

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11th February 1946, is a non-profit institution for the
promotion of pure and applied mathematics and computer science. It is sponsored by the
Netherlands Government through the Netherlands Organization for the Advancement of
Pure Research (Z. W.0.).

MATHEMATICAL CENTRE TRACTS 158

FOUNDATIONS OF
COMPUTER SCIENCE IV
DISTRIBUTED SYSTEMS:

PART 1, ALGOR rrHMS AND COMPLEXITY

J.W. DE BAKKER (ed.)

J. VAN LEEUWEN (ed.)

MATHEMATISCH CENTRUM AMSTERDAM 1983

1980 Mathematics subject classification: 68C05, 68C25

1982 CR. Categories: B.7.1, B.7.2, D.1.3, D.3.3
ISBN 90 6196 254 4

, ,,
Copyright© 1983, Mathematisch Centrum, Amsterdam

CONTENTS

Contents

Preface

Authors' current addresses

J. VAN LEEUWEN: Distributed aomputing

L.G. VALIANT: Parallel aomputation

G.M. BAUDET: Design and aomplexity of VLSI algorithms

M.R. KRAMER & J. VAN LEEUWEN: Systolia aomputation and VLSI

D.P. DOBKIN: VLSI, algorithms and graphias

i

i

ii

iii

35

49

75

105

ii

PREFACE

The 4th Advanced Course on the Foundations of Computer Science was

held June 14-25, I 982, in Amsterdam as part of an international pro

gram of Advanced Courses sponsored by the CPYST Subcommittee on Training

in Data Processing of the Commission of the European Communities,

The Advanced Courses on the Foundations of Computer Science are orga

nized to provide an opportunity for computer science graduates and profes

sionals to learn about the modern developments in theoretical computer

science at a high level. The 4th Advar..ced Course was devoted in particular

to Distributed Systems and Computation, Six distinguished lecturers were

invited to present a series of six lectures on leading issues and new

results in their current field of specialty. Furthermore, a number of

lectures by the directors were included in the program of the course.

These volumes contain the (edited) text of the l2ctures given on the

occasion of the 4th Advanced Course. The material, mostly written especially

for the Course, usually presents an original view of an entire research

area which is not available in this form yet from textbooks for classroom

use. We believe that'the chapters will serve as a valuable source of material

for high-level seminars in theoretical computer science.

We thank the lecturers for their excellent contributions an·d the

participants for being a most receptive audience. We are very grateful to

the Dutch Ministry of Education and the Commission of the European

Communities, which together provided the necessary funds for organizing

the Course. Finally, we thank Mrs. S,J. Kuipers-Hoekstra for her invaluable

assistance throughout the organization of the Course and the Publication

Service of the Mathematical Centre for the technical realization of these

volumes,

J.W. de Bakker - J. van Leeuwen

Directors of the Course

iii

AUTHORS' CURRENT ADDRESSES

G.M. Baudet

D.P. Dobkin

M.R. Kramer

J. van Leeuwen

L.G. Valiant

Department of Computer Science, Brown University, Providence,

RI 02912, USA

Electrical Engineering and Computer Science Department,

Princeton University, Princeton, NJ 08544, USA

Philips Research Laboratories, P.O. Box 80.000,

5600 JA Eindhoven, the Netherland

Vakgroep Informatica, Rijksuniversiteit Utrecht, Princeton

plein 5, Postbus 80.002, 3508 TA Utrecht, the Netherlands

Aiken Computation Laboratory, Harvard University,

Cambridge,MA 02138, USA

DISTRIBUTED COMPUTING

J. van Leeuwen
University of Utrecht, Utrecht, the Nether/ands

1. Introduction. Distributed architectures are steadily advancing and will

eventually replace conventional computer designs built around a single central

processor. In these notes I shall attempt to describe the trends in the theo

retical investigation of the problems that arise in distributed information

processing. The subject is by no means new. Most computer systems today can

be regarded as distributed systems in certain respects. Only in recent years

the impetus from VLSI-technology (in the small) and local and wide area net

works (in the large) has added further to the significance of distributed

processing, as a viable alternative to the physical limitations of even the

largest single processor systems and the inordinate investments that they

require. With hardware costs declining and commercially supported intercon

nection technologies now available it might be more economical indeed to

achieve high performance by utilizing dedicated computing units working in

dependently in parallel, rather than through the use of extremely complex

high speed single components. In many ways though, distribution seems to

create more problems than it solves. As we go along I shall try to point

out some of the insights in distributed computing that have emerged in the

past decade or so, in a brief but comprehensive survey of the area. For ref

erences see also [1].

2

2. Early developments in hardware. The earliest computers consisted of a

central memory and a single CPU to execute a stored program of instructions

from a limited repertoire. No concurrency of operation was provided for be

tween computations by the CPU and I/0, resulting in an unnecessary idling

of the CPU while a data transfer was taking place on much slower hardware.

Subsequent introduction of separate I/0 processors (channels, peripheral

processing units) into all architectures enabled the CPU to delegate I/0

commands and switch to another computation in the meantime. I/0 processors

memory IO
processor

f
device

processor

i
device

would report by sending an interrupt. The separation of computation and I/0

processing made it possible to load and execute a number of jobs simultane

ously with obvious advantages of mixing compute-bound and I/0-bounds jobs

in a suitable manner. The need to schedule and service interrupts for optimal

performance is one of the earliest problems in distributed computing. Buffer

ing (and the ultimate form of it, virtual devices) led to typical producer

consumer problems.

Likewise, early computers exhibited no concurrency of operation between

computations by the CPU (i.e., instruction execution) and instruction fetching.

Later CPUs were pipelined, which allowed for the initiation of a next instruc

tion while others were still progressing through the circuitry. To facilitate

a rapid transfer of information to and from the CPU, memory got decomposed

into fast parts (small and expensive) and slower parts (larger and cheaper).

A typical memory hierarchy consists of the following parts:

cache memory

main memory

extended store

secondary store

~--------~

~it

unit

- - - - .- - - - -- - - - _.

device

IO
processor

1
device

3

Program code was split and distributed over the hierarchy (blocks, segments,

pages, caches) with the most immediately needed instructions highest in the

"pyramid". Assumptions of locality led to a great variety of fetch/replacement

strategies for units in the hierarchy, all aimed at minimizing the chance

of unit faults throughout the hierarchy. Manual and automatic techniques for

program restructuring (to improve locality) were proposed to allow for smooth

transmissions up and down the hierarchy.

3. Multiprogramming. The variety of programs processed by a general purpose

computer system is such that (with a suitable admission policy or job sched

uling) every job requires only a small portion of the available resources

and different jobs can do with different portions. A system configured to

meet or exceed the joint resource demands of many jobs simultaneously is

likely to yield a greater throughput (and thus, a greater cost-effectiveness)

as long as the overhead in managing the resources by the operating system

does not annihilate the expected gain. Multiprogramming is a technique (or

rather, a set of techniques) to execute a number of programs "simultaneously"

4

provided their total resource requirements at any time are not greater than

the total available on the system. Multiprogramming in particular allows

for the interleaved or concurrent execution of a set of (usually independent)

user programs and (highly dependent) standard routines for system management

on a single CPU.

Multiprogramming implies the need to share resources (CPU, memory, devices)

and thus to distribute their availability to programs over time. To coordinate

the sharing, mechanisms are required by which the programs can communicate

their needs. The system may have to communicate back to the programs, as in

present day interactive and real-time applications.

4. Concurrency. User jobs and system routines generally are independent units

(tasks) that could proceed in parallel if sufficiently many processors were

available. In industrial applications, in fact, several jobs may have to

be performed at the same time, with critical developments in one job perhaps

affecting (interrupting} the work in others. Any implementation of concurrency

requires mechanisms that permit the sharing of common resources and mechanisms

that enable concurrently executing units to exchange information (communication,

cooperation) or to coordinate their action (synchronization). No implementation

can be proved sound unless there is an adequate underlying model of concurrent

processing.

5. Processes. Each independent unit of execution (task) in a system may be

called a process. In the sixties E.W. Dijkstra and others promoted the view

that concurrent activity can best be modelled by a set of cooperating proces

ses which alternate between independent activity and periods of communication.

The process thus became the "unit" of concurrency. Much research has focused

on the issues of interprocess communication and synchronization.

Processes may be activated by (i) calling a static copy, (ii) resuming

it (as a coroutine), (iii) "forking" in a sequential program, or (iv) dynamic

creation, with an implicit hierarchical (parent-child) ordering. Processes

may be de-activated by (i) termination, (ii) blocking or voluntary transfer

of control, (iii) "joining", or (iv) destruction and transfer of control.

5

Processes communicate by signals (wait/post, lock/unlock), shared variables

(e.g. semaphores) or messages (mailboxes, interprocess queues). To obtain

exclusive access to shared resources more transparent and structured primitives

have been provided (critical regions, monitors).

Processes requiring exclusive access to a shared variable or resource

must compete for it. Any mechanisms used for it must guarantee mutual exclusion

and (normally) bounded waiting. In addition resources should be given out

wisely to prevent deadlock. Instead of competing among each other, processes

could simply submit their requests to a manager or monitor that is put in

charge of (i.e., encapsulates) the shared resource.

The process notion has had a tremendous impact on system structuring.

Given an implementation of suitable primitives for process creation/destruc

tion and interprocess communication (in a nucleus or kernel of the system)

higher level processes can be conceived that use (share!) the facilities

provided by lower level processes and managers, which eventually lead to

executable code on the available hardware processor. Every level thus provides

a virtual multiprocessor for 'the processes at the next level. The approach

has become dogmatic for all modular system design.

6. Semantics of processes. Any system of concurrently computing units is

obtained by connecting processes (explicitly of implicitly), and insisting

on a protocol for interprocess communication. Petri nets (see e.g. [2]) are

among the earliest frameworks that were introduced to model the distributed

flow of control among multiple processes occurring concurrently. A Petri net

consists of places (which can hold tokens) and transitions (requiring tokens

for control transfers), connected by arcs. A transition "fires" by taking one

token from every place at the origin of its incoming arcs (provided every

one holds at least one token) and sending one token to every place at the end

of its outgoing arcs. Petri nets feature many properties of concurrent compu

tation including (i) nondeterminism (if at any time more than one transition

is enabled, then any choice of them may fire), (ii) conflict (transitions

may connect to common places and firing some may disable others) and (iii)

asynchronism (there is no notion of time and thus no unique ordering of events).

Deadlock-freeness (also called liveness) can be formulated as the requirement

that in all reachable markings every transition is potentially firable. Hack

6

[3] proved that the liveness problem is recursively equivalent to the reach

ability problem and (thus) the problem is decidable, given the recent solution

of the latter by Mayr [4] (see also Kosaraju [5]).

To adequately model the flow of data in a concurrent computation many

different frameworks have been proposed. In a model due to Kahn [6] processes

are viewed as sequential programs (procedures) with in-ports and out-ports

that communicate data over fixed lines. It is assumed that this is the only

way in which processes communicate, and that data sent always arrives in

a finite but unpredictable time. The communication lines can be thought of

as pipes or queues between processes. The possibly infinite sequence of data

items passing any observer on a given line is called the history of the line.

Kahn's theory is based on the view that processes are functions from histories

(of the input lines) to histories (of the output lines) and that the behaviour

of the net is described once all histories are known. Let sequences be defined

over a domain D and partially ordered by the prefix relation. Processes

f: Dwx ... ➔ Dwx ... must be {i) monotone (i.e., more input only leads to

additional output, or u~v => f(u)~f(v)) and (ii) continuous (no output after

an infinite amount of input is received, or f(lim ui) = lim f(ui)). Histories

can now be defined by a system of equations of the form (Y, ...) = f(X, ...)

where X, ... are the histories of f's incoming lines and Y, ... the histories

of f's outgoing lines, and f ranges over all processes in the net. Given

(monotone and) continuous f over cpo's like Dwx ... Kleene's theorem asserts

that such systems have a unique minimal solution, obtained by iterating the

f's from (A,A, ...). As a result, properties of nets that can be phrased in

terms of histories may be proved by induction over their construction.

Intuitively Kahn's model fails to capture the nondeterminism inherent

to concurrent computation, resulting e.g. when exclusive communication lines

are absent. At some abstract level one could say that processes merely "act"

(by changing state and sending messages) and that "events" take place at

their ports (receipts of messages). Messages sent (as the result of an event)

must eventually be received at their destination, i.e., turn up as some later

event. In Hewitt's actor model (see e.g. [7]) parallel computation is thus

modeled as a partial ordering of events, where events are said to be concurrent

if there is no ordering relation between them. The following "laws" are believed

essential to meaningful actor computation: (i) existence of a least element

(initial event), (ii) discreteness (the number of events between any two

events is finite) and (iii) finite immediate successors (any single event

can have only finitely many immediate successors).

7

In recent years many other attempts have been made to describe the composi

tion of processes into nets and to reason about their composite behaviour

with formalisms from logic (e.g. [8] and [9]), semantics (e.g. [10]) or language

theory (e.g. [11]). Very recently Pratt [12] described composition as a closed

operator on processes and (thus) elegantly solved the problem of defining

the meaning of a composition of processes by specifying exactly what process

is obtained by connecting processes together. Composition thus allows an

algebraic study. All formalisms attempt at providing a sound (consistent)

and/or complete proof system for reasoning about the corporate behaviour

of processes such as fairness, deadlockfreeness and termination.

7. Languages for concurrent programming. Control of concurrent activity appears

to be more difficult to achieve than control of sequential activity. Humans

find it very hard, in general, to comprehend the combined effect of a number

of activities which evolve simultaneously with independent speeds. For years

programmers thought sequential,as suitable concepts and tools for parallel

programming were lacking. Early primitives like the cobegin ... coend ([13]),

the and ([14]) and the fork/join/quit statements have attempted to remedy

this. More recently, the use of sets of guarded commands ([15)) was proposed

as perhaps the most natural means for expressing concurrency. As processes

were recognized as the unit of concurrency various communication primitives

were proposed, initially to operate on shared variables. More structured

notions like critical regions ([13], [16]) and conditional critical regions

([17]) and monitors ([18)) were introduced to replace low level synchronization

commands of the P/V or receive/send variety. Pilot languages like MODULA

([19]), Concurrent Pascal ([20]) and Pascal Plus ([21]) incorporated suitable

constructs for programming processes, monitors and queues of waiting processes.

The requirements of mutual exclusion and fair scheduling were major problems

to solve in an efficient manner.

More recently there is a trend in concurrent programming languages away from

communication and synchronization through shared variables, and towards direct

8

communication between modules or processes. The former approach requires

a common store and the latter does not, which thus seems more supporting

for a view of processes as net-connected individual processors. Language

designs like DP (Distributed Processes, [22]) and CSP (Communicating Sequen

tial Processes, [23]) provided a testbed for several programming constructs.

A CSP-program consists of a fixed and named set of disjoint parallel processes.

Communication occurs by exchanging data in matching input/output commands.

To this end processes P may contain statements of the form Q?<variable> (re

questing an input from Q, to be assigned to <variable>) or Q!<expression>

(send the value of <expression> to Q). Execution proceeds only after a valid

rendez-vous has taken place. The use of guarded commands adds a tremendous

flexibility to processes, but leads to every imaginable problem of nondeter

minism and non-functionality.

MODULA-2 ([24]) has adopted similar views of communication by exchanging

(importing and exporting) data, and simply lists in the specification of

a module or process which identifiers must be "passed" to aid the linking

of processes. The proce~s concept is kept extremely simple (essentially that

of coroutines) and is built on a system kernel that provides the type PROCESS

and primitives NEWPROCESS (turns a procedure and its workspace into a named

process), TRANSFER (suspends the current process and transfers control to

another) and IOTRANSFER (like the former, but with an implicit transfer of

control back to the suspended process upon an IO-complete interrupt). The

programming language ADA (see e.g. [25]), again, is not tied to a single

processor environment and offers a sophisticated facility for describing

parallel activities (tasks) very much in the spirit of CSP.

8. Semantics of concurrent programs. Proving properties of concurrent programs

is generally considered hard. Correctness, termination and other properties

of interest for a system of parallel processes that are cooperating towards

some goal do not immediately follow by straight application of the techniques

of e.g. Hoare [26] known for sequential programs. New issues to cope with

are partial ordering and communication betwe·en distinct units. Proof methods

may be obtained when a suitable, algebraic notion of composition of processes

is used (see 6). An important step forward in understanding parallelism has

9

resulted from the work of Owicki [27]. She proposed to proceed in two steps:

(i) prove the properties of each process as a sequential program disregarding

completely parallel execution and (ii) show that the execution of one process

does not interfere with (i.e., does not destroy) the proof of the properties

of another. The rationale is that if parallel execution does not invalidate

the proofs, it cannot destroy the desired properties. An interesting applica

tion is given in [28]. More general, cooperating processes require some form

of cooperating proofs. This has been expounded in the axiomatic proof theory

now developed for CSP [29] and continues to be tested in other systems (see

e.g. [30]).

9. Distributed systems. Breaking up programs or tasks into processes is a

start toward multiple processor systems. Each process is a natural unit to

allocate to an available processor. It is generally agreed that a distributed

system exhibits the following characteristics (cf. [31]):

(i) it includes an arbitrary number of system and/or user processes,

(ii) the architecture is modular and consists of a possibly varying number

of processing elements (PE's),

(iii) communication is achieved via some form of message passing over

a shared communication structure (including perhaps shared memory),

(iv) some system-wide control is performed so as to provide for dynamic

interprocess cooperation and runtime management,

(v) interprocess message transit delays are variable and some non-zero

time always exists between the production of an event by a process (viz.

a processing element) and the materialization of it at some intended destina

tion.

Among the criteria used to compare distributed systems are their size

or scale (viz. the dist;,n,-,"'r ,:-~_.-,, 1,: ,,c,,J<.;;o a.LU sent), the rates of

ddta transfer and their degree of coupling. Coupling is said to be (i) strong

if data transfer between the PE's is about as fast (say, ~10 Mbps) as access

of a PE to its own data, (ii) loose if PE's communicate through a channel

comparable in speed to the transfer rate of secondary storage devices (say,

.1-10 Mbps) and (iii) weak if PE's communicate through a channel of only

a few Kbs (like a long distance telephone line). The distinction roughly

10

corresponds to (i) multi-processor systems, (ii) local area networks and

(iii) wide area networks. We shall later see that there is a variety of inter

connection structures (topologies) possible in each case.

10. VLSI systems (chips). Switching circuits are a natural model of distributed

computing in the small, featuring many forms of parallelism and pipelining.

With the advent of VLSI technology (see e.g. [32]) it has become possible

to embed ("integrate") circuits of tens of thousands of components in the

surface of a single chip. Special IO-pads (ports) along the boundary of the

rectangular chip allow for data/signal transports to and from the environment,

usually over a limited number of (multiplexed) pins into the hardwiring of

some PC board. Rigorously simplifying the practical aspects of wiring and

timing, Thompson [33] formulated a grid model of the chip surface to study

the actual complexity of VLSI-circuits. Each cell may contain a single PE

(another simplification!) or up to two orthogonal, crossing wires. The model

has facilitated the study of a novel measure for circuits, its area A.

Definition. Given a connected graph G = <V,E> the minimum bisection width

w of a set Sc Vis the smallest number of edges that must be cut to split

S into two isolated, equal halves.

The following result of Leighton [34] improves on an earlier theorem of Thompson.

For the notion of crossing number, see [35].

Theorem. Let an n-node graph G have crossing number c and contain a set with

minimum bisection width w. Then A~ c+n ~ a.w2 for some fixed constant a.

Proof

Any embedding of G must contain n nodes and ~c crossings, thus A~ c+n.

Consider any drawing of G with c crossings. Turn every crossing into a "point"

to obtain a planar graph G' with c+n points. The planar separator theorem

([36]) implies the existence of a constant B such that the original set can

be bisected by dropping ~B-Yc+n edges, thus by cutting at most this many

edges in the original graph. Thus w ~ B.Vc+ii and A~ c+n ~ aw2 , for a= 1/B2 . □

11

Definition. Given an embedded circuit (a graph) G = <V,E> the minimum informa

tion flow I for a set Sc Vis the minimum number of bits that must be exchanged

between two halves of s, the minimum taken over all possible bisections of s.

Let the time T of a computation on a chip be measured in some reasonable

way (e.g. the time between input of the first bit and output of the last).

. . 2 > 2 . h b f Theorem. For any VLSI-circuit AT = OI , wit a as e ore.

Proof
2

Let Sc V have minimum bisection width w, thus A~ a.w. The computation

requires the transfer of ~I bits of information over the cut of wedges which

takes ~I/w time. Hence AT2 ~ aw2 . (I/w) 2 = ar2 . □

Note that the results given are quite independent of the actual form of the

chip. As I can often be estimated in a circuit-independent manner, the latter

result suggests an "area-time" trade-off for VLSI-design. It can be shown

e.g. that for DFT's of n b-bit integers AT2 = n(b2n 2). Useful techniques

to prove it follow from [37]. Brent and Kung [38] have presented a detailed

study of binary addition and multiplication in VLSI. For recent results,

see e.g. [39]. Kramer and van Leeuwen [40, 41] have shown that wire routing

and even deciding the embeddability of routable circuits in a given amount

of area are NP-complete problems.

With the advent of techniques to produce multi-layered chips, it is of

interest to explore the possible gains with a extra dimension to the layout

problem. Thompson [33] (see also [42]) proved that av-layered chip of area

A can be embedded in the plane in O(Av2) area, thus making "planar" techniques

of analysis applicable.

Chazelle and Monier [43, 44] have argued that under a more realistic assump

tion about communication times on a chip (linearity in distance traversed)

much of the general theory for Thompson's model evaporates. In particular,

asymptotically time and area notions are polynomially related to ordinary

Turing machine time and space.

12

11. Systolic algorithms. Given the current technology it has become feasible

to design chips for every imaginable special-purpose function in a system,

an approach advocated by Kung [45] (see also [46]). The chip design must

begin with a distributed algorithm design, conceptually specifying the ove·ral

structure of the PE's on the chip. The algorithm is a level of abstraction

at which two aspects of the design can be contemplated: (i) the pattern of

information flow between the PE's (including the number of cells needed,

their placement and the movement of data between them) and (ii) the types

of PE's and their timing. There are many similarities between modular program

ming and modular chip design: the design task must be broken into manageable

subtasks with a well defined flow of information between them. Foster and

Kung [46] identify the following properties for a "good" VLSI-algorithm:

(i) it can be implemented by means of only a few types of simple cells,

(ii) the data and control flow of the algorithm is simple and regular,

allowing cells to be connected by a network with local and regular intercon

nections (like grids or hexagonal arrays),

(iii) the algorithm ·extensively employs pipelining and parallel processing.

Typically, the designs have several data streams move at constant velocity

over fixed paths in the network, interacting at cells where they meet. In

.,,.-,, t + .. t • t t /'b43 ', I
I I I I I //

, ' I I I I I I ..,,,-,
' I I I I I// b32 a33 a23 ' I

I I I I b33
I', I I I ..,f

I ~ I I j, .., I
I

a42 a32 a22 I ad I I 1h21
I b22 b23 b24

' ' I I \ I
i I I

,,,✓ ~ I
\ 1' ..,. I

I
bl3 ',,a~ ___ a 2

,..
/

/ ----':,\ ¥ ,..

13

this way many cells are kept active simultaneously and the computation hardly

slows the data rate. Algorithms of this sort have been called systolic. Kung

and Leiserson [47] and Kung [48] (see also [32]) offer many examples, usually

for numeric computations, showing the versatility of the approach. See also

[49].

Communication costs are a crucial factor that make systolic algorithms

attractive. At every tick of some periodic clock communication can occur

between a PE and its neighbors according to the communication graph only.

Signals do not ripple on and are not broadcasted beyond the neighbors. In

general, let the edges of a communication graph carry integer weights 60

indicating the time delay of signals along the corresponding line. To avoid

race conditions we require of a "synchronous" system that every cycle in

its communication graph has weight >0. Let G-1 be the graph obtained by re

ducing the weight of every edge in G by 1. Leiserson and Saxe [50] recently

proved the following "systolic conversion theorem": if the G-1 of the communi

cation graph G of a synchronous system S has no negative cycles, then there

exists a systolic system S' equivalent to S of essentially the same structure.

It be noted that equivalence is defined with regard to the input/output be

haviour to a single host node to which the system is presumed to be connected.

12. Multiprocessors. In the sixties a powerful line of architectures was

initiated based the connection of many full-fledged processors and memory

modules into one organised scheme, with a suitable hardwired communication

structure (e.g. [51]). The machines heavily use parallelism, pipelining and

vector-processing. Flynn [52] suggested the often used distinction between

SIMD-machines (single instruction/multiple data streaming) and MIMD-machines

(multiple instruction/multiple data streaming). The latter hold promises

for truly parallel processing of a single task, but the communications over

head and interference among the processors tend to spoil part of the gains

of simultaneous execution.

13. Interconnection networks. Memory of an N-processor SIMD-machine is normally

divided into N banks to allow for rapid parallel access. A problem of much

concern has been to determine suitable networks that provide all necessary

14

processor-to-bank connections (and back). A crossbar switch would do, but

it needs O(N2) switches.

Theorem. Any network that realizes all connections between N processors and

N banks must have Q(N log N) switches.

Proof

The network must be able to distinguish ~N! internal settings. If it has

s switches that can be in (say) 2 states each, it can have at most 2s different

states. Thus 25 ~ N!, ands~ log N! = Q(N log N). □

Every network requires a routing algorithm for directing signals through

the net from source to d.estination. We only present some results for routable

and fully rearrangeable networks (see also [53]).

A useful mapping to start from is the perfect shuffle functions with

s : {0, ... ,N-1} ➔ {0, ... ,N-1} defined by s(iMiM_ 1 ... i 0) = iM_ 1 ... i 0 iM when

phrased in terms of binary number notation. An omega-network (Lawrie [54])

consists of log N (identical) s-stages, with lines at every level leading

pairwise into N/2 switches that pass the data on or "exchange" it on the

outgoing pair of lines. Effectively, a switch either applies the identity

mapping or the exchange E defined by E(iM ... i 0) = iM ... i 1i 0 . Routing from
➔

i to j is easy: slide a window over the binary expression liM ... i 0 JjM ... j 0

and "shuffle-exchange" i into j. Unfortunately the omega-network is not re

arrangeable (in fact it isn't even non-blocking) but it can route many useful

permutations correctly according to this algorithm. Parker [55] ~ives a neat

proof that 3log N s-stages (thus, 3 passes through an omega-network) are

sufficient to be able to route every permutation.

The study of rearrangeable networks has a long history in telephone systems.

Let N = p.r. A starting point for much of the theory is the analysis of the

"three stage" Clos networks C(p,q,r) defined as follows (each box is a suitable

crossbar switch):

pxq rxr qxp

p p

p p

Theorem (Slepian-Duguid). A Clos network C(p,q,r) is rearrangeable if and

only if q~p.

