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INTRODUCTION 

The questions that are treated in this monograph originated from the 

study of [9]. There Siegel considered the theta series 

e (z) 
• 2 

111.n z 
e Im(z) > O. 

V 

Clearly li~m(z)..- 0(z) 

the form z o+ az+b/cz+d, 

= I. From the behaviour of e under substitutions of 

(a b) E Sl(2,iZ), one deduces that for a E iZ and 
C d 

C E JN with g.c.d. (a,c) = I. 

lim 
z+a/c 

! a 
(cz- a) 2 0(z) = y(-), 

C 

where y(!:) equals an eigth root of unity or zero. An earlier result of 
C 

Siegel implied that for 5 s ms 8 

m 
, am -2 

I + l y (-) (cz - a) 
a/cE~ c 

However the series on the right hand side does not converge absolutely for 
3 

m = l. Following an idea of Hecke, Siegel introduced for s E a: with Re(s) > 2 
the Eisenstein series 

e(z,s) I + 
a - 1 -s 

y (-) (cz - a) 2 I cz - a I . 
C 

In [9] Siegel proved that 0(z,s) as a function of s has a meromorphic con­
I 

tinuation to a:, is a holomorphic function on {s I s E a:, Re (s) > 2 , s 1' I} 

and has a first order pole ins= I. In particular it turned out that 

lim (s-1)0(z,s) = zlz e(z). 
1T 

s+I 
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Finally he deduced a functional equation relating this and some other Eisen­

stein series. 

In this paper I investigate to what extent similar results hold for 
k · 2 

other functions that resemble e, like E 1 n2 e-1r1.n z, with k E N and L a 
nE 

sublattice of 7l. To do so, I make use of the translation of such functions 

to functions on the homogeneous space Sl(2,k)\Mp(A) as given by WEIL in [12]. 

Here Mp(A) denotes the so-called metaplectic group, a central extension of 

Sl(2,A) with the unit circle. Weil introduced a theta series 0(~) for every 

Schwartz - Bruhat function ~ of the adele ring A. Moreover he showed that one 

has a natural representation of Mp(A) on this space S(A). All the examples 

given above correspond then to appropriate choices of~. In ~articular all 

those~ belong to the K-finite elements of the restricted tensor product of 

the even Schwartz-Bruhat functions for a suitably chosen maximal compact sub­

group K of Mp(A). This subspace of S(A) is a non-degenerate module for the 

Hecke algebra '3( of Mp(A). Since I intend to exploit this ;IC-module structure, 

I confine my attention to the functions in that subspace. 

For any~ as above ands Et with Re(s) > { one can construct an Eisen­

stein series 0(~,s), using 'the zero-th Fourier coefficient of 0(~) and a 

convergence factor. However, for fixed s, the collection of e(~,s) is no 

longer invar~ant under the action of ;IC. The extension of this space to an 

;IC-module requires the introduction of more general Eisenstein series. Their 

meromorphic continuation and functional equation will be derived following 

some simple ideas, implicit already in [9]. First of all one shows that all 

their Fourier coefficients have a meromorphic continuation. Next one proves 

that their sum defines the desired meromorphic continuation. As for the 

functional equation, it is shown first that the zero-th Fourier coefficients 

of the Eisenstein series involved are equal; by using the boundedness of 

the other coefficients and the uniqueness of the local Whittaker models one 

can prove the same for the remaining ones. 

The explicit expression for the Fourier coefficients furnishes us 

directly the place and order of the poles at the right of the critical line. 

By combining the expression for the residue with some local results and the 

well-known formula for the coefficients of a theta series, we obtain the 

nature of the residue. It is easy to show then that for all ~, which trans­

form under K according to an irreducible representation, the residue of 

e (~, s) in s = I is proportional to e (~). This result is not true for general 

~-
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Some of the results derived in this paper have been announced by GELBART 

and SALLY in [4]. However their work is based on results of Langlands, while 

the present monograph can be seen as a transcription to the adele-setting of 

the principles behind the calculations in [9]. Moreover it is essentially 

self-contained. 

Let me conclude with a short description of the contents of the various 

chapters. In the first I recall the properties of the metaplectic group and 

make some necessary additional computations. The subsequent chapter gives 

the relation with the work of SIEGEL [9] and the framework, inside of which 

we will work. The local Hecke algebra modules that turn up there are analyz­

ed in the Chapters 3 and 4. Finally, in Chapter 5, I prove the global results 

as stated above. 





CHAPTER I 

§0. NOTATIONS AND CONVENTIONS 

0.1. CONVENTIONS. 

(i) Let U and V be open, connected subsets of~, with U ::_ V. Let f be a 

holomorphic function U + ~. Assume that f has a meromorphic continuation to 

V. Then I will denote this continuation also by f. 

(ii) Let X be a set and take U and Vas in (i). Suppose, we have for every 

s EU a map f(s): X+ C such that for every XE X the function s 1+ f(s) (x) is 

holomorphic on U. Assume, m~reover, that all the maps s 1+ f (s) (x), x EX have 

a holomorphic resp. meromorphic continuation to V. Then we will say that f(s) 

has a holomorphic resp. meromorphic continuation to V. f(s) is said to have 

a pole of order h, h E Z!:::c:O, in s0 , if all the s 1+ f (s) (x) have a pole of 

orders h in s 0 and at least one of them exactly a pole of order h. 

(iii) All topological groups should be understood to have a Hausdorff topo­

logy and all representations to be complex. 

0.2. Let K be a compact group and let dk be the Haar measure of K for which 

K has volume I. I write A(K) for the space of functions on K, spanned by the 

matrix coefficients of the irreducible continuous representations of K. If K 

is a closed subgroup of another locally compact group G, then A(K) can be 

identified with a convolution algebra of measures on G via f + fdk. In parti­

cular A(K) is a *-algebra of functions on K. Let p be an irreducible contin­

uous representation of K; denote its degree by d(p) and define the function 

e (p) : K + a: by 

e(p)(k) -I d(p) trace (p(k )). 

Every element of A(K) of the form I~=I e(pi), where {pillsism} is a collec­

tion of mutually non-equivalent continuous irreducible representations of 
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K, satisfies l~ 1 e(p.) * l~ 1 e(p.) = l~ 1 e(p.) and is called an eZemen-i= i i= i i= i 
tary idempotent of K. The collection of these elements is denoted by E(K). 

When pis the trivial representation of K, I will use the notation eK 

instead of e(p). 

0.3. For any set X, the identity map: X ➔ X will be denoted by IX. If g and 
f: X ➔ ~,are proportional, then one denotes this also by f ~ g. For any 

commutative ring R, write R* for its group of units. 

If G is a group and fa function G ➔ ~.then I use the notation f for 
-1 the function gt+ f(g ), g € G. In case G is locally compact and abelian, its 

A 
group of characters is denoted by G. If G is a unimodular locally compact 

group and D a distribution on G, then the distribution~ on G is given by 
V 

f 1+ D(f). Moreover, for every x € G, I denote the distribution f 1+ f(x) by 

0 • 
X 

0.4. Let k be an algebraic number field. If vis a place of k, k will de­
v 

note the completion of k at v; vis called real, if k is isomorphic toll, 
V 

imaginary if k is isomorphic to~, infinite in both of these cases, and 
V • 

finite in all other ca~es. I write P for the collection of places of k, P00 

for the set of infinite places of k and Q for any finite set of places of 

k, containing P. If vis a finite place of k, the ring of integers ink 
~ V 

is denoted by O, its maximal ideal by p and a fixed generator of p by~. 
V V * * V V 

For every v E P, let (-,-) be the Hilbert symbol on k x k • If a and 
• * • • V V V 

bare in kv' this symbol is given by 

I 
( a,b) = { 

V -) 

if bis a norm of k (/a) 
V 

otherwise 

For k* every a E v' denote the character b » ( a,b) of k* by h (a). 

Let A be the 
V V V 

ring of adeles of k. For a= (a) EA*, h(a) = n ph (a) 
* * * V V€ V V 

is a character of A and, if a€ k, h(a) I k = I, by quadratic reciprocity. 

§ I • THE METAPLECTIC GROUP 

I.I. Notations being as in 0.4, X will stand in this paragraph either for 

k, v € P, or for A. Let T be a character of X such that X can be identified 
V 

with its dual by means of (x,y) ➔ T(xy); then dx will be the self-dual mea-

sure on X, with respect to this identification. For Y c X, denote 

{zlz € X, T(zy) = I for ally€ Y} by Yi. 



* Let S(X) be the collection of Schwartz-Bruhat functions on X. Then X 

will be equipped with the natural norm 1•1 given by 

f f(x)dx = !al f f(ax)dx for all f E S(X) and a Ex*. 

X X 

The Fourier transform F will be defined as follows on S(X) 

F(f)(x) I f(y) T(xy)dy. 

X 

1,2, Let T be {z!z E ~, !zJ = l}, Define the group A(X) as the collection 

x2 x T, equipped with the following multiplication structure: for 
2 (xi,yi) EX and ti ET, i = 1,2, 

For every s = (a b) E Sl(2,X), one defines as follows a character of the 
C d 

second degree of X, f(s) 

3 

From [12], section 5, we know that one can define an embedding i: SZ(2,X) + 

Aut(A(X)) by 

i(s)({(x,y),t})= {(x,y)s, f(s)(x,y)t}, 

Let -6 be the unitary representation of A(X) in L2(X) given by 

-6({(x,y),t})(f)(r) = t T(yr) f(r+x). 

According to [12], theorem 1, there exists for every s E Sl(2,X), a n(s) E 
2 2 E U(L (X)), the group of unitary automorphisms of L (X), such that for all 

h E A(X), 

( 1. 3) -1 n(s) -6(h) n(s) = -6(i(s)(h)). 

Moreover such a n(s) is determined up to an element of T, Consequently 

{(s,n(s))ls E Sl(2,X), ~(s) E U(L2(X)) satisfying (1,3)} is a group, the 

metapZectic group, and it will be denoted by Mp(X). 
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1.4. REMARK. For a Ex*, let ,a E i be given by xi+ ,(ax). By starting with 

,a instead of,, one can construct another metaplectic group. In §4, I will 

show that that one is isomorphic to the one constructed above. 

2 1.5. If Sl(2,X) is equipped with its natural topology and U(L (X)) with the 

strong topology, then Mp(X) inherits its topology from the product topology 

on Sl(2,X) x U(L2(X)). In the next paragraphs we will come back to it again. 

Throughout this paper, Twill be considered as a subgroup of Mp(X) via 

the embedding t + ((~ ~), tlS(X)). If pis the natural projection: Mp(X) + 
~ -1 

+ Sl(2,X) and H any subset of Sl(2,X), then one writes H for the set p (H). 

It will be convenient to introduce notations for certain elements and 
1 x 1 0 subsets of Sl(2,X). For x EX, denote (0 1) by u(x) and (x 1) by n(x). If 

* a U -1 0 -a a EX, then I write d(a) for (0 a-1) and w(a ) for (a-1 0). I use the nota-

tion U(X) for {u(x) Ix EX}, N(X) for {n(x)\x EX} and D(X) for {d(a) la Ex*}. 

Further, I denote the group U(X)D(X) by P(X) and write n(X) for 

{u(x) w(a) u(y) I x,y E X, a E x*}. 

1,6, Let f be in L2(X). From [12], section 13, we know that A(u(x)), A(d(a)) 

and A(w(a)) can be chos'en in the following way: 

(I. 7) 

A(u(x))(f)(t) 

A(d(a))(f)(t) 

A(w(a))(f)(t) 

,(!xt2) f(t) 

\al½ f(at) 

\a\-½F(f)(-a- 1t), 

Now it is clear from (1,3) that we can make for b = u(x)d(a) resp. w = 

= u(x) w(a) u(y) the choice A(b) = A(u(x))4(d(a)) resp. 11(w) 

= A(u(x)) A(w(a)) 4(u(y)). From now on, I assume that for all g E P(X) u 

u n(X), A(g) denotes the choice given above. This choice defines a section 

R: P(X) u n(X) +Mp(X). Instead of R(d(l)), I simply write e. In §3, one 

can find a choice of A(g) for all g i P(X) u n(X). 

1.8. In order to be able to give the relations that are satisfied by R, I 

have to introduce the function y: x* + T from [12], section 14. For every 

a Ex*, y(a) is determined by: 

y(a) J f(x)dx = \al½ f ( f f(x-y),(½ay2)dy)dx, for all f E S(X). 

X X X 

In the following proposition some results concerning y are collected. The 

proofs of them are either straightforward or can be found in [12], in which 



case the appropriate section is mentioned between brackets, 

1.9. PROPOSITION, 

(i) FOP aii a,b € x*, y(-a) = y(a)-l and y(ab2) = y(a). 

(ii) If X = kv' v € P, then one has foP aii a,b € k:: 

y(a) y(b) = y(l) y(ab)(a,b) • 
V 

(l.·1.·1.·) If d ( ) 2-rrilx th . . b X = lR an -r x = e , en y -z,s g-z,ven y 

{ 
TTi/4 

y(x) = e 
-TTi/4 

e 

if lx > o 

if lx < o 

5 

(28) 

(26) 

* (iv) If X = ,, then y(x) = 1 fop au x € a: • (26) 

(v) Asswne X = k, vi P. FoP ever>y x € k*, ahoose at€ k* suah that 
V 00 2 V V 

fop aii y € t.Ov: -r(i xy) = 1. Then 

(27) 

(vi) Let X be A and asswne that -r is suah that k.L = k. 2'nen 

y(a) = 1 foP aii a€ k*. (30) 

1.10. Let g1, g2 and g3 € P(X) u n(X) be such that g1g2 = g3• The next 

proposition gives the relations that are satisfied by R; the first being a 

consequence of [12], theorem 3, and the second a direct verification from 

the definitions. 

1.11. PROPOSITION, 

(i) If gi = u(xi) w(ai) u(yi) fop aii i, then 

(ii) In the Pemaining aases tc1e have 
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1,12 REMARK. It may happen at global considerations that, in order to avoid 

confusion, we have to provide the local notions with a subscript v. 

§2, PROPERTIES OF Mp(kv). 

2.1. For every v E P, n(k) is open 
V 

34, n(k) is homeomorphic to T x k 

in Mp(k ). According to [12], section 
* V 

x k x k via the map (t,x,a,y) t+ 
V V V V 

>+ tR(u(x)w(a)u(y)). Hence Mp(k) is a 
V 

locally compact group. 

For infinite v, one puts, via the map given above, an analytic struc­

ture on Q(kv). By means of right translations this is transferred also to 

the rest of the group and one checks directly that, in this way, Mp(kv) 

becomes a Lie group. Let g be the Lie algebra of Sl(2,k ). With the aid of 
V 

the map a+ X ~ eia R(exw(I)), we identify the tangent space in R(w(I)) 

with lR e g and by shifting it back to the origin one obtains an isomorphism 

of lR e g with the Lie algebra of Mp(k ), m. In particular we get the follow-
v 

ing expression for the exponential map: 

(2.2) 
fo , X 

exp(a+X) = e R(e w(I) )R(w(-1)), for X E g' a E lR. 

2.3. For finite v, there exists an open compact subgroup G of Sl(2,k) such 
V V 

that G is isomorphic to G x T. As I have to make some explicit calcula-
v V 

tions that cannot be found in [12], I will recall here shortly its construc-

tion. 

Let ov be a generator of O!, For every g E S (k) one decomposes F (g) 

in the following way: 

F(g)(y) I T(g)(x,y),(xy), 
XEk / 

v Ov 

where T(g) is defined by 

T(g)(x,y) I g(x+t),(ty)dt. 

