
•

P.M.G •

MATHEMATICAL CENTRE TRACTS

APERS

156

'
'
'

"

MATHEMATICAL CENTRE TRACTS 156

UERV PROCESSING ND D T

LLOCATI NIN DISTRIBUTED

D T B SE SVSTE S

P.M.G. APERS

MATHEMATISCH CENTRUM AM STER DAM 1983

1980 Mathematics subject classification: 68-02, 68B20, 68H05
1982 CR. Categories: C.2.4, H.2.2, H.2~4

ISBN 90 6196 251 X

Copyright© 1983, Mathematisch Centrum, Am.sterdan1"

CONTENTS

CONTENTS i
SUMMARY v

ACKNOWLEDGEMENTS vii

I INTRODUCTION 1

1.1 Subject of Thesis in Perspective 1

1.2 Query Processing 2

1.3 Data Allocation 3

2 DISTRIBUTED DATABASE MANAGEMENT SYSTEM 5

2.1 Database Architecture 5

2.1.1 Computer Network 8

2.2 The Relational Data Model 8

2.2. l Relational Database Management Systems 11

2.3 Fundamental Problems 12

2.3.1 Integrity and Consistency 12

2.3.2 Recovery 13

2.3.3 Data Allocation 14

2.3.4 Query Processing 15

2.3.5 Privacy and Security 16

•

3 QUERY PROCESSING IN A DISTRIBUTED DATABASE 17

3.1 Distributed Query Processing 17

3. I. I Three Phases in Query Processing 17

•
l

• •
11

3.1.2 Parsing a Query· 17

3.1.3 Determining a Schedule 19

3.1.4 Execution of the Schedule 22

3.1.5 Response Time of a Query 22

3.1.6 Serializing Parallel Schedules Using the Same Resource 25

3.1. 7 Basic Operations 2 7

3.1.8 Summary 28
'

3.2 Overview of Distributed Query Processing Algorithms 28

3.3 Query Processing with Inverted File Organization 38

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

3.3.9

3.3.10

Inverted Lists as Storage Structure and Unit of Allocation 39

Minimizing Response Transmission Time 43

Disjunctive Normal Form 44

Breaking a Term 48

Equal Transmission Cost Model 53

Arbitrary Transmission Cost Model 58

Response Transmission Times Before and

After Serialization 61
Minimizing Response Time 62

Mini111izing Total Time 66 ·

Summary 73

3.4 Distributed Query Processing Using Semi-Join 73

3.4. l Estimating Technique and Schedules 74

3.4.2 Simple and General Queries 76

3.4.3 Mini111izing Response Transmission Time 79

3.4.4 Minimizing Total Transmission Time 84_

3.4.5 Summary 91

3.5 Comparison Between Distributed Query Processing Algorithms 92

4 DATA AND OPERATION ALLOCATION IN
A DISTRIBUTED DATABASE 98

4.1 Data and Operation Allocation and File Allocation Problem 98

4 .. 2 Overview of File Allocation Problem 99

4.3 Data and Operation Allocations and Their Costs J 00

4.3. l Forking Points and Forking Graphs J 04

'

4.3.2 Unit of Allocation and Processing Schedules 105

4.4 Centralized Data Allocation 110

4.4.1 Construction of Processing-Schedules Graph 1 JO

4.4.2 Static versus Dynamic Schedules 112

4.5 Decentralized Data Allocation 114

4.5. l Private Copies and Processing-Schedules Graph J 14

4.6 Comparison Centralized and Decentralized Approach 116

4.7 Minimizing Total Transmission Cost 122

4.7.1 Optimal Allocations Using Static Schedules 123

4.7.2 Heuristic Allocations Using Static Schedules 127

4.7 .3 Theoretical Results Concerning Algorithm

•••
111

total data allocation 132

4.7.4 Comparison Optimal and Heuristic Allocations
Using Static Schedules 134

4.7.5

4.7.6

Semi-Dynamic Schedules 135

Optimal Allocations Using Dynamic Schedules 136

138 4.7.7 Heuristic Allocations Using Dynamic Schedules

4.7.8 Comparison Static and Dynamic Schedules 139

4.7.9 Extensions of Algorithm total data allocation 141

4.7.10 Constituents of Total Transmission Cost 141

4. 7 .11 Primary Copies 144

4.7.12 Summary 146

4.8 Minimizing Average Response Time 147

4.8.1

4.8.2

4.8.3

Queueing Model and Response Time 148

Simple Processing Schedules 149

Optimal Allocations to Minimize Average
Response Transmission Time 1 50

4.8.4 Heuristic Allocations to Minimize Average
Response Transmission Time 153

4.8.5 Comparison Heuristic and Optimal AR TT Allocations 155

4.8.6

4.8.7

Minimizing Average Response Processing Time 156

Optimal Allocations to Minimize Average
Response Processing Time

Heuristic Allocations to Minimize Average
Response Processing Time

158

159

. . ., .• ,.--,"'! . ---_- f

' 1

!

•

•

'

I

i
i
i
•

1
i

•

• IV

4.8.9 Comparison Heuristic and Optimal AR TT Allocations 161

4.8.10 Minimizing Average Response Time 163

4.8.11 Arbitrary Processing Schedules 163

4.8.12 Optimal Operation and Data Allocations to
Minimize ARTT 163

4.8.13 Operation Allocation Given a Data Allocation 165

4.8.14 Heuristic Operation and Data Allocation to
Minimize ARTT 169

4.8.15 Summary 172

s SUMMARY AND CONCLUSIONS 174

5.1 Query Processing 174

5.2 Data Allocation J 76

5.3 Future Research 180

REFERENCES 181

INDEX 188

'

•

••

V

·suMMARY

The demand for more and more information both by industry and government
leads to databases that will exceed the physical limitations of centralized systems and
to the integration of already existing databases, which may be geographically
dispersed. Advances in the areas of both computer networks and databases make it
possible to build these distributed databases. Computers can easily be connected to a
network, making it possible to communicate with each other. On top of such a net
work a distributed database management system can be built so that the distribution
of logical and physical components of the databases is kept hidden from the users.

The advantages of a distributed database compared with a centralized one are:
increased availability, decreased access time, and easy expansion and possible integra
tion of existing databases. The acceptance and wide-spread usage of distributed data
bases will highly depend on their efficiency. Therefore, it is important to supply a
database management system with tools to efficiently process queries stated by users
and to determine allocations of the data such that the availability is increased and the
access time is decreased. This monograph deals with the two dual problems query
processing and data allocation. A query processing algorithm determines, given a
data allocation, schedules for processing queries. A data allocation algorithm deter
mines - given the queries and updates, how frequently they are stated, and a query
processing algorithm - an allocation of the data of a database.

This monograph is organized as follows.

In chapter I query processing and data allocation are placed in perspective and
an impression is given of the topics that will be investigated.

In chapter 2 a tutorial on distributed databases will be given. Besides the
advantages some of the fundamental problems, which still require research, are
touched on. For example, there is still no generally agreed on way of controlling con
current accesses. Also, crash recovery techniques have hardly been studied in rela
tionship with concurrency control mechanisms. Furthermore, query processing and
data allocation problems are discussed.

In chapter 3 the problem of query processing is treated. Different cost func
tions are defined to measure the efficiency of a processing schedule. Especially, the
computation of the response time of a query is complex, because the execution order
of operations, competing for the same CPU, is not fixed. The sort of basic operations
used in a schedule has a strong influence on the way queries are processed. On the
one hand, low level operations that manipulate storage structures are considered, and,
on the other hand, operations that merely decompose a query into subqueries at the
logical level. The main part of this chapter is concentrated on the construction of
processing schedules that minimize either the response time or the total time. A qual
itative and quantitative comparison is made between the algorithms proposed and
already existing algorithms.

In chapter 4 the problem of allocating the data of a database is investigated.
The data allocation problem i~ essentially more difficult than the well-known file allo
cation problem, because the objects to be allocated have to be determined and also

•
Vl

more complex processing schedules ate allowed. A model is introduced, wh
it possible to compute the cost of allocations under construction, taking int
the processing schedules.

A centralized approach to the data allocation problem requires the ex
a central organization that may decide about the allocation of all the data in
base. A decentralized approach, in which this is only possible for portio:
database, is especially applicable to databases that are the integration of exis1
bases. These two approaches are both qualitatively and quantitatively c
The main part of this chapter is concentrated on determining optimal alloc,
means of the Heuristic Path Algorithm, developing heuristic algorithms th◄
polynomial time, and comparing the allocations obtained by the heuristic a]
with the optimal ones. This is done for minirnizing both the total transmis,
and the average response time.

In chapter 5 the results obtained are discussed and we express our exp1
about future research related to databases.

•

••

••
Vll

ACKNOWLEDGEMENTS

At the Vrije Universiteit, where this research was carried out, I would like to
thank my advisor~ Reind van de Riet, who not only made this research possible, but
wl10 also put a lot of effort in reading the many drafts of this monograph. I am
much indebted to him. To Patricia G. Selinger I am very grateful for her comments
concerning the presentation of the results.

Finally, I would like to thank the Mathematical Centre for the opportunity to
publish this monograph.

•

1

t. INTRODUCTION

1.1. Subject of Thesis in Perspective

The demand for more and more information both by industry and government
leads to databases that will exceed the physical limitations of centralized systems and
to the integration of already existing databases., \Vhich may be geographically
dispersed. Advances in the areas of both computer networks and databases make it
possible to build these distributed databases. Computers can easily be connected to a
computer network, making it possible to communicate w~th other computers. On top
of such a network a distributed database management system can be built so that the
distribution of logical and physical components of the databases is kept hidden from
the users.

The advantages of a distributed database compared with a centralized one are:

• increased availability,

• decreased access time,

• easy expansion and possible integration of existing databases.

In chapter 2 we will introduce the main ideas about distributed databases and we will
deal with the above notions in more detail. To achieve these advantages., there are
still many fundamental problems to be solved.

Maintaining the integrity of a database, while the data are simultaneously
accessed by several transactions, with as much concurrency as possible to increase the
throughput, has been investigated for both centralized and distributed database
management systems. So far~ no agreed on concurrency control mechanism has been
developed. A closely related problem, which received little attention in relationship
with concurrency control, is the recovery of a database if transactions, for whatever
reason, fail to commit. Current concurrency control and crash recovery mechanisms

'

put a heavy burden on the efficiency of database management systems.

Two other problems about efficiency can be viewed as dual problems: query
processing and data allocation. Query processing is the problem of determining a
materialization of the database and deciding at which sites to execute certain opera
tions, such that the required result can be presented at the site where the query was
issued, or, on request, at another site. This implies that a possibly redundant data
allocation is given. The dual of this is the data allocation problem, where the access
patterns are given, and the objects to be allocated and their allocation have to be
determined.

The integration of existing databases requires the construction of a global con
ceptual schema on top of the conceptual schemas of the individual databases. In gen
eral, each of these local conceptual schemas has its own data language. So, the
integration will require conversions between local and global conceptual schemas.

The social impact of databases and, especially, the integration of existing data
bases has culminated in privacy legislation. To carry this out, security tools will have
to be developed. Unauthorized access to confidential data should be prohibited.
Also, the storage and transmission of data should be made secure by, for example,
encryption. The access to different databases, which has become easy if stored in a

2

,~(lmputer network, must be regulated by integration of the access methods of these
databases, ()ther\\'ise, unbridled access of the databases can not be stopped.

1't1is m<lnograph deals wit.h the two dual problems, q~ery processing and d~ta
all(1<:ation. It shows how they are related, and that, especially,, the data allocation
pr<.)blen1 can n()t be studied .. without detailed knowled?e _about query proces_sing.
&~ausc the acceptance and wide-spread usage of distributed. databas:s ~1ghly
depends <.)n ht">W efficient they will be, it is of importance to p~ov1de the d1str1buted
database n1anagement system with algorithms that compute efficient schedule~ to pro
cess queriesl and \v'ith tO<.)ls that both measure the efficiency of data allocations and
decide about changes t<) improve it.

1.2. Query Processing

The first part of the monograph (chapter 3) deals with the problem of query
processing in a distributed database. Cost functions that are used to measure
efficienc,1 , are the total cost and response time. The total cost can be viewed as the
sum (lf the times spent in the different components of the computer network. Most of
the research tln distributed query processing has been on minimizing total cost. Here,
ample attention wi.11 be given to min.imizing response time of schedules for processing
queries, as well. To achieve max.imum parallelism the query is split into subqueries of
which the results are processed at the site where the final result is to be delivered. To
compute schedules for these subqueries we assume that none of the operations or
transmissions share the same resource (Parallelism Assumption). Because of physical
constraints the schedules obtained may not be executed completely in parallel. There
fore~ theJ1 are serialized, such that parallelism that can not be achieved is removed.

Normally, a query is first decomposed into subqueries at the logical level and
then efficient schedules for these subqueries are determined at the physical level.
Obviously, the decomposition may lead to non-optimal solutions. Ideally, a query
stated by a user is translated directly to basic operations without losing optimality.
'These b&.~ic operations are transmissions of data from one site to another, and opera
tions that manipulate storage structures. This approach is discussed for the Boolean
expres.~ions of index terms with inverted lists as storage structure and the set opera
tions to manipulate these inverted lists. An expression of set operations on inverted
lists corresponding to a Boolean expression is rewritten into· its disjunctive .. normal
form such that the intersection operations are executed before the union operations.
Ft1rthermore, the union operations are executed at the result site. Also, before
transmitting a large list it is, whenever possible, intersected with another smaller one
to det,"rease its size.

It is interesting to note that, although the set operations differ from the rela
tional t1perations, in the research on query processing in the relational data model a
s~milar, however _intuitive, approach can be observed: joins are computed at the result
site and the relations are made as small as possible by applying semi-joins.

Backed by the theoretical results for the set operations on inverted lists, and the
results obtained elsewhere for simple queries in the relational data model, we investi
~ate whether t?~ same approach can be used for more general queries. For each rela
t1on referencea ma query a schedule is determined to decrease the relation in size and
tt1 transmi.t its ta:get and joining ~ttributes to the result site, where the joins are com
puted. Intermediate result are est1.mated using selectivities.

3

For minimizing total transmission time, first the same approach is taken as for
minimizing response time. The schedules for the subqueries are integrated to form
the schedule for the query, such that identical transn1issions are removed. Hence,
parts of the schedules for the subqueries may be used for different subqueries. For
this reason optimal results can not be obtained. The second approach tries to
emphasize the collective use of schedules for subqueries. Finally, the two approaches
are compared.

In most of the research on query processing it is assumed that transmission cost
does not depend on the topology of the computer network. Here, the etf ect of an
arbitrary topology on the optimality of the schedules and the complexity of the query
processing algorithms is investigated.

A qualitative and quantitative comparison is made with other distributed query
processing algorithms. Issues of comparison are: does the database management sys
tem have to supply a materialization beforehand or is it determined during optimiza
tion, which data is needed to estimate sizes of intermediate results, whether schedules
are determined before or during execution, whether joins are computed solely at the
result site or not, etc.. The quantitative comparison is only done with respect to the
cost of the schedules obtained and the time required to compute them.

1.3. Data Allocation

The second part of the monograph (chapter 4) treats the problem of determin
ing a, possibly redundant, allocation of the data of a distributed database. Again the
two cost functions, total cost and response time, are used to measure the efficiency of
allocations. Originally, the allocation problem was known as the file allocation prob
lem: given the query and update transactions, and the frequencies of their execution,
determine the allocation of copies of a file in a computer network. However, in a dis
tributed database the problem is far more complicated. First, the objects to be allo
cated are unknown. A method is developed to partition the relations of the global
conceptual schema into fragments. This partitioning is done by splitting the relation
both horizontally and vertically. Secondly, the processing schedules produced by dis
tributed query processing algorithms are far more complex than the ones used in the
file allocation problem, in which only transmissions from the sites, where the files
reside to the result site are allowed. In a distributed database, however, schedules

••

also contain transmissions between sites where fragments are located. A consequence
is that the allocation of the fragments can not be considered independently. The
problem of finding an allocation of the fragments such that the total time is
minimum, is shown to be NP-complete.

To obtain better insight in the data allocation problem, different lines of
research are followed. Where possible the complexity of the problem is established.
Admissible heuristic estimators are determined to compute optimal allocations with
the Heuristic Path Algorithm (or branch-and-bound techniques). Also, heuristic algo
rithms that run in polynomial time are presented, and using simulations their results
are compared with the optimal ones.

A model is presented which makes it possible to discuss redundant allocations
where not all fragments have been allocated to fixed sites. The notions of physical
and virtual site are introduced. The former represents a site in the computer network,
including the fragments located there and the operations executed at it, and the latter
represents the fragments and operations that have not found a final allocation yet. A

4

graph, called processing-· 1ules graph,, is used to compute the cost of such an allo-
ca.tit)n.

Both for minimizing total cost and average response time heuristic algorithms
are developed, which locally try to change allocations to decrease the cost. For
n1inimizing total cost the effect of changing the query/update ratio on the degree of
redundancy and the percentage of the transmissions that is required to keep copies
et)ns.istent, is in,·estigated.

1·""·0 different approaches to data allocation are compared. For a distributed
database that is managed centrall)1

, info1·rnation about the access patterns can be
ob·tained. 'This implies that a possibly redundant allocation can be computed for the
database as a whole. This approach is called centralized. Opposite to this is the
decentralized approac.h. If a database is the integration of already existing databases,
it might not be possible to change the existing allocation. To still be able to improve
the efficiency of the integrated database, the database administrator of this database is
given the opportunity of creating private copies. A similar approach can also be
taken if finding an allocation for a database as a whole is computationally not feasi
ble. The data allocation problem is then partitioned into smaller problems, which can
be solved more efficiently. The usage of private copies also enables the groups of
users to determine how up-to-date their copies should be.

•

5

2. DISTRIBUTED DATABASE MANAGEMENT SYSTEM

What makes a database distributed and what are the advantages over a central
ized one? Enslow [Enslow1978] has given us a definition of a distributed data process
ing system. For a distributed database management S)'Stem this can be interpreted as
a system where the logical and physical components are distributed and the local
database management systems running at the sites of a computer network cooperate
with each other, such that the users are unaware of the distribution.

The advantages of a distributed database over a centralized one are:

D increased availability
The failure of a site or a communication channel does not necessarily imply the
inaccessibility of the whole database. By storing the data redundantly the sys
tem can be made resilient to certain failures.

□ decreased access time
If the access pattern in a distributed database shows a high locality of refer
ence, it is worthwhile to partition the database based on this and store the por
tions of the database at these localities. The access time will be significantly
less than when all data are stored at a single site.

□ easy expansion and possible integration of existing databases
It is to be expected that the hunger for information both by industry and
government will increase rapidly. Consequently, databases will continue to
grow and, eventually, reach certain physical limits. The upgrading of capacity
will be considerably easier in a distributed system than in a centralized one, as
far as continuation of service is concerned. Also, data bases can be integrated
to combine data from existing databases.

2.1. Database Architecture

A commonly agreed on architecture of a database is shown in fig. 2. l(a). It
consists of three levels: the external schema (ES), the conceptual schema (CS), and the
internal schema (IS). The idea behind this is to create independence both upwards
and downwards. The conceptual schema contains all the available and required
knowledge about, for example, a company to model it as a d~tabase. Because not all
the users are interested, or are allowed to see the information contained in. the con
ceptual schema, an extra level on top of it is created for each user or group of users.
For example, an employee in the personnel department may access confidential infor
mation about other employees, while an employee at the sales department may only
see inventory figures.

To improve the efficiency of a database, the database administrator is likely to
change the storage structure every now and then. To avoid having to change the con
ceptual schema every time, the internal schema was created which contains all infor
mation required to access the data.

What happens to this three level representation if the database is distributed?
Let us start with the bottom level. If only the data is distributed we can merely
create a local internal schema (LIS,) for every site Si in the computer network and
place them below the internal schema, which is now called global internal schema
(GIS). If both the data and the description of them are distributed, each site S, is
given its own local internal schema (LIS,) and local conceptual schema (LCSi), which
are placed below the conceptual schema, now called global conceptual schema (GCS).

•

6
•

GCS
LES

LCS 2
•

(b)

. 2.1 .. (a) Centralized and (b) distributed database architecture.

S()rnet.imes the individual sites may even support their own local database and then a
local exter·nal schema (LES) is placed on top of local conceptual schema. ~ or each
grc.1rup of users tlf ttie distributed database a global external schema (G ES,) 1s placed
,,n t<,p ()f the globt1l conceptual schema (see fig. 2.1 (b)).

The conceptual schema was created with the idea of an integrated database,
contrary t(> every one having its own files. For the same reason the global conceptual
schema ca.n be viewed as the union of all local conceptual schemas. If the data
langua.ge both at the i<'>Cal and global level are the same, this database is called bomo
pM0&-1. 'fhis type of database is., in general, obtained by a top-down design. For
eu1r:1~-.le. t:he database of one company which is distributed over several offices., which
niay be g«lgraphically dispersed.

Ant)ther t)rpe (lf databases, called heterogeneous, is, in general, obtained by a
bottom .. up design. In this case the distributed database is an integration of already
existing, t".'Clltraliz.ed databases. It is to be expected that many distributed databases
wiil be ()f this type. Besides the problems occurring in a homogeneous database, of
\\'h.ch there a.re stil.l some that are not solved satisfactorily, there is also a tremendous
translation problem from one data model to a.nother. One would expect that a person
is a pctSt1n. Wr<,)ng! In databases one can have employees, taxpayers, subscribers,
etc,~ and in each database the same person will have a different identification.
Integrating the com::eptual schemas into one global conceptual schema is far less than
trivial" S<>, one may ask "thcther a doubly layered conceptual schema will suffice.

ln f l,it~in 1980] a different approach is taken. It does not consider the physical
dist.ribut1on of the data; but the way the conceptual schema can be structured. The
~rchitecture tlf the conceptual schema is tree- or· graph-structured. For example, there
1s .. a databaJe for hc>t~s, and another one for airlines. On top of these one may build
thir~ database fo;r ho,hdays that contains these two. It is just like abstract datatypes.
Pt1tt1.ng together prOiCedures and data that logically belong to each other and letting
<.1ther ~rtlt~ur·es that make use of them know as little as possible about the i 111ple
mentat1t1n det1.ili*

- -------------------~--"""l-··'"' ' '' ··-· ··-··
'!

7

'

A graphical representation of such an architecture of a distributed database is
shown in fig. 2.2. It shows a graph-structure where a box above another box with a
line between them means that the schema corresponding to the upper box is built on
top of the schema corresponding to the other box. An £-box stands for an external
schema, a C-box for a conceptual schema and an /-box for an internal schema.

An internal schema on top of other internal schemas shows a database which is
only physically distributed. A conceptual schema on top of other conceptual schemas
shows a logical distribution of databases, or an integration of existing databases.
Such an integration can be done in one step, as was sho~n in fig. 2. l(b), or in more
steps with a graph or tree. It is also possible to construct a conceptual schema on top
of a conceptual schema and an internal schema. This means the extension of a data
base with data for which no logical description is given in a separate conceptual
schema. Also, an external schema may be constructed on top of two other external
schemas, meaning accesses to different databases that are not integrated. Note, that
in this case no security can be provided. If this is required an additional conceptual
schema should be constructed on top of the conceptual schemas of the databases
accessed. Finally, the external schema is then constructed on top of the newly con
structed conceptual schema. So, this structured approach to the architecture may also
provide a model to implement security tools. This seems an attractive approach, how
ever, more practical experience will be required to see whether more complex prob
lems can be solved with it.

E E

E E C E

C C

•

C C J

I I

l I

Figure 2.2. Structured architecture of a distributed database.

•

'

' i

8

2.1. t. (~omputer Network
"fhe relationship bet~'een a distributed database management system and a

ct)ntputer netW()rk is easil)' explained by using the OSI model. In the ISO proposal
{Zin1merma11 I 980] a network consists of 7 layers. We will briefly discuss the function
<lf e,1ch lily'er; a n1ore detailed description is given in [Tanenbaum 1981]. The layers
are num~red frc.">m 1 tt1 7, where l is the lowest level. Layer l is called the physical
la,er ,lnd is merel,r concerned with the transmission of bits. The second layer, called
•ta link layer, d~als with the transmission of the frames, containing data or ack
O()wledgements~ bet\v·een IMPs. The network layer, being the third layer, transmits
packets alt)ng rt)utes which may be determined dynamically. The fourth layer, called
the transport layer1 is the first layer that provides communication between hosts. Its
task is tt) deliver messages error-free and in the order in which they were offered. The
session layer, the fifth layer, is the user's interface to the network. It makes an ord
er!:,,' dialt1gue with an()ther machine possible. The sixth layer, called the presentation
layer~ can be viewed as a library containing useful programs to make communication
a bit mtlre friendly. Finally, in the application layer we find the distributed database
management system. In a general-purpose computer network it will run on top of a
network operating system or a distributed operating system.

l .. 2.. The Relational Data Model

.~mt)ng the three well-known data models, namely the relational, the hierarchi
cal a.nd the network [Datel977, Martinl975, Tsichritzis1977, Ulmannl980], the rela
tional [Codd 1970] is, in the scientific world, the most widely accepted data model for
modeling the data of a distributed database.

A domain is a set of values, which is denoted by D. The Cartesian product of
d,:>rnains D 1, Di, ... , Dn, denoted by D I X D2 X · · · X Dn, consists of all n
tuples (di .. d2'.t, •.• dn), \\'here d; ED; for i = I, 2, ... , n. A relation Risa finite
subset of a Cartesian product and is represented by a table. Each row is called a
tuple~ and each column an attribute.

Example 2.1

Let }"£.4R DMN be the set of natural numbers, NAME DMN the set of
names t'>f wines, PRODUCER DMN the set of names of producers, AREA DMN the
~et of names of areas, and COUNTRY DMN is the set of names of countries. Fig.
2.3(a) sht1\i.ts the relation WINE with attributes YEAR, NAME PRODUCER

)'EAR DP..lit.J X NAME (>MN X PRODUCER DMN X AREA DMN X COUNTRY DMN.

~,ach tupl~ represents a \l.'i.ne of which the grapes were grown in a certain area, picked
in a certat.n y·ea:r~ and which was bottled by a certain producer.

. Fig. 2.3(b) shows a relation WEATHER, containing the attributes YEAR,
.4.RE.4, COU .. 1'+/TRY, SUN and RAIN. SUN stands for the hours of sun and RAIN

t\\ t) rel,i tions will be used 1n the examples to come.

□

9

WINE

YEAR NAME PRODUCER AREA COUNTRY
1970 Margaux Chateau Margaux Bordeaux France
1972 Beaune Louis Latour Bourgogne France
1978 Chianti Classico Villa Antinori Toscana Italy
1976 Cabernet Sauvignon Christian Brothers Napa Valley USA

(a)

WEATHER

YEAR AREA COUNTRY SUN RAIN
1970 Ardennes Belgium 1551 1105

1976 Napa Valley USA 3022 601

1970 Bordeaux France 2008 900

(b)

Figt•ire 2.3. (a) relation WINE and (b) relation WEATHER.

selection, projection., join and the normal set operations.

□ selection

□

D

The result of a selection is a subset of the tuples of a relation R., which satisfy a
certain condition. It is denoted by R { C}.

• • proJect:aon
The result of a projection over attributes A of a relation R, is a relation with
attributes A, and from which duplicate tuples are removed. It is denoted by
R[A]. ..
• •
JOID

A join is an operation that works on two relations, R 1 and R 2• A tuple from
one relation is concatenated with a tuple from the other relation if certain con
ditions C 1, C 2, ..• , Cn are met. Such conditions concern the comparison of
the value of an attribute from a tuple in one relation with the value of the
corresponding attribute from a tuple in the other relation. In general, this com
parison may be complex, and in that case the join is called a natural join. If,
however, the comparison is a simple test for equality, it is called an equi-join.
The join is denoted by R 1(C 1,C 2, .•. , Cn)R 2•

□ set operations
By viewing a relation as a set of tuples, the operations union, intersection and
difference are defined as in set theory.

These operations are relationally complete [Codd 1970].

. , ... -··------ j:

•

' ;:
!:

'

10

A query stated in the relational algebra can be repre~ented by a tree, where the
leaves represent the relations in the database and the internal nodes the results
obtained by a relational operation.

Example 2.2

Assume the following query is posed by a user:

Give the names of the wines and the _year in which the grapes were picked
in which the area got more than 1800 hours of sun and got less than 1200
mm. of rain. .

In the relational algebra this looks like

((WEATHER {SUN > 1800 AND RAIN < 1200})
(YEAR = YEAR ,4REA = AREA)WINE)[YEAR ,NAMES]

The result is the Margaux wine (1970) and the Cabernet Sauvignon from California
(1976).

□
To,evaluate queries efficiently a new operation, called semi-join, was introduced

[Palermol974, Bernsteinl98la, Hevner1979b]. Although this operation is just as
independent of the implementation of the relations as the relational operations, it is
considered to be a low level operation, whose only purpose is to process queries in a
more efficient way. The result of a semi-join on relation R 1, based on a particular
join between R 1 and R 2, can be defined as the result of the join and projection over
the attributes of R 1• The semi-join is computed by projecting R 2 over the attributes
involved in the join and selecting those tuples of R I that satisfy the joining condition
with any of the tuples in the projected R 2• The semi-join is a useful operation to
reduce the sizes of the operands, which makes the computation of the join more
efficient. Furthermore, if the underlying join is an equi-join, the result can easily be
obtained from the two relations, R 1 and R 2, after the semi-joins have been applied,
by concatenating the tuples of R 1 with matching tuples of R 2•

The other data language is the relational calculus. The main difference between
the two · 1anguages is the way the result is described. In the algebra the·· query
describes the way the result can be obtained and in the calculus the result is described
by giving the conditions which the result tuples have to meet.

A query in the relational calculus can be represented by a graph. The nodes
are the relations, and the edges are labeled with the condition that has to be satisfied
by the tuples in the adjacent relations. In case a condition concerns only one relation
the two, ends of the corresponding edge are connected with the node that corresponds
to that relation. To express which attributes are part of the resulting relation an extra
node is added, called the target. This target can be viewed as a relation, which is the
Cartesian product of the domains of the attributes in the result relation.

Example 2.3

We will give the query of example 2.2 in QUEL [Heldl975] the data language
of INGRES [Stonebrakerl976]. For each of the relations accessed in the query, a

l l

range variable is introduced. The values that such a variable can obtain are the
tuples of the relation mentioned in the RANGE-statement. In QUEL the query looks
like

RANGE OF Wl IS WINE

RANGE OF WE IS WEATHER

RETRIEVE INTO W(Wl.NAME.WJ. }'EAR)

WHERE WI. YEAR == WE. YEAR AND WI.AREA = WE.AREA

AND JVE.SUN > 1800 AND WE.R.4/N < 1200

The graphical representatio11 of this query is given in fig. 2.4.

SUN > 18 00
RAIN < 12 00

YEAR AREA
W I N E 0--....:...::..::.::...~:,=..::___~,...,,,,, W E A T H E R

YEAR
NAME

TARGET

VEAR

f"igure 2.4. Graphical representati()n.

2.2.1. Relational Database Management Systems

D

So far, few database management systems have appeared that support the rela
tional data model. In the academic environment INGRES (Interactive Graphics and
Retrieval System) has been developed at the University of California in Berkeley
[Stonebrakerl976]. It supports the data language QUEL [Heldl975] which· is based
on the relational calculus. System R, developed at the research laboratory of IBM in
San Jose [Astrahan1976] has a data language, called SQL [Astrahan1975] which is
based on the relational calculus. More recently IBM has offered a relational database
system called SQL/Data System for the DOS operating system. At the Thomas J.
Watson Laboratory the Query By Example system, which supports the QBE data
language, was developed. Two systems were developed at the University of Toronto~
the ZETA and OMEGA system [Czarnik 1975, Schmid 1975]. At the University of
California San Francisco and the Vrije Universiteit a programming language called
PLAIN [Wasserman 1981]., which embeds the relational algebra., has been developed,
and a database management system [Kerstenl981] to support it is under construction.
For a more complete list of relational systems we refer to [Kim 1979, Chamber
lin I 976].

The development of general-purpose distributed database management systems
that support the relational data model, has started. For both INGRES [Stone-

•

•

12

brakerl975] and System R [Williamsl981} distributed versions are on their way. In
Canada we hav·e the ADD system [Tothl978] in France SIRIUS-DELTA
[LeBihanl980] and POLYPHEME [Adibal980a] and in Germany the POREL system
[Neuhold 1977].

2.3. Fundamental Problems

To avoid the impression that distributed databases have only advantages a~d
that thev can be obtained at no cost, we discuss a few fundamental problems that still .,

require extensive research.

2 .. 3.1. Integrity and Consistency

To make a database w·ork. its internal integrity should be safeguarded. To start
with, all update transactions have to change the database such that after their termi
nation the data are consistent. A simple way of implementing this is to check
integrity constraints prior to committing a transaction. If a constraint fails the tran
saction must be undone, for example via a rollback [Eswaran 1976]. Assume that one
of the integrity constraints of a database is that the sum of the two data items, A and
B, must remain the same, for example zero, after each transaction. A transaction that
updates only A or B, or both of them but with A = B =I= 0 as result, will violate the
constraint and must be undone, such that the values of A and B before the execution
of the transaction are restored. Only transactions that modify both A and B such
that the result of their sum is again zero, may be committed.

The next problem arises when concurrent execution of transactions is allowed.
If these transactions can freely access the data, they. may read inconsistent data, and
the following problems may arise. For example, if two transactions try to update the
same data item without being controlled when accessing the data item, it might hap
pen that the update of only one transaction becomes effective, because the other is
overwritten. Hence, one update is lost. Another example is that during the execution
of a transaction the database will be in an inconsistent state, and if other transactions
are not prohibited from reading that particular part of the database that is changed,
they will show inconsistent data to the users.

Most concurrency control mechanisms order the execution in such a way that it
is equivalent to executing the transactions one after another~ It has been __ shown
[Eswaranl976] that if the execution of the transactions can be made serial the result
ing database is consistent. This property of serializability is obtained by two-phase
locking or by timestamp ordering. Transactions that run under a two-phase locking
regime must obtain locks for every data item they want to access and no more locks
may be acquired after one or more locks have been released. A simple way of imple
menting this regime is to designate one of the sites as a central site, to which all lock
requests must be sent [Garcia-Molina1979a, Garcia-Molinal979b]. To detect
deadlock it constructs wait-for graphs. Based on these graphs locks are granted or
not. ·

Another way to serialize the transactions is to have a total ordering based on
time. This i~ done b~ giving transactions a timestamp. A decentralized approach is
t~ let each site have its l~ clock [Thomasl979]. To prevent local clocks from get
ting out_ of phas~, local :nnes are exch~ng~d on a regular basis (Lamportl978]. Each
transaction receives a time stamp which 1s the maximum of the local time or the
highest time stamp of the local data item plus one. This implies that each data item

13

'

receives the time stamp of the transaction that last changed it. In the algorithm of
Ellis this universal time is constructed by maintaining a local counter at each site,
containing the last number issued for a transaction initiated at that site. A global
identification is obtained for a transaction by adding the site number. A similar
approach can be found in the algorithm of Rosenkrantz et al. [Rosenkrantzl 978],
where the time of the day the transaction first started, the initiating site and some
priority compose the identification. In the algorithm of Le Lann [LeLann 1978] a
token circulates around some virtual ring of sites and each site that wants to initiate a
transaction can get a ticket from the token. In this way each transaction receives its
own number, determining the order in which the transactions are executed. So, the
ticket number can be viewed as a kind of time.

For a more complete overview we refer to [Wilms 1980, Bernstein 1981 b].

2.3.2. Recovery

The execution of a transaction may be ended for several reasons. A user may
abort his transaction, a system crash may occur, if the concurrency control mechan
ism detects a deadlock it will abort a transaction involved, etc. In all these cases the
changes caused by the aborted transaction should be undone. The state of every tran
saction is either that it is committed, or that it still can be undone. If it is committed
the values of the items in the database should reflect the changes caused by it. Other
wise, the database may be in an inconsistent state and the concurrency control
mechanism should prohibit other transactions from reading the inconsistent data.

If a system crash occurs the database should be brought back into a consistent
state. This can be obtained by undoing all transactions that are not committed. To
avoid the undoing of other already committed transactions (domino effect), no tran
saction may read data that is changed by a transaction that is not committed yet. If
check points are used it is not always necessary to undo a complete transaction, only
that part after the latest checkpoint. However, here the relevant part of the transac
tion should be redone to obtain a consistent state. Obviously, the changes of an
already committed transaction should be reflected in the database.

To make sure that the database that uses locking can recover from a system
crash the transaction should lock and unlock the accessed data in a two-phase
manner. This means no lock may be obtained after one or more items are unlocked.
Furthe1·1nore, entries in a log, stored on stable storage, should be created, containing
information about undoing and redoing transactions. Finally, a two-phase co1mnit
protocol is needed for distributed transactions. In the first phase the transaction is
executed and a master waits until all its slaves have done their duty and recorded on
stable storage all information needed to undo the transaction. If one slave was
unable to do its task, the complete transaction is undone. If, on the other hand, all
slaves reply positively, the second phase is entered. The coordinator decides to com
mit the transaction by writing a commit entry in the log and after that all slaves are
notified. They, in their turn, release the locks and reply with an acknowledgement.
In some protocols the master needs a positive acknowledgement from all its slaves.

The requirement that a database should be recoverable from a system crash
makes the interleaved execution of transactions more difficult, and hence the
throughput will be less than without a recovery mechanism. The integration of the
mechanism that controls the concurrency and the one that controls the recovery, such

•

•

14

that a high C<)ncurrency can be obtained, is a problem that still needs much research.

f()f a n1ore complete overview we refer to [Kohler 1981].

2 .. 3 .. 3. Data Allocation

Tuples occur in the same relation because they give information about the sa~e
attributes of somebody or something. So,. they are grouped together because there 1s
a ltlgical relationship between them. In reality~ one group of tuples is used most of
the time in New York and another group in Amsterdam. Obviously, splitting the
relati<.)n and locating one fragment on one side of the ocean and the other on the
other side will tremendously decrease intercontinental traffic. This is called horizontal
splitting. For the same reason a relation may be split vertically, because one location
is more interested in only certain attributes and another in other attributes.

If the relations are split horizontally and/ or vertically and each fragment is
placed at exactly one location, the database is called partitioned. If none of the rela
tions is split and a copy is placed at each location the database is called fully repli
cated. Combinations are called partitioned and replicated.

Besides the data in the relations~ a database also contains in its data dictionary
data necessary to parse queries, to check authorization, to compute processing
schedules, etc.. Some of the entries will be volatile, while others hardly ever change.
Therefore, the data dictionary should be treated just as a relation. For each entry an
allocation can be determined based on the frequency with which it is accessed and
ho\\' frequently it is updated.

In chapter 4 the problems involved in determining the allocation of all the data
in the database such that query processing can be done efficiently, are discussed.

Exan1ple 2.4

One way to partition the relation WINE is to split it based on the countries
that produce wines, for example

r-f;'JNE F
WINE I
WINEU

WINE{COUNTRY = FRANCE}
WINE{COUNTRY ITALY}
WINE{COUNTRY USA}.

•

••

Locating WJNEF in Paris~ WINE I in Rome and WINE U in San Francisco is an
example of a partitioned allocation.

An example of a vertical split is

WEATHERR ··"• WEATHER[YEAR,AREA,COUNTRY,RAIN]
WEATHERS · WEATHER[YEAR ,AREA ,COUNTRY,SUN].

Locat~ng WEATHER R in Oslo, WEATHERS in Rome and WEATHER in New
York 1s an example of a partitioned and replicated allocation.

□
. _?ne ad~antage of a distributed database over a centralized one is the increased

rel1ab1l1ty. 1:his _means tha: certain components, such as sites or communication chan
nels, m~y f~:l without causing a total failure. What is really meant is the increase of
the availab1l1ty of the database. By storing data redundantly at different sites the

---------··

15

failure or inaccessibility of a site does not necessarily 1nean tl1at the users of the data
base can no longer access the required data.

In [Mahmoud 1976] the file allocation problem was studied. For each file a
lower bound on the availability is specified and an all<..,cation is feasible if the availa
bility of each file is higher than the specified one. There is, however, one problem., the
availability can not easily be expressed analytically for general network topologies
[Hansler 1972), because of the routes to different copies of one file are not necessarily

-disjoint. In [Mahmoud 1976] the availability was., therefore., estimated.

In a distributed database the availability problem is even more complex. A
user is not interested in the availability of a particular fragn1ent of a relation~ he is
only interested in the availability of all the fragments he wants to access in his query.
So, it is impossible to compute the availability of one fragn1ent, the availability of the
whole database should be considered. $•

2.3.4. Query Processing

To get an idea of what distributed query processing looks like we will discuss
some of the problems involved. Assume we want to process the query

Give the wines, the years in which the grapes »1ere picked and the hours of
sun in the years that the area in which the grapes were grown got more
than 1800 mm. of rain

stated by a user in Amsterdam.

Some of the distributed query processing algorithms require that the database
management system supplies a materialization of the fragments. This means that for
each fragment a single copy has to be selected, such that together with other copies a
consistent view of the database is given. Other algorithms take full advantage of the
redundancy and will select copies during optimization.

The query can be processed in many ways, we will discuss only two.

Schedule 1

Transmit (WEATHER {RAIN > 1800})[YEAR ,SUN ,AREA] from New York to
Paris, Rome and San Francisco, and compute the joins based on YEAR and AREA
at the respective locations. After that, the results are transmitted to Amsterdam. If
the sizes of the results are 400, 800 and 200 bytes, respectively, the total number of
bytes transmitted is 3 X 18,000 + 400 + 800 + 200 == 55,400.

Schedule 2

Transmit the fragments WINEF, WINE 1 and WINE U to New York, where they
are united and the join based on YEAR and AREA is computed between the union
and WEA TH ER. If the size of the result is 1400 bytes the total number of bytes
transmitted is 12,000 + 15,000 + 20,000 + 1400 == 48,400.

Clearly, the first schedule is more expensive in terms of the number of bytes
transmitted, however, most of the transmissions and computations are done in paral
lel, causing a smaller response time.

In chapter 3 many of the problems involved in distributed query processing are
discussed in detail.

' ---..,. , . !i

' ~
~
•

'

•

•

16

2,.3.5. Privacy aod · . · rity

In the past the privacy of people was maintained simply because. the document
tiles were kept in separate offices or departments. To obtain confidential. data wa~ a
difficult and time-consuming task. Later, the files were put on tapes or disks making
it p<)ssible to retrieve data from a remote terminal by dialing up. In the near future,
-w·hen distributed databases will be more common, combining data from several data
bases will bec<.lme relatively easy. Because of the technological advances in the area
(lf computer net\\rorks and databases, legislation is needed to ensure the privacy of
pet)ple.

•

Tc> maintain privacy, tools are required to make the system secure. We will
discuss some of the safeguards. When a person wants to log-on he/ she needs to iden
tify hls./berself (aatlaentication), for exa.mple, by supplying a password. During a ses
iion a user may want to access certain data or run a particular application program.
It $bouki be checked whether a user has been granted that permission in the past
(attthom.ation)" Furthermore, a log file should be kept that contains entries about
\t,sers that wanted to execute application programs. Data kept on secondary storage .
sbc>ukl be · .. •, ·· pted. For a distributed database there is the additional problem of
tran.smitting data over insecure communication channels. The same techniques can be
ulOd, namel)" enccy-ption. U.S. National Security Agency has tried to prohibit open
publicati<m C>•f re.,earch papers concerning ,cryptology {Davida1981, Denni,ng1982]. So,
it is tt1 be expected that communication channels will be the one of the weakest links
in distributed databases.

.. . 'The mere fact that a database is distributed does not necessarily pose more
di.fflcult problems as far u authorization is concerned. However~ the database may be
<;()!lt:D•l,led in a decentraliz.ed way, meaning that there is not just one database
adm.1n11t,rator, For System R a decentralized · authorization scheme has been
deve¼, · · .. that gi,~es owners •Of certain rights the opportunity to grant other users the
Mlffie rights {Oriffithsl976). A right may be the right to retrieve certain data, to insert
data in a certain relation, the right to grant rights, etc.. Such a scheme will be useful
1.n the environm,mt of a d.istributed database.

•

17

•

3. QUERY PROCESSING IN A DISTRIBUTED DATABASE

Query processing in a distributed database means retrieving data from several,
possibly geographically dispersed, sites in a computer network. One of the advan
tages of a distributed database is that the data can be located at the sites where they
are most heavily used. But even if the data is allocated in such a way, it is still
important in query processing to efficiently combine the required data from the
involved sites to compute the desired result. Different functions can be used to meas
ure this efficiency: one can favor parallelism, another the minimum use of resources,
etc. This efficiency is not only important for the user, who may have to wait a long
time before he gets his answer, but also for the system, which may get congested
because of inefficient use of its resources.

In section 3.1 we discuss the way queries are processed and how the efficiency
can be measured. An overview of current research on distributed query processing
models and algorithms is given in section 3.2. Both section 3.3 and 3.4 deal with
minimizing response time and total time. In the first one the allowed operations
manipulate inverted lists and in the latter the relational operations together with the
semi-join are used. Some of the currently known algorithms are compared and
suggestions for improvements are given in section 3.5.

3.1. Distributed Query Processing

3.1.1. Three Phases in Query Processing

Query processing in either a centralized or a distributed database consists of
three phases:

□ parsing a query,

□ determining a schedule,

□ execution of the schedule.

These three phases and the interfaces between them and other parts of the distributed
database management system are shown in fig. 3. I, All communication with other
sites goes through the distributed operating system (DOS).

As far as query processing is concerned an update an·d a query are ~like. We
can consider an update as consisting of a query-part, to determine the tuples to be
updated, fallowed by the actual change of the tuples. In the fallowing we will there
fore use the word query if we mean query or update.

3.1.2. Parsing a Query

In the first phase the query is parsed, by a parser, just like a computer pro
gram, to check its syntax and semantics. With the aid of data dictionaries the parser
checks the use of attributes of relations, such as whether this relation has an attribute
called so and so, or, if a comparison is made between attributes, whether the domains
are compatible, etc.. For an update it will also check whether integrity constraints are
violated. If the query is correct it is translated from the global external schema to the
global conceptual schema.

During this phase we might also check whether the user that stated the query

•

18

accesse-s to
other data

• • • dtct 1onaraes

DOS

DOS

•

query

PARSER

intermediate code

OPTIMIZER

schedule

DISTRIBUTOR

local
requests

messages and data

messages and data

COMMUNICATION ME D1 UM

messages and data

messages and data

DISTRIBUTOR

local
requests

•

data
dictionary

HANDLER --

••

HANDLER
--

data
di cti onar y

•

Figure 3.1. Three phases in query processing.

data

data

19

has the right to access the referenced relations. Or., another approach is to add
clauses concerning integrity constraints to the query such that this check can be done
at runtime [Stonebraker I 976].

3.1.3. Dete1·1nining a Schedule

If the query is correct and the user is allowed to state the query the second
phase is entered. An (query) optimizer, also called query processing algorithm., will
determine a schedule to process the query. A (processing) schedule contains the
tasks, called basic operations, of the involved sites, which together deliver the final
result to the user. So, the optimizer decomposes the query into basic operations.
What these basic operations look like depends on whether the query is mapped to the
local external or conceptual schema, or to the local internal schema. In the first case
the basic operations will be relational operations on local fragments and transmissions
of data. See for a more detailed discussion on basic operations subsection 3.1.7.

Assume that our example distributed database consists of the following two
relations:

PARTS(P# ,PNAME ,QOH) located at site S 1

PROJECT(P# ,S# ,QTY) located at site S 2

and the query

RANGE OF P IS PARTS
RANGE OF J IS PROJECT
RETRIEVE P# ,PNAME ,QTY
FROM P,J
WHERE P.QOH > 1000 AND J.QTY < 500 AND P.P# = J.P#

originates at S 3• There are many ways to process this query. We will discuss only
one. The basic operations are the relational operations and data transmissions. In
fig. 3.2 two representations of the corresponding schedule are given. The first one
merely indicates the data transmissions from one relation to another. The arrows
may be labeled with the amount of data transmitted. The other representation that is
used, is more or less the same as the one in [Cellaryl 980]. For each site a horizontal
line is drawn that denotes a time scale. The time spent in executing an operation is
measured along the scale of the site that does the computation. The longer an opera
tion takes the longer its portion of the scale is. Let the processing time of an opera
tion be denoted by PT(X) = P 0 + PC(X), where P 0 is the queueing time and
PC (X) is the processing cost, expressed in units of time. X stands for the operation,
sometimes in the form of the result after the operation. The transmissions from one
site to another are drawn by a slope, connecting the starting and end point of the
transmission on the two time scales. The transmission time of data is denoted by
TT(X) = T 0 + TC(X), where To is the queueing time and TC(X) is the transn1is
sion cost, expressed in units of time. X stands for the data to be transmitted. Here,
we assume that whenever a job is offered to a server, the job will run until completion
before the server starts with the next job.

First the duties of the involved sites are transmitted by S 3• Then the two res-

•

•

20

trictions, P.QOH > 1000 and J.QTY ·< 500, and the projections are applied to both
relations. The results are denoted by JR 1 and IR 2, where

JR 1 = PARTS{QOH > lOOO}[P# ,PNAME], and
IR 2 = PROJECT{QTY < 500}[P# ,QTY].

The processing times are PT(IR 1) and PT(IR2)- Under the assumption that IR 1 is
the smallest one of the two results it is transmitted to S 2; transmission time TT (IR 1).
As soon as IR 1 arrives at site S 2 the computation of the join can commence;
JR 3 = IR 1(P# = P#)IR 1• Finally, the result is sent to the user's site, S3.

PARTS · ➔ PROJECT ➔ result site

(a)

s, Po P (tR 1) To
t

Po P (l R 2>
T(IR 1)

P(IR3)
S2 t

Po To T(IR3)

S3 t

(b)

Figure 3.2. Two representations of a schedule.

To compare schedules we have to know their costs. The cost of a schedule is
the value of a particular cost function given this schedule. This cost function may
measure the response time, the total time, the total network traffic, the total CPU
time, etc. Having several cost functions is useful. Some users work interactive!y and
are therefore only interested in the response time. The optimjzer should in that case
allow for as much parallelism as possible. On the other hand, a user might only be
interested in the cost of processing his query without regard to response time and then
the use of resources should be mini,·nized. Intuitively, we can define the response time
of a schedule as the time elapsed between the start of the first operation and the
moment the required data is presented to the user. In the next subsection we will give
another definition, which is more useful for optimization purposes. The response time
of the schedule of the exaxnple query is

where IR 1, IR 2 and IR 3 are defined above. The total time of a schedule is defined as
the sum of the times required for all operations and transmissions, involved in the
schedule, including the queueing times. And the total cost of a schedule is defined as

21

the sum of the cost of all operations and transmissions. The total time of the example
schedule is

and the total cost

In a distributed environment often the assumption is made that local processing
takes negligible little time compared to the transmission time of data. The line seg
ments in the schedule that represent local processing shrink to length zero. In that
case we use the response transmission time (R TT) instead of response time, total
transmission time (TTT) instead of total time and total transmission cost (TTC)
instead of total cost. The value of a cost function of a query is the value of that cost
function of a schedule for that query that minimizes the cost function.

The data of the database may be stored redundantly. A materialization is a
non-redundant version of the database. Some systems provide the optimizer with a
predetermined materialization. The advantage is that not all copies have to be mutu
ally consistent. With mutual consistency we mean that the copies are exactly the
same all the time. If, on the other hand, we know that the copies are mutually con
sistent we can take full advantage of the redundancy by letting the optimizer itself
determine which copies to use.

The optimization objective may depend on the type of network on which the
distributed database is placed. For example, for an ARPA-type network with low
bandwidth communication channels, the transmission cost will dominate the local
processing cost. In that case it suffice to minimize cost functions such as response
transmission time or total transmission time. If, on the other hand, the data is distri
buted over a local network consisting of micro-computers that are interconnected with
a fast bus then both the transmission cost and the local processing cost will be com
parable [Selinger 1980]. Hence, cost function such as response time and total time
should be mini1nized. Here, we will assume that the· cost to transmit data is an order
of magnitude more expensive than local processing (Transmission Assumption).

