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PREFACE 

A preliminary version of this tract appeared in 1980 under the title 

"Studieweek getaltheorie en computers". It contained the written versions of 

the lectures presented during the study week "Number theory and computers" 

that was held at the Mathematical Centre, September 1-5, 1980. The contents 

have been thoroughly revised for the present edition. We are happy to in

clude Carl Pomerance's paper "Analysis and comparison of some integer factor

ing algorithms", which does not correspond to a lecture during the study 

week. 

The editors are grateful to all those at the Mathematical Centre who 

have contributed to the technical realization of the tract. 

H.W. Lenstra, Jr. 

R. Tijdeman 
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THE COMPUTATION OF GALOIS GROUPS 

by 

F.J. VAN DER LINDEN 

INTRODUCTION 

Let f be a monic polynomial of degree n in 7l[x]. Assume f is square 

free, i.e. f has no double zeros. One of the fundament,al invariants of f is 

its Galois group, which may be described as follows. Let a 1, ••• ,an be the 

zeros off, then ~(a 1, ••• ,an) is called the splitting field off. This is a 

Galois extension of~- The Galois group G of this extension is called the 

Galois group off. The elements of G permute the ai so we can consider Gas 

a subgroup of Sn' the synnnetric group on n letters. We want to know which 

subgroup it is; it is determined up to conjugacy. 

We will discuss the existing techniques to determine G with the help of 

an electronic computer. Forsimplicitywe often restrict ourselves to the case 

that f is irreducible. For G this means that it is a transitive subgroup of 

Sn. We will give two major methods for the computation of Gin Sections I, 2. 

The first one does not compute Gin all cases, but it leaves us sometimes 

with a choice between several subgroups of S • If we assume certain general-
n 

ized Riemann hypotheses more subgroups can be eliminated, but even then we 

may be left with several possibilities. The method has the advantage that 

essentially the same program can be used for different values of n. The se

cond method determines. G always, but we must use multi precision real and 

integral arithmetic, and for different values of n different programs have 

to be used. 

In Section 3 we show how the advantages of both methods can be combined. 

Some methods of lesser importance are discussed in Section 4. 

The cases n = 2, 3 are particularly easy. For n = 2 we always have 

G = s2 when f is irreducible. For n = 3 we only have two transitive groups: 

s3 and A3 • In Section 2 we show how to distinguish between them. 



I • THE METHOD OF VAN DER WAERDEN 

In this section we fix a square free monic polynomial f € 7l[x] of de

gree n. Let G c Sn be its Galois group. 

VAN DER WAERDEN gave in [19], §66, a method to compute G (see also [9]). 

ZASSENHAUS [24] and COCKAYNE [2] used it to determine G with the help of 

electronic computers. This method will be described in this section. 

Let d 1, ••• ,dr be positive integers with Z:~=I di n. We say that cr € Sn 

has cyale pattern (d 1, ••• ,dr) if cr is the product of r disjoint cycles of 

lengths dl' ••• ,dr. Let p be a prime number. Suppose that f = (fmodp) € 1FP[x] 

factorizes as 

f with degree (f.) 
l. 

where the f. are distinct monic irreducible polynomials in 1F [x]. In this 
l. p 

situation we say that p belon,gs to the cycle pattern (d 1, ••• ,dr). We also 

want to speak of the cycle pattern belonging to the "prime at infinity". 

This can be defined by replacing in the above definition 1F [x] by lR[x] and 
p 

(f mod p) by f, In this case all di are I or 2. 

THEOREM I. Suppose that pis a, possibly infinite, prime, whiah belongs to 

the ayale pattern (d 1, ••• ,dr). Then there exists an element CJ of G of cyale 

pattern (d 1, ••• ,dr). 

PROOF. For finite primes see [19], §66. For the infinite prime we embed 

~(a 1, ••• ,an) in C. Then cr = (complex conjugation) has cycle pattern (d 1, ••• 

• . • ,dr). □ 

We can now use the methods of A.K. LENSTRA [7] to factorize f modulo 

several primes. For n s 5 it can be easier because we have the following 

theorem: 

THEOREM 2 (STICKELBERGER). Let K be a finite field of odd aharaateristia. 

Let g be a square free polynomial of degree n over K. Let r be the nwnber 

of irreduaible faators of g over K. Let l be the discriminant of g over K. 

Then r = n mod 2 iff ~ is a square in K. 

PROOF. See [17], Cor. I. 0 
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For n $ 5 there are at most two non-linear facotrs. So in this case we 

only have to find the linear factors of f mod p to get the complete cycle 

pattern. 

Now we can make a list of all subgroups of Sn which contain elements 

with the encountered cycle pattern. Such a list is already available for 

subgroups of S with n $ 20, cf. [6]. By Theorem I we know that Gisin this 
n 

list. This does not suffice to determine G except if we find G = Sn (or G = 

An, if we know that the discriminant off is a square; see Section 2). In 

the other cases, it can be useful to know that for every cycle pattern occur

ring in G there is a prime number p belonging to it; and these p's occur 

with the expected frequency: 

THEOREM 3 (FROBENIUS-TSCHEBOTAREFF). Let (d 1, ••• ,dr) be a cycle pattern. Let 

C be the set of elements of G with cycle pattePn (d 1, .•• ,dr), and let P be 

the set of primes belonging to (d 1, ••• ,dr). Then 

1 • #{pEx: pE P} #C 
im #{p$x: p prime}= #G 

X4<X> 

PROOF. See [3], [18], [5]. □ 

This theorem is not very useful for our purpose, We want to have an ex

plicit error term, or at least an upper bound for the smallest p E P. A few 

years ago some results in this direction have been found. Unfortunately, 

they are very weak. 

THEOREM 4 (LAGRARIAS-ODLYZKO-MONTGCMERY). Let C and P be as in Theorem 3. 

Suppose C 'F (/J, and that all prime divisors of the discriminant of f are 

divisors of the discriminant V of (Q(a 1, ••• ,an) over(]!. Then there exists 

p E P with 

where A is an absolute, effectively computable constant. 

PROOF. See [4], Theorem I.I. 0 

The assumption of the divisors of the discriminant off can probably 

be omitted by altering the definition of V, but no such theorem has been 

published. The value of A in Theorem 4 is not given explicitly. OESTERLE 

has given_a much better result assuming the generalized Riemann hypothesis: 
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THEOREM 5. (OESTERLE). Let the assumptions and notations be as in Theorem 3, 

and assume moreover that the zeta-function of ~(a 1, ••• ,an) satisfies the 

generalized Riemann hypothesis. Then there exists a p E P-with 

2 p ~ 7O•(log IVI) . 

PROOF. Promised in [IO], Theoreme 4; cf. [SJ, Corollary 1.2. □ 

Oesterle also announced a completely explicit remainder term in Theorem 

1, still assuming the generalized Riemann hypothesis. 

With these theorems we cannot get G for sure. We still know that G 

must belong to the same list, but in addition we have the moral certainty 

that G must belong to a much smaller list just by looking at the frequencies 

of the cycle patterns that are found. Often this list contains only one sub

group of the Sn. The smallest n for which Sn contains two non-conjugate 

transitive subgroups with the same frequencies of cycle patterns is n = 8, 

see [ 11 J. 

Table I, abstracted from [24], gives all transitive subgroups of Sn 

for n = 4, 5, together with their cycle patterns. The cases n = 2, 3 are 

trivial; see the Introduction and Section 2. 

n #G 

4 24 

4 12 

4 8 

4 4 

4 4 

TABLE I 

Transitive subgroups of S for n 
n 

Cycle pattern Frequency 

11 I I I 
2 I I 6 
22 3 
31 8 
4 6 

11 I I I 
22 3 
31 8 

I 11 I I 
211 2 
22 3 
4 2 

1111 1 
22 3 

111 I I 
22 I 
4 2 

4, 5. 

G 



n #G Cycle pattern. Frequency G 

5 )20 11111 I 
2111 JO 
221 15 
31 I 20 
32 20 
41 30 
5 24 

5 60 I I I I I I 
221 15 
311 20 
5 24 

5 20 11111 I 
221 5 
41 JO 
5 4 

5 JO I I I I I I 
221 5 
5 4 

5 5 11111 I 
5 4 

EXAMPLE. Let f = x4 -4x3 -4x+ 13. This polynomial is irreducible over~

The zeros off are approximately 

u 1 I ,4159768 .•• 

a2 = 4.0481248 ••. 

a3 -0.7320508 •.. + i(l.3160740 .•. ) 

a 4 -0.7320508 ••• - i(J.3160740 ••• ) 
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The. discriminant off is -28 .33.132. Factoring modulo primes gives the fol

lowing cycle patterns: 

Cycle pattern 

211 

22 

4 

Primes 

"', 11,23 

7, 19 

5, I 7 

Using Table I, we see that G = n4 or G = s4, and that we are morally sure 

that G = n4• 
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2. THE METHOD OF STAUDUHAR 

The method proposed by STAUDUHAR [16], cf. [8], to compute Galois groups, 

is based on the use of Galois resolvents. These are defined as follows: 

Write.!:.= (u 1, ••• ,un), where the ui 

field IQ(_!:.). We have an action of Sn 

subgroup Hof S we denote by Q(u)H 
n -

we have Gal(~(u)/IQ(u)H) = H. Let H' 
H - - H' 

111{_!:.) (F(_0) for some F(_!:.) € 111(_!:.) • 

are indeterminants over IQ. Consider the 

on IQ(_!:.) by permuting the ui. For every 

the fixed field of H. By Galois theory 
H' 

be a subgroup of H; then we have Q<.!:!_) = 

We may choose F (_!:.) € 7l[ u]. Let 

4>H H,(z,u) = TT R (z-crF(u)), where Risa set of left coset representatives 
' - CT€ -

of H' in H, i.e. His the disjoint union of crH' for cr € R. We call q,H H' the 
' Galois resolvent of H' in H corresponding to F(_!:.), 

THEOREM 6. Let f € 7l[x] be manic and irreducible, and G c Sn its Galois 

group. Let H c Sn be a subgroup containing G, and H' c Ha subgroup. Let 

er€ H. Write 5:. = (a 1, ••• ,an). Then 

a) 4>H H' (z,5:.) € 7l[z]; 
' -I 

b) if G c crH'cr then the zero crF(5:_) of q,H H' (z&) is in 7l; 
' 

c) conversely, if aF (a) € 7l, and crF(5:_) is not a double zero of q,H H' (z,5:.), 
-I - , 

then G c crHcr • 

PROOF. See [16], Theorems 4, 5. For an important special case (H= Sn) see 

[8]. □ 

Stauduhar uses this theorem in the following way. Suppose one knows 

that G c H, where His a transitive subgroup of Sn; e.g. one knows this for 

H =Sn.Using Galois resolvents and Theorem 6, we can determine whether or 

not G c crH'cr-l for sane maximal transitive subgroup H' c Hand some cr € H. 
-I If this does not occur then G = H. If however G c crH'cr , we replace H by 

-I 
crH'cr and repeat the procedure. 

Some remarks are in order here. 

I) We compute q,H,H'(z,5:.) with the help of its zeros which we get from the 

zeros of f. Because we know that q,H H 1 (z ,5:.) € 7l [ z], we can calculate it 
' exactly on an electronic computer using multiprecision arithmetic. If a zero 

of 4>H H' (z,5:.) is "almost" an integer, we can round it to an integer. With 
' the help of multiprecision integer arithmetic we can show that this integer 

is a zero of q,H,H'(z,5:.). In some cases there is an alternative: for small 
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n we can express eH,H'(z,~) in the coefficients off. For example, the re

solvent es4,n4, which is also called the cubic resoivent of a quartic poly

nomial, will be given below. The resolvent es5 ,N5 (z,~) = eA5 ,n5 (z,~) is 

given in[!], app.t. For e8n,An see below. 

2) From every H-conjugacy class of maximal transitive subgroups H' c H we 

only have to consider one subgroup. 

3) Suppose we get G c crH'cr-t for some a EH. Then we renumber the zeros of 

f to get G c H' • 

4) Let H1 and H2 be subgroups of Sn. When we get G ¢ H1 but G c H2, then we 

have of course not to look whether G c H1 n H2, when H1 n H2 is a maximal 

transitive subgroup of H2• 

S) When eH H,(z,~) has a double integral zero one has to take another Galois 
• 

resolvent of H' in H. For most f this does not occur and for some pairs 

H' c H it never occurs. _If eH,H' (z,~) has a double integral zero the ai must 

satisfy a given algebraic relation, which happens with "probability" zero. 

One special case of Galois resolvents is the resolvent of An in Sn. In 

this case we can take F = TT1 . . (u.-u.); then S1<3Sn 1 J 

es A (z,~) (z - TT (u.-u.)) (z + TT (u.-u.)) 
n• n ISi<jSn 1 J )Si<jSn 1 J 

2 2 z - TT (u.-u.) • 
!Si<jSn 1 J 

2 So es , (z,a) = z - t., where t. is the discriminant of f. So we have G c A 
n,Brl - n 

iff t. is a square in ?l. Because there are faster methods to compute the 

discriminant, see ZANTEMA [23], we do not use the method given above to 

look if G c A. We also see that es A cannot have a double integral zero, 
n n• n 

because t. "f O. 
4 ::S 2 Let f = x + a 1x + a2x + a3x + a4 be a quartic polynomial. For the 

resolvent <I>g4 n4 we can take F(~) = u1u3 + u2u4, Then we get <I>s4 n4 (z,a) 
3 2 . • • -

z - a2z + (a1a3 - 4a4)z + 4a2a4 - a1a4 - a~, the cubic resolvent of f. It can be 

shown that its discriminant is equal to that off. Moreover it has no double 

zero if f has none. Also VAN DER WAERDEN .. has given a cubic resolvent in [19], 

§64. He took F(~) = (_u 1 + u2) (u3 + u4), and he considered only the case that 

a 1 O. In this case, i.e. a 1 = O, his resolvent is equal to -es4,n4(-z,~). 

STAUDUHAR has given in [16] data for using thi~ method for 4 s n s 7. 

He does not consider n = 2, 3 because these are easy: For n = 2 we have only 



206 

s 2 , for n = 3 we have only s 3 and A3 as possibilities. One can distinguish 

s 3 and A3 by the discriminant. Stauduhar has made search trees (of depth ~5) 

of subgroups bf Sn. He has given F(~ and systems of representatives for the 

various pairs of subgroups appearing in these search trees. Below we give 

these data for n 4, 5. 

n = 4 n = 5 

In Table 2 we give the Galois resolvents for pairs of subgroups H' c Hof 

Sn. Here & means: if G c H, then G c H' iff & is a square in 7l. 

n H H' Generators of H' 

4 S4 D4 (1234), (13) 

4 s4 A4 (123), (134) 

4 D4 C4 (1234) 

4 n4 V4 (12) (34), (13) (24) 

5 SS NS (12345),(2354) 

5 ss AS (123), (134), (12) (35) 

5 NS D5 (12345), (25) (34) 

5 DS cs (12345) 

Table 2 

UIU3+U2U4 

& 

2 2 2 2 
ulu2+u2u3+u3u4+u4ul 

& 

(ulu2+u2u3+u3u4+u4u5+ 

+u5ul-ulu3-u3u5-u5u2+ 

-u2u4-u4u 1)2 

& 

& 

2 2 2 2 
ulu2+u2u3+u3u4+u4u5+ 

2 +uSul 

Representatives of 
H' in H 

(I), (23), (34) 

(I), (12) 

(1),(12)(34) 

(1),(13) 

(I), (12) (34), 

(12435),(15243), 

(12453); (12543) 

(I), (12) 

(I), (2354) 

(I), (12)(35) 
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SOICHER [JS] has written a·thesis on the computation of Galois groups. 

He introduces linear resolvents, i.e. resolvents in which the function F(~) 

is linear. He gives examples of computer programs for determining whether a 

zero of a resolvent is integral, and for determining the Galois group using 

the resolvents. 

Recently GIRSTMAIR [25] made an improvement on Stauduhar's method. 

He used resolvents to distinguish whether or not a Galois group is con

tained in some set of subgroups of S • Such a set does not necessarily 
n 

consists only ot conJugates of a given group, but it can contain more-groups. 

Moreover he calculated the resolvents in terms of the coefficients of the 

polynomial, instead of the zeros, cf. Remark I above. 

3. THE USE OF BOTH METHODS TOGETHER 

We can use the methods of Sections I and 2 together in the following 

way. The method of Section I gives us a list of subgroups of Sn and it is 

known, that one of its members has a conjugate contained in G. Now we can use 

the Galois resolvent of Section 2 to show that G is contained in one of the 

conjugates of one of the subgroups of the list. If this is the case we know 

G exactly. If not, G must be bigger than our first guess. BUHLER [I] has 

used this method to get many polynomials of which the Galois group is equal 

to A5 • 

We can use this on the example of Section I where f = x 4 - 4x3 - 4x + 13. 

We had the possibility G = n4• 

We have 

When we calculate the roots of ~(z,~) we get 

7.9999999 .•• 

and 

z3 - 36z - 224 

of which 8 is the only integral zero. So we conclude that G n4• 
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4. OTHER METHODS 

In this section we discuss some other methods to calculate Galois groups. 

First there are methods in which one calculates ~(a 1, ••• ,an) and in the 

course of this calculation we get the Galois group. This can be done in dif

ferent ways. For examples, we can look at ~(a 1) and factorize f over it. If 

f has an irreducible factor of degree~ 2 over ~(a 1) we take a zero, a2 say 

of this factor and do the same over ~(a 1,a2). We repeat this until f factor

izes as a product of linear polynomials. For methods for factoring polyno

mials over number fields see [21], [22] or [7]. 

Another way of computing ~(a 1, ••• ,an) is to use the methods of SMADJA 

[14]. He gives methods how to compute in number fields, how to determine the 

automorphism group of such a field and how one can show that an element with 

given conjugates is in the ring of integers of the field. So as above we 

look at ~(a 1). If all ai are contained in its ring of integers we are ready, 

we compute its automorphism group which is the Galois group off. If a 2 is 

not contained in it we look at ~(a 1,a2) and so on. 

The disadvantage of these methods is that if the Galois group off is 

Sn' which it is in most cases (see [20]), we have to do the greatest amount 

of work, contrary to the earlier methods, which are faster when the Galois 

group is Sn. But one can use these methods when the methods of Section I 

suggest that G is sroall. 

One can also compute G with the help of the ramifying primes, in con

trast with Section I, where we use the primes which do not ramify. We can 

do this because we know that the inertia groups are subgroups of G which 

generate G. These inertia groups are cyclic when the ramification is tame. 

SCHUR [12], [13] has used this method to compute the Galois groups of some 

sequences of polynomials. These are the following sequences: 

I 
X dn(xne -x) n i 

L e I (':) (-_~) the Laguerre polynomials. n - n! dxn i=O 1. 1.. 

n i 
II E I X 

the "truncated exponential --,-, ' n 
i=O 1.. 

series". 

III 

X n i 
J =*I Ln(t)dt z: (':) (-x) 
n i=O 1. (i+l) ! 

0 



IV 
n i 2n · . n-i l (-1) (2i)•l•3•5• •.. (2i-l)x . 

i=O 

V 
n i 2n+l . n-i l (-1) ( 2i )• 1•3•5• ••• (21.-l)x . 

i=O 

The polynomials (-·l)nn!L , n!E , (-l)n(n+l)!J , K(i) are monic and belong n n n n 
to 7l[x]. Schur found the following result. 

THEOREM 7. (SCHUR). 

a) if f = (-l)nn!L then G = S ; 
n n 

b) if f = n!E then G = A if 41n, n n 
G = S if 4/n· n ' 

c) if f = (-l)n(n+l)!J then G = A if 2/n, n n 
G = A if n+l is a square, 

n 
G = s in other cases; 

n 
d) if f = K!i), i = 0,1, then G = Sn if n > 12. 

PROOF. See [12], [13]. □ 
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CLASS NUMBERS AND UNITS 

by 

H. ZANTEMA 

I • INTRODUCTION 

Every non-zero rational number q has a unique expression 

(I) q 

where E = ±1 and the a(p) are integers, almost all zero. This statement em

bodies two properties of the ring of integers 7l: first, that it has unique 

factorization into primes, and secondly, that it only has "trivial" units 

±1. 

Let K be an algebraic number field, i.e. a finite extension of~. and 

define 

O(K) := {x EK I g(x) 0 for some monic g E 7l[X]}. 

This is a subring of K, called the ring of integers of K. From Gauss' lemma 

we know that O(~) = 7l. The ring O(K) may fail to have the two properties 

of 7l mentioned above. To recover uniqueness of factorization we have to 

pass to ideals of O(K). Put 

I(K) := {a c KI xa is a nonzero ideal of O(K) for some x EK}. 

Elements of I(K) are called ideals of K; to avoid confusion ideals of O(K) 

will be called integral ideals. The set I(K) is an abelian group under multi

plication: 

t 
a• b : = { l a. b. I t E 7l, t > 0, a. E ~' b. E b}. 

i=I ii i i 
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Every ideal a has a unique decomposition 

(2) a 

where .!2. ranges over the non-zero prime ideals of O(K), and a(.12.) E 7l, almost 

all equal to zero. An ideal of K is called a principal ideal if it can be 

written as aO(K) for some a EK, a f O; the element a is called a generator. 

The set of principal ideals is a subgroup P (K) of I (K); the class group cl{K) 

is defined by 

cl (K) : = I (K) /P (K) • 

For a E I(K) we write 

[ a] : = (~ mod p (K)) E cl (K) 

and call it the ideal class of a. In 3,1 we shall see that cl(K) is finite; 

its order is called the class nwriber h(K) of K. Roughly speaking, the class 

number measures how far O(K) fails to have unique factorization. More pre

cisely, we have h(K) = I if and only if O(K) is a principal ideal domain, 

and if and only if O(K) has unique factorization. 

If an ideal is principal, its generator is determined up to a unit of 

O(K). The structure of the group of units O(K)* of O(K) is given by 

Dirichlet's theorem, see 3.3. It is an infinite group, except for the cases 

K =~and K = ~(/2i), ~ < 0. 

Class numbers and units play an important role in algebraic number 

theory. For more details and proofs we refer to [SA]. In this paper we de

scribe a computational technique for determining the class group and units 

for general algebraic number fields K. Throughout the paper we suppose that 

K is given as K = ~(A) where A is a zero of the polynomial 

f (X) 0, ... , n-1, 

and f is irreducible over 7l. It is well known that every K can be written 

in this way. 

For specific fields K there exist faster methods, see [SCH] for quadra

tic fields and [A] and [BJ for cubic fields; see also 3.5. 
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2. THE DISCRIMINANT 

2.1. Write f = r1=l (X-Ai) for Ai Et, i 

~(f) off is defined by 

I, ... ,n; A Ar· The discriminant 

(3) 

Clearly this doesn't depend on the chosen labeling of the Ai' so ~(f) can be 

expressed in the coefficients off. For example, we have 

if n = 2, 

and 

if n = 3. 

Similar expressions can be given for larger n, but they rapidly become un

wieldy. 

It is possible to compute ~(f) by determining all zeros off numerically 

and then substituting them in (3). A more efficient way makes use of the pro

perties of the resultant of two polynomials, which we shall now discuss. Let 

g,h E t[X] be two nonzero polynomials, and write 

s t 
g = a TT (X-a.), 

i=l ]. 
h = b TT (X-S.) 

j=l J 

with a,a 1, ••• ,as,b,B 1 , ••• ,Bt Et, a,b I 0. The resultant R(g,h) of g and h 

is defined by 

R(g,h) 

Clearly 

(4) R(g,h) 

and 

(5) R(g,h) 

s t 
TT TT 

i=l j=l 

s 
at TT h(a.) 

]. 
i=l 

st 
(-1) R(h,g). 

(a. -B .) • 
]. J 
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If h - h 1 mod g and h 1 has degree t 1, one derives from (4) that 

(6) 

Combining (5), (6) and the Euclidean algorithm for polynomials we obtain an 

efficient method for computing resultants. Since f'(A.) = TT.~. (A.-A.) we 
l. Jrl. l. J 

have 

which gives an efficient way for calculating the discriminant of a polyno

mial. In 3.2 we shall see that resultants also can be used for computing 

norms of elements. 

2.2. Let K be a number field of degree n over~- There are exactly n embed

dings cr 1 , ••• ,crn of K into~- If cr is an embedding of K into~, then so is a, 
hence we can label the cri's such that cr 1, ••• ,crr 1 are real and 

for i = l, ... ,r2 , where r 1 and r 2 satisfy r 1 + 2r2 n. Now K is embedded in 

lR.r1 x ~r2 by identifying x EK with 

(cr 1 (x) , .•• , cr + (x)) ; 
rl r2 

this identification makes O(K) into a lattice in 

If {a1, ••• ,an} is a basis of O(K) as a lattice, the discriminant ~(K) of K 

is defined by 

(7) 

Using ~ (f) 

(8) 

2 
MK) := (det(cr. (a.))) . 

l. J 

(det(A~- 1)) 2 (Vandermonde) one shows 
l. 

~ (f) 
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From (7) we see that ~(K) E O(K), and (8) gives ~(K) €~.hence ~(K) € ll. 

It would be nice if we could choose ). such that the index of ll[A] in 

O(K) equals I, but this is not possible for each K. For example, if K = ~().) 
3 2 where ). is a zero of X + 2X - 9X- 2, the prime 2 splits completely and 

index(O(K): ll[).]) = 2. If 2 would not divide this index for some other 

choice of :i. in the same field, the method of 3.2 would give 3 distinct zeros 

of some polynomial modulo 2, which is impossible. For the theory about 

primes dividing the index we refer to [HJ; by "the index" we mean 

index(O(K): ll[).J). 

The following theorem of DEDEKIND, see [DJ and [U], is very useful to 

determine the prime divisors of the index. Fora prime p decompose fmodp, 

i.e. choose g. € ll[X] monic and e. ~ I such that each g. is irreducible 
i i e. i 

mod p, the gi' s are different mod p and f = TTi g/ mod p. Then 

(9) 

p I index(O(K): ll[U) if and only if 

(g.modp) 
J 

-I e. 
(p (f - TTi gi i)mod p) 

as elements of lF p [XJ, for sane j with ej ~ ·::t.- If· (9) holds, then 

-I -I ei 
p (g.(;i.)) TT g.(;i.) 

J i i 

is an element of O(K) which is not contained in ll[:i.J, and pdeg(gj) divides 

the index of :i.. In many cases, this suffices to determine ~(K) using (8). 

In some cases it is difficult to determine to which power a prime divides 

the index. More information about K can be helpful in such cases. If p de

composes in K as 

e 
pO(K) =TT£. E., 

its contribution to ~(K) is 

if p doesn't divide any e. In particular, unramified primes, i.e. primes 
p 

such that all e = I, will not occur in ~(K). If_p is wildly ramified in 
p . 

K/~, i.e. p divTdes some e, one needs information about higher ramifica
E. 

tion groups to compute the contribution of pin ~(K), see [SE]. 
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2.3. We now discuss some attempts to make the index smaller or remove primes 

from it, i.e. to find n E O(K) such that K = Q(n), and 

index(O(K): 7l[nJ) < index(O(K): 7l[;\]) 

or index(O(K): 7l[n]) is divisible by a smaller power of some prime than 

index(O(K): 7l[;\]). 
n-k, If for some p we have p ¾fork 

. n(n-1)/2 the index decreases by a factor p 

0,1, .•• ,n-1, choose n = \/p and 
+ ko I k If a0 = -P for some 2 n < 0 $n 

and pko-klak fork< k0 , choose n 
(2ko--n) (n-1)/2 

p/\ and the index decreases by a factor 

p • 

Transformations like these can also be applied to minimum polynomials 

of A - a for a E 7l or of other simple expressions in· L In practice they 

often succeed for small primes, in particular 2, that divide the index to a 

high power. 

Another method is the following. Chooseµ E O(K)\7l[;\], for example 

µ 

in the notation of (9). Try to find an element n # 0 of the lattice 7l[\,µ] 

which is close to zero in the euclidean metric of JRr 1 x cr2• Then by (3) 

the minimum polynomial of n has a rather small discriminant. In practice 

this is a useful method, but we can never be sure that it works. In fact, 

the problem whether the index can be removed completely, i.e. O(K) = 7l[n] 

for some n E O(K), can be formulated as a rather difficult diophantine equa

tion. It can be shown, see [G], that for each K there exist at most finitely 

many n E O(K) such that O(K) = 7l[n], up to translation by 7l. These can all 

be determined effectively. 

If n is a polynomial expression in\, the minimum polynomial of n can 

be constructed in the following way. Write \in as a linear combination of 
I , 2 n-1 . h . 1 . . . 2 ,A,A , ••. ,\ wit rationa coefficients for i = I, , ... ,n-1. These ex-

pressions give rise to an nxn-matrix R satisfying 

where I denotes the nxn unit matrix and; the vector with coefficients 
2 n-1 

J,•\,\ , ••. ,\ • Let 
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g(X) det(XI - R); 

we see that g(n) = O. If~(\)= ~(n) then g is the minimum polynomial of n, 

else g is the [~(A): ~(n)J - th power of the minimum polynomial of n. We see 

that n E O(K) if and only if gE ~[X]; this gives a method to check if n E O(K). 

2.4. We shall construct a basis for O(K). Given A E O(K) there is a unique 

basis of the following form 

hn-1(\) 
----} 

an-I 

such that hi E ~[X], hi is monic of degree i, all coefficients at degree 

< i of h. are in the interval (-a./2a. 1, a./2a. 1] and a. is a positive 
l. l. 1.- l. 1.- . l. 

integer for i = 1,2, •.• ,n-1, while a0 =I.If the index of A is one, this 
n-1 basis is simply {l,\, ••• ,A }. It is trivial that 

and 

index(O(K): ~[\]) 
n-1 

TT a. 
l. i=I 

a.• a. I a .. 
l. J 1.+J 

for i+j ~ n-1. 

In particular a.la. 1 for i ~ n-2. Even if ~(K) is not known, there is only 
l. l.+ 

a finite number of possibilities for (a 1,a2 , ••. ,an-l) satisfying (8) and the 

relations above. Under these restrictions a 1 is the maximal possible value 

such that h 1(A)/a 1 E O(K) for some choice of h 1, this can be found by trying 

all possibilities for h 1. The same can be done for a2 , a3 and so on until 

the whole basis has been constructed. Then also 8(K) is given by (8). 

Although this method always works, it is not fast. For primes p such 

that 

p II index(O(K): ~0.J) 

we can avoid this method by using the theorem of Dedekind discussed in 2.2. 

A good algorithm which works in general is described in [ZI] in a more gen

eral context of orders in a commutative ~-algebra. 
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3. THE CLASS GROUP 

3. I. As we saw in 2.2, O(K) can be embedded in ]Rn ~ ]Rq x a:r2 as a lattice. 

One easily derives from (7) that its determinant is 2-r2.1f~(K)I. Each non

zero ideal a of O(K) is a sublattice of determinant 

where N(a) denotes index(O(K): _::), the no1'171 of a. Define the no1'171 N(x) of 

XE K by 

n 
N(x) := TT a i (x) ; 

i=I 

one has N(x) E «) for x E K and N (xO (K)) IN(x) I for x E O(K), x f O. Define 

for t E JR, t > 0: 

$ t}. 

The volume of Bt is 

The inequality of arithmetic and geometric means gives 

Minkowski's theorem from the geometry of numbers states that for each lattice 

L in ]Rn and for each convex 0-symmetric closed set S c ]Rn satisfying 

vol(S) 2 2n•det(L), there exists a non-zero element of Sn L. We apply this 
n theorem to L =_::and S = Bt' where tis chosen such that vol(Bt) = 2 •det(_::), 

Then one obtains from (10) that each ideal_:: of O(K) contains an element 

x f Osuch that 

(II) IN(x) I 

Now let g be an element of ct(K). Choose an integral ideal a such that [a]= 
-1 -1 - -

g , and an element Of x E _:: satisfying (11). Then x•a is an integral 

ideal ~f norm at most 
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r2 -n --
(4/TT) •n! •n • /fl\ (K) I, 

-I while [x•a ] = g. We have proved: 

THEOREM. Every ideal class of K contains an integral ideal b with the pro

perty 

( I 2) 

This theorem is very useful for computing class numbers: the class 

group is generated by the ideal classes of the prime ideals of norm not ex

ceeding the right hand side of (12). Since at most finitely many integral 

ideals satisfy (12), the class group is finite. 

The bound in (12) is not best possible. Define M(n,r2) to be the small

est value so that for each field K of degree n over~ with 2r2 non-real em

beddings int, each ideal class contains an integral ideal b of norm at most 

M(n,r2)~. A reformulation of (12) is 

The following values of M(n,r2) are known, see [CJ: 

n r2 M(n,r2) polynomial for which the bound is sharp 

2 0 5 
-1/2 x2 + X -

2 3 -1/2 x2 + X + 

3 0 7-1 x3 + x2 - 2X - I 

3 23-1/2 x3 - x2 + I 

The values of M(n,r2) are improvements of (12). For r 2 = 0, they are iso

lated bounds, i.e. if the field for which the bound is sharp is excluded, 

the bounds can be improved again. It would be desirable to extend the table 

to higher values of n, since for n = 2 or 3 better techniques for computing 

class numbers are available. Though for n ~ 4 exact values of M(n,r2) are 

not known, ZIMMERT gave in [Z2] sharper upperbounds than the Minkowski bounds 

given by (12), as we see in the next table. 
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upperbound for M(n,r2) given by 

n r2 

4 0 

4 

4 2 

5 0 

5 

5 2 

6 0 

6 3 

100 0 

100 50 

Minkowski 

.9375 

.1194 

. 1520 

.03840 

.04890 

.06226 

.01544 

.03186 

9.333*10-43 

1.643*1o-37 

Zimmert 

.06921 

.1026 

• 1473 

.01992 

.03114 

.04737 

.005317 

.02140 

1. 184*10-73 

4. 138*10-56 

For larger n the difference between Minkowski's and Zimmert's results in

crea.ses. In fact from Minkowski' s result it follows that for n large enough 

while Zimmert improved this to 

r 
M(n,r2) s (.14l)n(2.55) 2 

So far we only considered upper bounds for the smallest ideal in a 

class which are valid for aU classes in ct(K). But for our purpose it suf

fices that the bound is valid for a set of generators of ct(K), which is a 

far weaker condition. If a certain generalized Riemann hypothesis is true, 

then the classes of. integral ideals of norm less than A•(logl~(K) 1) 2 gener

ate the whole class group, see [L.M.0.J. Here A is some absolute constant, 

for which no explicit value has been published. 

3.2. Let B denote the right hand side of (12) or an improved version of it. 

We now construct all prime ideals with norm less than B. 

If p is a prime not dividing the index, the prime decomposition of 

pO(K) is the same as the decomposition of f mod p in F [X] into irreducible 
p 

polynomials. More precisely, if 

f (X) 
e. 

- TT g . (X) 1. mod p , 
• l. 
l. 



with g. monic and irreducible mod p, and g. t g. mod p for i 'f j, then 
1 1 J 

pO(K) 
e. 

TT p.1 
. -1 
1 

for different prime ideals £.i (p,gi 0,)) and 
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In particular, for primes p not dividing the index, the prime ideals of norm 

p are precisely the ideals of the form (p,;>..-k), where k is a zero of £mod p, 

i.e. f(k) = Omodp. For factorizing fmodp we remark that for odd primes p 

not dividing !:. (f) the number of irreducible factors of f mod p has the same 

parity as n if and only if !:.(f) is a quadratic residue mod p, see [SW]. For 

n :,; 5 this determines the decomposition type of f mod p completely if the 

number of zeros of f mod p is known. For further information we refer to 

[LE]. 

where 

If pis a prime dividing the index we have to factorize fin 7lp[X], 

7l p 
:= lim (7l/pm7l). 

+m 

This means that we have to consider f modulo a power of p instead of modulo 

p itself. It can be shown that, for pkllt:.(f), the decomposition type of f in 

7l [XJ is the same as that of f mod pk+!. Finding zeros of f in 7l can be 
p t p 

done by Newton's method, see [WJ: let a0 E 7l, psllf(a0), p lif'(a0). Assume 

s > 2t, then the sequence (a.): 0 defined by 
1 1= 

converges to a root a E 7l off satisfying 
p 

a _ a0 mod p s-2t 

The conditions> 2t can always be satisfied by choosing a0 to be a zero 

off modulo a sufficiently high power of p. 

If f = TT~-] g. is the decomposition off into irreducible poly~omials 
1- 1 e· 

in 7l CXJ, then pO(K) decomposes as TT~ 1 p. 1 , where e.f. = deg(g.) for i = 
p 1= -1 1 1 1 

1, ••• ,u. Here f, denotes the residue class degree of p., defined by 
1 -1 
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f. 
N(p.) = p 1. 

-1. 

If pis unramified we have e. = 1 and f. = deg(g.) for i = 1, ••• ,u. If pis 
1. 1. 1. 

ramified or the ramification behaviour of pis not known, one has to study 

the ramification behaviour of the corresponding extensions of~ in order to p 
determine thee. and f .• 

1. 1. (I/') i 
If for all primes p ~ B 1. the prime ideals of norm p have been 

found for i = 1,2, ••• , as described above, we know all prime ideals of norm 

less than B. The ideal classes of these primes generate the class group. We 

now have to find relations among these generators. These are obtained by 

factorizing principal ideals; if µO(K) "'~a(E) for µ E K, one has the rela

tion TT[E]a(_v = 1 in the class group. 

For factorization of the principal ideal µO(K), µ E O(K), first remark 

that if µO(K) = ~a(E) then IN(µ) I = TT(N(E))a(E). Let µ = h()-), with h E ~[XJ; 

then N(µ) = R(f,h) by (3), so N(µ) can be computed by the method of 2.1. In 

particular, we have 

for a,b E 7l, b 'f O. If h E 7l[X] and plN(µ) for a prime p not dividing the 

index, then a prime ideal (p,g('-)) divides µO(K) if and only if 

(gmodp)l(hmodp). In particular, a prime (p,)--a) divides µO(K) if and only 

if h(a) = Omod p. If several primes p above p divide µO(K), the exact power 

of E dividing µO(K) can usually be d:termined by remarking that Ek cannot 

divide µO(K) if N(J:)k doesn't divide N(µ+n) for some n E Ek· 

To generate many relations, one applies the above technique toµ= p 

for small primes p, and toµ= h('-) for several h E 7l [X] with small degree 

and small coefficients. In particular u a - b)- may be used for small inte-

gers a and b. Also \J = a - b)- where a/b is close to a real zero of f may be 

a good choice; such a and b can be found with a continued fraction algorithm. 

If many relations have been generated, select a small set of prime ideals 

among which many relations have been found. In the cases that can be treat

ed by hand with the help of a pocket calculator, usually no more than ten 

prime ideals and a few more relations are sufficient. Define G to be the 

free abelian group generated by these prime ideals, divided by the subgroup 

generated by the relations. This group is easily determined explicitly. 

There is a natural group homomorphism$: G + cl(K). If G is finite, we may 

hope to prove that$ is an isomorphism. 
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To prove that$ is surjective we have to express all prime ideals of 

norm less than Bin the generators of G, modulo principal ideals. If we do 

not yet have an expression for (p,g(A)) among the relations already found, 

we can look for one by decomposing elements of (p,g(A)) = pO(K) + g(A)O(K) 

of small norm. Theoretically a suitable expression can always be found if$ 

is surjective. However, if a suitable expression is hard to find it is bet

ter, in practice, to go on with other prime ideals. In this way the set of 

"expressed" prime ideals increases, and this makes it easier to deal with 

the difficult prime ideal. If such expressions have been found for all prime 

ideals of norm less than B then$ is surjective. If we do not succeed we 

have to change G by adding a generator. 

