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CHAPTER 1 

INTRODUCrfION 

In this paper we treat a method for the formal definition of syntax and 

semantics of programming languages. As an important application, a com

plete for·n1al definition of ALGOL 60 is given. 

We can distinguish between two aspects of the formalization of a pro

gramming language: 

1. Formalization of the syntax: Given an alphabet, i.e. a finite set of 

symbols, to exhibit a set of rules which define which sequences of 

symbols over this alphabet constitute a program in the language con

cerned. 

2. Formalization of the semantics, i.e. introduction of a fo11nal system 

which defines the meaning of a (syntactically correct) program. 

A fairly satisfactory solution to the first problem was given in the 

ALGOL 60 report 8, in which the syntax of ALGOL 60 was defined by 

means of a foi~alism due to Backus 2 • 

The notation of Backus has been used subsequently for the definition of 

several other programming languages and also for the syntactical defini

tion of related fo1·1nal systems. As was proved later 23], Backus notation 

is equivalent to a concept which had been introduced previously by 

Chomsky • viz. that of context free grammar, which is a specializa-

tion of the r1otion of phrase structure grammar, also due to Chomsky 10 .. 

However, Backus notation is not entirely sufficient for the definition of 

the syntax of programming languages, such as ALGOL 60. In fact, the ALGOL 

60 report contains, besides the rules formalized in Backus notation, 

several others, expressed in English, which impose further restrictions 

on the class of syntactically correct programs. It can be proved that it 
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is impossible to include these further restrictions in a context free 

grammar .... 20 . 

A generalization of the notion of context free grammar, which still 

needs some rules stated in English, but which allows considerably more 

for1nalization of the syntax, has been given by van Wijngaarden O • 

Another extension of context free grammars, which also makes it possible 

to formalize rules which cannot be expressed in Backus notation., has 

been proposed by Caracciolo di Farino 6 • 

After the problem of the forinalization of the syntax had been (partly) 

solved, it seemed natural to try and find a formalism for the definition 

of the semantics of programming languages. In the ALGOL 60 report, the 

semantics is described entirely in English. However, there exists a fair

ly general agreement that this is unsatisfactory and that it is desirable 

to formalize the semantics (maybe only a part of it) as well.In fact, it 

soon appeared that the description in English shows several defects, 

mainly apparent from the fact that various constructions may be thought 

of, for which the ALGOL 60 report does not give an unambiguous interpre

tation. A list of these ambiguities (which is not even complete) has 

been given by Knuth 7 • 

In the past few years, several systems for the forrnal iza tion of the seman-

tics of programming languages have been proposed. However, there exists 

no agreement at all on what one means by a semantical description of a 
ff 

programming language. In September 1964, a conference on Forznal Language 

Description Languages'' was held, organized by the technical committee on 

programming languages of the International Federation for Infor1na.tion 

Processing. The proceedings of this conference show clearly how 

much the ideas of the several authors diverge. 

Landin O, 31, 3 ., Bohm 4, 5] and Strachey 43 use the :\-calculus of 

Church as the basis of their fo1·111alisms. Essentially, this means that they 

try to describe a program by means of a functional notation. However, in 

our opinion this conflicts with the dynamic structure of a program, which 

consists of a number of instructions executed successively. (This criti

cism has also been given by Wirth 47 .) In defence of the use of the 
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A-calculus it should be mentioned that it can be used to describe the 

locality concept of ALGOL 60 in a way which is more elegant than in any 

other system of which we know. Assignment statements and goto statements 

on the other hand can be included in the system only with considerable 

difficulty. We may add to this that the paper of La.ndin [32 forms the 

most completely worked out system for the definition of ALGOL 60 which 

has been proposed up to now. 

Steel [_40, 42] has given the foundations for his way of formalizing 

semantics, without, however, showing how fundamental concepts in program

ming languages can be described with his system. 

McCarthy 34, also gives only simple examples, from which it is 

difficult to conclude whether his mechanism is sufficient for the more 

complicated concepts of a programming language such as ALGOL 60, e.g. 

the meaning of declaration, of recursive procedures, or the call by name 

concept. McCarthy introduces the notion of a state vector, the components 

of which are: the current values of the variables which occur in the pro

gram, and the number of the statement which is to be executed. He admits, 

however, that the above mentioned concepts will require a more complicated 
1) 

state vector . 

Wirth lets the semantical description of a programming language run 

parellel to its syntactical definition. Whenever a syntactical rule is 

applied during the analysis of a program, a corresponding semantical rule 

is applied which changes the values of zero or more entities in a so

called environment. The semantical rules are for1nalized in a language 

which is said to correspond closely to the elementary operations of a 

computer. It is assumed that the concepts of this elementary language do 

not need further for111al definition. As possible objections to his approach 

we might mention: As Wirth himself admits, it is applicable only to pro

gramming languages whose syntax is less general than that of a context 

free grammar. Also, it appears that the system is not entirely sufficient 

for the treatment of the main example he gives, namely of the language 

EULER, a generalization of ALGOL 60 (see also [46 ). First, he has to 

extend his elementary notation with a number of operators and types, the 

l) A combination of the formalisms of Landin and McCarthy has been used 

for the formal definition of PLII, see [53 . 
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meaning of which is in our opinion not so obvious that they belong in 

this elementary system. Furthermore, the definition of the meaning of 

an EULER program is given in two phases, the second of which does not 

have the structure as described above, since in this phase the seman

tical rules are not applied in parallel to the syntactical ones. 

When we compare Wirth's method to the system we propose in this paper, 

it appears that his degree of formalization is considerably less than 

ours. Concepts which he considers too elementary to need further fo1·1nal 

definition, have been treated forntally in our system. On the other hand, 

his mechanism is of greater practical importance, since a definition 

of a programming language with his method can be used as the basis for 

a compiler for that language. We shall see that it is not at all easy 

to do the same with our system. 

Analogous considerations hold for the work of Feldman 

Semantic Language'' which he uses to define the semantics of programming 

languages, has been designed for the purpose of constructing compilers. 

For these practical problems, FSL has proven to be of much use. However, 

we feel that FSL is too complicated a language to be considered a solu

tion to the problem of the fo1·1nalization of semantics. 

Garwick 21] wants to define programming languages by means of their 

compilers, which are supposed to be machine independent. An abstract 

computer must be introduced, the code of which is used to write this 

compiler. The output of the compiler must also be in this code. However, 

he omits all details of the properties of this code. Moreover, it is 

doubtful whether the concept of translation, however great its impor

tance be in practice, should be used for the definition of a fo1·mal 

language. 

Nivat and Nolin 39 define the semantics of ALGOL 60 in several steps. 

First an ALGOL 60 program is translated into a program written in so

called ALGOL£. The result is translated into an ALGOL n program. ALGOL 

n resembles an assembly language so much that further definition is 

unnecessary. 

Finally, we mention some investigations of a more theoretical nature 

which have been inspired by problems concerning the semantics of pro-

• 
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gramming languages: Elgot 7, Elgot and Robinson 18, Igarashi 5, 

36], Thiele 44 and Yanov 1 . 

The system that we treat in this paper is based on two papers by van 

• • 

''The definition of a language should be the description o:f an automa

tism, a set of axioms, a machine or whatever one likes to call it, that 

reads and interprets a text or program, any text for that matter, • • 
J.. e. 

produces during the reading another text, called the value of the text 

so far read. This value is a text that changes continuously during the 

process of reading and inte1:·1nediate stages are just as important to 

know as the final value''. 

This idea is worked out as follows 
1) 

• • 

An abstract machine is introduced, which in the sequel will be called 

'' t' processor . A text which is offered to the processor for evaluation 
• ft II 

is called a name. A number of symbols have the property that their 

occurrence in a name causes a special reaction of the processor. Such 

a special symbol is e.g. the so-called metacomma, denoted by co. A name 

will consist in general of a sequence of so-called simple names, which 

are separated by these metacommas. The evaluation of a name is perfor1n

ed by successive evaluation of the simple names which constitute it. The 

value of a simple name is deter1nined by consul ting a list of rules, the 

so-called ''list of truths'', which list will be called V in the sequel. 

This list, V, is initially empty and is filled during the evaluation of 

a name with the values of the simple names which constitute it. The way 

in which V is consulted to deter111ine the value of a simple name may 

provisionally be summarized as follows: The list of truths has essentially 

the same structure as a Markov algorithm i.e. it is a list of rules, 

consisting of a left and right part, separated by the symbol is. These 

rules are applied in the same way as with a Markov algorithm. However, 

an important extension has been introduced, namely the possibility of 

using metalinguistic variables (in the sense of Backus) in these left 

1) 
The following description is intended to give only a first impression 

of the system. Precise definitions will be given in the next chapters. 
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. 1) b and right parts • Moreover, the definition of the values which may e 

assumed by these metalinguistic variables is done by means of rules 

which also f o:r1n part of V. Another new feature is the possi bi li ty of 

having the application of a truth in V depend on a condition, also 

belonging to this truth. 

The fo1·malism, of which we have sketched some principles above, 11\ay 

itself be considered as a formal language. Since this language is used 

for the definition of other languages, we shall call it in the sequel 
11 ,, 

the metalanguage. 

A complete description o.f the metalanguage is given in chapter 2. 

Comparison with 48, 49 will show that some changes have been introduced. 

First of all, the idea of a preprocessor has been done away with. This 

was used in 8, 4 to reduce, by means of a non-forinalized process, 

concepts which are logically redundant, to more fundamental ones. Since 

we wish to give a complete foi~mal definition of ALGOL 60, we cannot use 

the preprocessor. 
tt Also, there no longer appear any loose remarks concern-

ing locality and so ont', which were supposedly present in V in • 

Some changes in the notation have been adopted, to avoid confusion be

tween symbols in the language which is to be described (e.g. the symbols 

''-'' d '' '' 1· ALGOL - an n . . , 60) and symbols in the metalanguage (e.g. is and co). 

Furthermore, we have defined the meaning of a condition in a truth some-

what more precisely than in or . Concerning this definition it 

should be remarked that it is certainly the least elegant concept of the 

metalanguage. However, we use it extensively in the definition of ALGOL 60 

and we have not succeeded in replacing it by another one which fits better 

with the other concepts. 

Chapter 2 starts in section 1 with a description of the syntax of the meta

language, by means of a context free grammar. Section 2 gives some syntac

tical examples. In section 3 the semantics of the metalanguage is described 

1) 
A combination of Markov algorithms and context free grammars has been 

proposed subsequently also by Caracciolo di Forino , 8, 9 and 

Cohen and Wegstein 15. Similar concepts occur in the language AMBIT 

4. The first application of Markov algorithms to programming seems 

to be due to Yngve, in his design of Comit • 
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in English. Section 4 contains some simple examples, such as the defi

nition of the Euclidean algorithm for the greatest common divisor of 

two natural numbers. 

In chapter 3 we derive some properties of the metalanguage. In section 

1 we consider three definitions of effective computability, i.e. Markov 

algorithms, Turing machines and recursive functions. We prove for each 

of these concepts that it can be defined by means of the metalanguage. 

We do not treat the reverse problem, i.e. we have not investigated 

whether it is possible to define the metalanguage in terms of one of 

these three systems. 

In section 2 we consider the relation between the metalanguage and a 

xew concepts of the theory of phrase structure grammars. From a theorem 

of Chomsky, namely that each phrase structure language is a recursively 

enumerable set 11 , and the results of section 1, it follows directly 

that each phrase structure language can be defined by means of the meta

language. The relation between context free grammars and a concept from 

the metalanguage is then studied in more detail. An example is given of 

the use of the metalanguage for the definition of a context sensitive 

grammar. The classification of Chomsky of phrase structure grammars in 

four types and their defining abstract machines are introduced. Each of 

these abstract machines is defined in terrr1s of the metalanguage. 

The formal definition of the metalanguage follows in chapter 4, section 1. 

There the processor is defined by means of an ALGOL 60 program which acts 

both as a definition and as an implementation of the metalanguage. The 

description in English of the metalanguage in chapter 2 should therefore 

not be considered to be its definition proper. Thus, the metalanguage is 

defined on the one hand by an ALGOL 60 program., and on the other hand it 

is used (in chapter 5) to define ALGOL 60. 

One might imagine the following picture of this situation: We introduce 

a ''language space'•, the elements of which are the possible interpretations 

of ALGOL 60. Suppose one wants to use our system to learn the semantics 

of ALGOL 60. We assume that he has a provisional knowledge of it, based 

on the ALGOL 60 report. This means that he finds himself in a certain 
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point in the language space, say P0 . With this knowledge he can under

stand the working of the processor, and hence also the definition of 

ALGOL 60 in chapter 5. After the study of this definition, he will have 

obtained a new idea of the semantics of L 60, i.e., he finds him-

self now in a point P
1

• Next he again reads the program for the proces

sorJ and chapter 5, after which he will have reached a point P2 , etc. 

Suppose one finds oneself after i steps in point 

tinguish three cases: 

P. 
l. 

( i > 1) • We dis-

1. P. = Pi 1 . This means that P = P. 1 , 
l. - n 1-

The process converges, i.e. it yields 

ALGOL 60. Generally, this fixed point 

point P
0 

.. 

k > 1, P. -I: P. 1 • 
1 1-

for n > i .. 

a fixed interpretation of 

P. will depend upon the initial 
1 

The process diverges; it is not possible to obtain a fixed inter

pretation of ALGOL 60. 

3. Neither 1, nor 2 occurs. No decision can be taken, and a next step 

has to be performed. 

It is not possible to describe this iteration process more for1nally. 

This is caused by the fact that the ALGOL 60 program which defines the 

processor contains input/output operations which are not treated in the 

fonr1al definition of ALOOL 60 in chapter 5, since they do not fo1·1n part 

of it. 

In section 2 of chapter 4 the working of the processor is demonstrated 

by several examples. Some of these examples have been discussed already 

in chapters 2 and 3. Also, some very simple parts from the definition 

of ALGOL 60 in chapter 5 are treated. Both time and space restrictions 

of present day computers prohibit the running of larger parts of the 

L 60 definition, let alone the whole of it. 

Chapter 5 gives the complete formal definition of ALGOL 60; explanations 

of this definition follow in chapter 6. In chapter 6 we first treat some 

shortcomings of the definition. Then in sections 2 to 6 we give a 

general survey of its structure. The remaining sections of chapter 6 

comment upon each of the sections of chapter 5. The main difficulties 
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in the definition of ALGOL 60 proved to be: the locality concept and 

the goto statements. Assignment statements, on the other hand, fit in 

very naturally with the metalanguage. 

A judgment on the merits of the metalanguage as a means of describing 

the semantics of programming languages will depend on the requirements 

which one imposes upon such a description. If one wants a mechanism 

from which a compiler for the language concerned can easily be derived, 

then our system is certainly not the solution. The value of the meta

language consists in its ability to give a complete and precise defi

nition of the whole language, containing all concepts, from the addition 

and subtraction of integers to the treatment of procedures. Such a com

plete definition will always be rather large. It should be added here 

that several aspects of the semantics of ALGOL 60, which are of no 

essential importance, have complicated and lengthened the definition 

in chapter 5 considerably. If a programming language were designed with 

the metalanguage as the presupposed tool for semantic description, then 

such a description could be substantially shorter. 

Recently, suggestions have been made for the introduction of programming 

languages which allow the programmer to include modifications or ex

tensions of the language in his program. Such an interaction between 

language and program may also be described very well by the metalanguage. 



CHAPTER 2 

DESCRIPTION OF THE ME''l'ALANGUAGE 

In section 1 of this chapter we define the syntax of the metalanguage .. 

In section 2 we give some syntactical examples. Section 3 describes the 

s .antics of the metalanguage, some concepts of which are explained by 

means of a few simple e:xamples in section 4. 

The syntax of the metalangu.age is defined by means of a context free 

gramPar, written in Backus notation. 

1,. <NAME>:: a <SlMPLE NA.ME> I <sIMPLE NAME> CO > 

2. <SIMPLE NAME>:== tr 1 <METASTRING> I <SIMPLE TERM> 

3. <MBTASTRING>: ::::: {<LIST OF Mf:TAEXPRESSIONS>:f 

4. <LIST OF 'l!!TAEXPRESSIONS >:: = <ME~l'AEXPRESSION> j 

<METAEXPRESSION>co<LJST OF METAEXPRESSIONS> 

5. <BIMPLE TERM>:== <SIMPLE FACTOR> I <SIMPLE FACTOR>in <SIMPLE METAVARIABLE> 

6. <sIMPLE FACTOR>::= <TERMINAL SYMBOL> Iva { <TERMINAL SEQUENCE>} I 
<TERMINAL SYMBOL><SIMPLE FACTOR> I 
va { <TERMINAL SEQUENCE>} <s IMPLE FACTOR> 

7. <META.EXPRESSION>:::: <CONDITION> im <LEFT PART> is <RIGIIT PART> I 
<CONDITION> im <LEFT PART> I 

<LEFT PART> • <RIGlIT PART> l l.S 

<LEFT PART> 

8. <CONDITION>::= tr I <:METASEQUENCE> 
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9. <LEFT PART>::= <METASEQUENCE> I <METASEQUENCE> in 

<SIMPLE METAVARIABLE> 

10. <RIGHT PART>::= <SIMPLE RIGHT PART>j{<LIST OF SIMPLE RIGHT PARTS>} 

11. <LIST OF SIMPLE RIGHT PARTS>::= <SIMPLE RIGHT PART>! 

<SIMPLE RIGHT PART> co <LIST OF SIMPLE RIGHT PARTS> 

12. <SIMPLE RIGHT PART>::= tr I <METASTRING> I <INDEXED METATERM> 

13. <INDEXED METATERM>: : = <INDEXED METAFACTOR> j 

<INDEXED METAFACTOR> in <SIMPLE METAVARIABLE> 

14.. <INDEXED METAFACTOR>: := <INDEXED METASEQUENCE> j 

va { <INDEXED METASEQUENCE>} I 
<INDEXED METASEQUENCE><INDEXED METAFACTOR>I 

va{<INDEXED METASEQUENCE>}<INDEXED METAFACTOR> 

15. <TERMINAL SEQUENCE>::= <TERMINAL S 

<TERMINAL SYMBOL> <TERMINAL SEQUENCE> 

16. <METASEQUENCE>: == <TERMINAL SYMBOL> !<METAVARIABLE> j 

<TERMINAL SYMBOL><METASEQUENCE> I 
<METAVARIABLE><METASEQUENCE> 

17. <INDEXED METASEQUENCE>: : = <TERMINAL SYMBOL> j <INDEXED METAVARIABLE> I 
<TERMINAL SYMBOL><INDEXED METASEQUENCE>I 

<INDEXED METAVARIABLE><INDEXED METASEQUENCE> 

18. <METAVARIABLE>::= <NON INDEXED METAVARIABLE> !<INDEXED METAVARIABLE> 

19. <NON INDExED METAVARIABLE>:== <SIMPLE METAVARIABLE> I 
<OPTIONAL METAVARIABLE> 

20. <INDEXED METAVARIABLE>:!= <INDEXED SIMPLE METAVARIABLE> j 

<INDEXED OPTIONAL METAVARIABLE> 

21. <TRUTH>: : = tr I <METAEXPRESSION > 

22. <LIST OF TRUTHS>: : = <TRUTH> I <TRUTH> co <LIST OF TRUTHS> 

23. <DERIVED CONDITION>::= trl<METASEQUENCE> 

24. <DERIVED SIMPLE RIGHT PART>::= <SIMPLE NAME> !<EMPTY> 
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25. <DERIVED RIGHT PART>:== <DERIVED SIMPLE RIGHT PART> I { < 

26. <SIMPLE PRIMARY>::= va{<TERMINAL SEQUENCE>} 

27. <SIMPLE SEQUENCE>::= <TERMINAL SEQUENCE>! 

<TERMINAL SEQUENCE> in <SIMPLE METAVARIABLE> 

For the denotation of the syntactic entities in this grammar we have 

used sequences of (capital) metametaletters, enclosed between the 

t t b k t '' <t' d '' >'' Wh th . th me ame a races an • · enever we use ese sequences in e 

sequel they will refer to the corresponding syntactic definitions. It 

is understood that the use of the English language may lead to deviations 

from these words; for e:irample, the use of lower case letters or of plural 

fo1·ms. 

The entities in the left hand sides of 21 to 27 are introduced for 

reference purposes only. 

> denotes the empty sequence. 

A simple or optional metavariable is denoted by a sequence of meta-

letters, enclosed between the metabrackets 

'' '' > respectively. 

'' '' < and tt '' > , or ft '' < and 

An indexed simple metavariable or an indexed optional metavariable is 

denoted by a sequence of metaletters, followed by a sequence of meta-

b t th t b k t '' <'' and '' >•', or '' <'' digits, the whole enclosed e ween e me a races 

resp,ecti vely. 

The set of terminal symbols is given in chapter 4. Essentially, one may 

choose for this set any finite, non empty set of symbols which is dis

joint from the set of metaconstituents (see below). 

However, in chapter 4 we define the set that is accepted by the ALGOL 60 

program that defines the processor. 

The set of metaconstituents consists of: 

a. The metasymbols im, in, is, va, co, tr, , }, {, f. 
b. The metavariables. 

We introduce the following tern1inology which is used in the next sections: 

a. S:mall Greek letters stand for syntactic entities (i.e. metametalinguis

tic variables), capital Roman letters for metavariables or terminal 

symbols, and small Roman letters for terminal symbols. 
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b. For any metavariable A, A is the non indexed metavariable which 

results from A by deleting the metadigits, if any, in the denotation 

of A .. 
~ For any (indexed) optional metavariable A, A • 

1S the (indexed) simp1e 

metavariable which results from A by replacing in its denotation the 

metabrackets '' .... ,, d '' '' b '' '' , an > y < d '' > ti an . 

Example: Let A be the indexed optional metavariable <identifierl>. 
- ~ Then A is <identifier>, A is <identifierl> and A~is <identifier>. 

c. Two indexed metavariables are called similar, if their denotations 

differ at most in the enclosing metabrackets. 

Example: <expression2> and <expression2> are similar, but <expressionl> 

and <expression2> are not similar. 

d. A simple sequence can have the form <TERMINAL SEQUENCE> or 

<TERMINAL SEQUENCE> in <SIMPLE METAVARIABLE>. In both cases we cal1 

the terminal sequence '' the te1·111inal sequence of the simple sequence''. 

In the second case we call the simple metavariable ''the simple meta

variable of the simple sequence''. Similarly, we define the metasequence 

and the simple metavariable of a left part. 

Example: The te1·1r1inal sequence. of ''abc in <identifier>'t is 

its simple metavariable is ''<identifier>''. 

,, '' abc , and 

The metasequence of ''<primary> in <factor>'' • is 
t I I I • 

<primary> -and its 
• t t I I 

simple metavariable is <factor>. 

2. 2. Syntactical exampl_4:?S 

In this section we use the set of ter111inal symbols given in chapter 4. 

Name: 

Simple name: 

tr 

{2 - 1 is 1 t 
2 - 1 

Metastring: 

{l. + 1 is 2 co 2 + 1 is 3 i 
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Simple te1·m: 

va 4 + 3} - va 3 + 4} 
abc in <identifier> 

Simple factor: 

- va{a + b} 

3 + 2 

Metaexpressio•n: 

<letter> in <identifier> 

a is ibis i c is d ff 
<tape].> 1 : 1 <tape.2> is <tapel> a 1 <tape2> 

<statel><sym.boll><sym.bol2><state2> im 

<ta pel > <sta tel> <symbol l > <tape2 > is .. , ..... 
<tape1 ><state2><symb•ol2><tape2> 

<lett•erl > J!re <let ter2 > im 
~11111 

<letter1 > ... ~.~rd> pre <letter2><word> 

(note that the underlined symbol pre is not 

a metasymbol, but a terminal symbol) 

tf"l.-..-di tio'.n• • lvv•~;,J· __.. - -. , ' ·, ' , _: :;,t".t; • 

<letterl > pre <letter2> 
) I i • I 

tr 

Left part: 

<letterl><word> pre <letter2><WOrd> 

<block> in <program> 

JU.pt part: 

a 

<tapel><at.ate2><symbol2><tap,e2> 

{a co a co T} 

·•··i& 1.• {bis {{c is {d co e}t co f}tt cog} 

<letterl > 1a <identifier> 
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Indexed metafactor: 

_\7a{ <digi tl><pm1>1 }<pml> va{ <digi t2>-1} 

Te1minal sequence: 

a + be - d 

Metasequence: 

<letterl > <word> 

Indexed metasequence: 

<statel><symboll> L <state2> 

Simple metavariable: 

<identifier> 

Optional metavariable: 

<identifier> 

Indexed simple metavariable: 

<identifier21> 

Indexed optional metavariable: 

<identifier8> 

2 .3. ~_emanti(?S of t~~ metalanguage 

We introduce an abstract machine, called the processor, which is defined 

by its properties, described in the sequel of this section. 

A name in the metalanguage is said to be evaluated by the processor. This 

evaluation process is deter1r1ined by the application of: 

a. A fixed set of built-in rules. These rules are described below. 

b. A dynamically varying list of rules, called the list of truths V, 

which is initially empty and which is filled during the evaluation 

of a name with the results of the evaluations of the simple names 

which constitute the name concerned. 

2.3.1. The evaluation of a name. 

The evaluation of a name is perfo1·111ed by the fol lowing process: 

Step 1: The first simple name of the name is considered; 
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Step 2: The value of the considered simple name is dete1·1nined (2.3.2); 

Step 3: If the considered simple name is followed by the metasymbol co, 

then its value is added to V, preceded, unless Vis empty, by 

co as a separator, and the remaining name is evaluated; 

Step 4: Otherwise, the value of the considered simple name is added to 

V, preceded, unless Vis empty, by co as a separator. 

2.3.2. The value of a simple name. 

The value of tr is tr. 

The value of a metastring is the list of metaexpressions which is ob-

tained by deleting the outermost '' .l '' • 1 from the metastr1ng. 

The value of a simple term is determined by the following process: 

Step 1: If the simple term contains a simple primary (2.1, rule 26), then 

step 2 is taken, otherwise step 3 is taken; 

Step 2: The simple primary is replaced by the value of the terminal 

sequence of the simple primary. If the resulting sequence is a 

simple te:rw, then step 1 is repeated with this simple term; 

otherwise, its value is undefined; 

Step 3: Vis applied to the determination of the value of the simple 

teria (2 .. 3 .. 5) • 

For the definition of the application of V we need two concepts, viz. 

that of envelope and that of applicability. 

2 .. 3.3. The concept of envelope. 

A left part can be an envelope of a simple sequence. This concept is 

define,d in two sta,ges. 

First tbe ease is considered that the left part is a metasequence µ and 

the si•ple sequence is a terminal sequence T. 

Let lJ = Ai ~ . . . Am., m > 1 , 

number of (indexed) optional 

• 'U· ch···· th··. at ' ' ' ' ' ' ' . . . . . 

j2' •". 1 j, __ 1, 

T - a 
i - ji-1 +1 .... 

and T = a a 
1 2 

metavariables and let m = 

be the 

m - m • 
0 

••• t , is defined 
m 

by a selection of m-1 

with O; jO < jl < • • • 

for i == 1 , 2 , • • .. , • 
J . :, 

l. 
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then T_ is defined to be the empty sequence. An ordering< is defined 
l. 

on the partitions as follows: Let TI., i = 1,2, be two partitions with 

. t d . t · ( i ) . ( i ) 
1 

' ( i ) Th . f d 1 1· f associa e in egers Jl , J 2 _' ••• , Jm_1 . en n < n2 1 an on y 

.(1) .(2) f < 
Jq = Jq or all q p. 

The following process is now applied in order to establish whetherµ 

is an envelope of T: 

Step 1: If n < m, thenµ is not an envelope of T; 

Step 2: Otherwise, the first partition of Tin the given ordering is 

considered; 

Step 3: Let -r == T
1 

T
2 

correspond to 

• • • T be the considered partition. T. is said to 
m i 

A . • 
1 

The following relations are verified for all 

i,j = 1., 2., • • • • ' m. 

a. If A. is a terrninal symbol, 
l 

if A. is a (indexed) simple 
l. 

the value tr; otherwise, 

then T =A· • • J 
1 1 

metavariable, 

othez·wise, 

then T 
i 

• 
J.n A . 

1 
has 

if 

is 

A. is an (indexed) 
l 

optional metavariable, then either T 
i ~ -

empty, or T. in A. has the value tr. 
l. 1 

b. If T. and 
l. 

T. correspond to similar indexed metavariables, 
J 

then they are equal. 

If both relations hold thenµ is an envelope of 1; otherwise, 

if there is a next partition of T, then this is considered and 

step 3 is taken again; otherwise, µ is not an envelope of T. 

Next the general case is considered. 

A left part A is an envelope of a simple sequence a if either 

a. .:\ is a rnetasequence, o is a te1111inal sequence and the above given 

definition holds, 

or\ and a have the following properties: 

bl. A is not a metasequence and Tis not a terminal sequence, 

b2. the metasequence of A is an envelope of the terminal sequence of a, 

b3. the simple metavariables of A and a are equal. 

If A is an envelope of a, then a is called a specific case of A. 
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2 .. 3 .. 4. The concept of applicability. 

A truth can be applicable to a simple sequence. 

tr is applicable to no simple sequence. 

The general :fo1·n1 of a truth e different from tr, is: 

<CONDITION> im <LEFT PART> is <RIGHT PART>. 

Truths of the :form 

<CONDITION> im <LEFr PART>, 

<LEFT PART> is <RIGHT PART> or 

<LKFT PART> 

are treated respectively as: 

<CONDITION> im <LEFT PART> is tr, 

tr 

tr 

i■ <LEFT PART> is <RIGHT PART> or 

im <LEFT PART> is tr. 

e is applicable to the simple sequence a if both 

a. the left part A of 8 is an envelope of a; 

b .. the condition Y of 1s satisfied. 

In order to establish whether Y is satisfied, the ''derived condition'' 

* Y is constructed as follows: Let it be the metasequence of ). , and T the 

te1·ainal sequence of a .. 

Bach indexed netavariable in Y which is similar to some indexed meta

variable in \J is replaced by the subsequence of 1' which corresponds to 

that indexed :metavariable. Then Y is satisfied if either 

* a. Y = tr, or -
* b. y is a tez·,1ainal sequence which has the value tr, or 

* c. Y 111 a metasequence which 1s an envelope of a truth e 
O 

in V (here 

tae truths in V are searched in the order defined in 2. 3 .5) . 

Suppose e is indeed applicable to a. ,, ti +E- • 
The derived right part p 1s 

constructed from the right part P of 6 as follows: Each indexed meta

variable in P Which is similar to some indexed metavariable inµ or 
* in Y :is .repl.aced by the corresponding 

tively .. 
subsequence of T or e respec-

0 
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2.3.5. The application of V. 

The truths in V are ordered in the following way: 

Let V be e
1 

The list of 

co 82 co 

truths V 

. • . co e . 
n Then 0. < 0. if and only if i > j. 

1 - J 
is applied to the determination of the value of a 

simple sequence a as follows: 

Step 1: If Vis empty, then the value of a is a; otherwise, step 2 is 

taken; 

Step 2: The first truth in the given ordering is considered; 

Step 3: If the considered truth 0 is applicable too then the value of 

a is the result of the simple evaluation (see below) of the 

derived right part of 8; otherwise, step 4 is taken; 

Step 4: If there is a next truth in the given ordering, then it is 

considered and step 3 is repeated; otl1erwise, the value of a 

is a. 

The result of the simple evaluation of the empty sequence is undefined. 

The result of the simple evaluation of a simple name is the value of 

that simple name. 

The result of the simple evaluation of a derived right part of the fon11 

{<NAME>} is equal to the result of applying the process defined in 2 .. 3 .1 

to the name concerned 1 where step 4 of that process is omitted. 

Remark: In the sequel, we shall not always strictly adhere to the termi

nology which has been introduced in this section. 

'' '' By 2.3.1, the word evaluate refers to a process consisting of two parts: 

a. The deter111ination of the values of a list of simple names. 

b. The addition of these values to V. 

However, we shall use the word '1 . '' evaluation also for the detennination 

of the value of a simple name, which is not followed by the addition of 

this value to V. 

From the above given definitions it follows that the addition of the 

value of a simple name to Vis omitted in the following four cases: 

a. The simple name is a derived condition. 

b. It is a terminal sequence of a simple primary. 

c. It is generated in 2.3.3, step 3, case a. 
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d. It is the first (in the order given in 2.3.5) element in the list 

of simple names of a derived right part. 

Therefore, it will be clear from the context which use of the word 

'' l t . '' · t eva ua ion 1s mean. 

Also, we will use ''evaluation'', where we mean ''simple evaluation''. 

2 .4. Sell!anti,cal ex~mple~, 

2.4.1. Examples of the concept of envelope. 

Suppose V has at a given moment the following content: 

01: a in <letter> co 

02: bin <letter> co 

63: <letter> in <identifier> co 

84: <identifier><letter> in <identifier> 

In this and subsequent examples we have numbered the truths in order 

to make it easier to refer to them in our comments. Actually, however, 

these n11mbers do not occur in V. 

Clearly, the above given list of truths is nothing but a transcription 

of the following grammar in Backus notation: 

<letter>::= a I b 

<identifier>::= <letter>l<identifier><letter>. 

Given this content of V, the following relations hold: 

<identifier> is an envelope of aba, 

<identifier>+ <identifier> is an envelope of ab+ ba, 

<identifierl><identifierl> is an envelope of abab but not of abba, 

<identifierl><identifier><identifierl> is an envelope of abab and of 

aba.aab (in the first case, the partition which gives this result is: 

T = Tl T2 T3 , where T = abab, t 1 = ab, 

T = ab and in the second case T = Tl 3 , . 

t = aa, T = ab). 
2 3 

is the empty sequence and 

T3 , with T = abaaab, Tl= ab, 

<identifier><identifier><identifier> is an envelope of abaaab (here the 

'' f 1 '' t . t . . ) succesu. p.ar 110n 1s -r = t 1 T2 -r 3 , T
1 

= a, T
2 

= b, t
3 

= aaab. 

<identifierl><identifier2> is an envelope of abab and of abba. 

<identifier><letter> in <identifier> is an envelope of bbb in 

. 

! 

I 

I 
l 

l 
i 

! 
' 

I 
I 

I 

l 

• 

' l 
l 
i 

! 
l 
I 
I 



21 

<identifier>, but not of bbb in <letter>, since in the second case the 

simple metavariables after in, i.e. <identifier> and <letter>, are not 

equal. 

We treat the first example in more detail. <identifier> is an envelope 

of aba, if aba in <identifier> has the value tr. Thus, Vis applied to 

the evaluation of aba in <identifier>. e
4 

is considered. T = aha is 

first partitioned into T = T 
1 

has the value tr, by applying 

= ba. a in <identifier> 

<letter> in <identifier> is treated as: trim <letter> in <identifier> 

is tr, the left part of this truth is an envelope of a in <identifier> 

(since a in <letter> has the value tr by e1 , and the simple metavariables 

after in are equal), and the condition is satisfied. Thus, the value of 

a in <identifier> is the value of tr, and the value of tr was defined 

to be tr. However, ba in <letter> does not have the value tr (0
3 

and e
4 

are not applicable, since the simple metavariables after in are differ-

ent from <letter>· ' that e2 and e1 are not applicable follows from step 

1 in the definition of 2.3.3). Thus, we conclude that the partition 

Tl= a, T 2 = ba, is not succesful. Therefore, the next partition is 

considered: Tl= ab, T 2 = a. ab in <identifier> has the value tr by 

applying e4 , e3 , e1 and e2 . a in <letter> has the value tr by e
1

. 

Consequently, e4 is applicable to aba in <identifier>, and we find 

that aba in <identifier> has the value tr, which means that <identifier> 

is an envelope of aba. 

2.4.2. Examples of the evaluation of a name (see also section 4.2). 

2.4.2.1. The Euclidean algorithm for the greatest common divisor 

(4.2, example 1). 

Let V consist of the following list of truths: 

e
1

: 1 <integer> in <integer> co 

0
2

: (<integerl>, <integerl><integer2>) is (<integerl>, <integer2>) co 

03 : (<integerl><integer2>, <integer2>) is (<integerl>, <integer2>) co 

64 : (<integerl>, <integerl>) is <integerl> 
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Then for each pair of natural numbers (n,m): 
--- -

The result of appl.jring V to the evaluation of (n,m) is gcd(n,m), where 
-= 
n stands for a sequence of n symbols 1. 

~otation): 
-

-·· - 63 
(5,2) ==> (3,2) 

Examples (. n an obvious 
,, . 

2 ) ==> (42, 3 
. 3 - 3 
=:= > ( 7 , 2) == > 

(42 105 ·. . 1 

-
(9,2) 

21,21) 
3 --· --.> (1,2) -- ... " --.,- -

(1, 1) 

V defines the Euclidean algorithm with repeated subtraction instead of 

division. The subtraction is automatically perfo11t1ed by the partitioning 

mechanism of tb,e envelope concept as a result of the requirement that 

subsequences corresponding to similar indexed metavariables be equa 1. 

2.4.2.2. Definition of lexicographical ordering (4.2, example 2). 

Let V consist of t.he following list of truths: 

81 : a in <letter> co 

62 : bin <letter> co 

83: c in <letter> co 

64 : din <letter> co 

85 : e in <letter> co 

&6 : <letter><word> in <word> co 

67 : <word> 2~41: <word> is false co 

68 : <letterl> ;e~~ <letter2> im <letterl><word> pre <letter2><word> co 
&g: 

a10·· t;i ' ' ' • 

<letterl><wordl>Er~ <letterl><word2> is <wordl> pre <word2> co 

<1etter1><word> p~e <letter!> is false co 

<letterl > 2r,~ <letterl><word> co 

812: <letter2> 2~~ <letter3> im <letterl> pre <letter3> 

is <letterl> pre <letter2> co 

113: <letter> 2re a is false co 
; -- z I 

&14: a pre b co 
. , . , T 

&15: 

116: 

&11: 

818: 

e il!~ d co 

d nre e co 
~ 1. !&, .. ,.,.J$ 111~!.t!I";) 

1 
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For each two words 

the value tr if w 
1 

w1 , w2 over the alphabet a,b,c,d,e}, w1 pre w
2 

has 

lexicographically precedes w
2

, otherwise w
1 

pre w
2 

has the value false. 

Example: the evaluation of dbc pre dee. 

By the first applicable truth, e9 , the value of dbc pre dee is the 

value of be pre ee. The left part of e
8 

is an envelope of be pre ee. 

Therefore, 08 is applicable to be pre ee, provided the derived condition, 

viz. b pre e, has the value tr. The left part of e
12 

is an envelope of 

b pre e. Thus, e12 is applicable to b pre e, if the derived condition, 

<letter2> pre e, is satisfied. This derived condition is not a terminal 

sequence. Consequently, the list of truths is searched for a truth which 

is enveloped by <letter2> pre e. 017 is such a truth.Hence, application 

of 812 to b pre e leads to the evaluation of the derived right part 

b pre d, where bis the subsequence corresponding to <1etterl> and d 

the subsequence corresponding to <1etter2>. By the same process it is 

found that the value of b pre dis the value of b pre c, which has the 

value tr by e15 . Thus, e8 is found to be applicable to be pre ee, and 

the value of be pre ee is tr. The final result is therefore that 

dbc pre dee has the value tr. 

• 



CHAPTER 3 

PROPERTIES OF THE METALANGUAGE 

• 

In this chapter we give some basic results on the relation between the 

:metalanguage and two subjects in the theory of fon11al languages. 

In section 1 we consider several definitions of computability, viz. 

Markov algorithms., Turing machines and recursive functions, and we prove 

that every function which is computable by means of one of these syst~ms 

is computable in terms of the metalanguage (a more precise forrnulation 

is given below). Since it is well known that the three systems are equi-
• 

valent, it would have been suffi.cient to give this proof for anyone of 

the definitions. However, we treat each case separately in order to have 

more examples to illustrate the various concepts of the metalanguage. 

In section 2 we make some remarks on the connection between the meta

language and a few aspects of the theory of phrase structure languages. 

In the sequel, it will be convenient to use the following te1·1ninology: 

If a name in the metalanguage has the forrt1 

{<LIST OF IIBTAEXPRESSIONS>t co <SIMPLE TERM>, 

• 

'' ,, then we consider the list of metaexp,ressions as a metaprogram for the 

silBple term. This is explained by the fact that the list of metaexpres

sions is left unchanged when it is added to V, whereas in the evaluation 

of the simple term we use the list of m:etaexpressions. When we apply the 

list of metaexpressions, 

evaluated by 

say v0 , to the simple te1·m o, we say that cr is 

and we denote the result by v
0

(o). 

Mo:reover, 'We introduce the following notation: An ''alphabet'' A is any 
~ 

finite noo empty set; the eleaen ts of A are cal led ·''symbols'·'. A denotes 

the set of all finite sequences of elements of A, including·the empty 
~ fl II 

sequence .. The elements of A are called words over A, the empty word 
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is denoted by £. For any a EA, and for any integer n > O, 

the sequence of n symbols a. 

n 
a denotes 

3 .1. Def_?-ni t,io~s of computS:bil~ ty 

3.1.1. Markov algorithms (for notations see 37 ; cf. also 4.2.2, 

example 5). 

Theorem: Let A= {a
1

, a
2

, .•• , a } 
n be an alphabet and 

••• , P + (•)Q be the scheme of a normal algori'thm in•A. n n 
(➔ (•) stands for either ➔ or+•). Let a be an arbitrary symbol not in 

A. Then there exists a metaprogram v0 such that 

to which OZ.is applicable: a. Ol'.(w
0

) = v
0

(aw
0
). 

* for each word w
0 

EA 

Proof: We define three lists of metaexpressions, v
1

, v
2 

and v
3

. For the 

set of terrninal symbols we choose A u {a.} 1 ). 

1" Vl 
• the list l.S 

• <symbol> • <symbol> • <symbol> al in co a2 l.Il co • • • co a 1.n 
n 

2. v2 
• the list l.S 

<symbol> <tape> • <tape> l. n 

3. For each subs ti tu tion for111ula P. -+ Q. of ot. we define an associated 
l. ]. 

truth T. as: 
l. 

a. <tapel > P .· 
l. 

<tape2 > is a <tapel > Q. <tape2>. 
]. - ,_,,.k. 

For each subs ti tu tion fo1·111ula P. -+• Q. we define an associated 
J J 

T. 

as: 

a <tapel> P. <tape2> is {a.<tapel> Q. <tape2>{ 
J - - - - J 

v3 is defined as Tn co Tn-l co •.. co T
1

• 

Then we define v0 as v
1 

co v
2 

co v3 . The proof of the assertion now 

follows from the following points: 

1. According to Markov's definition, a left hand member P. of a 
1 

J 

* substitution for1r1ula P. ➔ (•)Q. enters into a word w EA if and only 
l. 1 

* if w has the form w = uP. v, with u, v EA • This is equivalent to our 
1 

l) This set is not a subset of the set of terminal symbols, given in 

chapter 4. However, it is easy to define a mapping from Au {a.} into 

this set, for example, a 1 corresponds to al, a to alpha, etc. 
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definition of envelope, where we require that there exist a partition 

of w, w = w
1 

w
2 

w3 , such that <tapel> is an envelope of w1 , Pi= w2 , 

and <tape2> is an envelope of w3 • 

2. Markov's requirement of selecting the first entry corresponds to our 

requirement of selecting the smallest partition. 

3. Markov's definition of the way in which Vis applied to the trans

formation of a word w, i.e. by first trying to apply P1 ➔ (•)Q1 , in 

case of success continuing with the transforr11ed word, where P 1 
replaced by Q

1
, otherwise by trying to apply P 2 ➔ ( • )Q2 , etc., 

the same as our way of applying V. 

• 1S 

• 1S 

4. In Markov's definition, the process is stopped if one meets the 

symbol ➔•, while in our definition the value of a metastring is also 

found immediately and not by applying V again. 

5. In Markov's definition, if none of the substitution formulae is 

applicable to ,v, the result of applying ot. to w is w itself. The same 

holds ft>1· the eva.lua tion of w by means of V
O

• 

6. From 3,4 and 5 it follows that the evaluation of w by means of ot 

tex·mina tes if and only if the evaluation of w by means of VO ter1nina tes. 

7. We have introduced the extra symbol a in order to ensure that the 

length of the sequence which is evaluated is always > 1. This is 

necessary because in Markov's definition it is possible that w0 or 

one of its transforms is empty, whereas the evaluation of the empty 

sequence in the metalanguage is undefined .. 

Apparently the metalanguage can be considered as an extension of Markov 

algorithms in the sense that every basic concept of Markov's system is 

contained in the metalangua.ge. The main extra features of our system are: 

1. The use of metavariables. 

2. The possibility of dynamically adding new truths. 

3. The use of a condition in the truths. 

3.1.2. Turing machines. 

In this section we use the terminology of Davis 16, except for his 

use of the terin ''internal configuration'', which 1 b '' t t ,, we rep ace y s a e. 