V 

T(g) belongs to the space S(k ,0) of functions f 
V V 

support that satisfy 

2 
kv +~.with compact 

( ) ( ) 0 d 0.1. T-z1y fx,y forx,yEkv,zlE van z2 E v 



One can put a scalar product on S(k ,O) such that T becomes a pre-unitary 
_ V V 

isomorphism of S(k) with S(k ,0 ), The inverse of Tis given by: 
V V V 

Now take G = {gJg E Sl(2,k ), (0 xOl)g = 0 x oi, f(g)JO x ol _ I} 
V V VV V V V V 

{(ab)I d O b E oi, c E (o-v1) and for all x E ov and y E ovl' cd a, E v' v 

2 T (½abx ) 2 T (½cdy ) I}• 

One defines a pre-unitary representation 1t0 of G in S(k ,0) by 
V V V 

1t0 (g)(h)(x,y) h((x,y)g) f(g)(x,y). 

7 

By means of T, this representation is transferred from S(k ,0) to S(k) and z V V V 

extended there to a unitauy one on L (k ). For convenience sake, this one 

is also denoted by 1t0 , For afl g E G, ft'g(g) satisfies (I,3) and in the 
V 

sequel I will derive the relation between 1t0 (g) and Jt(g). 

Leth belong to S(k ). If d(a) and u(b) E G, then we have: 
V V 

= h(ax) 

1t0 (u(b))(h)(x) 

In other words, for all b E Gv n P(kv) 

(2,4) 

I h(ax+t) 

0 
V 

I h(x+t) 

0 
V 

-I T(ta y)dt 

2 T(t(y+bx)) T(½bx )dt 

Now, let cr (ab) be an element of G n n(kv). Then cd v 



8 

11.0 (cr)(h)(x) 
l 

IO I 2 IC I 
V 

I f(cr)(x,y), 
yEk / .L 

V QV 

f h(ax+c(y+t))T(tc(bx+dy))dt 

c- 10 
V 

I 

IC 110 I 2 
V f h(ax+c(y+z+p))f(o)(x,y+z+p)dz 

o.L 
V 

l 
IC I IO I 2 

V 

By comparing this expression with formula (16) in [12], we may conclude 

that 

(2.5) 11.o(a) = {level½ I 1 
p€C- Ov;o.L 

V 

cd 2 } T(- 2 p ) 11.(a) 

2.6, If lcl = lo 1-\ then this factor equals 1. If lei < lo 1- 1,!dl 1. 
' V V 

hence, with proposition (1~9), (2,5) becomes 

Let R0 be the section G + Mp(k) given by R0 (g) = (g,11.0 (g)). Through R0v' 
V V V V 

we can consider G as a subgroup of Mp(k ). From [12], section 36, we know 
V V 

that the map (t,g) + tR0 (g) is a homeomorphism from G x Tonto G. 
V V V 

§3 PROPERTIES OF Mp(A) 

Let T be IlT. It is natural to make the following 
V 

CONVENTION, If we speak in a global context of Mp(k ), then it will be 
V 

tacitly assumed that this group has been built up from the identification 

of kv with its dual by means of (x,y) t+ Tv(xy). 

3.1. For finite v and l E 7l, let ijJv(l) E S(k) be the characteristic func­

tion of pl. I denote the restricted tensor product of the S(k ), with 
V V 

respect to the {ijJ (O)lv i P} by@ S(k ). For g E Sl(2,A), take any Q as in 
V 00 V 

(0.4) such that for all vi Q, g E G. Then 
V V 

0 
11.Q(g) = ( ®Q fl. (g )) 0 ( ~Q fl. (g )) 

VE V V Vt V V 
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is defined on® S(k) and can be extended to an element of U(L2(A)), satis-
v 

fying (1.3). Denote this extension also by ~Q. For the section 

IlvEQ Sl(2,kv) Ilvl.Q Gv + Mp(A) determined by ~Q' I use the notation RQ. 

3.2. As for the topology of Mp(A), one knows from [12], section 38, that for 

every Q as in (0.4), p- 1(n Q Q(k) Il 1Q G) is homeomorphic to 
VE V V~ V 

T x Il Q Q(k) n 1 Q G through (t,g) + tRQ(g). Hence Mp(A) is a locally 
VE V V~ V 

compact group. 

If, is such that k = kl, (1.9) (vi) and (I.II) (i) imply that Sl(2,k) 

can be ewedded into Mp(A) as a discrete subgroup. 

For each v in P, there exists a natural embedding i of Mp(k) into 
V V 

Mp(A). Assume now that one has, for Jc P, a collection {g JvEJ, g EMp(k) 
V V V 

and g E G for almost all v E J}. Take any Q as in (0.4) such that g E G 
V V V V 

for all v E J n (P\Q) and embed (gv)vEJn(P\Q) in the natural way into 

Ilvl.Q Gv; then we put 

If J = P, then I simply write @g instead of ®pg. 
V VE V 

3.3. For Q as in (0.4), let iQ: Il Q Mp(k) + Mp(A) be defined by 
VE V 

n g + 
VEQ V 

+ ®Q g. Assume now that we have a f: iQ(Il Q Mp(k )) 
W V W V 

+ ~, a r E 7l , and 

a collection {f Jv E P\Q,f : Mp(k) + ~}, satisfying: 
V V V 

f(tg) = tr f(g) for all t E (i) 

(ii) f (tx) = tr f (x) 
V V V V 

T and g E iQ(Il QM (k )); 
VE p V 

for all v I. Q, t ET and x E Mp(k ); 
V V 

(iii) For almost all v not in Q, f JG =a, with a Ea*; 
V V V V 

(iv) Ilav is convergent, where 

which (iii) holds. 

the product is taken over all places for 

Then one can define f ® { ® f}: Mp(A) +~by 
V(.Q V 

f 0 { 0 f } (0 g ) = f ( 0 g ) n f (g ) . 
vl.Q V V VEQ V vl.Q V V 

If f O iQ is decomposable itself, that is to say f O iQ = IlvEQ fv' then one 

simply writes® f instead off® { ® f }. 
V V(.Q V 

§4 THE DEPENDENCE ON, 

4.1. Take X as in §I and let a be an element of x*. Call Mp(X) the meta-
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plectic group that one gets by starting with Ta instead of T, As for the 

notation of notions that correspond to ones already introduced for Mp(X), 

I will use the symbols, used in that context, provided with a~. 

4.2. We consider first the local case. In treating the central extension 

Mp(k) of Sl(2,k ), I will follow [8]. First of all we must have a section: 
V V 

N(k ) u U(k ) -+- Mp(k ) .that is an isomorphism from N(k ) resp. U(k ) onto 
V V V V V 

their respective images. 

For x Ek, y Ek*, put u(x) = R(u(x)) and n(y) = y(-y)R(n(y)). By 
V V - -

proposition (1.9) and the fact that (u,1-u) = 1 for all u Ek*, u ~ 1, this 
V V 

section satisfies the required properties·. Now, extend it as follows: for 
* -1 -1 -1 -1 x E k , define !(x) = !!(-x ):!}(X)!!(-x ) and ~(x) = !(-x )!(-!) • From 
V 

(1.11), one obtains the following relations between this section and R: for 

t Ek:, :!}(t) = y(-t)R(n(t)),~(t)=y(-t)R(w(t)) and ~(t)=y(t)y(-l)R(d(t)). 

To this new section is related a Steinberg cocycle c. It is given by 
-1 * c(a,b)e = d(a)d(b)d(ab) =(a,b) e , for all a,b E k • Let r: Sl(2,k ) -+-

* V -f V V V 
k be given by: r(d(t)u(x)) = t and r(u(x)w(t)u(y)) = t for all x,y Ek, 

V V 

t Ek*, Now we know from [8] that the following formula defines a 2-cocycle 
V 

av on Sl(2,kv) with values in T: 

I use the notation <g,t>, g E Sl(2,k ), t ET, for the elements of the 
V 

central extension Gu of Sl(2,k ), determined by a. Let j be the section: 
V V 

Sl(2,k)-+- Mp(k) given by: 
V V 

j(d(a)u(x)) = (a,b) d(a)u(x), j(u(x)w(a)u(y)) = u(x)w(a)u(y). 
V - - - - -

According to [8], corollary 5.12, the map J: <g,t> ➔ tj(g) is an isomorphism 

from Gu onto Mp(kv). For later use, I introduce still some notations. Put 

f' for{± I}. For any closed subgroup Hof Sl(2,k ), one writes* for 
V 

H n J({<g,t>lg E Sl(2,k ), t E f'}). 
V 

4.3. From the definitions one verifies the following relations: for all 

X € k ' b € k*, 
V V 

y(b) = y(ba), R(u(x)) = R(u(xa)), R(w(b)) = R(w(ba)) and R(d(b)) R(d(b)). 

Thanks to the results of section 4.2, we know that in the local case an 
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isomorphism A (a): Mp(k) + Mp(k) is given by 
V V V 

(4.4) A (a)(tR(d(b)u(x))) = t y(a)y(b) R(d(b)u(x)) t(a,b)v R(d(b)u(x)) 
v y(l)y(ab) 

(4.5) 

Note that 

fact that 

lifted to 

A (a)(tR(u(x)w(b)u(y))) = t y(b) R(u(x)w(b)u(y)). 
V y(ab) 

~ a 0 for all g E Sl(2,kv)' 4(g) = 4(Int(0 1)(g)). From this 
a O . a 0 

(0 1) normalizes P(kv) and Q(kv)' we see that Int(0 1) 

an automorphism I (a) of Mp(k ) in the following way: 
V V 

and the 

can be 

(4.7) Iv(a)(tR(u(x)w(b)u(y))) = ty(b)y(-ab)R(Int(~ ~)(u(x)w(b)u(y))) 

If !al = I, then one proves with the aid of (2.4), (2.6) and (2.7) 
V 

that for almost all v: 

(4.8) for all g E Gv' 

(4. 9) for all g E Gv. 

These observations allow us to define for each a EA* an isomorphism A(a): 

Mp(A) + Mp(A) and an automorphism I(a) of Mp(A) by: 

(4. 10) A(a)(® gv) =®A (a )(g ), 
V V V 

(4. 11) 

Let T be such that k = kL. If a Ek*, then one concludes from (1,9) 

(vi), (4.4), (4. 5), (4.6) and (4. 7) that for all g E Sl(2,k), 

(4. 12) ~ a O A(a)(R(g)) = R(g) and I(a)(R(g)) = R(Int(0 1)(g)). 

4.13, FEMP-..R-~. Section 45 of [12] implies that there exists a closed subgroup 
),,' --- Y. Y. a 
~:t.(2,A) of Mr>(A) such that p(SI(2,A)) = Sl(2,A) and S:t(2,A) n T = T • Such 11 

group is used for example in [3]. The advantage of the use of r~p(A) is the 

reduced number of manipulations with cocycles. 

In the light of the foregoing results we make the following 
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4.14. CONVENTION. In the rest of this paper, we assume that T, as well in 

the global as in the local case, is chosen as in [10]. 

4.15. Form= 1+U, l E 7l, the map <g,t> + <g,tm> is an endomorphism of 

Gv, for all v E P. Its translation J (m) to Mp(k) is given by 
V V 

(4.16) J (m)(tR(d(a)u(x))) = t~-1,a)l R(d(a)u(x)) 
V V 

(4. 17) J (m)(tR(u(x)w(a)u(y))) = tmy(a) 2l R(u(x)w(a)u(y)). 
V 

As before, one proves that for almost all v E P, J (m)IG = IGv· This obser-v V 

vation allows us to define an endomorphism J(m) of Mp(A) by 

(4.18) J(m) (0 g ) = 0 J (m) (g ) • 
V . V V 

From (1.9) (vi), we see again that J(m) stabilizes Sl(2,k). 
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CHAPTER 2 

§5. THETA SERIES 

5.1. Through the action of the second factor one has a unitary representa­

tion w of Mp(A) on L2(A), that stabilizes S(A). For every~ E S(A), one 

defines the theta series e(~): Mp(A) + a by 

e(~) (g) 

According to [12], theorem 4~ e(~) is a function on Sl( 2,k)\Mp(A). Let dx be 

the Haar measure on A/k for which A/k has volume I. Now, for z Ek, its 

z-th Fourier coefficient e(~) :Mp(A) +~is given by 
z 

(5. 2) {
w(g) (~) (0) 

w(g)(~) (~) 

0 

In particular, we see that 

(5.3) 

+ w(g) (~) (-0 
if z = 0 

if z = _f: with~ Ek* 
2 

for other z. 

e(~) 1 (R(d(~))g). 
2 

If one searches for an analogue of theorem 5 in [13], one would like to form 

the Eisenstein series LcrESl(2,k)/p(k) e(~) 0 (R(cr- 1)g). However this series 

does not converge absolutely. Following SIEGEL [9], I will use a convergence­

factor to overcome this difficulty. In our set-up it amounts to the sub­

sequent construction. 

5.4. First of all, I choose, for every v E P, a compact subgroup Kv of 
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Sl(2,kv). For real v, Kv will be S0(2,lR); if v is imaginary, take 

K = SU(2,~); finally for finite v, let Kv be Sl(2,0 ), Put M for IT p K. 
V V VE V 

Define, for every s Et, the function H(s) Mp(A) ➔ ~by 

H(s)(R(d(a)u(x))m) for a EA*, x EA, m EM, 

3 As we will see in §6, one can define, for~ E S(A) ands Ea, with Re(s) > 2, 

a function 8(~,s) Mp(A) + a by 

, -1 -I 
l 8(~) 0 (R(cr )g) H(s)(R(cr )g). 

CTESl(2, k) /p (k) 
(5,5) 8(~,s)(g) 

Moreover 8(~,s) will turn out to be holomorphic on Re(s) > i• Let S(A)e be 

{~I~ E S(A), w(R(d(t)))(~) =~for all d(t) in Z(Sl(2,A))}. In [9], Siegel 

considers 3 explicit functions ~ 1, ~ 2 and ~3 in S(A)e and proves for each 

of them the following results: 

(5,6) 

(5. 7) 

(5,8) 

S(~i,s) has a mP-romorphic continuation to a 

8(~i,s) is holomorphic on {sis E a,Re(s) >!,sf 1} and has a 

pole of orders 1 ins= 1. 

lim (s-1) 8(~.,s) 
s+l 1. 

with A Ea*. 

In the sequel of this paper, I will show for all~ belonging to a dense 

subspace of S(A) , that (5,6) and (5.7) are consequences of a more general 
e 

phenomenon, It is not difficult to show for those~ that (5,8) is not true 

in full generality. Nevertheless, one can specify a certain subcollection, 

for which (5,8) still holds, This can be found in paragraph 17, 

§6, EISENSTEIN SERIES 

In [5], the reader can find a representation-theoretic motivation for 

the introduction of the spaces C(x(m)) (see section 6,1) and the construc­

tion later on, of the so-called Eisenstein series, 

6,1. Let x be a quasi-character of A*/k* and man integer. I will use the 

notation C(x(m)) for the space of continuous functions f: Mp(A) ➔ a satis­

fying: 
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f(tR(d(a)u(x))g) = tmx(a)f(g), fort ET, a EA*, x EA, g E Mp(A). 