3.3. To prove that$ is injective we do the following. If$ is not injective 

then there exists a prime p and x E ker$ such that the order of xis p. For 

a fixed p define 

H := {x E G J xp e}; 

if 1H1 = pt choose generators g1, ••• ,gt for Hand integral ideals ,::1, ••• ,,!:t 

such that 

i I , ••• , t. 

To prove that$ is injective we have to show that no (l 1, ••• ,lt) exists, 

l. E 7l and not all l. are divisible by p, such that 
i i 

t l. 
TT a. 1 

i=I -i 

is a principal ideal, and this for all p dividing !GI. Define b. to be a 
i 

generator of the principal ideal a~, i 
-i 

t li 
TT a. 

i=l -i 
aO(K), 

not all l. divisible by p. Then 
i 

l, ... ,t. Assume 
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TTt ,e_i. • • • h h f 1 f K B hence i=I bi is a unit times t e p-t power o an e ement o • y 

Dirichlet's unit theorem there exists a set {u1, ••• ,ur 1+rz-1} of units, which 

is called a fundamental set of units, such that each unit u of O(K) can uni

quely be written as 

r 1+r2-J 
u=r;• TT 

i=I 

c. 
i u. 

i 

for ci E 2Z and I'; is a root of unity contained in K. The set of roots of 

unity in K is easy to determine; most times it is {±1}. Constructing a funda

mental set of units will be discussed in 4; constructing a generating set 

of units modulo p-th powers is far easier, and is done as follows, Observe 

that by Dirichlet's theorem, O(K)*/O(K)*P is ans-dimensional vector space 

over JFP, where s = r 1 + r 2 if K contains a primitive p-th root of unity and 

s = r 1 + r 2 - I if not. If, in the procedure of 3.2, the same relation among 

prime_ ideals is found twice, then we have found two generators of the same 

principal ideal. Its quotient is then a unit. In this way we can generate 

as many units as we wish. Continue doing this until s units u1, ••• ,u5 have 

been found whose images in 0(K)*/0(K)*P are linearly independent over Fp; 

this is checked by the method described below, with t = O. Then u 1, ••• ,u5 

generate O(K)* modulo p-th powers. 

To prove the injectivity of$, we now have to derive a contradiction 

from the hypothesis that there exist integers k 1, .•• ,k5 , .e. 1, •.• ,lt, not all 

divisible by p, such that 

(13) 
s k. t L 
TT u.J • TT b.i 

j =I J i=J i 
is a p-th power. 

We may regard k 1, •.• ,k5 , .e. 1, ••. ,l as elements of F , Let q be a prime 
t p -

ideal not containing any of the bi' for which N~) = I mod p. Then (13) taken 

modulo .s_, gives rise to a linear relation among the k. and l. over F , since 
J i p 

p divides the order of (O(K)/3.)*. Similar relations can be found by reducing 

(13) modulo a power of prime ideal above p. Further, if p = 2, such rela

tions can also be found by looking at signs in (13) at real embeddings of K. 

Continue finding linear relations among the k. and L until s + t of them are 
J i 

independent, then all k. and l. are zero, which is the required contradic-
J i 

tion. 

If we do not succeed in finding s + t independent relations then probab

ly$ is not injective and we have to find another relation among prime 

ideals and define G anew. It can be proved, that if$ is injective, then s+t 
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independent relations can always be found using prime ideals s_ as above. 

3.4. We give a simple example of computing a class group using the technique 

described in 3.2 and 3.3. Let K be given as K = ~(X) where Xis a zero of 

f(X) = x3 +2x2-sx+ I. One has fl(£)= 1957 = 19,103; since fl(£) is square 

free it follows from (8) that fl(£)= fl(K). Since f has 3 real zeros we have 

r 1 = 3, r 2 = 0 and by (12) we may choose B = (2/9) ✓ 1fl(K)I < 10, Modulo 2 the 

Modulo 2 the polynomial f decomposes as (X+ I) (X2 + X + I) , modulo 3 and modulo 

7 it is irreducible because none of the values £(0), £(±1), £(±2), "£(±3) are 

divisible by 3 or by 7. Modulo 5 the decomposition off is (X+l)(X2+X+l). 

Hence there are only 3 prime ideals of norm less than ten: (2,X+I), 

(2,X2+HI) and (5,HI). Writing the ideal group additively we get the follow

ing relations among these three generators of the class group (each row is 

a relation): 

principal ideal (2,Hl) (2,X 2+Hl) (5, X+l) 

(2) 0 

(X+I) 1 0 

(X-1) 2 0 0 

From this table we see that the ideal (2,X+I) is a generator of cl(K) and 

that its order in cl(K) is at most 2; hence cl(K) e1 'll/2'll or cl(K) = {1}. 

Assume cl(K) = {I}. Then (2,X+l) = S0(K) for some BE 0(K) and since (X-1) = 

(2,X+l) 2 some unit u will exist such that u(X-1) = s2• Since r 1 = 3, and ±I 

are the only roots of unity in K, the set of units is as a group isomorphic 

to ('ll/2'll) e 'll 2 , hence O(K)*/0(K)*2 has dimension 3 over F 2• We immediate

ly discover the units -1, A and X + 4, and we wonder if they generate all 

units modulo squares, In the next table we write O if an element is a square 

modulo a prime, or positive, and 1 if it is not. For example, A+ 4 is not a 

square mod(5,X-4), because 3 = A+ 4 mod~.5,X-4) and 3 is not a square modulo 

5. 

(5,X-4) (11 ,X-3) X = -4,0410 X=0,1295 X=l.9115 

-1 0 

X+4 1 0 0 

X 0 0 0 0 

X-1 0 



228 

Since the first three rows are. linearly independent over lF 2 our three uni ts 

generate all units modulo squares. Since all rows are independent over F 2 
there is no unit u such that u(\-1) is a square, hence cl(K) / {1}, hence 

cl(K) _ 'lZ/2'lZ. 

3.5. In this section we spend a few words on other techniques helpful for 

the determination of the class number of a number field. ODLYZKO [OD] found 

a set of universal constants A, Band E such that for each number field K: 

(14) 

From class field theory we know that each number field K has a maximal abe

lian totally unramified extension H(K), the Hilbert class field of Kand 

that the Galois group of H(K)/K is isomorphic to cl(K). Applying (14) to 

H(K) gives 

-1 
h(K) < E(r 1 logA+2r2 logB-logli(K)) 

if the right hand side of (15) is positive; i.e. if Li(K) is not too large, 

then we have an upperbound for h(K). 

If we can construct an abelian extension M/K which is totally unrami

fied, the field M has to be contained in H(K) and the Galois group of M/K 

has to be a factor group of cl(K) and we have a divisor of h(K). 

Until now all methods can be used for each number field K, which in 

general will not be Galois over~ or over another non-trivial subfield. If 

K/K' is Galois for some non-trivial subfield K' of K, then its Galois group 

has a natural action on cl(K), from which a lot of restrictions on cl(K) can 

be obtained. Together with (15) and some more class field theory this leads 

to techniques of determination of class groups of abelian extensions of~. 

see [MAJ. Finally, we mention the analytic class number formula (17), see 

4.4, which relates the class number and the number of units to the value of 

some analytic function. 

4. UNITS 

4.1. In 3.3 we described a procedure to find a generating set of units of 

K modulo p-th powers for a given prime number p. Now we want to find a gen

erating set of all units. As an element of O(K) each unit u corresponds to 
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an element (u 1, ... ,ur 1 ,ur 1+1, ••• ,ur1+r2) of Rri x cr2. Taking the logarithm 

we let the unit u correspond to 

Since u has norm ±1, the sum of all these coordinates is zero and we may 

omit one coordinate, say the last one, without loss of information. We will 

identify this element of lRr1+r2-l with the unit u modulo roots of unity. 

According to Dirichlet's unit theorem the set of all units modulo roots of 

unity is a lattice in lRr1+r2-l. The regulator of K is defined to be the 

determinant of this lattice; a basis of this lattice is called a fundamental 

set of units. As mentioned in 3,3 one can find as many units as one wants; 
1 . . ri+r2-l now find a set of units large enough to generate a attice Lin lR 

If Lis not the whole lattice of units modulo roots of unity, another unit 

has to be contained in some bounded set Sin lRr1+r2- 1• Such a bounded set 

can be pulled back to a bounded set S in ]Rrl x <!:r2• Since O (K) is a lattice 

in ]Rrl x <!:r2 only a finite number of elements of O(K) is contained in S. 
The units among this finite number of elements generate together with the 

units already found, the whole set of units. 

4.2. Next a few words on the choice of S for which the technique of 4.1 

works. Assume we know from the technique of 3.3 that, for some q, the lat

tice L contains all units modulo p-th powers for all primes p < q. Then the 

index of Lin the lattice of all units is only divisible by primes larger 

than or equal to q. Choose a basis (iti Ii= 1, •.• ,r 1+r2-t} of L; for compu

tations it will be pleasant if II it. II is not too large. If L is not equal to 
i 

the lattice of units, then 

r 1+r2-1 

S := { I µ.it.Iµ, E lR, jµ 1! $ 1/q; jµil $ J/2, i=2, .•. ,r 1+r2-1} 
i=I i i i 

contains a unit not contained in L. Another choice of S with the same pro

perty is 

r 1+r2-1 

s := { I µiiti I jµil $ bi} 
i=I 

with bi > O, 

r1+r2-I 
TT 

i=l 
b. 

i 

-I 
q 



230 

Although the volume of the latter set is larger, it has the advantage that 

for large q for a good choice of b. all coordinates become small instead of 
l. 

just one. If u is a unit in Snot contained in L, then so 
-I 

is u , and of one 

of them the sum of the coordinates is positive. Hence for S we may choose: 

(loglu 1J, ••• ,logJu I, 2loglu +ll, ••• ,2loglu + _11) ES}. 
rl rl rl r2 

4.3. As an example we compute all units of the same field as in 3.4, K = 
IQP.) where :\ is a zero of f(X) = x3 + 2X2 - 8X+ I. In 3.4 we saw that -1, :\ 

and :\+4 generate all units modulo squares and now we examine if in fact they 

generate all units. Two numerical values of A are -4.0410 and 0.1295; thus 

:\+4 corresponds to (-3.1950, 1.4181) and A to (1.3965, -2.0444). We choose 
+ • d + a 1 = .(1.3965, -2.0444) corresponding to A an a2 = (1.7985, 0.6263) corres-

ponding to (:\+4)-l:\-1; now S = {\l 1! 1 +lJ2ii:2 I ill 1 I ~ {, ill2 I ~½}.We get 

S { (x,y,z) E JR.3 I I0,6263 loglxl - I. 7985 loglyJ I ~ 1.5172, 

l2.0444 loglxl + 1.3965 logJyl I ~ 2.2757, 

I z I ~ I}. 

Notice that ScB := {(x,y,z) E JR.3 I Ix]~ 3.9147, lyJ ~ 2.7037, Jzl ~!}.A 

basis of 0(K) is {1,:\,:\2}, or written in coordinates 

{(1,1,1), (-4.0410,0.1295,1.9115), (16.3294,0.0)68,3.6538)}. 

The intersection of Band 0(K) is {0,±1}; this doesn't give new units, hence 

-1, A and A+4 generate all units of K. 

4.4. The procedure of 4.1 and 4.2 is not the only way to compute the units 

of K. For example, there exist universal lower bounds for the regulator, 

see [Z2]. Let the determinant of a lattice L of units be less thank times 

such a lower bound. Assume we know from the technique of 3.3 that for all 

primes p < k the lattice L contains all units modulo p-th powers. Then L 

contains all units. By this approach choosing a bounded set Sand determin

ing all integral elements in Sare avoided. We conclude by suggesting an 



alternative method for computing the units of K. 

By geometrical arguments one shows that the number At of integral 

ideals in K of norm less than t satisfies 

(I 6) 

where 

t + 00 , 
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in which R = R(K) is the regulator, h(K) the class number and w(K) the num

ber of roots of unity in K. Define for s > I: 

00 

,;K (s) : = l (N~) -s = l (An+ I - An)n -s • 
O#~cO(K) n=I 

One derives from (16): lims+I (s-1),;K(s) = pK' hence 

By decomposing the ideals in the definition of ,;K into prime ideals we ob

tain the Euler product 

TT (I- (N{£_))-s)-I. 
pcO(K)prime 

Hence: 

PK= lim ,;K(s)/,;~(s) = lim n 
s+I s+I p prime 

-s -s -I ((1-p ) TT (I - (N(p)) ) ) 
.E.I P -

It can be shown thats 

i.e. 

simply may be substituted in the right hand side, 

(I 8) 

where 

p = n a K . p' p prime 

TT (I -N(.E_))-l)- 1 • 

.E.I P 
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The values of a follow immediitely from the decomposition types of pO(K) 
p 

which were discussed in 3.2. As in 4.2, let L denote the lattice of units 

containing all units modulo p-th powers for primes p < q. Denote R' to be 

the determinant of L, then we know that R' /RE 7l, and if R ,/, R' then 

R'/R ~ q. Assume we know h(K), then 

equals IT . a or is at least q times larger. The problem now is how p pn.me p 
fast IT . ap converges; it doesn't converge absolutely. We would like p prime 
to have 

(19) I l 
p>x 

log a I < F(x) 
p 

for some explicit function F satisfying 

Galois group of the norinal closure of K 

lim F(x) = O. Denote G to be the 
x~ 

over~; then G is a transitive sub-

group of Sn and is discussed in [LI]. There is a theorem that 
t 

for each (bl' ••• ,bt), t,b 1, ... ,bt E 7l, > 0, Ei=I bi= n: 

states that 

l{p prime<xlfmodp=IT1~=l f. ,f. irreduciblemodp, degf. =b.}I 
lim 1.,p 1.,p 1.,p 1 

I { p prime < x} I 

l{gEG I g splits into t disjoint cycles of order b 1, ••• ,bt}I 

IGI 

With a slightly weaker notion of density this theorem was already proved by 

FROBENIUS, see [F]. A stronger version of Frobenius' theorem, known as 

Chebotarev's density theorem, states an analogous result on conjugacy class

es of Frobenius symbols instead of cycle types, see [LA]. Assuming certain 

generalized Riemann hypotheses one can prove an effective version of 

Chebotarev's theorem, for results see [OE]. From this effective theorem an 

explicit function F satisfying (19) can be derived, of order x-l/ 2 logx. 

Having such a function F, for proving R = R' it is sufficient to compute 

values of a until 
p 

log PK - l log a + F(x) < logq. 
p<x p 
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It's likely that much sharper results can be obtained than those deduced 

from [OE]. Although this might possibly lead to an efficient way to deter

mine the regulator, no results have been published yet. The convergence of 

TT a is illustrated by the next table for the field given by 
p<x P 3 2 

f(X) = X + 2X - 8X + I, where pi denotes the i-th prime number: 

X TT ~ X TT ap 
p<x p<x 

P5 11 0.8267 P25 97 0.8268 

P10 29 0,9557 P30 113 0.8507 

P15 47 0.9021 P35 149 0.8403 

P20 71 0.8582 P40 173 0.8241 

The value of pK is 0.8231. 
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QUADRATIC FIELDS AND FACTORIZATION 

by 

R.J. SCHOOF 

I • INTRODUCTION 

Let K be an algebraic number field and O = O(K) its ring of integers. 

We recall a few basic definitions and facts concerning algebraic number 

fields. 

235 

By I(K) we denote the group of fractional 0-ideals and by P(K) its sub

group of principal fractional 0-ideals, which is a subgroup of I(K). The 

class group ct'.(K) of K is defined by 

cl (K) I (K) /P (K). 

The class group is a finite abelian group and its order is denoted by h(K), 

the class number of K. By Ox we denote the multiplicative group of units of 

0. The structure of Ox as an abelian group, is given by Dirichlet's Unit 

Theorem: 

THEOREM I. I. Let K be an algebraic nwriber field and O its ring of integers, 

then 

Here µ(0) denotes the finite group of roots of unity in K, 

r 1 = number of embeddings K 4- JR, 

r 2 = half the number of embeddings K 4- ~ with im(K) ¢ JR. 

It holds that r 1 + 2r2 = n = [K:~J, the (absolute) degree of K. For these 

and more definitions and facts from algebraic number theory see for instance 

[ J 7]. 



236 

In general, it is hard to-determine the class group of a number field, 

which, for instance, is given by a generator; for this general problem see 

ZANTEMA's talk [13]. Here we shall concentrate on fields with small degrees; 

in this case, the rings of integers do not contain too many units and the 

computation of the class group is relatively easy. It appears to be possible 

to determine the class group of fields with small degrees, which have very 

large discriminants. 

First we consider complex quadratic number fields. A field K is called 

complex quadratic if [K:~] = 2 and if r 1 = 0, r 2 = I; it follows from 

Dirichlet's Unit Theorem that O(K) contains only finitely many units. 

The study of the class groups of these fields is a very old one; it was 

initiated by Gauss, in the beginning of the 19th century [12]. Gauss studied 

the problem in the language of "binary quadratic forms" and he made extensive 

lists of class groups of complex quadratic fields. In Section 2 we shall dis

cuss the complex quadratic fields in more detail; it appears that for our 

purposes, it is useful to formulate matters in the old-fashioned terms of 

binary quadratic forms again. An algorithm, due to D. SHANKS [31], to com

pute class groups of complex quadratic fields will be treated in Section 3. 

Next we consider real quadratic number fields i.e. fields of degree 2 

with r 1 = 2 and r 2 = O. For a real quadratic field K, Dirichlet's Unit Theo

rem boils down to 

0 (K) X - '11./2'lZ 81 '11.. 

The determination of the class group of a real quadratic field cannot go, 

it seems, without the determination of the group of units; the latter is 

equivalent to finding a unit£ in Ox such that Ox is generated by£ and -1, 

which in turn is easily seen to be equivalent to solving a so-called Pellian 

equation, a problem which dates back to Fermat. The study of class groups of 

real quadratic fields was also begun by Gauss, who studied the subject in 

terms of binary quadratic forms. 

In Section 4 we will discuss the structure of the class groups and unit 

groups of real quadratic fields in more detail, here some new ideas of 

LENSTRA and SHANKS come in [18,31], which give rise to a new, fast algorithm 

to determine the class group and, in some sense, the size of the group of 

units of a real quadratic field. We will describe this algorithm in Section 

5: it is closely related to Shanks', discussed in Section 3, but slightly 

more complicated. 
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Complex cubic fields are fields of degree 3 over~ with r 1 = I and 

r 2 = I. Complex cubic fields are not Galois extensions of~; the structure 

of their groups of units is the same as for real quadratic fields: if K is 

a complex cubic fields we have that 

O (K) x :::: 'll/2'!1. e 'll. 

We do not discuss this class of fields; an algorithm to compute the class 

groups and the groups of units of these fields is being developed by WILLIAMS 

and SCHMID [40]; their algorithm is along the same lines as the algorithm 

for real quadratic fields discussed in Section 5. 

In Section 6 we point out how the algorithms, discussed in Sections 3 

and 5 may be used to factor the discriminant of the number fields under con

sideration. We will in fact, describe two deterministic factorization algo

rithms which, on assumption of certain generalized Riemannhypotheses, factor 
. N • • b. d db Nl/5+e: f 11 0 d 0 

" f an integer in time, oun e y or a e: > • For a iscussion o 

related algorithms see [13,23]. 

The algorithms discussed are suitable to compute the class groups and 

units of quadratic fields that have very large discriminants. In fact, det

ermining the class group and units of quadratic fields with discriminants 

of fewer than, say, 6 decimal digits, may be done faster by simpler and more 

direct methods. Therefore, in application of these algorithms, one should 

think of discriminants of 10 to 30 decimal digits. 

Using these algorithms, one can practice a kind of experimental mathe

matics; it seems to be generally believed, that every finite abelian group 

occurs as a subgroup of the class group of some, say, complex quadraticfield 

but theoretical results on this question are very scarce indeed, By means of 

these algorithms, however, one is able to compute class groups of quadratic 

fields with very large discriminants, and, guided by heuristic, one can 

search for explicit examples of quadratic fields that have unusual subgroups 

of their class groups. Only recently, some progress in this direction has 

been made. Some old and new results will be discussed in Section 7. 

Finally, in Section 8, we will give a few details on the actual imple

mentation of the algorithms on the SARA CDC-Cyber 170-750 computer. 
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2. CLASS GROUPS OF COMPLEX QUADRATIC NUMBER FIELDS 

It is well known that the discriminants of complex quadratic number 

fields are negative integers, congruent to O or I (mod 4). Furthermore, com

plex quadratic fields are characterized by their discriminants, but it is 

not true that every negative integer= 0 or I (mod 4) is the discriminant of 

some complex quadratic number field. 

However, every 6 E ~ 0 , 6 = 0 or I (mod 4), can in one and only one 
2 < 

way be written as 6 f D, where Dis the discriminant of a complex quadratic 

number field K, and f E ~~ 1. Now, 6 = 6(0) is the discriminant of the uni

que subring 0 of index fin O(K): the unique quadratic order of discriminant 

l'i. 

So for every /'i E ~<O' /'i = 0 or I (mod 4), there exists a unique complex 

quadratic order 0 = O(t-.), with discriminant l'i, contained in the ring of inte

gers of some complex quadratic number field. Rings of integers themselves 

are also called m=imal orders. It is also possible to define the notion of 

class group for non-maximal orders: 

Let O be a complex quadratic order, contained in a complex quadratic 

field K. By definition, a fractional 0-ideal Mis a non-zero finitely gener

ated 0-submodule of K, and Mis called invertible if there is a fractional 

0-ideal N c K such that MN 0. By I(O) we denote the group of invertible 

fractional 0-ideals and by P(O) the group of principal fractional ideals, a 

subgroup of I(O). The class group of O is denoted by ct(O) and defined by 

ct(O) = I(0)/P(0). The group ct(O) is finite abelian and its order will be 

denoted by h(O), the class number of 0. 

REMARK. If 0 is a maximal complex quadratic order, i.e. the ring of integers 

of some complex quadratic field, then 0 is a Dedekind ring and all fraction

al 0-ideals are invertible. 

EXERCISE. Let O be a complex quadratic order, and Ma fractional 0-ideal; 

then Mis invertible iff {a EK I aM c M} = 0. 

The ring {a E K I aM c M} is called "the ring of coefficients of M", cf. 

[ I J. 

For definitions, notations, terminology and facts on complex quadratic 

orders see[!]. Next we will discuss the correspondence between ideal-class

es of O and primitive positive definite binary quadratic forms of discrimin

ant t-.(0). 
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DEFINITION 2.1. A polynomial f ,,;. aX2 + bXY + cY2 E 7l [X,Y] with b2 - 4ac = I::. 

is called a binary quadX'atic fo'I'ITI of discriminant I::.. A binary quadratic form 
2 2 f = ax + bXY + cY is called positive d.efinite if I::. < 0 and a > O, and is 

called pX'imitive if gcd(a,b,c) = I. 

We will often denote a form ax2 + bXY + cY2 by (a,b,c), or even (a,b) 

since c is determined by b 2 - 4ac = I::.. 

DEFINITION 2.2. Let f = aX2 + bXY + cY2 and g = a•x2 + b'XY + c'Y2 be posi

tive definite binary quadratic forms. We shall call f and g equivalent if 

there is a cr = (0 Y) E SL2 (7l) such that 
8 o 

where U =ax+ yY and V =BX+ oY. 

Since SL2 (?l) is a group, "equivalence" is indeed an equivalence rela-

tion. 

THEOREM 2. 3. Let O be a complex quadX'atic o'l'd.e'l' uJith disc'l'iminant I::.. The'l'e 

is a 1-1 CO'l''l'espond.ence betuJeen classes of inVe'l'tible fmctional 0-id.eals 

and equivalence classes of p'l'imitive positive d.efinite bina'l'y quad'l'atic 

foms of disc'l'iminant ti. 

PROOF. Let M be a primitive invertible fractional O-ideal i.e. a non-zero 

O-submodule of K with its ring of coefficients equal to 0, we shall attach 

a primitive positive definite form f to M. 

The fractional ideal M is a free ?l-module of rank 2 in K, i.e. a two

dimensional lattice in K4- t. We can attach a quadratic form to Min the 

following way: 

Let fo,B} be an oriented ?l-basis for M (i.e. Im(B/a) > O) and take 

f _ N(a.X+BY) 
- N(M) 

(Here N denotes the nom; for definitions and properties of the norm see 

[l].) 

The choice of the basis {a,8} does not affect the SL2 (7l) class off; 

it can be proved that f is of discriminant ti, and that f is primitive if M 

is invertible. However, for future purposes, we prefer to give another 
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construction of the form f. 

Let M denote a fractional 0-ideal; the ideal class, represented by M 

contains the ideals SM, with SE Kx, so we can find an 0-submodule of K, 

equivalent to M and of the form 'll + 'lla, a E K; This module will be denoted 

by M again. 

We can always choose a in the upper half plane and under this condition 

a is unique up to s12 ('ll) -action. 

Next, let's exploit the fact that Mis an 0--module: assume 6 is even, 

then {I,½ /E.} is a 'll -basis for O and ½ IE. •M c M: 

I ✓- M 
I /E. =-½ b (-_!__ b a 'll) 2 6 E ➔ 2 + a•a 

2 ' 
E 

b+/E. 
➔ a 2il 

with a> 0 since a is in the upper half plane; 

_!__ IE.•a E M ➔ _!__ IE.•a 
2 2 

c + a•d (c,d E 'll) 

which, combined with the fact, that 

gives us that 

c. E 'll. 

We conclude that M 'll + 'll b+/E./2a with a > 0 and c E 'll such that 

b2 -4ac = 6. If 6 is odd, {J,½(l+/E.)} is a 'll-basis for 0, and a completely 

analogous proof gives exactly the same result. 

To the ideal class represented by M we associate the positive definite 
d . f 2 2 . . . . qua ratic orm f = aX + bXY + cY. It remains to check that this association 

respects equivalence and that f is primitive if Mis invertible; this is 

straightforward and left to the reader, see [ I J. Next let f ax2 + bXY + cY 2 

be a primitive binary quadratic form of discriminant 6 with a> O. To f we 

associate the ideal class represented by M = 'll + b+IE./2a 'll; since f is pri

mitive, Mis invertible and the association is correctly defined with re

spect to equivalence. This completes the proof of Theorem 2.3. D 
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Let O be a complex quadratic order with discriminant 6, and let k be an 

0 - ideal class; then k consists of fractional ideals (7l + b+/i,/2a 7l) • S, 

SE Kx, and to k is associated the quadratic form ax2 + bXY + cY2. The inte

gers a and bare unique up to SL2 (7l)-action on 7l +b+/i,/2a 7l, so it is al

ways possible to choose a and b such, that the number b+l~/2a is in the stan

dard fundamental domain of s12 (7l), acting on the upper half plane. This 

choice gives the following conditions on a, band c: 

i.e. 

1 bl 5. a 5. c. 

DEFINITION. A binary quadratic form f 

if 1 b I 5. a 5. c. 

ax2 + bXY + cY2 is called reduced 

It is obvious that Theorem 2.3 can also be stated in the following form: 

THEOREM 2.3'. Let O be a complex quadratic order of discriminant 6, The 

classes of invertible fractional 0-ideals are in 1-1 correspondence with the 

reduced primitive definite binary quadratic form of discriminant 6, 

CONVENTION! We will always identify reduced forms (a, b ,c) and (a,-b, c), when-

ever lb] = a or a c. These forms correspond to ideal classes represented 

by 7l + il'.•a, with a on the boundary of the fundamental domain. 
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It is easily seen, that the conditions b2 - 4ac = 6 and lb!~ a~ c im

ply that a~ /f6l/3 and this shows that the class group of O is finite. By 

means of the dictionary between ideal classes and quadratic forms, the prob

lem of counting the ideal-classes of a given quadratic order is reduced to a 

finite problem. 

Next, we transport the natural group structure of the group of ideal 

classes to the finite set of reduced binary quadratic forms. 

If f = ax2 + bXY + cY2 = (a,b,c) is a primitive positive definite form 

of discriminant 6, then the ideal class associated to f consists of ideals 

M = (7l + b+IE/2a 7l) • a., a. E Kx; the number a. is a so-called primitive point 

of M, i.e. for all n ;:: 2 in 7l we have a./n ;_ M. 

Let (a1,b 1,c1) and (a2 ,b2 ,c2) be two primitive positive definite qua

dratic forms of discriminant 6. Let Mand N be two fractional ideals in the 

ideal classes associated to them: 

Put 

bl+/E 
M = (7l + -2-· - 7l)a. 

al 

MN 

and N 

where we choose y such that a.8 E y7l, say a.f3 dy; 

taking norms on both sides gives (cf. [!]): 

So we find 

(I) 

Multiplying out gives 

b3+/E 
(7l + -2-- 7l)y 

a3 



whence, looking at 11 /i, coefficients": 

So 

(2) 

and we can easily compute v 1 ,v2,w E 7l such that 

Finally· it is easily seen that b3 can be taken to be 

(3) 

Formulas (1), (2) and (3) give a form (a3,b3,c3) that corresponds to the 

ideal class that contains MN. 
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By Theorem 2.3', these formulas enable us to perform computations in 

the class group of a complex quadratic order, on condition, that we have a 

way to compute the unique reduced form equivalent to a given form. Fortun

ately there is a very simple and fast algorithm to do this: 

REDUCTION AIGORITHM. Let f = (a,b,c) be a primitive positive definite qua

dratic form of discriminant 6. 

(i) reduce b (mod 2a) such that lb I :, a3 and adjust c; 

if f is not reduced then 

(ii) f +- (c,-b,a) and start all over. 

It is left to the reader to verify that this algorithm terminates and 

is correct, Perhaps, it is worth noting that (a,b,c) +- (c,-b,a) corresponds 

t~ action of S = (_~01) E SL2 (7l) and reducing b (mod 2a) correspond to ac-
k . 11 tion of T where T = (01 ) E s12 (7l) and k is some suitable integer. The group 

SL2 (7l) is generated by Sand T. 



244 

EXERCISE. In order to reduce a form (a,b,c) no more than 

O(max(l,log(lal//j";IT)) applications of (i) and (ii) are needed. 

Now we can calculate in the class group by means of computations with 

reduced quadratic forms. For completeness we give: the inverse of a reduced 

form (a,b,c) equals (a,-b,c) and the unit element of the class group corres-
1-t,. t,. 

ponds to the form (I, 1,-4-) or (1,0, - 4) depending on whether t,. is odd or 

even. 

In the next section we will give Shanks' algorithm to compute class 

groups of quadratic orders, One of the basic ingredients of the algorithm 

is the ability to do calculations in the class group itself in an efficient 

way. The formulas given above are sufficiently efficient for these purposes. 

Perhaps it is worth quoting the following formulas, which are essential

ly the formulas (1), (2) and (3), but somewhat more suitable for computation 

[31]: 

Let f = (a 1,b 1,c 1), g = (a2 ,b 2 ,c2) be two primitive positive definite 

binary quadratic forms of discriminant i'I. Put d = gcd(a 1,a2 ,(b 1+b2)/2) and 

let vl'v2 ,w E ~ such that v 1a 1 + v2a 2 + w(b 1+b 2)/2 = d. Let 

the form (a3,b3,c3) now needs reduction. The term(*) does only matter 

mod a/d. 

The algorithm for composition and reduction of binary quadratic forms 

can easily be programmed on a pocket calculator, like TIS8, TIS9, HP67, 

HP41C. In fact it is possible to compute class ~roups of complex quadratic 

orders, with the aid of a calculator like that, if the discriminant of the 

order is not too large, say, ~ 10 deciBal di~its. 

3. SHANKS' ALGORITHM 

Let K be a finite abelian extension of~. then the following formula, 

the class number formula holds [17]: 

(4) h 
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where 

w = w(K) #µ(K) = the number of roots of unity in K, 

ti = ti (K) the discriminant of K, 

rl r 1 (K) the number of embeddings K 4- lR, 

r2 r 2 (K) half the number of embeddings K 4 a: (im(K) ¢ lR), 

R = R(K) = the regulator of K, 

x runs over the non-trivial characters of Gal(K/~), 

L(s,x) = r.00 x(n) = TT • (I - x(p)p-s)-I, s € a:, Re s ~ I. 
n=l ns p prime 

Any complex quadratic field K is abelian over~ and the only non-trivial 

character of Gal(K/~) is the Legendre-symbol <?), where ti is the discrimin

ant of K. The class number formula reduces to 

h = w(O) ;m L(l x) 
21r ' ' 

and this formula also holds for non-maximal orders [I]. Here w(O) denotes 

the number of roots of unity contained in 0. If ti= -3 or ti= -4, the class 

number of the order of discriminant ti equals I, so there is no harm in assum

ing that ti+ -3,-4. Then always w = 2 and the class number of formula reduces 

further to 

(5) h = /17iT L(I x) = /17iT 
7T ' 7T 

TT 
p prime 

The infinite product (5) converges slowly to h. An analysis on assumption 

of the Generalized Riemann Hypothesis (GRli in the sequel) for this field, 

shows that only an expansion of this product that uses all primes s c•ltiJ 1+£ 

for some universal c and e, gives an approximation of h, accurate enough to 

determine h. 

There are also explicit "finite" formulas for the class number of com

plex quadratic orders O with discriminant ti; for maximal orders it holds 

that 

h - 1 I X (x), 
- 2-x<2) O<x<lti/21 

(ti + -3,-4) 

(x,ti)=l 
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ti here x denotes the Legendre symbol (7), see [ 1]. However, calculation of 

the class number of a quadratic order with a discriminant of say 10 decimal 

digits, using this formula, would be hardly possible. 

Using the 1-1 correspondence between 0-ideal classes and reduced primi

tive forms of discriminant ti= ti(O), one can also determine the class number 

of Oby counting integral triples (a,b,c) with gcd(a,b,c) = I, a> 0, 

b2 - 4ac = ti and lbl s as c. 

EXAMPLE. ti= 691. 

(Recall that if (a,b,c) is reduced, lbl s a< /41 and realize that for any 

form b = ti (mod 2)); 

±b 

15 

13 

I I 

9 

7 

5 

3 

-ti+b2 
-4-

229 

5•43 

7·29 

193 

5•37 

179 

52•7 

173 

forms 

(7,±3,25), 

(1,1,173) 

(5,±3,35) 

So the class number of ~(✓-691) is 5. But this method is only efficient for 

small discriminants. 

Counting methods of this sort are very useful to compute tables of class 

numbers; one then computes forms (a,b,c) with lbl s as c, a> 0 and counts 

them, sorting them on discriminant ti= b 2 - 4ac. This is a very fast method 

and D.A. BUELL [3] used it, to compile a table of class numbers of complex 

quadratic number fields with discriminants ti with O <-ti< 4000000. 

In 1970, Shanks introduced his algorithm to determine the structure of 

class groups of complex quadratic orders [31]. His algorithm relies upon an 

estimate of the class number of the order and computations in the class group 

itself; it is particularly effective if the discriminant of the order is very 

large. 

Let O be a complex quadratic order of discriminant ti, and let h be the 

class number of 0. The starting point in Shanks' algorithm is an approxima

tion of the class number; this is obtained by means of the class number for

mula 
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(5) h = ,l'f;IT L(J x) 
1T ' 1T 

TT 
p prime 

We approximate h, by simply evaluating 

I 

for so~e X (which we will take O(J~J5); we'll say more on choices of particu

lar constants later). Due to convergence of the product (5), we have that 

(6) 

where Eis a smaU positive number depending on X. This. gives us a rough idea 

of the size of h. Next we choose a form f = (a,b,c) of discriminant~ (for 

instance by taking a= p, a prime with(~)= +I, and b2 = ~ (mod 4a)). By 
p 

group theory, we have that fh = I and we use this fact together with the 

estimate h ~ h, to find h by searching in the (relatively short!) interval 

(7) 

h' for a number h' such that f =I.Perhaps h' = h, but this need not be the 

case. Next we compute the precise order off, by factoring h', which has 

size 0(1~1!+E) and we put H = the cyclic group generated by f; we keep H by 

means of a list of (independent) generators of its p-Sylow subgroup. If 

(1-E)h s #H s (l+E)h we conclude that H = cl(O); if not, we pick a new form 

f' and compute its order in the same way, now using that #Hl#cl(O) and com

pute the group generated by Hand f', by computing a set of independent gen

erators for its Sylow-subgroup; we call this group H again. 

We repeat this procedure until (1-E)h < #H < (l+E)h and then we conclude 

that H = cl(O). 

A few remarks on this algorithm: 
h' - Th.e search for a number h' in the interval (7), such that f = I can be 

performed effectively, by means of the so-called "baby-giant-step strategy": 

Let l = 2Eh be the length of the interval (7), then compute fh and 
. f fh fh~ +J fh~ +2 ( search successively or , g- , g- , ••• ,etc. the giant steps) in the 

list of baby-steps. If one finds 
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fh/ fa 

with !al ~ b, for some i, 

fh+2ib-a = I 

and h' h + 2ib - a. 

The number of calculations needed to perform this strategy is proportional 

to ll. 
h' 

- Determining the precise order off, knowing that f = I, is done by fac-

toring h' (~ /fiIT) and by computing suitable powers off; it is a relative

ly fast procedure. 

- It is possible that many forms are needed to generate the whole class 

group, but usually, the time consuming baby-giant-step strategy need 

only be performed once: usually one of the first forms picked generates a 

large part of the class group; its order n is often divisible by some large 

primes q such that qn l h, since no multiple of qn is in the interval 

This implies that the a_-Sylow subgroups of the f,roup generated by this form 

equal the a-Sylow subgroups of cl(O). 

After encountering a form like that, we can raise new forms f to the 

power m, being the part of n consisting of these large primes q; then we 

know that fm has a multiple of its order in the interval 

which is a very short interval. Usually we need not perform the baby-giant

step strategy and we can avoid computations in the q-Sylow subgroups for 

the large primes q. 
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- We will sketch a derivation, under GRH, of the order of the algorithm. 

For the details we refer to Section 6, where an analysis of the factoriza

tion algorithm that is based on Shanks' algorithm is given. 

Put 

h = h(X) = /f2iT 
'If 

TI 
p prime 

p~X 

then for some effectively computable, universal constant C and for all X 

large enough: 

C logl~l 

rx 
(cf. Section 6). 

If we take X ~ 1~1a for some a, to be determined, we have that 

(8) 

where the O constant depends on£. 

The length of the interval (7) equals 

where we used that h(O(t)) = 0(1t1 1/Z+£). [37]. Since evaluating Legendre 

symbols is logarithmic in the arguments, we have, by the prime number theo

rem, that the time for evaluating a truncated product 

'If 
TI 

p prime 
p~X 

. ( l+E) . l 1a is OX , if we take X ~ t . So 

(9) "time for approximating h" ~ !tiia 

The time needed to perform the baby-giant strategy is proportional to /l., 
so 
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1 1 
--- a.+£ 

"baby-giant costs" ~ltd 4 4 

We will have an optimum if 

= a. i.e. 
1 

a. = 5 

1/5+£ 
This indicates that Shanks' algorithm has order l~I ; however, there 

are some details: 

- Many primes may be needed to generate the whole class group. However, 

it easily follows from results of LAGARIAS, MONTGOMERY and ODLYZKO [15], 

obtained under assumption of GRH, that the class group is generated by 

the classes of the primes with norm<< log2 J~I, cf, Section 6. 

- The computations necessary to compute a presentation of the class group 

by independent generators, may become time consuming if the structure of 

the class group is complicated i.e. "highly non-cyclic". At present we 

cannot estimate the computing ti.me for these calculations better than 
1/4+£ . 1~1 , but since "almost all" class groups appear to have a large 

cyclic factor (cf. Section 7), l~Jl/5+£ seems to be a more practical esti

mate. For bounds on the exponent of class groups see [2,41]. However, com

puting the class number can always be done in time O(l~ll/5+£). Also det

ermining the isomorphy type of cl(O) as an abelian group can be done in 

time O(J~Jl/5+£), without, however, giving a set of independent genera

tors. 

