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CHAPTER 1

INTRODUCTION AND SUMMARY

8§1.1 Survey of the contents.

In this monograph we shall study so-called point processes; i.e.

we study probability mechanisms according to which a locally finite subset

of a locally compact space U with countable base can be chosen; examples

d, (0, 1), HR+,ZZd; etc.; a locally finite subset

of such spaces U are R
of U 1s an unordered finite or countable set of points without condensation
point. We are concerned with the probability distribution of this locally
finite subset —of this finite or countable set of points. The locally finite
subset chosen at random 1s called a simplel) polint process.

The modern theory of point processes begins with C. Palm's paper (43).
After him the name Palm distribution was given to the conditional distribut-
ion of a poilnt process given the event that the point process contains a
given point 1n U. Because generally this is a null-event, definition
problems arise (See e.g. Kallenberg (83) - chapter 10 or Neveu (77)-1I1I-2).

We are mainly interested in a notion which is in a way the opposite of
the Palm distribution: Consider an infinitesimally small subset in U ; now
we ask for the expected number of points of the point process contained 1in
this infinitesimally small subset conditionally given the locations of all

points of the point process outside this infinitesimally small subset.

Because we generally have to deal with an unccuntable number of null-sets,
a definition problem again arises.

In chapter 4 earlier solutions to this problem are sketched. Papangelou
(74) first solved this problem by a limit procedure. The object that he
defined i1n this manner, was called by him the conditional intensity of the
point process. Later Kallenberg (78) gave another proof of the existence
of the conditional intensity under less restrictive conditions. Papangelou
already noticed that his result gave a sort of analogue to the decomposition
of Doob and Meyer in the theory of processes on 1R

+

1) In this section the word '"simple'" will be omitted.



The Doob-Meyer decomposition is an important result in martingale

theory, in which Doob and Meyer are indeed predominant names. In the

. "Strassburg school" (See e.g. Dellacherie and Meyer (75) and (80)) 1in
martingale theory an important feature is the fact that one defines O-
fields on the product of the probability space and R other than product-
o-fields on this product space, and that stochastic processes on IR _ are
regarded as measurable functions on this product space. Important LO the
Dodb-—Meyer decomposition is the notion of previsibility which 1s related
to the previsible o-field on { X R (chapter 3). Previsibility enables
us to speak of processes whose values at any time only depend on the strict
past, so that they are predictable. Here it 1s essential to note that
this is a property which applies simultaneously at an uncountable number
of times.

The fact, that previsibility helps to solve a problem analogous to the
definition problem of the conditional intensity, becomes clear 1f we note
that previsible processes at any time only depend on what happened strictly
before that time, whereas the conditional intensity of a poipt process in
an infinitesimally small set depends only on the location of the points of
the point process outside this infinitesimally small set. Hence the role of
the past of a moment in time corresponds in a way to the events which are
determined by the part of a point process outside a given subset of U.

Our aim is to explore the analogy that we just mentioned and to use
it to give a more natural definition of the conditional intensity. Because
this leads to the notion of visibility — which is related to the visible
o-field on X U - we shall use the word (dual) visible projection of the
point process rather than conditional intensity. The theory of visibility
is developed in chapter 5 analogous to the theory cif previsibility. It

SR

should be noted that visibility is defined w.r.t. the point process. A

great number of the results of this chapter - visible section theorem,
visible projection of processes and dual visible projection of the point
process — was already present in Van der Hoeven (82).

In our context several smoothness conditions are naturally introduced.

The most important of them stems from Papangelou (74). These smoothness

conditions are formulated and studied in chapter 6 in a way which dovetails
5 into the theory of visibility.
. In chapter 7 expressions for visible projections are derived and in

particular a limit formula is proved by which the dual visible projection




indeed 1s 1dentified with Papangelou's conditional intensity (cf. Van der
Hoeven (82)).

The notion of martingalelike measure 1s defined in chapter 8. The name
already indicates that this 1s an analogue of a martingale on R _. In this
context we also study Papangelou kernels. The great importance of these
kernels became apparent 1n Matthes, Warmuth and Mecke (79). They showed
that the Papangelou kernel of a reasonably smooth point process determines
important properties concerning the distribution of the point process. We

shall discuss their results in chapter 9.
§1.2. Some generalizations and some techniques used.

The most nalve way to describe simple point processes on some space U
1s by defining a probability measure on the space of all locally finite sub-
sets of U. It turns out to be more practical to associate with each
locally finite subset of U the counting measure of that subset, so that we
obtain a probability mechanism by which a measure on U 1is chosen, and
hence the point process 1s an example of what is logically called a random
measure. (It will turn out that the dual visible projection is an example
of a random measure too).

