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PREFACE

This monograph is a slightly revised edition of my doctoral thesis which
has been submitted to the University of Utrecht (September 22, 1982).
The main changes in comparison with the thesis are: in the sections II.S8,
III.8 and III.9 some inequalities have been added or tightened; the proof
of lemma II.5.9 has been rewritten; in section IV.2 a remark on the condi-
tions on which the generalized model is ergodic, has been added; and sec-
tion IV.3 has been rewritten, now including a description of the numerical
procedures and providing other and more examples.

I express my gratitude to my thesis advisor, Prof.Dr.Ir. J.W. Cohen, and
to Dr.Ir. 0.J. Boxma for their valuable comments, and to Drs. F.M. Elbert-

sen for carrying out a part of the numerical evaluations.

I thank the Mathematical Centre for the opportunity to publish this mono-

graph in their series Mathematical Centre Tracts.
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GENERAL INTRODUCTION

The analysis of queueing models which differ only slightly from the
classical M/G/! model, for instance if two types of customers have to be
distinguished, is much more complicated than that of the M/G/1 model itself.
Such models often give rise to the problem of solving a functional equation

of the form

K(p;»p,) @(p sp,) = Alp;,P,) 2(p;,0) + B(p,,p,) 2(0,p,) + C(p,5p,) ©(0,0),

lpll <l,lp2l <1 0.1)

here K, A, B and C are known-functions and @(p],pz) is an unknown function
which should be a bivariate generating function in P, and in Py of a proper
probability distribution with support the set {0,1,2,..}x{0,1,2,..}.

An important role in the analysis of this type of functional equations is
played by the kernel K(pl,pz), because zeros (p],pz) of the kernel K(pl,pz)
in the region |p1| <1, |p2| <1, where the function ®(p,,p,) — being a
generating function of a probability distribution - is finite, lead to a
functional relation between the regular functions @(pl,O) and @(0,p2).
Recently, a method has been developed to formulate the inherent problem
for the determination of the functions @(pl,O) and ¢(0,p2) as boundary
value problems for regular functionms.

During the last decennia some functional equations of the type (0.1) have
been solved in literature. For functional equations with a kernel being a
polynomial in P and in P, of sufficiently low degree the technique of

uniformisation has been applied. The most recent of this approach was given



by FLATTO & MCKEAN [11].

An important step forward in the analysis of functional equations of the
type (0.1) has been initiated by FAYOLLE [ 08] & IASNOGORODSKI [ 16], see
also [09]. The essential point in their work is that once a relation
describing the zeros of the kernel K(pl,pz) has been obtained the determi-
nation of the functions @(p],O) and @(O,pz) could be formulated as a Rie-
mann-Hilbert boundary value problem (we shall use the terminology of
MUSKHELISHVILI [ 20] in the theory of boundary value problems). This obser-
vation enabled them to solve a number of queueing problems which gave rise
to functional equations as described by (0.1). However, in their approach
they needed an explicit description of the zeros (Pl’pZ) of the kernel
K(pl,pz) in the whole doﬁain € X €. This feature implies that the analysis
as proposed by FAYOLLE & IASNOGORODSKI [ 09] can only be applied if the
kernels are of sufficiently simple type, which implies that a simple ser-
vice time distribution has to be chosen (negative exponential).

The investigations of COHEN & BOXMA [ 04] showed that the determination of
@(pl,O) and @(O,pz) in (0.1) could also be reduced to the solution of two
Riemann-Hilbert boundary value problems for kernels of a rather general

character, i.e. for kernels of the form

1-¢c -Cc,P
K(pl,pz) =PP, 8(—;;—2——2), (0.2)

here B(.) is the Laplace-Stieltjes transform of a probability distribution
with support on (0,®), and ¢ys Cps O are positive constants, ¢y te, = 1.
In this approach the service time distributions do not need to be speci-
fied, so that the generality of this method is comparable with that for
the basic M/G/! model. Recently, a still more general technique has been

developed which makes it possible to formulate the determination of

@(pl,O) and @(O,pz) as a boundary value problem for the case of the left-
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continuous two-dimensional raﬁdom walk in the first quadrant (see a forth-
coming report of Cohen & Boxma).

The technique developed by COHEN & BOXMA [04] can be characterized as
follows. The zeros (pl,pz) of the kernel (0.2) are described by means of a
two-valued analytic function of the parameter § := ey * CyPy. At first
the domain of this function is restricted by the conditions lp,l <1 and
|p2| <1, in which region the function @(pl,pz) is known to be regular.
But on account of the properties of the Laplace-Stieltjes transform B(.)
this two-valued analytic function of § can be continued analytically into
the region Re § < 1. It turns out that this continued function has exactly
two branch points in the region Re § < 1. These two branch points are real.
At the line segment joining them the two values of the analytic function
are complex conjungate, and this line segment is mapped onto a smooth con-
tour L.

By means of the analytic continuation of the function of §, describing the
zeros of the kernel (0.2), also the relation between Q(pl,O) and @(0,p2)
can be extended into the region Re § < | (principle of permanence). Hence,
this relation can be considered on the line segment joining the above
mentioned branch points. This leads to a relation between @(w/ch,O) and
@(O,G/Zcz) for w € L. Moreover it can be proved that the functions
@(w/ch,O) and @(O,Q/Zcz) are regular for w in the interior of the contour
L. Therefore, by taking real and imaginary parts of the relation on L two
Riemann-Hilbert boundary value problems can be formulated. For-the solution
of these boundary value problems the conformal mapping of the unit disk
onto the interior of the contour L is introduced.

Once these Riemann-Hilbert problems have been formulated the functions
@(p],O) and @(O,pz) can be determined uniquely inside the unit circle by
means of analytic continuation from the interior of L. Finally, by substi-

tution of @(pl,O) and @(O,pz) in the original functional equation (0.1)



the function @(pl,pz) is obtained.

Hence the following procedure for the solution of a functional equation of
the form (0.1) with kernel (0.2) has become available:

i. describe the zeros (pl’PZ) of the kernel (0.2) for which the generating
function @(pl,pz) is finite by means of a two-valued analytic function;
ii. determine the two branch points of the extended analytic function in
the half plane Re § < f, and determine the eontour L on which the line
segment between those branch points is mapped by this analytic function;
iii. take the real and imaginary parts of the relation between @(w/2c1,0)
and @(O,E/Zcz) which holds for w € L; these boundary conditions define two
Riemann-Hilbert problems for the contour L;

iv. transform these two bbundary value problems for the contour L into two
Riemann-Hilbert problems for the unit circle by means of the conformal
mapping of the unit disk onto the interior of L;

v. from the solutions qf these Riemann-Hilbert problems (given in litera-
ture) and some side conditions the functions @(pl,O) and @(0,p2) can be
determined; next substitute these functions in the functional equation
(0.1) which gives the function @(pl,pz).

A functional equation of the type (0.1) occurs by the determination of
the stationary distribution of an imbedded Markov chain {(§](n),§2(n)),
n=0,1,..} which characterizes é certain queueing model. The existence of
such a stationary distribution has actually to be proved and in most cases
this requires the analysis of the time dependent behaviour of the Markov
chain, in particular of its asymptotic behaviour as n > .

The most important part of the present investigation is the question
whether the time dependent behaviour of the imbedded Markov chain can be
analysed with the same techniques as discussed above for the stationary
case, and if so, how the asymptotic analysis of the Markov chain as n > =

should be carried through.



The second aim of this study can be characterized as follows. The Markov
chain {(gl(n),gz(n));n=0,l,..} is in many situatioens an imbedded chain of
a process {(Zl(t)’Yz(t)):t >0}, the latter characterizes the behaviour of
the number of customers in continuous time. Although from the description
of the imbedded chain important information can be obtained concerning the
behaviour of the queueing system, ultimately the full description of the
process in continuous time is needed. So the problem arises whether we can
apply the above mentioned solution method also in the analysis of the time
dependent behaviour of the process {(z](t),xz(t)),t > 0} and whether its
behaviour as t—>« can be analysed.

It turns out that both questions on the applicability of the solution
method of Cohen & Boxma can be answered affirmatively. Moreover, it is
shown by using the literature on the boundary behaviour of a conformal
mapping of the unit disk onto a given domain that the above mentioned
asymptotic behaviour of the imbedded chain (n = «) as well as that of the
process in continuous time (t > ®) can be handled.

In the time dependent case the contour L and hence aiso the conformal
mapping g(r;z) of the unit disk onto the interior of L depend on the time
variable r; the analysis of the asymptotic behaviour of the process

requires the investigation of limits of the form

lim (1-r) [ ¢(r;z) — dz,
rtl | 2]=1 [1-g(r; D1l 1-g(r;)]
here ¢(r;z) is finite for |z| = 1,|r| <1, and g(r;2) = 1 if and only if

z=1, r=1.

Because the M/G/1 model is a basic model in queueing theory and be-
cause this model allows a complete analypic description without specifica-
tion of the service time distribution we have chosen for the discussion of

the above questions the simplest generalization of the M/G/1 model which



leads to a functional equation of the type (0.1) and a kernel of the form
(0.2). Characteristic for the analysis of the M/G/1 model is the recurrence

relation

x(n) = [x(@-1) - 117 + E@), =n=1,2,.., (0.3)

for the imbedded Markov chain {x(n), n=0,1,..} with stationary transition
probabilities and state space {0,1,2,..}; here £(n), n=1,2,.., is a se-
quence of independent identically distributed random variables. Actually,
x(n) represents the number of customers left behind in the system at the
nth departure instant, whereas £(n) denotes the number of arrivals during

the nth service (n = 1,2,..).

The generalization of this system is described by the recurrence relations

x@ =[x @) - 1"+ E@, n=12,.., j=1,2, 0.4

for the Markov chain {(§l(n),§2(n)), n=0,1,..} with stationary transition
probabilities and state space {0,1,2,..} X {0,1,2,..}; here (él(n),gz(n)),
n=1,2,.., is a sequence of independent identically distributed random
vectors. Note that in general gl(n) and gz(n) are not independent (n=1,..).
This model may be interpreted as follows. Two types of customers arrive
independently with negative exponentially distributed interarrival times
at a single server facility. Customers of different types are served in
pairs if possible, otherwise customers are served individually. Successive
service times are independent random variables with a common - unspecified-
distribution (see section II.0 for a detailed description of the model).
Then for j = 1,2, the variable gj(n) represents the number of type j cus-—
tomers left behind in the system at the ntP departure instant, while gj(n)
denotes the number of arrivals of type j customers during the nth service

(n=1,2,..).



The organization of the present study is as follows.
In chapter I we shall summarize concepts, definitions and theorems from the
theory of functions of a complex variable and of conformal mappings, and
from the theory of boundary value problems. This chapter has been incorpor-
ated to give a review of these theories in order to make this study self-
contained.
Chapter II is devoted to a detailed analysis of the time dependent beha-
viour of the Markov chain {(51(n),§2(n)), n=0,1,..}. In section II.2 a
functional equation for the generating function of this Markov chain is de-
rived. This functional equation is analysed with the method of Cohen & Box-
ma in the sections II.3,..,II.§. In section II.6 two Riemann-Hilbert bound-
ary value problems are formulated, and the solution of them -is fully
described. In section II.7 it is shown that the solution method can be sim-
plified by formulating a single Hilbert boundary value problem instead of
the two Riemann-Hilbert problems. In this section we shall also discuss the
analytic continuation of the solution across the contour L. Section II.8 is
devoted to the asymptotic behaviour of the Markov chain as n -+ «. Condi-
tions are derived on which the Markov chain is ergodic, null-recurrent or
transient. In the ergodic case the stationary distribution and its first
and second order moments are determined.
In chapter III the continuous time parameter process {(zl(t)’XZ(t))’ t >0}
of the same queueing model is investigated. Two supplementary variables are
introduced in order to define a continuous time Markov process..with a re-
latively simple procedure (section III.2,III.3) the analysis of this time
dependent process can be reduced to the solution of a functional equation
of the type (0.1) with a kernel of the form (0.2). The analysis of this
functional equation proceeds along the same lines as in chapter II and is
described - without repeating every detail - in the sections IIT.4-III.6.

The asymptotic behaviour of the process as t - « is discussed in section



I11.8. It turns out that tﬁe stationary distribution of this process in -
continuous time is different from that of the imbedded Markov chain at de-
parture instants. Once the solution of the continuous time process is ob-
tained it is possible to describe other characteristic phenomena of the
queueing model such as the virtual waiting time process and the workload of
the server. Section III.7 is devoted to the time dependent behaviour of
these phenomena, whereas in section III.9 their stationary distributions
and first moments are determined.

Chapter IV contains three sections. In the first section the analysis of
the imbedded Markov chain considered in chapter II is extended by including
a random variable describing the instant of the nth departure. Here also
the busy period will be discussed. The second section is devoted to a
variant of the present model. It is shown that in the case that the dis-
tributions of the duration of individual services differ from that of
paired services also a Hilbert boundary value problem can be formulated,
however of a more intricate type. In the third section some numerical
examples for moments and probabilities of several distributions obtained in
this study are presented. For obtaining these values it is necessary to
evaluate the relevant conformal mapping and some of its derivatives numeri-
cally.

For a more detailed review of the various sections the reader is referred
to the introductions of these sectioms.

Throughout, symbols indicating random variables are underlined.

Inside a chapter formulas, theorems, etc., are referred to just by their
number, whereas references outside a chapter are prefixed by a roman
numeral indicating the chapter, e.g. (I.3.2) refers to formula (3.2) in

chapter I.



CHAPTER I

BOUNDARY VALUE PROBLEMS, A SUMMARY

I.0. Introduction

In this chapter we shall summarize concepts, definitions and theorems
from the theory of functions of a complex variable, in particular those
which are used in the theory of boundary value problems.

In section I.1 definitions concerning regions and curves in the complex
plane will be given as well as definitions and basic properties of analytic
functions of a complex variable.

Section I.2 deals.with the H?lder conditions for functions defined on a
contour.

In section I.3 integrals of the Cauchy type, and in particular their
behaviour near the contour of integration will be discussed.

The Hilbert and the Rieﬁann—Hilbert boundary value problems and their
solutions will be subsequently described in the sections I.4 énd I.5.
Finally section I.6 deals with the conformal mapping of a domain in the
complex plane onto the unit disk. In particular, theorems on the boundary
behaviour of such conformal mappings will be listed, and the method of
Theodgrsen for the determination of conformal mappings of the unit disk

onto simply connected convex domains will be described.

I.1. Sets and Functions

For the definitions given below we refer to the books of EVGRAFOV [07 ],

chapter II & III, and of MARKUSHEVICH [ 18 ], vol. I, chapter 4.
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DEFINITION 1.1. 4 set E s said to be connected if given any decomposition

of E into two nonempty disjoint sets E| and E, (E]U E, = E) at least one

of the sets E, and E, contains a limit point of the other.

1

An open comnected set is called a domain.

A complex valued function z = f£(t) of a real variable which is defined,
single-valued and continuous in a closed interval t <t < t, is said to
define a (continuous) curve L. The curve is said to be closed if
f(tl) = f(tz). Otherwise the points f(t]) and f(tz) are called the end
points of the curve.

The positive direction of a curve L is chosen to be that direction which

corresponds to an increase of the parameter t.

If the same point z corresponds to more than one parameter value in one

of the half open intervals t]‘< t <t2 or t, <t <t, we say that z is a

2
multiple point of the curve z = £(t), t1 <t S!tz. A curve with no
multiple points is called a Jordan curve. A closed Jordan curve will also

be called a contour. For closed Jordan curves we have :

LEMMA 1.1. A closed Jordan curve separates the complex pl&ne into two
distinet domains, both of which have the curve as their boundary (see

DIENES [06] , chapter VI).

DEFINITION 1.2. Let L be a contour (a closed Jordan curve). The part of

the p%anevthat s on the left if L is traversed in positive direction will
be denoted by If; the other part by L.

Throughout this chapter the parametric equations z = f(t) of the contours

L will be chosen such that the domain L' is finite (the inner part) and the

~domain I is infinite (the outer part).

EXAMPLE. Throughout we shall denote the unit circle {z;|z| = 1} by the
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symbol C. Its parametric equation will be

AN

z=cos t+isint, -TS<t=<m.

The positive direction on C is then counter clockwise, and
+ -
c = {z;]z| <1}, c = {z;]|z| >1}. O

Integration along a contour is always in the positive direction. By the
choice of the parametric equation made above this direction will be counter
clockwise. See for the concept of integrals of complex functions
MARKUSHEVICH [18], volume I, §8§61,62.

From MUSKHELISHVILI [20], §1, we adapt the concept of smooth contours.

DEFINITION 1.3. 4 contour in the complex plane with parametric equation

z = £(t) = x(t) + i y(t), t <t < tys 8 said to be smooth if the real
valued funetions x(t) and y(t) have continuous first derivatives for

lefthand derivatives in t, with

£ <t< t)s righthand derivatives in t 2

l.’

x'(tl+) = x'(tz—), y'(tl+)_ = y'(tz—), and for no t,t, St < tys the

1

derivatives x'(t) and y'(t) are simultaneously zero.

For the concept of an analytic function of a complex variable we shall use
the definitions given by EVGRAFOV [07], chapter II & III. Functions may be
single-valued or multiple-valued.

By a neighborhood of a point z, in the complex plane will be meant a

0

circlé with its center at z, and with some positive radius.

DEFINITION 1.4. A single-valued function f(z) defined in a neighborhood of

a point z, 18 said to be differentiable at the point z, if the limit

0
£(z) - f(zo)
lim ————————
2>z .z—zo

exists (independent of the way z tends to zo) . The linmit is called the
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derivative of the complex function £(z) at the point z, and will be denoted

d
\}
by £'(zg) or - f(z)|z=zo.

DEFINITION 1.5. 4 single-valued function £(z) <s said to be regular at the

point zq if 1t can be represented by a power series
o= o
f(Z) = Z Cn(z ZO) s
n=0
that converges in a neighborhood of the point z,- A single-valued function
£(z) s said to be regular in the domainD if it is defined and regular at

each of its points.

REMARK 1.1. A function f(z) that is regular at a point zq is infinitely

differentiable at this point. A function that is differentiable in a domain

is regular in this domain, cf. MARKUSHEVICH [18], vol. I, theorem 16.7.

DEFINITION 1.6. Let D be a domain and L its boundary. A Gingle-valued)

function £(z) that is regular in D and continuous in D up to its boundary

L is said to belong to the class RCB(D).

DEFINITION 1.7. Let D be a domain, E a subset of D, and £(z) a function

defined on E. A function F(z) which is regular in the domain D and co-
incides with £(z) on the set E is called an analytic continuation of the

function £(z) into the domain D.
In EVGRAFOV[O07] , § II.5 it has been proved :

LEMMA 1.2. (The principle of analytie continuation). Let D be a domain
and E a subset of D containing at least one limit point of D. Then a
function £(z) defined on E has at most one analytic continuation into the

domain D.



Thus starting with a funcﬁion f(z) defined on a set E containing a limit
point, this function can be extended as a regular function to any domain
containing E in at most one way. However, generally speaking it will not
be possible to extend f(z) regularly to every domain containing E. There
may be points whereto f(z) cannot be extended regularly. Such points may
form an essential bound for the function f£(z), or the analytic continuation
of the function f(z) may loose its uniqueness at such points, i.e. if the
function £(z) is continued analytically along a closed curve around such
a point, its values at the starting point and (the same) end point are
different.

By enlarging the concept of (single-valued) functions to multiple-valued
functions the functiomn £(z) éan also be extended analytically around such
"branch" points as regular branches of a multiple-valued function. For a
description of analytic continuation of a function into a multiple-valued

function see e.g. EVGRAFOV [07], chapter III.

DEFINITION 1.8. Let a function f(z) be given in a neighborhood of the

point z, in the domain D. Suppose that this function can.be continued

0
analytically along any curve not crossing the boundary of D. Then the
totality of all such continuations is called an analytic function

(multiple—valued) in the domain D.