Proof

Necessity of q~p is clear, or else routings would block already in the

15

first stage. Let q~p and let TT {1, ..• ,N} ➔ {1, ... ,N} be an arbitrary permuta-

tion. For p=l it is trivial to realize TT: route all N incoming messages to

the first intermediate box (which indeed has N=r inlets) and spread them

according to TT from here in the second stage. For p>l let Ki= {jlTT(k) E Oj

for some k E Ii} be the set of indices of out-boxes that must be rea~hed

from I .. Consider any collection {Ki } 1< <. As the s.p elements of U1Iim are
i m =m=s

mapped to as many outputs and each outbox can route at most p elements, they
s

must jointly lead into ~s outboxes. Hence l~Kiml ~ s, which is Hall's condition

([56]) for the existence of a set of distinct representatives. Let jm be

the representative of Km (l~~r) and km an input of Im with TT(km) E Ojm"

Route every km to the first immediate box and switch them there into the

right permuted order. Fixing this assignment we are left to route the re

maining pairs, which can be handled as if we had a C(p-1,q-1,r) net. This

completes the argument by induction. □

Note that we haven't used that each box is a crossbar, but merely that it

is rearrangeable. This allows a recursive construction of rearrangeable net

works. In particular, a Benes network B(n) is a Clos network C(2,2,2n-l)

with two B(n-l)'s as intermediate crossbars. The network has size O(N log N)

for N=2n. The routing problem has been studied in e.g. [57]. Many other net

works are reviewed in [53].

16

14. Multiprocessor ("parallel") algorithms. Networks clearly are important

for connecting processors themselves, but the objectives for the nets are

slightly different. There is a need for fast exchange of information and

broadcasting of signals. Stone [58] has shown that N processors connected

in a perfect shuffle allow for extremely efficient execution of several

standard algorithms (e.g. polynomial evaluation, sorting, the FFT). In some

formulations processors are also paired in blocks of two, leading to the

pattern of the shuffle-exchange graph. At some level of abstraction algorithm

design could specify both the processor tasks and the assumed interconnection

pattern, leaving the scheduling on the actual multiprocessor for a second

"pass". See e.g. [48].

Theorem. A linear array of N suitably instructed processors can sort N numbers

in O(N) time.

Proof

The method is based on odd-even transposition sorting. Put N keys in

N processors, numbered odd and even alternately. Assume the even processors

are activated first. In each cycle the following takes place: the key in

every activated processor is compared with the key in its right neighbor

and exchanged when the latter is smaller. Odd and even processors are acti

vated alternately. One can prove by induction that the algorithm sorts the

keys within N cycles. Note that the largest key 1 always wins and moves

across to the right (it hesitates in the first cycle if it is stored in

an odd processor):

Its path separates the computation in two triangular areas. Imagine 1 is

dropped. Then the right upper computation can be moved down and left one

17

step, to merge with the left lower past to an odd-even transposition sort

on N-1 keys. To top row left of 1 does no harm and can be excluded for its

effect. By induction N-1 cycles do the job in the remaining sort, hence N

are sufficient for the original set of keys. □

Baudet and Stevenson [59] have investigated the effect of giving each processor

some memory to hold a sorted subsequence rather than just a single key. The

comparison-exchange operation becomes a merge-split operation on sequences.

They show that N keys may be sorted on an array of p processors in

o(.!:!. log.!:!.+ N) time, provided that each processor can hold.!:!. keys. The sorting
p p p

problem was addressed also in e.g. [60] and [61), where a feasible algorithm

was proposed to sort N keys in O(N} time by log N processors, one corresponding

to each level of the familiar merge-sort routine. Batcher's bitonic sort

method needs only O(log2 N) time but uses N processors with a very specific

interconnection pattern (see [58]).

In a variety of studies detailed considerations about processor structure

and interconnection have beert de-emphasized. Processors are assumed available

in unlimited quantity, with any form of desired signaling (broadcasting)

and shared memory. A rule is required to resolve conflicts in simultaneous

reads or writes of a same memory location. The assumption of unlimited pro

cessors can be justified from a simple observation due to Brent [62]:

Theorem. If a computation can be performed in time t with sufficiently many

processors that perform q operations total (with each operation requiring

one time unit), then the computation can be performed in time t + (q-t)/p

with p such processors.

Proof

Suppose si operations are performed in parallel during step i (l~i~t),

with q = ts .. Using p processors we can stimulate step i in time f s./pl.
1 l. l.

The entire computation is thus

of about ff s./pl ~ t(s.+p-1)/p
1 J. 1 J.

rescheduled and requires a number of steps
1 1 t

(1- -)t + -.LS, = t + (q-t)/p. □
p p 1 l.

As an example of a computation with unbounded parallelism and simultaneous

memory access, we note the following result of Ku~era [63].

18

Theorem. The minimum of N keys can be computed in 0(1) time using N2 processors,

allowing "weak" memory conflicts.

Proof

Let the keys be stored in a[l] to a[N] and use additional (shared) locations

b[l] to b[N]. The processors P .. (l:::;i,j:::;N) execute the following 4 cycles.
l.J

In cycle 1 every Pil (lSiSN) writes 0 into b[i] for initialization and the

other processors are silent. In cycle 2 the P .. write 1 into b[j] if a[i]<a[j].
l.J

As a result, b[i] = 0 iff a[i] = min{a[l], ... ,a[N]}. To find (say) the smallest

index of a minimal key, cycle 3 lets the P .. write
l.J

into b[j] when i<j and

b[i] = 0. In cycle 4 P .. (lSiSN) inspects b[i] and outputs a[i] as smallest
l.J

key when its value is 0. □

Parallel computation of ranks was studied (with different assumptions on

memory use) in e.g. [64) and [65].

The use of many processors distorts the view of the actual computational

gains over a single processor. Let T (p~l) be the computation time for a , p
problem using p processors. The "speedup" of a parallel algorithm may be

defined as S T 1/T. (Using Brent's theorem it follows that S ~p.) The
p p p

efficiency of a parallel algorithm can be defined as Ep = Sp/p (= T 1/p.Tp).

The Amdahl effect ([66)) asserts that for many practical architectures the

efficiency does not rise w.ith an increased number of processors, for reasons

of housekeeping and communications chores and the lack of a sufficient and

regular form of parallelism in the problem solved.

Techniques for designing parallel algorithms include (i) recursive doubling,

(ii) broadcasting, (iii) decomposition into weakly dependent parts and (iv)

simultaneous building.

N-1 N=l
Theorem. 3 ai (and g ai) can be computed in O(log N) time, using N/2 proces-

sors.

];'roof

Use the processors to compute a 2 i + a 2i+l (OSi~ -1) in the first step.
1 1

Recursively double the extent of the partial sums using~, gN, ... of the

processors until we have a 0 + ... + aN and aN + ... + aN-l and one proces-

2 -l 2

sor can compute the final result in one more step. (We assumed that N=2r,

some r.) □

N-1
Compared to the sequential algorithm for La. recursive doubling gives a

0 l.

19

speedup of O(N/log N) but an efficiency of only 0(1/log N). Two NXN matrices

can be multiplied in O(log N) time as well, using N3 processors. Use a cluster
2 of N processors for each of the N elements of the product matrix. In one

step they compute (multiply) the summands, and O(log N) steps of recursive

doubling suffice to accumulate the sums. A few years ago Csanky [67) proved

that NXN matrices can be inverted in O (log2 N.) time, still using a polynomial

number of processors.

The idea of broadcasting is illustrated in the parallel solution of a

linear system x = Ax+b (xElRN) with A lower triangular. All multiterm linear

recurrences can be put in this form. Clearly x 1=b 1 and the straight computa

tion of x2 ,x3 , ... would take about N2 steps on a single processor.

Theorem. A linear system x ='Ax+b with A an NXN lower triangular matrix can

be solved in O(N) time, using N-1 processors.

Proof

Use processors P. (2~i:ill). After eliminating x. 1 (j~2) assume that the
l. J-

P].. with i~j have a. 1x 1 + .•. +a .. 1x. 1 in store. In the next cycle P. can
l. J.J- J- J

compute xj. It subsequently broadcasts the value to all Pi with i>j, which

compute a . .. x. and add it to the partial sum they hold. □
l.J J

The algorithm, known as the "column sweep method", yields a speed-up of O(N)
2 1 and an efficiency of about N /(N-l)X2N ~ 2 (a constant, anyway). By increasing

the number of processors one can lower the time bound to O(log2 N), as one

might expect from Csanky's result. The simple proof though illustrates another

useful technique (from [68)).

Theorem. A linear system x = Ax+b with A an NXN lower trangular matrix can

be solved in O(log2 N) time, using O(N3) processors.

20

Proof
-1

As x = (I-A) b we are done if we prove that a lower triangular matrix

can be inverted within the bounds stated. Decompose (split) the matrix as

N

2 --
, with Band D lower triangular, and observe the (recursive) structure of

-1 -1 3
the inverse. If B and D are found, only O(log N) steps and O(N) processors

-1
are required to "finalize" A . Alltogether this yields an algorithm of the

desired complexity. □

Schendel [68] gives a readable account of "parallel (numerical) mathematics".

An example of simultaneous building is provided by Sollin's algorithm

for determining a minimum spanning tree of a graph. The graph is given by

an adjacency matrix, which lists the weight of edges v.v. in entry (i,j)
l. J

(with 00 denoting the absence of an edge).

Theorem. A minimum spanning tree of a weighted N-node graph can be computed

in O(log N) time, using O(N3) processors.

Proof

Sollin's algorithm relies on maintaining a global invariant that at any

stage the disjoint subtrees obtained are subtrees of one minimum spanning

tree. Use N processors Pi, with Pi corresponding to vi (l~i~N). Each Pi will

hold some label uniquely identifying the tree to which vi currently belongs.

The algorithm does the following:

(i) in a first cycle, each Pi. determines a lightest edge v.v. incident
l. J

to vi (l~i~). To prevent cycles, the lightest edge with minimum j is taken.

The computation, and subsequent administration, needs only 0(1) time if suffi

ciently many auxiliary processors are on hand.

(ii) as long as there still are >1 subtrees, do the following next cycle.

For each subtree T1 determine a lightest edge v.v. connecting to a different
l. J

Tm. To prevent cycles again, the edge with lexicographically smallest i,j is

21

taken. T1 and Tm are subsequently connected and relabeled. The step is more

involved, but can be done in 0(1) time with auxiliary processors.

In each cycle the number of disjoint subtrees is halved, and the algorithm

terminates after log N cycles of 0(1) time each.

The timing of Sollin's algorithm is different depending on the memory model

used (we allowed "unambiguous" access conflicts). Bentley and Ottmann [70]

proved that the algorithm can run in O(N log N) time on a linear array of

N processors.

15. Dataflow computing. The earlier development suggests an entirely different

approach to programming, based on clusters (nodes) and information transfer

through communication lines rather than through variables in some memory.

At the level of individual instructions this leads to Dennis' dataflow concept

([71]) which holds the view that an instruction is ready for execution when

its operands are available. To support and implement this concept a very

different form of computer is required to realize the intrinsic parallelism

of execution for many simultaneously active instructions. The idea of data

driven computation itself is not new, but only in recent years have architec

tural schemes with an attractive expected performance been developed and

in some cases experimented with (see [72] for an extensive survey).

In its most primitive form, a data flow program is a directed graph in

which the nodes represent processing elements of some sort and the edges

represent datapaths. There is no global memory and (hence) there are no vari

ables, but data (tokens) is transmitted directly from node to node over existing

datapaths. Processing elements digest tokens from their incoming edges and

emit new tokens over their outgoing edges, presumably after some internally

specified computation. The execution of one "cycle" is very similar to a

firing in the terminology of Petri-nets. Processing elements are operators,

i.e., fixed token-mappings of some variety. Except that cycles and token

transports take finite time, no further assumptions are made about the speeds

or relative speeds of the processing elements or when processing elements

choose to take in a next batch of input. Dataflow computation is completely

asynchronous. As a consequence, tokens may have to queue along a datapath

22

if the node "at the other end" is not processing fast enough. A processing

element must "wait" whenever it wants a token from an empty input line or

some rule prevents it from further sending on a congested output-line. Jaffe

(73] and Bohm and van Leeuwen (74] present approaches for a fundamental anal

ysis of the underlying computational model. Algorithms can be designed in

dataflow that achieve the tight bounds of many known multiprocessor algorithms,

without the need for global control (see (75]).

Dataflow machines are designed for rapid execution of dataflow programs.

The basic instruction execution mechanism used in virtually all machines

is the circular pipeline or "ring":

r- -,
!fetc~
I I
I
L- t'

recessing

elements

node

store
-
~

r- -..,
I I
Jnatch:
I I
I I
L _.J r

Using program information from the node store, the fetch unit assembles acti

vated instructions to tokens and feeds them to a pool of processors. Result

tokens are received by the match unit which checks, according to some policy,

what instructions now have a fully set of operands. Any one that has is queued

to the fetch unit. Ultimately, the level of concurrency achieved by an archi

tecture of this type is limited by the capacity of the datapaths in the ring.

Nevertheless, it is a radical departure from the classical "von Neumann"

architecture and a bold attempt to exploit concurrency of computation truly

and at a large scale. Dennis (75] describes a possible extension of the approach

to dataflow multiprocessors. Several languages (see e.g. (76]) have been

designed to support dataflow programming.

23

16. Models of parallel computation. Models of computation enable one to analyse

and prove fundamental results about the power and limitations of a real or

proposed machine architecture. As modern technology is moving towards highly

integrated circuitry and novel architectures, we need to revise our ideas

about computation and the way it is performed accordingly. As we have seen,

there appears to be a distinction between models based on a fixed connection

network of processors and models based on the existence of global or shared

memory. In the former category there are linear-, mesh- and tree-connected

arrangements of processors. Wittie (77] surveys many other patterns that

are of some practical importance. Galil and Paul (78] have taken a broad

view and modeled a parallel machine as an infinite recursive graph, with

some recursive assignment of nodes to processors. The processors may be finite

automata, RAM's or limited RAM's of some sort and at every step each processor

consults the processors on adjacent nodes before going through its compute

cycle. Every determinsitic multitape Turing machine with time bound T can

be simulated by a tree-connected parallel machine of finite automata in

O(T log log T/log T) time. Many other complexity questions are explored.

See also (79], (80]. Alternation has been another fundamental notion (e.g.

(81]) that proved useful in clarifying the connections between sequential

and parallel time and space measures.

Fortune and Wyllie (82] proposed a very general and flexible model of

parallel computation (the P-RAM) based on random access machines that operate

in parallel. The machines have unbounded local memory but can communicate

only through a shared (and unbounded) global memory. Simultaneous reads of

a location are allowed, but simultaneous writes block the P-RAM. The random

access machines act synchronized, executing one instruction (in parallel)

per time unit. The most powerful instruction is the FORK, which enables a

processor to activate a next free processor and start it off at some entry

point of the parallel program. It is shown that determini~tic P-RAMs can

accept in polynomial time precisely the sets accepted by (sequential) Turing

machines in polynomial space. Nondeterministic P-RAMs accept in polynomial

time precisely the sets by nondeterministic Turing machines in exponential

time.

24

17. Buses. Processors and memory modules of different sorts and uses may

be tied into one system, as in the machine room of a computation centre.

It is usually done to off-load the central processor and to provide for access

to specialized devices or back-up store. The communication between the differen

processors is usually realized by a transport circuit, called a "bus". Buses

differ by the speed and form of transport (bit-serial or bit-parallel). Also,

all processors connected to the bus see the same signals. It is therefore

important that some discipline is enforced (called the bus access protocol)

for conflict-free, yet expedient sharing of the bus. There are two approaches

to the sharing problem. One is to have a central bus controller, which polls

processors and schedules bus use. Another is to distribute control and implemen1

a suitable protocol in every processor. When several processors try to write

on the bus contention occurs. It is usually detected by hardware means, and

solved by some form of recovery and a retry. In the case of transports over

longer distances, the propagation delay of signals over the bus cannot be

neglected and becomes a factor in deciding an efficient multiplexing or sharing

algorithm.

18. Remote access. The use of terminals has been a first step to distribute

a system over a wider area. Terminals connect to a shared (multiplexed) port

of the central computer or to a local concentrator, which attempts to optimize

the transports to and from the central site. Terminal handling has contributed

to much of the essential understandings about data communication (see e.g. [83])

on the one hand, and parallel processing of jobs on the other.

19. Computer networking. To access different sites from one host, networks

have been designed of ever increasing complexity. The reason is usually the

desire to communicate information, access data or use some specialized facility.

There are two essential principles for realizing computer-to-computer communi

cation: (i) circuit switching, (ii) message switching. Tanenbaum [84]" gives

a detailed description and explains many more of the problems in transfering

data from one computer to another. Martin [85] gives a good overall account

of the objectives of computer networks.

25

20. Distributed processing. As the potential of computer networks was recog

nized, it became an end in itself to provide all the required facilities

for users somewhere on the network. It gives the luxury of a large system

at shared expenses. Bochmann [86] recognizes the following three principles

of distributed processing: (i) processing can be done where the data is,

(ii) redundancy (back-up if one processing unit goes down) and (iii) economy

(dedicated units need not be available everywhere). Local system versus com

munication costs will determine the optimal topology and policies of the

network.

21. Local area networks. Networks have different policies depending on their

scale (and, of course, their architecture). Local area networks allow for

high-speed transmissions at a very low error rate. Given these considerations,

local area networks can afford to have a simple topology (one node will

never be far away from another) which, again, keeps the added communications

overhead for routing very small. One wellknown design is Ethernet ([87]),

which has the properties of a contention bus. An Ethernet consists of a single

(or split) co-ax cable with taps that provide the points to which processors

can be connected. A processor only transmits when the Ethernet appears quiet.

Its packets essentially make a round trip over the cable and (thus) certainly

pass their intended destination. It is left to the individual stations to

recognize and intercept the packets for their use. The Ethernet thus effective

ly realizes a broadcast medium (or "ether"). While transmitting a processor

listens whether another processor has perhaps begun transmitting too, in

which case an "audible" collision occurs. If so, both processors immediately

stop transmitting, pause a random period and try to transmit again. A processor

can never be sure its packet reached its destination without interference

until after the time for a full round trip (only a few microseconds!). The

Ethernet is engineered on the assumption that collisions happen rarely. It

is an example of a CSMA ("Carrier Sense Multiple Access") network. Greenberg

[88] has given an interesting analysis of the expected time of some simple

distributed control tasks over an Ethernet-like medium.

Rings are another topology applied in local area networks. The operation

of a ring network hinges upon three main ingredients: (i) the transmission

policy used by nodes to place packets on the ring, (ii) the reception policy

26

used to decide if a packet is to be received, and (iii) the packet erase

policy (to use in case a packet appears to circulate indefinitely). There are

three major types of ring architectures in use, which differ largely by the

transmission policy that is used: (i) slotted rings, (ii) token rings and

(iii) insertion rings. See [84) or [89) for further details.

22. Protocols. A network consists of a collection of interconnected processors

(nodes) that exchange data and messages over some nontrivial distance. The

orderly exchange of information requires that the nodes conform to some pre

established agreements or rules which constitute a protocol. A protocol speci

fies both the format of the information packages transmitted and the actions

to be taken for sending and receiving, as the communication ("control") between

the nodes to set up or maintain a connection. A protocol thus embodies all

the necessary actions to let the network function. To incorporate it, the

network carries both data and control messages, in separate or combined packets.

Most networks use some form of send/acknowledge protocol to set up connections,

to check packet arrival and/or the error-freeness of a transmission. In case

an error occurred (e.g. by parity control) the packet must be send again.

For straight point-to-point connections over a half-duplex line there is

a classical observation of Bartlett, Scantlebury and Wilkinson [90):

Theorem. One bit suffices for error control when transmitting over a half

duplex line.

Proof

The technique is known as the "alternating bit" protocol. Imagine two

hosts A and B communicating over a half-duplex line, taking turns in sending

data and control information. Let AO (and so on) mean that A sends a packet

with control bit 0. Let AO (and so on, not underlined) mean that a packet

from A with control bit 0 is received (by B). The protocol for A and Bis

best described by the following two communicating finite state diagrams:

27

Bl Al

BO

A B

The diagrams should be read thus that when e.g. B receives a damaged packet

with control bit 0, then it sends a control bit back to A and A responds

by transmitting the same packet with control bit O again. □

Clearly more involved protocols are needed (and have been designed?) in net

works where nodes would waste time for acknowledgements of every separate

packet and like to use the medium continuously. This opens the way for ex

tremely complicated communications with control messages, packets and re

transmitted packets in one stream that should eventually carry all data to

correct arrival. Sunshine [91] gives an account of the problems in this di~

rection. Protocol validation has been attacked by methods derived from the

correctness theory of parallel programs (e.g. [92]).

23. Routing. In a packet-switching network some strategy is required for

directing packets from source to destination through the transmission medium.

An optimal strategy should deliver a largest possible number of packets in

a shortest possible time. Packets of a message are sent ("hop") from node

to node to reach their destination, but need not all follow the same path.

Thus sequence numbers are needed and the receiving host may have some diffi

culties in assembling the message that is coming in. The routing algorithm

of the network must avoid congestion of the imp's on the net and be proof

against failures of some parts of the net. All routing algorithms are based

28

on maintaining routing tables either at a central node or distributed over

all nodes. The routing tables contain information about connections, distances

and delays to be expected along various lines. By now there is an extensive

and non-trivial litterature concerning non-adaptive and adaptive routing

(see e.g. [93]). Santoro and Khatib [94] show that in simple cases no routing

tables are needed.

The design of network wide systems leads to many problems about distributed

algorithms and computing that can now be envisaged. Timing (and the notion

of time itself), event ordering, synchronization, data integrity, encryption

and compression are only the beginning of an endless list of issues that

can be brought to bear on distributed computing in this wide sense. A unique

account of the design and inplementation problems for distributed systems

is given in [1].

References.

[1] D.W. Davies et.al., Distributed systems - architecture and implementa

tion, LN-CS vol. 105, Springer Verlag, Heidelberg, 1981.

[2] J.L. Peterson, Petri nets, Comp. Surv. 9 (1977) 223-252.

[3] M. Hack, The recursive equivalence of the reachability problem and

the liveness problem for Petri nets and vector addition systems,

Project MAC, Memo 107, MIT, Cambridge, Mass., 1974.

[4] E.W. Mayr, An algorithm for the general Petri net reachability problem,

Proc. 13th Ann. ACM Symposium on Theory of Computing, pp. 238-246,

1981.

[5] S.R. Kosaraju, Decidability of reachability in vector addition systems,

14th · h f · 267 281 Proc. Ann. ACM Symposium on T eory o Computing, pp. - ,

1982.

[6] G. Kahn, The semantics of a simple language for parallel prograrroning,

in: J. Rosenfeld (ed.), IFIP 74, North-Holland Publ. Comp.,

Amsterdam, pp. 471-475, 1974.

[7] C. Hewitt and H. Baker, Laws for communicating parallel processes,

in: B. Gilchrist (ed.), IFIP 77, North-Holland Publ. Comp.,

Amsterdam, pp. 987-992, 1977.

29

[8] R. Milner, A calculus of communicating systems, LN-CS vol. 92, Springer

Verlag, Heidelberg, 1980.

[9] P ~ • 6th . . . 1 V.R. Pratt, rocess &Og~c, Proc. Ann. ACM Symposium on Princip es

of Programming Languages, pp. 93-100, 1979.

[10] J.W. de Bakker and J.I. Zucker, Denotational semantics of concurrency,

Proc. 14th Ann. ACM Symposium on Theory of Computing, pp. 153-158,

1982.

[11] M. Nivat, On the synchronization of processes, Rapp. No. 3, INRIA,

Rocquencourt, 1980.

[12] V.R. Pratt, On the composition of processes, Proc. 9th Ann. ACM Symposium

on Principles of Programming Languages, pp. 213-223, 1982.

[13] E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys (ed.),

Programming Languages, Acad. Press, New York, pp. 43-112, 1968.

[14] N. Wirth, A note on "Program structures for paraUel processing",

CACM 9 (1966) 320-321.

[15] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation

of programs, CACM 18 (1975) 453-458.

[16] P. Brinch Hansen, Structured multiprogramming, CACM 15 (1972) 574-578.

[17] c.A.R. Hoare, Towards a theory of parallel programming, Int. Sem.

on Operating System Techniques, Belfast, 1971 (see also: P. Brinch

Hansen, Operating system principles, Prentice Hall, Englewood

Cliffs, NJ, 1973).

[18] C.A.R. Hoare, Monitors: an operating system structuring concept, CACM

17 (1974) 549-557.

[19] N. Wirth, Modula: a language for modular multiprogramming, Software:

Pract. & Exper. 7 (1977) 3-35.

[20] P. Brinch Hansen, The architecture of concurrent programs, Prentice

Hall, Englewood Cliffs, NJ, 1977.

[21] J. Welsh and D.W. Bustard, Pascal-Plus: another language for modular

multiprogramming, Software: Pract. & Exper. 9 (1979) 947-958.

[22] P. Brinch Hansen, Distributed processes: a concurrent programming

concept, CACM 21 (1978) 934-941.

[23] C.A.R. Hoare, Communicating sequential processes, CACM 21 (1978)

666-667.

[24] N. Wirth, MODULA-2, Rep. 36, Institut f. Informatik, ETH, Zurich,

1980.

30

[25] J.G.P. Barnes, Programming in ADA, Addison Wesley Publ. Comp., London,

1982.

[26] C.A.R. Hoare, An axiomatic basis for computer programming, CACM 12

(1969) 576-583.

[27] s. Owicki, Axiomatic proof techniques for parallel programs, TR-75-251,

Dept. of Computer Science, Cornell University, Ithaca, NY, 1975.

[28] D. Gries, An exercise in proving parallel programs correct, in: Language

hierarchies and interfaces, LN-CS vol. 46, Springer Verlag, Heidel

berg, pp. 57-81, 1976.

[29] K.R. Apt, N. Francez and W.P. de Roever, A proof system for Corronuni

cating sequential processes, ACM Trans. Progr. Lang. & Syst. 2

(1980) 359-385.

[30] R.T. Gerth, A sound and complete Hoare axiomatization of the ADA

rendezvous, Techn. Rep. RUU-CS-82-5, Dept. of Computer Science,

University of Utrecht, Utrecht, 1982.

[31] G. Lelann, Motivations, objectives and characterizations of distributed

systems, in,: [1], pp. 1-9.

[32] c. Mead and L. Conway, Introduction to VLSI systems, Addison-Wesley

Publ. Comp., Reading, Mass., 1980.

[33] C.D. Thompson, A complexity theory for VLSI, Techn. Rep. CMU-CS-80-140,

Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh,

1980.

