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"De objectiveering der wereld in wiskun
dige systemen bU verschillende individu
en wordt in onderling verband gehouden 
door de passielooze taal,die bU den hoar
der het identieke wiskundige systeem 
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gevoelsinhoud van dat systeem bU beiden 
totaal verschillend kan zUn, .. " 

(1.E.J.BROUWER: "Wiskunde en Ervaring".) 
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P R E F A C E 

The idea of a computer-assisted proof-checking (applied to concrete 

proofs,as they appear in the mathematician's everyday life) has 

probably occurred to many minds,even before the von Neumann compu

ter was conceived. 

In particular,an attempt to increase the reliability of mathematical 

texts (proofs) by having them processed and checked on computer has 

also been the main motivation behind the specific AUTOmated MATHema

tics Project,developed since 1967 at the Eindhoven University of 

Technology. 

Abstracting from the pragmatic motivations (cf. 02. below),a suffi

ciently complex AUTOMATH-system (the "classical" version: AUT-68, 

say) can beviewed as an (applied)~ lambda-calculus with a "poly

morphic" type-structure (t~ coin a word from R.Milner). 

Although the underlying "type-polymcirphism" appears to be - at a 

first look - a very specific one,we realize soon that an AUTOMATH
system is powerful enough such as to allow interpreting (in it) fami

liar typed lambda-calculi as,e.g.,the Curry Theory of Functionality 

(= "First-order Typed Lambda-calculus") or the Girard-Reynolds 

Second-order ("parametric") Typed Lambda-calculus.In this respect, 

an AUTOMATH-system is a "generalized typed lambda-calculus". 

At a closer examination,the "pure" (i.e.,constantless) part of the-
se systems turns out to be much similar if not equivalent to other 

typed lambda-calculi occurring in the recent literature on the foun

dations of logic and mathematics.(Specifically,"Pure AUT-68" is,in 

fact,a fully formalized version of J.P.Seldin's Theory of Generali

zed Functionality (cf.Annals Math . .!!£g. lJ,1979,29-59),and it becomes -

under an appropriate translation - equivalent to the 11 n-fragment" 

of Martin-L~f's Theori(es) of Types (cf. References,under MARTIN-LOF.) 

On the other hand,the specific manipulation of the AUT(OMATH)-cons

tants - a sui generis feature of these systems - is,up to a certain 

point,independent from the underlying lambda-calculus part and can 

be used,with similar effects,in connection with any other typed lamb

da-calculus. 
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The present work is intended to discuss in detail a theoretical as

pect of the main AUTOMATH-systems,viz. the possibility of "separa

ting" the "lambda-calculus-free" part (usually identified as "Primi

tive AUTOMATH") from a "full AUT-system".Despite the fact that the 

so-called "Primitive AUTOMATH" can be defined independently,it is not 

immediately clear,from the language-definition of "bigger" systems, 

that the corresponding "correctness categories" of the latter are 

actually "conservative" over those of the former one. 

The affirmative answer (given in 33,,below) insures the fact that 

the "definitional mechanism" of an AUT-system is actually an indepen

dent,"super-imposed" structure on a "Pure AUTOMATH"-system and shows 

that a (theoretical) study of the latter (which is,properly speaking, 

a Chapter of Lambda-calculus) might be also profitable for the speci

fic purposes of the.AUTOMATH Project. 

Other theoretical aspects of these systems,as,e.g.,a "global proof

theory" and a "mathematical" semantics (model theory) will be dis

cussed elsewhere. 
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0.Introquction. 

This work is concerned with the abstract structure of some representative formal 

languages in the family of mathematical languages AUTOMATH (cf. DE BRUIJN 70-02, 

73-30,73-34,80-72,JUTTING 79-46,VAN DAALEN 73-35,80-73).The basic analysis was 

mainly motivated by the need for a theoretical approach to a couple of open pro

blems concerning conservativity situations in AUTOMATH and closely related formal 

systems.Soon it turned out the approach which was taken in analysis is more 

significant for the understanding of the nature of an AUT0MATH-language than was 

initially thought of. 

Though essentially self-contained,the expository parts of the present notes do 

in general - presurpose sorre !l'ini1Y1.al background of mathematical logic (as ,e.g., 

first-order logic,set theory and lambda-calculus) and of what is usually called 

"finite mathematics" (viz. rather elementary fragments of combinatorics).For ins

tance,some familiarity with the basics of (both "type-free" and "typed") lambda

calculus should certainly enable the reader to follow or to reconstruct,on his 

own,remote details of the "language theory" of AUT0MATH on which we will not 

generally insist (and which are, copiously documented in recent monographs as 

BARENDREGT 81,KL0P 80,REZUS 81 and - essentially -VAN DAALEN 80-73).0therwise,the 

main exposition is primarily intended for logicians and this is largely reflected 

in our terminological habits (diverging in several respects from standard termino

logy in AUTOMATH but very close to generally accepted ways of speaking in mathema

tical logic).0f course,mathematicians,computer scientists and philosophers having 

some basic acquaintance with the methods of symbolic logic are thereby expected to 

find the present text easily readable. 

The paper is intended to make accessible the technical details of construction of 

the main languages in the AUT0MATH-family and we have often deliberately omit-

ted comments of a more general nature (say: almost everything pertaining to what 

might be called the "philosophy of AUT0MATH" should be recovered from several 

informal expositions due to N.G.de Bruijn which are already in print;see the reports 

cited above).Still,what is following below does not overlap (save for minor details) 

material discussed in VAN DAALEN 80-73,but information missing here can be,mutatis 

mutandis,safely retrieved from the latter work (which is highly recommended as 

a further advanced text and which is - anyway - the only place we are able to 

indicate so far where some proofs of important facts on the "language theory" of 

AUTOMATH can be found). 
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In this introduction we shall briefly review - still informally - the information 

needed for the understanding of the main text insisting on several aspects of the 

AUTOMATH project which have been insufficiently documented in the existing litera

ture or have been simply discarded (due to mere lack of time and man-power or to 

deeper,"doctrinal" reasons).Also the relation of the present work to technical 

expositions concerning the standard "reference" AUTOMATH-languages will be made 

precise in the sequel. 

OL.AUTOMATH: historical landmarks. 

The main ideas behind the AUTOMATH project (or "program" 1)) of formalization of 

mathematics go back to work done by N.G.de Bruijn in the mid-sixties ( 1966 or so) 

at the University of Technology in Eindhoven (The Netherlands). The first "public" 

report on the subject is seemingly the "preliminary study" DE BRUIJN 67-16,which 

is technically out-dated but still historically relevant,for some of the main ob

jectives of the project were readily explicit there. 

Before 1973 the only technical report describing in detail the "Classical AUTO

MATH Language" (initially c_alled "AUTOMATH";nowadays:''.AUT-68 11) was DE BRUIJN 68-01. 

A sub-language of AUT-68 called PAL(= "Primitive AUTOMATH Language") - of main 

concern in this paper - was also isolated in this pioneering report together with 

some other "fragments" of AUT-68 which ultimately remained of a mere heuristical 

interest in standard presentations of AUTOMATH. 

De Bruijn' s PAL (which will be called sometimes here "PAL-THE") is not to be 

confused with its homonym "PAL-MIT" (say) ,which is a programming language -

actually,a derivative of Peter Landin's ISWIM (= ".!.f You See What I Mean" ;cf. 

LANDIN 66) - and was designed by a group of computer scientists at M.I.T., 

Cambridge (Mass.),in 1968,for teaching programming linguistics.So,in Cambridge 

(Mass.), "PAL" would mean quite different a thing from what it usually means in 

Eindhoven (TH-W,SK) ,namely there it used to stand for ".!'._edagogic ~lgorithmic 

!:_anguage" (see EVANS 68,68a,70,72 and,possibly,WOZENCRAFT & EVANS 71).Here, 

the label "PAL-THE" means,simply,(de Bruijn's) "Primitive AUTOMATH Language" 

(cf. DE BRUIJN 68-01,73-30,80-73,etc.). 

I) It is perhaps more appropriate to characterise AUTOMATH as being a program of 

formalization of actual mathematics than to use the slightly anachronic label 

"project". Indeed,on the one hand,sufficient evidence has been produced in the 

meantime allowing to say AUTOMATH is a "grown-up" subject surpassing the stage 

of a mere "project" (in at least some acception of the word).On the other hand, 
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A (slight?) extension of AUT-68,called AUT-QE (= "AUT0MATH with g_uasi-~xpressions") 

was proposed in 1969 and - so far - this is the only AUT0MATH-language comple-

tely implemented on a computer,in Eindhoven (TH). 

Due to some unpleasant features of AUT-QE,N.G.de Bruijn recommended in 1978 the 

study of a sub-system ("restriction") of AUT-QE called AUT-QE-NTI (= "AUT-QE With

out/No ..'!_ype _!nclusion").The latter is not an extension of AUT-68 (though it extends 

PAL-THE,as expected),but there is some evidence to the effect that AUT-QE can be 

already "represented in" or "mimicked by the means of11 AUT-QE-NTI. (See DE BRUIJN 

78-56,for details and our discussion in 22. below.) 

A complete formal description of AUT-QE (and therefore AUT-QE-NTI) was given by 

D.van Daalen in VAN DAALEN 73-72.Since then comprehensive pieces of actual mathe

matics have been translated into AUT-QE (and checked on computer).See JUTTING 76-60 

and the underlying methodology described in JUTTING 79-46 or UDDING 80-69 for an 

alternative presentation of the theory of real numbers in AUT-QE. 

The AUT(OMATH)-languages mentioned earlier (viz. PAL-THE,AUT-68,AUT-QE and AUT-QE

NTI) will be studied in detail,in an abstract setting,below. 

Besides these there is a sub-family of AUT-languages (which we will generically 

call here LAMBDA-AUT0MATH) proposed by R.P.Nederpelt and N.G.de Bruijn in 1971 

(cf. NEDERPELT 71-21,71-22,72-26,73-31 and DE BRUIJN 71-20,77-52b,VAN DAALEN 80-73, 

Chapter VII).These have been studied mainly for theoretical purposes and do not 

admit of "natural" interpretations (as it is the case with AUT-68 and AUT-QE). 

Still,AUT-68 and AUT-QE-NTI can be naturally embedded in any suitable version 

of LAMBDA-AUT0MATH and some version of the latter may be viewed as a proper exten-

sion of AUT-QE-NTI. 

LAMRDA-AUT0MATH will he not .studied in this paper. 

(continued from previous page) 

some of its objectives and prospects would perfectly justify a comparison with 

similar far-reaching entreprises (as,e.g.,"Hilbert's program","Curry's program" -

cf. SELDIN 76/77,80,- "Church's program" - cf. REZUS 81 - or,why not,Bourbaki 's). 

There are however many dissimilitudes in such a comparison: AUT0MATH has a ra

ther weak foundational claim in comparison with any of the "programs" named abo

ve,while,inasfar feasibility is concerned AUT0MATH remains still one of the 
most convincing among these "programs". 
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A different extension of PAL,called AUT-Pi,was proposed by Jeffery Zucker (cf. 

ZUCKER 75-42 for an informal introduction).This seems much easier to write than 

AUT-68 (and even AUT-QE) ,but its "language theory" is considerably more complex 

than that of other AUT-languages.D.van Daalen has subsequently worked out the main 

language-theoretical details of AUT-Pi in VAN DAALEN 80-73,Chapter VIII (for pro

blems which could not have been solved so far see op.cit. ,VIII.!!:_.!.). 

In the list above all AUT-languages but AUT-Pi are elementary - and so are 

some derivatives and modifications thereof which will be mentioned later 

in the sense their only "constructors" are the head-constructors,the applicator 

and the abstractor (see .!.Q_. and~- for details).AUT-Pi is not elementary in 

this acception and a detailed description of its "grammar" is a tedious affair 

diverging in some aspects from the "definition scheme" of PAL,AUT-68,AUT-QE,etc. 

For this - and some other reason - we shall examine AUT-Pi elsewhere. 

AUT-Pi has been used (by J.Zucker and A.Kornaat) in order to write extensive pieces 

of "classical" analysis. (A long manuscript on Real Analysis has been produced 

which is not the "translation" of some text already existing before in natural 

language presentation.In fact,the language which was actually used in this manus

cript is AUT-Pi-SYNT,an extension of AUT-Pi - cf. below -.It allowed a very "fast 

notation" close to the mathematical every-day language.). 

Little has been done so far on the implementation of AUT-Pi (and AUT-Pi-SYNT) on 

a computer. 

There are still two other distinct families of extensions of the ADT-languages na

med above.Both concern the formalization of some aspects of the metalanguage ("epi

theory") of actual pieces of (mathematical) texts (or,better,of what would be

come "metalanguage" in standard formalizations of mathematics - not in AUTOMATH 

say). 

In one direction (relying on suggestions going back to N.G.de Bruijn) one would 

want to extend any AUT-language by the so-called ~tring-and-~elescopes facilities 

(cf.,e.g.,JUTTING 79-46,±·!·l· or ZUCKER 75-42 for an informal presentation of 

the subject).Such extensions,which we will call,for further reference,AUT-ST-lan

guages,are very useful in the formalization of abstract structures (groups,rings, 

vector spaces,etc.) and have been actually used by J.Zucker (in the form of AUT-Pi

ST and AUT-Pi-ST-SYNT,cf. below). 

Another family of extensions (initially motivated as auxiliary "input languages" 

for AUT-68,AUT-QE,etc.;cf. DE BRUIJN 72-25) arises by the addition of forma~ized 

"syntactic facilities" to (proper) extensions of PAL;hence the generic name 

"AUT-SYNT" for the languages in this (sub-)family.Any AUT-SYNT language incorpora-l:to, 
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qua formal ingredien~ (i.e. ,in the "language definition") syntactic pre-defined 

functions (these would appear as recursive epi-functions acting on the syntax of 

the language,in standard formalizations of mathematical texts and even in some 

appropriate formalization of an AUT-language).One of the most important features 

of these functions is that they can be calculated "mechanically". Incorporating them 

in the "language definition" of some AUT-language allows to omit tedious repeti

tions of otherwise redundant parameters (cf. JUTTING 79-46,Appendix 2_.AUT-SYNT. 1 for 

an informal explanation). 

The "language theory" of Al'T-68-SYNT and AUT-QE-SYNT was worked out in detail in 

JUTTING 82-83,while a somewhat more complex version of AUT-Pi-SYNT was actually 

used by J.Zucker and A.Kornaat in formalizing "classical" analysis (cf. belo,;.,). 

The AUT-ST and the AUT-SYNT extensions are practically independent from each other, 

but combinations of these facilities starting from the same "basic" AUT-language 

are still compatible (and practically very useful).Such combinations (AUT-ST-SYNT

languages,say) lead to considerably efficient systems of notation and writing 

actual pieces of mathematical texts in these extensions amounts to formalizations 

that are very close to the every-day mathematical practice (having also the advan

tage of allowing an automatic verification of correctness). 

As noted earlier,J.Zucker was able to use AUP-Pi-ST-SYNT in writing directly an 

extended piece of text (on Real Analysis) without using the natural language as 

an intermediary step (in axiomatic formal presentation). 

However,a shortcoming of the latter kind of extensions (especially the AUT-SYNT

languages) consists of the fact they lead to complications in both the underlying 

"language theory" and in the corresponding work of the actual verifier.L.S.van 

Benthem Jutting is currently working on the implementation of the languages in 

the AUT-ST-and the AUT-SYNT-farnily.(A verification-program for AIJT-68-ST-SYNT 

and AUT-QE-ST-SYNT can be found in JUTTING 82-83.) 

Besides the (sub-)families of AUTOMATH-languages named above,it is also worth

while mentioning the AUT-4-languages (proposed by N.G. de Bruijn in 1974;cf. DE 

BRUIJN 74-44) and various extensions of AUT-68 and AUT-QE - the so-called AUT+-

"' and AUT -languages - proposed and studied in some detail in VAN DAALEN 80-73. 

Roughly speaking,the languages in the (sub-)family AUT-4 are "segments" of appro

priate versions of LAMBDA-AUTOMATH (where the maximal "degree" of correct expres

sions is restricted to 4 - hence the label "AUT-4" -;see VAN DMLEN 80-73,etc. for 

details concerning "degree-considerations" in AUTOMATH). 

They were mainly motivated by an attempt to separate in a more straightforward 

manner matters concerning the "construction of objects" in AUTOMATH from those 
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concerning proofs of statements "on objects" (without,e.g. ,manipulating interme

diary "proof-classes"). 

However,only the "proof-part" of AUT-4 admits of a natural interpretation,whereas 

the corresponding "object(-construction) part" has,mutatis mutandis,the same 

disadvantages - as to a natural "semantics";cf. also 03. below - as any language 

in the LAMBDA-AUTOMATH-family (viz. the correctness rules of AUT-4 would also 

allow "ultimate objects" - as the naturals say - to be "inhabited",almost in the 

same sense "types" are allowed or stipulated to be "inhabited"). 

There is some hope that this unpleasant feature of the AUT-4-languages could be 

circumvented by establishing appropriate "conservativity"-results (see DE BRUIJN 

74-44), but nothing has been done so far in this direction and no· AIJT-4-language 

has been implemented until now. 

On the other hand,van Daalen's extensions AUT+ and AUT"* were introduced for theore

tical purposes,while studying the epitheory of AUT-68 and AUT-QE (mainly the cor

responding "closure properties",stating the invariance of correctness under re

duction).In general,such extensions are conservative over the corresponding "non-+" 

or "non-11- 11-languages,but the "structure of correctness" is more "regular" inasfar 

the former are concerned. 

As incidentally noticed by L.S.van Benthem Jutting,it might turn out some of van 

Daalen's extensions would also admit of easier and more economical implementations 

(as regards the work done by the corresponding verification programs). 

Despite their diversification,it is certainly possible to establish general meta

theoretic standards for the description of the languages in the AUT-family. 

Some effort has been done in this direction since 1974 (cf.,e.g.,DE BRUIJN 74-40, 

77-52a,b and,of course,VAN DAALEN 80-73),but a satisfactory,unifying metatheory 

- embracing all relevant aspects of the empirical work on AUTOMATH done so far -

is still lacking. 

The metalanguage and the description-scheme proposed in this paper were actually 

intended to cover only what we would call the elementary AUT-languages (cf. above; 

in this sense,both AUT-4 and van Daalen's extensions are elementary,while AUT-Pi, 

the AUT-ST,the AUT-SYNT-languages as well as the possible combinations thereof are 

not so). 

It shouldn't be too difficult a task - however - to adapt the present standards 

such as to function as~ general description-frame for all members of the AUT

family. 
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02.AUTOMATH: tracing back motivations. 

Mathematics is (pace Brouwer and some solipsists) a social - "inter-subjective" 

say - affair.What a mathematician claims he "sees" or thinks is true does always 

deserve some proof,no matter what are the professional abilities or the reputation 

(qua mathematician) of the person making such claims. 

Fortunately,any proof of a mathematical theorem is objective at least in the follo-

wing sense: if some mathematician claims he has a proof of some theorem (on 

number theory say) in his mind then there should be some other mind (a mathemati

cian's mind) able to "grasp" or to understand and,eventually,to reproduce the 

"structure" of the claimed proof.This "epistemic event" (proof-discovery,on the 

one hand and proof-understanding on the other) should sooner or later result in 

some objectively perceivable fact,exemplifying "communication of mathematical 

ideas". 

There is no "mathematics" beyond this least 1paradigmatic 1"inter-subjective" (social) 

intercourse and some form of language must always underly the latter. 

As puzzling as it might appear,mathematics does not exist before and in complete in

dependence of some communication-process.Its practice as a "solitaire"-game is 

always an elliptic condensed form of language-use. 

The only serious point in the solipsist's objections and arguments concerning 

the communication of mathematical ideas/results (cf. ,BROUWER 81 ,pp.25-35,on 

Mathematics and experience ,the fragments of Brquwer's dissertation oublished 

in VAN STIGT 79,BROUWER 07 and,possibly,more recently,ZANSTRA 71) is that an abso

lutely certain communication of ("actual") mathematical ideas ("proofs",etc.) is 

a very difficult practical problem. In fact, "absolutely certain" should be always 

cautioned as being too strong a requirement in any practically given communication

situation.In practice,not everything a mathematicisn may have in his mind (a whole 

system of intuitive interpretations and references to "models" found previously) 

is relevant for the content of some proof he claims to "have" and intends to commu

nicate. 

There are different ways in which one might become aware of the difficulties mentio

ned above. 

(A) First,very often mathematicians are used to and like to practice an ellip

tical way of speaking. 

The mathematical ellipsis can be of many kinds (at least in colloquial speaking). 

However,written texts offer some uniformity: it won't be too difficult to get a 

possible "standardization" of the ways it is used.For present purposes we shall 
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essentially distinguish between two such kinds of uses (other uses could be possi

bly discovered by "empirical" investigation but we suspect they will be either mere 

variants of those mentioned below or - still - will be rather irrelevant in the 

present context). 

So between a label Proof. and some other label (possibly abbreviating "Quad erat 

demonstrandum. ") ,indicating the end of the announced proof ,a professional mathe

matician would often want to write either (I) "Obvious.","Evident.","Straightfor

ward." or some lexical variant of these or (2) "Standard.","As earlier.",etc. I) 

Now a "proper" proof is always "a kind of composite reference to previous proofs" 

(N.G.de Bruijn) and "filling in" a gap in some proof (or,which is the same,elimi

nating some elliptical way of speaking in favour of an explicit, "complete" one) 

would amount to some recursive search throughout existing mathematical texts (or, 

more properly;throughout an existing mathematical practice) ,which may be,again, 

"elliptic" in nature.The process should always stop somewhere in some "principles" 

or "axioms" ,viz. at statements one would rather want to accept without proof . 

So the activity of understanding a given mathematical text (i.e.,proof-understan

ding which is,in the end,a kind of proof-(re-)discovery) can be safely described 

as possibly being a kind of'tree-like search,where the initial clauses of the under

lying recursion are a matter of common agreement ('!:ruth by convention" say, to use 

differently a popular phrase in analytic philosophy). 

To restore the proper "composite reference system" implicit in some mathematical 

ellipsis of kind (2) above is - in most of the cases - comparable with the "trivial" 

work done by a bibliographer or "documentalist" .Of course, this ultimately depends 

on one's mathematical experience or knowledge ;still one would hardly need some 

"invention" ("proof-discovery") here.The "hard work" was readily done once (some 

time,somewhere,possibly by some other people): if some proof is "standard" all we 

have to do in order to recover its, due "reference system" is to supply some "foot

noting" say1 containing the actual references to the existing literature (the so

called "mathematical folklore" may be also therein included). 

So,provided it is not exclusively concerned with the "foundations" of some parti

cular topic - written up in its very details - ~ mathematical book is always longer 

than~ it appears (in its "concrete",physical format).Or,properly speaking,it 

should be so,when "gapless" proofs are intended. 

I) In the former case some would also write "Omitted." (which has sometimes the 

second sense),while in the latter case one may encounter even "As ever." 
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lovewer,it is not so easy to supply details of proof in case of elliptical indi

cations of the form "Obvious.",etc.(under (I) above).Indeed,"obvious" and its 

lexical variants - when taken as proof-qualifiers!) - are,to use a word of 

B. Russell,"indexical expressions" (like "I","today","here" or even "this country"2) 

say;cf, MONTAGUE 68, 7O,etc.). 

That is to say: the actual "meaning" of a proof-qualifier of the kind "obvious" (I) 

nay depend on many pragmatically unobvious parameters,as,e.g.,location in time, 

personal mathematical experience (cf. with "I think that. .. ",".!_ believe that .•• " 

expressing propositional attitudes),etc. 

In any case,one should take "obvious" - qua proof-qualifier - as qualifying some 

proof that could have been displayed (in full) and only by some abuse of (meta-)lan

guage as qualifying the corresponding statement to be proved (phrases like "the 

statement is obvious" are,therefore,to be interpreted as derived uses of 

"obvious" as a proof-qualifier). 

In other words,"obvious" (and its lexical variants) would rather qualify some 

(finite) sequence of steps ("actions") to be performed in order to recover a sys

tem of - possibly nested - references that can be - at least in principle - des

cribed recursively.(The latter description should be - of course - a piece of~

mathematics or - to use a word of H.B.Curry - of "epi-theory".) 

The underlying necessary tree-like search won't be - in this case - exactly compa

rable with the documentalist's search in a Universal Mathematical 4ibrary: the lat-

I) "Obvious" may also occur, incidentally, in colloquial ways of speaking more or 

less related to mathematics when it is used to qualify some state of one's 

private (i.e. geometrical) intuitions.Then it is not used as a proof-qualifier. 

Indeed,if some under-graduate student (in mathematics) claims a given rotation 

in 3-d space leaves the set of edges of a given cube invariant and he makes the 

additional claim that this very fact is obvious for him (without being able to 

display a proof for the first claim) then his use of "obvious" is certainly 

different from what is meant here.We should therefore carefully distinguish 

between "i-obvious" (= "intuitively obvious") and "p-obvious" (= "obvious qua 

proof"),while even if both expressions are indexical in the ~athematical ~very

day l:_anguage (MEL or WOT,in Dutch),we should consider the first use as being 

rnetamathematically (here "proof-theoretically") irrelevant. (The distinguo men

tioned here and the corresponding example are essentially due to N.G. de Bruijn, 

in conversation.) 

2) In cases where the speaker/writer is not located in the United States (it seems 

U.S.A. is the only country where "this country" is not an indexical expression). 
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ter kind of work should certainly presuppose a minimal amount of "invention" 

("proof-discovery"). 

Still,if "obvious" is properly used as a proof-qualifier,the needed "invention" 

should concern rather elementary steps or sequences of steps - "sub-trees" in a 

tree-like search - that can be eventually (re-)discovered by any other mathemati

cian (provided he is sufficiently informed in the particular subject matter of con

cern). 

In the end,the first kind (1) of mathematical ellipsis noted above is not essential

ly different from the second one (2),inasfar the form of eliminating each of them 

is concerned.Both kinds involve ("refer to") some common background of mathemati

cal experience ("common" to a given group etc.) and differ only in the ways this 

experience is invoked or referred to.Anyway,in both cases some pragmatic context 

has to be recovered in order to understand what should/might stand for a given 

mathematical ellipsis (in some particular - mathematical - text). 

(B) Another way in which one may become aware of the difficulties involved in the 

process of communication of mathematical ideas is to acknowledge the possible dis

agreements as to the use of what should be an "acceptable/good/correct argument". 

In this case,what is questioned is not the completability of a given elliptic argu

ment (on which topic agreement may still subsist),but rather the nature of the steps 

involved in such completions or,even,the "logical form" of readily complete(d) 

arguments. 

This is,again,a metamathematical subject.We have at hand proofs "as a kind of 

composite references to other proofs" and we are free to handle these references by 

a system of operations which is,essentially,the same as that used to handle "ob

jects",mathematically.Moreover,we can do this without thereby being commited to 

some form of Platonistic ontology or without seriously thinking of these proofs 

as being actually objects (N.G.de Bruijn).In this way,we should be able to identi

fy ("single out","isolate") the exact portions of the proof-/reference-system on 

which disagreements may occur and to accept or reject the possible criticism concer

ning the use of these "segments" as proper parts of given proofs. 

In particular,the corresponding system of operations used to handle proofs (qua me

tamathematical "object's") has to be chosen such as to allow an unambi_guous under

standing of the roles played by each primitive notion,axiom,definition or (sub-) 

proof in any argument/proof submitted to such a criticism. 
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(C) Even if we have at hand a rather complete text of mathematics and we do not 

intend to submit to any criticism whatsoever the patterns of reasoning used therein 

(i.e. ,we do not question its underlying "logic") some difficulties may still appear 

on the way we intend to~ this text;these might concern say the efficiency of 

our way of reaching some particular result appearing at some place in it. 

Indeed,suppose we are interested in some given theorem occurring at some "advan

ced stage" in a mathematical text.If this happens to be conceived (by its author) 

as a comprehensive treatise on some subject and we only want to recover the infor

mation necessary for the understanding of that very theorem then reading the text 

from the very beginning (faithfully following the author's organization of the 

material in the book) is not always the best strategy to adopt: indeed,the author 

may have inserted a couple of Chapters in the book,preceeding the statement of the 

theorem we are interested in,and the proof of the theorem may not "logically de

pend" on material presented in these Chapters.To use the text efficiently (which 

is,again,an aspect of the process of communication of mathematical ideas) means,in 

this case,to have at hand some reasonably manageable system of processing it,possib· 

ly allowing us to omit those portions of text which are "redundant" according to 

our momentary,"local" interests. 

In any of the situations mentioned above,it is clear that an "absolutely certain" 

communication of mathematical ideas - viewed as a practical problem - presuppo

ses,first of all,the existence of a good formal language. 

Such a language must be viewed - "globally" - as a means to describe the actual 

practice of writing mathematical texts and thereby it should meet several basic 

requirements,viz. 

(a0) to allow writing up actual proofs in a very detailed manner such as to 

avoid any possible elliptic formulations yet bearing a close relationship 

to the ordinary mathematical practice; 

(a 1) in particular,the formal presentation of a mathematical text in such a lan

guage should straightforwardly allow some form of inter-subjective (or.if 

one prefers:"objective") verification of the correctness of the original 

text (e.g.,to unify the uses of "being obvious",qua proof-qualifier,up to 

a standard one), 

(a2) by possibly carrying out "correctness-checking" in a pure automatic way 

(via some implementation on a computer say);the idea of a computer-assisted 

proof-checking of actual mathematical texts is central in the AUTOMATH

program of formalization of mathematics (cf. DE BRUIJN 67-16,68-01,69-17, 
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69-18,70-02,73-30,73-34,76-43,80-72;NEDERPELT 70-19;VAN DAALEN 73-35,80-73, 

JUTTING 79-46;ZANDLEVEN 73-36;ZUCKER 75-42); 

(b0) to be logically (and,in general,philosophically) neutral;i.e.,not to commit 

ourselves to some particular set of assumptions as regards the "acceptabili

ty" of the patterns of reasoning actually used in the text to be formalized 

or to some set of ontological presuppositions,possibly conflicting with 

rival formalizations (differently motivated from a philosophical standpoint); 

(b 1) in particular,such a formalization should straightforwardly allow the under

standing and (the) analysis of the structure of any particular ("gapless") 

mathematical proof,no matter which is the "logic" adopted/accepted as "ba

sic" in proof, 

(b2) being such as to single out the roles of primitive notions,axioms,defini

tions, "rules of derivations" ,proofs and theorems such as to make transpa

rent any possible metamathematical criticism as to the use of each such an 

item in particular mathematical texts, 

(b3) and to assist us in understanding the complexity of particular (mathemati

cal) arguments (i.e.,to reveal the possible analogies in the structure of 

arguments and help us_ to classify these patterns of proof according to their 

intrinsic difficulty). 

(For details see,e.g. ,DE BRUIJN 73-30,73-34 or 80-72,~.Understanding.) 

(c0 ) Finally,the structure of the intended formalization(s) shouid be such as to 

allow us a convenient way of storing and processing the information present 

in a large number of mathematical texts; 

(c 1) the ideal situation to reach would consist of having at hand a kind of 

comprehensive enc~clopaedia ("data bank") of mathematical results capable of 

- being stored conveniently (together with the corresponding proofs),in 

a suitable "information system" (a "Universal Mathematical Library" say) 

and of 

- being processed (selected,retrieved) according to local or momentary 

needs , as , e. g. , 

- displaying a glossary of particular text£ ("lists of definitions") 

- locating the role - if any - of a particular primitive notion or 

axiom in some given argument/proof, 

"excerpting" a given text containing some particular statement 

such as to avoid any "redundant" details necessary for the under

standing-of its proof (or for its understanding,tout court), 
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- identifying the "minimal logic" necessary for the proof of some 

given theorem, 

etc.,etc. 

(For details see,again,DE BRUIJN 73-34,80-72,etc.) 

The requirements listed above are. - in principle - satisfied by most of the exis

ting languages in the AUTOMATH-family. 

Actually,almost all these requirements were among the motivations which have led 

N. G. de Bruijn to propose and work out in detail the "Classical AUTOM..ATH Language" 

AUT-68 (see DE BRUIJN 68-01). 

Subsequent work done within the AUTOMATH research group since 1967 was mainly 

intended to refine the initial ideas up to a set of optimal solutions meeting the 

specified objectives. 

Paraphrasing N.G.de Bruijn (cf. the Preface to JUTTING 79-46) one might say that 

the existing work on the AUTOM..ATH-project has - by now - at least some undeniable 

historical significance: 

" ••• never before has a substantial piece of mathematics been presented on a 

comparable level of completeness and precision",within some formal language. 

(Usual comparisons with Peano's Formulaire or with Principia Mathematica do always 

miss one or another aspect: Peano lacked details of proof while Principia reached 

only very elementary portions of actual mathematics in formalization.) 



14 

03.AUTOMATH versus semantics. 

One of the motivations underlying the work on AUTOMATH was (DE BRUIJN 73-34) 

" ..• to make something of a universal nature". 

Even from a superficial review of results obtained since 1968 in this area,it 

should be clear that the claimed universality is to be understood in some 

immediate (non-philosophical say) sense : the project is feasible at least in 

the sense that large parts of actual ("ordinary": i.e.,"classical" as well as 

"constructivistic") mathematics can be presented in AUTOMATH in a natural way. 

(This is a "weak foundational claim" as we may learn from VAN DAALEN 80-73,I._!_.~. 

etc. ,-and, as the way of understanding "formalization" is quite different from 

that intended in mathematical logic or set theory,there is no possible "conflict" 

with Godel's results on incompleteness.) 

It is not our purpose here to estimate how "large" could possibly be the parts of 

actual mathematics that can be fed into and checked by means of an AUTOMATH-veri

fier (the extant work done in Eindhoven - TH - might offer ad hoc,experimental 

estimations of the kind: "at least ~f' or "at least Classical Real Analysis" ,etc,). 

Rather we may notice that t~is claim of universality might be of some immediate 

interest for logic and metamathematics;viz. it is a fact that,when provided with 

suitable semantics,an AUTOMATH-language would become a useful tool in building up 

~ general theory of constructions and proofs for mathematics (whether "construc

tivistic" or not). 

Unfortunately,the model theory of (the languages) AUTOMATH is a rather undeveloped 

topic. 

The lack of interest for semantical and model-theoretic investigations in AUTOMATH 

is certainly rooted in the philosophy behind the project. 

One of the most common attitudes in this respect (shared by several contributors 

to the subject) is summarized as follows: ~ piece of actual mathematics is already 

a "model" for some correct AUT-text and this "intended model" is somewhat self-

sufficient for its "understanding". 

So there is no point in considering something like "the class of all models" for 

a given correct AUTOMATH-book and we should be even less interested in the (huge) 

class of all models for the set of all correct AUTOMATH-books (the latter would 

be "isomorphic" to the class of all pieces of actual mathematics that could be 

ever written,if we have to take seriously the claim of universality referred to 

above). 
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Actually,"mathematical semantics" or model theory have to be understood as pieces 

of actual mathematics and - as such - they would again require "correctness proofs" 

(possibly in the AUTOMATH-system).This would unnecessarily complicate the matters 

without actually improving our way of understanding AUTOMATH. 

Another aspect of the common claim that AUTOMATH needs no semantics is to be loca

ted in the constructivistic component of what we may call "the philosophy of AUTO

MATH" (i.e.,the ideas and conceptions on the nature of mathematics and its langua

ge underlying the project AUTOMATH): indeed,the methods currently used by model 

theorists are - in most of the cases - infinitistic in nature.Such methods won't ----
fit any more the metamathematical standards accepted as admissible in the descrip-

tion and the study of the AUT-languages (which are - at least in intention - "ma

chine-oriented" in the sense they have to be "accepted" by ~ computer). 

The situation is,roughly,comparable with the (controversial) status of the 

"classically fashioned" semantical investigations into Heyting's logic (see,e.g., 

TROELSTRA 73,GABBAY 80 or VAN DALEN 8~ for surveys): the latter are not "intuitio

nistically acceptable" from the standpoint of the Brouwerian tradition. 

Now,the attidude described above is certainly open to some criticism;to keep in 

force,for a while,the parallel with intuitionism,suggested above,one would want 

to note that a "classically-minded" mathematician would safely understand abstract 

"classical" structures as what we are nowadays used to call "Kripke models" 

(or "Beth-Kripke models") for theories based on Heyting's logic and even take some 

profit - metatheoretically - from this understanding. 

Similarly,there is -in principle - no prohibition against the fact that some 

class of mathematical structures may provide an abstract description (relevant for 

understanding say) of the every-day practice of writing "correct mathematical 

texts". 

This class (if any) may turn out to be completely uninteresting from the point of 

view of someone sharing basic philosophical convictions kindred to the philosophy 

of AUTOMATH;still,there is no~ priori reason to forbid the search for such (a 

class of) structures,if - above all - successful work in this direction might turn 

out to be useful for a metatheoretical investigation of the AUT-languages. 

In .absence of a sound model-theoretic basis for the AUTOMATH-languages it is not 

surprising that what we actually know about their metatheoretical properties is 

rat her scarce. 

Indeed,the existing work on (the languages in the) AUTOMATH (-family) was,until 

now,syntactically oriented.The main contributions to the topic (labelled within 
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the project as pertaining to the "language theory") consist,up to date,only of 

a few facts concerning the behaviour of "correct expressions" under reduction (the 

so called Weak/Strong Normalization theorems,Church-Rosser theorems,"Closure"-the

orems,stating the invariance of the correctness categories of a given language 

under the underlying notion of reduction;cf.,e.g.,JUTTING 71-23,7l-24;NEDERPELT 

73-3l;VAN DAALEN 80-73). 

One has ,howeven, - so far - no means to estimate the "proof-theoretic strength" 

of the AUT-languages and, in general,no means to make comparisons with any other 

(differently oriented) formalization. 

There is,of course,the straightforward approach which would consist of "transla

ting" - tale quale - into some AUT-language rival formalizations as to their 

"expressive power" ,but this is rather global and uninformative a way of doing 

things.~~ can be certainly "phrased into" AUT-QE - the work was done by D.van 

Daalen,as an exercise;cf. VAN DAALEN 70-14,70-15 -,but this does not mean that 

AUT-QE and~~ are "equally strong" as regards their proof-theoretic properties. 

Say: are there results that are "unintended" in ~~ which can be "derived" within 

the corresponding AUT-QE-book ("formalizing"~~)? Similar questions may be raised 

in connections with rather different formalizations (whether "foundationally"

oriented or not). 

Among other things,the lack of (abstract) semantics has largely contributed to 

the "parochialization" of the AUTOMATH-project. 

With another historical parallel: the type-free lambda calculus and the related the

ories of "combinatory logic" remained mere technical curiosities in mathematical 

logic - after Church has completely abandoned his foundational program (cf. 

CHURCH l936;for more details see REZUS 81),despite the work done in the s~hool of 

Curry (CURRY et al. 58,72;HINDLEY ~ .g. 72,etc.) - until D.Scott discovered 

(in 1969) an appropriate class of mathematical models for these systems (SCOTT 69; 

see BARENDREGT 81 for a survey and REZUS 82 for further references). 

