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PREFACE 

The 4th Advanced Course on the Foundations of Computer Science was 

held June 14-25, I 982, in Amsterdam as part of an international pro

gram of Advanced Courses sponsored by the CPYST Subcommittee on Training 

in Data Processing of the Commission of the European Communities, 

The Advanced Courses on the Foundations of Computer Science are orga

nized to provide an opportunity for computer science graduates and profes

sionals to learn about the modern developments in theoretical computer 

science at a high level. The 4th Advar..ced Course was devoted in particular 

to Distributed Systems and Computation, Six distinguished lecturers were 

invited to present a series of six lectures on leading issues and new 

results in their current field of specialty. Furthermore, a number of 

lectures by the directors were included in the program of the course. 

These volumes contain the (edited) text of the l2ctures given on the 

occasion of the 4th Advanced Course. The material, mostly written especially 

for the Course, usually presents an original view of an entire research 

area which is not available in this form yet from textbooks for classroom 

use. We believe that'the chapters will serve as a valuable source of material 

for high-level seminars in theoretical computer science. 

We thank the lecturers for their excellent contributions an·d the 

participants for being a most receptive audience. We are very grateful to 

the Dutch Ministry of Education and the Commission of the European 

Communities, which together provided the necessary funds for organizing 

the Course. Finally, we thank Mrs. S,J. Kuipers-Hoekstra for her invaluable 

assistance throughout the organization of the Course and the Publication 

Service of the Mathematical Centre for the technical realization of these 

volumes, 

J.W. de Bakker - J. van Leeuwen 

Directors of the Course 
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DISTRIBUTED COMPUTING 

J. van Leeuwen 
University of Utrecht, Utrecht, the Nether/ands 

1. Introduction. Distributed architectures are steadily advancing and will 

eventually replace conventional computer designs built around a single central 

processor. In these notes I shall attempt to describe the trends in the theo

retical investigation of the problems that arise in distributed information 

processing. The subject is by no means new. Most computer systems today can 

be regarded as distributed systems in certain respects. Only in recent years 

the impetus from VLSI-technology (in the small) and local and wide area net

works (in the large) has added further to the significance of distributed 

processing, as a viable alternative to the physical limitations of even the 

largest single processor systems and the inordinate investments that they 

require. With hardware costs declining and commercially supported intercon

nection technologies now available it might be more economical indeed to 

achieve high performance by utilizing dedicated computing units working in

dependently in parallel, rather than through the use of extremely complex 

high speed single components. In many ways though, distribution seems to 

create more problems than it solves. As we go along I shall try to point 

out some of the insights in distributed computing that have emerged in the 

past decade or so, in a brief but comprehensive survey of the area. For ref

erences see also [1]. 
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2. Early developments in hardware. The earliest computers consisted of a 

central memory and a single CPU to execute a stored program of instructions 

from a limited repertoire. No concurrency of operation was provided for be

tween computations by the CPU and I/0, resulting in an unnecessary idling 

of the CPU while a data transfer was taking place on much slower hardware. 

Subsequent introduction of separate I/0 processors (channels, peripheral 

processing units) into all architectures enabled the CPU to delegate I/0 

commands and switch to another computation in the meantime. I/0 processors 

memory IO 
processor 

f 
device 

processor 

i 
device 

would report by sending an interrupt. The separation of computation and I/0 

processing made it possible to load and execute a number of jobs simultane

ously with obvious advantages of mixing compute-bound and I/0-bounds jobs 

in a suitable manner. The need to schedule and service interrupts for optimal 

performance is one of the earliest problems in distributed computing. Buffer

ing (and the ultimate form of it, virtual devices) led to typical producer

consumer problems. 

Likewise, early computers exhibited no concurrency of operation between 

computations by the CPU (i.e., instruction execution) and instruction fetching. 

Later CPUs were pipelined, which allowed for the initiation of a next instruc

tion while others were still progressing through the circuitry. To facilitate 

a rapid transfer of information to and from the CPU, memory got decomposed 

into fast parts (small and expensive) and slower parts (larger and cheaper). 

A typical memory hierarchy consists of the following parts: 
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Program code was split and distributed over the hierarchy (blocks, segments, 

pages, caches) with the most immediately needed instructions highest in the 

"pyramid". Assumptions of locality led to a great variety of fetch/replacement 

strategies for units in the hierarchy, all aimed at minimizing the chance 

of unit faults throughout the hierarchy. Manual and automatic techniques for 

program restructuring (to improve locality) were proposed to allow for smooth 

transmissions up and down the hierarchy. 

3. Multiprogramming. The variety of programs processed by a general purpose 

computer system is such that (with a suitable admission policy or job sched

uling) every job requires only a small portion of the available resources 

and different jobs can do with different portions. A system configured to 

meet or exceed the joint resource demands of many jobs simultaneously is 

likely to yield a greater throughput (and thus, a greater cost-effectiveness) 

as long as the overhead in managing the resources by the operating system 

does not annihilate the expected gain. Multiprogramming is a technique (or 

rather, a set of techniques) to execute a number of programs "simultaneously" 
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provided their total resource requirements at any time are not greater than 

the total available on the system. Multiprogramming in particular allows 

for the interleaved or concurrent execution of a set of (usually independent) 

user programs and (highly dependent) standard routines for system management 

on a single CPU. 

Multiprogramming implies the need to share resources (CPU, memory, devices) 

and thus to distribute their availability to programs over time. To coordinate 

the sharing, mechanisms are required by which the programs can communicate 

their needs. The system may have to communicate back to the programs, as in 

present day interactive and real-time applications. 

4. Concurrency. User jobs and system routines generally are independent units 

(tasks) that could proceed in parallel if sufficiently many processors were 

available. In industrial applications, in fact, several jobs may have to 

be performed at the same time, with critical developments in one job perhaps 

affecting (interrupting} the work in others. Any implementation of concurrency 

requires mechanisms that permit the sharing of common resources and mechanisms 

that enable concurrently executing units to exchange information (communication, 

cooperation) or to coordinate their action (synchronization). No implementation 

can be proved sound unless there is an adequate underlying model of concurrent 

processing. 

5. Processes. Each independent unit of execution (task) in a system may be 

called a process. In the sixties E.W. Dijkstra and others promoted the view 

that concurrent activity can best be modelled by a set of cooperating proces

ses which alternate between independent activity and periods of communication. 

The process thus became the "unit" of concurrency. Much research has focused 

on the issues of interprocess communication and synchronization. 

Processes may be activated by (i) calling a static copy, (ii) resuming 

it (as a coroutine), (iii) "forking" in a sequential program, or (iv) dynamic 

creation, with an implicit hierarchical (parent-child) ordering. Processes 

may be de-activated by (i) termination, (ii) blocking or voluntary transfer 

of control, (iii) "joining", or (iv) destruction and transfer of control. 
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Processes communicate by signals (wait/post, lock/unlock), shared variables 

(e.g. semaphores) or messages (mailboxes, interprocess queues). To obtain 

exclusive access to shared resources more transparent and structured primitives 

have been provided (critical regions, monitors). 

Processes requiring exclusive access to a shared variable or resource 

must compete for it. Any mechanisms used for it must guarantee mutual exclusion 

and (normally) bounded waiting. In addition resources should be given out 

wisely to prevent deadlock. Instead of competing among each other, processes 

could simply submit their requests to a manager or monitor that is put in 

charge of (i.e., encapsulates) the shared resource. 

The process notion has had a tremendous impact on system structuring. 

Given an implementation of suitable primitives for process creation/destruc

tion and interprocess communication (in a nucleus or kernel of the system) 

higher level processes can be conceived that use (share!) the facilities 

provided by lower level processes and managers, which eventually lead to 

executable code on the available hardware processor. Every level thus provides 

a virtual multiprocessor for 'the processes at the next level. The approach 

has become dogmatic for all modular system design. 

6. Semantics of processes. Any system of concurrently computing units is 

obtained by connecting processes (explicitly of implicitly), and insisting 

on a protocol for interprocess communication. Petri nets (see e.g. [2]) are 

among the earliest frameworks that were introduced to model the distributed 

flow of control among multiple processes occurring concurrently. A Petri net 

consists of places (which can hold tokens) and transitions (requiring tokens 

for control transfers), connected by arcs. A transition "fires" by taking one 

token from every place at the origin of its incoming arcs (provided every 

one holds at least one token) and sending one token to every place at the end 

of its outgoing arcs. Petri nets feature many properties of concurrent compu

tation including (i) nondeterminism (if at any time more than one transition 

is enabled, then any choice of them may fire), (ii) conflict (transitions 

may connect to common places and firing some may disable others) and (iii) 

asynchronism (there is no notion of time and thus no unique ordering of events). 

Deadlock-freeness (also called liveness) can be formulated as the requirement 

that in all reachable markings every transition is potentially firable. Hack 
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[3] proved that the liveness problem is recursively equivalent to the reach

ability problem and (thus) the problem is decidable, given the recent solution 

of the latter by Mayr [4] (see also Kosaraju [5]). 

To adequately model the flow of data in a concurrent computation many 

different frameworks have been proposed. In a model due to Kahn [6] processes 

are viewed as sequential programs (procedures) with in-ports and out-ports 

that communicate data over fixed lines. It is assumed that this is the only 

way in which processes communicate, and that data sent always arrives in 

a finite but unpredictable time. The communication lines can be thought of 

as pipes or queues between processes. The possibly infinite sequence of data 

items passing any observer on a given line is called the history of the line. 

Kahn's theory is based on the view that processes are functions from histories 

(of the input lines) to histories (of the output lines) and that the behaviour 

of the net is described once all histories are known. Let sequences be defined 

over a domain D and partially ordered by the prefix relation. Processes 

f: Dwx ... ➔ Dwx ... must be {i) monotone (i.e., more input only leads to 

additional output, or u~v => f(u)~f(v)) and (ii) continuous (no output after 

an infinite amount of input is received, or f(lim ui) = lim f(ui)). Histories 

can now be defined by a system of equations of the form (Y, ... ) = f(X, ... ) 

where X, ... are the histories of f's incoming lines and Y, ... the histories 

of f's outgoing lines, and f ranges over all processes in the net. Given 

(monotone and) continuous f over cpo's like Dwx ... Kleene's theorem asserts 

that such systems have a unique minimal solution, obtained by iterating the 

f's from (A,A, ... ). As a result, properties of nets that can be phrased in 

terms of histories may be proved by induction over their construction. 

Intuitively Kahn's model fails to capture the nondeterminism inherent 

to concurrent computation, resulting e.g. when exclusive communication lines 

are absent. At some abstract level one could say that processes merely "act" 

(by changing state and sending messages) and that "events" take place at 

their ports (receipts of messages). Messages sent (as the result of an event) 

must eventually be received at their destination, i.e., turn up as some later 

event. In Hewitt's actor model (see e.g. [7]) parallel computation is thus 

modeled as a partial ordering of events, where events are said to be concurrent 

if there is no ordering relation between them. The following "laws" are believed 

essential to meaningful actor computation: (i) existence of a least element 



(initial event), (ii) discreteness (the number of events between any two 

events is finite) and (iii) finite immediate successors (any single event 

can have only finitely many immediate successors). 
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In recent years many other attempts have been made to describe the composi

tion of processes into nets and to reason about their composite behaviour 

with formalisms from logic (e.g. [8] and [9]), semantics (e.g. [10]) or language 

theory (e.g. [11]). Very recently Pratt [12] described composition as a closed 

operator on processes and (thus) elegantly solved the problem of defining 

the meaning of a composition of processes by specifying exactly what process 

is obtained by connecting processes together. Composition thus allows an 

algebraic study. All formalisms attempt at providing a sound (consistent) 

and/or complete proof system for reasoning about the corporate behaviour 

of processes such as fairness, deadlockfreeness and termination. 

7. Languages for concurrent programming. Control of concurrent activity appears 

to be more difficult to achieve than control of sequential activity. Humans 

find it very hard, in general, to comprehend the combined effect of a number 

of activities which evolve simultaneously with independent speeds. For years 

programmers thought sequential,as suitable concepts and tools for parallel 

programming were lacking. Early primitives like the cobegin ... coend ([13]), 

the and ([14]) and the fork/join/quit statements have attempted to remedy 

this. More recently, the use of sets of guarded commands ([15)) was proposed 

as perhaps the most natural means for expressing concurrency. As processes 

were recognized as the unit of concurrency various communication primitives 

were proposed, initially to operate on shared variables. More structured 

notions like critical regions ([13], [16]) and conditional critical regions 

([17]) and monitors ([18)) were introduced to replace low level synchronization 

commands of the P/V or receive/send variety. Pilot languages like MODULA 

([19]), Concurrent Pascal ([20]) and Pascal Plus ([21]) incorporated suitable 

constructs for programming processes, monitors and queues of waiting processes. 

The requirements of mutual exclusion and fair scheduling were major problems 

to solve in an efficient manner. 

More recently there is a trend in concurrent programming languages away from 

communication and synchronization through shared variables, and towards direct 
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communication between modules or processes. The former approach requires 

a common store and the latter does not, which thus seems more supporting 

for a view of processes as net-connected individual processors. Language 

designs like DP (Distributed Processes, [22]) and CSP (Communicating Sequen

tial Processes, [23]) provided a testbed for several programming constructs. 

A CSP-program consists of a fixed and named set of disjoint parallel processes. 

Communication occurs by exchanging data in matching input/output commands. 

To this end processes P may contain statements of the form Q?<variable> (re

questing an input from Q, to be assigned to <variable>) or Q!<expression> 

(send the value of <expression> to Q). Execution proceeds only after a valid 

rendez-vous has taken place. The use of guarded commands adds a tremendous 

flexibility to processes, but leads to every imaginable problem of nondeter

minism and non-functionality. 

MODULA-2 ([24]) has adopted similar views of communication by exchanging 

(importing and exporting) data, and simply lists in the specification of 

a module or process which identifiers must be "passed" to aid the linking 

of processes. The proce~s concept is kept extremely simple (essentially that 

of coroutines) and is built on a system kernel that provides the type PROCESS 

and primitives NEWPROCESS (turns a procedure and its workspace into a named 

process), TRANSFER (suspends the current process and transfers control to 

another) and IOTRANSFER (like the former, but with an implicit transfer of 

control back to the suspended process upon an IO-complete interrupt). The 

programming language ADA (see e.g. [25]), again, is not tied to a single 

processor environment and offers a sophisticated facility for describing 

parallel activities (tasks) very much in the spirit of CSP. 

8. Semantics of concurrent programs. Proving properties of concurrent programs 

is generally considered hard. Correctness, termination and other properties 

of interest for a system of parallel processes that are cooperating towards 

some goal do not immediately follow by straight application of the techniques 

of e.g. Hoare [26] known for sequential programs. New issues to cope with 

are partial ordering and communication betwe·en distinct units. Proof methods 

may be obtained when a suitable, algebraic notion of composition of processes 

is used (see 6). An important step forward in understanding parallelism has 
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resulted from the work of Owicki [27]. She proposed to proceed in two steps: 

(i) prove the properties of each process as a sequential program disregarding 

completely parallel execution and (ii) show that the execution of one process 

does not interfere with (i.e., does not destroy) the proof of the properties 

of another. The rationale is that if parallel execution does not invalidate 

the proofs, it cannot destroy the desired properties. An interesting applica

tion is given in [28]. More general, cooperating processes require some form 

of cooperating proofs. This has been expounded in the axiomatic proof theory 

now developed for CSP [29] and continues to be tested in other systems (see 

e.g. [30]). 

9. Distributed systems. Breaking up programs or tasks into processes is a 

start toward multiple processor systems. Each process is a natural unit to 

allocate to an available processor. It is generally agreed that a distributed 

system exhibits the following characteristics (cf. [31]): 

(i) it includes an arbitrary number of system and/or user processes, 

(ii) the architecture is modular and consists of a possibly varying number 

of processing elements (PE's), 

(iii) communication is achieved via some form of message passing over 

a shared communication structure (including perhaps shared memory), 

(iv) some system-wide control is performed so as to provide for dynamic 

interprocess cooperation and runtime management, 

(v) interprocess message transit delays are variable and some non-zero 

time always exists between the production of an event by a process (viz. 

a processing element) and the materialization of it at some intended destina

tion. 

Among the criteria used to compare distributed systems are their size 

or scale (viz. the dist;,n,-,"'r ,:-~_.-,, .... 1,: ,,c,,J<.;;o a.LU sent), the rates of 

ddta transfer and their degree of coupling. Coupling is said to be (i) strong 

if data transfer between the PE's is about as fast (say, ~10 Mbps) as access 

of a PE to its own data, (ii) loose if PE's communicate through a channel 

comparable in speed to the transfer rate of secondary storage devices (say, 

.1-10 Mbps) and (iii) weak if PE's communicate through a channel of only 

a few Kbs (like a long distance telephone line). The distinction roughly 
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corresponds to (i) multi-processor systems, (ii) local area networks and 

(iii) wide area networks. We shall later see that there is a variety of inter

connection structures (topologies) possible in each case. 

10. VLSI systems (chips). Switching circuits are a natural model of distributed 

computing in the small, featuring many forms of parallelism and pipelining. 

With the advent of VLSI technology (see e.g. [32]) it has become possible 

to embed ("integrate") circuits of tens of thousands of components in the 

surface of a single chip. Special IO-pads (ports) along the boundary of the 

rectangular chip allow for data/signal transports to and from the environment, 

usually over a limited number of (multiplexed) pins into the hardwiring of 

some PC board. Rigorously simplifying the practical aspects of wiring and 

timing, Thompson [33] formulated a grid model of the chip surface to study 

the actual complexity of VLSI-circuits. Each cell may contain a single PE 

(another simplification!) or up to two orthogonal, crossing wires. The model 

has facilitated the study of a novel measure for circuits, its area A. 

Definition. Given a connected graph G = <V,E> the minimum bisection width 

w of a set Sc Vis the smallest number of edges that must be cut to split 

S into two isolated, equal halves. 

The following result of Leighton [34] improves on an earlier theorem of Thompson. 

For the notion of crossing number, see [35]. 

Theorem. Let an n-node graph G have crossing number c and contain a set with 

minimum bisection width w. Then A~ c+n ~ a.w2 for some fixed constant a. 

Proof 

Any embedding of G must contain n nodes and ~c crossings, thus A~ c+n. 

Consider any drawing of G with c crossings. Turn every crossing into a "point" 

to obtain a planar graph G' with c+n points. The planar separator theorem 

([36]) implies the existence of a constant B such that the original set can 

be bisected by dropping ~B-Yc+n edges, thus by cutting at most this many 

edges in the original graph. Thus w ~ B.Vc+ii and A~ c+n ~ aw2 , for a= 1/B2 . □ 
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Definition. Given an embedded circuit (a graph) G = <V,E> the minimum informa

tion flow I for a set Sc Vis the minimum number of bits that must be exchanged 

between two halves of s, the minimum taken over all possible bisections of s. 

Let the time T of a computation on a chip be measured in some reasonable 

way (e.g. the time between input of the first bit and output of the last). 

. . 2 > 2 . h b f Theorem. For any VLSI-circuit AT = OI , wit a as e ore. 

Proof 
2 

Let Sc V have minimum bisection width w, thus A~ a.w. The computation 

requires the transfer of ~I bits of information over the cut of wedges which 

takes ~I/w time. Hence AT2 ~ aw2 . (I/w) 2 = ar2 . □ 

Note that the results given are quite independent of the actual form of the 

chip. As I can often be estimated in a circuit-independent manner, the latter 

result suggests an "area-time" trade-off for VLSI-design. It can be shown 

e.g. that for DFT's of n b-bit integers AT2 = n(b2n 2). Useful techniques 

to prove it follow from [37]. Brent and Kung [38] have presented a detailed 

study of binary addition and multiplication in VLSI. For recent results, 

see e.g. [39]. Kramer and van Leeuwen [40, 41] have shown that wire routing 

and even deciding the embeddability of routable circuits in a given amount 

of area are NP-complete problems. 

With the advent of techniques to produce multi-layered chips, it is of 

interest to explore the possible gains with a extra dimension to the layout 

problem. Thompson [33] (see also [42]) proved that av-layered chip of area 

A can be embedded in the plane in O(Av2 ) area, thus making "planar" techniques 

of analysis applicable. 

