm corresponds to the algorithm described in [THORELL! 72], 
p. 556. Remarks analogous to those made in comparing Algorithms G.TE and 
G.VE (see Section 5.1.2) apply to a comparison of Algorithms GN.DTEH and 
GN.DVEH. 

All algorithms which have been discussed in this subsection perform 
O(n) tests of the kind "Xi M", where n is the number of reachable 
reference objects(= total number of branches of reachable nodes). Check 
that, except for Algorithm GN.DT, the number of these tests performed in an 
algorithm is proportional to the number of "primitive" operations performed 
(i.e., operations which can be implemented in such a way that they take 
0(1) time). The reason why this is not so for Algorithm GN.DT is that the 
branches of a node are determined indirectly there. If the branches of a 
node can be determined directly, garbage collection using node marking 
takes O(n) time, which makes it the fastest of the four methods (when 
applicable). Still, there are considerable differences in speed between the 
various algorithms using node marking, as we have seen. 

5. 2. COMPACTION 

5.2.1. General discussion 

5.2.1.1. Moving 

The definition of the operation COMPACT as given in Chapter 4 implies 
that it is the job of a compacter to establish the compactness of a storage 
management system by reallocating objects and changing tne·· contents of 
cells, while not affecting the system invariants and the layout of objects. 
The fact that a compacter has to change the locations allocated to objects 
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and the contents of cells so as to establish the compactness of the storage 
management system implies that, in principle, many system invariants and 
the layout of many objects may be disturbed during a compaction. The 
problems caused by this are greatly reduced if a compaction is performed in 
terms of simple operations which do not affect any system invariants or the 
layout of any objects. Unfortunately, such simple (in the sense of easily 
implementable) operations do not exist. An operation which comes very close 
is the following. It "moves" a node (and all of its components) to a new 
·location not occupied by another node, thereby copying the contents of the 
old location to the new location. This basic operation will be used in all 
compaction algoritD.ms to be discussed: 

MOVE(X,a): 
Precondition: 

Xis a node, XE dom(A), 
a is an integer, left(S) ~a~ left(A(X)), 
For each node YE dom(A), Y f X 
I A(Y)nshift(A(X),a-Zeft(A(X))) =¢. 

Action: 
Let b = Zeft(A(X)). 
Let s = b - a. 
For each YE sub(X) 
I A(Y) := shift(A(Y),-s). 
For i Oto size(A(X))-1 

I Let C = aeU(a+i). 
Let D = aeU(b + i). 
aont(C) := aont(D). 

The effect of MOVE(X,a) is that the node Xis moved to a location with left 
address a. The operation is defined for moves to the left only. It could 
have been defined for moves to the right as well, but we shall not need the 
latter in any of the algorithms to be discussed. The reason, of course, is 
that a compacter must move all nodes to a compact location in the left part 
of the store (see the definition of "compact" storage management system). 
Notice that MOVE is indeed a "simple" operation: The abstract operations on 
A reduce to empty actions in most (but not necessarily all) 
implementations. What remains is the copying of a block of storage, for 
which many concrete machines even have special instructions. 

5.2.1.2. Updating 

The operation MOVE, as can be checked without great difficulty, does 
not affect the layout of any objects, while it violates only one system 
invariant: (S23). (We assume, of course, that MOVE is only used when its 
precondition is satisfied.) This invariant is concerned with the 
representation of references in the store. It ·states that the reference of 
an object Y is represented in the store by a "pointer" to the location of 
Y, where a pointer is an address(= Zeft(A(Y))) augmented with (constant) 
additional information(= R(:r•ef(Y)}). This is pictured schematically in 
Figure 5.6.a, where R(ref(Y)) = 0 for each node Y. 
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5.6.a S: ----1 
- -- -

._.,......~~~~~~~+,~-------------------------------------
5.6.b S: 

5.6.c S: 

Figure 5.6 

If we choose the obvious compaction approach and simply move all nodes as 
far to the left as possible, the violations of system invariant (S23) are 
characterized by Figure 5.6.b: Instead of pointing to the new locations of 
objects (as prescribed by system invariant (S23)), pointers still point to 
the old locations. The compacter will therefore have to llupdate" all 
pointers in the store ~o as to restore system invariant (S23), resulting in 
the situation of Figure 5.6.c. 

The above description of the work of a compacter gives rise to a 
number of questions. The first is in which order the nodes should be moved 
by the compacter, so as not to violate the precondition of MOVE. This 
precondition implies that a node may only be moved to a location which does 
not overlap with the location of any of the other nodes. The simplest way 
to achieve this is to move nodes in the order from left to right. So, first 
the leftmost node is moved as far to the left as possible, then the 
leftmost but one, etc •• This method has the pleasant property that the 
order of nodes in the store is preserved. The method is so-called "genetic 
order preserving" [TERASHIMA & GOTO 78]. This does not only have advantages 
in a virtual storage environment (where it may prevent "thrashing"), but it 
also enables the implementer to make use of the fact that nodes have a 
fixed order in the store. If we assume certain things concerning the size 
of (the locations of) nodes, or if we assume that nodes are moved to a 
separate free part of the store (see details E and Vin Subsection 5.2.1.5) 
other ways to move nodes safely are conceivable. In algorithms where we 
wish to keep the order of moving nodes abstract, we shall use the term 
"moving order" to denote an arbitrary safe order of moving nodes. 

The work of a compacter can now be described more precisely, though 
very abstractly, by the following algorithm: 



Algorithm C 

Variables: 
a: integer. 

Action: 
a:= l,eft(S). 
For each node XE dom(A) in moving order 

I MOVE(X,a). 
a : = a + size ( A(X)) • 

For each reachable reference object X 

I Let Y = obj(val,(X)). 
cont(A{X)) := R(vaUX)) + 7,eft(A(Y)). 

In the first for-loop nodes are moved and in the second, pointers are 
updated, i.e., system invariant (S23) is restored. 

5.2.1.3. Bookkeeping 
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Algorithm C may give the impression that compaction is a trivial 
affair. The reason why it is not is that in a concrete implementation the 
compacter must operate exclusively on the store S. In order to apply the 
above algorithm the abstract components G, Rand A of the storage 
management system H must be "eliminated" from the algorithm. This 
elimination, though highly implementation dependent, is rather obvious (as 
it was for the garbage collection algorithms discussed) except for the part 
of the algorithm where pointers are updated. In that part the location A(Y) 
of an object Y must be determined, which is obtained by dereferencing the 
reference object X. In terms of operations on the store this amounts to 
reading the contents P of A(X) and using P to determine the location of Y. 
Since Y has been moved, by "location of Y" we mean the new location of Y. 
P, however, is a pointer to the old location of Y. This raises the problem 
of how to determine the new location of an object from a pointer to its old 
location. The information necessary to solve this problem must be built up 
by the compacter itself and will be called the "updating information". The 
process of building-up this information will be referred· to as 
"bookkeeping". 

As can be inferred from the above, the work to be done by a compacter 
splits up into three "phases": 

( 1) Bookkeeping. 
In this phase the updating information is built up. 

(2) Moving. 
All nodes are moved to their new locations. 

(3) Updating. 
Using the updating information all pointers are updated. 

This is only a "conceptual decomposition". In practice these phases can be 
merged in many ways, as we shall see. 

5.2.1.4. Some remarks 

There is a minor problem, which has to do with the location of the 
root. All objects are accessed through access paths emanating from the 
root. This implies that after a compaction the concrete machine must know 
where to find the location of the root. The simplest way to achieve this is 
to give the root a fixed location in the leftmost part of the store, as in 
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Figure 5.6. None of the compaction algorithms which will be discussed in 
the sequel will make any assumptions as to the location of the root, 
however, though all of the algorithms keep the root in the leftmost part of 
the store if it is already there (which is a consequence of the 
precondition of MOVE). If the root is not in the leftmost part of the 
store, the algorithms will generally move the root. The compacter should 
then let the concrete machine know where the location of the root is. How, 
is left open here. 

The main overhead of a compacter is caused by the updating 
information. Apart from that, there is also information involved in a 
compacter which is comparable to the type and status information in a 
garbage collector. For the required type information, the compacter can 
usually rely entirely on the type information for the garbage collector, 
which is already there. This also applies to the status information, except 
that the space requirements for this kind of information are often much 
less than in the garbage collector. Space reserved for the status 
information of the garbage collector can then be used for other purposes 
(such as storing updating information). The compaction algorithms will 
therefore be classified according to the way the updating information is 
represented. This leads to a classification of compaction algorithms in two 
classes which will be discussed in Subsections 5.2.2 and 5.2.3. 

The number of compaction algorithms which will be discussed is 
considerably less than the number of garbage collection algorithms 
discussed in Section 5.1. The reason for this is not that there is less 
literature on compaction algorithms than on garbage collection algorithms. 
Quite the contrary, there is more literature on the former than on the 
latter. The reason is that in compaction algorithms, even more than in 
garbage collection algorithms, there is the opportunity to use low level 
implementation tri·cks ("pointer juggling"). If however, we remove the low 
level implementation "sauce" from the algorithms, only a few really 
different algorithms remain. These are the algorithms which will be 
discussed. The removal of the implementation sauce has the pleasant side 
effect of making the algorithms more digestible. The implementation tricks 
will be discussed separately with the algorithms in which they can be used. 
Each implementer will be able to make the translation from abstract to 
concrete algorithm using the trick described. In some cases, the concrete 
algorithm will also be described. 

5.2.1.5. Compaction details 

The details which will be used to classify the different compaction 
problems and algorithms are given below. They will be explained the first 
time they are used. 

Compaction problem details 

V: For each node XE dom(AJ 
I left(SJ +!:YE G ndom(AJ [size(A(YJJ] ~ left(A(XJJ. 

E: There is an integer N such that 
for each node XE dom(AJ 

I size(A(XJJ = N, 
size(SJ = 0 (mod NJ, 
left(A(XJJ-left(SJ = 0 (mod NJ. 

L: If Vis a reference value, 
then R(VJ = O. 



D: If Xis a reference object, XE dom(A), 
then Xis reachable. 

N: If Xis a reachable reference object, 
then obj(val(X)) is a node. 

S: If Xis a reachable reference object, 
Y = obj(val(X)), 

then left(A(Y)J ~ left(A(XJJ. 
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H: Each node XE dom(A) has a component, denoted by head(X), which is 
a scalar object. 

R: If Xis a node, XE dom(A), 
then aell(left(A(X))) is occupied by a branch of X. 

Compaction algorithm details 

F: The updating information is represented by a relocation map. 

B: The updating information is represented by branch sets. 

G: The order of nodes in the store is preserved. 

M: The bookkeeping phase is combined with the moving phase. 

U: The bookkeeping phase is combined with the updating phase. 

P: The moving_phase is combined with the updating phase. 

5.2.2. Compaction algorithms using a relocation map. 

In the first class of compaction algorithms to be discussed the 
updating information is represented by a mapping F, which maps the address 
of a cell in the old location of a node to the address of the corresponding 
cell in the new location of the node, as indicated in Figure 5.7. 

new location old location 
of node X of node X 

S: 

I ~ ~ 
f f 

cell(F(a)) cell(a) 

Figure 5.7 

The three phases of a compacter which uses such a "relocation map" are 
described by the following algorithm: 



184 

Algorithm C.F 

Variables: 
F: mapping from integers to integers, 
a: integer. 

Action: 
Bookkeeping: 

F,a := ¢,left(SJ. 
For each node XE dom(A) in moving order 

Let b = Zeft(A(X)). 
Let s = b - a. 
For each cell CE A(X) 
I F(addr(C)) := addr(C) -s. 
a := a+size(A(X)). 

Moving: 
a := Zeft(S). 
For each node XE dom(A) in moving order 

I MOVE(X,a). 
a:= a+size(A(X)). 

Updating: 
For each reachable reference object X 

I Let b = cont( A(XJ) - R(vaUXJ J. 
aont(A(XJ J := R(vaUXJ J + F(b). 

This algorithm will be the basis for all other algorithms to be 
discussed in this subsection. Its implementation raises a series of 
questions. In the bookkeeping and moving phase all nodes in the store are 
"visited" in some unspecified safe order (which, of course, is assumed to 
be the same in both phases). A first question is how the compacter is able 
to "find" the nodes in the store. There are many (obvious) solutions to 
this problem, of which we mention only two. First, the garbage collector 
can build a linked list of the nodes in the store in moving order (usually 
from left to right). This need not cost extra space if the free space 
between the nodes in the store or the vacant space for the status 
information of the garbage collector is used to build this list. Secondly, 
the marking information left behind by the garbage collector can be_used to 
find the nodes in the store. 

In the updating phase all reachable reference objects are visited. If 
nodes do not contain any type information and also the type information is 
not known statically, the reachable reference objects must in principle be 
visited in the same way as in the garbage collector (i.e., by keeping track 
of status and type information). In all other cases it is possible to visit 
nodes one by one (as in the other phases) and upon visiting a node, visit 
all of its reachable branches. This implies that it must be possible to 
tell whether an arbitrary branch of a node is reachable or not, which can 
(possibly) be done by using the marking information of the garbage 
collector. Check that this is not necessary if there are no dangling 
pointers in the store (as with problem detail D). The updating phase can 
then be implemented as follows: 

Updating: 
For each node XE dom(A) 

I 
For each YE branahes(X) 

Let b = aont(A(Y)) - R(vaUY)). 
I aont(A(Y)) := R(vaUY)) + F(b). 
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It will not be difficult to check now that, in principle, it is 
possible to implement Algorithm C.F in such a way that it takes O(n) time, 
where n is the total number of cells occupied by nodes in the store. The 
space requirements for such an implementation would also be O(n): At least 
n cells are required to store F, which is absolutely prohibitive in most 
implementations. We shall now discuss a number of ways to reduce the space 
overhead caused by F. As we have already seen with gqrbage collection 
algorithms, the reduction of the space overhead will go at the expense of 
either the speed or the generality of the algorithm. 

If the old locations of nodes do not overlap with their new locations 
(problem detail V) it is possible to store Fin the old locations of nodes, 
thus reducing the space overhead to zero. Typically, this situation occurs 
when compacting in a virtual storage environment from one "semispace" 
[FENICHEL & YOCHELSON 69] to another. In order to implement F this way, the 
bookkeeping and moving phase must be combined, as described in: 

Algorithm CV.FM 

Variables: 
a: integer. 

Action: 
a := left(S). 
For each node XE dom(A) 

Let A A(X). 
Let b = Zeft(A). 
Lets= b-a. 
MOVE(X,a). 
For each cell CE A 
I cont(C) := addr(C) - s. 
a := a+size(A). 

For each reachable reference object X 

I Let b = cont( A(X)) - R(vaUX)). 
cont(A(X)) := R(vaUX)) +cont(ceU(b)). 

Notice that the requirement that nodes must be visited "in moving order" 
has been omitted: Any order will do. The implementation trick for F"used in 
this algorithm is essentially the same as used in all so-called "list­
moving algorithms" [FENICHEL & YOCHELSON 69], [HANSEN 69], [CHENEY 70], 
[REINGOLD 73], [CLARK 76] (see also Section 5.3), the only difference being 
that the latter algorithms are concerned with the "LISP case" instead of 
the general case of references to arbitrary subobjects of nodes. Note that 
in the former case (where problem detail N applies) the statement: 

For each cell CE A 
I cont(C) := addr(C) - s. 

can be replaced by: 

cont(cell(b)) := a. 

Another oppurtunity to implement F without any space or time overhead 
arises when all nodes occupy locations of the same size Nat boundaries of 
the kind (Zeft(S) + k * N), where k ;;:: 0 (problem detail E). The idea is that, 
if n is the number of nodes in the store, only those nodes need be moved 
which occupy a location with left address ;;:; b, where b = left(S) + n * N: 
They fit exactly in the "holes" (of size N) with left address< b. The 
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locations abandoned by the moved nodes are never overwritten and can be 
used to implement F according to the following implementation invariant: 

V c E dom(F) [F(c) = if c < b then c else cont(ceU(c)) fi]. 

If, furthermore, all references refer to nodes (detail N), if there are no 
unreachable reference objects (detail D) and if R(V) = 0 for all references 
V (detail L) then the following algorithm can be derived: 

Algorithm CENDL.FM 

Variables: 
a,b: integer. 

Action: 
a,b := left(SJ,right(SJ +1. 
While a< b 

While OCCUPIED(a) 
I a :=a+N. 
While FREE(b) 
lb:=b-N. 
If a < b 

I 
Let X = NODE(b). 
MOVE(X,a). 
cont(cell(b}) := a. 

a,b := left(S),a. 
While a < b 

Let X = NODE(a). 
For each YE branches(X) 

I Let c 7 cont(A(Y)). 
Ifc2?:b 
I cont(A(Y)) := cont(cell(c)). 

a:= a+N. 

OCCUPIED(a): 
a E {addr(CJ I C E U X E dom(A) [A(X)]}. 

FREE(a): 
a I. {addr(CJ ICE U XE dom(AJ [A(X)]}. 

NODE(a): 
The node XE dom(A) such that left(A(X)) = a. 

This algorithm has been described in [HART & EVANS 64], [BOBROW 68]. When 
used in a virtual storage environment the algorithm has the disadvantage 
that it affects the order of nodes in the store in a rather wild way. 

If neither problem detail V or E applies, implementation of F without 
space or time overhead becomes more difficult. In the case of references 
referring only to nodes, a reasonably space efficient implementation of F 
is possible, provided that nodes are not moved before all pointers to them 
have been updated, such as in the following algorithm: 



Algorithm CNDL,FG 

Variables: 
F: mapping from integers to integers, 
a: integer. 

Action: 
F,a := ¢,Zeft(SJ. 
For each node XE dom(A) from left to right 

I Let b = Zeft(A(X)). 
F(b) := a. 
a : = a + size ( A( X) ) • 

For each node XE dom(A) from left to right 

I For each YE bra:nches(X) 

I Let b = cont(A(Y)). 
cont(A(Y)) := F(b). 

a:= Zeft(S). 
For each node XE dom(A) from left to right 

I MOVE(X,a). 
a :=a+size(A(X)). 
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Due to the fact that nodes are not moved before all pointers to them have 
been updated, F can be implemented by reserving a cell in the location of 
each node X, in which the new value of Zeft(A(X)) is stored, If, for 
instance, the leftmost cell of the location of a node is chosen for this 
purpose, "F(b)" can systematically be replaced by "cont(ceU(b))" in the 
above algorithm. The algorithm obtained this way is the compaction 
algorithm used in the LISP 2 garbage collector (see [KNUTH 68], p. 602), 
where it is combined with garbage collection algorithm GNK.DTEH*. The space 
reserved in each node for the implementation of the mapping l in Algorithm 
GNK.DTEH* can then be re-used for the implementation of F. Anyway, the 
space overhead caused by Fin Algorithm C.F can be reduced to a nodewise 
overhead in Algorithm CNDL.FG without deteriorating the speed of the 
algorithm. Check that it is possible to divide the updating phase over both 
the bookkeeping and moving phase in Algorithm CNDL.FG, thus reducing the 
number of "scans" of the store to two instead of three. (This need not 
necessarily improve the speed of the algorithm, because pointers must now 
be inspected twice instead of once, in order to see whether they point to 
the right or to the left.) 

The implementation methods for F discussed so far all amount to 
implementing Fas an array, viz., the store itself. The algorithms based on 
these implementations operate in O(n) time, where n is the total number of 
cells occupied by nodes, but they either require extra space or are 
applicable in special cases only. We shall show now that, even in the most 
general case, it is possible to implement F without any (significant) space 
overhead. The price to be paid for this is an O(n log n) compaction time. 

Prior to a compaction the part of the store occupied by nodes can be 
viewed as a collection of compact locations with one or more free cells 
between them. These locations will be called "blocks" (see Figure 5.8). It 
is not difficult to see that if nodes are moved in the order from left to 
right in Algorithm C.F, then (after the bookkeeping phase) the value 
(addr(C) - F(addr(C))) for each cell C in a given block B will be the same: 
It is the number of cells that B will be moved to the left. This number 
will be called the "shift" of B (see Figure 5.8). By recording the shift of 
Bin F(Zeft(B)) instead of recording the new address of each cell CE Bin 
F(addr(C)) the space requirements for F can be reduced considerably as 
described in Algorithm C.FG below. 
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Algorithm C.FG 

Variables: 

block 
shift = 3 

Figure 5.8 

block 
shift = 4 

F: mapping from integers to integers, 
a,t: integer. 

Action: 
Bookkeeping: 

F,a,t := ¢,Zeft(S),-1. 
For each node XE dom(A) from left to right 

Let b = Zeft(A(X)). 
Let s = b - a. 
If s > t 
I F(b),t := s,s. 
a:= a+size(A(X)). 

Moving: 
a:= Zeft(S). 
For each node XE dom(A) from left to right 

I MOVE(X~a). 
a:= a+size(A(X)). 

Updating: 
For each reachable reference object X 

Let b = cont( A(X)) - R(vaUX)). 
Let c = max{d E dom(F) Id~ b}. 
Lets= F(c). 
cont(A(X)) := cont(A(X)) -s. 

block 
shift = 6 

The number of entries in Fin this algorithm is equal to the number m of 
blocks in the store. Since each block, except possibly the leftmost, has at 
least one free cell immediately at its left, the free storage contains at 
least m - 1 cells. This implies that if each entry of F can be encoded in a 
single cell, the implementation of F need not cause any space overhead 
(apart from a small constant space): F can be encoded (almost) entirely in 
the free storage. 

Though the implementation of F need not cause any space overhead, the 
process of updating a pointer has become more complex in Algorithm C.FG. In 
order to find the shift of a block into which a (naked) pointer b points, 
the domain of F must be searched for the maximal element d with d ~ b. The 
efficiency of this searching operation depends entirely on the 
implementation of F. A number of these implementations will now be 
discussed. 

A first way to implement F [WEGBREIT 72] is to perform the updating 
phase before the moving phase and record F ( c) in ce Z Z ( c - 1) for each 
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c E dom(FJ. This is possible because each c E dom(F) is the left address of 
a block, so cell(c -1) belongs to the free storage (where we assume for 
convenience's sake that cell(left(S)) is also free). Determining the 
maximal valued E dom(F) such that d ~ b for a given pointer b then amounts 
to searching the first free cell at the left of cell(b). This searching 
process makes compaction essentially an O(n2) process though a considerable 
speed-up can be obtained by using a small amount of ~xtra storage 
[WEGBREIT 72]. If there is sufficient room in a cell, or if the holes 
between blocks are always sufficiently large, the cells containing the 
values of F can be arranged in a binary tree, reducing compaction time to 
O(n log n). An efficient method to do so has been described in 
[TERASHIMA & GOTO 78]. When using this kind of implementation of F, the 
combination of phases will generally be awkward, though not impossible. 

A second way to implement F [HADDON & WAITE 67] is to represent Fas a 
table, which contains pairs of the kind (c,F(c)) (c E dom(FJJ. If these 
pairs fit in a single cell and if the bookkeeping and moving phase are 
combined, the table can be constructed in the hole between the blocks which 
have been moved and those which have not: If m blocks have been moved, this 
hole will contain at least m -1 cells, while F contains m entries. Since 
this hole moves to the right during the combined bookkeeping and moving 
phase, the table "rolls" through the store. Though, in principle, this 
rolling is a linear process [HADDON & WAITE 67] it shuffles the entries in 
the table. Sorting is therefore necessary to restore the order of the 
entries, so as to enable binary searching. Both the sorting and the binary 
searching imply that compaction using this kind of implementation of Fis 
an O(n log n) process. Methods to reduce the degree of shuffling of the 
table and to speed up searching, using the extra free storage outside the 
table, are described in [WAITE 73], [FITCH & NORMAN 78]. 

5.2.3. Compaction algorithms using branch sets 

The second class of compaction algorithms to be discussed differs 
entirely from the first. Instead of using a relocation map, the updating 
information is represented by associating a set B(X) of referenc·e objects 
with each node X. This set contains all reference objects with a value 
referring to a subobject of X, as indicated in Figure 5.9. 

B(X) 

( 

X 

Figure 5.9 
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The three phases of a compacter which uses these "branch sets" are 
described by the following algorithm, in which the moving phase is preceded 
by the updating phase for reasons to become clear later: 

Algorithm C.B 

Variables: 
B: mapping from nodes to sets of reference objects, 
a: integer. 

Action: 
Bookkeeping: 

B := {(X,¢) I Xe: G ndom(A)}. 
For each reachable reference object X 

I Let Y = node(obj(val(X))). 
B(Y) := B(Y) u {X}. 

Updating: 
a:= left(S). 
For each node Xe: dom(A) in moving order 

Let b = left(A(X)). 
Let s = b -a. 
While B(X) f ¢ 

I Get Y from B(X). 
aont ( A(Y)) : = aont( A(Y)) - s. 

a := a+size(A(X)). 
Moving: 

a:= left(S). 
For each node Xe: dom(A) in moving order 

I MOVE(X,a). 
a:= a+size(A(X)). 

In contrast to Algorithm C.F the reachable reference objects are now 
visited in the bookkeeping phase. The same remarks made about the way of 
visiting these reference objects in Subsection 5.2.2 apply here. Notice 
that in the updating phase nodes could just as well be visited in reverse 
moving order, provided we use the variable a in the reverse way as well. 
(This remark, by the way, also applies to the bookkeeping phase of 
Algorithm C.F.) 

At first sight the implementation of Algorithm C.B may seem to require 
a considerable space overhead. First, from a reference value V it must be 
possible to determine the node containing obj(V). This will generally 
require a space overhead per reference object. Secondly, a straightforward 
implementation of the branch sets (for example, as linked lists) will also 
require a considerable space overhead per reference object. All this 
overhead will usually be unacceptable, unless the density of reference 
objects is small. We shall show now, however, that it is often possible to 
eliminate the overhead almost entirely. For that purpose we shall assume, 
for the time being, that references refer to nodes only (thus eliminating 
the first kind of space overhead). Algorithm C.B can then be written as 
follows: 



Algorithm CN.B 

Variables: 
B: mapping from nodes to sets of reference objects, 
a: integer. 

Action: 
Bookkeeping: 

B := { (X,¢) I X E G n dom(AJ}. 
For each reachable reference object X 

I Let Y = obj(val(X)). 
B(Y) := B(Y) u {X}. 

Updating: 
a:= left(S). 
For each node XE dom(A) in moving order 

Let c = R(ref(X)) + a. 
While B(X) f ¢ 

I Get Y from B(X). 
cont(A(Y)) := c. 

a :=a+size(A(X)). 
Moving: 

a:= left(S). 
For each node XE dom(A) in moving order 

I MOVE(X,a). 
a:= a+size(A(X)). 
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In order to show how the branch sets can be implemented in a space­
efficient way, let us for each node XE dom(A) choose an arbitrary atom of 
X, which will be denoted by head(X). Immediately after the bookkeeping 
phase in Algorithm_CN.B the situation for a node X and its associated 
branch set B(X) can be pictured as in Figure 5.10.a. 

B(X) 

5. IO.a 

5.10.b 

heap(X) 
I 

' ® o o Ox 
J 

0 0 Ox 

Figure 5.10 

The situation can be transformed in such a way that the reference objects 
in B(X) constitute a linked list, where the new value of head(X) refers to 
the head of the list and the old value of head(X) acts as a list 
terminator (see Figure 5.10.b). This transformation can be applied to all 
nodes X simultaneously and without loss of information if and only if 
head(X) is not itself a reference object, i.e., if head(X) is a scalar 
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object, Let us for the time being assume that this condition is satisfied 
or, in other words, that problem detail H applies. This assumption, by the 
way, is not unrealistic. It is often necessary to endow a node with 
information concerning its type or size. An extra atom introduced in a node 
X for this purpose is a good candidate for head(X). 

Figure 5.10 now sketches an implementation of the branch sets without 
any space overhead. This trick, which is somewhat similar to the Deutsch­
Schorr-Waite trick discussed in Subsection 5.1.S, is in fact age-old: It is 
essentially the same trick as used in one-pass assemblers to handle forward 
references [WILKES et al. 57]. The literature on the use of this trick in 
compaction algorithms is of a rather recent date [FISHER 74], 
[THORELL! 76], [DEWAR & McCANN 77], [HANSON 77], [MORRIS 78], [JONKERS 79]. 
One thing which one should bear in mind when using this trick is the fact 
that in a real implementation the linked lists do not consist of reference 
objects (which are abstract things), but of the cells occupied by these 
reference objects. This implies that a node X may never be moved if one of 
its branches is still contained in the B(Z) of some node Z (with possibly 
X = Z): 

Additional precondition for MOVE(X,a) 

branches(X) n U Z E G n dom(A) [B(Z}] = ¢. 