Cf. also 4.2.2, example 6. 
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Theorem: Let Z be a simple Turing machine. There exists a metaprogram 

v0 such ·that for each instanteneous description a, v
0

{a) 

where Resz(a) is the resultant of a with respect to Z • 

= Res (a.), z 

Proof: Let ... , S} be the alphabet of Z, and Q = 

1 1 J1 1 1 
. . . ' 

E L U { R, L}, for p = 

n 
set of states of Z. Let Z be the set of quadruples 

q . 
l. 

r 
1, 2, 

} , with and 

... ' r. 

We define five lists of metaexpressions v
1

, v
2

, ••• , v
5

• (In this and the 

following proofs we do not explicitly list the set of tennlnal symbols, 

since this can be obtained easily from the construction of v
0

.) 

1. 

2. 

4. 

Vl 
• the list J.S 

• 

so in <symbol> co s
1 

• 
in <symbol> co ..• co 

v2 
• the list l.S 

<symbol><tape> • <tape> in 
• 
1S the list 

q1 in <state> co q 2 in <state> co ... co qm 

v4 is the list T4 l co T4 2 co T4 3 co T4 4 , , J J 

T4 1 is <statel><symboll><symbol2><state2> 

' <tapel><statel><syrnboll><tape2> is 

<tapel><state2><symbol2><tape2> 

T
4 2 

is <statel><symboll> R <state2> im , 
<tapel><statel><symboll><tape2> 

<tapel><symboll><state2><tape2> 

T4 3 is <statel><Symboll> R <state2> 

' 
• 1m 

• 
1S 

<tapel><statel><symboll> is 

<tapel><symboll><state2> s
0 

<statel><symboll> L <state2> im 

• 
1S 

s 
n 

in <symbol> 

in <state> 

co T
4 5

, where , 
• 
l.ffi 

<tapel > <symbol2 > <s ta tel> <symboll > <tape2 > is 

<tapel ><state2 ><symbol2><symbol1 ><tape2> 

T4 5 is <statel><symboll> L <state2> im 

' <statel><symboll><tapel> is 

<state2> s
0 

<symboll><tapel> 

5. v5 is defined to be the list of quadruples of z, separated by meta

commas. 
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v
0 

is defined as v1 co v2 co ••• co v5 . 

Let a, f3 be two instanteneous descriptions. The proof of the assertion 

now fol lows from Davis' definition of the relation a ->- B ( 16], Ch .1, 

def. 1.7). 

There are five possibilities: 

* 1. There exist tape expressions P ,Q E E , 

B = pqlSkQ, and Z contains qiSjSkql. 

cable to a, since 

such that 

This means 

a= Pq.S .Q, 
l. J 

that T4 1 is appli-

' 

a. <tapel> is an envelope of P, by applying the truths in v1 and v2 , 

b. <statel> is an envelope of q., by v 3 , . 1 

c. <symboll > is an envelope of S j, by V 1 , 

d. <tape2> is an envelope of Q, by v1 and v2 , 

e. The derived condition is q.S. <symbol2><state2>, 
1 J 

f. qiSj <symbol2><state2> is an envelope of the truth qiSjSkql' 

which is one of the trutl1s in v5 . 

Thus, the condition of T4 1 is satisfied, and the value of , 
Pq1S.Q is the value of the derived right part of T 

4 1
; i.e. , 

. J , 
the value of Pq 1SkQ, where this derived right part is constructed 

as follows: 

a. <tapel>,' which also occurs in the left part of T4 1 , is replaced , 
by P, 

b. <State2>, which also occurs in the derived condition, is replaced 

by ql' 

c. <Symbol2>, which also occurs in the derived condition, is re-

placed by Sk, 

d. <tape2>, which occurs in 

2. a= Pq.S.SkQ, B = PS.qlSkQ, and 
l J J 

it follows in the same way that 

3, 4, and 5 are treated similarly. 

the left part, is replaced by Q. 

Z contains qiSjRql. By applying T
412 

the value of a is the value of S. 

Finally, if a is terminal, then none of the truths in VO is applicable 

to it. 

3.1.3. Recursive functions. 

In this section we use the tenninology of Mendelson 7 . 



29 

Theorem: There exists a metaprogram v0 such that for each partial 

recursive function f of n arguments and for each n-tuple (x
1

,x
2

, ..• ,xn) 

for which f is defined the following holds: Let¢ be the notation in the 

metalanguage for the function f, and~ for the integer list 

. . . , X • n 
(This notation is introduced in the proof.) 

X ) • 
n 

Proof: We define nine lists of metaexpressions: 

le Syntactic definition of integer and integer list (V1): 

1 <integer> in <integer> co 

<integer> in <integer list> co 

<integer>, <integer list> in <integer list> 

A sequence of n symbols 1 denotes the integer n-1. 

2. Syntactic definition of the initial functions 

Z in <function> co 

N in <function> co 

U <integer> 1 in <function> 

(V )· 2 . 

3. Syntactic definition of the rules for obtaining new functions from 

given functions by means of substitution, recursion, and the~

operator (V
3
): 

<function>(<function list>) in <function> co 

p <function><function> in <function> co 

<function> in <function> 

4. Syntactic definition of function list (V4 ): 

<function> in <function list> co 

<function>, <function list> in <function list> 

5. Definition of the value of the initial functions (V5 ): 

Z(<integer list>) is 1 co 

N(<integerl >) is <integerl> 1 co 

U <integerl> 1 (<integer!>, <integer listl>) is 
' 

U <integerl> (<integer listl>) co 

U 11 (<integer!>) is <integerl> co 

U 11 ( <integerl >, <integer list>) is <integerl > 
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6. Definition of the result of substituting a list of functions in a 

function (V
6
): 

<functionl>(<function listl>)(<integer listl>) is 

<functionl>(va{<function listl>(<integer listl>)}) co 

<functionl>, <function listl>(<integer list1>) is 

va <functionl>(<integer listl>)t, va <function listl>{<integer listl>)} 

7. Definition of recursion (V7): 

p <functionl><function2>(<integer listl>, <integerl> 1) is 

<function2>(<integer listl>, <integerl>, 

va p<functionl><function2>(<integer listl>,<integerl>)}) co 

p <functionl><function>(<integer listl>, 1) is <functionl>(<integer listl>. 

8. Definition of equality to zero 

1 = 1 co 

(V ) : 
8 

<functionl>(<integer listl>) = 1 is va{<functionl>(<integer listl>)} = 1 

9. Definition of the µ-operator (V
9
): 

v9 = T9 1 co T9 2 co T9 3 , where 
1 1 1 

V 
0 

T9 l is 
J 

µ <functionl>(<integer listl>) isµ <functionl>(<integer listl>) : 1, 

T9 2 
is , 

µ <functionl>(<integer listl>) : <integerl> is 

µ <functionl>(<integer listl>) : <integerl> 1, 

T9 3 is , 
<functionl>(<integer listl>, <integerl>) = 1 im 

µ <functionl>(<integer listl>) : <integerl> is <integerl> 

T9 3 tests whether <integer listl>, <integerl> is a zero of <function!>. , 
If this is not the case, then <integerl> is increased by one by apply-

ing T9 2 , and 
t 

f was defined 

T9 3 is tried again. This process must terminate since 
J 

for ( x 1 , x 2 , . • • , X ). 
n 

is defined as the list v1 co v2 co . . . co V 
9

• 

The proof now follows from the construction of v0 . 
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3.2. Phrase structure languages and the metalanguage 

In this section we first recall the definition of a phrase structure 

language, we define Chomsky's type 3, type 2, type 1, and type 0 

languages and we introduce the various abstract machines which define 

the different types of languages. Then we prove that for each type 0 

language there exists a metaprogram which generates this language. Next 

we investigate the ressemblance between our notion of envelope and the 

way in which one recognizes whether a word belongs to a context free 

language. Then we give a simple example of the recognition of a context 

sensitive language and finally we exhibit definitions in terms of the 

metalanguage of the above mentioned abstract machines. 

3.2.1. Definition of phrase structure languages. 

The definitions in this section follow Ginsburg 22 . 

A phrase structure grammar is a 4-tuple G = (V, r, P, o), where 

1. Vis an alphabet, 

2. t: c V is an alphabet (the set of te1·1ninal symbols), 

3. P is a finite set of ordered pairs (u, v), u E (V \ I:)* - { E}, v E v *, 
4. OEV - I:. 

The elements of V - rare called (metalinguistic) variables. The elements 

(u,v) of Pare usually written u ➔ v. 

Let G = (V, E, P, o) be a phrase structure grammar. 

* * For w,y EV, we write w --> -- y, if there exist z
1

, z , u , v E V , such 
2 

that w = 2:]_ u z
2 

, y = z
1 

v z
2 

, and u ➔ v E P. 
* ),( For w,y EV , we write w ===> y, if either w = y, or there exist w0 = w, 

w = y such that w. r 1 
--> -- w. 1 1+ 

for i = 0, 1, ... , r-1 . 

If G = (V, E , P, o) 

L (G) = w E i: * I cr 

is a phrase structure grammar then the subset 

--> -- w} of * E is called a phrase structure language. 

A phrase structure language is called £-free if it does not contain the 

empty word. 

Remark: In the remainder of this chapter we restrict ourselves to £-free 

languages. This is only a matter of convenience, since, by using a device 

as in theorem 3.1.1, it would have been easy to avoid it. 
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'' '1 Each phrase structure grammar is called of type O. 

A phrase structure grammar G = (V, E, P, cr) is called of type 1 or 

context sensitive if all elements of P have the fo1·1n u~v ➔ uyv, 

I u, V € (V - I:)*, ' EV - r and y Ev* - { s}. 
G is called of type 2 or context free if all elements of P have the 

fo1·1n ~ ➔ v, * V € V • 

G is called of type 3 if it is either left linear or right linear; it 

is left linear (right linear) if all elements of P have the fo1·1n ~ ➔ u 
~ 

or t; ➔ w ( t; -+ u \J) , with ~, v EV - E, u E E • 

A phrase structure language Lis called of type i, i = o, 1, 2, 3, if i 

is the largest number such that there exists a grammar G of type i such 

that L = L(G). 

A finite automaton is a 5-tuple A= (K, r., 6, q 0 , F), where 
t f f I) 1. K is a finite non empty set (of states , 

2. L is an alphabet (of ''inputs''), 

3. 6 is a mapping from K x i.: into K (the ''next state function''), 

4. q
0 

E K (the ''initial state''), 

5 • F c K (the set of '' f i na 1 s tat es'') . 

6 is extended to K x (Z: * - { e: \) as fol lows: 

o(q, aw) = o( o(q, a), w), where q E K, a E E and w E E * - { E:}. 

Let A be a finite automaton. Then 

* T(A) = {w E E -

'' ., T(A) is the set of words accepted by A. 

A pushdown automaton is a 7-tuple M = (K, E, r, o, z 0 , q 0 , F), where 

1. K, E, q
0

, Fare defined as for finite automata, 

( '' tf 2. r is a finite non empty set of pushdown symbols), 

3. z
0 

E r ( the ''initial pushdown symbol'') , 

4. o is a mapping from K x Ex r into the set of all finite subsets 

* of K X r . 

We define the relations ~ ·and ~ as follows: 

* * * For ql, q2 EK, a E }: , w E t: , ct E r , z E r, y E r , 
(q

2
, w, ya), if o(q1 , a, z) contains (q

2
, Y). 
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(q' 

(p, 

- q -

(p. ' 1 

1 < 

* p,q EK, W EL , 
~ w, a.) 1-- (q, w, 

al a2 • • • ak w, 

EK, and °'1 
- ex. ' -

a. a. 1 1 1+ ••• ak 
• < k • 1 

a. E E (1 
1 

ex.) and 

a) ~ (q' 

< i 
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* < k) , et, S E r , 

w, S) if there exist p
1 

= 
* ak+l = B E r such that 

(pi+l' ai+l ai+2 •·· ak 

Let M be a pushdown automaton. Then 

w, a.. 1 ), for 
l.+ 

(q, e:, a) for some q EF and a Er 
( ) 

1, ., 
TM is the set of words accepted by M. 

The following theorems are known: Let r be an alphabet. 

1. A subset L * of E • 
1S a type 3 language if and only if it is accepted 

by some finite automaton 13 . 

* 2. A subset L of E is a type 2 language if and only if it is accepted 

by some pushdown automaton 2 . 
)( 

3. A subset L of E is a type 1 language if and only if it is accepted 

by some linear bounded automaton 

• 

(for the definition of linear bounded automata and the proof of this 

theorem see Kuroda 9]). 

* 4. A subset L of 1. is a type O language if and only if it is generated 

by some Turing machine (see 3.2.2). 

3.2.2. Type O and type 2 languages. 

Theorem: Each type O language can be defined by means of the meta

language. 

Proof: Follows immediately from theorem 3.1.3 and the fact that each 

type O language is a recursively enumerable set 1 . 

Since context free languages fo1"rn a subclass of the class of all phrase 

structure languages, this theorem also holds for context free languages. 

However, we give a separate proof of this special case, because 

a. This case can be proved directly, i.e., without using recursive 

functions. 

b. The proof illustrates the relation between the concept of envelope 

and the way in which one recognizes whether a word belongs to a 

context free language. 
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Theorem: Let L be an £-free context free language. Let G = (V, E, P, cr) 

be a grammar for L. Then there exists a metaprogram v0 such that for 

each w € t* - { e:} : 

w E L if and only i f V (win <o>) = tr. 
0 

Proof: We construct a grammar G' = (V', E, P', cr) such that 

1. L(G') = L(G). 

2. The rules of P' have either the form A ➔ BC or D + d 

(A, B , C , D E: V ' - E , d E E) • 

For this construction see e.g. [11]. 

With each rule in P' we associate a truth as follows: 

If the rule has the for111 A -+ BC, then the associated truth is 

If the rule has the form D -+ d, the associated truth is d in <D>. 

v
0 

is defined as the list of truths which are associated with the 

rules in P' • 

We now prove: For each A € V' - 1. and each w E r.* - { e: 1, it follows 

that A --> -- w if and only if v
0 

(win <A>) =tr.By considering the 

special case A= a, the theorem follows immediately from this equivalence. 

1. Let A€ V' - >: and w E [* - { e:}. Suppose A 
),( 

--> -- w. We prove that 

VO 

a. 

( w in <A>) - tr, by induction on the length of w. -
* Suppose has length 1' 

• a E E. A --> • necessarily w i.e. w - w l.S - --
* a derivation of length 1' 

• A l. • e. --> • simply A --> w l.S -- --
This means that A + a E P', whence a in <A> EV 

O
• Therefore, 

a in <A> has the value tr. 

w(=a). 

b. Suppose the assertion has been proved for any B EV' - r with a 

word w of length< n. Suppose A 
)( 

--> -- w, where w has length n. 

Then there exists C,D EV' - E such that A --> -- CD --> --

(This follows from the special forrr1 of the grammar G' • ) 

There e.xist u, v Er* - { s 1, such that C ~=> 

w = uv ( [22], lemma 1.4 .6). By the induction 

u, D ==> 

hypothesis 

w. 

v, and 

v0 (u in <C>) = tr, and v0 (v in <o>) = tr. Moreover, <C><.D> in <A> 

is a truth in v0 ; hence, it follows that win <A> has the value tr 

by the definition of envelope. 
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Suppose v
0 

(w _i_n <A>)= tr. We prove A --> -- w, again by induction 

on the length of w. 

a. If w has length 1, i . e. w = a E E, then a in <A> E V · hence O' , 
A ➔ a E P 1 

, Therefore , A --> -- w. 

b. Suppose the assertion has been proved for each BEV' - E with w 

of length< n. Suppose • 1n <A>)= tr. According to the defini-

tion of envelope there is a truth in v
0 

of the fo1·1n <C><D> in <A>, 

and a partition of w, w = uv, such that tr and 

v. A 

from A -+ CD, 

A ==> CD 

C 
)( 

--> --

tr. By the induction hypothesis, C --> -- u and 

v
0

. Thus, CD • rule • P' l. s a in by the definition of 
)( * --> -- u, D --> -- V and w = uv it follows that 

UV - w. -

3 .. 2.3 .. A type 1 lar1guage (cf. 4.2.2, example 7) .. 

n > 1 } is not a type 2 language ( 22 ) . Therefore, 

we cannot use the second theorem of 3.2.2 to recognize whether a word 

belongs to this set. However, by using more of the mechanism of the 

me1.alanguage, it is possible to construct a metaprogram v
0 

which does 

perform this recognition. 

Let v0 be defined as: 

a <as> in <as> cob <bs> in <bs> co 

aba in <ABA> co 

<asl> a <bsl> b <asl> a in <ABA> is 

<asl> <bsl > <asl > in <ABA>. 

It • to that: l.S easy see 

1 . V (ap bp ap • <ABA>) tr, for each > 1. 1n - p -0 
2. For p ;I:. q, 

pl ql Pl 
V (ap bq ap <ABA>) • 

<A.BA>, where • b in - a a 1 n -
0 

Pl - p + 1 - min(p,q), ql - q + 1 - min(p,q). - -
w E {a,b}* -3. v

0
{w • <ABA>) • <ABA> for each other word in = w l.n €. 

3.2.4. Definition of abstract machines. 

In this section we show how to define each of the four abstract machines 

that def i11e the type 3, 2, 1, and O phrase structure languages in terms 

of tl1e metalanguage. 
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3.2.4.1. Finite automata (cf. 4.2.2, example 8). 

Theorem: Let A= (K, r., o, q
0

, F) be a finite automaton. 

v
0 

(q
0

w) = tr if and only if w E T(A). 

Proof: Let K = 

F ={qi' 
We defi!e 

q. ' ••. ' 
12 

six lists 

qi } . 

f r t . . o me aexpress1ons. 

1. V 
1

, V 
2

, and V 
3 

are defined as in the proof of theorem 3 .1. 2 

2. v4 is defined as 

q
1 

in <final state> co q 1 
1 . 2 

3. V is the 11st 5 . 

in <final state> co .•• co 

<statel ><symboll ><state2> im 

<statel><symboll><tapel> is <state2><tapel> co 

<final state> 

4 .. For each 

the list 

= q, we 
k 

truths. 

define an associated truth q. 
1 

a. 
J 

in <final state 

is 

Let v0 
be V co l . 

v
2 

co ... co proof now follows :from an argument 

similar to that used in the proof of theorem 3.1.2. 

Reaark: The notation used in 4.2.2, example 8, differs slightly from the 

one used in this proof. 

3.2.4.2. Pushdown automata (cf. 4.2.2, example 9). 

Theorem: Let M = (K, r., r, o, z
0

, q
0

, F) be a pushdown automaton. There 

if and only if v
0

(q
0 

w z
0

) contains the metasymbol tr. 

Let K = I: r = . . . , 

p 1 12 1 
v0 is constructed from ten lists of metaexpressions (we assume that K, E 

and r are disjoint sets): 

1. v1 , V 2 , V 3 and V 4 are defined as in the proof of theorem 3. 2. 4 .1. 

2. v5 is the list 

z 0 .. in <.Pd symbol> co ••• co z in <pd symbol> .· . . p 
•
1pd11 is aD abbrevation of ''pushdown''. 
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3. v6 is the list 

<pd symbol><pd tape> in <pd tape> 

4. v7 is the list 

<pd tape> in <pd tapelist> co 

<pd tape>, <pd tapelist> in <pd tapelist> 

5. v
8 

is the list 

<state><statelist> in <statelist> 

T9 l is 
' <Statel><symboll><pd symboll><statelistl><pd tapelistl> 

<statel><symboll><tapel><pct symboll>.::_pd tapel> 

<statelistl><tapel><pd tapelistl>, .::_pd tapel> 
I U 

T
9 2 

is 
J 

• 
l.S 

• 
i.m 

<statel><statelistl><tapel>.::_pd tapel>, .::_pd tapelistl>, .:pd tape2> is 

{<statel><tape1>2_pd tapel.::_::pd tape2> co 

<statelistl><tapel><pd tapelistl>, <pd tape2>} 

T
9 3 

is 

' <statel><tapel>.::_pd tapel>, _3Jd tape2> 

<statel><tapel>_::pd tapel><pd tape2> 

T
9 4 

is 

' 

• 
1S 

<statelist><final state><statelist><pd tapelist> 

7. v
10 

is constructed as follows: 

With each c(q., a., zk) = {(q_, u. ), ••• , 
l. J 1 1 1 1 

q . J q . ' ..• , q . E K , a . E ~: J zk E r I u . , 
l. 11 1 J 11 

(q. , u. ) } , where 
1 1 ~l 

••• 1 u . E f , 1 > 1 , we 
11 

. • . q. 
1 J 1 1 1 2 1 r 

U. I U. , •••f 
11 12 

u. . 
1 r 

v
0 

is the list of these associated truths, separated by metacommas. 

Then v 
O 

is defined as v1 co v2 co ••. co v10 . 

The proof is again similar to the proof of theorem 3.1.2. The non-deter-

ministic character of the pushdown automaton is 
• 

represented by T9 2
: as 

' a result of this truth the different courses of action which the push-

down automaton can take, corresponding to the different choices from the 

sets 0 (q, a, z), are all treated successively. If one of these combina

tions leads to the value tr (by application of T
9 4 ) then it follows that 

' 

• 
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Remark: Again there are some inessential differences with 4.2.2, 

example 9. 

3.2.4.3. Linear bounded automata. 

Kuroda has proved that a phrase structure language is a type 1 

language if and only if it is accepted by a linear bounded automaton. 

Essentially this is a non deterzninistic ''Turing machine'', with a finite 

memory; i.e., an equivalent metaprogram can be constructed for a linear 

bounded automaton by modifying the metaprogram which was constructed 

in the proof of theorem 3.1.2 as follows: 

a. T4 3 
and T

4 5 
are deleted, since these truths give the possibility 

. ' 
of extending the tape indefinitely to the left and right. 

b. S,ome truths are added which represent the fact that one now has a 

choice from different states for the next state. This can be done 

in a manner similar to the one used in T9 2 in the metaprogram of 
J 

3.2.4.2. 

3.2.4.4. Turing machines. 

A set 1s a type O language if and only if it can be generated by a 

Turing machine. The construction of a metaprogram, equivalent to a 

given Turing machine, was given in 3.1.2. (Cf. also the first 

theorem of 3.2.2 .). 



CHAPTER 4 

DEFINITION OF THE METAIANGUAGE 

In this chapter the processor is defined by an ALGOL 60 program. After 

this 1 several examples are exhibited of the evaluation of a name by 

the processor .. 

4.1. The ALGOL 60 program for the processor 

First we give a general survey of the program. 

We distinguish six groups of procedures: 

1. The input procedures 

InitO, lnit, RFS, symbol, read metavariable and read underlined 

symbol. 

The input/output medium used is paper tape, punched in MC flexowriter 

code. Heptads from the input tape are read by means of the code 

procedure REHEP (see group 6). 

The input procedures are defined in such a way that: 

a. A terrninal symbol of the metalanguage is either a flexowri ter 

symbol {these are listed below), or an underlined sequence of 

flexowriter symbols, different from each of the metasymbols. 

ti. A metavariable is defined as in chapter 2, section 1. 

Th t . bl . d t d b th b 1 '' < '' '' <'' us, a me avar1a e 1s eno e y e sym o or _, a 

sequence of metaletters, possibly a sequence of metadigits, and 

''>'' or ''>'' the symbol _ respectively. 

Due to the restricted character set on the flexowriter, we have 

no way of distinguishing between metaletters (metadigits) and 

letters (digits) which occur in the language we want to define 

(e.g. ALGOL 60). In ALGOL 60 this causes no special problems, 

since a combination like '' < 
' 

sequence of letters, >'' will not 
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o,ccur in a syntactically correct program. If one should want 

to define a language in which this combination may indeed occur, 

one should use another denotation for the metavariables. 

c. Te1·ainal symbols, meta.symbols and metavariables are represented 

uniquely by integers. 

d. Rach n•e is required to end with a stopcode punching (a stopcode 

is a punching symbol that leaves no visible mark on the type

writer s.heet) • 

2 .. The output procedure outputO. 

Heptads are punched on the output tape by means of the code proce

dure PUHBP (see 6) • 

3. The procedures 

SIMPLE NA.ME, LIST OF ME'I'AEXPRESSIONS, SIMPLE TERM, SIMPLE FACTOR, 

MIR'l1A.EXPRESSION, LEFT PART, RIGHT PART, LIST OF SIMPLE RIGHT PARTS, 

Sll&l,E RIGHT PART, IND METATERM, IND METAFACTOR, TERMINAL SEQUENCE, 

METABBQUENCE., IND MITASEQUENCE, and SIMPLE ME'fAVARIABLE. 

These procedures check the syntax of the name which is offered to 

the processor. They reflect the rules for the syntax of the meta

language of chapter 2, section 1. 

(The technique used here was inspired by [28 ) • 

4. The auxiliary procedures 

Terminal symbol, Simple metav, Metav, Ind metav, Opt metav, Ind 

simple •etav, Ind opt metav, Non ind metav, similar, metaletter, 

metadigit, error, and add to Sequence. 

5 .. The procedures 

NAME, add to V, envelope, evaluate, derive condition, derive simple 

rish,t part, and derive right part. 

These procedures contain the definition proper of the processor. 

A call of the procedure NA.ME results in the determination of the 

value of the :first simple name of the name which is offered to 

the processor by means of a call of the procedure evaluate, the 

addition of this value to V by means of a call of the procedure add 

to V, and, if necessary, a recursive call of NAME to treat the rest 

of the name. 
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6. The following library routines which are available without declara

tion in the MC ALGOL system: 

react: 

REHEP: 

PUHEP(f): 

PUNLCR: 

a function designator, assigning to its identifier 

the next number on the input tape. 

an integer procedure, assigning to its identifier 

the value of the next heptad on the input tape. 

a procedure, punching the value off (0 < f < 127) 

as a heptad on the output tape. 

a procedure, punching a new line carriage return 

symbol on the output tape. 

ABSFIXP(n,O,x): a procedure, punching the absolute value of x, 

rounded to an integer, using n digits and replacing 

leading zeroes by spaces. 

PUTEXT(string): a procedure that punches the actual string on tl1e 

output tape. 

RUNOUT: a procedure that punches a piece of blank tape. 

Remarks: 

1. The left and right metaparentheses which are defined here to be 

denoted by (and), are denoted in the explanatory chapters (i.e. 

chapters 2, 3 and 6) by f and}. 

2. No restriction is imposed on the length of a sequence of metaletters 

in a metavariable. However, we have not bothered to include a mecha

nism to allow arbitrary length of a sequence of metadigits. At most 

five metadigits are permitted in an indexed metavariable. 

List of flexowriter symbols: 

a, b ••• , z, A, B, ••• , Z, 0, 1, ••. , 9, 

A V X / = ; [ ] ( ) I '' ' ? • 7 -< > + . . . 1 0 , 

For the separation of underlined sequences of flexowriter symbols the 

lay-out symbols space, tab and new line carriage return are used. 
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comment Definition of the processor, de Bakker,R1111, 211o66; 

!,~-~esle:. bound V, bound Sequence, bound Im, bound M, bound C'?rmoas, • 
bound auxu, bound au:x::r:n, bound Metava, bound Underlined symbol., 
botmd Im:= read; bound M:= read; bound V:= read; 
bound Sequence:= read; bound Corriroa 8: = read; bound auxu: = read; 
bound au.xn:1!= read; bound Metava: = read; 
bound Underlined symbol:= read; 

bee;in 
,.,, in'teger space, tab,newline,bla.nk, erase, bar, underlining, less,more, 

" ,, · ''" ,,, " upper case., lower case, left par., right par, stopcode; 
inte§er im,in,is,va..,co,tr,leftmetapar,rightmetapar, 
· · · leftquote,rightquote,aptopen,optclose,terminator; 

!n,t~er case,next RFS,next symbol, index; 
~.~t~§er s, v,n1J·rtlber of metavariables,n11mber of underlined syrnbols, 

k.,l,number of truths,c,m; 
boolean f1 t, first; 
In§e~ ~~.~ V[O:bound V],Sequence[O:bound Sequence], 

Matava( O:bound Metava ], 
Underlined symbol[ O:bound Underlined sy1obol], 
a1J.xm( 0: bound aux:rn], auxu[ 0: bound auxu J, Im, Is, Cornrna., 
Length1, Length2( O:bound Im), Cor·mna s[ O:bound Cotcatre.s], 
M1,M2,M3,M4[ O:bound M]; 

co11oent V is the list of truths.,Sequence the sequence that is 
evaluated.Metava, Underlined symbol, attxtt1 and au.xu are used 
for the representation o:f metavariables and underlined 
symbols by integers.Im,Is,Coin,oa, Length1,Length2 are used 
for the admjnistration of V.Co1runas is used :for non-simple 
right parts.M1,M2,M3,M4 are used to store in:f'o11oation 
a.bout similarity of indexed metavariables; 

procedure InitO; 
b~§:~n co11ment Initialization o:f some global variables.The array 

Underlined s ol is filled with the underlined 
metasymbols, < and > ; 

inte§e
2
r i.,m, n, s, v, a, c, o, t, r; 

space ·- read; .-
tab ..... .- read; 
newline ·- read; .-

less := read; 
more : = read; 
stopcode:= read; 

lower case 
upper case 
underlining 

right par 
le:ft par 

·- read; .-
·- read; .-
·- read; .-

:= read; 
:== read; 

erase read; ·-.-
blank read; ·-.-
bar read; ·-.-
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• 1; 4; lef'tmetapar . - 7; im ·- va ·-.- .- .-
• 2; 5; rightmetapar ·- 8; in ·- co ·-.- .- .-
is ·- 3; tr ·- 6; .- .-

optopen 
optclose 

. - 9 .. .- , lef'tquote 
rightquote :== 

:== -1; 
-2; 

terminator:= -10; 

• l ·---
a ·-·-

read; 
read; 

·-1 o· .- , 

m:= read; 
c := read; 

n ·-.-
O ·-.-

read; 
read; 

S ·-.-
t ·-.-

read; 
read; 

i:= number of underlined symbols:= O; 

V ·-.-
r ·-.-

read; 
read; 

for Underlined symbol[l]:= O,i,m,i,n,i,s,v,a,c,o,t,r, 
left par,right par,less,more 
do l:=l + 1; 

l:- 16; Underlined symbol[l]:= more; 

for auxu[number of underlined symbols]:= 0,2,4,6,8,10,12, 
1 3 , 14, 1 5, 1 6 do 

nucober of underlined symbols:= n1.1mber of underlined 
symbols + 1; 

n1Jrtiber of underlined symbols:= 1 O; 
auxu[nl1mber of underlined symbols]:= 16 

end InitO; 

procedure Ini t; 
begin comment Initialization of the evaluation of a name; 

case:= next RFS:= next symbol:= s:= v:= n1.1mber of metavariables:= 
number of' truths:= c:== m:= aux,,,[O]:= O; 
Cornroo.[ O] : = -1; 
:fi.rst: = true; 

for k:= 0 step 1 until bound Im do 
Im[k] := Is[k] := Length2[k] := O; 

for k:= 0 step 1 until bound Comrnas do Comm,is[k] :== O; 

k:= O; 

n11mber or underlined symbols:;;; 1 O; 1: = 16; 
RFS(true); s ol 

end Init; 
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integer procedure RFS ( f); value f; boolean f'; 
begin comment RFS reads a flexowri ter s .u.A,l..,/ol. The para.meter f' deterrnj nes 

whether the symbols space,tab and newline are skipped; 
integer heptad; RFS:= next RFS; 

if next RFS = stopcode then goto end; 
L: heptad::: REHEP; 

end: 

if heptad = blank V heptad = erase V 
f /\ (heptad = tab V heptad = space V heptad = newline) 

then goto L; 
if heptad = lower case then begin case:= O; goto L end; 
if heptad =uppercase then begin case:= 128; goto Lend; 

next RFS := heptad + ( if heptad = stopcode V heptad = space V 
heptad = tab V heptad = newline 
then O else case); 

end liFS; 

;proce~re symbol; 
C A II 

begin corma,ent To the global varit:ible next symbol an integer is 
assigned,representing: 
one of the symbols for *,or 
a metavdriable,or 
an underlined ter1ni.nal symbol, or 
an underlined metasymbol,or 
a non-underlined termjnal symbol; 

,in,te~er: temp; index:= O; 

start:temp:= RFS(true); 
if temp= bar 

then begin 

end 
if temp= less 

then begin 

end 

if next RFS = less then 
begin RF1S (true) ; 

next symbol:= leftquote 
end el~:ie 
if next RFS = more then 
begin R}'S (true); 

end 
goto 
else 

next symbol:= rightquote 
else 
te:r·ro). nal 

temp:= read metavariable(less,start,open); 
RFS(true); 
next symbol:= temp 
else 



if temp= underlining 
then begin next symbol:= read underlined s~ 01; 

open: if next symbol= optopen then 
begin temp:= read metavariable(optopen, 

start, open); 

end 
end else 

if temp= stopcode then 

next symbol:= temp+ 200 

next symbol:= terminator else 
terminal: 

end 
next symbol:= temp+ 300 
symbol; 

integer procedure read metavariable(f,start,open); 
value f; integer f; label start,open; 

begin corritoent The meta variable is represented by an integer. 
Complications are caused by the possibility of the 
occurrence of sequences such as:< ab12 >. 
This is not a metavariable,but a sequence of six 
ter·rnj nal s u.i..;Ols; 

integer i,j,k1,k2,aux,length; 
aux:= read metavariable:= O; 
k 1 := k; 
for i:= next RFS while metaletter(i) du 
begin RFS(true); k:= k + 1; Metava[k]:= i end; 
k2:= k; 
for i:= next RFS while metadigit(i) do 
begin RFS(true); k:= k + 1; Metava[k]:= i end; 
if next RFS = underlining then 
aux:= read underlined symbol; 
if kl= k2 V (if f = less then next RFS t more 

begin 

end; 

S ·-.- s + 1; 
else 

Sequence[ s]: = 
aux t optclose) then 
if f ~ less then less+ 300 

else optopen; 
for i:= kl+ 1 step 1 until k do 
begins:= s + 1; Sequence[s]:= Metava[i] + 300 end; 
k: = k 1; 
i:f aux+ 0 then 
begin next s ol:= aux; goto open end else 
goto start 

for i:= k2 + 1 step 1 until k do 
index:= index X 33 + Metava[i]; index:= index+ 1000; 
k:= k2; 
length:= k - kl; 
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for i:= 1 step 1 until number of metavariables do 
begin if auxn1[ i] - auxm[ i - 1 ] = length then 

begin for j:= 1 step 1 l.Ultil length do 
if Meta va[ a1Jxxn[ i , 1 ]' + j ] f 

Metava[kl + j] then goto out; 
read metavariable:= i +•"6d'o + ( if 

index> 1000 then 100 else O); 
k:= kl; goto end 

end; 
out: 
end; n1.1mber of meta variables:= number of meta variables + 1; 

read metavariable:= number of metavariables + 600 + 
(if index> 1000 then 100 else O); 

auxm[ number of metavariable s ] : = k; 

end read metavariable; 

integer procedure read underlined symbol; 
begin co1r1r11ent The underlined symbol is represented by an integer; 

integer temp,11,i,j,length; 
boolean under; 11:= l; under:= true; 

L: if next RFS = underlining then 

end: 

begin under:= true; RFS(false;; goto Lend; 
if next RFS = space V next RFS = tab V next RFS = newline then 
begin if under then error(l) else RFS(true) end; 
if under then 
begin l:= 1 + 1; Underlined symbol[l]:= next RFS; 

under:= false; RFS(false); goto L 
end; 
if 11 = 1 then error(2); 
1 ength: = 1 - 11 ; 
for i:= 1 step 1 until number of underlined symbols do 
begin if auxu[ i] - auxu[ i - 1) = Length then 

out: 

begin for j:= 1 step 1 until length do 

end; 

if Underlined symbol[auxu[i - TT+ j) + 
Underlined symbol[ll + j] then goto out; 

read underlined symbol:= i; l:= 11; got.o end 

end; read underlined symbol:= number of underlined symbols:= 
number of underlined ST'u.>,.Jols + 1; 

auxu[nuniber of underlined symbols]:= l; 

end re&d underlined symbol; 



47 

procedure outputO(sw,e,f,g,h,A); value sw,e,f,g,h; 
integer sw,e,f,g,h; integer array A; 

begin int.eger i, j, k, uj, vi, case; 
O'Wil integer N; 
switch switch:= CO,IR,TS,SN,CV; 
procedure P(f); value f; integer f; 

if f =lowercase then 
begin if case flower case then 

begin case:= lower case; PUHEP(lower case) end 
end else 
if f =uppercase then 
begin if case f upper case then 

begin case:= upper case; PUHEP(upper case) end 
end else PUHEP(f); 

procedure Pl ( f 1, :f2, :f3, f4); value f 1, f2, f3, f4 ;. 
integer fl,f2,f3,f4; 

begin P(space); P(fl); P(underlining); P(f2); P(f3); P(f4); 
P(space); 

end; 

procedure punch metadigits(f); value f; integer :f; 
begin integer a,J,k; 

L: 

end 

integer array A[1 : 5]; 
f:= f - 1000; 
k . - o· .- , 
a:= f: 33 X 33; k:= k + 1; A[k]:= f - a; 
if a> 0 then begin f:= f: 3J; goto Lend; 
for j:= k step - 1 until 1 do 
begin P(lower case); P(A[j];end 
punch metadigits; 

procedtlre punch metav(f); value f; integer f; 
begin integer k; if f < 3 then 

end 

begin P(lower case); P(iess) end else 
begin P(lower case); P(underlining); P(less) end; 
fork:= 1 + aux:m[vi - 501 - 100 X f] step 1 until 

a l.lXID [ vi - 5 00 - 1 00 x f J do 
begin if Metava[k] > 128 then 

end; 

begin P(upper case);' P("Metava.[k] - 128) end else 
begin P(lower case); P(Metava[k]) end 

if f = 2 V f = 4 then 
begin i:= i + 1; punch metadigits(A[i]) end; 
if f < 3 then 
begin P(upper case); P(roore) end else 
begin P(lower case); P(underlining); P(upper case); 

P(more); P(space) 
end 
p,.1nch metav; 
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procedure punch(f); value f; integer f; 
begin vi:=f; 

end 

if vi= leftquote then 
P1(upper case,underlining,lower case,less) else 
if vi= rightquote then 
P1(upper case,underlining,underlining,more) else 
if vi= in then 
P1(1ower case,i,underlining,n) else 
if vi= im then 
P1(1ower case,i,underlining,m) else 
if vi= is then 
Pl(lower case,i,underlining,s) else 
if vi= va then 
Pl(lower case,v,underlining,a) else 
if vi= co then 
P1(lower case,c,underlining,o) else 
if vi= tr then 
P1(1ower case,t,u.nderlining,r) else 
if vi= leftmetapar then 
P1(1ower case,underlining,upper case,left par) else 
if vi= rightmetapar then 
P1(1ower case,underlining,upper case,right par) else 
if Ter·roi nc:1.l symbol ( vi ) then 
begin if vi> 300 A vi< 428 then 

begin P(lower chse); P(vi - 300) end else 
if vi> 428 then 
begin P(upper case); P(vi - 428) end else 
begin P( spa.Ce); 

end 
end else 

for j:= 1 + auxu[vi - 1] step 1 until 
~.:.uxu [ vi ] do 

begin uj:= Underlined oymbol[j]; 
if uj > 128 then 
begin f1

( lower case); f( under :Lining); 
P(upper case); P(uj - 128) 

end else 
begin P( lower case); l'( underlining); 

P(uj) 
end 

end; P space) 

if Simple metav(vi) then punch metav(l) else 
if Ind simple metav(vij then punch metav(2) else 
if Opt metav(vi) then punch metav(3) else 
if Ind opt metav(vij then punch metav(4) 
punch; 



CO: 
IR: 
TS: 
SN: 

CV: 

out: 

end: 
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procedure punch truth(j); value j; integer j; 
begin PUNLCR,; ABSFIXP( 2, 0, j); 'PUHEP( uppe'r case); 

PUHEP(107); PUHEP(space); PUHEP(case); 
for i:= Comma[j - 1] + 2 step 1 until Comma[j] do 
punch(A[ i]); 
if j < number of truths then punch(co) 

end punch truth; 

procedure P2(string); string string; 
begin PUNLCR; PUTEXT( string) ;ABSFIXP( 2, o, h); PUifiEXT( f): :} ) ; 

for i: = e step 1 until f do ptJ.nch( A[ i] ) 
end P2; 

case:= O; goto switch[sw]; 

P2( l"-'O( ) ; goto end; 
P2( R( ); goto out; 
P2( s( ........ ) ; goto.,.r,out; 
PUNLCR; ¥lJTEX'r N: *); 
for i:= e step 1 until f do punch(A[i]); PUNLCR; goto out; 
PUNLCR; PUTEXT~ {cv'::f J; PUNLCR; 
if :Cirst then 
begin fork:= 1 step 1 until number of truths do pun.ch truth(k); 

first:= false; N:= number of truths 
end else 
begin punch truth(l); PUNLCR; PUTEXT(f 

PUTEXT( t ·*); PUNLCR; PUTE~r( {: 
fork:= N step 1 until number of truths 

end; 
PUNLCR; 
i:f g f O then 
begin P1(1ower case,1,underlining,n); 

vi:= abs(g); punch metav(l) 
end; 

.} ) ; PUNLCR; 
·*); 

do punch truth(k) 

end outputO; 
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boolean procedure Terroi.nal symbol(:f); value f; integer f'; 
Terrni nal s ~ al:= 8 < f /\ f < 600;' 

boolean procedure Simple metav(f); value f; integer f; 
Simple metav:== 600 < f /\ :f <'700; 

boolean procedure Metav(f); value f; integer f; 
Met.av':'~' 600 < f A f < 1000; 

boolean ;erocedure Ind metav(f); value f; integer f; 
Ind ""nietav:= 700 < f A f < 800 V 900 < f' A f < 1000; · 

boolean J2!:0C~~1re Opt metav(f); value f; 111;t~5e
2
r f; 

Opt metav:= 800 < f A f < 900; 

boolean P~.~~dur~ Ind simple meta.v(f); ~l?e f'; 1,~tE:5er t; 
Ind simple metav:= 700 < f A f < BOO; 

boolean 12r?ceapre Ind opt metav(f); value f:; i~te~er, f; 
Ind opt metav:= 900 < f A f < 1000; 

boolean 32rocedure Non ind metav{f); value f; inte~er f'; 
Non' 'ind metav:= 600 < f /\ f < 700 V 80'0 < f ./\ f < 900; 

coxr,aaent The boolean proceci11res Ter,,u.ual s ol(f), •.• , 
Non ind metav(f),a.re ~~1 if the integer f represents 

. a tenr11nal symbol, ••• ,a non indexed metavariable; 

boolean procedure similar(f,,g,h); value f.,g,h; integer :f,g,h; 
s1:m:f lar:::: (M1 [ f] = g V Ml [ f'] =''" g + 200 V 

Ml [ f] + 200 = g) A M2[ :f] = h; 

boolean rocedure metadigit(f); value f; inte er f; 
me digit:= 0 < f /\ f < 9 V 18 < /\ f < 26 V f = 32; 

boolean -rocedure meta.letter(f); value f; integer f'; 
~e§~!1 nte er temp; temp:= if f > 128 ~en f - 128 else f; 

end 

meta etter:= 34 < te1,ip /\ te1r1p < 112 V 49 < temp /\ temp < 57 V 
66 < teinp /\ te111p < 74 V 80 < temp /\ temp < 89 V 
96 < tem:p A terr1p <105 Vl 14 < temp /\ tt::1ri1> <122 
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procedure error(f); value f; integer f; 
begin PUNLCR; PUTEXT(f error}); ABSFIXP(3,0,f); 

goto end program 
end error; 

procedure add to Sequence; 
begins:= s + 1; Sequence[s]:= next symbol; 

if index> 1000 then begins:= s + 1; Sequence[s]:= index end; 
symbol 

end add to Sequence; 

procedure a.dd to V( A, f, g); value f', g; integer f, g; integer array A; 
begin comment The value of a simple name is added to V.The 

admjnistration of the arrays Im,Is,Comma,Length1, 
Length2 is updated; 

integer par,quote,k,sk; 
boolean cornroa., right of is; 
par:= quote:= O; number of truths:= number of truths+ 1; 
con1rna. := right of is:= :false; 
if number of truths> 1 then begin v:= v + 1; V[v]:= co end; 
fork:= f step 1 until g do 
begin sk:= A(k]; 

if Terminal symbol( sk) then goto add 1; 
if Non ind met&v(sk) then goto addO; 
if Ind metav(sk) then 

if sk = leftquute 
if sk = rightquote 
if sk = leftmetapar 

if sk = rightmetapar 

begin 
v:= v + 1; V[v]:= sk; 
k:= k + 1; sk:= A[k]; 
if l(Ind opt metav(A[k - 1)) V 
right of is) then goto add2 

end else 
then quote:= quote+ 1 else 
then quote:= quote - 1 else 
then 
begin 

if par= 0 A quote= 0 then 
corrnna:= true; par:= par+ 1 

end else 
then par:= par - 1 else 



addO: 
add1: 
add2: 
add: 
end; 

add to 

if sk = im 

if sk = is 

if sk = co 
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then 
begin 

if quote= 0 then 
begin 
· Im( number of truths]:= v; 