REMARK 1.2. An analytic function is in general multiple-valued. A regular
function is always single-valued. If an analytic function is single-

valued in a domain, then it is also regular in that domain.

DEFINITION 1.9. Let F(z) be a function that is analytie in the annulus

0 <Ilz-zOI <eg, € > 0. If F(z) s not a regular function in this annulus
(Z.e. if F(z) <is not single-valued) then we shall say that the point

z = z 18 an (isolated) branch point.

0
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If the number of distinct ‘branches of F(z) at each point of the annulus
0< |z-zol <€ is finite and equals n, then we shall call z; a branch

point of order n-1,n = 2.

For a simply connected domain (i.e. a domain of which the boundary is a
connected set) the following result called the monodromy theorem holds

(see e.g. EVGRAFOV [ 07], §III.3).

LEMMA 1.3. A function analytic in a simply connected domain is regular

(and thus single-valued) in this domain.

Finally we state a result that is frequently used in queueing theory.

For its proof see e.g. EVGRAFOV [07], §1v.6.

LEMMA 1.4. (Rouché's theorem). Let D be a domai’n and let the functions
£(z) and g(z) belong to the class RCB(D) . If the inequality [f(z)| <
|g(z)| holds on the boundary of D then the functions g(z) - £(z) and
g(z) have the same number of zeros in the domain D (each zero being

counted according to its multiplicity).

I.2. The Holder condition

An important class of functions defined on a contour in the complex

plane consists of functions satisfying a Holder condition :

DEFINITION 2.1. Let there be given a contour L and a function ¢(t) defined

on L. The function ¢(t) <s said to satisfy a Hlder condition on L, if

there exist positive constants A and U such that for any two points

tst, of L,
- - u
lo¢e)) = oCe| <ale, - ¢ "

The constant W 18 called the HSlder index.



REMARK 2.]. A function which satisfies a Holder condition is clearly
continuous on the contour L. MUSKHELISHVILI[ 20], §3, shows that if p > 1
in definition 2.1 then ¢ is constant on L. Therefore it will be assumed

that 0 <u <1.

DEFINITION 2.2. Let L be a contour. By H(L) we denote the class of
funetions ¢ (t) defined on L, which satisfy a HOlder condition with any

index u,0 <u <1, on the contour L.
LEMMA 2.1. Let ¢(t) = Kt",t €C, for K € ¢,n = 0,1,... . Then ¢(t) € H(C).

PROOF. From the following inequality it is readily seen that the function
¢(t) satisfies on C the Holder condition with index 1 : for mn = 0,1,...,

for t ,t, € C,

1’72

n—-1 n-2

|¢(t])‘¢(t2)l = |k| |tlft2| [t} + t,t) +...+c’2‘_]|<nlxl Itl-—t

i O

2l

LEMMA 2.2. Let L be a contour and c¢ & L. Then the functions

n
t

c-t

¢ () = t €L, n=0,1,2,...,

belong to the class H(L).

PROOF. As c € L and L is a closed set we have for some positive €

independent of t,
- e-t] =e, t €L.

Further, L is bounded thus |t| <M for some positive constant M. These

two inequalities imply for any two points t t, on L, for n = 0,1,2,...,

l’

n
ct. -

n
1t ettt

n
2 “F2"h1 2
(C‘tl)(c'tz)

lo e = ¢ (e) | =]

1 ‘ 1 -1 .
<-E—2{c|t’l‘—tgi + e eo-te, |} <€—2—{c n M+ o1 M e -]
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Hence ¢n(t) satisfies on L the Holder condition with index 1(n = 0,1,...).

LEMMA 2.3. Let L be a smooth contour.

1. If ¢] € H(L) and ¢2 € H(L) then also ¢]x¢2 € H(L).

2. If ¢ € H(L) then also Re ¢ € H(L) and Im ¢ € H(L) .

3. If ¢1 € H(L) and the real axis is an axis of symmetry of the contour L,

then also ¢, € H(L) where ¢,(t) = ¢1(E) for t € L.

PROOF. These simple statements follow from :
1. the second criterium in MUSKHELISHVILI [20], §6;

2. the relation
l6¢e,) - 8t |% =[Re 0(E) - Re $(e) % +]mm ¢(e)) - Tm ot [

3. the fact that [t -t,| = |t~ t,].

I.3. Integrals of the Cauchy type

Let L be a contour and ¢(t) a function defined on L and integrable

on L. Then the integral

(2) s=2—T‘{fﬁ—_('z:—)dt, z €1, (3.1)

is called a Cauchy integral . Clearly, ®(z) is regular at every point
z € L, and vanishes at infinity. In certain cases the Cauchy integral
(3.1) can also be given a definite meaning when z € L (cf.MUSKHELISHVILI

[20]1, §12).

DEFINITION 3.1. Let L be a smooth contour, t, € L, ZE the part of L inside

0

a ctrecle around t, with radius €, and let ¢(t) be a funetion integrable

0
on L. If the limit
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lim E%T' J %é%l dt,
evo "t =

exists, then this limit is called the principle value of the singular

Cauchy integral (at to), and it will be denoted by

-©-

1 (t)
7«?{{ e, 9 (3.2)

|

LEMMA 3.1. Let L be a smooth contour. If ¢ € H(L) then the principle value

of the Cauchy integral (3.1) exists at every point t, € L.

0

The proof of this lemma can be found in MUSKHELISHVILI [20], §12.
Of great importance is the behaviour of the Cauchy integral (3.1) near the

line of integration. From MUSKHELISHVILI [20], §16, we have

LEMMA 3.2. Let L be a smooth contour. If ¢(t) € H(L) then the Cauchy

integral ®(z),cf.(3.1),belongs to the classes RCB(L+) and RCB(L).

DEFINITION 3.’2. Let L be a smooth contour and Y (z) a function belonging

to the classes RCB(L') and RCB(L™). Then ¥(z) will be called a

sectionally regular (holomorphic) function (with respect to L).

DEFINITION 3.3. Let L be a smooth contour and ¥(z) a sectionally regular

function with respect to L. Then for t € L :

¥v(t) := 1im ¥(z), z€1L,
z>rt
< ¥ (t) := lim Y(2), z €L . |
z>rt

LEMMA 3.3. Let L be a smooth contour and ¢(t) € H(L). The limiting values

of the Cauchy integral (3.1) are given by @ for to €L,
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+ _ 1 (t)

¢ (ty) = £¢(t0) * o { -——t_to dt,

. = - 1 e

o (tg) = =id(ty) + 57 { tt, dt. (3.3)

REMARK 3.1. The integrals in (3.3) are singular, cf. definition 3.1. The
formulas in lemma 3.3 are called the Plemelj formulas (MUSKHELISHVILI
[20], §17, or the Sochozki-Plemelj formulas (PROSSDORF [22], §3.4.1), or

the Sochozki formulas (GAKHOV [13], §4.2). These formulas can also be put

in the form : for t, € L,

0
8 (t,) - @7 (g = b(ty), (3.4)
e (ty) + ¥ (k) = ;T'—l { ‘-ﬁ_%—)- dt. (3.5)

A well-known property of regular functions is (see e.g.

MUSKHELISHVILI [20], §15)

LEMMA 3.4. Let L be a smooth contour, ¥(z) a sectionally regular function

and let W+(t) = ¥V (t) hold for every t € L. Then Y(z) is regular in C.

With lemma 3.4 and relation (3.4) the following problem can be solved
(cf. MUSKHELISHVILI [20], §26) : Let L be a smooth contour and let
¢(t) €EH(L). It is required to find a sectionally regular function ¥(z)

vanishing at infinity and satisfying the boundary condition

¥He) - ¥ () = o(t), t € L. (3.6)

LEMMA 3.5. The above formulated boundary value problem has a unique

solution and this solution can be represented by the Cauchy integral (3.1).

REMARK 3.2. The solution of the above formulated boundary value problem

having finite non-negative degree k at infinity is given by :
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= (t)
¥(z) = 5o {%—_z—dt +B (), zEL (3.7)
here Pk(z) is an arbitrary polynomial of degree k.
For later reference we conclude this section with an extension of

lemma 3.3.

LEMMA 3.6. Let ¢(r;t), t € C, be a family of functions for r in a real

interval 1, which are integrable over t € C, which satisfy the inequality
[dp(rst) = ¢(x31) ] <M|t - ]Iu, t€c,r €1, (3.8)

where M and | are positive constants (independent of r and t); and

which are continuous from the left at a point r, € I for all t € C, Z.e.

0

lim ¢(xr;t) = ¢(r0;t), t € C. (3.9)
rir
0
Further, let to(r) be a strictly decreasing function on I with lim to(r) =1,
Then - r1‘r0
1im 1 .ql(i;_‘ldt = -} d(ro;l) + __]__f i(_r__ﬁdt (3.10)
2mi 7 t-t,. () 0’ 2mi t-1 ’
r*ro C 0 o
$(r,st)
. 1 3
lin f"’—(r%—)—dt =} 9o(ryD +§lr—i' S ——t—_-(l)—-—dt. (3.11)
r+r0 C t‘w C
PROOF. Write for r € I, r < Ty
. . - .1) dt
p om0 g o p SO Dy gy S (3.12)
T t to(r) c t to(r) o t to(r)
As to(r) >1 forr < r, the last term vanishes as r + L and we have for
r < Ty

[t - tg@)| = |e - 1], t €c,

so that with (3.8) it is obtained that for r < Ty
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l-———-—-——“ﬁfi;%’;“” <ule-1]M!, crec,

Because for W > 0 the function |t-l|u_1 is integrable over C in the
ordinary sense it follows with (3.9) by the dominated convergence theorem

(cf. BURRILL[ 02], theorem 7-4A) that

lim S QﬁfiEl:%EEilzdt s ¢(ry3t)=0(xp31) N
t-t, r) c o

rfr0 c
The inequality (3.8) implies that ¢(r0;t) € H(C), so that by lemma 3.1

the principle value of the singular integral

¢ (r,st)
0
— g dt

C
exists. This principle value can be written as

$(ryst) ¢ (ryst)=¢(rys1)
[~ dtl=£ = dt + 7i ¢(r0;1).

This proves (3.10).

Next write for r € I, r < L

s ¢(r;§) at = f Qifjfligéfill dt + ¢(r31) [ ——SET“‘_ .

¢ tf‘-.toff) c t- £, Ct- toir)

As to(r) > 1 for r <r, the last term tends to 2ﬂi¢(r0;l) as r; 4+ r.

0

Further it is readily verified that for r <§r0,

t

1 1
- el 2 %[1+W]lt—]| >4le-1], ctec

Then (3.11) can be proved in a similar way as (3.10). 0O

I.4. The Hilbert Problem

. ’ . + -
Throughout this section L stands for a smooth contour, and L and L
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are defined as in definition 1.2. It is assumed that 0 € L+.

We consider the following boundary value problem.

PROBLEM 4.1. Let G(t) be a non—vanishing function on L, G(t) € H(L). Let
also g(t) € H(L). It is required to find a sectionally regular function
¥(z) having finite degree at infinity and satisfying the boundary

condition
¥ (e) = G(r) ¥ (t) + glt), ¢t €L : 4.1

REMARK 4.1. The problem formulated above is called the Hilbert boundary
value problem, homogeneous if g(t) = 0 on L, and non-homogeneous otherwise
(cf. MUSKHELISHVILI [20], §834,37). Note that GAKHOV [13], §14.1, uses the

name Riemann problem. It is also known as coupling problem.

MUSKHELISHVILI [20], §§34-37, gives the following solution method for
problem 4.1. First the homogeneous case (g(t) = 0) is considered. The

index x of the Hilbert problem is defined to be
_ 1 _ 1
K 1= 5= [1log G(t)]L = 5% [arg G(t)]L, (4.2)

where [..]. denotes the increment of the expression in the brackets as

L
the result of one circuit around L. The index may be any integer, but we
restrict the discussion to the case k = 0.

Since 0 € L' the argument of t < G(t) will return to its initial value
after any circuit around L; hence log t_KG(t) can be defined as a single-
valued continuous function on L belongiﬁg to the class H(L).

The homogeneous Hilbert problem then can be reduced to a problem with

boundary condition (3.6) of which the solution is given by lemma 3.5. This

leads to :

LEMMA 4.1. The gendral solution of the homogeneous Hilbert problem is
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gitven by
¥(z) = X(2) P(2), z €1, (4.3)

here X(z) is the fundamental solution (i.e. the solution which vanishes

nowhere in the finite plane) of the homogeneous Hilbert problem :

X(z) = eF(z)’ z €Lt

- 5@, e, (4.4)

with, for a proper choice of the function 1og[t_KG(t)],t€IJ(hote that the

function X(z) does not depend on this choice),
I'(z) := 71‘71{ loglt "e()] &, z €L (4.5)
and P(z) stands for an arbitrary polynomial. 0

In order to solve the non-homogeneous Hilbert problem it is noted that

the fundamental solution (4.4) of the homogeneous problem satisfies
X (t) G(t) = X' (t), t €L, (4.6)

Substitution of (4.6) in (4.1) gives the boundary condition

O RONION
X(t) X (t) X (t)

t €L, 4.7

for the sectionally regular function ¥(z)/X(z). The boundary condition

(4.7) is of the form of(3.6) so that the solution follows from (3.7) :

LEMMAK 4.2. If k = 0 then the general solution of the non-homogeneous

Hilbert problem (4.1), bounded at infinity, is given by

¥(z) = X2)

+ — + X(2) PK(Z)’ z €L,

I g(t) dt
LX () ©72

here X(z) is the fundamental solution (4.4) of the assoctated homogeneous

problem, K is the index of the problem, cf. (4.2), and P (z) stands for an
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arbitrary polynomial of degree not greater than k. O
In the present study we are particularly interested in Hilbert
problems with boundary conditions of the form
+ n .~
Yo(e) +t ¥ (t) = g(b), t €c, (4.8)
with n = 0,1 or 2, here the smooth contour L is the unit circle, and

G(t) = -t", cf. (4.1).

LEMMA 4.3. The solution, bounded at infinity, of the Hilbert problem with

boundary condition (4.8) is given by (for n = 0,1,...):

1 g . +

¥(z) = L }(; g dt- P (z), z€cC,

-1 g(t) 1 -

= J === dt + — P (z), z€C.
amiz" ¢ t-z P

PROOF. The function G(t) -t™ does not vanish on C. From lemma 2.1 we

have G(t) € H(C). Thus the Hilbert problem (4.8) is well defined and we
can apply lemma 4.2, if K 2 0. On C we can write t = e1¢,—'n <¢<m, so

that, cf. (4.2),

K = -;—T—T[arg G(t:)]C =%—T.{'rr+nd>]¢)=Tr = %2—3

=T = n.

Thus Kk = 0. For the choice log(-1) = iT the function T'(z), cf.(4.5),
becomes
© () = 108ED gl e,
=0, z€c,
so that the fundamental solution of (4.8) is given by, cf. (4.4),

X(z) = -1, zec,

=z zE€ ¢

3
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Hence X+(t) = -1, |t]| = 1. The assertion now follows from lemma 4.2. O

I.5. The Riemann-Hilbert problem

In this section we consider another type of boundary value problems,

which however is closely related to the Hilbert problem (section I.4).

PROBLEM 5.1. Let L be a smooth contour and L+ the domain to the left of L.
Let F(t), t € L, be a complex valued function, non-vanishing on L, and
f(t),t € L, a real valued function, both belonging to the class H(L). It
is required to find a function Q(z) € 'RCB(L+) satisfying the boundary

condition
+
Re{F(t) Q (t)} = £(¢v), t €L, (5.1)
here Re{...} denotes the real part of the expression in the brackets.

REMARK 5.1. The boundary value problem formulated above is called a
Riemann—Hi lbert problem, homogeneous if £(t) = 0 on L and non-
homogeneous otherwise (cf. MUSKHELISHVILI [ 20], §§39,40; MICHLIN &
PROSSDORF [ 19], SVII, 2). GAKHOV [ 13], §27.1, uses the name Hilbert

problem.

REMARK 5.2. Problem 5.1 has been solved by I.N. Vekua. In his paper
the Riemann-Hilbert problem is transformed into an equivalent singular

integral equation. See MICHLIN & PROSSDORF [ 19]., §VII.2.

For the case that the boundary condition (5.1) is given on the unit circle
MUSKHELISHVILI [ 20],§839-40, transforms the Riemann-Hilbert problem into a
Hilbert problem (problem 4.1) in the following way.

From now on let L = C, the unit circle. Rewrite (5.1) as
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F(t) 7 (e) + F(e) (t) = 2£(p), t € C. (5.2)

+ . .
The function (z), z € C', is extended as a sectionally regular function

(definition 3.2) by defining it for z € ¢ as

Qz) := Q1/z), z €C . (5.3)

MUSKHELISHVILI [20] , §38, shows that ©(z) € RCB(C ) and that for t € C,

Q@) = /D= o' w). (5.4)

With this the boundary condition (5.2) can be formulated as

R O 5.5)

Hence, we have obtained a Hilbert boundary value problem for the function

Q(z) with boundary condition (5.5), cf. (4.1), if we take

G(t) === g(t) = ==~ t€C (5.6)

The Zndex of a Riemann-Hilbert problem for the unit circle is defined to
be equal to that of the corresponding Hilbert problem, cf. (5.5) and (4.2).
From (5.6) and (4.2) it is seen that the index of a Riemann-Hilbert

problem is an even number.

REMARK 5.3. It should be noted that not every solution of the Hilbert
problem (5.5) is also a solution of the Riemann-Hilbert problem (5.1). A

solution of the latter has to satisfy the additional relation (5.3).

However, if a sectionally regular function Q(z) satisfies (5.5) then

i[Q(z) + Q(1/2)] satisfies both (5.3) and (5.5), cf. MUSKHELISHVILI [201],
§40. Hence, from every solution of the Hilbert problem (5.5) a solution of

problem 5.1 can be constructed.

We shall not go further into the details of the general solution of the
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Riemann-Hilbert problem. We focus our attention on the case that

-n

F(t) =t ', t€C, n=0orn-=1, which we shall meet later. Then (5.1)

becomes :
Relt "0 (0)} = £(b), tE€C. (5.7)

LEMMA 5.1. The solution of the Riemann—Hilbert problem with boundary

condition (5.7), cf. problem 5.1, is given by : for z € C+,

k= -k
]{dkz _dk z }]9

™3

CALE®y 1 dt
(z) = z [ni é t-z dt 2mi £ £(t) t * 1d0 *

k

here d0 18 a real constant, and dk,k = 1,...,n, are complex constants.

PROOF. Extending the function 2(z), z € C+, by (5.3) to a sectionally

regular function the Hilbert problem (5.5) becomes for F(t) = t Mt €c.
+ 2n - n
Q(t) +t7 Q (v) =2t f(v), t € C. (5.8)

This boundary condition is of the same type as (4.8). Hence, the index of
the Riemann-Hilbert problem (5.7) is 2n, cf. lemma 4.3.
Moreover, from (5.3) it follows that §2(z) is bounded at infinity, so that

the solution of the Hilbert problem (5.8) is given by lemma 4.3 :

Qz)= == f_z_Pn_f(_t_).dt - P. (2) zech
2mi ¢ t-z 2n"7 ’
n
S | 2t £(t) 4 4 =P, (2), z€C. (5.9
omiz® ¢ tTZ L0 “n

Rewrite the integrals in (5.9) as follows : for z & C,

n n_,n
pEE® g o m £y Ly —t——z— £(t)dt =

C t-z C t-z C t-
n
f(t - -
=2 E_L—)dt + T K [ " kf(t)dt.
[ =1 c

pefine for z € ¢\{0},
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Q_(2) -=1—[§ zk_lf Ky a
n : Zn k=1 mi c t (t) dt - P2n(z)]’

then (5.9) can be written as

2(2) = z“[“—‘ic‘ £ g + Qn(Z)], z €,
oL £C0) -
g [ni fc T at + Qn(z)], z€C . (5.10)

In order to be a solution of the Riemann-Hilbert problem (5.7) the function
(z) must satisfy (5.3). Substitution of (5.10) in (5.3) leads after some

calculations to the relation : for z € C ,

Q (2)+Q,(1/2) + J(':f(t) & oo G.11)

Because PZn(z) is an arbitrary polynomial of degree 2n we may write
> -k
Qn(z) =qq + f [qkz * Q2 1, z € &\{0}, (5.12)
with q, -n < i <n, arbitrary complex constants. Then (5.11) implies :
1 dt _
+-H_£f(t) TI—— 0,

G + a4y = 0, k=1,2,...,n. (5.13)

Inserting (5.13) and (5.12) in (5.10) gives the stated solution of the

Riemann-Hilbert problem (5.7). O

REMARK 5.4. The expression for the solution of the Riemann-Hilbert
problem (5.7) in lemma 5.1 is directly given by the formulas in GAKHOV
[13], §29.3, where problem 5.1 has been solved by the concept of

regularization.