The time required to transmit data from one site to another depends on the
network topology and the bandwidth of the communication channels. If all sites are
directly connected with each other, for example when they communicate via a satel
lite, and when the queueing delays before transmission are, on the average, the same
we will speak of the Equal Transmission Cost Model. If, on the other hand, the net
work has an arbitrary topology or queueing delays vary too much we will speak of
the Arbitra1'y Transmission Cost Model.

Because the main objective of this research is to mini1nize cost functions that
include only transmission cost, just a simple model is used for local processing. We
assume that the time required to process data locally is proportional to the amount of
data (Processing Assumption). Much research is being done to develop optim
izers that produce efficient schedules for queries stated in the relational algebra or cal
culus. In section 3.2 a brief overview is given and in section 3.5 a comparison is
made between several of the distributed query processing algorithms. In this chapter
we will discuss the optimization for two types of basic operations, on the one hand

•

ff

22

relational operations on fragments, and, on the other hand operations on storage
structures. In subsection 3.1.7 the merits of both optirnizations are discussed.

3.1.4. Execution of the Schedule

In the last phase the schedule is executed. To ensure that none of the data that
are accessed by the query or update are changed by another update, a concurrency
control mechanism is used.

The distributor will disentangle the schedule and determine the duties of the
involved sites and transmit them. It will also communicate with the concurrency con-

•

trol mechanism to get a shared or exclusive ''lock'' on the required data. When the
sites receive their duties they add synchronization and forking points. The synchroni
zation points are needed to let an operation wait until its inputs or part of them are
available. The distributor of a site will monitor the synchronization points of that
site. The forking points are needed if the result of an operation is needed as input by
several other operations. An example of a forking point is the notification of the
duties by the distributor (see fig. 3.2 (b)). Between forking and synchronization points
parts of the schedule may be processed in parallel. These parts will be called parallel
schedules.

The description of distributed query processing we gave, is called stati½ because
a processing schedule is dete1·mined prior to execution. To do this, intermediate
results are estimated to evaluate the cost of schedules. During execution of the
schedule it may happen that intermediate results are much larger than expected. The
schedule is, however, fixed and, although changing the schedule would be advanta
geous, processing must proceed along the dictated lines. Another interesting approach
is to deterrnine a schedule during processing, so it can be based on the correct sizes of
intermediate results. This is a dyna11dc approach. In this chapter, however, we will
confine ourselves to the static approach.

3.1.5. Response Time of a Query

What exactly do we mean by response time? After the query has been parsed
and a suitable processing schedule has been decided on, the involved sites are notified
of their duties. These duties may be to send data to another site or to wait for incom
ing data and to perform some operation on them and to further transmit the .. result.
The elapsed time between the first starting operation (i.e., after the first forking point)
until the desired result has been presented to the user at the result site (last synchroni
zation point) will be called the response time. To compute the response time of a
schedule a model for processing operations and transmitting data is required. For
both an operation and a transmission we assume that all the input data on which it
operates should be locally available, before the operation or transmission is put in the
queue of its respective server. This may seem rather restrictive; for example, the
merge-join in System R [Selinger1979] only requires part of the input data before its
execution may start. Such operations can be split into smaller operations of which
each will wait for only a fraction of the input data.

So, the response time of a schedule at a synchronization point is dete11nined by
the last '' arriving'' input. Hence, an obvious way of defining the response time at a
synchronlzation point is to say that it is equal to the maxi1num of the response times
of the different parallel schedules ending at that synchronization point (Parallelism

• 23

Assumption). This is something to be careful about because of the following two rea
sons.

First of all, the transmission time of a package is an expectation't which means
that the actual time maybe smaller or larger than this expectation. Taking the max
imum of two expectations is of course not the same as the expected maxin1um of the
response times of the two packages. This would only be true if the distributions of
both response times do not overlap.

Secondly, during processing, two parallel schedules ending at a synchronization
point might have '' shared'' a resource such as a CPU o.r a communication channel.
By ''sharing'' we mean that for example, one package is already waiting in a queue to
be transmitted and then the second package enters the same queue. In that case the
second package will always have to wait longer in the queue than the first one, of
course under the assumption that nothing else has significant influence on the queue
ing times.

The difference between the expected and the observed response times has been
investigated by computing the response time of schedules for queries in two simple
systems. In the experiment roughly 32,000 queries were executed. The response times
of the first thousand schedules were discarded, to avoid the effects of the empty sys
tem at the beginning.

To study the difference between the maximum of the two expected response
times and the observed maximum of two response times, we need two independent
servers, say S 1 and S 2• These servers stand for one-way communication channels
from site A to C and B to C. The schedule for a query consists of the integration of
two parallel schedules. So, after these parallel schedules there is a synchronization
point. One parallel schedule contains the transmission of data from site A to C and
the other from B to C. The interarrival time between queries is drawn from an
exponential distribution with expectation equal to A. The service time (transmission
cost) is drawn from a negative exponential distribution with expectation equal to
1 / µ; for server Si (i == 1, 2).

The average number of queries entering the system per unit of time (A) is set to
1. µ 1 is set to 2 and µ,2 will vary from 2 to 6. This means that the expected response
transmission time of the parallel schedule in which server S 1 is used, is equal to
1 / (µ,1 - X) = I, and the other one less than or equal to l. Hence, the maximum of
the two expectations is l. This value will be compared with the observed response
transmission time for varying µ2•

P,2 2 3 4 5 6
RTT 1.43 1.14 1.06 1.02 1.0 I

Table 3.3. Average response transmission times of schedules.

For large values of µ2 the response transmission time of the integrated schedule
is almost completely determined by the response transmission time of the parallel
schedule in which S 1 is used, and is therefore almost equal to 1. For smaller values

•

24

of p.2 the response transmission time will be determined by either parallel schedule,
resu1.ting in a value larger than the maximum of the two expectations.

In general, we expect that the distributions of the response transmission times
of the parallel schedules at synchronization points hardly overlap because of the wide
range of RTTs of the parallel schedules. Therefore, we make the assumption that the
effect of this phenomenon can be neglected. However~ we have to keep this in mind
when discussing the validity of the obtained results.

To investigate the effect of resource sharing on the response time we require a
slightly more complicated queueing system. There are three servers, S 1, S2 and S 3,

that stand for one-way communication channels. S 1 is a channel from A to C, S 2

from B to C and S 3 from C to D. This system is used to simulate a schedule that is
the integration of two parallel schedules. In one of these parallel schedules some local
processing is done at site A , the obtained result is transmitted to site C., where possi
bly some more local processing is done, and, finally, the result is sent to site D, the
result site. In the other parallel schedule the same is done only processing starts at
site B, visits C, and ends at D. So., although these schedules can be processed in
parallel they share S 3, the communication channel from C to D.

The inputs of this queueing system are two transmissions, one for S 1 and one
for S 2• The input distribution is an exponential function with 'A as the expected
number of queries stated per unit of time. Because nothing is known about the
amount of data to be transmitted, the service time has been drawn from a negative
exponential distribution with µ,1 as the expected number of transmissions served per
unit of time for S; (i = I, 2, 3). The observed response transmission time of the
integrated schedule is equal to the largest of the response transmission times of the
parallel schedules. So again, after these parallel schedules, there is a synchronization
point.

The influence of the speed of S 2 (p.2) on the RTT of the query is investigated.
Both P.1 and µ3 are set to 2. In addition to the transmissions of the queries there are
other transmissions as well, such that the average number of transmissions entering
the queue o·f each server is equal to 1.

Under the assumption that the parallel schedules can be executed fully in paral
lel and that they do not influence each other,s response transmission time, we can
compute the R TT of both parallel schedules independently. The R TT of the one
that uses Si equals 1 / (P.1 - I) + l / (µ3 - 1) = l + 1 = 2, and the RTT of the
other one equals 1 / (P.2 - I) + 1 / (µ3 - l) ~ 2 if µ2 ;>.: 2. Hence, the maximum of
the R TTs equals 2.

•

P,2 2 3 4 5 6
RTT 2.79 2.48 2.41 2.40 2.39

Table 3 .. 4. R TT for varying µ,2, and A .. -.. 0.1.

The average RTT was observed for A = 0.1 and for varying µ.2 (see table 3.4).
A stands for the frequency with which the query is stated. The difference between the
observed and expected RTT can partly be explained by the additional delay of the

second entering transmission in S 3's queue, on top of its normal
caused by the not yet completed transmission of the first one.

25

• • q ueue1ng time,

Another reason is that because of the forking and synchronization points the
Independence Theorem of Jackson [Jackson 1957] can not straightforwardly be applied
to determine the queueing delays of the servers.

So, our conclusion is that parallel schedules that share a mutual resource can
not be treated independently. In the next subsection a tool is proposed for computing
the ''real'' response time of a schedule and for determining the order in which the jobs
are served.

3.1.6. Serializing Parallel Schedules Using the Same Resource

In the previous subsection a problem met in minimizing the response time of a
query was encountered. A processing schedule will, in general, consist of the integra
tion of many parallel schedules. Some of these parallel schedules may somewhere,
during their processing, share a mutual resource, such as a CPU or a communication
channel. In this subsection we will propose a tool for the optimizer that can be used
to compute the response time of a schedule that has been computed under the Paral
lelism Assumption and to determine the order in which jobs that share the same
resource have to be served. The proposed tool is explained in the context of data
transmissions.

Let us go into detail now. In two parallel schedules two packages, say V and
W, are transmitted from Sx to Sy. In the response transmission time of these parallel
schedules under the Parallelism Assumption their transmission times, TT xv (V) and

•
TTxy (W), are accounted for. If V is the first package entering the queue for the
channel and its transmission has been completed before W enters the queue there is
no problem. However, if V is still waiting in the queue when W enters it, W will on
the average have a longer queueing time than V, because it has to wait for the com
pletion of the transmission of V as well.

Serializing parallel schedules that use the same communication channel means
ordering the packages that enter the queue and adapt their expected time in the sys
tem if other packages of the same schedule are ahead of them and still in the system.
If we write TT (V) = T O + TC (V), where TO is the expected queueing time and
TC (V) is the time to transmit V over the channel, then the transmission time -of W is

TT(W) = To + TC(V) + TC(W),

where T 0 + TC(V) is the queueing time of W. There may be other packages as well
in the system, but their effect on the queueing time of V and W can expressed by T 0,

because they enter the queue independently of V and W.

Note that serializing may imply changing the order in which the packages are
served. The reason we may want to change this order is that for example, the
response transmission time of the query discussed above is determined by the parallel
schedule in which W is transmitted from S x to Sy . So, adapting the transmission
time of W because V is ahead of W and still in the queue, will probably,;,increase the
response transmission time of the integrated schedule. In that case it might be better
to postpone the moment that V enters the queue until W enters it. This will increase
the transmission time of V and, therefore, the response transmission time of the

•

•

26

parallel schedule in which V participates, but does not necessarily increase the
response transmission time of the integrated schedule.

The problem of serializing the parallel schedules of an integrated schedule such
that the response time is minimized, is known as precedence constraint scheduling
with the restriction that jobs have to be executed by specific computers. In
[Garey 1979] this problem is listed under the known NP-complete problems
[Gareyl979, Aho1974].

Now we will discuss some ways of serializing an integrated schedule thz..t con
sists of parallel schedules. The different strategies for serialization will be explained
by simulating the schedules. The time a package enters a queue can be computed
from the schedule. First, we look at just one channel from S x to Sy .

A straightforward way of serializing a schedule is to keep the order of transmis
sions the same as the order in which they enter the queue. If two packages enter the
queue at exactly the same time they can be ordered arbitrarily. This strategy favors
the one that has a lead. Something like: it makes wealthy people richer and poor
people poorer. This strategy would be all right if we were only interested in the first
arriving package by our previous definition. However, the response transmission time
of an integrated schedule is determined by the last arriving package. Therefore, we
will propose another strategy.

Again we consider the packages in the order in which they enter the system.
We will say that a queue is schedule-empty if no other package that participates in the
schedule of the query, is present in the queue. At the time a package enters the queue
it might be schedule-empty. In that case we just put it in the queue. In general, say

'

P 11 + 1 is the newly arriving package and P 1, P 2, • • • , P n are the ones waiting in the
queue. P n + 1 is put at the end of the queue. The response transmission times of the
following alternatives are compared. There are n + I alternatives one for each
j = 1, 4 ... , n , and one which makes no changes. Each alternative takes all P,
i ~ j, j + 1~ ... , n from the queue and put them right behind Pn + 1• This will
change both the transmission time of Pn + 1 as well as the ones of the P; 's that are
moved. The final effect on the response transmission time of the integrated schedule
is computed for each alternative and the one with minimum response transmission
time is chosen. -

'

Now all channels used in the processing schedule are to be serialized and the
effect of different orders on the response transmission time of the integrated schedule
is computed. We will travel in time; we go from left to right on the time scale of all
the involved sites. Every time a package enters one of the queues we consider the
alternatives discussed above. The response transmission time of the query is com
put~d based on the partial serialization of the parallel schedules that has already been
decided on and for other parallel schedules the Parallelism Assumption is used.
Based on this response transmission time the alternatives are compared and the one
with mini111um response transmission time is chosen.

In subsection 3.3.7 a comparison will be made between the solutions obtained
by the heuristic approach described above for serializing schedules and the optimal
serializations.

~ow e~ec~ve changing. the order of transmissions is, will much depend on the
underl~m~ d1s_tr1buted operatmg system. If the decision about the routing of the
transn11ss1ons 1s made by the system, changing the order may b~ome useless, and

27

hence making the minimization of the response time extremely difficult. However, in
computer networks where routing is fixed we expect it to be useful. For example, in
some networks, such as the ETHERNET [Metcalfe 1976], we might even have to seri
alize all the transmissions in a query to compute its response time.

3.1.7. Basic Operations

The available information in the data dictionaries to parse a query and to com
pute a processing schedule will determine how detailed such a schedule is. For the
computation, it may contain the locations and the sizes of relations, the sizes and the
selectivity of attributes, whether indices on certain attributes are available, etc.. For
two kinds of distributed databases we will discuss the basic operations of the
schedules produced by their respective optimizers.

Consider a distributed database that merely consists of a collection of central
ized databases, and assume also that the only available information in the globally
accessible data dictionaries consists of the parsing information and the locations of
these databases. The unit of allocation is thus a complete database. Because sizes of
intermediate results can not be estimated, the query processing algorithm will prob
ably decompose the query into subqueries that can be processed at each of the sites
independently. The results are then gathered at the result site, where the final pro
cessing is done. So, these subqueries are the basic operations. Every local database
management system will determine an efficient way for processing them. A com
parison between different decompositions is not possible because no information is
available to compare the cost of schedules.

Another kind of distributed database is the one whose unit of allocation is a
fragment of a relation, and whose globally accessible data dictionaries contain all
information necessary to determine efficient schedules. Just like before, the basic
operations can be relational operations on the fragments, but now their cost can be
determined from the available information. But they can even be low level operations
that make use of (secondary) indices. Also, if the fragments are stored redundantly,
the query processing algorithm can decide which copy to access, based, for example,
on the indices on it.

We have seen two extremes of distributed databases and their information
'

about logical and physical structures that is available to the query processing algo-
rithm. There are of course many variations between these two. The advantage of
having complete information is that optimization can be done at a high level (decom
position into subqueries) as well as at a low level (which index and copy to use). In
the ideal case a query stated in the relational calculus is translated into operations on
the storage structures, and that further optimization can be done using this translated
query without the loss of optimality caused by decisions taken at a higher level. In
section 3.3 we will investigate this by using inverted lists as storage structure. A simi
lar approach, namely bypassing the high level opti111iz,~tion, is discussed in section
3.4; only, there relational operations are allowed as basic operations. Also, a more or
less low level operation, called the semi-join, is used as a means to decrease the cost
of transmitting fragments. Finally, in section 3.5 the integration of the use of semi
joins with a decomposition process is investigated, based on existing algorithms.

•

I
I
I
l

' l '
l
j
' I
i
i
' ' '
' '

'

28

3. 1.8.. Summary

In this section the three phases of query processing, namely parsing, determin
ing a schedule and executing it, were discussed. Minimizing the response time of a
query was treated in detail. Because the problem of ordering jobs in parallel
schedules that compete for the same resource is NP-complete a heuristic approach for
minimizing response time is adopted. First, a schedule is determined under the Paral
lelism Assumption, and then it is serialized such that parallelism that can not be
achieved, is removed. By serializing a schedule the order in which operations have to
be executed or in which data have to be transmitted is fixed .

•

The basic operations in a schedule will depend on the data available to the
optimizer. In one case the basic operations are subqueries in the relational data
model, which are to be processed locally. Then each site involved must determine a
local schedule for its subquery. The advantage is that site autonomy can be realized.
In the other case the optimizer has detailed knowledge about the data stored at other
sites as well, and incorporates this knowledge in the schedules. The advantage is that
more efficient schedules can be obtained.

To conclude this section we summarize in table 3.5 the assumptions discussed
in this section; it also includes a few that were not mentioned explicitly.

At each site a distributed database management system is available,
wh;c.h can execute all the required operations.

All sites can communicate with each other, either directly or indirectly.
'

Transmission Assumption: transmitting data is an order of magnitude
more expensive than local processing.

al Transmission Cost Model: the time to transmi.t a particular
amount of data between any pair of sites is the same.

Arbitrary Transmission Cost Model: no assumptions are made about
the time required to transmit data from one site to another.

· Processing Assumption: the cost to process data locally is pro-
portional to the amount of data. ·

Par·allelism Assumption: the response time at a synchronization point in
a schedule is equal to the maximum of the response times of the
different parallel schedules ending at that synchronization point.

Table 3.5. List of assumptions.

3.2. Ove"iew of Distributed Query Processing Algorithms

Sin~e ~he late seventies all over the world a lot of research is going on in the
~rea of d1stnbuted databases and especially in the area of distributed query process
~g. We may well say that E. Wong made a start with his paper [Wong1977] and its

. 1nflu.ence on current researc~ is stil~ noticeable. Most researchers have developed their
~wn model ?f qu~ry processmg which makes a qualitative and, even more, a quantita
tive companson difficult. In [Apersl981c] an attempt has been made to compare most

29

,

of the models and algorithms. Such a model is characterized by its assumptions
about the way the query is stated .. the data allocation, whether a materialization is
determined before or during optimization, which cost function is minimized, how
much information is available to the optimizer, whether estimators are used, whether
the schedules are determined statically or dynamically, etc ..

A crude classification can be given based on (see also [Hevner 1981]) :

□ materialization
Some algorithms assume that the materialization is determined before the com
putation of the schedule (Wong, Hevner and Yao, Epstein et al., Chu and Hur
ley, Toth et al., and Nguyen Gia Toan). The advantage of this is that not all
copies of all relations have to be consistent. Only a particular choice of the
copies for a query (materialization) must give a consistent view of the database.
The disadvantage is that this choice is not necessarily optimal for query pro
cessing. To overcome this problem other algorithms let the optimizer decide
about the materialization (Baldissera et al., In-Sup Paik and Delobel, Pelagatti
and Schreiber, Selinger et al.).

□ schedule
Almost all algorithms determine the schedules before executing them. This
approach is called static, and the cost of the schedules produced is computed
based on estin1ates of intermediate results. Only two algorithm compute the
schedules during processing (Epstein et al. and Nguyen Gia Toan) of which one
is integrated with the concurrency control mechanism to synchronize decisions
about the schedule (Nguyen Gia Toan); this approach is called dynamic.

□ computation of the join
The size of the result of a join can be small but can also be as large as the pro
duct of the sizes of the operands. If a join is computed at a non-result site,
eventually, the result will have to be transmitted to the result site. Some algo
rithms let arbitrary sites compute joins (Epstein et al., Chu and Hurley,
Pelagatti and Schreiber, Nguyen Gia Toan, Selinger et al.), others do so only if
it concerns joins that produce small results (Baldissera et al., and Toth et al.).
The remaining algorithms only let the result site compute the joins (Wong, and
Hevner and Yao).

In this section we will briefly discuss the models and algorithms in
quantitative comparison between the algorithms can be found in section 3.5.

tum. A

Wong

Wong's algorithm has been developed for the distributed DBMS SDD-1
[Rothnie1977a], which runs on the ARPANET [McQuillan1977]. Because of this, the
total transmission cost was taken as cost function. Although other costs, such as pro
cessing time, are not excluded explicitly, the original paper [Wongl977] does not con
sider them. Redundant data allocation is not allowed; also the optimizer expects a
predetermined materialization. The result of a query is produced at an arbitrary site
in the network.

Before computing the schedule, as much local processing as possible is done.
With this we mean the computation of restrictions and projections. The initial
schedule consists of the transmissions of all the reduced fragments to the largest one.

•

•

30

This set of transmissions will be denoted by M. At the site that receives all the frag
ments, the result site, the joins between them a:re computed to obtain the final result.

sequentially with local processing between them. What th~s~ Mi s look like will ~e
discussed i11 a moment. Consider for M 1 and M 2 transm1ss1on sets such that their
seque11tial processing produces the same result as M. Ta.lee the p~ir with the
minimum total transmission time. After that, apply the algorithm recursively to both
~!\.1 1 and Af 2• If no replacement has a smaller total transmission time nothing changes.
The schedule is represented by a tree. The nodes stand for local processing and the
leaves for the transmissions. The replacement of M by M 1 and M 2 means that the
leaf M is substituted by· a subtree consisting of M 1 as left leaf, a node for the local
prt.icessing and M 2 as right leaf. The processing tree is executed inorder.

Now we discuss the \Vay M 1 and M 2 are obtained. M consists of transmissions
t)f reduced relations. A way to further reduce a relation in size is to apply semi-joins
to it <.)n its joining attributes. M 1 contains all transmissions to compute semi-joins on
fragments that are transmitted in M, and that cost less than the reduction in cost
caused by the reduced size of the fragments (cost-effective). The set M 2 then consists
of the transmissions of the further reduced fragments and the transmissions in M for
which no cost-effective transmissions could be found.

The algorithm is greedy [Horowitz1978]; that means that it locally tries to
n1inimize the cost function, here the total transmission cost, as much as possible.

Hevner and Yao

The work of Hevner and Yao [Hevner 1979a, Hevner 1979b J is based on the
same fundamental idea as Wong's algorithm: apply semi-joins to the relations to
reduce them in size, transmit them in their reduced form to the result site where the
joins between them are computed. These authors developed a quantitative model to
compare the cost of schedules. This model makes it possible to estimate the effect of
the application of semi-joins on the sizes of the relations. This effect, called selec
tivity, is defined as a number between O and I and denotes the portion of the relation
that remains. For a special class of queries, called simple queries, they presented an
algorithm that produces optimal response transmission time schedules and one that
produces optimal total transmission time schedules.

..

We explain their model in more detail in section 3.4, because our own work is
partly based on it. ··

Epstein, Stonebraker and Wong ,,1,

This research was done in the context of the distributed INGRES [Stone
brakerl977] .. T~e query processing algorithm will min.imize a weighted function of the
total transm1ss1~n . co~t and total processing cost, given a predetermined non
redun~ant. matenali_zat1on. It can handle fragmentation. It does not necessarily need
an estunating techruque.

var~a~le (relation) only [Wongl976]. Fig. 3.6 shows an arbitrary query and its decom
pos1t1on. The result of component C 1 fo1·ms a restriction on the tuples of relation R 1,

•

31

and, therefore, fewer tuples are used in further processing. The same is true for C 2
but now on the tuples of R 2- So, after both C I and C 2 are processed C 3 will have
two reduced relations, resulting in cheaper processing of C 3•

TARGET

Figure 3.6. Decomposition into irreducible components.

These components are substituted by components containing fewer relations by
tuple substitution; This substitution continues until only one-variable queries remain.
And these can be processed in a straightforward way.

A similar approach [Epstein 1979] was taken in the distributed version of
INGRES. Again the query is decomposed into irreducible components. Tuple substi
tution is abandoned and replaced by a more general technique. Based on some
heuristic a piece is taken from the component. Such a piece is a subgraph of the
component and contains two or more relations and the joins between them. How
these joins are processed depends on the fragmentation and the type of network. The
resulting relation will be substituted in the component in place of the processed piece.
Again a piece of the remaining component is taken until nothing is left over. If a
component is processed it is substituted in the query by the resulting relation.

A form of backtracking is used which makes it possible to throw away inter
mediate results that are unexpectedly large and to make a different decision about
what to do next. So, in a sense it may be called dynamic.

When minimizing total transmission cost for a site-to-site network the joins in a
piece are processed at the site where the largest fragment of the largest relation in that
piece resides. This implies that all other relations and the other fragments of the larg
est relation must be gathered at that site. For a broadcast network the largest rela
tion may remain fragmented and at each of the sites containing such a fragment part
of the joins are computed. For the site-to-site network only in one special case the
largest relation is split, namely if the network consists of two sites and there is only
one other relation in the piece to be processed.

To get rid of the heuristic flavor of the algorithm described above exhaustive
search is used [Epsteinl980a, Epstein 1980b]. The decomposition of the query is

•

•

32

removed and a search for the piece to be processed next is started right away. This
piece may range from two to all relations in the query. The use of a perfect estimator
ensures that this algorithm finds an optimal solution within the capabilities of
INGRES simply because it investigates every solution.

Baldissera, Bracchi and Ceri

The distributed query processing algorithm presented in [Baldissera 1979] can
handle only tree structured queries. This means that the only kind of joins that are
allowed, are semi-,joins. The optimizer mini1r1izes total transmission cost taking full
advantage of the redundancy. To compare the cost of the schedules, the sizes of the
relations and the selectivities of attributes have to be known.

Although not explicitly stated in their article, the proposed algorithm belongs to
the family that uses semi-joins. The target list may contain only attributes from one
relation and the graphical representation of a query is a tree, which consists of combi
nations of two basic substructures, the branch structure and the vertical (linear) struc-
ture. Both are shown in fig. 3.7. ·

Rz

(a) (b)
• •

Figure 3.7. The branch and vertical structure.
••

The complete algorithm consists of three modules. The first one computes the
selectivities resulting from the restrictions on relations. This is done for all copies.
Later, when it is known which copies are used, superfluous restrictions. and projec
tions are removed from the schedule. The second module, the heart of the algorithm,
decides how to tackle the query. Finally, the third one tries to achieve as much paral
lelism as possible.

For the second module we first explain the branch structure (see fig. 3.7(a)).
Let us call R 2, R 3 and R4 the sons. These sons may form restrictions on the tuples of
R 1 based on several attributes. If so, each attribute is handled in turn. Let us there
fore assume that there is only one attribute in the branch structure. • The basic idea is
now to send the smallest son, say R 2, to another son. The best choice for the receiv
ing son is the one that is smallest after the selectivity of R 2 has been applied. To

•

•

33

compute this the selectivity of R 2 is 'applied to all other sons and the smallest one is
chosen as the receiving son. After that, R 2 is removed from the structure. This is
repeated until a vertical structure remains.

In a vertical structure several attributes can be used (fig. 3.7(b)). For example,
between R 2 and R 3 there may be a semi-join on attribute A and between R 3 and R 4
on B. Therefore, if R 3 is to be transmitted to R 4 its attribute values of both A and
B have to be sent. If, however, R 3 is transmitted to R 4 only the attribute values of A
are sent.

The initial schedule consists of the transmissions of all relations in a vertical
structure to the site containing most of the data; call this site the central site. Then a
contiguity analysis is applied to see whether this can be improved. This analysis
starts with the lowest two relations in the vertical structure and computes whether
sending one to another and then to the central site is cheaper than the initial schedule
(this is a form of decomposition). If so, this schedule is adopted. Then it goes one
level up in the vertical structure and the same analysis is done. The analysis contin
ues all the way up.

In general, a query will be a combination of branch and vertical structures. If
the structure is vertical the algorithm explained above is applied. Otherwise, search
for the first branch structure. If a son is a root of subtrees, the algorithm is applied
recursively to compute its size and selectivity. After this is known for all sons, the
algorithm for branch structures is applied, leaving that part of the query as a vertical
structure.

The interesting thing about the algorithm is. that the query is decomposed into
subqueries and that it uses the semi-join operation. Its main drawback, however, is
that it can not handle all types of queries.

Chu and Hurley

The approach of Chu and Hurley consider operation trees [Chul 979]. Such a
tree corresponds with a particular way of processing a query. Data reduction func
tions, which tell us what portion of a relation is left over after an operation, help the
optimizer to decide where to allocate the operations in the trees. The cost function is
a combination of total transmission cost and total processing cost. The optimizer
assumes that it gets a predetermined materialization. No fragmentation is corisidered.

For queries that do not contain cycles, all possible operation trees are com
puted. Such a tree contains three types of nodes: a file node (/1;0), which is a leaf of
the tree and represents the restriction and projection on one relation on which the
query operates, an operation node (/Ji), which represents an operation that is com
puted between two relations, such as a join, and an end node (fie), which represents a
final operation, such as displaying the data on a terminal, and can only be executed at
the result site. Operation nodes may contain more than one operations, meaning that
all these operations are to be executed at one site.

The algorithm considers all possible operation trees. For every operation a
data reduction function is known that computes the fraction that remains. The total
transmission cost is computed by assigning the operation nodes to different sites (we
call this operation allocation, see also chapter 4). The processing cost of a site is
computed by determining the optimal order of the execution of operations.

34

To lin1it the search for the optimal schedule, each tree is put in a ~equence
Group. Such a group contains all trees that execute the operations in a certain order.
This order fully determines the total processing cost and, therefore .. we only nee~ to
find the trees with mi11imum total transmission cost of each Sequence Group. Given
these trees the total processing cost for each of them is computed, resulting in the
complete optimal solution.

The use of data reduction functions is convenient in accurately estimating the
result of an operation without making any assumptions. However, these ~unctions,
which are probably based on statistical data, may require a database of their own to
be stored, if there is a large collection of operations. Another drawback is that the
model does not allow for all types of queries. A tree with a fixed set of operations Pi,
is not sufficient to represent queries containing cycles.

In-Sup Paik and Delobel

The contribution of In-Sup Paik and Delobel [Paik 1979] is not so much con
cerned with the way a query is processed, but more with the choice of materialization.
If the fragments are stored redundantly and all copies are identical, meaning that a
query can access any of the copies, independently of the copy used for another frag
ment, a materialization is computed to minimize total transmission cost. Fragmenta
tion of a relation is allowed and information about the fragmentation criterion, cardi
nalities, etc. are available in the data dictionary. Also, no assumption is made about
the network topology, although a distance table should be available.

The materialization process consists of three phases, called clustering, filtering
and centroiding.

In the clustering phase every possible materialization for a query is investigated.
Each materialization consists of a duplicate for each relation. A duplicate is the col
lection of copies of fragments such that the complete relation can be reconstructed. A
cluster corresponding to a materialization is the set of sites containing the data of the
materialization. For each cluster C the value of the clustering function

le ~ distance (i ,j)
i,j EC

is computed. The materialization with a cluster whose f c has the smallest value is
chosen. Intuitively, this means that the most concentrated one is used.

The filtering phase corresponds to what is normally called the initial local pro
cessing. To all fragments the restrictions and projections are applied. Some restric
tions may have a high correlation with the fragmentation criterion leaving an empty
result and making the corresponding copy in the cluster obsolete. So, after the filter
ing phase the cluster may have been reduced in size. The resulting query will only
contain operations whose operands are located at different sites.

In the centroiding phase several alternatives for processing the query are dis
tinguished. One alternative is to transmit all data to one central site, called centroid.
Such a site is searched among all sites of the network and is not necessarily restricted
to the cluster. Tl1e one that minimizes the total transmission cost is chosen. The
other alternative is to use the centroid only to control the processing. How this is
done is not discussed here. The controlling site is the one that is situated most central
with respect to the sites of the cluster.

35

Clearly, the described algorithm should be followed by an algorithm that, given
a materialization, will compute a processing schedule. As such it is useful especially
when we realize that many query processing algorithms expect a predetermined
materialization.

Pelagatti and Schreiber

The algorithm proposed by Pelagatti and Schreiber [Pelagatti 1979] illustrates a
different area in distributed query processing. It is not designed for ad hoc queries
but more for queries that are stated quite frequently on. a slowly changing database.
For these queries it is important that they are executed efficiently and, therefore,
much processing time may be invested in finding appropriate schedules. Pelagatti and
Schreiber provide the system programmer with tools to determine such schedules with
the aid of the computer.

The design consists of three levels: Logical Strategy, Distribution Strategy and
Transmission Execution Strategy. The first one merely translates a relational calculus
query to a set of operation trees (Logical Strategy). Each of these trees is equivalent
to the original query, they only describe how the result is obtained. The next two lev
els are entered for each such tree. At the second level the site where the operations
are executed, is determined. Because fragmentation is allowed, a closer look is taken
at the relational operations to lay down the conditions on the allocation before the
execution of an operation. For a restriction no limitations are imposed on the alloca
tion. And the allocation of the result is the same, except that some of the fragments
may be empty. The projection operation is split into two operations. To each of the
fragments a local projection, called distributed projection, is applied and the results
are gathered at one site where again a projection, called a global projection, is com
puted. This second projection is necessary to delete duplicates that occurred in
different fragments. One of the operands of a join has to be completely duplicated at
each of the sites where fragments of the other operand reside. The allocation of the
result is the same as the relation that stayed distributed. For other operations, such
as aggregates, similar conditions can be determined. If relations do not satisfy these
conditions, transmission operations are included in the operation tree.

To evaluate the cost of a Distribution Strategy, a tool is required to estimate
intermediate results. One problem involved with fragmentation is the correlation
between a clause in a query and the fragmentation criterion of a relation. Pelagatti
and Schreiber propose methods to test for correlation and its consequence for the
allocation of a result. The third level is entered for each Distribution Strategy. Such
a strategy can not directly be translated to a Transmission Strategy (schedule) because
of redundancy. Also the cost function to be minimized is more complicated than in
other models. An example cost function is: minimize response transmission time sub
ject to the minimization of total transmission cost. All the problems at this level are
translated to integer progranuning problems, for which optimal solutions can be
found using standard integer programming techniques.

A general technique has been developed by Pelagatti and Schreiber which
searches for a schedule in a large space and is therefore useful for precompiled
queries, that are used often.

36

Toth, Mahmoud and Riordon

In his thesis (Toth 1980] Toth devrel(Jped an algorithm for query processing in
the ADD systen1 [Toth 1978]. This algorithm expects a predetermined materialization.
Fragmentation of relations can easily· be incorporated. The cost function to be
minimized is total network traffic subject to a specified response transmission time

• constraint.

The query is expressed in relational algebra. A user query will look like

where X stands for the Cartesian product, the C for a restriction on the tuples and
the Z for a projection. The Ri 's are the relations of a distributed database. Both the
C~ and the Z can be transformed such that operations on one relation result, which
are the subqueries. Every site will have its own subquery. They can all be processed
in parallel. The results of the subqueries can be combined in any order to produce
the desired result. Estimators are used to compute the expected sizes of the
subqueries. In [Toth 1980] an extensive study on this can be found.

Determining the order in which the results of the subqueries are taken together
is done heuristically based on a special type of query, called Class A query. For this
Class A qt1ery an optimal solution can be found for minimizing total network traffic
subject to a specified response transmission time constraint (expressed in the number
of hops). Intuitively, one can imagine such a query as having no joins, between
subqueries, whose result is no larger than its largest operand. Obviously, a query
consisting of only semi-joins (simple queries., see [Hevner 1979b] and subsection 3.4.1,
and the tree structured queries of Baldissera et al. [Baldissera 1979]) belongs to this
Class A.

Based on the result sizes of the subqueries all Class A queries are identified.
One such Class A query is selected and an optimal schedule for it is computed. The
first time this is done, the last transmission in the schedule goes to the result site. For
later computed schedules the destination may be any site from which a path of
transmissions already goes to the result site. This iteration, searching for Class A
queries and computing a schedule for it, continues until 110 ~lass A queries remain.
Subqueries that have not been considered yet will transmit their result to the result
site.

Although the user query is stated in relational algebra, he l1as no influence on
the order in which the operations are executed. The applicability of the algorithm
depends on the resulting sizes of the join operations. If they are small many Class A
queries can be found for which an optimal sched·ule can be computed, resulting in
near optimal schedules for the user queries.

Selinger et al.

T~e research discussed in this paragraph is part of the System R * project of
IBM [W1lliamsl981]. In [Selingerl980] the extension of the Access Path Selector of
System R [Selinger 1979} is explained. As in the centralized version an N -way join is
replaced by a sequence of 2-way joins. For each such join the location, the inner and
outer relation, and the join method is determined. The join methods considered are
the nested loop join, which goes through the entire outer relation and retrieves the

•

37

matching tuples from the inner relation, or the merge join, which goes through both
relations in order simultaneously. The problem of replicated and redundant data is
solved by extending the search tree such that a choice is made among non-redundant
materializations of non-partitioned relations. Sizes of intermediate results are
estimated by using statistical data on the selectivity of predicates. The cost function
contains terms for the communication, for the disk accesses and the usage of the
CPU. In [Selinger 1980] it is shown that especially the disk accesses may not be
neglected if a high bandwidth communication channel is used.

In System R queries are compiled to achieve better performance at execution
time. The same approach is adopted in System R. [Danielsl 982, Ngl 982]. In
[Daniels 1982] first a global plan is determined by a master site using the above
described method. This plan is then given to the sites involved, which, to ensure site
autonomy, may discard the plan because it was based on outdated catalog data. If
the plan is accepted the site identifies its duties from it and determines a local plan,
which is stored locally in compiled form. Part of the global plan is the way the local
plans communicate with each other.

Access paths provided by the database management system or privileges to
access a given relation may change over time making a compiled plan invalid. In
[Ngl 982] the problem of automatic invalidation and recompilation is discussed.
Furthermore, it is show that not always a global recompilation is necessary to main
tain the optimality of the plan. If, for example, one of the indices is dropped it may
be replaced by another one, requiring only local recompilation. Especially, the case of
the 2-way join is treated extensively.

Nguyen Gia Toan

Most of the algorithms discussed so far determine a processing schedule prior
to executing it. These schedules are called static because they are fixed. The optim
izer will estimate intermediate results to compare the cost of the different schedules.
Although, during execution time, results may be larger than expected, the processing
continues as dictated by the schedule. Quite a different approach is proposed by
Nguyen Gia Toan [Nguyen Gia Toanl979, Nguyen Gia Toan1980]. The processing
schedule is constructed during execution, and is, therefore, called dynamic. Decisions
about this construction are made in a decentralized way. Decisions taken by .. the sites
are synchronized by a concurrency control mechanism. There a token travels around
the network along a virtual ring [LeLannl978]. At any time only one site can have
the token and is allowed to make a decision.

The query is represented by an operation tree that operates on a predetermined
materialization. The goal is to determine where each of the operations is executed.
The site where the query originates will search for maximum local subtrees. These
subtrees will contain operations, that can be executed at one site, and operations
whose operands already exist. This means that the sizes of the operands of these
operations are known. Such operations are restrictions and projections, but may also
be joins between existing relations, which are not necessarily located at the same site.

The operation tree, including the localized subtrees, is now broadcast to all
sites. Each site processes its subtree. From now on decisions about data transfers are
made in a decentralized way with the aid of a threshold. What the initial value is of
this threshold and how it is updated depends on the cost function to be minimized
and will not be discussed. With it, a data transfer of a not yet computed result may

•

38

be ordered. For example, a join has to be computed between intermediate re~ults JR 1

and JR 2• IR 1 is computed by S I and IR 2 by S 2• A few situations will be discussed;
in [Apers1981c] a complete table can be found covering all situations.

The computation of IR 2 is finished and S I is notified of that. If IR 2 is smaller
than the threshold, then S 1 can, after it has obtained the token, decide to transfer IR 2

to S 1 if the computation of IR 1 has not finished yet or if IR 1 is larger than IR~
Onlv if JR 1 is smaller than IR 2, S 1 decides to transfer IR 1 to S2. After such a dec1-
sio; the threshold is updated; this updated threshold together with the decision is
broadcast through the network. All other situations in which a decision can be taken
require that both IR 1 and IR 2's computation has finished. Then the smallest one is

transferred.

The fact that a site requires the token when it makes a decision ensures that no
conflicting decisions can be made. Every decision is notified to other sites giving them
up-to-date information about the way the query is processed.

The application of this dynamic algorithm, which takes decisions in a decentral
ized way, highly depends on the concurrency control mechanism with which it is
integrated, and the way the threshold is updated. It seems a promising direction and
a comparison with static algorithms in a real distributed data base will be interesting.

From the above overview of query processing algorithms in distributed data
bases we may conclude that query processing in a distributed database has been given
much attention. Striking is the diversity of models that are investigated. Almost
every model has its own repertoire of operations, and its own restrictions about the
data in the data dictionary concerning relations. Besides that, some of the research is
concerned with particular aspects, such as, for example, the choice of materialization,
compilation and recompilation of schedules, and dynamically determining schedules.

Most of the research, except [Selinger 1980], addresses only the problem of glo
bal optimization. The schedules produced consist of transmissions and su bqueries to
be processed at the sites involved; the way the data are stored is not take into
account~ Also, minirr1izing response time received little attention (except
{Hevner 1979a, Hevner 1979b]). .

In sections 3~3 and 3.4 minimizing response time and response transmission
time will be discussed in the context of the inverted file organization and the rela
tional calculus, respectively. Minimization of the response time is done by first con
sidering only the transmissions, and then including the local operations. For minimiz
ing total transmission time two approaches are considered. On the one hand, a query
is split into subqueries for which, independent of each other, schedules are deter
mined, and the schedules are integrated to obtain a schedule for the query. On the
other hand, as few parallel schedules as possible are constructed, which are used in
processing more than one subquery.

3.3. Query Processing with Inverted File Organization

The goal of query pr~ssing is to determine a schedule for a query stated by a
user. Such a schedule consists of data transmissions and operations that have to be
executed at the sites involved. Under the Transmission Assumption the transmissions
will mainl)1 determine the cost of a schedule. Therefore, query optimization is split

39

into two phases. First the optimizer considers only data transmissions. The resulting
schedule is called a macro-schedule. Besides the fact that it contains only transmis
sions, it also fixes the tasks of the sites involved. If local processing cost can be
neglected completely compared to transmission cost, this schedule will suffice. Each
site involved will be notified of its du ties, and the way they are handled has no
influence on the macro-schedule and can, therefore, be determined locally. In section
3 .4 we will just determine macro-schedules.

If local processing cost can not be neglected completely or if the optimizer has
to compile the query [Daniels 1982, N gl 982] local processing should be included in the
schedule as well. A schedule for the processing done at one site is called a micro-
schedule. After the macro-schedule has been determined these micro-schedules may
be computed by each of the sites involved, and transmitted back to the site responsi
ble for the overall optimization. Or, if sufficient information is available in the data
dictionary, all the micro-schedules may be determined by the site that computed the
macro-schedule. If response time is minimized this integrated schedules is serialized.
The latter is still necessary to determine the order in which data is transmitted and in
which operations are executed at each of the sites.

In this section we will discuss these ideas in the context of the inverted file
organization [Apersl978]. Considering query processing as manipulating lists is
attractive in the context of a distributed database. Compared to tree structured
indices, not much processing is required to reconstruct the inverted lists after
transmission. Although the ideas are explained for inverted lists, they are equally
applicable to other storage structures.

3.3.1. Inverted Lists as Storage Structure and Unit of Allocation

The inverted file organization is useful for answering queries of the type

A relop V,

where A is some attribute, re/op is an element of the set {=,<,~,>,~,=,6} and Vis
a value of the domain of attribute A . In [Hsiao 1970] we can find a formal descrip
tion of this file organization. The use of the inverted file organization has been exten
sively studied for a centralized system. Both in [Cardenasl975] and in [Ya01977] an
analysis can be found of the average access time, and in [Hill 1978] this analysis also
includes updates such as insertion and deletion. How to process a query that consists
of a Boolean expression of index terms of the simple form above is presented in
[Liu 1976]. There, the total processing cost required to merge the inverted lists
corresponding to the index terms in the Boolean expression is minimized.

'

Before discussing the use of an inverted file organization in a distributed data-
base we will briefly describe it in a centralized system. Assume we have a set of ele
ments. Each element has a key, which is a unique number, and the value of an attri
bute. The keys will be inverted on the value of this attribute. This means that for
each value in the domain of the attribute we make a list of the keys of the elements,
whose attribute equals that value. The pointers to the beginning of each of these lists,
short for inverted lists, are put in a directory, that contains an entry for each value in
the domain; the keys in a list are ordered.

So far, we only discussed inverted lists on one attribute, say A. Accessing the
elements in the set on another attribute would only be possible by a sequential scan.

40

If the keys are inverted on all attributes it is called a completely inverted system.
Then a directory exists for each attribute and a key will be included in a list in every
directory.

In general, a query is a Boolean expression of conditions that have to be
satisfied by the attributes, expressed by means of relational operations. Such an
expression can be straightforwardly translated to set operations on subsets,
represented by the lists. If the condition is expressed with the = operation it is
replaced by the subset of the corresponding list; for the =fa operation the complement
of the subset with respect to the complete set is taken. The complement of a list A is
denoted by A' . For the other relational operations the union of the subsets of the ele
ments that satisfy the condition can be taken. Finally, the and and or operations are
replaced by the n and U operations, respectively.

Example 3.I

Assume that a university has a database about documents. This database will
contain the following relations:

DESCRIPTION (bookno ,title ,year ,publisher ,location)
AUTHORS(bookno,author)
KEYWORDS(bookno ,keyword).

Both on year and publisher secondary indices are created by means of inverted lists
for relation DESCRIPTION. AUTHORS is inverted on author and KEYWORDS
on keyword. A book may have several keywords. The notation keyword = topic is
short for: topic is one of the keywords; keyword =fa topic means that none of the key
words is topic. A Boolean expression of index terms like:

(keyword = database) and (keyword = distributed) and
(year ~ 1981) and (publisher = North Holland)

is translated into set operations on lists:

where

A n B' n (C u D) n E

A is the list of keyword database
B is the list of keyword distributed
C is the list of year is 1981
D is the list of year is 1982
E is the list of publisher is North Holland.

□
The operations A n B, A U B and A n B' can be computed by merging the

lists corresponding to the index terms A and B. For the last operation all elements
of A are taken except those in B. Therefore, a B' is only allowed if it is intersected
with another, not complemented list. The cost of merging two lists is proportional to
the sum of their sizes. This means that the cost to compute A n B is
P 1 (I A I + I B I), where I A l denotes the size of list A , and P I is the proportionality
constant. To compare the cost of different processing schedules we need to know the

41

sizes of the intermediate results. Let us define the Prob(x E A) == I A I / X I ,
where X is the complete set. Then the Prob(x E A n B) = A n B I / I X I .
Under the assumption that there is independence between lists, we may say

Prob(x E A n B) = Prob(x EA) X Prob(x E B) == IAIIBI/IXl 2
-

So, I A n B I = I A I I B I / I X I . Along the same lines I A U B I and I A n B' I
can be determined. Summarizing

1)

2)

3)

IA n BI
IA u BI
I A n B' I

IAIIBI/IXI,
I A I + I B I - I A I I B I / I X I , and

IAI - IAIIBI/IXI.
An operation tree for a query is a tree, consisting of operations as internal

nodes and lists as leaves, such that the result of the operations in the tree is the same
as the result of the query. A schedule for an operation tree tells us at which sites the
operations are computed, and thereby fixing the transmissions. A serialized schedule
also dictates in which order operations and transmissions are executed.

Now we will go distributed. We assume that the lists are the units of alloca
tion. To obtain an efficient data allocation, the lists of all directories n1ay be assigned
to one or more sites. The elements of the set themselves may, based on the access
pattern, also be allocated according to some distribution criterion. Information con
cerning the allocation of the lists and the elements is stored in the data dictionary.
This information is used to translate the user query to an expression of lists stored at
the different sites. The result of a processing schedule is a list of keys satisfying the
user query. Given these keys we still have to retrieve the attributes of the elements in
which the user is interested.

Example 3.2

Assume that the database of our previous example is distributed over a net
work. Relations may be partitioned and more than one copy may be stored in the
network. The lists are not necessarily stored at the same sites as the fragments of the
relations; depending on how frequently they are accessed, possibly in combination
with other lists, by the users they may be stored redundantly. The following user
query is stated at site 1: give the booknumbers, locations and the year of publication
of the books satisfying

(keyword = database) and (keyword == social impact) and
((location == Computer Science Dept.) or (location == History Dept.))

'

and the result is to be delivered to site 1. Let us assume that the relation DESCRIP-
TION is distributed over the network. For example, tuples of books physically
located at the Computer Science Dept. are stored at the site of the same department.
Furthermore, we assume that a materialization for the lists is determined before
optimization:

42

site I: the list of keyword = database
site 2: the list of keyword social impact
site 3: the list of location Computer Science Dept.
site 4: the list of location History Dept.

The original query is replaced by two queries of which the results are united at the
result site (S 1):

(keyword = database) and (keyword = social impact) and
(location = Computer Science Dept.)

(keyword = database) and (keyword == social impact) and
(location = History Dept.).

The schedule for these queries is shown in fig. 3.8. To take full advantage of the fact
that the queries look very much alike the processing starts with the transmission of
the list keyword = database to S 2 (this transmission is denoted by T 1). At S 2 the
intersection is computed with the list keyword == social impact (denoted by P 1). So
far, the schedules of both queries are the same. Because the lists concerning the loca
tions are stored at different sites, S 3 and S 4, the result of the intersection computed at
S 2 is sent to both of them in parallel (denoted by T 2 and T 3). At S 3 this intermediate
result is intersected with the list location = Computer Science Dept. (denoted by P 2)

and at S 3 with the list location == History Dept. (denoted by P 3). So, at both S 3 and
S 4 we have a list of booknumbers satisfying the original query of which the tuples are
stored at that same site. The relevant data transmitted from S 3 and S 4 to S 1

(denoted by T 4 and T 5). Finally, at S 1 the union of the data from S 3 and S 4 is
presented to the user (denoted by P 4).

p

Figure 3.8. Schedule for example query.

t

t

t

D

The example shows only one of the many schedules that are possible for this
query. In the next subsections we will give algorithms to process lists in a distributed
environment, such that either the response time or the total time is minir11ized.

43

3.3.2. Minimizing Response Transmission Time

Based on the assumption that the response time of a query is mainly deter
mined by the transmissions involved (Transmission Assumption), we will first minim
ize the response transmission time and then for each site minimize the response pro
cessing time.

In the following we assume that we can define the response transmission time
of the integrated schedule as the maximum response transmission time of the parallel
schedules. Based on this, an algorithm is presented that produces minimum response
transmission time schedules. We will then change such a schedule such that no two
lists ever share the same resource without paying for it. Experimental results are
given in subsection 3.3.8. We expect that this way of producing schedules, first com
puting them under the Parallelism Assumption and then serializing them, is more con
venient than considering the minimization of the real response time as one big prob
lem. The optimizer would then have to deal with query decomposition and the use of
resources all at once.

To formalize the above we give the next proposition.

Proposition Under the Parallelism Assumption every schedule, given in the form of a
graph, can be converted to a tree with no forking points after an operation or
transmission, with the same response transmission time.

Proof Assume we have a schedule with forking points. Let 0 0 be the first operation
or transmission of one of the sites with a forking point after it; the result of 0 0 is
input of O 1, 0 2, ••• , On. Then, for each O;, i = 2, 3, ... , n a copy is made of all
operations and transmissions that are required to produce the same result as the
result of 0 0., which is now used as input of O;. The connections in the schedule
between O O and O; (i = 2, 3, ... , n) are removed. Hence, the forking point after
0 0 is removed. Furthermore, no new forking points are introduced, because it was
the first forking point. Also, the response time of this new schedule is the same as the
one of the original schedule under the Parallelism Assumption, because only copies
are made of existing operations and transmissions.