It is easy to see that Algorithm CN.B satisfies this requirement (but only 
because we made the updating phase precede the moving phase). Thus, by 
rewriting Algorithm CN.B using the implementation trick for the branch sets 
a three-phase compacter can be obtained. For reasons of efficiency it is 
useful to combine phases, however. The following algorithm combines the 
updating phase with both the bookkeeping phase. and the moving phase and 
does not violate the additional precondition for MOVE: 

Algorithm CND. BGUP 

Variables: 
B: mapping from nodes to sets of reference objects, 
a: integer. 

Action: 
B,a := {(X,¢) IX E Gndom(A)},left(S). 
For each node XE dom(A) from left to right 

UPDATE(X,a). 
For each YE branches(X) 

I Let Z = obj(val(Y)). 
B(Z) : = B(Z) u {Y}. 

a:= a+size(A(X)). 
a:= left(S). 
For each node XE dom(A) from left to right 

I 
UPDATE(X,a). 
MOVE(X,a). 
a := a+ size(A(X)). 

UPDATE(X,a): 
Let c = R(ref(X)) + a. 
While B(X) f ¢ 

I Get Y from B(X). 
cont(A(Y)) := c. 

This is the abstract version of the algorithm described in [JONKERS 79]. 
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Just like we showed for the Deutsch-Schorr-Waite algorithm, a more concrete 
version of this algorithm can be obtained from the abstract version through 
a simple substitution process. For that purpose let us assume that problem 
detail H applies. Using Figure 5.10 for guidance the operations on the 
abstract variable B can be translated as follows: 

B := {(X,111) IX€ Gndom(AJ}-+­
Skip 

B(Z) := B(Z) u {Y} -+­
Let H = head(Z). 
val(Y),val(H) := val(H),ref(Y) 

While B(X) ~Ill-+-
Let H = head(X). 
While val(H) is a reference value 

Get Y from B(X) -+-
Let Y = obj(val(H)). 
val(Y),val(H) := ref(X),val(Y) 

Thus the following algorithm can be derived from Algorithm CND.BGUP: 

Algorithm CNDH.BGUP* 

Variables: 
a: integer. 

Action: 
a:= Zeft(S). 
For each node X € dom(A) from left to right 

UPDATE(X,a). 
For each Y € bra:nahes(X) 

I Let Z = obj(val(Y)). 
Let H = head(Z). 
val(Y),val(H) := val(H),ref(Y). 

a:= a+size(A(X)). 
a:= Zeft(S). 
For each node X € dom(A) from left to right 

I UPDATE(X,a). 
MOVE(X,a). 
a:= a+size(A(X)). 

UPDATE(X,a): 
Let a = R(r,ef(X)) + a. 
Let H = head(X). 
While val(H) is a reference value 

I Let Y = obj(val(H)). 
val(Y),val(H) := ref(X),val(Y). 
aont(A(Y)) := a. 

Like the Deutsch-Schorr-Waite algorithm, this algorithm makes temporary 
changes in the graph G, thus affecting a number of system invariants 
(besides system invariant (S23)). 

An even more concrete version of the above algorithm can be obtained 
by translating the operations on the graph Gin terms of operations on the 
store S. This is a highly implementation dependent affair which will be 
omitted. One thing should be noted, though. In Algorithm CNDH.BGUP* the 
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fact that it can be established whether the value of head(X) is a scalar or 
a reference value, is used, In low level terms this implies that it must be 
possible to distinguish the representation of the original value of head{X) 
(i.e., aont(A{head(X)))) from the representation of a reference value 
(i.e., a pointer). If this should not be possible, it can be achieved 
artificially by using an extra mark bit in each pointer, if available. 

Algorithm CNDH.BGUP* is based on the assumption that each node X has 
an atom head{X) which is a scalar object. Even if we drop this assumption 
and choose an arbitrary atom of X for head(X), the described implementation 
trick for the branch sets can be applied. An additional problem is then to 
take care that not at the same time B(X) +¢and head(X) € B(Z) for some Z. 
In order to achieve this it is sufficient to keep the following assertion 
invariant: 

Additional invariant for nodes X € dom(A) 

B(X) + ¢ • bra:nches(X) n U Z € G n dom(AJ [B(Z)] = ¢. 

Notice that this invariant can only be satisfied if phases are combined, as 
in the following algorithm, which also satisfies the additional 
precondition for MOVE: 

Algorithm CND.BGMUP 

Variables: 
B: mapping from nodes to sets of reference objects, 
a: integer. 

Action: 
Lets= I: X € G ndom(A) [size(A{X))]. 
B,a := {(X;¢) IX€ Gndom(A)},left{S)+s. 
For each node X € dom{A) from right to left 

a := a - size(A(X)). 
UPDATE(X,a). 
For each Y € bra:nches{X) 

Let Z = obj(val(Y)). 
If left(A(Z)) < left(A(X)) 
I B(Z) := B(Z) u {Y}. 
else 

I IfZ=X 
I aont(A{Y)) := R(ref(X)) +a. 

a:= lej't(S). 
For each node X € dom(A) from left to right 

UPDATE'(X,a). 
MOVE(X,a). 
For each Y € branahes(X) 

I Let Z = obj(val(Y)). 
If left(A(Z)) > left(A(X)) 
I B(Z) := B(Z) u {Y}. 

a := a+size(A{X)). 

UPDATE(X,a): 
Let a = R(ref(X)) +a. 
While B(X) + ¢ 

I Get Y from B(X). 
aont(A(Y)) := a. 

This ingenious algorithm is an abstract version of the algorithm described 
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in [MORRIS 78]. Notice that in the first phase of the algorithm the nodes 
in the store are visited in the order from right to left instead of left to 
right. Notice also that if all pointers point to the left (problem 
detail S), large parts of the algorithm can be skipped. The algorithm then 
corresponds to the algorithm described in [FISHER 74]. 

The operations on the abstract variable B can again be translated in 
terms of the implementation sketched in Figure 5.10. The only difference 
now is the translation of the test "B(X) 1' ¢", which amounts to: 

val(head(X)) is a reference value and 
obj(val(head(X))) is not a node. 

(Note that an object can never be both a reference object and a node, since 
nodes are structured objects.) In practice (i.e., in the store) this test 
usually cannot be implemented without some overhead. It can always be 
implemented at the expense of an extra bit per pointer. The actual 
translation of Algorithm CND.BGMUP is left to the reader. 

It is not difficult to see that, using the implementation trick for 
the branch sets, Algorithms CN.B, CND.BGUP and CND.BGMUP can be implemented 
in such a way that they operate in a time O(n), where n is the total number 
of cells occupied by nodes, and require a space overhead of at most one bit 
per pointer. Furthermore, Algorithms CND.BGUP and CND.BGMUP demonstrate 
that the entire compaction process can be performed in two phases. This 
raises the question which of these two algorithms should be preferred. 

Though both algorithms operate in O(n) time, Algorithm CND.BGMUP will 
generally be slower than Algorithm CND.BGUP for the following reasons: 

(I) Reference objects are visited twice instead of once. 
(2) Extra te·sts are performed to determine the direction a pointer is 

pointing in. 
(3) Nodes are visited in different orders in the two phases. 
(4) The total number of cells occupied by nodes must be determined 

beforehand. 

The space overhead of both algorithms is the same. A point in favour of 
Algorithm CND.BGMUP is that it is more generally applicable, because for 
its implementation we do not have to rely on problem detail H (see also 
below). The conclusion therefore is that, unless problem detail H does not 
apply, Algorithm CND.BGUP should be preferred to Algorithm CND.BGMUP. 

There is a realistic situation where we can even do better than 
Algorithm CND.BGUP. Suppose detail H applies and we also have an unused 
cell in the location of each node, for example because this cell has been 
used by the garbage collector to store status information. We can use this 
cell to store a relocation map, thus enabling a combination of the branch 
set and relocation map compaction techniques. This idea is exploited in the 
following algorithm, where the relocation map 'is used to update pointers to 
the left and branch sets are used to update pointers to the right: 
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Algorithm CND.BFGU 

Variables: 
B: mapping from nodes to sets of reference objects, 
F: mapping from nodes to integers, 
a: integer. 

Action: 
B,F,a := {(X,¢) I XE G ndom(A)},¢,left(S). 
For each node XE dom(A) from left to right 

Let a = R(ref(X)) + a. 
While B(X) t- ¢ 

I Get Y from B(X). 
eont(A(Y)) := a. 

F(X) := a. 
For each YE branehes(X) 

Let Z = obj(val(Y)). 
If left(A(Z)) $ left(A(X)) I eont(A(Y)) := F(Z). 
else 
I B(Z) := B(Z) u {Y}. 

a:= a+size(A(X)). 
a:= left(S). 
For each node XE dom(A) from left to right 

I MOVE(X,a). 
a:= a+size(A(X)). 

Notice that the relocation map F has been defined in a slightly more 
abstract way than in Subsection 5.2.2. This algorithm (which was only 
discovered when writing Chapter 7) has the advantage over Algorithm 
CND.BGUP that it has a separate moving phase which can be optimized 
extremely (using "block moves"; see also Chapter 7). The extra tests to 
determine the direction of pointers in Algorithm CND.BFGU pay off in the 
immediate updating of pointers to the left. The only disadvantage of 
Algorithm CND.BFGU as compared with Algorithm CND.BGUP is that the former 
requires a space overhead and therefore is less generally applicable than 
the latter. 

So far we have restricted ourselves to the case of references 
referring to nodes only (problem detail N). Let us now consider the general 
case of references to arbitrary subobjects of nodes (Algorithm C.B). The 
implementation of the branch sets and the implementation of the expression 
"node(obj(vaUX)))" will then, in general, require an additional space 
overhead. Yet, there are situations where this space overhead may be 
eliminated to a great extent. Suppose, for reasons other than compaction, 
it must be possible, given a reference value V, to determine node(obj(V)). 
A frequently used way to achieve this is to represent references in an 
"enriched" way. For example, a reference to a subobject Y of a node X may 
be represented by an address-offset pair: 

(left( A(X)), left( A(Y)) - left(A(X))). 

The first element of this pair can be employed to implement the branch sets 
through the trick described above. The compacter, in fact, can treat all 
references as if they refer to nodes by considering only the address part 
of pointers. Provided that pointers are enriched it is easy to see, 
therefore, that Algorithms CND.BGUP, CND.BGMUP and CND.BFGU can be 
generalized to the case of references to arbitrary subobjects of nodes 
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without causing any significant time or space overhead. 
Algorithm CND.BGMUP can be adjusted in such a way that it is 

applicable in the general case without any additional time or space 
overhead, even if pointers are not enriched (which is a second point in 
favour of Algorithm CND.BGMUP as compared with Algorithm CND.BGUP). This 
can be explained as follows. Consider the state of the graph as pictured in 
Figure 5.11.a, where the order from left to right corresponds to the order 
according to which atomic objects are located in the store. 

5. 11. a 

S. 11. b 

Figure 5.11 

If we replace each reference value Vin Figure 5.11.a by a reference value 
referring to the leftmost atom of obj(V), if we remove all objects except 
atomic objects and if we replace each atomic object X by a node containing 
X as its single component, then the situation of Figure 5.11.b is obtained. 
We can perform a compaction now as if the graph had the shape of Figure 
5.11.b. It is not difficult to see that this compaction will (under ~ertain 
conditions) have the same effect on the store as when the graph had the 
shape of Figure 5.11.a. Since references refer to nodes only in Figure 
5.11.b, Algorithm CND.BGMUP can be used (but not Algorithm CND.BGUP, let 
alone Algorithm CND.BFGU). This unstructured application of Algorithm 
CND.BGMUP cannot be expressed well in terms of the graph of Figure 5.11.a. 
It can in fact only be expressed in terms of operations on the store, which 
is done in [MORRIS 78]. In using this low level version of the algorithm 
one should be very careful to make sure that it has the desired high level 
effect. 

5.3. COMPACTING GARBAGE COLLECTION 

As can be inferred from the definition of the operation 
COLLECT GARBAGE & COMPACT, the effect of a compacting garbage collection 
should be equal to the effect of a garbage collection followed by a 
compaction. The simplest way to construct a compacting garbage collector is 
therefore to independently construct a garbage collector and a compacter, 
and join the two together. The overhead, both in time and space, required 
for a compacting garbage collector can often be reduced considerably, 



198 

however, if the garbage collector and the compacter are tuned to each 
other and their actions are combined. A precondition for such a combination 
is that we know beforehand that a compaction must be performed, and do not 
let this depend on the outcome of the garbage collection (such as in a 
"conditionally compacting garbage collector"). 

In this section we shall discuss through a number of examples how 
garbage collectors and compacters can be efficiently combined. Since the 
garbage collection and compaction algorithms used in these examples have 
already been discussed (at least in their abstract form), only short 
comments on the examples will be given, including references to literature. 
The algorithms will be denoted by the label "G&C" followed by a number of 
problem details (so no algorithm details are specified). The problem 
details are chosen from the garbage collection and compaction problem 
details (see Subsections 5.1.1.7 and 5.2.1.5). 

A general remark which can be made is that compaction algorithms using 
a relocation map are not very suitable to be merged with garbage collection 
algorithms. The reason is (see Algorithm C.F) that in the bookkeeping phase 
of these compaction algorithms the nodes in the store must be visited in 
moving order. This moving order can usually only be determined after the 
garbage collection has been completed. There is one exception. If the old 
locations of nodes cannot be overwritten by the new locations (problem 
detail V) any order will do as a moving order. In particular, if we assume 
that references refer to nodes only (problem detail N), the order according 
to which nodes are visited by the garbage collector can be chosen. Upon 
tracing a node for the first time, the garbage collector can immediately 
move the node to its new location and update the pointer through which the 
node was traced. Upon tracing the node after the first time, only the 
pointer in question need be updated. Thus garbage collection and compaction 
can be performed in a single phase. 

The compacting garbage collection problem with additional details V 
and N is also known as the "list moving problem" [REINGOLD 73], [CLARK 76], 
though the latter problem is usually restricted to the case of LISP-like 
nodes. The "list copying problem" [LINDSTROM 74], [FISHER 75], [ROBSON 77], 
[CLARK 78] is the same as the list moving problem except that the contents 
of the old locations of nodes may not be destroyed. Each list copying 
algorithm will do as a list moving algorithm, but is unnecessarily 
complicated for the purpose of moving a list. List copying algorithms will 
therefore not be discussed. List moving algorithms typically require no 
additional storage (though old versions [FENICHEL & YOCHELSON 69], 
[HANSEN 69] did, because they used recursion). The algorithm described 
below is a generalization of [CHENEY 70] (without the "cdr encoding"). It 
is essentially a combination of garbage collection Algorithm GN.DTEH and 
compaction Algorithm CV.FM. The bag T from Algorithm GN.DTEH is implemented 
as a queue and the set Mis implemented by using the fact that the first 
cell of the location of a node contains the representation of a reference 
(problem detail R) and that old and new representations of references can 
easily be distinguished (assuming problem detail 1): 



Algorithm G&CNVRL 

Variables: 
a,b: integer. 

Action: 
a,b := left(S),left(S). 
Let C = cell(left(A(R))). 
MOVE(R,b). 
cont(C) := b. 
b : = b + size ( A(R)). 
While a f b 

Let X = NODE(a). 
a :=a+size(A(X)). 
For each YE branches(X) 

Let c = cont(A(Y)). 
LetD=ceU(c). 
If cont(D) ;;: b 

Let Z = NODE(c). 
MOVE(Z,b). 
cont(D) := b. 
b := b+size(A(Z)). 

cont(A(Y)) := cont(D). 
dom(A) := dom(A) \ {X E dom(A) I left(A(X)) ;;: b}. 

NODE(a): 
The node XE dom(A) such that left(A(X)) = a. 
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The list moving algorithms described in [REINGOLD 73], [CLARK 76] are LISP­
tuned variations of this algorithm. They use garbage collection Algorithm 
GN.DTER rather than Algorithm GN.DTEH, where the bag Tis implemented in 
the old locations of nodes as a stack in linked list representation. 
[CLARK 76] is essentially the same as [REINGOLD 73], except that the use of 
the stack and the updating of pointers is optimized in the former. 

Compaction algorithms using branch sets, in contrast to those using a 
relocation map, can be combined very well with garbage collection 
algorithms. In the bookkeeping phase of these compaction algorithms all 
reachable reference objects are visited, which is also done in a garbage 
collection algorithm. Therefore these visits can be combined. An example of 
this is the following algorithm, which is a combination of Algorithm 
GNK.DTER** and Algorithm CN.B: 
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Algorithm G&CNK 

Variables: 
M: set of nodes, 
S: stack of nodes, 
k: mapping from nodes to integers, 
B: mapping from nodes to. sets of reference objects, 
a: integer. 

Action: 
M,S,k(R) := {R},<R>,O. 
B := {(X,¢>) I X E G ndom(A)}. 
While S 'F <> 

Let X = TOP(S). 
If k(X) 'F degree(X) 

k(X) := k(X) +1. 
Let Y = branah(X,k(X)). 
Let Z = obj(val(Y)). 
If z i M 
I M,S,k(Z) := Mu{Z},PUSH(Z,S),O. 
B(Z) := B(Z) u {Y}. 

else 
I s := POP(S). 

a:= Zeft(S). 
For each node XE dom(A) from left to right 

If Xi M 
I dom(A) := dom(A) \ sub(X). 
else 

Let a = R(ref(X)) + a. 
While B(X) 'F ¢> 

I Get Y from B(X). 
aont(A(Y)) := a. 

a:= a+size(A{X)). 
a:= Zeft(S). 
For each node XE dom(A) from left to right 

I MOVE(X,a). 
a := a+size(A(X)). 

This is the abstract version of the algorithms described in [THORELL! 76], 
[DEWAR & McCANN 77], [HANSON 77]. The latter algorithms differ only in the 
way the variables Sand k are implemented. The variable Mis implemented in 
all three algorithms using the following invariant of the first while loop: 

For each node XE dom(A) 
I X € M .. B(X) 'F ¢> V X = R. 

The variable Bis implemented using problem detail Hand the trick 
described in Subsection 5.2.3. Notice that if upon visiting a node X the 
original value of head(X) is required, the entire list emanating from 
head(X) must be traversed. 
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In [DEWAR & McCANN 77] an explicit (bounded) stack is used for the 
implementation of both Sand k. [THORELL! 76], [HANSON 77] use an extra 
atom per node for the implementation of Sand k. [HANSON 77] uses the extra 
atom for a linked list representation of S, while [THORELL! 76] uses the 
extra atom to store k and as a list head for the implementation of B. Both 
exploit the fact that if X = TOP(S) and Y = 1'0P(POP(S)), then 
branch(Y,k(Y)) is terminating the list emanating from head(X). In 
[HANSON 77] this is used to recover k(Y) and in [THORELL! 76] this is used 
to recover Y when popping S. The list traversals necessary for this make 
the algorithms operate in O(n2 ) time in the worst case. The list traversals 
can be avoided at the expense of a second extra atom per node. This makes 
it rather surprising that Algorithm GN.DTEH has not been used instead of 
Algorithm GNK.DTER**. The former is not only faster than the latter, it 
also requires only a single extra atom per node in combination with 
Algorithm CN.B to obtain an O(n) three-phase compacting garbage collector 
(see also Chapter 7). 

The two compacting garbage collection algorithms discussed above are 
based on problem detail N (though Algorithm G&CNVRL can easily be 
generalized). We shall now present an algorithm which is applicable in the 
general situation of references to arbitrary subobjects of nodes. The idea 
behind this algorithm is as follows. At the end of a garbage collection 
algorithm using reference marking, the marking information M consists of 
the set of all reachable reference objects, which is exactly the union of 
all branch sets after the bookkeeping phase of Algorithm C.B. Assuming 
problem detail L, the branch sets can be recovered from M by using the 
following property: 

For each node XE dom(A) 
I B(X) {YEM I Zeft(A(X)) ~ cont(A(Y)) ~ right(A(X))}. 

Efficient use of this property can only be made if the elements of Mare 
sorted according to increasing contents. This is done in the following 
algorithm, which can be viewed as a combination of Algorithm G.CTER and 
Algorithm C.B. The variable M from Algorithm G.CTER is represented in this 
algorithm by a variable set L of reference objects using the following 
invariants: 

M LuTandLnT ¢. 
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Algorithm G&CL 

Variables: 
L,T: set of reference objects, 
a,k: integer. 

Action: 
L,T := ¢,branahes(RJ. 
While T # ¢ 

Let XE T. 
L, T : = L u {X}, T \ {X}. 
Let Y = obj(val(XJJ. 
For each Z E branahes(Y) 

I IfZI.LuT 
I T := Tu {Z}. 

Let Y1,•·•,Yn be the elements of L, ordered in such a way that 
aont(A(Yi)) $ aont(A(Yi+iJJ (i 1, •.• ,n -1). 
a,k := left(SJ,1. 
For each node XE dom(A) from left to right 

Let b left(A(X)J. 
Lets b-a. 
Let f. k. 
While k $ n and aont(A(Yk)J $ right(A(XJJ 

I aont(A(Yk)) := aont(A(Yk)) -s. 
k := k+l. 

If f. = k and X # R 
J dam( A) := dom(AJ \ sub(X). 
else 
I a:= a+size(A(XJ). 

a:= left(SJ. 
For each node XE dom(AJ from left to right 

I MOVE(X,a). 
a : = a + size ( A(X J J • 

This is the algorithm described in [ZAVE 73], where the sets Land Tare 
implemented as linked lists. The space overhead per reference object 
required for the implementation of Land T can be reduced by using the fact 
that L n T = ¢, while the test "Z I. Lu T" can be performed cheaply using the 
same trick as in Algorithm GNK.DTEH* (though in [ZAVE 73] an explicit mark 
bit is used). The sorting of the elements of L can be done efficiently 
using the radix list sort [KNUTH 73]. In [ZAVE 73] the first pass of the 
sort is combined with the operations on L (using a multi-linked-list 
representation for L). 

The use of garbage collection Algorithm G.CTER makes Algorithm G&CL 
operate in an O(n2J worst case time, where n is the number of reachable 
reference objects. An O(n log n) time overhead is also introduced because 
of the necessary sorting. Furthermore, a considerable space overhead per 
reference object is required. The algorithm, on the other hand, is 
applicable in the case of references to arbitrary subobjects of nodes. Yet, 
the use of a combination of Algorithms G.CTER and C.B in a way similar to 
Algorithm G&CNK may deserve consideration instead, requiring no sorting and 
about the same space overhead. We shall conclude this section with the 
presentation of another combination of Algorithms G.CTER and C.B. The 
algorithm to be presented shows that, even in the most general case, it is 
possible to perform an entire compacting garbage collection in only two 
phases. Since the algorithm visits reference objects twice instead of once 
and since it does not have a separate moving phase (which is "impossible" 
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in a two-phase compacting garbage collector) it need not necessarily be 
more efficient than a three-phase combination of Algorithms G.CTER and C.B 
analogous to Algorithm G&CNK, however. The algorithm is presented without 
connnent below. 

Algorithm G&C 

Variables: 
M,T: set of reference objects, 
B: mapping from nodes to sets of reference objects, 
a: integer. 

Action: 
M,T,B := bra:nches(R),branahes(R),{(X,r/J) IX E Gndom(A)}. 
While T r r/J 

Get X from T. 
Let Y = obj(val(X)). 
For each Z E branahes(Y) 

I IfZiM 
I M,T := Mu{Z},Tu{Z}. 

Let Z = node(Y). 
If left(A(Z)) s left(A(X)) 
I B(Z) : = B(Z) u {X}. 

a:= left(S). 
For each node XE dom(A) from left to right 

If B(X) = r/J and X r R I dom(A) := dom(A) \ sub(X). 
else 

Let b = left(A(X)). 
Let s ,;, b-a. 
While B(X) r r/J 

I Get Y from B(X). 
aont(A(Y)) := aont(A(Y)) - s. 

MOVE(X,a). 
a := a+size(A(X)). 
For each YE branahes(X) 

If Y E M 

I Let Z = node(obj(val(Y))). 
If left(A(Z)) > left(A(Y)) 
I B(Z) := B(Z) u {.Y}. 

5.4. CONCLUSION 

In this chapter we have made an attempt to systematically order (a 
substantial part.of) the existing knowledge in the field of garbage 
collection, according to the lines sketched in Chapter I. The key to the 
success of this enterprise was the storage management model introduced in 
the previous chapter. This model has turned out to be sufficiently concrete 
to enable the definition of the garbage collection and compaction problem, 
as well as sufficiently abstract to allow for the description of widely 
differing garbage collection and compaction algorithms in an implementation 
independent way. 

In certain respects the model can be criticized, though. The model 
includes a number of simplifications, such as: there is only one root, 
there are no objects with fixed locations, atomic objects occupy exactly 
one cell, cells contain (unbounded) integers, there are no alignment 
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restrictions, etc •• The purpose of these simplifications is, of course, to 
keep the model, and consequently the algorithms, as simple as possible. 
Though the model could certainly be extended to eliminate a number of the 
simplifications, it is felt that each implementer is perfectly capable of 
undoing these simplifications when adjusting an algorithm to his particular 
implementation. 

A criticism which is related to the above is that the algorithms which 
we have described are too abstract, too far away from "real" garbage 
collectors. Indeed, almost all algorithms which we have presented are more 
abstract than their counterparts in literature. The reason is that (helped 
by the model) we have systematically tried to catch the essence of an 
algorithm and dispose of irrelevant detail. This increases both the 
applicability and the legibility of the algorithms. It also increases the 
distance to an implementation. Still, as with the simplifications in the 
model, it is felt that each implementer can easily bridge the gap from 
abstract algorithm to concrete implementation. The abstract algorithm is 
even believed to make the process of implementing a (compacting) garbage 
collector easier and more reliable. The abstract algorithm is easy to 
understand and can act as a handhold in keeping the implementation process 
in one's mental grip. At the same time it provides the implementer with the 
necessary freedom to choose an efficient implementation. 

The fact that we could describe the algorithms as abstractly as we 
did, can be attributed for the major part to the language which we have 
used. This was not a fixed, and consequently inflexible, programming or 
specification language, but rather a loose algorithmic language which we 
were free to extend whenever we felt like it. The latter is similar to the 
way mathematicians introduce new notations whenever they find it useful to 
do so. As we have tried to argue in the introduction of Chapter 4, the 
resemblance to mathematics goes further than this. The language used by 
mathematicians and the language used here for the description of the 
algorithms and data structures (in particular, the model) are both loose, 
but precise. The fact that the language is indeed precise we have tried to 
demonstrate in Chapter 2, where the first steps to a formalization of this 
language are taken. 
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CHAPTER 6 

DESIGN OF A STORAGE MANAGER 

6.0. INTRODUCTION 

The usual way to obtain a portable implementation of a programming 
language Lis to construct a compiler C, which translates programs in L 
into code for an "abstract machine" M [ELSWORTH 79]. The latter is a 
hypothetical machine, which is designed in such a way that it is easily 
implementable on a large class E of existing machines. Given the compiler 
C, the job of an implementer is then, apart from installing C, to implement 
Mon his particular machine M'. If M' EE, this involves only a minor 
overhead. The price to be paid for portability is thus kept to a minimum. 

In each implementation of a programmi~g language the problem of 
storage management must be solved. Let us consider this problem in the 
context of the above approach to programming language implementation. A 
first way to "solve" the problem is to pass it to the implementer of the 
abstract machine M. This implies that the operations which have to do with 
storage management are kept abstract in M, much like the way in which they 
are kept abstract in the programming language L. The advantage of this 
approach is twofold. First, the problems of code generation and storage 
management are separated entirely. The designer of the code generator need 
not get engaged in the details and intricacies of a storage management 
system. This greatly simplifies the design of the code generator. Secondly, 
each implementer can design a storage management system of his own. Since 
he can tailor this storage management system to his particular machine, it 
will probably be quite efficient. On the other hand, the design and 
implementation of a storage management system may involve a considerable 
overhead in the implementation of the abstract machine M. This, of course, 
is in contradiction to the requirement that M should be easily 
implementable. 