Chazelle and Monier [43, 44] have argued that under a more realistic assump

tion about communication times on a chip (linearity in distance traversed) 

much of the general theory for Thompson's model evaporates. In particular, 

asymptotically time and area notions are polynomially related to ordinary 

Turing machine time and space. 
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11. Systolic algorithms. Given the current technology it has become feasible 

to design chips for every imaginable special-purpose function in a system, 

an approach advocated by Kung [45] (see also [46]). The chip design must 

begin with a distributed algorithm design, conceptually specifying the ove·ral 

structure of the PE's on the chip. The algorithm is a level of abstraction 

at which two aspects of the design can be contemplated: (i) the pattern of 

information flow between the PE's (including the number of cells needed, 

their placement and the movement of data between them) and (ii) the types 

of PE's and their timing. There are many similarities between modular program

ming and modular chip design: the design task must be broken into manageable 

subtasks with a well defined flow of information between them. Foster and 

Kung [46] identify the following properties for a "good" VLSI-algorithm: 

(i) it can be implemented by means of only a few types of simple cells, 

(ii) the data and control flow of the algorithm is simple and regular, 

allowing cells to be connected by a network with local and regular intercon

nections (like grids or hexagonal arrays), 

(iii) the algorithm ·extensively employs pipelining and parallel processing. 

Typically, the designs have several data streams move at constant velocity 

over fixed paths in the network, interacting at cells where they meet. In 

.,,.-,, t + .. t • t t /'b43 ', I 
I I I I I // 

, ' I I I I I I ..,,,-, 
' I I I I I// b32 a33 a23 ' I 
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this way many cells are kept active simultaneously and the computation hardly 

slows the data rate. Algorithms of this sort have been called systolic. Kung 

and Leiserson [47] and Kung [48] (see also [32]) offer many examples, usually 

for numeric computations, showing the versatility of the approach. See also 

[49]. 

Communication costs are a crucial factor that make systolic algorithms 

attractive. At every tick of some periodic clock communication can occur 

between a PE and its neighbors according to the communication graph only. 

Signals do not ripple on and are not broadcasted beyond the neighbors. In 

general, let the edges of a communication graph carry integer weights 60 

indicating the time delay of signals along the corresponding line. To avoid 

race conditions we require of a "synchronous" system that every cycle in 

its communication graph has weight >0. Let G-1 be the graph obtained by re

ducing the weight of every edge in G by 1. Leiserson and Saxe [50] recently 

proved the following "systolic conversion theorem": if the G-1 of the communi

cation graph G of a synchronous system S has no negative cycles, then there 

exists a systolic system S' equivalent to S of essentially the same structure. 

It be noted that equivalence is defined with regard to the input/output be

haviour to a single host node to which the system is presumed to be connected. 

12. Multiprocessors. In the sixties a powerful line of architectures was 

initiated based the connection of many full-fledged processors and memory 

modules into one organised scheme, with a suitable hardwired communication 

structure (e.g. [51]). The machines heavily use parallelism, pipelining and 

vector-processing. Flynn [52] suggested the often used distinction between 

SIMD-machines (single instruction/multiple data streaming) and MIMD-machines 

(multiple instruction/multiple data streaming). The latter hold promises 

for truly parallel processing of a single task, but the communications over

head and interference among the processors tend to spoil part of the gains 

of simultaneous execution. 

13. Interconnection networks. Memory of an N-processor SIMD-machine is normally 

divided into N banks to allow for rapid parallel access. A problem of much 

concern has been to determine suitable networks that provide all necessary 
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processor-to-bank connections (and back). A crossbar switch would do, but 

it needs O(N2 ) switches. 

Theorem. Any network that realizes all connections between N processors and 

N banks must have Q(N log N) switches. 

Proof 

The network must be able to distinguish ~N! internal settings. If it has 

s switches that can be in (say) 2 states each, it can have at most 2s different 

states. Thus 25 ~ N!, ands~ log N! = Q(N log N). □ 

Every network requires a routing algorithm for directing signals through 

the net from source to d.estination. We only present some results for routable 

and fully rearrangeable networks (see also [53]). 

A useful mapping to start from is the perfect shuffle functions with 

s : {0, ... ,N-1} ➔ {0, ... ,N-1} defined by s(iMiM_ 1 ... i 0 ) = iM_ 1 ... i 0 iM when 

phrased in terms of binary number notation. An omega-network (Lawrie [54]) 

consists of log N (identical) s-stages, with lines at every level leading 

pairwise into N/2 switches that pass the data on or "exchange" it on the 

outgoing pair of lines. Effectively, a switch either applies the identity 

mapping or the exchange E defined by E(iM ... i 0 ) = iM ... i 1i 0 . Routing from 
➔ 

i to j is easy: slide a window over the binary expression liM ... i 0 JjM ... j 0 

and "shuffle-exchange" i into j. Unfortunately the omega-network is not re

arrangeable (in fact it isn't even non-blocking) but it can route many useful 

permutations correctly according to this algorithm. Parker [55] ~ives a neat 

proof that 3log N s-stages (thus, 3 passes through an omega-network) are 

sufficient to be able to route every permutation. 

The study of rearrangeable networks has a long history in telephone systems. 

Let N = p.r. A starting point for much of the theory is the analysis of the 

"three stage" Clos networks C(p,q,r) defined as follows (each box is a suitable 

crossbar switch): 



pxq rxr qxp 

p p 

p p 

Theorem (Slepian-Duguid). A Clos network C(p,q,r) is rearrangeable if and 

only if q~p. 

Proof 

Necessity of q~p is clear, or else routings would block already in the 

15 

first stage. Let q~p and let TT {1, ..• ,N} ➔ {1, ... ,N} be an arbitrary permuta-

tion. For p=l it is trivial to realize TT: route all N incoming messages to 

the first intermediate box (which indeed has N=r inlets) and spread them 

according to TT from here in the second stage. For p>l let Ki= {jlTT(k) E Oj 

for some k E Ii} be the set of indices of out-boxes that must be rea~hed 

from I .. Consider any collection {Ki } 1< <. As the s.p elements of U1Iim are 
i m =m=s 

mapped to as many outputs and each outbox can route at most p elements, they 
s 

must jointly lead into ~s outboxes. Hence l~Kiml ~ s, which is Hall's condition 

([56]) for the existence of a set of distinct representatives. Let jm be 

the representative of Km (l~~r) and km an input of Im with TT(km) E Ojm" 

Route every km to the first immediate box and switch them there into the 

right permuted order. Fixing this assignment we are left to route the re

maining pairs, which can be handled as if we had a C(p-1,q-1,r) net. This 

completes the argument by induction. □ 

Note that we haven't used that each box is a crossbar, but merely that it 

is rearrangeable. This allows a recursive construction of rearrangeable net

works. In particular, a Benes network B(n) is a Clos network C(2,2,2n-l) 

with two B(n-l)'s as intermediate crossbars. The network has size O(N log N) 

for N=2n. The routing problem has been studied in e.g. [57]. Many other net

works are reviewed in [53]. 
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14. Multiprocessor ("parallel") algorithms. Networks clearly are important 

for connecting processors themselves, but the objectives for the nets are 

slightly different. There is a need for fast exchange of information and 

broadcasting of signals. Stone [58] has shown that N processors connected 

in a perfect shuffle allow for extremely efficient execution of several 

standard algorithms (e.g. polynomial evaluation, sorting, the FFT). In some 

formulations processors are also paired in blocks of two, leading to the 

pattern of the shuffle-exchange graph. At some level of abstraction algorithm 

design could specify both the processor tasks and the assumed interconnection 

pattern, leaving the scheduling on the actual multiprocessor for a second 

"pass". See e.g. [48]. 

Theorem. A linear array of N suitably instructed processors can sort N numbers 

in O(N) time. 

Proof 

The method is based on odd-even transposition sorting. Put N keys in 

N processors, numbered odd and even alternately. Assume the even processors 

are activated first. In each cycle the following takes place: the key in 

every activated processor is compared with the key in its right neighbor 

and exchanged when the latter is smaller. Odd and even processors are acti

vated alternately. One can prove by induction that the algorithm sorts the 

keys within N cycles. Note that the largest key 1 always wins and moves 

across to the right (it hesitates in the first cycle if it is stored in 

an odd processor): 

Its path separates the computation in two triangular areas. Imagine 1 is 

dropped. Then the right upper computation can be moved down and left one 
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step, to merge with the left lower past to an odd-even transposition sort 

on N-1 keys. To top row left of 1 does no harm and can be excluded for its 

effect. By induction N-1 cycles do the job in the remaining sort, hence N 

are sufficient for the original set of keys. □ 

Baudet and Stevenson [59] have investigated the effect of giving each processor 

some memory to hold a sorted subsequence rather than just a single key. The 

comparison-exchange operation becomes a merge-split operation on sequences. 

They show that N keys may be sorted on an array of p processors in 

o(.!:!. log.!:!.+ N) time, provided that each processor can hold.!:!. keys. The sorting 
p p p 

problem was addressed also in e.g. [60] and [61), where a feasible algorithm 

was proposed to sort N keys in O(N} time by log N processors, one corresponding 

to each level of the familiar merge-sort routine. Batcher's bitonic sort 

method needs only O(log2 N) time but uses N processors with a very specific 

interconnection pattern (see [58]). 

In a variety of studies detailed considerations about processor structure 

and interconnection have beert de-emphasized. Processors are assumed available 

in unlimited quantity, with any form of desired signaling (broadcasting) 

and shared memory. A rule is required to resolve conflicts in simultaneous 

reads or writes of a same memory location. The assumption of unlimited pro

cessors can be justified from a simple observation due to Brent [62]: 

Theorem. If a computation can be performed in time t with sufficiently many 

processors that perform q operations total (with each operation requiring 

one time unit), then the computation can be performed in time t + (q-t)/p 

with p such processors. 

Proof 

Suppose si operations are performed in parallel during step i (l~i~t), 

with q = ts .. Using p processors we can stimulate step i in time f s./pl. 
1 l. l. 

The entire computation is thus 

of about ff s./pl ~ t(s.+p-1)/p 
1 J. 1 J. 

rescheduled and requires a number of steps 
1 1 t 

(1- -)t + -.LS, = t + (q-t)/p. □ 
p p 1 l. 

As an example of a computation with unbounded parallelism and simultaneous 

memory access, we note the following result of Ku~era [63]. 
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Theorem. The minimum of N keys can be computed in 0(1) time using N2 processors, 

allowing "weak" memory conflicts. 

Proof 

Let the keys be stored in a[l] to a[N] and use additional (shared) locations 

b[l] to b[N]. The processors P .. (l:::;i,j:::;N) execute the following 4 cycles. 
l.J 

In cycle 1 every Pil (lSiSN) writes 0 into b[i] for initialization and the 

other processors are silent. In cycle 2 the P .. write 1 into b[j] if a[i]<a[j]. 
l.J 

As a result, b[i] = 0 iff a[i] = min{a[l], ... ,a[N]}. To find (say) the smallest 

index of a minimal key, cycle 3 lets the P .. write 
l.J 

into b[j] when i<j and 

b[i] = 0. In cycle 4 P .. (lSiSN) inspects b[i] and outputs a[i] as smallest 
l.J 

key when its value is 0. □ 

Parallel computation of ranks was studied (with different assumptions on 

memory use) in e.g. [64) and [65]. 

The use of many processors distorts the view of the actual computational 

gains over a single processor. Let T (p~l) be the computation time for a , p 
problem using p processors. The "speedup" of a parallel algorithm may be 

defined as S T 1/T. (Using Brent's theorem it follows that S ~p.) The 
p p p 

efficiency of a parallel algorithm can be defined as Ep = Sp/p (= T 1/p.Tp). 

The Amdahl effect ([66)) asserts that for many practical architectures the 

efficiency does not rise w.ith an increased number of processors, for reasons 

of housekeeping and communications chores and the lack of a sufficient and 

regular form of parallelism in the problem solved. 

Techniques for designing parallel algorithms include (i) recursive doubling, 

(ii) broadcasting, (iii) decomposition into weakly dependent parts and (iv) 

simultaneous building. 

N-1 N=l 
Theorem. 3 ai (and g ai) can be computed in O(log N) time, using N/2 proces-

sors. 

];'roof 

Use the processors to compute a 2 i + a 2i+l (OSi~ -1) in the first step. 
1 1 

Recursively double the extent of the partial sums using~, gN, ... of the 

processors until we have a 0 + ... + aN and aN + ... + aN-l and one proces-

2 -l 2 



sor can compute the final result in one more step. (We assumed that N=2r, 

some r.) □ 

N-1 
Compared to the sequential algorithm for La. recursive doubling gives a 

0 l. 
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speedup of O(N/log N) but an efficiency of only 0(1/log N). Two NXN matrices 

can be multiplied in O(log N) time as well, using N3 processors. Use a cluster 
2 of N processors for each of the N elements of the product matrix. In one 

step they compute (multiply) the summands, and O(log N) steps of recursive 

doubling suffice to accumulate the sums. A few years ago Csanky [67) proved 

that NXN matrices can be inverted in O (log2 N.) time, still using a polynomial 

number of processors. 

The idea of broadcasting is illustrated in the parallel solution of a 

linear system x = Ax+b (xElRN) with A lower triangular. All multiterm linear 

recurrences can be put in this form. Clearly x 1=b 1 and the straight computa

tion of x2 ,x3 , ... would take about N2 steps on a single processor. 

Theorem. A linear system x ='Ax+b with A an NXN lower triangular matrix can 

be solved in O(N) time, using N-1 processors. 

Proof 

Use processors P. (2~i:ill). After eliminating x. 1 (j~2) assume that the 
l. J-

P].. with i~j have a. 1x 1 + .•. +a .. 1x. 1 in store. In the next cycle P. can 
l. J.J- J- J 

compute xj. It subsequently broadcasts the value to all Pi with i>j, which 

compute a . .. x. and add it to the partial sum they hold. □ 
l.J J 

The algorithm, known as the "column sweep method", yields a speed-up of O(N) 
2 1 and an efficiency of about N /(N-l)X2N ~ 2 (a constant, anyway). By increasing 

the number of processors one can lower the time bound to O(log2 N), as one 

might expect from Csanky's result. The simple proof though illustrates another 

useful technique (from [68)). 

Theorem. A linear system x = Ax+b with A an NXN lower trangular matrix can 

be solved in O(log2 N) time, using O(N3 ) processors. 
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Proof 
-1 

As x = (I-A) b we are done if we prove that a lower triangular matrix 

can be inverted within the bounds stated. Decompose (split) the matrix as 

N 

2 --
, with Band D lower triangular, and observe the (recursive) structure of 

-1 -1 3 
the inverse. If B and D are found, only O(log N) steps and O(N) processors 

-1 
are required to "finalize" A . Alltogether this yields an algorithm of the 

desired complexity. □ 

Schendel [68] gives a readable account of "parallel (numerical) mathematics". 

An example of simultaneous building is provided by Sollin's algorithm 

for determining a minimum spanning tree of a graph. The graph is given by 

an adjacency matrix, which lists the weight of edges v.v. in entry (i,j) 
l. J 

(with 00 denoting the absence of an edge). 

Theorem. A minimum spanning tree of a weighted N-node graph can be computed 

in O(log N) time, using O(N3 ) processors. 

Proof 

Sollin's algorithm relies on maintaining a global invariant that at any 

stage the disjoint subtrees obtained are subtrees of one minimum spanning 

tree. Use N processors Pi, with Pi corresponding to vi (l~i~N). Each Pi will 

hold some label uniquely identifying the tree to which vi currently belongs. 

The algorithm does the following: 

(i) in a first cycle, each Pi. determines a lightest edge v.v. incident 
l. J 

to vi (l~i~). To prevent cycles, the lightest edge with minimum j is taken. 

The computation, and subsequent administration, needs only 0(1) time if suffi

ciently many auxiliary processors are on hand. 

(ii) as long as there still are >1 subtrees, do the following next cycle. 

For each subtree T1 determine a lightest edge v.v. connecting to a different 
l. J 

Tm. To prevent cycles again, the edge with lexicographically smallest i,j is 
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taken. T1 and Tm are subsequently connected and relabeled. The step is more 

involved, but can be done in 0(1) time with auxiliary processors. 

In each cycle the number of disjoint subtrees is halved, and the algorithm 

terminates after log N cycles of 0(1) time each. 

The timing of Sollin's algorithm is different depending on the memory model 

used (we allowed "unambiguous" access conflicts). Bentley and Ottmann [70] 

proved that the algorithm can run in O(N log N) time on a linear array of 

N processors. 

15. Dataflow computing. The earlier development suggests an entirely different 

approach to programming, based on clusters (nodes) and information transfer 

through communication lines rather than through variables in some memory. 

At the level of individual instructions this leads to Dennis' dataflow concept 

([71]) which holds the view that an instruction is ready for execution when 

its operands are available. To support and implement this concept a very 

different form of computer is required to realize the intrinsic parallelism 

of execution for many simultaneously active instructions. The idea of data

driven computation itself is not new, but only in recent years have architec

tural schemes with an attractive expected performance been developed and 

in some cases experimented with (see [72] for an extensive survey). 

In its most primitive form, a data flow program is a directed graph in 

which the nodes represent processing elements of some sort and the edges 

represent datapaths. There is no global memory and (hence) there are no vari

ables, but data (tokens) is transmitted directly from node to node over existing 

datapaths. Processing elements digest tokens from their incoming edges and 

emit new tokens over their outgoing edges, presumably after some internally 

specified computation. The execution of one "cycle" is very similar to a 

firing in the terminology of Petri-nets. Processing elements are operators, 

i.e., fixed token-mappings of some variety. Except that cycles and token

transports take finite time, no further assumptions are made about the speeds 

or relative speeds of the processing elements or when processing elements 

choose to take in a next batch of input. Dataflow computation is completely 

asynchronous. As a consequence, tokens may have to queue along a datapath 
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if the node "at the other end" is not processing fast enough. A processing 

element must "wait" whenever it wants a token from an empty input line or 

some rule prevents it from further sending on a congested output-line. Jaffe 

(73] and Bohm and van Leeuwen (74] present approaches for a fundamental anal

ysis of the underlying computational model. Algorithms can be designed in 

dataflow that achieve the tight bounds of many known multiprocessor algorithms, 

without the need for global control (see (75]). 

Dataflow machines are designed for rapid execution of dataflow programs. 

The basic instruction execution mechanism used in virtually all machines 

is the circular pipeline or "ring": 

r- -, 
!fetc~ 
I I 
I 
L- t' 

recessing 

elements 

node 

store 
-
~ 

r- -.., 
I I 
Jnatch: 
I I 
I I 
L _.J r 

Using program information from the node store, the fetch unit assembles acti

vated instructions to tokens and feeds them to a pool of processors. Result 

tokens are received by the match unit which checks, according to some policy, 

what instructions now have a fully set of operands. Any one that has is queued 

to the fetch unit. Ultimately, the level of concurrency achieved by an archi

tecture of this type is limited by the capacity of the datapaths in the ring. 

Nevertheless, it is a radical departure from the classical "von Neumann" 

architecture and a bold attempt to exploit concurrency of computation truly 

and at a large scale. Dennis (75] describes a possible extension of the approach 

to dataflow multiprocessors. Several languages (see e.g. (76]) have been 

designed to support dataflow programming. 
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16. Models of parallel computation. Models of computation enable one to analyse 

and prove fundamental results about the power and limitations of a real or 

proposed machine architecture. As modern technology is moving towards highly 

integrated circuitry and novel architectures, we need to revise our ideas 

about computation and the way it is performed accordingly. As we have seen, 

there appears to be a distinction between models based on a fixed connection 

network of processors and models based on the existence of global or shared 

memory. In the former category there are linear-, mesh- and tree-connected 

arrangements of processors. Wittie (77] surveys many other patterns that 

are of some practical importance. Galil and Paul (78] have taken a broad 

view and modeled a parallel machine as an infinite recursive graph, with 

some recursive assignment of nodes to processors. The processors may be finite 

automata, RAM's or limited RAM's of some sort and at every step each processor 

consults the processors on adjacent nodes before going through its compute 

cycle. Every determinsitic multitape Turing machine with time bound T can 

be simulated by a tree-connected parallel machine of finite automata in 

O(T log log T/log T) time. Many other complexity questions are explored. 

See also (79], (80]. Alternation has been another fundamental notion (e.g. 

(81]) that proved useful in clarifying the connections between sequential 

and parallel time and space measures. 

Fortune and Wyllie (82] proposed a very general and flexible model of 

parallel computation (the P-RAM) based on random access machines that operate 

in parallel. The machines have unbounded local memory but can communicate 

only through a shared (and unbounded) global memory. Simultaneous reads of 

a location are allowed, but simultaneous writes block the P-RAM. The random 

access machines act synchronized, executing one instruction (in parallel) 

per time unit. The most powerful instruction is the FORK, which enables a 

processor to activate a next free processor and start it off at some entry 

point of the parallel program. It is shown that determini~tic P-RAMs can 

accept in polynomial time precisely the sets accepted by (sequential) Turing 

machines in polynomial space. Nondeterministic P-RAMs accept in polynomial 

time precisely the sets by nondeterministic Turing machines in exponential 

time. 
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17. Buses. Processors and memory modules of different sorts and uses may 

be tied into one system, as in the machine room of a computation centre. 

