


Printed at the Mathematical Centre. Kruislaan 413, Amsterdam, The Netherlands. 

The Mathematical Centre, founded 11 February 1946, is a non-profit institution for the promotion 
of pure and applied mathematics and computer science. It is sponsored by the Netherlands 
Government through the Netherlands Organization for the Advancement of Pure Research 
(Z.W.0.). 



MATHEMATICAL CENTRE TRACTS 164 

MARKOV 
DECISION PROCESSES 
WITH CONTINUOUS 
TIME PARAMETER 

F.A. VAN DER l;)UYN SCHOUTEN 

MATH EMATISCH CENTRUM AMSTERDAM 1983 



1980 Mathematics subject classification: 60BIO, 60Gl7, 60J25, 90BOS, 90B25, 
90C47, 93E20 

i-BBN 90 6196 261 7 

Copyright© 1983, Mathematisch Centrum, Amsterdam 



ACKNOWLEDGEMENT 

With thanks I acknowledge the support provided by Arie Hordijk, Manfred 

Schal and Henk Tijms during the preparation of this monograph. 

(i) 

In particular the suggestions of Arie Hordijk resulted in many substantial 

improvements. 

I am indebted to the "Stichting Mathematisch Centrum" for offering me the 

opportunity to publish this book in the series "Mathematical Centre Tracts". 





CONTENTS 

CHAPTER 1. PROBABILITY THEORY ON METRIC SPACES. 

1.1. Introduction. 

1.2. General concepts. 

1.3. The drift function. 

1.4. The sequence spaces J[O,t] and J[0, 00 ). 

1.5. Comparing J[0, 00 ) with related spaces. 

1.6. Weak convergence on J[0, 00 ). 

CHAPTER 2. MARKOV DECISION DRIFT PROCESSES ON J[0, 00 ). 

(iii) 

1 

2 

9 

14 

24 

26 

2.1. Introduction. 28 

2.2. Definition of a Markov decision drift process with 31 

continuous time parameter. 

2.3. Definition of a Markov decision drift process with 45 

discrete time parameter. 

2. 4. Discretization and weak convergence. 

2.5. Examples. 

CHAPTER 3. EQUIVALENT POLICIES. 

3.1. Introduction 

53 

62 

66 

3.2. Generalization of a theorem of Derman and Strauch. 70 

CHAPTER 4. COST FUNCTIONALS ON J[0, 00). 

4.1. Introduction. 

CHAPTER 5. 

4.2. The a-discounted cost functional. 

4.3. The finite horizon cost functional. 

4.4. The average cost functional. 

AN M/M/1 QUEUEING MODEL. 

5 .1. Introduction and assumptions. 

5.2. The a-discounted cost case. 

5.3. The average cost case. 

81 

84 

99 

100 

111 

113 

127 



(iv) 

CHAPTER 6. A MAINTENANCE REPLACEMENT MODEL. 

6.1. Introduction and assumptions. 

6.2. The a-discounted cost case. 

6.3. The average cost case. 

CHAPTER 7. AN INVENTORY MODEL. 

7.1. Introduction and assumptions. 

7.2. The a-discounted cost case. 

7.3. The average cost case. 

CHAPTER 8. RELATED LITERATURE. 

8.1. Introduction. 

REFERENCES. 

8.2. Markov decision processes with continuous time 

parameter·from a general point 'of view. 

8.3. Approximation methods. 

8.4. Processes with special structure. 

INDEX OF SYMBOLS AND NOTATIONS. 

INDEX OF TERMS. 

SUMMARY. 

132 

134 

146 

159 

161 

1 75 

177 

177 

180 

182 

183 

189 

191 

193 



CHAPTER 1 

PROBABILITY THEORY ON METRIC SPACES 

1.1. INTRODUCTION. 

Since a stochastic process can be seen as a probability measure on a 

function space, weak convergence of stochastic processes is equivalent with 

weak convergence of probability measures on metric spaces. Which function 

space has to be considered depends on the behaviour of the sample paths of 

the stochastic processes under consideration. PROHOROV (1956) and 

BILLINGSLEY (1968) studied among others the function space C[0,1], being 

the class of all continuous functions on the unit interval with values 

in some metric space S. Weak convergence on the space C[0, 00 ) of S-valued 

continuous functions defined on [0, 00 ) has been treated by STONE (1963j and 

WHITT (1970). Another important function space is D[0, 00), the set of all 

s-valued functions on [0, 00), which are right continuous and have left hand 

limits at every t>O. For an extensive study of this space we refer to 

LINDVALL (1973) and WHITT (1980). 

In the theory of controlled stochastic processes, however, we encounter 

processes, which cannot be seen as random elements of C[0, 00 ) or D[0, 00), 

since the sample paths are neither right- nor left continuous. Although 

most of these processes can be put into the framework of the function 

spaces C[0, 00 ) or D[0, 00 ) by methods ad-hoc, a unifying approach to this 

kind of controlled stochastic processes requires the introduction of a 

new sample space. This will be illustrated by some examples in section 1.3. 
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1 • 2. GENERAL CONCEPTS • 

In this section we give an outline of some general concepts of 

probability theory on metric spaces. For a more extensive introduction the 

reader is referred to BILLINGSLEY (1968) or PARTHASARATHY (1967). The 

concepts and results of this section are rather disconnected, but have in 

common, that they all will be used later on. In this section S 

(or Si, i=l,2) is a metric space and S (Si, i=l,2) its Borelfield i.e.· the 

a-field generated by the open subsets of s. 

DEFINITION 1.2.1. A function h from s1 into s2 is called measurable if 
-1 

h S2 
f-lS 

2 

c S1 and a function_f from s 1 into s2 is called h-measurable if 
-1 ch s2 • 

DEFINITION 1.2.2. A sequence of probability measures (Pn)==l on s 

converges weakly to a probability measure Pon S if 

lim J f dPn 
n-- S 

J f dP, 

s 

for all bounded continuous real-valued functions f on s. 
Notation: P 

n 
w 
+ P. 

THEOREM 1.2.3. (Portmanteau theorem). Let P, Pn' n~l be probability 

measures on S. The following five assertions are equivalent: 

(i) 

(ii) 

w 
P + P. 

n 

limrfdP 
n-- J n 

s 

= J f dP for 

s 

real-valued functions f. 

all bounded, uniformly continuous 



(iii) lim sup p 
n 

(F) ~ P(F) for all closed F ES. 
n-+oo 

(iv) lim inf p (G) 
n 

<'. P(G) for all open G E S. 
n-+oo 

(v) lim p (Bl 
n 

P(Bl for all BE s for which P(oB) 0, where oB 
n-+oo 

denotes the boundary of the set B. 

PROOF. See page 12 and 13 of BILLINGSLEY (1968 l . [l 

DEFINITION 1.2.4. A random element of Sis a measurable function X 

from some probability space (Q, t,Pl into S (measurable means 

x- 1S c F). The probability measure PX-l on s defined by 

-1 
PX (Bl: 

-1 
P(X Bl: P(X E BJ for BE s 

is called the probability measure induced by X or the probability 

distribution of X. 

If Sis a function space then a random element is often called a random 

function or stochastic process. If S R we call a random element a 

random variable and if S = Rk , k > 1 a random vector. 

If random elements of Sare introduced we often omit to specify explicitly 

the underlying probability space (Q, F,P) on which the random elements are 

defined. ile always assurae that all random elements under consideration 

are defined on one common probability space. 

DEFINITION 1.2.5. A sequence of random elements (Xnl:=l of S converges in 

distribution to a random element X of S if 

d 
Notation: X + X. 

n 

d 
We write X Y if the random elements X and Y have the same probability 

distribution. 

NOTATION 1.2.6. If his a function from s1 into s 2 then Disc (h) is the 

set of points in s1 where his discontinuous. 

3 
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PBOPOSITION 1.2.7. Disc (h) E S1 even if his not measurable. 

PROOF. See page 225 of BILLINGSLEY (1968). n 

DEFINITION 1. 2. 8. A transition probability .from S 1 to S 2 is a mapping 

P from s 1 x S 2 into :0,1], such that 

(i) P(s 1 ,.) is a probability measure on s 2 for every s 1 E s 1 

(ii) P(.,A2) is measurable on s1 for every A2 E S2 • 

The set of all probability measures on Swill be denoted by P(S). Hence, 

a transition probability from s 1 to s2 can be considered as a mapping 

from s 1 into P(s2). 

THEOREM 1.2.9. (Continuous mapping theorem). Leth be a measurable 

function from s 1 into s2 ahd X, Xn' n~l, random elements of s 1 . 

If X 1 X and PX-l(Disc (h)) = 0 then 
n 

d 
h(X ) ->- hX 

n 

as random elements of s2 • 

PROOF. See page 30 of BILLINGSLEY (1968). ~ 

DEFINITION 1.2.10. Let X, Xn' n~l, be random elements of S. Then (Xn):=l 

converges almost surely to X, if X, Xn' n~l, are all defined on a common 

probability space (n,F,P) and if there exists a set n0 E F with P(n0 ) = 1 
a.s. 

such that limn->«> Xn (w) = X(w) for all w E n0 • Notation: Xn + x. 

LEMMA 1.2.11. Let X, Xn' n~l, be random elements of S. 
d 

If X 
n 

a.s. 
➔ X then 

X ->- X. 
n 

PROOF. For every continuous real-valued function f on S we have 
a.s. 

f(X). If, moreover, f is bounded then J f (X ) dP + f 
S"l n n 

by Lebesgue's theorem on bounded convergence. But f f(X) dP = 
n 

and f f(X) dP = 
n 

J -1 -1 w -1 
f dPX . Hence PXn ➔ PX which implies by 

d S 
definition X 

n 
➔ x. n 

f(X) dP, 

J f dPX-l 
S n 
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REMARK 1.2.12. The converse of lemma 1.2.11 is not true even if X, X, 
n 

n~1, are defined on a col!llilon probability space. For instance let 
n d 

P(X=1) = P(X=-1) =½and define X = (-1) X. Then X = X for all n, 
n n 

whereas (Xn)~=l does not converge almost surely. 

THEOREM 1.2.13. Let x, X , n~1, be random elements of a complete and 
nd 

separable space S. If Xn ➔ X then there exist random elements X', X~, 

n~l, of S defined on a common probability space such that 

X' 
d 

X n~l 
n n' 

X' ~ X 

and a.s. 
X' ➔ X'. 

n 

PROOF. See SKOROHOD (1956). 0 

DUDLEY (1968) and WICHURA (1970) proved this theorem under weaker 

assumptions. 

A useful application of theorem 1.2.13. is put into words in theorem 

1.2.16. below. First we need the following definitions. 

DEFINITION 1.2.14. Let w,F,P) be a probability space. An assertion H holds 

almost everywhere w.r.t. P if there exists a FE f with P(Fl = 1 such that 

H holds for all x E F. Notation: H holds P-a.e. 

DEFINITION 1.2.15. Let f, fn' n~l, be measurable functions from s 1 into s 2 . 

The sequence (fn)~=l is said to be continuously convergent at x to the 

function f if limn..- xn = x implies limn..- fn(xn) = f(x). The sequence 

(fn)~=l is continuously convergent to f if it is continuously convergent at 
C 

all x E s1 to the function f. Notation: fn ➔ f (see for example page 197 of 

KURATOWSKI ( 1966) . 

THEOREM 1.2.16. Let X, Xn' n~l, be random elements of s1 and h, hn' n~1, 

measurable functions from s 1 into s 2 . Assume that s 1 is separable and 
d c -1 

complete. If Xn ➔ X and hn ➔ h, PX -a.e., then 
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as random elements of s2• 

PROOF. According to theorem 1.2.13. there exist random elements X', X~, 
--- d d a.s. 
n;z:1, of s1 such that x~ = xn' X' = x and x~ -+ X'. But then 

hn(X~) a':?. h(X'). From lemma 1.2.11. it follows that h (X') ~ h(X') and 
d d n n 

consequently hn (Xn) -+ h (X) since h (X') = h (X ) and h (X') ~ h (X).. [l n n n n 

We will apply this theorem in the setting of the next corollary. 

COROLLARY 1.2.17. Let P, Pn' n;z:1, be probability measures on s 1 and h, hn' 

n;z:1, measurable functions from s 1 into s2 • Assume that s 1 is separable 
W C 

and complete. If Pn-+ P and hn-+ h, P-a.e. then 

as probability measures on s2 • 

A useful notion in the theory of convergence in distribution of random 

variables is the concept of uniform integrability. 

DEFINITION 1.2.18. A sequence of random variables (Xn)==l is uniformly 

integrable if all X are defined on a common probability space (Q,F,P) and 
n 

lim sup_ J lxnl dP = O. 
a....,. n { Ix l;z:a} 

n 
The following theore~ can be found on page 32 of BILLINGSLEY (1968). 

THEOREM 1.2.19. Suppose that x, Xn, n;z:1, are random variables such that 

X 
n 

(i) 

.... x. 
If (X ) 00 

1is uniformly integtable then EX 
n n= n 

-+ EX. 

(ii) If X and Xn' n;z:1, are non-negative and integrable then EXn-+ EX 

implies that (Xn)==l is uniformly integrable. 

Combining this theorem with theorem 1.2.16. we get a useful convergence 

theorem. 

THEOREM 1.2.20. Let X, Xn' n;z:1, be random elements of a complete 

separable space Sand f, h, fn' hn' n;z:1, real-valued measurable functions 



d 
on S. Suppose that X 

C -1 C -1 
n ➔ X and that fn ➔ f, PX -a.e. and hn ➔ h, PX -a.e. 

If E h (X ) ➔ E h(X) 
n n 

and \f (x) \ sh (x) for all x ES then 
n n 

E f (X) ➔ E f(X). 
n n 

PROOF. From theorem 1.2.16. 
d 

d 
it follows that f (X) ➔ f(X) and 

n n 

7 

h (X) ➔ h(X). Since h (X) 
n n n n 

and h(X) are non-negative we find from theorem 

1.2.19.(ii) that (h (X )) 00 

1isuniformlyintegrable. Hence (f (X )) 00 

1 is 
n n n= n n n= 

uniformly integrable. The theorem.follows from theorem 1. 2. 19. ( i) . [l 

COROLLARY 1.2.21. Let P, Pn, n21, be probability measures on a complete 

separable space Sand f, h, f, h, n21, real-valued measurable functions 
w n n c c 

on S. Suppose that Pn ➔ P and that fn ➔ f, P-a.e. and hn ➔ h, P-a.e. If 

and 

then 

lim J hn dPn = J h dP 
n➔oo 

If (x) I s h (x)· 
n n 

for all x ES 

lim J fn dPn = J f dP. 
n➔oo 

Next theorem can be seen as a generalization of Fatou's lemma. 

THEOREM 1.2.22. Let X, Xn, n2l, be random elements of a complete 

separable space Sand f, f, n21, non-negative, measurable functions on s. 
d n oo 

Assume that Xn ➔ X. If for any sequence (xn)n=l with limn➔oo xn = x we have 

then 

lim inf f (x ) 2 f (x) , 
n n 

lim inf E f (X) 2 E f(X). 
n n 

-1 
PX -a.e. 

PROOF. From theorem 1.2.13. follows the existence of random elements 

X', X' n21 of S such that X' ~ X X' ~ X and X' a"]. X! 
n' n n' n 
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Hence 

E f (X) = J f n n n 
s 

~Ji th Fatou' s lemma follows 

lim E f (X ) c I n n n...,, 
$1 

and by assumption 

J lim inf f (X') 
n n 

$1 n 

-1 
dPX' 

n 

lim inf 
n 

J f (X') dP. 
n n 

$1 

f (X') 
n n 

dP 

dP c I f(X') dP = E 

$1 

f{X). n 

COROLLARY 1.2.23. Let P, Pn' ncl, be probability measures on a complete 

separable space Sand f, f, ncl, non-negative measurable functions on s. 
w n "' 

Assume that Pn + P. If for any sequence (xn)n=l with limn...,, xn = x we have 

then 

lim inf fn(xn) c f(x), 
n...,, 

lim inf J fn dPn c J f dP. 

s s 

P-a.e. 

The theorems 1.2.20. and 1.2.22., which seem to be new, have been obtained 

independently by LANGEN (1981) with different proofs. 

REMARK 1.2.24. From the proofs of the theorems 1.2.16., 1.2.20. and 1.2.22. 

follows easily that the conditions h Sh, PX- 1-a.e. (theorem 1.2.16.), 
1 n 

f ~f and h ~h, PX- -a.e. (theorem 1.2.20.) respectively lim inf fn(xn)cf(x), 
n_1 n 

PX -a.e. (theorem 1.2.22.) can be relaxed in the sense that these 

conditions only have to hold for any xEC and any sequence (xn):=l with 

lim x = x and x EC, where c, en, ncl are subsets of s such that 
-1 n ~1 n 

PX (C)=l and PXn (Cn)=l, ncl. 

To conclude this section we derive an inequality concerning weak convergent 

probability measures. 



NOTATION 1.2.25.For any set BES we denote by 

0 

B: the set of interior points of B. 

oB: the boundary of B. 

B: the closure of B, i.e. B BU oB 
0 

B U oB. 

THEOREM 1.2.26. Let P, Pn' n~l, be probability measures on Sand An ES, 
w 

n~l. If P + P then 
n 

(i) lirn sup 
n-+oo 

(ii) lim inf 
n-+oo 

PROOF. p (A) 
n n 

~ p ( 
n 

lim sup 
n-+oo 

p (A ) ~ 
n n 

p (A ) ~ 
n n 

00 

u A ) ~ 

n=k 
m 

Pn(An) $ 

P( n u A ) 

k=l m=k 
m 

00 
0 

P( u ( n A ) ) . 
k=l m=k 

m 

p ( u A ) for n ~ k. Hence 
n 

m=k 
m 

00 

lim sup p ( u A ) $ P( u 
n m n-+oo m=k m=k 

The last inequality follows from theorem 1.2.3.(iii). 

A ) for all k. 
m 

9 

Since lill\:._ P( u Am) 
m=k 

by complementation. 

P(k:l m~k Am) we find (ii and the proof of (ii) is 

□ 

1.3. THE DRIFT FUNCTION. 

In this section Sis again a metric space with metric p and Borelfield 

S. From now on we will often refer to Sas the state space. In the wide 

field of the theory of stochastic processes several spaces of S-valued 

functions have been studied extensively. For example the space cf0, 00 ) 

consisting of all continuous functions defined on the non-negative half­

line with values in S. A lot of stochastic processes (e.g. the Brownian 

motion) can be considered as random elements of cf0, 00). Another important 

function space is D[0, 00 ), the set of alls-valued functions defined on the 

non-negative half-line, which are right-continuous and have left hand 

limits at every t > 0. A great deal of the stochastic processes with 

non-continuous sample paths can be considered as random elements of D[0, 00). 
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However, in the theory of controlled stochastic processes there arise 

interesting stochastic processes which cannot be seen as random elements 

of either C[0, 00 ) or D[0, 00), especially because the sample paths are neither 

right- nor leftcontinuous. A space with sufficient generality for these 

processes is the collection of all S-valued functions on the positive half­

line, which have left hand limits at every t>O and right hand limits at 

every t~O. However, in this monograph we have chosen an easier to handle 

but more restrictive space, not consisting of functions but of sequences of 

elements from the cartesian product of the non-negative half-line and S. 

Before we introduce this space in a formal way in section 1.4 we give some 

examples to illustrate the insufficiency of the spaces c[0, 00 ) and D[0, 00). 

These examples also show that these processes can be seen as random elements 

of a sequence space. 

EXAMPLE 1.3.1. A certain device is subject to shocks which occur randomly 

in time according to a Poisson process. Every shock causes independently 

of the other ones a certain amount of damage. The damage accumulates 

additively. The amount of damage caused by a single shock is a random 

variable with known distribution function. There are operating costs for 

the device which in general will be an increasing function of the cumulative 

damage. The system can be controlled by replacing the device by a new one 

against specified costs. An easy to handle control-rule is the one which 

prescribes to replace the device as soon as the cumulative damage exceeds 

a threshold D. Consider the stochastic process describing at every epoch 

the cumulative damage of the device under operation, given that the above 

specified control rule is used. Figure 1.3.2. shows a typical sample path 

* of this process, which is neither right- nor leftcontinuous at t. 



FIGURE 1 . 3. 2 • 

D -----------------

Note that in this example the sample path is completely determi.ned by the 

epochs at which a jump (shock or replacement) occurs and the cumulative 

damage immediately after the jump. This property is essential for all 

processes to be studied in this monograph and it is this property which 

leads us to the introduction of sequence spaces. In this rather simple 

example the state of the system is constant between jumps. This property, 

however, is not substantial as the following example shows. 

11 

EXAMPLE 1.3.3. The demand process at a warehouse where a certain commodity 

is stocked consists of two independent processes. There is a deterministic 

continuous demand at rate o>O per unit time and a stochastic demand, which 

is described by a compound Poisson process. So customers arrive according 

to a Poisson process and the demands of the customers are independent and 

identically distributed random variables with known distribution function. 

Unfilled demands will be backlogged and the warehouse management can place 

an order at any time which will be delivered without lead time. Suppose 

that the system is controlled by an (s,S)-rule i.e. as soon as the 

inventory level reaches or drops belows it is raised by ordering upto S. 

Consider the stochastic process describing at every epoch the inventory 

level (where negative values denote the amount to be backlogged) given that 

the (s,S) control rule is used. A typical sample path of this process is 

drawn in figure 1.3.4., where we have chosen s>O. Again this sample path 

* is neither right- nor leftcontinuous at t. 
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-FIGURE 1.3.4. 

s -------------~ 
t* 

In this example, as in the previous one, the sample paths are determined 

by the epochs at which a jump (demand or delivery) occurs and the 

inventory level immediately after the jump. 

In general we require the existence of one function f defined on the 

cartesian product of state space Sand the non-negative half-line with 

values in S, to describe the behaviour of all possible sam9le paths 

* between jumps under all possible control rules, i.e. f(i,t) denotes the 

state of the system at time t+u given that the system is in state i ES at 

epoch u and no jump occurs between u and t+u, for all u. 

In example 1.3.1. the appropriate function is given by 

f (i, t) i for i ES, t ~ 0 

and in example 1.3.3. by 

f (i / t) i-crt, for iES, t~O. 

EXAMPLE 1.3.5. Consider again example 1.3.3.with the modification that 

the rate of the deterministic demand depends linearly on the physical 

inventory level, i.e. when the inventory level is x>O then the deterministic 

demand equals crx per unit time. The appropriate function f is then defined by 

* the formal definition of a control rule or policy will be given later on. 



r-ot 
for i $ 0, t ~ 0 

f (i,t) 

ie for i > 0, t ~ 0. 

Figure 1.3.6. shows a typical sample path. 

FIGURE 1. 3.6. 

s - - - - - - - - -~ - - - - - -

* t 

DEFINITION 1.3.7. A function f: sx[0, 00 )+S is a drift function for S if: 

(i) f is continuous on S x f0, 00 ) 

(ii) f(i,O) 

(iii) f (i' t) 

i for all i ES 

f(f(i,u), t-u) for all i Es, 0 s u $ t and t ~ O. 

Note that property (iii) is in fact the deterministic version of the well 

known Harkov property for stochastic processes. 

13 

In this monograph we restrict ourselves to processes with sample paths 

whose behaviour between jumps can be described by one drift function under 

all possible control rules. This excludes at first glance a number of 

interesting problems in the area of production-inventory control and 

controlled waiting line models. 
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EXAMPLE 1.3.8. Consider the M/G/1 queueing model as an inventory system with 

the inventory at time t being the virtual waiting time. The epochs at which 

customers arrive are generated by a Poisson process with rate A. Any arriving 

customer enlarges the inventory of the system with a stochastic amount with 

known probability distribution. At any moment the controller can choose a 

service rate cr from a finite set {cr1 ,cr2 , ••• ,crn}. As long as the inventory is 

positive and service rate cr is used, the inventory decreases between arrival 

epochs linearly at rate cr. consider the stochastic process describing at 

every epoch the inventory level. Then it is obvious that there exists no 

drift function describing the behaviour of the sample paths of this process 

between jumps under all possible control rules. However, if we consider the 

stochastic process describing at every epoch the inventory level and the 

service rate used then the following 

{ 
(i-crt,cr) 

f{(i,cr) ,t) = · 

drift function will do 
i 

for 0 s t s a' i € s = [0, 00 ) 

(0 ,cr) for t > ¼, i € s. 

When S=[0, 00 ) an inportan~ class of drift functions f(i,.) can be obtained 

by solving the differential equation 

z•(t) r (z (t)) 

z (0) i, 

where r(.) is a Lipschitz continuous function on [0, 00 ) with r(0)=0 (see 

also ~INLAR and PINSKY (1971)). For example, r(xl=-crx yields f(i,t)=ie-crt. 

1.4. THE SEQUENCE SPACES J[0,t] AND J[0, 00). 

The stochastic processes introduced in the preceding section can all be 

considered as random elements of sequence spaces. In this section we 

formally introduce and analyse some of these sequence spaces. 

For any finite t>0 denote 

(1.4.1) 

Let r; be a "fictitious state" not belonging to s and denote 
+ [0,co ]: = [0,co) U {co.} and S : = SU {r;}. 

:!, t st; 
n 
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Next we define 

(1.4.2) J[Q,oo): 

lim t,=00 ; t. 2-t.>O if t < 00 ; i.=1;; iff t,=}. 
j-),00 J J + J j J J 

The space J [O, t] consists of all finite sequences of elements from the 

cartesian product of the finite interval [O,t] (time axis) and state space 

s, with the restriction that the sequence of time points is ordered and 

at most two subsequent time points can be equal. The reason for the 

introduction of the space J[O,t] is twofold. First of all J[O,t] is 

important in its own right, since a lot of stochastic processes with 

finit~ time horizon t can be seen as random elements of J[O,t]. On the 

other hand J[O,t] will be used as auxiliary space in analyzing J[O, 00). 

The space J[O, 00 ) contains all infinite sequences of elenents from the 

cartesian product of the non-negative half line included 00 and the state 

space included z:;. The sample paths drawn in the figures 1.3.2., 1.3.4. and 

1.3.6. are representable as elements of J[O, 00 ) by their sequence of jump 

epochs and states immediately after the jumps. The elements 00 and z:; are 

introduced to enable us to represent sample paths with a finite number of 

jumps as infinite sequences. Sample paths with a finite number of jumps 

occur for example in processes for which there is a positive probability 

to stay for an infinite long period in a single state. 

On the other hand the requirement that no more than two subsequent time 

points can be equal opens the possibility to represent for a given drift 

function these sequences as S-valued functions on the time axis. The 

spaces J[O,t] and J[O, 00 ) will now be endowed with metrics, such that they 

become complete and separable. Completeness and separability facilitate the 

characterization of weak convergence. First we analyse J[O,t] for fixed t>O. 

For the duration of this analysis we agree upon the following notation: 

y: = 
and 

x(k): 

which are assumed to be elements of J[O,t]. 
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-Furthermore we use the notation 

w V z: max (w,z) 

and 
w "z: min (w,z) 

for any two real numbers wand z. 

"l'Je define 

(1. 4.3) In-ml v {1 "max {ltj-sjl v p(ij,hj)}} 
j:;;n,m 

PROPOSITION 1.4.1. dt defines a metric on J[O,t]. 

PROOF. The proof is straightforward and will be omitted. n 

However, the metric space (J[O, t :J ,dt) is not complete. For instance, put 

(1.4 .4) X : 
n 

(0, 1 
i, s-n, j, s, i, s, j) 

for some s € (O,t) and i,j € S with i ~ j. 

Then dt (xn, xm) = I¼ - ¼I , which implies that (xn) :=l is dt -fundamental. 

However, (xn)~=l does not converge in J[O,t]. In order to make J[O,t] a 

complete metric space we need another, more complicated metric. 

Define 

(1.4 .5) 

where t_ 1 

In-ml v {1 " max 
j:;;n,m 

V !log tj-tj-21}} 
sj-sj_2 

-1. 

{!t.-s. I v p(i.,h.) v 
J J J J 

Note that for the sequence (xn) :=l defined by (1. 4.4) above dt (xn,xn2) 

log n for n sufficiently large. Hence (x ) 00 
1 is not dt-fundamental. 

n n= 

PROPOSITION 1.4.2. (i) dt defines a metric on J[O,t] 

(ii) ~t(x,y) ~ dt(x,y) for all x,y € J[O,t]. 

PROOF. The proof follows immediately from the definitions of dt and dt. ~ 



LEMMA 1.4.3. If s is complete then Jf0,t] is complete w.r.t. dt 

PROOF. Suppose Sis complete and (x(k)):=l is at-fundamental in J10,t]. 

Then (n(k)):=l converges ask ➔ 00 • Hence there exist numbers Kand n 
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such that n(k) = n for all k > K. For j = 1, ... ,n the sequences (tj(k)):=l 

and (i.(k)):=l are fundamental in ro,t] ands respectively and therefore 

J * * convergent. Put t.: = limk t. (k) and i.: = lint i. (k), for 1 S j s n. 
J ➔oo J J k➔oo J 

Since the sequence (log(t. 2 (k) - t.(k)))k00 
1 is fundamental in JR it 

* * J+ J = 
follows that t. 2 - t. > 0 for j=1, ... ,n-2. This implies that 
* * * J+ J 

x: = (tj,ij)~=l is.an element of Jt0,tl. Finally it is straightforward to 

* prove that li~➔oo dt (x(k),x) = 0. 0 

Although Jf0,tl is not complete under the simpler metric dt, we can use dt 

as well, as far as topological properties are concerned. This is justified 

by lemma 1.4.5. to follow. 

DEFINITION 1.4 .. 4. Let (S,p) be a metric space. For i € S the £-sphere 

about i is defined by 

s (i,E): = {j € S: p(i,j) < d. 
p 

LEMMA 1.4.5. '!'he Metrics dt and dt are equivalent. 

PROOF. From proposition 1.4.2. (ii) we know that sd (x,E) c sd (x,E) for 
t t 

all x € J[0,t~ and therefore it is sufficient to prove that for every 

x € Jf0,t] and E > 0 there exists a o > 0 such that 

sd (x,o) C sd (x,E). 
t t 

Choose x=(t. ,i .)~_1 EJf0,,t] and £>0. Without loss of generality we assume that 
. J J J- 2 m 

E<landE<t. 2-t., lSjSn-2.Put o=¼E andtakey=(s.,h.)._lESd (x,o). Then 
J+ J J J J- t 

dt(x,y)<o<l,whichimplies n=m. Moreover, for j=l, •.. ,n-2 

Hence we have for j 1, ... ,n-2 
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T-his implies y € Sa (x,E) and hence Sd (x,o) c Sa (x,E). ~ 
t t t 

This concludes the analysis of the space Jro,t]. 

Next we consider the space J[0, 00 ) and agree for the rest of this section 

upon the notation: 

"' x: (tj,ij)j=l; 

"' y: (sj,hj)j=l 

and 

"' x(k): (tj (k) , ij (k)) j=l, k ~ 1 

which are assumed to be elements of J[0, 00). 

DEFINITION 1 .4 .• 6. (i) Fort~ 0 the t-restriction is a function 

rt: J[0, 00 ) + J[O,t] defined by 

if t=t 
n , where n:=sup{j:t.~t}. 

otherwise J 

by 

On J[0, 00 ) we define the metrics 

(1. 4.6) d(x,y): 

and 

(1. 4.7) d(x,y): Jje-t (1 d- ( ))d 
A t rtx' rty t. 

0 

PROPOSITION 1.4.7. d and dare well-defined metrics on J[0, 00). 
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PROOF. For x=(tj,ij);=l and y=(sj,hj);=l fixed dt(rtx'rty) and dt(rtx,rty) 

are piecewise constant functions oft and therefore measurable. This implies 

that the integrals are well-defined. The proof of the symmetry of d and d and 

the triangle inequality are easily checked. From proposition 1.4.2. (ii) and 

the definition of d and d it follows that d(x,y)~d(x,y), which implies that 

d separates if d separates. So it remains to prove that d separates. 

Suppose d(x,y)=0 and (t.,i.)f(s.,h.) for some j. We consider three cases: 
J J J J 

(i) i. ;t h. and t, < 00 or s, < 00 Then dt(rtx, rty) > 0 for all 
J J J J 

t > (tj A sj) < 00. This contradicts d(x,y) = o. 
(ii) i, ;t h. and t. = s. = oo. This contradicts x,y E JfQ,oo) • 

J J J J 
(iii) i. h .. Then dt(rtx, rty) > 0 for all (t, A s .) < t < (tj V s ,) . 

J J J J J 
This again contradicts d(x,y) = 0. [l 

The next theorem connects the convergence of sequences in Jf0, 00 ) with that 

in J[O,t]. 

THEOREM 1. 4. 8 •. lill\-- d (x (k), x) 

all t ;t tj, j ~ 1. 

0 for 

PROOF. Necessity. Choose t E (t.,t. 1) for some j. Since lim. d(x(k) ,x)=0 
J J+ K-><x> 

it follows that lim. t.(k) = t. and lim. t. 1 (k) = t. 1 • 
K-><x> J J K-- J+ J+ 

Choose£> 0 such that t E (t.+£, t. 1-£). Then there exists a number K 
J J+ 

such that for all k > K the function ds(rsx(k), rsx) is constant on 

(t.+£, t. 1-£) as a function of s. Hence 
J J+ t' -£ 

it follows from 

f J+l -s d(x(k), x) ~ e (1 Ad (r x(k), 
s s 

r x))ds 
s 

for all k > K, 

o. 

Sufficiency. An immediate consequence of Lebesgue's theorem on bounded 

convergence. D 

Note. that J[0, 00 ) is not complete w.r.t. d. For instance put 
1 

xn:=(0, i, s-n, j, s, i, s, j, 00 , /;;, ••• ) for s > 0 and i,j ES with i ;t j. 

Then 
1 s--r m -s 

J 1 e 
s --

n 

ds + 
roo 

J e 
1 

s -­
m 

for n < m. 
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-
1
1 1 I co It follows that d(x, x) s 2 - - - , which implies that (x) 

n m n m n n=l 
is d-fundamental. However, (x ) 00 does not converge in JrO,oo). 

n n=l 

THEOREM 1.4.9. If S is complete then Jr0, 00 ) is complete w.r.t. d. 

PROOF. Suppose Sis complete and (x(k));=l is d-fundamental in Jt0, 00). 

Consider for fixed j ~ 1 the sequence (tj (k)) ;=l. We consider two cases: 

(tj (kl) ;=l is (i) bounded. Choose 0 < E < 1 and t >Osuch that 

t. (k) 
J 

-t 00 

St for all k. Put E': = Ee . Since (x(k))k=l is d-fundamental 

(ii) 

there exists a number K such that for all k >Kand all i we have 

From this inequality follows the existence of a real numbers> t 

(s may depend on k and i) such that 

Since s > t and t.(k) st, 
J 

and p (i. (kH) , i. (k)) < E. 
J J 

fundamental in [0, 00 ) and S 

* t. (kl * t.: = li~-- and i.: 
J J J 

00 

In case that (tj (k) )k=1 is 

k ~ 1 it follows that It. (kH) - t. {k) I 
co Joo J 

So (tj(k))k=l and (ij(k))k=l are 

respectively and hence convergent. Put 

= lil:\..- i. (k). 
J 

* * unbounded we put t •=CO and ij :=I;. 
J 

* Now we define x * * 00 (tj,ij)j=l· Then it is straightforward to prove that 

x* E J[0, 00 ). To show for example that lim. 
t+2 J->«> 

* tj = 00 suppose 

lim. t~ = t < 00 and put E = J 
J-><X> J 

e-s ds. Choose K > 0 and k > K. Since 
t+l 

< E 

x(k) E J[0, 00 ) it follows that limj->«> tj(k) = 00 which implies the existence 

* since lim. t.(k) = t. and 
K-->m J J 

such that t. (£) < t+l. This 
J 

of a number j such that t.(k) > t+2. However, 
J 

* lim. t. = t we can also find a number i > K 
J->«> J t+2 

implies that d(xk, xi) > J 
t+l 

e-s ds = E which is in contradiction with 

the fact that (xn):=l is d-fundamental. Finally the proof that 
~ * 

li~..- d(x(k) ,x) = 0 is straightforward. 0 

Since the metric dis easier to handle than the metric d it is useful to 

know that these metrics are equivalent. To prove this we need the following 

lemma. 