The way out is not to change the abstract machine M, but instead 
provide it with a standard storage management system written in a subset of 
the instruction code of M. Such a storage management system can be viewed 
as an implementation of those instructions of M, which relate to storage 
management, in terms of simpler instructions of M. The two advantages 
mentioned above are retained this way. Code generation and storage 
management remain separated, and each implementer is still free to design 
his own storage management system. If the overhead of designing and 
implementing a storage management system is considered to be too large, 
however, the standard storage management system can be used. The only 
remaining disadvantage is that, because the standard storage management 
system is machine independent, it is probably not optimally efficient on 
each existing machine. A careful design of the system may _remove a great 
deal of this objection. 

This chapter deals with the problem of designing a (standard) storage 
management system as described above. It will be demonstrated by means of 
an example, how this problem can be tackled in a systematic way. The 
example is not artificial, it is taken from the construction of an ALGOL 68 
[VAN WIJNGAARDEN et al. 76] compiler which has been under development at 
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the Mathematical Centre. In this compiler the above approach is pursued. 
The abstract machine used in this compiler is called the "MIAM" ("Machine 
Independent Abstract Machine") [MEERTENS 81]. The treatment will be such 
that no knowledge of either ALGOL 68 or the MIAM is required. 

Let us first discuss the problem in general terms. The nature of a 
storage management system to be designed for an abstract machine depends to 
a large extent on the operations performed by the abstract machine. The 
first thing to do therefore is to investigate which requirements are 
imposed by the abstract machine on a storage management system and also 
which properties of the abstract machine can be used to make the storage 
management system more efficient. For all but simple abstract machines this 
is a complicated job. The point is that one easily gets mixed up in all 
kinds of details of the abstract machine, which are completely irrelevant 
to the storage management problem. The only way to avoid this is to bring 
about a "separation of concerns". That is, an abstraction of the abstract 
machine should be made, which contains only those details of the abstract 
machine which are or may be relevant to the storage management problem. In 
such a (usually rather rudimentary) model of the abstract machine the 
problem of storage management can be studied in isolation, which makes the 
problem much easier to grasp. 

Apart from the latter, there are a number of additional advantages. 
First of all a storage management system designed this way is in a sense 
generally applicable. It cannot only be used with the abstract machine it 
was designed for, it can also be used with any other machine that "fits" 
the model. So it is machine independent in a double sense. The second 
advantage is that it aids to a modularization of the process of compiler 
construction. Through the model the storage management problem can be 
presented to someone (for example, a specialist in designing storage 
management systems), who need not know anything of the programming language 
or abstract machine in question. Finally, it allows a non-trivial storage 
management system to be discussed as it is in this chapter, without 
perishing in a host of implementation details. 

As mentioned before, the method will be demonstrated by the design of 
a machine independent storage management system for the abstract machine 
MIAM, which is used in a machine independent ALGOL 68 implementation. In 
the next section the model of the MIAM will be presented (after which one 
can forget about the MIAM completely). Then the storage management problem 
will be formulated in Section 6.2. The design of an efficient machine 
independent storage management system will be described in Section 6.3. The 
conclusion of this chapter is contained in Section 6.4. 

6. I. MODEL 

6.1.1. Data structures 

Let us first look at the data structures upon which MIAM programs 
operate. Considered at the lowest level these data structures are merely 
pieces of storage. Here a more abstract look will be taken at them. They 
will be considered as abstract objects, which are called "areas". Different 
areas correspond to disjoint pieces of storage. There are two kinds of 
areas, called "locales" and "blocks": 

An area is either a locale or a block. 
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Speaking in technical terms a locale corresponds to an "activation record" 
and a block corresponds to a "data area". That is, if during the execution 
of an ALGOL 68 program the range S showed in Figure 6.1 is entered, a 
locale L will be created in the MIAM, after which we say that "control 
resides in L". On arrival at the declaration of the array A a block B (for 
the elements of A) will be created. We shall say that B is "created in L". 

s 

I 
I 
I 
I 

~ 

[1:n] int A; 

I 
I 

end 

Figure 6. I 

Areas have a number of entities associated with them. First consider 
locales: 

Each locale L has: 

- status(L): variable status, 
- type(L): constant type, 
- scope(L): constant integer, 
- establisher(L): constant locale. 

status(L), type(L), scope(L) and establisher(L) will be called the 
"status", "type", "scope" and "establisher" of L, respectively. The status 
of L indicates whether Lis "alive" or "dead": 

A status is an element from the set {alive,dead}. 

Intuitively speaking a locale is alive if control resides in it or if 
control will ever return to it. Otherwise the locale is dead. The type of L 
is a value, the exact nature of which is complet~ly irrelevant here. The 
only thing we need to know is that the (machine independent) type of L 
determines the (machine dependent) size of the piece of storage 
corresponding to L. The scope of Lis the ALGOL 68 scope of the range 
corresponding to L. The latter is an integer which indicates the lifetime 
of the locale (the larger the scope, the shorter the locale will live). The 
establisher of L corresponds to what is usually called a "dynamic link". It 
is the locale where control resided innnediately before control was 
transferred to L. For instance, if in Figure 6.1 prior to entering the 
range S control resides in the locale Mand entry of the range S results in 
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the creation of a locale L, then estabZisher(L) M. 
Next consider blocks: 

Each block B has: 

- status(B): variable status, 
- type(B): constant type, 
- scope(B): variable integer, 
- generator(B): variable locale. 

status(B), type(B), scope(B) and generator(B) will be called the "status", 
"type", "scope" and "generator" of B, respectively. The status, type and 
scope of Bare analogous to the corresponding entities associated with 
locales. The generator of Bis the locale in which B was created. For 
instance, if in Figure 6.1 entry of the range Sand execution of the 
declaration of A resulted in the creation of a locale Land a block B 
respectively, then immediately after that generator(B) = L. The reason why 
the scope and generator of a block are variable and not constant entities 
will be discussed later. 

The above covers the discussion of areas. However, areas are not the 
only data structures which are of interest-to the storage management 
problem. One of the more exotic features of ALGOL 68 is the possibility of 
specifying that certain parts of a program should be executed in parallel, 
where synchronization can be done through "semaphores" [DIJKSTRA 68]. 
Programs using this feature will be called "parallel programs". The other 
"normal" programs will be called "sequential programs". In order to model 
parallellism neatly, the concept of a "process" must be introduced. As 
opposed to areas, processes do not correspond to separate pieces of 
storage. They are "embedded" in locales. 

Let us first discuss processes informally. In general a number of 
processes will be active simultaneously during the execution of a program 
on the MIAM, where each process has its own control. Only when executing a 
sequential program is there only one active process. Suppose control of the 
active process Presides in the locale L corresponding to the range Sin 
Figure 6. 2. When control arrives at the parallel clause "par (Sl,S2·,S3)", 
which specifies that Sl, S2 and S3 should be executed in parallel, t_hree 
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new active processes Pl, P2 and P3 (corresponding to S1, S2 and S3) will be 
created, while P becomes inactive until Pl, P2 and P3 are completed. That 
is, P "ramifies" over Pl, P2 and P3. We shall say that Pl, P2 and P3 are 
"created by Pin L". 

The concept of a process will now be defined more precisely: 

Each process P has: 

- mode(P): variable mode, 
- origin(P): constant locale, 
- environ(P): variable locale, 
- spawner(P): constant process. 

mode(P), origin(P), environ(P) and spawner(P) will be called the "mode", 
"origin", "environ" and "spawner" of P, respectively. The mode of P 
indicates whether Pis "active", "spawned" (= ramified over a number of 
processes) or "completed": 

I A mode is an element from the set {aative,spawned,aompleted}. 

The origin of Pis the locale in which P was created and the environ of P 
is the locale in which control of P currently resides. The spawner of Pis 
the process which created P. For instance, in the example discussed in the 
previous paragraph, spawner(Pl) = spawner(P2) = spawner(P3) = P. 

From the data structure point of view the model of the MIAM can now be 
regarded as a collection of four variables: 

The model consists of: 

- L: variable set of locales, 
- 8:. variable set of blocks, 
- P: variable set of processes, 
- R: variable process. 

The variables L, B and P represent the set of all locales·, blocks· and 
processes respectively which have so far been created during the execution 
of a program. The variable R has to do with the fact that the MIAM is a 
sequential machine. Only one process at a time can be executed on the MIAM, 
which implies that parallellism must be "serialized". The variable R 
indicates which (active) process is currently being executed. R will be 
called the "running process" and the environ of R will be called the 
"current environ". 

Prior to the execution of a program the following holds: 
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Initially: 

- L {Lal, 
- B ID, 
- p {Po}, 
- R Po, 
where Lo is a locale such that: 

- status(Lo) = alive, 
type(Lo) = ~, 
saope(Lo) = O, 
establisher(Lo) Lo, 

and Po is a process such that: 

- mode(Po) = aative, 
- origin(P0) = Lo, 
- environ(Po) = Lo, 
- spaumer(Po) = Po. 

Here"~" denotes some unspecified type. The locale Lo, which will stay 
alive during the entire execution of a program, will be called the "initial 
locale". The process Po will be called the "initial process". 

This completes the data structure part of the MIAM model. A thing one 
can argue about is whether the data structures described capture all 
information relevant to the storage management problem. An important 
concept that seems to be missing is that of a "reference" between areas, or 
put more abstractly, the concept of "reachability". This is an important 
concept because of the occurrence of "heap objects" in ALGOL 68, which 
correspond to areas with "infinite" lifetimes (their scope is zero). The 
only effective way to cope with the storage management problems caused by 
these objects is the use of a "garbage collector" (see Chapter 4, Section 
4.1). The design of a garbage collector is a problem in its own right, 
which will not be discussed in this chapter. The concept of reachability 
will therefore not be introduced in the model. Instead a garbage collection 
operation will be introduced as a primitive operation in the problem 
definition. The design of a garbage collector, i.e., the implementation of 
the latter primitive operation, will be discussed in the next chapter. 

6.1.2. Operations 

Let us now look at the operations performed by the MIAM. They can be 
modelled in terms of operations on the data structures described above. 
Before doing so a few definitions will be introduced. 

Definition $A and <n 
$A and <A are relations on the set of all' locales, defined as follows 
(Land Mare locales): 

L $A M .,. 3 n ~ 0 [L = establishern(M)], 

L <A M .,. L $A M A L ,f M. 



Definition srr and <n 

srr and <u are relations on the set of all processes, defined as 
follows (P and Qare processes): 

PsnQ.,. 3n~O [P spa.wnern(Q)], 

P <n Q .. P sn Q " P ,; Q. 

211 

Here "estabUshern(M)" and "spa.wnern(Q)" denote the result of applying 
establisher and spaimer n times to Mand Q respectively. So in other words, 
~A and snare the reflexive and transitive closures of the relations 
"L = estabUshe!'(M)" and "P = spa.wner(Q)" respectively, while <A and <n are 
the antireflexive contractions of SA and Sn respectively. Note that all 
four relations are constant. Restricted to the sets Land P they are 
variable, however (because Land Pare variable). To illustrate these 
relations, consider Figure 6.3 which shows a possible state of the machine. 
That is, it shows the locales, blocks and processes in L, Band P 
respectively at a certain point of the execution of a program. In this 
figure among other things the following holds: 

Lo <AL, Lo <A E, ~(L SAE VE SAL), 

Po <n P, Po <n R, ~(P Sn RV R Sn P). 

As can be seen from this figure the locales in Land the processes in P 
each constitute a tree. If Lis a locale in L, the set of all locales Min 
L with M SAL constitutes a list, which is usually called the "dynamic 
chain" emanating from L. The dynamic chain emanating from the current 
environ will be called the "current dynamic chain". 

The first operation which will be introduced corresponds to entering a 
range in ALGOL 68. It reads as follows: 

ESTABLISH(t): 
Precondition: 

t is a type. 
Action: 

Let E = environ(R). 
Let L be a locale such that: 
- status(L) = alive, 
- type(L) = t, 
- saope(L) = saope(E) +l, 
- establisher(L) = E. 
L := Lu {L}. 
environ(R) := L. 

It amounts to creating a fresh, living locale~ of type t. Hence 
status(L) = alive and type(L) = t. The scope of this locale must be one 
larger than the scope of the current environ E (it is "newer" than E). 
Since control will be transferred from E to L, establishe!'(L) should be 
equal to E. L must then be added to Land control must be transferred to L 
(by making L the new current environ). 

The second operation corresponds to leaving a range in ALGOL 68 (the 
range corresponding to the current environ): 
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Figure 6.3 



FINISH: 
Precondition: 

environ(R) + origin(R). 
Action: 

Let E = environ(R). 
environ(R) := estabLisher(E). 
status(E) := dead. 
For each B € B with generator(B) = E 
I status(B) := dead. 
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The precondition environ(R) + origin(R) is explained by the fact that 
control of the running process R cannot be transferred beyond the locale in 
which R was created. When leaving the range corresponding to the current 
environ E, control must be transferred from E to the "old" current environ. 
That is, environ(R) must be changed into estabLisher(E). This turns E into 
a dead area, but also all blocks which were created in E (the blocks B with 
generator(B) = E). The status of all these areas should therefore be 
changed into dead. 

The third operation to be discussed is concerned with the creation of 
blocks: 

GENERATE(t, L): 
Precondition: 

tis a type, 
L € L, L SA environ(R). 

Action: 
Let B be a block such that: 
- status(B) = aLive, 
- type(B) = t, 
- saope(B) = saope(L), 
- generator(B) = L. 
B:=Bu{B}. 

It describes the creation of a fresh, living block B of type tin the 
locale L, which should be in the current dynamic chain (the precondition 
L SA environ(R)). During this operation control can be thought to b~ 
temporarily transferred from the current environ to L. The block B will 
live as long as L, and therefore the scope of B should be equal to the 
scope of L. Because Bis created in L, the generator of B should be equal 
to L. The actual creation of Bis accomplished by adding B to B. A thing to 
be noted here is that blocks corresponding to ALGOL 68 heap objects are 
created in the initial locale Lo (through GENERATE(t,L0)). Consequently, 
these blocks have scope zero. 

The fourth operation is somewhat trickier than the ones met with 
before in the sense that it does not correspond directly to any ALGOL 68 
operation. It is an operation which is concerned with efficiency. The point 
is that it is sometimes useful to be able to extend the lifetime of a 
(large) block, for example to prevent an expensive copy operation. A 
typical example is found in passing result values of procedures. This 
lifetime extension is exactly what the following operation accomplishes: 
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KEEP(B,L): 
Precondition: 

BE B, generator(B) = environ(R), 
LE L, L f Lo, L <A environ(R). 

Action: 
generator(B) := L. 
scope(B) := scope(L). 

·rt extends the lifetime of the block B to that of the locale L, with the 
restriction that B must have been created in the current environ and L must 
belong to the current dynamic chain. This amounts to changing generator(B) 
to L. Since the scope of an area indicates its lifetime, in addition to 
this the scope of B must be changed to the scope of L. This explains why 
the scope and the generator of a block are variable. 

The fifth operation corresponds to entering an ALGOL 68 parallel 
clause: 

SPAWN(n): 
Precondition: 

n > 0. 
Action: 

Let Q be a set of n processes such that for each PE Q: 
- mode(P) = active, 
- origin(P) = environ(R), 
- environ(P) = environ(R), 
- spawner(P) = R. 
P:=PuQ. 
mode(R) := spawned. 
Let P E P with mode(P) active. 
R := P. 

Through this operation, n fresh, active processes are created. Each process 
Pin the set Q of these new processes is created in the current environ, 
with control of P initially residing in the current environ. The creator of 
each Pis the running process R. Hence origin(P) = environ(P) = environ(R) 
and spawner(P) = R. The set Q of new processes is then added to P. After 
that, the running process is made to be spawned and an arbitrary active 
process P (for example from Q) is made to be the new running process. 

The sixth operation relates similarly to the operation SPAWN(n) as 
FINISH relates to ESTABLISH(t). It corresponds to leaving a constituent 
statement of an ALGOL 68 parallel clause: 

COMPLETE: 
Precondition: 

environ(R) = origin(R), Rf P0• 
Action: 

mode{R) := completed. 
Let S = spawner(R). 
Let Q ={PEPI spawner(P) = S}. 
If VP E Q [mode(P) = completed] 
I mode(S) := active. 
Let PEP with mode(P) = active. 
R := P. 

This operation "completes" the current running process R. The precondition 
is that control of R has returned to the locale in which R was created and 
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that R is not the initial process. Having changed the mode of R to 
completed, the process S which created R is determined. This is a spawned 
process, which should be made active if all processes created by it (all 
processes in the set Q) are completed. Then, an arbitrary active process P 
must be selected and made to be the new running process. 

The seventh operation is concerned with the situation of the running 
process running into an impassable semaphore: 

SWITCH: 
Precondition: 

3 PEP [Pf R, mode(P) = active]. 
Action: 

Let PEP with Pf Rand mode(P) = active. 
R := P. 

If the running process is halted by an impassable semaphore, R must be 
changed to an active process which is not. The operation SWITCH models this 
change of running process by selecting an arbitrary active process Pf R 
and assigning P to R. The precondition of SWITCH takes care that the choice 
of Pis always well-defined. Of course, even if the precondition of SWITCH 
is satisfied, there may not, in reality, exist an active process P which is 
not waiting before an impassable semaphore ("deadlock"). Instead of the 
operation SWITCH the program is then supposed to be aborted. 

The ALGOL 68 equivalent of the eighth and final operation is a jump to 
some global label. Its definition reveals the disruptive nature of the 
"goto": 

JUMP(L,P): 
Precondition: 

LE L, L ~A environ(R), 
p E P, p ~II R, 
origin(P) ~AL ~A environ(P). 

Action: 
R := P. 
mode(R) := active. 
environ(R) := L. 
For each MEL with L <AM 
I status(M) := dead. 
For each BE B with L <A generator(B) 
I status(B) := dead. 
For each Q E P with P <rr Q 
I mode(Q) := corrrpleted. 

Lis the locale corresponding to the range where the label to be jumped to, 
occurs.Pis the process which takes over control by jumping to the label. 
The fact that the label to be jumped to, must be "visible" implies that 
L ~A environ(R) and P ~IT R. Furthermore, L should be a locale to which 
control of P has access: origin(P) ~AL ~A environ(P). The jump is 
accomplished by making P the running process, changing the mode of R (= P) 
to active and then transferring control to L. Through this jump to the 
locale L of process P the lives of all locales and blocks which were 
created "after" L (the locales M with L <AM and blocks B with 
L <A generator(B)) are aborted. The status of these areas must therefore be 
changed to dead. Also, all processes which were started "after" P (the 
processes Q with P <rr Q) are aborted, which amounts to changing their mode 
to corrrpleted. 
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The entire model of the MIAM has now been introduced. From a storage 
management point of view the execution of any program on the MIAM can be 
modelled by a sequence of the operations described above. Not bothered by 
irrelevant details, the job is to design a storage management system for 
this model. In so doing, it should be assumed that any sequence of the 
above operations is allowed as long as the preconditions are not violated. 

6.1.3. Invariants 

Before going deeper into the problem of storage management it is 
worthwhile to take a closer look at the model •. The model satisfies a number 
of invariants ("system invariants" in the terminology of Chapter 4), which 
are listed below. They can be proved by showing that they hold initially 
and by checking that each operation, assuming its precondition holds, does 
not affect them. This is a simple job, which is left to the reader. 

Invariants for Ln 
(Kl) Ln € L. 
(K2) status(Ln) = alive. 
(K3) saope(Ln) = o. 
(K4) establisher(LnJ = Ln. 

Invariants for Pn 

(OJ) Pn € P. 
(02) mode(Pn) f aompleted. 
(03) origin(PnJ = Ln. 
(04) spai,m,er(PnJ = Pn. 

Invariants for R 

(RI) R € P. 
(R2) mode(R) = aative. 

Invariants for locales L € L 

(LI} establisher(L) € L. 
(12) Ln 5.A L. 
(13) If status(L) = alive 

I status(establisher(L)) = alive. 
(14) If status(L) = alive 

I There is a P € P such that 

I mode(P) = aative. 
L 5.A environ(P). 

(15) If L f Ln 
I saope(L) = saope(estabZisher(L)) +1. 

Invariants for blocks B € B 

(Bl) generator(B) € L. 
(B2) status(B) = status(generator(B)). 
(B3} saope(B) = saope(generator(B)). 



Invariants for processes P € P 
(Pl) origin(P) € L. 
(P2) environ(P) € L. 
(P3) spa:umer(P) € P. 
(P4) Po SIJ P. 
(PS) orig1,n(P) SA environ(P). 
(P6) If mode(P) f aorrrpLeted 

I status(environ(P)) = aLive. 
(P7) If mode(P) ~ aorrrpLeted, P ~ Po 

I mode(spa:umer(P)) = spa:umed. 
origin(P) = environ(spa:umer(P)). 

(PB) If mode(P) = spa:umed 

I There is a Q € P such that 

I spa:umer(Q) = P. 
mode(Q} ~ aorrrpLeted. 

217 

From these invariants can be inferred that the relations SA and srr 
indeed impose a tree structure on Land P with treetops Lo and Po 
respectively, as was indicated in Figure 6.3. The set of all living locales 
in L constitutes a subtree with treetop Ld of the tree imposed by SA on L. 
The leaves of this subtree are formed by the environs of the active 
processes. Analogously, the set of all not yet completed processes in P 
constitutes a subtree with treetop Po of the tree imposed by srr on P. The 
leaves of this subtree are the active processes. Notice that the invariants 
imply that the operation "Let P € P with mode(P) = active" in COMPLETE is 
well-defined. Notice also that dead areas and completed processes are 
really "garbage" in the model: They are not referenced or used in any other 
way any more. 

An important special case is that of sequential programs. In 
sequential programs the operations SPAWN(n), COMPLETE and SWITCH will not 
occur. It is easy to see that no processes will be created then, which 
amounts to the following invariant: 

I Invariants for sequential programs 

(SI) P = {Po}. 

Together with Invariant (L4) this invariant implies that the living locales 
in L constitute a single linear list (the "dynamic chain") as indicated in 
Figure 6.4. The locales in Las a whole, however, need not constitute a 
linear list (but a tree). 

6.2. PROBLEM 

In this section the storage management problem is supposed to be 
defined. However, in the model as we described it there is no storage 
management problem. Areas which are created in the model simply appear out 
of the blue. The question of where they come from is completely irrelevant. 
The storage management problem is a problem which arises only in the 
impLementation of the abstract machine. When implementing the abstract 
machine on a real machine the creation of an area must be modelled by 
"allocating" a piece of storage to it. In contrast to the number of areas 
the amount of storage is limited. It is here that the storage management 
problem arises. In order to arrive at the point where the storage 
management problem can be formulated, we will start implementing (the model 
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Figure 6.4 

of) the abstract machine described before. The method of "adding and 
removing variables", which has been described in detail in Chapter 3, will 
be used for that purpose. In a nutshell this method amounts to the 
following. An algorithm (or a machine) is implemented by adding extra 
variables, and assignments to these variables, to the algorithm. This 
creates redundancy in the algorithm which enables certain expressions 
containing the "old" variables of the algorithm to be replaced by 
equivalent expressions containing the "new" variables. When applied in a 
systematic way, the old variables of the algorithm can be turned into 
"ghost variables", which may be removed from the algorithm. Thus an 
implementation of the algorithm in terms of the new variables is obtained. 
The method will be applied here by augmenting the model with an extra 
variable (the "allocation function"). Moreover, an abstract operation on 
this variable will be introduced. This operation is supposed to model or 
"implement" the creation of an area, which is expressed in its 
specification. The operation is inserted in the model at those points where 
areas are created. The storage management problem can then be defined as 
implementing this operation as efficiently as possible. In so doing, a 
number of primitive operations on the allocation function are allowed, 
which may be inserted throughout the model. In particular, an attempt 
should be made to "remove" as many abstract variables (such as for example 
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the "status" of areas) from the implementation. Thus the overhead caused by 
the storage management system is kept to a minimum. 

The first thing that needs to be done is to introduce some model of a 
"store". This model should conform as closely to the store of the MIAM and 
the stores of existing machines as possible. We will assume the store to be 
a row of "cells" labelled by "addresses", which are integers O, ••• ,N - 1. 
Here N is some (large) machine dependent integer. A set of consecutive 
cells in the store will be called a "field" and the number of ceils in a 
field F will be denoted by size(F). See Figure 6.5. Though this model of a 
store does not cover segmented memories, it is sufficiently general to be 
called machine independent. 

field 

~ 

cells 111111111rm1111111 
' ' addresses 0 N-1 

Figure 6.5 

In an implementation of the abstract machine on a real machine the 
creation of an area A must be modelled by "allocating" a field in the store 
to it, which the area is from then on said to "occupy". This will be made 
more precise by introducing a new variable F, called the "allocation 
function", into the model: 

I 
The model is augmented with: 

- F: variable mapping from areas to fields. 

The domain of F (which is also variable) will be denoted by dom(F). It 
contains those areas which are "located"(= occupy a field) in the store. 
The value of F can be changed by a number of primitive operations only, 
which will be discussed in the sequel. Note that the domain of F contains 
only locales and blocks, and no processes. Processes, as stated before, are 
"embedded" in areas. This means that the storage occupied by a process Pis 
part of the storage occupied by an area, to wit the origin of P. 

The allocation function F must satisfy two obvious invariants. First 
of all, fields occupied by different areas may not overlap. Secondly, areas 
must occupy a field of the "proper" size. The· size of the field occupied by 
an area will usually depend on the type of the area. The dependency need 
not be unique, however. It may be useful to implement certain areas of a 
given type differently from other areas of that type. Areas of the same 
type may therefore occupy fields of different sizes. We shall model this by 
associating an additional entity with each area A, the "size" of A (denoted 
by size(A)), which indicates the size of the field to be occupied by A. We 
shall assume here that the size of the field occupied by an area will not 
change during the execution of the program. So the size of an area is 
constant: 
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Each locale Lis augmented with: 

- size(L): constant integer. 

Each block Bis augmented with: 

- size(B): constant integer. 

The two invariants which F must satisfy can now be formulated as follows: 

Invariants for F 

(FI) 

(F2) 

For each area A,B E dom(F) 
I A f B ,. F(A) n F(B) = ¢. 
For each area A E dom(F) 
I size(F(A)) = size(A). 

These are global invariants for F, not to be violated by any operation on 
F. In the initial situation the following should hold: 

Initially: 

- dom(F) = {L0}, 
- size{F(L0)) = size(L0). 

In other words, at the beginning of the execution of a program the initial 
locale should be the only area located in the store and occupy a field of 
the proper size (see the initial state of the model). The invariants for F 
are thus trivially satisfied in the initial situation. 

The next thing to do is to introduce an abstract operation on F, which 
models the creation of an area. It should allocate a field in the store to 
a (new) area A and will be denoted by ALLOCATE(A). It should do so, 
however, by means of the primitive operations (to be) defined on F 
exclusively. This is specified below: 

ALLOCATE(A): 
Precondition: 

A is an area, A I. L u B. 
Action: 

Establish the truth of the assertion A E dom(F) by means of the 
primitive operations defined on F. 

The operation ALLOCATE(A) should be inserted at those points in the 
model where areas are created. It should therefore be added to the 
operations ESTABLISH(t) and GENERATE(t,L). At the same time this gives us 
the opportunity to associate the proper size with an area being created: 



ESTABLISH(t): 
Precondition: 

t is a type. 
Action: 

Let E = environ(R). 
Let L be a locale such that: 
- status(L) = alive, 
- type(L) = t, 
- scope(L) = scope(E) +1, 
- establisher(L) = E, 
- size(L) = ~. 
ALLOCATE ( L) • 
L : = Lu {L}. 
environ(R) := L. 

GENERATE(t,L): 
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Precondition: 
tis a type, 
LE L, L ~A environ(R). 

Action: 
Let B be a block such that: 
- status(B) = alive, 
- type(B) = t, 
- scope(B) = scope(L), 
- generator(B) = L, 
- size(B) = ~. 
ALLOCATE ( B) . 
B := Bu{B}. 

Here"~" is some implementation dependent integer, which depends on the 
type t. 

Before formulating the problem there remains only one thing to be 
discussed: the set of primitive operations allowed on F. We shall discuss 
these operations by investigating how ALLOCATE(A) can be implemented. The 
effect of ALLOCATE(A) should be that A is added to the domain of F. So the 
first operation we need is an operation to extend the domain of F with an 
area. Due to the invariants for F and the finiteness of the store this may 
be impossible, however. First of all, it may be impossible to find a field 
F of "free cells"(= cells not occupied by areas) such that size(F) = 
size(A), even though the total number of free cells is more than 
sufficient. This is due to a phenomenon known as "fragmentation". Secondly, 
the total number of free cells may simply be insufficient ("storage 
overflow"). 

