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PREFACE

This monograph deals with choice sequences, a chapter in the foundations
of intuitionistic analysis introduced by L.E.J. BROUWER.

It is self-contained as much as possible, though not intended for readers
without any previous knowledge of the subject. Even people familiar with
choice sequences may need some encouragement: some parts look worse than
they actually are.

The book was written originally as doctors' thesis at the University of
Amsterdam. I am indebted to my thesis supervisor A.S. TROELSTRA for guiding
me into research in intuitionistic foundations. The many stimulating conver-
sations we had on the subject have been an invaluable support to me.

G.R. RENARDEL assisted me in the tedious task of proofreading (which
does not mean that he is to be held responsible for any error in the final
text).

I am most grateful to thé Mathematical Centre in Amsterdam for the
publication of this monograph as an MC-Tract even though its subject is some-

what unusual for that series.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

In this monograph we investigate (a specific question concerning) in-
tuitionistic Baire-space N, i.e. the universe of sequences of natural num-
bers, or, as Brouwer calls them, 'choice sequences'.

Qur approach to the éubject is the analytic one, as described by
TROELSTRA in [T81]. That is to say, we do not accept the universe of choice
sequences as a single primitive entity, quantification over which is intui-
tively clear. We look upon N rather as a collection of individual objects,
each of them generated by a process of assigning to each argument n ¢ N a
value m € N, in which we can distinguish subdomains, according to the type
of data that are available to us on a sequence e at any moment of its gen-
eration. The meaning of quantification over choice sequences of a specific
type is explained in terms of the sort of data that can become available to
us for individual sequences of this type at some stage of the generation
process.

Two extreme types of choice sequences to be distinguished are the law-
like sequences and the lawless sequences.

Lawlike sequences are given to us by a law, i.e. a set of computation
rules. In generating a lawlike sequence a, we simply apply these rules to
the arguments 0O,1,..., in order to find the values a0,al,... . The data
that are available to us on such a sequence do not change during the genera-'
tion process, they consist of the set of computation rules. One may accept
Church's thesis (CT), and identify lawlike with recursive. We shall not do
so (though we do not reject CT either).

The lawless sequences are the extreme opposite of the lawlike ones.
Here the generation process is divided into countably many stages 0,1,... .

At stage O we can fix an initial segment of the sequence to be generated



according to our needs, after that, we generate values as if we were throw-
ing an infinite-sided die: at each stage we choose a completely arbitrary
value, to be assigned to the next argument.

A lawless sequence for which we do not specify an initial segment (or
in other words an empty segment) we call proto-lawless.

Lawless sequences were introduced by KREISEL in [K68]. A discussion of
lawless sequences of zero's and ones (i.e. sequences comparable to the
tossing of a coin) is given already in [K58] (there called 'absolutely
free').

Before we discuss the lawless sequences here, two remarks are in order:
Firstly, we do not discuss lawless sequences from a probabilistic point of
view. The truth of a statement about a lawless sequence is not identified
with 'having probability 1'; such a statement is true iff it is intuition-
istically provable.

Secondly, it is to be noted that we can consider any choice sequence at two
levels: the extensional and the intensional. (This remark applies to the
lawlike sequences as well.) At the extensional level we take into account
only the information that is contained in the graph of the sequence (the
outcome of the generation process), at the intensional level we consider
also the way in which this graph is constructed (the generation process it-
self). E.g. we can distinguish between intensional and extensional equality
of sequences. These do not always coincide: two sequences may result from
different generation processes (in the case of lawlike sequences: from dif-
ferent computation laws) but still take the same values. (It turns out that
for lawless sequences the difference between intensional and extensional
equality disappears.)

The data that are available to us on the graph of a lawless sequence
at any stage of its generation process, consist of an initial segment of
that sequence only. Of course we do have more information on the sequence
we can also tell e.g. which initial segment has been specified in advance
and what values have been generated at later stages, but such facts are
irrelevant at the extensional level.

On the basis of this insight in the possibly available data on the
graph of a lawless sequence, one can justify informally, but rigorously,
the axioms for the theory of lawless sequences LS, as introduced by
KREISEL ([K68]), and corrected by TROELSTRA in [T70A].

Some notation:

a and b are variables for lawlike sequences, o,B etc. for lawless ones.
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n, v and x are variables for ﬁatural numbers, also used as codes for finite
sequences of natural numbers.

If ¢ is an element of N then $x is the finite sequence <¢0,...,¢(x-1)>,

<> = 50 is the empty sequence.

If ¢ is an element of N and v is (the code of) a finite sequence then ¢ € v
expresses '¢ has initial segment v'.

1f A(u,Bl,...,Bp) is a formula which contains no lawless parameters besides
a,B],...,Sp, then !gA(a,Bl,.

from Bl,...,Bp, A(a,Bl,...,Bp) holds'. e is a variable ranging over a set

..,Bp) denotes: 'for all lawless a distinct

of neighbourhood-functions for continuous functionals. (This set is dis-
cussed in more detail below.) The members of this set are lawlike elements
of N which satisfy:

- for all ¢ € N there is an x such that e(¢x) # 0 and

- e(x) = m¥l > e(§(x+y)) = mtl.

e is a neighbourhood-funetion for the continucus We:“N + N defined by
¥ (¢) =m iff 3x(e(px) = m+1).

We write e(¢) for We(¢), and e(¢1,...,¢P) for e(vp(¢l,...,¢p)) where vp is
some homeomorphism from NP into N. j is a bijective 'pairing' function,
j:N x N - N. ‘

If ¢ ¢ N then ¢ can be seen as the code of a countable sequence of elements
of N, (¢)n is the n~th element of this sequence, defined by (4))n = Az.¢j(n,z).
= between elements of N is used for extensional equality, i.e. ¢ = { abbre-
viates Vx(¢x=yx).

LS finally is the universe of lawless sequences.

We adopt the convention that the choice parameters of a formula are expli-
citly shown. I.e. A(al,...,ap) is a formula which contains no choice param—
eters besides (maybe) CPERRRTT A

P
The LS-axioms are:

(LS1) Vv3a (aev),
i.e. LS lies dense in Baire-space.
(Ls2) a=8Vat#sB,

i.e. extensional equality between lawless sequences is decidable.



(LS3) _Va<A(a,sl,...,sp5 > 3v(aev A Yyev A(Y,8y5- 0058 ),

the axtom of open data, where A(a,Bl,...,Bp) is a formula expressing an
extensional property of a,Bl,...,Bp. This axiom expresses that if A holds

for a p+l-tuple a,Bl,...,Bp, o distinct from B .,Bp, then A holds for

12
all lawless y distinct from 81,...,Bp in an open neighbourhood of a.

O«

(LS4) Ygl...ngaa A(al,...,ap,a) -

3e3b!ql...!qp A(o ..,ap,(b)

P e(ul,...,ap))’

which expresses that if we can find with each p-tuple of distinct lawless

sequences a ..,ap a lawlike a such that A(al,...,ap,a), then there is a

1’
countable sequence of lawlike sequences (b)O’(b)l’ etc. coded in the single
sequence b and a continuousv‘!’e with neighbourhood-function e such that for

all distinct o ..,ap A(al,..l,ap,(b)n) holds, where n = We(a],...,ap).

1’

Here also A is an extensional property of a.,...,a_.

>

The axioms and their motivation are di;cussedpat length in [T77]. The
justification of (LS4), which is the most complex of the four axioms, is
refined in [T811].

We can distinguish two variant of LS, according to our definition of
the range of e in (LS4). In the strong version (as intended by Kreisel, in
keeping with Brouwer's views) e ranges over the inductively defined set K.
(A detailed treatment of this set is to be found in [KT70], we give a con-
cise description in 1.3.7-27 below.)

In this version, the schema of bar induction is derivable from (LS4).

In thé weaker variant we define the range of e in (LS4) as
Kg= {e: Yvw(ev#0 > ev=e(v+w)) A YaIx(e(ax)#0)}

(where * denotes concatenation of finite sequences), and we adopt the 'ex-—

tension principle'

EP eEKLS A ¢eN > Hx(e(ax)#o),

which expresses that any continuous ¥ from LS to N can be extended to a

continuous operation on the whole of N.



Our proofs below can be formalized in the weaker system.
Note that the LS-axioms give a contextual definition of quantification
over LS:

from density (LS1) and open data (LS3) we find that
SaA(a,Bl,...,Bp) <> IvVoev A(u,Bl,...,Bp)

which explains existential quantification in terms of universal quantifi-
cation,

(LS4) explains universal quantification over LS in the context of a quanti-
fier Ja (and hence in combination with 3x and V),

and from open data we can derive

Ygl...ng(A(al,...,ap) > B(al,...,ap)) >

Vv, ...v. (Yo, ev
pY

1 f"'!gpevp,A(alf"°"ap? +~Yglsv

...ngevp B(al,...,%?)

1 1

which explains universal quantification in the context of an implication.
This observation is formally reflected in the elimination theorem

(formulated by KREISEL in [K58], [K68], for a detailed treatment see [T77]):

there is a translation T from LS-sentences into sentences which do not con-

tain LS-quantifiers, such that:

(i) each L§ sentence A is equivalent to TA (provable in LS)

(ii) if A is a theorem of LS, then tA is derivable in the lawlike part of
LS (i.e. without using (LS1)-(LS4)).

The lawléss sequences are a simple type of choice sequence, in the
sense that it is easy to see what kind of information we can have on a law-
less o at the various stages of its generation process. This simplicity is
of great advantage in rigorously justifying axioms for lawlessness, but it
is a drawback if one tries to use LS as a basis for e.g. intuitionistic
analysis.

To give an example: if one associates with each lawless o a real num-
ber generator (i.e. a Cauchy-sequence of rationals) <rg>n, in a non-trivial
manner, i.e. in such a way that for all finite sequences v there are a and
B with the same initial segment v which yield non-equivalent <rz>n and

B

<r > then the resulting notion of real number does not contain any ra-

tionals (to be able to state that <rg?n converges to the rational q-we need

more information than just an initial segment of o, but initial segments
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are all we can ever get), and is for instance not closed under addition
(for a similar reason).

To put this quite generally: LS has the serious defect that it is not
closed under any non-trivial lawlike continuous operation.

Formal systems which, unlike LS, can be used for the foundation of in-
tuitionistic analysis have been proposed by KLEENE and VESLEY [KV65] and
by KREISEL and TROELSTRA [KT70]. From the analytical viewpoint the second
one is the most interesting one.

The system of [KT70] is called C§ (for 'choice sequences'). It is a
corrected version of an earlier proposal by KREISEL (in [K63]). Before we
formulate and discuss the CS-axioms, we need some more notation.

Let e be a neighbourhood-function for a continuous mapping from N> N.

We can think of e as a countable sequence e e of such neighbbuthood—

0’
functions by putting

e v = e(<n>*v)

where <n> is the finite sequence consisting only of the element n. With

the sequence e ..., ahd hence with e, we can associate a continuous
l’ ’ 5

0¢
mapping T, from N into N by putting

Fe(¢)(n) =m iff en(¢) = m.

We write e[¢ for Fe(¢), we call e a neighbourhood-function for Pe. e|(¢,w)

abbreviates e|vz(¢,¢) where v, is a homeomorphism from N2 onto N.