It is usually done to off-load the central processor and to provide for access 

to specialized devices or back-up store. The communication between the differen 

processors is usually realized by a transport circuit, called a "bus". Buses 

differ by the speed and form of transport (bit-serial or bit-parallel). Also, 

all processors connected to the bus see the same signals. It is therefore 

important that some discipline is enforced (called the bus access protocol) 

for conflict-free, yet expedient sharing of the bus. There are two approaches 

to the sharing problem. One is to have a central bus controller, which polls 

processors and schedules bus use. Another is to distribute control and implemen1 

a suitable protocol in every processor. When several processors try to write 

on the bus contention occurs. It is usually detected by hardware means, and 

solved by some form of recovery and a retry. In the case of transports over 

longer distances, the propagation delay of signals over the bus cannot be 

neglected and becomes a factor in deciding an efficient multiplexing or sharing 

algorithm. 

18. Remote access. The use of terminals has been a first step to distribute 

a system over a wider area. Terminals connect to a shared (multiplexed) port 

of the central computer or to a local concentrator, which attempts to optimize 

the transports to and from the central site. Terminal handling has contributed 

to much of the essential understandings about data communication (see e.g. [83]) 

on the one hand, and parallel processing of jobs on the other. 

19. Computer networking. To access different sites from one host, networks 

have been designed of ever increasing complexity. The reason is usually the 

desire to communicate information, access data or use some specialized facility. 

There are two essential principles for realizing computer-to-computer communi

cation: (i) circuit switching, (ii) message switching. Tanenbaum [84]" gives 

a detailed description and explains many more of the problems in transfering 

data from one computer to another. Martin [85] gives a good overall account 

of the objectives of computer networks. 
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20. Distributed processing. As the potential of computer networks was recog

nized, it became an end in itself to provide all the required facilities 

for users somewhere on the network. It gives the luxury of a large system 

at shared expenses. Bochmann [86] recognizes the following three principles 

of distributed processing: (i) processing can be done where the data is, 

(ii) redundancy (back-up if one processing unit goes down) and (iii) economy 

(dedicated units need not be available everywhere). Local system versus com

munication costs will determine the optimal topology and policies of the 

network. 

21. Local area networks. Networks have different policies depending on their 

scale (and, of course, their architecture). Local area networks allow for 

high-speed transmissions at a very low error rate. Given these considerations, 

local area networks can afford to have a simple topology (one node will 

never be far away from another) which, again, keeps the added communications 

overhead for routing very small. One wellknown design is Ethernet ([87]), 

which has the properties of a contention bus. An Ethernet consists of a single 

(or split) co-ax cable with taps that provide the points to which processors 

can be connected. A processor only transmits when the Ethernet appears quiet. 

Its packets essentially make a round trip over the cable and (thus) certainly 

pass their intended destination. It is left to the individual stations to 

recognize and intercept the packets for their use. The Ethernet thus effective

ly realizes a broadcast medium (or "ether"). While transmitting a processor 

listens whether another processor has perhaps begun transmitting too, in 

which case an "audible" collision occurs. If so, both processors immediately 

stop transmitting, pause a random period and try to transmit again. A processor 

can never be sure its packet reached its destination without interference 

until after the time for a full round trip (only a few microseconds!). The 

Ethernet is engineered on the assumption that collisions happen rarely. It 

is an example of a CSMA ("Carrier Sense Multiple Access") network. Greenberg 

[88] has given an interesting analysis of the expected time of some simple 

distributed control tasks over an Ethernet-like medium. 

Rings are another topology applied in local area networks. The operation 

of a ring network hinges upon three main ingredients: (i) the transmission 

policy used by nodes to place packets on the ring, (ii) the reception policy 
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used to decide if a packet is to be received, and (iii) the packet erase 

policy (to use in case a packet appears to circulate indefinitely). There are 

three major types of ring architectures in use, which differ largely by the 

transmission policy that is used: (i) slotted rings, (ii) token rings and 

(iii) insertion rings. See [84) or [89) for further details. 

22. Protocols. A network consists of a collection of interconnected processors 

(nodes) that exchange data and messages over some nontrivial distance. The 

orderly exchange of information requires that the nodes conform to some pre

established agreements or rules which constitute a protocol. A protocol speci

fies both the format of the information packages transmitted and the actions 

to be taken for sending and receiving, as the communication ("control") between 

the nodes to set up or maintain a connection. A protocol thus embodies all 

the necessary actions to let the network function. To incorporate it, the 

network carries both data and control messages, in separate or combined packets. 

Most networks use some form of send/acknowledge protocol to set up connections, 

to check packet arrival and/or the error-freeness of a transmission. In case 

an error occurred (e.g. by parity control) the packet must be send again. 

For straight point-to-point connections over a half-duplex line there is 

a classical observation of Bartlett, Scantlebury and Wilkinson [90): 

Theorem. One bit suffices for error control when transmitting over a half

duplex line. 

Proof 

The technique is known as the "alternating bit" protocol. Imagine two 

hosts A and B communicating over a half-duplex line, taking turns in sending 

data and control information. Let AO (and so on) mean that A sends a packet 

with control bit 0. Let AO (and so on, not underlined) mean that a packet 

from A with control bit 0 is received (by B). The protocol for A and Bis 

best described by the following two communicating finite state diagrams: 
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Bl Al 

BO 

A B 

The diagrams should be read thus that when e.g. B receives a damaged packet 

with control bit 0, then it sends a control bit back to A and A responds 

by transmitting the same packet with control bit O again. □ 

Clearly more involved protocols are needed (and have been designed?) in net

works where nodes would waste time for acknowledgements of every separate 

packet and like to use the medium continuously. This opens the way for ex

tremely complicated communications with control messages, packets and re

transmitted packets in one stream that should eventually carry all data to 

correct arrival. Sunshine [91] gives an account of the problems in this di~ 

rection. Protocol validation has been attacked by methods derived from the 

correctness theory of parallel programs (e.g. [92]). 

23. Routing. In a packet-switching network some strategy is required for 

directing packets from source to destination through the transmission medium. 

An optimal strategy should deliver a largest possible number of packets in 

a shortest possible time. Packets of a message are sent ("hop") from node 

to node to reach their destination, but need not all follow the same path. 

Thus sequence numbers are needed and the receiving host may have some diffi

culties in assembling the message that is coming in. The routing algorithm 

of the network must avoid congestion of the imp's on the net and be proof 

against failures of some parts of the net. All routing algorithms are based 
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on maintaining routing tables either at a central node or distributed over 

all nodes. The routing tables contain information about connections, distances 

and delays to be expected along various lines. By now there is an extensive 

and non-trivial litterature concerning non-adaptive and adaptive routing 

(see e.g. [93]). Santoro and Khatib [94] show that in simple cases no routing 

tables are needed. 

The design of network wide systems leads to many problems about distributed 

algorithms and computing that can now be envisaged. Timing (and the notion 

of time itself), event ordering, synchronization, data integrity, encryption 

and compression are only the beginning of an endless list of issues that 

can be brought to bear on distributed computing in this wide sense. A unique 

account of the design and inplementation problems for distributed systems 

is given in [1]. 
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PARALLEL COMPUTATION 

LG. Valiant 
Harvard University, Cambridge, USA 

0. INTRODUCTION 

There is little doubt that in the future computers will exploit paral

lelism much more than they do at present. There is equally little doubt that 

this exploitation will present formidable engineering challenges to both com

puter designers and programmers. In this paper I will try to advocate the 

view that in addition to the engineering considerations there are also some 

theoretical issues whose resolution is likely to contribute to future com

puting practice. To this end I will discuss two fundamental questions that 

have fascinated me for some time: 

(a) Can we characterize the classes of problems that are amenable to fast 

parallel computation? 

(b) Are there computer architectures that can exploit the inherent parallel

ism in all problems reasonably efficiently, or are all efficient parallel 

computers necessarily special purpose? 

Recent work provides encouragingly positive partial solutions to these 

problems, and it is these that I plan to review. There are, of course, nu

merous issues important in parallel computation that are not covered by these 

two questions as here formulated. Discussion of these is omitted for the 

sake of brevity. 

I. INHERENT PARALLELISM IN COMPUTATIONAL PROBLEMS 

Given a particular computation (i.e. a run of a program on a particular 

input) the notion of inherent parallelism is well defined. A computation can 

be represented by an acyclic directed graph that represents the data depen

dencies among the inputs and computed values. The depth of the graph gives 

the minimum number of parallel time units needed to simulate the computation 

if at any step we can perform in parallel an arbitrary number of computation 
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steps on data then available. For many programming constructs (e.g. loops 

where the loop variable has input independent range) the comrJtation graph 

is independent of the input data. Hence we can analyze the inherent paral

lelism in such programs fairly easily. Indeed, much empirical work has been 

done in determining the inherent parallelism in existing programs written 

for sequential execution [Kuck]. 

In the present paper we are not concerned with the inherent parallelism 

in fixed programs but with the parallelism inherent in problems. Given a 

problem specification (which may be a sequential program) does there exist 

any program for it with large inherent parallelism? 

There are many examples of computationally trivial problems that appear 

difficult to parallelize. Let us consider undirected graphs with n nodes and 

define a alique to be "a complete subgraph that cannot be extended to a lar

ger complete subgraph". For example, if the graph has an isolated node then 

this node forms a clique. If a node has some edge incident to it then it is 

not a clique since it is contained in a complete subgraph of size at least 

two. The problem of finding a clique of some predetermined size is difficult 

[Cl]. Here we are concerned with the following easier problem: Given a graph 

find crny clique in it. Sequentially this is trivial since we can start with 

any node and repeatedly augment it to larger and larger complete subgraphs in 

any way we like until we can make no further progress. 

Suppose that we wish to find such a clique in parallel. Although we have 

not defined any model of computation the reader will appreciate where the 

logical problem lies. The sequential algorithm has up ton stages and it is 

difficult to see how the problem can be solved in substantially fewer stages, 

such as O(/n) or O(log n). 

There are numerous such combinatorial problems for which easy sequential 

algorithms exist but no way of parallelizing is known. Unfortunately for 

none of these problems do we have any proofs to show that parallelizing is 

impossible. The only guidance we have is that for certain specific problems 

we can prove that they are as difficult to parallelize as any other. Hence 

they are generally conjectured to be unparallelizable since otherwise all 

problems would be parallelizable and this is contrary to current belief. The 

notion of a problem being as difficult as any is formalized as "complete 

for polynomial time Turing computations under logarithmic space reducibility" 

by COOK [CZ] and as "complete for polynomial size circuits under p-projec

tions" by the author [Vl]. A typical example of such a problem is linear pro

gramming [DLR,Vl]. 
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I. I. Polynomials. 

Algebraic complexity theory provides a very clean context and model for 

understanding parallelism. Here we seek to compute a polynomial P[x1, ••• ,xn] 

in indeterminates x 1, ••• ,xn with coefficients from a field F such as the real 

numbers. The model of computation is that of straight line programs that al

low constants from F and indeterminates as inputs and {+,x} as operations 

[BM]. This is a powerful model. For example, subtraction can be simulated by 

addition using the constant "-1". More surprisingly division can be simulat

ed fairly efficiently within it under very general conditions [Str,BGH]. 

Starting with the simplest polynomial xn, it is clear that this can be 

computed sequentially in about log n steps by successive squarings. Can it 

be computed faster than this if we can perform several operations in paral

lel? KUNG [Kl] gave a negative answer to this by showing that even using an 

unbounded number of parallel processors performing {+,x +} as operations one 

cannot compute a degree n polynomial in fewer than log2n steps. 

For arbitrary univariate polynomials the analysis of parallelism is 

also tractable. MUNRO and PATERSON [MP] give some precise bounds. 

The question becomes more problematic when we have several variables. 

A special case that can still be computed in O(log n) time is that of arith

metic expressions with {+,x,+}. The essential restrictedness of this model 

is that the computation graphs are trees rather than arbitrary directed 

acyclic graphs. BRENT [Br] showed that any such formula of size n can be 

"rebalanced" so as to have depth O(log n). 

For many significant problems, however, no small expression is known. 

An important example is the determinant of an n><n matrix {x11 , ••. ,xnn}. This 

has degree n but the "obvious" expression for it has size exponential inn. 

Classical methods for evaluating determinants rely on elimination techniques, 

which appear to require n successive stages. In the early 197O 1 s it was 

quite widely conjectured that this basic process of linear algebra could not 

be computed in O(n) parallel time. It therefore came as a pleasant surprise 

when CSANKY [Cs] showed that, at least in fields of characteristic zero, 

the determinant, and several related problems, could all be computed in 
2 O((log n) ) parallel steps. Furthermore only polynomially many processors 

are required [Cs,PrSa]. 

A second surprise was provided by HYAFIL [Hy]. He showed that any poly

nomial of degreed that can be computed in C sequential {+,x} steps can be 

computed by some other program in about (log C)(log d) parallel steps. Thus 
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any polynomial inn variables that has both degree and sequential complexity 
? 

polynomial inn can be computed in parallel in time O((log n)-). This says 

that Csanky's fast parallel algorithm is an instance of a more general phe

nomenon. To see this we note that Gaussian elimination gives a polynomial 

time algorithm for the determinant, ~hich has degree n, and that divisions 

can be removed from this algorithm without increasing the complexity more 

than polynomially [Str,BGH]. Hence Hyafil's result can be applied to this 

modified algorithM. 

The main drawback of Hyafil's construction is that it requires more 

than polynomial, in fact nlog n, parallel processors. A recent result of 

Valiant, Skyum, Berkowitz and Rackoff [VSBR] remedies this. It shows how any com

putation using C {+,x} operations for computing a polynomial of degreed can 

be restructured so as to have depth about (log C)(log d) and size bounded 

polynomially in C and d. This seems an encouraging positive result about the 

potentials for parallel computation. It says that the naive bounds of log d 

and log Con parallel time can be achieved, to within a product of each other, 

using only polynomially many processors. 

1.2. Boolean Functions. 

For discrete computational problems, such as the clique problem dis

cussed in the introduction, the question of finding the right computational 

model is more problematic than for polynomials. Perhaps the most primitive 

choice is that of Boolean circuits [Sa]. Given a Boolean function 

f(x 1, ..• ,xn) of n arguments, how fast can we compute this in parallel? It 

is well known that any such function can be expressed as a disjunctive nor

mal form formula of size about 2n and depth O(n). Although this is a posi-· 

tive statement about depth (i.e. parallel time) it is not useful since it 

necessitates an exponential number of parallel processors. This observation 

does explain, however, why the following turn out to be the i1nportant ques

tions for parallel Boolean computation: 

(i) Which Boolean functions can be computed in o(n) (e.g.,log n) depth? 

(ii) Which functions can be computed by circuits that simultaneously have 

polynomial size and small depth? 

The few results that are known can be easily summarized. Boolean ex

pressions of length n can be computed in o(log n) depth by equivalent ex

pressions. A more interesting class is formed by finite state transducers 

that produce an output for each input read. Integer addition is an example 

that can be so formulated. LADNER anci FISCHER [LF] show that for any such 
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transducer then outputs can be computed from then inputs by a circuit of 

size O(n) and depth O(log n). 

A wider class of functions that can be recognized simultaneously in 

polynomial size and O((logn) 2 ) depth was described by RUZZO [R] in terms of 

atternating Turing machines and contains context-free recognition as a har

dest member. It turns out that the class can be characterized in terms of 

circuit complexity by defining circuits of "polynomially bounded degree" 

[SV,VSBR]. The restriction here is that implicit conjunction over more than 

polynomially many terms is never taken. 

We have seen already that the degree of a polynomial characterizes fair

ly accurately its parallel complexity. While no corresponding result is es

tablished for Boolean functions, most of the natural problems I know that can 

be computed simultaneously in polynomial program size and O(logn)k) depth 

can be formulated as instances of the degree result in [VSBR]. For some, such 

as transitive closure and co~text-free recognition one first constructs a 

Boolean circuit of polynomial degree. For others, such as matchings 

[IMR,SV,BHR,R2] one constructs polynomials, such as the determinant into 

which the problems can be empedded. 

In conclusion, we note that if we impose no restrictions on the class 

of circuits then reducing depth even slightly appears difficult. Suppose 

we have a circuit with n gates and say Q(n) inputs. At first sight it appears 

plausible that we can always find a shallow circuit, say depth In or log n. 

The only result known [PaVa] states merely that a circuit of depth n/log n 
n/log n is ensured, and that this is no larger than 2 

1.3 Oth~r Discret~ Models 

In the theory of sequential computation it has proved useful to study 

a large number of models of computation and to compare their power. Without 

this it is difficult to distinguish between theorems that merely describe a 

specialized property of some particular model, and those that transcend all 

models. COOK [C4] surveys current knowledge on parallel models. 

The question most relevant to the present topic is whether we can paral

lelize sequential computations more easily if we consider models more ~ower

ful than circuits. The obvious directions in which we can enhance the power 

of a model is to have modifiable connections and to have more complicated 

operations as a single step. 

Examples are the various versions of parallel random access machines 

[PrSt,FW,LPV,C4]. DYMOND [DJ and REIF [R2] show that more parallelization 
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is indeed possible on such machines. For example a time T computation on a 

sequential log-cost RAM can be sped up to about t'T.log(T) on a log-cost 

parallel RAM if 21T processors are ~~~liable. This result does not translate 

back to circuits because to simulate one step of parallel random access on 

21T processors, depth IT is required. This cancels out the gained saving. 

A second question relevant here is whether we can characterize the class 

of parallelizable functions as a complexity class for some other model of 

computation. For example, BORODIN [Bo] shows that circuit depth is closely 

related to sequential Turing machine space. Such relationships have been 

pursued for many models [PrSt,FW,G,H]. It has been established, for example, 

that parallel time complexity is indeed a robust notion that is invariant, 

to within certain factors, for a large class of models. When we try to charac

terize complexity classes by more than one resource bound simultaneously, 

such as "polynomial circuit size and O(log n) depth" then the invariances 

appear to be much weaker [C3,P,Ho]. 

An interesting general positive result that holds for parallel RAMs but 

apparently not for circuits is given by REIF [R2]. He shows that a certain 

Turing machine comple~ity class can be simulated in O(log n) randomized par

allel time. This implies for several graph problems parallel algorithms fas

ter than previously known. 

2. GENERAL PURPOSE PARALLEL COMPUTERS 

In the previous section we considered in the abstract how algorithms 

could be devised in which the operations could be performed with much con

currency. To exploit this concurrency in practice we have to implement the 

algorithm on some specific computer. The question we ask is whether there 

exist practical architectures on which every parallel algorithms in the 

above sense can be run with acceptable efficiency. Whether a meaningful 

answer can be given without reference to technological factors remains to 

be seen. We find it encouraging, however, that some of the ideas appear to 

be successful in a surprising variety of settings. 

We shall conceptualize a realistic computer as a large number N of uni

versal sequential processors each with some memory, connected by a network 

of communication lines. Each processor is connected to a small number d of 

other processors, where dis regarded either as a constant independent of N 

or a slowly growing function of N such as log2N. The processors conununicate 

by sending packets of information along the lines. For simplicity we shall 
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assume that the transmission time along each wire is the same and dominates 

the atomic computation steps of the processors. In reality it may, of course, 

be difficult to engineer this. If transmission times are proportional to 

physical distance then this requirement can be achieved only for such net

works as regular grids. Despite this and other obvious drawbacks the model 

appears a useful one with which to start and has been discussed widely in 

the literature. 

2.1. Connection Patterns of Small Diameter 

The distance d(i,j) from node i to node j in a graph is the minimum num

ber of edges that have to be traversed in any path from node i to node j. 

The diameter of a graph is the maximum of d(i,j) taken over all choices of 

pairs i,j. It is clearly advantageous to have as interconnection patterns 

for the processors graphs of small diameter. 

For undirectional transmission (i.e., directed graphs) an optimal solu

tion is easy. Suppose that there are d ~ 2 lines directed away from every 

node and that the number of nodes N is a power of d. Then there are at most 
s i s+I , 

ri=Od = (d -1)/(d-l) nodes within distances of any one node and hence if 

sis the diameter then N does not exceed this quantity. It follows that the 

diameter is at least logdN. In the positive direction, this bound can be 

achieved by the directed degreed version of the Bruijn graph (called the 

d-way shuffle for short). This graph is defined for N = dn as G = (V,E) where 

Vis the set of vertices «x1, ••• ,xn)jl ~ x1, •.. ,xn ~ d} and Ethe set of 

edges 

For bidirectional transmission (i.e. undirected graphs) the problem is 

much more difficult. There is no infinite set of values of N for which an 

optimal solution is known in the above sense. The "Moore bound" has motiva

ted much work [E,HS]. Recent results that attempt to approach this bound as 

closely as possible are surveyed in [BB,LFQSU]. 