The first problem (fragmentation) can be coped with by introducing an 
operation to "move" areas in the store from one field to another, i.e., 
change the value of F(A) for certain A E dom(F). Thus small fields of free 
cells can be united into larger fields. A thing to be borne in mind with 
this is that in practice moving areas is an expensive operation, because 
all "pointers" to or into moved areas must be "updated". The second problem 
(storage overflow) can only be dealt with by allowing areas to be 
"deallocated" too, i.e., to be removed from the domain of F. Of course only 
areas which are no longer used by the program should be deallocated. 

What are "no longer used" areas? One thing we know for sure is that 
dead areas are not used any more. So dead areas can be deallocated with 
impunity. Yet even the deallocation of all dead areas may not help. The 
only escape then is to deallocate no longer used living areas too. The 
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latter areas are considerably harder to detect than dead areas. The use of 
a "garbage collector" is required for that. The design of a garbage 
collector will not be discussed in this chapter. Consequently, an 
unspecified primitive operation COLLECT GARBAGE on Fis introduced. This 
operation is supposed to deallocate all no longer used areas (including all 
dead areas), while it may also move areas. It is a very expensive operation 
which should only be used as a last resort. As far as certain properties of 
COLLECT GARBAGE are important or even essential to the storage management 

· system to be designed, these properties' will be postulated in the form of 
"Requirements for COLLECT GARBAGE". If even a garbage collection does not 
help, the only way out is to abort the program. 

The above accounts for the following list of primitive operations 
allowed on F: 

Primitive operations on F 

(I) Adding an area to dom(F). 
(2) Changing the value of F(A) for a number of A E dom(F). 
(3) Removing a number of A E dom(F) with status(A} = dead from dom(F). 
(4) COLLECT GARBAGE. 

In all this it is implicitly assumed that the operations do not violate the 
Invariants for F. 

The storage management problem now boils down to: 

Problem 

Implement ALLOCATE(A) efficiently. 

The word "implement" must be taken in a broad sense here. This implies not 
only that ALLOCATE(A) must be expressed in terms of the primitive 
operations on F, but also that operations on F may be inserted anywhere in 
the model in order to make the implementation more efficient. The 
collection of all operations on F thus added to the model constitutes the 
"storage management system". 

We require that efficiency of the storage management system to be 
designed, should primarily be achieved for sequential programs. The 
rationale behind this is that ALGOL 68 was not specifically designed as a 
language for writing parallel programs. The majority of programs written in 
ALGOL 68 is purely sequential. It is therefore reasonable that the use of 
parallellism costs a little extra. 

The design of an efficient storage management system will be started 
in the next section. 

6.3. DESIGN 

A general approach to the design of a storage management system is to 
divide the areas into a number of classes, dependent on certain properties. 
For each class a special storage management strategy is used, which 
exploits the properties of the areas in that class. Let us assume n classes 
C1,•••,Cn of areas are distinguished. Then the allocation function F can 
correspondingly be written as F = F1 u ••• u Fn, where dom(Fi) c Ci 
(i = 1, ••. ,n). Let us call the set of all cells occupied by the areas in 
dom(Fi) the "region" of Fi. The job is to implement the operation 
ALLOCATE(A) efficiently in terms of operations on the Fi. These operations 
may be chosen freely from the set of primitive operations defined on F. If 



223 

the operations are applied arbitrarily, a comprehensive bookkeeping is 
necessary in order to ensure the invariants for the allocation function are 
satisfied. This bookkeeping can be simplified greatly if the regions of the 
Fi are kept "compact"(= constituting a field). In that case only 
operations may be performed on the Fi, which do not disturb the compactness 
of the regions. 

We shall comply with the above by abstractly modelling each Fi as a 
"pile" Ui. A pile is a stack of areas which (apart from PUSH and POP) has a 
number of additional operations defined on it (to be discussed later). If a 
pile U contains the areas A1, ..• ,Am in the order from bottom to top, this 
will be denoted by U = <A1, •.. ,Am>· A pile U = <A1, ... ,Am> can be "located" 
in the store in two different ways as indicated in Figure 6.6. Here the 
areas Ai occupy contiguous fields of size(Ai) cells. 

u 

bottom top 

u 

top bottom 

Figure 6.6 

It is useful to dwell briefly on what we did above. We represented the 
allocation function Fas a (yet to be fixed) number of piles U1,,,.,Un. On 
the one hand this can be viewed as a matter of abstraction: we abstracted 
from the store. This has the advantage that it makes life a lot easier. We 
do not need to talk in such "low level" terms as "cells", "addresses", 
"fields", etc. any more. A minor drawback is the fact that everything we 
said about F must now be translated in terms of the piles U1,·•·,Un. Since 
the correspondence between F and U1, ... ,Un is obvious, this will be 
omitted. Note that F can only be reconstructed from the U1,···,Un after 
locating the latter in the store. On the other hand the things we did above 
can be viewed as a matter of concretion (the inverse of abstraction): we 
made a certain choice concerning the structure of the allocation function. 
This was a design decision in order to reduce the problems caused by the 
invariants for the allocation function. It also reduces the freedom of 
design, of course. 

Up to two piles can be accommodated efficiently in the store (in the 
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case of two piles: one at each end of the store). Though storage management 
systems with a larger number of piles are certainly conceivable, we shall 
restrict ourselves to a maximum of two piles. The following are plausible 
choices: 

(1) One pile for all areas. 
(2) Two piles, for locales and blocks. 
(3) Two piles, for areas with scope> 0 and for areas with scope= O. 

The first choice does not exploit the different properties of areas. It may 
therefore not be expected to result in an efficient storage management 
system. The second choice exploits the differences between locales and 
blocks. This may lead to an efficient storage management scheme for locales 
(in the absence of parallellism locales have nested lifetimes), but for 
blocks (which may occupy the majority of the storage) it is just as bad as 
the first choice. The third choice seems the most appropriate here. It 
closely (but not entirely) fits in with the difference between ALGOL 68 
stack and heap objects. This alternative will therefore be chosen. 

The above implies that we have two piles Sand Hin our storage 
management system. S contains the areas w~th scope> 0 and H those with 
scope= O. We assume they are located in the store as indicated in 
Figure 6.7. 

s H 

scope > 0 scope= 0 

Figure 6.7 

As with the allocation function F the piles Sand H must satisfy a 
number of invariants. First, the fact that Sand H correspond to (the 
domain of) a mapping (viz., F) implies that no area may occur twice in S 
and H. Secondly, the Invariants for F must be translated into invariants 
for Sand H. Invariant (Fl) boils down to the fact that the sum of the 
sizes of the areas in Sand H must be less or equal to the size N of the 
store. Invariant (F2) need not nor can be expressed any more. (This 
invariant is incorporated in the correspondence between F and the piles S 
and H.) Thirdly, Sand H should contain only areas with scope> 0 and 
scope= 0 respectively. So we have: 

Invariants for Sand H 

(Ul) 

(U2) 
(U3) 

(U4) 

If .s = _<A1,··.-,Arrz~• H "'.' ~+1,···,Aii> 
I ,z,,f,J .. A,z,,f,AJ. (,z,,J-1, ••• ,n). 
I: A € S u H [size {A)] ~ N. 
For each A € S 
I scope{A) > O. 
For each A € H 
I scope{A) O. 
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For notational convenience the piles Sand Hare considered here 
occasionally as the sets of their elements. The translation of the initial 
situation for Finto the initial situation for Sand H leads to: 

Initially: 

- s <>, 
- H= <Lo>• 

In this situation the Invariants for Sand Hare trivially satisfied. 
During the further design of the storage management system care must 

be taken that Invariants (Ul)-(U4) are not violated. These invariants could 
be violated in two ways. First of all, the operations of the abstract 
machine might violate Invariants (U3) and (U4). Invariants (U3) and (U4) 
use the scope of areas, which is variable for blocks. However, the only 
operation that may affect the scope of an area is KEEP(B,L) and this 
operation will never change the scope of an area from> 0 into= 0 or vice 
versa (use Invariants (12) and (15) and the fact that L ~ Lo). The 
Invariants for Sand H can therefore never be violated by any operation of 
the abstract machine. The second way the invariants could be violated is 
because of some operation on Sor H that we insert into the model. It 
should be checked in each individual case that such an operation does not 
violate the Invariants for Sand H. 

An operation that could violate the Invariants for Sand Hin 
particular is COLLECT GARBAGE. The informal "definition" of COLLECT GARBAGE 
states that it removes all no longer used areas (including all dead areas) 
from the domain of the allocation function F. Speaking in terms of the 
piles Sand H this implies that COLLECT GARBAGE removes all no longer used 
areas from Sand H. In this process the remaining areas in Sand H could in 
principle be shuffled arbitrarily. They could even be transferred from S to 
Hor vice versa (thus violating Invariant (U3) or (U4)). This will be 
prevented by the following requirements: 

Requirements for COLLECT GARBAGE 

(I) No areas are added to S. 
(2) No areas are added to H. 

It is easy to see that these two requirements are sufficient to let 
COLLECT GARBAGE "respect" the Invariants for S and H. Apart from these two 
requirements a third will be imposed which is not strictly necessary: 

I Requirements for COLLECT GARBAGE 

(3) The order of the remaining areas in Sand His not affected. 

It states that the garbage collector must be "genetic order preserving", 
which is a desirable property of garbage collectors [TERASHIMA & GOTO 78]. 
Why this is so will come up soon. Notice that the removal of a number of 
areas from Sand H may affect the compactness of the regions of Sand H. 
Consequently, the garbage collector must perform a "compaction" in order to 
restore the situation of Figure 6.7. This need not be expressed in the 
Requirements for COLLECT GARBAGE because COLLECT GARBAGE is considered as 
an operation on the "abstract" piles S and H here. It follows directly from 
the correspondence between Sand Hand the allocation function F. 

Let us now attempt to design a first storage management system. 
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6.3.1. The initial system 

The obvious way to obtain a usable storage management system is as 
follows. Storage can only be allocated to an area A if there is enough room 
between the piles Sand Hin the store. The room between Sand H (measured 
in cells) will be denoted by FREE: 

I FREE: 
N-"I:.A € SuH [size(A}]. 

If FREE< size(A) there is not enough room and a garbage collection is used 
to make room. If after the garbage collection there is still not enough 
room, the program is aborted. Otherwise storage can be allocated in Sor H 
(using a PUSH operation), dependent on the scope of A. This leads to: 

System 1 

ALLOCATE(A): 
Lets= size(A). 
If FREE< s 

I COLLECT GARBAGE. 
If FREE< s 
I ABORT. 

Case 
1. scope{A) > 0 
I PUSH(A,S). 
2. scope(A) = 0 
I PUSH(A, H). 

Notice that all operations performed on Sand H correspond to legal 
(primitive) operations on the allocation function F. Notice also that the 
Invariants for Sand Hare not violated. 

The above storage management system is not very satisfactory for a 
number of reasons. One of them is the following. Suppose during the 
execution of a program the situation is reached where a garbage collection 
delivers only a small amount of free storage (just about sufficient to 
proceed). Then it will probably be necessary to perform a garbage 
collection very soon again, which may once more deliver only a small amount 
of free storage, etc •• Since a garbage collection is a time-consuming 
operation, this may lead to the situation where the majority of the 
execution time of a program is spent collecting garbage before the program 
is finally aborted. This will be remedied in the next subsection. 

6.3.2. Avoiding successive garbage collections 

The problem of successive garbage collections can be solved by 
requiring that the garbage collector delivers a minimum number of free 
cells, which will be denoted by minfree. This number should be large enough 
to let the program proceed undisturbed for some time after a garbage 
collection. Thus we obtain: 



System 2 

ALLOCATE(A): 
Lets= size(A). 
If FREE < s 

I COLLECT GARBAGE. 
If FREE < m=(s,minfree) 
I ABORT. 

Case 
I. seope(A) > O 
I PUSH(A,S). 
2. seope(A) = O 
I PUSH(A, HJ. 

227 

This removes one objection to System I. There is another severe objection 
to both Systems I and 2, however. For the deallocation of areas both 
systems rely entirely on garbage collection, which does not make them very 
efficient. We will do something about that now. 

6.3.3. Restraining the use of the garbage collector 

Checking the list of primitive operations defined on the allocation 
function F we see that the only way to deallocate areas other than through 
a garbage collection, is the deallocation of dead areas. Dead areas may 
be removed freely from the piles Sand H. As far as the pile His concerned 
this does not bring us any further, because in H no dead areas occur (this 
follows from Invariants (U4), (K2), (L2), (LS), (B2), (B3) and the fact 
that H c Lu B). So all dead areas in Su H occur in S. It would not be very 
wise to allow dead areas to be deallocated arbitrarily inside S, because 
that would require an expensive "compaction" in order to restore the 
compactness of the region of S. Dead areas can be popped from the top of S 
with impunity, however. This gives us a cheap mechanism to deallocate areas 
behind the garbage collector's back. 

The question is, where in the model the operation to pop dead areas 
from S should be inserted. The most natural places to do so seem to be 
those places where areas are "destroyed". If a destroyed area happens to 
reside at the top of S, the area and all dead areas "below" it can 
immediately be popped from S. An operation RELEASE, which does just that, 
will therefore be introduced. It will be inserted in the operations FINISH 
and JUMP(L,P), which are the only machine operations that destroy areas: 

FINISH: 
Precondition: 

environ(R) # origin(R). 
Action: 

Let E = environ(R). 
environ(R) := establisher(E). 
status(E) := dea.d. 
For each BE B with generator(B) E 
I status(B) := dea.d. 
RELEASE. 
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JUMP(L,P): 
Precondition: 

L € L, L $A environ(R), 
P € P, P $II R, 
origin(PJ $AL $A environ(PJ. 

Action: 
R := P. 
mode(R} := aative. 
environ(R} := L. 
For each M € L with L <AM 
I status(M} := dead. 
For each B € B with L <A generator(B} 
I status(BJ := dead. 
For each Q € P with P <rr Q 
I mode(Q} := aompleted. 
RELEASE. 

Notice that at all places where ALLOCATE(A) and RELEASE occur all system 
invariants hold (the invariants need only hold between two machine 
operations) • 

Storage management system 3 now looks as follows: 

System 3 

ALLOCATE(A): 
Lets= size(A). 
If FREE< s 

I COLLECT GARBAGE. 
If FREE< ma:x:(s,minfree) 
I ABORT. 

Case 
1. saope(AJ > 0 
I PUSH(A,S). 
2. saope(A) = 0 
I PUSH(A, HJ. 

RELEASE: 
While DEADTOP 
I POP(SJ. 

The predicate DEADTOP in this system is defined as follows: 

I DEADTOP: 
Sf<> and status(TOP(SJJ = dead. 

Here the "and" is used as a "McCarthy operator" and TOP(S) is the area at 
the top of S. If all areas which appear in Shave nested lifetimes, this 
scheine will keep S free from dead areas. It may therefore be expected to 
work rather efficiently for say ALGOL 60 type ALGOL 68 programs. The only 
operations which may (temporarily) impede the effectiveness of this scheme 
are GENERATE(t,L), where L f Lo and L f environ(R), KEEP(B,L) and SWITCH. 
The latter will occur in parallel programs only, while the other two may be 
expected to be used not too frequently (by a good code generator). Whatever 
operations are performed, the above scheme will always work correctly. 
Notice that Requirement (3) for COLLECT GARBAGE is essential to the 
effectiveness of the scheme. 
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Though System 3 is a major improvement over System 2, it still depends 
rather heavily on garbage collection as a deallocation tool (especially in 
parallel programs). The role of the garbage collector can be diminished 
further, as we will demonstrate. 

6.3.4. Further restraining the use of the garbage collector 

Suppose in ALLOCATE(A) we run out of storage ({.e., FREE < s). It may 
very well appear (especially if few areas with scope= 0 are used) that 
a relatively large part of the store is occupied by dead areas in S. The 
number of "dead cells" in S will be denoted by DEAD: 

I DEAD: 
~ A e S, status(A) = deail [size(A)]. 

It is profitable then, not to perform a full garbage collection, but simply 
to remove all dead areas from S (which implies compacting the region of S). 
A primitive operation COMPACT which accomplishes this will therefore be 
introduced: 

I COMPACT: 
Remove all A e S with status(A) = dead from S 
order of the remaining areas in S. 

while preserving the 

The implementation of COMPACT will be discussed in Chapter 7, together with 
the implementation of COLLECT GARBAGE. Notice that the operation on the 
allocation function F corresponding to COMPACT is expressible in the 
primitive operations defined on F. Notice also that COMPACT does not 
violate the Invariants for S andH and that the operation is "genetic order 
preserving". 

The operation COMPACT is considerably cheaper than COLLECT GARBAGE. 
The reason for this is that an expensive "marking phase", such as in the 
garbage collector, is not necessary in COMPACT. Moreover, the compaction 
(as opposed to a garbage collection) is strictly local to the pile S: Due 
to the "scope rules" of ALGOL 68 the fact that area A contains a pointer to 
area B implies that saope(A) ~ saope(B). Consequently, areas in H do not 
contain pointers to areas in S, which implies that areas in Smay be moved 
without having to update any pointers in areas in H. 

If mindeail denotes the (possibly dynamically determined) minimum 
number of dead cells in S for which a compaction is more profitable than a 
garbage collection, then the new storage management system looks as 
follows: 
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System 4 

ALLOCATE(A): 
Lets= size(A). 
If FREE < s 

If DEAD~ max(s,mindead) 
I COMPACT. 
else 

I COLLECT GARBAGE. 
If FREE< max(s,minfree) 
I ABORT. 

Case 
1. scope(A) > 0 
I PUSH(A,S). 
2. scope(A) = 0 
I PUSH(A, HJ. 

RELEASE: 
While DEADTOP 
I POP(S). 

The number DEAD in this system can be determined by traversing S once. In 
traversing Sit must be determined for each area AES whether A is dead or 
not. The assumption in all this is, as it is in COMPACT and DEADTOP, that 
in a real implementation it is possible to determine the status of an area 
in S. What are the consequences of this assumption? 

Areas as we described them have a number of entities associated with 
them (such as "status", "type", "scope", etc.). Except for the "size" these 
are abstract entities which are used in the definition of the abstract 
machine. Each implementer of the abstract machine will try to implement 
these entities as efficiently as possible, and if possible he will even 
avoid implementing certain entities. A number of the entities must be 
implemented anyway: the type and size of an area (for the garbage collector 
and the compaction routine), the scope of an area (for scope checks) and 
the establisher of a locale (in order to return to the proper locale after 
leaving a range). Other than for reasons of storage management the status 
of an area and the generator of a block need not be implemented. 

In System 4, however, the status of an area is apparently supposed to 
be implemented. For locales this could be done by letting FINISH and 
JUMP(L,P), which are the only two operations that destroy areas, mark dead 
locales as such. For blocks this is not so simple. The best way to 
determine whether a block Bis dead seems to be to use Invariant (B2) and 
check whether generator(B) is marked as dead or not. Yet this implies that 
the generator of a block must also be implemented. This overhead deprives 
System 4 of some of its attractiveness. It would be nice if the overhead 
could be eliminated, and indeed for sequential programs it can. We can use 
the redundancy caused by the introduction of the allocation function (in 
the shape of the piles Sand H) to turn the status of an area and the 
generator of a block into "redundant variables" of the storage management 
system. This will be shown and proved in the next subsection. After that we 
will consider the general case of both sequential and parallel programs. 

Before continuing, two more requirements on the garbage collector will 
be imposed. From the requirements introduced so far absolutely nothing can 
be inferred as to which areas are or are not deallocated by the garbage 
collector. There are certain areas for which it is easy to see that they 
are (or should be) or are not (or should not be) deallocated by the garbage 
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collector. In particular all dead areas will be deallocated by the garbage 
collector. (This was already stated informally.) Furthermore, the living 
locales will not be deallocated in a garbage collection. (They are 
"reachable" because control will, or should at least be able to return to 
them.) The following additional requirements, which allow us to use that 
information, will therefore be imposed on the garbage collector: 

Requirements for COLLECT GARBAGE 

(4) All dead areas are deallocated. 
(5) No living locales are deallocated. 

A number of additional invariants (which hold between two operations 
of the abstract machine) can now be proved for System 4. In order to 
formulate them more easily, the following relation on the set of areas in S 
will be introduced: 

Definition <s 

<sis a relation on the set of areas in S, defined as follows: 

If S = <A1,•••,An> 
I Ai <s Aj # i < j (i,j = 1, .•• ,n). 

Due to Invariant (Ul) this relation is well-defined, The fact that A <s B 
implies that A is "below" Bin S. The following invariants hold: 

Invariants for Sand H 

(US) s u H C Lu B. 
(U6) For each L E L with status(L) = alive 

ILESUH. 
(U7) 

(US) 

(U9) 

For each L E Sn L with establisher(L) ; Lo 

I establisher(L) ES. 
establisher(L) <s L. 

For each B E S n B 

I generator(B) ES. 
generator(B) <s B. 

If s 'f <> 
I status(TOP(S)) = alive. 

Invariant (US) is based on Requirements (I) and (2) for COLLECT GARBAGE. It 
allows us to use all Invariants for Land B for areas in Sand H. Invariant 
(U6) is based on Requirement (5) for COLLECT GARBAGE. Notice that it 
implies that Lo EH and LES for each LE L with L; Lo and status(L) = 
alive. Invariants (U7) and (US) are based on Requirements (I) and (3)-(S) 
for COLLECT GARBAGE. The informal argument for their truth is simple. The 
establisher of a locale Lis created before the locale itself. Therefore 
establisher(L) will occur below Lin S. The same applies to the generator 
of a block Band the block itself. The only operation that might violate 
the relation generator(B) <s Bis KEEP(B,L), However, prior to KEEP(B,L) 
the following holds for the new generator L of B: Lo 'f L <A environ(R) = 
generator(B). With Invariant (U7) this implies that L <s generator(B) <s B. 
Finally, Invariant (U9) is based on Requirements (I) and (4) for 
COLLECT GARBAGE and the fact that dead areas are immediately popped from S. 
The (simple) formal proof of Invariants (US)-(U9) is left to the reader. 
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6.3.5. Removing overhead in the sequential case 

In this subsection we shall assume that only sequential programs are 
executed on the abstract machine. So the operations SPAWN(n), COMPLETE and 
SWITCH wi 11 not occur and Invariant (SI ) wi 11 hold, i.e. , P = {Po}. The 
living locales in L then constitute a single dynamic chain, which emanates 
from environ(P0J (see Figure 6.4). Together with the.Invariants for Sand H 
this implies that the store looks like Figure 6.8. In this figure the 
circles represent the locales in the dynamic chain. Notice that if SF<> 
there is always a living locale at the bottom of S, which amounts to the 
following invariant: 

Invariants for sequential programs 

(S2) If S <A1, ... ,An> with n > 0 
I A1 EL and status(A1) = alive. 

This invariant cannot be derived from the invariants formulated so far, but 
must be proved independently. It depends critically on the fact that dead 
areas are popped from Sas soon as they occur on the top of S. 

s H 

~ 
I 
I 

environ(P.,l 

Figure 6.8 

The locales indicated in Figure 6.8 are all alive. But what can we say 
about the "liveliness" of the other areas in S? We know there is a relation 
between the scope of an area and its lifetime. This relation is somewhat 
obscured by the operations GENERATE(t,L) and KEEP(B,L). Can the scope of an 
area be used, anyway, in order to determine whether the area is dead or 
not? In order to answer this question the genetic order relation <5 must be 
examined more closely. 

Consider a living locale Lin Sand another locale M "above" Lin S, 
i.e., L <5 M. At the moment M was created L was already in Sand alive. So 
just after the creation of M both Land M belonged to the dynamic chain of 
which M was the beginning. This implies that at that moment L <AM. Yet, 
since the relation <A is constant, the assertion L <AM will hold forever. 
This amounts to the following invariant: 



Invariants for sequential programs 

(S3) For each L E Sn L with starus(L) 
and each M E S n L 
I L <s M .. L <AM. 
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alive 

Next consider a living locale Lin Sand a dead block B above i in S. Let 
G = generator(B) and suppose that G <s L. From Invariant (B2) we know that 
G is dead. At the moment L was created G was already in Sand also dead 
(otherwise Invariants (S3) and (13) would lead to a contradiction). Since B 
was created after L this implies that B was created when G was already 
dead. From this and Invariant (B2) can be concluded that at the moment B 
was created, apparently generator(B) ~ G. Consequently, the operation 
KEEP(B,G) must have been applied some time thereafter. The precondition of 
KEEP(B,G) says that G <A environ(R), which implies that starus(G) = alive, 
however. From this contradiction it can be concluded that the assertion 
G <s L can never hold. Since G ~ L this leads to the conclusion that 
L <s G, which is expressed in the following invariant: 

Invariants for sequential programs 

(S4) For each L E Sn L with starus(Li = alive 
and each B E Sn 8 with starus(B) = dead 
I L <s B .. L <s generator(B). 

A more formal proof of the above invariants is left to the mistrustful 
reader. 

Invariants (S2), (S3) and (S4) give us additional information on the 
relation <s which can be used profitably. Before showing this a definition 
is introduced. For each area A in S the "base" of A (denoted by base(A}) is 
defined to be the first living locale equal to or below A in S: 

Definition base(A) for sequential programs 

For each AES 
I base(A) = maa:{L E Sn L I L ss A, starus(L) = alive}. 

<s 
Notice that because of Invariant (S2) the base of an area in Sis always 
well-defined. The following invariant can now be derived from Invariants 
(S3) and (S4): 

PROOF 

Invariants for sequential programs 

(SS) For each AES 
I starus(A) = dead * saope(A) > saope(base(A)). 

Let AES and let L = base(A). If A= L the proof is trivial. If A~ L, and 
hence L <s A, a number of cases must be distinguished. This is done 
schematically below. 
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D 

A E Lu B. 
If status(A) = dead 

If A E L 

I L <A A. 
scope(A) > scope(L). 

If A E B 
L <s generator(AJ. 
L <A generator(A). 
scope(generator(A)) > scope(L). 
scope(A) > scope(L). 

scope(A) > scope(L). 
If scope(A) > scope(L) 

If A E L 
If status(A) = alive 

I L = A. 
Contradiction. 

status(A) = dead. 
If A E B 

If status(A) = alive 
status(generator(A)) = alive. 
generator(A) <s A. 
generator(A) ss L. 
generator(A) sA L. 
scope(generator(A)) s scope(L). 
scope(A) s scope(L). 
Contradiction. 

status(A) = dead. 
status(A) = dead. 

status(A) = dead ~ scope(A) > scope(L). 

(Inv. (US)) 

(Inv. (S3)) 
(Inv. (LS)) 

(Inv. (S4)) 
(Inv. (S3)) 
(Inv. (LS)) 
(Inv. (B3)) 

(Def. base (A)) 
(L <s A) 

(Inv. (B2)) 
(Inv. (US)) 

(Def. base(A)) 
(Inv. (S3)) 
(Inv. (15)) 
(Inv. (B3)) 

(scope(A) > scope(L)) 

Invariant (SS) allows us to turn the status of an area and the 
generator of a block into redundant variables of the (augmented) model. In 
the entire model the generator of a block is only used to keep track of the 
status of areas and the status of an area is only really used in the 
storage management operations ALLOCATE(A) and RELEASE. It is therefore 
sufficient to show that the status of an area can be removed from these 
operations (see System 4). First consider RELEASE. In this operation the 
status of an area is used in the predicate DEADTOP only, which should be 
true iff S #<>and status(TOP(S)) = dead. It is easy to infer from 
Invariant (SS) that if S # <>, the assertion: 

status(TOP(S)) dead 

is equivalent to: 

scope(TOP(S)) > scope(environ(R)). 

Consequently DEADTOP can be determined as follows: 



Determination of DEADTOP for sequential programs 

If s = <> 
\ DEADTOP := false. 
else 

I Let T = TOP(SJ. 
Let E = environ(R). 
DEADTOP := scope(T) > scope(E). 
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Next consider ALLOCATE(A). In this operation the status of an area is used 
in the determination of the number DEAD of dead cells in Sand in COMPACT 
(but not in COLLECT GARBAGE). From Invariants (S2) and (S5) (and a few more 
invariants) it can be inferred that the number DEAD can be determined as 
follows (see also Figure 6.8): 

Determination of DEAD for sequential programs 

Let A1,·•·,An be such that S = <A1,···,An>· 
s := 0. 
k := n. 
L := environ(R). 
While k > 0 

While Ak # L 

I If scope(Ak) > scope(L) 
I s := s + size(Ak). 
k:=k-1. 

