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CHAPTER 1 

INTRODUCTION AND SUMMARY 

§I.I Survey of the contents. 

In this monograph we shall study so-called point processes; i.e. 

we study probability mechanisms according to which a locally finite subset 

of a locally compact 

of such spaces U 

space U 

are IR d , 

with countable base can be chosen; examples 
d 

(0, I), JR+,LZ, etc.; a locally finite subset 

of U is an unordered finite or countable set of points without condensation 

point. We are concerned with the probability distribution of this locally 

finite s11bset -of this finite or countable set of points. The locally finite 

subset chosen at random is called a simple 1) point process. 

The modern theory of point processes begins with C. Palm's paper (43). 

After him the name Palm distribution was given to the conditional distribut­

ion of a point process given the event that the point process contains a 

given point in U. Because generally this is a null-event, definition 

problems arise (See e.g. Kallenberg (83) - chapter 10 or Neveu (77)-II-2). 

We are mainly interested in a notion which is in a way the opposite of 

the Palm distribution: Consider an infinitesimally small subset • 
in u . , now 

we ask for the expected number of points of the point process contained 

this infinitesimally small subset conditionally given the locations of all 

points of the point process outside this infinitesimally small subset . 
• 

Because we generally have to deal with an uncountable number of null-sets, 

a definition problem again arises. 

In chapter 4 earlier solutions to this problem are sketched. Papangelou 

(74) first solved this problem by a limit procedure. The object that he 

defined in this manner, was called by him the conditional intensity of the 

point process. Later Kallenberg (78) gave another proof of the existence 

of the conditional intensity under less restrictive conditions. Papangelou 

already noticed that his result gave a sort of analogue to the decomposition 

of Doob and Meyer in the theory of processes on JR+. 

1) In this section the word ''simple'' will be omitted. 



2 

The Doob-Meyer decomposition is an important result in martingale 

theory, in which Doob and Meyer are indeed predominant names. In the 

' ''Strassburg school'• (See e.g. Dellacherie and Meyer (75) and (80)) in 

martingale theory an important feature is the fact that one defines a­

fields on the product of the probability space and JR+ other than product­

a-fields on this product space, and that stochastic processes on ]R+ are 

regarded as measurable functions on this product space. Important to the 

Doob-Meyer decomposition is the notion of previsibility which is related 

to the previsible a-field on n x lR (chapter 3). Previsibility enables 
+ 

us to speak of processes whose values at any time only depend on the strict 

past, so that they are predictable. Here it is essential to note that 

this is a property which applies simultaneously at an uncountable number 

of times. 

The fact, that previsibility helps to solve a problem analogous to the 

definition problem of the conditional intensity, becomes clear if we note 

that previsible processes at any time only depend on what happened strictly 

before that time, whereas the conditional intensity of a poi~t process in 

an infinitesimally small set depends only on the location of the points of 

the point process outside this infinitesimally small set. Hence the role of 

the past of a moment in time corresponds in a way to the events which are 

determined by the part of a point process outside a given subset of U. 

Our aim is to explore the analogy that we just mentioned and to use 

it to give a more natural definition of the conditional intensity. Because 

this leads to the notion of visibility - which is related to the visible 

a-field on x U - we shall use the word (dual) visible projection of the 

point process rather than conditional intensity. The theory of visibility 
• 

is developed in chapter 5 analogous to the theory of previsibility. It 

should be noted that visibility is defined w.r.t. the point process. A 

great 01unher of the results of this chapter - visible section theorem, 

visible projection of processes and dual visible projection of the point 

process - was already present in Van der Hoeven (82). 

In our context several smoothness conditions are naturally introduced. 

The most important of them stems from Fapangelou (74). These smoothness 

conditions are formulated and studied in chapter 6 in a way which dovetails 

into the theory of visibility. 

In chapter 7 expressions for visible projections are derived and in 
' particular a limit formula is proved by which the dual visible projection 



indeed is identified with Papangelou's conditional intensity (cf. Van der 

Hoeven (82)). 
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The notion of martingalelike measure is defined in chapter 8. The name 

already indicates that this is an analogue of a martingale on 1R . In this 
+ 

context we also study Papangelou kernels. The great importance of these 

kernels became apparent in Matthes, Warmuth and Mecke (79). They showed 

that the Papangelou kernel of a reasonably smooth point process determines 

important properties concerning the distribution of the point process. We 

shall discuss their results in chapter 9. 

§1.2. Some generalizations and some techniques used. 

The most naive way to describe simple point processes on some space U 

is by defining a probability measure on the space of all locally finite sub­

sets of U. It turns out to be more practical to associate with each 

locally finite subset of U the counting measure of that subset, so that we 

obtain a probability mechanism by which a measure on U is chosen, and 

hence the point process is an example of what is logically called a random 

measure. (It will turn out that the dual visible projection is an example 

of a random measure too). 

The theory developed here can easily be extended to the more general 

compound point processes (cf. Van der Hoeven (82)). We use another form 

by which we are able to describe compound point processes and other generalizat­

ions. Indeed, we introduce the notion of a (simple) marked point process. 

In the theory of point processes on lR this notion is often used (cf. e.g. 
+ 

Bremaud and Jacod (77) or Jacod (79); cf. also Varsei (78)) . 
• 

Marked point processes are obtained as follows: Originally we chose, 

according to some probability mechanism, a locally finite subset of U (or the 

associated counting measure), but now, in addition, each point of this 

locally finite subset of U is provided in some stochastic manner with a 

mark, i.e. an element of some space (locally compact, with countable base) 

K. Hence the probability mechanism chooses a subset of the product space 

of U and K, whose projection on U is locally finite and which is such 

that every point in this projection on U corresponds to exactly one 

point in U x K. Thus we obtain a point process on U with marks in K, 

which can and will be described by a random measure on U x K: The counting 

measure of the randomly chosen subset of U x K, that we just described. 
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The space of all such counting measures may of course be used as 

probability space, but it turns out to be useful sometimes to consider an 

abstract probability space on which the (marked) point process is defined 

as a fundamental mapping. However, this brings with it that the notation 

becomes more complicated and that assertions become intuitively less clear. 

As a result, there are statements which are more readily understood when 

one ass1Jmes that the probability space consists of the counting measures on 

U x K described above. 

It is clear that on a abstract probability space more random measures 

can be defined. However, visibility remains to be defined w.r.t. our basic 

(marked) point process. 

Nonetheless, the dual visible projection (w.r.t the basic marked point 

process) may be defined and this definition does not give rise to any 

complications, in comparison with the definition of the dual visible 

projection of the point process itself. On the other hand, proving the 

existence of the conditional intensity as a limit in this more general con­

text requires a non-trivial extension of the proof of the existence of the 

conditional intensity of the point process itself. Kallenberg (83) proved 

this extension (see §7.4). 

On the space U the Borel cr-field is defined. This a-field contains 

an uncountable n11rnber of sets. Since uncountable n1 111tbers are unpleasant in 

probability, it turns out to be useful to choose a countable sequence of 

countable partitions of U, which become finer and finer. (For instance, 

the case U = JR, each partition may consist of leftband open, righthand 

closed intervals, which are each divided in two such intervals in order to 

obtain the next partition). These partitions can be chosen in such a way, 

that their union forms a base for the topology of U. This union contains 

a countable n,xmber of sets, 'SO that, if there corresponds a null-set to 

each of these sets, the union of these null-sets is still a null-set. Note 

that given a fixed Borel subset B of U, we may assume that B is an 

element of one of the partitions mentioned above. 



CHAPTER 2 

NOTATIONS 

§2. 1. Marked point processes. 

Let U and K be two locally compact topological spaces with a 

countable base. Such spaces are known to be Potish~ i.e. a metric exists 

for which they are separable and complete (for a proof see for instance 

Bauer (78) - Satz 44. I). We note that the space U x K is again locally 

compact with a countable base. The Borel a-fields on the spaces U and 

K are denoted by B and K respectively. 

There exists (and we shall choose) a sequence of partitions Up 

••• of U, such that U = U U .c B , 
1. 1. 

such that each VE U. is the 
1 

• union of a bounded number U. 
1 

and such 
1.+ 

of elements of that U
1 

contains 

at most a countable number of sets, which are all bounded. This implies 

that U contains at most a countable number of sets, which are all bound­

ed. Furthermore, we shall suppose, that for every u EU and GE B open 

with u E G there exists a set VE U such that u EV c G; hence 

B = T(U), T(U) 

then we write U. V = l. . 

' 

denoting the a-field generated by U. If VE U, 

{w E u. I w c v} . 
]. 
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We now introduce some classes of measures: If E is an arbitrary Polish 

space, we denote by L(E) the collection of all positive Radon measures 

(i.e. positive locally finite measures) on (E,E), where E is the Borel 

a-field on E. In the vague topology elements converge top if 

for all continuous functions 

Endowed with this topology the space 

f 

L(E) 

with compact 
• 

on • carrier. 

becomes Polish. The correspond-

ing Borel a-field on L(E) is also generated by the sets of the for1n 

{ p E L(E) I p (D) < a} with 

matters, see Kallenberg (83)). 

The space M. consists of 

••• , 00 } for all VE B and 

> 0 and D a Borel subset of E (For these 

all p E L(U) such that 

P({u}) E {O,l} for all 

p (V) E { 0, I , 2, 

u E U. Elements 
• 

of M are called sirrrple point measu~es on U - for the sake of complete-

ness we note that elements of L(U) satisfying the first of these two 

conditions but not necessarily the second, are called point measures; the 

number p ( {u}) 

consists of all 

is the multiplicity of 

p E L(U x K) such that 

• p 1.n u. The space M 

p (A) E { 0, 1 , 2, . . • , co} for 
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all A EB x K, P({u} x K) E {0,1} for all u EU and such that 

p(. x K) E L(U). Elements of M are called point measures on U marked 

by elements of K. 

Choosing K = {I, 2, ... } or K = (O,oo) we are able to describe res­

respectively non-simple and compound point measures on U by marked measures. 

If K reduces to one point, we see that M and M. are isomorphic 

Where no confusion can arise we omit the words ''simple'' or ''marked''. 

It can easily be checked that M and M. are measurable subsets of 

L(u x K) and L(U) respectively. The a-field M is the trace ori M 

of the Borel o-field on L(U x K); writing for all VE B 

M (V) = T < { p E M I p ( B x D) < a} I a. > o , B € B., B n v = ~ , 

DE K) 

we see that M = M (0) • 

If BE B and 

on U x K (resp. on 

(resp. by Bp(.) = 

p E L(U x K) (resp. p E 

U) will be defined by 

P (B n . ) ) . 

L(U)) then the measure BP 

.Bp ( • ) = p ( (B x K) n . ) 

Let (St, A, P} be a complete probability space (hence A contains all 

subsets of P-null sets in A; as no confusion can arise, we drop the letter 

''P'' in these instances). The class of all null sets in A is denoted 

.· by N • 

The main object of study in this monograph will be a measurable 

mapping µ: ➔ M. This fundamental mapping is fixed in the sequel. 

It is called a random (marked) point measure or a (marked) point process 1). 

We also define once and for all the (simple non-marked) random measure~ , 

i.e. the measurable mapping ~: n ➔ M·, by ~(.) = µ(. x K). If K 

reduces to one point, then essentially = µ. 

We define the exterior a-fieZd of an element VE B by 

and put: F = F (0). It is known (cf. · e.g. Meyer and Dellacherie (75) 

- I - 18 and II - 31) that if FE F (resp. FE F(V), then there 

1) . 
One .. might argue that the word ''point process'' should be reserved for the 
distribution of the random point measure µ • We, however, do not make this 
distinction. 



• exists a set F* E M (resp . F * E M (V) such that 

p ( F Di. { w I µ E F* }) = O; 

this transition from a set in F to the corresponding one in M will 

in future always be indicated by an t f * 11 • 

§2.2. Some examples. 

We shall give some fundamental examples of point processes. The 

first one - the ''zero-or-one-point process'' - seems very trivial; stil 1 

it is important to the theory as will be seen later on. Both in theory 

and practice the Poisson process is encountered in many situations and 

it is used in the definition of many other processes. Indeed we sha1.1 

define here two more processes - the Gibbs and the Cox. process - using 

the Poisson process. In chapter 10 we shall study these and other 

examples in more detail. 

EXAMPLE 2.2.1. The zero-or-one-point process. This non marked 

simple point process 1) is based on a constant c E [0,1] and a 

distribution v on the state space U: with probability I - c 

there is no point in U at all ( ~ = 0, 0 denoting the zero measure : 

O(V) = 0 V V E B) and with probability g there is exactly one point 

in U distributed according to • V ; 1..e.: 

• 

where X and Y are independent r.v.'s; X is a U-valued r.v. with 

distribution v and P (Y = 1) = 1 - P (Y = 0) 

the unit mass in a point a: £a (D) = ID (a). 

= C We denote by € 
a 

□ 

EXAMPLE 2.2.2. The Poisson process: let v be a positive Radon 

measure on U (v E L(U)). If v is giffuse (atomless), that is, if 

v({u})·= 0 for all .u EU, then the.Poisson process 2) with intensity v 

1) The expression ''non marked'' indicates that K contains only one point 
2) on M. The 

7 

The word ''Poisson process'' refers to a probability measure 
mappingµ: (Q, A, P) + M such that the distribution of 
process, is also called the Poisson process. 

• • 
1n a Poisson 
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denoted· l?y ITV is (cf. Neveu (77) Proposition I - 6 and exercice I - 4) 

the unique non-marked simple point process such that: 

a) for all VE B the r.v. ~(V) follows a Poisson distribution with 

parameter V(V) (~(V) = oo a.s. if V(V) = 00 ), and 

b) for all n > l, v1 , ••• , Vn tB disjoint, the r.v.'s c;(V 1), ••• , 

are independent. 

Now let us suppose that v is not diffuse; hence there exists a 

u E U with v({u}) = m > O. Then it is seen that the above definition 

becomes meaningless. Indeed, from the condition a) above it would follow 
-m that the Poisson process would have to satisfy P (~({u}) > I)= I - e 

(1 + m) > O, so that there cannot possibly be a solution of a) and b) 

within the space of probability measures on M .. 

• 

Thus the Poisson process is now essentially non-simple, since with positive 

probability multiplicities bigger than one occur. To cope with this 

situation we have to choose K = {I, 2, •.. } and replace the above 

conditions by: 

J kµ(dv, dk) follows a Poisson dis-
V X K. 

a') for all VE B the r.v. 

tribution with parameter 

and 

V(V) (µ(v X K) = 00 a.s. if V(V) = ~ ), 

b') for all n > 1, ·• • • , V E B dispoint the r. v. 's: fv x K kµ (dv, dk) , 
n I . 

• • . , f V x K .kµ ( dv, 
n 

dk) are independent. (Hence the multiplicities are 

used as marks) • 

ly determined; 

For each v E L(U) the Poisson process IT is 
V 

the measure v is called the intensity of the 

• now un1.que-

process. 

For some interesting aspects of this process, see the next example, 

§4.I, §10.3 and §10.6. a 

• 

EXAMPLE 2.2.3. The Gibbs pPoaess (cf. Preston (76)). The theory of 

Gibbs· processes stems from statistical mechanics. There a Poisson process 

with diffuse intensity is called an ideal gas in the grand canonical 
,, 

ensemble. In this interpretation points correspond to particles. It is 

easy to imagine how the influence of an exter11al field can be described 

by the intensity measure V, but by definiton the particles are not 
.... ~ 

• • interacting. An attempt to deal with interaction leads to the Gibbs 

process: 

Let us consider a ''box'' V E U and suppose that, given the configuration 

of the particles outside of V, the particles inside of V are behaving 

like an ideal gas, i.e. a Poisson process with an intensity measure 
,l 



v ( F (V)) , depending on the locations of the particles outside of B. 

This dependence expresses the fact that the particles within V ''feel 11 a 

field caused by the particles whicl1 a.re not in V .. Thus we obtain for 

all V the conditional distribution P (VIJ E • IF (V)) = ITv(F(V)) (.) • 

The system (ITV(F(V)))V is called a specification. Of course such a 

system has to satisfy certain consistency conditions, but even then it 

is not clear whether a probability measure P exists such that the 

specification is indeed a system of conditional distributions with respect 

to this overall law P. However, conditions on the specification can 

be stated which ensure the existence of a Gibbs process, i.e. the above 

mentioned law P. Sometimes we can even find more than one distribution 

P fitting in with the same specification; this phenomenon represents 
• • phase-transitions. 

EXAMPLE 2. 2. 4. The Co;-x; process. We start with a probabi 1 i ty measure 

r on L(U) . According to this law we choose a random y E L(U) and 

then construct the corresponding Poisson process TIY • The distribution 

of the element µEM that we obtain by this doubly stochastic procedure 

is called 

r I ) • 
• l. t , 

the doubly stochastic Poisson process or Cox process based on 

will be denoted by Tir. Hence: 

= fL(U) TI (.) f(dy) • y □ 

§2.3. Random processes etc. 

□ 

9 

If A EA x B, then we call A a random set. The projection TI on 

of a random set A is defined by 

TI (A)= {w E QI 3 u EU: (w, u) EA} . 

It follows from theorem A. I 
2) that n(A) EA . A random set A will 

be called evanescent if P( TI(A)) = O. 

Let be a point outside U . An F 1r1easurable mapping R : n + U U 

{~} "\'Jill be called a r•a,idom point (Thus a random point is a (U U {~})--valued 

1) cf. the note to example 2.2.2. 

2) this refers to appendix A. 
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F-measurable r.v.). In §2.1. we introduced the operation''*'' for sets 

in F; now it is seen that every random point R can be identified up to an 

equivalence with a function R* on M. The random set 

' rRJ = {(w, u) I u = R(w) Eu} 

will be called the graph of R. (This definition makes sense for every 

(U U {t})-valued r.v.R). If A is a random set, then the random point R 

is called a seation of A, if fRJ c A. 
A real-valuedl) (stochastic) process is an Ax B measurable mapping 

X : Q x U + JR (X : (w, u) -+ Xu (w)). We set Xb,. (w) = 0 for all w E n . 
If X is a process and R a stochastic point, then the r.v. XR is 

defined by X_ (w) = x_ (w) -ll --R(W) • 

An A-measurable mapping P : n + L(E) (P : w ➔ Pw) is called a random 

measure on E. If p is a random measure on U (resp. on U x K), then 

we set for all w • If P 

a random measure on U x K, then we define the L(K)-valued random process 

13 by: 

.... 
gu (.) (w) = 

D € K we see that ~ u 
(D) (.) = P (D) is a real-valued 

u Thus for all 

process. If p is a random measure on U, we define the process ~ 

p (w) 
u 

--

• • 

by: 

This is the process of atomsizes of P. Note that for all random measures 

p on U x K, random points 

= P ({R (.)} x D) is a r.v .. 
• 

R and DEX: 

Furthermore, if 

A ,,,.._ 

PR (D) .( • ) = gR(.) (D) (:.) = 
P is a random measure in 

K (resp. on U x K) 

p ( {R ( .. )}) (resp. p 

and Risa random point, then we denote by the r.v. 

• • 
( { R (. ) } x K) = 

• 

PR (K) (.) by P,(R). 

We shall not distinguish two processes X and X' such that 

P (Xu= X~ Vu EU)= I ; if two processes X and X' are indistinguish­

able in this sense we write X ~ X'. We also use this dot in similar cases 

1) the definition of processes taking values in other measurable spaces is 
clear. We generally omit the word '' •••• -valued''. 

I 



for instance, if A and A' are random sets, then A= A' means 

the meaning of Ac. A' now will be clear. If two random measures 

P' are such that P(P(C) = P'(C) Y C measurable)= l, then we say 
p -- P' a.s. 

We define the operation ''*'' for F-measurable random measures 
. 

the obvious way. Furthermore, if X is an F x B-measurab le process, it 

I l 

follows from the monotone class theorem (B.2) that there exists an M x B­

measurable function X* on M x U such that X (.) = X* (µ) . 
• 

If (E,E) is some measurable space, if P , \) E L(E)-~ and if f is an 

expressions: P = fv, E-measurable non-negative function, then the 

=f(.) v(.), dp = fdv, p(de) = ~(e) v(de), f = - _ p(de) - ---,,--,-

v (de) 

all mean that p(D) = fn f(de) v(de) for all DEE . 
• 

• 

p (.) = 
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CHAPTER 3 

PREVISIBILITY 

As mentioned above the principal aim of this monograph is to develop 

a projection theory for point processes on a locally compact space with 

countable base, analogous to 

ion of (point} processes on 

the theory which leads to the previsible project-

This theory on :m. uses the natural 
+ 

order of the real n11mbers in an essential manner. We shall therefore refer 

to it by the expression ''the theory of processes on lR + '' al though of 

course theories about processes on more general spaces (as the visible one, 

chapter 4 sqq.) also apply to processes on 

It seems useful to gather some results 

]R + • 

of the theory of processes on 

JR+ and to indicate the steps in this theory most important to our 
• purpose- This chapter is devoted to such a sketch. No proofs are given 

and only little explanation. Almost everywhere we can refer to the standard 

work in this area, Dellacherie and Meyer, Probabilites et potentiel (75, 80) • 

Many arguments can perhaps be guessed at from the corresponding ones in 

chapter 5 and 7, which is of course the wrong way round. On the other hand, 

appendix D, where techniques are used adopted from §5.6, enables us to 

state a.s. convergence in theorem 3.4.5 and hence yields a small contribut-
• 1.on to the theory of processes 

in Neveu (77) or Jacod (79). 

on 1R 
+ • The proof of theorem 3.4.4 is found 

It should be remembered that this chapter only serves as a base for 

comparison in very special cases later on. This explains the sometimes 

rather bizarre choice of subjects and definitions. For instance, since 
• 

neither martingales nor localization will be defined, the usual definition 

of a. local martingale - a localized martingale - would make little sense. 

Things will be ma.de more clear by the example of the Poisson process,. 

which will be elaborated in the course of this chapter. Each time we refer 

to it, we shall adopt autoa1a.tically all notation introduced earlier in 
relation to it. 

§3 .. 1 .. Filtration: the previsible a-field. 

On our basic complete probability space (Q, A, P) we 

creasing filtr-ation indexed by time; that is: a family of 

• • are given an 1.n-

cr-fields 



such that cF cA 
s 

if t < s. We shall suppose that the 

filtration satisfies the ''usual conditions 1
'; this means that each 

F - n F and contains all null-sets of A. 
t - s>t s 

For instance, a filtration (Ft) is obtained when each Ft • contains 
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all the information one can observe from a system up to time t inclusive; 

this system could be a point process in time. When speaking of point 

processes on - hence u = ]R ; for simplicity we restrict ourselves + 
to the simple non-marked case - points may be called jumps of the process 

l; [O,t]. Furthermore, the expressions ''first j11mp'' (first in time) etc. 

make sense. In this context one usually takes ~ = 00 • Very often we use 

the filtration generated by 

contains all information on until 

. 

we choose 
• ti.me t 

Ft= F((t,00)); 

inclusive. 

thus Ft 

EXAMPLE. Let be a Poisson process on (0, 00) with the Lebesque 

measure as its intensity measure. This Poisson process can also be 

defined as the 

T -3 

j1unp process with jumps in T 
1

, T
2

, • • • , where T 
1

, T
2 

- T 1 , 

are independent r.v.'s all having an exponential distribution 

with parameter I • Take (Ft) to be the filtration generated by ~. □ 

A process X is called a~¥ted (to (Ft) ) if Xt is Ft measurable 

for all t. Many processes have the property that for almost all w the 

function: t + Xt(w) is right continuous with left-hand limits, abbreviat­

ed cadlag (continua droite, limite a gauche). Combining this regularity 

property (cadlag) with adaptedness we obtain the notion of optionality: 

A process is optional if it is the limit of a sequence of adapted cadlag 

processes. • 

EXAMPLE. In the above example both the processes Xt = ~(O,t] and 

Yt = ~(O,t) 

itself and 

are optional. Indeed, Xt is clearly adapted and 

Yt is a limit of such processes (Y = lim '(O,t -t n 

cadlag 

.!. ] ) • 
n 

A subclass of the class of optional processes is formed by the 

processes X which are adapted and which are such that for almost all 

CJ 

the function: t + Xt(w) is left continuous on (0,00) (the process is 

cag). Such processes and their limits are called p~evisible or predictable. 
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EXAMPLE. Of the two processes X and Y introduced above only the 

second one is previsible. a 

There is another equivalent way to introduce previsibility: First we 

define the filtration 

(N.B. often we have F = F . 
t- t 

the case since F = T(F ,{( 
t t- t 

Now the previsible a-field P 

EXAMPLE. 

= I}) and 

on n X lR 
+ 

and = T( U F ) ( t > O) 
s<t s 

In our central example this is 

i.~t = 1} is a null-event. □ ) 

is generated by the sets of the 

form F x [t,oo) where t E JR+ and F €Ft-. A process is called previsible 

if it is P measurable considered as a function on r2 X m_ • 
+ 

An JR+-valued r.v. T is called a stopping time o~ an optional time 

if the process: (w,t) ➔ l{T > t}(w) is optional. Again previsibility is 

a stronger property: T is called a previsible (stopping) time if the 

process (w,t) ➔ l{T > tf~) is previsible, or, equivalently, if the graph 

rTJ is a previsible set. Stopping times - which we have defined in a 

rather unorthodox manner - will be less important to our purposes than 

previsible times. Note that determistic times are always previsible. 

EXAMPLE. The time . T 
l 

of the first jump of the Poisson process is 

optional but not previsible; T 1 + 1 is a previsible stopping time. □ 

§3.2. The previsible section theorem. 