4, CLASS GROUPS AND UNITS OF REAL QUADRATIC NUMBER FIELDS 

If K is a real quadratic number field, let O(K) denote its ring of 

integers and ~(K) its discriminant. Real quadratic fields are character

ized by their discriminants, which are positive integers congruent to 0 

or 1 (mod 4), but, like in the complex case, not every positive integer 

= 0 or I (mod 4), is the discriminant of a real quadratic field. 

However, every non-square positive integer~= 0 or I (mod 4) is the 

dis·criminant of a unique real quadratic ord,er O, a sub ring of a ring of 

integers of a real quadratic field:~ can uniquely be written as~= f 2D 

where f E 7l~ 1 and Dis the discriminant of a real quadratic field K; 

then~ is the discriminant of the unique subring O of index fin O(K). 
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The class group of a real quadratic order O is defined as the group of 

invertible fractional 0-ideals modulo the principal fractional 0-ideals. 

If~= f 2 is a square, we can consider~ to be the discriminant of the 

subring 7l(I, I) x 7l(O,f) of index f in 7l x 7l; the class group of this ring 

is isomorphic to (7l/f7l)x/{±1}. We do not enter into these rather pathologi

cal cases. For the "imtermediate case"~= 0 see GAUSS [12]. 

Let O be a real quadratic order, then 

more precisely: there exists an EE Ox such that every unit u E Ox can be 

written as ±Ek, k E 7l. There are four numbers in Ox, tha-t each, together 

with -1, generate Ox; fixing an embedding K 4- lR, one. of these numbers is 

greater than I. We denote this number by EO and call it the fundamental unit 

of 0. 

DEFINITION If EO is the fundamental unit of O then 

R(O) = log EO 

is called the r-egulator of O. 

If no confusion is likely, we will omit the indices 0. Let K be a real 

quadratic field with discriminant~-

DEFINITION. N: Kx + ~x by Na = a•cr(a) where 1 :/, er E Gal(K/~). We call N the 

norm map; it is a homomorphism and if we write a E Kx, a= p+q/E then 

By means of the norm map we can refine the concept of the class group 

somewhat: 

DEFINITION. Let O be a real quadratic order and let P(O)+ = {principal ideals 

generated by elements of positive norm}. We have the following commutative 

diagram with exact rows and collllllns: 
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0 0 

l l 
0 P(O)+ 1(0) ct+ (0) 

1 1 l 
0 p (0) I (0) ct(O) 

l l 
0 0 

ct+(O) is called the narrOuJ class group of 0; it maps surjectively to cl(O) 
+ and it is easy to see, that the kernel of this map has order I or 2. By h 

we denote the order of ct+(O): h+ = h or h+ = 2h. 

DEFINITION.£+:=£ if N£ = +I and£+:= £2 if N£ + + 
-1; R :=log£ . 

+ k Now the units with positive norm are precisely the numbers±(£) , 

k E 7l. 

PROPOSITION 4. I. 

(i) if N£ = -I then h+ hand R+ 2R, 

if N£ = +l then h+ 2hand R+ R; 

(ii) 2hR = h+R+. 

PROOF. □ 

Next we'll explain the setting, in which the calculation of the class 

group and the regulator, as discussed in the next section, are performed. 

The ideas involved are due to LENSTRA and SHANKS [18,33]. 

DEFINITION. Let O be a real quadratic order; put 

0 

0 

F' (0) {(M,a) IM an invertible 0-submodule of K; a EM primitive} 

G' (0) = { (SO,a) I (3 E Kx, N(3 > O; a E (30 primitive} 

~>O = fo E K I Na > 0}. 

We turn F' (0) into an abelian group, by defining 

(M,a) (N, 6) (MN, y)' 
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where aS = dy, with d E 7l;;:J and y E MN primitive. We then have the series 

of subgroups 

K_x c G' (0) c F' (0). 
-"N>O 

Here ~>O C.. G' (0) by a + (aO ,a). 

DEFINITION. 

PROPOSITION 4.2. There is an exact sequence 

0 + G(O) + F(O) + ct+(O) + O. 

PROOF. Define F'(O) + ct+(O) by (M,a) + class of M; the kernel of this map 

is precisely G'(O). 0 

In terms of binary quadratic forms we have that 

F (O) {primitive binary quadratic f orms}/f\
0
1 7l

1
) , 

of discriminant 6 = 6(0) 

{
primitive binary quadratic forms of discriminant}.fi(I 7ll). 

G (0) 6 = MO) that are SL2 (7l) - equivalent to / I 

x2 + 6XY + (~2-~)/4 y2 0 

(For definitions and facts on quadratic forms see [I], or Section 2.) A 

translation between the different descriptions of F(O) and G(O) can be given 

as follows: 

Let 6 be the discriminant of O and suppose (M,a) E F' (0); let 

M (7l + b+/6: 7l ) a 
2a 

with S8fia = sgnNa. The image of (M,a) in F(O) corresponds to the (b ~}-orbit 

of ax2 + bXY + cY2 with b2 - 4ac = 6. So we can look at F(O) as consisting 
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of binary quadratic forms (a,b,.c) where we identify forms (a 1 ,b 1 ,c1) and 

(a2 ,b2 ,c2) whenever a 1 =~and b 1 = b 2 (mod 2a 1). 

G(O) consists of(~ 1)-orbits of quadratic forms that are SL2 (7l)

equivalent to those corresponding to the image of (0,1) in G(O); these are 

precisely the (~ ~) - orbits of form that are SL2 (7l) -equivalent to 

x2 + fiXY + (fi 2-~/4)Y2 • 

DEFINITION. Let a. E K and let i 1 : K + lR be a fixed embedding and i 2 : K + lR 

the other one; then 

and 

We define a map, the distance map, 

D: G(O) + lR/R+?l EB 7l/27l, 

by 

Here we use the isomorphism of groups: {+l,-1} ~ 7l/27l. 

PROPOSITION 4.3. Dis a wen defined homomorphism and Dis injective. 

PROOF. It is trivial to check, that the value of Don (SO,a.) and on 

l;•(SO,a.) = (!;SO, ~a.), (d E 7l2".l' Ni;> O) is the same. If (SO,a.) = (S'O,a.) 

in G(O), we have that Sand S' differ by a norm positive unit, say, that 
+ k 

S' = ±(E ) ·S, for some k E 7l. Then 

d(S'O,a.) = c½ log(/---h-1 /1----h-/ ). sgn Na.) 
(E) S 00 ] (E) S 002 

= d(SO,a), 

and we see that Dis well defined. To prove injectivity, let (SO,a.) E G(O), 

with 
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(O,O). 

This implies 

and Na > 0. 

So f E ~or]' E ~•IX, whence, since Na,NB > 0, it follows that i E ~ and so, 

since a E SO primitive, we have that a= ±Sand we find that 

(0,1) mod ~>o· □ 

NB. The image of D is dense in lR/R+?l E9 7J,/2?l; however for cardinality rea

sons, Dis not surjective. 

DEFINITION 4.4. Let $1, $2 be two elements of F(O), that are in the same 

G(O)-coset. We define the distance from $1 to $2 to be the first coordinate 
-I 

of D($2$ 1 ) • 

So distances between elements of F, that are in different G(O)-cosets, 

are not defined. However, it is possible to define a notion of absolute dis

tance, as follows: It is possible to lift the map 

(80,a) ➔ sgn Na, 

to the whole of F(O) in a canonical way: 

(M,a) ➔ sgn Na. 

Since lR/R+?l is a divisible group, one can lift 

to the whole of F(O) as well (uncanonicaUy this time). Combining these 

maps one finds a lift of D to the whole of F(O): 

0 

J 
0---➔ G(O)---➔F (0)---➔ cl+ (0) ---➔ O. 

ln /n 
lR/R+?lE97J,/2?l 
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We will denote this lift by D again, and if (M,a) E F(O), we will call D(M,a) 

the absolute distance of (M,a). Note, that the absolute distance depends up

on the lift of D: G(O) + lR/R+7l e 'll/27l to F(O). 

The class group cl+(O) can now be viewed as a set of h+ double circles, 

each of "circumference" R+, each point of the image of Don a double circle 

representing a (~ ~) -orbit, or 7l-orbit for short, of a quadratic form. We 

will call these (~ ~)-orbits forms again. 

cl+(O): 

(0)(0) (0) 
We will call the ideal classes, pictured as these double circles, also 

cycles. 

The double circle, corresponding to the principal ideal class, will be 

called the principal cycle. On the principal cycle, there is always a form 

(l,tJ,,!J, 2-!J,/4) (a 'll-orbit!), which we will call the principal form. 

Two forms on a double circle that are at the same absolute distance, 

but on different circles, differ by the sign of a: One circle contains forms 

(a,b,c) with a> 0, the other one contains forms (a,b,c) with a< 0. 

Like in the complex case, it is possible to translate the composition 

law in terms of quadratic forms (or rather 7l-orbits of forms); this yields 

the same formulas as the formulas (1), (2) and (3) given in Section 2. 

The notion of a reduced form is slightly different however: 

DEFINITION. Let f = (a,b,c) be a primitive binary quadratic form of discri

minant t; then f is called reduced if 

I /ii - l2al I < b < /ii 
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i.e. if we picture K as embedded in JR x JR via its embeddings i 1, i 2 : K + JR 

via x + (i 1 (x), i 2 (x)), the point b+/i,./a is in the shaded area. 

Ii,. 

The condition for a form (a,b,c) to be reduced implies that 

O<b</i,. and Jal < Ii,.; 

from this it follows easily, that only finitely many reduced forms of dis

criminant~ exist; the Zl-orbits of these forms form a discrete subset of 

F(O) and every ideal class (= double circle) contains at least one reduced 

form. 

In view of the applications to the algorithm discussed in Section S, 

we like to do our calculations in the finite set of reduced forms: We need 

a reduction algorithm, in order to determine a reduced form equivalent to 

a given form. 

Reduction algorithm. Let (a,b,c) be a quadratic form of discriminant ~= 
(i) if 1al < IE reduce b (mod 2a) such that 

Ii,. - l2al < b < Ii,. 

and adjust c; 

if Jal > IE reduce b (mod 2a) such that 
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and adjust c; 

(ii) if the form is not reduced then 

(a,b,c) + (c,-b,a) 

and start all over. 

It is left to the reader, to verify, that this algorithm terminates and 

is correct. 

EXERCISE: Show that no more than O(max(I, lo,lal)) applications of (i) and 

(ii) are needed to reduce (a,b,c). 

In contrast to the complex case, there can be many more reduced forms 

in the Same SL2 (7l)-orbit (= a double circle) and it is possible to jump 

from one form to another by means of reduction: If f is a reduced form in 

a fixed coset of G(O), say f = (a,b,c), then let g (c,b',c') with b' - -b 

(mod 2c} and Ii, - 12cl < b' < IE and c' such that b •2 - 4cc' = t,. Then 0- is 0 

also reduced and g is on the opposite circle since ac < 0 (this follows 

directly from the fact, that f is reduced). Furthermore, if f is a reduced 

form on some double-circle, then one finds all other reduced forms on this 

double circle by successive reduction [12]. 

The distance from the reduced form f, to its successor g equals 

( 11) .!_ log ( lti+b) • 
2 lti-b 

Now we can compute in the set of reduced forms: we can "jump" from one form 

to the "next" one on the same double-circle, and we can compute the product 

of two reduced forms: a not necessarily reduced form, which we can reduce 
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by means of the reduction algorithm. In doing this, we can keep track of the 

absolute distance of the product. The ultimate reduction gives a form which 

is one the same double circle as the non-reduced product, put in general at 

a different position on that double circle. 

Fortunately, reduction of the product of two reduced forms "causes only 

small replacement along the double circle". It can be shown, that the dis

tance between the non-reduced product and the reduced product is at most 

¼ log ~+0(1), i.e. usually very small compared to the circumference of the 

cycle, which is often~ ./K. So, if f and g are reduced forms, the following 

''holds". 

abs.distance (f) + abs.distance (g) ~ abs.distance (reduced (f•g)). 

An exampie: ~ = 761. 

The following is a list of all reduced forms of discriminant~: 

( 1,27, -8): 0.0 ( 2,27, -4): I. 704. ( 2,25,-17): 13.052. 

( -8,21, 10): 2.267. ( -4,21, 20): 3.971. (-17, 9, 10): 14.558. 

( 10, 19,-10): 3.266. ( 20, 19, -5): 4.970. ( 10,11,-16): 0.141. 

(-10,21, 8): 4.112. ( -5 ,21, 16): 5.815. (-16,21, 5): 0.563. 

( 8,27, -1): 5 .111. ( 16,11,-10): 6.814. ( 5,19,-20): 1.562. 

( -1,27, 8): 7.378. (-10, 9, 17): 7.237. (-20,21, 4): 2,408. 

( 8,21 ,-10): 9.645. ( 17,25, -2): 7.757. ( 4,27, -2): 3.407. 

(-10, 19, 10): 10.644. ( -2,27, 4): 9.081. ( -2,25, 17): 5.674. 
( 10,21, -8): 11 .489. ( 4,21,-20): 11.348. ( 17, 9,-10): 7.180. 
( -8,27, 1) : 12.489. (-20, 19, 5): 12.347. (-10,11, 16): 7.519. 

( 1,27, -8): 14.756. ( 5,21,-16): 13.193. ( 16,21, -5): 7.941. 

(-16,11, 10): 14.192. ( -5, 19, 20): 8.940. 

( 10, 9,-17): 14.614. ( 20 ,21, -4): 9.786. 

(-17,25, 2): 0.197. ( -4,27, 2): 10.785. 

( 2,27, -4): 1.704. 2,25,-17): 13.052. 

The first column lists all reduced forms in the principal cycle with 

their (approximate) absolute distance, the next two columns list the reduced 

forms in the cycles, that represent the two other ideal classes: the class 

number equals 3. The real numbers, given there, are the absolute distances 

of these forms (depending on the lift of D ••• ). 
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We can picture the class group as a set of cycles: 

Since (-1,27,8) is in the principal cycle, the norm of the fundamental unit 

is -1. In fact 

and 

£ = 

+ 
£ 

800 + 29 1761 

1280001 + 46400 1761. 

The reader is invited to check the values, given for the absolute distance, 

by means of composition and reduction. 

The example shows, that it is possible to have a different number 

of forms in the circles; however, the "circumference" is the same for every 

circle. 

Finally, some remarks: 

- In the principal cycle there is a reduced form at distance exactly½ R+; 
2 if this is the 7l-orbit of (-1,1:::.,!:::. -1:::./4), we have that (0,£ 0) and (0, 1) are 

equal mod G(O) i.e. NEO = -I; if not, we must have, that NEO = I. So, by 

computing in the principal cycle, we can find out, whether NE= +I or -1. 

- In Section 2 we described a method, to compile tables of class numbers of 

complex quadratic orders by means of counting reduced forms. We cannot apply 

this method straightaway to real quadratic orders; but still an analogous 

method is possible. One computes positive binary quadratic forms (a,b,c) 
2 and counts them, sorting them on I:::.= b - 4ac; however, one does not simply 

count the forms, but one sums their distances to their successors in their 

double circles i.e. 
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_!_ log(lti+b) 
2 ✓ir.:h 

Once this is done, one knows the complete "length" of the class group; after 

computing R+ for each 6, by means of successive reduction of (1,6,62-6/4), 

one divides the length of the class group by R+; this gives h+; the norm of 
+ the fundamental unit is found as a by-product of the computation of R. 

- Due to the formulas for composition and reduction we can efficiently cal

culate in ct(O). However, some problems remain hard, it seems. For instance, 
+ suppose that one knows, that for a given order O the class number h equals 

one, and suppose (6(0)/2) = +I; then there must be a form (2,B,C) (some B, 

C) in the principal cycle. Where to find it? Apart from a rigorous search 

in the principal cycle, (for instance, by means of a baby-giant-step strat

egy), there seems to be no way, to find this form in this double circle, 

which has circumference~ IE. in this case. We'll come back to this problem 

in the next section. 

5. DETERMINATION OF THE CLASS GROUP AND THE REGULATOR OF A REAL 

QUADRATIC NUMBER FIELD 

Let K be a real quadratic number field with discriminant equal to 6; 

the class number formula (4) applied to K becomes 

(I 2) IE. 
h = 2R L ( 1 'x)' 

6 where x6 = (:-), the Legendre symbol; and this formula also holds for non-

maximal orders of discriminant 6. So, in order to derive an estimate of h 

from (12), one should compute the regulator R. The classical way to do this 

is, to determine the continued fraction expansion of IE.. However, experience 

shows, that the length of the period of this expansion may well be ~ IE., so, 

a straightforward computation of R by this method would take much more time 

than c•!'i115 • 

By means of the theory, developed in Section 4, we can overcome this 

difficulty and finally give an algorithm to determine both the regulator 

and the class number of a real quadratic order, which is similar to Shanks'. 

There is not much sense in determining the fundamental unit of a real 

quadratic order with a large discriminant; for instance suppose 6(0) has 20 

digits (a vecy reasonable number for our algorithm) and suppose h+(O) = I, 

h R+(O) 1010 d + R+ · · · · · · ten ~ an E = e is gigantic. In fact, even writing down this 
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number, by means of the fastest line printers now available, would take a 

few weeks! 

Let us first mention some simple methods to determine the class number 

of a real quadratic order O of discriminant 6, which are suitable if 6 is 

not too large, say 6 ~ 6 decimal digits. 

One can compute R+ by successive reduction in the principal cycle: one 

starts with (l,b,c), the principal form, and reduces it, until for two suc

cessive forms (a 1,b 1,c 1) and (a2 ,b 2 ,c2) one has that b 1 = b2• En route, one 

sums 

for all reduced forms (a,b,c); the sum equals R+ ( = R if a2 F -1; 

a2 = -1). 

2R if 

There is the following formula for the class number of a maximal order 

0 (ll) : 

h(O) L x(x) log sin :x 
R c<x<M2 

(x,6)=1 

a similar, but more complicated formula holds for non-maximal orders. 

Using the dictionary between 0-ideal classes and primitive binary qua

dratic forms, one can also find the class number by counting all the forms 

of discriminant ll(O) and sorting them by double-circles (by periods). Many 

investigators determined class numbers and regulators by means of these al

gorithms; they are completely unfeasible if the discriminants of the orders 

are very large, say ll = 20 decimal digits. 

Let's explain the algorithm: Leth+ denote the narrow class number of 

a real quadratic order O; let 6 = 6(0) and R+ = R+(O). By Proposition (4. I) 
+ + 

we have that h R = 2hR; so formula (12) becomes 

(13) 

Like in the complex case, the starting point of the algorithm is an approxi-
. + + . ( mation of h R, obtained from 13): let 

(14) R Ii,. n 
p prime 

pS:X 
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for some X, which we will take c•/:i • We find, that 

(15) (h:)R 
+ + 

~ h R 

for some small e E lR>O" 

~ O+e)R, 

+ Now the principal cycle has length R, a number, that we do not know 
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~ ' + + 1 ' 1 + ' f yet. However R is close to h R, a mu tip e of R, so we can JUmp to a orm 

f, in the principal cycle at distance~ R of the principal form (mod R+ of 

course; but we do not know R+ yet) and search for the principal form in the 

interval 

(16) (R(l-e), R(l+e)). 

If we've found this form, we know 

Then by looking half way the 

R+. This immediately gives us an 

+ a multiple of the narrow regulator R. 
I I cycle, at 3 , at J etc., we can determine 

approximation of h: 

(17) TT. ( 1 - (Q_-)_!_) - I 
p prime pp ' 

p~X 

and we can complete the calculations by computing the structure of the class 

group in a way similar to the complex quadratic case. 

Some remarks: 

- Finding a multiple of R+ in the interval (15) can efficiently be done by 

means of a baby-giant strategy (see Section 3). Here, the baby-steps are, 

very cheaply, computed by successive reduction of the principal form and for 

computing the giant-steps, one uses composition of forms. If X in (14) is 

O(fi. 115 ), then the baby-giant computations will also be done in c•/:il/S+e 

operations·. 
+ . 1/5+e - Determining the precise regulator R, can also be done in c•6 opera-

tions. We won't give the details; suffice it to say, that for small primes 

p ( « li 1 / 1 O), one jumps at _!_ of the principal cycle and looks for the prin
p 

cipal form, while for large pone solves the problem, by making more giant 

steps. 
+ ' . - Knowing R, we can copy Shanks algorithm to compute the class group of 0. 

There are some complications however; first of all: testing for equality of 

two ideal classes, represented by qu2dratic forms, is now much harder than 

in the complex case, since many forms may represent the same class. However, 

if one knows for two forms f 1 and f 2 that for some integer n, the forms f~ 
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and f~ are in the principal cycle at absolute distance d1 resp. d2 , then one 

can test for equality by computing f 2f~ 1, and checking whether this form is 

in the principal cycle at distance (d2-d 1) modulo R+/n. If one does not know 

any distance, we know nothing better to do than a rigorous search in the 

principal cycle (e.g. by means of a baby-giant-step strategy). This is a time 
• . d 1 . h . I / 4+£ 1 ' h comsuming operation an turns the a gorit m into an -a gorit m. Fortun-

1 · 11 11 • +. +. 1 d ate y, there is some trade-off: if h is very small, R is very arge, an 

searching for a form in the principal cycle is very expensive. However if R+ 

is very large, h+ is very accurately determined by formula (17); perhaps h+ 

is even known with certainty and one can stop the calculations after having 

determined R+, if one is satisfied with the class number without knowing the 

structure of the class group and without knowimi: explicit generators of the 

class group. On the other hand. if h+ is large and R+ is small, more search

ing will be necessary, but this is not so expensive since R+ is small i.e. 

the principal cycle is short. We can compute the class number in time bound

ed by O(nl/ 5+£); computing the class group can be done in time bounded by 
O(nl/4+£). 

- Finally, notice that, in contrast to the computed value of the class num

ber, the regulator R, once it is determined, is known with certainty, i.e. 

without any assumption of a generalized Riemann hypothesis. This hypothesis 

1 d . . . ('1/5+£) . . was on y use to guarantee termination in Ou computing time. 

6. FACTORIZATION 

In this section we will discuss two deterministic factorization algo

rithms based on computations in class groups of complex quadratic orders and 

on computations in the principal cycles associated to class groups of real 

quadratic orders respectively. 

If NE 7l>I denotes the number that will be factored, then, on assump

tion of certain generalized Riemann hypotheses (GRH), both algorithms run 
1/5+£ in time bounded by N for all£> O. 

First we briefly indicate how the algorithms discussed in the previous 

sections are related to factorization algorithms. 

Let~ denote the discriminant of a complex quadratic order 0. By an 

ambiguous form f in the class group of O we mean a form f for which f 2 = 

holds. The ambiguous forms make up a subgroup of the class group; they 

have the following shape: 
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f (a, ±a, c) or (a,b,c) or (a,O,c). 

In other words, the ambiguous forms are precisely the forms that correspond 

to ideal classes 

with b+IE/2a on the imaginary axis or on the edge of the funamental domain. 

Every ambiguous form gives rise to a factorization of /5.: 

f 

f 

f 

(a,±a, c) 

(a,b,a) 

(a,O,c) 

15. = a(a-4c) 

15. (b+Za) (b-Za) 

-4ac. 

Conversely it is possible to reveal, in an efficient way, the complete fac

torization of /5. into prime powers from the subgroup of ambiguous forms in 

cl(0(/5.)) cf. [18]. 

Briefly, the algorithm that is based on computations in the class 

groups of complex quadratic orders consists of computing an ambiguous form 

in cl(O(-N)) of N - 3 (mod 4) resp. in cl(0(-3N)) if N = (mod 4) • To find 

this ambiguous form takes about as much effort as it takes to compute cl(O) 

following the strategy discussed in Section 3. 

Next, let /5. denote the discriminant of a real quadratic order. Ambig

uous forms are defined to be forms of order~ 2, in F; ambiguous forms f 

have the following shape: 

f (a,b,c) where alb, 

so like in the complex case, an ambiguous form provides us with a factor of 

/j. 

In the principal cycle there are two reduced ambiguous forms: the prin

cipal form (I ,!5.,!5.2-fi/4) and one diametrically opposite to it at distance½ R+. 

The algorithm computes these ambiguous forms at distance½ R+ on the princi

pal cycles G(0(/5.)) for suitable multiples /5. of N. 

Note that if (a,b,c) is any quadratic form on the principal cycle 

G(O(ts)), it holds that there are X,Y E ½ Z': such that N(X+Y./E) = a, i.e. 

x2 - /JY2 = a, whence for all q[/5. with gcd(q,2a) = I we have that (.'.:.)=I. 

For instance, if (-1,ts,/J-/5.2/4) is the reduced ambiguous form at di:tance 
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I + -1 . 
2 R, it holds that (q) = I for every odd prime dividing /1 i.e., all odd 

prime dividing /1 are congruent to I (mod 4). 

Before entering into a more detailed discussion of th~ algorithms, we 

quote some theorems from analytic number theory, which at present can only 

be proved on assumption of certain generalized Riemann hypotheses. 

THEOREM 6.1. (GRH). There exists an absolute, effectively computable con

stant c1 > 0 such that for every finite extension K of~ and every Dirichlet 

character x of K, there exists a prime ideal p of K of degree I with 

x(p) 'F I or 0 and 

PROOF. Cor. 1.3 of Theorem 1.2 of [!SJ. 

One needs the Riemann hypothesis for the zeta function of Kand for 

L(s·,x):_if pis any zero of t,;K(s) or L(s,x) with O <Rep< I, we assume that 
I 

Rep= 2 . □ 

COROLLARY 6.2. (GRH). Let O be a complex quadratic order of discriminant 11, 

then ct(O) is generated by quadratic foY'l7ls (p,b,c) of discriminant 11 and p 
/1 2 prime with (P) = I and p < c1 log 1111. 

PROOF. Let /1 = f 2D with D the discriminant of a complex quadratic number 

field. Let Gf denote the ray class group mod f of K. We have a surjective 

map 

via 

[a] -> [anOJ. 

Here we used the correspondence between equivalence classes of primitive 

quadratic forms of discriminant /1 and classes of invertible O (11)-ideals. 

We apply Theorem 6.1 to K and all characters· of Gf" 

Let H denote the subgroup of Gf generated by the image of the classes 

of prime ideals p of degree I in Kand for which 
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holds. The group H then equals Gf because, if Ht Gf we can find a nontri

vial character x of Gf with H c ker x, but this contradicts Theorem 6. 1, 

since all characters of Gf have conductor dividing f. This. proves Corollary 

6.2. D 

The following theorem gives us an estimate of the rate of convergence 

of the product expansion of L-series at 1. The proof is along the lines of 

the proofs in [15] but, since the result we need is not explicitly stated 

there we will give an outline of a proof below. 

THEOREM 6.3. (GRH). There exists absolute, effeatively aorrrputable positive 

aonstants c2 and c3 suah that for aU t:,, disariminants of quad:f'atia orders 

and for au X > Cz lol J t:, I it holds that 

t:, 1 c3 logJt:,xl 
(I - (-)-)I < ---

p p Ii I 1 - TT 
p>X 

Theorem 6.3 is a specialization of a more general theorem. In the proof 

one assumes the Riemann hypothesis for L(s,x), where x(p) =(~).All 0-sym
P 

bols that occur in the proof below are absolute and effectively computable. 

PROOF OF THEOREM 6.3. Let X denote the Dirichlet character (A). 

def. for n E 7l~ 1 , I\ (n, x) 

def. for x E ~ 1: 1/1 1 (x,x) 

X (pk) log p 1.' f 1 .1. k · r n = p a prime power 

= 0 otherwise. 

l (x-n)/\(n,x). 
nsx 

Initially we assume that t:, is a fundamental discriminant i.e. t:, is the dis

criminant of a number field. 

It holds that for x E ~I 

which follows by integrating term by term. 

The right hand side of this equation can also be evaluated by computing 

1 
hl 

s+I 
X 

(s,x) s(s+I) ds 
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iM 
' 

" 

-M 0 2 

,, 

,, 
-iM 

for suitable M by applying the residue theorem and by letting M + 00 • One 

finds 

a x-1 x+ I b ( 1 ) x- I - 2 log ((x-1) (x+I) ) - z log( x- ) 
(x+ 1 )x+l 

Here 

L' 
(s, x) a 

0 =-+ ao + ... near L s 

L' 
(s' x) =__!?_+b 

L s+l 0 
+ ... near -1; 

it holds that (a,b) = (1,0) if 6 > 0 and (a,b) = (0,1) if 6 < 0. The sum is 

taken over all p, zeros of L(s,x) with 0 < Rep< 1. 

Subtracting ¢1 (x,x) from ¢1(x+J,x) one finds 
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/\(n,x) (x - [x])/\ (n + [x] ,x) -
p zero 

x+2 x x+I x 
_ ~(lor, (x+2) x _ 2) _ E-(log (x+ I) x ) 

2 '(x+l)x+I (x-l)x-1 2 (x+2)x+2(x-l)x-1 

from which it follows that 

(x+l)i,+l_xp+I 
/\(n,x) + a0 1 ,;; I}: -----1 + 2 log(x+I). 

P (p +I) 
p 

Let N(t) denote the number of zeros p of L(s,x) with O < Rep< I and t-1 ,;; 

Imp,;; t+l. Hence, we have 

N(t) = O(log(t.(Jtl+2))) 

cf. Lemma 5.4 of [15]. Using this estimate and the inequality 

3 

,;; l /x➔1 + l 2 (x+ I ? 
!ImpJ,;;x JpT !ImpJ>x Jp(p~l) I 

it is not difficult, assuming the Riemann hypothesis for L(s,x), to arrive 

at 

p+I p+I I' (x+I) -x \ 
l P (p+I) 
p 

Finally we find that 

o(/x loglt.x] log x). 

I l /\(n,x) I 0(/x log It.xi log x), 
nc;;x 

(disposing of a0 by using our estimates for x ={).It is easy to prove 

that the estimate also holds for non-fundamental,', (using the estimate for 

fundamental,', to be sure; one may arrive at larger (absolute) constants); 

so from now on we let,', be an arbitrary discriminant of a quadratic order. 

By partial SUIIllllation we find 

, I\ (n, x) _ , ( ~ I\ (k V ( I I ) 
l n logn - l l ,X (n+l)log(n+I) - n logn 

n>x n>x k=2 
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and 

I I A (n,x) I 
n>x n log n 

We have that 

I l A (n,x) _ 
n>x n log n I log(! - x(p)) 1. 

p p>x 

I I 
k=2 

k l X (p) I 
k k k 

/x<p:,X p 

:, I 
2 [ logx] 

I l - 1- = O(_!__)' 
2 k>[ logx] k=2 k k k /2 

p> Ix p 

and it follows that 

I I log(I - .xi£2.)I 
p>x p 

From this estimate one deduces that there exist absolute, effectively comput

able positive constants c2 and c3 such that if x > c2 log2 161 then 

which proves the theorem. D 

Next we present the algorithms. 

ALGORITHM 6.4. Factorization algorithm based on computations in class groups 

of complex quadratic orders. 

Let N E 7l > 1 denote the number to be factored. 

Step I. Test whether gcd(N,6) > I or whether N is a proper power of an inte

ger; if this is the case, we can either factor Nor decide it is prime; 

otherwise, if N = 3 (mod 4) put 6 = -N and if N = I (mod 4) put 6 = -3N. In 

both cases 6 is the discriminant of a complex quadratic order. 

Step 2. Compute 
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TT 
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with an accuracy of logllll significant decimal digits; the product is taken 
I /5 2 over all primes p s X = max( Ill I , c2 log Ill I). 

p ~ 2 with(!:_)= I do the following step un-
p 2 

is found or p ~ c1 log Ill I; if the latter 

Next for successive primes 

til either a factorization of N 

occurs one concludes that N is prime. 

Step 3. Compute a quadratic form f = (p,b,c) and compute a multiple of its 

order using the estimate h ~ h(O(ll)) obtained in Step 2 and the baby-giant

step strategy discussed in Section 3. If N = 3 (mod 4), compute the form of 

order two in the cyclic group generated by f; if a form of order two is actu

ally existing one obtains a nontrivial factorization of N. If N = I (mod 4) 

denote by Ha subgroup of the class group of O(ll) which initially, i.e. be

fore entering Step 3, equals {(l,1,1-ll/4),(3,3,N+3/4)}. Compute a form g, a 

generator of the 2-primary part of the cyclic group generated by f; compute 

the group generated by Hand g and call it H again. If for some p the group 

H "becomes" non-cyclic, there are three forms of order 2 in Hand those dif

ferent from (3,3,N+3/4) give rise to a nontrivial factorization of N. 

This completes the description of the algorithm. 

The algorithm is correct by genus theory and Corollary 6.3: If N passes 

the tests in Step I we can be sure that, if N is composite, there exists a 

form of order 2 in cl(O(ll)) which gives a nontrivial factorization of N; for 

details see [12]. By Cor. 6.2 the class group is generated by forms (p,b,c) 

' h (ll) I d 1 2 I I i' f d' d . d f f d 2 wit P = an p < c1 og ll , so, we i never fin a orm o or er 

in Step 3 of the algorithm we can be sure that no such form exists i.e. that 

N is a prime. 

A brief running time analysis runs as follows: Step I is polynomial in 

log N; Step 2 takes time O(Nl/ 5+£) as explained in Section 3. Theorem 6.2 

and the class number formula imply that Jh(ll) - hl = O(N2/ 5+£), so the baby-
• ' 3 k ( l / 5+£) h ' giant-step strategy 1.n Step ta es ON ; The rest oft e computations 

in Step 3 is polynomial in log N: computing a form (p,b,c) can be done in 

time O(p log N) = O(log3 N) and computing a generator of the 2-primary part 

of the cyclic group generated by f and computing a form therein can be done 

by evaluating certain powers of f which takes time polynomial in log N; all 

computations concerning the group H can be done in time polynomial in log N. 
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2 
Since Step 3 is repeated at mos.t C 1 log I LI I times, we conclude that the 

algorithm takes time O(NI/5+E) for all E > O. 
' h ' 1 I/ 5+E 11 h b b The algorit m uses memory proportiona to N to store a t e a y-

steps. 

ALGORITHM 6.5. Factorization algorithm based on computations in the princi

pal cycles G(LI) of the groups F(LI). 

Let N E Zl > 1 denote the number to be factored. 

Step I. Test whether N is divisible by the primes~ (4C 1log2 (8N)f and test 

whether N is a proper power of an integer. If this is the case we can factor 

Nor decide it is prime, otherwise we know that 

2 2 
N > (4C 1 log (8N)) 

We distinguish two cases: 

Case N = 3 (mod 4): For successive primes p = 3 (mod 4) let LI= pN: the dis

criminant of a real quadratic order and do the following steps until either 
2 a factorization of N is found or p > c3 log N; if the latter occurs one con-

cludes that N is prime. 

Step 2. Compute R = IE IT <X (I-(~)_!_)-! with an accuracy of log LI signifi-
--- P- PP 
cant decimal digits; the product is taken over all primes ~ max(LI I/5 ,c2 log2 LI). 

Step 3. Find a multiple of R+(O(LI)) using the baby-giant-step strategy as 

discussed in Section 3. Compute the ambiguous form g at distance½ R+ on 

the principal cycle; if g # (-1,b,c) or (±p,b,c) then g gives rise to a non

trivial factorization of N. 

Case N = I (mod 4): 

Step 2, First put LI= N, the discriminant of a quadratic order; compute R 

(step 2), find a multiple of R+(O(N)) and compute the ambiguous form g at 

½ R+ on G(N); if g # (-1,N,N2-N/4), one obtains a nontrivial factorization 

of N; otherwise do the following: 

For successive pairs of primes p 1,p2 = 3 (mod 4) and p 1 < p2 < 

4c 1 log2 (8N) (successive in the sense that the products p 1p2 form an increas

ing sequ~nce) put LI= p 1p2N, the discriminant of a real quadratic order. Do 



the following steps until a factorization of N is found; if this does not 

happen for the finitely many pairs (p 1,p2) one concludes that N is prime. 

~ r. t:, 1 -1 
Step 3. Compute R = vi:, np~X (1 - (p)p) as before. 

Step 4. Find a multiple of R+(O(t:,)) and the ambiguous form g = (a,b,c) at 
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_I_+_ . . 1 1 . .L h . . 
2 R on the principa eye e; if a r -1, ±p 1, ±p 1p2 t e form g gives rise to 

a nontrivial factorization of N. 

This completes the description of the algorithm. 

To prove correctness we distinguish the two cases again: 

Case N = 3 (mod 4): Assume that N is composite and that N passed the tests 

in Step I. Let q denote a prime congruent to 3 (mod 4) that divides N. 

LEMMA (GRH.i. There exists a prime = 3 (mod 4) satisfying (N]q) = -1 and 

p < cl log (4N). 

PROOF. Apply Theorem 6.1 to the (non-primitive) quadratic character x of 

K ~ ~(✓-N/q) belonging to the extension K(i)/K of conductor (2). By Theorem 

6.1 there exists a prime p of K of degree I with x(p) = -1 and 

Let p=N(p) thenp splits in IQ( ✓-N/q) (since p 'F 2) and we have (2) 
p 

(N]q) = -1. □ 

Let~= pN with pa prime as in the lemma; then the reduced form 

g = (a,b,c) at½ R+ in G(8) cannot have a= ±N since the fact that g is re

duced implies that N < /"i,. i.e. p > N which contradicts p < c1 log2 (4N) and 

the fact that N passed the tests in Step I. Nor can g have a= -1 or ±p 

since we have that (~1) = -1 and<:,~)= -1. We conclude that for this p we 

will encounter a nontrivial factorization of Nin Step 3 of the algorithm. 

Case N = I (mod 4): Assume that N is composite and that N passed Steps I 

and 2 of the algorithms. This implies inter alia that all divisors of N are 

congruent to 1 (mod 4): let q 1 and q2 be distinct primes dividing N. 

LEMMA (GRH). There exists two primes p 1 ,p2 -

-1; (p2/q 1) = I and (p2/q2) = -1 and p1,p2 ~ 
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PROOF. For p 1 consider the non-primitive character x of K =~(~)of con

ductor (2) belonging to K(i)/K and for p2 consider the non-primitive charac

ter x of L = ~(/ci";, ;:;i;) of conductor (2) belonging to L(i)/L. We have 

!~Kl= 4q 1 and l~LI = (4q 1q2) 2 • As in the proof of the lemma in the case 

N = 3 (mod 4) we can find p 1 and p2 smaller than 

This proves the lemma. 

Let~ p 1p2N with p 1 and p2 a pair of primes as in the lemma; the re-
l + duced form g = (a,b,c) at 2 R in G(~) cannot have a= ±N, ±p 1N, ±p2N and 

±p 1p2N since this implies p 1p2 > N whence (4C 1 log2 (8N_)) 2 > N which contra

dicts the fact that N passed Step I of the algorithm. Nor can g have a= -1, 

±p 1, ±p2 or ±p 1p2 since (-1/p 1) = -I; (±p 1/q 1) = -I; (±p/q2) -I and 

(±p 1p2/q 1) = -1 respectively. We conclude that for this pair (p 1,p2) the 

form g provides us with a nontrivial factorization of N. This finishes the 

proof of the correctness of the algorithm. 

We leave a running rime analysis to the reader; it is analogous to the 

analysis of the running time of the algorithm based on computations of class 

groups of complex quadratic orders. 

This finishes the description of the algorithms. 

7. IRREGULAR CLASS GROUPS 

In this section we will consider the structure of the class groups of 

quadratic orders. 