Almost the same thing happened with the Relevance Logics (ANDERSON & BELNAP 75, 

ROUTLEY & MEYER 8M,etc.),which got a large audience only due to model-theoretic 

work (of J.M.Dunn,R.Routley,R.K.Meyer,K.Fine,A.Urquhart,etc.) 

Besides the philosophical reasons noted above,the situation complained here has 

also a deeper motivation in the difficulty of the subject: the languages in the 

AUTOMATH-family were (and still are) resisting to a model-theoretic approach beca

use of their intrinsic complexity.The underlying type -structure is - with a 

word of D.van Daalen (VAN DAALEN 80-73) - a "generalized" one: one has a "depen

dent type-structure" where the "typing expressions" and the "typed expressions" 
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are to be generated simultaneously,as in the case of the languages proposed by 

Per Martin-Lof for the formalization of constructive mathematics (cf. MARTIN-LOF 

71,72,75,75a,75b,79;ACZEL 77;BEESON 80;for a differently oriented use of closely 

related languages see CONSTABLE 8~). 

This difficulty was also incidentally noted in BALSTERS 82. 

On the other hand,model-theoretic work on the (simply) typed lambda calculus 

and the related theories of functionality has been available only recently and 

is, as yet,unpublished (BEN-YELLES 79;BARENDREGT et al.80;HINDLEY 80;etc. confir

ming conjectures of D.Scott;the main proposals for models are also due to D.Scott). 

The present author shares the opinion that some model-theoretic work on the lan

guages in the AUTOMATH-family is necessary in the present status of research. 

Syntactic methods - if somewhat involved - have already played their role in the 

game and shown their strength.It is not too much to be expected in this direction. 

A recent proposal for ~ mathematical semantics of the main AUT-languages will 

be discussed in detail elsewhere (cf. BARENDREGT & REZUS BE ) . 

Even if this paper still essentially relies~~ syntactic analysis~ correctness, 

the approach taken here is somewhat differently oriented in comparison with work 

done so far on the subject. 

Specifically ,we are not interested in "local" features of one or another langua

ge in the AUT-family (as,e.g.,their behaviour under reduction,w.r.t; conversion 

"definitional equality" or so,which would depend on the~ formulation of 

the correctness rules of a particular AUT-language),but rather aim at an understan

ding of the abshract mathematical structure of any AUT-language qua syntactic ob

ject.(The outcome might also shed some light on the possible place to look for 

mathematically interesting models for AUT-languages.) 

It is certainly pleasant to discover that no AUTOMATH-language is sensitive 

to some particular formulation of it. Still, the actual "reference"- or "standard"

formulations are somewhat too "practically oriented" (or "machine-dependent") 

in order to be accepted as a proper object of metamathematical study. 

This,finally,motivated our abstract approach below. 
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04.The contents of this work. 

We distinguish,prima facie,between the "reference"-version of an AUT(OMATH)-lan

guage - without insisting too much on the different levels of use of the "refe

rence"-concepts I) - and the corresponding "abstract"-version. 

The latter versions convey - essentially - the same kind of information as the 

"reference"-versions,but can be described accurately 1.n a more natural way and are 

subject to a more convenient metamathematical manipulation.(It is easier to "speak 

about" them,and this shouldn't be too surprising,for the "reference"-versions 

were devised such as to be easily implementable and not in view of a pure formal 

study.) 

There are easy-to-find transformations from the abstract-AUTOMATH languages - as 

presented here - to the "reference"-counterparts and backwards ,which should be 

obvious to the reader who has some previous experience with the latter. 

Anyway,at a later stage in exposition,it will possible to "define" - within the 

metalanguage used to describe the "abstract"-versions - almost all concepts that 

are used in the "reference"-description (without actually duplicating the work). 

Roughly speaking an abstract,AUTOMATH language must be thought of as being the 

"core language" from which its "reference"-version may arise by "sugaring112 ) 

the "theoretical syntax". 

I) To mention only the most important distinctions: any AUT-language has a "stan

dard reference version" ,as specified in the language definition and a "physical 

version",as used in displaying actual pieces of AUT-text,whereas the latter 

level may be viewed either as a "publication language" as used by the 

translator - or as a "machine-oriented" language, - as processed by a computer 

instructed to check the correctness of a piece of "physical" AUT-text. 

On the other hand, the "standard reference version" can be specified by diffe

rent language definitions .E.g., there is an "!-definition" (VAN DAALEN 73-35, 

80-73),which will be used as a starting point in the present description, and 

an "algorithmic definition",which is very close to a program checking correct

ness of AUT-books.Other,more pedagogic,presentations - using a "natural deduc

tion"-style (_! la F.B.Fitch,say;cf.FITCH 52,MONTAGUE & KALISH 64,etc.) - have 

been preferred by N.G.de Bruijn (DE BRUIJN 68-01,73-30,etc.). 

2) With a word of Peter Landin,the "syntactic sugar" contains features that are 

added to a given formal language in order to facilitate its use without increa-
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So,properly speaking,our considerations do not apply directly and ad litteram 

to things like PAL(-THE),AUT-68,AUT-QE,etc.,but to their abstract counterparts. 

For the latter some more economical nomenclature has been established (just to save 

symbols) ,still in close relationship with that in use for "reference"-AUT0MATH. 

The due minimal "dictionary" is as follows: 

Abstract AUTOMATH 

PA rrimitive ftUT0MATH 

CA £lassical AUT0MATH 

QA 

Q A 

M ~ ftUT0MATH 

ZA ~ucker ~UT0MATH 

etc. 

"Reference"-version 

PAL(-THE)I) 

AUTOMATHZ) ,AUT-68 

AUT-QE 

AUT-QE-NTI 
,..3) 

AUT-Pi 

The main peculiarities of the abstract AUT-languages over their "reference"-coun

terpart are to be located in the choice of the primitive syntactic categories. 

For a "global" comparison we display here the correspondences abstract vs "refe

rence"-AUT0MATH as regards this choice ("reference"-categories as in VAN DAALEN 73-

35): 
Abstract 

Terms 
AUTO'MATH: 

g_-sentences (~-formulas) 

Variable-strings 

Term-strings 

Contexts 

Constructions 

"Reference"-version: 
Expressions 

E-formulas 

Q-formulas 

Contexts 

Lines 

- EB-lines (declaring variables) 

p-constructions PN-lines (constructing'primitives) 

d-constructions - definitional lines (constructing 
"defined notions") 

Sites~ finite sets of constructions). Books (= finite sequences of lines). 

continued from previous page 

sing its (semantic say) strength. 

I) See 01. above. 

2) Historical label (used in DE BRUIJN 67-16,68-01,etc.) 

3) In "book-and-line"-format (cf. also VAN DAALEN 80-73). 
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For a detailed explanation of the description-scheme of the abstract AUT-syntax 

we -refer to OS. below. 

Here we give only some hints motivating the main differences. 

(I) It is not necessary to have a primitive syntactic category _g_-formulas in the 

language (anyway,such "formulas" will never appear as syntactic units in some 

"reference"-AUT book) .Accordingly, they will be constructed - in the abstract set-

ting - by some appropriate detour via the metalanguage. 

(2) EB-lines are not essential as separate syntactic units (they can be appropriate

ly "stored into" contexts; this approach was actually taken by D, van Daalen in WAN 

DAALEN 80-73).0n the other hand,the other kinds of lines of the "reference"-ver

sion describe "constructions of primitive/ defined notions" while the EB-lines 

are,rigorously speaking,"variable-declarations".Putting them together under the 

same syntactic rubric would somewhat break the uniformity of the syntactic descrip

tion. 

(3) The linear order in "reference"-AUT books is completely unessential for the 

description/understanding/study of correctness in AUTOMATH.What actually matters 

in this respect is a different kind of order (a partial order) describing the 

"reference-system" of a given PN- or definitional line (i.e. ,what may be 

called, "reference structure" in an AUT-book). 

Accordingly,we shall keep only a syntactic category of Constructions, containing 

(i) p-constructions corresponding to the former PN-lines and 

(ii) cl-constructions corresponding to the definitional lines of the "reference"

formulat ion, 

while, instead of considering finite sequences of such items ,we decide to pay at ten-: 

tion first only to finite sets of constructions (= sites). 

The "real" reference structure in sites will be hereafter obtained by an appropria

te analysis of the structure of correctness (cf. 1: below). 

As a matter of methodology,the description of the syntax of abstract AUTOMATH will 

be conveniently separated into 

(a) a "correctness - free" stage 

(b) a "correctness" stage. 

This can be done, for the AUT-languages of concern here, under some additional 

metatheoretical stipulations concerning the behaviour of the constants used in 

particular formalizations (what we called below "floating constants"; cf. ..!.Q_. etc.). 

The approach would enable us to speak about "delta-reduction" ,etc, even at a "cor

rectness-free" stage (whereas "delta-reduction","definitional equality",etc. have, 
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properly speaking,no meaning "outside" an AUT-book). Cf. 05. below. 

rhe abstract AUTOMATH-languages studied in this paper are PA,CA,QA and QA. 

,ection J_. is devoted to the description of the "correctness-free"-part of their 

,yntax,while section 2. is concerned with a detailed presentation of the "correct

:iess"-part. 

rhe "global properties of correctness" make up the main content of section 3. 

rhe latter concern as well as the preparatory - abstract - description were 

notivated by the study of a conservativity problem in AUTOMATH. 

The motivating problem concerned the relation of AUT-68 and AUT-QE to the "least" 

language in the AUTOMATH-family: PAL(-THE) and it is - in itself - of some philo

sophical interest.Besides this,it has also a more immediate,practical import. 

The philosophical aspect is more or less related to the epistemology of mathema

tics (as conceived say by Jean Piaget and his school of genetic epistemology in 

Geneva).Specifically,it concerns the development of the language of mathematics 

along its history. 

To be more explicit,N.G.de Bruijn remarked that the conceptual apparatus of the 

(pre-)XVIII-th century mathemati,cs (or,at least,the most part of it) can be ex

pressed as well in PAL(-THE). 

The idea of a function in general and the rise of mathematical logic (which are 

achievements of the XIX-th century) require more powerful means of expression: 

functional abstraction and the behaviour of quantifiers~ be expressed in 

PAL(-THE),while they would admit of a proper formalization in AUT-68 (or AUT-QE). 

Establishing a conservation property - in the due sense - of AUT-68 (or AUT-QE) 

over PAL would lead to a straightforward estimation of the "degree of complexity" 

of a given mathematical text: e.g.,results that can be "phrased into" a relative

ly simple language (that of pre-cantorian mathematics say;to fix some arbitrary -

not too remote - a landmark) can be already obtained with the ("historical") means 

of the mathematics promoting and actually using that language (here: with the means 

of pre-cantorian mathematics). 

This claim is not exactly equivalent with Hilbert's assumption that any mathemati

cal problem is solvable.Rather it establishes a close connection between the comple

xity of a given mathematical language (in its historical appearance) and the "depth" 

of the methods and concepts "presupposed" or "promoted" by this very language. l) 

I) One of the topics on which N.G.de Bruijn lectured (since 1978 on) at the Univer

sity of Technology in Eindhoven concerns "The Language and Structure of Mathema

tics" (cf. DE BRUIJN 78-61 and the forthcoming book DE BRUIJN & NEDERPELT 8N). 
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The practical aspect of the conservativity problem mentioned above is somewhat 

easier to grasp and concerns the possible economy (in time and computer-memory) 

over the work done in the actual verification of an AUT-text on computer: it turns 

out a PAL-text is always somewhat easier to check than an AUT-68- or an AUT-QE

text. 

Now if AUT-68 say is actually conservative over PAL(-THE) - in the due sense -

one can choose to formalize in the PAL-segment as much as possible - from the 

vP.ry beginning - without thereby loosing "in strength" (and,by conservativity, 

any AUT-68-"line" that "can be written in" PAL - in the expected sense - and 

admits of a "correctness proof" in AUT-68 should also admit of a "correctness 

'proof" in PAL). 

The concept of conservativity - as relativized to the case of AUTOMATH-languages -

which is actually used here is essentially that of DE BRUIJN 74-44.(See 30. for 

heuristics and a precise analysis.) 

At a closer examination,it turned out that somewhat stronger a property - imply

ing conservativity,in the sense of de Bruijn - can be proved about AUT-68 and/or 

AUT-QE ~ PAL-THE.By analogy with situations occurring in (first-order) logic 

we called it "PAL-separation property".Roughly speaking,it can be stated as follows: 

PAL-Separation Property: 

Let AUT be any one of the following languages: AUT-68,AUT-QE,AUT-QE-NTI,etc. 

For any "correct" AUT-book ~ such that];! contains some line k;if 

(I) k is "correct" with respect to Band 

(2) k is "written in" PAL 

then there is a "correct" PAL-book Bv such that 

(3) !!vis a "sub-book" of 1l (qua sub-sequence - of lines), 

(4) k is "correct" with respect to ~v 

and, moreover , 

(5) J;!v is the least "correct sub-book" of ~,satisfying (3) and (4). 

(Here Bis "correct according to the rules of AUT",Bv is "correct according to the .. " 
rules of PAL" and "written in PAL" is to be understood "modulo definitional expan-

sion",viz. any expression which is a "component" of k has a PAL-"reduction graph". 

These notions will be made precise,in an abstract setting,in sections 2. and 3. 

below.) 
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rhe main work in _l. relies on a combinatorial analysis of correctness in sites. 

rhe abstract setting allows to isolate in a straightforward manner the relevant 

,tructure of correctness in sites ("correct" sites are actually posets with res

?ect to the "definitional history" of the constructions they contain) :this is the 

,a-called "reference-order" (cf. ~.below). Relying on this order, a precise "measure 

Jf complexity" for constructions is introduced (cf. 322..) .As the latter is given 

JY some appropriate recursive function it can be used as a useful meta-theoretic 

tool in proving facts on corretness in abstract AUT-languages.Finally,the underly

ing analysis is - in a sense - "global",for it does not actually depend on the 

exact formulation of the "correctness rules" in one or another (abstract) AUT-lan

guage.So,in the end,the main results can be easily transferred to other AUT-lan

guages,not actually taken into account and described in detail in this paper (as, 

e.g.,ZA - the abstract version of Zucker's AUT-Pi -~ PA,etc.) 

Needless to say that the facts established here for the abstract AUT-languages 

hold as well for the corresponding "reference"-versions. 
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OS.Abstract AUTOMATH: definition scheme. 

The syntax of any abstract AUTOMATH language LA can be given by specifying: 

(i) the alphabet ~A of LA, 

(ii) the syntactic categories of LA and 

(iii) the correctness categories of LA. 

(i) The alphabets ~A are denumerably infinite sets of pairwise distinct 

structured symbols (i.e.,sets of symbols for which some implicit categoriza

tion into - pairwise distinct - sub-alphabets is given).Cf. IO below. 

(ii) For each LA,the syntactic categories of LA are 

syntagmatic categories (from the Greek radical "tag";"syntagomai" 

i am putting together_, hence "taxis" = ordo and,of course, 

"syn taxis") 

text-categories,containing the finite sets of some "designated" 

syntagmatic category of LA;there is only one such a category in our 

presentation below,viz.the category of sites (SiteLA,for any LA,and 
.LA. ',·1· . 1) Site is canonica in a sense to be explained ater. 

The syntagmatic categories of LA are generated in two distinct stages: 

the free stage,where the free categories of LA are produced;these 

will be given by recursive stipulations which concern only the 

well-formedness of expressions in LA,and 

the canonical stage,producing the canonical (syntagmatic) categories 

of LA;these are either identical to some of the preceeding ones or 

are obtained from these by elementary processes,as,e.g.,taking infi

nite unions or finite sequences (pairs or triples say) of elements 

belonging to the free categories. 

There is only a finite family of canonical categories in LA and its 

elements are canonical in the sense that they are to be taken into 

account in the definition of the correctness categories of LA. 

The distinguo between free and canonical (syntagmatic) categories in 

some LA is also necessary in order to insure the finitary character 

of the process of generation of the correctness categories of LA. 
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05. 1. REMARK. 

There is also another difference between the free and the canonical stage 

of generation mentioneJ above;namely: the free syntactic categories of LA 

can be generated by a Montague-like grannnar,under some unessential addi

tions (see MONTAGUE 70a) and,up to a certain point,they would also admit 

of a context-free grannnar ("BNF style"),while the restrictions involved 

in the canonical stage cannot in general - be generated "algebraically", 

~ la Montague say.However,the details needed for a complete description of 

such a "generative device",looking like Montague's "disambiguated languages", 

are unreasonably long and displaying them in full would rather obscure our 

main objective. 

The free syntagmatic categories of LA may 1e chosen from a minimal family, 

containing all and only the following sets of words over ~A: 

TermLA , the category of terms (in LA), 
LA 

the of (or E-formulas) in LA, Esent , category E-sentences 

Svar 
LA 

the of variable-strings of length n,nEN,in LA, 
nL~ 

category 

Ste rm , the category of term-strings of length n,n EN, in LA, n 
and 

LA 
Contxn , the category of contexts ~ length n ,nE Ji, in LA. 

Of these,the first two are canonical,together with 
LA Constr , the category of canonical constructions in LA and 

ContxLA lJ LA N Contx ,the 
nf n 

category of contexts in LA. 

05.2.REMARK. 

In the presentation adopt eel. here (which does not concern ZA, the abstract 

version of Zucker's AUT-Pi;cf. ZUCKER 75-42,DE BRUIJN 77-51,ZANDLEVEN 77-

48 and VAN DAALEN 80-73,Chapter VIII) it does not seem necessary to have, 

withiE the language,syntactic categories involving some notion of reduc-

tion (or any concept defined in terms of some notion of reduction,as e.g., 

"definitional equality" or "convertibility","reducibility" and "contraction"). 

It is,however,possible to adopt,from the very beginning,this point of view 

by admitting of one or more of the following categories of sentences (for-

in LA: mulas) as primitive (both free and canonical) syntagmatic categories 
-- LA 

(or .9_-formulas) in LA, Qsent , the category of g:--sentences 
LA 

the of R-sentences (or Be-formulas) in LA, Rsent , category 

and 
LA Csent , the category of C-sentences (or _g_-formulas) in LA. 
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As the latter are intended to "formalize" convertibility,reducibility and 

contraction in LA,one has to distinguish carefully between the underlying 

"extensionality type" (which can be either "beta-" or "beta-eta-" in the case 

of the languages studied below,while the distinctions necessary for the 

family ZA of abstract AUTOMATH languages are even more complex). 

It will turn out that in all cases of concern below (not involving ZA say) 

EsentLA is sufficient for all our purposes (and the remaining categories 

of sentences can be appropriately "simulated" or "defined" by a detour via 

the meta-language). 

For some delicate points involving the use of (beta-)eta-convertibility in 

connection with correctness see,e.g.,NEDERPELT 73-31,pp.16,71 and VAN DAALEN 

80-73,Chapter VI.See also VAN DAALEN 80-73,I,_!3..,,for a way out (avoiding 

the use of _g_-formulas as primitives). 

Now the only 

SiteLA 
text-category of LA can be specified (schematically);it is 

LA-
PW(Constr ),the category of sites in LA, 

(where,for any set~• PW(~) is the set of finite _subsets of~). 

05.3.REMARK. 

In the "reference" presentations of the languages in the AUTOMATH family 

one prefers the following terminology: 

"expressions" in LA 

"E-formulas" 

LA for elements of Term , 

for "!-sentences", 

"lines" (specifically,"primitive lines" or "PN-lines" and "definitional 

lines", resp.) 

and, 

"books" 

for "constructions" 

for "sites" provided with a fixed linear 

order (a "book" is a "sequence of lines" and not merely a set,as it is the 

case here for our "sites"). 

Of course,"site",as used here,has nothing to do with the sites appearing in 

the theory of categories. 

The motivation behind our use of sites may be recovered from our manipu

lation of G different (and more useful,both for meta-theoretical purposes and 

in practice) concept of order in an AUTOMATH "book" (cf. the discussion of 

the "reference order" below). 
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(iii) In order to give a "global" description of the correctness categories 

of LA -we introduce some ad hoc set--theoretic notation and terminology. 

05.4.NOTATION.TERMINOLOGY. 

If R is an n-ary relation on A1, .•. ,An (n;): I) and m ~ n, then the m-th 

section of R is just R if m = n,else 

Secm(R) = {<a 1, ... ,am">:for some af=Ai, m+I ,.;; i;;.n, <a 1, ... ,ar{ is in R}. 

If,moreover,m< n,and Sis an m-ary relation on A1, ... ,Am then the residual 

of Sin R is the relation 

05.5.REMARK. 

Now,clearly,if R is an n-ary relation then,the domain of R is the set 

Dom(R) = Seen-I (R), 

and the range of R is the set 

Range(R) = R/Dom(R). 

Now the correctness categories of (any abstract AUTOMATH language) LA are 

relations 

. LA LA LA LA and TermLA Sitel!l ,ConstrH ,Contxl!l ,EsentH, l!l 

and they can be vi_ewed as set-theoretic "solutions" of the following "equalities" 

(and "inequalities" ,i.e. ,inclusions): 

(I) 

(2) 

(3) 

(4) 

(5) 

. LA . LA 
Sitel!l ~ Site , 

LA LA . LA 
Constrl!l i;;;;; Constr x Site , such that 

ConstrLA/Sec 1(ConstrLA) SiteLA - 0, 
l!l l!l H 

LA LA . LA 
Contx3 ;\;;;. Contx x Site ,such that 

LA/ ( LA) . LA Contx9 Sec 1 Contxl!l Sites, 

LA LA LA . LA 
Esentl!l ~ Esent x Contx x Site ,such that 

Esent~A/Sec 1(Esent~A) Contx~A, 

LA LA LA . LA 
Term c Term x Contx x Site ,such that 

H -

TermLA/Sec 1(TermLA) 
l!l l!l 

Of course,not any "solution" of the "system" above will be acceptable as a 

family of correctness categories for some abstract AUT-language. 
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..!._.Language definition: well-formedness. 

We introduce first the "type-free" syntax of any abstract AUTOMATH language 

of concern below.Specifically: we define the syntactic categories of LA, 

as they appear in the free stage of generation and next build up,from these, 

a finite family of canonical (syntactic) categories (for LA) . 

..!.Q_.Alphabets to use. 

The alphabets we are going to use in these notes are singled out from the 

following denumerably infinite list of structured symbols.The categorization/ 

"classification" of these symbols into pairwise disjoint sub-alphabets is to 

be recovered from the tree-like indications present on the l.h.s. of the 

list displayed below. 

We let m,n E ~.To each constant in the list a non-negative integer,called 

arity (of the constant),is associated,indicating the "behaviour" of that cons

tant qua syntactic function. 

0 

11 

111 

1111 
n,m 

1112 
n,m 

112 

1121 

11211 

I 1212 

11213 

1122 

11221 

1123 

n 

I 1231 
n 

11232 
n 

11233 

11234 

Variables: x 
m 

(Structured) constants: 

Functors: 

Floating constants: 

p-constants: p() 
n ,m 

cl-constants: d() n ,m 
Constructors: 

Term-constructors: 

head-constructors ("instantiators"): d' 
n 

abstractor: /1. 

applicator: 3 

Sentence-constructors: 

inhabitability relator: E 

List-constructors: 

variable sequencers:~ 

term sequencers:~ 

telescope constructor: l 
"triad"-constructor: D 

arity: 

m 

m 

n 

3 

2 

2 

n 

n 

2 

3 
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121 

1211 

1212 

122 

10. 1 . COMMENT. 
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Structural constants ("language constants"): 

Universe symbols: 

Super-type symbol: T 

Proof-type symbol: -n: 

Empty symbol ("nil"): D 

arity: 

0 

0 

o. 

If the approach indicated in Remark Oi2. above is taken then one would 

also need the following extra sentence constructors (tree-like "classifi-

cation" as earlier): 

11222 

I 1223 

I 1224 

convertibility relator: _g_ 

reducibility relator: ~ 

contraction relator: C 

arity: 

2 

2 

2. 

These relators would serve as primitive constructors for the syntactic 

categories 
LA 

Qsent , formalizing convertibility sentences/formulas 
LA Rsent , formalizing reducibility sentences/formulas 
LA Csent , formalizing contraction sentences/formulas 

in the correspondingly extended language LA. 

From the list above we single out the alphabets to use as follows: 

10.2.DEFINITION. 

A contains the set of all structured symbols listed above. 

Ac A - {-n-J. 
A. A - lll,~J· p C 

10 • 3 . COMMENT . 

A is the alphabet of 
p 

PA (= Abstract Primitive AUTOMATH), 

A is the alphabet of CA (= Abstract Classical AUTOMATH), 
C 

A is the alphabet of Q-A,QA (= Abstract AUT-QE-NTI and Abstract AUT-QE). 
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In the sequel we shall somewhat simplify the exposition identifying A and Ac. 

10.4.REMARK. 

For theoretical purposes it is appropriate to identify A with Ac,leaving 

outside any considerations about the proof-type symbol -re.The latter one 

is supposed to behave (up to a certain point) as 't' does,so in order to 

restore the "official" formulation of the language from our description it 

will be enough to "duplicate" simply the syntax inasfar '1:' is concerned and 

to assume extra stipulations with 'I:' replaced by 'It" (ceteribus paribus). 

Actually,AUT-QE with a single universe symbol ('t') would be better suited 

for the formalization of constructive mathematics whereas the proof-type 

symbol would be necessary for "classical" texts (i.e.,for books where the 

underlying logic is Classical Logic).See JUTTING 79-46,4...-1-i.,vAN DAALEN 73-35, 

}.~.,ZUCKER 75-42,DE BRUIJN 80-72,VAN DAALEN 80-73,I.i-.2.• sqq.,etc. 

A similar remark applies to Zucker's AUT-Pi (cf. ZUCKER lee.cit. and VAN DAALEN 

80-73,VIII.}. 

The following meta-theoretic/syntactic notation will be used throughout in the 

sequel. 

10.5.NOTATION. 

Var stands for the set of variables,whereas ConstLA is the set of (structured) 

constants in LA (with superscript oft omitted). 

We also write PflLA,DflLA (with n in 1N) to denote the sets of n-ary floating 
n n 

p- resp. 
FlLA 

n 
PflLA 

d-constants and take unions as follows: 
PflLAU DflLA 

n n ' 
LJ PflLA 

nE: N n ' 
LJ DflLA 
nE:N n ' 

Pfl1ALJ DflLA. 

The superscript "LA" will be omitted whenever no confusions may arise. 

Syntactic variables ("metavariables"): 

v for variables (in LA),with subscripts and successive primings 

to increase the list, 

£_or~ (to specify the arity) for floating p-constants (in LA), 

d or d for floating d-constants,and -n 
c or C for both. -n 
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The remaining (structured) constants will be used autonymously in the meta

language and we won't adopt a special,very rigorous,notation for concatena

tion (see DE BRUIJN 77-49,78-61),Instead,readability is insured by some appro

priate abuse of (meta-)language,often tacitly assumed. 

10.6.TERMINOLOGY.NOTATION. 

If ~A is the alphabet of LA then Word(~A) or even Word(LA) denotes the 

set ~ words over ~A, We use X, Y, Z, ••• ,etc. ,as syntactic variables on Word (LA). 

Epifunctions on Word(LA) are partial functions from Word(LA) to Word(LA). 

10.7.REMARK. 

As introduced below,some of the epifunctions appearing here can be defined in 

terms of other epifunctions.For our purposes it won't be necessary to have 

at hand a "minimal" basic list of such objects (for we do not aim at a comple

te formalization of the epitheory). 

10.8.NOTATION. 

Finally, = stands for syntactic identity on Word(LA) and we write" i " for 

its negation. 

In set-theoretic contexts "=" has,of course,the usual set-theoretic meaning. 

Other set-notation is used as much as possible,in a standard way,and we did 

not find necessary to explain it in detail. 
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IOI.Further structure on (floating) constants. 

A specific feature of the languages LA considered below consists of the presence 

of (what we called) floating constants (i.e.,the structured symbols in FlLA). 

These are functors of a special kind and the way we intend to manipulate them 

in particular languages LA will - surprisingly - cause lots of (at least) the

oretical difficulties.The discussion following here aims at eliminating the 

most typical ones from the very beginning. 

The approach taken in this section is largely facultative and adopting the pre

sent point of view over any other possible set of theoretical decisions is 

certainly a matter of taste. 

The main idea is to provide the sets FlLA (in each language LA) with a super

imposed structure,which is,roughly speaking,an ordering.In the end,this amounts 

to a partition of FlLA into equivalence classes,called ranks,such that each rank 

is a (denumerably) infinite set of floating constants and there are also infini

tely many ranks (the ranks will be,in fact,mapped one-one onto N). 

IOI. I.DEFINITION. 

A ranking function for some alphabet ~A is a map 

LA 
;l;;gg~: Fl ~ JN 

such that,for each (arity) n,n E JN, 

rank(PflLA) JN 
==== n 

and 

101.2.CONVENTION. 

Any alphabet ~A is supposed to be given together with a fixed ranking function 

for it and to be ":Large" enough such as to have,for each arity n,nEN,and any 

given integer m,infinitely many p- resp. cl-constants~ with ;l;;gg~(~) = m. 

In detail,this runs as follows. 

101.3.DEFINITION. 

For each n e JN ,we let the appropriately restricted "kernels" of ;l;;gg~ be 
Prankm = f p : <.En is in LA 

m) J Pfln )&(;l;;gg~(En) m E N, n .:...n 

Drankm (d is in 
LA m)5 = f d : Dfln )&(Jg~~(~) m E: N, n -n -n 
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l()J .4.REMARK. 

Ourprevious convention on~ says that,for each arity n,nE: :JN,and each mEN, 

the •"ranks" Prankm Drankm can be mapped one-one onto N. n' n 
The corresponding bijections allow to speak about the first,the second, ... , 

the k-th p- resp. cl-constant with arity n and rank m (n,m EN). 

101.5.NOTATION.TERMINOLOGY. 

LJ Prankm, 
ntN n 

Drankm = LJ Drankm, (m,nEcN), 
nE:N n 

Rankm Prankm U Drankm l !::. : <!::. in Fl LA) & (~~m1 (-'=--) = m) J (m rn) . 

For each non-negative integer m,we say that Prankm,Drankm,Rankm resp. is 

the p-rank m, the d-rank m or the rank m resp. (in LA). 

Alternatively,if some floating constant.'=-. is in Rankm we say that£ is~ rank 

m (m EN) or (by abuse of language) that the rank of £ is m. 

In order to avo~d superscripting we shall also write Rank(m) for Rankm. 

10 I. 6. REMARK. 

It is obvious that the ranking function for ~A induces a partial order into 

FlLA_We shall find some use for this later on. 

10 I. 7. REMARK. 

The point of view adopted here is,in the end,not very constructive.Still,we 

can make it to be so,by using explicitely Cantor's coding of the pairs in 

1N x:JN onto 1N . 

In order to do this recall that,in .!.Q_. above,the p- and the cl-constants were 

provided (separately) with some fixed lexical order (a linear order),and this 

was done for each arity n,nl:N. 

Indeed,we had p-constants p( ) and cl-constants d( ) ,where mE- N,in PflLA, 
LA m ,n m ,n n 

Dfl resp. The intended meaning of the subscripts "(m)" is here that p ( ) 
n m ,n 

is the (m+l)-th p-constant of arity n in~ and analogously for d(m),n" 

Now Cantor's coding is a (primitive) recursive function (a bijection) 

ggi~ : N x N ~ N 

with (primitive) recursive "projections" 1~!:!,!:.fah! resp.Where D]N and DJ:! x N 

are the diagonals of N and N x N resp. ,we get (by surjectivity) that the 

inverse,ggi~-,of ggi~ exists,with 

and 

("o" denotes the usual composition of functions). 

Let m be the lexical index of p() resp. d() in A_A.Then ggi~ (m) is --- - m ,n m ,n -L 
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actually a pair, (m1,m2) say,with m1,m2 in N.We may now consider m1 as being 

the rank of the p- resp. cl-constant with lexical index m (and arity n) and m2 
be the lexical index of the constant within its rank (here: either Prankm or 

---- --- - --- -- --- n 
Drankm ).For convenience,call the latter a lexical rank-index. 

n 
Taking,in particular, 

gg£~(m1,m2) = ((m1+m2)x(m1+m2+1))/2 + m2 
it is easy to get explicit forms for 1~i!,righ! and 2~i!- (see,e.g.,MAL'CEV 70). 

So if c is a floating constant with lexical index rand arity n (r,n ~ N) then 

~g~~$C~) = 1~!~Cgg£~-Cr)) 
$ 

defines (constructively) a ranking function for ~A (for ~g~t is obviously 

primitive recursive - and even Kalmar-elementary). 

With the latter one we can repeat the partitioning of FlLA on the pattern 
$ m $ m Rank$,m sketched above and get the corresponding sets Prankn' ,Drankn' , n 

(for all m,n in N). 

Moreover,each p() in Prank$,m and each d() in Drank$,m will thereby 
- r ,n n r ,n n 

get a lexical rank-index within their (constructive) rank,viz. 

q 2=i~g~~!(p(r),n_) __ righ!(2~ir-(r)) and 

q g~i~g~~!(d(r),n) righ!(2~ir-(r)) 

and we may re-write the constants unambiguously as p() and d() r~sp. q ,n,m q ,n,m 
Note that for any fixed non-negative integer q,a lexical rank-index q can be 

found,in each set Pfl and/or Dfl separately (for each n in 1N) ,infinitely 
n n $ m . $ m 

many times and,specifically,only once in each rank (Prankn' or Drankn' ). 

10 I. 8 • REMARK. 
LA 

If A+ is any alphabet containing Fl and Word(A+) is the set of words over 

A+ we may also use the construction above in order to assign ranks to elements 

of Word(A+) or to subsets of Word(A+).Indeed,let X be in Word(A+).Then we may 

stipulate that the rank of Xis -I (say),if X does not contain letters from 

Fl LA and that the rank of Xis ~~~ l~~~~(c):(c occurs in X)&((;__in Ft1A)J. 

Ranks -I are,of course,arbitrary (we may leave the new ranking function unde

fined in those cases where X does not contain floating constants). 

Something similar can be done for (finite) subsets of Word(A+). 

IO I • 9 . COMMENT. 

The need for something analogous to our ranking function above was noticed 

earlier by L.S. van Benthem Jutting and D.van Daalen,in connection with 
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the theory of abbreviations (LSP) in AUTOMATH (see VAN DAALEN 80-73,III. and 

also,DE BRUIJN 73-30).In this context one speaks about the date, of~ defined 

constant (relative to~ book),so the choice of a ranking function is a 

matter of local decision and has to be performed for each particular book 

separately (and anew).Also,in the latter case,the primitive constants (cor

responding to our p-constants) must be dated (within "correct books"). 

Shifting the matter (in)to a very elementary syntactic level (as we did here) 

gives some technical advantages over the usual "reference"-treatement of the 

AUT-syntax,but also entails some unintended (and somewhat unpleasant) conse

quences at a later stage (definitional specifications are to be stipulated 
LA once forever for all elements of Dfl ,etc.). 
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.!.!_.Variable-strings. 

It will be convenient to start by defining strings of variables first,viz. the 
LA 

free (syntagmatic) categories Svarn ,n ~ N. (We henceforth omit the superscripts 

"LA".). 

These items do not differ in structure from language to language and,accurately, 

they cannot be generated in a context-free way. 

II.I.DEFINITION. 

For all n in N,the sets Svarn are the least sets such that 

if v 1, ..• ,vn are in Var and vi r/: vj (l~i f j~n) then 

~Dv 1 ... vn 

is in Svar. 
n 

An element of Svarn is~ variable-string of length n. 

11.2.REMARK. 

Obviously,there is no point in referring to LA when speaking about variable

strings (this is also the case for variables,for we would want to keep Var 

the same for any LA under focus). 

With the definition above one has a special notation for the empty string 

(of variables; this is just ~O ) and also one can distinguish .straightforward

ly - as intended - between a single variable v,taken in isolation, and the 

one-element string containing v (this is just ~1nv). 

We have,by "sugaring" the syntax,the following. 

I I .3.NOTATION. 

N := ~O, 

~ v 1, .•• ,vn 7 := ~Ov 1 ..• vn, for all n ~I. 

Analogously,we shall use the shorthand: 

v" := ~Ov 1 .. . vn, for all n ~ O, 

omitting the subscript "n" whenever the length of the variable-string is 

known.The latter notation is used only when the missing information can be 

safely restored from the context. 

If Xis a variable-string we shall often write l~(X) for the length of X. 
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12.Term-structures. 

LA 
The LA-terms are the basic syntactic units in any LA and Term ,the set of 

terms in LA,is supposed to be specific for each LA. 

For reasons of economy we identify hereafter TermcA,TermQA and,in general, 
. . . PA . 1 11 ll 11 • t CA h. any set strictly containing Term wi 1 co apse in o Term .Tis amounts 

to the elimination of the proof-type symbol from the primitive syntax and, 

as noted earlier,the procedure is harmless for theoretic purposes. 

Indeed,the main differences induced by the presence of ,rr seem to be rather 

semantic in nature and we are not concerned with this. 

The syntax of LA-terms (at least in the free stage) will be not much more 

involved than that necessary in the construction of~ combinatory reduction 

system,in the sense of KLOP 80 say,(this is a mixture of lambda-calculus and 

term-rewriting rules;cf. also HUET & OPPEN 80,etc.). 

As for interpretation,the notion of an LA-term unifies two concepts which are 

distinct for languages with~ separated type-structure,viz. in the latter case one 

has explicitely (object-)terms ("typed terms" say) and type-terms (accurately: 

"typing terms") while the type-terms can be generated by inductive definitions 

somewhat "beforehand",in complete independence from the former.Hence sometimes 

the labels: "languages with dependent type-structure" or "languages with genera

lized type-structure" - suggested by R.L.Constable and D.van Daalen resp.,- for 

languages kindred to our LA's here.(For similar constructions see SCOTT 70, 

GIRARD 71,72,MARTIN-LOF 71,72,75,75a,75b,79,BEESON 8@,CONSTABLE 8@,etc.). 

121. Terms. 

121.J.DEFINITION. 
LA 

For LA as shown below,the set Term is the least set such that 

(1) Any variable vis in TermLA_ 
(2) . . . LA 

The universe symbol 't' is in Term • 

(3n) If c is in FlLA and a 1, ..• ,a are in TermLA then 
n nLA 

is in also in Term • 

Term LA then so is 3ab. 

<f. ca 1 •.. a n- n 
(4) If a,b are in 

(n ~ N) 

(5) If a,b are in TermLA and vis a variable then Avab is in TermLA_ 

In the above,if LA:= PA then only clauses (1),(2) and (3n),nE lN ,apply, 

for the applicator and the abstractor are not in the alphabet of PA. 
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121.2.DEFINITION. 

Puty element in TermLA is an LA-term or ~ term in LA. 

121.3.COMMENT. 

The "in" above should be unambiguous if we have at hand some appropriate 

book-keeping procedure for floating constants (in FlLA).The latter task 

can be somewhat simplified:if we choose to take into account the behaviour 

of LA-terms "modulo definitional expansion" then one needs to "store" only 
. f . ' flLA in ormation concerning P . 

121.4.REMARK. 

Clearly,TermPA is a proper subset of TermcA,while,for any other LA,one has 
--- CA LA 

by the simplifying convention on 'ft' above, that Term = Term . 