2
The CS-axioms are:

(cs1) VenVedz (z=e|(e,n)),
which expresses closure under pairing and continuous function application.
(cs2) Ve(A(e) - Te(eee A ¥nAle|m))),

where A is an extensional property of €, and € € e abbreviates 'e lies in
the range of Feﬂ This axiom is called the axiom of analytic data, it ex-
presses that if € has the property A, then we can find a continuous

Pe: N - N such that all sequences in its range (among which is €) have the

property A.



(cs3) VedaA(e,a) 3e3bVeA(e,(b)e(€)),

where A is an extensional property of ¢ independent of other choice param-—
- eters (cf. LS4),

and finally

(Cs4) VednA(e,n) =+ 3eVeA(e,e|e),

where A is an extensional relation between € and n, independent of other
choice parameters. This axiom expresses that if all sequences lie in the
domain of A, then A contains a continuous mapping. This continuous choice
principle is sometimes called 'Brouwer's principle for functions'.

In the original formulation of CS, (CS1) is not an axiom but a theorem.
We have put it among the axioms here to stress its importance. As a corol-
lary of (CSI) we find e.g. that there exist choice sequences ¢ and lawlike
sequences a which coincide (since for each a there is an e such that for
any ¢ e[¢=a), which is refutable for LS.

Note that this system also gives a contextual definition of the quan-
tifiers Ve,3e:

from analytic data and the existence of lawlike n we find
JeAe <> Jala,

which explains existential choice quantification in the absence of choice
parameters as lawlike existential quantification, (CS3) and (CS4) explain
universal choice quantification in the context of existential quantifica-

tion and disjunction, and from analytic data one derives
Ve(Ae + Be) > Ve(VeA(ele) > VeB(e|e))

which explains Ve in the context of an implication.

We can formulate and prove an elimination theorem for C§S analogous to
the one for LS (see [KT70]).

CS has all the properties we would like a formal system for intuitio-
nistic analysis to have: it expresses closure under continuous operations,
it has strong continuity axioms and it fully explains choice-quantifica-
tion. The problem is, that we do not have a fully analyzed notion (sub-

domain) of choice sequence for which the CS-axioms can be justified.



There are two approaches to the problem of finding interesting uni-
verses of choice sequences other than the lawlike and the lawless sequences:
the informal approach and the study of universes of projections of lawless
sequences.

A general framework for the informal approach has been set up by
TROELSTRA [T69]. This was inspired by MYHILL, who developed in [My67] an
approach to choice sequences which seemed to be implicit in some of
Brouwer's writings. The idea is, that one can think of the generation pro-
cess of a choice sequence as being a process of generating pairs

<x0,RO>, <xl’R >, etc., where xo,xl,... are to be the values of the generated

1

sequence, and RO’R]"" are 'restrictions' taken from some fixed universe

R, equipped with a partial ordering < (weaker than). The values LI PR
must meet the restriction Rh’ the restriction Rn must be weaker than the
next restriction Rn+1’ otherwise we are completely free in choosing pairs
for the sequence, with the stipulation that an initial segment may be fixed
in advance. Subdomains are now distinguished according to the universe R
from which the restrictions are taken.

E.g. we obtain the lawless sequences if we let R consist of a single
restriction, the empty one U (for universal), which is met by all natural
numbers.

If we take R to be the set {U,Z}, where Z (for zero) is the restric-
tion of 'being equal to 0', which is met by O only, U being (obviously)
weaker than Z, we obtain a notion of 'lawless zero sequence', a sequence
which we start generating as if it were lawless, but then, at some moment
of the generation process, we can decide to continue choosing only zero's.

The alternative approach is to study subsets of N, the elements of
which are constructed from lawless sequences by means of continuous opera-
tions from N to N, so called universes of projections of lawless sequences.
This approach was followed by VAN DALEN and TROELSTRA in [DT70] and further
investigated in [T69B], [T70] and [T70A].

Examples of such universes are (1)-(4) below.
(1) {mo: o € LS} (introduced in [DT701]),

where w: N -+ N is defined by



5, Com) iff Vm < (j,(m) = 0)
m$(n) =

0 otherwise.

where jl’jZ are left-inverses to the pairing operation j, i.e. j1 i(x,y) = x,
j2 j(x,y) =y, and z b (jlz,jzz) is a mapping from N onto N x N.

This projected universe can be seen to imitate (with a lot of redundancy in
the coding) the behaviour of the lawless zero sequences above: the finite
sequences <j2(a0)>, <j2(ap), j2(a1)>,... play the rdle of the restrictions
RO’RI""’ a sequence <j2(a0),...,j2(an)> which consists only of zero's cor-
responds to the empty restriction, if it contains a value unequal zero we
have the restriction Z; the values jl(uO),jz(al),... are the freely chosen

X sKpseees at least for as long as the restriction Z is not imposed.
(2) {ela:e e K} (discussed in [T77]),

which consists of all continuous images of a fixed lawless o (i.e. this

universe is projected from a single lawless sequence).

3) {el(al,...,ap) talel

(introduced in [T69B]),

where #(al,...,ap) means ui # aj for 1 €i<j<p

which consists of all continuous images of all p-tuples of mutually distinct
lawless sequences (for all p). We shall say more about (2) and (3) below.

Finally we mention
4) {n*(a)n: ne N} (introduced in [T70A1),

a countable universe projected from a single lawless sequence a. As before
(g)n = Az.aj(n,z), * denotes concatenation, i.e. n*(a)n is the result of
prefixing the finite sequence with code n to the sequence (a)n.
The universe (4) is a model for the theory of lawless sequences LS, one
can prove this fact inside LS. It is of interest to us because it shows
that there are non-trivial universes of projections in which all sequences
are identified by a natural number ('have a name' so to speak).

An advantage of the study of projections over the informal approach

is that properties of projected universes can be proved from the LS-axioms
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whereas properties of an informal notion can only be justified informally,
albeit sometimes quite rigorously.

Another interesting feature of universes of projections is the cor-
respondence between such universes and Beth-models or equivalently topol-
ogical models over Baire-space. Validity in a universe projected from a
single lawless sequence translates immediately into validity in a Beth-
or topological model. Under this translation the universe (2) above corre-
sponds to the Moschovakis model of [M73] (cf. [T77]), and the universe (4)
can be reinterpreted as a Beth-model for LS (see the appendix of [D781]).

Via (4), the universe (3) is equivalent to

{e|(nl*(a)nl,...,np*(a)n ): e € K, #(nl,...,np)}

P
projected from the single lawless o, this universe corresponds to the Krol'-
model of [K'78] (cf.[T811]).

These points in favouf of the study of projections do not argue against
the informal approach of conceptual analysis of new primitive notions. In
fact there are good reasons to use both approaches simultaneously: the in-
formal description of a notion of choice sequence may suggest to us a uni-
verse of projections in which the behaviour of those sequences is imitated
(cf. the example under (1)), further study of this universe may help to im-
prove our analysis of the informal concept. Eventually we can thus obtain
a fully analyzed notion of choice sequence, together with a reduction of
that notion, via projections, to the concept of lawless sequence, the
simplest notion of choice sequence. This reduction will generally not be
an isomorphism: one can expect to be able to rigorously justify axioms for
the informal notion, which are provable for the projected imitations only
under suitable language restrictions, necessary to avoid interference between
the projected sequences and the lawless sequences from which they are con-

structed. (See e.g. [DT701].)

If we now return to the problem of finding a type of choice sequence
for which the CS-axioms hold, we find that none of the projected universes
of [DT70], [T69B,70,70A] and [T77] is a good candidate: these universes are
either not closed under non-trivial continuous operations (as e.g. all ex-
amples in [DT70]) or, if they have closure properties, as e.g. (2) and (3)
above, then it is impossible to derive strong continuity principles for them,

at least im LS.
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(The universe (3) of continuous images of p—tuples of independent lawless
sequences does provide an acceptable basis for intuitionistic analysis,
even if it is not a CS-model, cf. [T69B].)

On the informal side there is a proposal for a notion which might ful-
fill CS, made by Troelstra, first in a restricted form in [T68]: the GUC-
sequences, later generalized in [T69,69A] to the concept of a GC-sequence.
(GUC and GC stand for ‘Generated by Unary Continuous operations' and 'Gener-—
ated by Continuous operations' respectively.)

This notion is further analyzed in [T77], the analysis is discussed and
somewhat refined by DUMMETT in [Du77]. Troelstra's analysis and Dummett's
improvements yield convincing arguments showing that the notion is closed
under non-trivial continuous operations and pairing and that it satisfies
analytic data and Ve3da-continuity, (CS3).

The questions we shall deal with here are the following:

(a) to give a precise description of the notion of GC-sequence,
(b) to define universes of projections, projected from a single lawless a,
which faithfully imitate the behaviour of the GC-sequences,
(c) to prove in LS that these projected universes are CS-models.
A first step towards answering (a)-(c) is taken in [HT80], where a variant
of the GUC-sequences is imitated by projections, yielding a universe which
is (provably in LS) closed under a restricted set of unary continuous
operations, (but not under pairing), and which satisfies variants of analy-°
tic data (CS2) and the continuity axioms (CS3) and (CS4). These results are
not a special case of the results we obtain here. This is so for technical
reasons. At the cost of some extra technical effort we could give a uniform
treatment which covers the results of [HT80] as well. In any case, the
method of [HT80] remains of interest because of its direct, easily visuali-
zable character.

Question (a) will be answered in chapter 2, where we also analyze the
notion of GC(C)-sequence, for C a subset of K. (GC-sequence = GC(K)-sequence.)

As to question (b), we shall define universes of projections which
imitate GC(C)-sequences, where C is subject to the restriction that it can
be enumerated, modulo equivalence (cf.1.3.11, 1.3.26), by a mapping
J:N - C (i.e. we do not model GC(K)-sequences themselves).

In answer to question (c¢) we shall prove that for sufficiently nice
enumerable C c K, the projection model for GC(C)-sequences satisfies the

axiom system CS(C) which consists of
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CS(C)1 VenVeeCElc(c=e|‘(e,n))

cs(c)2 Ve(A(e) ~+ JeeC(eee A Vn A(e|n)))
cs(c)3 VedaA(e,a) EbaeVsA(s,(b)e(E))
CS(C)4 Vedn A(e,n) + VedfeC A(e,fle),

i.e. all quantifiers Ve,3e’ in ¢S which have something to do with closure of
the universe under continuous operations are relativized to C, and the quan-
tifier combination JeVe in the conclusion of CS4 is switched.

In the presence of
AC-NF Vx3a A(x,a) - IbVx A(x,(b)x)

one can show that C§ = CS(K) (see 1.3.29).

An important tool in the proof of the validity of CS(C) in the pro-
jected universes is an elimination translation introduced by DRAGALIN in
[Dr74]. This translation generalizes both the elimination translations for
LS and CS, and is formulated as a kind of forcing. We return to it in chap-
ter 8. Our results do not give a reduction of the full concept of GC-sequence
to lawlessness, nor do they yield a projection model for the system C§ it-
self.