First some terminology: for a finite abelian group A, and a prime p, 

the minimal number of generators of the p-Sylow subgroup of A is called the 

p-rank of A, notation d A. 
p 

By C(n) we denote the cyclic group of n elements. For instance, 

d (C(n)) = I for all primes p, that divide n. 
p 

DEFINITION. Let O be a quadratic order and let ce.(O) be its class group. We 

call ce. (0) irreguZar if ce.2 (0) is non-cyclic, or, equivalently, if 

d ce.2 (0) 2 2. We call d ce.2 (0) the exponent of p-irregularity. 
p p 

REMARK. If pis an odd prime, then ce.(O) is p-irregular iff d ce.(O) 2 2. 
p 
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Although inspection of a list of class groups of orders of small dis

criminantes might suggest differently, irregular class groups do exist! For 

instance the class group of the order of discriminant -3299 is isomorphic 

to C(3) x C(3). Gauss considered the phenomenon of irregularity to be of 

great importance [12]: 

Hoa argwnentum, quod ad arithmetiaae sublimioris rrrysteria maxima 
reaondita pertinere, disquisitionibusque diffiaillimis loaum 
relinquere videtur, pauais tantum observationibus hia illustrare 
possumus, ... • 

In his "Disquisitiones Arithmeticae", Gauss considers irregular class 

groups of both maximal and non-maximal orders. For non-maximal orders there 

is for obvious reasons more irregularity, and indeed Gauss found many exam

ples of this kind. Here we will confine ourselves to class groups of maximal 

orders i.e. class groups of quadratic number fields. 

Recently D.A. BUELL [3] made a list of class groups of complex quadra

tic fields with discriminant> -4000000; it is the largest list available 

up to now, and it appeared that 95.74% of the listed class groups had a cy

clic subgroup of squares, i.e. 95.74% of the class groups were p-regular 

for all primes p. So it seems, that, for complex quadratic fields, irregular 

class groups are rare, and, as it turns out, even rarer for real quadratic 

fields. 

Let us first consider complex quadratic fields. It is easy to construct 

2-irregular class groups with a high exponent of irregularity, e.g. as fol

lows: Let 

ill -3•13, 

ilk+! Llk•p with p the smallest prime_ I (mod 4) 

such that <¾) = I Vqjilk. 

It can be proved, that d2cR.2~(v'i\) k. For example 

63 = -3.13.61.601 -1429779 

and ~(~} has a class group - C(4) x C(4) x C(4) x C(S). So the exponent of 

2-irregularity equals 3. 

It turns out to be very hard, to construct p-irregular class groups for 

odd p. The only example I could find in Gauss' "Disquisitiones", was the 
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maximal order of discriminant -9748. (determinant= -2437 in his termino

logy); the class group is isomorphic to C(3) x C(3) x C(2). 

In the beginning of the 20th century some more examples of p-irregular 

class groups, with p odd, were known, but, it seems, always 3-irregular of 

exponent 2. 

In 1936, G. PALL [26] seemed to have obtained the first new result on 

the matter since more than a century: he claimed, that the field 0)(/-12379) 

has a class group isomorphic- to C(5) x C(5). 

However, 25 years later, in 1961, LIPPMANN [19] proved that the class 

group of (Q(/-12379) is cyclic of order 25. Lippmann used a computer; he also 

gave some correct examples of 5-irregular and 7-irregular class groups, viz. 

c.t((Q( ✓-12451)) ::: c(5) x c(5) x c(Z) 

c.t((Q( ✓-63499)) ::: C(7) x C(7). 

Lippmann also searched for II-irregular class groups, but was not success

ful in this case. 

In 1970, YAMA..'IV!OTO [42] proved, for all n E 7l 21 , the existence of in

finitely many complex quadratic fields with C(n) x C(n) as a subgroup of 

their class groups. A trivial consequence is, that for all primes p, infin

itely many p-irregular class groups exist. 

Yamamoto gave his fields explicitly; he parametrized their discrimin

ants by a polynomial of degree 2n. Consequently, the discriminants of his 

fields, having p-irregular class groups with p large, are huge. 

In 1971, SHANKS [32] using the algorithm discussed in Section 3, found 

that 

c.t((Q( ✓-564552759))::: C(3) x C(3) x C(3) x C(604), 

(564552759 = 3(3 6 +4.19 6)). 

It is the first example of a p-irregular class group with p odd and 

index of p-irregularity > 2. From then on, things go a bit faster; some 

theoretical results are obtained by M. CRAIG [4,5], who proves the exist

ence of infinitely many complex quadratic fields K with d3c.t(K) 2 4, and 

many explicit examples are found by SHANKS and others [6,7,8,9,I0,24,28, 

34,35,36,38,39]. At present the, perhaps disappointing, state of affairs is: 
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p d -/'; 

3 2 3299 [3] 

3 3321607 [3, 7J 
4 653329427 [6] 

5 2 11199 [3] 
3 18397407 [ 11 ,28] 
4 25855935 I 51 I 807 [28] 

7 2 63499 [3] 
3 48054461230325186482685!0536 [39] 

1 I 2 65591 [3] 
13 2 228679 [3] 
17 2 1997799 [3] 
19 2 373391 [3] 
23 2 

,!, + 

d: an integer 2 2, for which a class group Gt'.(0) is known to 

exist with d Cl(O) = d. 
p 

6: smallest known discriminant with d Gt'.(0) = d. For the p-rank = 
p 

2 cases and the 3-rank = 3 case, these discriminants have been 

pPoved to be minimal (in absolute value). 

All examples, with p-rank = 2, have been taken from BUELL's list [3]. 

The 7-rank = 3 example has been found by J. Solderitsch; he used polyno

mials 

D (st)= s 2P - 6(st)p + t 2P p , 

taking p = 7 and (s,t) = (87,85) gives the example. The 5-rank 

found by myself by means of ideas of J.F. MESTRE [21]. 

4 case was 

Perhaps it shouls be indicated that the first examples of class groups 

with high p-rank, for odd p, were usually very large; for instance, the 

example of the class group with 7-rank equal to 3, is, at present, the only 

example known; it is not unlikely, that (say) a IO-digit discriminant exists 

with the same property, but this one has to be found yet. On the other hand, 

the 3-rank = 3 example, given here, is much smaller than the first one found 

by Shanks. At present, many examples of class groups with 3-rank = 3,4 or 

5-rank = 3 are known. 
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As far as the real quadratic fields are concerned, the situation is per

haps even more disappointing. 

As in the complex case we'll confine ourselves top-irregular class 

groups with p odd of maximal orders. In [12] GAUSS says, that he did not en

counter any example of a real quadratic order which is p-irregular for odd 

p; he also expresses his firm belief in the existence of these orders, and 

he was right. 

In 1936, PALL [26] gives the first (correct) example: the discriminant 

62501 determines a maximal order with class group isomorphic to C(3) x C(9). 
6 6 

In 1972 SHANKS [32] finds the prime 188184253 = 3 + 4. 19 ; the field 

Q(ll88184253) has class group isomorphic to 

C(3) x C(3) x C(3). 

In fact, Shanks used this example and an old theorem of SCHOLZ [27], 

that connects the 3-ranks of the class groups of ~( ✓Li) and~(~), to con

struct his example of the complex quadratic field with 3-rank of its class 

group equal to 3, that was mentioned above. Scholz' s theorem implies, that 

every example of a real quadratic field having a class group with high ex

ponent of 3-irregularity implies an example of a complex quadratic field, 

with the same property and vice versa. This explains why we know at least 

some examples of 3-irregular class groups of real quadratic fields. The 

state of affairs is: 

p d 

3 2 
3 3 
3 4 

5 2 
7 2 

11 

t,, 

32009 
39345017 
1284062551036124923952823484951333 
36576494810472771825728504063160227 
16187346251532137647150195799772957 
1129841 
2068117 

[30] 
[6] 

[ 10] 
[16] 
[ 16 J 

In his thesis, Diaz y Diaz announces a proof of the existence of infin

ity many real quadratic fields, admitting C (3) x C (3) x C (3) x C (3) as a sub

group of their class groups, but his proof has not yet been published cf. 

[ 9]. 

Finally, we'll explain how the example of a complex quadratic field K 

with d5ct(K) = 4, that is given above, was found. In order to do this, we'll 
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sketch, how certain polynomials ~(t) e: ,Z [t], may be derived from a 

Weierstrass equation of an elliptic curve E, which is defined over~; these 

polynomials are used to parametrize discriminants of quadratic fields. The 

computations are based on work of J.F. MESTRE [21]. 

Let Ebe an elliptic curve defined over an algebraic number field K; 

assume that Pis a K-rational point on E and that the order of Pis n. Let 

F be the elliptic curve E/<P>; then Fis K-rational and there is a K-isogeny 
¢ -I E ➔ F. If Q E Fis K-rational and RE~ (Q) (not necessarily K-rational) 

then K(R)/K is an unramified cyclic extension of d.egree n, on the condition 

that 

(i) Q is not singular modulo any prime of K; this condition guarantees that 

the extension K(R)/K is unramified. 

(ii) A rather involved condition, which guarantees that K(R)/K is of desree 

n; we do not give the precise condition, since, numerically, it is not 

a very interesting one. 

Recall, that by class field theory, the fact that K(R)/K is unramified cyclic 

of degree n implies that ct(K) ➔> C (n). We shall apply the above to ellip

tic curves defined over~: 

Let x E ~ and find y such that (x,y) E F; the number y will be in a quadra

tic number field K, and we'll apply the above to K. Conditions (i) and (ii) 

boil down to simple congruence conditions on x. 

Mestre's idea is, to find two different points, Q1 and Q2 on F that 

satisfy the above conditions. By submitting Q1 and Q2 to certain conditions, 

he can prove that for n prime, the group C(n) x C(n) is a subgroup of ct(K). 

We do not bother about all of these conditions, since computations suggest, 

that perhaps they are too stringent. 

The computation of ~(t): Fis given by 

2 E;3 
C4 c6 

n - 48 E; - 864 

cf. [22]. Assume E; 1 'F E;2 and 

( 19) 2 E;3 
c4 c6 

E;3 
c4 c6 

n I - 48 E;l - 864 = 2 - 48 E;2 864 
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We take Q1 = (i; 1 ,n) and Q2 = (i;2 ,n) the two (different) points on F and we 

want to compute ~(n). Equation (19) becomes 

(20) 

Now, if c4 is the norm of a number in ~(s3), the curve (20) is a non-empty 

rational conic and it can be parameterized e.g. if a2 + af3 + s2 = c4 , by 

t E ]PI (~) ' 

(21) 
2 

i; (t) = ....!_ (a+f3)t +2f3t-a 
2 12 t2+t+I ' 

Substituting (21) in (19), one easily finds that 

with ~(t) E 7l [t] of degree 8. 

EXAMPLE. If we take E ! F to be x1 (11) + x0 (1 I), (or I IA! I IB in the nota

tion of [22]) then this is a 5-isogeny E ! F, with a point of order 5 in 

ker ¢. We find, that, up to a square, 

Condition (i) now becomes: 

t t 2 , -4 , 4 (mod I I ) , 

Substituting special values fort we find: 

t t,. Gl(~(lli)) 

I -11199 C(5) x C(5) x C(4) 

I /4 -18397407 C(5) x C(5) x C(5) x C(2) x C(8) 

14/25 -258559351511807 C(5) x C(5) x C(5) x C(5) x C(2) x C(4) x C(2957) 
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These are precisely the examples given above. By taking other elliptic 

curves, one can search for other types of class groups. In particular, it 

is possible, to get information on class groups of real quadratic fields as 

well. 

On the other hand, the method is limited in the sense that, using ellip

tic curves that are defined over~. one cannot construct p-irregular class 

groups for p > 7; this is a consequence of B. Mazur's classification theorem 

on the torsion of Y.ordell-Weil groups of elliptic curves defined over Q, 

see [20]. 

8. IMPLEMENTATION 

Shanks' algorithm (see Section 3) has been programmed by some people 

e.g. Solderitsch, Shanks and his collaborators and myself. 

The algorithm discussed in Section 5, has been programmed by me on the 

SARA CDC-Cyber 170-750 cgmputer. At present, four programs are available: 

SHANKS, LONSH, PODISH and LOPOD. 

SHANKS is a program, completely written in PASCAL that determines the 

class group of a complex quadratic order, given its discriminant b., with 

lt>.1 < 2.5 10 14. It is hard to predict the time needed, to compute the class 

group of a given quadratic order; apart from the size of b., also factors 

like the accuracy of the approximation of L(l,x) and the complexity of the 

structure of the class group have their influence on the computing time. 

Roughly speaking, a IQ-digit discriminant takes not more than O. I seconds 

and a 15 digit discriminant takes 0.2 seconds. It is possible to give extra 

data, like an a priori known divisor of the class number, or forms whose 

order in the class group is known beforehand. In computing an approximation 

of L(t,x), SHANKS uses a file of primes: PRIME, which contains, at present, 

all primes~ 240000. 

Apart from the difficulties that arise, when the class group is very 

complicated, the most time consuming parts of Shanks' algorithm are the com

putation of the approximation of the class number and the baby-giant-step 

strategy (both~ lt.1 115+£). In order to have an optimum in costs, some care 

was taken to "balance" the program: the amount of primes used in the evalua

tion of the approximation of the class number depends upon the size of the 

current approximation of the class number; the constants involved are chosen 

in such a way, that the baby-giant-step strategy and the evaluation of the 

approximation of the class number take about the same amount of time. It 
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should be remarked, that for the discriminants of the size, that can be han

dled by SHANKS, only IO to 15% .of the computing time is spent in these "time

comsuming" parts of the algorithm. The reason for this is that discriminants 

of this size are, in fact, a bit too small for the algorithm(!); most of 

the time is spent doing "administration" i.e. computations in the class 

groups, determination of precise orders of forms etc. Considerably larger 

discriminants can be handled by LONSH and only then, a large part of the 

computation time is spent in computing an approximation of the class number 

and in doing the baby-giant-step strategy. 

It was suggested by L. Monier to do the search procedures in the baby

giant-step computations by means of hash-coding [14]. SHANKS gives as output: 

- the structure of the class group of 0(6); 

- the complete factorization of 6; 

- the "precise" value of L(I ,x); 

- a lot• of information on how the group was computed, how good the approxi-

mations were, computing times etc. 

LONSH is a double length version of SHANKS; LONSH computes the class --- --w 
groups of orders with discriminant 6, where 161 < IO . The bulk of LONSH 

is written in PASCAL, but the composition and reduction algorithms are writ

ten in FORTRAN and COMPASS, The CDC assembler language. In fact, since the 

coefficients of the quadratic forms are~ /TiIT, only these parts of LONSH 

differ essentially from the algorithms used in SHANKS. 

LONSH uses the DOUBLE PRECISION facilities of FORTRAN. A 20 digit 6 

will take~ 2 seconds and a 25-digit 6 roughly 20. As indicated before, 

LONSH displays more clearly the order of the algorithm. Concerning transput 

facilities: LONSH has exactly the same possibilities as SHANKS. 

PODISH computes the regulator and the class group of a real quadratic 

order, given its discriminant 6, where 6 < 2.5 10 14. PODISH uses PRIME and 

it performs its searching routines, in determining the regulator, by means 

of hash-coding. 

PODISH first computes the regulator and then, depending on an option: 

"R", PODISH computes the class group. Under the option "R", PODISH only com

putes the regulator, the norm of the fundamental unit E, and if NE= I, the 

factorization induced by the non-trivial reduced ambiguous form in the prin-
1 + cipal cycle, at distance 2 R. Care has been taken to balance the program, 

although this is harder to do than in the complex case. Due to the computa

tions that are performed in the principal cycle to determine the precise reg

ulator, after a "match" has been found, the algorithm is not as sensitive 
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to the accuracy of the approximation of the class number, as in the complex 

case. PODISH gives as output. 
+ . 

- the value of R, L(l,x) and the norm of the fundamental unit; 

- the structure of the class group; 

- information on how the regulator and the class group were obtained, like 

computing times, etc. 

LOPOD is a double length version of PODISH. 

For a detailed description of the programs mentioned here, see [29]. 
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MULTI-DIMENSIONAL CONTINUED FRACTION ALGORITHMS 

by 

A.J. BRENTJES *) 

Part one: 
Multi-dimensional continued fraction algorithms 
and their application to approximation problems 

I • INTRODUCTION 

287 

Multi-dimensional continued fraction algorithms_ are generalizations, in 

a certain sense to be made precise in §2, of the well-known continued frac

tion algorithm (Euclid's algorithm). They can be used to solve a variety of 

Diophantine approximation problems and other problems that can be interpret

ed as such, ranging from the computation of a g.c.d. to the determination of 

units in algebraic orders. Though their iterative nature makes these algo

rithms highly suited for computer implementation, the present state of the 

subject consists mostly of scattered contributions and many questions are 

still open. Without claiming completeness we sketch the theory (§2), give 

some historical remarks (§3 and passim) and discnss a few techniques (§4-6). 

In part two we apply these techniques to the unit problem in cubic fields. 

The material in this paper is part of the author's doctoral thesis [61]. 

Proofs of several statements in this article can be found there. 

2, DEFINITIONS AND EASY FACTS 

n+l In the (n+l)-dimensional real vector space lR we consider a lattice 

n (i.e., a discrete additive subgroup of maximal rank) and an arbitrary non

zero vector £0 defining a line l through the origin O. In several applica

tions n will consist simply of all points with integral coordinates and £0 
will be given as (J,~ 1, ••• ,~n) for some real numbers ~1, •.. ,~n· Denoting 

points of n (and of lRn+l) by capitals we define the cofactors a0 ,a1, ••. ,an 

of a lattice base {A0 ,A1, .•• ,An} by 

*) Supported by a grant from the Netherlands Organization for the Advance
ment of Pure Research (Z.W.O.) 
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they are the coordinates of l 0 with respect to that particular base. 

DEFINITION I. The line l is dependent on n with dependenae rank r if there 

is a lattice base having r cofactors equal to zero whereas no lattice base 

has r+I cofactors equal to zero. In case r = 0 we call l an independent line. 

Notice that r = n if and only if there exists a lattice point different 

from O on l. 

We are interested mainly in lattice bases all of whose cofactors are non

negative; when the points of such a base are projected (parallel to l) on 

then-dimensional subspace l* orthogonal to l, the origin is contained in 

the convex hull of these projections. The projection on l* of a point A will 

always be denoted by underlining:~-

DEFINITION 2. A finite or infinite sequence of lattice bases {A0 (i), ••• 

••• ,An(i)} (i = 0,1,2, ••• ) all with non-negative cofactors a0 (i), ••• ,an(i) 

is called an (n-dimensional continued fraction) expansion of its first ele

ment {A0 (0), ••• ,An(O)} along l, if to each i .~ 0 there exist indices sand 

t (s ~ t) and an integer b ~ I such that 

and 

(3) A.(i+I) = A.(i) 
J J 

for j ~ t. 

The letters s, t, b will always be used with this meaning; it is not 

appropriate to attach the step index i to them. 

DEFINITION 3. Any algorithm to expand along a given line a given base with 

non-negative cofactors relative to that line, is called an n-dimensional 

aontinued fraation algorithm (n-fraction for short 1)). 

From the equality 

I) The term is from SZEKERES [51] 



(4) a A + a A 
s s t t 

it is clear that 

(5) 
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(a -ba )A + at(bA +At) s t s s 

is a necessary and sufficient condition for the base {A0 (i+l), •.• ,An(i+l)} 

to have non-negative cofactors if {A0 (i), ••• ,An(i)} has. In view of at~ 0 

and b ~ I, (5) is equivalent to the combination of 

(6) a ~ at s 

and 
a 

(7) :s; b :s; [ 2-J 
at 

(interpreted as b < 00 when at= 0). In general, therefore, the indices sand 

t can at each step be chosen in (n;l) different ways (and more if some co

factors happen to be equal), after which a number bin the range (7) must be 

determined. Ann-fraction essentially is a procedure to make these choices. 

An algorithm which always chooses b = I is called subtractive; a division 

algorithm always chooses b = [as/at]. Applying these remarks to the case 

n = I we obtain immediately 

THEOREM I. The only one-dimensional continued fraction algorithm is the 

ordinary continued fraction algorithm (Euclid's algorithm). 

(The twin choice in the case of equal cofactors corresponds to a ration

al number having two continued fractions associated with it. With b = I we 

have the subtractive version as it was geometrically interpreted by KLEIN 

[37], with b 

[45].) 

[as/at] we have the usual division algorithm as in PERRON 

We shall now discuss the relation between multi-dimensional continued 

fraction expansions and approximation problems. To that end we introduce a 

height function and a distance function. The height function is a linear 

function h: lRn+l + lR such that h(l0) > O; the subspace h = 0 does not 

necessarily coincide with the orthogonal subspace l*. The distance function 

d measures the distance of a point of Rn+! to l; it must of course have the 

following properties: 
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(a) d(P) ~ 0 for all P, and d(P) = 0 - PE l 

(b) d(\P) = J\Jd(P) for all P and all real A 

(c) d(P+Q) s d(P) + d(Q) for all P, Q 

(d) d(P+\10) = d(P) for all P and all real A 

but no further specification is made yet. Notice that (d) is a simple con

sequence of (a), (b), (c) and is included only to stress the concept. We re

call the fact that, given any two distance functions d, d' as above, there 

exist constants c 1 > 0, c2 > 0 depending only on d, d' such that 

(8) 

n+I · · d · d d' b 1 1 for all PER ; which is expresse by saying that and are a so ute y 

continuous with respect to each other. Now we give the following definition 

of convergent expansions. 

DEFINITION 4. The expansion {A0 (i), ••• ,An(i)} (i = 0,1, ... ) is strongly con

vergent if to any£> 0 there exists an integer j such that 

(9) max d (~ (j) ) < £ 

Osksn 

It is weakly convergent if to any£> 0 there is an integer j such that 

(JO) < £ 

Notice that, by (8), this definition does not depend on the particular choice 

of the distance function; also, the choice of the height function is immate

rial as long as minOSkSn h(~(O)) > 0. 

Not all lines can have strongly convergent expansions; in fact there 

is the following result translating the dependence problem into an approxi

mation problem. 

THEOREM II. If a line l has dependence rank r, then at most n-r+I points of 

a lattice base can be arbitrarUy close to l; in particular, only independ

ent lines can have strongly convergent expansions. 
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SKETCH OF PROOF. Let A0 , ••• ,An be a base of n such that an-r+ 1 = •.• = an= 0; 

U is the (n-r+l)-dimensional subspace spanned by A0 , ••• ,A • By (I), l is _n-r 
contained in U. Leto> 0 be a lower bound for the Euclidean distances to U 

of all lattice points not in U; positivity of o follows from the discrete

ness of n. The distance of any lattice point not in U to l is at least o. 
From absolute continuity of any distance function d with Euclidean metric it 

follows that for sufficiently small E > 0 at most n-r+l points of any lattice 

base {B0 , ••• ,Bn} can satisfy d(Bi) < E. 

Whether or not dependent lines have weakly convergent expansions de

pends on the algorithm these are obtained with. Example: With the algorithm 

of BRUN [ 13], in the case n = 2 only independent lines have weakly convergent 

expansions, whereas from n = 3 onward dependent lines can also have weakly 

convergent expansions. In view of Theorem II we say that an algorithm ex 

defin~tion 3 is strongly (weakly) convergent if it generates a strongly 

(weakly) convergent expansion of any independent line compatible with the 

algorithm's initialization requirements. If a given algorithm is weakly con

vergent, it is seldom difficult to prove this; on the contrary, strong con

vergence if it exists is very much harder to prove. In fact, the first algo

rithm with proven strong convergence was not published until 1979 (FERGUSON& 

FORCADE [25]). 

An important role in the theory of Diophantine approximations is play

ed by the concept of best approximations, whose general definition runs as 

follows. 

DEFINITIONS. A lattice point Bf O is a best approximation @f n to l (with 

respect to the height and distance functions hand d) if there exists no 

lattice point Pf O for which either 

d(P) 5: d(B) and !h(P) I < !h(B) I 

or 

d(P) < d(B) and lh(P) I ih(B) I. 

The sequence of best approximations is infinite in the direction of ·increas

ing height if and only if no lattice point different from O exist_s on l; 

similarly, the sequence of best approximations in the direction of decreas

ing absolute height is infinite if and only if no lattice point satisfies 
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h = 0 except for 0. These remarks follow from Minkowski's well-known theorem 

bounding the volume of convex bodies that are symmetrical about the origin 

and contain no other lattice points. 

In the "classical" theory of Diophantine approximation one works with 

Q = ?ln+l and with t 0 = (1,1; 1, .•• ,l;n) where l;i > 0, i = 1, .•• ,n. Best approx

imations are defined with resuect to the height function 

and the "sup norm" distance function 

(12) 

The unit de-ball in the space he= x0 = 0 is a hyper-cube but in the 

orthogonal hyperplane l* it is a skew hyper-parallelepiped whose shape depends 

on 1; 1, ••. ,l;n. In spite of its arithmetically natural appearance the function 

de is geometrically often unsatisfactory; this is illustrated by a compari

son between recent results of CUSICK [18] and the corollary to Lemma 2 of 

part two below. 

The Euclidean distance function was repeatedly considered in connection 

with cubic fields of negative discriminant (e.g. by VORONOI [54], DELONE & 

FADDEEV [21] ch. IV B, BERWICK [9], DUBOIS [22]; for an explanation of this 

connection see §2 of part two below), but not generally as an alternative 

to (12) until recent (two-dimensional) work by JURKAT, KRATZ,& PEYERIMHOFF 

[36], LAGARIAS [38] considered arbitrary distance functions from a non

algorithmic point of view. 

3. A FEW HISTORICAL REMARKS 

The earliest and most extensively studied multi-dimensional continued 

fraction algorithm is that of Jacobi-Perron. It was first published as a 

two-fraction in a post mortem paper of JACOBI [34] in 1868, and received a 

rigorous foundation in arbitrary dimension in the 1907 thesis of PERRON [44]. 

Its definition, converted to the notation of §2, runs as follows. 

(a) t := o, s := I, 

(b) b ·= Ca/at]; a := a -ba At := At+ b•As; s s t' 
(c) s := cr (s); if t = s then t := (J ( t) , s := (J ( t) : goto (a)' 



where 

cr(x) = {° 
x+l 

if X = n 

otherwise 
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Notice that in (b), b 

ones such that b ~ 

0 must be allowed; but for fixed t there is at least 

(except possibly for the initial t 0). The cyclical 

rotation oft corresponds both in JACOBI [33] and in PERRON [44] to a wish 

for greater formal analytic regularity as compared to the idea of using the 

index of the smallest non-zero cofactor fort, an idea already implicit in 

EULER [ 24]. 

The Jacobi-Perron algorithm belongs to a general class known as Jacobi

type algorithms; they are characterized by choosing s, t and b from no other 

information than the relative size of the cofactors. Clearly no such algo

rithm can effectively be used to obtain best approximations with. For let T 
b . . . n+l . " . e any non-singular linear transformation on R having ~0 as an eigen vec-

tor (with positive eigenvalue). If {A0 (i), ••. ,An(i)} is the expansionobtain

ed from {A0 (0), .•. ,An(O)} by a Jacobi-type algorithm, then the expansion of 

{TA0 (0), ••• ,TAn(O)} is {TA0 (i), ... ,TAn(i)}, i = 0,1,2, .•.• But in general 

TP need not be a best approximation of Tn when Pis one of n, and converse

ly. 

Indeed, the principal subject of study with Jacobi-type algorithms has 

been the question of periodicity (defined by the existence of k0 , m > 0 

such that 

a. (k+m) = a. (k) 
J J 

for O ~ j ~ n and all k ~ k0), i.e. whether some generalization of Lagrange's 

theorem for Euclid's algorithm is true. The main question here is, will the 

expansion of the standard base of n = 7ln+l ultimately become periodical 

when t 0 = (1,w, ... ,wn), where w > 0 is algebraic of degree n + 1? In spite 

of intensive investigations by BERNSTEIN [8] and many others this question 

has not yet been resolved. Variations of the Jacobi-Perron algorithm have 

been proposed by BERNSTEIN [SJ, DAUS [19], GUTING [31]. 

Another Jacobi-type algorithm which has received much attention was 

proposed by BRUN [12] in 1919. Its attractively simple definition is: 

(a) chooses and t such that as, at are the largest and second largest co

factors respectively; 

(b) b := 1; At:= At+b•As; as·= as-bat; goto (a). 
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Actually this algorithm is so obvious that it has, in various contexts, been 

reproposed at least five times, always in the division version with b = 
[a /a]: by PALEY and URSELL [43], ROSSER [47], BARBOUR [3], VAUGHAN [53] 

s t 
and BERGMAN [57]. Note that the division is a mere acceleration of the orig-

inal'algorithm. GBEITER [30] was the first to compare Brun's algorithm sys

tematically with that of Jacobi-Perron. In the present state of knowledge 

the Jacobi-Perron algorithm is weakly convergent in all dimensions; it is 

not strongly convergent when n <! 3 whereas this is an open question for n = 2. 

Brun's algorithm is strongly convergent for non<! 2; its weak convergence 

was proved by GREITER [30]. 

It was only about 1970 that the interest in multi-dimensional continued 

fraction algorithms as a means to solve practical approximation problems 

grew. In that year SZEKERES [51] listed some desiderata which algorithms 

with good approximation qualities should possess. He also proposed an algo

rithm intended to obtain sup norm (12) best approximations with. In slightly 

generalized form with arbitrary distance function his algorithm is as fol

lows: (b = 1 throughout) 

(a) s : = 0 

(b) determine t such that d((At/h(A )) - (A /h(A ))) is maximal 
t s s 

(c) if a < at interchanges and t s 
(d) At := At+ As, a := a - a • goto (a). s s t' 
Weak convergence is quite easily proved for any n. , and though the conjecture 

of Szekeres that the algorithm might never miss a best approximation seems 

a little too strong, it is probable that strong convergence also holds (at 

least for small n). On the other hand, the definition is not easy to handle 

and therefore virtually no theoretical results are known of Szekeres' algo

rithm; there is a paper by CUSICK [17] who verified a conjecture of Szekeres 

concerning one particular example. In practice the algorithm exhibits ex

tremely good approximation properties; on the other hand the thoroughly sub

tractive nature makes the algorithm rather slow. For a comparison between 

the approximation properties of the algorithms of Jacobi-Perron and Szekeres 

see JURKAT, KRATZ and PEYERIMHOFF [36] and VAN DE LUNE and TE RIELE [59]. 

The first algorithm with proven strong convergence was given in 1979 

by FERGUSON & FORCADE [25]; it will be discussed in the next section. 
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4. A STRONGLY CONVERGENT ALGORITHM 

In this section we define a strongly convergent algorithm for any dimen

sion n, based essentially upon an idea of FERGUSON & FORCADE [25]. We shall 

therefore call it the Ferguson and Forcade algorithm (FFA). The method of 

Ferguson and Forcade, published 1979, is the first n-dimensional algorithm 

with proven strong convergence (since it is not yet known whether Szekeres' 

algorithm has this property; see Section 3). A year before, JURKAT, KRATZ 

and PEYERIMHOFF [36] defined a strongly convergent algorithm for n = 2, which 

we shall not discuss since its performance is worse than that of the algo

rithm to be presented in §5. 

We shall define then-dimensional Ferguson & Forcade algorithm FFA 
. n 

using induction on n and starting with the ordinary continued fraction algo-

rithm as FFA1 (see Theorem I). First of all we agree that FFAn will termin

ate as soon as a base is obtained one of whose cofactors equals zero. The 

following theorem will then be seen to hold for every n. 

THEOREM III. Then-dimensional Ferguson and Forcade algorithm FFAn, when 

applied to a base {A0(0), ••. ,An(O)} with non-negative cofactors, will either 

terminate or yield, given any£> O, a base {A0 (i0), ••• ,An(i0)} with 

This is obviously true if n I, FFA1 being the ordinary continued 

fraction algorithm. Now taken~ 2 and suppose FFA 1 has been defined such 
n-

that theorem III holds for it, and let {A0,A1, ••• ,An} be a lattice base with 

non-negative cofactors a0 , ••• ,an. We denote by X•Y the inner product of two 

vectors X and Y, and use the notation IXI = lx7x for the Euclidean length 

of X. Recall also the notation A for the projection on z*, parallel to l, 

of a point A. 

Now if one of a 0, ••• ,an is zero, then FFAn terminates by definition. 

(i) Otherwise, we choose the index k according to 

(I 3) min 
Osjsn 

]A.]. 
-J 

In the n-dimensional space f' the base {A. I j f, k} defines a lattice n* of 
-J 

rank n; the independence of the A., j f, k, follows from ak f, O. Iri z*, let 
-J 

m be the line through O and~- With m0 = -ak~ f, 0 it follows from the 
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projected cofactor relation, 

n 
l a.A.= in= O, 

j=O J-J --v 

that the cofactors of {A. I j #a k} with respect to m0 are precisely the a. 
7 J 

(j #a k). This enables the following construction. 

(ii) To {A. I j # k} and m we apply, in i*, the algorithm FFA I For each 
-J n-

step !t(i+I) = !t(i) + b~(i) (where s,t # k) the corresponding step of FFAn 

will be At(i+I) = At(i) + bAs(i), and ~t(i+I) is again the projection of 

At(i+J) since projection commutes with vector addition. We continue this un

til either a termination occurs in FFAn-J' and hence in FFAn, or a base 

{A0,Aj, •.• ,A~} (with Aic =¾)is reached for -which 

( 14) max d (A!)< oJA. I 
j#k m -J =k 

and 

(IS) for all j # k. 

Here o is a number in the range O < o < ½ /3 (fixed in advance) and dm de

notes Euclidean distance tom. The fact that (14) will be reached if no ter

mination occurs follows from the induction hypothesis. The same is true for 

(JS), because the A., j # k, were independent. 
-J 

(iii) Next we replace the Aj, j # k, by Aj 

b. 
J 

By (IS) we have b. ~ O, and in fact b. is chosen such that for j # k, 
J J 

It is easily seen that the cofactor~ of~(=¾) is still non-negative, 

since (I 6) gives 

- l a'.'A'.'•A_ ~ 0. 
j#k J-J =k 

Moreove.r, when B. is the orthogonal projection on m of A'.' we have 
J 7 
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IB. I < I A_ I 
J .:..1< 

by (16), and hence 

(17) 

in view of (14). 

(iv) 1 
Now if for some j r k IBj 1 ~ zl~I we even have 

IA'.' I ~ I A_ I /l + o2 
-J =k 4 

for that value of j, instead of (17). But if minj,f,k IBjl > il~I we choose 

any j 'f k and replace Aj or ~ by Aj + ~• depending on whether ak ::cc aj' or 

~ < aj respectively. For this j we have 

During the cycle (i) (ii) (iii) (iv) - which we shall call one iteration of 

FFAn - the index k keeps the same value. After (iv) we return to (i) where 

k will, in general, receive a new value. Starting the iteration with 

{A0(i0), ••• ,An(i0)} and ending with {A0 (i 1), ••• ,An{i 1)} we have 

Continuing this way, we obtain a sequence of bases {A0(i0), .•. ,An(i0)}, 

{A0(i 1), •.• ,An(i 1)}, {A0(i2), ••• ,An(i2)}, •.• each resulting from its pre

decessor by an iteration of FFAn' such that 

If no termination occurs, this implies 

lim min IA. (i ) I 0, 
m-+oo j -J m 

since we chose o < ½ /3. 
The proof of Theorem III for FFAn is now ccmpleted by observing that 

after step (iii) we have (17), i.e. 
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max 
j 

JA.(i 1)1 < /i"":? min ]A.(i) I 
-J m+ j -J m 

(.!..+ rhm/2 
4 min 

j 

COROLLARY. For any n, FFA is strongly convergent. 
n 

IA. (i0) I. 
-J 

HISTORICAL REMARK. The original algorithm of Ferguson and Forcade differs 

from the FFA presented here in two respects: 

- It allows negative cofactors. 

- It measures distance by the maximum of the absolute values of a vector's 

coordinates. 

In the case n = 2 the factor~ in (18) can be improved to /1/16+0 2 

for the price of at most two extra steps to be inserted between (ii) and 

(iii); for general n, this is slightly more difficult, for one has to take 

care that (14) remains valid. Notice that a very small o will increase the 

number of steps in (ii) needed to obtain (14) without substantially improv

ing the factor /J/16+o 2. Therefore o = 1/5 seems a good choice, making 

✓!/16+0 2 < 1/3. 

We shall now see how we may obtain a good simultaneous approximation 

to given (positive) a 1 ,a2 E lR, by means of FFA2 (leaving the general case 

to the reader). For various problems one needs a method to obtain one or two 

good (though not necessarily best) approximations - see TIJDEMAN [58] and 

VAN DE LUNE & TE RIELE [59] -, yet FFA2 in itself does not guarantee that 

its approximations are good ones, Take rl=:>Z 3 and i 0 = (1,a 1,a2) in JR3 and 

let the inner product be such that ,e_* is the yz-plane. The projection of 

A = (q,p 1 ,p2) then is 

and we define the number Jq\((qa 1 -p 1) 2 + (qa2 -p2) 2) to be the quality of A. 

It is obvious that for any a 1,a2 there are infinitely many approximations 

with quality 5 2; but »hen£< 2/ill the quality 5 £ is not always obtain-
3 2 able infinitely often, as the example a 1 - a 1 -1 = 0 and a2 a 1 shows. Now 

let {A0,A1,A2} be a base of Q with non-negative cofactors such that,_ say, 

a0 > max(a 1 ,a2). Then we have (Lemma 4.8 of [61]) 



min 
Q:-,j:-,2 

1/sincp 
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where x 1 = a 1/a0 , x2 a2/a0, cp is the angle between !i and !:::i_, and qj is 

the x-coordinate of Aj. Therefore we may expect one of A0 , A1, A2 to be a 

good approximation if we control sincp, say by sincp ~ ½ 13. Once FFA2 has 

given us one point A2 close enough to l for our purpose, we complete it to 

a base of n with A1 such that sincp ~ ½ 13 and with A0 such that a0 .~ a 1,a2 ; 

this is easily done in the obvious way. 

EXAMPLE. Applied to l 0 

with the approximation 

(1,e,~) FFA2 (with o 1/12) stopped after 19 steps 

(26804611, 72862487, 84209169) (quality 1.34 .•• ). 

The above procedure then yielded the excellent approximation 

(286786708, 779567097, 900967015) (quality 0.031 ••• ). 

Another application of strongly convergent algorithms such as FFAn concerns 

the question of linear dependence. Firstly, we can find a dependence rela

tion if we know that one exists. (Example: The determination of the minimum 

polynomial of an algebraic number 'Whose degree is known, by applying the 

algorithm to its powers). Secondly, we can decide whether numbers l,s 1, ••• 

••• ,snare independent if a number Mis known such that either 1,s1, ••• ,sn 

are independent or c0 + E~ 1 s.c. = 0 for some c. E ZZ:, with O < maxlc-1 < M. 
1= 1 1 1 1 

(Example: If a polynomial g(x) of degree~ I divides a polynomial f(x) of 

degree n with at least one real root a, then height (g) < 2n-l (I+ height 

(f))n-2• Using this number as M we can decide whether f(x) is irreducible, 

and if not, find a factor). For the second application one needs a quantita

tive version of Theorem II, such as: 

THEOREM IV. If {A0,A1, ••. ,An} is a base of Zln+I and 

n+l 
then any vector C E ZZ: such that C • l 0 = 0 satisfies C = O or I CI > I /E . 

PROOF. By elementary linear algebra along the line of proof of Theorem II. 
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5. BEST APPROXIMATIONS 

The question whether best approximations with respect to given height 

and distance functions can be calculated by means of multi-dimensional con

tinued fraction algorithms is yet unresolved. In fact the complexity of this 

problem in the case n = 2 is already such that nobody has made a serious 

study for n ~ 3. (As remarked in §3, there is the unverified claim about the 

Szekeres algorithm yielding all best approximations). Therefore most of this 

section concerns the case n = 2. 

Given a best approximation Bone can, using analytical methods, deter

mine all points PE n satisfying 

(18) d(P) < d(B), lh(P) 1 < c 

where c is chosen such that at least one P ,f, 0 satisfies (I 8) (such a c fol

lows from the Minkowski theorem). n being discrete, the number of points P 

in the body (18) is finite and the one of least absolute height clearly is 

the best approximation next to B (in the direction of increasing height). 