We get,by "sugaring" again, the familiar "reference"-AUTOMATH notation. 

121.5. NOTATION. 

Hereafter a,b,c,d,e,f,g,... with sub- and/or superscripts (successive primings) 

will be used as syntactic variables on LA-terms (with LA duly specified). 

Next,we set,for all n € N, 

_£(al, ••• ,an) := cfca1 ..• a in Fl in LA(J<'' 
~ ,a. Term , ..... 1.~n, n- n n i 

{alb := 3ba a,b in TermLA 
' 

6,-:a] b := Avab a,b in Term,v in Var. 

We shall now largely diversify the epitheoretical landscape by supplying some 

useful descriptive terminology and introducing epifunctions to be employed later 

on.In general,our terminology will ·be closely related to standard ways of spea

king in lambda calculus. 

121.6.TERMINOLOGY. 

(I) The head-terms are all and only the LA-terms of the form 

nE N, 

with_£ and a 1, ••. ,an as specified earlier;_£ is the head~ a and the ai's 

(I :::.i~ n) are the arms of a;the head and the arms of a are all and its only 

immediate quasi-components (hereafter: iqc's),while the arms of a are all and 

its only immediate components (henceforth: ic's). 

The length of a is 1"!;l(a) = n. 
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Epifunctions: we let g~gg and g~~ (nEN,0 :ci:fn) be partial functions 

from.Word(LA) to Word(LA) such that, 

[

- c, if a is a head-term with head_£ 

undefined, else 

r a, if a is a head-term and i = 0, 

a., if a := 

_ u~defined, 

_£(a 1, ••• ,an) and lh(a) "7 0, 1~ i* n, 

else. 

(2) The application-terms are all and the only LA-terms of the form 

a := {b 1}b2 , 

with b 1,b2 in TermLA;where b 1 is the argument-part of a and b2 is the function

part of a;the argument- and the function-part of an application term a are 

all and the only iqc's (ic's) of a. 

Epifunctions: the associated epifunctions are,in this case,g~~ and £~~,with 

the following behaviour: r I, 

if a := {b11b2, 

undefined else, 

[b,, if a := {b 11b2 , 

undefined, else. 

(3) The abstraction-terms are all and the only LA-terms of the form 

a := [v:b 1Jb2 , 

with b 1,b 2 in TermLA and v in Var;here b 1 is the domain-part of a,while b2 is 

its value-part and b 1,b2 are all and the only ic's of a. 

Finally, "unsugaring", /wb I is the abstraction prefix of a (but "sugaring" 

gives [v: 64] ,with brackets,for the latter) and b 1 ,b2 and /wb 1 are all and the 

only icq's of a. 

Epifunctions: the associated epifunctions are (see also below) ggffi and ~g1, 

with: 

:= [

b 1, 

~defined, else 



and,analogously, 

:= 

121. 7 .REMARK. 
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\ b2 , if a 

l undefined, else. 

(1) Any PA-term is either a variable or the universe symbol -1'. or a head-term. 

(2) If LA is not PA,then any LA-term is ~ither a PA-term or an application

term or an abstraction-term. 

Indeed,this is the meaning of "least" in Definition 121. I. 

121.8.DEFINITION. 

A subterm (resp.~ quasi-subterm) of an LA-term a is either 

(1) an ic (an iqc) of a, or 

(2) an ic (an iqc) of some subterm (quasi-subterm) of a,and 

(3) nothing else is a subterm (quasi-subterm) of a,except by (1),(2) above. 

121.9.TERMINOLOGY. 

If a is an abstraction-~erm then any (quasi-)subterm b of 

(i) ~~!(a) is in the scope of the abstraction prefix of a, 

(ii) gg~(a) is within the scope of the abstraction prefix of a. 

This way of speaking will be extended,by abuse of language,to sub-words of 

abstraction-terms that are not necessarily (quasi-)subterms of it. 

121.10.TERMINOLOGY. 

For any LA-term a,FV(a),the set of free variables of a,and BV(a),the set of 

bound variables of a,are supposed to be defined as usual. 

We have,of course,BV(a) = ~,for any PA-term a. 

Further,if vis in Var,then vis said to be free (bound) in a if vis in 

FV(a),(resp. in BV(a),as expected),and vis fresh for a if it is not in 

FV(a) U BV(a). 

We shall also use "fresh for ••. " in a similar way, in connection with floating 

constants (a constant.£_ is fresh for some LA-term a if,simply,.£_ does not occur 

in a,as a quasi-subterm of it). 

The operator of simultaneous substitution on LA-terms,for which we reserve 

the notation 

a' := n E :N, 
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(or even a' := a[b := v] ,where band v stand for the corresponding se

quences) is supposed to be defined in the familiar way. 

This notation is straightforwardly relativized to the case of ordinary 

substitution (as in lambda calculus,say),when n = I. 

121.11.REMARK. 

To avoid difficulties with alpha-conversion (see below) in languages with 

abstraction,it seems appropriate to introduce first partial operators of 

(simultaneous) substitution,next state the alpha-conversion rule and,finally, 

make the former totally defined on the appropriate set of terms,manipulating 

conveniently the a1pha-matters (to handle this automatically some more details 

on alpha-conversion strategies are necessary,however). 

This should avoid circularity,in the end,while defining substitution and 

alpha-conversion (the approach comes,essentially,from Church). 

Alternatively,one has to cope with the alpha-matters in some other way (cf., 

e.g.,DE BRUIJN 72-29,78-55,STAPLES 79 and BARENDREGT 81,Appendix C: Variables). 

122.Canonical terms and definitions. 

The presence of floating constants in the alphabet(s) of LA induces some peculi

arities that are absent from combinatory reduction systems (or term-rewriting 

systems) not containing such constants (i.e.,the so-called mechanism of "instanti

ation"). 

122. I.DEFINITION. 

If v := s Dv 1 •.. v is in Svar and pis in PflLA,d is in DflLA (nE N) then 
-n n n - n - n 

the head-terms 

-p (v) : = cf pv I •.• V ' n- n 

i(v) := d'niv1 ••• vn, 

resp. are said to be (canonical) p-terms (resp. d-terms) of length n and 

~ canonical LA-term of length n is either a p-term or a d-term (of length n). 

The canonical LA-terms are supposed to be characterized (in the metalanguage) by 

monadic ("epitheoretic") predicates called qualifiers. 
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122.2.TERMINOLOGY. 

We distinguish between two kinds of qualifiers: 

(1) improper qualifiers: we need only one of this form,viz. the "syntactic" 

predicate ISPRIM (read:" is a primitive notion in/for LA"),and 

(2) proper qualifiers: for each LA-term a,a proper qualifier DEFEQUALa 

(read: " ..• is definitionally equal to a in/for LA"). 

122. 3.NOTATION. 

We shall write,everywhere in the sequel,for any LA-term a, 

X ::: PRIM for 

and 

X : := a for 

where Xis a syntactic variable. 

122.4.COMMENT. 

ISPRIM(X) 

DEFEQUAL (X), 
a 

The stipulation "in/for LA" is essential,if we want to recover information 

about some LA-term,which is not already "coded into" its syntactic form 

(there are CA-terms say that are apparently PA-terms whithout being actually 

so;we have to "restore their definitional history" in order to be able to put 

them at the due place,here PA vs CA). 

122. 5. NOTATION. 
LA LA We let Pterm ,Dterm resp. be,for each n E N,the set of canonical p- resp. 
n n LA LA 

d-terms of length n and introduce sets Pterm ,Dterm by taking infinite 

unions in the obvious way (PtermLA say is the union of all PtermLA ,with n in N). 
n 

Similarly,Cterm~A is the set of canonical LA-terms of length n (n E N),while 

CtermLA is the union of the latter sets,with n in N. 

122.6.DEFINITION. 

( 1) If p (v) is in PtermLA (n E N) then the epi-statement 
n 

PRIM 

is a pseudo-definition for LA with def iniendum ".E_ tv)" and definiens PRIM. 

(This way of speaking involves some abuse of language but it will be useful 

later on.) 

(2) Similarly,if i(v) is in Dterm~A (n € N) and a is in TermLA such that 

(i) FV(a) C. fv 1, .•. ,v J 
- n 

and 

(ii) dis fresh for~ 

then we say that the epitheoretic statement 
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~(v) : := a 

is !: proper definition for LA with definiendum 11~(v)" and definiens "a". 

12 2 • 7 • COMMENT . 

So far,any language LA would admit of several kinds of definitional ambiguity. 

We mention the most annoying cases: 

(I) a given floating d-constant may be the definiendum of more than a 

single proper definition for LA, 

(2) "circular definitions" are not avoided by the restriction concerning 

"freshness" in 122.6. 

Certainly,(!) can be circumvented by adding a new stipulation concerning 

the relation which should subsist between d-constants and proper definitions 

in LA (this would be a "global" stipulation,concerning the "totality" of LA). 

The difficulty behind (2) was noticed by L.S. van Benthem Jutting (in con

versation).Indeed,suppose ~and~-• are mutually distinct symbols in Dfl~A,for 

some LA (PA say).Then each of the following (proper) definitions are well

formed,and perfectly legitimate,when taken in isolation: 

(2. I.) 

(2.2.) 

d : := d' 

d' : := d • 

This situation generalizes· straightforwardly to any finite number of pairwise 

distinct d-constants of the same arity and the requirement of "freshness" 

is, obviously ,satisfied~in each case separately. 

We may still want to call such situations "well-formed" (one sometimes speaks 

about "good" vs "bad" definitions or "correct" vs "incorrect" definitions) 

and one could imagine that the due place to discuss such a distinguo is 

under the rubric "correctness". 

This is,however,not the approach we shall actually take here.Rather,we have 

both good reasons and technical means to avoid such unpleasant features of 

our syntax from the very beginning. 

As for reasons,we need not insist too much in arguing on the meaning of 

words.We simply adopt the point of view that !: "bad / incorrect definition" 

is not a definition at all. 

The technical means to eliminate "circular definitions" of the kind above are 

provided by putting the ranks (introduced in IOI. above) at work. 

We first need some auxiliary terminology. 
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Let,for further reference,~ggtLA be a fixed ranking function for LA (cf. JOI. I.). 

122.8.DEFINITION. 

The rank of an LA-term (relative to ~ggtLA) is defined inductively as 

follows (if a is an LA-term,we write ~ggt~A(a),for the rank of a in LA,relati

ve to ~gg~LA'omitting often "LA"): 

1
-1,if a does not contain floating constants as g_uasi-

+ ~ub!_erms, 
~ggt (a) 

~g [Hgt(~) : (~ is in Fl LA)&(~ is a qst of a)}. 

The E- resp. the ~-rank of an LA-term (relative to ~ggtLA) is defined analo

gously,replacing "FlLA,, by "PflLA,, resp. "DflLA,. in the def{nition of ~~gt+ 
+ + 

(notation: p-~gg~a),<l-~~tLA(a),resp.). 

122, 9. REMARK. 

It is easy to see that,for any LA-term a,one has 

~fil¼:!t (a) ~gg {P-Hgt +(a)• d-~~:\t (a) J · 

122. JO. COMMENT. 
+ . . For most of our purposes below only d-!g~t will be relevant.However,using 

~ggt+ instead does not introduce sensi;~~-complications. 

For any LA-term a,~~t+(a) is~ measure of complexity for a.Accurately,this 

is completely relevant only for PA-terms,for ~ggt+(a) "ignores" ·the number 

(say) of occurrences of abstractors and applicators in a. 

In order to get a correct estimation of the syntactical complexity of an LA

term (whether it is a PA-term or not) we would likely need counting - some 

way or another - the occurrences of the latter constructors in the term con

cerned. 

A simple solution seems to be as follows: let a be an LA-term and define ad hoc 

$-gQ2(a) := the number of abstractors occurring in a, 

$-ggg(a) := the number of applicators occurring in a. 
+ Now,with p = $-ggg(a) and q = $-ggg(a) and where r ~ggt (a) one may define 

the syntactical complexity of an LA-term a as being 

(This won't be very useful,however.) 

On the other hand,d-rank (a) is,for any LA-term a,~ faithful measure of defini

tional complexity for a.Since ~ggtLA is supposed to be fixed for each LA,from 
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the _very beginning, this "measure of complexity" is also "absolute" for any LA

term a (cf. IOI. above). 

We come now back to our main task,viz. we want to give an estimation of the 

"freshness" of a floating constant for a given LA-term. 

The proposal following below is somewhat arbitrary but it will work satisfactorily 

in all cases of concern. 

122. II.DEFINITION. 
+ 

Let a be an LA-term with ~g~~ (a) n,n ~ -I.Then a floating constant c is 

said to be 

(I) rank-fresh for a if 

and 

(2) minimally fresh for a if 

122. 12.REMARK. 

+ rn~~ (a) + I. 

Clearly,for all LA-terms a and all c in FlLA, 

(I) if~ is rank-fresh for a then~ is fresh for a 

and 

(2) if S:. is minimally fresh for a then it is also rank-fresh for a, 

but the converses of these implications are,in general,not true. 

122. 13. COMMENT. 

We did not restrict the definition of rank-freshness and minimal freshness to 

cl-constants for reasons which will appear in the statement of the correctness 

rules of LA's below (see ~.).But for the purposes of this section the restricted 

definitions would work. 

Now we can state a "global" condition of definitional disambiguation for any langu

ge LA of concern here. 

122. 14.CONVENTION. 

The languages LA are assumed to be definitionally unambiguous in the following 

sense: 

(I) each floating p-constant in PflLA 

(2) for each floating cl-constant din 

has a pseudo-definition for LA, 

Dfl LA (n E:- JN ) , there is exactly one 
n 

proper definition for LA,having "d(v 1, .•• ,v )" as definiendum, and 
- n 

(3) for each proper definition D for LA,the head of the definiendum of Dis 

rank-fresh for the definiens of D. 
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12 2 • I 5 • COMMENT. 

~rt is easy to see that the difficulties noted in 122. 7. above are straight

forwardly circumvented by adopting Convention 122.14.In particular,one can 

adopt even a less liberal restriction in 122.7. (3),taking "minimally fresh" 

instead of "rank fresh". 

We are completing our discussion of definitions by some more terminological impro

vements. 

122.16.TERMINOLOGY. 

A definition(al specification) for LA is either a pseudo-definition for LA 

or a proper definition for LA. 

We say that a definition specifies its definiendum or that it is~ definitional 

specification of its definiendum for LA. 

The meta-linguistic phrase "~h~~f (called,for historical reasons,Landin abstractor; 

cf.,e.g.,LANDIN 66;it actually acts as an abstractor within the epi-theory) will 

be used as an epi-theoretic operator on definitional specifications for LA's and 

it will contribute to the formation of epi(-theoretic)-phrases called "~h~~~

clauses" (for LA). 

122. 17.DEFINITION. 

A ~h~~~-clause for LA is an epi(-theoretic)-phrase 

~h~~~ 'definitional specification' 

and the definitional specification following the Landin abstractor "~h~~f' 

is the supporting definition of the ~h~~~-clause (or its body). 

122.18.TERMINOLOGY. 

We also say that a ~h~~~-clause has ~ specified canonical LA-term and 

note that the latter is the definiendum of its supporting defi-

nition. The head of the specified canonical term is the specified constant of 

the corresponding ~h~~~-clause. 

122. 19.CONVENTION. 

We will often omit ~h~~~-clauses having a pseudo-definition as supporting 

definition (body). 
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..!12.Combinatory reduction systems . 

. h h 1 A ' 1 1 . 1 LA ' b · Wit eac anguage L a specia re ationa structure on Term will e associated, 

called (after KLOP 80) "combinatory reduction system" (crs,for short). 

These structures arose by generalizing both the lambda calculi and the term 

rewriting systems (of which Curry's - and Rosser's - "combinatory logics" 

are particular cases;cf.CURRY ~ al. 58,72;HINDLEY et al.72;REZUS 81) in view 

of obtaining a general setting for the Church-Rosser Theorem (BARENDREGT 81, 

KLOP 80). 

The crs's of concern here are either regular in the sense of KLOP 80 (cf. 

Klop's Chapter II,for definitions) or are eta-extensions of regular structures. 

That is: in the end,the Church-Rosser property is,in general,insured by "glo

bal" arguments for notions of reduction not involving "eta-reduction". 

This is not the case for relational structures associated to the abstract AUT

language ZA (or Zucker's AUT-Pi;the first proof of the fact that some "free" 

subsystem of AUT-Pi does not satisfy the Church-Rosser property is - implici

tely - due to J.W.Klop;see KLOP 79; the fragment concerned, lambda calculus 

with surjective pairing,is,however,consistent by a model-theoretic argument, 

using Scott-like models;cf.SCOTT 80;a syntactic proof of consistency for this 

fragment of AUT-Pi is planned for DE VRIJER 8N). 

Church-Rosser also fails,in ~ type-free setting,for crs's associated to~an 

(abstract) AUT-language which involve both beta- and eta-reduction (and the 

problem arises only when the latter notion is present;this was first noticed 

in NEDERPELT 73-31,page 71).Specifically,the failure is caused by the presence 

of (AUTOMATH-)labels,i.e. ,the "types" that are domain-parts. 

Fortunately,the Church-Rosser property holds for the reducibility relation 

restricted to "correct" AUT-expressions (if AUT is not AUT-Pi) and the re

sult transfers easily to the corresponding abstract versions (cf. VAN DAALEN 

80-73,Chapter VI,for details and the due proofs). 

Somewhat simplifying, the crs 's to be discussed below are either ("labelled") 

term rewriting systems or ("labelled") lambda calculi with additional term re

writing rules. 

We introduce first various notions of reduction,following BARENDREGT 81,Chapter 3 

(or VAN DAALEN 80-73;cf. with the "elementary reductions" of the latter,loc. cit. 

3) Th ' 1 b' 1 ' T LA II._ •. ese are,simp y, inary re ations on erm • 

The relational structures to be considered here arise from (combinations of) these 
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notions,taking the appropriate closures on TermLA. 

So,the description of a crs is,prima facie,a second-order description.Anyway, 

first-order analogues won't be very profitable for our purposes. 

Some closures (of the due notion of reduction) will be taken as basic in the 

definition of the coresponding crs.These are binary relations on (appropriate 

sets) TermLA,called resp. contraction,reducibility and convertibility (or defini-
. . ) LA tional equality on Term • 

However,unlike in BARENDREGT 81,these relations will be viewed as belonging 

to the epi ,-,.theory (or, if one prefers, to the meta-language) of the associated 

LA's rather than being incorporated in the "object language" itself. 

So we consider structures on TermLA and not formal systems.The latter approach 

follows,mutatis mutandis,REZUS 81. 

This agrees,in the end,with the actual practice of "reference"-AUTOMATH, 

where the matters concerning reducibility or (the) definitional equality of 

terms (there: "expressions") or their "termination properties" are handled 

via some checking device (implemented and processed by a computer),somewhat 

"physically" outside any "book". Still,this is not the approach usually taken 

in presenting the language definition of "reference"-AUTOMATH. 

So any considerations concerning the definitional equality of LA-terms will be 

shifted (in)to the epi-theory/meta-language of the corresponding LA. 

Some (non-trivial) technical tricks will be needed in order to do this for all 

abstract AUT-languages (but ZA;in the latter case one has to work.exclusively with 

some formal system,for reduction cannot be separated from correctness considera-

tions).The main solutions were suggested by D.van Daalen (in VAN DAALEN 80-73,Chap-· 

ter V.,~._!3_. and in conversation.). 

We need first some preliminary notions. 

123. I.DEFINITION. 

Ab . 1. LA(.f" . )" inary re ation ~ on Term in ix notation is 

(1) monotone relative to cf (nf1N) if,for all 
--------- n 

in TermLA and all£ in 

Fl LA (Q._ i-. n), 
n 

a. R a! ===~ cf ca 1 •.. a .••• a i= i n- i n 
(2) monotone relative to'.=),if,for all 

LA is not PA) one has both 

R cf ca 1 •.. a! ..• a ; 
n- i n 

a 1,a2 ,b 1,b2 in the set 
LA 

Term (where 
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(3) monotone relative to A ,if,for all a 1,a2 ,b 1,b 2 in TermLA and all vari

ables v (where LA is not PA),one has both 

a 1 ~ b 1 ===9 Ava 1a2 ~ Avb 1a 2 
and 

123.2.DEFINITION. 

A binary relation~ on TermLA is monotone in LA if OpLA is the set of construc

tors in the alphabet of LA and~ is monotone relative to each o in OpLA_ 

123.3.DEFINITION. 

Let~ be a binary relation on TermLA 

of~ in LA is the least relation ~a 

LA. 

123.4.REMARK.NOTATION. 

(LA,as ever).Then the monotone closure 

such that ~a contains~ and is monotone in 

One defines,as expected,the reflexive and transitive closure of a binary rela-
. LA (' A)-tion ~ on Term in L . 

Notation: if~ is a binary relation on TermLA then RA denotes the reflexive 

and transitive closure of R in LA. 

For languages with abstraction we need some appropriate re-lettering device for 

bound variables ("dummies"). It is appropriate to cope with this (the "alpha mat

ters") first in one way or another. 

The main reason behind the use of alpha-convertibility in some lambda calculus 

consist in that one wants to have at hand - within the calculus - an expedient 

tool of disambiguating terms containing abstraction terms as subterms. 

Actually,in the ('·'reference"-)AUT-languages the "alpha matters" play no explicit 

role,for the underlying lambda calculus becomes,after implementation,a "nameless 

lambda calculus" (cf. DE BRUIJN 72-29,78-SS;BARENDREGT 81,Appendix f),where 

bound variables are not specified any more,but handled bv an appropriate 

system of references which eliminates any possible ambiguity. 
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For present purposes,it won't be neccessary to insist with formal details 

concerning alpha-convertibility.Rather,we shall adopt a set of practical con

ventions which will allow us to work with LA-terms in the "naive way". 

Specifically,where alpha-c:ongruent LA-terms are defined in the usual way (cf. muta

tis mutandis ,BARENDREGT 8 I ,3_. _!:_._!_I_.) ,we agree to adopt Conventions 2. I. 12. and 

2.1.13. in BARENDREGT 81,say (any two alpha-congruent LA-terms are identified, 

and any LA-term is "basically disambiguated" in the sense that no variable occur

ring in it is both a free and a bound variable in that LA-term). 

In particular,this will cause no specific problem when passing from PA to CA,QA, 

etc. ,for we won't work with "equivalence classes" modulo alpha-conversion,but 

rather with "representatives" in such classes. 

Now we can turn back to our main task. 

123.5.DEFINITION. 
. f d . . . b' 1 . LA A notion o re uction in LA is a inary re ation on Term • 

123.6.NOTATION. 

If ~1,~2 are notions of reduction in LA then ~1~2 stands for their union. 

123.7.COMMENT. 

The notions of reduction of concern here will be given via graphs of partial 

recursive functions on TermLA (for appropriate LA's).So it is implicitely 

assumed that PflLA,DflLA (n EN) are _s~p_e_c_i_f_i_e_d recursively,as actually in-
n n 

tended in the "reference"-versions of AUTOMATH. 

123. 8.NOTATION. 

We display the actual definitions by writing 

a ~ b ( ~~£h ~h,iH) " . . . a • • . b • • • " 

instead of using the "graph-notation" for~-

This runs as follows: 

123. 9. DEFINITION. ("Delta-reduction".) 
LA 

Where v := ~ v 1, ••• ,vn tis in Svarn,a1, .•• ,an are in Term ,i is in Dfln 

(n E- N) and "~hH~ ~(v) : := b" is a wh~i;:§-clause for LA, 

~<a1,···•an) ~~1;g--~[a := v]' 
with i(v) := i(v1, ••• ,vn),as expected. 

"b[ -v]" . 't t In this case,"d(a 1, ••• ,a )" is a delta-redex and a:= is is contrac um. 
- n 
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123. JO. DEFINITION. ("Beta-reduction".) 
. LA 1 . bl ( . ) For all a 1,a2 ,b in Term ,al varia es v where LA is not PA, 

1b} [v:a1l a2 g~H a2[b := v]. 

123. 11. DEFINITION. ("Eta-reduction".) 

1 . LA 11 . bl ( h . ) For al a 1,a2 in Term ,a varia es v were LA is not PA, 

E7:a 1J{vJa2 ~!~= a2 , 
provided vis not in FV(a2). 

123. 12.REMARK.TERMINOLOGY. 

In the latter two cases redexes and contracta are defined in the usual way. 

Hence we should be able to define - as expected - delta- ,beta-,eta-normal forms 

as well as combinations of the above.(An LA-term is in delta-normal form if no 

subterm of it is a delta-redex,etc.) 

123.13.NOTATION. 

For convenience we shall denote the notions of reduction introduced above by 

the appropriate (lower-case) QQ14=fefg Greek letters.So 4 := gglf~,~ := g~!g, --------- - -----: 
~:= ~lg and we shall take,unions as stipulated above (123.6.). 

123.14.DEFINITION. 

Let~ be some notion of reduction in LA.Then 

(I) the corresponding relation of contraction in LA is the monotone closure 

of~ in LA (that is: ~G).Notation: ££g!JLA' 

(2) Reducibility in LA is the reflexive and transitive closure of contrac

tion in LA.Notation: J~~A· 

(3) Convertibility (or definitional equality) in LA is the least equiva

lence containing ££g!JLA (on TermLA).Notati~: ~£g~LA' 

123. IS.NOTATION. 

We use in the sequel: 

(I) delta-contraction 

delta-reducibilitv: ~~~o 

delta-convertibilitv: conv - ====i 
only in connection with PA. 

In the remaining cases,each LA is supposed to be formulated with two distinct 

"extensionality-types" (terminology from J.P.Seldin and H.B.Curry),viz. the 

"beta-type" and/or the "beta-eta-type".This gives abstract AUT-languages !_,-LA 
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and ~~-LA,formulated respectively,with: 

and 

(2) beta-delta-contraction: £gg!IiJ := (~g)a, 

beta-delta-reducibility: ~~gfd" 

beta-delta-convertibility: £gg~io 

(3) beta-eta-delta-contraction: £gg!Ii~a := (~~~)a, 

beta-eta-delta-reducibility: ~~g~~a• 

beta-eta-delta-convertibility: £gg~i~S· 
We shall however keep using the labels LA ambiguously as long as the distinction 

between ~J- and fit1a-reducibility/convertibility plays no role in the description 

of the underlying syntax. 

123.16.DEFINITION. 

A reduction system (or an LA-calculus or even~ crs) on LA is a (relational) 

structure 

where 

(1) TermLA is the set of terms in LA and 

(2) contrLA'redLA'convLA are resp. contraction,reducibility and convertibili-

ty in LA. 

A reduction system on LA is extensional if £g~!~LA contains ~!~,otherwise it is 

non-extensional.(This terminology will be also transferred to the corresponding 

language LA.) 

123. 17. COMMENT. 

It appears that the behaviour of the extensional abstract AUT-languages (and 

associated crs's) diverges in several important respects from that of their 

non-extensional variants (due to the presence of "labels" ,i.e., "types" that are 

domain-parts ).This is not so for the corresponding pure ("un-labelled" or 

"type-free") lambda calculi,even if delta-reduction is present. 

Hence we have to examine the extensional case separately. 

123.18.THEOREM.(The Church-Rosser Property for LA:= PA,~-CA,~-QA,~-Q-A). 

For all LA-terms a,b,c and ~~gLA in the reduction system on LA 

if a ~~gLA b and a ~~~Ac then an LA-term d can be found such that 

b ~~gLA d and c ~~gLA d. 
Proof.By any method involving (explicitely or not) "residuals".See KLOP 80, 

BARENDREGT 81,VAN DAALEN 80·13,REZUS 81.~ 
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It can be shown easily that the preceeding theorem is,in fact,equivalent to the 

following "confluence property": 

123.19.(The Church-Rosser Theorem for LA:= PA,i-cA,~-QA,i-Q-A.) 

For all LA-terms a,b,where ~~~A ,££g~LA are as expected, 

if a ££g~LA b then,for some LA-term c, a I~~LA c and b ~~~LA c. 

Proof.Trivial,using 123.18.N 

The latter fact gives the following reassuring result (not very useful,however, 

in the present context). 

123.20.THEOREM.(Consistency for LA:= PA,i-cA,etc.) 

Convertibility in LA is a proper subset of the cartesian product TermLAx TermLA_ 

(That is: not any two LA-terms can be identified via ££g~LA in 1b·) 
Proof.Easy,by reductio,from 123.18.N 

123. 2 I. COMMENT. 