It is to be expected however that if we extend L§ with the schema

ECT0 Vx(A(x) - 3y B(x,y)) - Jzvx(A(x) » '{z}(x) A B(x,{z}(x))),
where A(x) is almost negative, and add variables for lawless sequences
ranging over sets {x:A(x)}, A almost negative (cf. [T80AJ]), then CS8(C) can
be modelled for any C c K which is enumerated by a mapping J:{x:A(x)} » K,
, K itself has such an

(The details of this

A almost negative. Since under assumption of ECT0

enumeration we would obtain a model for CS + ECT,).

claim have not yet been completely verified.)

To obtain a projection model for CS without using ECT,, it seems neces-

0
sary to work inside a theory &gK of lawless sequences of K~functions. It is

likely that a CS model can be constructed from such lawless K-sequences,
but this needs further consideration, in particular the appropriate axioma-

tization of £§K.



1.2. GENERAL OUTLINE

Chapter 2 of this monograph is devoted to the precise description of
the notions of GC-sequence and GC(C)-sequence.

The chapters 3, 4 and 5 deal with the construction and investigation
of projection models for the notion of GC(C)-sequence. Chapter 3 gives the
necessary technical auxiliaries, chapter 4 contains the definition of the
models, and in chapter 5 we derive a crucial property for the models, the
so-called 'overtake-property'.

In chapter 6 the class of 'domains' is introduced. The projection
models are special cases of domains. We shall give the proof of the validity
of CS(C) in domains, hence CS(C) will hold in all projection models. By
generalizing to domains, we achieve that our proofs are independent of some
of the peculiarities of the models.

The treatment in the chapters 2-6 is informal in the sense that we do
not derive our results inside a formal LS-like system.

In chapter 7 we introduce suitable extensions (modifications) of LQEI
and LS in which the formalization of the results can be carried out.

Then, in the chapters 8 and 9, we deal with the problem of showing
that domains are CS(C)-models, at least for suitable C c K.

In chapter 8 we describe and investigate an elimination translation T,
similar to the one introduced by DRAGALIN [Dr74], and we prove an elimina-
tion theorem for domains which states that a sentence A is valid in a domain,
iff its translation TA is derivable in the lawlike ;le extension defined
in chapter 7.

In chapter 9 we take the final step by showing that indeed all CS(C)-
axioms (for suitable C c K) are derivable under the translation T.

But before we turn to chapter 2, we present our notational conventions,
basic definitions and their properties in the final section 1.3 of this in-

troductory chapter.
1.3. PRELIMINARIES

This section consists of a long list of notations, definitions and
simple facts. The notational conventions are mostly those of [T77] and
T®RT70]. The same holds for the definitions and facts. 'New' here are only

5.3 (on finite sets), 1.3.11(b), 1.3.,12, 1.3.16, 1.3.21, 1.3.23 (the

definitir of elw, [v], sn, id, exf, eAf and their properties), some of
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the results of 1.3.24, and 1.3.26 on subsets of K. In 1.3.28 and 1.3.29 we
give reformulations of the systems LS and CS(C) which deviate slightly from
the ones given in the introduction (1.1).

The reader is advised either to skip this section altogether and to
consult it only when necessary, or to glance through its contents, with'a

special eye for the 'new' facts mentioned above.

1.3.1. Sets and variables

N is the set of natural numbers, we use 1i,k,m,n,u,v,w,x,y and z
(with sub- or superscripts) as variables ranging over NN .

N is the set of all mappings from N into N (i.e. Baire-space), ¢,y
and x (with sub- or superscripts) are used as variables for elements of N
(see also 1.3.4), a,b and c¢ (with sub- or superscripts) range over the law-
like elements of N.

K is the inductively defined subset of N which contains the lawlike
neighbourhood functions for continuous functionals from N into N (cf.
1.3.7-27), we use e,f and g (with sub- or superscripts) as variables ranging
over K.

LS is the universe of lawless sequences, we use a,B8,y and & (with sub-
or superscripts) as variables for elements of LS.

e,n and ¢ '(with sub- or superscripts) are used to range over subsets
U c N distinct from LS and the set of lawlike sequences.

D',D s$',S., etc. as variables for sets.

We use D,D], 29 etc. and S,SO, 1

1.3.2, Formulae and terms

(a) Metavariables

A,B,C,D, ¢ and ¥ are used as metavariables for formulae, t and s are meta-
variables for number-terms, ¢,y and Y are metavariables for function-terms
(denoting elements of N).

(b) Formulae and terms with parameters

We write A(al,...,ap), where al,...,ap is any string of variables, to in-
dicate that some of the parameters of A are in the list al,...,ap, similar-
ly we use t[a],...,ap] and ¢[a1,...,ap] for number- and function-terms with
parameters in the list al,...,ap.

In formulae of the form A(d) we sometimes omit the brackets, and write Aa.
(c) Substitution

Once A(al,...,ap), t[a],...,ap] or ¢[a],...,ap] has been introduced,
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AMb,,...,b ), t[bl""’bp]’ ¢[b1,...,bp] denote the result of substituting

s

bi éor a; %i = l,...,p) in A, t or ¢ respectively. Here bi-is a variable
or term of the same type as ai, for i = 1,...,p.

A(b/a), t[b/al, ¢[b/a] denote the result of substituting b for a in A, t
and ¢ respectively.

(d) Restricted quantification

If R is a relation in infix notation, like e.g. < between elements of N

or € between elements and sets, then
vaRrb A(a)zdef va(arb » A(a)),
JaRrb A(a)zdef Ja(arb A AQR)),

where @ is a variable and b a term, both of the right type-

(e) Terms for sets

If bl""’bp are terms for eiements of a set D, then {bl""’bp} denotes
the finite set with elements bl""’bp'

If a is a variable ranging over D, then {a:A(a)} denotes the subset of D of
all elements with the property A.

1.3.3. Finite sets

If we speak of a finite set, we mean finite in the strong semnse of
'being in 1-1 correspondence with an initial segment of N'. That is to say,
we assume a finite subset S ¢ N to be given to us by a mapping ¢ € N which

enumerates its elements without repetitions and a natural number n, such that

Vk<n Vm<n(k#m -+ ¢k#¢m)
and

x € § iff 3Gm<n(x=¢m).

n is the cardinality of S, notation card(S).
¢ is the empty set with cardinality O.
Note that with this interpretation of finite, membership of a finite set

S ¢ N is always decidable.



16

1.3.4. Mappings (domain, codomain, range, composition, restriction)

A mapping ¢ from D. into D2, notation ¢ : D, > D2, is a process of as-

1 1

signing to each element of D] a value in DZ' D] is the domain of ¢, D

the codomain of ¢, the set {¢p(d) : d € D]} c D2

D2D1 is the set of all mappings from D] into D2.

If the domain or the codomain of ¢ is not the set of natural numbers,

2 is
is the range of ¢.

then ¢ will be lawlike; that is to say, the only choice sequences consider-—
ed here are choice sequences of natural numbers.

If the domain D of ¢ is a cartesian product, D = DIXDZ’ then ¢(d1,d2)
1,d2> e D.
then yo¢ is the composition of y and ¢;

is the value assigned by ¢ to the ordered pair <d
If ¢ D1 -> D2 and ¢ :D2 -+ D3
Yoo :D, » Dy, w°¢(d]) = ¢(¢(d1))-
If ¢ :D1 > D2 and D c D1 then ¢MD is the restriction of ¢ to the
domain D; ¢MD: D ~ D2, ¢tD(d)=¢(d).

If a is a variable rahging over D, and b[a] is a term such that

1
VaeDl(b[a]eDz), then a v bla] and Aa.b[a] denote 'b[a] as a function of a',
i.e. a mapping with domain D, and codomain D, which assigns to d € D, the

1 2 1
value b[d] e D2.

If D is a set of mappings then we use ¢,y and ¥ as variables ranging
over D (ecf.1.3.1. for D=N).
In terms of the form ¢(a) we sometimes omit the brackets and write ¢a.

= between functions is extensional equality, i.e. ¢=y :derx(¢x=¢x).

1.3.5. Elementary analysis

(a) The formal system EL for (lawlike) elementary analysis contains vari-
ables for natural numbers and (lawlike) sequences of natural numbers,
constants: 0 (zero), S (successor), = (equality between natural numbers),
A (abstraction operator), I (recursor for definition by recursion) and
j7j],j2 (a pairing function from N x N onto N with two inverses),

and the usual logical constants.

Axioms of EL are:

(1) the successor and equality axioms,

(2) the pairing axioms j(j,%,5,0=x, J,5(xy)=x, i,iGp=y,

(3) the A-conversion rule (Ax.t[x])(s) = t[s],

(4) the axioms for primitive recursion:

H(x,a,0)=x, H(x,a,(Sn))=aj(H(x,a,n),n),
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(5) and a weak choice axiom:‘

QF-AC Vx3dy A(x,y) - JavVx A(x,ax), A quantifier-free.
(b) We use the following symbols for arithmetical operations and relations:
+ for addition,
+ for multiplication,
+ for 'cut-off subtraction':
if x is larger than y, then x2y is the difference between x and y,
otherwise x=y is zero.
sg for the 'sign-mapping': sg 0=0, sg(n+l) = 1.
>,2,<,< for 'larger than', larger than or equal to', 'smaller than' and
'smaller than or equal to' respectively.
min for the minimum operator: min(x,y) is the minimum of x and y, if S
is a finite non-empty subset of IN, then min(S) is the smallest ele-
ment of S, if A is a decidable property of natural numbers and JkAk,
then mink(Ak) is the sﬁallest natural number with the property
A,mink<n (Ak) is the smallest k below n with the property A, if such
a number does not exist then mink<n(Ak) = n,
max for the maximum operator: max(x,y) is the maximum of x and y, if S is
a finite non-empty subset of N, then max(S) is the largest element
of S, if ¢ € N then max o (¢n) is the largest element of
S'={m : 3neS(¢n=m)},
Z for repeated addition; if S is a finite non-empty subset of N and
¥ € N then ;neS (yn) P(¢0)+...+P(¢(card(S)=1)), where ¢ is the

mapping which enumerates S, zne@ (yn) = 0.

n

(c) Pairing and p-tuple coding
In the sequel it is assumed that the pairing j satisfies j(0,0) = 0.

For coding of p-tuples we use vp with inverses j?,...,jg:

P Py - P _ .
vp(J]x,...,Jpx) X, Jivp(xl,...,xp) X, (1<i<p).

We put

vl(x) = x, (xl,...,xp+1) = j(vp(xl,...,xp),x ).

vp+] p+l

If ¢ € N then

¢(x1,...,xp) = ¢vp(x1,...,xp).



18

The use of j,j];jz, vp and j? is extended from N to N by putting
(for ¢,\(l,¢1, . “’¢P€N):

J(,¥) = Ax. j(¢x,yx),
3¢ = axe §,06x), j,0 = Ax. iy(ex),

vp(¢],...,¢P) = AX. vp(¢]x,...,¢px)

and

i

%6 = ax. j§(¢x).

If § ¢e N, n ¢ N then (q;)rl = Az. ¢j(n,z).

(d) Fintte sequences of matural numbers

We assume a (primitive recursive) coding of all finite sequences onto the
natural numbers to be given. In fact we shall not distinguish between the
finite sequence and its code. We shall use (as much as possible) the vari-
ables u,v and w for 'a natural number in the rSle of sequence code'.

cesX .