Various versions of this method, all for n = 2 and some in the reversed 

direction of decreasing absolute height, have been proposed and elaborated, 

e.g. by MINKOWSKI [40], and FURTWANGLER [26] for the sup norm distance func

tion (12) and by VORONOI [54], DUBOIS [23] for the Euclidean distance func

tion; they are all based additionally on the fact that two consecutive best 

approximations can be completed with a third point to form a lattice base. 

But this method :i.s not a continued fraction algorithm in the sense of de

finitions 2, 3, since it lacks the strictly additive nature. 

Recently the present author introduced a new method in which one does 

not examine the points that are found by an algorithm, but, to the contrary, 

focuses attention on the points that are not found. When we say for conve

nience that a point Pis a positive combination of a lattice base {A0,A1,A2} 

if P = pA0 + qA1 + rA2 with p,q,r ~ O, then this method amounts, in view of 

the additive nature of continued fraction algorithms, to studying points 

that are positive combinations of the i-th but not of the (i+l)th base in 

an expansion. We illustrate the power of the method on the best appproxima

tion problem with Euclidean distance function. As before,! is the projec-
• o* • 3 o tion on ,{. of a point A E JR , parallel to ,{.. The· inrier product of two vec-

tors X and Y is X•Y, and we write 
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(I 9) lx-x; 

furthermore the angle~ (X,Y) is defined by Os ~(X,Y) s ~ and 

(20) IXI IY1 cos HX,Y) = X•Y. 

The Euclidean distance function is then explained as 

d(P) for all P € lR3 • 

The main tool is the following lemma, which at once illustrates the method. 

LEMfA I. Let the base {A,B,C} of n have non-negative aofaators a, b, c, and 

suppose a~ band min(h(A),h(B),h(C)) > o. Also suppose that 

(2 )) 

or 

(22) Vk € Jil, 

If a Zattiae point P; Bis a positive aorrUJination of {A,B,C}, but not of 

{A,A+B,C}, then Pis not a best approximation. 

SKETCH OF PROOF. Let P be a positive ccmbination of {A,B,C} but not of 

{A,A+B,C} and write P = pA + qB +re= (p-q)A + q(A+B) + re (p,q,r € 7l) 

to see that this means precisely q > p ~ O, r ~ 0. From P = (q-p)B+p(A+B) + 

+ rC; Bit follows at once that 

(23) h(P) > h(B). 

Using the projected cofactor relation a!:_ + b! + cC = O we write 

P = (q-p+r(a-b))B + (p-r ~)(A+B) 
C - C --

= (q-p+p(a-b))B + (r-p E.)c. 
a - a -

Therefore we have, either with D C or with D = A+ B, 
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P =TB+ CJD 

with T ~ I, CJ~ 0. 

If (21) holds we remark that Pis not a best approximation when IP!~ 

!~.J (by (23)); if l!'._I < 1!1 one proves, using 1(!,~) s ½ rr, that in th: tri

angle with vertices O, !'._and! the angle at O is smallest, whence l!'._-!I < l!'._I, 

and again Pis not a best approximation. 

If (22) holds, one trivially has !DJ s !Pl, h(D) < h(P) if Pis of the 

form B + k•D; otherwise one puts Q = B + [~JD (so that h(Q) < h(P) because 
T 

T ~ I) and proves l!'._-.9_I < l!'._I, In either case P is not a best approximation. 

I. 

(24) 

(25) 

Ia. 

lb. 

le. 

Id. 

Now we define a two-fraction as follows (always b 1). 

If 

I min f(A.,A.) ~ -3 rr, 
i#j -l. -:] 

define the permutation f, g, h of O, I, 2 by 

s min ( I A I , I A. I) , 
---g ---h 

Then 

if a = 0: s := f, t ·= h· else g 
, 

if 1~+k•~I ~ l!f1 for all k E N: s := h, 

if 1-(Af ,A ) ~ f(A ,~): s := f, t := g; else 
- ---g ---g -

s := g, t := f. 

t := g; else 

II. If (24) does not hold, define the permutation f, g, h by 

(26) 

and takes:= f, t := g. 

JA l 
---g 

REMARK. If one of the points A0 , A1, A2 is on l, i.e. is projected into 0, 

the necessary angles do not exist; therefore we agree that the algorithm 

terminates when this happens. 

Using Lemma I the following theorem about the above algorithm can be 

proved by separate treatment of the five cases. Alongside one proves that 

the algorithm indeed always chooses sand t satisfying (6). 
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THEOREM v. Let the initial base {A0(0),A1(0),A2 (0)} have non-negative co

factors and let h(A.(0)) > O (i = 0,1,2). Also suppose that the initial base 
1 . 

satisfies (24). If the above algop{thm does not terminate and the best approxi-

mation Pis a positive combination of the initial base, then PE {A0(j), 

A1(j),A2 (j)} for some j ~ o. 

In practice (24) will always be satisfied. For instance with Q 

(I , I; 1 , I; 2) ( I; 1 , I; 2 > 0) one has 

I min HA. ,A.) > -2 11 
i#j -1 -J 

if A0 = (1,0,0), A1 = (0,1,0), A2 = (0,0,1) form the standard base. It must 

be noted that the best approximations are not necessarily found in increas

ing order of height. 

The speed of our algorithm (which is subtractive in the form presented 

above) can be adequately improved by the following remarks. If a base does 

not satisfy (24), but the specifications (25) and (26) do give the same f, 

g, h, then we can apply a lb. step instead of a II-step when the condition 

for lb is satisfied. Furthermore, in the two most frequently used steps (lb 

and II) we can replace the subtractive b = I by 

in case II (with I;:= cos)(Af,A) < O), and by 
- --g 

ah 
b = max(!, [a] -

g 

l,¾I 
[!~]sin~(,¾,~)]) 

in case lb, the latter provided that h(Ag+¾) ~ h(Af). 

Application of these remarks turns our algorithm into a kind of "care

ful FFA2"; the validity of Theorem V remains unaffected, 

An investigation, with the aid of Lemma I, of some simpler devices such 

as the greatest angle algorithm defined by 

(27) HA ,A ) = max HA. ,A.) 
-s -t •.J.• -1 -J 

1rJ 

or the inner product algorithm 

(28) A •A = min A.•A., 
-S -t i#j -1 -J 
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stresses the point that the steps must be chosen exceedingly carefully if 

one does not want to miss a best approximation; for though easily proved to 

be strongly convergent, the greatest angle and inner product two-fractions 

occasionally do miss a best approximation. This contrasts with the rougher 

requirement of strong convergence, which was sufficient in §4. 

As to the case n ~ 3 no results whatsoever are known; for instance one 

does not know at all if there exists an n-fraction providing all best ap

proximations. Of course one could, on any given example, try the method out

lined above and look at all points that during each step cease to be posi

tive combinations. But in the absence of a helpful criterium like Lemma I 

that takes care of most situations, this can hardly be an effective algo

rithm. 

6. RELATIVE MINIMA 

Another type of approximation problem concerns the notion of a relative 

minimum of lattice. In lRn+l let a system of coordinates (x0 , ••• ,xn) be given 

(which we may assume to be orthogonal). For simplicity we assume that no 

point of n except for the origin has a coordinate equal to zero. 

DEFINITION 6. A lattice point R = (r0 , .•• ,rn) f O is a relative rrrinirrrwn of 

n if there exists no lattice point P = (p0 , ••. ,pn) f Osuch that 

Ir. I, 
]_ 

i O, ••• , n. 

When R is such a minimum, its x.-successor (R). is the relative minimum in 
J J 

the region 

(29) 1x. I < Ir. I, 
]_ ]_ 

i f j 

with least value of Ix.I (one may fix x. > 0 to define (R). uniquely, but 
J J J 

the other choice is merely synnnetrical about O). Continuing the process of 

constructing x.-successors, the x.-chain {R}. = R,R1,R2 , •.• of a relative 
J J J 

minimum R = R0 is defined by R. 1 = (R.) .. Such chains play a role in cer-
, i+ ]_ J 

tain problems of algebraic number theory (cf. §3 of part two). 

The problem how to calculate the x.-successor of a given minimum can, 
J 

in principle, be solved by a Gaussian elimination process applied to the 

inequaliDies (29) completed with O < x. < c, where the x-es are expressed 
J 



through a lattice base and n+l ·integral parameters; the constant c must be 

so that at least one integral solution exists (take the Minkowski bound for 

instance). From the resulting finite (though perhaps not uniformly bounded) 

number of solutions the x.-successor is the one with least value of x .• 
J J 

Faddeev gave, in the case n = 2, a series of stereometrical considerations 
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reducing the number of points from which the successor must be chosen accord

ing to lowest x., to at most five (DELONE & FADDEEV [21], Ch. IVA). No other 
J 

methods are known as yet. 

The present author has, in the case of n = 2, investigated the question 

whether a continued fraction expansion can be constructed that contains all 

points of a chain of minima, using the same method as explained in §5. 

Though an additional difficulty arises because the points of the chain have 

to be found strictly in increasing order of Ix.I, posing the problem to 
J 

determine at once if a newly found point is a point of the chain, the ques-

tion was answered affirmatively. We sketch the algorithm, writing x,y,z

coordinates instead of x0 , x 1, x2 , for the construction of an x-chain. 

When A En we denote by L(A) the rectangle in the yz-plane with~ as a 

vertex: 

ly I < I a I, 
y 

l zl < I a I z 

if A= (a ,a ,a). A base {A,B,C} of n is called A-positive when PE n, 
X y Z 

.!'._ E L(A) imply that P = (or -P) is a positive combination of {A,B,C}. Note 

that A-positivity implies that the cofactors of the base are non-negative. 

We call {A,B,C} A-regular if Band Care not in the same quadrant of the yz

plane as ~-

Now assume we have a lattice base {A,B,C} with A a relative minimum 

whose x-chain we seek; suppose {A,B,C} is A-positive and A-regular. By A

positivity, all points of the x-chain {A} are still positive combinations 
X 

of {A,B,C}. It is obviously sufficient if we can construct new A-positive, 

A-regular bases until we have a base of 'Which we are sure that it contains 

the successor (A)x and is (A)x-positive and (A)x-regular; we then proceed 

to find the x-chain of (A)x. For clarity we define new n~-coordinates by 

n -y/a 
y 

-z/a2 

so that ~-conveniently becomes (-1,-1); and in n~-coordinates we put 



306 

B = (a,b) 

C = (c,d) 

where, because of A-positivity, we may assume a> b, c < d. The cofactors of 

A, B, Care ad-be, d-c, a-b respectively. By I through IV we mean the quad

rants of the n~--plane; thus A E III. We then have the easy criterium 

LEMMA 2. 

(a) If .!!_ E E (A) and .9. E E (A), then the lowest (?,east Ix I) of B and C is (A) x 

(b) 

(c) 

and {A,B,C} is (A)x-positive and (A)x-regular. 

If~ E E(A), _! E IV\E(A), then C = (A)x and {A,B,C} 

and (A)x-regular. 

If .9_ E E (A) , ! E I\E (A) and ad-be< d-c then (A) is either C or A+B, 
X 

and {A+B,B,C} is (A) -positive and (A) -regular. 
X X 

Furthermore, nearly all steps can be done by one of the following lemma

ta, easily proved by looking at the points that cease to be positive combin

ations and showing that their projections are not in E(A). 

LEMMA 3. If d-c ~ max(a-b,2) then {A,B,B+C} is A-positive and A-regular. 

LEMMA 4. If a ~ I and ad-be ~ d-c then {A,A+B,C} is A-positive and A-regular. 

The remaining situations, those were none of Lemmata 2, 3, 4 apply, all 

have .!!_ i E (A), .9_ i E (A). By an argument of symmetry we may suppose a ~ I, 

whence ad-be< d-c because Lenma 4 does not apply. This in turn easily 

yields O < b < I, c < O. Below we list under what conditions we take what 

new base, and whether the base is still A-positive and A-regular or already 

(A) -positive and (A) -regular. The extensive number of special cases (which 
X X 

could be avoided in §5) is due to the need already mentioned to verify in-

stantly if a certain point whose projection is in E(A) is indeed the lowest 

such point. 

Figure I 

In Figure I four triangles and a 

square have received names referred 

to in the table. 
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if and then (A) 
X 

= new base, is pos. and reg. for 

rB € s b+d > I A+B A+B,B,C (A)x 

b+d < I, a+c < 0 A+B or B+C A,B,B+C A 

b+d < I, a+c > 0 A+B or B+C A+B,B+C,C (A)x 

~ € T3, ~€ T2 B+C E II B+C A,B,B+C (A)x 

B+C EI B+C A+B,B+C,C (A)x - -
B+C € IV B+C A,B+C,C (A) - - X 

~ € T3, ~€ Tl d-c2':a-b, B+C E l: (A) B+C A+B,B+C,C (A)x 

d-c 2': a-b, !+~/ l:(A) A+B+C A+B,B+C,A+B+C (A)x 

! E T4, ~€ T2 !+~ E l:(A) B+C A+B,B+C,C (A)x 

!+~i l: (A), b+d < I A+B+C or B+2C one of A+B+C,B+C,B+2C 
A+B+C,B+2C,C (A)x 
A+B+C,B+2C,A+B+2C 

!+~,1 l:(A), b+d2': I A+B+C A+B,B+C,A+B+C (A) 
X 
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Part two: 
Units in cubic number fields 

I. CUBIC NUMBER FIELDS 

A root e of a rationally irreducible polynomial f(x) E 7l[x] of the 

third degree defines a cubic nwriber field ~(e), consisting of all numbers 

a= x +ye+ ze2 where x, y, z range over the rationals. The other roots of 

f(x), to be denoted e•, e", are the conjugates of 0; the conjugates of a are 

a'= X + y0 1 + z0 12 , a"= X + y0" + z0112 , 

The discrirrrinant D(0) of e is 

As to the sign of D(0) there are two cases. When D(e) > 0 all roots of f(x) 

are real; when D(0) < 0 one root is real and two are complex numbers conju

gate to each other (we shall always assume then, that e is real, and e', e" 

are complex). 

The numbers a in ~(0) satisfying polynomials in 7l[x] with leading co

efficient I form the ring 0(0) of algebraic integers in ~(e). In particular 

their nonn N(a) = aa'a" is an integer, being the quotient of the constant 

term and the leading coefficient. The only element of norm zero is O itself. 

Every cubic field contains a number 0 satisfying 

(]) 3 f(e) _ e - qe - n o 

for some q,n E 7l. For if quite generally p satisfies rp 3 - sp 2 - tp - u = O, 

then the minimal equation for 3rp - s is of the form (I). Moreover, in (I) we 

may assume that no integer k > I exists whose square divides q and whose 

cube divides n; for the equation satisfied by 0/k would also be of the form 

(!), namely (0/k) 3 - q/k2 (e/k) - n/k3 = O. 
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Lastly, when D(8) < 0 we may suppose n > 0, otherwise we could switch 

to -8. From now on we shall suppose that 8 is given by (1) with the restric

tions just explained. The discriminant is now calculated to be 

D(8) 3 2 4q - 27n; 

and a base of the 72:-module 0(8) is, according to a theorem of Voronoi 

(DELONE & FADDEEV [21], §17), 

(2) 1 ' 
8-t 
-0-, 

2 2 e +te+t -q 

a2a 

Here a= 3 if q - 3 (mod 9) and n ± (q-1) = 0 (mod 27) for one of the sign 

choices, otherwise a= 1; and a is the greatest integer whose square divides 

D(8)o-6 and for which the simultaneous congruences 

(3) 
3 3 2 

t - qt - n = 0 (mod a a) 

have a solution t with -ao <ts O. The field discriminant then is 

D(S)o-6a-2 • In the purely cubic case, q = 0, the base (2) can be simplified 

to 

(4) 
l+t 18+t2e2/k 

I , 8, 0 

with a= 3 if n = ±I (mod 9), a= I otherwise; k is the greatest integer 

whose square divides n and t 1, t 2 are congruent (mod a) to nk-2 and to k 

respectively. 

Of special interest are the numbers in 0(8) whose norms are ±1. They 

are the units of 0(8) and form a group under multiplication. The famous unit 

theorem of Dirichlet states that 

- if D(S) < 0 there is one unit s 0 such that ±s~, m E 72: are all the units; 

- if D(8) > 0 there are two units s 1, s 2 such that ±s~s;, m,l E 72:, are all 

the units, with s~si = 1 only if m = l 0, 

The unit s0 and the pair of units s 1, s 2 are called fundamental (in 
-I ab c d fact, with s0 also -s0 and ±s0 are fundamental; the pair s 1s 2 , s 1s 2 is 

fundamental if and only if ad-be= ±1). 
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The determination of the fundamental unit in the case D(8) < 0 is the 

subject of §2; the case D(8) > 0 is treated in §3. 

2. THE CASE OF NEGATIVE DISCRIMINANT 

In this section D(8) < O, so that there is one fundamental unit £ 0 , 

fixed by EO > I. We embed 0(8) into JR.3 by putting 

rl(8) { (a,Re a', Im a') I a E 0(8)}. 

By the additive structure of the ring 0(8), rl(8) is a lattice; the point 

(a,Re a', Im a') will also be denoted by a. Choosing the height function 

h(x,y,z) = x 

and the Euclidean distance function 

we have 

r,;---:j 
d(x,y,z) = ✓y-+z~ 

(5) h(a) = a 

and 

(6) d(a) la' I. 

LEMMA I. If£ is a unit, then£ is a best approximation of rl(8) to the x

axis (with respect to the height and distance functions just introduced). 

PROOF. Suppose a E rl(8) satisfies d(a) $ d(E), Jh(a) I < lh(E) I. 1) By (5) 

and (6) this implies JN(a)I = 1al • la' 12 < 1£1 -2 )£') 2 = !N(E)! = I, whence 

N(a) = 0, i.e. a = 0. 

LEMMA 2. If Sis a best approximation, £ a unit, then SE is a best approxi

mation. 

I) Note that no two points of rl(8) have equal height. 



311 

PROOF. Suppose a E ~(6) satisfies d(a) s d(S£), lh(a) I < lh(S£) I. By (S) and 
-- -1 -1 
(6), this means la'I s IS'£'!, Jal< IS£!, whence la'£' Is IS'I, la£ I< 

ISi, i.e. d(a£-l) s d(S) and lh(a£- 1)1 < lh(S)I. But, S b~ing a best approxi

mation, this implies a 0. 

COROLLARY • If 1 < S 1 < .•• < Sk = £ 0 are the best approximations with heights 

between I and £0, then every best approximation is of the form ±Sf£~ for 

some m E 7l , l E { 1 , ••• , k} • 

PROOF, If Sis a best approximation, then so is ISl£;1 with m defined by 

loglS1 > mlog£0 2'. loglSI - log £0 • But this choice gives I< ISl£~m $ £0 • 

The fundamental unit, and in fact all best approximations, can thus be 

calculated by a best approximation two-fraction such as presented in §5 of 

part one. 

SCME HISTORICAL REMARKS. In the past some small and not always correct tables 

of fundamental units were computed by hand, chiefly by trial and error meth

ods. The oldest one seems to be given by MARKOV [39] in 1891, for cubic 
3 

fields Q( in), n s 70 cubefree (reproduced on p. 304 of DELONE & FADDEEV 

[21]). Other such tables exist from DEDEKIND [20] and CASSELS [IS] (for 

n s 23, n s 50 respectively). REID [46] gave an incomplete table of bases, 

discriminants, units and class numbers for flany fields (I) with !qi s 9, 

1 s n s 9 (reproduced in DELONE & FADDEEV [21], p. 141). WOLFE [56] calcu

lated the fundamental unit of the module M(6) with base {1,6,62} for 

6 = 3/n, 2 s n s 100 cubefree. - This module is not always 0(6); in fact the 

fundamental unit of M(6) might be any power of the fundamental unit of 0(6) 

(see NM::ELL [41], note I), unlike the real quadratic case where the funda

mental unit of the module with base {l, ✓d} is either the fundamental unit 

of O( ✓d) or its third power (NARKIEWICZ [42], p. 112). We note, however, 

that it is relatively easy to decide whether some unit£ in 0(6) is £0 or not: 

Cl 1 . ff. h k . f I /p ' 1 b . . . ( ), f ear y it su ices to c ec i £ is an age raic integer in O 6 or 

primes p, and an upper bound for p can be given e.g. from the fact that 

£0 > 2 for all fields with discriminant not equal to -23, -31 (so that 
2 

p < log£); a somewhat more sophisticated version of this argument was 

developed recently by JEANS & HENDY [35] for the purely cubic case-. 

It was recognized early that the theory of two-fractions provided a 

more systematic approach: the problem has been used as an example of the 

application of nearly all algorithms that have been proposed. 
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The oldest method is to apply a two-fraction to l 0 = (1,w 1,w2) (this 

being a base of 0(0)) and Q = 7l3 • The cofactors of the initial triple 

(1,0,0), (0,1,0), (0,0,1) are I, w1 and w2 so that all later cofactors be

long to 0(8); and one of them may happen to be a unit. This method is spe

cially favourite with Jacobi-type algorithms. For example, GUTING [31] used 

it for 255 values of 0 = 3/;, 2 ~ n ~ 999; he missed several fundamental 

units that should be obtainable with his 16-digit computer precision (e.g. 

n = 34,51). A better result was obtained by SVED [50] who used the algorithm 

of SZEKERES [51]. Often using a hundred or more digits she compiled a table 

of units for 0 = 3/n, 2 ~ n ~ 199. She did not stop after the first unit was 

found, but continued to find more; if all were powers of the first one, it 

was reasonable to expect the first one to be £0 . By means of the algorithm 

presented in §5 of part one, Mr. te Riele of the Mathematical Centre, Amster

dam, checked several of Sved's largest units (which go up to about 6.1095 in 

the case of n = 167) and found them all fundamental indeed. 

A second method is, again to use l 0 = (1,w1,w2) and Q = 7l3 , and hope 

to obtain a periodical expansion with some algorithm. The unimodular trans

formation connected with one period has a unit of ~(0) for an eigenvalue. 

Results of this method are found, e.g. in BERNSTEIN [7] (who used the Jacobi

Perron algorithm). But very often the units obtained this way are not funda

mental; for example, the eigenvalue of the expansion for 0 = 3/2 with Brun's 

algorithm is£~. DAUS [19] gave a completer version of Reid's table forcing 

periodicity on the Jacobi-Perron algorithm by a clever choice of the integer 

b (achieved seemingly through trial and error). 

The characterization of units as best approximations in an appropriate 

setting was first found in the work of VORONOI [54] and BERWICK [9]; later 

DUBOIS [22] also used it, but none of these authors employed a two-fraction 

for actual calculations. 

ANGELL [I] compiled a table of all fields with negative discriminants 

between -20000 and O (there are 3169 such fields), using Voronoi's method 

for the units. In [62] the present author uses the new algorithm of this 

paper, part one, §5, to present a table of fundamental units of all cubic 
3 

fields x -qx-n O with negative discriminant and lql,lnl ~ IO. 

USPENSKY [52] gave a method, based on successive minima of certain 

quadratic forms associated with ~(0), yielding usually the fundamental unit, 

occasionally its square. 
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3. THE CASE OF POSITIVE DISCRIMINANT 

In this section, D(0) > 0. The following technique which guarantees 

that a pair of fundamental units will be found, is due to VORONOI [54] and 

involves chains of relative minima. We embed 0(0) into JR3 by putting 

r2(0) { (a,a' ,a") I a E 0(0)}. 

The point (a,a',a") will also be denoted by a. The additive ring structure 

of 0(0) makes r2(0) a lattice. If a is a relative minimum of Q(0) i·t follows 

from the Minkowski theorem that IN(a)l ~ /J5 where Dis the discriminant of 

the field Q(0); for the parallelepiped 

1xl < Jal, Jyl < la'!, lzl < la" I 

whose volume is 8Jaa'a"1 = 8JN(a) I, must not contain other lattice points 

than 0. Furthermore, we have 

LEMMA 3. If a is a relative minimum, e: a unit, then ae: is a relative minimum; 

moreover if Bis the x-successor of a, then Be: is the x-successor of ae:. 

PROOF. Analogous to Lemma 2. 

Now take any relative minimum a and construct its x-chain {a} of rela
x 

tive minima; let it be 

(7) 

Using the formula IN(a.)1 ~ /J5 and the fact that for given norm there exist 
]. 

only finitely many non-associated elements in 0(0) of that norm, one infers 

that the chain contains two points ak < al whose quotient e: = al/ak is a 

non-trivial unit in 0(0). By Len:nna 3 the chain (7) must be periodical at 

least from~ onward, i.e. it reads 

(8) 

But (8) can also be extended to the left, using Len:nna 3. The two-sided chain 

of minima 
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(9) 

has the property that each element is its left side neighbour's x-successor. 

(Note that (9) does not necessarily contain a0.) 

Through stereometric considerations (DELONE & FADDEEV [21], Ch. IVA) 

the following facts can be shown: 

LEMMA 4, Two two-sided aha.ins of minima of different direations (e.g. an x

aha.in and a z-aha.in) always ha.ve a aommon element. 

LEMMA 5. Two two-sided x-aha.ins have either no or aU elements in aommon. 

Using these facts, the following algorithm due to Voronoi guarantees 

that a pair of fundamental units will be found: 

(a) Choose an arbitrary relative minimum a0 and construct its x-chain 

0 0 < ~I < • '' ' 

(b) Determine £ 1 as the chain's first automorphism, that is 

(I 0) 

(c) 

(d) 

where l > k are such that a./a. is not a unit when l > j > i. 
J 1 

Construct the y- (or z-) chain of ak, say °k = s0 < 81 < .. , , 

Determine the least m ~ I such that Sm is associated to one of the num

bers °k'ak+l'''''al-l' and supposing this to be aj, put 

£ 2 = B /a .. 
m J 

Now £ 1 and £ 2 from (10), (11) form a fundamental pair. 

In §6 of part one it was seen how the calculations in (a) and (c) can 

be done by means of a two-fraction. As to (b) and (d), it is clear that one 

only needs to compare elements of equal norm. 

HISTORICAL REMARKS. In 1976, ANGELL [2] made use of Voronoi's method when 

compiling a unit table for all cubic fields with positive discriminant less 

than 100,000 (there are 4794 such fields), So did WILLIAMS and ZARNKE [55] 

for a table of all fields e3 -qe-n O with Jql,lnl,,:; 50. 

BERWICK [10] proved in 1932 that any two of the units £ 1, £ 2, £ 3 defin

ed by 



I e: j I < I , 

I e: 2 I < 1, 

1 E3 l < I' 

le: II I < I 
I 

I£ II I < I 
2 

I e:3 I < I 
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le:1 I minimal 

le:zl minimal 

I e:" I 3 minimal 

form a fundamental pair. However, these cannot be found by a two-fraction 

algorithm; the algorithm proposed by BILLEVICH [II] does the calculation in 

a very unpractical way (see RUDMAN & STEINER [48]). Another process, rather 

related to Voronoi's, was proposed by BERGMANN [4], DAUS [19] has some suc

cess by his variation of the Jacobi-Perron algorithm. Fundamentality of some 

units of BERNSTEIN [6] was disproved by STENDER [49]. To conclude we mention 

some work on units in cubic fields of positive discriminant that has no con

nection with continued fraction algorithms: GODWIN [27], GODWIN & SEMET [28], 

BRUNOTTE & HALTER-KOCH [14]. 

The special (and easier) case of a cyclic field (where 6', 8 " belong to 

~(6), or, equivalently, D(6) is a square) was considered by HASSE [32], GRAS

MONTOUCHET [29], COHN & GORN [16]. 
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DIOPHANTINE EQUATIONS 

by 

R.J. STROEKER & R. TIJDEMAN 

I • INTRODUCTION 

A diophantine equation is usually defined as an equation in integers or 

in rationals, viz. 

(I) 0 

in the variables x1,x2 , ••• ,xn. Sometimes a more general definition is adopt

ed by asking for solutions taken from other algebraic structures like an al

gebraic number field, the ring of integers of such a field or a finite field. 

But, anyway one should always restrict the solutions to those one could 

rightfully call rational or integral, in some sense. In the present paper we 

shall restrict ourselves to diophantine equations in rational integers. 

It is almost impossible to classify diophantine equations in some sen

sible way. The ad hoc character of the subject, especially of the period be

fore 1930, is shown very clearly in Dickson's famous history on the theory 

of numbers [23]. Some sort of classification, which is useful in practice, 

is based upon methods and techniques used for solving diophantine equations. 

Roughly speaking, diophantine analysis borrows mainly from the following 

fields: 

(a) Elementary Number Theory, (b) Algebraic Number Theory, (c) Algebraic 

Geometry, (d) p-adic Analysis, (e) Diophantine Approximation Theory, and 

(f) Miscellaneous Theories (like Logic, Combinatorics, etc.). 

The most general results are obtained by combining (a), (b), (d) and (e). 

Certain classes of diophantine equations are introduced in Section 2 and 

some existence results about their solutions are given in Section 3. The 

remainder of the paper is devoted to methods for effectively determining the 

complete solution of diophantine equations. There are two parts which can 

be read independently of each other. 
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A. Algebraic methods. Some constructive techniques taken from the fields (b), 

(a), (c) and (d) are illustrated by specific equations. We indicate for which 

parts computers have been successfully used. 

B. A-pproximation methods. We give a survey of the equations which have been 

completely solved by the Gelfond-Baker method. Here methods from (e), (a), 

(b) and (d) have been combined. 

Since rounding errors make the use of computers particularly dangerous 

when approximation methods are being applied, we add a contribution of 

P.L. Cijsouw, A. Korlaar and R. Tijdeman. This appendix describes the numeri

cal treatment of the inequality 

x/2 
$ p 

which is applied in part B. It might also serve as a general indication as 

to how one can make sure that the complete solution of some equation will 

indeed be found. 

Information on diophantine equations in general, also of a historical 

nature, can be found in the books written by BA~MAKOVA [10], MORDELL [46] 

and SKOLEM [ 60]. 

We thank Prof. P.L. Cijsouw, Prof. H,W, Lenstra and Prof. A.J. van der 

Poorten for their valuable remarks on preliminary versions of this paper. 

2. CLASSES OF DIOPHANTINE EQUATIONS 

Most attention has been paid to poZynomiaZ equations where the function 

fin (I) is a polynomial with rational integer coefficients. If n 2, we 

call fa binary polynomial. If f is homogeneous, it is said to be a foY'ITI. 

If f is a binary form and mis a rational integer, then the equation 

(2) f(x,y) m, x,y E :12, 

is called a Thue-equation. If f is irreducible, then this equation is an 

example of a so-called noY'ITI foY'ITI equation. Indeed, let~ be a root of 

f(t,1) = 0 and let K be the number field generated by~ over~- Then 

f(x,y) 



Norm form equations play an important role in solving the so-called 

Weierstrass-equation 

2 
y 

3 
x + ax + b, X,y E ?l 
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where a,b E 7l with 4a3 + 27b2 # O. This equation represents an elliptic 

curve defined over the rationals. On the other hand, any elliptic curve de

fined over~ can be represented by such an equation. A wealth of information 

on this equation may be found in CASSELS' survey article [19]; see also 

ZIMMER [77]. An important special case, obtained by setting a= 0, is the 

so-called MordeZZ-equation, 

(3) 
2 

y 
3 

X + k, x,y E ?l, 

where k # 0 is a fixed integer. This is an example of a hypereZZiptic equa

tion, 

m 
y f(x), x,y E ?l, 

where mis an integer with m 2 2 and f is a polynomial with integer coeffi

cients. 

If exponents are considered variable as well, we speak of an exponen

tial equation. Famous examples are the Fermat equation, 

n n 
X + y 

the PiZ Zai-equation 

n 
z ' 

c, 

n,x,y,z E N, n 2 3, 

m,n,x,y E JN, m 2 3, n 2 2, 

where a, b, care fixed integers with abc # 0, and the Thue-MahZer equation, 

f(x,y) x,y E ?l; 

where f is a binary form and p 1,p2 , •.. ,ps are fixed primes. 

If fin (I) has the special form 
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where n is a fixed integer and x1,x2 , ••• ,Xn are integers composed of primes 

taken from some fixed set S, then we speak of a purely exponential equation. 

Examples of such equations are 

x,y,z,w € lN, x > y, z > w, 

and 

x,y,z,w € lN u {O}. 

There are many equations occurring in the literature which we have not 
-1 -1 -1 -1 yet classified, like the equation x +y + z = 4w in x,y,z,w € lN and 

the Goldbach-equation p1 + p2 = 2n in primes p1, p2 and integer n € lN. We 

shall not deal with unclassified equations in this paper. 

3. SOME RESULTS OBTAINED BY GENERAL METHODS 

A method is called ineffective if it provides a demonstration of the 

finiteness of the number of solutions (possibly by giving an explicit upper 

bound for this number), without providing an algorithm to determine the com

plete set of solutions. The most important ineffective method is due to Thue 

and Siegel, whereafter important extensions were developed by Mahler, Roth, 

Schmidt and others. 

The main theorem of Thue is as follows: 

THEOREM 3. 1. [72]. Let f be a b1'.nary form with coefficients in 7l and of 

degree at least 3. If f is irreducible over IQ3 then for any m E 7l the equa

tion f(x,y) = m has at most a finite nu:rriber of solutions in integers x and 

y. 

If m '/, 0, then the condition "f is irreducible over IQ" can be replaced 

by "f has at least three distinct factors in its factorization in linear 

forms", cf. [55]. MAHLER [42] introduced a p-adic analogue of Thue 's method 

and proved that under the conditions of Theorem 3.1 the greatest prime factor 

of f(x,y) tends to infinity if max(lxl, Jyl) + 00 subject to (x,y) = 1. A 

straightforward generalization yields the following result on the Thue-Mahler 

equation. 

THEOREM 3.2. [55]. Let f E 7l [x,y] be a binary form such that among the 

linear factors in the factorization off at least three are distinct. Let 

P 1,P2 , ••• ,pr be primes. Then the equation 
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has only finitely many solutions in integers x,y,z 1,z2 , ••• ,zr with z 1 ~ 0, 

z2 ~ 0, ..• ,zr ~ 0. 

COROLLARY.[42]. The purely exponential equation 

in integers composed of primes taken from some fixed set S, has only finite

ly many solutions with (x1,x2) = I. 

SIEGEL [56,57] extended Thue's method to hyperelliptic equations. He 

generalized results of Mordell and himself by proving: 

THEOREM 3.3. [57]. The equation f(x,y) = 0 for f € 7l [x,y] has only a finite 

number of integral solutions x, y if the cuwe it represents has genus~ I, 

or has genus O and at least three infinite valuations. 

COROLLARY. [36]. Let m be a positive integer, m ~ 2. Let f € 7l [x]. Put 

f (x) 

with a0 + 0, ai + aj for i + j. Then the equation 

has only finitely many solutions in integers x, y, unless 

(i) all but one number r. are multiples of m; or 
l. 

(ii) all but two numbers ri are multiples of m and all of them are multiples 

of m/2. 

This result covers the Weierstrass-equation and hence the Mordell

equation. 

We end with a result on purely exponential equations which is proved 

by a p-adic analogue of the extension of Roth and Schmidt of the Thue-Siegel 

method. The result is due to SCHLICKEWEI [52] and to DUBOIS and RHIN [24]. 

THEOREM 3.4. Let n be a positive integer. The equation x1 + x2 + ••• + Xn = 0 

in integers composed of primes taken from some fixed set S has only finitely 
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many solutions with (X.,X.) =·I for all i and j with if j. 
:L J . 

Of course, an algorithm is called effective if it provides an algorithm 

to determine the complete set of solutions of a diophantine equation. The 

most important effective approximation method is due to Gelfond and Baker. 

It can be used to derive upper bounds for the absolute values of the solu

tions of equations of different types. For a survey of such results we re

fer to T.N. SHOREY et al. [55]. In particular, there are now effective proofs 

of Theorems 3. I (see BAKER [7]) and 3. 2 (see COATES .[20]), but not of Theorems 

3.3 and 3.4. BAKER [8] gave an effective proof of the corollary of Theorem 

3.3 under the extra condition that f has at least two (three if m = 2) sim

ple roots. Obviously there is an effective proof of Theorem 3.4 if n = 3, 

this being a corollary of Theorem 3.2. 

Part A. ALGEBRAIC METHODS 

4. SOME RESULTS FROM ALGEBRAIC NUMBER THEORY 

The purpose of the following example is to suggest that often the rela

tion between the variables occurring in a diophantine equation can be made 

transparent by simple factorization. By this we mean application of the 

Fundamental Theorem of Arithmetic: any positive integer may be written in 

one way only as a product of primes, except for the order in which the primes 

occur in the product. 

EXAMPLE 4.1. For given k E Z"., k f O consider the equation x4 

x,y E Z". gives a solution of this equation, then (x2-y)(x2+y) 

sor d of k exists such that 

2 
X -y 

Here we may assume 

taking y ;:,, 0. 

2 
X 

Thus 

d and 

that k 
<'. cf 

2 k 
X +y cf 

d > 0, because there is no loss of 

and 

2 
y + k. If 

k and a divi-

generality in 

The number of divisors of k is finite and so it should be immediately clear 

from the above whether solutions do exist and if so how they can be comput

ed. 



If in addition one requires- k to be prime (k = p), then d can have no 

value other than I and consequently 

and 
I 

y = 2 (p- I) • 

327 

This shows that at most one solution in positive integers x and y can exist. 

The prime numbers p < 100 for which the equation is soluble are p = 7, 17, 

31, 71 and 97. D 

Most constructive methods used in diophantine problems apply at some 

stage factorization in certain algebraic number fields. Therefore, we intend 

to formulate a few theorems from the realm of Algebraic Number Theory, which 

in our view are of fundamental importance in the process of solving diophan

tine equations. We shall give no proofs, but confine ourselves to indicating 

the relevant places in the literature. (See also the introductory sections 

of the expositions by H. Zantema and R.J. Schoof in these proceedings, [76] 

and [53].) 

Let K be a number field ( a number field is a finite - and .thus alge

braic - extension of the field ()l) with ring of algebraic integers O = 0 (K). 

An ideal of O has a finite basis. A fractional ideal of O is a finitely gen

erated a-module a F 0, contained in K. Hence, each ideal a F 0 of O is also 

a fractional ideal of O; in this context ideals of Oare sometimes called 

integral ideals. In the set of fractional ideals of Owe define multiplica

tion as follows: the product a•h of the fractional ideals a and his the 

fractional ideal generated by all products aS with a Ea and SE b. In this 

way, the set of fractional ideals of O becomes a group, the so-called ideal 

grcup of K. This group is denoted by I= I(K). 

A direct generalization of the fundamental theorem of arithmetic is 

given in Dedekind's theorem. 

THEOREM 4.2. (see JANUSZ [31], Theorem I.4.2). E'ach fractional ideal a of O 
a1 an 

can he written as a product a = p 1 ••• p n , where the pi' s are distinct 

prime ideals of O and the a. 's are non-zero integers. This product repre
i 

sentation is unique, except for the order inzJtich the prime ideals occur. 

From this theorem it easily follows that the ideal group I is a free 

abelian group generated by the prime ideals of 0. An important subgroup of 

I is the group of all fractional ideals generated by one element only. This 

is the subgroup H = H(K) of fractional principal ideals. The factor group 
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I/H =:cl= ct(K), the so-called class gPoup of K, has the following proper

ty, discovered by Dirichlet: 

THEOREM 4.3. (See JANUSZ [31], Theorem I.II.JO). The class gpoup ct is fin

ite. □ 

The order of ct is known as the class nwnbeP of K, notation: h = h(K). 

h COROLLARY 4.4. Let a be a fPactional ideal. Then a is pPincipal. MoPeoveP, 

if k and h aPe Pelatively pPime then a is pPincipal wheneveP ak is princi

pal. □ 

A widely used theorem is Dirichlet's unit theorem: 

THEOREM 4.5. (See JANUSZ [31], Theorem I.11.19). The unit gPoup in the Ping 

O is the diPect pPoduct of a finite cyclic gPoup of roots of unity and a 

f Pee abelian grnup of mnk r + s - I. He Pe r is the numbeP of peal conjugate 

fields of Kand sis the nwnheP of paiPs of complex conjugate fields of K. 

