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"De objectiveering der wereld in wiskun-
dige systemen bj verschillende individu-
en wordt in onderling verband gehouden
door de passielooze taal,die bi den hoor-
der het identieke wiskundige systeem

als bij den spreker doet oprizen,terwil de
gevoelsinhoud van dat systeem bi beiden
totaal verschillend kan zin..."

(L.E.J.BROUWER: "Wiskunde en Ervaring".)







P R E F A C E

The idea of a computer-assisted proof-checking (applied to concrete
proofs,as they appear in the mathematician's everyday life) has
probably occurred to many minds,even before the von Neumann compu-
ter was conceived.

In particular,an attempt to increase the reliability of mathematical
texts (proofs) by having them processed and checked on computer has
also been the main motivation behind the specific AUTOmated MATHema-
tics Project,developed since 1967 at the Eindhoven University of

Technology.

Abstracting from the pragmatic motivations (ecf. 02. below),a suffi-
ciently complex AUTOMATH-system (the "classical" version: AUT-68,
say) can beviewed as an (applied) typed lambda-calculus with a "poly-

morphic" type-structure (to coin a word from R.Milner).

Although the underlying "type-polymorphism" appears to be - at a
first look - a very specific one,we realize soon that an AUTOMATH-
system is powerful enough such as to allow interpreting (in it) fami-
liar typed lambda-calculi as,e.g.,the Curry Theory of Functionality
(= "First-order Typed Lambda-calculus") or the Girard-Reynolds
Second-order ("parametric") Typed Lambda-calculus.In this respect,

an AUTOMATH-system is a "generalized typed lambda-calculus".

At a closer examination,the "pure" (i.e.,constantless) part of the-

se systems turns out to be much similar if not equivalent to other
typed lambda-calculi occurring in the recent literature on the foun-
dations of logic and mathematics.(Specifically,"Pure AUT-68" is,in
fact,a fully formalized version of J.P.Seldin's Theory of Generali-
zed Functionality (cf.Annals Math.Log. 17,1979,29-59),and it becomes -
under an appropriate translation - equivalent to the "[[-fragment"

of Martin-Lof's Theori(es) of Types (cf. References,under MARTIN-LOF.)

On the other hand,the specific manipulation of the AUT(OMATH)-cons-
tants - a sui generis feature of these systems - is,up to a certain
point ,independent from the underlying lambda-calculus part and can

be used,with similar effects,in connection with any other typed lamb-
da-calculus.
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The present work is intended to discuss in detail a theoretical as-
REEE of the main AUTOMATH-systems,viz. the possibility of "separa-
ting" the "lambda-calculus-free" part (usually identified as "Primi-
tive AUTOMATH") from a "full AUT-system".Despite the fact that the
so-called "Primitive AUTOMATH" can be defined independently,it is not
immediately clear,from the language-definition of "bigger" systems,
that the corresponding "correctness categories" of the latter are
actually "conservative" over those of the former one.

The affirmative answer (given in 33.,below) insures the fact that

the "definitional mechanism" of an AUT-system is actually an indepen-
dent,"super-imposed" structure on a "Pure AUTOMATH"-system and shows
that a (theoretical) study of the latter (which is,properly speaking,
a Chapter of Lambda-calculus) might be also profitable for the speci-
fic purposes of the AUTOMATH Project.

Other theoretical aspects of these systems,as,e.g.,a '"global proof-
theory" and a "mathematical" semantics (model theory) will be dis-

cussed elsewhere.
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0.Introduction.

This work is concerned with the abstract structure of some representative formal

languages in the family of mathematical languages AUTOMATH (cf. DE BRULJN 70-02,
73-30,73-34,80-72,JUTTING 79-46 ,VAN DAALEN 73-35,80-73).The basic analysis was
mainly motivated by the need for a theoretical approach to a couple of open pro-

blems concerning conservativity situations in AUTOMATH and closely related formal

systems.Soon it turned out the approach which was taken in analysis is more
significant for the understanding of the nature of an AUTOMATH-language than was

initially thought of.

Though essentially self-contained,the expository parts of the present notes do -
in general - presuppose some minimal background of mathematical logic (as,e.g.,
first-order logic,set theory and lambda-calculus) and of what is usually called
"finite mathematics" (viz. rather elementary fragments of combinatorics).For ins-
tance,some familiarity with the basics of (both "type-free'" and "typed") lambda-
calculus should certainly enable the reader to follow or to reconstruct,on his
own, remote details of the "language theory'" of AUTOMATH on which we will not
generally insist (and which are. copiously documented in recent monographs as
BARENDREGT 81,KLOP 80,REZUS 81 and - essentially - VAN DAALEN 80-73).Otherwise,the
main exposition is primarily intended for logicians and this is largely reflected
in our terminological habits (diverging in several respects from standard termino-
logy in AUTOMATH but very close to generally accepted ways of speaking in mathema-
tical logic).Of course,mathematicians,computer scientists and philosophers having
some basic acquaintance with the methods of symbolic logic are thereby expected to

find the present text easily readable.

The paper is intended to make accessible the technical details of construction of

the main languages in the AUTOMATH-family and we have often deliberately omit-

ted comments of a more general nature (say: almost everything pertaining to what
might be called the '"philosophy of AUTOMATH" should be recovered from several
informal expositions due to N.G.de Bruijn which are already in print;see the reports
cited above).Still,what is following below does not overlap (save for minor details)
material discussed in VAN DAALEN 80-73,but information missing here can be,mutatis
mutandis,safely retrieved from the latter work (which is highly recommended as

a further advanced text and which is - anyway - the only place we are able to

indicate so far where some proofs of important facts on the "language theory" of
AUTOMATH can be found).



In this introduction we shall briefly review - still informally - the information
neéded for the understanding of the main text insisting on several aspects of the
AUTOMATH project which have been insufficiently documented in the existing litera-
ture or have been simply discarded (due to mere lack of time and man-power or to
deeper,"doctrinal" reasons).Also the relation of the present work to technical
expositions concerning the standard "reference'" AUTOMATH-languages will be made

precise in the sequel.

1. AUTOMATH: historical landmarks.

The main ideas behind the AUTOMATH project (or "program"l)) of formalization of
mathematics go back to work done by N.G.de Bruijn in the mid-sixties (1966 or so)
at the University of Technology in Eindhoven (The Netherlands).The first "public"
report on the subject is seemingly the "preiiminary study" DE BRUIJN 67-16,which

is technically out-dated but still historically relevant,for some of the main ob-

jectives of the project were readily explicit there.

Before 1973 the only technical report describing in detail the "Classical AUTO-
MATH Language" (initially called "AUTOMATH";nowadays:'AUT-68") was DE BRUIJN 68-01.
A sub-language of AUT-68 called PAL (= "Primitive AUTOMATH Language') - of main
concern in this paper - was also isolated in this pioneering report together with
some other "fragments' of AUT-68 which ultimately remained of a mere heuristical

interest in standard presentations of AUTOMATH.

De Bruijn's PAL (which will be called sometimes here "PAL-THE") is not to be

confused with its homonym "PAL-MIT" (say),which is a programming language -

actually,a derivative of Peter Landin's ISWIM (= "Ef You See What E.Mgan" scf.
LANDIN 66) - and was designed by a group of computer scientists at M.I.T.,

Cambridge (Mass.),in 1968,for teaching programming linguistics.So,in Cambridge

(Mass.),"PAL" would mean quite different a thing from what it usually means in
Eindhoven (TH-WSK),namely there it used to stand for "Pedagogic Algorithmic
Language" (see EVANS 68,68a,70,72 and,possibly,WOZENCRAFT & EVANS 71).Here,
the label "PAL-THE" means,simply,(de Bruijn's) "Primitive AUTOMATH Language"
(cf. DE BRULJN 68-01,73-30,80-73,etc.).

1) It is perhaps more appropriate to characterise AUTOMATH as being a program of

formalization of actual mathematics than to use the slightly anachronic label

"project'".Indeed,on the one hand,sufficient evidence has been produced in the

meantime allowing to say AUTOMATH is a ''grown-up" subject surpassing the stage
g g

"

of a mere "project" (in at least some acception of the word).On the other hand,



A (slight?) extension of AUT-68,called AUT-QE (= "AUTOMATH with Quasi-Expressions')
was proposed in 1969 and - so far - this is the only AUTOMATH-language comple-

tely implemented on a computer,in Eindhoven (TH).

Due to some unpleasant features of AUT-QE,N.G. de Bruijn recommended in 1978 the
study of a sub-system ("restriction'") of AUT-QE called AUT-QE-NTI (= "AUT-QE With-
out/No Type Inclusion").The latter is not an extension of AUT-68 (though it extends
PAL-THE,as expected),but there is some evidence to the effect that AUT-QE can be
already "represented in" or "mimicked by the means of"AUT-QE-NTI.(See DE BRUIJN

78-56,for details and our discussion in 22. below.)

A complete formal description of AUT-QE (and therefore AUT-QE-NTI) was given by
D.van Daalen in VAN DAALEN 73-72.Since then comprehensive pieces of actual mathe-
matics have been translated into AUT-QE (and checked on computer).See JUTTING 76-60
and the underlying methodology described in JUTTING 79-46 or UDDING 80-69 for an

alternative presentation of the . .theory of real numbers in AUT-QE.

The AUT (OMATH)-languages mentioned earlier (viz. PAL-THE,AUT-68,AUT-QE and AUT-QE-

NTI) will be studied in detail,in an abstract setting,below.

Besides these there is a sub-family of AUT-languages (which we will generically
call here LAMBDA-AUTOMATH) proposed by R.P.Nederpelt and N.G.de Bruijn in 1971
(cf. NEDERPELT 71-21,71-22,72-26,73-31 and DE BRUIJN 71-20,77-52b,VAN DAALEN 80-73,
Chapter VII).These have been studied mainly for theoretical purposes and do not
admit of '"matural" interpretations (as it is the case with AUT-68 “and AUT-QE) .
Still,AUT-68 and AUT-QE-NTI can be naturally embedded in any suitable version

of LAMBDA-AUTOMATH and some version of the latter may be viewed as a proper exten-—
sion of  AUT-QE-NTI.

LAMBDA-AUTOMATH will be not.studied in this paver.

(continued from previous page)
some of its objectives and prospects would perfectly justify a comparison with
similar far-reaching entreprises (as,e.g.,"Hilbert's program","Curry's program" -
cf. SELDIN 76/77,80,- "Church's program" - cf. REZUS 81 - or,why not,Bourbaki's).

There are however many dissimilitudes in such a comparison: AUTOMATH has a ra-

ther weak foundational claim in comparison with any of the "programs" named abo-

ve,while,inasfar feasibility is concerned AUTOMATH remains still one of the

most convincing among these "programs".



A different extension of PAL,called AUT-Pi,was proposed by Jeffery Zucker (cf.
ZUCKER 75-42 for an informal introduction).This seems much easier to write than
AUT-68 (and even AUT-QE),but its '"language theory" is considerably more complex
than that of other AUT-languages.D.van Daalen has subsequently worked out the main
language-theoretical details of AUT-Pi in VAN DAALEN 80-73,Chapter VIII (for pro-
blems which could not have been solved so far see op.cit. ,VIII.4.1.).
In the list above all AUT-languages but AUT-Pi are elementary - and so are
some derivatives and modifications thereof which will be mentioned later -
in the sense their only "constructors' are the head-constructors,the applicator
and the abstractor (see 10. and 121. for details).AUT-Pi is not elementary in
this acception and a detailed description of its "grammar" is a tedious affair
diverging in some aspects from the "definition scheme'" of PAL,AUT-68,AUT-QE,etc.
For this - and some other reason - we shall examine AUT-Pi elsewhere.
AUT-Pi has been used (by J.Zucker and A.Kornaat) in order to write extensive pieces
of '"classical" analysis.(A long manuscript on Real Analysis has been produced
which is not the "translation" of some text already existing before in natural
language presentation.In fact,the language which was actually used in this manus-
cript is AUT-Pi-SYNT,an extension of AUT-Pi - cf. below -.It allowed a very 'fast
notation" close to the mathematical every-day language.).
Little has been done so far on the implementation of AUT-Pi (and AUT-Pi-SYNT) on

a computer.

There are still two other distinct families of extensions of the AUT-languages na-

med above.Both concern the formalization of some aspects of the metalanguage ("epi-
theory") of actual pieces of (mathematical) texts (or,better,of what would be-
come 'metalanguage" in standard formalizations of mathematics - not in AUTOMATH

say).

In one direction (relying on suggestions going back to N.G.de Bruijn) one would
want to extend any AUT-language by the so-called string-and-telescopes facilities
(cf.,e.g.,JUTTING 79-46,4.1.3. or ZUCKER 75-42 for an informal presentation of

the subject).Such extensions,which we will call,for further reference,AUT-ST-lan-

guages,are very useful in the formalization of abstract structures (groups,rings,
vector spaces,etc.) and have been actually used by J.Zucker (in the form of AUT-Pi-

ST and AUT-Pi-ST-SYNT,cf. below).

Another family of extensions (initially motivated as auxiliary "input languages"
for AUT-68,AUT-QE,etc.;cf. DE BRUIJN 72-25) arises by the addition of formalized

"

"syntactic facilities" to (proper) extensions of PAL;hence the generic name

"AUT-SYNT" for the languages in this (sub-)family.Any AUT-SYNT language incorporates,



qua formal ingredients (i.e.,in the "language definition") syntactic pre-defined

functions (these would appear as recursive epi-functions acting on the syntax of
the language,in standard formalizations of mathematical texts and even in some
appropriate formalization of an AUT-language).One of the most important features

of these functions is that they can be calculated "mechanically'".Incorporating them
in the "language definition" of some AUT-language allows to omit tedious repeti-

tions of otherwise redundant parameters (cf. JUTTING 79-46,Appendix 9.AUT-SYNT., for

an informal explanation).
The "language theory" of AUT-68-SYNT and AUT-QE-SYNT was worked out in detail in
JUTTING 82-83,while a somewhat more complex version of AUT-Pi-SYNT was actually

used by J.Zucker and A.Kornaat in formalizing '"classical" analysis (cf. below).

The AUT-ST and the AUT-SYNT extensions are practically independent from each other,
but combinations of these facilities starting from the same 'basic" AUT-language
are still compatible (and practically very useful).Such combinations (AUT-ST-SYNT-
languages,say) lead to considerably efficient systems of notation and writing
actual pieces of mathematical texts in these extensions amounts to formalizations
that are very close to the every-day mathematical practice (having also the advan-
tage of allowing an automatic verification of correctness).

As noted earlier,J.Zucker was able to use AUP-Pi-ST-SYNT in writing directly an
extended piece of text (on Real Analysis) without using the natural language as

an intermediary step (in axiomatic formal presentation).

However,a shortcoming of the latter kind of extensions (especially the AUT-SYNT-
languages) consists of the fact they lead to complications in both the underlying
"language theory" and in the corresponding work of the actual verifier.L.S.van
Benthem Jutting is currently working on the implementation of the languages in

the AUT-ST-and the AUT-SYNT-family.(A verification-program for AUT-68-ST-SYNT
and AUT-QE-ST-SYNT can be found in JUTTING 82-83.)

Besides the (sub-)families of AUTOMATH-languages named above,it is also worth-—
while mentioning the AUT-4-languages (proposed by N.G. de Bruijn in 1974;cf. DE
BRUIJN 74-44) and various extensions of AUT-68 and AUT-QE - the so-called AUT+—

and AUT*—languages - proposed and studied in some detail in VAN DAALEN 80-73.

Roughly speaking,the languages in the (sub-)family AUT-4 are "segments" of appro-
priate versions of LAMBDA-AUTOMATH (where the maximal "degree'" of correct expres-—
sions is restricted to 4 - hence the label "AUT-4" -;see VAN DAALEN 80-73,etc. for
details concerning "degree-considerations'" in AUTOMATH).

They were mainly motivated by an attempt to separate in a more straightforward

manner matters concerning the "construction of objects" in AUTOMATH from those



concerning proofs of statements "on objects" (without,e.g.,manipulating interme-
diary "proof-classes'").

However,only the "proof-part" of AUT-4 admits of a natural interpretation,whereas

the corresponding "object(-construction) part" has,mutatis mutandis,the same

disadvantages - as to a natural "semantics";cf. also 03. below - as any language
in the LAMBDA-AUTOMATH-family (viz. the correctness rules of AUT-4 would also
allow "ultimate objects" - as the naturals say - to be "inhabited",almost in the
same sense ''types'" are allowed or stipulated to be "inhabited").

There is some hope that this unpleasant feature of the AUT-4-languages could be
circumvented by establishing appropriate '"conservativity'-results (see DE BRUIJN
74-44), but nothing has been done so far in this direction and no AUT-4-language

has been implemented until now.

On the other hand,van Daalen's extensions avt’ and AUT” were introduced for theore-
tical purposes,while studying the epitheory of AUT-68 and AUT-QE (mainly the cor-
responding '"closure propertiés',stating the invariance of correctness under re-
duction).In general,such extensions are conservative over the corresponding 'non-+"
or "non-#'"-languages,but the "structure of correctness" is more "regular" inasfar
the former are concerned.

As incidentally noticed by L.S.van Benthem Jutting,it might turn out some of van

Daalen's extensions would also admit of easier and more economical implementations

(as regards the work done by the corresponding verification programs).

Despite their diversification,it is certainly possible to establish general meta-

theoretic standards for the description of the languages in the AUT-family.

Some effort has been done in this direction since 1974 (cf.,e.g.,DE BRUIJN 74-40
77-52a,b and,of course,VAN DAALEN 80-73),but a satisfactory,unifying metatheory
- embracing all relevant aspects of the empirical work on AUTOMATH done so far -

is still lacking.

The metalanguage and the description-scheme proposed in this paper were actually

intended to cover only what we would call the elementary AUT-languages (cf. above;

in this sense,both AUT-4 and van Daalen's extensions gzgvelementary,while AUT-Pi,
the AUT-ST,the AUT-SYNT-languages as well as the possible combinations thereof are
not so).

It shouldn't be too difficult a task - however - to adapt the present standards

such as to function as a general description-frame for all members of the AUT-

family.



02.AUTOMATH: tracing back motivations.

Mathematics is (pace Brouwer and some solipsists) a social - "inter-subjective"
say - affair.What a mathematician claims he "sees'" or thinks is true does always
deserve some proof,no matter what are the professional abilities or the reputation
(qua mathematician) of the person making such claims.

Fortunately,any proof of a mathematical theorem is objective at least in the follo-
wing sense: if some mathematician claims he has a proof of some theorem (on
number theory say) in his mind then there should be some other mind (a mathemati-
cian's mind) able to '"grasp" or to understand and,eventually,to reproduce the

"structure" of the claimed proof.This "epistemic event'" (proof-discovery,on the

one hand and proof-understanding on the other) should sooner or later result in

some objectively perceivable fact,exemplifying "communication of mathematical
ideas".
There is no "mathematics" beyond this least,paradigmatic,"inter-subjective" (social)

intercourse and some form of language must always underly the latter.

As puzzling as it might appear,mathematics does not exist before and in complete in-
dependence of some communication-process.Its practice as a "solitaire'-game is

always an elliptic condensed form of language-use.

The only serious point in the solipsist's objections and arguments concerning
the communication of mathematical ideas/results (cf.,BROUWER 81,pp.25-35,0n
Mathematics and experience ,the fragments of Brouwer's dissertation published

in VAN STIGT 79,BROUWER 07 and,possibly,more recently,ZANSTRA 71) is that an abso-

lutely certain communication of ("actual") mathematical ideas ("proofs",etc.) is

a very difficult practical problem.In fact,'absolutely certain'" should be always
cautioned as being too strong a requirement in any practically given communication-
situation.In practice,not everything a mathematicisn may have in his mind (a whole
system of intuitive interpretations and references to "models" found previously)

is relevant for the content of some proof he claims to "have'" and intends to commu-

nicate.

There are different ways in which one might become aware of the difficulties mentio-

ned above.

(A) First,very often mathematicians are used to and like to practice an ellip-
tical way of speaking.

The mathematical ellipsis can be of many kinds (at least in colloquial speaking).
However,written texts offer some uniformity: it won't be too difficult to get a

possible "standardization" of the ways it is used.For present purposes we shall



essentially distinguish between two such kinds of uses (other uses could be possi-
bly discovered by "empirical" investigation but we suspect they will be either mere
variants of those mentioned below or - still - will be rather irrelevant in the

present context).

So between a label Proof. and some other label (possibly abbreviating 'Quod erat
demonstrandum.'"),indicating the end of the announced proof,a professional mathe-
matician would often want to write either (1) "Obvious.","Evident.","Straightfor-

1)

ward." or some lexical variant of these 95_(2) "Standard.","As earlier.",etc.

Now a "proper" proof is always "a kind of composite reference to previous proofs"
(N.G.de Bruijn) and "filling in" a gap in some proof (or,which is the same,elimi-
nating some elliptical way of speaking in favour of an explicit,'complete'’ one)

would amount to some recursive search throughout existing mathematical texts (or,

more properly,throughout an existing mathematical practice),which may be,again,
"elliptic" in nature.The process should always stop somewhere in some "principles"
or "axioms" ,viz. at statements one would rather want to accept without proof .

So the activity of understanding a given mathematical text (i.e.,proof-understan-—
ding which is,in the end,a kind of proof-(re-)discovery) can be safely described

as possibly being a kind of tree-like search,where the initial clauses of the under-
lying recursion are a matter of common agreement ('truth by convention' say,to use

differently a popular phrase in analytic  philosophy).

To restore the proper "composite reference system" implicit in some mathematical
ellipsis of kind (2) above is - in most of the cases — comparable with the "trivial"
work done by a bibliographer or "documentalist".Of course,this ultimately depends

on one's mathematical experience or knowledge ;still one would hardly need some
"invention" ("proof-discovery") here.The "hard work" was readily done once (some
time,somewhere,possibly by some other people): if some proof is "standard" all we
have to do in order to recover its due 'reference system'" is to supply some "foot-
noting' say, containing the actual references to the existing literature (the so-

called "mathematical folklore'" may be also therein included).

So,provided it is not exclusively concerned with the "foundations" of some parti-

cular topic - written up in its very details - a mathematical book is always longer

than as it appears (in its '"concrete",physical format).Or,properly speaking,it

should'gg_ég}when "gapless" proofs are intended.

1) In the former case some would also write "Omitted." (which has sometimes the

second sense),while in the latter case one may encounter even "As ever."



jovewer,it is not so easy to supply details of proof in case of elliptical indi-
cations of the form "Obvious.",etc.(under (1) above).Indeed,'"obvious'" and its
1)

lexical variants - when taken as proof-qualifiers ' - are,to use a word of

B. Russell,"indexical expressions" (like "I",'"today",'here" or even "this country"z)
say;cf. MONTAGUE 68,70,etc.).

That is to say: the actual "meaning'" of a proof-qualifier of the kind "obvious" (1)
may depend on many pragmatically unobvious parameters,as,e.g.,location in time,
personal mathematical experience (cf. with "I think that...","I believe that..."

expressing propositional attitudes),etc.

In any case,one should take "obvious" - qua proof-qualifier - as qualifying some

proof that could have been displayed (in full) and only by some abuse of (meta-)lan-
guage as qualifying the corresponding statement to be proved (phrases like '"the
statement ... 1is obvious" are,therefore,to be interpreted as derived uses of

"obvious" as a proof-qualifier).

In other words,'obvious" (and its lexical variants) would rather qualify some
(finite) sequence of steps ("actions") to be performed in order to recover a sys-—
tem of - possibly nested - references that can be - at least in principle - des-

cribed recursively.(The latter description should be - of course - a piece of meta-

mathematics or - to use a word of H.B.Curry - of "epi-theory".)