1°° P
< > 1is the empty sequence. In the sequel we assume that < > = 0.

<x1,...,xp> is the code-number of the finite sequence x

% is the finite sequence <x>.

* 1is used for concatenation.

1th is the length-function.

tl 1is the tail-function, i.e. tl(< >) =< >, tl(k*v) = v.

(v)n is the n-th element of the sequence v: if v = <x ..,xp>, and

.
n<lth(v)(=p+1), then (v)n=xn, if n21th(v) then (v):=0.
< 1is used for 'initial segment of' between finite sequences:
vgw = Ju(vru=w).
$n,$(n) is the finite sequence which contains the first n values of ¢ € N,
i.e. 0 = <>, ¢(n+l) = <¢0,...,¢n>.
¢ € v expresses that ¢ € N has initial segment v:
o eV Edern<1th(v)(¢n=(v)n, i.e. ¢ € v iff ¢(1th(v)) = v iff
In(¢n=v).
kZ""kE (1<i<p) are defined by:
k](< >) = k2(< >) = kg(< >) = <>,

kl’

kl(V*i) =k v¥<j x>, k,(v*%) = k,v¥<j,x> and k?(v*ﬁ) = kgv*<jgx>,

1 2

],...,xp>) = <j1x1,...,j1xp>, k2(<xl,...,xp>) = <j2x],...,j2xp>
and likewise for kg.

i.e. kl(<x

Via these mappings we can treat the finite sequence v as a pair of
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finite sequences klv,kzv and as a p-tuple k?v,...,kgv.

* 1is also used for concatenation of a finite sequence with an element

¢ € N. vx¢ is the sequence satisfying:

I'4
(v)n if n < lth(v)

vxp(n) =

om if n =m + 1lth(v).

1.3.6. FACTS.
(@) j,(vx¢) = kIV*jl¢,

(b) kl(v*w) = klv*klw,
(e) k]($X) =3;¢(),
and similarly for k2 and k?.

The set K (1.3.7-1.3.27)

1.3.7. DEFINITION. K is the subset of the set of lawlike elements in NN,

inductively defined by

(K1) Vx(An.Sx) € K,
(K2) a0=0 A Vx(Av.a(%xv)eK) + aekK,
(K3) Va(A(a,Q)+acQ) + Va(aek»aeQ),

where A(a,Q)=3x(a=An.Sx) A Vx(Av.a(E*xv)eQ)).

(K3) is called Znduction over K, it expresses that K is the smallest set

satisfying (K1) and (K2).

1.3.8. IDB0 is the formal system which consists of EL plus the constant K

and the axioms (K1)-(XK3).

We use e,f,g etc. to range over K.

1.3.9. FACTS. If e ¢ K then

(1) V¢3x(e($x)#0), By induction over K,

(2) VYvw (ev#0sev=e (viw) ).

1.3.10. COROLLARIES (including the definitions of 'bar'

, e(d),eld).
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(a) The set {w:ew#0} Zs a bar in the tree of finite sequences: the bar
given by e or simply the bar e.

(b) With each ¢ € N there is a unique y such that, for some x, e(9x) = y+1.
For this y we write e(¢), we put e(¢],...,¢p) = evp(¢1,...,¢p).

(c) With each ¢ € N there is a unique sequence V € N such that
Vn3x(e(fixx)=1+yn) . For ¥ we write e|é; e|(¢l,...,¢p)Ee]vp(¢l,...,¢p).

The mappings ¢ ®» e(¢) and ¢ > e|¢ from N to N and from N to N respectively,

are continuous. e is a neighbourhood-function for these mappings.

1.3.11. DEFINITION (of ex~f,etw). (a) Two elements e and f of K are equiva-
lent, notation e~f, iff e|¢ = f£|¢ for all ¢, i.e. e and f are neighbourhood-
functions for the same continuous mapping. Equivalently:

ex~f Ederw(ew#OAfw#O > ew=fw).

(b) elw is a common initial segment of the sequences {e[¢ : pew}. Formally:

etw = ¢Lwl(tlw])

where

m

olwl = Ax.e(Rrw)=l
and

tlw] = min )(e(i*w)=0).

z<lth(w
(So 1th(efw) < 1th(w)).

1.3.12, FACT. etw satisfies:

(a) Vxdysx (elox = e[ (y)),
(b) VyIxzy (elo(y) § eldx).

1.3.13. LEMMA (Closure properties of K).
(3) If e € K, Vv(ev#0 » Aaw.f(vrw)eK), and VYww(fv#0 - fv=f(v*w)), then
f el, 2.e. K 28 closed under 'unions over e ¢ K'.
(4) If e € K then Yw(iw.e(v*w)eK), Z.e. K is closed under 'restrictions'.
(5) If e e Kand £ € K then \v.e(flv) € K, Z.e. K is closed under ' ; com-

posttion' (cf.1.3.17 below for;).

PROOF. (3) and (4) by induction over K w.r.t. e.

(5) is more complicated, we outline the idea.
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First one generalizes fiw to'frnw, putting

ffnw = ¢ln,wl (tln,wl)
where

¢ln,w] = Ax.f(<ntx>*w) =1
and

tln,w] = (min )(f('i*w)=0)) .n,

z<1th (w

i.e. flw = fl“ow, and if n < lth(w), Vm<n(£f(<m>*w)#0) then
frn'w 2 o<f(<n>rw) 21> % f[‘nﬂw.

Now one proves by induction over K w.r.t. e
Vn(Av.e(fI‘nv)eK).

This is trivial for e = Az.Sx. Assume e0 = 0 and for all x,n
Av.e (<x>*f ["nv)eK. To prove that Av.e(f f‘mv) e K it suffices by (3) to show

that for some g € K we have:
(%) gw#0 - )\v.e(f[‘m(w*v)) e K.

Take g such that gw#0 - m<lth(w) A Vk<n(f(<k>*w)#0).

(For the existence of such a g € K we need £ ¢ K, (3) and (6) below.)
Note that for this g, gw#0 - Elx(f]‘mw=<x>*f Pm+1w), and apply the induction
hypothesis, which yields (x). [

1.3.14, LEMMA (a special element of K).
(6) For all n, Av.sg(lth(v)=n) ¢ K.

PROOF. By induction w.r.t. n, using (K1), (K2). 0O

1.3.15. COROLLARY. If e satisfies

e0=0,  e(Rxv)=sg(Lth(v)atlx]) «(1+slx, () 4D,

where tlx] <s independent of v and s depends on no other values of v except
(v) t[x]"v then e € K.
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PROOF. Immediate from (6), (3), (K1) and (K2). O

t.3.16. FACT. (Including the 'definitions' of [v],sn and id.) From 1.3.15 it
follows that K contains:

- for each v a mapping [v] such that [v]|a = vxa,

- for each n a mapping g™ ('shift over n') such that snla = Az.a(n+z),

- for i = 1,2 mappings ji such that jila = ji(a).

The precise definitions of these mappings are irrelevant, we leave them to
the reader.

We put

- id € K is the mapping [0], i.e. idla = O%a = a.

Derived closure conditions and operations on K (1.3.17-1.3.23)

1.3.17. DEFINITION. e;f = Av.e(flv).

FACTS. If e,f ¢ K then e;f € K by (5),

e;f satisfies ej;fla = e(fla).

1.3.18. DEFINITION. e:f is the mapping such that
e:f(0) =0, e:f(&*xv) = e(R*x(f[Vv)).

FACTS. If e,f € K then e:f ¢ K by (4), (5) and (K2).

e:f satisfies e:fla = e](f]a).

1.3.19. DEFINITION (of h{e,u)). h : KxXN » N is the mapping which satisfies

[}
o

0 if eu
h(e,u) =

1+¢[e,u] otherwise,

where ¢[e,u] = the shortest initial segment v of u for which ev # 0.
FACT. If e ¢ K then Au.h(e,u) e K by (3).

1.3.20. DEFINITION. hc is the mapping from K x N into N which satisfies

0 if ev =0,
hc(e,0)=0, hc(e,v*ﬁ) =

hc(e,v)*i otherwise.
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FACT. hc(e,v) satisfies ev#0 - v=(h(e,v)e l)*hc(e,v), i.e. hc(e,v) is the

complement of h(e,v)s1 w.r.t. v, provided ev#0.

1.3.21. DEFINITION. exf = Aw.sg(ew)-f(<h(e,w)= 1>*hc(e,w)).

If eu # 0 then sg(e(u*w))

for some u',u" such that u'«u" = u (by 1.3.19,20). Hence

1, h(e,u*w)= 1 =u' and hc(e,u*w) = u"xw

exf (usw) = £(<u'>*xu"*w), so, if e,f € K then exf ¢ K by (3) and (4).

In the context of exf, £ ¢ K is to be considered as representing the mapping
¢ :ne Av.L(fixv).

exf is the 'composition' of the bars ¢n over the bar e, i.e. exf(w) # 0

iff w = n*u, n is the shortest initial segment of w such that en # 0 and

¢(n)u-# 0. exf is comparable to e/f in [KT70].

1.3.22. FACT. If e € K then Aw.e(kiw) e K for i = 1,2, as follows from (5)
and 1.3.16 by the observation that we can define ji in such a way that

JirW = kiw.

1.3.23. DEFINITION. eAf,. the pairing of e and £, is defined by:

erf(0) = 0,

enf(®xv) = sg(¢,[x,v])-sg(¢,[x,v]) - (1+j (¢ [x,v]= 1 ,6,lx,v]2 1)),
where

¢1[x,v] = e(%*k]v), ¢2[x,v] = f(ﬁ*kzv).

FACTS. If e and f belong to K then so does eAf, by (4) and (3).

eAf is characterized by the following property:
erf|(a,b) = j(ela,flb), or equivalently

jl(eAfIa) = te]a and jz(eAfIa) = f!jza.

1.3.24. LEMMA.

(a) Composition of neighbourhood—functions is associative modulo equivalence:
(e:f):g =~ e:(f:g).

(Therefore we omit brackets in the context of an equivalence.)

(b) ece' A foof' 5 eif @ e':if',

(c) Va(elaew) + e =~ [w]: s e, where n=1th(w).

)] filvl ~ [flv]:s™: £ : [v], where n=1th(f|v),
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(e) Pairing A Zs 1-1 modulo equivalence:
ece' A fof' <> (eAf) =~ (e'Af').

(£) Composition : is distributive over pairing A:
(enf):(e"Af'") = (e:e')A(f:f").

(g) [k,v] A [k,v] =~ [v], idaid = id, sTAs™ & ™,
PROOF. Is left to the reader. [J

Note that the mapping ¢ ~ [w] : Sn|¢, n=1th(w), has the effect of re-
placing the initial segment En of ¢ by w. In [KT70], [T77] and [HT80] a
separate K element is used as neighbourhood-function for this mapping. They

write w|¢ where we have [w] :sn{¢.

1.3.25. REMARK. The properties of K that are used in the sequel can be

derived from (K1), (K2), (1)-(5) above. I.e. we do not use induction over K.
1.3.26. Subsets of K

Below we shall define-a concept of choice sequence and projection
models for that concept, relative to a subset C of K. We assume such a sub-
set to be closed w.r.t. equivalence, i.e. by C ¢ K we mean that VeeC(eeK)
and Vef(eeC A f =~ e » feC).