REMARK 5.5. For F(t) = 1 on L the Riemann-Hilbert problem (5.1) is

equivalent to the Dirichlet problem. For n = 0 lemma 5.1 gives the
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solution of the Dirichlet problem for the unit circle. It can be rewritten
: . . +
as the Schwarz formula which relates a regular function in C to the

values of its real part on the boundary C : with do a real constant,

t+z dt+. +

Qz) = ﬁf Rl ()} Z2 88 4 g, zec. (5.14)
C

RFMARK 5.6. In this section a solution method has been outlined for a
Riemann-Hilbert problem for the unit circle. A Riemann-Hilbert problem
for an arbitrary smooth contour L may be reduced to that fof the unit

circle by mapping L conformally onto ¢". Conformal mappings will be

discussed in the next section.

I.6. Conformal mapping

In section I.5 a solution of the Riemann-Hilbert boundary value
problem has been given for the case that the boundary is the unit circle.
However, we shall meet Riemann-Hilbert boundary value problems in which
the boundary L is a smooth contour but not a circle. Such problems can be
reduced to that of a circle by mapping the domain L conformally onto the
unit disk C'. In this section some properties of conformal mappings will

be summarized.

A mapping by a continuous function is said to be conformal at a

point z, when it preserves angles between curves passing through z

0 0°

We sﬁalllonly consider conformal mappings which preserve the magnitude of
the angles as well as the direction in which the angles are measured. ﬁy
MARKUSHEVICH [18], vol. I, §31, such mappings are called conformal
mappings of the first kind. A mapping is said to be conformal in a domain

D if it is conformal at every point of D. In NEHARI [21], page 152, it is

shown that a conformal mapping is associated with an analytic function.
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In the concept of conformai mépping we shall confine ourselves to one-to-
one continuous mappings. If a function f£(z) is a one-to-one continuous
function in a domain D then the image £(D) is again a domain (cf.
MARKUSHEVICH [ 18], vol.I, §26, theorem 6.1).

Summarizing we have :

DEFINITION 6.1. A continuous mapping of one domain onto another will be

called a conformal mapping when it is a ohe-to-one mapping which preserves
the magnitude of the angles between intersecting curves as well as the

direction in which the angles are measured.
NEHARI [21], pp. 149,150, shows :

LEMMA 6.1. A function f(z) regular at a point z, is conformal at z, Zf and

0
only if f'(zo) # 0.

In MARKUSHEVICH [18], vol.III, §2, theorem 1.2, it is proved :

LEMMA 6.2. (Riemann's mapping theorem). Every simply comnected domain in:the
extended complex plane whose boundary comtains more than ome point can

be mapped conformally onto a disk with its center at the origin.

This fundamental theorem in the theory of conformal mapping implies that
every bounded simply connected domain (see above lemma 1.3) can be
mapped conformally onto the unit disk. Moreover, it is proved in

MARKUSHEVICH [18], vol. III, §2, theorem 1.3 :

LEMMA 6.3. (Uniqueness theorem for conformal mapping). Let D be a simply
connected domain in the extended complex plane whose boundary consists of
more than one point, and let Yo be an arbitrary finite point of D. Then
there exists a unique function z = f(w) which maps D conformally onto

the unit disk C' and satisfies the conditions
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f(wo) =0, f'(wo) >0. (6.1)

As a conformal mapping f(w) is defined to be a one-to-one continuous
mapping of a domain D onto the domain £(D) there exists an inverse f—] (2)
and the inverse function is a conformal mapping of the domain f(D) onto
D (cf. TITCHMARSH [25], §6.41). From lemma 6.2 and 6.3 it follows that for
every bounded simply connected domain D there exists a conformal mapping

g(z) of ¢’ onto D which is uniquely determined by the conditions

g(0) = w g' (0) >0, (6.2)

0’

here Yo is an arbitrary point of D.

For the behaviour of a conformal mapping of a domain D onto £(D) at
the boundary L of the domain D we state the following results, the first

can be found in MARKUSHEVICH [18] , vol. III, §8, theorem 2.24.

LEMMA 6.4. (Boundary correspondence theorem). Let L be a contour (a closed
Jordan curve, see section 1.1), and let £(w) be any conformal mapping of
L* onto the wnit disk C'. Then f(w) establishes a one-to-one continuous

mapping between L U L and c U C+, and hence between L and C.

The next result, concerning the boundary behaviour of the derivative of

a conformal mapping, can be found in TSUJI [26], theorem IX.7.

LEMMA 6.5. (Kellogg's theorem). Let L be a contour with parametric

equation w = w(s),0 <s < s, where s, is the length of L and s the arc-

0 0

length of L, measured from a fized point, such that if s varies from 0

to s, then w(s) makes one turn on L in the positive sense.

0-’
It is supposed that L has a tangent at every point, that this tangent

varies continuously, and that- w'(s) satisfies the following Holder

condition : for constants M M, >0, and u, 0 <u <1, for every

l’
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|w' (Sl) - w'(sz)l <Ml|sl - szlu.

If we map the unit disk ct conformally onto L by w = g(z), then
g'(z) # 0 exists in ctuc and satisfies the Holder condition with the
same index, i.e. for a constant M,,M, >0, for every

8,,6,, -1 <0 <0, <m,

2
i6 '62

1 1 ‘
lg'te ) -g'te O <M2|61—62lu. O

In the case that w'(s) does not satisfy a Holder condition we shall use

the following result.

LEMMA 6.6. Let L be a closed Jordan curve which passes through w = 1
and touches the line Re w = 1, and whose inner normal at w = 1 coincides
with the real axis in negative dirvection. It is assumed that in a

netghborhood of w = 1 the contour L is represented by

w =g+ in, g =1-2(m),
here A(n) =0 8 a continuous function of n which is decreasing for
n <0 and increasing for n = 0.
Let w = g(z), g(1) = 1, be a conformal mapping of the unit disk c
onto the domain L+,' then for z € ctuc,

1im 1282 = g1 (1) >0
z>]

extsts if and only if for some § > 0.,

8
f -)‘—z(n-)dn < e, (6.3)
Y

Otherwise
]_imtg.Q:oo’ zGC+UC,

71 1-z
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but for every € > 0 there exists a constant M > 0 such that

l1-g(2) | <m|1-z|'"%,

|g' (z)[ <M[1—zl-€,

for z » 1 and z in a sector |arg(l-z)| < ¢ < im.
PROOF. Define
g(2) := il1-gGED], In z > 0.

Because z - ﬁz maps the upper half plane Im z > 0 conformally onto the
unit disk ¢’ it is readily verified that E(z) is a conformal mapping of
Im z > 0 onto a domain which is obtained from the domain L by the con~
formal mapping w = i[ 1-w], so -that this domain touches the real axis at

w = 0 and its inner normal coincides with the positive imaginary axis.
Moreover, after the transformation w = i[ 1-w] the contour L is represented
by

w=x+ iy, y = A(x).
Application of TSUJI [26], theorem IX.10, gives that, for Im z =0,

133%—21 S
Z

exists as a positive finite number if and only if condition (6.3) is

satisfied, and that if (6.3) does not hold then for Im z =0,

g(2)

z

lim
20

= oo,

TSUJI [26], theorem IX.12, states that in general for every € > 0 and for

z in a sector |arg z - im| < ¢ < im,

const. |zll+€ < |g(z)I < const. |z|]_ , z > 0,

zie < ]E'(z)| < const. |z]| °, z +> 0.

const,
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Because of the above we may put € = 0 in the lower bounds. By the

relations
~.. 1=z
_ gli )
1-g(z) _ - 1+z i zect U c,
1-z 1-2z :
2 ~y . 1=z

+
g'(z) = 5 g' (i ];z)’ z€c¢ Ug,

(+z)
the above properties of the conformal mapping g(z) are readily translated

into those of the conformal mapping g(z) as stated in the lemma. O

There exist several techniques for determining conformal mappings, see
e.g. [01]. For the present study the method of Theodorsen which will be
discussed below is very important. A deseription of this method can be
found in GAIER [ 12] , chapter II.
Consider a contour L with the origin in its interior L" which can be

represented as
L=1{w;w=p®e?,  -1<0<nl, (6.4)

here p(8) is a positive continuous function with p(-m) = p(m).
Let g(z) be the conformal mapping of the unit disk C+ onto L+ such that,

cf. lemma 6.3 and the remark below it,
g(0) =0, g'(0) > 0. (6.5)

Because of lemma 6.4 the conformal mapping g(z) may be considered on the
boundary C. Every point e1¢, -r < ¢ <7, will be mapped onto a point
p(e)e"]'e on L. As a consequence of lemma 6.4 there must exist a one-to-one

continuous mapping 6 = 6(¢), -7 < ¢ <m, with 6(w) = 6(-w) + 27, such that

gel®) = 5 (e)) 0@, r<¢<m. (6.6)

LEMMA 6.7. The function 8(¢) which determines the conformal mapping g(z) of

¢t onto L for z € C by (6.6) satisfies the non-linear singular integral

equation
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m
6(¢) = ¢ - ;_'E J log p(6®)) cot (—02-—4) dw, -T<¢ <m. (6.7)
-7

Equation (6.7) is called after Theodorsen. See for its deduction GAIER
[12], chapter II, §1.2.

From lemma 6.2 and 6.4 it follows that the singular integral equation
(6.7) must have at least one solution which is continuous and strictly
increasing on [-m,w]. In GAIER [12], chapFer II, §1.2.c, it has been

proved:

LEMMA 6.8. The singular integral equation (6.7) of Theodorsen has in the
class of continuous, strictly increasing functions on [-m,m] exactly one

solution.

In general it will not be possible to construct the solution of equation
(6.7) explicitly. In GAIER [12], chapter II, some techniques are described
for obtaining the function 6(¢) numerically. By COHEN & BOXMA [04] such

a numerical method has been elaborated, and some approximations are
discussed, for the type of contours which we shall meet in the present

study.

When the continuous and strictly increasing solution of equation (6.7)
has been obtained the conformal mapping g(z),z € C+, is determined by

Cauchy's integral formula, i.e. cf. (6.6), for z € C+,

; _ 1 g, _1 T o) _i6(p)+id
g(z)_Zni{:?—z_dt_E{ﬁ?é%"e 9.

GAIER [ 12], chapter II, §1.2.b, gives another representation of
g(z),z € C+, by applying Schwarz' formula, cf. (5.14), to the function
log g(z)/z :

'z

i¢

T
g(z) = z exp{%;,f log p(8(9)) do}, zec. (6.8)
-

e '~z
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Next we shall prove a property of conformal mappings of the unit disk ct
onto domains which have the real axis as an axis of symmetry. This

property will play an important role in our analysis.

LEMMA 6.9. Let L be a contour which can be represented by (6.4) and which
has the real axis as an axis of symmetry. Let g(z) be the conformal
mapping of c* onto L' determined by the conditions (6.5). Then for

IZI <1,

g(z) = g(@).

PROOF. Because the real axis is an axis of symmetry of the contour L, it

is readily seen that in the representation (6.4) of L,
p(8) = p(-0), -T<9 <m. (6.9)

Let 6(¢) be the unique continuous, strictly increasing solution of
equation (6.7), cf. lemma 6.8 . Then for -m < ¢ <,

m

-8(-4) = -(-¢) + 3 108 p0W) cot 0 4y =

=¢ - %F zﬂ log p(-6(-w)) cot 9%9 dw,
i.e. -6(—¢5 satisfies the same equation (6.7). Clearly, -6(-¢) is also
continuous and strictly increasing, and thus

8(¢) = -6(-9), -m<¢ ST, (6.10)
By (6.6) and (6.9) it then follows that for -m < ¢ <,

g ) = 0002 TP = 500 D - pe9)) & Wog(eh.

Finally, the assertion follows from (6.8),(6.10) and (6.9) :

idp —
e¢+z

16—

e '~z

™
g(@) =z exp{;—Tr J log p(8($)) o} =
-
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_ {l }T 1 (e _ ei¢+z } _ O
= z expiz - og p(6(-9)) ;TE—— dot = g(z).

-z

Later it will be convenient to consider conformal mappings which do
not satisfy the conditions (6.5), but which map the point z = 0 onto an
arbitrary point v in the domain L'. This case is easily reduced to the
case discussed above by noting that every:bilinear transform (cf.

TITCHMARSH [25], §6.24),

Z i zTy
f(z) = e VT’ (6.11)

where A is real and |y| < 1, maps the unit disk ct conformally onto itself.

LEMMA 6.10. Let L be a contour which can be represented by (6.4) and

which has the real axis as an axis of symmetry. Let w, € L be a point

0

on the real axis. Then the conformal mapping of ¢" onto LV determined

by the conditions
e(0) = Wy e'(0) >0, (6.12)
18 given by, for z € C+ Ug,
!
0

here g(z) is the conformal mapping of c" onto L' satisfying the conditions

e(z)

(6.5, and z, is the (real) point in C' for which g(zy) = W

PROOF. The function e(z) is a conformal mapping because it is the

P . . . . +
composition of two conformal mappings and as such it is a mapping of C
onto L*. The conditions (6.12) are easily verified. That z, is real

follows from lemma 6.9 which implies that real points are mapped onto real

points by the conformal mapping g(z). O
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We proceed with considering sequences of domains and the conformal
mappings of these domains onto the unit disk.
Let {Dn;n = ],2,...} be a sequence of simply connected domains and let the
boundary Fn of the domain Dn be a closed Jordan curve, n = 1,2,... . It is
assumed that a fixed disk Al with its center at the origin is contained
in every domain Dn’ n=1,2,..., and that all the domains Dn,n = 1,2,000,
are contained in another fixed disk Az.
Moreover we shall confine ourselves to strictly monotonic sequences

{Dn’ n=1,2,...}, i.e.

) U (S
Dn+1 Dn I‘n for every n € N,

or

ur (@)

€ N.
Dn+l o+l n? for every n € N

Obviously such sequences converge. Let D be the set of all points z

with a fixed neighborhood contained in all the domains Dn starting from
some value of n (depending on z). It is clear that D is nonempty because
Al C D, and that D is open.

For the above described strictly monotonic sequences {Dn,n =1,2,...} we
have as a special case of Carathéodory's mapping theorem, cf.

MARKUSHEVICH [ 18], vol. III, §4, theorem 2.1 :

LEMMA 6.11. Let {Dn; n = 1,2,...} be a strictly monotonic sequence of
domains bounded by a contour, containing a fixed disk A‘ with its center
at the origin, and contained in another fixed disk Az. Forn = 1,2,...,
let z = fn(w) be the conformal mapping of D onto the unit disk C' which

satisfies

£.(0) =0, £1(0) >0,

and let w = gn(z) be the inverse of z = fn(w).
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Further, let z = £(w) be the conformal mapping of D (defined above) onto

ct satisfying
£(0) = 0, £'(0) >0,

and let w = g(z) be its inverse.
Then the sequence of functions {fn(w);n = 1,2,...} converges uniformly in
D to the function £(w), and the sequence:{gn(z),n =1,2,...} converges

uniformly in ¢’ to the function g(z).
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CHAPTER II

A QUEUEING MODEL WITH TWO TYPES OF CUSTOMERS AND

PAIRED SERVICES: THE QUEUES AT DEPARTURE INSTANTS

II1.0. Introduction, the model

In this and the next chapter we shall analyse the following queueing
model. Two types of customers arrive independently at a single service
facility. An arriving customer who finds the system empty is immediately
taken into service. If the server is busy then he joins queue 1 or 2
depending on his type. All arriving customers are admitted to the service
system.

For each type of customers the interarrival times are independent
stochastic variables with a/common negative exponential distribution.

At the service facility customers are provided by the server with a service
time. Successive service times are independent stochastic variables with a
common distribution function B(t). The service times are independent of
the arrival processes.

The service discipline is as follows. As soon as a service has been
completed a new service is started if there are any customers present.

In general a couple of two customers of different type is simultaneously
serveg. If after the completion of a service there are only customers

of one type present a customer of this type is served individually. If

at a service completion time there are no customers at all present the
service facility stays empty until a new customer arrives.

In each queue customers are served iq order of their arrival. But a
customer of one type may be served before an earlier arrived customer of

the other type.
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Denote by Ei(n), n=20,1,2,...; 1 =1,2, the number of type i customers
left behind in the service system after the completion of the nth service.
The stochastic vector process (zl(n),gz(n))turnsoutto be a discrete time
Markov chain with a two dimensional discrete state space. This chapter
concerns the analysis of this Markov chain. It is effected by introducing
the generating function of the joint distribution of the stochastic
variables gi(n) and zz(n). This generating function satisfies a functional
equation. It will be shown that the analysis of this functional equation
can be reduced by a method developed by COHEN & BOXMA [04] to that of

two Riemann- Hilbert boundary value problems. Moreover it will be shown
that this analysis can also be reduced to that of one Hilbert boundary
value problem.

Once the solution of the time dependent Markov chain is obtained it will
be proved under which comnditions the Markov chain is positive recurrent,
and the generating function of the stationary distribution will be given.
Finally the first and second order moments of this stationary distribution

will be determined.

airzzais rate Z/az queue 1
yp —_— ]
customers
paired
. —
- ' service departures
arrivals .
rate 1/0.
type 2 2 (111111
customers
queue 2

infinite waiting room

* Figure 0.1. Queueing system with two independent arrival streams

and paired services
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II.1. Definitions

As already stated in the introduction we consider a service facility
which provides two types of customers with service. For each type
of customers the interarrival times form a sequence of independent
identically distributed stochastic variables. For type i customers,
i = 1,2, the interarrival times are negative exponentially distributed
with mean 0y Qs > 0. The arrival processés of the two types of customers
are two independent Poisson processes. As a consequence the total arrival

process of all customers is also a Poisson process, with mean o where

1 1 1
=== 4+ =, (1.1)
o o a,
Introducing
o
ci= g i=1,2, (1,2)
i
so that from (1.1),
cptey =1, (1.3)

it can be said that at each arrival epoch in the total arrival process

the arriving customer has type i with probability s i=1,2.

Let I = 1,2,..., be the duration of the n th service. The
stochastic variables En’ n=1,2,..., are assumed to be independent,

identically distributed with general distribution,
Prtln <t} = B(t), n=1,2,..., B(0O+) = 0, (1.4)
and moments

t) a4 B(t), i=1,2,... . (1.5)

go~]
W
o 8
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It is throughout assumed that the first moment R:= B] of the service time
distribution is finite.

Further we introduce the Laplace-Stieltjes transform of the distribution

B(t),

B(s): = [ e St d B(b), Re s = 0. (1.6)

o8

The quantity g defined by

=B
ai= o (1.7)
will be called the traffic offered to the system, whereas a;s
a,:= £ = c.a, i=1,2 (1.8)
i o i”? i :

will denote the traffic offered by type i customers.

DEFINITION 1.1. For i = 1,2, let gi(n), n=1,2..., be the number of

type i customers arriving during the nth service.

Note that the number of customers that arrive during a service time does
not depend on the past interarrival time prior to the instant that this
service starts, because the interarrival times are negative exponentially

distributed.
LEMMA 1.1. The vector vartiables (gl(n), §2(n)), n=1,2,..., are identi-
eally distributed with joint distribution

% 4 B(oy,

k k
(t/al) 1 (t/uz) 2

T
k k2’

Pr{gl(n) = kl,gz(n) = kz} = £ ,

k,,k, = 0,1,2,... .