Lengthl[number of truths]:= 
Lengtb2[number of truths]; 

Length2[nuniber ot .. truths]:= 0 

end 
end else 
then 
begin 

if quote= 0 then 
begin 

I"s[ 11umb er of truths]:= v; 
right of is:= true 

end 
end else 
then 
begin 

if quote= 0 A par= 0 then 
begin 

Co:rnrns.[number of truths]:= v; 
number· of truths:= 

number of truths + 1; 
right of' is:= false 

end else 
if quote= 0 A par= 1 then 
, . oegin 

if c0mrr1c.1 then 
begi11 

c:= ,; + 1; 
Cotrunas [ c ] : = -numb er of truths; 
CUmm.h: = r~ :Lse 

end; 
c:= ~ + 1; Comrnas[c]:= v 

end 
end e.lse 
then goto addl; if sk = in 

go"t_? add; . 
if Opt methv(sk) then goto add; 
if right of is then goto ttdd; 
Length2[number of truths]:= Length2[number 
v:= v + 1; V[v]:= sk 
Comn6[n1;mber of truth~:;]:= v; 
output0(5, 1,v,o,o,v) 
V; 

of truths]+ 1; 
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procedure NAME; 
begin comment See the introduction at the beginning o~ this chapter; 

SIMPLE NAME; 
if Simple metav(Sequence[s]) then 
begin s : = s - 2; 

output0(4,1,s,--.Sequence[s + 2],0,Sequence); 
evaluate(fit,1,s,s + 1,Sequence,- Sequence[s + 2)) 

end else 
begin output0(4,1,s,O,O,Sequence); 

evaluate(fit, 1,s,s + 1,Sequence,O) 
end; 
addto V(Sequence, 1,s); s:~ O; 
if next symbol= co then 
begin symbol; NAME end else 
i:f next s rn,.:bol t te1:1ni nator then error(3) 

end NAME; 

comroent The procedures Silvfl?LE NAME to SIMPLE METAVARIABLE test the 
syntax of a simple name,when it is read from the input tape. 
If the simple name contains a simple primary,this is evaluated 
in the procedure SIMPLE FACTOR; 

procedure SIMPLE NAME; 
if next symbol= tr then add to Sequence else 
if next sT.t.ol = leftquote then 

if Ter"'.t11i nal symbol(next s 
next symbol = Vd 

begin 
add to Sequence; 
I .. l~T LJF Ml~TAEX.PRB~SSIONS; 
if next symbol= rightquote then 
add to Sequence else error( 4) · 

end else 
.....,._,o 1) V 
then SIMI~)LE TERM 
else error( 5); 

procedure LIST OF :METAEXPRESSIUNS; 
begin METAEXPRESSION; 

end 

if next s rrn~ol = co then 
begin add to Sequence; 

LIST OF MErAEXPRESSIONS 
end 
LIST OF METAEXPRESSIONS; 

procedure SIMJ?LE TERM; 
begin SIMPLE FACTOR; 

end 

if next s ~ol = in then 
begin add to Sequence; 

SI:MPLE METAVARIABLE 
end 
SI:MPLE TERM; 



-pi•ocedure SIMPLE FACTOR; 
... if Ter·n1inal symbol(next symbol) 

if next symbol = va 

procedure M£1TAEXPRE:SSIJN; 
if next symbol == tr 

then 
begin 

add to Sequence; 
SI:MPLE FACTOR 

end else 
then 
begin 

symbol; 
if next symbol= leftmetapar then 
begin 

ir1teger aux2; 
symbol; aux2:= s + 1; 
if Terminal syrnbol(next s~ilJ..1~01) 
then TERMINAL SEQUENCE else 
error( 6); 
evaluate(fit,aux2,s,s + 1, 

Sequence, 0); 
if next symbol= rightmetapar 
then symbol else error(7); 
SIMl)LE F'ACTOR 

end else error(8) 
end; 

then 
begin 

:.-1dcl tc; :~'.equence; 
if next 8yrnbol = im then 
begin 
Ll: add to Sequence; 

j_f Terminal. symbol(next symbol)V 
Meta.v(next symbo L) then 

begin 
LEF'T P Al~T; 

12: if next symbol = is then 
begin 
LJ: add to Sequence; 

RIGIITIJART 
end 

end else error(9) 
end else error(10) 

end else 



if Terrnjnal synibol(next 
Metav(next sT .... ~01) 

procedure LEFTPART; 
begin MF~rASEQUENCE; 

if next symbol= 

end LEFTPART; 

procedure RIGHTPART; 

• in 
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symbol) V 
then 
begin 

METASEQUENCE; 
if next srr:.ibol = 

if next 

if next 
begin 

goto 
symbol = 

goto 
symbol = 

im then 
L1 else 
is then 
L3 else 
in then 

add to Sequence; 
SIMPI ... E METAVARIABLE; 
goto I2 

end 
end 
else error(11); 

then 
begin 

add to Sequence; 
SIMPLE METAVARIABLE 

end 

if next STu~Ol = leftmetapar 
then 
begin 

add to Sequer1ce; 
LIST uF SIMPLE RIGHTPARTS; 
if next symbol= rightrnetapar 
then add to Sequence else error(12) 

end 
else SIMPLE RIGHTPART; 

procedure LIST OF SIMPLE RIGHTPARTS; 
begin SIMPLE RIGHTPART; 

if next s ~~~al= co then 

end LIST OF SIMPLE RIGHTPARTS; 

begin 
add to Sequence; 
LIST OF SIMPLE RIGHTPARTS 

end 



•.. ·.rocti:dure SIMPLE RIGHTPART; 
• next symbol = tr 
IT next slrmbol = leftquote 

if next s •·· ol • va V 

then add to Sequence else 
then 
begin 

add to Sequence; 
LIST OF METAEXPRESSIONS; 
if next symbol= rightquote then 
add to Sequence else error(13) 

end else 

Ind metav(next symbol) V 
Terminal symbol(next symbol) 

then IND METATERM else error(14); 

· .· cedure IND MErATERM; 
e?:in "N'D METP .. FACTOR; 

L .a: 
if next symbol = in then 
be.in add to Sequence; SIMPLE METAVARIABLE end 

end ND ~"'rP.TERM; 

· .rocedure IND ME'TAfi"'~~CTOR; 
i · Te1·i·n1nal symbol(next symbol) V 

Ind metav(next symbol) then 
begin 

if next symbol= 

·. rocedure TERMINAL SEQUENCE; 

add to Sequence; 
IND METAFACTOR 

end else 
then 
begin 

add to Sequence; 
if next symbol= left metapar then 
begin 

add to Sequence; 
if Te:i:-rni nal syrnbol( next symbol) V 
Ind metav(next symbol) then 
IND METASEQUENCE else error(15); 
if next symbol :::: right meta.par 
then add to Sequence 
else error( 16); 
IND M£TAFACTOR 

end else error(17) 
end; 

_. TeIWt:1.nal symbol(next symbol) 
then 
begin 

add to Sequence; 
TE:RMINAL SEQUENCE 

end TERMINAL SEQUENCE; 



procedure METASEQUENCE; 
if Termjnal symbol(next 

Metav(next s ol) 

procedure IND METASEQUENCE; 
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symbol) V 
then 
begin 

add to Sequence; 
METASEQUENCE 

end Ml 1~l1ASEQUENCE; 

if Terminal S'111 ol(next symbol) V 
Ind metav(next s ~~.ol) then 

begin 

procedure SIMPLE METAVARIABLE; 
if Simple metav(next symbol) 

add to Sequence; 
IND MBIT1ASEQUENCE 

end IND METASEQUENCE; 

then add to Sequence else error(18); 

boolean procedure envelope(l,a,b,c,A,B,p,q,para,n,nO); 
value l,a,b,c,p,q,para,n,nO; 
integer l,a,b,c,p,q,para,n,nO; 
integer array A,B; 

begin conrrnent envelope is true,if the sequence in the array V, 
from V[p] to.V[qJ,is an envelope of the sequence in the 
array A,from A[aJ to A[b].Otherwise,envelope is false. 
The array A has as its corresponding actual either the 
array Sequence or the array V(the latter case occurs 
when it is tested whether a derived condition is an 
envelope or a truth in V).1 is the length of the 
sequence V[pJ, •.. ,V[qJ,decreased by the number of 
(indexed) optional metavariables in this sequence. 
c points to the first free place in the array A. 
This is used for auxiliary evaluations,e.g.of the value 
of a derived condition.A(a], •.. ,A[b] contain the 
ter-nijnal sequence of a simple sequence.para(to) 
represents the simple meta~ariable of the simple 
sequence in case such a simple metavariable is present. 
B,n,nO are used in the mechanism for testing whether 
subsequences,belonging to similar metavariables,are 
equal.envelope is defined recursively: 
V[p], •.• ,V[q] is an envelope of A[a], •.. ,A[b],if V[p] 
and an appropriate initial sequence of A[a], ... ,A[b] 
fulfil the requirements of 2.2.3,step 3a,and 
V[p + 1], ••. ,V[q) is an envelope of the remaining 
part of A[aJ, ••. ,A[b]; 



integer Vp,temp; 
boolean index,opt,fit; 

integer procedur~ next l; 
next 1·:=-"1 " '( if opt then O else 1); 

1~~.e~e:r: ,;Proce<l:~re next p; 
next p:= p + (if index then 2 else 1); 

• 

boolean procedure last; 
ltlast:~ p' '+ (if index then 1 else 0) = q; 

-~nte§er procedure reduced V:p; 
reduced Vp:= Vp - (if opt /\ index then 300 else 

if opt then 200 else if index then 100 else O}; 

procedure add to M(f,g); ~alue f,g; integer f,g; 
if index then 
begin m:== m + 1; Ml[m]:=Vp; M2[m]:= V[p + 1 ]; 

M3[m] :~ f; M4[m] := g 
end add to M; 

boolean procedure env(a); value a; integer a; 
e.nv:= envelope(next l,a,b, c,A,B,next p,q, o,n,nO); 

boolean procedure TERMINAL; 
TERMINAL:= if Vp = A[a] then (if last then a = b else 

env(a + 1)) else false; 

• 

boolean Ero~edure SIMP MF;r; 
be§i.~ 

SIMP ME,T:= false; 
if last then evciluate(fit,a,b,c,A,reduced Vp) 8lse 

begin temp:= temp+ 1; 

end· ., 

if l > b - temp+ 1 then goto end; 
evaluate(fit,a,temp,c,A,reduced Vp) 

if fit/\ last then 
begin ~dd to M(a,b); SIMP MET:= true end else 



if fit 

if 7 last 
end: 
end SIMP MET; 
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then 
begin add to M(a,temp); 

if env(temp + 1) then 
SIMP MET:= true else 
begin if index then m:= m -

SIMP MET:= SIMP MEI' 
end 

end else 
then SIMP MET:= SIMP ME'T; 

boolean procedure OPr MRI'; 
begin OPr M.1~:= false; opt:= true; 

if last then 
begin if a> b then 

l ; 

begin OPr MET:= true; add to M(0,-1) end 
else OPr MEIT':== SIMP MET 

end □Pr MET; 

end 
else 
begin add to M(0,-1); 

if' env(a) then OPr MF~':= true else 
begin if index then m:= m - 1; 

if 1 < b - a then □Pr MET:= SIMP MP.11 

end 
end 

boolean procedure IND SIMP MET; 
begin index:= true; IND SIMP Mr:-rr,E'r:= SIMILAR end IND SIMP MEr; 

boolean procedure IND OPr MF7I'; 
begin index:== opt:= true; IND UPI' MF~1.•:= SIMILAR end IND OFT MET; 

boolean procedure SIMILAR; 
begin i:r1teger i 1, i2., temp l, temp2; 

SI!vITLA.R: = false; 
for i1:= n + 1 step 1 until m do 
if similar( i 1, Vp, V[ p + 1] }' then 
begin templ := M3[il]; temp2:; M4[i1]; 

if b - a - temp2 + templ < next l then goto end; 
for i2:= temp1 step 1 until temp2 do 
if A[a + i2 - templ] f (if il >no/\ no> O then 
v°[i2] else B[i2]) then goto end; 
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SIMILAR:= if last then (if temp2 > 0 then 
a+ temp 2 - templ = b else a> bJ 
else env(a + temp2 .,,. temp1 + 1); 
goto end 

end; 
SIMILAR:= if opt then OPT MET else SIMP MET; 

end: 
end SIMILAR; 

envelope:= false; 
if para t O then 

begin if abs(para) t V[ q_] V in t V[ q - 1 ] 
then goto end else 
begin q:= q - 2; l:= l - 2 end 

end; 
if 1 > b - a +1 then goto end; 
if a < b /\ 7 Termi.nal s ~ol(A[a]) V q > p + 2 /\ V[q 

then goto end; 
opt:= index:= false; temp:= a - 1; Vp:= V(p]; 
envelope:= if Ter1nj nal symbol(Vp) then TE:RMINAL else 

if Simple metav(Vp) then SI:MP lv1ET else 
if Opt metav(Vp) then □Pr MET else 

1 J = 

if Ind simple metav(Vp)then IND SI.MP MET else 

• in 

if Ind opt metav(Vp) • then IND □Pr M.6~ else f'alse; 
end: 
end envelope; 

::procedure eva.luate(fi,a, b, c,A,par'd); value a, c, pa.ra; 
integer a,b,c,pa.ra; boolean fi; integer array A; 

~egin cormnent The value o:f the sequence A[a), .•• ,A[b J is determined. 
· c and pard have the same meaning as in envelope. 

fi is used to store the result of auxiliary calls 
of evaluate in the body of envelope. 

' 

error 19 occurs when the empty sequence is evaluated, 
and error 20 when the sequence is not simple; 

integer i" i 1" templ, temp2" temp3, temp4,n,n0, d, e, par; 
boolean metav,condition present,rightpart present; 

::procedure trl; 
· 'ir' A[a] = tr A a= b then 

begin fi:= true; goto end evaluate end; 

procedure metastring; 
- if A[a] = leftquote then 

be:2:in b := b - 2; 
f·or i: == a step 1 unti 1 b do A[ i J : = A[ i + 1 ] ; 
gcito end evaluate 

-., ena; 



procedure apply V; 
begin for i:= a step l until b do 

end 

if 7 Ter-rrijnal symbo
0

l~A[i];then error(20); 
for i := n1,1mber of truths step - 1 until 1 do 
begin consider truth(i); 

if envelope(Length2[i],a,b,if para> 0 then 
c else b + 1,A,A,if condition present then 
temp2 + 2 else templ,if rightpart present then 
temp3 else templ+,para,n,nO) then 
begin if condition satisfied then 

evaluate right part 
end 

end 
apply V; 

procedure consider truth(i); value i; integer i; 
begin templ : = CorrAToa.[ i - 1 ] + 2; temp2: = Im[ i]; 

temp3 := Is[ i]; temp4 :== Cort1tna[ i J; m: = n; 
condition present:; temp2 + O; 
right part present:= temp3 + 0 

end consider truth; 

boolean procedure condition satisfied; 
begin condition satisfied:= true; 

end: 
end 

if condition present then 
begin derive cond.ition(metav,A,templ,temp2,c,d,n); 

if 7 metav then 

end; 

begin 
output0(1,c,d,O,i,Sequence); 
evaluate(fi,c,d,d + 1,Sequence,O); 
condition satisfied:= fi 

end 
else 
?egi~ nO:= m; 

for il:= number of truths step -1 
until 1 do 

begin 
if Im[il] t O V Is[il] f O then 
goto end i 1; 
if envelope(I.engthl[i], 

Comrna[il - l] + 2,Cornma[i 1], 
c,V,A,temp1,temp2,0,n,n0) 

then goto end; 
end i 1: 

end; 
nO:== 1; condition satisfied:= false 

end 

condition satisfied; 
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1-:roc~<p.1.re_ evaluate right part; 

end 

be~in :fi:= true; 
if para< 0 then 
begin b := a;" Ala]:= tr end 

end else 
if para> O then 

begin 
derive right part(i,a,b,c,e,A, 

temp3 + 2,temp4,par,n,n0); 
evaluate(fi, c, e, e + 1, Sequence,- par) 

end else 
~egin 

derive right pa.rt(i,a,b,a,b,A, 
temp3 + 2,temp4,par,n,n0); 

output0(2,a,b,par,1,A); 
evaluate(fi,a,b,b + 1,Sequence,- par) 

end; 
goto end evaluate 
e-valuate right part; 

if a > b then error ( 19) ; 
n:= m; nO:= - l; fi:= false; 
trl; metastring; apply V; 
if para< 0 then 
begin b:= b + 2; A[b - 1] := in; A[b] := 

end evalua.te: m:= n 
end evaluate; 

- para end; 

l2~'7t;.~u,re derive condition( .fi, rl, p, q, t, r, n); 
va.lue p,t,q,n; integer p,q,r,t,n; 
boolean fi; integer arra A; 

b,e~i:q comment From the' 'condition V p], ••• , V [ q J the derived condition 
A[tJ, ••• ,A[r] is derived. 
fi is true if the condition contains a metavariable 
which 1s similar to no indexed metavariable in the 
left _part concerned. 
Info:r~nation about similarity of metavariables is kept 
in the arrays Ml to M4.n is a pointer of these arrays; 

ini;:~ger 11, 12, 13, vi; 
procedt1re add to Seq(f); value f; integer f; 
b~§iri r: =° r + 1; Sequence[ r J : ~ f end add to Seq; 

_ 1 l ; _ 

r:• t - l; fi:= false; 
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~or il:= p step 1 until q do 
begin vi : = V [ i 1 ] ; 

end 

if 7 Ind metav(vi) then 
begin add to Seq(vi); 

if Non ind metav(vi) then 
fi:= true 

end else 
begin for i2:= n + 1 step 1 until m do 

if similar(i2,vi,V[i1 + 1]) then 
begin for i3:= M3[i2] step 1 until M4[i2] do 

add to Seq(A[i3]); il:= il + 1; goto out 
end; 
fi:= true; add to Seq(vi); 
il:= il + 1; add to Seq(V[i1]); 

out: 
end 

end derive condition; 

procedure derive rightpart(k,a,b,t,s,A,v1,v2,par,n,n0); 
value k,a,b,t,vl,v2,n,n0; 
integer k,a,b,t,s,vl,v2,par,n,n0; 
integer array A; 

begin comment From the right part V(v1J, •.. ,V[v2) the derived 
right part is constructed and the simple evaluation 
of the derived right pa.rt is perforrned,i.e.the 
derived simple right parts,except the last one, 
are evaluated and their values are added to V. 
The array aux is used for the temporary storage of 
the sequence that is evaluated,i.e.of A[aJ, ... ,A[b]. 
k is the number of the truth that is applied. 
t,s,par,n,nO are passed on to derive simple 
right part; 

integer kl; 
integer array au.x[a:b]; 
:for k 1 : = a step 1 un ti 1 b do aux [ k 1 J : = A [ k 1 J ; 
if V[vl] = left metapar then 
begin integer p,q,au.xl,aux2; 

aux:1:= v1 + 1; 
for p:= 1 step 1 until c do 
if Co1mr1as[ p] = - k then 
begin q:= p + 1; au.x2:= Comrnas[q]; goto Lend; 
derive simple rightpart(k,t,s,aux,vl + 1,v2 - 1,par,n,nO); 
goto out; 

L: derive simple rightpart(k,t,s,aux,aux1,aux2,par,n,n0); 
output0(2,t,s,par,k,Sequence); 
evaluate(fit,t,s,s + 1,Sequence,-par); 
add to V( Sequence,t,s); 

' 



out: 
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if Commas[q + 1] > 0 then 
begin auxl:= aux2 + 2; q:= q + 1; 

aux2: =Connna.s [ q]; goto L 
end else 
derive simple rightpart(k, t,s,aux.,aux2 + 2, 

v2. - 1,par,n,nO); 

end else 
derive simple rightpart(k,t,s,aux,v1,v2,par,n,n0); 
m:= n 

end derive right part; 

procedure derive simple rightpart(k, t, s, aux, v1, v2, par, n, nO); 
value k,t,vl,v2,n,n0; 
integer k,t,s,vl,v2,par,n,n0; 
integer array aux; 

be§in comme.nt From the simple right part V[ vl ] , ••• , V[ v2] the 
'' .,. .... derived simple right part Sequence[ t], ... , Sequence[ s) 

is constructed. 
The array aux was used in derive right part 
for temporary stor"age of the sequence that is 
evaluated.If the simple right part is a simple term 
which contains the metasymbol in, then par is used to 
store the simple metavariable of this simple term. 
n,nO are used for the administration of similarity 
of indexed metavariables.If' the derived simple 
right part contains u simple primary,then this 
simple priJ~ry is replc1(~ed by the value of its 
terminal sequence; 

integer i1,12,i3,temp,vi1,quote; 
b 1_J1:.i :i .. e13,n va 1 ; 
pro ~t::dure add to Seq(r"'); V-dlue f; integer f; 
begin s := s + 1; Sequence[ s]: :d:" f end add to Seq; 
a:- t - 1; va1:= false; par:= quote:== O; 
ft:)r i1:= vl step 1 illltil v2 do .~. 

b" e;: n vi 1: =="""\r[ i 1 J; 
if vi 1 = 1~t·tquote 

if vi1 ~ rightquute 

if vi 1 = va /\ quote = O 
if vil = leftmetapar /\ val 

then 
begin quote:~ quote 

add to Seq(vil) 
end else 
i..hen 

+ 1; 

begin quote:.~ q1.1,)t~ - 1; 
·add to Seq(vjl) 

end el.se 
then val:= true el r'>e 
then temp:= s + 1 f~1.se 



if vi1 = rightmetapar A va1then 

if vi1 = in A quote= 0 

if Ind metav(vil) 

end 
end derive simple rightpart; 

begin va1:= false; 
output0(3,temp,s,O,k, 

Sequence); 
evaluate( fit,temp,s,s + 1, 

Sequence,O) 
end else 
then 
begin il:= i1 + 1; 

par:= V[i1] 
end else 
then 
begin 

for i2:= n + 1 step 1 until 
m do 

if similar(i2,vi1,V[il + TT) 
then 
begin 

for i3:= M3[i2] step 1 
until M4[ i2] do 

add to Seq(if i2 > nO A 
no> O then V[i3] else 
aux[i3 J); ·· 

il:= i1 + 1; goto out 
end; 
add to Seq( vi 1); 
il:= il + 1; 
add to Seq(V[i1)); 

out: 
end else add to Seq(vi1) 

RUI'JOUT; PUNLCR; PUTEX'l1
( f. results de Bb..kker, R 1 111, 211066t); 

Ini tO; 
L: PUNLCR; PUNLCR; PUNLCR; PUNLCR; Init; NAME; goto L; 

end program: 
end 
end 
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In this section we give fourteen examples of the evaluation of a name 

by the processor. 

Section 4.2.l contains some introductory examples, section 4.2.2 examples 

related to chapter 3, section 4.2.3 examples related to the definition 

of ALGOL 60, and section 4.2.4 Wang's algorithm for the propositional 

ca.lcul\11. 

We have tried to make these examples better comprehensible by the 

clusion of som:e intermediate results. 

The structure of each example is as follows: 

a. Input .. 

The nue which is to be evaluated is exhibited. 

b. Output .. 

1 .. The successive simple names which constitute this name are given. 

2. The contents of V are shown after the addition of the values of 

each of these simple names to V. 

3. If a truth is applied then the number of this truth and the cor:z·e-

1eponding derived right part are exhibited. 

-4. The truths are numbered in the order which is the reverse of the 

order in which they are ap1)lied (2 .3. 5). For the sake of easier 

readability, we have supplied each truth in the output with its 

number. Occasionally, we omit a part of the contents of V, when 

this part has already been shown. 

5. If a derived condition is a terminal sequence, then it is exhibited. 

6. If a derived right part contains one or more simple primaries, then 

the terminal sequences of these simple primaries (i.e. the ter1ninal 

sequenc•s occurring after the va symbol) are shown separately, and 

the nuaber of the corresponding truth is given. 

The examples were run on the EL X8. They are printed directly from the 

output tape, except for the manual addition of some spaces and new line 

carriage :return symbol. The time used for the fourteen examples was 

31.5 11inutes. 

L.1at of abbreviations: 

8M : s :lap le n.alfte, 
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CV : contents of V, 

IR(i): intermediate result, i.e. derived (simple) right part, found by 

applying truth i, 

TS(i): terminal sequence of simple primary, occurring in the derived 

right part of truth i, 

CO(i): derived condition of truth i. 
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4.2.1. Introductory examples. 

4. 2 • 1 • 1 • Example 1 • 
Greatest con:mon divisor of two positive integers 
by the Euclidean algorithm. 
This exa.mple bas already been treated in 2.4.2. 1. 

Input: 

1 <integer> in <:integer> co 

(<1nteger1>.,<integer1Xinteger2>) 
(<1nteger1><:integer2>.,<.integer2>) 

is {<integer1>,<integer2>) co 
is (<integer1>,<1nteger2>) co 

(<integer1>,<integer1>) is <integerl>:} co 

(11~111) co (1111,11) 

Output : 

results de Bakker.,Rl 111,211o66 

SN : 
1<1nteger> in <integer> co ( <integer1>,<integerl><integer2>) is 

<integer1>,<integer2>) co "{<integerl><integer2>,<integer2>) is 
(<1nteger1>,<1nteger2>) co (<in~egerl>,<integerl>) is <integer1> 

CV: 

' 

l : 1<1.nteger> in <integer> co 
2 : ( <integer1>.,<integerl><inte.ger2>) is { <integer1>,<integer2>) co 
3: (<integerl><integer2>,<integer2>) is {<integer1>,<integer2>) co 
4: (<.integer1>,<integer1>) is <integerl> 

SH: (11,111) 

IR 2 ) : (11,1) 
IR 3 ) : (1,1) 
IR( 4 ): 1 



CV: 

1 : 1<integer> in <integer> co 
• 
• 

• 
4: (<integer1>,<integerl>) is <integer1> co 
5 : 1 

SN: (1111,11) 

IR( 3 ) : 
IR( 4 ) : 
CV: 

(11,11) 
1 1 

1 : 1<integer> in <integer> co 
• 
.. 
• 

4: (<integerl>,<integerl>) is <integerl> co 
5 : 1 co 
6 : 11 

Remark: 
One should realize that a subsequent evaluation of e.g. (1111,111) 
will result in the value tr by application of truth 5.If one considers 
this result undesirable,one may avoid it by changing truth 4 into 
(<integer1>,<integer1>) is f <integer1> f. 
This is an example of a more genera.l situation: If a metaprogrrun is 
applied to the evaluation of more than one simple sequence,one will 
have to take into account that the value of some simple sequence may 
be influenced by a previously added truth. r11herefore, if we say that a 
metaprogram has a certain meaning,this is in general restricted to the 
case that only one simple sequence is evaluated.We may add to this,on 
the one hand,that it is often very useful to be able to influence 
subsequent evaluations ( see e.g. examples 12 or 13),and on the other 
band that it is often possible to avoid such effects,by taking some 
special measures,of which we have given an example above. 



ta in <letter> co 
b in <letter> co 
c in <letter> co 
d in <letter> co 
e in <letter> co 

<word::> pre ~ord> is false co 

70 

<letterl> pre <letter2> im <letter1><word> pre <letter2><_Mord> co 

<letterl><wordl> pre <letterl><word2> is <wordl> pre <word.2> co 

<letterl><wrd> pre <letter l> is false co 

<le'tterl> pre <letterl><word> co 

<letter2> 
<letterl> 

<letter> 

a . e b 
b pre C 

C re d 
d 

. 
' e e 

pre <letterj> 
pre <letter3> 

is false 

co 
co 
co 
eo 

• 
im 
• l.S 

<letterl> pre <letterl>} co 

dbc pre dee co bca pre bb 

<letterl> pre <letter2:> co 
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Output: 

SN: 
fa in <letter> cob in <letter> co c in <letter> cod in <letter> co 
e in <letter> co <letter><word> in <word> co <word> pre <word> is 
false co <letter1> pre <letter2> im <letter1><word> pre <letter2> 
<word> co <letter1><word1> pre <letterl><word2> is <wordl> pre 
<word.2> co <letter1><word> pre <letter1> is false co <letterl> pre 
<letterl><word> co <letter2> pre <letter3> im <letter1> pre <letter3> 
is <letterl> pre <letter2> co <letter> pre a is false co a pre b 
cob pre c co c pre d cod pre e co <letterl> pre <letter1> 

CV: 

1 : a in <letter> co 
• in -<letter> co 
• in <letter> co 

2 : b 
3 : C 

4 : d in <letter> co -5 : e in <letter> co 
6: <letterXword> in <word> co 
7: <word> pre <word> is false co 
8 : <letter1> pre <letter2> im 

<letterl><word> pre <letter2><_word> co 
9: <letterl><word1> pre <letterl><word.2.> is <wordl> pre <word.2:> co 

10: <letterl><word> pre <letterl> is false co 
11 : <letterl> pre <letterl><word> co 
12: <letter2> pre <letter3> im 

<J..etterl> pre <letter]> is <letterl> pre <letter2> co 
13 : <letter> pre a is f'c:..lse co 
14 : a pre b co 
15 : b pre c co 
16 : c pre d co 
17: d pre e co 
18: <letter1> pre <letterl> 

SN: dbc pre dee 

IR( 9 ) : be pre ee 
co( 8 ) : b pre e 
IR( 12 ) : b pre d 
IR( 12 ) : b pre c 
CV: 

1 : a in <letter> co 
• 

• 

18: <letter1> pre <letter1> co 
19: tr 
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SN: bca pre bb 

IR( 9 ) : ca pre b 
co( 8 ) : C pre b 
IR( 12 ) : C pre a. 
IR( 13 ) : false 
IR( 7 ) : fal"s'e 
CV: 

1 : a in <letter> co 
" 
• 

• 
18: <letterl> pre <letter1> co 
19: tr co 
20 : false 

4.2.1.3.Fix.emple 3. 
Definition of a row. 
ti. x~ow is defined as a sequence of letters, none of which 
are equal.This example is taken from [41],p. 17. 

Input: 

fa in <letter> co 
b in <letter> co 
C ln <letter> co 

<letter1> el <rowl>,..,, im <letter1> eJ. <row1><letter> co 
<letter1> el <ro. -etter1> co 
<letterl> eI <letterl> co 

· · · "... · etter> in <row> co 
<letterl> el <rowl> im <rowl><letter1> in <ro"W> 
<letter> in <r,ov> :} co 

abc i:r1 <row> co abca in <row> 

SN: 

• lS false co 

f a 111 <letter> co b in <letter> co c in <letter> co <letter1> el 
<rowl'> im <letterl> el <.rowl><letter> co <letter1> el <ro :::.etterl> 
eo <letterl> e.l <letter1> co <roW><letter> in <row> co <letterl> el 
<'.:-:rov1> im <rowl><letter 1> in <rovt> is false co <letter> in <rovt> :} 



CV: 

1 : a in <letter> co 
2 : bin <letter> co 
3 : c in <letter> co 
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4 : <letterl> el <row1> im <letterl> 
5 : <letter1> el <row><letterl> co 
6: <letter1> el <letter1> co • 

<ro ......... etter> in <row> co 

el <rowl><letter> co 

7 : 
8 : <l.etterl> el <rowl> im <row1><letter1> in <row> is 
9 : <letter> in <row> 

SN: abc in <ro-w> 

CO( 8 ) : b el a 
co( 8 ) : C el ab • 

co( 4 ) : C el a 
co( 8 ) : b el a 
CV: 

1 : a in <letter> co 
• 

• 
• 

9 : <letter> in <row> co 
10: tr 

SN: ab ca in <row> 

CO( 8 ) : b el a 
co( 8 ) : b el a 
CO( 8 ) : c el ab 
co( 4 ) : C el a 
co( 8 ) : b el a 
co( 8 ) : a el abc 
CO( 8 ) : b el a 
co( 8 ) : b el a 
CO( 4 ) : a el ab 
CO( 4 ) : a el a 
IR( 8 ) : false 
CV: 

l : a in <letter> co 
• 
• 
• 

9: <letter> in <row> co 
10 : tr co 
11 : false 

co 
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4 . 2. 1 • 4. F.:xa.mple 4 . 
Intermediate addition of truths to V. 
This example shows how the first evaluation of the simple 
name a influences the second evaluation of a.This effect of 
inter·rnediate addition of truths to V will be used 
extensively in the definition of ALGOL 60 in chapter 5. 
Cf. also exa.mple 13. 

Input : 

fa in <id> co 
b in <id> co 

a <id> in <:id> co 
b <id> in <:id> co 

<idl> is 
( f <:i.d2> is 

( f <id.3> is <id1>0<id.2>0<.id3>0 :f> co <id2>b ) :t co 
<idl>b ) r- co 

a co a 

Output: 

SN: 
f a in <id> co b in <id> cu a<id> in <id> co b<id> in <id> co 
<idl> is ( f <.i,d2> is __ -C- 'f <id3> is <id 1>0<id.2>0<id3>0 :} co 
<id2>b; 1= co <idl>b ) } 

CV: 

1 : a in <id> co 
2: bin <id> co 
3 : a<id> in <id> co 
4 : b<id> in <id> co 
5 : <idl> is _..._ f <id2:> is ( f <id3> is <id l>O<id2>0<id3>0 

<id.2>b J co <id 1>b ) 

SN: a 

IR( 5 ) : 'f <id2> is ( f <id.3> is aO<id2>0<id3>0 co <id2>b ) 

co 
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CV: 

1 : a in <id> co 

• 
• 
• 

5 : <id 1> is ( 
<id2>bJ 

f <id.2> is ( f <id3> is <:id 1>0<id2>0<id3>0 } co 
co <id l>b ) co 

6 : <id?> is <id3> is aO<id2>0<id3>0 l> co <id.2>b ) 

IR( 5 ) : ab 
IR( 6 ) : f <id.3> is aOabO<id3>0 * 
CV: 

1 : a in <id> co 

• 
• 
• 

5 : <idl> is ( f <id.2> is ( f <id3> is <idl>O<:id2>0<id3>0 
<id2>bJ co <:i.dl>b ) co 

6 : <id.2> is ~ <id3> is aO<id2>0<id3>0 co <id.2>b ) co 
7 : <id3> is aOabO<id3>0 

IR( 6 ) : abb 
IR( 7 ) : aOabOabbO 
CV: 

1 : a in <id> co 
• 

• 
• 

co 

5 : <id1> is ( f <id2> is ( f <id.3> is <id1>0<id2>0<id3>0 t co 
<id.2>b) co <idl>b ) co 

6 : <id2> is __ <id3> is aO<id2>0<id.3>0 i co <:i d2>b ) co 
7 : <id3> is aOabO<id3>0 co 
8 : aOabOabbO 

SN: a 

IR( 7 ) : aOabOaO 
CV: 

l : a in <id> co 

• 
• 
• 

5 : <id 1> is <id.2> is ( f <id3> is <id 1>0<:i d2>0<id3>0 
<i d2>b ;_ co <id l>b ) co 

6 : <id.2> is ~ <id.3> is aO<id2>0<id.3>0 co <id2>b ) co 
7 : <id3> is aOabO<id3>0 co 
8 : aOabOabbO co 
9 : aOabOaO 

co 



ti .. 2.2. Examples related to chapter 3. 

4 .. 2 .. 2. 1 • F.:Xample 5. .......,...., . . 
Markov' 8 algorithm for the greatest cormoon di visor. 
The construction of theorem 3. 1 • 1 bas been applied to the 
Markov algorithm for the g. c. d. which is defined in [ 33 J, 
p. 105. 
( The extri1 symbol a is r1ot necessary here.) 

Input: 

f l in <symbol> co 
: in <symbol> co 
a in <symbol> co 
b in <symbol> co 

1 <.s"l.rn"l · .. 'h ·. 01> co C .n J;U..l.lJ 

• 

<symbol><ta.pe> in <tape> co -
<tapel> • <tape2> is <tapel> • - -<tapel> <t.'ipe2> • <tapel> C l.S - - -<tapel> <tape2> • <tapel> a lS - - - -<tapel> b <tape2> is <tapel> - - -<tape1> 1 : <tape2> is <tapel> - - -<tapel> 1 : 1 <tape2> is <tapel> - -- <tape2> is <tapel> <tapel> la - - -
1 1 : 1 1 1 

Output: . -

SN: 

<tape2> co 
1 <tape2> co -
C <tape2> co 
1 <tape2> co 
:b <tape2> co 
a: <tape2> co 

tco al <tape2> -

f 1 in <symbol> co : in <symbol> co a in <symbol> co b in <s,..,.,. 
c in <symbol> co <symbol><_tape> in <tape> co <tape1> :<tape2> 
<t&pel> <tape2> co <tapel> c<tape2> is <tapel> l<tape2> co 
<tapel> a~tape2> is ~tapel> c<tape2> co <tape1> b<tape2>- is 
<tapel> l<tape2> co <tapel> l :<tape2> is <tape1> :b<tape2:> co 
$t8pe1> 1:1_stape2> is <tapel> a:<tape2> co <tapel> 1a<tape2> is 
<tapel> a1<tape2>· 

oJ> co 
is 

- • 



CV: 

1 : 1 in <symbol> co 
2 : : in <s rm....,ol> co 
3 : a in <symbol> co 
4 : b in <s rn.......nroJ.> co 
5 : C in <s 111....,n"' Ol> CO 
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6 : <s~1tibol><_tape> in <tape> co 
7 : <tape1> :<tape2> is <tapel> <tape2> co 
8: <tape1> c<tape2> is <tape1> 1<tape2> co 
9 : <tape1> a<tape2> is <tapel> c<tape2:> cc 

10 : <tape1> b<tape2> is <tapel> l<tape2:> co 
11 : <tape1> 1 :<tape2> is <tape1> :b<tape2> co 
12: <tapel> 1:1<tape2> is <tapel> a:<tape2> co 
13 : <tapel> 1a<tape2> is <tapel> al<tape2> 

SN: 11 : 111 

IR( 12 ) : la: 11 
IR( 13 ) : a 1 : 11 
IR( 12 ) : aa.: l 
IR( 9 ) : ca: 1 
IR( 9 ) : cc: 1 
IR( 8 ) : 1 C: 1 
IR( 8 ) : 1 1 : 1 
IR( 12 ) : la: 
IR( 13 ) : al: 
IR( 1 1 ) : a:b 
IR( 10 ) : a: 1 
IR( 9 ) : C: 1 
IR( 8 ) : 1 : 1 
IR( 12 ) : a: 
IR( 9 ) : c: 
IR( 8 ) : 1 : 
IR( 1 1 ) : :b 
IR( 10 ) : : 1 
IR( 7 ) : 1 
CV: 

• 
• 

• 
13 : <tapel> 1a<tape2> is <tapel> al<tape2> co 
14 : 1 
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4.2.2.2.Example 6. 
A Turing machine for addition. 
The construction of theorem 3.1.2 has been applied to the 
Turing ma.chine for addition which is defined in [ 16], p. 12. 

Input : 

0 in <symbol> co 
1 in <symbol> co 

<symbol><_tape> in <tape> cu 

q <state> in <state> co 

<state1><symbol1><symbol2><state2> 
<tape1><s_ tatel><symbol 1><_tape2> is 
<tape l><s_ta te· ymbol2><_tape2> co 

<state 1><symbol 1>R<.state2> im 
<tapel><statel><symboll><tape2> 
<tape1><symbol1><sta.te2.><thpe2> 

<state 1><symbol 1>R <sta te2> • 
lID 

<tape 1><.sta te 1><syrnbo~l 1> is 
<tape1_><symbol 1><state2>0 co 

<state l><syn1bol l>IJ<.state2._. im 

co 

• im 

<tapel><s_ rymbol?><statel><symboJ_ l><t:1pe2>_ :f s 
<tape l><.3_ ,,ta te,.. , yrnbol2><synibol 1><tt1pe2> co 

<state1><symboll>L<state2> 
<state1> <.sym.boll><tapel> 
<sta te2> 0 <symbol 1><t~pe 1> 

q 1 0 q co 
q 0 R qq_ co 
qq 1 R qq co 
qq 0 R g_qq co 
qqq_ 1 0 qqq ~co 

q 1 1 0 1 

• 
l!rl 

co 
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Output: 

SN: 
0 in <symbol> co l in <s ol> co <symbol><tape> in <tape> co 

q<state> in <state> co <statel><s-n.LV·1-.oll><symbol2><state2> im <tapel> 
<state l><syrnbol 1><tape2> is <taJ?e 1> <sta te2><symbol2:><_tape2> co 
<state1><sytribol 1>R<state2> im <tape1> <s·tate1><symbol 1><tape2> is 
<tape1> <symbol 1><state2><tape2> co <statel><symboll>R<state2> im 
<tapel> <state1><symbol1> is <tape1> <symbol1><state2>-0 co <statel> 
<syrnbol 1>L<state2> im <tape1> <symbol2><state1><symbol l><tape2> is 
<tape1> <state2><syn:ibol2><s,,,.,, ol l><tape2> co <state1><symbol 1>L 
<.state2> im <statel><symboll><tape1> is <state2>0<symbol 1><tapel> 
co q10q co qORqq co qq1Rqq co qqORqqq co qqq10qqq 

CV: 

1 : 0 in <s ol> co 
2 : 1 in <synfuel> co 
3 : <s:yrnbol><_tape> in <tape> co 
4 : q<state> in <state> co 
5 : <statel><s ol l><s ol2><.state2> im 

<tapel> <statel><symbol1><tape2> is 
<tapel> <state2><symbol2><_tape2> co 

6 : <state l><s 11L1bol l>R<state2> im 
<tapel> <statel><s .i.u oll><tape2> is 
<tape1> <s 'Th1bOll><state2><tape2> co 

7 : <statel><s ol1>R<state2> irn 
<tapel> <statel><s '1Il ol l> is 
<tapel> <s rm ol l><state2>0 co 

8 : <state 1><s _: ol 1>L<state2> im 
<tapel> <sytnbol2><state1><symbol l><tape2> is 
<tape 1> <state2><symbol .. ymbol 1><_tape2> co 

9 : <statel><s :.umol 1>L<state2> im 
<state1><s ·~ oll><tapel> is 
<state2>0<syoibol l><tape 1> co 

10 : q 10q co 
11 : qORqq co 
12: qq1Rqq co 
13 : qqORqqq co 
14 : qg_q 1 Oqqq 



SN: q 1101 

II~( 5 ) : q0101 
IR( 6 ) : Oqq101 
IR( 6 ) : 01qq01 
IR( 6 ) : 01 Oqqq_ 1 
IR( 5 ) : 010qqq0 
CV: 

1 : 0 in <symbol> co 
• 
• 

• 
14: qqq10qqq co 
15 : 010qqq0 

4.2.2.3.Ex:ample 7. 
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Recognizer for the context sensitive language 

{ n bn n I 1} a a. n > • 

This example was treated in 3.2.3. 

Input: 

fa <as> in <as> co 
b <bs> in <bs> co 

aba in <AB.A> co 

<as 1>a<bs 1>b<as 1>a in <.ft.BA> 
<as 1> <b s 1> <as 1> in <.AB.A:> 

• lS 

~co 

aaabbbaaa in <ABA> co aaabbaa&. in <..ABA> 
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Output: 

SN: 
f a<as> in <as> co b<bs> in <bs> co aba in <ABA"> co 
<as l>a<bs 1>b<as 1>a in <ABA> is <as l><bs 1><as 1> in <AB.A> 

CV: 

1 : a<:as> in <as> co 
2 : b<bs> in <bs> co 
3 : aba in <AB.A> co 
4 : <as l>a<ns l>b<.as 1>a in <AB.A> is <as 1><bs l><as 1> in <ABK> 

SN: aaabbbaaa in <AB.A> 

IR( 
IR( 
CV: 

1 : 

4 ): 
4 ): 

a<as> 
• 
• 

• 

a.abbaa in <AB.A> 
aba in <AJ3A:> 

in <.a.s> co 

4 : <as 1>a<bs 1>b<as 1>a in <AB.A> is <as l><bs 1><.Eis l> in <AB.CC> co 
5: tr 

SN : a.a.ab baaa· in <A.BA> 

IR ( 4 ) : aabaa in <.AB1t> 
CV: 

1 : a<.as> in <as> co 
.. 