The underlying necessary tree-like search won't be — in this case - exactly compa-

rable with the documentalist's search in a Universal Mathematical Library: the lat-

1) "Obvious" may also occur,incidentally,in colloquial ways of speaking more or
less related to mathematics when it is used to qualify some state of one's
private (i.e. geometrical) intuitions.Then it is not used as a proof-qualifier.
Indeed,if some under-graduate student (in mathematics) claims a given rotation
in 3-d space leaves the set of edges of agiven cube invariant and he makes the
additional claim that this very fact is obvious for him (without being able to
display a proof for the first claim) then his use of "obvious" is certainly
different from what is meant here.We should therefore carefully distinguish
between "i-obvious" (= "intuitively obvious") and "p-obvious" (= "obvious qua
proof"),while even if both expressions are indexical in the mathematical every-
day language (MEL or WOT,in Dutch),we should consider the first use as being
metamathematically (here "proof-theoretically'") irrelevant.(The distinguo men-
tioned here and the corresponding example are essentially due to N.G. de Bruijn,
in conversation.)

2) In cases where the speaker/writer is not located in the United States (it seems

U.S.A. is the only country where "this country" is not an indexical expression )
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ter kind of work should certainly presuppose a minimal amount of "invention'
("ptroof-discovery").
Still,if "obvious" is properly used as a proof-qualifier,the needed "invention"
should concern rather elementary steps or sequences of steps — "sub-trees" in a
tree-like search - that can be eventually (re-)discovered by any other mathemati-
cian (provided he is sufficiently informed in the particular subject matter of con-

cern).

In the end,the first kind (1) of mathematical ellipsis noted above is not essential-
ly different from the second one (2),inasfar the form of eliminating each of them
is concerned.Both kinds involve ("refer to'") some common background of mathemati-
cal experience ("common" to a given group etc.) and differ only in the ways this

experience is invoked or referred to.Anyway,in both cases some pragmatic context

has to be recovered in order to understand what should/might stand for a given

mathematical ellipsis (in some particular - mathematical - text).

(B) Another way in which one may become aware of the difficulties involved in the

process of communication of mathematical ideas is to acknowledge the possible dis-

agreements as to the use of what should be an "acceptable/good/correct argument'.

In this case,what is questioned is not the completability of a given elliptic argu-
ment (on which topic agreement may still subsist),but rather the nature of the steps
involved in such completions or,even,the "logical form" of readily completé(d)
arguments.

This is,again,a metamathematical subject.We have at hand proofs "as a kind of

composite references to other proofs'" and we are free to handle these references by
a system of operations which is,essentially,the same as that used to handle "ob-
jects'",mathematically.Moreover,we can do this without thereby being commited to
some form of Platonistic ontology or without seriously thinking of these proofs

as being actually objects (N.G.de Bruijn).In this way,we should be able to identi-

fy ("single out","isolate") the exact portions of the proof-/reference-system on

which disagreements may occur and to accept or reject the possible criticism concer-
ning the use of these '"segments" as proper parts of given proofs.

In particular,the corresponding system of operations used to handle proofs (qua me-
tamathematical "objects") has to be chosen such as to allow an unambiguous under-
standing of the r8les played by each primitive notion,axiom,definition or (sub-)

proof in any argument/proof submitted to such a criticism.
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(C) Even if we have at hand a rather complete text of mathematics and we do not
intend to submit to any criticism whatsoever the patterns of reasoning used therein
(i.e.,we do not question its underlying "logic'") some difficulties may still appear
on the way we intend to use this textj;these might concern say the efficiency of

our way of reaching some particular result appearing at some place in it.

Indeed,suppose we are interested in some given theorem occurring at some '"advan-—
ced stage" in a mathematical text.If this happens to be conceived (by its author)
as a comprehensive treatise on some subject and we only want to recover the infor-
mation necessary for the understanding of that very theorem then reading the text
from the very beginning (faithfully following the author's organization of the
material in the book) is not always the best strategy to adopt: indeed,the author
may have inserted a couple of Chapters in the book,preceeding the statement of the
theorem we are interested in,and the proof of the theorem may not "logically de-
pend" on material presented in these Chapters.To use the text efficiently (which
is,again,an aspect of the process of communication of mathematical ideas) means,in
this case,to have at hand some reasonably manageable system of processing it,possib-
ly allowing us to omit those portions of text which are "redundant" according to

our momentary,'local" interests.

In any of the situations mentioned above,it is clear that an "absolutely certain'

communication of mathematical ideas - viewed as a practical problem - presuppo-—

ses,first of all,the existence of a good formal language.

Such a language must be viewed = "globally" - as a means to describe the actual

practice of writing mathematical texts and thereby it should meet several basic

requirements,viz.

(ao) to allow writing up actual proofs in a very detailed manner such as to
avoid any possible elliptic formulations yet bearing a close relationship

to the ordinary mathematical practice;

(a,) in particular,the formal presentation of a mathematical text in such a lan-
guage should straightforwardly allow some form of inter-subjective (or,if
one prefers:'"objective") verification of the correctness of the original
text (e.g.,to unify the uses of '"being obvious'",qua proof-qualifier,up to
a standard one),

(az) by possibly carrying out "correctness—checking" in a pure automatic way

(via some implementation on a computer say);the idea of a computer-assisted

proof-checking of actual mathematical texts is central in the AUTOMATH-

program of formalization of mathematics (cf. DE BRULJN 67-16,68-01,69-17,
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69-18,70—02,73-30,73-34,76—43,80—72;NEDERPELT 70-19;VAN DAALEN 73-35,80-73,
JUTTING 79-46;ZANDLEVEN 73-36;ZUCKER 75-42);

to be logically (and,in general,philosophically) neutral;i.e.,not to commit

ourselves to some particular set of assumptions as regards the "acceptabili-
ty" of the patterns of reasoning actually used in the text to be formalized
or to some set of ontological presuppositions,possibly conflicting with
rival formalizations (differently motivated from a philosophical standpoint);
in particular,such a formalization should straightforwardly allow the under-
standing and (the) analysis of the structure of any particular ("gapless'')
mathematical proof,no matter which is the "logic" adopted/accepted as "ba-

" in proof,

sic
being such as to single out the rdles of primitive notions,axioms,defini-
tions,'"rules of derivations",proofs and theorems such as to make transpa-

rent any possible metamathematical criticism as to the use of each such an

item in particular mathematical texts,

and to assist us in understanding the complexity of particular (mathemati-

arguments and help us to classify these patterns of proof according to their

intrinsic difficulty).

(For details see,e.g.,DE BRULJN 73-30,73-34 or 80-72,4.Understanding.)

Finally,the structure of the intended formalization(s) should be such as to

allow us a convenient way of storing and processing the information present

in a large number of mathematical texts;
the ideal situation to reach would consist of having at hand a kind of

comprehensive encyclopaedia ("data bank") of mathematical results capable of

- being stored conveniently (together with the corresponding proofs),in
a suitable "information system" (a "Universal Mathematical Library" say)
and of
- being processed (selected,retrieved) according to local or momentary
needs,as,e.g.,
- displaying a glossary of particular textsv("lists of definitions")
- locating the role - if any - of a particular primitive notion or
axiom in some given argument/proof,
- "excerpting" a given text containing some particular statement
such as to avoid any '"redundant" details necessary for the under-

standing.of its proof (or for its understanding,tout court),
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- identifying the "minimal logic" necessary for the proof of some
given theorem,
etc.,etc.

(For details see,again,DE BRUIJN 73-34,80-72,etc.)

The requirements listed above are. ~ in principle - satisfied by most of the exis-—
ting languages in the AUTOMATH-family.

Actually,almost all these requirements were among the motivations which have led
N.G.de Bruijn to propose and work out in detail the "Classical AUTOMATH Language'
AUT-68 (see DE BRUIJN 68-01).

Subsequent work done within the AUTOMATH research group since 1967 was mainly

intended to refine the initial ideas up to a set of optimal solutions meeting the

specified objectives.

Paraphrasing N.G.de Bruijn (cf. the Preface to JUTTING 79-46) one might say that
the existing work on the AUTOMATH-project has - by now - at least some undeniable

historical significance:

"...never before has a substantial piece of mathematics been presented on a
comparable level of completeness and precision",within some formal language.

(Usual comparisons with Peano's Formulaire or with Principia Mathematica do always

miss one or another aspect: Peano lacked details of proof while Principia reached

only very elementary portions of actual mathematics in formalization.)
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03.AUTOMATH versus semantics.

One of the motivations underlying the work on AUTOMATH was (DE BRUIJN 73-34)

"...to make something of a universal nature'.

Even from a superficial review of results obtained since 1968 in this area,it
should be clear that the claimed universality is to be understood in some
immediate (non-philosophical say) sense : the project is feasible at least in
the sense that large parts of actual ("ordinary": i.e.,"classical" as well as
"constructivistic") mathematics can be presented in AUTOMATH in a natural way.
(This is a "weak foundational claim" as we may learn from VAN DAALEN 80-73,I.1.6.
etc.yand, as the way of understanding "formalization" is quite different from
that intended in mathematical logic or set theory,there is no possible "conflict"

with Godel's results on incompleteness.)

It is not our purpose here to estimate how "large'" could possibly be the parts of
actual mathematics that can be fed into and checked by means of an AUTOMATH-veri-
fier (the extant work done in Eindhoven - TH - might offer ad hoc,experimental
estimations of the kind: "at least ZF" or "at least Classical Real Analysis",etc.).
Rather we may notice that this claim of universality might be of some immediate
interest for logic and metamathematics;viz. it is a fact that,when provided with
suitable semantics,an AUTOMATH-language would become a useful tool in building up

a general theory of constructions and proofs for mathematics (whether "construc-

tivistic" or not).

Unfortunately,the model theory of (the languages) AUTOMATH is a rather undeveloped

topic.

The lack of interest for semantical and model-theoretic investigations in AUTOMATH
is certainly rooted in  the philosophy behind the project.
One of the most common attitudes in this respect (shared by several contributors

to the subject) is summarized as follows: a piece of actual mathematics is already

a "model" for some correct AUT-text and this "intended model" is somewhat self-

sufficient for its "understanding'.

So there is no point in considering something like "the class of all models" for
a given correct AUTOMATH-book and we should be even less interested in the (huge)
class of all models for the set of all correct AUTOMATH-books (the latter would
be "isomorphic" to the class of all pieces of actual mathematics that could be
ever written,if we have to take seriously the claim of universality referred to

above).
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Actually,"mathematical semantics" or model theory have to be understood as pieces
of actual mathematics and - as such - they would again require "correctness proofs'
(possibly in the AUTOMATH-system).This would unnecessarily complicate the matters
without actually improving our way of understanding AUTOMATH.

Another aspect of the common claim that AUTOMATH needs Eg_semantics is to be loca-

ted in the constructivistic component of what we may call "the philosophy of AUTO-

MATH" (i.e.,the ideas and conceptions on the nature of mathematics and its langua-—
ge underlying the project AUTOMATH): indeed,the methods currently used by model

theorists are - in most of the cases - infinitistic in nature.Such methods won't

fit any more the metamathematical standards accepted as admissible in the descrip-
tion and the study of the AUT-languages (which are - at least in intention - "ma-

chine-oriented" in the sense they have to be "accepted" by some computer).

The situation is,roughly,comparable with the (controversial) status of the
"classically fashioned" semantical investigations into Heyting's logic (see,e.g.,
TROELSTRA 73,GABBAY 80 or VAN DALEN 8® for surveys): the latter are not "intuitio-

nistically acceptable" from the standpoint of the Brouwerian tradition.

Now,the attidude described above is certainly open to some criticismj;to keep in
force,for a while,the parallel with intuitionism,suggested above,one would want
to note that a '"classically-minded" mathematician would safely understand abstract
"classical" structures as what we are nowadays used to call "Kripke models"

(or "Beth-Kripke models'") for theories based on Heyting's logic and even take some
profit - metatheoretically - from this understanding.

Similarly,there is - in principle - no prohibition against the fact that some
class of mathematical structures may provide an abstract description (relevant for
understanding say) of the every-day practice of writing 'correct mathematical
texts".

This class (if any) may turn out to be completely uninteresting from the point of
view of someone sharing basic philosophical convictions kindred to the philosophy
of AUTOMATH;still,there is no a priori reason to forbid the search for such (a
class of) structures,if - above all - successful work in this direction might turn

out to be useful for a metatheoretical investigation of the AUT-languages.

In absence of a sound model-theoretic basis for the AUTOMATH-languages it is not
surprising that what we actually know about their metatheoretical properties is

rather scarce.

Indeed,the existing work on (the languages in the) AUTOMATH (-family) was,until

now,syntactically oriented.The main contributions to the topic (labelled within
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the project as pertaining to the "language theory") consist,up to date,only of

"correct expressions" under reduction (the

a few facts concerning the behaviour of
so called Weak/Strong Normalization theorems,Church-Rosser theorems,'Closure''-the-
orems,stating the invariance of the correctness categories of a given language
under the underlying notion of reductionj;cf.,e.g.,JUTTING 71-23,71-24;NEDERPELT

73-31;VAN DAALEN 80-73).

One has,however, - so far - no means to estimate the "proof-theoretic strength"
of the AUT-languages and, in general,no means to make comparisons with any other
(differently oriented) formalizationm.

There is,of course,the straightforward approach which would consist of '"transla-
ting" - tale quale - into some AUT-language rival formalizations as to their
"expressive power'",but this 1is rather global and uninformative a way of doing
things. ZF can be certainly "phrased into" AUT-QE - the work was done by D.van
Daalen,as an exercisejcf. VAN DAALEN 70-14,70-15 -,but this does not mean that
AUT-QE and ZF are "equally strong" as regards their proof-theoretic properties.
Say: are there results that are "unintended" in ZF which can be "derived" within
the corresponding AUT-QE-book ("formalizing" ZF)? Similar questions may be raised
in connections with rather different formalizations (whether '"foundationally''-

oriented or not).

Among other things,the lack of (abstract) semantics has largely contributed to
the '"parochialization'" of the AUTOMATH-project.
With another historical parallel: the type-free lambda calculus and the related the-

"combinatory logic'" remained mere technical curiosities in mathematical

ories of
logic - after Church has completely abandoned his foundational program (cf.
CHURCH 1936;for more details see REZUS 81),despite the work done in the s¢hool of
Curry (CURRY et al. 58,72;HINDLEY et al. 72,etc.) - until D.Scott discovered
(in 1969) an appropriate class of mathematical models for these systems (SCOTT 69;
see BARENDREGT 81 for a survey and REZUS 82 for further references).

Almost the same thing happened with the RelevanceiLogics (ANDERSON & BELNAP 75,
ROUTLEY & MEYER 8R,etc.),which got a large audience only due to model-theoretic

work (of J.M.Dunn,R.Routley,R.K.Meyer,K.Fine,A.Urquhart,etc.)

Besides the philosophical reasons noted above,the situation complained here has

AUTOMATH-family were (and still are) resisting to a model-theoretic approach peca-

use of their intrinsic complexity.The underlying type —structure 1is - with a

word of D.van Daalen (VAN DAALEN 80-73) - a 'generalized" one: one has a "depen-
g P

dent type-structure'" where the "typing expressions" and the "typed expressions"
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are to be generated simultaneously,as in the case of the languages proposed by
Per Martin-Lof for the formalization of constructive mathematics (cf. MARTIN—LBF
71,72,75,75a,75b,79;ACZEL 77;BEESON 8®;for a differently oriented use of closely
related languages see CONSTABLE 8H).

This difficulty was also incidentally noted in BALSTERS 82.

On the other hand,model-theoretic work on the (simply) typed lambda calculus
and the related theories of functionality has been available only recently and
is, as yet,unpublished (BEN-YELLES 79;BARENDREGT et al.8®;HINDLEY 8R;etc. confir-

ming conjectures of D.Scott;the main proposals for models are also due to D.Scott).

The present author shares the opinion that some model-theoretic work on the lan-
guages in the AUTOMATH-family 1is necessary in the present status of research.

Syntactic methods — if somewhat involved - have already played their rSle in the

game and shown their strength.It is not too much to be expected in this direction.
A recent proposal for a mathematical semantics of the main AUT-languages will

be discussed in detail elsewhere (cf.BARENDREGT & REZUS 8R ).

Even if this paper still essentially relies on a syntactic analysis of correctnmess,

the approach taken here is somewhat differently oriented in comparison with work
done so far on the subject. I

Specifically,we are not interested in "local" features of one or another langua-
ge in the AUT-family (as,e.g.,their behaviour under reduction,w.r.t. conversién =

"definitional equality" or  so,which would depend on the exact formulation of

the correctness rules of a particular AUT-language),but rather aim at an understan-
ding of the abstract mathematical structure of any AUT-language qua syntactic ob-
ject.(The outcome might also shed some light on the possible place to look for

mathematically interesting models for AUT-languages.)

It is certainly pleasant to discover that no AUTOMATH-language is sensitive
to some particular formulation of it.Still,the actual '"reference'- or "standard"-
formulations are somewhat too 'practically oriented" (or "machine-dependent')

in order to be accepted as a proper object of metamathematical study.

This,finally,motivated our abstract approach below.




04.The contents of this work.

We distinguish,prima facie,between the "reference''-version of an AUT(OMATH)-lan-
guage - without insisting too much on the different levels of use of the '"refe-

1) . .
rence''-concepts ~ - and the corresponding "abstract'-version.

The latter versions convey - essentially - the same kind of information as the
"reference'-versions,but can be described accurately in a more natural way and are
subject to a more convenient metamathematical manipulation. (It is easier to '"speak
about" them,and this shouldn't be too surprising,for the "reference'-versions

were devised such as to be easily implementable and not in view of a pure formal

study.)

There are easy-to-find transformations from the abstract—AUTOMATH languages - as
presented here - to the '"reference'-counterparts and backwards,which should be
obvious to the reader who has some previous experience with the latter.

Anyway,at a later stage in exposition,it will possible to "define'" - within the
metalanguage used to describe the "abstract'-versions - almost all concepts that
are used in the "reference'-description (without actually duplicating the work).
Roughly speaking an abstract.AUTOMATH language must be thought of as being the
"core language'" from which its '"reference'-version may arise by "sugaring"z)

the "theoretical syntax",

1) To mention only the most important distinctions: any AUT-language has a '"stan-
dard reference version',as specified in the language definition and a 'physical
version',as used in displaying actual pieces of AUT-text,whereas the latter
level may be viewed either as a "publication language'" - as used by the
translator - or as a '"'machine-oriented" language, - as processed by a computer
instructed to check the correctness of a piece of "physical' AUT-text.

On the other hand,the "standard reference version'" can be specified by diffe-
rent language definitions.E.g.,there is an "E-definition" (VAN DAALEN 73-35,
80-73) ,which will be used as a starting point in the present description, and
an "algorithmic definition",which is very close to a program checking correct-
ness of AUT-books.Other,more pedagogic,presentations - using a '"natural deduc-
tion"-style (3 la F.B.Fitch,say;cf.FITCH 52,MONTAGUE & KALISH 64,etc.) - have
been preferred by N.G.de Bruijn (DE BRUIJN 68-01,73-30,etc.).

2) With a word of Peter Landin,the "syntactic sugar" contains features that are

added to a given formal language in order to facilitate its use without increa-
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So,properly speaking,our considerations do not apply directly and ad litteram
to things like PAL(-THE),AUT-68,AUT-QE,etc.,but to their abstract counterparts.

For the latter some more economical nomenclature has been established (just to save

symbols),still in close relationship with that in use for "reference'-AUTOMATH.

The due minimal "dictionary" is as follows:

Abstract AUTOMATH "Reference'-version
PA Primitive AUTOMATH PAL (~THE) )

CA glassical AUTOMATH AUTOMATHZ),AUT-68
QA AUT-QE

QA AUT-QE-NTI

AA LAMBDA AUTOMATH A»

ZA  Zucker AUTOMATH AUT-Pi

etc.

The main peculiarities of the abstract AUT-languages over their "reference'"-coun-

terpart are to be located in the choice of the primitive syntactic categories.

For a "global" comparison we display here the correspondences abstract vs "refe-
rence'-AUTOMATH as regards this choice ("reference''-categories as in VAN DAALEN 73-
35): '

Abstract AUTOMATH: "Reference''-version:
Terms ’ Expressions
E-sentences (Ejformulas) E-formulas

Q-formulas

Variable-strings

Term-strings

Contexts Contexts

Constructions Lines
- - EB-lines (declaring variables)
- p-constructions - PN-lines (constructing ‘primitives’
- d-constructions - definitional lines (constructing

"defined mnotions')
Sites € finite sets of constructions). Books (= finite sequences of lines).

continued from previous page
sing its (semantic say) strength.
1) See 01. above.
2) Historical label (used in DE BRUIJN 67-16,68-01,etc.)
3) In "book-and-line"-format (cf. also VAN DAALEN 80-73).
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For a detailed explanation of the description-scheme of the abstract AUT-syntax

we refer to 05. below.
Here we give only some hints motivating the main differences.

(1) It is not necessary to have a primitive syntactic category Q-formulas in the
language (anyway,such "formulas'" will never appear as syntactic units in some
"reference'"-AUT book).Accordingly,they will be constructed - in the abstract set-

ting - by some appropriate détour via the metalanguage.

(2) EB-lines are not essential as separate syntactic units (they can be appropriate-
ly "stored into" contexts;this approach was actually taken by D.van Daalen in VAN
DAALEN 80-73).0n the other hand,the other kinds of lines of the "reference''-ver-
sion describe '"constructions of primitive / defined notions'" while the EB-lines
are,rigorously speaking,''variable~declarations".Putting them together under the
same syntactic rubric would somewhat break the uniformity of the syntactic descrip-

tion.

(3) The linear order in "reference'-AUT books is completely unessential for the

description/understanding/study of correctness in AUTOMATH.What actually matters

in this respect is a different kind of order (a partial order) describing the

"reference-system" of a given PN- or definitional line (i.e.,what may be

called,"reference structure'" in an AUT-book).

Accordingly,we shall keep only a syntactic category of Comstructions, containing
(i) p-constructions corresponding to the former PN-lines and

(ii) d-constructions corresponding to the definitional lines of the "reference'-

formulation,

while,instead of considering finite sequences of such items,we decide to pay atten-:

tion first only to finite sets of constructions (= sites).

The "real" reference structure in sites will be hereafter obtained by an appropria

te analysis of the structure of correctness (cf. 23 below).

As a matter of methodology,the description of the syntax of abstract AUTOMATH will
be conveniently separated into

(a) a "correctness - free" stage

(b) a "correctness'" stage.
This can be done, for the AUT-languages of concern here, under some additional
metatheoretical stipulations concerning the behaviour of the constants used in
particular formalizations (what we called below "floating constants'"jcf. 10. etc.).
The approach would enable us to speak about "delta-reduction',etc. even at a "cor-

rectness-free" stage (whereas '"delta-reduction",'"definitional equality",etc. have,
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properly speaking,no meaning "outside" an AUT-book). Cf. 05. below.

The abstract AUTOMATH-languages studied in this paper are PA,CA,QA and Q A.
Section 1. is devoted to the description of the "correctness-free'-part of their

syntax,while section 2. is concerned with a detailed presentation of the "correct-

1ess''-part.

The "global properties of correctness'" make up the main content of section 3.

The latter concern as well as the preparatory - abstract - description were

notivated by the study of a conservativity problem in AUTOMATH.

The motivating problem concerned the relation of AUT-68 and AUT-QE to the '"least"
language in the AUTOMATH-family: PAL(-THE) and it is - in itself - of some philo-

sophical interest.Besides this,it has also a more immediate,practical import.

The philosophical aspect is more or less related to the epistemology of mathema-

tics (as conceived say by Jean Piaget and his school of genetic epistemology in

Geneva).Specifically,it concerns the development of the language of mathematics

along its history.

To be more explicit,N.G.de Bruijn remarked that the conceptual apparatus of the
(pre-)XVIII-th century mathematics (or,at least,the most part of it) can be ex-
pressed as well in PAL(-THE).

The idea of a function in general and the rise of mathematical logic (which are
achievements of the XIX-th century) require more powerful means of expression:
functional abstraction and the behaviour of quantifiers cannot be expressed in
PAL(-THE) ,while they would admit of a proper formalization in AUT-68 (or AUT-QE).