The theory developed here can easily be extended to the more general
compound point processes (cf. Van der Hoeven (82)). We use another form
by which we are able to describe compound point processes and other generalizat-
ions. Indeed, we introduce the notion of a (simple) marked point process.
In the theory of point processes on R, this notion is often used (cf. e.g.
Brémaud and Jacod (77) or Jacod (79):; cf. also Varsei (78)).

Marked point processes are obtained as follows: Originally we chose,
according to some probability mechanism, a locally finite subset of U (or the
assocliated counting measure), but now, in addition, each point of this
locally finite subset of U 1s provided in some stochastic manner with a
mark, l1.e. an element of some space (locally compact, with countable base)
K. Hence the probability mechanism chooses a subset of the product space
of U and K , whose projection on U is locally finite and which is such
that every point in this projection on U corresponds to exactly one
point in U X K . Thus we obtain a point process on U with marks in K ,

which can and will be described by a random measure on U X K : The counting

measure of the randomly chosen subset of U X K , that we just described.



The space of all such counting measures may of course be used as
probability space, but it turns out to be useful sometimes to consider an
abstract probability space on which the (marked) point process 1s defined
as a fundamental mapping. However, this brings with it that the notation
becomes more complicated and that assertions become intuitively less clear.
As a result, there are statements which are more readily understood when
one assumes that the probability space consists of the counting measures oOn
U X K described above.

It is clear that on a abstract probability space more random measures
can be defined. However, visibility remains to be defined w.r.t. our basic
(marked) point process.

Nonetheless, the dual visible proje’ction (w.r.t the basic marked point
process) may be defined and this definition does not give rise to any
complications, in comparison with the definition of the dual visible
projection of the point process itself. On the other hand, proving the
existence of the conditional intensity as a limit in thils more general con-
text requires a non-trivial extension of the proof of the existence of the
conditional intensity of the point process itself. Kallenberg (83) proved
this extension (see 87.4).

On the space U the Borel o-field is defined. This o-field contains
an uncountable number of sets. Since uncountable numbers are unpleasant 1in
probability, it turns out to be useful to choose a countable sequence of
countable partitions of U, which become finer and finer. (For instance, 1n
the case U = R, each partition may consist of lefthand open, righthand
closed intervals, which are each divided in two such intervals 1in order to
obtain the next partition). These partitions can be chosen 1n such a way,
that their union forms a base for the topology of U . This union contains
a countable number of sets, so that, if there corresponds a null-set to
each of these sets, the union of these null-sets is still a null-set. Note
that given a fixed Borel subset B of U , we may assume that B 1s an

element of one of the partitions mentioned above.



CHAPTER 2

NOTAT IONS

§2.1. Marked point processes.

Let U and K be two locally compact topological spaces with a
countable base. Such spaces are known to be Polish, 1.e. a metric exists
for which they are separable and complete (for a proof see for instance
Bauer (78) — Satz 44.1). We note that the space U X K is again locally
compact with a countable base. The Borel o-fields on the spaces U and

K are denoted by B and KX respectively.

There exists (and we shall choose) a sequence of partitions U5
Ué, ... o0f U, such that U = g Uic:B , such that each V € Ui 1s the
union of a bounded number of elements of Ui+1 and such that U} contains
at most a countable number of sets, which are all bounded. This implies

that U contains at most a countable number of sets, which are all bound-
ed. Furthermore, we shall suppose, that for every u € U and G € B open
with u € G there exists a set V € U such that u € V © G; hence
B = T, T'(U) denoting the o-field generated by U . If V € U
i,v:{WEUi!WCV}'

We now 1ntroduce some classes of measures: If E 1is an arbitrary Polish

3

then we write U

space, we denote by L(E) the collection of all positive Radon measures

(i.e. positive locally finite measures) on (E,E), where E 1is the Borel

O-~field on E. In the wvague topology elements o ~converge to p 1f IE f dQn >
'IE f dp for all continuous functions f on E with compact carrier.

Endowed with this topology the space L(E) becomes Polish. The correspond-

ing Borel o-field on L(E) 1is also generated by the sets of the form

{ p € L(E) ] o(D) < o} with @& > 0 and D a Borel subset of E (For these

b b—
i ———.

matters, see Kallenberg (83)).

The space M® consists of all p € L(U) such that p(V) € {0, 1, 2,
e 5, ©} for all V € B and O({ul}) € {0,1} for all u € U. Elements
of M are called simple point measures on U ~ for the sake of complete-
ness we note that elements of L({U) satisfying the first of these two
conditions but not necessarily the second, are called point measures: the
number o({u}) 1is the multiplicity of p in u . The space M
consists of all p € L(U x K) such that p(A) € {0, 1, 2, ... , =} for



all A € B x K, O({u} x K) € {0,1} for all u € U and such that
p(. X K) € L(U). Elements of M are called point measures on U marked
by elements of K . ‘

Choosing K = {1, 2, ... } or K = (0,©) we are able to describe res-
respectively non-simple and compound point meésures on U by marked measures.
If K reduces to one point, we see that M and M  are isomorphic
Where no confusion can arise we omit the words "simple'" or "marked".