Theorems 123.18.,123.19. and 123.20. hold also for the extensional reduction 

~~~i11.J on TermLA ,provided one ignores "labels" (i.e., "types" that are domain

parts) .l!ore precisely: ~,from any abstraction term a in TermLA•~£~(a), 

i.e.,consider the abstraction terms without domain-parts.The resulting set 

of (LA-)terms is "type-free" and it is easy to show (by standard methods) that 

the corresponding relation ~~~~~J is actually Church-Rosser (in the sense of 

123. 18.) on this set. 

Even in absence of 123.18. ,Theorem 123.20. holds for the "lalielled" calculi 

~q-1b (where,of course,LA is not PA) by~ model-theoretic argument. 

Alternatively,one can use the Church-Rosser property for the corresponding 

"type-free" language/structure,realizing that one cannot "identify" more LA

terms by "labelling". (See KLOP 80,BARENDREGT 81 for a detailed explanation 

of the "labelling techniques".) 

Somewhat more useful a consequence of the Church-Rosser Theorem for PA and ~-LA's 

is the Unicity of Normal Forms (UN;cf. KLOP 80,etc.). 



54 

123.22.DEFINITION. 

An LA-term a has~ delta- (beta-delta-,beta-eta-delta-)normal form if 

(1) a ~~gLA b 

(2) bis in delta- (beta-delta-,beta-eta-delta-)normal form. 

(Alternative terminology: a is weakly normalizable in LA,a is LA-normalizable.) 

Now the UN-property can be stated as follows: 

123. 23. THEOREM. 

(1) If a PA-term is PA-normalizable then its delta-normal form is unique. 

(2) If an LA-term a is ~-LA-normalizable then its beta-delta-normal form 

is unique (up to alpha-conversion;but see the conventions on alpha above). 

Proof.By 123. 18.lll 

23.24.COMMENT. 

Theorem 123.23. does not hold for extensional structures (associated to abs

tract AUT-languages). 

Indeed,consider the following counter-example (which goes back to NEDERPELT 

73-31,and also falsifies-Theorems 123.18.,123. 19.). 

Let .E_,.E_' be floating constants in Pfl~A (0-ary).They are LA-terms in i~4-normal 

form , in some ~Q-LA. (As a "reference"-AUT example take,e.g. ,nat for .E. and 

real for £_',denoting resp. the type of naturals and the type of reals,qua pri

mitive notions.) 

Consider then the LA-terms 

a := [v:.E] v and 

One has, in any iQ-LA, that 

a £g~~f!Qd a', 
for,with 

we can find immediately that 

b ~~gi a and b ~~gq a' 

~~g~~ is a subset of ~~gi~a and £g~~,~a as well. 

a and a' are in ~~ct-normal form.Sob has two (alpha-)distinct 

and 

But \'l~d-normal 

forms. 

Of course,erasing domain-parts 

"type-free" setting. 

i.e.,ggm(a) and ggm(a') - restores UN in a 

By the same token,the Church Rosser Property fails for ~~-LA's,for - in the 

example above - a and a', being both "reducts of b" in i~-LA,have no "common 

reduct". 
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_!_l. Term-strings. 

For reasons which will appear below we need a more liberal notion of a string. 

It is reasonable to employ constructors different from the ~•sin 11. when 

defining this notion;that is: we have to introduce a new (free) syntagmatic 

category in LA. 

13. I .DEFINITION. 

The sets StermLA (n f N) are the least sets such that 
n 

if a 1, ••• ,an are in TermLA then ~Oa 1 ... an is in Sterm~A. 

13.2.DEFINITION. 

An element in Sterm~A is ~ term-string of length n (in LA) ,n E- N. 

13.3.NOTATION. 

As earlier,for Svarn's we write 

~ a1,···,an 7 := snoa1··-an 

The length of a term-string will be denoted by 

a := 
n 

(n ~ I). 

1~(an) = n,where 

(n >,:, 0), 

(we omit subscripts "n" whenever the length of the term-string a is known). 
.n 

13.4.COMMENT. 

We have "sugared" the empty strings ~O and ~O in the same way (though they 

are "syntactically distinct within the theory").This is not too important,for 

they will be distinguished (again) positionally,in more involved syntactic units. 

But if the reader does not like confusing empty strings (!) he can leave"®" 

"unsugared" in both cases. 

13.5.NOTATION.TERMINOLOGY. 
LA As epifunctions,on both Svarn and Stermn ,n c N,we shall use the following par-

tial functions elt~ (0~ i~ n),defined by 
===]. 

r· 
if X := lit (i.e. ,X := ~a or ~O) 

elt~(X) := vi or ai, if X := "t v 1 , .•• ,vn t ,or 
===]. 

undefined,else~ 
:= "t al, .•• ,an t , I~ i~ n, 
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Also,we set,for all nE N,1ggl~1l := ~1~ (understanding that 1ggl~1~(B) ~ D). 
The latter gives the "last element" of a string whenever its input is of the 

due kind. 

Now we are able to introduce two more epifunctions from LA-terms to strings. 

These are ~~gi1 and ~gi1,defined by 

,if X is a canonical term,.!h (X) = 0 l ., 
-f v 1, .•• ,vn t,if X is a canonical term,X := a, 

and a - S cv 1 •.• v 
undefined,else. n- n 

if X := .Sc (a head-term,1h(X) = O) 
n-

["' t a 1, ••• ,an t,if X := if ca 1 ••• a ,lh(X) = n,n::::,J. 
n- n = 

undefined,else. 

That is: where HtermLA is the set of head-terms in LA,tail is a total function 
LA LA LJ LA ==== --

from Hterm to Sterm = Stermn ,whereas ~lgi1 is total from canonical 
n E: IN terms to variable-strings. 

13.6.COMMENT. 

Note that for vi in Var (I~ ii n) ,whenever v 

have v. J, v. for I~ i ,f · j~ n,while if v 
i J 

:= -f v 1, ••• ,vn tis in Svarn,we 
. . LA . . . is in Sterm this is not required. 

The distinction between 2-0Dv 1 ••• vn and ~Dv 1 ••• vn will be convenient later 

(althohgh it looks somewhat strange). 
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14.E-sentences. 

14. I.DEFINITION. 

The sets EsentLA are the least sets such that,if a,b are in TennLA then 

Eab is in EsentLA_ 

The elements of EsentLA are called E-sentences or E-fonnulas in LA (LA:= 

PA,CA,QA,Q-A,etc.) 

By "sugaring" the syntax we get some familiar notation. 

14. 2.NOTATION. 

We shall write in the sequel, 

(a:b) 

for 

Eab 

but outennost parentheses will be omitted whenever no confusions may arise. 

Lower-case Greek letters~. 't' ,possibly with sub- and/or superscripts will be 

used as syntactic variables for !-sentences. 

14.3.DEFINITION. 

If ~ := Eab is an ~-sentence in LA then a is the subject of~ and bis its 

predicate. 

14.4.DEFINITION. 

An assumption is an E-sentence ~ whose subject is a variable. 

14.5.DEFINITION. 

A (canonical) p-sentence (resp. d-sentence) is ant-sentence~ whose subject 

is a canonical p-tenn (resp. a canonical d-tenn). 

A canonical E-sentence is either a canonical p-sentence or a canonical d-senten-

ce. 

14.6.REMARK. 

Of course,"in LA" should be supplied everywhere in the above. 

As expected,we would want to speak about the "components" of an ~-sentence without 

mentioning them explicitely.This will be done by using appropriate epifunctions, 

~~g and g~~g-
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14. 7 .NOTATION. 

If 1 := !ab (~ is ant-sentence in LA) then 

and 

(else g~g and g~~~ are undefined). 

Now we may introduce,by convention,~~ epifunction from LA-terms to E-senten

ces in LA (where LA is not PA),ggg say. 

14.8.NOTATION. 

For all X in Word(LA), 

[
Eva,, 

undefined,else. 

if X := /'wab (an abstraction term) 

(That is: ggg takes the abstraction prefix of any abstraction term into the 

corresponding assumption.) 

14.9.COMMENT. 

The intended interpretation of an !-sentence is "typing". I.e., if a,b are 

LA-terms then "Eab" read_s "a has type b" or "b is a type of a" ,etc. 
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JS.Contexts. 

15. I.DEFINITION. 

The sets ContxLA (n f :N) are the least sets such that 
n 

is in Svar and a is in StermLA then Tv a is in ContxLA_ if v n 
An element of 

£A n n -nn n 
Contxn is~ context of length n in LA (nc:N). (LA :=PA,CA,etc.) 

15. 2. DEFINITION. 

If A := Tva is a context of length n in LA then the variable-string of n _ - n n 
A is v ,while a is its category-string.Finally,the variable-string and 
'"'n n n ----~~~--~-
the category- string of An are the strings of An. 

15.3.NOTATION. 

We shall mainly use ~O in order to denote the context of length O in any LA. 

(That is: ¾ := ~D~O or A0 := .!:_~.) 

Whenever 

and 

is in Svar 
n 

LA 
an:= ~ a1, ... ,an 7 is in Stermn, 

we shall frequently write 

A0 (v1 :a1] ••. [vn :a), 

for Tv a ,omitting sometimes A0 ,if n:,,:,, I. -nn 
Further,for n~ I ,~,possibly with superscripts will range on contexts of length 

n and the subscript "n" will be omitted whenever the length of the context is 

known. 

15.4.NOTATION. 

The following epifunctions will be used in order to refer to the strings of a 

given context without mentioning them: ~~~ 1(A0 ) = ~0,~~~2 (6 0 ) = ~O and 
- -- LA str1 (A)= v if A := Tv a is in Contx ,else =s=t:;:_ 1 is undefined, === n n n -n n n 

=s=t_r_2 (An) = an if A Tv a is in LA 1 • d f · d ( ): I) n := n n Contxn ,e se 1::~!:z is un e ine n '/ • 

Sometimes,it will be also convenient to use epifunctions ass1: (n e :N,O ~i~ n) 
~----- ===]. 

defined by 

ass1:(x) ===i := l~o if X = ..60 , 

Ev.a. if X = 
- ]_ l. 

undefined,else. 

.!:_va, v := 
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15.5.DEFINITION. 

Let An :=.60 [v 1:aiJ ... [vn:an] and ~m := L\J[vj:aj] ... [v~:a~)be to contexts 

in LA (n,m t N). 

An is ~ subcontext of Am (notation: L\n 1mg dm) if 

(I) n"- m, 
n 

for all i, I~ i~ n,if vi = ~l~i (;1,H 1 (An)) then vi s vi, 
n 

for all i,l~i~n,if ai - ~Hi(;1,H2 <An)) then ai = ai 

(2) 

(3) 

(Hence g~~j (An) is a subsequence of ~Hj (4m) , j = 1,2; that is: the order 

of the elements in strings is preserved when passing from A to A). n m 

15.6.REMARK. 

Sometimes ,contexts (of length n,n ~I) ~n := .60 [v 1 :a~ .•. [vn :aJ satisfying 

the following conditions below are called telescopes (of length n): 

(I) FV(a1) (/J, 

(2) FV(ai+I) !;; fv 1, ... ,vJ , for all i,lfi<: n. 
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16.Constructions and sites. 

16. I.DEFINITION. 
LA 

(I) The sets Pconstr (n E lil) are the least sets such that 
n 

if An is in Contx~A and ~n is in EsentLA with g~g(~n) in Pterm~A 

LA 
then ~~n~nD is in Pconstrn, 

(2) The sets 

if A 

(n E- lil) are the least sets such that 

is in EsentLA with g~g(~n) in Dterm~A,and n 

is ~t~1~-clause for LA,then 

: := a II 

LA 
is in Dconstrn, 

provided gl1i (An) - ~!~i~(~~~(~n)) 

LA LA 
(3) An element of Pconstrn ,Dconstrn resp. is a (canonical) p-construction, 

resp. cl-construction with length n in LA. 

(4) ConstrLA PconstrLAU DconstrLA is the set of (canonical) construc-
n n n 

tions of length n in LA and the set 

ConstrLA u 
nE- lil 

ConstrLA 
n 

is the set of (canonical) constructions in LA (or the set of LA-construc

tions). 

16.2.NOTATION. 

W 1 h . f' . . p LA LA d f' d f p LA ea so use t e in inite unions constr ,Dconstr e ine rom constr and 
LA LA LA n 

Dconstrn as expected and an element of Pconstr ,Dconstr resp. will be called 

p-construction resp. cl-construction in LA. 

In general,p-constructions in LA will be denoted by 

:= {A; p(v) : b ➔, 
n -

where 

6 := Tva n 

V := ~Dv 1 ... vn 

a := ~Oa 1 ..• an 

and 

J pv 1 ... v . 
n- n 
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Similarly,a d-construction in LA will be denoted by a detour via the meta-

- language (epi-theory) ,viz. ,by restoring explicitely t:he corresponding "~~~I~

clauses".This gives: 

:= 

with ~n,v and a as earlier and,moreover, 

d(v) := d° dv 1 ..• v , n- n 
(n E- N). 

16.3.TERMINOLOGY. 
. (' . D . LA 'f Any LA-construction kc:= ~An~nX with either X ~ or X in Term satis y-

ing the conditions of-the definition above) has as immediate components 

(I) its context-part An, 

(2) its supporting (canonical) !-sentence ~n and 

(3) its definition-part X;the latter is the definiens of some definitional 

specification ~£(kc) say,for LA,such that ~£(kc) specifies g~g(~n). 

Next,the remote components of k are 
----~---- C 

defined by structural induction as follows: 

(Ir) if~ is the context-part of k n C 
then 

(I Ir) gl~1 (4n) and gH2 ~n) are the strings of k 
C 

and 

(12r) for each i,O~ i!!> n, 

ass~(A )-is an assumption of k; ===i n - --~-- - C 

(2r) the strings and the assumptions of kc-are remote components of kc 

(3r) 

(from An); 

(22r) if vn = gl~1<Au) is a (variable-)string of kc then each ~1!~(vn) 

(O 1f i ~ n) is a remote component of kc (from .0:), 
(23r) if an= g!I2 (An) is a (term-)string-of kc then any quasi-sub

term of each elt~(a ) ,O ~ i~ n, is a remote component of k ===i n --- - C 

(from 4 ) ; 
-- n 

if now~ is the supporting 
n 

(canonical) !-sentence of k 
C 

(31r) sub(~) is the subject or the definiendum of k === n -~-- ------ - C 
and 

(32r) g~~~(i)in) is the category part of kc; 

then 

(4r) the subject of k as well as any quasi-sub-term of its category-part 
C 

are remote components of kc (from i)in); 

(41r) if c(v) is the subject of k then the head of £(v) is the identi-
- C 

fier of k and the identifier of k is a remote component of k 
--- C C C 

(from~); 
-- n 

(Sr) if Xis the definition-part of kc and Xis in TermLA then any quasi-

sub-term of X,distinct from X itself,is a remote component of k (from 
C 

its definition-part X). 
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The immediate and the remote components of a (canonical) LA-construction kc 

are all and its only components. 

16. 4. REMARK. 

If k is an LA-construction then no immediate component of k is a remote 
C C 

component of it and conversely. 

For reasons that will be obvious later we shall introduce a canonical parsing 

of LA-constructions into canonical components (and remote canonical components) 

as follows: 

16.5.TERMINOLOGY.NOTATION. 

The canonical components of an LA-construction kc are all and on1y the 

following components of k: 
C 

(I) its context-part,hereafter denoted by ctx(k ), === C 

(2) its category-part,hereafter denoted by cat(k) and === C 

(3) its definition-part,denoted by def(k ). === C 

The remote canonical components of k are all and only the following 
C 

remote components of k : 
~ 

(Ir) any remote component of k from ~!~(kc) is a remote canonical compo
£. 

nent of kc; 

(2r) if a= ~~I(kc) is in TermLA then any proper quasi-sub-term of a 

(i.e.,any quasi-sub-term of a,distinct from a itself) is a remote 

canonical component of kc, 

(3r) any proper quasi-sub-term of b = cat(k) is a remote canonical === C 

component of kc and 

(4r) the identifier-of k ,hereafter denoted by idf(k ) 
C === C 

~ c ),is a remote 

canonical component-of k. 
C 

16.6.REMARK. 

It is easy to see that any component of an LA-construction k ,except its sub
c 

ject (definiendum),is either a canonical component of k or a remote canoni-
c 

cal component of kc. 

The latter kind of-parsing will be useful in the tree-analysis of correctness 

in 3. below. 
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16.7.REMARK. 

We have introduced implicitely,in 16.5. above,several useful epifunctions 

(totally defined on ConstrLA). 

For later purposes,it will be sufficient to have at hand only those named 

(explicitely) earlier,viz.ctx,cat,def and,possibly,£gr. 

Now we can introduce the sole text-category of LA,viz. 

16. 8. DEFINITION. 

A site in LA (or an LA-site) is a finite set of (canonical) constructions in 

LA (for any LA,as above). 

16.9.N0TATION. 

We let SiteLA := P41 (ConstrLA),where for any set ~,PW(~) is the set of 

finite subsets of A. 

Site LA is the category of sites in LA (or the category of LA-sites). 
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3_.Language definition: correctness. 

In this section we shall be concerned with the correctness part of the most im

p.ortant abstract AUT-languages (viz. PA,CA,QA and Q-A). 

The language definition method used in the sequel is very close to the pattern 

employed by D.van Daalen et al. in the so-called "E-definition" of the "refe

rence"-AUT-languages AUT-68 ,AUT-QE (cf. ,especially, VAN DAALEN 73-35 ,80-73). 

20.Correctness categories. 

We introduce the correctness categories of/in LA on an inductive set-theoretic 

pattern.(LA := PA,CA,QA,Q A,etc.). 

In its most general form,a correctness category of/in LA is a relation on syntac

tic categories of/in LA. 

20.1.DEFINITI0N. 

For each LA (as above),the family of correctness categories of/in LA is a 

finite family of relations: 

{ . LA LA LA LA'2. 
Sitea ,Cont~R ,Esenta ,Terma j 

such that the following (proper) inclusions hold: 

( I) s· LA,- s· LA itea '== ite , 

(2) LA LA 
Contx c::.. Contx 

R -
S . LA 

X ite , 

(3) Esent~A'-==:, EsentLA x ContxLA x SiteLA, 

(4) Term~\;; TermLA x ContxLA x SiteLA 

and the elements of CorrLA are the least sets satisfying the correctness rules 

in RlLA below. 

The correctness categories mentioned above are to be understood as being primitive 

for LA.In terms of these we can define derived correctness categories for LA and 

it will be useful to do so in order to shorten subsequent formulations. 

20. 2. DEFINITION. 

For each LA,Constr~A is the set of pairs <k,B) such that B is in Site~A and 

k is in B. 

The set-theoretic notation implicit in the above is not very convenient for the 

statement of the correctness rules in each RlLA· 
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Therefore,it will be appropriate to make use of some additional "syntactic sugar". 

The-outcome will closely ressemble standard notational habits,as often used in the 

language-theory of "reference"-AUTOMATH (especially by D. van Daalen; cf. VAN DAALEN 

72-28,73-35,80-73). 

20.3.NOTATION. 

B,LI. I-LA a:b 

B,6. II-LA a 

and 

stands for 

stands for 

LA 
(iji,Ll.,B> E Esent8 

where f := a:b 
LA 

<:a,A,B-;, E: Term~ 

B,A II-LA a 1, ••• ,an stands for the conjunction of 

20.4.TERMINOLOGY. 

It is somewhat awkward to provide a consistent and unambiguous reading in 

English for the elements of a correctness category of/in LA. 

We shall,however,approximate this as follows: 

(1) B is an LA-compatible site 

(2) Bis LA-compatible and 

for "B is in s· LA11 1tellll: , 

A is LA-admissible for B 

(3) Bis LA-compatible and 

k is sound for/in B --- ---
(4) iji is correct for Band A 

such that 

Bis LA-compatible and 

a is LA-admissible for B 

(5) a is correct (or !_-correct) 

such that 

Bi§ LA-compatible and .6 

~ i§ LA-admissible for B 

for "fJ,B7 is 

for "(k,B? is 

for 'l(iji,4,B)> 

for B and A 

for ''<'.a,~,B> 

in ContxLA" 
Ill ' 

in ConstrLAn 
Ill 

is in EsentLA" 
Ill ' 

is in T LA11 erm . 
Ill 

Slightly elliptic variants of the above will be also adopted in colloquial 

ways of speaking/writing. 
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20.5.C0MMENT. 

We shall also introduce a couple of other "derived correctness categories in 

(for) LA" by a detour via the metatheory,using the associated reduction sys

tem!,,~ (with the appropriate "extensionality type" specified whenever neces

sary). 

These "categories" will contain (b13 abuse of language) new kinds of "correct 

sentences" (or "correct formulas") in LA,besides the sets CorrEsentLA := 
LA Sec 1 (Esenta ).Cf. 05.4. for notation, 

Specifically,one has 

(1) contraction-sentences (or .s:_-sentences) in LA, 

(2) reducibility-sentences (or !-sentences) in LA and 

(3) convertibility-sentences (or g_-sentences) in LA 

and they are intended to "formalize" resp. the appropriate restrictions of 
LA LA 

~gg!~LA'~~~LA and ~gg~LA to the sets CorrTerm := Sec 1(Terma ). 

Accurately,they must be thought of as being relations 

LA LA LA LA LA Xsent C (Term x Term ) x Contx x Site 
a 

where X := .S:,!,.9. such that 

XsentLA 
a 

iff 

(i) Bis in SiteLA, 
a LA 

(ii) <'A, B )' is in Contx and 
a 

(iii) .(a,.1,B :> and <:b,~,B)' are 

and such that 

(iv) a~ b holds, 

where 

( I I) R := ~ggHLA 
(2 I) ~ := rel === A 

if X := .s:_, 

if X := R 

(3 I) R := ~gg~LA if X := Q. 

both in TermLA 
3 

and 

In some presentations of the "reference"-AUT-languages at least something 
LA analogous to g_sent3 above was taken as a primitive correctness category 

(this approach was also mentioned in 05.2. and 10.1.;see e.g.,VAN DAALEN 73-35, 

80-72).In JUTTING 82-83 something similar to !sent~A and .s:_sent~A was used 

in the language definition of several "reference"-AUT-SYNT languages. 

Alternatively,one might think of the corresponding new ingredients as being 

mere abbreviational devices intended to simplify more involved ways of spe

king (and notation). 

Here we shall adopt the latter point of view. 
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20.6.DEFINITION. 

CsentLA is the least set such that,for a,b in TermLA,A in ContxLA and B in 
111 , LA 

the category Site , 

if 

is in CsentLA 
Ill 

(I) B is in SiteLA and <'A,B> 
Ill 

LA 
is in Contx111 , 

(2) B,A l~LA a,b 

(3) a ££g!J;LA b 

20.7.NOTATION. 

If B is in SiteLA and .i is in ContxLA then 

B,A l=LA a ££gH b or B,.!l I= a ££gHLA b 
stands for 

'' <'<'a,b>,A,B) CsentLA 
,, 

is in 
Ill 

and it is understood that Bis LA-compatible and O.. is LA-admissible for B 

(in current notation,the latter kind of information will be oft made explicit). 

Also we write,ellipticaily, 
Ill 

a ££gHLA b 
if,for some LA-compatible Band~ LA-admissible context A for B1one has 

B,A FLA a ££g!J; b. 
Th . Ill • h at is: ££g!J;LA is t e restriction of ££g!J;LA to the corresponding set 

CorrTermLA x CorrTermLA LA LA 
(where CorrTerm := Sec 1(Term111 );cf. 05.4.). 

In the same conditions as above we write 
I 

B,A FLA a ££mr b (or even B,A 

for 

"B,A or B,A l=LA b 

and adopt the same elliptical notation 
I 

a £\m~LA b 
for cases where 

I 
B,A l=LA a ££g~ b 

contra", ===== 

holds for some LA-compatible site Band some context A ,LA-admissible for B. 

20.8.DEFINITION. 

RsentLA 
Ill 

is the least set such that,for all a,b in TermLA,all A in ContxLA 

d 11 B . s· LA an a in ite , 

.(<a,b>,A,B) is in RsentLA 
Ill 
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(I) B is in SiteLA and (,.6,B) 
Ja 

(2) there are LA-terms 

is in ContxLA 
Ja 

a~ ao,a1,···,an,an+l 

such that 

- b 

B,~ I= ai £~g!~LA ai+I 

20.9.DEFINITION. 

and 

(0 f if n). 

QsentLA is the least set such that,for all a,b in TermLA,all A in ContxLA 
Ja 
11 . . LA 

and a Bin Site , 

if 

.(<a,b>,4,B> 
LA is in Qsent3 

(I) B is in SiteLA and <'.~ ,B'> is in ContxLA and 
l!I l!I 

(2) there are LA-terms 

a ;a aO,al' .... ,an,an+l - b 

such that 

B,A. I= 

20. IO. REMARK. 

(Ofi.fn). 

By the conventions adopted in 20. 7. above, the LA-terms ai (0 f i ~ n+ I) in 

20.8. and 20.9. have to be such that 

B,A 

20. I I • NOTATION. 

II- a .• 
i 

We shall introduce analogues of the abbreviations in 20.7. as follows: 

let B be an LA-site and A be an LA-context,then 

(I) 

resp. 

(2) 

stand for 

(I') 

and 

B , A. I= a ~~~LA b 

is in RsentLA" 
l!I 

II LA " (2') <.<a,b">,~,B~ is in Qsent 
l!I 

resp.It follows that B is LA-compatible and ~ is LA-admissible for B,but the 

latter kind of information will be often made (somewhat redundantly) explicit. 

If,for some LA-compatible site Band some LA-context A ,LA-admissible for B, 

we have (I) or (2) above we also write elliptically 

(I") 
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or 

(2") 

resp. 
l!I l!I 

Clearly, ~~gLA and £gg~LA resp. are the restrictions of ~~gLA,£gg~LA resp. to 

the appropriate sets 

CorrTermLA x CorrTermLA 

where CorrTermLA is as earlier (in 20.7.). 

20.12.COMMENT. 
l!I As used here,£gg~LA corresponds to D.van Daalen's "51" in VAN DAALEN 80-73, 

except that 1 in the latter case,"g_" is a primitive constructor in the language, 

while,here,we have preferred to keep the matters concerning reduction and 

definitional equality at a meta-linguistic level. 

Before going into the details of the correctness rules in each set RlL~•we shall 

list some more notational conventions and terminology to be used later on. 

20. 13. NOTATION. 

Let B be an LA-compatible site and A be an LA-admissible context for B. 

Then,for all LA-terms a0 ,a1, ••• ,an,a~+l'the list of epi-theoretic statements 

will be condensed,for convenience,in a single line,as follows: 

20.14.TERMINOLOGY.NOTATION. 

Let B be an LA-site and CJ. be an LA-context with 1g(A) = n,n~ 0. 

(1) A variable v is said to be fresh for ll if it does not occur in A as 

a sub-word of it. 

(2) Define 

A floating constant c is fresh for B if it is not in !g!(B). 
(3) L 1 ::>.-b-.-S LA ( O) et an:= , a 1, ••• ,an 7 e in termn n ~ • 

Then a floating constant E. is rank-fresh for an if it is rank-fresh 

for each a. in a. 
i n 

(4) In analogy with (3) one may say~ is minimally fresh for an if 

(41) ~gg~(~_) O,whenever n = 0 and 

(42) ~~m~(~_) ~~ h1;g~ + (ai) : If i ~ n 5 + I ,whenever n ~I. 
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21.Correctness for Primitive and Classical (Abstract) AUTOMATE. 

In this section the definition of PA(= Abstract Primitive AUTOMATE) and 

CA(= Abstract Classical AUTOMATE) will be completed by specifying the 

appropriate sets of correctness rules (RlPA and RlCA resp.). 

Actually,PA is a sub-language of CA (or,if one prefers,CA is an extension of 

PA) and the corresponding correctness rules will be chosen such as to reflect 

straightforwardly this situation (i.e.,we will indeed have RlPA strictly con

tained in RlCA'qua sets). 

2 I • I. COMMENT. 

In detail,the "structure" of the sets RlLA (LA:= PA,CA) is as follows: 

(I) structural rules concerning 

(I I) the compatibility of sites in LA: (Si), (Sr-Ip), (Sr-2p),(Sr-ld), (Sr-2d), 

(12) the admissibility of contexts in LA: (Ci),(Cr-1),(Cr-2); 

(2) basic rules concerning 

(21) the correctness of E-sentences in LA: (Ei),(Er-c), 

(22) the correctness of LA-terms in LA: (Ti),(Tr); 

(3) rules of category conversion (for LA),viz. rules of 

(31) atomic reduction for categories in LA: (CC 1) and 

(32) atomic expansion for categories in LA: (CC2). 

These rules will be also present in the languages Q-A and QA (to be studied 

in ~- below). 

Besides the above,RlCA contains also: 

(4) specific CA-rules,concerning the correctness of E-sentences on CA 

(involving applications and abstractions),viz. 

(41) an application rule: (app-1) and 

(42) abstraction rules: (abs-l-CA),(abs-2). 

Accurately,in the case of RlCA'we are defining two distinct abstract AUT-langua

ges by the~ set of correctness rules,according to the "extensionality type" 

o:fi. the corresponding relation of "definitional equality" taken as primitive 

in the language (or in the associated reduction system): viz. we have ~-CA, 

with ££~Hr,ct•;!;~g,d' and ££~~~d' in ~~,and the "extensional version" of the lan

guage,namely iQ-CA,with ££~!:!;r,~&•;!;~giqd and ££~~f>QJ in the associated reduc

tion system. 
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211.Correctness rules for PA and CA. 

We state first the structural rules in RlPA'RlCA (and RlQA'in fact).The notation 

and terminology used here is as earlier.The assumption of freshness for variables 

will be always made explicit (this is somewhat redundant,however). 

I.STRUCTURAL RULES 

LA:= PA,CA,(Q-A,QA) 

I. I .Site LA-RULES 
H 

I.1.1.SiteLA_INITIALIZATION. 
H 

(Si) The empty site is LA-compatible. 

I.1.2.SiteLA_RECURSION. 
H 

Let An := .c.0[v 1:aJ ... [vn:aJ (n 'l0) 

.E. <v) := .E_(vl' ••• ,vn), .E. in PflLA 
n 

i<v) := ~(v1,···•vn), din DflLA 
n 

and,where 

c(v) := p(v) or E_(v) := ~(v),with ~ in Fl~A, 
d- • -LA 

an a 1.n Term , 

a LA 
(with kc in Constrn ,n );,O) 

Assume Bis an LA-compatible site and .6n is an LA-admissible context for B. 

(Sr-Ip) If .£_ is fresh for B and 

rank .... fresh for a := 't a 1, •••,an t 
then 

B U { k;} is LA-compatible, 

- with k"t' := "f:.n; .E_(V) :'t' ➔-
.E. 



(Sr-2p) 

(Sr-Id) 

(Sr-2d) 

I.2.ContxLA-RULES. 
Ill 

73 

If .£_ is fresh for B, 

B,bn \-LA a:'t' and 

p is rank-fresh for a' := * a 1, ... ,an,a t 
then 

BU { ka J is LA-compatible , 
.£. 

with ka := {A; p(v):a ➔ • 
.£. n -

If d is fresh for B, 

B,~n rLA a:'t" and 

dis rank -fresh for a' := * a 1, ... ,an,a t 
then 

BU {k~J is LA-compatible, 

with k! := { An; i!_(v):'t' ➔, ~g~~~ i!_(v) ::= a. 

If i is fresh for B, 

B,An rLA b:a:'t' and 

dis rank-fresh for a":= * a 1, ... ,an,a,b t 
then 

BU { k: J is LA-compatible, 

with k: := { An; i!_(v) :a ➔ ,~g~~~ i!_(v) : := b. 

I.2.1.ContxLA_INITIALIZATION. 
Ill 

(Ci) If B is LA-compatible 

then 

A0 is LA-admissible for B. 
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I.2.2.ContxLA_RECURSION. 
Ill 

Assume Bis an LA-compatible site and~ is an LA-admissible context for B. 

(Cr- I) If vn+l is fresh for A n 
then 

A"t 
n+l := A [v 1 :1:'] n n+ is LA-admissible for B. 

(Cr-2) If vn+I is fresh for A n' 

B,An I-LA a:~ and 

(vn+l is not in FV(a)) 

then 
6a 

n+l := An[vn+l :aj is LA-admissible for B. 

Next we state the basic correctness rules for PA and CA (resp. Q A,QA;cf. below). 

They concern the correctness of !-sentences~ in LA ( := PA,CA,etc.) where 

~~2(~) is either a variable or a head-term and the correctness of LA-terms 

(which,in fact,is a concept derived from the former one). 

As variables and head-terms are supposed to be present in any LA,these rules 

(or something similar) are,again,connnon to all abstract AUT-languages. 

II.BASIC RULES. 

II.I.EsentLA_RULES. 
Ill 

II.1.1.EsentLA_INITIALIZATION. 
Ill 

(Ei) 

Let A 
n 

If Bis LA-compatible and 

An is LA-admissible for B 

then 

v.:a. 
l. l. 

LA:= PA,CA (Q-A,QA,etc.) 

for all i,l~i~ n. 



II.1.2.EsentLA-RECURSION. 
Ill 

(Er-c) If B is 

.On is 

ka is 
C 

75 

Let An := A0 [v1:a~ •.• [vn:a) 

and, 

a' 
m := A0 G,; :a;]. .. [v~:a~] 

for c in FlLA,(and fresh for A 
n n 

~(v) := ~(vi' ... ,vn) 

k a : = ~ A ; C (v) : a , , 
C n -

and, for b := "t b 1, ... ,bn t, 

~(b) := (~(v))['b := v]. 

LA-compatible, 

LA-admissible for B, 

(sound) in B and 

(m ~O), 

and a in TermL') 

' aJ'b == v] (all i,l~i~n), B,llm f-LA b. : 
1. 

II.2.TermLA_RULES. 
Ill 

such that 
.6 1 is LA-admissible for B, 

m 
then 

B,0! ~LA ~(b) : a[1;" := v]. 

II.2.1.TermLA_INITIALIZATION. 
Ill 

(Ti) If Bis LA-compatible and 

An is LA-admis.sible for B 

then 

II.2.2.TermLA_RECURSION. 
Ill 

(Tr) If Bis LA-compatible, 

An is LA-admissible for Band 

B,..1n 1--LA b:a 

then 

B,An 11--LA b. 
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III.RULES OF CATEGORY CONVERSION. 

LA:= PA,CA,(Q-A,QA,etc.) 

Assume Bis an LA-compatible site and An is an LA-admissible context for B. 

III.I. ATOMIC REDUCTION FOR CATEGORIES. 

B, An H-LA b I , b 2 and 

b I £1:rn~,¥ LA b 2 

then 

B,An I-LA a:b2. 

III.2. ATOMIC EXPANSION FOR CATEGORIES. 

B,An If-LA b 1,b2 and 

bz ££!tHiA bl 
then 

B,An ~LA a:b2. 

NOTE.Here contrLA:= contrd,if LA:= PA,and 

contrLA:= contr~14,else.So 

and ~q-LA with ~g~~,¥i~J· 

2 I I. I. COMMENT. 

if LA is not 

either contrLA:= contr~J or 

PA,one defines i-LA with ££~~,¥~cf 

This completes the definition of PA.So,for further reference,RlPA contains 

all and only the following rules (as primitive correctness rules for PA): 

I. (Si),(Sr-lp),(Sr-2p),(Sr-ld),(Sr-2d);(Ci),(Cr-l),(Cr-2); 

II. (Ei),(Er-c);(Ti),(Tr); 

III. (CC 1), (CC2). 

Clearly,with the exception of (CC 1) and (cc2),the remaining rules were 

classified according to the correctness categories of their ,outputs (that 

is: the SiteLA_rules "produce"~ LA-compatible siteS,similarly,the 
LA Ill 

Contx111 -rules produce new LA-admissible contexts and so on). 
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As intended,20,1. (just completed above,for the case LA:= PA) is a usual 

inductive definition.In particular,even if the underlying recursion re

l_ies on a simultaneous induction,each of the recursive sets thereby defined 

is invariably given by 

(I) some initial clause ("initialization"-clause: (Si), (Ci), (Ei), (Ti) ) 

and 

(2) several "recursion"-clauses (four for sites,two for contexts,one for 

E-sentences and one for terms). 

~nly the Site~A-rules are "building" rules;the remaining ones serve to 

"transfer" information from old LA-compatible sites to new ones (one would 

even want to call them "transport"-rules). 

In the Rules of Category Conversion the appellation "category" is to 

be understood as referring to the "category-part" of an LA-construction (and 

not to "syntactic" or "correctness categories" in LA). 

The latter do not only "transfer" some information from some LA-site to 

another one,but also "modify" the information concerned by a detour via the 

reduction system (here~~) associated to the language. 

Without (CCi),i = 1,2, the language definition is,in fact,purely syntactic 

(or,if one prefers,combinatorial in nature - in the sense of "combinatorics"; 

see also _l below),but also without these rules there is hardly some interest 

in the corresponding sub-language(s).They clearly introduce the sui generis 

combinatory aspect of the language under consideration (where "combinatory" 

is to be taken somewhat a la KLOP 80,as qualifying a specific reduction 

system,while,if LA is not PA,its connotation is very close to Curry's 

"combinatory logic"). 

The import of the restrictions of "rank - freshness" on floating constants 

in the SiteLA_recursion rules will appear later on. 
Ill 

211.2,TERMINOLOGY.REMARK. 

In any Site~A-recursion rule (viz. (Sr-lp),(Sr-2p),(Sr-ld) and (Sr-2d) above), 

the LA-construction by which some LA-compatible site Bis "extended" will 

be said to be correct for Bin LA or even B-correct in LA. 

Now,obviously,if some k is B-correct in LA,for some LA-compatible site B, 

then BU { kJ is LA-compatible and k is LA-sound in B U { k J. Conversely, if 

some k is sound in some LA-compatible site B,then ~ is !!2_f ~ that k is 

B-correct in LA (since 1~£(k) is not fresh for B any more). 

(Compare with the "correctness of lines w.r.t. correct books" in the "reference" 

versions of the AUT languages,) 
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Now the definition of CA(-correctness) will-be completed by listing the remaining 

rules in RlCA (which are not in RlPA).According to the classification mentioned 

in 211.1. above the rules following below are EsentCA_rules,i.e.,they will have 
CA H --

outputs in the correctness category Esent • 
H 

IV.SPECIFIC RULES FOR CA. 

IV. I.APPLICATION RULE I. 
LA := CA (Q-A,QA,etc.) 

(app-1) If Bis LA-compatible, 

6n is LA-admissible for B, 

B,An I-LA a' :a:'t' and 

B,An I-LA b: &:a]b' 

then 

B,An I-LA [a'Jb:b' [a' := vl 

IV.2.ABSTRACTION RULES. 

IV.2.1.ABSTRACTION RULE I FOR CA. 

and vn+l be in Var. 

(abs-I-CA) If Bis CA-compatible, 

I::, is n CA-admissible, 

B,6n I-CA a:'t" 

a 
An [vn+I :a] An+t := is CA-admissible for Band 

a 
B,~+l I-CA b :'t' 

then 

B,A n I-CA r n+ 1 : a] b 
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IV.2.2.ABSTRACTION RULE 2. 

(abs-2) 

211.3.COMMENT. 

LA:= CA (Q-A,QA,etc.). 

Let An := ~0 [v1:a~ ••• [vn:a) 

and vn+I be in Var. 

If Bis LA-compatible, 

¾ is LA-admissible for B, 

f-LA a:1:, 

:= An [vn+l :iy is LA-admissible for B, 

then 

B,an f-LA Cvn+l:ajb' : [vn+l:a1b. 

For further reference,RlCA'the set of primitive correctness rules of CA 

contains the rules in RlPA together with the following three Esent~A-rules: 

IV.(app-1),(abs-l-CA),(abs-2). 

In particular,rule (abs-1-CA) is prima facie a peculiar feature of CA, 

when comparing the latter with other extensions of PA. Indeed,Q-A,discussed 

incidentally below,lacks (abs-1-CA) as a derived rule,but it is quickly regai

ned in QA by the mechanism of category inclusion.So what is rather specific to 

CA - when compared with bigger games - is that (abs-1-CA) forbids actually (CA-) 

correct terms of the form §" 1:aJ[v2:a2] ••• [vn:an]-t: (n ~1). 
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212.Basic epi-theory forPA,CA: "structural" lerrnnas. 

We examine now some basic properties of the correctness categories in PA and CA. 

Let us first give names to some sets used informally earlier. 

212.1.N0TATI0N.C0MMENT. 

Where Sec 1 is as introduced in 0[4. above 
LA LA 

(I) 

(2) 

(3) 

(4) 

CorrContx Sec 1(ContxN ). 

CorrConstrLA 

CorrEsentLA 

CorrTermLA 

LA 
Sec 1 (Constra ) • 

LA 
Sec 1 (Esenta ) • 

LA 
Sec 1 (Terma ) • 

and LA := PA.CA,we set: 

That is,informally: CorrContxLA is the set of LA-admissible contexts for 

LA-sites B such that B is LA-compatible (the set of "correct contexts in LA"), 

CorrConstrLA is the set of LA-sound constructions in LA-sites B such that Bis 
N 

LA-compatible (the set of "correct constructions in LA"),CorrEsentLA is the set 

of "correct E-sentences in LA" and CorrTermLA is the set of "correct LA-terms". 

E.g.,in other words, 

CorrTermLA is the least subset of LA-terms a such that 

B,A II-LA a, 

for some LA-compatible B and some LA-admissible context A for B. 

It is. appropriate to start with the remark that (for LA := PA,CA) CorrEsentLA 

determines a partition of CorrTermLA in (three) pairwise disjoint equivalence 

classes.Using a standard terminology in "reference" AUT0MATH we call these 

equivalence classes "degrees" and introduce them by recursion as follows. 

Hereafter,if not otherwise specified,LA := PA or CA. 

212.2.DEFINITI0N. 

Let B be an LA-compatible site and A be an LA-admissible context for B. 

For any LA-term a,if 

B,A II-LA a, 

then the degree of a (relative to B and A in LA) ,denoted by ~~LA (B,A,a), 

is defined by: 

(I) ~~LA(B,A,a) 

(2) n and B,A I-LA a:b n+I. 



81 

The subscript "LA" will be always omitted from notations indicating degrees. 

The following fact motivates some further simplifications in the (meta-)notation 

for degrees. 

2 I 2. 3. REMARK. 

For LA-sites B,B' ,LA-contexts l:J., t,' and LA-terms a not in Var such that: 

(I) B,B1 are LA-compatible, 

(2) A is LA-admissible for B, 

(3) A' is LA-admissible for B' 1 

(4) B,A. If-LA a and 

(5) B' .~• II-LA a 

one has also 

(6) 

It is easy to see that the above does not obtain for a in Var. 

However,the following notation can be used rather freely. 

212.4.NOTATION. 

For all LA-terms a,we write "i~(a) = n;, for .,~~(B,A.,a) = n" ,leaving 

(the LA-site) Band (the LA-context) A unspecified 1if this does_ not lead to 

confusions. 

212.5.LEMMA. 

(LA:= PA,CA,etc. See 22. below.) 

For all B,A such that Bis LA-compatible and A is LA-admissible for B, 

and all LA-terms a such that B,A. If-LA a,one has 

I~ g~(B,b,a) ~ 3. 

Proof.By induction on LA-correctness.B 

212.6.REMARK. 

The following facts can be checked easily: let B be an LA-compatible site and 

~bean LA-admissible context for B. 

(I) For all LA-terms a,b,if B,A I-LA a:b then g~(a) # 1.Indeed,in this 

case one has 

g~(B,A,a) = g~(B,A,b) + I, 

and there is no degree O (zero) in Definition 212.2. 
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(2) For all LA-terms a,b, if B,A ~ a g b,where R := contrLA'redLA'c£nvLA 
then 

(3) In particular,if a is a head-term in LA,with 1g(a) 

all i,l~i~n, 

2 ~ dg(arm1:(a)) ~ 3. =- ===1 

n,n ),::,I ,then for 

(4) By clause (I) of 212.2. the only LA-term a with ~~(a) = I is -"t' so 

there are no variables,no head-terms,no application-terms and no abstrac

tion-terms in LA (:= PA,CA) with degree I. 

We are now going to establish some "structural lemmas" on term-correctness in PA,CA 

which will be oft employed later. 

212.7.LEMMA. 

If B is LA-compatible, A is LA-admissible for B and,for v in Var, 

B,A II-LAV 

then either 

(I) B ,6 I-LA v :1:' 

or 

(2) for some LA-term ~,one has 

B,6- f-LA v:a:1:'. 

Proof.By induction on LA-correctness.N 

212.8.REMARK. 

In other words,the preceeding Lemma amounts to the fact that,for any 
variable v_in CorrTermLA one has 2{.~~(v)"'3 (such v's are "free"). 

The next lemma is somewhat more informative. 

212.9.LEMMA. 

Let B be LA-compatible and t::.. be LA-admissible for B.If 

B,~ If-LA v, 

then 

(I) for somen,n),:, l,1g(~) =n and 

(2) for some i, If i'- n, 

(21) v = sub(ass1:(.~)) === ===1 

(22) 

and,moreover,(for the same i,H;,i:;n), 

with a. ii 
1 

B,A I-LA 

Ered(ass1:(L\)). -=== ===1 

v:a. 
1 

for v in Var, 



83 

Proof. In each case (LA := PA,CA) ,by induction on the definition of correct

:,_ess in LA.111 

212. 10. LEMMA. 

If B is LA-compatible, A is LA-admissible for B and 

B,~ II-LA ~(b1•···,bn) 

for some~ in Fl~A and LA-terms b 1, ••• ,bn (n),:,O) then 

either 

(I) B,A I-LA C (b I ' ••• 'b ) :'t'. - n 
or 

(2) B,A f-LA ~(b 1, ..• ,bn) :a:'t' 

for some LA-term a. 

Proof.By induction on correctness in LA.R 

212.11.REMARK. 

So,correct head-terms in LA can have only degrees 2 and 3. 

As earlier,in 212.9. we can obtain some more information about correct head-terms 

in LA by a mere inspection of the EsentLA_rules.That is: 
Ill 

212.12.LEMMA. 

Let B be LA-compatible and t::. be LA-admissible for B. If 

for c in Fl LA then 
0 

B,A If-LA C 

(I) for some k in ConstrLA such that 

(11) ~ = igf(k) and 

(12) ~O = £t~(k) 

one has that 

(2) k is in B 

anrl,moreover, 

(3) B,~ 1--LA £ : £iH/k). 

Proof.As earlier,in each case (LA:= PA,CA),by induction on correctness in LA.111 
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Now the general case will be completed by indicating the behaviour of correct 

head-terms a (in LA:= PA,CA),where g~gg(a) is in Fl~ with n~I. 

212.13.LEMMA. 

Let B be LA-compatible and A be LA-admissible for B.If 

B,A l~LA E_(b 1, ••• ,bn) 

for some c in Fl~A and LA-terms b 1 , ..• , b n (n),;, I) then 

(I) for some kin ConstrLA such that 

(II) E_ ~ i~f(k) 

(12) 1g(£!~(k)) = n 

one has that 

(2) k is in B 

and,moreover,that 

(3) 

and 

(4) 

where (Ji: i~ n), 

B,A 

a. » £red(ass~(ctx(k))), 
i ---- ---i ---

V 

v. 
i 

sub(ass~(ctx(k))) === ===i === 

(n ~ I) 

(I~ i~ n), 

Proof.As ever,by induction on correctness in LA:= PA,CA.(Hint: consider (Er-c).).~ 

By now the "structural" characterization of PA-term-correctness was readily 

completed, 

Before establishing a "structural" characterization of PA as a whole we go on 

insisting on the "structural" behaviour of correct CA-terms that are "properly in 

CA" (the terms ~ CA,i.e. the abstraction- and application-terms;for "on" see 

later on,section l_,specifically 314.) 

First we consider application-terms in CA as regards their behaviour w.r.t. 

degrees,viz. we establish the admissible degrees for argument- and function-parts 

(consult 121,6.,etc. for terminology). 
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212.14.LEMMA.(gI~-degrees in CA). 

If B is CA-compatible, A is CA-admissible and 

B,6 II-CA {aJb 

then for some CA-term a' 

B,A I-CA a:a' :1:'. 

Proof.By induction on correctness in CA.N 

212. IS.REMARK. 

Therefore,for any correct application-term in CA,a say,one has 

~~(gI~(a)) 3. 

This gives the following corollary. 

212. 16.COROLLARY. 

If B is CA-compatible, A is CA-admissible for B and 

B ,A II-CA {aJb 

then 

B,A 1)--CA a. 

Proof.By 212.14. and the definition of Term~A.N 

2 I 2 , I 7. REMARK. 

That is: for any CA-correct application-term a,the CA-term gI~(a) is again 

CA-correct (relative to the same CA-compatible site,B say,and the same CA

admissible context for B). 

212.18.(~~~-degrees in CA). 

If B is CA-compatible, fl is CA-admissible for B and 

then 

for some CA-term b'. 

B,A II-CA {a}b 

I- b:b' :'t', 
CA 

Proof.By induction on correctness in CA.B 
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212. 19.REMARK. 

In other words,if a is a CA-cQrrect application-term then 

gE; (£1;rn (a)) = 3. 

As earlier,we have function-part correctness as a corollary. 

212.20.COROLLARY. 

If B is CA-compatible, A is CA-admissible for B and 

B ,a II-CA { aJb 

then 

B,~ II-CA b. 

Proof.By 212.18. and the definition of 

212. 2 I. REMARK. 

So,for any correct application-term a in CA (relative to some LA-compatible B 

and some LA-admissible context for B) we also have that £~g{a) is correct in 

CA (relative to the same site and context). 

CA It remains to consider abstraction-terms in CorrTerm ,as regards their behaviour 

w.r.t. degrees;specifically,to establish the admissible degrees for value- and 

domain-parts in CA. (cf. 121.6.). 

212.22.LEMMA.(g£m-degrees in CA). 

If B is CA-compatible,~ is CA-admissible for B and 

B,A II-CA [v:a]b 

then 

B, A I-CA a:'t:', 

i.e.,one has always gE;(g£m(a)) = 2,for any abstraction term a in CorrTermCA_ 

Proof.As above,by induction on correctness in CA.B 

This gives domain-part correctness as a corollary. 

212.23.COROLLARY. 

If B is CA-compatible, A is LA-admissible for B and 

B,A II-CA fy:a]b 

then 

B,A Ir-CA a, 

i.e.,for any abstraction-term a,if a is in CorrTermCA then so is ~£w(a). 
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Proof.By 212.22. and the definition of Term~A.ft 

212.24.LEMMA.(Value-part correctness in CA.) 

If B is CA-compatible, 6 is CA-admissible for B and 

B,A II-CA fy: a] b 

then 

(I) IY := A&:a] is CA-admissible for B and 

(2) 

Proof.By induction on correctness in CA.ft 

212.25.LEMMA.(~~1-degrees in CA). 

If Bis CA-compatible, A is CA-admissible for Band a is an abstraction-term 

with 

B,A II-CA a 

and 

~1:/i(B,A,a) = n (n ~ I) 

then,where a' Jgl(a),a" = ~g~(a) and A' := A\y:a"],for some v in Var 

such that v is fresh for 6 ,one has also 

~1:/i(B,A' ,a') = n. 

Proof.By induction on correctness in CA.ft 

212.26.REMARK. 
CA 

In particular,by 212.6.(4) one has,for any abstraction term a in CorrTerm , 

2-f ~~(a)~ 3, 

so,by 212.25. and the motivation of the elliptic degree-notation in 212.3., 

we have also 

We can now establish "structural" characterizations of application and abstrac

tion terms in CorrTermcA,analogous to 212.9.,212. 12. and 212. 13. above. 

This will complete the "structural" characterization of CA-term-correctness. 

The following Lennnas will collect information implicit in groups III and IV 

of correctness rules (for CA) listed in fil. 

212.27.COMMENT. 

We have seen in 212.15. and 212.19. that g~l:/i- and £~g-degrees in CA have to be 

always "maximal",viz. 3.This will be also the case,in general,for abstraction

terms a in CorrTermCA,whose intended meaning is that ~i(a) = ~~E,,-=aJ(a) ). 
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212.28.LEMMA. 

Let B be a CA-compatible site and A be CA-admissible for B.If 

B,~ II-CA {a}b 
then there are CA-terms b I ,a' and b' such that 

(I) 

(2) 

(3) 

where if /j,' := 

(4) 

and also 

(5) 

with 

(6) 

B,A 

B,.O. 

B,.6 

AE,:a'.) 
B, (l' 

)-CA b 

I: bl 

t-CA a 

(with 

t-CA b' 

: b :'t:' 
I 

Gr:a•h· £gir¥cA 
: a' :'t:" 

A' LA-admissible 

: '?: 

B,A t-CA {a3b: b'[a := v]. 

g~(b) = g~( ja}b) (= 3). 

(i.e. , g~ (b I) 

(i.e. ,g~(a ') 

for B),then 

( i. e . , g~ (b ' ) 

Proof.By induction on the definition of correctness in CA.§ 

212. 29. REMARK. 

2) 

2) 

2) 

ill ill 
In Lemma 212.28. £g~~CA can be safely restricted to £g~~cf and even to ~~gd 

where the underlying atomic reductions can be always "external" (i.e., "head

reductions", starting "outer-most/left-most" in a CA-term). 

R 1 . . . CA h d 2 ( I) h" eason: no app ication-term in CorrTerm can ave egree or .Tis 

excludes applications of ("external") atomic beta- and eta-reductions. 

Finally, "internal" applications of atomic reductions would do n·o harm, 

once we have some a' and some b' satisfying condition (2) in the state

ment of the Lemma. 

212.30.COMMENT. 

Lemma 212.28. appears implicitely in the "algorithmic" definition of AUT-68 

of DE BRUIJN 77-52b (cf. also VAN DAALEN 80-73,V.4.2.). 

Of course,in the statement of this Lemma bound occurrences of the variable v 

have to be chosen such as to avoid collisions (of bound variable~.Cf. 123. 

above. 

A similar analysis is also possible - in the case of CA - for correct abstrac

tion terms. 
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212. 31 .LEMMA. 

Let B be CA-compatible and A be CA-admissible for B.If 