Establishing a conservation property - in the due sense - of AUT-68 (or AUT-QE)

over PAL would lead to a straightforward estimation of the '"degree of complexity"
of a given mathematical text: e.g.,results that can be "phrased into" a relative-
ly simple language (that of pre-cantorian mathematics sayj;to fix some arbitrary -
not too remote - a landmark) can be already obtained with the ("historical') means
of the mathematics promoting and actually using that language (here: with the means
of pre-cantorian mathematics).

This claim is not exactly equivalent with Hilbert's assumption that any mathemati-

cal problem is solvable.Rather it establishes a close connection between the comple-

xity of a given mathematical language (in its historical appearance) and the "depth"

of the methods and concepts "presupposed" or "promoted" by this very 1anguage.1)

1) One of the topics on which N.G.de Bruijn lectured (since 1978 on) at the Univer-
sity of Technology in Eindhoven concerns "The Language and Structure of Mathema-

tics" (cf. DE BRUIJN 78-61 and the forthcoming book DE BRUIJN & NEDERPELT 8R).
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The practical aspect of the conservativity problem mentioned above is somewhat
easier to grasp and concerns the possible economy (in time and computer-memory)
over the work done in the actual verification of an AUT-text on computer: it turns
out a PAL-text is always somewhat easier to check than an AUT-68- or an AUT-QE-
text.

Now if AUT-68 say is actually conservative over PAL(-THE) - in the due sense -
one can choose to formalize in the PAL-segment as much as possible - from the
very beginning - without thereby loosing "in strength" (and,by conservativity,

any AUT-68-"line" that '"can be written in" PAL - in the expected sense - and
admits of a "correctness proof" in AUT-68 should also admit of a '"correctness

proof" in PAL).

The concept of conservativity - as relativized to the case of AUTOMATH-languages -

which is actually used here is essentially that of DE BRULJN 74-44.(See 30. for

heuristics and a precise analysis.)

At a closer examination,it turned out that somewhat stronger a property - imply-
ing conservativity,in the sense of de Bruijn - can be proved about AUT-68 and/or
AUT-QE versus PAL-THE.By analogy with situations occurring in (first-order) logic

we called it "PAL-separation property'".Roughly speaking,it can be stated as follows:

PAL-Separation Property:
Let AUT be any one of the following languages: AUT-68,AUT-QE,AUT-QE-NTI,etc.
For any "correct" AUT-book B such that B contains some line k,if
(1) k is "correct” with respect to B and
(2) k is "written in" PAL
then there is a "correct'" PAL-book §v such that
(3) §V is a "sub-book" of B (qua sub-sequence - of lines),
(4) k is "correct'" with respect to Ev
and,moreover,

(5) Qv is the least "correct sub-book" of §,satisfying (3) and (4).

(Here B is "correct according to the rules of AUT",I}v is "correct according to the
rules of PAL" and "written in PAL" is to be understood '"modulo definitional expan-
sion",viz. any expression which is a "component" of k has a PAL-"reduction graph".
These notions will be made precise,in an abstract setting,in sections 2. and 3.

below.)
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lhe main work in 3. relies on a combinatorial analysis of correctness in sites.

The abstract setting allows to isolate in a straightforward manner the relevant
structure of correctness in sites ("correct" sites are actually posets with res-

pect to the "definitional history" of the constructions they contain):this is the

so-called "reference-order" (cf. 321.below).Relying on this order,a precise "measure

>f complexity" for constructions is introduced (cf. 322.).As the latter is given
by some appropriate recursive function it can be used as a useful meta-theoretic
tool in proving facts on corretness in abstract AUT-languages.Finally,the underly-
ing analysis is - in a sense - 'global",for it does not actually depend on the
exact formulation of the "correctness rules" in one or another (abstract) AUT-lan-
guage.So,in the end,the main results can be easily transferred to other AUT-lan-
guages,not actually taken into account and described in detail in this paper (as,

e.g.,ZA - the abstract version of Zucker's AUT-Pi - versus PA,etc.)

Needless to say that the facts established here for the abstract AUT-languages

hold as well for the corresponding "reference'-versions.
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05.Abstract AUTOMATH: definition scheme.

The syntax of any abstract AUTOMATH language LA can be given by specifying:
(i) the alphabet ALA of LA,

(ii) the syntactic categories of LA and

(iii) the correctness categories of LA.

(1) The alphabets ALA are denumerably infinite sets of pairwise distinct

structured symbols (i.e.,sets of symbols for which some implicit categoriza-

tion into - pairwise distinct - sub-alphabets is given).Cf. 10 below.

(ii) For each LA,the syntactic categories of LA are

syntagmatic categories (from the Greek radical '"tag";"syntagomai" =

1 am putting together, hence "taxis" = ordo and,of course,

"syntaxis")

text-categories,containing the finite sets of some '"designated"

syntagmatic category of LAjthere is only one such a category in our
. . . .. L
presentation below,viz.the category of sites (Site A,for any LA,and

SiteLA is canonical in a sense to be explained later).

The syntagmatic categories of LA are generated in two distinct stages:

the free stage,where the free categories of LA are produced;these

will be given by recursive stipulations which concern only the

well-formedness of expressions in LA, and

the canonical stage,producing the canonical (syntagmatic) categories

of LAj;these are either identical to some of the preceeding ones or
are obtained from these by elementary processes,as,e.g.,taking infi-
nite unions or finite sequences (pairs or triples say) of elements
belonging to the free categories.

There is only a finite family of canonical categories in LA and its
elements are canonical in the sense that they are to be taken into
account in the definition of the correctness categories of LA.

The distinguo between free and canonical (syntagmatic) categories in
some LA is also necessary in order to insure the finitary character

of the process of generation of the correctness categories of LA.
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05.1.REMARK.
There is also another difference between the free and the canonical stage
of generation mentioned abovej;namely: the free syntactic categories of LA
can be generated by a Montague-like grammar,under some unessential addi-
tions (see MONTAGUE 70a) and,up to a certain point,they would also admit
of a context-free grammar ('BNF style'),while the restrictions involved
in the canonical stage cannot - in general - be generated "algebraically",
3 la Montague say.However,the details needed for a complete description of
such a "generative device',looking like Montague's 'disambiguated languages",
are unreasonably long and displaying them in full would rather obscure our

main objective.

The free syntagmatic categories of LA may be chosen from a minimal family,

containing all and only the following sets of words over ALA:

LA .
Term , the category of terms (in LA),

L ) .
Esent ", the category of E-sentences (or E-formulas) in LA,

Svarn , the category of variable-strings of length n,neN,in LA,

Stermn » the category of term-strings of length n,neéN,in LA,

and

ConthA, the category of contexts of length n,né’E,iB LA.

Of these,the first two are canonical,together with

LA . . . '
Constr ', the category of canonical constructions in LA and

ContxLA = é:;& ContxﬁA,the category of contexts in LA.
05.2.REMARK.

In the presentation adopted here (which does not concern ZA,the abstract
version of Zucker's AUT-Pi;cf. ZUCKER 75-42,DE BRUIJN 77-51,ZANDLEVEN 77-
48 and VAN DAALEN 80-73,Chapter VIII) it does not seem necessary to have,

within the language,syntactic categories involving some notion of reduc-

tion (or any concept defined in terms of some notion of reduction,as e.g.,
"definitional equality" or "convertibility",''reducibility" and "contraction').
It is,however,possible to adopt,from the very beginning,this point of view
by admitting of one or more of the following categories of sentences (for-

mulas) as primitive (both free and canonical) syntagmatic categories in LA:

QsentLA, the category of Q-sentences (or Q-formulas) in LA,
RsentLA, the category of R-sentences (or R-formulas) in LA,
and

CsentLA, the category of C-sentences (or C-formulas) in LA.
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As the latter are intended to 'formalize" convertibility,reducibility and
contraction in LA,one has to distinguish carefully between the underlying
'"extensionality type" (which can be either "beta-" or '"beta-eta-" in the case
of the languages studied below,while the distinctions necessary for the
family ZA of abstract AUTOMATH languages are even more complex).

It will turn out that in all cases of concern below (not involving ZA say)
EsentLA is sufficient for all our purposes (and the remaining categories

of sentences can be appropriately "simulated" or '"defined" by a détour via
the meta-language).

For some delicate points involving the use of (beta—)eta-convertibility in
connection with correctness see,e.g.,NEDERPELT 73-31,pp.16,71 and VAN DAALEN
80-73,Chapter VI.See also VAN DAALEN 80-73,2.12.,for a way out (avoiding

the use of Q-formulas as primitives).

Now the only text-category of LA can be specified (schematically);it is
SiteLA = Fh(ConstrLA),the category of sites in LA,

(where,for any set A, Pw(é) is the set of finite subsets of A).

05.3.REMARK.

In the '"reference" preseﬁtations of the languages 'in the AUTOMATH family

one prefers the following terminology:

- '"expressions" in LA for elements of TermLA,

- "E-formulas" for "E-sentences",

- "lines" (specifically,”primitive lines" or "PN-lines" and '"definitional
lines',resp.) for "constructions"

and,

- "books" for "sites" provided with a fixed linear

order (a "book" is a "sequence of lines" and not merely a set,as it is the

case here for our "sites'").

Of course,'site",as used here,has nothing to do with the sites appearing in

the theory of categories.

The motivation behind our use of sites may be recovered from our manipu-

lation of a different (and more useful,both for meta-theoretical purposes and

in practice) concept of order in an AUTOMATH "book" (cf. the discussion of

the "reference order" below).
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(iii) In order to give a '"global" description of the correctness categories

of LA we introduce some ad hoc set-theoretic notation and terminology.

05.4 .NOTATION. TERMINOLOGY.

If R is an n-ary relation on Al""’An (n»1) and m € n,then the m-th

section of R is just R if m = n,else
Sec_(R) = {(a seee5a 7:for some a.fA., m+l'$isn,<a,...,a> is in R}.
m 1 m i % 1 n

If ,moreover,m < n,and S is an m—ary relation on A ..,Am then the residual

1°°
of S in R is the relation

R/S = {\am+l,...,aﬁ>: <a],...,an? is in R and (al,...,a&? is in S}.

05.5.REMARK.
Now,clearly,if R is an n-ary relation then,the domain of R is the set
Dom(R) = Secn_l(R),
and the range of R is the set

Range (R) = R/Dom(R).

Now the correctness categories of (any abstract AUTOMATH language) LA are

relations

SiteLA,ConstrLA,ConthA,EsentLA, and TermLA
4 4 [ : :

and they can be viewed as set-theoretic "solutions" of the following "equalities"
(and "inequalities",i.e.,inclusions):

(1) SiteﬁA e SiteLA,

(2) ConstrgAg; ConstrLA X SiteLA, such that

ConstrLA/Sec (ConstrLA) = SiteLA -0,
= 1 1 -1

(3) ContxiA;;; ConthA X SiteLA,SuCh that

ConthA/Sec (ConthA) = SiteLA,
: 1 1 : 4 1

(4) EsentiAg;, EsentLA X ConthA X SiteLA,such that

EsentLA/Sec (EsentLA) = ConthA,
= 1 = 1

(5) TermiAg; TermLA X ContxLA X SiteLA,such that

TermLA/Sec (TermLA) = ConthA.
1 1 1 |3

0f course,not any '"solution'" of the "system" above will be acceptable as a

family of correctness categories for some abstract AUT-language.
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1.Language definition: well-formedness.

We introduce first the "type-free'" syntax of any abstract AUTOMATH language

of concern below.Specifically: we define the syntactic categories of LA,

as they appear in the free stage of generation and next build up,from these,

a finite family of canonical (syntactic) categories (for LA).

10.Alphabets to use.

The alphabets we are going to use in these notes are singled out from the

following denumerably infinite list of structured symbols.The categorization/

"classification" of these symbols into pairwise disjoint sub-alphabets is to
be recovered from the tree-like indications present on the 1l.h.s. of the

list displayed below.

We let m,n € N.To each constant in the list a non-negative integer,called
arity (of the constant),is associated,indicating the "behaviour" of that cons-

tant qua syntactic function.

0 Variables: X

1 (Structured) constants: arity:

11 Functors:

111 Floating constants:

11 - :

11 n,m p-constants p(n),m m

1112 d-constants: d m
n,m (n),m

112 Constructors:

1121 Term—-constructors:

I]2]1n head-constructors ("instantiators"): d; n

11212 abstractor: A

11213 applicator: 3 2

1122 Sentence-constructors:

11221 inhabitability relator: E 2

1123 List-constructors:

11231 variable sequencers: s n
n -

11232 term sequencers: S n
n “n

11233 telescope constructor: T 2

11234 "triad"-constructor: D 3
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12 Structural constants ("language constants"): arity:
121 - Universe symbols:

1211 Super-type symbol: T

1212 Proof-type symbol:

122 Empty symbol ("nil"): O 0.

10.1.COMMENT.
If the approach indicated in Remark 0%2. above is taken then one would

also need thé following extra sentence constructors (tree-like '"classifi-

cation" as earlier): arity:
11222 convertibility relator: Q 2
11223 reducibility relator: R 2
11224 contraction relator: C 2.

These relators would serve as primitive constructors for the syntactic

categories
QsentLA, ‘formalizing convertibility sentences/formulas
RsentLA, formalizing reducibility sentences/formulas
CsentLA, formalizing contraction sentences/formulas

in the correspondingly extended language LA.
From the list above we single out the alphabets to use as follows:
10.2.DEFINITION.

A contains the set of all structured symbols listed above.
A = A - [m].

Cc
Ap, = A - {4,933
10.3. COMMENT.

Ap is the alphabet of PA (= Abstract Primitive AUTOMATH),
AC is the alphabet of CA (= Abstract Classical AUTOMATH),
A is the alphabet of Q A,QA (= Abstract AUT-QE-NTI and Abstract AUT-QE).
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In the sequel we shall somewhat simplify the exposition identifying A and Ac'

10.4 .REMARK.

For theoretical purposes it is appropriate to identify A with Ac,leaving

outside any considerations about the proof-type symbol 4.The latter one
is supposed to behave (up to a certain point) as * does,so in order to
restore. the "official" formulation of the language from our description it
will be enough to "duplicate" simply the syntax inasfar * is concerned and

to assume extra stipulations with * replaced by 1 (ceteribus paribus).

Actually,AUT-QE with a single universe symbol (T) would be better suited

for the formalization of constructive mathematics whereas the proof-type

symbol would be necessary for "classical" texts (i.e.,for books where the
underlying logic is Classical Logic).See JUTTING 79-46,4.1.2.,VAN DAALEN 73-35,
3.2.,ZUCKER 75-42,DE BRUIJN 80-72,VAN DAALEN 80-73,1.5.9. 5499.,etc.

A similar remark applies to Zucker's AUT-Pi (cf. ZUCKER loc.cit. and VAN DAALEN
80-73,VIII.},

The following meta-theoretic/syntactic notation will be used throughout in the

sequel.

10.5.NOTATION.
Var stands for the set of variables,whereas ConstLA is the set of (structured)

constants in LA (with superscript oft omitted).

We also write PflﬁA,DflﬁA (with n in IN) to denote the sets of n-ary floating

p- resp. d-constants and take unions as follows:

LA LA LA
it = ert ) penlt,

LA _ LA LA _ [ LA
ettt - LJoerih, ettt = L ooeith,
™ - e U palA.

The superscript "LA" will be omitted whenever no confusions may arise.

Syntactic variables ("metavariables'):
v for variables (in LA),with subscripts and successive primings

to increase the list,

p or B, (to specify the arity) for floating p-constants (in LA),
d or én for floating d-constants,and

c Oor C for both.

= “n
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The remaining (structured) constants will be used autonymously in the meta-
1anguage and we won't adopt a special,very rigorous,notation for concatena-
tion (see DE BRUIJN 77-49,78-61).Instead,readability is insured by some appro-

priate abuse of (meta-)language,often tacitly assumed.

10.6 . TERMINOLOGY .NOTATION.
If ALA is the alphabet of LA then Word(ALA) or even Word(LA) denotes the

set of words over ALA-We use X,Y,Z,...,etc.,as syntactic variables on Word(LA).

Epifunctions QE_Word(LA) are partial functions from Word(LA) to Word(LA).

10.7.REMARK.
As introduced below,some of the epifunctions appearing here can be defined in
terms of other epifunctions.For our purposes it won't be necessary to have
at hand a "minimal" basic list of such objects (for we do not aim at a comple-—

te formalization of the epitheory).

10.8.NOTATION.
Finally, = stands for syntactic identity on Word(LA) and we write " # " for
its negationm.
In set-theoretic contexts "=" has,of course,the usual set-theoretic meaning.
Other set-notation is used as much as possible,in a standard way,and we did

not find necessary to explain it in detail.
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101.Further structure on (floating) constants.

A specific feature of the languages LA considered below consists of the presence

of (what we called) floating constants (i.e.,the structured symbols in FlLA).

These are functors of a special kind and the way we intend to manipulate them
in particular languages LA will - surprisingly - cause lots of (at least) the-

oretical difficulties.The discussion following here aims at eliminating the

most typical ones from the very beginning.

The approach taken in this section is largely facultative and adopting the pre-
sent point of view over any other possible set of theoretical decisions is

certainly a matter of taste.

The main idea is to provide the sets FlLA (in each language LA) with a super-

imposed structure,which is,roughly speaking,an ordering.In the end,this amounts

o s LA . .
to a partition of Fl into equivalence classes,called ranks,such that each rank
is a (denumerably) infinite set of floating constants and there are also infini-

tely many ranks (the ranks will be,in fact,mapped one-one onto N).

101.1.DEFINITION.

A ranking function for some alphabet ALA is a map
rank: FlLA — N

such that,for each (arity) n,ne NN,

A

rank (P17 = W

and

I
=

rank (0£1:%)

101.2.CONVENTION.
Any alphabet ALA is supposed to be given together with a fixed ranking function
for it and to be "large" enough such as to have,for each arity n,ne¢N,and any

given integer m,infinitely many p- resp. d-constants [ with gggg(gn) = m.

In detail,this runs as follows.

101.3.DEFINITION.
For each n e N ,we let the appropriately restricted "kernels" of rank be
m _ . P LA _
Prankn = {Bn' (En is in Pfln )&(gggg(gn) = m)} me¢ N,
m . .. LA _
Drankn = {En. (gn is in Dfln )&(gggg(gn) = m)} me¢ N,
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101.4.REMARK.
Our- previous convention on ALA says that,for each arity n,n¢ N, and each méN,
the "ranks" Prank:,Drank: can be mapped one-one onto N.
The corresponding bijections allow to speak about the first,the second,...,

the k-th p- resp. d-constant with arity n and rank m (n,m € N).

101.5.NOTATION. TERMINOLOGY.

Prank™ = L_J Prankm, Drank™ = ] l Drankm, (m,neN),
n n
neN nelN
Rank™ = Prank" LJ Drank™ = {3 : (c in FlLA)&(Egt_l_lg(_(_:_) = m)} (m €N).

For each non-negative integer m,we say that Prankm,Dr:ankm,Rankrn resp. is

the p-rank m,the d-rank m or the rank m resp.(in LA).

Alternatively,if some floating constant c¢ is in Rank™ we say that ¢ is of ramk
m (méN) or (by abuse of language) that the rank of ¢ is m.

In order to avoid superscripting we shall also write Rank(m) for Rank".

101.6.REMARK.
It is obvious that the ranking function for ALA induces a partial order into

FlLA.We shall find some use for this later onm.

101.7.REMARK.
The point of view adopted here is,in the end,not very constructive.Still,we

can make it to be so,by using explicitely Cantor's coding of the pairs in
NxN onto N,

In order to do this recall that,in 10. above,the p- and the d-constants were

provided (separately) with some fixed lexical order (a linear order),and this

was done for each arity n,ne¢N.
A

Indeed,we had p-constants p(m) n and d-constants d ,
’

. L.
(m)’n,where me N,in Pfln

Dfli resp. The intended meaning of the subscripts "(m)" is here that P (m).n

. h + - - s 3 .
is the (m+1)-th p-constant of arity n in ALA and analogously for d(m),n
Now Cantor's coding is a (primitive) recursive function (a bijection)

pair: N xN — N
with (primitive) recursive "projections" left,right resp.Where D_. and D

--------- N Nx N
are the diagonals of N and N x N resp.,we get (by surjectivity) that the

inverse,pair ,of pair exists,with

pair o pai

=

N
("o" denotes the usual composition of functions).

=Dy and  pair o pair = Dy
)

Let m be the lexical index of P(m),n FESP- d(m) n in A.LA.Then Egig_(m) is
’ ’
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actually a pair, (m],mz) say,with m, ,m, in N.We may now consider m, as being

1
the rank of the p- resp. d-constant with lexical index m (and arity n) and mz

be the lexical index of the constant within its rank (here: either Prankn or

Drank: ) .For convenience,call the latter a lexical rank-index.

Taking,in particular,
gg;g(m],mz) = ((m]+m2)x(m1+m2+l))/2 + m,

it is easy to get explicit forms for left,right and pair (see,e.g.,MAL'CEV 70).
So if ¢ 1is a floating constant with lexical index r and arity n (r,n € N) then

rank® (o) = left (pair (1))
defines (constructively) a ranking function for ALA (for 2225$ is obviously
primitive recursive - and even Kalmir-elementary).
With the latter one we can repeat the partitioning of FlLA on the pattern
sketched above and get the corresponding sets Prankﬁ’m,Dranki’m ,Ranki’m

(for all m,n in N).

Moreover,each p in Prank$’m and each d in Drank$’m will thereby
=(r),n n (r),n n
get a lexical rank-index within their (constructive) rank,viz.
. s $ . . =
a = poindex (p(,y ) = right(pair (x)) and
s $ _ . . =
q = doindex (4., ) = right(pair (r))
and we may re-write the constants unambiguously as p(q),n,m and d(q),n,m resp.

Note that for any fixed non-negative integer q,a lexical rank-index q can be
found,in each set Pfln and/or Dfln separately (for each n in I{),infinitely

$,m or Drank$’m)
n n

many times and,specifically,only once in each rank (Prank

101.8.REMARK.
If A, is any alphabet containing FlLA and WOrd(A+) is the set of words over
A+ we may also use the construction above in order to assign ranks to elements
of Word(A+) or to subsets of WOrd(A+).Indeed,1et X be in WOrd(A+).Then we may
stipulate that the rank of X is -1 (say),if X does not contain letters from

L . . .
Fl A and that the rank of X is max {rank(g):(g occurs in X)&(c in FLLA)}.

Ranks -1 are,of course,arbitrary (we may leave the new ranking function unde-
fined in those cases where X does not contain floating constants).

Something similar can be done for (finite) subsets of Word(A+).

101.9.COMMENT.
The need for something analogous to our ranking function above was noticed

earlier by L.S. van Benthem Jutting and D.van Daalen,in connection with
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the theory of abbreviations (LSP) in AUTOMATH (see VAN DAALEN 80-73,III. and

constant (relative to some book),so the choice of a ranking function is a

matter of local decision and has to be performed for each particular book
separately (and anew).Also,in the latter case,the primitive constants (cor-
responding to our p-constants) must be dated (within "correct books").
Shifting the matter (in)to a very elementary syntactic level (as we did here)

"reference'-treatement of the

" gives some technical advantages over the usual
AUT-syntax,but also entails some unintended (and somewhat unpleasant) conse-
quences at a later stage (definitional specifications are to be stipulated

once forever for all elements of DflLA,etc.).
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11.Variable-strings.

It will be convenient to start by defining strings of variables first,viz. the

free (syntagmatic) categories SvariA,n € N.(We henceforth omit the superscripts
IILA" )

These items do not differ in structure from language to language and,accurately,

they cannot be generated in a context-free way.

11.1.DEFINITION.
For all n in WN,the sets Svarn are the least sets such that
if ViseeesV are in Var and vy # vj (1€1i # j< n) then
Enﬂvl...vn

is in Svar_.
n

An element of Svarn is a variable-string of length n.