This process can be continued until no forking points are left in the schedule,
and the response time of the newly constructed schedule is the same as the response
time of the original schedule. -·

□
Every operation in a schedule that is a tree with no forking points after an

operation is a synchronization point. So, the schedules for the operands of an opera- -
tion are parallel schedules. The operation subtrees of the parallel schedules are
treated as a set of operation trees, with a synchronization point at the site where the
operation on the subtrees is computed. Let OT be such a set of operation trees and
the site with the synchronization point is S;. The response transmission time of OT
at site S1 is defined as

RTT; (OT) === max RTT;(T).
TE OT

44

3.3.3. Disjunctive No1·mal Form

In this subsection we will give an algorithm, which produces schedules for
minimizing response transmission time. Normally, the optimality of the solutions
prodt1ced by an algorithm is proven after the algorithm has been presented. Here.,
however, we will first give some theorems that limit the number of expression trees to
be considered for processing a query. Before proving them we will summarize their
results. In Theorem 3.1 and Corollary 3.2 we transform an arbitrary operation tree
by applying the distributive law on the set operations, such that all union operations
are at the top of the tree. Under the Transmission Assumption, the Parallelism
Assumption and the Intersection Assumption (see below) it can be shown that this
transformation does not increase the response transmission time of the operation tree.
In Theorem 3.3 and Corollary 3.4 it is shown that, under these same assumptions,
executing all union operations at the result site, does not lead to a higher response
transmission time. The results will be clarified by an example. To start with, we will
introduce some notation.

A literal is either an inverted list or the complement of an inverted list. The
conjunction of Q 1,Q2,•••,Qn is '

where the Qi' s are literals. A query Q is said to be in disjunctive normal form if and
only if Q has the form

Q = Q l LJ Q2 LJ . . • LJ Qn,
'

where Q1 is a conjunction of literals. A Q, will be called a te1·1n. Throughout this
chapter we will assume that the size of the intersection of two lists A and B,
I A I I B I / IX I , is neglectably small compared to the sizes of both A and B (Inter
section Assumption).

Theorem 3.1 Under the Transmission Assumption, the Parallelism Assumption and
the Intersection Assumption and in the Arbitrary Transmission Cost Model applying
the distributive law to an operation tree of a query will not increase its response
transmission time.

•·

Proof Assume that somewhere in the operation tree of a query Q we have the expres-
• sion

(A U B) n C,

V\1here C may be an intermediate result or its complement.
change this to

(A n C) u (B n C),

What we have to do is to
•

and prove that it does not increase the response transmission time of Q. It suffices to
show that the response transmission ti1r1e of the subtree does not increase (proposition

•

45

of subsection 3.3.2). In fig. 3.9(a) an arbitrary schedule is depicted; the sites I to 6
are not necessarily different. This means that some of the transmissions may have
zero time, depending on whether the source and destination site are the same.

A

B

AvB
s 4

(AuB)nC

55---------------------

(a)

s, i----:-----------------·----------

A

53--------- ~-----------------
B

s,--+--.---------------------------
C

(AnC)u(BnC)

(b)

Figure 3.9. Schedule for (a) (A U B) n C and (b)
(A n C) u (B n C).

The response transmission time of this processing schedule is:

RTT6((A U B) n C) = max(RTT3({A ,B }) + TT35(A U B),
RTTs(C))

+ TT56((A U B) n C).

-

t

t

t

t

t

t

t

t

t

1

t

We now use the same sites as in the above schedule to process the operation tree

•

•

46

(A n c) u (B n C). Its schedule is shown in fig. 3.9(b) and the response transmis

sion time is:

RTT6((A n C) U (B n C)) - max(max(RTTs(A),RTTs(B)),
RTTs(C))

+ TTs6((A n C) U (B n C)).

Because RTT5(A) ~ RTT3(.t4) + TT3s(A), we can say

RTT6((A n C) U (B n C)) ~ max(max(RTT3(A) + TT3s(A),
RTT3(B) + TT3s(B)),

RTTs(C))
+ TT56((A U B) n C).

Letting .. 4 and B wait for each other at site 3 and transmitting their union is more
expensive than transmitting them in parallel to site 5, because I A U B I is larger
than I A I and I B I • So, the right hand side satisfies

s;; max(RTT3({A ,B }) + TT3s(A U B),
RTTs(C))

+ TTs6((A U B) n C)
= RTT6((A U B) n C).

Hence, applying the distributive
response transmission time.

• • •
law to an operation tree does not increase 1ts

□
Corollary 3.2 Under the Transmission Assumption, the Parallelism Assumption and
the Intersection Assumption and in the Arbitrary Transmission Cost Model an opera
tion tree with optimal response transmission time for a query can be replaced by an
equivalent tree in disjunctive normal form without sacrificing its optimality.

The top of an operation tree that is in disjunctive normal farm consists of
union operation(s). Now the site where to compute them will be discussed .

•

Theorem 3.3 Under the Transmission Assumption, the Parallelism Assumption and
the Intersection Assumption and in the Arbitrary Transmission Cost Model the union
operations of an operation tree in disjunctive normal form can be executed at the
result site without increasing its response transmission time.

Proof We will prove this by induction on the number of union operations in the tree.
Assume that there is only one union operation. In that case the operation tree looks
like

A U B,

where A and B may be intermediat~ results. The schedule for computing the union
operation outside the result site is shown in fig. 3.lO(a). Again the sites are not neces
sarily different. The response transmission time of this schedule is:

•

A

B

AuB

(a)

t

t

t

t

A

(b)

Figure 3.10. Schedule for (a) A U B and (b) {A ,B }.

t

t

t

t

47

Transmitting both A and B in parallel to the result site, where the union is com
puted, gives us the schedule shown in fig. 3.1 O(b). The response transmission time of
this schedule is:

RTT4({A ,B }) = max(RTT4(A),RTT4(B))
~ max(RTT3(A) + TT34(A),RTT3(B) + TT34(B))
~ RTT3({A ,B }) + max(TT34(A),TT34(B))
~ RTT3({A ,B }) + TT34(A U B)
= RTT4(A U B).

Assume that the induction hypothesis is true if the operation tree contains m union
operations. Now consider an operation tree that contains m + 1 union operations.
Then again it will look like A U B, where A and B are subtrees which together con
tain m union operations. The proof that the union between A and B can be com
puted at the result site without increasing the response transmission time, is exactly
the same as for the case that their is only one union. Hence, all the union operations
in A and B can be computed at the result site because of the induction hypothesis.

□
Corollary 3.4 Under the Transmission Assumption, the Parallelism Assumption and
the Intersection Assumption and in the Arbitrary Transmission Cost Model an opera
tion tree with optimal response transmission time for a query can be replaced by an
equivalent tree in disjunctive normal form and all union operations can be computed
at the result site without sacrificing its optimality.

Based on this last corollary we can immediately give an algorithm to compute
the minimum response transmission time of a query Q; see fig. 3.11. This algorithm
requires the computation of the minimum response transmission time of a term, for
which an algorithm will be given later.

•

r,r,1:)ie 1\f R ·rr q1,e,:1·=(q1aerj Q.site S,. ,)schedule:

bt,:gi11
, schedl1le sc·h := t•n1p~l' s(·lzedz,le;
p z,t Q i,1 di.~jztn(·ti\i'e nor111c1.l _for1r1;

{ ~f~i1, Q l U Q 2 U ' . . U Qd }

for t t<, ti
do

.'ii·J1 : = i11tegr,.1te'(.~t"'h, h-1 R TT tern1(Qi .S,.))

od;
,\'l~Jl

end

Figure 3.11. ,i\lgt)rith1n 1VIRTT qz,er,l-'.

·1·t11:·1,:·,t1~11,,:"'·J·t sccti{)11 3.3 \\:e Vv'ill use tl1e san1e example. At site SI the query
4i •'

(.4 11 B) n , c n D' u £') - ~ ~

i:~ ,~;t~l\~~i:i. .1\1 site ~) 2 the lists .4 (1000) and E (700) are located, at site S 3 D (2000), at
s.iie: ,) 4 II t4lKl) ~tnd site S 5 ("' (200). The sizes of the lists are given in parentheses.
l' .. ir·t (.1t' tf1e c,)1tst1·uctit1n of the n1inin1um RTT schedule is discussed in this example
a11(1 \\'ill t)e C()tltin1Jed in exan1ple 3.5.

1::·r·on't ("'()rt1l)i:iry' 3.2 we know that \Ve ca11 replace the example query by its dis-
_: - ~ :--t>\\. "-·< -? ; ·111 ,-lli n .. "'fl'' ,..;) 1 f'()r··m · ·' r ".i,_l!t <• -\ 1t' t l itz ii 4(41, ;, ',,,,''"''"' · ... ,, '. '
"

(,4 n B II (~ n D' ') LJ (A n B n E')

\\ it11t,t1t i11c:reasing its response transmission tin1e. From corollary 3.4 we know that
tilt' 1111it·i1r1 c(111 be c:t)mputed bv S • · . .f I

□

"l,3.4, Breaking a Term

111 tl·,e pre,l'ious subsection ,ve discussed the re~'riting of an expression tree into
at.s dis,,1.1nctive normal form and where to compute the u11ion operations. From this
ttt1d. the definition t1f the response time at a synchronization point we kn9w that our
nt~stt g()al is the mi11imization of the response transmission times of the tern1s in the
,iis_ju11c'.tiv·e nortnal form of a query. This subsection deals with breaking a term into
srrialler expressi<)ns that consists of the intersection of at most three A-lists and at
r11c1st <)ne B•list.

'Ine,a:,r,~m 3.5 l .. et Q1 be a term of the form

•

49

Under the Transmission Assumption, the Parallelism Assumption and the Intersection
Assumption and in the Arbitrary Transmission Cost Model we only have to consider
the minimum response transmission time of the fallowing set S of seven types of
operation trees:

for i, j, k = 1, 2, ... , n (i, j and k have different values) and p = 1, 2, ... , m,
to compute the minimum response transmission time of Q,. Let E be a subset of the
set S then

min (max RTTr(e))
E CS e E £

where the operation trees in E must include all A; 's and BP 's of Q1 •

For the sake of convenience we will call Ai (i = 1, 2, ... , n) an A-list and BP
(p = I, 2, ... , m) a B-list. To prove Theorem 3.5 we must prove a series of lem
mas. The first lemma provides a technique for replacing a query with m comple
mented lists by m queries with only one complemented list, without increasing the
response transmission time. Once that is proven we will go on to prove lemma 3. 7,
which shows how the intersection of an arbitrary number of A-lists can be replaced
by a set of intersections of at most three A-lists, again without increasing the response
transmission time

Lenut1a 3.6 Under the Transmission Assumption, the Parallelism Assumption and the
Intersection Assumption and in the Arbitrary Transmission Cost Model an operation
tree for

where A == A 1 n A 2 n · · · n An can be replaced by the set of operation trees

{An B1,A n B1., ... , A n B:n}

whose results are directly sent to the result site, where the intersections .are computed,
without increasing the response transmission time.

Proof We will prove this by induction on m . For m = I the set of operation trees
consists of the original operation tree. Let us assume that the lemma is true for
values less than or equal to m. Now consider the operation tree for

A n B 'i n B 2 n · · · n B:,,, + 1-

We search for an intersection node such that the operation subtree rooted at that
node contains all the B-lists and that both operand operation subtrees contain at least

•

•

50

one B-list. Such a node can be found· by starting off at the root node and by asking
how many B-lists are contained in both operand subtrees and going down that ~ne
that contains all the B-lists, until both operand subtrees contain at least one B-list.
Assume that the intersection of the root of the subtree is computed at site Sx. The
operation tree is shown in fig. 3.12.

s

l

X
()

T

R

0 < #Bi in L < m + I
0 < #Bi in R < m + 1
#Bi in T == 0

Figure 3.12. L and R contain all B-lists.

Let L * (R •) be the operation subtree L (R) with all B-lists removed together with all
•

operations of which they are an operand. Because of the assumption about the result-
. ing size after an intersection with a complemented list we know that the size of the
result of L is neglectably smaller than that of L • . Therefore, we regard them as
being of the same size. Certain transmissions in the schedule for L"' (R •) can be
changed compared to the one for L (R) because certain operations are deleted, and
therefore,

RTTx(L "') ~ RTTx(L)
RTTx(R*) ~ RTTx(R).

Replacing L n R by the expression (L n R •) n (L • n R) where the top intersec
tion is also computed at Sx will give the same result and does not increase the
response time at S x • Since,

RTTx((L n R) n {L* n R*)) ·= RTTx({L n R"',L* n R})
= RTTx({L,R* ,L* ,R })
= RTTx({L,R })
= RTTx(L n R).

The intersection of L n R"' and L • n R is useless as far as reducing the size is con
cerned, because both L n R * and L* n R contain exactly the sa1ne A; 's. There
fore, this intersection will be computed at the result site. Hence, the original opera
tion tree is replaced by two operation trees of which the result is intersected at the
result site. Fig. 3.13 shows this. The response transmission time did not increase
because the response transmission ti1ne of the subtrees rooted at Sx did not.

'

51

s,.
n

T
T

I
L R L

Figure 3.13. Intersection computed at result ~ite.

Now we can apply the induction hypothesis to the two operand operation trees
of the intersection at the root of the tree.

Lemma 3.7 An operation tree for A
set of operation trees of the form

□
== A l n A 2 n · · · n An can be replaced by a

whose results are directly sent to the result site, where the intersections are computed,
without increasing the response transmission time.

Proof We will prove this by induction on n . For n = 1, 2 or 3 the set of operation
trees consists of the original operation tree. Assume the lemma is true for all values
less than or equal to n . Let us now consider the operation tree for an expression con
taining n + I A-lists. Such a tree can be written as L n R . Two cases have to be
distinguished:

I) Both L and R contain at least two A-lists.
Say, L and R are intersected at Sx, and the result is sent to the result site, Sr.
An alternative is to send both L and R to the result site and let it compute the
intersection. The response transmission time of this schedule is no larger than
the response transmission time of the original one:

RTTr({L,R }) = max(RTTx(L) + TTxr(L),RTTx(R) + TTxr(R))
~ RTTx({L,R }) + max(TTxr(L),TTxr(R))
= RTTx({L,R }) + TTxr(L n R).

Because both L and R are results of intersections we know that the results of

•

52

2)

L, R and L n R all have a size neglectably small compared to the A- and B
lists, and therefore the last equality holds.

Either L or R must contain exactly one A-list, say R does.
Because the total operation tree contains at least 4 A-lists we know that L con
tains at least 3 A-lists. Therefore., we will write L as L * n L •·, where the
intersection of L • and L ** is computed at Sx and the one of L and R at s_Y.
The original operation tree will be replaced by an operation tree whose root
node is an intersection computed at the result site with operands L • n L **

and L * n R. The intersection of L"' and L ** is computed by Sx and that of
L • and R by S.v. The schedule of this new operation tree will have a response
transmission time which is not larger than the original one:

n R }) ~ max(RTTx({L. ,L ** }) + TTx,.(L * n L ••),
RTTy({L • ,R }) + TTxr(L * n R))

~ max(RTTx({L. ,L ** }))
+ TTxy (L" n L **) + TT_}•r (L * n L **),

R TT>, ({ L * ,R }) + TT,, (L * n R))
s:; max(RTTx({L* ,L** }) + TTxy(L* n L**),

RTTv({L * ,R }))
+ max(.TTy, (L * n L **),TTyr (L * n R))

= R TT, ({ L * n L ** ,R }) + TT,r((L * n L **) n R)
= RTTr((L * n L **) n R).

Because both L • n L •· and L * n R are results of intersections, their sizes
are equal to the sizes of (L • n L ··) n (L • n R) -·-·· (L * n L ··) n R , and
therefore the last but one equality holds.

So, in both cases the original operation tree is replaced by two operation trees of
which the intersection is computed at the result site, without increasing the response
transmission time .. And these new operation trees do not contain more than n A-lists,
so the induction hypothesis can be applied to them and the lemma follows.

D

From the set of expressions derived in Lemma 3.6 and 3. 7 for a term a subset is
chosen such that all A-........ and B-lists in the term are used in one or more expressions
and such that the maxi1num response transmission time is minimized. The results of
the intersections are intersected at the result site, giving the result of the ter1n. Before
proving Theorem 3.5 we will illustrate this by an example.

Example 3 .. 4

The term A n B n E' of example 3.4 is broken down into the six expres-
• •

s1ons:

A, B,
A n B,
A n E' ' B n E' , .
A n B n E'. '

•

53

'

Which of these expressions will be used in the schedule of the term depends on their
response transmission times. In subsections 3.3.5 and 3.3.6 two models of transmis
sion cost are discussed.

D
Proof of theorem 3.5 Assume we have an operation tree for processing

with minimum response transmission time. By applying lemma 3.6 we can replace
this operation tree by a set of trees

{ A n B 1, A n B 2, ... , A n B ~ } ,

where A = A 1 n A 2 n · · · n An. The intersection of this set of operation trees is
computed at the result site and its response transmission time is no larger than the
original operation tree. Because some of the intersections A n B; are already com
puted at the result site we can replace such a tree by {A ,B; }. Lemma 3.7 equally
applies to A n B, as to A, therefore, each element of the above set can in its turn be
replaced by the expressions mentioned in the theorem, again without increasing the
response transmission time.

So, the original operation tree has been replaced by a set of operation trees
without sacrificing its optimality.

D

3.3.5. Equal Transmission Cost Model

In theorem 3.5 only the operation trees have been discussed. Nothing has been
said about the sites where the operations are computed, except for the result site,
which will compute all union operations. Therefore, all possible schedules for an
operation tree have to be investigated. The way this is done depends on the transmis
sion times between sites. If the queueing times and the transmission cost functions
are the same between every pair of sites, then the search for the minimum response
transmission time schedule can be restricted. For intersections only the sites where
one of the operands resides have to be considered. Pieces of terms obtained in the
previous subsection containing three A-lists do not have to be considered.

Proposition Under the Transmission Assumption, the Parallelism Assumption and the
Intersection Assumption and in the Equal Transmission Cost Model an intersection in
the 1nini1num response transmission time schedule is computed either at the site where
one of the operands is located or at the result site.

Le1mna 3.8 Under the Transmission Assumption, the Parallelism Assumption and the
Intersection Assumption and in the Equal Transmission Cost Model expressions
A; n A1 n Ak and Ai n A1 n Ak n BP, where none of the intersections is com
puted at the result site, do not have to be considered.

Proof Assume that A;, AJ and Ak are located at S;, s1 and Sk, and the result should
be sent to Sr. Two schedules have to be considered. In the first one both A 1 and AJ
are transmitted in parallel to Sk where the intersections are computed. The result is
sent to the result site. Such a schedule can be replaced by one that consists of a
direct transmission of Ai to the result site and the transmission of A1 to Sk and the

•

•

54

result of the i.ntersection A J n Ak to the result site. This latter schedule will not have
a larger R TT than the original one.

The second schedule consists of the transmission of A, to s1 , the result of the
intersection A; n A J to Sk, and finally (A; n A J) n Ak to the result site. Transmit
ting Ai to both s1 and Sk in parallel and the results of the intersections Ai n A J and
A; n Ax to the result site will not have a larger response transmission time:

RTTr({A, n A1,Ai n Ak })
= max(TTij(A; n A1) + TTJr(A, n A1),

TTik(A;) + TTk,(A; n Ak))
~ max(TT;1(A1) + TTjk(A; n A1) + TTkr(A; n A1 n Ak),

TTik(A;) + TTk,(Ai n Ak))
= TTij(A;) + T½k(Ai n A1) + TTkr(A; n A1 n Ak)-

The proof for A; n A 1 n A k n B; goes exactly the same.
□

Before showing how the algorithm that computes rrtlnimum response transmis
sion time schedules for a term can be implemented, we introduce some notions.

Let the minimum transmission time A-list to site Sx be the A-list A1 such that

RTTx(A1) = 1n~n TTx(Aj)-
1

Let the second minimum transmission time A-list to site Sx be the A-list As such that

where f is the index of the minimum transmission ti.me A-list to site Sx .
•

Let the · minimum response transmission time intersection to site S x be the intersection
of two A-lists, A; n A1 , such that

•·

Let the minimum transmission time A-list to site Sr through Sx be the minimum
trans1r1ission tixne A-list to site S,, with the restriction that it is first transmitted to Sx
and then from Sx to S,.

What alternatives are there to transmit the relevant parts of the A- and B-lists
to the result site, S,? There are two choices for transmitting A;. .

A 1) A; is directly transmitted from S x to S, .

RTT,(A;) = TTxr(A;).

A2) Ai is intersected with another Aj at Sx before transmitting the result,
A; n Ai , to s,.

For Ai not all A-list have to be considered. The best choice for Aj is the

•

55

minimum transmission time A-list to Sx. There is, however., a chance that that
list is Ai itself. In that case we have to consider our second best choice, the
second minimum transmission time A-list to S_-r.

BP can be transmitted in three ways:

Bl) Bp is directly transmitted from S.-.: to Sr.

RTTr(Bp) = TTxr(Bp)-

B2) BP is intersected with an A, at S.'(, and the result, Ai n B;,, is transmitted to
Sr.

The best choice for Ai is the minimum response transmission time A-list
to Sr through Sx.

R TTr (B;) = TTyx (A,.) + TT_r'r (Ai n B;).

B3) BP is intersected with A; n A1 at Sx and the result, (A; n A_;) n s;, is
transmitted to Sr.

This alternative has to be considered because an intersection of an A-list
with a complemented list will have hardly reduced the size of the A-list. The
best choice for A; n A1 is the minimum transmission time intersection to Sr
through Sx. Because the cost of transmitting (A; n A 1) n B; from Sx to Sr
is the same for all i and J we can suffice with taking the A, n A 1 that is the
minimum response transmission time intersection to S_x •

RTT,(Bp) ==

Note: in A2 (B2 and B3) we do not have to consider transmitting A, (Bp), because the
minimum response time schedule for At (Bp) would be at least as large as the one of
alternative A 1 (B 1).

To complete the algorithm we show how the minimum and second minimum
transmission time A-lists and the minimum response transmission time intersections
are computed. By computing the transmission times of all A-lists we can determine
the minimum and second mini1num transmission time A-lists to Sx and also to Sr
through Sx. Let Ai and A1 be the two A-lists with the smallest transmission time to
get to Sx. Then the minimum response transmission time intersection to Sx can be
obtained by either sending At and A1 in parallel to Sx or to send the smallest of the
two, say Ai., first to A1 and transmit A; n A1 to Sr. In fig. 3.14 we show the algo
rithm.

Exaniple 3.5

The network in our example is fully connected, this means that every pair of
sites is directly connected. The transmission time TT(X) == 50 + IX I - The con
struction of the schedules for the first term, A n B n C n D' , will be discussed in
detail. The algorithm of fig. 3.14 has three for-loops. We will go through each of
them. The results after the first for-loop are listed in table 3.15. Each entry consists
of an expression and its RTT to get to site Sx. Let us look at the entries for site S 3•

Because C is the smallest A-list and no A-list is located at site S 3 its minimum
transmission time A-list is C. B is the second smallest and therefore the second

•

56

proc il.~fRTT term=(te1·1n Q1 ,.site Sr)schedule:
{ Qi ,._ J4 I n A 2 n . . . n An n B 1 n B 2 n . . . n B ~ }

begin
schedule sch := empt;· schedule;
foreach S,'r.
do

deternii11e:
the mi11imunz transmission time A-list to S.'(;
the second minimum transmission time A-list to S x;
the minirrium respon:;;e transmission time intersection to S x;
the minimutt1 transmission time A-list to S, through S."

od;
foreach A1
do

consider alternatives Al and A2,·
take tlie one with the smallest response transmission time, say its
scliedule is sch,;
sc:h : · integrate(sch,scht)

od;
foreach BP
do

consider alternatives B 1,. B2 a1id B3,·
take the one with smallest response transmission time, say its
.schedule is sch,;
sch :- integrate(sch.,sch1)

od;
sch

end

Figure 3.14. Algorithm'MRTT term.

m.inimum transmission time A-list to site S 3• The minimum transmission time inter
section to S 3 is obtained by transmitting C to S 4 and send the result of the intersec
tion, B n C, to S 3; response transmission time 250 + 50 300. C is also the
minimum transmission time A-list to the result site, S 1, through S 3•

S2 S3 S4 , Ss
. min. A .. list A 0 C 250 B 0 C 0
sec. min. A-list C 250 B 450 C 250 B 450
min. int. A nc 250 B nc 300 B nc 250 B nc 300
min. A-list S 1 C 250 C 250 B 0 C 0

Table 3.15. Results after first for-loop.

•

57

In the second for-loop for each of the A-lists the alternatives A 1 and A2 are
considered.

list alt.
A Al:

A2:

B Al:
A2:

C Al:
A2:

response transmission time
TT 2 1(A) = 1050
TT52(C) + TT21(A n C) == 250 + 50

TT41(B) = 450

== 300

TTs4(C) + TT41(B n C) == 250 + 50 == 300

TT51(C) = 250
TT4s(B) + TT5 i(B n C) == 450 + 50 = 500

In the third loop a schedule is constructed for the complemented lists by considering
the alternatives B 1, B2 and B3.

list alt.
D Bl:

B2:
B3:

response transmission time
TT3 1(D) = 2050
TTs3(C) + TT31(C n D') == 250 + 250 == 500
TT54(C) + TT43(B n C) + TT31((B n C) n D') = 350

For each of the lists the schedule with the minimum response transmission time is
chosen. So, for list A alternative A2 is taken, for B alternative A2, for C alternative
A I and for D alternative B3. Because B and C participate in other schedules we can
drop their own schedules. To obtain the result of the term A n B n C n D' the
results of A n C and (B n C) n D' are intersected at the result site.

For the other term, A n B n E', we can do exactly the same. Again, because
both A and B participate in the schedule of E we drop their own. The minimum
response transmission time schedule of E is obtained by alternative B3.

list alt. response transmission time ..

E B3: TT42(B) + TT21((A n B) n E') = 450 + 50 = 500.

D

The algorithm MR TT query of fig. 3.11 calling the algorithm MR TT term of
fig. 3. 14 is the algorithm that computes the minimum response transmission time
schedule for a query in the Equal Transmission Cost Model.

Le1mna 3.9 The worst case complexity of the algorithm MRTT term of fig. 3.14 is
0 (nN + m), where n and m are the number of A-lists and B-lists, respectively and
N is the number of sites participating in the query.

Proof The algorithm consists of three for-statements. We will investigate their com
plexity in turn. For each Sx and each At we have to compute either the RTT of Ai
in Sx or the RTT of A; in Sr if its transmission goes through Sx. This will cost
O(nN). The second loop is executed n times and its cost is constant. The same is

'

58

true for the last loop which is executed m times. So, the whole algorithm costs
O(nN + nz).

□
Theorem 3.10 The worst case complexity of the algorithm MR TT query of fig. 3.11 in
the Equal Transmission Cost Model, is O (MN), where M is the number of literals in
the disjunctive normal form of a query and N the number of sites participating in the
query.

Proof To rewrite a query in its disjunctive normal form will take no longer than
O(M). The worst case for the algorithm that computes the minimum response
transmission time schedule for a term is obtained if the whole query is just one term.
Furthermore, the maximum of nN + m, where n + m = M is reached if n == M.
So, the worst case complexity of the algorithm is O (MN).

□

3.3.6. Arbitrary Transmission Cost Model

For a network with an arbitrary topology or if the queueing delays for the
different communication channels are not the same~ the Equal Transmission Cost
Model can no longer be used. In this subsection no particular assumptions are made
about the cost to transmit data from one site to another (Arbitrary Transmission Cost
Model).

What makes the general case - arbitrary transmission cost between sites - more
difficult? The answer is that lemma 3.8 is no longer true. This means that all opera
tion trees of theorem 3.5 have to be considered, and also that sites other than those
where the lists in the considered operation tree reside, have to be included in the pro
cessing schedule. Again we will di,scuss the alternatives to transmit the relevant parts
of the A- and B-lists.

What are our alternatives for transmitting Ai, located at site Sx., to
. S? site, r.

the result
,

Al) Transmit A; directly from Sx to Sr.

RTTr(A;) = TT.xr(A;).

,

A2) Transmit A; to site 8_!1 (y not necessarily different from x). Here again there
. are two alternatives:

a) Let s, intersect A, with an A-list, say A1 (j =I= i); for A1 we only need
to consider the minimum or second minimum transmission time A-list to ·
site s>,.
RTTr(A;) = max(TTxy(At),RTTy(A1)) + TTyr(At n A1).

b) Let Sy intersect Ai with the result of another intersection say A . n Ak ·
. ' 1 '

for this intersection we only need to consider the minimum response
transmission time intersection to site Sy .

RTT,(A,) = max(TTxy(A;),RTT_;,(Aj n Ak)) + TTy,(A, n (Aj n Ak))-

1?mong all these alternatives choose the one with the smallest response transmission
time for A; to get to S,. ·. The other alternative (Ai n A 1) n Ak need not be

•

59

considered because the result of A; n A 1 is already small and there is no way to
improve the response transmission time of A; to get to Sr by intersecting it with Ak.

Another notion is added to the ones introduced in the subsection on the Equal
Transmission Cost Model.

Let the minimum response transmission time intersection to site Sr through S x be the
intersection A; n A1 such that

min (Ap n Aq),
p.q

or the intersection A; n (A 1 n Ak) such that

RTTr(A; n (A1 n Ak)) = minRTTr(Ap n (Aq n As),
p,q.:,·

and both with the restriction that Ai its transmission goes through Sx.

This can be computed by considering for each AP, Sx and ~t' the transmission
of A; to Sy through Sx and intersect Ai with the minimum transmission time A-list or
with the minimum response transmission time intersection to S>,. The result is
transmitted to Sr .

For the transmission of B;, located at site Sx, to the result site there are five
alternatives:

Bl) Transmit BP

RTTr(Bp)

directly from S_..:

TTxr(Bp)-

B2) Transmit Bp to site s_Y (Y not necessarily different from x).

a) Consider intersecting B;, with an A-list, say A,. For such an Ai we only
have to consider the minimum transmission time A-list to Sr through Sx.

'

b) let Sy intersect B; with the result of the expression Ai n A J.. For this
expression we only need to consider the minimum response transmission

. '
time intersection at site S x.

B3) Again transmit Bp to site S;, and let Sy compute the intersection A; n B;,
transmit the result to Sz and intersect it there with either A1 or A1 n Ak. For
A;, A1 , Ak and Sz we only need to consider the minimum response transmis
sion time intersection to Sr that goes through Sz. We will give the response
transmission time if A; n B; is intersected with A1 .

RTTr(Bp) = max(max(TTxy(Bp),RTTy(A;))
+ TTyz(A; n B;),

RTTz(A1))

+ TTzr((A, n Bp) n A1)

The heart of the algorithm that determines the minimum response transmission

•

60

time for a term consists of going through all the alternatives and taking for each Ai
and B; the schedule with the smallest response transmission time. See fig. 3.16. The
schedule for the term Qt is the integration of the schedules of all its literals (A-lists
and B-lists). Evidently, it will contain a lot of superfluous transmissions. They do
not affect the response transmission time but it will be better to remove them to make
the overall network load less heavy.

proc MRTT term (ter1n Q1,site S,)schedule:
{ Q, = Al n A 2 n . . . n An n BI n B 2 n .. - n B :n}

begin
schedule sch : empt;' schedule;
foreach Sx
do

determine:
the minimum transmission time A-list to S x;
the second minimum transmission time A-list to S x;
the minimum response transmission time intersection to S x;
the minimum transmission time A-list to Sr through Sx;
the minimum response transmission time intersection to S, through
Sx

od;
foreach Ai
do

consider alternatives A I, A2a and A2b;
take the one with the smallest response transmission time, say its
schedule is sch,;
sch : integrate(sch,sch1)

od;
foreach BP
do

consider alternatives Bl, Bla, B2a and B3;
take the one with the smallest response transmission time,
schedule is sch1;

sch :- integrate(sch,sch1)

od;
sch

end

Figure 3.16. Algorithm MR TT term.

say its

0 (nN . + mN), where n. and m are the number of A-lists and B-lists, respectively,
and N 1s the number of sites in the computer network.

s1on time 1ntersect1on to S,, through S 1s most costly For each A. s a d s
x • , , x n z we

•

61

have to compute the transmission time to Sr. So, this will cost O (nN2). The second
loop only takes O (nN) and the last one O (mN). Hence, the whole algorithm takes
O(nN 2 + mN).

□
Theorem 3.12 The worst case complexity of the algorithm MR TT query of fig. 3.11 in
the Arbitrary Transmission Cost Model is O (MN 2), where M is the number of literals
in the disjunctive normal form of the query and N is the number of sites in the com
puter network.

Proof Goes exactly the same as the one of theorem 3.10.

□
Looking at the alternatives to be considered for the Arbitrary Transmission

Cost Model compared to those for the Equal Transmission Cost Model, we can say
that the problem of determining schedules to miniir,ize the response transmission time
of a query has become a lot more difficult. There are two factors responsible for this.
First, the need to intersect the lists to get a small intermediate result and secondly, the
choice of the site where this intersection should take place, taking into account the
arrival of both operands and the final transmission of the result. To get a better
understanding of distributed query processing, it is better to assume equal transmis
sion cost, otherwise the network topology might cause unexpected schedules. How
ever, one should realize that the results obtained in the Equal Transmission Cost
Model are not always directly applicable to the general model.

Nowhere in the theorems nor in the resulting algorithms is any assumption
made about the materialization presented to the optimizer. Therefore, the produced
schedules are still optimal even if a redundant allocation is used. The optimizer will
decide which copy to use; it may even use several copies of the same list in one
schedule. Whether this is feasible depends on the mutual consistency of the copies. If
copies are identical all the time, the optimizer is free to use as many copies as are
required. If, on the other hand, copies are notified of changes independent of each
other, they may be different and in that case the optimizer should be given a non
redundant materialization.

3.3. 7. Response Transmission Times Before and After Seriali;zation

We have implemented the minimum response transmission time algorithm for
the Equal Transmission Cost Model. A comparison has been made between the
response transmission times before and after serialization of parallel schedules that
use the same communication channels. Furthermore, the serializations obtained by
the heuristic approach discussed in subsection 3.1.6 and the optimal ones are com
pared. No further changes were made in the schedule, except transmissions of identi
cal data over the same channel were avoided. As one would expect, the response
transmission time after serialization is larger. However, one should keep in mind that
an increase of the response transmission time after serialization does not necessarily
mean that the obtained processing schedule is not optimal. For example, if two
inverted lists that reside at the same site have to be united, the produced schedule will
consist of the transmissions of both lists to the result site. Before serialization the
response transmission time will be equal to the transmission time of the largest list.
After serialization it is equal to the transmission time of a list whose size equals the
sum of the sizes of the two lists. An alternative would be to unite the two lists before
transmission, and, under the assumption that the size of a union is equal to the sum

•

'

62

of the sizes of the operands, the response transmission time of this schedule is not

better than the serialized one.
We assume that the lists are distributed over a small network consisting of

ti1ese sites; this figure is chosen rather small to compu~e the optimal serialization of
the schedules. The disjunctive no1·r11al form of the queries are r~nd?mly generated by
drawing the following parameters from a uniform distribution with integer values:

size of lists 1, 2, ... , 10000
number of terms (terms) 1, 2, 3
11umber of lists per term (list/term) 1, 2, 3, 4 ·
percentage of A-lists per term (A-lists/term) 20, 40, 60, 80, 100

size intersection 100
delay 1000

We will compare the response transmission times before and after serialization if we
change the number of terms, the number of lists per term and the percentage_ of ~
lists per term. Also the ratio between the two figures is given. The comparison 1s
made by singling out a particular parameter and running a hundred queries for each
discrete value of that parameter and letting the other ones be drawn randomly from
their respective domains.

On the average the schedules produced by the heuristic serialization algorithm
were 2% worse than the optimal serializations (only the optimal serializations that
could be c,omputed in a reasonable amount of time were compared with the heuristic
ones). One should, however, keep in mind that the parameters were kept small to be
able to compute the optimal serialization of the schedules.

From table 3.17 we may conclude that the response transmission time after
serialization is much larger than under the Parallelism Assumption if one, or both, of
the following conditions holds:

• the schedule consists of many parallel schedules for which the response
transmission time is computed independent of each other, and that share few
resources (e.g., many tex·ms),

• communication channels are occupied for a long period of time by large
transmissions (,e.g., few lists per term or few A-lists per term). ··

We expect that the above conclusion also holds if response time, instead of only
response transmission time, is minimized. A comparison between the optimal process
ing of a query and the schedules produced by first computing them under the Parallel
ism Assumption and then serializing them, is far more time consuming than the com
parison discussed above, because of the many ways the lists can be united and inter
sected with each other.

3.3.8. Mini111izing Response Time

!he res~nse time of a query is determined by the response times of the basic
operations, which for an inverted file system are the union, the intersection and the
transmission. We expect that finding the minimum response time is not feasible,
because of the enormous number of solutions. One reason that causes this has
already been discuss~, . na1:1ely the serialization of a schedule. Therefore, we pro
posed a separate opt1m1zat1on of the response transmission time and the response

63

· terms 1 2 3
before 4229 5979 5989
after 4229 6469 7405

•

1.0 1.08 1.23 ratio

lists/term == 3, A-lists/term == 80%

lists/term 1.0 2.0 3.0 4.0
before 4488 6064 5751 3086
after 4562 6133 6234 3363

•
1.02 1.0 I 1.08 1.09 ratio

terms == 2, A-lists/term = 80%

A-lists/ term 20% 40% 60% 80% 100%
before 5903 5772 6397 4652 5393
after 6354 5979 6594 4859 5639

• 1.08 1.04 ratio 1.03 1.04 1.05

terms = 2, lists/term == 3

Table 3.17. Varying different parameters.

processing time. Under the Transmission Assumption the optimizer first minimizes
the response transmission time, which was done in the previous subsection. The
macro-schedule obtained is then serialized as far as the transmissions are concerned,
such that again the response transmission time is minimized. If local processing can
be neglected compared to transmissions, the optimizer is finished. This is also true if
minimizing the response processing time of a site has no influence on the macro
schedule, and so it can be done by the site itself. The approach of minimizing
response processing time at both optimization time and execution time will be dis
cussed in more detail now.

Giving every site the responsibility to minirni.ze its contribution to the response
time of the query has the advantage that the system can react more actively on the
differences from the expected response transmission times of the lists. For example, a
site has to compute the order in which a couple of lists is intersected or united. This
order can be important, however, in general some freedom is left to choose an order.
The response transmission time of the lists given by the schedule is merely an estimate

•

•

64

of their real arrival times. The flexibility can be obtained by starting with an initial
execution-order based on the expected response transmission times and gradually
adjusting it when some of the lists arrive.

The disadvantage of postponing the computation of the processing schedule for
each site is that a complete view of the serialization of the schedule is lost. For exam
ple, a site has to execute operations in different parallel schedules. The effect of a cer
tain serialization of the operations can not be estimated, because other sites may take
cont1icting decisions. To overcome this problem, the optimizer should include local
processing in the schedule produced, when minimizing response transmission time.
This is done as follows. First, a macro-schedule is computed which determines the
duties that have to be done by the sites involved. To know the response transmission
times of the intermediate results at a particular site, the macro-schedule is serialized.
From this and the duties the micro-schedules can be determined, again under the
Parallelism Assumption. Then the micro-schedules are integrated in the macro
schedule, whic.h is serialized again. This is the final schedule which is transmitted to
all sites involved.

Fig. 3. 18 shows that two intersections of two parallel schedules have to be com
puted at site S before serialization. The rectangles stand for the computation of the
result with which they are labeled. Their lengths stand for the duration of the com
putation. They are drawn next to the time scale to emphasize that they have not been
serialized yet.

A B
Po To

A"B I

l I

t
I I
I AOC I

p
T a 0

C AnC
•

Figure 3.18. Two parallel micro-schedules.

At th~s point w~ ass~me that the macro-schedule has been computed, implying
that th.e d~t1es of the sites involved are known. How the micro-schedules can be com
p~t~d 1s discussed now. Note, determining a micro-schedule is not the same as deter
~rung a schedule for a centraliz_ed database because not all data on which the opera
tions are perfor111ed ne~ ~e available from the start. The micro-schedules are merely
computed to show this difference and the way they are integrated in the macro-

data a~e s~ored on ~1sk, such as clustering. We assume that the cost to retrieve a lis't
from disk 1s proportional to its size (Local Processing Assumption).

•

65

•

Let us first take a look at a non-result site. I ts major duty is to compute the
intersection of two lists, which may themselves be the results of previously computed
intersections. If so, the site merely has to wait until both operands of the intersection
have arrived. The response processing time of such an intersection, say A n B, com
puted by S.i: is

RPT.-x: (A n B) = max(RTTx (A),R TT.'< (B)) + PTx (A n B).

A more complex expression such as Ai n A1 n Ak, where both intersections have to
be computed by the same site, will not occur, because the algorithm that minimizes
the response transmission time considers the two intersections Ai n AJ and Ai n Ak
first and it can easily be seen that their R TTr 's are no larger than the
RTTr(A; n A1 n Ak).

The only interesting subexpression tree that remains~ is A; n A1 n B 1, where
both intersections are computed by Sx. Three cases can be distinguished: (1) both A,
and A 1 arrive before B1, (2) either Ai or A J arrives later than B1, and (3) both A; and
A J arrive later than B1 • In cases (1) and (3), first the intersection of the A-lists is
computed and the result intersected with the complemented list B 1 (RPT:). In case
(2) there are two alternatives: either the site S_-,.; waits until both A-lists arrive and
then does exactly the same as in case one and three, or the first arriving A-list is inter
sected with B I and the result is intersected with the other A-list (RPT';). The
corresponding response processing times are:

RPT:((A; n A1) n B 1) = max(RTTx(A,),RTTx(A1))

+ PT,x(Ai n A1) + PTx((Ai n A1) n B,)

RPT';((A; n B 1) n A1) == max(max(RTTx(A;),RTTx(B1)) + PTx(A; n B,),
RTTx(A1))

+ PTx((A 1 n B,) n A1).

If we write PTx (X n Y) = Po + P 1(I X I + I Y I) (Local Processing
Assumption), then we can easily derive the condition that the first alternative is better.
Assume ~

Then,

RPT~ = RTTx (A 1) + 2P o + P 1(Ai I + I A 1 I + I B1 I), and

RPT': = max(RTTx(B,) +Po+ P1(IAi I + IB1 I),
RTT.x(A1)) +Po+ P1(JA; I + IA1).

••

If RTTx(A1) is larger than the response processing time of the intersection between A,
and B 1 then the first alternative can not be better. So, RPT~ ~ RPT'; if

•

66

Now consider the result site. Its major task is to compute all the union opera
tions of the expression tree in the disjunctive normal form. Occ_asionally, it ~a;v also
have to compute an intersection. First we consider an expression tree cons1st1ng of
only union operations. In {Liu 1976] an algorithm is given to compute !he union of
lists such that the total processing time is minimized. The processing schedule
obtained has" however, also minimum response processing time, if all lists are already
available at the result site. The reason is that only one CPU is used and the number
of operations is the same. Liu's algorithm forms the basis of the algorithm that we
propose, therefore we will discuss it first.

Consider a query that consists of only unions, and that all the inverted lists are
available at the result site. The minimum total (or response) processing time is
obtained by processing the query according to a tree with minimum weighted path
length. The weight of tl1e leaves, the lists, is their size and all the other nodes, the
operations, have weight zero. Such a tree, called a Huffman tree, can be obtained by
applying Huffman's algorithm [Huffman 1952]. Huffman's algorithm manipulates a
set of subtrees. Initially, this set contains all the lists of the query. During every
iteration it takes two subtrees with smallest weight together in a new subtree, consist
ing of a union operation with the two selected subtrees as its operands. Finally, only
one (sub) tree remains.

In general, not all operations are unions and not all the inverted lists will have
the same response transmission time to the result site. A simple approach, which is
similar to the algorithm of Liu, is to execute the operation that will increase the
response processing time the least.

3.3.9. Minimizing Total Time

Minimizing the response time of a query is desirable for the user. However, the
schedules produced by the query processing algorithm will contain many transmis
sions and operations that are superfluous. The latter ones are detected during seriali
zation and can be removed. If the communication channels or the sites are already
heavily loaded with transmissions or operations of other queries., minimizing the
response time of a query will do no good for either the system and the user. The re
fore, minimizing the total transmission time is also an important issue and will be
considered here. In Theorem 3.13 and Corollary 3.14 it is shown that a query can be
rewritten into its disjunctive normal form, without increasing the total transmission
time. When minimizing the response transmission time the terms could be treated
independently. Because of the forking points in a schedule, this can not be done
when minimizing total transmission time. Hence, the schedules produced are not
necessarily optimal.

Theorem 3 .. 13 Under the Transmission Assumption and the Intersection Assumption
and i.n the Arbitrary Transmission Cost Model applying the distributive law to a
query will not increase its total transmission time.

Proof Assume we are given a schedule for a query and part of it computes

(A U B) n C, •

:"'here A : B and C m~y be lists or intermediate results. Also, C may stand for an
1ntermed1ate result or 1ts complement. Somewhere in this schedule A u B is com
puted, say at site S 1, and the result is sent to another site, say s 2, where it is

67

intersected with C. Simply postponing the union of A and B until they have been
intersected with C is not possible, because between the union of A and B and the
intersection with C there might be several forking points in the schedule., in the case
that the result of A U B is not only used at S 2• In the Equal Transmission Cost
Model there is at most one such forking point. The way the schedule is changed will
be discussed only for this case. The more general case follows right away.

The schedule is changed as fallows. Instead of computing the union of A and
B., they are concatenated, denoted by Conc(A ,B), and this concatenation is sent to
the sites that previously received the union. Computing this concatenation is merely a
trick to make sure that the queueing delay before transmission is counted only once in
the total transmission time. It is not a new operation on lists and~ therefore, it is not
one of the basic operations in the processing schedules. If the total transmission cost
was minimized this trick would .not be needed. All the sites that previously received
the union, except S 2, will split the concatenation and compute the union. Site S 2 also
splits the concatenation but then both A and B are intersected with C. After that
the two results are united.

As far as transmissions are concerned the only change in the schedule is that
instead of A U B, Cone (A ,B) is transmitted. The transmission times of the union
and of the concatenation are the same under the Intersection Assumption. More pre
cisely,

IA u BI IAI + IB IAI BI/IXI,

which equals I A I + I B I if I A I I B I / I X I •
IS neglectably small. So,

I A U B I = I Cone (A ,B) I . The cost of the former is

T 0 + TC;1(A) + TCi1(B),

which is the same as TTiJ (Cone· (A ,B)). Hence, the total transmission cost has not
changed.

□
Corollary 3.14 Under the Transmission Assumption and the_ Intersection Assumption
and in the Arbitrary Transmission Cost Model a schedule of a query with minimum
total transmission time can be replaced by a schedule for the disjunctive normal form
of the query without sacrificing its optimality.

Theorem 3.15 Under the Transmission Assumption and the Intersection Assumption
and in the Arbitrary Transmission Cost Model the union operations of a query in dis
jtinctive normal form can be executed at the result site without increasing its total
transmission time.

Proof Instead of transmitting the result of a union, the concatenation is transmitted.
If at the receiving site the union is required the concatenation is split and the union is
computed.

□
The results obtained are exactly the same as for minimizing the response

transmission time. However, here we have to be careful not to change the schedule
too much. For example, the transmission of Cone· (A ,B) has to go along exactly the
same channels as A U B does in the original schedule. The reason for this is that

•

68

A U B might be needed in a different part of the schedule as well. Also, the
transmission of C to the site that computes the intersection has to stay the same. In
minimizing the response transmission time the computation of A n C and B n C
could be treated independently because of the Parallelism Assumption. Here, this is
out of the question, because it might mean that C is transmitted to several sites or
that other lists are transmitted to C, thus increasing the total transmission time.
Because the forking points have not been removed from the schedules we may not
simply rewrite the query to its disjunctive normal form and determine the minimum
total transmission cost for each of the terms independently.

Whether minimizing the total transmission time of a query can be solved in
polynomial time is an open problem, as far as the author knows. Therefore, we will
take a heuristic approach. The minimum total transmission time schedules for each
of the terms will be determined independently, and after that, redundant transmis-
sions are removed. ·

. The algorithm to compute an efficient total transmission time schedule for pro-
cessing a query is given in fig. 3.19. The procedure TTT term will be supplied later.

proc TTT query (query Q)schedule:
begin

schedule sch;
put Q in disjunctive normal form;

fort to d
do

{ say, Q 1 U Q 2 U · · · U Qd }

sch : sch U TTT term(Q,)
od;
sch

end

Figure 3.19. Algorithm TTT query.

In the foil owing, we assume that a term looks like

and that all lists reside at different sites. If this is not true the intersection(s) should
be computed locally. Also, we assume that none of the B-lists resides at the result

,

site. Again, if so, they can be deleted from the term without increasing the total
transmission time of the optimal schedule.

Only the Equal Transmission Cost Model is discussed.

Theorem 3.16 Under the Transmission Assumption and the Intersection Assumption
and in the Equal Transmission Cost Model the minimum total transmission time for

• processing

69

where l B, I ~ I Bi+ 1 I for i = l, 2, · · · , m - I., is obtained by a schedule consist
ing either of the transmissions of A and all B; "s to the result site, or of the transmis
sions of B 1, B 2, •.. , Bk, where I Bk I is.;; I A I and I A I < I B1.: + 1 J t() the result site
and the fallowing transmissions

A ··· ➔ Bk +1 > Bk +2 ➔ • • • ➔ B,,1 ➔ result site.

Proof Transmitting Bi to B1 and the result Bi U B1 (Note, that
(Bi U B1)

1 == B; n B 1) to the result site will cost no less than transmitting both Bt
and B1 to the result site. Therefore, for Bi to be part of the processing it is either
transmitted to the result site or it is part of

A > Bk+ 1 > Bk +2 -·➔ • • • > Bm ➔ result site .
•

,In the first alternative the cost for Bi to be part of the schedule is TC(B,). For the
second alternative we charge the cost of a transmission leaving the site where a list L
resides to L itself. Then the cost for B; is T(A). Thus, if I B; I ~ I A I, it is better
to transmit B, directly to the result site.

The remaining cost of the second alternative is

(m - k + I)TC(A).

The cost of any other schedule for Bk+ 1, ••• , Bm containing at least m - k + 1
transmissions can be no less because A is the smallest remaining list and there is no
way to reduce the sizes of the lists. The total transmission cost of the second alterna
tive is

k

~ TC(B;) + (m k + I)TC(A).
i = I

If A resides at the result site we also have to consider transmitting all the Bt 's
to the result site, because it means one transmission less. Its cost is

m

~ TC(B,).
i = l

Again, among all schedules containing m transmissions and in which all Bi's are
included, it is the cheapest one, because transmitting one B-list to another does not
decrease the total transmission time.

□
Theorem 3.17 Under the Transmission Assumption and the Intersection Assumption
and in the Equal Transmission Cost Model the minimum total transmission time for

• processing

A 1 n A 2 n · · · n An n B' (n ;?.: 3),

'

70

where A 1 and A 2 are the smallest and second smallest A-list, respectively, is either
obtained by the schedule

A 1 ➔ A 2 > • • • ➔ An - ➔ B > result
• site,

or by

A 1) A 2 ➔ • • • > A, - 1 > A; + 1 • • • · > An ➔ B ➔ result
site,

if Ai resides at the result site.

Proof The total transmission time of the first alternative is
•

•
'

Every other schedule that contains n + 1 or more transmissions will be more costly
because A 1 is the smallest A-list.

The total transmission time of the second alternative is either

or

'

depending on whether i equals I or not. Such a schedule containing only n transmis-
sions can not contain the transmission of A 1 , where A 1 resides at the result site, other
wise the schedule would not visit all other lists in the term. Hence, every other
schedule that has n transmissions must at least be as expensive as the second alterna
tive.

Which of these two alternatives is better depends on the sizes of A 1 and A 2,

and where A 1 resides.

Evidently a schedule with less than n transmissions is unfeasible, because all
lists reside at different sites. '

□
Corollary 3.18 Under the Transmission Assumption and the Intersection Assumption
and in the Equal Transmission Cost Model the minimum total transmission time for

• processmg

A 1 n A 2 n · · · n An n B 1 n B 2 n · · · n B ~

is obtained by the schedule

S ➔ B2 > • • • ➔ Bm) result site,

(n ~ 3)

71

where S is the minimum total transmission time schedule for processing

with the deletion of the last transmission to the result site.