LEMHA 1. 4. 10. Consider the metric spaces (S,p ) and (s,p 2). The following . . 1 
two statements are equivalent: 

(i) p1 and p2 are equivalent on s. 

(ii) limn....,, p1 (sn' s) = 0 iff limn__, p2 (sn' s) = 0 for all s,sn ES. 

PROOF. The implication (i) => (ii) follows immediately from the definition 

of equivalent metrics. 
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Assume that (ii) holds and that p1 and p2 are not equivalent, i.e. there 

exists an open set O in (S, p1), which is not open in (S, p2). Hence there 

is a points E O which is not an interior point of O in (S, p2). This 
-1 -1 

implies that then -sphere S (s, n ) contains a points i O for all 
P2 oo n 

n 2 1. Hence there exists a sequence (sn)n=l such that limn....,,P 2 (sn' s) = 0 

while (sn):=l does not converge to sin (S, p1), because sn i o, s E O and 

O is open in (S, p1). Contradiction. D 

THEOREM 1.4.11. The metrics d and dare equivalent on Jf0, 00). 

PROOF. From lemma 1.4.10. follows that it is sufficient to show that 

limk__, d(x(k) ,x) = 0 iff limk->00 d(x(k) ,x). = 0. 

From theorem 1.4.8 follows that li~....,, d(x(k) ,x) = 0 iff 

li~__, dt (rtx(k), rtx) = 0 for all t ~ tj, j 2 1. Comhining this with 

lemmas 1.4.5. and 1.4.10. yields li~....,, d(x(k), x) = 0 iff 

li~__, dt(rtx(k) ~ rtx) = 0 for all t ~ tj, j 2 1. Applying theorem 1.4.8. 

with respect to d we get li~__, d(x(k), x) 0 iff li~__, d(x(k), x) = 0.0 

THEOREM 1.4.12. If Sis separable then J!0, 00 ) is separable. 

PROOF. Let W be a countable dense subset of S. Define 

Z: { (tj,ij);=l E Jr0, 00): tk = 00 for some k; ij E 1,1, 

t. is rational, j=l, •.• ,k-1}. 
J 

Then z is a countable subset of J[0, 00). To prove that Z is dense in J[0, 00 ) 

choose x=(t.,i.)~ 1EJ[0, 00 ) and define 
J J J= 

l[tl
2

] if t.<k and j:S:k 

* -- oo k2 J t. (k) 
J 

else 

where [w] denotes the entier of w for any real number w. Choose 
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* * * i. (k) 
. J * 

E W u {i;} such that i. (k) 
1 * J 

z; iff t. (k) 
J 

p (i. (k), 
J 

Put 

* 

ij) < k- if tj (k) < oo 

* x(k): * * 00 (tj (k) , ij (k)) j=l, k ~ 1. 

Then x(k) E Z, k ~ 1 and 

00 and 

* d(x(k), x) ~ exp (-(k A tk)) + 
r (kAtk) 

J e-sd (r x(k) ,r x)ds S 
s s s 

0 

* Hence lill\:_, d(x(k), x) = 0. D 

k 
l: 

j=1 
e -s r.1.s S 

From now on we assume that Sis separable and complete, which implies, 

according to theorems 1.4.9 

complete. 

and 1.4.12. that J[0, 00 ) is separable and 

As mentioned before the definitions of J[0,t] and J[0, 00 ) enable us 

to represent the elements of these spaces as S-valued functions 

on the time axis provided a drift function has been given. There are 

situations in which it is more convenient to use this representation in 

stead of the sequence itself. We define this function representation as 

follows. 

DEFINITION 1.4. 13. Let f be a drift function for S. Fort~ 0 the 

t-projection is a S-valued function Tit on J[0, 00 ) defined for x=(tj,ij)~=l by 

I'' 
for t 0 

f(ij, t-t.) for t E (tj, tj+1) 
TitX 

J 

r(ij. tj+1-tj) for t tj+l < tj+2 

ij+l for t tj+1 tj+2 < 00 



REMARK 1. 4. 14. 

(i) Note that ntx as a function oft for fixed xis left continuous 

except in the time points t for which there exists a number j such 

that t 

(ii) From the definition of 1\X follows easily that for fixed x the 

function ntx as function oft is measurable. 

23 

This section is closed with a lemma concerning the functions rt, et and TTt 

introduced before (see definitions 1.4.6. and 1.4.13). 

These functions will be repeatedly used in the sequel and therefore it 

is worthwhile to know that they have certain regularity properties. 

Note that for TTt to be well-defined we have to specify a drift function. 

This is not necessary for rt and et. 

LEMMA 1. 4. 15. Let f be a drift function for S and choose t <'. o. Then 

(i) et is continuous on J[O,t] 

(ii) rt is measurable on J[O,oo) 

(iii) TTt is measurable on J[O,oo). 

PROOF. 

(i) Let x 0 : = (tj,ij)j=l E J[O,t] and xn E J[O,t], n ;;,c 1 such that 

limn--><o dt(xn,x0 ) = 0. In the same way as the necessary part of 

theorem 1.4.8. one proves that limn--><o ds(rsetxn' rsetx0 ) = 0 

for all t ;;,cs~ t., j = 1, •.. ,m. Moreover, for s > t we have 
J 

d (r etx, re x 0 ) = dt(x ,x0). Hence lim d (re x, rsetx0) 0 s s n st n n->= s st n 
for all s ~ t., j = 1, •.. ,m, which implies that 

J 
limn--><o d(etxn, etx0) = 0 by the sufficient part of theorem 1.4.8. 

(ii) Put 

B: {x E J[Q,oo): there is a number j such that t = t. tj+l} J 
C: {x E J[O,oo): there is a number j such that tj-1 < t = t. < tj+l} J 
D: {x E J[O,oo): there is a number j such that t. < t < tj+l}. J 
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The set Bis closed in J10, 00 ) and Dis open in J[0, 00). Since 

c = (B u D) c the sets B, C and D are all measurable. Let A be a closed 
-1 -1 -1 -1 

subset of J[O,tJ. Then r (A) = (r (A)nB)u(rt (A)nc)u(rt (A)nD). 
-1 t t_l 

Since rt (A)nB is closed in J[0, 00), rt (A)nc is closed in C and 

r~1 (A)nD is closed in Dall these sets are measurable in J[0, 00 ). 

-1 
Hence rt (A) is measurable. 

(iii) The proof of (iii) proceeds quite similar to (ii). D 

1.5. COMPARING J[0, 00 ) WITH RELATED SPACES. 

In this section we compare the space J[0, 00 ) with some related spaces. 

In the first place the resemblance of J[0, 00 } to the space D[0, 001, 

introduced in section 1.1, forces itself upon us. In some sense J[0, 00 ) is 

more general than D[O, 00)_, because for an element x of J[O, 00) the function 

~t(x) may be neither right- nor leftcontinuous as a function oft, while 

this function is right continuous for the elements of D[0, 00). On the other 

other hand D[0, 00 ) is more general than J[0, 00), because the elements of 

J[0, 00 ) can be represented as functions on [0, 00 ) only with use of a drift 

function, which implies that the behaviour between jumps for all 

elements of J[0, 00 ) is the same. 

In chapter 2 it will turn out to be useful to consider J[0, 00 ) as a subset 

of the infinite product space ( [ O, oo) xsu {,( oo, z;;) } ) 00
• 

The question arises whether the set [0, 00 ) xs u{ (00 , l;)} can be endowed with 

a metric p such that on J[0, 00 ) the infinite product metric on 

([0, 00)xsu{(00 ,z;;)}) 00 is equivalent to the metric d defined by (1.4,6). The 

answer is positive as is shown by theorem 1.5.1. below. Put for 

abbreviation 

[O,oo)xs: [O,oo) xsu{ (oo, z;;)} 

and define for (tj,ij)E[0, 00)xs, j=l,2 

-t -t -t -t 
p((t1,i1),(t2 ,i2)): = le 1-e 2 i+min(e 1 ,e 2){p+(i1,i2 )A1} (1.5.1) 

where p+ is a metric on S+ defined by 



(1.5.2) p+(i,j): 

ll.5.3) 

J:(i,j)Al for i,j€S 

for i€S, j=Z',; 6r 

lo for i=j=Z',;. 

-j-
i:: 2 p ((tj, iJ.) , (SJ. ,hJ.)) , 

j=l 

ex, 

j€S, i=Z',; 

THEOREM 1.5.1. The metrics d and d defined by (1.4.6) and (1.5.3) are 

equivalent on J[0, 00 ). 

PROOF. It is sufficient to show that lim d00 (x(k) ,x)=0 iff lim d(x(k) ,x)=0 
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~-- k.._ °' for all x, x(k)EJ[0, 00). Let x=(t.,i.). 1 and x(k)=(t.(k),i.(k)). 1 , k:d be 
J J J= J J J= 

elements of J[0, 00 ) and suppose that lim d00 (x(k),x)=0. Choose £>0 and t>0 
-t k->= 

such that e <½£. Choose n;:>:1 such that tn5t and tn+l>t. Then there exists 

a number K>0 such that for all k;:>:K 

E 

- 4n -t-E 
p (( t . (k) , i . (k) ) , ( t . , i . )) < (1-e ) e , 

J J J J 

and 

tn+l (k) >t 

t (k)5t+£. 
n 

j=l, ..• ,n 

From the definition of p follows that jt.(k)-t.j<\En-l and 

p(i.(k),i.)<\£n-l for k;:>:K and j=l, ..• ,n.J J 
J J 

Hence we have for k;:>:K, 

-t -1 rt -s 
d(x(k),x)5e +n.\£n + J e .\£ds<£. 

0 

To prove the other implication suppose that lim d(x(k),x)=0. Choose £>0 and 
k-,.a, -t 

t€(tn,tn+l) for some n, such that e <½£. From .. theorem 1. 4. 8. follows that 

lim d (rtx(k),r x)=0. Hence there exists a number K>O such that 
k.._ t t 
~t(rtx(k),rt(x)<½£ and tn+l (k)>t for all k;:>:K. Hence 

p((t. (k),i.(k)),(t.,i.))<£ for all k;:>:K and all j which implies 
ex, J J J J 

d (x(k),x)<£ for k;:>:K. □ 
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1.6. WEAK CONVERGENCE ON ,J[0, 00). 

According to theorem 1.2.3. a sufficient condition for the weak convergence 

of a sequence of probability measures (P ) 00 

1 to Pon the metric space S 
n n= 

is lim P (B)=P(B) for all BES with P(oB)=O. For J[0, 00), however, this 
n-+<><> n 

condition is not easy to verify, Hence we are interested in a relaxation 

of this condition in the sens~ that the limiting relation only holds for 

a subclass of the Borelsets of J[0, 00 ). To describe an appropriate 

subclass we need the following functions defined on J[0, 00 ) with values in 

[0, 00 ] and S+ respectively. 

t n 

i n 

Note that (Tn,Sn) as a function on J[0, 00 ) with values in ([0, 00)xS,p) is 

continuous for all n~l. 

THEOREM 1.6.1. Let P, Pk, k~l be probability measures on J[0, 00 ) and define 

(1.6.1) F: 

A =S+, B infinite interval with 00EB }. m m m 

If li~-+<><>Pk(F)=P(F) for all FEF with P(oF)=O then Pk l P. 

PROOF. Put f 0 :={FEf: P(oF)=O}. Since o(AnB)coAUOBit follows that f 0 is 

closed under finite intersections. Choose xEJ[0, 00 ) and e>O. Since J[0, 00 ) 

is separable,. it is according to corollary 1 on page 14 of BILLINGSLEY 

(1968) sufficient to prove the existence of a set FEF0 such that 
0 • -t 1 

xEF cFcSd(x,E). Choose t>O such that e <3 E. Consider two cases 

separately. 



(ii)-T2 (x)<00 • Choose m such that Tm(x)~t and Tm+l (x)>t and put 

F: 
m+l 1 -1 

n T: (Bn) n Sn (An)' 
n=l 

0 1 e: . 
In both cases X€F and d(x,y)<y'+m 3m + 

the observation that 

oF c 
m+l 

u (T- 1 coa l us- 1 (oA > > 
n n n n 

n=l 

t 
f 

0 

-s e: 
e •3 ds<e: for all y€F. From 

we easily conclude that the set F, which obviously belongs to F, also 

belongs to F0 • 
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□ 
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CHAPTER 2 

MARKOV DECISION DRIFT PROCESSES ON J [0,cc) 

2.1. INTRODUCTION. 

Markov decision processes with continuous time parameter have been 

introduced by BELLMAN (1957) in chapter 11 of his book. HOWARD (1960) 

considers in chapter 8 of his book also these kind of processes, but he 

emphasizes the infinite horizon case, where BELLMAN is concerned 

exclusively with the finite horizon model. During the last two decades a 

large number of papers have appeared on this subject. MILLER (1968, 1968a), 

KAKUMANU (1971, 1975), DOSHI (1974, 1976) and PLISKA (1975) treated 

continuous time Markov decision processes under increasing generality of 

state and action spaces. A partial overview of the relevant literature will 

be given in the last chapter of this monograph. 

The continuous time Markov decision drift processes (CTMDPJ to be studied in 

this monograph are generalisations of Markov decision processes with 

continuous time parameter in two different aspects .. 

In the first place a CTMDP permits both control of the infinitesimal 

generator of the process as well as impulsive controls. Impulsive controls 

are not allowed in the models studied by the authors mentioned above. The 

difference between these two kinds of control can at best be explained by 

an exall\Ple. Consider the inventory model of exall\Ple 1.3.3. of chapter 1. In 

this inventory system the decision maker may have control on the arrival 

rate of customers by advertising or by levying toll. In this situation at 

every instant a rate for the Poisson arrival process of customers has to 

be chosen by fixing an advertising- or toll level. This kind of control 

affects the state of the system (the economic inventory) only in an indirect 

way. What is controlled is the infinitesimal generator of the inventory 

process. On the other hand the decision maker may have the opportunity to 
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inventory changes immediately. 
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In all papers mentioned above the absence of this second type of control is 

assumed, by which a number of interesting applications (like inventory-, 

production- and replacement models) is excluded. 

We will call the decisions which cause an immediate change of state 

impulsive controls. The decisions which only affect the infinitesimal 

generator are called controls. A control can affect the system only if it 

is chosen during a time interval of positive length. Note that the difference 

between controls and impulsive controls is not meaningful for discrete time 

processes. Since these processes are considered only on equidistant 

decision epochs immediate changes of state do not occur. 

The main reason for a model which contains both generator controls and 

impulsive controls is not the abundance of models in which both types of 

controls simultaneously occur. However, it is useful to have a unifying 

approach to two distinct classes of important continuous time decision 

models. In the area of control theory several results have been obtained 

on decision processes with both generator-and impulsive control. For 

example the work of KUSHNER (1977) and ROBIN (1978) contains valuable 

contributions to this field. Our approach, however, is quite different. 

A second aspect of generalisation of a CTMDP compared with a continuous time 

Markov decision process is the behaviour of the process between two 

successive jump epochs. In a Markov decision process with continuous time 

parameter it is assumed that the state of the system is constant between 

jumps. In a CTMDP, however, we assume the existence of a deterministic 

drift function, according to which the system evolves between jump epochs, 

independent of the chosen policy. 

In most of the literature concerning Markov decision processes with continuous 

time parameter the policies are restricted to Markov policies, i.e. those 

policies which prescribe a decision, which may depend only on the current 

epoch and the state of the system at this epoch. As in YUSHKEVIC (1977) and 

YUSHKEVIC and FAINBERG (1979) we consider randomised policies which are 

history remembering with respect to past states. An appropriate modeling 
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q_f decision processes in continuous time with randomized policies which 

are history remembering with respect to actions seems not yet to exist. The 

problem is that for a process which is controlled by a randomized policy the 

trajectories of the realized actions are in general extremely irregular 

functions of time. Consider for example the simple case of a system with 

only one state and two actions and suppose that this system is controlled 

by the policy which prescribes at every instant to choose each action with 

probability~- We do not know whether the trajectories of the realized 

decisions are measurable functions of time or not. 

The existing results in the literature on continuous time processes both in 

Markov decision theory and control theory mainly concern conditions for the 

existence of stationary optimal policies, which are obtained by analysis 

of the continuous time optimality equation. Structural results of optimal 

policies are scarce. For the analysis of the CTMDP we use in this paper the 

method of discrete time approximation. In many places in control and decision 

theory this method plays some role, e.g. in the definition of stochastic 

integrals or in establis~ing the existence of a solution of the continuous 

time optimality equation. Given a CTMDP we construct a sequence of discrete 

time Markov decision processes (DTMDP) with decreasing distance between two 

successive decision epochs. On one hand these discrete time Markov decision 

processes are in accordance with the usual definitions, on the other hand 

the formulation is chosen in such a way that the connection with the CTMDP 

becomes clear. We will study a CTMDP by analyzing the conditions under 

which it can be approximated by a sequence of DTMDP's, say with decision 
-1 

epochs {nk , nEJN0 }, k~1 and then by obtaining properties in discrete time 

which are invariant under taking limits ask~. 

In our approach we cannot avoid to go through a rather technical derivation 

of sufficient conditions for the approximation procedure. However, because 

of the generality of our model and theorems, many interesting results for 

more specific models e.g. waiting line, maintenance-replacement and inventory 

models can be obtained without much additional effort. Especially for 

establishing the structure of optimal policies the approximation approach 

seems to be very powerful. 
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Structural results of optimal policies in discrete time models can often be 

obtained by the method of induction to the number of time periods. The 

discrete time approximation then in its turn is used to carry over these 

structural results to the continuous time model. In chapters 5, 6 and 7 

we will give some applications of this type. Of course the method of 

discrete time approximation is also important from a numerical point of 

view. We have, however, ourselves not addressed to questions of this type. 

2.2. MARKOV DECISION DRIFT PROCESSES WITH CONTINUOUS TIME PARAMETER. 

DEFINITION 2. 2 .1. A Markov decision drift process with continous time parameter 

(CTMDP) is a nine-tuple (s, A1 , A2 , q, fl, p, c 1 , c 2 , f), where 

(i) Sis a complete separable metric space, with metric p and 

Borelfield .<';. 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Ai is a complete separable metric space with metric pi and 

Borelfield A., i=1,2. 
J. 

S x A. is endowed with a metric generating the product topology, 
J. 

i=1,2. 
q is a real-valued, ,non-negative measurable mapping on S x A1 . 

fl is a transition probability from S x A1 to S. 

pis a transition probability from S x A2 to S. 

(vii) c. is a real-valued measurable function on S x A., i=l,2. 
J. J. 

(viii) f is a drift function for S. 

The following interpretation will be given to the component parts of a 

CTMDP. 

(i) S denotes the state. space of the process. 

(ii) A1 denotes the set of ~enerator)controls. 

(iii) A2 denotes the set of impulsive controls. 

(iv) q(.,.) is the jump rate i.e. if at epoch t the actual state of the 

system is sand control a is chosen during (t, t+llt) the 

probability that no jump will occur during (t, t+~t) is equal to 

1 - q(s,a)llt + o(llt), for small positive lit. 

(v) fl(.,.,.) is the jump distribution i.e. if at epoch t the actual 

state of the system is sand control a is chosen then fl(s,a,A) is 

the conditional probability that a jump at t brings the state of 

the system in AES, given that a jump occurs at t. 
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(vi) p(.,.,.) is the impulsive jump distribution i.e. if the actual 

state of the system is sand impulsive control a is chosen then 

p (s,a,A) is the probability that the process jumps instantaneously 

to AE.S. 

(vii) c 1 (.,.) is the cost rate i.e. whenever the system is in states and 

control a is chosen a cost of c 1 (s,a) per unit time is incurred. 

(viii) c2 (.,.) is the lump cost i.e. whenever the system is in states and 

impulsive control a is chosen an immediate lump cost of c 2 (s,a) is 

incurred. 

(ix) f is the drift function describing the behaviour of the process 

between two successive jump epochs independently of the polic:,. 

In addition to the assumptions that are made tacitly in definition 2.2.1., 

the following explicit assumptions will be made throughout this monograph. 

Remember the notation P(s) for the class of all probability measures on a 

metric spaces. we assume that the space P(s) is endowed with the topology 

of weak convergence. With this topology P(s) can be represented as a 

complete separable metric space (see theorems 6.2. and 6.4. in chapter II of 

PARTHASARATHY (1967) or pages 237, 238 of BILLINGSLEY (1968)). By identifying 

the probability measures degenerated in one point with that point, Scan· 

be considered as a subset of P(S). 

ASSUMPTION 2.2.2. Let (S, Al, A2 , q, IT, p, c 1 , c 2 , f) be a CTMDP. We assume: 

(i) q(.,.) is bounded and continuous on S x A1 • 

(ii) IT ( • , • ) is continuous as a function from s X Al into P(s). 

(iii) p(., .) is continuous as a function from s X A2 into P(s). 

(iv) Ci(.,.) is continuous on S X Ai' i=l,2. 

Next we introduce for a given CTMDP the class of possible policies. 

DEFINITION 2.2.3. Let (S, Al, A2 , q, IT, p, c 1 , c 2 , f) be a CTMDP. A policy 

consists of a closed subset V of S (the impulsive control set) n.nd a pair 

R=(R1,R2) of transition prohabilities from J[0,oo)x[1,m) to A1 and A2 
respectively (R1 is called tl1e control rule and R2 the impulsive control 

rule ) , such that 



(i) - Ri (. ,t) is rt-measurable as a function from J[Q,m) into P(Ai) for all 

~o and i=1,2. 

(ii) there exists a o>8 such that for all ~0 and all x€J[0,m) for which 

where 

J p(ntx,a,W(o))dR2 (x,t) (a) 1 

A2 

W(o) = {j€S: inf{u: f (j ,u) €V}>o}. 

The following interpretation and comments can be given to the component 

parts of a policy. 
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(i) R1 (x,t) denotes the randomized control that is chosen at time t when 

the history of the process upto tis given by rtx. (the requirement 

that Ri (.,t) is rt-measurable ensures that the policy is non­

anticipating) . 

(ii) R2 (x,t) denotes the randomized impulsive control that is chosen at time 

t under the history rtx provided the impulsive control rule is active. 

(iii) v denotes the subset of the state space where the impulsive control 

rule is active. 

(iv) the second requirement of definition 2.2.3 ensures that whenever the 

impulsive control becomes active the system jumps instantaneously to 

the set W(o) from which the set V cannot be reached along the drift 

function within a time interval of length o. 

(v) in general a policy will be denoted by the pair (V,R), where V denotes 

a closed subset of Sand Ra pair (R1,R2) of transition probabilities. 

The definition of a policy (V,R) implies that the epochs at which impulsive 

controls are chosen are generated by the successive entrance times in the 

closed subset V of the state space. Hence all policies are stationary w.r.t. 

the impulsive controls in the following weak sense. Once the decision maker 

has decided to choose an impulsive control in some state he has to choose 

an impulsive control at every entrance in that state, although the specific 

impulsive control that is chosen may depend on the entire history. A natural 

generalization is obtained by replacing the entrance times of closed sets 

by arbitrary stopping times. In this monograph we restrict ourselves to 

entrance times by which we get round several technical difficulties. 

DEFINITION 2.2.4. Let (S, A1, A2, q, TI, p, c1, c2, f) be a CTMDP and (V,R) 

a policy, with R=(R1 ,¾l 
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'(i) 

(ii) 

(iii) 

(V,R) is deterministia (or pure) if R,(x,t) E A. for all 
l. l. 

(x,t) E J[0,00) x [0,00), i=1,2. (Recall that A. c P(A.)). 
l. l. 

(V,R) is memoryless if Rt.,t) is Tit-measurable for all t ~ 0, i.e. 

for all t ~ 0 and any Borelset B of P(A.) there exists·a c ES 
-1 l. 

such that {x: R,(x,t) E 
l. 

(V,R) is stationary if 

B} = Tit C. 

R.(.,.) as a function from J[0,00) x [0,00) 
l. 

into P (Ai) is TI-111easurable, where TI is a L1apping from 

J[0,00) x [0, 00 ) on S defined by TI(x,t) = Titx. 

So far we have given definitions of a CTMDP and of a policy 

for these processes. A first step in comparing two policies for a given 

CTMDP is made by defining for any given CTMDP and any given policy a 

probability measure on J[0, 00). In this way we can consider a CTMDP under a 

fixed policy as a random element of J[0, 00 ). First we give some lemma's 

which will be used hereafter. 

LEMMA 2.2.5. Let S, Si, i=1,2,3, be metric spaces. If fi is a measurable 

function from S into Si, i=1,2, and g a measurable function from 

s1 x s2 into s3 , then the function h from S into s3 , defined by 

is measurable. 

PROOF. Define the function f from s into s1 x s2 by f(s): = (f1 (s) ,f2 (s)). 
-1 -1 -1 Then h =go f, which implies h (U) = f (g (U)) for all u E S3 • Since 

g is measurable it is sufficient to show that f is measurable. From the 

measurability of f 1 and f 2 follows that 

On the other hand, the collection {Ac s1 x s 2 : f- 1 (A) ES} is a a-algebra. 

Hence {Ac s1 x S2: f- 1 (A) ES} is a a-algebra including s1 x s2. □ 

LEMMA 2.2.6. Let s1 and s2 be metric spaces, Pa transition probability 

from s1 to s2 and fa real-valued measurable function on s1 x s2 . The 

real-valued function h defined by 



is measurable on s1 . 

J f(s 1 ,s2 ) P(s1 ,ds2 ) 

s2 

PROOF. See page 74 of NEVEU (1965). 0 
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LEMMA 2.2.7. Let V be a closed subset of a metric space (S,p) and fa drift 

function for S. The function TV from S into [0, 00 ] defined by 

(2. 2 .1) Tv(jJ: = inf {t: f(j,tJ e v} 

is lower semicontinuous. 

PROOF. It is sufficient to show that the set {j e S: TV(j) st} is closed 

in S for all t ~ 0. Choose O $ t < 00 and let j, jn' n~l be elements of S 

such that limn-- p(jn,j) = 0 and TV(jn) $ t for n ~ 

and f is continuous there exists a sequence (s ) 00 

1 n n= 
and sn st for n ~ 1. Hence (sn):=l has a convergent 

Puts: lim.-- s . Thens$ t and f(j,s) e V which 
K. nk 

It follows that the set {j: TV(j) st} is closed. 

1. Since Vis closed 

such that f(jn,sn) e V 

subsequence (s )k00
_ 1 . 

nk -
implies TV(j) st. 

n 

LEMMA 2.2.8. Let V be a closed subset of a metric space (S,p) and fa 

drift function for s. The function ov from S into Vu{~} defined by 

(2. 2. 2) 

[ f(j, Tv(jl l if Tv(jl < oo 

l ~ otherwise 

is measurable on S. 

PROOF. A direct consequence of lemma 2.2.5. and lemma 2.2.7. D 
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At this point we have to consider for n~1 the finite product space 

([0, 00)XS,p)n endowed with product metric. (See (1.5.1) for the definition 

of p). Put 

J : { (t i )n E ([Q, 00)XS)n: 
n = j' j j=1 0 

LEMMA 2.2.9. Let n ~ 1, Va closed subset of a metric space (S,p) and fa 

drift function for s. The mapping gv from Jn into J[0, 00 ) defined by 

(2.2. 3) 

is measurable on J. 
n 

!(tl,il, •.. ,tn'~n'oo,1;, ... ) if in=1; 

or tn=tn_1=tn+TV(in) or TV(in)=00 

(t1, il, ... , tn, in, tn +TV (in) , in ,oo, 1;, ... ) 

otherwise 

PROOF. Define on [0, 00 ] x J the function h by 
n 

!(t1 ,i1 , ... ,tn,in, 00 ,1;, ... ) if in=1; 

or t =t =t +s or s=00 
n n-1 n 

(tl ,il, ..• ,tn,in,tn+s,in,00'1;, ... ) 

otherwise. 

Then h(.,.) is measurable on [0, 00 ] x Jn and gv(t1,i1 , ... ,tn,in) = 

h(TV(in)' (t1,i1 , ... ,tn,in)). The lemma follows from lemma 2.2.5. and 

lemma 2.2. 7. 0 

th . 
The function gv assigns to every history upto then Jump a complete path 

from J[Q,oo). One might wonder why not the simpler definition 

g(t1,i1 , .•. ,t ,i ). = (t1 ,i1 , ... ,t ,i , 00 ,1;, ... ) is chosen. Note that g is 
· n n n n 
essentially the tn-extension although defined on the set Jn instead of 

Jro,tn] (see also definition 1.4.6). The reason why we need the function gv 

is the following. From the definition of a policy (V,R) follows that for 

every xEJf0, 00 ) and ~0 the t-projection ntx indicates whether the impulsive 

control rule is active or not. Hence we should extend a history 
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z=(t1,i1 , •.• ,tn,in)EJn with inEV in such a way that the tn-projection of 

this extension is an element of V. Now consider the case where inEV, 

tn_[tn< 00 and f(in-l'tn-tn_ 1)¢V. Since TV(in)=O we have gv(z) = 

(t1 ,i 1 , ... ,tn,in,tn,in, 00 ,s,••·>· From the definition oft-projection 

(definition 1.4.13) follows that Tit gv(z)=i while Tit g(z)=f(i 1,t -t 1)¢V. 
n n n n- n n-

So the impulsive control rule is active at epoch tn on the sample path 

gv(z) but not on the sample path g(z). 

Let (S, Al' A2, q, JI, p, cl, c2, f) be a CTMDP, (V,R) a policy and po an 

(initiaD distribution on S. The construction of a probability measure on 

J[0, 00 ) induced by this CTMDP, this policy and this initial distribution 

proceeds as follows. First we construct for any fixed ZEJn a probability 

measure Q(n) (z) on [0, 00)xs. Next we show in theorem 2.2.14. below that for 

all n~l the mapping z-+Q(n) (z) is a transition probability from J to 
n 

[0, 00)xs. With these transition probabilities we construct by induction 
(n) -,,--,--,--- n 

probability measures P(V,R)on ([0, 00 )xs) . 

The theorem of Ionescu Tulcea then yields a probability measure P( ) on 
V,R 

([0, 00 )xS) 00
• Finally we show that P(V,R) is concentrated on J[0, 00). 

For fixed CTMDP and initial distribution P ( ) will be referred to as 
V,R 

the probability measure induced by (V,R). 

For the construction of the probability measures Q(n) (z) on [0, 00 )XS we 

need the following lemma. 

LEMMA 2.2.10. Let 

(2. 2.4) G: = {G c [0, 00)xs : G = BxF with Ban interval in ~0, 00 ) and 

FES or G=BXFU{( 00 ,s)} with Ban interval in [0, 00 ) and FES}. 

Any a-additive set function P mapping G into [0,1] such that P([0, 00)xS)=1 

can be uniquely extended to a probability measure on the Borelfield of 

[0, 00)xs. 

PROOF. Since G is a semi algebra which generates the Borelfield of [0, 00)xs 

the lemma is an immediate consequence of proposition 1.6.1. on page 25 of 

NEVEU (1965). 0 
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-DEFINITION 2.2.11. For any z:=(t.,i.)~_1 E J we define a a-additive set 
{n) J J J- n 

function Q (z) on G as follows (with suppression of the index V in the 

functions TV, ov and gv). 

(2.2 .5) 

(2 .2 .6) 

(2.2 .7) 

Q(n) (z) ([0,t] x S): 

Q(n) (z) ([0,t] x Fl: 

(t-t )AT(i ) 
nf n exp(-

s=0 

Jr q(f(i ,sl ,al 
n 

0 fort< t ; 
n 

q(f{i ,u) ,a)dR(g(z) ,t +u) (a)du) . 
n 1 n 

T (in) 

exp(- I I q(f(i ,u) ,a)dR(g(z) ,t +u)(a)du. 
n 1 n 

u=0 Al 

f p(o (in) ,a,F) dR(g(z) ,t +T (i ) ) (a) 
2 n n 

fort st< 00 and FE S; 
n 

Q (n) (z) ([ t,oo) x F) Q(n) (z) (ft,oo] x F): 

T (in) 

1 . (i l 
{ T ( 1.) :2'.t-t } n 

n 

f exp(­

s=t-t 

rs r J q(f(i ,u) ,a) dR(g(z) ,t +u) (a)du) . 
J n 1 n 

n u=() Al 

J q(f(i ,s) ,a)TI(f(i ,s) ,a,F) dR(g(z) ,t +s) (al ds + 
n n 1 n 



(2. 2. 8) 

(2. 2. 9) 

(2 .2 .10) 

+ 1 . (i ) {t-t ~T(i}<00 } n 
n 

T(i) I n r 
. exp (- J q(f(i ,u) ,a) dR(g(z) ,t +u) (a) du) • 

n 1 n 

p(o (i ) ,a,F) dR(g(z) ,t +T (i )) (a} 
n 2 n n 

for tn ~ t < 00 and FE S; 

(n) 
Q (z}{(oo,1;)}: 

l{T(i)=oo} (in) exp(- r q(f(in,u) ,a) dRig(z) ,tn+u) (a} du) 

u=O 

(n} r 
Q (z) (c t,oo) x F): Q(n) (z) ([t , 00 ) x F) 

n 

fort< tn < 00 and FE S; 

(n} 
Q (z} ({oo, 1;}): = 1 fort 

n 

Finally the definition of Q(n) (z) on G is completed in a straightforward 

way on unions and differences. 
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REMARK 2.2.12. (i) The expressions on the right hand side of (2.2.6), 

(2.2.7) and (2.2.8) are well defined. This follows as a special consequence 

from theorem 2.2.14. below. 
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(ii) Q(n) (z) denotes for z=(tj,ij);=l the simultaneous conditional 

probability distribution of the first jump epoch after tn and the state 

of the system after that jump, given the history z. In defining Q(n) (z) 

we distinguish between the events that a jump is caused by an impulsive 

control and that a jump occurs in the natural process. Consider for example 

formula (2.2.6). The first term denotes the probability that the next jump 

will take place before the next impulsive control 

this jump brings the state of the system into the 

is the first epoch after tn at which an impulsive 

time ,(i )+t and that 
n n 

set F. Since ,(i )+t 
n n 

control is chosen, it is 

clear that a jump before ,(in)+tn corresponds to a jump in the natural 

process. The second term in (2.2.6) denotes the probability that before 

T(in)+tn no jump in the natural process occurs and that the jump at 

,(in)+tn, caused by an impulsive control, brings the state of the system 

into the set F. Note that in the integrals in both terms the state of the 

system is continuously updated with the drift function f. 

LEMMA 2 • 2 • 13 • 

(i) 

(ii) 

Q(n) (z) defined above is a a-additive set function mapping G into [0,1] 

such that Q (n) (z) ( [0 ,co) xs) =1. 
(n) ---

Q (z) can be uniquely extended to a probability measure on [0, 00 ) xs., 

This extension will also be denoted by Q(n) (z). 

PROOF. 

(i) 
(n) 

By (2.2.5) through (2.2.10) Q (z) (G) is defined for all GEG. The 

proof of the a-additivity of Q (n) (z) is straightforward from the 

definition. Finally (2.2.7) and (2.2.Bl yield fort= 0 

Q (n) (z) ([0 ,co) xs) = 1. 

(ii) A direct consequence of lemma 2.2.10. D 

THEOREM 2.2.14. Q(n) (.) defines a transition probability fromJ to f0, 00) xs • - n 

PROOF. According to lemma 2.2.13. above 0(nl (zl is a probability measure 

on [0,co) x S for all z E J. 
n 



What remains to show is that O(n) (.) (C) is measurable on J for all 
- n 

Borelsets C of ro,oc) x S. Since {C: Q(n) (.) (C) is measurable} is a 

monotone class and the a-algebra generated by a (semi)-algebra A is 

identical with the monotone class generated by .A., it follows that it is 

sufficient to prove that Q(n) (.) (G) is measurable on J for all GES. 
n 
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We will show this for G = [O,t]xF, with O < t < 00 and F E S (the proof for 

other sets from G is quite similar). Since the set {(t1 ,i1 , ... ,tn,in) E 

Jn: tn > t} is a Borelset in Jn it is sufficient to show that the right 

hand side of (2.2.6) is measurable in z. This follows by systematic 

application of the lemma's 2.2.5. upto 2.2.9. For example to show that 

the mapping on Jn X ro, 00 ) into ]R defined by 

(2. 2 .11) ((t1 ,i 1 , .. ,tn,in) ,u) ➔Jq(f(in,u) ,a)dR1(g(t1 ,i1 , .. ,tn,in)'tn+u) (a) 

Al 

is measurable, we note that the mapping on s X J[O,oo) X ro,oo) X Al 

(s, x, u, a) ->: q(s,a) 

is measurable, while 

is measurable on S x J[0, 00 ) x [0, 00 ), for all A E A1 . Hence, by lemma 

2.2.6. 