11.2.REMARK.
Obviously,there is no point in referring to LA when speaking about variable-
strings (this is also the case for variables,for we would want to keep Var
the same for any LA under focus).
With the definition above one has a special notation for the empty string
(of variables;this is just EOD ) and also one can distinguish straightforward-

ly - as intended - between a single variable v,taken in isolation, and the

one-element string containing v (this is just §1UV).
We have,by "sugaring' the syntax,the following.
11.3.NOTATION.
B := §OD,
€ ViseesV ¥y = Ennv]...vn, for all n > 1.
Analogously,we shall use the shorthand:
v, i gnﬂv]...vn, for all n > 0,

omitting the subscript 'n" whenever the length of the variable-string is

known.The latter notation is used only when the missing information can be

safely restored from the context.

If X is a variable-string we shall often write 1h(X) for the length of X.
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12.Term—-structures.

. . . . L
The LA-terms are the basic syntactic units in any LA and Term A;the set of
terms in LA,is supposed to be specific for each LA.

QA

. . CA .
For reasons of economy we identify hereafter Term ,Term® and,in general,
. - PA . : .
any set strictly containing Term =~ will "collapse' 1nto TermCA.Thls amounts

to the elimination of the proof-type symbol from the primitive syntax and,

as noted earlier,the procedure is harmless for theoretic purposes.
Indeed,the main differences induced by the presence of mr seem to be rather

semantic in nature and we are not concerned with this.

The syntax of LA-terms (at least in the free stage) will be not much more

involved than that necessary in the construction of a combinatory reduction

system,in the sense of KLOP 80 say,(this is a mixture of lambda-calculus and

term-rewriting rules;cf. also HUET & OPPEN 80,etc.).

As for interpretation,the notion of an LA-term unifies two concepts which are

distinct for languages with a separated type-structure,viz. in the latter case one

has explicitely (object-)terms ("typed terms" say) and type—terms (accurately:
"typing terms") while the type-terms can be generated by inductive definitions
somewhat "beforehand",in complete independence from the former.Hence sometimes

the labels: "languages with dependent type-structure" or '"languages with genera-

lized type-structure" - suggested by R.L.Constable and D.van Daalen resp.,- for

languages kindred to our LA's here.(For similar constructions see SCOTT 70,

GIRARD 71,72 ,MARTIN-LOF 71,72,75,75a,75b,79 ,BEESON 8R,CONSTABLE 8H,etc.).
121.Terms.

121.1.DEFINITION.

For LA as shown below,the set TermLA is the least set such that

(1) Any variable v is in TermLA.

(2) The universe symbol T is in TermLA.
(3n) If E_is in FlEA 3and apseeesay are in TermLA then
d;gal...an is in also in TermLA. (n ¢ N)
(4) If a,b are in TermLA then so is 9ab.
(5) If a,b are in TermLA and v is a variable then Avab is in TermLA.
In the above,if LA := PA then only clauses (1),(2) and (3n),n€-11,app1y,

for the applicator and the abstractor are not in the alphabet of PA.
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121.2 .DEFINITION.

Any element in TermLA is an LA-term or a term in LA.

121.3.COMMENT.
The "in" above should be unambiguous if we have at hand some appropriate
book-keeping procedure for floating constants (in FlLA).The latter task
can be somewhat simplified:if we choose to take into account the behaviour
of LA-terms "modulo definitional expansion' then one needs to "store" only

information concerning PflLA.

121.4 .REMARK.
PA . CA .
Clearly,Term = is a proper subset of Term ,while,for any other LA,one has

by the simplifying convention on 1 above,that TermCA = TermLA

We get,by '"sugaring" again,the familiar "reference'-AUTOMATH notation.

121.5.NOTATION.

Hereafter a,b,c,d,e,f,g,... with sub- and/or superscripts (successive primings)
will be used as syntactic variables on LA-terms (with LA duly specified).

Next,we set,for all n € N,

. . LA 4 -
o= <1
_c_:_(a],...,an) : Jnsal...an c in Fln’ai in Term ,0< i<n,
{atb := 3ba a,b in ’I‘ermLA,
Er:a]b = Avab a,b in Term,v in Var.

We shall now largely diversify the epitheoretical landscape by supplying some
useful descriptive terminology and introducing epifunctions to be employed later
on.In general,our terminology will :be closely related to standard ways of spea-

king in lambda calculus.

121.6.TERMINOLOGY.
(1) The head-terms are all and only the LA-terms of the form
a := g(a],...,an), ne N,
with ¢ and ayseera as specified earlier;c is the head of a and the ai's
(1 £i€ n) are the arms of ajthe head and the arms of a are all and its only

immediate quasi-components (hereafter: iqc's),while the arms of a are all and

its only immediate components (henceforth: ic's).

The:length of a is ;Ll(a) = n.
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Epifunctions: we let head and 2552 (n¢ N,0 £i€n) be partial functions

from Word(LA) to Word(LA) such that,

¢, if a is a head-term with head c
head(a) :=
undefined, else
-U, if a is a head-term and i,% 0,
_2::2(3) = a;, if a := E_(a],...,an) and lh(a) > 0,1€ i<,
i undefined, else.

(2) The application-terms are all and the only LA-terms of the form

a := {bﬁbz,
in TermLA;where b] is the argument-part of a and b2 is the function-

i b
with bl’ 2
part of ajthe argument- and the function-part of an application term a are

all and the only iqc's (ic's) of a.

Epifunctions: the associated epifunctions are,in this case,arg and fun,with

the following behaviour:

b, if a:= {p3p,,
arg(a) :=

undefined , else,

by, if a := {bl}bz,
fun(@)  :=

Lundefined, else.

(3) The abstraction-terms are all and the only LA-terms of the form

a := [v:b]]bz,

with bl’bZ in TermLA and v in Varjhere b] is the domain-part of a,while b2 is

its value-part and bl’bZ are all and the only ic's of a.

Finally,"unsugaring'", Avb] is the abstraction prefix of a (but "sugaring"

gives [&:k%],with brackets,for the latter) and bl’bZ and Avb1 are all and the

only icq's of a.

Epifunctions: the associated epifunctions are (see also below) dom and yal,

with:

by, if a := [v:bl]bz,
dom(a)  :=
undefined, else
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and,analogously,
b2, if a := [v:b]-lb2

undefined, else.

121.7.REMARK.
(1) Any PA-term is either a variable or the universe symbol 4 or a head-term.
(2) If LA is not PA,then any LA-term is either a PA-term or an application-
term or an abstraction-term.

Indeed,this is the meaning of "least" in Definition 121.1.

121.8.DEFINITION.
A subterm (resp. a quasi-subterm) of an LA-term a is either
(1) an ic (an iqc) of a, or
(2) an ic (an iqc) of some subterm (quasi-subterm) of a,and

(3) nothing else is a subterm (quasi-subterm) of a,except by (1),(2) above.

121.9.TERMINOLOGY.
If a is an abstraction-term then any (quasi-)subterm b of
(1) ggé(a) is ig_the scope of the abstraction prefix of a,

(ii) dom(a) is within the scope of the abstraction prefix of a.

This way of speaking will be extended,by abuse of language,to sub-words of

abstraction-terms that are not necessarily (quasi-)subterms of it.

121.10.TERMINOLOGY.
For any LA-term a,FV(a),the set of free variables of a,and BV(a),the set of

bound variables of a,are supposed to be defined as usual.

We have,of course,BV(a) = @,for any PA-term a.

Further,if v is in Var,then v is said to be fIEE.(EQEEQ) ig'a if v is in}
FV(a),(resp. in BV(a),as expected),and v is gzgﬁh.ng_a if it is not in
FV(a)J BV(a).

We shall also use "fresh for..." in a similar way,in connection with floating
constants (a constant c is fresh for some LA-term a if,simply,c does not occur
in a,as a quasi-subterm of it).

The operator of simultaneous substitution on LA-terms,for which we reserve

the notation

a' := aﬁbl,...,bn := vl,...,v;] n € N,
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(or even a' := a[g 1= ;m ,where b and v stand for the corresponding se-
quences) is supposed to be defined in the familiar way.
This notation is straightforwardly relativized to the case of ordinary

substitution (as in lambda calculus,say),when n = 1.

121.11.REMARK.
To avoid difficulties with alpha-conversion (see below) in languages with
abstraction,it seems appropriate to introduce first partial operators of
(simultaneous) substitution,next state the alpha-conversion rule and,finally,

make the former totally defined on the appropriate set of terms,manipulating

conveniently the alpha-matters (to handle this automatically some more details
on alpha-conversion strategies are necessary,however).

This should avoid ciréularity,in the end,while defining substitution and
alpha-conversion (the approach comes,essentially,from Church).
Alternatively,one has to cope with the alpha-matters in some other way (cf.,

e.g.,DE BRUIJN 72-29,78-55,STAPLES 79 and BARENDREGT 81,Appendix C: Variables).

122.Canonical terms and definitions.

The presence of floating constants in the alphabet(s) of LA induces some peculi-
arities that are absent from combinatory reduction systems (or term-rewriting

systems) not containing such constants (i.e.,the so-called mechanism of "instanti-

ation").

122.1.DEFINITION.
- .. .. LA .. LA
If V := g Ov,...v_ is in Svar_ and p is in Pfl ,d is in Dfl (n € N) then
“n 1 n n = n ’— n
the head-terms
p(F) := d;EY]."Vn’
g(v) := d;gy]...vn,

resp. are said to be (canonical) p-terms (resp. d-terms) of length n and

a canonical LA-term of length n is either a p-term or a d-term (of length n).

The canonical LA-terms are supposed to be characterized (in the metalanguage) by

monadic ("epitheoretic") predicates called qualifiers.
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122.2 .TERMINOLOGY.
We distinguish between two kinds of qualifiers:

(1) improper qualifiers: we need only one of this form,viz. the "syntactic"

predicate ISPRIM (read: "... is a primitive notion in/for LA"),and

(2) proper qualifiers: for each LA-term a,a proper qualifier DEFEQUALa

(read: "

... is definitionally equal to a in/for LA").
122.3.NOTATION.
We shall write,everywhere in the sequel,for any LA-term a,
X ::: PRIM for ISPRIM(X)
and
X ::= a for DEFEQUALa(X),

where X is a syntactic variable.

122.4.COMMENT.
The stipulation "in/for LA" is essential,if we want to recover information
about some LA-term,which is not already 'coded into'" its syntactic form
(there are CA-terms say that are apparently PA-terms whithout being actually
sojwe have to "restore their definitional history" in order to be able to put

.them at the due place,hére PA vs CA).

122.5.NOTATION.

We let PtermﬁA,DtermﬁA resp. be,for each n ¢ N,the set of canonical p- resp.
d-terms of length n and introduce sets PtermLA,DtermLA by taking infinite
unions in the obvious way (PtermLA say is the union of all PtermEA,with n in N).
Similarly,Ctermll.;A is the set of canonical LA-terms of length n (n ¢ N),while

Cterm  is the union of the latter sets,with n in N.

122.6.DEFINITION.
(1) If p(v) is in PtermﬁA (n € N) then the epi-statement
p(v) ::: PRIM

is a pseudo-definition for LA with definiendum "R(;)" and definiens PRIM.

(This way of speaking involves some abuse of language but it will be useful

later on.)

(2) Similarly,if éﬁ;) is in DtermﬁA (n € N) and a is in TermLA such that

(i) Fv(a) {v],...,vn} and
(ii) d is fresh for a

then we say that the epitheoretic statement
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d@) ::= a

is a proper definition for LA with definiendum "QKV)" and definiens "a

122.7.COMMENT.

So far,any language LA would admit of several kinds of definitional ambiguity.

We mention the most annoying cases:
(1) a given floating d-constant may be the definiendum of more than a
single proper definition for LA,
(2) "circular definitiomns" are not avoidéd by the restriction concerning
"freshness" in 122.6.
Certainly, (1) can be circumvented by adding a new stipulation concerning
the relation which should subsist between d-constants and proper definitions
in LA (this would be a "global" stipulation,concerning the "totality" of LA).

The difficulty behind (2) was noticed by L.S. van Benthem Jutting (in con-
) LA
0

some LA (PA say).Then each of the following (proper) definitions are well-

versation).Indeed,suppose d and d' are mutually distinct symbols in Dfl ", for
formed,and perfectly legitimate,when taken in isolation:
(2.1.) d ::=
(2.2.) gf 1=
This situation generalizes straightforwardly to any finite number of pairwise
distinct d-constants of the same arity and the requirement of 'freshness"
is,obviously,satisfied,in each case separately. '
We may still want to call such situations "well-formed" (one sometimes speaks
about "good" vs "bad" definitions or "correct” vs "incorrect" definitions)
and one could imagine that the due place to discuss such a distinguo is
under the rubric "correctness".
This is,however,not the approach we shall actually take here.Rather,we have
both good reasons and technical means to avoid such unpleasant features of
our syntax from the very beginning.
As for reasons,we need not insist too much in arguing on the meaning of

words.We simply adopt the point of view that a "bad / incorrect definition"

The technical means to eliminate '"circular definitions" of the kind above are

provided by putting the ranks (introduced in 101. above) at work.

We first need some auxiliary terminology.
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Let,for further reference,ggggL be a fixed ranking function for LA (cf. 101.1.).

A
122,.8.DEFINITION.
The rank of an LA-term (relative EQ.EQEELA) is defined inductively as
follows (if a is an LA-term,we write EQQE;A(a),for the rank of a in LA,relati-
ve to ggggLA,omitting often "LA"):

-1,if a does not contain floating constants as quasi-
subterms,

rank” (a)

max zgggg(g) : (¢ is in FlLA)&(E is a qst of aﬁ:

The p- resp. the d-rank of an LA-term (relative to ;ggkLA) is defined analo-
. woqLA, LA LAy .. ... oo +
gously,replacing "F17" by "Pf17" resp. "Df1™"" in the definition of ramk

(notation: p—ggggzéa),d—gggng(a),resp.).

122.9.REMARK.

It is easy to see that,for any LA-term a,one has

rank’ (@) = max {p-rank’ (a),d-rank’ (@]

122.10.COMMENT.
’ + . .
For most of our purposes below only d-rank will be relevant.However,using
+ : . . .
rank instead does not introduce sensible complications.

+ . . .
For any LA-term a,rank (a) is a measure of complexity for a.Accurately,this

¥ ] :
is completely relevant only for PA-terms,for rank (a) "ignores" the number

(say) of occurrences of abstractors and applicators in a.

In order to get a correct estimation of the syntactical complexity of an LA-

term (whether it is a PA-term or not) we would likely need counting - some
way or another — the occurrences of the latter comnstructors in the term con-
cerned.

A simple solution seems to be as follows: let abe an LA-term and define ad hoc
$~ggg(a) := the number of abstractors occurring in a,
$-app(a) := the number of applicators occurring in a.

Now,with p = $-abs(a) and q = $-app(a) and where r = gggg+(a) one may define

the syntactical complexity of an LA-term a as being

cosynt(a) = 5P + 39 4 272,

(This won't be very useful,however.)

On the other hand,d-rank (a) is,for any LA-term a,a faithful measure of defini-

tional complexity for a.Since EgggLA is supposed to be fixed for each LA,from
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the very beginning,this "measure of complexity" is also "absolute" for any LA-

term a (cf. 101. above).

We come now back to our main task,viz. we want to give an estimation of the
"freshness" of a floating constant for a given LA-term.
The proposal following below is somewhat arbitrary but it will work satisfactorily

in all cases of concern.

122,11, DEFINITION.
Let a be an LA-term with ;gg§+(a) = n,n Z -1.Then a floating constant c is
said to be

(1) rank-fresh for a if 2§+(a)

nk(c) >

and

(2) minimally fresh for a if £§=§(c) = £§2§+(a) + 1.

122.12 . REMARK.

Clearly,for all LA-terms a and all c in FlLA

’
(1) if ¢ is rank-fresh for a then ¢ is fresh for a
and
(2) if ¢ is minimally fresh for a then it is also rank-fresh for a,

but the converses of these implications are,in general,not true.

122.13.COMMENT.

We did not restrict the definition of rank-freshness and minimal freshness to

d-constants for reasons which will appear in the statement of the correctness

rules of LA's below (see g:).But for the purposes of this section the restricted

definitions would work.

Now we can state a '"global" condition of definitional disambiguation for any langu-

ge LA of concern here.

122.14.CONVENTION.

The languages LA are assumed to be definitionally unambiguous in the following

sense:
(1) each floating p-constant in PflLA has a pseudo-definition for LA,
(2) for each floating d-constant d in DflkA (n€ N ),there is exactly one
proper definition for LA,having ﬁg(v],...,vn)" as definiendum, and
(3) for each proper definition D for LA,the head of the definiendum of D is

rank-fresh for the definiens of D.
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122.15.COMMENT.
It is easy to see that the difficulties noted in 122.7. above are straight-
forwardly circumvented by adopting Convention 122.14.In particular,one can

adopt even a less liberal restriction in 122.7.(3),taking "minimally fresh"

instead of "rank fresh".

We are completing our discussion of definitions by some more terminological impro-

vements.

122.16 . TERMINOLOGY.

A definition(al specification) for LA is either a pseudo-definition for LA

or a proper definition for LA.

We say that a definition specifies its definiendum or that it is a definitional

specification of its definiendum for LA.

cf.,e.g.,LANDIN 66;it actually acts as an abstractor within the epi-theory) will

be used as an epi-theoretic operator on definitional specifications for LA's and
it will contribute to the formation of epi(-theoretic)-phrases called 'where-

clauses" (for LA).

122.17.DEFINITION.

A where-clause for LA is an epi(-theoretic)-phrase

where ' definitional specification '

and the definitional specification following the Landin abstractor 'where"

122.18.TERMINOLOGY.

We also say that a where-clause has a specified canonical LA-term and

note that the latter is the definiendum of its supporting defi-

nition.The head of the specified canonical term is the specified constant of

definition (body).
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123.Combinatory reduction systems.

With each language LA a special relational structure on TermLA will be associated,
called (after KLOP 80) "combinatory reduction system" (crs,for short).

These structures arose by generalizing both the lambda calculi and the term

rewriting systems (of which Curry's - and Rosser's - "combinatory logics"

are particular cases;cf.CURRY et al. 58,72;HINDLEY et al.72;REZUS 81) in view

of obtaining a general setting for the Church-Rosser Theorem (BARENDREGT 81,

KLOP 80).

The crs's of concern here are either regular in the sense of KLOP 80 (cf.

Klop's Chapter II,for definitions) or are eta-extensions of regular structures.

That is: in the end,the Church-Rosser property is,in general,insured by '"glo-

bal" arguments for notions of reduction not involving "eta-reduction".

This is not the case for relational structures associated to the abstract AUT-

language ZA (or Zucker's AUT-Pi;the first proof of the fact that some "free"
subsystem of AUT-Pi does not satisfy the Church-Rosser property is - implici-
tely - due to J.W.Klopjsee KLOP 79; the fragment concerned, lambda calculus
with surjective pairing,is,however,consistent by a model-theoretic argument,
using Scott-like models;cf.SCOTT 80;a syntactic proof of consistency for this
fragment of AUT-Pi is planned for DE VRIJER 8E).

Church-Rosser also fails,in a type-free setting,for crs's associated to_an

(abstract) AUT-language which involve both beta- and eta—redﬁction (and the
problem arises only when the latter notion is present;this was first noticed
in NEDERPELT 73-31,page 7I).S§ecifica11y,the failure is caused by the presence
of (AUTOMATH-)labels,i.e.,the "types'" that are domain-parts,

Fortunately,the Church-Rosser property holds for the reducibility relation
restricted to "correct" AUT-expressions (if AUT is not AUT-Pi) and the re-
sult transfers easily to the corresponding abstract versions (cf. VAN DAALEN

80-73,Chapter VI,for details and the due proofs).

Somewhat simplifying,the crs's to be discussed below are either (''labelled")
term rewriting systems or (''labelled") lambda calculi with additional term re-

writing rules.

We introduce first various notions of reduction,following BARENDREGT 81,Chapter 3

(or VAN DAALEN 80-73;cf. with the "elementary reductions'" of the latter,loc. cit.

II.3.).These are,simply,binary relations on TermLA.

The relational structures to be considered here arise from (combinations of) these
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. . . L.
notions,taking the appropriate closures on Term A.

-So,the description of a crs is,prima facie,a second-order description.Anyway,
first-order analogues won't be very profitable for our purposes.
Some closures (of the due notion of reduction) will be taken as basic in the
definition of the coresponding crs.These are binary relations on (appropriate
sets) TermLA,called resp. contraction,reducibility and convertibility (or defini-

tional equality) on TermLA.

However,unlike in BARENDREGT 81,these relations will be viewed as belonging

to the epintheory (or,if one prefers,to the meta-language) of the associated
LA's rather than being incorporated in the "object language' itself.

So we consider structures on TermLA and not formal systems.The latter approach

follows,mutatis mutandis,REZUS 81.

This agrees,in the end,with the actual practice of "reference'-AUTOMATH,

where the matters concerning reducibility or (the) definitional equality of

terms (there: "expressions') or their "termination properties" are handled

via some checking device‘(implemented and processed by a computer) ,somewhat

"physically" outside any "book". Still,this is not the approach usually taken

in presenting the language definition of "reference'-AUTOMATH.
So any considerations concerning the definitional equality of LA-terms will be
shifted (in)to the epi-theory/meta-language of the corresponding LA.
Some (non-trivial) technical tricks will be needed in order to do this for all
abstract AUT-languages (but ZAj;in the latter case one has to work exclusively with
some formal system,for reduction cannot be separated from correctness considera-
tions).The main solutions were suggested by D.van Daalen (in VAN DAALEN 80-73,Chap-

ter V.,2.12. and in conversation.).
We need first some preliminary notioms.

123.1.DEFINITION.
A binary relation R on TermLA (infix notation) is
(1) monotone relative Eg_d; (neN) if,for all ai,ai in TermLA and all ¢ in
F1A (0 i<n),
a, Ra! ===> deca ...a,...a. R deca,...al...a;
1= "1 n— 1 1 n = n— 1 1 n
(2) monotone relative to 9,if,for all a bl’b

LA is not PA) one has both

»a in the set TermLA (where

2’

1 2



a R b] === 9a1a2 R 9bla2
and
a, R b, ===z 3a]a2 R Balbz;
(3) monotone relative to A ,if,for all al,az,b],b2 in TermLA and all vari-
ables v (where LA is not PA),one has both
a R b1 === /\vala2 R Avbla2
and
a, R b2 === /\vala2 R Awalbz.
123.2.DEFINITION.

A binary relation R on TermLA is monotone in LA if OpLA is the set of construc-

tors in the alphabet of LA and R is monotone relative to each o in OpLA.

123.3.DEFINITION.

Let R be a binary relation on TermLA (LA,as ever).Then the monotone closure

of R in LA is the least relation 5& such that gn contains R and is monotone in
LA.

123.4 .REMARK.NOTATION.

One defines,as expected,the reflexive and tramsitive closure of a binary rela-

tion R gg_TermLA (in 1A).
Notation: if R is a binary relation on TermLA then 5‘ denotes the reflexive

and transitive closure of R in LA.

For languages with abstraction we need some appropriate re-lettering device for

bound variables ('"dummies").It is appropriate to cope with this (the "alpha mat-

ters") first in one way or another.

The main reason behind the use of alpha-convertibility in some lambda calculus

consist in that one wants to have at hand - within the calculus - an expedient

tool of disambiguating terms containing abstraction terms as subterms.

Actually,in the (“reference'-)AUT-languages the "alpha matters' play no explicit
r6le,for the underlying lambda calculus becomes,after implementation,a '"nameless
lambda calculus" (cf. DE BRUIJN 72-29,78-55;BARENDREGT 81,Appendix (),where
bound variables are not specified any more,but handled by an appropriate

system of references which eliminates any possible ambiguity.
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For present purposes,it won't be neccessary to insist with formal details
concerning alpha-convertibility.Rather,we shall adopt a set of practical con-
ventions which will allow us to work with LA-terms in the '"naive way'.