B,~ II-CA [v:a]b 

then 

(1) for some CA-term a',one has 

(11) B,61 I-CA v:a' 

(!2) B,A FCA a' £~g~CA a 

(13) 

(2) A' := A[v:a] is CA-admissible for B, 

(3) 

(4) 

B,6' If-CA b, with 2 ~ ~~(b) ~ 3, 

Moreover,if 

then 

(5) 

where 

~~( [v:~ b) ~~(b). 

b" 

b" 
' 

••[ \v,a']b', 

b' ( ~~)' 

if ~~(b) 

if ~~(b) 

3 

= 2. 

Proof.By induction on the 

earlier (on degrees).~ 

definition of correctness in CA, using facts 

212.32.REMARK. 

proved 

In the statement of 212.31. the bound occurrences of the variable v have to be 

chosen such as to avoid collisions of bound variables. (See the conventions 

on alpha-conversion in 123. above.) 

212.33.COMMENT. 

Lemma 212.31. is,implicitely,part of the "algorithmic" definition of AUT-68 

appearing in DE BRUIJN 77-52b (referred to earlier). 
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212.34.COMMENT. 

It is now easy to see that the preceeding "structural" Lemmas 212.9.,212.12. 

212. 13. (for LA:= PA,CA) and 212.28.,212,31. (for LA:= CA),together with 

h T LA ... 1· . 1 (T") (f LA PA CA) b h d t e ermm -initia ization rue i or := , ,can e strengt enen up 

to the corresponding equivalences. 

They insure,jointly,the (epi-theoretic) correctness of inductive proofs on the 

"structure" of a LA-term in CorrTermLA (LA:= PA,CA) (whence our qualification 

of the Lemmas above). 

Moreover,the named Lemmas 

for correct Esentences in 

"typings" for LA-terms in 

provide the admissible "predicates" (:er~g-parts) 

LA (in CorrEsentLA,i,e.,they furnish ;~~-admissible 
LA CorrTerm ,where LA:= PA,CA). 

The l~tter kind of information was actually embodied - in the usual,more or 

less "algorithmic" formulations of PAL(-THE) and AUT-68 in the action of a 

specific epifunction on "correct expressions" (roughly corresponding to our 

terms in CorrTermLA) ,called "mechanical typing function". (This is usually 

denoted by "CAT" or ".D!I!", 11£e!!!YE"; cf. ZANDLEVEN 77-36, VAN DAALEN 73-35 &·±·3..·2.·, 
DE BRUIJN 77-52b,JUTTING 79-46,~ • ..!_.Q_. or Appendix ~.,as well as the description 

of !i:g and ~~,Jii:g - relative to "correct books" and "correct contexts" - in 

VAN DAALEN 80-73,IV.2,.3._,I· et~- ,V.2,.3._•±· ,etc.). 

Accurately, this is a recursive epifunction totally defined on CorrTermLA - { 't'J 
with values in Corr;ermLA (here: LA:= PA,CA) and also depends on LA-compatible 

sites and LA-admissible contexts. 



91 

~.Basic epitheory: invariance under site- and/or context-expansion. 

We shall list here several more or less trivial but useful lemmas concerning 

the "invariance of correctness" in syntagmatic categories of LA(:= PA,CA) 

under "LA-compatibility and/or LA-admissibility preserving expansions" in the 

d . · (" s· LA d/ LA) correspon ing correctness categories i.e., item an or ContxN . 

Specifically,we establish that "expanding" correctness categories like SiteLA and/ 
U N 

or ContxN preserves correctness for the remaining syntactic categories. 

"Expansion" in (LA-compatible) sites will simply mean "taking super-sets" within 

Site~A,whereas "expansion" of (U-compatible) contexts will be understood - roughly 

speaking - as "increasing contexts-length" within CorrContxLA_ 

We examine first the case of contexts.As earlier,U := PA,CA if not otherwise 

specified. 

213. 1.LEMMA.(Lexical variants for contexts.) 

Let B be an LA-compatible site and 

LA-admissible context for B. 

Where v;, ••• ,v~ are pairwise distinct (i.e., v' := (v;, ••. ,v~) is in Svarn 

and each v! (I~ i ~ n) is fresh for B) with also 
1 

the LA-context 

A' := a 0 [v; :a;J. .. [v~ :aJ 
is LA-admissible for B. 

Proof.Easy induction on correctness in LA.& 

213.2.THEOREM.(Correctness-invariance under lexical variants of contexts.) 

Let B be U-compatible and A be LA-admissible for B.Hhere v! ,a!,A' are as 
1 1 

in the statement of Lemma 213.1. and,moreover,for 

a' := a [v• := :;,] 

LA-terms a,b 

b' := b [v' := :;,] 

we have: 

(1) If B,A \-LA a b then B,A' I-LA a' b' 
' 

(2) If B,A \t-LA a then B,~ \~LA a' 

and 

(3) If B,~ FLA a~ b then B,A i=u a' Rb' = 1 

where R := contr conv1 re~ conv • -----LA'----LA'--- A'----LA 
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Proof.By induction on correctness in LA,using 213.1.N 

This gives the following bunch of consequences (cf. 15. for ~~g). 

213.3.THEOREM.(Correctness-invariance under context-expansion.) 

Let B be an LA-compatible site and A,A' be LA-admissible contexts for B. 

Let A g~g t:,.' (that is: A is a sub context of !l'). 

( 1) If B,A I-LA a:b then B,A' I-LA a:b. 

(2) If B,A II-LA a then B,A' II-LA a. 

(3) If B,a !=LA a ~b then B,L\' l=LA a~ b, 

where ~ 

Proof. (1) By induction on the "derivation" of B, A I-LA a:b in LA. (2) By (1) 

and the definition of TermLA.(3) From (2) and the definition of ~l!I (i.e.,~ restric-
LA l!I LA 

ted to CorrTerm x CorrTerm .).N 

213.4.COMMENT. 

Theorem 213.3. is the analogue of van Daalen's Weakening Theorem (for "correct/ 

admissible" contexts) in VAN DAALEN 80-73,V.~-2..-l· 

The "converse" statements (corresponding to 213.3. (1)-(3) above) were called 

"Strengthening Rule(s)" in VAN DAALEN 80-73.,V.~.~- and were taken as primiti

ve rules in some "reference"-formulations of the AUT-languages studied there. 

The corresponding statements for LA:= PA,CA are as follows: 

Let B be an LA-compatible site and A,i be LA-admissible contexts for B, 

with A' g~g 6 ,where~:= tl0[v1:a11 ... [vn:an),and a,b in TennLA su~h 

that: whenever vis in FV(a) U FV(b) one has also v s vi,for some 

i, 1 ~ if n. 

(I) If B,A ~LA a:b then 

(2) If B,6 II-LA a then 

and,where ~ := 

(3) if B,A !=LA a~ b then 

Using (1)-(2) above qua rules in the primitive correctness part of LA(:= PA,CA) 

allows to "simplify" LA-admissible contexts,from the very beginning 1up to 

"minimal non-redundant" (LA-admissible) contexts for given correct LA-terms, 

resp. correct :g_-sentences in LA. (Indeed, the "strengthening rule" (3) would 

follow from (2) and the definition of R in our formulations above.) 
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In VAN DAALEN 80-73,the corresponding "Strengthening Rules" have been employed 

only as "technical rules" in order to simplify proofs involving the "extensio

nal" versions of AUT-68,AUT-QE,etc. and the argument that they are actually 

dispensable is rather tedious. 

213.5.COMMENT. 

As expected,Theorem 213.3. will allow to "modify" LA-admissible contexts 

along a given correctness proof,by additioning "redundant" assumptions 

(within the limits of CorrContxLA,of course).It says,in the end,that any such 

an LA-admissible "expansion" should preserve correctness for any one of the 

"bigger" categories depending on ContxLA_ 
I![ 

In particular,this result allows us to pass from some "local environment" 

in some LA-compatible site to a more comprehensive one,involving the former. 

Something analogous is also possible for sites. 

213.6.LEMMA.(SiteLA_expansion for sound LA-constructions.) 
I![ 

Let B,B' be LA-compatible.If Bis a subset of B' and k is sound in/for B then 

k is also sound in/for B'. 

Proof.Trivial,by the definition,of soundness of LA-constructions in LA-compatible 

sites.~ 

213.7.THEOREM.(Site~A-expansion for LA-contexts,!-sentences and LA-terms.) 

Let B,B' be LA-compatible sites such that Bis a subset of B' and let A be 

an LA-admissible context for B.Then (for all LA-terms a,b): 

(I) A is LA-admissible for B'. 

(2) If B,6 I-LA a:b then also B' ,A I-LA a:b, 

(3) If B,6 II-LA a then also B',6 II-LA a. 

Proof.By induction on correctness in LA (simultaneously).~ 

This gives the following consequence(s). 

213.8.COROLLARY.(SiteLA_expansion for correct~-,~- and g_-sentences.) 
I![ 

Let B,B' be LA-compatible sites.If Bis a subset of B' ,A is LA-admissible for 

B and 

B,A l=LA a ~ b 

then also 

(where ~ := 

B' A l=LA a ~ b 

contr ,red ,conv ). 
-----LA ---LA ----LA 
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Proof.By 213.7.(3) and the definition of ~-B 

-Collecting the facts on "expansions" we have the following Theorem. 

213.9.THEOREM. 

Let B,B' be LA-compatible sites and !),,/::,.' be LA-contexts such that 

(i) Bis a subset of B', 

(ii) A is a subcontext of A' (i.e.,[). ~),¼g D.') and 

(iii) fl,A' are LA-admissible for B. 

Then the following implications hold: 

(I) if B,6 I-LA a:b then B',A' f-LA a:b, 

(2) if B,6 II-LA a then B',A' If-LA a, 

(3) if B,A l=LA a ~ b then B' ,A' l=LA a ~ b, 

Proof.(!) Then,by 213.7.(1), A' is LA-admissible for B',while,by 213.7.(2), 

B ' ,fl I-LA a: b • 

Hence,by 213.3.(1),one has the desired result. 

(2) By 213.7.(1),(3) and 213.3.(2).Finally,(3) follows by 213.7.(1),213.8. and 

213.3. (3) .l)l 

213. JO.COMMENT. 

The moral of 213.9. is as expected: the addition of "redundant" (B-correct) 

LA-constructions to some LA-compatible site B and (the addition of) "redundant" 

assumptions within some "correct" LA-context (such as to preserve LA-admissi-

bility) do not alter the corresponding concepts of correctness for LA-

formulas and LA-terms (where "LA-formulas" are to be taken in the extended 

sense: either E-sentences or C- or R- or g_-sentences). 
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214.Substitution and category correctness. 

We are now able to prove some more useful Theorems on the behaviour of LA-terms 
LA in CorrTerm (LA:= PA,CA). 

Specifically,we will be first concerned with deriving several important facts 

on (simultaneous) substitutions in CorrTermLA_ 

214.1.THEOREM.(Simultaneous substitution for !"._-sentences.) 

Let B be an LA-compatible site, t:, := a0 [v 1: a;J ..• [vn: anj and 

LA-admissible contexts for B.If 

t:.' be 

and 

then 

B, A1 b. 
]. 

B,A rLA a: a' 

B,A1 

Proof.By induction on the "derivation" of 

B,A 1--LA a a' 

for all i, I~ i f n, 

in LA. (Cf. VAN DAALEN 80-73,V,l.~-~- for the analogous result in "reference" 

AUTOMATH.).~ 

Similarly,we have the following "elliptic" counterpart of 214. I. ,for correct LA

terms. 

214.2.THEOREM.(Simultaneous substitution for LA-terms.) 

Let B be an LA-cdmpatible site, Ll:= 6cJ[v 1:a1] ... &n:anl and ~• be LA-admis-

sible contexts for B. If 

B,A1 
I-LA b. : aJb := v] 

]. 
for all i, ).,'. i~ n, 

and 

B,A II-LA a 

then 

a[b := vl B,~ II-LA 

Proof.As earlier,for 212. !.,using induction on the derivation of B,A lrLA a.~ 

The above give immediately the particular cases involving "single substitutions". 
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214.3.COROLLARY.("Single substitution theorem".) 

Let B be an LA-compatible site and A be some '.LA-admissible context for B. 

Assume that 

The'n 

(I) if 

then 

and,similarly, 

(2) if 

then 

B,b. II-LA a'[b := v]. 
Proof.(I) From 213.1.(2) From 213.2.~ 

214.4.REMARK.(Simultaneous substitutions for C-,R- and Q-sentences.) 

Once we have proved 214.2. we 'have the appropriate versions of the (simulta

neous/"single") Substitution Theorem for C-,R- and Q-sentences (for these work 

as mere abbreviations in our formulations above). 

That is,with ~ for any o~e of contlir.f?redLA,convLA we obtain the following: 

If Bis LA-compatible and A,~• are LA-admissible for B (where A is as in 

Theorem 2 14. I • , i.e. , : = AO [y 1 : a 1] ••• [v n: an] ) and 

then 

(This holds also for R := ~~gLA'i.e.,for the converse of £g~!~LA and,consequent

ly,for £g~XiA,the "at:mic convertibility" relation,as expected.) 

Of course,if n = I ,the corresponding statements would concern the "single 

substitution" case. 

In the statement of the primitive correctness rules for LA(:= PA,CA) the rules 

having an output in EsentLA (i.e.,something of the form B,A I-LA a:b,with Bin 

Site and A in CorrCont:r.A),no stipulation was made on the correctness of the 
l!I 

"predicates" b in "a:b". (Correctness for subject-parts follows from (Tr) ,of 

course.).This will be obtained now as a metatheorem. 
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214.5.THE0REM. ("Correctness for categories".) 

Let B be LA-compatible and A be LA-admissible for B. If 

B,A \-LA a:b 

then 

Proof.By induction on the "derivation" of B,.6 I-LA a:b using (Ti) ,213.3. ,214.1. 

and facts proved in 212. above.& 

214.6.C0R0LLARY. 

Let B be LA-compatible and A be LA-admissible for B. If 

B,A I-LA a:b 

then 

B,A. II-LA a,b. 

Proof.By (Tr) and 214.S. above.& 
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22.Correctness for QA and QA. 

This section is devoted to the study of correctness in two extensions of CA 

which we call here Q-A and QA. 

Accurately ,QA is supposed to be the abstract version of the official "reference" 

AUT-QE language,whereas Q-A is a sub-language of QA,intended to "mimick",on the 

pattern of the present approach,the abstra~t structure of de Bruijn's AUT-QE-NTI 

(that is: AUT-QE-Without-Type-Inclusion;cf.,e.g.,DE BRUIJN 78-56). 

Prima facie,the difference between QA and Q-A consists of the absence of the 

Rule of Category Inclusion (cf. below) which is characteristic for QA and does not 

hold in/for Q-A.(This is also,roughly speaking,the difference between AUT-QE and 

AUT-QE-NTI,where the latter lacks the analogous rule of Type Inclusion). 

Both QA and QA are extensions of PA,in the same sense CA was.Moreover,QA is a 

(rule-)extension of CA,too (in the sense the primitive correctness rules of CA 

should hold in/for QA),but this is not the case for QA (so the Rule of Category 

Inclusion is essential in "deriving" the primitive rules of CA which are absent from 

- the present formulation of the correctness rules of - QA). 

The situation described ab;ve can be easily depicted by the following diagram of 

all possible inclusions (we ignore,for the moment being,any distinction of "exten

sionality type";cf. below) .Here "LA1 --t--H LA2" stands for "LA1 is a sub-language 

of LA2" or "LA2 is an extension of LA1 ",where the arrow points out to the "bigger" 

language: 

QA 

PAo~QA 

CA 

Modulo the convention in 10.4. above (concerning the elimination of the proof-type 

symbol from the alphabet of any LA of concern here), the "free" parts of CA,Q-A and 

QA coincide (in the sense they have the same set of terms,~-sentences,etc.),where

as PA is a sub-language of any of the remaining (abstract) languages also inasfar 

its "free" part is concerned (it lacks abstraction- and application-terms). 

So the arrows of the preceeding diagram are to be interpreted uniformly as depic

ting correctness-rule-extensions (see,however,the Comment following below for 

some more subtleties). 



99 

So we will display the appropriate sets of correctness ru:es RlQ-A and RlQA' 

thereby completing Definition 20.1. for the cases LA:= Q A,QA. 

Rigorously,in each case,we are defining two distinct abstract AUT-languages LA 

by the same set of correctness rules RlLA (as earlier in 3-!_.),viz. ~-LA and 

f>'l.-LA,according to the "extensionality type" taken as basic in the associated 

reduction system 1~-Still,for most of our (syntactic) purposes the correspon

ding distinguo won't matter. 

22. !.COMMENT. ("Derivable" vs "admissible rules".) 

In our ·informal d:i'.scussion above,(epi-theoretic) concepts like "rule-extension" 

and "extension" were used rather freely in connection with the abstract "langua

ges" LA(:= PA,CA,Q-A,QA).As some misunderstandings are not quite unlikely the 

matter deserves some comment. 

Following N.G.de Bruijn and standard meta-theoretic terminology used currently 

in connection with the AUTOMATH-project (at least in Eindhoven),we did 

and will consequently speak about AUTOMATH-languages (whether in "reference" 

or in abstract format) rather that about AUTOMATH-proof-systems or AUTOMATH

(deduction· )systems.That is: the correctness part of an (abstract) AUTOMATH 

language is to be actually' taken as a part of the language,as well as its 

"free" /"canonical" syntactic part. 

This meta-linguistic habits may be somewhat mis-leading (at least for some 

logicians): indeed,in a more rigorous meta-theoretic setting - which,by the way, 

won't be too relevant in connection with AUTOMATH - one would always want to 

distinguish between a bare "language" and some super-imposed "proof-system" 

"system of derivations" on/for this "language". In the latter. acception,any 

AUTOMATH-language (whether "abstract" or not) should be,of course,a proof

system (accurately: a proof~checking system and not a proof-producing device, 

say not a "system for proving theorems" 1)). 

I) N.G.de Bruijn ~al.have repeatedly insisted on the fact any language in 

the AUTOMATH-family is neither intended nor suited to be a theorem-proving 

system (cf.DE BRUIJN 73-34,80-72,3.!_;VAN DAALEN 80-73,I._!_.2_.,etc.;however see 

VAN DAALEN op.cit. ,I.~·2.· and the suggestion to use "attachments" to an AUT

verifier in DE BRUIJN 80-72,3.!). The point is oft missed and "remarks" like: 

"one disconcerting aspect of the AUTOMATH language is •.• the fact that it 

seems not to make any use of the improved automatic theorem proving techniques 

developed during the last decade" (BROWN 81) reveal a mere misunderstanding of 

the nature of AUTOMATH. 
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Thus,as a system of (correctness) rules,an AUT-language is,roughly,comparable 

with any "deductive system" (a natural deduction system say;actually,T-versions 

of some "reference" AUT-languages - where "T-" labels the "natural deduction 

style" as in CURRY 63,etc.- have been proposed and worked out so far in the 

existing literature on AUTOMATH;cf.,e.g.,van Daalen's Master's Thesis: VAN 

DAALEN 72-28,I.~. or the informal treatement of AUT-68 in VAN DAALEN 80-73, 

I.,4.5. and the general discussion of the subject in NEDERPELT 77-54,etc.). 

In this respect an (abstract) AUT-language is a production system,viz. its 

(primitive) correctness rules are supposed to generate (uniquely) the family 

of correctness categories of the language (where the latter are either sets 

of words over the alphabet of the language or finite sets of sets of words - in 

our present approach). 

So far we have been speaking only of "primitive" rules,in any such a production 

system,while any "derived" rule of the system has been viewed - somewhat un

commitally - as a "meta-theorem" about/on the system.One should perhaps insist 

more on the possible meaning of "derived" here.Specifi:cally,we did not pay 

attention too much in the (epi-theoretic) proofs (on LA' s) above to the "proof

theoretic strength" of the apparatus needed to obtain "derived" rules (in LA' s). 

Indeed,a correctness rule, may be called a "derived rule" in at least two dis

tinct acceptions (the distinguo is very likely due to LORENZEN 55,if not to 

H.B.Curry;we hereafter use Lorenzen's terminology,but only with local import). 

Let Rl0 be a set of primitive rules for some (production system) LA.Then the 

set of derivable rules over Rl0 (resp. in LA) is the least set Rl,containing 

Rl0 and which is closed under 

(1) reflexivity (i~e., x1, ••. ,X I- X. is in Rl;where the turnstile is 
n i 

to be taken in the usual Rosser-Kleene sense;cf.REZUS 81,etc.) 

(2) addition of an arbitrary premiss (i.e., (K) in CURRY 63 ;there "weakening") 

(3) contraction of premisses, (i.e., (W) in CURRY 63), 

(4) permutation of premisses,(i.e.,(C) in CURRY 63), 

(5) transitivity (i.e. ,some form of "cut";Curry's (1-lll) say,or (£hg;/;¼1) in 

REZUS 81). 

(The "closure"-conditions are,obviously,mere variants of the "structural" rules 

in some Gentzen-style sequent formulation of first-order logic say.Historically, 

this concept of derivability for rules is explicitely due to J.B.Rosser,whence 

"Rosser-derivability" in REZUS 81 ;but apparently earlier implicit manipulations 

of it - in a less general setting - can be found already in Gentzen's writings.) 
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It is clear that - in the acception above - only very few rules are "de

rivable" in LA (:= PA,CA say) ,beyond those that are already "primitive" 

in LA (i.e.,with our standard notation: in RlLA). 

There is still another sense in which a rule can be said to be "derived" 

in/for some (abstract) AUT-language LA,viz. whenever it is "admissible" in 

the acception of Curry and Lorenzen. 

Roughly speaking and with application to (the production systems) LA as intro

duced here,we say that a rule is (Curry-Lorenzen-) admissible in/for some LA 

if it does not increase some correctness category of LA when added to the 

primitive apparatus of correctness in LA.In particular,any derivable rule in 

LA is also admissible in LA but not conversely,for in the case of "admissibi

lity" nothing is said about the proof-theoreti'c strength of the methods 

allowed to obtain some "admissible rule" for LA. 

Since the former sense of "derived" (viz. "derivability") is rather poor in 

content we may eventually need using "derived" in the larger acception (of 

Curry and Lorenzen) when relativized to the case of rules in LA.(In VAN 

DAALEN 80-73,no similar distinction is made concerning the rules of "refe

rence" AUT-languages therein discussed,but by a mere inspection of the comple-

xity of some proofs "by induction on correctness", it should be clear that 

in most of the cases the larger acception is meant by "derived rule".) 

This distinction relativizes directly to "rule-extensions";namely,LA1 is a 

rule-extension of LA2 modulo derivability if the set of derivable rules in LA 1 

is a super-set of the set of derivable rules in LA2 ,whereas LA 1 is said to be 

a rule-extension of LA2 modulo admissibility if the set of admissible rules 

(a la Curry-Lorenzen) of LA1 is a super-set of the set of admissible rules of 

LA2 . 

Note also that - in the picture displayed earlier - "correctness-rule-exten

sion" should be rather taken modulo derivability. (This is,of course,at least 

in the case of the abstract AUT-languages of concern here,a matter of choice 

of the corresponding sets of primitive rules: RlLA'in our notation.In our 

present description the sets RlLA - for LA:= PA,CA,Q A,QA etc. - are chosen 

such as to be minimal for the corresponding formulation of LA;in other words: 

no primitive rule in any of the sets RlLA seems to be dispensable.Cf. below.) 

22.2.REMARK. 

As earlier for PA and CA,the "language definition" for QA and QA in this 

section corresponds to the "~-definition" of the corresponding "reference" 

AUT-languages in VAN DAALEN 80-73. 
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22.3.COMMENT. 

In detail,the "structure" of the sets RlLA (LA:= Q-A,QA) is as earlier 

for CA,with some minor modifications. 

First, 

(I) the structural rules,concerning the compatibility of sites and the 

admissibility of contexts in LA (:= Q-A,QA) ,, 

(2) the basic rules,concerning the correctness of E-sentences and the 

correctness of LA-terms not involving abstractions or applications 

as well as 

(3) the rules of category conversion for LA (~tomic reduction/expansion) 

remain unchanged for LA:= Q A,QA. 

Besides these,RlQ-A and RlQA contain also 

(5) specific rules,concerning 

(51) the correctness of LA-terms (on LA:= Q A,QA;for "on" see 314.), 

involving abstractions (and applications): viz. (Tr-QA) and 

(52) the correctness of !-sentences (on LA:= Q-A,QA),involving 

abstractions and applications,viz. 

(521) application rules: (app-1),as in CA,and (app-2),and 

(522) abstraction rules: (abs-I-QA) and - as in CA - (abs-2). 

Moreover,RlQA contains a new rule (absent from RlQ-A'too),viz. 

(6) the rule of category inclusion: (CI). 

So, in order to prove that Q-A (and therefore QA) is a "correctness-rule

extension" of CA we should "derive" the specific CA-rule (abs-I-CA). 

It will be seen that the restricted sense of "derived" will suffice for this 

(cf. 22.1. above,for "derivability"). 

Rigorously,the present formulations are non-redundant when the rules in RlQ-A 

and RlQA are taken as "atomic units" (i.e. ,if we do not allow "decompositions" 

in "instances" or "partial cases"). It is not so after a detailed "degree-analy

sis",similar in nature with that performed in 212. for PA and CA.Indeed,it 

will be seen easily that the instances of the "specific" TermLA_recursion 
l!il 

Rule (Tr-QA) (LA := Q-A,QA) which make sense for CA are already "derivable" 

in CA (in the technical sense of "derivable" noted earlier). 

This - and some other minor redundancies - are due to the fact we did not 

want to include degree-considerations within the language definition from the 

very beginning,but prefer to obtain them as meta-theorems. 
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22 J. Correctness rules for Q A and QA. 

For the correctness rules in Groups I through III the reader should consult 

~.(This is also the case for (app-1) and (abs-2) which appear in Group IV 

in~.) 

Now the definition of Q-A- and QA-(correctness) will be completed by listing 

the remaining rules in RlQ-A (and RlQA) which are not in RlcA· 

V.SPECIFIC RULES. 

LA := Q A,QA. 

V. J.TermLA_RECURSION RULE. 
Ill 

(Tr-QA) If Bis LA-compatible, 

~ is LA-admissible for B, 

B,An rLA a:~ and 

a 
B,An+l It-LA b 

then 

B,~n II-LA [v:a]b, 

where An:= .60 6, 1:aJ .•• [vn:an], 

v in Var,v fresh for A ,v not in FV(a) and 
a J n 

~n+I := An[v:a . 

V.2.EsentLA_RECURSION RULES. 
Ill 

V.2. I.APPLICATION RULES. 

V.2.1.J.APPLICATION RULE I. (app-1) 

V.2. 1.2.APPLICATION RULE 2. 

as for CA (cf.211.rule IV. 1.). 

(app-2) If Bis LA-compatible, 

An is LA-admissible for B, 

B,\ I-LA a':a:~ 

B,An I-LA b':b: E,:a]a" 

then 
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V.2.2.ABSTRACTION RULES. 

V.2.2.1.ABSTRACTION RULE FOR Q A,QA. 

(abs-I-QA) 

Let T := fyj :ajl .• [v~:aJ-r, 

If Bis LA-compatible, 

A is LA-admissible for B, 
n 

B ,'1n I-LA a :'t' 

Ila •- A rv ·a1 is LA-adl)1issible for B, n+ I · - n L' n+ 1 · 'J 

B,.1:+I I-LA b : T 

then 

B ,An I-LA [v n+ 1 : a] b : fy n+ I : aj T. 

V.2.2.2.ABSTRACTION RULE 2. (abs-2) : as for CA (cf. 211. rule IV.2.2.) 

VI.CATEGORY INCLUSION RULE 

(CI) If Bis QA-compatible, 

~ -is QA-admissible for B and 

B,An I-QA b: &i :aj]. •• [v~:aj/;• :a]-t , 

then 

B,An I-QA b: f:,j :ajj. •• [v~:aj1': 

221.1. COMMENT. 

This completes the definition of Q-A and QA (that is 20.1.,for the cases in 

point).To sum up,RlQ-A contains the rules listed under 211. l.(I.- III.) and 

moreover: 

V.(Tr-QA),(app-1),(app-2),(abs-l-QA),(abs-2), 

whereas RlQA has also 

VI. (CI) 

besides the above. 

The classification of the correctness rules according to the (correctness-) 

categories of their outputs (cf. 211.1.) is,again,preserved for Q A,QA. 

As earlier for PA and CA,the present cases of 20.1. are inductive definitions 

where the underlying recursion runs by simultaneous induction as intended. 

The "initialization"-clauses remain for Q-A and QA as they were earlier for 

CA,and obviously,only the corresponding "recursion"-clauses are modified. 



105 

22 J. 2, C;OMMF,NT, 
Note also that (CI), the Rule of Category Inclusion for QA,is a "modifying" 

rule;viz. it "transfers" information from old QA-compatible sites to new 

·ones but also "modifies" this information in some sense different from what 

the rules of Category Conversion do.In general,the resulting "modification" 

amounts to a "loss of information" and it is,in some sense,"definitive": the 

information "lost" by some application of (CI) cannot be "recovered" at later 

stages any more. 

This rule has also some ad hoc character which is,in general,absent from 

the remaining rules of QA. 

In particular,(CI) - or better,its "reference"-analogue,called "type-inclu

sion",in AUT-QE - is well-known for its unpleasant (if not disastruous) 

effects: for instance,it distroys nice properties like the Unicity of Cate

gories ("types") ,otherwise holding for languages without (CI) - see VAN 

DAALEN 80-73. 

Quite a lot of work has been spent on the possible approaches to circumvent 

(CI),still preserving the proper useful (and nice) features of QA (resp. 

AUT-QE).In this sense,the presence of "type-inclusion" in AUT-QE was at least 

fertile for it gave rise to a number of "reference"-AUT rivals of the langua

ges initially devised and·implemented in Eindhoven (TH). 

As pointed out by N.G.de Bruijn (cf. DE BRUIJN 78-56,etc.) the effect of 

"type-inclusion" (and therefore that of our (CI) above) can be "mimicked" 

already in AUT-QE-NTI (and hence in Q-A) once we decide to write only correct 

"books" that are proper extensions of a given fixed "book" containing some

thing similar to the axioms of universal quantification.(In an abstract set

ting: consider only Q-A-compatible sites containing a fixed Q-A-site Bg!! 

say as a subset,where Bgll contains at least some sound p-construction 

for "all" and sound p-constructions for "all-introduction" and "all-elimina

tion".) .Not too much has been done in this direction so far (as regards imple-

mentation say).Still this solution is by no means less ad hoc 

presence of Category Inclusion ("type-inclusion") in AUT-QE. 

than the 

An alternative way-out (due to Jeffery Zucker) consists of strengthening both 

the "free"-part of the language and its correctness-part by addition of 

new constructors;this did eventually lead to a very strong AUT-language 

("reference") ,v:u.z. AUT-Pi (whose abstract version is not studied here) .Howe

ver the "official" formulation of AUT-Pi does not contain all instances of 

"type-inclusion" as "derived rules" (even in the Curry-Lorenzen sense). 

(See,e.g.,DE BRUIJN 77-51,78-56 and VAN DAALEN 80-73,VIII.6. J.,for details.) 

An informal discussion of AUT-Pi can be found in ZUCKER 75-42,while formal 

details can be recovered from VAN DAALEN 80-73.,VIII. 
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222.Basic epi-theory for QA and QA. 

The basic properties of the correctness categories of PA and CA - discussed in 

212. through 214. above - will be seen to transfer easily,under minor changes,to 

the "bigger" languages Q-A and QA. 

We shall insist below only on the main differences,induced by the presence of the 

specific QA- and QA~correctness rules. 

Hereafter,if not otherwise specified (explicitely),LA :=QA or QA. 

222. I • REMARK. 
LA LA LA LA The sets CorrContx ,CorrConstr ,CorrEsent and CorrTerm are supposed to be 

defined as above,in 212. I. 

Then,as earlier,CorrEsentLA determines a partition of CorrTermLA into (three) 

pairwise disjoint equivalence classes of (correct) LA-terms,called "degrees". 

In the case LA:= Q A,QA the definition of degrees will slightly differ from 

that given earlier,in 212.1. 

222.2.DEFINITION. 

Let B be an LA-compatib,le site and /;!J be an LA-admissible context for B. 

If 

B,6 II-LA a 

then the degree of a (relative to B and 6. in LA) - notation gl:\'(B,A,a) 

will be defined by recursion as follows: 

(I) If a a 't" then ~(B,A,a) = I. 

(11) If a a !Y:b 1]b2 , 11' := A(y:b~ and g!ii(B,ll' ,b2) = I then 

g!/i(B,A,a) = I. 

(2) If g~(B,A,b) n,n E-N, and B,A I-LA a:b then g!/i(B,A,a) 

222.3.REMARK. 

n+I. 

Analogues of 212.3.,212.5. and 212.6.(1)-(3) hold for Q-A and QA,as well. 

Also,the notation introduced in 212.4. will be employed in the present case. 

(Note that g~(a) is defined only for a in CorrTermLA_) 

However,we have already from 222.2. the following specific detail on I-degrees 

in Q-A and QA. 
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222.4.LEMMA. 

If a is in CorrTermLA and ~~(a) 

either 

I then 

(I) as 1:' (as in the case of PA and CA) 

or 

(2) as [v 1:a~ ••• [vn:aj't:',for some n?I, and LA-terms a 1, •.• ,an. 

Proof.Irmnediate,from 222.2.S 

222.5.REMARK. 

So in Q-A and_QA there is no variable,no head-term and no application term 

(in CorrTermQ A,CorrTermQA) with degree 1. 

On the other hand,if some abstraction term (in Q-A,QA) is "correct" and has 

degree 1 then so is its value-part and the latter has also degree I. 

222. 6. REMARK. 

Analogues of 212.7.,212.8. and 212.9. hold,by similar arguments (for Q-A,QA). 

So variables in CorrTermLA can have only degrees 2 and 3 and they can be always 

recovered from appropriate LA-admissible contexts. 

222.7.NOTATION. 

Hereafter,T (possibly with superscripts - primings - ) will range on LA-terms 
. LA . h d I in CorrTerm wit egree • 

222.8.LEMMA. 

If B is LA-compatible,~ is LA-admissible for B and 

B,.& LtLA E_(b1,···,bn) 
then,for some .£ in Fln ,n E N,one has 

either 

(1) B,A I-LA c(b 1, .•• ,b ) T 
- n 

or 

(2) B,A I-LA c(br···,b) a T' 
- A n 

for some LA-term a (in CorrTerm ). 

Proof.By induction on correctness in LA.S 

222.9.REMARK. 

So,as earlier,in 212.10.,head-terms in LA:= Q A,QA can have only degrees 

2 and 3.Note that,in general,222.8. holds for both Q-A and QA.Still,212.10. 

does not hold,in general,for Q-A.But due to the presence of (CI) in QA,212.10. 

holds for QA,as well. 
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222. IO.REMARK. 

Lemmas 212.12. and 212. 13. hold for QA and QA,too (and the corresponding 

proofs are as in the case of PA,CA). 

So,it should be already obvious that both QA and QA are actually extensions 

of PA. 

As for CA (cf. 212.14. through 212.17.) one can prove the following. 

222.11.LEMMA.(g~!/i-degrees in LA:= Q-A,QA). 

If a is an application term in CorrTermLA then g~!/i (a) is also in CorrTermLA 

and g!/i(g~g;(a)) = 3. 

Proof.By induction on correctness in LA.N 

However,function-parts of (correct) application-terms in QA and QA behave 

differently (i.e.,not as in CA). 

222. 12.LEMMA. (fgg-degrees in LA:= Q-A,QA). 

If a is an :;;lication-term in CorrTermLA then f~~(a) is also in CorrTermLA 

and,moreover, 

2 f gg; (f~~ (a)) ~ 3. 

Proof.By induction on correctness in LA.N 

Inasfar abstraction-terms in CorrTermLA (LA:= Q-A,QA) are concerned one has 

the following CA-like lemma (cf. 212.22. and 212.23.). 

222.13.LEMMA.(gg~-degrees in LA:= Q-A,QA). 

If a is an abstraction term in CorrTermLA then gg~(a) is in CorrTermLA and 

gg;(gg~(a)) = 2. 

Proof.By induction on correctness in LA~ 

However one can readily see from 222.4. and 222.5. that value-parts of (correct) 

abstraction-terms in Q-A,QA may also get degree I (which was not the case in CA). 

222.14.LEMMA.(ygl-degrees in LA:= Q-A,QA). 

If a is an ;;;traction-term in CorrTermLA then ~g1(a) is in CorrTermLA and 

I ~ gg; (~g1 (a)) ~ 3. 

Proof.By induction on correctness in LA.N 
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222. IS.COMMENT. 

Resuming the degree-considerations on LA:= CA,Q A,QA one has the following: 

variables It' head-terms application-terms abstraction-terms 

g~~ !~!r ~g~- ¥/i\1 

CA: 2,3 2,3 3 3 2 2,3 
-

Q /QA: 2,3 2,3 3 2,3 2 I ,2,3 

222.16.REMARK. 

As earlier for CA,the intended meaning of application- and abstraction-terms 

in Q-A and QA is that: 

(I) if a is a (correct) application-term in Q A,QA then 

and 

(2) if a is a (correct) abstraction-term in Q A,QA then 

~~(a) 

That is: in LA:= Q A,QA 

(I') correct application-terms can have degrees 2 and 3 only 

and 

(2') correct abstraction-terms can have any degree (1,2 or 3_). 

This gives the following "structural" characterization of correct application

and abstraction-terms in Q A,QA. 

222.17.LEMMA.(LA := Q-A,QA). 

Let B be an LA-compatible site and A be an LA-admissible context for B. 

If 

then either 

and there 

( 11) 

(12) 

and 

( 13) 

are LA-terms b 1 
B,.:1 

B,A 

B,A 

and 

f-LA 

1-L.A 

f-LA 

3 

a' such that 

b bl f:a']T 

a a' T' 

{a'}b : {a3b 1 Tfa := v] 

( i. e . , ~~ (b I ) 

(i.e .• ~~(a') 

2) 

2) 
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or 

(2) g~({aJb) = 2 

and there are LA-terms b' a" such I' that 

(2 I) b' 
I 

;. [v:a"]T (i.e. ,g~(bj) I) 

(22) B,A I-LA b : bj 

(23) B,A I-LA a: a" : T' (i.e. ,g~(a") 2) 

(24) B,A I-LA {a!b T[a := v] 

Proof.By induction on correctness in LA,using previous Lennnas.N 

222. JS.LEMMA. (LA:= Q-A,QA). 

Let B be an LA-compatible site and a be an LA-admissible context for B. 

If 

then 

(I) t::.' := Afi,:a] is LA-admissible for B 

and 

(2) there is an LA-term a' such that 

(21) 

(22) 

(23) 

with also 

(3) 

(4) 

Moreover,if 

(5 I) 

(52) 

and 

(53) 

B,A' I-LA v:a' 

B,A F a ~~~~LA a' 

g~(a) g~(a') = 1-, 

B,A' /I-LA b 

gl;l (b) = g~ ( jy: a] b) • 

g~(b) > I, then ,for some 

B,A' 1-LAb:b' 

B,A I-LA ~:a]b b" 

b" "' [v:a]b•. 

LA-terms b' ,b", 

( i. e • , g~ (b ' ) 

(i.e. ,g~(b") 

Proof.By induction on correctness in LA,using facts proved earlier.N 

222. 19.REMARK. 

g~(b) 

g~(b) 

Lennnas 212.28. and 212.31. hold also for QA,but not for QA (in general). 

- I) 

- I) 
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222.20.REMARK. 

It is easy to see that the invariance properties under site- and/or 

context-expansion established earlier for PA and CA can be also esta

blished for QA and QA.Moreover,the corresponding proofs are completely 

similar (mostly,by induction on the definition of correctness in Q-A and 

QA). 

So,in the end,an analogue of Theorem 213.9. can be established for LA:= 

Q A,QA. 

That is: the addition of "redundant" (B-correct) LA-constructions to some 

LA-compatible site and the addition of "redundant" assumptions within some 

LA-admis.sible context (such as to preserve LA-admissibility) do not alter 

h d . . LA d LA (f t e correspon ing correctness categories CorrEsent an CorrTerm or 

LA:= Q-A,QA).This is also true for "derived" correctness categories in LA 

(as,e.g.,~-,~- and g_-sentences). 

222. 21. REMARK. 

Where LA:= Q A,QA correctness is preserved under (simultaneous) substi

tution in the sense of 214.2. (214.3. and 214.4.) above. 

This gives - by the same method as in 214. - "correctness for QA and QA

categories" and,finally the following. 

222.22.THEOREM. (LA:= PA,CA,Q-A,QA). 

Let B be an LA-compatible site and A be an LA-admissible context for B. 

If 

B,A f-LA a b 

then 

B,6, II-LA a,b 

Proof.If LA:= PA,CA the statement is just 214.6.Else use the fact mentioned 

in 222.21. and the due TermLA_recursion rules (LA:= Q-A,QA).N 
Ill 
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l_.Global structure of correctness.PA-separation. 

In this section we shall study in some detail general properties of the correct

ness categories in abstract AUT-languages. 

The main aspects to be taken into account will concern: 

(I) the "reference order" in LA-compatible sites, 

(2) the "complexity" of sound LA-constructions (in LA-compatible sites) and 

(3) the "economy of means" in obtaining sound LA-constructions. 

The underlying analysis is syntactically oriented and combinatorial in nature. 

It aims at establishing a kind of "separation property" for the "least" abstract 

AUT-language PA,whi le currently manipulating "correctness proofs" in CA,QA,Q-A, 

etc."PA-separation" is interesting because it allows proving a "conservativity 

result over PA" for the latter languages. 

30.What is going on: heuristics. 

The significance of the conservation property intended here was already discussed 

in a larger context,in 04. above.It remains to establish a precise,"technical" 

acception of "conservativity" as relativized to the (abstract} AUTOMATH-languages 

and to insure that the latter one would safely transfer - without loss in preci

sion - to the corresponding "reference"-AUT-languages. 

The discussion following here will - specifically - concern proper extensions of 

PA.In this respect,CA,QA,Q-A and possibly other abstract AUT-languages not consi

dered explicitely here "extend" PA in two distinct directions: 

,(I) inasfar well-formedness is concerned (CA say has "more well-formed terms", 

"more well-formed !-sentences",etc. than PA) 

(2) as regards correctness (e.g. ,CA has "more correctness rules" than PA), 

while PA is "contained" say in CA,QA,etc. both w.r.t. well-formedness and w.r.t. 

correctness;cf. the initial discussion in 22.). 

In order to be able to characterise such extensions as being "conservative over PA" 

we should,first of all,know how to "isolate" PA qua language when it is "used" as 

a (proper) part of CA,QA,etc. 

Specifically,if Bis an LA-admissible site (where LA is a proper extension of PA 

in the sense above) we should know,from the language definition,what is for B 

"to be in (the language) PA".But it may turn out B could have been "constructed" 

as a site in PA,as well (according to the language definition of PA).That is: every 

construction in B would be already a PA-construction (according - always- to the 
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.efinition of PA).Does this entail that Bis already PA-admissible? 

n more detail: let B be an LA-admissible site (where LA properly extends PA) and 

be some LA-construction in B.Then a similar question may arise,viz. what is for 

"to be in PA" or "to be a PA-construe:tion"? A possible answer would be: look at 

ts "components" (both imnediate and remote) ;if every such a "component" is "in PA" ' 

:hen so should be k itself.Clearly,if some "component" of k is either an application 

:erm or an abstraction term,k is "not in PA" .Suppose this is not the case;what about 

:he floating constants occurring as "remote components" of k? The LA-construction k 

1ay well "contain" no application and abstraction terms and still be only "apparent

.y in PA".Indeed,B was supposed to be LA-admissible.Now if some floating constant c 

ccurs as a "remote component" of k (k in B) one should have ("by construction") 

:hat c _ i~!(k') for some other LA-construction k' in B.So the question about the 

'PA-ness" of k is reduced to that of whether some other LA-construction k' is "in 

'A" or not. 

lne should readily guess that soine recursion is needed in order to "isolate" PA 

1ua language whenever it is "used" incidentally in a "larger context". 

,he exact form of induction necessary here will be explained in 314. below. 

~oughly speaking,in order to "locate" some LA-construction (where LA is an exten

;ion of PA) "on PA" (= the technical meaning of "being in the language PA") one 

1as to "trace back" or to "restore" the "definitional history" of k. 

rhe main point in~- is that no delta-reduction or reduction to PA-normal-forms 

ire actually necessary along this process.Rather,the underlying analysis can be 

ione in some "rigid" way (combinatorial in nature),relying exclusively on the 

,yntactic form of LA-constructions '(that are known to be elements of LA-compatible 

,ites). 

\fow,where "being on PA" has the technical meaning introduced in 314.,one can define 

~onservativity (for extensions of PA) as follows: 

Sonservativity over PA. 

Let LA be any (rule-)extension of PA.Then LA is~ conservative extension of PA 

if,for any LA-compatible site Band any kin B such that k is an LA-construction 

on PA,there is a PA-compatible site B(k) such that k is in B(k). 

It will turn out (l2_. below) that CA,QA and QA are conservative extensions of PA 

in the acception above,and,moreover,that the existential claim involved there may be 

taken in~ constructive sense. 
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In fact,what is actually proved in 33. is a property which is somewhat stronger 

than conservativity over PA; viz. a PA-separation property. 

This can be readily phrased as follows (for LA := CA,QA,Q A,etc.,as above): 

PA-separation property. 

Let B be any LA-compatible site and k be an LA-construction in B. 

If k is an LA-construction on PA then there is a subset Bv of B such that 
k 

(I) B~ is PA-compatible,(and therefore a site on PA) 

(2) k is in Bv 
k 

and,moreover, 

(3) B~ can be obtained effectively from Band k and 

(4) it is the least subset of B (i.e.,both minimal and uniquely determined) 

satisfying (1),(2) and (3) above. 

It is obvious that the latter property implies conservativity over PA,in the inten

ded sense. 

The main part of this section is devoted to the proof of PA-separation. 

As to the methods used they may be also relevant in some other respects. 

Specifically,our main concern consisted - first - of isolating the "real ordering" 

of LA-constructions in LA-compatible sites (where LA is any abstract AUT-language -

as taken into account here).This is (what we called) the reference orde.r in LA(-com-

patible)-sites and amounts to a precise "coding" of the "definitional history'' 

of LA-constructions (occurring as sound constructions in LA-compatible sites). 

The reference order in LA(-compatible)-sites is evidentiated by some "tree-like" 

analysis of (LA-)correctness (cf. l!_. below). 

It turns out that each LA-compatible site can be viewed as a poset with respect to 

its reference order (E!_.). 

Relying on this order,a precise (inductive) "measure of complexity" for sound LA

constructions is introduced (322,.; the "depth of a sound LA-construction in some 

LA-compatible site") and - thereafter - used in proofs on LA-correctness. 

The abstract approach taken here seems to be significant in some other direction 

(more or less related to a possible model-theoretic investigation of the AUT-family 

of languages):it is relatively easy to establish that,for any LA-compatible site B, 

the family of its LA-compatible subsets is a T0-topology on B (323J. 

Finally,in connection with what has been said in 02. (c 1),some attention has been 

given to the "economy of means" in obtaining sound LA-constructions. 

The latter kind of problem did already occur in work on "reference"-AUTOMATH;namely 



115 

in connection with the task of "excerpting" a given correct (AUT-QE-,say) book 

with respect to a given line kit contains (as a correct line with respect to~), 

such as to eliminate the "redundant" details _(from ~) ,not necessary for the 

"correctness of k with respect to f' (see,e.g. ,JUTTING 79-46,2·1.·Excerpting., 

DE BRUIJN 80-72,5.Processing. and our discussion in 321.3.), 

In particular,"excerpts of correct books" - correspunding,in an abstract setting, 

to our analytic sites;cf. 32~. below) are shown to be,again,correct books,confir

ming an earlier conjecture of N.G.de Bruijn et al. 
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31.Tree-analysis. 

In order to evidentiate the combinatorial nature of an (abstract) AUTOMATH 

language we introduce several kinds of labelled trees supposed to "repre

sent" (well-formed resp. correct) syntactic units of the language. 

These trees will be used - after appropriate simplifications - in the analysis 

of correctness (in abstract languages LA). 

311.Well-formedness part. 

First we give a straightforward tree-analysis of well-formedness in LA's. 

The analysis is "global" in the sense that peculiarities in the behaviour of 

LA's won't actually appear at this level (save maybe those induced by the choice 

of the primitive alphabet). 

311. I.DEFINITION. 

(I) The set of well-formed expressions (wf expressions,for short,or even 

wfe's) of/in LA is a subset WfLA of Word(LA),viz. the union of the 

following sets (we 'suppress here the superscripts "LA" ,for convenience): 

Fl' l DJ' 
Term, 

Esent, 

Svarn,Stermn,Contxn, 

Constr. 

(2) Any element of of WfLA is a wf expression of/in LA. 

n E: N, 

(3) The variables,the universe symbol,the nil symbol and the floating cons-

tauts of LA are (all an~ the only) atomic wfe's of/in LA;the remaining 

wfe's of/in LA are non-atomic. 

311.2.REMARK. 

Note that the constructors of LA are not wfe's in LA and they are,clearly, 

the only structured symbols in the alphabet of LA to share this feature. 

31 I • 3. COMMENT. 

If Xis a wfe in LA let us write l~f!~Q~!(X) for the structured symbol 

occurring leftmost in X and call it the free head of X. 