• 
4 : <a.s 1>a<bs l>b<as l>a in <fa.BA> is <t.t.s 1><bs l><as 1> in <J\J3A> co 
5 : tr co 
6 : aaba.a in <AB.A> 
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4.2.2.4.Example 8. 
A finite automaton. 
A two state,two symbol finite automaton is defined. See 
also 3 .2.4. 1. 

Input: 

f a in <symboJ> co 
b in <s TT1' ol> co 

<symbol><_tape> i11 <tape> co 

1 in <state> co 
2 in <state> co 

2 in <final state> co 

<state1><symbol 1><state2> im 
<state1><symbol l><tape1> is <state2><_tape1> co 

<state.> 
<final state> 

1 a 2 co 
1 b 1 co 
2 a 1 co 
2 b 2 co 

is 
is 

1 a a co 2 baa 

Output: 

SN: 

tape not accepted* co 
tape accepted* co 

f a in <symbol> co b in <syxnbo1> co <symbol><_tape> in <tape> co 1 in 
<st.ate> co 2 in <state> co 2 in <finalstate> co <statel><symbol 1> 
<state2> im <.statel><symbol1><tape1> is <state2><_tape1> co <state> 
is tapenotaccepted co <finalstate> is f tapeaccepted} co 
1a2 co 1b1 co 2a1 co 2b2 



CV: 

1 : a in <synibo l> co 
2 : b ir1 <s rrLUJ,noJ.> co 
3 : <symbol><_tape> in <tape> co 
4: 1 in <state> co 
5 : 2 in <state> co 
6 : 2 in <finalstate> co 
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7 : <statel><symboll><state2.> im 
<state1><symbol1><tape1> is <state2><_tape1> co 

8 : <state> is f. tapenotacce:pted :r co ·· 
9 : <finalstate> is f tapeaccepted * co 

10 : 1a2 co 
11 : 1b 1 co 
12 : 2a 1 co 
13 : 2b2 

SN: 1 as. 

2a 
1 

IR( 
IR( 
IR( 
CV: 

7 ) : 
7 ): 
8 ) : f tapenotaccepted 

1 : a in <.syJnbo.1> co 
• 

• 
13 : 2b2 co 
14: tapenotaccepted 

SN: 2baa 

IR( 7 ) : 
• 

2as 
IR( 7 ) : 1a 
IR( 7 ) : 2 
IR( 9 ) : tapeaccepted 
CV: 

• 
• 
• 

13 : 2b2 co 
14 : tapenotaccepted co 
15 : tapeaccepted 
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4.2.2.5.Example 9. 
A pushdown automaton for the recognition or 

the language an bn In> 1}. 
Theorem 3.2.11-.2 has been applied to the pushdown 
automaton which is given in [22], p. 66. 

Ir1put : 

fa in <symbol> co 
b in <symbol> co 

<s J..a.lol><_tape> in <tape> co 

pO in <statt::> co 
pl in <state> co 
p2 in <state> co 

p2 in <final state> co 

zO in <pd symbol> co 
z 1 in <pd symbol> co 
z2 in <pd symbol> co 

<pd tape> 
<pd tape>,<pd tapelist> 

in <pd tapelist> co 
in <pd tapelist> co 

<state><statelist> in <statelist.> co 

<statel><symbol1><pd symboll><statelistl><pd tapelistl> 
<statel><symbol1><tape1><pd symboll><pd tapel> 
• l.S 

<statelist1><tape1> <pd tapelist1>,<pd tapel> co -

• 
1m 

<statel><statelistl><tape1Xpd tape1>,<pd tapelist1>,<pd tape2> 
• 
l.S 

-C-<state1><tape1><pd tapel> <pd tape2> co 
<statelistl><tapel><pd tapelistl>,<pd tape2>) co -

<state1><tape1><pd tapel>,<pd tape2> 
• 
l.S 

<statel><tapel><pd tapel> <pd tape2> co 

<statelis ............. inal state><statelist> <pd tapelist> 
• 
J.S 

tape accepted* co 
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pO a zO pO z2 co 
pO a z2 pO z1 z2 co 
pO a z1 pO Zl zl co 
pO b z1 pl co 
pO b z2 p2 z2 co 
pl b Zl pl co 
pl b z2 p2 z2 * co 

pO aaabbb zO 

Output: 

SN: 
f a in <s 01> co b in <s T"n'I. ol> co <symbol><_tape> in <tape> co pO 
in <state> co pl in <.state> co p2 in <state> co p2 in <.finalstate> 
co zO in <pdsymbol> co zl in <pds 11n.vol> co z2 in <pds ol> co 
<pdsym.bol><_;pdtape> in <pdtape> co <pdtape> in <pdtapelist> co 
<pdtape> ,<pdtapelist> in <pdtapelist> co <state><statelist> in 
<statelist> co <state1><symboll><pds~~~roll><statelistl><pdtapelist1> 
im <state1><symboll><tapel> <pdsyrnbol1><pdtape1> is <statelistl> 
<tapel> <pdtapelist1> ,<pdtape1> co <statel><statelist1><tape1> 
<pdtapel> ,<pdtapelist1> ,<pdtape2> is ( <state1><ta.pe1><pd.tape1> 
<pdtape2> co <statelistl><tapel><pdtapelistl> ,<pdtape2> ) co 
<state1><tape1><pdtape1> ,<pdtape2> is <.state1><tapel><pdtape1> 
<pdtape2.> co <statelist.> <finalstat-:::=_ tatelist> <pdtapelist> is 

tapeaccepted co p0az0p0z2 co p0az2p0zlz2 co p0az1p0zlz1 co 
p0bzlp1 co p0bz2p2~ co plbzlpl co p1bz2p2z2 

CV: 

1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 

10 : 
1 1 : 
12: 
13 : 
14: 

a in <s UJ.l,Jol> co 
b in <s J.4.11.Jol> co 
~;yrnbol><tape> in <tape> co 
pO in <state> co 
p1 in <state> co 
p2 In <state> co 
p2 in <finalstate> co 
zO in <pds .I.LU.Jol> co 
z 1 in <pdsymbol> co 
z2 in <pds rn.":t.ol> co 
<pdsymbol><_pdtape> in <pdtape> co 
<pdtape> in <pdtapelist> co 
<pdtape> ,<pdtapelist> in <pdtapelist> co .. ,. 
<state><statelist> in <statelist> co 
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15 : <ste. te 1><symbol 1><pdsymbol 1><statelist l><pdtapelist 1> :i.m 
<state1><symbol1><tape1> <pdsymbol1><pdtape1> is 
<statelist1><tape1> <pdtapelist1> ,<pdtapel> co 

16 : <stll.te 1><.statelist T><tape 1><pdtape 1> , <pdtapelist 1> , <pdtape2> 
is ( <state1><tape1><pdtapel> <pdtape2> co 
<statelist1><tapel><pdtapelist1> ,<pdtape2> ) co 

17 : <statel><tapel><pdtapel> ,<pdtape2> is 
<sta.te l><tape l><pdtap•e 1> <pdtape2> co 

18: <statelist> <finalstate><statelist> <pdtapelist:> is 
f tapeaccepted * co 

19: p0a.z0p0z2 co 
20 : p0az2p0z 1 z2 co 
21 : p0a.z1p0z1z1 co 
22 : pObz 1p1 co 
23 : p0bz2p2z2co 
24 : plbz 1p1 co 
25 : plbz2p2z2 

SN: pOaaabbbzO 

IR( 15 ) : p0aabbbz2, 
IR( 17 ) : p0aabbbz2 
IR( 15 ) : pOabbbz 1 z2, 
IR( 17 ) : p0::1bbbz 1 z2 
IR( 15 ) : p0bl1bz l z 1, z2 
IR( ) : 17 pObbbz. 1 z 1 z2 
IR( 15 ) : plbb,z1z2 
IR{ 17 ) : plbbz1z2 
IR( 15 ) : p1b,z2 
IR( 17 ) : p1bz2 
IR( 15 ) . p2z2, • 
IR( 18 ) : f tapeaccepted 
CV: 

1 : a in <symbol> co 
• 
• 
• 

25 : p1bz2p2z2 co 
26: tapeaccepted 
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4.2.3. Examples related to the definition of' ALGOL 60. 

4.2.3.1.Example 10. 

Input: 

Conditional expressions. · 
If' the expression between if' and then is not eq_ual to 
one of the symbols true or fa_l_se, it is :first eval1.lr:1·ted. 
If' the result is true, then tl1e value of the origina·1 
expression is the value of' the expression between then and 
eJ.se; if it is f'a.lse then its value is the value of 
the expression after else. 
An arbitrary choice has been made for the value of a 
simple expression(i.e. a sequence of a's and b's). If it 
begins with an a,it has the value true, otherwise its 
value is :false. 
Cf. chapter 5,section 22,truths 22.3 to 22.8. 

fa <sexp> 
b <sexp> 

<sexp> in _<exp> co 

if <exp> then <exp> else <exp> in <exp> co 

if <exp1> then <exp2> else <expj> 
l 
.... s 
if ~va ( <exp 1>) ther1 <ex.p2.)• else <exp3> co 

if true then <expl> else <exp> is <exp1> co 

if f'a l_se then <exp> else <exp1> 

a <se.xp> 
b <sexJ,> 

• lS 
• 1.S 

true t co 
false * } co 

• 
l.S 

if a then if b then a el:1e ab else u co 

if' if b then ab else ba then ab else aa 
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0ut];1Ut : 

SN: 
f a<sexp> in <sexp> co b<sexp> in <sexp> co <sexp> in <exp> co 
if <exp> then <exp> else <exp> in <exp> co 
if <exp1> then <ex_., else <exp3> is 
if va .i <exp1>) then <exp2> else <exp3> co 
if true then <exp1> else <exp> is <exp1> co 
IT false then <exp> else <exp1> is <exp1> co 
a<sexp> is true co b<sexp> is f false 

CV: 

l : a<sex.p:> in <sexp> co 
. - . 2: b<sex:p> 1.n <sexp> co 

3 : <sex:p> · in <exp> co 
4: if <exp> then <exp> else <exp> in <exp> co 
5: if <expl> then <exp2> else <exp3> is 

if va ( <expl>) then <exp2> else <exp3> co 
6: if ~r:ue then <exp1> else <exp> is <expl> co 
7: IT faise then <exp> else <exp1> is <exp1> co 
8 : a<sexp> is true :t co 
9: b<sex,P> is false * 

SN: if a then if b then a else ab else a 

TS( 
IR( 
IR( 
IR( 
TS( 
IR( 
IR( 
IR( 
IR( 
CV: 

5 ): 
8 ) : 
5 ): 
6 ): 
5 ): 
9 ): 
5 ) : 
7 ): 
8 ): 

a 
{: true t 

b 

if true then if b then a else ab else a 
if b then a else ab 

f false t 
if false then a else ab 

ab 
f true } 

1 : a<sexp> in <sexp> co -
• 
• 
• 

9 : b<sexp> is i: false 
10: true 

co 



SN: if if b then ab else ba then ab else aa 

TS( 5 ) : if b then ab else ba 
TS( 5 ) : b 
IR( 9 ) : {: false 
IR( ) : 5 if .false then ab else ba 
IR( 7 ) : ba 
IR( 9 ) : t: .false 
IR( 5 ) : if false then ab else at-i 

IR( 7 ) : aa 
IR( 8 ) : f true 
CV: 

1 : a<sexp:> in <sexp> co 

9 : 
10 : 
1 1 : 

• 

• 

• 
b<sexp> 

true 
true 

co 

• lS f f'a.lse } cu 
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4.2.3.2.Example 11. 
Definition of the logical operators 7, /\, V. 
Operations upon true and false by the operators 
7 , /\ , V , along with their priority rules and 
the meaning of parentheses are defined.This 
example demonstrates the principle for the 
definition of boolean expressions. Cf. chapter 5, 

Input: 

true 
false 

section 22. 

in <bprimary> co 
<bprimary> co • 

in 

( <bexp>) in <:bprimary> co 

<b pr:i mary> • in 

7 <bprima.ry> in 
<bsecondary> co 
<bsecondary> co 

<bsecondary> 
<bfactor> /\ <bsecondary> 

in <bfactor> co 
in <bfactor> co 

<b:factor> 
<bexp.> V <bfactor> 

in <bexp> co 
in <bexp> co 

(<bexpl>) is <bexp1> co 

7 <bprjma.ry1> • lS 7 va ( <bprim,i.ry1> ) cu 

<bfactor1> /\ <bsecondary1> 
• J.S 

va (<bfactor1>) /\ vd ( <bsecondaryl>) co 

<bexpl> V <bfactor1> 
• 
J.S 

va (<l:>exp1>) V va (<bfactor1>) co 

l true 
7 false 

true 
true 
false 
false 

true 
true 
false 
false 

I\ 
I\ 
/\ 
/\ 

V 
V 
V 
V 

• 1S 
• lS 

false co 
true co 

true • lS 

false • lS 
true • lS 

false • lS 

true • 1S 
false • 

l.S 

true • 
l.S 

false • lS 

true co 
false co 
false co 
false co 

true co 
true co 
true co 
false r co 

l true V false /\ false co ( true V false) A true 
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Output: 

SN: 
f: true in <bprimary> co false in <:bprimary> co ( <bexp>) in 
<bprima.ry> co <bprjmary> in -<bsecondary> co ·1<bprimary> in 
<bsecondacy> co <bsecondary> in <bfactor> co <bfactor>/\<bsecondary> 
in <bfactor> co <b:factor> in <bexp> co <bex.p>V<bfactor> in <bexp> co 
{<bex.p1>) is <l>exp1> co l<bprimaryl> is 7 va ( <bprimaryl> ) co 
<bfactorl>/\<bsecondaryl> is va ( <l)factorl> J A va ( <bsecundary1> 
) co <bexpl>V<bfactorl> is va r <bexpl> ) V Vci l <l)factorl> ) co 
7 true is false co ~7 false is true co true /\ true is true 
co true/\ false is false co false A true is false co false 
A false is false co true V true is true co true V false is 
true co false V true is true co false V false is false t 

CV: 

1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 

true in <bpri.lll9.ry> co 
false in <bprj_ma.ry> co 

(<l:>ex!)>) in <bprimary> co 
<bprj ma.ry> in <bsecondary> co 
l<l:>primary> in <bsecondary> co 
<'.bsecondary> in <bf,1ctor> co 
<bfactor>A<bsecondary> in <bfactor> co 
<bfactor> in <bexp> co 
<bexp>V<bfactor> in <bexp> co 
(<bexpl>) is <bexpl> co 10: 

11 : 
12 : 

l<bpr:imary1> is ~~1 v,1 ( -<bprirnary 1> ) co 
<bf'actor1>A<bsecondary1> is 
va ( <bfactorl> ) A Y<t -r-<bsecondc1.ryl> ) 

13 : <bexpl>V<bfactor1> is 
va ( <bexpl>) V va 

: 7 true is false co 
: 7 false is true cu 

14 
15 
16: 
17: 
18: 

( <bfactorl> ) 

19: 
20: 
21 : 
22: 
23 : 

true/\ true is true co 
true /\ false is fal~3e co 
false/\ true is false co 
false/\ false is false cw 
true V true is true co 
true V false is true co 
false V true is true co 
false V false is false 

co 

co 



SN: 7 true V false A false 

TS( 13 ) : 7 true 
11~( 14 ' 

) : false 
Tc: ( I..'' 13 ) : .false A false 
IR( 19 ) : false 
IR( 13 ) : false V false 
IR( 23 ) : false 
CV: 

1 : true in <bprimary> co 
• 

• 
• 

23 : false V false is false co 
24: false 

SN: ( true V false )A true 

TS( 12 ) : ( true V false ) 
IR( 10 ) : true V false 
IR( 21 ) : true 
TS( 12 ) : true 
IR( 12 ) : true A true 
IR( 16 ) : true 
CV: 

1 : true in <bprima.ry> co 
• 
• 
• 

23 .. false V f .. alse • r'"'alse l.S co • 
24 • false co • 

25 • true • 

92 
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4 • 2. 3 • 3 • E.xa.mple 12. 
Integer addition and subtraction and assignment statements. 
The principle for the treatment of assignment 
statements is given.The addition and subtraction 
of integers are defined.C~. [41] ,p.18 and chapter 5, 
section 22. 
We have chosen 4 as the base for the number system in 
order to reduce the time needed for the execution of 
this example. 

Input: 

0 
1 
2 
3 

• in 
• in 
• in 
• in 

<di> co 
<di> co 
<di> co 
<di> co 

<di><ui> 
<p,Ill)_ "'"-'1-i> 

in <ui> co 
in <in> co 

O<ze> • in <ze> co 

+ in <pnt> co 
in <pm> co 

X <id> 

<id> 
< 1>" u 

in <id> co 

in <primary> co 
in <prjmary> co 

<pm><prima.ry> 
<exp><pm><prirna ry> 

in <exp> cu 
• in <exp> 80 

<pm1><prima.ry1> is <pm1> Vet ( <prima.cyl>) co 

<exp1><pm1><primary1> is v-a ( <expl>) <pml> Vci ( <primaryl>) co 

<id 1 > : = <exp 1 > is <id 1 > : == vd (<exp 1 > ) cu 

<id1>:= <inl> is f <id 1> is <in l> :} co 

.<:::ui 1> <ui2> • <ui2> <ui 1> + lS co 
<in1> <ui 1> • <inl> + <ui 1> lS co 
<inl> <ui 1> • <inl> <ui l> co + 1.S 

<ui 1> <ui2> • ( <ui 1> + <ui2> ) J.S va co 

<ui 1><cli 1><pml><ui2><d.i2> 
is 
va ( <ui 1><pm1><ui2> ) O + va ( <di l><pm1><di2>) co 

<ui 1 ~ · 1><pm1><di2> 
<di 1><pm1><ui 1><di2> 

• lS 
• lS 

<ui 1> 0 + Vci 

<pm1><ui 1> O 
(<di1><pml><di2>) co 
+ va ( <di 1><pml><di2.>) co 



<ui 1> O + <di 1> 
<di 1> + <ui 1> 0 
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is <ui 1><di 1> co 
is <ui 1 · 1> co 

<uil> O -<di1> is va (<uil> 
1 O - <di 1> is 3 - va ( <di 1> 

1) 0 + va (10 - <di1>) co 
1T co 

<di1><})m1><di2> is va (<di1><pm1> 1) <pml> va (<d.i2> -

<ui 1><:p e> is 
<ze><pm1><ui1> is 

0 + 
1 + 
2 + 
3 + 

1 
2-
3 

1 
1 
1 
1 

• • 

lS 

is 
• lS 
• 
J..S 

1 co 
2 co 
3 co 
10 co 

1 is O co 
1 is 1 co 
1 is 2 co 

<ui 1> 

<ui 1> co 
<pm1><ui 1> co 

co +<ui 1> is 
-<ui1> is ·, <Lli 1> :t co 

X:= 1 + 2 + 3 CO XX:= X - 10 CO X.X :==XX+ X 

Output: 

SN: 

1) co 

f O in <di> co 1 in <di> co 2 in <di> co j in <di> co <di><_ui> in 
<ui> co <pm::>_ <ui> in <in> co O<ze> in <ze> co + in <pm:> co - in 
<pm> co x<id> in <id> co <id> in <priID?ry> co <ui> in <primary> co 
<pm> <primary> in <exp> co <exp><prn><prirnf:1.ry> in <exp> co <pm1> 
<prjma.ry1> is <pm1> Vd r<prirru:1.ryl> ) co <exp1><pm1><primary1> is 
va ( <expl>) <pml> va ( <priillb-ryl>) co <id1>:=<exp1> is <id1>:= 
va T <exp1> J co <idl>:=<inl> is f <id1> is <in1> l co -<ui 1>+ 
<ui2> is <ui2>-<ui 1> co <in 1 >--_,,,,...ui l> is <in l>+<ui 1> co <in 1 ui 1> 
is <in 1>-<ui 1> co -<ui 1>-<ui2> is - Vd ( <ui 1>+<ui2> ) co <ui 1> 
<di 1><pm1><ui2><di2> is rd ( <ui 1><pm1><ui2> ) o+ va ( <di l><pml> 
<di2> ) co <ui 1><.di 1><pm1><di2> is <ui 1>0+ va ( <di 1><pm1><di2> 
) co <di l><pm1Xui 1><di2> is <pml><ui 1>0+ va ( <di 1><pm1Xdi2> ) 
co <ui 1>0+<di 1> is <ui 1><di 1> co <di 1>+<ui 1>0 is <ui l><di 1> co <ui 1> 
0-<di 1> is va \ <ui 1>-1 ) o+ ~d ( 10-<di l> J co 10-<di 1> is 3 
- va ( <di 1>-1 T co <di 1><pml><di2> is V'd "[ <di 1><pm1>1 ) <pml> 
va ( <di2>-1 ) co <ui l><prn><ze> is <ui 1> co <ze><pml><ui 1> is 
<pm 1 ><ui 1> co o+ 1 is 1 co 1 + 1 is 2 co 2+ 1 is 3 co 3+ 1 is 1 O co 1-1 
is O co 2-1 is 1 co 3-1 is 2 co +<ui1> is <uil> t co -<ui1> is 

.....c;;<1J_i 1 > * 



CV: 

1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 

10 : 
11 : 
12: 
13 : 
14: 
15 : 
16 : 

0 • 
<di> in 

1 • <di> in 
2 • <di> in 
3 • <di> in 
<di><ui> -

co 
co 
co 
co 
in <ui> co 

<pm> <ui> in <in> co 
O<ze> in <ze> co 
+ in <pm> co 

in <pm> co 
x<id> in <id> co 
<id> in <primary> co 
<ui> in <pr:imary> co 
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<pm> <prilllf:l ry> in <exp> co 
<exp><prr1-----<prima.ry> in <exp> co 
<pml><primaryl> is <pml> va t <prjmaryl> ) co 
<expl><pm1><primary1> is 

17 
18 
19 
20 
21 
22 

va ( <expl> ) <pm1> va ( <prirm-iryl> ) co 
: <:i.dl>:=<expl> is <idl::::,:= va ( <expl> T . co 
: <idl>:=<inl> is {: <id1> is <inl>:} co 
: -<ui 1>+<ui2> is <ui2>, <ui 1> co 
: <in 1> ...... -<lli 1> is <in l>+<ui 1> co 
: <in 1> 1 <1.1i 1> is <in 1>-<ui 1> co 
: -<ui 1>-<ui2> is - V"cl. ( <ui 1>+<ui2..:-· ) ~u 

23 : <ui l><di 1><pm1><ui2><di2> is 
va ( <u i 1 ><pm 1 :;:<u i. 2> ) O+ Ve. ( <di 1 ><pm 1 :,'><di 2.:.~· ) co 

24 
25 
26 

: <ui l><di l><pm l><di2> is <ui 1>o+ V'd. ( <di 1:::><pm 1><di2> ) co 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

: <di 1><pm1><ui 1><d.i2> is <pml><ui 1>0+ v•:;.. ( <di 1><pm1><di2> ) 
: <ui l>O+<di 1> is <ui l><di 1> cu 
: <di 1>+<ui 1>0 is <ul 1::-.. •:.:::di. 1> cu 
: <ui 1>0-<di 1> is Va ( <ui l>-1 ) O+ 1.r:..:. 
: 10-<di 1> is 3,- va ( <d.L 1;:.:,--1 ) cu 

( 1 0-<: di 1 > ) co 

: <di 1 ><pm 1 ><di 2> i s Ve;. ( <di 1 ><pm 1 > 1 ) <1.>rn l > Ve::.. ( <d :i 2>--1 ) 
: <uil><pm><ze> is <u~1> ~u 
: <ze><pml><ui 1> is <pml><ul 1> cu 
: 0+1 is 1 co 
: 1+ 1 is 2 co 
: 2+1 is 3 co 
: 3+ 1 is 10 co 
: 1-1 is O co 
: 2.-1 is 1 co 
: 3-1 is 2 co 
: +<ui1> is 

41 : --<ui1> is 
<ui1> t co 
· -<J..li 1> * 

co 

co 



SN: 

TS( 1 ·7 ) : 1 +~~+ 3 
TS( 16 ) : 1+2 
TS( 30 ): 1+1 
IR( 34 ) : 2 
TS( 30 ): 2 1 
IR( 38 ): 1 
IR( 30 ): 2+1 
IR( 35 ) : 3 
TS( 16 ) : 3 
IR( 16 ) : 3+3 
TS( 30 ) : 3+1 
IR( 36 ) : 10 
TS( 30 ) : 3 1 
IR( 39 ): 2 
IR( 30 ): 10+2 
IR( 26 ): 12 
IR( 17 ) : x:=12 
IR( 18 ) : ,t Xis 12 
CV: 

1 : O in <di> co 
• 
• 

• 
41 : -<ui 1> is f -<ui l> 
42: Xis 12 

SN: n:: =X:-10 

TS( 17 ) : X 10 
TS( 

,,, 
) : 1b X 

IR( 42 ) : 12 
TS( 'l 6 ) : 10 
IR( 1 f) ) : 12 10 
TS( 2~· ..) ) : 1 1 
IR( 3"7 ) : 0 
TS( r3 c ) : 2-0 
IR( 31 ) : 2 
IR( 23 \ . 00+2 / . 
IR( ':I ,') ) . +2 "' ·"' .... i ~ , . 

• 

IR( 40 
, 

f2 * 
) : • 

IR( • 
17 ' ) : Y"'"" • -2 .... ,;_,.-;I\., • -, 

IR( 1 ,g \ 

t xx • 

2 * ) : lS 

06 
.,/ 

co 
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CV: 

1 : 0 in <di> co 

• 
• 

41 • <t1i 1> • <uil> 1S co • • 
42 ♦ 

12 • X 1S co • 

43 • 2 • xx lS • 

SN: xx:=xx+x 

TS( 17 ) : xx+x 
TS( 16 ) : xx 
IR( 43 ) : 2 
TS( 16 ) : X 
IR( 42 ) : 12 
IR( 16 ) : 2+12 
TS( 25 ) : 2+2 
TS( 30 ) : 2+1 
IR( 35 ) : 3 
TS( 30 ) : 2 1 
IR( 38 ) : l 
IR( 30 ) : 3+1 
IR( 36 ) : 10 
IR( 25 ) : +10+10 
TS( 16 ) : +10 
IR( 40 ) : f 10 l 
TS( 16 ) : 10 
IR( 16 ) : 10+10 
TS( 23 ) : 1+1 
IR( 34 ) : 2 
TS( 23 ) : o+o 
IR( 32 ) : +O 
IR( 40 ) : f O :t 
IR( 23 ) : 2o+O 
IR( 31 ) : 20 
IR( 17 ) : xx:=20 
IR( 18 ) : f xx is 20 l 
CV: 

1 : 0 in <di> co 
• 

• 

• 
41 .. -<ui 1> is f -Cui 1> co • 
42 • 12 co • X lS • 

43 • 2 • XX J..S co • 
44 • 20 • XX 1S • 



4.2.3.4.Example 13. 
Goto statements. 
This example demonstrates the principle of the definition 
of goto statements. In a 11 prescan'' each statement is 
n1,1mbered and supplied with the number of its suc.cessor. 
After the prescan is finished the actual evaluation of the 
11 program'' is started by the ev--d..luation of the f'irst n11mber. 
The evaluation of a goto statement referring to a certain 
label leads to the evaluation of the n1..1mber of the 
statement which is labelled by this label.Many more 
details of the prescan mechanism for ALGOL 60 (which is 
in fact much more complicated,mainly because of the 
block structure) are given in chapter 6. 

Input: 

s 
T 
u 

in <statement> co 
In <statement> co 

' Ill in <statement> co 

goto <label> in <statement> co . -
<label::> : <statement> • in <statement> co 

<statement> 
<statement> ; <statement list> 

1 in <label> co 
2 in <label> co 
3 in <label> co 

a<as> in <:as> co 

begin <statement listl> end 
is 

in <statement list> co 
in <statement list> co 

r a: <statement list1> co a) co 

<asl> : <statement 1> ; <statement list 1> 
is 

f <.a.s1> is ( <statementl> co <asl>a)} co 
<as l>a : <statement list 1> J co 

<asl>: goto <labell>;<statement listl> 
is 
-C-f <a.s1> is goto <label1> * co <asl>a: <statement listl>) co 

<a.s1>; <statementl> is f. <asl> is <statementl> * co 
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<a.s1>: <label1>: <statement list1> 
• lS 

__ f. <label1> is <a.sl> t co <as1>: <statement list1>) co 

goto <label1> is <label1> co 

begin S; T; goto 1 ; S; 1 : U end 

Output: 

SN: 
{:Sin <statement> co Tin <statement> co U in <statement> co goto 
<labeJ> in <statement.> co <label>:<statement> in <statement> co 
<statement> in <statementlist> co <statement>;<statementlist> in 
<statementlist> co 1 in <label> co 2 in <label> co 3 in <label> co 
a<as> in <as> co begin <statementlistl> end is ( a: 
<statementlistl> co a")' co <as1>:<statement1>;<statementlistl> is 
( <asl> is ( <statementl> co <asl>a) * co <a.sl>a: 
<statementlistl>) co <as1>: goto <labell>;<statementlistl> is ( 

<.a.s1> is goto <labell> co <as1>a:<statementlistl>) co <as1> 
:<statement1> is {: <asl> is <statementl> co <asl>:<label1>: 
<statementlist1> is ( f <labell> is <a.s1> * co <asl>: 
<statementlist1> T co goto <labell> is <labell> t 

CV: 

1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 

10: 
11 : 
12: 

Sin <statement> co 
Tin <statement> co 
U in <statemE:nt> co 

goto <label> in <statement> co 
<label>:<statement> in <statement> co 
<statement> in <statementlist> co 
<statement>;<statementlist.> in <statementlist> co 
1 in <label> co 
2 in <label> co 
3 in <label> co 
a<as> in <as> co 
begin <statementlist1> end is 

[ a:<statementlist1> co a ...... co 
1 3 : <as 1>: <statement 1>; <s ta temer1tli st 1 > is 

( f <a.s1> is i <statementl> co <asl>a) 
<asl>a:<statementlist1>) co 

co 

14 : <as1>: goto <label1>;<statementlist1> is 
( f <.a.s1> is goto <labell> t co 
<as1>a:<statementlist1>) co 

15 : <as1>:<statement1> is f <asl> is <statementl:> =t co 
16 : <as1>:<label1>:<statementlist1> is 

( f <Labell> is <a.s1> * co <as1>:<statementlist1>) 
17: goto <label1> is <label1> 

co 



SN: begin S;T; goto 1;S;1:U end 

IR( 12 ) : 
IR( 13 ) : 
CV: 

a:S;T; goto 1;8;1:U 
fa is' '( S co aa) 

1 : Sin <statement> co 
• 

• 
• 

17: goto <labell> is <labell> co 
18: a is ( S co aa; 

IR( 
IR( 
CV: 

13 ) : 
13 ): 

aa:T; goto 
f a.a is 

1;S;1:U 
T co aaa ) 

1 : Sin <statement> co 
• 
• 

• 
17: goto <labell> is <label1> co 
18 : a is i. S co aa; co 
19 : aa is l T co aaa) 

IR( 13 ) : 
IR( 14 ): 
CV: 

a.as : go to 1 ; S; 1 : U 
-f: a.as. is ~oto 1 

1 : S in <statement.> co 
.. 
• 
• 

17 • goto <labell> is <labell> • 
18 • a is ( S co aa; co • 
19 • aa is ( T co aa.a ) co • 
20 • aaa is goto 1 • 

IR( 14 ) : aaa~1.:S; 1 :U 

co 

100 

IR( 13 ) : 
CV: 

f aaaa is ( S co a2aaa) 

1 : S in <statement> co 
• 

• 
17 " goto <label1> • <labell> :LS co • 
18 a • ( s aa1 • J..S co co • 
19 is lT 

r ttr. 

) .. aa co aaa co • 
20 • aaa • goto 1 18 co • 
21 • as.ea is '5 (' s co aaaaa ) • 



IR( 13 ) : aa.aaa: 1 :U 
IR( 16 ) : {: 1 is aa.aaa 
CV: 

1 : Sin <statement> co 
• 
• 
• 

17 • goto <label 1> is <label1> • 
18 • a • ( s a.a.) lS co co • 

19 • aa • ( T ) 1.S co a.as. co • 
20 • aaa • goto 1 1S co • 
21 • aaa.a • (" s ) is co aaaaa co • 

22 • 1 is aaaaa • 

IR( 16 ) : aaaaa:U 
IR( 15 ) : {: aaaaa is U * 
CV: 

1 : S in <statement.> co 
... 

• 

17 • goto <labell> is <label 1> • 
18 • ( ('' • a lS co u • 

19 • ( T • aa 1.S co • 
20 aaa • goto • lS • 
21 • '( s • aaaa 1.S • 
22 • 1 is aa.aaa co • 
23 • aaaaa • 

IR( 12 ) : a 
IR( 18 ) : S 
CV: 

• u lS 

8.c-J co 
aaa, ) 

1 co 
co aaaaa 

1 : Sin <statement> co 
• 
• 
• 

co 

) co 

17 goto <labell> • <labell> • lS • 
18 • is co aa.J co • a 1s • 
19 • { T co -aaa ) co • aa 1.S • 
20 • goto 1 co • a-oa lS • 
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co 

co 

co 

21 • ( s co aaa.aa, ) co .. aaaa lS • 
22 1 • aaaaa co • 1S • 
23 

• u co • aaaaa l.S • 
24 • s • 



1 02 

IR( 18 ) : 8,f~, 

IR( 1Q ; ) : T 
CV: 

1 : S in <ata tement> co 

.. 
17 : §O,to <label 1> is <label 1> co 
18: a is l S co aa .... co 
19: ea is 1 T co aaa) co 
20 : aaa is .. to 1 co 
21 : aaaa is S co aaafia ) co 
22: l is a.aaaa co 
23: &teas. is U co 
24 : s co 
25 : '11 

IR( 19 ) : . aaa 
IR( 20 ) : ~oto 1 
IR( ) : 17 1 
IR( 22 ) : ae.aaa 
IR( 23 ) : u 
CV: 

1 : S in <statement> co 
.. 

• 
17 • §Oto <label l> • <label 1> J.S co • 
18 

. ' ; 

is co aaJ .. a is co • 

19 .. aais ( T co aaa ) co • 
20 .. as.a is oto 1 co .. 
21 .. a...,ea is s co aaaaa ) co • 
22 • 1 is aaa.aa co . • 
23 • $,8,8.88 is u co • 
2·4 .. s co .. 
25 • T co • 
26 • u • 
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4.2.4. Wang's algorithm for the propositional calculus. 

Example 14. This exa:mple defines the well known algorithm of 
Wang for the propositional calculus [45,36]. 
Truth 15 is Wang's rule Pl,truths 16,17, ••. ,25 
correspond to his rules P2a,P2b, ••. ,P6b.The 
equal sign replaces Wang's arrow. 
A forrr1( ula) is valid if and only if the evaluation 
of the simple name that denotes the fornrula does 
not lead to the addition to V of a truth different 
f'rom ' 1 valid11 

.. 

The idea of using the metalanguage for the definition 
of this algorithm vas taken from PANON 1B, see [9]. 

Input: 

t: p • <atomic form> in co 
Q • <atomi.c form> co in 
R • <.atomj c f'orm> co in 
s • <.atomic form> co in 

T • <atomj C form> in co 

t f'orm seq> in <.o. t f'o1·rn seq> 20 

<atomic form> • <form> co in 
(7 <form>) • <:form> co in 
( <form> /\ <form>) • <.f~orm> in co 
(<form> V <form>) • in <form> co 
( <form> 7 <form>) • <.form> co in 

( <form> = <form>) • <form;..> co in 

<fox·m><for,n seq> in <for,r1 seq> co 

<at :form seq> = <at form seq> is non valid * co 

<.at form seq><atomj c :fo:t-rnl><at fom EJeq> 
--
<at form seq><a tomi c :form l><c1.t form seq> 
••= • 
l.G 

valid t co 



1o4 

<:at form ae~q 1> m: <.at fo1·m seq2>( 7 <'fo:t-m.1> )<form seq 1> 
·- - JJn,rr • lS 
<tor·m1:><at form seq 1> = <at forn1 seq2> <for,n seq 1> co - - -

- form seq 1>( l <fottnl> )<form seq 1> ::: <fo:t·m seq2> --is 
<at fo1-m seq 1> <::ro1·m seq 1> = <t"'orrn seq._ ........ oI'lI11> co 

- - - - 111•111 

<at form seql> = <at fox1n seq2>( <fonnl> /\ <fol1D?> )<f'orrn seq 1> 

<at fo11n seq 1> = <'.a.t fo1"m seq_,.. ........ 01·n1l><fo1:"In seq 1> co 
<at fo1-m. seq 1> = <.at form seq · onn2><fortn seq 1> ; co 

., -
seq 1>( <tor-ml> ,\ <for,n2> )<.for1n seq 1> = <fot·tn seq2> -.. 

is 
<at -
<at form seq 1> = <at form seq2>( <for·m1> V <fo1:·nt2> )<fo:t·rn seq 1> -is 
-<.ttt foxm seq 1> = <at form seq"_,, 

<~::1. t fox·n1 seq 1>( <fo1:··m1> V <fox,n2> )<form seq 1> = <fo:r"lll seq2> -
t·<at fa.tin seq 1.><f_ · orm.1><fonn seq 1> = <fo1·1n seq2> co 

<at for:·m seq 1><.f_ o · · ;;:'" 11n seq 1> == <:fo.c·n:1 seq2.> ;co 

fox,n seq 1> = <at fol'.'.-m seq2:>-( <f"or·ml> ·1 <form2> )<fo1•1u seq 1> - -= - 11,c 

<.at 
is 
<at form seq l><forml> ::: <tit fo:r"'m i,eq ........ or ·. ~011n seq 1> co 

talldij; - -

<at fo:r·m seq 1>( <form1> 7 <.fo ·· )<form seq 1> = <form seq2> 
ff 111 I 

is 
<:at for·m seq 1><fo ·· .··· o:t-m _.. _ -
<,a:t fol:1r1 seq 1> <for·m seq 1> 
n11H ._ - -

seq 1> :::: <t"'orm seq2> co 
= <foi:,n seq ..... 1 oxwml>) co -

<.at f"o:r-m seq 1> :::: <at fo1·rn seq2>( <form1> = <.fonrl2> )<'~0I·1r1 seq 1> 
is 

<:rorml><at f'o.t-m seql> = <at forxn seq~ • o :::-onn seq 1> co 
-. <to1ro;:t><a.,t form seql> m:: <at fox·m seq2><fo1:·ml><f'()rm seql> )co 

<at fo1·1n seq 1>( <fonnl> = <fo.t:in2> )<::fo11,1 seq 1> = <for·m seq2> . - - - .. 

is _ _ 
<form1><form2X_at form seq 1> <for10. seq 1> = <.foI-m seq2:> co 
<at form. seq 1> <fOI"Ill seq 1> = <:fOI"Il1 seq_,.._ . ox•m1><forro2> ) * CO 

= ((( 7 P) A ( l Q }) 7 ( P = Q )) co 
•• rr 

= (( P V Q) l (PI\ Q )) -
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Output: 

SN: 
f Pin <atomjcform> co Qin <atomicform> co R in <.atomicform> co Sin 
<:atoroicf'orm> co Tin <atomicform> co <atomicform><atformseq> in 
<atformseq> co <atomicforrn> in <f'orm> co (l<f'orm>; in <form> co 
(<form:>/\<form>-) in <f'orm> cot<form>\Kforrn>) in <form> co (<form> 7 
<form>) in <form> co (<fornt> = <form>) in <form> co <f'o ,::ormseq> 

<a tf'ormseq> <a tomicfor"In 1>-<=a tfoimseq> =<a t:formseq> <a tomi cfor1n 1> 
<at:for"Inseq> is f v--alid f co <atfor·mseq 1> =<atformseq2> ( l<f'or·ml>) 
<formseq 1> is <:forml><atformseq 1> =<atfor·1r1seq2> <fo:t·rnseq 1> co 
<.a.t:for-r:nseq 1> -"[7<:form1> T<:ro11r1seq 1> =<for,nseq2> is <a tfo1·1nseq 1> 
<for·rnseq 1> =<:for·1r1seq2> <f'orn11> co <atfo:i::-mseq 1> =<atforrnseq2> r <f'or-m1> 
A<forni2>)<fox·mseq 1> is ( <atf'o1·rnseq 1> =<atfox·mseq2> <:fo:r"lnl><f'orrnseq 1> 
co <at:for·rnseq 1> =<atfo:t-rnseq2> <form2><_f'onaseq 1> ) co <a.tfo1·n1seq 1> 
{ <:f

0

0:t'If1l>~o:r•rr12> )<:fOl"Iriseq 1> =<fOI"IUSeq2>_ is <.atfOl"rt1seq 1> <form1> 
<fo ...... :ic:::..,:; _....,_ or1r1seq 1> =<for•1r1seq2> co <at:fo:r,11seq 1> =<a.tfor·ruseq2> ( <form1> 
V<:for·1n2> )<fo1·cr1seq 1> is <c1tfor·xnseq 1> =<atfor1:11seq2> <fo:rm1><fo~.n'\ ...... ~ 
<fon,1seq 1> co <atfor·rnseq 1> ( <form1>V<fo.,,,.......,1u;;_,.,. )<forrnseq 1> =<formseq2> 
is ( <a tfo.r·rnseq 1> <form1><for·1nseq 1> =<for·rriseq2> co <atfor-mseq 1> 
<fo1:"!D2><fo:r·tr1seq 1> =<fo.r·rns eq2> ) co <.a tfor .. rnseq 1> =<a tfor·rnseq2> t 
<fo:r·rn1> 7 <for·m2> )<f'or·r·r,seq 1> is <atformseq 1> <fo1m1>=<atformseq2> 

<fo11r,seq2> is ... <atfor·cnseq 1> <fo~0--...<formseq 1> =<for·1nseq2> co 
<:a tf'o:r::·rnseq 1> <fo:r,oseq 1> =<foz·mseq2> <:for·ai 1> ) co <a t:fo1:1:nseq 1> = 
<.atf'o1·1r,seq2:> "[ <fox-rnl> = <.:for·1·a2> )<for·rriseq 1> is \ <forml><at:fo1·mseq 1> 
=<atf'o11t1seq2> <fo......,.,. ~ .::::-01:·rnseq 1> co <:fa~·;....,- '-y.,A.t:fo1wseq 1> =<atf'orroseq2> 
<fo.r·to1><forrriseq 1> ) co <atfor·iuseql> ( <forml> = <fo:r·m2> )<.for1oseq 1> 
=<foi•1r1seq2> is ( <for·xn1><foI"ID2><_atfo:r:·mseq 1> <lor[nseq 1> =<formseq2:> 
co <atfor·n1seq 1> <fo:r·rtiseq 1> =<for•1r1seq2> <fox1n1><fo1.1n2> ) ::}, -

CV: 

1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 

10: 
1 1 : 
12: 
13 : 

Pin <atomjcform> co 
Qin <atomicform> co 
R in <atomicform>- co 
S in <atomicform> co 
T in <a.toroi cfor·ctC> co 
<:a. tomj c:f o _.,.,.,. _ t:f o 1-ms eq> in <a tf o 11,1s eq> co 
<.a.tomi c:for1n> in <f'o.r·rti> co 
( 7<.f orxcl>) in <f o rrrc:> co 
(<form>A<form.>) in ---..L.Orm> co 
(<forIIC>V<form>) in <:form:> co 
(<:form> 7 <fornt>Jin <form> co 
(<form>= <form>) in <form> co 

\111-

<f o rm><f' o :r-"I.,,..,nS eq> in <for·1r1seq> co 
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14 : <atfo:r:1:nseq> =<atfoi:wseq> is _nonvalid co 
15 : <a.tfo11nseq> <atomicfo:t"ml><atfo:r·rnseq> = 

<a.tfo1-mseq> <atomicfo11n1><atformseq> is f valid co 
16 : <a tfOl'.*;rnseq 1> =<atformseq2> ( l<form1> )<forrnseq 1> is 

<forml><atformseq 1> =<at:formseq2> <for1nseq 1~ co 
1 rl : <~tforrnseq 1> ( -Kform1> )<forrnseq 1> =<formseq2> is 

<a tf o :r·inseq 1 > <f o 1:·ms eq 1 > =<f o r1ns eq 2> <form 1 > co 
18 : <atformsea 1> =<atfo:t-rnseq2> ( <form1>/\<fo1102> )<f'ormseq 1> is 

. ... 
<::atfoi·rnse-q 1> =<.atfo:t-mseq2> <.for"In1><formseq 1> co 

--<:s.tfozmseq 1> -;<atfo:r1nseq2> <fo"""1.,., .... ~)--... _ ormseq 1> ) co 
19 : <a.tforrnseq 1> ( <forml>/\<forrn.2> )<formseq 1> =<formseq2> is 

<:at!'ormseq 1> <forrn1><fo _,.,.. ~oi:1nseq 1> =<formseq2> co 
20 : <a t.fo.r,n.seq 1> =<.atformseq2> '[ <fo11n 1>V<:for"I112> )<fo1·mseq 1> is 

<a tforinseq 1> =<a. tfoxmseq2> <form 1><foy,,J.n,w ::.....-~ oi:·mseq 1> co 
21 : <a.tfoI1oseq 1> ( <forml>V<fo1-nt2> )<formseq 1> =<formseq2> is 

<.a.tfo:r·toseq l> <form1><formseq 1> =<fo1·111seq2> co 
<atformseq 1> <fo.,.... ... m ... :_...._. ormseq 1> =<fo1-niseq2> ) co 

22 : <atfornis~q 1> =<.atfor·cnseq2> ( <fortn1> 7 <fo1·rn2> )<formseq 1> is 
<atformseq 1> <fo:r,n1>=<c:.tfor,nseq2:> <fo~ -:::--ormseq 1> co 

23 : <a. tformseq 1> ( <fox·xn1> 7 <fo:r"Ir12> )<:fo1·1nseq 1> =<:fox·mseq2> is 
r <a ti"orrTlSeql> <for ...... · - o:r1nseq 1> =<fo:r·1nseq2> co 
<atformseq 1> <formseq 1> =<fo:r,nseq2> <forml> ) co 

24 : <e.tfo1111seq1> ::::<.t.itfo:r"Iriseq2> (<fo11nl> = <fo:t'In2>)<:formseq1> is 
"(" <:forml><'.'.b.t.fo:r-mseq 1> =<.c.ttfO.t"inseq2> <fO"""'!'l"l ..... ~--)---_-.....L ormseq 1> co 
<fo~- _........,.tfo1·1nseq 1> ;-<atfor·mseq2> <forml><fo1·1nseq 1> ) co 

25 : <a.tfo:rmseq 1> ( <fo1-ml> = <fo..........v\r·,......._ )<fo:r·1nseq 1> =<fo1·rnseq2> is 
"[ <fo:t·ml><fo-')_,,,,, _c.1.tf0:r·n1seq 1> <forrnseq 1> =<:fo11nseq2> co 
<atformseq 1::::_ Sf"'o:t"ID.seq l> =<formseq2> <fol'!n l><forrn.2:> ) 

SN : • ( ( ( lP) /\( 7Q) ) l ( P = Q) ) 

IR( 22 ) : 
IR( 19 ) : 
IR( 17 ) : 
IR ( 17 ) : 
IR( 24 ): 
IR( 15 ) : 
CV: 

( ( lP ) /\( lQ) ) = ( P = Q) 
( -1p ) ( lQ) = ( p = Q) 
( ·1Q) = ( p = Q) p 
=(P = Q)PQ 
P=QPQ 
t valid 

1 : Pin <.atomic.form> co 

• 

• 

25 : <.a.tformseq 1> ( <form1> = <form.2> )<formseq_ 1> =<formseq2> is 

: valid -
• 



IR( 24 ) : 
IR( 1 5 ) : 
CV: 

Q=PPQ 
valid* 

1 : P in <atorni cform> co 
• 
• 
• 
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' 

25 : <a tfo.t:mseq 1> ( <f'o:r-ml> = <forrr12> )_<f'o:r·rr,seq 1> =<formseq2> is 
<form l><fo"Y""l"n:_.. <.a.. tfo:r~seq 1> <formseq 1> =<formseq2> co 

<a tformseq 1> <form.seq 1> =<for1nseq2> <f oz-m 1><for·m2> ) co 
26 : valid co 
27: valid 

SN : = ( ( P\;Q) 7 ( P /'Q,) ) 

IR( 22 ) : (PVQ)=(P.AQ) 
IR( 21 ) : P=(P/\Q) 
IR( 18 ) : P=P 
IR( 15 ) : f valid:} 
CV: 

1 : P in <.a tomicform> co 
• 
• 

25 : <atformseq 1> ( <for·m1> = <fo1:·102> )<fol'.·tnseq 1> =<fo1:·1nseq2> is 
"'(' <f'Ol"IIll><i'O.t"It12><_Htfo:r·1·1,seq 1> <fo:t·rnseq 1> =<for•rnseq_2> CO 

<atforvroseq 1> <:formseq 1> =<formseq2> <for·ml><:fox-m2> ) co 
26 : valid co 
27 : valid co 
28 : valid 

IR( 18 ) : P=Q 
{:: nonva.lid t IR( 14 ) : 

CV: 

1 : P in <a.tom.icf'orm> co 
• 
• 
II 

25 : <Btformseq 1> ( <for·1nl> = <fo1·1n2> )<fox·mseq 1> =<formseq2:::_ 
r <:fo:r"Ilt1><f'or .:::::-"'tfor·1.r1seq 1> <for .. mseq 1> =<fo1·n1seq2> co 
<a tfor·n1seq 1> <fo.rmseq 1> =<formseq2> <:for·1n 1::><forrn2> ) co 

26 : valid co ..... 
27 : valid co 
28 : 
29 : 

valid co 
__ .,, ... 

nor1va.lid 

is 



l.R 
IR 
IR( 
CV: 

21 ): 
18 ) : 
14 ) : 

Q•(PI\Q) 
Q•P 

{: nonvalid} 

1 : P in <a.toxnicforr.rt> co 

.. 