(s, x, u) + J 
A1 

q(s,a) dR(x, T (x)+u) (a) 
1 n 

is measurable on S x J[Q,oo) x [Q,oo). 

Since 

and 

are measurable on Jn x [0, 00 ) (see lemma 2.2.9.), it follows from lemma 

2.2.5. that the mapping defined by (2.2.11) is measurable on J x [Q,oo). [7 
n 
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REMARK 2.2.15. From definition 2.2.11. (in particular formula (2.2.6)) 

follows that 

and 

(ii) for z = (t1 ,i 1 •.. ,tn,in) with ih E V we have, by part (iii) of 

definition 2.2.3. 

Q(n) (z) ({t }xw(o)) = 1. 
n 

DEFINITION 2.2.16. Let P? be a given (initial) distribution on .S. We define 

probability measures P(~~)on ([0, 00)xs)n, n2l and P(V,R) on ([0, 00 )xs) 00 as 

follows: 

(2. 2 .12) 

(2. 2 .13) 

(2. 2 .14) 

(1) 
lV,R)(B X F) : lB(0) .P0 (F), for Ba Borelset in [0, 00 ) and FES. 

X ••• X G ) : 
n f 

(n-1) (n-1) 
Q (z) (Gn)dP (V,R) (z), 

for all Borelsets G. in [0,oo)xs, i=l, ... ,n; n22. 
1 

(n) 
P(V,R) (Gl x ..• x Gn x [0, 00 )XS x ... ) = lV,R)(Gl X ••• X G ) 

n 

for n2l and Borelsets Gi of [0, 00)xs, i=l, ... ,n. 

THEOREM 2.2.17. By (2.2.14) a unique probability measure on ([0, 00 )XS) 00 is 

defined. 

PROOF. A direct consequence of the theorem of Ionescu Tulcea (see NEVEU 

(1965)). D 
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THEOREM 2.2.18. The probability measure P(V,R) is concentrated on J[0, 00). 

PROOF. With remark 2.2.15. one easily shows that the probability measures 
(n) 
P(V,R)are concentrated on Jn for n2l. What remains to prove is that for all 

t20 

(2.2.15) t St} 
n 

o, 

i.e. P(V,R) does not assign a positive probability to those elements 

(t.,i.)~ 1E([0, 00 )XS) 00 for which the sequence (t.)~ 1 is bounded. 
J J J= J J= 

For z=(t.,i.)~ 1EJ with i EW(o) we have, according to (2.2.6) 
J J J= n n 

(2. 2 .16) Q (n} (z) ([0,t +o]xs) = 
n 

= r exp(- r I q(f(in,u),a)d~(g(z),tn+u) (a)du) . 

s=0 u=0 

J q(f(in,s) ,a) .dl\(g(z) ,tn+s) (a)ds. 

With a well-known theorem on changing independent variables (see page 

377 of TITCHMARSH (1939)) it follows from (2.2.16) that 

(2. 2 .17) Q (n) (z) ([0,t +o]xs) 
n 

1 - exp(- r I q(f(in,u) ,a)di,_(g(z) ,tn+u) (a)du). 

u=0 A1 

Combining this with assumption 2.2.2. (i) we find that there exists a 

number b, such that 

(2. 2 .18) Q (n) (z) ([0,t +o]xs) s 1-exp (-be) 
n 

for all z = (t1 ,i 1 , .•• ,tn,in) E Jn' with in E W(o). 

Reasoning as above and using part (iii) of definition 2.2.3. we have 

(2.2.19) 

for all z 

Q(n) (z) ([0,t +oJx(w(o))c) s 1 - exp(-bo) 
n 
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From remark 2.2.15, (2.2.18) and (2.2.19) follows that for all uso and all 

t >0 the conditional probability 

(2.2.20) oo I oo p(V R) ({(t.,i.) ._1:t +2St+u} {(t.,i.} ·-1:t 2t})S2(1-exp(-bu)). 
, J J J- n J J J- n 

Choose 0 < o' < o such that 2(1-exp(-bo')}<l and define a sequence (Xm):=l 

of independent random variables on a common probability space (D, A, JP) 

such that JP(Xm=o '}=1-2 (1-exp(-bo')) and JP (Xm=0) =2 (1-exp (-be')). 

Then it follows from (2.2.20) by induction on n, that for n21 and ~0 

(2. 2. 21) 

Since the right hand side of (2.2.21) converges to zero as n-+<x> it follows 

that!~ P(V,R}{(tj,ij);=l't2n+lst} = 0. 0 

We conclude this section with a remark. 

REMARK 2.2.19. 

(i} It is worthwhile to observe that we can deduce P( )-a.e. from a path 
00 V,R 

(t.,i.}. 1EJ[0, 00 ) the epochs at which impulsive controls are chosen. 
J J J= 

Since an impulsive control causes a jump the impulsive control epochs 

belong to the set {t.: j21} and are identified by the set 
J 

{t.: t.-t. 1=Tv(i. 1)}, P(v R)-a.e. 
J J J- J- , 

(ii) From the definition of Q(n) and P(V,R) follows easily that for n21 

and 

where for x € J[0,oo) 

rr +x: = lim rr x and rrt_x: 
t s+t s 

lim rr x. 
stt s 

0 

0 

(see for the definition of rrtx and Tnx definition 1.4.13 and section 1.6 

respectively) . 



2.3. MARKOV DECISION DRIFT PROCESSES WITH DISCRETE TIME PARAMETER. 

DEFINITION 2.3.1. A Markov decision drift process with discrete time 

parameter {DTMDP) is aninetuple (S,A1 ,A2 ,p1 ,p2 ,c 1 ,c2 ,f,k), where 
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(i) sis a complete separable metric space with metric p and Borelfield S. 

(ii) Ai is a complete separable metric space with metric pi and Borelfield 

A., i=l ,2. 
]. 

(iii) sxAi is endowed with a metric generating the product topology, i=l,2. 

(iv) pi is a transition probability from sxAi to S, i=l,2. 

(v) ci is a real-valued measurable function on sxAi' i=l,2. 

(vi) f is a drift function for s. 

(vii) k is a natural number. 

The following interpretation can be given to the component parts of a DTMDP: 

(i) S denotes the state space of the process. 

(ii) A1 denotes the set of controls. 

(iii) A2 denotes the set of impulsive controls. 

(iv) pi(.,.,.), i=l,2 are the one step transition distributions i.e. if 

at then-th decision epoch the actual state of the system is sand 

control a (i=l) or impulsive control a (i=2) is chosen, then 

pi (s,a,F) is the probability that the state of the system at the 

(n+l)-th decision epoch belongs to the set {f(s,k-1) :sEF}. 

(v) ci (.,.) are the one step cost functions, i.e. whenever the system 

is in states and control a (i=l) or impulsive control a (i=2) is 

chosen a direct cost ci (s,a) is incurred. 

(vi) the drift function f plays a role in the interpretation of the one 

step transition distributions. 

(vii) k denotes the time parameter, which indicates that two successive 
-1 

decision epochs are k apart. 

REMARK 2.3.2. When one is merely interested in Markov decision (drift) 

processes with discrete time parameter the definition of a DTMDP can be 

simplified considerably, since in general it is not necessary to distinguish 

between A1 and A2 , p 1 and p 2 and between c 1 and c 2• However, since we will 

compare CTMDP's and DTMDP's we have chosen a definition of a DTMDP, which is 

as close as possible to the definition of CTMDP. Note that the classical 
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-definition of a Markov decision process with discrete time parameter can be 

obtained from the definition of a DTMDP by choosing A2=¢ (which implies 

that p2 and c2 are undefined), f(s,t)=s and k=l. 

First we give an example to explain how a sample path of a DTMDP with time 

parameter k under a fixed policy can be seen as element of J[0, 00). 

Moreover, this example illustrates the role of the drift function. 

EXAMPLE 2.3.3. The total demand of the customers arriving at a warehouse 
-1 

during a time interval of length k is a random variable with known 
-1 

distribution function. At the end of each time period of length k the 

demands of the customers, arrived during that period, are fulfilled as 

long as the stock level is positive. Unfilled demands are backlogged. The 

warehouse management can place orders at the beginning of each interval 

which will be delivered at the end of this interval before the demands of 

the customers are fulfilled. Moreover, there is a deterministic demand of 

o per unit time. 

Suppose that the system,is controlled by a (s,S)-rule i.e. as soon as the 

inventory level reaches or drops belows it is raised upto s. Consider the 

discrete time stochastic process describing at any decision epoch the 

inventory level (where negative values denote the amount to be backlogged), 

given that the (s,S)-rule is used. Note that this process is a discrete 

time version of the continuous time process in example 1.3.3. 

A typical sample path of this process is drawn in figure 2.3.4. below. 

This sample path can be represented by 
-1 -1 -1 -1 -1 (0,S,3k ,s 1,Sk ,s2 ,6k ,S,9k ,s3 ,11k ,s, ... ) € J[0, 00). 



FIGURE 2.3.4. 

'-­
' '-. 

-----------------~----

10 

' • 

Stochastic processes generated by a DTMDP can only be observed and 

controlled at equidistant decision epochs. Therefore the sample paths of 

these processes have no jumps between two successive decision epochs. It 

is intuitively clear that a DTMDP under a fixed policy can be considered 

as a random element of J[0, 00). However, it is useful to define a 

discretized subset of J[0, 00 ) on which these processes are concentrated. 

Define fork? 1 

and 

iff t, < 00 , j? 1}. 
J 

47 
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Next we introduce for a given DTMDP the class of possible policies. 

DEFINITION 2.3.5. Let (S,A1,A2 ,p 1,p2 ,c1,c2 ,f,k) be a DTMDP. A policy 

consists of a closed subset V of Sand a pair R=(R1 ,R2) of transition 

probabilities from Jk[0, 00)x[0, 00 ) to A1 and A2 respectively such that 

Ri (.,t) is rt-measurable as a function from Jk[0, 00 ) into P (Ai) for all 

tELk, i=l ,2. 

The interpretation of the component parts of a policy is the same as for 

the continuous time case. For the classical Markov decision process with 

discrete time parameter the definition of a policy simplifies to merely a 

transition probability R1 from Jk[0, 00)x[0,~) to A1 . 

DEFINITION 2.3.6. Let (S ,A1,A2 ,p1 ,p2 ,c1 ,c2 ,f,k) be a DTMDP and (V,R) a 

policy with R=(R1,R2). 

(i) 

(ii) 

(iii) 

(V,R) is deterministic (or pure) if R, (x,t)EA. for all 
l. l. 

(x,t)EJk[0, 00 )XLk, i=l,2. 

(V,R) is memoryless if Ri (. ,t) 

(V,R) is stationary if Ri (. ,.) 

P(A.) 
l. 

is 1r-measurable, i=l,2. 

is 

as 

1Tt-measurable for all tELk, i=l,2. 

a function from Jk[0, 00 )xLk into 

In the classical theory of Markov decision processes with discrete time 

parameter we assign to every policy R1 a probability measure 

by defining the conditional one-dimensional distributions: 

P(k) on S00 

R1 

(2. 3.1) (k) I -1 } PRl ({1r(m+l)k-1(x)EF} {1Tmk_1(x)=s; Rl(x,mk )=\/) := 

= J p 1 (s,a,F)dv(a). 

Al 
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However, in order to compare stochastic processes generated by a CTMDP with 

processes generated by a DTMDP we have to construct for a DTMDP and any 

policy (V,R) a probability law Pj~~R) on (Lkxs) 00 (where Lkxs:=Lkxsu{( 00 ,s)}), 

in a way similar to definitions 2.2.11 and 2.2.16. 

Put fork 2: 1 

(2. 3. 2) 

and define for any closed subset V of Sand drift function f for S the 
(k) {k) (k) 

functions TV , ov on Sand gv on Jn(k) as follows: 

(2. 3. 3) 

(2. 3.4) 

(2. 3.5) 

{k) ( . ) 
TV J : 

o(k) (.). 
V J • 

-1 -1 
inf{,Q,k : f(j,,Q,k )EV, Q.=1,2, ... }. 

if T (k) (j)<oo 
V 

if T (k) (j) =oo 
V 

l(t1,i1,···•tn,in,oo,s, ... ) 

if i =s or T(k) (i )=oo 
n V n 

(t1 ,i 1 , ••. ,t ,i ,t -t-rV(k) (i ),i ,oo,s, ... ) 
n n n n n 

otherwise. 

(k) (k) (k) 
The functions TV , ov and gv , which are discrete analo9.1es of TV' oV 

and gv (see (2.2.1), (2.2.2) and (2.2.3)) are measurable functions. 

Let (S,A 1,A2 ,p1,p2 ,c 1 ,c2 ,f,k) be a DTMDP and (V,R) a policy. Next we 

define for n 2: 1 transition probabilities Q(n) (.) from J (k) to Lkxs, where 
k n 

Q~n) (z) is the conditional simultaneous distribution of the next jump epoch 

and the state of the system after the jump. 
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DEFINITION 2.3.7. For z=(t.k-1 ,i.)~_1€J (k) we define (with suppression of 
J (k)J J-(k)n (k) 

the index Vin the function TV , ov and gv ) : 

(2.3.6) 

(2.3.7) 

(2. 3.8) 

(2. 3.9) 

(2.3.10) 

,Q,-,Q, -1 
n 
II 

m=l 

Al 

0 

+ 1 (k) . -l (in).J p 2 (o(k)(in),a,F)dR2 (g(k)(z),tk-l)(a)} 
{T (i)=(t-t )k } 

n A2 

for t < t< co and F€S; 
n 

Qt) (z) { (co,z.;)}: = 1 (k) (i ) . 
{T (i) =co} n 

co I -1 -1 (kl -1 
II p 1 (f(in,mk ) ,a,{f(in,mk ) })dR1 (g (z), (mHn)k ) (a) 

m=l A1 

for tn<co; 

for B c Lk and F € S. 

for t 
n 

THEOREM 2.3.8. Q~n) (.) defines a transition probability from Jn(k) to Lkxs. 

PROOF. Let z: = (t_k-l ,i.)~_1€J (k). By definition Q~n) (z) (.) is o-additive 
J J J- n__ (n) 

on the measurable rectangles of Lk xs. Hence Qk (z) (.) defines a probability 

measure on the Borelsets of Lkxs if 

(2. 3.11) 1. 



For .Q, =00 (2.3.11) follows from (2.3.9) and for .Q, < 00 (2.3.11) follows from 
n n 

(2. 3. 7) (with F=S), (2. 3.8), (2. 3.10) and the fact that 

p .Q,-1 p 
Z: ( II :cm). (1-r.Q,) = 1 - II r 

£=1 m=l m=l m 

for any sequence of real numbers (r ) 00 
_ 1 and any pE :JNU { 00 }. 

mm-() 
On the other hand we have to show that Qkn (.) (C) is measurable on Jn(k) 

for all Borelsets Lkxs. As in the proof of theorem 2.2.14. a successive 

application of the lemma's 2.2.5. upto 2.2.9. yields this proof. 

There is, however, one additional complication. We have to show that for 

fixed m the mapping on Jn(k)xA defined by 

-1 n -1 -1 ((£.k ,i.). 1 ,a)->p1 (f(i ,rnk ) ,a,{f(i ,rnk ) }) 
J J J= n n 

is measurable. 

This follows from the measurability on sxA of the mapping 

( s, a) + p 1 ( s, a, { s}) . 

N d b b · 1· (k) [0 ) f ow we are rea y to construct a pro a i ity measure P(V,R) on Jk , 00 or 
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D 

any DTMDP, any policy (V,R)and any initial probability distribution PO on S. 

DEFINITION 2.3.9. By induction on n we define probability laws P(n) on 
__ n (k) k, (V,R) 

Jn(k)c(Lkxs) , n~l and P(V,R) on Jk[0, 00)c(Lkxs)"' as follows: 

(2. 3.12) 

(2.3.13) I Q(n-l)(z)(G )dP(n-1) (z) 
k n k, (V,R) 

for Gia Borelset in Lkxs, i=l, ... ,n, n~2. 

(2.3.14) 
(k) --P (G x ... xG XL xsx ••. ) 
(V,R) 1 · n k 

for n~l and Borelsets Gi of Lkxs, i=l, •.. ,n. 
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(k) --"' THEOREM 2.3.10. By (2.3.14) a unique probability measure P(V,R) on (Lkxs) 
(k) 

is defined for which P(V,R) (Jk[0,"'))=1. 

PROOF. The first part follows from the theorem of Ionescu Tulcea, while 

the second assertion is a consequence of the construction of P(n) 
k, (V,R)' 

n 2: 1. D 

We conclude this section with a theorem which is useful in verifying the 

conditions of the main theorem 2.4.3. in the next section. 

THEOREM 2.3.11. Let (V,R) be a policy for a CTMDP and (Vk)==l a sequence of 

closed subsets of s. If 

(2. 3.15) 

then 

(2.3.16) 

P(n) { (t . )n Tv(kk) (.) -'=~ TV(.) at i'n} (V,R) z= j~l.j j=l ' ' 

(n) 
P(V,R)-a.e. 

PROOF. Since P(V,R) is concentrated on J[O,"') we know that 

P~~~R){z=(tj,ij)j=l: tn=tn_1=tn+,V(in)}=O. Hence for z=(tj,ij);=lEJn 

while 

(k) ( ) 
gv z 

k 

{
(t1 ,i1, ••• ,tn,in,"',~, ••• ) if in=~ or 'v(in)="' 

(t1,i1 , ••• ,tn,in,tn+-rv(in),in,"',~,.'..) otherwise, 

{
(t1,i1 , .•• ,tn,in,"',~, •.• ) if in=~ or,~:) (in)="' 

(t 1,i1 , .•• ,t ,i ,t +,v(k)(i ),i ,"',~, ••• ) otherwise. 
n. n n k n n 

Hence (2.3.16) follows by assumption (2.3.15). D 



2.4. DISCRETIZATION AND WEAK CONVERGENCE. 

In this section first we construct for a given CTMDP a sequence of 

approximating DTMDP's with time parameter k approaching infinity. Next we 

provide sufficient conditions on the relation between a policy (V,R) for 

the CTMDP and policies (V(k) ,R(k)) for the approximating DTMDP's in order 

that the induced probability laws P(k) (k) converge weakly to the 
(V(k) ,R ) 

law P(V,R) on J[0, 00). 

This kind of limiting result is extremely useful in analyzing a CTMDP. For 
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example a lot is known in literatur.e about the structure of optimal 

policies for certain classes of DTMDP's. The standard way in which this 

kind of results is obtained for DTMDP's is the method of induction to the 

number of decision epochs in finite horizon problems and passing to limits 

when the time horizon is infinite. Obviously this procedure does not work 

for CTMDP's. However, the approximation result of this section provides the 

key to carry over structural results from a DTMDP to a CTMDP. 

DEFINITION 2.4.1. Let (S,A1 ,A2 ,q,IT,p,c1 ,c2 ,f) be a CTMDP. For kcl the 
. . (k) (k) (k) (k) 

k th approximating DTMDP 1.s defined by (S,A1 ,A2 ,p1 ,p2 ,c 1 ,c2 ,f,k), 

where 

(i) 
(k) 

p 1 (s,a,B): 
-1 -1 

k q(s,a)IT(s,a,B)+1 8 (s) (1-k q(s,a)) 1 (s,a)EsxA1 

(ii) 
(k) 

p 2 (s,a,B): = p(s,a,B) 

(iii) 
(k) 

c 1 (s,a): 

(iv) 
(k) 

c 2 (s,a): 

REMARK 2.4.2. (i) From the definition of a DTMDP (definition 2.3.1.) it is 

clear that the discrete time processes defined above are well defined 

DTMDP's for all k>sup{q(s,a):(s,a)ESxA1}. 

(ii) Suppose that 

(2.4.1) IT(s,a,{s}) 0 for all (s,a)ESXA1. 
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(k) 
Then the one step transition distribution p 1 of the k-th approximating 

DTMDP trivially satisfies: 

(2. 4. 2) l (k) -1 -1 
p 1 (s,a,B)=k q(s,a)IT(s,a,B)+k o(l) 

(k) -1 -1 p 1 (s,a,{s})=l-k q(s,a)+k o(l), 

if sj!'B 

where o ( 1) represents a (bounded) measurable function on sxA1 , which may 

depend on s, a, k and Band which converges uniformly in (s,a,B) to zero on 

compact subsets of sxA1 as k-->o>. Since representation (2.4.2) will be used 

in the proof of our theorems, we can replace the strict definition of p~k) 
(k) (k) d (k) in definition 2.4.1 by (2.4.2). Also the definitions of p 2 , c 1 an c2 

in definition 2.4.1 can be relaxed to 

(k) 
p2 (s,a,B): p(s,a,B) + o(l) 

(k) 
c 1 (s,a) 

-1 -1 
k c 1 (s,a) + k 0(1) 

(k) 
c 2 (s,a) c 2 (s,a) + 0(1) 

Next theorem gives sufficient conditions for the weak convergence of 
P (k) (k) (k) 

( ( to P( ) , where (V,R) and (V ,R ) are policies for a 
(Vk),Rk)) V,R 

CTMDP and the k-th approximating DTMDP respectively. In section 2.5. we 

will illustrate the rather technical conditions of this theorem with some 

examples. 

THEOREM 2.4.3. Let (S,A 1,A2 ,q,IT,p,c1 ,c2 ,f) be a CTMDP for which assumption 

2.2.2. and (2.4.1) hold. Let P0 be an initial distribution on S, (V,R) a 

policy for the CTMDP with R=(R1 ,R2 ) and (V(k) ,R(k)) a policy for the k-th 

approximating DTMDP with R(k)=(RJk) ,R~kl), kzl. Then 

ask+ co 

if the following conditions are satisfied: 

(2.4.3) 1, n z 1. 



(2. 4.4) 

(2.4.5) 

at (z,t +T (i ))} 
n V n 

1, n ~ 1. 

(k) (k) c 
Rl (g (k) (.) ,.) =f'r Rl (gv(.) ,.) at (z,t)} 

V 
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o, n e! 1. 

Here \ denotes the Lebesgue measure on [0, 00), while hk(.)~h(.) at x means 

that hk(.) is not continuously convergent to h(.) at x. 

PROOF. In the proof of this theorem we put for abbreviation: 

(k) (n) (n) (n) (n) 
Pk:=P (k) (k) , P:=P(V R), pk :=P (k) (k) and p :=P(V R). 

(V IR ) , k I (V IR ) , 

According to theorem 1.6.1. it is sufficient to show that 

(2. 4.6) 

for all F 
m 1 -1 
n T- (B) n s (F) E F with P(oF) 

n=l n n n n 
0. 

We prove (2.4.6) by induction on m. Form= 1 we have by (2.3.12), 

(2.3.14), (2.2.12) and (2.2.14) 

Suppose 

P(oF) = 

From the 

(2.4. 7) 

P(l) (Bx F) 
k PO(F) 

= p(l) (Bx F) = P(Tl EB, sl E F), fork e! 1. 

(2. 4.6) 
m -1 

ns- 1 (Fl) that is true for all F n (T (B ) 
n=l n n n n 

0 for some fixed m. 

induction hypothesis follows that 

P (m) w (m) 
k -+ P 

E 

Now choose F0 : 
m -1 1 -1 ~1 
n T (B) n s- (F) n Tm+l(B) n sm+l(F) E F with 

n=l n n n n 

F with 
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. (2. 4.8) 

Note that by the definition of F the sets B. are finite intervals for 
1. 

1 ~ i 5 m. From (2.3.13) and (2.2.13) follows that 

P (m+l) (F ) 
k 0 I 

B xp x ... XB xp 
1 1 m m 

and 

I 
B xp x ... xB XF 

1 1 m m 

Combining (2.4.7) with corollary 1.2.21. we conclude that F0 satisfies 

(2.4.6) if 

(2.4.9) 0 

and 

(2.4.10) 

Condition (2.4.9) follows from (2.4.8). To prove (2.4.10) we construct an 

exception subset E of B xp x ... xB xp with P(m) (E)=0. Define subsets E, of 
1 1 m m 1. 

B1xF1x •.• xBmxFm, i=l, •.• ,6 as follows: 

(kl ( ) S,,,. ( ) i· } T (k) • 7••v. at m 
V 

at (z,t +TV(i ))} 
m m 

at (z,t) }>0}. 
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E4: {z = (tj ,ij );=l t 
m 

+ T (i 
V m 

) € oB; 

r p(crv(im), a,F) dRJgv(z), t + T (i ) ) (a) > 0}. 
J m V m 

A2 

ES: {z (tj,ij);=l t 
m 

+ T (i ) EB; 
V m 

r p(crv(im)' a,oF) dRjg {z) ,t + 'v(im ) ) (a) > 0}. 
Aj V m 

2 

E6: {z = (tj,ij);=l A{t: t $ 'v(im); t + tm EB; 

jq(f(im,t) ,a)Jl(f(im,t) ,a,oF)dRlgv(z) ,tm+tl(a) > 0} > 0}. 

Al 

{m) 
We conclude from (2.4.3), (2.4.4) and (2.4.5) that P (E 1uEfE3)=0. 

Since (2.4.8) implies that P(m+l) (B 1xF1x ••. xBmxpmxoBxF)=O and 

p(m+l) (B 1xp 1x ..• xB xp xBxoF)=O it follows with (2.2.6) and (2.2.7) that 
(m) , m m 

P (E4uE5uE6 )=0. Put 

6 
(2.4.11) E: 

then P (m)(E) = 0. 

Hence (2.4.10) holds if 

(2.4.12) 

From the definition of F follows that either Bis a finite interval and 

FES or Bis an infinite interval including 00 and F=S+. we restrict 

ourselves to the first case (the proof in the second case is simpler). We 

put without loss of generality B=[0,t]. 

h ( · ) m · n Ec and let C oose z: = t,,1.,. 1EB 1xF 1x ... xB xF 
J J J= m m 

z{k) = (t.(k)k-1 ,i.(k))~ 1 E J (k), k 2 1 such that z{k) ➔ z. Assume that 
J J J= m 

t 2 tm. By replacing n by min formula (2.2.6) we have an explicit 

expression for Q(m) (z) (BxF). 

By the definition of the k-th approximating DTMDP combined with remark 

2.4.4. and formula (2.3.7) we have (with suppression of the index V(k)) 
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([tk]-.Q, (k) )A(, (k) (i (k) )k-1) 
m m .Q,-1 

(2.4.13) I IT 

Since 

.Q.=1 n=1 

r -1 -1 -1 (k) (k) -1 
j{l-k q(f(im(k),nk ),a)+k o(l)}dR1 (g (z(k)),(nHm(k))k )(a). 

Al 

J -1 -1 -1 -1 
• {k q(f(i (k),.Q,k ),a)IT(f(i (k),.Q,k ),a,F)+k o(l)} 

m m 

A1 

+ 1 (k) (i (k) ) 
{, (i)kS[tk]-.Q, (k)} m 

,(k)(i (k))k-1 
m 

IT 
n=l 

m 

r -1 -1 -1 
j{l-k q(f(im(k),nk ),a)+k o(l)} 

J{p(cr(k) (i (k) ),a,F)+o(1) }dR2(k) (/kl (z (k)) ,, (k) (i (k))H (k)k-l) (a). 
m m m 

A2 

z,E 1 we know that 'v(k) (i (k))-+-r (i ). 
k m V m 

Hence the first term of the right hand side of (2.4.13) is for k-+oo 

asymptotically equivalent to 

(t-tm)AJ-rv(im)[skii-1 

n=1 
s=O 

J -1 -1 -1 
{1-k q(f(im(k),nk ),a)+k o(l)} 

Al 
dRt) (g (k) (z (k)) , (nHm (k)) k -l) (a) • 

r -1 -1 
J {q(f(i (k),[sk]k ),a)IT(f(i (k),[sk]k ),a,F)+o(l)} 

m m 

Al 
(k) (k) -1 

dR1 (g (z (k) ) , ( [sk]Hm (k)) k ) (a) ds. 



From lemma's 2.4.4. and 2.4.5. below follows that the first term of 

(2.4.13) converges as k-+oo to the first term of (2.2.6). 
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The convergence of the second factor of the second term of (2.4.13) to the 

corresponding factor of (2.2.6) follows also from lemma 2.4.4. 

Finally the convergence of the product of the first and third factor of the 

second term of (2.4.13) to the product of the corresponding factors of the 

second term of (2.2.6) is established in lemma 2.4.6. 

This completes the proof of theorem 2.4.3. D 

LEMMA 2.4.4. Let Ebe defined by (2.4.11) in the proof of theorem 2.4.3. 
m c ~1 m 

If z (tj,ij)j=l EE and zk (9j(k)k ,ij(k))j=l E Jm(k) such that 

zk + z and if sk + s ~ 0 then 

(2.4. 14) 
r -1 -1 -1 

{1-k q(f(i (k),nk ),a)+k 0(1)} 
J m 

converges ask+ 00 to 

rs 
exp(- 1 

J 
I q(f(i ,u) ,a) dR(a(z) ,t +u) (a)du). 

m 1 -V m 

(Here o(l) represents a bounded measurable function on S x A1 , depending 

on k, which converges uniformly to zero on compact subsets of sxA1 ). 

PROOF. The natural logarithm of (2.4.14) is eaual to 

(2 .4. 15) 
[s k]--1 

k l 
n=l 

-1 
log(l-k 

r -1 J {q(f(im(k) ,nk ) ,a)+o(l) }) 

Since -x - x 2 ~ log(l-x) ~ -x for O ~ x <½we conclude that (2.4.15) is 

asymptotically equivalent to 

rs f -1 (k) (k) -1 J {q(f(im(k) ,[uklk ) ,a)+o(l) }dR1 (g (zk),([uklHm(k))k ) ta)du. 

u=O A1 
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Note that by the continuity off(.,.) and q(.,.) 

Since z i E3 it follows that 

for A-almost all u. 

The lemma follows from corollary 1.2.21. D 

LEMMA 2. 4 . 5. Let z, s, zk, sk, k:2'. 1 be as in the previous lemma. Then 

r . -1 . -1 
l{q(f(i (k) ,[skk]k ) ,a)ll(f(i (k) ,rskk]k ) ,a,F) 

"' m m 
+ 0 ( 1)} 

Al 

converges ask ➔ 00 to 

Jrq(f(i ,s) ,a)ll(f(i ,s) ,a,F) dR1(g(z) ,t +s) (a) 
m m v m 

Al 

PROOF. Since ziE3 we have 

for A-almost alls. 

Since z i E6 we know that for A-almost alls E ro,t-tmJ n [0,TV(im)] 

Jq(f(i ,s) ,a) ll(f(i ,s) ,a,oF) dR(g(z) ,t +s) (a) = 0. 
m m 1 -v m 

Al 
Moreover,we have by the continuity off(.,.), q(.,.) and TI(.,.) for all 

s:2:0 and aEA1 for which ll(f(im,s) ,a,oF) = O, 

q(f(i (k),fskk]k- 1),.)TI(f(i (k),[skk]k-1),.,F) + o(1l ~ 
m m . 

q(f(i ,s),.)ll(f(i ,s),.,F) 
m m at a E Al. 

Application of corollary 1.2.21. yields the lemma. D 



LEMMA 2.4.6. Let z, zk, k~l be as in lemma 2.4.4. Then 

(2. 4.16) 1 (i (kl) 
{ T (k) (i) k$[ tk]-t (k)} m 

m 

f (k) . (k) (kl (kl . -1 
{p(a (im(k)),a,F)+o(l)}dR2 (g (zk),T (im(k))Hm(k)k )(a) 

A2 

converges ask._ to 

l{T (i)$t-t }(im).f p(av(im),a,F)dR2(gv(z),tm+Tv(im))(a). 
V m A 

(2.4.17) 

2 
PROOF. Since ziE1 the proof is immediate if T (i )>t-t. Therefore we 

V m m 
assume TV(im)$t-tm. Since ziE1uE2 it follows that 

Since ziE5 it follows that 

f p(av(im) ,a,oF)dR2 (gv(z) ,tm+Tv(im)) (a) o. 

A2 

Moreover, since ziE1 it follows that a(k) (im(k)l-l'{)'V(im). Hence we have by 

the continuity of p(.,.) for all aEA2 for which p(av(im),a,oF) = 0: 
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Hence, by corollary 1.2.21., the second factor of (2.4.16) converges to the 

second factor of (2.4.17). 

If TV(i)=t-tm the proof is completed by noticing that ziE4 • If TV(i)<t-tm 

the first factor of (2.4.16) converges to the first factor of (2.4.17), 

which also completes the proof. D 

This section will be closed with a definition of a regular policy. 

DEFINITION 2.4.7. Let (S,Al,A2,q,IT,p,cl,c2,f) be a CTMDP and po an initial 

distribution on S. A policy (V,R) is called regular if for all k~l there 

exists a policy (Vk,1\,) for the k-th approximating DTMDP, such that 
P (kl w 

(Vk,1\,) + p(V,R). 
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2.5. EXAMPLES. 

In this section we treat two specific CTMDP' s in order to give an 

impression about the difficulty to verify whether or not the conditions 

of theorem 2.4.3. hold. 

EXAMPLE 2.5.1. Consider the replacement model of example 1.3.1. with some 

refinements. Assume that besides replacement the decision maker has control 

on the arrival rate v of the shocks. Suppose that v can be varied within 

the interval [v 1 ,v2J with 0<v 1$v 2<00 • The amount of damage caused by a 

single shock is a random variable with probability distribution F, with 

F(0)=0. Besides the damage caused by shocks the device decays continuously 

at rate cr~0, i.e. between shocks the cumulative damage increases linearly 

at rate cr. This replacement model can be formulated as a CTMDP 

(S,A1,A2 ,q,IT,p,c1 ,c2 ,f) where the state of the system denotes the total 

damage incurred by the device under operation, the controls are the 

possible arrival rates f9r the shock arrival process and the only impulsive 

control available is replacement, which brings the state of the system back 

to zero. We denote the replacement action with o. 

Put 

(2. 5.1) 

S: = [0,oo) 

Al:= [v1,v2] 

A2 : = {o} 

q(s,v): = V for (s,V)ESXAl 

IT(s,v,[s,s+t]): F(t) for (s,v)ESxA1 and t~0 

p(s,o,{0}): = 1 for SES 

f(s,t): = s+crt for (s,t)ESx[0,oo). 

The cost rate c 1 (.,.) and the lump cost c2 (.,.) are not specified, since 

they play no role in theorem 2.4. 3. 

One easily checks that assumption 2.2.2. holds. The k-th approximating 
(k) (k) (k) (kl 

decision process is given by (S,A1 ,A2 ,p1 ,p2 ,c 1 ,c2 ,f,k), where 

(2. 5 .2) 
(k) 

p 1 (s,v,{s}) 
-1 

1-k v, 
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(2.5.3) 
(k) 

p 1 (s,v,[s,s+t]) 
-1 -1 

1-k v+k \JF(t), 

(2. 5.4) 
(k) 

p 2 (s,O, {0}) 1, SES. 

Choose a policy (V,R) for the CTMDP where V:=[D, 00), with D>O and R=(R1 ,R2), 

with Ria non-anticipating transition probability from J[0, 00 )x[0, 00 ) to Ai. 

Since D>O it follows that part (ii) of definition 2.2.3. is fulfilled 

(choose o=Do -l). 

Consider for the k-th approximating decision process the policy (Vk,R), 

where Vk:=[Dk, 00 ) with Dk>O, k2l. 