In the theory of processes in lR+ the section theorem is a technical 

but important tool. We now state it. 
• 

'I'HE:OREM 3. 2. I • Let A be a previsib le subset of n x lR + and £ > o. 
Then there exists a previsible time T such that: 

a. r TJ C A, and 

b. P(TifTj) > P(TI(A)). - £ •. 

(Note that by definition [TJ n (Q X {oo}) = 0). 
The proof of this theorem uses the ordinary section theorem (i.e. 

without filtration), theorem A.I. 

EXAMPLE. We are again using the example of §3.1. The set 

A= {(w,t) f O < t < T1(w)} is previsible, its indicator being an adapted 



left continuous process. Since T1 > 0 a.s., we see that P(TI(A)) = I . 

Let t 0 be a strictly positive real number and let T be the random time 

defined by: 

T(w) = 

00 if T
1

(w) < t
0

• 

Then T is a previsible stopping time; indeed: 

rTJ = {wfTl(w) > to} X {to}= An en X {to})€ p 

Clearly: 
-t 

0 
e , 

which can be made arbitrary close to one; note however that it always 

remains strictly smaller than one. 

§3.3. The previsible projection 

The section theorem of §3.2 implies among other things that a pre­

visible process X is uniquely determined by integrals of the form EXT 

where Tis a previsible stopping time, as it is known in general, that a 

G-measurable r.v. Xis determined by integrals of the form EXIG, 

GE G (G cA is some a-field on ). This fact is used in the proof 

of the following theorem-definiton, which in a way, is comparable to the 

definition of conditional expectations. 

• 

THEOREM 3.3.1. Let X be a non-negative or bounded process; then 

therae exists a previsibZe process Px such that: 
EPX = EX 

T T 
for all previ~ible stopping times T; the process Px is uniquely 

determined1
) and is called the previsib Ze projec·tion of X • 

N.B. Recall the unusual convention that we adopted, that 

(w E Q) for all processes X. 
X (w) = 0 

00 

. 

For each (previsible) stopping time T define the a-field FT- of 

• 

□ 
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I) By ''uniquely deterriiined'' we mean up to indistinguishability (§2.3), 
outside an evanescent set. 

1.. e. 
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events strictly anterior to T, by FT­ the mapping: 

w ➔ (w,T(w)). - (Note that if T = t a.s., then 

where fT is 

FT- =·Ft_). Then Px satisfies 

Px_ = E(X IF ) -~ T T-

for all previsible stopping times T, and of course Px is the unique 

previsible process satisfying this condition. Here again the previsibility 

of Px is a necessary supplementary conditon. Indeed, in many cases 

XT is FT- measurable itself for each previsible time T although the 

process X is not previsible. (EXAMPLE. This is the case for instance 

for the process X from the central example of this chapter. a) 

The transition from the uncountable n,imber of a-fields FT- , each 

with its own exceptional null-set, to one previsible CT-field on ~ x U 

with one evanescent exceptional set is an example of the ingenuity of the 

previsible theory explaining its strength. 

EXAMPLE. The process Y defined in the example in 3.1 is previsible 

itself; hence it is its own previsible projection. It also is the 

previsible projection of X; this is proved by noting that Y is pre-
..... 

visible and by showing that for all previsible times T we have sT = 0 

a.s. and thus XT = YT a.s. Hence, in this case taking the previsible 

projection narrows down to making the process left continuous. On the 

• 1.s not 
1 1 · 1 I j 

left continuous, it still is previsible since T 1 + l is a previsible 
• time. a 

§3.4. The dual previsible projection of random measures. 

A random measure p on 1R. 
+ 

p[O,t] 

atoms of 

is previsible. Note that 

p; it is cadlag and we 

is called previsible if the process 

this process is not left continuous in 

have: 

THEOREM 3.4.1. A eadlag process 

1) for aZZ previsible stopping times 

and 

2) XT = XT-O a.s. for alZ stopping 

for aZZ previsibZe times S • 1> 

X 

T 

is previsibZe 

the r. v. ~ 

T suah that 

if and only if: 

P -measurable T- , 

P(S = T < 00 ) = 0 

1) Such stopping times T are called totally inaccessible. 



Another characterization of previsible measures is given by the 

following statement: 

I 7 

THEOREM 3.4.2. A random measure p on :JR+ is previsible if and only 

if 

E f Xdp = E f Pxdp 

for all non-negative processes X. 

This theorem suggests the definition of an operation dual to the pre­

visible projection of processes (§3.3). Indeed, we may introduce the 

dual previsible projection (of measures) as follows: 

THEOREM 3.4.3. Let p be a random measure. Then there exists a 
.. 1 ) · "b ., d d d b P d 1 .., d th d ..,, un~que prev~s~ ve ran om measure, enote y p an aavve e uav 

previsible 

(3.4. 1) 

.. . proJect~on 

E f Xdpp 

of 
= E 

p., such that 

I Xdp 

for all non-negative previsible processes X. 

Combining formula (3.4.1.) with theorem 3.4.2. we find that pp 
, 

the unique random measure satisfying: 

(3.4. 2) E f Pxdp = E f Xdpp 

for all non-negative processes X. 

In our literature the process pP[O,t] is called the dual previsible 

projection of the process p[O,t] , which is not to be confused with 

Pp[O,t] • Since we are only speaking of dual projections of random measures, 

we shall drop the word ''dual'' sometimes. 
• 

Because the previsible a-field is generated by sets of the form 

F x [s,t] , s < t, F € F , the dual previsible projection pp is already s-
determined among the previsible random measures by the requirement: 

(3.4.3) 

or equivalently by: 

(3.4.4) E((p - pP)[s,t] I F ) = 0 
s-

This means that the process (p- pP) [O, tJ is a ZoaaZ martingale and this 

fact is also expressed by saying that pp(O,t] compensates p[O,t] • Now, 

1) Here ''unique means unique outside a null-set. 
i 
' 



18 

• 
1S pp[O,t] is the unique previsible process such that p[O,t] 

a local martingale. Therefore pP[O,t] is sometimes called 

compensator of p[O,t] . 

the previsib Ze 

EXAMPLE. When speaking of point processes an important random measure 

to project is of course the point process itself. We turn to our 

central example of this chapter and see that in the Poisson case the 

previsible projection of 

the deterministic measure 

is its intensity measure, i.e. ~p = A (Because 

is clearly previsible, this follows from 

formule (3.4.3) and the independence property of the Poisson process (proper­

ty b) of example 2.2.2.)). In other terms: the previsible compensator of 

~[O,t] is t . . . The fact that for the Poisson process ~[O,t] - t 

is a local martingale was already known before the theory of previsibility 

was developed. As a matter of fact, in the context of • point processes 

the - in general random - dual previsible projection is considered to be a 

generalization of the intensity of the Poisson process (cf. e.g. Bremaud and 

Jacod (77)). 

For point processes we have two explicit expressions for the pre­

visible projection of ~ : 

THEOREM 3.4.4. Let be a simple point process and (Ft) the 

filtration generated by ~. Then: 

~P (dt) =l: n=o 

G (dt) n 
G ((t,oo]) 

n 
T ] n 
n+l 

• 

(t) a. s. where 

G n (.) = p (Tn+ 1 E • I TI ' ••• 

the first second~ .•.• jump. 
, Tn). Here T 1~ T2 , ••• denote the moment of 

T0 = o. We assume T
1 

> O a.s. 

Note that the set on which the countable number of conditional dis-

tributions G is 
n 

Gn(dt)/G ([t co]) n , 

not defined, 

is of course 

• • is again a null-set. The measure 

the hazard rate of T 
1 

• 
n+ 

THEOREM 3.4.5. Let be a simple point process and let (Ft) be 

the filtPation generated by ; then: 

□ 
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li.m 
• 
1 

. 

For general filtrations and random measures only a weaker form of 

convergence can be proved. 

EXAMPLE. These theorems are of course easily c.hecked in the case of the 

Poisson process (with intensity A). For theorem 3.4.4 use the fact that 

the G
0 

are all exponential with parameter I, thus Gn(dt)/G ([t,oo]) = dt . 
n 

Theorem 3.4.5. becomes trivial thanks to the fact that for all s < t we 

have 

E ( ~ [ 0 ~ t) f F ) = t - s s- a. s .. 0 

• 

• 
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CHAPTER 4 

SOME RESULTS ON POINT PROCESSES 

In this short chapter the main object of study will be introduced 

intuitively. It turns out that this leads to a non-trivial definition 

problem. Some earlier solutions of the definition problem will be indicat­

ed. 

§4.1. The intensity of the Poisson process. 

In the preceding chapter we discussed the previsible projection of 

a point process on lR+ and we saw that there the Poisson process formed 

an extremely simple example. Indeed, as a consequence of the independence 

property b) of example 2.2.2 the previsible projection tu~ued out to be 

deterministic and to coincide with the intensity of the process. It was 

even noticed that in a way the dual previsible projection is a generalizat­

ion of the int¥Osity ef the Poisson process because ,;oughly speakine we have 
' 

(4.1.I) E ((~ - ~p)(dt) f Ft_)= 0 

(c.f. (3.4.4)). 

We now turn to point processes·on an arbitrary locally compact space 

U with countable base and we shall see that in this case too the intensity 

of the Poisson process may be generalized in a certain manner 1). To 
' 

illustrate this we consider· a simple non-marked Poisson process on U 

(diffuse) intensity measure v. Now the independence property of the 

with 

• 
' 

Poisson process yields for all BE B: 

v(B) == E(~(B) I P(B)) a.s •• 

Replacing B by an infinitesimally small set we should obtain 

v(du) = E(~(du) I F(du)) . 

This, however, is not a ma.thematically meaningful formula. 

1) If it happens that U 
from the one studied 

= lR this . + 
1n chapter 

generalization will differ in general 
3. 

.. 



Now suppose that is an arbitrary point process. We should like 

to define a random measure s which intuitively would have the following 

characterization: 

s (du) ''= '' E (~ (du) I F (du)) . 

Our approach to the problem of giving a correct definition of will 

use a series of steps parallel to the results sketched in chapter 3. 

§4.2. The conditional intensity of point processes. 

21 

Papangelou (74) already studied the problem outlined in §4.1, when 

he wanted to find out whether or not all point processes with a certain 

stationarity property are in fact Cox processes (cf. our theorem 10.4.2.). 

In order to define the, what he called, conditional intensity of a point 

process, Papangelou proved that 

(4.2. I) s(V) = lim L E (~(W) I F(W)) 
WEU. V 

l. , 

exists a.s. for all VE U and that the limit determines a random measure 

on U and hence on B when considered as a function of V. In his 

proof Papangelou needed a second order integrability condition. He showed 

furthermore that under regularity conditions (E) and (E*) , which will 

be discussed in chapter 6, the limit does not depend on the choice of the 

sequence of partitions (U
1

, u
2

, ••• ) and is a.s. diffuse. Papangelou's 

result is in a way comparable to theorem 3.4.5. 
• 

Kallenberg (78) proved the existence of the limit (4.2.1) under a 

weaker integrability condition and found another characterization of the 

conditional intensity. Under the conditions (E) and (E*) mentioned 

above this characterization implies that 

satisfying the integral equation: 

E f 

is the unique random measure 

for all FE F, BE B • If IF* (µ) IB (u) -+lF*({u}clJ) IB(u) 

were some projection of the process IFxB, then this result would look 

like the characterization of the dual previsible projection by formula 
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(3.4.2) 

Thus the analogy between parts of the theory of processes on lR+ and 

the results mentioned in this chapter is clear. These results will be 

embedded in the ''visible'' theory which is to be developed in the rest 

of this treatise. 
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CHAPTER 5 

VISIBILITY 

§5.1. Visible a-field, processes and points. 

In §2.1. we defined for each set BE B the exterior a-field with 

respect to 

filtration 

µ on n: F(B)~ The collection (F(B))B EB is a decreasing 

for the partial ordering of inclusion, i.e. F(V) c F(W), 

whenever lv c V. 

We define the visible (from outside, w.r.t. µ ) a-field Z which is 

contained in 

form F x B, 

F x B • By definition Z 

FE F(B), BE B. In this 

is generated by the sets of the 

context Kallenberg (83) uses the 

term ''exvisible'' instead of visible to express that, in fact, it implies 

a visibility from outside (cf. the exterior a-fields F(B)) in the same 

way as previsible phenomena can be foreseen. Note that Z is defined on 
' 

n x U as P is defined on n x lR+. Still, not only are previsibility and 

visibility completely different- though analogous - notions, but moreover 

visibility depends essentially on the point process µ. Indeed, visibility 

is defined through the filtration (F(B))BEB which depends on µ and, in 

the next section, we shall see that it is important both that the F(B) are 

generated by µ and that they contain all null-sets. In contrast with this 

on the other hand the results of chapter 3 up to and including theorem 3.4.3. 
' 

are true for any filtration (Ft). 

Processes - which are in fact functions on x U - are called visible 
• 

if they are Z-measurable. A visible point is a random point Z whose graph 

rzJ is a visible subset of X u ·. 
Examples of visible processes are of course indicators like lFxB 

where FE F(B) and BE B or lfzJ where Z is a visible point. Visible 

points are for instance all deterministic points (i.e. w + u a.s., u EU). 

Another example of a visible point is obtained as follows: 

' 

EXAMPLE 5.1. 1. Let µ be a simple non marked point process on 

U = lR 2 , such that P(~(U) = O) = 0 and define Z byl): 

1) The ''*'' in the sequel of this example (cf. § 2. 3.) may be dropped if we 
take fl= M. 
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if E; (U) = oo , 

Z*(µ) = 

if E; (U) < oo • 

Thus Z is essentially the centre of gravity of the realization. To check 

the visibility of Z we note that: 

while clearly {E;(Vc) IO, Z*(Vcµ) EV} U {~(Ve)= O} E F (V) • 

Intuitively the centre of gravity is a visible point ''because its 

lQcation is not affected by the absence of presence of mass of it". The 

requirement P(~(U) = O) = 0 is essential; cf. the case c = 0 in example 

s.2.1. 

We give another important example of visible sets: for each VE U 

we introduce: 

H(V) = {(w,u) I u EV, ~
00

(V-{u}) = O} 

Visibility is proved by1): 

{F;(V-W) = 0} x W 
l., 

a 

and {~(V-W) = O} E F(W). For all w there exists for all u EU a set 

VE U, V 3 u, such that 

(5.1.1) 

~ (V~{u}) = 0 and hence: w 

Note that the family U is countable. 

§5.2. A visible section theorem. 

• 

To begin with we shall prove some technical lem111a.s. 

I) The lfm exists since it may be replaced by i~k where k is such that 

VE Uk. Something similar is usually the case when we encounter limits 

of sets. 

• 



LEMMA 5.2.1. The visible o-field is generated by the class D con­

sisting of aZZ sets of the form F x V, where FE F(V), VE U. 
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PROOF. Let C denote the algebra generated by U and E the class of 

sets BE B such that F x BET (D) for all FE F(B). Now we have to 

show that E = B. First we note that E is closed under countable unions 
• B lJ B., since -- • 

l. l. 
• and hence F X B l. 

• observation • i's that 

B. EE , 
l. 

U• F -- l. 

E => C. 

and 

X B. 
l. 

F E F(B) 

E T(D) . 

imply that FE F(B.) for all 
1 

A first consequence of this 

Furthe1rnore, we see that E is closed under monotone countable 

intersections; indeed, suppose E 3 B. + B ; 
l. 

the a-field F(B) is generated 

by N (c F (B.) Vi) and the sets 
]. 

{µ(Ax D) < a} = O, I, 2, ... , A EB, An B = 0, DE K, 

whereas 

{µ((An B.c) X D) <a} X B. + { µ(AxD) <a} X B' 
l. l. 

because 

{ µ x D) <a}+ { µ(AxD) < ct } , while 

{ µ ((AflB.c) X D) <a} E F (B.) 
l. 1 

. 

Thus the class E satisfies the conditions of the monotone class 

theorem (theorem B. 3), which yields: E = T (C) = B • 
• 

LEMMA 5.2.2. Let£> 0 and A E Z. Then thePe exists a visible 

set A' c A of the form 

A'= 

where F(V) E F(V) and w CV (W, VE U) impiies F(W) C F(V), such 

that 

P (lf (A')} > P (1T (A)) - E • 

a 
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PROOF. The ordinary section theorem (theorem A.1) allows us to choose 

an F-measurable section R of A such that P(rrrR.J)= P(1r(A)). ~le 

now define the measure m on F x B by: 

m(G) =JIG (w, R(w)) p (dw) = p (rr(fRJ n G)) 

for all GE F x B. Let D denote the class containing all finite 
s 

unions of elements of D (The family D was introduced in lett1i11a 5. 2. 1) . 
✓ 

The class D being closed under finite intersections, a well-known 
s 

result of measure theory states that there exists a set A', a countable 

intersection of elements of D , such ·that 
s 

m(A') > m (A) - E. 

(See for instance Hahn and Rosenthal (48) 6.5.4. This result can also 

be considered to be a consequence of the theorem of Choquet, e.g. Meyer and 

Dellacherie (75) - III - 28 + 33a). 

Hence: 

P (rr(A'» > P(TI(A)) - E 

While A' has the following form: 

--

where ¾: == 

may be divided in such a way that 

--

(indeed, take Fk(V) = 

If V E U. , 
1 

• we write 

u 
j :Vkj::>V 

F(V) = 

we take F(V) = n ), then 

• 

E Vi} exists for all k. The sets 

Fk (V) E F(V) 

be empty). 

i for all k, 
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A' = F(V) XV 

It is easy to check that we can suppose without restriction that the F(V) 

are increasing (W c V ~ F(W) c: F(V)). 

Remark: Writing 

(5. 2. I ) 

We obtain: 

F(u) 
00 

= .nl 1.= 
F(W) 

A' = U F (u ) x { u} . 
uEU 

(E F({u})). 

□ 

□ 

The proof of the previsible section theorem (theorem 3.2.1) begins with 

an arg1.unent similar to the proof of le1111ua 5. 2. 2. This explains the ''e:'' 

in theorem 3.2.1. However, the proof of the previsible section theorem is 

completed by using the order of m.+ and this order cannot be used to 

prove the visible section theorem, which now follows. 

THEOREM 5.2.3. (Visible section theorem) Let A be a visible non­

evanescent set; then there exists a visible point whose graph is contained 

in A and is non-evanescent (a visible section of A with non-evanescent 
graph) •.. 

Before proving this theorem we give an example. 

EXAMPLE 5 • 2 • I . (This example will be elaborated in §JO.I). The above 

theorem guarantees only the existence of a small, but non-evanescent, visible 

section of non-evanescent visible sets. In this sense the statement is 

weaker than the previsible section theorem. However, we cannot do better 

as will be shown in this example. 

Take O < c < I and U = [O,I-c). The probability space will be the 

interval [O, l] with Lebesgue measure; the simple non marked point process 

µ is given by: 

if O < w < l - c, 

if not • 
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I-c-

u 

H(U)-
figure 5.2.l 

uo ----- -- ----------------

1-·c I 

(Thus µ is the zero-or-one-point process (Example 2.2.1) with U = [0,1-c) 

and v the uniform distribution on U). 

The set H(U) = {(w,w) I O < w < 1-c} U ([I-c, l] x U) is sketched in 

figure 5. 2. 1 • We know that H (U) is visible. Further111ore, P ( 1T (H (U))) = 1 • 

But if c > 0 any visible section of H(U) with non-evanescent graph must 

be of the following fott11 

uo if c;ili(U - {uo}) - 0, -
Z(w) -- a.s. 

' 

6. if not· , 

for some u0 EU (theorem IO.I.I); and then we have 

the other hand c = O, then H(U) itself only differs 

P(rrfz_j) =· c. If, on 

by an evanescent set 

from the graph of a visible point: the a.s. existing unique point of the 

realization of is visible itself ''because if we know it is not outside 

a set B (E B), then we a. s. know it is in B''. CJ 
• 

The distinction between the cases c = 0 and c > 0 in the above 

example corresponds to the one between the cases .i) and ii) in the follow­

ing proof. 

PROOF of theorem 5.2.3. Let A be a visible set such that P(rr(A)) > 0. 

Using l~11a11,a 5.2.2 we then see that there exists a visible set A' c: A of the 

fot1n A' = F(W) x W ~ where F(W) E F(W) and the F(W) are increasing, 
_..,. 

l. ' ' 

such that P(rr(A')) > 0 • Because U 'is. a countable family it follows 

from formula (5.1.I) that there exists a set VE U such that 

P(n(H(V) n A'))> 0. Hence we may assume without loss that A is a visible 

set of the foxm: 



A= lim • 
l. 

where F(W) E F(W), the F(W) 

Now two cases are to be 

[{~(V-W) = 0} n F(W)] x W, 

• • are increasing and Vis some element of 
• 

distinguished: 

i) P(TI(A) n {s(V) = O}) = O. 

u . 

Then An [ (TT(A) n {~(V) = O})c x U] E Z and since Ac n xv we have 

P [ TT (A n ( ( TT (A) n { ~ (V) = 0}) c x U) ) ] = p ( rr (A) ) > O , 

but on the other hand: 
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= 1 im u (F (W) n { s (V-W) = o}) x w n [ ( 1r (A) c u { ~ (V) = o} c) x u l 
L. i WW. V 

l., 

-- [F(W) n {s(V-W) = O} n {~(V) 

-- [F(u) n .{s(V-{u}) = O} n {s(V) ~ 0}] x {u} 

A, 

- u - u£V 
[F(u) n {s(V-{u}) = O} n {s IO}] X {u} = fzJ, 

u 

(If u EU, then F(u) is defined by (5.2.I)) where Z is the random point 

given by: 

~ 

Z (w) = u if su (w) i: O, sw(V-{u}) = 0 ,· wEF (u) , 

if not . 

ii) c = P(TT(A) n {s(V) = 0}) > 0. 

~ According to theorem A.I there exists a section R of An [{s(V) = 0} x V] 
~ ~ C 

such that P(TTrRJ) = c. We define the random point R by R*(µ) = R*(V µ) • 

The random point R is visible since its image is contained in VU{~} 

while it depends on vµ hence on whatµ does outside of V. Indeed, 

( R J = 1 im W~U. { R € W} x W 
1, V 
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and 

{REW} E F(V) c F(W) • 

Next we define the visible section Z of A by fzJ = rRJ n A; then 

fzJ :::> rRJ and hence P(1r1zJ) ~" C > 0. 

§5.3. The visible projection 

To begin this section we introduce the exterior a-field of a random 

□ 

point which is to be compared with the o-field FT- of events strictly anterior 

to a stopping time T in the theory of processes on lR +. The lec111c1.a.s 5. 3. 1, 

2 and 3 also have their analogue in that theory. 

The exterior a-field of a random point R is defined by: 

F(R) = T(F n {RE B} IF E F(B), BE B) . 

Thus if R = u a.s., then we have F(R) = F({u}) . 

LEMMA 5. 3. I • Let R be a random point and Zet the function 

fR: Q ➔ Q x (U U {~}rbe given by fR(w) = (w, R(w)), then F(R) = 
-1 r fU"Pthermore: fR (A)= rr(A n Rj). 

PROOF. Obvious 

5.3.2. 

(F x U) n rzJ E 
• po-i.nt. 

PROOF. Le,,,r,1a 

Let Z be 

Zand hence 

a visible point 

(F x U) n f zj 

5.3.l yields that FE F(Z) 

and FE F(Z) • Then 

is the.graph of a visible 

if and only if 

F = = 1r(A n fzJ) for some A€ Z , and hence w € F implies 

(w, Z(w)) EA so that (F X U) n rzJ = An rzJ € z • 

·LEMMA 5.3.3. Let R be an arbitrary random point and z a visible 

point. Then F(Z) n {Z=R E U} c::: F(R), and hence in partiaulaP: 
' 

\. { Z = R € U} € F (R) • 

a 

a 

PROOF. The last statement of the len11ria follows i1011tediately from lem,na. 

• , 



5.3.1, • since 

To prove the more general assertion we note that the sets 

F n {z EB} n {z =RE U} = F n {RE B} n {z =RE u} with FE F(B), 

B E B - which generate the a-field F(Z) n {z = R E u} - are elements of 

F(R) • 

Before coming to the 

technical lecciioa. The set 

projection theorem itself, we shall prove a 

cr(µ), which is defined by this letn111a, is 

intimately related to the regularity of the point process. 
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CJ 

LEMMA 5.3.4. For eaeh random measure p on U (resp. on U x K) there 

exists a corresponding visibie set o(p) suah that: 

- ~he set o(p)c is the union of graphs of a finite o~ countable numbeP 

of visible points:, 

- for all visible points z 
and 

with fzJ c: o(p) we have P(p(Z) I 0) = 0, 

- for all visible points Z with rzJ c: o(p)c and P(nfzj) IO we have 

P(p(Z) I 0) IO. 

The meaning of this le1r11ua may not be i1,ua1ediately obvious. Therefore 

we shall first try to give the reader an intuitive feeling for it. 