It can easily be checked that M and M  are measurable subsets of
L(U X R and L(U) respectively. The o-field M is the trace on M
of the Borel o-field on L(U X K); writing for all V € B

M(V) = T{p €M | p BxD) <a} | a> 0,BEB, BNV = @,

———
e

D € X)

we see that M =M (@).

If BE€EB and p€L(U X K) (resp. p € L(U)) then the measure Bp
on U XK (resp. on U) will be defined by Bp(.) = p((B XK N . )
(resp. by Bp(.) = p(B N . )).

Let (Q,J A, P) be a complete probability space (hence A contains all
subsets of P-null sets in A4 ; as no confusion can arise, we drop the letter
"P" in these instances). The class of all null sets in A4 1is denoted

by N .

- The main object of study in this monograph will be a measurable
mapping W : £ > M . This fundamental mapping is fixed in the sequel.

It is called a random (marked) point measure or a (marked) point proaessl) .
We also define once and for all the (simple non-marked) random measure £ ,
i.e. the measurable mapping & : Q@ > M, by &(.) = u(. xK). If K
reduces to one point, then essentially & = u .

We define the exterior o-field of an element V € B by
| - ]
F (V) =T @MWV)),N ;

and put: F =F (@). It is known (cf. e.g. Meyer and Dellacherie (75)
- I - 18 and IT - 31) that if F € F (resp. F € F(V), then there

I)Oneﬁ might argue that the word ''point process' should be reserved for the

‘distribution of the random point measure | . We, however, do not make this
distinction.



exlsts a set F¥* € M (resp. F*¥ € M (V) such that
P(FA{w]| ue€e F*} =0;

this transition from a set in F to the corresponding one in M will

in future always be indicated by an ' * ",
§2.2. Some examples.

We shall give some fundamental examples of point processes. The
first one — the "zero-or—-one-point process" - seems very trivial; still
it is important to the theory as will be seen later on. Both in theory
and practice the Poisson process is encountered in many situations and
1t 1s used in the definition of many other processes. Indeed we shall
define here two more processes — the Gibbs and the Cox. process — using

the Poisson process. In chapter 10 we shall study these and other

examples 1n more detail.

EXAMPLE 2.2.1. The zero—or-one—-point process. This non-marked

1)

simple point process ° is based on a constant ¢ € [0,1] and a

distribution Vv on the state space U : with probability 1 - ¢
there 1s no point in U at all ( & = 0 , 0 denoting the zero measure :

.QKV) = 0V V€ B) and with probability ¢ there is exactly one point

in U distributed according to Vv ; i.e.:

£ =Y e,
where X and Y are independent r.v.'s; X 1is a U-valued r.v. with
distribution Vv and P (Y =1) =1 -P (Y =0) = c We denote by €

the unit mass in a point a : Ea,(D) = 1_ (a). =

D
EXAMPLE 2.2.2. The Poisson process: let V be a positive Radon

measure on U (v € L(U)). If v 1is giffusa (atomless), that is, if

V({u}) = 0 for all .u € U, then the Poisson processz) with intensity Vv |

1) The expression 'mon marked" indicates that K contains only one point

2) The word "Poisson process'" refers to a probability measure on M. The
mappilng 4 : (2, 4, P) + M such that the distribution of py in a Poisson
process, 1s also called the Poisson process.



denoted by H‘u is (cf. Neveu (77) Proposition I — 6 and exercice I — 4)
the unique non-marked simple point process such that:

a) for all V € B the r.v. E(V) follows a Poisson distribution with
parameter V(V) (E(V) = o a.,s. 1f V(V) = « ), and

b) for all m>1, V, ...,V €B disjoint, the r.v.'s ECV.), wen s
£E(Vh)  are independent.

Now let us suppose that Vv 1s not diffuse; hence there exists a
u € U with V({u}) = m > 0. Then it is seen that the above definition

becomes meaningless. Indeed, from the condition a) above it would follow
-

»

that the Poisson process would have to satisfy P (E({ul) > 1) =1 - e
(1 + m) > 0, so that there cannot possibly be a solution of a) and b)
within the space of probability measures on M~ .