THEOREM 2.5.2. Consider (S,A1 ,A2 ,q,IT,p,c 1 ,c2 ,f) defined by (2.5.1). For the 

policies (V,R) and (Vk,R) defined above and any initial distribution P0 on 

S the conditions of theorem 2.4.3 hold if: 

(2.5.5) as k-+oo 

(2.5.6) 0 

and if o=O 

(2.5. 7) (n) { ( . ) n . } 
p(V R) z= t.,1.. ·-1'1. =D , J J J- n 

o, 

PROOF. Since F{O)=O condition (2.4.1) holds. Condition (2.4.4) follows from 

the fact that A2={0} and hence R2 (x,t) is degenerated in {O} for all 

(x,t)E:J[O,oo)x[Q,oo). 
-1 + -1 + (k) -1 + -1 

Next we note that TV(i)=o (D-i) and a (Dk-i) STVk {i)So (Dk-i) +k , 

which implies with (2.5.5) condition (2.4.3) for a>O. When a=O we have 

TV(i)=,Vk(i)=O if i>DVDk and TV(i)=TVk(i)=00 when 

follows from (2.5.5) and (2.5.7). Moreover, with 
(k) ~ (n) 

that gvk (.) gv(.), P(V,R)-a.e •• Hence (2.5.6) 

i<DADk and hence (2.4.3) 

theorem 2.3.11 follows 

implies (2.4.5) D 
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EXAMPLE 2.5.3. Consider the inventory model of example 1.3.3. This 

inventory model can be formulated as a CTMDP, in which the state of the 

system denotes the stock on hand, where a negative value of the state 

variable indicates a backlog. The only control available is the fixed 

arrival rate v, while the impulsive controls are the different order 

sizes. Choosing the impulsive control a means that an amount a is ordered. 

We put for this example 

(2.5.8) 

S: = 1R 

Al: = { V} 

A2 : = [O,oo) 

q(s,v): = v for SES 

II(s,v,[s,s-t]): F(t) for sES and t;:,:o 

p(s,a,{s+a}): = 1 for (s,a)ESxA2 
f(s,t): = s-ot for (s,t)ESx[Q,oo) 

Here the demands of the customers are assumed to be distributed according 

to the distribution function F, with F(O)=O. Again the cost rate c 1(.,.) 

and lump cost c2 (.,.) are not specified. 

For k;:,:1 the k-th approximating decision process is given by 
(k) (k) (k) (k) 

(S,A1,A2 ,p1 ,p2 ,c 1 ,c2 ,f,k) with 

(2.5.9) 
(k) 

p 1 (s,v,{s}) 
-1 

1-k v, SES. 

(2.5.10) 
(k) 

p 1 (s,v,[s,s-t]) 
-1 -1 

1-k v+k VF(t), 

(2.5.11) 
(k) 

p 2 (s,a, {s+a}) 1, 

* * Suppose the CTMDP is controlled by the (s ,S )-policy (V,R) i.e. 

V=(-oo,s*] and R=(R1 ,R2) with 

* * where we assume that S >s . 

For the k-th approximating DTMDP we define a policy (V(k) ,R(k)) with 
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V(k): 

(k) 
R2 (x,t): 

THEOREM 2.5.4. Consider (S,A1 ,A2 ,q,IT,p,c1 ,c2 ,f) defined by (2.5.8). For the 

policies (V,R) and (V(k) ,R(k)) defined above and any initial distribution 

P0 on s the conditions of theorem 2.4.3. hold if: 

(2. 5.12) ask-+<><> 

(2. 5 .13) as k->oo. 

PROOF. Since F(0)=0 condition (2.4.1) holds. Using (2.5.13) the validity 

of (2.4.3) can be shown as in the proof of theorem 2.5.2. Condition 

(2.4.5) is trivially fulfilled because A1={v}. Finally to prove that 

condition (2.4.4) holds note that for P(V )-almost all z=(t.,i.)~ 1 ,R J J J= 
we have: 

(2. 5.14) 

and 

(2. 5.15) 

From (2.5.13) follows that 

(2.5.16) 
(k) C 

' (k) (.)-+ 'v(.). 
V 

Combining (2.5.12), (2.5.16) with (2.5.14) and (2.5.15) completes the 

proof. D 
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CHAPTER 3 

EQUIVALENT POLICIES 

3.1. INTRODUCTION. 

In this chapter we will use the convergence results from the previous 

chapter in order to transpose a well-known result for discrete time 

processes to CTMDP's. It was shown by DERMAN and STRAUCH (1966) that for 

every history-remembering policy for a discrete time Markov decision 

process one can construct a memoryless policy such that the one-dimensional 

marginal distributions of state and action are the same under both policies. 

This in;,lies that under a cost structure which is uniquely determined by 

those one-dimensional marginal distributions one can restrict attention to 

the memoryless policies in the search for the optimal policy. However, as 

we will show in the sequel of this introduction, for a CTMDP most cost 

structures are not uniquely determined by the one dimensional marginal 

distributions of state and action. This implies that a continuous version 

of the Derman and Strauch theorem is less powerful in the CTMDP case as 

it is for a DTMDP. However, when we restrict our attention to CTMDP's in 

which no impulsive controls are available it turns out that a theorem of 

this kind can be applied in the CTMDP case like it is used for DTMDP's. 

For that reason we will restrict our attention in section 2 of this chapter 

to those CTMDP's for which the set of impulsive controls is empty. For ease 

of presentation we will also assume that the state space is countable. 

In the previous chapter we introduced for any DTMDP and CTMDP under a 

fixed policy probability measures on the sequence space J[0,00 ). When we 

want to compare two policies for a given decision process we have to take 

into account the cost functions (cost rate, lump cost or one step cost) of 

the process. With these cost functions we can define several cost functionals 

on J[0, 00 ). An important example of such a functional is the a-discounted 

cost functional (other functionals will be defined in chapter 4). 
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DEFINITION 3.1.1. 

(i) Let (S,A1 ,A2 ,p1 ,p2 ,c1 ,c2 ,f,k) be a DTMDP and (V,R) a policy for this 

process with R=(R1 ,R2). Suppose that ci(.,.) is bounded from below, 

i=l,2. For a> 0 the a-discounted cost functional under (V,R) is a 

f t . (k) [O ) d f' d f J [O ) b unc ion ca,(V,R) on Jk , 00 , e ine or xE k , 00 y 

(3.1. 1) 
(k) 

ca, (V,R) (x): 
-1 

dR1 (x,nk ) (a) + 

+ 

(ii) Let (S,A1 ,A2 ,q,Il,p,c1 ,c2 ,f) be a CTMDP and (V,R) a policy for this 

process with R=(R1 ,R2). Suppose that c 1 (.,.) is bounded from below 

and c2 (.,.) non-negative. For a> 0 the a-discounted cost functional 

under (V,R) is a function ca, (V,R) (.) on J[0, 00 ), defined by 

(3. 1.2) ca, (V,R) (x): 

c2 (11T (x)x,a) dR2 (x,-rn(x))(a), 
n 

where Tn(x) represents the epoch of then-th entrance of x into the 

set V. 

DEFINITION 3.1.2. Let (S,A1 ,A2 ,p1 ,p2 ,c 1 ,c2 ,f,k) be a DTMDP and 

(S,A1 ,A2 ,q,Il,p,c1,c2 ,f) a CTMDP and let (V,R) be a policy for one of these 

decision processes. Assume that c 1 (.,.) is bounded from below and c2 (.,.) 

non-negative. For any initial distribution P0 on S the expected a-discounted 

costs under (V,R) are defined for the DTMDP by 

(3.1.3) I C (J.<) (x) dP ((Vk),R) (x) 
a, (V,R) 

J[O,oo) 

and for the CTMDP by 

(3.1.4) c((V,R),a): J ca,(V,R)(x) dP(V,R)(x). 
J[ 0 ,oo) 
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From Fubini's theorem and (3.1.1) respectively (3.1.2) we find 

I ), 

(3.1.5) 

co I 

+' i•-~ri' 
n=l 

and 

:t,. 
\!,,' ' ,"-.· ( 

Comparing the expressions (3.1.5) and (3.1.6) r~veals an'.ihtefesting 

difference between CTMDP's and DTMDP_'!il.:, Fr9m (3.1.5) follows that for the 

DTMDP ·the•, expected a-dis.e:ounted -cost~· ~der policy (V, R) are uniquely 

determined b; the one dime~~ional m~ginal distributions of state and 

randomized action i.e. ck((V,R),a) is determined by the sequence of 

pr6h~l1tty measures on ·5"; P(i'.') d~firi~d1 by' 1 •• 
l. 

(3.1. 7) 
(k) -1 -1 

P(V,R) .. <~.--l'Ri(.,nk )) , n:2:1; i=l,2. 
.. . , . i!ik .', "'' 

'!his' ~ss~rtion can be·•'itr~ngihe~e'a i~ th1e 1'foif6'14ing sense: ck('(V,R) ,a) is 

uniqueiy11 deternti.n~1d b~'ih~ 'ki~uence of probab':l.i1ty'111ea'sures (0 (.i) ):=1 on 
"I',,~:.:::~(;·_:_',.-,·.\_, •:; . '·1 ', ·•.,\,"/•', c.·,h;' l :·' • ; ' • J ;" '•f", • ,1.•f ' n 

S x Ai, defined by· · · · · · · 
,_d •:.Jri't.' .. \l ~,.!/ ;:·,.t:~<~t) .. ~_.,, 

(3.1.8) 0(i) (B 
n 

for B €Sand F € A,, i=l,2. 
l. 

LEMMA 3.1.3. 0~i) is f.;well-qe,fip7fi probab~litf measiir~ or,i s x A, for n :2: 1 
'(' ') ex,.' ,, ', .. -, '1, I,' "' .. , , I •• ,_,_ ' I l. 

and i=l ,2 and the (0 i ) ••1 / i=l ,2 deterinine ~iquely ck ( (V ,R) ,a). 
n n= ' · · 
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PROOF. The proof of the first statement is straightforward and the second 

follows from the equality 

00 n J (1) I (2) n:t { c 1 (s,a)d0n (s,a)+ c 2 (s,a)d0n (s,a)}. 

SxA1 VxA2 

(3.1.9) 

To prove (3.1.9) we first consider the case where 

Then 

1B XF (s,a), 
i i 

for some B.ES and F.EA., 
l. l. l. 

i=1,2. 

n 
ck ( (V,R) ,a)= l: a r (k) -1 -1 

(s)v(F1)dP( )(rr _1 ,R (.,nk )) (s,v)+ 
V,R nk n=l 

j B 

sxP (A1) 1 

(k1 -1 -1 
(s)v(F2 )dP(V,R)(rrnk_1 ,R2 (.,nk )) (s,v) I 1B 

vxP(A2) 2 

00 
oo n (1) 

= l: Cl 0 (B xF) + 
n=l n 1 1 

l: an0~2) (B2nvxF2) 
na=l 

OO n r (1) 
= l: a { J c 1 ( s, a) d0 n ( s , a)+ 

n=l sxA1 

Since every non-negative measurable function can be approximated by a 

monotone sequence of step functions the lemma follows by application of the 

monotone convergence theorem. D 

(i) 
Note that the probability measure 0 can be interpreted as the simultaneous 

n -1 
distribution of state and (impulsive) control at epoch nk , n~l. Lemma 

3.1.3 tells us that for a DTMDP under policy (V,R) knowledge of the 

probability distributions (3.1.8) is enough to compute ck((V,R) ,a). 

However, from (3.1.6) we learn that for a CTMDP under policy (V,R) the one 

dimensional marginal distributions of state and randomized control together 

with the simultaneous distributions of then-th entrance time into V, the 

entrance state and the randomized impulsive control uniquely determine 

c((V,R) ,a). In other words c((V,R) ,a) is determined by the probability 

measures 

(3.1.10) , t~O 



70 

and 

(3.1.11) 

As for the DTMDP we can strengthen this assertion. For a CTMDP the expected 

~-discounted costs under policy (V,R) is uniquely determined by the class 

of probability measures (~t)t20 on sxA1 and the sequence of defective 

probability measures (¢n):=l on [0, 00 )xsxA2 , defined respectively by 

(3.1.12) ~t(B x F): J v(F)dP 
B X P(Al) 

for BES and FE A1 ; t 2 0 

and 

(3.1.13) ¢n(C x Bx F): J v(F)dP(V,R) (Tn,1\ 
n CXBxP(A2 ) 

for all Borelsets C in [0, 00 ), BES, FE A2 ; n 2 1. 

3.2. GENERALIZATION OF A THEOREM OF DERMAN AND STRAUCH. 

DEFINITION 3.2.1. 

(i) 

(ii) 

Let (S,A1 ,A2 ,p1 ,p2 ,c1,c2 ,f,k) be a DTMDP and PO an initial distribution 

on S. Two policies (V1 ,R1) and (V2 ,R2) are called equivalent w.r.t. P0 , 
(i) 00 

measures (0n )n=l if they generate the same sequence of probability 

on S x A., where 0(i) is defined by (3.1.8) for n 
i n 

2 1 and i = 1 , 2 • 

Let (S,A1 ,A2 ,q,IT,p,c1 ,c2 ,f) be a CTMDP and P0 an initial distribution 

on s. Two policies (v1 ,R1) and (V2 ,R2) are called equivalent w.r.t. P0 , 

if they generate the same class of probability measures (~t)t20 on 

S x A1 and the same sequence of defective probability measures (¢n):=l 

on [0, 00 ) x S x A2 , where 1t is defined by (3.1.12) fort 2 0 and ¢n 

by ( 3. 1. 13) for n 2 1. 

A well known theorem by Derman and Strauch states that for a DTMDP one can 

construct for every policy (V,R) an equivalent policy which is memoryless. 

Using this result and our convergence theorem 2.4.3 of the previous chapter, 

we want to prove a similar result for CTMDP's. For every regular policy 



(V,R) for the CTMDP there exists by definition a policy (Vk 1 \:) for the 
(k) w 

k-th approximating DTMDP such that P(Vk,\:) + P(V,R)" From Derman and 

Strauch follows the existence of memoryless policies (Vk 1 ~) such that the 

0~i) measures induced by (Vk,\:l and (Vk 1 ~) are the same for all n 2 1 

and i = 1,2. Now the following question arises. If there exists a 
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{k) 
memoryless policy (V',R') 

1
for the CTMDP such that P(Vk,~) + P(V',R')' are 

the policies (V,R) and (V',R') then equivalent? 

Unfortunately, we are not able to prove this in general. The problem is that 

the equivalence of (Vk,\:) and (Vk 1 ~) does not yield information about the 

relation between the wn measures generated by (V,R) and (V',R'). 

However, when we restrict our attention to CTMDP's with empty set of 

impulsive controls we have for any policy (V,R) 

o, 

which implies that the sequence of defective probability measures (w ) 00 

1 n n= 
is the same for all policies. In this case we are able to obtain equivalence 

results for a CTMDP by combining the theorem of Derman and Strauch with our 

convergence theorem. For ease of presentation we restrict our attention to 

a countable state space. 

Hence we make in this chapter the following assumptions on the component 

parts (S,A1 ,A2 ,q,TI,p,c 1 ,c2 ,f) of a CTMDP. 

ASSUMPTION 3.2.2. (i) Sis countable with the discrete metric. 

(ii) A2 = ~-

Note that by assumption 3.2.2 (i) the drift function f is necessarily equal 

to f(i,t)=i, t 2 0, i ES. 

Moreover, by assumption 3.2.2 (ii) the transition probability p and the 

lump cost c 2 are undefined. Hence we will simplify in this chapter the 

notation of a CTMDP, a DTMDP and a policy. 

NOTATION 3.2.3. In this chapter we use the following notation. 

(i) A CTMDP is denoted by a five tuple (S,A,q,TI,c). 

(ii) A DTMDP is denoted by a five typle (S,A,p,c,k). 

(iii) A policy for a CTMDP and DTMDP is denoted by R, which represents 
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a transition probability from S x A to S. 

(iv) The probability measures induced by a policy Rare denoted by P(k) 
R 

for a DTMDP with time parameter k and by PR for a CTMDP. 

THEOREM 3.2.4. Let (S,A,p,c,k) be a DTMDP and po an initial distribution 

on s. For any policy R there exists a memoryless policy R',which is 

equivalent to R w.r.t. P0 • 

PROOF. For every i ES and t E Lk, for which 

(3.2.1) P ({x: TIX= i}) > 0 
R t 

we define a probability measure Q(i,t) on P(A), by 

for all Borelsets C in P(A). 

Next we define a probability measure r(i,t) on A, by 

r(i,t) (F): J V (F) dQ (i, t) (v) 

P(A) 

for F E A. 

For those (i,t) ES x Lk for which (3.2.1) does not hold, we define 

r(i,t): = v0 

for some arbitrary but fixed v0 E P{A). 

Finally we define a function R' from Jk[0,00 ) x Lk into P(A), by 

It is straightforward to check that R' is a well-defined memoryless 

policy for (S,A,p,c,k). We shall show that Rand R' are equivalent w.r.t. 

P0 . By the definition of equivalent policies we have to show that 

(3.2.2) 0 n 
0' n' n :C:: 1 



where 0n and 0~ denote the probability measures 0~1) defined by (3.1.8) 

for policy Rand R'. Note that 

0 ({i} X F) f v (F) dPt) (1r 
-1 -1 

n 
_1 ,R(. ,nk ) l (s,v) 

nk {i} X P(A) 

-1 (kl r(i,nk ) (F) PR {1f -1 
nk 

while 

0 I ({i} X F) 
-1 (k) 

r(i,nk )(F) PR' {1f -1 n 
nk 

Hence it is sufficient to prove that 

(3.2.3) P (k) -1 , l 
R' 1f -1' n '° • 

nk 

we will prove (3.2.3) by induction on n. 

For n = 1 we have 

Assume that (3.2.3) holds for n = m. Then 

(3.2.4) i}) E P (k) ({1r 

jES R mk -l 

L I 
jES P(A) 

i}, 

i} . 

j}) • 

The last equality follows from (2.3.1). From (3.2.4) and the induction 

hypothesis we find 
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P (k) ({,r 

R (m+l)k-l 

(k) 
E p I ({,r 1 

jES R mk-

(k) 
E p I ({,r 1 

jES R mk-

(k) 
PR' ({,r -1 

(m+l)k 

i}) 

j}) j f p(j,a,{i})dv(a)dQ(j,mk-l) (V) 

P(A) A 

j}) f p(j,a,{i})dr(j,mk-1) (a) 

A 

i}). 

The last equality follows again from (2.3.1) and the last but one equality 

follows from 

j f(a) dr(i,t) (a) I 
A P(A) 

f f(a) dv(a) dQ(i,t) (v), 

A 

which holds for every measurable real-valued function f on A. D 

This theorem has been proved for the first time by DERMAN and STRAUCH 

(1966) for a finite state space. Generalization to the countable state 

space was given by HORDfJK (1974). DERMAN and STRAUCH as well as HORDIJK 

considered policies for which the decision at time n may depend on all 

past states and actions, while in- our approach there is only dependency on 

the past states. 

THEOREM 3.2.5. Let (S,A,q,IT,c) be a CTMDP and po an initial distribution 

on s. Assume that IT(s,a{s}) = 0 for all (s,a)ESXA. For every policy R 

for which 

(3.2.5) (PR x A){Disc(R)} = 0 

there exists a regular memoryless policy R', which is equivalent to R 

w.r.t. po· 

PROOF. Let R be a policy for which (3.2.5) holds and define policies 

~ for the k-th approximating DTMDP by 

~(x,t): R(x,t), 



75 

From (3.2.5) follows with theorem 2.4.3.that 

(3.2.6) 

From (2.2.6) and assumption 3.2.2. (ii) follows that 

(3.2.7) for n 2 1 and t > O 

for every policy R. 

Since o{x: ntx = i} c u {x: T (x) = t} for all i Es and t > 0 we 
n=1 n 

conclude from (3.2.6) and (3.2.7) that 

(3.2.8) i}), for all i ES and t 2 0. 

For i ES and t E ~ for which Pl\ ({x: ntx 

probability measure Qk(i,t) on P(A) by 

i}) > 0 we define a 

(3.2.9) 

for all Bo.relsets C in P(A), 

and a probability measure rk(i,t) on A by 

(3.2.10) rk (i,t) (F): 

(3. 2 .11) 

J V(F) dQk(i,t){v), 

P(A) 

for some arbitrary but fixed v0 E P(A). 

for F E A. 

i}) 0 we put 
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!Jext we define memoryless policies Rk for the k-th aooroximatinq DTMDP bv 

(3.2.12) F' 
k 

From theorem 3. 2. 4 and its proof it follows that 

(3 .2 .13) 

For all (i,t) ES x [0, 00 ) for which PF l{x: TTtX 

probability measure Q(i,t) on P(A) by 

i}), for iES and t~O. 

i}) > 0 we define a 

(3.2.14) Q(i,t) (C): = PR ({x: R (x,t) E C.t I {x: TTtx i} J , 

for all Borelsets C in PtA) and a probability measure r(i,t) on A by 

( 3 .2 .15) 

while we put 

(3 .2. 16) 

r(i,t) (F): 

r(i, t): 

f v(F) dQ(i,t) (v), 

P(A) 

for those (i,t) ES x [0, 00 ) for which PR ({x: TTtx 

put 

i}) 0. Finally we 

(3.2.17) R' (x,t): for (x,t) E J[0, 00 ) x [0, 00 ). 

From lemma 3.2.7 below it follows that R' (.,.) is a well-defined regular 

memoryless policy for (S,A,q,IT,c) and we prove in lemma 3.2.8 that 

(3. 2 .18) 

From (3.2.7) and (3.2.18) it follows that 

(3.2.19) PR' ({x: TT X = i}) + p ({x: TTtX 
k t R' 

i}J, for all i ES, t > 0. 

Combination of (3.2.8), (3.2.13) and (3.2.19) yields 



(J.2.20) PR ({x: 11 x = i}J = P ,({x: 11 x = i}J, for all i E s, t ~ 0. 
t R t 

Hence, (see formula (3.1.12) fordefinition of'!\ 

I 
a} x P<AJ 

i }J 

r -1 j v(F)dPR (11t,R (.,t)J (s,v) 

{i} X P(A) 

J v(F) dQ(i,t) (v) 

P(A) 

iJ-l . r(i,t) (F) 

lj' I 

t 
(H} X Fl. 

This yields the theorem. D 

The notation introduced in the proof of theorem 3.2.5 will also be used in 

the next three lemma's. 

LEMMA 3.2.6. Define 

\ 3. 2. 21) i}) > O} for i ES. 

Then 

(i) PR ({11t = i}) = 0 iff O ~ t ~ t*(i), for all i ES with t*(i) > 0 

(ii) 
C * Qk (i, .) -+ Q(i,.), ;\-a.e. on [t ( i) , "') ; i E s 

(iii) 
C * rk (i, .) -+ r(i, .) , ;\-a.e. on [t (i) ,"') ; i E s. 

PROOF. 
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(iJ * From (~.2.6) follows that PR ({lit= i}) > 0 for all t > t (i). Since 

PR ({11t = iJ) is continuous int (which follows easily from theorem 
. * 

1. 2. 26-) we conclude from the definition of t (il that 

PR ({11t*(i) = i}) = 0 if t*(i) > 0. 

(ii) Put 

G(t): {x: R (.,.) is discontinuous at (x,t)}. 

~·rom · ( 3. 2. 5) follows that 
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0, >.-a.e. 

Let i ES, t > t*(i) such that PR (G(t)J 

that tk ➔ t, then 

0. If tk E ~• k ~ 1 such 

Application of (3.2.6.) and (3.2.8) and corollary 1.2 .21. yields the 

proof. 

(iii) Choose i ES, t > t*(i) and~ E ~, k 2 1 such that tk ➔ t and 
w 

Qk(i,tk/ ➔ Qli,t). Let F be a closed subset of A. Then 

lim sup rk(i,~) (F) = lim sup 
k--- k---

r 
J 

P(AJ 

~ r v(F) dQ(i,t) (v) r(i,t) (F). 

P(~l 

The inequality is justified by the upper semicontinuity of the 

mapping from P(A) to [0,1] defined by 

V ➔ VlF). 

(cf. BILLINGSLEY (1968), page 17) . 0 

LEMMA 3.2.7. R'is a well-defined,regular, memoryless policy for (S,A,q,IT,c). 

PROOF. Since the limit of a continuously convergent sequence is continuous 

it follows from lemma 3.2.6. (iii) and (3.2.16) tbat r(i,.) is continuous \-a.e. 

This implies that R• ts a well-defined transition probability from 

J[0, 00 ) x [0, 00 ) to A and.that R' is regular. Finally R' (.,t) is 

Tit-measurable, since for all t ~ 0 and all Borelsets C in P(AJ 

{x: R 'lx,t) E c} TI~ 1{i E S: r(i,t) E c}. D 

LEMMA 3.2.8. 



* PROOF. If t (i) = u for all i ES the proof of this lemma follows from 

lemma3.2.6. (iii) andtheorem2.4.3. Now suppose that t*(i) > O for some 

i Es. Condition (2.4.5) of theorem 2.4.3. is now not always satisfied. 

Instead of (2.4.5) we have 

* t ~ t Vt (i ); 
n n 

r(.,.) at (i ,t)} 
n 

0. 

Proceeding as in the proof of theorem 2.4.3. it is sufficient to show 

that 

(3 .2.22) 

for all F 

p (F) + PR, (F). 
R' 

k 
m 
n T-l (B ) n s- 1 (F ) E F with P , (oF) 

n=l n n n n R 
0. 

For m=l (3.2.22) tallows straightforward 

that (3.2.22) holds forall F = ~ T-l (B ) 
n=l n n 

from the definitions. Suppose 

n s- 1 (F ) E F with PR,(oF) = 0 
n n 

for some fixed m. 

Moreover, we assume that for alls> O and j ES 

(3. 2 .23) o. 

m 1 1 -1 -1 
Choose F0 = n T- (B ) n s- (F ) n 'l'm+l (B) n sm+l (F) E F 

n=l n n n n 

The proof o:f. ( 3. 2, 22) for F O proceeds similar as in theorem 2. 4. 3. 

The only difference is that we additionally use (3.2.23) to show that 
(m) C 

PR' (E 3 n E1) = 0 (see for notation pages 56 and 57). 
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To complete the inductive argument we have to show that (3.2.23) holds when 

mis replaced by m+l, for alls> 0 and j ES. 

Since(3.2.22) holds for F0 it is sufficient to show that 

(3. 2.24) * P~ ({x: Tm+l (xJ < sAt (j); Sm+l (x) j}) + o. 

From lemma 3.2.6. (i) it follows that 



80 

(3. 2.25) 0 

* for all j ES with t (j) > 0 and for alls> 0. 

Combination of (3.2.8), (3.2.13) and (3.2.25) yields 

( 3. 2. 26) p 

Rk 
({x:71 *c·i(x) sAt J 

j}) + 0 

for all j ES with t*(j) > 0 and for alls> 0. 

On the other hand we have 

(3.2 .27) PR' {x: 7f t*(. (xJ 
k SA J) 

j} J "' 

[ (sAt* (j) )k] 
:cc E p -1 * ({x: S 1 (x)=j; T 1 (x)=nk ;T 2 (x)>sAt(jJ}l= 

R' n=l ·k 

[(sAt*(jJ)k] 
E 

n=l 

m+ m+ m+-

-1 
({x: Tm+l (x) = nk ; Sm+l (x) 

* * <>: exp(-2b(sAt (j))) P 11'.: (i.x: Tm+l (x) <sAt (j) ;Sm+l (x) 

In the right hand side of the last inequality b denotes 

sup {q(s,a): (s,a) E S x A}. 

Combination of (3.2.27) with (3.2.26) yields (3.2.24). D 

j}) . 
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CHAPTER 4 

COST FUNCTIONALS ON J [0,CXl) 

4.1. INTRODUCTION. 

In this chapter we show how the results of chapter 2 can be applied 

in the study of continuous time stochastic optimization problems. Let 

(S,A1 ,A2 ,q,IT,p,c 1 ,c2 ,f) be a CTMDP, Po an initial distribution on s, (V,R) 

a policy with R=(R1 ,R2) and (V(k) ,R(k)) a policy for the k-th approximating 

DTMDP, k ~ 1 with R(k)=(R{k) ,R~k)). Finally let c(.) and c(k) (.) be cost 

functionals on J[0, 00 ) depending on policy (V,R) and (V(k) ,R(k)) 

respectively. That is, c(x) represents the total costs incurred when the 

stochastic process governed by policy (V,R) evolves along sample path x. 

In order to apply the discretization procedure to optimization problems 

the convergence result of theorem 2.4.3 is not sufficient. Additionally we 

need sufficient conditions for 

(4.1.1) c (k) (x) dP (k)(k) 
(V ,R 

(k) (x)+ J 
) J[0,oo) 

c (x) dP (V ,R) (x) , as k+oo. 

In this chapter we will give several sets of sufficient conditions for 

(4.1.1). First we introduce three possible cost functionals, for which we 

shall investigate relation (4.1.1) (see also definition 3.1.1). 

DEFINITION 4.I.1. Let (S;A1 ,A2 ,p1,p2 ,c 1 ,c2 ,f,k) be a DTMDP and (V,R) a 

policy with R=(R1 ,R2). Assume that ci(.,.) is bounded from below, i=l,2. 

(i) For 0 <a< 1 the a-discounted cost functional under (V,11.) is a 

f . (k) ( ) [0 ) d d b unction ca,(V,R) • on Jk , 00 efine y 

00 

J c 1 (-rr _1x,a) (4.1.2) 
(k) 

E n -1 
Ca, (V, R) (x) : a dR1 (x,nk ) (a) + 

n=l A nk 
00 

1~(-rr _1x). J E n -1 
+ a c2 (-rr _1x,a)dR2 (x,nk )(a). 

n=l nk A nk 
2 
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(ii) 

(4.1.3) 

(iii) 

(4.1.4) 

For O <a~ 1 the a-discounted, n-horizon cost functional under (V,R) 
(k) 

is a function ca,n,(V,R) (.) on Jk[0, 00 ) defined by 

(k) 
c (V R) (x): a.,n, , 

n 
E 

R.=1 
Al 

n R, I -1 + Ea lv(11 _ 1x) c 2 (11 _1x,a)dR2 (x,R,k ) (a) 
R.=1 R.k A R.k 

2 
(k) 

The average cost functional under (V,R) is a function c(V,R) (.) on 

(k) 
c (V ,R) (x) : 

-1 (k) 
lim sup n cl,n, (V,R) (x). 

n~ 

DEFINITION 4.1.2. Let (S,A1,A2,q,Il,p,c1,c2,f) be a CTMDP and (V,R) a policy. 

Assume that c 1 (.,.) is bounded from below and c 2 (.,.) is non-negative. 

(i) For a> 0 the a-discounted cost functional under (V,R) is a function 

ca, (V,R) (.) on J[0, 00 ) defined by 

(4.1.5) ca, (V,R) (x): 

r J c 2 (crv(Sn (x)) ,a) dR2(x,Tn+l (x)) (a). 

A2 

(ii) For a :2: 0 the a-discounted, T-horizon cost functional under (V,R) 

is a function ca,T, (V,R) (.) on Jr0, 00 ) defined by 

(4.1.6) C (x): 
a,T, (V,R) 

+ 

. J c 2 (crv(Sn(x)) ,a) d~(x,'i:'n+l (x)) (a). 

A2 

(iii) The average cost functional under (V,R.) is a function c(V,R) (.) on 

J[0, 00 ) defined by 



(4.1. 7) 

Note that by remark 2.2.19. (i) the formula's (4.1.5) and (3.1.2) coincide 

P(V,R)-a.e. We conclude this introduction with two theorems. 

(kl 
THEOREM 4.1.3. Let c(.) and c (.) be cost functionals depending on (V,R) 

(kl (k) . 
and (V ,R ) respectively. If 

(i) P(k) w P 
(V (k) ,R (k)) + (V ,R) 
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(ii) lc(k) (x) I 5 M for all x € Jk[0, 00 ) and all k;;: 1; for some M>O 

( iii) (k) ( ) C ( ) p C . +C., (V,R)-a.e. 

then (4.1.1) holds. 

PROOF. An immediate consequence of corollary 1.2.21. D 

THEOREM 4.1.4. Suppose that (2.4.1) holds, c 1 (.,.) is bounded and A2=~. 
-1 

Denote ak:=exp(-ak ), k;;:1 for some a>O. Then 

(4.1.8) I (k) (k) + 
cak.'(v(k) ,R(k) fx)dP (v(k} ,R(k)) (x) 

Jk[O,oo) 

J ca,(V,R)(x)dP(V,R)(x), ask+ 00 , 

J[O ,co) 

if condition (2.4.5) of theorem 2.4.3 is fulfilled. 

PROOF. Choose M > 0 such that 

for all (s,a) Es x A1 • 

Then 

I (k) I 
c (k) (k) (x) s; 
ak, (V ,R ) 

i:: 
n=l 

-1 
-ank 

e $ Ma -1. 
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For P(V,R) almost all x we have: if d(¾,x) + 0 then 

lllll. (k) ( ) 
c (k) (k) xk 

k.._ llk,(V ,R ) 

Joo 

-1 exp(-ank ) 

r"' -1 J J exp(-ak [tk]) 

t=O Al 

-at 
e ell, (V,R) (x). 

The last but one equality follows from (2.4.5), the continuity of c 1 (.,.), 

corollary 1.2.21. and the consideration that 

if~+ t, 

at all x € J[0, 00 ) for which TitX 

and 4.1.3 completes the proof. 

TI x. Application of theorem 2.4.3 
t-

Theorem 2.4.3 cannot be applied to prove (4.1.8) in case of a general CTMDP 

with impulsive controls and/or unbounded cost rates. In this case we have 

to investigate relation (4.1.1) more closely. 

4.2. THE a-DISCOUNTED COST FUNCTIONAL. 

Let (S,A1 ,A2 ,q,IT,p,c 1,c2 ,f) be a CTMDP, P0 an initial distribution on 
(k) (k) 

Sand (V,R) a policy. Moreover, let (V ,R ) be a policy for the k-th 

approximating DTMDP, k ~ 1. Assume that c 1 (.,.) is bounded from below and 

c 2 (.,.) non-negative. In this section we shall derive sufficient conditions 

for (4.1.8), which meet better the model assumptions of several applications 

than the conditions of theorem 4.1.4. For o > 0 and k ~ 1 we denote 

Wk(ci): = {j € S: T (k) (j) > o}. 
V 

Let {A1 (j): j € s} be a collection of measurable subsets of A1 , with the 

property that there exists a natural number k0 (not depending on j) , such 



that for all k 2 k0 

0 

Let {A2 (j): j Es} be a collection of measurable subsets of A2 , with the 

property that there exists a natural number k0 (not depending on j), such 

that for all k 2 k0 and t 2 0 we have 

(k) c . , f . V (k) (k) , ) 
R2 (x,t) (A2 (J)) = 0 J. 7ftX=JE , . (P (k) (k) x" -a.e. 

V ,R 

THEOREM 4.2.1. Suppose that (2.4.1) holds and that conditions (2.4.3), 

(2.4.4) and (2.4.5) of theorem 2.4.3 are satisfied. Choose a> 0. Then 

(4.1.8) holds if the following conditions are fulfilled. 
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(i) There exist a o0 > 0 and.a natural number k0 such that for all k2k0 and 

n 2 1 

(4.2.1) I p(7r -lx,a,Wk(oo)) 
A nk . 

2 -1 
if T (k) (7r -l x) = k • 

V nk 

(k) -1 
dR2 (x,nk ) (a) 

(ii) There exist a constant S 2 1, real-valued non-negative continuous 

functions h 1 (.) and h 2 {.) on Sand a measurable function 2 from [0, 00 ) 

into [1, 00), such that 

(4. 2. 2) sup I c. ( j, a) I $hi(j), j E S; i 1,2. 
aEA. (j) l 

l 

(4s2. 3) h~{f(j,s)) $ h~{j)i(s), (j, s) E S X ro , 00J ; i 1,2. l J. 

(4.2.4) e-as2(s) $ 1, s 2 0 

(4. 2. 5) r -as 
e 9,{s) ds < 00 

0 

(4.2.6) sup I h~ (j 0 ) dlI (j ,a, jO) $ Sh~ {j), j E S; i 1, 2. 
aEAl {j) l 

s 

(4.2. 7) f 2 2 . sup 
J hi ( j O) dp ( j , a, j O) $ Shi (J), j ES; i 1, 2. 

aEA2 {j) 
s 

(4.2.8) I h~ (j) dPO (j) =:y, < "', i 1, 2. 
l 

s 



86 

(4.2.9l 

(4.2.l0l 

q(.,.l I hi(jl dil(.,.,jl is continuous on S x A1 ; i 

s 

I hi(jl dp(.,.,jl is continuous on s x A2 ; i 1,2. 

s 

1,2. 