EXAMPLE 5.3.l. (This example will be elaborated in §10.2) We take 

U = (O, I) and n = (O, I) with Lebesgue measure. The simple non 111arked 

point process µ is defined by: 

s if w < ½ , 
w 

The points on the solid lines in 

figure 5.3.1 indicate the atoms of 

~w at the corresponding w • The 

same distribution of ·~ · can also 

be obtained in another manner: 

= € + YE l 
X X+2 

1 

u 

0 I 

figure 5.3.1 

where X and Y are independent r.v.'s; Xis uniformly distributed on (O,!) 
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and P(Y=I) = P(Y=O) = ! (take X = w mod! and Y = 0 if w < ½ , 

I if w > ! . ) 
The set a(,)c (of course s and µ are interesting random measures 

to put ino(.)) now consists of the solid lines and the dotted line in 

figure 5.3.1; i.e. o(~)c = A =«w,u) I w = u or w = u +½or w = u - !} 
Indeed, if fzJ c Ac then P(,(Z) / 0) = 0. On the other hand, since with 

probability one the interval (O,½) contains exactly one atom of ~, we 

have fxj = H(O,!), so that the atom in (O,!) itself forms a visible point 

(cf. the case c = 0 in example 5.2.I.). The point X+½ is visible too 

since X itself can be observed from the interval (O,½). We have 
• 

P(~(X+½) = 1) = ½ = !P(X+½ EU), but we cannot leave out a non-evanescent 

part of the dotted line only without disturbing the visibility. □ 
C In the above example all atoms of are ''in'' a (s) • However, 

this is not necessarily the case; for most ''decent'' point processes o(s) c 

is even empty; for instance in the case c > 0 in example 5.2.I we have 

P(,(Z) / 0) = 0 for all visible points Z. 

PROOF of lem111a 5.3.4. First we suppose that U (resp. U x K) is 

bounded. We denote by V the class of all visible points. If the set 

{Z EV f P(p(Z) > ½) > !} is not empty, then we choose an element z1 in 
I 

> ½} and so on. Since P(p(U) < oo) = 1 

(resp. P(p(UxK) < ~) = 1) (U (resp. U x K) being bounded) there exists a 

finite n11mber n 1 such that 

0, P(p(Z) > !) > !} = • 

Now we apply the same procedure to 
• 

Ill 

2 2 
and find Z l , • • • , Zn • Etc • 

2 
Proceeding in this manner we obtain a 

• . • J . 
finite or countable collection of visible points Z. with disjoint graphes, 

l. 
such that P (p (Z) :/: 0) = 0 for any visible point with fzJ c (Y ~fz~J)C. 

l. J l. 

Next we note that for any visible point Z there exists a unique 

visible point Z that such fzj c fzJ .. and P(p(Z) :/: O) = P(p(Z) :/: 0), 

which has the following property: if z' is a visible point with 
~ 

fz'J c fzJ and P(nfz• j) + 0, then we have P(p(Z') ~ O) :/: O. (Intuitively 
~ z . th '' 11 t . . b 1 . '' . . 1s . e sma es v1.s1 e point conta1.n1.ng the same p naass as Z''). 
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~ Indeed, we may let Z be determined by 

~ fzj = fzJ n ({P(p(Z); o I F(Z)) Io} x u) . 
~· 

The set ( ld t)fZ~ J)·csatisfies the conditions imposed on a(p). In the 
]_ J 1 

more general case, where the space U (resp. U x K) is not bounded, make use 

of the fact that it is the union of a countable n11mber of bounded sets. □ 

We write: 

cr(µ) = a . 

In chapter 6 we shall investigate this set O and related matters in more 

detail. 

• 

THEOREM 5.3.5. Let the process X be bounded or finite and positive; 

then there exists a visible process such that we have: 
( ) - EZX 5.3.1 EX2 - z 
for alZ visible points Z. 

indistinguishability) and is 
The proaess zx is uniquely determined 

called the visible projection of X. 

PROOF. The visible section theorem (theorem 5.2.3) 

unicity of the visible projection, if it exists, for if 

ensures 
1x and 

two distinguishable visible processes, 

{ (w, u) I 1 
X (w) > 2x (w)} and { (w, 

u u 

then 

u) I 
at least 
I 
X (w) < 

u 

one of the sets 
2x (w)} is non­

u 
evanescent an·d visible and 

evanescent graph, so that 

has a visible section 
2 

E X
2

• 

Z with non-

(up to 

are 

Furthermore, we may use the monotone class theorem (theorem B.1): 

Indeed, we again use the visible section theorem to prove that: 

- if X and Y have visible projections zX and zy and if X ~ Y, then 

zX ~ zy; in particular I X f ~ c (c constantj implies I zX I ~ c; 

- if the processes X(n) have visible projections zx(n) and if (outside 

an evanescent set) the processes X(n) are uniformly bounded or positive 

and converge increasingly, then lim zX(n) is a version of the visible 

n 
- the same holds if (outside an evanescent set) the X(n) are bounded and 

converge uniformly; 

- if the processes X and Y have visible projections 
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then .azX + b2Y is a version of the visible projection of aX + bY. 

According to the monotone class theorem it is enough to prove the 

existence of the visible projection for a class of processes which is 

closed under multiplication and which generates Ax B. 

The processes 

(S.3.2) 

where FE A, BE B, form such a class. Next note that clearly the 

processes IFxB(w, u) and P(F I F)(w) IB(u) have the same visible 

projection, if any. Hence it suffices to indicate the visible projection 

of the processes (5.3.2) with FE F, BE B, since these processes generate 

FxB. 

Now, let 
• points {Z.} 

l. 

x: be such an indicator process. Choose a family of visible 

such that oc = u.rz.J; this is possible according to 
l. 1. 

le11111ia 5.3.4. On fz.j we define: 
l. 

zX (w) = P(F I F(Z.))(w) IB(u) • 
u 1. 

Lexr11oa 5. 3. 2 ensures the visibility of the process 

On a we set: 
l. 

This part too is visible since on o we may write: 

E Z, the limit existing thanks to 

(5.1.1). Now th~ visible process zX is defined ev~rywhere on n x U . 

Let Z be a visible point. Because len111ia 5. 3. 3 implies that 

{Z = Z. EB} E F(Z.), we obtain: 
l. l. 

J zX c!P= f P(F I F (Z.)) dP z . 
{Z=Z.} {Z=Z.EB} l. 

l. J. 

- f l d:P == f xz dP -
{Z=Z.EB} F {Z=Z .. } • 

1 l. 
. ,-. 

for.all • 
1. On the other hand P((TI(fzJ no)) n {µ(Z)}> O}) = 0 hence: 



-- f 1 * (µ) 
rr (f zjncr) F 

= f X dP 
rr(fzJncr) 2 

(N.B. TI(1zJ n cr) = {w I (w,Z(w)) E cr}). Combining the above equalities 

we find 
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The theorem is now proved for bounded processes. It holds for positive 

finite processes X since we may apply this result to X An and let n 

tend to infinity. 

Remarks 

1. Let R be a random point and Ya visible process. Then it 

follot-1s from lei,mia 5.3.1 that YR is F(R)-measurable. 

2. Let Z be a visible point and X a process. Then 

a. s .. 

a 

Indeed, both members 

{zxz < E(x2 I F(Z))} 

are F(Z)-measurable. If 

(or {zx2 > E(X2 I F(Z))}) 

the random point Z' determined by fz'J = rzJ n 
is visible according to lerr11,1a 5. 3. 2 and 

is not a null-set, then 

[{zx2 < E(x2 I F{Z))} x u] 

~ Ex2 ,. This results in a 

contradiction. 

3. If Y is a visible process, then we have 

z (XY) = z X.Y. 

' 

(Note that an analogous property applies to the previsible projection and 
• 

also to conditional expectations). 

4. If X is an F x B-measurable.process, then we have on cr: 

5. In the course of the proof of theorem 5.3.5 we saw: 
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for FE A, BE B. In a way the auxiliary pr~cess P(F I F)lB corresponds 

to the optional projection of not adapted processes in the theory of 

processes on lR + . 

6. We have 

a(~)= cr(µ) =a. 

Even for arbitrary random measures p on U x K we have 

a ( p ( • x K) ) = a ( p) • 

§5.4. Visible random measures • 
• 

We begin this section with a well-known result (cf. e.g. Kallenberg 

(83) lec1,1r1a 2. 3). We shall give an easier proof of it which uses the 

ordinary section theorem (theorem A.I). 

C 

A 

..!:!:!~:...=..S !.:· 4!..:·~l..!... The set A = { (w, u) I ~u (w) I: 0} is the union of a finite 

or aountabZe number of gz:,aphs of random points. 

PROOF. First suppose that U is bounded. It can be checked that 

A E F x B .. ,. Let R1 be an F r11easurable section of A with ·P (nf R1 J) = P (rr (A)) 

(theorem A.I). Next we look for a section R2 of A-fR1J , and so on • 
• 

Because P(~(U) < 00) = I (U being bounded) :it is easy to verify that it 

will take a finite or countable number of R. before we have 
l. 

P(TI(A - UifRij)) = 0 • 

If U is not bounded, it is the countable union of bounded sets. c 

We still need another small le111rna. 

LEMMA 5 • 4 • 2 • Let G be an arbi tz:,ary sub-cr-f ie Z d of A, G => N ., 

and let X be a r.v .; then the fo'lZowing aonclitions am ,equivalent 
• 

i) Xis G-measurabie; 

ii) E(lFX) = E(P(F I G)X) for all F EA • 
• 
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iii) EXH = O for ail r.v. 's such that E(H I G) = 0 a.s .. 

PROOF. Obvious • □ 

" 

A random measure P on :m. + is uniquely determined by the non-

decreasing process p[O,t] and consequently we were able to define 

previsibility of random measures through the previsibility of processes. 

For random measures on an arbitrary locally compact space with countable 

base no one-to-one · correspondence with processes exists, so that we 

cannot simply copy the definition of a visible measure from the definition 

of a previsible measure (§3.4). In the following definition visible 

random measures are defined in three equivalent manners. The first is an 

analogue of theorem 3.4.1. The second is intuitively (and, of course, 

in fact) the same as the first; note that this second definition implies 

that al though a random measure is not uniquely deter1oined by the 
.... 

process C, this process still tells a lot about the visibility of ~ • 

The third definition, which corresponds to theorem 3.4.2, will be used in 

the definition of the dual projection. 

DEFINITION · 5. 4. 3. "A Pandom measu:.Pe on u (resp. on U x KJ will 

be called visible if one of the three follOuJing equivalent conditions is 
satisfied: 

i) 

(5.4.1) 

and 

(5.4.2) 

The random measure is F-measurable and we have 

for each visibZe point Z the real-valued (resp. L(K)-vaZued) 

r.v. 
..... 
r; is F(Z)-measurable~ z 

for each random point R such that rR·J C q(r;) we have 

~ (R) = 0 a. s •• 

ii) The random measure 

(resp. L(K)-vaZued) process 
,,.., 

is F-measurable and. the real-valued 

is visible. 

iii) To all non-negative processes X the following equality applies: 

(5.4.3) E f Xdr; = E f zXd~ 

(resp. to aZZ non-negative processes X and all DE K the folZOuJing equality 

applies: 

(5. 4. z,) E f X ) • 

PROOF of the equivalence of the conditions i), ii) and iii). To begin 
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with we note that the requirement of F measurability of z: figures in both 

i) and ii). 

Proof ''i) • ii)'': First, let us suppose that z.; is a random measure on 
;,,. 

U. The set {(w, u) I z.;u (w) IO} n cr(Z:) is evanescent; indeed, if not, 
• then according to theorem A.I it would contain the graph of a random point 

contradicting (5.4.2). If {Z.} is a family of visible points, such that 
l. 

a(Z:)c = y fzij (cf. le111111a. 5.3.4), and > O, then we have: 

{ (w, u) · ~ (w) > o.} ~ U (f Z. J n ({z; (Z.) > ex} x U)), which is visible according 
U i i 1 

to le1:tuita 5. 3. 2. 

If is a random measure on U x K the above argtiment applies to 
.... 
Z:(D) for each DE K. 

Proof ''ii) ,,,. i) '': Now condition (5. 4. 1) is clearly satisfied thanks 
.... 

to le,,una 5.3.1.. Furthermore, the set a(t;) n { (w, u) I z; (w) :/= O} 
A u 

(resp. cr(l;) n {(w, u) I z.;u(w) = O}) is evanescent; indeed, if it were not, 

then according to theorem 5.2.3 it would have a visible section Z such 

that P(?;(Z) :/= 0) :# O, which contradicts the definition of cr(l;) (lemma 5.3.4) -

Now condition (5.4.2) is easily verified. 

Proof ''i)" 'iii)'': We shall only give a proof in the case where r;: 
• 

a random measure on U • If t; is a random measure on U x K , then the 

arg\t1,1ents of this proof apply to l; (. x .D) for each D E K 

By 1~11.!11na 5.4. 2 P measurability of is equivalent to: 

= E P(F IF) t;(B) 

= E f P(F I F) 

for all FE A, BE B. On the other hand, if F € A, BE B, then 
z 

lFxB = (cf. §5.3 remark 5) and hence (5.4.3) yields 

Now it is seen that it is sufficient to prove the following equivalence: 

(5.4. I) + (5 .. 4.2) • , ► (5.4.3) for all non-negative F x B­

measurable processes 
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This will be done succesively. 

Proof''=> (5.4.3) for F x B citeasurable processes'': Let X be a non­

negative F x B measurable process. If Z is a visible point, then (5.4.1) 

and §5.3 remark 2 imply: 

• 

On the other hand, thanks to ler1·11na 5.4. l and statement (5.4.2) we have: 

...... -" 

P[rr({(w, u) I r; (w) 
u 

~ (w) 
u 

~ o} n cr(z;))] = o. 

Using these two results and §5. 3 remark 4 we find (5. 4. 3). Indeed, 

= E f 

= E f Xdl; . 

Proof '' => (5. 4. I)'': Let Z be a visible point. To prove F(Z)­

measurabili ty of z; (Z) we use characterization iii) of lenl1tta 5. 4. 2: Hence 

we suppose that H is a r.v. such that E(H I F(Z)) = 0 a.s. and we 

define the process 

zH'z = E(H'z I F(Z)) 

H' by H' (w) = H(w) for all 
u 

= 0 a.s., and thus, since 

u EU, w E Q. Then 

fzJ E Z, we have: 

E t;(Z) H = E 

= E 

u) H' z; (du) 
u 

' 

zH, l;(du) = 0. 
u 

Proof '' =+ (5.4.2)'': Let R be a random point such that fRJ c cr(z;). 

Since ac n cr(z;) is the union of a finite or countable n1unber of graphs of 

visible points which are contained in a(z;), we have 

so that P(C(R) ~ 0) = 0 if rRJ c: crc n a(z;) • 

E f 
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Next we suppose that fRJ con cr(z;) . Thanks to (5.1.l) we now only 

need to consider random points R for which there exists a VE U such 

that fRj c H(V). Then 

{ (w, u) I u ~ (V-{u}) = O} = 
w 

is the graph of a visible point R' . Hence we have 

E l; (R) --

because thanks to §5.3 remark 4. □ 

Remarks. 

I. If is a random measure on U x K, then l;(. x D) is a random 

measure on U for each DE K. This reduction is used at several stages in 
the above proof and will be used in future. Note that in fact a random 

measure on U x K is visible if and only if the random measure l;(. x D) 

on U is visible for each D E K. 

2. If follows i111mediately from definition 5.4.3 ii) and le11,11,a 5.3.2 

that if is a visible random measure then statement (5.4.l) also applies 

to non-visible random points. This can also be seen from (5.4.1), (S.4.2) 

and lec1ro1a 5. 3. 3. 

3. Let be a visible measure on U. Looking at the proof of the 

equivalence i) < .. ) > ]. l. of definition 5.4.3 we note J,:hat we proved: 

a(r;) c: {(w, u) r e (w) - O} Since on the other hand clearly - • u 
=> {(w, [ 

.... 
O} O(l_;) u) z; (w) - we have - ' u 

If is a visible measure on U x K we find 

o(z;) ~ {(w, u) I .... 
z; (w) = 0} • 

u 

(cf. §5.3 remark 6). 0 

0 • 



We conclude this section with some more general results on random 

measures. 

41 

By definition a marked process is an A x B x K nieasurable function on 

Q x U x K. A marked process is called visible if it is Z x K-measurable • 
. 

Now we introduce the DoZeans, Campbell or master measure Cp of a 

random measure P: If p is a random measure on U (resp. on U x K), 

then we define the measure Cp on n x U (resp. on Q x U x K) by: 

(5.4.4) 

for all non-negative processes Y (resp. for all non-negative marked 

processes Y). This notation will be used throughout. We already 

encountered the Doleans measure in definition 5.4.3 iii). 

It can easily be checked that if two random measures have the same 

Campbell .measure, then they are a. s. equal. 

THEOREM 5.4.4 Let p and T be two ra,~~m measures on U (resp. on 

U x K). Then the foZlowing three conditions are equivalent: 

i) p << T a.s.; 
ii) c

0 
<< C · 

T-' 

iii) there exists a process (resp. a marked pPOcess) X suah that 

p = X T a.s • ., i.e. for almost aZZ w we have p = X(w)T 
w w 

Furthermore, if p and T are visible, then X can be chosen to 

be visible, and aonverseZy, if X can be chosen visible, and if T is 

visible, then p has to be visible too. 
, 

PROOF. Note that X • • 1.s non-negative. The implications i) ~ ii) 

and iii) • i) are trival.. If X is visible and T is a visibl.e 

measure, then the visibility of p follows from def·inition 5.4.3 iii) and 

§5.3 remark 3. 
dC 

To proof ii) q, iii), take X = p 
dCT 

and check that with this choice 
we do have p = XT a. s •• If 

5.4.3 iii) the measures CP 

consider visible Y in foritlllla 

considered to be measures on 

p and T are visible, then by definition 

and C · are already deterrnined if we only 
T . 

(5.4.4); hence, then Cp and CT ma~ be 

(Q x U, Z) (resp. on (ft x u X K, z X K)) so 

that X may be chosen to be visible. I .... 

□ 

Note that if p and Tare visible random measures and p = XT 

a.s., this does not necessarily imply that the (marked) process X 

visible. 

• 
1S 
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§5. 5. The (dual) visible projection of random measures. 

In this section the crucial notion of the dual visible projection of 

random measures p on U and on U x K is to be defined. Remember that 

in any case the filtration (F(B)) is generated by µ and we hence obtain 

the visible projection of an arbitrary random measure p w.r.t. the random 

measure µ. 

We shall assume throughout that random measure p on U ( resp. on lT·. x K), 

which are to be projected, have the following property: There exists a 

countable number of disjoint visible sets A. such that U A. = n x U and such 
1. • l. 

l. 
that C (A.)< 00 (resp. 

p i 
C (A. X K) < oo). 

p i ) 
The random measures ~ and µ itself have this property 1 : indeed, 

the family m(v)·)VEU satisfies all above conditions except that the sets 

are not disjoint; they can easily be made disjoint without loosing their 

visibility and we obtain the family: 

( ) [ U ) Jc .H V n BEU H (B 
I 

VEU • 

B::>V 

THEOREM 5. 5. 1 • Let p be a random measure on U ; then there exists 

an a.s. unique visible measure pz on U suah that we ha:ve: 

(5.5.1) E f X dp = E f Xdpz 

for all visible non-negative proeesses 

for all A E Z • 

projection of p. 

The random measure z p 

X ; or equivaZentZ.y c (A) = c z (A) 
p p 

is aalled the (dual) visible 

PROOF. Let c: 
l. 

be the measure on (Q x U, Ax B) which is defined 

f 1 A. zXdp for all non-ne·gative processes X. for all i by Cz.(X) = E 
1 

If the set A EA x B • is have 

for all • 
1 and VE B • Using the same methode as the one by which the 

existence of conditional distributions on Polish spaces is proved (cf. e.g. 

Bauer (78) §56) show that for all • there exists • we may i an a.s. unique 

random measure z 
(U ,U) defined by desintegration: pi on 

d z (. XV) C. z l. -
(V) p. --

dP • 
l. 

1) If µ is a non-simple or compound point process described in the usual 
way (i.e. not by using marks), then this assumption becomes a supplement-

• ary requirement. 

p 



The unique extension of z p. on 
1. 

• z z 
E f write p - I: p. • thus we have - , 

. l. 
J. 

E f zXdp = E f Xdpz VE U and hence 

B will 
z 

1Fxv 
dp 

for all 

still be denoted by z p .. 
1 

= E f 1Fxv dp 
z for all 

• non-negative processes 
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We 

FE A, 

x. 
Definition 5.4.3 iii) i101uediately yields the visibility of the random 

measure p 2
• 

THEOREM S.S. 2. Let p be a random measure on U and pz its 

visible projection; then: 

i) pz(Z) = E(p(Z) I F(Z)) a.s. for aZZ visible points z. 
ii) o(pz) ~ o(p) . 

iii) E(p 2 (V) I F(V)) = E(p(V) I F(V)) a.s. for all VE B. If p 

integPable 1
), this property determines pz among the visible random 

measu.Pes; it even is enough to verify it for alZ v EU • 
. ) -z . Zp.a 2) 

1-V p = . 

PROOF. 

i) Both members are F(Z)-measurable. If FE F(Z), then 

A = (F x U) n f Z J E Z (lt!ffillta 5. 3. 2) and hence: 

ii) This fol lows i1111,1ediately from i) . 

CJ 

• 
1-8 

iii) Use the fact that if VE Band FE F(V), then F x VE Z and on 

the other hand the fact that Z is generated by {F x V I VE U, FE F(V)} 

(le1r1r11a 5. 2. I) . 
• 

iv) This follows from i) and definition 5.4.3 iii). 

THEOREM 5.5.3. Let p be a random measure on U x K; then thePe 

exists an a.s. unique visible random measUPe pz on U x K such that 

we ha.ve 

□ 

(5.5.2) 

for ail 

Cp(A) = 

E f Xx IDdp = E f Xx lDdpz 

visible non-negative proaesses X 

C (A) for all A E Z x K. 

and all DE K; or equivalently 

pz 

I) Integrable means: EP(B) < 00 for all bounded BE B. In fact in theorem 
5.5.2 iii) EP(B) <~for all BEU is already a sufficient condition 
as will be clear from the rest of t!e statement. 

2) F . . ..... z h h ( z) .... or convenience we write p rat er tan p • 

• 
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The random measuPe z • aalled the (dual) visibie projeation of p • p 1.-8 

PROOF. 0n O X U X K resp. on Q X U we define the measures CZ 

and 
~z 
C by 

Cz(X x l ) - E f ZX X lDdp and Cz(X) = E J zX x lKdp -D 

for all non-negative processes X and DE K. Now it can be proved that 

there exists a transition measure n from ( n x U, Z) on (K, K) such that 

z ~z 
C (dw, du, dk) = C (dw, du) n (w, u, dk) 

(cf. the proof of the existence of z .. 
p in 

Let ~Z p denote the visible projection of 

the proof of theorem 5.5.1). 

p(. x K), which of course is a 

random measure on U; i.e.: 

then it can be seen that z 
p (du, dk) ~Z( = p du) n ( • , u, dk) is the 

required visible projection of p. Indeed: the fact that the measure 

defined in this manner is visible, may be shown using definition 5.4.3 

z p 

iii) 

because of all DE K the mapping (w, u) ➔ n(w, u, D) is visible; further-

more, again using the visibility of n(., ., D), it becomes clear that 

satisfies (5.5.2). To prove uniqueness, note that: 

= E f x 1 dp 
D 

z p 

for all F € A, VE U, and Din a countable semi-ri~g generating K. □ 

Remarks. 

l. Theorem 5.5.3 could have been proved without using the result of 

theorem 5.5.l by direct desintegration of Cz w.r.t. w. Later on we shall 

deduce an expression for the ker11el n in the case p = 
2. Note that in 

CZ= C 
pz 

the proof of theorem 5.5.2 
~ 

and Cz = 

we have 

(theorem 7.2.1). 

0 

THEOREM 5.5.4. Let p be a m measure on u x K and pz • 1.-ts 
visibte projeation, tMn: 

-l 
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i) ~2 (D) = E(~2 (D)) [ F(Z)) a.s. for alZ visible points Z and all 
DEK. 

ii) 

iii) 

o(pz) ~ cr(p) • 

E(pz(VxD) I F(V)) = E (p(VXD) I F(V)) 
' 

a.s. for all VE B and 

D E K • If p(. x K) is integrabZe., this property determines pZ, among 

the visibZe random measures on U x K; it is even enough to verify it for 

VE U and D in a countable semiring generating K. 
iv) ~z(D) ~ zp(D) for all DE K. 

v) (p(.xD))z(B) = pz(BxD) for all BE B, 1 ) 
D E K a.s .. 

PROOF. For ij> ii), iii) and iv) see the proof of theorem 5.5.2. 

Inv) both members are equal to fB. n (., u, D) p(du) (cf. the proof 

of theorem 5.5.3). 

This concludes the part devoted to the existence of the visible 

projection. In chapter 7 we shall see some explicit expressions for it. 

In chapter 10 the visible projection will be calculated in some concrete 

cases. 

• 

• 

' 

[J 

I) For all DE K the expression p(. x D) is a random measure on U, which 
may be projected according to theorem 5.5.I. 
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I,n thi, cha.pt.er 

P•pUl'elou (14),. who 

Chapter 6 

THE CONDITIONS (a) AND (E) 

· 1 . d' . f . we discuss some regu.ar1ty con 1.t1ons or point processes. 

v•s the first to study the object that we call the dual 

visible 
.· .~ 

ln1 t 
projectioa 11 va1 

to be diffuse .. 

. d . d . .. P alrea y 1ntereste 1n requirements on 

Por that purpose he needed two conditions 

guarantee­

(I:) and 

(t•) .. 

thin11 ai'BP ly do not 

be defined when (t) 

11old, for 

very fundamental; without this condition many 

instance: Papangelou kerraels (see §8.2) can only 
. . f. d 1s sat1s ·· 1.e .. Condition (l:*) is less important, it only 

•kes things s;gonther,. 