1’72

From the remark above the lemma and the fact that the service times

are identically distributed it follows that the vectors (gl(n),gz(n))
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are identically distributed for n = 1,2,...

Given that a service has duration t the number of arriving type 1 customers
and the number of arriving type 2 customers are independent and have a
Poisson distribution with parameter t/oc1 respectively t/ocz. This implies

the formula for the joint distribution of (§1(n),§2(n)), n=1,2,... ]

For the generating function of the joint distribution of gl(n) and gz(n)

i

we have:

LEMMA 1.2. For |p1| <1, |p2| <1, n=1,2,...:

£,(m) §&,(n) l-c,.p —c,p
E {p, : P, 2 }=B (———'?]——2——2> (1.9)

For fixed Py this generating function possesses an analytic continuation
as function of P> and for fixed p, as function of Pys into the domains

where
Re{clp1 + c2p2} <1.

PROOF. For n = 1,2,..., it follows from lemma 1.1 that for

Il < Llp,l <1,

k k
g, E,(n) ® @ k. k,® (t/a)1 (t/a,)"2 _
E {p]—] p2-2 } = X Zz P, lp2 2 J i l, k2' e t/OLdB(t).
k1=0 k2=0 0 1° 2°

Because this expression is finite for lpll <1, |p2| < 1, we may change
summation and integration (dominated convergence, see e.g. BURRILL [02],
§7.2.), so that

d B(t),

(n) &,(n) © p t/a, p,tla, _
E{plgl pz—z }=Ie1 1 P22 ~t/o
0

Il <1, |p,| <1.
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By using (1.2) this gives the Laplace-Stieltjes transform (1.6) of the

distribution B(t) with argument s = (l—c]p )/a. Noting that the

1762P2
transform B(s) is regular in the domain Re s > 0 the analytic continuation

follows, cf. section I.1, definition I.1.7. O

DEFINITION 1.2. Let Ei(n)’ n=0,1,2,...; i = 1,2, denote the number of
type i customers left behindin the system after the completion of the nth
service, cf. the introduction section II.0.

It will be assumed that t = 0 can be considered as the "zeroth" service
completion epoch and X i=1,2, will represent the number of customers
of type i present in the system at time t = 0+.

Further, let for x,,x, = 0,1,2,...,|p]|=<1, |p2| <1, || <1,

© E{p]?'{l (n) x,(m)

. n
2 (rippPy) = X P, |2,0) = x;, x,(0) = xz}’

(1.10)

here x stands for the vector (x],xz).

II.2. Formulation of the mathématical problem

In queueing theory one is interested in distributions or moments of
queue lengths, waiting times, busy periods etc, in particular the
stationary distributions of these quantities and conditions on which a
queueing process possesses a stationary distribution. In this section the
inherent mathematical problem for the queueing model described in the
sections II.0 and II.1 will be formulated. The queueing process is
considered at departure epochs because this embedded process defines
a Markov chain. First we shall show recurrence relations for the series
{§i(n), n=20,1,2,...}, i = 1,2, and then it will be proved that the

generating function @x(r;pl,pz), cf, definition I.2, satisfies a functional
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equation and possesses regularity properties.
Denote for real vy,

[y1":

max {0,y}.

THEOREM 2.1. For i = 1,2, the series {>_<i(n), n = 0,1,2,...} sqtisfies

the relations

x;,(m) =[x;(n-1) - n* o+ g;(m), n=1,2,...5 x.(0) = x,.

(2.1)
For given (x,,x,) the probability distribution of (x,(@),x,(m)) s

uniquely determined by this relation, n = 0,1,2,...

PROOF. The relations for n = 0 follow from the assumption made in
definition 1.2.

The recurrence relation for n > 0 will be proved for i = 1; for i

]
N

it can be proved similarly.

Let n be fixed, n > 0. Three cases have to be distinguished.

i. §l(n—l) >0. Then immediately after the completion of the n-1th

service a new service will start in which a type | customer 1is served.
The number of type 1 customers decreases by one and increases by gl(n),
cf. definition 1.1, during the nth service, independent whether this
service is a paired or an individual one. Hence, (2.1) holds in this case.
ii. §](n—]) = 0 and during the nthservice a type 2 customer is served.
Then‘gl(n) is equalkto the number of type 1 customers which arrive

during this service time, i.e. gl(n), so that (2.1) holds.

iii. gl(n—]) = 0 and during the nth service a type 1 customer is served.
This can only occur if gz(n—l) = 0 and the first arriving customer after
the n—lth service completion epoch has type 1. Then the number of type 1

customers increases by 1 + (n) and decreases by one, so that again
y 1 g
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El(n) = gl(n), i.e. (2.1) holds.

Because the distribution of the vector (gl(n),gz(n)) is known for
n=1,2,..., cf. lemma 1.1, it follows with induction that the probability
distribution of the vector (§l(n),§2(n)) is uniquely determined by (2.1)

for given (x],xz), for every n, n = 0,1,2,... . O

THEOREM 2.2. The stochastic process {(gl(n),gz(n)), n=20,1,2,...} 73 a
discrete time Markov chain with two-dimensional state space
{0,1,2...} x {0,1,2,...} which s irreducible, aperiodic, and which has

stationary transition probabilities.

PROOF. Because the vectqr (§](n),§2(n)) is independent of the vectors
(gl(m),§2(m)), m <n, for every n, n = 1,2,..., it follows from relation
(2.1) that the process {(gl(n),gz(n)), n=0,1,2,...} possesses the
Markov property. Moreover, it is obvious from theorem 2.1 and lemma 1.1
that this Markov chain has the state space {0,1,2,...} x {0,1,2,...}, that
it is irreducible, aperiodic, and that it has stationary transition

probabilities, cf. FELLER [10], § XV. O

THEOREM 2.3. The generating function ¢x(r;p1,p2) of the Markov chain
{(3_{] (n),;_:z(n)), n=0,1,2,...} has the following properties:

i. it satisfies for |r| < 1,|p]|=< ],|p2| < 1, the functional equation

l1-c.p,—-c,p x.+1 x, +1
11 272 - 1 2
[plpz r B(———a——)]éx(r,pl,pz) =P Py +

i l1-c.p,—c.p
+rB( 10: 2P2

)[(Pz'l)q’x(r;Pl,O) + (Pl"l)CDX(r;O,pz) +
+ (6,1 (om0 (130,00 ] (2.2

ii. for P, and P, fized in ¢t Ucitisa regular function of r in the

wnit disk |r| <1; as a funetion of P, it belongs to the class RCB(C+),
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cf. definition I.1.6, for |r| < l,lpzl S 13 and similarly as a function

+
of p, it belongs to the class RCB(C') for |r| <1, |P1| <L

PROOF. For n > 0 it follows from theorem 2.1 that for [pll <1, |p2| <1,

x, () x,(0) [x,a-1) = 117 +£, @) [x,(-1) =117 + £, ()
AUBNDSE R U g }

Using the fact that the vectors (gl(n),gz(n)) and (1_c](n—1),)_(2(n—1)) are

independent, and distinguishing four disjunct cases we obtain for

o, < 1. [p,l <1,

23l (n) ’—{2(11) §1(n) gz(n)
E {P] P, } = E {p] Py } [E {(}_cl(n—l) = 0,}_{2(11—1) = 0)} +
}_(1 (n_l)
+ —E {Pl (x,(n=1) > 0;x,(n~1) = 0)} +
X, (n-1)
E {pz (1_<l(n—]) = 0,;_{2(n—1) > 0)} +

1 }_{](n—l) 2_(2(““11)
¥ PPy E {Pl Py (}-!](n—]) > 0”_‘2(n"]) > 0)}] =

I-c.p,=c,p x,(n-1) x,(n-1)
1 17175272 =1 =2 }
= E
PP, B( o )[ {pl P2 *

x,(n=1)
(PZ-I)E {pl

x, (n=1)

(x,(n-1) = 0)} + (p,-DE {pz 2 (x,(n-1) = 0)} +

(P]"l)(pz-l)E {(}_cl(n-l) = 0,}_(2(n-]) = 0)}].

Here we have used lemma 1.2. For each n > 0 we multiply the above
equation by plpzrn. By summing those equations over n > 0 and by using the

initial conditions of theorem 2.1 for n = 0 the functional equation (2.2)
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follows.
The stated regularity properties of the function @x(r;pl,pz) are well-

known properties of generating functions. O

In the next sections it will be shown that the properties of the function
@x(r;p],pz) which have been proved in the above theorem suffice to
determine this generating function uniquely for |r| <1, ]pll <1,

|p2[ <1 (cf. remark 6.1).

For fixed r, Irl <1, equation (2.2) relates the bivariate function
¢X(r;p1,p2) to two univariate functions @X(r;p],O) and @X(r;O,pz) and a
constant @X(r;O,O). In the analysis of this functional equation a central

role is played by the kermel

p1'°2pz>
>

l-cl
PPy = I B( o (2.3)

because if for a pair (Pl’pZ) € (C+ U ) x (C+ U C) this kernel vanishes
then the righthand side of equation (2.2) must be zero because of the
second condition of theorem 2.3. This provides us with a relation between
the functions ¢x(r;p],0) and @x(r;o,pz). Therefore we shall examine the

kernel (2.3) and its zeros in the next section.

II.3. Analysis of the kernel

It will be shown that for fixed r there exist pairs (p],pz) €
(C+ Uc) x (C+ U C), for which the kernel (2.3) of equation (2.2)
vanishes. In order to describe the set of all pairs of zeros (p],pz) €
(C+ Uc) x (C+ U C) of the kernel (2.3) we shall follow a method
introduced by COHEN & BOXMA [04], §5, in the analysis of the M/G/1
queueing system with alternating service where a similar kernel appears.
According to this method a parameter § and two-valued functions pl(r;6)

and pz(r;G) will be introduced for the description of these pairs of



49
zeros. The analytic properties of the functions pl(r;é) and pz(r;G) will

be studied.

Throughout this section r is assumed to be a fixed complex number,

0<]|r| <1.
Consider the equation, cf. (2.3),

P7CHP
_#2) = 0. (3.1)

I-c
PPy = T B( a

‘LEMMA 3.1. For |r| <§|pl|=< 1 equation (3.1) has exactly one root p, € c’.

Similarly, for |r| < |p,| <1 equation (3.1) has exactly one root p, € ct.

)l
PROOF. Because for !pll < 1 and Py € C+,
[C]p] + C2p2| szcllp]! + C2|P2|'< Cl + €y = 1,

and the Laplace-Stieltjes transform R(s) is regular for Re s > 0 and

17¢Py7¢yPy
continuous for Re s = 0, the function B (———-75—————) belongs for ]p]|=< 1
as a function of P, to the class RCB(C+).
On the unit circle |p2| = 1 we have for |r| < |p1|~< 1 the inequalities
s1=c.p,-c,p
11 7272
|x 8(—L22)| < el <1pyl = lpyp,l-

The first inequality is strict unless P, = 1, while for P, = 1 the second
inequality is strict. Application of Rouch&'s theorem (see lemma I.1.4) to

1-c.p,~c,p
11 7272
s (=

) )andplp2 as functions of Py with contour C leads to the

first assertion. The second assertion can be proved similarly. O

This lemma shows the existence of pairs (pl,pz) € (C+ Uc) x (¢t Uc)
for which the kernel (2.3) vanishes. For such a pair of zeros the parameter

§ is defined to be

§:= P, + CyPye (3.2)
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Further we introduce

wi=2c.p ), (3.3)
so that by (3.2) and (3.3),

2 c,p, = 2 § - w. (3.4)
Substitution of (3.3) and (3.4) in (3.1) %eads to the equation

Wl o-2 8w+ b cye, T B(léé) = 0. | (3.5)

Because this equation is quadratic in w it defines a two-valued function

w(r;8) which is given by

w(r;8) = & + /52 - hejc, 3(%) ) (3.6)

The two-valued functions,p](r;d) and pz(r;G) are defined to be, cf. (3.3),

(3.4),
p]<r;5);=5.l.]. w(r;6),
Dy (r38) =5 (26 - w(r; O], 3.7
2

"THEOREM '3.1. Every pair of zeros (p],pz) € (ctu c) x (¢ Uc) of the
kernel (2.3) can be described by P, = p](r;é), P, = pz(r;ﬁ) for one of the

two values of the function w(r;8), ef. (3.7) and (3.6), and for § € C U ct.

PROOF; For every pair of zeros (p],pz) € (C+ Ucg) x (C+ U C) of the kernel
(2.3) the parameter § can be defined by (3.2) and as above it follows

that for one of the values of the function w(r;8), cf. (3.7), (3.6),
= = w(r36) = = [26 = w(r;8)]
Py Zc) 3075 Py 2c, 3023

Because P, e€ctuc and Py € ct UC it is obtained from (3.2) that



|8] <c]]p]| + é2|p2| <c +ec, =1

In general we need both branches of the functions pl(r;G) and pz(r;S) for
the description of all pairs of zeros (p],pz) € (C+ Ucg) x (C+ U C) of the

kernel (2.3), This can be seen by noting that if (Pl’pZ) is a root of

iy ..c
equation (3.1) then 2 P,»— P, ) 1s a root of the same equation.
) ° 2 ¢, 1
Assume that ¢y <§c]. Take p, on the circlellpl! = |r]. By lemma 3.1 there
' c
exists a root (p,,p,) of equation (3.1) with p, € c*. Then for [ S!Ez,
1
c c c
12 1 1
l==p,l <1, =)l == Il <1.
S 2 cy 1 ¢y

C c

Hence both (p],pz) and (EE Pose
1 =7 72

belong to (C+ Uc) x (C+ U C). Because these two roots define the same

p]) are roots of equation (3.1) and

value of 8§, cf. (3.2), they must be described by the two values of the

functions p](r;G) and pz(r;G).
Next the discriminant of equation (3.5) will be considered.

LEMMA 3,2. The discriminant 62 -4 c Cytf B(léé) of equation (3.5) has
exactly two zeros, say 6](r) and 62(r), in the domain Re § < 1, Both zeros

are bounded in absolute value by one.

PROOF. The function B(lég) is regular in the domain Re § < 1, and

continuous and bounded in absolute value by one for Re § < 1, because it

is the Laplace-Stieltjes transform of a probability distribution.

Let R be a positive number, R = 1, and consider the contour
{8; Re 8 =1, || <RIU{8; Re § <1, |§] =R}
On this contour we have the inequality, for every R=>1,

(1=8 2
| 4cje,r B(T)l <dejey|r| <1 <87,

51
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Application of Rouché's thebrem.(cf. lemma I.1.4) to the functions
4c1c2r B(lé§> and 62 leads for R + © to the first assertion, and for R = 1

to the second assertion. O
Let E(r) denote the set
E(r):={8;Re 8 <1}\ {8,(x),8,(n)}. (3.8)

"THEOREM 3.2 The two-valued functions p](r;ﬁ) and pz(r;é) are analytie
in the domain E(x), and they are continuous in this domain up to its

boundary.

PROOF. Because the function B(lég) is regular for Re § <1 and continuous

for Re § <1 it follows from lemma 3.2 that the function

2 1-§
6 - 4c]c2r B(va—)

M(r;8):= (3.9)
[6—6](r)][6-62(r)]
is regular and non-vanishing for Re § < 1 and continuous for Re § <1,
Hence, also vM(r;8) is regular for Re § < 1. Clearly, the function
/'16—6](r)ll6—627r)], (3.10)

is a two-valued analytic function, cf. definition I,1.8, with two first
order branch points at § = 6](r) and § = Gz(r), cf. definition I.1.9.

This implies that w(r;8), cf. (3.6), and hence by (3.7) also pl(r;S) and
pz(r;ﬁ) are two-valued analytic functions in the domain E(r), which are

continuous in E(r) up to its boundary. 0O

Let y(r) be the line segment joining the branch points Gl(r) and 62(r),

and let

E(r) :=E(r) \ Y(x). (3.11)
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COROLLARY 3.1. The analytié funections pl(r;é) and pz(r;é) both have two

regular branches in the domain Ekr).

PROOF. This statement follows from theorem 3.2 and the fact that every
closed Jordan curve lying entirely in the domain E(r) contains in its
interior either both of the branch points Gl(r) and Gz(r) or none of them

(cf. MARKUSHEVICH [18], vol. I, §55). O

It is readily seen that also the function w(r;§) has two regular branches
in the domain Ekr). These branches will be denoted by w](r;G) and wz(r;é),
§ € Ekr). Because these branches are the two roots of the quadratic

equation (3.5) they satisfy for § € E(r),
v (r38) + wy(r;6) = 28,
w, (r;8)w,(r;8) = bec,c,r S 1= (3.12)
1°? 2+ C172 o /° °

It is seen that for IG[ > § € E(r), the sum of wl(r;ﬁ) and wz(r;G)
tends to infinity while their product remains bounded in absolute value
by one. This enables us to determine the branches wl(r;é) and wz(r;G)

unambiguously by putting
lim |w (r38)] ==, lim |w,(r;8)| =0, SEE®. (3.13)
§ [0 | 8]

With (3.9) we can write, cf. (3.6), for § € Ekr),

]

v, (138) = 6 + MEOWIE (O[T, (DT et arel 8-81(0] + 4i argl §-85(r)]

vy (r56) = 6 = AEs8)/6-8, (D183, T etl arel8=81(M] + 4i arel §-62(r)]
(3.14)

here the arguments of 6-6](r) and 6—62(r) are between -T and T.
The two regular branches pij(r;é), j = 1,2, of the functions pi(r;ﬁ),

i = 1,2, are defined according to (3.7) and (3.14), for § € Ekr),
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py,(ri®)i= 71-1 w (£360), Dy (x38):i= 571:; [28-w, (5381,
Pp(r;8):= 7%; 5 (r38), P,y (r38):= 7%;-[26-w2(r;6)].
(3.15)
Note that from (3.15) and (3.12) it follows that for § € E(r),
2e1py(r38) = 2¢,py,(r38) = w,(r;8),
2c]p]2(r;6) = 2c2p21(r;6) = wzér;é). ' (3.16)

LEMMA ‘3.3, For j = 1,2 and for every § € E(r) either plj(r;é) or pzj(r;a)

<8 bounded in absolute value by one.

‘PROOF. From (3.16) and (3.12) it is obtained that for j = 1,2, for

§ € B(r),

P]j(r;a)pzj(f;é) =r B(lé§>-

Hence, for j ='1,2, for § € Ekr),
IP]j(r;G)sz(r;G)l < Irl <1,
thus either |p]j(r;6)l <1 or |p2j(r;6)| <1, O

On the line segment Y(r) we choose as positive direction that from

61(r) to 62(r), and with respect to this direction we speak of lefthand
and righthand limits on Y(r). As a consequence of theorem 3.2 the lefthand
and righthand limits of the functions pij(r;G), i,j = 1,2, and wj(r;G),
j=1,2, on Y(r) exist, but they are not equal except at the end points
Gl(r) and Gz(r).

. The lefthand limits on Y(r) will be denoted by "+", and the righthand

limits by "=". For § €Y(r) we have, cf. (3.14), (3.16),
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w:(r;S) = wz(f;é), W;(r;G) = w;(r;ﬁ),

P (rs8) = pi,(r38),  pp(ri®) = pl,(r;8),  i=1,2.
(3.17)

In lemma- 3.3 it has been shown that for every § € E(r) either p]j(r;é) or
pzj(r;ﬁ) is bounded in absolute value by one, but from (3.13) and (3.16)
it is clear that not for every 6§ € Ekr) both of them are bounded in
absolute value by one (j = 1,2). Therefore we introduce the éets, for

j=12,
B;(0):=183 Re 8<1, [p; (38| <1, [py;(xs®)] <1}, (3.18)

where for § € y(r) the lefthand limits of the functioms pij(r;ﬁ), i,j = 1,2,

have to be understood.