[34] F.T. Leighton, New lower bound techniques for VLSI, Proc. 22nd Ann. IEEE

Symposium on Found. of Computer Science, pp. 1-12, 1981.

[35] F. Harary, Graph theory, Addison Wesley Publ. Comp., Reading, Mass.,

1969.

[36] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM

J. Appl. Math. 36 (1979) 177-189.

[37] J. Vuillemin, A combinatorial limit to the computing power of VLSI

circuits, Proc. 21 st Ann. IEEE Symposium Qn Found. of Computer

Science, pp. 294-300, 1980.

[38] R.P. Brent and H.T. Kung, The chip complexity of binary arithmetic,

Proc. 12th Ann. ACM Symposium on Theory of Computing, pp. 190-200,

1980.

31

[39] H.T. Kung, B. Sproull and G. Steele (eds.), VLSI systems and computa

tions, Proc. CMU Conf., Computer Science Press, Rockville, Md.,

1982.

[40] M.R. Kramer and J. van Leeuwen, Wire-routing is NP-complete, Techn. Rep.

RUU-CS-82-4, Dept. of Computer Science, University of Utrecht,

Utrecht, 1982.

[41] M.R. Kramer and J. van Leeuwen, The NP-completeness of finding minimum

area layouts for VLSI-circuits, Techn. Rep. RUU-CS-82-6, Dept. of

Computer Science, University of Utrecht, Utrecht, 1982.

[42] H. Bodlaender, M. Kramer, J. van Leeuwen, M.H. Overmars, A.A. Schoone,

R. Tan and H. Wijshoff, Plane realisation of 3-dimensional VLSI

designs, to appear.

[43] B. Chazelle and L. Monier, A model of computation for VLSI with related

complexity results, Techn. Rep. CMU-CS-81-107, Dept. of computer

Sci., Carnegie-Mellon University, Pittsburgh, 1981.

[44] B. Chazelle and L. Monier, Unbounded hardware is equivalent to determi

nistic Turing madhines, Techn. Rep. CMU-CS-81-143, Dept. of Computer

Sci., Carnegie-Mellon University, Pittsburgh, 1979.

[45] H.T. Kung, Let's design algorithms for VLSI systems, Techn. Rep. CMU

CS-79-151, Dept. of Computer Sci., Carnegie-Mellon University,

Pittsburgh, 1979.

[46] M.J. Foster and H.T. Kung, Design of special purpose VLSI chips:

examples and opinions, Techn. Rep. CMU-CS-79-147, Dept. of Computer

Science, Carnegie Mellon University, Pittsburgh, 1979.

[47] H.T. Kung and C.E. Leiserson, Systolic arrays for (VLSI), Techn. Rep.

CMU-CS-79-103, Dept. of Computer Science, Carnegie-Mellon Uni

versity, Pittsburgh, 1979.

[48] H.T. Kung, The structure of parallel algorithms, Techn. Rep. CMU-CS-

79-143, Dept. of Computer Sci., Carnegie-Mellon University,

Pittsburgh, 1979.

[49] H.M. Ahmed, J.M. Delosme and M. Dorf, Highly concurrent computing struc

tures for matrix arithmetic and signal processing, Computer (1982)

65-82.

[50] C.E. Leiserson and J.B. Saxe, Optimizing synchronous systems, Techn. Rep.

CMU-CS-82-101, Dept. of Computer Science, Carnegie-Mellon University,

Pittsburgh, 1982.

32

[51] G.H. Barnes et. al., The ILLIAC IV computer, IEEE Trans. Comput. C-17

(1968) 746-757.

[52] M.J. Flynn, Some computer organisations and their effectiveness, IEEE

Trans. Comput. C-21 (1972) 948-960.

[53] C.D. Thompson, Generalized connection networks for parallel processor

intercommunication, IEEE Trans. Comput. c-27 (1978) 1119-1125.

[54] D.H. Lawrie, Access and alignment of data in an array processor,

IEEE Trans. Comput. C-24 (1975) 1145-1155.

[55] D.S. Parker jr., Notes on shuffle/exchange - type switching networks,

IEEE Trans. Comput. C-29 (1980) 213-222.

[56] V.E. Benes, Mathematical theory of connecting ne-tworks and telephone

traffic, Acad. Press, New York, 1965.

[57] D. Nassimi ands. Sahni, A self-routing Benes ne-twork and parallel

permutation algorith-ns, IEEE Trans. Comput. C-30 (1981) 332-340.

[58] H.S. Stone, Parallel processing with the perfect shuffle, IEEE Trans.

Comput. C-20 (1971) 153-161.

[59] G. Baudet and D: Stevenson, Optimal sorting algorith-ns for parallel

computers, IEEE Trans. Comput. c-27 (1978) 84-87.

[60] F.P. Preparata, New parallel-sorting schemes, IEEE Trans. Comput.

C-27 (1978) 669-673.

[61] s. Todd, Algorith-n and harihJare for a merge sort using multiple,

processors, IBM J. Res. Develop. 22 (1978) 509-517.

[62] R.P. Brent, The parallel evaluation of general arith-netic expressions

JACM 21 (1974) 201-206.

[63] L. Ku~era, Parallel computation and conflicts in memory access, Inf.

Proc. Lett. 14 (1982) 93-96.

[64] L.G. Valiant, Parallelism in comparison problems, SIAM J. Comput. 4

(197 5) 348-355.

[65] Y. Shiloach and u. Vishkin, Finding the maximum, merging and sorting

in a parallel computation model, J. Algor. 2 (1981) 88-102.

[66] G.M. Amdahl, Validity of the single processor approach to achieving

large scale computing capabilities, Proc. Spring Joint Computer

Conf., pp. 483-485, 1967.

[67] L. csanky, Fast parallel matrix inversion algorith-ns, SIAM J. Comput.

5 (1976) 618-623.

33

[68] D. Heller, A survey of parallel algorithms in numerical linear algebra,

Techn. Rep., Dept. of Computer Science, Carnegie-Mellon University,

Pittsburgh, 1976.

[69] u. Schendel, Einfuhrung in die parallele Numerik, Oldenbourg Verlag,

Munchen, 1981.

[70] J. Bentley and Th. ottmann, The power of a one-dimensional vector of

processors, Bericht 89, Inst. f. Angew. Informatik u. formale

Beschreibungsverf., Univ. Karlsruhe, Karlsruhe, 1980.

[71] J.B. Dennis, First version of a dataflow procedure language, in:

Programming Symposium, LN-CS vol. 19, Springer Verlag, Heidelberg,

1974, pp. 362-376.

[72] P.c. Treleaven, D.R. Brownbridge and R.P. Hopkins, Data-driven and

demand-driven computer architecture, Comp. Surv. 14 (1982) 93-143.

[73] J.M. Jaffe, The equivalence of r.e. program schemes and dataflow

schemes, J. Comput. Syst. Sci. 21 (1980) 92-109.

[74] A.P.W. Bohm and J. van Leeuwen, A basis for dataflow computing, Techn.

Rep. RUU-CS-81-6'. Dept. of Computer Science, University of Utrecht,

Utrecht, 1981.

[75] J.B. Dennis, Data flow supercomputers, Computer (1980) 48-56.

[76] W.B. Ackerman and J.B. Dennis, VAL: a value oriented algorithmic

language (prelim. ref. manual), TR-218, Lab. for Computer Sci.,

MIT, Cambridge, Mass., 1979.

[77] L.D. Wittie, Corronunication structures for large networks of micro

computers, IEEE Trans. Comp. C-29 (1980).

[78] z. Galil and W.J. Paul, A theory of complexity of parallel computation,

preprint, 1980 (also: An efficient general purpose parallel computer,

Proc. 13th Ann. ACM Symposium on Theory of Computing, pp. 247-256,

1981).

[79] F. Meyer auf der Heide, Time-processor trade-offs for universal

parallel computers, preprint, Fae. of Mathematics, Univ. Bielefeld,

Bielefeld, 1981.

[BO] F. Meyer auf der Heide, Efficiency of universal parallel computers,

Int. Bericht 1/82, Fachber. Informatik, Univ. Frankfurt, Frankfurt,

1982.

[81] A. Chandra and L. Stockmeyer, Alternation, Proc. 17th Ann. IEEE Symposium

on Found. of Computer Science, pp. 98-108, 1976.

34

[82]

[83]

s. Fortune and J. Wyllie, Parallelism in random access machines, Proc.

10th Ann. ACM Symposium on Theory of Computing, pp. 114-118, 1978.
nd

J.E. McNamara, Technical aspects of data comrrrunication, 2 ed., Digital

Press, Bedford, Mass., 1982.

[84] A.S. Tanenbaum, Computer networks, Prentice Hall, Englewood Cliffs,

NJ, 1982.

[85] J. Martin, Computer networks and distributed processing: software,

techniques and architecture, Prentice Hall, Englewood Cliffs, NJ,

1982.

[86] G. v. Bochmann, Architecture of ditributed computer systems, LN-CS

vol. 77, Springer Verlag, Heidelberg, 1979.

[87] R.M. Metcalfe and D.R. Boggs, Ethernet: distributed packet switching

for local computer networks, CACM 19 (1976) 395-404.

[88] A.G. Greenberg, On the time complexity of broadcast communication
th schemes, Proc. 14 Ann. ACM Symposium on Theory of Computing,

pp. 354-364, 1982.

[89] R.P. Lee, The architecture of a dynamically reconfigurable insertion

ring network, Rep. RJ 2485 (32434), IBM Research Lab., San Jose,

Ca., 1979.

[90] K.A. Bartlett, R.A. Scantlebury and P.T. Wilkinson, A note on reliable

full-duplex transmission over half-duplex links, CACM 12 (1969)

260-261.

[91] C.A. Sunshine, Formal techniques for protocol specification and verifi

cation, Computer 12 (1979) 20-27.

[92] B. Hailpern and S. Owicki, Modular verification of computer communica

tion protocols, Rep. RC 8726 (#38174), IBM T.J. Watson Research

Center, Yorktown Heights, NY, 1981.

[93] M. Schwartz, Routing and flow control in data networks, Rep. RC 8353

(#36329), IBM T.J. Watson Research Center, Yorktown Heights,

NY, 1980.

[94] N. Santoro and R. Khatib, Routing without routing tables, Rep. SCS-TR-6,

School of Computer Science, Carleton University, Ottawa, Canada,

1982.

35

PARALLEL COMPUTATION

LG. Valiant
Harvard University, Cambridge, USA

0. INTRODUCTION

There is little doubt that in the future computers will exploit paral

lelism much more than they do at present. There is equally little doubt that

this exploitation will present formidable engineering challenges to both com

puter designers and programmers. In this paper I will try to advocate the

view that in addition to the engineering considerations there are also some

theoretical issues whose resolution is likely to contribute to future com

puting practice. To this end I will discuss two fundamental questions that

have fascinated me for some time:

(a) Can we characterize the classes of problems that are amenable to fast

parallel computation?

(b) Are there computer architectures that can exploit the inherent parallel

ism in all problems reasonably efficiently, or are all efficient parallel

computers necessarily special purpose?

Recent work provides encouragingly positive partial solutions to these

problems, and it is these that I plan to review. There are, of course, nu

merous issues important in parallel computation that are not covered by these

two questions as here formulated. Discussion of these is omitted for the

sake of brevity.

I. INHERENT PARALLELISM IN COMPUTATIONAL PROBLEMS

Given a particular computation (i.e. a run of a program on a particular

input) the notion of inherent parallelism is well defined. A computation can

be represented by an acyclic directed graph that represents the data depen

dencies among the inputs and computed values. The depth of the graph gives

the minimum number of parallel time units needed to simulate the computation

if at any step we can perform in parallel an arbitrary number of computation

36

steps on data then available. For many programming constructs (e.g. loops

where the loop variable has input independent range) the comrJtation graph

is independent of the input data. Hence we can analyze the inherent paral

lelism in such programs fairly easily. Indeed, much empirical work has been

done in determining the inherent parallelism in existing programs written

for sequential execution [Kuck].

In the present paper we are not concerned with the inherent parallelism

in fixed programs but with the parallelism inherent in problems. Given a

problem specification (which may be a sequential program) does there exist

any program for it with large inherent parallelism?

There are many examples of computationally trivial problems that appear

difficult to parallelize. Let us consider undirected graphs with n nodes and

define a alique to be "a complete subgraph that cannot be extended to a lar

ger complete subgraph". For example, if the graph has an isolated node then

this node forms a clique. If a node has some edge incident to it then it is

not a clique since it is contained in a complete subgraph of size at least

two. The problem of finding a clique of some predetermined size is difficult

[Cl]. Here we are concerned with the following easier problem: Given a graph

find crny clique in it. Sequentially this is trivial since we can start with

any node and repeatedly augment it to larger and larger complete subgraphs in

any way we like until we can make no further progress.

Suppose that we wish to find such a clique in parallel. Although we have

not defined any model of computation the reader will appreciate where the

logical problem lies. The sequential algorithm has up ton stages and it is

difficult to see how the problem can be solved in substantially fewer stages,

such as O(/n) or O(log n).

There are numerous such combinatorial problems for which easy sequential

algorithms exist but no way of parallelizing is known. Unfortunately for

none of these problems do we have any proofs to show that parallelizing is

impossible. The only guidance we have is that for certain specific problems

we can prove that they are as difficult to parallelize as any other. Hence

they are generally conjectured to be unparallelizable since otherwise all

problems would be parallelizable and this is contrary to current belief. The

notion of a problem being as difficult as any is formalized as "complete

for polynomial time Turing computations under logarithmic space reducibility"

by COOK [CZ] and as "complete for polynomial size circuits under p-projec

tions" by the author [Vl]. A typical example of such a problem is linear pro

gramming [DLR,Vl].

37

I. I. Polynomials.

Algebraic complexity theory provides a very clean context and model for

understanding parallelism. Here we seek to compute a polynomial P[x1, ••• ,xn]

in indeterminates x 1, ••• ,xn with coefficients from a field F such as the real

numbers. The model of computation is that of straight line programs that al

low constants from F and indeterminates as inputs and {+,x} as operations

[BM]. This is a powerful model. For example, subtraction can be simulated by

addition using the constant "-1". More surprisingly division can be simulat

ed fairly efficiently within it under very general conditions [Str,BGH].

Starting with the simplest polynomial xn, it is clear that this can be

computed sequentially in about log n steps by successive squarings. Can it

be computed faster than this if we can perform several operations in paral

lel? KUNG [Kl] gave a negative answer to this by showing that even using an

unbounded number of parallel processors performing {+,x +} as operations one

cannot compute a degree n polynomial in fewer than log2n steps.

For arbitrary univariate polynomials the analysis of parallelism is

also tractable. MUNRO and PATERSON [MP] give some precise bounds.

The question becomes more problematic when we have several variables.

A special case that can still be computed in O(log n) time is that of arith

metic expressions with {+,x,+}. The essential restrictedness of this model

is that the computation graphs are trees rather than arbitrary directed

acyclic graphs. BRENT [Br] showed that any such formula of size n can be

"rebalanced" so as to have depth O(log n).

For many significant problems, however, no small expression is known.

An important example is the determinant of an n><n matrix {x11 , ••. ,xnn}. This

has degree n but the "obvious" expression for it has size exponential inn.

Classical methods for evaluating determinants rely on elimination techniques,

which appear to require n successive stages. In the early 197O 1 s it was

quite widely conjectured that this basic process of linear algebra could not

be computed in O(n) parallel time. It therefore came as a pleasant surprise

when CSANKY [Cs] showed that, at least in fields of characteristic zero,

the determinant, and several related problems, could all be computed in
2 O((log n)) parallel steps. Furthermore only polynomially many processors

are required [Cs,PrSa].

A second surprise was provided by HYAFIL [Hy]. He showed that any poly

nomial of degreed that can be computed in C sequential {+,x} steps can be

computed by some other program in about (log C)(log d) parallel steps. Thus

38

any polynomial inn variables that has both degree and sequential complexity
?

polynomial inn can be computed in parallel in time O((log n)-). This says

that Csanky's fast parallel algorithm is an instance of a more general phe

nomenon. To see this we note that Gaussian elimination gives a polynomial

time algorithm for the determinant, ~hich has degree n, and that divisions

can be removed from this algorithm without increasing the complexity more

than polynomially [Str,BGH]. Hence Hyafil's result can be applied to this

modified algorithM.

The main drawback of Hyafil's construction is that it requires more

than polynomial, in fact nlog n, parallel processors. A recent result of

Valiant, Skyum, Berkowitz and Rackoff [VSBR] remedies this. It shows how any com

putation using C {+,x} operations for computing a polynomial of degreed can

be restructured so as to have depth about (log C)(log d) and size bounded

polynomially in C and d. This seems an encouraging positive result about the

potentials for parallel computation. It says that the naive bounds of log d

and log Con parallel time can be achieved, to within a product of each other,

using only polynomially many processors.

1.2. Boolean Functions.

For discrete computational problems, such as the clique problem dis

cussed in the introduction, the question of finding the right computational

model is more problematic than for polynomials. Perhaps the most primitive

choice is that of Boolean circuits [Sa]. Given a Boolean function

f(x 1, ..• ,xn) of n arguments, how fast can we compute this in parallel? It

is well known that any such function can be expressed as a disjunctive nor

mal form formula of size about 2n and depth O(n). Although this is a posi-·

tive statement about depth (i.e. parallel time) it is not useful since it

necessitates an exponential number of parallel processors. This observation

does explain, however, why the following turn out to be the i1nportant ques

tions for parallel Boolean computation:

(i) Which Boolean functions can be computed in o(n) (e.g.,log n) depth?

(ii) Which functions can be computed by circuits that simultaneously have

polynomial size and small depth?

The few results that are known can be easily summarized. Boolean ex

pressions of length n can be computed in o(log n) depth by equivalent ex

pressions. A more interesting class is formed by finite state transducers

that produce an output for each input read. Integer addition is an example

that can be so formulated. LADNER anci FISCHER [LF] show that for any such

39

transducer then outputs can be computed from then inputs by a circuit of

size O(n) and depth O(log n).

A wider class of functions that can be recognized simultaneously in

polynomial size and O((logn) 2) depth was described by RUZZO [R] in terms of

atternating Turing machines and contains context-free recognition as a har

dest member. It turns out that the class can be characterized in terms of

circuit complexity by defining circuits of "polynomially bounded degree"

[SV,VSBR]. The restriction here is that implicit conjunction over more than

polynomially many terms is never taken.

We have seen already that the degree of a polynomial characterizes fair

ly accurately its parallel complexity. While no corresponding result is es

tablished for Boolean functions, most of the natural problems I know that can

be computed simultaneously in polynomial program size and O(logn)k) depth

can be formulated as instances of the degree result in [VSBR]. For some, such

as transitive closure and co~text-free recognition one first constructs a

Boolean circuit of polynomial degree. For others, such as matchings

[IMR,SV,BHR,R2] one constructs polynomials, such as the determinant into

which the problems can be empedded.

In conclusion, we note that if we impose no restrictions on the class

of circuits then reducing depth even slightly appears difficult. Suppose

we have a circuit with n gates and say Q(n) inputs. At first sight it appears

plausible that we can always find a shallow circuit, say depth In or log n.

The only result known [PaVa] states merely that a circuit of depth n/log n
n/log n is ensured, and that this is no larger than 2

1.3 Oth~r Discret~ Models

In the theory of sequential computation it has proved useful to study

a large number of models of computation and to compare their power. Without

this it is difficult to distinguish between theorems that merely describe a

specialized property of some particular model, and those that transcend all

models. COOK [C4] surveys current knowledge on parallel models.

The question most relevant to the present topic is whether we can paral

lelize sequential computations more easily if we consider models more ~ower

ful than circuits. The obvious directions in which we can enhance the power

of a model is to have modifiable connections and to have more complicated

operations as a single step.

Examples are the various versions of parallel random access machines

[PrSt,FW,LPV,C4]. DYMOND [DJ and REIF [R2] show that more parallelization

40

is indeed possible on such machines. For example a time T computation on a

sequential log-cost RAM can be sped up to about t'T.log(T) on a log-cost

parallel RAM if 21T processors are ~~~liable. This result does not translate

back to circuits because to simulate one step of parallel random access on

21T processors, depth IT is required. This cancels out the gained saving.

A second question relevant here is whether we can characterize the class

of parallelizable functions as a complexity class for some other model of

computation. For example, BORODIN [Bo] shows that circuit depth is closely

related to sequential Turing machine space. Such relationships have been

pursued for many models [PrSt,FW,G,H]. It has been established, for example,

that parallel time complexity is indeed a robust notion that is invariant,

to within certain factors, for a large class of models. When we try to charac

terize complexity classes by more than one resource bound simultaneously,

such as "polynomial circuit size and O(log n) depth" then the invariances

appear to be much weaker [C3,P,Ho].

An interesting general positive result that holds for parallel RAMs but

apparently not for circuits is given by REIF [R2]. He shows that a certain

Turing machine comple~ity class can be simulated in O(log n) randomized par

allel time. This implies for several graph problems parallel algorithms fas

ter than previously known.

2. GENERAL PURPOSE PARALLEL COMPUTERS

In the previous section we considered in the abstract how algorithms

could be devised in which the operations could be performed with much con

currency. To exploit this concurrency in practice we have to implement the

algorithm on some specific computer. The question we ask is whether there

exist practical architectures on which every parallel algorithms in the

above sense can be run with acceptable efficiency. Whether a meaningful

answer can be given without reference to technological factors remains to

be seen. We find it encouraging, however, that some of the ideas appear to

be successful in a surprising variety of settings.

We shall conceptualize a realistic computer as a large number N of uni

versal sequential processors each with some memory, connected by a network

of communication lines. Each processor is connected to a small number d of

other processors, where dis regarded either as a constant independent of N

or a slowly growing function of N such as log2N. The processors conununicate

by sending packets of information along the lines. For simplicity we shall

41

assume that the transmission time along each wire is the same and dominates

the atomic computation steps of the processors. In reality it may, of course,

be difficult to engineer this. If transmission times are proportional to

physical distance then this requirement can be achieved only for such net

works as regular grids. Despite this and other obvious drawbacks the model

appears a useful one with which to start and has been discussed widely in

the literature.

2.1. Connection Patterns of Small Diameter

The distance d(i,j) from node i to node j in a graph is the minimum num

ber of edges that have to be traversed in any path from node i to node j.

The diameter of a graph is the maximum of d(i,j) taken over all choices of

pairs i,j. It is clearly advantageous to have as interconnection patterns

for the processors graphs of small diameter.

For undirectional transmission (i.e., directed graphs) an optimal solu

tion is easy. Suppose that there are d ~ 2 lines directed away from every

node and that the number of nodes N is a power of d. Then there are at most
s i s+I ,

ri=Od = (d -1)/(d-l) nodes within distances of any one node and hence if

sis the diameter then N does not exceed this quantity. It follows that the

diameter is at least logdN. In the positive direction, this bound can be

achieved by the directed degreed version of the Bruijn graph (called the

d-way shuffle for short). This graph is defined for N = dn as G = (V,E) where

Vis the set of vertices «x1, ••• ,xn)jl ~ x1, •.. ,xn ~ d} and Ethe set of

edges

For bidirectional transmission (i.e. undirected graphs) the problem is

much more difficult. There is no infinite set of values of N for which an

optimal solution is known in the above sense. The "Moore bound" has motiva

ted much work [E,HS]. Recent results that attempt to approach this bound as

closely as possible are surveyed in [BB,LFQSU].

In the literature much attention has been paid to networks which,

though not of optimal diameter, can implement efficiently important algo

rithms such as the Fast Fourier Transform. Significant examples are the

shuffle-exchange [Sto,Sc],the binary n-cube [SBK,VB], and the cube-connected

cycles [VuPr] and variations on it [U]. In all cases the diameter differs

from the optimal by a constant factor greater than one.

42

2.2. Parallel Connection Requests

When the information traffic in a network is sparse and packets col

lide rarely then the minimization of graph diameter is sufficient for ef

ficient communication. In the context of highly parallel computers we ex

pect the information traffic to be very heavy. Suppose we wish to rea

lize a pattern of communication requests in parallel in about logdN time

units. What patterns of traffic can we expect to cope with?

Clearly if all N nodes send a packet to a single node i simultaneous

ly and if there are at most d lines coming into node i then at least N/d

time will be required for all the packets to arrive. We therefore have

to exclude such requests. The following four cases exemplify some impor

tant patterns that we may hope to achieve in O(logdN) time.

(a) permutations: initially one packet at each node, each with a distinct

destination address to which it is to be routed.

(b) partial permutations: initially one or zero packets at each node,

each with a distinct destination address.

(c) broadcasts: initially one or no packet at each node, each packet with

a set of destination addresses to which it or copies of it are to be

routed. The sets are disjoint so that at most one packet arrives at

any node.

(d) inverse broadcast: these apply when several packets can coalesce in

to a single packet. Initially there is one or no packet at each node

each with a destination address. These addresses do not have to be

distinct.

For example if several processors wish to read simultaneously from

the memory at a particular node then a broadcast of type (c) would be

required. Conversely if several processors wish to write concurrently in

to a single location with some protocol such as "an arbitrary one of the

writes succeeds", then an inverse broadcast (d) suffices. The simplest

communication request, the permutation, serves as a useful paradigm for

the whole class of these problems.

2.3. Distributed Routing Algorithms

Networks for realizing communication requests have been investigated

for many years in the context of telephone switching [Be]. The main char

acteristic of that application is that telephone conversations are long

43

i.e. between successive requests to change the communication pattern many bits

of information are transmitted. Hence the switching time is of relatively

little importance. Permutation networks offer good solutions to many of the

problems. A good survey of results for this problem can be found in [MGN].

In multiprocessor interconnection networks we have the additional problem

that the communication requests may change at successive time units. Under

these conditions the cost of changing the switch setting in standard permuta

tion networks appears prohibitive [GP,LPV,NS,Sc] and other solutions have to

be found.

In the search for good routing algorithms it is clearly advisable to

keep to those that are fully distributed. By this we mean that the algorithm

does not rely on any global information about the communication request, and,

in particular, the routing of each packet depends only on information availa

ble at the node at which it is currently located.

The best distributed routing algorithms known are based on one of two

ideas: (i) comparator network sorters [Ba] and (ii) 2-phase randomized rout

ers [V2]. The main advantages of the former are that the local switching com

putations are simple, being Just comparisons of addresses, and that it is de

terministic. In contrast the latter require the maintenance of queues of

packets at the nodes and use randomization. On the other hand the 2-phase

routing algorithms are fast, requiring clog2N basic transmission steps for

small c. (N.B. The algorithm is always correct and terminates within this

time with large probability for all inputs.) This has been proved analytical

ly in [V2,VB] for the case of the binary n-cube and in [A] and [U] for con

stant degree graphs, such as the d-way shuffle. Experimental results show

that the performance is even better than the anlysis suggests [V4,VB]. In

contrast Batchers's construction takes time Q((log N) 2). [Recent work of

Ajtai, Komlos and Szemeredi suggests that Clog2N time may be possible for

very large C for certain degree log N graphs.] A further advantage of the

2-phase router is that, being a natural heuristic, rather than a finely

tuned instrument like the Batcher network, it can be used to perform all

four of the previously mentioned routing requests without any adaptation.