We shall introduce a condition (cr), which is equivalent to (I:) and (I:*) 

together .. Our definition of (a) and (I:) will be through the visible sets cr 

and t respectively, which can be defined for every point process. 

Huch work in this chapter has only been done to indicate the link with 

tesultl k:aown in the literature and to simplify the study of examples. For 

theoretical purposes only the definition of 1:, (E), cr and (a), and the 

th•or-. 6.1 .. 1, 6.1.2, 6 .. 1.4 i) and ii), 6.2.l and 6.2.2 are important. 

I.elated matters are found not only in Papangelou (74) §3 but also in 

blleubar; (78) theorem 2.2, Kallenberg (83) chapter 13 and Rauchenschwandt­

ne;r (.80 ), .. 

!'rOII this chapter on it is essential that con~itional expectations of 

functioa.s o,f random measures are considered as expectations w. r. t. a con­

ditioaal distribution (cf. appendix C). 

§,6 .. I.. The set E and the condition (E). 

In §5 .. 3 we defined the set a. The following theorem is to be compared 

with 1--.a S .. l .. 4. 

. ..i,,. .1~~ tlllj,tlli ,1,. r C .; -"- 1. ""' ~,i., ...,., ~ ;.. 6,8 r;r;S 

. vt,,ei.bu pointa. 

Thsre sxists a visible est r suc:h that: 

union of ~hs of a finite o.ra oountab"le nwnber of 



- for all visible points Z with rzJ c L and P(nfzj) >Owe have 

P(µ(Z) = 1) < P(TTrzJ), and 

- fop aZZ. visible points Z with fzJ c LC we have P(µ(Z) =,1) = P(nrzJ). 
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PROOF. First we suppose that u is bounded. 

class of all visible points. If the set {Z EV I 
Let V again denote the 

P(µ(Z) = 1) = P(rrfzj) > !} 
is not empty, we choose an element z1 in it. 

I Then we choose an element 

z1 in 2 
and so on. Since 

P (µ (U x K) < 00) = 1 (U being bounded), there exists a finite n1.1mber 

such that 
n 

{z E = P(nf zj) > ! } = 0 . 
Now we apply the same procedure to 

n 
0, P(µ(Z) = 1) and find 

2 
• • • • , Z ; etc. 

n 
2 • 

The set ( U ufz~J)c satisfies the conditions imposed on E. 
i j l. 

If the space U is not bounded, it is the countable union of bounded 

sets. □ 

Remark: The set could also have been defined in terms of ~, 

because ~(Z) =µ(Z) for all random points Z. □ 

EXAMPLE 6.1.1. We use example 5.3.1. In the corresponding figure 

5.3. 1 the set Ee consists of the solid oblique line segments as far as they 

Lc = {(w, u) I u = are contained in the lower half of the square; 

-- w mod ½} • □ 

Note that we may choose a version of z 
~ such 

• 

that identically. 

This follows in1mediately from theorem 5. 5. 2 i) • 

.... 
1'HEOREM 6. 1 • 2 • Ee = { (w, u) I ~: (w) = 1 } • 

PROOF. If Z is a visible point whose graph is contained in Le, it 

follows from theorem 5.5.2 i) that 

~z(Z) = E(t;(Z) I F(Z)) = I a.e. on nfzJ . 

On the other hand, the set { (w, 
.... z 

u) j E; (w) = 
u 

is visible .. 
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If it were not evanescent, it would have a visible section Z with non­

evanescent graph (theorem 5.2.3), which is impossible, since from 

E(~(Z) I F(Z)) = ~2 (Z) = l a.e. on nfzJ it would follow that ~(Z) = I a.e. 

on nfzJ . a 

We shall be able to express 

For all VE U we define: 

in terms of the following events r(V) . 

E(V) = {P(~(V) = 0 f F(V)) =# O} • 

Of course, E(V) E F(V) . • We note some more properties: 

We may as s11mP. : 

(6.1.1) E(V)c c {~(V) / O} for all VE U. 

(6.1.2) E(V)c n {l;(V-W) = O} = E(-i;v)c n {~(V-i·J) = O} 

for all V, WE U, W c V. 

The latter formula follows from theorem C.2; the first is evident. 

THEOREM 6.I.3. 

PROOF. We first 

~ lim U E(V) x V. 
• 
i VEU. 

l. 

prove the existence of the limit. Because 

<v~u.r(v) x v)c = 
l. 

u 
VEU. 

1. 

t(V)c x V, this means that we have to show that the 

-set A= lim sup U E(V)c 
VEU. 

l. 

x V and A= lim inf v~u. L (Y) C X V are 
l. 

distinguishable. Let (w,u) -EA and let W. 
l. 

+ {u} , W. EU. ; then 
l. l. 

there 

exists a n11mber k such that 
C 

(w,u) E H(Wk) and there exists a n1imber 

> k such that w E E (Wt) . ; but now for111ula (6. I. 2) yields 

E E(W.)c Vi> k and hence (w, u) EA. 
1 -The set A= A~ A being visible, the set An H(V) is visible 

too for each VE U. Moreover An H(V) is the graph of a random point ZV: 

if not. 

a.s. (The ZV are well-defined since (6.1.1) implies that 

Ac {(w, u) f € (w) = J} and for each w there is at most one u .... 
u EV such that ~ (V-{u}) = 0 and ~ (w) = I) • w u The ZV are 
by definition. Because {~(Zv) =I}= nfzvJ and u r J -VEU·zv - A, 

• point 

visible 

we may 



C conclude Act . 

The equality A= ~c may be seen rather easily by means of theorem 

7.2.2 (Corollary 7.2.4). □ 

We now introduce the regularity condition (i:). 

C 
P(7r(Z: )) = 0. 
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In the next theorem we shall give some equivalent ways to formulate 

condition (E) • This condition is very important in our context. Intuitive­

ly visibility has something to do with interaction between the points of 

the point process. For instance, in the case of the Poisson process the points 

are independent (not interacting) and therefore the visible projection of 

the Poisson process will turn out to be non-random (§10.3; cf. also §4.1): 

the points do not influence each other and the Poisson process satisfies 

(.Z::). However, if (I:) is not satisfied, something else comes in: '' A point 

of a realization may be visible because otherwise it would be missing in 

the realization"; this is not a question of interaction. 

Using the language of statistical mechanics (cf. §2.2): Consider an 

ideal gas in the grand canonical ensemble (Poisson process) then the 

visible projection of the process is non-random because the particles do 

not interact. Now consider an ideal gas in the canonical ensemble (non­

mixed sample process; §I0.6); here condition (i:) is not satisfied; the 
C realization of the process is visible itself (§I0.6 remark 3 ), not because 

the particles interact, but because their number is fixed. 

If (E) is not satisfied, things become visible which we do not ''want'' 

to be visible and visibility says considerably less about the distribution 

of the process (cf. §9.2). If (E) is satisfied, these problems are 

avoided. Note that they come from the augmentation of the filtration (F(B)) 

by all null-sets. 

The fact that under condition (L) it is less dangerous for us to rely 

on our intuition (in the above context) is expressed by the equivalent 

conditions ii) and vi) in the following theorem. Papangelou (74) who was 

the first to introduce (E), used formulation iii). For more formulations 

of (E) see Rauchenschwandtner (80) §1.2. 

THEOREM 6 . J. • 4 • 

i) Condition 

The 

(E) 

foZZowing statements are equivalent: 

holds. 

ii) For all visible processes X and all M x B-meas .A,µZe functions 
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--
X* on 1·1 x u. sucJi that X ~ X*(µ) we have: X ~ X., where 

iii) 

is the visible p~ocess defined by -X: (w,u) ➔ X~ ({u}cµw). 

For all VE U we have P(~(V) = O I F(V)) > 0 a.e. on 

{ f; (V) = 1 } • 

iv) For all VE U we have P(~(V) = O I F(V)) > O a.s .. 

v) For all VE U and GE F(V) with P(G) > 0 we have 

P(G n {~(V) = O}) > O. 
~ ~ 

vi) For all VE U and aZZ FEM BUah that{µ E F} E F(V), 

we have P({µ E F} A {Veµ E F}) = 0. 

PROOF. 

i) < : iii) 

We shall show the following implications: 

v) 
(which is even more than necessary). 

ii) iv)<· vi) 

X 

The implication ''iv) • iii)'' and the equivalence ''iv) ..,v) '' are obvious. 

Proof ''i) .., ii)'': Suppose that ii) is not satified; then there 

exists a visible process X and an M x B measurable function X* with 

X ~ X*(µ) such that P(TI(A)) # O, where 

A = { (w,u) I X*(it ) F X*({u}cµ ) = { (w, u) I X (w) i: -X (w)} • 
u w u w u u 

Of course A is visible. Let Z be a visible section of A with non-

evanescent graph (theorem 5.2.3). Since clearly: 

we have ~(Z) = I a.e. on TifzJ wich contradicts 

Ac {(w,u) I ~ (w) = l} 
u 

(E). 

Proof ''ii) • i) '': 

P(t(Z) =I)= P(nfzj}. 

Suppose that Z is a visible point such that 

We then may ass1.ime {~(Z) = I} = Tir zJ hence 
- -Ifzj= 0 and because ii) .implies we find = 0 • 

Proof ''iii) • i) '': Condition iii) implies that P (E (V) c n {~ (V) = I}) = 0 
• 

for all V E U. Combining this fact with form~la (6.1. I) and theorem 

6.1.3 we find 

EC~ 
l. 

= I} XV C: lfm v¥u.r(V) 
l. l. 

X V = 

• -- and this implies !c = 0 which completes this part of the proof • 

Proof ''i) .., iv)'': Suppose iv) does not hold. Then there exists a 

VE V, an FE F(V) and a number m 

we have P(~(V) = m - I I F(V)) = 0 

> 0 · such that P(F) > 0 and such that 

a.e. on F and P(~(V) = m ( F(V)) f 0 

a.e. on F. We may of course assume that F fl {~(V) = m - I}= 0; but then: 



..... 
A= {(w,u) E F x VI ~ (V-{u}) = m - 1, ~ (w) =I}= w u 

= {(w,u) E F x VI ~w(V-{u}) = m - 1} , 

which is clearly visible. Hence 

= m.P(F n {~(V) = m}) • 

This implies that on A which contradicts (I) • since now 

P(n(Ec)) ~ P(rr(A)) = P(F n {~(V) = m}) > 0. 

~ Proof. ''v) => vi)'': it is easy to check that if V E U and F E M 

such that {µ E F} E F(V), then G = {µ E F} ~ {Veµ E F} E F(V) and 

G c {~(V) = O} , hence P(G n {,(v) = O}) = 0, which implies P(G) = 0. 

is not satisfied. Proof. ''vi) =11> iv)'': Suppose that iv) 

exists a VE U such that P(F) > 0, where F = 

Now take F = F* n {µ I ~ (V) + O}. Because 

Then there 

{P(~(V) = 0 ( F(V)) = O}. 

F n {~(V) = O} is a null-
. 

set, we have{µ E F} E F(V). On the other hand P(Vcµ E F) = O; hence 

P({µ EI}~ {Veµ E f }) = P(µ E J) = P(F) + 0, contradicting vi). □ 

In some examples we shall need an assertion which is slightly more 

general than theorem 6.1.4. 

COROLLARY 6. I. 5. Let B E U and DE F(B). Then the foZZowing 

statements are equivalent: 

i) P(rr(Ic n (D x B))) = 0 

51 

ii) For aZZ visible processes X and all M x.B-measurabZe functions X* 
- -on M x U such that X = X* (µ) we have X lDxB = X IDXB' whe-r1e X 

is the visible processes defined by -X: (w, u) -+ X*({u}cµ ) • 
u w 

iii) For all VE U, V c: B we have P(~(V) = 0 ( F(V)) > 0 

a.e. on {t(V) = I} n D. 

iv) For aZZ VE U, V c: B we have P(,(V) = O I F(V)) > 0 

a.e. on D. 

v) For aZZ V € u, VcB and alt GE F(V) with P(G n D) 
• 

we have P(G n {~(V) = O}) > 0. 
~ ~ vi) For aZZ VE U, V c: B and aZZ F EM such that{µ E F 

~ {Ve-µ ~ we have P(({µ E F } f,. E F }) n D) - 0 - . 

PROOF. We can easily adapt the proof of theorem 6.1.4. 

> 0, 

} E F(V) 

□ 
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§6.2. The set a and the conditions (a) and (E*). 

We recall the definition of the set a and hence restate lenm1a 5. 3. 4 

in the case p = µ. 

THEOREM 6.2.I. The~e exists a visible set a such that: 

- -the set ac is the union of gPaphs of a finite or countable nwnber of 

visib Ze points., 

- for all visible points z with 

- for all visible points Z with 

P(µ(Z) # 0) # 0. 

rzJ c cr we have P(µ(Z) / O) = 0, and 

rzJ C crc and P(~fzj) ~ 0 we have 

PROOF. See lem,ua 5.3.4. o 

The set o has properties analogous to those of the set E • 

,.. 

THEOREM 6.2.2. ac; {(w, u) I ~z (w) ~ O}. 
u 

PROOF. Use theorem 5.5.2 ii) and §5.4 remark 3 in order to see that 
,.. 

crc = ac(tz) = {(w,u) I ~z (w) / o}. c 
. ·u 

For cr we find an explicit expression in terms of the sets E(V) and 

the sets E*(V) which we defined through: 

E*(V)c = {(w,u) I u EV, PCs = s<v) u 
= 1 I F(V)) (w) > o}. 

This set is an element of F(V) x B • s1.nce 

THEOREM 6.2.3. 

lim 
k 

• 

{P(~(W) = ~ (V) = 

v~u.<E(V)c XV) u E*(V)c. 
l. 

PROOF. We have to show that the limit exists and that is 

It is clear (cf. theorem 6.1.3) that we have limsup :::> liminf 
,.,•s 

X W • 

equal to 

::, re . 

C 
CJ • 

Hence we choose an (w, u) E i: (There may be an evanescent set on which the 

following arg1.unents are not applicable). Let W. -} {u}, W .. E U.. ; then there 
l. l. l. 

exists a smallest n11mber k such that (w,u) E H(Wk) and w E E(Wk). From 

corollary 7.2.3 we now may deduce the following equivalence: 
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3 i > k such that --

... 
I; z ( w) # 0 < , > ( w, u) E I:* (W • ) c V i > k • 

u i 

• 

This completes the proof. □ 

We now introduce the condition (cr) analogous to condition (E) by: 

(cr) C 
P(TI(O )) = 0 • 

Of course (o) is equivalent to ,,~z is almost surely diffuse'' (theorem 

6.2.2). Papangelou (74) needed two conditions to ensure that t;;z is diffuse; 

the condition (E) , which is already mentioned, and: 

-
For all VE U we have a.s.: P(~ IO I F(V)) = 0 for all u EV. 

u 

1ve now have: 

THEOREM 6.2.4. The following statements are equivalent: 

i) Condition (o) holds. 

ii) The sets E(V)c and I*(V)c may be 

hold. 

taken to be empty for ail V € U. 

iii) The conditions (L) and (I:*) 

PROOF. The following implications are obvious: ''iii) => ii) '1 , ' 'ii) => i) r, 

(use theorem 6.2.3) and ''(er)=+ (E)'' (compare their definitions). We only 

need to prove that (o) => (L*) . 

We see that (E*) is equivalent to the requirement that for all VE U 

the set 

.... 
I (V) = { (w; u) I u E V, P(~ :r O I u 

is evanescent. Furthermore, we may write 

I(V) = 

where 

lim 
• 
l. 

u 
w E u. 'fT 

i,v 

• 

F(V)) (w) > O} 

Suppose now that (L*) is not satisfied. Then there exists a VE U 
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such that P(TI(I(V))) > O and hence there exists a n1~ber k such that 

P (1T (Ik (V))) > O • Because Ik (V) E F (V) ·x B, there exists - according to 

theorem A. I - a mapping Z : (r2,F(V)) -+ V U {ll} such that rzJ c: Ik(V) 

and P(nfzj); P(u(Ik(V))) > O. Of course Z is a visible point and we 

have: 

= E I P(~(W) > 0 [ F(W)) > 
Z-l (W) 

> 0 , 

which contradicts (cr). a 

In the preceding proof the sets I(V) were defined. It is clear that 

E*(V)c c: I(V); in general the inclusion is strict as is shown by the following 

example .. 

EXAMPLE 6~2.1. We choose U = [O,½), n = (0,1) with Lebesgue measure 
• 

and 11 is the simple non r11arked point process given by 

€0 + e:w if w < ! , 
• 

~w --
0 if w > ! • 

• 
Take W. - (0,2-1

) (i > 2) then [!, 1 ] c Z:: (W.) and (!, 1] x {O} c I*(W.) -
1. l. • 1 l. 

[ ½, I] 
.... 

I for all • but on we have P(~O = I F(W~))= 1/(1+21
-) > 0, l. 

l. 

hence [!, 1 ] x { 0} c I (W. ) for all • 
1 • CJ 

1 

None the less we have the following result: 
• 

THEOREM 6.2.5. Condition (E*) holds if and only if the set 

1:*(V)c is evanescent for al-l V E U • 

. .. 

PROOF. The implication ''=+'' is obvious. Ass1rme conversely that (I:*) 

does not hold; then (cf. the proof of theorem 6.2.4) there exists a set 
• 

VE U and a mapping Z: (Q,F(V)) ~VU{~} with P(~fzJ) > O such that 

P(t(Z) = 1 f F(V)) > 0 a.e. on 'ITrzJ • Thanks to (5. I. 1) there exists a 

set WE U, W c V such that P(,r(H(W) n fzj)) > O; define Z' by 
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rz' j = H(W) n r zJ . Because E *(W) c is evanescent we have a .. s.: 

and this yields a 0 = P(,(Z') = ~(W) = 1 I F(W)) = P(~(Z') = I j F(W)) 

contradiction because P(~(Z') = 1 I F(V)) = E(P(~(Z') = I I F (W) ) I p (V) ) • 

□ 

§6.3. The condition (E ). 
V 

We mention one more regularity condition. Let v be a Radon measure 

on U. Then 

t-z v s << a. s. . 

Under this condition the visible projection of can of course be 

described by its density w.r.t. V. Matthes, Warmuth and Mecke (79) 

introduced this kind of regularity condition. (In the definition of their 

condition (L~) furthermore they require that (E) is satisfied. To see 

that apart from this their (E~) is equivalent to our (rv) one needs 

their Satz 3.1 and our theorem 8.2.2. 

If v is diffuse, then (Ev) of course implies (a) . But if (a) 

is satisfied there need not exist a Radon measure 

holds as is seen by the following counterexample. 

EXAMPLE 6.3.1. Take U = (0,2) x (0,2) and let be the single 

non mctrked point process on U, whose distribution is given by: 

= X e.2 y + X' E: 
, Z+ I , Y' ' • 

Where X, X', Y, Y' and Z are five independent r.v.'s; Y, yr and Z have 

an uniform distribution on (O, 1) and P (X=O) = P (X= l) ·= P (X' =O) = P (X' =I) 

Then: 

0 if X - X' - I ' - -
A 1 if X 1 , X' = 0, --..• 

Z+l ' ,z a.s. --
A 1 if X - 0, X' - l , - -z 
"-2 if X X' 0, • - -- -

= 1 2• 
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where Al denotes the 
z 

line segment {(x,y) [ 

one-dimensional Lebesgue 

x = z, 0 < y < I} and 

measure on the vertical 

A2 the two-dimensional 

Lebesgue measure on U. (To verify this, note that the random measure 

defined above is diffuse and F n1easurable an.d hence visible, and use 

theorem 5.5.2 iii).). 

Because ,z is diffuse a.s. condition (cr) is satisfied, but there 

does not exist a Radon measure on U which dominates Al for all z 
z E (0, 2) • □ 
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CHAPTER 7 

EXPRESSIONS FOR VISIBLE PROJECTIONS. 

In the second section of this chapter the visible projections of 

and µ are expressed in terms of conditional distributions. On the other 

hand, visible projections of F x B-measurable processes (§I) and of random 

measures (§3) can be calculated when the visible projection of µ is known. 

As mentioned in chapter 4 the object we call the dual visible projection 

of , was originally defined as a limit random measure by Papangelou (74) 

and Kallenberg (78) and called conditional intensity. In van der Hoeven (82) 

§6 this conditional intensity was identified with the dual visible projection; 

to that end many older arguments had to be repeated. These proofs can quite 

easily be extended to random measures p on U such that p ~~(i.e. 

p <<~and~<< p) a.s. (cf. van der Hoeven (82)). Kallenberg (83) was the 

first to define the conditional (w.r.t. µ) intensity of an arbitrary 

random measure. In §4 techniques developed in the papers we mentioned 

above, are combined. The results of §4 wil not be used in the sequel. 

It is not surprising that Papangelou and Kallenberg found expressions 

for the conditional intensity, which we derive for the dual visible projection. 

Indeed, corollary 7.2.3 should be compared with Papangelou (74) proposition 

21 and theorem 7.3.2 with Kallenberg (83) formula (14.35). 

Again, note that conditional expectations are considered as expectations 

w. r. t. conditional distribut-ions of random measures (cf. Appendix C). 

§ 7. 1 • The visible processes zX, -X and + x. 
• 

It is possible to find an expression for the vis'ible projection zX 

of an 

µz of 

F x B measurable process X in terms of the dual visible projection 
- + µ and the visible (marked) processes X 'and X. 

-The process X has already been introduced in theorem 6.1.4 ii) for 

visible processes. We now define for arbitrary F x B-measurable processes 

X the visible process 

-X (w) = X* u u 

-X by: 

µ ) • 
w 
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We also introduce the visible marked process +X corresponding to an 

F x B-measurable process X, by: 

The processes 

+ 
X k(w) = X* u, u 

+ £ k) . u, 

-
X and +X are indeed visible; the first because: 

-
X (w) = 

u 
lim X*(W~ µ) . u l. w 

1 

where W. EU. , 
]_ 1 

w. 
]_ 

:) u ; 

the second because: 

{ ( w, u , k) I X* ( { u} C µ + s k) < C,} = 
u (Jj u, 

+ s k) < c,} u, 

and mapping F(V) x (B n v) xx measurable 

on XV X K and hence Z x K measurable. 

Note that the process X is defined through X* - and that X* • 
l.S 

' 

only detern1ined up to indistinguishability: X* (µ) = X • As a consequence 
-the set on which X is not determined may in general be non-evanescent. 

Fortunately we now have the following result: If X* and X** are two 

M x B-measurable functions on M x U such that X*(µ) = X**(µ), then the 

set A= {(w,u) { X* ({u}c µ)IX** ({u}c µ } n r is evanescent. Indeed, 
u w u w 

if not, then a visible point Z would exist with r zJ c A and 

P(TTf zj) > 0 

X* ({Z}cµ) :/: z 

(Visible section 

Xz* ( {Z } c µ) a . e. 

theorem). 

on nfzJ 
nrzJ , which contradicts the assumption 

+ Something similar applies to X: 

From the fact that 

it follows that 

r zJ C A c· I: 

µ(Z) 

Up· to a C -equivalence µ 

= I a. e. on 

is the 

unique visible marked process satisfying the two 

formulae: 

foll·owing equivalent 

(7. I • 1) E f Y k X µ(du,dk) = E f Y k u,. u u,. 
+ X µ(du,dk) u,k 

for all non-negative visible marked processes Y, or: 

(7.1.2) 
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Formula (7.1.1) even applies 

because on {(u,k) IO ({k}) u 

to arbitrary non-negative marked process Y, 

= 1} we have µ = {u}cµ + E k, hence there 
u, 

= X* . 
u 

To prove (7.1.2) we note that h + z . 
t e random measure Xµ is +x 

u,k 
visible (theorem 5.4.4) and check that for every non-negative visible 

marked process Y we have 

= E f Y (X x 1 ) dµ 
K 

= E f Y 
+ X dµ 

= E f Y 
+ z 

X dµ , 

where the final equality is a simple consequence of (5.5.2) and the monotone 

class theorem B.2 1). 

We already saw that +X is defined upto 

two versions differ on a set N € Z x K, then 

C -equivalence. Hence if 
µ 

C (N) = C (N) = 0. Because 
µ µz I 

C (N) = E 
z 

µ 

we find 

Because 

c,z(A) = 0 

ac = { (w,u) 

• 1.s evanescent. 

> E fuxK 

= E 

= E 

where A= {(w,u) I µz ({k I (w,u,k) E N})(w) # O} . 
u 

I ~z(w) IO} (theorem 6.2.2) every 
u 

In particular, the set An oc is 

C -null-subset of 
sz 

evanescent. Hence, 

integrals of over K w.r.t. are uniquely determined upto in-

distuinguishability. 

I) We sha*l use the monotone class theorem (corollary B.2) in more proofs 
where X occurs. It allows us to extend properties of visible marked 
processes of the form X x 1 D' where X is a visible process and D E K 
to general visible marked processes. 
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-
At each special instance where we encounter the process X and +X 

we can check that they are deter111ined on the sets, where they matter. 

Looking for example at theorem 7. I.I (which we shall state next) we see 

that we 

whereas 

only interested in -X on the set 
-z {(w,u) I I - ~ (w) ~ o} = r, , u 

only comes in through an integral over 
-z 

K w. r. t . µ • We warn 

the reader that in the sequel this verification will be omitted. 