LA We have then,for any X in Wf ,that 
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if Xis atomic 

constructor in 1\A (the alphabet of LA),else, 

so 1~£l~gl is a (total) epifunction. 

As presented here the (free and canonical) syntagmatic grammar of LA has the 

following (intended) "functional aspect". 

For any generated (free or canonical) syntagmatic category of LA,SyntLA say, 

if Xis a non-atomic wfe in SyntLA then leftmost(X) is a constructor (in the 

alphabet of LA) and,clearly,the syntacti:=::;:;:ry of X (SyntLA here) can be 

retrieved by a mere inspection of its free head symbol.(Of course,this happens 

only if we know Xis a wfe in LA,otherwise 1~£~~£gl may give either mislea

ding or irrelevant information as an output.) 

The reason we had to prefer the "functional" ("direct Polish",or "iukasiewicz 

parentheses-free") _parsing above (cf. DE BRUIJN 78-61 ;especially: "Lezen en 

schrijven van formules") over any other kind of infix-cum-parentheses parsing/ 

notation is in that the former one translates well and somewhat directly into 

the "language" of labelled trees. 

This feature of the syntax of the (abstract AUTOMATH) languages LA will be 

copiously exploited below., 

We define now by "structural" induction,for each wfe in LA,an oriented,labelled 

tree associated to it (this will be a "planted tree"),viz. the generating tree 

of~ wfe in LA.With a few notable exceptions,to be justified later,the definition 

follows the (canonical) parsing for wfe's,largely discussed earlier and illus

trates the role of the epifunctions introduced so far. 

311. 4. NOTATION. 

If Xis in WfLA then ~(X) stands for the generating tree of X. 

311.5.DEFINITION. 

(0) If Xis either 

a variable or 

the universe symbol or 

the nil symbol or 

a floating constant in LA, 

then 

~(X) .- Ill 

X 

and the bottom-label of ~(X) is X. 
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(I) If Xis in TermLA and 

(JI) Xis a head-term in LA then 

~(X) := V 
where 

Y := head(X) and either 

Z := ;;;!l(X),if Xis in CtermLA or 

Z := lg!l(X),else, 

and the bottom-label of ~(X) is X; 

(12) Xis an application-term in LA then 

~(Y) 

X 

~(X) := V 
where 

y := £~~(X), 

Z := g!;i(X) 

and the bottom-label of ~(X) is X; 

(13) Xis an abstraction-term in LA then 

~(Y) 

X 

~(X) := V 
where 

y := g'g~(X), 

z : = ·~ml <x) 
and the bottom-label of ~(X) is X. 

X 
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(2) If Xis in EsentLA then 

:= 

where 
y .- g~g(X), 

z := g~~~(X) 

and the bottom-label of °\i(X) 

(3n) If X is in Svar resp. n 

(4n) if X is in StermLA 
n 

then 

°\i(X) := 

where 

Y. := el ti:\x) ,0 ~ i~ n, 
l. ===1. 

and the bottom-label of ~(X) 

(5 ) If X is in Contx LA 
n n 

then 

°\i(X) := 

where 
y .- gH1 (X)' 
z := gH2 (X) 
and the bottom-label of "\i(X) 

is 

is 

is 

V 
X 

x. 

°\i(YO) "\i(Y 1) 

X 

x. 

~(Y) 

X 

x. 

(nE 1'1) 

(nE N) 

(nE N) 
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(6) If Xis in ConstrLA then 

:= 

where 

YI := f!!(X), 

y2 := g~f(X), 

Y3 := £g~(X) 

and the bottom-label of ~{X) is the pair 

31 I • 6 • COMMENT. 

It is easy to check that the induction underlying the previous definition 

"closes" well;so we have a good inductive definition. 

A stronger way of "closing" will be introduced next in view of analysing 

correctness in LA-sites. 

31 I. 7.REMARK. 

The tree-analysis of wfe's in 311.5. respects the original syntactic parsing 

of section.!_. except for LA-terms (viz. head-terms and abstraction-terms) 

and LA-constructions. 

In the case of head- resp. abstraction-terms a the generating trees ~(a) 

contain essentially the same kind of information as "coded" via the primi

tive (free/canonical) parsing: just use the clauses for variable- or term

strings and that for E-sentences in order to see this. 

The way of analysing constructions above does not "loose" information either, 

when compared with the original (canonical) parsing ("identifiers" are impli

citely present at bottoms).To see the reason behind this choice cf. below 

the extension to "analytic trees". 
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312.Analytic trees. 

The generating trees of wfe's in LA are best suited to analyse the syntactic 

units of LA "in isolation",i.e. ,disregarding their "site-environment". 

Next we shall relativize the tree-analysis of well-formedness above to the 

case of correctness.That is: LA-terms,variable- and term-strings in LA,LA

contexts and LA-constructions will be supposed to "occur in" LA-compatible 

sites. 

Specifically,we shall associate to each wfe ("occurring") in a given LA-com

patible site a labelled,oriented tree,which will be seen to "codify",in a pre

cise sense,both the syntactic structure of that wfe and (some of) the "defi

nitional history" of its "components". 

The latter trees - hereafter called analytic trees (of wfe's) - arise,roughly 

speaking,by "composition",from appropriate generating trees of wfe's ("occurring 

in" some LA-compatible site B). 

312.1.NOTATION. 

As earlier,if X is in WfLA then ~(X) is the generating tree of X;also if 

Xis as above then J(X) stands for the analytic tree of X,where it is suppo

sed that Xis a wfe "occurring in" some LA-compatible site B. 

(Here "LA" may,again,stand for any abstract AUTOMATH language considered 

earlier.) 

312.2.DEFINITION. 

(I) If Xis in WfLA - FlLA then 

J (X) : = ~ (X) , 

and bottom-labels are preserved. 

(2) If Xis a floating constant in LA and Y is a canonical construction 

in LA ("occurring in" the same LA-compatible site as X does) such that 

X ;\;~!(Y),then 

J(X) := J(Y), 

and the bottom-labe1 of J(X) is the same as the bottom label of ~(Y) 

(that is: it is the pair { Y,igt(Y)) ·= < Y,X );cf. 311.5.(6) above). 



122 

312.3.COMMENT. 

The intention behind the previous definition is to "encode" in an intuti-

ve way (nonetheless precise) those aspects of the "definitional history" of 

a wfe that depend only on syntactic considerations in LA disregarding 

superimposed ingredients "forcing" the syntax by a detour via the associa

ted reduction system(!!~) or by "collapsing information" on types/categories 

(i.e.,by applications of the Rule of Category Inclusion in QA-languages). 

Thus the analytic tree of a wfe X in LA may not always furnish a complete 

record of the "definitional history" of its "components" (here and every

where in the sequel,the "components" of a wfe are to be understood - more 

or less formally - as resulting from a "syntactic" analysis via generating 

trees). 

Specifically,the cases where this analysis fails to be "complete" are 

exactly those involving: 

(1) in any LA: some application of one of the Rules of Category Conversion, 

(2) in QA-languages: some application of the Rule of Category Inclusion. 

Let,for any language LA introduced earlier,LA0 be the sub-language of LA 

we get by eliminating the Rules of Category Conversion from the primitive 

setting. 

Then it should be,by now,clear that the analytic trees of wfe's in 

PA0 ,~-CA0 ,~~-CA0 ,~-Q-A0 ,~~-Q-A0 ,etc. 

do actually provide a complete analysis of the "definitional dependencies" 

for wfe' s "occurring in" sites that are compatible in the restricted langua

ges. 

However - as pointed out by N.G.de Bruijn - we hardly get something interes

ting,from both a theoretical and a practical viewpoint,by manipulating LA0 -

languages instead of the corresponding "full" ones. 

This motivates the next step in the tree-analysis of correctness. 

(Analytic trees are nevertheless very useful since,actually,only such trees 

will be manipulated in a deeper analysis of the correctness categories of 

LA' s. Cf. E_. et sqq.) 

It is relatively easy to check that 312.2. is a good inductive definition.To 

see that it "closes well" one would however need the following Lemma. 
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312.4.LEMMA. 

Let B be an LA-compatible site (LA:= PA,CA,Q-A,QA,etc.) and k be a construc

tion in B.Then ig£(k) is rank-fresh for the sequence 

(i) ~ a 1, ••. ,an,a t, where a := £e!(k),if k is a p-construction 

(ii) ~ a 1, ••• ,an,a,b 7, where a:= £g!(k),b := g~f(k),if k is a cl-construc

tion 

and,where,in both cases, = n and,whenever n:::;:,, I ,one has 
n 

:= elti(str2(ctx(k)) a. 
I. 

(I~ i ~ n). 

Proof.This is the role of the restriction on the ranks of ig£'s in any 

recursion rule.N 

312.5.REMARK. 

Therefore,the closure condition in 312.2. won't give rise to "cycles". 

Indeed,for any kin some LA-compatible B,ig£(k) cannot occur in £!~(k),or in 

£g~(k) or in g~f(k) - if,in the latter case,k is a cl-construction-. 

Moreover,due to the recursiveness of the correctness categories of LA 

(in particular,Site~A is defined inductively),one cannot encounter bigger 

"cycles". 

In terms of ~analytic) trees this gives the following consequence. 

312.6.COROLLARY. 

Let B be an LA-compatible site with kin B.Then for any LA-construction k' (in 

B) such that k ,/;. k' and ;); (k') is a sub-tree _of J (k) ,one has 

;rn~t <ig£ <k')) < r~~t <ig£ (k)) · 

Proof.Immediate from 312.4. and the definition of the analytic trees (312.2.) 

above.N 
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313.Genetic trees: a digression. 

As we did not adopt any "algorithmic" point of view in the definition of 

the languages LA (this is certainly possible,using,mutatis mutandis,the pattern 

of VAN DAALEN 80-73,V.4. and VII. ,say) the only way of "deciding" the compatibi

lity of some site in LA we have at hand should consist of displaying,in each 

particular case under consideration,a (finite) sequence of "applications" of 

the correctness rules of LA to wfe's in LA.This is,in the end,very cumbersome 

a book-keeping and a few exercising would quickly convince the reader of the fact 

the needed lists of rules accompanied by local hints ,as regards the particular 

inputs they should take in each case,are completely unpractical (the necessary 

book-keepings are much longer than one would expect at a first look). 

Somewhat more pr~ctical a solution in analysing the correctness of (construc

tions in) LA-sites would consist of relying on analytic trees - for the main 

part of the process - in some "derived" ~;viz. by "book-keeping" only parti

cular applications of the Rules of Category Conversion (for all LA's) and,in 

the case of QA-languages,the applications of the Rule of Category Inclusion. 

Obviously,if both kinds of information (viz. that present in an analytic tree and 

that present in the - more economical - book-keeping of the applications of 

the rules indicated above) can be conveniently "stored" ,we would be eventually 

able to restore the "definitional history" of the LA-constructions concerned 

and to supply a "correctness proof" for them (within the appropriate environ

ment ) • 

The main question is whether "completing" an analytic tree by the missing 

information (cf. 312.3.) would possibly amount to some manageable setting for 

analysis,comparable in economy with that encountered in the case of analytic 

trees say. 

The answer is,fortunately,affirmative: it will be seen that the "completion" 

mentioned above can be done such as to preserve the tree-like search ("in(to) 

l:.he definitional history" of a wfe in LA). 

Still,such a "completion" may not be always uniquely determined.Indeed,we might 

obtain the same LA-compatible site by taking into account different sequences 

of applications of the correctness rules of LA to wfe' s in LA,such that the "book

keeping" of the applications of the rules (CC.) ,i = 1,2 and (CI) - in the case 
l. 

of QE - would lead to possibly distinct "correctness proofs". 

Let first illustrate what kind of "incompletensess" of the analytic trees we 

have in mind. 
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Suppose Bis an LA-compatible site (the choice of LA is immaterial) and k is 

a (canonical) construction in B. 

One of the "ascending branches" starting from the bottom of !(k) will always 

"point out" to £g~ (k) ,which is - always - an LA-term. 

Now it may well happen that this LA-term (a:= £g~(k),say) has been obtained,by 

an application of one of the Rules of Category Conversion,from some LA-term a', 

whence we must have,either 

(1) a' ££~~~LA a or 

(2) a' ~~gLA a (that is: 

and ££~~~LA (resp. ~~gLA) may be 

gously for ~~gLA). 

a ££~HLA a'), 

either ££~~~d,or ££~~~~ or contr (and analo-
=====rt 

If the tree-analysis of k above is to reflect accurately the way k was obtained 

as~ sound construction in B (and not "checked",say, via the "algorithmic defini

tion" or something similar to the program described in ZANDLEVEN 73-36) it is not 

just a (:= £g~(k),above) we have to analyse further,but rather the LA-term a', 

from which we previously got a,by an application of Category Conversion. 

Tu put things otherwise: in order to obtain a "complete record of definitional 

history" inasfar k is concern~d,we should not go on analysing ;J;(a) ,with a := 

£g~(k),but rather !(a'),repeating the "jumps" with any previous application of 

a Rule of Category Conversion.This will,in the end,insure ~ recursive search on 

the structure of k whenever (CI) is not present (e.g.,either if LA is not a QA

language or,in ~-QA,~~-QA,etc.,whenever the Rule of Category Inclusion was not 

applied in obtaining k). 

To make the description of the resulting trees complete we have to repeat the 

process above for particular applications of (CI) - in QA-languages -,except 

that,in the latter case,we must "jump" with any application of (CI) "on the 

way of obtaining" k as a sound construction in B. 

All this is just to give a feeling about the motivations beh~nd the way we are 

going to "complete" (or if one prefers,to "complicate") the analytic trees of 

wfe's in the sequel.Strictly speaking,the heuristic remarks above are theoreti

cally dispensable. 
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Next we define for each wfe "occurring in" some LA-compatible site Ba labelled, 

oriented tree,looking very much like the analytic tree of that wfe.The corres-

. ponding trees will be called genetic trees of wfe 's. 

We introduce first some notation and terminology. 

313. I.CONVENTION.NOTATION. 

Henceforth,if Xis any wfe in LA,any node of ~(X),J(X) resp. will be confused 

with the label associated to that node. 

It is also supposed to be known what are,for a given node Yin some J(X) say, 

with X a wfe in LA, 

(I) the (set of) immediate successors of Y;notation: ig£(Y),and 

(2) the (set of) successors of Y;notation: g£(Y). 

EXAMPLE: Let J(X) be the following tree (it is not important to discover 

what it stands for). 

Then ig(X) = {Y,Zl,z2} ,ig£(Y) 

of ig£(X) and ig£(Y). 

313.2.TERMINOLOGY. 

z 

X 

In order to refer conveniently to applications of the Rules of Category Conver

sion and Category Inclusion we introduce the following way of speaking. 

Recall that (CC 1) and (cc2) were phrased as follows: 

If Bis LA-compatible and 6 is LA-admissible for B and 

B,A i-LA a:b I 

B ,tl. II-LA b I , b 2 

then also 

B,A I-LA a:b2 
provided (I) b 1 _£g~HLA b2 (in (cc 1); (2) b2 £g~!~LA b 1 (in (Cc2)). 
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For any application of _(CCi) ,i = 1,2 we say that 

is the input of that application of (CCi) and 

is the output of the application concerned, 

with analogously, 

b 1 as category-input and 

b2 as category-output of the corresponding application of (CCi). 

Similarly,the Rule of Category Inclusion (for QA-languages),i.e.,(CI),was: 

If Bis QA-compatible and~ is QA-admissible for Band 

B,A ~A b:T 1 

then 

B,L\ lo_~ b :T2 

where,as expected, 

T1 := [vj:aj] ... [v~:a~1[v':aj't; T2 := ~j:aJ •.. (v~:a~J-r. 

In this case,we have as earlier,for any application of (CI), 

qi 1 := b:T 1 is the input and T1 is the category-input of the application, 

~2 := b:T2 is the output and T2 is the category-output of the correspon

ding application of (CI). 

313.3.NOTATION.CONVENTION. 

If X is a wfe "occurring in" some LA-compatible site B then g(X) will denote 

the genetic tree of X (to be introduced next).Moreover,B is supposed to be 

"given" together with the way it was obtained qua LA-compatib_le site. 

Now the definition of the genetic tree of a wfe X in LA can be completed by: 

(I) stating what is g(X) in case no application of the Rules (CCi),i = 1,2 

were involved in the "process of construction" of X (according to the 

correctness rules of LA) and 

(2) by making explicit the due rules of "composition" for generating trees 

of wfe I s in case some LA-term was "modified" by an application of one 

of the indicated rules along the "process of construction" of X. 

We omit below the specification "according to the correctness rules of LA". 

313.4.DEFINITION. 

(I) If no application of the correctness rules (CCi),i = 1,2 or - in QA

languages - (CI),was involved in the "process of construction" of a wfe 

X in LA then 

g(X) := !(X). 

(2) For any application of (CCi) ,i = 1,2 involved in the "process of construc

tion" of a wfe X in LA,such that its category-input is an LA-term a and 
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its category-output -is an LA-term b,with bin £g~(X),the genetic tree 

g(X) of Xis to be obtained from its analytic tree !(X),by replacing the 

subtree !(h) in !(X) by g(a) and "marking" the replacement by changing 

the bottom-label of g(a) into a pair .(<.a,b'"7,0>. 

(3) For any application of (CI) - in QA-languages -,involved in the "process of 

construction" of a wfe X (in QA),such that its category-input is a QA-term 

a and ,its category-output is a QA-term b,with bin £g~(X),the genetic 

tree g(X) of Xis to be obtained.from its analytic tree I(X) by replacing 

the subtree !(a) in !(X) by g(a) and "marking" the replacement by changing 

the bottom-label of g(a) into a pair <<a,b>, 1>. 

313.5.COMMENT. 

The "tree-replacement" operations described in 313,4. above produce,obviously, 

a recursive definition of Q(X),for any wfe X "occurring in" some LA-compatible 

site. 

The order in which we have to perform these operations is,however,not immate

rial and one can easily see that the choice of this order is severely restric

ted by the very formulation of the "rules of tree-replacement" stated in 

Definition 313.4. (There is still some "choice" - as we shall indicate below -

but the "alternatives" are rather irrelevant and we can make easily the pro

cess of "tree-replacement" completely "deterministic".Cf. 313.1. 

To make this very explicit we need some more terminology (local;this time). 

313.6.TERMINOLOGY. 

Let J: be a (finite) "planted tree" (so ! is an oriented tree with a "root"; 

in the above the "root" was called "bottom-node"). 

The paths in! (or the I-paths) are supposed to "connect" a "top-node"(= a 

"leaf") in! to/with its bottom;they will be viewed as sequences of nodes in T. 

Let g be a node in !·A !-path of g ia a J;-path containing g (viz. ,g "lays on" 

any one of its I-paths) and will be (locally) denoted by p(!,g), 

Every node in J: is on a finite number,n,;-1,of I-paths P/!,g),l~j~n. 

Let lh(p.(T,a)) be the length of the I-path p.(I,~);this is just the number 
-- J - - - --- - - - -- J - -

of nodes "laying on" the path, including the "bottom-node". 

Define,for any node gin!, 

1~(!,g) ~~{1~(p/J:,g)): lfjfn} 

where Q• (I,~), l::. j f n, are all and the only J;-paths of g• 
-J - -
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The number of nodes in! "connecting" g to/with the bottom of! and distinct 

from g itself is the distance of~ (to the bottom) in J;notation: ~i~!(I,~). 

Clearly,~ig1(!,g) does not depend on some particular !-path of g,since it 

"measures" only the sub-sequence the !-paths of a "share" in common. 

Now the !-depth of ~ node g is 

~~g1h<!,g) = lh<!,g) - ~ig1<J,g). 
So, "top-nodes" (= "leaves") in a finite planted tree ! will have always !-depth 

O,they are immediate successors (in!) of nodes with !-depth 1 (provided the 

latter exist) and so on,until reaching the bottom of T. 

Clearly, the !-depth of any node g (of I) is uniquely determined (in J). 

Finally,let a J-layer be the set of nodes in! having the same J-depth and 

call this J-depth the J-depth of the (J-) layer, 

313.7.COMMENT. 

Using the terminology of 313.6. we can easily establish that,for any wfe X 

"occurring in" some LA-compatible site, the genetic tree of X has to be cons

tructed "by induction on J-depths",where J is here actually J(X),i.e.,the 

analytic tree of X.This can be done by fixing an arbitrary order on each J(X)

layer (from-left-to-right say,using the orientation of the tree in the plane; 

note that this is the only freedom we have when performing the "tree replace

ments" stipulated by 313.4.). 

Explicitely,one has to start at the top-nodes of !(X),i.e.,with the J(X)-layer 

of depth O,exhaust the layer by applying clauses (1)-(3) of 313.4.,then increase 

depths by one and go on applying theses clauses ("rules") until the maximal J(X)

depth is reached (i.e. ,at the bottom of I(X) ,which - in fact - is/bears the 

label X). 

It is easy to see that the underlying "algorithm" can be always applied to 

any analytic tree J(X) ,provided ~ "book-keeping" of the applications of the 

rules (CC.),i = 1,2 and (CI) is given (for the construction of the site). 
--- i -- ----

Moreover,the resulting genetic tree(s) will contain both the information present 

in the original (syntactic) analytic tree and that contained in the appropriate 

"book-keeping" of the applications of (CC.) and (CI),if any. 
i 
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313.8.REMARK. 

In the definition of genetic trees we have adopted - deliberately - an "inten

sional" point of view on LA-compatibility (in sites). 

Specifically,it was supposed that, whenever some LA-site Bis known to be 

LA-compatible, we also have at hand some record of the way it was obtained. 

In other words,any LA-compatible site B was supposed to be "given" together 

with some modus operandi for establishing its LA-compatibility via some finite 

sequence of applications of the correctness rules of LA. 

Now it might well happen that for one and the same LA-compaEible site B we 

had at hand two distinct sequences of applications of the correctness rules 

of LA. If theses "differences" would incidentally concern the number of appli

cations of (CC.),i = 1,2 and/or (CI) or even the "places" where these rules 
1-

were applied (in the analytic tree to start with) one should certainly obtain 

genetic trees - £.or the same wfe "occurring in" B - which would differ in 

structure. 

So the genetic tree of a wfe reflects accurately - maybe even too accurately -

the "definitional history" of that wfe,in the sense it takes into account de

tails in the "process of its construction" (according to the correctness rules 

of LA) that could have b-een completely different nonetheless reaching ("exten

sionally") the same (LA-compatible) site. 

It is therefore correct to speak about "a genetic tree" of a given wfe X "occur

ring in" some LA-compatible site and not about "the genetic tree" of the wfe X. 

Note that the same kind of "intensional analysis of correctness" is implicitely 

present in proofs "by induction on the definition of correctness in LA".In 

the latter case the underlying induction is done "on the length" of some' list 

"book-keeping" the applications of the correctness rules of LA - no matter which 

one and disregarding possibly different lists which have,so to speak,the same 

"effect". 
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314.On isolating wfe's "on" PA. 

From the language definition we should know,in general,for any syntagmatic ca

tegory SyntLA of LA,what is for a wfe in that category to be in LA by,and only by, 

"structural induction".In particular,drawing genetic trees of wfe's would eventual

ly lead to a non-ambiguous identification of the language which a given wfe belongs 

to.This information is essentially obtained by "positive induction": if LA is not 

PA say we cannot "regress inductively" in order to get information about the wfe' s 

that "are in" the set-theoretic difference LA - PA (i.e. ,we cannot identify by 

a mere inductive argument those wfe's that are not in PA,nonetheless being wfe's in 

LA).This is also true for LA-sites (where LA is not PA). 

Of course we may identify "empirically" wfe' s and sites in LA (if LA is not PA) 

as being on PA,in each particular case and as,in each such a case,the information 

we have to "process" is finite ,we can finally recover the things that are not on PA, 

by some appropriate book-keeping performed simultaneously with the tree-search 

for things that are~ PA.Still,that is not what we may want and actually need in 

proving facts about LA versus PA.Specifically (if,again,LA is not PA) we may need 

an analogous "structural" way of searching for wfe's (and sites) that are,ultimate

ly,in LA without already being in ("on") PA (i.e. ,for things that are properly in 

LA f PA). 

A possible - and reasonable - way out (and we couldn't find a simpler alternati

ve to what follows) is to specify,by positive induction,for any wfe (resp. site) 

in LA both the meaning of being-on-PA and the meaning of not-being-on-PA (for any 

LA;since "not-being-on-PA" is empty for wfe's/sites in PA). 

So we can obtain inductively (where the induction is as intended,viz. "structu

ral") disjoint sets of wfe's PA+ and PA say,enabling us to rely on a "regressive 

search" throughout an LA-site in order to establish the "PA-ness" or the "non-PA-
" f . f . . h · 1) ness o a given we occurring int at site. 

Resuming: we need a precise inductive definition of what is to be meant by 

(1) "being on PA" and (2) "not being on PA", 

for LA-sites,and,in general,for wfe's in LA.To this effect we define disjoint 

1) We have learnt the advantages of the approach from Peter Aczel,but the idea 

is familiar in literature,being somewhat more than mere "folklore" on inducti

ve definability.Dana Scott has employed similar methods in order to introduce 

the truth-predicates for the three-valued system of logic presented in 1975,at 

the Rome Lambda-conference (see SCOTT 75a). 
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classes of wfe' s in LA,corr.esponding resp. to ( 1) and (2) above. 

This will be achieved,as announced,by positive induction,using implicitely the 

tree-analysis of well-formedness/correctness discussed at length above. 

314.1.N0TATI0N.C0MMENT. 

Let X be a wfe inLA(where one can agree,for canvenience,that LA is not PA), 

"occurring in" some LA-compatible site B. 

We define for each such a B,subsets PA+ and PA of WfLA_ 

Interpretation: 

"X is in PA+" is a formal explicatum of "X is a wfe on PA" and 

"X is in PA-" is a formal explicatum of "X is a wfe on LA - PA" (i.e.' 

X is in PA iff X is a wfe in LA and Xis not a wfe on PA). 

314.2.DEFINITI0N. 

(01) If X is either a variable or the universe symbol or the nil symbol then 

Xis in PA+. 

(02) If Xis a floating constant and X _ £~£(Y),for some sound construction Yin 

B then 

Xis in PA: iff Y is in PA:. 

(1) If Xis in TermLA and,specifically, 

( 111) X is a canonical head-term then 

X is in PA+ iff ~~gi(X) is in PA+ _, 

X is in PA- iff ~~~i(X) is in PA 

(112) X is a non-canonical head-term then 

X is in PA+ iff both ~~g~(X) and ti/ii1(X) are in 
+ 

PA, 

X is in PA- iff either ~~g~(X) or ~i/ii1(X) or both are in PA 

( 12) X is an application-term then 

X is in PA- ; 

(13) X is an abstraction-term then 

X is in PA-; 

(2) If X is . ;-- LA h in sent ten 

X is in PA+ iff both g~g(X) and g~~~(X) are in 
+ 

PA, 
-X is in PA iff either g~g(X) or g~~~(X) or both are in PA 

(3n) If X is in Svarn (n ~ N) then 

is in 
+ 

X PA . -
(4n) If X is in StermLA (n E-- ]N) then n 

is in PA+ iff, i,0~ i== n,elt1:(x) is 
. + 

X fd,r all in PA, ===i 
in PA- i, 1 ~ i~ n,elt1:(x) is in PA 

-
X is iff' for some ===l. 
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Xis in PA+ 

133 

ContxLA (n E ]N) then 
n 

iff both ~!~ 1(X) and 
+ 

are in PA, 

Xis in PA iff either g!~ 1(X) or g!~2 (X) or both are in PA 

(6) If Xis in ConstrLA then 

Xis in PA+ iff £!~(X),£g!(X) and ~~!(X) are in PA+, 

Xis in PA- iff at least one of £~~(X),£g!(X),~~!(X) are in PA. 

Finally,we have the following. 

314.3.DEFINITION. 

An LA-compatible site Bis said to be 

(I) a site on PA if every construction kin Bis in PA: 

(2) a site on LA if there is some construction kin B such that k is in PA 

314.4.REMARK. 

If two LA-terms a,b differ only by some alpha-conversions and a is in PA~ then 

we will also let b be in PA~. 

314.5.TERMINOLOGY. 

The "on"-terminology will be used in connection with any wfe in LA (especially 

for constructions) .E.g. ,we say that k (k in some LA-compatible site B) is 

a construction on PA (resp. on LA,whenever LA is not PA) iff k is in PA+ (resp. 

in PA-). 

314.6.REMARK. 

There is no point in distinguishing here between ~-LA and ~~-LA.For the moment 

being we shall agree that the way of speaking introduced previously applies to 

both "extensionality types". 

314.7.COMMENT. 

It is easy to see that a proper use of "on" above presupposes that the syntac

tic unit concerned is already "correct" or "occurs in" some LA-compatible site. 

(Otherwise the underlying induction won't work.) 

Of course,for syntactic units not involving floating constants "local identifi

cations" of the language they "belong" to would be possible without paying 

attention to matters of correctness.(There are not too many things left within 

the latter rubric,however.) 
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32.Global structure of (LA~compatible) sites. 

Relying on the tree-analysis described above,we shall give a global,abstract 

characterization of the structure of correctness in LA-sites. 

321.Reduced sftes.Reference order in LA-sites. 

We study first LA-sites that are "minimal" for given (sound) LA-constructions. 

321.I.DEFINITION. 

Let B be an LA-compatible site and k be a construction in B (LA as earlier). 

(I) A reduct of B for k is a minimal subset B v of B such that 
--- k 

(i) k is in B~ and 

(ii) B~ is LA-compatible. 

(2) Let Bk be as above.Then we say 
V 

that Bis a reduced site fork if 

B Bk. 

(3) A reduced LA-site is an LA-compatible site B such that there is some k 

in Band Bis a reduced LA-site fork. 

321 .2. REMARKS. 

We may stipulate,by convention,that the empty site is always a reduced LA-site• 

For the moment being we do not care about the unicity of reducts/reduced sites. 

A reduced site B for some k (k should be in B) is its own reduct fork. 

Reduced sites are,so-to-speak,"minimal" for a given construction they contain. 

If Bis a reduced site for some k than we cannot "reduce" it any further without 

thereby "loosing" k (i.e. ,its soundness for B) .Here "reduction" has not the 

technical meaning involved in the notions of reduction discussed earlier. 

Note also that reduced sites are always (LA-)compatible (and this respects the 

convention above on the empty site). 

32 I • 3 • COMMENT • 

The abstract notion of a reduced site has a "reference"-AUT counterpart in 

what L.S.van Benthem Jutting et al. used to call "excerpted text/book" (cf., 

e.g.,JUTTING 79-46,i·l·Excerpting. and also DE BRUIJN 80-72,~.Processing.). 

This has been implemented for AUT-QE in the following sense: 

Let~ be a correct AUT-QE book and call any sub-sequence of~!!. sub-book 

of ~-A program called excerpt has been devised which,given any correct 

AUT-QE book~ and a line tin ~,produces the minimal correct sub-book of 
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~ containing IZ (that is: it produces the "excerpted book,from ],for t"). 

For an example see the excerpted book for Satz 27 (in Landau's Grundlagen 

der Analysis,as translated by L.S.van Benthem Jutting in AUT-QE),given in 

JUTTING 79-46,Appendix !:· 
It is easily seen that "excerpting" makes sense for (any) other "reference"

AUT language,as well. 

Sometimes we shall need the following refinements of the above. 

321.4.DEFINITION. 

Let B be an LA-compatible site and k be a construction in B such that k is 

a construction on PA.We then say that Bis PA-reducible fork if some reduct 

B~ of B for k is a site on PA. 

If Bis PA-reducible for some k we say simply that Bis PA-reducible, 
while a reduct of B (fork) will be specified as a PA-reduct of B (fork) if 

it is a site on PA. 

321. 5. REMARK. 

Any compatible PA-site is PA-reducible,of course. 

We characterise the structure of LA-compatible sites via reduced sites.This 

will be done by essential use of the tree-analysis discussed earlier. 

321.6.DEFINITION. 

An analytic/genetic tree Mis a construction-tree if it is an analytic /genetic 

tree of some LA-construction (that is: its bottom-label is a pair (k,£) 

where k is an LA-construction and £ _ 1~£(k);cf. 311.5.(6) above). 

Given an LA-compatible site B,we define relations 

construction-trees as follows. 

321.7.DEFINITION. 

and 
__,,, 
----

Let B be an LA-compatible site with k 1,k2 in Band k 1 'Fk2 .Then 

kl o--< k2 
if 

(1) J(k 1) is a sub-tree of J(k2), 

on B via 

(2) for no kin B,distinct from both k 1 and k2 ,one can have simultaneously 

(i) J (k) is a sub-tree of J (k2) and 

(ii) J (k 1) is a sub-tree of J (k). 
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321.8.TERMINOLOGY. 

The relation o-< will be called the atomic reference order (relation) in B. 

For k 1 ,k2 in some LA-compatible site B, k 1 o--< k 2 reads: 11k 2 depends direct

ly on k 1 ",or 11k 2 is an immediate successor of k 1 (relative to the reference or

der in B) 11 or 11k 1 is an immediate predecessor of k2 (relative to the reference 

order in B)" or,even, 11k 2 covers k 111 • 

321.9.DEFINITION. 

The reference order (relation) in any LA-compatible site Bis the reflexive and 

transitive closure of o-< . 

Notation: __,, -- . 

321.1O.TERMINOLOGY. 

For k 1 ,k2 in any LA-compatible site B, k 1 =< k 2 reads "k2 depends on k 1" or 

k 2 (k 1) is a successor (predecessor) of k 1 (k2) relative to the reference order 

in B". 

321. II.NOTATION.TERMINOLOGY. 

For convenience,we shalL also use the irreflexive variant of=< ,hereafter 

denoted by "---< ". 
So for k 1,k2 in any LA-compatible site B, k 1 --< k 2 reads: "k2 strictly depends 

on kl 11 ,etc. and kl -< k 2 holds iff k 1 ==< k 2 holds with k 1 .,; k2 (syntactic 

inequality,modulo alpha-convertibility whenever necessary,but see the conven

tions on alpha-conversions in 123. above). 

321,12.REMARK. 

The reference order in an LA-compatible site describes completely the 

"dependence"-interrelationship between its elements (LA-constructions). 

It is obvious that the reference order in any LA-compatible site is 
antisymnetric. 

So we have the following straightforward fact. 

32 I. 13. LEMMA. 

Any LA-compatible site is a poset relative to its reference order. 

Proof.Clear.N 
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32 I. 14. COMMENT. 

N;G.de Bruijn used to define,in recent time (in lectures on AUTOMATH),"correct 

AUTOMATH books" as being pose ts. In current work on ("reference") AUTUM.ATH 

one speaks about the "reference structure" of a correct book in order to 

isolate the analogue of what we called here "reference order".This way of 

speaking is rather informal within the AUTOMATH research group and the fact that 

correct books can be viewed as posets belongs,actually,tcl the "folklore" of 

the subject. 

One should also note that the "reference structure" of correct AUT-books is to 

be distinguished carefully from both its "block structure" - describing the 

nesting of lines in correct books according to their contexts - and the "para

graph system structure",which is a local (practical) device,invented by I. 

Zandleven in order to simplify the actual checking of AUT-texts on a compu

ter (cf. ZANDLEVEN 77-47 or JUTTING 79-46,Appendix ~.The paragraph system.) 

Let us now examine the structure of reduced sites with respect to the reference 

order they contain. 

A reduced LA-site B (for some k,with kin B) is certainly a poset,for it is,by 

definition,LA-compatible (see 321.2.). 

It should be also clear that any LA-compatible site can be analysed into a finite 

number of reduced LA-sites. 

There is,however,some more information we can obtain by tree-analysis in the case 

of a reduced site and this will be useful for the understanding of the "real struc

ture" of an LA-compatible site,in general. 
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322.Proof theory: correctness proofs and their indices. 

In this section we shall briefly examine some (neglected) aspects 

of the proof theory of the ~bstract AUT-languages of concern here. 

In particular,this detour serves to prove our key-corollary 322.3~. 

below and is a reaction to criticism of L.S.van Benthem Jutting 

concerning a previous,elliptictreatement of the subject .. 
A more detailed discussion of the topics will be given elsewhere. 

322.1.DEFINITION. 

(1) A (formal) correctness clause (in LA) is an epi-statement 

of either one of the following forms: 

(1u) I B;Lio ,--LA T, I 
read: 11 B is LA-compatible", 

(20) I B;Li I-LA T I 
read: "Li is LA-admissible for B" (provided Bis LA-com

patible), 

(30) I (B,k) ;Lio I-LA T I, 
read: "BU{ k} is LA-compatible" (provided k is not in B), 

(L/o) I B;Li I-LA a:b I 
and 

(50) I B;Li /-LA a I 
with the usual reading (see,e.g.,2O.4.,provided Bis LA

compatible and Li is LA-admissible for B). 

In the above,as expected,B is an LA-site, Li is an LA-context, 

k is an LA-construction and a,b are LA-terms. 

(2) The initial correctness clause(= the initialization clause) 
is a correctness clause of the form 

I ¢;Lio I-LA T I-
(3) A correctness proof in LA is a (finite) sequences of 

correctness clauses in LA such that,for all si in s,si is 
either 

( 1 °) initial 

or 

(2°) follows from correctness clauses preceeding in the sequen

ce,by applications of the (primitive) correctness rules 
of LA. 
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(4) A correctness proof in LA will be said to be~ correctness 

proof of its last (correctness) clause. 

(The subscripts "LA" will be omitted whenever no confusion is 

likely.) 

322.2.REMARK. 

The meaning of "follows from" in 322.1.(3) above can be made 

precise upon a suitable formalization of the epi-theory. 

We shall,however,skip the formal details,relying on the intui

tions of the reader.(But see 322.5. below.) 

322.3.REMARK. 

Apparently,the typology of correctness clauses in 322.1. is 

incomplete,for the "derived" correctness rules of every LA -

at least as stated here - contain also epi-statements of the 

form 

"B ti 1- a R b" ' LA = ' 
where~ := contr,red or, conv,while epi-statements of the form 

"k is (sound) in/for B" (i.e., "k E. B11 ), 

for LA-compatible B's and LA-constructions k,occur already in 

the primitive correctness rule (Er),which is a rule of PA,CA,etc. 

Accurately,these epi-statements can be "interpreted" in terms of 

(or "can be reduced to") the formal correctness clauses listed 

above and additional epi-theoretic constructs which remained 

"unformalized" so far. 

Namely, 

(1) where~ is as above,an epi-statement of the form 

11 B ,ti I-LA a ~ b" 

(2) 

is to be "interpreted" as the conjunction of 

11 B ,ti I- a" LA 
provided that a ~ 
The epi-statements 

"k is (sound) 

and "B, 
b holds 

of the 

in B" 

I-LA b", 

in the associated reduction system. 

form 

are,in fact,disguised statements about correctness proofs in 

LA and we shall reserve them a special treatement below. 

Note first the following trivial fact. 
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322.4.LEMMA. 

Let B be an LA-compatible site.Then,for all kin B there are 

LA-compatible sub-sites B(k+) and B(k-) of B such that 

(1) B(k-) does not contain k, 

(2) B(k+) = B(k-) LJ {k}, 
and,moreover,any correctness proof of 

(10) I B(k+);~o r ~ I 
contains also a proof of 

(20) I B(k-);~o ~~I 
as a sub-proof(= sub-sequence of correctness clauses). 

Proof.Indeed,in any correctness proof of (1°),k has to be introdu

ced,sooner or later,by an application of a SiteLA_recursion rule. 
N 

That is: (1°) is proved on the basis of (2°) and,possibly,additional 

correctness clauses,by a single application of one of the rules 

(Sr-1p),(Sr-2p),(Sr-1d) or (Sr-2d).@ 

322.5.REMARKS. 

It seems necessary to be more definite at this point. 

( 1 ) Let B be an LA-compatible site with k in B.Then,for every 

correctness proofs of 
( 1 0) IB;t.o~tI, 

s contains a correctness clause 

(20) 
I 

I I (Bk,k); ~ I- 'C 

and a correctness clause 
I 

I Bk; Ao I- 't I 
preceeding 

(40) 

and 

(2°) in s,such that 
I 

Bk a subset of B 

(5°) knot in B~. 

B~ is LA-compatible,with 

I 
Moreover,Bk is uniquely determined in/for any correctness 

proofs in LA (and any given kin B),provided s proves (1°). 
I 

In the sequel,Bk will be referred to as being the companion 

site of k in s. 
(2) If an epi-statement of the form 

"k is (sound) in B" 

is actually used at stage min some correctness proofs in LA, 

this means that there are correctness clauses 
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(resp. 

(3° 0 ) I B~;g1~Ck) r g~!Ck) g~1Ck) I 
if k is ad-construction in LA),occurring at stages m1 ,m 2 , 

m3 (resp. m3) < m,together with a correctness clause 

C $ 0 ) I CB~, k) ; ~o ~ t: I 
occurring at stage n in s,with m1 ,m2 ,m3' (m3) < n < m, 

I -
(where B~ is the companion site of kin s,while the "stages" 

of s refer,obviously,to lengths of initial segments of s). 

(2) In a more formal setting,it will be convenient to make always 

explicit the actual uses of the epi-statements of the form 

(N) "k is (sound) in B" 

in correctness proofs (in LA).In order to do this in a pro

per way we make the following decisions: 

(1°) the epi-statements of the form (N) above will be 

viewed as formal correctness clauses in LA and, 

(2°) upon adopting this point of view,we have to appropria

tely extend the concept of~ correctness proof in LA. 

by 

- letting the new formal clauses occur in correct-

ness proofs (in some extended sense) 

and by 

- extending the meaning of "follows from" (in 322.1.) 

by supplementing the list of (primitive) correctness 

rules in every LA with (structural) rules for the mani

pulation (= introduction) of correctness clauses of 
the form (:11!). 

322.6.DEFINITION. 

(1) An epi-statement of the form 

(6°) I (k,B);L\:J I- 't I 
(read: "k is (sound) in/for B"; provided B is LA-compatible 

- and k is actually an element of B - ) 

is a (formal) correctness clause in LA. 
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(2) An extended correctness proof in LA is defined as earlier, 

in 322.1.,reading "correctness clause" in the present sense 

and including among the (primitive) correctness rules of 

(every) LA the structural rule (k) stated below. 

(3) As earlier,an extended correctness proof is~ proof of its 

last correctness clause. 

322.7.COMMENT. 

(1) Note that the extended correctness proofs are now allowed to 

have terminal clauses of the form 

I (k,B) ;.10 I- -c I, 
which was not the case earlier. 

(2) As we shall henceforth use only correctness proofs in the 

extended sense the specification "extended" will be,in gene

ral,omitted. 

322.8.DEFINITION. 
Lets be a correctness proof in LA.If Bis an LA-site and k is an 

LA-construction we say that 

~ (Sr)-rule is applied to Band k at stage n ins 

if 

(1°) the length of s,Jg(s),is such that Jg(s) ~ n (n>1), 

(2°) s contains correctness clauses 

s1 . -

s2 .

s3 . -

(and 

s .3 : = 

I B; Lio I- ,c; I, 
I B;gt~(k) ~'CI, 

at stage n1 , 

at stage n2 , 

whenever k is ad-construction), 

with n1 ,n2 ,n3' (n3) < n,together with a correctness 

clause 

s .- I (B,k), ti0 /- -c- I, at stage n. 
I 

(Here B B~;so k is .not in Bands is actually obtained from 

the s. 's by an application of a SiteLA_recursion rule.In other 
l lll! 

words,the disambiguating conditions concerning the freshness of 

floating constants occurring in the statement of these rules are 

supposed to hold in every case of concern.) 
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Now we can state the 11 structura1' rules for the introduction of 

the (new) correctness clauses "I (k,B); t-0 f- 't. I" and the elimination· 

of the correctness clauses "I (B,k); 6cJ f- 't I". 
The terminology and notation are as in 322.8.Hereafter,s is a given 

correctness proof in LA,sufficiently long in order to make the stage

specifications appearing below meaningful. 

STRUCTURAL RULES (k): 
RULE (k-): If a (Sr-)rule is applied to B 1 and k at some stage n in 

s then,for B .- B' Ulk}, the clause I B;4o ~'CI is allo

wed to occur ins at any stage m,m 7 n. 

RULE (k+): If 

1° a (Sr-)rule is applied to B 1 and k at some stage n ins 

and,for some B with B' C:. B, 

20 I B;60 I-LA 'l I 
and 

30 

occur ins at stages m1 ,m2 resp.,with n ~ m1 ,m2 , 

then 
yo 

is allowed to occur at any stage m in s,with n,m1 ,m2 < m. 

322.9.REMARKS. 

(1) In the context of the remaining (primitive) correctness ru

les of LA,the structural rule (k+) says,roughly speaking,that a 

correctness clause 

I (k,B);.10 l-'t I 
can be introduced,in any correctness proofs in LA,on the basis 

of a previous application of one of the SiteLA_recursion rules 
N 

and only in these conditions. 

(2) The foregoing considerations should make now precise enough 

the content of the EsentLA_recursion rule (Er),the only primiti-
N 

ve correctness rule of PA,CA,etc. containing epi-statements of 

the form 

"k is (sound) in B". 

Specifically,in (meta-)proofs by induction on correctness in LA 

(= proofs "by induction on the length of a correctness proof in 

LA"), one has to keep in mind that any application of (Er) at 
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some stage n in some correctness proofs is accompanied by a 
previous application of the relevant Site~A __ recursion rule at 

some stage m,with m < n,in s. 
Concurrently,if some induction concerns (Er) "at stage n" then 

the hypothesis of the induction concerns ~+) "at any stage m", 

with m < n,where (k+) involves a "nested" inductive step, 
(3) It should be clear that the present considerations (and,in 

particular,the addition of rules(k) to the primitive apparatus 

of the LA's of concern here) do not actually increase the "deduc

tive strength" of the original formulations,but rather make them 
more explicit.In particular,(k-) has only a notational effect. 

322.10.REMARK.(Structured correctness proofs.) 

We shall unessentially modify,once more,the concept of a correct
ness proof in LA in order to economize on later considerations 

about ranking functions (see 101.1.). 
Let us replace "rank-fresh" by "minimally fresh" (see 122.11. for 
definitions) ,everywhere in the Site~A-recursion rules.Call the 

correctness proofs obtained by this restriction structured correct
~ proo-fs. One realizes easily that a structured proof (in LA) is 
still a correctness proof in LA (in the original,unrestricted 

sense;cf. also 122.12.).Clearly,sub-proofs (i.e,,sub-sequences 
that are correctness proofs) of a structured proof in LA are also 

structured.Moreover,there is no loss in generality if we choose 

to practice always a "structured" way of proving correctness in 

LA.Indeed,the differences thereby induced will only consist of 