L := establisher(LJ. 
k := k-1. 

DEAD := s. 

While traversing S this way, dead areas could at the same time be marked as 
such. This would make it simple for COMPACT to determine whether an area is 
dead or not without using the status of the area. 

The above shows that neither the status of an area nor the generator 
of a block need be implemented, thus avoiding a time and space overhead. 
That is, if only sequential programs are executed on the abstract machine. 
The latter assumption will be dropped in the next subsection. 

6.3.6. Removing overhead in the general case 

In the previous subsection we showed that in the sequential case we 
could do away with the status of an area and the generator of a block 
entirely in System 4. But what if the actions SPAWN(n), COMPLETE and SWITCH 
occur? Invariant (S5) will no longer hold then and the trick used to 
implement the status of an area free of charge cannot be applied any more. 
However, an invariant analogous to Invariant (S5) could be formulated, 
which relates the status of areas created by the same process to their 
scope. In order to implement the status of an area through this invariant 
it must be possible to determine for each area in S by which process it has 
been created. In the sequential case this is obvious, because there is only 
one process. In the parallel case it is far from obvious, because there may 
be many processes and the areas created by a specific process may be 
scattered all over S. This is aggravated even more by the fact that after a 
process P has been completed, areas created by P may be left behind in S. 
The extra bookkeeping necessary to apply the generalization of the 
implementation trick for the status of an area may thus become rather 
complicated and may cause a considerable overhead (which it was supposed to 
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avoid). It is therefore better to look for another solution. 
In Section 6.2 it was stated that efficiency of the storage management 

system to be designed, should primarily be achieved for sequential 
programs. This implies that it is reasonable if the use of parallellism 
costs a little extra. It would not be reasonable if the overhead connected 
with parallellism had a negative effect on the efficiency of sequential 
programs. The "easy" way to avoid the latter is to h{lve two storage 
management systems: one for sequential and one for parallel programs. Yet, 
having two different storage management systems is not a very desirable 
situation. Let us see how we can avoid it. 

Suppose that, instead of being able to determine by which process an 
area has been created, it were possible to determine whether the area has 
been created by the initial process Po or not. The latter, of course, is 
much easier to implement than the former. Let A0 be the class of areas 
created by Po and A1 the class of areas created by other processes. For all 
areas in A0 the implementation trick for the status can be used (through an 
invariant analogous to Invariant (S5)). This implies that in the sequential 
case (where A1 =¢)the storage management system is just as efficient as 
before. For the areas in A1 something more complicated must be done. The 
simplest way to implement the status of the areas in A1 seems to be as 
follows. Let FINISH and JUMP(L,P) (which are the only operations that 
destroy areas) mark dead locales in A1 as such. This makes determination of 
the status of a locale in A1 trivial. The status of a block Bin A1 can be 
determined by using the fact that status(B) = status(generator(B)) 
(Invariant (B2)). This implies that the generator of blocks in A1 must be 
implemented. 

The scheme sketched above results in a storage management system, 
which for sequential programs is just as efficient as before. An overhead 
is introduced in parallel programs exclusively, and even then only when the 
program is really working in "parallel mode" (inside a parallel clause). 
The overhead, at first sight, seems to be acceptable. The price to be paid 
for all this is an increase of the complexity of the system. The question 
is whether the increase of complexity outweighs the gain in efficiency or 
not. An alternative would be, not to use the implementation trick for the 
status of areas in A0 , but to implement the status of areas in A0 just like 
the status of areas in A1, This results in a uniform approach, but also 
introduces an overhead in sequential programs. E.g., for all blocks the 
generator must now be implemented. This could be compensated for by not 
implementing the scope of blocks explicitly. The fact that, according to 
Invariant (B3), scope(B) = scope(generator(B)) for each block B can then be 
used to determine the scope of a block. The latter, however, makes scope 
checks more complicated and less efficient. Though one can certainly argue 
about it, we will let efficiency considerations prevail and choose for the 
original approach. It will be elaborated below. 

The first thing we need is some way to distinguish areas created by Po 
from other areas. For that purpose we associate an extra entity with each 
locale and block: 

Each locale Lis augmented with: 

- kind(L): constant kind. 

Each block Bis augmented with: 

- kind(B): variable kind. 

A kind is an element from the set {simple,extended}. 
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If A is an area, then kind(A) will be called the "kind" of A. If an area 
has been created by Po, its kind will be sirrrple, which implies that its 
status and generator (if it is a block) need not be implemented. The 
reverse will not hold. There are two reasons for that. First of all, for 
areas with scope= O, which need not be created by Po, neither the status 
nor the generator need be implemented: Their status is invariably alive and 
their generator (for blocks) is invariably equal to PO• The kind of these 
areas will therefore also be chosen to be sirrrple. Secondly, we wish the 
following invariant to hold (why this inv,ariant is useful will be seen 
soon): 

I Invariants for blocks B € B 
(B4) kind(B) = kind(generator(B)). 

This invariant may be disturbed by the operation KEEP(B,L). So it must be 
possible to change the kind of a block, which is the reason that the kind 
of a block is variable. The change of kind of a block, as we will see, is 
only from extended to sirrrple. If the reverse were also possible, this would 
(in view of the constant size of areas) annihilate the advantages of the 
distinction between simple and extended areas. 

The model must be extended according to the above. First, the 
following should hold in the initial situation: 

Initially: 

- kind(L0J = sirrrple. 

Note that it is now absolutely necessary that areas with scope= 0 have 
kind = sirrrple (see Invariant (B4)). Next, when areas are created they 
should get the proper kind. A locale should get kind= sirrrple iff R =Poat 
the moment of its creation, while a block should assume the kind of its 
generator. This amounts to the following additions to the operations 
ESTABLISH(t) and GENERATE(t,L): 

ESTABLISH(t): 
Precondition: 

tis a type. 
Action: 

Let E = environ(R). 
Let L be a locale such that: 
- status(L) = alive, 
- type(L) = t, 
- saope(L) = saope(E) + 1, 
- establisher(L) = E, 
- size(L) = • 
If R = Po I - kind(L) = sirrrple. 
else 
I - kind(L) = extended. 
ALLOCATE ( L) • 
L := Lu {L}. 
environ(R) := L. 



238 

GENERATE(t,L): 
Precondition: 

tis a type, 
LE L, L $A environ(R). 

Action: 
Let B be a block such that: 
- status(B) = alive, 
- type(B) = t, 
- saope(B) = saope(L), 
- generator(B) = L, 
- size(B) = ~, 
- kind(B) = kind(L). 
ALLOCATE( B) • 
B := Bu {B}. 

Invariant (B4) is trivially satisfied initially and is not violated by 
GENERATE(t,L). The only operation which might violate Invariant (B4) is 
KEEP(B,L). This is remedied by the following addition to KEEP(B,L): 

KEEP(B,L): 
Precondition: 

BE B, generator(B) = environ(R), 
LE L, L + Lo, L <A environ(R). 

Action: 
generator(B) := L. 
saope(B) := saope(L). 
kind(B) := kind(L). 

Apart from Invariant (B4) the following invariants can now be proved: 

Invariants for Lo 

(KS) kind(Lo) = simple. 

Invariants for Po 

(05) kind(environ(P0)) = simple. 

Invariants for locales LE L 

(L6) If kind(L} = simple 
I kind(establisher{L)) = simple. 

Invariants for processes PEP 

(P9) If P + Po 

I For each LE L with origin(P) <AL 
I kind(L) = extended. 

Furthermore, if we define the set T to be the set of simple areas in S: 

I Definition T 

T ={AES I kind(A) = simple}. 

then the following analogues of Invariants (S2)-(S4) can be proved: 



Invariants for Sand H 

(UIO) If S = <A1, .•. ,An> with n > 0 and T f ¢ 
I A1 E T n L and status(A1 J = alive. 

(UI I) For each L E T n L with status(L) = alive 
and each M E T n L 
Ii 

(Ul2) For 
and 
I L 

<s M => L <1i. M. 
each L E T n L with status (L) 
each BE TnB with status(B) 
<s B => L <s generator(B). 

alive 
dead 

If we (re)define the "base" of an area in T as follows: 

Definition base(A) 

For each A E T 
I base(A) = m={L E T n L I L ~SA, status(L) = alive}. 

<s 

then the following analogue of Invariant (S5) can be derived from 
Invariants (UII) and (Ul2): 

Invariants for Sand H 

(Ul3) For each A ET 
I status(A) = dead ~ scope(A) > scope(base(A)). 
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The proofs of Invariants (UIO)-(Ul3) are (almost) entirely analogous to the 
proofs of Invariants (S2)-(S5), hence they are omitted. 

The status of a simple locale, the status of a block and the generator 
of a simple block can now be turned into redundant variables. As in the 
sequential case it suffices to show this for the determination of DEADTOP 
and DEAD. Consider DEADTOP first. Invariant (Ul3) implies that if Sf<> 
and kind(TOP(S)) = simple, the assertion: 

status(TOP(S)) dead 

is equivalent to: 

scope(TOP(S)) > scope(environ(P0JJ. 

If kind(TOP(S)) = extended, two cases must be distinguished. First, if 
TOP(S) is a locale its status can be determined directly. Secondly, if 
TOP(S) is a block, its status is equal to the status of its generator G 
(Invariant (B2)). The status of G, again, can be determined directly, 
because kind(G) = extended (Invariant (B4)). Notice that if Invariant (B4) 
did not hold, it would be much more difficult to determine the status of G. 
The above implies that DEADTOP can be implemented as follows: 
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Determination of DEADTOP 

If S = <> 
I DEADTOP := false. 
else 

Let T = TOP(S). 
If kind(T) = sirrrple 

I Let E = erwiron(PoJ. 
DEADTOP := saope(T) > saope(E). 

else 
If T € L I DEADTOP := status(T) = dead. 
else 

I Let G = generator(T). 
DEADTOP := status(G) = dead. 

Invariants (UIO) and (Ul3) imply that the number of dead cells in Scan be 
determined as follows: 

Determination of DEAD 

Let A1, ••• ,An be such that S <A1,•··,An>· 
s := 0. 
k := n. 
L := erwiron(P0J. 
While k > 0 

While k > 0 and A~ ,J L 
If kind(Ak) = surrple 

I If saope(Ak) > saope(L) 
I s := s + size(Ak). 

else 
If Ak € L 

I If status(A~) = dead 
Is :=s+si.ze(Aki· 

else 

I Let G = generator(Ak). 
If status(G) = dead 
Is :=s+size(Ak). 

k:=k-1. 
I£ k > 0 

I L:= establisher(L). 
k := k-1. 

DEAD := s. 

We have shown above, that in order to implement System 4 in the 
general case of both sequential and parallel programs neither the status of 
a simple area nor the status of a block nor the generator of a simple block 
need be implemented. We will formally complete the design by removing these 
variables from the model. 

6.3.7. Stripping the model 

The removal of redundant variables from the model starts with a 
reduction of the entities associated with locales and blocks. 



Each locale L has: 

- type(L): constant type, 
- scope(L): constant integer, 
- establisher(L): constant locale, 

size(L): constant integer, 
- kind(L): constant kind, 
If kind(L) = extended 
I - status(L): variable status. 

Each block B has: 

- type(B): constant type, 
- scope(B): variable integer, 
- size(B): constant integer, 
- kind(B): variable kind, 
If kind(B) = extended 
I - generator(B): variable locale. 
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The entities associated with processes remain the same. The initial state 
of the model is reduced only as far as the. initial conditions for Lo are 
concerned: 

Initially: 

- type(Lo) , 
scope(LOJ = O, 

- establisher(LO) = Lo, 
- size(LO) = ~, 
- kind(LoJ = sirrrple. 

Next, the redundant variables must be removed from the operations of the 
(no longer entirely) abstract machine. For the operations ESTABLISH(t), 
FINISH and GENERATE(t,L) this is straightforward. These operations are 
given below. 

ESTABLISH(t): 
Precondition: 

t is a type. 
Action: 

Let E = environ(R). 
Let L be a locale such that: 
- type(L) = t, 
- scope (L) = scope (E) + 1, 
- establisher(L) = E, 
- size(L) = ~, 
If R = Po I - kind(L) = simple. 
else 

I - kind(L) = extended, 
- status(L) = alive. 

ALLOCATE'(L). 
L := Lu {L}. 
environ(R) := L. 



242 

FINISH: 
Precondition: 

en:viron(R) # origin(R). 
Action: 

Let E = environ(R). 
environ(R) := establisher(E). 
If kind(E) = extended 
I status(E) := dead. 
RELEASE. 

GENERATE(t,L): 
Precondition: 

tis a type, 
LE L, L SA environ(R). 

Action: 
Let B be a block such that: 
- type(B) = t, 
- scope(B) = scope(L), 
- size(B) = ~, 
- kind(B) = kind(L), 
If kind(L) = extended 
I - generator(B) = L. 
ALLOCATE(B). 
B:=Bu{B}. 

In removing the redundant variables from the operation KEEP(B,L) an 
interesting problem arises. The precondition of KEEP(B,L) contains a 
condition on the generator of B. However, in the new model the generator of 
B need not exist ·(to wit, if kind(B) = sirrrple). We can do two things now. 
First, we can simply do away with the preconditions of operations. They are 
not supposed to be implemented (as run-time checks) anyway. They are only 
meant for the code generator, who must make sure they are satisfied 
whenever an operation is used. Secondly, we can replace the condition on 
the generator of B by an equivalent one which does not use the generator of 
B if kind(B) =simple.The latter seems the more elegant solution, which we 
will choose here. It requires the proof of an additional invariant (in the 
"old" model): 

Invariants for Sand H 

(Ul4) For each L € T n L with status(L) = alive 
and each B € T n B 
I generator( B) = L ~ L <s B and scope (BJ = scope (L). 

This invariant can be derived from the invariants already formulated (in 
particular from Invariant (UII)). The generator of a simple block can now 
also be removed from the precondition of KEEP(B,L): 



KEEP(B,L): 
Precondition: 

BE B, LE L, L # Lo, L <A environ(R), 
If kind(B) sirrrple I environ(R) <s Band saope(B) = saope(environ(R)}. 
else 
I generator(B) = environ(R). 

Action: 
saope(B) := saope(L). 
kind(B) := kind(L). 
If kind(B) = extended 
I generator(B) := L. 
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The operations SPAWN(n), COMPLETE and SWITCH remain entirely the same. This 
leaves only the operation JUMP(L,P). Suppose that prior to JUMP(L,P) the 
assertion R = Po holds (i.e., the program is in "sequential mode"). From 
the fact that P srr Po (see the precondition of JUMP(L,P)) and Po srr P 
(Invariant (P4)) we know that P = Po, Consequently, the actions: 

R := P. 
mode(R) := aative. 

in the definition of JUMP(L,P) reduce to dummy actions. Though this is not 
so for the action: 

environ(R) := L. 

it also applies to the rest of the actions in the definition of JUMP(L,P), 
except to RELEASE; of course. First consider: 

For each MEL with L <AM 
I status(M) := dead. 

This action can be removed because the following assertion (which is not 
disturbed by "environ(R) := L") holds prior to JUMP(L,P): 

For each MEL with L <AM 
I status(M) = alive =+ kind(M) = sirrrple. 

Next, the action: 

For each BE B with L <A generator(B) 
I status(B) := dead. 

can be removed because the status of a block is a redundant variable. 
Finally, the action: 

For each Q E P with P <n Q 
I mode(Q) := aorrrpleted. 

can be removed because P (= Po) is the only process in P which is not yet 
completed. If RI Po prior to JUMP(L,P) the required changes in JUMP(L,P) 
are obvious. All in all we get: 
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JUMP(L,P): 
Precondition: 

L € L, L sA environ(R), 
p € P, P srr R, 
origin(P) SAL SA environ(P). 

Action: 
If R = Po I environ(R) := L. 
else 

R := P. 
mode(R) := aative. 
environ(R) := L. 
For each M € L with L <AM and kind(M} 
I status(M) := dead. 
For each Q € P with P <rr Q 
I mode(Q) := aompZeted. 

RELEASE. 

extended 

The only thing that remains to be done is the rewriting of the 
invariants. That is, the redundant variables must also be removed from the 
invariants. This is a straightforward matter which will be omitted. The 
"stripping" of the model is herewith completed. Yet, the system is still in 
a rather abstract form. The final implementation of the system in "hard 
code", which is a purely technical matter, will be discussed in the next 
subsection. 

6.3.8. Final implementation 

In the introduction we stated that the storage management system 
should be written in a subset of the code of the abstract machine. Up till 
now we only have a description in terms of algorithms which operate on the 
abstract variables of the (enhanced) machine model. In order to obtain a 
storage management system written in abstract machine code, the entire 
model must be mapped back to the abstract machine. There are two aspects to 
this mapping. 

First of all, there is the data structure aspect. A layout for the 
data structures of the model must be designed. This layout specifies how 
the entities associated with locales, blocks and processes are implemented 
as subfields of the fields occupied by these data structures in the store 
of the abstract machine. Note that in reality there are more entities 
associated with locales, blocks and processes than we discussed here. We 
discussed only those entities which were of interest to the storage 
management problem. The design of such a layout is not difficult. 
Optimizations are often possible by combining different entities in the 
same subfield. Having defined a layout, the referencing or changing of an 
entity associated with a locale, block or process can be translated 
directly into an instruction of the abstract machine which accesses the 
corresponding subfield (using a "pointer" and an "offset"). 

Secondly, there is the control structure aspect. Most of the control 
structures used in the algorithms (such as while-loops) can be translated 
directly into abstract machine code. The only two control structures for 
which the translation is not entirely trivial are the two for-loops in 
JUMP(L,P). Using the (rewritten) invariants one can transform the 
definition of JUMP(L,P) into the following more readily translatable form: 



JUMP(L,P): 
Precondition: 

LE L, L SA environ(R), 
p E P, p $II R, 
origin(P) SAL SA environ(P). 

Action: 
If R = Po I environ(R) := L. 
else 

Let E = environ(P). 
R := P. 
mode(R) := active. 
environ(R) := L. 
If P f Po 

M := E. 
While M f L 

I status(M) := dead. 
M := establisher(M). 

Q :={SEP I spawner(S) P, mode(S) f completed}. 
While Q # ¢ 

Let Q E Q. 
Q:=Q\{Q}. 
mode(Q) := completed. 
M := environ(Q). 
While M # origin(Q) 

I status(M) := dead. 
M := establisher(M). 

Q := Qu {S E P I spawner(S) Q, mode(S) # completed}. 
RELEASE. 

In the other algorithms several optimizations are possible too. 
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The translation of the algorithms into abstract machine code will thus 
not pose any serious problems. The only operations which cannot be 
translated directly are COLLECT GARBAGE and COMPACT. The design of 
efficient algorithms for these operations (based on the specifications 
given previously) will be treated in the next chapter. 

6. 4. CONCLUSION 

The implementation of a programming language is a highly complex 
process. In order to keep this process under control a "divide and rule" 
approach is mandatory. The job should be divided into clearly interfaced 
sub-tasks, which should be as independent of each other as possible. The 
division should be made with great care in order to keep the implementation 
as efficient as possible. One of the sub-tasks is the construction of a 
storage management system. In this chapter it has been demonstrated through 
an example that indeed the design of a storage management system can be 
viewed as a relatively independent part of the language implementation 
process. The interface with the other parts of the implementation consisted 
of an abstract model, which contained exactly the information relevant to 
the storage management problem and no more than that. It allowed us to 
approach the problem in a systematic and rigorous way, up to a level of 
formality which allowed proofs of correctness. Since all irrelevant details 
were discarded, the design process remained transparent and things could be 
kept relatively simple. The final result of the design process was an 
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efficient storage management system. The majority of the techniques used in 
this system are certainly not novel. The primary goal of this chapter was 
not to demonstrate some fancy storage management technique. Its main 
purpose was to demonstrate a technique to design a storage management 
system in a systematic way. 

Apart from a number of advantages already mentioned in the 
introduction, the major advantage of the method demonstrated in this 
chapter over the more usual ("classical") approach to the design of storage 

·management systems (such as described in [KNUTH 68], [BRANQUART & LEWI 71], 
[GRIES 71], [HILL 74]) is considered to be the fact that it forces one to a 
separation of concerns. In the process of designing a storage management 
system for an implementation of a programming language Lon a machine Ma 
number of concerns can be distinguished, which were clearly separated 
before: 

(1) The programming language L. 
(2) The machine M. 
(3) The definition of the problem. 
(4) The design of the algorithms. 
(5) The implementation of the system. 

Concerns (I) and (2) are often not well separated. In any but a purely 
interpretive implementation a storage management system should not be 
designed for (the machine corresponding to) the programming language L, but 
for the machine Minto which code programs in Lare translated. The 
operation KEEP(B~L), which does not correspond to any ALGOL 68 construct, 
demonstrates this clearly. Of course, if the abstract machine approach is 
pursued, there will usually be a certain correspondence between Land M 
(the more abstract the machine is, the closer this correspondence will 
generally be), Good abstract machines (or better, their definitions) should 
be such that they can be implemented without using information on the 
programming language Lor the way programs in Lare translated into code 
for M. Admittedly, with the MIAM [MEERTENS 81] we were in a rather 
fortunate position in this respect. During the design process we only 
seldom needed a reference to ALGOL 68. 

The third concern, the definition of the problem, is usually either 
omitted or taken for granted. Lacking a simple model free of irrelevant 
detail it is indeed not easy to define precisely what the storage 
management problem amounts to. Yet an unambiguous statement of the problem 
is essential to the reliability of the system to be developed, For example, 
if we had not clearly defined what operations on the allocation function 
were allowed, we might have erroneously deallocated living areas. 

Concerns (4) and (5) are most often confused. It is generally accepted 
that in designing an algorithm (or a program) one should keep the algorithm 
(or the program) free from implementation detail as long as possible. It 
enables one to keep a clear view of the algorithm under development. Thus 
possible improvements of the algorithm are discovered more easily. An 
example of this was the discovery of Invariant (S5), which enabled a 
substantial improvement of the efficiency of the storage management system. 
It is questionable whether this invariant would ever have been discovered 
(let alone that it could have been proved) if we had not kept the system as 
abstract as we did. The separation of concerns (4) and (5) also helps in 
keeping the presentation of the algorithms digestible. Interspersing an 
algorithm with implementation details can make the algorithm utterly 
unreadable. 

A sixth concern could be added to the above list of separated 
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concerns: the design of the garbage collector. This concern was separated 
because it constitutes a problem so different from the rest of the design 
that it justifies a separate treatment. The fact that this concern could be 
separated shows the power of the technique. 
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CHAPTER 7 

DESIGN OF A GARBAGE COLLECTOR 

7.0. INTRODUCTION 

In this chapter we shall design efficient algorithms for the 
operations COLLECT GARBAGE and COMPACT described (very) abstractly in 
Chapter 6. The treatment will be entirely independent of Chapter 6, using 
the same approach as in Chapter 6 to obtain independence of the abstract 
machine MIAM and ALGOL 68. That is, the interface with Chapter 6 will be 
laid down in a model. The model constitutes the basic data structure upon 
which the operations COLLECT GARBAGE and COMPACT will be defined. It 
constitutes what might be called. a "concretized abstraction" of the model 
described in Chapter 6. This implies that,. on the one hand, the former can 
be viewed as an abstraction of the latter in that only the relevant 
information from the latter is contained in the former. For example, we 
shall abstract from the distinction between "locales" and "blocks", and 
even forget about "processes" entirely. On the other hand, the model can be 
viewed as a "concretion" of the model from Chapter 6 in that it is 
augmented with a number of concepts which were regarded as "irrelevant" to 
the problem under consideration in Chapter 6. For example, we shall 
introduce the concept of a "branch" of an area and, associated with it, the 
concept of "reachability". 

The model to be introduced bears a close resemblance to the general 
storage management model described in Chapter 4 (which was used for the 
description of the class of "all" garbage collection and compaction 
algorithms), though we have tailored it to our specific application. It 
differs from the model described in Chapter 6 in the following way. We 
shall not introduce "external" operations (such as ESTABLISH(t), FINISH, 
etc.) and subsequently prove the invariants of the model. Instead, the 
invariants will be introduced as postulates (as in Chapter 4). 

The model will be introduced in Section 7.1. For the reader of 
Chapter 6, the correspondence of this model with that of Chapter 6 will be 
indicated. After introducing the model, the problem will be defined in the 
same section by giving abstract definitions of the operations 
COLLECT GARBAGE and COMPACT. These definitions will comply with the 
definitions of COLLECT GARBAGE and COMPACT given in the previous chapter, 
including the "Requirements for COLLECT GARBAGE". In Section 7.2 the design 
of efficient algorithms for the latter operations by means of a process of 
transformation will be described. The transformation process will result in 
two efficient algorithms (for COLLECT GARBAGE and COMPACT, respectively). 

The final algorithms from Section 7.2, though efficient(ly 
implementable), are still abstract in a number of respects. First of all, 
they use certain abstract parts of the model. Secondly, they are formulated 
in terms of abstract variables and "high level" control structures. In the 
end the algorithms will have to operate exclusively on the store (which is 
part of the model) and will have to be formulated in machine code (in order 
to execute them). The elimination of the abstract parts of the model from 
the algorithms and the translation of the algorithms into "hard code" 
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(which involves additional design decisions) is a rather straightforward 
affair, which could be omitted (as we did in Chapter 6)\ Still, having made 
a long journey to abstract worlds it is felt appropriate to conclude this 
monograph with a safe return to earth. In Section 7.3 we shall therefore, 
by way of illustration, perform the "final implementation" of the 
algorithms and translate them into machine code. 

The obvious choice for the machine code would be (a subset of) the 
code of the abstract machine MIAM [MEERTENS 81], on the store of which the 
operations COLLECT GARBAGE and COMPACT are supposed to operate. The model 
introduced in Section 7.1, however, enables us to view the algorithms for 
COLLECT GARBAGE and COMPACT as general purpose runtime routines 
("utilities"), which are independent of the MIAM. Instead of the code of 
the MIAM, which most readers will be unfamiliar with, a very simple code 
for a hypothetical machine will be used, in which to formulate the final 
versions of the algorithms. The latter machine code, the meaning of which 
can be described in a few lines, can be viewed as a simplified version of 
(a subset of) the code of the MIAM. The conclusion of this chapter can be 
found in Section 7.4. 

7. I. MODEL 

7.1.1. Framework 

As in Chapter 6, the abstract objects which programs operate upon will 
be called "areas". Areas are the units of allocation and deallocation (so 
they correspond to the "nodes" of Chapter 4). 

Each area A has: 

- status(A): constant element from {alive,dead}, 
- size(A): constant integer, 
- atoms(A): constant set of atoms. 

status(A) and size(A) will be called the "status" and "size" of A, 
respectively. The elements of atoms(A) will be called the "atoms" of A. The 
status of A indicates whether or not A has been "destroyed" by the program. 
The size of A indicates the size of the "field" (see Figure 6. 5 in 
Chapter 6) which A occupies in the store (to be introduced below). The 
atoms of A are the elementary components of A: 

Each atom X has: 

- offset(X): constant integer, 
- kind(X): constant element from {Zeaf,branoh}, 
If kind(X) = leaf 
I - value(X): constant integer, 
If kind(X) = branch 
j - target(X): constant area. 

offset(X), kind(X), value(X) and target(X) will be called the "offset", 
"kind", "value" and "target" of X, respectively. The offset of Xis the 
displacement of the location of X within the field of the (unique) area of 
which Xis an atom. There are two kinds of atoms, which are called "leaves" 
and "branches", respectively. A leaf has a value, which is an integer. A 
branch "refers" to an area, to wit its target. Though programs may change 
the values of leaves and the targets of branches, the operations 
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COLLECT GARBAGE and COMPACT are supposed to leave these entities 
unaffected, which is the reason why they are defined to be constant. Atoms 
are supposed to occupy a single "cell" in the store. A cell C is merely a 
container of a value (an integer), which is called the "contents" of C: 

I 
Each cell Chas: 

- aont(C): variable integer. 

The framework of the model (i.e., the model without the definitions and 
invariants) is now described by a collection of four variables: 

The model consists of: 

- L: constant area, 
- S: variable sequence of areas, 
- H: variable sequence of areas, 
- C: constant sequence of cells. 