Thus the Poisson process is now essentially non-simple, since with positive
probability multiplicities bigger than one occur. To cope with this
situation we have to choose K = {1, 2, ... } and réplace the above
conditions by:

a') for all V € B the r.v. J"V XK;kU‘(dV, dk)  follows a Poisson dis-
tribution with parameter V(V) (UW(V X K) = o a.s. if V(V) = o ),

and

b') for all n > 1, Vis eon s V_ € B dispoint the r.v.'s: | ku(dv, dk),

V1 X K.

‘v '(V " ku(dv, dk) are 1ndependent. (Hence the multiplicities are
n

used as marks). For each Vv € L(U) the Poisson process H\) 1S now unique-
ly determined; the measure V 1is called the intensity of the process.

For some interesting aspects of this process, see the next example,
84.1, 810.3 and §10.6. !

EXAMPLE 2.2.3. The Gibbs process (cf. Preston (76)). The theory of
Gibbs processes stems from statistical mechanics. There a Poisson process
with diffuse intensity is called an ideal gas in the grand canonical
ensemble. In this interpretation pointsﬂ correspond to particles. It 1is
easy to ilmagine how the influence of an external field can be described
by the intensity measure V , but by definiton the particles are not
interacting. An attempt to deal with interaction leads to the Cibbs
process:

Let us consider a "box" V € U and suppose that, given the configuration
of the particles outside of V », the particles inside of V are behaving

like an ideal gas, i.e. a Poisson process with an intensity measure



v ( F (V)) , depending on the locations of the particles outside of B
This dependence expresses the fact that the particles within V '"feel" a
field caused by the particles which are not in V . Thus we obtain for
all V the conditional distribution P (Vi € . [ F (V)) = Hv(F(V)) (.) .
The system (Hv(F(V)))V 1s called a specification. Of course such a
system has to satisfy certain consistency conditions, but even then it

1s not clear whether a probability measure P exists such that the
specification is indeed a system of conditional distributions with respect
to this overall 1law P . However, conditions on the specification can
be stated which ensure the existence of a Gibbs process, i.e. the above
mentioned law P . Sometimes we can even find more than one distribution

P fitting in with the same specification; this phenomenon represents

phase—transitions.

EXAMPLE 2.2.4. The Cox process. We start with a probability measure
' on L(U) . According to this law we choose a random Y € L(U) and
then construct the corresponding Poisson process HY . The distribution
of the element . € M that we obtain by this doubly stochastic procedure

1s called the doubly stochastic Poisson process or Cox process based on
1)
I

; 1t will be denoted by II Hence:

ro-

I, () = IL(U) () Tdy) . =

82.3. Random processes etc.

It A€ A X B, then we call A a random set. The projection m on

{¢ of a random set A 1is defined by

T A ={w€EQ]| Iu€eEU : (w, u) € A}

2) that 7w(A) € 4 . A random set A will

be called evanescent if P( m(A)) = 0O .

It follows from theorem A. |

Let A be a point outside U . An F-measurable mapping R : Q -~ U U

{A} will be called a random potnt (Thus a random point is a (U U {A})—walued

1) cf. the note to example 2.2.2.

2) this refers to appendix A.
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F-measurable r.v.). In §2.1. we introduced the operation "*" for sets
in F; now it 1s seen that every random point R can be 1dentified up to an

equivalence with a function R* on M. The random set

{RJ = { (v, u) ! u = R(w) € U}

will be called the graps of R . (This definition makes sense for every
(U U {A})-valued r.v.R), If A 1is a random set, then the random point R
is called a section of A, if [RJ < A.

A real-valuedl) (stochastic) process 1s an A X B-measurable mapping
X :QxU->R X : (w, u.)-%XL1 (w)). We set XA (w) = 0 for all w € Q .
If X 1s a process and R a stochastic point, then the r.v. XR is
defined by XR (W) = XR(u)) (w) .

An A-measurable mapping P : > L(E) (P : w ~ Dw) 1s called a random
measure on E . If P 1is a random measure on U (resp. on U X K), then
we set pw({A}) = 0 (resp. Dm(fﬁ} XxK) =0) for all w. If p is
a random measure on U X K , then we define the L(K)—valued random process

5 by:
§u () @ = p,( {u}l x .) ;

Thus for all D € K we see that 611 (D) (.) = 5u(D) 1s a real-valued

A

process. If p 1is a random measure on U , we define the process £ by:

ﬁu (w)y = Qw({u}) .

This is the process of atomsizes o‘f P . Note that for all random measures
p on U XK, random points R and D € X : 5R M (. ) = §R(.)(D) (.) =
= D‘({R (.)} x D) is a r.v.. Furthermore, if P is a random measure in
K (resp. on U x K) and R 1s a random point, then we denote by the r.v.
o (R ()} @esp. p ({(RG} xK) = p. (K) () by Q(R).