Theorem 3.19 The minimum total transmission time for processing

•

n B' m

is obtained by one of the four following schedules

or
A 2 > A 1 > B 1 ➔ B 2 ➔ • • • ➔ Bm > result site,

or by the optimal schedule for processing

or

Proof Goes along the same lines as the one of theorem 3 .16.
□

The algorithm TTT term to compute an efficient total transmission time
schedule for a term is given in fig. 3.20.

proc TTT term(term Q1)schedule:
{ Q, = A 1 n A 2 n · · · n An n BI n B 2 n · · · n B 'm}

begin
schedule sch;
if n 1

then
determine schedule according to Theorem 3.16(sch)

elif n 2
then

determine schedule acl'Ording to Theorem 3.19(sch)
else

determine schedule according to Corollary 3.18(sch)
fi;
sch

end

Fig.ire 3.20. Algorithm TTT term.

•

72

Exa111ple 3.6

In this example we will use the same query and the same data as in example 3.3
and 3.5 of subsections 3.3.3 and 3.3.5, respectively.

The total transmission time schedule for processing A n B n C n D' is
obtained by applying corollary 3.18. The list C is transmitted to A , C n A is sent
to B, then (C n A) n B to D, and the final result to the result site. The total
transn1ission time is

TTT = TC(C) + TC(C n A)+ TC((C n A) n B)
+ TC(((C n A) n B) n D')

== 250 + 50 + 50 + 50 = 400.

In a similar way the total transmission time of the schedule for A n B n E'
can be computed; TTT = 550. So, the total transmission time of the whole query is
9SO. Fig. 3.2 l(a) shows the schedule.

This exan1ple nicely shows that considering the two terms independently does
not necessarily lead to an optimal solution. Because both A and B occur in both
terms it would have been better to start off with transmitting B to A . Then the
schedules for both terms split. On the one hand the result of A n B is sent to C
and from there (A n B) n C is sent to D and the final result to the result site; on
the other hand A n B is also sent to E and then (A n B) n E' is sent to the result
site. The TTT of this schedule is 700. In fig. 3.2l(b) this schedule is shown.

B 450,A

50

(a)

C 50>

E

(b)

result site

result site

50

Figure 3.21. Two schedules for A n B' n (C U D).

□
Minimizing the total processing time for the non-result sites can be done using

Liu' s algorithm. If at the result site only union operations are computed the same
algorithm can be used. However, sometimes at the result site also intersections are
computed. In that case it might happen that the distributive law can be applied such

•

73

that the intersection is moved upward in the expression tree, thus eliminating a vari
able. The schedule obtained is not necessarily optimal because Liu's algorithm
assumes that all variables in the query are distinct., which is not necessarily true.

3.3.10. Summary

The idea of translating a user query directly to the basic operations without
first decomposing it at the logical level has been investigated for the inverted file
organization. The basic operations were the transmission of data and the set opera
tions. Both minimizing response time and total time were considered.

Minimizing response time is done in two phases. First, a macro-schedules is
constructed to minimize response transmission time. This macro-schedule determines
the duties of the sites involved. Secondly, each of these sites determines a micro
schedule which is integrated into the macro-schedule. Under the Transmission

•

Assumption, Parallelism Assumption and the Intersection Assumption optimal
, response transmission time schedules can be produced. This is done by first rewriting
the query into its disjunctive normal form and then breaking each term into small
expressions, consisting of at most three A-lists and one B-list. All the union opera
tions are executed at the result site. The macro-schedule obtained is serialized to
order transmissions that share the same communication channels. A micro-schedule
is computed based on the expected arrival times of intermediate results determined by
the serialized macro-schedule. The advantage of letting the sites compute their own
micro-schedule is that only locally available information about data storage can be
taken into account. After the integration of the micro-schedules into the macro
schedule, it is serialized again to order local executions.

The same approach for minimizi.ng total time does not necessarily lead to
optimal schedules because of the forking points. Therefore, a heuristic approach is
taken. Again, the query is rewritten into its disjunctive normal form and the union
operations are executed at the result site. Only now schedules for complete terms are
determined. In general, such a schedule consists of the transmission of the smallest
A-list in the term along the other A- and B-lists in the term, and finally to the result
site.

The effect of allowing for an arbitrary computer network topology on the
optimality of the schedules and the complexity of the algorithms was investigated for
minimizing response time. Because also sites that do not contain lists referenced in
the query had to be considered for executing an intersection, the execution time of the
query processing algorithms will depend on the size of the computer network. The
schedules obtained remain optimal.

3.4. Distributed Query Processing Using Semi-Join

The basic operations in this section are the relational operations, restriction,
projection and join [Codd 1970], extended with the semi-join. This semi-join is not
necessary, but it is a handy tool for reducing the amount of data to be transmitted
before the computation of the join. Although not recognized at the time, Wong was
most probably the first to use a sort of semi-join in distributed query processing
[Wong1977]. Later this operation was more formalized [Bemsteinl98la,
Hevnerl979a] and is now considered as a useful operation.

Our own work in this area has been done partly in parallel with A.R Hevner

•

~111ti S. B. Y ,1() (He\'ner 1979,i~ Hevner 1979b. Apers l 979a. Apers 1979b l~ and partly i11

C(ltiiper~iti{)fl with them [t\pers 1980b]. 'f () n1,tke this n1()nograph self-ct1ntained st)t11e

()f their results \\'t11 be reviewed t<)().

'T'ht~ basic idea behinc.i the pr()pt)sed algc>rithn1s is t() reduce tl1e sizes t)f the rela
ti()tls refere11ced 111 the query as n1uch ,is possible a11d to transn1it then1 t<.1 the result
site \\1here the j()i11s are cc>n1puted, Tl1e reduction is achie\1ed by· semi-joi.ns. Tl1e
qtiery· is c<.,nsidered as a \\'hole and is nl1t dect,mposed into subque1·ies. Integrating
the prt,pc,sed aig<)rithms V,lith a dt"Con1p<)sition prt)cess is discussed in sectio11 3.5.

Although the relations rn:.t)' be st(Jred redundantly the optimizer expects ,l non
redu11dant n1aterialization. Furtherm(,re. we assume that local pr(1cessing cost can be
neglectt."Cl C{1n1pletely compared to transmissicln cost. This implies that tl1e results are
t1nly' applicable f<lr computer netwt)rks that have this property'. If local processing
l~l)St can not be neglected we have t<.) keep in mind that applying semi-joins may·
require re-scanning some of the relatit)ns.

3.4.1. Estimating Technique and Schedules

The expected cost of schedules can only be compared if the sizes of i11termedi
ate results can be estin1ated. To estin1ate tl1e number t)f tuples that remain in a rela
tion after a semi-join is applied~ we need to know something ab<.1ut the attribute
v~alues in t.he relations. Let the domain t)f attribute A be denoted by D . The attri-.,

bute values of tuples of a given relation f()rn1 a subset of D. The cardinality of the
subset divided by' the cardinality of D \\till be called the selectivity of that attribute of
the relation. The selectivity of the jth attribute of R, is denoted by Pi; (0 ~ p,1 ~ l).
We assun1e that the subsets correspondi11g tt) attributes of different relations are
independent of each other, so that we may assume that the selectivity of the intersec
tic)n <.)f two subsets is the pr()duct of the selectivities of the two subsets.

To show how these selectivities are used to estimate the resulting size of a rela
tic,n after a semi .. join has been applied we assume that we know the following about
the rela tit"lns.

l~or each relation R,, i = 1, 2, ~ ~""1:

,,, : number of tuples,
a, : number of attributes,
si : size (in number of bytes).

F<.1r each attribute A,,, j :::;: l, 2, ... , a1 of relation R,:
' .J

D1_1 : domain of A lJ ,

u~1 : subset t1f D11 .. containing all values occurring in A;1 ,

P,., : selectivit)' (p;,1 = I u,1 I I I D11 I),
b~1 : size (e.g., in number of bytes) of i,,1 (b,1 -·- I u,., I X number of bytes in

A,;).

Suppt)se, the join Ri(A,1 = Akt)RA: has to be computed. To omit the tuples of R1

that are not part of the join, the unique values of attribute A&i, uk1, wit.h selectivity p1,;1

75

are transmitted to relation R,. The parameters of the remaining fragment, after the
semi-join with Akt, will be:

s, (Sj X Pkl'
Pi} (Pi} X Pkl,
bi} ,(bi) X Pk!.

We discuss these parameters as if they were the changed parameters of the original
relation.

In the second line the independence between the subsets u;1 and uk, is used.
The third line is a direct consequence of this independence. To compute the resulting
size of Ri (s;), we assume that each value in uiJ has an equal probability of being used
in a tuple of R;. Although the assumptions to estimate the resulting parameter seem
restrictive, the results may be applied to a much larger class of situations
(Rosenthal 1981].

The semi-join operation is used to reduce the size of a relation before transmit
ting it to the result site where the joins are computed. A join is computed by simply
concatenating matching tuples on the joining attribute. All the data transmissions
used for reducing a relation and the final transmission of the reduced relation to the
result site form a schedule for a relation. Fig. 3.22 shows such a schedule. By consid
ering attributes as projected relations, schedules for attributes are defined as well. A
schedule for a query consists of the collection of the schedules for the relations that
are used in the query and that do not reside at the result site.

Although the tuples of a relation are transmitted we will speak of the transmis
sion of a relation, and the same for attributes.

result site

Figure 3.22. Schedule for relation R 1•

In general, more than one semi-join may be applied to a relation, or a sen1i-join
is computed between a relation and an intermediate result that is already the result of
another semi-join. Therefore, we define the incoming selectivity of a schedule for a
relation as the product of the selectivities of all attributes in the schedule wht~re the
selection of each attribute counts only once and where the selection of the attributes
of the relation itself do not count at all. For example, the incoming selectivity c>f rela
tion R 1 in fig. 3.22 is p 31 X p 22• The size of the relation to be transmitted tin1es the
incoming selectivity of its schedule is the size of the reduced relations. Note, the
selectivities caused by local predicates have already been applied.

'

76

We assume that the size of intermediate results are correctly estimated by using
selectivities (Selectivity Assumptions).

3.4.2. Simple and General Queries

To start with local processing, is, in general, the best thing to do in a distri
buted environment. With this we mean the computation of restrictions and projec
tions and, if more than one relation reside at the same site, semi-joins. Logically, the
relations at one site are viewed as a single relation, although the Cartesian product
between them is not computed. As a consequence all the algorithms assume that only
one relation occurs per site. After initial local processing, the following parameters
result:

'

: number of relations in the remaining query,
: number of attributes in relation Ri,

•

: number of joining attributes in relation Ri.

In [Hevnerl979a] the algorithms PARALLEL and SERIAL were introduced
and investigated. These algorithms produce minimum response transmission time and
minimum total transmission time schedules, respectively, for simple queries. Simple
queries contain, after initial local processing, relations consisting of only one and the
same attribute, the joining attribute. Thus ai = f3i = 1, for i = 1, 2, ... , m .

Because our results in the next subsection make use of these algorithms we will
briefly elaborate on them. Algorithm PARALLEL (shown in fig. 3.23) creates for
every relation, R;, a schedule that forms the parallel integration of schedules for other
relations. The destination site for the parallel schedules is the site where Ri resides.
At this site the semi-joins with R; are computed, and the result Ri is transmitted to
the result site. Algorithm SERIAL (fig. 3.24) constructs a schedule that consists of
the transmission of the smallest to the second smallest, etc., and finally to the result
site. Because one of the relations may reside at the result site the algorithm considers
a second alternative to obtain an optimal schedule. In both algorithms the struct
relation contains all the parameters of subsection 3.4.1 needed to compute the cost of
the schedules.

The complexity of algorithm PARALLEL is O(m 2) -and that of SERIAL
O(mlogm), where m is the number of relations involved in the query [Hevnerl.979b].

Example 3.7

As an example database throughout this section we will use the database of a
real-estate agent. It consists of a relation SELLER , which contains information
about sellers and the identification codes of the properties they want to sell. The rela
tion PR OP supplies information about the property that is for sale. The relation
SALE is concerned with the contract between a buyer and a seller. The three rela
tions and their attributes are listed below:

SELLER (SN AME ,ADDRESS ,CITY ,PROP#),
PROP(PROP# ,TYPE,LOCATION),
SALE(BNAME,SNAME,PROP# ,DATE).

•

proc PARALLEL=([jrelation R;site Sr)[jschedule:
begin

int m upb R;
[1 :m]schedule sch;
order relations such that R[l].s ~ R[2}.s ~ ... ~ R[m}.s;

{ R[i].s is the Lsize of relatio1z Ri }
for i tom
do

construct a schedule for Ri
the result site;
for J to i -1
do •

consisting of the transmission of R, to

construct integrated schedule for R[ij to Sr
. c·onsisting of parallel sclzedules for R[l}, ... , R[jj

od;
sch[ij : schedule »1ith n1inimum R TT among these i schedules

od;
sch

end

Figure 3.23. Algorithm PARALLEL.

proc SERIAL ([]relation R;site Sr)schedule:
begin

int m = upb R;
order relations such that Rf lj.s ~ R/2].s ~ · · · ~ R[mj.s;
consider both schedules:

R l ➔ R 2) · · · > Rm > Sr
and, if Rr resides at the result site, Sr

R1)R2 > ••• >Rr-1 ➔ Rr+I >··· >Rm)Sr;
schedule with smallest TTT

end

Figure 3.24. Algorithm SERIAL.

The query stated at a site other than the ones where the three relations are located:

Give the identification numbers of properties, located in the Santa Cruz
Mountains, that have been sold after 1970 by people living in San Jose.

The parameters of the relations after local processing are shown in table 3.25.

77

78

A, 1 PROP#

relation b; I Pi l
Rt : SALE 800 0.8
R2: SELLER 400 0.4
R3: PROP 300 0.3

Table 3.25. Parameters after local processing.

Algorithm PARALLEL constructs schedules for the relations in ascending
order of their sizes. The schedule for PROP is:

• •

'
A 31

300➔ result site

RTT = 300

For SELLER the following two alternatives are considered:

A 21
400 result site

RTT = 400

300 120 -A 31 > A 21 · > result site

RTT = 420

The first one is chosen because its RTT is smallest. For SALE three schedules are
constructed:

A 11 BOO ➔ result site

RTT = 800

300 240 .
A 31 • · >-A 11 -- · > result site

RTT = 540

A 11
96 ➔ result site

RTT = 496

The last one shows the parallel integration of the schedules for PR OP and SELLER .
Because all relations are part of this schedule and its RTT is smallest among the ones
for SALE it is the schedule for the query.

•

79

Algorithm SERIAL only considers the first alternative because none of the rela
tions is located at the result site. The computed schedule is

300 120
A31------' A21 ··· >A11 ~-~·➔ result site

TTT 416

□
If after t.he initial local processing not all ai 's are l the query contains either

target attributes that are no joining attributes, or it contains several joining attributes.
The resulting query is then called a general query and is characterized by
ai ;;ai: /3, ~ I, for i == 1, 2, ... , ,n. In the next two subsections schedules for minim
izing response transmission time and total transmission time are constructed.

3.4.3. Minimizing Response Transmission Time
•

The response transmission time of a query will be obtained by n1inimizing the
response transmission times for each of the relations. So,, again the Parallelism
Assumption (see subsection 3.1.5) is used, which states that parallel schedules do not
influence each other's response transmission time. This means that the relations can
be treated separately.

In general, a relation R1 will, after initial local processing, consist of target and
joining attributes. The attributes are renumbered such that all joining attributes come
first and then the target attributes that are no joining attributes. This numbering is
done such that the jth joining attribute of R 1 and Rk are the same. Before transmit
ting relation R1 to the result site it is as much as possible reduced in size such that tl1e
response transmission time of its schedule is minimized. This is done by computing
semi-joins with the joining attributes of R,. Let one of them be AiJ, then the uniqtie
attribute values ukJ of other relations Rk are sent to Ri. Because we want to compute
the minimum response transmission time of R; we are interested also in the minimum
response transmission time schedules for AkJ. Therefore~ we define for each attribute
Apq a simple query. The relations involved in such a query are the relations in the
original query projected on the attribute Apq. The algorithm PARALLEL then com
putes minimum response transmission time schedules for transmitting relations con
sisting of only one joining attribute to the result site (in this case the site of R,).

Algorithm RESPONSE GENERAL (fig. 3.26) orders the schedules of all Ak_f

with respect to their minimum response transmission time. Then it constructs a
schedule for Rj for each Ak1 • This schedule consists of the parallel integration of the
schedules of all Apq with a minimum response transmission time less than or equal to
the one of AkJ, and the transmission of the reduced R, to the result site. Among all
schedules for Ri the one with the smallest response transmission time is chosen.

Example 3 .. 8

We will use the same database as in example 3.7. A minimum response
transmission time schedule is constructed for the query sho'\A-'Il in fig. 3.27:

Give the names and addresses of sellers that live in Los Angeles, and the
type of property that were sold after 1975.

We assume that the relations are located at different sites other than the result
site. The first part of the processing schedule will consist of the restrictions

•

80
•

proc RESPONSE GENERAL (/}relation RJ[jschedule:
begin

int n-2 = upb R;
/flex} schedule candsc·h, intsc:h, sch;
define _for each joining attribute A 11 a J·imple query Y..'ith arbitrary
result site;
apply algorithm PARALLEL to each simple quer_y(c·andsch);

{ candsch contains the schedules for all Joining attributes}

for i tom
do

put the schedules that have the same 1·oining attributes as R{ij at
the beginning of ca,1dsch in ascending order on their R TT's, say
there are l of them;
for j from O to /
do

od;

intschlj] : integrated schedule for R/i) consisting of the
parallel schedules candsch[JJ, ... , c·andsc·h[j}, and compute
transmission cost of R [i] by means of the incoming selectivity

sch[i] : schedule in intsch with smallest R TT
od;
sch

end

Figure 3.26. Algorithm RESP ON SE GENERAL.

CIT}~ = Los Angeles and DATE > 1975. After this local processing we assume that
the data shown in table 3.28 results.

Ai 1 PROP# A;2 '
SNAME

relation R; •
b; I bi2 size p; I Pi2

..

R 1 : SALE 10000 1400 0.7 1000 0.8
R2: SELLER 6000 400 0.2 900 0.6
R3: PROP 5000 800 0.4

Table 3.28. Parameters after local processing.

For each joining attribute, PROP# and SNAME, a simple query is defined ..
Algorithm PARALLEL is applied to both of them resulting in the following
schedules:

•

PROP#

SNAME

CITY: LOS ANGELES

SNAME
PROP#

SALE

DATE >1975

PROP#""'

SELLER

SNAME
ADDRESS

PROP#

YPE

PROP

•

TARGET

Fig11re 3.27. Graphical representation of example query.

A 21
400 arbitrary site

A 31 -
40_0_, A.

31
__ 16 __ 0_, b. .

7' > ar 1 trary s1 te

A 21 _4_0_0➔➔ A 31 160➔ A 11 -
1 ~ 2➔ arbitrary site

A 22
900 > arbitrary site

A 12 lOOO➔ arbitrary site

81

.,

The construction of the schedule for relation SELLER will be discussed in detail.
Schedules whose last transmission consist of attribute values of SELLER itself do not
need to be considered. The remaining schedules are ordered on their R TT. Table
3.29 shows this.

AiJ RTT

A31 560
A 11 672
A 12 1000

Table 3.29. RTTs of the candidate schedules.

•

82
•

For each of the attributes A 1j · in table 3.29 a schedule for SELLER is con
structed consisting of the integration of the parallel schedules of the other attributes
in the table whose RTT is less than or equal to the R TT of A;1. Among all these
schedules for SELLER the one with minimum response transmission time is chosen.

attribute A 31

A 4oo A I 60 SELLER 2400 l . 21 .,. ➔ 31 , , · ,,➔ resu t site

RTT = TT(400) + TT(0.2 X 800) + TT(0.4 X 6000)
= 400 + 160 + 2400
= 2960 •

attribute A 11

SELLER 1680 result site

400 160 A 21 ,,, •. · ➔ A 31 -_; A 11 112

RTT = max{TT(400) + TT(0.2 X 800),

attribute A 12

TT(400) + TT(0.2 X 800) + TT(0.2 X 0.4 X 1400)
+ TT(0.4 X 0.7 X 6000)

= 400 + 160 + 112 + 1680
= 2352

A 2 I -
400~> A 31 160

160
"" > A 11

112 .,, SELLER - 1-344---+ 1 . ;;r > resu t s1 te

A 12 IOOO

R TT ·--·- max(1 ... T(400) + TT(0.2 X 800),
TT(400) + TT(0.2 X 800) + TT(0.2 X 0.4 X 1400))
TT(lOOO))

+ TT (0.4 X 0. 7 X 0.8 X 6000)
= 1000 + 1344
= 2344

The last schedule has the smallest response transmission time and is chosen as
sch~dule for SELLER. Note, the parallel schedule A 21 - ➔ A 31 , SELLER can be
omitted because it does not reduce the size of SELLER .

•

83

•

The minimum response transmission time schedule for the other relations are:

400 A 21 ➔ A 31
160 ➔ SALE · 800➔ result site

RTT 1360

400
A21 ➔ A31

160➔ A 11
112 PROP 700 result site

RTT 1372

The response transmission time of the query is determined by the largest R TT of the
relations, which is 2344.

□
Theorem 3.21 The complexity of algorithm RESPONSE GENERAL is O(om 2log28),
where m is the number of relations and o is the number of joining attributes in the
query.

Proof The computation of the candidate schedules for the o joining attributes takes
O(om 2

). There are at most m candidate schedules per joining attribute. To put them
in ascending order on their R TT is the same as merging o lists of length m, and this
takes O (om log2o). This has to be done for each relation, so the complexity is
om 2log20.

□
Note, putting the schedules in array candsch in ascending order on their RTT

can also be done once, namely before entering the for-loop of i. The resulting algo
rithm has a worst case complexity that is slightly better than the one of algorithm
RESPONSE GENERAL, namely O(om 2). However, we expect that a relation, most
of the time, will have fewer than 8 joining attributes resulting in a better average case
complexity of algorithm RESPONSE GENERAL.

The quality of the schedules produced by algorithm RESPONSE GENERAL
depends on whether there is a correlation between two attributes of the same relation.
If so, it might happen that a restriction on one attribute can decrease the size of the
unique attribute value set of the other attribute, or that not every attribute -value has
an equal probability of being part of a tuple in the relation that results after the res
triction. This is called attribute dependence. In [Pelagattil 979] an attempt has been
made to investigate the cost of schedules without assuming attribute independence. It
seems feasible to keep track of a small number of dependences. To consider all
dependences might require a database as large as the original database.

Theorem 3.22 Under the Transmission Assumption, the Parallelism Assumption and
the Selectivity Assumption and in the Equal Transmission Cost Model the algorithm
RESPONSE GENERAL computes minimum response transmission time schedules
for relation R;, if there is attribute independence in relation Ri .

Proof We will show that to compute the minimum response transmission time
schedule for R;, it suffices to consider the type of integrated schedules computed by
algorithm RESPONSE GENERAL.

Assume that we are given a mini1num response transmission time schedule for
R 1 • Let S be this schedule without the final transmission of Ri. Then S is the

•

•

84

parallel integration of schedules for attributes. Say, the schedule for Akj has the larg
est response transmission time to the site where R; resides. The schedule f?r _AkJ c_on
sidered by RESPONSE GENERAL has a minimum response tra1:sm1ss1on time
because it is computed by algorithm PARALLEL [Hevner1979b]. So, 1f the schedule
for A*

1
in the optimal schedule for R 1 differs from the one produced by PARAl.:LEL

it can be replaced by the parallel integration of the schedules of all the attributes
whose transmissions are part of the schedule for AkJ, without increasing the response
transmission time of S. Hence, only the schedules for the attributes produced by
algorithm PAR.ALLEL have to be considered.

Algorithm RESPONSE GENERAL computes a schedule for R; for every Apq

and when it constructs such a schedule it contains the schedules for all attributes
whose response transmission time is less than or equal to the response transmission
time of the schedule for Apq. Hence, one of these constructed schedules contains the
parallel schedules for at least as many attributes as S. Therefore, the incoming selec
tivity of the integrated schedule considered by the algorithm is at least as small.
Thus, the transmission time of R; to the result site is no larger than in the minirnum
response transmission time schedule.

So, the schedule considered by the algorithm has minimum response transmis
sion time.

□
Corollary 3 .. 23 Under the Transmission Assumption, the Parallelism Assumption and
the Selectivity Assumption and in the Equal Transmission Cost Model the algorithm
RESPONSE GENERAL computes a minimum response transmission time schedule
for a query, if in all relations involved there exists attribute independence.

The algorithm presented in [Hevnerl979a] does not compute optimal schedules
and does not necessarily run in polynomial time, as was shown in [Apersl979a]. Also,
the improved version does not always produce minimum response transmission time
schedules, in spite of the claims [Hevner 1979b).

To obtain the real response transmission time one should again serialize the
parallel schedules. The effect of this on the response transmission time will depend on
the structure of the query and the locations of the relations. For example, if two rela
tions, located at different sites, are joined on two or more attributes it might happen
that one relation will send all its attribute values to the other, which of course can not
be done in parallel. Another example is, if two relations are located at the s~me site
and both have to be sent to the result site.

3 .. 4.4 .. Minimizing Total Transmission Time

When mini .. 1nizing the total transmission time of a relational calculus query the
same problems are encountered as discussed in the subsection on minimizing the total
transmission t.ime of a query on inverted lists. In [Hevner1979b] it was shown that
this problem is NP-complete. Therefore, we will adopt a heuristic approach. In the
first approach the schedules for the relations are determined separately, and the
schedule for the query is obtained by integrating these schedules, such that redundant
tran~missions ar~ re:noved. In the second approach the schedule for the query is
ob tamed ~y conSidenng the schedules for the relations all at once. The advantage of
the latter 1s that more elaborate schedules can be considered which reduce the rela
tions in size at low cost.

•

85

Let us first consider the transmission of one relation where semi-joins on only
one joining attribute are allowed. The query may reference several relations but they
will be treated independently. In algorithm RESPONSE GENERAL each attribute
A,1 had its own schedule of which some were part ot~ the integrated schedule for a
relation. Here, a similar approach will be taken. Algorithm SERIAL produces a
schedule, S, for a simple query. From this schedule we construct prefix schedules. A
prefix schedule for attribute AkJ will consist of all transmissions of S which precede
the transmission of Aki and the transmission of Ak1 itself. The transmission of AkJ

has an undefined destination. When this prefix schedule is used in the schedule for
relation Ri the site, where R; resides, becomes the destination site. We have to real
ize that, although, schedule S is optimal for the corresponding simple query, the
prefix schedule for AkJ is not necessarily an optimal schedule for the transmission of
A1ci. For the transmission of Ri all these prefix schedules are considered in turn. The
schedule for R; consists of the prefix schedule of one AkJ with the final transmission
of Ak1 to Ri, followed by the transmission of Ri to the result site.

Some of these prefix schedules may contain the trans1nission of the values of
the joining attribute of R;, A,1 . The selectivity of this attribute does not count in the
incoming selectivity of a schedule for R1 itself. Its only purpose is to reduce the
transmission time of other attributes in the schedule. To ensure that the produced
schedule for R, has minimum total transmission time we also have to consider prefix
schedules from which the transmission of A,1 has been deleted. Fig. 3.30 shows the
described algorithm.

Now we will discuss the quality of the schedule for Ri produced by algorithm
simple TOTAL GENERAL and the complexity of the algorithm.

Theorem 3.24 Under the Transmission Assumption and the Selectivity Assumption
and in the Equal Transmission Cost Model the algorithm simple TOTAL GENERAL
computes a schedule for R; that has mini111um total transmission time, if semi-joins
on only one attribute are allowed.

Proof Let the joining attribute be the jth one for all relations. The optimal schedule
for Ri will not consist of parallel schedules, for the same reason as the schedule pro
duced by algorithm SERIAL does not contain parallel transmissions [Hevner1979b].
So, we may speak of the last attribute transmitted to R; in the schedule. Say this
attribute is AkJ. The order of the transmissions in the optimal schedule is determined
by the sizes of the attributes. The smallest one is sent to the second smallest one, and
so on. Again, this is based on the optimality of the schedules produced by SERIAL.

We will show now that all attributes whose sizes are less than the size of AkJ

will be part of the optimal schedule except maybe for A,1 . Assume that attribute ApJ
with a size smaller than that of AkJ, is not part of the optimal schedule. Let AqJ be
the attribute in the optimal schedule which follows ApJ in size (i.e., I ApJ I s::; I Aq1 I)
and no other attribute in the schedule has this property. Then replacing AqJ by ApJ
will not increase the total transmission time of the schedule because ApJ is not larger
than Aq1 and its selectivity is also not larger. This replacement can be repeated until
Akj should be replaced but this contradicts the choice of the optimal schedule.

The replacement argument does not apply to A 11 , an attribute of R;, and attri
butes whose sizes and selectivities are the same as the ones of AkJ. Therefore, the

•

86
•

proc simple TOTAL GENERAL (/]relation R;int })[]schedule:
begin

int ,n = up,b R;
schedule S'> S';
[l:mjschedule sch;
[l: mjrelation sq;

{ the jth joining attribute defines a simple query}

for i tom
do put A ;1 in sq od;
S : SERIAL(sq);
for i tom
do

od;
sch

end

S' : . delete transmission of AiJ from S;
for s in { S,S'}
do

con.rtruct for each prefix schedule from s a schedule for relation
R[i]

od;
sch[i] := schedule for R[i} with the smallest TTT among the
above constructed ones, or the schedule only consisting of the
transmission of R[ij to the result site, whichever is smallest

Figure 3.30. Algorithm simple TOTAL GENERAL.

algorithm simple TOTAL GENERAL must consider all prefix schedules, with and
without the transmission of A,1 . Hence, the minimum total transmission time
schedule for R; is among the ones considered by the algorithm.

□
Theorem 3.25 The complexity of the algorithm simple TOTAL GENERAL is
O(mlogim).

Proof Based on the complexity of algorithm SERIAL, which is O (m log2m).
□

•

87

Example 3.9

For each joining attribute, PROP# and SN AME, a simple query is con
structed and algorithm SERIAL is applied to both of them resulting in the following
two schedules:

attribute PROP#

A 21 ~90> A 31
160 A 11

112 ➔ arbitrary site

attribute SNAME

A 900 A 600 b. .
22 -- 12 · ➔ ar 1trary site

The construction of a schedule for relations SALE and SELLER based only on
semi-joins with attribute SNAME is shown in detail. For relation SALE only the
prefix schedule consisting of the transmission of A 22 is of interest. The resulting
schedule for SALE is

A 22
900 > SA LE 6000 > result site

with total transmission time 6900.

For relation SELLER the complete schedule produced by SERIAL is con
sidered and also this schedule with the transmission of A 22, which is part of
SELLER , deleted. The two schedules and their total transmission times are:

600 ➔ .SELLER 4800➔ result site

TTT == 6300

A 12 IOOO➔ SELLER ... ~SOO> result site

TTT = 5800

The second alternative is the best one.

..

88

The schedules for the relations based only on semi-joins with attribute

PROP# are:

400 A 21 ·-- , ,, "➔ A 31 .160 ➔ SALE BOO ➔ result site

TTT 1360

l 60 ➔ A 11
112 SELLER _ l~SO >result site

TTT = 2352

A 400 A 160 ➔ A 11 • 1.12> PROP ,7(?,0> result site 21 31

TTT = 1372
□

In general, a query will contain joins on several attributes. If a relation con
tains several joining attributes it can be reduced in size by computing semi-joins on all
of them. Under assumption of attribute independence the selectivity of one joining
attribute has no effect on the other ones; the schedule for a relation may be the
integration of the parallel schedules for different joining attributes. Note, that this is
the first time that parallelism is allowed. The construction of an integrated schedule
for a relation Ri, involves a choice among all prefix schedules of all the joining attri
butes. If o is the number of joining attributes in the query, this can be done in
O(m8), which for small 8 is feasible. Here, we will give a more efficient algorithm
that only manipulates the schedules produced by algorithm simple TOTAL GEN
ERAL for each joining attribute.

Algorithm TOTAL GENERAL considers for relation Rj the schedules pro
duced by algorithm simple TOTAL GENERAL for each of its joining attributes in
ascending order of their total transmission time. For each such schedule a parallel
integration is constructed with other schedules whose total transmission times, includ
ing the final transmission of R;, are smaller. Among these constructed schedules the
one with the smallest total transmission time is chosen.

To compute the total transmission time of a query we may simply add the ones
of the relations. However, the schedule for the query may contain many superfluous
transmissions because the schedules for the relations were computed independently.
Also, because of the same reason,, a transmission in a prefix schedule for an attribute
may go to a site containing a relation and the selectivity of the mentioned schedule is
not applied to the relation. This kind of selectivity is called coincidentally available
selectivity. Applying this selectivity to the relation will reduce it further in size and~
therefore, decrease the total transmission time. All these matters are taken care of
when computing the total transmission time of a query.

Note, that removing identical transmissions means moving forking points to the
right of the time scale of the schedule.

Theorem 3 .. 26 The complexity of the algorithm TOTAL GENERAL is
O(om(logio + m logim)), where rn is the number of relat_ions and 8 is .the number of

•

joining attributes in the query.

proc TOT AL GENERAL ([}schedule R)schedule:
begin

int m upb R;
[1 :m]schedule sch;
[1 :m, 1 :of schedule candsch;
for j too
do candsch[,jj : simple TOTAL GENERAL(R,j) od;
for i tom
do

od;

put schedules in candsch[i,} in ascending order on their TTT;
for j to a;
do

od;

construct integrated schedule for R[i} consisting of the parallel
schedules candsch[i,l], ... , candsch[i,j]

remove superfluous transmissions(sch)
end

Figure 3.31. Algorithm TOTAL GENERAL.

89

Proof In the for-loop for j at most o times the algorithm simple TOTAL GENERAL
is applied, which takes O (om log2m). Ordering the schedules takes O (olog2o). Hence,
the theorem follows.

D

Example 3.10

The final schedule for a relation is obtained by integrating the parallel
schedules for each joining attribute and selecting the one with minimum total
transmission time. For the schedule for relation SALE two alternatives are con
sidered:

TTT

TTT

160 ➔ SALE 800 ➔ result site

1360

160
•

A 22 9oo
1940

SALE 480➔ result site

90

Toe first alternative is chosen as schedule for SALE. The schedules for the other

relations are:

1680 result site

TTT = 2352

400 160 112 A 2l ➔ A3 1 .A11·' .. ➔ PROP ?q() ➔ result.site

TTT 1372

The schedule for the query is now obtained by removing all redundant transmissions:

SELLER

112 168

160 > SALE-· _____ S9<)_, __ ,, .. ·➔> result site

112 800

PROP

TTT = 3964

Note: no transmissions of the joining attribute SNAME are part of the schedule
because its selectivity is too high and it is too costly to transmit.

D

How many superfluous transmissions there are in the integrated schedule for
the query depends on many factors. One of the negative influences is the deletion of
the transmission of A;1 in the schedule for R;, because it prevents the moving of fork
ing points further to the right on the time scale. A way to overcome this kind of
problem is to guarantee that the forking points are at the end of a schedule for a join
ing attribute, just before the last transmission, which is sent to all relations.
Langefeld and Swart came up with a variation [Apers1981c], called COLLECTIVE,
which nicely shows this. We will explain it for only one joining attribute. The joining
attributes of all the relations together form a simple query. Applying algorithm
SERIAL will produce one schedule and the last transmission will have an undefined
destination. This schedule will be used for all relations, or, which is exactly the same,
the destination is made equal to the set of sites where the relations reside. So, the
whole schedule, except for the last transmission, is shared by all relations. This
means that just before the last transmission, there is a forking point.

For small relations even this last transmission may be too expensive. There
fore, the schedule of the query may be modified slightly by dropping this last
transmission to such a relation, if the total transmission ti1ne decreases. This is
checked for all relations. If it happens that all relations prefer to drop the last
transmission, the whole schedule is not used by any of the relations and can be

91

deleted completely. If only one joining attribute is considered this is not very likely.
Shortening the schedule was not considered to keep the algorithm simple.

If the query contains several joining attributes the algorithm SERIAL is
applied to each of them. Each of the schedules produced will direct its last transmis
sion to all of the relations. Again, it is checked whether the last transmission is more
costly than it reduces the relation to which it is sent. Here, small relations are more
common because a relation may have been reduced by other attributes and, therefore,
deletion of transmissions or even whole schedules will be more common ..

A comparison between the algorithms is given in section 3.5

Example 3.11 The schedules produced by algorithm SERIAL for the two simple
queries of SNAME and PROP# are part of the schedules for all three relations.
The initial schedule for the query is:

SELLER

112 600 1344

900 A 11 A I 2 480
A 22 __ , -➔ SALE ---------- result site

A 11

112 7

PROP

TTT = 4976

Algorithm COLLECTIVE tries to remove the transmission of A 12 to SELLER . This
decreases the TTT with 600 but it also increases the TTT with 336 because SELLER
will be less reduced. The net result is negative so this transmission is removed. The
removal of the transmission of A 11 to SELLER increases the net result of TTT and
is therefore not carried out. Again, the removal of the transmission of A 22 to SALE
decreases the TTT with 580. Other removals increase the TTT. The resulting
schedule is the same as in example 3.10.

□

3.4.5. S111tunary

The basic ideas obtained for the inverted file organiz.ation were applied to
queries in the relational data model. The join operation, which may produce a large

. result, is computed at the result site and the semi-join operation is used to reduce
relations in size before transmitting them to the result site. Both minitnizing response
transmission ti_,ne and total transmission cost were investigated. The algorithms pro
posed make use of the algorithms introduced by A.R. Hevner for si1:11ple queries.

For minimiz.ing response transmission time optimal schedules can be obtained
under the Transmission Assumption, the Parallelism Assumption and the Selectivity
Assumption. The unique values of joining attributes of certain relations are

92

transmitted to other relations to compute semi-joins. After a relation has been
reduced in size it is sent to the result site. To be able to compute the joins the joining
attributes of a relation have to be sent as well, although they are not necessarily target

attributes.
For mini111izing total transmission cost two approaches are investigated. One

approach computes a schedule for each relation, independent of the others, and then
integrates these schedules into a schedule for the query. During integration redun
dant transmissions are removed. The other approach tries to construct schedules for
each joining attribute, which are used in the schedule for all relations. By local
optimization some of the transmissions or even complete schedules are dropped if
they cost too much compared to the reduced cost to transmit the relations. In the
next section the algorithms for mini1nizing total transmission cost are compared with
algorithms that decompose the query at the logical level.

3.5.. Comparison Between Distributed Query Processing Algorithms

The purpose of the comparison between the algorithms is not so much to show
that one is definitely better than the other, but to get a better understanding of distri
buted query processing. Therefore, a common processing model is required that may
differ in certain aspects from the original one used by each method.

The query processing model is based on the selectivity theory used by
[Hevnerl979b] (see also subsection 3 .. 4.1). This means that for every attribute of every
relation the selectivity and the size are known. This not only makes it possible to
compute the size of a result after a semi ... join has been applied, but also the size of a
join. For example, R 1(A = A)R 2 is a join between R 1 and R 2 on attribute A , with
domain D. Under the assumption of subsection 3.4.1 the expected number of tuples
of R 1 with a particular attribute value for A is IR 1 I / ID I • This is also true for R 2-

Therefore, for each value in D there are IR 1 I X IR 2 1 / ID 1
2 tuples in the join.

Hence, the expected size of the join is

IR1I X IR2I
ID I •

In [Rosenthal 1981] it was shown that even under some less restrictive assumptions
this expectation is reasonable. The selectivity of attribute A after the join is the pro
duct of the selectivities of attribute A in R 1 and in R 2• To estimate the result after a
projection we assume that one of the remaining attributes is a key-attribute or nearly
a key-attribute. So, the number of tuples remains the same, only the size becomes
smaller. See also [Epstein1979] for a discussion about perfect information to deter
mine the sizes of intermediate results.

The unit of allocation is assumed to be a complete relation. Before optimiza
tion a non-redundant materialization is detertnined; we assume that each relation is
stored at a different site. As cost function the total transmission cost is used.

. The algorithms that are compared belong to two fami1ies, the semi-join family
and the decomposition family. Our goal is to show the usefulness of the semi-join
operation and the integration of this operation in a decomposition process.

One of the members of the semi-join fa1nily is algorithm TOTAL (GENERAL).
In subsection 3.4.4 it was shown that, if the relations were considered separately, the
deletion of certain transinissions would decrease the total transmission time. How
ever, one might expect that this deletion means that fewer redundant transmissions·

•

93

can be removed when considering the transmission of all relations. TOTAL* will be
the version of TOTAL where the deletion discussed in subsection 3.4.4 is omitted.
Also, the algorithm COLLECTIVE is considered.

For the decomposition faxnily the algorithm of Epstein is used, and will be
called EXHDECOM (exhaustive decomposition). This algorithm does not produce
schedules that deliver the result to a specified result site. Therefore, in general, the
cost of transmitting the result to the result site have to be added to the cost of the
processing schedule obtained. This will increase the total cost enormously if the result
is large. A comparison which is more fair with respect to the other algorithms is
obtained by taking this final transmission into account as well. This version is
denoted by EXHDECOM*.

EXH DECOM is ideal to investigate the integration of a decomposition process
and the use of the semi-join operation as far as the produced schedules are concerned,
simply because it investigates all possible decompositions. The algorithm selects a
subset of the relations in the query and computes the cost of processing the
corresponding subquery. This processing amounts to sending all the relations in the
subset chosen to the largest one where the joins are computed. Instead of simply
transmitting the relations we could apply algorithm TOT AL or any other member of
the semi-join family with as result site the site where the largest relation resides. This
is not feasible because of the time consuming character of EXHDECOM. Therefore,
to show the usefulness of the se:rni-join operation we consider the following. Compare
the cost of directly sending a relation R; to the largest relation R 1 of the chosen sub
set, with the alternative where first a semi-join on R; is applied and then the reduced
R, is sent to the site of R 1 • The semi-join is computed by sending the unique values
of the joining attribute of R 1 to the site of R;. If there is no joining clause between
R; and R 1 then this alternative is not applicable. This version will be called SJ
EXHDECOM (semi-join EXHDECOM). The cost of the schedules of this version are
of course not as good as if algorithm TOTAL were applied to the subqueries.
EXHDECOM together with TOTAL produces schedules that can be no worse than
merely applying TOT AL.

The schedules produced by the algorithms are compared on their total
transmission cost. The algorithms are applied to randomly generated queries based
on the fallowing parameters:

□ number of relations per query (m)
This parameter ranges from 2 to 5. For each of these values exactly 20 queries
were generated, resulting in 80 queries for each test run.

□ number of joining attributes per query (join attr)
The number of joining attributes is a random number between I and 4, but
never larger than the number of joining clauses (see below).

D number of target attributes per query (targ attr)
The number of target attributes is a random number between I and 40; some
of these may be joining attributes.

□ number· of joining clauses per query
To make the query connected, this para.1neter should at least be equal to the
number of relations minus one. For each joining clause a joining attribute is
chosen and two relations are selected. The choice of relations is such that the
query is connected. The maximum value of this parameter is kept small (the

94

number of relations plus two), because applying transitivity will increase the
number of clauses.

'

□ selectivity of an attribute (p)
For each joining attribute of each relation a random number between between
0 and I is chosen, which denotes its selectivity.

□ domain size of an attribute (ID I)
The size is drawn from a negative exponential distribution with as an average
25. Queries in which for a particular relation the product of the selectivity and
the domain size of an attribute is less than 1, is reject;ed.

D attribute size of an attribute
The number of bytes in an attribute is a random number between 2 and 100.

D number of tuples per relation
To guarantee the selectivity for each joining attribute, IR; I ~ I D;J IP;J. On
the other hand, R; may not contain more tuples than I DiJ IPiJ, where j

'

J

ranges over all attributes in R;, including the target ones. The number of
tuples of R1 is chosen at random within the denoted limits.

□ location of relations
Each relation is assumed to reside at a different site other than the result site.

Five parameters are chosen to investigate the effect of their value on the pro
duced schedules by the algorithms, namely the number of relations, the number of
joining attributes, the number of target attributes, the cardinality of the domains, and
the selectivity.

The average cost of the schedules produced by each of the algorithms are
shown in table 3.32. For particular values of the five parameters 80 queries were gen
erated, resulting in 1520 queries.

average average
family algorithm cost CPU-sec.

in bytes required.
• • • TOTAL 12081 0.03 se1111-Jom

TOTAL. 11960 0.03
COLLECTIVE 11700 0.02

decomposition EXHDECOM 10353 + I Rr f 0.58
SJ EXHDECOM 6818 + I Rr I 0.82
EXHDECOM• 11574 9.50

Table 3.32. Average cost of a schedule in bytes and the amount
of CPU-seconds required to compute it; I Rr I is the size of the
result relation,.

The results of the algorithms in the semi-join family are close to each other.
We may conclude, however~ that COLLECTIVE perfo1·111s better than the other two

95

at less cost in terms of CPU-seconds. Because a detailed description of TOTAL can
be found in this thesis we use it to represent the semi-join family.

Within the decomposition family the results are difficult to compare. The rea
son for this is that both EXHDECOM and SJ EXHDECOM produce schedules that
do not include the final transmission to the site where the result should be delivered.
EXH DE COM*, on the other hand, takes this transmission into account as well. The
difference between EXHDECOM and SJ EXHDECOM is caused by the usage of
the semi-join operation. Although only a straightforward application of the semi-join
operation was implemented, already a 34% improvement was obtained. This could be

•

further improved if a member of the semi-join family was used. Ideally, this opera-
tion should also be used in EXHDECOM*, however, this would make the algorithm
extremely costly. We merely want to point out that the usage of a semi-join operation
in a decomposition process has a positive effect (a similar conclusion is reached in
[Bernstein 198 lc]). The algorithm EXH DECOM* is chosen to represent the decompo
sition family.

However, one should keep in mind that the results produced by this algorithm
are obtained at a very high cost compared to the ones of the algorithms in the semi
join family, and its application may, therefore, not be suitable for ad hoc queries.
Also, any decomposition algorithm that runs in a time comparable to the one of a
semi-join algorithm, will most likely produce worse results than EXHDECOM*
[Epstein 1979, Epstein I 980b].

To understand the behaviors of the algorithms in the semi-join and decomposi
tion families, the two representatives are compared in more detail.

The number of relations (m) in the query is varied from 2 to 5. The cost. of the
TOT AL-schedules decreases at first because on the one hand there are more relations
but on the other hand there are more (redundant) transmissions causing a higher
chance of coincidentally available selectivity. The former effect wins if m increases.
The more relations the more irreducible components there will be, giving
EXH DECOM" a better chance to decompose the queries, which decreases the cost of
the schedules.

m 2 3 4 5
TOTAL 14077 8976 10779 10946
EXHDECOM* 15508 10092 10346 10540

Table 3.33. Varying the number of relations .

.

Increasing the number of joining attributes (join attr) decreases the chance that
· several clauses in the query involve the same joining attribute because the number of

joining clauses ranges between m - I and m + 2. This implies that the effectiveness
of applying se111i-joins decreases, showing an increase of the cost of the schedules.
EXHDECOM*, on the other hand, starts to take advantage of the small intermediate
results.

A larger number of target attributes (targ attr) means larger results after a join.
For a small number of target attributes TOTAL* clearly has a disadvantage, because

96

join attr 1 2 3 4
...

TOTAL 7280 13009 11049 13043
EXHDECOM* 9900 13343 10465 10807

Table 3 .. 34. Varying number of joining attributes.

all relations have to transmit their joining attributes to the result site although most
of these attributes are not part of the result. For increasing number of target attri
butes this effect disappears.

targ attr l 10 20 40
TOTAL 4782 8000 9364 14529
EXHDECOM• 2903 10369 10546 11744

Table 3 .. 35. Varying the number of target attributes.

The size of D, a domain, has a direct influence on the sizes of the relations.
Small ID I means small relations and a large ID I means large relations. This
explains why the cost becomes larger if ID I increases. The estimated size of a join
gets smaller if l D I grows. This effect can be noted by the lower increase of the cost
of the schedules produced by EXHDECOM*.

ID I 10 25 50 75
TOTAL 7596 10555 15661 23989
EXHDECOM* 11441 10285 14871 21823

Table 3.36. Varying the domain size.

The application of semi-joins is too expensive if the selectivities (p) are high
(close to 1), as we can see from the results of TOTAL.

Overall we may conclude that if intermediate results are small EXHDECOM*
outperforms TOTAL. Algorithm TOTAL performs well if relations can be reduced

'

97

p 0.0-0.33 0.33-0.66 0.66-1.0
TOTAL 1765 9375 32465
EXHDECOM* 4619 10568 19737

Table 3.37. Varying the selectivities.

in size a great deal before transmitting them to the result site. This situation occurs if
the domain sizes are small, the selectivities are small or the same attribute is used in
several clauses. Furthermore, the cost to obtain a schedule by an algorithm of the
decomposition family is far more expensive than by one of the semi-join family.

•

•

•

98

4. DATA AND OPERATION ALLOCATION IN A D1S1'R1BUTED DATABASE

The data of an ope.rational distributed database is assigned to various sites in
the computer network. Various aspects influence the reasons why the data are allo
cated in a particular way; some are quantifiable others are not [Charrell981]. One
non-quantifiable aspect is site autonomy. Site autonomy gives the owner of the data
a more secure feeling, because his data are spinning around on its own disk at a site
under his control and no operator at another site can tamper them. This feeling of
security is, of course, relative. Some of the quantifiable aspects are: availability [Mar
tella 1981 J, response time and utilization of resources. In this monograph we will
confine ourselves to the quantifiable aspects.

The organization of this chapter is as follows. In section 4.1 we define the data
and operation allocation problem and compare it with the well-known file allocation
problem. Literature on the latter is briefly reviewed in section 4.2. In section 4.3 the
notion of a processing .. schedules graph is introduced. Two different approaches to
data allocation and the way the objects to be allocated are detern1ined, are discussed
in sections 4.4 and 4.5. A comparison is given in section 4.6. Finally, in sections 4.7
and 4.8 algorithms are discussed to determine allocations that minimize either total
transmission cost or average response time.

4. t. Data and Operation Allocation and File Allocation Problem

Before distributed database management systems were investigated, networks
existed already for many years. On top of these networks a distributed file system can
be constructed. The problem where to allocate a file and its copies, given a known set
of retrievals and updates, such that a cost function is mini1nized, is known as the file
allocation problem. In most research the cost function used is the total transmission
cost. This problem is known to be NP-complete [Eswaranl974]. Many variants of
this problem exist. It can be made more realistic by adding bandwidth constraints on
the communication channels, by adding response time constraints on the retrievals,
etc.. Some of them will be discussed in section 4.2.

A distributed file system is very much unlike a distributed database, and the
solutions for the file allocation problem do not characterize solutions to the allocation
problem in a distributed database for the following reasons:

D The objects to be allocated are not known prior to allocation. Relations, which
describe logical relationships between data, are not suited as unit of allocation
because users at different sites might be interested in different fragments of a
relation.

D The way the data are accessed is far more complex. In the file allocation prob
lem the only transmissions required to combine data from different files are
transmissions from sites containing files to the result site, where the result is
computed. In chapter 3 we observed that to process a query, also data
transrnissions between sites where fragments are allocated are needed. In
(Elam 1978, Chu 1980] attempts were made to characterize these. This means
that the fragments can not be allocated independently.

To capture these aspects, the file allocation problem is generalized into the data and
OJM:ration allocati~n problem: given the queries and updates and the frequencies of
their use, detern11ne first the fragments to be allocated and secondly allocate these
fragments and their copies and the operations on them to the sites of the computer .

99

network such that a certain cost function is minimized. We will often use the term
data allocation when we mean data and operation allocation.