In the literature much attention has been paid to networks which, 

though not of optimal diameter, can implement efficiently important algo

rithms such as the Fast Fourier Transform. Significant examples are the 

shuffle-exchange [Sto,Sc],the binary n-cube [SBK,VB], and the cube-connected 

cycles [VuPr] and variations on it [U]. In all cases the diameter differs 

from the optimal by a constant factor greater than one. 
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2.2. Parallel Connection Requests 

When the information traffic in a network is sparse and packets col

lide rarely then the minimization of graph diameter is sufficient for ef

ficient communication. In the context of highly parallel computers we ex

pect the information traffic to be very heavy. Suppose we wish to rea

lize a pattern of communication requests in parallel in about logdN time 

units. What patterns of traffic can we expect to cope with? 

Clearly if all N nodes send a packet to a single node i simultaneous

ly and if there are at most d lines coming into node i then at least N/d 

time will be required for all the packets to arrive. We therefore have 

to exclude such requests. The following four cases exemplify some impor

tant patterns that we may hope to achieve in O(logdN) time. 

(a) permutations: initially one packet at each node, each with a distinct 

destination address to which it is to be routed. 

(b) partial permutations: initially one or zero packets at each node, 

each with a distinct destination address. 

(c) broadcasts: initially one or no packet at each node, each packet with 

a set of destination addresses to which it or copies of it are to be 

routed. The sets are disjoint so that at most one packet arrives at 

any node. 

(d) inverse broadcast: these apply when several packets can coalesce in

to a single packet. Initially there is one or no packet at each node 

each with a destination address. These addresses do not have to be 

distinct. 

For example if several processors wish to read simultaneously from 

the memory at a particular node then a broadcast of type (c) would be 

required. Conversely if several processors wish to write concurrently in

to a single location with some protocol such as "an arbitrary one of the 

writes succeeds", then an inverse broadcast (d) suffices. The simplest 

communication request, the permutation, serves as a useful paradigm for 

the whole class of these problems. 

2.3. Distributed Routing Algorithms 

Networks for realizing communication requests have been investigated 

for many years in the context of telephone switching [Be]. The main char

acteristic of that application is that telephone conversations are long 
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i.e. between successive requests to change the communication pattern many bits 

of information are transmitted. Hence the switching time is of relatively 

little importance. Permutation networks offer good solutions to many of the 

problems. A good survey of results for this problem can be found in [MGN]. 

In multiprocessor interconnection networks we have the additional problem 

that the communication requests may change at successive time units. Under 

these conditions the cost of changing the switch setting in standard permuta

tion networks appears prohibitive [GP,LPV,NS,Sc] and other solutions have to 

be found. 

In the search for good routing algorithms it is clearly advisable to 

keep to those that are fully distributed. By this we mean that the algorithm 

does not rely on any global information about the communication request, and, 

in particular, the routing of each packet depends only on information availa

ble at the node at which it is currently located. 

The best distributed routing algorithms known are based on one of two 

ideas: (i) comparator network sorters [Ba] and (ii) 2-phase randomized rout

ers [V2]. The main advantages of the former are that the local switching com

putations are simple, being Just comparisons of addresses, and that it is de

terministic. In contrast the latter require the maintenance of queues of 

packets at the nodes and use randomization. On the other hand the 2-phase 

routing algorithms are fast, requiring clog2N basic transmission steps for 

small c. (N.B. The algorithm is always correct and terminates within this 

time with large probability for all inputs.) This has been proved analytical

ly in [V2,VB] for the case of the binary n-cube and in [A] and [U] for con

stant degree graphs, such as the d-way shuffle. Experimental results show 

that the performance is even better than the anlysis suggests [V4,VB]. In 

contrast Batchers's construction takes time Q((log N) 2). [Recent work of 

Ajtai, Komlos and Szemeredi suggests that Clog2N time may be possible for 

very large C for certain degree log N graphs.] A further advantage of the 

2-phase router is that, being a natural heuristic, rather than a finely 

tuned instrument like the Batcher network, it can be used to perform all 

four of the previously mentioned routing requests without any adaptation. 

Comparator networks for sorting can directly perform only permutations and 

need considerable amplifications in order to perform the other tasks. 

Recently BORODIN and HOPCROFT [BH] have shown that it is possible to 

prove some illuminating lower bound results about routing algorithms. They 

define a routing algorithm to be oblivious if the path taken by each packet 
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depends only on its source and destination. They show that any oblivious 

deterministic routing algorithm for realizing permutations takes time at 

least N112;d312 • Hence to achieve O(log N) time an algorithm has to be ei

ther nonoblivious, like comparator networks, or randomized, like the 2-phase 

router. A second lower bound result [V3] sheds some light on the 2-phase 

routing strategy itself. The strategy consists essentially of sending all 

the packets to randomly chosen nodes in the first phase, and then on to 

their correct destination in the second. The lower bound gives some justi

fication to this counterintuitive process. The result says that for graphs 

with near minimal diameter any oblivious randomized algorithm that does 

not send packets along routes at least twice the diameter of the graph takes 

more than n((log N)k) time for any k. 

Finally we note that if we consider regular 2-dimensional grids of di

ameter n(IN) rather than the O(log N) diameter graphs discussed above, then 

the best way known for realizing permutations are still based on the same 

ideas.THOMSON and KUNG [TK] adapt Batcher's network so as to work in time 

0(/N) on such a grid. With randomized routing 0(/N/)time with smaller con

stant multipliers can be obtained [VB]. This underlying unity is encouraging 

considering that the two kinds of networks are usually associated with very 

different technological parameters. 
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There is no need to convince anyone that Very Large Scale Integration 

(VLSI) is revolutionizing circuit design. Over the past decade, the level 

of integration has been regularly doubling every two years or so, and there 

is no reason to believe that the current trend will stop soon. 

Whereas circuit designers ten years ago were faced with the problem of 

implementing (simple) functions with only a few hundreds of gates, complete 

micro-processors are now available as connnercial products with several 

hundred thousand transistors on a chip. In another 4 or 5 years, one can ex

pect to have millions of transistors on a chip. 

Consequently, conventional measures are no longer adequate for evaluat

ing, and comparing, various circuit designs implementing a given function. 

In particular, it is connnonly admitted that a traditional component count 

no longer constitutes a valid criterion for measuring a VLSI circuit. A 

simple reason is that this criterion only accounts for the processing ele

ments of the circuit and does not account for the data transmission between 

processing elements. Therefore, we cannot expect to capture the full com

plexity of VLSI circuits through this cost measure. 

In the past few years, a systematic approach was taken by MEAD and 

CONWAY [ 1980], THOMPSON [ 1979], and BRENT and KUNG [ I 980a] to develop new 

computational models for VLSI circuits. These models were later refined by 

VUILLEJl1IN [1980] and LIPTON and SEDGEWICK [1981] and also questioned by 

CHAZELLE and MONIER [1981]. In these notes, we investigate these different 

models, and we present some general techniques to establish lower bounds 

on the complexity of VLSI circuits. Matching upper bounds are illustrated 

through specific circuit desigms. 

This review is organized as follows. In Section 2, we develop a com

putational model for VLSI and discuss the models that have been proposed in 
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the literature. In Section 3, we derive direct consequences from the model, 

and we establish an initial Lemma of THOMPSON [1979, 1980]. This initial re

sult will be used in Section 4 to establish a general lower bound on the 

class of transitive functions (such as binary multiplication, shift, convo

lution, etc,) [VUILLEMIN 1981], In Section 5, we use a different technique 

to develop another lower bound on functions like binary addition, prefix 

computation, etc. Circuit designs are presented in Sections 6 and 7 to show 

that the lower bounds can actually be achieved; they also illustrate a very 

important design methodology based on the use of divide and conquer and of 

recursive design. 

2. A COMPUTATIONAL MODEL FOR VLSI 

MEAD and CONWAY [1980], THOMPSON [1979], and BRENT and KUNG [1980a] 

have laid down the basis for the formalization of a VLSI circuit, Their 

models differ slightly, and we discuss below their general assumptions. 

The basic idea is that a VLSI circuit can be viewed as the layout of a 

graph in which nodes correspond to gates, and edges correspond to wires. 

While edges are only used to simulate transmission of signals between nodes, 

nodes simulate the active part of the circuit and are used to model either 

the actual processing elements or the I/0 ports. 

The general assumptions in our model are discussed in the subsequent 

sections and are organized according to their relevance to logical, techno

logical, electrical, and design assumptions. 

2.1. Logical assumptions 

Probably the most important (albeit often implicit) assumption in all 

models is that all signals are supposed to correspond to the digital encoding 

of pieces of information. Indeed, we would like to make it clear, from the 

beginning, that the model we are proposing here is certainly not adequate to 

represent a VLSI circuit as an anolog device; and, as a matter a fact, most 

of the results developed in these notes would no longer be valid. This is 

stated in the following, 

(LI) A VLSI circuit is a digital device, 

The question now is to define the right unit of information that should be 

used in the model. The only restriction imposed by THOMPSON in his original 
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pap.er [ 1979] was that the values manipulated by the circuit be taken from 

a finite field, namely the set of integers modulo m. Unfortunately, the mo

dulus m was related to the size N of the problem through m > N, causing the 

lower bound that he derived for the DFT (Discrete Fourier Transform) to be 

too short by a factor of log 1 N (log N being the number of bits required to 

code integers modulo m). 

In agreement with assumtion (11), signals transmitted along wires (or 

edges of the graph) will be assumed throughout to represent a boolean value, 

i.e., exactly one bit of information. Similarly, each node of the graph cor

responding to processing elements in our model will be regarded as a boolean 

function performing some operation on signals adjacent to that node. This is 

summarized in the following statement. 

(12) A node or a wire can store at most one bit of information. 

It is to be noted that the wire transmitting a signal produced by a node 

carries the same information as the one stored in the node, It is therefore 

possible to assimilate the wiTe to the node (but only from the point of view 

of the quantity of information). 

Assumptions (11) and (12) will be presupposed throughout the notes, 

even if they are not explicitly referred to. 

2.2. Technological constraints 

For a theoretical model to be of any practical value, assumptions 

should stay close to the real world, and restrictions should also corres

pond to realistic approximations. We list and discuss below assumptions of 

the model that are based on current technological constraints. Explicit re

ferences to these assumptions will be made in the remainder of the paper. 

(Notations are drawn mostly from [BRENT and KUNG 1980a, 1981].) 

(Tl) At most v ~ 2 wires can overlap at any point in the layout of 

a VLSI circuit. 

This is to account for the fact that all technologies allow for the super

position (without interference) of several wire layers. Typically, vis a 

small constant (2 or 3), but it is perfectly conceivable that, with progress 

in technology, an arbitrarily large number of layers could be superposed, 

allowing for 3-dimensional chips. We will see in Section 3 how some of the 
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results can be adapted to VLSI circuits laid out in the space rather than 

in the plane. 

(T2) In one layer, the minimal distance between non-intersecting 

wires is;\> O. 

This minimal distance is highly dependent on the technological process used 

in the fabrication of the chip and reflects the minimal resolution of this 

process. 

(T3) The minimal storage area for one bit of information is S 2 >. 2• 

Typically S corresponds to just a few transistors and is in the order of 

several >. 2 • 

(T4) The minimal area required by an I/0 port is p 2 S. 

Although there are no conceptual differences between a gate that corresponds 

to an I/0 port and oth~r logic gates of processing elements, it is conve

nient to differentiate between them in order to measure their relative im

portance or influence in the design of a circuit. In addition, if a design 

corresponds to a full circuit, it has to communicate with the outside world, 

and I/0 ports are typically several orders of magnitude larger than logic 

gates. 

(TS) A bit requires a minimal delay,> 0 to be transmitted through 

any gate or I/0 port, 

With this minimal delay we do not yet consider the propagation delay of a 

signal along a wire. The assumption concerning this propagation delay is 

probably the most controversial among the various existing models, and it 

will be examined and discussed in isolation in the next section. 

(T6) Any node has a maximum fan-in b 2 2. 

This last assumption is not an absolute requirement and will not be needed 

directly. It is only a consequence of (T6) together with (TS), derived in 

Section 3, that will be used to obtain the lower bound of Section 5. 
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2.3. Propagation delay 

While there is general agreement on the assumptions that have been pre

sented in the previous sections, there is little consensus on the correct 

assumption to put on the time required to propagate a signal along a wire. 

There are three prevalent assumptions, as discussed in [BILARDI et al.- 1981]. 

The different assumptions are probably best illustrated by considering 

the time required by a minimal size transistor to charge a wire of length 

L (or equivalently to propagate a signal along a wire of length L). 

(Pl) 

(P2) 

(P3) 

Synchronous model: t = 0(1), i.e., the time is independent of L. 

Capacitive model: t = O(L). 

Diffusion model: t = 0(12). 

Assumption (Pl) is probably the most commonly adopted in the literature 

[BRENT and KUNG 1980a, 1981; VUILLEMIN 1980; SAVAGE 1981a], and it is es.pe

cially useful when proving lower bounds on the computation time of a cir

cuit, since it is the least'constrained hypothesis. 

Assumption (P3), set forth by CHAZELLE and MONIER [1981], is at least 

asymptotically, certainly the correct assumption since both the resistance 

and the capacitance of a wire of length Lare proportional to L, and, 

therefore, the time constant of the wire is quadratic in L. This asymptotic 

result has, however, no practical application, at least in current techno

logies, since the quadratic growth would only be sensitive for wires of 

length several orders of magnitude over the size of feasible chips. 

Assumption (P2), on the other hand, is reasonable. when considering 

current electrical parameters: the resistance of a unit width metal wire is 

quite negligible compared to the resistance of a minimal size transistor. 

MEAD and REM [1980] have shown that, by appropriately rescaling the tran

sistor, the time delay to charge a wire could be made independent of the 

size of the wire. In addition, this rescaling corresponds to an area in

crease of the driving transistor which is directly proportional to the 

area of the driven wire. Under these conditions, both assumptions (Pl) and 

(P2) can be assimilated. 

Assumption (Pl) will be used throughout these notes, and the delay in

troduced by a wire will be included in the delay T of assumption (TS), 

For a full discussion, the reader is referred to the paper of BILARDI 

et al. [1981]. 
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2.4. Design methodology 

The last assumptions that will be considered in our model correspond 

to geometrical constraints imposed by usual design conventions. 

(DI) The layout of a VLSI circuit occupies a convex region of the 

plane. 

Although this assumption is realistic when considering a complete circuit 

(which always occupies a rectangular area), it might be a restriction for 

sub-circuits that are to be embedded in larger circuits. LENGAUER and 

MEHLHORN [1981] have relaxed the convexity assumption and require instead 

that a chip occupy a compact region of the plane. They show that the results 

that we will develop in Section 4 hold under this new assumption. 

(D2) 

(D3) 

(D4) 

The remaining hypotheses are concerned with the input-output schedule. 

Each input is read exactly once, 

Inputs are supplied and ouputs are delivered at fixed times. 

Inputs are supplied and outputs are delivered at fixed loca

tions. 

Assumption (D2) states that there is no "free memory" outside the chip, and 

that, if some input is to be re-used several times, it must be stored 

within the circuit. In [SAVAGE 1981b, 1982] circuits obeying assumption (D2) 

are said to be semelective. 

LIPTON and SEDGEWICK [1981] call circuits satisfying assumption (D3) 

and (D4) when- and where-oblivious~ respectively, and we will adopt their 

terminology in these notes. These two assumptions require that the input

output pattern be data-independent (i.e., that it be entirely specified with 

the circuit design). 

Although most circuit designs are where-oblivious (and, therefore, as

sumption (D4) does not impose any restriction), assumption (D3) excludes 

all self-timed circuits because outputs are delivered at times that are de

pendent on the input processed by the chip. It might therefore be useful 

to distinguish where-oblivious with respect to the input and with respect 

to the output. 

Other authors [LENGAUER and MEHLHORN 1981] have the notion of a 
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strongly where-oblivious circuit, meaning that the inputs (and outputs) are 

stored in queues, outside the chip, and only the ordering in the queues are 

data-independent. Under this assumption, they derive very interesting lower 

bounds for transitive functions (see Section 4); but we will not be con

cerned with their results here. 

Another restriction which we will not consider in this review, but 

which has been set forth by several authors (e.g., [CHAZELLE and MONIER 

1981]), is that the I/0 should take place on the boundaries of the chip. 

This corresponds to common practice in the fabrication of VLSI circuits but 

is not required to derive the results reported here. 

2.5, Complexity measures 

As was already mentioned, a simple component or gate count no longer 

corresponds to any realistic measure of the size of a circuit when dealing 

with VLSI circuits. This is particularly true since data communication 

might, in many cases, represent the largest part of the circuit (in the 

design of a fast binary shifter, for example, as we will see in Section 4). 

In the case of VLSI, the size is better expressed as the total area of 

silicon used in the layout. The area of a VLSI circuit is throughout denoted 

by A. Obviously, another crucial parameter of a VLSI circuit is the time T 

required to compute the function in implements. 

The area A and the time T required by a circuit to compute a function 

constitute important parameters (and have been considered so far the usual 

measures) of the circuit. These two measures, however, cannot, by them

selves, usually capture the full complexity of a VLSI circuit. VUILLEMIN 

[1981] has introduced a useful complement to these measures with the notion 

of the period of a circuit, which we will denote by P throughout, This pe

riod corresponds to the minimal time interval between the input (or the 

output) of two consecutive instances of a problem solved by the circuit 

(used in a pipelined fashion). 

We feel that the period P of a VLSI circuit is just as important a 

parameter as its area A and its time T. This is so because the period cha

racterizes the maximum throughput of the circuit, and, in contrast (or in 

complement) with the time, it is able to take more completely into account 

the computing power of the circuit. In particular, it measures not the time 

to solve just one instance of a problem, but the time elapsed between the 

solutions of two consecutive problems input to a circuit (their execution 
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taking place simultaneously or in pipeline), 

In addition, since any circuit clearly satisfies T ~ P, lower bounds 

on the period P will innnediately transfer into lower bounds on the time T, 

and they will, therefore, correspond to stronger results. 

To paraphraze LIPTON and SEDGEWICK [1981], a VLSI circuit designer is 

typically faced with the following problem (or challenge!). 

Given: a boolean function f, 

Find: a VLSI layout that computes f and that minimizes all three 

measures A, P, and T. 

Unfortunately, this problem has in general no solution, and, instead of mi

nimizing all three measures together, the circuit designerwill have to try to 

minimize some cost function c(A,P,T) that weights all three fundamental pa

rameters of the circuit. 

By assuming that such a cost function is monotone, i.e.: 

c(A' ,P' ,T') ~ c(A,P,T) 

if A'~ A, P' ~ P, and T' ~ T, and that it is resealable i.e.: 

c(aA,pP,tT) = g(a,p,t).c(A,P,T), 

LIPTON and SEDGEWICK [1981] have shown through simple functional analysis 

arguments that the only cost functions are given by: 

a p t c(A,P,T) = k.A .P .T. 

Among such cost functions, some are of particular interest for their physi

cal interpretation. For example, the product A.T measures the energy re

quired by the circuit during the computation of the function it implements, 
2 and the product A.T .measures the corresponding power dissipated by the 

circuit. Similarly, the product A.P measures the energy required for solving 

just one instance of a problem (bear in mind that several problems are pro

cessed simultaneously by the circuit in a pipelined fashion). 

The most connnon cost functions that have been used in the literature, 

f h d . A d h 2 ' ' ' 11 d apart rom t e irect measures an T, are t e A,T measure initia y e-
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veloped by THOMPSON [1979, 1980] and the A.P2 measure introduced by 

VUILLEMIN [1980]. Through a combination of lower bound results on both A and 
2 

A.T, it is easy to also derive a general lower bound on the product A.Ta, 

for O $a$ 2 [THOMPSON 1979, 1980; BRENT and KUNG 1980a, 1981]. 

3. INITIAL RESULTS 

After the description of the VLSI model of computation presented in the 

previous section, we are now able to derive a few results based on the as

sumptions of the model. 

We will first present a few direct consequences of our notations and 

assumptions, and we will then re-establish an important le11Dlla initially de

rived by THOMPSON [1979, 1980] that will serve as the basis for the results 

of Section 4. 

3.1. Direct consequences 

LEMMA 3.1. A circuit with N memory ceZZs requires an area at least S.N and 

can memorize at most 2N distinct states. 

This first result corresponds to the view of a VLSI circuit as a fini

te state machine and is a direct consequence of assumption (T3). 

LEMMA 3.2. The time T required to compute a function with one ou-t;put de

pending on N inputs satisfies T ~ T.logb N. 

Again, this is a direct consequence of assumption (TS) and (T6). 

It is to be noted that the result of Le11Dlla 3.2 is the only consequence 

of assumption (T6) that we will require in the remainder of these notes, 

and the only property that we will actually use is the fact that the compu

tation time Tis a concave function of N. This property could in fact re

place assumption (T6). 