Here L, which will be called the "root", corresponds to the initial locale 
Lo from Chapter 6. Sand H correspond to the "piles" Sand H from 
Chapter 6. C represents the "store" (which was kept implicit in the model 
of Chapter 6) • 

7.1.2. Definitions and invariants 

The definitions and invariants which hold in the model will now be 
presented. The invariants are prefixed by the capital letter I followed by 
a number. The following definitions and invariants are concerned with areas 
in general and the root Lin particular. 

If A is an area, then the set lea:oes(A) of atoms is defined by: 

lea:oes(A) = {X € atoms(A) I kind(X) = leaf}. 

If A is an area, then the set branahes(A) of atoms is defined by: 

branahes(A) ={XE atoms(A) I kind(X) = branch}. 

(II) For each area A,B 
I A "F B ~ atoms(A) n atoms(B) ¢. 

(12) status(L) = alive. 

(13) For each area A with status(A) 
and each X € branahes(A) 
I status(target(X)) = alive. 

alive 

The fact that an area is reachable is defined by the following rules: 

(I) Lis reachable. 
(2) If A is a reachable area, 

XE branahes(A), 
B = target(X), 

then Bis reachable. 
(3) An area is reachable on account of the above rules only. 

An area is unreachable if it is not reachable. 
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Invariant (Il) states that different areas do not "overlap" (i.e., do not 
share atoms). Invariant (12) corresponds to Invariant (K2) from Chapter 6. 
The absence of "dangling references" (i.e., references from live areas to 
dead areas) is expressed in Invariant (13). The root Lis the starting 
point for all access paths to other areas, as reflected in the definition 
of the concept of "reachability". Notice that Invariants (12) and (13) 
imply that reachable areas are always alive. 

We now turn to the sequences Sand Hof areas: 

(I4) If S = <A1, •.• ,Am> and H = <Am+1,···,An> 
I i ,f, j => Ai ,f, Aj (i,j = 1, .•• ,n). 

(IS) If H = <A7, ... ,An> 
In> 0 and A7 = L. 

(I6) For each A E Su H with status(A) 
and each XE branches(A) 
I target(X) E Su H. 

(17) For each A EH 
I status(A) = alive. 

(IS) For each A EH with A 'FL 
and each XE branches(A) 
I target(X) EH. 

alive 

Invariant (I4) corresponds to Invariant (UI) from Chapter 6. It must be 
formulated, not only because Sand H contain different areas, but also 
because sequences may, in principle, contain multiple occurrences of their 
elements. Invariant (IS) expresses the fact that in the model of Chapter 6 
the initial locale is invariably at the bottom of the pile H. 

Invariant (16) states that live areas in Su H do not contain "dangling 
pointers" (i.e., references to already deallocated areas). In this 
invariant (and elsewhere, if convenient) the sequences Sand Hare 
considered as the sets of their elements. Invariant (16) can be explained 
as follows. Dangling pointers can arise only because of the deallocation of 
areas. Apart from the areas deallocated by COLLECT GARBAGE, all areas 
deallocated in the model of Chapter 6 are dead areas. Due to the absence of 
"dangling references" (Invariant (13)) this can never give rise to the 
occurrence of dangling pointers in live areas, though dangling pointers may 
occur in other dead areas. Notice that Invariant (16), together with 
Invariants (I2) and (IS), implies that all reachable areas are contained in 
Su H. 

Invariant (17) is a direct translation of a "fact" from the model of 
Chapter 6, in contrast to Invariant (IS). The latter invariant states that 
there are no references from areas in H\ {L} to areas in S. This invariant 
is due to the "scope rules" of ALGOL 68, which (almost) entirely carry over 
to the MIAM. (See also the remarks in Subsection 7.1.4.) 

Definitions and invariants concerned with the store Care given below. 

The integer N is defined to be the number of cells in C. 

If C = <Co,···,CN-1> and a E {O, ••• ,N-1}, then cell(a) is the cell Ca· 

(19) For each a,b E {O, ••• ,N-1} 
I a ,f, b => ceU(a) ,f, cell(b). 



I If CE C, then addr(C) is the unique a E {O, •.• ,N-1} such that 
ceU(a) = C. 
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Invariant (19) states that the cells in the store Care all different, and 
therefore have a unique "address". 

Finally, we introduce the concepts and invariants related ·to the 
representation of areas in the store. 

(110) For each area A 
I size(A) > 0. 

i (Ill) For each area A 
and each XE atoms(A) 
I O ~ offset(X) < size(A). 

(112) For each area A 
and each X,Y E atoms(A) 
I X # Y .,. offset(X) # offset(Y). 

(113) LA ES u H [size(A)] ~ N. 

The integer PTR(A) for areas A E Su H is defined by the following 
rules: 

(I) 

(2) 

If S = <A1, •.• ,Am> and A= Ak 
I PTR(A) =Li= 1, ••• ,k-1 [size(Ai)]. 
If H = <B1, ••• ,B~> and A= Bk . 
I PTR(A) = N- L 1, = 1, ••• ,k [s1,ze(Bi)]. 

The cell LOC(X) for atoms X E U A E Su H [atoms(A)] is defined by: 

LOC(X) = ceU(PTR(A) + offset(X)), 

where A is the unique area A E S u H such that X E atoms (A). 

(114) For each A E Su H with status(A) 
and each XE Zeaves(A) 
I cont(LOC(X)) = value(X). 

(115) For each A E Su H with status(A) 
and each XE branches(A) 
I cont(LOC(X)) = PTR(target(X)). 

alive 

alive 

An area A is represented by a field F of size(A) cells in the store. 
Invariant (110) guarantees that Fis not empty. An atom X of A is 
represented by a cell C with displacement offset(X) from the leftmost cell 
of F. Invariant (Ill) makes sure that C is contained in F. The requirement 
that different atoms of A occupy different cells in Fis expressed in 
Invariant (112). In accordance with Chapter 6, the areas in Sand Hare 
supposed to be located in the store as indicated in Figure 7.1. The 
requirement that all areas must fit in the store is formulated in 
Invariant (113) (cf. Invariant (U2) from Chapter 6). A reference to an area 
A is represented by the address of the leftmost cell of the field of A and 
is denoted by PTR(A). The cell representing an atom X of an area is denoted 
by LOC(X). (Capital letters are used for PTR and LOC to give warning that 
they are variable functions: They are affected by operations on Sand H.) 
Invariants (114) and (115) define how the value of a leaf and the target of 



254 

Figure 7.1 

a branch of an area are represented in the store. Notice that these 
invariants are defined for all live areas in S u H and not exclusively for 
the reachable areas. (The importance of this will become clear in 
Section 7.2.) Notice also that none of the invariants implies that all 
cells in the field of an area A are occupied by atoms of A. There may be 
"free" cells in the field of A, which can, for example, be used as 
workspace for COLLECT GARBAGE and COMPACT. 

7.1.3. Operations 

In the model which has been presented above, the operations 
COLLECT GARBAGE and COMPACT can be specified as follows: 

COLLECT GARBAGE: 
Let Q = {A € Su H I A is unreachable}. 
S,H := S \·Q,H \ Q. 
Restore the invariants of the model by changing the contents of 
cells in C. 

COMPACT: 
Let Q ={A€ SI status(A} = dead}. 
s := s \ Q. 
Restore the invariants of the model by changing the contents of 
cells in C. 

Here the operation "S := S \ Q'' implies that all areas from the set Q which 
occur in the sequence Sare removed from S, while the order of the 
remaining areas in S is not affected (analogously for "H := H \ Q"). Notice 
that the operations COLLECT GARBAGE and COMPACT are quite different from 
the operations with the same name defined in Chapter 4. 

It is easy to see that the above definitions comply with 4 of the 5 
"Requirements for COLLECT GARBAGE" and the definition of COMPACT from 
Chapter 6. Since we have abstracted from the difference between "locales" 
and "blocks" Requirement (5) for COLLECT GARBAGE has become meaningless. 
Requirement (5) should be satisfied when incorporating the garbage 
collector to be developed here, in the storage management system of 
Chapter 6. It can be satisfied by keeping all live locales reachable (which 
they should be anyway; see the remark preceding Requirements (4) and (5) 
for COLLECT GARBAGE). 

The design of efficient algorithms for COLLECT GARBAGE and COMPACT 
will be discussed in Section 7.2. We shall conclude this section with a 
number of remarks which provide additional information concerning the 
relation of the above model to ALGOL 68, the MIAM and the model from 
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skipped by the reader who prefers the "sec" model. 

7. 1.4. Some remarks 
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The "status" of an area, which was removed as a component from certain 
areas in Chapter 6, has returned in our model. This does not imply that the 
algorithms for COLLECT GARBAGE and COMPACT to be designed can only be 

"incorporated in the storage management system of Chapter 6 if the status is 
re-introduced as a component of all areas. In the system of Chapter 6 a 
call of COLLECT GARBAGE or COMPACT is always preceded by a traversal of S 
to determine the number of dead cells in S (see System 4). During this 
traversal dead areas can be marked as such, thus providing the necessary 
information on the status of areas. (Areas in Hare always alive; see 
Invariant (17).) 

In ALGOL 68 references to arbitrary subobjects of objects are allowed. 
Consequently, the MIJ\M features references to arbitrary subareas of areas. 
We have ignored this fact in the model: The branches of an area refer to 
areas and not to subareas of areas. This implies that the design decision 
to use "node marking" (see Subsection 5.1.5) has already been incorporated 
in the model. The advantage of node marking is its simplicity and time 
efficiency. Furthermore, the requirement that it must be possible to 
determine the area which a reference "points in" does not cost us anything 
extra: This information is already contained in references in the MIAM 
(where it is used for "scope checking"). The only remaining disadvantage of 
node marking (in this case) is that the garbage collector is more 
"conservative" than we might wish: It need not necessarily remove all areas 
from the store which are unreachable from the program point of view (see 
Example 5.6 in Subsection 5.1.5). A great deal of this objection can be 
removed by the code generator, who has control over the representation of 
ALGOL 68 objects in the store of the MIAM. 

The "scope rules" of ALGOL 68 imply that there are no references from 
an object X to an object Y if scope(X) < scope(Y). Analogously, in the MIJ\M 
there are no references from an area A to an area B if scope(A) < scope(B). 
This assertion, however, applies only to "ALGOL 68 references" in the MIAM. 
Apart from the latter there are also other kinds of references in the MIAM, 
such as the references corresponding to the "establisher" of a locale or 
the "environ" of a process. Most of these references also satisfy the scope 
rules, but some of them do not. (For example, the "environ" reference of a 
process does not satisfy the scope rules because a process is embedded in 
its "origin".) In so far as references from blocks to other areas are 
concerned the scope rules are fully satisfied, which justifies 
Invariant (18). (All areas in H, except L, are blocks.) 

Invariant (18) permits L to contain references to areas in S. If L 
contained no references to areas in S, all areas in S would be deallocated, 
which is usually not intended. Prior to initiating a garbage collection or 
compaction the storage manager is therefore sup-posed to store the "base 
pointers" through which all areas in Sand Hare accessed in L (if not 
already in L). In particular, L should contain a reference to the "running 
process". 

As a final remark we note that unreachable live areas can occur not 
only in H, but also in S. This is due to the way "local generators" may be 
used in ALGOL 68. 
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7.2. DESIGN 

In this section we are concerned with the design of efficient 
algorithms for the operations COLLECT GARBAGE and COMPACT. The algorithms 
will be designed through a process of transformation, starting with very 
abstract and obviously correct algorithms. For reasons of space·, 
correctness proofs of the transformations are omitted. The transformation 
steps taken are generally so small, however, that it is simple to check 
their correctness (if not self-evident}. In the rare case of a "large" 
transformation step, the necessary assertions (invariants) for a proof of 
correctness will be provided. In taking design decisions we shall to some 
extent rely on basic knowledge concerning garbage collection and compaction 
techniques (to be found in Chapter 5). 

This section will be divided into two subsections, which are concerned 
with the design of algorithms for COLLECT GARBAGE and COMPACT respectively. 
The design of an algorithm for COMPACT is partly analogous to the design of 
an algorithm for COLLECT GARBAGE and will therefore be discussed in a less 
detailed way than the latter. 

7.2.1. COLLECT GARBAGE 

7.2.1.1. A straightforward algorithm 

It is the job of COLLECT GARBAGE to delete all unreachable areas from 
the sequences Sand Hand restore the invariants of the model by changing 
the contents of cells in C. Inspection of the invariants tells us that only 
Invariants (114) and (I15) are violated by the deletion of all unreachable 
areas from Sand H (because the remaining areas in Sand H occupy new 
fields in the store). The obvious way to restore these invariants leads to 
the following algorithm (in which we use the fact that all reachable areas 
are alive): 

COLLECT GARBAGE1: 
Variables: 

None. 
Action: 

Let Q = {A E Su H I A is unreachable}. 
S, H : = S \ Q, H \ Q. 
For each A E S u H 
and each XE Zecwes(A) 
I cont(LOC(X)) := value(X). 
For each A E Su H 
and each X E br•anches(Aj 
I cont(LOC{X)) := PTR(target(X)). 

Notice that the two for-loops may be interchanged. More than that, they may 
even be "fused" arbitrarily. 

7.2.1.2. Preserving the allocation information 

The above algorithm, though evidently correct, has no practical value 
whatsoever. The reason is that it has been formulated almost exclusively in 
abstract terms. In order to turn the algorithm into a practical algorithm 
the abstract parts must be transformed in such a way that only operations 
on (the cells in) the store C remain. This implies, for example, that in 
the final algorithm the abstract "value" of a leaf X, which is used in 



COLLECT GARBAGEz, will have to be extracted from the 
from Invariant (114) that this is possible: Prior to 
cell formerly occupied by X contains the value of X. 
problem since after the statement: 

S,H := S\Q_,H\Q. 
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store. Indeed, we know 
the first for-loop the 
Still, we run into a 

all information concerning the old fields of areas has been lost. First of 
all, we shall therefore reformulate COLLECT GARBAGE1 in such a way that 
this "allocation information" is preserved. We shall do this by moving the 
above statement to the end of the algorithm. This has the conceptual 
advantage that Sand H, and consequently PTR(A) for areas A, and LOC(X) for 
atoms X, are constant in the entire algorithm except in the last statement. 
The values which P2'R(A) and LOC(X) will have at the end of the algorithm 
will be denoted by PTR*(A) and LOC*(X) respectively. The reformulation of 
COLLECT GARBAGE1 (which is almost straightforward) leads to: 

COLLECT GARBAGE2: 
Variables: 

None. 
Action: 

Let Q_ = {A e: Su H I A is unreachable}. 
For each A e: (Su HJ \ Q_ 
and each Xe: ieaves(A) 
I aont(LOC*{X)) := vaiue(X). 
For each A e: (Su HJ \ Q_ 
and each Xe: bronahes(A) 
I aont(LOC*(X)) := PTR*(ta:rget(X)). 
S,H := S\Q.,H\Q.. 

PTR*(A): 
Case 
I. S = <A1, ••• ,Am> and A =Ak 
I I: i = 1, ..• , k - 1, Ai I. Q_ [size (Ai)]. 
2. H = <B1,·••,Bn> and A= Bk 
I N-I: i = 1, ••• ,k, Bi I. Q_ [size(Bi)]. 

LOC*(X): 
aeU(PTR*(A) +offset(X)), 
where A is the unique area A e: Su H such that X E atoms(A). 

7.2.1.3. Preserving the information contained in the fields of areas 

It is tempting to replace the abstract "vaiue(X)" in the first for­
loop of COLLECT GARBAGE2 by the more concrete "aont(LOC(X))". We have to be 
careful, though, since the original contents of LOC(X) may already have 
been "overwritten". In general, a statement such as: 

aont(LOC*{X)) := aont(LOC(X)) 

will destroy the information originally contained in LOC*(X). This may not 
only be information concerning the values of leaves, but also information 
concerning the targets of branches or special information for the garbage 
collector (contained in the "free" cells of fields). All information of 
interest is contained in the fields of reachable areas (the rest is 
"garbage"). It makes sense, therefore, in the first for-loop of 
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COLLECT GARBAGE2 to "move" entire areas, i.e., copy the contents of their 
old fields to their new fields, instead of copying the contents of the 
locations of leaves only. It is easy to see that this can be accomplished 
without loss of information if the (reachable) areas in Sare moved in 
order from left to right (in the store) and those in Hin order from right 
to left (in the store) as described in the following transformed version of 
COLLECT GARBAGE2: 

COLLECT GARBAGE3: 
Variables: 

None. 
Action: 

Let Q. = {A E Su H I A is unreachable}. 
Let A1,•••,Am be such that S = <A1,•··,Am>· 
Let B1,,,.,Bn be such that H = <B1,·••,Bn>• 
Fork= 1 tom 

I If Ak I:. Q. 
I MOVEt(Ak,PTR*(Ak)). 

Fork= 1 ton 

I If Bk I:. Q. 
j MOVE4(Bk,PTR*(Bk)). 

For each A E (Su HJ \ Q. 
and each XE bPanahes(A) 
I aont(LOC*(X)) := PTR*(taPget(X)). 
S,H := S\Q.,H\Q.. 

MOVEt(A,a): 
Let b = PTR(A). 
For i = 0 to size(A) -1 
I aont( aeU( a+ i)) := aont( aeU(b + i)). 

MOVE4(A,a): 
Let b = PTR(A). 
For i = size(A) -1 down to 0 
I aont(aeU(a+i)) := aont(aeU(b+i)). 

Notice that COLLECT GARBAGE3 is a correct implementation of COLLECT GARBAGE 
(the definition) but not of COLLECT GARBAGE2: Because the contents of all 
cells in the old field of an area (including the contents of "free" cells) 
are copied to the new field of the area, COLLECT GARBAGE3 may change the 
contents of cells which were not affected by COLLECT GARBAGE2• Yet we shall 
call the transformation from COLLECT GARBAGE2 to COLLECT GARBAGE3 
"correctness-preserving", since it is the definition of COLLECT GARBAGE 
which determines the correctness of the algorithm. 

7.2.1.4. Preserving the updating information 

Now let us consider the last for-loop in COLLECT GARBAGE3 , where 
"pointers" (i.e., the contents of cells occupied by branches) are 
"updated". In this loop the abstract "target" of a branch Xis used. In the 
final algorithm the information concerning the target of X must again be 
extracted from the store. We know from Invariant (115) and the fact that 
areas have been moved that this information is contained in LOC*(X) and 
consists of the integer PTR(taPget(X)), i.e., a pointer to the old field of 
target(X). Since areas have been moved, however, the necessary information 
to derive PTR*(taPget(X)) from PTR(taPget(X)) will generally have been 
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lost. We have the choice now, either to collect and store that information 
prior to moving the areas, or to perform the updating of pointers before 
the moving of areas instead of afterwards. The first choice amounts to the 
use of a "relocation map" (see Subsection 5.2.2), which gives rise to 
complex algorithms. We "know" we can do better than that and therefore 
choose the second option. This implies that the last for-loop is moved to 
the point innnediately before the "moving phase". Since at that point areas 
have not yet been moved, "LOC*(XJ" must be replaced by "LOC(XJ": 

COLLECT GARBAGE4: 
Variables: 

None. 
Action: 

Let Q = {A E Su H I A is unreachable}. 
Let A1,···,Am be such that S <A1,··•,Am>· 
Let B1, ... ,Bn be such that H = <B1,···,Bn>. 
For each A e: (Su HJ \ Q 
and each Xe: branches(AJ 
I cont(LOC(XJJ := PTR*(target(XJJ. 
Fork= 1 tom 

I If Ak i Q 
I MOVEt(Ak,PTR*(AkJJ. 

Fork= 1 ton 

I If Bk i Q 
I MOVE~(Bk,PTR*(BkJJ. 

S,H := S\Q,H\Q. 

7.2.J.5. Marking reachable areas 

Having rearranged the operations in the proper way, we are now in a 
position to try and "improve" the algorithm by adding (abstract) variables 
(which will again be removed in Subsection 7.3.1). The first problem is how 
to determine efficiently the set Q of unreachable areas. This will, as 
usual, be accomplished indirectly by "marking" all reachable areas. For 
that purpose a variable set M of areas is introduced. The marking of 
reachable areas is now abstractly described by the statement: 

M := {A E Su H I A is reachable}. 

By putting this statement at the beginning of COLLECT GARBAGE4, expressions 
such as "A e: ( S u HJ \ Q", "Ak i Q" and "Bk i. Q" can be replaced by "A e: M", 
"Ak EM" and "Bk EM", respectively. This would not take us any further, 
unless we "refine" the above assignment to Mand replace it by a "marking 
algorithm". Here we appeal to knowledge of garbage collection algorithms 
(see Chapter 5) and choose (in this case) the most efficient "node marking" 
algorithm we know of (see Algorithm GN.DTEH in Subsection 5.1.5). This 
algorithm, which requires an auxiliary variabl~ set T of areas, is 
incorporated in: 
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COLLECT GARBAGE5: 
Variables: 

M: set of areas, 
T: set of areas. 

Action: 
Let Q = {A € Su H I A is unreachable}. 
Let A1, ••• ,Am be such that S = <A1,·••,Am~• 
Let B1, ••. ,Bn be such that H = <B1,··•,Bn>. 
M, T : = {L} , {L} • 
While T I ¢ 

Get A from T. 
For each X € branahes(A) 

I Let B = target(X). 
If B i M 
I M,T :=Mu {B},Tu {B}. 

For each A € M 
and each XE branahes(A) 
I aont(LOC(X)) := PTR*(target(X)). 
Fork= 1 tom 

I If Ak € M 
I MOVEeJAk,PTR*(AkJJ. 

Fork= 1 ton 

I If Bk E M 
I MOVE~(Bk,PTR*(Bk)). 

S,H := S\Q,H\Q. 

Here "Get A from T" is equivalent to: 

Let A E T. 
T := T\ {A}. 

Notice that we did not remove Q from the algorithm. The reason for this is 
not only that Q is used in the definition of PTR*, but also that it 
relieves us from the duty of transforming the statement ·"S,H := S \ Q,H \ Q" 
each time we transform M. (In the final algorithm the latter entirely 
abstract statement reduces to an empty action anyway.) 

7.2.J.6. Calculating PTR*(A) 

A second problem is caused by the calculation of the PTR*(A) (A€ M). 
It is easy to see that the calculation of these values in the moving phase 
can be accomplished in an overall O(n) time (where n = #M). The calculation 
of the PTR*(A) in the updating phase poses a problem, however. A 
straightforward application of the definition of PTR*(A) to calculate 
PTR*(target(X)) from aont(LOC(X)) (= PTR(target(X)}) would result in an 
O(n2) time for a garbage collection. A way to avoid this is to calculate 
all PTR*(A) for A€ Monce and for all and store these values "somewhere", 
say in F(A), where Fis a variable mapping from areas to integers. 
(Typically, Fis implemented by storing F(A) in a free cell of the field of 
A for A€ M.) Using F, the updating of pointers can be described by: 



F := ¢. 
For each A e: M 
I F(A) := PTR*(A). 
For each A e: M 
and each Xe: bPanches(A) 
I aont(LOC(X)) := F(ta:l'get(X)). 
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As can be seen, this solution will cost us an extra •iscan". Another 
solution is, after calculating PTR*(A), not to store PTR*(A) but to use it 
immediately to update all pointers to A. If we define the set of branches 
B(A) for each area A e: M by: 

B(A) ={Xe: U Be: M [bPanahes(B)] I ta:l'get(X) = A}, 

this can be described by: 

For each A e: M 

I Let a= PTR*(A). 
For each Xe: B(A) 
I aont(LOC(X)) := a. 

At first sight it seems that we do hot need an extra scan now. However, we 
are faced with the problem of determining the sets B(A) (A e: M). 
Calculation of the B-sets "on the spot" would be unacceptably inefficient, 
so we shall have to determine and store them beforehand. This raises the 
question of whether it is possible to store the B-sets efficiently at all. 
Again, we appeal to knowledge concerning garbage collection techniques to 
contend that these "branch sets" can be stored efficiently, even without 
any space overhead at all (see Subsection 5.2.3). Turning B into a variable 
function which maps areas to sets of branches, the construction of the 
B-sets can be described by: 

B := {(A,¢) I A e: (Su HJ \ QJ. 
For each A e: M 
and each Xe: bPanahes(A) I Let B = t<II'get(X). 

B(B) := B(B) u {X}. 

This amounts to an extra scan, which would invalidate the advantage of the 
B-solution over the F-solution. Let us consider more closely what we do in 
the above loop, however: For each reachable area A and each branch X of A 
the target B of Xis determined and then Xis put in B(B). Apart from the 
latter, that is exactly what is done during marking! The construction of 
the B-sets can therefore be combined most efficiently with the marking 
phase, as described in the following version of COLLECT GARBAGE (cf. 
Algorithm G&CNK in Section 5.3): 
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COLLECT GARBAGEe: 
Variables: 

M: set of areas, 
T: set of areas, 
8: mapping from areas to sets of branches. 

Action: 
Let Q = {A E Su H I A is unreachable}. 
Let A1, ... ,Am be such that S = <A1,···,Am>· 
Let B1,···,Bn be such that H = <B1,···,Bn>. 
M,T,B := {L},{L},{(A,¢) I A E s u H}. 
While T ,fa ¢ 

Get A from T. 
For each XE branches(A) 

Let B = target(X). 
If BI. M 
I M,T := Mu {B},Tu {B}. 
B(B) := B(B) u {X}. 

For each A E M 
Let a= PTR*(A). 
While B(A) ,fa ¢ 

I Get X from B(A). 
cont(LOC(X)) := a. 

For k = 1 tom 

I If Ak E M 
/ MOVE1(Ak,PTR*(Ak)). 

Fork= 1 ton 

I If Bk E M 
/ MOVE4(Bk,PTR*(Bk)). 

S, H : = S \ Q, H \ Q. 

Notice that we have formulated the updating part of the algorithm in such a 
way that at the end of the algorithm B( A) ¢ for each A E S u H. 

7.2.1.7. Removing PTR* from the algorithm 

In the two for-loops of the moving phase of the above algorithm the 
calculation of the values PTR*(A) for A EM can be accomplished in an 
overall O(n) time by keeping track of a counter during the traversal of S 
and H. This assertion also applies to the updating phase, if we traverse S 
and Hin a way similar to the moving phase. In contrast to the moving phase 
we can choose the direction of traversal of the sequences Sand H: either 
from first to last element, or from last to first element. The obvious 
choice may seem to be to use the order from first to last, as we (perforce) 
did in the moving phase. For S this traversal order is indeed obvious, but 
for Hit is not. The reason for this is that a reference to an area A is 
represented by the address of the leftmost cell of the field of A. This 
makes it extremely simple, given a pointer to an area A, to find the 
pointer of the area immediately to the right of A in the store. Unless we 
introduce an overhead, finding the pointer of the area immediately to the 
left of A in the store is much more difficult. The natural order of 
traversing Sand His therefore from left to right in the store, which for 
H means from last to first element (see Figure 7.1). 

The above raises a question concerning the traversal of Hin the 
moving phase. There the traversal order is the "difficult" order from first 
to last. How are we going to implement that? Fortunately, the "easy" 
traversal of Hin the updating phase can be used to make the reverse 
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traversal in the moving phase, and even the moving of areas itself, 
extremely simple and efficient (see Subsection 7.3.1). There is another 
problem, though. When starting to traverse Hin the updating phase, we have 
to know the value PTR*(B) for the first marked area B to be encountered in 
H. This value is equal to: 

PTR*(B) = N-r. A E HnM [size(A)] 
N- (r-a), 

where r r. A EM [size(A)] 
and a r. A E Sn M [size(A}]. 

This implies that PTR*(B) can be determined by keeping track of r during 
the marking phase and traversing S before Hin the updating phase to 
determine a. All this leads to the following algorithm in which PTR* no 
longer occurs: 

COLLECT GARBAGE7: 
Variables: 

M: set of areas, 
T: set of areas, 
B: mapping from areas to sets of branches, 
a,r: integer. 