The data allocation problem can be viewed as a sort of dual problem of the dis
tributed query processing problem. There, the allocation is given and the schedules
have to be determined. Here, the queries and updates are given and the allocation
has to be fixed.

4.2. Overview of File Allocation Problem

The file allocation problem has many disguises., In this section we will not
attempt to cover all the related research, only the main line of research will be dis
cussed. For a more complete discussion of the file allocation problem we ref er to
[Hevnerl98 l].

Chu was probably the first to work on the file allocation problem. In
[Chul969, Chul973] he presented a simple model that only allows for a non
redundant allocation of the files. The opti111ization goal is to mini1nize total transmis
sion cost subject to available secondary storage at each site and a given maximum on
the expected retrieval time. Both a query and an update consist of a request to a site
where the required file is located and the answer back to the requesting site. The
latter transmission receives priority over the other transmissions. The result is a
zero-one programming problem subject to nonlinear constraints which can be solved
with standard linear integer programming techniques.

The model proposed by Casey [Caseyl972] allows for multiple copies. To do
so, a distinction must be made between queries and updates, because an update must
access all copies and a query only one. The model also allows for different cost rates
for query and update transmissions. The reason for this is that, for example, updates
can be done on a periodic basis, making them less costly. The optimization goal is to
minimize the cost in dollars of the transmissions plus the storage cost of the files. In
[Eswaran 1974) it was shown that the file allocation problem modeled this way is NP
complete by reducing the Set Covering Problem to it [Gareyl979].

In [Levin1974, Levinl975] a problem was emphasized which is deeply entangled
with the file allocation problem, namely the allocation of the application programs
that access the files. Data can relatively easily be stored at different sites or transmit
ted from one site to another. Programs, however, because of the programming
language in which they are written, are not as portable as one might wish. Although,
programs are placed between the files and the_result site in the processing schedule
the access of the files is still simple. For example, a user can use application pro
grams only independently of each other, meaning that the result of an application
progratn is sent to the result site and can not be used as input of another application
program. A second important aspect discussed by Levin and Morgan is the change in
the access pattern over time. For example, in a computer network that has sites in
different time zones the access of a particular file may be time dependent and moving

· it to another time zone during the day may mini1J1ize transmission cost. Also, more
general changes in the access pattern can be characterized but only over a limited
period of time. A third aspect discussed is the available information about the access
pattern. Quite often, the frequencies and the amounts of data transmitted are not
known. To overcome this problem all quantities in the formula to be optimized are
replaced by random variables with known probability distribution functions, render
ing the formula into a random variable itself.

100

Another approach to the file allocation problem, is to allow for changes in the
hardware as well as in the allocation of the files. In [Mahmoud 1976] the capacity of
the communication channels may be determined besides the allocation of the files.
The resulting model is a non-linear integer programming problem for which a heuris
tic approach is used to solve it.

In [Ramamoorthyl979] an attempt is made to consider the file allocation in the
environment of a distributed database. Although, queries that access more than one
relation are allowed, the underlying assumption that the query is processed at the
result site without transmissions between the sites where the relations are located,
reduces the whole problem again to the file allocation problem. To enforce this sim
ple way of query processing, on the one hand, and to reduce the sizes of the relations
to be transmitted to the result site by semi-joins, on the other hand, information indi
cating whether tuples are part of a particular join is included in the relations them
selves. The latter introduces a problem, namely for which joins should such inf orma
tion be added; however, this can be dett;11r1ined at database design time.

4.3. Data and Operation Allocations and Their Costs

Which objects are to be allocated in a distributed database depends on the cost
function to be minimized, the kind of queries and updates that are used, etc.. In sub
section 4.3. l this problem will be discussed in detail. Here it suffices to know that the
objects are fragments of relations.

To allocate these frag.ments we have to know the processing schedules of all the
queries and updates that access these fragments. However, these schedules depend on
the allocation of the fragments, which we want to dete1 mine. One way of solving this
circular problem is to do an exhaustive search to find an optimal allocation. For a
large number of fragments this is not feasible. To be able to discuss allocations and
their costs, and to be able to manipulate allocations, we introduce some notions.

A nucleus-site is a 2-tuple, (F ,0), where F is a set of fragments and O is a set
of operations. An operation is a 3-tuple (i ,A,x), where x is the execution time of the
operation and A the frequency with which the ith transaction of which the operation
is part, is executed. The actual operation itself is not represented since we are not
interested in it. A nucleus-site may have assigned to it a set of other nucleus-sites;
this set will be called the assigned set. There are two types of nucleus-sites, namely
physical sites and virtual sites .. A physical site is used to represent a site in the com
puter network, and a virtual site represents a fictitious site, of which the purpose will
become clear in a moment. A virtual site can be assigned to, at most one other
nucleus-site, and the consequence is that it is then placed in the assigned set of that
nuc·teus-site.. A physical site can never be assigned to another nucleus-site.

The union of two nucleus-sites is a nucleus-site whose fragment-set is the union
of the fragment-sets of the two nucleus-sites, whose operation-set is the union of the
operation-sets, and whose assigned set is the union of the assigned sets. The result of
a union of two virtual sites is again a virtual site, and the union of a virtual site and a
physical site is that physical site. Between two physical sites the union is not defined.

The relation being assigned to is transitive, i.e., if A is assigned to B, and B is
assigned to C then A is assigned to C as well. However, A is assigned to C and B
is assigned to C does not mean that the union of A and B is assigned to C. Also, A
is assigned to B does not necessarily mean that A belongs to the assigned set of B .

101

Both the union and the assignment are used to construct certain allocations such that
the cost can be computed; only the union is permanent, while an assignment can be
undone.

Because most of the distributed query processing algorithms determine at which
sites certain operations have to be executed, we assume that the operation allocation
is fixed if the data allocation is given. An initial allocation is an allocation where a
fragment-set of a virtual site contains at most one fragment and the fragment-sets of
the physical sites are empty and where none of the virtual sites is assigned to a physi
cal site. A partially specified allocation is an allocation where some of the virtual sites
have been assigned to (or united with) nucleus-sites. A completely specified allocation
is one in which all virtual sites have been united with physical sites.

The assumption that the operation allocation is fixed, given the data allocation,
is acceptable if we are only interested in minimizing total transmission cost. On the
other hand, when minimizing response time, the operation allocation is just as impor
tant as the data allocation. In that case for the initial allocation the operations are
not included in the operation-sets of the virtual sites that contain fragments, but each
of them is put in an operation-set of a newly created virtual site. We will come back
to this point in section 4.8.

The computation of the cost of an allocation is done by means of a processing-
schedules graph. Such a graph consists of

1) PhS-nodes, for the physical sites,

2) VS-nodes, for the virtual sites, and

3) edges, for the data transmission between two nodes, PhS- or VS-nodes.

The edges, which are directed, are labeled with a 3-tuple (i ,A,d), where d stands for
the amount of data transmitted from one adjacent node to the other for processing
the ith transaction and A for the frequency with which this transaction is executed.

Because most of the time we are interested in the processing-schedules graph
and not merely in the allocation itself, we will talk about the nodes in the processing
schedules graph as the physical or virtual sites themselves.

First we show how to construct a processing-schedules graph and how it is
graphically represented, and then we show how to compute the cost of an allocation
from the processing-schedules graph.

For every allocation a processing-schedules graph can be constructed. The
schedule for a query or update, given an allocation, is computed as follows: imagine
that all physical and virtual sites which contai.n the required fragments (whether one
is assigned to the other or not) are different sites in a computer network, and that
these sites have allocated to them the fragments in their corresponding fragment-sets;
also, the physical site that corresponds to the result site is treated as a separate site, if
this was not already done because it contained fragments. This hypothetical alloca
tion together with the transaction is given to the query processing algorithm to com
pute a schedule. Such a schedule consists of data transmissions and operations. For
each data transmission an edge is created between the corresponding sending and the
corresponding receiving physical or virtual site. And, each operation is added to the
operation-set of the appropriate physical or virtual site. Note that the schedules do
not take into account the fact that certain virtual sites are assigned to nucleus-sites.

102

A nucleus-site in the processing-schedules graph together with its assigned set is
graphically represented by a box; in this box there is a black dot representing the
nucleus-site itself. The boxes that represent the elements of the assigned set are
placed on the edges of the box, such that they do not overlap with each other. Fig.
4.1 shows part of a processing-schedules graph with one physical site, PhS;, and two
virtual sites, vs1 and VSk, of which VS1 is assigned to PhS,. If VS1 is united with
PhSt the box of vs1 together with the edge between VS1 and PhS; disappears. The
remaining adjacent edge of VS1 is inherited by PhS;. If VS1 and VSk are united both
their boxes disappear together with the edge between them, and a new box is created
which inherits the adjacent edges of both VSi and VSk. The status of this new box
depends on how the original virtual sites are related. For example, if VSk was
assigned to VS1 which in its tum was assigned to PhS; and VSi and VSk are united,
then the resulting virtual site of the union is assigned to PhS;. The same result is
obtained if VS1 and VSk were, independent of each other, assigned to PhSi. If VS1
and VSk were assigned to different nucleus-sites then it is not defined to which
assigned set their union belongs.

Example 4.1

'

- --·

I

I
I

Ph Si

e 4.1. Graphical representation of a physical site with virtual sites.

Fig. 4.1 shows a processing-schedules graph of a partially specified allocation
f<:r thret: transact~ons. It ~s ~nstructed under the assumption that all physical and
vtrtual sites are different sites m a computer network. There are two physical sites,
Ph~ 1 and PhS 2, and three virtual sites, VS 1, VS 2 and VS 3, of which the latter is
~ss1gned t<: PhS2. Tran~a~tion I is a query, which is executed 10 times per unit of
time, and it computes a JOm between F 1, allocated to VS1, and F 2, allocated to VS 2•

,Its processing schedule consists of the restrictions S 1 and S 2, which are elements of
the operations-sets of VS 1 and VS 2, respectively.. The result of S whose size is 200

Fmally, this result, 800 bytes m size, 1s sent to the physical site PhS
2
•

Transaction 2 is an update, which is executed 6 ti111es per unit of time. It
updates (U) fragment Flt which is allocated to VS 1•

•

103

Transaction 3 is again a query which retrieves (S 3) data from F 3, allocated to
VS 3• It is executed 20 times per unit of time.

PhS
2
________ _

(3,20,1000)

(2. 6. 800) (1,10,800)

(1,10,200) VS1 ({F1},{S1,U})
VS2 == ({F2},{S2,J })
VS3 ({F3},{S3})

Fig11re 4.2. An example of a processing-schedule graph.

D

Given the processing-schedules graph we can compute the cost of an allocation.
This allocation may be completely or partially specified. For each transaction we can
construct a processing schedule from the processing-schedules graph, taking into
account the assignment of certain virtual sites to nucleus-sites. This is done as fol
lows: imagine that each physical site and each virtual site that is not assigned to
a.nother nucleus-site is a different site in a computer network. And furthermore, each
virtual site that is assigned to another nucleus-site is identified with the site in the
computer network that corresponds to the nucleus-site to which it is assigned. Hence,
transmissions from a virtual site to the nucleus-site to which it is assigned are not
counted in the cost of the schedule under construction; all other trans111issions are.
For each nucleus-site that is not assigned to another one the expected waiting time of
its operations is computed as if the operation-sets of the virtual sites, which are
assigned to it, were united. The expected waiting time of the operations in an
operation-set of a virtual site that is assigned to a nucleus-site is computed as if the
operation-sets of the virtual site and the nucleus-site to which it is assigned were
united. Note, that although more than one virtual site may be assigned to a nucleus
site the expected waiting times of their operations are computed for each virtual site
independently.

The expected waiting time of transmissions can be computed by giving to a
routing algorithm the a.111ount of data transmitted from one site to another and how
frequently this is done .

The above should give enough information to compute whether constraints,
such as for ei.ample the bandwidth of a communication channel, are met, and to con
struct the processing schedules and to compute their cost, such as total transmission
cost, response transmission time, response time, etc ..

•

104

Exa1nple 4.2
Given the processing-schedules graph of the partially specified allocation dis

cussed in example 4.1. From it we will construct the processing schedules_ of t~~ three
transactions, taking into account the assignment of VS 3 to PhS 2- For s1mplic1ty we
confine ourselves to the transmissions in the processing schedules.

Transaction l:

F 1
200 ➔ F 2 . 80.0 ➔ result site

total transmission cost = 1000

Transaction 2:

1 . 800 F, resu t site _ __...;

total transmission cost = 800

Transaction 3:

no transmissions

'I'his results in a total transn1ission
10 X 1000 + 6 X 800 = 14,800.

cost

•
'

of the allocation of

□
In this section completely and partially specified allocations were introduced.

To compute the cost of an allocation a processing-schedules graph must be deter
mi.ned. This can be done by giving the allocation to a query processing algorithm
which returns a processing schedule for each query. The transmissions and operations
in such a schedule are incorporated in the processing-schedules graph. In the rest of
this chapter we will discuss various aspects of the data allocation problem within the
model described above.

4..3.1. Forking Points and Forking Graphs

So far we discussed the way a processing-schedules graph can be constructed
given a partially specified allocation and how the cost of such an allocation can be
detctrnined from it. Our goal is to obta.in a completely specified allocation by mani
pulating partially specified allocation such that a given cost function is mjnirnized.
Changing an allocation may have effects on the processing schedules of the transac
tions. Especially, the placement of forking points in a schedule depends on the alloca
tion. Therefore, we will introduce a forking graph, which enables us to more
efficiently handle forking points when changing partially specified allocations. The
cases in which forking points are used are listed below. The first case is concerned

•

with the notification of the processing schedule of a query or update to all sites
involved and the. second case with the notification of the tuples to be updated to the
copies of a fragment in an update transaction. A third case will be seen when dis
cussing the splitting of relations.. The representation of a forking graph is shown in
fig. 4.3. Such a forking-graph will be a subgraph of a processing-schedules graph and
consists of a notification node and a set of receiving nodes (The te1 m notification is

•

105

used because it concerns a selective broadcast). All the nodes are VS-nodes. All
edges in a forking graph are labeled with the same 3-tuple, because to each receiving
site the same amount of data will be transmitted with the same frequency. Each
receiving node is part of a schedule for a query that references the fragment allocated
to that receiving node.

notification node

t

t

receiving nodes

Fig1.1re 4.3. Forking-graph, with t = (i ,A,d).

Imagine that this forking-graph is part of an update schedule. After the tuples
that have to be changed are dete1·111ined, the actual changes are sent to the copies of
the fragment; this is the forking point. At the notification node the changes are com
puted and the copies are located at the receiving nodes.

What kind of changes can occur in the allocation? Two copies that were
located at different virtual sites can be allocated to the same virtual site. This means
that the two virtual sites are united and two copies of the same fragment are put in
the fragment-set of the resulting virtual site. Having two identical copies at one
nucleus-site is, as far as efficiency is concerned, useless and, therefore, only one is
maintained.. If in a forking-graph two receiving nodes are united, one of the edges to
these nodes disappears. Also, if one of the copies of the fragment is allocated to the
site corresponding to the notification node there is no need to transmit data to it.
Therefore, if a receiving node is united with a notification node the edge between
them is deleted.

Besides the removal of an edge representing a superfluous transmission, also
operations directly involved with this transmission, and operations that worked on
superfluous copies, are removed from the operation-sets.

The same forking-graph can be used for the notification of the processing
schedule to the sites involved .

4.3.2. Unit of Allocation and Processing Schedules

Having explained how a processing-schedules graph for a given allocation can
be constructed and how to compute the cost of that allocation we will now discuss
how to deter1nine the unit of allocation.

An obvious unit of allocation is a complete relation in the global conceptual
'

schema. Data occur in the sarne relation because there is a logical relationship

•

•

106

between them. Such a relation may, however, contain tuples that are accessed by
users of different sites. For example, a real-estate agent is mainly interested in pro
perties that are for sale in his area. Allocating the relation containing tuples about
these properties to one site would make the real-estate database a central one and
most agents would have to retrieve data from a distant site. Splitting the relation
such that tuples concerning specific areas form fragments of the relation and allocat
ing these fragments to sites located in these areas would decrease the total transmis
sion cost involved in query processing drastically. Mainly, because most of the data is
locally available. In this example the splitting is rather simple. Determining the frag
ments to be allocated will be more formalized now.

Let us assume that we have a set of queries, updates and their frequencies of
their usage. As far as the relational operations are concerned, queries and updates
are the sa1ne and, therefore, we only discuss queries. A query will use only fragments
of the relations in the global conceptual schema. These fragments are characterized
by restrictions and projections.

First, we take a look at just one relation, say R. Assume we have a collection
of queries { Qk }k E 1 and each Qk uses only a fragment Fk of relation R ,
Fk = R (Ck }[Pk], where Ck is a restriction and Pk a set of attributes of R. Every
Ct defines a subset of the tuples of R . The corresponding subsets of some C; may
overlap. We are interested in these intersections, which can be uniquely identified by
saying in which subsets of the C, 's they fall. Consider an n-bit number, one bit for
every C1• If the intersection, I, is part of C, the ith bit is 1, otherwise it is 0. A
unique identification of J is the deci1nal number that corresponds to the n-bit string.
The number zero is not used because it corresponds to the empty set. In this way R
is split horizontally.

Instead of the Pk 's the singleton subsets A1 are used. Aj contains the jth attri
bute of R. in this way R is split vertically. The resulting fragments FiJ, where i is
the decimal number corresponding to the bit string of the horizontal splitting, and j
the index of the attribute, respectively, are considered as objects to be allocated.
Fragments that do not contai.n a primary key are extended such that it is included.

E"a1nple 4.3

Assume we have a relation

PARTS(PNO ,PNAME)CITY)

and the following queries:

Qi = PARTS[PNO,PNAME]
Q2 = PARTS{CITY = Paris OR CITY= Amsterdam}
Q3 = PARTS{CITY = Amsterdam OR CITY · London}.

· From these queries we can determine the C; 's:

C 1 == true A 1 =
C2 = (CITY= Paris) or (CITY= Amsterdam) A 2 =
C3 .= (CITY Amsterdam) or (CITY== London) A 3 ==

•

•

{PNO}
{PNAME}
{CITY}

•

107

In general, there would be (23 - I) X 3 fragments FiJ. In this special case we see
that the bit of C 1 is always 1, otherwise the corresponding set is empty. Hence, there
are (22

- 1) X 3 = 9 fragments. ·

Fs1 PARTS{CITY = London}[PNO]
Fs2 = PARTS{CITY London}[PNAME]
Fs3 PARTS{CITY London}[CJTY]

F61 PARTS{CITY = Paris}[PNO]
F62 = PARTS{CITY Paris}[PNAME]
F63 = PARTS{CITY Paris}[C/TY]

F11 = PARTS{CITY = Amsterdam}[PNO]
F12 PARTS{CITY Amsterdam}[PNAME]
F13 PARTS{CITY Amsterdam}[C/TY]

Fragments with only PNAME and CITY are extended such that the primary key,
P NO, is included as well.

□
Before discussing whether further splitting is necessary we show the extension

for queries that reference more than one relation. The extension to queries that con
tain joins is simple. Again, the fragments required by the join can be described by
projections and restrictions. The projection set contains the target attributes, the join
ing attributes and the attributes on which the restriction operates. The restriction
includes the clauses that are applicable to the corresponding relation. It may also
include clauses that are obtained by transitivity on clauses on the other relation and
the joining clauses.

To investigate whether further splitting is necessary, we discuss the processing
schedules of the operations restriction, projection and join. Each of these operations
must be part of the set of queries { Qk }k EI on which the relations are split.

A restriction will be part of some query, so it is in some Cp. The result of the
restriction is the fragment that can be composed of the fragments F;1 where i can take
any value as long as the pth bit is set, and j can take any value. What is done with
these fragments depends on the next operation. If there is none, all these fragments
are sent to the result site.

The san1e for a projection, only now the fragments are determined by the attri
bute set. The result of a projection is computed in several phases. First, all frag
ments with the same first index are collected at one site, then local projections are
computed (the sarne as a distributed projection in [Pelagatti1979].. Then the results
are collected at one site where again a projection is computed.

Which fragments are involved in a join can be deter11ajned in the same way as
· was done for a restriction and a projection. The result of a join is computed as fol

lows. For one relation all fragments with the same first index are collected at one
site.. All the fragments of the other relation are sent to these sites where the joins are
computed. Note, the fact that a forking graph is used here; see also fig. 4.4.

We call a distributed query processing algorithm static under splitting if a split
of a fragment F into F and F' will only cause changes in a schedule concerning the

•

•

108

incoming and outgoing edges of F, and such that an edge coming from F is now
replaced by an edge coming from F or from P' or from both. Furthermore, an edge
going to F is now replaced by an edge going to F or to F' or to both.

A split of F into P and F'' is called a balanced split if an outgoing edge of F
labeled with ('A,d) is replaced by two edges labeled (A,d IF I / IF I) and
(A,d I .P' i / I F I) leaving F and P' , respectively. An incoming edge of F labeled
(A,d) is replaced by two edges both labeled (A,d) going to F and F' .

Theorem 4.1 A horizontal split of F into F and F', that is done randomly, is bal
anced, if the distributed query processing algorithm is static under splitting.

Proof Assume that we split a fragment horizontally into F and F'. An outgoing
edge of F is the transmission of a result of an operation in which Fparticipated.
Because the split is done randomly a tuple of F is equally likely part of the result as
a tuple of F'. The result can be obtained by applying the operation to both F and
P' and uniting the two results. Because of these two reasons the size of the result
produced by F' and P' is I F I / I F I and l F' I / I F I times the size of the result
produced by F.

Because the split is done randomly no information is known about the tuples in
F and F' and, therefore, the incoxning edges are both labeled with the label of the
original edge. Hence, the split is balanced.

□

A vertical split is not necessarily balanced because the change in the schedule
may cause all the incoming edges to go to F and none to F' . An example of this is
the schedule for a projection. Assume that F is one of the fragments after a vertical
split, and that in a schedule f o:r a projection all transmissions are directed to F. If F
is split vertically into F and F' the schedule will change drastically, because F no
longer exists. One obvious change is to direct all the edges to F including one from
F'. But then the split is not balanced.

If the split is not random and information about the split is used in query pro
cessing this information should be added to the set of queries on which the relations
are split.

Thoorem 4.2 Further splitting the fragments obtained by horizontally splitting the
relations based on clauses of queries and vertically splitting them on attributes will
not decrease the total transmission cost, if the schedules are static under splitting.

Proof Because the cost function is the total transmission cost the labels (A,d) are
replaced by Ad. The fragments obtained can not be split vertically because they con
tain only one attribute. Therefore, let us consider a horizontal split of fragment F
into F and F' . And let us assume that F and F' are allocated to different physical
sites in the optimal allocation. We will show that allocating F and F' to the same
site will not increase the total transmission cost. Fig. 4.4 shows part of the
processing-schedules graph in the split form; remember, the horizontal split of F is
balanced if the processing schedules are static under splitting. All virtual sites have
been assigned to physical sites except VS' and VS'' which contain F and F' , respec
tively. In the complete processing-schedules graph there may be more incoming edges
for VS' and VS'' but suppose that the one labeled with t0 is the largest of them; r'
stands for I F I / I Ji' I and r'' for I F' I / 1 F I - In this partial processing-schedules
graph there are six possible assignrr1ents. In all of them either VS' or VS'' is
assigned to PhS I or PhS 2• Without loss of generality assume that PhS 1 = {VS'}.

I
vs

r I I t , r It
2

to

PhSo

11 t r 2

Vs I I

Figure 4.4. Partial processing-schedules graph.

109

This means that r't 1 ~ r't 2, which implies r''t 1 ~ r''t2• Removing VS'' from the site
to which it was assigned and uniting it with VS' changes the total transmission cost
as follows:

max(r''t2,to) - to - r''t1,

which is less than or equal to zero. Hence, the two fragments F' and F' have been
brought together without increasing the total transinission cost.

□
In reality it may happen that distributed query processing algorithms are not

static under splitting but we expect that changes in the processing schedules because a
fragment is split can be modified back to the processing schedule when the fragment
is unsplit, just as in the theorem, without increasing total transmission cost. There
fore, the fragments FiJ will be the objects to be allocated.

When 111ini1nizing response ti111e the problem of dete1mining the objects to be
allocated is a lot more complicated. A good heuristic to mini1njze the response titne
is to allow for as much parallelism as possible. At first glance it may seem a good
idea to just split R ho1iz,ontally in sets containing an equal number of tuples. How
ever, no inforrnation is known about the tuples in the obtained fragments, and, hence,
every query or update must access all the fragments, causing less concurrency. There
fore, the satoe approach is taken as for mini111izing total transn1ission cost. The rela
tions are split into fragments based on the queries stated by the users at the sites in
the computer network. Further splitting the obtained fragments vertically will not
enhance more parallelism. Further splitting it ho1 izontally, on the other hand, is a
good idea. Because the clauses of all queries have already been used, this further

•

110

splitting will be done randomly. Ideally every tuple is placed at a different site giving
a maximum of parallelism. Due to overhead it is better to group tuples together. We
assume that the minianum number of tuples per fragment is given as a system param
eter. So, the fragments obtained for minimizing total transmission cost are horizon
tally split further but such that no newly created fragments contain too few tuples.

The fragments constructed in this subsection are the objects to be allocated.
They are assigned to the virtual sites in the initial allocation. If two fragments that
contain the same primary key end up in the same fragment-set of a virtual or physical
site they together can be viewed as one large fragment with only one primary key.

'

Knowledge about a completely specified allocation is put in a global data dic-
tionary. Such a dictionary may contain information about attributes that are con
t-ained in fragments, restrictions on the relations that· define the fragments, number of
tuples in the fragments, selectivity of certain attributes, allocation of copies, etc ..
Each of these items is of interest to different parts of the distributed query processing
unit. And, probably, each will be accessed by different sites with a different access
pattern. Therefore, an allocation of the global data dictionary can be computed in
exactly the same way as is done with the relations.

To summarize this subsection we may conclude that just looking at the logical
components of a database is not sufficient to deter·tr•ine the objects to be allocated.
Therefore, a way to split relations horizontally and vertically based on the queries and
attributes was proposed. The resulting fragments form one of the inputs of the algo
rithm that constructs the processing-schedules graph.

4.4.. Centralized Data Allocation

In this section and the following one we will discuss two different approaches to
data allocation, a centralized and a decentralized approach. We speak of a central
ized data allocation if the allocation of all the data is considered at the same time and
if either one database administrator or the database management system itself is
allowed to change the existing allocation.

4.4.1. Construction of Processing-Schedules Graph

In subsection 4.3.2 a way of determining the fragments to be allocated, was dis
cussed. All queries or updates will be used to compute these fragments. For each
query (updates will be discussed later) a copy is made of the required fragments,
which are assigned to newly created virtual sites. At this point the processing
schedules graph contains nodes for each site in the computer network (physical sites)
and the above created nodes for virtual sites.

If the distributed query processing algorithm can handle an arbitrary allocation
of fragments, the processing schedules. for this initial redundant allocation can be
computed as described in section 4.3. The operations that, according to the schedule,
have to be computed at a virtual or physical site are added to the operation-set of the

· corresponding node. For the data transrnissions, edges between the appropriate nodes
are created, and labeled with the a1nount of data transmitted and the frequency with
which the query is stated.

Not all distributed query processing algorithms are able to compute a process
ing schedule given an arbitrary allocation of fragments. For example, some of them
assume that a whole relation is the unit of allocation. In that case the fragments o(

'

Ill

each relation can be collected at a site, such that the query processing algorithm can
be applied, or the schedules for the operations discussed in subsection 4.3.2 are used.

If there are no update transactions we are finished and from the processing
schedules graph a completely specified allocation can be determined mini1nizing some
cost function. Here, we explicitly assume that each site has enough storage to contain
the whole database.

In general, however, there will be updates. As an example we will show the
processing--schedules graph for an update if centralized locking is used (Note, the fact
that centraJized locking is discussed, has got nothing to do with centralized data allo
cation). In centralized locking a]l requests for locks are funnelled through one site.
That site decides whether a query or update can get the requested locks. Which of
the physical sites should do this job is not known in advance. Therefore, all the
involved operations are allocated to a virtual site, say VS 0• Finally, if a completely
specified allocation is determined the site that controls the locks is known.

Assume an update transaction is initiated at PhS I that changes tuples in frag
ment F. All operations that have to be done by the site corresponding to PhS 1 are
· put in its operation-set. A schedule for an update consists of the fallowing:

□ request for an exclusive lock on F is sent to VS 0,

□ an acknowledge is sent back to PhS 1 after the lock is set,

□ the schedule or the query dete11nining the tuples to be updated is transmitted to
VS 1, where the tuples to be changed are determined,

□ the tuples are sent back to PhS 1,

□ PhS 1 computes what the changes are and notifies all the virtual sites (such as
VS 1 and VS 2) where the copies of F are about the update.

□ the final action of PhS 1 is to send a message to VS O to release the locks.

If in the second step the lock is rejected the request will be sent again. This
can easily be included in the processing-schedules graph if statistics are available on
how often this happens. Other ways of processing updates are possible, however, the
above listed actions will somehow be part of it.

Although, initially every query has its own copies of the fragments, it may hap
pen that some virtual sites containing a copy of the same fragment are wnited because
it is too expensive to maintain too many copies. In this way the algorithm that deter
n1ines a completely specified allocation not only decides where to allocate the frag
ments but also how many copies have to be main.tained.

One may object against the fact that all queries and updates have to be known
in advance to compute the fragments to be allocated and to compute the initial allo
cation. In some cases they are not known at all. Then we may dete1·rr1ine the frag
ments based on the global external views of the users, which can be considered as
queries themselves. The flow of data between the fragments can no longer be com
puted with a query processing algorithm and should be estimated with statistical
information l;>ased on an existing allocation. Changes in this flow due to changes in
the allocation should be estitnated, based on the queries and updates that are known.
A way of doing this is to look at operations most often used on the fragments and

'

compute schedules such as was done in subsection 4 .. 3.2.
•

•

112

4.4.l. St,atic versus Dynamic Schedules

In the processing-schedules graph corresponding to the initial allocation, the
processing

1
schedules were C<lmputed based on the assumption that between virtual

sites transmissions are required if communication is necessary". During the search for
an <Jptimal allocation, the cost of other partially or completely specified allocations
will be computed. To make this computation more efficient we may keep the
schedult"S the same as in the initial processing .. schedules graph. Only, if two virtual
sites are united the edges between them disappear, or., if they are part of an update
graph, an edge in this graph disappears. An allocation algorithm that computes the
cost <.)f allocations in the above described way uses static processing schedules.

Although the computation of the cost of allocations is more efficient, finding a
minin1um total transmission cost allocation is still NP-complete [Cook 1971, Aho 1974,
Garey 1979].

Theorem 4..3 The problem whether there exists a completely specified allocation with
total transmission cost less than or equal to a certain T usi11g static processing
schedules is NP .. complete.

PrO(,f The problem is NP, because for a '' guess'' allocation we can, in polynomial
time11 determine whether it.s total transmission cost is less than or equal to T.

To show the NP-completeness of this problem we transform 3-dimensional
matching, a known N p .. complete problem, to it.

J...dimensional matching: Set M C W X X X Y, where W, ,¥ and Y are dis
j<>int sets having the same finite number q of elements. Does M contain a
matching, i.e., a subset .. lt,f' C M such that I M' I = q and no two elements of
M' agree in any coordinate?

The construction of a transmission-strategy graph from a 3-dimensional match
ing prt1ble1n is done as fol.lows:

□ the elements of the sets W, X and Y are the VS-nodes.

0 for every triple (w ,x tY) E .M create a PhS-node and connect the VS-nodes
corresponding to Mi', x and y to this PhS-node; label these edges with the
number d ~~:: 21 M I + l .

D create an edge between the VS-nodes corresponding to w and x if there exists a
triple (w ,xi►') E M. Do the same for the pairs (x JI); label all these edges
with the number 1. Count the number of edges with label 1, say this is equal
to J (:/ ~ 2 I M I).

The question whether there exists a matching M' is transformed to: Does there exist
an allocation with total transmission cost less than or equal to

3(1 M f q)d + (I 2q).

Now we have to prove that this is a transformation. Assume this is the case.
In this allocation each vs .. node is united with a PhS-node with which it is connected
by an edge in the processing-schedules graph. We will show that if it were not con
nected, the t()tal transmission cost would be larger. For, in the processing-schedules
graph there are 3 l M I edges with label d, and there are 3q VS-nodes. Assume there ·

113

is a VS-node that is not united with a PhS-node with which it is connected by an
edge. Then the total transmission cost is at least

(3 IM I - 3q + l)d = 3(IMI
> 3(1 MI

q)d + d
q)d + (I - 2q),

because d > 21 M I ~ /, so such a VS node does not exist.

Hence, the number of VS-nodes united with the same PhS-node is less than or equal
to three. Also, a PhS-node will not be united with less ;than three VS-nodes. Assume
that we have an allocation such that there are

q 1 PhS-nodes with 3 VS-nodes,
q2 PhS-nodes with 2 VS-nodes,
q 3 PhS-nodes with 1 VS-node,

with q1 < q.

The maximum number of edges, that are labeled l, that will disappear because
of this allocation is 2q 1 + q 2• Because all VS-nodes are united with PhS-nodes with
which they are connected by an edge the total transmission cost will be at least:

3(IM I - q)d + (I - q)d + (l 2q),

because

3/2 qi = 3/2 q + 1/2 qi < 2q,

which contradicts the first assumption.

Hence, either there are no VS-nodes united with a PhS-node or exactly three.
It also shows that the three VS-nodes united with the same PhS-node are intercon
nected by two edges.· Thus, the three VS-nodes, united with the sa111e PhS-node,
correspond to a triple in a matching M'. (All VS-nodes are used exactly once).

Now assume that there is no allocation with a total trans1nission cost less than
3(IM I - q)d + (/ - 2q), and assume we have a matching M' c M. Construct
the corresponding processing-schedules graph as was done above and unite the VS
nodes corresponding with the triples of M' to the site to which they triple-wise are
connected. The total transmission cost of this allocation is computed as follows. In
this allocation there are 3(IM I - q) · edges with label d; 2q edges with label l disap
pear because three VS-nodes corresponding to a triple of M' are united with the sao1e
site. Thus the total transmission cost is

•
'

3(IM I - q)d + (I 2q).

□

• •

114

Corollary 4 .. 4 The problem of finding an allocation with n1ioimum total transmission
cost is NP-complete.

D

Clearly, using static processing schedules may lead to data allocations of which
the real cost differs from the computed cost. We know that if the allocation changes
the processing schedules change as well. A consequence is that the cost of a com
pletely specified allocation obtained using static processing schedules might not reflect
the real cost. The reason is that a query processing algorithm might come up with
completely different schedules given the final allocation obtained using static
schedules. Therefore, to compute the real cost of an allocation the schedules have to
be recomputed. An allocation algorithm that does this uses dynamic processing
schedules.

Whether the use of static or dynamic processing schedules is preferable depends
on many aspects. For example, the dynamic case may be infeasible because it is
time ... consuming, and its effect on the cost of the allocation might be marginal. We
come back to this point in sections 4. 7.

4.5 .. Decentralized Data Allocation

Quite a ditf erent approach is taken in this section. Instead of assuming the
existence of a database administrator that may make any change in the existing data
allocation, we assume that the data is owned by the users, or that the distributed
database is a collection of databases owned by different parties. Both cases have in
common that there does not exists a central organization that can dictate the alloca
tion of the data. Therefore, the database management systems of the sites should, in
cooperation with each other, try to determine an optimal allocation of the data
required by the users of their own sites. This is done by allowing the creation of
copies of fragments by the DBMSs. This approach is called decentralized data alloca
tion.

4.5 .. 1. Private Copies and Processing-Schedules Graph

A group of users at a site that share the same view of a database can request
their local DBMS to somehow change the allocation such that a certain cost function
is mini1nized. Because the original relations are, in general, not owned by this group
their DBMS may not change their location. Therefore, copies are made of the frag
ments of the relations in which the group is interested. These copies are allocated to
virtual sites. The edges in the processing-schedules graph are obtained in the same
way as in the centralized approach, however, here only the queries of the group are
taken. Updates of users of this group and others are included as far as the fragments
of interest are concerned. So, the fragments are only deterrr1ined by queries of this
group and not by all users as in the centralized data allocation. Therefore, the
processing-schedules graph is less complex, and determining an allocation such that a

. cost function is mini.1nized is a lot simpler. Each group of users will have its own
processing-schedules graph and an allocation is dete1n1ined for each one separately.
This means tha~ if copies are made they are solely used by one such group, and will
therefore be called private copies. .

The data allocation in the decentralized approach can change more or less con
tinuously through ti111e. A group of users starts using the database or changes its
access pattern. To express this, a processing-schedules graph is constructed with·

115

private copies allocated to virtual sites. Because there are many other users around,
the fragment-sets, and operation-sets of the physical sites will, in general, not be
empty. Depending on the cost function to be minirnized this is taken into account.
For example, a physical site may have a ''large'' operation-set, causing a high
expected service time for an operation. When mini111izing the response time of the
queries stated by the group this physical site will probably be avoided.

Exa111ple 4.4

Assume that the relations R 1 and R 2 are allocated to PhS 1 and PhS 2, respec
tively, and that their locations are fixed. A group of users at the site that corresponds
to PhS 3 wants to use fragments F I and F 2 of R 1 and R 2, respectively. The fragments
are allocated to VS I and VS 2, respectively. Besides the transmissions and operations
to process the queries of the users of site PhS 3, there will also be transmissions from
PhS 1 to VS 1 and PhS 2 to VS 2 to keep the fragments F 1 and F 2 up-to-date.

□
Because a group may access only its own private copies it may be possible to

periodically update these copies, depending on how up-to-date these copies have to be.
In reality, quite often a user is not interested in the latest version of the database,
especially when this is very costly. Many times a user is happy with a consistent ver
sion of the database that may be a couple of hours or days out-of-date. The group of
users may themselves decide how up-to-date their copies should be, and thereby
deciding the update cost [Adiba1980b, Adibal981]. Decreasing this cost will make it
more likely that an allocation is chosen such that query processing becomes cheaper_

In the centralized data allocation these periodically updated copies are not pos
sible, because many users will make use of the same copies. Therefore, these copies
have to be kept up-to-date at all cost. If this is not done it will affect all users. We
come back to this point in section 4.6.

To investigate the feasibility of these ideas Sang Ajang and Spoor [Sang
Ajang1981] made an initial design of a distributed DBMS, called STUFF, that allows
for periodically updated fragments. The private copies are used by a group of users
for query processing. Under the assumption that most of the transactions are queries
the allocation of the private copies can be chosen such that the cost for query process
ing is minimized. Also, the queries will hardly be hindered by other concurrent tran
sactions, because only periodic updates need to lock the private copies. The group of
users must make some kind of arrangement with their local DBMS to keep the
private copies up-to-date. For example, every hour or day their site, called Initiating
Site, will send a message to the original relations to request for all the updates since
the last periodic update. These updates are sent directly to the sites where the private
copies reside. Note, because the allocation is determined to minimize (query) process
ing cost the sites of the private copies are not necessarily the Initiating Site. After
arrival of the updates the Initiating· Site is notified such that the updates are made
effective on all copies in between queries to ensure a consistent database. Updates
can not be done on out-of-date copies. Hence, the private copies are merely for
retrieval and all updates should be done on the original relations. Interactive update
sessions contradict the philosophy behind the idea of periodically updated fragments
and were, therefore, not accounted for in STUFF. Updates can be done in batch
mode, and the changes are available after the next periodic update of the private

• copies.
'

116

If every group of users is forced to have its own private copies tha_t a~e periodi
cally updated, the original relations are only accessed for upd_ates. Periodic ~pdates
can be obtained from a log-file of the relations. The separation of the quenes and
updates will decrease the heavy load on the concurrency control mechanism. We
expect that for many applications a system with privat~ copies that are ~pdated ~n a
periodic basis, will suffice. This approach also emphasizes the fact that 1n practice a
distributed database will not be just a database that is centralized at the logical level
and distributed at the physical level, but that it is distributed at the logical as well at
the physical level (see section 2.1). For example, a distributed database that is a col
lection of databases. If retrieving data from several databases is done frequently it
might be worthwhile to create private copies of those parts of the databases in which
the users are interested and allocate them to the users' sites. Query processing is now
cheap in the sense that no data transmissions are required and if slightly out-of-date
copies suffice the cost to keep them up-to-date is minimum.

As far as data allocation is concerned, however, creating private copies is
attractive. For privacy and security reasons it might happen that no private copies
may be created or that they may only be allocated to certain sites.

4.6.. Comparison Centralized and Decentralized Approach

Several issues will be discussed to compare the centralized and the decentralized
approach to data allocation [Apersl981b]. The first issue is the applicability. To
determine the fragments to be allocated in the centralized case, all queries and
updates have to be known to some central organization such as the database achninis
trator or the DDBMS. Also, the frequencies with which they are executed, have to be
known to construct the processing-schedules graph of the database. To install a new
allocation the central organization should have the power to take decisions about data
allocations at different sites. An example of such a database may be one that exists
on a local network.

If the processing-schedules graph consists of a collection of processing-schedules
subgraphs th.at are loosely connected, that is by means of edges whose labels hardly
contribute to the cost function, then we are on the border between the centralized and
the decentralized approach. The edges that connect the subgraphs can be deleted and
a data allocation can be determined for each of them independently.

In the decentralized approach only the transactions of a group of users at the
same site that share the same view have to be considered. Their local database
administrator or their local DBMS must have the opportunity to create copies of rela
tions and allocate them to arbitrary sites. The processing-schedules graphs in the
decentralized approach are a lot smaller and, therefore, it will be easier to compute an
optimal allocation.

The second issue is the flexibility with which it can incorporate changes in the
users' ·access pattern. In the centralized approach the efficiency of the data allocation

• ~hould .~ checked on a regular base. This means that based on currently available
mformat1on a new data allocation should be dete1-111ined and its cost be compared
with the cost of the current allocation.. If some threshold is passed a re-organization
of the data allocation must be ordered .. This re-organization itseli will cost a lot and
should be viewed as a sort of investment to get a more efficient allocation. · This
investment should of course not be too costly compared to the gain in efficiency. This
problem can be overcome by requiring that the investment is earned back within a

•

•

117

certain time interval. What a reasonable time interval is can be determined in prac
tice. To incorporate this in the processing-schedules graph we introduce the re-
organization graph which is a subgraph of the processing-schedules graph. For every
fragment in the fragment-set of a physical site a new virtual is created. Between the
virtual site, to which it is allocated in the current allocation, and such a new virtual
site an edge is placed. Its label is the cost if the virtual site were to be united with
another physical site divided by the period in which the investment should be earned
back. The other edges and their labels, and the operations involved are obtained the
same way as discussed in subsection 4.5.1. An algorithm that determines the data
allocation needs to know nothing about the re-organization and its cost.

Because the processing-schedules graph in the decentralized approach is a lot
smaller it will be easier to reflect changes in the access pattern by the users.

For real-time applications or for the provision of interactive sessions the third
issue is of interest, namely constraints queries may require on the response time. For
instance, if during a conversation with customers a decision has to be taken based on
data in the database a quick response is necessary. The problem we have here is that
the cost function can not simply be expressed in transmission cost or response time.
In the file allocation problem, which was stated as an integer programrning problem,
this was solved by just adding more constraints on the allocation. What this means is
that the cost to satisfy the demands of a (small) group of users have to be paid by the
rest of the users. Whether this is acceptable depends on the importance of the
demands and whether it is applicable depends on the composition of the users. For
example, in an airline reservation system selling tickets is important and needs of
other users should be subject to this. As one can clearly see this is a non-quantifiable
aspect and should be decided on by the management of the firm. Having an alloca
tion of the data and the operations such that the response time constraints are met
might be expensive. The question is, who will pay for this? If the database is cen
trally managed because it belongs to one company~ this company can decide whether
the cost is acceptable. If the database is a collection of databases owned by different
companies the problem becomes more complicated. The most reasonable way to
solve it is to let the group that wants its demands fulfilled, pay for it. The decentral
ized approach corresponds more closely with this last philosophy.

The problem discussed here is not just a database problem but a real-life one.
For example, the gover1unent subsidizes public transportation because many people
will benefit from it. But people that have special needs such as special destinations,
have to pay more, because they either have to take their own car or a taxi. Problems
of this kind are not easily solved and therefore in the case of distributed databases we
merely provide the system with tools to handle these problems.

The fourth issue is the cost of the data allocation. In discussing the decentral
ized approach we touched upon this problem. _The order in which groups of users
construct their processing-schedules graphs and mini111ize their cost, may influence the
total cost of the data allocation. Also, the use of private copies prohibit the sharing
of data causing, on the one hand, a higher cost. On the other hand, the cost to
update the private copies may be decreased by updating them only periodically. We
will show this by an example.

•

118

Exa1nple 4.5

Take the relation PAR TS of exa.mple 4.3 and two queries

Q 1 .. , PARTS{CITY = Paris OR CITY Amsterdam}
Q2 = PARTS {CITY London OR CITY = Amsterdam}.,

and updates that change the quantity-on-hand of the parts.

In the centralized approach the relation is split horizontally into three frag
ments as follows. C 1 and C 2 are the two clauses of the queries. Vertically splitting is
not considered. The set of attributes, P 1, contains all attributes of PAR TS.

F 11 == PARTS {CITY = London}
F21 = PARTS{CITY Paris}
F 31 == PARTS {CITY Amsterdam}.

Just for the sake of the example assume that at a site in London (PhS 1) Q 1 is stated.,
in Paris (PhS 3) Q 2 and the updates come from Amsterdam (PhS 2). The correspond
ing processing-schedules graph is shown in fig. 4.5, where VS1 ({F11},01),
VS2 •1= ({F31 },02), VS 3 ({F31},03), and VS4 ({F21},04); We also assume that
total transmission cost is the cost function.

3 3

7 10

vs 1

Figure 4.5. Centralized processing-schedules graph.

The opti111al allocation is obtained by uniting VS 1, VS 2 and VS 3 and with
PhS 1~ and uniting VS 4 with PhS 3• Its cost is 11.

In the decentralized data allocation we start with an existing allocation; say
· relation PARTS is located in Amsterdain. In the processing-schedules graphs for the
group of users in London and Paris this is shown by allocating PAR TS to PhS 2•

Because the groups in London and in Paris dete11nine their data allocation
independently, the relation is not split. Instead, each group makes a private copy of

•

•

•

119

the fragment in which it is interested. We discuss the processing-schedules graph for
London. The fragment they use is

= PARTS{CITY = London OR CITY = Amsterdam}

The two processing-schedules graphs are shown in fig. 4.6; (a) shows the one for Lon
don and (b) the one for Paris.

__ PhS3

10 6 7 11

(a) (b)

Figatre 4.6. Decentralized processing-schedules graphs: (a) for London
and (b) for Paris.

The order in which the groups determine their data allocation is irrelevant
because of the cost function. The London-group will unit VS L with PhS 1 and the
Paris-group will unite VSp with-PhS 3• The resulting data allocation costs 13.

Comparing the two opti1nal allocations shows that sharing the fragment that
contains parts that are located in Amsterdam, is more beneficial than allowing the
two groups in London and Paris having private copies. However, if the group in
Paris would only be interested in a periodically updated fragment of relation PAR TS,
the transmission cost from PhS2 to PhS3 might be less than 7, because not all updates
have to be transmitted and there is less overhead when they are sent together. Hence,
in that case the total transmission cost is less than 13.

□
To compute the cost of data allocations obtained by the centralized and the

decentralized approach we will do some si.mulations. · For sirnplicity we confine our
selves to uiini 1nizing total trans1·njssion cost .

First the way the transactions are generated is discussed. A processing schedule
of a transaction will have one of the basic forms shown in fig. 4.7, with its probability
that it is genJrated below it; comp! is a complexity paran1eter with which a branch in
the processing schedules is generated (except the branch to the result site) and may
range between O and 1.

Because the relations are used by different transactions they are split into frag
ments as described in subsection 4.3.2;- we assume that they are split into three

•

120

R, · ·➔ result site Prob = (l - c)2

Prob = c (I - c)(2 - c)

R1-
;. R · . Prob c2(1 c) >· result site 1, I

R1c ..
•

R1. . ., R1 -· ➔ R; ➔ result site Prob c 2(1 c)

R, , ➔ R1
.,. R, . > result site Prob = c 3

Figure 4.7. Five different processing schedules with the probability that
they are generated; c = compl.

fragments. When generating the processing schedule for a transaction, for each rela
tion it is decided which fragments are in fact used. Each of the 3_fragments of a rela
tion is used in a transaction with probability /rag, with a 111inimum of 1 fragment.
During processing an update the tuples that have to be changed are computed. We
assume here that they are computed at the result site and that that site notifies the
relevant fragments that were used in the query of the changes. A fragment that is
used in the processing schedule of an update transaction is updated with probability
upd.

In the centralized approach each query and update is given its own set of
copies of fragments and for each fragment a virtual site is created. The processing
schedules are represented by edges between the nucleus-sites and/ or f ork.ing graphs in ·
the processing-schedules graph. The virtual site of a fragment that is updated is the
notification node in a forking graph and the receiving nodes are the virtual sites of
other copies of that fragment .. The label of the forking graph is the a111ount of data
required to be transmitted to update a copy at another site tix11es the frequency with
which the update is executed.

In the decentralized approach the original relations are not split and all update
transactions make use of these relations. The part of the processing-schedules graph
that is concerned with queries is the same as in the centra · approach. If an origi
nal relation is changed by an update there will be edges from that relation to each of

. the virtual sites containing private copies used by the queries. The label of each edge
is the total amount of data required to be transniitted to update a private copy, tak
ing into accoun~ that updates may be done on a periodical basis .. Note, that for these
updates no forling graph is used because the private copies are not interchangeable,
meaning that if two private copies are located at the sa1ne site they both have to be
updated independently, because they are not necessarily consistent .

•

•

•

121

The following parameters are fixed:

□ the number of sites in the computer network is 5,

□ the total number of transactions, q + u , is 6,

□ the number of relations in the database is 3, and each relation is split into 3
fragments,

□ the number of fragments per relation used by a transaction is I (f rag = 0),
□ the complexity parameter, comp/ is set to 0.4, .

□ the edges in the processing schedules are labeled with a random number
between 100 and 500,

□ all fragments used in a update transaction are updated (upd = 1),

The reason that the first four parameters are kept so small is to be able to compute
the opti111al allocation in a reasonable amount of time.

The para rneters that will vary are:

□ the number of transactions that are updates (u), ranges from O to 6,

□ the labels of the transmissions required to keep the private copies consistent in
the decentralized approach are multiplied with the para111eter pud, which
denotes the relative cost of periodic updates compared to normal updates. pud
will vary be~ween O and 1.

Table 4.8 shows the total transmission cost for the centralized approach and the
decentralized approach for different values of the parameter pud. Also the
query /update transactions ratio is varied.

centra]i zed decen tra]ized

pud
q u 0.0 0.3 0.6 1.0
0 6 2565.3 3357.5 3357.5 3357.5 3357.5
l 5 1605.5 2099.7 2220.4 2282.7 2317.4
2 4 1280.3 1628.2 1831.7 1976.0 2123.2
3 3 1293.8 925.2 1225.2 1449.2 1585.8
4 2 813.l 444.5 793.5 1033.9 1167.2
5 1 291.4 0 160.9 321.8 519.4
6 0 0 0 0 0 0

Table 4.8. Total transmission cost for centralized and decentral
ized approach .

In the upper half of the table where the updates f orrn a majority the centralized
approach is clearly better. This is not so much caused by the decentra]ized approach
itself as by the fact that the relations in the decentralized case were not split and that
all update transactions are forced to use the original relations. We will come back to
this point when discussing primary copies. In the lower half of the table, where the

•
•

122

queries form a majority, the decentralized approach becomes better if the cost to
periodically update the private copies is not too high.

To summarize this section we may conclude that the decentralized approach is
rather attractive in a system without a central management, which may change the
whole data allocation. It is especially useful for meeting special needs such as
response time constraints, and it makes rapidly changing access patterns easy to
implement. Also, the usage of periodically updated private copies will decrease the
total transmission cost. Compared to the centralized approach, it has the disadvan
tage that the data allocation can only be opti111ized locally, which will lead to a higher
total transmission cost. Therefore, we expect that hybrid approaches to the data allo
cation problem will be used, which integrates the centralized and decentralized
approach.