In a different model, using assumption (P3), CHAZELLE and MONIER [1981] 

have obtained a lower bound of T.IN for the same computation time T. This 

relation also corresponds to a concave function and, therefore, could also 

be used in lieu of T.logb N. 

LEMMA 3.3. Any circuit computing a function of N inputs to M outputs satis

fies: 
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A,T <! A.P <! p.,. (N+ M). 

Consider a circuit with wi input ports and w0 output ports. Then, by (T4) 

and (TS), A<! p.(wi+w0) and T <! P <! ,.max(N/wi,M/w0). □ 

This is probably the simplest tradeoff that can be established for any 

VLSI circuit, and, although this first lower bound is linear in both the 

number of inputs and outputs, it appears to be tight in a number of situa

tions (this is the case, for example, of binary addition). 

3.2. An initial lemma 

Most (if not all) of the early results in VLSI complexity have essen

tially been derived through a technique initially developed by THOMPSON 

[1979, 1980]. The principal idea consists of partitioning the circuit into 

two halves (roughly the same size) and then looking at the necessary flow 

of information between the two sides of this partition. 

The next lemma is a purely geometrical result which is needed in the 

derivation of Thompson's lemma. 

LEMMA 3.4. Let C be the length of a:ny chord perpendicular to a diameter of a 

convex region of area A, then: 

The application of this result to VLSI circuits clearly requires the 

use of assumption (Dl). By assumptions (Tl) and (T2), we have the immediate 

following consequence, 

LEMMA 3.5. Let w be the number of wires crossing any chord perpendicular to 
a diameter of a convex region of area A, then 

> I 2 2 2 
A - 2.w ,A /v. 

Let C be the iength of the chord. Clearly, from assumptions (Tl) and (T2), 

C <! w,)./v. The result follows from Lemma 3.4. 0 

Before stating the last lemma, a few notations and definitions are in 

order. 
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Consider a function f 0 (z 1• •••• zM) = f(x 1• ••••~)•with N inputs 

and M outputs. Let m be the maximum number of output bits that are delivered 

through any one output port. Note that. by assumptions (T4) and (TS): 

(3. I) A~ p.M/m, and T ~ P ~ T.m. 

Consider now a circuit implementing function f and a partition of the 

circuit by a chord as in Lennna 3.5. Let Land R be the two regions of the 

circuit resulting from this partition. We will denote this partition by 

(L,R) 0 and we will also denote by ILi and !RI the number of output variables 

delivered in each of the two sets Land R, respectively. It is always pos

sible, by appropriately sliding the chord, to arrange that: 

'(M-m)/27 s ILi s !RI s L(M+m)/2_j. 

Having defined the partition (L,R) satisfying this last inequality, we 

denote by f(Ll,RI) = (L2,R2)'the definition of function f resulting from re

arranging the variables according to this partition. We also denote by 

fL,C(RI) the restriction f(C,RI) off that consists of setting the variables 

in LI to some fixed values C; similarly we define fR C(LI). 
' The following definition is adapted from a paper by SAVAGE [1981]. 

DEFINITION 3.1. Given a function f and a partition (L,R), as above, the 

cross-flow Im(f) is defined by 

where 

and where !hi denotes the cardinality of the range of h. 

The cross-flow Im(f) measures the number of bits of information that 

must be transmitted from one side of the partition (L,R) to the other. 

The following lennna is now an immediate consequence of this definition. 

LEMMA 3.6 THOMPSON [1979, 1980]. The area A, the time T, and the period P 
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of any circuit computing some function f satisfy 

where 

PROOF, As in Lennna 3,5, take a chord that cuts w wires. Since the computa

tion off requires the transmission of Im(f) bits of information across the 

chord, by assumption (TS), it will take time T ~ ,,I (f)/w, As for the pe-
m 

riod P, the chord would constitute a bottleneck as long as P $ ,,I (f)/w. 
m 

The result then follows from Lemma 3.5. D 

Since I (f) decreases when m increases, this last lower bound is weak for 
m 

large m, However, by combining the result of this last lennna and equation 

(3.1), it follows that 

(3,2) 

where 

ROSENBERG [1981] has considered 3-dimensional circuits in a model similar 

to the one we have developed in these notes. The results of both Lennna 3.5 

and Lennna 3,6 can be transposed immediately in this new 3-dimensional model, 

and, in particular, the result of Lennna 3.6 becomes 

for some constant k, where V corresponds to the volume of a VLSI circuit 

and replaces the area A. For more details on 3-dimensional VLSI circuits, 

the interested reader is referred to the paper by ROSENBERG [1981]. 
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4. A COMBINATORIAL LIMITATION 

This section is adapted from a result of VUILLEMIN [1980] which unifies 
2 2 most of the A,T = O(N) VLSI complexity results, 

2 Thompson's lemma results in good lower bounds on the A.T measure for 

any function f, provided that the flow of information required by function 

f is rich enough, i.e., provided that the cross-flow Im(f) can be shown to 

be large enough. 

VUILLEMIN [1980] considers a class of functions which he called transi

tive fW1ctions, Any function in this class enjoys the property that any 

input bit can be mapped onto any output bit, thus guaranteeing that a maxi

mum of information has to flow inside any circuit that implements such a 

function, 

Let G be a permutation group over {I, ••• , N} and let g(I), ••• , g(N) 

be the permutation associated with an element gin G, Formally, he gives 

the following definition. 

DEFINITION 4.1, A function f~ (z 1, ••• ,zN) = f(x 1, ••• ,~,s 1, ••• ,sp), is 

transitive of degree N if there exists a transitive permutation group Gover 

{1, ••• ,N} such that, for any gin G, there exist binary values of s 1, ••• ,sp 

for which f is permuting x 1, ••• ,~according tog, i.e. 

The class of transitive functions includes a large number of basic problems. 

In particular, binary shift, cyclic shift, binary multiplication, convolu

tion, linear transform, etc,, can all be shown to correspond to transitive 

functions. The reader is referred to the paper by VUILLEMIN [1980] for other 

examples and proofs. 

THEOREM 4,1 [VUILLEMIN 1980]. Any circuit with area A, period P, and time T 

computing a transitive function of degree N satisfies 

2 2 2 A.T ~ A.P ~ k,N, 

for some constant k. 

PROOF. In this discussion we do not take into account the variables s. in 
i 

the definition of function f. Consider a chord partitioning the circuit in 
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two halves Land R, as in Lennna 3.5. When function f computes a permutation 

g of the transitive group G, we say that bit x. crosses the chord if x. is 
i i 

input in L (resp.R) while xg(i) is output in R (resp. L). 

Through simple counting arguments, it can be shown that, during the 

computation of all permutations in G, the total number of crossings must be 

at least IGl.min(ILl,IRI) = !GI.ILi, where !GI denotes the number of ele

ments in G. Therefore, there must exist a permutation gin G that accounts 

for at least ILi crossings. This particular permutation contributes to at 

least '(N-m)/27 bits of information in the definition of the cross-flow 

Im(f). 

Theorem 4.1 then follows from equation (3.2). D 

5. AN ENTROPIC LIMITATION 

Most of the results of this section are exposed in more detail in 

[BAUDET 1981]. 

While the technique developed in Section 3.2 and used in Section 4 

leads to lower bounds that account exclusively for the amount of wires re

quired by a VLSI circuit, the technique presented in this section leads to 

lower bounds that account exclusively for the amount of memory required by 

the circuit. In this respect, these two techniques complement each other. 

Throughout the section we regard a VLSI circuit as a finite state ma

chine, and the results are based on the observation of the progress made 

by a circuit towards the evaluation of the function it implements. At the 

time of observation, we want to relate the quantity of information still 

to be produced by the circuit (i.e., the number of bits not yet delivered) 

to the quantity of information still available from the input (i.e., the 

number of bits still to be read, together with the information already 

read and encoded within the circuit). 

Before developing these results, we introduce a few notations. 

Consider a function f: f(x 1, ••• ,~) = (z 1, ••• ,zM), computed by a cir

cuit C. For the sake of clarity, we assume throughout that M = N. Let 

ti= i.T, for i ~ O, be a sequence of observation times. Let ni be the num

ber of bits input to the circuit Cat time ti. We define N0 = 0 and 

Ni= Ni-I+ ni-l' for i ~ I; Ni represents the number of bits input to C 

prior to time t., Also, lets. be the number of bits encoded within the 
i i 

circuit, Last, let S. be the set generated by the output variables not yet 
i 
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delivered by time ti; the size of this set, denoted by lsil' corresponds to 

the number of distinct values that can still be produced by circuit C after 

time ti. 

If, at time t., the evaluation off is not 
1 

not yet deliverd must be evaluated from the N -

completed, any output bit 

N. 1 input bits not yet read 
1-

at time ti' from the ni input bits just read at time ti' and from the infor-

mation memorized within the s. cells of the circuit (which encodes the input 
1 

read prior to time ti). This leads to the following lennna. 

LEMMA 5.1. The area A of a circuit computing function f satisfies 

with 

s. ~ logjS.] - '(N-N1,). 
1 1 

The first inequality is a direct consequence of assumptions (T3) and (T4). 

The last inequality follows from the above discussion. D 

This lennna already provides us with a lower bound on the area required 

by a circuit. We cannot expect, however, a lower bound better than linear 

in the number of outputs produced by function f. Nevertheless, this linear 

lower bound appears to be tight in a number of cases. This is so, in parti

cular, for any function that is surjective and such that any output bit de

pends on all input bits. This is the case of all transitive functions, and 

it is stated in the following. 

LEMMA 5,2, The area A of any circuit computing a transitive function of 

degree N satisfies: 

A~ N.min(p,S), 

Lett. be the time when the last input bit is read by the circuit, We have 
1 

Ni+ ni = N. Since any output bit depends on all input bits no output has 

yet been produced at time ti' therefore, Si= s0• The result follows from 

the fact that the function is surjective (i.e. !s0 ! = 2N) and from Lennna 5.1. 

Note, that by a combination of Lennna 5,2 and from Theorem 4.1, we ob

tain a general lower bound on the A.Ta and A.Pa measures. Specifically, we 
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have 

for OS x SI. 

The linear lower bound of Lemma 5.2 is based on an instantaneous observation 

of the circuit. We will show below how to strengthen this result through a 

continuous sequence of observations over the entire execution of function f. 

LEMMA 5.3. The area A, the period P, and the time T of a airauit aomputing 

funation f satisfy 

A.T :1: A.P :1: p.T.N + 13.T l loglS-1 - (N-N.). 
OsiT<T L L 

irhe A.T lower bound corresponds to a simple summation of the inequalities 

of Lennna 5.1 over th~ entire execution time for one problem (i.e., [O,T]). 

As for the A.Plower bound, we look at all the problem instances processed 

simultaneously by the circuit over one period (i.e., [O,P]), and we observe 

that all the problem instances are independent. D 

Again, let us consider a function f which is surjective, i.e., such 

that !s0 1 = 2M = 2N (recall that we take M = N). For i;;,: O, let Mi be the 

number of bits that have been produced by the circuit up to (and including) 

time ti. Then 

N-M. 
IS. I = 2 L 

L 

and the result of Lennna 5.2 simplifies as 

(5.1) A.T. :1: A.P. :1: p.T.N + a.T I <NcMi). 
OSiT<T 

In particular, equation (5.1) shows that we can obtain a good lower bound 

on the A.P measure for some function f provided that the quantity (N.-M.) 
L L 

can be shown to be large enough. This is the case of functions like binary 

addition or prefix computation [LADNER and FISHER 1980]. This result is 

stated in the ~allowing. 
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THEOREM 5,1, The area A, the period P, and the time T required by any cir

cuit to perform the binary addition of -two N bit numbers satisfy, 

PROOF, Starting with equation (5,1), we want to find an upper bound on the 

quantities Mi given the sequence Ni. Equivalently, we can find a lower bound 

on the time ti at which output bit zj can be delivered, The proof follows 

from the fact that, in the case of binary addition, bit z. depends on all of 
J 

the input bits xi for O $ i $ j. A detailed proof can be found in [BAUDET 

1981]. □ 

As was mentioned in Section 3.1, we could have derived a similar result 

in the VLSI model of computaion proposed by CHAZELLE and MONIER [1981], In 

their model, the lower bound of Theorem 5,1 becomes 

COROLLARY 5,1, The area A, the period P, and the time T required by any cir

cuit to perform the binary addition of -two N bit numbers satisfy 

2 A,T ~ A.P.T ~ O(N.log N). 

The result follows from Theorem 5.1 and Lemma 3.2, by observing that bit 

zN-I depends on the N input bi ts x0 , ••• , xtl- I. ll 

In particular, this re-establishes a result of JOHNSON [1981] on the 

A.T2 measure, 

6, VLSL CIRCUITS FOR CONVOLUTION 

In this section, we present a family of VLSI designs for convolution 

or polynomial multiplication, The results are taken from [BAUDET etal. 1980]. 
The results not only illustrate some upper bounds that match the_lower 

bounds presented in the previous sections, but also they illustrate a design 

technique which we think is very important by itself, The designs presented 

below are based on the use of divide and conquer, and the layouts are built 

recursively. The same idea was used by LUK [1981] to design a binary multi-



plier. 

The convolution of the two number sequences A= (a0, ••• ,an-l), and 

B (b0 , ••• ,bn_ 1) is the sequence C = (c0 , ••• ,c2n_2) where 

c.= 'i' a .• b .. , 
l. l J l.-J 

for O ~ i ~ 2n - 2. In other words, convolution is a polynomial product 

A(x).B(x) C(x) where A(x), B(x), and C(x) are the polynomials with coeffi-

cients (a.), (b.), and (c.), respectively. 
l. l. l. 

We will assume that the input coefficients a. and b. are in the range 
-1 -1 1 1 

[-2P , zP -I]. The output coefficients c. need, therefore, to be coded 
l. 

over k = 2p + flog nl bits, By padding input coefficients with sufficiently 

many zeroes, we can assume that both input and output coefficients are coded 

over k bits. Measured as the total number of output bits, the size of our 

problem is N = O(n.k). We observe that k ~ log N. 

The most widely used circuit for convolution involves a multiplier ac

cumulator, Although it,only requires a small area, linear in the problem 

size (which is the best we can achieve), its computing time is too large 

and is prohibitive in many applications. 

Another solution is presented in [KUNG and LEISERSON 1983], using a 

systolic design. In their design, both the area and the computing time are 

linear in the problem size, 

The key idea in the designs presented below is the recursive construc

tion of the circuits. The simplest fom is presented here. Refinements on 

these designs and optimal circuits 

The polynomial product, C(x) 

degree one polynomials, A(x) = a0 + 

in 4 multiplications and I addition 

are presented in [BAUDE~ et al. 1980]. 
2 A(x).B(x) = c0 + c 1x + c2x, of two 

a 1x and B(x) = b0 + b 1x, can be computed 

(6. I) aO.bO' Pz = aO.bl, P3 = al.bO' P4 = al.bl, 

co= P1• cl= Pz + P3, c2 = P4• 

In general, the polynomial product of two degree n polynomials can also be 

computed with 4 products of polynomials of degree n/2 and with 4 additions of 

of polynomials of degree n/2, by simply splitting the coefficients into two 

halves., 
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Figure 6.3: A circuit Mn constructed from 4 circuits Hn/ 2• 

These decompositions lead naturally to the recursive construction of a 

polynomial multiplier. The basis of the recursion is a circuit M1 (shown in 

Figure 6,1) which performs the serial multiplication of two k-bits integers 

a and b, computing serially the k bits of c = a.b. Then formulas (6.1) can 

be used to define a circuit M2 (see Figure 6.2) combining 4 circuits 

M1 and I elementary serial adder. 

In general, a circuit Mn can be constructed using 4 circuits Mn/2 and 

4 serial adders, as shown in Figure 6.3. There each wire represents n/2 pa

rallel wires, each of which carries k bits serially. The serial adders have 

an area the same order of magnitude as the wires themselves. 
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The performances of this circuit can be obtained readily from the re

cursive construction. Let A, P, and T denote the area, the period, and n n n 
the time of circuit Mn, and let W and H be its width and its height (so n n 
that An= Wn.Hn). For n > 1, we have 

where k.T is the time for the serial addition. 

The basis for these recurrences is provided by the performances of cir

cuit M1: A1 = w1.H1 = a.k, P1 = T1 = t.k, where a and t depend on the actual 

design of M. We obtain: 

Expressed as 

An =(4.)..n. logn + n.w1). (2.)..n. logn + n.H 1), 

Pn = max(t.k, T.k), 

Tn T.k.logn+ t.k. 

the total problem size N n.k, we deduce 

A.P2 2 2 ~ O(N .k .log ) for k s 2 log N, 

A.P2 O(N2.k3) for k ~ 2 log N. 

that: 

2 This circuit is therefore not optimal with respect to the A,P measure. 

Another circuit, based on a different multiplicative scheme, is presented 

in [BAUDET et al. 1980], and this circuit is optimal with respect to this 

measure. 

7. VLSI CIRCUITS FOR ADDITION 

The problem investigated in this section is the binary addition of 
n-1 two n-bit numbers: given A= a0 + 2.a1 + ••• + 2 .an-I' and similarly for 

B, find S =A+ B = s0 + 2s 1 + ••• + 2nsn• 

There are two classes of binary adders, depending upon the time re

quired to perform the addition of two n-bit integers. 

Slow adders perform a binary addition in a time which is linear in the 



69 

length of the integers. The basic building block is the full add.er of Figure 

7.1 (see end of section). Its function is to compute the sum of the three in

put bits: a,b,c. and to provide a 2-bit representation of this sum: s, c t" in OU 

Specifically 

so that 

s = a + b + c. (mod 2), in 

c = (a+ b + c. ) > I. out in 

Such adders are called aarry-ahain or aarry-propagate adders and are inhe

rently sequential since the evaluation of bits. requires the knowledge of 
1 

the carry in position i - I. 

Although all carry-propagate adders perform a binary addition in time 

T = O(n), it is possible to ~nhance their performance through pipeline, In 

particular, the circuit of Figure 7.2, which we could term a systolic adder, 

is fully pipelined (i.e., it functions at clock rate). Its performances are 

A= O(n), P 0(1), and T O(n). 

Through a combination of the two circuits of figures 7.1 and 7.2, it is 

quite simple to design a carry-propagate adder which has performances 

A= O(n/p), P = O(p), and T = O(n) for any pin [1,n]. The parameter pis 

a measure of the degree of parallelism and corresponds to the number of 

problems processed simultaleously 

This circuit also shows that it is not possible to improve on the li

near lower bound of Le11Dna 3.3. 

On the other hand, fast adders allow the binary addition of two inte

gers in sub-linear time (in our model). Such adders are called aarry-save 

or aarry-lookahead adders. 

We will report below the design of a fast adder proposed by BRENT and 

KUNG [1980a]. 

In terms of boolean equations, the carry and sum in position i can be 

computed as follows 
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(7. I) 
c. 

l. 

where the operators.,+, and® denote the a:nd, or, and exclusive-or boolean 

operations respectively. (We define c0 = 0.) 

The evaluation of c. can be rewritten as 
l. 

with 

a. ® b .• 
l. l. 

Define the operator* by 

(g,p) * (g',p') (g + (p • g I) 0 p • p I)> 

and let 

<go,Po) (Go,Po) 

(Gi ,Pi) (gi,pi) * (Gi-l'Pi-1) if i ~ O. 

BRENT and KUNG [1980a] have shown that ci = Gi. Since the operator* is as

sociative, all the (Gi,Pi)' and therefore all of the carries ci' 0 s i < n, 

can be computed in log(n) parallel steps. 

The circuit of Figure 7,3 corresponds exactly to this evaluation. All 

the output bits si' 0 sis n, can then be evaluated through equation (7.1). 

We observe that this circuit can be fully pipelined, in which case its 

performances are given by 

A= O(n.log n), P O(l), T O(log n). 

In particular, we notice that the circuit is optimal with respect to the 
2 A.P.T measure while it is not with respect to the A.T measure. 
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The notion of systolic computation is due to H.T. Kung and C.E. Leiser

son. It describes the computation by means of a network of simple processing 

elements that rhythmically act on regular streams of data passing through 

the system. We explain the paradigms of systolic algorithm design through 

a discussion of systolic queues, stacks and trees. An integral approach is 

given to matching problems and matrix multiplication performed by (2-dimen

sional) systolic arrays. As,a novel contribution we present a systolic 

algorithm for inverting a nonsingular n x n matrix in O (n) time. 

I • INTRODUCTION 

With the advent of VLSI-technology (cf. Mead and Conway [17]) it has 

become feasible to design circuits with tens of thousands of components and 

integrate them on a single chip of silicon. The large degree of parallelism 

that can be incorporated in circuits of this size gives VLSI-chips at least 

the potential of providing extremely fast and efficient computing devices. 