(4.2. lll s2 (p(ole-ao + 1 - p(oll < 1 and p(o) ~ 0 for some 0 < o < o0 

where 

2 
p(ol: = 2 exp(-bo-b ol - 1 

b: = sup{q(s,al: (s,al E S x A1L 
PROOF 

In the proof of this theorem we put for abbreviation: P:=P(V Rl, 
.- (kl (nl .- (n) (nl .- (nl .- (k) .-

Pk.-P (kl (k)' p .-P(V R)' pk .-P (k) (k) ' Tk.-1: ,T.-TV' 
(V ,R l ' k,(V ,R l v(kJ 
(kl (kl 

gk:=g (kl, g:=gv, ok:=o (kl and o:=ov. 
V V 

From theorem 2.4.3 foll~ws that 

With the continuous mapping theorem this implies for n >. 1 

(4.2.12l P (n) w (nl 
k + P on J. 

n 

We consider two cases separately, which together yield the proof of the 

theorem. 

Case (i). Assume that c 2 (s,al = 0 for all (s,a) c S x A2 . Put for n ~ 

and k ·~ 1: 

and for n ~ 1: 

f(n): I 
J[0,col 



Then (4. 1. 8) holds if there exist sequences of non-negative real nll!llbers 

{b(n)}, {bk(n)}, k ~ 1 such that 

(4.2.13) 

(4. 2 .14) 

(4. 2.15) 

(4.2.11') E bk(n) ➔ E b(n) < oo 

n=l n=l 
as k + 00 • 

Next we define for z E J 
n 

m !l 
I a 

!l=t k+l k 
n Al 

(the value m=00 is supposed to'be included in the first summation) and 

Then 

and 

u(z): r 
t=t 

n 

-at 
e 

J c 1 (f(jn,t-tn) ,a)dR1 (g(z) ,t) (a)dt dQ(n) (z) (s,j). 

Al 

I ~ (z) dPt) (z) 

J (k) 
n 

f(n) J u(z) dP(n) (z). 

J 
n 

Hence we conclude from (4.2.12) and corollary 1.2.21 that sufficient for 

87 

(4.2.13) is the existence of non-negative functions v(.) and vk(.) on Jn and 

Jn(k) respectively, such that 

(4.2.17) 
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(4.2.18) 

(4.2.19) 

(4.2.20) 

Fran lemma 

and 

fork~ 1 

C 
vk(.) +v(.), 

(n) 
P -a.e. 

I vk(z) dPt) (z) + f v(z) dP (n) (z), ask+ 00 • 

J (k) J 
n n 

4.2.2.(i) below follows that (4.2.17) holds. Next we define 

-at 
v(z): = l[o,ooj (tn) hl (jn)e n 

i: 
m=l 

-1 
e -mnk R, (mk -1) 

Joo -as 
e R.(s)ds. 

0 

Then (4.2.18) holds by virtue of lemma 4.2.3.(i) below; (4.2.19) follows 

from (4.2.5) and the continuity of h 1 (.) and (4.2.20) follows from lemma 

4.2.5 below. 

What remains to prove is the existence of sequences {b (n) } , {bk (n) } , k ~ 

such that (4.2.14), (4.2.15) and (4.2.16) hold. 

By Schwarz' inequality we have 

(4.2.21) 

[ I 
J (k) 

n 

Combining (4.2.21) with (4.2.8) and lemmas 4.2.4 and lemma 4.2.6 below 

yields for all o $ o0 for which p(o) ~ 0 and for all k large enough 

(4.2.22) 

Put 

00 -1 
l: e-amk R.(mk-1) 

m=l 
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and 

b(n): 
n-1 n ½ -a.cS --

(S y 1) (e p(cS)+l-p(cS)) 4 Joo 
-as e 2(s)ds 

0 
2 -a.a with O < o ~ cS 0 such that S (e p(cS)+l-p(o)) < 1, which is possible by 

virtue of (4.2.11). 

One easily verifies with (4.2.22) that these choices for {bk(n)} and {b(n)} 

satisfy (4.2.14), (4.2.15) and (4.2.16). This completes the proof of case 

(i). 

Case (ii). Assume that c 1 (s,a) = O for all (s,a) ES x A1• 

For z = (t1 ,j 1 , ..• ,t ,j ) E J (k) and E J respectively, let;:;_ (z) and _ n n n n K 

u(z) represent the expected discounted costs upto the next jump epoch under 

policy (V(k) ,R(k)) and (V,R) respectively, i.e. 

'-\ (z): 

and 

u(z): 

J c2(cr~(jn) ,a)dRt) (gk(z) ,tn+Tk(jn)) (a) 

A2 

Q(n)(z)({T(j )+t} x S). 
n n 

J c2 (a (jn) ,a)dR2 (g(z) ,tn+T (jn)) (a). 

A2 

When Tk(jn)=00 or T(jn)=00 the right hand sides are interpreted as zero. Put 

and 

J ~ (z) dPt) (z) 

J (k) 
n 

f(n): J u(z)dP(n) (z) • 

J n 
Then (4.1.8) holds if there exist sequences of non-negative real numbers 
- -

{b(n)}, {bk(n)}, k ~ 1, such that 
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(4.2.23) as k ->- oo; n :2: 1 

(4.2.24) for n :2: 1 and k :2: 1 

(4.2.25) ask->- 00 ;n:2:l 

-
(4.2.26) L bk(n)->- r b(n) 

n=l n=l 
< 00 ask->- 00 • 

Sufficient for (4.2.23) is the existence of non-negative functions v(.) and 

;k(.) on Jn and Jn(k) respectively, such that 

(4.2.27) 

(4.2.28) 

(4.2.29) 

(4.2. 30) 

- () c () P(n)_a.e. ~ • ->- U • I 

k :2: 1 

(n) 
p -a.e. 

vk(z) dP~n) (z)->- I ;(z) dP(n) (z), 

J 
n 

From lemma 4.2.2.(ii) below follows that (4.2.27) holds. 

Define fork :2: 1 and for z 

respectively 

-at 
v(z):=h(j)e n 

2 n 

ask->- 00 • 

The rest of the proof proceeds similarly as in case (i). n 

We assume that all quantities introduced in theorem 4.2.1. preserve their 

meaning in the next five lemma's. 

C 
P(n)_a.e. LEMMA 4.2 .2. (i) ~(.) ->- u(.), 

C 
P(n)_a.e. (ii) ~(.) ->- u(.), 
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PROOF. Let z = (t1 ,j 1 , ..• ,tn,jn) E Jn, with tn < 00 and 

z(k) = (t1 (k),j 1 (k), .•. ,tn(k),jn(k)) E Jn(k), k ;o: 1 such that z(k) ➔ z. 

(i) By interchanging the summation in the definition of~(.) we have 

, t (n) -1 + 
(4.2. 31) ~ (z (k)) = l akQk (z (k)) ([tk , 00 ] x S ) 

2=tn(k)k+l 

f -1 -1 (k) -1 
k c 1 (f(jn(k),tk -tn(k)),a) dR1 (gk(z(k)),tk )(a). 

Al 
From lemmas 2.4.4 and 2.4.6 follows that for \-almost alls 

for any sequence sk ➔ s. 

Combining (4.2.31), (4.2.32), the continuity of c 1 (.,.), (2.4.5), (4.2.2), 

(4.2.3) and (4.2.5) yields 

lim ~(z(k)) 
k➔oo 

foo -at (n) [ + f . = e Q (z)( t, 00 Jxs) c 1 (f(Jn,t-tn),a)dR1 (g(z),t)(a)dt = 

t=t A 
n (n) 1 

u(z), P -a.e. 

(ii) From lemma 2.4.4 follows with (2.4.3) that 

(4.2. 33) 

Together (4.2.33), the continuity of c 2 (.,.), (2.4.3), (2.4.4) and the 

definition of ~ (.) and ; (.) yield 

lim ~(z(k)) 
k➔oo 

-a (t +T (j ) ) 
Q(n) (z) ({T(j )+t } x S)e n n 

n n 
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LEMMA 4.2.3. (i) 11\(z) I s ~k(z) 

(ii) l~(z) I s vk(z) 

for all z E Jn(k), k ~ 

for all z E Jn(k), k ~ 1. 

PROOF. From (4.2.31), (4.2.2) and (4.2.3) follows (i), while (ii) is a 

consequence of the definition of 1\(z), (4.2.2), (4.2.3) and (4.2.4). 0 

LEMMA 4.2.4. 

$ s I 

-a.t 
e n+lh~(j l)dPk(n+l) (z) s 

l. n+ 

-a.t 
e n h~(j )dPk(n) (z) 

l. n 
J (k) 

n 

for all k ~ k0 , n ~ 1; i 1, 2; R,=1, 2. 

We prove the lemma for R-=1. The proof for R,=2 proceeds similarly. 

PROOF. From Schwarz' inequality,, (4. 2. 6) and (4. 2. 7) follows 

(4.2. 34) sup r hi (jO) dII (j ,a,j 0 J $ Shi (j l , J aEAl (j) s 

and 

(4.2. 35) sup J hi (jol dp(j ,a,j 0 J $ Shi (jl, 
aEA2 (j) s 

Next we observe that 

(4.2.36) 

I 
J (k) 

n 

-a.t 
e n+lh. (. ) dPk(n+l) (z) 

i Jn+l 

j ES; i 1,2. 

jES;i 1,2. 

By the definition of Q~n) (see definition 2.3.7) we find for 

z = (tl,jl, ... tn,jn) 



(4.2.37) J + e -athi (j) dQt) (z) (t,j) 

[0,oo]xs 

Tk(jn)k-l m-1 

l II 
m=1 .Q.=1 

J -1 -1 -1 
{1-k q(f(jn,,Q,k ),a)+k o(l)} 

Al 

f -1 -1 J k q(f(jn,mk ) ,a) 

Al 

J hi (j)dll(f(jn,mk-1) ,a,j)dRt) (gk(z) ,mk-1+tn) (a) + 

s 

Tk(j )k-1 
nil 

,Q,=1 

From (4.2.37) follows with (4.2.33), (4.2.34) and (4.2.3) that 

(4.2. 38) 

~ Se 
-at 

n h. (. ) 
i Jn 
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Now (4.2.36) and (4.2.38) together with (4.2.4) yield the proof. D 

LEMMA 4.2.5. For all n ~ 1 

J -at 
+ e n h. (j )dP(n) (z), 

1. n 
ask+ 00 • 

J 
n 
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PROOF. The proof proceeds by induction on n. For n 

from the equality 

1 the lemma follows 

J 
-at1 

hi (\l dP~l) (z) J hi (j)dP0 (j) e 

Jl (kl s 

r -at1 
hi(j 1) dP(l)(z). 

J e 

Jl 

Suppose the lemma is true for n. 

By (4.2.36) and (4.2.12) it is sufficient to show that there exist non­

negative functions w(.), wk(.) on Jn and Jn(k), k ~ 1 respectively, such 

that 

(4.2.39) 

(4.2.40) 

(4.2.41) 

(4.2.42) 

ask+ 00 • 

C 
wk(.) + w(.), P(n)_a.e. 

I 
J (kl 

n 

wk (z) dP~n) (z) + j w (z) dP (n) (z) , 

J 
n 

for z E J (k) 
n 

as. k + 00 • 

From (4.2.37) we find with application of (4.2.9) and (4.2.10) that 

(4. 2. 39,) holds. 

-at 
w(z): =wk(z) = Se nhi(jn). 

Then ( 4. 2. 40) follows from ( 4. 2. 3 8) ; ( 4. 2. 41) follows from the continuity 

of hi(.) and the induction hypothesis yields (4.2.42). D 



-Clt 
LEMMA 4.2.6. f e 2n dP~ 2n) (z) $ 

J2n(k) 

-Clo n 
( e p ( o) + 1-p ( o) ) 

for all O < o < o0 with p(o) ~ 0, all n ~ 1 and all k larqe enough. 

PROOF. From (4.2. 1) follows, with the same arguments as used in the proof 

of theorem 2.2.18. that for all O $ o < o0 , alls~ t and all k large 

enough 

(4.2.43) (n+2) . n+2 I . n+2 
Pk ({z=(t.,1.). 1:t 2$t+o} {z=(t.,i.). 1:t =s}) $ 

J J J= n+ J J J= n 

where p(o) 
2 

2 exp(-bo-b o) - 1. 

Choose O < o < o0 such that p(o) > 0 and define a sequence (Xm):=l of 

independent random variables on a common probability space (n,A,JP), such 

that for all m ~ 1 

and 

lP(Xm = 0) = 1 - p(o). 

Then we get from (4.2.43) by induction on n for all k large enough 

n 
(2n) { _ . 2n . < } Pk z-(t.,i.). 1 .t2 - t $JP( I: X $ t), 

J J J= n m=l m 

This in turn implies 

(4.2.44) f 
-Clt r 

e 2ndP~2n) (z) $ J e 

-Cl 

J2n(k) n 
Since the right hand side of (4.2.44) equals 

n 
I: X (w) 

m=l m 
dJP (w). 

n 2: 1 , 

n kc k k -CLO n 
I: tl e-Cl (p(o)) (1-p(o))n- = (e p(o)+l-p(o)) 

k=O k 

the lemma follows. 0 

95 
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Theorem 4. 2 .1 can be successfully applied to prove structural properties of 

optimal policies for CTMDP's. To make this explicit we need some definitions. 

DEFINITION 4.2.7. 

(i) Let (S,A1,A2,P1,P2,c1,c2,f,k) be a DTMDP and Po an initial 

distribution on S. Assume that ci(.,.) is bounded from below, 

i = 1,2. Let R denote a certain class of policies for this process. 

A policy (v*,R* is called a-discounted optimal in R if for every 

policy (V, R) E R 

(k) (k) 
ca' (V ,R) dP (V ,R) (x). 

(ii) Let (S,A1 ,A2 ,q,Il,p,c1 ,c2 ,f)beacT~mPandP0 an initial distribution on 

S. Assume that c 1 (.,.) is bounded from below and c2 (.,.) non-negative. 

Let R denote a certain class of policies for this process. A policy 

(v*,R*) is called a-discounted optimal in R if for every policy 

(V,R) E R 

r 
J 

J[O,oo) 

ca,(v*,R*) (x)dP<v*,R*) (x)s; I ca,(V,R) (x)dP(V,R) (x). 
J[ 0 ,co) 

Similar definitions can be given for optimality with respect to finite 

horizon cost functionals. 

DEFINITION 4.2.8. Let (S,A1,A2,q,Il,p,cl,c2,f) be a CTMDP and po an initial 

distribution on S. Assume that c 1 (.,.) is bounded from below and c 2 (.,.) 

non-negative. A regular policy (V,R) for this process is called strong 
. (k) (kl 

regular if there exists for all a > 0 a policy (V ,R ) for the k-th 

approximating DTMDP, k :::: 1 such that. (4.1.8) holds. 

THEOREM 4.2.9. Let (S,A1,A2,q,Il,p,c1,c2,f) be a CTMDP and po an initial 

distribution on s. Assume that (2.4.1) holds, that c 1 (.,.) is bounded 
-1 

from below and c2 (.,.) non-negative. Put ak: = exp(-ak ) for some a> 0. 

* * Let (Vk 1 ¾) be a ak-discounted optimal policy for the k-th approximating 

DTMDP in the class of all policies, k:::: 1. If there exists a policy 
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*- * * * * * 00 (V ,R) for the CTMDP such that (V ,R) and (Vk.,Rk.lJ._l satisfy (4.1.8) 
00 * * J J -

for some subsequence (k.). 1 then (V ,R) is a a-discounted optimal policy 
J J= 

in the class of strong regular policies. 

PROOF. Assume the contrary i.e. suppose there exists a strong regular 

policy (V,R) such that 

(4.2.45) I c (x) dP(V,R) (x) < a., (V,R) J ca.,(v*,R*)(x)dP(v*,R*l(x). 
J[O,oo) J[Q,oo) 

. (k) (k) 
Since (V,R) is strong regular there exists fork<>: 1 a policy (V ,R ) 

for the k-th approximating DTMDP, such that 

(4.2.46) I c (k) (k) + 
a. (k) (k) (x) dP . (k) (k) (x) 

Jk[0, 00 ) k,(V ,R ) (v ,R ) 

+ I ca.,(V,R) (x)dP(V,R) (x), ask+ 00 

J[O ,oo) 

Fro~ the assumptions of the theorem follows 

(4.2.47) 

+ I ca.,(v*,R*)(x)dP(v*,R*)· 
J[ 0 ,oo) 

Together (4.2.45), (4.2.46) and (4.2.47) contradict the optimality of 

* * (Vk. •I\.) for j large enough. D 
J J 

THEOREM 4.2.10. Let (S,A1,A2,q,rr,p,c1,c2,f) be a CTMDP and Po an initial 

distribution on S. Assume that (2.4.1) holds, that c 1 (.,.) is bounded 
-1 

from below and c2 (.,.) non-negative. Put a.k: = exp(-a.k ) for some a.> 0. 

Let (V(k) ,R(k)) be a a.k-discounted optimal policy for the k-th approximating 
(k) (k) (k) . 

DTMDP in the class of all policies, with R =(Rl ,R2 ). A policy (V,R) 

for the CTMDP is a-discounted optimal in the class of strong regular 

policies if at least one of the following three sets of conditions is 

fulfilled: 
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(i) 

(4.2.48) 

(ii) 

lim inf 
k-+-oo 

(k) (k) 
c (k) (k) (x) dP (k) (k) (x) ;,, 
ak,(V ,R ) (V ,R ) 

;,, J ca, (V ,R) (x) dP (V ,R) (x) 

J[Q,00) 

c 1 (.,.) is non-negative; (2.4.3), (2.4.4) and (2.4.5) hold and 

(k) ( ) > 
lim inf C (k) (k) ¾ - ca, (V ,R) (x) 

k-+-oo ak, (V ,R ) 

for any sequence (¾):=l with d(¾,x) + 0, P(V,R)-a.e. 

(iii) c 1 (.,.) is non-negative; V=~ and (2.4.5) holds. 

PROOF. 

(i) The proof of theorem 4.2.9 goes through with replacement of (4.2.47) 

by (4.2.48). 

(ii) An immediate consequence of theorem 2.4.3, corollary 1.2.23 and part 

(i). 

(iii) Since V =~we have 

ca, (V ,R) (x) Joo e-at J c 1 (TTtx,a) dRl (x,t) (a)dt 

0 

while 

(k) -1 00 n J (k) -1 c (k) (k) (x)=k I: ak c 1 (TT _1x,a)dR1 (x,nk ) (a). 
ak,(V ,R ) n=l A nk 

1 
Hence for any sequence (¾) for which d(¾,x) + 0 

lim inf C (k) (k) (k) (¾) 
ak, (V ,R ) 

= lim inf J00 e-ak-l[tk] J 
k+oo t=O A 

1 



Joo 

;:,: 

0 

-o.t 
e lim inf 

k+oo 

co., (V,R) (x). 

Application of part (ii) completes the proof. D 

For applications of the theorems 4.2.9 and 4.2.10 the reader is referred 

to chapters 5, 6 and 7. 

4.3. THE o.-DISCOUNTED FINITE HORIZON COST FUNCTIONAL. 
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For the o.-discounted finite horizon cost functional we have an analogy 

of theorem 4.2.1. 

THEOREM 4.3.1. Let (S,A1,A2,q,Il,p,c1,c2,f) be a CTMDP, po an initial 

distribution on S, (V,R) a policy and (V(k) ,R(k)) a policy for the k-th 

approximating DTMDP, k;:,: 1.,Assume that c 1 (.,.) is bounded from below and 
-1 

c2 (.,.) non-negative. Choose o. > 0, put o.k: = exp(-o.k ) and let T > 0. If 

the conditions of theorem 4.2.1 hold, then 

C (x) dP (k) (x) + 
T (v (k) R(k)) (k) (k) 

o.k'k' , (V ,R) 

+ J co.,T,(V,R)(x) dP(V,R)(x) 
J[O,oo) 

ask+ 00 , for any sequence (Tk) of natural numbers for which k-1Tk + T and 

for any T for which 

(4. 3.1) 
(n) 

p(V,R) {z T} o, n ;:,: 1. 

~- The proof proceeds along the same lines as the proof of theorem 

4.2.1 and hence it will be omitted. D 

From theorem 4.3.1 we can easily derive a finite horizon analogy of theorem 

4.2.9. However, this analogy is not as useful as theorem 4.2.9 itself, since 

in most finite horizon applications with impulsive controls there does not 

exist an optimal policy with time independent impulsive control set. 
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4.4. THE AVERAGE COST FUNCTIONAL. 

The analysis given in section 4.2 for the a-discounted cost functional 

fails for the average cost functional. Even for a CTMDP 

(S,A 1,A2 ,q,IT,p,c1 ,c2 ,f) with A2 =~and lc1 (.,.) I bounded, the conditions of 

theorem 2.4.3 do not ensure that 

(4.4.1) 
(k) (k) 

c (k) (k) (x)dP (k) (k) (x) + 
(V ,R ) (V ,R ) 

+ I c(V,R) (x)dP(V,R) (x), 
J[0,oo) 

ask+ 00 

EXAMPLE 4.4.1. Put S = {1,2}; A1 = [0,l]; A2 = ~; q(i,a) = a for 

(i,a) € S x A 1; IT(1,a,{2}) = IT(2,a,{l}) = 1 for all a€ A1 ; 

c 1 (1,a) = c 1 'I- c2 = c 1 (2,a), a € A1 ; f(i,t) = i for (i,t) € S x [0,oo). 

Suppose the initial distribution is given by P0 ({1}) 1. Let (V,R) be a 

policy for this process-defined by V =~and R1 (x,t) 

J[0,oo) X [0,oo). 

0 for all (x,t) € 

Define fork~ 1 a policy (V(k) ,R(k)) for the k-th approximating DTMDP by 
(k) (k) -1 , 

V =~ and Rl (x,t) = k for a~l (x,t) € Jk[0, 00 ) x ~-

Note that condition (2.4.1) holds, (2.4.3) and (2.4.4) are trivially 

satisfied and (2.4.5) follows from the definitions of R1 and Rt). However, 

and 

I c (V ,R) (x) dP (V ,R) (x) cl 
J[0,co) 

(k) (k) 
c (k) (k) (x)dP (k) (k) (x) 

(V · ,R ) (V ,R ) 
k ~ 1. 

The problem is that for the most simple cost structure the average cost 

functional is not necessarily continuous on J[0, 00 ). To provide an analysis 

for the average cost functional similar to that given in section 4.2 for 

the a-discounted cost functional we have to endow J[0, 00 ) with another metric 

under which the average cost functional becomes continuous. 
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Although it seems worthwhile to deduce general conditions which ensure 

that (4.4.1) holds, we have chosen another way in dealing with the average 

cost functional. In order to obtain sufficient conditions for the 

existence of (structured) stationary average optimal policies for a CTMDP 

we derive sufficient conditions which guarantee that a "limit point" 

of a sequence of ak-discounted optimal policies with ak converging to 0 

is an average optimal policy for the CTMDP. When these conditions are 

satisfied we are able to carry forward structural results of optimal 

policies for a CTMDP from the discounted cost case to the average cost 

case. In this transition no discretization procedure is involved. Hence 

in obtaining structural results for an average optimal policy for a CTMDP 

we propose the following path: first of all analyse the discounted 

optimal policy for the k-th approximating DTMDP, then use theorem 4.2.9 

to carry over structural results to the discounted optimal policy for the 

CTMDP and finally use the analysis of this section (theorem 4.4.6) to 

carry over structural results to the average optimal policy for the 

CTMDP. 

DEFINITION 4.4.2. Let (S,A1,A2,q,IT,p,cl,c2,f) be a CTMDP and po an initial 

distribution on S. Assume that c 1 (.,.) is bounded from below and c 2 (.,.) 

non-negative. Let R denote a certain class of policies for this process. 

* * A policy (V ,R) is called average optimal in R if for every policy 

(V,R) E R 

lim sup t- 1 
t-->oo 

I cO,t,(v*,R*) (x)dP(v*,R*) (x) ~ 
J[O,oo) 

~ lirn sup t-l 
t-->oo 

r J cO,t, (V,R) (x)dP(V,R) (x). 
J[Q,oo) 

We need the following well-known Abelian theorem. 
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THEOREM 4.4.3. Let w(.} be a non-neqative, non-decreasing function on 

[0, 00 ) with w(0) = 0 and put 

f (a): roo 

e -atdw(t), a> 0. 
J 

0 

If f(a) < 00 for all a> 0 then 

(4. 4. 2) 

and 

(4 .4. 3) 

lim sup af(a) 
a-+O+ 

-1 
~ lim supt w(t) 

t-+<» 

lim inf af(a) ~ lim inf t- 1w(t). 
a➔O+ t-+<» 

PROOF. (see also WIDDER (1946), page 181). 

Since f(a} < 00 and w(0) = 0 we have 

f (a) = a 

Hence 

(4.4.4) 

foo 

e-atw(t)dt, 
J, 

a> 0. 

0 

0 

e-atw(t)dt + sup t- 1w(t) 
t~T 

for all T > 0. 

Since f(a) < 00 for all a> 0 we can find a constant M such that for all t>0 

whence 

(4. 4. 5) 
2 rT 

a J e-atw(t) dt 

0 

From (4.4.4) and (4.4.5) follows that for all T > 0 

lim sup af(Cl) 
a-+O+ 

~ sup t- 1w(t) 
t~T 

By allowing T to become infinite we find (4.4.2). The proof of (4.4.3) is 

similar. [J 



REMARK 4.4.4. Relations (4.4.2) and (4.4.3) are also valid when f(a) 00 

for some a> 0. 

NOTATION 4.4.5. Let (S,Al,A2,q,IT,p,cl,c2,f) be a CTMDP and po an initial 

distribution on S. For any policy (V,R) we denote 

c( (V,R) ,a): f c (x) dP (V, R) (x) a, (V,R) 
J[O ,oo) 
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(the expected a-discounted costs under (V,R); see also definition 3.1.2); 

c(V,R) (t): r J c (x) dP (V,R) (x) 0,t, (V,R) 
JlO,ooJ 

(the expected total costs over [0,t] under (V,R)); 

c(V,R): 
-1 

lim supt c(V,R) (t) 
t->«> 

(the average expected costs under (V,R)). 

THEOREM 4.4.6. Let (S,A 1 ,A2,q,IT,p,c 1 ,c2 ,f) be a CTMDP, PO an initial 

distribution on Sand (a£);=l a sequence of positive real numbers 

converging to zero. Assume that c 1 (.,.) and c 2 (.,.) are non-negative. 

Suppose that for£~ 1 the policy (v* ,R*) is a£-discounted optimal in 
- a 0 a£ 

a given class R. If there exists a policy (V*,R*) such that 

(4.4.6) * * * * c(V ,R + c(V ,R) 
a£ a£ 

as £ + 00 

and if 
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(4.4. 7) as T -->- co 

where 

then (v*,R*) is average optimal in the class R 

PROOF. Let (V,R) be an arbitrary policy from R, such that 

(4.4.8) c((V,R),ct) < co for all a> 0. 

Since for all x E J[0, 00 ) and all ct> 0 

ca, (V,R) (x) 

rco 

J e-atdc (x) 
0,t, (V,R) 

t=0 

it follows that 

c( (V,R) ,ct) rco 

e -atdc (V, R) (t). 

t=0 

From theorem 4.4.3. we find with (4.4.8) 

(4.4.9) c (V, R) ::0: lim sup a c ( (V, R) , ct) . 
ct-->-0+ 

* * From the a9,-discounted optimality of (V ,R ) in R follows 
ct 9, ct 9, 

(4.4.10) for 9, ::o: 1. 

Note that 

for all T > 0. 



Hence 

* * lim sup aQ,c((V ,R ) ,aQ,) ~ 
i--- aQ, aQ, 

-a T 
~ lim sup e Q, (1+aQ,T) inf -1 * * { t c (V , R ) ( t) } 

aQ, aQ, 

Combining 

(4.4.11) 

Combining 

(4.4 .12) 

Q,_,.,,, t~T 

this with 

lim sup 
i---

(4.4. 7) we 

- su:o 
Q, 

find by 

* * aQ,c((V ,R ),aQ,) ~ 
aQ, aQ, 

(4 .4.10) and (4.4.11) yields 

allowing T to 

* lim sup c(V 
i--- a 

Finally (4.4.9), (4.4.12) and (4.4 .6) yield 

* * c(V,R) ~ c(V ,R), 

which proves the theorem. D 

become 

* ,R 
a 

) . 
Q, Q, 

105 

infinite 

REMARK 4.4.7 (i). From the proof of theorem 4.4.6 follows immediately that 

condition (4.4.6) can be relaxed to 

* * * * lim sup c(V ,R ) ~ c(V ,R) 
Q,-+«> aQ, CJ.Q, 

(ii). It is worthwhile to notice that theorem 4.4.6 connects the 

a-discounted cost case with the average cost case without using any 

optimality equation. 

(iii) The conditions of theorem 4.4.6 only concern the at-discounted 

optimal policies which implies that all bad policies can be disregarded. 

The verification of condition (4.4.6) is simple in those applications where 

* * the exact computation of c(Va,Ra) is possible. In chapters 5, 6 and 7 we 

give some examples of this situation. 
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Condition (4.4.7) however, is in general not easy to verify since the 

expected total costs over finite intervals are involved. In theorem 4.4.11 

below we give sufficient conditions for (4.4.7) which are much easier to 

verify than (4.4.7) itself. 

First we need some definitions. 

DEFINITION 4.4.8. Let X be a random element of J~0, 00). A random element T 

of [0, 00 ] is called a stopping time for X if 

for all t ~ 0, 

where 73 is the product of the a-algebra's {(rr X)- 1S,·o :c; s :c; t} (see also 
t s 

NEVEU (1965), page 99). 

DEFINITION 4.4.9. Let X be a random element of Ji0, 00), defined on (~,A,P). 

Xis called a regenerative stochastic process if there exists a sequence 

(Tn)~=O of stopping times for x, such that 

(i) (Tn)~=O is a renew~l process 

(ii) for any n,m E JN, t 1 , .•• ,tn E [0, 00 ) and any bounded function h defined 

on (S+)n: 

E h(rrt X, ... ,TT X). 
1 tn 

(see also GINLA::l. (1975), page 298). 

REMARK 4 .4 .10. 

(i) The sequence (Tn)~=O is called the sequence of regeneration epochs. 

(ii) In definition 4.4.9. above the function rr 00 (.) from J[0, 00 ) into S+ is 

defined by rr00 (x): = I;; for all x E J[0,00 ). 

(iii) Since the function 1T from J[0, 00 ) x [0, 00 ] into S+, defined by 

1T (x,t): = rrtx is measurable, it follows from proposition III.6.1 on page 101 

of NEVEU (1965) that for any stopping time T for X the mapping rr X from n 
+ T 

into S (defined by TT X(w): = 1T ( )X(w)) is B -measurable. Hence the 
T T W T 

expressions in definition 4.4.9 are well-defined. 



THEOREM 4.4J1. Let (S,Al ,A2,q,IT,p,c1 ,c2,f) be a CTMDP and po an initial 

distribution on S. Assume that c 1 (.,.) and c 2 (.,.) are non-negative. 

Suppose that for all a> 0 the policy (V ,R) induces on Jr0, 00 ) a 
a a 

regenerative stochastic process Xa with sequence of regeneration epochs 

(T ) 00 

0 , all defined on (Q,A;:IP). Define for n ~ 1, a> O and w E Q 
n,a n= 
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Y (w): 
n,a co,, (\ll),(Va,RJ (Xa(w))-co T (w) (V R) xx (W)). 

n,a ~ ' n-1,a ' r:J. a a 

Then ((Va,Ra))a>O satisfies (4.4.7) for any sequence (at)~=l converging to 

zero if the following three conditions are satisfied: 

(4 .4.13) I 2 
dll?(w) sup Tl (w) < 00 

a 
,a 

Q 

(4.4.14) inf I T 1 ,a (w) dll?(w) > 0 
a 

Q 

(4.4.15) sup 
a 

< 00 

PROOF. From definition 4.4.6. follows that (Y ) 00 

1 is a sequence 
n,a n= 

of independent, identically distributed random elements of [0, 00 ] for all 

a> 0. Denote fort~ O, a> 0 and w E Q 

N (w): = sup{n: T (w) $ t}. 
t,a n,a 

Then 

Nt (w) +1 

c(V,R)(t)~J{ ,al Y (w)-Y,1 ()+l(w)}dlP(w). 
a a _1 n,a "t w 

. Q n- ,a 
(4.4.16) 

Since N + 1 is a stopping time for (Y ) 00 we find by Walds equation: 
t,a n,a n=l 

(4.4 .17) 

where M (t): 
a 

I 
Q 

N (w)+l 
t,a 

I 
n=l 

Y (w) dlP(w) 
n,a 

EN , fort~ 0 and a> O. 
t,a 

A well-known inequality in renewal theory states 
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(4.4.18) M (t) > __ t_ - 1 
a - E,1,a 

and from the theory of regenerative processes we know by (4.4.13), 

(4.4.14) and (4.4.15) that 

(4 .4.19) 
EYl,a 

c(V ,R) = ---
a a E,1,a 

Combining (4.4.16) upto (4.4.19) yields 

(4.4. 20) 

Hence sufficient for (4.4.7) is 

(4.4. 21) 

Put 

sup sup t- 1EY ➔ 0 
N +1 

a t2'T t,a 

f (t): 
CJ. EYN +1. 

t,a 

By conditioning on , 1 we find 
,a 

as T ➔ 00 • 

f (t) 
CJ. 

.r
t 

f (t-s) dlPT -1 l (s) 
a ,a 

I -1 
E (Yl , 1 =s) d1P, 1 (s) • 

,a ,a. ,a. 
0 t 

The solution of this renewal equation is 

f (t) 
CJ. 

rt 
J ha ( t-s) ill\" (s) + ha (t) 

0 

where 

foo E(Yl 1,1 
I (l, IC( 

-1 
- s)d!PT 1 (s). 

,a 
t 

Note that ha(.) is a non-increasing function and by (4.4.15) 

sup ha (0) 
CJ. 

Hence we conclude from 

sup EY1 ,a 
CJ. 

< 00 
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-1 -1 -1 rt 
sup supt EYN +lST sup ha(0)+T sup sup j h (t-s)dM (s) 

a t~T t,a a a t~T 0 a a 

that sufficient for (4.4.21) is 

(4.4.22) T-l sup sup Jt h (t-s) dM (s) + 0 
> a a a t_T O 

as T + "'· 

From the monotonicity of ha(.) we find 

(4.4.23) ft ha(t-s) dMa(s) S 

0 
1 t l-1 

S ~ h (t-n-1)(M (n+l)-M (n)) +h (0)(M (t)-M (1t])). 
n=0 a a a a a a 

From a result obtained by STONE (1972) follows that 

2 
3ETl 

(4.4.24) M (t) 
Ct 

s __ t_ + ___ , _a_ 

ETl,a (ETl )2 
,Ct 

Combining (4.4.18) and (4.4.24) yields 

(4 .4.25) M (n+l) - M (n) 
a a 

From (4.4.24) and (4.4.25) we conclude that for all t ~ 0 

(4.4.26) Ith (t-s) dM (s) s 
Ct Ct 

0 

$ (1 + __ 1_ + 
ET1,et 

Finally we note that 

J"' ha (s) ds 

0 

2 
3ETl 

,Ct ) 

2 
(ETl ) 

,Ct 

E (Yl Tl ) 
'ct , a, 

(:'.!ha (0) + r ha (s) ds) . 

0 

which implies by Schwarz' inequality together with (4.4.13) and (4.4.15) 

that 

(4 .4. 27) 
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Combining (4.4.26), (4.4.13), (4.4.14) and (4.4.27) vields (4.4.22) which 

completes the proof. D 

Theorem 4.4.6 in combination with theorem 4.4.11 can be successfully 

applied to prove structural properties of average optimal policies for 

several CTMDP's. Examples will be given in the next three chapters. 
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CHAPTER 5 

AN M/M/1 QUEUEING MODEL 

5.1. INTRODUCTION AND ASSUMPTIONS. 

Our first application is an M/M/1 queueing system with controllable 

arrival- and service rate and with infinite queue capacity. The decision 

maker can dynamically select the service rate in order to cope with random 

fluctuations in the arrival process. Moreover we assume that also the 

arrival rate of customers can be controlled by advertising or price 

adjustment. 