The meaning of the theorem is the following: in O a set of units 

{s 1, .•. ,sr+s-l} may be found, so-called fundamental units, with the property 

that for any unit n E O rational integers ai exist such that the quotient 

of n and the product sa 1 sar+s-l is one of a finite number of roots of I "· r+s-1 
unity contained in 0: 

n 
r+s-1 

TT 
i=l 

m 
I:; 

The next theorem may be considered the most fundamental tool in the 

process of solving diophantine equations, at least from an algebraic point 

of view. 

THEOREM 4,6. (See also LONDON & FINKELSTEIN [41], Theorem 25, p.70). Let 

O = O(K) be the ring ~f integePs of the nwnheP field K. FuPtheP, let aO be 

a fixed ideal of O and let m be a fixed positive Pational integeP. Then 

thePe exist finite sets E c O and F c O with the following propePty: If 

x,y,z E O satisfy the PequiPements 

(i) x•y = zm, xyz / 0 and 

(ii) the ideal genePated by x and y divides a0, 

then there ape units s 1,s2,s3 EE, elements a,S,y E F and elements a,b E O 

such that 



m x = E 1aa, y and 

PROOF. From the assumption, together with Theorem 4.2 we deduce that the 

principal ideals generated by x and y may be written as 

(x) and (y) 
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where a 1, a2, A and Bare ideals of 0. Moreover, a 1 and a2 are elements of a 

fixed finite set of integral ideals with the property that any common ideal 

divisor of a 1 and a2 also divides a0 • Now, the number of ideal classes is 

finite. Let A belong to class C, and suppose the ideal A' is a fixed ideal 
-I 

of the inverse class C . Consequently, A' belongs to a finite set. Further 

A·A' = (a) for some a E O. Thus 

which shows that (A')m and a 1 belong to the same ideal class. It follows 

that a 1/(A')m is a (fractional) principal ideal, generated by a EK, say. 

Then (x) = (a)(a)m and hence 

m 
where E1 is a unit. Now El may be written as El= n1-n 2 , where the unit n1 

m can assume only finitely many different values. Moreover, n2 may be absorbed 

by am. From its definition it is clear that a may be chosen fran a finite 

subset of K. The remainder of the proof now follows easily. D 

REMARK 4.7. If in addition a0 = (I) and m and hare relatively prime, then 

with a,b E O and finitely many possible values for the units E1, E2 and E3. 

Indeed, from (x) = Am and (m,h) = I it follows that A is principal by 4.4. D 

EXAMPLE 4.8. We return to Example 4.1, but now we take k p2 , where pis a 
2 given prime number. The positive divisors of k are I, p and p. Ford= I 

. 2 I 2 I 2 
we find x = 2 (p + I) and y = 2 (p - I). This is the only possible value 

ford, since d = p yields x2 = p. Hence 
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which also may be written as 

This ·expression means that p + xl2 is a unit of O(K) with norm -1; here K 

~(12). The group of units of O(K) is obvious: l and -1 are the only roots 

of unity and E = l + 12 is a fundamental unit (i.e. E generates the free abe

lian unit group; r + s - l = 1). Since we may assume x to be positive, we 

find that 

p + x/2 

for some non-negative rational integer k. This means also that the prime p 

can be written as 

p (k E :;z, k 2 0), 

A different formulation of the problem may be given as follows. Let 

the sequence{~} and {bk} be defined by 

k E :;z, 

The sequence {ak} complies with the recurrence relation 

k E :;z 

with initial conditions a 0 = l, a 1 = 7. (The sequence {bk} satisfies the 

same recurrence relation, however with a different set of initial values.) 

Because the sequence {ak}kzO is increasing, we conclude that the original 

diophantine equation is soluble (with a single solution only) if and only 

if the prime p appears in the sequence {~}kzo· The prime numbers p < 1000 

for which a solution exists are p = 7, 41 and 239. 

We could also treat the equation 

4 
X 

2 2 
y + p ' p prime 
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in a different way. If x, y gives a solution, we write 

x4 (y+pi)(y-pi). 

Thus we factorize the right hand side in O(L) with L = IQ(i). Here h(L) = 1, 

the cyclic group of roots of unity is {1,-1,i,-i} and the-free abelian unit 

group is trivial, because r + s - 1 = O. It is not difficult to prove that 

p cannot possibly divide both x and y. This implies that the only possible 

connnon prime ideal divisor of (y+pi) and (y-pi) is (I +i). Now by 4.6 with 

m = 4 and a0 = (1 + i) it is easy to show that 

withe:€ {1,-1,i,-i}; a€ {0,1,2,3} and A€ O(L). From No~/IQ(y+pi) 

it then follows that a= O. Thus 

. ( . )4 { 4 6 2 2 4 "(4 3 4 3)} y+p1.=e:u+1.v =e:u- uv+v+1. uv- uv 

4 
X 

for certain u,v € 7l. Because of the primality of p, we must have e: ±i. 

Then equating coefficients of 1 and i gives 

±p 4 2 2 4 
U - 6u V + V , +Y 

2 2 4uv(u - v ) , 2 2 
X = U +V 

where the± signs correspond as indicated. This gives rise to the generally 

very difficult representation problem of type (F=(Q(S)) 

with [F:(Q] = 4. We shall discuss such problems in Section 6. 

The positive values of u and v corresponding with the solutions (x,y) 

of the original equation with p = 7, 41 and 239 are (u,v) = (1,2), (2,5) 

and (5,12) respectively. 

5. THE MORDELL EQUATION 

A fundamental problem when studying diophantine equations is the ques

tion of solvability. And further, assuming a given equation is solvable, how 

many solutions are there? A very important problem, closely related to the 
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previous one, is the question of the actual (and practical!) computation of 

the existing solutions, or in case infinitely many solutions exist, can they 

be characterized in a simple way (such as parametrization)? 

Very little is known about solvability criteria: on the one hand it is 

quite often easy to show the insolubility of a given equation by means of 

impossible congruences (see: NAGELL [48], Chapter VII and MORDELL [46], 

Chapters 2, 26; see also BOREVICH [14] Problem 4 on p.3), and, on the other 

hand is the proof of the existence of solutions nearly always constructive. 

For the sake of simplicity, we shall only consider binary polynomial 

equations in this part. Of all such equations the homogeneous ones (Thue 

equations, see Section 2) can be more systematically dealt with than the in

homogeneous equations. Very often an inhomogeneous equation can be reduced 

to one or more (but finitely ~any) norm form equations. These latter equa

tions are discussed in the next section. For the moment we intend to give an 

outline of this reduction process by considering the Mardell equation (Sec

tion 2, equation (3)). 

THEOREM 5.1. (see MORDELL [46], Chapters 24, 25 and 26). Solving the equa

tion x3 = y2 + k (k E 7l, k f 0) in rational integers x and y is equivalent 

to each of the following: 

(i) solving finitely many equations of type f 3 (u,v) =min rational inte

gers u and v, where the f 3 are binary cubic forms of negative or posi

tive discriminant ask is negative or positive respectively. 

(ii) solving finitely many equations of type f 4 (u,v) =min rational inte

gers u and v, where the f 4 are binary quartic forms of negative dis

criminant. 

From Thue's theorem (Theorem 3.1) it follows immediately that the 

Mordell equation admits of at most finitely many solutions. Although we 

shall not attempt to prove Theorem 5.1, it may help to know that equations 

of type f 3 (u, v) = m are obtained by the factorization of y2 + k into prime 

ideals of a quadratic number field, whereas the factorization of x3 - k into 

prime ideals of a cubic extension of~ yields equations of type f 4 (u,v) = m. 

In the following example we shall go into more detail. 

EXAMPLE 5.2. (See STROEKER [64]). In this example we intend to give a rather 

sketchy proof of the assertion (note that we follow Theorem 5.1 to the let

ter): the solutions in integers x and y of the equation 



3 2 
X - 7y 

are determined by the solutions in integers u and v of 

(i) u3 - 2 luv2 

u3 - 42uv2 + 98v3 
l, and 

l • 

but also by those of the equations 

(:ii) 4 84u2v2 - 392uv 3 588v4 u - -
4 16su2v2 - l,176uv 3 2,352v 4 u - -
4 

924u2v2 15,288uv 3 4 u - - - 71,148v 

3 2 
Note that a solution (x,y) of x - 7y 

(X,Y) = (7x,72y) of the Mardell equation x3 

I, 

I, 

I. 

and 

I gives rise to a solution 

y2 = 73. 

2 
Firstly, we factorize 7y + I in prime ideals of O (K) where K 

Thus 

( l + yH) (I - yH) 3 
X • 
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The number field K has the following fundamental properties: the class num

ber h(K) = and {1,w} with w =½+½His a basis for O(K) and 2 = w•w. 

Common prime ideal divisors of (l + yH) and (I - yH) are possibly (w) or 

(w) and no others. Hence 

l - y + 2yw I+ yH 
a - 8 3 (w) (w) (a+ bw) 

with a,8 E {O, 1,2} and a,b E ::z. Taking also the conjugate equation into 

consideration, we see irmnediately that a,+ 8 = 0 or 3. If a, = 8 = O, then 

comparison of coefficients of land w left and ri3ht, and subsequently eli

mination of y from the resulting equations, yields 

u 3 - 2 I UV 2 = l • 

Here u and v are defined by 2u = 2a+b, 2v b. If a, 

similarly we obtain the equation 

u3 - 42uv2 + 98v3 = l, 

l and 8 2, then 
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where u = a+ 4b, v = b. Analogously, the assumption a = 2, S = 1 leads to 

the same equation in u = a - 3b and v 

our assertion. 

-b. This proves the first part of 

Secondly, factorization in 7l of x3 - 1 yields 

This furnishes the three possibilities: 

x-1 

x2 + x + 1 
with (A,\J) (1,7), (3,21) or (21,3). 

2 
Note that hcf(x-1,x +x+l) = I or 3. Now the particulars of the number field 

L = 111(p), where pis the third root of unity p =½+½~.are: h(L) = I 

and {I ,p} is a basis for O(L), the cyclic group of roots of unity is gener

ated by p and the free abelian group of units is trivial, because r + s - I= 0. 

For A= I, \J = 7 we write 

x-1 
2 

a ' 
2 (x+p) (x-p ) 

From Theorem 4.6 we deduce 

s 2 x + p = ±a(l-2p) (c+dp) , 

where a E {2+p,3-p}, s E {0,1} and (c,d) E 7l2 • Note that units may be absorb-
2 s 2 2 2 

ed in the square (c+dp) • From No~1111 (x+p) = 7.3 (c +cd+d) and also 

No~/IQ(x+p) = 7b 2 , one deduces immediately s = 0. The choice a = 3- p leads 

to a contradiction when considering congruences mod 4 and mod 3 successive

ly. On the other hand, if a = 2 + p then equating coefficients yields 

X = and 

Because of a 2 x-1 c 2 - 8cd- si . )2 2 . (c - 4d - 21d , we may wn.te 

21i (c - 4d - a) (c - 4d +a). 



Further, from hcf(c - 4d- a,c- 4d + a) 

prime integers u and v such that 

c - 4d + a 
2 

2u , c- 4d- a 
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2, we deduce the existence of co-

2 42v , d 2uv. 

The second possibility, namely c-4d+a = 6u2, c-4d-a 7 14v2 and d = 2uv, 

gives rise to an impossible congruence mod 5. Now, on substitution of c = 

u2 + 8uv + 21v2 and d = 2uv into c2 + 6cd + 2i = 1, we find 

4 3 2 2 3 4 u + 28u v+ 210u v + 588uv + 441v = I. 

The unimodular transformation given by the matrix ( 1 7) carries this equa-0 -1 
tion to the equation 

u4 - 84u2v2 - 392uv3 - 588v4 1. 

Similar arguments are used to obtain the other two norm form equations. D 

Assertions like those stated in Theorem 5.1 are true for a larger class 

of equations than merely the Mordell equations. This becomes evident in the 

following example. 

EXAMPLE 5.3. (See STROEKER [68]). In this example we consider the equation 

2 2 2 2 (2y - 3) = X (3x - 2), 

We shall show, at least in outline, that solutions of this equation in in

tegers x and y are determined by those of the equation 

in integers U and V. To be precise, this connection is given by 

lxl u2 - 2UV + 4V2 and 2 2 
lyl = U + 2UV - 6V. 

Suppose x,y EN solve the original equation. Then a positive integer 

z exists such that 

3x2 - 2 2 
z and 2/ - 3 xz. 
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It is easy to see that both x·and z must be odd and 1 s x s z. On setting 
I 1 u = 2 (z+x) and v = 2 (z-x), one finds the relations 

and 

H 1 2 2 6 2 y2 and thi" s . b . tt ence, a so u - uv + v equation may e wri en as 

where u is even, vis odd and the factors of the left hand side are relative

ly prime. Moreover, these factors both have negative sign. Thus 

v- 3u = ½ (v- 3u-y) + {<v- 3u+y) = -a2- 7b 2 and u = 2ab 

for certain co-prime integers a and b. On substituting of u 2ab, 

v = -a2 + 6ab - 7b2 into u2 - 4uv + v2 = I, the equation 

is obtained, from which the required result follows. 

Finally, we note that the original equation in x and y, represents an 

elliptic curve defined over 0). The ·group of rational points on this curve 

is generated by the point (x,y) = (3,3). There is only one other solution 

in positive integers, namely (x,y) = (1,1). D 

6. NORM FORM EQUATIONS 

Let f n 
fn(t,l) = 0 

of fn ( t, 1) 

be an irreducible (over <Jl) binary form of degree n. A root 0 of 

gives the extension K = <Jl(0) of Cl of degree n. The other roots 

= 0 are the field conjugates of 8 and fn(x,y) = No~/~(x-ye). 

Solving an equation of type 

(m E 7l, m # O) 

in rational integers x and y generally boils down to solving a finite num

ber of equations of the form 

(4) X - y0 
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where a takes only finitely many.different values in O = O(K) (this number 

depends on the factorization of (m) into prime ideals of O), and e: runs 

through the unit group of O. What makes equation (4) so special is the fact 

that the left hand side does not contain the basis elements e2, ••• ,en-l. 

Hence, for each value of a, the expression (4) asks for units e: of a very 

special type. Consequently, each equation (4) is equivalent to finitely many 

sets (depending on the number of roots of unity contained in O) of n - 2 

equations in the exponents of fundamental units. In case the number of fund

amental units (which is the rank of the free abelian unit group viz. r+s-1), 

agrees with the number of exponential equations mentioned above (this number 

is n-2 = r+2s-2), then SKOLEM's p-adic method [61] is applicable; see 

also LEWIS [38]. In Example 6.3 we shall give a brief discussion of this me

thod. We shall illustrate these contemplations by some examples. 

EXAMPLE 6. I. (See NAGELL [48], Chapter VI). Suppose (x,y) E 'll. 2 gives a solu

tion of the quadratic equation 

15x2 - 20xy + 6y2 I, 

On setting u = IOx - 6y, v = x this equation becomes 

u2 - IOv2 6. 

If K = ~(/io) then h(K) = 2 and {l,w} with w = /io is a basis for O = O(K) 

and e: = 3 + w is a fundamental unit of norm -I (see the tables of quadratic 

number fields in BOREVICH[i4], pp. 422-427). Further, 2 and 3 factor into 
2 ideals of Oas follows: (2) = p and (3) = q•q' where p = (2,w), q = (3,l+w) 

and q'= (3,1-w). Hence 

2 2 
u - JOv = No~/~(u+vw) 

and this gives in terms of ideals of 0 

(u+vw) p•q or p•q'. 

It is not difficult to prove that p•q 

quently 

6 

(4+w) and p•q' (4-w) and conse-
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u + vw 
· 2k 

±(4±w) (3+w) 

with k E ~ and independent± signs. If we assume both u and v to be posi

tive (this is no loss of generality) then we may drop the first± sign. As 

in Example 4.8 the solutions can be determined by means of recurrences of 

order two. It turns out that there are infinitely many. The first few values 

of u and v are: (u,v) = (4,1), (16,5), (136,43), (604,191) etc., and the 

corresponding values of x (> O) and y are: (x,y) = (I, I), (5, 11), (43,49), 

(191,419) etc. 

Continued fractions are also used quite frequently when dealing with 

quadratic equations (see LeVEQUE [37], Chapters 8 and 9). D 

6 5 2 ( ') . 3 21 2 I • EXAMPLE • 2. We return to example . . i . The equation u - uv = is 

trivially solvable: the only solution is u = I, v = 0. The cubic equation 

is anything but trivial. The discriminant D of f 3 is positive, tp be precise 

D = 233373 and this means that the equation f 3 (t,l) = 0 has three real roots 

e 1, e2 and e3 say. For each i = I, 2, 3 the number field Ki= ~(ei) has a 

free abelian unit group of rank 2. Hence 

u3 - 42uv2 + 98v3 = I and 

is equivalent with 

u - ve. 
i 

where {E 1,E 2} is a set of fundamental units of0(Ki). This gives rise to 

only one equation in the two unknown exponents m1 and m2 ; Skolem's method, 

referred to above, is not applicable in this case. Considering also the con-

jugate equations, one may try factorization in an extension of Ki. That this 

could get very complicated is apparent from LJUNGGREN [40], where the simi-
1 . 3 2 3 ar equation x 3xy - y I is treated. 

The fact that f 3 (u,v) = I can be solved after all, is a consequence 

of the relation which exists between the solutions of this equation and 
3 2 

those of x - 7y = I; the solutions of the latter equation are in turn re-

lated to those of the three norm form equations of 5.2 (ii), which can be 
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solved by Skolern's p-adic method .. The equations f 4 (u,v) = 1 are found to 

have the solution (u,v) = (1,0) and only the third equation has the addition-
3 2 

al solution (u, v) = (I 3,-1). Further, the only solutions of x - 7y = 1 are 

(x,y) = (2,1), (4,3) and (22,39). For all this and the corresponding rela

tions we refer to [65]. 

The implication of these results is that the equation 

has no other than the following three solutions: (u,v) 

(9,2). D 

(I ,0), (-3,-1) and 

EXAMPLE 6.3. (See STROEKER [67]). Now we shall give an example of the use 

of p-adic arguments. We consider the quartic norm equation 

9 3 The discriminant of f 4 equals -2 3 and thus f 4(t,l) = 0 has two real roots 

and one pair of complex conjugate roots; r + 2s = 4, r = 2. and s = 1. Let 0 

be a real root of f 4(t,l) = 0. Then the ring O(K) of K = Q(0) has a free 

abelian unit group of rank 2. Since K is a quadratic extension of Q(/3), it 

easily follows that {l,0,02,0 3} is a basis for O(K). It is also reasonably 

easy to establish that {1+0,1-0} is a fundamental set. From 

or No~/~ (u-v0) 

we deduce 

(5) e f u - v0 = :!:(1+0) (1-0) 

with e,f E '2. If we do not specify the sign of u and v, then the ± sign 

in (5) may be dropped. Further, it is no restriction to assume e ~ f. Now 

(6) e-f 2 f u - v0 = (1+0) (1-0 ) . 

We have mentioned Skolem's method on previous occasions. In the setting 

of the present example, this p-adic method may be described as follows. Ex

pand the right-hand side of equation (6) in a power series in 0. Since the 
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coefficients of e2 and e 3 of the left-hand side of (6) are zero, this leads 

to two equations in the unknowns e and f: 

(7) I 0 (k I ,2) 
i,j 

(k) 
with rational integer coefficients c ... Suppose that for some rational 

l.J 

prime p the power series mentioned above converges for all integer p-adic 

values and further suppose that for this prime p the congruence equations 

(8) I (k I, 2) 
i,j 

are independent. Then there can only be finitely many pairs of p-adic values 

(e,f) satisfying (8). And this means that there are only finitely many ra

tional integer values fore and f satisfying (7). In practice, all but a 

finite number of values of the exponents e and fin (6) may be eliminated 

by considering congruences modulo a power of p. See SKOLEM [60], [61]. 

We return to our example. For reasons of simplicity we assume v to be 

odd. Because of 

2 I - (e+f)8 + 2( ••• ) , 

e - f is also odd. Put 2n + e - f. We intend to show that n 

Then from 

we deduce 

(9) 

(l+e/i+I = a. 
l. 

+ b.8 + c.e 2 + d.e 3 • 
l. l. l. 

u - ve 

a d 
n n 

2 3 2 f (a +b e+c e +de )(1-0) 
n n n n 

b C • 
n n 

O. Define 

Knowing that there can be at most finitely many values for n, we consider 

only this equation (9) instead of the two equations one would obtain using 

Skolem's method. 

Let ai and Bi be given by 



2i 
9 a.+ s.0 2 

l. l. 
(i e: ?l) • 

Then after some calculations, we obtain the expressions 

n 2n+I n 2n+l 
a 2 I ( 2. ) S. 1' b 2 I (2j+l)Sj-1' n j=O J J- n j=O 

n 
(2tl)S. 

n 2n+l 
C I and d I (2j+l)Sj. n j=O J J n j=O 

Substituting these expressions for an, bn' en and d into the relation 
n 2 

andn = bncn' yields, after dividing through by 4(n+1)(2n+l) , 

o, 

where the rational numbers rij(n), defined by 

r .. (n) := (j-i)/(2i+l)(2j+1)(2n-2i+1)(2n-2j+l) 
l.J 

are 2-adic integers, i.e. they have odd denominators. 
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Now suppose n ~ 1 with 2-adic value m (this means that n contains pre

cisely m factors 2 in its prime decomposition). Then it is easy to show that 

for any pair (i,j) with i ~ 0 and j ~ 0 (i = j = 0 is excluded) the (i,j)th 

term in the double sum above has 2-adic value at least m + I, with the single 

exception of the (O,l)th term, which has 2-adic value m. This is a clear 

contradiction, because the total sum equals zero. Hence n = 0. Then 

2 f u - v9 = (1+9)(1-9) , 

and this is only possible when f = O. Consequently, (u,v) = (1,1) is the 

only solution of the original equation f 4(u,v) = 1 with positive u, v and 

odd v. For a nice application of Skolem's method, see MORDELL [46], p.207. 

See also STROEKER [65], [66], [67]. □ 

7. COMPUTATIONAL CONSIDERATIONS 

From the previous sections it is clear that in the process of solving 

a diophantine equation one is often confronted with -the necessity of comput

ing: 
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(i) The class number of a nuni8er field. 

There are computer programs for calculating the class number of quadra

tic number fields (tables can be found in BOREVICH [14]), pp. 422-427 

and cubic number fields (cf. the tables by SELMER [54] and ANGELL [4], 

[5]). In case one is dealing with a norm form equation of type f(x,y) = 

1, one only needs to have information on units; kno~ledge of class 

numbers of number fields involved is of little importance here. But 

when studying equations of type f(x,y) = m I 1, the prime ideal decom

position of (m) plays an important part; in particular, one needs in

formation on the class group in such cases. Most practical methods for 

calculating the class number of a number field K = ~(0) use the fact 

that each ideal class contains an integral ideal of bounded norm (this 

bound M(K) only depends on K). By inspection of principal ideals of 

small norm, generated by elements of type u + ve (u, v E :CZ), it is often 

possible to select a maximal set of inequivalent ideals representing 

all classes, and such that the norm of each ideal is bounded by M(K). 

In this way one may find the class number of K. For further information 

the reader should consult the relevant parts of BOREVICH [ 1-4] and 

JANUSZ [31]. See also ZANTEMA [76]. 

(ii) A basis for the ring O(K) of a nwnber field K. 

Usually, this is not very hard. A well written description of the com

putation of a canonical basis is given in HOLZER [29], pp. 119-130. 

See also ZANTEMA [76]. 

(iii) A set of generators of the free abelian group of units (a fundamental 

set) in the ring O(K) of the nwnber field K. 

This is a very important, and often difficult part of the methods de

scribed in this exposition. 

We shall briefly mention a method due to BERWICK [12]. For more informa

tion we refer the reader to BRENTJES [17] and ZANTEMA [76]. Let K be a num

ber field with a fundamental set of cardinality 2. For instance, let n = 4, 

r = 2 ands= 1. According to BERWICK [12], p. 367, the free abelian unit 

group of O(K) is generated by each couple of units defined by: 

( I) E 1 > and minimal, Ii::' I < 1, c"E" < 
I 1 1 

(2) I i:: 2 1 < 1 , E:' > and minimal, E"£" < 2 2 2 

(3) li:: 3 1 < 1 ' IE' I < 1, 1i::"I = 12'1 > 1 and minimal. 3 3 3 

(i:: i' c'.' and E'.' are the field conjugates of E: •• ) 
1 1 1 
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In addition we have E1E2E3 = 1. An algorithm for computing the units Ei can 

be devised as follows: let each of the restrictions (1), (2) and (3) succes

sively be imposed on 

where {w 1,w2 ,w3 ,w4 } is a basis for O(K). Since the wi have known values, we 

get conditions on the rational integers a, b, c and d, So this provides E 

with something like an "ideal ratio" a: b: c: d for the No~/IQ(E) to be 

small (this process also can be used when calculating class numbers; see 

under (i) at the beginning of this section). A very clear exposition, with 

many examples, is given in LONDON & FINKELSTEIN [41], p.81 etc.; here the 

algorithm in question is called the scaling algorithm. 

Sometimes it is sufficient to use a full set of independent units in

stead of a fundamental set; these independent units should behave like funda

mental ones modulo powers of a suitable rational prime (see STROEKER [65]). 

COGHLAN and STEPHENS [21] essentially used Berwick's method to deal with the 

remaining 20 difficult cases of the Mordell equation (3) with O < !kl s 100. 

In [75] WILLIAMS and ZARNKE use Voronoi's algorithm (see DELONE and 

FADDEEV [22]) to compute the fundamental unit of IQ(d 113) for 2 s d s 15,000. 

Hence the equation x3 + dy3 = 1 is solved in the range indicated. In WILLIAMS 

and HOLTE [74] these results are extended to 

WILLIAMS [11] solved the equation x4 dy4 
l 

the fundamental unit of ~(d 2 ). This was done 

fraction algorithm. 

d s 50,000. Finally, BEACH and 

for 2 s d s 106 by computing 

by employing the continued 

Part B. APPROXIMATION METHODS 

There exist algorithms which can be employed to obtain all solutions 

of certain diophantine inequalities. For example, the continued fraction 

algorithm enables one to parametrize all solutions x,y E ~ of the inequal

ity lx2-dy2 i < /a, where dis some fixed positive integer. Furthermore, 

W.J. Ellison proved by Baker's method that 

for all x,y c lN with x > 27 

and F. Beukers showed by a variant of the hypergeometric method of Thue, 
2x+l 2 -50+x/5 

Siegel and Baker that 12 -y 1 > 2 for all x,y E JN. These results 
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are based on approximation properties of certain numbers; in the examples: 

Id, log 3/log 2 and /z, respectively. These results make it possible to 

determine all solutions of such diophantine equations as ·zx_ 3Y = 5 and 

x2 + 7 = zY. The advantage of solving diophantine equations by approximation 

results is that the methods are general and not especially dependent on the 

particular value of the constants. However, it is often true that the more 

general the method is, the larger are the upper bounds for the solutions. 

Sometimes these upper bounds can be reached by aid of computers, but in many 

cases they are too large. We shall give some examples of equations which have 

been completely solved by approximation methods. 

8. POLYNOMIAL EQUATIONS 

We consider equations P(x 1 ,x2 , ••• ,xn) = 0 where P E 7l [x 1 ,x2 , ••• ,xn] is 

fixed and x 1,x2 , ••. ,xn E 7l are variables. In all but one case n = 2. For 

algebraic methods to solve such equations we refer to Part A of this paper. 

The first application of approximation methods to polynomial equations 
h . 2 dz 2 2 .. was to t e equation x - y I, and more generally to x - dy k in vari-

ables x,y E 7l. Here d and k are fixed integers with d E N, not a square 

and k f O. This equation has been named after Pell for some two hundred 

years, but the idea of applying the continued fraction algorithm to find 

solutions is more than a thousand years old. The equation has either none 

or infinitely many solutions. However, it is possible to compute a number 

X = X(d,k) such that every solution can be expressed in a simple manner in 

terms of some solutions (x,y) with max(lxl,Jy]) ~ X. Hence all solutions may 

be determined by computing the finitely many solutions which are bounded by 

X. If lkl < Id, then all solutions are directly provided by the continued 

fraction algorithm. In his exposition R.J. SCHOOF [53] discussed recent fast 

techniques to find the fundamental solution. (The fundamental solution is 

the smallest solution of x2 - dy2 I in positive integers and knowing it is 
·1 1· 2 2 ) . crucia for so ving x - dy = k. For the numerical treatment of the Pell 

equation we refer to this paper. It is easy to reduce the general equation 
2 2 

ax +bxy+ cy = k with a,b,c,k E 7l fixed and x,y E 7l variable to an equa-

tion of Pel 1. 

The continued fraction algorithm gives, for any real number a, all posi

tive integers p and q with lqa-pl ~ q- 1. Hence, it also enables us to com

pute any solution of the equation axn - byn = k, where a, b, k, n are fixed 

integers with k # 0, n ~ 3 and x,y E 7l are variables. It follows from 
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Theorem 3.1 that this equation has only finitely many solutions. 

As remarked before, Thue's proof of Theorem 3.1 is ineffective. Thue's 

hypergeometric method was extended by C.L. SIEGEL [58] and A. BAKER [6] and 

in their work one can find some particular equations which can be solved in 
2 8 

this way. Siegel showed for example that if Jab! > 17000n (a-b) , then the 

only solution of axn - byn = a - b is given by x y = I and it follows from 

Baker's irrationality measure for 12 that each solution (x,y) of x3 - 2y3 = k 

satisfies max(lxl,Jyl) < (3•J05 JkJ) 23 • 

BAKER [7] showed in 1968 how his estimates for linear forms of loga

rithms can be used to give effective upper bounds for the solutions of the 

Thue-equation. In general the upper bounds are so large that they cannot be 

used to determine all solutions in practice, We shall describe here the few 

instances where Baker's method has been used to solve polynomial equations. 

The four numbers I, 3, 8, 120 have the property that the product of 

each pair plus I is a square. J,H. VAN LINT [39] wondered whether this pro

perty could also hold when 120 is replaced by a larger integer. ·A. BAKER and 

H. DAVENPORT [9] answered this question by solving the system of Pell equa

tions 

{
3x2 - 2 

8x2 - 7 

2 
y 

2 
z 

in integers x, y, z, (Note that the system of polynomial equations P1=0, 

P2=0, ••• ,Ph=O is equivalent to the single polynomial Pi+P;+ •• ,+P! = 0.) It 

follows from the theory of Pell - equations that each solution (x,y,z) cor

responds to a pair (m,n) such that 

(JO) 0 < m log (2+/3) - n log (3+/8) + log (I +/3) Iii < _o_._l_J-=
(± 1 +/ii) v'3 (2+13/m 

This is a linear form of logarithms of algebraic numbers. Baker's estimate 
487 implied that m < JO • To cover these cases, Davenport introduced a simple, 

but ingenious lemma. Here II qi311 denotes the distance of qi3 to the nearest 

integer, 

LEMMA. Let C, Kand e be real numbers with K > 6. For any positive integer 

M, let p and q be integers satisfying 

I Sq S KM, J0q-pJ < 2(KM)-I. 
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Then if 

there is no solution of 

lme-n+S I < c-m 

in the !'a:Y/,ge 

2 
log KM < m < M. 
log C 

The simple proof rests on the fact that 

llqSII = llmeq-nq+8q-m9q+mpD !, qRme-n+SD + mO eq-pD 

has to be small, in contradiction with (11). After dividing through by 

log(3+/s) the inequalities (JO) look like O < m9-n+8 < C-m, with• 

e = log(2+/3)/log(3+1s), 

8 = log/- (1+/3)//8 \Vlog(3+/s) 
\(± I +/8) / /3/4 

and C = (2+/3) 2 ~ 14. 

The lemma was applied with K = 1033 , M = 10487 In order to check (11) both 

S's were computed to 600 decimal places. Then suitable values of p and q 

were found and it followed that m < 500. The remaining values of m could 

then be computed by hand and it turned out that 120 is indeed the unique 

positive integer with the required property. Later P. KANGASABAPATY and 

T. PONNUDURAI [32] and G. SANSONE [SI] have given elementary proofs of this 

result. 

W.J. ELLISON et al. [27] used the same method to solve the equations 

(12) x3 - 12xy2 - 12y3 ±1. 

In following Baker's treatment of the Thue equation they obtained algebraic 

nlllllbers a. 1, a.2 , a.3 such that every solution corresponds to a pair of integers 

b 1, b2 satisfying 
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where H = max(lb 1l,lb2 1). Baker's estimate gave H $ 10 On applying 

Davenport's lenuna twice they obtained H < 50. It was now easy to conclude 

that (±1,0) and (±1,±1) are the only solutions of (12). 
2 

used this result to solve the elliptic equation y 
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Ellison et al. 

x3 - 28. At the time 

of lkl for which y2 
they started their research this was the smallest value 

3 = x + k had not yet been solved and ~hey wanted to show 

that any such equation can be solved, not only effectively, but also in a 

practical sense, by Baker's method. BAKER [7] and later H.M. STARK [62] had 

given general, very large, upper bounds for the solutions, followtng ideas 

of Mordell who had pointed out the existence of a correspondence between 

the solutions of the equation y2 = x3 + k and those of certain Thue equations 

of degree 3 (see Theorem 5. I (i)). The equations corresponding to y2 = x3 - 28 are 

given by ( 12). In this way Ellison et al. proved that y2 = x3-28 has no solutions 

other than 

(x,y) = (4,±6), (8,±22), (37 ,±225). 

The amount of computational work seems to have been slightly more than in the 

case of Baker and Davenport. 

9. EXPONENTIAL EQUATIONS 

Th f ·1 .. h . n n e most amous exponentia equation is t e Fermat-equation x + y n z . 

in integers n ~ 3, x,y,z E 7l >O" S.S. WP,GSTAFF Jr. [73] has proved that there 

are no solutions with n $ 125,000. We shall deal here with exponential equa

tions 

(13) 

in integer variables x 1,x2 , ••• ,xn' zl'z2, ••• ,zm, where PE 7l[xl'x2, ••• ,xn] 

is a fixed polynomial and a 1,a2, ••• ,am are fixed integers. If Pis a form, 

then (13) represents the Thue-Mahler equation. Another classical example of 

equation (13) is named after S. Ramanujan and T. Nagell, namely x2+7 2z. 

Already in 1897 C. ST~RMER [64] had studied equation (13) with n 
2 

and P(x) = I+ x By using the theory of the Pell-equation he was able to 

give a constructive method to determine all solutions and to give the upper 

bound 3m - 2m for the number of solutions. Note that x2 + I can neither be 

divisible by 4 nor by a prime= 3 (mod 4). As an example St~rmer showed that 

the only positive integers x such that all prime factors of x2 + I are less 
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than 14 are given by 

1,2,3,5,7,8,18,57,239. 

In 1915 S. RAMANUJAN [50] posed the problem of finding all values of z 

other than 3, 4, 5, 7 and 15 for which 22 - 7 is a perfect square. NAGELL [47] 

proved in 1948 that these five values of z exhaust all possibilities and sev

eral authors gave different algebraic proofs for this and related results. 

F. BEUKERS [13] employed a variant of the hypergeometric method of Thue, 

Siegel and Baker to deduce small upper bounds for the solutions x, z of the 
. 2 

equation x + d 22 , where dis any non-zero integer. Similarly upper bounds 

for the equation 
2 

+ d = a z 
be computed, but only in cases in which X can an 

odd power of a is exceptionally close to a square. This is the case for a= 2 

and a= 3, since 12 15 - 18/i and 13 15 -37882 1 are sufficiently small. On the 

other hand, there does not seem to be such an exceptional power of 5. Beukers 

proved that if (x,z) is a solution of x2 + d = 22 with d 'f 0, then 

z < 435 + IOlog !di/log 2 

and even that 

z < 18 + 2log /di/log 2 

when Id) < 296 • 

Since it suffices to solve at most 3m equations P(x 1,x2 , ... ,xn) = ay3 

in integers x 1,x2 , ... ,x11 ,y with fixed Panda in order to solve (13), it is 

obvious from what we said about the elliptic equation y2 = x3 + k, that any 

equation 

bx2 + k 
z 
m 

a 
m 

with small values of m,a1,a2 , .•• ,am,b and k can be solved by Baker's method. 

It is more efficient to use estimates for the p-adic values of linear forms. 

This was done by D.C. HUNT and A.J. VAN DER POORTEN [30] for the equation 
2 11 52 • E . f 1' . 1 20 ' x - = stimates or inear forms yie ded z < 10 . By using a PDP 

11/70 at the University of New South Wales they checked these values in an 

intelligent way. It turned out that all solutions are given by (z,x) 

( I , 4) , ( 2, 6) and ( 5, 5 6) . 
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It is even possible to solve more complicated diophantine equations by 

Baker's method. In order to find all rational elliptic curves of conductor 

II M.K. AGRAWAL et al. [I] wanted to solve the equations 

(I 4) 
3 2 2 3 

X - X y + XY + y 

in integers x, y, z with x = 0 (mod 2), x-y = I (mod 4) and x "/c 3y (mod 11). 

On using estimates for both the complex and the 11-adic case they found the 
15 upper bound 10 for a certain parameter H (cf. the treatment of equation 

(12)).Next they applied a generalization of the lemma of Davenport due to 

W.J. ELLISON [25]. For this a simultaneous approximation algorithm was need

ed, and they employed the algorithm of G. SZEKERES [70]. They further used 

an idea of K. Mahler to obtain 11-adic approximants. By computing to an 

accuracy of 98 decimal places on a PDP 11/70, they reduced the upper bound 

for H to 20. All solutions of small size were already known and so they suc

ceeded in solving their original problem. As a by-product they found that 

the only solutions (x,y) of (14) with Jxl > I are (±2,+3), (±4,+3), (±56, 

+ 103). 

10. PURELY EXPONENTIAL EQUATIONS 

We consider the equations 

where x1,x2 , .•• ,Xn are integers composed of primes taken from a finite, fix

ed set S. For primes p 1,p2, ••. ,pr we shall denote the set of integers com

posed of these primes by S(p 1,p2 , .•. ,pr). 

Equations of type (15) occur in the theory of finite simple groups. 