The development of systolic algorithms as initiated by Kung and Leiserson 

[13] can be viewed as an approach aimed at exploiting this potential 

through the use of modular design principles and fully parallel and pipe

lined data processing (streaming). 

A VLSI-chip as understood here is described by its constituent com

ponents (processing elements) and their interconnections (the wiring pattern). 

We will simply assume that processing elements consists of a single "cell", 
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even though they may be built of several transistors and like components. 

To facilitate the design of the chip, we insist that the actual variety 

of different processing elements used be kept as small as possible. The 

wiring pattern needs to be simple and regular for the same reason, with only 

local connections of processing elements and no long wires that need more 

area and more energy to drive and that are invariably slower. The algorithm 

performed on the chip should exploit the parallel processing power of 

the many available cells, which includes both a "division of labor" and 

the use of pipelining through the circuit. 

The VLSI-chips that conform to these rules are characterized by simple 

geometries (arrays) of cells, with the cells rhythmically acting on one or 

more streams of data that smoothly move across the chip. The algorithms 

underlying the operation of the chip have been termed "systolic" (Kung and 

Leiserson [13]) for the analogy with the rhythmic pulsing of blood through 

the arteries. Systolic algorithms and architectures have been studied 

extensively by H.T. Kung (see e.g. [IO], [II]) and several co-workers. 

Independently similar goals have been pursued by the research group of T. 

Legendi (see e.g. [14JY in the study of regular "fields" of cellular 

processors, a hardware oriented outgrowth of the theory of cellular 

automata as known from e.g. [5]. 

In these notes we shall illustrate the paradigms of systolic algorithm 

design through a number of examples that, aside from being of interest 

in their own right, do provide some useful special circuits for inclusion 

in more involved designs. In Section 2 we discuss a design for systolic 

priority queues due to Leiserson [IS] and show how it can be used to sort 

n keys in O(n) time and to implement ordinary queues and stacks with 0(1) 

response times. In Section 3 we discuss the "tree machine" as proposed 

by Bentley and Kung [3] and the systolic trees of Leiserson [IS], aimed 

again at the implementation of a fast priority queue. We analyse some 

shortcomings of both designs and the solutions for it proposed by Song [21] 

andOttmann, Rosenberg and Stockmeyer [18], respectively. In Section 4 we 

provide a uniform treatment of pattern matching (as in Foster and Kung [8]), 

comparison problems (as in Kung and Lehmann [12]) and matrix multiplication 

(as in Kung and Leiserson [13] and Katona [9]), which all use a similar 

idea of pipelining on a I- or 2-dimensional array of cells. In Section S 

a (novel) systolic algorithm is presented to invert an n x n nonsingular 

matrix in O(n) time. The algorithm is based on Gaussian elimination and 

assumes that no pivoting is required. The algorithm was proposed for 
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implementation on parallel architectures before (Pease [19]), but the 

systolic version presented here shows the intricacy of pipelining to 

achieve greater speed. Each of the Sections demonstrates a particular way 

of describing the actions of a systolic circuit: operational in terms of 

actions of cells on their contents (Section 2), programmed for a small 

repertoire of instructions (Section 3), operational in terms of actions on 

the data streams (Section 4) and functional (Section S, as in the framework 

of e.g. Katona [9]). 

From an abstract point of view, systolic algorithms are not very 

different from multi-processor algorithms with the processors acting in 

fully synchronized order. Two levels of timing can be distinguished in 

the design of a systolic algorithm: (i) the global timing required to syn

chronize the cells as a network, and (ii) the local (internal) timing re

quired for the operation within a cell. The latter is not trivial, for we 

shall design processing elements to perform non-elementary operations (like 

multiplication) on b-bit numbers. Nevertheless we shall view these op

erations as atomic and requiring only one "tick" of the global clock. 

2. LINEAR SYSTOLIC QUEUES AND STACKS 

We shall primarily discuss the design of a systolic priority queue, 

i.e., a structure that supports INSERT/DELETE/XMIN ("extract smallest key") 

commands on a set that never contains more than N keys. The design consists 

of a linear array of cells (see figure I) with its I/O connection to the 

environment left of the first cell. Every cell has two registers, A and B, 

each of which can contain a key of the set. If 

~ --ID--ID- --{Il--ffl 
figure I 

a register carries no key, we assume it contains a default value (00) larger 

than any conceivable key. Our aim is to maintain the set of n $ N keys in 

increasing order, with all keys in the A-registers of a contiguous initial 

segment of the array. The B-registers are used for transporting newly 
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inserted keys to their proper position in the ordering. If a key got to 

its place, it moves the current key out of the A-register and replaces it, 

while the latter takes over in "streaming" 1:ight. It should be clear that 

an insertion thus has an effect that ripples on through the array, moving 

all subsequent keys one place up. As soon as one insertion has moved one 

step one can initiate a next one, for the first cell would now be idle. 

A deletion would require a special signal to be sent up the array, to 

search for and delete a particular key. All keys to the right should 

subsequently move down one place, which they will appear to do one after 

the other and just fast enough to give instructions coming in from the 

left an undistorted impression of contiguity of the data set·. The extraction of 

the smallest key is a special case, with an additional instruction to send the 

key (always in the A-register of the first cell) left to output. For uniformity 

we only program the array to do the latter kind of deletion. 

The cells will be timed such that the odd and even numbered cells 

"beat" alternately. When it acts, a cell will compare its register con

tents with the register contents of its neighbour to the left. The timing 

of the array is such that this neighbour is momentarily in-active and 

(thus) it is safe to inspect it. The "IOpad" (see figure I) should act 

as a left neighbour when it has to. At other times it can route keys in 

and out. Let Al and Bl denote the register contents of the A and B 

registers of a left neighbour, respectively. The cells will cycle through 

the following program: 

do 

cycle I: copy Bl into B; rearrange the keys in Al' A and B such 

that Al~ A~ B; 

cycle 2: rest 

od. 

Observe that values in a B-register indeed move right and are swapped in 

place when the proper place in the ordering ("before the current A-value") 

is reached. If Al contains co (ultimately the result of a deletion or XMIN), 

then keys right of it will move a step down (in ripple fashion). The 

copying of a Bl-register (in cycle I) could, but need not destroy the 

value of this register. The IO-pad has an A and a B part that is set as 

follows, to interact properly with the first cell of the array and allow 

for the processing of commands: 
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(i) to insert a key k, A is set to - co and B to k (which thus prepares it 

for moving up in the B-registers), 

(ii) to extract a smallest key, both A and Bare set to co, In the next 

cycle (or the one after that, depending on the timing of the array) 

the smallest key will have moved into the A-register and can be 

extracted. The first cell now has a value co in its A-register, which 

will be filled from the right immediately in the following step, 

(iii) when idling, A is kept at - 00 and Bat 00, 

The design has no provision for signaling when the queue is "full". Over

flow will result in the loss of elements at the end. The following conclu

sion should be evident ([15]). 

THEOREM. A linear systolic array of size N can process INSERT/)G1IN (a:nd 

DELETE) commands with 0(1) response times, as long as the number of keys 

in the set remains 5 Nat any moment. 

The design immediately leads to a fast on-line sorter which opera~es 

in O(n) time on a set of n keys. Just feed the keys into the queue and 

extract the smallest from it-inn consecutive steps. (The method of 

Armstrong and Rem [2] is a special case of this for bitwise sorting). 

The principle of the systolic priority queue can be used to implement 

ordinary queues and stacks. A straightforward idea is to stamp elements 

with a natural number, which gives their ordering in the queue or stack, 

and to subsequently use it for a key to move the elements into the array. 

We do not propose that this be used but merely note that it is a convenient 

way of conceptualizing the required data movements through the A and B 

registers. The systolic queue is like a systolic priority queue in which 

the elements are kept sorted in inverse order of arrival. Thus, new keys 

always move up through the B-registers until the first open A-register at 

the end of the line is reached. Deletions from the front of the queue are 

executed exactly like the XMIN command. We no longer need co for reasons 

of ordering and simply use it to mean that a register is "empty". The 

cells of the systolic queue can abide by the following simple program 

(recall that the odd and even numbered cells still alternate in action): 
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do 

cycle I: if 

Al & Bl & A+ copy Bl into B; 

□ Al & Bl & -, A+ copy Bl into A; set B to co; 

0-, Al & -, Bl & A+ copy A into Al; set A and B to co 

fi; 

cycle 2: rest 

od. 

(The if •• □ .. □ .. fi is a guarded command, which effectively acts like a 

skip if no guard happens to be satisfied. The &-notation is a simple 

shorthand for "is not empty and".) Note that, as deletions occur at the 

front of the queue, there will never be more than one empty A-register in 

between two occupied ones. 

THEOREM. A Un.ear systoUa arroay of size N aan proaess ENQUEUE/DEQUEUE 

aomma:nds with O (I) response times• as long as the number of e l,ements in the 

set remains s N. 

A systol,ia staak is like a systolic priority queue in which elements 

are kept sorted in exact order of arrival. Thus, a newly inserted_ key 

always forces the element in the A-register of the first cell to move up, 

which in turn forces all elements in the queue to step one position to the 

right. A deletion is again very similar to the XMIN command and causes all 
elements to do one step left. The cells of a systolic stack, again, can do 

with a simplified program: 

do 

cycle I: if 

~ & Bl & A+ copy A into B; copy Bl into A; 

□ Al & Bl & -, A+ copy Bl into A; set B to co; 

□-, Al & -, Bl & A+ copy A into Al; set A and B to co 

fi; 

cycle 2: rest 

od. 

THEOREM. A Un.ear systoUa array of size N aan proaess PUSH/POP ao,rmands 

bJi th O ( I ) response times• as Long as the number of e l,ements in the set 

remains s N. 



3. SYSTOLIC TREES 

With the many uses of trees in search structures (cf. [I]) it seems 

advantageous to connect N processing elements by a tree-based circuit 

rather than in a linear array. Again the cells can have several 

figure 2 
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registers, but for the moment we assume that each cell can hold at most one 

key. The tree-circuit (see figure 2) is best thought of as consisting of 

two strata: one to route information down to the cells, and another to 

merge information and route it upward. TheO-nodes simply split or duplicate 

messages in one step, the (:,-nodes are more complicated and can perform 

some function on the two incoming messages (data) from below to determine 

what message to pass upward. Packaging a tree machine on a small chip is 

a non-trivial matter discussed at some lenght in Song [21] and Bhatt and 

Leiserson [4]. 

The important characteristic of the tree machine is that it allows 

for extremely efficient broadcasting of information to all processors si

multaneously. Assuming the processors all act in one step, the result 

information can be merged and sent back up the tree equally fast. (One 

might call it "inverse broadcasting"). In the applications that follow we 

shall assume that the machine is pipelined. This means that there is a 

steady movement of wavefronts down the O-tree and up the ()-tree, with every 

wavefront carrying its own information (corresponding to one connnand) and 

spanning an entire level of the tree. A distinction should be made between 
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the compute time (i.e., the time between submitting a request and receiving 

the corresponding output) and the period of a connnand (i.e., the time 

between its wavefront and the next, or: the interval of time that must pass 

before a next connnand can be entered). 

METATHE0REM. A tree machine of size N can process any admissible connnand 

with a compute time of O (log n) and a period of O (1), as long as the 

number of elements in the set remains$ N. 

The metatheorem does not always hold, but it serves as a criterion to test 

the suitability of the tree machine for a particular set of connnands. We 

shall try an implementation of a simple dictionary, i.e., a structure that 

supports MEMBER/INSERT/DELETE connnands on a set that never contains more 

than N keys. We assume throughout that keys are unique and (thus) that 

there never occur two identical keys in the tree. It means there never 

is an insertion of a key that is already present. (It only points to the 

first of several problems inherent to the systolic approach ••. ) 

A MEMBER(k) connnand is easy. Broadcast it to all processors, let 

them answer yes or no-depending on the key they contain and merge the 

answers up the tree to check that there was at least one "yes". It takes 

a compute time of 0(logN) and a period of 0(1). An INSERT(k) is harder, 

because there is no point in broadcasting the instruction and store kin 

every available (free) A-register as a result! To guide the search for a 

free register, one could add to eachO-node a counter that keeps track of 

the number of free registers in the cells it covers in its subtree. The 

INSERT connnand is moved in a direction with count> 0, while the counters 

that it passes are (of course) immediately decreased by I, until it 

eventually reaches one free register where k gets stored. It complicates 

the tree machine tremendously, but does give an 0(logN) compute time and 

an 0(1) period. To process a DELETE(k) one would need to update the 

counters along the search path towards k only. A DELETE thus causes severe 

problems, because the search path can only be traced during the wave 

back up the tree, i.e., after having located k. This forces the period 

for DELETE connnands to remain at O (log N), apparently. 

THEOREM. A tree machine of size N can process MEMBER/INSERT/DELETE commands 

with a compute time of 0(logN) and a period of 0(1), as long as the 

number of elements in the set remains$ N. (It is assumed that INSERTS 

always add new keys and that DELETEs always remove existing keys.) 



PROOF. The argument is due to Song [21]. Suppose the B-register of every 

processor is made available to hold any integer€ l •• N or 00. If a 
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processor holds a key, then its B-register contains 00 ("empty"). If it holds 

no key, then the B-register contains a value that essentially is its 

position in a free space list. A (global) counter Fis maintained at the 

root of the machine to keep track of the total number of free A-registers. 

If F has value f, the "tickets" I to fare somehow distributed over 

(i.e., contained in the B-registers of) the now available processors. An 

INSERT(k) command is tagged with the current value of F and broadcasted to 

all processors. The value of Fis rightaway decreased by I and the actual 

insertion of k only takes place in the processor whose B-register holds ticket f. 

(The B-register is subsequently erased). A DELETE(k) connnand is tagged 

with the current value of F plus I and broadcasted down, The value of Fis 

incremented and the processor that contains k stores the tag in its B

register. (This time the A-register is, of course, erased,) D 

The problem of handling extraneous insertions/deletions (called 

"redundant" insertions/deletions in [18]) remains, at least for the time 

being. 

The counting of free processors became necessary, because we apparently 

lost the possibility of shifting keys left and right in the array to 

maintain the set in a contiguous initial segment of the processors. Define 

an L-machine to be a tree machine of some size N with the processors 

connected into a linear array (see figure 3). 

in out 
+ t 

figure 3 
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We assume as in Section I that an IO-pad marks the left end of the array. The 

L-machine retains the facility of the tree machine to broadcast instructions 

to all processors but combines it with the attractive feature of linear 

arrays to move keys among neighboring cells. We shall assume that the 

wavefronts activate the processors simultaneously and do not succeed one 

another faster that the processors need to complete their cycle. The 

packaging of L-machines on one or more chips is a bit harder but can be 

done along the same lines as for tree machines (cf. Song [21]). We shall 

exploit the L--machine to implement an extended dictionary structure that 

supports MEMBER/INSERT/DELETE/XMIN c0Dm1ands, We shall ignore MEMBER 

c0Dm1ands, as they are treated exactly as for tree machines. 

CODm1ands are broadcasted from the root to all processors. Depending 

on the instruction received the processors shift keys right (if they 

recognize that an insertion took place to their left) or left (if they 

recognize that a deletion took place to their left or the c0Dm1and was an 

XMIN) or not at all (if they recognize there is no need for it). The 

processors can decide the required action by comparing k to their A

register and the A-register of their left neighbor. When timed right, the 

machine maintains the set of keys in increasing order in an initial 

segment of the array. In particular, an XMIN will automatically shift the 

smallest key onto the IO-pad, 

THEOREM. An L-maahine of size N can process MEMBER/INSERT/DELETE/XMIN 

corrmands with a compute time of O(logN) and a period of 0(1), as long 

as the number of elements in the set remains~ N. (It is assumed that 

INSERTs always add new keys and that DELETEs always remove existing keys.) 

Extraneous insertions (i.e., INSERT(k) c0Dm1ands with k already in the 

set) lead to severe problems, for they make processors shift their keys 

right while they shouldn't. Likewise extraneous deletions (i.e., DELETE(k) 

conmlands with knot in the set) make processors erroneously shift keys 

left, crushing the smallest key> k currently in the set. A possible way 

out suggested in [18] is to allow "holes" in the array, i.e., to accept 

that some processors in the initial segment of the array hold no key. 

In this way, an INSERT c0Dm1and could proceed as indicated (because it would 

merely create an additional hole) and the procedure for DELETEs could 

simply consist of the erasure of the key to be deleted. We only need to 

make sure that the number of holes doesn't grow out of hand, to endanger 



e.g. the rapid answering of XMIN commands. We shall distinguish between 

empty locations at the right end of the array (marked with=) and 

embedded empty locations at the front (marked by*), 

THEOREM. An L-machine of size N can process MEMBER/INSERT/DELETE/XMIN 

correnands with a compute time of O (log N) and, a period of O (I), as long as 

the number of elements in the set remains~ N/2. (Extraneous insertions/ 

deletions are allowed.) 
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PROOF. The technique is due to Ottmann, Rosenberg and Stockmeyer [18] but 

we render it in a considerably simplified form. The set will be maintained 

such that the following invariants hold: (II) the first processor is not 

starred, and (12) every starred processor has a non-starred right neighbour. 

Extraneous insertions can lead to two consecutive starred processors 

and (ordinary!) deletions to even three starred processors in a row, assu

ming a deletion simply "stars" the deleted key. Define an auxiliary 

command COMPRESS, which makes a processor shift its key left if the left 

neighbour is starred. To reinstate the invariant, it clearly is sufficient 

to let every processor right of the presumed location of the update do 

one or two COMPRESSes after having performed the regular steps for an 

INSERT or a DELETE command, respectively. An XMIN will always move the 

smallest key correctly out onto the IO-pad due to (II), but the left shift 

generated for the entire array could bring (or rather: leave) a star in 

the first cell. Fortunately (12) is preserved in a left shift and guaran

tees that the second processor is not starred. To maintain the invariant 

(II) it thus sufficies to do one COMPRESS after every XMIN. 

(II) and (12) imply that at most lN/2J processors may get (and remain) 

starred, thus reducing the effective capacity of the machine to rN/21 

keys. D 

Ottmann, Rosenberg and Stockmeyer [18] argue that the compute time 

for the given set of commands can be reduced to O(log N) by snaking the 

sorted chain of keys through the (upper) levels of the tree and creating 

a proper barrier to "bounce" signals back to the root. 

4. SYSTOLIC ARRAYS 

Until now we only saw designs in which data and instructions can enter 

through a single IO-port. One- and two-dimensional systolic arrays are 
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designed so vectors of data can enter into the computation simultaneously, 

by letting all processors on the boundary have IO-ports to the environment 

(see e.e. figure 4). In this Section we shall explore the potential of the 

parallel pipelining of data in a number of applications. We shall primarily 

discuss the problem of comparing tuples (a1 , ••• ,~) and (b 1 , ••• ,bN), but 

the underlying principles will extend to familiar problems like the systolic 

multiplication of two N x N matrices. 

Let us suppose first that (a1, ••• ,~) is fixed and that we want to 

compare it to many tuples (b 1 , ••• ,bN). A first design that comes to mind 

is shown in figure 4. It is an array of N processors, in which 

b b 
i-1 i 

~ 
figure 4 

the i th processor is fixed to contain the i th component of the tuple a. 

The tuple bis entered such that its i th component is input to the same 

processor, so a comparison of ai and bi can take place. A signals 

(starting out with value true) is chased from left to right to collect 

the results. The tuples match if and only ifs still has value true 

b. 
l. 

+ 
s. +LI+s in 1. out s 

out s. A (a.=b.) 
in l. l. 

figure 5 

when it reaches the right end of the array. Figure 5 shows the simple 

action of every processor. 

The design of figure 4 appears to have a period of O(N). Yet there 

is no reason to let the I st , 2nd , ••• processor idle as soon as the s- signal 

has passed. To take advantage of it, we shall modify the design and use 

a skewed input format (figure 6): for all I~ i ~ N -I the datum bi+I 

is input into the (i+J) st processor exactly one clock pulse after b. is 
l. 

input to the i th • The net effect is that the (i+l) st component is input 
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just when the result signal _s of the comparison between (a 1, ••• ,ai) and 

(b 1, ••• ,bi) comes in from the left. It should be clear that this design 

can be pipelined with a period of 0(1). The result of a comparison is 

available one clock pulse after entering the last component of ab-tuple. 

THEOREM. A Unear systoUc array of size N can do tuple comparisons with 

a fixed vector of Zenght N with compute time 0(N) and period 0(1), using 

a skewed input format. 
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It is interesting to note that there is nothing special about using 

the operations A and= in the processors (cf. figure 5). If we use opera

tions+ and. instead, s essentially accumulates the inner product of the 

tuples (a1, ••• ,~) and (b 1, ••• ,bN) as vectors. We thus have a systolic 

algorithm for a variety of problems that all conform to the same algebraic 

laws. 