4.7. Mini1nizing Total Transmission Cost

In the previous sections a model was introduced to investigate the data and
operation allocation problem. In this section algorithms for computing completely
specified allocations, which rrrinitnize the total transmission cost, are presented. The
total transmission cost of an allocation is the sum of the cost of the schedules in the
processing-schedules graph belonging to the allocation multiplied by the frequencies
of the corresponding queries. A schedule for a query can be reconstructed from a
processing-schedules graph by assurning that physical sites and virtual sites are
different sites in a computer network, except for virtual sites that are assigned to other
nucleus-sites. Remember that two virtual sites that are assigned to the same physical
site are not assigned to each other, implying that, as far as the schedules are con
cerned, they are different sites in a computer network. Given this reconstructed
schedule its cost can be computed.

Both opti111al and heuristic allocations are considered in this section when using
static and dynamic schedules.

Topics, such as what are the constituents of the total transmission cost and
what are the effects of the usage of primary copies, are investigated based on experi
mental data obtained from heuristic algorithms run on randomly generated
processing ... schedules graphs.

This section is organized as follows. In subsections 4. 7 .1 - 4. 7 .4 the total
transm-ission cost is minimized using static schedules. In subsection 4.7.5 the sa1ne is
done for semi--dynamic schedules. In subsections 4. 7 .6 - 4. 7 .8 dynamic schedules are
used and the allocations obtained are compared with the ones obtained using dynamic
schedules. In subsection 4. 7 .9 some extensions of the heuristic algorithm proposed in
subsection 4. 7 .2 are considered.

The main line of research consists of finding admissible heuristic estimators for
the i:euristic Path Algorithm to guarantee optimal solutions, developing heuristic

. algonthms that run in polynomial ti1ne, and making a comparison between the alloca
tions obtained by the heuristic algorithm and the optimal ones. In subsection 4. 7 .1 O
the _co~stit~ents, of _the total !ransmission cost are investigated. The usage of primary
copies 1s discussed 1n subsection 4.7.11.

•

•

123

4.7.1. Optimal Allocations Using Static Schedules

When a completely specified allocation is determined using static schedules the
processing schedules of all queries and updates are computed based on the initial allo
cation. Let us consider the processing-schedules graph of this initial allocation. From
a graph-theoretical point of view the problem of minin1izing total transmission cost
boils down to the removal of certain edges in the processing--schedules graph such that
there is no ''path'' left from one PhS-node to another. Then, the virtual sites in the
subgraph belonging to a particular physical site are united with that site, resulting in
a completely specified allocation. At that point possible constraints conce1ning
bandwidths, etc. can be checked. A way to detertnine such a completely specified
allocation, if total transmission cost is to be mini1niz.ed, is to define the data allocation
problem as an integer progra1runing problem:

subject to x 1j = 0 or 1

I if VS; is united with PhS1

0 otherwise

total amount of data transtnitted

between VS; and VSP if j =I=- q
0 if j q

total a1nount of data transmitted between VS; and PhS1•

The first term of the formula to be mjnimiz.ed is the sum of all the data
'

trans1nissions between virtual sites that are united with different physical sites and the
second term represents the data transmissions between virtual sites and physical sites
with which they are not united. This problem looks like the quadratic assignment
problem only there the b;1's are zero, and also an additional constraint is added to
ensure that only one virtual site is united with one physical site [Lawler 1962].

Applications of standard integer progra1111:ning techniques has not been done
because applications to sja11i]ar problems in the area of physical database design
[Hofferl975], where a large set of objects is manipulated, have shown that these tech
niques are rather time consuming. For a real database this may not be a drawback as
large as in our case, here where we are more interested to investigate the characteris
tics of the problem .

Other techniques such as branch-and-bound [Lawler 1966] or the Heuristic Path
Algorithm [Nilsson1971] can and will be used to search large solution spaces
efficiently. In [Pohll972] it was shown that these techniques are basically the same.
These search techniques construct decision trees. A node in such a tree is identified
with the path from the root to that node. Each edge on this path corresponds to a
decision taken about the data allocation. An example decision is: unite VS1 with

•

124

PhS.. During the search for an optimal data allocation the decision tree constructed

to the leaves. We say that a completely specified allocation satisfies a partially
s · ed allocation if it is possible to modify the partially specified allocation by unit
ing virtual sites with physical sites such that the result is the completely specified allo
cation. A subset belonging to a leaf of the decision tree contains all completely
specified allocations that satisfy the partially specified allocations defined by the deci ...
sions taken to reach that leaf. The cost of a subset is defined as the mini1num cost
arnong all solutions in the subset. Ideally, this value is known for each subset, how
ever, normally, this is not the case, and then it should be estirnated.

For a partially specified allocation we define an estimate-cost. Such an
estimate-cost is the sum of two components, nainely the cost caused by the decisions
taken so far and an estimate of the cost that will be caused by decisions that still have
to be taken to reach a completely specified allocation with least cost that satisfies the
partially specified allocation.

The search proceeds as follows. At each iteration a leaf with the least
estimate-cost is expanded. This means that, given the unions decided on so far to
reach that leaf, consider the union of a not yet considered virtual site with any of the
physical sites. For each of the physical sites an edge leaving that leaf is created,
rendering the leaf into an internal node. For each of the newly created leaves the
estimate-cost of the corresponding subset is computed. Then, the algorithm goes
through the next iteration, until a leaf whose corresponding subset contains only one
completely specified allocation, is expanded. And this allocation is chosen as result.

If the estimate-cost of the subsets are computed such that they underestimate
the real cost, then the Heuristic Path Algorithm will eventually find the optirnal com
pletely s . · ed allocation [Nilssonl971]. So, this estimator is important, the closer
its values are to the real cost the sooner the search terminates.

Before we introduce some notions that are needed to explain the algorithm that
computes the estimate-cost of a partially specified. allocation, we will take a look at
the basic ideas behind it.

If all virtual sites in a partially specified allocation are directly or indirectly
connected with only one physical site the esti111ate-cost could sj.rr1ply be deterinined
based on the transmissions between physical sites. If this is not the case then we
would like to remove certain transmissions such that it becomes true. These transn1is
sions will be searched for by considering paths between physical sites. A path
between physical sites can, intuitively, be considered as a chain of nucleus-sites start
ing at one physical site and going via zero or more virtual sites to the other physical
site, and for each successive pair of nucleus-sites that are united, data trans1njssions
disappear. To underesti1nate the cost that will be caused by decisions about the vir
tual sites on such a path, this path is cut in two at the edge that forms the cheapest
connection.

The esti1nate-cost of a partially specified allocation, obtained by uniting virtual
sites with phy~ical si~es, is computed as follows. A path from PhS; to PhS1 is a
sequence of nucleus-sites NSo, NS1, ... , NSm where NS 0 is PhS; and NSm is PhSj,
NS 1, NS 2, _. .. , NSm -1 are virtual sites, and that for i = 0, I, ... , m - I there is
at least one edge in the processing-schedules graph between NS; and NS;+ 1, or that
NS, and NS,+ 1 3:re nodes in at least one forking graph. The length of a path is the

•

125

number of virtual sites on that path plus 1. The cost of a path of length greater than
1 is the r11ini1num of the total cost of the edges or forking graphs between two succes ...
sive nucleus-sites in the sequence defining the path. Paths of length l form a special
case. If the two physical sites on that path are merely connected by an edge, the cost
of that path is the cost of the edge. If the two physical sites on the path are p&t't of a
forking graph we have to consider all the paths of length one conceitling that forking
graph at once. If k nodes of the forking graph are physical sites then the total cost of
such paths is k - 1 times the cost of the forking graph.

Removing a path means the removal of the edges between the successive
nucleus-sites in the sequence defining the path and the removal of the complete fork
ing graphs in which successive nucleus-sites are part, from the processing-schedules
graph.

If all paths are removed each virtual site is connected directly or indirectly with
only one physical site.

To compute the esti111ate-cost of the partially specified allocation the algorithm
psa static cost shown in fig. 4.9 is applied. It considers paths between physical sites
· and sums up their cost. To ensure that the edges and the forking graphs are not used
in two different paths, they are removed. The fact that a forking graph is replaced by
an edge between the notification node and one of the recei · · L.J nodes is quite arbi
trarily, because it could be between any of the nodes in the forking graph. Therefore,
it should be interpreted as that a for king graph may be used only once in a path.

proc psa static cost (schedules graph psg),real:
begin

real sum;
sum : the sum of the cost of all paths of length l;
remove all paths of length 1;
replace all forking graphs by one edge from their notification nodes to
one of the receiving nodes;
while there exists a path between two physical sites
do

od;

sum +: . cost of that path,·
remove that path

unite virtual sites with their physical sites;
sum

end

Figure 4.9. Algorithn1 psa static cost.

f
'

•

126

Exa111ple 4 .. 6
To show how psa static cost computes the estimate-cost of a partially s

allocation we will apply it to a simple allocation, shown in fig. 4.10.

vs,
-- 3

vs 2
10

10

4.10. Processing-schedules graph.

PhS4

•

•

First, paths of length 1 are considered. There is only orie, namely between
PhS 2 and PhS4• Because it is part of a forking graph the whole forking graph is con
sidered at once. Two physical sites are part of it and, therefore, the cost is
(2 ·· l) X 10 = 10. Then it is removed from the processing-schedules graph.

After this; all remaining forking graphs are replaced by one edge from the
notification node to one of the receiving nodes. Here, we assume that this edge con
nects VS 1 with PhS 3• The only path left is PhS 1, VS 1, PhS 3, with cost equal to 3.
Hence, the estimate-cost is 10 + 3 = 13.

ne 4 The optimal completely specified allocation that satisfies the partially
specified allocation is obtained by uniting VS I with PhS 1 and VS 2 with either PhS 2

or PhS4; its cost is 3 + 3 + 10 = 16.
□

Now we will show that the result of psa static cost is always less than or equal
to the cost of all completely specified allocations satisfying the partially specified allo
cation. An estimator with this property is called adanissible.

Theorem 4.5 Algorithm psa static cost is an admissible estiinator, if static schedules
are used.

•

Proof Assume we are given a partially specified allocation P SA and its processing
schedules graph. First consider the cost of paths of length 1. Every completely
·specified allocation must satisfy PSA and, therefore, any path of length 1 represents
an edge in the processing-schedules graph so it will be part of the processing
schedules grap~ of all completely specified allocations. Hence, algorithm psa static
cost correctly includes the cost of these paths.

The replac.ement of the forking graphs by one edge can not increase the cost of
the partially s · ed. allocation.

'
•

•

127

Now paths of greater length are considered. Say, NS0, NS 1, ••• , NSm is such
a path between PhS; and PhS1 , m ~ 2. In a completely sp~ed allocation satisfy
ing PSA there exists at least one pai.r (NS, ,NSt + 1) such that NS; and NS;+ 1 are
united with different physical sites. In that case the total cost of the edges between
NS; and NS;+ 1 is part of the cost of the completely specified allocation. The total
cost of these edges can be underestimated by taking the minimum total cost of the
edges on that path.

Hence, algorithm psa static cost underestimates the cost of any completely
specified allocation that satisfies a partially specified allocation.

□
Corollary 4.6 If the Heuristic Path Algorithm uses psa static cost the completely
specified allocations produced have 1nini1num total transmission cost if static
schedules a:re used.

4.7.2. Heuristic Allocations Using Static Schedules

A well-known heuristic technique to find an efficient solution is to start from an
initial solution and to locally optit11ize this until no improvements are possible.
When, during optunization, several isnprovements are possible, the one that decreases
the cost function most is chosen. Algorithms that use this technique are called greedy
[Horowitz 1978].

The heuristic approach that we propose here is based on the fallowing two
ideas:

□ virtual sites can not be united with physical sites independently of each other,

□ the label of an edge in the processing-schedules graph gives a measure of how
in·1portant it is that the adjacent nucleus-sites are united, when n1inin1izing the
total transmission cost.

Before introducing the algorithm we introduce some notions. The sum of the
labels of the edges that disappear if two nucleus-sites, NS; and NSJ, are united or
that one is assigned to the other is called LINK,1 (= LINK1i). Remember that
although two virtual sites may be assigned to one physical site in a partially specified
allocation, the edges between the virtual sites still count when computing the total
trans1nission cost as long as they are not united.

The data allocation algorithm starts with a partially specified allocation in
which every virtual site is assigned to the physical site for which LINKij is maxi111um.
Gradually, it works towards a completely specified allocation by considering unions of
virtual sites. This is done in decreasing order of their LINK-value. Uniting two vir
tual sites consists of two actions. First, the two virtual sites, VSi and VSi , a:re
removed from the physical sites to which they are assigned. This will increase the
total transmission cost with

max LIN K;k + max. LIN KJk.
k k

!

The second action is to unite them and to assign the virtual site that results from the

•
•

•

128

union, VS11 , again to the physical site PhSk for which LINKu1c is roaxir11um. 'I'his
decreases the total transmission cost with

max LINKuk + LINK,j.
k

•

The net result is the difference of these two amounts. The algorithm decides to unite
the two virtual sites if the net result is non-positive. Before VSu can be assigned, first
its LINK-values with other nucleus-sites have to be determjned, of course.

At every iteration the algorithrn takes the pair with l:he largest LINK;j that has
not yet been considered since the last union. This continues until uniting any pair of
virtual sites will increase the total transmission cost.

In the resulting allocation no two virtual sites will be assigned to the same phy
sical sites. For, let us assume that VS; and VS1 are both assigned to PhSk. Then

where VS11 is the union of VS; and VS1 which contradicts the termination condition
of the algorithm. Fig. 4.11 shows the procedural form of algorithm total data alloca
tion, which minirnizes total transmission cost.

We will show by an example how the algorithm works.

Example 4.7

Consider again the real-estate database and the following two queries and two
updates:

Q1: ((SELLER{CITY = PARIS})(PROP# == PROP# AND
LOC = CITY)PROP)[SNAME A,DDRESS ,CITY ,TYPE ,LOC]

Q2: (SELLER(PROP# = PROP#)(PROP{LOC = AMSTERDAM}))
[SNAME ,PROP# ,TYPE]

U1 : add new properties to PROP located outside Amsterdam

U 2 : delete and add information about sellers .

. Because relation PROP is accessed in two queries it will be split according to
the pr ure of subsection 4.3.2. In this case it is split into two, P' and P'', where

P'
P''

= PROP {LOC = AMSTERDAM}

= PROP{LOC =I=- AMSTERDAM}.

The relation SELLER will not be split because both queries require all its tuples ..

The processing schedule of query Q.1 will consist of the following data transmis
sions: the reduced relation SELLER after the restriction CITY = PARIS, denoted
by S 1, is sent to the two fragments P' and P'' . The results of the joins, J 1 and J 2,

are sent to PhSi. And the schedule for Q 2: after the projection [SNAME ,PROP#]
the relation SEELER, denoted by P 1, is sent to fragment P'' where the join, J 3, is
computed and the result is sent to PhS2•

Users at the sites corresponding to PhS2 and PhS 3 update the fragment P'' and
relation SELLER .

•

•

proc total data allocation (schedules graph PSG)alloation:
•

set P,·
boolean goon : true;
for i ton
do assign VS; to PhSk with LINK;k is maximum od;
while goon
do

P : set of pairs of virti,al sites that are not yet unite~·
goon : false;
while P =I=- {} and not goon
do

take (VS;,VS1)Jrom P such that LINK,1 is maximum;
if max LINK;k + max LINKjk - (LINK;J + max LINKu1c) ~ 0

k k k

then
VSu : union of VS, and VS1;

remove VS, and VS1 from processing-schedules graph PSG;
add VSu and recompute its LINK-values;
goon : true

fi
od

od;
unite virtua,/ sites with their physical sites;

end

Figure 4.11. Algoritbrn total data a/location.

129

For each query and each update, copies of the fragments involved allocated- to
virtual sites, are interconnected in the update graphs. The resulting processing
schedules graph is shown in fig. 4.12.

Total data allocation starts with computing the initial assignment, characteriz~..d
by the assignment of each virtual site to a physical site for which the sum of the
a1nount transtnitted to it plus the a1:11ount received from it is largest; VS 1 is assigned
to PhS 1, VS 2 and VS 3 to PhS 2, and VS 3 to PhS 3.

The set P contains all the pairs of the virtual sites that can be united. They are
listed below with their LINK-values:

r

130

5

20

15

20

15

__ PhS3

'
'

12

F'iadte 4.12. Processing-schedules graph of example 4. 7.

(VS 1, VS 3) 20
(VS2,VS3) 20
(VS2,VS4) 5
(VS3,VSs) 15
(VS4,VSs) 8

Because the pa.ir (VS 1, VS 3) has the largest LINK-value it is considered first. To unite
VS 1 and VS 3 they have to be first removed from their respective physical sites. This ·
increases the total transmission cost with:

5 + 15.

Uniting them and assigning the union, VSx, to PhS 3 decreases the total trans1a1ission
cost with

20 + 15.

The net result, the difference between the two changes, is not positive and, therefore,
•they are united (see fig. 4.13).

The next pair to be considered is (VS x, VS 2) whose LINK-value is 20. The net
result of uniting! them is:

5 + 15 - (20 + 15) = - 15 ~ 0.

Again, the union, VS, , decreases the total transinission cost.
•

'

2
VS 2 - 5

12

5 20

15
15

VS5

Figure 4.13. Processing-schedules graph after the union of VS 1 and
VS3.

131

The next pair to be considered is (VSy, VS 5) whose LINK-value is 15. The net
result of uniting them is:

15 + 15 - (15 + 15) = 0,

which is non-positive and, therefore, the two virtual sites, which contain copies of the
same relation SELLER are united, VSz. This means that only one copy will be
maintained in the system.

The LINK-value between the two virtual sites VS 4 and VSz is 13, which is the
sum of updates co111ing from PhS 2 (5) and the data transmissions from relation
SELLER to P'' (8). Uniting them increases the total transmission cost with:

17 + 15 - (13 + 17) = 2 > 0.

So, the allocation does not change.

Note, the fact that at most one virtual site is assigned to a physical site, thus
uniting the virtual sites with their physical sites gives a completely specified allocation.
The partially specified allocation obtained so far consists of the assignment of VSz to
PhS3 and of VS 4 to PhSz.

The final allocation shows that all fragments and relations involved in Q 1 are
located at one site, and that only the result has to be transmitted to PhS 1• The data
involved in q1r1ery Q2 is distributed over two sites: the relation SELLER is located to
PhS 3 and the fragment P'' is located to PhS 2• Because this fragment is updated
infrequently two copies can be maintained, one at PhS 2 and one at PhS 3•

D
'

132

4 .. 7 .. 3 .. Theoretical Results Concerning Algorithm total data allocation

As was mentioned before the algorithm total data allocation is greedy and does,
therefore, not necessarily obtain the completely specified allocation with the absolute
minimum total transmission cost. However., it is interesting to know how well the
algorithm performs. We will show that for a special class of processing-schedules
graphs the algorithm computes minimum total transmission cost allocations. But
before doing so, we introduce some notions.

The set of virtual sites can be divided into clusters.. Two virtual sites, VS, and
vs_,, belong to the same cluster if there is a path VS; = VS o, !7S 1., •••• , VSm • VSi
such that J;'S« and VS1c + 1 are adjacent to each other. Two Virtual sites are adJacent
to each other in a processing ... schedules graph if there is an edge between the two vir
tual sites, or if they occur in the same forking graph.

A cluster is called a simple cluster if for every pair of virtual sites, VS; and
VS1 , in the cluster the following holds: removal of all the edges that are adjacent to
both VS, and vs1 and the removal of the for king graph of which both vsi and VSj
are part, causes VS, and VS1 to be no longer in the same cluster.

A simple processing-schedules graph is defined as a processing-schedules graph
for which the clusters are simple and all physical sites are connected by edges with
only one virtual site per cluster, or are part of only one forking graph per cluster.

Intuitively, in simple processing-schedules graphs the net change in the total
transmission cost if two virtual sites are united is simply based on the transmissions
between these two virtual sites and between them and the physical sites.

Theorem 4 .. 7 The completely specified allocation obtained by algorithm total data allo
cation for simple processing-schedules graphs using static schedules minimizes total
transmission cost.

f Assume that a completely specified allocation obtained by algorithm total data
allocation does not have minimum total transmission cost. We will show that we can
change the optimal allocation into the allocation obtained by our algorithm without
losing its optimality.

The optimal solution imposes a partition on the set of virtual sites; the subsets
of this partition contain the virtual sites belonging to the different physical sites.
Changing the opti1nal solution means changing the partition.

We will go through the steps of the algorithm. If the algorithm decides to unite
two virtual sites that occur in the same subset then there is no problem. The
processing-schedules graph will be changed such that the two virtual sites will f or111

O'nlY one nucleus--site and in the subset of the opti1nal partition they will be replaced
by one new element with the satne name as the corresponding VS-node.

Similarly, there will be no problem if the algorithm decides not to unite two
virtual sites that occur in different subsets .

. ·. . In the two_ remainin~ cases we have to change the optimal partition. Assume
this is the first ume that either the algorithm decides to unite two virtual sites that
occur in different subsets or the algorithm decides not to unite two virtual sites that
occur in the same subset, and that the involved virtual sites are vs, and VSi. This
means that LIN K,1 is the largest of all pairs of virtual sites that are not united.

•

•

133

.

I VS; and VS1 do not occur in the same subset of the optimal partition, while
the algorithm wants to unite them. Consider the following cases:

1) Either VSi or VS1 , or both do not communicate with the physical site to
which they are assigned. Without loss of generality, say VSt. The physi
cal site to which VS; is assigned will be called PhS and its corresponding
subset in the optimal partition, S. If none of the virtual sites of S com
municates with PhS, all the virtual sites of S can be moved to the subset
containing VS1 without increasing the total transmission cost.

Also, if there are virtual sites in S that send data to PhS, but occur
'

in another cluster than VS, , all other virtual sites of S that are in the
cluster containing VS; can be moved together with VSz to the subset
containing VS1 without increasing the transmission cost. Now, assume
VSk communicates with PhS and is in the same cluster as VS,. Then
there is a sequence VSk, ... , VS1 , VS, (see definition cluster). Because
the cluster is simple we can split it by removing all edges and forking
graphs containing VS, and VS;. All virtual sites of S that are in the
cluster of VSi after the split, are moved to the subset containing VSj.
This introduces LINK,1 data transmissions, which is less than or equal to
LIN K;1 , the amount of data transmitted that disappears because VS; and
VSj are now in one subset. In this subset VS; and VS1 are replaced by a
new element with the same name as the corresponding VS-node in the
processing-schedules graph, that results from uniting VSi and VSi.

2) Both VSi and VS1 communicate with the physical site to which they are
assigned. Because physical sites are connected with only one virtual site
per cluster, or are part of only one forking graph per cluster, it follows
that max LINKu1c is either equal to max LINKik or max LINKjk, where

k k k

VSu is the union of VS; and VSj. Hence, we only have the following
two cases:

a)

b)

max LINKik
k

== max LINKuk and max LINK1k ~ max LINKuk
k k k

Assume VSj occurs in the subset belonging to physical site PhS1•

Moving all the virtual sites of this subset to the subset of VS;,
decreases the total transmission cost with:

- LINKij ~ max LINKjk
k

max LINK1k + max LINKJk
k k

- max LINKuk
k

max LINK;k ~ max LINKu1c and max LINKik
k k k

= max LINKu1c
k

The same as under a), only the elements of the subset of VSi are
, moved to the subset of VS1 .

134

II vs, and vsj occur in the san1e subset of the opti1nal partition, while the algo
rithm does not want to unite them.

Similarly, we can prove that separating VS; and VS1 in -the optj111al solution
will not lead to an allocation with higher total transmission cost. ·

Finally, by changing the optimal partition e~ery tim~ when the algori~hm wants
it to~ the optimal partition is the same as the solution obtained by the algonthm .. We
have thus seen that under the conditions stated, the optjmal solution can be changed
step by step into the solution of the algorithm.

□

4. 7 .. 4.. Comparison 0 al and Heu1 istic Allocations Using Static Scbed1sles

Now that we have seen that total data allocation computes data allocations that
minimize the total transmission cost for processing-schedules graphs that belong to a
special class, we are interested in how it works in ''practice''. To get an idea we com
pute the optimal allocation of randomly generated processing-schedules graphs and
compare it with the cost of the allocations generated by total data allocation. We also
compare the number of sites over which the data are distributed per transaction. This
means that for a transaction the number of sites are counted that contain fragments
that are used in the transaction, except copies of fragments that are updated. Note,
that if the result site does not contain any fragments used in the transaction it is not
counted.

The transactions are generated in exactly the same way as described in section
4 .. 6. The parameters that will vary are:

D the number of update transactions u, which varies from O to 4,

0 the complexity parameter comp!, which varies from Oto 1 with steps of 0.25,

0 the fragmentation parameter /rag, which varies from O to I with steps of 0.25.

Each of the above para1neters will vary while the others are kept fixed at the follow
ing values:

u =2 comp/ = 0.5 frag = 0.5.

The results are show in table 4.14.

To still be able to compute the opti1nal allocations, the parar11eters were chosen
rather small. For the pr . · g-schedules graphs generated it took about 5 ti111es
longer to compute the optimal allocations compared to the heuristic ones. 1''hi.s may
not seem too bad, however, further increasing the size of the processing-schedules
graph will rapidly increase the ti1ne required to compute the opti 1nal allocations.

V · g the number of update transactions, u, does not seem to influence the
quality of ~e _allocations obtained by total data allocation. For the whole range the

. total transmission costs are slightly more than 3% above the optimal values.

If comp/ equals O the way the queries are pr is the same as in the file
a~ocation problem. The corresponding pro ·. g-schedules graph belongs to the spe
cial class for W~ch the algorith1n can compute the optimal solution. For compl equal
to 0.75 the algonthm for computing the opti.inal solution ran out of memory.

For high values of /rag groups of virtual sites are tightly coupled, so it is easy
for total data allocation to compute the optimal solution. For smaller values the·

•

•

135

•

optimal heuristic
TTC • TTC -sites sites

q u

4 0 0 l 0 l
3 1 282.6 1.075 291.6 1.05
2 2 1093.5 1.225 1133.5 1.25
l 3 1336.6 1.25 1380.2 1.225

·o 4 1708.8 1.275 1763.6 1.325
comp/

0 162.6 1.05 162.6 1.05
0.25 231. l l.125 233.l l.125
0.5 1093.5 l.225 1133.4 1.25
0.75 - - 1249.9 l.175
1 1474.0 1.2 1491.5 1.125
/rag
0 667.5 1.025 706.8 l.l
0.25 731. l 1.075 761.7 1.225
0.5 1093.5 1.225 1133.4 1.25
0.75 764.4 1.125 802.6 1.15
1 990.8 1.275 990.8 1.275
overall 830.7 1.16 856.0 1.17

.

Table 4.14. Comparison results of total data allocation and op-
timal solution.

structure of the processing-schedules graph becomes more important, increasing the
chance that the processing-schedule graph falls outside the special class. ·

We may conclude that on the whole total data allocation computes allocation
that have on the average a 3% higher total transmission cost than the optimal one.
Also, the number of sites over which the data is distributed per t.ransaction is just a
bit more than in the optir11al solution. This shows that merely considering pairs of
virtual sites to be united is not always enough. We come back to this in section 4.7.9.

4 .. 7.5. Semi-Dynamic Schec:hales

The advantage of using static schedules is that the computation of the cost of
an allocation can be computed efficiently. The main disadvantage is that the cost of
an allocation obtained using static schedules might differ considerably from the real
cost. By this we mean that if the processing schedules were recomputed given the
obtained all9Cation they could differ from the ones given the initial allocation. In the

'

next subsection dyna1nic schedules will be discussed. Here, a compromise is made
between efficient computation of the cost of allocations and changes in schedules
based on changes in the allocation.

How does a schedule change if the allocation changes? For example suppose

136

th,1t, joins have to be comput,ed between R 1, R 2 and R 3. If the relations are located
at different sites, a query processing algoritlim may determine a schedule that says:
send R 1 to R 2, c.ompute the join between R 1 and R 2, send the result to R 3, compute
the jc>in betwee11 the previously computed result and R 3, and, finally, send the result
tc> the result site. If static schedules are used, allocating R 1 and R 3 to the same site
would n(>t change the order in the computation. So, although, a join between R 1 and
R 3 could be C(Jmp1.1ted i1nmediately it is not done. In the semi-dyoa1r1ic schedules that
we propose here we will not fix the order in w hlch the joins are computed, in
advance. During the computation of an allocation, however, we assume that if two
relations referenced in the same query are allocated to the same virtual or physical
site, the join bet.ween them is computed before joins with relations located at other
virtual or physical sites. This may not alwa)'S be opt11nal. A consequence is that if
R i~ R 2 and R 3 are located at different sites the only thing we know is that 3 transmis
sions are required to process the joins. And, if R I and R 3 are located at the same site
only two transmissions are required. In both cases we assume a final transmission to
the result site. By not fixing a processing schedule it is not known between which
sites data is transmitted and how much; only the number of transmissions can be
counted. So, to add more flexibility we have to lower the accuracy of the cost compu
tation. Only counting the number of data transmissions is in some cases acceptable.
For example~ if transmission time is mainly determined by queueing delays a reason
able objective is to minimize the number of transmissions.

The represe11tation of the seffii ... dynamic schedules is done by a graph that looks
like a forking-graph only the arrows are directed to the nucleus-site, where the result
of the joins is required. This may be the result physical sites of the query but may
also be just another virtual site. Also,. the other nodes in a semi-dynamic schedule
have no special function.

The reason why the same type of graph is chosen, is because its behavior under
a change in the allocation is the same. For example, if NS 2 and NS 3 are united only
one edge to 1VS1 remains, and if NS 4 is united with NS 1 the edge between them
disappears. The l,tbels of the edges are all the same (A, 1), where A is the frequency
with which the query is stated and 1 stands for I transmission.

Optimitl solutions can be obta.ined b)· letting the Heuristic Path Algorithm use
the a.dmissible heuristic estimator psa static cost. To compute efficient allocations,
algorithm total data allocation of subsection 4. 7 .2 can be used. Also, the optimality
proof of theorem 4.7 holds for processing-schedules graphs in which semi-dynamic
schedules are used.

4-7 .. 6 .. 0 ·• al Allocations Using Dynamic Schedules

Having considered stat.ic a11d seffii ... dynamic schedules, we now exa111in.e
dynan1ic ones. Th~ on~ advantage of usi.ng dynamic schedules is that the processing
schedules graph belonging to a completely specified allocation contains schedules that

• a~e itientical to the schedules produced by the distributed query processing algorithm
g1ve11 the completely specified allocation.

. The ?the1· advantage is that, in general, given a completely specified allocation,
the processing schedules produ.ced by a distributed query processing algorithm have a

the 1mt1al allocation using static schedules.

'

•

The main disadvantage is the computati{">nal effort required, compared to the
usage of static schedules. As shown in subsection 4. 7. l an estimator, \Vhich can easily
be computed, can be found for static schedules. This is not necessarily the case for
dynamic schedules.

For example, assume that in the decision tree of the Heuristic Path Algorithm
decisions have been taken to unite VSi with PliSv and VS1 with PhS.,., .. and that about
two other virtual sites VSk and VS, that are all accessed in one que1·y no decision has
been taken so far. Without knowing anything about the final allocation of the frag
ments the processing schedule of the query and its cost can not be computed. To
obtain an underestimate of its cost all possible allocations have to be considered and
the one with the least cost could be used as heuristic estimator.

So, in general, the computation of an estimate-cost of a partially specified allo
cation can not be done in polynomial time. However, under the realistic assumption
that each query only accesses a relatively small number of fragments an estimator can
be constructed which runs efficiently. This can be achieved by doing some initial pro
cessing. The estimator will be called psa dynamic cost. A one-query-allocation is a
partially specified allocation of all fragments accessed in one query. A one-query
allocation satisfies a partially specified allocation if the fragments in the fragment-sets
of the nucleus-sites in the one-query-allocation, occur together in the same fragment
sets in the partially specified allocation. Before the search starts, all these one-query
allocations are given to the query processing algorithm used by the distributed data
base system to compute the corresponding schedules and their cost. Updates are
treated exactly the same as queries. The cost of their schedules does not include
transmissions to keep copies consistent. During the search a lower bound on the cost
of a partially specified allocation given by a path in the decision tree is computed as
follows. For each query we consider all the one-query-allocations that satisfy the par
tially specified allocation and take the one with the least cost. The sun1 of all these
costs plus the cost to keep copies consistent if more than one copy of a fragment is
allocated, is the estimate-cost of the partially specified allocation.

The orocedural form of psa t{vnamic cost is shown in fig. 4.15. An example is
given to show how it works.

Example 4 .. 8

Let us assume that we are given a query stated by a user at the site correspond
ing to PhS 1• This que1·y computes the join hetween the two relations PROP and
SELLER. There are five one query allocations:

1) PhS 1 = ({})

2)

VS1 = ({PROP})
VS2 = ({SELLER}),

PhS1
VS1

= ({})
= ({PROP .,SELLER}),

•

138

proc psa dynamic cost (allocation psa)reai:
n

real sunz := O,·
foreadt query Q
do

take the one-query-allocation of Q with the least cost that satisfies
psa;
sum +: cost of this one-query-allocation •

od;
sum

end

Figure 4.15 .. Algorithm psa dynamic cost.

3) PhSi = ({PROP})
VS1 ({SELLER}),

4) PhS1 ((SELLER})
VS 1 ({PROP}),

5) PhS 1 ({PROP ,SELLER}).

Because the operations do not matter they are not included in the 2-tuple of the
nucleus-sites. For each of these one-query-allocations a processing schedule for the
query and its cost can be computed.

The cost of a partially specified allocation is underestimated by psa dynamic
cost as follows. Assume that a decision has already been taken to allocate fragment
PROP to PhS2, and that no decision has been taken yet about SELLER. The one
query-allocations that satisfy this partially specified allocation are I, 2 and 4. The one
with the least cost is taken.

□
Proposition The heuristic estirnator psa dynamic cost is ad1oissible.

Proof The cost of one query is underestimated because all possible one-query
allocations are investigated. Also, the cost to keep copies consistent is underesti1nated
because only transmissions between copies of fragments that are already allocated to
physical sites are counted.

D

Corollary 4.8 If the Heuristic Path Algorithm uses psa dynamic cost then the com
pletely specified allocations obtained have 1nini111um total transmission cost.

4 .. 7.7. He111 isdc Allocations Using Dyn1111k Schedules

Incorpotation of dynainic schedules in the heuristic algorithm total data alloca ..
tion can be done in different ways. Remember that in the algorithm when using static
schedules the changes in the processing-schedules graph when two virtual sites were
united, were rather simple. The union of the virtual sites inherited all the incoming

139

and outgoing edges of the virtual sites and only the edges between them disappeared.

A simple way of dealing with such changes using dynamic schedules is to
recompute the schedules of all transactions that might be affected by the change in
the allocation. This means that the decision to change the allocation is taken based
on the cost of schedules corresponding to the current allocation; and only after the
change the schedules corresponding to the new allocation are computed.

This approach deals with the disadvantage of static schedules that the schedules
in the final allocation might differ from the ones obtained from the query processing
algorithm given this final allocation. However, there is one problem, the total
transmission cost of an allocation by algorithm total data allocation using dynamic
schedules is not necessarily less than when using static schedules. The reason is that
virtual sites are united based on transmissions that also depend on the rest of the allo
cation. A change in the allocation of other virtual sites might completely change pro
cessing schedules making a previously taken decision to unite two virtual sites
obsolete. Therefore., a different approach is taken.

A processing-schedules graph is no longer the basis to decide about changes in
the allocation. Instead a LINK-graph is used. The structure of such a graph is the
same as a processing-schedules graph; it contains PhS- and VS-nodes and edges. The
difference can be found in the edges and their labels. Between every pair of nodes
there is an edge and its label is the change in the cost function if the two adjacent
nodes are united or if one is assigned to the other. To compute a label of an edge
between two nucleus-sites the query processing algorithm is applied twice. Once,
when the two nucleus-sites are united~ and once when they are not. The difference
between the two costs is the label.

,

The way a completely specified allocation is computed is basically the same as
by algorithm total data allo<:ation. First, the virtual sites are individually assigned to
physical sites such that the total transmission cost is minimized. Then pairs of virtual
sites are considered for uniting in descending order of the labels of the edges between
them. The cost of removing the two virtual sites from the physical sites to which they
are assigned is the sum of the labels of the edges between the two virtual sites and the
virtual sites that have already been assigned to the physical sites involved. Uniting
them will decrease the cost function by an amount denoted by the label of the edge
between the virtual sites. However, the decrease in the cost function when the union
is assigned to a physical site, is not yet known. Therefore, the schedules of the
queries involved have to be recomputed and an assignment of the union to each phy
sical site rnust be considered.

If the difference between the increase and decrease of the change is non-positive
the two virtual sites are united. Taking the union of virtual sites is continued until no
further improvement of the total transmission cost is possible. ·

Finally, the remaining virtual sites are united with the physical sites to which
they are assigned.

4. 7.8. Comparison Static and Dynamic Schedules

In this subsection a comparison will be made between allocations that are
obtained using static schedules and using dynamic schedules. To use dynamic
schedules a query processing algorithm is needed. We will take a simple one, namely
a variation of algorithm SERIAL ([Hevner! 979a] and subsection 3.4.2). The

140

modification is that relations located at the result site of a query do not participate in
the schedule. This was mainly done to make the algorithm as efficient as possible.
Because computing the optimal allocations is rather time consuming the heurist~c
algorithms described in the subsections 4.7.2 and 4.7.7 were _used. For the st~t1c
approach the schedules were computed once under the assumption that each relation
is located at a different site other than the result site.

Three parameters were varied:

□ q., the number of queries,

□ r, the average number of relations,
'

□ p, the selectivity of a relation.

The results are shown in table 4.16; each entry is an average of 50 test runs.

q 2 4 6 8 10

dyn 17.2 39.7 63.3 109.l 134.5
stat I.I 15.6 75.6 56.9 148.6

r 3 O~p~l

r l 2 3 4 5
dyn 296.9 94.3 65.3 5.32 0.34
stat 123.9 96.l 77.6 16.5 26.1

q =5 O~p~l
'

p 0.0-0.33 0.33-0.66 0.66-1.0
dyn 20.1 68.2 128.8
stat 23.0 70.6 137.2 ..

q == 5 r = 3

Table 4 .. 16. TTT using static and dynamic schedules.

For a small number of queries and a small number of fragments the effect of
the modification is noticeable. The dynamic approach is punished because most of
the fragments referenced in a query will end up at the result site, and are, therefore,
not used in the erocessing schedules. On the whole, a part from the effect caused _by
the modification, we may conclude that the total transmission cost of the allocations

. obtained using dynamic schedules are less than of the ones obtained using static
schedules. The efficiency is quite essential because the query processing algorithm
must be executed every time a change is made in the allocation for all queries that
reference fragments whose location has changed.

141

4.7.9w Extensions of Algorithm total data allocation

Algorithm total .flata p.llocation can be viewed as the most simple version, which·
can be adapted or extended when applied to more sophisticated models of data allo
cation. One such generalization has already been discussed in the subsection on
dynamic schedules.

Another simple extension is to allow groups of nucleus-sites to be united. In its
simple version the algorithm only considers unions of two virtual sites. It can easily
be seen that if the processing-schedules graph is not a simple processing-schedules
graph there is a chance that uniting three or more virtual sites at once will decrease
the total transmission cost, and that pairwise uniting does not [Apers 1980a]. By first
considering the union of pairs, then triples, etc. the result will definitely improve.
However, continuing this until a union of all virtual sites is considered does not neces
sarily lead to an optimal solution.

Checking constraints is another extension. Total data allocation gives no con
sideration to constraints such as the bandwidth of communication channels or the
utilization of CPUs. A straightforward way to implement this is to compute the utili
zation factor of the resulting nucleus-site whenever two nucleus-sites are united. This
can be computed because all operations in that nucleus-site are known. If it is too
high, greater than or equal to I, the site corresponding to the nucleus-site would
become saturated, giving an infinite response time. The same can be done for com
munication channels. After the assignment of a virtual site to a physical site the
amount of data transmitted per unit of time to the other nucleus-sites may not violate
the bandwidths of the communication channels. If the network has an arbitrary
topology the routing of the transmissions need to be determined. Obviously, t.he algo
rithm may end up with a non-feasible allocation because of these constraints. .

4.7 .. 10. Constituents of Total Transmission Cost

To get a better insight in what effect an allocation has on query processing we
take a closer look at the total transmission cost. It is the sum of all transmission
costs that remain after the virtual sites are united with physical sites and can be
divided into:

□ transmissions required in processing queries,

D transmissions required in processing updates,

□ transmissions required to keep the copies consistent, denoted by cc .
•

The first two can again be divided into transmissions that were transmissions between
virtual sites and that were transmissions between virtual sites and physical sites in the
processing-schedules graph of the initial allocation. They will be denoted by vv and
vph and will be suffixed with a q, or u, for a query transaction, or an update transac
tion, respectively.

So, there are five constituents of the total transmission cost

TTC = vphq + vvq + vphu + vvu + cc.

142

We will investigate the changes in these quantities ':hen. changing the

the transactions are kept constant:

frag = 0.1 comp! = 0.6 upd = 0.6.

The upd parameter may seem high, but it is merely to ensure that an update transac
tion changes at least one relation. Table 4. I 7 shows the absolute values of the
transmission costs when the number of queries varies from O to 10; the total number
of transactions is kept constant as well, namely 10. The values are averages of 50 test

runs.

q u TTC vphq vvq vphu vvu cc

0 10 3110.4 0 0 2481.9 324.l 304.4

I 9 3048.3 141.9 24.1 2159.l 303.3 420.0

2 8 2764.2 276.7 77.9 1736.8 301.7 371.0

3 7 2505.1 342.9 65.1 1476.0 209.2 411.9

4 6 2022.7 337.4 109.8 1096.6 189.6 289.2

5 5 1814. l 441.3 113.3 843.2 94.6 32·1.7

6 4 1478.9 399.8 104.7 574.0 76.4 324.0
7 3 1276.1 496.9 68.8 267.4 76.6 368.3
8 2 741.3 297.5 103.2 82.5 13.5 244.7
9 l 397.4 197.5 59.5 17.3 2.6 120.4

10 0 0 0 0 0 0 0

Table 4.17. Constituents of TTC.

As one would expect if there are no updates (u = 0) every physical site can be
united with the virtual sites of all required fragments, and, therefore, no transmissions
are required for query processing. Also, because none of the fragments gets updated
no transmissions are needed to keep the copies consistent. In the other extreme, when
there are no queries, there will hardly be any copies, and, therefore, the total
transmission cost consists mainly of the transmissions needed for updates.

•

When increasing the number of update transactions the amount of data
transmitted in update processing grows as well, until it constitutes the whole total
transmission cost, together with the transmissions to keep the copies consistent.
When increasing the number of query transactions, initially the cost to process queries
increases, but then, contrary to when the number of updates increases, it decreases
until zero. The reason for the latter is that because there are less updates the cost to .
maintain copies becomes less and uniting the virtual sites accessed in one query with
the result physical site decreases the cost to process queries.

The transmissions required for query and update processing are split into
transmissions between virtual sites and between virtual and physical sites to show that
even in a completely specified allocation the schedules are not comparable to the
schedules used in the file allocation problem.

•

•

143

To get an indication how distributed query processing is after an allocation has
been determined, the number of sites over which the fragments required in processing
one transaction are distributed, were counted; the results are shown in table 4.18.
Sites containing copies of the accessed fragments were not counted; neither were the
result sites if they did not contain any referenced fragment. For the given values of
the parameter we may conclude that most of the time all the required fragments were
located at one site, and in more than 99% of the transactions no more than two sites
were involved. We have to keep in mind that for processing-schedules graphs with a
different structure the results may be less striking. In [Apersl 98 la], for example,
where transactions were generated in a completel·y different way a similar
phenomenon was observed; there in more than 70% of the transactions no more than
two sites were involved. So, we may conclude that, on the average, the fragments
accessed are located at no more than 3 sites. Furthermore, query processing at a sin
gle site is still an important issue in a distributed database system.

q u l site 2 sites 3 sites 4 sites av. sites
0 10 0.85 0.142 0.006 0.002 1.16
1 9 0.854 0.136 0.01 1.16
2 8 0.838 0.154 0.008 1.17
3 7 0.874 0.122 0.004 1.13
4 6 0.868 0.122 0.01 1.14
5 5 0.892 0.104 0.004 1.11
6 4 0.904 0.096 I.I
7 3 0.914 0.084 0.002 1.09
8 2 0.932 0.068 1.07
9 1 0.964 0.036 1.04 •

10 0 l I

Table 4.18 .. Number of sites per transaction.

The averages shown in table 4.17 conceal what is really going on. Therefore~
we computed cc as percentage of the total transmission cost. The range from O to
100% is divided into 10 intervals and for each test run with a non-zero total transmis
sion cost the percentage of the cc is computed and added to the appropriate interval.
The resulting frequency diagrams are shown in fig. 4.19 for varying numbers of
update transactions. For large q one can clearly see the bi-stable character; for
almost all test runs the cc is either 0% or 100% of the total transmission cost. For
decreasing q the 100% column starts to diminish and a bulge forms in the middle
(q = 7). For even smaller q it loses its bi-stable character which can be seen from
the disappearance of the bulge and the fact that for almost all test runs the cc is less
than 20%. So, for decreasing q the left top moves to the right one, and, finally, they
merge. So, in fact the averages of cc shown in table 4.17 are the average of two com
pletely different classes of solutions.

A similar behavior can be found in vvq + vphq. The cost of the transmissions
to process the updates are rather stable.

144

,
100°/o 100 ° lo

q = 0 q = 3

100 ° lo l 00 ° lo
q:7 q:9

Figure 4.19. Frequency diagrams for varying q.
•

The two extremes of the bi-stable character can easily be explained. Assume
that there are only queries, then there are no transmissions, because every site con
tains all the required copies. Now replace one query by an update. This update tran
saction may update a few fragments and transmissions are required to keep the copies
all around the network consistent. Two situations can occur. Either nothing is ·
changed in the allocation, implying that there are no transmissions for queries. This
explains the fact that query transmission cost goes to 0%. The other situation is when
all copies of the updated fragments are discarded except one, implying that there are
n<> transmissions to keep the copies consistent. Hence, the query transmission cost is
100%.

4 .. 7 .. 11. Primary Copies

One of the advantages of maintaining several copies of a fragment is that these
copies can be allocated such that transmission and/ or response time is minimized.
However, if fragments are volatile, meaning that they are updated frequently, the cost
of keeping the copies mutually consistent might be too high. Whether all copies must
be identical all the time (strong consistency or whether they will eventually become
identical when there are no more updates (weak consistency), is not important for the
data allocation problem. Important is that the transmissions required for mutual con
sistency· are represented correctly in the processing-schedules graph.

Two ways of representing update transactions are discussed. A simple way is
to use two kind of copies for each fragment, namely one primary copy and several
secon · copies [Stonebraker 1977]. The idea is to let all update transactions use
only the primary copy of each fragment. Secondary copies are only used for retrieval

145

purposes. In the processing-schedules graph of the initial allocation each query tran
saction will be given its own secondary copy of a fragment.

Another less restrictive way of representing an update transaction is to handle
an update exactly the same way as a query when constructing the processing
schedules graph. This means that an update transaction also gets its own set of
copies of the accessed fragments. If one of the fragments is updated it becomes a
notification node in a forking graph and all other copies, used by both queries and
other updates, are the receiving nodes.

The second alternative leaves more freedom to a data allocation algorithm to
let update transactions use different copies. Obviously, other design aspects may
influence the decision whether primary copies are used or not. Here, we will limit
ourselves merely to the effect on the total transmission cost.

To be able to calculate the consequences of the use of primary copies the effect
of it on the total transmission cost is compared with the case that no primary copies
are used. Table 4.20 shows the results computed by total _data _a/location for varying
number of update transactions. The fact that update transactions are forced to use
the same set of copies clearly has a negative effect on the total transmission cost; if
there are only updates this amounts to 8.5%. The negative effect disappears when
fewer updates make use of the primary copies and, finally, when there are no updates,
it completely disappears. As far as the data allocation problem is concerned there is
no need to specify in advance that certain transactions need to use the same set of
copies. If it is too expensive to let each transaction have its own copy the data alloca
tion produced will force some of them to share copies.

total transmission cost
• • q u no-primary primary

0 10 3110.4 3374.2
l 9 3048.3 3319.9
2 8 2764.2 3004.6
3 7 2505.1 2748.3
4 6 2022.7 2220.6
5 5 1814.1 1967.9
6 4 1478.9 1633.7
7 3 1278.1 1368.9
8 2 741.3 789.3
9 1 397.4 396.9

10 0 0 0

comp/ = 0.6 /rag = 0.1 upd = 0.6

Table 4.20. Comparison primary and no-primary.

146

4.7.12. Summary

The prc.)blem of determining completely specified allocati~ns such that the total
transmission cost is minimized., was investigated. First, a static approach was con
sidered. The processing schedules of all the queries are c<?mpu ted on~e., and they will
be used throughout the computation of a completely specified allocation. The advan
tage is that the cost of an allocation can efficiently be de~ermined. _A disadvantage is
that the computed cost of a completely specified allocation may differ from the real
cost. This is caused by the fact that the query processing algorithm might come up
with a different processing schedule than the one that was computed at the start. An
admissible heuristi.c estimator, called psa static cost, was given to compute optimal
allocations with the Heuristic Path Algorithm. Also, a heuristic algorithm, called total
data allocation., was given, which produces optimal allocations for simple processing
schedules graphs. The basic idea behind it is to unite virtual sites in decreasing order
of their LINK-value if the total transmission cost decreases. The solutions obtained
by the heuristic algorithm were compared with the optimal ones; the heuristic solu
tions had, on the average, only a 3% higher total transmission cost than the optimal
ones.

Secondly, a semi-dynamic approach was treated. If only the number of data
transmissions are counted the schedules can be represented by a subgraph that looks
like a forking graph. On the one hand, this gives a more flexible approach towards
the changing schedules, and, on the other hand, the same results hold as for the static
approach.

Thirdly, a dynamic approach was discussed. To deter1njne the real cost of a
partially or completely specified allocation the processing schedules of the queries
have to be computed given this allocation. A consequence is that to determine the
optimal completely specified allocation, all possible allocations of the relations have to
be considered. An admissible heuristic estimator was given. We expect, however,
that the computation of an optimal solution using dynamic schedules is too time con
suming. Therefore, a heuristic algorithm was proposed, which is a variation of total
data allocation. It does not use a processing-schedules graph but a LINK-graph. The
labels of the edges denote the cost if the two adjacent nucleus-sites are not united.
The static and the dynamic approach were compared. We may conclude that the
allocations obtained using dynamic schedules have a lower total transmission cost;
however, the cost to obtain these allocations highly depends on the efficiency of the
query proces.~ing algorithm used.

To get a better insight in the allocations obtained the total transmission cost
was investigated for varying the query /update ratio. The ITC starts from zero, if the
are no updates, and gradually grows, if the number of updates increases. If there are
mainly queries there is either a non-redundant allocation or a fully redundant alloca
tion for the fragments that are updated. Also, part of the TTC is constituted by the
cost for transmissions between virtual sites in the initial allocation, showing that even·
in a completely specified allocation the schedules still differ from the ones used in the
file allocation problem. From this we may conclude that solutions obtained from the
file allocation problem do not characterize solutions of the data allocation problem in
a distributed database. Furthermore, the usage of primary copies was investigated.
As. far as data allocation is concerned there is no need to specify in advance that an
update must access a certain copy of a fragment. On the contrary, forcing all updates
to use the same copy will increase the total transmission cost.