Specifically,where alpha-congruent LA-terms are defined in the usual way (cf. muta-

tis mutandis,BARENDREGT 81,2.1.11.),we agree to adopt Conventions 2.1.12. and
2.1.13. in BARENDREGT 81,say (any two alpha-congruent LA-terms are identified,
and any LA-term is '"basically disambiguated" in the sense that no variable occur-
ring in it is both a free and a bound variable in that LA-term).

In particular,this will cause no specific problem when passing from PA to CA,QA,
etc.,for we won't work with "equivalence classes" modulo alpha-conversion,but

rather with "representatives' in such classes.
Now we can turn back to our main task.

123.5.DEFINITION.

. . . . . . LA
A notion of reduction in LA is a binary relation on Term .

123.6 .NOTATION.

If R ,R, are notions of reduction in LA then R

RppRy stands for their union.

1=2
123.7.COMMENT.
The notions of reduction of concern here will be given via graphs of partial
recursive functions on TermLA (for appropriate LA's).So it is implicitely

assumed that PflﬁA,DfliA (n é N) are specified recursively,as actually in-

tended in the "reference'-versions of AUTOMATH.

123.8.NOTATION.
We display the actual definitions by writing

aRb (such that) "... a ... b ... "

instead of using the "graph-notation" for R.
This runs as follows:

123.9.DEFINITION. ("Delta-reduction".)
- .. . LA ..
Where v := £ ViseeosVy ¥ is in Svarn,a],...,an are in Term ,d is in Dfln

with gﬁ;) := gﬂv],...,vn),as expected.
In this case,"d(al,..-,a )" is a delta-redex and "b[ﬁ ] Vﬁ" is its contractum.
= n —_— —_—
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123.IO.DEFINITION.("Beta—reduction".)

For-all a],az,b in TermLA,all variables v (where LA is not PA),

{b} Er:aaaz beta az[b := v]}.

123.11.DEFINITION. ("Eta-reduction".)

For all a,,a, in TermLA,all variables v (where LA is not PA),

2
fia]{vle, eta 3y
provided v is not in FV(az).

123.12.REMARK.TERMINOLOGY .

In the latter two cases redexes and contracta are defined in the usual way.

Hence we should be able to define - as expected - delta- ,beta—,eta-normal forms

as well as combinations of the above.(An LA-term ig_ig_delta—normal form if no

subterm of it is a delta-redex,etc.)

123.13.NOTATION.
For convenience we shall denote the notions of reduction introduced above by
the appropriate (lower-case) bold-face Greek letters.So § 1= gglgg,g := beta,

W::= eta and we shall take.unions as stipulated above (123.6.).

123,14 . DEFINITION.
Let R be some notion of reduction in LA.Then
(1) the corresponding relation of contraction in LA is the monotone closure
of R in LA (that is: 5“).Notation: gggggLA.
(2) Reducibility in LA is the reflexive and transitive closure of contrac-
tion in LA.Notation: ggQLA'

(3) Convertibility (or definitional equality ) in LA is the least equiva-

lence containing contr., (on TermLA).Notation: conv. ,.
£282k1a Jorarion: conv, »
123.15.NOTATION.
We use in the sequel:

(1) delta-contraction : contrJ i= (é)u,

delta-reducibility: red

delta-convertibilitv: conv
only in connection with PA.

In the remaining cases,each LA is supposed to be formulated with two distinct
"extensionality-types" (terminology from J.P.Seldin and H.B.Curry),viz. the
"beta-type'" and/or the "beta-eta-type".This gives abstract AUT-languages B-LA
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and BN-LA,formulated respectively,with:

beta-delta-reducibility: gggﬁd”

beta-delta-convertibility: gggxﬁd

and

beta—-eta-delta-reducibility: Eggﬁqd’

beta-eta-delta-convertibility: ggggﬁq&.

We shall however keep using the labels LA ambiguously as long as the distinction
between pd- and Pnd-reducibility/convertibility playsmo rdle in the description

of the underlying syntax.

123.16.DEFINITION.

A reduction system (or an LA-calculus or even a crs) on LA is a (relational)

structure

LA,
LA = <Tem™; comtr),.red;,.cony;, 7

where
LA . .
(1) Term ~ is the set of terms in LA and

(2) contr. are resp. contraction,reducibility and convertibili-

o .
contr; ,,xred; ,,cony;
ty in LA.

contains ggg,otherﬁise it is

non—-extensional. (This terminology will be also transferred to the corresponding

language LA.)

123.17.COMMENT.
It appears that the behaviour of the extensional abstract AUT-languages (and
associated crs's) diverges in several important respects from that of their
non-extensional variants (due to the presence of "labels",i.e.,"types" that are
domain-parts ).This is not so for the corresponding BEEE'("un—labelled" or
"type—-free'") lambda calculi,even if delta-reduction is present.

Hence we have to examine the extensional case separately.

123.18.THEOREM. (The Church-Rosser Property for LA := PA,$-CA,P-QA,B-Q A).

For all LA-terms a,b,c and EQQL in the reduction system on LA

A

if a EEQLA b and a ESQLA ¢ then an LA-term d can be found such that

b gggLA d and c¢ ESQLA d.

Proof.By any method involving (explicitely or not) "residuals'.See KLOP 80,
BARENDREGT 81,VAN DAALEN 80-73,REZUS 81.8®
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It can be shown easily that the preceeding theorem is,in fact,equivalent to the

following "confluence property":

123.19. (The Church-Rosser Theorem for LA := PA,p-CA,p-QA,p-Q A.)

For all LA-terms a,b,where EggLA »ConY, o

b then,for some LA-term c, a EggLA c and b ESQLA c.

are as expected,
if a comy,
Proof.Trivial,using 123.18.R8

The latter fact gives the following reassuring result (not very useful,however,

in the present context).

123.20.THEOREM. (Consistency for LA := PA,B-CA,etc.)
e e . . . LA
Convertibility in LA is a proper subset of the cartesian product TermLAx Term .

(That is: not any two LA-terms can be identified via conv. , in LA.)

LA
Proof .Easy,by reductio,from 123.18.%

123.21.COMMENT.
Theorems 123.18.,123.19. and 123.20. hold also for the extensional reduction
Eggﬁqd on TermLA,provided one ignores "labels" (i.e.,"types" that are domain-
. . . LA
parts).More precisely: erase,from any abstraction term a in Term ,dom(a),

i.e.,consider thé abstraction terms without domain-parts.The resulting set

of (LA-)terms is "type-free" and it is easy to show (by standard methods) that
the corresponding relation Eggﬁqd is actually Church-Rosser (in the sense of
123.18.) on this set.

Even in absence of 123.18.,Theorem 123.20. holds for the "labelled" calculi

pn-LA (where,of course,LA is not PA) by a model-theoretic argument.

Alternatively,one can use the Chutch-Rosser property for the corresponding
"type-free" language/structure,realizing that one cannot "identify" more LA-
terms by '"labelling'". (See KLOP 80,BARENDREGT 81 for a detailed explanation
of the "labelling techniques'".) ‘

Somewhat more useful a consequence of the Church-Rosser Theorem for PA.and P-LA's

is the Unicity of Normal Forms (UN;cf. KLOP 80,etc.).
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123.22 .DEFINITION.
An LA-term a has a delta- (beta-delta-,beta-eta-delta-)normal form if
(1) ared,b®
(2) b is in delta- (beta-delta-,beta-eta-delta-)normal form.

(Alternative terminology: a is weakly normalizable in LA,a is LA-normalizable.)

Now the UN-property can be stated as follows:

123.23.THEOREM.
(1) If a PA-term is PA-normalizable then its delta-normal form is unique.
(2) If an LA-term a is f-LA-normalizable then its beta-delta-normal form
is unique (up to alpha-conversion;but see the conventions on alpha above).

Proof.By 123.18.8

23.24 . COMMENT. ,
Theorem 123.23. does not hold for extensional structures (associated to abs—
tract AUT-languages).
Indeed,consider the following counter-example (which goes back to NEDERPELT
73-31,and also falsifies Theorems 123.18.,123.19.).
Let p,p' be floating constants in PflgA (0-ary) .They are LA-terms in $d-normal
form , in some PN-LA.(As a "reference'-AUT example take,e.g.,nat for p and
real for p',denoting resp. the type of naturals and the type of reals,qua pri-
mitive notions.)
Consider then the LA-terms

a:= [v:g]v and a' := EI:P_']V.

One has,in any ﬁQ-LA,that

a conv
for,with

b= [faplfvlfpraptvr
we can find immediately that

b ;ggﬁ a and b red a'

n

and Eggﬁ? 1s a subset of gggﬁqa and cony as well.

But a and a' are in BRd-normal form.So b hggd;yg_(alpha—)distinct Bnd-normal
forms.

Of course,erasing domain-parts - i.e.,dom(a) and dom(a') - restores UN in a
"type-free" setting.

By the same token,the Church Rosser Property fails for P{-LA's,for — in the

example above - a and a',being both "reducts of b" in ﬁQ-LA,have no "common

reduct".
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13.Term-strings.

For reasons which will appear below we need a more liberal notion of a string.
It 1is reasonable to employ constructors different from the En's in 11. when
defining this notionjthat is: we have to introduce a new (free) syntagmatic

category in LA.

13.1.DEFINITION.
The sets StermII{A (n &€ N) are the least sets such that

if a.,...,a_ are in TermLA then S Da....a_ 1is in StermLA.
1 n -0 1 n n

13.2.DEFINITION.

An element in StermkA is a term-string of length n (in LA),n € N.

13.3.NOTATION.

As earlier,for Svarn's we write

B := §OD
€ 3 seeesa Yy = SnDal...an n> 1.

The length of a term—string will be denoted by ég(in) = n,where
a 1= §nﬂa]...an (n > 0),

(we omit subscripts ''n'" whenever the length of the term-string 5; is known).

13.4.COMMENT.
We have '"sugared" the empty strings EOD and §OU in the same way (though they
are "syntactically distinct within the theory").This is not too important,for
they will be distinguished (again) positionally,in more involved syntactic units.
But if the reader does not like confusing empty strings (!) he can leave'®"

"unsugared" in both cases.

13.5.NOTATION.TERMINOLOGY.
As epifunctions,on both Svarn and StermEA,n ¢ N,we shall use the following par-
tial functions S;EE (0< i€ n),defined by

o, if X :

R (i.e.,X := EOD or §ﬂn)

n .
g;gi(x) v, or a;, if X: € ViseeesVy ¥ ,or

X:=(aP”.@n},Ki£m
undefined,else.
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Also,we set,for all n€ N,lastelt := ¢

n
1t
i ==n =82====
The latter gives the "last element" of a string whenever its input is of the
due kind.
Now we are able to introduce two more epifunctions from LA-terms to strings.

These are vtail and tail,defined by

rﬁ, ,if X is a canonical term,lh(X) =0
vtail(X) := <€ ViseresVy ¥,if X is a canonical term,X := a,
and a = d;gy]...vn
Lundefined,else.
(&, if X := d c (a head-term,1h(X) = 0)
tail(X) := € ajseeesa ¥,if X := dhggl...an,kg(x) =n,nyl.
undefined,else.

. A . . eq s .
That is: where HtermL is the set of head-terms in LA,tail is a total function

from HtermLA to StermLA = l__J StermEA,whereas vtail is total from canonical
n €N

terms to variable-strings.

13.6.COMMENT.
Note that for vy in Var (1<i€ n),whenever v := % ViseeesV ¥ is in Svarn,we
have A # vj for 1€1i # jS$n,while if v 1is in StermLA this is not required.
The distinction between EODVI...Vn and §ODVI...vn will be convenient later

(although it looks somewhat strange).
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14.E-sentences.

14.1.DEFINITION.
LA . . LA
The sets Esent  are the least sets such that,if a,b are in Term  then
Eab is in EsentLA.
The elements of EsentLA are called E-sentences or E-formulas iE.LA (LA :=

PA,CA,QA,Q A,etc.)

By "sugaring" the syntax we get some familiar notatiom.

14,2 .NOTATION.
We shall write in the sequel,
(a:b)
for
Eab

but outermost parentheses will be omitted whenever no confusions may arise.
Lower-case Greek letters §, ¥y ,possibly with sub- and/or superscripts will be

used as syntactic variables for E-sentences.

14.3.DEFINITION.
If § := Eab is an E-sentence in LA then a is the subject of § and b is ‘its

predicate.

14.4 . DEFINITION.

An assumption is an E-sentence § whose subject is a variable.

14.5.DEFINITION,

A (canonical) p-sentence (resp. d-sentence) is an E-sentence § whose subject

is a canonical p~term (resp. a canonical d-term).

A canonical E-sentence is either a canonical p-sentence or a canonical d-senten-—

ce.

14.6.REMARK.

Of course,”in LA" should be supplied everywhere in the above.

As expected,we would want to speak about the '"components'" of an E-sentence without
mentioning them explicitely.This will be dome by using appropriate epifunctions,

gub and pred.
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14.7 .NOTATION.
If § := Eab (§ is an E-sentence in LA) then
sub(@) = and pred(§) = b,

a
(else sub and pred are undefined).

Now we may introduce,by convention,a new epifunction from LA-terms to E-senten-—

ces in LA (where LA is not PA),ggg say.

14.8.NOTATION.
For all X in Word(LA),
Evay if X := Avab (an abstraction term)
gbs(X) :=
undefined,else.
(That is: gbs takes the abstraction prefix of any abstraction term into the

corresponding assumption.)

14.9.COMMENT.
The intended interpretation of an E-sentence is "typing".I.e.,if a,b are

LA-terms then "Eab" reads "a has type b" or "b is a type of a",etc.
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15.Contexts.

15.1.DEFINITION.
The sets Cont:xiA (n € N) are the least sets such that
if v is in Svar_and a_ is in StermLA then Tv a_ is in ConthA.
n n n —'n"n n

An element of Con1:xn is a context of length n in LA (neN).(LA :=PA,CA,etc.)

15.2.DEFINITION.

If An 1= _’Jf/_n_z;n is a context of length n in LA then the variable-string of

An is v, while ;n is its category-string.Finally,the variable-string and

the category—- string of An are the strings of An.

15.3.NOTATION.
We shall mainly use AO in order to denote the context of length O in any LA.
(That is: AO t= EEOUEOD or ,AO 1= TEHE.)

Whenever

<1
1

€ ViseeesV ¥ is in Svarn
and
- .. LA
a_ i= (ai,...,an) is in Stermn,
we shall frequently write
. Ao[vl:al]...Lvn:an],
for Evnan,omlttlng sometimes Ao,lf n >l
Further,for n¥ I,An,possibly with superscripts will range on contexts of length
n and the subscript "n" will be omitted whenever the length of the context is

known.

15.4 .NOTATION.
The following epifunctions will be used in order to refer to the strings of a
given context without mentioning them: gggl(AO) = %ﬂ,gggzwo) = _S_OU and

is undefined,

[I[]

1_:_;1(An.) =v, if An i= _’;‘_vnan is in Contx ,else Str,

- . - — . . LA . .
= o= 1 .
2(An) an if An =T nan is in Contxn ,else §££2 1s undefined (n), )

lin
Ui

£

Sometimes,it will be also convenient to use epifunctions ass. (ne N,0<i< n)

defined by

4 if X = A,

: Ev.a, if X
i =11

o
[117%)
%]
B =]
~
>
~
"

Tva, v := £ ViseeesVy ¥,

o
il

<i¢
undefined,else. € ap» 8 ¥,1¢isn
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15.5.DEFINITION.

Let A
: n

i= AO [vl :a]] eee [vn:an] and

in LA (n,m € N).

A is a subcontext p_iAm (notation: A

Am 1= Ao[v;:a;]...[vl;:al;l)be to contexts

n Sub A if
n L
=
g;gi(gt__:gz(An)) then a, = a}
of g_l_?:?-(Am) , j = 1,2 that is: the order

of the elements in strings is preserved when passing from An to Am)-

(1) n€ m,
(2) for all i,1€ i€ n,if v, s
(3) for all i,1€ i< n,if a; =
(Hence g_g_;.(An) is a subsequence
15.6.REMARK.

Sometimes,contexts (of length n,n<1) An 1= AO [v]:a; [vn:an-J satisfying

the following conditions below are called telescopes (of length n):

(1

FV(al) = ¢:

2) F(a, ) E {v,...,v} , for all i,1<¢i< n.
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16.Constructions and sites.

16.1.DEFINITION.
(1) The sets PconstrﬁA (n € N) are the least sets such that

if A_ is in ConthA and § is in EsentLA with sub(¢ ) in PtermLA
n n n ==='Tn n

then DA § D is in PconstrLA,
="n'n n

(2) The sets Dconstr:;A (n € N) are the least sets such that

if A_ is in Contx"®
n n

”n

and ¢n is in EsentLA with ggg(ﬁn) in DtermEA,and

where ggg(mn) ii=a "

is yég;g-clause for LA,then Qﬁhéna is in DconstrEA,

provided str;(4) = vtail(sub(§ ))

(3) An element of PconstrEA;DconstriA resp. is a (canonical) p-construction,

resp. d-construction with length n in LA.

(4) ConstrﬁA = PconstrEAl_J Dconstr:;A is the set of (canonical) construc-

tions of length n in LA and the set

ConstrLA = U Constri‘A
née N
is the set of (canonical) constructions in LA (or the set of LA-construc-
tions).
16.2.NOTATION.

T . L L . L
We also use the infinite unions Pconstr A,Dconstr A defined from PconstrnA and
LA L L )
Dconstrn as expected and an element of Pconstr A,Dconstr A resp. will be called
p-construction resp. d-construction in LA.

In general,p-constructions in LA will be denoted by

k o := £4;p(W) b3

P
where
A = Tva
n e
v = s Ov....v
-n 1
a := Sfa ...a
-n 1 n
and
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Similarly,a d-construction in LA will be denoted by a détour via the meta-

clauses'".This gives:

ky = %A d() :b ¥, where d(V) ::=a

with zsn,v and a as earlier and,moreover,

g(;) = JLQyI...Vn, (n € N).

.3.TERMINOLOGY.

. . . . L .
Any LA-construction kc = QAnﬁnX (with either X = 0D or X in Term A satisfy-

ing the conditions of the definition above) has as immediate components

(1) its context-part An’

(2) its supporting (canonical) E-sentence @n and

(3) its definition-part X;the latter is the definiens of some definitional

specification gg(kc) say,for LA,such that gg(kc) specifies ggg(ﬁn).

Next,the remote componentghgf'kc are defined by structural induction as follows:

(1r) if An is the context-part of kC then
(11r) str (Ah) and §££20An) are the strings of kC and

===1

(12r) for each 1,0€ i< n,

n > .
; is an jon of k ;
ass; (A ) an assumption of Kk ;

(2r) the strings and the assumptions of kc-hre remote components of kc

(from An);
L. = . . _ . n,—
(22r) if v, = gggl(Ah) is a (variable-)string of kc then each S;gi(vn)

(0€i%n) is a remote component of kc (from A;),

(23r) if En = gtr (Ah) is a (term—)string—bf kc then any quasi-sub-

===

n,— . . —
term of each glgi(an),os i€ n, is a remote component of kc

(from An);
(3r) if now (N is the supporting (canonical) E-sentence of kC then
(31r) ggg(ﬁn) is the subject or the definiendum 2£-kc and
(32r) gggg(¢n) is the category part of KE;
(4r) the subject of kc as well as any quasi-sub-term of its category-part

are remote compoﬁénts of kC (from ¢n);

(41r) if Eﬂ;) is the subject of kc then the head of Ej;) is the identi-

fier of kc and the identifier of kc is a remote component of k
—_— — c

(from § );
o LA
(5r) if X is the definition-part of kc and X is in Term  then any quasi-

sub-term of X,distinct from X itself,is a remote component gf‘kc (from

its definition-part X).
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The immediate and the remote components of a (canonical) LA-construction kc

are all and its only components.

16.4.REMARK.
If kC is an LA-construction then no immediate component of kC is a remote

compahent of it and conversely.

For reasons that will be obvious later we shall introduce a canonical parsing

of LA-constructions into canonical components (and remote canonical components)

as follows:

16.5.TERMINOLOGY . NOTATION.

The canonical components of an LA-construction kC are all and only the

following components of kc:

(1) its context-part,hereafter denoted by ggg(kc),

(2) its category-part,hereafter denoted by cat?kc) and

(3) its definition—-part,denoted by ggg(kc).

The remote canonical components gf'kc are all and only the following

remote components of kg:

(1r) any remote component of kc from ggg(kc) is a remote canonical compo-

nent of gs; A A
(2r) if a = ggg(kc) is in Term  then any proper quasi-sub-term of a
(i.e.,any quasi-sub-term of a,distinct from a itself) is a remote
canonical component of kc’
(3r) any proper quasi-sub-term of b = ggg(kc) is a remote canonical
component of kc and
(4r) the identifier of kc,hereafter denoted by i§£(kc) (=c),is a remote
canonical component of kc'
16 .6 .REMARK.
It is easy to see that any component of an LA-construction kc,except its sub-
ject (definiendum),is either a canonical component of kC or a remote canoni-
cal component of kc'
The latter kind of parsing will be useful in the tree-analysis of correctness

in 3. below.



64

16.7.REMARK.
- We have introduced implicitely,in 16.5. above,several useful epifunctions
(totally defined on ConstrLA).

For later purposes,it will be sufficient to have at hand only those named

Now we can introduce the sole text-category of LA,viz.

16.8.DEFINITION.
A site in LA (or an LA-site) is a finite set of (canonical) constructions in

LA (for any LA,as above).

16.9.NOTATION.
.. LA LA .
We let Site 1= Qa(Constr ) ,where for any set é,ﬁo(é) is the set of
finite subsets of A.

Sit:eLA is the category QE sites in LA (or the category of LA-sites).
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2.Language definition: correctness.

In this section we shall be concerned with the correctness part of the most im-—

portant abstract AUT-languages (viz. PA,CA,QA and Q A).
The language definition method used in the sequel is very close to the pattern
employed by D.van Daalen et al. in the so-called "E-definition" of the "refe-

rence"-AUT-languages AUT-68,AUT-QE (cf.,especially,VAN DAALEN 73-35,80-73).

20.Correctness categories.

We introduce the correctness categories of/in LA on an inductive set-theoretic

pattern. (LA := PA,CA,QA,Q A,etc.).

In its most general form,a correctness category of/in LA is a relation on syntac-

tic categories of/in LA.

20.1.DEFINITION.

For each LA (as above),the family of correctness categories géjig_LA is a

finite family of relationms:

CorrLA = {SiteLA,ConthA,EsentLA,TermLA}
1 & = [
such that the following (proper) inclusions hold:
(1) sitelt = site’,
(2) ContxﬁA‘EEEConthA X SiteLA,
(3) EsentiAc:: EsentLA X ContxLA X SiteLA,
LA

(4) TermzAg;; TermLA X ContxLA x Site

LA . .
and the elements of Corr are the least sets satisfying the correctness rules

in RlLA below.

The correctness categories mentioned above are to be understood as being primitive

for LA.In terms of these we can define derived correctness categories for LA and

it will be useful to do so in order to shorten subsequent formulations.

20.2.DEFINITION.

For each LA,ConstrLA is the set of pairs {k,Bd» such that B is in SiteEA and

B
k is in B.

The set-theoretic notation implicit in the above is not very convenient for the

statement of the correctness rules in each RlLA'
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Therefore,it will be appropriate to make use of some additional "syntactic sugar".
The outcome will closely ressemble standard notational habits,as often used in the
language-theory of "reference'-AUTOMATH (especially by D.van Daalen;cf.VAN DAALEN
72-28,73-35,80-73).

20.3.NOTATION.
B,A '_LA a:b stands for {§,0,B> € Esenti‘A
where § := a:b
B,A "-LA a stands for La,ABY € TermiA
and
B,A "-LA ayseeesa stands for the conjunction of

- £ 1< .
B,A “—LA a; (1€ i< n)

20.4.TERMINOLOGY.
It is somewhat awkward to provide a consistent and unambiguous reading in
English for the elements of a correctness category of/in LA.