The parameters of the process are specified as follows. In a service 

station with one server customers arrive according to a Poisson process 

with arrival rate v, which can be varied within the interval [v 1 ,v2J, where 

0 :,; v 1 :,; v 2 < 00 • The service times of the customers are independent random 

variables with negative exponential distribution with parameterµ when 

service rateµ is used. The service rateµ can be varied within the 

interval [µ 1,µ 2] where 0 :,; µ1 :,; µ2 < 00 • The cost structure consists of 

three parts: a holding cost rate b(i) is incurred when i customers are in 

the system; there is an income rate b 1 (v) when arrival rate vis 

maintained and a service cost rate b 2 (µ) is incurred when service rateµ 

is used. 

Semi-Markov versions of this model have been studied by CRABILL (1972), 

SABET! (1973), LOW (1974), LIPPMAN (1975) and SERFOZO (1981). 

For this model we define the following CTMDP. 
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(5.1.1) 

S: = {0,1,2, ... } 

Al: [v1,v2] X 1µ1,µ2] 

A2: ~ r· i > 0 

q(i, (v,µ)): (v,µ) 

v, i 0 

. {":' 
j i - 1 

IT(i, (v,µ) ,j): 

j i + v+µ 

IT(0, (v,µ) ,1): = 1, (\!, µ) E Al 

c 1 (i, (v,µ)): 

f(i,t): = i, t 2 o, i E s. 

E Al 

0 < i ES; (v,µ) E Al 

The state of ths system denotes the number of customers in the system. The 

set of controls is the cartesian product of the set of all possible arrival 

rates and the set of all possible service rates. Impulsive controls are not 

allowed. The cost rate consists of three additive parts: holding cost rate 

b(i), income rate b 1 (v) and service cost rate b 2 (µ). Finally the drift 

function is constant in time. 

The following assumptions are made on the model parameters. 

ASSUMPTION 5.1.1. 

(i) b(i): = bi, i ES for some constant b > 0. 

(ii) b 1 (.) and b2 (.) are continuous and non-negative. 

(iii) \)2 2 µ2 2 \)1 2 µ1. 

Assumptions 5.1.1. (i) and (iii) are made for ease of presentation but can 

easily be relaxed. 

Note that by this assumption model (5.1.1) yields a well defined CTMDP, 

for which assumption 2.2.2. holds. 

If we replace in (5.1.1) the income function -b1 (.) SO by 

-b1 (v) + sup b1 (v) 2 0 
w[v 1 ,v2J 

then for every x E J[0, 00 ) the a-discounted cost functional under (V,R) 

changes with the same amount a-l sup{b1 (v): v 1 s \! s v 2}. Similar 
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assertions hold for the a-discounted, T-horizon and average cost functional. 

This implies that we can replace -b1 (.) by b 1 (.), as far as the optimality 

of policies is concerned. Hence we will consider model (5.1.1) with 

b 1 (.) ~ 0 instead of -b1 (.) s 0. For all k > v2 + µ2 the k-th approximating 

DTMDP is defined by (S,A1 ,¢,P{k) ,-,c{k) ,-,f,k), where 

(k) ( . ( ) . ) P1 i, v,µ ,J : 

k µ r -1 1-k (v+µ) , 
-1 k V 

{

1 -

-1 
k V 

-1 k v, 

j i - 1 

j i i > o, (v,µ) E Al 

j i + 1 

j 0 

j 

REMARK 5.1.2. Let (V,R) be a deterministic policy with R = (R1 ,R2 ). Since 

A2 =¢the impulsive control rule R2 and the impulsive control set V are in 

fact irrelevant. Since A1 is [v1 ,v2J x [µ 1 ,µ 2 ] any deterministic control 

rule R1 is two-dimensional. Therefore we use in this chapter a slightly 

different notation. A deterministic policy will in this chapter be denoted 

by R = (R1 ,R2), where Ri represents the i-th component of the control rule 

R, i = 1,2. In general a policy will be denoted by R (a transition 

probability from J[0, 00 ) x [0, 00 ) to A1). The probability measure on J[0, 00 ) 

(k) 
induced by a policy R is denoted by PR (for the CTMDP) and by PR (for the 

k-th approximating DTMDP). 

5.2. THE a-DISCOUNTED COST CASE. 

PROPOSITION 5.2.1. Let P0 be an arbitrary initial distribution on s. A 

policy R is regular if 

(5.2.1) (PR X A){Disc(R)} o. 

PROOF. An immediate consequence of definition 2.4.7. and theorem 2.4.3. D 
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PROPOSITION 5~2.2. Let P0 be an initial distribution on s with 

J i 2dP0 (i) <~.A policy R = (R1 ,R2) is strong regular if (5.2.1) holds. 
s 

~- Define fork~ v2+µ 2 a policy R(k)=(Rik) ,R~k)) for the k-th 

approximating DTMDP by 

R(k) (x,t): = R(x,t)' 

we will show that for Rand R(k) the conditions of theorem 4.2.1. are 

fulfilled. Put for all j € S 

Then 

for all (x,t)€Jk[0,~) x ~• k ~ 1. 

Note that condition (4.2.1) is trivially satisfied for all positive o0 and 

all k0• 

Choose a> 0 and B > 1 such that (4.2.11) holds for some o > 0 (6 may depend 

on a). Next we define 

R,(s): = 1, s ~ o, 

where jO € S, such that jO ~ (IS - 1)-l and M: = b + sup bl (V) + sup b2 (µ). 
V µ 

We shall show that these choices satisfy the conditions (4.2.2) upto 

(4.2.10). The only condition that is not trivially satisfied is (4. 2.6) for i=1. 

For j ~ 1 we have 

J h~(j0 l dil(j,(v,µ),j 0) = (v+µ)- 1{vh~(j+1)+µh~(j-1)} 

s 

j > jo 

j jo 

o < j < jo 
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Hence 

for all j E S. D 

DEFINI'I'IO!, 5. 2. 3. Let R = (R1 , R2 l be a memoryless deterministic policy for 

the CTMDP or the k-th approximating DTMDP for some k. Hence there exist two 

functions r 1 (.,.) and r 2 (.,.) on S x [0, 00 ) with values in [v 1 ,v2 J and 

[µ 1 ,µ 2 ] respectively such that rj(i,t): = Rj(x,t) for all 

(x,t) E J[O,oo) x [0, 00 ) for which TitX = i, j=l,2. 

(i) The policy R is monotone if r 1 (.,t) is a monotone non-increasing 

function on S and r ( • , t) is a monotone non-decreasing function on S, 
2 

for all t 2:: 0. 

(ii) The policy is of bang-bang type if it is monotone and 

r 1 (i,t) E {v 1 ,v2} and r 2 (i,t) E {µ 1 ,µ 2} for all (i,t) ES x [0, 00). 

THEOREM 5.2.4. Consider the k th approximating DTMDP with some initial 
-1 

distribution P0 on S. Put a.> 0 and ak: = exp(-ak J. For all n 2:: 1 there 
. (k) (k) (k) 

exists a memoryless deterministic policy Rn = (Rnl'Rn2 ) such that 

(i) R~k)isak-discounted, n-horizon optimal in the class of all policies. 

(ii) R(k) is monotone. 
n 

Moreover, if b 1 (.) and b 2 (.) are concave, then 

(iii) R(k)is of bang-bang type. 
n 

PROOF. For n 2:: 1 and i ES we denote 

(5 .2.2) inf 
RER 

where R denotes the class of all policies. 

i) 

Hence, f(k) (i) is the minimal expected ak-discounted costs over the 
n,a · . 

n-horizon given that the initial state is i. 

Define 

fO(k) (i): 
,a 

0 for all i ES. 

Then it follows by induction on n that for all n 2:: 1 
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I (k) (k) 
f l ( j) dp1 Ii, (v, µ) , j) }. 
n- , a. 

s 

For i ES and n ~ 0 we put 

(5 .2. 3) 

and 

Then 

(5. 2. 4) 

Define 

(5. 2. 5) 

and 

(5. 2. 6) 

v(k) (i): 
n,a 

r (k) (i) : 
n,a, 1 

r (k) (i): 
n,a,2 

f(k) (i) - f(k) ((i-1) V 0) 
n,a. n,a 

v(k) (i+l) 
+ ctkv n,ct 

= b 2 (µ) - ctµ v(k) (i). 
k n,a 

- (1) . -
inf {v: wn-l (1.,v) 

- (2) -
sup{µ: wn-l (i,µ) 

inf w(1)1 (i,v)} 
n-

v 

. f (2) ( .. ) } 
in wn-1 1.,µ • 

µ 

Finally we define for (x,.11,k-l) E Jkf0, 00 ) x Lk and j 1,2 

(kl -1 
R . (x,.11,k ·): 
n,J 

(k) -1 
R .(x,.11,k ): 
n,J 

(kl ( , r . TT 1x, , 
n-.11,+l,a,J .11,k-

5 JI, 5 n 

(k) -1 
R . (x ,nk ) , 
n,J 

Then R (kl= (R (kl1 ,R (k2)) is a well defined memoryless deterministic policy which 
n n, n, 

is ak -discounted, n-horizon optimal in the class of all policies. This proves 

(i), while (ii) and (iii) follow from the next lemma. D 
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LEMMA 5.2.5. Let f(k) (i), r(k) (i) and r(k) 2 (i) be as given by (5.2.2), 
n,a n,a,1 n,a, 

(5.2.5) and (5.2.6) in the proof of the previous theorem. Then 

(i) r(k) (.) 
n,a, 1 is monotone non-increasing on s. 

(ii) r(k) (.) 
n,a,2 

is monotone non-decreasing on s. 

(iii) f (kl(.) is convex on s. 
n,a 

Moreover, if b 1 (.) and b 2 (.) are concave then 

(kl (kl (iv) r 1 (.) E {v 1,v2 } and r 2 (.) E {µ 1 ,µ 2}. 
n,a, n,a, 

PROOF. The proof proceeds by induction on n. For n 1 we have 

r (kl (i) inf {v: b 1 (v) inf b 1 (v)} 
1, a, 1 

V 

r(k) (i) 
1,a, 2 = sup {µ: b2 (µ) inf b2(p)} 

µ 

f (k) (i) 
1,a 

k-lb(i) + k-l inf b 1 (v) + k-l inf b 2 (µ) 

V µ 

which yields (i) upto (iv) 'for n = 1. 

Suppose the statement is true for n-1. Then we have 

Hence we conclude from the convexity of f(k) (.) that 
n-1,a 

(5. 2. 7) 
( 1) 

wn-1 (. ,v) 
( 1) -

wn-l (.,v) is a non-increasing function forv < v. 

Let i 1 < i 2 and assume that v: r (k) (i ) < r (kl (i l 
n,a,1 1 n,a,1 2 

:V. Then 

and 

which contradicts (5.2.7). This proves (i) for n. 
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Similarly we have 

b ( ) b ( ) ( ) (k) (') 2 µ - 2 µ - ak µ-µ vn-1,a i ' 

which implies by the induction hypothesis that 

(5.2 .8) 
(2) 

wn-1 ( · ,µ) 
(2) -

wn-l (., µ) is a non-increasing function forµ > µ. 

Let il < i2 and assume that µ: r (k) (i ) 
n,a,2 1 

> r {k) (i ) 
n,a,2 2 

:µ. Then 

(2) (. ) 
wn-1 il ,µ 

(2) . -
- wn-1 (il ,µ) s 0 

and 
(2) (. ) 

wn-1 i2,µ 
(2) -

wn-1 (i2,µ) > o, 

which contradicts (5.2 .8). This yields (ii) for n. 

From (5.2.4) follows that sufficient for the convexity of f(k) (.) is the 
n,a 

convexity of 

Put 

g(i) ½ ak f (k) .(i) -1 
inf (1) (. ) + k 

n-1,a wn-1 i,v 

and 
\) 

g (i) ½ ak f (kl (i) -1 inf (2) (. ) + k 
n-1,a wn-1 i,µ • 

µ 

We shall show that both functions g(.) and g(.) are convex. 

g(i+l) - g(i) 

g(i) - g(i-1) 
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These two inequalities together yield 

g(i+l) - 2g(i) + g(i-1) ~ 

The last inequality follows from the induction hypothesis fork large 
~ 

enough. The convexity of g(.) is established in a similar way. This 

completes the proof of (iii) for n. 

. 11 th b ( ) d b ( ) ( l) ( · ) d Fina y we assume at 1 . an 2 . are concave. Hence w 1 i,. an 
I 21 (k,n-

w 1 (i,.) are concave for all i ES, which implies that r 1 (i)E{v1 ,v2.} 
n- (kl n,a, 

and r 2 (i)E{µ 1 ,µ 2 } for all i ES. D 
n, a., 

LEMMA 5.2.6. If k ~ v2+µ 2 then v(k) (i) ~ v(k) (i) ~ 0 for i ES and n ~ 1. 
n,a n-1,a 

PROOF. Since Volk) (i) = 0 and Vlk) (i) 
,a . 1,a 

k-l b for i > 0 the statement is 

true for n = 1. Suppose it is true for n - 1. 

For i ES we have from (5.2.3) and (5.2.4) 

v (k) (i+l) 
n,a 

+ ak. k-lr(k) 1 (i+1) v(k) (i+2)+k,-lb (r(k) (i+l)) -
n,a, n-1,a 2 n,a,2 

+ akk-lr(k) 2 (i+1) v(k) (i+l)-k-lb (r(k) (i)) -
n,a, n-1,a 1 n-1,a,1 

Vlk) (i+l) ,;; 
n-1,a 

-1 (k) . -1 (k) . 
k b + akv 2 (i+l)+k b1 (r 1 (i+1)) + n- ,a. n,a., 
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Hence 

v(k) (i+l) - v(k)l (i+l) ~ 
n,a n- ,a 

Application of the induction hypothesis completes the proof. D 

THEOREM 5.2.7. Consider the k th approximating DTMDP with some initial 

distribution P0 on S. Put a> 0 and ak: = exp(-ak-l). There exists a 

stationary deterministic policy R(k) = (R(kl) ,R(k2 )) such that 
* * * 

(i) J~lis ak-discounted optimal in the class of all policies. 

(ii) J~lis monotone. 

Moreover, ifb1 (.) andb2 (.) are concave, then 

(iii) J~lis of bang-bang type. 

(k) oo 
PROOF. Consider the sequences of functions (r 1 (.)) 1 and 
~ 00 n,a, n= 
(r 2 (.)) 1 defined by (5.2,5) and (5.2.6). 

n,a, n= 
By the well known diagonal procedure we can construct a subsequence 

(n,Q,);=l of JN, such that 

(5.2.9) 

and 

(5.2.10) 

exist for all i ES. 

Put for i ES 

lim r (kl (i) 
,Q,->oo n,Q, ,a, 1 

lim r (kl (i) 
,Q,->oo n,Q,, a, 2 



121 

(kl 
R* (x,tl: 

Then R (kl 
* 

is a well defined stationary deterministic policy. Obviously 
(kl 

R* is monotone and of bang-bang type when bl (. l and b 2 (.) are 

concave. We complete the proof by showing that~~) is ak-discounted 

optimal in the class R of all policies. 

Define for i ES 

(5. 2.1 ll f (kl (il : = inf 
a RER 

f c(k) (x) 
ak,R 

Jkt0,"'l 

il. 

Since (f(kl (.ll 00 is a non-decreasing sequence of non-negative functions 
n,a n=l 

on S 

w(il: lim f(kl (il 2! 0 
n->oo n,a 

exists for all i Es. 

The inequality 

implies 

(5.2 .12l w(il 

for i Es 

for i ES. 

On the other side we have by (5.2.4l 

+ k-lakr(k) 1 (il v(kll (i+1l+k- 1b 2 (r(kl 2 (ill -
n,a, n- ,a n,a, 

Taking limits in (5.2.13l through (ntl;=i we conclude by the continuity of 

bl(.) and b2 (.) that 
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(5 .2 .14) w(i} J w(j) d~~)(i,<k) (i) ,j). 

s 

Iteration of (5.2.14) yields for all n 2 and all i ES 

w (i.) :> 

By letting n ➔ 00 , we get for all i ES 

(5.2.15) w(i) 2 

(5.2.16) w(i) for all i E s, 

f (k) (i). 
a 

which implies by (5.2.15) the ak-discounted optimality o:: R;k) in R.. U 

Before we consider the CTMDP we need two lemma's. 

LEMMA 5. 2 .8. Let r= ( r 1 , 7.) be a measurable function from sxLk intu A1 and 

P0 an initial distribution on S, defined by P0 ({i}) = 1 for some i ES. 

S th . l 1 . . (k) (k) ~ (k) 
uppose ere are given pure memory ess po icies R , R* and R* for 

the k-th approximating DTMDP, defined for (x,t) E Jk[0, 00 ) x Lk by 

{k) 
R (x,t): 

(k) 
R* (x,t): 
~ (k) 
R* (x,t): 

r(Titx,t) 

(v 1 'µ 1) 

(v2,µ2) 

(i) For any non-decreasing function f on 10, 00 ] 

(ii) For any non-increasing function f on 10, 00 ] 



(k) 
f (T2 (x)) dP (k) (x) 2: 

R f 
PROOF. 

(i) 

The lemma now follows from a well-known theorem on stochastic ordering 

(see STOYAN (1977), page 5). 

(ii) The proof of (ii) proceeds similarly. D 
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LEMNA 5.2.9. Let b 1 (.)and b 2 (.) be concave. Then there exist j~:~ ES and 
. (k) . (k) (k) (k) . 
Ja., 2 E S such that the policy R* =(R*l ,R*2 ) defined by 

R(k) (x t) 
*1 , 

( if 'JI X > 
. (k) rl t J a,, 1 

l "2 if 'J!tX $ . (k) 
J a,, 1 

R(k) (x t) 
*2 , 

( if $ . (k) rl 'J!tX Ja., 2 

lµ2 if 'J!tX > 
. (k) 
JCT,, 2 

is a.k-discounted optimal in the class of all policies. Moreover, there 

exist a.0 > 0, k0 € N and j E S such that 

for all O <a.$ a.0 , all k 2: k0 ; i = 1,2. 

~ROOF. The first part of the lemma follows from (iii) of theorem 5.2.7. 

Denote 
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v(k) (i): 
Cl 

( 1) (. ) w J.,\! : 

f(k) ((i-1) V 0), i € S 
Cl 

Using the fact that lim v(k) (i) = v(k) (i) and the continuity of b 1 (.) and 
n->«> n,a a 

b 2 (.) it follows from (5.2.5) and (5.2.6) that 

(1) (" (k) (")) 
w i,ra,1 J. 

(2) (" (k) (.)) 
w i,ra,2 J. 

Hence 

(k) (") 
ra,1 1 "1 if 

and 
(k) (") 

ra,2 1 µ2 if 

inf w(l) (i,v) 
\) 

inf w( 2) (i,µ) 
µ 

v (k) (i+1) 
Cl 

> 
b1 (v1) - b1 (v2) 

ak("2 - "1) 

v(k) (i) 
b2(µ2) - b2(µ1) 

> 
Cl ak(µ2 - µ1) 

This implies that it is sufficient to show that for every constant c > 0 

there exists an a 0 > o, k0 € lN and j € s such that 

(5. 2.1 7) v(k) (j) 2: c 
Cl 

for all O <a~ Clo and all k 2: ko· 

For j €Sand n 2: 1 we find by conditioning on T2 (the epoch of the first 

jump) 

nk 
2: k-lb E m ak 

m=l R.=1 

nk 
TI {1-k-l(r(kk:" l(j+l)+rnk(k:. 2(j+1))} + n ~,a, ~,a, 

nk m-1 -l (k) . (k) 
+ E TI {1-k (r k-" l(J+l)+r k-" 2 m=l R.=l n ,,,a, n ,,,a, 

(j+l))} 



!l + m v (kl (.)} J. 
0 k °k nk-m,o J 

ll=l 

This inequality yields with the convexity of f(k) (.) 
n,o 

nk m-1 
{ -1 (k) . (k) . } 

+ r. II 1-k (r k-" 1 (J+1)+rnk-" 2 (J+1)) n N,a, N,a, 
m=l ll=l 

m-1 
.{k-lb r. 

ll=l 

Note that the function f(.) from IN into f0, 00 ), defined by 

m-1 r. !l 
ll=l 0 k 

for 1 :s m :s nk 

form> nk 

is non-decreasing on JN, while the function g (.) defined by 

g(m): 
{ 

m (k) ( ") 
0 k vnk-m,a J 

0 

for 1 :s m :s nk 

form > nk 

is,by lemma 5.2.6.,non-increasing on IN. 

Hence application of lemma 5,2.8. on the last inequality yields 

(5.2.18) 
(k) -1 -1 nk nk m 

vnk,a(j+l) ~ k b {1 - k (v2+µ 2 )} r. ak + 
m=l 

-1 nk -1 -1 m-1 m-l !l 
+ k b r. k (v 2+µ 2 ){1-k (v2+µ 2)} r, Clk + 

m=l ll=l 

nk m (k) -1 -1 m-1 
+ r, a v (j) k (v 1+µ 1) {1-k (v 1+µ 1)} . 

m=l k nk-m,a 

After some algebra we find from (5.2.18) for all O < c :s n 
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(5. 2. 19) v~~:a(j+l) ~ (1 - e-anl bak {1 - k- 1 (v2+µ 2 )} (a+ v 2 + µ 2)-l + 

ko m (kl -1 -1 m-1 
+ ,: ak v (jl k (v 1+µ 1 ) {1 - k (v 1+µ 1l} . 

m=l nk-m,a 

By letting n ➔ 00 we find with lemma 5.2.6. for all o > 0 

V (kl (j+ll 
a ~ bak {1 - k -1 (v2 + µ2l} (a + v2 + 

v(kl (jl 
ko 

-1 -1 ,: m 
+ µ1 l {1 + ak k (v 1 - k (v 1 a 

m=l 

bak {1 
-1 

+ µ2l} ( ('( 
-1 

~ - k (v2 + v2 + µ2l + 

Hence there exists a number k 0 € lN such that 

(5.2.20l 

for all j € S, all k ~ k 0 , all a> 0 and all o > 0. 

Iteration of (5,2.20l yields 

vl+µl 
{---­
vl+µl+a 

-1 
µ2l + 

+ µll}m-1 ~ 

which implies for every constant c > O the existence of an a0 > O, k 0 E lN 

and j € S such that (5.2.17l holds. D 

THEOREM 5.2.10. Consider the CTMDP defined by (5.1.1) with some initial 

distribution P0 on S. For all a> 0 there exists a stationary deterministic 

policy R such that 

(il R is a-discounted optimal in the class of strong regular 

policies. 

(ii) R is monotone. 

Moreover if b 1 (.) and b 2 (. l are concave, then 

(iii) R is of bang-bang type. 
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(k) 00 (k) 00 

PROOF. Consider the sequences of functions (ra,l (.))k=l and (ra, 2 (.))k=l 

defined by (5 .2. 9) and (5 .2 .10) . 

By the diagonal procedure we construct a subsequence (kl) ;=l of JN such 

that for all i ES 

and 

(5 .2 .22) 

exist. 

r 1 (i): 
a, 

r 2 (i): 
a, 

(kl) 
lim r 1 (i) 
9,~ a, 

Put for i E S 

r (i) : = (r 1 (i), r 2 (i)) 
a a, a, 

and for (x, t) E J[O , 00 ) x [O ,oo) 

R(x,t): = ra(ntx) 

Then R is a well-defined stationary deterministic policy which is 

monotone and of bang-bang type if b 1 (.) and b 2 (.) are concave. The 

a-discounted optimality of R in the class of strong regular policies 

follows from theorem 4.2.10. since the third set of conditions of this 

theorem is fulfilled. D 

5.3. THE AVERAGE COST CASE. 

THEOREM 5.3.1. Consider the CT!lDP defined by (5.1.1) with some initial 

distribution PO on S. Assume that b 1 (.) and b 2 (.) are concave. There exists 

a stationary deterministic policy R such that 
(i) R is average optimal in the class of strong regular policies •. 

(ii) R is of bang-bang type. 

PROOF. From theorem (5.2.10) follows for all a> 0 the existence of 

( if TI X > ja, 1 
rl 

t 
Rat (x,t): 

l \}2 if TitX ~ jCI, 1 
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and 

{" 
if 1\X '., 

\x,2 
R (x,t): 

a2 
µ2 if 1T X > ja,2 t 

is a-discounted optimal in the class of strong regular policies. From 

lemma 5. 2.9. follows that (jB 1):=l 
oo k' 

sequence (Bk)k=l with li~-+oo Bk= 0. 

and (jB , 2 l:=l are bounded for any 
k 

Hence there exist jl ES and j 2 ES such that 

jR, lim j ,R-
k-+oo Bk,R-

00 

for some sequence <Sk\=l with lim 

Define the policy R' = '(R1 ,R2) b{-+oo 

(5. 3.1) 

i!-nd 

(5. 3. 2) 

then 

·f' R1 (x,t): 

\/2 

R2 (x,t): 

c(R ) -->­

Bk 

( 

rl 

lµ2 

c(R) 

if 

if 

if 

if 

1,2 

Bk o. 

1TtX > jl 

1TtX '., jl 

1TtX '., j2 

1T X > 
t j2 

as k -->- 00 , 

since the state space Sis discrete. 

The theorem now follows from theorems 4.4.6. and 4.4.11. and lemma 5.3.2. 

below. (Note that from lemma 5.3.2. follows that the conditions of 

theorem 4.4.11. are fulfilled, since the state space is discrete). D 

LEMMA 5.3.2. Consider the bang-bang type policy R defined by 

(5.3.1) and (5.3.2). This policy induces on J[0, 00 ) a regenerative 

stochastic .".Jrocess X. ~!oreover 

(5. 3. 3) I T~ 

J[O ,oo) 

(x) dP (x) < oo, 
R 



(5. 3.4) r J Tl (x) dPR(x) > 0 

J[O ,co) 

and 

(5. 3.5) I 
J[O,co) 

where (Tn):=O is the sequence of regeneration epochs of X and Yn is 

defined in theorem 4.4.11.(Note that X, Tn and Yn are supposed to be 

defined on J[0, 00 ) for all n ~ 1). 

PROOF. Assume without loss of generality that j 2 > jl and P0 {j 2 } 1. 

(The proof for the case in which j 2 S jl proceeds similarly). 

Define for n ~ 1 and x E J[0, 00 ) 
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T (X): 
n 

th time of n entrance of the path x into the state j 2 • 

Then Xis a regenerative stochastic process with sequence of regeneration 

epochs (Tn):=O 

Obviously 

J Tl (x) dP R 

J[O ,co) 

which implies (5.3.4). Moreover, we find by conditioning on s2 (x), which 

denotes the state after the 

(5.3.6) f 2 
Tl (x)dP R 

J[O ,co) 

first jump 

v 1 2 
(x) =-- j Tl (x)dP R 

vl+µl 
. J[O,oo) 

A well-known result from queueing theory states 
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(5. 3. 7) I 2 
Tl (x) dP R 

Jf0, 00 ) 

where B denotes the length of a busy cycle in an M/M/1 queue with 

parameters v1 and µ 2 . 

Moreover, 

(5. 3. 8) r 
J 

J[0,oo) 

2 
Tl (x)dP R 

where T denotes the length of the time interval in which a random walk 

with reflecting barrier 0 moves from j 2-1 to j 2 . 

Together (5.3.6), (5.3.7) and (5.3.8) yield (5.3.3). 

Finally 

(5. 3. 9) 

while 

(5. 3. 10) 

and 

(5. 3. 11) 

where 

I 
J[0 ,oo) 

J 
J[0,oo) 

< 2 - y 

2 
Y1 (x)dP 

R 

2 
Y1 (x)dPR 

J 
Jf0,oo) 

(x) 
vl 

J 
2 

=--- Y1 (x)dP 
vl+µl R 

J[ 0 ,oo) 

µ1 I 2 
+-- Y1 (x) dP 

vl+µl R 
J[0,oo) 

I 2 
yl (x) dP R (xi s 2 (x) =j 2+1) ,s; 

J[0 ,oo) 

2 r (N(x} +1) 2 2 
dP R (xls2 (x)=j 2+1) ,s; y 

J Tl (x) 

Jf0,oo) 

y: = bj2 + sup b 1 (v) + sup b2 (µ) 
V µ 

(xls2 (x)=j 2+1)+ 

(x!s2 (x)=j 2-1), 

< 00, 



Note that 

N(x): number of upward jumps in the path x during the time 

interval [O,T 1 (x)]. 

J J<:cx) dP R <xls2 (x)=j 2+1) 

J[O,~) 

is the k-th moment of the number of customers served in a busy cycle in 

an M/M/1 queue with parameters v1 and µ2 • 

Since the right hand sides of (5.3.10) and (5.3.11) are finite (5.3.5) 

follows from (5,3.9). D 
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CHAPTER 6 

A MAINTENANCE REPLACEMENT MODEL 

Our second application is a maintenance replacement model which has 

been used earlier in this monograph as illustration of the conditions of 

theorem 2.4.3 (see example 2.5.1). For completeness we describe the model 

here once more. 

A device is subject to shocks which occur randomly in time according to a 

Poisson process with rate v. This rate of the shock arrival process can be 

controlled by maintenance. Every shock causes independently of the others a 

certain amount of damage. The total damage incurred by the device 

accumulates additively. The amount of damage caused by a single shock is 

a random variable with ,known distribution function F. Besides the damage 

caused by shocks the device decays continuously at constant rate a> 0, i.e. 

between shocks the total damage increases linearly at rate a. The decision 

maker has control on the system in two different ways: the arrival rate v 

of the shocks can be chosen arbitrarily in the interval [v 1 ,v2], where 

0 < v 1 ~ v2 < 00 • On the other hand the device can be replaced at every 

moment by a new one without damage. 

The cost structure consists of three parts: an operating cost rate b(s) 

is incurred when the total damage equals s, a maintenance cost rate c(v) 

is incurred when the shock arrival rate is v and a lump cost M > 0 is 

associated with every replacement. 

Versions of this model have been treated by TAYLOR (1975) and 

ZUCKERMAN (1977). For this model we define the following CTMDP. 



(6.1.1) 

S: = [0, 00 ) 

Al: = [vl '"2] 

A2: = {µ} 

q(s,v): = v, 

IT(s,v,[s,s+t]): 

p(s,µ,{0}): = 1, 

c 1 (s,v): b(s) 

c2 (s,µ): M, 

f(s,t) = s + crt, 

(s,v) E s 
F(t), 

S E s 

+ c(v), 

S E S 

(s,t) 
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X Al 

(s,v) E S X Al and t ;:: 0 

(s,v) Es X Al 

E S X [0 ,00). 

The state of the system denotes the accumulated damage of the device under 

operation. The control set is the set of all possible shock arrival rates. 

The only possible impulsive control is replacement denoted byµ, where we 

chooseµ> v 2 • We make the following assumptions on the model parameters. 

ASSUMPTION 6.1.1. 

(i) F has a density function. 

(ii) b(.) is continuous, non-decreasing, non-negative and concave on S. 

(iii) b'(0) < oo 

(iv) y: = r b(t) dF(t) < 00 and / 2 ): = r b 2 (t) dF(t) < oo. 

0 0 
(v) c(.) is continuous and non-negative on A1• 

Fork> v 2 the k-th approximating DTMDP is defined by 
(k) (k) (k) . 

(S,A1 ,A2 ,p1 ,p2 ,c 1 ,c2 ,f,k), with 

(k) -1 
p 1 (s,v,{s}) = 1 - k v, 

(k) 
p 1 (s,v,[s,s+t]) 

-1 -1 
1 - k V + k VF(t), 

(k) 
p2 (s,µ,{0}) = 1, S E S 

(k) -1 
c 1 (s,v) = k {b(s) + C (V)}, (s ,v) E s x A1 

REMARK 6.1.2. (i) Since A2 ={µ}it follows for every policy (V,R) for this 

CTMDP with R = (R1,R2) that R2 (x,t) is a probability measure degenerated in 

{µ} for all (x,t). Hence we denote in this chapter a policy for the CTMDP 

with (V,R), where V denotes a closed Sub$et of sand Ra transition 

probability from J[0, 00 ) x [0, 00 ) to A1• 
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(ii) Let R be a transition probability from J[0, 00 ) x [0, 00 ) to A1 , such 

that R(.,t) is rt-measurable. From the definition of a policy (definition 

2.2.3) follows that (V,R) is a policy iff Vis closed and O i V. 

6.2. THE a-DISCOUNTED COST CASE. 

PROPOSITION 6.2.1. Let P0 be an arbitrary initial distribution on S. A 

policy (V,R) is regular if 

(6.2.1) oV is countable. 

(6.2.2) (P(V,R) x;\) foisc(R)}=O. 

POOOF. A consequence of theorem 2.4.3. and assumption 6.1.1. (i). D 

PROPOSITION 6.2.2. Let po be an initial distribution on S with 

(6. 2. 3) r b 2 (s) dPO (s) < oo. 

0 

Then the policy (V,R) is strong regular if (6.2.1) and (6.2.2) hold. 

PROOF. Let (V,R) be a policy for which (6.2.1) and (6.2.2) hold. Define for 

~ 2 policies (V(k) ,R(k)) for the k-th approximating DTMDP by V(k) = V 

and R(k) = R. We will show that (V,R) and (V(k) ,R(k)) satisfy the 

conditions of theorem 4.2.1. 

First of all we note that condition (2.4.3) follows from (6.2.1) and 

assumption 6.1.1. (i), that condition (2.4.4) is trivially satisfied, 

while (2.4.5) follows from (6.2.2). Condition (4.2.1) holds since O ¢ V. 

Put for all j € S 



Choose a> 0 and S > 1 (depending on a) such that (4.2.11) holds for some 

o < o0 • Without loss of generality we assume that 

and 

(6 .2.4) 

b(O) 0 

lim b (s) = 00 

s--
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(Note that adding a finite constant to the function c 1 (.,.) does not affect 

the validity of theorem 4.2. 1. On the other hand the verification of the 

conditions for strong regularity becomes rather easy when b (.) is bounded). 

Define • r b(sO)' 
for 0 s s s so 

h 1 (s): 

a b(s), for s > s 0 

h 2 (s): = M, for s E S 

R,(t): ( 1 + b(at)l2 
b(s0 ) fort :::: o, 

where a: 1 + sup C (V) and s 0 E S such that b (s0J :::: 1' 
\) 

(6.2.5) ab(s0J :::: 2ab' (0) 

and 

(6.2.6) 

We shall show that these choices satisfy the conditions (4.2.2) upto 

(4. 2 .10). 

The verification of (4.2.2) is straightforward. From the concavity of 

b(.) and b(O) = 0 follows for (j,t) ES x [O,co) 

b(f(j,t)) s b(j) + b(at) 
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-which implies 

This yields with the definition of£(.) condition (4.2.3). 

Conditions (4.2.4) and (4.2.5) are implied by the concavity of b(.) and 

relation ( 6. 2. 5/ . 

From the concavity of b(.) also follows 

s~p f h~ (j0) d!I(s,v,j0 ) :;; h~ (s) {1 

s 

which together with 16.2.6) yields condition 4.2.6. Condition 4.2.7. and 

(4. 2. 10 l follow from the fact that · 

f h~ (j0 ) dp(s,µ,j 0 ) = h~ (Ol o. 
s 

Finally (4.2. 8) follows from (6.2.3), while (4.2.9) follows from the 

continuity and concavity of b (. ) . O 

DEFINITION 6.2.3. Let (V,R) be a deterministic memoryless policy for the 

CTMDP. Hence there exists a function r(.,.) on S x [0, 00 ) with values in 

[v1 ,v2J such that r(s,t) = R(x,t) for all (x,t) € J[0, 00 ) x [·0, 00) with 

s. 

The policy (V,R) is of control limit type if there exists a number. 

D > 0 such that V = [D, 00). 

(ii) The policy (V,R) is monotone if it is of control limit type and if 

r(.,t) is a monotone non-decreasing function on S with values in 

[v1,v2J, for all t ~ 0. 

(iii) The policy (V,R) is of bang-bang type if it is monotone and 

·r(s,t) € {v1 ,v2} for all (s,t) € S x [O,m). 

REMARK 6.2.4. In order to.analyse the k-th approximating DTMDP for a 

finite horizon it is useful to consider these discrete time processes from 

a slightly different point of view than we did so far. 

Let us consider the k-th approximating Dl'MDP as a classical discrete time 
(k) (k) . 