The reason for this convention is, that we are primarily interested in
the continuous mappings ¢ » e!¢, e € C, and not so much in the elements of
C themselves. At one point in the definition of the primitive concept of
choice sequence w.r.t. C however, it is essentail that C is a set of neigh-
bourhood-functions and not a set of continuous mappings from N into N, name-

ly in the construction of upb (see 2.8.1-3).

1.3.27. IDB, is a reformulation of IDB, in a richer language, containing

1
K-variables e,f etc., K-terms like e:f, e;f etc., and K-term application el

and e(+), strengthened with the choice axiom:
(AC-NF) Vnda A(n,a) - JbVn A(n,(b)n),

where (b)n = Az.bj(n,z), see 1.3.5(c).
We define a variant IDBF. of this system, suitable for our purposes, in

7.2.8-11.

1
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The systems LS and CS(C) reformulated (1.3.28-29)

1.3.28. LS is the formal theory of lawless sequences, of which zggl is the
lawlike part. We shall use the extension ng* of this system, defined in
7.2.14-15. For the sake of completeness we give the axioms for lawless se-

quences of LS:

(LS1) Vv3a (aev) (density),
(LS2) a=p V a#B (decidable equality),
(LS3) !q(A(a,B],...,Bp) -+ Jv(oev A Yyev A(y,Bl,...,Bp)) (open data),

where A contains no lawless parameters besides those shown and

= P
Yf" @(G:BI:-~-,BP) = Va(Ai=1 G#Bi > q’(asﬁls--°se’p))’

(LS4) Ygl...!qpﬂa A(a‘,m..,ap,a) >

JeVvlev#0 > JaVo ..,!gp A(a .,ap,a)] (continuity),

1°° 1

where A contains no lawless- parameters besides those shown and @ is a meta-
variable for 'any lawlike variable'.

In the context of LS, AC-NF is restricted to predicates without law-
less parameters.

Note that the formulation of (LS4) given in 1.1 (which is the usual one)
is derivable from the one given here by AC-NF.

Our results can be formalized using a weaker variant of LS where e in

(LS4) ranges over the set

KLS = {e: Vvw(ev#0 » ev=e(vw)) A Vadx(e(ax)#0)},
but using the extension principle
EP eeKLS A deN > ax(e(gx)#O).

The conditions (1)-(5) on K above are derivable from EP for KLS'

1.3.29. Finally we reformulate CS(C):
CS(C)1 (closure) Ven YeeC 3;(;=e|(s,n)),
CS(C)2 (4nalytic data)
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Ve(A(e) » JeeC(eece A Vn A(e|n))),

where € is the only choice parameter in A and cee = 3n(a=e|n).

CS(C)3 (continuity for lawlike objects)
Veda A(e,a) - JeVv(ev#0 > Jave A([v]|e,a)),

A}

where € is the only choice parameter in A, a is a meta-variable for 'any

lawlike variable' (n,a or e), and [v] is the K-element introduced in 1.3.16.
CS(C)4 (Vedn-continuity)
Vedn A(e,n) - VedeeC A(e,e|e),
where € and n are the only choice parameters in A.
In the presence of AC-NF, the formulations of CS(C)3 as given here and
in the introduction are equivalent.
CS = CS(K), to see this we must show that CS(K)4:
Vedn A(e,n) - Vede A(e,e|e),
is equivalent to the usual CS4:
Vedn A(e,n) > eVe A(e,ele).
CS4 implies CS(K)4 trivially, for the converse implication assume that
Vedn A(e,n) and apply CS(K)4, this yields Ve3e A(e,e]s).
To this sentence we can apply CS(K)3, and find an f € K such that
Vv (fv#0 > JeVe A([v]]e, e|([v]|e))).
Now put f and e together. First we apply AC-NF, yielding an e' such that

Vv (£v#0 ~ Ve A([v]]e, Aw.e'(<v>*w)|([v][e)))).

Then we define g by



gd =0
0 if fw = 0,
g(Rxw) =

e' (<h(f,w)21>+%x(h(f,w)=21)*w)

One easily shows that g ¢ K, and that Ve A(e,g|s).

|

otherwise.
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CHAPTER 2

GC-SEQUENCES AND GC-CARRIERS

2.1. The concept of GC-sequence was introduced by TROELSTRA (in [T681],
[T69], [T69A1) as a candidate for a model of the CS-axioms. In [T77], ap-
pendix C, convinecing, but not completely rigorous arguments are given for
the validity of the principle of analytic data and Ve3dx-continuity in the
universe of GC-sequences. The description of this universe is elaborated
and refined by DUMMETT ([Du77], see also [T80]). This chapter will be de-
voted to an even more rigorous, but still informal description of the prim-—
itive notion of GC-sequence (deviating in some respects from the one given
by DUMMETT), which is to be used as a basis for the construction of a uni-

verse of projections, imitdting the behaviour of the primitive concept.

First, we quote the description of the GC-sequence of [T77]:
"We think of a choice sequence o as started by generating values a0,al,...
then, at some stage we decide to make o dependent on another, "fresh" se-

quence a, by means of a continuous operation, i.e. o = Fouo (FO:N - N);

0

from then on, o is determined by choosing values of o, — at a later stage

0
we may in turn wish to make ag dependent on another sequence a;, 8O
ay = Flal’ etc. (...).

So far we have presented a simplified picture, in as much as we omitted to
take into account the possibility that a choice sequence is obtained from

two or more other choice sequences i.e. (...)

% = TeVr) Cet, 17 %, e (k)0

(In this quotation a misprint in the original text has been corrected

Fouo instead of ay = Foao). Note that the variable-conventions

in the quotation above, deviate from the ones we have adopted: we should

(line 4: a =

use €,€05€,€ etc. instead of &5 0500 500 etc.)
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It will be clear from this description, that the universe GC of GC-
sequences is not a collection of isolated objects, but rather a network

in which gradually more dependencies can be created.

2.2. GC (THE UNIVERSE OF GC-SEQUENCES) IS CONSTRUCTED FROM GCC (THE UNIVERSE
OF GC-CARRIERS)

The decision to make a sequence e dependent on another sequence €p? ©OF
on a p-tuple EO,]""’EO,p’ or rather the description of that decision, pre-
supposes something like the ability to call sequences 'by their name'. The
existence of countable models for LS in which all sequences are indexed by
a natural number (UaE{n*(a)n: neN} is such a universe) shows that it is
feasible to consider universes of sequences in which all elements are iden-

tified by a natural number.

2.2.1. Hence we assume from now on:

the universe GC of GC-sequences is constructed from the countable universe
GCC = {en: neN} of GC-carriers. (carriers for short).

n is the name of the sequence €n° Names are underlined to distinguish them
from subscripts.

The construction of GCC is given in 2.3-2.8, the construction of GC from
GCC in 2.10. The relation between GC and GCC, will be comparable to the re-

lation between lawless and proto-lawless.
2.3. INTRODUCTION TO THE CONSTRUCTION OF GCC

One may think of the name n of a carrier as the name of an unbounded
register for storage of natural numbers. The construction of GCC is an in-
finite (mental) process, divided into stages 1,2,3,..., in which the regis-
ters are filled with natural numbers (i.e. all sequences are constructed
simultaneously). e is the x-th number in register n. With each pair (n,x)
there is a stage z in the filling process at which sufficiently many data
have been provided to determine € X € is the infinite sequence
eno,enl,... . In general we shall not have a finite description of €

An assertion like '

€ has property P' is made at some stage z of the con-
struction of GCC, on the basis of the data that are available to us on the
contents of register n at that stage. This is characteristic for choice
sequences.

The description of GC quoted above can be rephrased for GCC as:
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at each stage of the construction of GCC we can either put some values in

register n, or make the contents of this register dependent on the values

in the registers EJ""’Ep via some continuous cperation.

That is to say, if we decide to the second alternative at stage z, we as-

sociate a computation law to the register n, by which for each x the value
e,X can be determined from initial segments of the sequences €n ,...,EEP.

These initial segments are to be found in the registers 34""’Ep at a.

stage z' later than z.
2.4, THE CREATION OF DEPENDENCIES BETWEEN GC-CARRIERS (1)

2.4.1. Initially all carriers are independent.
At each stage of the construction of GCC we can decide to make at most one
carrier dependent on at most two others, or in other words: at each stage
we can choose a pair (k,m) or a triple (k,m,n), m and n distinct from k,
and decide that e, will depend on €_or e€_ and ¢ _.
k mnoom n
Not every choice of m and n is permitted:
the carriers €1 is made dependent upon at stage z, must be fresh at stage z,

where

2.4.2. DEFINITION (of a fresh carrier)

A GC-carrier €, is fresh at stage z, if it has not been made dependent on
other carriers at any stage z' < z.

2.4.3. If we make € dependent on e, oron e and e, at stage z, we say that
€ Jumps to €n at stage z or jumps to €n andpbn.at stage z. If we are not
especially interested in the sequence or sequences on which €, comes to de-
pend, we simply say that € Jumps at stage z.

2.4.4, Note that there are two restrictions in this description of the crea-

tion of dependencies among GC-carriers, not to be found in the original

description of GC-sequences, namely

- at each stage at most one carrier can be made dependent on others (the
single jump property),

- a carrier can be made dependent on at most two others at the time (at
most binary jumps).

As we shall see later, these restrictions are not essential, "at most one"

and "at most two" can both be weakened to "finitely many". They are intro-

duced to make it techmically easier to imitate the concept by means of
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projections.

2.4.5. 1If we follow a particular carrier, say € through the various stages,

3’
we can picture its history of dependencies (its history of jumps) by means
of a sequence of labelled finite binary trees as in fig. 1.

Note: stage 0 is the stage preceding the actual construction of GCC, the

other stages are stages in the construction process.

Stage l 0 l

1 2
Dependence o 3 d//\%S d/A€;
tree 0 ] 0 1
fig. 1

At stage 1 €q jumps to (is made dependent on) €0 and €-
At stage 2 no dependencies affecting €4 are made. -
At stage 3 €0 jumps to €95 whence €3 now depends on €, and €-
At stage 4 eT'jumps to ezhand ez.whghce €4 mow depends on 54~énd (two oc-

currences of) €y -

2.5. THE CREATION OF DEPENDENCIES BETWEEN GC-CARRIERS (2)

The dependencies among carriers are made v@a continuous operations.
If, at some stage, we decide to make € dependent on other carriers, we
also choose an e ¢ K, a neighbourhoodfunction for a F:NEE& N. We call e
the jumpfunction.
The effect of the decision to make € jump to €n with jumpfunction e is,
that € is completely (lawlike) determined relative to €n The equation
which expresses the relation between €1 and €n after the first one has
jumped to the second one with jumpfunction e will be given in 2.7. As a

first approximation to that equation, think of
(1) € =e|e_.

k m

Likewise

(2) e el (e e )
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can be used as a first approximation to the relation between € and (e ,en)

if € has jumped to € and €n with jumpfunction e.