Write 

* Embed lR> O 

A~ for {ala EA*, !al= I} and put n for the degree of k over~­

into A* by means of r f+ (r ), where r = rl/n, if vis infinite, 
V V 

and rv = I for all finite places of k. This map enables us to identify 

A* /k* ~ lR: 0 x (A~ /k*) and to decompose x uniquely as v(s)x0 , with 
A* * . Is A* x0 E ( 1/k) and v(s), for s Ea, the quasi-character x + jx of • Now 

C(x(m)) and C(x (m)) are isomorphic as vector spaces through the map 
0 

(6.2) f ~ f.H(s) = f(s), with f E C(x0 (m)) 

6.3. Let x be nvEP ½• The local analogue of C(x(m)) is the space C(½(m)) 

of continuous functions f: Mp(k) + t satisfying 
V 

(6.4) f(tR(d(a)u(x))g) = tmY (a)f(g), fort ET, a Ek*, x Ek, g E Mp(k ). 
''V V V V 

Mp(k) acts on C(y (m)) by means of right translations and we use the nota-v ''V ' 

tion Ind(y (m)) for this representation. Put v(s) for the quasi-character 
S ''V V 

x + Jx! v, where x Ek* ands Ea. For infinite v, 
*~ *v *v v . . *~ r * k = lR O x {xix E k Jx! = I} and for finite v, k = h Ir E ?l} x O • 
V > V V V V V 

Therefore, one can decompose each½ uniquely as v(sv)~,with ~ a charac-

ter of {xix Ek*, !xi = I} ands Ea. As before, one obtains an isomor-v V V 

phism between C(x0 (m)) and C(x (m)) by 
V V 

(6.5) 

Furthermore, it is clear from (2.4) and (6.4) that for all finite v such 

that Xv is unramified and J2! = I, there exists a unique ~a E C(x (m)) 
V V V 

satisfying 

(6.6) ~vo I R0 (G ) = I. 
V V 

Write® C(½(m)) for the restricted tensor product of the C(xv(m)) with 

respect to the ~0 (s ). By (3.3), the elements of® C(y (m)) can be inter-v V ''V 

preted as functions on Mp(A) and those functions belong clearly to C(x(m)). 

6.7. Let C resp. Y be compact subsets of {sis Ea, Re(s) > 2}. resp. Mp(A). 

The proof of the following proposition follows a standard method of 
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Godement and will therefore be left to the reader. 

6.8. PROPOSITION. Let~ be an eiement of C(x (m)). Then 
0 

We can define now for~ in C(x (m)) and Re(s) > 2 the Eisenstein series 
0 

E(~(s),x(m)) : Mp(A) ➔' by 

(6.9) E(~(s), x(m))(g) = l ~(s)(R(cr-1)g). 
O"ESf.(2,k) / P(k) 

From (6.8) it is also clear that E(~(s),x(m)) is holomorphic on Re(s) > 2. 

Since, for every~ E S(A), the function 8(~) belongs to C(v(!)(l)), 
0 

(5.5) is a special case of (6.9). 

By definition, E(~(s),x(m)) is a function on Sf.(2,k)\Mp(A) and, if 

z Ek, its z-th Fourier coefficient Ez(~(s),x(m)) : Mp(A) ➔ C is given by 

E/~(s),x(m))(g) = I E(~(s),x(m))(R(u(x))g) -r(-xz)d:ic 

A/k 
Using the Bruhat decomposition for Sl(2,k), we get for z I 0 

I~ (s)(R(w(l)u(x))g) -r(-xz)dx 

A 

and for z = 0, 

E0 (~(s),x(m))(g)= ~(s)(g) + f ~(s)(R(w(l)u(x))g)dx. 

A 

6. 10. If one knows that l klE (~(s),x(m))(g)I < 00 , then 
ZE Z 

E(~(s),x(m))(g) = L Ez(~(s),x(m))(g). 
ZEk 

This fact will be used at the meromorphic continuation of the Eisenstein 

series. 

6.11. Notations being as above, let f belong to C(x(m)), with Re(s) > 2. 

Put 
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M(x(m))(f)(g) = f f(R(w(I) u(x))g)dx, with g E Mp(A). 

A 

Clearly, M(x(m))(f) E C(v(2)x- 1(m)) and M(x(m)) commutes with right transla­

tions by elements of Mp(A). 

Analogously, one can define for all v E P ands E {sJs Ea:, Re(s) > l} 
-1 V 

a M(~(m)) E Ho~p(kv)(C(~(m)),C(v(2)~ (m))) by 

(6.12) M(~(m))(f)(g) = f f(RV(w(l)u(x))g)dx for f E C(x0 (m)), gEMp(kv). 

k 
V 

For~ in® C(~(m)) of the form® ~v' ~v E C(xv(m)), it is clear that 

(6.13) 

6.14. Let S(x(m)) resp. S(~(m)) be the subspace of C(x(m)) resp. C(xv(m)) 

consisting of functions f that satisfy 

there is an n E E(M) resp. E(K) such that f * n = f. 
V 

Obviously, M(x(m))(S(x(m))) c S(v(2)x- 1(m)) and for all v E P, 
-1 

M(xv(m))(S(~(m))) c S(v(2)~ (m)). Moreover we have 

S(x(m)) = ® S(~(m)). 

Indeed, suppose~ E S(x(m)); then there is a sufficiently large Q such that 

~ is invariant under RQ(TiviQ Gv). Consequently~ has the form 

Now every irreducible continuous representation of TI Q K has the form 
VE, V 

® p , with p an irreducible continuous representation of K, and applying 
V V V 

this to the action of TI Q K on~ 0 iQ gives the desired result. 
VE V 

6,15, Next we pay some attention to the other Fourier coefficients, 

For a Ek*, Re(s ) > I and f E C(;/(m)) define W(a,x (m))(f (s )):Mp(k) +a: 
V V V "-V V V V V 

by 
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W(a,l<v(m))(fv(sv))(g) = J fv(sv)(Rv(w(l)u(x))g) Tv(-ax)dx 

k 
V 

Let~ E C(x(m)) be as in (6,13), Then we have for Re(s) > 2 

(6.16) 

(6.17) 

and 

(6.18) 

E (~,x(m)) = ® W(z,x (m))(~ ), 
Z V V 

f(R (u(x))g) 
V 

V 
f * n f for some n E E(K ). 

V 

In the infinite case one can say moreover that 

(6.19) 

the first property being a consequence of the fact that the matrix-co­

efficients of an irreducible continuous representation of K are C00-func-
~ V 

tions on K and the second an application of the definition, 
V 

Now, for finite v, define S(Ta) as the space of ~-valued functions on 
V 

Mp(kv), satisfying (6.17) and (6.18). If vis infinite, then one demands 

of each function h in S(Ta), besides (6,17) and (6.18), that it is C00 and 
V 

slowly increasing at infinity, that is to say there is a NE :N such that 

for all t Ek*, with jtj ~ I, 
V V 

6.20. From (4.13) one sees that for even m, C(x(m)) corresponds in fact to 

a space of functions on Sl(2,A) and an E(~(s),x(m)), with~ E C(x (m)), to 
0 

an Eisenstein series on Sl(2,A). As they are well-known and in view of the 

fact that I will apply it only to the situation, described in §5, I will 

discuss further only the genuine Eisenstein series on Mp(A) i.e. those with 

odd m. 
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6.21. CONVENTION. Throughout the rest of this paper m = I + U, l E 7l. If 

m equals I, then we simplify the notations and write respectively x, x0 , 

~and~ instead of x(I), x0 (1), xv(!) and~(!), 

6.22, It is my intention to show that for all~ E S(x (m)), E(~(s),x(m)) 
0 

has a meromorphic continuation to~. which is holomorphic on 

{s\sE~, Re(s) > I, s,'¾} and has a pole of order~ I ins=¾• To do so, 

I prove these assertions first for all the Ez(~(s),x(m)), z Ek, Next I 

will show that l k E (~(s),x(m)) defines the continuation I am looking 
ZE Z 

for. 

In order to carry this out, we have to know first if, for all v E P, 

f E S(x 0 (m)) and a Ek*, M(x (m))(f(s )) and W(a,x (m))(f(s )) have a 
'-V V V V V V 

meromorphic continuation to~. and, if so, where the poles can occur. 
As for the first property, it suffices to verify it for all 

f E S(x0 (m)) and all a Ek* in the point e thanks to the relations: 
'-V V V 

(6.23) 
M(x (m))(f(s ))(R (d(b)u(x))h) = 

V V V 

-1 0 
= v(2)x (b)M(x (m))(Ind(x (m))(h)(f)(s ))(e) 

'-V '-V V V V 

(6.24) 
W(a,~(m))(f(sv))(RV(u(x)d(b))h) = 

-1 2 0 
T (ax)v(2)x (b)W(ab ,X (m))(Ind(x (m))(h)(f)(s ))(e) 

V '-V V V V V 

* for b E kv, x E kv and h E Kv. For the remaining local questions, I refer 

the reader to the chapters 3 and 4. 

6.25. Note that for the infinite places, we have no longer an action of 

MP(k) on S(x (m)). As a substitute will serve the action of a certain con-v V 

volution algebra of distributions on Mp(kv) the so-called Hecke algebra. 

Also in the finite case, one can replace the action of Mp(kv) by that of a 

"Hecke algebra". All of them will be defined in the next paragraph. 

This algebra structure of S (x (m)) will ?lay a role at the determina­
v 

tion of the nature of the residue of the Eisenstein series and at the de-

rivation of the functional equation of these series. 
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§ 7. HECKE ALGEBRAS 

7.1. THE INFINITE CASE. Denote the complexification of the real Lie algebra 

m by m~. The elements of the universal enveloping algebra of m~, U(ma), 

will be considered as distribution on Mp(k ). One easily checks that 
V 

n 
(7.2) JC 

V 
{ I A.(f.*X.)\A.EC, f.EA(K ), X1.EU(m.,)} 

i=I l. l. l. l. l. V ., 

is a convolution algebra of distributions on Mp(kv)' the Hecke algebra of 

Mp(k ). 
V 

Several of the JC -modules E that play a role in the sequel are non­v 
degenerate i.e. E = JC .E. This is equivalent to: 

V 

(7 .3) For every v EE there exists an n E E(Kv) such that n.v v. 

Thanks to (7.3), we can define on every non-degenerate Xv-module E an 

action of Kv by: 

h.v =(oh* n).v, 

where h E Kv' v EE and n as in (7.3). 

Hence every non-degenerate Xv-module is a (m,Kv)-module in the sense 

of [ 11 J. 

7.4. Examples of non-degenerate Xv-modules are: 

(i) S(l<v(m)) with the action Ind(xv(m)) defined by 

Ind(l<v(m))(h)(f) = f * h for f E S(l<v(m)), h E JC 
V 

(ii) S(,a) with the action Ind(,a) defined by 
V V 

f * h for f E S(,a), h E JC. 
V V 

7 ,So REMARKS. 

(i) It is clear -I 
that M(l<v(m)) E HolllJc.,(S(l<v(m)), S(v(2)¾ (m)) and that 

a W(a,xv(m)) E Ho~(S(¾(m)),S(,v)). 

(ii) Let E be a JC -module, By a f.lhittaker mockl of 
V 

or shortly a W(a)-rrta&-Z of E, I mean the image of a 

E with respect to ,a 
V 

non-zero operator in 
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a 
Holll;Jc (E,S('t"v)), 

·v 
(iii) Assume that M(Y (m))(f(s )) has, for all f E S(x0 (m)), a holomorphic 

'-V V V 
continuation to an open connected U, with {s Is E a:,Re(s ) > l} c Uc a:; 

V V V 

then M(x (m)) collUllutes with the action of 'JC, for alls EU, Evidently, 
V V V 

the same property holds if one replaces M(~(m)) by W(a,xv(m)). 

7,6. One has a natural action of Mp(k) on L2(k) and this representation 
V V 

w stabilizes S(k ). For XE m, define w (X) E End(S(k )) by: 
V V V V 

for f E S(k) and u Ek. This turns S(k) into a U(ma:)-module, The corres-v V V 

ponding action of A(K) on S(K) is given by 
V V 

(7 ,8) wv(h) (f) (u) = I h(k)u\<k) (f) dk, 

K 
V 

where h E A(Kv)' f E S(kv)' u E kv and dk as in (0,3). The composition of 

these actions, makes S(k) intoan'JC -module, Let S(k) be the subspace of 
V V Ve 

even functions in 'JC ,S(k ). This is another example of a non-degenerate 
V V 

'JCv -module, 

7,9, Let v be imaginary in this section, From (1,9) (iv) we know that 

Mp(k);;;: Sl(2,k) x T, Therefore, one can define, for every function f on 
V V 

Sl(2,kv) and every r E 7l, a function fr on Mp(kv) by: fr(tRv(g)) = trf(g), 

with t ET and g E Sl(2,k ), 
V 

Write C ( y ) , S ( y ) and S ( 't"a) for the spaces that one obtains by 
0 '-V O "V O V 

restricting the elements of respectively C(~(m)), S(~(m)) and S('t":) to 

RV(Sl(2,kv)). If we replace in (7,2) Kv by Kv and ma: by g @]Ra:, then we 

get a convolution algebra 'JC° of distributions on Sl(2,k ). Let Ind (y) 
V V O '-V 

resp. Ind ('t"a) be the actions of 'JC° on S (y) resp, S ('t"a), given by 
0 V V O '-V O V 

ft+ f * t,with f ES (x) resp, S ('t"a) and h E 'JC°, 
0 V O . V V 

For f ES (y ), put M (y )(f) for M(x (m))(f) 0 R and W (a,x )(f) for 
0 '-V O '-V V m V O V 

( -1 
W a,~(m))(fm) 0 RV, Clearly, M0 (~) E Ho~(S0 (~),S0 (v(2)~ )) and 

W (a,x) E Hom..i0(S (y ),S('t"a)). Furthermore, in order to get a meromorphic 
0 V J"v O '--V V 
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continuation of M(Xv(m))(fm) resp. W(a,Xv(m))(fm), it is sufficient to 

have one for M0 (Xv)(f) resp. W0 (a,Xv)(f). 

a 7.10. THE FINITE CASE. Mp(k) acts on S(y (m)) resp. S(T) by means of 
V 'V V 

right translations and I denote these representations by Ind(Xv(m)) resp. 

Ind(T:). They belong to a type that can be defined for every closed subgroup 

Hof Mp(kv) and it will be convenient to give this general setting. 

First of all, note that for such a H, either H n Tis finite or T ~ H, 

so that H possesses always open compact subgroups. 

A representation a of Hon a complex vector space Eis called algebraic 

if for v EE and every open compact subgroup H0 of H, 

{}:~ 1 Lo(h.) (v) IL E a:, h. E H0 } is finite-dimensional and if the action 
1= 1 1 1 1 

of H0 on this subspace is continuous. Note that, if H n Tis finite, this 

definition agrees with the one in [I]. I will use the notation Alg(H) for 

the category of algebraic representations of H. 

Let 3C(H) be the convolution-algebra of functions f: H ➔ 0: satisfying 

(i) f has compact support 

(ii) there is a H0 , as above, and an n E E(H0) such that n * f * n = f. 

Take any Haar measure db on H. Every (a,E) E Alg(H) becomesan 3C(H)-module, 

if we define 

o(f)(v) = f f(h) o(h)(v) db, for f E ;JC(H) and v EE. 

H 

In particular, Eis a non-degenerate 3C(H)-module i.e. 3C(H).E = E. On the 

other hand, every non-degenerate 3C(H)-module E forms an object in Alg(H). 

Indeed, for every v EE, one can take an n E E(H0), with H0 as above, such 

that n.v = v and one defines the action of g E Mp(k) on v by 
V 

g.v (o * n).v. g 

If H = Mp(k ) , then we have to extend 1C(Mp(k )) somewhat, in order 
V V 

to be able to define a global Hecke algebra. Let ;JC be the convolution 
V 

algebra 3C(Mp(k )) e A(G) of distributions on Mp(k ). I call ;JC theHeeke 
V V V V 

algebra of Mp(k ). Each (a,E) E Alg(Mp(k )) possesses a natural A(G )-v V V 

module structure. It is given by 



cr (f)(v) J f (g) cr (g) (v)dg 

Gv 
Here dg is chosen as in (0.3). 
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for f E A(G) and v EE. 
V 

7.11. As before, let w be the natural representation of Mp(k) in L2(k ). 
V V V 

It stabilizes S(k) and S(k) is an algebraic Mp(k )-module. Write S(k) 
V V V Ve 

for the JC -submodule of S(k) consisting of even functions. 
V V 

7 .12. REMARKS. 