We shall,however,approximate this as follows:
LA,,

(1) B is an LA-compatible site for "B is in Siteu ,
(2) B is LA-compatible and

A is LA-admissible for B for "{4,BY is in ContxiA",
(3) B ﬁ LA-compatible and

k is sound for/in B for "Ck,B?> is in ConstrﬁA"
(4) § is correct for B and A

B is LA-compatible and

A is LA-admissible for B for 'C¢§,A,BY> is in EsentzA",
(5) a is correct (or t-correct) for B and A

B is LA-compatible and A

A is LA-admissible for B for '"€a,A,BY> 1is in TermiA".

Slightly elliptic variants of the above will be also adopted in colloquial

ways of speaking/writing.
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20.5.COMMENT.
We shall also introduce a couple of other "derived correctness categories in
(for) LA" by a détour via the metatheory,using the associated reduction sys-—
tem LA (with the appropriate "extensionality type' specified whenever neces-—
sary).

"correct

These "categories" will contain (by abuse of language) new kinds of
sentences" (or "correct formulas") in LA,besides the sets CorrEsentLA :=
Secl(Esent;A).Cf. 05.4. for notation.

Specifically,one has

(1) contraction-sentences (or C-sentences) in LA,

(2) reducibility-sentences (or R-sentences) in LA and

(3) convertibility-sentences (or Q-sentences) iE.LA

and they are intended to "formalize" resp. the appropriate restrictions of

contr to the sets CorrTermLA := Sec](TermiA).

gontr; ,»Ied;, and cony

LA
Accurately,they must be thought of as being relations

§§entiA c (TermLA X TermLA) b4 ContxLA X SiteLA

where X := C,R,Q such that

LLa,by,A,B> € KsentiA
iff
(i) B is in Site",
2 LA
(ii) <A,BY is in Contxu and
(iii) <a,8,B> and <b,8,B) are both in Term
and such that

(iv) a R b holds,

where
(1') R := coptr,, if X :=,
2" R := red A if X :=R and
1 o= 1 o=
(3" R cony , if X :=Q.

In some presentations of the "reference''-AUT-languages at least something

analogous to ggentﬁA above was taken as a primitive correctness category

(this approach was also mentioned in 05.2. and 10.1.;see e.g.,VAN DAALEN 73-35,
80-72).In JUTTING 82-83 something similar to B§ent§A and §§ent;A was used

in the language definition of several "reference'-AUT-SYNT languages.
Alternatively,one might think of the corresponding new ingredients as being
mere abbreviational devices intended to simplify more involved ways of spe-

king (and notation).

Here we shall adopt the latter point of view.
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20.6.DEFINITION.
LA . . LA . LA .
Csenta is the least set such that,for a,b in Term ,A in Contx and B in
the category SiteLA,

.. LA
<Za,b),A,B> is in Csentn

if
(1) B is in Sit:eLA and <A,B> is in ConthA,
1 ]
(2) B,A IFLA a,b

(3) a contr; , b

20.7 .NOTATION.

If B is in SiteLA and A is in ConthA then

B,A Fp, acontrbd or B,A F acontr;, b

stands for
”

" Ka,b>,A,B> is in Csent:;A

and it is understood that B is LA-compatible and A 1is LA-admissible for B
(in current notation,the latter kind of information will be oft made explicit).
Also we write,elliptically,

=
a contr; , b

if,for some LA-compatible B and some LA-admissible context A for B,one has

B,A FLA a contr b.

. . S o .
That is: contr,, is the restriction of contr., to the corresponding set

=====[A =====[A
CorrTermLA x CorrTermLA (where CorrTermLA i= Secl(TermiA);cf. 05.4.).
In the same conditions as above we write

1

Y ®

B,A FLA a ggggl b (or even B,A F acon
for

"B,A hLA a contrb or B,A FLA b contr a",

and adopt the same elliptical notation
1
acony, b
for cases where
1
B,A hLA a conv b

holds for some LA-compatible site B and some context & ,LA-admissible for B.

20.8.DEFINITION.
RsentﬁA is the least set such that,for all a,b in TermLA,all A in ContxLA
and all B in SiteLA,
LA

Xa,b>A,B> is in Rsentn
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if
(1) B is in SiteiA and {A,BY is in ContxiA and
(2) there are LA-terms
a s ao,al,...,an,an+] =b
such that
£i<n).
B,A a; Comtr;, a, (0&i<n)
20.9.DEFINITION.
LA . . LA . LA
QsentB is the least set such that,for all a,b in Term ,all A in Contx
LA

and all B in Site ,
Ka,b>,4,B> is in QsentﬁA
if
(1) B is in SiteﬁA and <A ,B> is in ContxﬁA and

(2) there are LA-terms

as=s ao,al,....,an,an+1 =b
such that
1
£1i <
B,A E a; comy;, a;., (0 €£i<n).

20.10.REMARK.
By the conventions adopted in 20.7. above,the LA-terms a; (0£ i< n+1) in
20.8. and 20.9. have to be such that
B,A I+ a,.

20.11.NOTATION.
We shall introduce analogues of the abbreviations in 20.7. as follows:

let B be an LA-site and A be an LA-context,then

(1) B,A F a red;, b
resp.
(2) B,A F a cony; b
stand for
' " .. LA »
am <a,b>A,B> is in Rsent -
and
" s LA
2" Ka,b>,A,BY is in Qsentx

resp.It follows that B is LA-compatible and A is LA-admissible for B,but the
latter kind of information will be often made (somewhat redundantly) explicit.
If,for some LA-compatible site B and some LA-context A ,LA-admissible for B,
we have (1) or (2) above we also write elliptically

" 8
am ared,b
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or

(2" a cony;, b,

=
LA
resp.

Clearly, ESQEA and ggggﬂ resp. to

LA TYesp. are the restrictions of ESQLA,gggg

LA
the appropriate sets
CorrTermLA X CorrTermLA

where CorrTerm™® is as earlier (in 20.7.).

20.12.COMMENT.

As used here,gggggA corresponds to D.van Daalen's "Q" in VAN DAALEN 80-73,
except that,in the latter case,"Q" is a primitive constructor in the language,
while, here,we have preferred to keep the matters concerning reduction and

definitional equality at a meta-linguistic level.

Before going into the details of the correctness rules in each set Rl ,,we shall

list some more notational conventions and terminology to be used later on.

20.13.NOTATION.
Let B be an LA-compatible site and A be an LA-admissible context for B.

Then,for all LA-terms ao,al,...,an,an+]

. <ig
B,A FLA a; toa;, (0&£ig&n)

will be condensed,for convenience,in a single line,as follows:

,the list of epi-theoretic statements

B,A |

LA 30F8pF -+ 3 ta .
20.14 . TERMINOLOGY .NOTATION.
Let B be an LA-site and O be an. LA-context with LQ(A) = n,n> 0.
(1) A variable v is said to be fresh for A if it does not occur in A as
a sub-word of it.
(2) Define
idf(B) = {idf(k) : k in B }.
A floating constant c is fresh for B if it is not in igg(B).
(3) Let 5; = £ ayseeesrd ¥ be in SterthlA (n 0).
Then a floating constant ¢ is rank-fresh for a if it is rank-fresh
for each a; in a_.

n
(4) In analogy with (3) one may say c is minimally fresh for E; if

(41) rank(c) = O,whenever n = 0 and

(42) ramk(ec) = max {Egglé+(ai) : 1€i€n 3 + 1 ,whenever n31.
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21.Correctness for Primitive and Classical (Abstract) AUTOMATH.

In this section the definition of PA (= Abstract Primitive AUTOMATH) and
CA (= Abstract Classical AUTOMATH) will be completed by specifying the

appropriate sets of correctness rules (R1 and RlCA resp.).

PA
Actually,PA is a sub-language of CA (or,if one prefers,CA is an extension of

PA) and the corresponding correctness rules will be chosen such as to reflect
straightforwardly this situation (i.e.,we will indeed have RIPA strictly con-—

tained in RICA,qua sets).

21,1.COMMENT.
In detail,the "structure" of the sets RlLA (LA := PA,CA) is as follows:

(1) structural rules concerning

(11) the compatibility of sites in LA:(Si), (Sr-1p), (Sr-2p),(Sr-1d), (Sr-24d),
(12) the admissibility‘gﬁ_contexts in LA: (Ci),(Cr-1),(Cr-2);

(2) basic rules concerning
(21) the correctness of E-sentences in LA: (Ei), (Ex-c),
(22) the correctness of LA-terms in LA: (Ti),(Tr);

(3) rules of category conversion (for LA),viz. rules of

(31) atomic reduction for categories in LA: (CC]) and

(32) atomic expansion for categories in LA: (CCZ)'
These rules will be also present in the languages Q A and QA (to be studied
in 22. below).

Besides the above,RlCA contains also:

(4) specific CA-rules,concerning the correctness of E-sentences on CA

(involving applications and abstractions),viz.

(41) an application rule: (app-1) and

(42) abstraction rules: (abs-1-CA), (abs-2).

Accurately,in the case of RlCA,we are defining two distinct abstract AUT-langua-

ges by the same set of correctness rules,according to the "extensionality type"

ofi the corresponding relation of "definitional equality" taken as primitive
in the language (or in the associated reduction system): viz. we have B-CA,

. . " . . n B
with gggggpd,ggng and ggggﬁd in gé,and the "extensional version' of the lan

1 -CA,with d in th i -
g?age,name y fn SWit contrﬁqd,gggﬁqd an ggggﬁQJ in the associated reduc
tion system.
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211.Correctness rules for PA and CA.

We state first the structural rules in Rl A (and R1

PA’RIC QA
and terminology used here is as earlier.The assumption of freshness for variables

,in fact).The notation

will be always made explicit (this is somewhat redundant,however).
I.STRUCTURAL RULES

LA := PA,CA,(Q A,QA)

I.1. SiteaA—RULES

I.1.].SiteiA-INITIALIZATION.

(s1) The empty site is LA-compatible.
I.l.Z.SiteﬁA-RECURSION.
Let An := Ao[v]:a]]...[vn:an] (n >0)
R(V) := R(V]""’Vn)’ P in PflII'l'A
4@ = d(;,...,v), d in DELMA
and,where

c® =p@ or c( := d@,uwith ¢ in F114,
: LA -
and a in Term ,

a _ . TN . a . LA
kE 1= #An, c(v):a ¥ (with kE in Constrn ,n %0)

Assume B is an LA-compatible site and A, is an LA-admissible context for B.

(Sr-1p) If p is fresh for B and
rank<fresh for a := < apseeesdy ¥
then
B U{k;} is LA-compatible,

with k; = 44 pWiT 3.
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(Sr-2p) If p is fresh for B,
B4 }-LA a:t and ~
P is rank-fresh for a' := < a15e0058 52 ¥
then
BU {k;g is LA-compatible ,
£ a . _ e TN,
with k.E 1= %An, P_(v).a >.
(Sr-14d) If d is fresh for B,
B,An }-LA a:t and _
d is rank -fresh for a' := < ayse-058 52 ¥
then

BL {k‘;} is LA-compatible,

~ with k'z = €A d(¥) ¥, vhere d(v) ::= a.

(Sr-24d) If d4 1is fresh for B,
B,An ’_LA b:a:r and B
B d is rank-fresh for a" := < al,...,an,a,b ¥
then
a9 . .
BU{kd} is LA-compatible,

~ with k: 1= €A d(¥):a ¥ ,where d(v) ::= b.

I.2. ConthA-RULES .

I.2.1. ContxﬁA-INITIALIZATION .

(ci) If B 1is LA-compatible
then

A

0 is LA-admissible for B.
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I.2.2.ConthA-RECURSION.
) e o[ e ) -
Let An t= AOLv].a] ERAALN and Vo4 be in Var.

Assume B is an LA-compatible site and Ah is an LA-admissible context for B.

(Crx-1) If Vo 18 fresh for An
then
T 0y
An+1 1= An[vn+1'TJ is LA-admissible for B.
(Cr-2) If Vo4 18 fresh for An,

B,An FLA ar and

(vn+1 is not in Fv(a))
then

a _ ) . s s
An+l 1= An[&n+l';] is LA-admissible for B.

Next we state the basic correctness rules for PA and CA (resp. Q A,QA;cf. below).

They concern the correctness of E-sentences § in LA ( := PA,CA,etc.) where

sub(§) is either a variable or a head-term and the correctness of LA-terms

(which,in fact,is a concept derived from the former one).
As variables and head-terms are supposed to be present in any LA,these rules

(or something similar) are,again,common to all abstract AUT-languages.

II.BASIC  RULES.

LA := PA,CA (Q A,QA,etc.)

II.l.EsentzA—RULES.

LA
II.1.1.Esent  -INITIALIZATION.

- Let A = A [v -a-]. [v :a;] (n>1)

n o-"1°%1 * 7
(Ei) If B is LA-compatible and
An is LA-admissible for B
then

. i,1<i< n.
B,An FLA v iag for all i,1<i€ n
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II.1.2.Esent§A-RECURSION.

Let 4  := Aofv]:a]]...[vn:an] (n 20),
A!L i= AOEI;:a{]...[vI;l:ax;l] (m »0),

. L
and, for c in Fl:‘lA, (and fresh for An and a in Term A)

[e)
~~
<l
-
n

g_(vl,...,vn)

=
i

€45 cv)asy,

L}

and, for b : -(bl,...,bn ¥,

@[ := 1.

o]
~
ol
~
[}

(Ex-c) If B 1is LA-compatible,
A_is LA-admissible for B,
n

k: is (sound) in B and
" o 3] 1<
B,Am '_LA bi :a b :=v (all i,1€ is n),

such that
A‘L is LA-admissible for B,

then
1 — [_ _ _]
B,Am Foa c®) @ afb :=vh.
II.Z.TermEA-RULES.
LA
II.Z.].Terma -INITIALIZATION.
(Ti) If B is LA-compatible and
Al is LA-admissible for B
then
B,A_ Il—LA T,
II.Z.Z.TermiA—RECURSION.
(Tr) If B is LA-compatible,

An is LA-admissible for B and
B,A '-LA b:a
then

B,A II-LA b.
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III.RULES OF CATEGORY CONVERSION.
LA := PA,CA,(Q A,QA,etc.)

‘Assume B is an LA-compatible site and An is an LA-admissible context for B.
III.1. ATOMIC REDUCTION FOR CATEGORIES.

(cc,) If B,a  Fp, atb),

B,éh - b,,b, and

ITI.2. ATOMIC EXPANSION FOR CATEGORIES.

(cc,) If B,A b, aib,

B’Ah 'FLA b],b2 and

b, contr;, b,

NOTE.Here gggg;LA:= contre,if LA := PA,and either gontr, ,:= gggggpa or

gggEELA:= gggggﬂqa,else.So if LA is not PA,one defines $-LA with gggggﬁf

contigng-

211.1.COMMENT.
This completes the definition of PA.So,for further reference,RlPA contains

all and only the following rules (as primitive correctness rules for PA):

I. (Si), (Sr-1p), (Sr-2p), (Sr-1d), (Sr-2d);(Ci), (Cr-1),(Cr-2);

IT. (Ei),(Er-c);(Ti),(Tr);

III. (CC’),(CCZ).
Clearly,with the exception of (CC]) and (CCZ),the remaining rules were
classified according to the correctness categories of their .outputs (that
is: the SitenA-rules "produce" new LA-compatible Sites,similarly,the

LA . s
Contxa -rules produce new LA-admissible contexts zpd so on).
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As intended,20.1. (just completed above,for the case LA := PA) is a usual

inductive definition.In particular,even if the underlying recursion re-

lies on a simultaneous induction,each of the recursive sets thereby defined

is invariably given by

(1) some initial clause ("initialization''-clause: (si),(ci), (Ei),(Ti) )
and

(2) several "recursion'-clauses (four for sites,two for contexts,one for
E-sentences and one for terms).
Only the SiteiA—rules are "building" rules;the remaining ones serve to
"transfer" information from old LA-compatible sites to new ones (one would
even want to call them "transport'-rules).
In the Rules of Category Conversion the appellation  '"category" is to
be understood as referring to the "category-part" of an LA-construction (and
not to "syntactic" or "correctness categories" in LA).
The latter do not only "transfer" some information from some LA-site to
another one,but also "modify" the information concerned by a détour via the
reduction system (here PA) associated to the language.

Without (CCi),i = 1,2, the language definition is,in fact,purely syntactic

(or,if one prefers,combinatorial in nature - in the sense of '"combinatorics";

see also 3 below),but also without these rules there is hardly some interest
in the corresponding sub-language(s).They clearly introduce the sui generis

combinatory aspect of the language under consideration (where '"combinatory"

-~

is to be taken somewhat 3 la KLOP 80,as qualifying a specific reduction

system,while,if LA is not PA,its connotation is very close to Curry's
"combinatory logic").
The import of the restrictions of "rank - freshmess" on floating constants

. ., LA . .
in the Slte'a -recursion rules will appear later on.

211.2,TERMINOLOGY . REMARK .,
In any SitezA—recursion rule (viz. (Sr-1p),(Sr-2p),(Sr-1d) and (Sr-2d) above),
the LA-construction by which some LA-compatible site B is "extended" will
be said to be correct for B in LA or even B-correct in LA.
Now,obviously,if some k is B-correct in LA,for some LA-compatible site B,
then BlJ.{k} is LA-compatible and k is LA-sound in B LJ{k}.Conversely,if
some k is sound in some LA-compatible site B,then it is not true that k is
B-correct in LA (since ;gg(k) is not fresh for B any more).
(Compare with the '"correctness of lines w.r.t. correct books" in the "reference"

versions of the AUT languages.)
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Now the definition of CA(-correctness) will be completed by listing the remaining

rules in Rch (which are not in RlPA).According to the classification mentioned

in 211.1. above the rules following below are EsentgA—rules,i.e.,they will have

outputs in the correctness category Esent:A.
IV.SPECIFIC RULES FOR CA.
IV.1.APPLICATION RULE 1.

LA := CA (Q A,QA,etc.)

(app-1) If B is LA-compatible,
An‘is LA-admissible for B,
..
B,An FLA a':a:t and
B,An ‘_LA b: Ez:a]b'
then )
B,An '—LA {a'}b:b'ﬂ;' 1= v]].

IV.2.ABSTRACTION RULES.

IV.2.1.ABSTRACTION RULE 1 FOR CA.
Let A := Aotvl:a;]... vn:an_J

and Vel be in Var.

(abs=1-CA) If B is CA-compatible,
A, is CA-admissible,

B,An ’_CA a:t

a . ..
An+] An [vm_].a] is CA-admissible for B and
a
B,A e Fea DT
then

B,An I-CA Ernﬂza]b G
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IV.2.2.ABSTRACTION RULE 2.
LA := CA (Q A,QA,etc.).
Let An i= Aofﬁlzaﬂ ...[vn:a;]

and v be in Var.
n+1

+

(abs-2) If B is LA-compatible,
Ay is LA-admissible for B,

B,An FLA a:t,
An+1 = An[bn+]:é] is LA-admissible for B,
el
B,An+1 i—LAb tbet
then

B,A kA [vnﬂzaab' :[vnH:a]b.

211.3.COMMENT.
For further reference,RlCA,the set of primitive correctness rules of CA
contains the rules in RlPA together with the following three EsentgA—rules:
IV. (app-1), (abs-1-CA), (abs-2).
In particular,rule (abs—]—dA) is prima Eggig a peculiar feature of CA,
when comparing the latter with other extensions of PA. Indeed,Q_A,discussed
incidentally below,lacks (abs-1-CA) as a derived rule,but it is’ quickly regai-

ned in QA by the mechanism of category inclusion.So what is rather specific to

CA - when compared with bigger games - is that (abs-1-CA) forbids actually (CA-)
correct terms of the form Ezl:aa[-vzzaz—}...[vn:an-]'t (m ).
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12.Basic epi-theory gg;PA,CA: "structural" lemmas.

We examine now some basic properties of the correctness categories in PA and CA.

Let us first give names to some sets used informally earlier.

212.1.NOTATION.COMMENT.
Where Secl is as introduced in 054. above and LA := PA,CA,we set:
(1) CorrConthA = Sec](ContxiA).

(2) CorrConstrLA = Sec](Constr;A).

LA
Sec](Esenta ).

(3) CorrEsentLA
(4) CorrTermLA = Secl(Term;A).

That is,informally: CorrConthA is the set of LA-admissible contexts for
LA-sites B such that B is LA-compatible (the set of "correct contexts in LA"),
CorrConstraA is the set of LA-sound constructions in LA-sites B such that B is
LA-compatible (the set of "correct comstructions in LA"),CorrEsentLA is the set
of "correct E-sentences in LA" and CorrTermLA is the set of "correct LA-terms".
E.g.,in other words,
CorrTermLA is the least subset of LA-terms a such that

B,A IFLA a,

for some LA-compatible B and some LA-admissible context A for B.

It is appropriate to start with the remark that (for LA := PA,CA) CorrEsentLA
determines a partition of CorrTermLA in (three) pairwise disjoint equivalence
classes.Using a standard terminology in "reference'" AUTOMATH we call these
equivalence classes "degrees" and introduce them by recursion as follows.
Hereafter,if not otherwise specified,LA := PA or CA.
212,.2.DEFINITION.

Let B be an LA-compatible site and & be an LA-admissible context for B.

For any LA-term a,if

B,A 'FLA a,
then the degree of a (relative to B and A in LA),denoted by ggLA(B,A,a),
is defined by:
(1) dg,(B,8,a) = 1 if a = .

]
=]

(2) If ggLA(B,A,b) and B,A ., a:b then ggLA(B,A,a) = n+1,
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The subscript "LA" will be always omitted from notations indicating degrees.

The following fact motivates some further simplifications in the (meta-)notation

for degrees.

212.3.REMARK.

For LA-sites B,B',LA-contexts A, A' and LA-terms a not in Var such that:
(1) B,B' are LA-compatible'
(2) A is LA-admissible for B,
(3) A' is LA-admissible for B',
(4) B,A "_LA a and
(5) B',A “—LA a

one has also

(6) gg(B’A,a) = gg(Bv,A':a)'

It is easy to see that the above does not obtain for a in Var.

However,the following notation can be used rather freely.

212.4.NOTATION.
For all LA-terms a,we write 'dg(a) = n" for "dg(B,A,a) = n" ,leaving
(the LA-site) B and (the LA-context) A unspecified,if this doesAnot lead to
confusions.
212.5.LEMMA.
(LA := PA,CA,etc. See 22. below.)
For all B,A such that B is LA-compatible and A is LA-admissible for B,

and all LA-terms a such that B,d |, a,one has

LA
1< dg(B,h,a) £ 3.

Proof.By induction on LA-correctness.®

212.6 .REMARK.
The following facts can be checked easily: let B be an LA-compatible site and
A be an LA-admissible context for B.
(1) For all LA-terms a,b,if B,A FLA a:b then dg(a) # 1.Indeed,in this
case one has
dg(B,A,a) = dg(B,A,b) + 1,

and there is no degree 0 (zero) in Definition 212.2.
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(2) For all LA-terms a,b, if B,A F a R ’P,where R := contrLA’ESgLA’ggggLA

then
gg(B9A9a) = gg(BaAsb)'

(3) In particular,if a is a head-term in LA,with lh(a) = n,n I,then for
all i,1€ i€ n,
(4) By clause (1) of 212.2. the only LA-term a with gg(a) =1 is t so
there are no variables,no head-terms,no application-terms and no abstrac—

tion-terms in LA (:= PA,CA) with degree 1.

We are now going to establish some '"structural lemmas" on term-correctness in PA,CA

which will be oft employed later.

212.7.LEMMA.
If B is LA-compatible, A is LA-admissible for B and,for v in Var,

By I, v

LA
then either
¢)) B,A ‘-LA vit
or
(2) for some LA-term a,one has
B,A ’-LA via:t.

Proof.By induction on LA-correctness.®

212.8.REMARK.

In other words,the preceeding Lemma amounts to the fact that,for any
variable v in CorrTerm ,one has 2«dg(v)<3 (such v's are "free").

The next lemma is somewhat more informative.