•

147

4.8. Minimizing Average Response Time

In the previous section we considered the total transmission cost as the cost
function to be minir11ized. Here we will discuss the average response time of the
queries. Let Ai be the frequency with which the ith query is stated and let RT; be its
response time then the average response time is:

ART A1RT1 + A2RT2 + · · · + AmRTm

A1 + A2 + · · · + Am
•

The response time of a query can be deter1nined by reconstructing its schedule
from the processing-schedules graph of an allocation and computing the queueing
delays at the CPUs and communication channels.

In the subsections to come, both the response transmission time and the
response processing time are investigated, as well as the response time, which includes
both transmissions and processing. When discussing processing time it is not only
important to know where the fragments are located, but also at which sites the opera
tions, required for processing the queries, are executed. Consider a query that com
putes the join between two restricted relations. The restrictions are, of course., exe
cuted at the sites where the fragments are located, however, the join may be computed
at either site or at the result site. Fixing an operation allocation is similar to deter
mining processing schedules. On the one hand, one may consider it as a form of
precompiling the schedules, on the other hand, it can also be used to see whether a
particular data allocation is feasible, i.e., having an acceptable average response time.
In the latter case, the schedules can be determined at run time, with the advantage
that utilization factors, etc. can be taken into account.

The advantages of allowing for a redundant data allocation have been discussed
extensively in the previous section. Therefore, and for reasons of simplicity, we
confine ourselves in this section to a non-redundant data allocation. Also, only static
schedules are used.

In this section both minimizing response processing time and response
transmission time are considered. In subsection 4.8. l a queueing model is introduced
to be able to compute queueing times given an operation allocation. In the subsec
tions 4.8.2 - 4.8.10 simple processing schedules will be considered. First, in subsec
tions 4.8.3 - 4.8.5 minimizing average response transmission time for these simple pro
cessing schedules is treated. Then, in subsections 4.8.6 - 4.8.9 average response pro
cessing time is minimized. In subsection 4.8. l O the two cost functions are combined.
In the subsections 4.8.11 - 4.8.14 the average response trans1nission time is mini111ized
for arbitrary processing schedules. In subsection 4.8.13 an algorithm is given, which
dete1'mines an operation allocation given a data allocation. In subsection 4.8.14 this
algorithm is used in an algorithm, which computes both a data and an operation allo
cation to minimize average response transmission time.

The main line of research consists of establishing, where possible, the complex
ity of the problem, finding an admissible heuristic estimator to guarantee that the
Heuristic Path Algorithm produces optimal solutions, and developing heuristic algo
rithms that run in polynomial time. In some cases a comparison is given between
solutions obtained by the heuristic algorithm and the opti1nal solutions.

148

4.8.1.. Queueing Model and Response Time

A nucleus-site consists of two sets: one for fragments and one for operations.
The latter contains operations that will be executed at a site of the computer network.
To compute the response time of a query we have to know the expected queueing
times of the different sites and the different communication channels involved.
Straightforward application of queueing theory to compute the transmission time of
messages [Kleinrock l 975a, Kleinrock 1975b, Jackson 1957] can not be done, because of
the forking and synchronization points in processing schedules, which cause depen
dencies between transmissions and operations in one query. A partial solution to this
problem was discussed in subsection 3.1.6. Based on that, the response time of a
query will be computed algorithmically, by serializing the operations and transmis
sions that share the same resources. In between queries we will assume independence.
It should be noted that none of the algorithms presented here makes explicit use of
the way queueing times are computed and, therefore, any queueing model can be used
as well. However, some of the algorithms need a fast computation of the expected
queueing times, which prohibits the use of a simulator.

Lacking a queueing model for the whole network that takes into account the
dependencies caused by the schedules, we assume that Jackson's Independence
Theorem [Jacksonl957] can be applied, implying that a queueing model can be taken
for each server, and that the queueing tirnes can be computed for each one separately.

The model used for a CPU is M/ G / 1 with bulk arrivals. This means that there
is a single server with Poisson arrivals and arbitrary service time distribution. Bulle
arrival means that groups of jobs are placed in the queue at the same time. The rea
son why we need this is that more than one operation may be initiated by a query at
one site. If, for example, two fragments that are accessed in the same query are
located at the same site, the operations performed on both of them will be initiated at
the same time.

No attempt has been made to better implement the special characteristics of
database operations in the queueing model. For example, no distinction is made
between the use of a CPU and of IO devices. Again, this is only done to focus our
attention on the algorithms; the fo1n1ulas to compute queueing ti1nes are merely tools.

We assume that we know how frequently a query is executed; this will be
denoted by A, for query Q;. Each operation that is part of a query is executed with
the same frequency. Also, the execution time (service time) of an operation is
assumed to be known; the execution tirne of operation OJ is denoted by xj. So, for
every nucleus-site we have a set of operations to be executed and for each operation
OJ of each query Q1 we know its Aj, its x1, and the query of which it is a part. From
this we will compute the expected queueing times of the sites. ·

Three distributions are involved: the bulk size distribution the a11·ival distribu-, .

tion and the service distribution. The coefficient of wa1·iation of an arbitrary distribu
tion X is defined as

C} x2 ,

where X and xI are the first and second moment of the distribution X. Because
nothing is known about the distribution of the bulk sizes and service times we assume
that the operations that are executed at a site fo11n a sample and, therefore, the first

•

149

and second moment can be estimated by the sample mean and variance. The arrival
distribution is really a whole set of distributions, namely one for each group of
arrivals. If we assume that the arrival of each group can be described by a Poisson
distribution, then we can use the property that the sum of Poisson distributions is
again a Poisson distribution, only now with varying group size.

where

The formula for the expected queueing time of the first operation in a group is

p is the utilization factor,
g is the average bulk size,

pxg
2(1 - p)

Cg2 is the squared coefficient of variation of the bulk size distribution,
x is the average service time
Cb2 is the squared coefficient of variation of the service time distribution

[Kleinrock 1975a].

Other servers for which a queueing model can be used are the communication
channels. A simple MIMI 1 model seems adequate to compute queueing delays
[Kleinrock1975a]. Quite often one can observe that these delays are rather constant
until a certain threshold is passed by the utilization factor. Then they rapidly grow to
infinity. In the context of this research we will confine ourselves to this simple model
to represent transmissions, although there are no real limitations to compute the
delays based on the real transmissions. Therefore, the transmission time of each com
munication channel is described by

•

TT(X) = To+ TC(X),

where To is a delay constant and TC is the transmission cost function.

Given a completely specified data and operation allocation the queueing delays
of the physical sites can be computed. The response time of a query can now be
determined by reconstructing its schedule from the processing-schedules graph and
serializing the transmissions and operations that share the same resource. The aver
age response time of all queries and updates can then be computed by weighing all
the response times.

For a partially specified allocation only the queueing times of a physical site
can be computed based on its operation-set and the virtual sites assigned to it. The
response time of a query is determined based on these queueing times and the
transmissions between physical sites and between physical sites and virtual sites
assigned to other physical sites.

4.8.2. Simple Processing Schedules

Most research in the area of the file allocation problem has concentrated on
minimizing the total transmission cost. To establish the complexity of minimizing
ART and to find general techniques which can also be applied to more complex pro
cessing schedules, we will first consider simple schedules.

The simple schedules consist of local processing at the sites where the data are
located, followed by transmissions to the result site where, for example, a join is

150

computed. These simple schedules imply that operations within one query ar exe
cuted either at a site that contains data referenced by the query or at the result site.
In subsection 4.8. l l arbitrary schedules are considered which makes it possible to •
offload some of the operations to other sites.

Our goal is to unite the virtual sites with the physical sites such that the aver
age response time is minimized. Because the operations have already been allocated
we will speak of the data allocation. First the complexity of the problem will be esta
blished.

Imagine that transmission delay and processing time are zero. So, the only
thing that counts is the queueing delay before transmission. The edges for query Q,
in the processing-schedules graph will be labeled with (i, 1, 1). This means that the
response time of a query is either O or 1 depending on whether all the accessed data
are· local or not.

Theorem 4.9 The problem of minimizing the average response time is NP-complete.

Proof We will show this by translating the set packing problem to it.

Set Packing Problem: given a collection of sets { S 1, S 2, ••• , Sn} determine
whether there exist / disjoint sets Si .

This problem is known to be NP-complete [Karpl972, Gareyl979] It is translated to
the response time problem as follows. Define for each element in each of the Si's a
virtual site, and for each set S; a physical site PhS;. In the processing-schedule graph
all elements in one set St are connected by an edge with physical site PhS;; the label
of the edge is (i ,1,1). If S; and Sj are disjoint we know that the virtual sites
corresponding to the elements of S, can be assigned to PhS1 and those corresponding
to the elements of S1 to PhSi resulting in a zero response time for both the query
stated at PhSi and PhS1 .

Asking for l disjoint sets Si is the same as asking for an allocation such that /
queries have zero response time, which is the same as n - l queries with response
time equal to 1.

Assume we are given an assignment of virtual sites to physical sites such that
the ARTT exactly equals (n - /) / n. Because a response time of a query can only
be O or I, there must be l queries with zero response time. Each of these / queries
corresponds to a set S;, and these sets must, therefore, be disjoint.

The other way around goes similarly.

□

4.8.3. Optimal Allocations to Minimize Average Response Transmission Time

We will again use the Heuristic Path Algorithm to compute the allocation that
has minimum ARTT for simple processing schedules; for simplicity, we assume that

- all A, 's are 1. So, minimizing AR TT is the same as mini111izing the sum of the R TT,
of the queries.

The heuristic estimator that we will describe now is called psa resp data.
Assume we are given a partially specified allocation. For each query we will use a
RTT:, which is initially set to the maximum of transmission times of data coming
from other physical sites. Later we will prove that the RTT; of a query is an upper
bound on its RTTi, given the partially specified allocation. Now for a virtual site VS

•

151

its contribution to the sum of the response transmission times is computed. First, the
increase of each R TT'; is computed if VS were not assigned to any of the physical
sites to which it transmits data. Take the sum of these increases and subtract the
maximum. This is the contribution of VS. Before considering the next virtual site,
VS and its adjacent edges are removed from the processing-schedules graph, and the
R TT; are updated by adding their respective increases. This continues until no vir
tual sites are left, and the sum of the contributions of the virtual sites plus the sum of
the initial values of the RTT'; is the estimate-cost of the partially specified allocation
computed by psa resp data.

proc psa resp data (schedules graph psg)real:
begin

[l:n]in.t RTT fm;
real sum : 0;
set RTT; to maximum of transmission times of data coming from
another physical site than i;
while there is a virtual site
do

say VS is such a virtual site;
foreach RTT1
do

od;

compute its increase if VS were not assigned to the correspond
ing physical site and update it by adding this increase

contribution of VS is the sum of the increases of the R TT, minus
the maximum of these increases;
sum +: contribution of VS

od;
sum

end

Figure 4.21. Algorithm psa resp data.

Example 4 .. 9

Assume we have a processing-schedules graph and in the search tree the deci
sion has been taken to unite VS 1 with PhS 1• Then RTTi equals 3 and both other
R TT: are zero. This situation is shown in fig. 4.22.

The increases of the R TT1 caused by VS 2 are:

R TT 1 : 2 - 0 == 2,
RTT2 : 6 3 3, and
RTT3 : 4 0 4.

So, the contribution of VS 2 to the sum of the RTT; is 2 + 3 + 4 - 4 = 5. The
RTT1 are updated as follows: RTT1 = 2, RTTS. = 6, and RTTl == 4.

152

(2,1,3)
(2,1,5)

(2,1,6)
(1,1,2) (3,1,7)

(3,1,4)

Figure 4.22. Processing-schedules graph belonging to a partially
specified allocation.

The contribution of VS 3 is max(0,5 - 6) + (7 - 4) - (7 - 4) == 0. So, the
sum of the contributions equals 5, and if we add the cost caused by previous decisions
(3) we end up with an estimate-cost of 8. This also happens to be the cost
corresponding to the opti111al solution, satisfying the constraint that VS I is united
with PhS 1• In this optimal solution both VS 2 and VS 3 are united with PhS 3•

□
Theorem 4.10 The heuristic estimator psa resp data is admissible if the simple process
ing schedules are not serialized.

Proof Consider a partially specified allocation. What we will do is consider the vir
tual sites in the order done by psa resp data and unite them with the physical site
according to the optimal solution satisfying the previously taken decisions, and com
pute their contribution to the sum of the response transmission times of this optimal
solution. Let RTTj<1> and RTT1<1) be the values of the RTT1 and RTT1 after / vir
tual sites have been united with physical sites. To start with, set both RTT1<0> and
RTT1<0> to the maxj1num of the transmissions of data accessed by Q1 coming from
other physical sites. Because we are given a partially specified allocation their values
may be non zero. Let R (VSi,PhS1) denote the result after local processing at VS;,
which is transmitted to PhS1 . Let VS; be a / + 1-th virtual site for which the contri
bution is computed by the estimator. Assume VS; is united with PhSk in the optimal
solution then i,ts contribution to the optimal sum of response transmission times is:

n

~ max(TT(I~ (VS1,PhSj) I) - RTT1<1>,o).
j ::;; l
j =I= k

The contribution computed by the estimator is:

n

~ max(TT(IR (VS; ,PhSJ) I)
j=l

- m~(max(TT(IR (VS;,PhS1) I) - RTT1<1>,0))
J

•

•

•

153

If RTT1<') ~ RTT1<J) then the terms in the summation in the first formula are
all greater than the corresponding terms in the second formula, and the kth term,
which is not counted in the first formula, is less than or equal to the term that is sub
tracted in the second formula. Hence, the contribution computed by the estimator is
less than or equal to the real cont.ribution.

So, we only have to show that the RTT1<1>s are always greater than or equal to
~he R TT1 s. Before the first iteration R TT1 <0> == RTT.i <0> for all J. Now assume the
induction hypothesis holds after / - I virtual sites have been assigned, i.e.,
RTT1<J-I) ~ RTT1<1- 1>. After the assignment VS; to PhSk both RTT1<1> and

J .

RTT1CI) are computed.

and,

RTT 1 <1> ==
J

•

J =k

max(TT(IR (vs,,,PhSj) I),R rr; (/-l))

From this we can conclude that RTT1 <1> ;a= R TT1 <
1 > for all j.

otherwise

for all j

Because Rrr;<1- 1> ~ RT½<t-l) for all J the estimator will underestimate the
real cost. Hence, psa resp data is admissible.

□
Corollary 4.11 Algorithm psa resp data is an admissible estimator if the simple pro-
cessing schedules are serialized. ·

Proof This is true because the response transmission time of a serialized simple pro
cessing schedule is larger than a non-serialized one.

□
Corollary 4.12 If the Heuristic Path Algorithm uses psa resp data the completely
specified allocations produced for simple processing schedules have minimum average
response transmission time.

4.8.4. Heuristic Allocations to Minimize Average Response Transmission Time

In case the response transmission time of a query is completely determined by
the data transmissions involved, the response time of a query with a simple processing
schedule is determined by its largest data transmission. If two files that are accessed
in one query are located at the same site, the results obtained after local processing on
both files have to be transmitted along the same communication channel to the result
site. Because this can not be done in parallel one result will have to wait until the
transmission of the other result has been completed. So, to compute the response
transmission time of a query the schedule must first be serialized. Here, this serializa ..
tion is simple because the order in which the results are transmitted is irrelevant as
far as the response transmission time is concerned.

In the following we assume that per physical site only one query is stated. This
is not a severe limitation, it is merely to make the figures and examples simpler.

154

The fact that even the simplest imaginable problem of minimizing average
response transmission time is NP-complete, does not give us much hope of finding an
algorithm that produces optimal allocations for a special class of processing-schedules
graphs. Therefore, we will settle with a simple heuristic algorithm.

If we look at the set packing problem, an obvious algorithm to find suboptimal
solutions is to start with the collection of the sets and at each iteration selecting a set
S, with the smallest number of sets that have a non-empty intersection with it, and
throwing S1 and all the intersecting sets out of the collection.

A similar approach can be taken for our allocation problem if no attention is
given to transmissions in one schedule that share the same communication channel.
If all edges are labeled with (i ,1,1),, where i stands for the corresponding query, then
the algorithm runs as follows. At each iteration, take a query whose RTTk has not
been determined yet and that shares its fragments with the fewest number of other
queries. Set its R TTk to zero, and the R TT1 of the other queries that use the same
fragments to 1.

•

In general, the labels are of the form (i ,A; ,x), where A; and x are arbitrary
numbers. The algorithm to be described now is called simple resp data allocation. At
each iteration, it decides to unite one virtual site with one physical site. Which virtual
site and which physical site is determined by considering all possible alternatives. To
start with, it sets all RTT1 equal to zero. The increase of the ARTT caused by the
union of VS and PhS is computed by assigning VS to PhS and determining the
increases of the response transmission times of the other physical sites. From these
increases of the RTT1 the increase of the ARTT can be computed.

At first glance, it looks better to consider the union of several virtual sites to
one physical site. The advantage would be to take several virtual sites that are
accessed in the same query, say Q; under the Parallelism Assumption the virtual site
that transmits the least amount of data to the result site of Q could be united with the
other physical site at no cost. However, because the schedules are serialized, consid
ering more than one virtual site to be united with one physical site will always
increase the AR TT more than if only one virtual site was considered.

We will show how the algorithm works by an example.

Exa111ple 4.10

There are three queries; let Qi be stated by users of PhSi. We assume that the
A; 's are all 1. Hence, mini1nizing the average response transmission time is the same
as minimizing the sum of the response transmission times. The processing-schedules
graph is shown in fig. 4.23. The transmission time is assumed to be
TT(X} = 10 + X.

In the table below we give the possible assignments that are investigated by
algorithm simple resp data allocation and their increase of the sum of the response
transmission times .

• assign
VS1 to PhS1
VS1 to PhS2
VS1 to PhS3

• mcrease sum
70 + 90 = 160
60 + 90 = 150
60 + 90 = 150

-- PhS2

(1,1,40}
(3,1,80)

(1,1,50)
(3,1,90)

Figure 4.23. Processing-schedules graph .

• assign
VS2 to PhS 1

VS2 to PhS2
VS2 to PhS3

• increase sum
100
50 + 100 = 150
50

155

The assignment of VS 2 to PhS 3 increases the sum the least and, therefore, VS 2
is united with PhS 3 • It remains to assign VS 1 •

• assign
VS 1 to PhS1
VS1 to PhS2
VS1 to PhS3

• increase sum
70 + 90 = 160
10 + 90 = 100
50 + 70 = 120

Because the assignment of VS 1 to PhS 2 increases the sum the least, it is turned
into a union. So, the final allocation is PhS 2 ({ F 1}) and PhS 3 = ({ F 2})

(operation-sets are omitted), and the sum of the response transmission times is
60 + 90 = 150.

□

4.8.5. Comparison Heuristic and Optimal AR TT Allocations

To get an impression what the quality of the allocations produced by algorithm
simple resp data a/location a comparjson is made between the average response
transmission times of these schedules and of the opti111al ones. For each site in the
computer network one query is generated, which references a number of fragments.
The schedule of a query consists of transmissions from the sites where the fragments
reside to the result site. If several fragments that are referenced in the same query,
their transmissions to the result site of the query are serialized.

To be able to compute optimal allocations that minimize the average response

156

transmission time, the experiments are confined to a small computer network and a
small database. The number of physical sites is four and the number of fragments is
six. Because only non-redundant allocations are considered, this implies that there
are six virtual sites in the processing--schedules graphs generated. In the experiments
only one parameter was varied, namely the average number of fragment referenced in
a query (/)~ it will vary from 1 to 5. The amount of data transmitted from a fragment
to the result site of a query in which it participates, is randomly drawn between O and
500. The results are shown in table 4.24; each entry is the average of 50 test runs.

I I 2 3 4 5

opt 49.4 148.1 251.2 348.6 419.3
heur 50.0 153.4 262.1 364.5 442.3
% 1.2 3.6 4.3 4.6 5.5

Table 4.24. ARTT for varying the number of fragments.

For small f most of the queries will reference different fragments, which cause a
small ARTT. Because a virtual site is connected with only a few physical sites, algo
rithm simple resp data a/location will have no difficulty finding near optimal alloca
tions. If f is increased, the ARTT increases as well, both because a virtual site can
not be united with all physical sites to which it is connected and because the process
ing schedules have to be serialized. From the table we can see that the heuristic algo
rithm starts to produce allocations that have a higher AR TT than the optimal ones.
This is because several fragments accessed in one query will have to be allocated. to
the same physical site, which may cause that considering one fragment at the time
leads to non--optimal solutions.

Overall we may conclude that if queries reference a number of fragments which
is less than the number of sites in the computer network, the heuristic algorithm sim
ple resp data allocation computes near optimal allocations.

4 .. 8.6.. Minimizing Average Response Processing Time.

For simple processing schedules we now consider the other extreme: transtnis
sion cost is negligible compared to processing cost~ This means that the edges in the
processing-schedules graph have no meaning. Because the data allocation is deter
mined based on the response processing time we will speak of the operation alloca
tion. However, this does not mean that operations can be freely allocated to any of
the physical sites. Only the virtual sites with their complete operation-sets can be
assigned to or united with a physical site. Two strategies to determine a data alloca
tion are distinguished, one from the system's point of view and one from the users'.

Let us first consider the system's point of view. The system seems to be better
off if the maximum queueing time over the physical sites is minimized. The utiliza
tion factor p of a physical site is an important parameter in the formula of the queue
ing time. The idea of minimizing the maximum queueing time, is more or less similar
to minimizing the maximum p among all physical sites. Assume that the arrival times

•

157

of operation.s with execution time x, are described by a Poisson distribution with A; as
mean. Then,

showing that each operation that is offered to a physical site contributes a little piece
to its p. The problem of minimizing the maximum p, denoted by Pmax., means keeping
the largest sum of Ai x, 's among the physical sites as small as possible. To get an idea
how difficult this problem is we will discuss a similar problem, which is known to be
NP-complete. ·

This problem is known as the multiprocessor scheduling problem [Gareyl979].
Imagine a set of tasks T = {t,} each having their own execution time /(t,) E z+,
and a number of physical sites m (m ~ l). A physical site can execute only one task
at a time, and immediately after a task is completed another task can be started. So,
there is no loss of time between tasks. The question is: is there an assignment of the
tasks to the different physical sites such that an overall deadline D E z+ is met.
Meaning that all physical sites should be finished before D units of time have passed
after the execution has started.

Theorem 4.13 The problem of mini1nizing Pmax is NP-complete.

Proof We will show this by translating the multiprocessor scheduling problem to the
problem of minimizing Pmax.•

Create for every ti E T an operation Oi with service time I (ti)ID. The ques
tion whether there is an assignment that meets the overall deadline D, is translated to
whether there exists an operation allocation such that Pmax ~ 1.

Assume we have an operation allocation with Pmax ~ 1, then the corresponding
assignment can be obtained by assigning the tasks t; to the same physical site as
operation Oi is allocated to. Because Pmax ~ 1 all sites will be finished at a time less
than or equal to D.

Also, if there is an assignment which meets D, then the corresponding opera
tion allocation can be determined in a similar way.

□
Another approach to the operation allocation is to look at it from the users'

point of view. If we assume a completely empty system then the response processing
time of one query will be minimum if all the operations are executed in parallel and
their results sent to the result site, where the final result is produced. So, maximizing
parallelism is a good way to minimize the response processing time. To compute a
suitable operation allocation we construct a not--at-same-site graph. A node Ni in
such a graph corresponds to virtual site VSi and there is an edge between Ni and N1
iff VSi and VS1 are both accessed in at least one query.

To establish the complexity of this problem we will look at a well-known graph
problem. A graph G(~E) contains a clique if there is a subset V' of V such that
every two nodes of V' are connected by an edge of E. The size of V' is the size of
the clique. To maximize parallelism in a processing-schedules graph virtual sites
accessed in the same query should be united with different physical sites. We can see
this immediately from the not-at-same-site graph. None of the virtual sites should be
united with a physical site with which one of the other virtual sites in the clique i_s

158

united. To unite the virtual sites with the physical sites such that the conditions
described by the not-at-same-site graph are not violated., we need at least as many
physical sites as the size of the largest clique.

Theorem 4.14 The problem of finding an allocation with maximum parallelism is NP
complete.

Proof Follows directly from the NP-completeness of the clique problem

□

4.8. 7. Optimal Allocations to Minimize Average Response Processing Time
•

The operation allocation with minimum average response processing time
(ARPT) for simple processing schedules will again be computed by the Heuristic Path
Algorithm. The heuristic estimator, called psa resp operation, is a straightforward
extension of psa resp data (see fig. 4.20). Assume we are given a partially specified
allocation and the corresponding processing-schedules graph. For simplicity we
assume again that all A; are equal to 1. To start, the RPT1 of the queries are com
puted solely based on the operations that are allocated to the physical sites. For
every physical site we can compute the expected queueing time, and so, for each
operation its expected time in the system can be obtained by adding its execution
time. Also, if several operations of one query are to be executed at one physical site
they have to be serialized. This gives the initial value of ARPT.

Now consider a virtual site VS which will contain one or more operations.
Assign VS to each of the physical sites PhS1 and compute the increases of the RPT';
and the increase of the ARPT. For every value of j there is an increase of the RPT,.
Update the RPT; s by adding the maximum of their increases over j. The contribu
tion of VS is the minimum increase of the ARPT. The estimate-cost of a partially
specified allocation is the sum of the contributions of the virtual sites plus the initial
value of A RPT. ·

When computing the increase of the different response processing times we may
take into account the serialization of the operations in VS and in the physical sites to
which it is assigned.

E:vsinple 4.11

The same data will be used as in the
RPT'i = 0.075 and RPT2 = 0.013, and,
ARPT = 0.031. Consider VS 1 first.

1) Assign VS 1 to PhS 1•

Then W1 == 0.7 X 0.023 / 0.3 = 0.054.

The consequences for the RPT; are:

previous example.
therefore, the

So, to
initial

RPT1 = 0.054 + 0.01 + 0.04 + 0.02 = 0.124, an increase of 0.049,
RPT 2 is unchanged.
This means an increase of 0.014 for ARPT.

2) Assign VS 1 to PhS 2•

Then W1 = 0.45 X 0.013 / 0.55 = 0.01 I.

RPT1 = max(0.075,0.011 + 0.02) = 0.075, a zero increase,
RPT2 = 0.011 + 0.01 = 0.021, an increase of 0.008.
This means an increase of 0.006 for ARPT.

start with
value of

Now the RPT; are updated by adding their maximum increase

= 0.124 and RPT2 == 0.021.

The contribution of VS I is the minimum increase of the ARPT, which is 0.006.

Finally, consider VS 2•

1) Assign VS 2 to PhS 1•

Then W1 = 0.75 X 0.017 / 0.25.

The consequences for the RPT'; are:
RPT'i == 0.05 l + 0.01 + 0.04 == 1.01, a zero increase,
RPT2 == max(0.021,0.051 + 0.01) = 0.061, an increase of 0.04.
This means an increase of 0.028 for ARPT.

2) Assign VS 2 to PhS 2•

Then W2 = 0.5 X 0.01 / 0.5 0.01.

The consequences for the RPT; are:
RPT',_ is unchanged,
RPTS. == 0.01 + 0.01 + 0.01 = 0.03, an increase of 0.009.
This means an increase of 0.006 for ARPT.

159

The minimum increase of the ARPT is 0.006~ The estimate-cost is the sum of the
increases plus the initial value of ARPT: 0.031 + 0.006 + 0.006 = 0.043.

D

Theorem 4.15 Algorithm psa resp operation is an admissible estimator if serialization
of operations in simple processing schedules allocated to the virtual sites is not con
sidered.

Proof The proof goes along the same lines as the one of theorem 4.10
D

Corollary 4.16 Algorithm psa resp operation is an admissible estimator if the simple
processing schedules are serialized.

Corollary 4.17 If the Heuristic Path Algorithm uses psa resp operation the completely
specified allocations produced for simple processing schedules have minimum average
response processing time.

4.8.8. Heuristic Allocations to Minimize Average Response Processing Time

Because of the NP-completeness of the problem to maximize parallelism, we
will again give a heuristic algorithm to unite the virtual sites with physical sites for
simple processing schedules. Algorithm max parallelism is shown in fig. 4.25.

During each iteration algorithm max parallelism selects a new virtual site, say
VS, which is accessed in the most number of queries among the virtual sites that have
not been selected yet. Then it tries to assign VS to a physical sire, say PhS, such that
no other virtual site in the assigned set of PhS is accessed by a query in which VS is
referenced. If this is impossible VS is assigned to an arbitrary physical site.

The main drawback of algorithm max parallelism is that it does not take into
account the execution times of the operations and the utilization factors of the
different physical sites. To overcome this, the algorithm will be extended by comput
ing queueing times, and by serializing operations that are executed at the same

160

proc max parallelism . (graph G)allocation:
begin

{ all nodes are unmarked at the beginning}
while there is an unmarked node
do

take an unmarked node with the most adjacent edges and mark it;
assign the corresponding virtual site with a physical site to which
none of the virtual sites corresponding to the adjacent marked
nodes are assigned;
if this is impossible assign it to an arbitrary physical site

od;
unite the virtual sites with their physical sites

end

Figure 4 .. 25. Algorithm max parallelism.

physical site and that are part of the same query. This extended version will be called
simple resp operation allocation.

To start with, simple resp operation allocation computes the utilization factor of
all virtual sites. At each iteration, a virtual site is united with a physical site. Talce
the virtual site VS with the largest p and assign it successively to each of the physical
sites and compute the corresponding increase of the ARPT. Unite VS with that phy
sical site that corresponds to the least increase of the ARPT. Then continue with the
next virtual site.

In the next example we will show how algorithm simple resp operation allocation
works.

Exa111ple 4.12

For simplicity we assume that the execution times are all drawn from the same
distribution; this implies that Cb2 = I. Furthermore, we will not take bulk arrivals
into account. This gives a simpler formula for the expected queueing time, namely

w

Assume we are given

PhS1 · ({(1,10,0.01),(l,10,0.04)}),
PhS 2 = ({ (2,25,0.01)}),
VS 1 ({(I, 10,0.02) }),
VS2 ({(2,25,0.01)}).

-px
(I - p)

•

•

The fragment-sets are omitted. There are two queries with frequencies 10 and 25.

•

161

Two operations have already been allocated to PhS I and one to PhS 2• Given this
partially specified allocation the queueing times of the two physical sites are:

W 1 == 0.5 X 0.025 / 0.5 == 0.025, and
W 2 0.25 X 0.01 / 0. 75 0.003,

and the response processing times of the queries are:

RPT1

RPT2 =
= 0.025 + 0.01 + 0.04 = 0.075,

0.003 + 0.01 = 0.013.

The p of VS 1 is 0.2 and of VS 2 is 0.25, so, VS 2 is considered first.

1) Assign VS 2 to PhS1.
Then, W 1 == 0.75 X 0.167 / 0.25 = 0.5.

The consequences for the RPT; are:
RPT1 = 0.5 + 0.01 + 0.04 = 0.55, an increase of 0.475
RPT2 = max(0.013,0.5 + 0.01) = 0.51, an increase of 0.497

2) Assign VS 2 to PhS 2•

Then, W 2 = 0.5 X 0.01 / 0.5 == 0.01.

The consequences for the RPTi are:
RPT 1 is unchanged, and
RPT2 = 0.01 + 0.01 + 0.01 = 0.03, an increase of 0.017.

The increase of the latter assignment is clearly the least and, therefore, VS 2 is united
with PhS 2• So, RPT 1 = 0.075 and RPT 2 = 0.03, and, therefore, ARPT is 0.043.

Now consider VS 1-

l) Assign VS 1 to PhS 1-

Then, W 1 = 0. 7 X 0.023 / 0.3 = 0.054.

The consequences for the RPT, are:
RPT 1 = 0.054 + 0.01 + 0.04 + 0.02 == 0.124, an increase of 0.049,
RPT 2 is unchanged.

2) Assign VS 1 to PhS 2-

Then, W2 = 0.7 X 0.012 / 0.3 = 0.028

The consequences for the RPT; are:
RPT 1 = max(0.075,0.028 + 0.02) == 0.075, a zero increase,
RPT 2 = 0.028 + 0.01 + 0.0 I == 0.048, an increase of 0.018.

•

If VS 1 is assigned to PhS 1 then its contribution is 0.014 and if assigned to PhS 2 to
0.013. Therefore, VS 1 is united with PhS 2• The resulting ARPT = 0.056.

□

4.8.9. Comparison Heuristic and Optimal AR TT Allocations

To get an idea how the allocations produced by simple resp operation allocation
compare with the optimal allocations for minimizing the average response processing
tiine, we did some experiments. The database consists of seven fragments, which are
assigned to different virtual sites. Each query consists of operations that are executed
at the site where the fragments referenced, are located, and of an operation at the
result site. For simplicity we assume that all queries are stated with the same

162

frequency. The number of physical sites four. The goal is to unite virtual sites with
physical sites such that the average response processing time is minimized. The
queueing delays are computed by means of the formula for Wg discussed in subsec
tion 4.8.1. If several operations within a query are executed at one site they are seri
alized.

Two parameters are varied:

D the average number of fragments referenced per query (j),

□ the average number of operations serviced per unit of time (µ.) .
•
•

The J varies from 1 to 7, and the operation size is drawn from a negative exponential
distribution. The results are shown in table 4.26; each entry is the average of 50 test
runs.

f 1

opt 0.27
heur 0 .. 28

% 3.7

µ,

opt
heur

%

3
0.48
0.49
2.1

µ == 5
(a)

5
0.92
0.97
5.4

5 10

2.18 0.48
2.27 0.49
4.1 2.1

f = 3
(b)

7

2.38
2.72

14.3

50

0.16
0.16
0.0

Table 4.26. ARTT for varying/andµ.

•

From the table we may conclude that the heuristic algorithm simple resp opera
tion algorithm performs well if the execution times of the operations times the fre
quencies with which they are executed are small and if the number of fragments refer
enced per query is less than the number of sites in the computer network. If the utili
zation factors of the physical sites are getting close 1 the heuristic algorithm simple
resp operation allocation starts to produce allocations that have a much higher ARPT
than the opti1nal allocations. Also, the percentage of cases in which the heuristic
algorithm can not find an allocation with all utilization factors less than 1, while there
exists one, starts to increase. For f = 7 and p. = 5, this was 6%.

Overall we may conclude that the heuristic algorithm performs best if the exe
cution times of the operations are small and the number of fragments referenced com
pared to the size of the computer network is small.

•

163

4.8 .. 10. Minimizing Average Response Time

Finally~ we consider the most realistic mt1del. The response time of a query is
determined by both its transmissions and processing of operations.

A heuristic algorithm can be constructed from either .sirrzple resp data allocation
or simple resp operation allocation. For example, if transmission cost weighs more
than processing cost,. algorithm simple resp data allot~ation should be used, however, to
compute the effects on the response times of queries the operations should be taken
into account as well. If~ on the other hand~ processing cost weighs more~ one should
use algorithm simple resp operation allocation; however., to compute the effects on the
response times of the queries the transmissions should be taken into account.

A heuristic estimator for the Heuristic Path Algorithm for this more general
model can be obtained by combining the estimators psa re~p data and p.va resp opera
tion. Given a partially specified allocation, the RT; of the queries are computed
based on the transmissions between physical sites and the operations that are allo
cated to the physical sites. The contribution of a virtual site VS is determined. by
considering all possible assignments of this virtual site to physical sites. For every
assignment we can compute the increases of the R r: of the queries. There is one
assignment such that the contribution of VS to ART is minimum. This increase is
taken as the contribution of VS. The RT, are updated by adding the maximum
increase of the different assignments of VS. By adding up the contributions of the
virtual sites we will obtain the estimate-cost of a partially specified allocation.

4 .. 8.11. Arbitrary Processing Schedules

In subsections 4.8.2-4.8.10 simple processing schedules were investigated. These
schedules imply that the allocation of the operations is completely determined by the
data allocation. Here, we will allow for both a data and operation allocation. To do
so, in the processing-schedules graph belonging to the initial allocation., virtual sites
are created for both operations and fragments. Only the operat.ions that implicitly
read data in the fragments from secondary storage are put in the operation-set of the
virtual site to which the fragment is allocated. An example of such an operation is
the restriction. For other operations such as a join a new virtual site is created. If a
virtual site has an empty fragment-set it is called an operation virtual site, otherwise it
is called a fragment vi1·tual site. The final operation in the processing schedule of a
query is permanently allocated to the physical site that corresponds to the result site
in the computer network. An example of a final operation is one that presents the
result of the query to the user.

For these arbitrary processing-schedules graphs we will confine ourselves to
minitnizing response transmission time. As far as minimizing response processing
time is concerned we expect that similar techniques as proposed in subsections 4.8.7
and 4.8.8 can be used .

4.8.12. Optimal Operation and Data Allocations to Minimize AR TT

The next step is to compute both an operation and data allocation. The
optimal data and operation allocation will be obtained by using the heuristic estimator
for simple processing schedules,, psa resp data. Assume we are given a partially

164

specified allocation and the correspo11di11g processing-schedules graph. To apply the
same techniques as was dt)ne for the si1nple processing schedules, a new processing-
schedules graph is constructed.

From each nucleus-site, NSi, there are sequences of transmissions part of the
schedule of one query leading to the result physical site of that query; they will be
called paths. On each path there is a nearest physical site, which is the first physical
site encountered when going through the sequence of transmissions and considering
the nucleus-sites in the processing-schedules graph that receive the transmissions. The
nearest physical site is not necessarily the result physical site of the query.

For example, during the search process a partially specified allocation can have
been obtained where some of the virtual sites in the initial allocation may have been
united with physical sites.

For each query and each nucleus-site accessed in the query, consider the paths
from the nucleus-site to the nearest physical site on that path. Each edge on these
paths represents the transmission of an amount of data. For each nearest physical
site place an edge in the new processing-schedules graph between the nucleus-site and
that physical site, directed to the latter with the same label as the edge on the path to
the nearest physical site which transmitted the least amount.

The estimate-cost based on this newly constructed processing-schedules graph is
done as follows. The initial values of the R TT1 are set equal to the R TTi s, which are
solely based on transmissions between physical sites. Take an arbitrary virtual site,
VS, and assign it in turn to each of the physical sites with which it is connected, and
compute the increase of the AR TT. The minimum increase among the different
assignments is taken as the contribution of VS. Then the R TT; are updated with
their maximum increase among the different assignments. Before selecting the next
virtual site, VS and its adjacent edges are removed from the processing-scheduies
graph. This continues until no virtual sites are left over. .

Theorem 4 .. 18 The heuristic estin1ator psa resp data is admissible if the schedules are
not serialized.

First, we will prove that the estimate-cost of a given partially specified allocation
based on the newly constructed processing-schedules graph, called N, is less than or
equal to the cost of any completely specified allocation that satisfies the given partially
specified allocation.

Assume we are given a completely specified allocation that satisfies the given
partially specified allocation. The corresponding processing-schedules graph, called P,
can be obtained by uniting the virtual sites with physical sites. Let us assume that
VSi is united with PhSJ. Then at least one edge on each path to the other physical
sites in the original processing-schedules graph, called 0, is present in P. If the same
union would have been done in N, VSi would be connected with exactly one edge on
each path to other physical sites in 0. Because the edges are chosen such that they
represent the smallest transmission, the cost of a completely specified allocation based
on N is less than or equal to the cost on 0.

The rest of the proof, showing that psa resp data underestimates the cost of
completely specified allocation based on N, goes along the same lines as the proof of
theorem 4.10

D

165

Corollary 4.19 The heuristic estimator psa resp data is admissible if the schedules are
serialized.

Corollary 4.20 The Heuristic Path Algorithm using psa resp data as a heuristic estima
tor computes completely specified allocations with minimum average response
transmission time.

Example 4.13

Assume we are given the processing-schedules graph shown in fig. 4.27(a), and
assume that TT(X) = X.

PhS1

5 5

4
2

4 2

8

(a) (b)

Figure 4.27. Processing-schedules graph of example 4.13.

For each nucleus-site on all paths to the result physical site there is a nearest
physical site. For example, for path VS 2, VS 1, PhS 1, the nearest physical site is
PhS1, and for VS2, PhS 2, VS 1, PhS 1, it is PhS 2• For each path the edge that
represents the smallest transmission is used to connect the nucleus-site with the
nearest physical site on that path in the newly constructed processing-schedules graph.
The result is shown in fig. 4.27(b). Initially RTT1 = 2. Now consider VS 2• If it is
assigned to PhS 2 the RTT't is increased by 2, and if assigned to PhS 1 by 8. Hence,
the contribution of VS 2 equals 2, and RTT1 is set to 10. The contribution of VS 1 is
zero. Hence, the estimate-cost of the partially specified allocation, which is the sum
of the contributions plus the initial value of RTT1, is 2 + 2 == 4.

□ •

4.8.13. Operation Allocation Given a Data Allocation

We will now discuss an algorithm that computes an operation allocation that
mjni rnizes the average response transmission time given the allocation of the frag
ments. The operation allocation can be computed separately for every query because
each operation belongs to only one query. Before we present the algorithm we will
introduce some notions.

If a nucleus-site contains an operation whose result is transmitted to another
nucleus-site then we will call this operation an export-operation. A schedule is called

166

tree .. st1 uctured if every nucleus-site contains at most one export-operation, which
transmits its result to exactly one other nucleus-site (this means no forking points). If
nucleus-site NS, contains an export-operation whose result is transmitted to NSi then
we call ,.N'S; an input nucleus-site of NS1 . If all the input nucleus-sites of nucleus-site
NS are either physical sites or virtual sites that are assigned to physical sites, and if
1VS is a virtual site or if NS is the result physical site then NS is called a -candidate
nucleus .. site. The amount of data transmitted from an export-operation EO of a
nucleus-site is denoted by IR (EO) I .

If a query has a tree-structured schedule the export operation of a nucleus-site
is uniquely determined by the nucleus-site itself. Therefore, we will use R (NSk) when
we mean the result of the export operation of NS k •

The response transmission time of a nucleus-site NS .. denoted by RTT(NS), is
defined if all the nucleus-sites from which NS receives data directly or indirectly are
either physical sites or virtual sites assigned to physical sites. It can be computed by
reconstructing the schedule of the transaction up to and including the operations allo
cated to NS.

Note that the R TT of a nucleus-site NS depends on the allocation of NS if it is
a virtual site and on the allocation of the nucleus-sites from which it receives data
directly or indirectly. We define the response transmission time of NS at physical site
PhS1 , denoted by RTT1(NS), as RTT(NS) + TTi1(IR (NS) I), where NS is either
PhSt or is assigned to it, and TTii stands for the transmission time from PhSi to
PhS1 .

Assume we are given a completely specified allocation of the fragments, and the
processing-schedules graph that belongs to this allocation where each operation is
allocated to its own virtual site. Algorithm resp operation allocation will compute a
completely specified operation allocation given the data allocation such that the
response transmission time of a transaction is minimized. At each iteration the algo
rithm takes a candidate nucleus-site, say CNS. The input nucleus-sites of CNS that
are virtual sites assigned to physical sites are united with CNS; call the resulting
nucleus-site CNSu. If CNSu is a physical site then we have computed a completely
specified operation allocation, because CNSu is the result physical site. Otherwise,
CNSu is a virtual site that will be either assigned to or united with one of its input
nucleus-sites. Note, that all inputs of CNSu are physical sites. To determine whether
to assign it to or unite it with one of its input nucleus-sites we do the following.
Assign CNSu to an arbitrary physical site PhSx that is not one of its inputs. Com
pute the response transmission time of CN Su given this allocation, say its value is V.
Let IR (EOk) I ~ m~ IR (EOi) I, where EOk is an export operation of PhSz. Now

I

assign CNSu to PhSz to compute RTTx(CNSu); if RTTx(CNSu) ~ V then CNSu is
united with PhSz, otherwise it will stay assigned to it. ·

The procedural form of algorithm resp operation allocation is given in fig. 4.28.

Before considering the quality of the completely specified operation allocation
produced we give an example.

Exa1nple 4.14

Assume we are given the processing-schedules graph shown in fig. 4.29(a). The
transmission time is TT(X) · X. The fragments accessed are already allocated to
different physical sites and for each of the two joins a virtual site was created.

•

proc resp operation allocation (schedules graph psgJallocation:
begin

while there is a candidate nucleus-site
do

let NS be such a nucleus-site;
unite its input virtual sites with it;
if NS is a virtual site

then
determine whether to assign. it to or unite it with one of its
input physical sites

fi
o«L·
extract operation allocation from psg

end

Figure 4.28. Algorithm resp operation a/location.

5

7 10

5

•

vs, __ -- PhS3 -- PhS3

3 3

•

_____ PhS2

(a) (b)

Figure 4.29 .. Processing-schedules graphs of example 4.14.

167

168

Virtual site VS I is a candidate nucleus-site because both its inputs nucleus-sites
are physical sites. Because none of its inputs is a virtual site we continue with the
assignment to or union with either PhS I or PhS 2- Because
IR (PhS 1) I > IR (PhS 2) I, it will be PhS 1. Assigning VS 1 to an arbi!ra~ physical
site PhS.'{ (x =j:= I, 2) results in RTT(VS 1) == 4. On the other hand assigning VS 1 to
PhS 1 will give RTT.i: (VS 1) = 10. Therefore, VS 1 is not united with PhS 1 but

assigned to it.
Now VS,, is the candidate nucleus-site. One of the inputs of VS 2, namely VS 1 ..

is a virtual site and, therefore, they will be united with each other; the result is
denoted by VSu. VSu has three input nucleus-sites: PhS 1,' PhS 2 and PhS 3. For the
latter holds that IR (PhS 3) I is maximum. Assigning VSu to an arbitrary physical site
PhS.'< (x =I= l, 2, 3) gives RTTx (VSu) = 4 + 5 == 9. Because the latter is smaller
VSu is united with PhS 3.

The resulting processing-schedules graph is shown in fig. 4.29; the response
transmission time is 9 which is optimal.

□
Now we will discuss the quality of the completely specified operation allocation

obtained.

Theorem 4.21 Algorithm resp operation allocation computes completely specified
operation allocations with mini111um response transmission time for tree-structured
schedules.

Proof We will prove the following property by induction on the number of candidate
nucleus-sites considered.

Property M:

M 1) a physical site has at most one virtual site assigned to it,
•

M 2) RTT(PhS;) + TT;.x(IR (PhS;) I) is minimum, over all allocations,

M 3) the minimum response transmission time of VS at physical site PhSx
over all allocations, where VS is already assigned to PhSv can be

,

obtained by re-assigning VS to PhSx (x is not necessarily different from
y).

If no candidate nucleus-sites have been considered M I and M 2 are true and M 3 is not
applicable.

Assume that Mis true after n candidate nucleus-site have been handled. Now
consider then + I-st candidate nucleus-site, CNS. Let CNSu be the result after the
union. If CNSu is assigned to a physical site, M 2 still holds simply because of the
induction hypothesis; remember that nothing has changed with the physical sites.
Also, because CNSu is assigned to one of its input physical sites M I holds. Now we
.have to prove that the minimum RTTx(CNSu) for arbitrary x is obtained by assign
ing CNSu to PhSx. Uniting CNS with its input virtual sites guarantees that the
inputs of CNSu have minimum response transmission time. The latter is true because
the inputs are physical sites for which M 2 holds. CNSu is merely assigned to a physi
cal site because RTTx(CNSu) is smaller if CNSu is assigned to PhSx. But because
CNSu's inputs have minimum response transmission time RTTx(CNSu) is minimum
if CNSu is assigned to PhSx.

169

If CNSu is united with one of its inputs we only have to prove M 2. M 1 and M 3
are not applicable because there are no newly assigned virtual sites. Again CNS

11
's

i:oputs have minimum response transmission time over all allocations. The reason·
that CNSu is united with one of its inputs is that the RTT_" (CNSu) for arbitrary x is
sinaller if CNSu is united with one of its inputs. Hence~ M 2 holds.

D
In this subsection we have considered the computation of an operation alloca

tion, given a data allocation, such that the response transmission time is minimized.
For tree-structured processing schedules algorithm resp operation allocation computes
optimal operation allocations. This algorithms will be used in the next subsection
where the allocation of both the data and the operations will be discussed.

4 .. 8.14. Heuristic Operation and Data Allocation to Minimize ARTT

A heuristic algorithm called resp data operation allocation will be described now.
The initial assignment is determined as follows. If in the processing-schedules graph
corresponding to the initial allocation there is a transmission from a fragment virtual
site to a physical site this virtual site is assigned to the physical site to which it
transmits most of the data. Other virtual sites are assigned arbitrarily.

Given the assignment of the fragment virtual sites to the physical sites, we
would like to be able to determine the operation allocation with algorithm resp opera
~ion allocation. The problem is that this algorithm requires a completely specified
data allocation to do so. However, this can be solved quite easily by letting algorithm
resp operation allocation consider a fragment virtual site as a physical site.

Now for every query a set of proposals for changing the data allocation and the
corresponding decreases in the response transmission time of the query is computed.
These proposals are based on the current data and operation allocation. In the basic
version of algorithm resp data operation a/location., we only allow for simple changes
in the data allocation. Such a simple change is defined as follows. In a schedule for
a query there will be a sequence of transmissions that determines the response
transmission time. To decrease this, one of the transmissions will have to disappear.
If it is a transmission between two fragment virtual sites, these two can be united and
assigned to either physical site to which they were originally assigned. If it is a
transmission from a fragment virtual site to a physical site, the former can be
assigned to the latter.

After all proposed changes in the allocation and their expected decrease in the
response transmission times of the transactions are collected, the expected decrease in
the average response transmission time is computed for each change. We go through
the list of proposed changes in descending order of the expected decrease of the
AR TT until a change is found that actually does decrease the AR TT. This actual
change is computed as follows. Take the processing-schedules graph belonging to the
initial allocation and assign the fragment virtual sites just like the initial assignment
only with the proposed changes incorporated. So, again we have an assignment of
fragment virtual sites and algorithm resp operation allocation is applied to compute
the RTT; of the queries. Because some of the proposals consist of two alternatives of
assigning the fragment virtual site obtained from uniting two virtual sites, they are
both considered separately .. The one with the smallest ARTT is taken. If this ARTT
is less than the previous ARTT we go through the next iteration. If not, the next

170

proposed change on the list is taken until one is found that decreases the ARTT. If
no such proposed change can be found the algorithm terminates.

We will give an example to show how the algorithm works.

Example 4.15

Assume a database consists of three fragments F 1, F 2 and F 3 which are allo
cated to FVS 1, FVS 2 and FVS 3, respectively. There are two queries, one computes
the join between F 1 and F 2, and the other the join between all three fragments. The
processing-schedules graph corresponding to the initial allocation is shown in fig. 4.30.

'

(t,1,25)

(2,1,30)

(1,1,20) (2.1.~-) {2,1.20)

(l,t,5)
(2, 1, 8) -- OVS5

(2,1,15)

•

•

Figure 4.30. Processing-schedules graph of example 4.15.

Our goal is to unite both the virtual sites containing fragments as well as the
ones containing operations with the physical sites. Algorithm resp operation allocation
starts with an initial assignment. Because none of the fragment virtual sites transmits
data directly to a physical site they all are assigned arbitrarily:

assign FVS 1 to PhS 2

assign FVS 2 to PhS 1

assign FVS 3 to PhS 1

Now algorithm resp operation allocation is applied for both queries to compute their
RTTs. RTT(Qi) == 20, which is obtained by uniting OVS4 with PhS 1, and
RTT(Q2) = 15, by uniting OVSs and OVS 6 with PhS 2• The initial assignment is
shown in fig. 4.31.

For both queries changes in the data allocation will be proposed to decrease
their R TTs. The R TT of Q I is determined by the transmission from FVS 1 to PhS 1

and can be decreased by assigning FVS 1 to PhS 1• Similarly for Q 2 by assigning

•

171

PhS1 ____ _
(1,1,20)

-i-- (2,1,1.)

(1,1,5)
F VS 1 -

(2,1,15)

(2,1,8)

Figure 431. Initial assignment.

FVS 3 to PhS 2- The proposals are considered in order of decreasing potential effect
on the ARTT until a real decrease of the ARTT is obtained. Therefore, the proposal
of Q 1,assign FVS 1 to PhS 1, is considered first.