(i) Also in the finite case I will use the terminology introduced in 

(7.5) (ii). 

(ii) The properties, as stated in (7.5) (i) and (iii), are also valid for 

finite places. 

7.13. THE GLOBAL CASE. Let the global Hecke algebra JC be the restricted 

tensor product of the JC with respect to the e:G. One can define for each 
V V 

x as in (6.1) and every r E 7l an action of JC on S(x(r)) by 

V 
(0 h ) • (0 <fJ ) = 0(,p * hv), 

V V V 
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CHAPTER 3 

For convenience sake, I will leave out in the chapters 3 and 4 all sub­

scripts v. 

§8 THE DECOMPOSITION OF S(x(m)) IN THE REAL CASE 

[ ) () ( cos(~)- sin(~)\ Kv L·s . 8.1. For~ E -1r,1r, put r~ = . () ( )/• commutatLve and its 
SLn ~ COS ~ 

characters, that are non-trivial on T0 , have the form 

.r 
1.2 ~ ....0 

<r (~) , z:;> t+ z:; e ' for z:; E I , ~ E [ -,r, ,r), r E I +2ZZ. 

By (4.2), I can define the characters ljJ(r,m) of K by 

ljJ(r ,m) ( tR(r(~))) 

if r(~) E P(k) 

Write x = v(s)x0 as in (6.3). Since the elements of S(x(m)) are 

completely determined by their restriction to K, we get: 

(8.2) There exists a g(r,m) E S(x0 (m)) such that 

. r,r -1.-
g(r,m) IK = 1)J(r,m) if and only if y(-1) 2m e 2 x0 (-I). 

We will write Z(x0 ,m) for {rlr E 1+2?Z and g(r,m) exists}. The following 

notations for certain elements of -0l(2,t) will be used in the sequel: 
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With (2.2) one computes that for all r E Z(x0 ,m) ands E ~ 

(8.3) g(r,m)(s) * U = -i ¥ g(r,m)(s) 

e2i~V a reasoning, 

like in [6], page 166, yields that for rands as above 

(8.4) 

(8.5) 

V 
g(r,m)(s) * V+ (s - ¥) g(r-4,m)(s) 

V r 
g(r,m)(s) * v_ = (s + 2) g(r+4,m)(s) 

Since an J~-submodule of S(x(m)) is spanned by the g(r,m) (s) contained in it, 

we may conclude from (8.4) and (8,5) 

8.6. THEOREM. 

(i) S(x(m)) is irreducible if s I. ! + :ll, 

(ii) Ifs=±¥, lvith r E Z(,x0 ,m), S(x(m)) has a unique non-trivial "JC-sub­

module. Fors=½, it {s equal to 

n 
P(x,m,r) { I "· g(k.,m)(¥)j\. EC, k. E Z(x0 ,m), k. 2: r} 

i=l 
]. ]. ]. ]. ]. 

and for s - E. to 
2 

n 
N(x,m,r) { I "· g(k.,m)(- ¥)j\. EC, k. E Z(x0 ,m), k. ~ r}. 

i=l 
]. ]. , ]. ]. ]. 

8.7. Next, we determine Ho1D;Jr(S(x1(m)),S(x2(m))) and deduce from it some 2 
relations between the P(x,m,r) and the N(x,m,r). Let D be X+X- +XX++ Z /2; 

D belongs to the center of U(mt) and as in [6] one computes that for all 

f E S(x(m)) 

(8.8) f * D = s(s-2) f. 
2 

From (8.8) it is clear that, if x2 ,/, {x,v(2)x-1}, Hoffi;Jc(S(x(m),S(x2(m)) = {O}. 

If X2 E {x,v(2)x-1} and A(x,m) E Holl\z(S(x(m)),S(x2(m))), then there 
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exists for each r E Z(x0 ,m) an a (x,m) Et such that r 

fg(r,m)(s) if Xz X 
(8. 9) A(x,m)(g(r,m)(s)) a (x,m)l -1 r g(r,m)(2-s) if Xz v(2)x 

On the other hand, any sequence {ar(x,m)\r E Z(x0 ,m)} determines by formula 

(8.9) an A(x,m) E HomK(S(x(m)),S(x2(m))). This A(x,m) will belong to 

Holll;Jc(S(x(m)),S(x2(m))), if it commutes with the action of V+ and v_. 
If x = x2, this condition yields for all r E Z(x0 ,m): 

(8. IO) 

Since either s #¥ors# - ¥ for all r E Z(x0 ,m), (8.10) implies for all 

x and m that HoID;Jc(:~x(m)), S(x(m))) = {aIS(x(m))la E ~}. 

If x2 = v(2)x , then the ar(x,m) have to satisfy 

(8. 11) for all r E Z(x0 ,m). 

For s I: ½ + 7l, this relation leaves the freedom to choose one a (x,m) r 
arbitrarily. Ifs=~• then it implies that an(x,m) = 0 for all n ~ r, and, 

for s = - ~• all the an(.x,m) with n ~ r have to be zero. For reasons of 

reference, we summarize these results in a 

-1 
8.12. PROPOSITION. Let Xz belong to {x,v(2)x } and let A(x,m) be an 

-1 . 
element of HoID;Jc(S(x(m)),S(v(2)x (m))). Then 

(i) Holll;ic(S(x(m)),S(x2(m))) is one-dimensional. 

(ii) Ifs=;, with r E Z(x0 ,m), and A(x,m) # o, then 

(iii) Ifs 

-1 Ker(A(x,m)) = P(x,m,r) and Im(A(x,m)) = N(v(2)x ,m,r-4). 

~• with r E Z(x0 ,m), and A(x,m) # 0, then 

-1 
Ker(A(x,m)) = N(x,m,r) and Im(A(x,m)) = P(v(2)x ,m,r+4). 

8.13. In this section we determine the meromorphic continuation of 

M(x(m))(f(s)) for f E S(x0 (m)). Since T(x) = e-Zuix, dx is the usual 
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Lebesgue measure on lR. Thanks to (6.23), it suffices to continue the follow­

ing functions: 

. 'TT 

M(x(m))(g(r,m)(s))(e) = y(1)m e 4 ir- I 
lR 

ir~ r(1-~+E) 
= y(1)m e 4 22-sr(s-1)sin('TT(~-E)) 2 4 

2 4 r(!!+E) 
2 4 

-1 Clearly, we can speak now for alls E a\:ll of M(x(m)) and M(v(2)x (m)). By 

combining the expression above with (8.2) we get for alls E ¢\:ll: 

(8.14) 
1 . 

M(v(2)x- (m)) 0 M(x(m)) = - l2Jx(-1)r(s-1)r(1-s)cos('TTs)IS(x(m))• 

8,15. We focus our attention now on the irreducible JC-submodule of 

S(v(½)h(a)(m)). Notations being as in (7.6), I define LEHOID;J.c<S(lR)e'S(v(½))) 

by: 

(8.16) L (<P) = w (g) (,p )(O) for <P E S ( lR) e , g E Mp ( JR) ) • 

Lis an injection as one can see from 

L(<P)(R(w(1))R(u(x))},. f <P(y) T(½xy2)dy 

]R 

= I <P(~t) T(½tx)dt. 
0 It 

From proposition (8.12) and the fact that w is unitary, we may conclude that 

L(S(lR)) c S(v(½)). Using (4,6) and (4.16), we can state now for all a Ek* 
e "' 

and m E 1+2:ll: 

8,17, PROPOSITION, The map <P 1+ L(<P) 0 I(a(-1)l) 0 J(m) is an JC-module iso­

moy,phism between (w O I(a(-1)t) o J(m), S(lR) ) and the irreducible sub-
e 

module of S(v(½)h(a)(m)), 
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§9 WHITTAKER MODELS IN THE REAL CASE 

9.1. Let f be an element of S(x0 (m)). I want to show here that for all a E JR* 

W(a,x(m))(f(s)) has a holomorphic continuation to~. Thanks to (6.24) we 

have to consider only the W(a,x(m))(g(r,m)(s))(e), for all a E JR* and 

r E Z(x0 ,m). Now 

_§._!: _§.+!: 

W(a,x(m))(g(r,m)(s))(e) ~ I (!+ix) 2 4 (1-ix) 2 4 e 2~iaxdx. 

lR 

An easy way to obtain the analytic continuation of this integral is to con­

sider the contour 

iR 

0 

-iR 

and to make the substitution u = ix, if a< O, and u -ix, if a> O. One 

verifies that for Re(s) > I and a< O, 

lim r 
R..­

+ 
kl (R) 

and, for a> O, 

Let k2 be "lim k (R)". Then 
R..- 2 

o. 
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if a< 0 

(9.2) W(a,x(m))(g(r,m)(s))(e) ~ 

if a> 0 

Since the 2 integrals in (9.2) define holomorphic functions on¢, the asser­

tion has been proved. 

9.3. One can find on page 431 of [7] that 

-~+:: -~-:: f (I-ix) 2 4(l+ix) 2 4e2Tiiaxdx = 

lR 

with W , µ,v E ¢, a so-called Whittaker function. Now, for all a E lR* and µ,v 
µ E ¢, the functions + W (JaJ) is holomorphic on¢. Furthermore the µ,s 
functions W do not vanish identically on (0, 00). Hence the formula above 

µ,v * 
implies that for all a E lR and all x as in (6.3), W(a,x(m)) is non-zero. 

Moreover, if s = ; resp.-¥, with r E Z(x0 ,m), then it allows us to conclude: 

(9.4) W(a,x(m))(P(x,m,r)) = {O}, for a< O, and W(a,x(m))(P(x,m,r)) f {O}, 

if a< 0. 

(9.5) W(a,x(m)) (N(x,m,r)) {0}, for a> 0, and W(a,x(m))(N(x,m,r)) f {O}, 

if a< O. 

From (9.2) and (6.24) one derives the following asymptotic behaviour of 

the functions in W(a,x(m))(S(x(m))). 

9,6, PROPOSITION. Let C resp. Y be compact subsets of a resp. Mp(k) and let 

f belong to S(x0 (m)). Then we have: 

(i) For every N E :N, 



JaJN{ sup Jw(a,x(m))(f(s))(R(u(y))g)J} 
yElR, gEY' 

SEC 

(ii) There exists a N E :N such that 
0 

sup Jw(a,x(m))(f(s))(R(u(y))g)I -<. 
yElR, gEY 

SEC 

-N 
Jal o 

o. 

* 9.7. In this section we prove the uniqueness of the W(a,x(m)), for a Ek, 

m E 1+27l and x as in (6.3). For f E S(-ra), define f:lR + «: by i(t) = 
- >o 
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f(R(d(t))). Let f' be the derivative of i• Then the following relations hold: 

(9.8) f * ~(t) = t!'(t). 

. V r 
Moreover, if f * w(r,m) = f, then ~(t) = -i2 i(t). 

Let {~(r)jr E Z(x0 ,m)} be a collection of slowly increasing C00-func­

tions on lR O For every r E Z(x0 ,m), define~ (r,a) E S(-ra) by 
> • 

~(r,a)(R(u(y)d(t))h) -r(ay)~(r)(t)w(r,m)(h) 

~ n n for y E JR, t E lR 0 , h EK. Then the map 1 . 1 >..g(r.,m)(s) + '. 1>-.~(r.,a) > l1= 1 1 l1= 1 1 

defines an operator V(a,x(m)) E Ho~(S(x(m)),S(-ra)). It belongs to 

Hom.-JC(S(x(m)),S(-ra)) if it coilllllutes with the actions of V+ and V. This 

condition puts the following restrictions on the ~(r): 

(9.9) r 2 t~(r+4)'(t) - (2+2-4Tiat )~(r+4)(t). 

(9. 10) r 2 t~(r)'(t) + <z-4Tiat )~(r)(t). 

In particular one has for all r E Z(x0 ,m): 

(9.11) o. 

For any g(r,m), such that W(a,x(m))(g(r,m)(s)) j 0 abbreviate 

W(a,x(m))(g(r,m)(s)) by ~ 1• If ~2 is yet another solution of (9.11) that 

is slowly increasing at infinity, then t~ {~ 1(t)~ 2'(t) - ~ 1'(t)~ 2(t)} = 0, 

as both ~land ~ 1• are rapidly decreasing at infinity. From [2], page 83, 
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we know that 

for t,u E lR>O. Consequently <P 1<P 2 - <P 2<Pj = 0 and <P 1 ~ <P 2 • 

By applying the foregoing to a suitably chosen g(r,m), we get with the 

help of (9.9) and (9.10): 

9.12. THEOREM. Let x,m and a be as above. Then 

Thanks to (8.12), (9.4) and (9.5), this theorem has the following 

9. 13. COROLLARY. Notations being as in ( 8. 6) , then 

{° 
1 

§10 THE IMAGINARY CASE 

if a> 0 

if a< 0 

if a > O 

if a< 0 

10.1. The notations will be as in (7.9). Let KE 7l be such that for all 

z E o:*, with Jzl = 1, x(z) = zK. From now on I will write x instead of x0 , 
K 

For every t E 7Z~0 , I denote the irreducible representation of SU(2,~) 

on the homogeneous polynomials of 
V 

{flf E S0 (x), f * e(pt) = f}. The 

6.2 of [6]: 

10.2. THEOREM. 

degree t by pt. Put S0 (x,pt) for 

following results are contained in theorem 

(i) Ifs I. {-l; 1 - rlr E 7l~0 } u {2 + 1; 1 + rlr E 7l~0}, then S0 (x) is an 

irreduaible 'Jf-module. 

(ii) Ifs= - 1; 1 - r, r E Ll~o• then i~O S0 (X,PjKj+2i) is the unique non­
trivial :H?-submodule of S (x). 

(iii) Ifs= 2 + r + 1;1, r E :ll:0 , then $i~r+l S0 (X,PjKj+2i) is the unique 
non-trivial :H?-submodule of S (x), 

0 
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10.3. In order to carry out the meromorphic continuation of M (x) (f(s)) and 
0 

W (a,x) (f(s)) for f ES (x ), we need a collection of functions that span 
0 O K 

S (x). It will be left to the reader to verify that the subsequent one does. 
0 

10.4. For b,t,p E 7l~0 such that O s t s JK\ + b and O s p s b one defines 

w(b,t,p) E So(xK) as the function that is given on K by 

$(b,t,p)(d(a)r(0)d(8)) = 

= xK(a8)(sin(0))t+p(cos(0)) 2b+JK\-t-p{Xz(t-p)(S) 

Xz(p-t)(S) 

if K $ 0 

if K > 0 

Thanks to (6.23) it is sufficient to prove the assertion for the functions 

s + M (v(s)x )($(b,t,p))(e) for all b,t and p, as above. They are equal to 
0 K . l fTiei(p-t+\Kl)wdw if K $ 0 

{ I -s-b-J~J J J } 0 
(l+r2) 2 r2b+ K -t-p2r dr. 

2TI . ( ) 
0 ' J ei t-p-K wdw if K > 0 

0 

Thus we are left to check still only the case t-p = JK\. In that case 

M (v(s)x )($(b,p+JK\,p)(s))(e) 
0 K 

and the assertion is obvious now. 

2TII (l+u)-Z-b-\KJ/Zub-pdu = 

0 

10.5. CONCLUSION. For alls i {{I_IIJ_rir E 7l~0 } u {l+lfl+r\r E 7l~0 }} 

we can speak of M (x) and M (v(2)x- 1). 
0 0 

10.6. Fors, as in 10.5, I want to compute M (v(2)x- 1) o M (x). To do so, 
0 0 

I make use of a well known trick to construct elements of S (x). 
2 0 

Consider the following action of Sl(2,~) on S(a ): 

(g.~)(x,y) = ~((x,y)g), 

where g E Sl(2,~), ~ E S(~2) and (x,y) E ~2• Let~+ i be the automorphism 

of S(~2) defined by 
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i(a,b) =ff t(x,y) T(bx-ay)dxdy. 

a:2 
It commutes with the action of Sl(2,<I:) and equals its own inverse. Now, 

for Re(s) > I and t E S(a:2), one can define an I(t,x) ES (x) by 
0 

I(t,x)(g) = f x(t)(g.t)(O,t)\t!-1dt. 