1o8 

25 : <a.t.fo1·mseq l> ( <forml> = <for11~ )<fo:r-rnseq 1> =<formseq2> is 
<fO:t"ml><fo.· _.,,. · ttormseq 1> <:fo1•m,seq 1> =<fo:r1nseq2> co 

.... <atfox,nseql> <form.seq_ 1> =<fo:t'Ioseq2:> <for·Inl><fo1·m2> ) co 
26 : valid co 
27 : valid co 
~. 8'· l d c. : va i · co 
29 : nonvalid co 
30: nonvalid 

IR( 18 ) : 
IR( 15 ): 
CV: 

1 : P in <atomicforrzl> co 
.. 
• 

25 : <atfo1·1iweq 1> ( <forml> = <for·m2> )<for"fnseq 1> =<fo1·rt1seq2> is 
r <forrt11><fo ......,._ --..;;;..· tfor·1nseq 1> <forniseq 1> =<for·rnseq2> co 
<atfo1·mseq 1> <fo:t·1nseq 1> =<fo1·rnseq2:> <fo11n1><fo - ) co 

26: valid co 
27: valid co 
28: valid co 
29 : nonvalid co 
30: nonvalid co 
31 : valid 



CHAPTER 5 

DEFINITION OF ALGOL 60 

In tl1is chapter we give the definition of ALGOL 60 by means of a 

meta1)rogram. 

An expla11ation of this definition follows in chapter 6. 

For typograpl1ical reasons, the ALCA>L 60 symbols : and ·::) are <ienoted 

here b~; : and , . 

The nun1bers to the left of the truths and the headings of the sections 

are not to be interpreted as part of the metaprogram; they are intro

duced only for easier reference in chapter 6 . 

.. 
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11 Undefined values 11 
• 

O. l <sequence of basic and aux te:r·m symbols> is o co 

0.2 
0.3 
o.4 
0.5 ,,, 
O.b 
0.7 

1 • 1 
1 .2 
1 • 3 

1.4 
1 • 5 

1.6 
1 • 7 
1.8 

1 • 9 
1. 10 

<J:::tss st> 
<a.exp> 
<proc st> 
<block> 
<:bplist> 
<switch list> 

<ass st> 
goto <dexp> 
<proc st> 

• <decl st> • 
J.n ass lS 
• <decl dexp> • in lS 
• <decl st> • 
J.n proc J.S 

<decl block> • • lS 1n 
• <decl bplist> • 
in lS 
• <decl switch list> • 1n lS 

Syntax of a progra..~. 

in <W1labelled basic st> co 
in <wilabelled basic st> co 
in <unlabelled basic st> co 

<unlabelled basic st> 
<label> : <basic st> 

in <basic st> co 
in <basic st> co 

<basic st.> 
<compound st> 
<block> 

in <unc st> co 
in <Wlc st> co 
in <unc st> co 

if <oexp> then <unc st> in <cond st> co 
if <bexp> then <for st> in <cond st> co 

0 co 
0 co 
0 co 
0 co 
0 co 
0 co 

1. 11 if <bexp> then <unc st> else <st> in <cond st> co 
1 • 12 <Ia.bel> : <cond st> in <cond st> co 

l • 13 
1 .. 14 
1 • 15 

1. 16 
1.17 

1. 18 
1. 19 

<unc st> 
<cond st> 
<for st> 

<st> 

in <st> co 
in <st> co 
in <st> co 

<st>; <st list> 
in <st list> co 
in <st list> co -

begin <st 
<label> : 

list> end • 
in 

<compound st> in 
<compound 
<compound 

st> co 
st> co 



1 .20 
1. 21 
1 .22 
1 .23 

1 .24 

1. 25 
1 .26 

1.27 

1 .28 
1 .29 
1 .30 

1 • 31 

1.32 

<type declaration> 
<array declaration> 
<switch declaration> 
<procedure declaration> 

in 
• in 
• in 
in -

1 1 1 

<declaration> co 
<declaration> co 
<declaration> co 
<declaration> co 

<declaration> ; _<decl list> in <a.eel list> co 

begin <decl lis~ --.t list> end in <block> co 
<label> : <block> in <block> co 

<decl list> <st list> end in <block tail> co 

<int var>:= <for list> 
<st list> 
<ext st list>;<ext st list> 

in <ext st list> co 
in <ext st list> co 
in <ext st list> co 

; <ext st list> in <special st list> co 

<special st lis~ end in <block end> co 

<compound st> 
<block> 

in <program> co 
in <program> co 

Value of a program. 

2. 1 <prograro1> 
is 
r- f b c :}- co f f g :} co 

b c a : integer dl11moy 1; boolean d11rm1JY 2; 
integer procedure' sign ( fJ; 'value f; integer f; 
sign:= if f > 0 then 1 else if f = 0 then 0 

<programl> end co 
b ca ) co 

2. 2 <sequence o:f basic and aux tel'.'rri symbols_><aux id> 
<sequence o:f basic and aux tei1n symbols> 
is o co 

else -

<sequence o:f basic and aux term symbols><a_ux label> 
<sequence of basic and aux term symbols> 
is o co 

as • 

1; 
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Syntax of block n11:mber and program point. 

3 • 1 a <as> in <.as> co 

3.2 b <bs> in <bs> co 

3.3 <bs> c in <be> co -
3.4 <bc><bcs> in <bes> co 

3. 5 d <bcs><_d.bcs> in <dbcs> co -
3. 6 <bcs><dbcs> in <bn> co -
3-7 <bcs><a.s> in <p> co 

Prescan declarations. 

4 .. 1 <pl>: <declarationl>; <block taill> 
is • 

r <declarationl><pl> 1 co 
f <p1> is i <declarationl><p1> 2 co 

f <pl> is ( 
f t <pl> is ( <d.eclaration1><p1> 4 

t <pl> a ) } co 
<pl> a J * co 

4.2 

<pl> h ) * co 
<pl> a: <block taill> ) co 

<pl> 
is 

: <ownl><typel><idl>,<id listl> -
m rru 1 

<Pl> : <own l><type l><id 1>; -

; <block tail 1> 

<ownl><typel><idlistl> ; <block taill> co -
4. 3 <pl> : ~wn l><typel> 1:irruy <.array segment 1>., 

<array list 1> ; <b'1ock tail 1> 
is 
<pl>: ~wnl><typel> ~r~~ <array segment1>; 

co 

<ownl><typel> array <array listl>; <block taill> co 
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Prescan statements. 

5. 1 <pl> : ; <st list 1> end 
is 
<pl> : <st listl> end co -·-

5.2 <pl>: begin <st list1> end <block endl> 
is 
<p1> : <st listl><:b_lock endl> co 

5.3 <pl>: if <bexp1> then <unc stl><block end1> 
is 
<p1>: i:f 7 

<pl> 
(<bexpl>) then goto <pl> 
1 1 : <block end1> co 

1 1; <unc st1>; -
-

5.4 <pl>: if <bexp1> then <for stl><block endl> 
• 
J.S 

<p1>: if 7 (<bexpl>) then goto <pl> 1 2; <for st1> 
<pl> 1 2: <block endl> co 

5.5 <p1> : if <bexpl> then <unc stl> else <:stl><'.block endl> 
is 
<pl>: if <bexp1> then begin <unc stl>; goto <pl> l 3 end; 

<st1>; <pl> 1 3: <block end1> co 

: if <bexpl> then goto <dexpl><block end1> <pl> 
is 
<pl>: goto 

<pl> 
if <bexpl> then <dexp1> 
1 4 : <block endl> co 

else <pl> 1 4; 

-
5 .. 7 <pl> : <unlabelled basic st l><block end 1> 

is 
t f <pl> is ( <unlabelled basic st1><p1> 2 co 

f <pl> is _l 
f t <p1> is <unlabelled basic stl><pl> 4 } co 
<p1> a :} co 

<pl> a J .r co 
<pl> a: <p1> k: <block endl> ) co 

5.8 <pl> : <1abell> : <st listl> end 
is 
r label <label l><pl> 1 

<p1> is ( 
co 

f <p1> is i_ label <label l><pl> 3 
ft <pl> is t <pl> at co 

<pl> a ) } co 
<pl> a ) :f co 

<pl> a: <st list1> end ) co 

co 
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<pl>: besin <decl liat1><st listl> end <block end1> 
4 ii bL I IHPlR 

is 
<pl>: begin <decl listl><st list1>; goto <pl> k 1 end; 

►--<pl> k 1 : <block end 1> co 

5.10 begin <decl list><st list>; goto <p> k 1 end 
in <special block> co 

5 .. 11 <pl> : <special block l><block end 1> 

5. 12 

• lS 

f <pl> is i <special block1> in <decl block> co 
f,i,r~t progr.p o:f block <pl> co 

f <pl> is ( 
f t <pl> is first progr.p of' block <pl> :}, co 

<pl> a ) :} co 
<pl> a )"'. ~ co 

<p1> a: <block endl> ) co 

<bcs1><bc1> im 
first progr .. p of block <bes 1><..as 1> is 
f "f"irst progr.p of block <bes l><as 1> is <bcsl><l:>c 1> a :} co 

5.lj begin <block ta.ill> in <decl block> 
is 
\ begin co <block taill>) co 

<l.)csl> im <'.block taill> 
is 
r {: <bcsl> a is i 

f <bes l> a is i begin 
f _,,t <bes 1> a is 

<bcsl> ~a) t co 
<l:>csl> a a)~ co 

<bC!3 l> ::_ a : <block tail 1> ) co 

5-15 <l.)csl><asl>: end 
• l.S 

co 
t <bcsl> a a* co 

.... f <bcsl><asl> is i end co 
{: <bes l><as 1> is ( 

f t <bes 1>-<las 1> is end } co 
t <bcsl> a) t)} co 

<bcsl> a ) co 



6. l 
6.2 

6.3 

<bnl> 
<llnl> 
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Value of begin and end. 

im begin 
im end 

is begin <bnl> co 
is end <bnl> co 

begin <bcs1><dbcs1> <:bes l> b c _<dbcs 1> :} co 

6 .4 <bes 1><1:>c 1><dbcs> im 

6.6 

begin <bcsl><dbcs1> is {: <'.bcs1> b <bcl><dbcsl> ::r co 
• 

end b c is 
I I I 

end b c is 
<sequence of basic and aux teI"tr1 syrribols> t * co 

end <bes 1:><hc><dbcs 1> is <bcsl 

Type declarations. 

integer 
boolean 

in <type> co 
in <type> co 

csl> * co 

7.3 own in <o-wn> co 

<id> 
<id>,<id list.> 

in <id list> co 
in <id list.> co 

7 .6 <own>_<type><id list> in <type declaration::> co 

7 .. 7 <own>_<type1><id l><bcs 1><J.1.s> 1 is f <type1><1d 1><bcs 1> t co 

7.8 <specifier><idl><bcsl> im 
<o'Wn'>_<type><id1><l>cs1><as> 1 is o co 

7.9 <type declaration><p> 2 co 

7 .. 10 

7.11 

7. 13 

<typel><id1><p> 4 is <type1:><id1> co 

<:hes l><dbcs> im - <type1><id 1> • lS f <typel><idl><bcsl> t co 

<l:)csl><dbcs> im own <type1><id1><p1> 4 
is 
.-- <type l><id l><bcs 1> co 

t <pl> is ( own <type1><idl><p1> 4 <bcsl> co t <pl> a ) 't co 

<JJcs1><dbcs> im own <type1><id1><p1> 4 -<bcs2> 
❖ I JI 

is 
own <type1><id1><p1> 4 co {: <id1>4cs1> is <1d1><bcs2> :t- ) co 

• 
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The value of a simple variable. 

8 .. 1 .».Jes> im <id1> is <id1><bcs1> co 

8 .. 2 <id1><bca1><bc> is <idl><bcs1> co 

8.4 

fo1·1rml <1d1><bcs 1> actual <expl> bn <bn 1> im 
<idl><bcs 1> 
is 

save bn <idl,><bcsl> co f <bnl> :t co result : va ( <exp1> ) co 
reset bn <id l><bcs 1> co result ) co 

<ty -..d 1><bcs 1> im <id l><bcs 1> is o co 

8. 5 <bnl> im save bn <idl><bcs 1> 
is 
rreset bn <1d1><bcs1> is f <bnl> * * co 

8 .. 6 result : <constantl> is f result is <constantl> :i> co 



9-3 
9.4 

9-5 
9.6 

9.7 
9.8 

9.9 

<a.exp> : 
<.aexp> : 
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Array declarations. 

<a.exp> 
<a.exp>, <bplist> 

in <bplist> co 
in <bplist> co 

<decl aexp> : <decl aexp> 
<decl aexp> : <a.eel aexp>,<decl bplist> 

in <decl bplist> co 
in <decl bplist> co 

<id>[ <bplist>] 
<id:>-, <.array segment> 

<array segment> 

in <array segment> co 
in <array segment> co 

<array segment>,<array list> 
in <array list> co 
in <array list> co 

type> array <array list> in <array declaration> co 

<o typel> ~r~al <idl>,<id listl>[<l>plist1>]<p1> 1 
is 

<type1> 
...... _., I 

<type1> 
array <id 1> [ <bplist 1> ]<pl> 1 
array <id listl>[<bplistl>]<p1> 1 

co 
) co 

9.11 <own:><type1> array <idl>[<bplistl>]<bcs1>--<bc1><.as> 1 

9. 12 

9. 13 

9. 14 

9. 15 

9. 17 

is 
~ <typel> ~rr!il <idl><bcsl><bc1> co {: <bcs1> t co 

<bplist 1> in <decl bplist> co~ <bes 1><bc 1> -i:- ) co 

<typel> ~r:a"l <id1><bcs1> is {: <type1> array <idl><bcs1> t co 

<specifier><id l><bcs 1> im <type> array <id l><bcs 1> 

<array declaration><p> 2 co 

<ownl><typel> array <id listl>[<l:>plistl>]<p1> 4 
• J..S 

• lS 0 

<ownl><typel> array <id list1>[va ( <'.bplistl>) ]<pl> 4 co 
I 

<bes l><bc l><dbcs 1> im <aexpl> : G:iexp2> 
is 
r -f <bes l><dbcs 1> co 

bound pair : ra. ..... <aexp 1>) : va ( <aexp2?) co 
<bes 1><bc l><dbcs 1> t co bound pair ) co 

bound pair : <int 1> : <int2> 
is 

bound pair is <int 1> : <:int2> :} co 

<aexp1> :<a.exp2> , <bplist 1> 
is 
va ( <aexp1>: <aexp2>), va ( <bplistl>) co 

co 



9.-19 
9,.20 

94124 

9 .. 25 

<int>: <int> 
<:int> : <int>.,<:int bplist> 
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in <int bplis-L.> co 
in <int bplist::> co 

<int bpllst1> is f <int bplist1> t co 

<typel> ;;!..r.al <id list 1>[ <int bplist 1> ]<p> 4 
ia 
<type1> a.rr::-Y <id list1>[ <int bplist1>] co 

• 

<bes 1><dbcs> 1m 
own <typel> array <id list1>[<int bplist1>]<p1> 4 <bcs2> 
is 
. f t <pl> is 

·· own · . . 1> ~,rr~ <id list 1>[ <int bplist 1> ]<p 1> 4 <bes 1> co 
t <Pl> a =t co 

own . "''1> arr~¥ <id list1>[ <int bplist 1> ]<bcs2> ) co 
!-l\lPfiliCIJ t1 

<::own1><type1> a~r~ <id1>,<id listl>[<int bplist1>]<bcs1> 
Is 

<o-wn 1_· · · e1> ~~~r.a;y_ <id 1> [ <int bplist 1> ]~cs 1> co 
<owl?::,< · ... 1> srrey_ <id list 1>[ <int bplist 1> )<bes 1> J co 

<.bcsl><dbcs> 1m 
_ <typel> ,8-:r!!l <id1>[ <int bplist1>) 

1> ~1;;1-Y <id 1><'.bcs 1>[ <int bplist 1>] co 

9.-26 . <l>csl><dbos> im 
ow • .1> !3-ry,;a.y <id 1>( <int bplist 1> ]<l>cs2> 
ia 
r<type1> ~rl;,al <idl><bcsl>[<int bplist1>] co 

<sub exp list1> w1t.b1n bo11nds of <int bpl1st1> im 
<id l><bcs 1>[ <sub exp 11·s't'l>) 
is 
<!dl><bcs2>[<sub exp listl>) :t, co 

9~27 <int3> within bounds of <int1> : <1nt2> 
is 

va <1nt3> - <int 1> ) t ti , , ,..,., r10 ne§a ve co 
va. ..lit. <1nt2> -- <1nt3> T not negati~e co 

not l;l:et2;t~ ~- co 

<int3>,<.sub exp listl> within bounds of 
<tnt1> : <int2>,<bplist1> 
1s 

<1nt3> with:l n bounds of <int 1> : <int2> co 
<sub exp listl> with1n bounds of <bplistf> ) co 
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The value of a subscripted variable. 

10. l 
10.2 

10.3 

<int> 
<int.>,<int list> 

in <int list> co 
in <int list> co 

<sub expl>,<sub exp listl> 
is 
va ( <sub exp1> ) , va i <sub exp list 1> ) co 

10.4 <int list1> is f <int 11st1> * co 

10.5 <bcs1><dbcs> im <id1>(<sub exp listl>] 
is 
<id1><hcs1>[ va i <sub exp listl> ) ] co 

10.6 <id> b c [<sub exp list>] is o co 

10.7 <id1><bcs1><bc>[<sub exp list1>J 
is 
<id1><bcs1> [<sub exp list1>] co 

10.8 :formal <id1><bcs1> actual <id2> bn <bes __ ,-_,bes> im 
<:ld1><bcs1>[<sub exp listl>] 
is 
<i......._ ........ cs2>[<sub exp list1>] co 

10. 9 <type> arra <id l><bcs 1>[ <bplist>] im 
<id 1><bcs 1> <sub exp list> J is o co 

1 1 • 1 
11. 2 

11.3 
11. 4 

Switch declarations. 

<.d.ex:p> 
<dexp>,<switch list> 

<decl dexp> 

in <switch list> co 
in <switch list:> co 

<decl dexp>,<decl switch list> 
in <decl switch list> co 
in <decl switch list> co 

11. 5 switch <id> : = <switch list> in <switch declaration> co 

11. 6 switch <id 1>: = <switch list><bcs 1><as> 1 is 
switch <id1><hcs1> * co 

<specifier><id1><bcs1> 
switch <id1> := <switch 

• 1m 
lis\,,I;," "-...Jcs1><as> 1 is o co 
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sv1tch <id> := <switch list1><p> 2 is 
<switch listl> in <decl switch list> co 

<bes 1 _ - cs 1> im 
switch-·<:1.d1>:= <switch listl t: 4 
is 

{.: svi tch <id l><bcs 1 _""" ..... cs 1> :} co 
store <id1><.bcs 1> : = <switch list 1> ) co 

11. 10 store <idl><bcsl> := <dexp1> 
is 
r<idl><bcsl>[ 1 J S <dexp1> * co 

11 .. 11 s'tore <1d1><l>cs1>:= <dexpl>,<switch listl> 
is 

store <idl><bcs 1> := <dexpl> co 
store <id l><bcs 1> [ 2] : = <s'Wi tch list 1> ) co 

11 .. 12 store <id l><l>cs 1>[ <ll.11>] : = <dexp 1> 
is 
l:"<1d1><bcs1>[<u11 J eq <dexpl> t 

11 .. 13 store <idl><bcsl>[<uil>] := <dexpl>,<s-witch 11st1> 
is 

store <id 1><'.bcs 1>( <ui 1>] : = <dexp 1> co 
· store <id 1><3:)cs 1>[ va i <ui 1> + 1 ) T: = <switch list 1> ) co 

'' I.b.bel declarations 1
' • 

12. l label <label l><bcs l><a.s> 1 
is 
f label <lb.bel 1::.►<bcs 1> * co 

12.2 <specifierXlabell><.bcsl> im 
label <:label l><bcs l><as> 1 is o co 

12.3 <bnl::,~ 1m label <Label1><p1> 3 
is -
la , e.l <label l><bn 1> 3 <p 1> co 

<fgs l> im label <lttbel l><bn 1> 3 <p1> 
1s II ea 

.. ·· label <l!tbel l><bn l><fgs 1> S t <p 1> :} co 



• 
13. 1 
13.2 
13.3 

13.4 
13.5 
13.6 
13.7 

13.8 

<type> 
<type> array 
<type> procedure 
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Proced1.Jre declarations • 

in <value specifier> co 
in <value specifier> co 
in <value specifier> co 

specif'ier> in <value 
label 
switch 
procedure 

<specifier> co 
<specifier> co 
<specifier> co 
<specifier> co 

• in 
• 
ln 
• ln 

value <id list>; in <value part> co 

13.9 <specifier><id list> ; < spec part> in <spec part> co 

13.10 

13. 11 

13. 12 

13. 13 

13. 14 

13. 15 

13. 16 

i 1111111 

( <id list>) in <fo11nal par part.> co 

<type> procedure <i\..&.,,, _ ......... 01·n1a.1 par part> ; 
<value part> _<spec part> <st> in <procedure declaration> co 

<type1> procedure <idl><fol•rr1al par part1>; 
<value part> <spec part> <st> <bcsl><as> 1 

II Ii II 

is 
<typel> procedure <idl><bcsl><fo1,1'.l.a.l par part1> 't co -

<specifier><idl><bcsl> im 
<type> procedure <idl><fo11rial par part.> ; 
<value part> <spec part> <st> <l:>cs1><as> 1 is o co 

procedure <idl> ; <st1><p1> 2 
is 

°?egin co fo:t"ir1al <p 1> k co 
be~in int~,~er ~u,,,,o/;<st1>;goto <pl> k end in <a.eel block> co 
first progr.p of proc.body <pl> co end co 

• 

<type> procedure <idl> ; <st1><pl> 2 
is 

begin integer dtJmtny ; <st 1> end in <decl block> co 
first progr.p of proc.body <p1> Jco 

procedure <id1>(<id list1>); 
<value part> <spec part> <st1><p1> 2 
is 

begin 
begin 
first 

co for·rnal <id list 1>,<pl> k co 
integer ~½!·or!r;<stl>;goto <p1> k end in <decl block> co 
progr.p of pro~.b~ey <pl> co end co 
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13.17 <type> procedure <id1>(<id list1>); 
<value part>- <spec part> <st1><p1> 2 
is 

13 .. 18 

13. 19 

lbegin co formal <id list1> co 
begin integer d1.1101ey ; <st 1> end in <decl block> co 
first progr.p of proc ·"t?,o~ <p1> co end ) co 

a • : 

<bes 1> im formal <:id 1> is f fo11nal <id 1><bcs 1> ::} co 

forrna.l <idl>,<id list1> is 
l .. fo'r:mal <id 1> co f 01:·1nal <id list 1> ) co 

fl• a , 

13.20 <bcs1><bc1> im first progr.p of proc.bo~ <bcs1><as1>. 
f first progr.p of proc.body <bcs1><as1> : 

13.21 

is <bcsl><bcl> a co 

<procedure declarationl><p1> 4 
is 
<procedure declaration1>: <pl>: 
va ( first progr.p of proc.body <p1>) co 

13.22 <bcsl><dbcs> im 
procedure <id1> ; <st> : <pl> : <p2> 
is 
procedure <id1><bcs1> ( <_pl> k) : <p2> co -. 

13.23 <bcs1><dbcs> im 
procedure <idl>[<id list1>); 
<value part 1> <spec part 1> <st> : <pl> : <p2> 
is 
procedure <idl><bcsl>(<id list1>,<pl> k) ; 
<value part1> <spec partl>: <p2> co -

13.24 <bcsl><dbcs> im 

13.25 

13.26 

13.27 

13.28 

-t 

<type 1> procedure <id l><forn,al par part 1> ; 
<value part1> <spec partl> <st>: <p> : <pl> 
is 
<typel> procedure <id1><'.bcsl><fo1-mal par partl> ; 
<value part1> <spec partl>: <pl> co 

<value specifierS><i_d>, <lef't fo1,,ia.1 list> 
in <left fo1·mal list> co 

,<value specifier><i_ '""-,J.. ight forma,l list:> 
ar a, 

in <right fo:r·rrial list> co 

<left forwal list> ::;value specifier><i ................ ight fonnal 
in <ext forrna.l list> co 

x w:rr 

( <ext fo:twa.1 list>) in <ext forrnal par part> co 

i 



13.29 

13.30 
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<type 1> :procedure <id 1><'.bcs l><ext 
<spec part>: <p1> 

formal par part1>; 
., •... 

• is 
<type1> procedure <idl><bcs1><ext formal par part1>:<p1> 

<type 1> procedure <id l><l:>cs 1>( <id list 1>); 
value <id.2>,<id list2>; <spec part1>: <p1> 
is 
<type1> procedure <id1><bcs1>(<id list1>); 

.... 

value <id.2>; value <id list2>; <spec partl>: <p1> co 

<type1> procedure <id1><bcsl> 

* co 

l <left for·mal list 1><i_d.2><right formal list 1>); 
value <id.2>; <value part1> <spec part 1> 
<value specif'ierl><lef't fortnhl list2><i " _ ight t"'ormal. list2>; 
<spec part2> : <pl> 

• I • l.S 

\ 
<typel> procedure <id1><bcs1> 
"[ <left f'orma.l list l><value specifier1><id2:><right 
<value part1> <spec partl><vc1.lue specifierl> 
<left for·rna l lis _ · d.2><:right formal list2>; 
<spec part2:" : <p1> co 

for·rrial list 1>); 



14 .. l 
14.2 

14.5 
14 .. 6 

14.7 
14.8 
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Assignment statements. 

<int var>:= 
<int proc id>:= 

<decl int var>:= 

in <int 
in <int -

<:.decl int proc id>:= 

-<boo lean va.r>:-= 
<boolean proc id>:== 

<dee l boolean var>:== 
<:decl boc)lean proc id>:== 

left pa.rt> co 
left part> co 

in <decl int left part> co 
in <decl int lef't part> co 

in <boolean lef't part> co 
in <boolean left part> co 

in <decl boolean left part> co 
in <decl boolean left part> co 

14.9 <int left pa-·' ·nt left part list> -in <int left part list.> co 

14. 1 O <boolean left part><J)oolea.n left part list> 
in <boolean left part list> co 

a: ;111,_I tr 

left pcirt><._dec 1 int left part list> 
int left part list> co 

<:dee l boo lean left par u..- ec 1 boo lean 
in <decl boolean left part list> co 

le:ft part list> 

14 .. 13 
14 .. 14 

<int left part lis 
<boolean left part 

',C,I.. exp> 
list><bexp> 

in 
• 
in 

<ass st> co 
<ass st> co 

<decl int .left ~rt list><decl aexp> 
<,decl boolean left p;::trt list><decl bexp> 

in <decl ass st> co 
in <decl ass st> co 

<ass st1><p1> 2 is <ass stl> <decl ass st> co 

14 .. 18 <:.ass st 1Xp1> 4 is 1 <c1.ss st 1> co t <pl> a ) co 

14. 19 <type)<lct~ca> in <ext left part> co 

14 .. 20 <type> :1,~r~;z: <1~cs>[<sub exp list>] in <ext le:ft part> co 

}lt ?1 <int left pa.rt> ♦ 
{,we. C . in <ext left part 

14 .. 22 <bo;olean left part> in <ext le:ft part 
14 .. 23 <ext .left part> in <ext le:ft part 

14~24 <ext left part list><ext le:ft part list> 
in <J!x:t left part list.> co 

list> co 
list> co 
list> co 



14.25 

14.26 

14.27 

14.28 

14.29 

14.30 

14. 31 

14.32 

14.33 

14.34 

14.35 
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<ext left partl><ext left part listl><exp1> 
is 
<ext left partl><ext left part listl> va ( <expl>) co 

<ext left partl><ext left part list1><constant1> 
is 
-r<ext left partl><constantl> co 

<ext left part listl><constantl>) co 

<ext left part><constant::> is o co 

<bcsl>_<dbcs> im <idl>:= <ext left part listl><exp1> 
is 
<id1><bcs1>:= <ext left part listl><expl> co 

<id> b c := <ext left part list><exp> is o co 

<idl><bcsl><bc>:= <ext left part listlXexpl> 
is 
<idl><bcsl> := <ext left part listl><expl> co 

forrw-1 <id 1><bcs 1> actuc1.l <id.2> bn <bcs2:><_dbcs> 
<idl><l:lcsl/:= <ext left part list1><exp1> 
• lS 
<id2><bcs2>:= <ext left part list1><exp1> co 

fox-mal <id l><bcs 1> actual <id2>[ <sub exp list 1>] 
bn <bcs2><--dbcs 1> im 
<idl><bcsl>:= <ext left part listl><expl> 
is 

• im 

rsave bn <idl><bcsl> co f <bcs2><dbcs1> t co 
subscript list: Vh -r<sub exp listl>) co 
reset bn <id 1:.--<bcs 1> cu <i......._.... -..J,Jcs2>( vra. -r subscript list ) ] := 

<ext left part listl><expl>) co 

subscript list: <int listl> 
is 

subscript list is <int list1~· { co 

<typel><id1> p <bcsl> im 
<id 1><bcs 1>: = <ext left J:iart list l><expl> 
is 
<ext left part listl><typel><idl> p <bcs1>:= <expl> co 

<type l><id 1><bcs 1> im 
<id1><bcs1>:= <ext left part listl><expl> 

• 
J.S 
<ext left part list1><typel><id1><bcs1>:= <expl> co 
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• 

<:bcsl>_<dbcs> im 
<idl>[<sub exp listl>]:= <ext le:ft part list.><expl> 
is 
<id 1.><bcs 1>[ va ( <sub exp list 1> ) J : = 
<ext left part list1><expl> co 

<id:> b c [<sub exp list>]:= <ext left part list><exp> is o co 

<id1><bcs1><bc>[<sub exp listl>] := <ext left part listl><expl> 
is 
<idl><bcsl>[<sub exp listl>] := <ext lef't part listl><exp1> co 

14. 39 to11Niil <id1>-<bcs 1> actual <i d2> bn <bcs2><_dbcs> im 
<idl><bcsl>[<sub exp listl>]:= <ext le:ft part list1><exp1> 
is 

14.40 

14.41 

14.42 

<i .· cs2:>[<sub exp list1>J:= <ext left part listl><expl> co 

<typel> arra. <idl><l.)cs 1>( <int bplist l>] im 
<idl><bcsl> <sub exp list1>] := <ext left part listl><expl> 
is 
r<sub exp list1> within bounds of <int bplist1> co 

_<ext left part list1Xtype1> array 
<idl><bcsl>[<sub exp listl>]:= <expl>) co 

-

integer <idl><bcsl> := <intl> is {:: <idl><bcs 1> is <int 1> :} co 

booletm <idl><bcsl>:= <logical V'c1.luel> 
is 
r<idl><bcsl> is <logica:L Valuel> * co 

14 .. 43 integer hrruy <id l><bcs l>[ <sub exp list 1>] :== <int 1> 
is 
f<idl><bcsl>[<sub exp listl>J is <intl>-}- co 

14.44 boolean arrcty <id1><bcsl>[<sub exp list1>]:= <logical value1> 
is 
f <id 1:>-<:hcs l>[ <subexp list 1> J is <logicc.tl value 1> :} co 
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Goto statements. 

15.1 goto <dexpl><p1> 2 is <d.expl> in <decl dexp> co 

15.2 <bnl> im 

15.3 

15.4 

15.5 

15.6 

goto <dexpl><pl> 4 is goto <dexp1Xpl><bn1> co 

goto (<dexpl>)<p1><bn1> is goto <dexp1><p1><bn1> co 

goto if <bexpl> then <sdexpl> else <dexpl><pl><bnl> 
is 
goto if va _l <bexpl>) then <sdexpl> else <dexpl><pl><bnl> co 

goto if true then <sdexpl> else <dexp><p1><bn1> 
• is 
goto <sdexpl><pl><bnl> co 

goto if false then <sdexp> else <dexpl><p1><bn1> 
• 
1.S 

goto <dexpl><pl><bnl> co 

15.7 <.fgs1> im 
goto <labell><pl><bnl> is goto <label1><fgs1><p1><bn1> co 

15.8 <hcsl>_<dbcs> im goto <label1><fgs1><pl><bn1> 
is 

15.9 

15. 10 

15. 11 

15. 12 

15. 13 

goto <label 1><bcs l><fgs 1><p1><bn 1> co 

goto <label> b c <fgs><!J/ n> • 1S 0 

goto <label1><bcs1><bc><:fgs1><pl><bn1> 
is 
goto <labell><bcs1><fgsl><pl><bn1> co 

co 

forma.l <id l><bcs 1> actual <dexp1> bn <:bn2> im 
goto <id l><bcs 1><fgs><p1><bn 1> 
is 
lf <bn2> * co goto <dexpl><pl><bnl>) co 

label <label l><bcs lXdbcs 1><fgs 1> 
goto <labell><bcsl><fgsl><fgs>< 
• 1.S 

eq t <pl> im 
-..J.Jn> 

lf <bcsl>_<dbcsl>:} co {: <fgsl> * co t <p1> ) co 

<bcsl>_<dbcs> im goto <idl>[<sub expl>)<pl><bnl> 
• is 
goto <idl><bcsl>[ va ( <sub exp1>) ]<p1><bn1> co 
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15. 14 goto <id> b c [ <sub exp>]<....,.. "-,In:> is o co 

15.15 goto <i.dl><bcs1><bc>[<su.b expl>]<pl><bnl> 
is 
goto <idl><bcsl>[<sub exp1>]<pl><bn1> co 

1 5. 16 formal <id l><bcs 1> actual <.i d2> bn <bes 
goto <idl><bcsl>[ <sub expl> ]<pl><'.bn 1> 

cs2>[ <sub expl> ]<pl><bn 1> co 

15. 17 switch <id 1><bcs 1 >-_"- ...,cs 1> im 
_goto <idl><bcs 1>[ <sub expl>T<pl><bn 1> 
is 

cs> im 

__ {: <bcsl :::-" csl> t co go <idl><bcs1>[<sub expl>]<pl><bnl> ) co 

15. 18 go <id><bcs>[ <sub exp> ]<p l><l>n 1> 
is 

f <bnl> *cot <pl> a) co 

15.19 <id1><bcsl>[<sub expl>] eq <d.expl> im 
go <idl><bcsl>[ <sub expl>J<p1><bn1> 
is 
goto <dexpl><p1><bn1> co 
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For statements. 

<a.exp> 
<a.exp> 
<a.exp> 

in <for list el> co 
while <bexp> in <for 
step <aex:p> until <a.exp> in <for 

list 
list 

<f'or list el> 
<for list el>,<for list> 

in <for list> co 
in <for list> co 

el> co 
el> co 

f'or <int var>:= <for list> do <st> in <for st> co 
<label> : <for st> in <for st> co 

16.8 f' <fs> in <fs> co 

16.9 <f's> g <fgs> in <f'gs> co 

16. 10 

16. 11 

16. 12 

16. 13 

16. 14 

• 

<f'gsl> im f'orbegin is forbegin <fgs1> co 

forbegin <f'gsl> is f <:fgs1> f gt co 

<fgs1><fs1> g im 
forbegin <fgs1> is f <fgs1><.fs1> f g * co 

<p1> : for <int varl> := <for listl> do <stl><l>_ lock end1> 
• lS 

f <pl> is ( 
is ( forbegin co ... f <pl> 

t <pl> is t <pl> a} co 
<p1> a)} co 

<pl> a ) :} co 
<pl> a: <int varl> := <for listl>; 
<pl> m 1 : <.st1>; goto special label 
<pl> m 2 : forend ( <int 'var1>) ; 
<block end 1> ) c'o 

<pl>; 

<pl>: <int varl>:= <aexpl>,<.for list1>;<p2> ~ 1 : <block endl> 
is 
lf <pl> is t 

{: <p1> is ( 
ft <pl> is ( { special label <p2>: <pl> m 3 t co 

t <pl> a):} co 
<pl> a):} co 

<pl> a; :f' co 
<pl> a: <int var1>:= <aexp1>; goto <p2> m 1; 
<pl> m 3 : <int varl>:= <for listl>; 
<p2> m 1 : <block endl> ) co 
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16. 15 <pl> : <int var1>:= <aexp1> while <bexp1>,<f'or list 1>; 

is 
<p2> m 1 : <block end 1> 

f <pl> is ( 
f <pl> is i 

-f t <pl> is i {: special label <p2> : <pl> m 4 :t co 
t <pl> a)} co 

<pl> a ) :} co 
<pl> a)} co 

<pl> a: <pl> m 4: <int var1>:= <aexp1>; 
if <bexp1> then goto <p2> m 1 ; <int varl>:= <f'or list1>; 
<p2> m 1 : <block end 1> ) co 

16.16 <pl>: <int var1> :== <aexp1> step <aexp2> until <aexp3>, 
<:for list 1>; <p2> m 1 : <block end 1> 

is 
f <pl> is ( 

f <pl> is i 
f t <pl> is i f special label <p2> : <pl> m 5 } co 

t <pl> a):} co 
<pl> a):} co 

<pl> a)} co • 

<pl> a: <int varl>:= <aexpl>; 
<pl> m 6 : goto if ( <int varl>--<aexp3>) x sign ( <aexp2>) > 0 -
<pl> m 5 
<pl> m 7 
<p2> iii 1 

then <pl> m 7 else <p2> m 1 ; 
: <int var1> := <int varl> + <aexp1>; goto <pl> m 6 ; 
: <int var1> := <for listl>; 
: <block endl>) co 

16.17 <pl> : <int varl ✓ := <ct.expl>;<p2> m 1 : <block endl> 
is 
t{: <pl> is ( <int varl>:= <aexpl> in <decl ass st> co 

{: <pl> is ( 
f t <pl:.:-, is ( f special label <p2> : <p2> m 2 :} co 

<int varl> := <aexpl> co 
t <pl> a):} co 

<pl> a ) :,t co 
<pl> a 'J :f co 

<p 1> a : <p2> m 1 : <block end 1> ) co 

16.18 <pl>: <int varl>:= <aexpl> while <bexpl>; 
<p2> m 1 : <.block end1> 

is -
rt <pl> is ( 

f <pl> is ( 
f t <p1> is i {: special label <p2> : <pl> m 8 :t co 

t <pl> a)} co 
<pl> a ) * co 

<pl> a) f co 
<pl>~: <pl> m 8: <int varl> := <.aexp1>; 
goto if <bexp1> then <p2> m 1 else <p2> m 2; 
<p2> m 1 : <block end 1> ) co 
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<p1>: <int var1>:= <a.ex.pl> step <aexp2> until <aexp3>; 
<p2:> m 1 : <block end 1> 

is 
f <pl> is ( 

..:... f <pl> is ( 
ft <pl> is ( f special label <p2>: 

t <p1> a):} co 
<pl> m 9:} co 

<p1> a):} co 
<pl> a J f co 

<pl> a: <int var1> := <aexp1>; 
<pl> m 10: goto if (<int varl>-<aexp3>) x 

then <p2> m 2 else <p2> m 
<pl> m 9 : <int varl>:= <int varl> + <aex 

goto <pl> m 1 O; 

sign(<aex 
1 ; 

<p2> m 1 : <block end 1> ) co 

<pl>: goto special label <p 
is 

• , 

-C-t <pl> is ( 
f <pl> is ( 

ft <p1> is goto special label <p2> t co 
<pl> a) ::t co 

<pl> a J :f co 
<pl> a: <block endl>) co 

special label <pl> : <p2> m <ui1> im 
goto special label <pl> is goto <p2> m <uil> co 

<pl> : forend (<int varl>) <block endl> 
is 
rt <pl> is ( 

f <pl> is ( 
ft <pl> is ( forend (<int varl>) co 

t <pl> a){' co 
<pl> a) :f co 

<pl> a T =F co 
<pl> a : <bluck endl>) co 

<fgs l><fs> g im forend ( <int V"drl>) 
is 

f <f'gsl> t co forend <int v--ar1>) co 

<bes l>_<dbcs> 
forend <id1> 

• lID 
is forend <idl><bcsl> co 

forend <id 1><bcs 1><bc> is forend <id l><bcs 1> co 

formal <id l><bcs 1> actual <id.2> bn <bcs2><dbcs> 
forend <id1><bcs1> is forend <id.2><bcs2> co 

• 1m 
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16.2"{ fo1·me.1 <1dl><bcs1> actual <i_d2>[ <sub exp listl> J 
bn ,<l)cs2; .... <:dbcs 1> im 
To"rend <id 1><bcs 1> .
1

µ , C i I 

s 
save bn <idl><bcsl> co {: <bcs2><_dbcs1> ;f> co 
'subscri1;t list : va .... <sub exp list 1> ) co 
reset' bn <idl><bcsl> co 
forend <.i r"', · cs2>( va ( subscript list ) J ) co 

16.28 integer <1.dl><hcs 1> im forend <id 1><bcs 1> ia" ,,, ·v 

f <:idl><bcal> is o t co 

16 .. 29 <b·c s l><dbc s> im 
forend <id1>( <sub exp list 1>] 
is 
Torend <id1><bcs1>[ va i <sub exp list 1> ) ] co 

16.30 forend <idl><bcsl><bc>[<sub exp listl>] 
:ls 
?orend <id l><bc s 1>[ <sub exp list 1 > J co 

16 .. 31 form,l <1dl><bcs1> actual <id.2> bn <bcs2><dbcs> im 
'forend <idl><bcs 1>[ <sub exp list 1> J 

:f'orend <i .· •. cs2>[ <sub exp list 1> J co 

16, .. 32 intt?ger array <.id 1>~:l)cs 1>( <int bplist> J 
!m 
forend <id1>·:;bcs 1>[ ~ub exp list 1>] 
is 
f<~d1><bcs1>l<sub e~'<P li!Jtl>] iw u:} C!O 
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Procedure statements and function designators. 