Markov decision process (cf. remark 2.3.2) (S,A,p · ,c ) with 
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(k) 
p (s,a,B) 

(kl 
c (s,a) 

A policy for this discrete time Markov decision process is denoted by 

R, a transition probability from Jk[0, 00) x Lk to A1 u A2 , such that R(.,t) 

is rt-measurable. Note that this definition of a policy is less restrictive 

than definition 2.3.5. 

DEFINITION 6.2.5. Let R be a deterministic, memoryless policy for the k-th 

approximating DTMDP. Hence there exists a function r(.,.) on S x [0, 00 ) 

with values in [v 1,v2J u {µ} such that r(s,t) = R(x,t) for all 

(x,t) € Jk[0, 00 ) x Lk with ntx = s. 

(i) The policy R is of control limit type if there exists for all t ~ 0 

a number D(t) > 0 such that r(s,t) = µ iff s ~ D(t). 

(ii) The policy R is monotone if r(.,t) is monotone non-decreasing 

for all t ~ 0 as a function on s with values in [v1 ,v2J u {µ}. 

(iii) The policy R is of bang-bang type if it is monotone and 

r(s,t) € {v 1 ,v2 ,µ} for all (s,t) € s x [O,oo). 

Note that a monotone policy is always of control limit type since we have 

chosenµ> v2• 

THEORll!M 6.2.6. Consider the k-th approximating DTMDP with some initial 
-1 distribution P0 on s. Put a> 0 and ak: = exp(-ak ). For all n ~ 1 there 

exists a memoryless deterministic policy R(k) such that 
n 

(i) 

(ii) 

R~k) is ak-discounted, n-horizon optimal in the class of all policies. 

R(k) is monotone. 
n 
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Moreover, if c(.) is concave, then 

(iii) R(k\s f b b n o ang- ang type. 

PROOF. For n? 1 ands€ S we denote 

where R denotes the class of all policies. 

Define 

fo(k) (s): 
, CJ, 

0 for alls€ S. 

Then we find, by induction on n, for all n? 

( 6.2. 7) f (k) (s) 
n, a, 

-1 (k) -1 
+ a,k(1-k v) f 1 (s+ak ) + 

n- , et 

s), 

f(k)l (s + ak-l + t) dF(t)}}. 
n- ,a 

Put 

Hence 

(6.2. 8) 

Define 

(6.2.9) r(k)(s): 
n.a, 

min 

0 

(k) -1 
{M+a,kf l (ak ) , n- ,a. 

-1 (k) -1 -1 
k b(s)+akf 1 (s+ak )+k inf w 1 (s,v)}. 

n- ,a, v n-

L {v: w l (s,v) 
n-

inf w 1 (s,v)} 
n-v 

otherwise. 



-1 
Finally we define for (x,tk ) E Jk[0, 00 ) x Lk 

(k) -1 
R (x, 2k ) : 

n 

(k) -1 
Rn (x,tk ) : 

r(k) (,r x), 
n-2+1,o. tk-1 

(k) -1 
R (x,nk ) , 

n 
9, ~ n. 

(k) 
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From lemma 6. 2. 7. (i) 
(k) 

Obviously Rn(.,.) is 

below follows that R (.,.) is a well-defined policy. 
n 

memoryless, deterministic and o.k-discounted optimal 

in the class of all policies. The statements (ii) and (iii) follow from 

the next lemma. □ 

LEMMA 6 • 2. 7. Let f (k) (. ) and r (k) ( . ) be as given by ( 6. 2. 7) and ( 6.?. • 9) 
n,o. n,o. 

in the proof of the previous theorem. Then 

(i) r(k) (.) is non-decreasing on S. 
n' o. 

(ii) f(k) (.) is concave and non-decreasing on S. 
n' o. 

Moreover, if c(.) is concave on A1 , then 

(1.. i' i') (k) ( ) { } r s E v1,v2 ,µ 
n' o. 

for alls ES. 

PROOF. The proof proceeds by induction on n. For n 

t if 

(k) ( ) 
rl,o. s 

linf {v: C (V) inf c(v)} 
V 

1 we have 

-1 -1 M<k b(s)+k inf 
V 

otherwise. 

min {M, k- 1b(s) + k-l inf c(v)}. 
V 

C (V) 

This implies by the concavity and monotonicity of b(.), the statements 

(i), (ii) and (iii) for n = 1. 

Suppose that the statements are true for n-1. 
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Note that 

c(v) - c(v) + 

Hence, by the concavity of f(k) (.j 
n-1, ex ' 

(6.2. 10) wn-l (.,v) is non-increasing if v > v. 

Let s 1 < s 2 and assume that v: 

Then 

and 

r(k) (s ) 
n,cx 1 

~ 
wn-1 (s2,v) ,- wn-1 (s2,v) ~ O 

which contradicts (6.2. 10). 

> r(k) (s2) =: \I with \I ;t µ. 
n,cx 

Moreover, we conclude from the induction hypothesis, that 

is non-decreasing ins. 

Hence r(k) (.) is non-decreasing on S. 
n,cx 

Since the infimum of concave functions is concave, we conclude from 

(6.2.7) and the induction hypothesis that f(k) (.) is non-decreasing and 
n.,cx 

concave. 

Finally, if c(.) is concave, then wn-l (s,.) is concave, which implies that 

r(k) (s) E {v1 ,v2 ,µ} for alls ES. D 
n,cx 

For the analysis with respect to the cxk-discounted cost functional for the 

k th approximating DTMDP we need the following lemma. 
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LEMMA 6.2.8. Let B be a compact subset of lR. For any sequence (fk(.))==l 

of non-decreasing functions from lR into B, there exists a non-decreasing 

function f (.) from lR into B and a sequence of natural numbers (k.) ".' 1 J J= 
such that 

limfk_(s) =f(s), 
j->«> J 

for all s E JR. 

PROOF. Let E be a countable dense subset of JR. By the diagonal procedure 

we can construct a sequence (ij);=l of natural numbers, such that 

lim ft (s) 
j->«> j 

exists, for alls EE. 

Define 

inf f 1 (t), 
tEE 
t>s 

s E: JR. 

Then f 2 (.) is obviously non-decreasing on JR. 

Moreover, chooses i Disc(f2) and£> O. Then there exist t 1,t2 EE, such 

that 

and 

Since 

for all j ~ 1 

we conclude that 

and 

lim sup ft. (s) $ f 2 (s) + £ 
j->«> J 

lim inf ft. (s) ~ f 2 (s) - £. 
j->«> J 

Hence 

for alls i Disc(f2). 
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Since Disc(f2 ) is countable we can construct a subsequence (kj);=l of 

(~.)~ 1 such that ~im fk. (s) exists for alls E Disc(f2). Hence 
J J= J-- J 

f (s): lim fk (s), 
j-- j 

exists for all s E JR and obviously f (.) is non-decreasing. D 

THEOREM 6.2.9. Consider the k th approximating DTMDP with some initial 
-1 

distribution P0 on S. Put a> 0 and ak: = exp(-ak ). There exists a 
(k) 

stationary deterministic policy 
(k) 

R,,,. such that 

(i) R* is ak-discounted optimal in the class of all policies. 
(kl 

(ii) R* is monotone. 

Moreover, if c(.) is concave, then 
(k) 

(iii) R* is of bang-bang type. 

(k) oo 
PROOF. Consider the sequence of functions (r (.)) 1 on s defined by 

n,a n= 
(6.2.9). From part (i) of lemma 6.2.7. follows that these functions are 

non-decreasing on S with values in 1v1 ,v2 Ju{µ}. By lemma 6.2.8. there 

exists a sequence (n.)~ 1 of natural numbers, such that 
J J= 

( 6. 2 .11) r (k) (s): 
a 

exists for alls ES. 

Put 

(6.2.12) 

lim r (k) (s) 
j-- nj,a 

(kl 
Then R*(.,.) is a well-defined stationary deterministic policy, which is 

obviously monotone and of bang-bang type if c(.) is concave. 
(kl 

What.remains to prove is that R*(.,.) is ak-discounted optimal. 

Define for s ES 

s). 

Since (f(k) (.)) 00 is a non-decreasing sequence of non-negative functions 
n,a n=l 

on S, 



w(s): lim f(k) (s) ;;;: 0 
n,a 

n->oo 

exists for alls ES. 

The inequality 

f (k) (s) 
n,a. 

implies 

S E S 

(6. 2 .13) w(s) for alls Es. 

On the other hand we have 

(6. 2.14) (k) (k) J 
c (s,r. (s)) + ak n,a. 

s 

(k) (k) (k) 
f 1 (u)dp (s,r (s),u). 
n- ,a. · n,a. 

143 

By plugging in the definition of p (k) (.,.,.) in (6. 2 .14) and taking limits through 

(n.) ~ 1we find with the monotone convergence theorem 
J J= , 

(6. 2.15) w(s) = Jkl(s,r(k) (s)) + a J 
a. k 

(k) (k) 
w(u) dp (s,ra (s) ,u). 

s 

Iteration of (6.2.15) yields for all n;;;: 1 ands ES 

w(s) "' 

By letting n + 00 we get for alls ES 

(6.2.16) . w(s) ;;;: 

s). 

s) ;;;: f(k) (s). 
a. 

Combining (6.2.13) and (6.2.16) yields the a.k-discounted optimality of Rlk) 

in R. □ 

THEOREM 6.2.10. Let r(k) (s) be defined by (6.2.11) and put 
Cl. 

(6.2.17) 
(k) 

D : 
a. 

inf {s E S: r(k) (s) 
a. 

µ}. 
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There exist an a 0 > 0, a natural number k 0 and a number D0 > J such 

that 

D(k) > 
a - DO, 

for all O <a~ a0 and all k ~ k 0 . 

PROOF. Without loss of generality we assume that P0 ({0}) 

the policy R(k) defined fort E ~ by 

(k) 
R (x,t): 

if 1T X -,, 1T X 
t t-

otherwise. 

Denote 

dP (k) (x). 
R 

1. Consider 

By conditioning on the arrival time of the first shock we find 

(6. 2.18) 

From (6.2.18) we find after some algebra 

(6. 2.19) 
v 2+afoo -v2t 

c 0 ~ e e {c(v2 )+b(crt)}dt + M + 

0 

Put 

r -v2t 
J e {c (v2 ) +b (at) }dt + M, 

0 

then we conclude from the concavity of b(.) and assumption 6.1.1. (iii) 

that c 1 < 00 • Moreover (6.2.19) yields 



145 

(6 .2.20) 

for all a~ 1 and all k. 

On the other hand we have for the ak-discounted optimal policy R1kl,defined 

by (6.2.12) 

(6 .2.21) I 
.Q, D (k) ko -l 

a 

Since c0 is at least as large as the left hand side of (G,. 2 .2 r,) we conclude 

(6 .2. 22) 

for all a$ 1 and all k ~ 1. Q 

THEOREM 6.2.11. consider the CTMDP with a., initial distribution P0 on s for 

which condition (6.2.3) holds. There exists for all a> 0 a stationary 

deterministic policy (Va,Rat such that 

(i) (Va, Ra) is a-discounted optimal in the class of strong regular policies. 

(ii) (Va,Ra) is monotone. 

Moreover, if c(.) is concave, then 

PROOF. Consider the sequence of functions (r~k) (.)):=l on S defined by 

(6.2.11). By part (ii) of theorem6.2.9. and lemma6.2.8. there exists a 

sequence (k.)~ 1 of natural numbers such that 
J ]= 

(6 .2.23) r (s): 
a 

(k.) 
lim r J (s) 
j-><x> a 

exists for all s E S. 

Put 

(6 .2.24) D : 
a 

inf {s E S: r (s) 
a 

µ}. 

From theorem 6. 2 .10. follows the existence of a O < D O and 

that Da ~ n0 > O for all o < a < a0 • Put 

a0 > O such 
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V : [D 00 ) a a' 

(6.2.25) 

otherwise 

Since 0/Va and Va is closed we know that (Va,Ra) is a well-defined policy 

for the CTMDP and from proposition 6.2.2 follows that (Va,Ra) is strong 

regular. Obviously (Va,Ra) is stationary, deterministic and monotone. 

Moreover, if c(.) is concave then (Va,Ra) is of bang-bang type. 

Finally, we find from theorem 4.2.9 that (Va,Ra) is a-discounted optimal in 

the class of strong regular policies. D 

6.3. THE AVERAGE COST CASE. 

In order to make the transition from the a-discounted cost case to the 

average cost case we need the following theorem. 

THEOREM 6.3.1. Let r~k) (s) be defined by (6.2.11) and D~k) by (6.2.17). 

If 

(6.3.1) sup 
SES 

{b(s+crt) - b(crt)} dt > M 

then there exist an a0 > 0, a natural number k0 and a number o0 such 

that 

PROOF; From (6.2. 7) and the fact that lim f(k) (s) 
n-+<o n, a 

f(k) (s) for all s ES 
Cl 

it follows that 

(6. 3. 2) 

Choose, for fixed a> 0 and fixed k a state o < s 

follows that for all n E {nj: j ~ 1} with n large 

and 

< D{k). From .(6.2.11) 
a (k) 

enough r (s) E rv 1 ,v2 ] 
n,a 



-1 (k) 
+a.k(1-k r (s)) 

n, a. 

By letting n ➔ 00 we find 

Iteration yields 

(6. 3. 3) 

a 

L 
n=a 

(D(k) ) -1 I a. -s (J 

n -1 n -1 -1 -1 
a.k ( 1-k v 2 ) k {b (s+ncrk )-b ((n+1) crk ) } ;;, 

2 -1 
-a.t -t(v2+½v2k ) 

e e {b(s+crt)-b(crt)}dt. 
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From (6.3.1) follows that we can find an£> a and a.a> a such that for 

all a. 5 a.a 

foo 

sup 

SES a 

-(v2+a.)t 
e {b(s+crt)-b(crt)}dt;;, M+4£. 

Next we choose s 1 ES such that for alls;;, s 1 and a. 5 a.a 

(6. 3.4) 
Joo -(v2+a.)t 

e {b(s+crt)-b(crt)}dt;;, 

a 

Since the left hand side of (6.3.4) is non-decreasing ins and non­

increasing in a. we can choose s 2 ES such that 

r52 -(v2+a.)t 
J e {b(s+crt)-b(crt)}dt 2 M+2£ 

a 
for alls 2 s 1 and a. 5 a.a. 
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Finally, choose k 0 

(6 .3 .5) CLk I s2 

such that for alls~ s 1 , CL~ CLO and k ~ k 0 

-(v2+CL)t -½v~tk-l 
e e {b(s+crt)-b(crt)}dt ~ M+E, 

0 

Combination of (6.3.2), (6.3.3) and (6.3.5) yields 

for all CL ~ CLO, k ~ kO ands ~ sl. 

Hence we have for all CL ~ aO and k ~ kO 

D(k) 
~ crs 2 + sl =: DO. □ CL 

THEOREM 6.3.2. Consider the CTMDP with an initial distribution PO on s, for 

which (6.2.3) holds. Assume that c(.) is concave and that condition (6.3.1) 

is satisfied. 

Then there exists a stationary deterministic policy (V,R) such that 

(i) (V,R) is average optimal in the class of strong regular policies. 

(ii) (V,R) is of bang-bang type. 

PROOF. Consider for CL> 0 the functions rCL(.) on S defined by (6.2.23). 

By part (iii) of theorem6.2.11. we know that rCL(.) is a non-decreasing 

function with values in 

exists for any sequence 

such that 

{v1 ,v2 ,µ} for all CL> 

(Sk)~=l with lim Sk 
k-+c> 

lim rs (s) 
j-+c> kj 

r(s): 

exists for alls ES. 

Put 

D: inf {s: r(s) µ}. 

Then we know by theorems 6.2.10. and 6.3.1 

0. By lemma 6.2.8. there 

0 a subsequence (Sk.);=l 
J 

that 0 < D < oo 



Put 

(6.3.6) 

otherwise 

Obviously (V,R) is a well-defined, deterministic and stationary policy, 

which is strong regular and of bang-bang type. 
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In order to apply theorem 4.4.6. we have to show that the conditions (4.4.6) 

and (4.4.7) of this theorem hold for the policies (V,R) and (Va,Ra), 

defined by (6.3.6) and (6.2.25) resp. In lemma 6.3.4 below it is shown 

that (4.4.6) holds. Note that for all a> 0 the policy (Va,Ra) induces on 

J[0,~) a regenerative stochastic process Xa, with sequence of regeneration 

epochs (Tn(Xa)):=O' where for x E J[0, 00 ) 

(6.3.7) 

Define 

(6. 3.8) 

T (X) : 
n 

Y (x): 
n,a 

the epoch of then-th entrance of x into state 0. 

Assume without loss of generality that the initial distribution P0 is 

degenerated in state 0. Then we have for P(V R )-almost all 
oo a' a 

X = (tj,ij)j=l E J[Q,oo): 

(6. 3.9) 

(6.3.10) -1 
D a 
a 

From (6.3.9) we conclude that 

and 

J 
J[Q,oo) 

2 -2 
Da 

a 

2 -1 2 
Y1 (x) dP(V R) (x)='>({b(Da)+max c(v)}D a + M) • 

,a a' a v a 
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From (6.3.10) we find 

I '1 (x) dP(Va,Ra) (x) c Dacr-1 exp{-v2Dacr-1}. 

J[O ,"') 

From these inequalities together with theorem 6.2.10 and 6.3.1 follows that 

the conditions (4.4.13), (4.4.14) and (4.4.15) of theorem 4.4.11 are 

fulfilled, which implies that (4.4.7) holds. 

REMARK 6.3.3. A stationary bang-bang type policy (V,R) can be characterized 

by two control parameters n1 (the bang-bang parameter of R) and n2 (the 

control limit) i.e. R(x,t) = v1 iff O :;; lit (x) < n1 , R(x,t) = v 2 iff 

11t(x) c n1 and V = [D2 , 00 ). In the sequel we will assume that n1 :;; n2 and 

D2 > 0. 

In the next lemma we show that the average expected costs under stationary 

bang-bang type policies depend continuously on the control parameters of 

these policies. 

LEMMA 6.3.4. Let (V,R) and (V ,R ), n c 1 be stationary bang-bang type 

policies for the CTMDP with c:nt:01 parameters (D1 ,n2 ) and (D~n) ,D~n)) 

respectively. If lim nt) n1 and lim D~n) = D2 then lim c(Vn,Rn) =c(V,R). 
n~ n~ n~ 

PROOF. Let the initial distribution be degenerated in state 0. Since (V,R) 

and (Vn,Rn) induce regenerative stochastic processes on J[0, 00), it is by 

(4.4.19) sufficient to show that 

(6.3.11) 

and 

(6.3.12) 

I '1 (x) dP(V R) (x) + 
n' n J[O ,co) 

I 
J[O ,"') 

J Tl (x) dP (V ,R) (x) 

J[ 0 ,oo) 

I Yl(x) dP(V,R)(x), 

J[O,"') 

where , 1 (x) is defined by (6.3.7), Y1 (x) = c ( ( (x) and 
(n) 0,Tl x), V,R) 

yl (x) =co,-rl(x),(Vn,J\i)(x). 
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With a minor modification of the proof of theorem 2.4.3 it follows that 

(6. 3.13) 

Since , 1 (.) is bounded and continuous P(V,R)-a.e. on J[0, 00 ) relation 

(6.3.11) follows from (6.3.13). To prove the validity of (6.3.12) we note 

that 

(6. 3.14) f Yl (x) dP(V,R) (x) I ~ 

The second term on the right hand side of (6.3.14) converges to zero by 

(6.3.13) and the continuity and boundedness of Y1 (.) on J[0, 00 ), P(V,R)-a.e. 

Moreover, we have for P(V R )-almost all x: 
n' n 

I (n) I < I (n) I -1 Y1 (x)-Y1 (x) - o1 -o1 o max c(v). 
\) 

This inequality implies that also the first term on the right hand side of 

(6.3.14) converges to zero. D 

The remainder of this section is devoted to the computation of the average 

expected costs under a stationary bang-bang type policy. Computation of 

this quantity is important for the development of algorithms to determine 

the optimal policy within the class of stationary bang-bang type policies. 

These algorithms, which make use of the special structure of the optimal 

policy, are more efficient than the general methods of successive 

approximation or standard policy iteration. 

Consider the stationary bang-bang type policy (V,R) with control parameters 

o1 and o2 , defined by 
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r \)1 if 0 :s 1\ (x) < D1 

R(x,t): t2 if 1\ (x) <'. D1. 

For any s ES denote with P((s) ) the probability measure on J[0, 00 ) induced 
V,R 

by (V,R) and the initial distribution degenerated ins. 

From the theory of regenerative stochastic processes we have for any 

initial distribution 

f Y (x)dP(O) (x) 
1 (V,R) 

(6. 3.15) c(V,R) 
J[O,oo) 

I (0) 
Tl (x) dP (V ,R) (x) 

J[O ,oo) 

where T 1 (x) is defined by (6. 3. 7) and Y 1 (x) : = c0 , T 1 (x) , (V, R) (x) for all 

X E J[0, 00 ). 

In view of the computation of the right hand side of (6.3.15) we introduce 

some auxiliary functions. 

For x E J[0, 00 ) and i = 1,2 define 

z. (x): 
J._ 

epoch of the first entrance ofx into [Di, 00 ) 

E. (x): 
J._ 

first entry state of x in [Di , 00). 

Next we denote for any Borelset B in [D 1 , 00 ) 

(6. 3.16) 1/J(B): D(O) { E ( ) B} 
• (V' R) X: 1 X E 

and for any s ES and i E {1,2} 

(6. 3.17) t. (s) : 
J._ I Z. (x) dP(s) (x) 

i (V,R) 
J[O,oo) 

and 

(6. 3.18) k. (s): 
J._ 

r (s) 
J c (x) dP (V,R) (x), 0,Z. (x), (V,R) 

J[O,oo) i 
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where ; 0 ( ) (x) denotes the total operating costs incurred along the ,T, V,R 
path x in the time interval [O,T] when policy (V,R) is used (so 

replacement- and maintenance costs are not included in c). 

We have the following obvious result. 

THEOREM 6. 3. 5. 

r 
J 

J[O,"') 

and 

T 1 (x) dP(O) (x) 
(V,R) 

Y1 (x) dP (O) (x) 
(V,R) 

J t 2 (s) d1, (s) 

ro 1 ,D 2 ) 

+ I {k2 (s} + t 2 (s)c(v2)} dij,(s). D 

ro 1 ,o 2 ) 

From theorem 6.3.5. and relation (6.3.15) follows that sufficient for 

the computation of c(V,R) is knowledge of the functions ti(.) and ki (.), 

i=l,2 and the probability distribution ij,. To determine these quantities 

we need the following lemma (cf. page 77 of COHEN (1976) and page 215 of 

TIJMS and VAN DER DUYN SCHOUTEN (1978)). 

LEMMA 6.3.6. Let a(.) be a bounded measurable function defined on a 

finite interval (a,b) and let K be a positive constant. Assume that F(.) 

is a probability distribution function with F(O) = 0 and with finite 

first moment. Let u(.) be a continuous function on (a,b), which 

satisfies for all except countable many x E (a,b) the integro­

differential equation 

(6. 3.19) du(x) a(x) + K{u(x} -~= 

and the boundary condition 

lim u(x) 0. 
xtb 

Then for all x E (a,b) 

Jb-x 
u(x+y) dF(y)} 

0 
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where 

with 

and 

(6.3.20) 

Furthermore 

(6. 3.21) 

and 

(6. 3.22) 

with 

(6. 3.23) 

u(x) = B(x) + rb-x 0 
e y B(x+y) dM(y), 

0 

fb-x 
B(x) = A(x) - J A(x+y) dH(y) 

0 

A(x) = - t a(y) dy 

X 

ro 

~ 
for x < 0 

H(x) 

lK fx (1-F (y)) dy 
0 

o is uni,quely determined by 

I"' -oy , 
e · dH(y) 

0 

"' 
M(x): E G( 2n) (x) 

n=l 

G(x): = Ix e-oy dH(y), 

0 

for x 2: 0. 

while G(n) (.) denotes then-fold convolution of G with itself, n 2: 1. 

PROOF. First we note that by partial integration 

d fb-x 
dx J u(x+y) (1-F(y)) dy = -u(x) + Jb-x 

u(x+y) dF(y). 

0 0 

Combining this with (6.3.19) yields 

u(x) = -Ib a(y)dy - K Jb-x u(x+y) (1-F(y))dy. 

X 0 



Hence, by the definition of H(.) and A(.) 

(6. 3.24) u(x) A(x) - r-xu(x+y) dH(y}. 

0 

Iterating (6. 3. 24) yields 

(6. 3. 25) u(x) = B(x) + r-x u(x+y) dH( 2) (y). 

0 

It is straightfo:rward to verify from (6. 3.21) and (6. 3.23) that 

for x;,: 0 

0 

and 

I"' e -oy dH (2) (y) 1. 

0 

Equation (6.3..25) can now equivalently be written as (cf. page 362 of 

FELLER ( 1966) ) 

(6. 3.26) 
ox 

e u(x) 

Put 

* u (x) 

Jb-x 
ox 

e B(x) + 

0 

ox 
e u(x). 

e O (x+y) u (x+y) dG <2 l (y) • 

Then (6.3.26) is equivalent with 

(6. 3.27) * u (x) fb-x 
e 0x B(xl + u*(x+y) dG( 2 ) (y). 

0 

It is well-known (see for example FELLER (1966)) that 

* u (x) fb-x 
eox B(x) + eo(x+y) B(x+y) dM(y) 

0 

is the unique bounded solution of equation (6.3.27) 

Hence 

155 



156 

u(x) B(x) + r-x ov B(x+y) dM(y) e .. 

0 

is the unique ·bounded solution of (6; 3 .19). [1 

THEOREM6.3.7. The probability distribution function~ on Sis given by 

D r 1 

J 
B(0) + ov e - B(y) dM(y) 

where o is 

defined by 

where F(x): 

0 

1 - lim ~[v,oo), 
v-1,Dl 

defined by (6.3.20) (v1ith K 

(6.3.22) and (6.3.23) while 

D 
-1 r 1 B(s): vlCJ FCv-y> dy -

J 

s 

1 - F(x), X? 0. 

-1 
\) 1 CJ ) 

-1 
vlCJ 

PROOF. Define for all O $ s < D l and all v > D l 

p(s,v): 

Then ~[v,oo) = p(0,v), for all v > D1• 

for v > D1 

and ( 6. 3 . 21 ) M(.) is 

D - s {1 I 
1 

F(v-z)dz dH(y), 

y=0 z=s+y 

For fixed v the function p(.,v) is continuous on [0,D 1). Next, by using 

standard arguments, we have for all Os s 

p(s-L'is,v) 
\) 1 L'is roo 

= -CJ- { J dF(y) + 

v-s 

< D 1 

D -s 

J 1 
p(s+y,v) 

0 

v 1t.s 
+ (1 - -CJ-) p(s,v) + o(L'is), 

from which we get for all 0 S s < D 1 

D -s 

dF(y)} + 

clp(s,v) 
as 

vl- vl rl 
0 F(v-s) + 0 {p(s,v) - J p(s+y,v) dF(y)}. 

0 

Moreover, p(s,v) satisfies the boundary condition 



lim p(s,v) 0 
sto1 

Application of the previous lemma completes the proof. D 

REMARK 6.3.8. An explicit expression for w(.) can be obtained for the 

special case, where 

F(t) 1 - -nt 
e t ~ o. 

Elementary, but lengthy calculations yield 

H(x) for x ~ 0 

8 
-1 

vlcr - n 

-1 

G(x) 1 
-v 1xcr 

for x ~ 0 - e 

for x ~ 0 

THEOREM 6. 3.9. For O !, s < Dl 

(6.3.28) kl (s) B(s) + 
JD1-s 

ecy B(s+y) dM(y) 

0 

(6.3.29) t 1 (s) D(s) + 
f 01-s 

e 8Y D(s+y) dM(y), 

0 

for v > D1 
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where 8 and M(.) are defined by (6.3.20) !llpto (6.3.23), with K 
-1 

v1cr and 

D1 D -s D1 
B(s): -1 I b(y)dy - -1 r 1 r b(x)dx dH(y) (J (J 

J J 
s y=O x=s+y 

D1-s 

D(s): -1 ( o1-s) -1 I ( D1-s-y) dH(y). (J - (J 

y=O 
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PROOF. First we note that k 1 (.) and t 1 (.) are continuous on ro,n 1). Then, 

for any O $ s < o 1 

b(s)ls vlls 
=---+--

a a 

D -s 
f 1 
j kl (s+y) dF (y) + 

0 
v 1ls 

+ (1 - - 0-) k 1 (s) + o(ls), 

from which we find, for all O $ s < D 1 

D -s 
b (s) v 1 f 1 

- -- + - {k (s) - j kl (s+y) dF(y)}. a a 1 
0 

Moreover 

Now (6.3.28) is obtained by application of lemma 6.3.6 , while (6.3.29) 

follows from (6.3.28) by putting b(s) = 1 for alls E ro,D1). n 

REMARK6.3._10. Formulas for k 2 (s) and t 2 (s) for s E ro1 ,o2 ) are obtained 

from those for k 1 (s) and t 1 (s) by replacing v 1 by v 2 and D1 by o2 • 

EXAMPLE 6°. 3,.11. For F (x) = 1 -nx - e , x ~ 0 and b(x) = b.x, x ~ 0 for some 

positive constant b, we find after lengthy calculations for alls E ro,o1) 

and 
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CHAPTER 7 

AN INVENTORY MODEL 

7.1. INTRODUCTION AND ASSUMPTIONS. 

Our third application concerns an inventory model which has got ample 

attention in the literature. However, as far as the author knows, the 

final results obtained in this section, are new. The model that we consider 

here is as follows. 

Customers arrive at a warehouse according to a Poisson process with 

constant arrival rate v. The demands of the customers are independent 

random variables having coID111on probability distribution function F, with 

F(O) = 0. Unfilled demands are backlogged. At every moment the decision 

maker can place an order of any size. We assume that an order is delivered 

without lead time. 

The cost structure consists of two parts: a holding- or penalty cost rate 

b(s) is incurred if the inventory level is s (negative values of the state 

variable indicate the amount to be backlogged) and a lump cost m(a) is 

incurred when an order of size a is placed. 

For this model we define the following CTMDP: 

(7 .1.1) 

S: = lR 

Al: { \/} 

A2 : [0,oo) 

q(s,v): = v, S E S 

JI(s,v,[s,s-t]): = F(t), s ES and t;;: 0 

p(s,a,{s+a}): = 1, (s,a) E S x A2 

S E S c 1 (s,v): 

c 2 (s,a): 

b(s), 

m(a), 

f(s,t): = s, 

(s,a) E S x A2 

(s,t) E S x [0,oo). 
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The state of the system denotes the inventory level, where negative values 

indicate the amount to be backlogged. The only possible control is the 

choice of the fixed arrival rate v. An impulsive control represents the 

size of an order. Further we assume the drift-function to be constant in 

its time variable. 

We make the following assumptions on the model parameters. 

ASSUMPTION 7.1.1. 

(i) F(.) has a density function; 

(ii) 
00 

µ: = f tdF(t) 
0 

< 00 andµ( 2 ): 

s 2 0 

(iii) b (s) 

Jbs, 

1-ps, 

(iv) 

s < 0 

for finite, non-negative constants band p 

m{a) = Mo(a) + ma, a 2 0 

for finite, non-negative constants m and M while o(a) 

and o{a) = 0 if a= 0. 

1 if a> O 

With this assumption model (7.1.1) is a well defined CTMDP for which 

assumption 2.2.2. holds. 

The k th approximating 

with (cf. remark 2.4.2. (ii)) 

(k) -1 -1 
P1 (s,v,[s,s-t]) = 1-k v+k VF(t); s E s, t 2 0 

(k) -1 -1 
p 2 (s,a,[s+a,s+a-t]) 1-k v+k vF(t); (s,a) E S x A2 , t 2 0. 

(k) -1 
cl (s,v) k b(s); SES 

(k) 
c 2 (s,a) 

-1 
m (a) +k b (s+a) ; 

REMARK 7.1.2. (i) Since A1={v} it follows for every policy (V,R) with 

R=(R1 ,R2 ) that R1 (x,t) is a probability measure degenerated in {v} for all 

(x,t). Hence in this chapter a policy is denoted by (V,R), where Vis a 

closed subset of Sand Ra transition probability from J[0, 00)x[0, 00 ) to A2 . 

(ii) Let R be a transition probability from J[0, 00 )x[0, 00 ) to A2 such that 

R(.,t) is rt~measurable and let V be a closed subset of S. Then (V,R) is a 

policy iff R(x,t){a: a+ntxEV} = 0 for all (x,t) with ntx EV. 
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7.2. THE a-DISCOUNTED COST CASE. 

PROPOSITION 7.2.1. Let po be an initial distribution on s. A policy (V,R) 

is regular if 

(7. 2.1) ov is countable 

(7.2.2) w 
P(V,R){x: R('l<_,tk) ::.;,- R(x,t) for some t, while 

d('l<_,x) + 0, tk + t} = 0. 

PROOF. An immediate consequence of assumption 7 .1.1. (i) and theorem 2. 4. 3. D 

PROPOSITION 7.2.2. Let po be an initial distribution on s, with 

(7 .2. 3) r 2 
dPO (s) J 

s < oo. 

s 
A policy (V,R) is strong regular if (7.2.1) and (7.2.2) hold and if there 

exists a state so Es such that for all (x,t) E J[O,oo) x[Q,oo) with Trtx EV 

(7.2.4) 

(this implies that V n [s0 , 00 ) = ~). 

PROOF. Let (V,R) be a policy for which (7.2.1) and (7.2.2) hold. Define 

for the k th approximating DTMDP policies (V(k) ,R(k)) by V(k)=V and 

R (k) =R, k ~ 1. We will show that (V ,R) and (V (k) ,R (k\ satisfy the conditions 

of theorem 4.2.1. 

First of all we note that condition (2.4.3) follows from (7.2.1) and 

assumption 7.1.1. (i), that condition (2.4.4) follows from (7.2.2) while 

condition (2.4.5) is trivially satisfied. 

Next we note that condition (4.2.1) holds for all o > 0 and all k ~ 1. Put 

Al (j): Al, j € s r•o-il, j < so 

A2 (j): 

j ~ so 
(k) C • 

Then R (x,t) (A2 (J)) = 0 for all (x,t) € Jk[0, 00 ) x Lk for which 

Tr x = j E V(k). Choose a> 0 and B > 1 (depending on a) such that (4.2.11) 
t 

holds for some o > 0. 
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Define 

j (b+p) s 0 

Lb+p) Is I 

for s ?'. 0 

for s < 0, 

where we assume, without loss of generality, that s 0 > 1 and 
-1 (2) -2 

(1 + 2µs 0 + JJ s 0 ) < S. 

Nowoneeasilyverifiesthatcondition (4.2.2) is satisfied. Conditions (4.2.3), 

(4.2.4) and (4.2.5) are trivially fulf1lled for .Q,(.) = 1. To verify 

(4.2.6) and (4.2.7) we observe that 

J h~(s 1) dll (s, a, s 1 ) r 2 
dF(t) sup h 1 (s-t) $ 

aEA1 (s) 
s 0 

r (b+p) 2 
, 2 (1+µ(2)s-2) for s s > so 

2 -1 (2) -2 
$ 

fb+p): s (1+2µso +µ so) for -so $ s $ so; 0 
52 -1 (2) -2 

(b+p) (1+2µs +µ s ) for s < -so 

2 
h 2 (s-t) dF (t) $ 

for s ?'. 0 

for s < 0 

r 2 
dp (s,a,s 1) 

2 2 
sup 

J hl (sl) sup h 1 (s+a) $ h 1 (s) 
aEA2 (s) s aEA2 (s) 

and 

r 2 2 
h 2 (s). sup J h2 (sl) dp (s, a, s 1 ) sup h 2 (s+a) $ 

aEA2 (s) aEA2 (s) 2 
s 

Finally condition (4. 2. 8) follows from (7 .2. 3) while (4.2.9) and (4.2.10) 

follow from the bounded convergence theorem and assumpt1on 7 .1. 1. (ii). □ 
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DEFINITION 7.2.3. Let (V,R) be a memoryless deterministic policy for the 

CTMDP. Hence there exists a function r(.,.) on S x [0, 00 ) with values in A2 

such that r(s,t) R(x,t) for all (x,t) E J[0, 00 ) x [0, 00 ) with Titx = s. 