* a: 
Call~ E S(a:2) K-finite, if {I: 1A.(h .. ~)\A. 

1.= ]. ]. 2 ]. 
Ea:, h. EK} is finite-

1. 

dimensional. For i E 7Z 0 , let ~~ E S(a: ) be 
~ '1, 

given by 

if K ,;; 0. 

ifK>O. 

One verifies that~~ transforms under K according to Pz· I I and that 
'1, '1,+ K 

I(ti,X) # O. This implies that S (x) = {I(~,x) I~ a K-finite element of S(a:2)}. 
0 2 

From [!OJ we know that for every~ E S(a: ), I(~,x) has a meromorphic 

continuation to a: and is analytic on <I:\{- l}\-rlr E :?Z~0}. We will denote the 

local zeta-functions as in [JO]. Take any non-zero fin S(a:) and write p(x) 

for ~(f,x). ~(F(f),v(I)x-l)-l; then we know from [10] that p(x) is indepen­

dent off, meromorphic on a: and holomorphic on <I:\{-\}l-rlr E :?Z~0}. Now, 

for Re(s) > I, we have 

M0 (x)(I(~,x))(g) =ff (g.~)(t,x)x(t)lt\-2dtdx 

c2 
~ -1 

and for I< Re(s) < 2 this equals p(x(v(-l)))I(~,v(2)x )(g). 

10.7. CONCLUSION. For alls l {{1-l~l-rlrE:?l } u {l+l~l+r\rE:?l }} 2 ~o 2 ~o 

-1 
p(xv(-J))p(x v(l))Is ( )" 

o X 

Obviously this implies for all odd m: 

-1 -1 
M(v(2)x (m)) 0 M(x(m)) = p(xv(-I))p(x v(I))IS(x(m)) 

10.8. Notations being as in (7.6), define LE Ho111;fc(S(a:)e,S(v(!))) by 

L(f) (g) w(g) (f) (O), 



with f E S(a;)e and g E Mp(¢). Lis an injective map, as one can see from: 

L(f)(R(w(l)u(t))) I f(y) T(½ty2)dy 

a; 

f f(&°)\x\-½ T(½tx)dx. 

¢ 
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By theorem 10.2, S (v(½)) is irreducible. Therefore Lis an isomorphism and 
0 

in particular (w,S(¢) ) is irreducible. 
e 

10.9. In this section I will show that for all a Ea;* and all b,t and p, as 

in (10.4), W (a,x)(w(b,t,p)(s))(e) has a holomorphic continuation to¢. 
0 • 

Put a= o.e1 Wo, with o. E lR>O. For Re(s) > 1, W0 (a,x)(w(b,t,p)(s))(e) 

equals 

00 I KI 27f f c1+r2)-s-b- 2 r2b+\Kl-t-p2r.{ I eisgn(K)(t-p-\K\)we41rio.rcos(w+wO)dw}dr 

Ooo \Kl O oo 

~ f (l+r2)-s-b- 2 r2b+\K\-t~p+lJ\t-p-\K\ \ (41ro.r)dr = I f(r,s)dr 

0 0 

Here Jn' n E :iZ>O' denotes the usual Bessel function. It satisfies 
- 1 

\Jn(r)\ ~ 1, for all r E (0, 00 ) and n ~ 0. Hence f 0 f(r,s)dr is analytic on 

a:. As for f7 f(r,s)dr, note first that for all b,t and pas in (10.4) 

2b + \K\ - t - p ~ \t-p-\K\ \. Furthermore, the J, n ~ 0, satisfy the n 
following recurrence relation: dd (xn+lJ 1(x)) = xn+lJ (x). By applying 

x n+ n 
r-times partial integration with respect to the Bessel function, one arrives 

at an integrand that is holomorphic ins and absolutely integrable for all 

s with Re(s) > 1 - r. This proves the assertion. 

10.10. Next I derive an expression for the functions in W (a,x)(S (x)) that 
0 0 

will be convenient for asymptotic considerations. Let~ 1+ l be the isomor-

phism of S(a:2) given by 

i(a,b) = f ~(a,y) T(-by)dy. 

a; 

For Re(s) > I, we have 
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W0 (a,x)(I(~,x))(g) =ff (g.~)(t,x) x(t)\t!-2 T(-at- 1x)dtdx 

a2 

f (~)(t,at-1) x(t)\t!-2 dt 

a 
Since f¢ ~(t,at- 1)x(t)dt is holomorphic on~ for all a E ~*and~ E S(a2), 

we may conclude from (10.9) that, for all x, thefunctions in W (a,x)(S (x)) 
0 0 

are of the form 

for'some K-finite ~ E S(a2). From this formula, one easily derives the 

following asymptotic behaviour of the functions in W(a,x(m))(S(x(m))): 

JO.II. PROPOSITION. Let g belong to S(x (m)) a:nd let C be a compact subset 
K 

of a. The following properties hold then: 

(i) For every NE ll, 

!w(a,x(m))(g(s))(R(u(y))h)\ 

(ii) There exists a N0 E 1l such that 

N 
0 

s~p {!a\ !w(a,x(m))(g(s))(R(u(y))h)j} 
ea .~a 
sEC, hEK 

< 00 

0 

We end this chapter with a result that is a consequence of theorem 6.3 

in [6]. 

10.12. THEOREM. If S(x(m)) is irreducible, then it has a unique W(a)-module, 

* for all a E ¢. 



CHAPTER 4 

§II GENERALITIES ABOUT ALGEBRAIC REPRESENTATIONS 

II.I. Let Hand H0 be as in (7.10). For the time being (cr,E) denotes an 

object in Alg(H). (cr,E) is called admissible if for each n E E(HO) 

dim(cr(n)(E)) < 00 • Let cr* be the natural representation of Hon the dual 

space E* of E. As in (7.10), cr* induces a natural action of A(H0) on E*. 
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* · · 1 * · · *c )C ) Denote the subspace of E consisting of al v EE, satisfying cr e v = v 

for some e E E(H0), by E; it is H-stable and the algebraic representation 

o of Hon Eis called the contragredient representation of cr. Put<,> for 

the natural pairing of E and E. By a ma.trix coefficient of (cr,E) I mean a 

function on Hof the form 

C ~(h), 
v,v 

where h EH, v EE and v EE. 

One verifies easily that the contragredient representation of an ad­

missible (cr,E) can be characterized by 

11.2. LEMMA. Let (p,V) E Alg(H) be admissible. Assume that there exists a 

non-degenerate H-invariant bilinear form on EX v. Then (p,V) = (o,E). 
~~ 

11.3. COROLLARY. Let (cr,E) E Alg(H) be admissible. Then (cr,E) - (cr,E). 

Let E' be the space E, equipped with the complex-conjugate i-module 

structure. Then ( 11. 2) has yet another conseque.nce: 

11.4. COROLLARY. Let (cr,E) be admissible and pre-unitary. Then (;,E) ~ (a,E'). 

Call (cr,E) irreducible if {O} and E are the only H-stable subspaces of E. 

In case that H has a countable basis for its topology, Schur's lennna 
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holds. For a proof I refer to [1], proposition (2.11). 

11.5. LEMMA. Assume (cr,E) is irreducible. Then 

11.6. Starting with a (cr,E) E Alg(H), one can induce it to an algebraic 
representation of Mp(k). Indeed, let S(cr) be the space of functions 

f:Mp(k) + E satisfying 

(i) f(hx) = cr(h)(f(g)) for all h EH, g E Mp(k). 

(ii) There exists an open subgroup K' of G such that 

0 f(gR (y)) = f(x) for ally EK', g E Mp(k). 

(iii) There exists an n E E(T) such that 

f(tg) n(t) F(x) for all t ET, g E Mp(k). 

Then S(cr) is stable under right translations with elements of Mp(k) and this 

representation is denoted by Ind(cr). Induced representations have the follow­

ing property: 

11.7. LEMMA. (Frobenius reciprocity). Notations being as above, let (p,V) 

be any object in Alg(Mp(k)). Then 

PROOF. For A E HoID;Jc(V,S(cr)) the corresponding operator V +Eis given by 

v1+ A(v)(e). 0 

11.8. Let x be a quasi-character of k* and ran integer. If we write x(r) 

for the algebraic representation of P(k) which is defined by 

tR(d(a)u(x)) 1+ tr x(a) fort ET, a Ek* and x Ek, 

then our notations are consistent. Since Mp(k) = P(k)K, S(x(r)) is an 

admissible JC-module. Moreover every irreducible p E Alg(K), which occurs 

in Ind(x(r))JK, does that only once. 

The following lemma shows that the contragredient representation of 

Ind(x(r)) is of the same type 
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--../ ~ -I -I 
11.9. LEMMA.(Ind(x(r)), S(x(r))) ~ (Ind(v(Z)x (-r)), S(v(Z)x (-r))). 

PROOF. For f E S(x(r)) and g E S(v(Z)x-1(-r)), I define 

B(f,g) = I f(R(k))g(R(k))dk. 

K 

Now, Bis a non-degenerate Mp(k)-invariant bilinear form on 

S(x(r) x S(v(Z)x- 1(-r)). Hence the assertion is a consequence of (11.2). D 

II.JO. From now on, (cr,E) will denote an object in Alg(Mp(k)). Let$ be a 

character of k. Then E($) is defined as 

r 
{ I 

i=I 
;\.{cr(R(u(x.)))(v.) - w(x.)v.}!L EG:,x. Ek,v. EE, i=l, ••• ,r}. 

l. l. l. l. l. l. l. l. 

It is easy to see that this equals 

{ v Iv E E, for some n E 7l $(-x)cr(R(u(x)))(v)dx = O}. 

, pn 
EW = E/E($) is the greatest quotient of Eon which N(k) acts according to¢. 

Following BERNSHTEIN [I], I call (cr,E) quasi-cuspidal if EW = {O}. 

Let Z($) be D(k), if$= I, and T.{R(d(a))!a2 = I}, if$# I. Then we 

denote the canonical algebraic representation of Z($) on EW by ResW(cr). By 

a direct verification one proves the following 

II.II. LEMMA. (cr,E) + (ResW(cr),EW) is an exact functor from Alg(Mp(k)) to 

Alg(Z($)). 

11.12. I want to show here that the matrix coefficients of a quasi-cuspidal 

representation have compact support. Lett, be {R(d(nk))!k~O}. Then 

Mp (k) = ~U • KoK and this union is disjoint. For every i E lN, put 
• uEu • 

K~ = {hJh E K,h = d(I) mod p~}. One verifies that 
-i I i i ~~ K = {n(x)d(a)u(y) x,y E p ,a E I + p }. For each v E E, there exists an 

i ~o ~ ~ ~ i i E lil such that K < G and cr(R (h)k1)(v) = cr(k1)(v), for all h EK and 

k 1 E K. Further one can find, for each v E E, a j E JN such that for all 

k 2 E K 

Now, 

I cr(R(u(x))k2)(v)dx = O. 

p-j 
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f r ~ o ~ < cr(R(d(n ))k2)(v), cr(R (u(x))k1)(v)>dx = 

y} 
vol(pi) < cr(R(d(n)r)k2)(v), cr(k1)(;)>, 

but it also equals 

lnl 2r j 
i-2r p 

Hence c ~ has compact v,v support. This enables us to prove: 

11.13. LEMMA. Let (cr,E) be quasi-cuspidal a:nd irreducible. Then (cr,E) is 

admissible. 

PROOF. Thanks to (11.5) it suffices to prove for all Ki< G that cr(£Ki)(E) 

is finite-dimensional. Take any v EE, v I 0, and assume that 

cr(£Ki)(E) = {I: 1 A.cr(£Ki) cr(g.)(v)!A. Et, g. E Mp(k) for j = 1, ••• ,r} is 
i= J J J J 

infinite-dimensional. Then o,ne can find a linear independent collection 

fo(£Ki)cr(g. (v) Jjdl} such that g. E K R(d(nnj))K, with n. < n.+I for all 
J J J J 

j E lN. Next we complete it with {ntlt EI} to a basis of cr(£Ki)(E) and 

define the linear form v on cr(£Ki)(E) by: v(cr(£Ki)cr(gj)(v)) = I for all 

j EN and ~(nt) = 0 for all t EI. Now v O cr(£Ki) belongs to E, but 

c ~ ( ") has no compact support, which contradicts (11.12). 0 
V, V o cr £K'1, 

If(cr,E) is quasi-cuspidal and irreducible, then it can be made pre­

unitary. One simply takes a Haar measure dg on Mp(k), chooses any non-zero 

win E and defines a Mp(k)-invariant scalar product on Eby 

(11. I 4) (v1,v2) j <cr(g)v1,w> <cr(g)v2,w>dg 

Mp(k) 

We can state now: 

11.15. LEMMA. Let (cr,E) be as above. Then there exists a constant d j O 
a 

such that 

I 
Mp(k) 
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PROOF. First fix a v 1 EE, v 1 + O, and a v2 EE, v2 + O. Then the left-

hand side is a Mp(k)-invariant bilinear form on Ex E. From (11.13), (11.14) 

and (11.4), one sees that it is non-degenerate. Since cr is irreducible, this 

form differs only by a non-zero constant A(v2,;1) from (v1,;2) + <v1,;2>. By 

defining A(O,v 1) = A(v2,O) = A(O,O) = O, we have in (v,;) + A(v,;) a non-
~ ~ -1 ~ degenerate Mp(k)-invariant bilinear form on Ex~. Hence A(v,v) = d0 <v,v> 

for all v EE, v EE. D 

Finally we will need the fact that an irreducible quasi-cuspidal (cr,E) 

is projective: 

11.16. THEOREM. Let (p,V) belong to Alg(Mp(k)) and let P be a non-zero 

element of Hon,c(V ,E). Then there exists a F E Hon,c(E, V) such that P ° F = IE. 

PROOF. Take any non-zero w0 in E, and choose ~OE E such that <w0 ,w0> 

There exists a v0 EV such that P(v0) = w0. Define F:E +Vas follows: 

F(w) f 
Mp(k) 

-1 c ~ (g ) p(g)(v0)dg 
w,w,O 

Then we have for all w EE 

f 
Mp(k) 

<w,w> 

Hence P ° F = IE. D 

11.17 Let (cr,E) be irred11".ible and not quasi-cuspidal, that is to say 

d • a 

E, + {0}. Tnen E1 is a finitely generated P(k)-module, for it is irreducible 

and Mp(k) = P(k)K. Consequently E1, as a P(k)-module, has an irreducible 

quotient of the form x(r). In other words, by (11.7) Eis isomorphic to 

a Mp(k)-submodule of S(x(r)). In order to determine the Mp(k)-module 

structure of S(x(r)) I will make use of the following 

11.18. THEOREM. The map W + w1 from the collection of Mp(k)-submodules of 

S(x(r)) to the collection of D(k)-submodules of S(x(r)) 1 is injective. 

PROOF. Let V and W be Mp(k)-submodules of S(x(r)) with v1 = w1• By passing 

from V,W to V, V +Wand by using (11.11), one sees that we may assume 
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V ::_Wand W/v is a finitely generated Mp(k)-module. Since (W/v) 1 = {0}, W 

has, if W/v / {O}, an irreducible quasi-cuspidal quotient. By (11.16), it 

occurs also as a submodule of W, but that is impossible, since, by (11.7), 

S(x(r)) does not have any non-trivial quasi-cuspidal submodules. Hence 

V = W. □ 

§12 THE D(k)-MODULE STRUCTURE OF S(x(m))l 

12.1. For every f E S(x(m)) define G(f) k + G: by 

G(f)(x) = f(R(w(l)u(x))), 

G(f) determines f completely. By (I.II) we know for all x Ek* 

-I -1 
R(w(I)u(x)) = R(d(x )u(-x))R(n(x )). 