From §5.3 remark 4 we may easily deduce that if (a) holds, therefore 

if ~z is diffuse a. s., we have zX = -X for all F x B rneasurable 

processes X. This result can now be generalized as follows. 

THEOREM 7. 1. 1. Let X be art F x B-measuPable process,; then: 

(If K reduces to one point, then we have: 

PROOF. The right-hand side process is visible. This is obviously 

true for::the first term. For the second term note that µz (D) is visible 

for all DE K and use the monotone class theorem B-2. 

Furthermore let Z be a visibile point; then: 

• 

and 

for all D E K, so that we may conclude (to ma.ke this argument indisputable 

we again need the monotone class theorem B.2). 

--., 
• 

= E 
- P(µ(Z) = 0 I F(Z)) + E fK 1 I F(Z)) = 

• 
• 



-= E 

= E X2 l{µ(Z) 

§7.2. Explicit expressions for and z 
µ • 
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C 

In §5.5 we proved the existence of the dual visible projections of 

and µ, but we do not know how to determine them. We now derive 

explicit expressions by means of which we are able to calculate the 

measures cZ d µz 1 ~ an a most everywhere. But we begin by studying the 

transition measure n which was introduced in the proof of theorem 5.5.3. 

Because in this section we restrict ourselves to the case p = µ, 

we may define n here by the following properties: n is a kernel: 

for C - almost all (w,u) the set function n(w,u,.) is a probability 
~z 

measure on (K,K); n(w,u,.) is C -a.e. uniquely detern1ined and for all 

DE K the 
z z µ (du,dk) = n(.,u,dk) ~ (du) . 

Let VE U and DE K. Then it is known 1) that there exists a 

measurable function 

have 

V,D g on M x M· such that outside a null-event we 

Note that we may choose gV,D = 0 on M x {p EM" I ~(V) = O} , and 

V,D 
g (Veµ,£)= P(µ({u} X D) w u = 1 I T (F (V) , V~)) (w) 

on £ } ' u 
where u E V • We put 

on {Vs=£} hence for 
u 

(w,u) E H(V) n ({~(V) 

Because C~({~(V) = O} x V) = 0 it follows that 

• 

= 1} x V) .. 

I) Cf.: If X is a r.v. and A an event, then there exists a function 
such that P(A I X)(w) = g(X(w)). 

g 
• 
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measure on K as a function of D. 

We want to define a functio•n ¢ (D) on r2 

it is enough to give its value ~u(D)(w) 

We take for (w,u) E H(V): 

VD 
~ (D)(w) = G' (w) . 

u u 

x U(D EK) . Thanks to (5.1.1) 

for (w,u) E H(V) for all VE U. 

We have to show that this definition does not depend on V .. To this 

end choose W, VE U, W c V and notice that 

T(F(V), VE;,) n {E;,(V-W) = O} = T(F(W), wt;) n {~(V-W) = O} • 

We hence find on {~(V-W) = O}: 

P(µ(W X D) = I I T(F(W),W~)) = P(µ(W X D) = I I P(F(V), V~)) 

= P(µ(V x D) = 1 I T(F(V), V~)) 

where the last equality is obvious because {~(V-W) = 

Hence GV,D = GW,D on H(il) = H(W) n H(V). 

Clearly the funct·ion GV ,D is F(V) x B measurable. Thus it may be 

seen that the process 

visible itself; indeed for all 

is visible, so that ~(D) is 

c > O we have {~(D) > c}=v~u{¢(D)IH(V) > 

> c} E Z. Note that on Z the measures ' and C are the same. 

For C~ ~almost all 

measure on K. 

(w,u) the 
~z 

set function q> (.)(w) 
u 

is a probability 

Let {R .. } 
1 

be a collection of random points such that U fR.J = . 1 
l. 

={(w,u) I ~ (w) IO} u 
that for all i there exists 

But if rR. J c H(V.) for some 
1 1 

Using §5.3 remark 1 we find 

• 

a set 

V. E 
1 

Thanks to (5.1.1) we may assume 

V. E U 
. ·1 

such that fR.j c: H(V.) . 
1 1 

U we see that F(R.) c: T(F(V.)~ V.~) . 
1. 1 1 



E ~ ¾_. 
l. l. 

so that we see: 

(7.2. I) E I X X 

A 

1-lR. 
l. 

(D) = E 

= E ~ XR 
1 . 

l. 

=EI: X . R. 
l. l. 

.... 
E (µR. (D) 

l. 

I T(F (V. ) ' V. ~) ) 
l. l. 

P(µ(V. 
l. 

X D) 

cJ>R. (D) • 
l. 

for all non-negative visible processes X and all DE K. 

Thus we proved: 

THEO REM 7 • 2 • I • The mapping (w, u) ➔ cp (.) (w) 
u is a version of the 

kerneZ n defined at 

Intuitively <Pu 
the beginning of this section. 

is the conditional distribution given outside 
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a 

{u} X Kand given there is an atom of in {u} x K, of the • • K-pos1.t1.on 

of this atom. 

Now that we have theorem 7.2.I we only need to find an expression 

for ~z (µz then can be calculated too). By theorem 6.1.2 we know that 

gz (w) = l if and only if (w, u) E I:c and by theorem 6. I. 3 we may determine 
u 

Ic. Combining this fact with the following theorem we obtain an 
z expression for µ 

for all (w,u) EI 

P(~(V) = 0 I F(V)) 

on the whole U x K for almost every w. (Indeed: 

there exists a set VE U such that (w,u) E H(V) and 

> O). Although we need only consider in the next 

theorem (cf. theorem 7. 2. 1) , we prefer to derive an- expressi.on for 

directly. 

z µ 

THEOREM 7.2.2. For alZ 

p~oeesses X such that X = 0 

we have 1): 

VE B, aZZ non-negative visible marked 

on · {P(~(V) = 0 I F(V)) = O} x V x K , 

V . 

E 
IH (V) (. , u) Xu k S (du,dk) , 

= 0 J F(V)) 
= E f X 

u,k 
z µ (du,dk) , 

·1) with the convention O / 0 = 0 . 

• 
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7.rJhere 

sv(w x 

SV is the random measza,e on V x K which is determined by 

D) = P (µ (W x D) = ~ (V) = 1 f F (V)), W E B, W c V, D E K. 

In particular, if the process X is not marked, we have 

E X E;:z (du) . 
u 

PROOF. First we shall consider the easier case V = U , 

P(~(U) = O) IO . Now S = SU is S(U x K) times the conditional 

distribution, given the fact that ~(U) = 1 , of the unique atom of µ 

U x K. Hence, S is indeed a measure. 

Now let WEB, DE K, then we see 

E 

D W 

IH(U)(.,u) S(du,dk) 
P ( t; (U-{ u J) = 0) . 

But on the other hand: 

D W 
= E f f 

DW 

-- P(~(U-{u}) 
D W 

= S(W x D) 

= S(W X D) 

P(dW) 

= 0) 

Next note that if WEB and FE F(W) , then we have either F* ::::, { µ I ~ (Wc) = 

= O} or F* n {µI ~(We)= O} = 0 and hence we have (F x W) n H(U) = 
~ (n x W) n H(U) or (F x W) n H(U) ~ 0, so that the theorem is proved in 

the case V = U for visible marked process of the form IFXWXD with W E B, 

FE F(W) and DE K, and hence for all non-negative·visible marked processes. 

Now we turn to the general case and choose VE B arbitrarily. It is 

clearly enough to consider processes of the form lF'xwxn with WEB, W c V~ 

F' E F(W), F' c: {P(~(V) = 0 I F(V)) IO} and DE K. Using an argument 

similar to the one just used above we see that now there exists a set FE F(V) , 

F c {P(~(V) = O I F(V)) ~ O} such that (F x W) n H(V) ~ (F' x W) n H(V) • 

The assertion follows from: 

E 



= E 

D W F 

= E 

IH(V)(w,u) P(dw I F(V)) 

P(~cV={u}") = 0 j F(V)) 
v. 

S (du,dk), 

COROLLARY 7.2.3. Simultaneously for all VE U we have a.e. on 
{~(V) = O} : 

- . Sv(du,dk) 
- P(~(V-{u}) = 0 

and fo:ra all V E U and all u E V on 

{~(V-{u}) = O} n {P(~(V) = 0 ( F(V)) IO}: 

--z , , (dk) ..... u 
• 

COROLLARY 7.2.4. Let A= 1~m V~U- E(V)c x V, then A= Ee. 
1 l. 

PROOF. We still have to complete the proof of theorem 6.1.3; this 
• 
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□ 

□ 

will be done now. In the course of the proof of theorem 6.1.3 we already 

saw that the 

proved that 

limit by which A is defined, exists and we furthermore 
C Ac: I: • Hence it remains to be proved-that C 

A c: I:. 
C Excluding an evanescent set we may argue as follows: fix (w, u) EA ; 

then there exists a set VE U, V 3 u such that P(,(V) = 0 I F(V))(w) IO. 
Without loss we may assume that ~w(V-{u}) = 0. Now it follows from 

corollary 7.2.3, that in w we have: 

--z S V ( { u} x K) 
~u = P-(~ (V-{u}) = 0 [ F(V) ). 

--

• 
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= 1 I F(V)) 
-- < I , 

~(t(V) = 0 I F(V)) 
..... 

+ P(t;(V)) = ~ 
u 

= l I F(V)) 

which completes the proof thanks to theorem 6.1.2. □ 

§7.3. The visible projection of arbitrary random measures. 

Since visibility is defined through µ it is not surprising that the 

visible projection of a random measure p can be expressed in terms of µ 

and z µ . Such expressions are stated in the following theorems. Note that 

the two ass1J1nptions for these theorems: 11 p is F n1easurable'', and: '' p • 
l.S 

a random measure on U '' do not present serious restrictions. Indeed, if p 

is A-measurable, we may apply the theorem to p' = E (p I F) (This definition 

makes sense, because p' is determined by the countable collection of 

r.v. 's E(p(V) IF), VE V); if p is a random measure on U x K, then we 

may apply the theorems to p(.xD), where D •r1:1ns through a countable semi-ring 

generating K, and may use theorem 5.5.4 v). 

1'HEOREM 7. 3. 1. If p is a:n F-measurabZ.e random measure on U :, then: 

(?.3 .. 1) 
z . . 

P (du)= p(du) - f K 
z (µ - µ )(du,dk) • 

(If K reduces to one point, we have: 

..... 
). 

• 

PROOF. In this proof we encounter signed random measures, " i.e.: 

differences of two (positive) random measures; a signed random measure is 

visible if it is the difference of two visible (positive) random measures. 

It is easy to see that the ·random measure defined by the right-hand 

side of (7.2. 1) satisfies (5.5.I). Hence, we only need to show, that it is 

visible. 

Write: 

A=(p - r ~ £) + E ~ E. 
u u u u u u 



The random measure 

is F-measurable and diffuse and hence visible. Theorem -s.4.4. yields 

the visibility of the random measure. 

-~p cZ f -~ z( dk) 
s = K P. µ ·, · 

To show the visibility of the random measure 

+"' p 
. , k 

z 
µ (., dk) 

we have to make use of the monotone class theorem B.2(cf. §7.1). The 

sum of visible random measures being visible again, we only have to 

consider the remaining part: 

I: p £ -
u u u 

= I: p 
u u 

= r: p 
u u 

= r: t:5 u u 

£ u 

£ u 

-- p) µ(.,dk) = 
• 

- I: fK P O (dk) u u u 

£ 
u 

+ I: u 

£ 
u 

-

+ I: u 

£ 
u 

-p 

-+ r: p 
u u 

u £ 
u 

€ u_ 
• 

-,.,. -,,.._ 
= r: p 

u u 
p 

u 
E 

u 

µ (dk) 
u 

E u 

£ , 
u 

£ 
u 

which is an F-measurable random measure having as process of atom-sizes 

the visible process - This completes the proof. 
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Cl 

THEOREM 7.3.2. If p is an F-measurable random measure on U., then: 

pz = (1 - tz) p - + I 
K 

+.,.,, z( ) 
p. ,kµ • ,dk , 
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-where p is the l"'Ml),.,....m mea.su.Pe on U defined by: 

- "' p = ( l - ~) p + 

(If K reduces to one point, we "have: 

z "'z - +...., z 
p = (I - ~ )p + p ~ ) • 

PRO·OF. This theorem is deduced from theorem 7. 3. I • (We use the 

fact that if T and are two arbitrary random measures on U, then 
"' we have t~ = ~T ): 

z 
p = p -

z (µ - µ ) (., dk) 

• 

• CJ 

• 

§7.4. The conditional intensity of random measures. 

In this section a limit representation for random measures will be 

derived. Until theorem 7.4.8 inclusive p will denote a random measure on 

U satisfying 

E p(V) < 00 for all V E U. 

We first shall prove a sequence of technical ler11111as. 
• 



LEMMA 7.4.1. 

property: 
Let Z be a visible point, which has the foZZowing 

We may write where F(V) E F(V) , 

(*) 

Then 
:r: 

VEU. 
l. 

<v~u. 
l. 

forms 

]. 

• 

F(W) c F(V) if w c v; F(V) n F(V') = 0 if v n V' = 0 

and 1~m V~U F(V) = TirzJ . 
l. i 

there exists an F(Z)-meas"U.T'able r.v. ~
1

(z) suoh ~ha,~ we have 

E(p(V) I F(V)) I{ZEV} ➔ l; 1 (z) a.s. if i ➔ oo. 

PROOF. The sequence 

E(p(V) I F~V)) lF(V) 
• 

a supermartingale. 

, T(F(V) n F, FE F(V) , VE u.)). 
l. 1. 

Indeed, the process clearly is adapted and if 
F E F(V) , V E U. , then we have: 

1 

l. 

= lim 
• 
l. 

J 
FnF(V) 

F 

:t E(p(W) 
WEUi+l 

I F(W))lF(W) dP = 

dP < 

f E(p(V) I F(V)) dP. 
FnF(V) • 

E(p(V) I F(V)) IF(V) • exists a.s • 

:r 
VEU . 

]. 

• as l. ➔ 00 

E ( p (V) I F (V) ) 

we have 

a. s .. 

.... 

It is clear that l; 1(z) is F(Z) mc:asurable. 

and since 

a 

LEMMA 7.4.2. For all V € U there exists a set I(V) E F(V) x B, 

I(V) c n xv, suah that the set I(V)c n (n x V) is the union of a finite 

or countable number of graphs of visible points· possessing property(*), 
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;o 

and such that (w,u) € I(V) 

· .. ··· an evan•seent s.st). 

implies P(~ IO I F(V))(w) = 0 (apart 
u 

I 
I (V) • lim u~u {P(p(W) > k 

k i w~ i,V 
X W 

k and let z
1 

be an F(V)-measurable section of Ik (V) such that 

. . •· . . • I . k 
property (*) • We continue and f1.nd an F(V) measurable section z2 of 

k Now we check k 1 1 k (cf. 

the pro,of of theorem 6.2.4). From this fact it follows tl1at after having 
k 

found a countable number of Zi at most, we obtain l. l. • o , 
because if this were. not the case, then there would exist a non-null-set 

on which p(V) • ()?I • 

The set x V) has all properties required of 

Ynte: 

'l...... t,._ C · · ( C ( ) ) .. he • • . t,-n t,. eet I ( == Vi U (I V) n n x V ) 'l.,S t uni.on of a ft-n"l. te 
• 

ab?.• number of graphs of visible points possessing proper1ty (*) 

{~,n) E I and u E V E U imply (w,u) E I(V) • 

I (V) . 

0 

or count­

and 

C 

1,BMMA 7 .4. 3. For aii V E U the set LC n H(V) 
• 

is the g-:raph of a 

visib~ point possessing property (*) • 

PROOF. We already know, that r.c n H(V) = f zVJ where 4v is the 

visible p,oint define.d in the proof of theorem 6. I. 3. We only have to check 

that the ¾ posses.s property (*). To this end, using (6. I. I) and (6. I. 2), 

we DIOte that 

lim U 
i W€Ui, V 

O}) X w 

implies that there exists a 



• 

• (W.) (W. E U.), f;, (W. ) decreasing sequence such that > 0 for all • 
l. • , 

l. l. l. l. 

hence <;(:() Wi) > 0 • This yields n w. = {u} for same u E V and 
• 1. l. l. 

u = zv(w) • Thus we find w E rrfZvJ· 

LEMM.A 7.4.4. Apart from an evanescent set, (w,u) Er n I implies 

lim E(p(W.) I F(W.)) = 0, where W. + {u}, W. EU .. 
• l. 1. l. l. l. 1. 
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a 

PROOF. Except for an evanescent set, (w,u) E implies that there 

exists a set v1 , u E v1 EU such that w E E(W) for all WE U, W c v1 , 

On the other hand it follows from (5.1.1) that there exists a set 

such that (w,u) E H(V
2

) • Hence (w·,u) E H(V) n (I:(V) x V) , where 

n v2 • 

Again excluding an evanescent set, we find, using theorem C.2: 

E(p(Wi) l{f;,(V-W.)=O} I F(V)) 
< 

1. 

E (p (W.) I F(V)) 
]_ 

< P(~(V) = 0 I F(V)) 

We have: P(~ F O I u 
F(V))(w) = 0 because (w,u) E I(V), hence p (W.) -+ 0 

if i ➔ 00 for P(. 

convergence yields: 

I F(V))(w) almost all p, so that dominated 

E(p(W.) I F(V)) (w) ➔ O • 
1. 

LEMMA 7 .4.5. For all VE U we have a.e. on {~(V) = O} : 

E 
WEU. B 

1., 

l. 

if i ➔ oo ., where z;
2 

is a random measure on the semi-nng {B E U I B c: V}. 

PROOF. If we exclude one null-set, we may argue everywhere on 

{~(V) = O} 

find: 

as follows: If WE U., W c V, then, using theorem C.2, we 
1. 

• 

--

= -· P-(...,...,..~__,.(-v--w--=-)-· =---· -=-o-· -r--1 -=p:-:-:(v~)---)-- = 

• 
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P ( ~(V-W) = 0 !" F(V) ) < 

1.+l ,W 

Hence the limit z;2 (B) exists. It is easy to check that this limit is a 

measure in B. 

LEMMA 7.4.6. For alZ VE U we have a.e. on {~(V) = O} : 

□ 

if i ➔ 00 , ~
3 

is a random measure on the • • serrn-nng {BE u I BCV} • 

PROOF. If we exclude one null-set we may argue everywhere on {~(V) = O} 

as follows: If W E U., W c V, then, again using theorem c. 2, we find: 
l. 

E((t,E;)(W) l{t:(W)=~(V)=l} I F(V)) 

= P ( ~ (V-W:) == 0 , I P (V)) - .. 

I F(V)) 
-
- W'EUi+l ,W . P(~(V-W) = 0 ( F(V)) · 

I F(V)) 

' 

= W' u. E((t~)(W') l{~(W')=I} I F(W')) . 
1+1,w 

< 

-'' -

Hence the limit r;3 (B) • exists. It can.easily be checked that this limit 
• • • is a measure 1n B. 

• 

LEMMA 7 .4. 7. Let V E U; then 1'f • 1 ➔ 00 1.,Je ha.ve: 

0 

• 



and 

PROOF. 

that U = JR, 

V = (0, I ] • 

I: 
WEU. E(p(W) 

l., V 
a.s. 

I F(W)) a. B •• 
1., V 

We shall first show that we may assume without restriction 

To prove this, we assume that VE u
1 

and that every 

element of U. consists of two elements of U. 
1 

; it is clear that this 
1 1.+ 

situation, which only simplifies notation, always can be obtained. Next 
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note, that there exist mappings T on U such that T: U. + {(k2-i+l, 

rves 
inclusion and such that W, W' EU, W n W' = 0 implies T(W) n T(W') = ¢. 
Choose such a mapping T. Let u E U and W. + {u} (W. EU.), then 

l. l. l. 

either T (W.) + {x} , 
1. 

where 

Note that if u, u' EU, u I u' 

T (W . ) + { x } , T (W ! ) -} { x ' } 

x is some real number, 

, W .. + {u}, W! + {u~} 
l. 1 

or T (W. ) + V, • 
1. 

(W • , W ! € U • ) and 
1. 1 1 

l 1. 
, then x I x' . Note furtherrnore that 

T(W.) + 0 only for a countable n11111.ber of 
l u E U ; hence, if for all 

A 

u EU such that T(W.) + ~ we have P(' IO)= 0, then the random 
l. u 

measure µ on U x K is a.s. determined by the random measure µ' on 

]R x K , defined by µ' (T(W) x D) = µ(W x D) for all 

it remains to be shown that we may choose T such that 

WE U, DE K. Thus 

T (W.) -}- {x} 
l. A 

(x E JR) for all u E B = {u' E U I P(i; , :/: O) :/: O} • Therefore we use u 
a random procedure to choose T: First we define • T on • in an 

arbitrary manner (T(V) = (0,1]) . Every WE u1 falls apart in two 

elements of u2 ; now there are two possibilities for these two 

U2 to be mapped under T; we decide by tossing a coin; we do elements of 

this for all W E u1 • Once T defined on 
• 1.t on in the same random manner. It can be 

we continue by defining 

checked easily that for 

all the probability is zero that T (W.) -+- 0 .-
1. 

Because B • consists 

of a countable n1111tber of points at most, the probability is one that this 

random procedure yields a satisfactory mapping T. Hence such a satisfactory 

mapping T does exist. 

Consequently, indeed we may ass11me U = lR. and V = (0, 1] • 

We now may a. s. n1.1mber the atom positions of by increasing 

T' < 1 < T' 
-I = 0 sequences (Tk)kEZZ and 

(as functions on rt the -r· 
k 

and the 'T ' 
k 

are random points) (We simplify the 

notation by the assumptions that the set of atom positions of almost all 

• 
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unbounded above and below). 

Let W c (a,b) ·c [O,l] where WE U and a,b € lR. For the 

time being we write: 

A = { ~ ( (a, b) - W) = 0 , ; [ 0, a] = ~ , t; ( b , 1 ] = r} 

(i,r = O, I, 2, •.• ) and 

I=( ••. , (T0 ,µ ), ... , 
TO 

Analogous to the proof of theorem C". 2 we show that on A we have: 
• 

E (X I F(W)) 
E(XlA I I) 

= p (A I I) a .. s. 

for all non-negative r.v.'s X. From this we may conclude that on 

B ={~(a,b) = O, ~[O,a] = t, ~[b,I] = r} we have a.s.: 

E(X I F(W)) < E(X 
P(B 

which does not depend on W. 

and 

Next note that: 

:r 
WEU. 
WC:::(fi, b) 

I: 
WEU. 
wc:(l, b) 

I: 
WEU. 
WC:(~,_b),, 

• 

I) 
I) , 

+ I: 
u €(a, b) 

• 

as i ➔ 00,that all three sequences are-dominated by p(a,b), while 

E(p(a,b) ( I) < ex, a.s. and that p(W) > (p~) (W) • Furthermore, by 

making use of the fact that for all w the set (0,1] n { u I € (w) = O} 
u 

is the finite union of open intervals, we prove the len,1,1a. 

... ) . 
' 

0 

• 



The preceding le1,,n,as enable us to prove the main theorem of this 
• section. 

THEOREM 7.4.8. Let BEU, then: 

z 
p (B) == 1 . l: 

:-m WEU. E ( p (W) I p (W) ) a. s. and in 
1. i,B 

PROOF. According to le1001a 7. 4. 2 and 7. 4. 3 we may choose a 

sequence of visible points 

u rz.J = LC u IC. 
i l. 

For almost all w0 

{z!} possessing property(*) such that 
.1.. 

we may argue as follows: 
A 

There are only finitely many u EB with ,u(w0 ) / 0; hence there 

exists a smallest collection of indices ik such that: 

{u E B I 

Now it is clear that: 

C C 
(w

0
, u) E E U I ; > O} = U 

k 

· I: E (p(W) I F(W)) (w0 ) = 
l. , 

- 11."m L 
- • WEU. 

1. 1 

L E(p(W) 
k 

+ lim 
• 
l. 

:E 
WEU. B 

1., 

1 . L 
+ ~m WEU. 

J. i,B 

= lim A. 
l. 

E (p (W) I 

E(p(W) l{~(W)=O} 

E(p(W) 

+ lim B. 
l. 

lim C. 
1 

{z. Cw
0
)} 

ik 

75 

• 
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(say) since these limits exists thanks to respectively le1111,1a 

7.4.4, 7.4.5, 7.4.6, 7.4.7 and again 7.4.7. 

7.4.1, 

• Using len1c1,a 7.4.5, 7 .. 4.6 and 7.4.7 we see that z;w 1.s a measure, 

because if B. + 
l. 

0, where the B. 
l. 

are unions of elements0 of 
• exists a n1mber 

measure. To prove that 

such that ~(Bi (w )) = 0. Hence ~ 
. · • . bl O O d f . . . 5 4 3 it 1s v1s1. e we use e 1n1.t1on •• 

U , there 

is a random 

ii): 

clearly it is F ·measurable and if et > 0 we have, using le1a1r1a 7 .4.4: 

thanks to 1 e111111a 5 • 3 . 2 . 

To show that ~ = p2 we now only need to show 

for all BEU, FE F(B) (theorem 5.5.2 iii)). Since clearly 

EI E E{p(W) 
F WEU. B 

l., 

I F(W)) = E p(B) lF 

1 
only L -convergence remains to be proved. To that end we write 

L E(p(W) I F(W)) = 
WEU 
• • • 

1. ,B 

• 

= :r E(p(W) 
WEU. B 1., 

= O} + 

+ I: E ( (~e) (W) 
WEU. B 

l., 
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i,B 

= G. + C. + D. + E. + F .. 
l. l.. l. l. l. 