Comparator networks for sorting can directly perform only permutations and

need considerable amplifications in order to perform the other tasks.

Recently BORODIN and HOPCROFT [BH] have shown that it is possible to

prove some illuminating lower bound results about routing algorithms. They

define a routing algorithm to be oblivious if the path taken by each packet

44

depends only on its source and destination. They show that any oblivious

deterministic routing algorithm for realizing permutations takes time at

least N112;d312 • Hence to achieve O(log N) time an algorithm has to be ei

ther nonoblivious, like comparator networks, or randomized, like the 2-phase

router. A second lower bound result [V3] sheds some light on the 2-phase

routing strategy itself. The strategy consists essentially of sending all

the packets to randomly chosen nodes in the first phase, and then on to

their correct destination in the second. The lower bound gives some justi

fication to this counterintuitive process. The result says that for graphs

with near minimal diameter any oblivious randomized algorithm that does

not send packets along routes at least twice the diameter of the graph takes

more than n((log N)k) time for any k.

Finally we note that if we consider regular 2-dimensional grids of di

ameter n(IN) rather than the O(log N) diameter graphs discussed above, then

the best way known for realizing permutations are still based on the same

ideas.THOMSON and KUNG [TK] adapt Batcher's network so as to work in time

0(/N) on such a grid. With randomized routing 0(/N/)time with smaller con

stant multipliers can be obtained [VB]. This underlying unity is encouraging

considering that the two kinds of networks are usually associated with very

different technological parameters.

REFERENCES

[A] ALELIUNAS, R., Randomized parallel corrommication, Proc. of ACM Symp.

on Principles of Distributed Computing, Ottawa, Canada (1982).

[Ba] BATCHER, K., Sorting networks and their applications, AFIPS Spring

Joint Comp. Conf. 32 (1968) pp. 307-314.

[Be J BENES, V. E. , Mathematical theory of connecti:'Z(J networks and te le

phone traffic. Academic Press, New York (1965).

[BB] BERMOND, J.C. & B. BOLLOBAS, The diameter of graphs - a survey,

Report No. 98, Universite de Paris-sud, LRI, June 1981.

[Bo] BORODIN, A., On relating time and space to .size and depth. SIMI

J. on Computing i (1977), pp. 733-744.

[BGH] BORODIN, A.,J. VON ZUR GATHEN & J.E. HOPCROFT, Fast parallel matrix

and gcd computations, Techn. Rep. TR 82-487, Dept. of Computer

Science, Cornell University, 1982.

45

[BH] BORODIN, A. & J.E. HOPCROFT, Routing, merging a:nd sorting on parallel,

model,s of aomputation, Proc. of Fourteenth Symp. on Theory of

Computing, (1982).

[BM] BORODIN, A. & I. MUNRO, The aomputational, aompl,exity of al,gebraia

and numeria probl,ems, American Elsevier, New York (1975).

[Br] BRENT, R.P., The paral,l,el, evaluation of general, ari~hmetia expres

sions. JACM~ (1974), pp. 201-206.

[Cl] COOK, S.A., The aompl,exity of theorem proving proaedures, Proc. Third

ACM Symp. on Theory of Computing (1971), pp. 151-158.

[C2] COOK, S.A., An observation on time-storage tradeoff, JCSS 9 (1974),

pp. 308-316.

[C3] COOK, S.A., Deterministia CFL's are aaaepted simultaneously in pol,yno

mial, time and log squared spaae, Proc. Eleventh ACM Symp. on

Theory of Computing (1979), pp. 338-345.

[C4] COOK, S.A., TOIJ)ards a aompl,exity theory of synahronous paral,l,el, aom

putation, L'Enseignements mathematique, T. XXVII, fasc. 1-2

(1981), pp. 99-124.

[Cs] CSANKY, L., Fast paral,l,el matrix inversion, SIAM J. on Computing 1
(1976), pp. 618-623.

[DLR] DOBKIN, D. R.J. LIPTON & S. REISS, Linear programming is l,og-spaae

hard for P. IPL_!! :2 (1979), pp. 96-97.

[DJ DYMOND, P.W., Speedup of muiti-tape Turing maahines by synahronous

parall,el, maahines. Manuscript (1981).

[EJ ELSPAS, B., Topol,ogiaal, aonstrainst on interaonneation limited logia,

Switching Circuit Theory and Logical Design 1 (1964), pp. 133-147.

[FW] FORTUNE, s. & J. WYLLIE, Paral,l,el,ism in random aaaess maahines, Proc.

Tenth ACM Sympt. on Theory of Computing (1978), pp. 114-118.

[GP] GALIL, z & W.J. PAUL, An effiaient general purpose parallel, aomputer,

Proc. of Thirteenth ACM Symp. on Theory of Computing (1981),

pp. 247-256.

[G] GOLDSCHLAGER, L.A., A unified approaah to model,s of synah'Y'onous

paral,lel, maahines, Proc. Tenth ACM Symp. on Theory of Computing

(1978), pp. 89-94.

46

[HS] HOFFMAN, A.J. & R.R. SINGLETON, On Moore graphs with diameters 2 and

3, IBM J. Res. Dev. i (1960), pp. 497-504.

[Ho] HONG, J.W., On similarity and duality of computation, Proc.

of 21st IEEE Symp. on Foundations of Computer Science (1980)

pp. 348-359.

[Hy] HYAFIL, L., On the parallel evaluation of multivariate polynomials,

SIAM J. on Computing ~ (I 979), pp. 120-123.

[IMR] IBARRA, 0., S. MORAN & L.E. ROSIER, A note on the parallel complexity

of computing the rank of order n matrices, IPL_!_!_ (1980), p. 162.

[Kuck]KUCK, D.J., et. al., Measurements of parallelism in ordinary Fortran

programs. Computer J_ (1974), pp. 37-46.

[K] KUNG, H.T., New algorithms and lower bounds for the parallel evalua

tion of certain rational expressions and recurrences, JACM 23:2

(1976), pp. 252-261.

[LF] LADNER, R.E. & M.J. FISCHER, Parallel prefix computation, JACM 27

(1980), pp. ,831-838.

[LFQSU]LELAND, W.E., R.A. FINKEL, L. QUAO, M.H. SOLOMON & L. UHR, High den

sity graphs for processor interconnection. IPL 12 (1981), pp.

117-120.

[LPV] LEV, G.,N. PIPPENGER & L.G. VALIANT, A fast parallel algorithm for

routing in permutation networks, IEEE Trans. on Computers,

C-30:2 (1981), pp. 93-100.

[MNG] MASSON, G.M. G.C. GINHER & S. NAKAMURA, A sampler of circuit swit

chirl{J networks. Computer, June 1979, 32-48.

[MP] MUNRO, I. & M.S. PATERSON, Optimal algorithms for parallel polyno

mial evaluation. JCSS]_ (1973), pp. 189-198.

[NS] NASSIMI, D. & S. SAHNI, Parallel algorithms to set up the Benes per

mutation networks, IEEE Trans. on Computers, C-31:2 (1982), pp.

148-154.

[PaVa]PATERSON, M.S. & L.G. VALIANT, Circuit size is non-linear in depth,

TCS i (1976), pp. 397-400.

[P] PIPPENGER, N.J., On simultaneous resource bounds, Proc. 20th IEEE

Symp. on Foundations of Computer Science (1979), pp. 307-311.

47

[PSt] PRATT, V.R. & L.J. STOCKMEYER, A characterization of the power of vec

tor machines. JCSS _!I (1976), pp. 198-221.

[PrSa]PREPARATA, F.P., & D.V. SARWATE, An improved parallel processor bound

in fast matrix inversion. IPL 2_:3 (1978), pp. 148-150.

CPrVu]PREPARATA, F.P. & J, VUILLEMIN, The cube connected cycles, CACM 24

(1981), pp. 300-310.

[RI] REIF, J,H., Symmetric corrrplementation, Proc. Fourteenth ACM Symp.

on Theory of Computing (1982).

[R2] REIF, J.H., On the power of probabilistic choice in synchronous pa

rallel corrrputations, Proc. Ninth ICALP, Aarhus, Denmark (1982).

[R] RUZZO, W.L., On uniform circuit corrrplexity, JCSS 22 (1981), pp.

365-383.

[Sa] SAVAGE, J.E., The corrrplexity of corrrputing, Wiley, New York (1976).

[Sc] SCHWARTZ, J.T., Ultracorrrputers, ACM TOPLAS i (1980), pp. 484-521.

[Si] SIEGEL, H.J., Interco~nection networks for SIMD machines. Computer,

June 1979, pp. 57-65.

[SV] SKYUM, S. & L.G. VALIANT, A corrrplexity theory based on Boolean al

gebra, Proc. 22nd IEEE Symp. on Foundations of Computer Science

(1981). pp. 244-254.

[Sto] STONE, H., Parallel processing with the perfect shuffle, IEEE Trans.

on Computers, C-20:2 (1971), pp. 263-271.

[Str] STRASSEN, V., Vermeidung von Divisionen, J. Reine und Angewandte

Mathematik 264 (1973), pp. 184-202.

[SBK] SULLIVAN, H. T.R. BASHKOW, & D. KLAPPHOLZ, A large scale homogeneous

fully distributed parallel machine, Proc. Fourth ACM Symp. on

Computer Architecture (1977), pp. 118-127.

[TK] THOMSON, C.D. & H.T. KUNG, Sorting on a mesh connected parallel

computer, CACM 20:4 (1977), pp. 263-271.

[U] UPFAL, E., Efficient schemes for parallel communication, Proc. ACM

Symp. on Principles of Distributed Computing, Ottawa, Canada

(1982).

[VJ] VALIANT, L.G., Reducibility by algebraic projections, Monographie

No. 30 de l'Enseignement Mathematique (1982), pp. 365-380.

48

[V2] VALIANT, L.G., A scheme for fast parallel communication, SIAM J. on

Computing (1982), to appear. (Also Edinburgh University Comp. Sci.

Report CSR-72-80 (1980).

[V3] VALIANT, L.G., Optimality of a two-phase strategy for routing in in

terconnection networks, (1982), to appear.

[V4] VALIANT, L.G., Experiments with a parallel communication scheme, Proc.

Eighteenth Allerton Conf. on Communication, Control, and Com

puting, University of Illinois, (1980), pp. 802-811.

[VB] VALIANT, L.G. & G.J. BREBNER, Universal schemes for parallel communi

cation, Thirteenth ACM Symp. on Theory of Computing (1981),

pp. 263-277.

[VSBR]VALIANT, L.G.,S. SKYUM, S. BERKOWITZ & C. RACKOFF, Fast parallel com

putation of polynomials using few processors. To appear. (Preli

minary version in Springer Lecture Notes in Computer Science,

Vol. 118, (1981), pp. 132-139.)

1 • INTRODUCTION

DESIGN AND COMPLEXITY OF

VLSI ALGORITHMS

G.M. Baudet
INRIA, Rocquencourt, France

49

There is no need to convince anyone that Very Large Scale Integration

(VLSI) is revolutionizing circuit design. Over the past decade, the level

of integration has been regularly doubling every two years or so, and there

is no reason to believe that the current trend will stop soon.

Whereas circuit designers ten years ago were faced with the problem of

implementing (simple) functions with only a few hundreds of gates, complete

micro-processors are now available as connnercial products with several

hundred thousand transistors on a chip. In another 4 or 5 years, one can ex

pect to have millions of transistors on a chip.

Consequently, conventional measures are no longer adequate for evaluat

ing, and comparing, various circuit designs implementing a given function.

In particular, it is connnonly admitted that a traditional component count

no longer constitutes a valid criterion for measuring a VLSI circuit. A

simple reason is that this criterion only accounts for the processing ele

ments of the circuit and does not account for the data transmission between

processing elements. Therefore, we cannot expect to capture the full com

plexity of VLSI circuits through this cost measure.

In the past few years, a systematic approach was taken by MEAD and

CONWAY [1980], THOMPSON [1979], and BRENT and KUNG [I 980a] to develop new

computational models for VLSI circuits. These models were later refined by

VUILLEJl1IN [1980] and LIPTON and SEDGEWICK [1981] and also questioned by

CHAZELLE and MONIER [1981]. In these notes, we investigate these different

models, and we present some general techniques to establish lower bounds

on the complexity of VLSI circuits. Matching upper bounds are illustrated

through specific circuit desigms.

This review is organized as follows. In Section 2, we develop a com

putational model for VLSI and discuss the models that have been proposed in

50

the literature. In Section 3, we derive direct consequences from the model,

and we establish an initial Lemma of THOMPSON [1979, 1980]. This initial re

sult will be used in Section 4 to establish a general lower bound on the

class of transitive functions (such as binary multiplication, shift, convo

lution, etc,) [VUILLEMIN 1981], In Section 5, we use a different technique

to develop another lower bound on functions like binary addition, prefix

computation, etc. Circuit designs are presented in Sections 6 and 7 to show

that the lower bounds can actually be achieved; they also illustrate a very

important design methodology based on the use of divide and conquer and of

recursive design.

2. A COMPUTATIONAL MODEL FOR VLSI

MEAD and CONWAY [1980], THOMPSON [1979], and BRENT and KUNG [1980a]

have laid down the basis for the formalization of a VLSI circuit, Their

models differ slightly, and we discuss below their general assumptions.

The basic idea is that a VLSI circuit can be viewed as the layout of a

graph in which nodes correspond to gates, and edges correspond to wires.

While edges are only used to simulate transmission of signals between nodes,

nodes simulate the active part of the circuit and are used to model either

the actual processing elements or the I/0 ports.

The general assumptions in our model are discussed in the subsequent

sections and are organized according to their relevance to logical, techno

logical, electrical, and design assumptions.

2.1. Logical assumptions

Probably the most important (albeit often implicit) assumption in all

models is that all signals are supposed to correspond to the digital encoding

of pieces of information. Indeed, we would like to make it clear, from the

beginning, that the model we are proposing here is certainly not adequate to

represent a VLSI circuit as an anolog device; and, as a matter a fact, most

of the results developed in these notes would no longer be valid. This is

stated in the following,

(LI) A VLSI circuit is a digital device,

The question now is to define the right unit of information that should be

used in the model. The only restriction imposed by THOMPSON in his original

51

pap.er [1979] was that the values manipulated by the circuit be taken from

a finite field, namely the set of integers modulo m. Unfortunately, the mo

dulus m was related to the size N of the problem through m > N, causing the

lower bound that he derived for the DFT (Discrete Fourier Transform) to be

too short by a factor of log 1 N (log N being the number of bits required to

code integers modulo m).

In agreement with assumtion (11), signals transmitted along wires (or

edges of the graph) will be assumed throughout to represent a boolean value,

i.e., exactly one bit of information. Similarly, each node of the graph cor

responding to processing elements in our model will be regarded as a boolean

function performing some operation on signals adjacent to that node. This is

summarized in the following statement.

(12) A node or a wire can store at most one bit of information.

It is to be noted that the wire transmitting a signal produced by a node

carries the same information as the one stored in the node, It is therefore

possible to assimilate the wiTe to the node (but only from the point of view

of the quantity of information).

Assumptions (11) and (12) will be presupposed throughout the notes,

even if they are not explicitly referred to.

2.2. Technological constraints

For a theoretical model to be of any practical value, assumptions

should stay close to the real world, and restrictions should also corres

pond to realistic approximations. We list and discuss below assumptions of

the model that are based on current technological constraints. Explicit re

ferences to these assumptions will be made in the remainder of the paper.

(Notations are drawn mostly from [BRENT and KUNG 1980a, 1981].)

(Tl) At most v ~ 2 wires can overlap at any point in the layout of

a VLSI circuit.

This is to account for the fact that all technologies allow for the super

position (without interference) of several wire layers. Typically, vis a

small constant (2 or 3), but it is perfectly conceivable that, with progress

in technology, an arbitrarily large number of layers could be superposed,

allowing for 3-dimensional chips. We will see in Section 3 how some of the

52

results can be adapted to VLSI circuits laid out in the space rather than

in the plane.

(T2) In one layer, the minimal distance between non-intersecting

wires is;\> O.

This minimal distance is highly dependent on the technological process used

in the fabrication of the chip and reflects the minimal resolution of this

process.

(T3) The minimal storage area for one bit of information is S 2 >. 2•

Typically S corresponds to just a few transistors and is in the order of

several >. 2 •

(T4) The minimal area required by an I/0 port is p 2 S.

Although there are no conceptual differences between a gate that corresponds

to an I/0 port and oth~r logic gates of processing elements, it is conve

nient to differentiate between them in order to measure their relative im

portance or influence in the design of a circuit. In addition, if a design

corresponds to a full circuit, it has to communicate with the outside world,

and I/0 ports are typically several orders of magnitude larger than logic

gates.

(TS) A bit requires a minimal delay,> 0 to be transmitted through

any gate or I/0 port,

With this minimal delay we do not yet consider the propagation delay of a

signal along a wire. The assumption concerning this propagation delay is

probably the most controversial among the various existing models, and it

will be examined and discussed in isolation in the next section.

(T6) Any node has a maximum fan-in b 2 2.

This last assumption is not an absolute requirement and will not be needed

directly. It is only a consequence of (T6) together with (TS), derived in

Section 3, that will be used to obtain the lower bound of Section 5.

53

2.3. Propagation delay

While there is general agreement on the assumptions that have been pre

sented in the previous sections, there is little consensus on the correct

assumption to put on the time required to propagate a signal along a wire.

There are three prevalent assumptions, as discussed in [BILARDI et al.- 1981].

The different assumptions are probably best illustrated by considering

the time required by a minimal size transistor to charge a wire of length

L (or equivalently to propagate a signal along a wire of length L).

(Pl)

(P2)

(P3)

Synchronous model: t = 0(1), i.e., the time is independent of L.

Capacitive model: t = O(L).

Diffusion model: t = 0(12).

Assumption (Pl) is probably the most commonly adopted in the literature

[BRENT and KUNG 1980a, 1981; VUILLEMIN 1980; SAVAGE 1981a], and it is es.pe

cially useful when proving lower bounds on the computation time of a cir

cuit, since it is the least'constrained hypothesis.

Assumption (P3), set forth by CHAZELLE and MONIER [1981], is at least

asymptotically, certainly the correct assumption since both the resistance

and the capacitance of a wire of length Lare proportional to L, and,

therefore, the time constant of the wire is quadratic in L. This asymptotic

result has, however, no practical application, at least in current techno

logies, since the quadratic growth would only be sensitive for wires of

length several orders of magnitude over the size of feasible chips.

Assumption (P2), on the other hand, is reasonable. when considering

current electrical parameters: the resistance of a unit width metal wire is

quite negligible compared to the resistance of a minimal size transistor.

MEAD and REM [1980] have shown that, by appropriately rescaling the tran

sistor, the time delay to charge a wire could be made independent of the

size of the wire. In addition, this rescaling corresponds to an area in

crease of the driving transistor which is directly proportional to the

area of the driven wire. Under these conditions, both assumptions (Pl) and

(P2) can be assimilated.

Assumption (Pl) will be used throughout these notes, and the delay in

troduced by a wire will be included in the delay T of assumption (TS),

For a full discussion, the reader is referred to the paper of BILARDI

et al. [1981].

54

2.4. Design methodology

The last assumptions that will be considered in our model correspond

to geometrical constraints imposed by usual design conventions.

(DI) The layout of a VLSI circuit occupies a convex region of the

plane.

Although this assumption is realistic when considering a complete circuit

(which always occupies a rectangular area), it might be a restriction for

sub-circuits that are to be embedded in larger circuits. LENGAUER and

MEHLHORN [1981] have relaxed the convexity assumption and require instead

that a chip occupy a compact region of the plane. They show that the results

that we will develop in Section 4 hold under this new assumption.

(D2)

(D3)

(D4)

The remaining hypotheses are concerned with the input-output schedule.

Each input is read exactly once,

Inputs are supplied and ouputs are delivered at fixed times.

Inputs are supplied and outputs are delivered at fixed loca

tions.

Assumption (D2) states that there is no "free memory" outside the chip, and

that, if some input is to be re-used several times, it must be stored

within the circuit. In [SAVAGE 1981b, 1982] circuits obeying assumption (D2)

are said to be semelective.

LIPTON and SEDGEWICK [1981] call circuits satisfying assumption (D3)

and (D4) when- and where-oblivious~ respectively, and we will adopt their

terminology in these notes. These two assumptions require that the input

output pattern be data-independent (i.e., that it be entirely specified with

the circuit design).

Although most circuit designs are where-oblivious (and, therefore, as

sumption (D4) does not impose any restriction), assumption (D3) excludes

all self-timed circuits because outputs are delivered at times that are de

pendent on the input processed by the chip. It might therefore be useful

to distinguish where-oblivious with respect to the input and with respect

to the output.

Other authors [LENGAUER and MEHLHORN 1981] have the notion of a

55

strongly where-oblivious circuit, meaning that the inputs (and outputs) are

stored in queues, outside the chip, and only the ordering in the queues are

data-independent. Under this assumption, they derive very interesting lower

bounds for transitive functions (see Section 4); but we will not be con

cerned with their results here.

Another restriction which we will not consider in this review, but

which has been set forth by several authors (e.g., [CHAZELLE and MONIER

1981]), is that the I/0 should take place on the boundaries of the chip.

This corresponds to common practice in the fabrication of VLSI circuits but

is not required to derive the results reported here.

2.5, Complexity measures

As was already mentioned, a simple component or gate count no longer

corresponds to any realistic measure of the size of a circuit when dealing

with VLSI circuits. This is particularly true since data communication

might, in many cases, represent the largest part of the circuit (in the

design of a fast binary shifter, for example, as we will see in Section 4).

In the case of VLSI, the size is better expressed as the total area of

silicon used in the layout. The area of a VLSI circuit is throughout denoted

by A. Obviously, another crucial parameter of a VLSI circuit is the time T

required to compute the function in implements.

The area A and the time T required by a circuit to compute a function

constitute important parameters (and have been considered so far the usual

measures) of the circuit. These two measures, however, cannot, by them

selves, usually capture the full complexity of a VLSI circuit. VUILLEMIN

[1981] has introduced a useful complement to these measures with the notion

of the period of a circuit, which we will denote by P throughout, This pe

riod corresponds to the minimal time interval between the input (or the

output) of two consecutive instances of a problem solved by the circuit

(used in a pipelined fashion).

We feel that the period P of a VLSI circuit is just as important a

parameter as its area A and its time T. This is so because the period cha

racterizes the maximum throughput of the circuit, and, in contrast (or in

complement) with the time, it is able to take more completely into account

the computing power of the circuit. In particular, it measures not the time

to solve just one instance of a problem, but the time elapsed between the

solutions of two consecutive problems input to a circuit (their execution

56

taking place simultaneously or in pipeline),

In addition, since any circuit clearly satisfies T ~ P, lower bounds

on the period P will innnediately transfer into lower bounds on the time T,

and they will, therefore, correspond to stronger results.

To paraphraze LIPTON and SEDGEWICK [1981], a VLSI circuit designer is

typically faced with the following problem (or challenge!).

Given: a boolean function f,

Find: a VLSI layout that computes f and that minimizes all three

measures A, P, and T.

Unfortunately, this problem has in general no solution, and, instead of mi

nimizing all three measures together, the circuit designerwill have to try to

minimize some cost function c(A,P,T) that weights all three fundamental pa

rameters of the circuit.

By assuming that such a cost function is monotone, i.e.:

c(A' ,P' ,T') ~ c(A,P,T)

if A'~ A, P' ~ P, and T' ~ T, and that it is resealable i.e.:

c(aA,pP,tT) = g(a,p,t).c(A,P,T),

LIPTON and SEDGEWICK [1981] have shown through simple functional analysis

arguments that the only cost functions are given by:

a p t c(A,P,T) = k.A .P .T.

Among such cost functions, some are of particular interest for their physi

cal interpretation. For example, the product A.T measures the energy re

quired by the circuit during the computation of the function it implements,
2 and the product A.T .measures the corresponding power dissipated by the

circuit. Similarly, the product A.P measures the energy required for solving

just one instance of a problem (bear in mind that several problems are pro

cessed simultaneously by the circuit in a pipelined fashion).

The most connnon cost functions that have been used in the literature,

f h d . A d h 2 ' ' ' 11 d apart rom t e irect measures an T, are t e A,T measure initia y e-

57

veloped by THOMPSON [1979, 1980] and the A.P2 measure introduced by

VUILLEMIN [1980]. Through a combination of lower bound results on both A and
2

A.T, it is easy to also derive a general lower bound on the product A.Ta,

for O a 2 [THOMPSON 1979, 1980; BRENT and KUNG 1980a, 1981].

3. INITIAL RESULTS

After the description of the VLSI model of computation presented in the

previous section, we are now able to derive a few results based on the as

sumptions of the model.

We will first present a few direct consequences of our notations and

assumptions, and we will then re-establish an important le11Dlla initially de

rived by THOMPSON [1979, 1980] that will serve as the basis for the results

of Section 4.

3.1. Direct consequences

LEMMA 3.1. A circuit with N memory ceZZs requires an area at least S.N and

can memorize at most 2N distinct states.

This first result corresponds to the view of a VLSI circuit as a fini

te state machine and is a direct consequence of assumption (T3).

LEMMA 3.2. The time T required to compute a function with one ou-t;put de

pending on N inputs satisfies T ~ T.logb N.

Again, this is a direct consequence of assumption (TS) and (T6).

It is to be noted that the result of Le11Dlla 3.2 is the only consequence

of assumption (T6) that we will require in the remainder of these notes,

and the only property that we will actually use is the fact that the compu

tation time Tis a concave function of N. This property could in fact re

place assumption (T6).

In a different model, using assumption (P3), CHAZELLE and MONIER [1981]

have obtained a lower bound of T.IN for the same computation time T. This

relation also corresponds to a concave function and, therefore, could also

be used in lieu of T.logb N.

LEMMA 3.3. Any circuit computing a function of N inputs to M outputs satis

fies:

58

A,T <! A.P <! p.,. (N+ M).

Consider a circuit with wi input ports and w0 output ports. Then, by (T4)

and (TS), A<! p.(wi+w0) and T <! P <! ,.max(N/wi,M/w0). □

This is probably the simplest tradeoff that can be established for any

VLSI circuit, and, although this first lower bound is linear in both the

number of inputs and outputs, it appears to be tight in a number of situa

tions (this is the case, for example, of binary addition).

3.2. An initial lemma

Most (if not all) of the early results in VLSI complexity have essen

tially been derived through a technique initially developed by THOMPSON

[1979, 1980]. The principal idea consists of partitioning the circuit into

two halves (roughly the same size) and then looking at the necessary flow

of information between the two sides of this partition.