R. BRAUER [15] used the solution of x1 = x2 + I with x1 ,x2 E S(2,3) in classi

fying all simple groups of order 5·2a-3b. Some generalizations were given by 

L.J. ALEX [2,3]. His main result on exponential equations is the determina

tion of all 62 solutions of the equation x1 = x2 + x3 with x1 ,x2 ,x3 E S (2 ,3, 

5,7) The proof is elementary, by combining conclusions on residue classes 

containing solutions. Others who applied such techniques to exponential equa-

tions successfully are S.S. PILLAI [49] to the equation 2x±2Y = 3z±3w, 

Wm.J. LeVEQUE [35] and J.W.S. CASSELS [ 18] to the equation 
X -by I, where a = 

a and bare fixed integers, W. SIERPINSKI [59] to 3X + 4Y = 5z , A. MAKOWSKI 
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[43,44] to 13x-3y = 10 and 2x+lly = Sz and R.J. STROEKER [70] to 3x+3Y 
z w . . 2 

S + S . In the last two instances some known results on the equation y 

x3 + k (k fixed) were used. Equations of type (IS) were solved by J .1. BRENNER 

& 1.1. FOSTER [16]. A related equation occurs in the Syracuse problem, see 

R.P. STEINER [63], 

One of the first persons who solved exponential equations by approxi

mation methods was C. ST~RMER [64]. In 1897 he used the theory of the Pell

equation to prove that (IS) has only finitely many solutions when n 3 and 

x3 = I. In particular he gave all 23 solutions of the equation x1 · x2 + I 

with x1,x2 E S(2,3,S,7). This yields all triangular numbers composed of 2, 

3, Sand 7. His work was extended by D.R. LEHMER [33,34] who was interested 

in nearly dependent logarithms of primes. He found for example, 

13 log 2 - 3 log 3 - 3 log S - 7 log 7 + 4 log 11 + log 13 

-log 23 + log 41 

63927525376 -11 
log 63927525375 < 2• 10 · 

Gelfond realized that his irrationality measure for the quotient of two 

logarithms of algebraic numbers had consequences for exponential equations, 

but as far as we know, he never solved an equation (IS). After Baker had 

generalized Gelfond's method, W.J. ELLISON [26] used Baker's estimates to 

prove that for any o > 0 and a,b,m,n,x,y E 1N either amx-bny = 0 or 

lamx-bnyl 2 m(l-o)x for x 2 x0 where he gave x0 = x0 (a,b,rn,n,o) explicit

ly. (His value of x0 can be improved by employing more recent estimates.) In 

particular Ellison proved 

for all x,y E 1N with x > II, x 'f' 13,14,16,19,27. We give an example to de

monstrate the applicability of inequality (16). 

EXAMPLE I. In 1945 S.S. PILLAI conjectured that all solutions of 

(17) X > y > 0, Z > W > 0, 

in integers x, y, z, ware given by (3,1,2,1), (S,3,3,1) and (8,4,S,1). In 

the paper [49] he solved all equations 2x±2y = 3z±3w except for (17). He 
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achieved this by solving systems of congruence equations. This approach does 

not work in the case of (17), since this equation has solutions x = y, z = w 

common to every modulus. 

We shall solve (17) by the method of Baker. Suppose x, y, z, w is a 

solution not given by Pillai. We have 

Hence, 2Y-2 1 (z-w) if y > 1 and 2•3w-ll (x-y) if w 2 1. It follows that 

(I 8) z -w, w-1 2•3 ~ x-y. 

( 19) 2 X Z 3 < 2 /3 < 2. 

Thus for every value of x the value of z is uniquely determined. On using 

(19) and (18) it is easy to check that there are no solutions (x·,y,z,w) with 

x ~ 11 or x E {13,14,16,19,27} other than those mentioned by Pillai. It fol

lows from (16) that l2x-3zl > exp(x(log 2 - /0)). Hence, by (17), 

If 2Y > 2Sx/ 6-I, then y > Sx/6-1. By (19) and (18) 

(x-1) log 2/log 3 2 z-1 

a contradiction for x 2 12. If, on the other hand, 3w > 2Sx/6-I, then by 

(18) and (20) 

again a contradiction for x 2 12. Hence there are no solutions other than 

those given by Pillai. D 

Example I is the solution of a purely exponential equation with more 

than three terms, but with only two primes involved. The basic idea is that 

if there is a large solution, then two prime powers with fixed bases, px 
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and qy say, have to have a relatively small difference. Hence Ix log p -

y log q I is very small, and this contradicts estimates on linear forms obtain

ed by Baker's method. Since we have a linear form of only two logarithms, we 

need not apply Baker's general method, but we can also use the older methods 

of Gelfond and Schneider. Recently M. MIGNOTTE and M. WALDSCHMIDT [45] gave 

an estimation by Schneider's method for such a form where the constants in 

the final lower bound are rather small. P.L. Cijsouw and A. Korlaar have 
. 1 . h . 1 . I x y I x/ 2 . . written a computer program for so ving t e inequa ity p -q < p in posi-

tive integers x, y for given integers p and q based on this estimate. A de

scription of their method and a discussion on the completeness of the set of 

solutions obtained is given in an appendix of this paper. A computer run for 

all primes less than 20 had the following outcome: 

The only solutions of the inequality 

(21) 

in positive integers x, y and primes p, q unth p < q < 20 are given by 

(p,q,x,y) (2,3, I, I), (2,3,2, I), (2,3,3,2), (2,3,5,3), (2,3,8,5) 

(2,5,2, I), (2,5, 7,3), (2, 7,3, I), (2, 11, 7,2), (2, 13,4, I) 

(2,17,4,1),(2,19,4,1),(3,5,3,2),(3,7,2,1),(3,ll,2,l) 

(3,13,7,3),(S,7,l,1),(5,ll,3,2),(7,19,3,2), 

(I I , I 3, I , I ) , (I 7, I 9 , I , I) • 

We illustrate the applicability of this result by another example: 

EXAMPLE 2. In a letter to the second named author L.J. Alex asked for the 

set of solutions of the equation 

(22) 

If y = 0, then x = z, w = O. We may therefore assume y > 0 and hence x > z. 

We have 5Y - I = 32 (3x-z - Sw). Since y > 0 and 5Y - I has z factors 3, it fol

lows that 2·3 2 - 1[y and hence 

(23) 32 s: 3y/2. 
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We treat the cases (i) y ::, w an-d (ii) y < w separately. 

(i) We have I + 3x = 5w (Sy-w + 3z). Since 3x + I has w factors 5, the number 
w-1 w-1 

x is divisible by 2 x 5 and hence x ::, 2 x 5 . Thus, by (23), 

Hence y s x log 3/log 5 and 

From the list of Cijsouw and Korlaar we see that 

if (x,y) I (3,2). 

Hence x s 10, y s 6, z s 2, w s 2. It follows from (24) and the inequa

lity y > 0 that no pairs (x,y) are possible other than (x,y) = (2,1), 

(3,1),(3,2). This yields the solutions (x,y,z,w) = (2,1,0,1),(3,2,I,O). 

(ii) We have I+ 3x = 5Y (I+ 3z5w-y). Since 3x + I has y factors 5, the number 

x is divisible by 2 x Sy-I and hence 5Y s Sx/2. Thus, by (23), 

and 

0 < 3x-z_5w s ~ 
2x3z 

From the list we see that 

if (x- z,w) # (3,2). 

If x - z = 3 and w = 2 , then we infer y = I , z = 0 by ( 2 3) and x = 3 . 
x/2 This not being the case, we have 3 5 Sx/2, which implies x s 4. Thus 

y = I, and w::, 2. Since 5J(3x+l), we obtain x = 2 and this contradicts 

(22). 

The only solutions of (22) therefore are given by (x,y,z,w) 

for x E JN0 , (2, 1,0, I) and (3,2, 1,0). D 

(x,O,x,O) 
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1 . INTRODUCTION 

APPENDIX 

by 

P.L. Cijsouw, A. Korlaar & R. Tijdeman 

In this appendix, we give a description of the proof of the following 

property (cf. Section 10 of the previous paper): 

The only solutions of the inequality 

(I) 

in positive integers x, y and primes p, q with p < q < 20 are given by 

(p,q,x,y) (2,3,l,l),(2,3,2,1),(2,3,3,2),(2,3,5,3),(2,3,8,5), 

(2,5,2,1),(2,5,7,3),(2,7,3,1)(2,11,7,2),(2,13,4,I), 

(2,17,4,I),(2,I9,4,l),(3,5,3,2),(3,7,2,l),·(3,ll,2,l), 

(3, I 3, 7, 3) , (5, 7, I , I) , (5, I I , 3, 2) , (7, I 9, 3, 2) , 

( I I , I 3, I , I ) , (I 7, I 9 , I , I ) . 

In outline, the proof is as follows. We treat all combinations (p,q) with 

p, q prime and p < q < 20 consecutively. First, we prove that the linear 

form 

(2) I\ x log p - y log q 

has a value close to zero when (x,y) is a solution of (I). Then we distin-

guish three cases: X is "very large", X is "medium large" and x is "small"; 

these cases correspond approximately to X :": 
243 

' 
IO < X < 243 and X ~ 10 

respectively. A result from transcendental number theory, stating that A can-

not be close to zero, implies that there are no solutions with "very large" 

x. When x is "medium large", we translate the smallness of IA I into 

(3) I log p _ z:.1 < 
log q x --2' 

2x 

so that y/x is a convergent of the continued fraction of (log p)/(log q). 

In order to solve (I) for medium large x, it clearly suffices to make a 
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check of all numbers x in the· relevant range which are denominators of the 

convergents. To avoid excessively large numbers, this check is executed in 

a logarithmic form. Finally, for "small" values of x, the solutions of (I) 

can be found by direct substitution of (x,y) into (I). In fact, all solutions 

of (I) have "small" x. 

Since the computer program is part of the proof, attention must be paid 

to the correctness of the program. We shall not describe the entire program, 

but in order to indicate our style of programming, we present the algorithm 

by which logarithms with base 2 of positive numbers have been computed. 

2. THE LINEAR FORM 

Let (x,y), x ~ 4, be a solution of (I) for some pair of primes (p,q) 

with p < q < 20. Then x ~ y and 

(4) 

Since 

3 X y 5 X 
4P sq s4p 

(I) and (4) imply 

(5) 0 < Ix log p - y log q 1 < j p -x/Z. 

The result from transcendental number theory that we shall use is the main 

theorem of Mignotte, Waldschmidt [45]. For our purpose, the advantage of 

this theorem is that the occurring constant 5 x 108 is pretty small. We only 

quote a simplified version of the theorem, corresponding to positive ration

al integers a 1, a2, principal values of log a 1 and log a2 , and a rational 

number B. 

THEOREM. (Mignotte-Waldschmidt). Let a 1, a 2 be positive mtional integers 

and put s1 =I+ log a 1, s2 =I+ log a 2• Let B be a rational nwrber and 

take B ~ e as an upper bound for the absolute values of the numemtor and 

the denominator of s. Put s0 =I+ log Band T = 4 + s0 + log s1s2• Let 

E ~ e be a real number such that 
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Then A S log a 1 - log a. 2 satisfies A = 0 or 

(6) 

On applying this theorem to A = Z log q 
X 

I + log q, s2 = I + log p, 

log p with s 0 I + log x, SI 

T = 5 + logx + log(l+log19)(J+log17) < 7·8 + logx 

and E = e I+ log 19 , thus log E > 5/4, we find 
log 19 

Y 8 2 1- logq-logpl > exp{-2.56x IO (l+logp)(l+logq)(7.8+logx)}. 
X 

Hence, by (5), 

8 I+ log p 2 x I 
2.56xJO logp (J+log19)(7.8+logx) > 2 - 2 

and, since (l+logp)/logp s (J+log2)/log2 < 2.5, 

9 2 
5. 2 x IO (7. 8 + log x) > x - I. 

. . 1 · . 1. 243 h . 1· . ( ) . h This inequa ity imp ies x < Hence, t ere is no so ution x,y wit 

x 2 243 , that is, there is no "very large" solution. 

3. THE CONTINUED FRACTION 

Let x0 (p) be the smallest positive integer x satisfying px 2 2 17 For 

the values of p and q under consideration, 5 s x 0 (p) s 17. The values of x 

with x0 (p) s x < 243 will be called the ''medium large" values. Note that 

for these values px > 453x2 , since 

It follows that 

x/2 = (7) p log q > (v4'i3 • log 3)x > 23x. 
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Let (x,y) be a solution of (i) with x "medium large". Then (S) and (7) imply 

(8) ,~-.l, < _I_ 
log q x 17x2 , 

so that y/x must be a convergent of the continued fraction I J b 1+1 Jb2 + •.. 

of (log p)/(log q). Let us consider a convergent r /s of this continued m m 
fraction with x0 (p) s sm < 243 • Recall that 

r 
I ,~_....!!!I < -,-,--_1 __ --s-

s { (b 1+1)s+s 1}< logq sm s{b 1s+s 1}' 
m m+ m m- m m+ m m-

whence 

(9) I < I~- rml I 2 1 <---2-· 
(bm+l+2)sm og q sm bm+lsm 

When bm+I s IS, the left hand side of (9) contradicts (8). In order to find 

all "medium large" solutions of (I), we therefore may restrict ourselves to 

the selection of the solutions from the (sm,rm) subject to bm+l :2: 16 and 
43 

x 0 (p) $Sm< 2 • 

Let u with O < u < I be an approximation to (log p)/(log q) with the 

continued fraction I J a 1+1 Ja2 + ..• and the convergents p/~ (n = 1,2, ••• ). 

We assume that the continued fraction of u does not break off before or on 

then-th level, so that an+l exists. Suppose that 

(JO) 

Then 

(11) 

lu -~I < e: log q ' 
withe:=2- 117 • 

I log pl I 
u - log q < ---nz ' 

2 s 
m 

for all "medium large" solutions (s , r ) of (I). Together with (8) this implies m m 

. rm I. I u--1 < -- , 
sm 16s2 

m 
for these solutions, so that r /s is one of the convergents of the continm m 
ued fraction of u; say, r /s = p /q (usually, n = m). From bm+I :2: 16 and 

m m n n 
the inequality 

(12) 
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which is the analogue of (9), we see that 

pn rm 
---2 < lu--1 = lu-_:_I <--= 

(an+l+2)qn qn sm 

Hence, an+!? 15. We can therefore restrict 

to: a I exists, a 1 ? 15 and x0 (p) sq < n+ n+ n 

16s 2 
m 

ourselves 
243_ 

subject 

In order to obtain a number u for which (10) holds, we computed numeri-

cal approximations P and Q to log2p and log2q: 

with errors o and o for which Os o 
p q p 

u = P/Q satisfies (JO). 

< 2-ll 7 and Os o 
q 

-117 
< 2 . Then 

The convergents o /q are alternating around u, in the sense that 
· n n 

p /q < u when n is even and p /q > u when n is odd. In order to know the n n n n 
sign of some round-off errors we want to secure that the p /q are also al

n n 
ternating around (log p)/(log q). By (12), this is certainly the case if 

(13) 
2 

(an+l+2)qn 

This inequality holds when 

(14) E < --,,-2--2,,,- ' 
4an+lqn 

a condition that can be checked easily in the form 

When (14) is true, it follows from (12) and (13) that 

p 
(-1 ___ 1_) I llog p-~I < 
a 1+2 4 2 2 < log q qn 
n+ an+! qn 

I I I 
(-a-+-2-) 2 

n+l 4an+l qn 

Because of an+! ? 15 this implies 

(16) 

Now let n be even, so that we can omit the absolute value signs in the 

middle term of (16). Multiplying (16) by~ logq, taking exponentials, sub

tracting 1 from all terms and finally multiplying by qPn, we obtain 



-1 
p ( (a 1-1) q ) 

n{ n+ n 1} < q q - • 

Hence, 

-1 
for suitable numbers I; with 0 < I; < ((an+ 1+3)~) and n with 0 < n < 

-I 
((an+ 1-1)qn) • Note that (an+ 1-I)qn 2 70 when an+! 2 15 and qn 2 x0 (p). 

Consider a pair (~,pn) which could be a solution, i.e. x0 (p) ~ qn < 

243 and an+! 2 IS. Then clearly (pn,qn) is a solution when 

thus, when 

(I 7) 

and (~,pn) is certainly no such solution when 

i.e. 

( 18) 
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In the same way, we obtain in the case of oddn that (~,pn) is a solu

tion when 

(19) 

and no solution when 

(20) 

The checks (17), (18), (19) and (20) can be evaluated very easily. They have 

been executed in single machine precision, rounding off in the right direc

tions. 
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For each convergent pn/~~ the check concerning the existence of an+I 

and the check on the correctness of (IS) have 

described technique provides no answer to the 

solution of (I) or not. The same happens when 

to be positive; otherwise, the 

question whether p /q is a 
n n 

both (17) and (18), resp. both 

(19) and (20) appear to be false. In these cases, one should try once more 

with e: replaced by a smaller value (for this, log p and log q must be comput

ed more accurately) or with x0 (p) replaced by a larger value. 

4. DIRECT CHECKING 

The remaining pairs (x,y) with x "small" can be substituted directly 

into the inequality 

For Is x s 3, all pairs (x,y) with Is y s x have been checked. For each 

value of x with 4 s x s x0 (p) there is, by (4), only one possibility for y, 

namely the highest value for which 4qy s Spx. These pairs (x,y) have been 

checked in (21) too. 

5. SOME REMARKS QN THE PROGRAM 

The execution of our program starts with the computation of the numeri

cal approximations of the numbers log2 p with p prime, 2 s p s 19. After that, 

all combinations of (p,q) are treated consecutively. For each (p,q), the 

solutions with ·x "small" are detected by direct checking. All "medium large" 

solutions are found by the technique described in Section 3 (in fact, there 

were none). 

As a consequence of the choice of e: and x0 (p), there appeared to be no 

failing checks. 

Finally, we present the algorithm that has been used for the computa

tion of the logarithms with base 2. Let a be a positive real number of which 

we know the integral part and the first m binary digits of the fractional 

part. We want to-compute as many binary digits of log2 a as possible from 

this information. Multiply a by 2m to obtain an integer X (supposed to be 

positive) for which 
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Consider all numbers log2z for X ~ z < X+ I. The binary expansions of these 

logarithms coincide up to a certain number of digits. The algorithm gener

ates this common part. By that, log2Z and so log2a become known. Note that 

the algorithm leads to only very few digits for certain values of X. For the 

values of X we used, the number of generated digits of the logarithm was 

nearly the number of digits of X. 

In what follows, we pay attention only to the fractional part of log2Z. 

We shall use the following simple lemmas: 

s -s-1 2 s-1 LEMMA I. Let x ands be positive integers with x ~ 2 • Then L2 x J ~ 2 • 

2s -s-1 2 2s-l h . d 'd · · PROOF. By x ~ we have 2 x ~ w ere the right han si e is an integer. 

LEMMA 2. Let x and s be positive integers with x < 2s+I _ Then r2-s-lx27 < 2s+I. 

PROOF. Since x ~ 2s+I - I, we have 

x2 ~ 22s+2 _ 2s+2 + 1 < z2s+2 _ 2s+I 

so that 

Let log2Z = S + (O. b0b 1 ..• ) 2 , where S is the integral part of log2Z, 

and let T be the number of binary digits b0 ,b 1, ••• ,bT-I we want to generate. 

Further, z0 , z 1 ands are integers, q is a Boolean and z is a real "ghost vari

able" that serves only in the proof of the correctness. As invariant we use 

where 

I: (log2 z s+ (O.b.b. 1 ••. ) 2)" (j ~ O)" 
J J+ 

" (bO, ..• ,bj-l have been computed)" (q Q) 

s+I 
z I < 2 ) " (s ~ I) . 

The postcondition will be 

R: I " (j TV 7q). 

The next algorithm describes the transformation of the precondition with 

given Z, X, Sand Tinto the desired postcondition R. Some remarks by which 
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the reader will be able to understand the correctness of the algorithm are 

added between braces. 

integer j,s,z0 ,z 1; boolean q; {real z;} 

j:=0; s:=S; z0 :=X; z1:=X+l; {z:=Z;} 

q:=(z0~2s) A (z 1<2s+l) A (s~I); {I} 

do j f TA q ➔ 
- -s-1 2 

z0 := L2 *z0J; 
{z0 ~ 2 s-l by Lemma I; z0 :,; 2-s-l*z2} 

-s-1 2 
zl := r2 *ZJ l; 

s+I -s-1 2 
{ z I < 2 by Lanma 2 ; z I > 2 * z } 

if z 1 < 2s + 
s-1 -s-1 2 s {2 :,z0 :;;2 *Z <z 1 <2, hence 

s:,log2 z <s+½; thusbj=O} 

bj := O; {log2 z = s + (O.Obj+lbj+2 ••• ) 2} 

j := j+l; {log2 z = s + (O.Ob.b. 1 ... ) 2, 
2 J J+ 

hence log2 z = 2s + (O.b.b. 1 ... ) 2} 
2 J J+ 

s := s-1; {log2z = 2s+2+ (O.blj+1· .. )2, 

hence log2 (2-s-2*z2) = s+ (O.blj+l···) 2; 

2s:,; zo:,; 2-s-2*z2 < zl < 2s+I; 

z := 2-s-2*z2;} 

q := s ~ I {I} 

b ·= j . 
j := 

s s 
□ (z 1 ~ 2 ) A (z0 < 2 ) + q := false {I} 

fi {I} 

od {IA (j =Tv7q)} 

When j = T, the desired number of digits have been obtained; when 7q holds, 

there is not -enough information left for the determination of the next digit. 
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, All arithmetical operations. in the algorithm (adding, subtracting, 

squaring, multiplying by a power of two, comparing with a power of two, tak

ing "floor" and taking "ceiling") can be executed in an easy way. It leads 

to exact integer arithmetic on any binary computer. 

The complete program has been executed on the Burroughs B7700 computer 

of the Eindhoven University of Technology. This compute~ has a word length 

of 39 binary bits. We operated up to 5-fold precision for p, leading to the 

desired 117 bits for the fractional part of log2 p. 

The compilation took about 6 seconds (mainly because of the.numerous 

multilength arithmetic procedures), the computation of the logarithms in

volved needed 14 seconds and the remaining part of the program 10 seconds. 
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NUMERICAL COMPUTATION OF SPECIAL ZEROS OF 
PARTIAL SUMS OF RIEMANN's ZETA FUNCTION 

by 

J. VAN DE LUNE & H.J.J. TE RIELE 

0. INTRODUCTION 
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In 1948 TURAN [8] showed that the Riemann hypothesis for ~(s) is true 

if there exist positive numbers N0 and c such that for all N > N0 the func

tions 

N 

== I 
n=1 

-s n (s e: a:, s = CJ+ it) 

have no zeros in the halfplane CJ~ 1 + cN-!. 

In 1958 HASELGROVE [2] implicitly showed (cf. SPIRA [6; Section 3]) 

that there exist N e: :N such that ~N(s) = 0 for some s with CJ > 1, 

In 1968 SPIRA [6] proved, computationally, that, for N = 19, 22 (1) 27, 

29 (I) 50, ~N(s) has zeros with CJ> 1. 

In this paper a zero s = CJ+ it of ~N(s) with the property CJ > 1 will be 

called a special zero. As far as we know, up till now no special zero of any 

~N(s) has been located numerically. 

We shall present two different methods for the explicit numerical compu

tation of special zeros of ~N(s). 

The first method is believed to produce all special zeros of ~N(s) with 

imaginary part in a given interval (Sections 2, 3 and 4). In the second me

thod (Section 5) we first compute several (vertical) "almost-periods" of 

~N(s) and then try to find special zeros of ~N(s) by adding these almost

periods to zeros of ~N(s) with real part very close to CJ= 1 (not necessari

ly in the halfplane CJ> 1). Of course, the second method is by no means ex

haustive, but it is much less time consuming than the first one. 

Finally, we present a selection of the special zeros of ~N(s) for N = 

19, 22(1)27, 29(1)35, 37(1)41, 47, which were actually computed by the two 

methods. 
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The zero-search methods described in this paper may be applied to other 

functions in analytic number theory as well. For an application to Flett's 

function we refer to VAN DE LUNE [4]. The idea of using multidimensional 

continued fraction algorithms (see Section 5) was applied to Mertens's con

jecture by TE RIELE [5]. 

1. SOME GENERALITIES ON THE ZERO CURVES OF THE REAL AND IMAGINARY PARTS 

OF i;;N(s) 

Before explaining the heuristic principle for finding special zeros of 

1;;N(s) we give a global description of the zero curves of the real and ima

ginary parts of 1;;N(s) in the complex plane. 

Defining 

and 

we obviously have i;;N(s) 

It is easy to see that 

N 

I 
n=l 

N 
- I 

cos (t log n) 
(J 

n 

n=2 

sin(t log n) 
(J 

n 

0 if and only if both ~(cr,t) 

for a 2 2 

so that the entire zero set of 1;;N(s) is contained in the halfplane a< 2. 

Now let N (:2: 3) be fixed and consider the zero-set of ~(a,t) in the half

plane a< O. If ~(a0,t0 ) = 0 then 

-cro 
-N cos ( t 0 log N) 

N-1 -00 I n cos (t0 log n) 
n=l 

so that 

N-1 -a I 
I cos ( t 0 log N) I :<: I (~) 0 < N f 

n=I N 0 

Ch 11 0 ( I • f . . ) k oose a sma £ > £ = N is su ficient and ta e 0 0 < I 

have I cos (t0 log N) I < £ so that we must have t 0 log N ~ f + 

k E 2Z or, equivalently, t 0 ~ (2k+l)7r/(2 logN), for some k 

N Then we 
£ 

k11, for some 

0. 
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From this it follows that the zero set of ~(cr,t) in the halfplane cr <I-~ 

consists of simple zero curves having -co+ (2k+J),ri/(2 logN), (ke: 7l) as as

ymptotical points. 

For cr = I (and any other fixed cr e: 1R) we have that ~(cr,t) is an almost 

periodic function oft and since 

N 
max ~(1,t) = ~(I,O) = L -
tf'.1R n=l n 

there exist arbitrarily large values t* of t for which 

* ~(I,t ) 
N 

> -e: + I 
n=I n 

or, equivalently, 

(I) 

N . 
'\' I * l n cos ( t log n) 

n=l 

N 
>-e:+ I -

n=I n 

Choosing e: > 0 small enough it follows that all cosines in (I) are close to 

and hence positive so that for these particular values t* oft we have 

N 
¾(cr,t*) = l n-a cos(t* logn) > 0 

n=I 
for all cr e: 1R. 

Hence, these horizontal lines t = t* act as barriers for the zero-lines of 

~(cr,t). Since the zero lines of any harmonic function on the entire plane 

cannot have endpoints, it follows that a zero line of ~(cr,t) starting at a 

point 

-co+ (2k+ I) iri 
2 logN 

must return to some other asymptotical point of the same form (possibly not 

a neighbouring one). 

-a 
N O sin(t0 log N) 

so that for cr0 < 0 

N-1 -cr 
- l n O sin(t0 log n) 
n=2 

N-1 -cr 
1 sin(t0 log N) I ~ L (~) 0 

n=2 N 

0 then 
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Similarly as before, we choose a small E > 0 and take o0 < I - ~ so that 

lsin(t0 logN)! < E, Consequently, t 0 logN ~ kn, for some k E ZZ, or, equiva

lently, t 0 ~ kn/logN, for some k E ZZ. Hence, the zero set of IN(o,t) in 

the halfplane o < I-~ consists of a system of simple zero curves having the 

points - 00 + kni/log ~, (k E ZZ) as asymptotical points. 

For large positive owe have in case of a zero of IN(o,t) 

-cr N -o 
2 O sin(t0 log 2) = - l n O sin(t0 log n) 

n=3 

I . N 2 oo 2 oo and hence srn(to log 2) I s Ln=3 (n) < N(3) Choosing a small E > O and 

taking o0 > log(N/E)/log(3/2) we thus have lsin(t0 log 2) I < E so that 

t 0 log 2 ~ kn, for some k E ZZ, or, equivalently, t 0 ~ kn/log 2, for some 

k E ZZ. It follows that the zero set of IN(o,t) in the halfplane o > log(N/E)/ 

log(3/2) consists of simple zero curves having the points +co+ kni/log2 

(k E ZZ) as asymptotical points. 

It can be shown that every zero curve of IN(o,t) starting at some asymp

totical point +co+ kni/log 2 is somehow connected with some asymptotical 

point - 00 + lni/log N. In other words: such a zero curve traverses the s

plane more or less horizontally. 

Moreover, every zero curve of IN(o,t) starting at -oo + kni/log N is 

either connected with an asymptotical point +00 +lni/log 2 or with an asymp

totical point of the form - 00 + mrri/log N. 

Drawing the zero curves of IN(o,t) as dotted lines, the zero curves of 

~(o,t) and ¾(o,t) have a typical pattern as sketched in Figure I. This 

sketch is based on actual computations of the signs of¾ and IN for various 

values of N. 

It may be noted here that in some earlier reports ([4A] and [4B]) the 

authors showed that for N s 10, N f 7, the zero curves of ¾(o,t) do not in

tersect the vertical o = I. Hence, in order to find a special zero of sN(s) 

we should take N fairly large (see Section 4). 
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2. THE HEURISTIC PRINCIPLE 

13 
1T 

log 2 

375 

In case of a special zero s 0 of ~N(s) we expect to have a pattern as 

sketched in Figure 2. Here (in accordance with our numerical observations) 

we have tacitly assumed that all zeros of ~N(s) are simple, so that in s0 
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the zero curves of¾ and IN are perpendicular. 

t 

0 

zero curve of¾ (cr,t) 

zero curve of IN (cr,t) 

Figure 2. 

a 

In order to detect such a pattern of the zero curves of¾ and IN we 

have computed zeros of ¾(l,t) fort> O, yielding the increasing sequence 

t 1 < t 2 < ••• of zeros of ¾(1,t). Once the zeros t 2l-l and t 2l were located 

it was checked whether IN(l,t) had a zero between t 2l-l and t 2l. If so, it 

was a simple matter to locate the corresponding (special) zero of sN(s). 

A slight modification of this procedure may be used to obtain zeros of 

sN(s) with real part just less than I. 

3. THE MAXIMAL SLOPE PRINCIPLE 

For the systematic search of zeros of ¾(1,t) we apply what we call the 

ma.ximal slope principle, which we shall describe first. Let f(t) be a differ

entiable function for t ;,, t 0 , and suppose that 

The maximal slope principle is the simple observation that if f(t0) > 0 and 

f is not linear than f(t) > 0 fort E [t0 .t1J, where 
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If t * is the smallest zero of f which is larger than t O, this principle pro-

* * vides us with a new lower bound t 1 fort. By repeating this principle, t 

may be approximated as close as desired. Note that every application of this 

principle requires an evaluation off. If the definition off contains func

tions like sin, cos or log (see the definitions of~ and IN) it is consider

ably more efficient to apply the following modification of the maximal slope 

principle. 

Suppose that for some k > 0 

Then, from the Taylor expansion of f(t) around t 0 , we have 

k f(r) (t ) M_ 

, 0 (t t ) r K (t-t ) k+ I :5 
l r ! - 0 - (k+ I) ! 0 

r=O 
f ( t)' 

for all t ee t 0 • 

If an evaluation of Pk(t0 ,t) is considerably cheaper than an evaluation of 

f(t), then it is preferable to apply the maximal slope principle to Pk rather 

than to f. This yields an increasing sequence of points t 0 . (j = 0,1,2, ••• ) 
,J 

defined by 

and j 0,1,2, .••• 

-6 We interrupt the procedure at t = t 0 if Pk(t0 ,t0 ,n) :5 E (= 10 , say). 
* . ,n 

Note that t 0 . < t for J = 0,1, •.• ,n. Now we compute f(t0 ). If f(t0 ) >E ,J ,n ,n 
then we put t 1 := tO,n and set up a new polynomial Pk(t 1,t) and continue as 

above. This yields a finite sequence t 1 0 := t 1,t 1 1 ,t 1 2 , ••• , and at the 
' ' ' next repetition we get t 2 0 := t 2 ,t2 1, •••• We continue until we find an 

' ' m and a corresponding n = n(m) such that Pk(t ,t ) :5 E and f(t ) :5 E. If 
_ 2 m m,n m,n 

so, we compute f (t + o) (with o = 10 , say). The values of E and o given m,n 
above were determined experimentally such that always f(t )·f(t +o) < 0 

m,n m,n 
(see Figure 3). The next sign change of f(t) is determined similarly, start-

ing at to:= t + o. m,n 
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Figure 3. 

4. THE SYSTEMATIC SEARCH FOR ZEROS OF ~(1,t) 

In order to apply the maximal slope principle to RN(!, t) we need suit

able estimates for s~p 11)iO,t)I =: MO,N and s~p l~k+l)(l,t)I =: ~,N· 

Since 

1)iO,t) 

we have 

N 
- I logn sin(tlogn), 
n=2 n 

sup 
tElR 

N 
l log n sin(t log n) I <:; 

n=2 n 

N 

I 
n=2 

which yields, e.g., M0 22 < 4. 78. By using the prime decomposition of all 
' n E [2,N] and the linear independence of the logarithms of the primes over 

the rationals, it was possible to derive the improved bound M0 22 < 4.275. 
' However, this improvement did not speed up the systematic search consider-

ably. 

For the higher derivatives we used the straightforward estimates 

N 

I 
n=2 

k+l 
(log n) 

n 

Similar estimates were used to find zeros of IN(l,t). 

For N = 23 our procedure led very quickly to the special zero 
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a= 1.008 496 93, t - 8645.524 423 32. 

It took considerably more time to find a special zero for N 19. We found 

a= 1.001 095 51, t 600 884.203 427 78. 

SPIRA's investigations [6] show that N = 19,22 and 23 are the first candi

dates for having special zeros. We did not succeed in finding a special zero 

of r,; 22 (s) in the range O :o: t :,; 75,000,000. (Note that 22 is composite!) Var

ious experiments showed that k = 14 was the optimal choice in this case. 

Anticipating the results of the next section we already note here that by 

the method described there we have found the following special zero for 

N = 22: 

a= 1.002 890 95, t 558 159 406.148 225 57. 

5. SECOND METHOD: SEARCH BY USE OF AIMOST-PERIODS 

In this section we describe a second method for the comp~tation of spe

cial zeros of r,;N. In fact, by this method we are able to construct (finite) 

sequences of zeros of r;N' all with real part close to one, some of them with 

real part greater than one. 

The starting point is the supposition that already a zero s 0 of r;N is 

available, for which !Re s 0 - 11 is small. Such a zero may be found, for in

stance, by applying our first method to a line cr I - £. Let T1 E lR be such 

that 1r;N(s)-r;N(s+iT1)! is small for alls on the line cr =I.Such a T1 
exists since r;N(I + it) is an almost-periodic function of t. Then one may ex

pect that also lr;N(s0)-r;N(s0 ± iT 1)1 is small, and there may be a zero, s 1 
say, of r;N in the neighbourhood of s0 ± iT 1. If Re s 1 > Re s0 , we look.for 

another zero, s 2 say, of r;N in the neighbourhood of s 1 ± iT 1, and so on. In 

order to cross the line cr = I, we always demand that Res.> Res. 1. If 
J J-

Res. :o: Res. 1 we continue with another almost-period 
J J-

T2. After crossing 

the line cr = 1 we may still continue this procedure in order to find more 

and more special zeros of r;N. 

The crucial point in the above procedure is, of course, the availabil

ity of sufficiently many almost-periods of r;N on the line cr = 1. We have 
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LEMMA 5. I. Almost-periods of sN (s) may be computed from "sufficiently good" 

(to be specified later) approximations of the n (N) (>I) nwribers log p /log Pfo, 

(j = 1,2, ••. ,n(N); j 0 E {1,2, ... ,n(N)}) by rational nurribers with the same 

denominator. 

PROOF. Let k be such a common denaninator, i.e., klogp/logpjo = Ej (modi) 

where Ejo = 0 and the other Ej 's are small or close to I (but not zero, since 

the logarithms of the primes are independent over IQ). Let the canonical factor-
TI (N) a; (n) 

ization of n (~N) be given by n TT. 1 p. - . Then for T := k·2n/log pJ·o 
J= J 

and for any fixed s E ~ we have 

where 

0 n 
T log n 

N 
l n-s exp(-iTlogn) 

n=l 

(k•2n/log p. )log 
Jo 

n(N) 

N 
\' -s 
L n exp(-i0n), 

n=l 

n(N) a. (n) 
TT p.J 

j=l J 

2n l a.(n)klogp./log p. 
j=l J J Jo 

1l (N) 
- ( L E • a . (n) ) (mod 2n) • 

j=I J J 

If the Ej's are small enough, we may expect the value of sN(s+iT) to be 

close to the value of sN (s) • Hence, ... T is an almost-period of i';N" The same 

argument holds, if one replaces T by -T. D 

We have used the well-known modified Jacobi-Perron algorithm [I] and 

the less-known Szekeres algorithm [7] for the computation of the rational 

approximations of logp/logpfo (j = 1,2, ... ,n(N); j f j O). We first give a 

description of both algorithms in the style of KNUTH [3]. Both algorithms 

are simplified and put in a form suitable for our purpose. 

ALGORITHM JP (Jacobi-Perron). Given n ~ I positive irrational numbers 

a 1,a2 , ..• ,an. In step JP2 a positive integer k is computed such that {kai} 

is small, for i = 1,2, ..• ,n (where {x} means the distance of x to the near

est integer). Auxiliary vectors 1 = (a1,a2 , .•• ,an), b = (b 1, .•. ,bn) and~= 

(cO,c 1, ••• ,cn) are used. The algorithm terminates when k > k max. 

JPI. [Initialize]. Set co+ 0 and set a. + a. and Ci + 0, for i = I ,2, .•. ,n. 
l. l. 

JP2. [Take integer part of a and compute new k]. Set b. + [a. J for i = 
l. l. 

I ,2, ... ,n and set k + n 
c.b .• If k > kmax then co + l:i=l l. l. 

stop. 
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JP3. [Compute new~ and 1J. Set c0 + c c + c and a + (a -b )/ I' i i+I i i+I i+I 
(a 1-b 1), for i = 1,2, .•. ,n-1 and set en+ k and an+ 1/(a1-b 1). Go to 

JP2. 

Note that for n = I, this algorithm produces the denominators of the conver

gents of the regular continued fraction expansion of a 1• 

The Szekeres algorithm is more complicated than JP, but it will appear 

to produce much better approximations than JP. 

ALGORITHM SZ (Szekeres). Given n? positive irrational numbers a 1,a2, •.• 

••• ,an, with 

ed such that 

I> a 1 > a2 > ••• >an. In Step SZ6 a positive integer k is comput

{ka.} is small, for i = 1,2, ••. ,n. An auxiliary vector y = 
J. 

(y0 ,y 1, ••• ,yn), auxiliary arrays A= (a .. ), i,j = 0,1, ••. ,n and V = (v .. ), 
l.J l.J 

i,j = 1,2, ••• ,n, and an auxiliary scalar hare used. The algorithm termin-

ates, when k > k max. In order to explain the notation in SZ3, we define a 

partial ordering of n-component vectors as follows: let~= (x 1, ••• ,x) . n 
and y = (y 1, •.. ,yn) and let i 1,i2, •.• ,in be a permutation of 1,2, .•• ,n 

such that lxi 1 I ? lxi2 1 ? ••• ? lxinl; similarly, let lyj 1 I ? IYjzl ? ... 
➔ ➔ _.,_ -+ 

••• ? lyJ· !. We write x :::a- y if !xi I= lyJ· I, forµ 1,2, .•• ,n and x-< y n µ µ 
if 3v, I'.> v '.> n such that lxj) < lyhl, and lxjµI IYjµI' for I'.>µ< v. 

SZI, [Initialize]. Set y0 + 1-a1, yi + ai-ai+I' i = 1,2, ••• ,n-1, Yn + an. 

Set a . . + I , i = 0, I , .•. , n and j = 0, I , ••• , i and a. . + 0, 
l.J l.J 

i = 0,1, ••• ,n-1 and j = i+l,i+2, ••• ,n. 

SZ2. [Compute the differences vij]. Set vij + laij/aiO - a0j/a00 !, i,j 

1,2, ••• ,n. 

SZ3. [Select indexµ]. Let ;i be the i-th row of V, so ;i (vil'vi2 , ••. 

•.• ,v. ). Find the largest indexµ such that for every I '.> i '.> n 
J.n 

SZ4. 

szs. 

SZ6. 

or 

If Yo< yµ' then go to SZS. 

+ + 
V, ::a' V • 

J. µ 

[y0 ?yµJ. Set y0 + y0 -yµ and aµj + aµj+aOj' j 0,1, ••• ,n. Go to SZ6. 

[y0 <yµ]. Seth+ Yo and Yo+ yµ-yO' Yµ + h. Seth+ aOj and a0j + 

aµj, aµj + aµj + h, for j 0, I, ••• ,n. 

[New k]. Set k + aµO' If k '.> kmax, then go to SZ2, else stop. 