<id> 
<id> 
<id> 

• in 
in 
• in 

<proc id> co 
<int proc id> co 
<boolean proc id> co 

<proc id><act par part> .. - in <proc st> co 
<int proc id><act par part>_ in <int funct des> co 
<boolean proc id>-<act par part> in <boolean funct des> co 

<exp> • in <act par> co 
<int array id> • <act par> in co 
<boolean array id> in <act par> co 
<switch id> • in <a.ct par> co 
<proc id> in <a.ct par> co 
<int proc id> in <act par> co 
<boolean proc id> • <act par> in co 

<act par> 
<act par>,<act par list> 

in <act par list> co 
in <act par list> co 

(<act par list>) in <act par pa.rt> co 

<a.eel exp>-
<decl int array id> 
<decl boolean array id> 
<decl switch id> 
<decl proc id> 
<a.eel int proc id> 
<d.ecl boolean proc id> 

in <decl act par> co 
in <decl act par> co 
in <d.ecl act par> co 
in <decl act par> co 
in <d.ecl act par> co 
in <decl act par> co 
in <a.eel act par> co 

<decl act par> 
<decl act par>,<decl act par list> 

in <decl act par list> co 
in <decl act par list> co 

(<decl act par list.>) in <decl act par part> co 

<bes 1> • <idl> in <.a.eel proc id> • 
im is 

<id 1><bcs 1> in <decl proc id> Ct·:, 
• <decl int proc id> <bes 1> • <idl> im in 

<id 1><bcs 1> • <decl int proc id> in 
• <decl boolean proc <bes 1> • <idl> 1m in 

<id1><bcs1> • <decl boolean proc in 

in <d.ecl proc id> is 
<decl int proc id> • in 

<id> b c 
<id> b c 
<id> b C 

- <decl boolean proc 

0 co 
is o 

id> is 
co 

0 co • in 

• 
1S 

co 
i a.,,.'., 
id:> 

• 1 t"." .. , 
co 
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in <a.eel proc id> 
in <a.eel proc id> 

is 
co 

in <decl int proc id> 
in <a.eel int proc id> 

• 1S 

co 

in <decl boolean proc id> 
in <decl boolean proc id> 

is 
co 

<id l><l>cs 1> • <idl><bcs1> 
.. <decl proc forme.l J..m in 

f o:r:-ma. l <id 1><bcs 1> im <idl><bcsl> in <decl int 
id> 

proc 
<id l><bcs 1> • <id1><bcs1> • <decl boolean fo1·rna.1 J..m in 

17.39 <type> procedure <id1><bcs1><for-mal par part> im 
<id l><bcs 1> in <decl proc id> co 

17.40 inte~er procedure <idl><bcsl><fo1"!08l par part1> im 
<id 1><'.bcs 1> in <a.eel int proc id> co 

17.42 

boolean procedure <id l><bcs 1>_<:fo1:w:mal par part 1> im 
<id 1><bcs 1> in <decl boolean proc id> co 

<bcsl> im 

co 
id> 

proc 

<id1><decl act par partl> 
<id l><bcs l><decl act par part 1> 

in <decl proc st> is 
in <decl proc st> co 

17.43 <bcsl> im 

co 
id> 

<id 1><dec l act par petrt 1> in 
<id1><bcsl><decl act par partl> in 

<decl int funct des> is 
<decl int funct des> co 

17.44 <bcsl> irn 

co 

<:idl><decl act par po,rtl> 
<id1.><bcs1><decl act par partl> 

in <decl boolean funct 
in <decl boolean funct 

des> is 
des> co 

17.45 
17.46 
17.4""{ 

<id> b c <act par part> in 
<id:> b c <act par part> ir1 
<id> b c <act par part> i11 

-
<decl proc st> is o co 
<uecl int funct des> is o co 
<decl boole&n funct des> is o co 

17 .48 <idl><l:>csl><bc><act par p:~.rtl> in <de~l proc st> is 
<id l><bcs 1> <a.ct pa1-- pa:i.··t 1> :I 11 <d.:.?cl proc st> co 

11 .49 <id1>'<bcs1><bc><act par partl> j.n <clecl int funct des> is .. 
<idl><bcsl> <act par part1> in <decl int funct des> co 

17.50 <id1><bcs1><bc>~.ct par pa:r"tl> in <decl boolean :t·unct des> is 
<id l><bcs 1> <H.ct par part 1> i1.1 <decl boolean f1.mct des> co 

fo:t·t'ttal <id l><bcs 1> 
<id 1'><bcs l><a.ct par 

a 1111 

• 1m 
1x1rt> in <decl proc Bi.> co 



17. 52 

17. 53 

17. 54 

17. 55 

17.56 

17.57 

17.58 

17.59 

17.60 

17.61 

17 .62 

17.63 

17.64 

17 .65 

17.66 

17.67 

135 
• im formB-1 <id 1><bcs 1> 

<id 1><bcs 1><act par part> in <a.eel int funct des> co 

• 
im f ox·rna.l <id 1><bcs 1> 

<id l><bcs 1><act par part:> in <decl boolean funct des> co 

<type> procedure 
<id l><bcs 1> in 

<id l><bcs 1> • im 
<decl proc st> co 

integer procedure <idl><bcs1> im 
<id l><bcs 1> in <decl int :funct des> co 

boolean procedure <idl><bcsl> 
<id l><bcs 1> in <decl boolean 

im 
funct des> co 

<type> procedt1re <.idl><bcsl>(<id listl>) im 
<idl><bcsl>(<act par listl>) in <decl proc st> 
is 
<id listl> equal length <act par list1> co 

• im integer procedure <idl><bcsl>(<id listl>) 
<id1><bcs1>(<act par listl>) in <decl int 
is 

funct des> 

<id list1> equal length <act par listl> co 

boolean procedure <idl><bcsl>(<id list1>) im 
<id 1><bcs'1>( <act par list 1>) in <decl boolean funct des> 

• 
J..S 

<id list1> equal length <act par listl> co 

<id> equal length <act par> co 

<id>,<id listl> equal length <act par>,<act par listl> 
is 
<id listl> equal length <act par listl> co 

<proc st1><p> 2 is <proc st1> in <decl proc st> co 

<proc st1><p1> 4 is <proc st1>: <p1> co 

<bcsl><dbcs> im <idl><act par part1> : <pl> 
is 
<idl><bcs1><act par partl>: <pl> co 

<bcsl><dbcs> im <id1>(<act par list1>) 
• J..S 
<id1><bcs1>(<act par list1>) co 

<id> b c <act par part> : <p> is o co 

<id> b c ( <act par list>) • is o co 
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17.68 <id1><bcs1><bc><act par partl>: <pl> is 
<idl><bcs1> <act par partl> : <p1> co 

17.69 <id1><bcs1><bc>(<act par listl>) is 
<id l><bcs 1> ( <act par list 1>) co 

17. 70 :fo:r•mal <idl><bcs1> actual <id.2> bn <bcs2><dbcs> im 
<id1><bcs1><a.ct par part1> : <pl> 

17.71 

csZ>-<act par partl>: <pl> co 

fo·rrna.l <id 1><.bcs 1> actual <id.2> bn <bcs2><dbcs> im 
<id 1><bcs 1>( <act par list 1>) 
is 
<i 

17.72 procedure <idl><bcsl>(<p3> k) : <p1> im 
<id l><bcs 1> : <p2> 

17.73 

is 
l er1ter procedure <bes l> co 

( <p3> k) a 'substitute { <p2> k) co <pl> ) co 

prc>cedure <id l><l>cs 1>( <ext fo11t1B-l list 1>) : <pl> im 
<idl><bcsl>( <act par list1>) : <p2> 
is 
l enter procedure <bes 1> co 

t <ex·t foxwl listl>) substitute ( <act par list 1>,<p2> k) co 
<pl>) co -

17 .74 <type1> procedure <idl><l:>csl><ext for·1c1al par partl> : <pl> im 
<idl><bcsl><a..ct par partl> 
is 
\ e:itr:r procedure <:bes 1,.,,., co begin co <type l><id 1> p co 

<ext fo:t"rna l par part 1> substi.tute <a.ct par part 1> co 
<p1> co fu11ction value ":" va ( <id 1> p ) co 

_,. no 

exit _p:t·o-:!edure co fU11ction value ) co 

17. 75 ir1tecer procedure <idl><bcs l><ext formal par partl> :<p> im 
<id 1:::-•<hcs l><ac t par part 1> : <p 1> 
is 
\ dununy 1 := <idl><act par part 1> co t <pl> a ) co 

17. 76 boolean pr·ocedure <id 1><bcs 1><ext for1n.a..l par part 1> : <p> im 
<id1><'.bcs1><act par partl> : <pl> 
• 15 

rd~n;y 2 := <idl><act par partl> co t <p1> a ) co 

17.77 <'.bnl> iro 
enter procedure <bes 1> is f -<bes l> d <bn 1> * co 
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<bes> d <bn 1> im 
exit procedure is f <bn1> t co 

function value : <constantl> 
is 

£unction value is <constantl> t co 

,<act par><right act par list> in <right act par list> co 

( <type l><id 1><right forma.l list 1>) substitute 
(<act par1><right act par listl>J 
• 
1.S 

rbegin co <type1><id1> co <typel><idl> becomes <act par1> co 
(<right formal list1>) substitute (<right act par listl>); co 

<bcsl> d <bn1> im <typel><idl> becomes <act parl> 
is 
r <bnl> * co <typel><id1><bcs1>:= <act parl> co 

<bcs1> d <bn1> :} ) co 

(<typel> procedure <ext fo:r·rnal listl>) substitute 
(<act par listl>) 
• lS 
f<typel><ext formal listl>) substitute (<a.ct par listl>) co 

( <typel> array <id 1><right fo:r:·rral list 1>) substitute 
(<id.2><right act par list1>) 
• 
1.S 

lbegin co <type1> array -~idl> actual <id.2'> co 
( <right fo:r·mal list 1>) substitute ( <right act par list 1>) ) co 

<bcn 1> d <l:>cs2><_dbcs> im 
<type1> array <idl> hCtual 
is 
<type 1> array <id 1Xbcs 1> e1.ctua.l <id2>«-bc s2> co 

<type> array <id><bcs> actual <id> b c is o co 

<typel> array <.id1:><:-...'bcs 1> actual <i~ 
is 

c> 

<typel> array <.idl><bcsl> actual <id.2::><bcs2> co 

f'oi:·1nal <i ~cs2:> actual <id.3> bn <bcs3>_<dbcs> im 
<type1> a~ray <idl:><bcs1> actual <j_d2><bcs2> 
is 
<type1> array <idl:><bcs1> actual <id.3><bcs3> co 

<typel> array <id1><bcs1>[<int bplist1>] im 
<typel> array <id.2><bcs2> actual <id 1><bcs 1> 
• 
J.S 

rt <type 1> array <id2><bcs2>[ <int bplist 1>] :} co 
. <id.2><bcs2>[<int bplistl>] assign <idl><bcs1>J co 
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17.90 <int:>,<lett int list> in <left int list> co 

<1d1><bca1>[<left int list1><int1> :<int2>] assign <i~ .......... cs2> 
,,t ~:ll 
J.;.;JJ> 

-<1d1><bcs1>[<le:ft int list1_><int1>] becomes 
va i <id2;,.-<bcs2>[ <le:ft int list 1><int 1>.,J ') co 
<idl><bcs 1>( <left int list1> va "f <int 1> + 1 ) : <int2.>] 
assig!! <iu.c;;..... · ·. cs2> ) co 
at. 

1'1. 92 <id1><bcs 1>[ <left int list 1_><int 1> : <int2>, <bplist 1>] 
assi,e <1 .·· •.. cs2> 
1. · 

<1dl><bcs1>·( <left int listl_><int1>,<bplist 1>] 
aaa1 · <i .·· .· · .. · cs2> co <id l><bcs 1> 
·•·. ·.·· eft int list 1> va ( <int 1> + 1 ) : <int2>, <bplist 1>] 
ass1,fa!! <1 .....,,. ...,..,cs2>; co 
I !■ d _ 

<1r1t 1> . • ual <int2> im 
<1d1.><bcs1> <left int listl><intl> : <int2>,<:bplist1>] 
aas1 . <id?..><bcs2> 
·. B 

<idl><bcs1;:,[ <le:ft int list l><int 1>, <bplist 1> J 
~ ~,,~,;,.I!! <i ·. · · , c s2> co 

-<ir1t 1> • u&l <int2> im 
<.1.dl><bcs 1> <.J.ett int list l><int 1> : <int2> J 
ast~il!! <i 'r .• cs2> I' .. t!I ~-·-

<id l><bca l,, [ <left int list l><int 1> J becomes 
va i <1d2><hcs2>[ <left int list l><int 1>] ' ) 

<1d1><bcs 1>[ <int list 1> J becomes •-::Constant 1> 
1B 

co 

co 

<1nt1> 5:t-;al_ <int2> is va J.. <int 1> - <int2> ) equal zero co 

0 eoual zero co ..... --·-; __ fj C . -



17.98 

17.99 
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( <id 1>, <ext fotiriB.l list 1>) substitute 
(<act par1>,<a.ct par list1>) · 
is 
"f<ext formal list1>,<id1>) substitute 
( <act par list 1>,<act parl>) co" · · 

,<i__. ....... ight id list> in <right id list> co 

17.100 (<id1><right id list1>) substitute 
(<act par1><right act par list1>) 
is 
(begin co <idl> actual <act par1> co 

(<right id list1>) substitute (<right act par listl>) ) co 

17. 101 <bes 1> d <bn 1> im <id 1> actual <act parl> 
is 

formal <id 1><bcs 1> actual <act parl> bn ·<bn 1> * co 

17.102 (,<ext :for,oa-1 list1>) substitute (,<act par list1>) 
is 
'(<ext formal listl>) substitute (<act par listl>) co 

17.103 ( ) substitute ( ) co 

17.lo4 substitute co 



18. 1 
18.2 
18.3 

18.4 
18.5 
18.6 

18.? 
18.8 
18.9 
18. 10 

18. 11 

18. 12 

18. 13 

18. 14 

18. 15 
18. 16 
18. ,~, 
18. 18 

18. 19 

18.20 

18 .. 21 

18.22 

18.23 
18.24 
18.25 
18 .. 26 

18.21 
18.28 

18.29 

18.30 

<a.exp> 
<bexp> 
<dexp> 

in <exp> co 
in <exp> co 
in <exp:> co 
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Variables. 

<decl aexp> 
<decl bexp> 
<decl dexp> 

in <a.eel exp> co 
in <decl exp> co 
in <a.eel exp> co 

<id> in <int var id> co 
<id:> • <boolean var id> co in 
<id> in <int array id> co 

<ict> • <boolean array id> co in 

<bcsl> im <id1> in <decl 
<id l><bcs 1> in <decl 

int var id> is 
int var id> co 

<decl boolean id> • 
<bcsl> im. <id1> • var lS in .. 

<id 1><bcs 1> • <decl boolean var id> co in 
<bcs1> im <idl> • in <decl int array id> • lS 

<idl><bcs1> - <decl int array id> co in 
<decl boolean id> <bcsl> im <idl> • array in 

<id l><bcs 1> • <decl boolean array id> in 

<id> b • <decl int var id> is 0 co C 1n 
<id> b C in <decl boolean var id> is 0 co 
<id> b C in <d.ecl int array id> is 0 co 
<id> b C in <decl boolean array id> • is 0 co 

<idl><bcs 1:><bc> in <decl int var id> is 

<id l><bcs l> • in <decl int var id> co 
<:id l><bcs 1>,"bc> in <.a.eel boolean id> • Vd.r is 

<id l><bcs l> in <decl boolean var id> co 
<id l><ncs 1><.bc:.-- in <decl int id> • array lS 

<id 1:><bcs 1> in <decl int arrc:.y id> co 
<id 1><bcs 1><bc> in <decl boolean cirray id> is 
<idl><bcs1> • "1ecl boolec1.n id> 1n r1rr::iy co 

.. 
lS 

co 

form.:1, l <idlXbcs 1> • <idl><bcs l,,• • "1.ecl int id> 1m 1n V-c:ir co 
f'orn11 L <.id l><bcs 1> im <id 1 ><~ c s 1 ::,-» 

• <decl boolean id> co in var 
i'ormtl <ldl><bcs 1> im <id l><bcs 1> • <decl int id> co in array 
f' •. <idl><bcs 1> • <idl><bcs 1> • id> 01•mt1.l im 1n <decl boolean array co 

~-ptei':1:: <idl><bcsl> im <idl><bcs 1> in <a.eel int var id> co 
booletLn <id1><:bcs1> im <id1:><bcs1,,,-· in <decl boolean var id> co 

in~eaf:r arr~l. <idl><bcs 1> im 
<id l><bcs 1> in <decl int array id> co 
b\:,o le~ ~_rr~y <id 1:><bcs 1> im 
<id1><bcs 1> in <decl boolean £3..rray id> co 



18.31 
18.32 

18.33 
18.34 

18.35 
18.36 

18.37 
18.38 

18.39 
18.40 

18.41 
18.42 

18.43 

18.44 
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in <int var> co <int var id> 
<boolean var id> in <l>oc .Lean var> co 

<d.ecl int var id> 
<d.ecl boolean var id> 

in <decl int var> co 
in <decl boolean var> co 

<a.exp> 
<decl aexp> 

in <sub exp> co 
in <a.eel sub exp> co 

<sub exp> 
<sub exp>J<sub exp list> 

in <sub exp list> co 
in <sub exp list> co 

<decl sub exp> 
<decl sub exp>,<decl sub exp list> 

<int array id>[<sub exp list>] 
<boolean array id>[<sub exp list>] 

in <decl sub exp list> co 
in <a.eel sub exp list> co 

in <int var> co 
in <boolean Vhr> co 

<decl int array id>(<decl sub exp list>] 
in <decl int var> co 
<decl boolean arruy id>[ <decl sub exp lit~t> J 
in <decl boolean var> co 

• 
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• • Syntax of' arithmetic expressions. 

• 

19. 1 + in <pnt> co 
19.2 - in <p!tt> co 

19.3 x in <mult op> co 
19.4 : in <mult op> co 

19.5 
19.6 
19.7 
19.8 

19.9 
19.10 
19. 11 
19. 12 

19. 13 
19. 14 

19. 15 
19. 16 

in <pr:lroary> co 
<int var> in <primary> co 
<int tunct des> in <primacy> co 
(<a.exp>) in <pr~ roa.ry> co 

<ui> • <a.eel prima.ry> co in 

<decl int var> • <decl primary> co in 

<decl int funct des> in <decl primary> co 
(<decl aexp>) in <decl prjmary> co 

<pri,oe.cy:> 
<factor> ,i\ <primacy> 

in <factor> co 
in <factor> co 

<decl primary> 
<decl factor> ,i\ <decl primary> 

in <decl factor> co 
in <decl factor> co 

19. 17 <factor> in <te1·1n> co 
19.18 <ternt><JJJult o.t-V ....... actor> in <te1•1re> co 

19. 19 <decl factor> 
19. 20 <dee l te11,i,C><111ul t o· 

19.21 <term.> • in <saexp> 
19.22 <rart><teI"IIL> in <saexp> 
19.23 <&aexp><;. ' " te:x:··ne> in <saexp> 

<dee l te111C> 
< ••·· · · .· eel ter·xct> 

119.24 
119.25 
19.26 <:decl saexp>< .. · · . eel tex·xtt> 

<saexo> - in <a.exp> co 

co 
co 
co 

in <decl te1.•ttf> co 
in <decl term> co 

in <decl saexp> co 
in <decl saexp> co 
in <decl saexp> co 

19.27 
19.28 <decl saex.p> in <.decl aexp> co 

19.29 it <bexp> then <saexp> else <a.exp> in <a.exp> co 

19 .. 30 if <decl bexp> then <decl saexp> else <.decl aexp> 
in <.decl aexp> co 



20. 1 
20.2 
20.3 
20.4 
20.5 
20.6 

20.7 
20.8 
20.9 
20.10 
20 .. 11 

20. 12 
20. 13 
20.14 
20.15 
20. 16 

20. 17 
20. 18 

20.19 
20.20 

20.21 
20.22 

20.23 
20.24 

20.25 
20.26 

20.27 
20.28 

20.29 
20 .. 30 

20.31 
20.32 
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Syntax of boolean expressions. 

< • <rel in op> co 
> in <rel op> co 
< • <rel in op> co 
> • <rel in op> co -·- • <rel - J..n op> co -
+ 

• <rel op> in co 

<logical value> 
<boolean var> 
<saexp><rel op><saexp> 
( <bexp>) 
<'.boolean funct des> 

<logical va.lue> 
<d.ecl boolean var> 

in <bprimary> co 
in <bprimary> co 
in <:bprimary> co 
in <bprimary> co 
in <bprimary> co 

<decl saexp><rel op><decl saexp> 
( <decl bexp>) 

in <d.ecl bprimary> co 
in <decl bprimary> co 
in <decl bprimary> co 
in <decl bprj.mary> co 
in <decl bprjmary> co <decl boolean funct des> 

-<bprimary> 
7 <l:>primary> 

in <bsecondary> co 
in <bsecondary> co 

<decl bpr~ mary> 
7 <decl bprimary> 

in <decl bsecondary> co 
in <decl bsecondary> co 

<'.bsecond.ary> 
<bfactor> A <bsecondary> 

in <bfactor> co 
in <bfactor> co 

<decl bsecondary> 
<decl bfac·tor> A <decl bsecondary> 

in <decl bfactor> co 
in <a.eel bfactor> co 

<bfactor> 
<'.bterm> V <l>factor> 

in <bte1·1ci> co 
in <bte:r·1re> co 

<decl bfactor> in <decl bterm> co 
<decl bterrn> V <decl bfactor> in <decl btern.t> co 

<bterm> in <implication> co 
<implication> 7 <bterm> in <implication> co 

<a.eel bterm> 
<decl implication> 7 <decl bte:rm> 

in <decl implication> co 
in <decl implication> co 



20.33 
20.34 

20.35 
20.36 

20.37 
20.38 

<implication> 
<sbexp> = <implication> 

<decl implication> 
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in <sbex:p> co 
in <sbexp> co -

• 

<decl sbexp> = <decl implication> 
in <decl sbexp> co 
in <decl sbexp> co 

<Bbexp> 
if <bexp> then <sbexp> else <l>exp> 

in <bexp> co 
in <bexp> co 

20.39 <decl sbexp> in <decl bexp> co 

20.40 if <decl bexp> then <d.ecl sbexp> else <decl bexp> 
1n <decl beJqr> co 



21 • 1 
21 .. 2 

21 .3 

21 .4 

21. 5 

21 .6 

21. 7 

21.8 

21.9 

21. 10 
21. 11 

21. 12 

21. 13 

21. 14 
21. 15 
21. 16 

21. 17 
21 .18 
21. 19 

21.20 
21.21 

21.22 

21.23 

21.24 

21.25 
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Syntax of designational expressions. 

<id> in <label> co 
<ui> in <label> co 

<id> in <switch id> co 

<bcs1> im <label 1> in <decl label> is 
<label l><bcs 1> in <decl label> co 

<hes 1> im <id 1> in <decl switch id> is 
<id 1><bcs 1> in <decl switch id> co 

<labeJ> b c in <decl label> is o co 

<id> b c in <decl switch id> is o co 

<label1><bcs1><bc> 
<label 1><bcs 1> 

in <decl label> 
in <decl label> 

• l.S 

co 

<id 1.><bcs 1><bc> 
<id l><bcs 1> 

in <decl switch id> is 
in <decl switch id> co 

for.1m:1.l <icl 1.><bcs 1:--" im <id l><bcs 1~~ in <decl label> co 
f'o.t'Tlliil <ici l><bcs 1> im <id 1::><.bcs 1> in <decl switch id> co 

label <lab cl l><bcs 1> im '-,label l:>--:bcs 1> in <decl label> co 

switch <id 1><bcs 1> im <id 1><bcs 1> in <decl switch id> ~o 

<label> 
<switch des> 
(<dexp>) 

• in 
in 
in 

<.decl label> 
<decl switch des> 
(<decl dexp>) 

<sdexp> co 
<sdexp> co 
<sdexp> co 

in <decl sdexp> co 
in <decl sdexp,..> co 
in <decl sdexp> co 

<sdexp> 
<decl sdexp> 

in <dexp> co 
in <decl dexp> co 

if' -<bexp> then <sdexp> else <dexp> in <dexp> co 

if' <decl bexp> then <decl sdexp> e l .. se <a.eel dexp> 
in <decl dexp> co 
I iail•W 

<switch id>[ <sub exp> J in <switch des> co 

<decl switch id>[ <decl sub exp>] ~i.r1 <decl switch des> co 



22. 1 
22 .. 2 

22.3 

22.4 

22.5 
22.6 

22.7 
22.8 
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The value of boolean exp1--essions and of 
arithmetic expressions. 

( <a.ex1>1>) 
( <bexp1>) 

is <aexp1> co 
is <bexp 1> co 

<bexp1> then <saexp1> else <aexp1> 
is 
if va (<bexpl>) then <saexp1> else <aexp1> co 

if <bexp1> then <sbexpl> else <bexp2> 
is 
if vi1 i <bexp1>) then <sbe.xp1> else <bexp2> co 

if true then <saexpl> else <aexp.> is <saexp1> co 
if true then <sbexpl> else <bexp> is <".i·oexpl> co 

if fa.lse then <saexp> else <.a.exp 1> is <a.exp 1> co 
if false then <sbexp> else <bexpl> is <bexpl> co 

22.9 <sb.expl><rel op1><saexp2> 
is 
v~i ( <saexpl> )<rel opl> va i_ <saexp2>) co 

22. 10 7 <bpr . · ry1> is 7 va ( <bpr~ rnaryl>) co 

22. 11 <bfactorl> A <bsecondary1> 
is 
va ( <l)factorl>) /\ V-c1 ( <bsecondaryl>) co 

22. 12 <bter1r1l> V <hfactorl> 
is 
va ( <bte:r1nl>) V va ( <b:factorl>) co 

22.13 <imp.lication1> 7 <bte:r"ttt1> 
is 
va ( <implication 1>) l va ( <bte:r:,nl>) co 

C JIIG 

22.14 <sbexpl> = <implicationl> 
is 
va. ( <sbexpl>) = va ( <~implication 1>) co 

22. 15 
22. 16 

22. 1 '"{ 
22.18 
22.19 
22.20 

7 tl·lie 
7 f&]se 

true I\ 
true I\ 
false /\ 
false /\ 

is false co 
is true co 

true is 
false is 
true is 

• &Jlllf 

false • 
l.S 

true co 
false co 
false co 
false co 



22.21 
22.22 
22.23 
22.24 

22.25 
22.26 
22.27 
22.28 

22.29 
22 .. 30 
22.31 
22.32 

22.33 
22.34 
22.35 

22.36 

22.37 

22.38 

22.39 
22.40 
22.41 

22.42 
22.43 

22.44 
22.45 
22.46 

22 .. 47 

22.48 

22.49 

true 
true 
false 
false 

true 
true 
false 
false 

true 
true 
false 
false 

V 
V 
V 
V 

true 
false 
true 
false 

true 
false 
true 
false 

true 
false 
true 
false 

<int 1> < <int2> 
<int 1> > <int2:> 
<int 1> > <int2> 

is 
• lS 
• is 
is 

• lS 
• is 
• is 
• is 

• lS 
• lS 

is 
• lS 

true 
true 
true 
false 

true 
false 
true 
true 

true 
false 
false 
true 
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co 
co 
co 
co 

co 
co 
co 
co 

co 
co 
co 
co 

is 7 <int2> < <int1> co 
is <int2> < <int 1> co 
is 7 <intl> < <int2> co 

• 

<int1> 

<int1> 

<int2> 

<int2> 

• is <int1> < <int2> A <int2> < <intl> co 

• lS 7 <int 1> = <int2> co 

<int 1> < <int2> is va ( <int 1> -

- <ui> 
<ui> 
<ze> 

< 0 is 
< 0 is 
< 0 is 

true co 
false co 
true co 

+ - <ui 1> is - <ui 1> co 
<ui1> co - - <ui 1> is 

<int2> l < o co 

<int 1> + - <ui 1> 
<int 1> - - <ui 1> 
<int 1> - + <ui 1> 

is <int 1> - <ui 1> co 
is <intl> + <uil> co 
• • is <int1> - <uil> co 

<factor 1> f' <prims:ry1> 
is 
<factorl> ~ va i <primary1>) co 

is 
va ( <te:rin1> )<.mu.lt opl> va ( <factor1>) co 
- :r:nr 

<pml><term 1> • lS <prol> va ( <te11111>) co 

<saexp1><pm1><term1> 
is 
va ( <saexp1> )<:pml> va i<term1>) co 

7111 
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22. 51 <factor1> '1' <ui 1> is <factor1> 1' ( <ui 1> - 1) x <factor1> co 

22.52 <factorl> ~ <ze> 
is 
if <factor1> + 0 then 1 else <:ractor1> t (- 1) co 

22. 53 <factor1> t{\ <ze> 1 is <f'actor1> co 

22. 54 <int 1> : - <ui 1> is 

22.55 <u.i 1> 
is 

• • <ui2> 

- va (<int1>: <ui1>) co 

if <ui l> < <ui2> then O else 1 + ( <ui 1> - <ui2>) : <ui2> co 

22.56 <int1> X - <ui1> is - va ( <int 1> x <ui 1>) co 

22.57 <uil> X 

22.58 <ui> X 

22.59 

<u.12> is <ui 1> x ( <ui2> -
0 is O co 

22.61 0 <ze> in <ze> co 

<ui 1> + <ui2> is <ui2> - <ui 1> co 

1) + <ui 1> co 

22.62 

22.63 - <ui 1> - <ui2> is - va ( <ui 1> + <u12>) co 

22.64 <ui l><di 1><pml><ui2><di2> 
is 
va ( <ui 1><pm 1><u12>) 0 + V'd ( <di l><pm 1><di2>) co 

22.65 <.:uil><di1Xpm1><d12> is <uil> 0 + va (<di1Xpml><di2>) co 

22.66 <di lXpml><ui l><d.12> is <pml><ui 1> 0 + va ( <di 1><pml><di2>) co 

22.67 <uil> 0 + <dil> is <uil><dil> co 
22.68 <di 1> + <ui l> 0 is <ui l><di 1> co 

22.69 <u.11> 0 - <d11> is V'd (<uil> - l ) 0 + va ( 1 0 - <d j_ 1 >) co 

22. 70 10 - <di l> 1 s 9 - va i_ <di 1 > - 1 ) co 

22. 71 <di 1><pm1Xdi2> is va i. <di l><pml> 1 ) <pml> va ( <d.12> - 1) co 

22. 72 <!u.1 l><pnt><ze> is <ui 1> co 

22. 73 <ze><pm1><ui 1> is <pml><ui 1> co 
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22.74 0 + 1 is 1 co 
22.75 1 + 1 • 2 1.S co 
22.76 2 + 1 is 3 co 
22.77 3 + 1 is 4 co 
22.78 4 + 1 • 5 1.S co 
22. 79 5 + 1 is 6 co 
22.80 6 + 1 • 

7 J..S co 
22.81 7 + 1 is 8 co 
22.82 8 + 1 is 9 co 
22.83 9 + l is 10 co 

22.84 1 1 is 0 co 
22.85 2 1 is 1 co 
22.86 3 1 • 2 co 1.S 

22.87 4 1 is 3 co 
22.88 5 1 • 4 co 1.S 

22.89 6 1 is 5 co 
22.90 7 1 • 6 co J..S 

22.91 8 1 is 7 co 
22.92 9 1 is 8 co 



23. 1 
23.2 
23.3 

23.4 
23.5 

23.6 
23.7 
23.8 
23.9 

23.10 
23. 11 
23.12 
23. 13 
23. 14 
23. 15 

23.16 
23.17 
23.18 

23. 19 · 

23.20 
23.21 

23.22 

23.23 
23.24 
23.25 
23.26 
23.27 
23.28 
23 .. 29 
23.30 
23.31 
23.32 
23.33 
23.34 
23.35 
23.36 
23.37 
23.38 
23.39 
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Basic ols and auxiliary symbols. 
Comment conventions. 

<let> 
<id><let> 
<id><di> 

in <id> co 
in <id> co 

<id> co 

<int> in <constant> co 
<logical value> in <constant.> co 

0 in • co 
1 in <di> co 
2 • <di> co in 
3 • <di> co in 
4 • <di> co in 
5 • <di> co in 
6 • in co 
7 in <di> co 
8 • in <di> co 
9 • in <di> co 

- <ui 1> 
+ <ui 1> 

<ui1> 

• is 
• J.S 

is 

- <ui 1> 
<ui 1> 
<ui 1> 

ze> is f O } co 

co 
co 
co 

true in <logical value> co 
false in <logical value> co 

<logical valuel> is f <logical valuel> t co 

a • <let> co in 
b in <let> co 
C 

• ln <let> co 
d • <let> co in 

• <let> co e in 
f • <let> co 1n 

• <let> co g 1n 
h • <let:> co in 
• in <let> co ]. 
• • <let> co J in 

k • <let> co in 

1 in <let:> co 
m in <let:> co 

• <let> co n in 
0 

• 
in <let> co 

p in <let> co 
• <let> co q in 
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23 .. 40 r in <let> co 
23 .. 41 s • <let> in co 
23 .. 42 t in <let> co 
23 .. 43 u in <let> co 
23 .. 44 V • <let> 1n co 
23.45 w in <let:> co 
23 .. 46 .x in <let> co 
23 .. 47 • <let> co y in 
23.48 z • <let> co in 

23 .. 49 A in <let> co 
23 .. 50 B n <let> co 
23 .. 51 C n <let> co 
23.52 D in <let> co 
23.53 E in <let> co 
23.54 F n <let> co 
23.55 G n <let> co 
23.56 H n <let> co 
23 .. 57 I in <let> co 
23.,58 J n <let> co 
23 .. 59 K n <let.> co 
23.60 L in <let> co 
23 .. 61 M in <let.> co 
23 .. 62 N in <let> co 
23 .. 63 0 in <let.> co 
23 .. 64 p n <let> co 
23 .. 65 Q n <let> co 
23 .. 66 R in <let> co 
23 .. 67 s in <let:> co 
23 .. 68 T n <let> co 
23 .. 69 u n <let> co 
23 .. 70 V in <let> co 
23 .. 71 w • <let> co 1n 
23 .. 72 X in <let> co 
23 .. 73 y in <let> co 
23 .. 74 z • <let> co in 

23.,75 + in <spec del> co 
23 .. 76 <:spec del> co n 
23.,77 X in < ·spec del> co 
23.,78 • 

< :spec del> co • in .. 
~ 

4.$ J .. 

del> co 23.79 • <.:spec in 

del> co 23 .. 80 < • <spec in 
23 .. 81 > in <spec del> co 
23 .. 82 < in <spec de]> co 
23.83 > • <spec del> co 1n 
23 .. 84 - in <spec del> co -
23 .. 85 + n <spec del> co 
23 .. 86 - in <spec del> co -; 

I 
23 .. 87 l in <spec del> co ' , l 

' 

<spec del> co 
' 

23 .. 88 ' V • , 1n 



23.89 
23.90 
23.91 
23 .. 92 
23.93 
23.94 
23 .. 95 
23 .. 96 
23.97 
23.98 
23 .. 99 
23. 100 
23. 101 
23. 102 
23. 103 
23. 104-
23. 105 
23 .. 1 o6 
23. 107 
23. 108 
23. 109 
23. 110 
23., 111 

23. 112 
23. 113 
23. 114 
23.115 

23. 116 
23. 117 
23. 118 
23. 119 
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A .J J.n <:spec del> co 
7 in <spec del> co 
,~o~o in <spec del> co 

<spec del> if in co 
' 

then in <spec del> co 
for in <spec del> co 
do in <spec del> co 
, in <spec del> co 
• in <spec del> co .. 
·- in <spec del> co .-
.:3tep in <spec deJ> co 

del> until in <spec co 
vhile in <spec del> co 
"t a 

del> in <spec co 
) in <spec del> co 
[ in <spec del> co 
] in <spec del> co 
begin in <spec del> co 
II ,F -· 1 del> own in <spec co 
~rray in <spec del> co 

del> switch in <spec co 
label in <spec del> co 
value in <spec del> co 

COl?Er.ttent in <spec deL> co 
~~:te§~~ in <spec del> co 

in boolean <spec del> co 
proced1.1r~ 

I 1•Pllllf 

in <spec del> co 

<let> 
<di> 

in 
in 

<logical value> in 

<end conlltlent syrnbol> co 
<end corr1,r11ent syiril.>ol> co 
<end co_ent syi1ibol> co 
<end co1t1tr1ent sy rribo 1> co <spec del> in 

23. 120 <end co11er1ent s 'n-..O ......... _ equence of basic s "D..iibols 
not containing semicolon or end or else> 

in <sequence of basic symbols 
a , 

not containing semicolon or end or else> co 

23.121 end <sequence of basic symbols 

23. 122 
23. 123 
23. 124 

23. 125 

not containing semicolon or end or else> 
in <ext end> co 

end • <cox:ranen t ol> in s 
1,1111 " , 
else • <co1c11c1ent 01> in s 
<end co1ricnent s 01> • <co1tnnent syuiho]> in 

<cormr:1ent symbol> 

co 
co 
co 

<sequence of basic symbols 
llf t• 

not containing se1ni colon> 
in <sequence of basics .-.... ols not containing sertai colon> co 
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23. 126 cor1·1ment <sequence of basic symbols not containing semicolon>; 
in <comment> co 

23.127 ;<comment> in <ext semicolon> co 

23. 128 begin <comment.> in <ext begin> co 

23.129 )<letter sequence>: ( in <ext par delimiter> co 

23.130 <let><letter sequence> in <letter sequence> co 

23. 131 
23. 132 

• , 
<cOX(IIDent S rn 01> 

in <basic symbol> co 
in <basic S T"'uuOl> CO 

23. 133 <basic s o 
in <sequence 

-..-equence of basic symbols> 
of basics ols> co 

23.134 <sequence of basics 
<sequence of basics 
is 

olsl><ext par delimiter> 
ols2> 

<sequence of basics olsl>, 
<sequence of basic s rm ols2> co 

23.135 <sequence of basic 
<sequence of basic 
is 

ols 1><ext semicolon> 
01s2> 

<sequence of basic syrtibols 1> ; 
• 

<sequence of basic s 01s2> co 

23.136 <sequence of basic 
<sequence of basic 
is 

23. 137 

<sequence of basic 
<sequence of basic 

<sequence of basic 
<sequence of basic 
• J.S 

<sequence of basic 
<sequence of basic 

,M,Jol> in 

s 
s 

ols l><ext begin> 
ols2> 

ols1> begin 
ols2> co 

olsl><ext end> 
ols2> 

ols1> end 
ols2> co 

23 • 138 <:basic s 
<:basics ~ol different from letter or digit> co 

23.139 <let> in 

• 

<basic ,.,..,1--01 different from letter or digit> is :false co 

23.140 <di> in 
<basic s ,.,..,1-- ol different from letter or digit> is false co 



23. 141 

23. 142 
23. 143 
23. 144 
23. 145 

• 
23. 146 
23. 147 
23. 148 
23. 149 
23.150 
23. 151 
23. 152 
23.153 

23.154 
23.155 
23. 156 
23. 157 

23. 158 
23.159 
23. 160 
23. 161 
23. 162 
23. 163 
23.164 
23. 165 
23. 166 
23. 167 
23. 168 
23 .. 169 
23.170 
23. 171 
23. 172 
23.173 
23. 174 
23. 175 
23. 176 
23. 177 
23. 178 
23. 179 
23. 180 
23. 181 
23. 182 
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<sequence of basic s:ymbols1> 
<basic 3..-mrol different from 
<sequence of basic srrn~ols2> 

letter or digitl><ze><uil> 

is 
<sequence of basic s:yrohols1> 
<basic symbol different from letter or digit1><uil> 
<sequence of basic s T.l ols2> co 

a in <aux te1,·n symb> co 
b in <aux term syrob> co 
C in <aux te1·1n s > co 
··-d • <aux teI"IO syi1ib> co in 
f in <aux te1·1n sy1nb> co 
g in <aux te11n synib> co 
k in <aux tez·1r1 syrtlb> co 
1 in <aux te1·1n syrnh> co 
m in <aux te1·xn sy1tib> co 
0 in <aux tem symb> co 
p in <aux te11n symb> co 
t in <.aux. tel'.·10 s > co 

1 • <aux term s co in 

2 in <awe tex-111 s co 
3 in <aux. ter1t1 s co 
~ in <aux te11r1 s > co 

first in <aux tera1 > co 
of in <aux ter·112 s > co 
block in <aux ter1n > co 
for·ttlS-l in <aux terrn s > co 
actual In <aux ter,n s co 
save in <aux term sytrib> co 
bn in <aux ter-ir1 symb> co 
reset in <aux te1·n, s > co 
result in <aux term symb> co 
bound in <aux teI•111 symb> co 
pair in <aux term syrnb> co 
within in <aux te:r-ir1 syrrib> co 
bounds in <aux te:r·n1 symb> co • 

not in <aux teI'm syrob> co 
ne~a~~v~ in <aux tei·m symb> co 
store in <aux ter1u S)ll'ob> co 
eq • <aux tenr1 > in s co 
subscript • <aux te:r•m > in s co 
list in <aux te1111 symb> co 
go in <aux te:r·1n ·> co 
forbegin • in <aux te::1•1t1 > co 
forend in <aux ter·1·rl s co 
special in <aux terrn. s co 
eq1J..al in <aux terr-0. symb> co 
le~th in <aux term s co 
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23. 183 enter in <aux term 
23. 184 exit in <aux te1·tn 
23. 185 substitute in <aux term 
23. 186 function in <aux te.r·rn 
23. 187 assign in <aux ter"I'o 
23. 188 becomes in <aux terrn 
23. 189 zero • 1.n <aux terrn 
23. 190 • in <aux te1·rn sign 
23. 191 <;11:!!.!t-SY • <aux terrn in 
23. 192 progr.p • <aux ter10 in 
23. 193 ;p~o.': .. b~~ in <aux te1·m 

23. 194 sign in <.aux id> co 
23. 195 d1a:tIII~~ • <aux id> in co 
23. 196 

I 17 ✓--= ; 

~~Xll~~ 1 in <aux id> co 
23. 197 d:u!r2u,r 2 in <aux id> co 
23. 198 forend in <aux id> co 
23. 199 <id> £ in <aux id> co 
23.200 <p> k in <aux id> co 

23.201 <aux id> in <id> co 

23.202 
23.203 
23.204 

<p> k <ui> 
<p> 1 <ui> 
<p> m <ui> 

in <aux label> co 
in <aux label> co 
in <aux label> co 

sy1nb> co 
symb> co 
s > co 
s > co 
s > co 
symb> co 
s > co 
symb> co 
s > co 
symb> co 
symb> co 

23. 205 special label <p> in <aux label> co 
• 

23.2o6 <aux label> in <label> co 

23.207 <basics oJ> 
in <sequence of basic and aux te.r·rr, s "",., ols> co 

23 • 2o8 <aux te1·n1 s 
in <sequence of basic and aux te:r,rt s rn,l-,ols> co 

23.209 <sequence of' basic and aux te:r:·xn syxribols> 
<sequence of basic and aux term symbols> 
in 
<sequence of basic and aux te:.t-m symbols> co 

23. 210 o im <sequence of basic and aux te1·tt1 s ~ols> is o co 

23. 211 0 im <ass st> in <decl ass st> is 0 co 
23.212 im <dexp> • <a.eel dex:p> is 0 co 0 in 
23.213 0 im <proc st> in <decl proc st> is 0 co 
23.214 • <block> in <a.eel block> is 0 co 0 im 

23.215 0 im <l:>plist> in <d.ecl bplist> is 0 co 
23.216 • <switch list> • <decl switch list> is 0 co 0 im in 

23.217 o is f o t 



CifAPrER 6 

EXPLANATION OF THE DEFINITION OF ALGOL 60 

In this chapter we give an explanation of the techniques used in the 

metaprogram for the definition of ALGOL 60. Sections 1 to 6 contain 

some general comments, and sections 7, 8, ... , 30 correspond to sections 

O, 1, .•. , 23 of the metaprogram. 