The jumpfunctions can be added to the dependence trees for €4 of fig. 1.
This results in fig. 2 -
Stage ’ 0 ‘ 1 l 2 ' 3 i 4
3
Dependence ° 3 3
3 —
tree with - l’/“;'3k" ) A 0 €3®
0 1 1 e -
. . = = - = 0
jumpfunction
fig. 2

At stage 1 €, jumps to €, and € with jumpfunction ey
At stage 3 egAjumps to e, with jumpfunction ey
and € with jumpfunction e

o | |O©

At stage & ET_jumps to € r

2.6. THE GENERATION OF VALUES FOR GC-CARRIERS (1)

2.6.1. Initially, all carriers (or rather: all registers n) are empty.

At stage 1 we can choose an initial segment of values for a finite number
of carriers. We make this choice after we have decided whether any carrier
will jump, and if so, which one. We only choose values for carriers that
are still fresh. E.g. in the example of fig. 2, we could choose the initial

segment m, for sg.and m, for €q*

2.6.2. DEFINITION. A carrier is empty at stage z, iff at no stage z' < z we
have decided to make it dependent on other carriers, or have chosen values

for it.

2.6.3. At stage z > 1 we choose a segment of values for all carriers that
are non-empty at stage z, but still fresh, and possibly for a finite number
of empty ones as well. Again, we choose values after having chosen the jump
(if any). In the example of fig. 2 we could choose

1
1 for EO’ El

at stage 2: the segments mé,m respectively,

Al ]
then EQ_E mo*mo, El € ml*ml,
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at stage 3: the segment m' for €, and the initial segment m, for ¢

1 1 2°

then €, € m_ *m'*m"

1¢ T €2 € Wy
(for €p see section. 2.7 below),
at stage 4: the segment mé for €, and the initial segment m, for €40

then €, € mz*mé,

(for e, see section 2.7 below).

1
The pictures of fig. 2 can be adapted to show also the generated values. Thus

we obtain fig. 3.

Stage 0 1 2 3
Dep. tree ° 3 3 3 3
with jumpfns gég\\ 5///\\ Pom #m! sm”

0 1 ,m . *m'° l,m *m' @ L i B |
and values | =™ Zmy [T 00 11 2,mp
Stage 4
Dep. tree 3
with jumpfns 0 Lym *m} oy

'
and values €o0[™0™™0

_Z_,mz*mé i,m4 2
fig. 3

2.6.4. For each n and y the initial segment E;& must be available to us at
some stage of the construction of GCC. Hence certainly no carrier must re-
main empty. If carrier n is still empty and fresh at stage n + 1, then we

generate an initial segment for it at this stage.

So, in our example above, we were forced to choose an initial segment for

at stage 1, but we might have left ¢

€ empty. However, in that case we

0 1

would have been forced to choose values for € at stage 2.
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2.7. THE CREATION OF DEPENDENCIES BETWEE GC-CARRIERS (3)

In the example of figure 3, the initial segment m, is generated for ¢

0 0

at stage 1, and the segment mé at stage 2, i.e. then

1
(1 eg-e my*mg -
At stage 3, € jumps to € with jumpfunction ey If we keep to our first
approximation_fo the relation that now exists between €0 and €ys (see 2.5(1))
we find - -
(2) EO=e0]€gf

(1) and (2) may be in conflict. Hence we replace (2) by

(3) Az.egﬁk+z) = eolez,

where k = 1th(mo*m6). (1) and (2) together yield

- 1 ’
(4) € = mo*mo*(eo|eg?.

In general: if ¢ is made dependent on other carriers at stage 1 then this

k

dependency applies only to the values of ¢, that are not yet determined.

k
That is to say, as a second approximation to the relation which exists be-

tween e, and the sequence(s) € (and en) to which it jumps at stage z with

jumpfunction e, we put

€

. k mk*(e|em),
(5) a -

EE. mk*(e|(e2feg?) respectively,

where m is the segment of values generated for e, at the stages before z.

k

At stage 4 in fig. 3 we have: €, jumps to €y and €, with jumpfunction

e, . At stage 3 we know already that

1

€ m_ *m'*m"

) & R B
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hence (5) would yield

]

(7) e = ml*m]*mT*(ell(eész?).

We start to generate values for €, at stage 4, but e, is nonempty at this

2

stage, at stage 3 we have already chosen the initial segment m,. So, &, is

2 1
made dependent at stage 4 on values that have been generated at stage 3.

This is inconvenient for technical reasons. Therefore, we replace (7) by

= on
(8) £ ml*ml*ml*(elI(e&sz.egﬁk+z))),
where k = 1th(m2).

In general: if we make a carrier € dependent on one or two others at stage
z, then it will depend only on those values of the carrier(s) it jumps to,

that become available at the stages z' > z. That is to say,

2.7.1. if € jumps at stage z, with jumpfunction f, then the relation be-

tween € and the carrier(s) €n (and en) it jumps to, is given by

EE. mk*f|Az.em‘ym+z), or

(9

EK- mk*f|(Az.eEFym+z),Az.eEFyn+z)),
where m is the initial segment of € available to us after stage z - 1,
and Y Yp 2re the lengths of the corresponding initial segments for €n and

and €n respectively.

This formulation if final.

2.7.2. Note that for the range of all possible relations after a jump, it
makes no difference whether we adopt (5) or (9). If we keep to (5) and €
jumps to €n with jumpfunction f:sym, then we have the same relation between
€k and €n as when we keep to (9) and € jumps to €n with jumpfunctionyf. gor
a jump to two carriers €n and €0 the choice of the jumpfunction f£:(s Tas n)
with (5), gives the same result as the choice of f with (9).

Conversely, if we keep to (9) and € jumps to € with jumpfunction e:[um],
where w is the initial segment of € available to us after stage z - 1
(i.e. lth(um)=ym, am=um*kz.em(ym+z)) then this gives the same result as when

€ jumps to € with jumpfunction e, if we keep to (5). For a jump to two
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carriers €n and € e:([um]A[un]) in (9) gives the same relation as e in
€

(5) where n € un_éfter stage z-1). For [u] and s’ see 1.3.16.

In the tree at stage 4 in fig. 3, the right most occurrence of 2 is
not labelled with a sequence of generated values. The values generated for
€y at that stage are mz*mé, as is shown by the label for the leftmost oc-
currence of 2. The rightmost occurrence of 2 results from a dependency be-
tween e, and (84,82), that is created at stage 4. In the foregoing we have
stated that the initial segment m, of €, is not involved in this dependency.

Hence we should label the rightmost g_wIEh mé only. This gives us fig. 4.

At stage 4:

fig. 4

We have the following equations for €35€02€ at stage 4:

ey = e3l(89f€1?’
EQ_= mO*mO*eolegf .

= L 1] =

€, ml*ml*ml*el|(e4,xz.52(k+z)), where k 1th(m2),

while for €ys €, We have

| = 1
EZ_G mz*mz, Xz.egﬁk+z) € m, and €, €My,

2.8. THE GENERATION OF VALUES FOR GC-CARRIERS (2)

Consider the possible sequence of dependence trees with jumpfunctions
for €0 in fig. 5

Stage 0 1 2 3
Dep.tree °0 1 Ig s1 0 1 9
s s
with jumpfng| 1 1 1 1 1
s s
2 2

|w

fig. 5
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s1 is a neighbourhoodfunction for the shift mapping A:¢ » Ax.¢(x+1). Assume

that at stage | we generate the initial segment <0> for s then we have:

(1) e .0 =0, g, = s]|a1 = Ax.el(x+l).

At stage 2 we might generate the initial segment <1> for €55 then

1
€20 =1, €, = <0> * s |52 = <0> * Ax.ez(x+l),

(2)

€ = Xx.s](x+l) = Ax.ez(x+]).

If at stage 3 we generate the initial segment <2> for €, then

629 = 2, eg-= <I> % Ax.sé(x+1),
(3) e, = <0> =* Ax.ez(x+l) = <0> * Ax.s3(x+l),
€ = Ax.sz(x+l) = Ax.e3(x+]).

None of the sets of equations (1), (2) and (3) determines €,0, and there is

no guarantee that it will be determined at a stage z > 3. T%é process of
generating values as described in 2.6, must be adapted so as to provide
this guarantee. It is possible to refine the process in such a way, that
at stage n + 1 the initial segments E;(n+1) are available to us for all

m < n. We make a more radical change in the method of generating values, to
the effect that at stage n + 1 the initial segments E;(n+1) are determined

for all m. We motivate our approach at the end of this section.
To generate values for carriers we proceed as follows.

2.8.1. At stage 1 we first deal with the creation of dependencies. So we
start generating values e.g. in a situation as pictured in fig. 6. (Carriers

not shown are all empty.)
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| Carrier ’ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4
Dep. tree with /s\%’ °1 °2 °3 &
jumpfns 1 2

fig. 6

(a) We choose finite segments of values for a finite number of fresh car-
riers, or equivalently: we generate a natural number x, and associate with
each fresh carrier n the finite sequence (x)n, which is empty for all but
finitely many n. We call (x)n the preliminary choice of values for e
E.g. in fig. 6 we could choose x = <<I>, <2,3>, <4>>, this yields <2,3>

€

and <4> as preliminary choice of values for ¢ respectively, and < >

1’

for all others. 2
(b) The preliminary choice may be insufficient to determine values for
non-fresh carriers. In our example e.g., we need at least two values for
€ and €,y to determine eOO, whereas the preliminary choice for €, consists
of the single value 4. We now extend our preliminary choice to an infinite

supply of values for each fresh carrier, by putting:
the guiding sequence for a fresh carrier n, is the sequence gs, = (x)n*Az.O.

In our example, the guiding sequences for € and €,

<4> % Az.0 respectively, all other fresh carriers have Az.0 for their guiding

are <2,3> * Az.0 and

sequence.

(c) The final choice of values for each carrier n is to be an initial seg-
ment of its guiding sequence. In finding suitable (i.e. sufficiently long)
initial segments, we distinguish two cases:
- if no carrier has jumped, then <gsn0> is the initial segment generated
for € , i.e. we choose ¢ 0 = gs O.
o’ n %
- if a carrier ¢, has been made dependent on one or two others, then we

k
have an equation for € either

€= elem,

| =

or

o
|=
]

el(ese ),
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. 1
where €n and e, are fresh carriers. In our example we have €y = S |(€1’€2)°

Now we substitute 88,0 88, for €n and € respectively in this equation,
which yields €y = slI(<2,3>*Az.0724>*kz?b). In general, we find either

EE- e|gsm,

or

85. e|(gsm,gsn).
From this equation we can determine ekO; the computation of that value re-
quires only an initial segment of either gs, or (gsm,gsn). We put:

the upperbound for the relevant values of the guiding sequences at stage |

is

upb] = the minimal z ¢ N such that ekO is determined by gsm(z)

or (gsm,gsn)(z) respectively, i.e. such that

e(<0>*gsm(z)) # 0 or e(<0>*(gsm,gsn)(z)) # 0 respectively.

In the example upb1 = 2 (i.e. assuming that s1 has the optimal modulus of

continuity).

Once we have computed upbl, we put

gsn(1+upb1) is the sequence of values generated for the fresh

carrier e, at stage 1.
We use 1+upb] instead of just upbl here, to provide for the case that

upb] = 0. In our example we would end up with

<2,3,0> as the initial segment of €y

<4,0,0> as the initial segment of €95 and

<0,0,0> as the initial segment of all other fresh carriers.