" 'LEMMA ‘3.4, At least one of the sets Aj(r), j = 1,2 s non-empty and its
intersection with the domain Ekr) contains limiting points. The sets

Aj(r), j =1,2, are contained in ctuec,

PROOF. In.lemma 3.1 it has been shown that equation (3.1) has roots
(p],pz) € (¢t u C) x (C+ U C). With theorem3,] this implies that at least
one of the sets Aj(r), j =1,2, is non—empty. From theorem 3.1 it also
follows that the sets Aj(r), j = 1,2, are contained in ¢t uc.

From lemma 3.1 it follows that equation (3.1) defines implicitly a function
p, = f(r;p,) which is regular for 3 <;|p][ < 1. The image of the annulus
|z <:|p1] <1 is a domain, and hence by (3.2), (3.11) and (3.18) the
intersection of Ekr) with at least one of the sets Aj(r), j = 1,2, must

contain 1limiting points. O

This section will be concluded with the discussion of some properties of

the functions p](r;S) and pz(r;G), § € E(r), which only hold for real
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positive values of the variable r.

THEOREM 3.3. Let r be real, 0 < r < 1. Then the two branch points 61(1') and
Gz(r) of the functions p](r;é) and pz(r;d) are real, and they can be

chosen such that
-1 < 8, (x) <0< 62(1:) <1. (3.19)

On the real interval Y(r) the limiting values of the branches- 2c]p1j(r;5)

and 2c2p?_:.l (r3;8) are complex conjungate, t.e. for 8§ € y(x), j = 1,2,

+ —_— - -
ZC]P]j(r;é) = 2c2p2j(r;6), 2c]plj(r;6) = ZCzpzj(r;6).

(3.20)

PROOF. For r real, 0 <r <1, we consider the continuous function
2 "1-6
§° - 4c]c2r B(T)’ (3.21)

on the real interval -1 < § < 1, Noting that this function is positive

at § = 1 and § = -1, and negative at § = 0, and knowing that this function
can only have two zeros (lemma 3.2), it follows that both zeros must be
real, one on the interval -1 < § <0, the other on the interval 0 <¢§ <1,
which proves (3.19). Further, on the real interval y(r) = [Gl(r),62(r)]

the function (3.21) is negative, so that, cf. (3.14), for § € Y(r),

Wi(rs8) = wy(x38) = § + iv4e o, s(lé§§r- §2,

w;(r;d) = w;(r;G) =8 - i/4c1c2r B(—z—a) - 62. (3.22)
Hence, for § € y(z),

Pri8) = wo(r38 Yri8) = wo(r:s

w,(r38) = w, (r;6), Wy (r38) = w,(r;8), (3.23)

and (3.20) follows from (3.23) and (3.16). O
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COROLLARY '3.2. For 0 < r < 1,15 € y(r), i,j = 1,2,

|2cip;:j (r;6)2| = |2c]._1>;“j(r;6)]2 = he cyr B(—%E). (3.24)
PROOF. These relations follow from (3.22) and (3.16). O
LEMMA 3.5. For 0 <r <1, § € E(x),

|2¢,p,, (r38)|* < 4c]c2r|s(‘—;i)| <l2epp,, @02,

IZC]P]Z(r;5)|2 < 4clc2r|8<—%—6—)| < |2c2p22(r;6)[2. (3.25)
‘PROOF. Consider the quotient (cf.(3.14))

W,y (r38) ~

m, § € E(r). (3.26)

As |8] » =, § € E(r),this quotient vanishes because of (3.13).

On the line Re § = 1, where 4

(50 <1 <181,

it is readily seen that

6] =1 < /6% - 4c et 3(%6-)] <8 + 1,

and that this square root is contained in a circle of radius one around

§. Hence, for Re § = 1,
- : [wz(r;é)l <1< |w](r;6)|.

On the interval y(r) the boundary values of the functions w](r;G) and
wz(r;G) are complex conjungate, cf. (3.22), so that the absolute value
_of their quotient (3.26) equals one.

Thus on the boundary of E(r), cf. (3.11), we have
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. wz(r;é)

The two branches w](r;G) and wz(r;S) of the analytic function w(r;é)
are regular in the domain Ekr), cf, corollary 3.1. Moreover, the branch

wl(r;G) does not vanish in Ekr), because a root w = 0 of equation (3.5)

corresponds to a zero §, Re §<1, of B(lé§>, and for such a zero § it

follows from (3.14) that, since B(é) #=0,=
Wz(r;é) =0, w](r;G) =28 0.

Hence the quotient (3.26) is regular in E(r). By (3.27) and by the

maximum modulus principle it follows that for every § € Ekr),

lw, (x58)| < |w, (x58)]. (3.28)
Further, the second relation of (3.12) yields for every § € E(r),

[, (£38) | [w, (38)] = 4e cor [B(1Z2)]

1 272 172 o ?
which implies together with (3.28), for every § € Ekr),
2 f 1=8 2

Iwz(r;G)I < be e, IB(—ET>|'< [wl(r;é)[ . (3.29)

Finally, with (3.16) the stated inequalities (3.25) follow from (3.29). O

II.4. Analysis of the functional equation

In this section we shall use the results of the preceding section
in obtaining a functional relation between the functions @x(r;p],O) and
@x(r;O,pz). In the first place this relation is valid on the sets Aj(r),
j = 1,2, It will be extended by analytic continuation of the functions
@x(r;p](r;d),O) and @X(r;O,pz(r;ﬁ)) into the domain E(r), and in particular

to the line segment y(r).
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Let r be fixed, 0 < |r| < 1. Later on the discussion will be restricted

to real positive values of r.

THEOREM 4,1, For j = 1,2, § € Aj(r), P, = p]j(r;é), P, = pzj(r;é),

0 rip0) 8 (s0py) P! p,"2 .
= . .1
=, + =, x(r,O, ) + _—7——_(1—;)1) l_pz), (4.1

except for the values of § corresponding to the cases p, =1 and p, = 1.

Those values of § lead to the relations

(1, @1% [u, ()]*2
@x(r;O,]) = T](r), @x(r;],O) = '—]W ) (4.2)
with p, = W, (r) the unique solution of the equation
i i
1Py + .
p; = rB( o ), piGC , for i = 1,2, (4.3)

1

PROOF. As the generating function Qx(r;pl,pz) is finite for Ipll <1 and

|p2[ < 1 (cf. theorem 2.3.ii) it follows from equation (2.2) that

l-c.p,~c,p
+1 xo+1 1P17¢2P2
p]X] pzxz +r B(————jg—————)[(pz—l)¢x(r;p1,0) +

+ (p1—1)¢x(r;o,p2) + (p]-l)(Pz'l)(I’x(r;O,O)] =0,

for zeros (p],pz) € (C+ ucg) x (C+ U C) of the kernel (2.3)(which exist
according to lemma 3.1).

1-¢;py=¢,ypy
Substituting PP, for r B(—-——a———) the above equation may be divided
by PP, because B(s), Re s = 0, has only isolated zeros (see also
lemma 3.1). Then we insert P, = p]j(r;6), P, = pzj(r;S), j=1o0r 2 for
the zeros (pl,pz)G(C+ UcC) x (C+ U C) of the kernel (3.2), cf. theorem
3.1 and (3.16).

For later convenience we divide by (l-pl)(l-pz) and we obtain equation (4.1).
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From lemma 3.1 however it follows that there is a j, j = 1 or 2, and a
§ € Aj(r) such that p2j(r;6) = 1. Then we are not allowed to divide by

(l—p])(l~p2) but the relation reduces to

p," 1+ (pm1@ (r;0,1) = 0, Py = py;(30), Py (rs8) = 1,

§ € Aj(r), j=1,2.

By lemma 3.1 this j and § must be unique. ,Further equation (3.1) reduces
for Py = 1 to a wellknown equation from the theory of the M/G/l-queueing

system,

1-p
1
Pl-rﬁ(ul)ﬂ% x| <1, lpy| <1

This proves the first relations of (4.2) and (4.3). The other relations

follow similarly.

REMARK 4.1, The relation (4.2) and (4.3) can also be deduced directly
from the functional equation (2.2). For instance, putting P, = 1 in (2.2)

~gives

- 1-p ¢ 1-p
[Pl—r B( 3 1)] e (rsp;,1) = p1X1+] +r B(—a;l>(p]-1) o (r;0,1),
1

lp1|=< 1.
This equation is similar to that for the generating function of the queue
length process at departure epochs in an M/G/l-queueing system with mean
interarrival time o, andservice time distribution B(t), cf. COHEN [03],

1
p. 240. From the theory of the M/G/1—queue it is known that the kernel

l—p]
n - r o)

has for |r|'< 1 exactly one zero P, = ul(r) inside the unit circle, where

u](r) is equal to the generating function of the distribution of the
number of customers served during a busy period in this M/G/l-queueing

system.
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In this way we also obtain the relations (4.2) and (4.3). Moreover, we find
the generating functions of the marginal distributions of the series

{gi(n), n=0,1,2,...}, i =1,2, e.g. for |p]|‘< 1,

1-p1) p, M1l (] = (=p Iy @17
0 l-p‘ °
[Pl'r B(*a;—)][l'ul(r)]

Theorem 4.2. The functions @x(r;plj(r;é),d) and @x(r;o,pzj(r;é)),

X1
o (r3p;,1) =p, +r B(

§ € Aj(r), j = 1,2, possess analytic continuations into the domain Ekr).

PROOF. From theorem 3.2 we know that the functions p](r;d) and pz(r;G) are
two-valued analytic functions in the domain E(r). Further, the generating
functions @x(r;p],O) and @x(r;o,pz) should be regular in the unit disks
|p,| <1 respectively |p2] <1, cf. theorem 2,3.ii. Thus starting from a
non-empty set Aj(r), j=1ot 2, see lemma 3.4, the function
@x(r;p]j(r;é),o) is regular at all points § for which plj(r;é) € ¢’ and
possesses an analytic continuation as a two-valued function in the region
of points § for which the other branch of the function p](r;ﬁ) is bounded
in absolute value by one. The same procedure can be applied to the function
@X(r;O{pzj(r;G)), j=1o0r 2,

In lemma 3.3 it has been proved that on both branches at least one of- the
functions pl(r;G) and pz(r;d) has an absolute value bounded by one. Using
equation (4.1) the function @x(r;p](r;S),O) can also be continued as an
analytic function where one of the branches p]j(r;d), j = 1,2 has an

absolute value exceeding one by defining for such §, cf. (4.1),

x2+1
x +1 [pzj(r;6)]

@x(r;plj(r;é),O) = [p]j(r;ﬁ)] —-T:;;Ezgggj—-'+
@x(r;O,pzj(r;G)) )
+ [1_p]j(r;6)][<l>x(r;0,0) - I_sz(r;a) ]’ ] = ]:2.
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From the above it follows fhat if |p]j(r;6)] > 1 then the righthand side

of this equation is regular, and thus the analytic continuation of the
function @X(r;p]j(r;S),O), § € Aj(r), j = 1,2, into the domain E(r) is well
defined by this relation (cf. chapter I, definition I.l.7 up to definition
I.1.8). Note that if pzj(r;é) = 1 for some § then by (3.13) lp]j(r;6)| <1,
thus for such § the function @x(plj(r;é),o) is regular (j = 1,2).

The analytic continuation of the function;©x(r,0,p2j(r;6)), § € Aj(r),

j = 1,2 into the domain E(r) can be defined similarly.

The functions @x(r;plj(r;s),o) and @X(r;O,pzj(r;ﬁ)), § € Aj(r), j=1,2,

and their analytic continuation into the domain E(r) will be denoted by the

same symbol. O

With the above defined analytic continuations @X(r;p](r;ﬁ),o) and
@x(r;O,pz(r;G)) the relation (4.1) holds for P, = pl(r;G), P, = p2(r;6),
§ € E(r). From this singie functional equation we have to determine the
two functions @x(r;pl,o) and @x(r;O,pz). FAYOLLE [08] and IASNOGORODSKI
[16], see also [09], consider in problems of this kind the relation
between the unknown functions on the line segment joining the two branch
points, and then are able to formulate Riemann-Hilbert boundary value
problems (cf. section I.5).

Guided by this idea we consider equation (4.1) on the line segment 7y (r),
which is possible by theorem 4.2.
As we want to apply theorem 3.3 we confine ourselves to real positive

values of r.
From now on, let r be a fixed real number, 0 <r <1,

At every point on the line segment y(r) except at the end points
61(r) and 62(r) the functions pl(r;d) and pz(r;é) take each two different

values (cf. (3.4) and (3.5)).
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In order to describe equation (4.1) on y(r) for both of these values of
the functions pl(r;é) and pz(r;G) we shall introduce in the following
a suitable parameter equation of the line segment y(r).

It is recalled that by definition the branch points 61(r) and 62(r) are

the two roots of the equation (cf. lemma 3.2)

2 1-8\ _
§” - L‘oclczr B(T) =0, Re § <1.

LEMMA 4.1, For real t, -1 <t <1, the equation

~ ,/‘"‘("‘5]-5
§ = 2t C1C2 B T ’ (4-4)

has exactly one root in the domain Re § < 1, This root is real.

PROOF. Replacing r by tz in lemma 3.2 it follows that for -1 <t <1,

t ¥ 0, the equation

2 _ 2 1-§
6" = 4(‘,1021: B(T),

has exactly two roots in the domain Re § < 1 which are both real, while
one of them is positive and the cother is negative, cf. theorem 3.3.

This implies that the equations (4.4) and

. F_'(—_jl-é
§ = -2t C]CZB—a-,

each have one root in the domain Re § <1 for -1 <t <1, t #0, For t = 0

equation (4.4) has the single root § = 0. 0

This lemma enables us to define a function § = h(t), -1 <t <1, as the

unique solution of equation (4.4) in the domain Re § < 1, Thus,

h(e) = 2e/e c, Bi "‘; D) ) W) <1, -1<t<1. (4.5

LEMMA 4.2. The function h(t), -1 <t <1, s bounded in absolute value
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by 2|t|»/clc2, it is differentiable and strictly increasing. Further

lim h(t) =1, ifc1=c2=%anda<2,
ttl
<1, otherwise,
and !
lim h'(t) = ! . forc, =c, =% and a <2,
41 1-3a 1 2
= o, forc]='c2=£cmda=2,
< o, otherwise,
while

lim vV1-t h'(t) = {BZ/otZ-Z}-£, for ¢;=c,= i, a=2, 8, <o,

ttl1
lim —=£_ = 0 for ¢, =c,=4%, a=2
l"'h(t) E) 1 2 2> s

ttl
with 82 the second momeﬁt of the service time distribution B(t), cf.(1.5).
The limit of h'(t) as t¥~1 exists and is positive for all parameter
values.
The second derivative h"(t) <s continuous for —1 <t < 1, except in the

cases ¢ = c, = i, a =2 and ¢ =cy = i, 82=°°at the point t = 1, while

lim (l-t) h"(t) = 0’ fOI’ c,=c =%’a <2382= @,

1 2
tM 3 1 '
Lin (1-6)% 1"(e) = 48,702} 2, for ¢ =c,=},a=2,8,< .
t4l
- - 1-h(t)
PROOF. Because h(t) <1, -1 <t <1, we have B —e <1 so that from
(4.5),
|n(e) | <2|t|/clc2<2|/c]c2, -1<e<1, (4.6)

Differentiation of (4.5) gives formally
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l_.
e )
_ €12
h'(t) . Thit (4.7)
1 + th ¢y l———)-

Since B(M)> 0 and B' (l h(t))< 0 for -1 <t <1, it is seen that h'(t)
exists and h'(t) >0 for -1 <t <O0.

Let 0 <t <1 and consider on the real interval § < 1 the two functions

S, and 2tvc . c B(l 6).

172

Both functions are strictly increasing for § < 1., Because B(LO-LE) is
positive for § <1 it follows that at the point of intersection § = h(t),
cf. lemma 4.1, of these two functions the derivative of § has to be the

greater (see figure 4.1), i.e.

—gr(1=8
1> 2t:»/clc2 s § = h(t), 0<t<l1. (4.8)
1-§
2avB
[¢1
o 4/5
I
Note that we cannot have equality 6
in (4.8) because the root § = h(t) ét/B(]—G) q
o
. . . / |
of equation (4.4) is simple for : s
1
0<t<1. From (4.8) and (4.7) it (E— Ly Y
0 h(t) 1
follows that h'(t) > 0 exists for
0 < t-< 1. Hence, the function h(t) I~
is differentiable and strictly
—
increasing for -1 <t <1, Figure 4.1. h(t) for £50

Because the function h(t) is uniformly bounded, cf. (4.6), and
strictly increasing for -1 < t <1, the limiting values of this function

exist as t¥+-1 and t 4 1. The inequality (4.6) implies that h(1) <1 if
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c, ¥+ Cye If c, = ¢, = i then § = | is a root of equation (4.4) with t = 1.

1

For § = 1 to be the smallest root of this equation it is necessary that,

cf. (4.8),
1 = a.

Thus if ¢y =cy = } then h(1) <1 for ¢ > 2 and h(l) =1 for a <2, If

h(1) <1 then h(l) is a simple root of equation (4.4) with t

1, which
implies that h'(1) is finite, cf. (4.8), for c] =#c2 and for ¢y =cy = i,

a>2. If h(1) = 1, thus cp=cy = i, a <2, it follows from (4.7) that
h'(1)=1—_lg<°°, for a <2,

= o, for a = 2.

In the latter case, cp =cy = i, a = 2, we have for § »> 1,

v%(igé) =1 - §a(1-8) + 0((1-8)) = § + 0 ((1-8)), .9)

so that equation (4.5) leads to
h(t) = th(t) + to(li-h(t)]), h(t) -~ 1.

Since h(l) = 1 this implies

. 1-t
lim =)

t41

= o.
Further, if Bz <, we have for § » 1,
/e(%) =1 - Ja(1-8) + {[leotz—%az](l—ﬁ)z + o((1-8)2), (4.10)

so that for a = 2, ¢, =c, = 1, equation (4.5) leads to

he) = efncorifs,fol2|anenracamnend], a1,

from which it is readily seen (BZ/OLZ =4 for a = 2) that



1im 1ZRCEE) 2{ sz/az-z}'%,
t41 VI-t

which implies
) 2 \-4
lim VI-t h'(t) = {BZ/OL ~2} .,
tt1
The existence of h'(-1) is obvious from (4.7).

i
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(4.11)

(4.12)

Finally we consider the second derivative h"(t). Differentiation of

(4.7) shows that the denominator of h"(t) only contains powers of

g 1-h(t)
o
1+ thlcz s
1-h(t)
avB —

so that it follows from the above that h'"(t) exists and is continuous for

-1 <t<1, and that h"(1) is finite for <, #cz, for ¢, =c,

(in these cases h(1) < 1), and for cp=¢c, = 1, a <2, 82 < w,

If ¢, = c, = } the above leads to

1 2
o 1-h(t) o 1=h(t)
[l+%-§ i hat ] B (t) = - h'(t) B (1 h(xt ) -
4 l-t;(t) /B(l-ha(t))

Hence for a < 2, 8, < ® we have

%62/a2+a—%a2
1lim h"(t) .= —_—
tt1 (1-ia)

If a <2, 62 = o this limit becomes infinite, but since B'(0)

finite we must have

=4, a>2,

-B is

(4,13)

(4.14)
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1im sB"(s) = 0.
s>0

With this it follows from (4.13) that for a < 2, 82 = o,

lim (1-t)h"(t) = O.
thl

Finally, if a = 2, 82 <o it follows readily from (4.13), (4.12) and (4.7)
that
3

lim (1-6) 2 hi(e) = %{leaz-z}— . u]
el

Nl

Dividing (4.5) by t and differentiating it we obtain the useful relation

. , B,(l-h(t))
th' (®)-h(t) _ _ h'(t) f—m & -1 <e<1, t #0.

t2 o 172 B/(l_h(t))"

o
(4.15)

LEMMA 4.3. The mapping 8 = h(t/r) is a one-to-one correspondence between

the real intervals -1 <t <1 and Y(r).