212.9.LEMMA.
Let B be LA-compatible and A be LA-admissible for B.If
B,A ”—LA v, for v in Var,
then -
(1) for some n,n> 1,1h(8) = n and

(2) for some 1,14 i€ n,
n

@n v = sub(ass; (&)
and,moreover, (for the same i,1& i% n),
(22) B,A n'_LA v:ai

with a; = pred(ass

;@)
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Proof.In each case (LA := PA,CA),by induction on the definition of correct-

1ess in LA.®

212.10.LEMMA.
If B is LA-compatible, A is LA-admissible for B and
B,A I, c(byennyb )

for some E_in Flrll'A and LA-terms bl""’bn (n 30) then
either

@)) B,A kLA Eﬂb],...,bn):t
or

(2) B,A FLA Eﬂbl,...,bn):a:t

for some LA-term a.

Proof.By induction on correctness in LA.R

212.11.REMARK.

So,correct head-terms in LA can have only degrees 2 and 3.

As earlier,in 212.9. we can obtain some more information about correct head-terms

in LA by a mere inspection of the EsentiA—rules.That is:

212.12.LEMMA.

Let B be LA-compatible and A be LA-admissible for B.If

B,A lFTA c
. LA =
for ¢ in Flo then

(1) for some k in ConstrLA such that

(11) c = ;gg(k) and
(12) AO = ggg(k)'
one has that
(2) k is in B
and,moreover,
(3) B,A by, et car(k).

Proof.As earlier,in each case (LA := PA,CA),by induction on correctness in LA.R
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Now the general case will be completed by indicating the behaviour of correct

head-terms a (in LA := PA,CA) ,where Eggg(a) is in Fli‘A with n 1.

212.13.LEMMA.
Let B be LA-compatible and A be LA-admissible for B.If

B,A ‘FLA Eﬁb],...,bn) n>1)

for some ¢ in Flrll'A and LA-terms bl""’bn (n»1) then
(1) for some k in ConstrLA such that
D e o= E®
(12) lh(ctx(k)) = n

one has that
(2) k is in B

and,moreover, that
3) BA ki, bi:ai[[F = V]I (14i€n),
and
(4) B,A kp, clbyseaab ) aﬂ—F i= V]I,
where (1£ i% n% ‘
a;, = pred(ass;(ctx(K))),
a = cat(k)
v o= < ViseeesV ¥y = gg;l(ggg(k)),i.e.,

v. = sub(ass?(ggg(k)))

Proof.As ever,by induction on correctness in LA := PA,CA.(Hint: consider (Er-c).).B

By now the "structural" characterization of PA-term-correctness was readily

completed.

Before establishing a "structural" characterization of PA as a whole we go on
insisting on the "structural" behaviour of correct CA-terms that are '"properly in
CA" (the terms on CA,i.e. the abstraction- and application-terms;for "on" see

later on,section 3,specifically 314.)

First we consider application-terms in CA as regards their behaviour w.r.t.
degrees,viz. we establish the admissible degrees for argument- and function-parts

(consult 121.6.,etc. for terminology).
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212.14 . LEMMA. (arg-degrees in CA).
If B is CA-compatible, A 1is CA-admissible and
B,A 'FCA {alb
then for some CA-term a'
y eal.
B,A '_CA aza':t,

Proof.By induction on correctness in CA.®

212.15.REMARK.
Therefore,for any correct application-term in CA,a say,one has
dg(arg(a)) = 3.

This gives the following corollary.

212.16.COROLLARY.
If B is CA-compatible, A 1is CA-admissible for B and
B,A IFea falb
then
B,A IFCA a. "
Proof.By 212.14. and the definition of Term .8

212,17 .REMARK.
That is: for any CA-correct application-term a,the CA-term arg(a) is again
CA-correct (relative to the same CA-compatible site,B say,and the same CA-

admissible context for B).

212.18. (fun-degrees in CA).
If B is CA-compatible, A is CA-admissible for B and
B9A “—CA {a}b
then

B,A FCA b:b':T,

for some CA-term b'.

Proof.By induction on correctness in CA.B
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212.19.REMARK.
In other words,if a is a CA-carrect application-term then

dg(fun(a))=3.

As earlier,we have function-part correctness as a corollary.

212.20.COROLLARY.
If B is CA-compatible, A is CA-admissible for B and
B,A k., {alb
then
B,A ll—CA b. ca
Proof.By 212.18. and the definition of Termn N}

212.21.REMARK.
So,for any correct application-term a in CA (relative to some LA-compatible B
and some LA-admissible context for B) we also have that fun(a) is correct in

CA (relative to the same site and context).

. . . . CA . .
It remains to consider abstraction-terms in CorrTerm ,as regards their behaviour
w.r.t. degreesjspecifically,to establish the admissible degrees for value- and

domain-parts in CA.(cf.121.6.).

212.22 .LEMMA. (dom-degrees in CA).
If B is CA-compatible,A is CA-admissible for B and
B,A "-CA ]:v:a]b
then
B,A '_CA a:t, »
i.e.,one has always dg(dom(a)) = 2,for any abstraction term a in CorrTerm .

Proof.As above,by induction on correctness in CA.HB

This gives domain-part correctness as a corollary.

212.23.COROLLARY.
If B is CA-compatible, A 1is LA-admissible for B and
B,A kg, [:alb
then
B,A II-CA

. . . P CA .
i.e.,for any abstraction-term a,if a is in CorrTerm  then so is dom(a).

a,
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Proof.By 212.22. and the definition of TermﬁA.E

212.24.LEMMA. (Value-part correctness in CA.)
If B is CA-compatible, A is CA-admissible for B and

B,A H-CA E/:a]b

then
(1) A' := AEr:a] is CA-admissible for B and
(2) B,A I+ b.

CA
Proof.By induction on correctness in CA.R®

212.25.LEMMA.(\___73;~degrees in CA).

If B is CA-compatible, A is CA-admissible for B and a is an abstraction-term

with

B,A “'cA a
and

dg(B,A,a) = n (> 1)
then,where a' = Xg;(a),a" = dom(a) and A = Afy:a"],for some v in Var

such that v is fresh forA ,one has also
g_g_(B9A"a') = n.

Proof.By induction on correctness in CA.®

212.26 .REMARK.

In particular,by 212.6.(4) one has,for any abstraction term a in CorrTermCA,
2& gg(a)$ 3,
so,by 212.25. and the motivation of the elliptic degree-notation in 212.3.,

we have also
2 £dg(yal(a)) € 3.

We can now establish "structural" characterizations of application and abstrac-
tion terms in CorrTermCA,analogous to 212.9.,212.12. and 212.13. above.

This will complete the "structural" characterization of CA-term-correctness.

The following Lemmas will collect information implicit in groups III and IV

of correctnéss rules (for CA) listed in 211.

212.27.COMMENT.
We have seen in 212.15. and 212.19. that arg- and fun-degrees in CA have to be
always "maximal",viz. 3.This will be also the case,in general,for abstraction-

terms a in CorrTermCA,whose intended meaning is that dg(a) = dgfal(a) ).
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212.28.LEMMA.
Let B be a CA-compatible site and A be CA-admissible for B.If
B, IFo, falb

then there are CA-terms b],a' and b' such that

(1) B,A FCA b:b, : v (i.e.,dg(,) = 2)

1 =271

(2) B,a kb, comv., [v:a']er

(3) B,A FCA a:a':v (i.e.,dg(a") = 2)
where if A' := AEr:aE) (with A' LA-admissible for B),then

(4) B, 4 I—CA b' : x (i.e.,dg(d') = 2)
and also

(5) B,A ko, fadb b'[a := v].
with

(6) dg(b) = gg(?a}b) (=3).

Proof.By induction on the definition of correctness in CA.H®

212.29.REMARK.

In Lemma 212.28. cony can be safely restricted to ggggz. and even to gggi

CA
where the underlying atomic reductions can be always "external" (i.e.,"head-

reductions”,starting "outer-most/left-most" in a CA-term).

Reason: no application-term in CorrTermCA can have degree 2 (or 1).This
excludes applications of ("external') atomic beta- and eta-reductions.
Finally,"internal" applications of atomic reductions would do no harm,
once we have some a' and some b' satisfying condition (2) in the state-

ment of the Lemma.

212.30.COMMENT.
Lemma 212.28. appears implicitely in the "algorithmic" definition of AUT-68
of DE BRULJN 77-52b (cf. also VAN DAALEN 80-73,V.4.2.).
Of course,in the statement of this Lemma bound occurrences of the variable v
have to be chosen such as to avoid collisions (of bound variables).Cf. 123.

above.

A similar analysis is 4lso possible - in the case of CA - for correct abstrac-

tion terms.
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212.31.LEMMA.
Let B be CA-compatible and A be CA-admissible for B.If
) B,A g, [v:alb
then

(1) for some CA-term a',one has

(1 B, A FCA v:a'
(12) B,A FCA a' conv., a
(13) dg(a) = dg(a') = 2,

2) A := A[v:a] is CA-admissible for B,

3) B,A' Ik, b, with 2 dg(b) €3,
) dg([v:a®) = dg®).
Moreover,if
B,A' g, bib
then )
) B,A ko, [:db o obn,
where
[v:ab, if dg(b) = 3
b"  :=r
b' (=v), if dg(b) = 2.

Proof.By induction on the definition of correctness in CA,using facts proved

earlier (on degrees).R®

212.32.REMARK.

In the statement of 212.31. the bound occurrences of the variable v have to be

chosen such as to avoid collisions of bound variables. (See the conventions

on alpha-conversion in 123. above.)

212.33.COMMENT.

Lemma 212.31. is,implicitely,part of the "algorithmic" definition of AUT-68
appearing in DE BRUIJN 77-52b (referred to earlier).
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212,34, COMMENT.

It is now easy to see that the preceeding "structural" Lemmas 212.9.,212.12.

©212.13, (for LA := PA,CA) and 212.28.,212.31. (for LA := CA),together with
the TermiA—initialization rule (Ti) (for LA := PA,CA),can be strengthenend up
to the corresponding equivalences.
They insure,jointly,the (epi-theoretic) correctness of inductive proofs on the
"structure" of a LA-term in CorrTermLA (LA := PA,CA) (whence our qualification
of the Lemmas above).
Moreover,the named Lemmas provide the admissible '"predicates" (pred-parts)
for correct Esentences in LA (in CorrEsentLA,i.e.,they furnish the admissible
"typings" for LA-terms in CorrTermLA,where LA := PA,CA).
The latter kind of information was actually embodied - in the usual,more or
less "algorithmic" formulations of PAL(-THE) and AUT-68 - in the action of a

specific epifunction on "correct expressions" (roughly corresponding to our

terms in CorrTermLA),called "mechanical typing function".(This is usually

denoted by "CAT" or "typ","cantyp";cf.ZANDLEVEN 77-36,VAN DAALEN 73-35,6.4.2.3.,

DE BRUIJN 77-52b,JUTTING 79-46,4.1.0. or Appendix 9.,as well as the description

"correct books" and "correct contexts" - in

VAN DAALEN 80-73,1v.3.2.3. et sq.,V.3.2.4.,etc.).

Accurately,this is a recursive epifunction totally defined QE_CorrTermLA - {T}

with values iE_CorrTermLA (here: LA := PA,CA) and also depends on LA-compatible

sites and LA-admissible contexts.
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213.Basic epitheory: invariance under site- and/or context-expansion.

We shall list here several more or less trivial but useful lemmas concerning
the "invariance of correctness" in syntagmatic categories of LA (:= PA,CA)
under "LA-compatibility and/or LA-admissibility preserving expansions” in the

. . . .. LA L
corresponding correctness categories (1.e.,SlteE and/or ContxﬂA).

s . . . . ., LA
Specifically,we establish that "expanding' correctness categories like SlteE and/

LA P . .
or Contxn preserves correctness for the remaining syntactic categories.

"Expansion" in (LA-compatible) sites will simply mean "taking super-sets" within
Site;A,whereas "expansion" of (LA-compatible) contexts will be understood - roughly

speaking - as "increasing contexts-length" within CorrConthA.

We examine first the case of contexts.As earlier,LA := PA,CA if not otherwise
specified.
213.1.LEMMA. (Lexical variants for contexts.)
Let B be an LA-compatible site and A := AO[&]:aJ ...[vn:a;] (n>1) be an
LA-admissible context for B.
Where v;,...,v& are pairwise distinct (i.e., v' := (v;,...,vé) is in Svarn

and each v! (1< i€ n) is fresh for B) with also

i
a! = a.,fv! =: v.“
i il i i

' .= tegt 1. |1
A : Ao[v].al]... AAREM
is LA-admissible for B.

the LA-context

Proof.Easy induction on correctness in LA.®

213.2.THEOREM. (Correctness—invariance under lexical variants of contexts.)
Let B be LA-compatible and A be LA-admissible for B.Where vi,ai,A’ are as
in the statement of Lemma 213.1. and,moreover,for LA-terms a,b

a' = ai[v' = v

b' := b[_\;' i= 7]]

we have:
. ! 1 . \]
(@)) If B,A kLA a:b then B,ﬁ kLA a' : b',
Al
(2) If B,A \PLA a then B,A ‘tLA a
and
! 1 '
(3) 1f B,A I=LA aRb then B,A Fa 2 BB,
1

where R := contr ,,comy ,,red ,,conv,.
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Proof.By induction on correctness in LA,using 213.1.B
This gives the following bunch of consequences (cf. 15. for ggg).
213.3.THEOREM. (Correctness—invariance under context-expansion.)

Let B be an LA-compatible site and 4,A' be LA-admissible contexts for B.
Let A sub A (that is: A is a subcontext of 4A').

. 1 .
(1) If B,A ’-LA a:b then B, A FLA a:b.
1
(2) If B,A "-LA a then B,A “_LA a.
1
(3) If B,A #LA aRb then B, FLA aRb,

1
where R := contr ,,conv.,,red

=====] A ny

Y1 A°EES 7> E00Y
Proof. (1) By induction on the '"derivation" of B,A ’-LA a:b in LA.(2) By (1)
and the definition of TermLA. (3) From (2) and the definition of I__{'E (i.e.,R restric-

ted to CorrTermL‘A X CorrTermLA.).E

213.4.COMMENT.

Theorem 213.3. is the analogue of van Daalen's Weakening Theorem (for 'correct/

admissible" contexts) in VAN DAALEN 80-73,v.2.9.3.

The "converse" statements (corresponding to 213.3.(1)-(3) above) were called
"Strengthening Rule(s)" in VAN DAALEN 80-73.,V.2.6. and were taken as primiti-
ve rules in some "reference'-formulations of the AUT-languages studied there.
The corresponding statements for LA := PA,CA are as follows:
Let B be an LA-compatible site and A,A' be LA-admissible contexts for B,
. [ . LA h
with A sub A ,where A := Aotvlza]]...[vn:an},and a,b in Term suc

that: whenever v is in FV(a) LJ FV(b) one has also v = vi,for some
i, 1€ 1€ n.
. U .
(1) If B,a '-LA a:b then B, A '-LA a:b,
1
(2) If B,A “-LA a then B,A “-LA a,

1 .
and,where R := contrLA,gg__gx__{LA,__ljggLA,ggggLA,as earlier,

s \J
(3) if B,A FLAaI__{b then B, A FLAagb.

Using (1)-(2) above qua rules in the primitive correctness part of LA (:= PA,CA)
allows to "simplify" LA-admissible contexts,from the very beginning,up to
"minimal non-redundant" (LA-admissible) contexts for given correct LA-terms,
resp. correct E-sentences in LA.(Indeed, the "strengthening rule" (3) would

follow from (2) and the definition of R in our formulations above.)
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In VAN DAALEN 80-73,the corresbonding "Strengthening Rules" have been employed
only as "technical rules" in order to simplify proofs involving the "extensio-
nal" versions of AUT-68,AUT-QE,etc. and the argument that they are actually

dispensable is rather tedious.

213.5.COMMENT.
As expected,Theorem 213.3. will allow to "modify" LA-admissible contexts
along a given correctness proof,by additioning ''redundant" assumptions
(within the limits of CorrConthA,of course).It says,in the end,that any such
an LA-admissible "expansion" should preserve correctness for any one of the
"bigger" categories depending on ContxiA.
In particular,this result allows us to pass from some "local environment"
in some LA-compatible site to a more comprehensive one,involving the former.

Something analogous is also possible for sites.

213.6.LEMMA.(SiteﬁA—expansion fof sound LA-constructions.)
Let B,B' be LA-compatible.If B is a subset of B' and k is sound in/for B then
k is also sound in/for B'.

Proof.Trivial,by the definition. of soundness of LA-constructions in LA-compatible

sites.®

213.7.THEOREM.(SiteiA-expansion for LA-contexts,E-sentences and LA-terms.)
Let B,B' be LA-compatible sites such that B is a subset of B' and let A be
an LA-admissible context for B.Then (for all LA-terms a,b):
(1) A is LA-admissible for B'.
(2) If B,A FLA a:b then also B',A FLA a:b,
(3) If B,A I+, a then also B",A I

LA LA 2°
Proof.By induction on correctness in LA (simultaneously).®

This gives the following consequence(s).

213.8.COROLLARY.(SiteiA—expansion for correct C-,R- and Q-sentences.)
Let B,B' be LA-compatible sites.If B is a subset of B',A 1is LA-admissible for
B and

B,A hLA a

es
o

then also
1
B'A FLA aRb

(where R := contr ,EggLA,gggzL ).

[1]--]
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Préof.By 213.7.(3) and the definition of R.B
Collecting the facts on "expansions" we have the following Theorem.

213.9.THEOREM.
Let B,B' be LA-compatible sites and A,A' be LA-contexts such that
(i) B is a subset of B',
(ii) A is a subcontext of A' (i.e., A sub A') and
(iii) A,A' are LA-admissible for B.

Then the following implications hold:

(1) if B,A FLA a:b then B',A' FLA a:b,

(2) if B,A “-LA a ‘then B',A' “_LA a,

(3) if B,A FLA a R b then B',A' FLA aRb,
where R := contr, ,,red;,,cony; ,-

Proof. (1) Then,by 213.7.(1), A' is LA-admissible for B',while,by 213.7.(2),
\] .
B',A ‘—LA a:b.
Hence,by 213.3.(1),one has the desired result.
(2) By 213.7.(1),(3) and 213.3.(2).Finally, (3) follows by 213.7.(1),213.8. and
213.3.(3).®

213.10.COMMENT.
The moral of 213.9. is as expected: the addition of 'redundant" (B-correct)
LA-constructions to some LA-compatible site B and (the addition of) "redundant"
assumptions within some '"correct" LA-context (such as to preserve LA-admissi-
bility) do not alter the corresponding concepts of correctness for LA-
formulas and LA-terms (where '"LA-formulas'" are to be taken in the extended

sense: either E-sentences or C- or R- or Q-sentences).
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214.Substitution and category correctness.

We are now able to prove some more useful Theorems on the behaviour of LA-terms

in CorrTermLA (LA := PA,CA).

Specifically,we will be first concerned with deriving several important facts

. . . . L
on (simultaneous) substitutions in CorrTerm A.

214.1.THEOREM. (Simultaneous substitution for Efsentences.) .

- 1 1 o= . . '
Let B be an LA-compatible site, A : Ao[vl.a]-] vn.an] and A" be
LA-admissible contexts for B.If
| . {_ .= _]] i 1$1<

B, A FLA bi :a; b :=v for all i,1$¢i<n,

and
. 1

B,A kLA a: a

then

SR R I L |

Proof.By induction on the "derivation" of
. ]
B, A FLA a:a
in LA.(Cf. VAN DAALEN 80-73,V.2.9.4. for the analogous result in "reference"

AUTOMATH. ) .®

Similarly,we have the following "elliptic" counterpart of 214.1.,for correct LA-

terms.

214.2 . THEOREM. (Simultaneous substitution for LA-terms.)
- 3 1 o= . . J - 1q—
Let B be an LA-cdmpatible site, A: A()[Vl'aI] E’n'an‘—] and A' be LA-admis
sible contexts for B.If
A : “: . 1k i<

B, FLA bi a; b v for all i,1x i€ n,
and

B,A I a

LA
then

WS e |

Proof.As earlier,for 212.1.,using induction on the derivation of B, A IPLA a.®

The above give immediately the particular cases involving '"single substitutions".
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214.3.COROLLARY. ("Single substitution theorem".)

Let B be an LA-compatible site and A be some LA-admissible context for B.

Assume that
B,A F b : a.

LA
Then .
(1) if B,4y[v:d + , a' i a"
then
B,A FLA a'“b 1= ;H : a"“; = ;n
and,similarly,
(2) if B,Ag[via] Ik, a'
then

A b, a'fe := .

Proof. (1) From 213.1.(2) From 213.2.8%

214 .4 .REMARK. (Simultaneous substitutions for C-,R- and Q-sentences.)
Once we have proved 214.2. we 'have the appropriate versions of the (simulta-
neous/"single") Substitution Theorem for C-,R- and Q-sentences (for these work
as mere abbreviations in our formulations above).

That is,with R for any one of gggggl¥£ggLA,gggz we obtain the following:

LA
If B is LA-compatible and A,4' are LA-admissible for B (where A is as in

Theorem 214.1.,i.e., := AOE’]:aI] [vn:an]) and

] g - .
B,A ’_LA bi P oag b := v-_u, (1€ign),
\]

Py @ B3

sl p, a5 =53] & afF -3l

(This holds also for R := gggLA,i.e.,for the converse of contrLA and,consequent-

B,A
then

ly,for ggggiA,the "atomic convertibility" relation,as expected.)
Of course,if n = l,the corresponding statements would concern the "single

substitution" case.

In the statement of the primitive correctness rules for LA (:= PA,CA) the rules
having an output in EsentLA (i.e.,something of the form B,A FLA a:b,with B in
Sitela and A in CorrContx A),no stipulation was made on the correctness of the
"predicates" b in "a:b".(Correctness for subject-parts follows from (Tr),of

course.).This will be obtained now as a metatheorem.
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214.5.THEOREM. (""Correctness for categories'.)
Let B be LA-compatible and A be LA-admissible for B.If
B,A FLA a:b
then

B,A Ik, b.

Proof.By induction on the "derivation" of B,A FLA a:b using (Ti),213.3.,214.1.

and facts proved in 212. above.®

214.6.COROLLARY.
Let B be LA-compatible and A be LA-admissible for B.If
B,A FLA a:b
then

B,A 'FLA a,b.

Proof.By (Tr) and 214.5. above.®
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22.Correctness for Q_A and QA.

This section is devoted to the study of correctness in two extensions of CA

which we call here Q—A and QA.

Accurately,QA is supposed to be the abstract version of the official "reference"
AUT-QE language,whereas Q_A is a sub-language of QA,intended to "mimick",on the
pattern of the present approach,the abstract structure of de Bruijn's AUT-QE-NTI
(that is: AUT-QE-Without-Type-Inclusion;cf.,e.g.,DE BRUIJN 78-56).

Prima facie,the difference between QA and Q A consists of the absence of the

Rule of Category Inclusion (cf. below) which is characteristic for QA and does not
hold in/for Q A.(This is also,roughly speaking,the difference between AUT-QE and
AUT-QE-NTI,where the latter lacks the analogous rule of Type Inclusion).

Both Q—A and QA are extensions of PA,in the same sense CA was.Moreover,QA is a
(rule-)extension of CA,too (in the sense the primitive correctness rules of CA
should hold in/for QA),but this is not the case for Q A (so the Rule of Category
Inclusion is essential in "deriving" the primitive rules of CA which are absent from

- the present formulation of the correctness rules of - QA).

The situation described above can be easily depicted by the following diagram of
all possible inclusions (we ignore,for the moment being,any distinction of "exten-

sionality type";cf. below).Here "LA] —+—+-)'LA2" stands for "LA is a sub-language

1

of LA." or "LA, is an extension of LA, '",where the arrow points out to the "bigger"
2 2 1

language:

QA

PA _ QA

CA

Modulo the convention in 10.4. above (concerning the elimination of the proof-type
symbol from the alphabet of any LA of concern here),the "free' parts ofCA,Q-A and
QA coincide (in the sense they have the same set of terms,E-sentences,etc.),where-
as PA is a sub-language of any of the remaining (abstract) languages also inasfar
its "free" part is concerned (it lacks abstraction— and application-terms).