The next lemma is a purely geometrical result which is needed in the

derivation of Thompson's lemma.

LEMMA 3.4. Let C be the length of a:ny chord perpendicular to a diameter of a

convex region of area A, then:

The application of this result to VLSI circuits clearly requires the

use of assumption (Dl). By assumptions (Tl) and (T2), we have the immediate

following consequence,

LEMMA 3.5. Let w be the number of wires crossing any chord perpendicular to
a diameter of a convex region of area A, then

> I 2 2 2
A - 2.w ,A /v.

Let C be the iength of the chord. Clearly, from assumptions (Tl) and (T2),

C <! w,)./v. The result follows from Lemma 3.4. 0

Before stating the last lemma, a few notations and definitions are in

order.

59

Consider a function f 0 (z 1• •••• zM) = f(x 1• ••••~)•with N inputs

and M outputs. Let m be the maximum number of output bits that are delivered

through any one output port. Note that. by assumptions (T4) and (TS):

(3. I) A~ p.M/m, and T ~ P ~ T.m.

Consider now a circuit implementing function f and a partition of the

circuit by a chord as in Lennna 3.5. Let Land R be the two regions of the

circuit resulting from this partition. We will denote this partition by

(L,R) 0 and we will also denote by ILi and !RI the number of output variables

delivered in each of the two sets Land R, respectively. It is always pos

sible, by appropriately sliding the chord, to arrange that:

'(M-m)/27 s ILi s !RI s L(M+m)/2_j.

Having defined the partition (L,R) satisfying this last inequality, we

denote by f(Ll,RI) = (L2,R2)'the definition of function f resulting from re

arranging the variables according to this partition. We also denote by

fL,C(RI) the restriction f(C,RI) off that consists of setting the variables

in LI to some fixed values C; similarly we define fR C(LI).
' The following definition is adapted from a paper by SAVAGE [1981].

DEFINITION 3.1. Given a function f and a partition (L,R), as above, the

cross-flow Im(f) is defined by

where

and where !hi denotes the cardinality of the range of h.

The cross-flow Im(f) measures the number of bits of information that

must be transmitted from one side of the partition (L,R) to the other.

The following lennna is now an immediate consequence of this definition.

LEMMA 3.6 THOMPSON [1979, 1980]. The area A, the time T, and the period P

60

of any circuit computing some function f satisfy

where

PROOF, As in Lennna 3,5, take a chord that cuts w wires. Since the computa

tion off requires the transmission of Im(f) bits of information across the

chord, by assumption (TS), it will take time T ~ ,,I (f)/w, As for the pe-
m

riod P, the chord would constitute a bottleneck as long as P $,,I (f)/w.
m

The result then follows from Lemma 3.5. D

Since I (f) decreases when m increases, this last lower bound is weak for
m

large m, However, by combining the result of this last lennna and equation

(3.1), it follows that

(3,2)

where

ROSENBERG [1981] has considered 3-dimensional circuits in a model similar

to the one we have developed in these notes. The results of both Lennna 3.5

and Lennna 3,6 can be transposed immediately in this new 3-dimensional model,

and, in particular, the result of Lennna 3.6 becomes

for some constant k, where V corresponds to the volume of a VLSI circuit

and replaces the area A. For more details on 3-dimensional VLSI circuits,

the interested reader is referred to the paper by ROSENBERG [1981].

61

4. A COMBINATORIAL LIMITATION

This section is adapted from a result of VUILLEMIN [1980] which unifies
2 2 most of the A,T = O(N) VLSI complexity results,

2 Thompson's lemma results in good lower bounds on the A.T measure for

any function f, provided that the flow of information required by function

f is rich enough, i.e., provided that the cross-flow Im(f) can be shown to

be large enough.

VUILLEMIN [1980] considers a class of functions which he called transi

tive fW1ctions, Any function in this class enjoys the property that any

input bit can be mapped onto any output bit, thus guaranteeing that a maxi

mum of information has to flow inside any circuit that implements such a

function,

Let G be a permutation group over {I, ••• , N} and let g(I), ••• , g(N)

be the permutation associated with an element gin G, Formally, he gives

the following definition.

DEFINITION 4.1, A function f~ (z 1, ••• ,zN) = f(x 1, ••• ,~,s 1, ••• ,sp), is

transitive of degree N if there exists a transitive permutation group Gover

{1, ••• ,N} such that, for any gin G, there exist binary values of s 1, ••• ,sp

for which f is permuting x 1, ••• ,~according tog, i.e.

The class of transitive functions includes a large number of basic problems.

In particular, binary shift, cyclic shift, binary multiplication, convolu

tion, linear transform, etc,, can all be shown to correspond to transitive

functions. The reader is referred to the paper by VUILLEMIN [1980] for other

examples and proofs.

THEOREM 4,1 [VUILLEMIN 1980]. Any circuit with area A, period P, and time T

computing a transitive function of degree N satisfies

2 2 2 A.T ~ A.P ~ k,N,

for some constant k.

PROOF. In this discussion we do not take into account the variables s. in
i

the definition of function f. Consider a chord partitioning the circuit in

62

two halves Land R, as in Lennna 3.5. When function f computes a permutation

g of the transitive group G, we say that bit x. crosses the chord if x. is
i i

input in L (resp.R) while xg(i) is output in R (resp. L).

Through simple counting arguments, it can be shown that, during the

computation of all permutations in G, the total number of crossings must be

at least IGl.min(ILl,IRI) = !GI.ILi, where !GI denotes the number of ele

ments in G. Therefore, there must exist a permutation gin G that accounts

for at least ILi crossings. This particular permutation contributes to at

least '(N-m)/27 bits of information in the definition of the cross-flow

Im(f).

Theorem 4.1 then follows from equation (3.2). D

5. AN ENTROPIC LIMITATION

Most of the results of this section are exposed in more detail in

[BAUDET 1981].

While the technique developed in Section 3.2 and used in Section 4

leads to lower bounds that account exclusively for the amount of wires re

quired by a VLSI circuit, the technique presented in this section leads to

lower bounds that account exclusively for the amount of memory required by

the circuit. In this respect, these two techniques complement each other.

Throughout the section we regard a VLSI circuit as a finite state ma

chine, and the results are based on the observation of the progress made

by a circuit towards the evaluation of the function it implements. At the

time of observation, we want to relate the quantity of information still

to be produced by the circuit (i.e., the number of bits not yet delivered)

to the quantity of information still available from the input (i.e., the

number of bits still to be read, together with the information already

read and encoded within the circuit).

Before developing these results, we introduce a few notations.

Consider a function f: f(x 1, ••• ,~) = (z 1, ••• ,zM), computed by a cir

cuit C. For the sake of clarity, we assume throughout that M = N. Let

ti= i.T, for i ~ O, be a sequence of observation times. Let ni be the num

ber of bits input to the circuit Cat time ti. We define N0 = 0 and

Ni= Ni-I+ ni-l' for i ~ I; Ni represents the number of bits input to C

prior to time t., Also, lets. be the number of bits encoded within the
i i

circuit, Last, let S. be the set generated by the output variables not yet
i

63

delivered by time ti; the size of this set, denoted by lsil' corresponds to

the number of distinct values that can still be produced by circuit C after

time ti.

If, at time t., the evaluation off is not
1

not yet deliverd must be evaluated from the N -

completed, any output bit

N. 1 input bits not yet read
1-

at time ti' from the ni input bits just read at time ti' and from the infor-

mation memorized within the s. cells of the circuit (which encodes the input
1

read prior to time ti). This leads to the following lennna.

LEMMA 5.1. The area A of a circuit computing function f satisfies

with

s. ~ logjS.] - '(N-N1,).
1 1

The first inequality is a direct consequence of assumptions (T3) and (T4).

The last inequality follows from the above discussion. D

This lennna already provides us with a lower bound on the area required

by a circuit. We cannot expect, however, a lower bound better than linear

in the number of outputs produced by function f. Nevertheless, this linear

lower bound appears to be tight in a number of cases. This is so, in parti

cular, for any function that is surjective and such that any output bit de

pends on all input bits. This is the case of all transitive functions, and

it is stated in the following.

LEMMA 5,2, The area A of any circuit computing a transitive function of

degree N satisfies:

A~ N.min(p,S),

Lett. be the time when the last input bit is read by the circuit, We have
1

Ni+ ni = N. Since any output bit depends on all input bits no output has

yet been produced at time ti' therefore, Si= s0• The result follows from

the fact that the function is surjective (i.e. !s0 ! = 2N) and from Lennna 5.1.

Note, that by a combination of Lennna 5,2 and from Theorem 4.1, we ob

tain a general lower bound on the A.Ta and A.Pa measures. Specifically, we

64

have

for OS x SI.

The linear lower bound of Lemma 5.2 is based on an instantaneous observation

of the circuit. We will show below how to strengthen this result through a

continuous sequence of observations over the entire execution of function f.

LEMMA 5.3. The area A, the period P, and the time T of a airauit aomputing

funation f satisfy

A.T :1: A.P :1: p.T.N + 13.T l loglS-1 - (N-N.).
OsiT<T L L

irhe A.T lower bound corresponds to a simple summation of the inequalities

of Lennna 5.1 over th~ entire execution time for one problem (i.e., [O,T]).

As for the A.Plower bound, we look at all the problem instances processed

simultaneously by the circuit over one period (i.e., [O,P]), and we observe

that all the problem instances are independent. D

Again, let us consider a function f which is surjective, i.e., such

that !s0 1 = 2M = 2N (recall that we take M = N). For i;;,: O, let Mi be the

number of bits that have been produced by the circuit up to (and including)

time ti. Then

N-M.
IS. I = 2 L

L

and the result of Lennna 5.2 simplifies as

(5.1) A.T. :1: A.P. :1: p.T.N + a.T I <NcMi).
OSiT<T

In particular, equation (5.1) shows that we can obtain a good lower bound

on the A.P measure for some function f provided that the quantity (N.-M.)
L L

can be shown to be large enough. This is the case of functions like binary

addition or prefix computation [LADNER and FISHER 1980]. This result is

stated in the ~allowing.

65

THEOREM 5,1, The area A, the period P, and the time T required by any cir

cuit to perform the binary addition of -two N bit numbers satisfy,

PROOF, Starting with equation (5,1), we want to find an upper bound on the

quantities Mi given the sequence Ni. Equivalently, we can find a lower bound

on the time ti at which output bit zj can be delivered, The proof follows

from the fact that, in the case of binary addition, bit z. depends on all of
J

the input bits xi for O $ i $ j. A detailed proof can be found in [BAUDET

1981]. □

As was mentioned in Section 3.1, we could have derived a similar result

in the VLSI model of computaion proposed by CHAZELLE and MONIER [1981], In

their model, the lower bound of Theorem 5,1 becomes

COROLLARY 5,1, The area A, the period P, and the time T required by any cir

cuit to perform the binary addition of -two N bit numbers satisfy

2 A,T ~ A.P.T ~ O(N.log N).

The result follows from Theorem 5.1 and Lemma 3.2, by observing that bit

zN-I depends on the N input bi ts x0 , ••• , xtl- I. ll

In particular, this re-establishes a result of JOHNSON [1981] on the

A.T2 measure,

6, VLSL CIRCUITS FOR CONVOLUTION

In this section, we present a family of VLSI designs for convolution

or polynomial multiplication, The results are taken from [BAUDET etal. 1980].
The results not only illustrate some upper bounds that match the_lower

bounds presented in the previous sections, but also they illustrate a design

technique which we think is very important by itself, The designs presented

below are based on the use of divide and conquer, and the layouts are built

recursively. The same idea was used by LUK [1981] to design a binary multi-

plier.

The convolution of the two number sequences A= (a0, ••• ,an-l), and

B (b0 , ••• ,bn_ 1) is the sequence C = (c0 , ••• ,c2n_2) where

c.= 'i' a .• b .. ,
l. l J l.-J

for O ~ i ~ 2n - 2. In other words, convolution is a polynomial product

A(x).B(x) C(x) where A(x), B(x), and C(x) are the polynomials with coeffi-

cients (a.), (b.), and (c.), respectively.
l. l. l.

We will assume that the input coefficients a. and b. are in the range
-1 -1 1 1

[-2P , zP -I]. The output coefficients c. need, therefore, to be coded
l.

over k = 2p + flog nl bits, By padding input coefficients with sufficiently

many zeroes, we can assume that both input and output coefficients are coded

over k bits. Measured as the total number of output bits, the size of our

problem is N = O(n.k). We observe that k ~ log N.

The most widely used circuit for convolution involves a multiplier ac

cumulator, Although it,only requires a small area, linear in the problem

size (which is the best we can achieve), its computing time is too large

and is prohibitive in many applications.

Another solution is presented in [KUNG and LEISERSON 1983], using a

systolic design. In their design, both the area and the computing time are

linear in the problem size,

The key idea in the designs presented below is the recursive construc

tion of the circuits. The simplest fom is presented here. Refinements on

these designs and optimal circuits

The polynomial product, C(x)

degree one polynomials, A(x) = a0 +

in 4 multiplications and I addition

are presented in [BAUDE~ et al. 1980].
2 A(x).B(x) = c0 + c 1x + c2x, of two

a 1x and B(x) = b0 + b 1x, can be computed

(6. I) aO.bO' Pz = aO.bl, P3 = al.bO' P4 = al.bl,

co= P1• cl= Pz + P3, c2 = P4•

In general, the polynomial product of two degree n polynomials can also be

computed with 4 products of polynomials of degree n/2 and with 4 additions of

of polynomials of degree n/2, by simply splitting the coefficients into two

halves.,

Figure 6.1: A basic serial multiplier.

al

b1

,- -- -:i
I

n

I 1,
I

J 1 i

Ml Ml Ml Ml

a 1 x b 1 al X bo aO> bl a0x bO

I ,f
I _____________ ..,

Figure 6.2: Circuit M.
2

cl

L..,-...----'-r---,-----'-,.--.------'-,--L~~~~~_,__➔ c0
L---1-+<t)----K+)---+--,- cl

' L------11(-t).---~t,_-------~-•c2
L---------------------------- c3

67

Figure 6.3: A circuit Mn constructed from 4 circuits Hn/ 2•

These decompositions lead naturally to the recursive construction of a

polynomial multiplier. The basis of the recursion is a circuit M1 (shown in

Figure 6,1) which performs the serial multiplication of two k-bits integers

a and b, computing serially the k bits of c = a.b. Then formulas (6.1) can

be used to define a circuit M2 (see Figure 6.2) combining 4 circuits

M1 and I elementary serial adder.

In general, a circuit Mn can be constructed using 4 circuits Mn/2 and

4 serial adders, as shown in Figure 6.3. There each wire represents n/2 pa

rallel wires, each of which carries k bits serially. The serial adders have

an area the same order of magnitude as the wires themselves.

68

The performances of this circuit can be obtained readily from the re

cursive construction. Let A, P, and T denote the area, the period, and n n n
the time of circuit Mn, and let W and H be its width and its height (so n n
that An= Wn.Hn). For n > 1, we have

where k.T is the time for the serial addition.

The basis for these recurrences is provided by the performances of cir

cuit M1: A1 = w1.H1 = a.k, P1 = T1 = t.k, where a and t depend on the actual

design of M. We obtain:

Expressed as

An =(4.)..n. logn + n.w1). (2.)..n. logn + n.H 1),

Pn = max(t.k, T.k),

Tn T.k.logn+ t.k.

the total problem size N n.k, we deduce

A.P2 2 2 ~ O(N .k .log) for k s 2 log N,

A.P2 O(N2.k3) for k ~ 2 log N.

that:

2 This circuit is therefore not optimal with respect to the A,P measure.

Another circuit, based on a different multiplicative scheme, is presented

in [BAUDET et al. 1980], and this circuit is optimal with respect to this

measure.

7. VLSI CIRCUITS FOR ADDITION

The problem investigated in this section is the binary addition of
n-1 two n-bit numbers: given A= a0 + 2.a1 + ••• + 2 .an-I' and similarly for

B, find S =A+ B = s0 + 2s 1 + ••• + 2nsn•

There are two classes of binary adders, depending upon the time re

quired to perform the addition of two n-bit integers.

Slow adders perform a binary addition in a time which is linear in the

69

length of the integers. The basic building block is the full add.er of Figure

7.1 (see end of section). Its function is to compute the sum of the three in

put bits: a,b,c. and to provide a 2-bit representation of this sum: s, c t" in OU

Specifically

so that

s = a + b + c. (mod 2), in

c = (a+ b + c.) > I. out in

Such adders are called aarry-ahain or aarry-propagate adders and are inhe

rently sequential since the evaluation of bits. requires the knowledge of
1

the carry in position i - I.

Although all carry-propagate adders perform a binary addition in time

T = O(n), it is possible to ~nhance their performance through pipeline, In

particular, the circuit of Figure 7.2, which we could term a systolic adder,

is fully pipelined (i.e., it functions at clock rate). Its performances are

A= O(n), P 0(1), and T O(n).

Through a combination of the two circuits of figures 7.1 and 7.2, it is

quite simple to design a carry-propagate adder which has performances

A= O(n/p), P = O(p), and T = O(n) for any pin [1,n]. The parameter pis

a measure of the degree of parallelism and corresponds to the number of

problems processed simultaleously

This circuit also shows that it is not possible to improve on the li

near lower bound of Le11Dna 3.3.

On the other hand, fast adders allow the binary addition of two inte

gers in sub-linear time (in our model). Such adders are called aarry-save

or aarry-lookahead adders.

We will report below the design of a fast adder proposed by BRENT and

KUNG [1980a].

In terms of boolean equations, the carry and sum in position i can be

computed as follows

70

(7. I)
c.

l.

where the operators.,+, and® denote the a:nd, or, and exclusive-or boolean

operations respectively. (We define c0 = 0.)

The evaluation of c. can be rewritten as
l.

with

a. ® b .•
l. l.

Define the operator* by

(g,p) * (g',p') (g + (p • g I) 0 p • p I)>

and let

<go,Po) (Go,Po)

(Gi ,Pi) (gi,pi) * (Gi-l'Pi-1) if i ~ O.

BRENT and KUNG [1980a] have shown that ci = Gi. Since the operator* is as

sociative, all the (Gi,Pi)' and therefore all of the carries ci' 0 s i < n,

can be computed in log(n) parallel steps.

The circuit of Figure 7,3 corresponds exactly to this evaluation. All

the output bits si' 0 sis n, can then be evaluated through equation (7.1).

We observe that this circuit can be fully pipelined, in which case its

performances are given by

A= O(n.log n), P O(l), T O(log n).

In particular, we notice that the circuit is optimal with respect to the
2 A.P.T measure while it is not with respect to the A.T measure.

I
I
I

[tJ
I

I
I

m
I

CD

Figure 7.1: A Full-Adder.

al bl
aO bO

a b n n

OW◊

I

DJ

so

s
n

Figure 7.2: A systolic adder.

I
I

DJ
I

I I

OJ DJ

Figure 7.3: A fast adder.

C
n

71

72

REFERENCES

ABELSON, H. , and ANDREAE, P. (1980) , Information trans fer and area-time

tradeoffs for VLSI multiplication, Communications of the ACM,

Vol. 23, No. I, January 1980, pp. 20-23.

BAUDET, G,M, (1981), On the area required by VLSI circuits, in VLSI Systems

and Computations, H,T, Kung, B. Sproull, and G. Steele (eds),

Computer Science Press, October 1981, pp. 100-107.

BAUDET, G,M., PREPARATA, F.P., and VUILLEMIN, J.E. (1980), Area-time optimal

VLSI circuits for convolution, Technical Report, No. 30, INRIA,

Rocquencourt, August 1980, (To appear in IEEE Transactions on

Computers.)

BILARDI, G., PRACCHI, M., and PREPARATA, F.P. (1981), A critique and an ap

praisal of VLSI models of computation, in VLSI Systems and Com

putations, H,T, Kung, B. Sproull, and G. Steele (eds), Computer

Science Press, October 1981, pp. 81-88.

BRENT, R.P., and KUNG, H.T, (1980a), The chip complexity of binary arithme

tic, Proceedings of the 12-th Annual ACM Symposium on Theory of

Computing, April 1980, pp. 190-200,

BRENT, R.P., and KUNG H.T. (1980b), On the area of binary tree layouts, In

formation Processing Letters, Vol. II, No. 1, August 1980, pp.

46-48,

BRENT, R,P., and KUNG H.T. (1981), The area-time complexity of binary multi

plication, Journal of the ACM, Vol. 28, No. 3, July 1981, pp.

521-534.

CHAZELLE, B., and MONIER, L. (1981), A model of computation for VLSI with

related comple;city results, Proceedings of the 13-th Annual

ACM Symposium on Theory of Computing, May 1981, pp. 318-325.

GUIBAS, L,, and VUILLEMIN, J, (1982), On fast binary addition in MOS techno

logies, in preparation.

HONG, J.W., and KUNG H,T, (1981), I/0 complexity: The red-blue pebble game,

Proceedings of the 13-th Annual ACM Symposium on Theory of Com

puting, May 1981, pp. 326-333.

JOHNSON, R.B., Jr. (1980), The complexity of a VLSI adder, Information Pro-

73

cessing Letters, Vol. It, No. 2, October 1980, pp. 92-93,

KEDEM, Z.M., and ZORAT, A. (1981), On relations between input and communi

cation/computation in VLSI, Proceedings of the 22-nd Annual

IEEE Symposium on Foundations of Computer Science, October 1981,

PP• 37-44.

KUNG, H.T., (1979), Let's design algorithms for VLSI Systems, Proceedings of

the Caltech.Conference on VLSI, Jaµuary 1979, pp •. 65-90.

KUNG, H.T., and LEISERSON, C.E. (1980), Systolic arrays (for VLSI), in [MEAD

and CONWAY 1980], pp. 271-292.

LADNER, R.A., and FISHER M.J. (1980), Parallel prefix· computation, Journal

of the ACM, Vol. 27, No. 4, October 1980, pp. 831-838.

LEIGHTON, F.T. (1981), New lower bounds techniques for VLSI, Proceedings of

the 22-nd Annual IEEE Symposium on Foundations of Computer

Science, October 1981, pp. 1-12.

LENGAUER, T., and MEHLHORN, ~. (1981), On the complexity of VLSI computa

tions, in VLSI Systems and Computations, H.T. Kurtg, B. Sproull,

and G. Steele (eds), Computer Science Press, October 1981, pp.

89-99.

LIPTON, R.J., and SEDGEWICK, R. (1981), Lower bounds for VLSI, Proceedings

of the 13-th Annual ACM Symposium on Theory of Computing, May

1981, pp. 300-307.

LIPTON, R.J., and TARJAN, R.E. (1980), Applications of a planar separator

theorem, SIAM Journal on Computing, Vol. 9, No. 3, August 1980,

pp. 615-627.

LUK (1981), A regular layout for parallel multiplier of O((log n)**2) time,

in VLSI Systems and Computations, H.T. Kung, B. Sproull, and

G. Steele (eds), Computer Science Press, October 1981, pp. 317-

326.

MEAD, c., and CONWAY, L. (1980), Introduction to VLSI.$ystems, Addison

Wesley, Reading, Massachusetts, 1980.

MEAD, c., and REM, M. (1980), Highly concurrent structures with global com

munication, in [MEAD and CONWAY 1980], pp. 313-329.

PREPARATA, F.P., and VUILLEMIN, J.E. (1980a), Area-time optimal VLSI networks

74

based on the Cube-Connected-Cycles, Technical Report, No, 13,

INRIA, Rocquencourt, March 1980.

PREPARATA, F.P., and VUILLEMIN, J.E. (1980b), Area-time optimal VLSI net

works for rrrultiplying matrices, Information Processing Letters,

Vol. 11, No. 2, October 1980, pp. 77-80.

PREPARATA, F.P., and VUILLEMIN, J. (1981), The Cube-Connected Cycles: Aver

satile network for parallel computation, Communications of the

ACM, Vol. 24, No. 5, May 1981, pp. 300-309.

ROSENBERG, A.L. (1981), Three-dimensional integrated circuitry, in VLSI Sys

tems and Computations, H.T. Kung, B. Sproull, and G. Steele

(eds), Computer Science Press, October 1981, pp. 69-80.

SAVAGE, J.E. (1981a), Area-time tradeoffs for matrix rrrultiplication and re

lated problems, Journal of Computer and System Sciences, Vol.

22, No. 2, April 1981, pp. 230-242,

SAVAGE, J,E. (1981b), Planar circuit complexity and the performance of VLSI

algorithms, in VLSI Systems and Computations, H.T. Kung,

B. Sproull, and G, Steele (eds), Computer Science Press, October

1981, pp. 61-68.

SAVAGE, J.E. (1982), Bounds on the performance of rrrultilective VLSI algo

rithms, Department of Computer Science, Brown University, Tech

nical Report No. CS-82-10, March 1982,

THOMPSON (1979), Area-time complexity for VLSI, Proceedings of the II-th

Annual ACM Symposium on Theory of Computing, May 1979, pp. 81-

88.

THOMPSON, C.D. (1980), A Complexity Theory for VLSI, Ph.D. Dissertation,

Computer Science Department, Carnegie-Mellon University, August

1980.

VUILLEMIN, J. (1980), A combinatorial Zimit to the computing power of VLSI

circuits, Proceedings of the 21-st Annual IEEE Symposium on

Foundations of Computer Science, October 1980, pp. 294-300.

YAO, A.C. (1981), The entropic limitations on VLSI computations, Proceedings

of the 13-th Annual ACM Symposium on Theory of Computing, May

1981, pp. 308-131.

ABSTRACT

SYSTOLIC COMPUTATION AND VLSI

M.R. Kramer & J. van Leeuwen
University of Utrecht, Utrecht, the Netherlands

75

The notion of systolic computation is due to H.T. Kung and C.E. Leiser

son. It describes the computation by means of a network of simple processing

elements that rhythmically act on regular streams of data passing through

the system. We explain the paradigms of systolic algorithm design through

a discussion of systolic queues, stacks and trees. An integral approach is

given to matching problems and matrix multiplication performed by (2-dimen

sional) systolic arrays. As,a novel contribution we present a systolic

algorithm for inverting a nonsingular n x n matrix in O (n) time.

I • INTRODUCTION

With the advent of VLSI-technology (cf. Mead and Conway [17]) it has

become feasible to design circuits with tens of thousands of components and

integrate them on a single chip of silicon. The large degree of parallelism

that can be incorporated in circuits of this size gives VLSI-chips at least

the potential of providing extremely fast and efficient computing devices.

The development of systolic algorithms as initiated by Kung and Leiserson

[13] can be viewed as an approach aimed at exploiting this potential

through the use of modular design principles and fully parallel and pipe

lined data processing (streaming).

A VLSI-chip as understood here is described by its constituent com

ponents (processing elements) and their interconnections (the wiring pattern).