We now shall prove 1 
L -convergence of these five sequences: 

Since G. =A.+ B. 
l. l. l.. 

1 and hence converges a.s., the L -convergence of 
• is equivalent to the assertion: For all G. 

l. £ > 0 there exists a > 0 

such that if P(F) < 8 (FE A) then we have E Gi IF<£ for all i. 

Hence let E: > 0 and choose a > 0 such that E p (B) 1 {p (B) > a} < £/2 

o > 0 such that P (F) < 6 (F E A) implies E ~ (B) 1 F < £/2a. This 

satisfies our requirements; indeed: suppose P(F) > o(F EA); then: 

=El L . E(p(W) 
F W€.V. B 

1, 

+ E 1 L E(p(W) 
F WEU,, B 

1, 

• 

l{p(B)>a} I F(W)) 

~ E IF a ~(B) + E L E(p(W) 
WEU. B 

l. ' 

l{p(B)>a} I F(W)) < 

< £/2 + E p(B) l{p(B)>a} < E 

For C. note that: 
1. 

--
• 

= E(p(W) IF) P(~(W) = 0 I F(W)) l{~(W)=O} . 

Indeed: both members are F-measurable; we have F n {~(W) = O} = 

= F(W) n {~(W) = O} and for all FE F(W) we may deduce that: 

E IF E(p(W) 

= E 1 F E c p <w) r F) p < ~ cw) ) = o I F cw) ) 1 { ~ <w) =a 1 . 

and 

• 
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Now it is easy to see, that for all i: 

C. < E (p (B) I F) 
l. 

and E E(p(B) 

theorem. 

F) = E p(B) < oo so that we may apply the dominated convergence 

• • 
If follows from lem111a 7. 4. 6 that the D. 

J. 
form an a.s. 1.ncreas1.ng 

sequence. They converge in L1 

Finally we have: 

and 

0 <EE.< E ( r 
i WEU. B 

1, 

E F. < E 
1 1,B 

because ED. < E(~~)(B) < E p(B) < 00 • 
1 --

(cf. the last part of the proof of lec1w1a 7. 4 .. 7). 

This completes the proof. 

If p is a random measure on U x K, such that E p(V x K) < 00 

0 

for all V E U w·e may apply theo·rem· 7. 4. 8 to p(. x D) for all D E K. Doing 

this we i1,1111ediately obtain, thanks to theorem 5. 5. 4 v) : 

COROLLARY 7.4.9. Let BEU; then: 

I: 
WEUi B 

' 

E ( p (W X • ) I F (W) ) weak 
z p (Bx.) a. s •. □ 

• 

• 

• 
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CHAPTER 8 

MARTINGALELIKE MEASURES 

§8.1. Definition and representation theorem. 

A martingaZelike measure on U is an F-measurable random signed 

measure p on U such that E Ip (V) I < 00 for all bounded V E B and 

such that we have: 

(8.1.1) E(p(V) I F(V)) = 0 a.s. 

for all VE B. 

Formula (8.1.1) is equivalent to: 

(8.1.2) C (X) = 0 
p 

for all visible processes X such that Cp(IXI) < 00 • 

• The notion of martingalelike measure is analogous to the familiar 

notion of mattingales on lR + • Indeed: if p is a random signed 

measure on lR+ such that E IP[O,~) I < 00 , then the process (p[O,.]) 

is called a martingale if (we use the notation of chapter 3): 

(8.1.3) p[O, t] is Ft n1easurable for all t E IR+ 

and 
• 

(8.1.4) E(p(s,t] I F) = 0 a.s. for all s < t. 
s 

Formula (8.1.4) is equivalent to: 

(8.1.5) C (X) = 0 
p 

for all previsible processes X such that 
. " 

Note that even on lR + martingales· and 

C <lxl) <oo. 
p 

martingalelike measures are 

not the same objects. A more important reason to introduce the vaguer 

term ''martingalelike measure'' is the fact that we only require F- measur-

ability of all p(V) which is a rather weak analogue of (8.1.3). ' 

• 
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A martingalelike measure on U x K is a random signed measure p 

on U x K such that p(. x D) is a martingalelike measure on U for 

all DE K. Properties of martingalelike measures on U x K can easily 

be deduced from properties of martingalelike measures on U . 

If pis an integrable random measure on U (resp. on 

course p - pz is a mar.tingalelike measure on U (resp. on 

R is a visible marked process, such that IaxvxK) < 

U x K) then of 

u X K). If 
00 for all 

bounded VE B, then 

(8.1.6) 
z - µ )(du,dk) 

is clearly a martingalelike measure on U. The next theorem states that 

all martingalelike measures are of this form (For martingales on JR+ w.r.t. 

a point process an analogous theorem holds, see Chou and Meyer (75)). 

THEOREM 8. I. I. Let p be a martingaZeZike measure on U; then 

p{du) 
-
~ ) u 

z 
(µ ·- µ ) (du, dk) a.s .. 

(If K reduces to one point, we have 

a.s.). 

PROOF. Although p is a random signed measure, we may define its 

visible projection and see ·that 
z 

p = 0 a.s. thanks to (8.1.2). We also 

may apply theorem 7 .3.1 which directly yields the required result. □ 

An alternative proof of theorem 8.1.1 is sketched in §IO.I (theorem 

IO. 1 • 3) • 

§8.2. Papangelou kernels. 

♦ . 

The obJect that Matthes, Warmuth and Mecke (79) first called 

Papangelou ker11el and which figures 

to be very fundamental to the study 

already in Kallenberg (78) turns out 
.. 

of Gibbs processes (Example 2.2.2). 

Indeed Matthes, Warmuth and Mecke found an explicit expression for the 

specification of a Gibbs process in terms of the Papangelou kernel. Most 

of their results will be proved in chapter 9 using a slightly different 

approach. 
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Now we shall introduce the Papangelou kernel n of a point process 

and find an expression for it in terms of µ and µ2 
• Furthermore, to 

usµ - n yields an important example of the martingalelike measure. 

Throughout this section we shall assume that µ is integrable and 

that (L) is satisfied. Then if X is an F x B measurable process, the 

process -X is uniquely determined upto indistinguishability (cf. §7.I). 
-We define the measure C on en X K, F X BX K) by 

-C (X X 
-I )=C(Xxl) 

D µ D 

for all non-negative F x B-measurable processes X and all DE K. 
-The measure C is called the ~educed Campbell measu.re. Note, that if 

-X ~ O, then we have X ~ 0 too. 
-This implies that C (. x V x D) << P for all VE B, DE K. Hence 

there exists an • a.s. unique 

on U x K such that 

P measurable transition measure 

X 
u 

n from 

The existence of the kernel n is proved analogously to the existence 

of the dual visible projection and hence to the existence of conditional 

distributions on Polish spaces. 

The transition measure n is called the Pccpangelou kernel of the 

point process. We shall prove that µ - n is a martingalelike measure. 

In fact we prove: 

• 

THEOREM 8.2.1. We have 

(8.2.1) a. s .. 

(Henae we have to put R 
u,k 

--
ID (k) 

in (8.1.6) in orde~ to obtain 
""Z l - !:. 
\;>u .. 

(µ - n) (. x D) J. Or equivaZently: 

z µ (du,dk) 
(8.2.2) n(du,dk) = 

A z 
- ~ µ(du,dk) 

u 
• · a. s •• 

• 
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PROOF. We begin with some technicalities. 

- First, it follows from theorem 7.1. 1 that 

-
X = I 

whenever X is an F x B measurable process. 

, 

- If Y is a visible process, DE Kand p a random measure on U, 

then we have, using theorem 5.5.4 iv): 

p(du) = E f Y llz 
u u 

= E ff y 
u 

(D) P (du) 

(dk) pz(du) • 

Applying the monotone class theorem B.2 (cf. §7.1) we find for all non-

negative F x B measurable processes X and all non-negative visible processes Y: 

p(du) = E ff y 
u 

- It is clear from the proof of theorem 5.5.3 and theorem 7.2.1 

that ,.,e have t)z ( • ) ~ ¢ ( .. ) €z . 

- Furthermore, we recall that ~T = fp a.s. for any two random 

measures p and T on U. • 

Using these facts successively and finally applying formula (7.2.l) 

we find for any F x B·measurable non-negative process X and any DE K: 

= E 

' 

= E 
zx 

--- XI dµZ - E 
"'z D 

1 - f; 

l dµ = 
D 

I +x ,,__z (dk) 
_K __ u...;..,_k_µ_u ___ µ ( du x D) 

"'z 
1 - ~ u 

u, u z ( ---------- 1-1 du x D) = "z 
l - ~ u 

• 



= E X 
A 

1 - c;z 

= E 
X 

AZ 
I - ~ 

X 
E --

., 1 ""'Z - ~ 

X - E -
"'z I - ~ 

= E 
AZ 

• I - ~ 
u 

x I dl-l 2 
- E 

D 

x 1 dl-lz - E 
D 

X 
z 

JD dµ - E 

X 
z 

JD dµ - E 

ll2 (du x D) 

Xu 0~ (D) 

1 - gz 
u 

~(du) 

X gz q> (D) 
u u u 

~(du) 
"'Z 

1 ~u -
X €z ID (k) 

u u 
µ(du,dk) ..... z 

I ~u -

z 
(µ (du,dk) -

"'Z s µ(du,dk)) • 
u 
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Because the righthand member in (8.2.2) is F measurable, the theorem 

now has been proved. a 

We can even deduce a more concrete expression for 

and µ : 
n in terms of z µ 

THEOREM 8.2.2. For all BE B, DE K we have: 

In pa-:Pticu lar: 

n (. x K) 
A 

I: ~z E: 
u u u 

I: µ""'z (D) + !: 
u E B u u E B 

A 

I - ~ u + I:---
u 1 

(Cf. Kallenberg (78) theorem 3.1 and 4.1) . 

PROOF. It follows from (8.2.2) that 

z "'z 
n - µ 

( ~ X IK)µ - -
"'Z "'Z 

1 I - ~ X lK - ~ 

£ X µz ""z 
su z 

- !: X µz + I: 
u u - r: - µ E: -

u u u u "'Z u AZ 
I su 1 - ~ -

u 
(AZ Az 

µu) £ X µ - su z 
!: X AZ+ E u u - µ - E: - l-lu • u u u "'Z 

1 - F:: u 

µ (D) 
u 

e: X µ 
u u 

□ 

• 
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CHAPTER 9 

LOCAL UNIQUENESS OF P . 

Throughout this chapter, in order to simplify the notation, we 

shall assume that n = M; hence w ➔ µ is the identity; note that now 
. 

the a-field F is the P-completion of the a-field M • 

§9.1. Local conditioning. 

It is clear that the visible projection of the random measure µ 

depends on the probability measure P. This can be expressed by writing 

uz,P instead of z µ • Furthermore, the visible projection is a function 

of w z,P 
: llw • 

For P-almost all w' we know that P(. I M(B))(w 1 ) for all 
• 

BEU is an probability measure on (M,M). (Note that P(. I M(B)) is a 

version of Hence we may 

which of course is still a function on Q: w + µz,P(. I M(B))(w') ; this 
w 

latter function is measurable w.r.t. the P(. I M(B))(w') - completion of M. 

In section 7.2 we saw that if BEU, then the visible projection of 

µ is determined on B by the conditional distributions P(. I M(V)) 

, V c B. Now theorem C.1 yields that 
and µz,P(. I M(B)) (w') are the same. 

w .. 
Hence in particular 

on B the projections 

• 

THEOREM 9. 1.1. For P-almost aiz w we have for all BEU: 

I M(B))(w) 
• 

The results on P, which we acquire in the rest of this chapter 

under the ass1Jmption P(~ (U) < oo) = 1 may be applied to 

P (Bµ E • I M(B)) (w) for P-almost all ·~w and all B E U , thanks to 

theorem 9. I. I • This fact explains the meaning of the word ''local'' in 

the heading of this chapter. A direct consequence of the above theorem 
• 
l.S: 



w : 

of 

COROLLARY 9.1.2. For aZl bounded BE B we have foP P-almost all 

I M(B)) (w) 
• 

§9.2. Uniqueness of the distribution of µ. 

In this section we shall deduce an expression for the distribution 

in terms of its visible projection. 

THE OREM 9 • 2 • l • Let P be a probability measure on M such that 

P(~(U) < 00) = I and such that µ admits l; as its visible pPojeation 
A -

while satisfies X = l;(K) < I and X = X identicaliy (this implies 
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□ 

tJzat the point process satisfies condition (I)); than P is determined. 

Indeed, then for any n > 0, V 1 , • • • , V n E B disjoint sets and B
1 

, •••• 

•.• , B EB x K such that B. c V. x K for all i, we have 
n 1 1 

= P(~(U) = 

where the random measure 

0). • • • 

B 
n 

l; - Xµ 
n = 1 - X 

P(~(V) = 0) should be considered as 
, 

formule n may clearly be replaced by 

••• +e::u k 
n' n 

is the Papange lou kernel and 

a noY1rnalizing constant. In the 
l; 

I - X • 

• 

above 

PROOF. We use the notation of the proof of theorem 7.2.2. For all 

BE Bx K we have 

S(B) = E 1 {µ(B)=~(U)= 1} 

= E fB 1H(U)xK dµ 

S(du,dk) ; 
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hence 

so that - because X (E k) = X (0) - we obtain: 
u u, u 

S(du,dk) = P(~(U) = 0) 
,:0 (du,dk) 

1-X (O) 
u-

• 

Thanks to corollary 9.1.2 we may apply the same argument to 

P(Vµ E • I F(V)) for any V E B • Then we find 

(9.2.1) I 
, 

C - X (V µ) 
u 

Note that the use of the letter ''n'' in the symbol ''n V,, is justified by the 

fact that on the event {,(v) = O} the measures n and n V coincide on V 

(see (8.2.2)). The theorem is now proved as follows: 

! E 

= E 

V 
n ..• n0 (du , dk ) 

· n n 

• 

n-1} 

+ + (du2 ,dk2) ••• 
• • • E k u ,. n n 

• 



87 

P (~ (U) =0) • 
• 

We usecl the following facts: 

- The equalities l follow from the simple observation: 

(*) 

x. 
EX IA= EX 

Indeed: the measure 

P (A.· I G) for al 1 G n1easurab le non-negative 

SV on V x K is determined by 

r.v. 

- To 
2 • (*) prove - again use - • , 

- In order to 

did to prove 2 and --
show 3 - we -
finally we 

first apply 

use that on 

(9.2.1), then we argue like we 

the event {~(V
2

) = o} we 

have C 
V2µ + £ k - µ + E - • 

u2' 2 u2,k2 

• • - Writing equalities similar to 1 -- and 3 -- another (n-2)-times, we 
4 --obtain • 

This completes the proof. 

As we already mentioned, the law P is not determined by 

(E) does not hold; this is illustrated in the following example. 

z 
µ if 

[J 

EXAMPLE 9. 2. 1. Let U = {O, 1} and let µ be the simple non· ·t11arked 

point process whose distribution is determined by 

(O < p < I). Then for all p we have ,z = ~-

£ ) = I - p (~ = 
0 

• 

§9.3. The likelihood ratio of two point processes. 

Let P and Q be two probability measures on M. If P 

are equivalent (P Q; i.e. P << Q and Q << P), then the r.v. 

and 

L = 
exists and is a.s. strictly positive. The process L is defined by 

-

Q 
dQ 
dP 

. 
' 

Lu= L for all u EU (L~ = 0). Abusing the notation we write L = L. 

THEOREM 9.3.1. Let P and Q be two equivalent probabiZ.ity measUPes 

on M and let the Pandom measure ' be a vePsion of µz,P (the visible 

projection of µ under the Z.aw P ), then ;L~ is a version of µz,Q. 

(Her,e = L ; e v1,,s1,, e proJea 1,,on o t; e proaess L undeP the Z01.~, P) • 

• 
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PROOF. First we note that the visible a-field Z is defined un­

ambiguously because P and Q are equivalent and that we know 
2

L > O 

thanki to the visible section theorem. From theorem 5.4.4 it follows 

that zL ~ is a visible measure. Suppose X is a visible non-negative 
L 

marked process; then 

+ 

f X L - _L a-r = = Ep ...., 
ZL 

+ 
I. dµ = E p f XLdµ = 

THEOREM 9. 3. 2. Suppose that p and Q are probability measures on 

M satisfying P(~(U) < 00) = Q(~(U) < 00) = 1 • Suppose furthermore that 
"' 

0 

~ is a random measure on U x K such that X = ,<K) < I and that A is 

a stPiatZy positive 1) marked stoekastic process sueh that 

u u, u 
• 
• 

FinaZZy assume that 

vet>sions) . Then P 

(9.3.1) 

= L(O) 

where 

µz,P =sand µz,Q = A~ (i.e. one can choose such 

an.d Q are equivalent and L = dQ is given by: 
dP 

+ ••. +Eu k) = 
n' n 

+ ••• +Eu k ) ' 
n- I' n-1 

I - X 
u 

B =----u,k A k , u, "" 
l - ~(A) 

u 

and L(O) is a normalizing aonst4nt. 

PROOF. First we prove the equivalence of P and Q. If P 

and Q are not equivalent, then there exists a ntnn.ber n > O such that 

P(. n {~(U) = n}) and · Q(. n {~(U) = n}) are not equivalent. Suppose 

Q(. n {~(U) = n}) '¥- P(. n {~(U) = n}); now we may 1.-:heck that there 
• exist , V EB 

n 

1) Here, this means 
yet defined). 
-2) 

disjoint and 

for all 

. . . , 

w,u,k. 
' 

B EB X K 
n 

(Indistinguishability is not 

• 



with B. c V. X K for all • such that l. 
' 1 1 

p (µ (B 1) - 1 ' µ(B) - I ' ~(U) - n) - o, but - - - -••• , 
n 

Q(µ(Bl) - 1 , lJ (B ) - I , ~(U) - n) 0 and this - - -••• , 
n 

9.2.1. 

Usi~g theorem 9.3.1 we see that the set 

N ={A# L} E Z x K satisfies CP(N) = 
z lJ 

L I) 
Theorem 7.1.l now yields : 

-+L = A 
u,k u,k + (1 - X ) 

u 
L ) • 

u 

A 

By integration w.r.t. l; this formula yields: 

A + s ( L) 
u 

A A+ 

= l; (A) ( s ( L) + ( 1 -
u u 

X ) 
u 

-

hence 

A -
A + s ( L) -

I - X 
u • z; (A) • 

u 
L , 

u -u 

so that we obtain the following expression for 

L ) • u , 

+ 
L : 

-I - X u =-----
1'\ 

l - l; (A) 
A k. -L . u, u = B k . u, 

u 

A 

We thus found that if ~u = 0 , we have 

L(µ + E k) = B k(µ) L(µ) . u, u, 

contradicts theorem 

L 
u • 

= 0 • 

89 

Repeated use of this forrnula yields the desired expression for L . o 

Remarks: 
A 

1. We have 
X U X 

) == 
Ku 

and z; (A) 
u 

-2. Note that B satisfies: B = B. 

3. It follows from (8.2.2) that 

A 

?; (dk) • 
u 

• 
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B knP(du,dk) 
u, 

A 

If K reduces to one point, we have l;(A) =AX 
u u u 

so that then: 

eve ryw11ere;..! 
A 

In any case we see that if ~u = 0, it follows that 

nQ(du,dk) _ -p 
n (du,dk) 

B u,k 

so that in formula (9.3. I) we may replace B by dnQ/dnp. 

4. It should be intuitively clear that if we do not have 

P(~(U) < 00) = Q(~(U) < 00) = I, equivalence of P and Q is rathe~ 

' exceptional. 

For instance, if u = 1R. 
. , is the Lebesgue measure and c > 0, then: 

(cf. example 

1 . ~(-x,x) 
J.Jll 2 
~ ex .A'-

TI CA lim 
~ 

c;(-x,x) = 1 
2cx = I • 

2.2.2 and the law of large numbers), while the events 

=I· are disjoint for different values of c E (0, 00) • 

• 

a 
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CHAPTER 10 

EXAMPLES 

We finally study some examples of point processes and indicate their 

visible projections. Many abstract notions can be made explicit in the case 

of the zero-or-one-point process. In fact there are many things that can 

be said on visibility by only studying this elementary process; this 

assertion is illustrated in theorem IO.I.3 by an alternative proof of 

the domination of martingalelike measures by (~ - ~z) (cf. theorem 8.1.1). 

Next we look more closely at the example to leu11na 5. 3. 4 and theorem 

6.1.1 (Example 5.3.1 and 6.1.I). The main object of this discussion is to 

show how everything can be checked in a concrete case. 

More practical examples are formed by the Poisson process and its 

generalizations: the Cox process, the Gibbs process and the mixed $ample 

process. 

§IO.I. The zero-or-one-point process. 

We have already introduced this process in Example 2.2.I. We recall 

that its distribution can be obtained as follows (the process is a simple 

non marked one; K reduces to one point, hence 

to µ ) . 

• 

is essentially equal 

where X and Y are independent r.v. 's, P(X=O) = I - P(X=l) = c 

(0 < c < I) and Y is U-valued and has a given distribution V • 

If U = [0,1-c) and v is the uniform distribution on U , then 

we obtain the s me distribution of as follows: Let (n, A, P) be [O,I] 

with the Lebesgue a-field and the Lebesgue measure and 

--
£ w 

0 

if O < W <· ] - C , 

if 1-c < w < l. _,., -

• 
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(This fotm was used in example 5.2.1; cf. the corresponding figure 5.2.1). 

We shall study the example in this last form. 

First assume that O < c < 1 • Let N denote the class of Lebesgue 

null-subsets of n. Now it is clear that: 

F = T(B[0,1-c),N) . 

(Of course, B(.) denotes the cr-field of Borel subsets of some space; note 

that B[0,1-c) = B(U) = B) , and for all VE B: 

F(V) = T(B([0,1-c) - V),N). 

For a moment we define in addition to Z another a-field on n x U : 

z0 == T(F x V f V E B, F E B( [ 0, 1-c) - V)) , 

which is slightly smaller than the visible cr-field. Using the monotone 

class theorem B.l we see that for every visible set A there exists a 

set A0 E z0 such that A A A0 is evanescent. If A0 E z0 then we see 

that for all u € [0,1-c) we have: 

(u,u) E A0 =, [I-c,1] x {u} c: A0 ◄ t 3 w € [1-c, 1] such that 

(w,u) E A0 
.. 

This in turn implies that for all visible sets 

N1 and N2, N1 c: [O, 1-c) and 

N2 c: [1-c, I] such that for all 1-c 

u E [O, 1-c) - N1 we have 

u 
(u, u) E A < ► 

. ( [ I -c , I J - N 
2

) x { u} c A .., 

(10.1.J) 

c • 3 w € [ 1-c , I ] 

that (w, u) EA. 

- N 
2 

Hence, if we do not bother about 

evanescent sets, each visible set 

such 

0 

A there exist null-sets 

1-c 

figure IO. 1 • l : 

An element of z0
• 

• 

l 
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has the property that with each point on the diagonal ({(w,w)j w E [O, 1-c)}) 

it contains the horizontal line segment at the same height above [I-c, 1) • 

For an illustration one may check that for all VE U the set H(V) has this 

property. 

Random points are U U {Ll}-valued F,measurable ' r.v. s. The F-measur-

ability implies that they are constant a.e. on [1-c, I] . 

THEOREM 10.1.1. A random point R is visible if and onZy if 

P({w I R (w) = w}) = 0. 

PROOF. Proof ''< '': One easily checks, that 

fRJ n ((0, 1-c) x U) = . U (R-I (V) n ([O, 1-c) - V)) x V 

because R- 1(V) E F we clearly have 

R - I (V) n Ve E T (B ( [ 0, I -c) - ·V) , N) = F (V) • 

Furtherrnore, it is clear that 

if R = u 
0 

r Rj n ( [ I -c, 1] X U) = a. e. on ( I -c , 

a . e .. on ( I -c , l ] . 

l ] , 

0 E Zif R = 

Now the visibility of R is proved. • 

Proof ''=0o'': Because R is a random point, there exists a constant 

• 

u 0 E U U {~} such that R = u
0 

a.e. 

would contradict (IO.I.I) if we had 

on [I-c, I]. This simple observation 

P ( {w I R (w) = w}) ~ 0 • a 

Theorem IO. I .I implies that the process satisfies condition (a) • 

For F x B-measurable processes 

Let V, BE B, then the visible 

is: (w,u)-+ ~w(V - {u}) IB(u) • 

X we hence have zX ~ -X. For instance: 

projection of the process (w,u)-+ ~w(V) lB(u) 
• 

The visible projections of the Ax B-

measurable process (BE B) : (w,u)-+ l[l-½c, 11 (w) IB(u) and of the F x B­

measurable process: (w,u)-+ ½ l{~(U)=O}(w) IB(u) coincide and are equal to: 

(w,u)-+ ½ IH(U) (w,u) IB(u) • 

• 
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THEOREM 1 O. 1 • 2. De fine the random measure by: 

C 
on [ 1-c, 1] hence on {~ = O} ; 

--

0 on [O, 1-c) , 

where is the Lebesgue measure on U. Then we have ~z = c. 
PROOF. Because clearly is F measurable and a.s. diffuse, 

visible random measure 1). Furthermore, let X be a visible process. The 
-fact that condition (L) holds, implies that X ~ X (theorem 6.1.4 ii)). 