-1 
If n(x ) E G, then by (2. 7), 

-I R(n(x )) 0 -1 
y(x)R (n(x )). 

This implies that G(f) satisfies the following property: 

(12.2) There exists a N > 0 such that for all x'E k*, lxl > N, 

G(f)(x) y(-x)mx(x) = f(e). 

On the other hand, if g is a locally constant function on k, satisfying 

(12.2) then one defines G(g): Mp(k) + G: by 

G(g)(tR(d(a)u(x))) = tmx(a)c, 

G(g)(tR(d(a)u(x)w(J)u(y))) = tmx(a)g(y), 

where c = lim g(x)x(x)y(-x)m, t ET, a Ek* and x,y Ek. 
Jxj..- _ 

The subsequent calculations will show that G(g) is invariant under an 

open compact subgroup of G. Hence G(g) E S(x(m)). 

Put q = J~J- 1• First of all I choose a r E :IN such that 
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(i) Kr< G 

I r r * 2 (ii) X (l+p) = 1 and 1 + p < (k) 

(iii) g(x) = x(x)-l y(x)mc for all x Ek*, with lxl ~ qr. 

(iv) g(x+y) = g(x) for all x Ek and y E pr. 

I claim now that G(g) is invariant under K3r To prove this, it is sufficient 

to show for all h, belonging to a set of generators of K3r, that 
~ 0 ~ 0 G(g)(R (h)) = c and G(g)(R(w(l)u(x))R (h)) = g(x), for all x Ek. 

First take h = d(a), a E l+p3r. Then R0 (h) = R(h) and by (ii) 
~ o -2 r -r G(g)(R (h)) = c. Since xa - x E p, for all x E p , the properties (ii), 

(iii) and (iv) imply the other equality. Next let h be of the form u(b), 

b E p3r. Again R0 (h) = R(h) and the assertions follow from the definition 

and (iv). 

Finally, take h = n(t), with O < JtJ ~ q-3r_ Then we have 

G(g)(R0 (h)) = y(-t)m x(t- 1) g(t-1) = c, by (iii). If x = -t-l, then 

G(g)(R(w(l)u(x))R0 (h)) = y(-t)mx(-t)c = g(x). Assume, from now on, x f -t-l 

For those x, we have 

~ o -m m -1 G(g)(R(w(l)u(x))R (h)) = y(t) y(t(l+tx)) x(l+tx) g(x(l+tx)). 

-r 2r -1 r If x E p , then l+tx E l+p and x(l+tx) -x E p. Hence in that case the 

desired result is a consequence of (ii) and (iv). Consider now the case 

lxJ > qr. Since lx(l+tx)-11 ~ lxJ, if lxl ~ Jtj-l, and 

lx(l+tx)-l I = Jtl-l, if lxJ > !ti-I, we see from (iii) that in both cases 

~ o 2m 2m G(g)(R(w(l)u(x))R (h)) = (xt,l+tx) y(l+tx) y(-1) g(x) = g(x). 

This completes the proof of the desired invariance. 

The foregoing implies that for every x and m there is a unique 

f(x(m)) E S(x(m)) such that G(f(x(m)))(x) = O, if lxJ ~ I, and 

G(f(x(m)))(x) = y(x)mx(x)-l, if JxJ > I, 

12.3. Let V: S(x(m)) +~be given by V(f) = f(e), f E S(x(m)). It is 

clear now that Ker(V) = {flf E S(x(m)),G(f) E S(k)} and that 

Ker(V) ::iS(x(m))(I). Let P(O): Ker(V) +~be defined by 

P(O)(f) = f G(f)(x)dx 

k 
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Clearly Ker(P(0)) J S(x(m))(I). On the other hand, if f E Ker(P(0)) and the 

support of G(f) is contained in pr, then 

p 

J Ind(x(m))(R(u(x)))(f)dx = 0 

r 

in other words Ker(P(0)) = S(x(m))(I). As for the action of D(k), one veri­

fies that the following relations hold: 

V(Ind(x(m))(R(d(a)))(f)) = x(a)V(f) 

-11 12 P(0)(Ind(x(m))(R(d(a)))(g)) = x(a) a P(0)(g). 

Hence S(x(m)) 1 as a V(k)-module, has a Jordan-Holder sequence of length 2 

and its irreducible components are x(m) and v(2)x- 1(m). 

If x2 I v(2), S(x(m)) 1can be diagonalized as a D(k)-module. Assume now 

that x2 = v(2). Then, by local class-field theory, x = v(l)h(~), for some 

~Ek*. From section (12.1); it is clear that S(x(m))1 can be diagonalized 

if and only if for every a Ek*: 

(12.4) Ind(x(m))(R(d(a)))(f(x(m))) - x(a)f(x(m)) E Ker(P(0)). 

Since 

G(Ind(x(m))(R(d(a)))(f(x(m))))(x) l 0 

- m -I 
x(a)y(x) x(x ) 

if lxl $ lal 2 

we see that it is sufficient to prove or disprove (12.4) for a= TI, and in 
J m -I 

that case it amounts to q-2<lxl$J y(x) x(x )dx = 0. 

Now the left-hand side of this equation is equal to 

2l l+I {j j } y(I) y(l)y((-1) ~)· * y(aOda + * y(aTI~)da . 



As we will see in (13.8), one of the integrals in 

12I 1 -I and the other one is equal to 5 2 (1-q ). Hence, 

this expression is zero 

if x2 = v(2), S(x(m)) 
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cannot be diagonalized. By (11.7) and (11.18), we 

results as follows: 

can summarize the obtained 

12.5. PROPOSITION. Let x1,x2 be quasi-cha.racters of k* and m1,m2 odd integers. 

(i) If there exists an 'JC-submodule E of S (x 1 (rn1)) such that 

{O} ~ E ~ S(x1(m1)), Eis irreducible and E1 is one-dimensional. 

(ii) If x1(m1) t {x2(m2),v(2)x;1(rn2)}, Holll;Jc(S(x 1(m1)), S(x2 (rn2))) = {O}. 

(iii) If x1(m1) E {x2(m2),v(2)x;1(rn2)}, Holll;Jc(S(x 1(m1)), S(x2(m2))) is one­

dimensional. 

12.6. REMARK. For those x such that Ind(x(m)) is pre-unitary, proposition 

(12.5) implies that S(x(m)) is irreducible. This is, for example, the case 

if x = v(s)x0 , with Re(s) = I. A Mp(k)-invariant scalar product on 

S(x(m) is then given by 

(f,g) = B(f,g), 

with f,g E S(x(m)) and Bas in (11.9). 

12.7. Let Ebe as in (12.5) (i). From (11.3) we see that Eis also irre­

ducible. Further we know by (11.17) that there is a non-zero 
-1 ~ A E Holll;Jc(S(v(2)x (m)),E). By applying (12.7) (i) and (II.II) one concludes 

that Eis not a quasi-cuspidal 'JC-module. Therefore there exists a x2 (m2) 

such that E is an JC-submodule of S(x2(m2)). Since 
~ ~ -1 Holll;Jc(E,S(x2 (m2))) = Holll;Jc(S(v(2)x2 (-m2)),E), Eis a quotient of 

-1 S(x2 v(2)(-m2)) and by (12.5) x2(rn2) has to equal x(-m). Furthermore, the 

kernel of this projection is an irreducible submodule of S(x;1v(2)(-m2)). 

We have arrived now at the following criterion for irreducibility of 

S(x(m)): 

12.8. PROPOSITION. For every x(m), let C(x(m)) be a non-zero element of 
-I 

Holll;Jc(S(x(m)), S(v(2)x (rn))). Then we have 

(i) S(x(rn)) is irreducible<=> C(v(2)x- 1(rn)) ° C(x(m)) i o. 
(ii) If S(x(m)) is reducible, the image of C(v(2)x- 1(m)) is equal to the 

kernel of C(x(rn)) and is the unique non-trivial 'JC-submodule of S(x(rn)). 

In the next paragraph I continue first the operators M(x(m)) to a 
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sufficiently large open connected subset of~ and next I compute 

M(v(2)x-l (m)) 0 M(x(m)). 

§13 
-I 

COMPUTATION OF M( V (2) X (m)) 0 M(x (m)). 

13.1. First we show that all the M(x(m))(f(s)), f E S(x0 (m)), have a mero­

morphic continuation to~. Thanks to (6.23) we can restrict ourselves to 

that of M(x(m))(f(s))(e), for all f E S(x0 (m)). Since for all f E S(x0 (m)) 

with f(e) = 0 the functions+ fk G(f(s))(t)dt is holomorphic on~. we have 

to consider still only M(x(m))(f(x(m)))(e). Now, 

f 2-2s -I 2l 1-s G(f(x(m)) (t)dt = (1-q ) ·y(I) q 

{ ql-s J y(a)(-I,a/x0 (a- 1)da+ (-1,rr/ J y(1m)(-1,a/x0 (a- 1)da} 

O* O* 

and therefore we can draw tqe following 

13.2. CONCLUSION. For all f E S(x0 (m)), the function M(x(m))(f(s)) has a 

meromorphic continuation to~ and is holomorphic on V = ~\{l+il:(q)lr E 7l} 

and, in particular, M(v(s)x0 (m)) f, 0, for all s E V. 

13.3. REMARK. Thanks to (12.6), it poses no problem that M(x(m)) is defined 

only for s EV. 

13.4. By using (4.16) one sees that, for all x and m, the map f + f O J(m) 

is an isomorphism between S(xh(-l)l) and S(x(m)). Moreover we have for all 
l s EV and every f E S(xh(-1) ) 

M(x(m))(f O J(m)) = y(-l)~(xh(-l)l)(f) 0 J(m). 

Hence it will be sufficient to compute M(v(2)x- 1) o M(x) for alls EV. 

13.5. There is a unique function f 1 E S(x0 ) such that G(f 1) = t(O). In the 
-I sequel I will compute M(v(Z)x ) 0 M(x)(f 1(s))(R(w(l))), for alls EV. 

First of all we have for all x Ek* and y Ek 

-I -I -I R(w(l)u(x))R(w(l)u(y)) = y(x)R(u(-x )d(x )w(l)u(y-x )). 



This implies for Re(s) > I and all f E S(x): 

G(M(x)(f))(y) = f x(x- 1)y(x)G(f)(y-x- 1)dx 

k 

= f x(x)v(-2)(x)y(x)G(f)(y-x)dx. 

In particular, 
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for !Yi S f b x(t)v(-2) (t)y(t)dt = £(x) 

1 f x(y+z)y(y+z)dz for !YI > I 
0 

Now £(x) is easily seen to be equal to 

(l-q2~2s)-1{ j ,Y(a.)x(a.)da. + ql-s f y(mr)x(a.)da.}. 

o* . O* 
Clearly, £(x) is analytic on V. Since st+ f0 x(y+z)y(y+z)dz is analytic on 

C, the expression for G(M(x)(f 1(s))), given above, is valid for·all s EV. 
For Re(s) < I we have again that 

G(M(v(2)x- 1)(M(x)(f 1(s))))(O) = f x(t- 1)y(t)G(M(x)(f 1(s)))(-t)dt 

k 

= £(X)£(v(2)x- 1) + f x(-t)- 1y(-t)v(-2)(t)jx(t+z)y(t+z)dzdt 

lt!>I 0 

Denote this last integral by A(x). Later on, we will see that A(x) does 

not depend on s; by analytic continuation we know then that for alls EV 

-I -1 
M(v(2)x ) 0 M(x) = {£(x)dv(2)x ) + A(x)},IS(x)" 

Before giving the explicit computation of £(X) and A(x) I recall first 

some well-known results. 

13.6. For z Ek, we have 

if lzl > qiol 
if I z I qi o I 
if lzi s lo! 
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In case that x0 is non-trivial with conductor pn, I write G(S) for 

f0* x0 (a),(aS)da, with SE k*. It satisfies: 

G(Sa) = x0 (a)-1G(S), for all a E o*, and G(S) = O, unless Jsl = qnlol. 

13.7. Next I will compute E(x) explicitly. Choose anyµ Ek* such that 

iµJ 2 ~ J2olq-2, and put 

B2(x0 ) = f y(an)x0 (a)da = q-½ f f ,(½anc2)x0 (a)dadc. 

O* n-1µ-IOi O* 
. 0 0 o 2 

From (13,6) one concludes that B1(x) = B2(x) = 0, unless (x) = I, and 

in that case x0 = h(I;) for some I; Ek*. As B1(h(I;)) = y(l;)y(-t)fo* y(l;a)da 

and B2(h(I;)) = y(l;)y(-1) f O* y(anl;)da, it suffices to compute B1 (I) and B2(1). 

From these expressions one deduces: 

(13. 8) 
If v(2o) 

if v(2o) 

is even, B1(t) = l¾I! (1-q-l) and B2(t) = O; 

2 1 -1 
is odd, B2(1) = 1812 (1-q ) and B1 (I) = O. 

(13,8) implies the following results for E(h(I;)): 

(13.9) 
121 1 -1 2-2s -1 If v(.;)-v(2o) E 27l, E(h(I;)) = y(l;)y(-1) 6 2 (1-q )(1-q ) ; 

121½ -1 1-s 2-2s -1 if v(l;)-v(2o) ;. 27l, E(h(I;)) = y(l;)y(-1) 8 (1-q )q (1-q ) . 

13.10. In this section we focus our attention on A(x), 



A(x) = x(-1){ I C(2r,x) + I C(2r+I,xh(n))}, 
r=l r=0 

where C(n,x), for n E :N, is given by 

If 121 

Hence, 

y(-1) f { f (ct,S) x(S)y(S)ds}dct 
0* l+pn 

-mo · mo+ 1 2 
q with m0 E :N, then it is known that (l+p ) 

if 121 = I or n > 2m0 , 
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I -I -I -n o n 
-n _ 1 1 _1 I _ J o I ( 1-q ) q , if X I I +p = I. 

C(n,x) = q (1-q )lo 2 x(l+nnz)dz - 1 0 
l , if x O I I +pn 'F I. 

In order to be able to calculate the resulting C(r,x), I make use of 

(13.11) * I* *2 *2 For ct E O, h(ct) 0 = I - ct E (0) u 6(0) , 

where 0 E l+p2IDo is such that l+p2m0 = (l+pillo) 2 u 6(l+pillo) 2• To prove this 

it is sufficient to show for all l+u E l+p2IDQ that h(l+u)I0* = I. It is no 

restriction to assume v(2o) to be even, since being ramified or not does 

not depend on T. Now, we have for all ct E o*, u E p2IDo 

y(ct)y(-ct(l+u)) lfl {J T0cta2n-v(2o)(c2-x2-ux2))dcdx 

\} 

= !fl I I T(!cto 2n-v(Zo)(c2-x2))dcdx = I. 

02 
and applying this to (1.9) (ii) gives the desired result. 