6.1. Defects of the definition 

The following subjects have not been treated: 

a. Real arithmetic. 

In ALGOL 60 no exact arithmetic has been specified ( 38, 3.3.6); this 

specification belongs to the accompanying information which should be 

given by the programmer (cf. also [38] , 1, footnote 1) • Thus, whenever 

one wants to execute a program in which real arithmetic is used one 

has to extend the metaprogram with additional truths defining this 

arithmetic. Moreover, the declarator ''real'' should then be introduced 

and one should give the definition of its consequences for declara

tions, assignment statements, etc. 

b. Procedure bodies in code and strings as actual parameters. 

c. Standard functions (except the function 'signl). 

Another interpretation might be preferred in the following three cases: 

a. Only the static definition of own is given (for the definition of 

this static interpretation see ) . 
b. Specifications of non value parameters are ignored. 

c. The effect of a jump out of a function designator which leads to a 

label which is local to a function designator is defined in a way 

which differs from the usually accepted one. Details are given below. 
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In general, whenever in a program something occurs which was left un

defined, said to be undefined or forbidden in [38, the value of the 
. , , , ,1 ) . , , . , , 

program is w , which is used as a symbol for undefined (for more 

details see section 6.7). However, sometimes we could not avoid choice, 

e.g. regarding the order of evaluation of the value parameters, where 

we chose the order given in the for111al parameter list. Also, primaries 

in the expressions are evaluated in order from left to right. A third 

example is the case of expressions containing formal parameters, which 

may become undefined if the corresponding procedure is called. Example: 

'' if f then g else ft 
h, where ''f'' '' '' d , g, an f' '' h are for1r1al parameters, 

might be replaced by ''if true then 3 else av b''. Apparently, this does 

not fulfil the requirements of 38, 4.7.5. However, the metaprogram 

delivers''3''as the value of the last ', . 'f expression • 

The following two cases are treated incorrectly: 

a. A conditional statement of the fo1·1r1 1 'if <bexpl> 
,, 

then <unc stl> , 

where'' <bexpl > ''has the value ''false ' 1
, is equi val en t to the dummy state

ment only if the evaluation oft'<bexpl> 1'has no side effects. 

b. Mutatis mutandis this holds for a goto statement leading to an un

defined switch designator. 

6.2. Structure of the metaprogram 

The metaprogram of chapter 5 is used in the following way: Whenever one 

wants to evaluate an ALGOL 60 program, say 

is asked to evaluate the following name: 

tt tt 
<programl> , the processor 

{<LIST OF METAEXPRESSIONS CONTAINED IN CHAPTER FIVE>i co <programl>. 

The list of metaexpressions of chapter 5 is thus again directly added to 

V. As will be seen later, the evaluation of the simple 
ft ft 

name <programl> 

is subdivided into the evaluation of a list of simple names, roughly in 

such a way that each declaration or statement of the program corresponds 
1 t t 1 

to one simple name. Thus, during the evaluation of <programl>, the 

l) For easier readability, we use Greek letters in this chapter instead 

of the underlined Roman '' It d letters of chapter 5. Hence, w correspon s 

'' '''' ''t tt ,, t too ,a o a, e c. 

not for underlined 

(This convention is used only for single letters, 

symbols containing more than one letter.) 
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metaprogram of chapter 5 is extended dynamically with new truths, each 

of which is the value of such a simple name. We distinguish two possi

bilities for the use of such a truth in a subsequent evaluation: 

a. Direct application of the new truth. 

Example: The evaluation of the assignment statement 

result in the addition to V of the truth 

(1) a is 3 

11 

a : = 3 11 will 

(apart from some details concerning locality, which are given below; 

see also 4.2.3.3). 

Subsequent evaluation of the variable 

application of the truth (1). 

I 1 It 

a will then lead to the 

b. Indirect application of the new truth: The addition to V of a truth 

may have the effect that another truth becomes applicable to some 

simple name. Remember that the applicability of a truth containing 

a condition may depend on whether the derived condition of this truth 

envelopes another truth (cf. for example the Turing machine exampleJ 

3.1.2 and 4.2.2.2, where the applicability of the truths T4 1 
' 

to T
4 5 

J 

depends on the truths corresponding to the quadruples in v
5
). Many 

examples of this situation in the metaprogram for ALGOL 60 will follow. 

The three main difficulties in the definition of ALGOL 60 proved to be: 

a. The concept of locality. 

b. The goto statements. 

c. The requirement that all identifiers of a program be declared, even 

in parts of the program which are not executed. Thus, we have to 

consider e.g. ''begin if false then i := 0 end'' as an incorrect ALGOL 60 

program. 

The first point made it necessary to introduce the notion of block number, 

and the last two require the equivalent of a prescan. 

In the evaluation of a program we distinguish the following phases: 

o. Check on the syntactic correctness of the 
11 

'' • d f. d <program> 1s e ine in the metaprogram 

program. The metavariable 
1) 

(Tl.33 , Tl.34, etc.) 

in such a way that it envelopes precisely the syntactically correct 

l) T, followed by a number, refers to the corresponding truth in chapter 5. 
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ALGOL 60 programs. In fact, that part of the metaprogram that defines 

the syntax of an ALGOL 60 program is essentially a transcription of 

the Backus notation in 38. In establishing whether T2.l is applicable 

to an ALGOL 60 program, the syntactic correctness of the program is 

thus checked automatically by the processor. The case that T2.l is 

not applicable is considered in the section on undefined values; see 

section 6.7. 

1. The prescan phase. 

1.1. In the first phase of the prescan the different identifiers of the 

program, which are introduced either by explicit declaration, or 

by standing as a label or a for1nal parameter, are noted. 

1.2. The second phase of the prescan checks whether each identifier in 

the program has been declared. 

2. The execution phase. 

2.1. In the first phase of the execution, the program is scanned for the 

occurrence of labels, which are then supplied with the block number 

of the smallest embracing block. This information makes it possible 

to restore the correct block number, if a goto statement leads out 

of a block. 

2.2. Finally, the actual execution of the program takes place. 

6.3. Determination of the block number 

First we give an intuitive introduction to the definition and use of the 

block number. 

Possible block numbers are (cf. T3.2 to T3.6): 

'' D. '' '' 0 0 BO ,. '' 0 8 8 '' µy, µyµy µy, µy y or 

The following rules hold: 

a. The y's count block depth. 

b. The S's between a certain y and the immediately preceding Y count the 

number of parallel blocks at the depth of this Y. 

c. The o's count the depth of procedure calls. 

At the beginning of the evaluation of a program, the block number is set 
,, a ,, . , , B ,, 

to ..,y , 1 • e. , Y is added as a truth to V (first simple name of the 

right part of T2.l). 
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Next we consider the following example (we neglect for the moment the 

fa.et that a program is always embedded in a fixed oute11nost block, 

where some auxiliary declarations, e.g .. o'L the function 

made): 

1: I?egin in~e&!:r 

i ::::: 0; 

i ; ... 

••• 

• • • 

end 2; 

i := i + 1; if i < 2 then goto L; ••• 

3: ~g~~n in ~eger k; ..... 

4:b!gin integer I; 

••• 

end 4 ; ••• 

end 3; ... 

end 1 

In the prescan phase the block numbers are successively: 

Sy 

Sy· .Sy 

By Sy Sy 

BYSY 

By8y8Sy 

By Sy 86y Sy 

SyBy88y 

BYBY 

BY 

(initialized), 

(by 1:begin), 

(b)' 2: begin) , 

(by end 2), 

(by 3:begin), 

(by 4: b,egin) , 

(by end 4). 

(by end 3)' 

(by end 1) • 

'' . 't sign, are 

In the execution phase. the block numbers · ( , are successively here we 

suppose that block 2 is executed twice) : 

(end prescan), 

Sy88y (by 1: begin) , 
BYBBySy (by 2 :b~,g~.n) , 
araay (by end 2) 

' 
Sy88yi68y (by 2: begin), 

• 
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8y8Sy (by end 2), 

ByBSy BB By (by 3:begin), 

BYBl3YBBByBy (by 4:begin), 

SySByBBSy (by end 4) J 

BY B Sy (by end 3)' 

Sy (by end 1). 

The function of the 6's is the following: 

If a procedure is called during the execution phase in a block with 

block number '' <bnl > '', and if this procedure is declared in a block 
'' ,, with block number <bn2> , then the block number is set to 

''<bn2> c <bnl>''. Upon exit from the procedure, ''<bnl>'' is activated 

again. 

Example: 

1:beg~n integer i; 
bbl 

procedure P; , 

2:begin integer j; ... end 2, P; 

• • • 

3:begin integer k; 

. p. . . . , , . . . 
end 3; •.. 

end 1 

In the prescan the block numbers are successively: 

By 

By By 

By By By 

By Sy 

Sy8yt38Y 

Sy Sy 

Sy 

(initialized), 

(by 1:begin), 

(by 2:begin), 

(by end 2), 

(by 3:begin), 

(by end 3), 

(by end 1). 

In the execution phase the block numbers are successively: 

(end prescan), 

(by 1:begin), 



Sy8By8y 

Sy SBy 6 8-y BS't· Sy 

Sy· BSY BS yo Sy 8By BY 

8yBSyoBy68-y8y 

8YB8y8y 

8yBBy 

B'Y 
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(by 3 :_pe~ip.), 

(entrance to P), 

(by 2:begiD:), 

(by end 2), 

(exit from P, cf. however, 6.24), 

(by end 3), 

(by e11d 1). 

We now give a somewhat more precise description of the deter1nination 

of the block number. 

Each block entrance or exit, and each procedure entrance or exit in the 

execution phase, leads to addition to V of a new block number (a few 

other situations in which new block numbers are added to V will be 

treated below). At every moment, the last entry in V which has the 

syntactic form of a block number, is called the current (or active) 

block number. From the definition of applicability, it follows that 

it is always possible, by appropriate use of a condition in a truth, 

to find this last entry. 

Suppose that, at a given moment, the current block number is 

tt '' <bcsl><dbcsl>, and that a new block is entered. There are two 

'' f' possibilities: Either a truth of the £01·111 <bcsl><bcl><dbcs> occurs 

somewhere in V, meaning that the new block is parallel to an earlier 

one (possibly itself during the execution phase), in which case 

''<bcsl> B <bcl><dbcsl>'' is added to V (T.6.4), or else no such truth is 

found, in which case ''<bcsl> Sy <dbcsl>'' is added to V (T6.3). 

If the current block 
I I ft 

number is <bcsl><bc><dbcsl> ,then 11 '' <bcsl><dbcs1> 

is added to V upon exit from the block (T6.2, T6.6). The value of the 
It tl fl tt 

last end of the program, i.e., of the end of the fixed oute1·111ost block, 

is defined in T6.5 and explained below. 

The rules governing block entrance and exit hold both for the prescan 

and execution phase of blocks and procedure bodies. 

If a procedure is declared in a block with block number fl ft · <bnl> and 

called from a block with block number ''<bn2>'', then '1 <bnl> 6 <bn2>'' is 

added to V (T17.77). After this the entrance to the procedure body 

(which is always made into a block) is perforrned according to the rules 

for block entrance given above. 
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Upon exit from a procedure, the current block number is looked up. 

Th . h th f - '' '' '' 11 
is as e 01·1n <bes> o <bnl > ,and <bnl > is added to V (Tl 7. 78) .. 

By means of the last two rules, which of course only hold in the 

execution phase, the correct block number is available during execution 

of a procedure and after exit from this procedure. 

In this way, at every moment the last truth in V which has the syntactic 

form of a block number defines the current block number. This is used 

whenever an identifier is processed; identifiers are always first ex

tended with the current block number, so that e.g. uniqueness of iden

tifiers is guaranteed in recursive situations. 

Finally, we introduce the following terminology: The ''significant part'' 

of a block number is that part of the block number that precedes the 

left 
rt ,, ,, ,,. • 

most 6 .If no o is present, its significant part is itself. Usually, 

we are interested only in the significant part of the block number. 

Th f ft . ''block '' h ere ore, we o en write number were we should write '' signifi-

'' cant part of block number. 

6 .. 4. The prescan 

As explained above, we have introduced two phases in the evaluation of 
• 

an ALGOL 60 program, the prescan phase and the execution phase, each 

of which is subdivided again into two phases. Each block of the program 

passes once through the prescan phase, whereas the number of times it 

is executed is clearly dete1·rnined dynamically. This structure of an 

evaluation of the program in several phases is not available directly 

in the metalanguage. However, the basic idea was already demonstrated 

in the example of 4.2.1.4. If a certain sequence of symbols is evaluated 

by means of a metaprogram, it is possible to introduce as a tt . ' ' side effect 

of the evaluation of that sequence the addition to V of new truths in 

such a way that when precisely the same sequence is evaluated again, its 

value is different from the result of the first evaluation. This idea 

is used extensively in the prescan rules (T4.1 to T5.15), in view of 

the two problems mentioned above: the processing of goto statements 

and the check whether all identifiers of a program are declared. 
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r, . ' ' The structure of the prescan is based on the concept of program point 

(de.t'ined syntactically as the metavariable ''<P> ''in T3 .. 7). Essentially, 

tlle (~valuation of the ALGOL 60 pr·ogram is replaced by the evaluation of 

a st:iquence of' p1~ogram points in such a way that: 

a .. Each dec!la1·ation 01· statement corresponds to precisely one program 

point. The uniqueness of the program point is achieved by defining 

it in such a way that its first part ( 11 <bes>'•) is equal to the block 
ft 11) number of the block which is scanned, while its second part ( <as> 

is different for each declaration or statement in this block (the 

declarations and statements are numbered successively in the order 

in which they occur in the program; see also 4.2.3 .. 4). 

b. The evaluation of a certain program point is defined differently for 

the several phases. 

Next we give a more detailed explanation of T4.1, the main prescan rule 

for declarations. 

First of all, we remark that the definition of ''<block tail>'' is given 

in Tl.27. Note moreover that an example of a specific case 0£ the left 

part of T4.1 is provided by each specific case of the right part of T2.1. 

The right part of T4.l consists of three simple names: 

1 .. i,<declaratic>nl><Pl> 1 1
• .. 

This means that ''<declarationl>'1
, which occurs at program point ''<pl>'', 

has to be evaluated according to the rules which are given for the 

E,valuat,ion of a declaration in phase 1. E.g.• if ''<declaration!>'' 

~;1 tyJ)e declaration, T7.7 or T7.8 will prove to be applicable. The 

• 
l.S 

details of these rules will be explained below. However, we may already 

mentio11 one essential point: The effect of the evaluation of a decla

rat:ion in prescan phase 1 is that the identifier which is declared 

is added to V, supplied with the current block number and its type, 

so that .it i.s known in phase 2 of the prescan that this identifier 

has been declared. 

2. The evaluation of the second s1.·mple name of the right part of T4.l 

addition to V of: 
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<pl> is {<declarationl><pl> 2 co 

{<pl> is 1 
{ T <pl> is {<declarationl><pl> 4 co 

T <pl> a. li co 

<pl> a }1 co 

<Pl> a.} 

Suppose now that phase 2 of the prescan is reached (how the transition 

to phase 2 is achieved is explained later). In this phase, • as in 

phases 3 and 4 (i.e. the two phases of the execution), the sequencing 

of the evaluation of the different declarations and statements of 

the program is replaced by the evaluation of the successive corre

sponding program points,which is made possible by the addition of 

new truths, such as (1). 
,, '' Suppose moreover, that <pl> is evaluated. Application of (1) then 

leads to the evaluation of: 

2 .. 1 .. '
1
<declarationl><pl> 2'' .. This means again tf • tf 

that <declarationl>, 

''< 1>'' occurring at program point p , has to be evaluatedJ but now 

according to the rules for the evaluation of a declaration in 

phase 2 (see e.g. T7.9, TS.14 or Tll.8). Since, as a result of 

phase 1, it is known which identifiers have been declared, it is 

now possible to check whether ''<declaration!>'' contains only 

declared identifiers. 

2.2. The evaluation of the second simple name in (1) results in the 

addition to V of: 

(2) 

<pl> • { l.S 

<Pl> • {<declarationl><Pl> 4 co T l.S 

T <Pl> a}t co 

<Pl> a.} 
It 1 tt 

If phase 3 is reached, and supposing <p > 

application of (2) will result in: 

2.2c1. Addition to V of 

(3) T <pl> is {<declarationl><pl> 4 co T <pl> a.} 

is evaluated again, 
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(Note that the evaluation of '' <declaration! ><pl> 3'' is missing .. 

· d d y since phase 3 is only introduced This is 1n ee unnecessar, 

for the processing of labels.) 

If phase 4 is reached, and supposing 
1
'T <pl>'' is evaluated (the 

reason for the extension of ''<pl>'' with 
'f t t • the extra symbol Twill 

be given below), application of (3) 

2 .. 2 .. lci,1., Evaluation of ''<declarationl><pl> 

will result in: 

ti '' i t <decla.rationl > , occurr ng a program point will now 

b,e evaluated according to the rules of phase 4 (e.g .. T7 .. 10, 

T9.15, etc .. )e 

2 .. 2.1.2. The evaluation will be continued by the evaluation of the next 

program point, i .. e .. of 
,, ,, 

T <pl> a. " Here we note the basic 

sequencing idea: The evaluation of a program point is always 

defined in such a way that its successor is evaluated as the 

next step; '' -r <pl > a." is the program point corresponding to 
.,, l ft the declaration or statement which follows <declaration > 

in the program. .. 

'' Evaluation of <pl> ft 
• a ' remember that this results from appli-

cation of truth (2). 
tt 

Evaluation of <Pl> this results from application of truth (1). 

3 .. Evaluation of ''<pl> a. : <block ta.ill>''; this results from evaluating 

the final Bimple name of T4 .. 1 .. If ' 1 <block ta.ill >t' begins with a 

declaration, then T4.l will be applied again. This will result 

the same structure of additions to V, this time however with 
,, l , ii , , , • 

<p > a .instead of <pl> • 

• in 

From the example T4.l the outline of the structure of the sequencing 

of the evaluations should have become clear: 

a. By addition of new truths, program points are evaluated by applica

tion of different truths in different phases. 

b .. Sequencing is achieved by organizing the added truths in such a way 

that evaluation of a program point leads automatically to the evalua

tion of the next program point. 

Of course, the1"e remains the explanation of the way in which the transi

tion between the different phases is accomplished .. 



167 
' 

As a second example we consider T5.7. This truth has almost the same 

structure as T4.l. However, we note four differences: 

1 .. The metavariable '' <block end>'' is used instead of ''<block tail>''. 

The definition of
11

<block end>''is given in Tl .32 (cf. also Tl.28 to 

Tl.31). It is essentially the same as the ., '' <compound tail> of 

4.1. Some complications were caused by the for statement (see sec

tion 6.23) .. 

2. ''<unlabelled basic stl><pl> 1'' is not included. In fact, in T4.1 the 

evaluation of '' <declarationl ><p1 > 1 '' in phase 1 leads to the addition 

to V of info1··111ation about the declaration of the corresponding iden

tifier(s). There is apparently no point in doing this here. 

3. The successor of 
t t 't 

T <pl> is missing: 

The innern1ost metastring has the fo1·m: 

''f T <pl> is <Unlabelled basic stl>f'' and 

'' J. 1 { 1 T <p > is <unlabelled basic stl > co T 

not: 

<pl> 

4. An extra auxiliary label ''<pl> K
1

' labels '' <block endl >''. See also 
'' ,, section 6.6; the label <pl> K should not be confused with the 

', 'f program point <pl> a. 

In order to explain the reasons for the differences mentioned in points 

3 and 4, we consider the statement sequencing in somewhat more detail: 

We distinguish the following cases: 

1. Three kinds of unlabelled basic statements, i.e., assignment state

ments, goto statements and procedure statements. 

2. Blocks. 
• 

3. Conditional statements and compound statements. 

4. For statements. 

5. D..tmmy statements (note that by Tl.l to Tl.3, a d1.1n11r1y statement is not 

an unlabelled basic statement). 

6. Labelled statements. 

Remarks: 

1. In cases 2 to 5 above, we consider only the unlabelled statements. 

2. The dummy statement is treated by: 

a. Appropriate use of optional metavariables. 

b. T5.1. 
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We shall not explain this in more detail. 

3. The (complicated) treatment of the for statement is described in 

T16.1 to T16.32 and explained separately. 

4 .. By applying T5.2 to T5.6, compound statements and conditional state

aents are replaced by sequences of goto statements and (possibly 

labelled) unconditional statements or for statements. 

We now return to T5.7. 
· 1f l. ff 

If •• <unlabelled basic stl> '' is an assignment statement, say <ass st > , 

the effect of applying T14 .18 to '' <ass stl ><pl> 4 '' wi 11 be: 

a. ., <ass stl > '' is evaluated. 

ft '' b. T <pl> a is evaluated. 

Thus, we use here the same technique as with dec1arations: the successor 

of the assignment statement concerned is executed as a result of the 

evaluation of the corresponding program point. 

It is possible that a jump out of a function designator, which occurs 

in the assig11ment statement, is executed as a result of step a. If no 

special measures were taken (described below), subsequent evaluation 
ff ft t of -r <pl> a would then completely upset the correct order of sta temen 

execution. (A similar difficulty may arise e.g. in the evaluation of a 

bound pair list in an array declaration.) 

:Next, we suppose that '' <unlabelled basic stl >'' is a goto statement, e.g. 

"'- tf . '' , ' goto <labell> .. Essentially, the result of the evaluation of ,goto <label1> 

is that the program point, corresponding to the statement which is labelled 

by 
,, tr 

<labell> , is evaluated. In fact, one of the two main reasons for the 

introduction of the program points was the desire to make this solution 

of the pro,cessing of goto statements 

13). Details about the case in which 

possible (cf. also 4. 2. 3. 4 • e,ra1nple 

the goto statement is not simply of 

. -- '' the form g-~?t~ ., 
<lab,ell > J and about the treatment of the (unfortunate) 

concept of the 

below. 

undefined d11mmy switch designator ( 38 J , 4. 3 • 5) are given 

~ n•t· l . th t '' . ,, E.a. ... ~ Y, suppose ·.·.a· <unlabelled basic stl > is a procedure statement. 

Here we use the idea of A. van Wijngaarden, described in 49 , which is 

equivalent to the following scheme (which is appl.ied only to non type 

procedures): 
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a .. The procedure declaration is supplied with an extra formal parameter .. 

b .. A goto statement leading to tl1is extra f OI"rrta l parameter is intro

duced at the end of the procedure body. 

c .. As corresponding actual parameter a label which labels the staternetit 

following the procedure statement is supplied. This is the reason 

for the introduction of the label ''<pl> K., in T5.7. (In the case that 
11

<unlabelled basic stl>'
1 

is riot a procedure statement, ''<pl> K•• has 

no functi.on,.) 

Since this process is not applied to type procedures a difficulty arises 

when a function designator is used as a statement. A solution for this 

case is described later~ 

Next we make some remarks on T5.8. Here we find the same structure as in 

T4.1 and T5.7. However, it appears that only in phases 1 and 3 need any

thing be evaluated: Phase 1 is used again to establish that ''<labell>'' 

is a ''declared'' identifier (or integer; the somewhat unusual notion 

of a declared integer is apparently introduced in the following sentence 

of 8, 4.1.3: a label separated by a colon from a statement, ••• , 

behaves as though declared in the head of the smallest embracing block .•• ). 

This inforrraation is then used in phase 2 in the check whether labels oc-

curring indesignational expressions have been declared. In phase 3 

'' '' 2 3 1 label <1abe11><p1> 3 is evaluated, as defined in Tl • and T 2 .. 4. The -
effect is that a truth is added to V establishing a correspondence 

between '' <labell >f' 11 ' '<pl>'' and the current block number (for the meaning 

of 11 <fgsl >'' see sections 6 .. 22 and 6 .. 23). As explained above, the corre-
fl fQ If< tt spondence between <1abe11> and pl> is used in the evaluation of a 

t t '' goto statement, leading to <labell>. 

There remains the treatment of blocks in the ,prescan (T5.9 to T5.15, 

cf .. also T2 .. l): 

1. Phase 1 of the prescan of the program is initiated by the evaluation 

of the third simple name in the right part of T2.1. 

2. Before the ''end'' of each block (except for the program itself and 

procedure bodies, but including blocks within procedure bodies), an 

extra goto statement is included, leading to an extra label, which 

labels the statement immediately following the block concerned. 
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t· f TS 9 I f·nite addition of extra Thi.s is achieved by applica ion o . • n 1 

goto statements is avoided by the introduction or the auxiliary 

:metavariable '' <special block>'': Once the extra goto statement is 

k · t b c · al block and TS .11 becomes added to the bloc , 1 ecomes a s pe 1 , 

applicable • 

. 3 .. Application of TS .11 to a special block has the :following effect: 

3.1. No special actions are performed in phases 1 and 3. 

'' > <decl block>'' and 3. 2. In phase 2 the simple names <special blockl in 

''first pros:!,•,,E of block <pl>'' are evaluated. A:f ter this, the 

standard addition to V of a new truth for '' <p1 > '' is performed, 

and 
t f f' 

the succeeding <pl> a is evaluated. 

The evaluation of '' <special block!> in <decl block>'' leads to the 

prescan of'' <special blockl >'' (TS .13, '' <special blockl >'' is a specific 

case of tail>''), • 
l. • e. , the prescan mechanism is 

activated recursively for this block by TS .13; see also below. 

The prescan of procedure bodies is perfor1ned by evaluating the 

appropriate simple names in the right parts of T13 .14 to Tl3 .17, 

as explained later. 

By applying T5.12, the evaluation of ''first progr.p of block <p1 > 

leads to addition to V of a truth which defines the first program 

i t f h . '' ff po n o t e block corresponding to <Pl> • 

One should note the difference in T5.12 between f' 'f <bcsl > <asl > , 

which is the program point corresponding to the special block we 

consider, and '' <bcsl ><bcl > a'', which is the program point corre

sponding to the first declaration in the block concerned. This 

'' 

declaration occurs one block level deeper, and therefore '' '' an extra Y 

( d ,, s'' , > · an one or more · s are needed; hence, the transition between 
tt '' tt <bcsl><asl> and <bcsl><bcl> a''. 
V t tt It 
1,0 e moreover that · <bcsl><bcl> was left in V as a result of the 

block entrance in the evaluation 
,, . 

of <special b1ockl> in <decl block> 1', 

as will become clear later. However, at the moment of application 

of T5.l2, '' <bcsl ><bcl >'' is not the current block number, since this 

1.. b t '' ,t ,aas een rese to <bcsl > upon exit from ' 1 <special blockl >''. 
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3.3. In phase 4 the evaluation takes place of ''first p~ogr.p:. of 
,, 

block <pl> . The necessary preparations for this evaluation were 

made in phase 2, since: 

a. As a result of the evaluation ff 

of <special blockl> in <decl 

block>" (i.e. of the prescan of this block), truths have been 

added to V which define the values of the successive program 

points corresponding to the declarations and statements of 

this block. 

b. As a result of the evaluation of ''first pr_o_gr ~P .. • of block <pl>'• 

(in phase 2, described above), the first program point of the 

block concerned can he found in V. 

This means that phase 3 of the evaluation of the block, corre-

ct . to'' <pl >'' .. i t d '' spon ing , s s arte by the evaluation of first p~o~~~e• 

of block <pl>'', in phase 4 of the evaluation of the smallest em

bracing block of the block concerned. 

Note that no successor '' -r <pl> o." is evaluated in phase 4. This is 

not necessary, since the extra goto statement which was added in 

TS.9, ensures the execution of the successor of the block concerned. 

Finally, we describe the evaluation of ''<special blockl> in ff <decl block> , 

i.e., the way in which the prescan mechanism for a block is called recur

sively. 

First of all, TS.13 will be applied; hence, the two simple names in its 

right part are evaluated. The first one, i.e. ''begin'', leads to the 

addition to V of the block number for this new block (as described in 

6.3). The second simple name is evaluated by applying T5.14. The right 

part of T5.14 consists of two simple names. 

Evaluation of the first simple name leads to addition to V of: 

<bcsl> a is { 

{<bcsl> a • 1S 

{ T <bcsl> a is T <bcsl> ex.a{ co 

<bcsl> aa.}i co 

<bcsl> aa. 
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• 

This 1s a truth of the same structure as those resulting from T4 .11 

T5. 7, etc. We see that no special actions are taken in phases 1, 2 or 

4, but only '' • ! f in phase 3, where be~1n is evaluated again: This time 

tbe dynamic block introduction during execution time is perfor111ed. 

The second simple name of the right part o:f T5.14, i.e., ''<bcsl> a.a : 

<block taill>'', has precisely the forn1 to which one of T4.1, T5.7, etc. 

is applicable. Hence, evaluation of this simple name starts the prescan 

ot the block concer11ed. 

Repeated application of the prescan rules T4 .1, T5. 7, etc. to a given 

block, 1rill eventually lead to exhaustion of the sequence of declarations 

and statements in this block, after which a program point, corresponding 
. tt '' • to its end , is introduced. Then TS.15, which is .important for the 

transition between the several phases, wil1 be applicable. 

We describe its right part in detail: 

1 .. Bvaluation of its first simple name leads to addition to V of: 

<bcsl ><aal> is {end co 
... ,1.: 1 . -

"f <bcsl ><asl > is { 

t <b·csl > <asl > is end f co 

T <bcsl > a } ~ } 

1.1 .. Evaluation of 
11

<bcsl ><asl >'' in phase 2 has the following effect: 

1.1 .. 1 .. '' '' end 1 s evaluated. This leads to the block exit; phase 2 of 

the prescan of the block concerned is now finished .. 

1 .. 1 .. 2 .. To Vis added: 

(1) <bcsl ><asl > is { { T <bcsl ><asl > is end~ co T <bcsl > a} 

Note that there is no successor of '' <bcsl ><asl >'' in phase 2. 

Evaluation of '' <bcsl ><asl >'' in phase 3 leads to application of (1) • 

with the following effect: 

1 .. 1 .. 2 .. 1 .. To Vis added 

t <bcsl > <as.1 > is end 

:tt ' . t! 
t <bcal> a is evaluated. 

The evaluation of '' ,- <bcsl > tt 
a starts phase 4 o:f the block 

concerned; here we find the transit ... on from. h 3 
~ p ase to phase 4. 
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The reason for the extra symbol f 1 ft 
T can now be given: If this 

symbol had not been introduced, it would have been impossible 

to distinguish between phase 3 and phase 4, if the block 

concerned is executed more than once. 

Evaluation of 

of (2), hence 

tt '' T <bcsl><asl> in phase 4 leads to application 
' ' ' ' . end is evaluated, which means that the (dynamic) 

block exit is perfo1·111ed. 

Again, there is no successor given '' f' . of 1 <bcsl><asl> in phase 4. 

If the block concerned is not the body of a type procedure, its 

successor is found by the extra goto statement, added in T5.9 

(thus, in this case '' -r <bcsl ><asl >'' wi 11 in fact never be 

evaluated), whereas in the case that the block is the body of 

a type procedure, there is of course no succeeding statement. 

2. Evaluation of the second simple name of the right part of T5.15, i.e., 

ft '' of <bcsl> a, starts phase 2 of the prescan; here we note the tran-

sition from phase 1 to phase 2. 

We now summarize the rules about initiation of and transition between the 

different phases: 

1. Phase 1 of the prescan of the program is initiated by the evaluation 

of the third simple name of the right part of T2.1. 

2. Phase 1 of the prescan of all other blocks is initiated by evaluating 

'' <special blockl > in <decl block >11 (T5 .11; the similar case of 

procedure bodies is treated by Tl3.14 to T13.17). 

3 .. Transition from phase 1 to phase 2 is performed by application of 

T5.15 .. 

4. Phase 3 of the program is initiated by the evaluation of the first 

program point of the program, i.e., of '' Sya." (fourth simple name of 

the right part of T2.l). 

5 .. Phase 3 of the execution of inner ''no1·1nal '' blocks (i.e .. blocks other 

by the evaluatl.. on of ''first than procedure bodies) is initiated 

_pr<;>gr .. P,. of block <pl>'', in phase 4 of the evaluation of the smallest 

embracing block (TS.11) • 
• 

6. Phase 3 of the execution of procedure bodies is initiated by a mecha

nism explained later. 
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7. The transition from phase 3 to phase 4 is perfor111ed by application 

of T5.15. 

6.5. The requirement that all identifiers of a program be declared 
t t -11 lib- M •71 I ; II 111 

In phase 2, application of T4.1 and T5.7 leads to evaluation of 

'' • It ,, 11 d · 1 '' <declarat1on><pl> 2 and <unlabe e basic st ><pl> 2 (evaluation, 

in phase 2, of ''<special blockl> in <decl block>'' results in the same 
' 

simple names). 

Depending upon the different kinds of declarations and unlabelled basic 

statements, the following possibilities arise: 

a. <type declarationl><pl> 2 

b. <array declarationl><pl> 2 

c •. <SWi tch declarationl ><pl> 2 

d. <procedure declarationl ><Pl> 2 

e. <ass stl><pl> 2 

f. goto <dexpl><pl> 2 -
g. <proc stl ><pl> 2 -
Clearly, it is not necessary to check whether identifiers occurring in 

type declarations have been declared. Hence,, the definition of T7.9, 

which simply leads to the addition of'' tr'' to V. 

(This is a device which is used often in the metaprogram; addition of 

''t '' _rto V has no influence on the rest of the evaluation of the program. 

The reason for inclusion of T7.9 is the desire to obtain a uniform 

treatment of declarations in T4 .1; various reasons for addition of'' tr'' 

to Vin several other cases will appear in the sequel.) 

By ff • '' T9.14, <array declarationl ><pl> 2 also has the '' '' k value tr .The chec 

whether the identifiers occurring in the bound pair lists have been 

declared is already perfo11r1ed in phase 1, since these identifiers have 

to be declared in embracing blocks and not in the block itself in which 

the array declaration occurs. Details of this check are given later. 

By Tll.8, evaluation of a switch declaration in phase 2 leads to evalu-
'' t I tf 1 1t ation of <switch listl> in <decl switch list> , where <switch list> 

is the switch list occurring in tl1e switch declaration concerned. 
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The more complicated treatment of procedure declarations in phase 2 

is explained below. 

By T14.17, T15.1 and T17 .62, evaluation of 1•<ass stl><pl> 2' 1
, 

1'~0~.£ 
'' ff '' <dexpl><pl> 2, and <proc stl><pl> 2 leads to evaluation of 

'' 1 '' ,, <ass st> in <decl ass st>, <dexpl> in <decl IV t ! dexp> , and· <proc stl> 
tt 

in <decl proc st> respectively. 

Next we explain the way in which the simple names 
,, 

<switch list> in 

<decl switch list >'
1

, . . . ' t,<proc st> in<decl proc st>'' are evaluated. 

The main features of the evaluation of these simple names are: 

a. Inclusion in the metaprogram, in addition to the truths which are 

equivalent to the BNF rules of 38, of related truths, such as: 

'' <decl factor> in <decl tel·u1>w 1 besides '' <factor> in 
,t 

<decl aexp> in <decl sub exp> 11 ,, 
besides <aexp> in <sub 

''<decl int var> in <decl primary>'' besides ''<int var> ix:1 <primary>'', 
1' <decl saexp><rel op><decl . d 1 b . ff saexp> in< ec primary> 
1

' l i b . '' <saexp><re op><saexp> n <primary>, 

etc .. 

b. Use of a search in embracing blocks, by means of the block number. 

c. Use of infor1nation which is added to Vin phase 1. 

As a result of these three points, the process of checking whether all 

identifiers of a program are declared is perfo1"1ned automatically by the 

processor, as follows from the definition of envelope and applicability. 

We give an example: 

In order to evaluate '' a == b + c in <decl ass 
11 

st>, Tl4.15 is eventually 

tried for applicability (the preceding truths, in particular T14.16 will 

prove to be inapplicable). Tl4 .15 is applicable, if ''a in <decl int left 

part list >1
' '' and b + C tt '' '' in <decl a.exp> have the value tr • 

8 33 ''a in <decl 1· nt left p 6 rt Application of Tl4.11, T14.3 and Tl . , to = 
list>'' leads to evaluation of ''a in <decl int var id>'',. 

Application of Tl9.28, T19.26, T19.24, T19 .. 19, Tl9.15, Tl9 .. 10 and T18.33 

ft '' • '' ff to b + c in <decl aexp> leads to evaluation of bin <decl int var id> 
t t' 

and ''c in <decl int var id>' . Application of Tl8 .11 to a in <decl int 

var id >11 leads to evaluation of ''a <bcsl > in <decl int var 

'' <bcsl >'' is the current block n11mber .. 

ft 
id> , where 
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If '•a'' has been declared in this same block, application of T18 .27 

'' 't results in the value tr for '' . . d ,, a in <decl int var 1 > • (As will be seen 

later, if ''a'' is 

b '' be 1 '' num er < s > , 

an integer variable, declared in the block with block 

there wi 11 have been left in V a truth of the .fo1·1n 

'' integer a <bcsl > t,, as a result of phase 1. Since the condition of 
,. 

Tl8.27 envelopes this truth, T18.27 is applicable to a <bcsl> in <decl 

int var id> 
11

.) 

If ''a'' is not declared in f' ,, the block with block number <bcsl>, it might 

be a forn1al parameter, in which case TlS.23 applies (the way in which 

''fo11nal a <bcsl >'' might have been added to V is again described later). 

If ''a" is not a fo1·mal parameter either, then by T18 .19 the evaluation 

of 'lla <bcs2 ><bcl > in <decl 
Ilk.Ill 

ff 
int var id> ,, ,, '' '') (with <bcs2 ><bcl > = <bcsl > ,is 

,, 
replaced by the evaluation of a <bcs2> '' in <decl int var id>, i.e., 

the smallest embracing block is now considered, and T18.27 and Tl8.23 

are tried again (note that the current block number is not changed if 

an embracing block is tried). 

In case of no success, by repeated application of T18.19, all embracing 

blocks are searched, until there is no longer an embracing block. Then 

TlS.15 applies, and the value of ''a in <decl int var id>'' is some symbol, 

i '' '' d ff '' '' v z. w, i erent from tr ,which means ultimately that Tl4.15 is not 
,1 91 

applicable to a== b + c in <decl ass st> • 
.. lt'lil I 

If, on the other 99 If 
hand, a and also ••b11 and • t t' 

C , have been declared 

correctly, the final result is that ''a := b + c in <decl ass st>'' has the 

value''tr'',which is then the result of the evaluation of ''a := b + c <p1> 2'' 

in phase 2. Again, addition of ''tr ''to V does not influence the rest or the 

evaluation. 

The case that one of the identifiers in ''a == b + c'' turns out not to be 

an integer variable nor a fo1·naal parameter, will be treated below (6. 7). 
In sense, the evaluation of the program is then stopped. 

From the given example, it follows that phase 2 is in fact not only used 

for the test whether all identifiers have been declared, but also to check 

that the identifiers have the correct types. With formal parameters, this 

check is of course in general impossible. The ref ore, the type of a for,nal. 

parameter is always considered to be correct. 

All evaluations in phase 2 proceed essentially as in the above given example. 
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6.6. Auxili~r~ identifiers and labels 
' 

In several places we have introduced auxiliary identifiers and labels, 

h . th . d t · f · '' '' '' •1 
,, ,, sue as. e 1 en 1 iers dummy 1 , d~!Il111Y 2 and sign in T2.1, the 

1 b 1 It< > '\ 1 '' t It ff II a e s P /\ o <p> A 4 in T5. 3 to TS. 6, the label <p> K '' in 

T5.7, etc. (a complete list is given in T23.194 to T23.200 and T23.202 

to T23.205). By T23.201 and T23.206, these auxiliary identifiers and 

labels are indeed identifiers and labels; hence, the metaprogram will 

treat simple names which contain these auxiliary identifiers and labels 

in the same way as simple names containing ''no1·mal '' (i.e. defined as 

in 8) identifiers and labels. However, there is one exception to 

this rule: If an auxiliary identifier or label occurs in the original 

program, then by T2.2 or T2.3 1 its value is defined to be 
,, ,, 

w (6. 7). 

6. 7. ''Undefined values'' (TO .1 to TO. 7) 

Whenever in the course of the evaluation of a program something occurs 

which was left undefined, said to be undefined or forbidden in 

we have tried to arrange that the value of the program is then '' w '' .. 

It is, however, in general impossible to deliver the single symbol ' 1 w'' 

as the value of the whole program (with two exceptions, see below), 

since, as a result of the prescan, the evaluation of the program is 

divided into the evaluation of a list of simple names. Thus, the value 

of the program is necessarily the list of the values of these simple 

names. The best we could do was to try to organize the evaluation of 

the program in such a way that essentially, whenever the value of a 

h be '' w''. that certain simple name appens to , then the values of the 

remaining simple names ,. '' are also w, so that the value of the program 

tt!X"minates with a list of 1'w''' s. 

We now give more details about our treatment of the '' . '' undefined values. 

First we treat the case 
I I t I that the program which is evaluated contains 

an auxiliary identifier or label. Then, by T2.2 or T2.3, its value is 

defined to be '' w'' (provided it consists only of basic symbols or 

auxiliary terminal symbols {see below)). 

If the program does not contain an auxiliary identifier or label, but 

it is syntactically incorrect for some other reason, then TO.l will be 
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'' ft w . 

(Note that the introduction of an auxiliary identifier or label results 

in a program which is syntactically incorrect in the sense of , 

but which is still a specific case of ''<program>'' as defined in the 

metaprogram. Hence, the need for truths T2.2 and T2.3.) 

The syntactic definition of a sequence of basic and aux(iliary) 

term.(inal) symbols is given in T23.207 to T23.209. The auxiliary terminal 

symbols are listed in T23.142 to T23.193. Examples of their use have 

already been given in the definition of a block number, a program point, 

the 

ent 

'' tt symbols 1 , ''3'', t'4'', which indicate evaluations in the differ-

phases, the simple name ''first progr.p. of block 
,, 

<p>, etc. 

As explained above, the evaluation of a syntactically correct L 60 

program is divided into the evaluation of a list of simple names. Each 

of these simple names (except for the metastrings) is either a sequence 

of basic and auxiliary terminal symbols, or of one o:f the fo1·10s 
t1 • ft 

<ass stl> 1n <decl ass st> , ••• , '' ch list>''. <switch listl > in <decl swi t 

(Remember that simple names of the second kind where introduced in phase 

2 .) 

The metaprogram is organized in such a way that whenever one of these 

simple names contains something which was left undefined, said to be un-

defined or forbidden in (e.g. an undeclared identifier, an identifier 

which is declared more than once in the same block, an array element with 

subscripts outside the array bounds, number of actua1 parameters in a 

procedure call different from the number of formal parameters, etc.), then 

the value of that simple name is either directly defined to be ''w'' (see 

e.g. T7.8), or none of the truths except one of TO.l to T0.7 will be 

applicable. 

Suppose now that the evaluation of a certain simple narne has resulted in 

the addition 't '' of w to V; from then on, all remaining simple names (for 

since one of T23.210 an exception see below) will also have ft ,, 

the value w , 

to T23 .216 will now be applicable: The addition of '' u.l"' to V has the ef-

feet that the condition in T23.210 

a certain simple name has the value 

the value 

3 6 '' ., to T2 .21 has the value tr • Thus, once 
f I It 

w , all other simple names will have 
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There is, however, an exception to this rule: As follows from the 

definition of the metalanguage, metastrings are not evalt1ated by 

applying the metaprogram; hence, the occurrence of •1w 111 n V wi 11 not 

prevent the addition of the values of these metastrings to v. 