PROOF. By lemma 4.2 the function h(t), -1 <t <1, is strictly increasing.
Consequently the mapping § = h(tvYr) is a one-to-one correspondence between
the intervals -1 < t <1 and h(-vr) <8 <h(¥/7). From (4.5) and the
definition of the branch points Gl(r) and Gz(r), cf. lemma 3.2, it follows

that
h(-/7) = § (1), h(/r) = §,(x). (4.16)
This implies that 8 = h(tvr) maps the interval -1 <t <1 onto y(r). O

As a consequence of this lemma, by putting

8§ = h(cos® V1), -T<6<m, (4,17)
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the interval Y(r) is covered twice if 6 increases from -m to T.

Inserting (4.17) into equation (4.1) leads to the following result.

THEOREM 4.3. The functions @x(r;p],o) and <I>x(r;0,p2) satisfy the equation

W w ARIEAY
B (Fige 20 8 (1305c) (z—c;) (F)
+ = = ¢ (r;0,0) + =, (4.18)
-2 -2 x (1-=22) (1- o
2<:l Zc2 . 2c1 2c2

w = h(cosbvT) e19

=050 , -T<O<m. (4.19)

PROOF. In theorem 4.2 relation (4.1) has been extended from the regions
Aj(r), j = 1,2, to the domain E(r), for j = 1,2, When § tends to the line
segment Y(r) from the left or from the right the limiting values of the

functions 2c]p1j(r;6), j =1,2, are, cf. (3.16), (3.22),

6 + ihe c,r s(‘—;ﬁ) -2, seyw. (4.20)

By lemma 4.3 every § € y(r) can be described by § = h(tv/r) for some t,
-1 <t <1, Substituting this in (4.20) the limiting values become, using

the definition of h(t), cf. (4.5),

h(tv/T) * i/hz(t/f')[—liﬂ], -1<t<1.
it

Inserting t = cos O we obtain, since h(t)/t >0, -1 <t <1, for -1 <0 <0

h(cos6vT) [1+i tanb] = —h(—c%ele,

h(cos6vT) -isz (cosbvT) tanze.

~and for 0 <O <,

h(cos8vT) o0

h(coseff)+i/{12(cose/f') tan26 h(cos6/T) [1+i tanf] = ———%
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Hence, for every 6, -m < O <7, the value of w defined by (4.19) is a
limiting value of 2c1p]j(r;6), j =1,2, on Y(r), and every limiting value
of 2clp]j(r;6), j = 1,2, on y(r) is described by (4.19), cf. (4.20).

This implies that we can substitute in relation (4.1):

w _ h(cosBv/r) 18
W= ————=c

- <<
Py 2c,? cosf > Tsoésm,

for the limiting values on y(r). By theorem 3.3 we must have then P, = 7%—.
2
This proves the assertion. O

When 6 increases from — T to T the variable w defined by (4.19) describes

a closed curve. This curve will be denoted by:

- h(cosbvT) ei@

L(r):= {w; w 530

, -T< 8 <} (4.21)

From equation (4.5) it follows that h(0) = O and that

lim 3‘@ = 2/e c,r e(&), (4.22)

t>0

h(cos6vT) _ 1-h(cosbvT) ’ <<
R - Z»élczr s(——-———-——-—a >0, T<O<m. (4.23)

This implies that the curve L(r) is bounded also when cos 6 vanishes and
that it is non-intersecting. Hence, L(r) is a contour, cf. section I.l.

By lemma 4.3 the contour L(r) may also be represented as, cf. (4.20),

- L(r) = {w; w=26 ii/z.clczr s(‘—;‘i) - 8%, sEvy@®). (4.24)

Before we shall deduce boundary value problems from relation (4.18) in the
sections II.6 and II.7 first some properties of the contour L(r) and of the
conformal mapping of its interior onto the unit disk will be discussed

in the next section.
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II.5. The contour L(r) and its interior

Some properties of the closed curve L(r) defined in (4.21) and of the
conformal mapping of the unit disk ¢' onto the domain L+(r) will be
discussed. It will be shown that this conformal mapping is regular on C, and
that its inverse can be continued as a regular function into the disk
le <1+ /ITW, except possibly for a finite number of poles.

Further it will be investigated on which conditions 2c, € L (x).

2
Finally it will be proved that the functions ¢ (r;-—L,O) and ¢ (r;O,—‘l—)
X 2cl b4 2c2

are regular in the domain L+(r).
Unless stated otherwise r is assumed to be fized and real, 0 <r <1,
LEMMA 5.1. The contour L(x) defined in (4.21) is smooth.

PROOF. From the definition (4.21) it is seen that L(r) has the parametric

equation

w = x(08) + iy(0),

x(8) = h(cosbvT), y(0) = tand h(cosbvr), -T <O <m. (5.1)

By lemma 4.2 the function h(cos®vT), and thus x(8), is differentiable for

every 0. For y(8) we have for -t <0 <m, 6 F £ im,

2
' _ h(cosbvT) o sin"0
y'(®) = ————cosze h' (cosbVT) o8 'T-

By usx:.ng (4.15) it is obtained:

o>+im a 172

‘ 1
B'(
lin y'(®) = I/ee —Q/“? h'©) = 2Ee,c8'(3),
B(a)

here we have used (4.7) for h'(0). Hence also y(0) is differentiable for
all 0.

Futher, since h'(t) >0, -1 <t <1, cf. lemma 4.2, the derivative
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x"(8) = =/r sin® h'(cosbv/T),

only vanishes when sin 6 = 0, and it can be readily seen that y'(8) does

not vanish for 6 = -m,0,T.
This proves that L(r) is a smooth contour, cf. definition I.1.3. O

t Imw

.6 L (r)
Figure 5.1.
L+(r) The contour L(r)
Re w for a = 1.96,

1 [ _
~5 1 4clc2r = 0.96

and an Erlang-2
service time

distribution

_'q'—

According- to the parametric equation (5.1) a positive direction is defined
on the contour L(r), cf. section I.l1. From the proof of lemma 5.1 it is
readily deduced that this direction is counter clockwise. By definition

I.1.2 the interior of L(r) will be denoted by L+(r), the exterior by L ().

COROLLARY -5.1. The interior L+(r) of the contour L(r) is a simply connected

domain.

PROOF. This is a consequence of the Jordan curve theorem (cf. lemma I.1.1).

See also the definition above lemma I.1.3. 0O

LEMMA 5.2. The contour L(r) is equivalent to
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{w; |w|2 = 4c1c2r B(l-%ew), Rew < 1},

PROOF. From (4.24) it follows that for every w € L(r) there exists a

8§ € y(r) such that Rew = § < 1 and

2 _ 2 1-8\ _ 2 _ 1-Re w
[w|© =67 + 4e cor B(T) 8§ = 4c102r B( S )

On the other hand, let some w, Rew <1, satisfy

2 1-R
lw|® = 4c c,r B( ;w)’ (5.2)

or equivalently,

{Im W}2 = 4c e r B(]_—ltf—w-)- {Rew}z.

This equation has only roots if Re w € Y(r), cf. lemma 3.2. Putting

§ = Re w it follows that

{Im w}2 = 4ejcyr B(—E—g) - 62,

which shows that w € L(r), cf. (4.24). |
COROLLARY 5.2, For every w € L+(r),
|w| <62(r) <l.

PROOF. This is a consequence of lemma 5.2, the monotonicity of B(%) for

real §, § <1, and lemma 3.2 which imply for w € L+(r),

lw| < ZA]czr 3("1:"") < 2‘[]c2r B(I—Z‘S-OZL(L)) = 6,(r) <1. ]

COROLLARY 5.3. If r, >r2 then L(r|) C L-(rz). (See the figure on p. 238.)

PROOF. From lemma 4.2 it follows readily that for every 6, -m <0 <,
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ih(COSem >0’ for 0<r<1.
dr cosB

With (4.21) it is then clear that the contour L(r) expands in every

direction with increasing value of r, 0 <r <1, as asserted. O

Relation (4.23) implies that the contour L(r), cf. (4.21) has a
representation of the form of formula (I.6.4), and that 0 € L+(r), so that
we can apply the procedure of Theodorsen (cf. section I.6) for the

. . . . s + .
determination of the conformal mapping of the unit disk C onto the domain

().

THEOREM 5.1. There exists a conformal mapping g(r;z) of the unit disk c

onto the domain L' (r) which is uniquely determined by the conditions
g(r;0) =0,  g'(r;0) >o0. (5.3)

This conformal mapping is given by, for |z| <1,

m . i@
g(r;z) = z exp {il?r- J log [h(cose(r,w)/f')] ei(p+z d(p}, (5.4)
-T cosf(r;0) e -z

where 8(r;Q), =T <@ < W, <s the unique strictly increasing solution of

the non-linear singular integral equation of Theodorsen for -m <@ <,

m
. _ _ h(cosb (r;w)vr) w=p
0(r;p) =@ T f:”log [—_—cose(r;w) ] cot (—2 ) dw. (5.5)

REMARK. Throughout we shall use the notation
)
g'(r;z):=—5-z—g(r;z), |z| <1. (5.6)
The derivative of g(r;z) as a function of r will be denoted by

d
g (r32):= 5= g(r;z), 0<r<i1, |z| <1. (5.7)
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PROOF OF THEOREM 5.1. By corollary 5.1 the domain L+(r) is simply connected,

so that the existence of a conformal correspondence with the unit disk
follows from Riemann's mapping theorem (lemma I.6.2). The uniqueness of the
conformal mapping g(r;z), z € C+, sétisfying the conditions (5.3) is
ensured by lemma I.6.3.

As noted above this theorem the contour L(r) has a representation of the
form of formula (I.6.4). Referring to secgion I.6 the formulas (5.4) and

(5.5) follow from (I.6.8) and (I.6.7), with cf. (4.21),

0(8) =h_(_9c205?ee_@, -T<9<m, (5.8)

Finally, lemma I.6.8 proves the uniqueness of the solution 6(r;y) of
equation (5.5) in the class of continuous, strictly increasing functions

on [-m,n]. O

COROLLARY 5.4. The conformal mapping g(r3z) is continuous up to the
boundary C. It establishes a one~to-one correspondence between ctuc
and L¥ (xr) U L(r). On the unit circle it is given by

ioy _ h(cosB (r;0)/r) _ib(r;0)

g(rse cosB (r;v)

-TSQPS<T.

PROOF. Because L(r) is a contour,lemma I.6.4 proves that g(r;z) is
. + . .
continuous in C U C and that it establishes a one-to-one correspondence
+ .
between C* U C and L (r) UL(r). The formula for g(r;elw), -T<Q<m,

follows from (I.6.6) and (5.8), cf. the proof of theorem 5.1. O

Next a symmetry property of the contour L(r) and of the conformal
mapping g(r;z) will be proved, which will be of great importance in later
sections. For the following result it is necessary that r is real and

positive.
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THEOREM 5.2. The real axis is an axis of symmetry of the contour L(r).
The conformal mapping g(r;z) of the unit circle ¢" onto the domain L+(r),

given by (5.4), satisfies for z € ctu c,

g(r;z) = g(r;z).

PROOF. Because the function cos § is even it follows from (5.8) that
p(8) = p(-6) for every 6. This implies that the real axis is an axis of
symmetry of the contour L(r). Moreover, lemma I.6.9 then leads to the

stated property of the conformal mapping g(r;z). O

As a consequence of this theorem the conformal mapping g(r;z) maps real
points onto real points. In particular, by (5.3), see also (4.21) and

(4.16), for 0 <r <1,

g(r;1) = 8,(r) = h(/D),
g(r;=1) = §,(r) = h(~/r). (5.9)

From corollary 5.4 it follows that the conformal mapping g(r;z) has
an inverse mapping in L+(r) U L(r). This inverse function will be denoted
by go(r;w). Clearly, the function go(r;w) performs a conformal mapping
of the domain L+(r) onto the unit disk C+, and is continuous in

LY () UL(r).

THEOREM 5.3. For every z € ctu C, g(r;z) s a continuous function of
r,0<r<I.
For every rO,O < r, <1, and every w € L+(r0) U L(ro), go(r,w) s

continuous at r = o

PROOF. In corollary 5.3 it has been shown that the domain L+(r) expands

monotonicly with increasing r,0 <r < 1. Let r, be fixed, 0 < T, <I1.

0
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Because h(t) is a continuous, strictly increasing function for -1 <t <,

cf. lemma 4.2, it follows from (4.21), that

'@y = U o, ey - N tt@. 5.10)
0<r<r r, <r<lI
0 0
Application of lemma I.6,11 gives that as well for r +r0 as for r+r0,
g(r;z) > g(ry;2), ; (5.11)

uniformly in c'. It is readily verified that (5.11) then also holds on C.
By the same lemma I.6.11 it follows that for r‘h?0 and for r¢r0,
8o (r3w) > gy (ry3w), (5.12)
uniformly in L+(r), and hence also on L(r). ]
Next it will be shown that the conformal mapping g(r;z) can be
continued as a regular function outside C+, and that its inverse go(r;w)

. . . +
can be continued as a regular function outside L (r). For this we need

some preliminary lemmas.

LEMMA 5.3. There exists a subdomain S(r) of the domain Re § <1, such that

Y(r) C S(r) and such that for § € S(r)\y(r),
w, (38) € 1L7(r), w,(r;8) € L (o).

PROOF. From (3.22) it follows that for § € y(r), ¢ * 6](1:'), § #+ Gz(r),

r 1-8
3+ 3 - : 2°1Cza‘8'(T) * 9
35 Y1 (r;8) = 35 wz(r;(S) i =

Ac]czr B —]-18-) - 62

]
—
1

o

(5.13)

i
—
+
-
o

8% wI(r;(S) = 333- w;(r;(S) =
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This implies with (3.22), for § € y(r), § # Gl(r), s dz(r), for € >0,

w, (x36%ie) = w) (r;8) + ie B%W’I'(r;s) +0(e?) =

r 1-§
C eEe() s
=6+1Accr6(l—_—§)—62+ie+e 120 o ,+0(€2),

1%2 o ~
‘[clczr B(—]——Q) - 62

o

e > 0;

w, (r38-ie) = wj(r;0) - ie %w;(r;a) + 0% =

r 1-§
] 2c.c —B'(——) + 6
=6-i »/4clczr 3(‘—;§> 8% - e+ e —L20 O _+0(eD),

»éc c,r B(—l;é-) - 62

172 o

e > 0; (5.14)

Further we obtain from (3.14), for € >0 and -1 <@ <,

(D)

. 1-8
8,(x) + Ve e%w »/262(r)+%c1c2r B'(—T_)+O(€)’

e > 0;

v (r;6 (r)+€ei(p)

) +0(e),

big 4 1-§, (r)
w](r;él(r)—ee Sl(r) - /g e? |26](r)+aclc2r B'(‘T‘)

e > 03 (5.15)

From (5.14) and (5.15) it is seen that there exists a subdomain Sl(r) of

the domain Re § < 1 with y(r) C Sl(r) such that for every § € Sl(r)\y(r),
w, (r;8) € L (r).

In a similar way it can be deduced from (5.13), (3.22) and (3.14) that
there exists a subdomain Sz(r) of the domain Re § <1 with y(r) C Sz(r)

such that for every § € Sz(r)\Y(r),

w,(r;8) € ).
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Taking S(r) = S](r) N Sz(r) the assertion follows. O

LEMMA 5.4, For every § € E(r) for which Re w, (x38) < 1 either

w (r;6) € 1Y (r) UL(r) or v, (r38) € L (r) UL(r).

PROOF. From (3.12) it follows that for every § € E(r),

1-8 1-Re §
|wl (r;6)||w2(r;6)] = Aclczrls(—a—)!< 4c1c2r B( : ),
Re v (r38) = Re § = Re § - Re wz(r;é). (5.16)

From the Schwarz inequality, cf. BURRILL [02], theorem 9-3A, we obtain for

real s, s > 0, and for real h, -s <h < s, the inequality
[B(s)1% < B(sh)B(s+h). (5.17)

From (3.29) it follows that for every § € E(r),

w,(r38)| <ébc,c.,r <.
2 172

Consequently (5.17) and the second relation of (5.16) imply that for every

§ € E(r) for which Re wl(r;ﬁ) <1,

_ 2 1-Re w, (r;8) 1-Re w,(r;d)
()] <dl——p——)-
o a o

so that with the first relation of (5.16), for every § € E(r) for which

Re wl(r;G) <1,

1-Re W, (r;6) 1-Re wz(r;ﬁ)
— )

le (£38) | |w, (x38) | < 4c1c2ré(

o

(5.18)

Therefore, if § € E(r) and Re W, (r;8) < 1 at least one of the two relations

1-Re wl(r;é))

2
lwl (r;8)|° < 4ejc,r B( 3
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1-Re w2(r;6))

]wz(r;é) |2 < 4c1c2r B( M

must hold, which implies with lemma 5.2 that either wl(r;é) € L+(r) U L(1r)

or w,(r;8) € () VL. O

Note that it follows from (5.18) that if v, (r;8) € L (r) for some § € E(r)

for which Re W (r;8) <1 then wz(r;d) € L+(r).

LEMMA 5.5. For 8 € E(x), || > 8, (),
lw, (x38)] > [8] > 8,(r); (5.19)

for every § € E(r), for which Re wl(r;d) <1,

|W2(r;6)| <62(r). (5.20)

PROOF. On the real interval 62(r) <§ <1 the function (3.21) is positive,

cf. the proof of theorem 3.3, so that for dz(r) <§<1,

1-8 2
4c]c2r B(—-&-—) < § .

Hence for §, (r) <|§| <1,

bejc,r [B(%N < beje,r B(—L6—L><|6I2,

1-
)
while for |8| > 1, § € E(r),

1-8 2
4c]czr lB(T)l < 4c]c2r <1 < |6| .
This implies with (3.12) and (3.29) that for § € E(r), |§] >6,(x),

|28-w, (x38) | = |w,(x;8)] <2/clc2r |3(-'I§)| <§]. (5.21)

a

Hence, (5.19) follows. Moreover, (5.19) and corollary 5.2 imply that
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v, (r3;8) €L (r) for § € E(f), |s] > 62(1:), so that by the remark above this
lemma wz(r;G) € L+(r) for § € }?(r), 8] > 62(1’) and Re w; (r;8) < 1. Again
by corollary 5.2 it is obtained that (5.20) holds for § € EN(r), |6| > 52(r),
Re v, (r;6) < 1.

Finally, for § € I?(r), |6| < 62(r) inequality (5.20) follows from (3.29):

~ 1-8, (x)
]wz(r;é)l < 21/c]c2r IB(—I—O—‘G—)I<! 2»/clc2r B(_.__z___) = 62(1-), O

)
LEMMA 5.6. For 8,(r) < |w| <1 equation (3.5) has exactly one root

§ = Go(r;w) which has an absolute value smaller than that of w.

This root §(r;w) is regular in the anmulus §,(r) <|w| <1.

PROOF. Let w be fixed, §,(r) < |w| <1. on the circle |§| = |w| then the
following inequality holds,
2 1-8 2 1-|w 2
|w +he cor B(T)I < |w +he cor B(—BIL—L> <2lw|® = |26w]|.
Application of Rouch&'s theorem (cf. lemma I.l.4) to the functions
w2 + 4c]c2r B(%) and 26w which are regular functions of § for
|6| < le <1, proves that equation (3.5) has exactly one root § = 60(r;w),

for which
[8g(xs0) | < |wl, 8,(r) < |w| <1. (5.22)

From the implicit function theorem and the uniqueness of the root Go(r;w)
satisfying (5.22) it follows that the function Go(r;w) is regular in the

annulus 62(r) < |w| <1. 0

Because Go(r;w) is a branch of the inverse of the function w(r;d) we must

have for every w, 62(r) < |w| <1,

LA (r;So(r;w)) = w, oOr wz(r;do(r;w)) = W, (5.23)
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COROLLARY 5.5. For § € E(r) with [8] >6,(r) and |w (r;®)| <1,

6 (rsw, (r;6)) = &3 (5.24)
for w with §,(r) < |w] <1 and |so(r;w)] >6,(r),

wl(r;d (r;w)) = w. (5.25)
PROOF. Let 6 € E(r) be such that || >6,(r) and |w (r;8)| < 1. Then by
lemma 5.5,

8, < [8] < v, @®)| <1.