We shall not distinguish two processes X and X' such that
P (X = X1; Vu€U =1; if two processes X and X' are indistinguish-

able in this sense we write X = X'. We also use this dot in similar cases

1) the definition of processes taking values in other measurable spaces 1s
clear. We generally omit the word "....-valued'.
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for instance, if A and A' are random sets, then A = A' means Ly = Lyv 3
the meaning of A &€ A' now will be clear. If two random measures £ and

P' are such that P(P(C) = P'(C) V C measurable ) = |, then we say

o = pP' a.s.

We define the operation "*'" for F-measﬁrable random measures £ 1in
the obvious way. Furthermore, if X 1is an F X B-measurable process, 1t
follows from the monotone class theorem (B.2) that there exists an M X B-
measurable function X* on M X U such that X (.) = X* (u ) .

If (E,E) is some measurable space, if P , v € L(E ane:i 1f f 1s an
E-measurable non-negative function, then the zxpressions: P =fv, P (.) =

O

=f(.) v(.), dp = fdv, p(de) = £(e) v(de), f = gy and fle) = SE:Z%

all mean that p(D) = ID f(de) v(de) for all D€ E .
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CHAPTER 3
PREVISIBILITY

As mentioned above the principal aim of this monograph 1s to develop
a projection theory for point processes on a locally compact space with
countable base, analogous to the theory which leads to the previsible project-
ion of (point) processes on. R _ . This theory on R, uses the natural
order of the real numbers in an essential manner. We shall therefore refer
to it by the expression ''the theory of processes on IR+ " although of
course theories about processes on more general spaces (as the visible one,
chapter 4 sqq.) also apply to processes on IR _ .

It seems useful to gather some results of the theory of processes on
R and to indicate the steps in this theory most important to our
purpose. This chapter is devoted to such a sketch. No proofs are given
and only little explanation. Almost everywhere we can refer to the standard

work in this area, Dellacherie and Meyer, Probabilités et potentiel (75, 80).

rguments can perhaps be guessed at from the corresponding ones 1n

chapter 5 and 7, which is of course the wrong way round. On the other hand,

appendix D, where techniques are used adopted from 85.6, enables us to

state a.s. convergence in theorem 3.4.5 and hence yields a small contribut-

ion to the theory of processes on R . *+ The proof of theorem 3.4.4 1s found

in Neveu (77) or Jacod (79).

It should be remembered that this chapter only serves as a base for
comparison in very special cases later on.

This explains the sometimes
ther bizarre choice of subjects and definitions. TFor instance, since

neither martingales nor localization will be defined, the usual definition

of a local martingale - a localized martingale - would make little sense.
Thing

de more clear by the example of the Poisson process,
which will be elaborated in the course of this chapter.

to it, we shall adopt automs

Each time we refer

tically all notation introduced earlier in
relation to it.

§3*I, Filtration: the previsible o~field.
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(Ft)t€]R+ such that Ft - FS <A 1f t < s. We shall suppose that the

filtration satisfies the '"usual conditions'; this means that each
F}'m sgt .FS and contains all null-sets of 4

For instance, a filtration (Ft) 1s obtailned when each Ft contains
all the information one can observe from a system up to time t 1inclusive;
this system could be a polint process in time. When speaking of point
processes on IR _ - hence U = IR _ ; for simplicity we restrict ourselves
to the simple non—marked case — points may be called jumps of the process
£ [0,t]. Furthermore, the expressions ''first jump" (first in time) etc.
make sense. In this context one usually takes A = o ., Very often we use
the filtration generated by £ ; i1.e. we choose ‘Ft = F((t,™)); thuS.Ft

contains all information on & until time t 1inclusive.

EXAMPLE. Let & be a Poisson process on (0,) with the Lebesque
measure A as 1ts intensity measure. This Poisson process can also be

defined as the jump process with jumps in TI’ TZ’ ... 5, Where TI,"I‘2 = TI’

Ty - T,, «.. are independent r.v.'s all having an exponential distribution

with parameter 1 . Take (Ft) to be the filtration generated by §& . O

A process X 1is called adapted (to (Ft) ) if Xt is Ftwmeasurable
for all t. Many processes have the property that for almost all w the
function: t-+th(w) is right continuous with left-hand limits, abbreviat-—
ed cadlag (continu 3 droite, limité & gauche). Combining this regularity
property (cadlag) with adaptedness we obtalin the notion of optionality:

A process is optzonal 1f it is the 1limit of a sequence of adapted cadlag

processes.