Action: 
Let Q = {A E Su H \ A is unreachable}. 
Let A1, ••• ,Am be such that S = <A1,···,Am>· 
Let B1, •.• ,Bn be such that H = <B1,···,Bn>. 
M,T,B,r := {L},{L},{(A,¢) I A E SuH},size(L). 
While T -1- ¢ 

Get A from T. 
For each XE branches(A) 

Let B = target(X). 
If B ,t M 
I M,T,r := Mu{B},Tu{B},r+size(B). 
B(B) := B(B) u {X}. 

a:= 0. 
Fork= 1 tom 

I If Ak E M 

\ 
UPDATE(Ak,a). 
a := a+ size(Ak). 

a:= N- (r-a). 
Fork= n down to 1 

I If Bk E M 

\ 
UPDATE(Bk,a). 
a := a+ size(Bk). 

a:= O. 
For k = 1 to m 

I If Ak E M 

I MOVE.e_(Ak,a). 
a :=a+size(Ak). 

a:= N. 
Fork= 1 ton 

I If Bk E M 

\
a:= a-size(Bk). 
MOVE11,(Bk,a). 

S, H : = S \ Q, H \ Q. 
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UPDATE(A,a): 
While B(A) f ¢ 

I Get X from B(A). 
cont(LOC(X)) := a. 

Check that, if each "primitive" operation (such as "Get A from T") takes 
0(1) time, the algorithm operates in O(m + n) time, wh.ere: 

m #(SuH), 
n I: A E SuH, A is reachable [size(A)]. 

Here "S" and "H" denote the initial values of S and H. 
We shall stop the design here. Though the algorithm still contains 

many abstract expressions, the transformation of these expressions into 
concrete expressions is almost entirely a purely technical matter, which 
will no longer be called "design", but rather "implementation". The 
transformation process of the algorithm will therefore be continued in 
Subsection 7.3.1. The above description of the garbage collector is 
believed to be suitable for inclusion in the accompanying documentation of 
the compiler in which the garbage collector is used. The algorithm is still 
reasonably readable, in contrast to the final product of Subsection 7.3.1. 

7. 2. 2. COMPACT 

7.2.2.1. A straightforward algorithm 

The operation COMPACT should delete all dead areas from Sand restore 
the invariants of the model by changing the contents of cells in C. 
Inspection of the invariants tells us that, again, only Invariants (114) 
and (115) are violated by the deletion of all dead areas from S. A 
straightforward restoration of these invariants leads to: 

COMPACT1: 
Variables: 

None. 
Action: 

Let Q = {A e SI sta-tus(A) 
s := s \ Q. 
For each A E Su H 
and each XE Zeaves(A) 
I cont(LOC(X)) := value(X). 
For each A E Su H 
and each XE branches(A) 

dead}. 

I cont(LOC(X}) := PTR(target(X)). 

7.2.2.2. Limiting the restoration overhead of the invariants 

A first observation is that the statement: 

s := s \ Q 

only "partly" violates Invariants (114) and (115) in that it keeps the 
following assertions invariant: 
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For each A E H 
and each XE leaves(A) 
I cont(LOC(X)) = value(X). 

For each A E H \ {L} 
and each XE branches(A) 
I cont(LOC(X)) = PTR(target(X)). 

The invariance of the second assertion is based critically on the fact that 
there are no references from areas in H\{L} to areas in S (Invariant (18)). 
The above implies that COMPACT1 can be rewritten as follows: 

COMPACT 2: 
Variables: 

None. 
Action: 

Let Q ={AES I status(A) 
s := s \ Q. 
For each AES 
and each XE leaves(A) 
I cont(LOC(X)) := value(X). 
For each A E S u {L} 
and each XE branches(A) 

dead}. 

I cont(LOC(X)) := PTR(target(X)). 

7.2.2.3. Preserving the allocation information 

In a first attempt to replace the abstract entities in the above 
algorithm by values extracted from the store, we run into the same problems 
as in COLLECT GARBAGE1: First of all, after the statement: 

s := s \ Q 

all information on the old fields of areas has been lost. This problem will 
be solved in the same way as in COLLECT GARBAGE 2, i.e., by moving .the above 
statement to the end of the algorithm. Expressions of the kind "PTR{A)" for 
areas A and "LOC(X)" for atoms X must then be replaced by expressions 
denoting the values which PTR(A) and LOC(X) will have after the removal of 
dead areas from S. These values will again be denoted by PTR*(A) and 
LOC*(X) respectively. The other necessary modifications of the algorithm 
are obvious and lead to: 

COMPACT3: 
Variables: 

None. 
Action: 

Let Q ={AES I status(A) = dead}. 
For each A E S \ Q 
and each XE leaves(A) 
I cont(LOC*(X)) := val-ue{X). 
For each A E (S\Q} u{L} 
and each XE branches(A) 
I cont(LOC*(X)) := PTR*(target(X)). 
S:=S\Q. 
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PTR* (A): 
Case 
I. S = <A1, ... ,Am> and A = Ak 
[ Li= 1, ..• ,k-1, Ai I. Q [size(Ai)]. 
2. H = <B1,···,Bn> and A= Bk 
[ N-L i = 1, ... ,k [size(Bi)]. 

LOC*(X): 
celUPTR*(A) +offset{X)), 
where A is the unique area A E Su H such that X E atoms (A). 

7.2.2.4. Preserving the information contained in the fields of areas 

A second problem is the possible loss of information because of the 
overwriting of the original contents of cells in the fields of live areas. 
As in COLLECT GARBAGE3 we shall solve this problem by rewriting the first 
for-loop in such a way that the live areas in Sare "moved" in order from 
left to right to their new fields, as described in: 

COMPACT 4: 
Variables: 

None. 
Action: 

Let Q ={AES I stai:;us{A) dead}. 
Let A1,···,Am be such that S = <A1,···,Am>· 
Fork= 1 tom 

I If Ak i. Q 
I MOVEt(Ak,PTR*(Ak)). 

For each A E (S\Q} u{L} 
and each XE branches(A) 
[ cont(LOC*(X)) := PTR*(target(X)). 
S:=S\Q. 

MOVEt(A,a): 
Let b = PTR(A). 
For i = 0 to size(A) -1 
I cont(cell(a+i)) := cont(cell(b+i)). 

7.2.2.5. Preserving the updating information 

A third problem is the fact that in the above algorithm the 
information necessary to derive PTR*(target(X)) from PTR(target(X)) 
(= cont(LOC(X)) according to Invariant (115)) has been lost. Again we can 
either store that information before moving the areas, or perform the 
updating of pointers before moving the areas. For the same reasons as 
before we shall choose the latter: 



COMPACT5: 
Variables: 

None. 
Action: 

Let Q ={AES I status(AJ = dead}. 
Let A1, ... ,Am be such that S = <A1,···,Am>· 
For each A E (S \ Q) u {L} 
and each XE branches(AJ 
I cont(LOC(XJJ := PTR*(target(XJJ. 
For k = 1 to m 

I If Ak I. Q 

S !=M~~fr:Ak,PTR*(AkJJ. 
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Notice, by the way, that if Invariant (115) had been defined for reachable 
areas only (cf. Invariant (S23) in Section 4.2) it would be impossible to 
extract PTR(target(XJJ (and hence PTR*(target(XJJ) from LOC(XJ for each 
branch X of an unreachable live area. Consequently, the first for-loop 
would have to be restricted to the reachable areas A E (S \ QJ u {L}, 
requiring the tracing of all reachable areas in S, as in the marking phase 
of COLLECT GARBAGE. The tracing of the dead areas in Sis considerably 
simpler and does not require an expensive marking phase. 

7.2.2.6. Calculating PTR*(AJ 

Now that we have arranged the operations in the proper order, we can 
start improving the algorithm by adding abstract variables to the 
algorithm. Not having a marking problem, we can immediately turn to the 
problem of efficiently calculating the PTR* (AJ (A E (Su HJ \ QJ. Again it is 
easy to see that the calculation of these values in the moving phase can be 
accomplished in an overall O(nJ time (where n = #(S\Q}). As to the 
calculation of the PTR*(AJ in the updating phase, we can first of all 
observe that PTR*(AJ = PTR(AJ for each A EH. Using Invariant (115) we can 
therefore rewrite the updating phase of COMPACT5 as follows: 

For each A E (S \ QJ u {L} 
and each XE branches(AJ 

I Let B = target(XJ. 
If B I. H 
I cont(LOC(XJJ := PTR*(BJ. 

Thus the problem of calculating the PTR*(AJ is reduced to the calculation 
of the PTR* (BJ for B E S \ Q in the updating phase. 

As discussed in Subsection 7.2.1.6 there are basically two ways to 
calculate efficiently the PTR*(BJ in the updating phase. The first is to 
construct a mapping F which maps each A E S \ Q to PTR*(AJ. This makes the 
updating phase fall apart into the following two loops: 

F := ¢. 
For each A E S \ Q 
I F(AJ := PTR*(AJ. 
For each A E (S\Q}u{L} 
and each XE branches(AJ 

I Let B = target(XJ. 
If B i H 
I cont(LOC(XJJ := F(BJ. 
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The second way is to construct a mapping B which maps each A € S \ Q to the 
set of all branches X with target{X) =A.This also makes the updating 
phase fall apart into two loops: 

B:={(A,¢) IAES\Q}. 
For each A € (S \ Q) u {L} 
and each X € bra:nches(A) 

I Let B = target(X). 
If Bi. H 
I B(B) := B(B) u {X}. 

For each A E S \ Q 

I Let a= PTR*(A). 
For each X € B(A) 
I cont(LOC(X)) := a. 

In COLLECT GARBAGE6 the construction loop of B was disposed of by combining 
it with the marking phase. The absence of a marking phase in COMPACT5 makes 
this impossible now. Consequently, the reason why the B-solution was 
preferred over the F-solution in Subsection 7.2.J.6 is not valid here. Are 
there any other reasons to prefer either of the two solutions? 

A point against the F-solution seems to be that it requires a space 
overhead, while we know that the B-solution does not require any space 
overhead at all. Upon closer scrutiny, however, the F-solution does not 
introduce a space overhead either: The space required for the 
implementation of the set Tin COLLECT GARBAGE? is vacant in COMPACT5 and 
can be used for the implementation of F. Moreover, we know (see Chapter 5) 
that in both the F- and B-solution we can reduce the number of scans of the 
store from three to two by dividing the actual updating scan over the 
"construction scan" and the moving scan. The latter has the disadvantage 
that the moving scan becomes more complicated and cannot be optimized very 
well, as would be possible with a separate moving scan (using a "block 
traversal and moving" technique, see Section 7.3). If possible, the number 
of scans should therefore be reduced to two by combining the construction 
and the updating scan, leaving the moving scan unaffected. 

It is not difficult to see that an efficient combination of the scans 
as suggested above is impossible if we stick to either the F- or B-­
solution. But what if we use both solutions? Is it possible to have the 
best of both worlds? Indeed it is surprising that it is. In order to show 
this let A € S \ Q and let X be a branch with target(X) = A, which is 
involved in the updating process. The best of the F-world is that if Xis 
visited after A then cont(LOC(X)) can be updated immediately since F(A) has 
been assigned the value PTR*(A). The best of the B-world is that if Xis 
visited before A we can make sure that cont(LOC(X)) is updated (when A is 
visited) by putting X in B(A). Consequently, by using F to update 
cont(LOC(X)) for branches X which are visited after their targets, and by 
using B to update cont(LOC(X)) for branches X which are visited before 
their targets, we can update all pointers in a single scan. Only we must be 
careful with the root L, for which we defined neither F(L) nor B(L) (since 
L € H). The latter case is therefore treated separately in the following 
version of COMPACT: 



COMPACT6: 
Variables: 

B: mapping from areas to sets of branches, 
F: mapping from areas to integers. 

Action: 
Let Q ={AES I status(A) = dead}. 
Let A1, ... ,Am be such that S = <A1,···,Am>· 
B,F := {(A,¢) I A E s \ Q},¢. 
For each XE branches(L) 

I Let B = target(X). 
If BI. H 
I B(B) := B(B) u {X}. 

For each A E S \ Q 
Let a = PTR* ( A) . 
While B( A) f ¢ 

I Get X from B(A). 
cont(LOC(X)) := a. 

F(A) := a. 
For each X E br•anches(A) 

Let B = target(X). 
If B I. H 

If B E dom(F) I cont(LOC(X)) := F(B). 
else 
I B(B) := B(B) u {X}. 

For k = 1 to m 

I If Ak I. Q 
S !=M~V~~'.Ak,PTR*(Ak)). 
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Notice that we use the test "BE dom(F)" to determine whether B has been 
visited or not and that we have taken care that B(A) = ¢ for each A E S \ Q 
at the end of the algorithm. The correctness of the rewritten updating 
phase (which is far from obvious) can be proved by using the following 
invariants of the second for-loop and the fact that at the end of the loop 
dom(F} = S \ Q: 

dom(F) c S \ Q. 

For each A E dom(F) 
For each XE P(A) 
I cont(LOC(X)) = PTR*(A). 
B(A) = ¢. 
F (A) = PTR* (A). 

For each A E (S \ Q) \ dom(F) 
I B(A) = P(A). 

where, for each area A: 

P(A) = {X E branches(B} I B E dom(F) u {L}, target(X) = A}. 
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7.2.2.7. Removing PTR* from the algorithm 

The calculation of the PTR*(A) in the updating phase can be 
accomplished in an overall O(n) time by visiting the areas in S \ Q in the 
(obvious) order from left to right and keeping track of a counter. The same 
holds for the moving phase, which makes the removal of PTR* from the 
algorithm extremely simple. The fact that the areas in S \ Q are visited in 
order from left to right enables us to replace the test "B E dom(F)" by 

·"PTR(B) s PTR(A)". If we also "remove" Q from any but the first and last 
statement of the algorithm, this leads to: 

COMPACT 7: 
Variables: 

B: mapping from areas to sets of branches, 
F: mapping from areas to integers, 
a: integer. 

Action: 
Let Q ={AES I status(A) = dead}. 
Let A1,···,Am be such that S = <A1,···,Am>· 
B,F := {(A,¢) I A ES, status(A) = alive},¢. 
For each XE branches(L) 

I Let B = target(X). 
If B i. 1-/ 
I B(B) ;= B(B) u {X}. 

a:= 0. 
Fork= 1 tom 

If status(Ak) = alive 
While B(Ak) f ¢ 

I Get X from B(Ak). 
cont(LOC(X)) := a. 

F(Ak) := a. 
For each XE branches(Ak) 

Let B = target(X). 
If B i. H 

If P2'R(B) 5 PTR(Ak) 
[ cont(LOC(X)) := F(B). 
else 
I B(B) := B(B) u {X}. 

a := a+ size(Ak). 
a:= 0. 
Fork= 1 tom 

alive 
I 

If status (Ak) 

I MOV1':1:,(Ak,a). 
a:= a+size(A1)• 

S := S\Q. 

Check that, assuming that each "primitive" operation takes 0(1) time, the 
algorithm operates in O(m + n) time, where: 

m #S, 
n = Z:A E Su{L}, status(A) = alive [size(AJL 

Here "S" and "H" denote the initial values of Sand H. 
The design of the algorithm will be concluded here. The further 

transformation ("implementation") of the algorithm will be described in 
Subsection 7,3.2. 
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7,3. IMPLEMENTATION 

In this section we shall "implement" the two algorithms derived in the 
previous section, i.e., we shall translate them into code for a very simple 
von Neumann machine, which will be described using conventional terminology 
below. The memory of the machine is the store C of our model. Apart from 
that, the machine has a number of registers, denoted by a,b,a, ••• , which 
can contain integers and may be used as index registers. The instructions 
·of the machine have three kinds of operands: sources, destinations and 
labels. A "source" is an integer (denoted by 0,1,2, ••. ), the contents of a 
register (denoted by a,b,a, ••• ) or the contents of a register-addressed 
memory cell (denoted by [a],[b],[a], ••• ). A "destination" is a register 
(denoted by a,b,a, ••• ) or a register-addressed memory cell (denoted by 
[a],[b],[a], ••• ). A "label" is either a subroutine label (denoted by a name 
in capital letters), which uniquely identifies a subroutine address in the 
code, or a branch label (denoted by Ll,L2,L3, ••. ), which uniquely 
identifies a branch address in the code, The instructions and their meaning 
are described below, wheres, d, P and L denote a source, destination, 
subroutine label and branch label, respectively. 

COPY,s,d: 
AJJD,s,d: 
SUB,s,d: 
PROC,P: 
CALL,P: 
RETURN: 
LABEL,L: 
GOTO,L: 
IFa.,s1,s·2,L: 

d := B, 

d := d+s. 
d := d-s. 
Defines subroutine label P. 
Subroutine call of P, 
Return from subroutine. 
Defines branch label L. 
Branch to L. 
If the relation a. holds between s1 and s2, 
then branch to L, 
where a. GT,GE,EQ,NE,LE,LT, 
meaning >, .: , =, +, :S, < , respectively. 

The indexed addressing mode ([a],[b],[a], ••• ) is allowed with the COPY 
instruction only. 

The remarks made in the beginning of Section 7.2 apply more or less to 
this section as well. The section will be divided into two subsections 
dealing with the implementation of COLLECT GARBAGE7 and COMPACT7 on the 
above machine respectively, 

7. 3. 1 • COLLECT GARBAGE 

7.3.1.1. Optimizing the moving of areas 

In Subsection 7.2.1.7 we discussed the fact that in the moving phase 
of COLLECT GARBAGE7 the areas in Hare visited in the "difficult" order 
(from right to left). Preparations should therefore be made in the updating 
phase to make the traversal of Hin the moving phase easier. These 
preparations, which can be extended to S, can be exploited to make the 
entire moving phase much more efficient than it would be in a 
straightforward implementation of COLLECT GARBAGE7• First of all, it is 
reasonable to assume that after some time during the execution of a program 
a certain "residuum" of reachable areas will originate at the bottom of S 
and H. Areas in this residuum need not be moved. The size.of the residuum 
in Sand H can be determined cheaply in the updating phase. Secondly, 
contiguous marked areas and contiguous unmarked areas constitute chunks in 
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Sand H, which will be called "blocks" and "gaps" respectively. Instead of 
moving one marked area at a time and skipping one unmarked area at a time 
it would greatly increase efficiency if areas are moved "blockwise" and 
skipped "gapwise" in the moving phase. Arrangements to this end can also be 
made cheaply in the updating phase. 

The technique which will be used to implement the above optimizations 
is more or less standard: In the updating phase infonnation is stored in 
the cells of a gap (which are all garbage) concerning the size of the gap 
and the size of the (possibly empty) block following the gap. In 
particular, we shall use the "first" cell of a gap to store the address of 
the "last" cell of the gap and we shall use the last cell of the gap to 
store the size of the block immediately following the gap, as indicated in 
Figure 7.2 (in which the fields of marked areas are shaded). 

s 

-Jun;-@.@-= 
f s1 s2 s3 t 
p s 

H 

I 

0' I 

h q 

Figure 7.2 

The above technique works well only if gaps of size 1 cannot occur. A 
sufficient condition for the absence of gaps of size 1 is the absence of 
areas of size 1. In view of the overhead to be contained in the fields of 
areas (such as type information) the latter is a reasonable assumption. 
Although we could make things work for gaps of size 1 as well, we shall 
turn the latter from an assumption into a fact by adding the following 
invariant to the model: 

I (116) For each area A 
I size (A) ,f 1. 

The rewriting of the updating and moving phase to employ the technique 
sketched above is simple. The rewritten updating and moving phase are 
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incorporated in the eighth version of COLLECT GARBAGE presented below. In 
this algorithm the variables p and q are used to record the address of the 
"top" of the residuum in Sand H respectively (see Figure 7.2). The text 
between the double braces"{{" and"}}" is comment. 

COLLECT GARBAGEa: 
Variables: 

M: set of areas, 
T: set of areas, 
B: mapping from areas to sets of branches, 
a,b,a,d,k,p,q,r: integer. 

Action: 
Let Q. = {A E Su H I A is unreachable}. 
Lets= LA ES [size(A)]. 
Leth= N-L A E H [size(A}]. 

{{Mark all reachable areas and construct the branch sets.}} 
M,T,B,r := {L},{L},{(A,¢) I A ES u H},size(L). 
While T 'F ¢ 

Get A from T. 
For each XE branahes(A) 

Let B = target(X). 
If B l M 
I M,T,r := Mu{B},Tu{B},r+size(B). 
B(B) := B(B} u {X}. 

{{Update all pointers to areas in Sand prepare to move.}} 
a,b,d := 0,0,s. 
PROCESS BLOCK. 
p := b. 
While b 'F s 

a:= b. 
PROCESS GAP. 
aont(aeU(a)) := b -1. 
a := b. 
PROCESS BLOCK. 
aont(aeU(a-1)) := b-a. 

{{Update all pointers to areas in Hand prepare to move,}} -
a,b,a,d := N- (r-a),h,h,N. 
PROCESS BLOCK. 
While b 'F N 

aont(aeU(b)) :=b-a. 
a := b. 
PROCESS GAP. 
aont(aeU(b -1)) := a. 
a:= b. 
PROCESS BLOCK. 

q := a. 
{{Move the areas in S.}} 

a,b := p,p. 
While b 'F s 

b := aont(aeZZ(b)). 
k := aont(aeZZ(b)). 
b:=b+l. 
While k > 0 

I aont(aeZZ(a)) := aont(aeZZ(b)). 
a,b : = a+ 1,b + 1. 
k := k-1. 
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{{Move the areas in H.}} 
a,b := q,q. 
While b # h 

b := b-1. 
b := cont(cell(b)). 
k := cont(cell(b)). 
While k > 0 

I 
a,b := a-1,b-1. 
cont(cell(a)) := cont(cell(b)). 
k :=k-1. 

{{RQlllove the unreachable areas.}} 
S, H : = S \ Q_, H \ Q_. 

PROCESS BLOCK: 
While b # d and AREA(b) EM 

Let A= AREA(b). 
While B(A) # ¢ 

I Get X from B(A). 
cont(LOC(X)) := a. 

k := size(A). 
a,b := a+k,b+k. 

PROCESS GAP: 
While b # d and AREA(b) l M 

I Let A = AREA(b). 
k := size(A). 
b :=b+k. 

ARE'A(b): 
The area A E Su H with PTR(A) = b. 

7.3.1.2. Removing the abstract concepts from the algorithm 

We shall now remove the abstract variables and other abstract concepts 
from COLLECT GARBAGE8, thus making the algorithm suitable for a direct 
translation into machine code. As we shall see, the model will have to be 
extended by a number of invariants concerning the representation of the 
abstract concepts in the store. A first observation is concerned with what 
we called the "type information" and the "status information" in Chapter 5 
(represented by the branches of an area and the variable T respectively). 
For the representation of these two kinds of information space must be 
reserved in the store. We shall accomplish this by reserving a free cell 
for either kind of information in the field of an area. We shall assume 
that the offsets of these cells are the same for all areas. The offsets 
will be denoted by type (for the cell containing the type information) and 
link (for the cell containing the status information). The offsets are 
"defined" by means of the following additional invariant: 

(117) There are integers, denoted by type and link, such that 
type # link. 
For each area A 

I Os type,link < size(A). 
type, link f. {offset(X) I X E b1°anches(A) }. 
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The cell TYP(A) for areas A E Su H is defined by: 

TYP(A) = ceU(PTR(A) +type). 

The cell LNK(A) for areas A E Su H is defined by: 

LNK(A) = ceU(PTR(A) +Zink). 

Notice that Invariant (117) makes Invariant (116) redundant. 
First consider the type information. For.a given area A, this 

information consists of the set of all offsets of branches of A. It will be 
represented by a pointer, stored in the cell TYP(A), which points to a 
"template". This template is a piece of storage, containing the information 
concerning the offsets of branches of A. There are many ways to represent 
these templates. Which way of representation is appropriate depends to a 
great extent on implementation details. Since this section is only meant as 
an illustration of how a garbage collector can be implemented from an 
abstract description such as given by COLLECT GARBAGE7, we shall choose a 
simple, yet reasonably general approach. The implementation of the garbage 
collector on the MIAM, as a matter of fact, would require a more 
complicated representation of the templates (due to the occurrence of areas 
with a "dynamic" type). 

The representation of the templates is pictured in Figure 7.3. 
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Figure 7.3 

template 

As can be seen, the first cell of a template associated with an area A 
contains the size of A. Strictly speaking the size information does not 
belong to the type information, but containing the size information in the 
templates saves us the trouble of reserving yet another free cell in the 
field of an area. The latter, of course, pays off only if there is a many­
to-one correspondence between areas and templates. The second cell of the 
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template contains the number of branches of A. It is immediately followed 
by cells containing the offsets of these branches (in arbitrary order). 
This is all more formally described in the following invariant: 

(I18) For each A ,;: Su H 
Let n = #bPa:nahes(A). 
Lett= aont(TYP(A)). 
0 s t s N- n - 2. 
aont(aeU(t)) = size(A).. 
aont( aeU(t + 1)) = n. 
{aont(aeU(t + 2 + k)) I O s k < n} 

{offset(X) IX,;: bPa:nahes(A)}. 

The obvious place to store the templates is in a free part of the 
field of the root L, thus making sure that the templates are not moved and, 
consequently, that the contents of TYP(A) need not be updated in a garbage 
collection. Apart from not overlapping the cells occupied by atoms of L, 
this free part of the field of L should not overlap TYP(L) and LNK(L) 
either, as expressed in the invariant below: 

(119) For each A ,;: Su H 
Let n = #bPa:nahes(A). 
Lett= aont(TYP(A)). 
PTR(L) st. 
Let T = {aeU(a) I ts a< t+n+2}. 
T n {LOC(X) I X ,;: atoms(L)} = !ll. 
TYP(L),LNK(L) i T. 

Notice that Invariants (118) and (119) are not violated by COLLECT GARBAGEs 
(though, without Invariant (119), Invariant (118) would have been). 

The above invariants allow us to remove the abstract bPa:nahes and size 
of an area from the algorithm (using a function BRANCH, which, analogous to 
the function AREA in COLLECT GARBAGE8, maps an address b to the branch X 
with addP(LOC(X)) = b). The abstract taPget of a branch can also be removed 
(through Invariant (115)). What remains are the abstract variables M, T and 
B. Let us first of all consider T, for the implementation of which we have 
already reserved a free cell LNK(A) in the field of each area A. This free 
cell will be used to implement T as a linked list, where the (new) variable 
tacts as a pointer to the head of the list. The only "problem" is how to 
indicate the end of the list. The solution to this problem will be deferred 
temporarily. 

Next, consider the variable B. For each area A ,;: Su H the set B(A) 
will be implemented in the standard way as a linked list, where the cell 
TYP(A) acts as a list head (see Figure 5.10). A requirement for the use of 
this implementation trick is that we can efficiently distinguish the 
original contents of TYP(A) (= a pointer to a template) from the address of 
a cell occupied by a branch. The simplest way to satisfy this requirement 
is to demand that all templates are stored in cells to the right of cells 
occupied by branches of L, say in the cells aeU(M) through aeU(N-1) (see 
Figure. 7. 4). 
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Figure 7.4 

The test of whether a given address a is a pointer to a template or the 
address of a "branch cell" then reduces to "a 2: M". The following invariant 
and definition authenticate this trick: 

(120) There is an integer, denoted by M, such that 
For each XE bra:nches(L) 
I addr(LOC(X)) < M. 
For each A E S u H 
I cont(TYP(A));;,: M. 

The implementation of B does not introduce any space overhead at all. There 
is a small time penalty, however: When visiting an area A with B(A) I¢ in 
the marking phase, we have to traverse the linked list emanating from 
TYP(A) in order to find the pointer to the template of A (which we need to 
find the branches of A). Check that this time overhead is O(n), where n is 
the total number of branches of reachable areas. 

Finally, consider the variable M, representing the "marking 
information". There are (at least) two ways to implement- M without any 
space overhead at all. The first (cf. Algorithm GNK.DTEH* in Chapter 5) is 
to initialize each LNK(A) for A E Su H before the marking phase to some 
value unmarked outside the address range 0, ••• , N - 1. Since marking an area 
A is always accompanied by adding A to T and since the latter implies that 
the contents of LNK(A) are changed into a value inside the address range, 
the test "A E M" can be replaced by "cont(LNK(A)) I unmarked" (assuming 
that cont(LNK(A)) is not changed when A is removed from T). The second way 
is to use the following invariant which holds during the marking phase: 

For each A E S u H 
I A E M ~ B(A) I ¢ V A = L. 

This invariant, together with the chosen implementation for B, implies that 
the test "A E M" can be replaced by "cont(TYP(A)) < M or PTR(A) = PTR(L)". 
Since the second method does not require any initialization (which cannot 
be avoided in the first implementation of M since LNK(A) is also used for 
the implementation of the variable Fin COMPACT7 , see Subsection 7.3.2) we 
shall choose this implementation of M. 