From the equation € = sl|(a],52) we find

€00 = j(3,0) eg} = j(0,0).
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2.8.2. At the next stages webessentially repeat this procedure. To continue

our example, let €, be made dependent on e, via e at stage 2, see fig. 7.

1

3

Dep.tree with| 1 0 01,<2,3,0> °g’<49050> §_’<090,O> 0£,<0,090>
jumpfns and d/ég\<;» Ie

1’ 2’
gen. values K2,3,0> <4,0,0> 1

’ Carrier ’ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4

fig. 7

First we generateay, e.g. y = <0,<0,1>,0,<2>,<3,4,5>>, i.e. as preliminary

choice of values we have

(y)1 = <0,1> for €,
(y)4 = <3,4,5> for €
(y)n = <> for all freshn, =n ¢ {1,4},

and as guiding sequences

gs, <0,1> * Az.0, gs, = <3,4,5> * Az.0,

and

gs

n Arz.0 for € fresh, n ¢ {1,4}.

At this stage we have to provide for the determination of enl, for all car-

riers. There are two dependencies now, which yield two equations to be con-

sidered:
(1 e, = s |(e ,e,)
o ro2z
(2) €y = <0,0,0> * eIAz. al(3+z).

(C£. 2.7.1, 3 is the length of the initial segment generated for e  at stage

1
1.) Now we substitute the guiding sequences for the parts of € and €, that

are not yet available, i.e. gs, replaces Az.el(3+z) and gs. replaces

2

Xz.ez(3+z), which yields
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™
=]
]

sl!(<2,3,0>*gs],<4,0,0>*gs2),

€ <0,0,0> * e|gs].

3

Obviously, we do not need any values of gs], gs, to determine eol and e3l

from these equations, that is, we find upb2 = 0. The generated values for

€y D fresh at stage 2, are gsn(1+upb2), i.e. <gsn0>. So now we have

€, € <2,3,0> * <0> since gslo =0,

€, € <4,0,0> x <0> since gs20 =0,
€, € <0,0,0> * <3> since gs40 = 3,
T . . .
gy = 8 |(e],ez), whence e, € <j(3,0),j(0,0),j(0,0)>, and
€3 = <0,0,0> * eIXz.el(3+z), whence €5 € <0,0,0>.
All other carriers have initial segment <0,0,0,0>.
Fig. 8 shows the situation after stage 2.
Carrier 0 1 2 3 4
Dep.tree with| 9 °l,m °2,m 3,m °4,m
p . A ‘l __’ ] Z 2 o it} 3 o 4
jumpfns and 1. <0>
gen.values —™ z’mZ -
m = <2,3,0>%<0>, m, = <4,0,0>%<0>, m, = <0,0,0>, m, = <0,0,0>%<3>
fig. 8
Carrier 0 1 2 3 4
. o
Dep.tree with s . l,ml ° 2,m2 . §}m3 4,m4
jumpfunctions £ l,m1 g}mz 1,<0>
and gen.valugs ¢ 4 4 4

fig. 9
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Figure 9 shows the situation which occurs if we decide to make € dependent

on e, at stage 3.
At this stage en2 must become available for all n. In fact, these values

are already available at stage 2. I.e. the upb, computation will yield O,

3
and there will be one value generated for each fresh en:gsno.

Assuming that gszo =1, gs40 = 2, we reach the situation of fig. 10.

Carrier 0 1 2 3 4
1 2 *<]> 3,
Dep.tree with 19~ 2y =™ . 3,m, GAom, X< 2>
jumpfns and | 1,;1 2,m %<1 el 1.<05
1 ) ;
gen.values 4,<2> 4,<2> 4,<2>
fig. 10

At stage 4 we do not create new dependencies, i.e. we start generating values
in the situation of fig. 10Q.

First we determine the guiding sequences, then we make a list of all car-
riers that depend on other ones. This list consists of 0, 1, and 3 in our

example. The equations relating these non-fresh carriers to the fresh ones

are:
_
(3) eg = 5 1(e585)5
(4) €, = m]*fIXz.e4(4+z), where 4 = 1th(m4) is the number of values
that were available for € when €, came to depend upon it at
stage 3. - -
(5) €q = m3*e|XZ.al(3+z), see (2) above.
If we substitute (4) in (3) we find
1
(6) €y = S |(ml*f|Az.e£F4+z),e_?,

substituting (4) in (5) yields
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7 €y = m3*e|(<0>*f{Az.ea(4+z)), where <0> = <(m1)3>, the first

value of Az.el(3+z).

We do already have initial segments m, *<1> and m, *<2>, both with length 5

2 4

for €, and € respectively, so if we substitute gs, and gs, for the parts of

eg-ang'eé-thgf are not yet available, we find ?

(8) 59_= sw(m]*f|(<2>*g34), m2*<1>*gsz),

9) »s2 = myxe | (<0>*£ | (<2>%gs,)),

(10) El.= ml*fl(<2>*g54)'

From these equations we can compute 803, 513 and 533, the values that must

become available to us at this stage. We determine_-upb4 = minimal z, such
that gsz(z) and gs4(z) suffice to perform these computations. (upb4 will
probably be unequal to 0, depending on e and f). As before, gsn(1+upb4) is

the sequence of generated values for each fresh n at this stage.

2.8.3. Summarizing: in generating values for fresh carriers at stage z + 1
one takes the following steps:

- Determine a preliminary choice of values (completely arbitrary).

- Determine guiding sequences.

- List all 'dependency equationms', either of the.fonnek= ¢(em en) or of the
form € = ¢(em).

- If chains of Eépendencies exist, make substitutions in this list, to ob-

tain only equations of the form € = ¢(EEJ,...,€BP), where n "Ep are

TR

fresh at stage z + 1.

- Make a list EJ""’Eq of all fresh carriers that occur in the right hand
side of an equation in the list, and substitute gsmi for the part of €mj
not yet available at stage z + 1 in all equations of the list, for
i=1,.0.,q.

— Determine the minimal y such that EEETKy),...,EEEEXy) suffice to compute

ek(z) from the equation for e, in the list, for all non-fresh k. This y

k
we call upbz+1.

— The generated values for € at stage z + 1, € fresh, are gsn(1+upb

).

z+1
Note that in order to compute upb it is essential that jumpfunctions are

neighbourhoodfunctions for continuous mappings, and not the continuous
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mappings themselves.

2.8.4. This method of generating values does not leave us full freedom in

the choice of values for €n at stage z (sn fresh), nevertheless, we do have
freedom of continuation for carriers locally, in the following sense:

if 24""’Bp are fresh at stage z, EEi(Y) is the segment of values avgilable
to us for €n;» i=1,...,p at this stage (note that all these segments will
indeed have the same length y = XISZ'<Z (upbz,+l)), and eEi(y) = ¢i(y) for
1= 1,.0.,p, ¢i € N arbitrary, then we can arrange by a suitable preliminary
choice of values, that after this stage we have eEi(y') =.$;(y'), i=1,...,p.

y

' >y, where eEi(y') is the segment of values now available for €ng-

2.8.5. It may seem unnatural to use an infinite supply of zero's, in order
to achieve that for gqll carriers n at stage z + 1 the value en(z) is avail-
able. This gives the number zero a special status in the universe of GC-
carriers GCC: GCC satisfies Vxﬂn(g;(x) = %z.0(x)), but not e.g.

ann(en(x) = Az.y+1(x)).

However, in the construction of GC, the universe of GC-sequences, this

special role of the zero is made invisible (see 2.10.6), that is to say:
for the construction of GC it makes no difference whether we define GCC as
we do here, or use a (non-equivalent) variant, in which it is guaranteed
only that for the carriers € 1 < z, an initial segment E;Iz+1) is deter-

mined at stage z + 1.

Our choice of definition is motivated by a technical reason: if we
choose a more liberal approach, which requires the specification of suffi-
ciently many values at each stage only for a finite set of carriers, and
leaves us full freedom w.r.t. the others, then we have to take additional
steps in the generation of values, distinguishing between carriers for which
the choice of a sufficiently long segment is forced upon us, and others,
where we are (still) free to choose any segment we want. This would further
complicate a faithful imitation of GCC and GC by means of projections. (We
feel that the projectionmodel is already complicated enough.)

Moreover (and maybe even more important) it is technically most convenient
that at each stage z the segments of values generated for the fresh carriers

have the same length 1 + upbz.

2.8.6. With this section we conclude the description of GCC. We have defined

this universe more narrowly than seems natural, in order to prepare for the
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possibility of "coding" the construction of carriers by means of projections.
The artificial character of those restrictions is on reflection seen to be
inessential: the freedom of continuing and creating dependencies in a finite

set of GC-carriers is not affected by them.

2.9. DRESSINGS, FRAMES AND RESTRICTIONS

Stage 0 1 2 3

Dep.tree
with jumpfns -
and gen.

values

fig. 11

Fig. 11 shows the possible history of carrier 1 through the stages 1,2,3.
(The labelling with jumpfunctions and generated values is restricted to the

changes w.r.t. the situation at the previous stage.)

2.9.1. DEFINITION. For each z, Ez is a mapping from the set {n:n fresh at
stage z} into N, defined by

Ez(n) = the part of € which becomes available only after stage z,

i.e. if we write UPBz for the common length of the initial segments of the
fresh carriers that have become available through the stages 1,...,z

(UPB0 = 0), then

Ez(n) Ax.en(UPBz+x)
E stands for 'empty', we call Ez(n) the empty part of € at stage z.
Note that Eo(n) is defined for all n and equal to en. -

From fig. 11 we can read for each z ¢ {1,2,3} a list of equations re-
lating €, to empty parts of fresh carriers at stage z. At stage 1 we find:

(1) El.= e]l(egfeé?, €, = mZ*El(Z)’ €4 = m3*E1(3), or equivalently
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2) €, = [mz]IEl(Z), é3 = [m3]|El(3), and substituting (2) in (1)

I~

yields:

3) g, = e1|([m2]|E1(2), [m3]|E1(3)).

At stage 2 we find additional equations for El(2) and El(3)' First €, jumps

to €, and €, at this stage, with jumpfunction e

2% % 3’

O] B (3) = ey] (B, (2), E[(4)).

Recall from 2.7 that if k jumps to n and m at stage z+l, then the values of
€, Dot yet available (i.e. Ez(k)) are determined from the values of € and
s;'that are not yet available (i.e. Ez(n) and Ez(m)) via the jumpfunction.)

Moreover for €, and ¢

2 4, Ve generate the values mé and m] respectively at this

A
stage:

(5) E (2) = [mé]|E2(2), E (4) = [mA]IEZ(A).

We can substitute (5) in (4), and the resulting equation and (5) in (3), to
find

6) ey = ] Tmy] CmyJ[Ey (), [my]] Ceg | (Tmp [, (2), Ly T[E, (6D,

At stage 3 we find the following additional equations for E2(2) and E2(4):

7 E,(2) = e,|E,(0),
(8) E,(0) = [mB]IEB(O),
9) E,(4) = [m1|E;(4),

which yield together with (6) an even more unreadable equation for € -

2.9.2. It will be clear that for each carrier n at each stage z we have an

equation

e, = Fz(srC(n,Z)),

where Fz is a continuous mapping from N into N and src(n,z), the source
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for € at stage z, is an element of N constructed from empty parts of fresh

carriers at stage z, i.e. src(n,z) is a sequence of which no values are

known to us at stage z.