Now we have: 

• 

1-c 
E f X d~ == E J -X ·d~·--== f 

0 

-
X (w) 
w 

;\(dw) = 
1-c 
f x: (0) A (dw) • 
0 

and on the other hand: 

E f X dt; = C 

1-c 
f 
0 

X*(O) 
u-

A(du) _ -
C 

1-c 

f 
0 

X*(O) 
u-

.:\(du) • 

Now consider the case c = 0, then U = [0,1) . Because for all 

V· € B the sets {'(Ve)= O} and. {~(V) = I} only differ by a null-set, 

the graph of Z: w ➔ w is visible. Indeed fzJ ~ H(U) . Note that 

rzJ is the diagonal. 

LC rzJC and because 

Using P~{w I t ({w}) =I})= 1 , we find w 
E f I d~ = 0 we have furthermore a= :E~fzjc . r 

, 

□ 

lve shall show that now an arbitrary process X is visible and hence 

zX = X for any process X • We notice that for all (w, u) € cr = r we 
• 

have sw = {u}c sw; using this fact we find that for any real number a: 

{(w,u) IX (w) <a}= 
u 

= ({(w,u) I X (w) < a} n cr)U ({(w,u) IX (w) < a} n crc) 
u u 

= ({ (w,u) I -X (w) < a} n -0) u 
u 

• 

I) We already knew that ;z would be diffuse, since we proved that (a) 
is satisfied. 

• 
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(where again Z: w + w). The first set in this union is visible because 
-X is visible. For the second, notice that we have {X < a} EA= F = F(Z) z 
and use leror11a 5. 3. 2. 

Using definition 5. 4. 3 iii) we now see i11,1,tediately that • 
1S a 

visible random measure itself and hence is its own visible projection. 

In order to see that 

5.4.3 ii) too: indeed 

is a visible measure we may use definition 

is of course F-measurable and • 
l.S a 

visible process (again Z: w + w) . 

For a further illustration of the basic notions we give a slightly 

different example of the zero-or-one-point process: Let O < c < ! and 

U = [c, 1-c), (Q,As P) as above and 

E 
C 

if O < W < C, 

s 
w if c < w < 1-c, and 

0 if I-c < w < I • 

1-c 

Using the same arguments as above in 

the case O < c < I we deduce: 

F = T(B(c,1-c),[O,c],N) ; 

for all VE B such that cf V: 

u 

F (V) = T (B ( ( c , I -c) - V) , [ 0 , c] , N) 

and 

F({c}) = T(B(c, 1-c) ,N) • 

Further111ore, 

where z • the visible • 
l.S point: 

C if t;w(U -· {c}) = 0 
z w+ • • 

if not 

C ----
0 C 

• 

1-c 

figure 10.1.2 

] 

• 
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and P(~(Z) > 0) = c = ½ P(nrzJ) . Condition (I) is satisfied. 

If X an F x B-measurable process, then 

(X* (£ ) + X*(O)) if w ff. (c, 1-c) , 
C C C -

X (w) 
C 

and for all u E (c,1-c) we have 

X*(O) 
u-

X (w) 
u 

if w E (c, 1-c) , 

if w E [I-c,I] U {u}, 

if w E [ 0, I -c) - { u} . 

To determine ~z we use corollary 7.2.3. First we see that (choose 

U such that u
1 

= { {c}, (c,I-c)}): 
• 

).. 
(c, 1 ] , hence if on 1-c 

s<c,1-c) --
0 on [O,c], hence if 

and that for all u E (c,1-c): 

P ( ~ ,: ( c , I -c) - { u}) = 0 I F ( c , I -c) ) = 

I on [O,c] 
= 

P(~ = O) 
C 

From this it follows that 

= C 

1-c 

A 

hence if~ -SC - I , 

on (c, l] hence if 

/\ 

tc 0 --

A 

~c - I -

• 

• 

on (1-c,I] hence if t = 0 

, 

, 

and that for all w we have C (w) = 0 for all u E (c, I-c) .. Furtherr11ore, u 
for any VE U on {;(Ve) IO} we have P(,(V) = 1 I F(V)) = O and hence 

• 



sz(V) = O. Finally: 

A 

P <s 
C 

p (t; = £ ) 

= I I F ( { c}) ) = ~~--c-~--=-- = 
P(~(c,1-c) = O) 

on [O,c] U (1-c,1] hence if ~(c,1-c) = 0. 

Combining the above facts we find: 

! E 
C 

on [O,c] , 
A 

hence if s = I , 
e 

C 

2c 
--

0 on (c,1-c), hence if ~(c, 1-c) = 1 , 

½ s + A on [ 1-c, I ] , hence if ~ = 0 • 
C C 

Of course the fact that this forn1ula is correct, can be proved in the 

same manner as theorem 10.1.2. 

We now return to arbitrary point processes. As we announced at 

the beginning of this chapter, we shall give an alternative proof of the 

domination of martingalelike measures by (s - sz) . For simplicity's 

sake we restrict ourselves here to the case of simple non marked point 

processes and taken= M = M·. This proof, which uses a reduction to the 

case of the zero-or-one-point process, gives insight into the structure 

of martingalelike measures. 

THEOREM 10.1.3. Let p be a martingatetike measure, then: 

a. s •• 

• 

PROOF. Thanks to formula (5.1.1) it is enough to check: 

V • for all V € U, where p (du)= IH(V)(.,u) p(du). The V 
p are again 

martingalelike and have the following properties: 

V 
p = 0 on {s(V) > 1} and 

V 
p (W) = 0 on {~(V-W) # O} for all WEB, W c V. 

97 
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The theorem now 

next, to pv and 

follows by applying le111111a. 10. 1. 4, which we shall prove 
P (V ~ E • , ~ (V) < l F (V) ) 

P(~(V) < I F(V)) 
as distribution of □ 

LEMMA 10.1.4. Let ~ be 

U 'With arbitrary v and O 

measure with the property that 

the zero-or-one-point process on an arbitrary 

< c < I , and let p be a martinga'lelike 

p(V) = 0 on {~(Ve) IO}, then there 

exists a visible process R such that 

PROOF. Let the measure S on U be defined by: 

S(V) = P(~(U) = ~(V) =I)= (1-c) V (V) 

(cf. theorem 7.2.2). If c = 0, then p is visible and because • p J.S 

martingalelike too, p = 0 a.s •• Hence assume that c IO , and choose 

W, VE B, W cV, then: 

E p(W) I 
{f;(Vc)=O} = ____ ...:;....;,____,; __ _ 

P(,(Vc) = O) 

+ f P~ (W) S(du) 
V ' c.,.u 

=------------
p ( f; (Ve) . = 0) 

• 

and thus the fact that p is martingalelike, implies: 

(I0.1.2) cp0 (W) + fv PE (W) S(du) = 0. 
u 

Hence P0 (W) = 0 implies S(W) ~ 0. Furthermore, the fact that p
8 

(W) ~ O 
implies t1 E W • u 

According to corollary 7.2.3 

determined by: 

~z (du) 
0 

_ S (du) - -----.r, 

C + $ 
u ' 

and 

-
the visible projection of 

A 

s e: 
~z u u , 

8 A 

s u C + 
u 



hence 

and 

--

A 

C + S 
u 

E -u 

A 

s E u u 
A 

C + s 

C £ u -- • 
A 

C + s 
u u 

Because Po<< S, there exists a function r such that: 

p0 (W) = - fw r(u) S(du) = fw (c + 
A 

s ) 
u 

r (u) (c; 

1H(U) 
(O,u) (c + 

A s ) 
u 

r(u) z (~ - s ) O (du) • 

A 

(du)= 

This suggests that R = IH(U) (c + S)r is the right choice. In order to 

check, that this is the case we note that it follows from (10.I.2) that 

P = c r(u) E or equivalently, p (W) = c r(u)E (W) for all WE U 
S U E u 

u u 

and indeed we do have: 

c r(u) £ (W) 
u 

§10.2. Example 5.3.2 and 6.1.1. 

A 

s ') u r(u')(~ -

99 

Recall that in this example (§5.3) we to.ok U= (O, I), n = (O, l) with 

Lebesgue measure and that the simple non marked point process • • is gLven 

by: • 

£ if w < ½ , 
(Jj 

~w --
£ ½ + £ if w > ½ • (Jj - w 

We defined X = w mod! , and saw 

and that X and l{~(U)= Z} are independent. 
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• 

It is easy to check that F = A and that if V c (O,!], we have 

F(V) = T(B((0,1) -V),N) , 

and if V c: (!, 1), then 

F(V) = T(B((O,I) - V - (V-!)),B(V)mod ½,N) , 

where B(V) d 1 denotes the a-field on VU (V-½) generated by the sets mo 2 

WU (W-½), WE B(V) (W - ½ = {u [ u + ! E W}) • 

Because for all V c (O,½] we have VE F(V) , the random point X 

is visible and furthermore P(~(X) = 1) = P(TifXj) = 1 , hence fxJ c ~c . 

On the other hand X = ½ is a visible point too 

so that it is clear that crc ::::> 

and 

fxJ u rx + ½J . 

1) = 
To prove = ½P('ITfX+!J) 

that in fact = rxJ and ac = fxJ U fx + ½J 
Z with fzj C fx + !J 

it is enough to show that 

for all visible points we have P ( ~(Z) = 1) = 
= ½P(rrfzj) and this is true because the above formula for the F(V) 

(V c (!, I)) in which. the B(V)mod ½ figure, implies that 

P((TTfZj) A ({~(Z) = l} U ({~(Z) = l} - ½))) = 0 

(cf. the argument in §IO.I. To make this argt11,ient rigorous, define the 

a-field z0 on Q x (½, 1) by 

z0 
= T(A I A =·FxV:FET(B((0,1)-V-(V-!)), B(V) d 1), VEB(!,1)) . 

mo 2 

• 

For the sets A 
,. 

generating and hence for all sets in we have for 

all u E (!, l) : (u,u) EA•••= (u-!, u) EA. Next note that for all 

visible sets A E Q x (!, l) there exists a set A0 E z0 such that 

A~ A0
) • 

An h h ~c -- f xJ ot er way to prove tat ~ 

consists of showing that 

z 
C: = £ + 

X • 

and crc = fxJ U fx + ½J 

This measure indeed is visible and it satisfies the criterion of theorem 

5.5.2 iii) • 
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§10.3. The Poisson process. 

The Poisson process was already introduced in §2.2. We may recall 

that its distribution is determined by the intensity measure v E L(U) • 

First assume that v is diffuse; we noticed that then the process is 

a non-marked simple one. It has the property that for all n > 1 and 

V 1 , • • • , V n E B disjoint, the r. v. 's ~ (V 
1
), • • • , ~ (V n) are independent 

From this it follows that for all VE B we have: 

E(~(V) I F(V)) = E ,<v) = v(v) • 

Now it is clear that ~z = v; indeed v being non-random obviously is a 

visible measure and it satisfies the criterion of theorem 5.5.2 iii). We 

hence have already proved one part of the following theorem. 

THEOREM I O. 3 • 1 • If v is a diffuse Radon measure on U ., then the 

Poisson process ITV is the unique simple non-marked point proaess suah 

that: 

z:-Z = s V • 

PROOF. Only uniqueness remains to be proved. If v(U) < 00 then 

P(~(U) < oo) = 1 and hence uniqueness follows from theorem 9.2.1. In any 

case we see that if VE U, then according to theorem 9.1.1: 

hence using theorem 9.2.1 we find that 

v, is independent of F(V) and ~(V) 

parronP.ter v(V) • 

• 

P(V~ E. I F(V)) = , so that 

has a Poisson distribution with 

a 

If the intensity measure \> is not diffuse, then the process becomes 

essentially marked (§2.2). Choose K = {1, 2, ••• } • For any measure V 

on U we define the measure v on ux K by: 

..., ,.,J.<- I -v V 

v(du X {k}) = e u u 'f v(du) k. 

with tl1e convention (v = v({u})) • 
u 

Hence • • wr1.ting 

• 
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A= {u EU Iv = O} , then 
u 

V((A n .) x {I})= AV, 

V(A x {k}) = 0 

\J({u} x {k}) = e 

(k = 2, 3, • . • ) and 

A -v 
u 

Ak 
\) 

k! '((u,k) E U x K). 

Now, in the same manner as theorem 10.3.l one proves: 

THEOREM 10.3.2. If v is a Radon measure on U , then the Poisson 

process TIV is the unique point proaess on U with marks in K = {I, 2, ••• } 
such that 

z ~ 11 =\} • □ 

Remark. It follows that 

and • □ 

THEOREM 10.3.3. Let v and p be two Radon measuPes on u with 

and if \> (U) < 00 and p(U) < 00 • Then IT << TI 
p \> if and only if p << v, 

so, then in the aase whePe p and v are diffuse, we have: 

= exp (v(U) - p (U)) fl g ( u.) 
i= I p l. 

for ~ = £ + ••• 
• ul 

d~ffuse), we fzave: 

dIT 

V 

= exp 

+ E 
··u 

n 

- exp -

forµ= + ••• + 

(v (U) - p (U)) exp f log g· (u) t; (du) 
p 

and in the generai case (v and p 

A 1-v 
n u. 

(v(U) p(U)) iIJl 
l. A 

(V - • exp -
I-~ 

u,. - l. u. 
·•~ l. 

In these expressions: 
• 

not neaessarviZy 

k. 
l. fj ) g (u) 

u. p 
l. 

• 
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PROOF. If V ~ p 

then write A= {u 

we only need 

::/: O} , then 

to apply theorem 9.3.l. If p << v 

and on {l;(Ac) I: O} 
dTI . 

the above forrnulae yield ~p - 0 dIT - • On {~(Ac)= O} use the fact that 
\) 

both under IT and under IT the random measures A~ and Ac~ are independent p \) 
• in order to see, that: 

IIP(~(Ac) = 0) . 
= -------

' 

Next note that Ap "\., Av so that we may calculate and find the desired 
• expression. 

Assume conversely that we do not have p << v • then there exists a set 

A E B such that p(A) :# 0 , but v(A) = 0 , and then TIP(l;(A) :/: 0 ~ 0 but 

ITV(~(A) ~ O) = 0, hence we do not have TIP<< ITV. 

§10.4. The Cox process. 

a 

The Cox process Ilr on U is obtained as follows (§2.2): First we 

choose an element y E L(U) according to a law r and then construct the 

Poisson process 

(10.4. I) 

• • 

IT (.) y· r(dy) • 

• 

If y is atomless r-a.s., then the Cox process Ilr is non marked 
• s 1.mple. In the general case we choose K = {I, 2, .•• } • If • p 1S a 

random measure on U, then -p is a random measure on U x K (cf. §10.3). 

Note that p is visible if and only if ~ p is visible. Note furthermore 

that condition (E) is satisfied for every Cox process. 

THEOREM 10.4.1. Let be a Cox pp,oa:ees] ) and euppose ~ = E (y I F) 

is a visible random measure; then 

1) The letters r and y have the same meaning as in (IO. 4. l). 



• 

]04 

PROOF. We use theorem 5.5.2 iii) or 5.5.4 iii). Let VE U, 

FE F(V) c F and DE K; then: 

E IF ' (V X D) = E l F E ( y (V X D) . I F) 

= E lF y(V x D) 

µ(V X D) 

= E lF µ(V x D) • 

1 -- follows from theorem 10.3.2. The equality 

Remark: If y is diffuse r-a.s., then clearly is visible. 

Now we define th·e~ infinitely remote cr-field on r2 : 

F(~) = n F(V) • 
VEE 

V bounded 

THEOREM 10.4.2. 

visib ie; then 

Let µ be a Cox process and suppose that y is 

F(00 )-measurable. If, on the other ha:rul, for some 

point proaess there exists an F(c,::,) -·measu.rabZe random measure y on U 

such that µz = y , then that process is trua Cox process rrr where r 
is the distribution of y. 

• 

PROOF. First we ass11me that is a Cox process and that • y l.S 

visible. Note that this implies that y • 
l.S F measurable and that 

(theorem 10.4.1): µz = y . Furthermore, F measurability of y yields 

the existence of a mapping g: M + 

g-l ({y} ) we have 

L(U) such that g (µ) = y a.s. and 

y ; 

IT (G) = 
y y 

then IT (~(B) = O) > 0 y 

II_ . ( G ) = ! :f V L 
I y 

= 1 • 

for r-almost all y, and 

= 

f-a1most all 

If B E B bounded, 

because 

□ 

□ 

• 



(Equality 

IT (Beµ E G) TI (~(B) = 0) 
= ---=-y-=---=-=--y-::-_y-=--:------

ITY ( ~ (B) :=. O) 

1 
= O) 

= _.:. __ __,_,__,...-,-----,-.---
rr y ( ~ ( B) = o) 

--
ITY (µ E Gy, ~ (B) = 0) 

ITY(~(B) = 0) 

ITY(~(B) = O) - .,.._,;._.,.,.......,.... __ ___,_ -- -ITY(~(B) = 0) 
I • 

1 because IT • Poisson), = holds l.S y we 

for -almost all µ • This implies directly 
• 
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find µ E G 
C 

t 1> B µ E G y . y 
that for every bounded B 

the random measure y l.S F(B)·measurable so that • F(co) measurable. y l.S 

Suppose conversely that there exists an F(oo)-measurable random measure 

y on U such that 

F(V) ::::, F(00) and 

z µ ~ - y - . Choose VE U, FE F(V) , D € K. 

E (µ(V x D) I F(V)) = E (~(V x D) I F(V)) = 1(V x D) 

we then have 

E (µ(V X D) IF I y) = E ( E (µ(V X D) lF I F(V)) I y) 

= E ( E (µ(V X D) I F(V)) IF I y) 

• 

= E (y(V X D) lF I y) 

Because 

so that conditionally given y, the process µ is Poisson (theorem 

10.3.2) and hence unconditionally µ is Cox. 

An important class of Cox process is formed by the so-called mixed 
. 

Poisson processes. These processes are obtained as follows: there exists 

a non-random measure V on U and an [0, 00)-valued r.v. M such that 

Y = MV. Now two cases should be distinguished: 

0 

i) V(U) < ~; then without loss we may assume V(U) = I • Now the 

process is an example of a mixed sample process with sample size distribut-
• ion: 

• 
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P(N = n) = I Ee -M ~ 
n! n=O, 1, 2, ••. 

and sampled distribution v. 

a\.t this point we only mention 

then 

Mixed sample processes are studied in §10.6. 

ii) v(U) = oo; 

l. 

' 

the obvious fact, that if v is diffuse, 

then, if B. t U 
1 

(B. EB bounded) we find: 
l. 

so that M, and hence y, turns out to be F-measurable. Theorem 10.4.2 

now yields that: 

~ M v. 

Kallenberg (78) (theorem 5.1) proves that conversely, if there 

diffuse non-random measure V on U and a [0,00)-valued r.v. 

• exists a 

M such 
that <;z = MV 

z 
, then is the Cox process with random intensity 

y =M\>=<;. He uses the characterization of E;z by corollary 7.2.3. 

In the mixed Poisson process case i) above only the mean n11mber 

of points in U varies but their distribution remains the same. We now 

consider the case where the mean number of points in U • 1.s constant, 

hence where f(y(U) = G) = 1 for some constant G > 0. We assume 
• 

furthexm~re, that there exists a diffuse measure v on U such that 

r(y << V) = I and such that v(U) = G. Then theorem 10.3.3 yields for 

r-almost ally • IT << II and • y \) 

dII y 
g(<; I y), (~) - where g (£ -dIT ul V 

gy 
dy 

Using theorem 10.4.1 = dV • 

+ 
n 

I + e: y) - • TII g (u.) -• • • u 1.= y 1 n 

and Bayes' formula we find: 
> 

J y(v) g(tlr) r(dy) 

Jg(~ I y) I'(dy) 
• 

with 

• 
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If 

A(U) = G ), 

h(E + ••. 
u. 

1 

I 

is an arbitrary diffuse measure on U (not necessarily 
l dy 

>> v , then write for r-almost ally : hy = - -- and 
G dA. 

~z(V) = 
fy(V) h(~ I -y) f(dy) 

f h(~ I y) f(dy) 
• 

It turns out that ~z has a density A w.r.t. A. We calculate A; 
-because we may assume A E Z, hence A= A • since is satisfied, it 

is enough to calculate A in points (w,u) such that 

let VE B. Then on {~(V) = O} we have 

= E I y) f(dy) A(du) 
u 

A 

so that on{~ = O} we have 
u 

Jh(~ + £ I y) f(dy) 
A*(~) = u G----------u 

Next note that hy is 

all y. Consider the 

fh (~ I y) f(dy) 

a probability 
n+l 

U -valued 

density 

r.v. 

• 

w.r .. t. 
• 

• • • 

distribution is obtained as follows: First one chooses 

..... 
~ (w) = 0 ; hence 

u 

for r-almost 

X )t whose , n 
y according to 

the law r and then XO, • • • , X independently with density hy w.r.t . 
n 

• Then according to Bayes' formllla the conditional density (w.r.t. 

XO 
• • 

XI X (u. =/: • -I j) • 
l.Il u given - u l, - u u· u. u., l. l.S - -• • • , , 

n n 1 l. J 
following: 

n · n 
f h (u) .TI1 h (u.) f(dy) f h (u) .TI1 h (u.) r(dy) 
______ y ___ 1= __ Y _____ 1. ________ = __ Y_ i= y i 

n 
ff h (u') .n1 h (u.) r (d"'·) A(du') f .n1 h (u.) f(dy) 

"'y 1.= "'y l. I 1.= y ]. 

= 1 A* 
G u 

+ • • • + £ ) • 
u n 

= 

A ) 

the 

of 
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EXAMPLE 10.4. I. Take U = IR and the Lebesgue measure. The 

random intensity rrr • given by y of the Cox process l.S 

GA(du) (u 2 
y(du) exp - - Y) (s, G > O) -- -

✓2rr's' 
• 2s 

where Y has a N(0,1)-distribution. (The points form a cluster of mean 

size G around the N(O,I) distributed centre Y). The random vector 

distribution, where E(k) is the (k x k) matrix consisting only of ones 

and I(k) is the k-dimensional unit matrix. Then it is known that 

conditionally given X1 = u 1, ... , X = u , the r.v. 

N( ( 1, 

(E(n) 

(E(k) 

-1 n n t 
••• , I) (E (n) + s I (n) ) ( u 1 , • • • , un) , l + s - ( 1 , . • • , l ) . 

+ sI(n))-1(1, ... , l)t) distribution. Because 

+ sI(k))-l = 1 (I(k) - E(k)) we found that in this example if s k+s 
u. :/:, u 

1 
and u. I u. for i ~ j , then 

1 J 
the density in u .of a 

u) + ••• + un 1 
N(-------, s(l +---))distribution. n + s n + s 

§I0.5. The Gibbs process. 

• • • + £ 
u n 

) is G times 

As we saw in §2.2 a Gibbs process P is determined by its 

specification, i.e. by the system of conditional distributions: 

• 

Generally, one assumes that P(Vµ E. I F(V)) = Ilv(F(V)) , where 

v(F(V)) denotes an F(V) measurable random measure on V. 

It is clear (cf. theorem 5.5.4 iii)), that the visible projection is 

deter111i:ned by the specification. Using theorem 9. 1. I and theorem 9. 2. I 

we see that conversely the specification of a Gibbs process can be 

expressed in terms of the visible projection. 

In statistical mechanics Gibbs p~ocesses are used to describe non­

ideal gases. Then one takes U = lR. d and one ass11mes th.;?.t ·v (F(V) << 1'. 

(A denoting the Lebesgue meas1..1,re) for all V E U, and more precisely 

for al~l u E v : 

Cl 

• 



• 
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where $(r) indicates the interaction potential between two particles at 

a distance r (of course the integral fu-v ~(ju - vi) ~(du) has to exist) 

and represents the effect of some external field. Under these 

circumstances it follows that ~z has a density A w.r.t. 

A 
u = J 

u-{u} 
• 

and 
• 

This follows from corollary 7.2.3: First note that for almost all 
A 

for all VE U and all u EV we have P(s / 0 I F(V))(w) 
u - 0 - . 

r;-Z • 
S l.S a.s. diffuse and that a.s.: This implies that 

P(~(V - {u}) = 0 I F(V)) = P(,(V) = 0 I P(V)) = e-v(F(V))(V) . 

Furthermore: P (~ (V) = t;. ('11) 

-v(F(V))(V) 
= v(F(V))(W) e • Again using corollary 7.2.3 we see that for 

all VE U we have a.e. on {s(V) = O}: 

P(~(V) =~(du)= l F(V)) 
= -P~( s~(-:--V--~_,....._ u--r. -:--) -=-, ~0--.--=F~(:--V~) ):--- = V (F (V) ) (du) · This proves the 

• assertion because on {~(V) = O} of course ,cv- {u}) = 0 for all u EV. 

Remarks 

1. Note that we did not answer the question for which specifications 

there exists a Gibbs process, nor for which specifications there exists 

a uniquely determined Gibbs process. 

2. If an arbitrary simple non marked • point process satisfies 
• 

condition (r) we may determine the system (P(Vµ E. I F(V)))VEU 

(using theorem 9.1.1 and 9.2.1); hence then the process is a Gibbs process 

having the above system as its specification. 

3. If we describe a gas in U = ]Rd consisting of n different 

kinds of particles, we may choose K = {1, .•• , n} • The interaction 

potential between two particles at a distance r, one of kind k and 

one of kind i, now becomes ¢k(r,i) (= ¢i(r,k)) . The external field 

may influence different kinds of particles in a 

We assume that l..lz has a density A w.r.t. 

counting measure on K), and 

different way:@ k. 
u, 

x T (T denoting the 

• 
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Of course the corresponding specification now can be determined. 