Now imagine that we have a "long" string b = b1 b 2b3 ••• bn (n :2: N) 

and enter the tuples (b 1, ••• ,bN), (b2, ••• ,bN+I), (b3, ••• ,bN+2) and so 

on. The result is that (a1, ••• ,~) gets compared to every substring of 

b of lenght N, and the linear systolic array effectively becomes a pattern 

matcher. Closer inspection shows that it isn't really necessary to 
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:b2 
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y 

out 

figure 7 

enter all tuples separately. If we let each tuple lag by on additional 

clock pulse in time, then the next symbol required at the port of a processor 

can be sent over from its right neighbour and be received just when it is 

needed (see figure 7). Immediately after inputting the i th symbol the array 

outputs a signal (s) that indicates whether the last N symbols match with 

(a1, ••• ,~) or not. Figure 8 shows the design we now 

pulser 

figure 8 

bi+3bi+4bi+5 ••• 
out 

have in its essential form. The string bis steadily moving through the 

array and the output indicates whether a match occurs or not. It is 

exactly the design of a systoZic pattern matcher as given by Foster and 

Kung [8]. 

Now suppose we have a series of K tuples a(k) = (a;k) , ••• ,~k)) and 

b(k) = (b~k) , ••• ,b~k)) and we wish to compare all couples a(k)and b(k), 

for I :::: k :::: K. Returning to the design of figure 6 it is clear that a 

similar algorithm will do, provided we make sure that every processor is 

loaded with the proper a~k) at the right time to match a corresponding 
l. 

b~k). The solution is, of course, not to fix the a-symbol in a processor 
1 
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but to feed in the a-tuples one after the other, in the same (but symmet

rical) skewed manner as the b's. After reading in another pair of symbols 

~k) and b~k) into the Nth processor, the array will output the result 

of comparing the entire tuples a(k) and b(k) in the cycle. The design 

is more appealing perhaps if we use the operations+ and. instead of 

A and= in the processors. 

THEOREM. A linear systolic array of size N can compute inner product 

of pairs of vectors of length N with a compute time of O(N) and a period 

of 0(1), using a skewed input format. 

The result is a classical one in pipelined computation, which thus 

holds in the current framework as well. 
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Finally suppose that we wish to compare every a-tuple to every b-tuple 

and output signals which indicate with every (say) b-tuple whether it was 

matched at least once. In this way we would be able to select the tuples 

in the intersection of the two sets. The idea is, of course, to use a 

K-fold repetition of the linear design of figure 9 so each of the a-tuples 

comes across each of the b-tuples. A slight problem arises in the stepping 

pattern if we do so. For example, after af 1) and bi!) have met in a 

processor they both move and a;2) and bf2) immediately take their position. 

It means that a; 1) and biz) and a; 2) and bi!) pass without meeting in a 

processor, i.e., without an apportunity to compare them! As shown in 

figure 10 the problem is easily solved by separating both the a-tuples 
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and the b-tuples by a "dummy" tuple (dummies are drawn as dots). The 

n\llllber of processor rows must be increased to 2K - I to make it work. To 

collect the results of the comparisons an additional column of processing 
----·· --•-··· - -· 

elements is added to the right of the array. The t-signal sent down is 

"v" -ed with the s-signal coming in from every row. Observe that the 

t-signal steps along with the bN-symbol of every b(k). By the time b!k) 

leaves the bottom right processor, the value of the t-signal that appears 

on the out-wire during the next clock period will indicate whether b(k) 

matched any of the a-tuples! The design has been suggested by Kung and 

Lehmann [12] for use in a relational database multiprocessor environment. 

THEOREM. A two-dimensional, systoUa arTaY of size O(k) by O(N) aan proaess 

two sets of K tu.pies of 7,enght N and determine their interseation in 

O(K+N) time. 

An interesting result is obtained if we again replace the operations 

A and= in a processor by+ and• • In this case the design of figure 10 

essentially computes all inner products ckl = a(k)*b(l) (lsk,~N). If we 

omit the rightmost column al)d let each "s" -wire carry its value to output, 

then we get the inner products in the skewed order as 

C ... 14 

c24 c13 

C C C 

34 23 12 

... c44 c33 c22 ell 

c43 C C 
figure II 32 21 

C C 
42 31 

C 
41 

. (I) (N) 
shown in figure JI. Now let K = N and interpret a to a as the rows 

of an N x N matrix A and b ( 1) to b (N) as the columns of an N x N matrix B. 
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The systolic array we designed exactly produces the coefficient of the 

product matrix C = A*B, with a compute time of O(N)! 

THEOREM. A two-dimensional array of size O(N) by O(N) can process two N x N 

matrices and output their product (as a matrix) in a corrrpute time of 

O(N). No (substantially) smaller array will do to get the same compute time. 

PROOF. It only remains to show that the O(N2) size bound of the systolic 

array cannot be substantially improved. This is a simple consequence of a 

theorem of Savage [20] that states that a matrix multiplier with area A 

and compute time T must satisfy AT2 = Q(N4). D 

In general the design can be applied to multiply K x N and N x K 

matrices. (See Katona [9] for some other uses of the design.) 

5. A SYSTOLIC MATRIX INVERTER 

In this Section we shall develop a systolic algorithm to invert an 

NxN matrix A= (a .. ) in time O(N), using O(N2) processors. The algorithm 
l.J ' 

is based on Gaussian elimination (see e.g. [6]) and assumes that no 

pivoting is needed during the process. It serves here to demonstrate the 

intricacies of pipelined computation. We shall first discuss the basic 

algorithm and modify the data movement in it to suit our purposes. 

The Gaussian algorithm to compute A-I (without pivoting) operates as 

follows. Extend A to a N x 2N matrix (A I) by juxtaposing an N x N identity 

matrix and apply elementary transformations to it until a matrix (IB) 

is obtained. Then B =A-I. Permissible transformations are rowmul's 

(multiply a row by a scalar) and rowsub's (subtract a scalar multiple of 

a row from another row). The precise algorithm we use is due to Pease [9]: 

for i := 

begin 

to N do 

1 1 . 1 h .th b -1 rowmu: mu tip y t e 1. row y aii; 

for j : = I to N do 

begin 

if j Ii then rowsub: substract a .. times the 
-- Jl. .th f h .th 

1. row rom t e J row 

end 
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(In the algorithm a .. and a .. are used as variables and thus denote the 
l.l. J l. 

values in the corresponding locations of A as they are at the time of 

reference .• ) Figure 12 shows how the algorithm works on a simple example. 

2 0 

'.) G 
0 i 

0 (i=ll -I 0 1 -½ 
0 0 1 i 0 2 

0 

0 

( 
0 ! 0 

'.) ( 
0 0 

I 
3 -2 

D 
"i" 

0 1 -I (i=34 0 -I 2 

0 ! l -! 0 : -I 2 

figure 12 

To obtain an algorithm within our present framework, we shall aim at 

having a processor in every "cell" (square) of the N x 2N matrix. The key 

to systolicism is to observe the necessary data movement, to make it 

regular, and pipeline it. Consider Gauss's algorithm for i =I.To do the 
-I rowmul one could pass on the value of a 11 to the subsequent processors in_ 

the first row. Passing it on means: multiply, and send a~: to the right 

neighbour. To do the rowsub for j(jjl) one must spread the value of ajl 

through the row, and next get the values from the first row (that should 

sift down through every column) and do the required multiply (by aj 1) and 

subs tract (from the resident row element). It suggests that we better 

start by passing on the entire first column and temporarily store the 

values in an auxiliary field of the processors in every column. Only in 

the first row can we immediately do the necessary Gauss step right-away. 

Next we pass all (now modified) values of the first row down to the rows 

below and do the rowsub's, one after the other. This gives the algorithm 

the flavor of a cyclic (i.e., repeating) 2-phase process: send the first 

column right, and (next) send the first row down. For the sake of systolism 

it would be desirable if this cycle could be repeated for i = 2, i 3' .•• 

Observe that the first row is turned into a unit vector (cf. figure 12) 

and never again is the sight of much activity after the first step. Thus, 

while sending the first column right, we might as well move the column and 

let it "exchange" its way over to the end, thus effectively moving the 
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2nd rd position. If we do a similar exchange with , 3 , ••• column left one 

the first row (which puts it at the bottom af the matrix and moves up all 

other rows by one), then we have created a starting position as before 

(although effectively with i = 2 and e.g. a22 in the upper left corner). 

With this modification 

( 
0 2 j 1 0 

:) ( 0 -i j 1 0 

~) -1 I 0 
0 j 0 

i 

! 0 0 do 0 

C 
-! 1 11 0 

:) C 
-2 -2 i 1 0 

~) i 
! o 1 o ,. -1 0 ! 0 

-do i 
0 2 2 ! 0 0 

,.: "send" the first column right, next "send" the first row down. 

figure :13 

the algorithm has become completely regular and, as we shall see, amenable 

to pipelining. After N cycles of the 2-phase process all rows are back 

in their original order, but the columns are still halfway a full shift 

over 2N places, It means that the inverse now appears in the first rather 

than the second N x N block of the array and has effectively overwritten 

A, which is just as well. Figure 13 shows the modified algorithm applied to 

the example matrix of before. 

As it stands each cycle of the algorithm takes O(N) parallel moves 

and (thus) the entire routine takes O(N2) time, assuming the processors 

can be timed right to run it. Observe that each cycle of the algorithm 

consists of two "waves": one moving from left to right (doing a rowmul 

in the first row and spreading the ajl 'sin the lower rows) and a next 
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the. subsequent wave from up to down: 
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one from "up" to "down" (exchanging the values of the first row downwards 

and executing the necessary rowsub's, using the ail values just deposited 

in the preceding wave). Figures 14 and 15 show how the waves progress, 

with "++" and "t" indicating where the "action" occurs. The wiggly 'l+,--.,.+" 

in the first wave indicates that a rowmul is carried out along the way. 

Note that the down wave could begin at a processor as soon as the 

right wave has passed. And after a down wave has passed, the right wave 

of the next cycle can be started up. It follows that the regular wave 

pattern of the algorithm allows us to pipeline the computation and let 

the waves follow another at a short distance (only one or two clock periods). 

To achieve it we have to "skew" the wave fronts, so they indeed move 

1 1 . 11 1 f h° F" 14bis d 15bis h h h" compete y 1n para e as 10n. 1gures an sow ow t 1s 
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looks like for separate waves, and figure 16 shows the 

a skewed right wave: 
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pipelining: 
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figure 16 

, , 

, , 
, , 

waves of a cycle trailing (between,'~) across from the upper left to the , , 

lower right corner. 

THEOREM. A -t;wo-dimensional systolic array of size N by 2N can compute the 

inverse of a (stored) N x N matrix in O(N) time using Gauss's algorithm 

(assuming no pivoting is needed). 
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PROOF. Put a processor in every cell of the N x 2N matrix. Each processor 

will have two data registers and a periodic clock (or state indicator). 

The first (a-)register contains the value of the matrix element that is 

stored here, the second (b-)register contains the datum that is being 

passed on. The clock essentially cycles through four states, corresponding 

to the neighbour with whom information is exchanged (watch e.g. the 

continuous activity at a single cell in figure 16): l ("get value from the 

b-register of the left neighbor"), r ("exchange"), u ("exchange") and 

d ("compute the rowsub"). We shall actually let the downward exchanges 

move through the a-registers. The processors along the boundaries will 

be considered separately as they miss some of the "neighbours" refered 

to. The activity of the array is started by sending a control signal 

immediately preceding the front of the very first cycle, which turns 

everybody's clock to l. 
For a concrete description of the actions of a processor we shall 

adopt Katona's method of specifying transitions through "configuration 

terms" ([9]). Processors will be placed in categories according to their 

location in the array (see figure 17): category I are all cells in the 
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VI ; lI !Vll __ .... ~---• ....................... r··· 

' IV ! I ; V figure 17 
' 

..... ~-------· .... -.... ·~--1 .... vm• m : lX 

interior, and categories lI to IX are spread along the boundary. The 

transitions can be grouped as follows: 

(i) send and exchange the multiplier through the first row (this implements 

the wiggly+"""'+) 

category processor nextstate 

VI la .e:1 -~ 
]l LCH .ti •I b r I 
VI ]l b rH a • ra:r=::u::i with a' a.b 

Vll ll - [1 r [ 

(ii) send and exchange the ajl right (through the b-registers) as in the 

first wave of a cycle 

category processor next state 

IV vm ia ti - a rl 

Im CLJ---Cu - b rl 

Iv vm rm rH:a:""7 -la ul 

VIX CD-CI] -lb b rl 

For the processors with no right neighbour we have, in addition: 

category 

Vll V lX 

processor 

rf 
nextstate 

ul 



(iii) send and exchange the elements of the first row down (through the 

a-registers) according to the second wave of a cycle 

category 

IV IV vm m IX 

VI lI Vll IV I V 

processor nextstate 

ja 

rr:r] with a' 

For the processors with no neighbour above or below we have, in addition: 

category 

VI lI Vll 

vm m Ix 

processor 

Li.I 
~ 

nextstate 

L.l.l 

Ll.l 
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The configuration terms only display the register contents that are of use 

in a transition. Unspecified ("empty") fields remain unaltered. The last 

wave of the final (Nth) cycle should carry a control signal that turns 

processors off (as they return to the l state again). 

Observe that N cycles of the algorithm thus trail over the array. The 

compute time is easily seen to be O(N). D 

A simple observation enables us to reduce the size of the processor 

array from N by 2N to N by N. (A related observation occurs in [19].) 

Returning to the non-pipelined version of the algorithm, consider the right 

-1 0 0 0 0 1 0 0 0 0 al I * 
0 0 0 0 * * 0 1 0 0 0 

0 0 0 0 * 
.. 

* 0 0 0 0 

0 0 0 0 * * 0 0 0 0 

0 0 0 0 1 * * 0 0 0 0 1 

figure 18 
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N by N block after the first (left to right) wave of a cycle has ended 

and exchanged the first column towards the last position in the processor 

array (see figure 18). The next (downward) wave will turn this vector into 

a unit and exchange it towards the bottom position, thus effectively turn

ing the entire right block into the identity matrix! It follows that we 

may as well eliminate the right block from the processor array, provided 

we let the processors along the (new) right boundary act as if the 

block was still there: 

categorie processor nextstate 

VIl V IX LL.H ,e_J ~ b rl 

VIl l b ri ~ lb ul 

V IX rl ~ Jo ul 

all other transitions remain as they were. The entire procedure of pipe

lining, of course, holds true for the curtailed array as well. There is 

no hope that the size of the array can be reduced to anything less than 

0(N2) if the linear processing time is to be maintained, in view of the 

results of Savage [20]. By noting (cf. [I], thm 6.8) that 

it is not hard to see that the lowerbounds for matrix multiplication (cf. 

Section 4) apply to inversion as well. Hence, the systolic matrix inverter 

is essentially optimal with respect to the "AT211 measure. 

The design is interesting, for it proves that Gauss's algorithm 

contains a tremendous degree of parallelism. The most interesting part 

perhaps is the possibility to pipeline, which makes crucial use of the 

assumption that no pivoting is needed. The assumption is valid for e.g. 

synnnetric matrices that are known to be positive definite (cf. [7]). If 

pivoting is required (for whatever reason, including numeric stability), 

then a third wave is added to every cycle which moves "backward" and 



thus prevents the expedience of pipelining. Cycles still need O(N) time, 

but the execution can no longer be overlapped. The O(N2) algorithm for 

matrix inversion that results still improves upon the fastest algorithms 

known in the sequential case. (This is Pease's result, cf. [19].) 

It should take little effort to modify the systolic matrix inverter 

to a systolic "LU-decomposer". The underlying algorithm (again ignoring 

the need to pivot) is quite similar, but only does its rowsub's for 

j > i, After N cycles this produces the matrices U (upper triangular) 
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and L-l (lower triangular) in distinct portions of the processor array 

(see figure 19). Applying the inversion algorithm in the right block, the 

desired L 

u 
11 

(/J 11 
11 figure 19 

(/J L 
11 

11 

matrix is obtained. In Kung and Leiserson [13] the LU-decomposition was 

produced slightly differently. 
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VLSI, ALGORITHMS AND GRAPIDCS * 

D.P. Dobkin 
Princeton University, Princeton, USA 

ABSTRACT 

Practical and theoretical aspects of the VLSI design process are dis

cussed. The technology is described, algorithms for design automation are 

considered and details of two actual designs are presented, 

I • INTRODUCTION 

Within the next few years, the technology will exist to produce inte

grated circuits composed of a million or more transistors, Very Large Scale 

Integrated (VLSI) circuits of these sizes will revolutionize the nature of 

computation if the possibilities of productive design and use of such cir

cuits can be realized, Numerous problems of mathematics, theoretical and 

practical computer science, engineering and physics must be more fully un

derstood if we are to successfully apply the breakthroughs which allow the 

fabrication of transistors of micron and sub-micron size, The excellent 

book of Mead and Conway [MC80] represents a strong first step in this di

rection, Although all the assumptions in this book may not be preserved un

der arbitrary scalings and significant miniaturization, we shall follow 

their presentation in what follows here, 

In this presentation, we discuss some practical and theoretical issues 

involved in VLSI design, Our discussion considers issues involved in the 

design of algorithms for the automation of the VLSI layout process. Practi

cal issues of design encountered during the creation of two actual VLSI 

designs are also presented, As. such, the details of current VLSI design 

*)This research supported in part by the National Science Foundation under 

grant MCSSl-14207, 
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systems are considered as they were used in the creation of these designs. 

While the two designs considered are of a relatively basic nature, a 16-bit 

wide divider and 16-bit wide adder, they are of sufficient complexity to 

give detailed insight into the design process. Furthermore, the first de

sign has been successfully fabricated and tested. Within this discussion, 

we also consider more sophisticated designs composed of building blocks of 

the type discussed here. In particular, designs of VLSI engines for geome

tric computing are considered and the components that one might want to 

consider in constructing a geometry engine on a chip are discussed. 

The components of this paper are threefold, as the title suggests. In 

the next section, we discuss VLSI and the VLSI implementation of two cir

cuits in different design enviromnents. Section 3, devoted to algorithms, 

presents a consideration of two algorithmic processes, geometric in nature, 

involved in VLSI design systems. Finally, in the graphics section, the na

ture of one aspect of a VLSI geometry engine is discussed. 

This paper is intended to briefly survey the topics mentioned here. No 

attempt is made to be complete. Instead, references are included and the 

interested reader is referred elsewhere for further details. 

2. ASPECTS OF THE VLSI DESIGN PROBLEM 

The excellent book of Mead and Conway [MCBO] made MOS design accessible 

to a larger group of computer scientists than had been previously possible. 

As such, new problems of interest to theoretical computer scientists have 

been proposed and new research areas are growing. One of the most interest

ing problems is the development of design aids for VLSI design. While pro

blems of computer aided design date back to the earliest computers, there 

had been little algorithmic analysis of methods of solution of such pro

blems. In some sense, the recent flurry of research activity in this area 

can be viewed as a reconsideration of old problems and solutions in a new 

light. While the dimensionless design system provided by Mead & Conway may 

introduce assumptions which do not have universal application, it does pro

vide a starting point from which design aids may be developed and circuits 

may be designed. 

During the past year, I have had the opportunity, in collaboration with 

Scot Drysdale, to design two circuits using different approaches to the de

sign process. Experiences with these designs are used here as a basic of a 
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discussion of design systems and their relative merits. Algorithmic aspects 

of these design systems form the basis of the next section, 

The two circuits to be considered will be a 16-bit wide divider and a 

16-bit wide adder. The divider was designed at Xerox PARC using graphics 

based design tools [FR79, FNBI]. The adder is being designed at Princeton 

as part of a larger project, The adder is being built using procedural de

sign tools [LSV82], 

Our results are not meant to be a comparison or evaluation of the de

sign system as much as a report on the design experiences in each environ

ment, Indeed, the design systems are at different stages of development and 

the execution of designs in each case has thus far been brought to a differ

ent stage of completion, The goal here is to report of the powers and li

mitations of these different design systems and to consider the parts of 

each approach which are necessarily highly algorithmic in nature. In the 

next section, we explore algorithmic approaches which have been applied to 

two important geometric problems which arise in these contexts, 

2,1. Graphics based design 0£ a divider 

The divider to be described herein was designed as a first exposure 

to VLSI design, The project was chosen as one of reasonable size whose exe

cution could be completed in the available time while giving sufficient ex

posure to the design process. The division problem was stated as 

q 

x/y 

r 

That is, given dividend y = y 1 ••• y 16 and divisor x = x 1 ••• x 16 find quo

tient q = q 1,.,q 16 and remainder r = r 1, •• r 16 such that x = yq +rand 

0 ~ r < y, The computation of the quotient and remainder is done by repeat

ed comparison and .subtraction involving partial dividend (p) and divisor 

(x), After each cycle, a new bit (n) is shifted into the dividend and a 

quotient (q) is generated following 
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if p > X 

then 

p < -- Z*(p-x) + n 

q < -- I 

else 

p < -- Z*p + n 

q <-- 0 

This computation is done in a highly parallel manner. The comparison p > x 

is done while the difference p - xis computed (indeed as a by-product of 

the computation). Based on the value of p > x (i.e. of q), either p - x or 

pis shifted left by I bit and the new bit n shifted into the low order po

sition of p. 