We will simply assume that processing elements consists of a single "cell",

76

even though they may be built of several transistors and like components.

To facilitate the design of the chip, we insist that the actual variety

of different processing elements used be kept as small as possible. The

wiring pattern needs to be simple and regular for the same reason, with only

local connections of processing elements and no long wires that need more

area and more energy to drive and that are invariably slower. The algorithm

performed on the chip should exploit the parallel processing power of

the many available cells, which includes both a "division of labor" and

the use of pipelining through the circuit.

The VLSI-chips that conform to these rules are characterized by simple

geometries (arrays) of cells, with the cells rhythmically acting on one or

more streams of data that smoothly move across the chip. The algorithms

underlying the operation of the chip have been termed "systolic" (Kung and

Leiserson [13]) for the analogy with the rhythmic pulsing of blood through

the arteries. Systolic algorithms and architectures have been studied

extensively by H.T. Kung (see e.g. [IO], [II]) and several co-workers.

Independently similar goals have been pursued by the research group of T.

Legendi (see e.g. [14JY in the study of regular "fields" of cellular

processors, a hardware oriented outgrowth of the theory of cellular

automata as known from e.g. [5].

In these notes we shall illustrate the paradigms of systolic algorithm

design through a number of examples that, aside from being of interest

in their own right, do provide some useful special circuits for inclusion

in more involved designs. In Section 2 we discuss a design for systolic

priority queues due to Leiserson [IS] and show how it can be used to sort

n keys in O(n) time and to implement ordinary queues and stacks with 0(1)

response times. In Section 3 we discuss the "tree machine" as proposed

by Bentley and Kung [3] and the systolic trees of Leiserson [IS], aimed

again at the implementation of a fast priority queue. We analyse some

shortcomings of both designs and the solutions for it proposed by Song [21]

andOttmann, Rosenberg and Stockmeyer [18], respectively. In Section 4 we

provide a uniform treatment of pattern matching (as in Foster and Kung [8]),

comparison problems (as in Kung and Lehmann [12]) and matrix multiplication

(as in Kung and Leiserson [13] and Katona [9]), which all use a similar

idea of pipelining on a I- or 2-dimensional array of cells. In Section S

a (novel) systolic algorithm is presented to invert an n x n nonsingular

matrix in O(n) time. The algorithm is based on Gaussian elimination and

assumes that no pivoting is required. The algorithm was proposed for

77

implementation on parallel architectures before (Pease [19]), but the

systolic version presented here shows the intricacy of pipelining to

achieve greater speed. Each of the Sections demonstrates a particular way

of describing the actions of a systolic circuit: operational in terms of

actions of cells on their contents (Section 2), programmed for a small

repertoire of instructions (Section 3), operational in terms of actions on

the data streams (Section 4) and functional (Section S, as in the framework

of e.g. Katona [9]).

From an abstract point of view, systolic algorithms are not very

different from multi-processor algorithms with the processors acting in

fully synchronized order. Two levels of timing can be distinguished in

the design of a systolic algorithm: (i) the global timing required to syn

chronize the cells as a network, and (ii) the local (internal) timing re

quired for the operation within a cell. The latter is not trivial, for we

shall design processing elements to perform non-elementary operations (like

multiplication) on b-bit numbers. Nevertheless we shall view these op

erations as atomic and requiring only one "tick" of the global clock.

2. LINEAR SYSTOLIC QUEUES AND STACKS

We shall primarily discuss the design of a systolic priority queue,

i.e., a structure that supports INSERT/DELETE/XMIN ("extract smallest key")

commands on a set that never contains more than N keys. The design consists

of a linear array of cells (see figure I) with its I/O connection to the

environment left of the first cell. Every cell has two registers, A and B,

each of which can contain a key of the set. If

~ --ID--ID- --{Il--ffl
figure I

a register carries no key, we assume it contains a default value (00) larger

than any conceivable key. Our aim is to maintain the set of n $ N keys in

increasing order, with all keys in the A-registers of a contiguous initial

segment of the array. The B-registers are used for transporting newly

78

inserted keys to their proper position in the ordering. If a key got to

its place, it moves the current key out of the A-register and replaces it,

while the latter takes over in "streaming" 1:ight. It should be clear that

an insertion thus has an effect that ripples on through the array, moving

all subsequent keys one place up. As soon as one insertion has moved one

step one can initiate a next one, for the first cell would now be idle.

A deletion would require a special signal to be sent up the array, to

search for and delete a particular key. All keys to the right should

subsequently move down one place, which they will appear to do one after

the other and just fast enough to give instructions coming in from the

left an undistorted impression of contiguity of the data set·. The extraction of

the smallest key is a special case, with an additional instruction to send the

key (always in the A-register of the first cell) left to output. For uniformity

we only program the array to do the latter kind of deletion.

The cells will be timed such that the odd and even numbered cells

"beat" alternately. When it acts, a cell will compare its register con

tents with the register contents of its neighbour to the left. The timing

of the array is such that this neighbour is momentarily in-active and

(thus) it is safe to inspect it. The "IOpad" (see figure I) should act

as a left neighbour when it has to. At other times it can route keys in

and out. Let Al and Bl denote the register contents of the A and B

registers of a left neighbour, respectively. The cells will cycle through

the following program:

do

cycle I: copy Bl into B; rearrange the keys in Al' A and B such

that Al~ A~ B;

cycle 2: rest

od.

Observe that values in a B-register indeed move right and are swapped in

place when the proper place in the ordering ("before the current A-value")

is reached. If Al contains co (ultimately the result of a deletion or XMIN),

then keys right of it will move a step down (in ripple fashion). The

copying of a Bl-register (in cycle I) could, but need not destroy the

value of this register. The IO-pad has an A and a B part that is set as

follows, to interact properly with the first cell of the array and allow

for the processing of commands:

79

(i) to insert a key k, A is set to - co and B to k (which thus prepares it

for moving up in the B-registers),

(ii) to extract a smallest key, both A and Bare set to co, In the next

cycle (or the one after that, depending on the timing of the array)

the smallest key will have moved into the A-register and can be

extracted. The first cell now has a value co in its A-register, which

will be filled from the right immediately in the following step,

(iii) when idling, A is kept at - 00 and Bat 00,

The design has no provision for signaling when the queue is "full". Over

flow will result in the loss of elements at the end. The following conclu

sion should be evident ([15]).

THEOREM. A linear systolic array of size N can process INSERT/)G1IN (a:nd

DELETE) commands with 0(1) response times, as long as the number of keys

in the set remains 5 Nat any moment.

The design immediately leads to a fast on-line sorter which opera~es

in O(n) time on a set of n keys. Just feed the keys into the queue and

extract the smallest from it-inn consecutive steps. (The method of

Armstrong and Rem [2] is a special case of this for bitwise sorting).

The principle of the systolic priority queue can be used to implement

ordinary queues and stacks. A straightforward idea is to stamp elements

with a natural number, which gives their ordering in the queue or stack,

and to subsequently use it for a key to move the elements into the array.

We do not propose that this be used but merely note that it is a convenient

way of conceptualizing the required data movements through the A and B

registers. The systolic queue is like a systolic priority queue in which

the elements are kept sorted in inverse order of arrival. Thus, new keys

always move up through the B-registers until the first open A-register at

the end of the line is reached. Deletions from the front of the queue are

executed exactly like the XMIN command. We no longer need co for reasons

of ordering and simply use it to mean that a register is "empty". The

cells of the systolic queue can abide by the following simple program

(recall that the odd and even numbered cells still alternate in action):

80

do

cycle I: if

Al & Bl & A+ copy Bl into B;

□ Al & Bl & -, A+ copy Bl into A; set B to co;

0-, Al & -, Bl & A+ copy A into Al; set A and B to co

fi;

cycle 2: rest

od.

(The if •• □ .. □ .. fi is a guarded command, which effectively acts like a

skip if no guard happens to be satisfied. The &-notation is a simple

shorthand for "is not empty and".) Note that, as deletions occur at the

front of the queue, there will never be more than one empty A-register in

between two occupied ones.

THEOREM. A Un.ear systoUa arroay of size N aan proaess ENQUEUE/DEQUEUE

aomma:nds with O (I) response times• as long as the number of e l,ements in the

set remains s N.

A systol,ia staak is like a systolic priority queue in which elements

are kept sorted in exact order of arrival. Thus, a newly inserted_ key

always forces the element in the A-register of the first cell to move up,

which in turn forces all elements in the queue to step one position to the

right. A deletion is again very similar to the XMIN command and causes all
elements to do one step left. The cells of a systolic stack, again, can do

with a simplified program:

do

cycle I: if

~ & Bl & A+ copy A into B; copy Bl into A;

□ Al & Bl & -, A+ copy Bl into A; set B to co;

□-, Al & -, Bl & A+ copy A into Al; set A and B to co

fi;

cycle 2: rest

od.

THEOREM. A Un.ear systoUa array of size N aan proaess PUSH/POP ao,rmands

bJi th O (I) response times• as Long as the number of e l,ements in the set

remains s N.

3. SYSTOLIC TREES

With the many uses of trees in search structures (cf. [I]) it seems

advantageous to connect N processing elements by a tree-based circuit

rather than in a linear array. Again the cells can have several

figure 2

81

registers, but for the moment we assume that each cell can hold at most one

key. The tree-circuit (see figure 2) is best thought of as consisting of

two strata: one to route information down to the cells, and another to

merge information and route it upward. TheO-nodes simply split or duplicate

messages in one step, the (:,-nodes are more complicated and can perform

some function on the two incoming messages (data) from below to determine

what message to pass upward. Packaging a tree machine on a small chip is

a non-trivial matter discussed at some lenght in Song [21] and Bhatt and

Leiserson [4].

The important characteristic of the tree machine is that it allows

for extremely efficient broadcasting of information to all processors si

multaneously. Assuming the processors all act in one step, the result

information can be merged and sent back up the tree equally fast. (One

might call it "inverse broadcasting"). In the applications that follow we

shall assume that the machine is pipelined. This means that there is a

steady movement of wavefronts down the O-tree and up the ()-tree, with every

wavefront carrying its own information (corresponding to one connnand) and

spanning an entire level of the tree. A distinction should be made between

82

the compute time (i.e., the time between submitting a request and receiving

the corresponding output) and the period of a connnand (i.e., the time

between its wavefront and the next, or: the interval of time that must pass

before a next connnand can be entered).

METATHE0REM. A tree machine of size N can process any admissible connnand

with a compute time of O (log n) and a period of O (1), as long as the

number of elements in the set remains$ N.

The metatheorem does not always hold, but it serves as a criterion to test

the suitability of the tree machine for a particular set of connnands. We

shall try an implementation of a simple dictionary, i.e., a structure that

supports MEMBER/INSERT/DELETE connnands on a set that never contains more

than N keys. We assume throughout that keys are unique and (thus) that

there never occur two identical keys in the tree. It means there never

is an insertion of a key that is already present. (It only points to the

first of several problems inherent to the systolic approach ••.)

A MEMBER(k) connnand is easy. Broadcast it to all processors, let

them answer yes or no-depending on the key they contain and merge the

answers up the tree to check that there was at least one "yes". It takes

a compute time of 0(logN) and a period of 0(1). An INSERT(k) is harder,

because there is no point in broadcasting the instruction and store kin

every available (free) A-register as a result! To guide the search for a

free register, one could add to eachO-node a counter that keeps track of

the number of free registers in the cells it covers in its subtree. The

INSERT connnand is moved in a direction with count> 0, while the counters

that it passes are (of course) immediately decreased by I, until it

eventually reaches one free register where k gets stored. It complicates

the tree machine tremendously, but does give an 0(logN) compute time and

an 0(1) period. To process a DELETE(k) one would need to update the

counters along the search path towards k only. A DELETE thus causes severe

problems, because the search path can only be traced during the wave

back up the tree, i.e., after having located k. This forces the period

for DELETE connnands to remain at O (log N), apparently.

THEOREM. A tree machine of size N can process MEMBER/INSERT/DELETE commands

with a compute time of 0(logN) and a period of 0(1), as long as the

number of elements in the set remains$ N. (It is assumed that INSERTS

always add new keys and that DELETEs always remove existing keys.)

PROOF. The argument is due to Song [21]. Suppose the B-register of every

processor is made available to hold any integer€ l •• N or 00. If a

83

processor holds a key, then its B-register contains 00 ("empty"). If it holds

no key, then the B-register contains a value that essentially is its

position in a free space list. A (global) counter Fis maintained at the

root of the machine to keep track of the total number of free A-registers.

If F has value f, the "tickets" I to fare somehow distributed over

(i.e., contained in the B-registers of) the now available processors. An

INSERT(k) command is tagged with the current value of F and broadcasted to

all processors. The value of Fis rightaway decreased by I and the actual

insertion of k only takes place in the processor whose B-register holds ticket f.

(The B-register is subsequently erased). A DELETE(k) connnand is tagged

with the current value of F plus I and broadcasted down, The value of Fis

incremented and the processor that contains k stores the tag in its B

register. (This time the A-register is, of course, erased,) D

The problem of handling extraneous insertions/deletions (called

"redundant" insertions/deletions in [18]) remains, at least for the time

being.

The counting of free processors became necessary, because we apparently

lost the possibility of shifting keys left and right in the array to

maintain the set in a contiguous initial segment of the processors. Define

an L-machine to be a tree machine of some size N with the processors

connected into a linear array (see figure 3).

in out
+ t

figure 3

84

We assume as in Section I that an IO-pad marks the left end of the array. The

L-machine retains the facility of the tree machine to broadcast instructions

to all processors but combines it with the attractive feature of linear

arrays to move keys among neighboring cells. We shall assume that the

wavefronts activate the processors simultaneously and do not succeed one

another faster that the processors need to complete their cycle. The

packaging of L-machines on one or more chips is a bit harder but can be

done along the same lines as for tree machines (cf. Song [21]). We shall

exploit the L--machine to implement an extended dictionary structure that

supports MEMBER/INSERT/DELETE/XMIN c0Dm1ands, We shall ignore MEMBER

c0Dm1ands, as they are treated exactly as for tree machines.

CODm1ands are broadcasted from the root to all processors. Depending

on the instruction received the processors shift keys right (if they

recognize that an insertion took place to their left) or left (if they

recognize that a deletion took place to their left or the c0Dm1and was an

XMIN) or not at all (if they recognize there is no need for it). The

processors can decide the required action by comparing k to their A

register and the A-register of their left neighbor. When timed right, the

machine maintains the set of keys in increasing order in an initial

segment of the array. In particular, an XMIN will automatically shift the

smallest key onto the IO-pad,

THEOREM. An L-maahine of size N can process MEMBER/INSERT/DELETE/XMIN

corrmands with a compute time of O(logN) and a period of 0(1), as long

as the number of elements in the set remains~ N. (It is assumed that

INSERTs always add new keys and that DELETEs always remove existing keys.)

Extraneous insertions (i.e., INSERT(k) c0Dm1ands with k already in the

set) lead to severe problems, for they make processors shift their keys

right while they shouldn't. Likewise extraneous deletions (i.e., DELETE(k)

conmlands with knot in the set) make processors erroneously shift keys

left, crushing the smallest key> k currently in the set. A possible way

out suggested in [18] is to allow "holes" in the array, i.e., to accept

that some processors in the initial segment of the array hold no key.

In this way, an INSERT c0Dm1and could proceed as indicated (because it would

merely create an additional hole) and the procedure for DELETEs could

simply consist of the erasure of the key to be deleted. We only need to

make sure that the number of holes doesn't grow out of hand, to endanger

e.g. the rapid answering of XMIN commands. We shall distinguish between

empty locations at the right end of the array (marked with=) and

embedded empty locations at the front (marked by*),

THEOREM. An L-machine of size N can process MEMBER/INSERT/DELETE/XMIN

correnands with a compute time of O (log N) and, a period of O (I), as long as

the number of elements in the set remains~ N/2. (Extraneous insertions/

deletions are allowed.)

85

PROOF. The technique is due to Ottmann, Rosenberg and Stockmeyer [18] but

we render it in a considerably simplified form. The set will be maintained

such that the following invariants hold: (II) the first processor is not

starred, and (12) every starred processor has a non-starred right neighbour.

Extraneous insertions can lead to two consecutive starred processors

and (ordinary!) deletions to even three starred processors in a row, assu

ming a deletion simply "stars" the deleted key. Define an auxiliary

command COMPRESS, which makes a processor shift its key left if the left

neighbour is starred. To reinstate the invariant, it clearly is sufficient

to let every processor right of the presumed location of the update do

one or two COMPRESSes after having performed the regular steps for an

INSERT or a DELETE command, respectively. An XMIN will always move the

smallest key correctly out onto the IO-pad due to (II), but the left shift

generated for the entire array could bring (or rather: leave) a star in

the first cell. Fortunately (12) is preserved in a left shift and guaran

tees that the second processor is not starred. To maintain the invariant

(II) it thus sufficies to do one COMPRESS after every XMIN.

(II) and (12) imply that at most lN/2J processors may get (and remain)

starred, thus reducing the effective capacity of the machine to rN/21

keys. D

Ottmann, Rosenberg and Stockmeyer [18] argue that the compute time

for the given set of commands can be reduced to O(log N) by snaking the

sorted chain of keys through the (upper) levels of the tree and creating

a proper barrier to "bounce" signals back to the root.

4. SYSTOLIC ARRAYS

Until now we only saw designs in which data and instructions can enter

through a single IO-port. One- and two-dimensional systolic arrays are

86

designed so vectors of data can enter into the computation simultaneously,

by letting all processors on the boundary have IO-ports to the environment

(see e.e. figure 4). In this Section we shall explore the potential of the

parallel pipelining of data in a number of applications. We shall primarily

discuss the problem of comparing tuples (a1 , ••• ,~) and (b 1 , ••• ,bN), but

the underlying principles will extend to familiar problems like the systolic

multiplication of two N x N matrices.

Let us suppose first that (a1, ••• ,~) is fixed and that we want to

compare it to many tuples (b 1 , ••• ,bN). A first design that comes to mind

is shown in figure 4. It is an array of N processors, in which

b b
i-1 i

~
figure 4

the i th processor is fixed to contain the i th component of the tuple a.

The tuple bis entered such that its i th component is input to the same

processor, so a comparison of ai and bi can take place. A signals

(starting out with value true) is chased from left to right to collect

the results. The tuples match if and only ifs still has value true

b.
l.

+
s. +LI+s in 1. out s

out s. A (a.=b.)
in l. l.

figure 5

when it reaches the right end of the array. Figure 5 shows the simple

action of every processor.

The design of figure 4 appears to have a period of O(N). Yet there

is no reason to let the I st , 2nd , ••• processor idle as soon as the s- signal

has passed. To take advantage of it, we shall modify the design and use

a skewed input format (figure 6): for all I~ i ~ N -I the datum bi+I

is input into the (i+J) st processor exactly one clock pulse after b. is
l.

input to the i th • The net effect is that the (i+l) st component is input

b (3)
b(3)

8
b (3) 7

b (2) b (3) 6
b (2) b (3)

8 5
b (2) b (3) 4 7

b (I)
b (3) b (2) 6

b (3)
3

b (2) b (I) 8
2 5

7 I b (2) 4

b (2) b (2) 3

I 2

b (I)
I

figure 6

just when the result signal _s of the comparison between (a 1, ••• ,ai) and

(b 1, ••• ,bi) comes in from the left. It should be clear that this design

can be pipelined with a period of 0(1). The result of a comparison is

available one clock pulse after entering the last component of ab-tuple.

THEOREM. A Unear systoUc array of size N can do tuple comparisons with

a fixed vector of Zenght N with compute time 0(N) and period 0(1), using

a skewed input format.

87

It is interesting to note that there is nothing special about using

the operations A and= in the processors (cf. figure 5). If we use opera

tions+ and. instead, s essentially accumulates the inner product of the

tuples (a1, ••• ,~) and (b 1, ••• ,bN) as vectors. We thus have a systolic

algorithm for a variety of problems that all conform to the same algebraic

laws.

Now imagine that we have a "long" string b = b1 b 2b3 ••• bn (n :2: N)

and enter the tuples (b 1, ••• ,bN), (b2, ••• ,bN+I), (b3, ••• ,bN+2) and so

on. The result is that (a1, ••• ,~) gets compared to every substring of

b of lenght N, and the linear systolic array effectively becomes a pattern

matcher. Closer inspection shows that it isn't really necessary to

88

.r-----\

:b2
:J

y

out

figure 7

enter all tuples separately. If we let each tuple lag by on additional

clock pulse in time, then the next symbol required at the port of a processor

can be sent over from its right neighbour and be received just when it is

needed (see figure 7). Immediately after inputting the i th symbol the array

outputs a signal (s) that indicates whether the last N symbols match with

(a1, ••• ,~) or not. Figure 8 shows the design we now

pulser

figure 8

bi+3bi+4bi+5 •••
out

have in its essential form. The string bis steadily moving through the

array and the output indicates whether a match occurs or not. It is

exactly the design of a systoZic pattern matcher as given by Foster and

Kung [8].

Now suppose we have a series of K tuples a(k) = (a;k) , ••• ,~k)) and

b(k) = (b~k) , ••• ,b~k)) and we wish to compare all couples a(k)and b(k),

for I :::: k :::: K. Returning to the design of figure 6 it is clear that a

similar algorithm will do, provided we make sure that every processor is

loaded with the proper a~k) at the right time to match a corresponding
l.

b~k). The solution is, of course, not to fix the a-symbol in a processor
1

89

b (2)
b (2)

8
b (2) 7

b (I)
b (2) 6

b (I) 8
b (2) s

b (I) 7
b (2) 4

b (I) 6
b (2) 3

b (I)

j
b (2)

s
2

b (I) 4

l I
b (I) 3 j b (I) 2 l 1+ l

pulser out
t

1 1
(I)

al

(2) (2) al a2 (2)
())

as (I) a3 a6 (I) (2) a7 (I) as (2) a8
a6 (2)

a7 (2)
a8

figure 9

but to feed in the a-tuples one after the other, in the same (but symmet

rical) skewed manner as the b's. After reading in another pair of symbols

~k) and b~k) into the Nth processor, the array will output the result

of comparing the entire tuples a(k) and b(k) in the cycle. The design

is more appealing perhaps if we use the operations+ and. instead of

A and= in the processors.

THEOREM. A linear systolic array of size N can compute inner product

of pairs of vectors of length N with a compute time of O(N) and a period

of 0(1), using a skewed input format.

The result is a classical one in pipelined computation, which thus

holds in the current framework as well.

90

pulser

pulser

jpulserl

pulser

pulser

pulser

pulser

(4)
a4

out

figure 10

Finally suppose that we wish to compare every a-tuple to every b-tuple

and output signals which indicate with every (say) b-tuple whether it was

matched at least once. In this way we would be able to select the tuples

in the intersection of the two sets. The idea is, of course, to use a

K-fold repetition of the linear design of figure 9 so each of the a-tuples

comes across each of the b-tuples. A slight problem arises in the stepping

pattern if we do so. For example, after af 1) and bi!) have met in a

processor they both move and a;2) and bf2) immediately take their position.

It means that a; 1) and biz) and a; 2) and bi!) pass without meeting in a

processor, i.e., without an apportunity to compare them! As shown in

figure 10 the problem is easily solved by separating both the a-tuples

91

and the b-tuples by a "dummy" tuple (dummies are drawn as dots). The

n\llllber of processor rows must be increased to 2K - I to make it work. To

collect the results of the comparisons an additional column of processing
----·· --•-··· - -·

elements is added to the right of the array. The t-signal sent down is

"v" -ed with the s-signal coming in from every row. Observe that the

t-signal steps along with the bN-symbol of every b(k). By the time b!k)

leaves the bottom right processor, the value of the t-signal that appears

on the out-wire during the next clock period will indicate whether b(k)

matched any of the a-tuples! The design has been suggested by Kung and

Lehmann [12] for use in a relational database multiprocessor environment.

THEOREM. A two-dimensional, systoUa arTaY of size O(k) by O(N) aan proaess

two sets of K tu.pies of 7,enght N and determine their interseation in

O(K+N) time.

An interesting result is obtained if we again replace the operations

A and= in a processor by+ and• • In this case the design of figure 10

essentially computes all inner products ckl = a(k)*b(l) (lsk,~N). If we

omit the rightmost column al)d let each "s" -wire carry its value to output,

then we get the inner products in the skewed order as

C ... 14

c24 c13

C C C

34 23 12

... c44 c33 c22 ell

c43 C C
figure II 32 21

C C
42 31

C
41

. (I) (N)
shown in figure JI. Now let K = N and interpret a to a as the rows

of an N x N matrix A and b (1) to b (N) as the columns of an N x N matrix B.

92

The systolic array we designed exactly produces the coefficient of the

product matrix C = A*B, with a compute time of O(N)!

THEOREM. A two-dimensional array of size O(N) by O(N) can process two N x N

matrices and output their product (as a matrix) in a corrrpute time of

O(N). No (substantially) smaller array will do to get the same compute time.

PROOF. It only remains to show that the O(N2) size bound of the systolic

array cannot be substantially improved. This is a simple consequence of a

theorem of Savage [20] that states that a matrix multiplier with area A

and compute time T must satisfy AT2 = Q(N4). D

In general the design can be applied to multiply K x N and N x K

matrices. (See Katona [9] for some other uses of the design.)

5. A SYSTOLIC MATRIX INVERTER

In this Section we shall develop a systolic algorithm to invert an

NxN matrix A= (a ..) in time O(N), using O(N2) processors. The algorithm
l.J '

is based on Gaussian elimination (see e.g. [6]) and assumes that no

pivoting is needed during the process. It serves here to demonstrate the

intricacies of pipelined computation. We shall first discuss the basic

algorithm and modify the data movement in it to suit our purposes.

The Gaussian algorithm to compute A-I (without pivoting) operates as

follows. Extend A to a N x 2N matrix (A I) by juxtaposing an N x N identity

matrix and apply elementary transformations to it until a matrix (IB)

is obtained. Then B =A-I. Permissible transformations are rowmul's

(multiply a row by a scalar) and rowsub's (subtract a scalar multiple of

a row from another row). The precise algorithm we use is due to Pease [9]:

for i :=

begin

to N do

1 1 . 1 h .th b -1 rowmu: mu tip y t e 1. row y aii;

for j : = I to N do

begin

if j Ii then rowsub: substract a .. times the
-- Jl. .th f h .th

1. row rom t e J row

end

93

(In the algorithm a .. and a .. are used as variables and thus denote the
l.l. J l.

values in the corresponding locations of A as they are at the time of

reference .•) Figure 12 shows how the algorithm works on a simple example.