So the arrows of the preceeding diagram are to be interpreted uniformly as depic-

ting correctness-rule-extensions (see,however,the Comment following below for

some more subtleties).
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So we will display the appropriate sets of correctness rules R1Q—A and RlQA’

thereby completing Definition 20.1. for the cases LA := Q-A,QA.

Rigorously,in each case,we are defining two distinct abstract AUT-languages LA
by the same set of correctness rules RlLA (as earlier in 21.),viz. B-LA and
P-LA,according to the "extensionality type" taken as basic in the associated
reduction system LA.Still,for most of our (syntactic) purposes the correspon-

ding distinguo won't matter.

22.1.COMMENT. ("Derivable" vs "admissible rules".)
In our informal discussion above, (epi-theoretic) concepts like "rule—extension"
and "extension" were used rather freely in connection with the abstract 'langua-
ges" LA (:= PA,CA,Q_A,QA).AS some misunderstandings are not quite unlikely the
matter deserves some comment.
Following N.G.de Bruijn and standard meta-theoretic terminology used currently
in connection with the AUTOMATH-project (at least in Eindhoven),we did
and will consequently speak about AUTOMATH-languages (whether in  "reference"
or in abstract format) rather that about AUTOMATH-proof-systems or AUTOMATH-
(deduction: )systems.That is: the correctness part of an (abstract) AUTOMATH

language is to be actually taken as a part of the language,as well as its

"free" /"canonical syntactic part.

This meta-linguistic habits may be somewhat mis-leading (at least for some
logicians): indeed,in a more rigorous meta-theoretic setting - which,by the way,
won't be too relevant in connection with AUTOMATH - one would always want to
distinguish between a bare '"language" and some super-imposed "proof-system"

"system of derivations" on/for this "language".In the latter acception,any

AUTOMATH-language (whether "abstract" or not) should be,of course,a proof-

system (accurately: a proof-checking system and not a proof-producing device,

say not a "system for proving theorems" ])).

1) N.G.de Bruijn et al. have repeatedly insisted on the fact any language in

the AUTOMATH-family is neither intended nor suited to be a theorem-proving
system (cf.DE BRUIJN 73-34,80-72,21;VAN DAALEN 80-73,I.1.9.,etc. however see
VAN DAALEN op.cit.,I.2.3. and the suggestion to use "attachments" to an AUT-
verifier in DE BRUILJN 80-72,21).The point is oft missed and "remarks" like:
"one disconcerting aspect of the AUTOMATH language is ... the fact that it
seems not to make any use of the improved automatic theorem proving techniques
developed during the last decade" (BROWN 81) reveal a mere misunderstanding of

the nature of AUTOMATH.



100

Thus,as a system of (correctness) rules,an AUT-language is,roughly,comparable

with any "deductive system" (a natural deduction system sayj;actually,T-versions
_ of some "reference" AUT-languages - where 'T-" labels the '"natural deduction
style" as in CURRY 63,etc.- have been proposed and worked out so far in the
existing literature on AUTOMATH;cf.,e.g.,van Daalen's Master's Thesis: VAN
DAALEN 72-28,I.5. or the informal treatement of AUT-68 in VAN DAALEN 80-73,
I.,4.5. and the general discussion of the subject in NEDERPELT 77-54,etc.).

In this respect an (abstract) AUT-language is a production system,viz. its

(primitive) correctness rules are supposed to generate (uniquely) the family
of correctness categories of the language (where the latter are either sets

of words over the alphabet of the language or finite sets of sets of words - in

our present approach).

So far we have been speaking only of "primitive" rules,in any such a production
system,while any '"derived" rule of the system has been viewed - somewhat un-
commitally - as a "meta-theorem" about/on the system.One should perhaps insist
more on the possible meaning of '"derived" here.Specifically,we did not pay
attention too much in the (epi-theoretic) proofs (on LA's) above to the "proof-
theoretic strength" of the apparatus needed to obtain '"derived" rules (in LA's).
Indeed,a correctness rule. may be called a "derived rule" in at least two dis-—
tinct acceptions (the distinguo is very likely due to LORENZEN 55,if not to
H.B.Curry;we hereafter use Lorenzen's terminology,but only with local import).

Let Rl0 be a set of primitive rules for some (production system) LA.Then the

set of derivable rules over Rlo (resp. in LA) is the least set Rl,containing

RlO and which is closed under
(1) reflexivity (i.e., Xl""’xn - Xi is in Rl;where the turnstile is
to be taken in the usual Rosser-Kleene sensej;cf.REZUS 81,etc.)
(2) addition of an arbitrary premiss (i.e., (K) in CURRY 63 ;there "weakening'')
(3) contraction of premisses,(i.e.,(W) in CURRY 63),
(4) permutation of premisses,(i.e.,(C) in CURRY 63),
(5) transitivity (i.e.,some form of "cut";Curry's (Fa) say,or (chain) in
REZUS 81).
(The "closure"-conditions are,obviously,mere variants of the "structural" rules
in some Gentzen-style sequent formulation of first-order logic say.Historically,

this concept of derivability for rules is explicitely due to J.B.Rosser,whence

"Rosser-derivability" in REZUS 81;but apparently earlier implicit manipulations

of it - in a less general setting - can be found already in Gentzen's writings.)



22.

101

It is clear that — in the acception above - only very few rules are "de-
rivable" in LA (:= PA,CA say),beyond those that are already "primitive"

in LA (i.e.,with our standard notation: in RlLA).

There is still another sense in which a rule can be said to be "derived"
in/for some (abstract) AUT-language LA,viz. whenever it is "admissible" in
the acception of Curry and Lorenzen.

Roughly speaking and with application to (the production systems) LA as intro-
duced here,we say that a rule is (Curry-Lorenzen-) admissible in/for some LA
if it does not increase some correctness category of LA when added to the
primitive apparatus of correctness in LA.In particular,any derivable rule in
LA is also admissible in LA but not conversely,for in the case of "admissibi-
lity" nothing is said about the proof-theoretic strength of the methods
allowed to obtain some "admissible rule'" for LA.

Since the former sense of "derived" (viz. '"derivability") is rather poor in
content we may eventually need using '"derived" in the larger acception (of
Curry and Lorenzen) when relativized to the case of rules in LA.(In VAN
DAALEN 80-73,no similar distinction is made concerning the rules of "refe-
rence'" AUT-languages therein discussed,but by a mere inspection of the comple-
xity of some proofs "by induction on correctness",it should be clear that
in most of the cases the larger acception is meant by "derived rule".)

This distinction relativizes directly to "rule-extensions'jnamely,LA is a

1
rule-extension 9£_LA2 modulo derivability if the set of derivable rules in LA

1

is a super-set of the set of derivable rules in LAz,whereas LA1 is said to be

a rule-extension of LA2 modulo admissibility if the set of admissible rules

(&8 la Curry-Lorenzen) of LA1 is a super-set of the set of admissible rules of-.
LA2.
Note also that - in the picture displayed earlier - '"correctness-rule-exten—

sion" should be rather taken modulo derivability.(This is,of course,at least

in the case of the abstract AUT-languages of concern here,a matter of choice
of the corresponding sets of primitive rules: RlLA,in our notation.In our
present description the sets RlLA - for LA := PA,CA,Q—A,QA etc. - are chosen
such as to be minimal for the corresponding formulation of LAj;in other words:

no primitive rule in any of the sets RlL seems to be dispensable.Cf. below.)

A
2 .REMARK.

As earlier for PA and CA,the "language definition" for Q A and QA in this
section corresponds to the "E-definition" of the corresponding "reference"

AUT-languages in VAN DAALEN 80-73.
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22.3.COMMENT.
In detail,the "structure" of the sets R1LA (LA := Q A,QA) is as earlier
for CA,with some minor modificationms.
First,
(1) the structural rules,concerning the compatibility of sites and the

admissibility of contexts in LA (:= Q7A,QA),

(2) the basic rules,concerning the correctness of E-sentences and the

correctness of LA-terms not involving abstractions or applications

as well as

(3) the rules of category conversion for LA (atomic reduction/expansion)

remain unchanged for LA := Q A,QA.
Besides these,RIQ--A and R1QA contain also
(5) specific rules,concerning
(51) the correctness of LA-terms (on LA := Q A,QA;for "on" see 314.),
involving abstractions (and applications): viz. (Tr-QA) and

(52) the correctness of E-sentences (on LA := Q_A,QA),involving

abstractions and applications,viz.

(521) application rules: (app-1),as in CA,and (app-2),and

(522) abstraction rules: (abs—=1-QA) and - as in CA - (abs-2).

Moreover,R1 contains a new rule (absent from Rl

QA too),viz.

(6) the rule of category inclusion:(CI).

Q A’

So,in order to prove that Q~A (and therefore QA) is a '"correctness-rule-
extension' of CA we should "derive" the specific CA-rule (abs-1-CA).

It will be seen that the restricted sense of '"derived" will suffice for this
(cf. 22.1. above,for "derivability").

Rigorously,the present formulations are non-redundant when the rules in RlQ—A
and R1QA are taken as "atomic units" (i.e.,if we do not allow '"decompositions"
in "instances" or "partial cases").It is not so after a detailed "degree-analy-
sis",similar in nature with that performed in 212. for PA and CA.Indeed,it
will be seen easily that the instances ofthei"specific" TermgA-recursion

Rule (Tr-QA) (LA := Q_A,QA) which make sense for CA are already 'derivable"
in CA (in the technical sense of "derivable" noted earlier).

This - and some other minor redundancies - are due to the fact we did not

want to include degree-considerations within the language definition from the

very beginning,but prefer to obtain them as meta-theorems.
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221.Correctness rules for Q_A and QA.

For the correctness rules in Groups I through III the reader should consult
211.(This is also the case for (app-1) and (abs-2) which appear in Group IV
in 211.)

Now the definition of QTA- and QA-(correctness) will be completed by listing

h .. . B . . .
the remaining rules in RIQ A (and RlQA) which are not in Rch

V.SPECIFIC RULES.
LA := Q A,QA.

V.].TermiA—RECURSION RULE.
(Tr-QA) If B is LA-compatible,

A, is LA-admissible for B,
B,An '_LA a:t and

a
B,a%,, Ik, b

then )
B,An ”-LA [v:a]b,
where An 1= AOEzl:al_J...[vn:an],

v in Var,v fresh for An,v not in FV(a) and

A§+l i= An['v:a}.

V.2.EsentaA-RECURSION RULES.

V.2.1.APPLICATION RULES.
V.2.1.1.APPLICATION RULE 1. (app-1) : as for CA (cf.21l.rule IV.1.).
V.2.1.2.APPLICATION RULE 2. »

(app-2) If B is LA-compatible,
A_ 1is LA-admissible for B,
n

B,% FLA a':a:t

B,An ‘—LA b':b: [v:a] a"
then

B,An }_LA {a'}b’ :{a'}b .
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V.2.2.ABSTRACTION RULES.
V.2.2.1.ABSTRACTION RULE 1 FOR Q A,QA.

Let T := Ez;:a;]...[vt'u:alﬂ't, (m>0).

(abs-1-QA) If B is LA-compatible,
A, is LA-admissible for B,

B4 I—LA a:t

a _ N e
An+l 1= An[VnH'a] is LA-admissible for B,

a .
B,An+1 I—LAb : T

then
B’An I‘-LA vn+l:a]b :Ernﬂ::;,T.

V.2.2.2.ABSTRACTION RULE 2. (abs-2) : as for CA (cf. 211. rule IV.2.2.)
VI.CATEGORY INCLUSION RULE

(CI) If B is QA-compatible,

Anfis QA-admissible for B and

B,An }-QA b: E’ia'l] [Vt’n:al"l]E" :ajt , (m%0),
then
B,A, ‘_QA b: Er;:a;]...[vt'n:a' T+

221.1.COMMENT.
This completes the definition of Q_A and QA (that is 20.1.,for the cases in
point).To sum up,RlQ—A contains the rules listed under 211.1.(I.- III.) and
moreover:
V. (Tr-QA), (app-1), (app-2) , (abs-1-QA), (abs-2),
whereas RlQA has also
VI. (CI)
besides the above.
The classification of the correctness rules according to the (correctness-)
categories of their outputs (cf. 211.1.) is,again,preserved for Q_A,QA.

As earlier for PA and CA,the present cases of 20.1. are inductive definitions

where the underlying recursion runs by simultaneous induction as intended.

The "initialization"-clauses remain for Q A and QA as they were earlier for

CA,and obviously,only the corresponding 'recursion''-clauses are modified.
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221.2,COMMENT, .
Note also that (CI),the Rule of Category Inclusion for QA,is a "modifying"

rule;viz. it "transfers" information from old QA-compatible sites to new
ones but also "modifies" this information in some sense different from what
the rules of Category Conversion do.In general,the resulting "modification"
amounts to a "loss of information" and it is,in some sense,''definitive”: the
information "lost" by some application of (CI) cannot be "recovered" at later
stages any more.

This rule has also some ad hoc character which is,in general,absent from

the remaining rules of QA.

In particular,(CI) - or better,its "reference'-analogue,called "type-inclu-
sion",in AUT-QE - is well-known for its unpleasant (if not disastruous)
effects: for instance,it distroys nice properties like the Unicity of Cate-
gories ("types'"),otherwise holding for languages without (CI) - see VAN
DAALEN 80-73.

Quite a lot of work has been spent on the possible approaches to circumvent
(CI),still preserving the proper useful (and nice) features of QA (resp.
AUT-QE) .In this sense,the presence of "type—inclusion'" in AUT-QE was at least
fertile for it gave rise to a number of "reference'-AUT rivals of the langua-
ges initially devised and-implemented in Eindhoven (TH).

As pointed out by N.G.de Bruijn (cf. DE BRUIJN 78-56,etc.) the effect of
"type-inclusion" (and therefore that of our (CI) above) can be "mimicked"
already in AUT-QE-NTI (and hence in Q A) once we decide to write only correct
"books'" that are proper extensions of a given fixed "book" containing some-
thing similar to the axioms of universal quantification.(In an abstract set-

ting: consider only Q-A-compatible sites containing a fixed Q A-site B

o
=

1

say as a subset,where B contains at least some sound p-construction

for "all" and sound p-c%%%tructions for "all-introduction" and "all-elimina-
tion".).Not too much has been done in this direction so far (as regards imple-
mentation say).Still this solution is by no means 1less ad hoc than the
presence of Category Inclusion ("type-inclusion') in AUT-QE.

An alternative way-out (due to Jeffery Zucker) consists of strengthening both
the "free'-part of the language and its correctness-part by addition of

new constructorsj;this did eventually lead to a very strong AUT-language
("reference"),viiz. AUT-Pi (whose abstract version is not studied here).Howe-
ver the "official" formulation of AUT-Pi does not contain all instances of
"type-inclusion" as "derived rules" (even in the Curry-Lorenzen sense).

(See,e.g.,DE BRUILJN 77-51,78-56 and VAN DAALEN 80-73,VIII.6.1.,for details.)
An informal discussion of AUT-Pi can be found in ZUCKER 75-42,while formal

details can be recovered from VAN DAALEN 80-73,VIII.
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222.Basic epi-theory for Q A and QA.

The basic properties of the correctness categories of PA and CA - discussed in
212. through 214. above - will be seen to transfer easily,under minor changes,to
the "bigger" languages Q A and QA.

We shall insist below only on the main differences,induced by the presence of the
specific Q_A— and QA-correctness rules.

Hereafter,if not otherwise specified (explicitely),LA := Q A or QA.

222.1.REMARK.
The sets CorrConthA,CorrConstrLA,CorrEsentLA and CorrTermLA are supposed to be
defined as above,in 212.1.
Then,as earlier,CorrEsentLA determines a partition of CorrTermLA into (three)
pairwise disjoint equivalence classes of (correct) LA-terms,called "degrees'.
In the case LA := Q_A,QA the definition of degrees will slightly differ from

that given earlier,in 212.1.

222 .2 .DEFINITION.
Let B be an LA—compatib}e site and A be an LA-admissible context for B.
If
B,A IFLA a

then the degree of a (relative to B and A in LA) - notation gg(B,A,a) -
will be defined by recursion as follows:

(1) If a =1t then gg(B,A,a) = 1.

(11) 1If a Er:bl_Jbz, A := AEI:b;] and g;(B,A’,bz) = 1 then

gg(B,A,a) = 1.
(2) If dg(B,A,b) = n,n €N, and B,A FLA a:b then dg(B,A,a) = n+l.

n

222.3.REMARK.
Analogues of 212.3.,212.5. and 212.6.(1)-(3) hold for Q A and QA,as well.
Also,the notation introduced in 212.4. will be employed in the present case.

(Note that gg(a) is defined only for a in CorrTermLA.)

However,we have already from 222.2. the following specific detail on I1-degrees

in Q A and QA.
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222.4,LEMMA.
If a is in CorrTermLA and dg(a) = 1 then
either .
‘ (1) a =1 (as in the case of PA and CA)
or
2) a

Proof.Immediate,from 222.2.8%

Er]:all...[vn:al;l't,for some n »1, and LA-terms apseeesad .

w

222.5.REMARK.
So in Q A and_QA there is no variable,no head-term and no application term
(in CorrTeer A,CorrTeerA) with degree 1.
On the other hand,if some abstraction term (in Q A,QA) is "correct" and has

degree 1 then so is its value-part and the latter has also degree 1.

222.6.REMARK.
Analogues of 212.7.,212.8. and 212.9. hold,by similar arguments (for Q—A,QA).
So variables in CorrTermLA can have only degrees 2 and 3 and they can be always

recovered from appropriate LA-admissible contexts.

222.7.NOTATION.
Hereafter,T (possibly with superscripts - primings - ) will range on LA-terms

in CorrTermLA with degree 1.

222.8.LEMMA.
If B is LA-compatible,A is LA-admissible for B and
B,A LAFLA gﬁb],...,bn)
then,for some ¢ in F1n ,n € N,one has
either
(@)) B,A FLA gﬁb],...,bn) : T
or
(2) B,A FLA c(b ;""bn) ta: T

for some LA-term a (in CorrTerm ).

Proof.By induction on correctness in LA.R

222.9.REMARK.
So,as earlier,in 212.10.,head-terms in LA := Q A,QA can have only degrees
2 and 3.Note that,in general,222.8. holds for both Q A and QA.Stil1,212.10,
does not hold,in general,for Q A.But due to the presence of (CI) in QA,212.10.

holds for QA,as well.
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222.10.REMARK.
Lemmas 212.12. and 212.13. hold for Q_A and QA,too (and the corresponding
proofs are as in the case of PA,CA).
So,it should be already obvious that both Q—A and QA are actually extensions
of PA.

As for CA (cf. 212.14, through 212.17.) one can prove the following.

222.11.LEMMA. (arg-degrees in LA := Q A,QA).
If a is an application term in CorrTermLA then arg(a) is also in CorrTermLA
and dg(arg(a)) = 3.

Proof.By induction on correctness in LA.®

However, function-parts of (correct) application-terms in Q A and QA behave

differently (i.e.,not as in CA).

222.12.LEMMA. (fun-degrees in LA := Q A,QA).
If a is an application-term in CorrTermLA then fun(a) is also in CorrTermLA
and,moreover,

Proof.By induction on correctness in LA.R

Inasfar abstraction-terms in CorrTermLA (LA := Q-A,QA) are concerned one has

the following CA-like lemma (cf. 212.22. and 212.23.).

222.13.LEMMA. (dom-degrees in LA := Q A,Q4).
If a is an abstraction term in CorrTermLA then ggg(a) is in CorrTermLA and
dg(dom(a)) = 2.

Proof.By induction on correctness in LAK

However one can readily see from 222.4. and 222.5. that value-parts of (correct)

abstraction-terms in Q A,QA may also get degree 1 (which was not the case in CA).

222.14.LEMMA, (yal-degrees in LA := Q A,QA).
If a is an abstraction-term in CorrTermLA then gg;(a) is in CorrTermLA and
I € dg(yal(a)) < 3.

Proof.By induction on correctness in LA.B
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222.15.COMMENT.

Resuming the degree-considerations on LA := CA,Q_A,QA one has the following:

variables & head-terms application-terms abstraction-terms

arg fun domw val
CA: 2,3 1 2,3 3 3 2 2,3
Q /QA: 2,3 1 2,3 3 2,3 2 1,2,3

222.16.REMARK.
As earlier for CA,the intended meaning of application- and abstraction-terms
in Q"A and QA is that: ‘
(1) if a is a (correct) application-term in Q_A,QA then
dg(a) = dg(fun(a))
and ’
(2) if a is a (correct) abstraction-term in Q_A,QA then
dg(a) = dg(val(a)).
That is: in LA := Q A,QA
(1') correct application-terms can have degrees 2 and 3 only
and
(2') correct abstraction-terms can have any degree (1,2 or 3).

This gives the following "structural" characterization of correct application-

and abstraction-terms in Q_A,QA.

222.17.LEMMA. (LA := Q A,QA).
Let B be an LA-compatible site and A be an LA-admissible context for B.
If
B,A I, falb
then either
S gg(fa) = 3
| and a' such that
an B,o by, b by ffral]T (i.e.,dg(b))
T

and there are LA-terms b
2)
2)

1
. 1
(12) B,A FLA a:a

1]

) (i.e.,dg(a")

and
(13) B,A Fia {atb :{a}bl : Tla := vl
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(2) gg({a?xb) =2
and there are LA-terms b;,a" such that

@n bl = [u:a"]r (i.e.,dg(®]) = 1
22) B,A Fp, b b

(23) B,A '_LA a:a": T (i.e.,dg(a™) = 2)
(24) B,A b, faib i Tfa := ]

Proof.Ry induction on correctness in LA,using previous Lemmas.®

222.18.LEMMA. (LA := Q A,QA).
Let B be an LA-compatible site and A be an LA-admissible context for B.
If
B,A Ik, [v:a)b
then
(1 A" := AEz:a] is LA-admissible for B
and ’

(2) there is an LA-term a' such that

21) B,A' '_LA v:a'
(22) B,A F a cony, , a'
(23) dg(a) = dg(@') = 2
with also
(3) B, A’ IFia b 1£dg(b)<3
(4) dg® = dg([v:alb).
Moreover,if dg(b) > 1, then,for some LA-terms b',b",
(51) B,A' |—LA b:b' (i.e.,dg(d") = dg(d) - 1)
(52) B,A +, [:a]b : b" (i.e.,dg(®d™ = dg®) = 1)
and
(53) b" = [v:a]b'.

Proof.By induction on correctness in LA,using facts proved earlier.RB

222.19.REMARK,
Lemmas 212.28. and 212.31. hold also for QA,but not for Q A (in general).
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222.20.REMARK.
It is easy to see that the invariance properties under site- and/or
context-expansion established earlier for PA and CA can be also esta-
blished for Q_A and QA.Moreover,the corresponding proofs are completely
similar (mostly,by induction on the definition of correctness in Q A and
0A).
So,in the end,an analogue of Theorem 213.9. can be established for LA :=
Q A,QA.
That is: the addition of "redundant" (B-correct) LA-constructions to some

"redundant" assumptions within some

LA-compatible site and the addition of
LA-admissible context (such as to preserve LA-admissibility) do not alter
the corresponding correctness categories CorrEsentLA and CorrTermLA (for
LA := Q A,QA).This is also true for "derived" correctness categories in LA

(as,e.g.,C-,R- and Q-sentences).

222.21.REMARK.
Where LA := Q A,QA correctness is preserved under (simultaneous) substi-
tution in the sense of 214.2. (214.3. and 214.4.) above.
This gives - by the same method as in 214. - "correctness for Q A and QA-

categories" and,finally the following.

222,22, THEOREM. (LA := PA,CA,Q_A,QA).
Let B be an LA-compatible site and A be an LA-admissible context for B.
If
B,A FLA a:b
then
B,A 'FLA a,b
Proof.If LA := PA,CA the statement is just 214.6.Else use the fact mentioned
in 222.21. and t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>