For the resulting C(r,x), (13.11) implies: 

c(2f,x) {J+y(-J)y(0)x(0)}(1-q-1)lol-! f x(t)dt 
(l+pf)2 

c(2f+J,xh(n)) {1-y(-I)y(e)x(e)}(l-q-J)lol-½ f x(t)dt 
(l+pf+l / 
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Let k0 ~ 1 be minimal such that x2 \1+pko = 1. If k0 > m0 , 

C(r,x) = C(r,xh(n)) = 0, for all r <mo+ ko, and A(x) = x(-1)L >k C(r,x) = 
-1 -k r- o+mo 

x(-1) 121 lo! q o. If ko:::; mo, C2(r,x) = 0 for all r < ko, and 

C(2r+l,xh(n)) = 0 for all r < k0-1. Further 

is equal to 

C(2r,x) + I 
2m0~2r+l~2k0-1 

so that we get for all x: 

C(2r+1,xh(n)) 

Summarizing the foregoing results, we have for alls EV and m E 1+27l: 

13.12. PROPOSITION. 

(i) Let x2 be unramified. Then 

11 
-2 2 

M(v(2)x-1(m)) o M(x(m)) = x(-1) ¾1 (l-v(3)x (n))(1-v(-l)x (n))I 
(l-x2v(-2)(n))(1-v(2)x-2(n)) S(x(m))' 

(ii) Let / be r,amified and 
ko 

p be its conductor,. Then 

-1 121 -ko 
M(v(2)x (m)) 0 M(x(m)) = x(-l)j6 q IS(x(m))" 

Thanks to (12.6) and (13.12) we can state now for all quasi-characters x 

and m E 1+27l. 

3 * 13.13. THEOREM. Let X be equal to v(!)h(~) OT' v(2)h(~), for, some~ Ek. 

Then S(x(m)) is r,educibZe. For, aZZ other, x, S(x(m)) is ir,r,educibZe. 

13.14. We end this paragraph with the determination of the irreducible sub­

module of S(v(½)h(a)(m)). For f E S(k) define L(f) E S(v(½)) by 
e 

(13.15) L(f)(g) = w(g)(f)(O). 



Clearly LE Ho111;ic(S(k)e,S(v(!))) and Lis injective: suppose namely that 

L(f) = 0 and f IO. There exists ab Ek* and an E ~ such that f(b) I 0 

and for all t E pn, f(b+t) = f(b). Since G(L(f)) = 0, one has for all 

r E 7l 

f T(-½b2x) G(L(f))(x)dx = f f(y) f T(!x(y2-b2))dxdy = 0. 

pr k 

Now, chooser so small that 

then we have f(y) = f(b) for ally E V(r). However, for such r 

f TOxb2)G(L(f))(x)dx = f(b)q-rJar½ f dt Io 
. V(r) 

and we have arrived at a contradiction. 

By (12.10) and (13.13); ~(v(!)) has a unique non-trivial submodule. 
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This and the fact that w is pre-unitary imply L(S(k) ) c S(v(!)). Combining e ;t 

the foregoing with (4.4) and (4.16) we get 

13. 16. PROPOSITION. For a:ny a E k*, m E 1+27l, the map f + L(f) 0 I(a) 0 J(m) 

is an'JC-isomoT'[)hism between (w O I(a) 0 J(m) ,S(k) ) a:nd the irreducible sub-
l e 

module of S(v(!)h(a(-1) )(m)). 

§14 WHITTAKER MODELS 

14.1. We start by showing for every a Ek* and f E S(x0 (m)) that 

W(a,x(m))(f(s)) has a holomorphic continuation to~. Thanks to (6.24), we 

have to prove this only for the functions W(a,x(m))(f(s))(e). If f(e) = 0, 

then it is clear that for all a Ek* the function 

f G(f(s))(t)T(-at)dt 

k 

is holomorphic on~- Further W(a,x(m))(f(x(m)))(e) equals 

y(l)utt 
I 

r=0 

lr(l-s) G(a,2r ,xh(-1 /) + ( -1, 1r) l y(1r)y(-I). 

q(Zr+l)(l-s)G(a,2r+l,xh(-1)~(1r))}. 
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* * Hereby G(b,d,x1), for b Ek, d E 7l~0 and x1 a quasi-character of k, is 

given by 

( 14. 2) 

µ- 10.1 o* 

for allµ Ek* with 1/i ::; \20\. From (13.6) follows that, for a fixed aE k* 

only a finite number of the G(a,d,xh(-l)l) and G(a,d,xh(-1)~(~)), d E 7l~o• 

are non-zero. Hence W(a,x(m))(f(x(m)))(e) is analytic on~-

14.3. CONCLUSION. For every a Ek*, m E 1+27l and x as in 6.3, we can 

speak of W(a,x(m)) and in particular it is non-zero. 

14.4. Next we pay some attention to the asymptotics of W(a,x(m))(g(s))(e), 

for fixed g E S(x0 (m)), s rqnning through a compact subset C of« and la! 

tending to zero or infinity. Assume first that g(e) = O. Since 

G(g(s)) E S(k), the same is true f0r its Fourier transform and one easily 

sees that 

sup * \w(a,x(m))(g(s))(e)I < "'• 
sEC,aEk 

As for W(a,x(m))(f(x(m)))(e), observe first that there is a N > O, indepen­

dent of s, such that W(a,x(m))(f(x(m)))(e) = 0 for every a Ek* with \al > N. 

Moreover, if \al is sufficiently small, one notes that G(a,n,x) = 0 for all 

n ~ 2v(a) and this enables us to estimate W(a,x(m))(f(x(m)))(e) as follows: 

there is a N0 > 0 such that for all a Ek* 

-N 
sup IW(a,x(m))(f(x(m)))(e)\-<{ min(l,\a\) O. 
SEC 

By combining these results with (6.24), we get 

14.5. PROPOSITION. Let g and C be as above and let Y be a compact subset of 

Mp(k). Then 
(i) there is a N E :N such that for all a E k*, \al > N 

sup \w(a,x(m))(g(s))(x)\ 0, 
sEC,xEY 



(ii) there exists a N0 E :N such that 

NO 
sup Jal Jw(a,x(m))(g(s))(x)\ < oo. 

sEC,xEY 
aEk* 

14.6. We proceed showing the uniqueness of the W(a)-models for S(x(m)). 

14.7. THEOREM. For every a Ek*, Holll;Jc(S(x(m)),S(Ta)) is one-dimensional. 
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PROOF. By (11.7), this assertion is equivalent to: S(x(m)) a is one-dimen-
-- T 

sional. Let q(a) be the projection: S(x(m)) ➔ S(x(m)) a• For all z Ek and 
T 

f E S(x(m)) it is clear that Ind(x(m))(R(u(z)))(f)(e) = f(e) and 

q(a)(Ind(x(m))(R(u(z)))(f)-f) = (T(az)-1)q(a)(f). This implies that 

q(a)(S(x(m))) = q(a)(Ker(V)) with Vas in (12.4). Define P(a):Ker(V) ➔ ~by 

P(a)(f) = f T(-ax)G(f)(x)dx 

k 

Then one proves analogously ,to (12.4) that Ker(P(a)) = Ker(V) n S(x(m))(Ta). 

Since P(a) i O, this completes the proof of the theorem. D 

In the reducible case we have 

14.8. THEOREM. Let (cr,E) be the non-trivial 'JC-submodule of S(v(½)h(a)(m)). 

Then (cr,E) has a W(b)-model if and only if b E ½(-l)la(k*) 2• Moreover, it is 

unique then. 

PROOF. By analytic continuation we have for all x and all b Ek* 

2l .l W(b,x(m))(f O J(m)) = y(I) W(b,xh(-1) )(f) 0 J(m), 

with f E S(xh(-1).e.). Therefore, we can restrict ourselves to the case m = 1. 

Assume first that b ,/. !a(k*/. Then there is a r E :N such that 
r * 2 {b+p} n ½a(k) =~-From (13.16) and the proof of (14.7) one sees that 

it is sufficient to prove for all f E S(k) with f(O) = 0, that e 
L(f) o I(a) E Ker(P(b)). Choose a .e.0 E 7l such that the support of 

.l -l 
G(L(f) o I(a)) is contained in p O and q O > \oJqr. Then 

P(b)(L(f) 0 I(a))"' f f(y) f -r(x(a~z -b))dxdy = O, 

k lo 
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2 .e. 
since la~ -bl> loiq O for ally Ek*. 

at2 * -n Now take b of the form - 2- , t E k , and n E :N such that q < I 2t I, 
Clearly, it is sufficient to show q(b) (L(f) 0 I(a)) I O for some f E S(k) • 

e 
Put 10 for the characteristic function of { t+pn} u {-t+pn}. As cp (O) = O, the 

support of G (L (cp) 0 I (a)) is contained in pr for some r E 7l and 

P(b) (L(c,o) 0 I(a)) is proportional to 

f f 
2 z 

-r (axtz ( l+ 2t)) dzdx + f f 
Pr Pn Pr Pn 

2q -r I o I ½ f dz f, 0 

ZEpn 
latzl$loiqr 

2 
-r(-axtz(l -~) )dzdx = 

2t 

Finally the last assertion is a consequence of (14.7) and (11.11). D 

14,9. We end this paragraph with the calculation of W(b,x(m))(c,o 0 (s))(e) in 

the case that xis unrq]llifi~d and 121 =lo!= 1, We will need it in the 

global case. Now, 

l 
G(b,2r, xh(-1) ) j 

o* 

-2r 
-r(-b7f a)da = {

o 
-1 

-q 
-1 

1-q 

if lbl > ql-2r 

if lb! ql-2r 

if lbl $ q-2r 

l r -2r-l 
G(b,2r+I ,xh(1r)h(-I) ) j (11,a) -r(-b11 a)da. 

o* 
By (13.6), G(b,2r+l,xh(11)h(-l)l) = O, if lbl I q-2r. If lbl 

-2r 
q 

y(11- 1)G(b,2r+l,xh(11)h(-l)l) q!(11,2b) f [,(;71 (c2-J))dadc 

0 0 
V V 

! -1 -1 1 1 q (11,2b){-q (1-2q ) + 2q- (1-q- )} 
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By using the expression in (14. I), we obtain for W(b,x(m))(~0 (s)) (e) 

0 for lbl > I 

(14.10) (1-qx(i))( I <lxc·/))t) for Jbl = q-Zr-l r ~ O. 
t=O 

2 { r c1-qx< 11 )) I 
t=O 

½+2r l 2r+I 
( 2 ( 2))t q (11,(-I) 2b)x(11) 
qx 11 + I ,f_ 

1-q 2 (11,(-I) 2b)x(11) 

-2r for lbl = q , r ~ 0 
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CHAPTER 5 

§15 THE MEROMORPHIC CONTINUATION OF THE FOURIER COEFFICIENTS 

15.1, For x as in (6.1), let P(x) be the complement in P of 

{v\v E P, vi P, \2J = Jo J = 1 and xv is unramified}. In this chapter, 
oo V V V 

Q, as in (0.4), will always be taken such that Q =. P(x). I write S(x(m),Q) 
0 for the subspace of S(x(m)) spanned by the elements®~ ,~ = ~ (s) for 

V V V V 

all vi Q, and Mp(A,Q) for the subgroup{® g Jg E G for all vi Q} of 
V V V 

Mp(A). 

15.2. For Re(s) 

know that r;;Q(x) 

a;\ {1} and has 

if X = ,,(s). 

-1 
> 1 I will denote TiviQ(l-~(,rv)) by r;;Q(x). From [10] we 

has a meromorphic continuation to a:, that is holomorphic on 

a pole of order~ 1 ins= 1. This pole occurs if and only 

For all vi P(x) ands Ea: with Re(s) > 1, we have 

M(~(m))(~~(sv)) = {l + f 
JxJ >l 

m -1 o y(x) x (x )dx} ~ (2-s ) 
V V V 

V 

o-x2v(-1) (,r ) ) 
V V ~0(2-s ), 

(1-x2v(-2)(1r )) v v 
V V 

For~ E S(x(m)),Q) of the form®~ (s ), this implies 
V V 

(15.3) 

2 
r;; (x v(-2)) { } 

M(x(m))(~) = Q 2 • ®Q M(y (m))(~ (s )) 
r;; (x v(-1)) VE ,.,, v v 

Q 

By combining this expression with the local results from the paragraphs 

8, 10 and 13, we obtain the following 
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15.4. THEOREM. 

(i) For all - E S(x (m)), M(x(m))(-(s)) has a meromo1phic continuation to 
0 

a:, holomo1>phic on {sis EC, Re(s) > I, s I 1} and with a pole of order$ 1 

ins= 1· This pole occurs if and only if x = h(a) for some a Ek*, and 

we write R0 <-<?)) for its residue ins= 1· 0 

(ii) {R_(-(-23))1- E S(x (m))} is spanned by the®~' ES(v(Dx (m)) with 1/J 
-1) 0 V O V 

belonging to the irreducible submodule of S(v(½)h (a)(m)) for all v E P. 
V , 

15,5, The results of this section are needed in the proof of the functional 

equation for the Eisenstein series. First of all, we note that formula 

(15.3) and the local results in (8.13), (10.5) and (13.2) allow us to 

conclude: 

15,6. PROPOSITION. For every Q as in (15,1), there exists an open connected 

U(Q) in a:, with discrete complement and invariant under s + 2-s, such that 

(i) For all v E Q ands E U(Q), M(x (m)) is defined and S(x (m)) is 
V V 

i:neducib le. 
' -1 -(ii) M(x(m))(-(s)) and M(v(2)x (m))(-(2-s)) are holomo1>phic on U(Q), for 

all - E S(x (m),Q). 
0 

Our goal in this section is to prove 

15.7. THEOREM. Let the notations be as in proposition (15.6). Then, for all 

s E U(Q) and - E S(x (m),Q): 
0 

I already proved in (8.12), (10.7) and (13.12) that for all v E Q and 

sv E U(Q) 

Therefore the assertion of the theorem is equivalent to: 

2 -2 = rr p(~v(-2))p(v(2)~) 
VEQ 

with p(~) the local factor as defined in [IO]. 
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By comparing the expressions for" (x) and p (x), it will turn out that 

1-(x) = 121 x (-l)p(x2v(-2))p(v(2)x-2) for all v in Q. This completes the 
V V V V V 

proof of the theorem since 121 = 1 and x(-1) = 1. 

In the imaginary case the desired equality is a consequence of (10.7) 
-I 2 -2 and p(x v(-l))p(v(l)x ) = 4x (-1). p(x v(-2))p(v(2)x ). If vis real, then 

V V V V V 

one merely has to combine (8.12) and 

p (v(2s-2)p (v(2-2s)) r(s-l)r(l-s) 
1T r(3/2-s)r(s- 1/2) 

= -cos(Tis)r(l-s)r(s-1). 

For finite v such that x! is unramified, the assertion is clear, thanks to 

(13.12)(i). Finally, if x! is ramified and the conductor of (x~) 2 is p~, 
then we have 

I 2 v(o )-f 
X (a)T (a1T v )da 

V V V 

o* 
V 

2 -2 
p(x v(-2))p(v(2)x ) 

V V 

v(,S )-f } 
T (S(l-t)1T V )dS dt 

V V 

Comparing with (13.12)(ii) gives the desired expression. 