6. 8. Syn tax of .... a pro({r.,~m (Tl .,1 to Tl.34) 
I I 

The truths in this section are essentially equivalent to the BNF rules 

for an L 60 program, cf. , 4.1.1, etc. Some minor modifications 

were needed for the treatment of the dummy statement. 

Also, the metavariables '' <block 
, r tv ,, 

end> and <block tail> were introduced 

for subsequent use, e.g. in the prescan rules. The reason for the unusual 

'' '' definition of <block end> will become clear when we treat the for 

statement. 

6.9. Value of~ E~o_~ram_(T2.1 to T2.3) 

The main aspects of T2.l have already been treated in the description 

of the prescan. 

The first simple name of its right part initializes the block number. 

The second simple name initializes a for counter, which is used in the 

definition of the for statement and is explained later. 

The third simple name initiates the prescan. Note that the given program 

is embedded into an outermost block which contains auxiliary declarations. 

ft d 1 '' ct''b 1 d 2 '' The reason for the type declarations integer ummy an oo ean u~y 
' 

will become clear below. The integer procedure is introduced in 

view of the definition of the for statement. 

Evaluation of the fourth simple name starts the execution of the program. 

T2.2 and T2.3 were treated above. 

6 .10. Sy~t~x of ~lo~k numbe_r, and pr,ogram 

This requires no special comment. 

6.11. Prescan declarations (T4.1 to T4.3) 

T4.l has been explained already. 

point 
■ ; I I 

(T3.1 to T3.7) 
• 
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By means of T4.2, a type declaration, containing more 

fier, is replaced by a sequence of type declarations, 

only one identifier. 

than one identi

each containing 

T4.3 has a similar function for array declarations. 

6.12. Prescan statements (T5.l to TS.15) 

The meaning of T5.1 and T5.2 is clear. 

T5.3 to T5.6 are used to transform a conditional statement into a 

sequence of unconditional statements or for statements. 

T5.7 to T5.15 have been treated already in the description of the 

prescan mechanism. 

6.13. Value of begin and end (T6.1 to T6.6) 

Except for T6.5, these truths were treated above. 

T6.5 needs some more explanation. We have already mentioned that jumps 

out of function designators occurring in expressions can upset the 

correct order of evaluation ff f I 

of a program: For example, let <p1> corre-

spond to an assignment statement; then from T14 .18 it follows that after 

the completion of the evaluation of this assignment statement, 

has to be evaluated. However, if a jump out of this assignment statement 

occurs, we have to find a way to avoid subsequent 

This is accomplished by the following device: 

t' '' evaluation of T <pl> a • 

a. Each block ends with a goto statement, leading to the successor of this 

block; hence, a jump· out of a function designator leads to the evalua

tion of the whole rest of the program (for an exception see below), 

and only after completion of the whole program will the evaluation of 

T14.18 be continued by evaluating fl ff 

T <Pl> o. • 

b. However, application of T6.5 will result in addition to V, in phase 4, 

of the truth 

'' '' <Sequence of basic and aux term symbols>. 

Th f '' . ff us, a ter completion of the program, every simple name which is 

evaluated afterwards, h '' tf ,, 11 sue as T <Pl> a , has the value tr • This means 

that we have in a way cancelled the superfluous evaluations after the 

actual completion of the program. 
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The above described scheme does not work for a jump out of a function 

designator to a label which is local to a function designator, cf. 6.1. 

6.14. Type declarations (T7.1 to.T7.13) 

The meaning of T7.1 to T7.6 is obvious. 

T7.7 leads to addition to V of the identifier concerned, supplied with 

its type and the current block number. However, if the same identifier 

has been declared already in this block, then T7.8 will be applicable 

and 
ff ff 

w is added to V. In fact, if ''<idl>'' has been declared already 

in this block, then a truth will have been added to V which is enveloped 

by '' <specifier><idl ><bcsl >11
, whence the applicability of T7 .8. For the 

definition of t, <specifier>'' see T13 .4 to T13. 7. 

By T7.10 and T7.11, evaluation of a declaration of a non own simple 

variable in phase 4 leads again to addition to V of the identifier 

concerned, supplied with its type and the current block number (the block 

number in phase 4 is of course different from that in phase 2). 

T7.12 and T7.13 treat the somewhat more complicated case of own type 
,t . ,, h d declarations, e.g. own <typel><idl><pl> 4 • Two cases are distinguis e: 

1. If the block in which the declaration of the own simple variable 

occurs is executed for the first time, T7.12 will apply; hence, two 

truths are added to v: 

(1) <typel ><idl ><bcsl > 

This is just the same as with a non own simple variable. 

(2) T <p1> is own <typel><idl><pl> 4 <bcsl> co T <pl> a.} 

(2) has the following effect: 

2. If the block in which the declaration of the ?wn simple variable occurs 

is executed again, then the program point corresponding to this declara

tion will be evaluated by applying truth (2): 

2.1. Evaluation of the first simple name of the right part of (2) is per

for1ned by applying T7 .13. Again, two simple names are evaluated: 

2.1.1. The first simple name of the right part of T7.13 is of the same 

for1n as an own declaration which is executed for the first time 

(see 1. above) • 
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2.1.2. The second simple name leads to addition to V of 

(3) <idl><bcsl> is <idl><bcs2> 

't '' . Here <bcsl> 1s the block number of the current activation of 

the block concerned, '' <bcs2>'' is the block number of its previous 

activation. The effect of (3) is that if '' <idl >'' is evaluated 

at the moment that '' <bcsl > '' is the current block number, and if 

there has been no assignment to '' <id1 >'' during this activation 

of the block, '' 1 1 '' then evaluation of <id ><bes > is replaced by 

1 ti f '' . di b 2 '' . eva ua on o <1 ><cs> ; i.e., the processor now searches for a 

value of'' <idl >'' which was possibly assigned to it in the previous 

activation of the block concerned, which had as its block number 

'' <bcs2>''. (In order to understand this mechanism completely, one 

also has to know how the evaluation o:f a simple variable and of 

an assignment statement is defined.) 

2 .. 2. Evaluation of the second simple name o:f the right part of (2) wi 111 

as usual, lead to evaluation of the declaration or statement which 

follows the own type declaration. 

6 .. 15. The value of a simple variable (T8.l to TS.6) 

If a simple variable, say '' <idl > '', is evaluated, and if the current block 
, tf , I 

number 1s <bcsl> , then application of T8.1 results in evaluation of 
tV ft 

<idl > <bcsl > • 

I f t' dl If • 'f f' . · ·. <i .·. > has been declared in the block with block number <bcsl > , and 

if T8 .. 4 proves to be applicable, then no assignment to 'f<idl>'' has taken 

place in this block, for otherwise first a dynamically added truth of the 

fora ''<idl:><bcsl> is <intl>'' or ''<idl><bcsl> is <logical valuel>'' would 

have been met as the result of such an assignment (see also the definition 

of assignment statements). Thus, applicability of TS .4 indicates that the 

simple variable concerned did not get a value in this block, whence its 

value ia defined to be t t If 
w . 

Another :possibility is that rt • , , 

<1 dl > <bcsl > • 
l.S a formal parameter, called 

by na•e, which has an expression 1
' <expl >11 as its corresponding actual 

paraa;ater .. Then TS.3 will be applicable. The condition of TS.3 is then 
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an envelope of a truth which was left in Vas the result of the treatment 

of procedure statements (explained below). The block number of the 

smallest embracing block of the procedure statement occurs as ''<bn1>'' 

in this condition. This is not the same as the block number at the 

moment that •r<idl><bcsl>'' is evaluated, since the procedure call mecha

nism will have changed the block number. 

Evaluation of the right part of T8.3 has the following effect: 

a. Evaluation of the first simple name stores the current block number 

in such a way that it can be reset later (seed). 

b. The block number of the block in which the procedure statement occurs 

is added to V (hence, this becomes for the moment the current block 

number). 

'' '' c. <expl> is evaluated and a rule which contains this result is added 

to v. • 

d. The block n11mber which was preserved in a is reset. 

e. Now the value of 
fl 91 , II If 

<idl><bcsl> 1s the value of result • 

Remark: The manipulations with the block number are necessary to avoid 

clash of na.mes, e.g. in the following case: 

!)egin procedu~.~ P(f); 

end 

begin ~n~e-~~-~ a; . • • f • • • end P; 
= 

integer a; 

.... ; P(a) ; .... 

that '' <1· dl >'' When neither T8.4 nor T8.3 is applicable, and if we assume 

is not a function designator (this case is treated below), then by TB.2 

'' '' '' '' 2 b 1 '') . th the value of '' <i d1 > <bcs2 > <bcl > (where <bcs1 > = <bes > < c > 1 s e 

value of '' <idl > <bcs2 >''; i.e. , the small est embracing block is searched. 

(This is the same technique as was used in the check in phase 2 whether 

all identifiers are declared.) 

Again the three possibilities are considered, viz. 
f1 • tf 

a. A value was assigned dynamically to <idl><bcs2>. 

b. '' <i d1 > <bcs2 > '' was declared in the block with block 
'' ,, number <bcs2>, 

but no assignment occurred (TS.4). 
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c.. '' <idl > <bcs2> '' is a forn1al parameter (TS. 3) • 

In case of no success, T8.2 is applied again, etc. 

• th· st come to an end. since '' < idl> '' is certain-m.ventually, 1s process mu ,, 

ly a declared identifier or a formal parameter (this was checked already 

in phase 2); thus, there will be some block, embracing the initially 

considered one, in which one of the three above mentioned possibilities 

holds. 

8.16 .. !'-rray decla;1'.'ations (T9.1 to T9.29) 

T9.l to T9.9 give the syntactical definition of an array declaration. 

T9 .. 10 to T9 .13 define the value of an array declaration in phase 1. 

The meaning of T9.10 is clear. Application of T9.ll has the following 

effect: 

a. The first simple name of its right part is evaluated by application 

of either T9.13 or T9.12. If T9.13 '' . t' is applicable, then <1d1> has 

been declared already in the same block and '' w'' is added to V. Other

wise, a truth is added to V, containing the type of the identifier, 

an indication that it is an array identifier, and the block number 

o.f the block in which it is declared. 

b .. The three remaining simple names check whether the identifiers in 

the bound pair list have been declared. This check is perfonned in 

phase 1, since these identifiers must have been declared in embracing 

blocks. First the block number of the smallest embracing block is 

activated, then '' <bplistl> in <decl bplist>'' is evaluated, and finally 

the block number of the block concerned is restored.. (By the defini

tion of the program point, the block number of the smallest embracing 

block is immediately available.) 

T9 .. 1 4 defines the value of an array declaration in phase 2 to be ''tr''. 

T9 .. 15 to T9.29 define the value of an array declaration in phase 4: 

a. B:, T9 .. 19 and T9.20., an integer bound pair list is defined as a bound 

:Pair list which contains only integers. 

if the array declaration contains a bound pair list which 

is not an integer bound pair list, the expressions in the bound pair 
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list are evaluated, again after first activating the block number 

of the smallest embracing block, and later on reactivating the 

block number of the current block (T9.16 to T9.18, T9.21). 

c. The treatment of a non own array declaration is completed by T9.22, 

T9.24 and T9.25. Eventually, a truth is added to V, containing the 

identifier concerned, its type, the indication ''array'', and the 

evaluated bound pair list. 

d. The value of an own array declaration is given by T9.23 to T9.26. 

Essentially, the same scheme is used as with own simple variables. 

Only one extra difficulty arises: According to 8, 5.2.5, when a 

subscripted variable is evaluated, which corresponds to an own array 

and which has obtained a value in a forrner activation of the block con

cerned, it is necessary to check whether the subscripts are within the 

most recently calculated subscript bounds. This is accomplished by 

the condition in the second metaexpression of the right part of 

T9.26: Only if the subscripts are within the most recently calculated 

subscrapt bounds (i.e. if the value of 
tf <sub exp list> within bounds 

of <int bplistl>" (defined in T9.27 to T9.29) is tr) is the value of 

the subscripted variable '' <idl > <bcsl > <sub exp 1 istl > '' equal to the 

value of the same variable in the previous activation, viz. 

rt <idl ><bcs2 > <sub 
ff 

exp 11s tl > .. 

e. The meaning of T9.27 to T9.29 is obvious. 

6 .17. The value (?f ~ sub~cr~pted v~riable. (TlO .1 to Tl_O. 9) 

T10.1 to Tl0.4 define the value of a subscript expression list. If a 

subscripted variable, say''<idl> sub exp listl> '',is evaluated, Tl0.5 

results in the evaluation of 11 <sub exp listl> '' and the extension of 

'' <id1 > '' with the current block number. TlO .. 9 will be applicable to the 

result, if no assignment has been made to the subscripted variable in 

the block in which it has been declared, whence its value is undefined. 

Tl0.8 gives the replacement of the for1nal array identifier ''<idl><bcsl.>'' 

by the actual array identifier '' <id2><bcs2>''. . '' '' Note again that <bcs2> 

is the block number of the block in which the procedure statement occurs. 

Tl0.7 causes the search in an embracing block. 

Tl.0.6 is applicable if none of the aforementioned cases occurs. 
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6.18. Switch declara~ions , (Tl_~ .1 to Tll .13) 
b I 

Tll.l to Tll.8 need no further explanation. 

Tll.9 to Tll.13 define the value of a switch declaration in phase 4. We 

t h ff t f th s truths by an example: Evaluation of demonstra et e e ec o e e 

'' . ·t h S ·- L SWl. C ..... · , if i > 0 then P else Q, M <p> 4 
ff 

in a block with block number ''<bcsl><dbcsl>''leads to addition to V of: 

switch S <bcsl><dbcsl> co 

s <bcsl> ~ L co 

s <bcs2> (2 if • 

!9. l > 0 then p else Q co 

s <bcs2> .!9. M 3 

'' . '' d Rea.ark: '' <Ui>'' in Tll .12 and Tll .13 stands for unsigned integer , an 

is defined in T22 .59. The definition of addition is also given later• 

6 .. 19. i,Label declarations'' (T12.l to T12.4) 

T12.1 and Tl2.2 have the usual meaning. 

By means of Tl2.3 and Tl2.4, the evaluation of ''<labell><pl> 3'' results 

'' 1 fl h t in the addition to V of a truth which contains <label > , t e curren 

blo,ck number and for counter (see section 6 .23), and the program point 

corresponding to the statement which is labelled ,, '' by <la bell> • 

6 .. 20. Procedure declarations {Tl3.1 to T13.31) 

T13.1 to Tl3.11 define the syntax of a procedure declaration. 

n3.12 and T13.13 define the value of a procedure declaration in phase 1. 

If the procedure identifier has not been declared before in the same 

block, a truth is added to V containing the identifier, an indication 

that it is a procedure identifier, possibly of some type, the current 

block ntimber, and possibly a fo1·111al parameter part. The addition of the 

formal pa,rameter part is used later to check in phase 2 whether the 

ntunber of actual parameters in a procedure statement is equal to the 

nu,J1ber of fox·••~l parameters in the correspdnding declaration. 

T13.14 to T13.19 define the value of a procedure declaration in phase 2. 

We explain only T13.16, the others being similar. Let 
ti 

.e~oc,e,_d~~f: <idl> (<id listl>); <value partl><spec partl><stl><P1> 

be the declaration concerned. 
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a. An extra '
1

begin
11 

is evaluated (to ensure the right scope for the 

formal parameters). 

b ,, f - tt tt • or•nal <id listl>, <pl> K is evaluated. <pl> 

formal parameter which was already mentioned in 

K'' is the extra 

6.4. The effect of 

evaluating a list of fonnal parameters is the addition to V of these 

parameters, supplied with the current block number and the indication 
tf ~ '' forr11al (T13.18, T13.19). This info1,nation is used later on in phase 

2, in the check whether the procedure body contains only declared 

identifiers. 

c. ''begi~ i~teger .'!~mm~; <stl>; oto <pl> K end in <decl block>1
' 

is evaluated. This means that the prescan mechanism is activated 

(T5 .. 14) for the procedure body. Note that ''<stl>'' is embedded in an 

auxiliary block (by means of the declaration ''int~ger ~u~m~'') and that 

an extra goto statement is inserted, leading to the extra fox·111al 

parameter t' 'f <pl> K • 

d. The first program point of the procedure body is stored by applying 

T13.20 {cf. TS.12). 

'' '' '' f' • e. The end, corresponding to the begin in a, 1s evaluated. 

Remark: From Tl3.15 and T13.17 it follows that no extra for111al parameter 

is inserted for type procedures. 

Tl3.21 to T13.31 define the value of a procedure declaration in phase 4. 

By applying Tl3.21, the procedure .declaration 1s first extended with the 

first program point of its body. This first program point is available 

as a result of one of T13.14 to T13.17, and T13.20. 

Next the extra formal parameter is added in case of a non type procedure 

(T13.22, T13.23). In the left parts of T13.22 and T13.23, 
,, ff • 

<pl> 1s the 

h d d 1 t . and '' <p2 > '' program point corresponding tote proce ure ec ara ion, 

the first program point of its body. Once the addition of the extra formal 

parameter is made, ''<pl>'' is no longer necessary and is therefore omitted. 

This omission is also done in case of type procedures by T13.24. 

T13.25 to T13.28 define some auxiliary metavariables. After application 

of T13.22 to T13.24 two possibilities arise: 

a. The procedure declaration has no value part. Then by Tl3.29, the 
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relevant information is added to V. Note that the speci.fication part 

is ignored. 

b. The procedure declaration does have a value part. Then by T13.30 and 

T13 .31, the entries in the for1nal parameter list which occur in the 

value part are supplied with a special indication, viz. the corre

sponding specifier. If this process is completed for all value para

meters, T13.29 will be applicable. 

6.21. Assignmep.t statements (T14.1 to T14.44) 
1 ,. ' 

T14.1 to Tl4.16 give the syntax of assignment statements and of declared 

assignment statements. 

Tl4.17 defines the value of an assignment statement in phase 2. 

Tl4.18 links the assignment statement with its successor. 

T14.19 to T14.44 define the value of an assignment statement in phase 4. 

The ultimate result of the application of these truths to an assignment 

statement is the addition to V of: the variable concerned, followed by 

the block number of the block in which it has been declared, followed 
It Tf 

by is, followed by the expression on the right hand side of the 

assignment statement (cf. Tl4.41 to T14.44). 

Complications in the detailed definition of the evaluation of an assign

ment statement are caused by: 

a,. Multiple assignment statements. The requirement that the expression 

on the right hand side is evaluated only once does not allow the first 

solution which comes to mind, i.e., the rewriting of the multiple 
assi o--nment st t t f ''si·mple'' t t t c."'""""' · a emen as a sequence o assignment s a emen s • 

• 

b. The desire to supply the variables of the left part list with the 

block number of the block in which they are declared (and not of the 

block in which the assignment statement occurs). 

c. Clash of names, especially in the case of assignment to a fox~1al 

parameter which has a subscripted variable as its corresponding actual 
parameter. 

d. Assignment to the procedure identifier in the declaration of a type 

procedure. 
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e. The requirement that subscripted variables in a left part list have 

subscripts within the corresponding array bounds. 

The first two p1'oblems are solved essentially by means of the introduc-

tion of the auxiliary metavariables ' 1 <ext left part> ff and ft 
<ext left 

part 1 . t ft 
1s >, and the usual search in embracing blocks. Here a scheme is 

used which first establishes the identity of the variables in the left 

part list, and then evaluates the expression on the right hand side, 

after which the rewriting of the assignment statement as a sequence of 

''simple'' assignment statements becomes possible. Then T14.41 to Tl4.44 

become applicable. 

- Clash of names is treated by Tl4.32 and T14.33. The structure of T14.32 

is similar to that of TS.3. 

Assignment to a procedure identifier is defined in T14.34. It will be 

explained later when we treat type procedures. 

The check whether the subscripts of a subscripted variable are within 

the corresponding subscript bounds is perforrned by evaluating the first 

simple name of the right part of T14.40. The value of this simple name 

was defined in T9.27 to T9.29. If it has the value ''tr'', it will be 

added to V, again without any influence on the evaluation of the remain-

der of the program. However, if its value 

added to V with the usual result (6.7). 

6.22. Goto statements (T15.1 to T15.19) 

• 11 '' ti ft 1s not tr, then w will be 

T15.l defines the value of a goto statement in phase 2 and Tl5.2 to TlS.19 

define its value in phase 4. 

The requirement that a goto statement, leading to an undefined switch 

designator, be equivalent to the dummy statement has complicated the 

definition of the goto statement, among other things because it is 

necessary to keep available the program point corresponding to the goto 
• 

statement concerned, and the block number of the block in which this state

ment occurs. 

By T15.2, the current block number is added to the goto statement. 

By T15.3, parentheses around designational expressions are deleted. 
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, 

Tl5.4 to T15.6 treat conditional designational expressions. If the 
f 1 f' boolean expression of the if clause is not one of the symbols true 

or ''false'', then this boolean expression is evaluated by Tl5.4, after 

which T15.5 or Tl5.6 may apply (cf. also 4.2.3.1). 

After application of Tl5.3 to T15.6, the designational expression is 

either a label or a switch designator. 

T15.7 to T15.12 treat the first case. 

,, 1 By T15. 7, the current for counter is found and added to goto <label > 

<pl ><bnl >''. The definition of the for counter, as given in the section 

on for statements, is essentially similar to that of the block number: 

Possible for counters are: '' ¢x'', '' ¢X¢X¢¢x'', '' ¢X¢¢X<1>X<P<P ct,x'', etc. Again, 

'' '' '' '' ' b t the X 's count the depth of nested for statements, the ¢ s e ween 

a certain ''x'' and the immediately preceding ''x'' count the number of 

parallel for statements on the depth of this ''x''. The for counter is 

used to avoid jumps into a for statement from outside (see below). 

By Tl5.8, tl1e current block number is added to ''goto <1abel1><:fgsl> 

<pl><bnl>''. Note that, although at the moment of application o:f Tl5.2, 
f I ,, 1 

<bnl > was the current block number, this is now no longer necessari y 

the case, since the block number may have changed as the result of the 

treatment of switches (see explanation of TlS.17 below). 

Tl5.10 defines the usual transition to a search in the embracing block, 

and Tl5.9 applies if the outermost block is reached. 

Tl5.11 treats the case of a formal label: this label • is replaced by 

the corresponding actual designational expression. First, however, the 

block number in which the procedure statement containing the fo1·1nal label 

occurs, is activated, in order to avoid clash of names. It is not necessary 

to reactivate the current block number, since this will be activated 

eventually by T15.12. 

If ''<labell>'t occurs in the block with block number ''<bcsl><dbcsl>'', then 

Tl5.12 will be applicable to ''goto <labell><bcsl><fgsl><fgs><p><bn>''. 

The following remarks may explain T15.12: 

a .. As a result of application of Tl2.3 and Tl2.4, a truth will have been 

left in V which is enveloped by the condition of Tl5 .12. 
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b. 
11

<bcsl><dbcsl>'' is the block number of the block in which 11 <labell>'' 
11 ff 

was declared. It is activated by the evaluation of the first simple 

name of the right part of Tl5.12. 

c. ''T <pl>'f is the program point, corresponding to the statement which 
• 
l.S labelled 1 f 'I 

by <la bell> • Evaluation of this program point in the 

right part of TlS.12 leads to the continuation of the evaluation of 

the program by evaluating this statement. 
tt l ,, . d. <fgs > 1s the for counter, current at the f' . f' moment of declaration 

ti Tl of <labell>. It is activated by the evaluation of the second simple 

name of the right part of Tl5.12. If, at the moment ft that goto 
' 

<label1> 
tt <bcsl><fgsl><fgs><p><bn> is evaluated, the for counter does not have 

'' ft the form <fgsl><fgs>, then Tl5.12 will not be applicable: From the 

definition of the for counter it follows that jumps into a for state

ment from outside are prevented (in the sense that then only T0.1 

will be applicable). 

e. The program point corresponding to the goto statement concerned and 

the block number of the block in which this statement occurs (the 

last two metavariables in the left part of Tl5.12) have no function 

in T15.12. 

Tl5.13 to TlS.19 define the value of a goto statement in the case that 

the designational expression is a switch designator. 

By T15.13, the switch identifier is extended with the current block 

number and the subscript of the switch designator is evaluated. 

Tl5.14 to T15.16 have the usual function. 

If T15.17 is applicable then first the block number of the block in which 

the switch concerned is declared is added to V. Again, this is done to 

avoid clash of names ( 387, 5.3.5). The second simple name of the right 
-' 

part of Tl5.17 is evaluated by application of T15.18 or TlS.19. 

T15.19 will be applicable if the value of the subscript in the switch 

designator is equal to the ordinal ntJmber of one of the items in the 

corresponding switch list. Then, as a result of the treatment of switch 

declarations, a truth will have been added to V which is enveloped by 

the condition of T15.19, and the evaluation of the original goto state

ment will be replaced by the evaluation of the goto statement leading to 
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the corresponding designational expression in the switch list. 

If, on the other hand, Tl5.19 is not applicable, then by Tl5.18 the 

evaluation of the goto statement concerned will simply be replaced by 

the evaluation of t' '' T <Pl> Ci.' i.e., of its successor. Note that first 

the block number of the block in which this goto statement occurs is 

reactivated; this block number was added to the goto statement by TlS.2. 

Thus, a goto statement, leading to an undefined switch designator, is 

equivalent to the dummy statement (apart from side effects in the evalu

ation of the subscript; cf. also 6.1). 

• 
' 

6.23. For statements (T16.1 to T16.32) 

T16.1 to T16.7 define the syntax of a for statement. 

T16.8 and T16.9 give the definition of the for counter. As will be seen 

from T16.13, an auxiliary te1·1r1inal symbol 11 forbegin'' is evaluated in 
0 

p.hase 3 of the evaluation of a for statement. The value of this symbol 

is defined in T16.10, T16.ll and T16.12. These truths are analogous to 

T6.1, T6.3 and T6.4, respectively. Together with the truths defining 

the value of '' forenct'' (given later) 1 they perform the updating of the 

for counter. 

The prescan rules for the for statement are given in the rest of section 

16. The main reason for their complex structure is the fact that it is 

not correct to rewrite a for statement, containing a for list with more 

than one element, as a sequence of for statements, each containing just 

one element of this for list (thus, the proposed semantics of the for 

statement in contains an error). This was pointed out to us by 

B.J. Mailloux and is demonstrated by the following example: 
ft 

for 1 := 1, 2 do begin own integer j; if i = 1 then j := O; j := j + 1 end 

is not equivalent with: 
1f 

i 1 for ·- do begin own integer • if • 1 then • O· ·- J ; l ·- • - J J ·- • 1 end; - J + ·- , ·-
for i ·- 2 do begi,D: own integer • if • 1 then • O· 1 

!1 ·- J ; l ·- • ·- • end. - J J J + - ·- ·-, 

The essential feature in the prescan rules for the for statement is the 

introduction of a '' • tt dynamic label , called '' special ff label <pl> • Here we 
tt d fl . 

mean by · ynamic that this special label is associated successively with 

different labels in the program (also especially introduced for this 

11 
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purpose). It i.s then possible, after completion of an evaluation of the 

statement after the for clause, to resume the evaluation of the for 

statement with the next assignment to the controlled variable, by means 

of a jump backwards to this dynamic label. 

A precise description now follows: 

First we consider Tl6.13. Its right part consists of two simple names. 

The structure of its first simple name is similar to that used in the 

prescan rules of sections 4 and 5 of the metaprogram. Apparently, its 

only use is the evaluation of ''forbegin'' in phase 3. In the second 

simple name we observe: 

a .. The introduction of the extra labels ''<pl> ii 1'' and ''<pl> µ 2'' .. 

ft '' '' '' The label <pl>µ 1 labels the statement <stl> that occurs after 

the for clause. In the remainder of this section, we shall call 

'' tl '' th '' 1 d '' <s > e control e statement. • 

The label ''<pl> µ 2'' labels the construction ''forend ( <int varl >) '' .. 

This construction will be used later at the end of the evaluation of 

the for statement .. Note that ''forend ( <int var1 >) '' has syntactically 

the fo1·1n of a procedure 

identifier (T23.198). 

• '' ft statement, since forend is an auxiliary 

b. The introduction of the extra goto statement ''goto ~Ef!~ial label <pl>''. 

Again, this is a '' syntactically correct goto statement, since SP!~i~l 
tt 

label <pl> is an auxiliary label by T23.205. 

f bo 1 ft ,, <pl > c. From a and bit follows that the sequence o sym s a er 

is indeed a blockend. This fact is used later, in the left parts of 

T16.14 to T16.20. 

After application of T16.13, one of T16.14 to Tl6.19 will be applicable 

to the second simple name of the right part of Tl6.13. Tl6.14 to Tl6.16 

treat the case in which the for list contains more than one element, and 

Tl6.l7 to T16.19 the other case. Suppose T16.14 is applicable. The first 

simple name of its right part has the usual structure. We see that, in 

phase 4 3 a correspondence is set up between the special label and the 

auxiliary label 
tt ,, 

<Pl> lJ 3 • 
• 

From the second simple name it follows that: 



194 

f ft • t a. After execution o <in varl> := 
It 

<aexpl> , a jump is performed to 

( '
1 2 1'1 labels th1.· s controlled state-the controlled statement <p > µ 

ment as a result of Tl6 .13; note that '' <p2> '' is fixed for the whole 

for statement). 

b. After execution of the 
If 1 f1 

controlled statement, goto special label <p > 

will b,e executed. As a result of the association of the special label 

and ''<Pl> µ 3'', this jump will cause the next assignment to the con

trolled variable to be executed. 

In Tl6.15 the same principle is used. The jump to the controlled state

ment is executed only if the boolean expression after ''while'' has the 

value ''true''; otherwise, the next element of the for list is considered. 

T16.16 defines the step-until element. The second simple name of its 

right part is similar to 38 , 4 • 6 • 4 • 2 • E • g .. , It 1 7 ft <p > µ corresponds to 

'' '' '' '' ''Ll 11 
• For the the label Element exhausted , and <pl> µ 6 to the label 

definition of the integer procedure ''sign•• , see T2 .1. 

T16.17 to T16.19 treat for list elements, in the case that these elements 

are the last ones of the for list. 

'' '' T16 13 In Tl6 .17, the sp,ecial label is now associated with <p2 > µ 2 ; by • , 

this label labels the construction which ends the for statement. Hence, 
,, t · 1 ~"" o specia_ label <p2 >'' will here cause the evaluation of ''forend ( <int 

varl >) ''. 

T16.18 and T16 .. 19 are similar to Tl6.16 and Tl6 .17, but now ''<p2> µ 2'' 

corresponds to the label 
,, ,, 

Element exhausted . 

n6 .20 gives the prescan rule for the auxi 1iary statement '' goto special 

'' lab•l <Pl> • From its structure, it follows that only phase 4, in which 

T16 .21 will be applicable, is of importance. We see that the jump to the 

•~ial label is replaced by a jump to the auxiliary label most recently 

associated with it: as a result of one of T16.14 to Tl6.19, a truth will 

have been left in V which is enveloped by the condition of Tl6 .21. 

Tl6 .. 22 is the prescan rule for the end of the for statement. The 

•ent that the value of the controlled variable be undefined upon 

• require-

exit from 

the for statement makes the remaining truths of this section necessary. 

First, by evaluating the first simple name of the right part of T16 .23, 
s 
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the for counter is updated .. Next, the value of the cont1"'olled variable 

'' '' is set to w .. The usual technique for the search in embracing blocks 

and the treatment of fo1·1nal parameters is applie.d (cf T16 27 .. e .. g. .. with 
T14.32). Ultimately, either Tl6.28 or Tl6.32 will apply,resulting • 1n 
the addition to V of a truth which defines the value of the controlled 

variable to be f' , ' w . 

T17.1 to T17.61 define: 

ti '' <proc id> and 

'' . ft <int proc id> 

''<decl proc id> 11
, 

ft 
and <decl int proc 

11 b 1 id '' d '' d l bo 1 · d '' < oo ean proc > an < ec o ean proc 1 >, 

ti '' <proc st> '' '' and <decl proc st> , 

''<int func t t 1 ff 

des> and <decl int funct '' des>, 

(Tl 7 .. 1 
1 I I I 

'' <boolean funct des>'' and '' <decl boolean funct '' des> , 
tf ft fl tt 

<act par> and <decl act par> , and 
,, '' '' ,, <act par list> and <decl act par list> . 

to Tl 7 .104) 
11117 171 11111 

The mechanism explained in 6 .5 is used extensively. In the cases of 

tt '' ,, '' '' ,. <decl proc st> , <decl int funct des> , and <decl boolean funct des>, 

it is checked whether the number of actual parameters is equal to the 

number of fo1·1nal parameters in the corresponding declaration (Tl 7 .. 57 to 

T17.59 and T17.60, T17.61). 

Tl 7. 62 gives the value of a procedure statement in phase 2. The remaining 

truths of this section treat procedure statements and function designators 

in phase 4 .. 

After application of T17.63, Tl7.64,(T17.66), T17.68 and Tl7.70, which 

have the usual meaning, to a procedure statement (supposing that the 

procedure concerned is not a function designator), either Tl7.72 or 

Tl7.73 will prove to be applicable. 

A similar scheme is used for function designators in Tl7.65, T17.67, 

T17.69 and T17.71, after which T17.74 will be applicable. Note, however, 

the differences between the two cases: A procedure statement is always 

accompanied by its corresponding program point (e .. g. '' <pl >'
1 in Tl 7 .63), 
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which clearly does not exist for function designators. Also, an empty 

actual parameter part does not occur here with function designators, 

since this case will be taken care of by T8.1 to T8.3. 

T17.72 treats procedure statements without parameters. Evaluation of 

its right part has the following effect: 

a. The block number of the block in which the corresponding declaration 

occurs is activated by evaluating ••enter procedure <idl><bcsl>'' 

(cf. Tl7.77 and section 6.3). 

b. The extra f or1r1al parameter 

the extra actual parameter 

K'' is associated (see below) with 

'' <p2> ' ' K. Cf. also TS.7. 

c. The first program point of the procedure is evaluated. 

One might expect the evaluation of ''exit procedure'' as the fourth simple 
• T t ff name, corresponding to the enter proce~ure of a. However, this is not 

necessary, since the correct block number is activated after the comple

tion of the evaluation of the procedure statement as a result of the 

evaluation of the inserted auxiliary goto statement (this fact was 

ignored in the second example of section 6.3 on block numbers). 

A procedure statement with parameters is evaluated by means of Tl7.73. 

Again, the procedure entrance is performed, and the fo1·1nal parameters 

(which include the extra fo1·111al label) are associated with the actual 

parameters, after which the first program point of the procedure body 

is evaluated. 

Tl7.74 treats function designators. The following simple ~ames are evalu

ated: 

a. ••enter procedure <idl ><bcsl >''. The procedure entrance is perfonned. 

'' . '' b. An extra begin, in view of: 

c. ''<typel><idl> n''. This is a type declaration; hence, T7 .11 will be 

applicable (cf. also T23.199). Jt is introduced to make assignment 

to the procedure identifier possible (T14.34). The 
1 I 9f 

extra symbol 1T 

is necessary in recursive situations. Without this indication, an 
. 

occurrence of the procedure identifier other than as a left part, 

would not cause recursive activation of the procedure, but would 

simply deliver the value that was last assigned to it. 
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't r, 
d. <ext formal par partl > substitute <act par partl > • The forinal para-

meters are associated with the actual parameters. Cf. also T17.104. 

e. 't 't . 
<pl> . The first program point of the procedure body is evaluated. 

f ''f t. • unc ion value : va <idl> rr}'' .. The value assigned to the procedure 

identifier is stored. Cf. T17.79. 

'' . '' g. exit procedure • The block number of the block in which the function 
I I I ii S 

designator occurs is restored (Tl 7. 78). By the definition of ''exit 

procedu~e", it is not necessary to include the evaluation of 

corresponding to the ''.~eSiin'' of b. 

ff ft an end , 

h. '' '' function value. Thus, finally, the value of the function designator 
• f I t t 
1s the value of function value, as stored by T17.79. 

T17.75 and T17.76 treat function designators, occurring as statements. 

These cannot be treated '' .......... '' . as normal procedures, since no extra goto state-

ment was included at the moment of their declaration. The solution to this 

difficulty is provided by including such a function designator in an 

auxiliary assig1·1ment statement. Note that the left parts of these assign

ment statements have been declared in T2.1. The correct sequencing is 
• 

ensured here by 
,, 

evaluating T <pl> 
,, 

a, which corresponds to the successor 

of the procedure statement. 

Tl 7 .SO to Tl 7 .104 define the for1nal-actual substitution. 

Tl 7. 81 defines the call by value of a for111al parameter, specified 

or ''boolean '1 
: 

.,, '9 
a. An extra ~egi~ is evaluated. 

b. The formKl parameter is declared to be of the specified type. 

c. The assignment to the fo1·mal parameter is perfo1n1ed (Tl 7. 82), with 

some precautions because of the possibility of clash of names: Before 

the evaluation of the assignment statement, the block number of the 

block in which the procedure statement or function designator occurs is 

activated. 

d. The fo1·1oa 1-actual subs ti tut ion of the remaining parameters is performed, 

if necessary. Cf. also T17.103. 

• ,, ff tt ft f Again, no end corresponding to the pegin o a is evaluated. The correct 

block n11mber will be activated upon exit from the procedure either by the 
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extra goto statement in case of procedure statements., or by the evalua-

t · f '• it d '' . f 10n o ex proce ur~ in case o function designators. 

By Tl 7 .83, a fonnal parameter which was called by value and specified 

t
1 integei: procedure'' or ''boolean procedure'', is treated as a fo1111al para-

meter J called by value and specified t' . 't integer 
ff fT 

or boolean. 

Tl7,.84 to T17.97 treat value arrays. 

By T17 84 fi t t ''b · '' · 1 t d then follows the evalua-. ·.· · •.. · , rs an ex ra · ~~~ n 1 s eva ua e , 

tion of '' <typel > a~.ray <idl > actual <id2>'' (see below), after which the 

remaining substitutions are perfo.1111ed, if necessary. 

By Tl 7 .85 to Tl 7 .89, the declaration of the actual array identifier is 

looked up, after which the for111al identifier is declared to be an array 

with the same bounds as the actual (first simple name of the right part 

of Tl7.89). The evaluation of the second simple name of the right part of 

Tl7.89 will result in the assignment of the value of the actual array 

(i.e .. of the ordered set of values of the corresponding array of subscrip

ted variables, s], 2.8) to the newly declared array. This assignment 

is performed by application of Tl 7 .91 to Tl7 .. 95. Auxiliary truths for 

this purpose are T17.90, Tl7.96 and Tl7.97. 

Finally, we explain the treatment of fo1·111al parameters called by name. 

If there are fo1·mal parameters left in the extended fo1·rnal list which 

are called by value, they are treated first (Tl 7. 98); otherwise, Tl 7 .100 

is applicable. First an extra ''bt:gi~•• is evaluated to ensure the correct 

scope of the fo1·111al parameter. The second simple name of the right part 

of Tl 7 .100 is evaluated by application of Tl 7 .101, resulting in the 

addition to V of a truth containing the for111al parameter, the block number 

of the block which was entered in Tl7.100, the corresponding actual para

meters, and the block number of the block in which the procedure state

ment or function designator occurs. The use of such a truth was already 

demonstrated in T8.3, Tl0.8, Tl4.31, Tl4.32, etc. The section ends with 

the auxiliary truths T17.102 to T17.104. 
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6.25. Variables (T18.1 to Tl8.44) 

In this section, the definitions of variables and of declared variables 

are given. The technique described in 6.5 is used. 

6.26. s.Yl:1.~~x of arithmetic expr~ss_ions (T~9,.l to Tl9.30_) 

This section is simply a transcription of 38, 3.3.1, together with 

the definition of the 11 declaredt, counterparts of the metavariables con

cerned. 

6.27. Syntax of boolean expressions (T20.1 to T20.40) 
1-- I IS llifi; (Ji l I ihl I 

See section 6.26. 

6 .. 28 .. Syntax_ of de~ignat,i,onal, ,exeression7 (T21.l to T21.25) 
1 l 

See section 6.26. 

6. 29 •. The .Y.~lue ~~ ~ole~.~-,- ex_pres~ions and of a~~ ~~~~!c expressions 

(T22.l to T22.92) 

By T22.1 and T22.2, the value of an expression between parentheses is 

equal to the value of the same expression with the parentheses deleted. 

T22.3, T22.5 and T22.7 define the value of a conditional arithmetic 

expression. If the boolean expression of the if clause is not one of the 

b l '' t ti ., f 1 '' sym o s rue or a se, 

after which T22.5 or T22.7 

it will be evaluated by application of T22.3, 

may be applicable (cf. also 4.2.3.1). 

Similarly, the value of a conditional boolean expression is defined in 

T22.4, T22.6 and T22.8. 

T22.9 to T22.14 give the value of a simple boolean expression, which is 

neither a boolean primary different from a relation, nor is enveloped by 

one of the left parts of T22.15 to T22.41. Cf. also 4.2.3.2. 

Note that the observance of the precedence rules for the operators is 

achieved by the definition of T22.9 to T22.14. For the sake of complete

ness, we mention the relevant truths for evaluation of a boolean primary: 

a. The value of a logical value is itself (T23.22). 
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b. A boolean variable is evaluated by means of TS.1 or T10.5. 

c. The value of a relation is given by T22.9. 
TT ) 11 d. The value of (<bexp> is given by T22.2. 

e. The value of a boolean function designator is given by TS.1 or 

T17.65. 

T22 .15 to T22. 32 define the usual truth tables for the operators 
tf ti -, , fl If 

" J 
,, '' '' '' d v , -, , an 

,, -,, -- . 
T22 .33 to T22 .41 define relations involving integers; every relation is 

first reduced to the relation •• <int> < <int>'', which is in turn reduced 

th 1 f '' i o'' to· e eva uation o < nt> < , as defined in T22.39 to T22.41. 
tt ( 3) tt 

T22.42 and T22.43 are used in the evaluation of expressions as + - , 
'' ) '' '' 3 5 ,, and T22.44 to T22.46 in the evaluation of e.g. 3+(-5 and + < + 

ft ft) 
(by T22 .. 38, this leads to the evaluation of +3 - +5 • 

T22 .47 to T22 .50 define the value of a simple arithmetic expression 

involving integer variables or function designators or containing more 

than one operator. Again, the precedence 0£ the operators is observed 

in these truths. Note the deviant form of the right part o:f T22.47 

(the value of '' (-2) + 2 1
' is not equal to the value of ''-2 t 2''). 

T22.51 to T22.53 define exponentiation. Since exponentiation is not 

defined for non-positive exponents (this would lead to ''real'' n\unbers), 

the value of the expression after ''else'' in the right part of T22.52 is 
,, tt h I. 't • '' ft w; i.e., t e value of O t O 1s w. 

T22.54 and T22.55 define integer division. The left part of T22.54 might, 

for exa,a,ple, be an envelope of the result of application of T22.48 and 

T23.1 to "•3: (-5)''. 

T22 .. 5'3 to T22 .. 58 define multiplication. 

T22 .. o9 to T22.61 define the syntax of an unsigned integer, an integer 

and a sequ.ence of zeroes • 

T22 .. 62 to T22. 92 define addition and subtract ion of integers ( c£. 49 , 

p. 11, 18 and 4.2.3.3). 

and ~:u-x.iliary symbols. Comment conventions 
P I I ii I 

(T23.1 
= ' 1 • 

to T23.217) 

T2S.1 to T23 .. 15 define the syntax of ident:l.:fiers, constants (cf. T8.6, 

T14 .. 26, otc.) and digits. 
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T23.16 to T23.19 define the value of a number. 

T23.20 to T23.22 define the syntax and the value of a logical value. 

T22.23 to T23.74 list the letters. 

By T23. 75 to T23 .119, an 
1
'end comment symbol'' is any ALGOL 60 basic 

symbol except the symbols ,, '' '' a'' d ; , en an '' 1 '' e se. By T23.122 to T23.124, 
ft t' • 

a comment symbol 1s any ALGOL 60 basic symbol other than a semicolon. 

These definitions are used to define the comment conventions of 3 , 

2.3 in T23.135 to T23.137. 

By T23.134 a parameter delimiter which is not a comma is replaced by a 

comma. 

T23.138 to T23.141 are introduced because of 38, 3.5.5. 

T23.142 to T23.193 list the auxiliary symbols which were introduced in 

the preceding sections. 

T23.194 to T23.200 list the auxiliary identifiers; the auxiliary labels 

are given by T23.202 to T23.205. 

T23.207 to T23.209 define a sequence of basic and auxiliary tenninal 

symbols, used in T0.1, T6.5 and T23.210. 

The remaining truths were explained in 6.7. 
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