EXAMPLE. In the above example both the processes Xt = E(0,t] and
Yt = £(0,t) are optional. Indeed, Xt is clearly adapted and cadlag

itself and 'Yt 1s a limit of such processes (Yt = lgm.E(O,t - i)). =

A subclass of the class of optional processes 1s formed by the
processes X which are adapted and which are such that for almost all
w the function: t +*Xt(m) is left continuous on (0,~) (the process 1is

cag). Such processes and their limits are called previsible or predictable.
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EXAMPLE. Of the two processes X and Y 1introduced above only the

second one is previsible. 0

There is another equivalent way to introduce previsibility: First we

L e . . . _ = m( U >
define the filtration (¥ ) .. by F, =F, and F__=7(J F) (£>0)

s<t” s
+
(N.B. often we have F__=F_ . EXAMPLE. In our central example this 1is
the case since F_ = T(Ft_,{gt = 1}) and {ét = 1} is a null-event. O)

Now the previsible o0-field P on § X IR, 1is generated by the sets of the

form F X [t,»} where ¢t € R, and F € F__ - A process is called previsible

1f 1t 1s P-measurable considered as a function on § X IR+

An R _-valued r.v. T 1is called a stopping time or an optional time

1f the process: (w,t) - I{T S t}(m) is optional. Again previsibility 1is

a stronger property: T 1is called a previsible (stopping) time if the
process (w,t) - I{T s t}(@) is previsible, or, equivalently, if the graph
[T ] 1s a previsible set. Stopping times -~ which we have defined 1in a
rather unorthodox manner - will be less important to our purposes than

previsible times. Note that determistic times are always previsible.

EXAMPLE. The time | 'I.’1 of the first jump of the Poisson process 1is

~optional but not previsible; T, +1 is a previsible stopping time. =

§3.2. The previsible section theoremn.

In the theory of processes 1in R , the section theorem is a technical

but important tool. We now state 1it.

THEOREM 3.2.1. Let A be a previsible subset of § X R and € > 0.
Then there exists a previsible time T such that:
a. |T] A, and
b. P(n[T]) > B(r(a)) - e.
(Note that by definition fTJ N (Q x {=}) = @).

The proof of this theorem uses the ordinary section theorem (i.e.
without filtration), theorem A.1l. ‘

EXAMPLE. We are again using the example of §3.1. The set

A={(o,t) | 0<t< T, (W)} is previsible, its indicator being an adapted
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left continuous process. Since I, >0 a.s., we see that P(m(A)) = ]

Let ty be a strictly positive real number and let T be the random time
defined by:

T(w) = -( t 1f'I'1(m) 2ty s

00 1f Tl(m) < tO .
Then T 1s a previsible stopping time; indeed:

[T] = {w|T @ 2 e} x {e,l =an @x {gD) €P

Clearly: _¢
P(m[T] = P(T, > t,) = e 0

which can be made arbitrary close to one; note however that it always

remains strictly smaller than one.

a
83.3. The previsible projection
The section theorem of §3.2 implies among other things that a pre-
visible process X 1is uniquely determined by integrals of the form EXT

where T 1s a previsible stopping time, as it is known in general, that a
G-measurable r.v. X is determined by integrals of the formEXlG,
GE€G (Gecd is some o-field on § ). This fact is used in the proof

of the following theorem—definiton, which in a way, is comparable to the

definition of conditional expectations,

THEOREM 3.3.1. Let X be a non-negative or bounded process; then

there exists a previsible process FX such that:

Py =
E XT EXT

fbralllpreviéﬂbZe stopping times T ; the process FX <is uniquely
deteminedl) and 1s called the previsible projection of X .

N.B. Recall the unusual convention that we adopted, that X (w) =0
(w € @) for all processes X .

For each (previsible) stopping time T define the G—field,FTm of

1) By "uniquely determined' we mean up to indistinguishability (§2.3), i.e.
outside an evanescent set.
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events strictly anterior to T , by FT_

w > (W, T(Ww)).  (Note that if T =t a.s., then FT—- ='th).. Then PX satisfies

= f; (P) where £ 1s the mapping:

"Xy = E(X|F )

'I‘.....

for all previsible stopping times T, and of course PX is the unique

previsible process satisfying this condition. Here again the previsibility

of PX is a necessary supplementary conditon. Indeed, 1n many cases

X'I‘ 1S FT_ -measurable itself for each previsible time T although the

process X 1s not previsible. (EXAMPLE. This is the case for instance

for the process X from the central example of this chapter. o)
The transition from the uncountable number of O-fields F

| T- 2
with its own exceptional null-set, to one previsible O-field on %X U

each

with one evanescent exceptional set is an example of the ingenuity of the

previsible theory explaining 1ts strength.

EXAMPLE. The process Y defined in the example in 3.1 1s previsible
itself; hence it 1s its own previsible projection. It also is the
previsible projection of X ; this is proved by noting that Y is pre-
visible and by showing that for all previsible times T we have ET = 0
a.s. and thus XT = YT a.s. Hence, in this case taking the previsible
projection narrows down to making the process left continuous. On the

other hand plfTIHJ = ][TI-HJ for, although the process l[Tl + I_] 1s not

left continuous, it still i1s previsible since T1 + | 1s a previsible

time. 0
83.4. The dual previsible projection of randam measures.