§10.6. Mixed sample processes. 

A simple non marked point process on U is called a diffuse 

sanrpZe process if there exist a non-negative integer n, a diffuse 

probability distribution v on U and independent U-valued r.v.'s 

X n 
with distribution v, such that 

Note that the X~ 
1. 

atoms, there is a 

Hence l'1e define : 

are a.s. different because v is diffuse. 

possitive probability that two or more x. 
1. 

If V has 

coincide. 

A sample pPocess on U is a simple point process on U with 

C 

marks in K = {1, 2, ••• } for which there exists a non-negative integer n, 

a probability measure v on U and independent U-valued 

. . . , X 
n 

with distribution v, such that 

fK kµ(., dk) = £x + .•• + £x . 
1 n 

' r.v. s 

The n11mber n is called the swnpZe size; the probability measure 

v is called the sampled distribution. 

A mixed samp Ze pPocess on U 

marks in K = {1, 2, ••• } for which 

is a simple point process 

there exists a {O, I, 2, 

on U with 

.... }-valued 

r.v. N and a probability measure v on U such that, conditionally 

given N = n (n = O, I, 2, ••• ) the process is a sample process on U 

with sample size n and sampled distribution v. Hence there exist 

U-valued r.v.'s x1 , x2 , ••• with distribution v, which are independent 

from N and from each other, such that: 

\Jri ting P(N=n) = p 
n 

• 

+ ••• + 

we find for all BE Band all m = 0, 1, 2, • • • • • 

• 



p fK k µ(B,dk) = m , 
✓ 

00 

= I: 
n==O 

1 I I 

Note that N = JK k µ(U,dk); if the sampled distribution is diffuse, 

then this expression reduces to N = ~(U). 

THEOREM 10.6. I. Let µ be a mixed sample process with diffuse sampled 

distribution v. Let I be the set {n E {I, 2, ... } / p 1 = O}. 
n-

Define the random measure on U by: 

(10 .. 6. 1) 

(This defines 

PROOF. 

I:c E {(w,u) I 

(10.6.2) 

a.s., since pN > 0 a.s.). Then: ~z = ~-

First we shall determine Ee. From §6. I we know that 
A 

~ (w) = I}. In fact we have 
u 

• -- u 
nE:I 

{(w,u) 

{(w,u) 

A 

I ~ (w) = 1, N(w) = n} = u 

A 

I,~ (U - {u}) = n-1} . 
w 

To prove this, fix (w, u) such that ~u (w) = 1 • We clearly may as s11me 

pN(w) > 0 . Write 

we have P(,(V) = 0 

n = N(w) • For all sets VE U such that 
C 

(w,u) E: H(V) 

I F(V))(w) = P(~(U) = ~(V) = n-1) 

P(~(Vc) = n-1) 
• Because 

P(~(U) =~(Ve)= n-1) = 0 if an only if n E: I, formula (10.6.2) follows 

from theorem 6.1.3. 

Now it can be seen that is visible; indeed, according to 

(10.6.1) sis the sum of two random measures; the first of them is visible be­

cause the indicator of its support and process of atomsizes are both equal to 1 c; 
z:: 

the second is visible because it is F-measurable and diffuse. 

To complete the proof we show that satisfies the criterion of 

theorem 5.5.2 iii). To that end we verify that for all VE U and 

m = 0, 1, 2, .•.. we have on {~(Ve) =~m} : 

• 



112 

At 

00 

= i: 
t=I 

00 

J: i: 
t=I 

m+Q.EI 

00 

+ i:1 
m+itr 

m+Q.+IEI 

00 

(m+Q.) 

= i: Q. P(~(V) = Q., ,eve) = m) + 
,Q,= 1 

m+R,EI 

00 

i: 
+ Q.=O 

m+Q.+l~I 
m+9,,+2~I 

(m+i+ l) 

i P(~(Vc) m) • E(l;(V) 

v(V) P(,(V) 

I F(V)). 

l = note that if m+i+JEI, then p = 0 m+i ' 
m+Q.+2EI, then Pm+i+l = 0. 

2 at= note that if 

Now we consider the case where v is not diffuse. 

THEOREM 10.6.2. Let v be the sampZ.ed distribution of a mixed 

sanrpZe pPoaess on U ; write A = {u I -0 = O} and define the i,andom u ' 
measure , on U x K (K = {I, 2, ••. }) by: 

Ar; ( U x { 2 , 3 , • • • • } ) = 0 

and foi, u E Ac l): 

AV 
• 

• 

on { fK k µ(U- {u},dk) = n} , 

wher'e again I= {n E {I, 2, .... } I p = ·o} • 
n-1 

1) With the convention 0/0 = 0. 

□ 

• 
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A 

PROOF. We only check the expression for ~ (u E Ac), the rest being 
u 

proved analogously to theorem 10.6.1. On { fK k µ(U- {u}),dk) = n} we argue 

as follows: 

I F({u})) 

P(N=n4>!., fK kµ
0

(dk) = i) 
--,,--.------------- P ( f k ll (U- { u}, dk)

0 = n) 
K 

n+Q, "' "' n p . ( 0 ) V (1-V) 
= ____ n_+ __ Q,_;x,, ___ u ___ u____ = e ( {i}) . 

00 n+i ,....i .,,.., n u 
i~O Pn+i ( n )Vu(l-vu) 

a 

Remarks 
A . 

1. Note that if pn = 0, then ~~(K) = 1 on { fK k µ(U - {u},dk) = n}. 

2. We see that 

• 

Le¾: {(w:,u) I fK kµw(U- {u},dk) + 1 EI} . 

(cf. the formula for Le 

remark 1), and because Av 

2 (uE Ac) that 
u 

-"z 00 
I I: - + -

in the special case where v 

is diffuse it follows from 

(X) 
(n:i) 

....... 
'Vl. .I: I Pn+i ( 1 

00 1.= 1 u I: • ~ n=O (n:i) ~ u.€.A C 
00 ...... 1. 

.I:O ( I Pn+i 'V 
1.= 1 u 

• 

= n} , 

and hence that 

is diffuse and 

the expression for 

A n - \> ) 
u 

• 

- v )n 
u 

where m is the smallest integer such that P(N > m) = 0. Hence, if 

pn f O for all n = o, l, 2, •.. , then i: = n x U and o = Q x A. 

3a. The zero-or-one-point process is an example of a mixed sample 

• 
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process: take Po= 1-c, p 1 = c and p = 0 
n 

for n = 2, 3, ••. • 

3b. The Poisson process with finite intensity measure is an example 

of a mixed sample process too: If N has a Poisson distribution with 

parameter m, 

10.6.2) reduce 

3c. If 

then it is easy to check that the above formulae (theorem 
z ~ to µ = (mv) • 

N has a degenerate distribution - hence in the case of 

a non mixed sample process - we obtain 
z 

µ = µ • 

4. As we already mentioned in §10.4, mixed Poisson processes are 

examples of mixed sample processes. Note that these processes always have 

p + 0 for all n = 0, I, 2, .•.• 
n 

We shall give one example: Assume that the distribution of N • 
l.S 

obtained by mixing the Poisson distribution w.r.t. a r-distribution with 

parameters k and (k,). > 0) • 
1. e.: 

n ·k k-1 -\m 
p(N=n) f -m m X m e dm pn - - e ' - - (k-1) ! n. 

(n+k-1)! \k 
-- n! (k-1) ! (A+l)k+n 

where p = 11./ (\+I) (For all r > -1 • we write: r t -. - f(r+l) = fc;x:, 
0 

-x r 
e x dx). 

Because of the last expression for pn this process is called the negative 

binomial point process (cf. Gregoire (80)). 

For simplicity we now ass11D1e that v is diffuse (v(U) = l). We 

mention one interesting property of the negative binomial point process: 

For all BE Band n = 0, 1, 2, .•• we have • 

p (~ (B) 
k 

( ( 1 -p) V ( B) ) n 
p+(l-p)V(B) • 

• 

To derive this formula in an exercise in elementary probability. It is a 

much easier exercise to deduce from theorem 10.6.1 that: 

(N + k) ( l · ~ p) V • a 
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APPENDICES 

Appendix A. The section theorem without filtration. 

A fundamental result, both in the theory of processes on ]R and in 
+ 

the theory developed in this treatise, is the so-called section theorem in 

a space without filtration. 

THEOREM A.I. Let (n, G, P) be a complete probability space and Zet 

(U, B) be a Polish spaae with its Borel a-field. If A E G x B (G x B 

denoting the product-a-field on n x U) ~ then: 

rr (A) E G 

and there exists a G-measux-able mapping R: n + u U {~} such that 

rRJ c A 

and such that 

P(nfRj) = P(n(A)) . 

PROOF. We refer to the literature. The most difficult part of the 

proof consists of showing that projections are G measurable. This result 

does not apply to arbitrary G, but it is true if G is complete, as in 

our case. In the literature many proofs are given for the case U = IR + 
(Dellacherie (72) I - T37; Dellacherie and Meyer (75) III-44); this is 

enough since there exists a measurable mapping f from IR+ onto U. A 

direct proof of a slightly stronger assertion can be found in Dellacherie 

and Meyer (75)-A-IV-81). □ 

Appendix B. The monotone class theorem. 

In several instances we nc•E:·d the following basic result. 

THEOREM B.l. Let D be a vector space of real-valued functions on 

some space E. Ass'Ulne tlia.t D contains the constant functions, is closed 
• 
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under uniform convergence and under monotone convergence of uniformly 

bounded functions. Let C c D b€/ c:7.oeed under rrruZtipliaation. Then D 

contains all T(C)-measurable functions. 

PROOF. See for instance Dellacherie and Meyer (75)-I-21. 

We generally only need the following obvious consequence of the 

monotone class theorem: 

COROLLARY B.2. Let (E
1 

,E.
1

) and (E 2 ,E2) be two measurable spaces. 

□ 

Let D be a vector space of real-valued functions on E 1 x E2, containing 

the constants and closed under convergence. If IDXD' E D for aZ.l DE E 1., 

D' E E2, then D contains all E1 x E2-measurabZ.e functions. It is 

enough -to check 1DxD' ED for D (resp. D') in an E 1 -· (r:e£:f·· E2-J 

generating class of sets which is closed under intersection. □ 

On one occasion we need another, perhaps more familiar form of the 
• 

monotone class theorem. 

THEOREM B.3. Let C be an algebra of subsets of some space E. 

Let E be the smallest collection of subsets of E, uJhil!ti contains C and 

which is closed under countable monotone unions and countable monotone 

intersections. Then E = T(C) . 
• 

PROOF. Meyer and Dellacherie (75)-I-19. □ 

Appendix C. Some results on conditioning. 

It isknownthat it is possible to construct the conditional distribution 

(given some o-·field) of any r.v. taking values in a Polish space (see e.g • 
• 

Bauer (78) §56). We mentioned that the space of all Radon measures on a 

Polish space is Polish itself. Hence we may speak of the conditional 

distribution of a random measure p and in particular of µ. 

Consequently we may assume th,,t. conditional expectations of functions 

of one or more random measure are expectations w.r.t. the conditional 

distribution of this (these) random measure(s). If we speak simultaneously 

of the conditional expectations of an ~ncountable number of functions, this 

ass11mption becomes essential. • 

We now prove a general theorem on conditional distributions. 

THEOREM C.1. Let (n, A, P) be a probability spaae. Asswne that the 

• 



measurable space (Q, A) is a BoreZ measurable Polish space. Let B and 

C be a-fieZds and A:::> B c C. Denote the conditional distribution 

11 7 

P(A is I B)(.) • Hence in particular~ for aimost 

aZZ w we have: 

Pc (A I B) (w) = P(A I B)(w). w 

PROOF. We have to show that P(A I B)(.) for P-almost all w is a 

conditional probabilities (given B) and conditional distributions (given C) 

are determined by integrals; hence, let BE Band CE C and consider 

f f p (A I B) ( w' ) 
C B 

P(dw) = f P(A I B)(w') P(dw') 
cnB 

= P(A n B n C) 

= J Pc(A n B) P(dw) • 
C w 

In view of theorem C.l the following result is not surprising. 

deals with the a-fields F(V) and is used very often, especially in 

§7 .4. 

CJ 

It 

THEOREM C.2. Let V, WE U~ W c V and let X be some non-negative 

r.v.; then: 

E(X I F(V)) 

a.e. on {~(V-W) = O}. 

E(X 1 {~(V-W)=O} I F(V)) 

= . P(~(V-W) = 0 I F(V)) 

• 

PROOF. We could easily prc•\.,.E tl,.i s theorem by using theorem C. I 

(cf. Kallenberg (83) ler11,11a 13.9), but we prefer to copy the direct proof 

of Papangelou (74) proposition 1. 

To prove the theorem it suffices to show: 

E F(V)) = E IB P(~(V-W) = 0 I F(V)) E(X I F(W)) 

for all B E F(W), B c: {~ (V-1v) = o} • Note that F(V) n {~ (V - W) = O}= 

~F(W) n {~ (V-W) = 0}. Hence there exists a set C E F (V) such that 

B = C n {~(V-W) = o} . Now it is seen that 

• 
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--

F(V)) X l{~(V-W)=O} 
. . 

□ 

Appendix D. Proof of theorem 3.4.5 • 
• 

In this appendix we prove theorem 3.4.5. This is a theorem on point 

process on [0, 00 ) and on previsibility. We only give a sketch of the proof. 

To complete this, it should be elaborated on the one hand by using techniques 

from §7.4 and on the other hand by using arguments from the general theory 

of processes on [0, 00) (see e.g. Dellacherie and Meyer (75) and (80), also 

see Papangelou (74)). The notation in this appendix differs in some 

respects from the one used so far and is introduced below: 

U = [0, 00) , 

= 00 

U. = {[k 
l. 

(k+l) • , 

if VE Bis of the form V = [a,b), then in contravention of our usual 

notation, we denote by F(V) the a-field F : 
a-

• 

F(V) = F a- • T({µ(A) I A EB, Ac [O, a)}) • 

if W, VE B, W c: V, then: 

V A W =· {s E V I s < s' V· s' E W}, 

i.e. VA W is that part of V which is situated to the left of W. As 

always,~ is a simple non marked point process on U. 

Now it fo_llows, that if V, WE U, W c: V, then for all non-negative 
r. v. X we have: • 
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E(X I F(W)) 
- E (X l { ~ (V A W) ::Q} I F (V)) 
- P ( ~ (v" A w) = o· I P (v)) .. 

a.e. on {~(VA W) = o} (cf. theorem C.2). 
A • 

For all VE U, the set {(w,u) IP(~ 
u IO I F(V))(w) ~ O} clearly is 

the finite or countable union of graphs of measurable mappings 

T: (n, F(V)) +VU {00 } (cf. lerr1111a 7. 4. 2) and for such mappings T 

(which are previsible stopping times) we have 

as i ➔ 00 , where v
1

(T) is some r.v. 

w. r. t. {T ( { T E W} n F, F ( E' (W) , W E 

(Indeed, the process is a martingale 

U.)}. (cf. l~1rr111a 7 .4. I)). Note that 
l. l. 

Sc = U { (w,u) ! 
VEU 

u EV, 
,,.._ 

P(~ # 0 I F(V))(w) IO} 
u 

again is the union of a finite or countable number of graphs of mappings T. 

LEMMA D.1. Except for an evanescent set, (w,u) ES implies: 

lim 
• 
1 

(W. E U., W. 
1. l. 1 

{u}) . 

PROOF. Choose k such that ~w(Wk A {u}) = 0. For each VE U 

there exists a corresponding F(V)-measurable previsible stopping time T,
7 

given by: 

inf {t I P(~(V A {t}) = o I F(V))(w) = o} if 

P(~(V) = o I F(V))(w) = a ; 

00 if P(~(V) = 0 [ F(V))(w) 0 • 

Because (w,u) ES, u > TW 
k 

and since ~w(Wk A {u}) = O, 

(w) implies that P(~(Wk A {u}) = 0 I F(Wk))(w) 

it now can be seen that we only exclude an 

evanescent set by the assumption u < TW (w) , so that 
k 

P(~(Wk A {u}) = 0 I F(Wk)) (w) 'f O and we may copy the proof of letorr1a 7.4.4. 

C 

LEMMA D.2. FOP all VE U we have a.e. on {~(V) = O} : 

= O· ' 
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where 

WEU. B 
l. , 

P(~(W) = l I F(W)) t '-'2 (B) if • 1 -+ oo, 

PROOF. Cf. lemma 7.4.5. 1-et W f U., W c V, then 
l 

P(~(W) = 1 I F(W)) = 

P(~(W) = 1, ~(VA W) = 0 F(V)) 
F(V)) 

= I. 
P(~ (W') = 1, ~(W-W') = O, s(V AW)= 0 

P(~(V AW)= 0 F(V)) 

< p (~ (W') = 1 , t; (V A W' ) = 0 F(V)) < 

W'EUi+l ,W 

< 

= I: 

P(s(V W) = 0 F(V)) 

P (~ (W') = I, 
P(s(V 

~(V A W') 
W ) = 0 

P ( ~ (W' ) = 1 I F (W')) • 

=0 F(V)) 
F(V)) 

--

F(V)) 

• It l.S easily checked that the limit v
2

(B) exists and is a measure in 

Note that 

~::.::.=~D~-~3~. Let VE U; then: 

I F(W)) l{s(W)=O}-+ 0 a.s .. 

PROOF. Number the atom positions of~: 0 < T
1 

< T
2 

< •••• 

Choose a > O, W E (a, 00) and Jl= 1, 2, ~- •.• , and write 

A= {C((a,~) AW)= 0, ~[O,a] = t} 

and 
T = (Tl , • • • , T Jl) , 

< 

B. o 

• 
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then it can be checked that on A we have for all non-negative r.v. X: 

E (X I F(W)) = 
E(X ]A IT) 

P(A T) 

and the lerc11r1a is proved in the same way as lerUJna 7. 4. 7. □ 

THEOREM D.4. Let B E U; then: 
• • 

L . E(~[k2-1 ,(k+l)2-1
) 

k:k2-1 EB 

= l: E(~(W) I F(W)) + ~P(B) a.s. and in 
WEU. B 

l.' 

PROOF. This follows in the same way as the proof of theorem 7.4.8. 

A.s. convergence is proved by dividing the sum in 4 parts. Mean convergence 

is also easily proved. The limit is a.s. a measure on U as a function of 

B; call it v. The random measure is extended to B. It can be 

verified that the process v[O,t] is previsible. Combining this fact with 

the mean convergence, we see that v = ~p. o 

Remark. Theorem 3.4.5 is proved by replacing the above U by 

U 0 , 

• 



122 

REFERENCES 

Abbreviations: 

LNM: Lecture Notes in Mathematics, Springer Verlag, Berlin Heidelberg 

New York. 

ZfW: Zeitsehrift fii:P WahrscheinZ.ichkeitstheorie und ver-wandte Gebiete. 

BAUER, H. (78) WahrscheinZ.ichkeitstheorie und Grundzuge der Masstheorie, 

3. Auflage, Walter de Gruyter, Berlin New York. 

BREMAUD, P., JACOD, J. (77) Processus ponctueZ.s et MartingaZes: Resultats 

recents sur Za ModeZisation et Z.e filtrage, Adv. Appl. Prob. 9, 362 -

416. 

CHOU Ching-Sung, MEYER, P.-A. (75) Sur la representation des Martingales 

eomne integral.es stochastiques dans Z.es Processus ponetuels, 

Seminaire de Probabilites IX, 226-236, LNM 465. 

DELLACHERIE, c. (72) Capacites et Processus stochastiques, Springer Verlag, 

Berlin Heidelberg New York. 

DELLACHERIE, C., MEYER, P.-A. (75,80) Probabilites et Potentiel, Chapitres 

I a IV, V a VIII, Her11,ann, Paris. 

GREGOIRE, G. (80) QueZ.ques Outils en vue de Z.a ModeZ.isation de Processus 

ponatueZs et des Proaessus de clustering, These Universite de Grenoble. 

HAHN, H., ROSENTHAL, A. (48) Set Functions., The University of New Mexico 

Press, Albuquerque. 
• 

HOEVEN, P.C. T. van der (82) Une P-Pojection de Processus ponatueZs., ZfW 61, 

483-499. 

JACOD, J. (79) Calcul Stochastique et Probl~mes de Martingales, LNM 714. 

KALLENBERG, o. (78) On Conditional intensities of Point processes, ZfW 41, 

205-220. 

KALLENBERG, O. (83) Random measuree.,2nd edition, Akademie Verlag, Berlin, 

to appear (This book essentially consists of: Random measures, 1st 

edition, Akademie Verlag, Berlin (1976) and: Conditioning in Point 

processes, technical report 1982-7 of the University of Goteborg, 

(1982). 

Sweden 

• 

• 



KRICKEBERG, K. (82) Proaessus ponctueZs en Statistique, Ecole d'Ete 
Probabilites de Saint-Flour X-1980, 205-313, LNM 929. 

MATTHES, K., WARMUTH, W., MECKE, J. (79) Bemerkungen zu einer Arbeit von 

Nguyen Xuan Xanh und Hans Zessin, Math. Nachr. 88, l 17-127. 

123 

NEVEU, J. (77) Processus ponctuels, Ecole d'Ete de Probabilites de Saint­

Flour VI-1976, 249-447, LNM 598. 

PALM, C. (43) Intensitatschwankungen in Fernspreahverkehr, Ericsson 

Technics 44, 1-189. 

PAPANGELOU, F. (74) The Conditional intensity of general Point processes 

and an Application to Line processes, ZfW 28, 207-226. 

PRESTON, C. (76) Random fields, LNM 534. 

RAUCHENSCHWANDTNER, B. (80) Gibbsprozesse und Papangeloukerne, Dissertation 

Johannes Kepler Universitat Linz, VWGO 17, Wien. 

VARSEI, A. (78) The Conditional intensity of Ra:ndom measures and some 

related Results, Thesis University of Manchester 

• 



adapted 13 

cadlag 13 

Campbell measure 41 

conditional intensity 21, 68 

Cox process 9, 103 

diffuse sample process 110 

Doleans measure 41 

doubly stochastic Poisson process 
s. Cox process 

dual previsible projection 17 

dual vi.sible projection 42, 44 

evanescent 9 

external field 109 

exterior a-field 

- of a rando~ point 30 

- of a set 6 

exvisible s. visible. 

filtration 12, 23 

Gibbs process 8, 80, 108 

grapr1 10 

hazard rate 18 

ideal gas 8, 49, !08 

indistinguishable 10 

inf ini teJ.y remote a-fieJ_d 104 

interaction potential 109 

likelihood ratio 87 

local martingale 17 

marked poj_11t measure 6 

marked point process 6 

marked process 41 

martingale 79 

martinga]elike measure 79, 80, 97 

master 1nensure 41 

mixed Poisson process 105, 114 

mixed s~mple process 110 

125 

INDEX 

monotone class theorem 115, 116 

negative binomial (point) process 114 

optional 

- process 13 

- projection 36 

- time 14 

Palm distribution 1 

Papangelou kernel 81, 85 

phase-transitions 9 

point measure 6 

point process 6 

Poisson process 7, 12, 20, 49, 101, 114 

Polish space 5 

predictable s. previsible 

previsible 

- compensator 18 

- process 13 

- projection (of a process) 15 

(dual) - projection (of a random 
measure) 17 

- section theorem 14 

- a-field 14 

- (stopping) time 14 

process 10 

- of atom sizes 10 

projection (on f2 ) 9 

random 

- marked point measure 6 

- measure 10 

- point 9 

- point measure 6 

- set 9 

reduced Campbell measure 81 

sampled distribution 110 

snmple process 49, 110 



126 

sanlp le size 1 I 0 

section tl1eorem 115 

simple point measure 5 

specification 9, 80, 108 

statistical mechanics 8, 49, 108 

stochastic process 10 

stopping time 14 

totally inaccessible stopping 
time 16 

visible 

- marked process 41 

- measure 37 

- point 23 

- proct.~ss 23 

- projection (of processes) 33 

(dual) -projection (of random 
measures) 42, 44 

- section theorem 27 

- o-field' 23 

zero-or-one point process 7, 27, 91, 113 

LIST OF SYMBOLS 

Capitals upright 

C l¼ 1 p 
H(V) 24 

K 5 

L(E) 5 

M 5 

M. 5 

p 6 

s, sv 64 

U 5 

Capitals Italic 

A 6 

B 5 

l!,~ F (V) 6 

F(R) 30 

Ft 13 

F 14 
t-

FT- 16 

F'(00) 104 

K 5 

M., /ief (V) 6 

l✓ 6 

P 14 

• 

T( .•• ) 5 

u, 
V 

u. ' 1. 
U. V 
1, 

32 

Z 23 

Greek small 

£ 7 
a 

n 81 

µ 6 

6 

1T 9 

a 33, 52 

a(p) 31 

(a) 53 

<f> 62 

Gr.eek capitals 

9 

ITV 8, 9 

I: 46 

I:(V) 48 

(E) 49 

I:*(V) 52 

(1:*) 53 

6 

Superscripts 

':' 10, IOI 
~ • 101 

* • 
p 

• 
p 

• 
z 

• 

z 
• 
,..z 
• 

7,10,11 

15 

17 

33 

42, 43 

43 
. z,P 84 
-

• 
+ 

• 
-

• 

57 

68 

58 

• Miscellaneous 

0 7 

r J i o 
57 

(Set) (Meastire) 6 

10 ' 