The subtraction/comparison are done by a "borrow-look ahead" subtractor 

of design analogous to "carry-look ahead" designs used for adders [S80], 

This construction will be described in greater detail for the adder below, 

so the details are omitted here. The controlling logic of the circuit con

sists of a value START read from an input pad and a value DONE read to an 

output pad. START= I initializes the circuit, starting the clock and en

abling the buffered I/0 pads to accept external inputs. The highest order 

bit of the quotient (actually q0 ) is set to I. After I cycle, the pads are 

set to accept output from the circuit and 16 subtract/compare-shift/gener

ate• quotient bit cycles follow. During each cycle, q0 is shifted towards 

the DONE pad. After 16 cycles, the value of DONE is I and processing is 

completed. 

A floor plan of the complete circuit is shown in Figure J. The upper 

pads are used to input the dividend and output the (partial and complete) 

quotients. Shift registers here handle the shifting of bits. The lower pads 

are used to input the divisor and output the (partial and complete) remain

ders. A memory here stores the value of the divisor. The major portion of 

the design effort involved creating the subtractor/comparer. The 

major portion of the circuit area is comsumed by pads. Indeed, the chip di

mensions (fabricated at A= 2.Sµm) are 8mm x 3mm with the subtractor involv

ing 6mm x Imm or 25% of the area. The design involves about 2500 transistors 
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and. required about 3 man months of effort involving about 2 man months of 

design and I of debugging and testing. The tools used in the design were 

ICARUS [FR79] for graphical layout and MAGIC [FN&I] for testing and simula

tion. Two fabrications of the chip were done due to difficulties in the 

first process. Of the six chips generated, one was successfully tested at a 

clock cycle time of approximately IOµs. This time was limited by the testing 

tools. We believe that the actual circuit can be clocked at a much faster 

rate. 

Various lessons were learned from the process of designing, debugging 

and testing this circuit, Our inexperience with circuit design and hardware 

considerations led us to a mixed top-down/bottom-up method of design. The 

floor plan was modified as the circuit progressed and we had little insight 

into sizes of parts of the circuit until they were designed. Some good es

timates and lucky guesses led to a final design which is nearly rectangular 

and (we believe) relatively compact, During the design, a graphics sys

tem proved to be a useful tool with its "what you see is what you get" 

structure. We were overzealous in A-squeezing which proved harmful in later 

debugging of the circuit. Often, wires were twisted to save area rather 

than settling for a cleaner design. 

During debugging, the design aids were surprisingly slow. A design 

rules check required 30 minutes on a very high speed processor. When a gen

uine error was found, it required a massive rewiring of the circuit. The 

graphics system was especially ill-suited to this task and 4 man hours were 

required to rewire 16 output pads into the circuit. After the circuit had 

been successfully design rule tested, during static simulation it was dis

covered that a complemented signal was needed in place of a signal in the 

design. This observation had drastic consequences since the affected signals 

occurred within the most densely designed portion of the circuit and rear

rangement involved significant rewiring. Within our graphics based system, 

there was no facility for stretching wires across a horizontal (or vertical) 

line to allow new signals to pass. Such a change would have had significant 

impact on our design process. 

The major algorithmic bottlenecks we felt in the design under the 

graphics-based paradigm were two - the need for improved routing tools and 

the need for more efficient design rules checking, The geometric aspects of 

these problems are discussed in further detail below. The design process 

gave us a greater respect for the complexity of VLSI design as well as 
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deeper insights into "bottom-up/top-down" design methodologies for design. 

START 
INPUT 
PAD 

CLOCK 
PAD 

GND 

VDD 

BUFFERED I/O PADS ( 16) 
SHARED BY y AND q 

SHIFT REGISTERS FOR DIVIDEND AND QUOTIENT 

GENERATED QUOTIENT 

16 BIT WIDE 
GO SUBTRACTOR/ COMPARER 

BUFFERED I/0 PADS (16) 
SHARED BY x AND r 

Divider floor plan 

2,2, Constraint-based design of an adder 

Having successfully tested the divider, attention was turned to the 

design of VLSI circuits for graphics applications. These applications are 

presented in greater detail in Section 4. As a first step, it was clear 

that a circuit to compute the sum of two integers would be necessary to 

most graphics designs, Attention was focused on this problem in order to 

gain insight into the design tools being developed at Princeton, 

The goal was to design an efficient carry-look ahead adder in VLSI. 

The problem was modelled as 
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X 

or 

y 

z 

As intermediate steps, p .• and g • • (for propagate and generate) primitives 
i.,J i.,J 

were defined with the properties that p .• (isj) was true iff a carry would 
i.,J 

be propagated over the block of bits i ••• j and g • . (isj) was true iff a 
i.,J 

carry would be generated over that block of bits. These quantities could 

then be computed as 

Pi,j =xiv Yi 

Pi,j = Pi,k "Pk+l,j (isk<j) 

gi,j =xi" Yi 

g ' . = (p . k"gk+l . ) v g . k i.,J i., ,J i., 

When the context permits, p. (resp. g .) will be used for p .. (resp. g . . ) • 
1, 1, i.,J i.,J 

We note that the result z. = x. e y. e g. 1 16 and organize the com-
1, 1, 1, 1,+. 

putation as a series of levels from which the design can proceed. Level i 

may depend on results from both level i - 1 and i + 1 so proper timing of 

the circuit is necessary. The computation can be modelled by the tree of 

Figure 2a and the equations below. We make use of the two identities 

Level O. Compute 

I, ••• I 6 

Level I. Compute 

I , ••• I 6 
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Level 2. For i even, compute 

Level 3. For i a multiple of 4, compute 

pi-3,i'gi-3,i'gi-l, 16 from Pi-3,i-2'gi-3,i-2'pi-l,i'gi-l,i' 

Level 4. Fo.r i a multiple of 8 (i.e. i=S, 16), compute 
gi+l,16 

Pi-7,i'gi-7,i'gi-3,16 from Pi-7,i-4'gi-7,i-4'pi-3,i'gi-3,i' 

Level 5. For i a multiple of 16 (i.e. i=I6), compute 
gi+l,16 

from pi-15,i-S'gi-15,i-S'pi-7,i'gi-7,i' 

gi+l,16 

We adopt the convention that g 17016 = 0 and note that p 1, 16 and computations 

leading to its value are unnecessary and can be removed. However, the nature 

of the circuit is such that their inclusion does not increase the layout 

area and does simplify the design process. 

We propose to make the design such that all level i cells are identical 

for i > I • Levels O and I may be viewed as a single cell organized to have 

width half that of a level 2 cell leading to a floor plan as shown in Figure 

2b. 
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Level 5 

Level 4 

Level 3 

Level 2 

Level I 

Level 0 

' ' . 2k-l f h fl f Figure 2a, Upward flows are g. .,p. . where J = 1, + or t e ow rom 
1,,J 1,,J 

level k to level k + 1. Downward flows are gi+l,IG where i is a multiple of 

2k for the flow from level k + 1 to level k. 

WHERE B = ~ 

~ 

Figure 2b, The floor plan where Li is a level i block. Crossed areas on the 

top level are used for routing of signals among the L3,L4,L5 blocks. 

This design is currently being implemented in ALI [V82] which is a pro

cedural design language. Within this language, wires are specified as boxes 

with relative positions (left, right, above, below). The specification is 

done by writing a PASCAL-like program which is converted by the ALI system 

into a system of linear constraints of the form 
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x. x. 
'l, J 

allowing for linear time solution of the constraints. The advantage of this 

approach is that a change in design results in simple changes to the under

lying ALI program followed by recompilation. The changes which arose during 

the debugging phase of the divider would be greatly simplified at the ex

pense of regenerating and solving all constraints mechanically, 

Initial experience suggests that ALI will behave similar to the graph

ical tools described above for initial layout of cells, The "see what you 

get" feature of graphics-based system is an advantage over the one dimen

sional nature of ALI. Furthermore, ALI layouts are initially likely to con

sume more area. We roughly estimate this at 30-50%. However, the debugging 

of an ALI layout will be more pleasant and the nature of the language is 

such that a designer can hand optimize relevant cells on a working design. 

As such, it lends to a more suitable use of the "bottom-up/top-down" design 

paradigm which seems to arise in VLSI design projects. Further details on 

the comparison of graphical and procedural systems will appear in [DD82]. 

3. ALGORITHMS FOR GEOMETRIC PROBLEMS RELEVANT TO VLSI 

As we observed in the previous section, two of the processes involved 

in design automation are routing and design rule checking. We model the 

later problem as that of intersection testing. Each of these problems is 

then of a geometric form, In this section we briefly survey methods of at

tacking these problems, 

3.1. Geometric intersection problems 

The design rules checking problem may be translated to problems on a 

set of rectangles representing the wires in a design. For example, let 

R = {r1,r2, ••• ,rk} be a set of rectangle-s, we may wish to ask queries of the 

form: 

find the nearest neighbor of each ri in R 

find all intersections of elements of R 

determine if any two rectangles of R intersect 

count the intersection in R, 
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In the case of points, the Voronoi diagram [SH75] provides a useful data 

structure for considering such points. Further work on data structures re

cording history [DM8O] allows the points of R to be preprocessed so that 

queries regarding new points are easily answered. 

Our presentation here is limited to a consideration of the data struc-

tures used for reporting all intersections among a set of n line segments. 

We consider the segments S. = 1l7I..,i = l, ••• n where p. = (x~,y~) and 
~ ~ ~ ~ ~ ~ 

qi= (x~,y~),i = 1, ••• n, with xi$ xi. We define si(t) to be the intersec-

tion of s. with the line x = t with s. (t) undefined. if t does not lie in 
~ ~ 

the interval [x~,y~J. This notation leads to an order relation<- with 
~ ~ .., 

s. < s. if both are defined and s.(x) < s.(x)b$, >-,.: 
~XJ ~ Jar.., x 

larly defined. This order property leads to the following 

our algorithm is based: 

.and = are simix 
theorem on which 

THEOREM. If si and sj intersect, then there exist x 1 and x 2 sueh that 

si $ x!sj and sj $ xZsi. 

To derive an algorithm, we µow define the set X as the set of end points, 

so X = U~= 1 (x: U x~). For each point x of X, we would like to maintain 

{si(x)} in order (for all relevant i) so that testing can be easily done 

by noting where the order changes. Our algorithm [BO79] involves inserting 

elements into X as intersections are found (at an x to the right of our 

current position) and maintaining a balanced tree of {s.(x)} for each x of 
~ 

X in turn. 

Initially sort X 

Maintain balanced tree (initially empty) ordering {S. (x)} for x £ X. 
~ 

At each x 0f X (in increasing order) 

if xis a start vertex of sk 

insert sk(x) into, the tree 

test to determine if sk intersects either of its neighbors 

if~• add the intersection point to X and report the 

intersection. 

else if x is an end vertex of sk 

insert sk(x) into the tree 

test to see whether the neighbors of sk intersect 

if~• add the intersection point to X and report the 

intersection. 
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else (xis the intersection point of segments m and n) 

reverse sm(x) and sn(x) (assume w.l.o,g. that now 

s (x) > s (x)) 
m n 

check m for intersection with the segment above it 

check n for intersection with the segment below it 

in each case, if an intersection is found, report it and 

add the point to X. 

The running time of this algorithm can be expressed as 

O(IXllog n) + O(n log n) with the first term giving the time for maintaining 

the tree and the list X and the second giving the time for initially sorting 

X, Ifs is the total number of intersections, this reduces to O((s+n)log n). 

For sparser intersections, this is considerably better than the O(n2) re

quired by the naive algorithm. In a design rule checking context, we would 

expect this to be the case (or possibly abort after a fixed number of errors 

had been reported), However, in general other algorithms perform better than 

this "nearly optimal" algorithm. Recent work [KR82] explores this situation. 

3.2. Routing geometries, 

A second tool which would facilitate the designer's task is an automatic 

router, Research in routing algorithms dates back to algorithms for laying 

out printed circuit boards in the early 1960's (see [180] for a survey). Re

cent work has considered NP-completeness results as well as algorithms for 

problems solvable in polynomial time. We present here two techniques which 

have been applied to instances of routing problems, For a general statement 

of the problem, we consider two sets of ports {u 1, ••• ,un} and {v 1, ••• ,vn} 

and ask for a routing which connects ui to vi(l$i$n) satisfying the condi

tions: 

a) minimum separation is satisfied* 

b) the routing minimizes 

i) total wire length 
ii) layout area (i.e. separation of components) 

c) all connections are. 

i) line segments and arcs of circles of constant radii 

ii) line segments at fixed angles 

iii) horizon and vertical line segments 

Tompa [TSO] proposes an exact solution to the problem a,.bi), ci) •. We 

*Throughout we assume that wires have no thickness am! the minimum separation is I. 
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assume that each set of ports is collinear and the two lines of ports are pa

rallel separated sufficiently to allow a layout. The total wire length is to be 

minimized and wires may be line segments at any orientation or arcs of cir

cles of constant radii. We say a layout is good if for all i, the wires con

necting its i th ports lie outside the circles of radius Jj-iJ centered at 

ui and vj• I~ j ~ n. A layout algorithm then follows from the observations 

that a necessary and sufficient condition for a layout to be optimal is that 

it is good. Necessity follows easily from the problem statement. Sufficiency 

follows from the following observations about convexity, 

DEFINITION. Let P be a continuous curve, pa point of P dividing Pinto 

curves P1 and P2• If q is a point not on P, then Pis convex towards q at Q 

if and only if for all neighborhoods N of p, there are points pi on 

N n Pi (i=l,2) such that p 1p 2 does not intersect pq. 

THEOREM. If P a:nd Qare continuous non-intersecting curves of closest dis

tance D and p £ P, q £ Q have d(p,q) = D, then one of the conditions a)-e) 

holds 

a) p is a:n endpoint of P 

b) q is an endpoint of Q 

c) p is convex towards q at p 

d) Q is convex toward p at q 

e) there exist neighborhoods of p and q within which P a:nd Qare segments 

of parallel lines. 

Furthermore, there exist p0 £ P a:nd q0 £ Q with d(p0,q0J = D such that Po 

or q satisfies one of a)-d). 

While this derivation provides an elegant characterization of solutions 

to the problem, it provides less elegant solutions. We may apply the algo

rithm to any pair of ports ui, vi to obtain in time linear in n a minimal 

length routing. However, quadratic time is required to process n pairs of 

ports because each segment might haven segments which need to be computed. 

Furthermore, the assumptions concerning wires at arb'itrary angles and wires 

which are arcs is unrealistic for most design automation systems. Finally, 

the quadratic equations needed to describe circles may lead to the necessity 

of solving equations of high degree. Nonetheless, an algorithm exists to im

plement this procedure and provides insight into geometric characterizations 

of routing-like problems. The reader is referred to [T8O] for details of 

this algorithm, 
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A second routing problem with an elegant solution is that which we 

characterize as a),b)ii),c)iii) where ports again lie on parallel channels 

which we want to separate by minimum distance while routing on only two 

layers (i.e. in only the horizontal and vertical directions). Two quantities 

have been defined by which such problems may be characterized. We consider 

the ports {ui} and {vi}' I~ i ~ n where ui occurs at Ui and ui at Vi along 

the relevant line. We assume the lines are horizontal and define the channel 

density at horizontal point h to be the number of wires which must cross that 

point. That is, 

J{iJu. ~ h ~ v. or u. ~ h ~ v. but not u. = h = v.}J. 
~ ~ ~ ~ ~ ~ 

Clearly, this quantity will be a lower bound to the separation, However, as 

Dolev, et al [DKSSU81] note, there are problems of small channel density 

having layouts requiring a large separation. Consider, for example, the si

tuation where U.=i, V. = i + 1, I~ i ~ n. To circumvent these difficulties, 
~ ~ 

they define the conflict number W(i,j) by the table 

i < j i = j i > j 

u. - ~ > j - i 0 I i-j+l 
J 

u. - v. = j - I j-i+I 0 o-j+l 
J ~ 

u. - v. < j - I j-i+l I 0 
J ~ 

It is easily seen that in all but trivial designs, the conflict number is 

no less than the maximum channel density. By a greedy procedure, the layouts 

of separation equal to the conflict number may be realized yielding 

THEOREM, Minimum separation requires a number of channels exactly equal to 

the largest conflict number. 

PROOF. see [DKSSU81]. 

Again, the geometric elegance of this algorithm hides some difficulties 

which might arise in practice, We use this algorithm after components have 

been layed out to connect ports on different components. The algorithm 

then yields a layout of these components having minimum separation. A more 

integrated approach might combine the positioning of the ports during 
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occur on all edges of a component. 

4, GRAPHICS 
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Our final topic involves the practical application of VLSI design sys

tems of the type we have considered to problems of computer graphics. The dis

play of images on a raster scan device requires substantial computing re

sources of a very specialized nature, We focus attention here on the simple 

problem of line drawing, undoubtedly the most basic problem in this area. 

A raster display consists of a rectangular array of pixels. For each 

pixel location, associated memory maintains a value and the monitor displays 

light relative to this value, For a simple device, the monitor is capable of 

only bilevel (on/off) displays and a pixel is represented by a single bit of 

information. Grey scale monitors allow for pixels to be shaded, For example, 

8 bits of memory allow the representation of 256 different shades of grey 

pixel, Color is produced by considering "grey scales" for the primary colors 

(red, green, blue) independently. 

A line drawing algorithm plots a set of points {(xi,yi),(i=l ••• n)} which 

best approximate a line, For a line in the first octant, i.e. at angle less 

than 45°, this is done by determining for each xi on the line, the closest 

yi such that (xi,yi) lies on the line, We do this in an iterative fashion 

from the minimum to maximum x - coordinatie of the line, Bresenham [B65] pro

posed the following algorithm to draw the line from (O,O) to (x,y)(y$X), 

xt := O· • 
yt := O· , 
setpixel (xt,yt); 

slope := 2*y-x; 

error := slope 

incl := 2 *(y-x); 

inc2 := 2*Y 

for xt := to x do 

begin 

if error> 0 then 

begin 

yt :=yt+ I; 

error:= error+ incl; 
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end 

·else 

error:= error+ inc2; 

setpixel (xt,yt), 

end; 

The inner loop of this algorithm is executed many hundreds of times for each 

line drawn, In the algorithm statement, this loop has been made as tight as 

possible involving a compare to zero, an add and possibly an increment by 

one, It would be a simple matter to implement this algorithm in VLSI as 

part of a larger graphics engine, To do so, the comparison, the alternative 

adds and the incrementing by one would be done in parallel. At the time when 

all results were computed, the result of the comparison would be used to de

termine the new values of error and yt, 

A difficulty of line drawing on a bi-level display is that honest re

presentations of lines are not presented, A line of length 100 will be re

presented by turning on 100 pixels if horizontal but only 71 if diagonal, 

This difficulty is called aliasing. Various anti-aliasing schemes have been 

proposed, The key here is to view a line segment as the parallelogram bound

ed by parallel segments one half pixel above and below the given segment. A 

pixel is now viewed as a square of area I, Using grey scale, the fraction of 

a pixel which is covered by the rectangle to the fraction which is lit. Un

der this scheme., lines are represented more accurately at added computational 

cost. A careful analysis of this problem by Field [F82] yields an algorithm 

whose inner loop involve 9 adds and 2 comparisons in the worst case where 3 

grey scale values are set. This algorithm will lead to a simple VLSI imple

mentation. 

Extensions of this problem involving the careful drawing of triangles 

and 3 dimensional figures. A more difficult problem is that of performing 

transformations on objects accurately. At present, this is done by using 

floating point arithmetic with the result that "off-by-one" errors are com

mon. Indeed, the rotation of a triangle by 45° eight times under most algo

rithms will not yield the original triangle on a bi-level display. We be

lieve that more complex algorithms, which can be made to run sufficiently 

rapidly in VLSI, can alleviate this problem. 
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5 •. CONCLUSIONS 

We have considered VLSI design systems, geometric algorithms and com

puter graphics in these lectures. Each of these topics is rich enough to 

provide many interesting lectures. Of necessity, we have highlighted a few 

ideas in each topic with the hope that the reader's appetite will be 

whetted to explore further. 
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