Hence, § is a root of equétion (3.5) with w = Wl(r;é) and has an absolute
value smaller than w = wl(r;é). By the uniqueness of Go(r;wl(r;d)) with
the same properties relation (5.24) follows. Next let w be such that

8,(x) < |w] <1 and 160(r;w)| > §,(x). Then by (5.21) and (5.22)
|wy (x38, (x5 | < [8(x5w) | < wl,
so that wz(r;6 (r;w)) ¥ w. Hence, by (5.23) relation (5.25) follows. O
Since wl(r;éz(r)) = 62(r) it is seen that the set
D, (r):= {8;]8] > 62(r),|w](r;6)| <1}, (5.26)
is non-empty. Moreover, it follows from (5.24) as 6§ ¥ Gz(r) that
‘ 60(r;62(r)) = 62(r). (5.27)

Clearly also the following set is non-empty:

w38, (r) <|w| <1,]8,(rsw)| >8,()} = w (x;D ().

COROLLARY 5.6. For every w in the annulus A(r):= {w;8,(r) < |w| <1},
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w](r;Go(r;w)) = w.

PROOF. By lemma 5.6 the function 60(r;w) is regular in the annulus

Gz(r) < |w| < 1. This annulus is mapped by 60(r;w) onto a domain contained
in Ekr), because Go(r;w) is bounded in absolute value by one in this
annulus, cf. lemma 5.6, and because Go(r;w) cannot take values on the
interval y(r) as this interval is mapped py both wl(r;G) and wz(r;é) onto
the contour L(r) and as the intersection of L(r) with this annulus is
empty (corollary 5.2), cf. (5.23).

Hence, the function wl(r;é) is regular in the image of the annulus A(r)
under the mapping SO(r;w).

The assertion then follows from (5.25) by analytic continuation. O

LEMMA 5.7. The function 60(r;w) can be continued as a regular function into

the domain L™ (r) nct. For every w €L (r) N C+,

wl(r;ﬁo(r;w)) = w. (5.28)

PROOF. As a consequence of corollary 5.6 the function w](r;G) is univalent
in the image 60(r;A(r)) of the annulus A(r). From (5.13) it is seen that

the derivatives

é%-w?(r;d), é% w?(r;G),

do not vanish on y(r). Therefore, the set S(r) in lemma 5.3 can be

chosen such that wl(r;G) is univalent in S(r).

By (5.27) the intersection of Go(r;A(r» and S(r) is such that there exists
a closed Jordan curve I'(r) belonging to éo(r;A(r)) U S(r) and with the gap
between S(r) and 60(r;A(r)) in its interior (see figure 5.2). By the above

the function wl(r;G) is univalent on T'(r). Since the interior of I'(r) is
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contained in E(r) the function w](r;G) is regular in this interior domain.

But then the function wl(r;G) is univalent in this interior by MARKUSHEVICH

[18], volume II, theorem 4.5.

By analytic continuation from the equation

§o(x3w, (x36)) =6,

which holds in Go(r;A(r)) by corollary 5.? the function Go(r;w) can be

extended as a regular function to the domain L_(r) N C+ by using that

w‘(r;é) is univalent in the interior of I'(r). It is then further clear that

(5.28) holds in L (r) Nc'.

Figure 5.2
Right: the w-plane with the contour
L(r) and the annulus A(r)
Below: the §-plane with ;he line

segment y(r), the domain 60(r;A(r))

O

and the Jordan curve T'(r)

(the variable r has been deleted)
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LEMMA 5.8. The function éo(r;w) can be continued as a regular function into

the domain

W(r):= {w; w € L (x), |w| <1+/T=4c e, r}. (5.29)
For every w € W(r),

léo(r;w)] <1,

w](r;ﬁo(r;w)) = W.
PROOF. In the annulus I-VTW <|w| < l+|/.l?5?:_1?2? the inequality

|w|2 + bejcyr <2|w|,

holds. Let w belong to this annulus and let |§| = 1, then
[w+he c,r s(lgi)| < [l 2stc cpr < 2lu] = |2u8].

Application of Rouché&'s theorem (cf. lemma I.1.4) to the functions
w2 + 4clc2r B(%) and 26w proves that equation (3.5) has exactly one root

§ = Gl(r;w) in the unit disk for
1 - /1‘—"4'c'1'c'2""r <|w| <1+ /T=4c e, 1. (5.30)

Moreover, this root Gl(r;w) is regular in the annulus (5.30), cf. the proof

of lemma 5.6.

By comparing this result with that of lemma 5.6 it seen that for |w] =1,
61(r;w) = Go(r;w)

This means that Gl(r;w) is the analytic continuation of Go(r;w) into the
region 1 < |w| <1 + J1-4c1c2r, cf. definition I.1.7. This analytic
continuation will further be denoted by the symbol 60(r;w). Thus (So(r;w)

is regular in the domain W(r). By the same arguments which has been used
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to prove corollary 5.6 it is seen that the domain W(r) is mapped by Go(r;w)
into E(r), and hence that relation (5.28) can be extended to the domain
W(r).

Finally, becauseéo(r;w) is univalent in W(r), because it maps the contour
L(r) onto the interval y(r) C C+ (a consequence of lemma 5.7), and because
it is bounded in absolute value by one in the annulus (5.30) the function

Go(r;w) is bounded in absolute value by one in the domain W(r). O

As an illustration the functions wl(r;é) and wz(r;é) are shown for
real values of § in figure 5.3 and in figure 5.4. For that purpose the

following properties of these functions are obtained from (3.14):

wl(r;dl(r)) = wz(r;dl(r)) = Sl(r),

wi(r36, () = wy(r;8,(r)) = 8,(r);

wl(r;é) ~ 28, wz(r;é) -+ 0, as § > =

w](r;l) =1+ V1—4c]c2r, wz(r;]) =1 - Vl—hc‘czr,
]-2c1c2ra l—2c]c2ra

W;(r;l) =1+ —= wé(r;l) =] = —— (5.31)
Vl—&clczr V]—Ac‘czr

Further, as w > 1 + V]—Ac]czr the limit of GO(r;w) is the root with the

smallest absolute value of the equation, cf. (3.5),

26 =1+ V1-4clc2r + {1 - /l-éclczr} B(lé§>. (5.32)

From this equation it is readily verified that

60(r;1+¢1—4clc2r) =1, for 3a{1-v -4c]c2r} <1,
<1, for za{1-v —4c]c2r} > 1. (5.33)

In a similar way it is obtained that



Figure 5.3 (right)

The functions w](r;é) and
wz(r;ﬁ), § real, l(S] <1,
for a small value of the

traffic a

wt

w1(<5)

w2(<5)
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wt

w, (8)

—_—l

Figure 5.4 (left)

The functions w](r;é) and
w,(r;8), § real, 8] <1,
for a large value of the

traffic a

Note: the variable r has

been deleted in the figures
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60(r;1—V1-4c1c2r) =1, for %a{]+vl—4clc2r}‘< 1,
<1, for %a{l+/1—4c1c2r} >1. (5.34)

Taking the above properties into account the functions w](r;6) and wz(r;6)
are shown in figure 5.3 for a small value of the traffic a and in figure

5.4 for a large value of the traffic a.

Having established some preliminary results in the preceding lemmas
we are able to prove the following theorems on the analytic continuation
. + + . .
of the conformal mapping go(r;w) of L (r) onto C , and of its inverse

g(r;z).

THEOREM 5.4. The function go(r;w),w € L+(r)lJ L(r), possesses an analytic

continuation into the domain
-1
{ws3 |w| <:1+¢1—4c]c2r, B(iify> # 0 for w € W(r)}.

This analytie continuation which will be denoted by the same symbol go(r;w)

-1
has poles at points w € W(r) for which B(](;W) =0,

PROOF, Because the function go(r;w) maps the contour L(r) onto the unit

circle C, cf. corollary 5.4, we have for w € L(x),
gy | = 1.
With theorem 5.2 this implies, for w € L(r),
- gy (15w, (r5@) = 1. (5.35)
By lemma 5.8 we have for w € W(r),

w, (£38(x3w) = w EW(r) CL (r),

so that by lemma 5.4 and the remark below it, for w € W(r), Rew < 1,



w, (£38, (r5w) e ().

Hence the function

1
8o (r3w, (r38,(r5w))),

is well defined and regular except at points w € W(r), Re w < 1, where
wz(r;éo(r;w)) = 0, at which points it has poles. These poles will be
discussed at the end of this proof. f

If w,w € W(r), tends to the cbntour L(r), then 60(r;w) tends to the
interval y(r), cf. (5.27), so that by (3.22) the function wz(r;éo(r;w))

tends to (cf. lemma 5.7)
v, (r;Go(r;w)) =w.

Hence, by (5.35) we have for w € L(r),

1
go(r;wz(r;éo(r;W))) .

go(r W) =

By lemma I.3.4 this implies that the function go(r;w) is regular for

w € L(r), and this shows that the function go(r;w) possesses an analytic
continuation into {w;w € W(r), Re w <1, wz(r;GO(r;w)) # 0}. Moreover,
denoting this analytic continuation by the same symbol go(r;w) relation
(5.37) holds for w € W(r), Re w < 1 (principle of permanence, see NEHARI
[21], p. 107).

Next, for w € W(r), Re w > 1, we have by lemma 5.8 that I(’So(r;w)l <1,

Hence, by (3.29), for w € W(r), Rew > 1,
lw, (£58 (e5w)) | <1,

so that by the above the function go(r;wz(r;ﬁo(r;w))) is well defined
and regular for w € W(r), Re w > 1, except possibly for poles.

Again by (5.37) which holds for Re w = 1, w € W(r), it is seen that the

89

wEW(E), Rewsl, (5.36)

(5.37)
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function go(r;w) possesses an analytic continuation into {w;w € W(r),

Re w>1, wz(r;G (r;w)) # 0}, and that (5.37) holds in W(r).

Thus go(r;w) is a regular function in the disk |w| <1+ /T:ZETE;;, except
possibly for poles in W(r), if wz(r;GO(r;w)) = 0,

In L+(r) U L(r) the conformal mapping go(r;w) is finite and go(r;w) =0 if
and only if w = 0, cf. (5.3). From (5.37) it is seen that the function
go(r;w) has a pole at a point w € W(r) if;and only if wz(r;ﬁ (r;w)) = 0.
Equation (3.5) and the inequalities (3.29) show that for w € W(r),

(r3w)

1-§
w,y (£38, (r3w)) =0©B(——0—u—-—-> =0 ®w, (r;6,(r;w)) = 28 (r;w).

Because w](r;éo(r;w)) = w for w € W(r), cf. lemma 5.8, it is obtained that

for w € W(r),
w, (£36(x3w) = 0 © B(—'—%f—"’») = 0. (5.38)

Thus the function go(r;w), iwl <1+ Vl-4c1c2r, has a pole at a point w

-
if and only if w € W(r) and 6(17fﬂ) = 0. O

Relation (5.37) which holds by the principle of permanence for w € W(r)

leads to:
COROLLARY 5.7. For w € W(r), Re w S 1,

lgg(xsw)| > 1.

PROOF. As it has been shown in the proof of theorem 5.4 we have
wz(r;SO(r;w)) € L+(r) for w € W(r), Re w < 1. Hence by the definition

of the conformal mapping go(r;w) we have for w € W(r), Re w <1,
+
g (3w, (136, (r3w))) € C .

By (5.37) the assertion then follows. O
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REMARK 5.1. In a similar way it can be shown that for w € W(r), Re w > 1,

[go(r;w)l >1, if wz(r;G (r;w)) € L+(r),

lggxsw| <1, if w, (38, (r;w) € L(r) UL (r).

The latter case has not been excluded by the above results (although we did
not encounter cases in which this occurs). But for instance, if the service

-Bs

time is constant (B) then B(s) = e "~ . In this case the inequality (5.17)

holds for any h and s (and in fact it is an equality) because

(e B8)2 _ "2Bs _ -B(s+h) -B(s-h),

therefore lemma 5.4 holds without the restriction Re wl(r;ﬁ)‘< 1. This
implies that corollary 5.7 holds for every w € W(r) if the service time

is constant.

THEOREM 5.5. The conformal mapping g(r;z) of ¢ onto L+(r) possesses an
analytic continuation into a part of C ; it is regular at every point

z€C, and g'(r3z) ¥0 on C.

PROOF. By theorem 5.4 the function go(r;w) possesses an analytic continua-
tion into a part of the domain L™ (r), and corollary 5.7 implies that for
every w € L(r) there exists a neighborhooed such that the function go(r;w)

is univalent in this neighborhood, i.e.

gb(r;w) # 0, for w € L(r). (5.39)

. + . +
Hence, the function g(r;z), z € C, the inverse of go(r;w), w€L (r),
possesses an analytic continuation into a part of C U C , and it is regular

at every point z € C. Clearly, g'(r;z) does not vanish on C. O

REMARK. By means of Kellogg's theorem (see lemma I.6.5) it can be proved

directly from the definition of the contour L(r), cf. (4.21), and from
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the properties of the function h(t), cf. lemma 4.2, that the derivative
g'(r;z) exists and does not vanish on C (see also the proof of (8.21) in

theorem 8.2).

REMARK. In general the function go(r;w) is not univalent in the whole disk
|w| <1+ |/]—4c]c2r. From (5.33) it can be seen that gc')(r;w) vanishes in
W(r) if wé(r;@o(r;w)) vanishes (see e.g. figure 5.4). This sets bounds to

the analytic continuation of g(r;z) into C .
In the rest of this section it will be shown that the functions
W W
<1>X(r,§'éT,0) and @X(I,O,Z—c-z—),

are regular in the domain L+(r). By theorem 2,3 the first of these

functions is regular in the disk [W| < 2c¢, and the second is regular in the

1

<} <c1, cf. (1.2), (1.3). Then the first

disk |w| < 2c,. Suppose that c,

of the above functions is regular in C+, and hence by corollary 5.2 it is
regular in L+(r). If 2c2 = Gz(r) then it follows from corollary 5.2 that
also the second function is regular in L+(r). However, it may happen that

2(:2 < 62(1') as it can be seen from the following result,

From now on it is8 assumed that the types of customers are numbered such that

o, < 05 cf. section II.l, so that
0<c2<%<c1<]. (5.40)

Because 62 (r) is the positive zero of the discriminant of equation (3.5),

cf. theorem 3.3, the equation

62(r) = 2c 0<r<i, 0<c2<%, (5.41)

2’

is equivalent to the equation
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1-2¢
2
e, = (l—ez)r B(T)’ 0<r<i1,o0< c, < i, (5.42)
Therefore we define the function
R(t):= t , 0<t<}. (5.43)
1-2t
(1-t) B o

THEOREM 5.6. i. If a < 2 then R(c2) <1 for every c, <4 and R(}) = 1.
ii. If a > 2 then R(cz) <1 only for cy < c2m(a); here czm(a),

o< c2m(a) <}, Zs the constant for which R(ch(a)) =1,

iii. For 0 <r <min {l,R(cz)} the inequality 8, (x) < 2¢, holds while <f

R(cz) <1 then the inequality Gz(r) > 2c, holds for R(cz) <r<l,

PROOF. Since Gz(r) = h(V1), o'< r<1, cf. (5.9), it follows from lemma 4.2
that 62(r) is a strictly increasing function of r for 0 <r < 1. Because
the relation r = R(CZ) is equivalent to (5.41) this implies statement iii.
In order to investigate for which values of ¢, the inequality R(cz) <1

holds we consider for 0 <r <1 in the domain Re t < } the equation

.L =r B(—_]-Zt)
e ). (5.44)

On the line Re t = } we have

1-2t t
|x B<—a)i <r<i=|=l
while as |[t| + e, Re t <},
1-2
|x B(Tt->]<r<l, {T-E—t|—>l.

Application of Rouché&'s theorem, cf. lemma I.1.4, to the functions

r B(—-]—%E) and -TE-E in the domain Re t <} shows that equation (5.44) has

exactly one root in this domain. Moreover, it is readily seen that this
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root belongs to the real interval 1
0 ‘< t <} (see figure 5.5).

This implies that for every r,

0 <r <1, there is exactly one t in
the interval (0,}) such that R(t) = r.

1-2t
Because R(t) is a continuous function M t
I-t

for 0 <t <} it follows that this

function increases strictly from zero l ]

0 4
to one on an interval [0,T(a)],
0<T1(a) <1}, while R(t) = 1 for
T(a) <t < }.Whethert(a) = § or .
) Figure 6.6
T(a) <} depends on the derivative of —
the function R(t) at t = }. From (5.43) we obtain
BG---&&) + %t(l-t) B'(—l_;t)
R'(t) = 0<t<},

(1-t)2 Bz(lzft) i
so that
R'(3) = 4(1-}a).

If @ <2 then R'(}§) > 0 and thus T(a) = } (see figure 5.6.i). If a = 2

then R'(}) = 0. However, it appears that for a = 2,

B,~8°
- R"(}) = -16 7 < 0,
B

because 62- 82 is the variance of the service time distribution. Thus

T(a) = } for a = 2 too (in the case 82 = 62 this can be checked by
determining R'" (}) and noting that then 83 = 83). If @ >2 then R"(}) <0
so that T(a) <} (see figure 5.6.ii). Noting that (5.41) is equivalent

to the equation R(cz) = r it follows that (5.41) has a root on the interval
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(0,1) if and only if c, <1(a). Putting ¢, (@) = T(), a>2, and T(a) = §,

a < 2 and noting that R(1(a)) = | the proof has been completed.

T e F-—-=-====—=== ==
R(t) R(t)
t t
> | L > |
0 4 0 T(a) 3
Figure 5.6.7. the case a <2 Figure 5.6.7%7. the case a >2

THEOREM 5.7. The functions @ (r, 2 ,0) and @ (r 0,3 ) belong to the class
1

RCB(L (r)), cf. definition I.1.6.

PROOF. As it has been noted before the function ¢ (r,2 ,0) is regular in

Lt (r) for every r, 0 <r <1, and the function <I>X(r;0 +—) is regular in

2

2
LY (r) for 0 <r< min{l,R(cz)} by assumption (5.40), theorem 2.3,
corollary 5.2 and theorem 5.6.

Next suppose that R(cz) <1 and R(cz) <r<1, so that 2c, € L+(r). In

2
theorem 4.2 it has been shown that the function <I>X(r;0,p2(r;6)) can be
continued as an analytic function on E(r). If § tends to the branch point

62(1:) then, cf. (3.6), 3.7),
pl(r §) > — 6 (r) <1, pz(r;(S) +-2—::—— 62(r) >1,
2

Hence 9 (r,z § (r) 0) is finite and from equation (4.1) it follows that
1

then also
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o ] .
@x(r,O,-Z;z- Sz(r)) < oo,

For real positive values of r the function @x(r;O,TZ—z-) has a power series
expansion at w = 0 with positive coefficients, because it is the generating
function in E{-— of a probability distribution. Since this function is finite
up to the positive value Gz(r) it is regular in the disk |w| <62(r), and

. . + . . . .
hence by corollary 5.2 in the domain L (r); and it is continuous in

L+(r) UL(r). O
COROLLARY 5.8. The functions
1 1
Qx(r;_Z?I g(r;z),0), @x(r;o’_—c; g(r;2)),
belong to the class RCB(C+).

PROOF. By theorem 5.1 and corollary 5.4 the conformal mapping g(r;z) of ct
onto L+(r) belongs to the class RCB(C+). Hence, the assertion is obvious

from theorem 5.7. O
For later reference this section is concluded with:

LEMMA 5.9. For every a and cy © # 4 for a=2, and c, < czm(a) for a > 2,

2 2
there exists a value ro(cz), 0< rO(cz) < R(cz), such that for ro(cz) <r <

< R(cz) there exists a to(r) > 1 with
- sty () = 2¢,, (5.45)
which is strictly decreasing for ro(cz) <r< R(cz) while

lim to(r) =1, (5.46)
r+R(c2)

PROOF. In each of the above cases we have R(CZ) <1, cf. theorem 5.6.