15.8. For z € k* and <P = ® <P € S(x (m)) we will derive now a useful 
V 0 

expression for Ez(<P(s),x(m)), First choose a sufficiently large Q such that 

* <P € S(x (m),Q). For a€ A, x €A,® g € Mp(A,Q) and Re(s) > 2, 
0 V 

Ez(<P(s),x(m))(R(u(x)d(a)) {® g)) is equal to 

(15.9) -2 2 -r(zx)v(2)x (a) IT W(za ,~(m))(<P H(s) o i )(g ). 
VE:Q V V V V 

IT W(za2 ,Y (m)) (<P H(s) 0 i ) (e ) • 
v/_Q V "V V V V 

We claim that for all v I. Q and every t € k* there exists a f (t) E: S(k) 
V V V 

such that 

o 2 l (15. 10) W(t,x (m)) (<P (s )) = (1-q Y (TI )),;; (f (t) ,Y v(-Dh (2t(-I) )) 
V V V V .. V V V V "V V 
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Here and in the rest of this paper, the local and global zeta functions are 

denoted as in [JO]. By using (14.10), one verifies directly that the sub­

sequent choice is a right one. For It\ > I, take f (t) = O. If v(t) = 2r+ I, 
V V _! f 

r ~ 0, then we choose f (t) as follows: f (t)(x) = !xi 2(2t(-I) ,x) , if 
V V V V 

v(x) 

v(t) 

U 0 , 0 s l 0 s r, and fv(t)(x) = 0 for all other x. Finally, if 

2r, r ~ 0, then f (t) is defined by 
V 

for v(x) = U 0 

for !xi < It! V V 

elsewhere 

In order to have a fv(t) for all v E P and all t Ek: we complement the 

choice made above. For infinite v, we take f!(t) equal to the function used 

in [IQ] for the calculation of p(x_,hv(2t(-I) )), and for all finite v in Q, 

the function f (t) is defined by: f (t)(x) = O, if !xi f I, and 
V f -) V V 

f (t)(x) = ( 2t(-1) ,xh (x ) , if Ix! = I. 
V -~ V 

* For a EA, let FQ(a) E S(A) be® f (a). Then (15.9) equals 
V V 

(IS. I I) 

nQ W(za2 ,Y (m)) (<P H(s) 0 i ) (g ) . i;;(FQ(zch, h(2z(-l)l)xv(-½)). 
VE V -~ V V V 

From this expression and the results, obtained in (9.2), (10.9) and (14.3), 

we may draw the following conclusion. 

15.12. THEOREM. Let <P be in S(x (m)) and z ink*. Then 
0 

(i) E (,p(s),x(m)) has a meromorphic continuation tot; it is holomo:rphic 
z 3 

on {sis E ~, Re(s) > I ands f 2} and has a pole of orders I ins= 3/2. 

This pole can occur only if x0 = h(2z(-l)l) and we write Rz(,p(f)) for the 
"d . 3 res-z. u -z.n s = 2. _ 

(ii) Assume Xo = h(2z(-J/) and that for aU v E Q, av= I and xv= O. 

Then we have for <P, as in (15.8): 

3 -1 2 
R/<P (2))(R(u(x)d(a.)){® g)) "' -r(zx)v(2)x (a.) F(FQ(za. )) (0). 

v~Q W(z,x_,(m)) (,pvH(f) 0 i) (gv) 
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§16 THE CONVERGENCE OF THE SUM OF THE FOURIER COEFFICIENTS 

16.1. We keep to the notations of (15,8). Let C resp. Y be compact subsets 
3 

of ¢\{2} resp. Mp(A,Q). This paragraph will be devoted to the proof of the 

following results: 

16,2. PROPOSITION. 

(i) Fop ever,y g E Mp(A,Q) 

(ii) FoP c E lR:0 , put lR: foP {tit E lR* c A*. t 2: c}. Then 

sup { l 
yEY ZEk* 

* tE]RC 

sup I r;Q.<x2v(-I) )Ez ('f! (s), x (m)) (R(d( t) )y) I} 
SEC 

First of all, we note that by (14.10) only the z belonging to an ideal 

a of the form Il Q\P (p nk)lv_play a role in this sum. For z Ek*, write 
VE oo V 

lzl 00 for maxvEP
00

lzlv' and lzlQ for IlviQlzlv; then we have for all z Ea n k*: 

lzl: r lzl~1 and lzl: 'r 1z1;1, for VE Q and p the number of infinite places 

of k. By applying this and the local estimates from (9.6), (10 .• 11) and (14.5) 

to formula (15.11), one sees that, in order to prove (16.Z)(ii), it suf­

fices to find an N E :N such that for all z E a n k* 

(16.3) sup lr;(FQ(z), h(Zz(-l)l)xv(-½))I -{ lzl~N. 
SEC 

The analytic continuation of t;(FQ(z),h(Zz(-l)l)xv(-½)) to~ is given 

by the sum of the following 3 expressions: 

(16.4) f s-1 { f l *} * t 2 FQ(z)(xt)h(Zz(-1) )(x)x0 (x)d x d t 

I A* 
I 

00 

(16.5) f t 3/2-sf f f l -1 *} * l (FQ(z))(xt)h(Zz(-1) )(x)x0 (x )d x d t 

I A* 
I 

(16. 6) 
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with all the measures taken as in [10]. Before starting the estimates, we 

remark that by adjusting Q we may assume that k* has a compact fundamental 

domain X in A*1, with IE X and X c {ala E A*,c $ la I s d, for all - V V V V 
v E P,c = d = I for all v t Q}. 

V V t 
For all v t Q, if (z)I $ lz\-~w (O). Since, moreover, for all finite v 

V V V 
\f (z)\ s w (O), we get 

V V 

l 
IFQ(z)I $ lz\Q.{ ® lfv(z)I} ® { 0 wv(O)} 

VEP00 v/P00 

and this clearly implies the desired estimate for (16.4). 

Next, the Fourier transforms of the fv(z) demand our attention, For 

infinite v, IF(f (z))I = If (z)\; if v E Q is finite, then there exists a 
V V 

n $ 0 such that for all z Ek*, x Ek and u Ek*, with c s lul s d, 
V V V V V V V 

IF(f (z))(xu)\ $ w (n )(x).vol(O*). Finally, for v t Q, we distinguish the V V V V 
cases v(z) is odd resp, even. If v(z) = 2l0+J,l0 ~ O, 

lo 
F(f (z))(y) = l' q-n I (a,z) 'v(-mr;ny)da 

V · =O V 

If v(z) = U 0 , l 0 ~ 0, 

lo 
F(f(z))(y)= l 

v n=O 

o* 
V 

{ 

q~ f ( z,a) v 'v(-mr;ny)da, if v(y) =-2nd, Osnsl0 
O* 

0 v otherwise 

if \yj s I 

if v(y) = -Zn, t 0~n~l. 

otherwise 

In both cases, IF(f (z))I :5 w (-v(z)) and \F(f (z))(xa)l=IF(f (z))(x)I V V V V 
for XE k and a E o*. 

V V 
For z Ea n k*, let a(z) be the ideal 
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n (p n k) nv n (p n k) -v(z). 
vEQ\P v viQ v co 

Put n = lk:,I and cr = Re(s); further, for s Ek*, denote E p s ~ by ls\co. 
VE co V V 

Now, the calculations, made above, imply that one can find aµ> 0 and a 

L E ~. both independent of z E a n k *, such that 

f \FQ(z))(tx)ld*x -{ H(t,z) 

A ( 1) 

2/n\ \co I lsl:e-µt s 

sEa.(z)nk* 

On lR.:0 we have H(uizl~t,z) s H(u,1). Hence 

cof 3/2-cr 
t H(t,z)d*t s I 1-n f 1-cr z Q H(u,l)u 2 du 

I 
lzl~ 

Since on [\zi~,1], 

and 

we obtain the desired estimate for expression (16.5). 

As for (16,6), it can occur only if x = h(a), a E 1/, and 
0 

For those z, F(FQ(z))(O) is constant and (16.6) is bounded on C. This com­

pletes the proof of (16.3). At the same time this last observation, combined 

with the estimates (9.6), (10.11) and (14.5), proves assertion (16.2) (i). 

Thanks to (16.2) and (6.10) we can state now 

16.7. THEOREM.'iiet <P belong to S(x (m)). Then E kE (ip(s),x(m)) defines a 
0 ZE Z 

meromorphic continuation to C of E(<P(s),x(m)); it is hoZomorphic on 

Re(s) > 1, s +½,and has a poZe of orders 1 ins=½· This poZe can 



64 

occur only if x 
0 

residue. 

* 3 h(a) for some a Ek, a:nd we write R(~(2 )) for its 

§17 THE RESIDUE OF THE EISENSTEIN SERIES INS 3/2 

17.1. From the foregoing paragraphs, it is clear that we have to consider 
l * * only the case x0 = h(a(-1) ), a Ek. Furthermore, for z Ek and~ E S(x), 

we have 

( 17. 2) l E (~ 0 I(a) 0 J(m),v(s)h(a(-1) )(m)) = E -1<~,v(s)) 0 I(a) 0 J(m). z za 

Therefore it is sufficient to calculate the residue in the case x 1 ' 
* I. This implies that 

2 0 
m= only z E k of the form z = ½s will play a role. 

In particular we get for every~ E S(x ) and g E Mp(A) 
0 

3 3 1 , 3 
R(~(z))(g) = Ro(~(2))(g) + 2 l R½(~(z))(R(d(s))g). 

sEk* 

(17.3) 

From (8.14), (10. 7) and (13'. 16) we know that ® S(k ) is an irreducible 
V e 

::IC-module and that the map~ ➔ 9(~) 0 in an injective ::IC-module homomorphism of 

17.4. For every v E P and w E S(k) , define W(wv):Mp(kv) ➔ t by 
V Ve 

One verifies easily that¢ ➔ W(¢) is a W(½)-model of S(k) . By applying 
V V Ve 

This and the local results in (9.13), (10.12) and (14.8) to (15.12)(ii), 

one concludes that {O} 'i. {R1(10(22)) I~ E S(I)} £ {0(11) 1 J ¢ E 0S(k) }. 
2 2 V e 

Moreover, since ®S(k) is an irreducible 3C-module, equality must hold here. 
V e 

From expression (5.3) we see that 0(¢) 1 = R1 (~({)) implies 0(¢) - R(~(})) = 
3 2 2 3 

0(¢) 0 - R0 (~(2)). By Theorem (l.'i.4) 0(¢) 0 - R(~2 )) = 0(¢-¢ 1) 0. Hence 

8(¢-¢ 1) 0 is a function on Sl(Z,k)\Np(A). Since clearly the same holds for 

h.8(¢- ¢1) 0 for each h E J(, the assumption ¢ f ¢1 would lead to the conclu­

sion that {8(¢2) I w2 E 0S(k)e} consists of functions on Sl(s,k)\Mp(A). 

This is easily seen not to be true, so that we get 

{RC~<~2)) I~ E S(I)} = {0(¢) I w E 0S(k) }. 
V e 



17.5. For 1/J E 0 S(k) , let 0(1/J) be the residue ins= 1 of 6(1/J,s). 0(1/J) 
Ve 

belongs to {6(,p) l,,o E 0 S(k ) } and the map 1/J ➔ 0(1/J) is a M-isomorphism. 
V e 

This last fact is a consequence of the following observations. For every 

v E P and any 1/J E S(k) , the K -action on 1/J is isomorphic to that on 
V Ve V V 
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L(l/J )H (1). As every continuous irreducible representation of K occurs at 
V V ~ 3 3 V 

most once in Ind(x )IK and M(v(-2))(S(v(-2))) = L(S(k) ), we may conclude 
3 "V V ~ V e 

that 1/J ➔ M(v(-2))(L(l/J )H (!))) is a K -isomorphism from S(k) onto the v vv v ve 
irreducible submodule of S(v(½)). Since the map 1/J ➔ 6(1/J), with 1/J in 0S(kv)e 

clearly commutes with the action of M, we arrive at the following generali­

zation of (5.8): 

V 
17.6. THEOREM. Let 1/J E 0 S(k) be such that 1/J * e(p) = 1/J for some contin­v e 
uous irreducible representation p of M. Then there is a ;\(p) E cc* such that 

0(1/J) = ;\(p) 6(1/J). 

17.7. We end this paragraph with giving an example of a 1/J in 0S(k) such 
V e 

that 6(1/J) and 0(1/J) are not proportional to each other. Take k =~.Choose 

\0 = 0 \0 and 1/J = 01/J in 0S(k) as follows: in the finite case \0 =l/J =l/J (O), 
• v . . . v v e -,rx2 2 -,rx2 v v v 

and in the infinite one, \0 00 (x) = e and 1)100 (x) = x e , for x E JR. From 

[9], one can see that 0(,,o) = µ0(,,o). In particular, 0(,,o) 0 (e) IO. As 

0(1)1) 0 (e) = ;\0(,,o) 0 (e) with;\ equal to 

f -2 -! 
· ( I +ix) (I-ix) 2dx f{ f y2e-,r(l+ix)y2dy}(l+x2)-½dx 

]R ]R ]R 

f{ f e-,r(l+ix)y2dy}(l+x2)-½dx 
]R ]R 

0(1)1) 0 (e) I 0, but 0(1)J) 0 (e) = O. This proves the assertion. 

§18 THE FUNCTIONAL EQUATION OF THE EISENSTEIN-SERIES 

18.1. Our aim in this section is to prove for every \0 E S(x0 (m)): 

18.2. THEOREM. For alls E <C, E(,,o(s),x(m)) 
-1 

E(M(x(m))(,,o(s)),v(2)x (m)). 

First we choose a Q as in (IS.I) such that \0 E S(x (m),Q) and 
0 

Mp(A) = Sl(2,k)Mp(A,Q). It suffices then to show that the two functions are 
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equal on Mp(A,Q). It is no restriction to assume that 1 = ®1 . Let U(Q) ct 
V -

be as in (15.6). From the uniqueness of the Whittaker models, we may conclude 

that for all v € Q and alls€ U(Q) there is a\ (s,z) €~*such that 
V 

( 18. 3) 
-1 

W(z,v(2)~ (m)) o M(~(m)) 

Since W(z,~(m)) is injective for alls€ U(Q) and W(z,~(m))(w) holomorphic 

on t for every w € S(x (m)), \ (s,z) is holomorphic on U(Q). 
V V -1 

Theorem (15.7) says that E0 (1(s),x(m)) = E0(M(x(m))(1(s), v(2)x (m)), 

for alls€ U(Q). Hence this equality holds on t. By reduction theory, 

there exists a c > 0 and a compact Y .=. Mp(A) such that 

Mp(A) = {R(crd(t))yJcr € Sl(2,k), t € JR>O' t > candy€ Y}. The estimates 

in proposition (16.2) show then that E(1(s),x(m))-E(M(x(m))(1(s)),v(2)x-1(m)) 

is a bounded function on Mp(A). Clearly the same holds for its Fourier co­

efficients. From formula (15.11) and theorem (16.7) we obtain 

E (1(s),x(m))(®g )-E (M(x(m))(1(s)))(®g )=\Q(z,s) TI W(z,~(m))(1 (s))(g) 
Z v, Z , V V€Q V V 

with ® gv € Mp(A,Q), 1v(s) = 1v H(s) 0 iv and \Q(z,s) a holomorphic function 

on U(Q). 

For s0 € U(Q), with Re(s0) > 2, choose a o0 , 0 < o0 < Re(s0)-2, such that 

B(so,oo) = {rir € t,lr-sol ~ oo} .=. U(Q). Next we take for all V € Q a 

g € Mp(k) such that for finite v, 
V V 

sup lw(z,x (m))(1 (s))(~ )I > 0 
V V "'V s€B(s0 ,o0) 

and for infinite v, 

sup IM(x (m))(1 (s))(g )I > O. 
V V V s€B(s0 ,o0) 

For those~ ands€ B(s0,o0) we have then 

liml TI W(z,x (m)) (1 (s)) (R(d(t))g ) TI W(z,y (m)) (1 (s)) (g ) I 00 • 

t+O V€P V V V VEQ\P "V V V 
<X) <X) 

This contradicts the boundedness of the Fourier coefficients, unless 

\Q(z,s) = 0 for alls€ B(s0 ,o0). Hence \Q(z,-) = O on U(Q). This completes 

the proof of theorem (18.2). 



18.4. Theorem 18.2 enables us to compute the value of 6(~,s) ins 0. 

Namely it says that 
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By making use of the explicit expressions (15.3) and (15.11) one sees that 

the right hand side is holomorphic ins= 0. From (17.4) we know that 

6(~,0) E ® S(k) • A .. pplying now (15.3) and (15.7) to the zero-th Fourier 
Ve 

coefficient of 6(~,s), we obtain 

18.5. THEOREM. For all~ E ® S(k) , e(~,0) 
V e 
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