For n = I, this algorithm not only produces the denominators of the conver-

gents of the regular continued fraction expansion of a 1, but also the denom

inators of the intermediary convergents. 
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Both algorithms were coded in FORTRAN, and run on a CDC 6600 computer, 
20 

in double precision (28 significant digits) with kmax = 10 , n = 6 and for 

ai the six irrationals log 3/log 2, log 5/log 2, log 7 /log 2, log 11 /log 2, 

log13/log2, and log17/log2. Let k 1,k2 , ... be the sequence of k's produced 

by one of the algorithms. Define m. := maxl<"<6 {k.a.}. In Table 1, for both 
l. -J- l. J 

algorithms we give the values of k. and m., such that m .. < m., for 1 $ i $ 
J J J l. 

j-1. Clearly the results of SZ are much better than those of JP, so that we 

decided to choose the Szekeres algorithm for our further computations. 

As indicated in Section 4, we first applied the method of this section 

to N = 22. In order to find almost periods for N = 22, we ran the SZ algo

rithm with N = 19, i.e. TI(N) = 8 and j 0 = 1, 2, 3 and 4. This yielded suffi

ciently many almost periods, and with the strategy described in the beginn

ing of this section, we found many special zeros of s22 (s). 

Although we already had found a few special zeros of. s19 by the system

atic method, we also applied the almost.period method to s19 • As an illu

stration of the power of this method, we select the following result: 

for s 00 + it0 , where 

00 = 1.002 793 85, 987 047 804 990 437 138.210 000 67 

and fork 1,2, ••• ,58 the numbers tk = t 0 + kP, where 

P 119 473 414 699 017 719 233.343 2, 

are approximations, with absolute error of, at most, 0.1, of the imaginary 

parts of special zeros of s19 . These zeros are listed in Table 2 (0 rounded 

to 8, t to 5 decimals). We have also listed the first zero in this "almost

arithmetic progression" with real part < 1 (namely the zero with imaginary 

part ~ t 0 + 59P). 
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Table I 

Results of runs with the Jacobi-Perron Algorithm 
and the Szekeres Algorithm 

AIG. j k. m. 
J J 

JP I I .460 
3 2 .401 
8 168 .365 
9 877 .331 

10 882 .219 
17 278575 .164 
25 I 170241231 .158 
26 18158873714 .0675 
31 9176933208351 .0654 
35 259812674489863 .0349 

sz I 2 .401 
8 4 .350 

19 9 .304 
30 31 .289 
49 31 I .201 
57 764 .181 
71 2414 . 139 
80 5855 .111 
83 14348 ;0910 

113 88209 .0871 
116 119365 .0798 
125 272356 .0483 
149 2316275 .0276 
169 23993538 .0221 
218 890512495 .0184 
225 2039172447 .0178 
234 2929684942 .0167 
239 5312742147 .0115 
246 9640622028 .0106 
263 69123516771 .00715 
296 19035694 700 I 6 .00704 
297 2244797172219 .00615 
399 1740704456733 .00548 
300 2907809851158 .00522 
325 13059799506657 .00353 
339 61833456490027 .00344 
343 65818958118979 .00180 
392 7164194803257268 .00167 
407 38101473715080026 .00115 
419 102025501759257846 .00107 
447 1778599299350212805 .00053 
448 1485640231520813937 .00046 
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Table 2 

59 special zeros of ~19 , the imaginary parts of which 

form an "almost'' arithmetic progression, and the first 

"non-special" zero in this progression. 

a 

1.00279385 
1.00287891 
1.00295917 
1.00303464 
1.00310532 
1.00317121 
1.00323237 
1.00328876 
1.00334038 
1.00338727 
1.00342941 
1.00346685 
1.00349959 
1.00352756 
1.00355087 
1. 00356948 
1.00358339 
1.00359263 
1.00359720 
1.00359712 
1.00359237 
1.00358294 
1.00356893 
1.00355030 
1.00352700 
1. 00349914 
1.00346660 
1.00342954 
1.00338783 
1.00334159 
1.00329071 
1.00323534 
1.00317535 
1.00311082 
I. 00304179 
1. 00296821 
1.00289013 
1 .00280750 
1.00272038 
1.00262865 
1.00253266 
1.00243208 
1.00232686 
1.00221735 
1.00210347 
I. 00198488 

t 

987047804990437138.21000 
120460462504008156371.55227 
239933877203025875604.89453 
359407291902043594838.23680 
478880706601061314071.57906 
598354121300079033304.92133 
717827535999096752538.26360 
837300950698114471771.60587 
956774365397132191004.94813 

1076247780096149910238.29040 
1195721194795167629471.63267 
1315194609494185348704.97495 
1434668024193203067938.31722 
1554141438892220787171.65949 
1673614853591238506405.00176 
1793088268290256225638.34404 
1912561682989273944871.68631 
2032035097688291664105.02859 
2151508512387309383338.37086 
2270981927086327102571.71314 
2390455341785344821805.05542 
2509928756484362541038.39770 
2629402171183380260271.73997 
2748875585882397979505.08225 
2868349000581415698738.42453 
2987822415280433417971.76681 
3107295829979451137205.10910 
3226769244678468856438.45138 
3346242659377486575671.79366 
3465716074076504294905.13595 
3585189488775522014138.47823 
3704662903474539733371.82052 
3824136318173557452605.16280 
3943609732872575171838.50509 
4063083147571592891071.84738 
4182556562270610610305.18966 
4302029976969628329538.53195 
4421503391668646048771.87424 
4540976806367663768005.21653 
4660450221066681487238.55883 
4779923635765699206471.90112 
4899397050464716925705.24341 
5018870465163734644938.58570 
5138343879862752364171.92800 
5257817294561770083405.27029 
5377290709260787802638,61259 



Table 2 (cont'd) 

1.00186194 
1.00173467 
1.00160285 
1.00146665 
1.00132607 
1.00118127 
1.00103183 
1.00087808 
1.00071993 
1.00055737 
1.00039068 
1.00021931 
1.00004367 

.99986388 

5496764123959805521871.95489 
5616237538658823241105.29718 
5735710953357840960338.63948 
5855184368056858679571.98178 
5974657782755876398805.32408 
6094131197454894118038.66638 
6213604612153911837272.00868 
6333078026852929556505.35098 
6452551441551947275738.69329 
6572024856250964994972.03559 
6691498270949982714205.37789 
6810971685649000433438.72020 
6930445100348018152672.06250 
7049918515047035871905.40481 

385 

In order to find almost periods for sN, 23 s N s 28, we ran the SZ algo

rithm with N = 23, i.e. n(N) = 9, and j 0 = 1, 2, 3 and 4. 

Unfortunately the SZ algorithm did not produce satisfactory results for 

n(N) ~ 10, unless we extended the precision of the calculations. Instead of 

doing this we decided to try to find zeros of~• N ~ 29 with the use of the 

almost periods found with the SZ algorithms, for the cases n(N) = 8 and 

n(N) = 9. This led to satisfactory results. 

In Table 3 we give a selection of special zeros found by means of the 

two methods described above. cr and tare rounded to 8 decimals. All zeros 
8 

with imaginary part greater than 5. 10 were found by the method of almost 

periods described in this section. 
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Table 3 

A selection of special zeros of ~N' N = 19,22(1)27,29(1)35,37(1)41,47, 

computed with the systematic or with the almost period method 

N a t 

19 1.00109551 600884.20342778 
19 1. 00235653 11771253.22839263 

22 1. 00289095 558159406. 14822557 
22 1. 00159434 46892766540.42816696 

23 1. 00849693 8645.52442332 
23 1. 00519091 938296. 18122556 
23 1.01338428 32520751.77163493 

24 · 1.00404187 32520751. 78599510 
24 1.00266176 558159406.14677888 

25 1. 00044920 32520751.80223907 
25 1.00281451 1948209609528.90258422 

26 1.00147172 3202110.43537085 
26 I. 00515827 32520751.81725186 

27 I. 00041028 61242054160408938.5~968064 

29 1. 00370506 2589158977352418.11781520 
29 1. 00263365 31626643541569868.61843369 

30 1.00035753 2589158977352418.10546556 

31 1.00710369 52331955.65876128 
31 1.01237852 2589158977352418.10678941 
31 1.01213846 31626643541569868.60340243 

32 J.00165867 2589158977352418.10218851 
32 1. 00064974 31626643541569868.59995286 

33 1.00311308 2589158977352418.09084140 
33 1. 00006912 31626643541569868.58813015 

34 I. 00224271 2589158977352418.07991295 
34 1.00231563 31626643541569868.57704514 

35 1.00271904 2589158977352418.06938499 
35 1.00632459 31626643541569868.56710359 

37 1.00386526 2589158977352418.06806263 

38 I. 00612140 2589158977352418.05885220 

39 1.00801942 2589158977352418.04998790 

40 1.00138033 2589158977352418.04412159 

41 1. 00099738 2589158977352418.05290762 

47 1.00039216 20749499.96408269 
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THE FIRST 200,000,001 ZEROS OF RIEMANN's ZETA FUNCTION 

by 

R.P. BRENT, J. VAN DE LUNE, H.J . .J. TE RIELE & D.T. WINTER 

I • INTRODUCTION 

This paper contains a description of extensive computations carried out 

by Brent at the Department of Computer Science of the Australian National 

University (Canberra) and by van de Lune, te Riele and Winter at the Mathe

matical Centre (Amsterdam, The Netherlands). The main results will appear in 

1982 in Mathematics of Computation. The details of the computations by 

van de Lune, te Riele and Winter have been described in the Mathematical 

Centre Report NW 113/81 [12]. 

Riemann's zeta function is the meromorphic function G: t\{l} + t,which, 

for Re(s) > I, may be represented explicitly by 
00 -s 

G(s)=Ln=ln, (s=o+it). 

It is well-known (see TITCHMARSH [17, Chapters II and X]) that 

is an entire function of order I, satisfying the functional equation 

so that 

(z E (!;), 

being an even entire function of order 1, has an infinity of zeros. The 

Riemann Hypothesis is the statement that all zeros of ~(z) are real, or, 

equivalently, that all non-real zeros of G(s) lie on the "critical" line 
I - --o = 2. Since G(s) = G(s) we may restrict ourselves to the half planet> 0. 

To this day, Riemann's Hypothesis has neither been proved nor disproved. 

Numerical investigations related to this unsolved problem were initiat

ed by Riemann himself and later on continued more systematically by the 
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writers listed below (including their progress). 

Investigator Year The first n complex zeros of ,;; (s) 
are simple and lie on cr = l 

2 

GRAM [6] 1903 n = 15 

BACKLUND [I] 1914 n = 79. 

HUTCHINSON [7] 1925 n = 138 

TITCHMARSH [16] 1935/6 n = I, 041 

Those listed above utilized the Euler-~aclaurin summation formula and per

formed their computations by hand or desk calculator whereas those listed 

below applied the Riemann-Siegel formula in conjunction with electronic 

computing devices, 

LEHMER [ 10, I I J 1956 n = 25,000 

MELLER [13] 1958 n = 35,337 

LEHMAN [9] 1966 n = 250,000 

ROSSER, YOHE & 

SCHOENFELD [IS] 1968 n = 3,500,000 

BRENT [2] 1979 n = 81,000,001 

An excellent explanatory account of most of these computations may be 

found in EDWARDS [ 4]. 

In this paper (which presupposes the knowledge of BRENT [2]) we report 

on extensive computations by which the first named author has extended his 

former result ton= 156,800,001 and by which the remaining three authors 

(LR & W, for short) have extended this bound ton= 200,000,001. Independ

ently of Brent, LR & W have also checked the range [g81 000 000 , 
' ' 

gt 20 000 000)' 
' ' In practice, the numerical verification of the Riemann hypothesis in a 

given range consists of separating the zeros of the well-known real function 

Z(t) (see formula (2.6) of BRENT [2] or formula (3.1) in Section 3 of this 

paper), or, equivalently, of finding sufficiently many sign changes of Z(t). 

Our programs (aiming at a fast separation of these zeros) are based, essen

tially, on the modification of LEHMER's [II] method introduced by ROSSER 

et al. [JSJ. However, LR & W have developed a more efficient strategy of 

searching for sign changes of Z(t} in Gram blocks of length L ~ 2. Brent's 

average number of Z-evaluations, needed to separate a zero from its 
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predecessor, amounts to about 1.41 (compare BRENT [2]) whereas LR & W have 

brought this figure down to about 1.21. It may be noted here that in the 

most recent version of the program of LR & W this figure has been reduced 

further to about 1.185. From the statistics in Section 4 it follows that in 

the range [g156 800 000 , g200 000 000) this average number of Z-evaluations 
, , ' , 

could not have been reduced below I • 135 by any program which evaluated Z ( t) 

at all Gram points. We also note that about 98 percent of the running time 

of the LR & W - program was spent on evaluating Z(t). This program was exe

cuted on a CDC CYBER 170-750 computer and ran about ten times as· fast·as the 

UNIVAC 1100/42 program of Brent. This is roughly what could be expected, given 

the relative speeds of the different machines. 

2. THE STRATEGY FOR FINDING SUFFICIENTLY MANY SIGN CHANGES OF Z(t) 

We recall some definitions. Let 0(t) be the real continuous function 

defined by 

(2. I) o. 

The j-th Gram point g. is defined as the unique number satisfying 0(g.) =j~ 
J • J 

(gj > 7; j =-l,0,1,2, ... ). A Gram point gj is called good if (-l)JZ(gj) >O and 

bad otherwise. A Gram block of length L (~· I) is an interval Bj = [gj,gj+L) 

such that gj and gj+L are good Gram points and gj+i•••·,gj+L-lare bad Gram 

points. An interval [g.,g.+1) is called a Gram interval. A Gram block B. of 
J J J 

length Lis said to satisfy "Rosser's rule" if Z(t) has at least L zeros in 

B •• 
J 

The strategy of Brent for finding the required number of sign changes 

of Z(t) is based on this rule. LR & W refined this strategy in order to re

duce the number of Z-evaluations as much as they could. This will be de

scribed here in some detail. 

In order to reduce the number of Z-evaluations as much as possible, we 

first observe that after having determined a Gram block B. of length L ~ 2, 
J 

we already have implicitly detected L- 2 sign changes of Z(t). Hence, the 

problem reduces to finding the "missing two" sign changes. Next we observe 

that these missing two (if existing) must both lie in one and the same Gram 

interval of the block B .• Some preliminary experiments with the LR & W-program 
J 

revealed that in the majority of cases the missing two are situated in one 

of the outer Gram intervals of B .• Therefore, we first search in (g.,g. 1) 
J J J+ 
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or (g. L 1,g. L) according as which of abs(z(g.)+Z(g. 1)) and abs(Z(g.+L 1)+ 
J+ - J+ J J+ J -

Z(gj+L)) is the smallest. In the selected interval an efficient parabolic 

interpolation search routine is invoked. (Here is the main improvement over 

Brent's method, which used random search rather than parabolic interpola

tion.) If this routine terminates without having found the missing two sign 

changes, the other outer Gram interval of the block is treated in the same 

manner. In case the missing two are still not found, another search routine 

is called, depending on the length L of the block B. = [g.,g.+L). 
J J J 

If L = 2, the interval (g.,g. 2) is scanned again, and if L > 2 we con
J J+ 

tinue to search in the interval (g. 1,g. L 1). In both cases, the search is 
J+ J+ -

performed by means of a refinement of a search routine described by LEHMAN 

[9]. For more details we refer the reader to the source text of the LR & W -

program in [ 12]. 

If at some instant one of the search routines has detected the missing 

two, a new Gram block is set up and we continue as described above. In the 

opposite case (which occurs very rarely) the program prints a message and a 

"plot" of Z(t) corresponding to the whole Gram block under investigation and 

proceeds by pretending (!) that the missing two were found indeed. These 

plots of Z(t) were inspected afterwards (if necessary) "by hand". So far, 

the missing two were always easily found either in the Gram block under con

sideration or in an adjacent Gram block (compare BRENT [2, Section 4]). 

After having covered the range [g156 800 OOO' g200 OOO 000 ) we ran the , ' , , 
computation a little further, and found 4 Gram blocks in [g200 000 000 , 

' ' g200 OOO 004), all of them satisfying Rosser's rule. By applying Theorem 3.2 

of BRENT,[2] we completed the proof of our claim that the first 

n = 200,000,001 zeros of s(s) are simple and lie on cr = ½. 

3. COMPUTATION OF Z(t) AND ERROR ANALYSIS 

3.0. Introduction 

In principle, Brent and LR & W's methods of computing Z(t) and error 

analysis are exactly as described in Section 5 of BRENT [2]. We will only 

mention here some details of LR & W's computations and error analysis. The 

full details are given in [12]. 

The unambiguous determination of the sign of Z(t) requires a rigorous 

bound for the error, committed when one actually computes Z(t) on a computer. 



In our program we actually used two methods (A and B) for evaluating 

z (t). 
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Method A is a very fast and efficient method which usually gives the correct 

sign of Z(t). 

Method Bis a comparitively slow, but very accurate method which is invoked 

when IZ(t)I is too small for method A. 

We used the well-known Riemann-Siegel formula (with two correction terms in 

either case): 

(3. I) z (t) 
~ _l m-1 _l ~ -j/2 

2 l k 2 cos[t.fo(k)-8(t)]+(-l) T 4 L <!i.(z)T +R1(t), 
k=I j=O J 

l l 
where m L,2J, T = t/ (211)' z = I - 2 (, 2 - m), 

(3.2) 8 (t) 
- 1 it I I arg[ 11 2 r (4 + 2 it) J' e (t) continuous and 8(0) o, 

2 
00 

(O) 2k 
(3.3) <lio (z) cos[11(4z +3)/8]/cos(11z) =: I c2k z , -1 < z ,,; 

I ' 
k=O 

d3 2 
00 

(I) 2k+l (3. 4) <Ii I (z) = - 3 <!i0 (z)/(1211) =: I c2k+lz · 
dz k=O 

The last term R1 ( t) will be dropped in our actual computation. GABCKE [5] and 

BRENT & SCHOENFELD [4] have given bounds on Rn(t) (here, n+I denotes the num

ber of terms in the second sum in (3.1), hence n = I in our situation). We 

used the bound (GABCKE [5]) 

(3.5) I I < 0.053t-514 - 5/ 4 R1(t) < 0.0054, , fort~ 200. 

The floating point machine approximations of Z by means of methods A and B 

will be denoted by ZA and ZB' respectively. Throughout this section, the re

sult of the floating point machine approximation of some quantity q will be 

denoted by q. 
We present an error analysis which accounts for all possible errors in 

Z, for any t (resp. ,) in the range, 

(3. 6) 3.5x 107 < t < 3.72x 108 6 7 (resp.5.5x)O <,<5.92x)O). 

This covers the range of zero #81,000,001 till zero #1,000,000,000 of ,(s) 

in the critical strip, which we had originally planned to investigate 

(y 81 OOO OOI ~ 35,018,261.166, y 1 OOO OOO OOO ~ 371,870,203.837). , , , ' , 
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The computations were carried out on a CDC CYBER 175 computer having a 

6O-bit word, and single-precision (SP) and double-precision (DP) floating

point arithmetic using 48- and 96- bit binary fractions, respectively. In 

the sequel we will frequently work with the unit roundoffs Es := 2-47 and 
-95 

Ed := 2 . 

3.1. Computation of Z(t) 

(i) 

(ii) 

(iii) 

(iv) 

At the start of the program four tables are precomputed: 

ln(k) for 1 $ k $ mO in DP, where mO is large enough to cover the 

range of the current job; 
_1 

k 2 for I$ k $~in DP, truncated to SP; 

cos(211k.2- 13 ) for O $ k $ 213 + 1 in DP, truncated to SP; 
-13 -13 13 cos(211(k+l)2 ) - cos(211k2 ) for O $ k $ 2 in DP, truncated to 

SP. 

Methods A and Brun essentially as follows. 

Method A. Given a T as a DP floating point number, t = 211T and 0(t) are com

puted in DP; f(I) := frac{0(t) (211)-I} is computed in DP, and truncated to SP. 

Next, the main loop (corresponding to the first sum in (3.1)) is executed. 

This loop has been written in COMPASS (machine language of the CYBER) and 

optimized using the specific properties of the CYBER's central processing 

units. One cycle of the loop executes in about 2.1 µ sec. f( 2) := 

frac{T ln(k)} (where ln(k) is looked up in the precomputed table) is computed 

as follows: the DP product of T and ln(k) is decreased with the integer part 

of the SP product of T and ln(k) and the result is truncated to SP. This pro

graIIm1ing "trick" saves a considerable amount of time in the main loop. x 

abs(f(l)_f(2)) is computed in SP, and cos(211x) is approximated by linear in

terpolation in the precomputed cosine-table, using the precomputed cosine-
_! 

difference table, The result is multiplied by the precomputed k 2 and the 

product is accumulated in an SP sum. End of the main loop. Next, the two 

terms in the asymptotic expansion of the Riemann-Siegel formula (3.1) are 

approximated using the truncated Taylor series expansions 

(3. 7) (O) 2k 
c2k z and 

(I) 2k+I 
c2k+I z ' 

For the values of NO and N1 actually used, see Section 3.4. The total cor

rection is computed and added to 2 times the sum obtained in the main loop. 

The computations after the main loop are carried out in SP. 
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Method B. The same as Method A, with aU computations in DP. The value of cos (27rx) 

is computed using the available standard FORTRAN DP library function DCOS. 

3.2. Error analysis 

In our error analysis we assume that, is exactly representable as a 
l 

floating point number. The positive integer m (= L, 2 J) is exactly computed 

from, by testing the inequalities m2 s, < (m+l) 2 and by correcting the 

machine-computed value, if necessary. Now let 

(3. 8) 
m I 

s(t) := 2 L k- 2cos[t.ln(k) - 8(t)J, (t 
k=l 

2n). 

By ;(t) we denote the computed value of s(t), where errors may be made in 
-½ the computation oft, ln(k), 8(t), t.ln(k)-8(t), cos(.), k and the final 

inner product. The following lemma accounts for all these errors. 

LEMMA 3.1. Suppose that It-tis o0t, lln(k)-ln(k)I s o1 ln(k) fork= 
~ ~ ~ ~ -1 1,2, ••• ,m, a:nd le(u)-e(u)I s o2e(u); let fk := frac{Tln(k)-8(t)(2TI) } 

and suppose that lfk-fkl s o3 fork= 1,2, ••• ,m. Moreover, su~pose
1
that 

!cos(x)-~(x)I s o4 for Osxs2TI+h, where his fixed*), !k-: 2 -k- 2 1 s o5 k-½ 

fork= 1,2, ••• ,m, and that the inner product of the wo vectors with com-
~-l ~~~ ~ 

ponents k 2 and cos(2Tifk), respectively, (1 sksm) is computed with a rela-

tive error in the basic arithmetic operations (+,-,* a:nd /) bounded by E. 

Then we have 

(3.9) 
! 

+ 4T 4 [27fo 3 + o4 + (l+o4Ho 5 + (l+o 5) ((l+E)m-I)} J. 

This lemma is similar to Lemma 5.3 of BRENT [2], the difference being 

that we explicitly account for all possible errors in the computation of s(t). 

The proof is routine and uses the technique of backward error analysis (cf. 

WILKINSON [18]) for the inner product computation (cf. PARLETT [14, pp. 30-

32]) and for the other basic arithmetic operations. 

Let 

(3. IO) 
_! 

+ T 2cp I (z) J. 

*) The reason for the occurrence of this (small) number h in this lemma will 
be clarified in Section 3.3. 
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By x(T) we denote the computed value of x(T) where errors may be made in the 
_l _1 

computation of T 2 , T 4 , z, <1> O(z), <1> 1 (z), and in the other arithmetic opera-

tions. The following lemma accounts for all these errors. 

LEMMA 3.2. Let Ebe as in Lemma 3.1 and let the relative error in the square 

root computation be bounded by aE. Moreover, suppose that lz-il s 06 and 

that <I>o(z) and <1>1(z) are approximated by ~O(z) := L:~o ~ig) z2k and 

¢1(z) := L:~o ~I z2k+l, respectively, where lei~) - ~I s o7 and -lei~~! - cil~ 1 Is o7• Then 

~ _1 rr No+1 
lx(T) -x(T) I s T 4 [20 6+20 7(NO+1) +(No+!)! (2) +(5NO+2a+4)d + 

(3. 11) 

In the proof of this lemma, which we omit, use is made of the inequali-
1 ties I <1> 0 (z) I s I, I <1> 1 (z) I s I , I <1>0 (z) I s I and I <I> j (z) I s 4 for I z I c< I (see 

GABCKE [5, Theorem I, p. 60]) and of the bounds given in GABCKE [5, Theorem 

2, p. 62] on the error induced by truncating the infinite series in (3.3) 

and (3.4). 

3.3. Estimates for oO~ 7 for methods A and B 

Because of the programming "trick" mentioned in 3.1 we must take into 

account the possibility that the computed value of f( 2) may be (slightly) 

larger than I by an amount which is bounded by 2.5€ Tln(k). In the t-range 
-5 s (2) 

(3.6) this excess is bounded by 10 . Instead of correcting f by subtract-

ing I, which is needed only very rarely, we use one extra element in the co
-13 

sine interpolation table beyond cos(2rr), viz. cos(2rr+h), where h = 2rr.2 ~ 

~7.7x!0-4 (> IO-5). 

In [12] we have given an account of our computation of the values of 

oO, .•• ,o 7• The results are summarized in Table 3.1. 

Table 3.1. 

Values of oO, ••• ,o 7 for methods A and B 

method 80 81 82 83 84 85 86 87 

A 1.0JxJ0-28 5. JxJ0- 29 3.6xJ0-27 5xlO-l 4 7.36xIO -8 7.2xlO-l 5 7.2xIO-l 5 5xJ0-14 

B 1.0JxJ0-28 5. ]xl0-29 3.6xio-27 l .2xJO-ll 1.5xJ0-27 l .OixI0-28 2.0xI0-24 Sx 10-28 
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3.4. The error bounds on Z for methods A and B 

To complete the error analysis we apply Lemmas 3. I and 3.2 with o0 , 

••• ,8 7 as given in Table 3.1, € = € 
-95 s 

method A, and€= €d = 2 , a= 10, 

-47 
2 ' a= 10, N0 = 16 and N1 = 17 for 

29 for method B; including 

the inherent error (3.5) this yields 

(3 .13) 

and 

(3. 14) 

for any t (= 2TIT) in the interval (3.5x 107, 3.72x 108). In this interval, 
-5 -11 

safe upper bounds for the errors are 2. 7 x 10 and 2.0 x 10 , respectively. 

In the LR & W- program (see [12]) the extremely conservative fixed bounds 
-4 -6 ~ ~ 

£ 1 10 and £ 2 = 2.5 x 10 were used, respectively. In case IZA (t) I was 

less than £ 1, a few rather small shifts with t were tried. If still no 

"clear" value was found with method A, method B was invoked. Until now not 

a single t occurred for which method B could not determine the sign of Z(t) 

rigorously. 

4. STATISTICS 

The LR & W - program was organized in such a way that in case the value 

of Z(t), obtained with method A, was too small for a rigorous sign determin

ation, a few small shifts of the argument were tried before method B was in

in relatively few cases, an ap-

g. itself. (In a run of 2,500,000 
J 

voked. Therefore, the LR & W - program uses, 

proximation of the Gram point g. instead of 
-4 J 

zeros, with error bound 10 for method A, the total number of shifts was 

always less than 370. Most of them were made when separating the zeros in

sid£ the Gram blocks. Only a few of them were made in Gram points. Also see 

the text introducing Table4.3.) Consequently, the statistics found by LR&W 

cannot, strictly speaking, be accumulated to those, found by Brent. Never

theless, just for convenience, we have put together all results. This should 

be kept in mind when reading the tables. 
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In Table 4. 1 we present a list of 104 exceptions to Rosser's rule up to 

g200 000 000 found by Brent and LR & W, including the 15 exceptions up to 

g75 ~OO ~OO from [2], for completeness. Moreover, the types (see Table 4.2) 

are,giv;n in parentheses, followed by the local extreme values of S(t) (see 

BRENT [2]) near Bn. It is possible that for n 2 156,800,000 the LR & W

program has not detected all exceptions to Rosser.' s rule, due to 

Table 4.1 

(extension of Table 3 of BRENT [2]) 

104 exceptions to Rosser's rule up to g200 , 000 ,000 

Notation: n (type) extreme S(t) 

where n is the index of the Gram block Bn containing no zeros. 

13,999,525(1) -2.0041 JOO, 788,444 (1) -2.0230 146,130,246(2) 2.0005 173,737,614(2) 

30, 783,329(1) -2.0026 106,236, 172(1) -2.0184 147,059, 770(1) -2.0498 174, 102,513(1) 

30,930,927(2) 2.0506 106,941 ,328(2) 2.1559 147,896, 100(2) 2.0391 174,284,990(1) 

37,592,215(1) -2.0764 107,287,955(1) -2.0786 I 5 I , 09 7, I I 3 (1) -2.0043 I 74,500·,513 (1) 

40,870, 156(1) -2.0038 107,532,017(2) 2.0728 152,539,438(1) -2.0026 I 7 5, 7 IO, 609 (I) 

43,628, 107(1) -2.0242 I 10,571 ,044(1) -2.0458 152,863,169 (2) 2.0459 176,870,844(2) 

46,082,042 (1) -2.031 I 111,885,254(2) 2.0247 153,522,727(2) 2.0027 177,332,733(2) 

46,875,667(1) -2.0046 113,239,783(1) -2.0306 155,171,525(2) 2.0437 177,902,862(2) 

49,624,541(2) 2.0018 120, 159,903(1) -2.0589 155,366,607(1) -2.0277 179,979,095(1) 

50,799,238 (I) -2.0288 121 ,424,392(2) 2.0515 157,260,687(2) 2.0363 181 ,233,727(2) 

55, 22 I ,454 (2) 2.0242 121 ,692,932(2) 2.0616 157,269,224(1) -2.0329 I 8 I , 625,435 (I) 

56,948,780(2) 2.0177 121,934,171 (2) 2. 1719 157,755, 123(1) -2.0205 182, l05,257(6) 

60,515,663(1) -2.0081 122,612,849(2) 2.0072 158,298,485(2) 2.0273 182,223,560(2) 

61,331, 766(3) -2.0543 126, I 16,567(1) -2.0106 160,369,051 (2) 2.0071 191, I 16,405(2) 

69,784,844 (2) 2.0637 127,936,513(1) -2, I 105 162,962,787(1) -2.0115 191, 165,600(2) 

75,052, I 14(1) -2.0045 128,710,278(2) 2.0444 163,724,709 ( I) -2.0163 191,297,535(5) 

79,545,241(2) 2.0113 129,398,903(2) 2.0431 164,198, I 14(2) 2.0235 192,485,616(1) 

79,652,248(2) 2.0066 130,461 ,097(2) 2.0963 164,689,301 (I) -2. 1579 193,264,636(6) 

83,088,043(1) -2. 1328 131,331,948(2) 2.0047 164,880,229(2) 2.0308 194,696,968(1) 

83,689,523(2) 2.0775 137,334,072(2) 2.0239 166,201,932 (I) -2.0024 195,876,805(1) 

85,348, 958(1) -2.0095 137,832,603(1) -2.0134 168,573,836(1) -2.0159 195,916,549(2) 

86,513,820(1) -2.0154 138,799,472(2) 2.0135 169,750, 763(1) -2.1036 196,395,161 (2) 

87,947,597(2) 2,0523 139,027,791(1) -2.0031 170,375,507(1) -2.0009 196,676,303(1) 

88,600,095 (1) -2.1394 1 4 I , 6 I 7, 806 (I ) -2.1253 170,704,880(2) 2.0249 197,889,883(2) 

93,681, 183(1) -2.0165 144,454,931 (1) -2.0380 J 72,000,993 (2) 2.0608 198,014, 122(1) 

100,316,552 (2) 2.0233 145,402,380(2) 2.0012 173,289, 94 I (I) -2.0378 199,235,289 (1) 

2.0221 

-2.0180 

-2.0181 

-2.0125 

-2.0193 

2.0125 

2.0146 

2.0223 

-2.0 I 82 

2. 1018 

-2 .0401 

2.0084 

2.0156 

2,0195 

2.0283 

-2. 1490 

-2.0416 

2.0055 

-2. 0664 

-2.0143 

2.0546 

2.0326 

-2.0135 

2.0034 

-2.0333 

-2.0205 



possible shifts in Gram points. For instance, an exception of type 2 (see 

Table 4.2) may have been detected as a Gram block of length 3 with "2 1 0" 

zero-pattern. It may be noted, however, that in the range [g81 000 000' 
' ' 
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g120 , 000 , 000) LR & W have found exactly the same exceptions to Rosser's rule 

as Brent. 

In addition to the types 1, 2 and 3 introduced by tFENT [2] we have de

fined the types 4, 5 and 6, the meaning of which should be clear from Table 

4.2. This table also gives the frequencies of the occurrences of the various 

types in [g_ 1, g200 000 000 ). Note that an exception of type 4 has not yet 
' ' been found, so that at the time of writing we still know only one Gram inter-

val with four zeros, viz. G61 331 768 , found by BRENT [2]. 
' ' 

Table 4. 2 

Various types of exceptions to Rosser's rule and their frequencies 

gn-2 gn-1 

3 

0 4 

2 2 

in [g_l,g200 000 000) • 
. , ' 

Gram block of 
length 2 with
out any zeros 

gn ~+l gn+2 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

gn+3 gn+4 

3 

4 0 

2 2 

type frequency 

1 53 
2 47 
3 1 
4 0 
5 1 
6 2 

Very recently, KARKOSCHKA and WERNER [8] have developed a method for 

detecting exceptions to Rosser's rule with relatively small computational 

effort, i.e., by searching in certain selected small ranges of a given t

interval. A comparison of their results with Table 4.1 shows the power of 

their method: in [g3 500 000 , g50 000 000 ) they found all 9 exceptions to 
, ' , , 

Rosser's rule, and in [g 100 000 000' g120 000 000) they found 6 of the 9 
, ' ' , 

exceptions. 

Table 4.3 is a continuation of Table 1 of BRENT [2]. Six Gram blocks 

of length 8 were found. The average block length up ton= 200,000,000 is 

1.1951. We have compared the results of LR & W with those of Brent in the 

range [g110 000 000' g 120 000 002 ). Brent's program counted 7,011,482 Gram , ' , , 
blocks of length 1, 1,055,511 of length 2 and 230,234 of length 3. The 
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corresponding figures obtained by LR & W were 7,011,494, 1,055,508 and 

230,232, respectively. The numbers of Gram blocks of length~ 4 were the 

same for both programs. 

Table 4.3 

(continuation of Table I of BRENT [2]) 

Number of Gram blocks of given length 

n J( I ,n) J (2 ,n) J(3,n) J(4,n) J(5,n) J(6,n) J{7,n) J(8,n) 

80,000,000 56,942,025 8,386,072 1,714,271 260,637 18,807 1,033 34 

90,000,000 63,977,026 9,439,917 I ,941 ,455 299,932 22,257 I ,240 46 

100,000,000 71,004,697 10,493,487 2,169,610 340,360 25,813 1,436 54 

110,000,000 78,023,506 11,547,936 2,399,154 381,216 29,601 1,644 61 

120,000,000 85,034,988 12,603,447 2,629,388 422,721 33,500 1,841 74 

130,000,000 92,041,326 13,659,032 2,860,087 464,955 37,495 2,070 92 

140,000,000 99,041,526 14,713,754 3,092,451 507,686 41,631 2,332 

150,000,000 106,038,874 15,768,532 3,325,400 550,630 45,795 2,591 

156,800,000 110,793,769 16,486,479 3,484,026 579,999 48,731 2,780 

200,000,000 140,956,084 21,047,520 4,497,856 771,607 68,631 4,031 

102 

114 

120 

213 

3 

3 

6 

Table 4.4 is a continuation of Table 2 of BRENT [2]. The percentages 

of the numbers of Gram intervals up ton 200,000,000 containing exactly 

m zeros are 13.4, 73.4, 13.0 and 0.2 form= 0, I, 2 and 3, respectively. 

Table 4.4 

(continuation of Table 2 of BRENT [2]) 

Number of Gram intervals containing exactly m zeros 

n 

80,000,000 

90,000,000 

100 , 000, 000 

I 10,000,000 

120,000,000 

130,000,000 

140,000,000 

150,000,000 

156,800,000 

200,000,000 

m = 0 

10,513,316 

11,854,362 

13,197,331 

14,543,760 

15,892,224 

17,242,449 

18,594,089 

19,946,624 

20,867,682 

26,731,720 

m=I 

59,105,832 

66,440,792 

73,771,910 

81,096,629 

88,416,806 

95,733,829 

103,047,955 

110,360,313 

115,330,181 

146,878,417 

m = 2 

10,248,390 

11,555,331 

12,864,188 

14, I 75,463 

15,489,718 

16,804,996 

18,121,824 

19,439,504 

20,336,593 

26,048,007 

m = 3 

132,461 

149,514 

166,570 

184,147 

201,251 

218,725 

236,131 

253,558 

265,543 

341,855 

m = 4 
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Table 4.5 continues Table 4 of BRENT [2]. AB yet, no Gram block of type 

(7,1) was found. Due to the shifts, we may have missed earlier occurrences 

of blocks of types (7,7), (8,3) and (8,7), although we consider this unlike

ly. 

Table 4.5 

(continuation of Table 4 of BRENT [2]) 

First occurrences of Gram blocks of various types 

j k n 

7 7 195,610,937 (LR & W) 

8 2 112,154,948 (BRENT) 

8 3 175,330,804 (LR & W) 

8 6 145,659,810 (BRENT) 

8 7 165,152,519 (LR & W) 

In Table 4.6 we list the number of Gram blocks of type (j,k), 1 ~ j ~ 8, 

1 ~ k ~ j, in the interval [g 156 800 000 , g200 000 000), as they were actual-
' , ' , 

ly counted by the LR & W-program. On the line with j = 2 we also mention the 

numbers of Gram blocks of length 2 with zero-pattern "O O" and those with 

pattern "2 2" which could, of course, neither be classified as type (2, 1) 

nor as (2,2). The 43 blocks with "O O"-pattern correspond to the exceptions 

to Rosser's rule in [g 156 800 OOO' g200 OOO 000 ) and the 3 blocks with "2 2"-, , , , 
pattern correspond to the exceptions of types 5 and 6 (cf. Table 4.2). The 

entries in parentheses give the approximate percentages with respect to the 

total number of blocks of length j, given in the final column. 

Our main purpose of presenting this table is to render support to the 

LR & W-strategy of dealing with Gram blocks of length j ~ 2. The table shows 

that this strategy is successful for 2 ~ j ~ 5. However, for j ~ 6 the miss

ing two zeros in Bn show an increasing tendency to lie either in (gn+l'gn+2) 

or in (g +· 2 , g . 1). Only one of the 93 blocks of length j = 7 has its n J- n+J-
missing two zeros in one of the outer Gram intervals! 
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Table 4.6 

Nwriber of Gram blocks of type (j,k), I$ j $ 8, I$ k $ j, in the interval 

[g156 800 000' g200 000 000) ' , , , 

k-+ 
+j I 2 3 4 5 6 7 8 total 

30,162,315 30,162,315 

2 2,279,942 2,281,053 43 blocks with 0 0 zero-pattern 4,561,041 
(50) (50) 3 blocks with 2 2 zero-pattern 

3 479,720 53,497 480,613 1,013,830 
(47) (5) (4 7) 

4 87,367 8,592 8,499 87,150 191,608 
(46) (4) (4) (45) 

5 7,581 I ,81 I 948 1,882 7,678 19,900 
(38) (9) (5) (9) (39) 

6 156 337 119 126 366 147 I ,251 
(I 2) (27) (IO) (IO) (29) (12) 

7 0 29 17 3 17 26 93 

8 0 0 1*) 0 0 1*) 1*) 0 3 

*) viz. Bn' for n 175,330,804, 181,390,731 and 165,152,519. 
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