2 0

'.) G
0 i

0 (i=ll -I 0 1 -½
0 0 1 i 0 2

0

0

(
0 ! 0

'.) (
0 0

I
3 -2

D
"i"

0 1 -I (i=34 0 -I 2

0 ! l -! 0 : -I 2

figure 12

To obtain an algorithm within our present framework, we shall aim at

having a processor in every "cell" (square) of the N x 2N matrix. The key

to systolicism is to observe the necessary data movement, to make it

regular, and pipeline it. Consider Gauss's algorithm for i =I.To do the
-I rowmul one could pass on the value of a 11 to the subsequent processors in_

the first row. Passing it on means: multiply, and send a~: to the right

neighbour. To do the rowsub for j(jjl) one must spread the value of ajl

through the row, and next get the values from the first row (that should

sift down through every column) and do the required multiply (by aj 1) and

subs tract (from the resident row element). It suggests that we better

start by passing on the entire first column and temporarily store the

values in an auxiliary field of the processors in every column. Only in

the first row can we immediately do the necessary Gauss step right-away.

Next we pass all (now modified) values of the first row down to the rows

below and do the rowsub's, one after the other. This gives the algorithm

the flavor of a cyclic (i.e., repeating) 2-phase process: send the first

column right, and (next) send the first row down. For the sake of systolism

it would be desirable if this cycle could be repeated for i = 2, i 3' .••

Observe that the first row is turned into a unit vector (cf. figure 12)

and never again is the sight of much activity after the first step. Thus,

while sending the first column right, we might as well move the column and

let it "exchange" its way over to the end, thus effectively moving the

94

2nd rd position. If we do a similar exchange with , 3 , ••• column left one

the first row (which puts it at the bottom af the matrix and moves up all

other rows by one), then we have created a starting position as before

(although effectively with i = 2 and e.g. a22 in the upper left corner).

With this modification

(
0 2 j 1 0

:) (0 -i j 1 0

~) -1 I 0
0 j 0

i

! 0 0 do 0

C
-! 1 11 0

:) C
-2 -2 i 1 0

~) i
! o 1 o ,. -1 0 ! 0

-do i
0 2 2 ! 0 0

,.: "send" the first column right, next "send" the first row down.

figure :13

the algorithm has become completely regular and, as we shall see, amenable

to pipelining. After N cycles of the 2-phase process all rows are back

in their original order, but the columns are still halfway a full shift

over 2N places, It means that the inverse now appears in the first rather

than the second N x N block of the array and has effectively overwritten

A, which is just as well. Figure 13 shows the modified algorithm applied to

the example matrix of before.

As it stands each cycle of the algorithm takes O(N) parallel moves

and (thus) the entire routine takes O(N2) time, assuming the processors

can be timed right to run it. Observe that each cycle of the algorithm

consists of two "waves": one moving from left to right (doing a rowmul

in the first row and spreading the ajl 'sin the lower rows) and a next

the wave from left

~

++
++
++
++ I

I

...

to right:

··-++
++
++
++

I

_....:+

++
++
++
++

figure 14

the. subsequent wave from up to down:

r

t f t i t : t t t t t

+---.-..+
++
++
++
++

I

I
I

I

I
I

95

I t t t t i:i t t t t
t t t t t: t t t t t ~

I

t t t t t :t t t t t
figure 15

one from "up" to "down" (exchanging the values of the first row downwards

and executing the necessary rowsub's, using the ail values just deposited

in the preceding wave). Figures 14 and 15 show how the waves progress,

with "++" and "t" indicating where the "action" occurs. The wiggly 'l+,--.,.+"

in the first wave indicates that a rowmul is carried out along the way.

Note that the down wave could begin at a processor as soon as the

right wave has passed. And after a down wave has passed, the right wave

of the next cycle can be started up. It follows that the regular wave

pattern of the algorithm allows us to pipeline the computation and let

the waves follow another at a short distance (only one or two clock periods).

To achieve it we have to "skew" the wave fronts, so they indeed move

1 1 . 11 1 f h° F" 14bis d 15bis h h h" compete y 1n para e as 10n. 1gures an sow ow t 1s

96

looks like for separate waves, and figure 16 shows the

a skewed right wave:

I

I

-· I ~ I
~ I
~ I

I .

a skewed down wave:
1

t I

I

I

'

..

..

..

·-' ~ I
I
I
I

._!..+
~ I
~ I
~ I

I
~ I

l

figure

I

I
I
I
I
I

14bis

I

I
I

I
I

'

I
I
I
I
I
I
I

f • 15bis 1.gure

..
~

~

..

..

-~
~

t
l

I
I
I
I
I
I

I
I
I
I
I
I
I

I

I
I
I
I
I

I

I
I
I
I
I

~

pipelining:
,

+.w>-t ~\ ~'/
+ ---.i++ I

++ '•+· ++;
f -+-),, .t't I -+--r, - , ✓ t

++ ,."t 1 ++ /t/ t
++,' 4 / +-+ , ,,

etc.

figure 16

, ,

, ,
, ,

waves of a cycle trailing (between,'~) across from the upper left to the , ,

lower right corner.

THEOREM. A -t;wo-dimensional systolic array of size N by 2N can compute the

inverse of a (stored) N x N matrix in O(N) time using Gauss's algorithm

(assuming no pivoting is needed).

97

PROOF. Put a processor in every cell of the N x 2N matrix. Each processor

will have two data registers and a periodic clock (or state indicator).

The first (a-)register contains the value of the matrix element that is

stored here, the second (b-)register contains the datum that is being

passed on. The clock essentially cycles through four states, corresponding

to the neighbour with whom information is exchanged (watch e.g. the

continuous activity at a single cell in figure 16): l ("get value from the

b-register of the left neighbor"), r ("exchange"), u ("exchange") and

d ("compute the rowsub"). We shall actually let the downward exchanges

move through the a-registers. The processors along the boundaries will

be considered separately as they miss some of the "neighbours" refered

to. The activity of the array is started by sending a control signal

immediately preceding the front of the very first cycle, which turns

everybody's clock to l.
For a concrete description of the actions of a processor we shall

adopt Katona's method of specifying transitions through "configuration

terms" ([9]). Processors will be placed in categories according to their

location in the array (see figure 17): category I are all cells in the

98

VI ; lI !Vll __ ~---• r···

' IV ! I ; V figure 17
'

..... ~-------· -.... ·~--1 vm• m : lX

interior, and categories lI to IX are spread along the boundary. The

transitions can be grouped as follows:

(i) send and exchange the multiplier through the first row (this implements

the wiggly+"""'+)

category processor nextstate

VI la .e:1 -~
]l LCH .ti •I b r I
VI]l b rH a • ra:r=::u::i with a' a.b

Vll ll - [1 r [

(ii) send and exchange the ajl right (through the b-registers) as in the

first wave of a cycle

category processor next state

IV vm ia ti - a rl

Im CLJ---Cu - b rl

Iv vm rm rH:a:""7 -la ul

VIX CD-CI] -lb b rl

For the processors with no right neighbour we have, in addition:

category

Vll V lX

processor

rf
nextstate

ul

(iii) send and exchange the elements of the first row down (through the

a-registers) according to the second wave of a cycle

category

IV IV vm m IX

VI lI Vll IV I V

processor nextstate

ja

rr:r] with a'

For the processors with no neighbour above or below we have, in addition:

category

VI lI Vll

vm m Ix

processor

Li.I
~

nextstate

L.l.l

Ll.l

99

The configuration terms only display the register contents that are of use

in a transition. Unspecified ("empty") fields remain unaltered. The last

wave of the final (Nth) cycle should carry a control signal that turns

processors off (as they return to the l state again).

Observe that N cycles of the algorithm thus trail over the array. The

compute time is easily seen to be O(N). D

A simple observation enables us to reduce the size of the processor

array from N by 2N to N by N. (A related observation occurs in [19].)

Returning to the non-pipelined version of the algorithm, consider the right

-1 0 0 0 0 1 0 0 0 0 al I *
0 0 0 0 * * 0 1 0 0 0

0 0 0 0 *
..

* 0 0 0 0

0 0 0 0 * * 0 0 0 0

0 0 0 0 1 * * 0 0 0 0 1

figure 18

100

N by N block after the first (left to right) wave of a cycle has ended

and exchanged the first column towards the last position in the processor

array (see figure 18). The next (downward) wave will turn this vector into

a unit and exchange it towards the bottom position, thus effectively turn

ing the entire right block into the identity matrix! It follows that we

may as well eliminate the right block from the processor array, provided

we let the processors along the (new) right boundary act as if the

block was still there:

categorie processor nextstate

VIl V IX LL.H ,e_J ~ b rl

VIl l b ri ~ lb ul

V IX rl ~ Jo ul

all other transitions remain as they were. The entire procedure of pipe

lining, of course, holds true for the curtailed array as well. There is

no hope that the size of the array can be reduced to anything less than

0(N2) if the linear processing time is to be maintained, in view of the

results of Savage [20]. By noting (cf. [I], thm 6.8) that

it is not hard to see that the lowerbounds for matrix multiplication (cf.

Section 4) apply to inversion as well. Hence, the systolic matrix inverter

is essentially optimal with respect to the "AT211 measure.

The design is interesting, for it proves that Gauss's algorithm

contains a tremendous degree of parallelism. The most interesting part

perhaps is the possibility to pipeline, which makes crucial use of the

assumption that no pivoting is needed. The assumption is valid for e.g.

synnnetric matrices that are known to be positive definite (cf. [7]). If

pivoting is required (for whatever reason, including numeric stability),

then a third wave is added to every cycle which moves "backward" and

thus prevents the expedience of pipelining. Cycles still need O(N) time,

but the execution can no longer be overlapped. The O(N2) algorithm for

matrix inversion that results still improves upon the fastest algorithms

known in the sequential case. (This is Pease's result, cf. [19].)

It should take little effort to modify the systolic matrix inverter

to a systolic "LU-decomposer". The underlying algorithm (again ignoring

the need to pivot) is quite similar, but only does its rowsub's for

j > i, After N cycles this produces the matrices U (upper triangular)

101

and L-l (lower triangular) in distinct portions of the processor array

(see figure 19). Applying the inversion algorithm in the right block, the

desired L

u
11

(/J 11
11 figure 19

(/J L
11

11

matrix is obtained. In Kung and Leiserson [13] the LU-decomposition was

produced slightly differently.

6. REFERENCES

(Reference [16] is not cited in the text,)

[I] AHO, A.V., J.E. HOPCROFT & J.D. ULLMAN, The design and ana,7,ysis of

aorrputer a7,gorithms, Addison -Wesley Publ. Comp., Reading,

Mass., 1974.

[2] ARMSTRONG, P.N. & M. REM, A serial, sorting maahine, preprint, Dept of

Computer Science, California Institute of Technology, Pasadena,

Cal., 1978.

[3] BENTLEY, J.L. & H.T. KUNG, Two papers on a tree-struatured para7,7,e7,

aorrputer, Tech. Rep. CMU-CS-79-142, Dept of Computer Science,

Carnegie-Mellon Univ., Pittsburgh, Pa., 1979.

[4] BHATT, S.N. & C.E. LEISERSON, How to assemb7,e tree maahines, Proc. 14th

AnnualACMSymp. Theory of Computing, San Francisco, 1982, pp.

77-84.

[SJ CODD, E.F., Ce7,7,u7,ar automata, Acad. Press, New York, NY, 1968.

102

[6] FADDEEV, D.K. & V.N. FADDEEVA, Computational methods of linear al

gebra, Freeman, San Francisco, Cal., 1963.

[7] FORSYTHE, G.E. & C.B. MOLER, Computer solutions of linear algebraic

systems, Prentice-Hall Inc., Englewood Cliffs, NJ, 1967.

[8] FOSTER, M.J. & H.T. KUNG, The design of special purpose VLSI chips,

Computer 13 (1980) 26-40.

[9] KATONA, E., Cellular algorithms for binary matrix operations, in:

W. Handler (ed.), CONPAR 81, LN-CS vol Ill, Springer Verlag,

Heidelberg, 1981, pp. 203-216.

[10] KUNG, H.T., Let's design algorithms for VLSI systems, Techn. Rep. CMU

CS-79-151, Dept of Computer Science, Carnegie-Mellon Univ.,

Pittsburgh, Pa., 1979.

[II] KUNG, H.T., Why systolic architecture, Computer 15 (1982) 37-45.

[12] KUNG, H.T. & P.L. LEHMANN, Systolic (VLSI) arrays for relational data

base operations, Techn. Rep. CMU-CS-80-114, Dept of Computer

Science Carnegie-Mellon Univ., Pittsburgh, Pa., 1980.

[13] KUNG, H.T. & C.E. LEISERSON, Systolic arrays for (VLSI), Techn. Rep.

CMU-CS-79-103, Dept of Computer Science, Carnegie-Mellon Univ.,

Pittsburgh, Pa., 1979, (See also: [17], chap 8).

[14] LEGEND!, T., Cellular algorithms and their verification, in: W. Handler

(ed.), CONPAR 81, LN-CS vol Ill, Springer Verlag, Heidelberg,

1981, pp. 169-188.

[15] LEISERSON, C,E., Systolic priority queues, Techn. Rep. CMU-CS-79-115,

Dept of Computer Science, Carnegie-Mellon Univ., Pittsburgh,

Pa., 1979.

[16] LEISERSON, C.E., Area efficient VLSI computation, Ph.D. Thesis,

Techn. Rep. CMU-CS-82-108, Dept of Computer Science, Carnegie

Mellon Univ., Pittsburgh, Pa., 1982.

[17] MEAD, C.A. & L.A. CONWAY, Introduction to VLSI systems, Addison-Wesley

Puhl. Comp., Reading, Mass., 1980.

[18] OTTMANN, Th., A.L. ROSENBERG & L.J. STOCKMEYER, A dictionary machine

(for VLSI), Rep. RC9060 (#39615), IBM TJ Watson Research Cntr.,

Yorktown Heights, NY, 1981,

[19] PEASE, M.C., Matrix inversion using papallel processing, J. ACM 14

(1967) 757-764.

103

[20] SAVAGE, J.E., Area-time trade offs for matrix multiplication and.

related problems in VLSI models, J. Comp. Syst. Sci. 22 (1981)

230-242.

[21] SONG, s.w., On a high-performance VLSI solution to database problems,

Ph.D. Thesis, Techn. Rep. CMU-CS-81-142, Dept of Computer Science,

Carnegie-Mellon Univ., Pittsburgh, Pa., 1981.

105

VLSI, ALGORITHMS AND GRAPIDCS *

D.P. Dobkin
Princeton University, Princeton, USA

ABSTRACT

Practical and theoretical aspects of the VLSI design process are dis

cussed. The technology is described, algorithms for design automation are

considered and details of two actual designs are presented,

I • INTRODUCTION

Within the next few years, the technology will exist to produce inte

grated circuits composed of a million or more transistors, Very Large Scale

Integrated (VLSI) circuits of these sizes will revolutionize the nature of

computation if the possibilities of productive design and use of such cir

cuits can be realized, Numerous problems of mathematics, theoretical and

practical computer science, engineering and physics must be more fully un

derstood if we are to successfully apply the breakthroughs which allow the

fabrication of transistors of micron and sub-micron size, The excellent

book of Mead and Conway [MC80] represents a strong first step in this di

rection, Although all the assumptions in this book may not be preserved un

der arbitrary scalings and significant miniaturization, we shall follow

their presentation in what follows here,

In this presentation, we discuss some practical and theoretical issues

involved in VLSI design, Our discussion considers issues involved in the

design of algorithms for the automation of the VLSI layout process. Practi

cal issues of design encountered during the creation of two actual VLSI

designs are also presented, As. such, the details of current VLSI design

*)This research supported in part by the National Science Foundation under

grant MCSSl-14207,

106

systems are considered as they were used in the creation of these designs.

While the two designs considered are of a relatively basic nature, a 16-bit

wide divider and 16-bit wide adder, they are of sufficient complexity to

give detailed insight into the design process. Furthermore, the first de

sign has been successfully fabricated and tested. Within this discussion,

we also consider more sophisticated designs composed of building blocks of

the type discussed here. In particular, designs of VLSI engines for geome

tric computing are considered and the components that one might want to

consider in constructing a geometry engine on a chip are discussed.

The components of this paper are threefold, as the title suggests. In

the next section, we discuss VLSI and the VLSI implementation of two cir

cuits in different design enviromnents. Section 3, devoted to algorithms,

presents a consideration of two algorithmic processes, geometric in nature,

involved in VLSI design systems. Finally, in the graphics section, the na

ture of one aspect of a VLSI geometry engine is discussed.

This paper is intended to briefly survey the topics mentioned here. No

attempt is made to be complete. Instead, references are included and the

interested reader is referred elsewhere for further details.

2. ASPECTS OF THE VLSI DESIGN PROBLEM

The excellent book of Mead and Conway [MCBO] made MOS design accessible

to a larger group of computer scientists than had been previously possible.

As such, new problems of interest to theoretical computer scientists have

been proposed and new research areas are growing. One of the most interest

ing problems is the development of design aids for VLSI design. While pro

blems of computer aided design date back to the earliest computers, there

had been little algorithmic analysis of methods of solution of such pro

blems. In some sense, the recent flurry of research activity in this area

can be viewed as a reconsideration of old problems and solutions in a new

light. While the dimensionless design system provided by Mead & Conway may

introduce assumptions which do not have universal application, it does pro

vide a starting point from which design aids may be developed and circuits

may be designed.

During the past year, I have had the opportunity, in collaboration with

Scot Drysdale, to design two circuits using different approaches to the de

sign process. Experiences with these designs are used here as a basic of a

107

discussion of design systems and their relative merits. Algorithmic aspects

of these design systems form the basis of the next section,

The two circuits to be considered will be a 16-bit wide divider and a

16-bit wide adder. The divider was designed at Xerox PARC using graphics

based design tools [FR79, FNBI]. The adder is being designed at Princeton

as part of a larger project, The adder is being built using procedural de

sign tools [LSV82],

Our results are not meant to be a comparison or evaluation of the de

sign system as much as a report on the design experiences in each environ

ment, Indeed, the design systems are at different stages of development and

the execution of designs in each case has thus far been brought to a differ

ent stage of completion, The goal here is to report of the powers and li

mitations of these different design systems and to consider the parts of

each approach which are necessarily highly algorithmic in nature. In the

next section, we explore algorithmic approaches which have been applied to

two important geometric problems which arise in these contexts,

2,1. Graphics based design 0£ a divider

The divider to be described herein was designed as a first exposure

to VLSI design, The project was chosen as one of reasonable size whose exe

cution could be completed in the available time while giving sufficient ex

posure to the design process. The division problem was stated as

q

x/y

r

That is, given dividend y = y 1 ••• y 16 and divisor x = x 1 ••• x 16 find quo

tient q = q 1,.,q 16 and remainder r = r 1, •• r 16 such that x = yq +rand

0 ~ r < y, The computation of the quotient and remainder is done by repeat

ed comparison and .subtraction involving partial dividend (p) and divisor

(x), After each cycle, a new bit (n) is shifted into the dividend and a

quotient (q) is generated following

\08

if p > X

then

p < -- Z*(p-x) + n

q < -- I

else

p < -- Z*p + n

q <-- 0

This computation is done in a highly parallel manner. The comparison p > x

is done while the difference p - xis computed (indeed as a by-product of

the computation). Based on the value of p > x (i.e. of q), either p - x or

pis shifted left by I bit and the new bit n shifted into the low order po

sition of p.

The subtraction/comparison are done by a "borrow-look ahead" subtractor

of design analogous to "carry-look ahead" designs used for adders [S80],

This construction will be described in greater detail for the adder below,

so the details are omitted here. The controlling logic of the circuit con

sists of a value START read from an input pad and a value DONE read to an

output pad. START= I initializes the circuit, starting the clock and en

abling the buffered I/0 pads to accept external inputs. The highest order

bit of the quotient (actually q0) is set to I. After I cycle, the pads are

set to accept output from the circuit and 16 subtract/compare-shift/gener

ate• quotient bit cycles follow. During each cycle, q0 is shifted towards

the DONE pad. After 16 cycles, the value of DONE is I and processing is

completed.

A floor plan of the complete circuit is shown in Figure J. The upper

pads are used to input the dividend and output the (partial and complete)

quotients. Shift registers here handle the shifting of bits. The lower pads

are used to input the divisor and output the (partial and complete) remain

ders. A memory here stores the value of the divisor. The major portion of

the design effort involved creating the subtractor/comparer. The

major portion of the circuit area is comsumed by pads. Indeed, the chip di

mensions (fabricated at A= 2.Sµm) are 8mm x 3mm with the subtractor involv

ing 6mm x Imm or 25% of the area. The design involves about 2500 transistors

109

and. required about 3 man months of effort involving about 2 man months of

design and I of debugging and testing. The tools used in the design were

ICARUS [FR79] for graphical layout and MAGIC [FN&I] for testing and simula

tion. Two fabrications of the chip were done due to difficulties in the

first process. Of the six chips generated, one was successfully tested at a

clock cycle time of approximately IOµs. This time was limited by the testing

tools. We believe that the actual circuit can be clocked at a much faster

rate.

Various lessons were learned from the process of designing, debugging

and testing this circuit, Our inexperience with circuit design and hardware

considerations led us to a mixed top-down/bottom-up method of design. The

floor plan was modified as the circuit progressed and we had little insight

into sizes of parts of the circuit until they were designed. Some good es

timates and lucky guesses led to a final design which is nearly rectangular

and (we believe) relatively compact, During the design, a graphics sys

tem proved to be a useful tool with its "what you see is what you get"

structure. We were overzealous in A-squeezing which proved harmful in later

debugging of the circuit. Often, wires were twisted to save area rather

than settling for a cleaner design.

During debugging, the design aids were surprisingly slow. A design

rules check required 30 minutes on a very high speed processor. When a gen

uine error was found, it required a massive rewiring of the circuit. The

graphics system was especially ill-suited to this task and 4 man hours were

required to rewire 16 output pads into the circuit. After the circuit had

been successfully design rule tested, during static simulation it was dis

covered that a complemented signal was needed in place of a signal in the

design. This observation had drastic consequences since the affected signals

occurred within the most densely designed portion of the circuit and rear

rangement involved significant rewiring. Within our graphics based system,

there was no facility for stretching wires across a horizontal (or vertical)

line to allow new signals to pass. Such a change would have had significant

impact on our design process.

The major algorithmic bottlenecks we felt in the design under the

graphics-based paradigm were two - the need for improved routing tools and

the need for more efficient design rules checking, The geometric aspects of

these problems are discussed in further detail below. The design process

gave us a greater respect for the complexity of VLSI design as well as

110

deeper insights into "bottom-up/top-down" design methodologies for design.

START
INPUT
PAD

CLOCK
PAD

GND

VDD

BUFFERED I/O PADS (16)
SHARED BY y AND q

SHIFT REGISTERS FOR DIVIDEND AND QUOTIENT

GENERATED QUOTIENT

16 BIT WIDE
GO SUBTRACTOR/ COMPARER

BUFFERED I/0 PADS (16)
SHARED BY x AND r

Divider floor plan

2,2, Constraint-based design of an adder

Having successfully tested the divider, attention was turned to the

design of VLSI circuits for graphics applications. These applications are

presented in greater detail in Section 4. As a first step, it was clear

that a circuit to compute the sum of two integers would be necessary to

most graphics designs, Attention was focused on this problem in order to

gain insight into the design tools being developed at Princeton,

The goal was to design an efficient carry-look ahead adder in VLSI.

The problem was modelled as

111

X

or

y

z

As intermediate steps, p .• and g • • (for propagate and generate) primitives
i.,J i.,J

were defined with the properties that p .• (isj) was true iff a carry would
i.,J

be propagated over the block of bits i ••• j and g • . (isj) was true iff a
i.,J

carry would be generated over that block of bits. These quantities could

then be computed as

Pi,j =xiv Yi

Pi,j = Pi,k "Pk+l,j (isk<j)

gi,j =xi" Yi

g ' . = (p . k"gk+l .) v g . k i.,J i., ,J i.,

When the context permits, p. (resp. g .) will be used for p .. (resp. g . .) •
1, 1, i.,J i.,J

We note that the result z. = x. e y. e g. 1 16 and organize the com-
1, 1, 1, 1,+.

putation as a series of levels from which the design can proceed. Level i

may depend on results from both level i - 1 and i + 1 so proper timing of

the circuit is necessary. The computation can be modelled by the tree of

Figure 2a and the equations below. We make use of the two identities

Level O. Compute

I, ••• I 6

Level I. Compute

I , ••• I 6

112

Level 2. For i even, compute

Level 3. For i a multiple of 4, compute

pi-3,i'gi-3,i'gi-l, 16 from Pi-3,i-2'gi-3,i-2'pi-l,i'gi-l,i'

Level 4. Fo.r i a multiple of 8 (i.e. i=S, 16), compute
gi+l,16

Pi-7,i'gi-7,i'gi-3,16 from Pi-7,i-4'gi-7,i-4'pi-3,i'gi-3,i'

Level 5. For i a multiple of 16 (i.e. i=I6), compute
gi+l,16

from pi-15,i-S'gi-15,i-S'pi-7,i'gi-7,i'

gi+l,16

We adopt the convention that g 17016 = 0 and note that p 1, 16 and computations

leading to its value are unnecessary and can be removed. However, the nature

of the circuit is such that their inclusion does not increase the layout

area and does simplify the design process.

We propose to make the design such that all level i cells are identical

for i > I • Levels O and I may be viewed as a single cell organized to have

width half that of a level 2 cell leading to a floor plan as shown in Figure

2b.

113

Level 5

Level 4

Level 3

Level 2

Level I

Level 0

' ' . 2k-l f h fl f Figure 2a, Upward flows are g. .,p. . where J = 1, + or t e ow rom
1,,J 1,,J

level k to level k + 1. Downward flows are gi+l,IG where i is a multiple of

2k for the flow from level k + 1 to level k.

WHERE B = ~

~

Figure 2b, The floor plan where Li is a level i block. Crossed areas on the

top level are used for routing of signals among the L3,L4,L5 blocks.

This design is currently being implemented in ALI [V82] which is a pro

cedural design language. Within this language, wires are specified as boxes

with relative positions (left, right, above, below). The specification is

done by writing a PASCAL-like program which is converted by the ALI system

into a system of linear constraints of the form

I 14

x. x.
'l, J

allowing for linear time solution of the constraints. The advantage of this

approach is that a change in design results in simple changes to the under

lying ALI program followed by recompilation. The changes which arose during

the debugging phase of the divider would be greatly simplified at the ex

pense of regenerating and solving all constraints mechanically,

Initial experience suggests that ALI will behave similar to the graph

ical tools described above for initial layout of cells, The "see what you

get" feature of graphics-based system is an advantage over the one dimen

sional nature of ALI. Furthermore, ALI layouts are initially likely to con

sume more area. We roughly estimate this at 30-50%. However, the debugging

of an ALI layout will be more pleasant and the nature of the language is

such that a designer can hand optimize relevant cells on a working design.

As such, it lends to a more suitable use of the "bottom-up/top-down" design

paradigm which seems to arise in VLSI design projects. Further details on

the comparison of graphical and procedural systems will appear in [DD82].