The fact that we have to perform the test "PTR(A) = PTR(L)" each time 
we test that A EM, is a nuisance. We can dispose of this test by 
initializing B(L) to {B} at the beginning of the marking phase, where Bis 
a "dunnny branch" with target(B) = L. A proper candidate for B (or better, 
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LOC(B)) is the cell LNK(L). The only function of this cell in the 
implementation of Tis, that it should contain the end of list indicator. 
By pretending that LNK(L) contains a pointer to Land initializing B(L) as 
indicated, LNK(L) will contain (and continue to contain during the entire 
marking phase) a pointer u to the template of L. This pointer makes a fine 
end of list indicator, since it can be distinguished from a pointer to an 
area A E Su H by the test "u <!: M". That is, provided we add the following 
invariant: 

I (121) PTR(L) < M. 

Thus the list termination "problem" for the implementation of Tis also 
solved (i.e., the test "T f, ¢" can be implemented as "t < M"). 

The above describes informally how COLLECT GARBAGEa can be stripped of 
abstract concepts. A systematic, stepwise translation of COLLECT GARBAGEa 
according to the implementations sketched above, including a proof of 
correctness of the implementations, is a tedious, though not really 
difficult process (to which the method described in Chapter 3 is ideally 
suited). Only the final result of this process is presented below. The 
reader is invited to check the correctness of the translation given. In 
particular, it should be checked that none of the new invariants is 
violated. 

COLLECT GARBAGE9: 
Variables: 

a,b,a,d,k,p,q,:r>, t,u,v: integer. 
Action: 

Let Q = {A E Su H I A is unreachable}. 
Lets= LA ES [size(A)]. 
Leth= N-L A E H [size(A)]. 
Let .t = N- size(L). 

{{Mark all reachable areas and construct the branch sets.}} 
u := aont(aell,(l+type)). 
aont(aell(l+ link)) := u. 
aont(aeU(l+type)) := l+ link. 
t := .e.. 
:r> := aont(aell(u)). 
While t < M 

a := t. 
t : = aont (ae U ( t + link) ) • 
u := aont(aeU(a +type)). 
While u < M 
I u := aont(aell(u)). 
k := DEGREE(u). 
While k > 0 

b := a+OFFSET(u,k). 
a:= aont(aell(b)). 
v := aont(aeU(a +type)). 
If V <!: M 

I aont(aeU(a + link)) := t. 
t := a. 
:r> := ;r, + SIZE(a). 

aont(aell(b}) := v. 
aont(aeU(a + type)) := b. 
k:=k-1. 



{{Update all pointers to areas in Sand prepare to move.}} 
a := 0. 
b := O. 
d := s. 
PROCESS BLOCK. 
p := b. 
While b # s 

C := b. 
PROCESS GAP. 
cont(ceU(c)) := b-1. 
a := b. 
PROCESS BLOCK. 
cont (ee U (e - 1)) : = b - a. 

{{Update all pointers to areas in Hand prepare to move.}} 
a := N- (r-a). 
b := h. 
C := h. 
d := N. 
PROCESS BLOCK. 
While b # N 

cont(aeU(b)) := b-a. 
a:= b. 
PROCESS GAP. 
cont(eeU(b-1)) := c. 
C := b. 
PROCESS BLOCK. 

q := c. 
{{Move the areas in S.}} 

a := p.· 
b := p. 
While b # s 

b := cont(aell(b)). 
k := cont(cell(b)). 
b:=b+l. 
While k > 0 

cont(cell(a)) := cont(cell(b)). 
a:=a+l. 
b := b+l. 
k := k-1. 

{{Move the areas in H.}} 
a:= q. 
b := q. 
While b ,fa h 

b :=b-1. 
b := cont(cell(b)). 
k := cont(cell(b)). 
While k > 0 

a:= a-1. 
b := b-1. 
cont(cell(a)) := cont(cell(b)). 
k := k-1. 

{{Remove the unreachable areas.}} 
S, H : = S \ Q, H \ Q. 

279 
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PROCESS BLOCK: 
While b # d and cont(ceU(b + type)) < M 

u := cont(ceU(b+type)). 
While u < M 

I v:= cont(cell(u)). 
cont(cell(u)) := a. 
u := v. 

cont(cell(b + type)) := u. 
k := SIZE(b). 
a := a+k. 
b := b+k. 

PROCESS GAP: 
While b 'F d and cont(cell(b +type)) ~ M 

I k := SIZE(b). 
b :=b+k. 

SIZE(b): 
cont( cell ( cont ( cell(b +type)))). 

DEGREE(u): 
cont( cell(u + 1)). 

OFFSET(u,k): 
cont(cell(u + k + 1)). 

7.3.1.3. The final translation 

The translation of COLLECT GARBAGE9 into code for the machine 
described in the beginning of Section 7.3 is straightforward. In the 
translation given below we have chosen specific values for type and link, 
as described by: 

I (122) type= 1, link= 0. 

The registers of the machine which are used are a, b, c, d, h, k, · L, m, n, 
p, q, r, s, t, u, v and w. These registers correspond to the variables of 
COLLECT GARBAGE9, except for w, which is used as a general purpose working 
register, and m, n, s, hand l, which should initially contain the values 
M, N, s, hand l from COLLECT GARBAGE9, respectively. This is indicated in 
the algorithm below by initialization statements for the registers m, n, s, 
hand l. At the end of the algorithm, sand h will contain a pointer to the 
new top of Sand H respectively, while m, n and l are not affected. For 
reasons of clarity the statements have been rearranged somewhat. (The 
statement "S,H := S \ Q,H \ Q" has returned to its old place.) 

COLLECT GARBAGE10: 
Registers: 

a,b,c,d,h,k,l,m,n,p,q,r,s,t,u,v,w. 
Action: 

m := M. 
n := N. 
s := r: A E S [size(A)]. 
h := N-r: A E H [size(A)]. 
l := N- size(L). 
Let Q = {A E Su H I A is unreachable}. 



S,H := S\Q_,H\Q_. 
CALL,COLG. 

PROC,COLG 
CALL,MARK 
CALL,UPDS 
CALL,UPDH 
CALL,MOVS 
CALL,MOVH 
RETURN 

PROC,MARK 
COPY,l,w 
ADD,1,w 
COPY, [w],u 
COPY,u,[l.J 
COPY,l, [w] 
COPY,l,t 
COPY,[u],r 

LABEL,Ll 
IFGE,t,m,L6 
COPY, t,a 
COPY,[t],t 
COPY,a,w 
ADD,1,w 
COPY, [w],u 

LABEL,L2 
IFGE,u,m,L3 
COPY, [u],u 
GOTO,L2 

LABEL,L3 
ADD,1,u 
COPY, [u],k 

LABEL,L4 
IFLE,k,0,Ll 
ADD,1,u 
COPY, [u],b 
ADD,a,b 
COPY,[b],c 
COPY,c,w 
ADD,1,w 
COPY, [w],v 
IFLT,v,m,L5 
COPY,t,[c] 
COPY,c, t 
COPY, [v],w 
ADD,W,l" 

LABEL,L5 
COPY,v,[b] 
COPY,c,w 
ADD,1,w 
COPY,b,[w] 
SUB,1,k 
GOTO,L4 

LABEL,L6 
RETURN 
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PROC,UPDS 
COPY, O,a 
COPY, 0, b 
COPY,s,d 
CALL,BLKG 
COPY,b,p 

LABEL,L7 
IFEQ,b,s,LB 
COPY,b,c 
CALL,GAPG 
COPY,b,w 
SUB, 1, w 
COPY,w,[c] 
COPY,b,c 
CALL,BLKG 
COPY,b,w 
SUB,c,w 
SUB,1,c 
COPY,w,[c] 
GOTO,L? 

LABEL,LB 
RETURN 

PROC,UPDH 
COPY,r,w 
SUB,a,w 
COPY,n,a 
SUB,w,a 
COPY,h,b 
COPY,h,c 
COPY,n,d 
CALL,BLKG 

LABEL,L9 
IFEQ, b, n, Ll 0 
COPY,b,w 
SUB,c,w 
COPY,w, [b] 
COPY,b,c 
CALL,GAPG 
COPY,b,w 
SUB,1,w 
COPY,c, [w] 
COPY,b,c 
CALL,BLKG 
GOTO,L9 

LABEL,LlO 
COPY,c,q 
RETURN 



PROC,BLKG 
LABEL,Lll 

IFEQ,b,d,L13 
COPY,b,w 
ADD,1,w 
COPY,[w],u 
IFGE,u,m,L13 

LABEL,L12 
COPY, [u],v 
COPY,a, [u] 
COPY,v,u 
IFLT,u,m,L12 
COPY,b,w 
ADD,1,w 
COPY,u,[w] 
COPY, [u],k 
ADD,k,a 
ADD,k,b 
GOTO,L11 

LABEL,L13 
RETURN 

PROC,GAPG 
LABEL,L14 

IFEQ,b,d,L15 
COPY,b,w 
ADD,1,w 
COPY,[w],u 
IFLT,u;m,L15 
COPY, [u],k 
ADD,k,b 
GOTO,L14 

LABEL,L15 
RETURN 

PROC,MOVS 
COPY,p,a 
COPY,p,b 

LABEL,L16 
IFEQ,b,s,LlB 
COPY, [b],b 
COPY,[b],k 
ADD,1,b 

LABEL,L17 
IFLE,k,O,L16 
COPY, [b], [a] 
ADD,1,a 
ADD,1,b 
SUB,1,k 
GO1.'O,L17 

LABEL,LlB 
COPY,a,s 
RETURN 
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PROC,MOVH 
COPY,q,a 
COPY,q,b 

LABEL,L19 
IFEQ,b,h,L21 
SUB,1,b 
COPY,[b],b 
COPY, [b],k 

LABEL,L20 
IFLE,k,O,L19 
SUB,1,a 
SUB,1,b 
COPY, [b], [a] 
SUB,1,k 
GOTO,L20 

LABEL,L21 
COPY,a,h 
RETURN 

7.3.2. COMPACT 

7.3.2.1. Optimizing the moving of areas 

As we did for COLLECT GARBAGE7 , we shall first of all optimize the 
moving phase of COMPACT7• In contrast to the moving phase of 
COLLECT GARBAGE7, only the (live) areas in Sare moved in COMPACT7• The 
technique which will be used to optimize the moving of the areas in Sis 
the same as described in Subsection 7.3.1.1. This implies that we use the 
updating phase to determine the "residuum" in S (recorded in the variable 
p) and to organize Sin "gaps" and "blocks", as indicated in Figure 7.2. 
The blockwise moving of the areas in Sis then entirely the same as in 
COLLECT GARBAGE8• This is all described in COMPACT8, where, of course, we 
assume that Invariant (116) is valid. 

COMPACT a: 
Variables: 

B: mapping from areas to sets of branches, 
F: mapping from areas to integers, 
a: integer. 

Action: 
Let Q. = {A E S I status(A) = dead}. 
Lets= LA ES [size(A)]. 

{{Process all pointers from L to areas in S.}} 
B,F := {(A,¢>) I A E S, status(A) = alive},¢>. 
For each XE branahes(L) 

I Let B = target(X). 
If B i H 
I B(B) := B(B) u {X}. 



{{Update all pointers to areas in Sand prepare to move.}} 
a,b := o,o. 
PROCESS BLOCK. 
p := b. 
While b f s 

a:= b. 
PROCESS GAP. 
aont(aeU(a)) := b-1. 
a := b. 
PROCESS BLOCK. 
aont ( ae l Z( a - 1) ) : = b - a. 

{{Move the areas in S.}} 
a,b := p,p. 
While b f s 

b := aont(aell(b)). 
k := aont(aell(b)). 
b :=b+l. 
While k > 0 

I aont~:ell(a)) := aont(aell(b)). 
a,b .- a+l,b+l. 
k := k-1. . 

{{Remove the dead areas.}} 
s := s \ Q. 

PROCESS BLOCK: 
While bf sand sta-tus(AREA(b)) = alive 

Let A = AREA(b). 
While B(A) f ¢ 

I Get X from B(A). 
aont(LOC(X)) := a. 

F(A) := a. 
For each XE branahes(A) 

Let B = target(X). 
If B l H 

If PTR(B) ~ PTR(A) 
I aont(LOC(X)) := F(B). 
else 
I B(B) := B(B) u {X}. 

k := size(A). 
a,b := a+k,b+k. 

PROCESS GAP: 
While bf sand status(AREA(b)) = dea.d 

I Let A = AREA(b). 
k := size(A). 
b :=b+k. 

AREA(b): 
The area A E Su H with PTR(A) = b. 
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7.3.2.2. Removing the abstract concepts from the algorithm 

The removal of the abstract concepts from COMPACT8 is in many respects 
the same as it was for COLLECT GARBAGE8 (see Subsection 7.3.1.2). We shall 
copy Invariants (117)-(121), thus providing simple implementations for the 
branches and size of an area. For the variable B the same implementation 
will be chosen as in COLLECT GARBAGE9, though there is no need to introduce 
a "dummy branch" now. The only new problems are the removal of the status 

· of an area (in S) and the variable F. The obvious way to implement Fis to 
use the cell LNK(A) for the recording of F(A) for each AES. The status of 
an area in Swill be implemented by the following additional invariant: 

I (123) For each AES 
I status(A) = dead ~ cont(LNK{A)) = N. 

Check that this invariant is not violated by COLLECT GARBAGE9 (and 
consequently not by COLLECT GARBAGE10). Check also that COMPACT9, which is 
presented below, does not violate any of the additional invariants. 

COMPACT 9: 
Variables: 

a,b,c,d,e,k,p,u,v: integer. 
Action: 

Let Q ={AES I status(A) = dead}. 
Lets= LA ES [size(A)]. 
Leth= N-L A EH [size(A)]. 
Let l = N - size(L). 

{{Process all pointers from L to areas in S.}} 
u : = cont( celU l +type)). 
k : = DEGREE(u). 
While k > 0 

a : = l + OFFSET(u, k). 
b := cont(cell(a)). 
If b < h 

I cont( celU a)) := cont( ceU(b +type)). 
cont(cell(b + type)) := a. 

k := k-1. 
{{Update all pointers to areas in Sand prepare to move.}} 

a := 0. 
b := o. 
PROCESS BLOCK. 
P := b. 
While b f s 

C := b. 
PROCESS GAP. 
cont(celUc)) := b-1. 
C := b. 
PROCESS BLOCK. 
cont ( ce l Uc - 1) ) • - b - c. 



{{Move the areas in S.}} 
a:= p. 
b := p. 
While b 1' s 

b := aont(aeLl(b)). 
k := aont(aeLL(b)). 
b := b+l. 
While k > 0 

aont(aeLL(a)) := aont(aeLL(b)). 
a:= a+l. 
b := b+l. 
k:=k-1. 

{{Remove the dead areas.}} 
s := s \ Q.. 

PROCESS BLOCK: 
While b ;, s and aont(aeU(b + Unk)) ;, N 

u := aont(aeU(b+type)). 
While u < M 

I v := aont(aeLL(u)). 
aont(aeLL(u)) := a. 
u := v. 

aont(aeU(b+type)) := u. 
aont(aeU(b + Unk)) := a. 
k := DEGREE(u). 
While k > 0 

d := b+OFFSET(u,k). 
e := aont(aeLL(d)). 
If ·e < h 

If e !> b I aont(aeU(d)) := aont(aeU(e + Unk)). 
else 

I aont(aeU(d)) := aont(aeU(e+type}). 
aont(aeU(e + type)) := d. 

k:=k-1. 
k := SIZE(b). 
a:= a+k. 
b := b+k. 

PROCESS GAP: 
While b ;, s and aont (ae U (b + Unk) ) = N 

I k := SIZE(b). 
b := b + k. 

SIZE(b): 
aont(aeU(aont(aeU(b +type}}}). 

DEGREE(u): 
aont( aeU(u + 1)). 

OFFSET(u, k): 
aont( aeU(u + k + 1)). 
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7.3.2.3. The final translation 

The translation of COMPACT9 into machine code, assuming the validity 
of Invariant (122) (besides (Il)-(121) and (123)), is again 
straightforward. The registers of the machine which are used are a, b, c, 
d, e, h, k, l, m, n, p, s, u, v and w. The registers a, b, c, d, e, k, p, u 
and v correspond to the variables of COMPACT9. As to. the registers w, m, n, 
s, hand l the same remarks apply as made in Subsection 7.3.1.3. The labels 
used in the code are chosen in such a way that the code is "compatible" 
with that of COLLECT GARBAGE10, thus enabling the integration of 
COLLECT GARBAGE10 and COMPACT10 (see the next section). Among other things, 
this implies that the subroutine MOVS is identical to the subroutine of the 
same name used in COLLECT GARBAGE10· The statement "S := S \ Q" has been 
moved to its old place. 

COMPACT 10: 
Registers: 

a, b, c, d, e, h, k, l,m, n,p, s, u, v, w. 
Action: 

m := M. 
n := N. 
s :=LA ES [size(AJ]. 
h := N-L A EH [size(AJ]. 
l := N- size(L). 
Let Q ={AES I status(A) dead}. 
s := s \ Q. 
CALL,COMP. 

PROC,COMP 
CALL,UPDL 
CALL,UPDC 
CALL,MOVS 
RETURN 



PROC,UPDL 
COPY,l,w 
ADD, 1,w 
COPY, [w],u 
ADD,1,u 
COPY,[u],k 

LABEL,L22 
IFLE,k,O,L24 
ADD,1,u 
COPY, [u],a 
ADD,l,a 
COPY, [a],b 
IFGE,b,h,L23 
COPY,b,w 
ADD, 1, w 
COPY,[w],[a] 
COPY,a,[w] 

LABEL,L23 
SUB,1,k 
GOTO,L22 

LABEL,L24 
RETURN 

PROC,UPDC 
COPY,O,a 
COPY,O,b 
CALL,BLKC 
COPY,b,p 

LABEL,L25 
IFEQ,b,s,L26 
COPY,b,a 
CALL,GAPC 
COPY,b,w 
SUB,1,w 
COPY,w,[a] 
COPY,b,a 
CALL,BLKC 
COPY,b,w 
SUB,a,w 
SUB,1,a 
COPY,w, [a] 
GOTO,L25 

LABEL,L26 
RETURN 
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PROC,BLKC 
LABEL,L27 

IFEQ,b,s,L34 
COPY,[b],t 
IFEQ,t,n,L34 
COPY,b,w 
ADD,1,w 
COPY, [w],u 

LABEL,L28 
IFGE,u,m,L29 
COPY, [u], v 
COPY,a, [u] 
COPY,v,u 
GOTO,L28 

LABEL,L29 
COPY,u,[w] 
COPY,a, [b] 
COPY,u,v 
ADD,1,v 
COPY,[v],k 

LABEL,L30 
IFLE,k,O,L33 
ADD,1,v 
COPY,[v],d 
ADD,b,d 
COPY,[d],e 
IFGE,e,h,L32 
IFGT,e,b,L31 
COPY,[e],[d] 
GOTO,L32 

LABEL,L31 
COPY,e,w 
ADD,1,w 
COPY, [w], [d] 
COPY,d,[w] 

LABEL,L32 
SUB,1,k 
GOTO,L3O 

LABEL,L33 
COPY,[u],k 
ADD,k,a 
ADD,k,b 
GOTO,L27 

LABEL,L34 
RETURN 



PROC,GAPC 
LABEL,L35 

IFEQ,b,s,L36 
COPY, [b], t 
IFNE,t,n,L36 
COPY,b,w 
ADD,1,w 
COPY, [w],u 
COPY,[u],k 
ADD,k,b 
GOTO,L35 

LABEL,L36 
RETURN 

PROC,MOVS 
COPY,p,a 
COPY,p,b 

LABEL,Ll6 
IFEQ,b,s,LlB 
COPY, [b],b 
COPY, [b], k 
ADD,1,b 

LABEL,Ll? 
IFLE,k,0,L16 
COPY, [b ], [a J 
ADD,1,a 
ADD,1,b 
SUB,1,k 
GOTO,Ll-7 

LABEL,LlB 
COPY,a,s 
RETURN 
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7. 4. CONCLUSION 

In this chapter we have described the transformation of the operations 
COLLECT GARBAGE and COMPACT from their specification to their final 
implementation. This transformation process was preceded and accompanied by 
the construction of a "theory" (the model). The importance of the latter 
cannot be emphasized enough. First of all, the model_ allowed us to 
unambiguously specify the problem in a way entirely independent of 
Chapter 6. Secondly, due to the fact that the model contained only relevant 
information, the complexity of the design process could be kept under 
control relatively easily. Thirdly, all design decisions (such as the 
representation of the "templates") upon which algorithms were based, had to 
be recorded in the model. The (final) model therefore provides all 
information necessary to incorporate the machine code routines for 
COLLECT GARBAGE and COMPACT correctly in a given storage management system. 

The fourth and most important virtue of the model was, that it ensured 
that we were always on firm ground: At each stage of the transformation 
process correctness proofs were possible. The main reason why we omitted 
them was lack of space. Moreover, the transformations used were often (but 
not always) so simple that, when proving the correctness of these 
transformations, we would have felt like mathematicians might feel, having 
to prove that 1 +1 = 2 (or worse, that 111 +111 = 222). In relation to this 
it is worth noting that the first versions of COLLECT GARBAGE10 and 
COMPACT10 were, in fact, incorrect, which was discovered in a vain attempt 
to execute them. Upon inspection the errors appeared to have been made in 
the final transformation phase: one was a clerical error and the other was 
the result of an unjustified attempt to make a local optimization. This 
shows that certain transformations (in particular those from 
COLLECT GARBAGE9 to COLLECT GARBAGE10 and from COMPACT9 to COMPACT10) can 
be performed better by a machine, not because they are difficult, but 
because the amount of detail involved in them can easily confuse a human 
being. 

It is not difficult to check that, assuming the execution of an 
instruction takes 0(1) time, the machine code routines for COLLECT GARBAGE 
and COMPACT operate in O(m + n) time, where m and n are the integers defined 
at the end of Subsections 7.2.1.7 and 7.2.2.7 (for COLLECT GARBAGE -and 
COMPACT respectively). This makes the asymptotic behaviour of these 
routines as good as we can expect. The routines are also believed to be 
faster than most other linear time garbage collection and compaction 
routines. The compaction routine used is believed to be novel (see 
Algorithm CND.BFGU in Chapter 5) and was discovered only in "redoing" the 
original design (which was based on Algorithm CND.BGUP from Chapter 5) and 
carefully judging each design decision. The discovery of this compaction 
algorithm can be credited for the major part to the transformational method 
we used in the design. 

We shall conclude this chapter by giving a full listing of the machine 
code for COLLECT GARBAGE and COMPACT. This listing not only marks the end 
of this chapter and the end of this monograph, it is also a symbol for that 
which triggered the research reported in this monograph: the complexity of 
garbage collector design. The listing in itself is meaningless, of course, 
unless embedded in the appropriate theory. 
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PROC,COLG LABEL,L6 IFGE,u,m,Ll3 SUB,1,a IFEQ,t,n,L34 
CALL,MARK RETURN LABEL,L12 SUB,1,b COPY,b,w 
CALL,UPDS PROC,UPDS COPY,[u],v COPY,[b],[a] ADD,1,w 
CALL,UPDH COPY,O,a COPY,a, [u] SUB,1,k COPY,[w],u 
CALL,MOVS COPY,O,b COPY,v,u GOTO,L20 LABEL,L28 
CALL,MOVH COPY,s,d IFLT,u,m,L12 LABEL,L21 IFGE,u,m,L29 
RETURN CALL,BLKG COPY,b,w COPY,a,h COPY, [u], V 

PROC,COMP COPY,b,p ADD,1,w RETURN COPY,a, [u] 
CALL,UPDL LABEL,£? COPY,u,[w] PROC,UPDL COPY,v,u 
CALL,UPDC IFEQ,b,s,LB COPY,[u],k COPY,l,w GOTO,L28 
CALL,MOVS COPY,b,c ADD,k,a ADD,1,w LABEL,L29 
RETURN CALL,GAPG ADD,k,b COPY, [w],u COPY,u,[w] 
PROC,MARK COPY,b,w GOTO,Lll ADD,1,u COPY,a, [b] 
COPY,l,w SUB,1,w LABEL,Ll3 COPY, [u], k COPY,u,v 
ADD,1,w COPY,w,[c] RETURN LABEL,L22 ADD, 1, V 
COPY, [w],u COPY,b,c PROC,GAPG IFLE, k, O,L24 COPY, [v],k 
COPY,u,[l] CALL,BLKG LABEL,L14 ADD,1,u LABEL,L30 
COPY,l,[wJ COPY,b,w IFEQ,b,d,L15 COPY, [u],a IFLE,k,O,L33 
COPY,l,t SUB,c,w COPY,b,w ADD,l,a ADD,1,v 
COPY, [u],r SUB,1,c ADD,1,w COPY,[a],b COPY,[vJ,d 
LABEL,Ll COPY,w, [a] COPY, [w],u IFGE,b,h,L23 ADD,b,d 
IFGE,t,m,L6 GOTO,L? IFLT,u,m,Ll5 COPY,b,w COPY, [d],e 
COPY,t,a LABEL,LB COPY, [u],k ADD,1,w IFGE,e,h,L32 
COPY,[t],t RETURN ADD,k,b COPY,[w],[a] IFGT,e,b,L31 
COPY,a,w PROC,UPDH GOTO,L14 COPY,a,[w] COPY, [e J, [d] 
ADD,1,w COPY,r,w LABEL,L15 LABEL,L23 GOTO,L32 
COPY,[w],u SUB,a,w RETURN SUB,1,k LABEL,L31 
LABEL,L2 COPY,n,a PROC,MOVS GOTO,L22 COPY,e,w 
IFGE-,u,m,L3 SUB,w,a COPY,p,a LABEL,L24 ADD,1,w 
COPY,[u],u COPY,h,b COPY,p,b RETURN COPY,[w],[d] 
GOTO,L2 COPY,h,c LABEL,Ll6 PROC,UPDC COPY,d,[w] 
LABEL,L3 COPY,n,d IFEQ,b,s,L18 COPY,O,a LABEL,L32 
ADD,1,u CALL,BLKG COPY,[b],b COPY,O,b SUB,1,k 
COPY, [u], k LABEL,L9 COPY, [b],k CALL,BLKC GOTO,L30 
LABEL,L4 IFEQ,b,n,LlO ADD,1,b COPY,b,p LABEL,.L33 
IFCE,k, O,Ll COPY,b,w LABEL,Ll? LABEL,L25 COPY, [u:l,k 
ADD,1,u SUB,c,w IFLE,k,O,L16 IFEQ,b,s,L26 ADD,k,a 
COPY,[u],b COPY,w,[b] COPY,[b],[a] COPY,b,c ADD,k,b 
ADD,a,b COPY,b,c ADD,1,a CALL,GAPC GOTO,L27 
COPY,[b],c CALL,GAPG ADD,1,b COPY,b,w LABEL,L34 
COPY,c,w COPY,b,w SUB,1,k SUB,1,w RETURN 
ADD,1,w SUB,1,w GOTO,Ll? COPY,w,[c] PROC,GAPC 
COPY, [w],v COPY,c, [w] LABEL,LlB COPY,b,c LABEL,L35 
IFLT,v,m,L5 COPY,b,c COPY,a,s CALL,BLKC IFEQ,b,s,L36 
COPY, t, [a] CALL,BLKG RETURN COPY,b,w COPY,[b],t 
COPY,c,t GOTO,L9 PROC,MOVH SUB,c,w IFNE, t, n, L36 
COPY,[v],w LABEL,LlO COPY,q,a SUB,1,c COPY,b,w 
ADD,w,r COPY,c,q COPY,q,b COPY,w, [a] ADD,1,w 
LABEL,L5 RETURN LABEL,L19 GOTO,L25 COPY, [w],u 
COPY,v,[b] .PROC,BLKG IFEQ,b,h,L21 LABEL,L26 COPY,[u],k 
COPY,c,w LABEL,Lll SUB,1,b RETURN ADD,k,b 
ADD,1,w IFEQ,b,d,L13 COPY,[b],b PROC,BLKC GOTO,L35 
COPY,b,[w] COPY,b,w COPY,[b],k LABEL,L27 LABEL,L36 
SUB,1,k ADD,1,w LABEL,L20 IFEQ,b,s,L34 RETURN 
GOTO,L4 COPY, [w],u IFLE, k, 0,£19 COPY,[b],t 
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