* * The policy (V,R) is of (s,S) type if there exist states s ~ S, such that 

for alls ES and t ~ 0 

r(s,t) 

REMARK 7.2.4. As in the previous chapter we treat the k th approximating 

DTMDP for finite as well as infinite horizon as a classical discrete time 

k d . . ( (k) (k)) . h Mar ov ecision process S,A,p ,c wit 

A: = [0, 00 ) 

(k) -1 -1 
p (s,a,[s+a,s+a-t]): = 1-k v+k \lF(t); (s,a) E S x A, t ~ 0 

(k) -1 
c (s,a): = Mo(a)+ma+k b(s+a). 

A policy for this discrete time Markov decision process is denoted by R, 

a transition probability from Jk[0, 00 ) x ~ to A, such that R(.,t) is 

rt-measurable. 

DEFINITION 7.2.5. Let R be a deterministic memoryless policy for the k th 

approximating DTMDP. Hence there exists a function r (.,.) on S x [0 , 00 ) with 

values in A such that r(s,t) = R(x,t) for all (:{,t) E Jk[0, 00 ) x ~ with 

TitX = s. 

The policy R is of (s,S) type if there exist for all t ~ 0 states 

* * st~ St such that 

r(s,t) 

otherwise. 

max(x,O). 
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Conditions under which the optimal policy for the discrete time, finite­

and infinite horizon model is of (s,S) type have been derived by 

several authors. Here we mention SCARF (1960), ZABEL (1962), IGLEHART 

(1963), VEINOTT (1966), PORTEUS (1971) and SCHAL (1976). 

THEOREM 7.2.6. Consider the k th approximating DTMDP with some initial 
-1 

distribution P0 on s. Put a> 0 and ak: = exp(-ak ) . For all n 2 1 there 

exists a memoryless deterministic policy R(k) such that 
n 

(i) R~k) is ak-discounted, n-horizon optimal in the class of all 

policies 

(ii) R (k) . f ( S) t n is o s, ype. 

PROOF. The proof follows the lines of SCARF (1960) and ZABEL (1962). 

For n 2 1 ands ES we denote 

f(k) (s): 
n,a 

inf 
RER 

c (x) dPR(xlrr0x 
ak 1 n,R 

s)' 

where R denotes the class of all policies. 

By induction on n follows for all n 2 1 

f(k) (s) 
n,a 

inf {Mo(a) +ma+ k-lb(s+a) + (1 v)f(k) ( ) ak - k n-1 ,a s+a + 

roo 

V f (k)l (s+a-t) dF (t)}' 
+ ak k J n- ,a 

0 



where we define 

for s ~ 0 

fO(kl (s): 
, Cl. 

for s < 0 

for some finite constant m > m. 

Put for n ~ 1 

( 7. 2. 5) 

Hence 

( 7, 2- 6) 

Define 

w(k) (s): 
n, a. 

f(k) (s) 
n,a. 

ms+ k-lb(sl + a.k(l - ~) /kl (sl + 
k n-1,a. 

f (k) (s-t) dF (t). 
n-1,a. 

inf {M6(a) + w(k) (s+a) - ms}. 
n,a. 
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( 7. 2. 7) r(k) (s): = inf {a~O: M6(a)+w(k) (s+a) inf {M6 (a) +w (kl (s+a)}}. 
n,a. n,a. 

From part (i) of lemma 7.2.9. below it follows that r (k) (s) 
n, a. 

n, a. 

< oo for all 
-1 

s ES. Next we define for all (x,ik ) E JkfO,oo) X Lk 

(kl -1 (kl 1 R x,ik ) : r i1 (7r lx), s 
n n- + ,et. ik -

(kl -1 (k) -1 
R (x,tk ) : Rn(x,nk ), i ~ n. n 

From part (iii) of lemma 7.2.9. below it follows 

defined policy for the k th approximating DTMDP. 

i s n 

(kl 
that R (.,.) is a well 

n (k/ 
Obviously, Rn.,.) is 

memoryless, deterministic and a.k-disc_ ounted optimal in the class of all 
(kl 

policies. Finally, we conclude from lemma 7.2.9. below that Rn(.,.) is of 

(s,S) type. D 

We need the concept of K-convexity, introduced by SCARF (1960) (see SCHJIL 

(1976) for a generalization of this concept). 
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DEFINITION 7. 2. 7. Let f (. l be a real-valued function on JR and let K be a 

real constant. The function f(.) is called K-convex if 

f (y) - f (x) ~ f (z) - f (x) + K 
y - X Z - X 

for all x < y < z. 

First we state without proof some well-known properties of K-convex 

functions. 

LEMMA 7 .2.1:J. 

(i) If f is K-convex then f is M-convex for all M <: K. 

(ii) If f and g are K-convex and M-convex, respectively, and y 1 ,y2 > 0, 

then y 1f + y2g is (y 1K+yi1)-convex. 

(iii) If f is K-convex and F(.) is a probability distribution function on 

[0, 00 ) with of00 Jf(x-zll dF(z) < OO for all XE JR,then 

0J00 f(x-z) dF(z) is also K-convex. 

(iv) Assume that f is K-convex and continuous with limJxJ->«> f(x) oo Let 

sl: inf {;: f(s) inf f (s)} 

and 
s 

s2: inf {s ~ sl: K + f (s 1) f (s)}. 

Then 

f(s) > f (s 2) for alls < s2 

f(y) <'. f(x) - K for all y <'. X <: sl 

f (s) ~ f(s 2 ) for all s2 ~ s ~ sl. 

LEMMA 7.2.9. Let w(k) (.) and r(k) (.) be as given by (7.2.5) and (7.2.7) in 
n,a n,a 

the proof of the previous theorem. Then for all k large enough and all a 

small enough 

(i) w(k) (.) is M-convex and continuous 
n,a 

(ii) lim w (kl (s) 
s-+oo n,a 

(iii) there exist 

= lim w(k) (s) 
s-+-oo n,a 

(kl 
states s2,a ~ 

(kl ( l 
r2,a s 

= 00 

S(k) 
9,, a' 1 ~ Q, ~ n, 

(kl 
if s < s 2,a 

otherwise. 

such that 
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PROQF. The proof proceeds by induction on n. For n = 1 we have 

l(m+bk- 1-;akvk-l)s + akvk-lm s 

-1 - -1-
(m-pk -mak)s + akvk mµ 

f"' j tdF (t), s ~ 0 

s < o. 

Choose k0 such that for all k ~ k0 

bk-1 - k-1 > 0 m + - makv 

-1 
m - pk - mak < 0 

One easily checks that for all k ~ k0 the function wik) (.) is M-convex and 

continuous and that lim wik) (s) = lim wik) (s) :Cl.00 • This implies 
(kl s->«> ,a s+-ro , Cl. 

that w1 (.) attains its infimum. Put ,Cl. 

and 

s(k). 
1, Cl.. inf w1(k) (s)} 

,a 
s 

1.'nf {s s s(kl._ M + (k) (S(k)) (kl()} 
1,a wl,a 1,a = wl,a s • 

Since wi:~(.) is M-convex and continuous we find from part (iv) of lemma 

7.2.8. 

(k) ( ) 
wl,a s 

>w(k)(s(k)) 
1,a 1,a 

for alls< (kl 
sl,a 

(kl ( l 
wl,a Y ~ (kl ( l 

wl,a x - M for all y ~ X ~ 
S(k) 

1,a 

(kl ( l $ w(k) (s (kl) for all (kl 
$ s $ 

S(k) 
wl,a s .1,a 1,a sl ,a 1,a· 

This implies rk) -. for s < (kl 

(kl ( l 
1,CI. sl,a 

rl,a s 
(kl 

0 for s ~ sl ,a· 

This completes the proof for n 1. 
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Suppose the lemma is true for n. Hence there exist s(k) $ 
n,a. 

(7.2.8) s(k): inf {;, w(k) (s) inf w (k) (s)} 
n, a n,a. n, a 

s 

s (k) such that 
n, a 

(7.2.9) (k) 
inf {s $ s (k): M + w(k) (S (k)) = w(k) (s)} s 

n, a n, a n, a n, a n, a 

t + 
w(k) (S(k)) for s < 

(k) 
- ms s 

f (k) (s) 
n, a n, a n, a 

(7.2.10) n,a. b~ (k) (s) (k) 
- ms for s ~ s 

n,a. n, a 

Reasoning along the same lines as e.g. on page 174 in ROSS (1970), it 

follows that f(k) (.) is M-convex and continuous. This implies with parts 
n, a 

(i), (ii) and (iii) of lemma 7.2.8. that w(k)l (.) is M-convex and 
n+ ,a 

continuous, which proves (i) for n+l. 

Moreover, we have for s $ s (k) 
n, a 

w(k) (s) 
n+l,a 

-1 
Choose a0 < pm 

-1 
Then m(l-ak)-pk < 0 for all 0 <a$ a0 , which implies 

that 

s+-00 

w(k) (s) 
n+l ,a 

Next we note that for y ~ x 

(7. 2.11) mx + f (k) (x) inf n, a 
a~0 

$ inf 
a~0 

{Mo (a) + w (k) (x+a) } 
n,a 

{Mo (a) 
(k) 

+ w (y+a)} 
n,a 

my+ f (k) (y) + M. 
n, a 

Hence, by (7.2.5) we have for y ~ x · 

(7.2.12) w(k) ( ) - w(k) (x) 
n+l,a y n+l,a 

which in turn gives 

$ 

+ M 



limw(k)l (s) = 00 

n+ ,a 
s--
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This proves (ii) for n+l. Finally the proof of (iii) for n+l proceeds 

similar as for n=l. D 

LEMMA 7.2.10. Let S(k) and s(k) be defined by (7.2.8) and (7.2.9) in the 
n,a n,a 

proof of the previous lemma. Then 

and 

PROOF. From relation (7.2.12) follows for ally~ x ~ 0 

This implies with the definition of s(k) that 
n,a 

On the other hand we conclude from (7.2.12) that for y ~ x ~ 0 

w (k) (y) - w (k) (x) ~ k -lb (y-x) - M. 
n,a n,a 

Since w(k) attains its infimum in s(k) we conclude that 
n,a n,a 

Next we show by induction on n that w(k) (.} is non-increasing on (-00 ,01. 
n,a 

This is obvious for n=l. Suppose it is true for n. Then(7.2.10) implies 

that for x sys 0 

(7. 2.13) f(k) (x) - f(k) (y) ~ -m(x-y). 
n,a n,a 

Hence it follows by (7. 2. 5") that for all x S y s 0 
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(7.2.14) w (k) (x) - w (k) ( ) ~ 
n+l,a n+l,a y 

From the fact that w(k) (.) is non-increasing on (-00 ,0] we conclude that 
n,a 

Finally (7.2.14) yields for x ~ 0 

w(k) (x) ~ 
n,a 

Hence, by the definition of s (k) 
n,a 

(k) -1 
s ~ -Mk(p-ma) . D n,a 

THEOREM 7. 2. 11 • Consider the k th approximating DTMDP with some initial 

distribution P0 on S. Choose a> 0 and put ak: = exp(-ak-ll. There exists 

a stationary deterministic policy R~k~uch that 

( .) R(k). 
1 * 1S 

(ii) R(k)is 
* 

ak-discounted optimal in the class of all policies. 

of (s,S) type. 

PROOF. Let S(k) and s(k)be defined by (7.2.8) and (7.2.9). From the 
n,a n,a 

previous lemma follows the existence of real numbers S(k) and s(kl and a 
Cl Cl 

00 

sequence (n.). 1 of natural numbers such that 
J J= 

(7.2.15) lim S (k) =:S(k) 

j-- nj I CL Cl 

and 

(7.2.16) lim 
(kl (k) 

s =:s 
j-- nj,a Cl 

Put 

tkl - '1\X if < s (k) 

(k( 
71tX 

Cl 

R * x,t) 

otherwise. 
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(k) 
Then R*(.,.) is a well-defined stationary deterministic policy, which is 

obviously of (s,S) type. 
(k) 

To prove that R*(.,.) is ak-discounted optimal we define 

(7 .2.17) f (k) (s): 
a 

s), s E s. 

Since (f(k) (.)) is a non-decreasing sequence of non-negative functionsonS 
n,a 

v(s): lim f(k) (s) ~ 0 
n-),00 n, a 

exists for alls Es. 
From Dini's theorem (seepage 162 of ROYDEN (1968)) it follows that 

(7 .2.18) 

By considering the (s,S) type policy withs= S 0 we easily find that 

(7 .2.19) for s < 0, 

Combining (7.2.18) and (7.2.19) with (7.2.5) we find with the bounded 

convergence theorem that 

(7.2.20) 

where 

W (k) (.) C ( ) -+ w • , 
n,a 

w(s): ms+ k-lb(s) + ak(l - {zl v(s) + ak jz f" v(s-t) dF(t}. 

0 

From (7.2.10)• (7.2.18) and (7.2.20) follows 

(7.2.21) v(s) 

IM + w(S~k)) 

1w(s) - ms 

- ms for s < s (k) 
a 

for s ~ s(kl 
a 

Iteration of (7.2.21) yields for s E S and n ~ 1 
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v{s) ;:: s). 

By letting n + 00 we find 

(7.2.22) v{s) ;:: 

Together (7.2.22) and v(s) ~ f~k) (sl yield the ak-discounted optimality of 
{k) 

R (.,.) in R. □ 
* 

LEMMA 7 .. 2 .12. Let S{k) and s{k) be defined by (7.2.15) and (7.2.16). Then 
a a 

for a small enough 

and 

-M{a+v) {p-am)-l ~ s {k) ~ 0. 
a 

PROOF. Let f {k) {.) be defined by { 7. 2 .1 7) • From the previous theorem it 
a 

follows that for alls ES 

inf f c {x) dP <xln0x 
RER ak,R R 

Jk[0,oo) 

sl , 

where P. is the collection of all semi-Markov strategies, i.e. R E R if for 

fixed x the function R(x,.) is constant on (T (x),T 1 (x)] for all n ~ 1. 
(k) n n+ 

Stated otherwise, the function fa (.) is the optimal value function of 

the semi-Markov decision process, where the sojourn time T(s,al in state 

s ES, when action a is chosen is a random variable with the following 

distribution function 

:IP{ T{s,a) 

lP{T(s,a) 

nk-1} = (l-vk-l)n-lvk-1, 

k-l } = 1 

a= 0, SES 

a > 0, S E S. 

Reasoning along the same lines as e.g. in chapter 7 of ROSS (19701 or in 

LIPPMAN (1973) it follows that f(k) (.) satisfies the functional equation 
a 



Put 

1 kT(s+a,0)-1 
inf {Mo(a) +ma+ k- b(s+a)E( l 

n=O 

r"' + E(c/kT(s+a,O)) f(k) (s+a-t) dF(t)} 
J Cl 

0 

0 

f (k) (s+a-t) dF (tl } • 
Cl 
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f"' f(k)(s-t) dF(tl. 
Cl 

0 

Then 

(7. 2. 23l 
- (kl 

inf {Mo(a) + wa (s+al - ms}. 
a2:0 

(k) 
From the previous theorem follows also that the policyR* (.,.l defined by 

{

S (k) - 7f x 
Cl t 

0 

if 7f X < s (k) 
t Cl 

otherwise 

(k) 
is ak-discounted optimal. Moreover R*(x,tl minimizes the right hand side 

of (7.2.23l if 7ftX = S. 

Hence 

- ms for s < s(kl 
Cl 

for s 2: s (kl 
Cl 

which in turn implies that ;;, (kl (.) a.ttains its infimum at S (k) while 
Cl Cl ' 

(7.2.24) 

For y 2: x we have by (7. 2. 11) 

mx + f(k) (x) s 
Cl 

my+ M + f(kl (y). 
Cl 
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Hence 

; (k) (y) _ ; (k) (x) 
Ci. Ci. 

~ b(y)-b(x) _ M ~ 
k ( 1-ak) +ak v 

-1 
~ (a+v) (b(y)-b(x)) - M. 

Since ;(k) (.) attains its infimum at S(k) it follows that 
Ci. Ci. 

Moreover, (7.2.13) implies that for x $ y $ 0 

f (k) (x) - f (k) (y) ~ -m (x-y) . 
Ci. Ci. 

Hence we have for x $ y $ 0 

;(k) (x) ~ (kl ( ) 
~ m(x-y) 

b(x)-b(y) m(x-y)akv 
+ 

Ci. 
- WCI. y k (1-ak) +ak V k (1-ak) +ak V 

~ 
p(y-x) m (x-y) k ( 1-ak) 

k ( 1-ak) +ak V 
+ 

k (1-ak) +ak v 

From this inequality follows for a small enough and for s $ 0 

; (k) (s) ~ ; (k) (0) - (a+v) -l (p-ma) s ~ 
Ci. Ci. 

This implies with (7.2.24). 

(k) -1 
sci. ~ -M(v+a) (p-ma) . D 

~ 

THEOREM 7.2.13. Consider the CTMDP with some initial distribution P0 on S, 

such that (7.2.3) holds. For all a > 0 there exists a stationary 

deterministic policy (Va,Ra) such that 

(i) (Va ,Ra) is a-discounted optimal in the class of strong regular 

policies. 

(ii) (Va,Ra)is of (s,S) type. 



(kl (kl . 
PROOF. Let Sa. and sa. be defined by (7.2.15) and (7.2.16). From the 

previous lemma follows the existence of real numbers S ands and a 

sequence (k.)~ 1 of natural numbers such that 
J J= 

(7.2.25) 

(7.2.26) 

Put 

(7 .2. 27) 

(7. 2. 28) 

lim s 
j--

lim s 
j--

V : 
Ci. 

(kj) 
=:S 

Ci. 

(k .) 
J =:s 

Ci. 

* (-oo, S J 
Ci. 

R (x,t): 
Ci. 

* 
Ci. 

* 
Ci. 

Ci. Ci. 

Then (Va.,Ra.) is a well-defined policy for the CTMDP, which is obviously 

stationary, deterministic and of (s,S) type. According to theorem 4.2.9. 

the policy (Va.,Ra.) is a.-discounted optimal for the CTMDP if (Va.,Ra.) and 
(k.) 

(R J )~ satisfy conditio~ (4.1.8). Theorem 4.2.1. gives sufficient 
* J=l 

conditions for (4.1.8). Finally theorem 2.5.4 and the proof of 
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proposition 7.2.2. show that these sufficient conditions are satisfied for 
(kj) "' 

(Va.,Ra.) and (R* )j=l" 0 

7. 3. THE AVERAGE COST CASE. 

THEOREM 7.3.1. Consider the CTMDP with some initial distribution P0 on S 

such that (7.2.3) holds. Then there exists a stationary deterministic 

policy (V,R) such that 

(i) (V,R) is average optimal in the class of strong regular policies. 

(ii) (V,R) is of (s,S) type. 

* * PROOF. Let SCI. and SCI. for a.> 0 be defined by (7.2.25) and (7.2.26). By 

lemma 7.2.12. there exists for any sequence (Bk):=l with li~--Bk = 0 a 

"' subsequence (Bk. l j=l such that 
J 

* * s : lim SB 
j-- k. 

and J 

* * s : lim SB 
j-- k. 

exist. J 
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Moreover it follows from lemma 7.2.12 that 0 $ s* $ Mvb-l and 
-1 * -Mvp $ s $ 0. 

Put 

* V: (-00 ,s J 

and 

Obviously (V,R) is a well-defined, deterministic stationary policy of 

(s,S) type. To show that (V,R) is average optimal in the class of strong 

regular policies it is sufficient to show that conditions (4.4.6) and 

(4.4.7) of theorem 4.4.6.hold. 

Consider the policy (Va,Ra) defined by (7.2.27) and (7.2.28). Using 

standard renewal arguments, it can be shown that (see e.g. VEINOTT and 

WAGNER (1965) ) 

(7. 3. 1) 

where MF(.) is the renewal function of the probability distribution F and 

g(u,v): = b(v)v-l + M{1-F(v-u)} + m f"" tdF(t) + 

v-u rv-u -1 
+J {b(v-y)v + {1-F(v-u-y)}{M+my} + 

o r"" 
+ m j tdF(t)} dMF(y) for u $ v. 

v-u-y 

Together (7.3.1) and assumption 7.1.1. (i) imply (4.4.6). 

Finally we put for x € J[0, 00 ) 

T (x): 
n,a 

th * epoch of n entrance of x into state Sa. 

Then the policy (V ,R) induces on J[0, 00 ) a regenerative stochastic 
a a 

process X, with sequence of regeneration epochs (T (X )) 00 
0 . One 

a n,a a n= 
easily verifies that for this regenerative stochastic process the 

conditions (4.4.13), (4.4.14) and (4.4.15) hold. Hence it follows from 

theorem 4.4.8. that (4.4.7) holds. D 
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CHAPTER 8 

RELATED LITERATURE 

8.1. INTRODUCTION. 

In this final chapter we give a brief overview of those parts of the 

literature, that are closely related in method or result to the work 

presented in this monograph. 

The reader should not expect a complete picture of all the literature on 

Markov decision processes with continuous time parameter, nor an overview 

of all those papers, in which approximation methods based on weak 

convergence are used. The literature that is considered, is separated into 

three sections. In section 8,. 2 we mention publications in which Markov 

decision processes with continuous time parameter are treated from a 

general point of view. In section 8.3 literature on approximation methods 

for continuous time Markov decision processes is gathered. Finally, we give 

in section 8.4 some references with respect to the specific models 

presented in the chapters 5, 6 and 7. 

8.2. MARKOV DECISION PROCESSES WITH CONTINUOUS TIME PARAMETER FROM A 

GENERAL POINT OF VIEW. 

During the first ten years after the initiating work of BELLMAN (1957) 

and HOWARD (1960) on Markov decision processes, the attention was mainly 

directed to the theory of discrete time- and semi-Markov decision processes. 

For references we refer to ROSS (1970) and HORDIJK (1974). The theory 

of semi-Markov decision processes is closely connected with the theory of 

Markov decision drift processes with continuous time parameter. Indeed, any 

CTMDP with drift function constant in its time variable becomes a semi-

Markov decision process if the class of policies is restricted to the 

stationary ones. Hence, the theory of semi-Markov decision processes is 

applicable, once we know for a certain CTMDP that a stationary optimal policy exists. 
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MILLER (1968) considered continuous time Markov decision processes with 

finite state space Sand finite set of controls A1 , while in his analysis 

the set of impulsive controls is empty. The cost functional that is 

considered is the 0-discounted, T-horizon cost functional. The class of 

policies is restricted to the pure, memoryless ones. By a constructive 

proof Miller shows, that within this class there exists a piecewise constant 

0-discounted, T-horizon optimal policy i.e. for all i ES there exists a 

piecewise constant function r(i,.) on [0,T] with values in A1 , such that 

the policy R, defined by R(x,t): = r(Titx,t) is 0-discounted, T-horizon 

optimal. 

In a second paper MILLER (1968a) treats the a-discounted and average cost 

functionals for continuous time Markov decision processes with finite state 

and action space. The existence of a stationary, a-discounted optimal and a 

stationary average optimal policy in the class of piecewise constant 

policies is established. These results are also obtainable from our 

theorems 4.2.1. and 4.4.6., using the corresponding well-known results for 

discrete time processes: 

KAKUMANU (1971) generalizes the results of Miller to the countable state 

space. He also assumes an empty set of impulsive controls. In the case in 

which the set of controls is finite, the existence of a stationary, 

a-discounted optimal policy, within the class of pure memoryless policies 

is established. Moreover, he proves for a countable set of controls, that 

within the class of pure, memoryless policies there exists a stationary, 

a-discounted, £-optimal policy. These results can also be obtained from our 

theorem 4.2.1. with some additional argumentation. 

KAKUMANU (1975) considered in a subsequent paper the average cost functional 

for the case of a countable state space, finite set of controls and empty 

set of impulsive controls. The existence of a stationary, average optimal 

policy in the class of memoryless policies is proved, under the condition 

that the probability measure induced by any pure, memoryless policy generates 

a positive recurrent Markov process, with only one recurrent class. However, 

his conditions seem to be insufficient, since his results contradict a counter 

example of FISHER and ROSS (1968). Our conditions of theorem 4.4.6. which 

ensure the average optimality of a policy for the continuous time model are 

stronger than those of Kakumanu. DOSHI (1974 and 1976) deals with continuous 

time Markov decision (drift) processes, with the restrictions that the 

set of impulsive controls is empty and the drift function is constant in 
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its time variable. He derives conditions, which guarantee the existence 

of a stationary, a-discounted optimal and a stationary, average optimal 

policy, within the class of pure, memoryless policies. This kind of result 

(for the general state space) cannot be obtained from our theory without 

any additional information about the optimal policies for the approximating 

discrete time processes. The numerous conditions of Doshi, however, are 

not easy to verify. 

PLISKA (1975) considers continuous time Markov decision (drift) processes 

under the same restrictions as those of DOSHI (1976). He shows, that for 

the 0-discounted, T-horizon cost functional, as well as the 0-discounted 

cost functional the optimal value function is the unique solution of a 

certain differential equation. 

Finally, YUSHKEVICH (1977) treats continuous time Markov decision processes 

with countable state space and (logically) a drift function that is 

constant in its time variable. He takes into account the class of pure 

policies. His main result is the derivation of sufficient conditions, which 

guarantee the existence of a pure, memoryless, 0-discounted, £-optimal 

policy in the class of pure policies. We obtained a similar result in 

chapter 3. 

As YUSHKEVICH (1977) is the only author who admits history remembering 

policies, only he is concerned with the question of the existence of a 

probability measure on the space of all sample paths, induced by a 

general (non-Markovian) policy. MANDL (1973) had earlier partially 

answered this question for the case of a finite state space. He defined 

the transition probabilities of the embedded process, describing the 

jump times and jump states. For a finite state space and empty set of 

impulsive controls the transition probabilities Q(n) (.) defined on page 38 

of this monograph (definition 2.2.11.) simplify to the transition 

probq.bilities given by Mandl. 

In dealing with the problem of the existence of stationary average optimal 

policies for discrete or continuous time Markov decision (drift) processes 

we can roughly distinguish two approaches. The first approach takes the 

optimality equation for the average cost criterion as a starting point. 

The difficult part of that analysis is to find sufficient conditions under 

which this optimality equation has a bounded solution. Some authors provide 

sets of sufficient conditions in terms of the solution of the optimality 

equation for the discounted cost criterion (TAYLOR (1965), ROSS (1968, 
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1968a, 1970a), TIJMS (1975), HORDIJK (1976) and DOSHI (1976)). Also 

recurrence conditions on the underlying stochastic processes are proposed 

as sufficient for the optimality equation to have a bounded solution 

(DERMAN (1966), DERMAN and VEINOTT (1967), HORDIJK (1974), FEDERGRUEN, 

HORDIJK and TIJMS (1979) and FEDERGRUEN, SCHWEITZER and TIJMS (1980)). 

In the second approach the value function of the average cost problem is 

directly related to the value function of the discounted problem. In SCHAL 

(1977) this is established by interchanging limit and infimum while 

BLACKWELL (1962), MILLER (1968) and HORDIJK (1971) make use of a well 

known Abelian theorem. It is worthwhile to notice that in this Abelian 

approach no use is made of the optimality equation. In section 4.5. of 

this monograph we used the latter method to find sufficient conditions for 

the average optimality of a limit point of a sequence of discounted 

optimal policies. 

8.3. APPROXIMATION MET~ODS. 

Approximation methods for continuous time Markov decision processes 

haye been applied during the last decade with considerable success. In 

view of the fast growing literature in which these approximation methods 

are used, they seem to become a main tool in the analysis of Markov 

decision processes. In particular the theory on weak convergence of 

probability measures plays a key role. 

For applications before 1974 in queueing theory and other areas of applied 

probability the reader is referred to the survey papers by IGLEHART (1973 

and 1974). In this section we briefly discuss some publications in which 

continuous time Markov decision processes are treated with employment of 

approximation methods ~ith respect to the time parameter. Beyond the scope 

of this monograph are the important methods which approximate or 

discretize the input parameters or the state space. 

MITCHEL (1973) considers an M/G/1 queueing system with controllable 

service rate under the average cost functional. He proves, under certain 

assumptions on the cost functions, the existence of a stationary, 

E-optimal, monotone policy i.e. the service rate used increases with the 

amount of work in the system. First he proves, via the a-discounted, 

finite horizon analysis the existence of a monotone, stationary, average 
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optimal policy for the k th approximating decision process. Next, he shows 

that given k and a policy R for the CTMDP, there exists a policy~ for 

the k th approximating DTMDP, such that the expected average costs under 

both policies differ by a function of k, which goes to zero ask+ 00 

Finally he proves by a method depending on the structure of the problem, 

that the optimal value function for the sequence of approximating decision 

processes converges to the optimal value function of the CTMDP. This 

justifies the conclusion, that there exists a monotone, stationary, 

£-optimal policy for the CTMDP. 

WINSTON (1976) considered continuous time Markov decision processes with 

finite state space, finite set of controls and empty set of impulsive 

controls. By analysis of the discrete time and continuous time optimality 

equations he proves for these processes our theorem 4.2.9. under the 

assumption that the optimal policies for the approximating decision 

processes are stationary. Winston applies this result to a maintenance 

system, consisting of a finite number of machines and a single server 

repair facility, that can be.operated at a finite number of rates. 

Conditions are derived which ensure, that the optimal repair rate for the 

CTMDP is a non-increasing function of the number of machines in good 

condition. 

The results of Winston are generalized in chapter 10 of WHITT (1975). He 

proves, besides a lot of other interesting convergence results on input 

parameters, a theorem similar to theorem 2.4.3. in this monograph. The 

processes considered by Whitt have countable state space and empty set of 

impulsive controls, while the policies are restricted to.the class of pure 

memoryless policies. 

LIPPMAN (1976) considers continuous time Markov decision processes with 

countable state space, finite (state-depending) sets of controls and 

empty set of impulsive controls. He proposes a procedure by which a CTMDP 

is approximated by a sequence of semi-Markov processes. 

Finally, we mention a paper by KAKUMANU (1977), in which he, in stead of 

using an approximation procedure, constructs for every CTMDP a single 

DTMDP, such that the total expected a-discounted costs for the CTMDP and 

the total expected 8-discounted costs for the DTMDP are proportional 

(8 depends only on a and the model parameters). The proof of this result 

is based on an analysis of the optimality equation. 
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8.4. PROCESSES WITH SPECIAL STRUCTURE. 

In this section we mention some papers, in which, although with quite 

different methods, results are obtained related to our results on the 

specific models of chapters 5, 6 and 7. 

With respect to the M/M/1 queueing model with controllable arrival and 

service rate (chapter 5) we mention a paper by SERFOZO (1981) in which he 

considers a model which differs in three aspects from our model. The 

possible arrival- and service rates in Serfozo's model can be chosen from 

a finite set, in our model from a finite interval. In Serfozo's model the 

rates can only be changed when a customer arrives or a service is completed, 

while we considered the continuous time control case. Finally, Serfozo 

proves the existence of a monotone a-discounted optimal and a monotone 

average optimal policy, within the class of stationary policies, while we 

obtained the same results in the class of strong regular policies. 

For an overview of the literature on controlled queueing systems upto 1974 

we refer to PRABHU and STIDHAM (1974). 

Regarding the maintenance replacement model (chapter 6) we mention papers 

by TAYLOR (1975) and ZUCKERMAN (1977). TAYLOR (1975) treats the continuous 

time replacement model, where the only possible control of the system is 

replacement of an old device by a new one. He proves the existence of an 

average optimal control limit type policy. 

ZUCKERMAN (1977) extends the results of Taylor for more general cost 

functions. Moreover, he gets a similar result for the a-discounted cost 

functional. The results of Zuckerman are more general than ours with 

respect to the assumptions on the cost functions. However, we assumed that 

besides by replacement the system can be controlled by maintenance at 

several levels. Moreover, in our model a continuous decay occurs besides 

the shockswise decay. Zuckerman considers the model without maintenance, 

while the damage accumulates only by shocks. 

For an overview of the literature on maintenance replacement models before 

1975 we refer to a survey paper by PIERSKALLA and VOELKER (1976). 

The conditions for optimality of (s,S) type policies in discrete time 

inventory models (chapter 7) have been discussed in detail in the 

literature. As far as the author knows, a mathematical satisfactory proof 

of the corresponding result for the continuous time inventory model has 

never been given before. 
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SUMMA_RY 

This monograph deals with the optimal control of Markov decision drift 

processes with continuous time parameter (CTMDP). Such a decision process 

can be described as follows. A stochastic process {Xt, t? 0} on a given 

metric space is continuously observed and at each t E [0, 00 ) an action is 

chosen based on the history of the process upto time t. The process 

{xt, t? 0} is assumed to be a jump process with a deterministic drift 

between two successive jumps. There are two kinds of actions available, 

which differ in their impact on the evolution of the process. The 

(generator) controls are actions which affect the process only in its 

infinitesimal parameters (e.g. the arrival rate in an arrival process), 

while the impulsive controls are actions which have an impulsive influence 

on the process; i.e. an impulsive control causes an immediate change in the 

state of the system (e.g. replacement in a maintenance model). At time t 

a cost is incurred at a rate depending on the actual state of the system and 

the control that is chosen. Moreover, when an impulsive control is chosen, 

a lump cost is incurred, which depends on the actual impulsive control and 

the state of the system. A policy is a rule for choosing actions. That is, 

given the history of the process and the present state at time t, the policy 

prescribes the control and impulsive control to be chosen. 

Our investigation of a CTMDP proceeds along the following lines. First the 

class of decision processes with discrete time parameter (DTMDP) is 

introduced. A DTMDP is a decision process that is not continuously 

observed and controlled, but only on equidistant time points. For any CTMDP 

a sequence of approximating DTMDP's is constructed, for which the distance 

between two successive decision epochs decreases to zero. It is shown that 

for any CTMDP-policy, with certain regularity conditions, there exist 

policies for the sequence of approximating DTMDP's, such that the induced 

stochastic processes converge weakly on the space of all possible sample 

paths. 

This type of result can be applied to transfer properties of a DTMDP to a 

CTMDP. For example, the powerful method of mathematical induction by which 

the structure of optimal policies in discrete time problems can be 

determined is not applicable for continuous time problems. However, by the 

above stated convergence result, the method of mathematical induction 

becomes again the basis for the analysis of a CTMDP. 

We collected the necessary material on weak convergence of probability 
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measures on metric spaces in chapter 1. Moreover, we introduce and 

analyse in this chapter a sequence space, which can be used as the space 

of the possible sample paths for the processes to be considered in this 

monograph. 

In chapter 2 we formally introduce a CTMDP and DTMDP, the class of 

possible policies is defined and it is shown that any policy induces a 

unique probability measure on the space of possible sample paths. Theorem 

2.4.3. constitutes the main result of this chapter. This theorem provides 

conditions for a CTMDP-policy, which ensure the existence of policies for 

the sequence of approximating DTMDP's, such that weak convergence of the 

induced probability measures occurs. 

Using the results of chapter 2 we prove in chapter 3 a theorem for a 

CTMDP, which justifies the frequently made assumption that history 

remembering policies do not yield any improvement in the expected 

(discounted or average) costs. 

For a number of applications the results of chapter 2 seem to be insufficient 

From the weak convergence of the induced probability measures we cannot 

conclude the convergence of the total expected discounted costs, when the 

cost functions are unbounded. Hence, we give in chapter 4 (theorem 4.2.1.), 

for the model with unbounded cost functions, conditions which ensure not 

only the weak convergence of the induced probability measures, but also the 

convergence of the total expected discounted costs. From this theorem 

sufficient conditions for the discounted optimality of a CTMDP-policy are deduced. 

Using the results for the discounted cost criterion together with a well­

known Abelian theorem, we derive also conditions, which guarantee the 

average optimality of a CTMDP-policy (theorem 4.4.6.). 

The convergence theorems of the chapters 2 and 4 can be successfully 

applied to transpose results to a CTMDP, which are alreay known for a 

corresponding DTMDP (or which can be obtained by standard methods). 

Especially, structural properties of optimal policies, which are usually 

obtained for a DTMDP by the method of mathematical induction, can be 

transposed in this way. As illustration we consider in chapter 5, 6 and 7 

three quite different continuous time Markov decision processes on which 

the proposed technique is applied. Successively, we treat an M/M/1 waiting 

line model, a maintenance replacement model and an inventory model. 

Structural results for the optimal policies are obtained for the 

a-discounted as well as the average cost criterion. 
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