a uniform ("isomorphic" say) relettering of the floating constants 

used in particular LA-compatible sites.(This is,in the end,equi
valent to the choice of a different ranking function for the floa

ting constants in the alphabet of LA.Cf. 101.1.). 

322.11.REMARK.NOTATION. 
Let B be an LA-compatible site.Recall that,according to 101 .8., 

the rank of B has to be ---
~~g~(B) = ID~~ l~~g~(1gf(k)) : k ~ B}. 

So,for any kin B,~~g~(1g!(k)) ~ ~~g~(B). 
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We shall now introduce an inductive "measure of complexity" for 

LA-constructions occurring in LA-compatible sites using the referen
ce order introduced earlier.This will turn out to have the same 

effect as the manipulation of ranks in structured proofs of correct

ness (in LA). 

322.12.DEFINITION. 
Let B be an LA-compatible site with kin B. 

(1) One defines the depth of kin B (notation: g~g~gB(k) ) as 
follows: 
(1°) if,for no k' in B, 

k' ---< k, 

then g~g~gB(k) = O; 
(2°) if for n~1,and k1 , ... ,kn in B 

k1 , ... ,kn-< k, 
(and there is no other k 1 in B with this property) then 

g~g~gB ( k) = lH1:~ { g~g~gB ( ki) : 1 ~ H, n J + 1 . 
(2) The depth of B (notation: g~g~g(B) ) is then 

g~£th(B) = m~~{g~£thB(k) : k ~ B}. 

322.13.DEFINITION. 

Let B be an LA-compatible site with g~g~g(B) 
0 f n f. m, 

(1) the layer of depth n in Bis the site 

~(B,n) = fk E: B: g~g~gB(k) = n }. 
and 

m.Then,for all n, 

(2) the section of depth n in 
B$ = L_) L(B,i)-. 

B (then-section of B) is the site 

n Q:::i~n A $ 
(For convenience,we set also B_1 

322.14.COMMENT. 
Intuitively,one may think of the depth of an LA-construction/site 
as being a kind of "invariance property" of the construction/site 

under consideration,relative to the underlying reference order 
of the site. 
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The role of the structured proofs will become now obvious. 

322.15.LEMMA. 
Let B be an LA-compatible site.Then every structured proof of 

I B; llo l-LA -c I 
gives also 

;g~g~ ( igt ( k) 
and,consequently, 

;g~g~(B) = g~~tg(B). 
Proof.By induction on correctness in LA.@ 

322.16.REMARK. 
Let B be an LA-compatible site,with k1 ,k2 in B.If 

(1o) k1--< k2 
then (clearly,k1 f k2 and) every structured proof of 

gives also 
(20) 

I B; llo l-LA --c I 

for ( 1 °) 
(30) 

implies already that 

g~~tgB ( k1 ) <:. g~~tgB ( k2) ' 
A similar fact holds,mutatis mutandis,for =< and~ . 
However,these implications cannot be reversed,in general,for one 

can have (3°) say,without thereby having k 1 and k2 comparable 
relative to the reference order of B. 

The following set-theoretic ingredient will be useful later. 

322.17.THEOREM,("Union Theorem",) 

Let B be an LA-compatible site.If B1 ,B2 are LA-compatible sub

sets of B then so is their union. 

Proof,Easy.(Hint: use Site-expansion results discussed in 213,Cf. 
also 222.20.The rest is a typical question of "recreational mathema

tics".)® 

322.18.COROLLARY. 

(1) Any (finite) union of LA-compatible sites (resp. reduced sub

sites) of an LA-compatible site is,again,LA-compatible. 

(2) Every LA-compatible site is a (finite) union of LA-compatible 
(and,in particular,reduced) sites. 
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Proof.(1) By successive applications of 322.17. 

(2) Take,e.g. ,the union of the sets B; c: B,such that B; is reduced 

for k,with kin B.@ 

322.19.REMARK. 

In general,SiteLA is not closed under finite unions,for the 
lll! 

identifiers of LA-constructions "occurring in" distinct LA-com-

patible sites need not be (pairwise) distinct.But,if we assume 

that i@{(Ei),1~ i~ n,are pairwise disjoint sets whenever so are 

the B. 1 s,then the union of the B. 'sis actually LA-compatible 
l l 

if so is each Bi (1 ~ i~ n). (The first part of the remark is 

due to L.S.van Benthem Jutting,in conversation.) 

322.20.NOTATION. 

Let X be some wfe "occurring in" some LA-compatible site B 

and I(X) be the analytic tree of X (in B).Then we let £I(X) be 

the set of subtrees~ of £I(X) such that~ is a construction

tree.(Note that one may have H I(X),as well.) 

322.21.DEFINITION. 

Let X be a wfe "occurring in" some LA-compatible site B.Then 

the analytic site (analytic set or ~-set) of X (in B) is the 

site 
f LA 1kE Constr : 

322.22.COMMENT. 

That is: given some LA-construction (LA-context,E-sentence or 

term in LA) X say,we can always obtain the analytic site of X 

in an effective way,by a mere "syntactic" analysis of X into 

its (both immediate and remote) "components",provided X "occurs 

in" some LA-compatible site B.The "algorithm" is,indeed,straight

forward: construct first the analytic tree of X (this is just 

"syntactic" analysis;hence the name above),then collect the 

labels of the nodes of this tree and select only those labels 

that are pairs of the form <k ,c> .The first projection of any 
C -

such a pair is an LA-construc!ion on which X actually "depends", 

in the sense of the reference order of B.The set of all these 

LA-constructions is the analytic site of X (in B). 
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323.23.REMARK. 
(1) If Bis LA-compatible and k is in B then 

(1°) Ql(k) = lk' E- B: k' =< k] 
and 
(2°) Q!(k) {=: B. 

(2) It is possible to define analogously "genetic sites" of 

LA-constructions,LA-contexts,E-sentences,etc. "occurring 

in" some LA-compatible site B,replacing the analytic trees 

in the definition above by genetic trees (cf. 313.).The 

"genetic sites" will,however,depend on particular proofs 

of correctness for the LA-site B and,consequently,the cor

responding analysis will be "intensional" from the very 

beginning. 

We shall not pursue the investigation on these lines (i.e., 

using "genetic sites"),but will employ a different techni

que,also "intensional" in nature,closely related to the 

"encoding" techniques of recursion theory. 

The plan behind what follows consists of "encoding" directly cor

rectness clauses (resp. structured correctness proofs) in LA on 

finite unions of analytic sites.This will be done by an appro
priate "indexing" of the (correctness) clauses occurring in (struc

tured) correctness proofs in LA.The procedure will reflect in some 

straightforward sense the "construction" of analytic sites,and seems 

to be of interest beyond the particular purposes of this section. 

322.2Y.NOTATION. 

Lets be a (structured) correctness proof in LA.The correctness 

index of~ (correctness) clause 

sIT B TI:= I·•· B ··· I -of swill be defined in 322.25.Here and everywhere in the sequel 

we adopt the following notational conventions: 

Let B be an LA-compatible site. 

(1) Where I ... B ... I is a correctness clause "containing" B, 

i~~ I•·· B •·· I is its correctness index. 



149 

(2) Where B' is any other LA-site, 

.sIIB'Il --I··· B' ... I 

and 

resp. stand for the fact that B has been replaced,ceteribus 

paribus,with B1 ,in the corresponding correctness clause. 

(This is,accurately,a "substitution operation" defined on the 

meta-language and,clearly,can be introduced by an obvious 

formal definition,upon a suitable "advanced" formalization of 

the epi-theory.) 

(3) We use also the following shorthand: 

ig~ I B;A f- a 1 , ... ,an I= LJ;l,g:1$; I B;A ~ ai I· 
1 f,ifn ---

(II) If k is an LA-construction (in B) then 

{

~g~ I B;g~~(k) f- 1:,~g~(k) I,if k is in PconstrLA 

CT (k) = 

==N ig~ I B;~~~(k) I- t,gg~(k),g~f(k) I,else. 

(5) If A is LA-admissible for Band a is a head-term with 

(6) 

B,A ~ a, 

then J,g(&) J,g(~g~J,(a)) n,n~O,and CAT(a) will denote 
the unique kin B with 

(1°) 1!;1f(k) ; h§~g(a) 
and 

(2°) J,g(k) = n. 
(See 212.12.,212.13. and 222.8. through 222.10. above.) 

' As earlier,Bk is the companion site of kins. 

322.25.DEFINITION.(Correctness indices.) 

(1) With notation as in 322.1Y.,~g~ I ... B ... I is defined by ca

ses as follows (here: Bis an LA-compatible site). 

( 1 0) ~g~ I B; t.iol- 't I ¢; 

(20) ~g~ I (B,k); A0 ~ 1: I glN(k),provided k is not in B; 

(30) i~~ I (k,B);Do I- "C' I ~g~ I ' (Bk, k); i 0 f- 'C' I LJ {kJ; 

provided k is in B; 
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(Y O ) lg?£ I B ; A IJ: a] I- 't" I = lg?£ I B ; l1 I- 't" , a I; 
(5°) lg?£ I B; al- a:b I is,by induction on the structure of a,· 

£t?£ I B; tif- 't I,if a is a variable 

lg?£ I B; 11 I- 't •Hffi~(a)' ••• ·~~m~(a) I u gJN(k) u {k}' 
if a is a head-term with k = CAT(a) 

and n = lg(k) lt(£t?£(k)); 

= lg~ I B ; .1 I- 't • H~ ( a ) • !lrn (a) I' 
if a is an application term; 

if a is an abstraction term; 

idx TB; 61-- -c T, if a= 't',(PA,CA) === - -
(60) lg~ I B;~f- a I= M~ ( B;l\l- 't',a1, ... ,an l, 

if a ; [v 1 : a 1] ••• [ v n: aJ 't , ( Q-A, QA) 

lg~ I B;A ~ a:b I,else, 
where bis an LA-term with 

B; I:::. ~LA a:b. 
(2) The (correctness) index of the proofs (in LA) is the index 

of the last correctness clause of s. 

322.26.REMARK. 
If R := contr,red,conv and one wants to formalize the LA's 

as indicated in 10.1. above (with Q,~,R as primitive relators) 
then one should have correctness clauses corresponding to 

epi-statements of the form 

(N) B, /:::,. ~ a ~ b. 

In such cases,we might have defined the indices of the correspon
ding (formal) correctness clauses as being 

lg~ I B ; 6 I- 't, a , b I· 
In the present setting,the indices are also supposed to remain 

invariant under contraction (resp~ reduction,conversion) in the 
associated reduction system.(In fact,correctness indices remain 

primitively undefined for epi-statements of the form (N) above, 

since such statements have no "formal" counterpart.So the pre

supposition of invariance is,actually,tacit.) 
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322.27.REMARK. 
If sIT B TI:= I ... B ... I is a correctness clause occurring in 
some (structured) correctness proofs (and Bis LA-compatible) 

then 1@~(sTI B TI) is an LA-site and a subset of B. 

322.28.LEMMA. 
Lets be a (structured) correctness proof in LA,Where Bis an 

LA-compatible site, D. := [v1 :a1] ... [vn:anl is an LA-context with 
i~(ll) = n,n ?,,0,k is an LA-construction and a, b are LA-terms one 

has: 
( 1 ) If 

s1 := I B;t.l-'t' I 
occurs ins then 

1@~(s1) = 1@~ I B; 6a I-,:; ,a1' ... ,an I, 
(2) If 

s2 := I B;~ ~ a I 
occurs ins then s 1 does and 

1@~(s2 ) = 1@~(s 1 ) U g!(a). 
(3) Thus,in the same conditions 

1@~(s1) g!(t.) 
and 

1@~(s2 ) = g!(CI) U g!(a). 
(4) Moreover,for some LA-term b, 

s3 := I B; .61- a:b l 
occurs ins if s 2 does and 

1@~(s3) = 1@~(s2). 
Finally, 
( 5) if 

and 

sk := I (B,k); Ila I- 't I 
occurs ins then 

1@~(sk) = g!(k) - {kJ, 

( 6) if 

s~ := I (k,B) ;~0 I- 't' I 
occurs ins then 

1@~(s~) = g!(k). 
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Proof.(1) is straightforward.(2),(5) and (6) follow by easy induc
tions.Now (3) is a consequence of (1) and (2),while (~) is clear 

from the definition of lg1.@ 

322.29.COMMENT. 
So the correctness index of a clause occurring in some (structu
red) correctness proof i in LA is always either 

(1) an analytic site or 

(2) a (finite) union of analytic sites. 

Now we are able to prove the following "reflection property" of the 
correctness indices. 

322.JO.THEOREM.("Index Theorem".) 
Let B be an LA-compatible site and i(B) be a (structured) correct

ness proof of 

I B ; A0 f- -c I. 
Then 
(1) for all correctness clauses 

(2) 

sTT B n := t B I 
- .181 - - .181 

occurring in i ( and "containing" an LA-compatible sub-site 
B CB) 

.181-

(11) one can find (effectively),for every LA-compatible site 

Bi,with 

lg~ I ... B.181 ••• I t,;;.Bi I;; B.181, 
a (correctness) proof s(B.) of 

l 

sTT B. TT:= T ... B .... T 
- l - - l -

where 

(12) s(Bi) contains (as a sub-proof) a proof of 

I Bi ; Ao I- 't I. 
In particular,for all correctness clauses sTI B TI of s, 

.181 
(21) there is a proofs of 

sTI lg1(sTI B.181 TI) TI:= I lg~ r ... B.181 ... I ... I 
such that 

(22) s contains (as a sub-proof) a proof of 

I lg~ ( sTI B.181 m ; Ao I- 't' J 
with,moreover, 

(23) I B .181 I-· -I 
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Proof. (I) Note first th_a t with "effectively" in ( 11 ) , the method 

of constructing the required s(B.) 1 s in (1) does already guarantee 
l 

an effective proof of (21) and (22),which are particular cases of 

(11) and (12) resp.In fact,there is a (nearly mechanical) procedure 

of "expanding" the given correctness proof i up to the required 

s(B.) 1 s,from which we can "read off" (23) directly.The construction 
l 

is rather tedious and requires some amount of inventivity in finding 

an appropriate system of notation for "proof-analyses" (i.e.,the 

indications concerning the way a correctness rule of LA is actual

ly applied to clauses of i in order to produce other clauses of i). 
A detailed discussion of the method (of finding "complete expansions 

of a given correctness proof in LA") is deferred and will appear 

elsewhere.Here,we have to proceed somewhat differently,since the 

main interest is,in fact,in the "partial" case,stated in (2). 

(II) Neglecting "effectively" in (1) has the effect of commiting us 

to prove (2) first.Note that,actually,(1) follows (without effective

ness,however) from (21) and (22) by results on Site~A-expansion dis

cussed in 213. (and,incidentally,by use of 322.17. and 322.18.(1) 

above). 

Now the proof of (2) is by "induction on correctness in LA",in the 

formal setting introduced in this section.Specifically,one has three 

"properties" of the formal correctness clauses of LA,viz. 

(1°) "derivability (4nvariance) under self-index replacement", 

(stated in (21)), 

(2°) "LA-compatibility of correctness indices" (22) 

and 

(3°) "fixed-point condition" for indices (23), 

Clearly,the initialization clause 

I 0 ; 60 1- -i:: I 
satisfies all these properties and it is an easy (though somewhat tedi

ous) exercise to show that the correctness rules of everyLA (inclu

ding the "structurar rules (k),stated above) preserve these proper

ties.(Note also that (2°) requires the use of the "Union Theorem", 

specifically: 322.18.(1) above.).Obviously,the "modifying" rules 

(CC.),i = 1,2 7 and - ib the case of QA - (CI) are harmless for the 
l 

purposes of the proof.(Cf.322.25, again.).Lemma 322.28. has to be 

used copiusly at the inductive step,of course.@ 
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322.31.COMMENT. 
The specific part (2) of Theorem 322.30. says,roughly speaking, 

that: 
(1) if something can be proved ("in" LA) at all,of some LA-compa

tible site B~ then the same thing can be shown to hold of/for 

the correctness index of the corresponding proof; 

(2) in particular,the correctness index of a (correctness) proof 

in LA is always an LA-compatible site 

and 
(3) the correctness index of a given clause s,occurring in some 

(correctness) proof i (in LA),is the "minimal" LA-compatible 

site of which s holds ("fixed-point condition"). 

More or less metaphorically,one can say that the correctness indi

ces are "fixed points" of correctness proofs in LA.(But,accurate

ly,the "epi-theoretic function(s)" 

( £) AX. i~?£ I . . . X ... I 
has/have correctness indices as fixed points only if it is/they 

are "correctly parametrized".Indeed,"epi-functional expressions" 

of the form(£) above may also contain "hidden parameters" as, 
e.g.,LA-contexts,LA-constructions or LA-terms.). 

For the sake of clarity we extract from 322.30, only the information 

neccesary for the proof of 322.34. 

322.32.COROLLARY. 

Let i be a (structured) correctness proof in LA.Ifs is a correct

ness clause of i then i~~(s) is an LA-compatible site. 
Proof.This is the content of 322.30.(22).00 

322,33,REMARK. 

Let B be an LA-compatible site and k be an element of B.Where 
I 

~~g~gB(k) = n and Bk is,as above,the companion site of kin some 
(correctness) proof i of 

I B ; Llo I- 't: I , 
it is clear thats should contain (as a sub-proof) a proof s(k) 

of 
I I (Bk,k);~o I- 't: I 

with correctness index B(k) = Ql(k) - {k]. 
(k is not in B1) 

k 
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Moreover,one has easily that 
(1°) B(k) = ¢, 

and 
(20) 

In fact, 

(3°) g~g~g(B(k)) = g~g~gB(k) + 1 

if n o, 

(where,by convention,g~g~g(0) = -1;cf. also 322.13.(2) above) 
and B(k) need not be the whole section B!_1 (when n f 0). 
Indeed,in general,B(k) is a proper subset of the (n-1)-section 

unless Bis a reduced site.(See below why.) 

Finally,note that 
(4°) if k 1 E g!(k) and k 1 f k then k' E. B(k). 

322.3i.COROLLARY. 
Let B be an LA-compatible site with kin B.Then QI(k) is an LA

compatible site. 
Proof.Lets be a (structured correctness) proof of 

I B;.66 I- 'CI-
As already noted,s should contain a proof of 

' I (Bk, k) ; Ao I- 't I 
as a sub-proof.Assume that the latter clause occurs ins at stage n, 

n }1.Then one can always insert,by applying rule (k+),a clause 
I (k,B');~0 ~~I 

at some stage m,m > n,in s,where B' is some LA-compatible site with 

B~ u lk1 c B, c. B. 

(In particular,one can take B' B~ U{kJ,if the corresponding clause 
does not occur already ins.) 

Now 

1g~ I (k,B');a0 I-~ I= ~!(k), 
by 322.28.(6),and,by 322.32.,indices of correctness clauses are 

LA-compatible sites.That is: ~!(k) is LA-compatible.@ 
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32~.Analytic sites gua.reducts and~ topology. 

~he notion of a r~duced site (cf. 321.1.) is a "global" concept and, 

in particular,it is not easily manipulated in actual reasoning on 

LA-compatible sites.Moreover,the way it was introduced is not very 

constructive.On the other hand,the analytic sites,discussed in 322. 

were found to be effective,but the considerations concerning their 

"minimality" were essentially dependent on particular correctness 

clauses occurring in correctness proofs in LA. 

In what follows we establish the equivalence of these notions. 

323.1.LEMMA.("Separation".) 

Let B be an LA-compatible site with k 1 ,k2 in B (k1 i k2 ) such 

that 

k1 -< k2· 
Then there is an LA-compatible site B such that B c::. Band 

Jll! Jll! -

k 1 is in B but k2 is not in B. 
I Jll! Jll! 

Proof.Let B2 be the companion site of k2 in some correctness proof 

s of 

I B;60 1-- 't: I, 
Then,by 322.5.,there is a proof s(k2 ) of 

I 
s2 := I (B~,k2); 40 ~ ~ I, 

Set Elli! ~g~(s 2 ) .This site satisfies the requirements since it is 

LA-compatible,by 322.32.,and,moreover,Blll! = gI(k2 ) - {k2J,by 322,28 

(5).So Elli! does not contain k2 .Now k 1 is in Elli! by the definition of 

gi,oo 

323.2.COROLLARY. 

Let B be a reduced site fork (kin B).Then k is maximal (relative 
to the reference order) in B. 

Proof.By reductio and 323.1.@ 

323.3,LEMMA. 

Let B be a reduced site fork (kin B).Then B - tkJ is LA-compa
tible. 

Proof.Use 322.Y. and the fact that Bis reduced fork.@ 
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323.Lj.COROLLARY. 
Let B be a reduced site for k 1 ,k2 (k1 ,k2 in B).Then k1 = k2 . 

Proof.By reductio.If k1 J k2 then k1 ,k2 are both maximal in B,by 

323.2,and "extracting" each of them from B gives LA-compatible si

tes B - {k1} and B - {k2}resp.This is impossible unless k1 ~ k2 .@ 

323.5.COMMENT. 
So any reduced LA-site has a "supremum" with respect to its 

reference order.Specifically,if Bis reduced fork then its "su

premum" is k itself and we call it the bottom of B.(This terminolo

gy is somewhat artificial but it has something to do with our way 

of drawing the "graph" of a reduced site: the "supremum" will 

be always placed at the bottom of the picture representing the 

reduced site gua poset.). 

We may interpret heuristically the reference order of an LA-compa

tible site Bas a rough estimation of the "amount of information" 

conveyed by each LA-construction in B.Within this heuristics 

one would want to begin with "minimal pieces of information" 

(furnished by LA-const~uctions with depth O in B).An LA-construc

tion k strictly depending - in the sense of the reference order -

on LA-constructions k1 , ... ,kn (n~1) in B will be then supposed 

to "contain more information" than the k. 1 s.In particular,if the 
l 

site is reduced (for some k) then its "bottom" provides always 

the maximum of information for that site. 

323.6.REMARKS. 

(1) If Bis a reduced site for some k (kin B) then,by 323.3. 
the depth of B equals the depth of kin Band any other k' in 

B has smaller depth (in B) thank itself. 
(2) Every reduced site Bis a semi-lattice (relative to the 

reference order in B). 

323.7.LEMMA. 
Let B be an LA-compatible site with kin B.Then gI(k),the analytic 

set of k is contained (gua set) in any LA-compatible subset Bk of 

B which has k as an element. 
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Proof. One shows easily ,_by a 
tic tree of k that there is 

k in B - Bk.@ 
0 

systematic search throughout the analy

no k in B with k J k, k -< k and 
0 0 0 

323.8,COROLLARY. 
Let Bk be a reduced site for k (k in B). Then gI(k) C Bk. 

Proof.By definition,Bk is compatible and contains k.Then apply 

323.7.:@ 

323.9,THEOREM. 
Let B be an LA-compatible site with kin B.Then,for some reduct 

B~ of B for k,one has B~ = gI(k). 
Proof.QI(k) is an LA-compatible subset of B containing k as an 

element~Then gI(k) contains a minimal subset B~ say,which is LA

compatible and has k as an element.So B~ is a subset of gI(k).But 
gI(k) is a subset of every reduct of B fork (by 323.8,).So,in par

ticular,B~ = gI(k).:00 

323,10.COROLLARY. 
V V Let B be an LA-compatible site and k be in B.If Bk, 1 and Bk, 2 

V V are reducts of B fork then Bk 1 = Bk 2 . 
V , ' 

Proof.By 323.8. The sets Bk,i (i = 1,2) contain (both) gI(k).So,for 

~ reduct B~,O of B for k,one has gI(k) = B~,O ,by 323,9.,and 
B~,O is a reduct of B for k,contained in reducts B~ 11 ,B~, 2 of B for 

k.This is possible iff B~,O B~,i (i = 1,2).:00 

Explicitely,one has a 

323.11.THEOREM. 

(1) For each LA-compatible site Band every kin B,there is a 

unique LA-compatible subset B~ of B such that B~ is a reduced 
site fork(= there is a unique reduct of B fork). 

(2) Moreover,the reduct of an LA-compatible site B for some k (k 

in B) can be obtained effectively from k (by "syntactic" ana

lysis,via analytic trees),with specifically,Bk = f!(k). 

Proof.Already completed.:@ 
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323.12.COMMENT (historical). 
The facts mentioned above have been conjectured - several years 

ago - by N.G.de Bru~n et al. in connection with the excerpt pro

gram for AUT-QE mentioned earlier (321.3.).The present analysis 

was,however,done in complete independence of previous work on 

that program and its implementation (at the Technische Hogeschool, 

Eindhoven) . 

As the foregoing analysis is a "global" one (viz.,it does not 

depend too much on the exact formulation of the correctness ru

les for some particular AUT-language) the results obtained here 

can be easily transferred to other AUT-languages,not considered 

here (whether in abstract or "reference" formulation). 

It is also useful to insist,once more,on the set-theoretic behaviour 

of LA-compatible sub-sites of a given LA-compatible site. 

323.13.THEOREM.("Intersection Theorem".) 

Let B be an 1A-compatible site.If B1 ,B2 are LA-compatible subsets 

of B then so is their intersection. 

Proof.If B1n B2 =¢then the Theorem follows by (Si).Else,let 

B1nB2 = {k1 , ... ,kn},with n;:,,,-1.Then,for every j,1~j~n.~I(kj) is 

a subset of both B1 and B2 ,by 323,7,,and ~l(kj) is LA-compatible, 

by 322.]Y.Now B1n B2 = L_J ~l(k.),by the definition of ~l(k.),and 
1~i~n J J 

the latter set is LA-compatible,by 322.18.@ 

323.14.COROLLARY. 

Let B be an LA-compatible site.Then any (finite) intersection of 

LA-compatible subsets of B is,again,LA-compatible. 

Proof.By successive applications of 323.13.@ 

Note also the following 

323.15.THEOREM. 

Every section of an LA-compatible site is LA-compatible. 
Proof.If the site is empty,use (Si).Else,realize that,for every LA

compatible B,with ~~R:t~(B) = n,n 9 o,B! is the union of analytic si

tes ~l(k) with kin B!,~nd apply 322.18.@ 
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Now we have some reason to shift to a topological terminology. 

323.16.DEFINITION. 
(1) An LA-space is an LA-compatible site. 
(2) Let B be an LA-space.A subset of Bis B-open (in LA) if it 

is an LA-compatible sub-site of B. 
(3) If Bis an LA-space then the natural topology on Bis the 

family !(B) = [B 1 : (B'!;;B)&(B' is B-open)}. 

This way of speaking is motivated by the following. 

323.17.THEOREM. 
An LA-space Bis a T0-space relative to the natural topology on B. 

Proof.The structure ~ = < B,T(B) '> is,indeed,a topological space,by 
---• - A 

322.18. and 323.14.(Every LA-compatible sub-site of Bis an open set 
in ~-lNow Bis a poset relative to its reference order (and finite, 
by construction);this gives the T0-separation property. 

(Explicitely,for any two k 1 ,k2 (distinct LA-constructions) in B, 
(1°) either k 1 ,k2 are incomparable relative to-<, 
(2°) or k 1 -< k 2 , 

(3°) or k2 -<. k 1 . 

In the first case,there is a B-open set,fI(k1 ) say,which does not 
contain k2 (or conversely).In the latter two cases,an infimum of 

k1 and k2 exists,and is an LA-construction k say.Then fI(k) must 
contain k but not the k. with k f k. (i = 1,2).In any case,there is 

l l 

some k. in B such that CT(k.) contains k. and does not contain the 
l == l l 

kj with if j (i,j = 1,2).But fI(ki) is B-open,for every ki in B, 
by 322.14.So the natural topology on Bis T0 .)@ 

323.18.REMARK. 

LA-spaces need not be T1 ("Fr,chet spaces").Indeed,let B be an 
LA-space and take k 1 ,k2 distinct in B such that k 1 -< k2 ,say. 

Then,for no two disjoint members B1 ,B2 in the natural topology on 
Bone can have both 

k 1 E B1 , k 1 (/. B2 
and 
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Reason: Ql(k1 ) must _be a subset of Ql(k2 ),the Ql(ki)'s are B-open, 

while,by "minimality" (i.e.,323.11. above),Ql(ki) is contained -

qua set - in every B-open set having ki as an element (i = 1,2). 

So,in general,an LA-space is not Frechet. 

323.19.COMMENT.(Historical.) 

T0-spaces are usually called Kolmogorov spaces (cf. BOURBAKI 64) 

and have been - apparently - introduced first in ALEXANDROV & 
HOPF 35.They are not very interesting from a geometric point of 

view say or in real analysis (where one would want to start with 

topological spaces satisfying at least the "Hausdorff separation 

property"). 

"From a less geometrical point of view T0-spaces can be not only 

interesting but also natural" (SCOTT 72) and quite a lot of work 

has been done around the subject during the last ten years.This 

was initially motivated by discoveries of Dana S.Scott,Gordon 

Plotkin et alii in the model theory of the "type-free" lambda

calculus (SCOTT 69,72,73,75,76;PLOTKIN 72,78;BARENDREGT & LONGO 

80,8@) and the semantics of programming languages (SCOTT 72a,72b; 

MILNE & STRACHEY 76;ST,OY 77;etc.).In a more general setting, 

T0-topologies arise naturally in the study of continuous lattices 

(started in SCOTT 72c;cf. GIERZ et al. 80 and BANASCHEWSKI & 
HOFFMANN 81),in spectral theory,etc. 

In particular,the Scott-topology (cf.GIERZ et al. 80),which is T0 , 

will turn out to be also involved in a mathematical semantics 

("model theory") of the main AUT-languages discussed here (cf. 

BARENDREGT & REZUS 8@). 

323.20.HEMARK. 

Theorem 323.17. is,in fact,an application of the well-known one

one correspondence between finite posets and finite T0-spaces 

(cf.,e.g.,BIRKHOFF 48,I.11.),but the way of obtaining 323.17. 

here seems more natural than if one would have defined first 

B-closed sets and B-closure.An alternative analogy subsists 

between (finite) T0-spaces (here LA-spaces) and polyhedral 

complexes (see ALEXANDROV & HOPF 35,I.,page 132,BIRKHOFF loc.cit, 

page 14),but we leave the details to the reader. 
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Finally,it seems worthwhile mentioning the following fact. 

323.21 .DEFINITION; 

Let B be an LA-space.The set 

BASE(B) = {B~ : (k is in B) ==~ (B~ is a reduct of B fork)} 
will be called the maximal base for T(B). 

---- A 

323,22.THEOREM. 

Let B be an LA-space.Then BASE(B) is a base for the natural topo

logy on B,viz. the maximal base for !(B). 

Proof.By 323,11.B~ = gl(k),for all kin Band Bis the union of fini
tely many members of BASE(B).@ 
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11_.Conserving PA-correctness. 

In this section we shall exploit the combinatorial analysis of correctness 

above in order to prove a kind of separation property for PA-compatible sites. 

Accurately,if LA := CA,Q-A,QA,it is shown that given any LA-compatible 

site B containing sonie construction k ·on PA'.,it is always possible 

to "extract" effectively from B a PA-compatible site B(k) such that B(k) is 

a subset of B and k is in B (k), 

This result guarantees the intended property of "conservativity over PA" (with 

respect to correctness) for some class of extensions of PA. 

331. "Conservation" over PA. 

We need first several "structu.ral" Lemmas establishing the "conservativity" of 

the correctness categories of CA,Q-A,QA over the corresponding categories in PA. 

For simplicity,we shall pay first attention to the "least rule-extension of PA" 

of concern here,viz. CA. 

331.1.LEMMA.(EsentPA_conservation - in CA.) 
Ill 

Let B be PA-compatible and a be PA-admissible for B,with Eab an E-sentence 

on PA. If 

( 1) B,.b. \-CA a:b 

then also 

(2) a:b. 

Proof.By induction on the structure of a.Note that a cannot be'l:' (by 212.6.(1) 

above). 

(1) If a is in Var,i.e.,a := v,with 

B,A I-CA v:b 

then,by Lemma 212.9.,the length of A is positive (1t1<A) n,n":a,;1,say) and,for 

some i,l~i~n, 

with 

V sa Vi' 
and by,possibly,some applications of the Rules of Category Conversion (which are 

rules of PA) one has that b £,gl:);~ ai (by an argument familiar from "type-free" 

lambda-calculus, since r~~ is Church-Rosser;see 123. 18. and 331.6. ), 

But A was supposed to be PA-admissible for B,while B was PA-compatible.So,by (Ei) 
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which is again,a rule of 'PA,one has that 

B,A I-PA v:b. 

(2) If now a:= c(b 1, .•• ,b ),q~ 0 (i.e.,a is a head-term),each b.,l<,.j~q,is 
- q J 

a term on PA (for so was supposed to be a) and there is some construction kc say 

on PA 

(i) k := 
£ 

f A'; c(v 1, ••. ,v ):b' ➔ 
- q 

(either by 212.12. ,if q = 0 or by 212.13. if q -?' 1) such that 

(ii) 

and k is sound in 
C 

(iii) 

and,whenever q ::;;, 1, 

(iv) 

£ - i~£(kc) 
B,with also -. 

B, A b. :a!lfb := v] 
l. l.~ 

(v) B,6 t-CA b ~~m;¥'s b'[b := vl 
By the inductive hypothesis one has from (iv),whenever q~l,that 

(vi) B,A f-PA bi :ail[b := v] ( 1 ~ i ~ q). 

As B was supposed to be PA-compatible and A was supposed to be PA-admissible for 

B,we get the result from (vi),by an application of (Er-c),which is a rule of PA 

(if q = O,,this is straightforward). 

This completes the induction.M 

331.2.COROLLARY.(TermPA_conservation - in CA.) 
Ill 

let B be PA-compatible and I:,, be PA-admissible for B. If a is a term on PA and 

B,6. \I-CA a 

then 

B,A ltPA a. 

Proof.If a :'t',the statement is trivial (use (Ti),however).Else,use (Tr) and 

33 1 • l • above. M 

The next proof is somewhat more instructive. 

331.3.LEMMA.(ContxPA_conservation - in CA.) 
QI 

If Bis PA-compatible (and therefore a site on PA) and b. is a context on PA 

such that I!. is CA-admissible for B then 6 is PA-admissible for B. 

Proof.Let A := h.0[v1 :a~ •.• [vm:a;J with 1!\(A) = m,m ~ 0. 

First use induction on the length of A. 
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(0) If 1h(A) = 0 then £1:= ~0 .Then,by (Ci),which is a rule of PA,one has that 

b, is PA-admissible. 

(n+l) Let 1h(A) n+l (n -~ 0) and assumethe Lennna has been proved for 

A_ := A0 E, 1:aJ :,-.[vn:aJ. 

That is: 

where vn+l = vm and an+l -

One has that 

:=A Iv 1:a 11, -L'n+ n+ 
a • 

m 

(i) B is 

(ii) A is -
(iii) am is 

(iv) A is 

PA-compatible 

PA-admissible 

a term on PA 

CA-admissible 

for B, L\_ on PA 

(for l!. is on PA) · 

for B 

(hypothesis) 

(inductive hypothesis) 

(hypothesis) 

(hypothesis) 

and one has to show that 

(v) A is PA-admissible for B. 

Now,within the inductive step for lh<A),use induction on the structure of am, 

taking into account (iii) above. 

(n+I,.J) If am= 't' then,by (Cr-I) one has,from (i),(ii) that t:. is PA-admissible 

for B.Indeed,v was supposed to be fresh for A_,by (iv) above,and v is not in 
. m m 

FV('t') = r/J. 

(n+l,2) If am is in Var,then,by (iv),there is some j,j < m,such that 

a = v.,with,explicitely, 
m J 

and 
I::._ := AO \yl :al]··.· E,j :-t:]. · · [vn:anj 

A := I:!. 'v :v]. -l'm J 

a. ;; 'I:' and 
J 

Then,by (ii), A_ is PA-admissible for B,so,by (Ei) ,which is a rule of PA, 

B,A_ l-PA vj :'1:'. 

Now,by (iv),v is fresh for A_ and also v is not in FV(v.),i.e.,v. ,;j. v. 
m m J J m 

So,by (Cr-1),which is a rule of PA,we get that 6. is PA-admissible for B. 

(n+I,3) Let am:= ~(b 1, ..• ,bq),with ~ = !~!(k) for some construction k on PA 

(since a is a term on PA,by (iii) above;also b 1, •.. ,b ,if q ·9 l,should be terms 
m . q 

on PA,by the same token) .As A is CA-admissible for B,by (iv) above,one should 

have 

B,A_ I-GA am:'t" 

for am J "t' and therefore the degree of am should be 2.But then Bis PA-compatible, 

by (i), 8 is PA-admissible for B,by (ii) = the inductive hypothesis,and am is 

a term on PA,by (ifi).Hence by EsentPA_conservation in CA (331.1. above),one has 
la 

B,~_ t-PA am:'t'. 
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Hence,by (Cr-2),which is a rule of PA,again,one has that A is PA-admissible for B. 

Since a is a PA-term,this completes the inductive steps in (n+1) and,thereby, 
m 

the proof of the Lennna.@ 

331. 4. COMMENT. (Esent!A-, Term!A- and Contx!A-conservation in Q-A,QA.) 

It is now easy to see that the proofs of 331.1. through 331.3. above could 

have been carried through for the analogous statements with CA replaced by 

QA and/or QA resp. 

Indeed,only the proof of 331. 1. depends directly on "structural lennnas" about 

CA (specifically,on 212.9.,212. 12. and 212.13.),but analogues of these lemmas 

have been seen to hold for Q-A and/or QA, too (cf. 2.22. above). 

This gives EsentPA_conservation in Q-A and/or QA.-
. PA H 
Now,TermH -conservation 

on the pattern of proof 

in Q A,QA follows from EsentPA_conservation in Q A,QA 
H 

of 331.2.,whereas the analogue of 331.3. in Q A,QA 

can be obtained by essentially the same kind of argument,using,of course, 

EsentPA_conservation in Q-A,QA at step ( +1 3) 
H n ' • 

331.5.REMARK. (ConstrPA_conservation in CA,Q-A,QA.) 
l2l. 

Let LA := CA,Q-A,QA and assume Bis a PA-compatible site.If k is a construc-

tion on PA and k is LA-sound in/for B,then k is already PA-sound in/for B. 

That is: we also have a kind of Constr!A-conservation property in CA,Q-A,QA. 

This follows easily by induction on the depth of a constructioh in B. 

Indeed,if ~~g,!;h-o_(k) = 0 then either B = {kJ- or B contains more than one 

element.In the first case one has to apply (Si) in order to get ¢-correctness 

' PA f k I h 1 t f h s· PA . 1 '11 d in or • n t e a ter case,any one o t e itea -recursion rues wi o 

the job (according to the "structure" of k) ,for anyway B_ = B - { kj should be 

PA-compatible (k is "independent" in B). 

If ~~g,J;hB(k) = n+l,then either Bis a reduced site for k,or it is not so.In the 

first case B_ = B - {kJ is PA-compatible and the result follows by SiteH-recur

sion,as earlier.Otherwise,B should contain B~,so k is PA-sound in/for some sub

set (B~) of Band the result follows by the due Site!A-expansion Lennna (for 

sound constructions,i.e. 213.6. above,with LA:= PA). 

331.6.COMMENT. 

Similar "conservation"-results hold,mutatis mutandis,for the "derived" correct

ness categories of PA.Indeed, since~~¾ is Church-Rosser (123.18.),one can 

show,by an argument familiar from la:nbda-calculus,that,e.g.,for all a,b on PA, 

a ~gW:LA b implies a ~g~~cf b. (Note that the argument necessary here does not 

depend on 331. I.through 331.5.). 
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332.PA-separation and conservativity over PA. 

Now we are able to prove our main theorem on "separating" PA-compatible sites 

in "rule-extensions" of PA. 

We set,everywhere in the sequel,LA := PA,CA,Q A,QA. 

First we need some trivial considerations on contexts that are PA-admissible for 

the empty site. 

Let B be some LA-compatible site with kin B.Clearly,if A := £~~(k) then 

g~g~gB (k) does not accurately characterize the "complexity" of f:::. , for the latter 

may actually "depend on" less LA-constructions in B thank itself does. 

A more sensitive "measure of complexity" for LA-admissible contexts can be found 

by an appropriate characterization of their analytic sets;i.e. ,by inspecting the 

depths of the elements of ~I(~~~(k)). 

This can be done as follows. 

332.1.DEFINITION. 

Let B be an LA-compatible ~ite with kin Band A:= £~~(k). 

Then the local depth (or the owndepth) of A in B is defined as follows: 

:= 

+ !,else. 

332.2.REMARK. 

If Bis LA-compatible and k is in B then 

~'ifilg~g,!;;gB (£~~(k)) ~. g~g~gB (k) ~ g~g,!;;g(B). 

Proof.The r.h.s. of the statement is obvious from the definition of depths.To 

show that ownde2thB(ctx(k)) is majorized by g~g,!;;gB(k) recall that,by definition, 

one has 

H(£,!;;~(k')) C: H(k') c:.. B 

for all k' in B. 

The argument is by induction on sections in B.Assume g~g,!;;g(B) = m,m~O. 

(0) If m = 0 then,in particular,~I(k) = 1/J (fork is in B,by hypothesis) and so 

1/J 

is ~!(£,!;;~(k)),by the inclusion noted above.Hence Q~Q~E!hB(.£!:e(k)) = Q~E!hB(k) =O. 

(n) Now let m~I and g~g!gB(:) n.So I ~n~ m,by the definition of depths. 

Let also,for all n,l~n~m,Bn be then-section of B. 
$ Ask is supposed to be in B with depth n in B,k is in Bn.By the definition of 



168 

$ B$. sections we have,for all n, I~"~ m,B I C 
n- - n 

Hence,for all n,l.lfnfm, 

~J(££~(k)) C... ~J;(k) C::. B!-I 

Now if k' is in ~J:(££~(k)) and k' is not k then ~~g£gB(k') ~ n-1,by definition. 

So we get 

g~~~g£gB(££~(k)) filg~6!~g£gB(k'): k' in CT(ctx(k))} + I ~ (n-1) + I n. 

But ~~g£gB(k) = n.That is: 

ownde~thB(ctx(k)) ~ ~~g£gB(k), 

and this completes the proof.N 

332.3.DEFINITION. 

A context in LA is PA-initial if it is of the form 

whith,whenever !g(A) 

l),. : = A0 [v 1 : a~ ... [v n: a) 
n,n~l,for all j,l~j,;;;n, 

(I) either a. ;;;; -r 
J 

(2) or a. =- vi,for some i,i < j, and a. = 't'. 
J l. 

The following fact will be useful below. 

332.4.LEMMA. 

If Bis LA-compatible,k is in Band ££~(k) is a context on PA then the follo

wing (epi-)statements are equivalent: 

(I) ££~(k) is PA-admissible for the empty site. 

(2) ownde~thB(ctx(k)) = 0. 

(3) ££~(k) is PA-foitial. 

Proof. Set ~ := ~Q__[v 1: a 1) •.. (vm: amJ s £!~(k). Obviouslv, (3) imnl iP-s (2). 

Now (2) implies (3),by induction on the length of I::!,, ,using the fact that k is 

0-correct (in PA). 

Similarly,(3) implies (!),by induction on the length ofD.,using the due correct

ness rules (in order to realize that the latter are only rules of PA). 

Indeed,if !g(A) = 0 then ~ is PA-admissible for the empty site,by (Ci). 

Moreover,if !h(A) = I then a 1 =.1:' and ais PA-admissible for the empty site,by 

(Cr-I). 

If !g<A) = n+I then,with A_:= .10 6,1:a~ ..• [vn:aJ,one has /J=. L\_[vn+l:an+I]. 

The hypothesis of the induction gives ,:\ PA-admissible for the empty site and, 

an+! is assumed to Ee either 't' or vi'for some i,I~ i' n,where ai;; -t".In the first 

case, .1 is PA-admissible for the empty site by (Cr-1),while in the latter case 

one has that 
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by SEi),so ~ is,again,admissible for 0,by an application of (Cr-2). 

Finally,(!) implies (3),by induction on correctness in PA,i.e.,by checking the 

conclusions of the correctness rules in PA,producing PA-admissible contexts.~ 

332.5.COMMENT. 

A deeper "context-oriented" analysis of LA-compatible sites is certainly 

possible,using a "nested blocks"-presenb.ation of LA.In particular,the "nested 

blocks"-structure of an LA-compatible site can be described via labelled 

trees. The latter (called by N.G.de Bruijn, "trees of knowledge";cf. DE BRUIJN 

7O-O2,_l.2_.) may be helpful in the analysis of an LA-compatible site if one 

wants to display a "context-sensitive organization" of the information present 

in that site. 

However,the "nested blocks"-structure and the associated "trees of knowledge" 

are unessential in the language definition of an AUT-language (whether in 

abstract or "reference"-version) and play no actual role in the analysis of 

correctness.(Accurately,these ingredients would appear only in particular 

presentations of an AUT-language and there is no point in stressing their 

theoretical import.Cf.RVS 71.) 

We can now turn back to our main task. 

332.6.THEOREM. (PA-separation property). 

Let B be an LA-compatible site with kin B.If k is a construction on PA 

then ~I(k),the analytic set of k,is PA-compatible. 

Proof.By induction on the depth of a construction in B.Let A:= £~~(k). 

(I) If k is in 1(B,O) then ~~g~gB(k) = O.Then,by 332.2., 

g)ffi~~g~gB(~) ~~g~gB(k). 
But k was supposed to be on PA, therefore so is A. 

Hence,by Lemma 332,4., A is PA-admissible for the empty site. 

Now,by "induction on the structure of k",one has that k is 0-correct in PA 

(by either one of the rules (Sr-lp),(Sr-2p),(Sr-ld) or (Sr-2d),which are rules 

of PA,too).So SI(k) = {k} is PA-compatible. 

(2) Assume k is in 1(B,n+I) and suppose k depends directly on LA-constructions 

k 1, ... ,k (p>,1) and only on these,with k. in B$ (l~i~p). 
p l. n $ 

The inductive hypothesis says that,for each k' in B ,CT(k') is PA-compatible. 
n == 

In particular,this is true of the constructions k 1, ••• ,kp on which k depends 

directly. 
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Set,for convenience 

B: l~p H(ki). 

As each ~!(ki) is PA-compatible (and a subset of B) ,so is B:,by 322.48.(A), 

(Moreover,for each i,l~iip,~J(ki) = B~_,by 323.11.). 
l. 

By the hypothesis of the Theorem Bis LA-compatible.So,by Theorem 323.15. 1 any 

section of Bis LA-compatible and,in particular,so is B$ 1 $ n+ 
By 323. IS. ,Bn+l is "decomposable" into finitely many LA-compatible sites.Take the 

resulting "decomposition" to be "maximal". 

Hence,B!+I is "maximally decomposable" into LA-sites B~, ,with k' in B.In particu

lar,B~ is LA-compatible. 

The latter fact can be obtained only if 

k is Ba-correct in LA, 
n 

(i) 

and,finally,(only) if 

(ii) A:= ctx(k) is LA-admissible for Ba. 
n 

Now one proceeds by "induction on the structure of k". 

One has the following sub-cases. 

(2.1.) for p-constructions and 

(2.2.) for a-constructions. 

In detail=(recall k was supposed to be on PA): 

(2. I.) k := k 
E. 

~ A; _p_(v) : a ➔, with k in PconstrPA 
E. 

That is: either 

(2.1.lp) 

or 

(2. I. 2p) 

Next 

I-LA a : ,,:- with a on PA. 

(2.2.) k := kd _ ~ A; i(v) 
That is: ei bher 

(2.2. Id) 

or 

(2.2.2d) 

In any case,Ba is 
n 

a =' "t 

Ba!::,. 
n' f-LA b a E "t' with b on PA, 

Ba!::,, 
n' f-LA a 1:' with a on PA, 

Ba A f- b 
n'1.1 LA a with b on PA. 

PA-compatible and a is a context on PA (LA-admissible for Ba), 
n 

fork was supposed to be a construction on PA and A= ~!~(k). 

This gives,by Contx!A-conservation (331.3. for CA;cf.331.4. for the remaining 

languages) that 

(iii) !::,. is PA-admissible for Ba. 
n 
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In subcase (2.1. Ip) one has,by (Sr-Ip) that k is Bill-correct for PA (for this is 
n 

a rule of PA,too).So ,SJ(k) = B! U {k!J is PA-compatible,by the same token. 

In subcase (2.I.2p) one has,by EsentPA_conservation in LA (cf. 331.1.,331.4.) 
Ill 

that 

B:,a I-PA a : 1:' 

(for Bill is PA-compatible and 11 is PA-admissible for Bill). 
n n 

Hence,by (Sr-2p) ,one finds that k is B:-correct in PA and ,SJ(k) = B: U tkJ is 

PA-compatible (for this is a rule of PA,too). 

In subcase (2.2.ld) one has,under the same assumptions on Bill and ,that 
n 

Ill 
Bn' .:l I-PA b : a "" -r:-

(by Esen?A-conservation im LA,again) .Hence,by (Sr-Id) ,k is Bill-correct in PA and 
Ill n 

,SJ(k) = B~ U {k} is PA-compatible. 

Finally,in subcase (2.2.2d),we can replace "LA" by "PA" again,by two applications 
f PA . . . 

o Esentlll -conservation in LA,getting 

B:,~ f-PA b : a : -t. 

Hence,by (Sr-2d),which is a rule of PA,we 

,SJ(k) ( = B: U zkJ) is PA-compatible. 

have that k is Bill-correct in PA and 
n 

This completes the induction "on the structure of k" and also the main induction 

on depths.So the proof of the,Theorem is completed.N 

With terminology from 321.4. we have the following nice consequence from 332.6. 

332.7.THEOREM.(PA-reducibility).(LA := PA,CA,Q A,QA). 

Let B be an LA-compatible site.For any kin B,if k is on PA then Bis PA

reducible (for k). 

Proof.By Theorem 332.6.,~J(k) is PA-compatible,for any k satisfying the hypothe

sis.Now ~J(k) = B~,by 323.H. (etc.),and ~J(k) is a site on PA (for so is k,by 

the hypothesis of the Theorem).That is: the reduct of B fork is a site on PA.N 

Puttings things somewhat differently one has the following conservativity result. 

332.8.THEOREM.(LA := PA,CA,Q-A,QA). 

Let B be some LA-compatible site with kin B.If k is a construction on PA 

then there is a PA-site B(k) such that 

(I) B(k) is PA-compatible and 

(2) k is in B(k). 

Proof.Take,simply,B(k) V := Bk,by PA-reducibility (332.7.).N 
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I N D E X 0 F N 0 T I 0 N S 

admissible 

LA-= context 66 
= rule 100,101 

alpha-convertibility 
SEE convertibility 

ambiguity 
definitional (un)= 45 

arity (of a constant) 28 

assumption 57 

base (maximal) 162 

book 26 

calculus 

LA-= 52 
SEE reduction system 
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syntactic= 2L/ 
syntagmatic = 24 

free= 2L/ 
canonical= 2'-1 
text= 2L/,26,64 (SEE site) 

=-string (of a context) 59 
=-part (of a construction) 63 

correctness= 65 

compatible 
LA-= site 66 

component 

= (of a term) 38,39 

= (of a construction) 62,63 

immediate= 38,39,62 
remote= 62 

canonical= 63 
conservation property 18,112 

specific= 163,171 
conservativity (over PA) 163,171 

consistency (for LA) 53 
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structured= 28 
floating= 28,32 

p-= 28 
d-= 28 

structural= 29 

"language-=" 29 
date of a= 35 

fresh= 45,70 
construction 61 

canonical= 61 

p-= 61 

d-= 61 
primitive correctness= 65,67 B-correct = 77 
derived correctness= 65 context 59 
rule of =-conversion 76 

=-inclusion rule 79,10'-I 
Church-Rosser 

= property 52 

= theorem 53 
clause 

correctness= 138,141 

initial(ization) = 138 

:f!J~I~-= L/6 

string of a= 59 
sub= 60 

=-part 63 
admissible= 66 

SEE telescope 

contraction (in ta) 51,52,53 

convertibility (in 1~) 51,52 

alpha-= 49,50 
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LA-= (for) 65 
B-= ( in LA) 77 

correctness 
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(formal) = clause 138,11./1 
= rules (SEE rules) 

(PA-,CA-)= 86 sq. 
(Q-A-,QA-)= 98 sq.,103 sq. 

= index 11./8-150 
function-part= 86,107 

domain-part= 86,107 

category= 97 

=-rule extension 98 
global structure of 

= proof 138 
extended = proof 11./2 

date (of a constant) 35 

definition 

pseudo-= L-12 
proper= Y2 
(in)correct = 1./3 
supporting Lj6 

sq. 

= 112 sq. 

=-part (of a construction) 63 

definitional 
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elt1: 55 ===l 
~;g~H 56 

;g~1t: 56 
lastelt 56 ======== 
~Mg 58 
g~~g 58 

~g~ 58 

lrn~g 39 
arm1: 39 ===l 
~~~ 39 