Suppose 0 <r < R(c2). Then 2c, € L (r), cf. theorem 5.6, and the function
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go(r;w) is defined on the interval 62(r) <w < 2c, by relation (5.37). By

2
corollary 5.6 the function 60(r;w) is strictly increasing on Gz(r) <w <:2c2,

and do(r;ZCz) <1 by lemma 5.6. From (3.14) it follows that for 62(r)<:6<11,

r 1-8
6+ 2°1°zaﬁ'<'a—)

wi(r;8) =1 - (5.47)
2 /g2__4 c B l:gl
©1%2 7o
This leads with (5.43) to:
1-2¢
1+ CI%%B'( 3 2)
Wé(r;Zcz) =1 - . (5.48)

vl - r7R(c2)

The numerator in (5.48) vanishes for r 1 R(cz) only if 52(r) = h(/r) = 2c2
is a multiple root of equatian (4.5) with r==R(c2), cf. (5.43), i.e. only
if ¢ =c,= 4, a=2, cf. lemma 4.2. Hence, in the cases in consideration we
have wé(r;Zcz) { =» as r t R(cz), cf. (4.8). This implies that for r close
to R(cz) the function w2(r;6) is strictly decreasing on Gz(r) <w <§2c2.
With (5.37) this implies that go(r;w) is strictly increasing on the inter-
val Sz(r) <w <§2c2, so that its inverse g(r;z) exists on the interval

1 <z <g0(r;2c2). Now take to(r) 1= go(r;2c2). Since go(r;2c2) is a con-
tinuous function of r, cf. theorem 5.3 and (5.37), and go(r;2c2) {1 as
r?t R(cz), ro(cz) can be chosen so close to R(cz) that to(r) is strictly

decreasing on ro(cz) <r< R(cz). (Note: in the case c¢ =c,= i, a=2, it

1
follows from (5.31) that wé(r;l)=l -/i-r > 1 as r ¥ R(}) =1). O

II.6. Formulation as Riemann-Hilbert problems

. . . +
With the aid of the conformal mapping g(r;z) of the unit disk C onto
the domain L+(r) introduced in the preceding section two Riemann-Hilbert

boundary value problems on the unit circle with index zero will be derived
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from equation (4.18), for 0 <r < min{l,R(cz)}, cf. theorem 5.6, It will
be shown that these two Riemann-Hilbert problems can be solved with the
aid of lemma I.5.1. Together with two linear relations the solutions of
these two Riemann-Hilbert problems provide us with explicit expressions

for the functions <I>x(r;pl,0) and <I>x(r;0,p2) in the domains 2c P, €L+(r),

1
2c:2p2 GL+(r), for 0 <r <min{],R(c2)}. Moreover, they determine these
two functions uniquely in the regions |p]a[ <1, |p2l <1, |r| <1,by means
of analytic continuation. As soon as the functions @x(r;p],O), |r| <1,

|p1| <1, and @x(r;o,pz), e <1, |p2| < 1, are determined the function

@x(r;pl,pz), lr] <1, ‘p][ <1, |p2| <1, is determined by equation (2.2).

It is throughout assumed that 0 < <y < | and except in some remarks that

0<r<i.

In order to simplify the notation we introduce the function

% *2
(WI/ZCI) (W2/2c2)
i s
l-wl/Zc] 1---'w2f2c2

Kx(w1 ,wz):= (6.1)

where x stands for the vector (xl,xz), cf. definition 1.2,

LEMMA 6.1. The functions & _(r;=—,0) and & (r;0,50—) satisfy on the contour
—_— X 2(.‘.1 X 2C2

L(r) the relations

w w
q)x(r"le’ 0) q)X(r’O’_Z—C_)

Re l~w/2c] + 1-w/2c2 = Re{Kx(w,w)} + @x(r;0,0),
W W
‘I)X(rrz'a?o) ¢ (r;0,5) )
Im{ a7, - E7FTR = Im{K_(w,w)}. (6.2)

PROOF. Because <I>x(r;2—z—,0) is the generating function of a probability
1
distribution it has for positive values of r a convergent power series

expansion in w for |w| < 2c, with real coefficients. Consequently,

1
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W W
<I>x(r;'§;:'l',0) = QX(r;ic—],O), lw| <2c .

On account of the same arguments and of theorem 5.7 we have

@X(r;o,%z) = @X(r;o,f‘c’—z), lw] <8,(x).

By taking real and imaginary parts of equation (4.18) and by using the

above relations and the notation (6.1) we obtain (6.2). 0

In order to apply the solution method for Riemann-Hilbert problems
discussed in section I.5 we transform the equations (6.2) into an
equivalent setof equations on the unit circle by means of the conformal

mapping g(r;z) introduced in section II.S5.
COROLLARY 6.1. On the unit cirele |t| =1,

8(rst) .a glrst)
Qx(r’gr’o) ¢x(r’0’ 2c2 )

Re{ Re{K_(g(r;t),g(r;t))} + @ (r;0,0),

1-g(r;t)/2c, * I-g(r;t)/2c2

® (r._&.(_ELF_)_’o) ® (r;o,i(.ﬂﬁ)
X 2c2

x? 2c]
Im{ l-g(r;t)/Zc1 - 1—g(r;t)/2c2} =

Im{Kx(g(r;t),g(r;t)}. (6.3)

PROOF. In theorem 5.1 it was proved that the conformal mapping g(r;z) of
the unit disk C' onto the domain L+(r) satisfying the conditions (5.3)
exists. From corollary 5.4 we know that the limiting values g(r;t), t € C,
exist and that they establish a one-to-one correspondence between the
unit circle C and the contour L(r). insertion of w=g(r;t), t €C, in

the equations (6.2) thus leads to the equations (6.3). O

By corollary 5.8 the functions
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® (r,g(r 2) 0y, o (x5 oﬂ—(f——zl
¢y

. . . + .
are regular in the unit disk C . Because of the choice c, = } and corollary

1

5.2 we have

()
[g(r z)| 2 <1, lz| < 1. (6.4)
Hence the denominator 1 - 5%5551 in the equations (6.3) does not vanish
1

in the region ¢ty C. However, by theorem 5.6 it depends on the value of r

whether the denominator 1 - g%iézl vanishes in the region ¢ U ¢ or not.

Therefore three cases should be iistinguished, cf. theorem 5.6, viz.

i. 0<r <:min{P;R(c2)}, then 2c2 € L (r) and the above denominator does
not vanish in C' U C;

ii, r = R(cz)'< 1, then‘Zc2 € L(r) and the denominator vanishes at z = 13

iii.R(cz) <r <1, then 2c, € 1¥(r) and the denominator has a single zero
in the region c.

Actually it suffices to obtain only for case i (or only for case iii) the

function Qx(r;pl,pz), because if this function is known on some interval

it canbe obtained for all r € ¢* by analytic continuation from out that

interval.

In this section for case i two Riemann-Hilbert boundary value problems

with index zero will be derived and analyzed. For case iii two Riemann—

Hilbert problems with index two can be derived and solved. This will be

omitted. In section II.7 this case will be treated as a Hilbert problem.

For case ii no Riemann-Hilbert problem as defined in section I.5 can be

derived, because the denominator 1 - E%iézl vanishes at the boundary point

2

z = 1, However, the solution for this case can be obtained by using a

continuity argument, see section II.7,
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LEMMA 6.2. If 2c, & L(xr) then the function Kx(g(r;t),g(r;t)) and its real

and imaginary parts satisfy a Hélder condition on the unit circle C.

PROOF. We refer to the definitions and the results of section I.2.
Because the points 2cl and 2c2 do not lie on the contour L(r), lemma I.2,2

implies that for every X sXy = 0,1,2,..., the functions

(W/ch)xl (W/2c2)x2
1=w/2c, ’ l-w/2c2 ’

satisfy the Holder condition with index 1 on L(r). Using the three state-
ments of lemma I.2.3 it follows readily that the function Kx(w,a) belongs

t, € C we have the in-

to the class H(L(r)). This implies that for any t)» 2

equality
IR (g(r;t)),8(rse)) - K _(g(r;t,),8(r;t,))| <

< Alg(rst)-g(r3t.)| <A max {g'(r;z)}|t -t |,
1 2 1 72
z |<1

where A is a positive constant. From theorem 5.5 it follows that the
derivative g'(r;z) is bounded in the region ctuc.

This proves that the function Kx(g(r;t),ET?EES) belongs to the class H(C).
By lemma I.2.3(2°) also its real and imaginary parts belong to the class

H(C). =

For Izl <| we introduce the functions

X

.2(r;z) .0.8(r32)
® (rﬁ—h—]—,m o, (r;0,8522%)

Ql(r;z):= l—g(r;z)/Zcl * l—g(r;z)/Zc2 - @x(r;0,0),
_.8(r;z) .0 8(r;z)
| ' ¢x<r,§—fgl—,o> @x<r,0,%gz—>
Qz(f;z):= -7 l_g(r;z) /zcl - l_g(r;z)/zcz }o (6.5)

Each of these functions is the solution of a Riemann-Hilbert boundary
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value problem (cf. section I.5) as it will be shown below (see also lemma

6.2).

LEMMA 6.3. Let r be fized, 0 <r <min{1,R(c,)}. Then:
Z.  the function Ql(r;z) belongs to the class RCB(C+) and satisfies the

boundary condition: for t € C,
Re{Q] (r;6)} = RelK (g(r;t),g(r;0)}; (6.6)

ii. the function Qz(r;z) belongs to the class RCB(C+) and satisfies the

boundary condition: for t € C,

Re{Q;(r;t)} = Im{Kx(g(r;t),g(r;t))}. (6.7)

PROOF. That the functions Ql(r;z) and Qz(r;z) belong to the class RCB(C+),
cf, definition I.1.6, is a consequence of corolilary 5.8, the inequality
(6.4) and theorem 5.6. The boundary conditions (6.6) and (6.7) follow from

(6.5) and corollary 6.1. O

Because the righthand sides of (6.6) and (6.7) belong to the class H(C),
cf, lemma 6.2, in lemma 6.3 two Riemann—Hilbert boundary problems have
been formulated for the functions Q](r;z) and Qz(r;z) respectively, cf.

section I.5.

THEOREM 6.1. The functions o _(r;p;,0), e <1, |pl| <1, and
o (r;0,p,), ] <1, |p2[ < 1, are completely determined by (6.5) and by
the solution of the two Riemann-Hilbert boundary value problems as formu-—

lated in lemma 6.3.

PROOF. The boundary conditions (6.6) and (6.7) are of the form as
described by formula (I.5.7) with n = 0, i.e. the indices of the Riemann-

Hilbert boundary value problems formulated in lemma 6.3 are zero. Hence,
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the complete solutions of these Riemann-Hilbert problems are given by

lemma I.5.1: for 0 <r <min{1,R(c2)}, z € C+,

1 .
—]dt + 1dm(r),

2, (r32) = —2-1‘;1-({ Re{Kx(g(r;t),g(r;t))}['t_z_—z -3
2

- —]dt + idoz(r),

Q,(r;z) = —2?';1-(1:‘ Im{Kx(g(r;t),g(r;t))}[t_z i

(6.8)

here dO‘(r) and doz(r) are real and indepéndent of z.

For z = 0 the relations (6.5) read (cf. (5.3)):

Ql(r;O) Qx(r;0,0),

Qz(r;O) 0. 1 (6.9)

With (6.8) this implies: for 0 <r <min{l,R(c2)},

8 (r;0,0) = 5= d RelK (g(r;t), 8N} £ 4 ia (0,

0= ! InK (g(r;),E(570) ) & + id , (). (6.10)

'BecausQ,Kx(v_v,w) = Kx(w,v-l) for w € ¢, cf.(6.1), and because g(r;t) = g(r;t) =

g(r;—é—) for t € C by theorem 5.2 it is readily verified that

‘2'11?1' é In{K_(g(r;t),2(r;0)} iltﬁ = 0. (6.11)

Hence, dOZ(r) =0 for 0<r< min{l,R(cz)}.

Further, <I>x(r;0,0) is real for real values of r, and also

™ . —
— I Rel, (3(r30,5030)) - J Relk (a(rie™®),5(r;e ™) ao,

is real. Consequently, also dm(r) =0 for 0<r <min{l,R(c2)}.
With (6.11) the relations (6.8) and (6.10) reduce to: for

0<r <min{l,R(c2)}, z€cC,
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Q,(r32) = "2'1171' é’ Re{Kx(g(r;t),g(r;t))} %5_-1% - <I>x(r;0,0),

Q,(r3z) = '2?15 é Im{KX(g(r;t),z(r;t))} i%,

9_(£30,0) = wr J K_(g(r;t),a(r;0)} &E (6.12)
x Y i % 3EIHBLEs £t .

By (6.12) the functions Qi(r;z), z € C+, i=1,2, and <I>x(r;0,0) are
completely determined for 0 <r < min{l,R(cz)}.

Next it is readily seen that the functions
o (r.8E32) ect .0.8(r32) ect
x(r92_c]"0): z C, <I>x(r,0, 2C2 ), 2 c,

can be solved from (6.5) and (6.12), for 0 <r <min{1,R(c2)}.

Because the conformal mapping g(r;z) has an inverse the function <I>X(r;p1,0)
has then been determined for 2¢,p, € L+(r), 0<r< min{l,R(cz)}. Since

0 € L+(r) , 0<r< 1,‘ this includes that the power series expansion of the
function @x(r;pl,O) at p, = 0 has been obtained. By theorem 2.3 the power
series expansion at P, = 0 converges at least for |p]| <1, so that the
function @x(r;p],O) has been uniquely determined for Ip]| <1,

0<r <min{],R(c2)}. Further, for lpll < 1 the function o _(r;p,,0) is
regular for |r| <1, cf. theorem 2.3 and remark 6.2. Because this function

has been obtained on the interval 0 <r <min{1,R(c,)} it is completely

2)
determined by analytic continuation (cf. lemma I.1.2) in the disk |r| <1,
The above. proves that the function @X(r;p],o), lr] <1, Ip1| <1, is

completely determined by (6.5) and by the solutions (6.8) of the Riemann-

Hilbert problems formulated in lemma 6.3. Similar argumentation applies

for the function & (r;0,p,), le] <1, |p2| <1, O

REMARK 6.1. By substitution of @X(r;p],o) and @x(r;O,pz) in equation (2.2)

the function ¢ (r;pl,pz) can be obtained. Hence, theorem 6.1 shows that the
X
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properties of the generating function <I>x(r;p1,p2) which have been stated in
theorem 2.3 are sufficient to determine this function uniquely for lrl <1,

lpll <1’ lpzl <1‘

THEOREM 6.2. For 0 <r <_min{1,R(c2)} the generating function @ (r;p,,P,)

ig given by: for 2¢,p, € L+(r), 2¢,p, € L+(r)s
l-c.p,~-c,p x,+1 x +1
171 72%2 1 2
r(1-p.) (1-p,) Bl P P
o (rs y = 1 2 o, 1 2 -
x\F3PoPy) = I-c,p,~c.p I-c,p,-c.p
171 7272 171 7272
p‘lpz—rB — r(l'P])(l'Pz)B —a

1

=3 J Kx(g(r;t),g(r;%é)

t+gy(r;2¢ip)) 4
t-—go(r;2clpl) 2t

t+g0(r; 2c2p2) dt]

1 1
- 5 J K_(g(r;7),g(r;t)) ————" 57|-
2Ti c X t’? ’ t go(r,2c2p2) 2t

(6.13)

PROOF. From (6.5) and (6.12) it follows that for 0 <r <min{1,R(c2)},
z € C+,
: . 1 ——, dt
<1>x(r;£%—z—)-,o) = [1- 5—(5——2—)—] T é K (g(r;t),g(r;t)) £

1 2c1 2wi

2 t-z°

. (r3z)y _ |,_ g(r;z) 1 ey 7Ty 4t
@x(r,o’.&ig;_) = [1 AL LS ] T é Kx(g(r,t),g(r,t))

By inserting z = go(r;chpl) and by theorem 5.2 the first relation leads
to: for 0 <r <min{l,R(c2)}, 2¢,p, € L+(r),

o_(r;p,,0) _h S K (g(rst),g(rsD) de ‘
x T3P 27mi c % \BLT3L) BT t—goir;Zc]p])' (6.14)

The second relation gives by inserting z = go(r;2c2p2) and by using theorem

5.2 and Kx(;z,w) = Kx(w,v;), cf. (6.1): for 0 <r <min{R(c2)}, 2¢,p € L+(r),

2



106

l—p2

. - L . dt
q’x(r,o,Pz) = TI_T—i_ é Kx(g(rat)yg(r’t))

W. (6.15)

The last relation of (6.12) can be rewritten as: for 0 <r <Zmin{1,R(c2)},

@ (r30,0) = 7= ! [K, (8(r;),8(rs) + K (8(r5D),a(r;0)] 5. (6.16)

Substitution of (6.14), (6.15) and (6.16) in the functional equation (2.2)

then readily gives the solution (6.13). O

REMARK 6.2. On account of the recurrence relations (2.1) the functional
equation (2.2) must have at least one solution @x(r;pl,pz) which is a
generating function of a joint .probability distribution in P, and Pys and
which is a generating function of a series with coefficients bounded in
absolute value by one in r. In theorem 6.1 and 6.2 it has been proved that
the functional equation (2.2) has for 0 <r <Zmin{l,R(c2)} at most one
solution with the above properties. This implies that (6.13) represents a
function regular for |r| <] on the real interval 0 <r <Zmin{1,R(c2)},

and hence that the righthand side of (6.13) possesses an analytic continua-

tion into the domain |r| <1. O

In this section the functional equation (2.2) has been solved by the
derivation and solution of two Riemann-Hilbert boundary value problems.
In the next section it will be shown that the same result can be obtained
by the derivation and solution of one Hilbert boundary value problem.
Further we shall show in that section how explicit expressions for the
S L_(r) and/

function @x(r;pl,pz) can be obtained for 2c P € L_(r), 2c

1 2P

or R(cz) <r<]l.

II.7. Formulation as a Hilbert problem

In the preceding section the functions @x(r;p‘,O) and @x(r;O,pZ) have
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been determined by solving two Riemann-Hilbert problems with index zero
derived from equation (4.18). MUSKHELISHVILI [20],8839-40, shows that every
Riemann-Hilbert problem on the unit circle is equivalent to a Hilbert
problem on the unit circle togethef with an additional functional relation
(see also section I.5, remark 5.3).
In this section it will be shown that from equation (4.18) directly one
Hilbert problem on the unit circle withouF additional functional relation
can be deduced, again with the aid of the conformal mapping g(r;z) of the
unit disk C' onto the domain L+(r). This Hilbert problem has for
0<r <:min{l,R(c2)} index zero and can be solved with the aid of lerma
I.4,3, Together with two linear relations the solution of this single
Hilbert problem also determinés the functions @x(r;pl,O), @x(r;O,pz), and
hence by equation (2.2) the function @x(r;p],pz), completely.

Further we shall derive, in this section explicit expressions for the
functions ¢x(r;pl,0) and @x(r;O,pz) in the regions Ipll <1, 2clpl ¢ L+(r),

respectively |p2[ <1, 2c,p, ¢ 1¥(r), for 0 <r <min{1,R(c,)}, With the

2)
aid of the Sochozki-Plemelj formulas and the analytic continuation of the
conformal mapping go(r;w) outside the domain L+(r).

For the case R(c2)‘< 1 it will be shown that forv R(cz)‘< r <1 also a
Hilbert problem on the unit circle can be derived from equation (4.12).
This Hilbert problem has index one and can also be solved with the aid of
lemma I.4.3. Its solution, together with three linear relations, provides
us with an explicit expression<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>