Because both FVS 1 and FVS 2 are assigned to PhS 1 algorithm resp operation
allocation will unite OVS4 with PhS 1, resulting in RTT(Q 1) = 0. The operation allo
cation of Q2 stays the same and, therefore, there is no change in RTT(Q 2). The
ARTT decreases from 17.5 to 7.5. The corresponding change in the assignment of the
fragment virtual sites is adopted.

In the next iteration there will only be a proposal for Q2, because the
RTT(Q 1) = 0. The proposal is: assign FVS 3 to PhS 2• The consequences for the
RTT of Q 2 are again computed by algorithm resp operation allocation. Again OVS 5

and OVS6 are united with PhS 2, giving a RTT(T2) = 8. Hence, the ARTT drops
from 7.5 to 4, and, therefore, the change is adopted. The result is shown in fig. 4.32.

In the next iteration there will again only be a proposal for Q2: assign FVS 2 to
PhS 2- The consequences of this change are that R TT (Q 1) = 5 and R TT (Q 2) = 4,
which means an increase of the ARTT from 4 to 4.5, and, therefore, the proposal is
rejected. Because there are no more proposals the algorithm terminates.

The final data and operation allocation is obtained by uniting FVS 1, FVS 2 and
OVS 4 with PhS 1 and FVS 3, OVS 5 and OVS6 with PhS2 giving an ARTT of
(0 + 8) / 2 = 4.

•

□
For the simple processing schedules it was already time consuming to compute

opti1nal allocations for small databases and small computer networks. Because the
differences between simple and arbitrary processing schedules can only be shown for
large schedules, a comparison between the allocation produced by the heuristic algo
rithm resp data operation allocation and the optimal ones is omitted.

•

172

(2,1,4)
FV S .1~ __.---

(1,1,20)

1,1,5) (2,1,15)

(2,1,8) •

Figure 4.32. Assignment of FVS 3 to PhS 2·

4.8.15. Summary

Most research on the file allocation problem deals with minimizing total
transmission cost. Sometimes, response time constrain ts are added. In this section
the problem of determining allocations such that the average response time of the
queries is minimized, was investigated.

In the first half of the section, only simple processing schedules were con
sidered. Such schedules are characterized by the fact that operations are executed at
either the result site or at the sites where the fragments referenced reside and the fact
that only transmissions to the result site are allowed. These simple processing
schedules are exactly the schedules used in the file allocation problem. For these sim
ple schedules both minimizing response transmission time and response processing
time were treated. It was shown that minimizing average response time is NP
complete. To be able to compute optimal allocations that minimize average response
transmission time a heuristic estimator., called psa resp data, was given~ For the same
problem a heuristic algorithm, called simple resp data allocation, was developed and
the solutions obtained by it were compared with the optimal ones. The allocations
produced by simple resp data allocation have near optimal average response transmis
sion time if the number of fragments referenced per query does not exceed the
number of sites in the computer network.

For minimizing the average response processing time both the system's point of
view and the users' were considered. For both it was shown that minimizing ARPT is
NP-complete. To compute the processing time of a query the queueing delays of the
physical sites have to be known. Lacking a queueing model for the whole network,
which can handle processing schedules with forking and synchroniz:ttion points, we
'

assume that Jackson's Independence Theorem can be applied, i.e., that for each physi-
cal site the queueing delays can be computed based on the operations allocated to it.
Based on the techniques used in the heuristic estimator psa resp data an estimator psa
resp operation was developed. Also, a heuristic algorithm, called simple resp operation
allocation, which emphasizes the maxixnization of parallelism, was proposed, and the
solutions were compared with the optimal ones. Again, the average response

•

173

processing times of the allocations produced by the heuristic algorithm were close to
the optimal solutions, if the number of fragments referenced per query does not
exceed the number of sites in the computer network and the execution times of the
operations times the frequencies with which they are stated, is small.

Minirriiz.ation of the response time can be obtained by combining the algo
rithms or heuristic estimators used for minimizing response transmission and process
ing time.

In the second half of the section arbitrary processing schedules were discussed.
These arbitrary schedules imply that both the data and the operations have to be allo
cated. To start with, an algorithm, called resp operation allocation, was presented,
which, based on a completely specified data allocation, computes an operation alloca
tion. Because operations are not shared among queries an operation allocation can be
determined for each query separately. It was shown that for tree-structured process
ing schedules these operation allocations have minimum response transmission time.
This algorithm is used in resp data operation allocation, which deter1nines both an
allocation for the fragments of a database and the operations that work on them. For
the optimal allocations the heuristic estimator psa resp data of the simple processing
schedules was used on a transformed processing-schedules graph .

174

5. SUMMARY AND CONCLUSIONS

Our goal was to study the dual problems query processing and data allocation
in distributed database systems. Together they will, to a great extent., determine the
efficiency of a database. Query processing, on the one hand, deals with the problem
of determining efficient processing schedules given an allocation, and data allocation,
on the other hand, with the problem of determining efficient allocations given the
queries and updates and a query processing algorithm.

In section 5.1 the results on query processing will be discussed and section 5.2
the results on data allocation. In section 5.3 we will end with some remarks about
future research.

5. t.. Query Processing

In section 3.1 the three phases in query processing were discussed: parsing,
determining a schedule and executing it. Cost functions were defined to measure the
efficiency of schedules. Especially, the problem of computing the response time of a
schedule was treated in detail. Both the forking and synchronization points in a
schedule cause dependencies among transmissions and operations in one processing
schedule. A partial solution to this problem was proposed: parallel schedules that
end at the same synchronization point and which can not be treated independently
because they share the same resource, have to be serialized. This serialization both
determines the ''real'' response time and the order in which transmissions and opera
tions that compete for the same resource have to be served. Because it is not likely
that a query processing algorithm will directly deal with the serialization itself, it was
proposed to determine a schedule in two phases. In the first phase, it is assumed that
no resources are shared by parallel schedules, and in the second phase the schedules
obtained, which may contain certain parallel schedules that share resources, are serial
ized.

Another aspect of query processing is the type of basic operations. Two
extremes were discussed. In the one the basic operations manipulated storage struc
tures and in the other they were subqueries in the relational data model. The advan
tage of the first one is that efficient schedules can be computed and of the second one
that site autonomy can be maintained.

In section 3.2 an overview was given of current research on query processing in
distributed database systems. A qualitative comparison was made based on three
aspects: the choice of materialization, whether schedules are determined before or
during execution and whether the joins are computed at other sites than the result
site. Most of the research deals with minimizing total transmission cost. Further
more, it was striking to note the variety of models. Our conclusion was that minimiz
ing response time and the use of low level basic operations had hardly been
researched. ·

In section 3.3 the problem of minimizing the response time of a query for the
inverted file organization, was treated. The basic operations were the set operations
and the transmission of data. It was proposed to mini1nize response time at two lev
els. First, only data transmissions are considered, which gives a macro-schedule.
This macro-schedule fixes the duties of the sites involved. Secondly, for each of these
~ites a micro-schedule must be computed. All these micro-schedules are integrated
into the macro-schedule, to obtain a schedule for the query to be processed. Under

•

175

the Transmission Assumption, the Parallelism Assumption and the Intersection
Assumption and optimal macro-schedule can be determined. The original query is
replaced by its disjunctive normal form and the terms are broken into small expres
sions containing no more than three A-lists and no more than one B-list. All the
union operations are executed at the result site. Because the schedule is serialized at
different stages and the micro-schedules are integrated the resulting schedule is not
necessarily optimal. It was shown that the serializations of macro-schedules by the
heuristic serialization algorithm of section 3.1.6 are close to the optimal serializations.
The difference between the response time before and after serialization will mainly be
determined by the degree in which parallel schedules share the same resources.

For minimizing total time it was shown that forking points can not be removed,
as was done for mini1nizing response time. As a consequence~ the terms in the dis
junctive normal form can not be treated independently if optimal schedules must be
obtained. A heuristic approach was proposed: first schedules for the terms are com
puted independent of each other and then integrated~ by removing superfluous
transmissions, to get a schedule for the query to be processed. In general, a schedule
for a term consists of the transmission of the smallest A-list along the sites where the
other A- and B-lists in the te1·rn reside and intersecting at each site the intermediate
result obtained so far with the residing lists. The micro-schedules for minj111izing total
processing time are computed by a variation of Liu's algorithm for minimizing total
time in a centralized database.

In section 3.4 only macro-schedules were considered. The basic operations
were the semi-join and the transmission of data. A similar approach was taken as for
inverted lists. Because the join operation may produce a large result it is processed at
the result site. Before the relations are transmitted to the result site they are reduced
in size by applying semi-joins on the joining attributes. Under the Transmission
Assumption, the Parallelism Assumption and the Selectivity Assumption optimal
response transmission time schedules can be obtained. The schedules are very much
like the ones for the inverted lists.

For mini1x1izing total transmission cost two approaches were investigated.
First, an approach similar to the one for inverted lists was followed. For each rela
tion a schedule is determined, and these schedules are integrated to get one for the
query to be processed. Redundant transmissions are removed. From experimental
results it was observed that optimal total transmission cost schedules for individual
relations had very few transmissions in common. Hence, few redundant schedules
could be removed. Therefore, another approach was adopted that allows for as few
parallel schedules as possible, which were used for all relations.

Finally, insection 3.5 two types of query processing algorithms were compared.
On the one hand, query processing algorithms that decompose the query at the logical
level, which means that joins may be executed outside the result site. And, on the
other hand, the algorithms proposed in section 3.4. Overall we may conclude that if
only transmission cost is taken into account, the application of the semi-join operation
decreases the cost considerably. If the domain sizes are small, the selectivities not too
close to one or the same attribute is used in several clauses the algorithms that only
use the semi-join operation produce with a smaller total transmission cost than the
ones produced by a decomposition algorithm.

Now we will compare the results obtained for the inverted file organization and
the relational data model. At first glance the assumption that the size of a result after

176

an intersection is neglectably small compared to the lists seems rather restrictive. In
the relational data model a more sophisticated technique was used to estimate result
sizes, but if ,ve compare the schedules we notice that they are basically the same. The
exact meaning of a basic operation is not important, what counts, when minimizing
total transmission cost, is whether its result is greater than or equal to the sum of its
operands minus the cost to collect the operands at one site. Under the assumption
that the union belongs to this class we have shown that it should be computed at the
result site. In the relational model a similar, however intuitive, approach has been
taken for the join. Another approach is to assume that the join does not fall into this
class and its computation should not be postponed. We also showed that operations
whose results are less than or equal to the sum of its operands, such as intersection
and semi-join, should be applied to large inverted lists or fragments before transmit
ting them to the result site. Hence, theorems that hold for certain basic operations, in
general, also hold for other basic operations that fall in the same class.

When minimizing response transmission time under the Parallelism Assumption
we may say that an operation should not be computed at another site than the result
site if the cost to transmit the result of the operation to the result site is larger than
the transmission cost of the largest operand to the result site minus the cost to collect
the operands at one site. The union operation is an example of such an operation,
and, depending on the size if the result, the join too.

The problems when mini1nizing response time and total time are fundamentally
different. When minimizing response time, we like to enhance as much parallelism as
possible, however, certain operations may use the same resource, affecting each other,s
response time. We do not think that an overall optimization that takes this sharing of
resources into account is feasible and, therefore, an optimization in two stages was
proposed. First, obtain the schedules that 1ninimize response time under the Parallel
ism Assumption and then serialize these schedules such that no two operations use the
same resource at the same time and such that again the response time is minimized.

Minimizing the total time is of a completely different character. The goal is to
share as many basic operations as possible in the schedule. This can be achieved by
removing redundant transmissions and operations and, hence, moving the for king
points to the right on the tirr1e scale. One way of guaranteeing this is to compute pre
fabricated schedules that can be used in the schedule of all the objects to be transmit
ted.

5.2. Data Allocation

The problem of allocating the data of a database to the sites of a computer net
work has two aspects:

D the objects to be allocated,

D the final allocation should reflect the processing schedules for the queries pro
duced by the query processing algorithm.

In section 4.1 the differences between the file allocation problem and the data
all<:cation proble1:1, were_ discussed. The file allocation problem deals with objects,
which are determined pnor to the allocation process, and these objects may only be
accessed by simple processing schedules. For exa1nple, only transmissions from a site
where a file resides to a result site are allowed. Therefore, the solutions of the file
allocation problem are not suited for a distributed database.

177

In section 4.2 a brief overview was given of the many variations of the file allo
cation problem. Although not discussed in this monograph, all these variations can·
be applied to the data allocation problem as well.

In section 4.3 a model was presented, which makes it possible to discuss alloca
tions under construction and their costs. Besides the notion of a completely specified
allocation also a partially specified allocation was introduced. These are allocations
where not all fragments or operations have been put in the fragment- and operation
sets of physical sites. This allows for feasible allocations under construction. To
compute the cost of a completely or partially specified allocation a processing
schedules graph is used. Such a graph consists of physical and virtual sites (nucleus
sites); a physical site represents a site in a computer network and a virtual site is used
for fragments and operations for which an allocation has not yet been determined.
Between these nucleus-sites there are edges which represent transmissions. A
processing-schedules graph is constructed by assuming that every physical site and
every virtual site is a different site in a computer network and computing the process
ing schedules under this assumption by a query processing algorithm. These
schedules are represented by transmissions between nucleus-sites and operations,
which are put in the operation-sets of the nucleus-sites. From this processing
schedules graph the cost of the allocation can be computed by taking into account the
assignments of virtual sites to other nucleus-sites.

To represent forking points in a processing schedules a forking graph was intro
duced, which has the property that if two receiving nodes are identified with the same
nucleus-site the graph adjusts itself such that only one notification is sent to that
nucleus-site.

Also, the objects to be allocated were discussed. The following approach was
proposed. The relations in the global conceptual schema of a database are split hor
izontally and vertically, and the remaining fragments are used in computing a data
allocation for the database. Vertically a relation is split based on its attributes, such
that each resulting fragment contains only one attribute. Horizontally a relation is
split based on the clauses in the queries and updates stated by users. The idea behind
this splitting is that each tuple in a resulting fragment has the same probability of
being referenced in a query. It was shown that, when mini1nizing total transmission
cost, further splitting the fragments obtained will not decrease the total transmission
cost if the processing schedules are static under splitting.

In section 4.4 a centralized approach for solving the data allocation problem
was discussed. This approach is feasible if the database is managed in a ce!}tralized
way, i.e., if there is a database administrator, which may decide about changes in the
allocation of the data, or if the database management system itself may do so. In
detail the construction of a processing-schedules graph of an allocation was discussed,
which includes the processing schedules of all queries and updates and forking graphs
to represent the updates of the copies of the fragments. It was shown that the prob
lem of determining an allocation with 1nini1num total transmission cost is NP
complete. To be able to compute the cost of an allocation more efficiently the notion
of static processing schedules were introduced. The processing schedules are com
puted only once, under the assumption that all fragments are located at a different
site in the computer network (initial allocation). To compute the cost of an allocation

178

slight 1nodifications may be made to these schedules to reflect differences between the
initial allocation and the allocation under consideration. An example of such a
change is the deletion of a transmission.

ln section 4.5 a decentralized approach to the data allocation problem was
treated. This approach is especially applicable if there is not no central organization,
which may decide about the data allocation. An example of such a case is the
integration of already existing databases, each having their own database ad1n.ini_stra
tor. The following approach was taken. Each group of users may create private
copies of fragments they need. Whether they will actually be created depends on how
frequently the original fragments are updated. The allocation of these private copies
can be determined in exactly the same way as was done in the centralized approach.
Only the processing-schedules graphs are a lot smaller than in the centralized case,
making it feasible to compute optimal allocations for groups of users. Because a
private copy is accessed by a particular group of users they may decide to only
periodically update these copies.

In section 4.6 a qualitative and quantitative comparison was made between the
centralized and decentralized approach. We expect that the centralized approach is
only feasible for databases that are managed in a centralized way. It has the disad
vantage that changes in the access pattern may require a re-computation of the com
plete allocation. Furthermore, the additional cost caused by special constrain ts, such
as a quick response time, have to be paid by all users. The advantage, on the other
hand, is that, compared to the decentralized approach, more information about the
data accesses is available, which will lead to allocations with a lower cost than the
ones obtained in the decentralized approach. A quantitative comparison was 1nade to
show this. The advantages of the decentralized approach are that changes in access
patterns, special constraints and periodically updated copies are easily incorporated.

In section 4.7 the problem of minimizing total transmission cost was treated. If
the cost of a processing schedule is mainly dete11nined by the transmissions involved
and the communication channels in the computer network have a relatively low
bandwidth it is best to mini1nize total transmission cost. Both the usage of static and
dynamic schedules to compute the cost of an allocation were discussed. Also, a third
alternative, called semi-dynamic schedules, was treated. For these three alternatives
both an admissible heuristic estimator for the Heuristic Path Algorithm was supplied,
as well as a heuristic algorithm that runs in polynomial time. For both the static and
semi-dynamic schedules a heuristic algorithm, called total data allocation, was pro
posed. The solutions obtained by this algorithm had only a 3% higher total transmis
sion cost than the optimal ones when using static schedules. An admissible heuristic

•

estimator when dynamic schedules are used, is less efficient than when static schedules
are used., because the computation of processing schedules for one-query-allocations
satisfying a partially specified allocation is required. As heuristic algorithm total data
allocation was used only it was not applied to a processing-schedules graph but to a

. LINK-graph. A comparison was made between the usage of static and dynamic
schedules. Clearly, the dynamic approach produced allocations, which had lower
total transmission cost only more computational effort was required; it will depend on
the efficiency of the query processing algorithm used whether this approach is feasible.

To get a better insight in the constituents of the total transmission cost, alloca
tions w_er~ computed for ~arying. que:Y /update ratio. Part of the TTC was for1ned by
transnuss1ons between virtual sites 1n the processing-schedules graph of the initial

179

allocation. This shows that only allowing for simple processing schedules, as is done
in the file allocation problem, may lead to solutions which do not characterize the
way the data is accessed in a distributed database. Furthermore, the average number
of sites that participates in query processing, was counted. The results showed that in
the completely specified allocations computed for the processing-schedules graphs gen
erated most of the queries only accessed one or two sites.

Finally, the usage of primary copies was investigated. The conclusion was that.,
as far as total transmission cost is concerned, forcing all updates to use one particular
copy of a fragment, called primary copy, leads to allocations with a higher TTC.

In section 4.8 minimizing the average response response time was investigated.
In the first half simple processing schedules were considered to get a better insight in
the problem and to develop tools, which can be used for arbitrary processing
schedules. For the simple schedules both minimizing average response transmission
time and average response processing time were treated. A general technique was
developed to estimate the cost of a partially specified allocation, which was incor
porated in the admissible estimators in this section. Heuristic algorithms were pro
posed and compared with the optimal ones. If the number of fragments referenced
per query is small compared to the total number and does not exceed the number of
sites in the computer network, the allocations produced by the heuristic algorithms
are quite reasonable compared to the optimal ones. Although, we may say that the
greedy algorithms do not perform as well as for minimizing total transmission cost.
This is partly caused by constraints on the feasible solutions and the serialization of
the schedules. Minimizing average response processing time was considered from
both the system's point of view and the users'. Both problems were shown to be NP
complete. A heuristic algorithm was presented that, on the one hand, tried to maxim
ize parallelism and, on the other hand, tried to keep the utilization factors of the sites
in the computer network as small as possible.

The processing-schedules graph with arbitrary schedules contains virtual sites
for fragments and for operations, because the latter do not necessarily have to be allo
cated to the same site as the fragments. To determine optimal allocations for minim
izing response transmission time when arbitrary processing schedules are used., the
processing-schedules graph belonging to a partially specified allocation is first
transformed such that each virtual site is directly connected to a physical site. To this
transformed processing-schedules graph the heuristic estimator psa resp data can be
applied. It was shown that the heuristic estimator, which includes this transformation
and the application of psa resp data, is admissible. A heuristic algorithm, called resp
operation a/location, was presented, which determines an operation allocation- given a
data allocation, such that the response transmission time of a query is minimized.
For tree-structured processing-schedules the operation allocation are optimal. This
algorithm is used in resp data operation allocation, which computes the allocation for
both the data and the operations.

To end this section on the data allocation problem we may conclude that the
problem is essentially more complex than the file allocation problem, because the
objects to be allocated have to be determined and because more complex processing
schedules are used, an allocation for the objects can not be determined for each
separately.

180

5.3. Future Research

In this monograph two problems, namely query processing and data allocation,
were investigated. Comparison between the solutions produced by algorithms
presented were compared by means of simulation. To value the merits of algorithms
proposed by other researchers and the ones presented here, a comparison in a real
distributed system would be preferable. Therefore, in the near future, more research
effort will be required to actually construct distributed database management systems.
Special attention should be given to the decentralized control of these systems both at
the level of management and at the access level. As far as the efficiency is concerned,
the decentralized control implies that the database management systems should be
provided with more tools to increase the efficiency. Also in the area of concurrency
control and crash recovery the decentralized control should be pursued. The database
management systems should take into account that the underlying computer network,
which may consists of hundreds of sites, is always changing.

Current research deals with databases, which can still be modeled with the rela
tional, the hierarchical or the network data model. Because databases are barely get
ting accepted in industry, this line of research will continue for many years to come.
However, the integration of existing databases will raise insurmountable problems,
because the databases do not contain enough knowledge about the real world. There
fore, and also because there will be a need for systems that may help people with
ordinary problems, such as facing bureaucracy, some of the research on databases will
shift to the area of artificial intelligence to study ''knowledge bases''.

Another thing we have to keep in mind is, if people are getting more aware of
the value of information and what can be done with it, the privacy and security prob
lems will place a heavy burden on the owners of databases. Maybe, the ownership of
the data about a person should be given to the person himself such that he can decide
what may be done with it.

181

REFERENCES

[Adibal978] Adiba, M., J.C. Chupin, R. Demolombe, G.Gardarin, and J. Le Bihan,
''Issues in Distributed Data Base Management Systems: A Technical Over
view,'' Proc·. 4th Int. Conj: Ve,:_v Large Data Bases, pp.89-110 (September 1978).

[Adibal980a] Adiba, M., J.M. Andrade, P. Decitre, F. Fernandez, and Nguyen Gia
Toan, ''POL YPHEME: An experience in distributed database system design
and implementation,~' Proc. Int. s_ymposium on Distributed Da1a Bases, pp.67-84
(March 1980).

[Adiba1980b] Adiba, M.E. and B.G. Lindsay, ""Database Snapshots." Prol·. Conj on
Very' Large Data Bases, pp.86-91 (October 1980).

(Adiba 1981] Adiba, M.E., ''Derived Relations: A Unified Mechanism for Views,
Snapshots and Distributed Data,'' Proc·. 7th Int. Conf Ve,:y Large Data Bases,
pp.293-305 (September 1981).

[Ahol974] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Ana~ysis of
Computer Algorithms~ Addison-Wesley, Reading, Mass. (1974).

[Apers1978] Apers, P.M.G., ''Distributed Query Processing with Inverted File Organi
zation," IR 43, Vrije Universiteit, Amsterdam (December 1978).

[Apers 1979a] Apers, P.M.G . ., ~'Critique on and Improvement of Hevner and Yao's
Distributed Query Processing Algorithm,'' IR 48, Vrije Universiteit, Amster
dam (February 1979).

[Apersl 979b] Apers, P.M.G., ''Distributed Query Processing: Minimum Response
Time Schedules for Relations," IR 50, Vrije Universiteit, Amsterdam (March
1979). .

[Apersl980a] Apers, P.M.G., ''Data Allocation and Distributed Query Processing,"
Proc. ACM PACIFIC '80., pp.48-54 (November 1980).

[Apersl980b] Apers, P.M.G., A.R. Hevner, and S.B. Yao, ''Algorithm for Distributed
Query Optimization," submitted for publication (1980).

[Apers1981a] Apers., P.M.G., ''Redundant Allocation of Relations in a Communica
tion Network," Proc. 5th Berkele;1 Workshop on Distributed Data Management
and Computer Networks, pp.245-258 (February 1981).

[Apers198lb] Apers, P.M.G., ''Centralized or Decentralized Data Allocation,'' Proc.
2nd Seminar on Distributed Data Sharing s_ystems, pp.101-116 (June 1981).

[Apersl981c] Apers, P.M.G., R.M. Langefeld., and K.C. Swart, ''Distributed Query
Processing,.,, preliminary version, Vrije U niversteit, Amsterdam (1981).

[Astrahan 1975] Astrahan, M.M. and D.D. Chamberlin, ''Implementation of a Struc
tured English Query Language," Communications ACM 18(10), pp.580-588
(October 1975).

[Astrahanl976] Astrahan, M.M. et al., ''System R: relational approach to database
management," A CM Trans. Database Systems 1(2), pp.97-137 (June 1976).

[Baldissera 1979] Baldissera, C., G. Bracchi, and S. Ceri, ''A Query Processing Stra
tegy for Distributed Data Bases,'' Proc. EURO-IFIP 1979, pp.667-677, North
Holland Publ. Co. Amsterdam (1979).

182

[Bernstein198la] Bernstein, P.A. and D.W. Chiu, ''Using Semi-Joins to Solve Rela
tional Queries," Journal of the ACM 28(1) (January 1981).

[Bernsteinl98lb] Bernstein, P.A. and N. Goodman, ''Concurrency Control in Distri
buted Database Systems,'' A CM Computing Surveys 13(2), pp.185-221 (June
l 981).

[Bernstein198lc] Bernstein, P.A., N. Goodman, E. Wong, C.L. Reeve, and J.B. Roth
nie, ''Query Processing in a System for Distributed Databases (SDD-1)," ACM
Trans. Database Systems 6(4), pp.602-625 (December 1981).

{Cardenasl975] Cardenas, A.F., ''Analysis and Performan~e of Inverted Data Base
Structures," Communictions A CM 18(5), pp.253-263 (May 1975).

[Caseyl972] Casey, R.G., ''Allocation of Copies of Files in an Information Network,"
Proc. AFIPS 1972 SJCC 40, pp.617-625, AFIPS Press, (1972).

[Cellaryl980] Cellary, W. and D. Meyer, ''A Simple Model of Query Scheduling in
Distributed Data Base Systems,'' Information Processing Letters 10(3), pp.137-
147 (April 1980).

[Chamberlin1976] Chamberlin, D.D., ''Relational Data-Base Management Systems,"
J,4CM Computing Surveys 8(1) (March 1976).

[Charrel1981] Charrel, P.J., ''L'Influence des Criteres d'Application dans la
Resolution du Probleme de 1' Allocation Optimale des Ressources d'une Base de
Donnees Reparties,'' Position Papers of the Second Seminar on Distribi,ted Data
Sharing Systems (June 1981). .

[Chu1969] Chu, W.W., ''Optimal File Allocation in a Multiple-Computer Information
System," IEEE Trans. Computers C-18, pp.885-889 (1969).

[Chu 1973] Chu, W.W., ''Optimal File Allocation in a Computer Networks," pp. 83-94
in Con-iputer~Communication Network, ed. N. Abramson and F.F. Kuo,
Prentice-Hall, Englewood Cliffs N.J. (1973).

[Chul979] Chu, W.W. and P. Hurley, ''A Model for Optimal Processing for Distri
buted Databases,'' Proc. 18th IEEE COMPCON, pp.116-122 (Spring 1979).

[Chu1980] Chu, W.W., L.J. Holloway, Min-Tsung Lan, and K. Efe, ''Task Allocation
in Distributed Data Processing," IEEE Computer (November 1980).

[Coddl970] Codd, E.F., ''A relational model for large shared data banks,'' Communi
cations ACM 13(6), pp.909-917•(June 1970).

[Cookl971] Cook, S.A., ''The Complexity of Theorem-Proving Procedures," Proc. 3rd
Annual ACM Symposium on Theory of Computing, pp.151-158.

[Czarnikl975] Czarnik, B., S. Schuster, and D. Tsichritzis, ''ZETA: A Relational
Data Base Management System,', Proc. ACM Pacific Regional Conj., pp.21-25
(April 197 5).

[Daniels1982] Daniels, D., ''Query Compilation in a Distributed Database System,"
· RJ3423, IBM Research Laboratory, San Jose, Calif. (March 1982). thesis

[Datel ?77] Date, C.J., An Introduction to Database Systems~ Addison--Wesley, Read-
ing, Mass. (1977).

183

[Davidal981] Davida, G.I, ''The Case Against Restraints on Non-Governmental
Research in Cryptography,~' Communications A CM 24(7), pp.445-450 (July

· 1981).

[Denning I 982] Denning, P.J., ''A Scientific's View of Government Control Over
Scientific Publication,,, Communications A CM 25(2), pp.95-97 (February 1982).

[Elaml978] Elam, J., ''A Model for Distributing a Database," 78-1, Dept. of Deci
sion Sciences, The Wharton School, University of Pennsylvania, Philadelphia
(March 1978).

[Enslowl978] Enslow, P.H., ''What is a Distributed Data Processing System,,, Com
puter 11(l), pp.13-21 (January 1978).

[Epstein1979] Epstein, R., M.R. Stonebraker, and E. Wong, ''Distributed Query Pro
cessing in a Relational Data Base System," Proc. A CM-SIGMOD, pp.169-180
(May 1979).

[Epstein 1980a] Epstein, R., ''Query Processing Techniques for Distributed Data Base
Systems," PhD. Thesis Memorandum No. UCB/ERL M80/9, Univ. Calif.
Berkeley (March 1980).

[Epsteinl980b] Epstein, R. and M.R. Stonebraker, ''Analysis of distributed data base
processing strategies," Proc. Sixth Conj on Very Large Data Bases, pp.92-5
(October 1980).

[Eswaran 1974] Eswaran, K.P., ''Placement of records in a file and file allocation in a
computer network," Information Processing 1974, pp.304-307, North-Holland
Publ. Co. Amsterdam (1974).

[Eswaran 1976) Eswaran, K.P., J .N. Gray, R.A. Lorie, and I.L. Traiger) ''The Notion
of Consistency and Predicate Locks in a Database System," Communications
ACM 19(11), pp.624-633 (November 1976). ·

[Garcia-Molina I 979a] Garcia-Molina, H., "'Performance of update algorithms for
replicated data in a distributed database,'' Ph.D. dissertation., Computer Sci
ence Dept., Stanford University, Stanford, Calif. (June 1979).

[Garcia-Molina1979b] Garcia-Molina, H., ''A concurrency control mechanism for dis-
tributed data bases which use centralized locking controllers," Proc. 4th Berke
ley Workshop Distributed Databases and Computer Networks (August 1979).

[Garey1979] Garey, M.R. and D.S. Johnson, Computers and Intractibility: A Guide to
the Theory of NP-Completeness, Freeman (1979).

[Griffithsl976] Griffiths, P.P. and B.W. Wade, ''An Authorization Mechanism for a
Relational Database System," ACM Transactions Database Sytems 1(3),
pp.242-255 (September 1976).

[Hanslerl 972] Ransler, E., G.K. McAuliffe, and R. S. Wilkov, ''Exact calculation of
computer network reliability," Proc. AF/PS 1972, FJCC 41, pp.49-54, Pt. I.
AFIPS PRESS (1972).

[Heldl975] Held, G.D., M.R. Stonebraker, and E. Wong, 4 'INGRES - A Relational
Data Base System," Proc. NCC 44 (1975).

[Hevnerl979a] Hevner, A.R. and S.B. Yao, ''Query Processing in Distributed Data
base Systems,'' IEEE Transactions on Software Engineering SE-5(3), pp.177-187
(May 1979).

184

[Hevnerl979b] Hevner, A.R., ''The Optimization of Query Processing on Distributed
Database Systems,'' PhD thesis, Purdue University (December 1979).

'

[Hev,nerl98l] Hevner, A.R., '-•A Survey of Data Allocation and Retrieval Methods for
Distributed Systems\,. MS/S 81-036, University of Maryland (October 1981).

[Hill 1978] Hill, E., ''Analysis of An Inverted Data Base Structure,'' SIG/ R, pp.37-64
(1978).

[Hoflerl 975] Hoffer, J.A. and D.G. Severance, ''The use of cluster analysis in physical
data base design,'~ Proc. First Conj. on Ver;' Large Data Base, pp.69-86 (Sep
tember 1975).

[Horowitz I 978] Horowitz, E. and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press (1978).

[Hsiao 1970] Hsiao, D. and F. Harary, '"A Formal System for Information Retrieval
from Files,'' Communil·ations ACM 13(2), pp.67-73, corrigenda, Communica
tions ACM, vol. 13, no. 4, p. 266 (April 1970) (February 1970).

[Huffmanl952] Huffman,, c.,A Method for the Construction of Minimum Redundancy
Codes,'" Proc. IRE 40, pp.1098-1101 (September 1952).

[Jacksonl957J Jackson, J.R., ''Networks of Waiting Lines," Operations Research 5~
pp.518-521 (August 1957).

[Karpl972] Karp, R.M., ''Reducibility Among Combinatorial Problems," pp. 85-103
in Complexi~y of Computer Computations, ed. R.E. Miller and J.W. Tatcher,
Plemun Press" New York (1972).

[Ke.rstenl981] Kersten, M.L. and A.I. Wasserman, ''The Architecture of the PLAIN
Data Base Handler," Software - Practice and Experience 11 (1981).

[Kim 1979] Kim, Won, ''Relational Database Systems,'' A CM Computer Surveys 11(3),
pp. l 85-226 (September 1979).

[Kleinrockl975a] Kleinrock, L., Queueing S.,ystems, Volume J: Theory, Wiley, New
York (1975).

[KJeinrockl975b] Kleinrock, L., Queueing Systems, Volume 2: Computer Applications,
Wiley, New York (1975).

[Kohlerl981] Kohler, W.H., ''A survey of techniques for synchronization and
recovery in decentralized computer systems," A CM Computer Surveys 13(2)~
pp.149-183 (June 1981).

[Lamportl978) Lamport, L., ''Time., clocks and ordering of events in a distributed
data storage system," Communications A CM 21(7)., pp.558-565 (July 1978).

[Lawler1962] Lawler, E.L., ''The Quadratic Assignment Problem," Management Sci
ence 9, pp.586-599 (1962).

[Lawlerl966] Lawler, E.L. and D.E. Wood, ''Branch-and-Bound Methods: .. A Survey,"'
. Operations Research 14(4), pp.699-719 (July 1966).

[LeBihanl980] LeBihan, J., C. Esculier, G. LeLann, and L. Treille, ''SIRIUS
DEL TA: Un prototype de systeme de gestion de bases de donnees reparties, ''
Proc. Int. S.vmposium on Distributed Data Bases, pp.137-159 (March 1980).

•

185

[LeLannl 978] LeLann, G., ''Algorithms for distributed data-sharing systems which
use tickets," Proc. 3rd Berkeley Workshop Distributed Databases and Computer
Networks, pp.259-272 (August 1978).

[Levin1974] Levin, K.D., ''Organizing Distributed Data Bases in Computer Net
works,,, Ph.D. Thesis, The Wharton School, University of Pennsylvania,, Phi
ladelphia (September 1974).

[Levin 1975) Levin, K.D. and H.L. Morgan, ''Optimizing Distributed Databases- A
Framework for Research," Proc. 1975 AF/PS NCC 44, pp.pp.473-478, AFJPS
Press (1975). ·

[Litwin 1980] Litwin, W ., ''A Model for a Distributed Database,'' A CM 2nd Annual
Louisiana Computer Exposition (February l 980).

[Liu1976] Liu, J.W.S., ''Algorithms for Parsing Search Queries in Systems with
Inverted File Organization," ACM Transactions Database Systems 1(4), pp.299-
316 (December 1976).

[Mahmoudl976] Mahmoud, S. and J.S. Riordan, ''Optimal Allocation of Resources
in Distributed Information Networks,'' A CM Transactions 011 Database Systems
1(1), pp.66-78 (March 1976).

[Martellal981] Martella, G., B. Ronchetti, and F.A. Schreiber, ''On Evaluating Avai
lability in Distributed Database Systems," Proc. 5th Berkely Workshop Distri
buted Data Management and Computer Networks, pp.154-171 (February 1981).

[Martinl975] Martin, J., Computer Data-Base Organization, Prentice-Hall, Englewood
Cliffs, N .J. (1975).

[McQuillan 1977] :tvicquillan, and Walden, ''The ARPA network Design Decisions,''
Computer Networks 1, pp.243-289 (August 1977).

[Metcalf el 976] Metcalfe, R.M. and D.R. Boggs, ''Ethernet: Distributed Packet
Switching for Local Computer Networks," Communications ACM 19, pp.395-
404 (July 1976).

[Neuholdl977] Neuhold, E.J. and H. Biller, ''POREL: A Distributed Data Base on
an Inhomogeneous Computer Network," Proc. Third Int. Conf on Very Large
Data Bases, pp.380-389 (October 1977).

[Ng1982] Ng, P., ''Distributed Compilation and Recompilation of Database Queries,"
RJ3375., IBM Research Laboratory, San Jose, Calif. (January 1982). thesis

[Nguyen Gia Toan1979] Nguyen Gia Toan, ''A unified method for query decomposi
tion and shared information updating in distributed systems," First Int. Conf.
on Distributed Computing Systems., pp.679-685 (October 1979).

[Nguyen Gia Toan1980] Nguyen Gia Toan, ''Decentralized Dynamic Query Decom
position for Distributed Database Systems," Proc. ACM Pacific '80, pp.55-60
(November 1980) .

[Nilssonl971] Nilsson, N.J., Prob/em-Solving Methods in Artificial Intelligence,
McGraw-Hill, New York (1971).

[Paikl979] In-Sup Paik, and C. Delobel, ''A strategy for optimizing the distributed
query processing,'' Proc. First Int. Conf on Distributed Computing Systems,
pp.686-698 (October 1979).

186

[Palermo l 974] Palermo, F.P., ·'A Data Base Search Problem," Information Systems:
CO/.i\'S /J.-,., Plenum Press (1974).

[Pelagatti 1979] Pelagatti, G. and F.A. Schreiber, ''A Model of an Access Strategy in a
Distributed Database," IFIP~TC2. Data Ba.re Architecture (June 1979).

[Pohl 1972] Pohl., I., ''Is Heuristic Search Really Branch-and-Bound?," Proc. 6th
Pri11ceto,1 IEEE ~}lmposiurti on Information Sciences and Systems, pp.370-373
(March 1972).

[Ramamoorthyl979] Ramamoortl1y, C.V. and B.W. Wah, ''The Placement of Rela
tions on a Distributed Relational Database,'' Proc. of the I st International
Conferenl~e on Distributed Computi,ig Systems, pp.642-650 (October 1979).

[Rosenkrantzl 978] Rosenkrantz, D.J., R.E. Stearns, and P.M. Lewis, ''System level
concurrency control for distributed database systems," ACM Trans. Database
S.,l·'StemL~ 3(2), pp.178-198 (June 1978).

[Rosenthall98l] Rosenthal, A.S., ''Note on the Expected Size of a Join," SIGMOD
RECORD 11(4), pp.19-25 (July 1981).

[Rothniel977a] Rothnie, J.B. and N. Goodman, ''An Overview of the Preliminary
Design of SDD-1: A System for Distributed Databases," Proc. 2nd Berkeley
Workshop Distributed Data Management and Computer Networks, pp.39-57
(May 1977).

[Rothnie1977b] Rothnie, J.B. and N. Goodman, ''A survey of research and develop
ment in distributed database management,'' Proc. 3rd Int. Conj. Very Large
Data Bases, pp.48-62, IEEE (October 1977).

[Sang Ajangl981] Sang Ajang, G. and E. Spoor, ''Ideeen voor bet ontwerpen van een
gedistribueerd database management systeem,"' Master Thesis, Vrije Universi
teit, Amsterdam (1981). in Dutch

[Schmid1975J Schmid, H.A. and P.A. Bernstein, ''A Multi-Level Architecture for
Relational Data Base Systems," Proc. Int. Conf Very Large Data Bases,
pp.202-226 (Sepetember 1975).

[Selinger1979] Selinger, P.G., M.M. Astrahan~ D.D. Chamberlin, R.A. Lorie, and
T.G. Price, ''Acces Path Selection in a Relational Database Management Sys
tem," Proc. A CM Conference, pp.23-34 (May 1979).

[Selingerl980] Selinger, P.G. and M.E. Adiba, ''Access Path Selections in Distributed
Data Base Management Systems," Proc. Int. Conj on Databases, pp.204-215
(July 1980).

[Stonebraker1976] Stonebraker, M., E. Wong, P. Kreps, and G. Held, ''The Desig~
and Implementation of INGRES," ACM Trans. Database Systems 1(3),
pp.189-222 (September 1976).

[Stonebrakerl977] Stonebraker, M.R. and E. Neuhold, ''A Distributed Version of
INGRES," Proc. 2nd Berkeley Workshop Distributed Data Management and
Computer Networks, pp.19-36 (May 1977).

[Stonebrakerl979] Stonebraker, M., ''Concurrency control and consistency of multiple
copies of data in distributed INGRES,,, IEEE Trans. Software Eng. SE-5(3),
pp.188-194 (May 1979).

187

[Tanenbaum 1981] Tanenbaum., A.S., Compz,ter Netv1.}£)rkLr;;, Prentice-Hall., Englewood
Clifls, N.J. (1981).

[Thomas 1979] Thomas, R.H., ""A Majority Consensus Approach to Concurrency Con
trol for Multiple Cop)' Databases,·· ACM Transac·tion,,;;; Dataha.,·e S}·.stems 4(2) .

•

pp.180-209 (June 1979).

[Toth 1978] Toth, K.C., S.A. Mahmoud. J .S. Riordon .. and 0. Sherif, ''The ,A\DD Sys
tem: An Architecture for Distributed Databases,"' Pr()('. 4th Int. Conf Ver;·

• •

Large Data Bases, pp.462-471 (September 1978).

[Toth 1980] Toth. K.C., ''Distributed Database Architecture and Query Processing
Strategies,'' PhD thesis, Dept. of Systems and Computer Engineering Carleton
University., Ottawa (June 1980).

[Toth 1981] Toth, K.C . ., S.A. Mahmoud, and J .S. Riordon., '"Query Processing Stra
tegies in a Distributed Database Architecture,'' Proc. 2nd Seminar on Distri
buted Data Sharing s_ystem.'> (June 1981).

-
[Tsichritzisl977] Tsichritzis, D.C. and F.H. Lochovsky, Data Ba~'>e Manageme,zt S:vs-

tems~ Academic Press, New York (l 977).

[Ullman 1980] Ullman, J.D., Principles o_f Database Sj'stems. Pitman Publ. (l 980).

[Wasserman 1981] Wasserman, A. I. et al., '" Revised Report on the Programming
Language PLAIN,'' SIGPLAN 16(5), pp.59-80 (May 1981).

[Williams1981] Williams, R. et al., ''R'": An Overview of the Architecture."' RJ 3325.
IBM Research Laboratory, San Jose, Calif. (December 198 l).

[Wilms 1980] Wilms, P., ''Qualitative and quantitative comparison of update algo
rithms in distributed databases,'' Proc. Int. S_,,vmposium Distributed Databases,
pp.275-294 (March 1980).

[Wongl 976] Wong, E. and K. Youssefi, ''Decomposition - A Strategy for Query Pro
cessing,'' ACM Trans. Database S;,,stems 1(3), pp.223-241 (September 1976).

[Wongl977] Wong, E., ''Retrieving Dispersed Data from SDD-1: A System for Dis
tributed Data Bases,,, Proc. Second Berkel~y Workshop 011 Distributed Data
Management and Computer Networks, pp.217-235 (May 1977).

[Yao 1977] Yao, S.B., ''Approximating Block Accesses in Database Organizations,"
Communications A CM 20(4), pp.260-261 (April 1977).

[Zimmerman 1980] Zimmermann, H., '"OSI Reference Model-The ISO Model of
Architecture for Open Systems Interconnection," / EEE Transactio11.,;;; Communi
cation COM-28, pp.425-432 (April 1980).

•

188

INDEX

A

A-list 49
ADD 12
adjacent 132
ad111issible 126
allocation, cost of an 103

one-query- 137
unit of 105
of the global data dictionary 110

application layer 8
arbitrary schedule 163
Arbitrary Transmission Cost Model

21, 28, 58
architecture of a database 5
ARPT 158
arrival distribution 148
ART 141
ARTT 150
assigned 100
assigned set 100
attribute 8

dependence 83
independence 83

authentication 16
authorization 16
availability 1, 14, 5
average response processing time 156
. heuristic allocation 159

optimal allocation 158
average response time 147, 163
average response transmission time,

heuristic allocation 153
optimal allocation 150

B

B-list 49
balanced split l 08
basic operations 2, 19, 27
being assigned to 100
branch-and-bound 123
branch structure 32
bulk size distribution 148

C

candidate nucleus-site 166
Cartesian product 8
centralized data allocation 4, I 10, 116
centralized locking 111
centroiding phase 34
check point 13
Class A query 36
clique 157
clocks 12
cluster 132

simple 132
clustering phase 34
coefficient of variation 148
COLLECTIVE 90
commit 13

two-phase 13
compile 37
complement 40
completely inverted system 40
completely specified allocation 101
computer network 8

•

cone 67
conceptual schema 5

global l, 5
concurrency 1, 12
con junction 44
consistency 12

mutual 144
strong 144
weak 144

constituents of total transmission cost
141

construction of processing-schedules
graph 101, 110

copies, primary 144
private 114
secondary 144

correlation 35
cost, estimate- 124
cost function, response transmission

time 21
response time 2, 20
total cost 2, 20
total time 20
total transmission cost 21
total transmission time 21

cost of an allocation 103
of a path of length greater than I

125
of a schedule 20
of a subset 124

D

D-INGRES 30
data allocation 1, 150, 165

centralized 110, 116
decentralized 114, 116

data allocation problem 3, 99
NP-completeness of 112

data and operation allocation 98, 163
data dictionary 17

allocation of the global 110
data link layer 8
data model, hierarchical 8

network 8
relational 8

database, fully replicated 14
partitioned 14

189

database management system, relational
1 1

databases~ integration of 1
decentralized data allocation 4, 114,

116
decomposition 30, 92
difference 9
directory · 39
disjunctive normal form 44
distributed databases 1, 5
distributed database management sys-

tems 5, 8, 11
distributed data processing system 5
distributed operating system 8
distributed query processing 17, 41, 73

algorithms 28
Distribution Strategy 35
domain 8
domino effect 13
distributor 22
dynamic optimization 22, 29, 31, 37
dynamic schedules 112, 1 14, 139

heuristic allocation using 138
optimal allocation using 136

E

encryption 16
end node 33
Equal Transmission Cost Model 21,

28, 53
equi-join 9
estimate-cost 124
EXHDECOM 93
EXHDECOM" 93
expansion 1, 5
export-operation 165
external schema 5

F

file allocation problem 3, 97, 99
file node 33

190

filtering phase 34
forking graph 104

point 22
fragment 14, 105

virtual site 163
fully replicated database 14

G

general query 79
global conceptual schema 1, 5
global data dictionary, allocation of

110
global internal schema 5
greedy 30, 127

H

heterogeneous 6
heuristic allocation average response

processing time 159, 161
• • average response transnuss1on

time 153, 155
total transmission cost 127, 132,

134
using dynamic schedules 138
using static schedules 127, 134

heuristic operation and data allocation
ARTT 169

Heuristic Path Algorithm 123
hierarchical data model 8
homogeneous 6
hot izontal split 14, 106

I

~coming selectivity 75
Independence Theorem 25
INGRES 11
initial allocation l O 1
input nucleus-site 166
integration 1, 5, 64, 84
integrity 1 ~ 12

internal schema 5
intersection 9
Intersection Assumption 44
inverted file organization 38, 39
inverted list 39
ISO proposal 8

• •
JOin

J
'
'

9, 29, 107
equi- 9
natural 9
semi- 10, 30, 32, 73, 92

L

legislation, privacy 1
length greater than 1, cost of a path of

125
length of a path 124
linear structure 32
LINK 127
LINK-graph 139
list 39
literal 44
local conceptual schema 5

external schema 6
internal schema 5

Local Processing Assumption 21, 28
locking 12
locking, centralized 111

two-phase 12
Logical Strategy 35

M

macro-schedule 39, 63
materialization 15, 21, 29, 34, 92
max parallelism 159
merge join 37
micro-schedule 39, 64
MRTT query 48, 57, 61

•

MRTT term 56, 60
mutual consistency 21, 144

N

natural join 9
nearest physical site 164
nested loop join 36
network data model 8

layer 8
operation system 8

non-result site 65
not-at-same-site graph 157
notification node I 04
nucleus-site l 00

0

OMEGA 11
one-query allocation 137
operation I 00

basic 2
export- 165
allocation 156, 165
node 33
tree 33, 37, 41
virtual site 16 3

optimal allocation average response
processing time 158, 161

average response transmission
time 150, 155

using dynamic schedules 1347

136
using static schedules 123

optimal operation and data allocation
ARTT 163

optimization, dynamic 22
static 22

OSI model 8

p

PARALLEL 76

parallelism 32
Parallelism Assumption 2, 22
parallel schedules 22
parser 17
partially specified allocation IO l

satisfy a 124
partitioned database 14
path 124, 164

length of a 124
removing a 125

191

of length greater than I, cost of a
125

periodic update 115
physical layer 8

site 100
physical site 3
PLAIN 11
POLYPHEME 12
POREL 12
precompile 35
prefix schedule 85
presentation layer 8
primary copies 144
privacy 16

legislation l
private copies 114
processing-schedules graph 4, l O 1

construction of IO 1, 110
graphical representation 102
simple 132

processing schedule 19
time 19

projection 9, 107
psa dynamic cost 138
psa resp data 151, 164
psa resp operation 158
psa static cost 125

Q

Query By Example 11
query optimizer 19
query processing I, 15

distributed 17
queueuing model 148

192

R

recei,,ing node l 04
recovery 13
redundant transmission 84
relation 8
relational algebra 8

calculus 10
•

database management system 11
data model 8

reliability 14
removing a path 125
RESPONSE GENERAL 79
response time 2, 20, 22, 62, 148
response transmission time 21, 43, 6 I,

79
RTT 21
resp data operation allocation 169
resp operation allocation 161, I 69
restriction 107
result site 66

s

satisfy a partly specified allocation
124, 137

schedule 19, 29, 75
arbitrary 163
cost of a 20
dynamic 112, 114
semi-dynamic 135, 136
serialized 2, 25
simple 149
static 11
tree-structured 166
parallel 22

schema 5
conceptual 5
external 5
internal 5

SDD-1 29
secondary copies 144
security l," 16
selection 9
selectivity 30, 74, 92
Selectivity Assumption 76

semi-dynamic schedules 135, 136
semi-join I 0, 30, 32, 73, 92
SERIAL 16
serializa bili ty 12
serialization 61

of a schedule 25
serialized schedule 2
serializing parallel schedules 25
service distribution 148
session layer 8
set operations 9
simple cluster 132

processing-schedules graph 132
query 30, 76

simple resp data allocation 154
simple resp operation allocation l 60
simple schedule 149
SIRIUS-DELTA 12
SJ EXHDECOM 93
split, balanced 108

horizontal 106
vertical l 06

splitting, static under 107
stable storage 13
static optimization 22, 29
static schedules 112, 139

heuristic allocation using 127
optimal allocation using 123

static under splitting l 07
strong consistency 144
synchronization point 22
System R 11
System R* 36

T

target 10
term 44
time stamp 12
token 13, 37
total cost 2, 20
total data allocation 129, 132, 134, 138

extensions of 141
TOTAL GENERAL 88
total ordering 12
total time 20, 66
total transmission cost 21, 122

•

constituents of 141
total transmission time 21, 84
Transmission Assumption 21, 28

Strategy 35
transmission time 19
transport layer 8
tree-structured schedule 166
TTC 21
TTT 21
TTT query 68
TTT term 71
tuple 8

substitution 31
two-phase commit 13

locking 12

u

undo 13
union 9, 100
unit of allocation I 05
update, periodic 115
utilization factor 149

V

vertical split 14, 106
structure 32

virtual ring 13, 37
site 3, 100

w

wait-for graphs 12
weak consistency 144

z

ZETA 11

193

•