!ml 39 
ggm 39 

~~t: 39 

~;g~r ~;g~2 59 
~~~i 59 
i~nmg~;g 117 

equality 
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fresh Y5,70 

rank= l-/5,70 
minimally= 45,70 

= ambiguity Y3,45 index 
= equality (SEE equality) lexical= 33 
= specification Lj6 lexical rank= 3Y 
"= history" 122,121./ sq. correctness= 11./8-150 

degree (of a term) 80,106 
depth 11./5 layer 145 

local= 167 length 

derivability (for rules) 100-101 of a head-term 38 
domain 27 = of a string 36,55 
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length(!~) 

of a context 59 
~ of a construction 60,61 
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unicity of= 5Y 

normalizable 5H 

open 

B-open .160 
order 

reference= 136 
atomic reference 

part (of a term) 39 
argument= 39 
function= 39 
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value= 39 

136 

part (of a construction) 63 
context= 63 
category= 63 
definition= 63 

prefix 

abstraction= 39 
predicate (of an E-sentence) 57 
proof 

SEE correctness proof 

= of 139,142 

qualifier 41-42 
improper= 41 
proper= Y2 

range 

rank 33,44 
p-rank 33,44 
d-rank 33,44 

ranking function 32 

redUcibiH ty 51-52 
reduct of e· (reduced site) 13Y 
reduction 50-51 

combinatory = system 52 
reference 

= order 136 
atomic= order 136 

residual (of a relation) 27 
rule(s) 

correctness= 71 sq. 

structural correctness= 71-72 
basic correctness= 71,74-75 
CA= (specific) 78-79 
abstraction= 78,104 
application= 78,103 
= of category conversion 71,76 
SiteLA_= 72-73 

i&LA 
Contx -= 73-74 

l& 

LA 
Esent -= 74-75,103-104 

l& 

LA 
Term!&-= 75,103 

= of category inclusion 79,104 
=-extension 99-101 
admissible= 101 
derivable= 100 
application of a (Sr-)= 142 
= (k+),(k-) 143 

section 

= of a relation 27 
= in a site 145 



sentence 

E-= 57 
canonical E-= 57 

p-= 57 

d-= 57 
contraction-= 67 

reducibility= 67 
convertibility= 67 

separation property 11Y,169 
site 

LA-= 61../ 
LA-compatible= 66 
reduced= (fork) 13~ 

analytic= 1Y7 

companion=1 YO 
space 

LA-=160 
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system 

reduction= 52 
= of (correctness) rules 100 

telescope 60 

term (LA-=) 37,38 
head-= 38 
abstraction= 39 

application= 39 

canonical ~1 

p-= 37 
d-= 37 

topology 

natural= on an LA-space 160 
tree 

natural topology on an LA-= 160 

generating= of a wfe 117-8 

analytic= 121-122 
genetic= 124-130 
construction= 135 string 

variable= 36 
empty= 36 

term= 55 

=sofa context 59 
category= 59 
variable= 59 

~Hg(context relation) 60 
subject (of an E-sentence) 57 
sub-term YO 

quasi-= YO 
symbol 

structured= 28 
universe= 29 

super-type= 29 

proof-type= 29,30,37 
empty= 29 

~lrn;rn-clause 46 
well-formed expression (SEE wfe) 
wfe 116 

atomic= 116 

= on PA 131-133 
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