3. ALGORITHMS FOR GEOMETRIC PROBLEMS RELEVANT TO VLSI

As we observed in the previous section, two of the processes involved

in design automation are routing and design rule checking. We model the

later problem as that of intersection testing. Each of these problems is

then of a geometric form, In this section we briefly survey methods of at

tacking these problems,

3.1. Geometric intersection problems

The design rules checking problem may be translated to problems on a

set of rectangles representing the wires in a design. For example, let

R = {r1,r2, ••• ,rk} be a set of rectangle-s, we may wish to ask queries of the

form:

find the nearest neighbor of each ri in R

find all intersections of elements of R

determine if any two rectangles of R intersect

count the intersection in R,

115

In the case of points, the Voronoi diagram [SH75] provides a useful data

structure for considering such points. Further work on data structures re

cording history [DM8O] allows the points of R to be preprocessed so that

queries regarding new points are easily answered.

Our presentation here is limited to a consideration of the data struc-

tures used for reporting all intersections among a set of n line segments.

We consider the segments S. = 1l7I..,i = l, ••• n where p. = (x~,y~) and
~ ~ ~ ~ ~ ~

qi= (x~,y~),i = 1, ••• n, with xi$ xi. We define si(t) to be the intersec-

tion of s. with the line x = t with s. (t) undefined. if t does not lie in
~ ~

the interval [x~,y~J. This notation leads to an order relation<- with
~ ~ ..,

s. < s. if both are defined and s.(x) < s.(x)b$, >-,.:
~XJ ~ Jar.., x

larly defined. This order property leads to the following

our algorithm is based:

.and = are simix
theorem on which

THEOREM. If si and sj intersect, then there exist x 1 and x 2 sueh that

si $ x!sj and sj $ xZsi.

To derive an algorithm, we µow define the set X as the set of end points,

so X = U~= 1 (x: U x~). For each point x of X, we would like to maintain

{si(x)} in order (for all relevant i) so that testing can be easily done

by noting where the order changes. Our algorithm [BO79] involves inserting

elements into X as intersections are found (at an x to the right of our

current position) and maintaining a balanced tree of {s.(x)} for each x of
~

X in turn.

Initially sort X

Maintain balanced tree (initially empty) ordering {S. (x)} for x £ X.
~

At each x 0f X (in increasing order)

if xis a start vertex of sk

insert sk(x) into, the tree

test to determine if sk intersects either of its neighbors

if~• add the intersection point to X and report the

intersection.

else if x is an end vertex of sk

insert sk(x) into the tree

test to see whether the neighbors of sk intersect

if~• add the intersection point to X and report the

intersection.

116

else (xis the intersection point of segments m and n)

reverse sm(x) and sn(x) (assume w.l.o,g. that now

s (x) > s (x))
m n

check m for intersection with the segment above it

check n for intersection with the segment below it

in each case, if an intersection is found, report it and

add the point to X.

The running time of this algorithm can be expressed as

O(IXllog n) + O(n log n) with the first term giving the time for maintaining

the tree and the list X and the second giving the time for initially sorting

X, Ifs is the total number of intersections, this reduces to O((s+n)log n).

For sparser intersections, this is considerably better than the O(n2) re

quired by the naive algorithm. In a design rule checking context, we would

expect this to be the case (or possibly abort after a fixed number of errors

had been reported), However, in general other algorithms perform better than

this "nearly optimal" algorithm. Recent work [KR82] explores this situation.

3.2. Routing geometries,

A second tool which would facilitate the designer's task is an automatic

router, Research in routing algorithms dates back to algorithms for laying

out printed circuit boards in the early 1960's (see [180] for a survey). Re

cent work has considered NP-completeness results as well as algorithms for

problems solvable in polynomial time. We present here two techniques which

have been applied to instances of routing problems, For a general statement

of the problem, we consider two sets of ports {u 1, ••• ,un} and {v 1, ••• ,vn}

and ask for a routing which connects ui to vi(lin) satisfying the condi

tions:

a) minimum separation is satisfied*

b) the routing minimizes

i) total wire length
ii) layout area (i.e. separation of components)

c) all connections are.

i) line segments and arcs of circles of constant radii

ii) line segments at fixed angles

iii) horizon and vertical line segments

Tompa [TSO] proposes an exact solution to the problem a,.bi), ci) •. We

*Throughout we assume that wires have no thickness am! the minimum separation is I.

117

assume that each set of ports is collinear and the two lines of ports are pa

rallel separated sufficiently to allow a layout. The total wire length is to be

minimized and wires may be line segments at any orientation or arcs of cir

cles of constant radii. We say a layout is good if for all i, the wires con

necting its i th ports lie outside the circles of radius Jj-iJ centered at

ui and vj• I~ j ~ n. A layout algorithm then follows from the observations

that a necessary and sufficient condition for a layout to be optimal is that

it is good. Necessity follows easily from the problem statement. Sufficiency

follows from the following observations about convexity,

DEFINITION. Let P be a continuous curve, pa point of P dividing Pinto

curves P1 and P2• If q is a point not on P, then Pis convex towards q at Q

if and only if for all neighborhoods N of p, there are points pi on

N n Pi (i=l,2) such that p 1p 2 does not intersect pq.

THEOREM. If P a:nd Qare continuous non-intersecting curves of closest dis

tance D and p £ P, q £ Q have d(p,q) = D, then one of the conditions a)-e)

holds

a) p is a:n endpoint of P

b) q is an endpoint of Q

c) p is convex towards q at p

d) Q is convex toward p at q

e) there exist neighborhoods of p and q within which P a:nd Qare segments

of parallel lines.

Furthermore, there exist p0 £ P a:nd q0 £ Q with d(p0,q0J = D such that Po

or q satisfies one of a)-d).

While this derivation provides an elegant characterization of solutions

to the problem, it provides less elegant solutions. We may apply the algo

rithm to any pair of ports ui, vi to obtain in time linear in n a minimal

length routing. However, quadratic time is required to process n pairs of

ports because each segment might haven segments which need to be computed.

Furthermore, the assumptions concerning wires at arb'itrary angles and wires

which are arcs is unrealistic for most design automation systems. Finally,

the quadratic equations needed to describe circles may lead to the necessity

of solving equations of high degree. Nonetheless, an algorithm exists to im

plement this procedure and provides insight into geometric characterizations

of routing-like problems. The reader is referred to [T8O] for details of

this algorithm,

118

A second routing problem with an elegant solution is that which we

characterize as a),b)ii),c)iii) where ports again lie on parallel channels

which we want to separate by minimum distance while routing on only two

layers (i.e. in only the horizontal and vertical directions). Two quantities

have been defined by which such problems may be characterized. We consider

the ports {ui} and {vi}' I~ i ~ n where ui occurs at Ui and ui at Vi along

the relevant line. We assume the lines are horizontal and define the channel

density at horizontal point h to be the number of wires which must cross that

point. That is,

J{iJu. ~ h ~ v. or u. ~ h ~ v. but not u. = h = v.}J.
~ ~ ~ ~ ~ ~

Clearly, this quantity will be a lower bound to the separation, However, as

Dolev, et al [DKSSU81] note, there are problems of small channel density

having layouts requiring a large separation. Consider, for example, the si

tuation where U.=i, V. = i + 1, I~ i ~ n. To circumvent these difficulties,
~ ~

they define the conflict number W(i,j) by the table

i < j i = j i > j

u. - ~ > j - i 0 I i-j+l
J

u. - v. = j - I j-i+I 0 o-j+l
J ~

u. - v. < j - I j-i+l I 0
J ~

It is easily seen that in all but trivial designs, the conflict number is

no less than the maximum channel density. By a greedy procedure, the layouts

of separation equal to the conflict number may be realized yielding

THEOREM, Minimum separation requires a number of channels exactly equal to

the largest conflict number.

PROOF. see [DKSSU81].

Again, the geometric elegance of this algorithm hides some difficulties

which might arise in practice, We use this algorithm after components have

been layed out to connect ports on different components. The algorithm

then yields a layout of these components having minimum separation. A more

integrated approach might combine the positioning of the ports during

des-ign with a routing algorithm of this sort as well as allowing ports to

occur on all edges of a component.

4, GRAPHICS

119

Our final topic involves the practical application of VLSI design sys

tems of the type we have considered to problems of computer graphics. The dis

play of images on a raster scan device requires substantial computing re

sources of a very specialized nature, We focus attention here on the simple

problem of line drawing, undoubtedly the most basic problem in this area.

A raster display consists of a rectangular array of pixels. For each

pixel location, associated memory maintains a value and the monitor displays

light relative to this value, For a simple device, the monitor is capable of

only bilevel (on/off) displays and a pixel is represented by a single bit of

information. Grey scale monitors allow for pixels to be shaded, For example,

8 bits of memory allow the representation of 256 different shades of grey

pixel, Color is produced by considering "grey scales" for the primary colors

(red, green, blue) independently.

A line drawing algorithm plots a set of points {(xi,yi),(i=l ••• n)} which

best approximate a line, For a line in the first octant, i.e. at angle less

than 45°, this is done by determining for each xi on the line, the closest

yi such that (xi,yi) lies on the line, We do this in an iterative fashion

from the minimum to maximum x - coordinatie of the line, Bresenham [B65] pro

posed the following algorithm to draw the line from (O,O) to (x,y)(y$X),

xt := O· •
yt := O· ,
setpixel (xt,yt);

slope := 2*y-x;

error := slope

incl := 2 *(y-x);

inc2 := 2*Y

for xt := to x do

begin

if error> 0 then

begin

yt :=yt+ I;

error:= error+ incl;

120

end

·else

error:= error+ inc2;

setpixel (xt,yt),

end;

The inner loop of this algorithm is executed many hundreds of times for each

line drawn, In the algorithm statement, this loop has been made as tight as

possible involving a compare to zero, an add and possibly an increment by

one, It would be a simple matter to implement this algorithm in VLSI as

part of a larger graphics engine, To do so, the comparison, the alternative

adds and the incrementing by one would be done in parallel. At the time when

all results were computed, the result of the comparison would be used to de

termine the new values of error and yt,

A difficulty of line drawing on a bi-level display is that honest re

presentations of lines are not presented, A line of length 100 will be re

presented by turning on 100 pixels if horizontal but only 71 if diagonal,

This difficulty is called aliasing. Various anti-aliasing schemes have been

proposed, The key here is to view a line segment as the parallelogram bound

ed by parallel segments one half pixel above and below the given segment. A

pixel is now viewed as a square of area I, Using grey scale, the fraction of

a pixel which is covered by the rectangle to the fraction which is lit. Un

der this scheme., lines are represented more accurately at added computational

cost. A careful analysis of this problem by Field [F82] yields an algorithm

whose inner loop involve 9 adds and 2 comparisons in the worst case where 3

grey scale values are set. This algorithm will lead to a simple VLSI imple

mentation.

Extensions of this problem involving the careful drawing of triangles

and 3 dimensional figures. A more difficult problem is that of performing

transformations on objects accurately. At present, this is done by using

floating point arithmetic with the result that "off-by-one" errors are com

mon. Indeed, the rotation of a triangle by 45° eight times under most algo

rithms will not yield the original triangle on a bi-level display. We be

lieve that more complex algorithms, which can be made to run sufficiently

rapidly in VLSI, can alleviate this problem.

12]

5 •. CONCLUSIONS

We have considered VLSI design systems, geometric algorithms and com

puter graphics in these lectures. Each of these topics is rich enough to

provide many interesting lectures. Of necessity, we have highlighted a few

ideas in each topic with the hope that the reader's appetite will be

whetted to explore further.

6. REFERENCES

[B79] BENTLEY, J.L. and T. OTT~..ANN, Algoritmns for reporting and counting

geometric intersections, IEEE Transactions on Software Engineer

ing, 5 (4) 1979, pp. 333-340.

[B65] BRESENHAM, J.E., Algoritmn for computer control of digi.tal plotter,

IBM Systems Journal, 4 (I) 1965, pp. 25-30.

[DD82] DOBKIN, D.P. and S. DRYSDALE, Design e;x:periences in two environments,

to appear.

[DM80] DOBKIN, D.P. and J.I. MUNRO, Efficient uses of the past, Proceedings

of 21st FOCS Symposium, Syracuse, New York, October, 1980, pp.

200-206.

[DKSSU81] DOLEV et al, Optimal wiring between rectangles, Proceedings of the

13th STOC, Milwaukee, May, 1981, pp. 312-317.

[FR79] FAIRBAIRN, D.G. and J.A. ROWSON, ICARUS2 user's manual, Xerox Palo

Alto Research Center Report, April 1980.

[F82] FIELD, D.E., Drawing anti-aliased lines, submitted for publication,

[FN81] NEWELL, M. and D. FITZPATRICK, Ma.gic - Multiple analyses of the geo

metry of integrated circuits, Xerox Palo Alto Research Center

Report, May 1981.

[KR82] KALIN, R. and N, RAMSEY, Private communication.

[L80] LaPAUGH, A.s., A polynomial time algoritmn for optimal routing around

a rectangle, Proceedings of 21st FOCS, Syracuse, New York, Octo

ber 1980, pp, 282-293,

[LSV82] LIPTON, R.J,, R. SEDGEWICK and J. VALDES, VLSI layout as program

ming, Proceedings of the Ninth POPL, Albuquerque, New Mexico,

122

January, 1982,

[MC80] MEAD, C. and L. CONWAY, Introduetion to VLSI Systems, Addison-Wesley,

1980.

[SH75] SHAMOS, M.I. and D. HOEY, Closest point problems, Proceedings of 16th

FOCS, Berkeley, California, October, 1975, pp. 151-162,

[S80] STONE, H.s., Introduetion to Computer Arehiteeture, SRA, Palo Alto,

1980.

[TSO] TOMPA, M., An optimal solution to a wire routing problem, Proceedings

of 12th STOC, Los Angeles, California, May, 1980, pp. 161-176.

[V82] VALDES, J., ALI2 System overview, unpublished notes.

TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

(An asterisk before the MCT number indicates that the tract is under prep
aration).

A leaflet containing an order form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands. Orders should be sent to the same
address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963.
ISBN 90 6196 002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part .TI:
Probabilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 J.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964.
ISBN 90 6196 008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT IO E.M. DE JAGER, Applications of distrubutions z'.n mathematical z;hysics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964.
ISBN 90 6196 011 8.

MCT 12 J.A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of pri.nt; replaced
by MCT 54.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics,
1966. ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languager, with an
application to the definition of ALGOL 60, 1967.
ISBN 90 6196 022 3.

MCT 17 R.P. VANDERIET, Formula manipulation 1:n ALGOL 60, part 1; I 968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, I 968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968.
ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING I 968, Seleeted statistical papers, part II, 1969.
ISBN 90 6196 040 I.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Exercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 w. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric
distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak con
vergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and
related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of bounda,ry layers, I 971 • ISBN 90 6196 064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound
words, 1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972.
ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972.
ISBN 90 6196 076 2.

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 0.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973.
ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and limit laws 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VANDERIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VANDERIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 I.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(eds), Revised report on the algorithmic language ALGOL 68,
1976. ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 1: Theory of
designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 I.

MCT 56 M. HALL JR. & J.E. VAN LINT (eds), Combinatorics, part 2: Graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 IOI 7.

MCT 58 W. ALBERS, Asyrrrptotia expansions and the defiaienay aonaept in sta
tistias, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sarrrple path properties of stable proaesses, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

*MCT 61 P. VAN EMDE BOAS, Abstraat resourae-bound alasses, part 1,
ISBN 90 6196 109 2.

*MCT 62 P. VAN EMDE BOAS, Abstraat resourae-bound alasses, part 2,
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of aorrrputer saienae, 1975.
ISBN 90 6196 III 4.

4.

MCT 64 W.J. DE SCHIPPER, Symmetria alosed aategories, 1975. ISBN 90 6196 112 2.

MCT 65 J. DE VRIES, Topologiaal transformation groups 1 A aategoriaal approaah,
1975. ISBN 90 6196 113 0.

MCT 66 H.G.J. PIJLS, Loaally aonvex algebras in speatral theory and eigen
funation expansions, 1976. ISBN 90 6196 114 9.

*MCT 67 H.A. LAUWERIER, Asyrrrptotia analysis, part 2, ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
seaond order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequenaing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Reaursive program sahemes: Semantias and proof
theory, 1976. ISBN 90 6196 127 0,

MCT 71 J.A.E.E. VAN NUNEN, Contraating Markov deaision proaesses, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodia and nonperiodia Lame funations and
their appliaations in the theory of aoniaal waveguides, 1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistia logia, 1979.
ISBN 90 6196 122 X.

~[CT 74 H.J.J. TE RIELE, A theoretiaal and aorrrputational study of generalized
aliquot sequenaes, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaaes and related aonneated topologiaal
spaaes, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Assoaiations and the alosure statement, 1976.
ISBN 90 6196 135 I.

MCT 77 W.C.M. KALLENBERG, Asyrrrptotia optimality of likelihood ratio tests
in exponential families, 1977. ISBN 90 6196 134 3.

MCT 78 E. DEJONGE & A.C.M. VAN ROOIJ, Introduation to Riesz spaaes, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical di'.stributions and rank statistics,
1977. ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A nwnerical study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J. W. DE BAKKER·. (eds) , Foundations of computer science
part 1 , 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L.S. BENTREM JUTTING, Checking Landau's "Grundlagen" in the
AUTOMATH system, 1979. ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann of Carinthia (?) books vii-xii,
1977. ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

II,

II,

MCT 86 S.G. VANDERMEULEN & M. VELDHORST, Torrix I, A programming system
for operations on vectors and matrices over arbitrary fields
and of variable size. 1978. ISBN 90 6196 152 1.

*MCT 87 S.G. VAN DER MEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 X.

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Complex Fourier transformation and analytic functionals
with unbounded carriers, 1978. ISBN 90 6196 155 6.

MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dynamic
games, 1981. ISBN 90 6196 156 4.

MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic,
1979. ISBN 90 6196 157 2.

MCT 92 P.J. WEEDA, Finite generalized Markov programming, 1979.
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS & J. WESSELS (eds), Markov decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations -in transcendental nwnber
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

MCT 96 P.M.B. VITANYI, Lindenmayer systems: @tructure, languages, and
growth functions, 1980. ISBN 90 6196 164 5.

*MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 I.

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Inter,faces
between computer, science and oper,ations r,esear,ch, 1978.
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & l. OOSTERHOFF (eds), Pr,oceedings
bicentennial congr,ess of the Wiskundig Genootschap, par,t 1, 1979.
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (eds), PT'oceedings
bicentennial congr,ess of the Wiskundig Genootschap, par,t 2, 1979.
ISBN 90 6196 169 6.

MCT 102 D. VAN DULST, Reflexive and super,r,eflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distT'ibutions by
functional equations, 1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and gener,alizations of metr,izability, 1979.
ISBN 90 6196 173 4.

MCT 105 R. HELMERS, Ed,gewor,th expansions for, linear, combinations of or,der,
statistics, 1982. ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (ed.), Packing and cover,ing in combinatoT'ics, 1979.
ISBN 90 6196 180 7.

MCT 107 C. DEN HEIJER, The numeT'ical solution of nonlinear, oper,ator,
equations by imbedding methods, 1979. ISBN 90 6196 175 O.

MCT 108 J.W. DE BAKKER &'J. VAN LEEUWEN (eds), Foundations of computer,
science III, part 1, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Foundations of computer,
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 tr,ansput, part I: HistoT'ical review and
discussion of the implementation model, 1979. ISBN 90 6196 178 5.

MCT 111 J.C. VAN VLIET, ALGOL 68 tr,ansput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

HCT 112 H.C.P. BERBEE, Random walks with stationar,y incr,ements and r,enewal
theor,y, 1979. ISBN 90 6196 182 3.

HCT 113 T.A.B. SNIJDERS, Asymptotic optimality theor,y for, testing problems
with r,estT'icted alter,natives, 1979. ISBN 90 6196 183 1.

MCT 114 A.J.E.M. JANSSEN, Application of the Wigner, distT'ibution to harmonic
analysis of generalized stochastic pr,ocesses, 1979.
ISBN 90 6196 184 X.

MCT 115 P.C. BAAYEN & J. VAN MILL (eds), Topological Str,uctur,es II, part 1,
1979. ISBN 90 6196 185 5.

MCT 116 P.C. BAAYEN & J. VAN MILL (eds), Topological Structur,es II, part 2,
1979. ISBN 90 6196 186 6.

~1CT 117, P.J .M. KALLENBERG, Branching processes with continuous state space,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENEBOOM, Large deviations and asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F.J. PETERS, Sparse matrices and substructures, with a novel imple
mentation of finite element algorithms, 1980. ISBN 90 6196 192 0.

MCT 120 W.P.M. DE RUYTER, On the asymptotic analysis of large-scale ocean
circulation, 1980. ISBN 90 6196 192 9.

MCT 121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory, 1980.
ISBN 90 6196 194 7.

MCT 122 J.C.P. BUS, Numerical solut·ion of systems of nonlinear equations,
1980. ISBN 90 6196 195 5.

MCT 123 I. YUHASZ, Cardinal functions in topology - ten years later, 1980.
ISBN 90 6196 196 3.

MCT 124 R.D. GILL, Censoring and stochastic integrals, 1980.
ISBN 90 6196 197 1.

MCT 125 R. EISING, 2-D systems, an algebraic approach, 1980.
ISBN 90 6196 198 X.

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear programming, 1980.
ISBN 90 6196 199.8.

MCT 127 J.W. KLOP, Combinatory reduction systems, 1980. ISBN 90 6196 200 5.

HCT 128 A.J.J. TALMAN, Variable dimension fixed point algorithms and
triangulations, 1980. ISBN 90 6196 201 3.

MCT 129 G. VANDERLAAN, Simplicial fixed point algorithms, 1980.
ISBN 90 6196 202 I.

MCT 130 P.J.W. TEN HAGEN et al., ILP Intermediate language for pictures,
1980. ISBN 90 6196 204 8.

MCT 131 R.J.R. BACK, Correctness preserving program refinements:
Proof theory and applications, 1980. ISBN 90 6196 207 2.

MCT 132 H.M. MULDER, The interval function of a graph, 1980.
ISBN 90 6196 208 0.

MCT 133 C.A.J. KLAASSEN,Statistical performance of location estimators, 1981.
ISBN 90 6196 209 9.

MCT 134 J.C. VAN VLIET & H. WUPPER (eds), Proceedings international confer
ence on ALGOL 68, 1981. ISBN 90 6196 210 2.

MCT 135 J.A.G. GROENENDIJK, T.M.V. JANSSEN & M.J.B. STOKHOF (eds), Formal
methods in the study of language, part I, 1981. ISBN 90 6196 211 o.

MCT 136 J.A.G. GROENENDIJK, T.M.V. JANSSEN & M.J.B. STOKHOF (eds), Formal
methods in the study of language, part II, 1981. ISBN 90 6 I 96 213 7.

MCT 137 J. TELGEN, Redundancy and linear programs, 1981.
ISBN 90 6196 215 3.

MCT 138 H.A. LAUWERIER, Mathematical models of epidemics, 1981.
ISBN 90 6196 216 I.

MCT 139 J. VAN DER WAL, Stochastic dynamic programming, successive approx
imations and nearly optimal strategies for Markov decision
processes and Markov games, 1980. ISBN 90 6196 218 8.

MCT 140 J.H. VAN GELDROP, A mathematiaal theory of pUl'e exahange eaonomies
without the no-aritiaal-point hypothesis, 1981.
ISBN 90 6196 219 6.

MCT 141 G.E. WELTERS, Abel-Jaaobi isogenies for aertain types of Fano three
folds, 1981.
ISBN 90 6196 227 7.

MCT 142 H.R. BENNETT & D.J. LUTZER (eds), Topology and order struatUl'es,
part I, 1981.
ISBN 90 6196 228 5.

MCT 143 H. J.M. SCHUMACHER, Dynamia feedbaak in finite- and infinite dimensional
linear systems, 1981.
ISBN 90 6196 229 3.

MCT 144 P. EIJGENRAAM, The solution of initial value problems using interval
arithmetia. Formulation and analysis of an algorithm, 1981.
ISBN 90 6196 230 7.

MCT 145 A.J. BRENTJES, Multi-dimensional aontinued fraation algorithms,
1981. ISBN 90 6196 231 5.

MCT 146 c. VAN DER MEE, Semigroup and faatorization methods in transport
theory, 1982. ISBN 90 6 I 96 233 1.

MCT 147 H.H. TIGELAAR, Identifiaation and informative sample size, 1982.
ISBN 90 6196 235 8.

MCT 148 L.C.M. KALLENBERG, Linear programming and finite Markovian control
problems, 1983'. ISBN 90 6196 236 6.

MCT 149 C.B. HUIJSMANS, M.A. KAASHOEK, W.A.J. LUXEMBURG & W.K. VIETSCH,
(eds), From A to z, proceeding of a symposium in honour of
A.C. Zaanen, 1982. ISBN 90 6196 241 2.

MCT 150 M. VELDHORST, An analysis of sparse matrix storage schemes, 1982.
ISBN 90 6196 242 O.

MCT 151 R.J.M.M. DOES, Higher order asymptotics for simple linear Rank
statistics, 1982. ISBN 90 6196 243 9.

MCT 152 G.F. VAN DER HOEVEN,Projections of La;J;)less sequences, 1982.
ISBN 90 6196 244 7.

MCT 153 J.P.C. BLANC, Application of the theory of boundary value problems
in the analysis of a queueing model with paired services, 1982.
ISBN 90 6196 247 1.

MCT 154 H.W. LENSTRA, JR. & R. TIJDEMAN (eds), Computational methods in
number theory, part I, 1982.
ISBN 90 6196 248 X.

MCT 155 H.W. LENSTRA, JR. & R. TIJDEMAN (eds), Computational methods in
number theory, part II, 1982.
ISBN 90 6196 249 8 .

MCT 156 P.M.G. APERS, Query processing and data allocation in distributed
database systems, 1983.
ISBN 90 6196 251 X.

MCT 157 H.A.W.M. KNEPPERS, The covariant classification of two-dimensional
smooth commutative fo1'171al groups over an algebraically closed
field of positive characteristic, 1983.
ISBN 90 6196 252 8.

MCT 158 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Founda.tions of computer science
IV, Distributed systems, part r, 1983.
ISBN 90 6196 254 4.

MCT 159 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Founda.tiona of computer science
IV, Distributed systems, part 2, 1983.
ISBN 90 6196 255 0.

MCT 160 A. REZUS, Abstract automat,_ 1983:
ISBN 90 6196 256 0.

MCT 161 G.F. HELMINCK, Eisenstein aeries on the metaplectic group, An alge
braic approach; 1983.
ISBN 90 6196 257 9.

An asterisk before the number means "to appear"