A random measure O on R 1s called previsible if the process
o[0,t] 1is previsible. Note that this process is not left continuous in

atoms of p ; 1t is cadlag and we have:

THEOREM 3.4.1. 4 cadlag process X <1s previsible 1f and only <f:
1) for all previsible stopping times T the r.v. XT 18 FT___mmeasurab Le,
and
2) Xn = Xy g @-8. for all stopping times T such that P(S =T <« ) =0
for all previsible times § ..

1) Such stopping times T are called totally inaccessible.
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Another characterization of previsible measures is given by the

following statement:

THEOREM 3.4.2. A random measure o on R s previsible i1f and only

tf
E [ Xxdp = E [ Pxdp

for all non-negative processes X .

This theorem suggests the definition of an operation dual to the pre-

visible projection of processes (§3.3). Indeed, we may introduce the

dual previstble projection (of measures) as follows:

THEOREM 3.4.3. Let p be a random measure. Then there exists «

1)

unique ’ previsible random measure, denoted by pY¥ and called the dual
previsible projection of p , such that
(3.4.1) E [ XdoP = E [ xdp
for all non-negative previsible processes X .
Combining formula (3.4.1.) with theorem 3.4.2. we find that pp 18

the unique random measure satisfying:
(3.4.2) E [ Pxdp =E [ xdpP

for all non—negative processes X .

In our literature the process pp[O,t] 1s called the dual previsible

projection of the process p[0,t] , which is not to be confused with

pp[O,t] . Since we are only speaking of dual projections of random measures,

we shall drop the word "dual' sometimes.
Because the previsible o-field is generated bf sets of the form
F x [s,t] , s < t, F €‘Fs~ , the dual previsible projection p° is already

E

determined among the previsible random measures by the requirement:

(3.4.3) E(pp[s,t] ! FS“‘!") = E(D[S,t] l 'E:-,S_).f ’
or equivalently by:
(3.4.4) E((p = oP)[s,e] | F_) = @

This means that the process (p-pP)[0,t] is a Zocal martingale and this

fact 1s also expressed by saying that DPUD{E] compensates p[0,t] . Now,

1) Here "unique means unique outside a null-set.
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Dp[O,t] is the unique previsible process such that p[0,t] -~ oP[0,t] 1is
a local martingale. Therefore pP[0,t] is sometimes called the previsible

compensator of pl0,t]

EXAMPLE. When speaking of point processes an important random measure
to project i1s of course the point process & 1itself. We turn to our
central example of this chapter and see that in the Poisson case the
previsible projection of & 1is its intensity measure, 1l.e. tP = ) (Because
the deterministic measure A 1is clearly previsible, this follows from
formule (3.4.3) and the independence property of the Polsson process (proper-
ty b) of example 2.2.2.)). In other terms: the previsible compensator of
E[O,t] is t . . The fact that for the Poisson process E&[0,t] - t
1s a local martingale was already known before the theory of previsibility
was developed. As a matter of fact, 1n the context of point processes
the — in general random - dual previsible projection 1s considered to be a
generalization of the intensity of the Poisson process (cf. e.g. Brémaud and
Jacod (77)). -

For point processes we have two explicit expressions for the pre-

visible projection of & :

THEOREM 3.4.4. Let & be a simple point process and (Ft) the
filtration generated by & . Then:

G (dt)
Pry.y _ @ n ' (t) a.s. where
&t = L, ([t,=]) 1('].‘ . T 1N (0,»)
n n n+ 1

Gn(.) = P('I.‘m_l € . | Tis oen s Tn). Here T, T,, .. .denote the moment of

the first second, .... jump. Ty = 0. We assume T, >0 a.s.

Note that the set on which the countable number of conditional dis—

tributions G_ is not defined, is again a null-set. The measure

n
G (dt)/ 1s of course the hazard rate of T

»

Gn([t,m]) n+1

THEOREM 3.4.5. Let & be a simple point process and let (Ft) be
the filtration generated by & ; then:
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i
Plo,t) = 1im T  E(Ek2 “t, G+ 2750) | F . ) a.s.
=0 k2 tt-

For general filtrations and random measures only a weaker form of

convergence can be proved.

EXAMPLE. These theorems are of course easily checked in the case of the
Poisson process (with intensity A ). For theorem 3.4.4 use the fact that

the Gn are all exponential with parameter 1, thus Gn(dt)/Gn([t,m]) = dt

Theorem 3.4.5. becomes trivial thanks to the fact that for all s <t we

have

E (£ [0,¢t) ].FS_) =t -8 a.s.. =
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CHAPTER 4

SOME RESULTS ON POINT PROCESSES

In this short chapter the main object of study will be introduced
intuitively. It turns out that this leads to a non-trivial definition
problem. Some earlier solutions of the definition problem will be indicat-

ed.
§4.1. The intensity of the Poisson process.

In the preceding chapter we discussed the previsible projection of
a point process omn R and we saw that there the Poisson process formed
an extremely simple example. Indeed, as a consequence of the independence
property b) of example 2.2.2 the previsible projection turned out to be

deterministic and to coincide with the intensity of the process. It was

even noticed that in a way the dual previsible projection is a generalizat-
ion of the intensity ef the Poisson process because roughly speakling we have
4.1.1)  E(E-EH@ [ F ) =0

(c.f. (3.4.4)).

We now turn to polint processes on an arbitrary locally compact space

U with countable base and we shall see that i1n this case too the intensity

)

of the Poisson process may be generalized in a certain manner . To

illustrate this we consider a simple non-marked Poisson process on U with
(diffuse) intensity measure V . Now the independence property of the
Poisson process ylelds for all B € B:

V(B) = E(E(B) | F(B)) a.s. .
Replacing B by an infinitesimally small set we should obtain

v(du) = E(E(du) | F(du)) .

This, however, is not a mathematically meaningful formula.

1) If it happens that U = R this generalization will differ in general
from the one studied in chapter 3.
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Now suppose that 1y 1is an arbitrary point process. We should like
to define a random measure [ which intuitively would have the following

characterization:

c(du) "=" E(E(du) | F(du))

Our approach to the problem of giving a correct definition of ¢ will

use a series of steps parallel to the results sketched in chapter 3.

84.2. The conditional intensity of point processes.

Papangelou (74) already studied the problem outlined in 84.1, when
he wanted to find out whether or not all point processes with a certain
stationarity property are in fact Cox processes (cf. our theorem 10.4.2.).
In order to define the, what he called, conditional intensity of a point

process, Papangelou proved that

(4.2.1) z(V) = lim X E (EW) | F(W))
WeUi v

exists a.s. for all V € U and that the limit determines a random measure
on [ and hence on B when considered as a function of V . In his
proof Papangelou needed a second order integrability condition. He showed
furthermore that under regularity conditions () and (Z*) , which will
be discussed in chapter 6, the limit does not depend on the choice of the
sequence of partitions (UI’UZ’ ... ) and 1s a.s. diffuse. Papangelou's
result 1s 1n a way comparable to theorem 3.4.5.

Kallenberg (78) proved the existence of the limit (4.2.1) under a
weaker integrability condition and found another characterization of the
conditional intensity. Under the conditions (I) and (I*) mentioned

above this characterization implies that ¢ is the unique random measure

satisfying the integral equation:

E [ 1n{ul®) 15 @ E@) =E [ 1, () 1; (@ g@w

G
for all F € F, B € B . 1If IF* (1) IB (u)=+‘lF*({u}p) IB(u)

were some projection of the process lFxB , then this result would look

like the characterization of the dual previsible projection by formula
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(3.4.2)

Thus the analogy between parts of the theory of processes on R and

the results mentioned in this chapter is clear. These results will be

embedded in the "visible'" theory which is to be developed in the rest

of this treatise.
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CHAPTER 5

VISIBILITY

§5.1. Visible o-field, processes and points.

In 82.1. we defined for each set B € B the exterior o-field with

respect to Y on ! : F(B). The collection (F(B)) 1s a decreasing

filtration for the partial ordering of inclusion, i.z.€:§(V)::.F(W),
whenever W <V,

We define the vistble (from outside, w.r.t. yu ) o-field Z which 1is
contained 1n F X B . By definition Z 1is generated by the sets of the
form F x B, F € F(B), B € B . In this context Kallenberg (83) uses the
term "exvisible' instead of visible to express that, in fact, it implies
a visibility from outside (cf. the exterior g-fields F(B)) in the same
way as previsible phenomena can be foreseen. Note that Z is defined on
{2 X Uas P 1is defined on {} X R . Still, not only are previsibility and
visibility completely different - though analogous - notions, but moreover
visibility depends essentially on the point process U . Indeed, visibility

1s defined through the filtration (F(B))B which depends on | and, 1n

the next section, we shall see that it iseimportant both that the F(B) are
generated by U and that they contain all null-sets. In contrast with this
on the other hand the results of chapter 3 up to and including theorem 3.4.3.
are true for any filtration‘(Ft).

Processes - which are in fact functions on X U- are called vistble
1f they are Z-measurable. A visible point is a random point Z whose g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>