2.9.3. The dressing for € at stage z, is a standard neighbourhood function
for Fz, the frame for € at stage z is a structure which tells us how the
source src(n,z) is constructed and from which empty parts.
The mappings dn: z » the dressing for e, at stage z, and

fn: z® the frame for e at stage z
will play a key rdle in the imitation of GC-carriers by means of projectionms.
We shall not give the formal definition of dn and fn here, but we shall ex-

plain their construction, using the example of fig. 11. For that explanation

we need some tools.

fig. 12

Fig. 12 shows three pictures of frames.

2.9.4. DEFINITION. A frame is a finite strictly binary tree, i.e. a finite
tree in which each node has either two immediate descendants or none at all,

the terminal nodes of which are labelled by natural numbers.
(A detailed formal treatment of frames is given in chapter 3.)

Let D be either K or N. Let p: D x D + D, the pairing on D, be A or j re-
spectively. (For A see 1.3.23.)
Fig. 13a shows a finite strictly binary tree T, with a mapping ¢ from its

terminal nodes into D.
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p(a,p(p(b,c),e)

(p(b,c),e)

o
O <«
<Y

1 (a) N
.o [

fig. 13

Fig. 13b shows how this mapping can be extended to one with domain all nodes
of T.

2.9.5. DEFINITION. (i) The extension of a mapping ¢: terminal nodes of T -+ D

is the mapping Y: nodes of T - D which satisfies:

v(n)

o(n) if n is a terminal node of T,

y(n) = p(a,b) if n is non-terminal in T, and @ and b are the
values of y on the left hand and the right hand

immediate descendant of n respectively.

(ii) The T-nesting of ¢: terminal nodes of T - D is the image of the top-
node of T under the extension of ¢.
(For a formal treatment of nestings see chapter 3.)

If a € D is the T-nesting of ¢, then we say that ¢ represents a in T.

2.9.6. CLAIM. Application .|. is distributive over nesting, i.e. if ¢ ¢ N

is represented by ¢' in T as in fig. 14a, and Y € K is represented by y'

in T as in fig. 14b, then y|¢ is represented as in fig. l4c.

e e, Ix,

Xo X3 a ) ey b exlxy eglxge
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PROOF. See 3.2.16(c) . 0O

2.9.7. Now we show dnz and fnz are constructed for z = 0,1,2,3, n = | where

the history of carrier 1 through the stages 0,1,2,3 is pictured in fig. 11.

Stage 0 1 2 3

fig. 11 (repeated)

At stage 0 the source for €, is just e = Eo(l). The values of €, are com-

1
puted from those of the source via the identity mapping. -

We put dl(O) = id, fl(O) = °1, the frame with a single node, labelled 1.

At stage 1 first Eo(l) is made dependent on EO(Z) and E0(3) via e, i.e.

1
we have an equation

Eq(1) = e [|x;»

where X, can be represented as in fig. 15a.

NN N A

| I ] l I l l {

E (2) E_(3) [m,JIE (2) E](Z) B
o, 2y, mgliE ) | M) g Imad b mere(, )
a b N :
fig. 15

Next we generate values, m, for €,y and my for €,. We can now refine the

3
representation of X, to the one given in fig. 15b. We use distributivity of

application over nesting, and find that
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X, = g lv,

where g, is represented as in fig. 15¢, and wl as in 15d. We put dl(l) =
=e;g), the source for € at stage 1, src(1,1) is wl’ and fl(l) is the
structure obtained from fig. 15d by replacing EI(Z) and E](3) by their
names 2 and 3 respectively.

At stage 2 we first decide that
E,(3) = e,|(E,(2),E, (&),

i.e. the representation of the source src(l,1) as given in fig. 15d. is re-

fined to the one of fig. 16a.

N AN LA

] ] 11 I | E,(2)

B (D) eyl (B (2),E,(4)) id , B (D) JE),E@) i

src(l,1) a 2 b E](Z)

E, (4)
Xo c

X2

fig. 16
Using distributivity we find that
sre(1,1) = £,[x,,

f2 represented as in fig. 16b, X9 represented as in fig. l6c.
After generating values the representation of X, can be refined to the one

in fig. 17a, application of distributivity yields
Xy = 8y l¥,s

g, as in 17b, b, as in 17c.
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{ l
[m&]lEz(Zﬁ 1 [mé] ! 1 EZ(Z) 1 I
[mé]IEz(g)']lE @ [mzl [mAJ E2(2) E2(4)
9 mg 2 a &y w2=src(l,2) c
fig. 17
wz is the source for €, at stage 2, src(1,2). The dressing for €, at stage

2, d1(2) = d](l): £, {Ez, the frame for e,
by replacing the empty parts of carriers in 17c by their names. (i.e.
E2(2), 4 for E2(4)).

At stage 3 we decide that

at stage 2, f1(2) is obtained
2 for

E,(2) = e2|E2(0)
i.e. 17¢c is replaced by 18a. Using distributivity we find that we now have
src(1,2) = f3|x3,

f3 and X3 represented as in 18b and c.

] ! I
e21E2<oﬂ i e, 1 l E,(0) ] 1
eZIEz(O) EZ(A) e, id EZ(O) E2(4)
src(l,2) a f3 b X3 c
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l

=t ‘

" oo ] } E5(0)
[mOJIE3(0) [mZ]|E3(4) [md] [ma] E3(0) E3(4)
X3 [mOJIEB(O) a g4 bi ¢3=src(l,3) o
fig. 19

After generating values we can replace 18c by 19a; using distributivity we

find

that

X5 = 83l¥s>

g4 and ¢3 represented by 19b and c respectively. As before w3 is src(1,3),

the source for e, at stage 3, dl(3) = dl(2): £3 : g f1(3), the frame for

1

€, at stage 3, is obtained from 19c by replacing empty parts by their names.

2.9.8. The example is characteristic for the construction of dn and fn in

general. Summarizing:

- The frame for e, at stage 0 is °n.

We
(1)

(ii)

(.

obtain fn(z+T) from fn(z) as follows:

if none of the labels of fn(z) refers to a carrier which is made de-
pendent on one or two others at stage z+1, then fn(z+1) = fn(z),

if k is a label of fn(z), and €y jumps to e, at stage z+1

e. Ez(k) = eIEz(m), e the jumpfunction) then k is replaced by m to ob-

tain fn(z+]),

(iii)

if €1 jumps to € 2En. 0 then the label k is replaced by the pair m,,m,

to obtain fn(z+13; that is to say, we extend the tree of fn(z) by
adding two immediate descendants for each terminal node with label k,

label these new terminal nodes with m, and m to the left, m

2tO

1 20 ™

the right, and erase the original label.

- The dressing for e, at stage 0 is id.

dn(z+]) has the form dn(z): f

n,z+1 :gn,z+l'
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fn 241 is represented by a mapping from the terminal nodes fn(z) into K,
’

which assigns to a terminal node n with label k the value id if € does
not jump at stage z+l, and the jumpfunction if it does. -

g
n,z+1
to K, which assigns to a node n with label k the value [mk], where m  are

is represented by a mapping from the terminal nodes of fn(z+l) in-

the values generated for e at stage z+l1.

2.9.9. Recall that in the process of generating values we have to determine
at each stage a value upb. The construction of dressings for carriers can
be used to reformulate the computation of upb. We illustrate this by means
of the example above. (2.9.7.)

At stage 1 we found that

e, = dl(l)|src(1,1)

where src(l,1) is represented as in fig. 20a. (=fig.15d.)

2 4 with jumpfunc-—

After having decided that at stage 2, €3 jumps to €, and ¢

tion e, we have

e, = dl(l): f2|X2,

Xy represented as in fig. 20b. (=fig.l6c.)

At stage 2, € 1 must become available. To achieve this we choose a suitable
initial segment of the guiding sequences gs, and gs, as generated values
for €, and €4 (the carriers on which o depends) respectively. To find

such suitable initial segments, we substitute s, for E](n) in fig. 20b,
which yields 20c. The sequence represented in fig. 20c is called the

guiding sequence for e, at stage 2 g8 -

1

N

] !
E.(2)
El(z) E1(3) 1 1 I gs, I I

<

fig. 20
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Then we determine the smallesﬁ z such that
(d](l):fz)(<l>*gs](z)) # 0.

If we generate gsz(z) and gsa(z) for €, and € respectively, then we shall

find that d,(2) = d,(1): £,:[gs(2)], whence there is a y such that
1) (d1(2)l¢)(1) =y

for all ¢, i.e. in particular we have

@ e (D = (@ D]sre,2))(1) = y.

We shall not generate EE;KZ) and EEZ(Z) however. Before generating values

we repeat the construction of a minimal z as above for all non-fresh car-
riers, the maximum of all thése values we call upbz, and we generate for each
fresh n §5;11+upb2). But then (1) and (2) will hold a fortiori, and we have
similar equations for all non-fresh carriers at stage 2. Since at least one
value is generated for all fresh carriers, we are also sure to have deter-

mined €_1 for e¢_ fresh, so we have ¢_1 for all m.
n n m

In general: we generate values for €y B fresh at stage z+1 in such a way

that

(3) Vadywel(d_(z+1) [¢)(2) = y1.
Together with the equation

4) €

dn(z+1)|src(n,z+l)

k=)

this yields

(5) €

N range (A¢.d (z+1)|¢).
z n

Finally we put

2.9.10. DEFINITION.
(i) A restriction is a pair (e,F), e € K, F a frame

(ii) The restriction for €, at stage z is the pair (dnz,fnz)
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The restriction for e, at sfage z contains all information that is available
to us on the values of.en at stage z. (5) might suggest that this informa-
tion is already contained in dnz. Note however that the growth of the
dressings is regulated by the frames, that is to say, the relation between
dn(z+1) and dnz depends on fn(z) and fn(z+1). Note also that the frame for
e, at stage z contains information on the relation between the values of €

and the values of other sequences.

2.9.11. REMARKS. (a) It might appear strange that we should find such high-
ly intensional information as the names of the carriers on which € depends
among the extensional data (as labels of the frame) for €0 at stagg z. How-
ever, they serve as markers only: if 7w is some permutation of N then we can
just as well replace all names of carriers m in the frame by the value mm.
(The use of the actual names is a matter of convenience.)

(b) Fig. 21 shows the frames and the dependence trees for the carrier e] of
our example in the stages 0-3. There is an obvious resemblance: the frame
can be obtained from the depence tree by deleting its non-terminal labels,
and contracting pairs of nodes n,n', where n' is the only immediate descen-

dant of n, into a single node.

Stage 0 1 2 3

Dep.tree o

[Frame

o

fig. 21
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2.10. THE CONSTRUCTION OF GC FROM GCC

frame F tree T of F

fig. 22

2.10.1. DEFINITION. (of eF)
Let F be a frame with tree T. The nest of GC-carriers p is the T-nesting
of the mapping ¢: terminal nodes of T - GCC defined by

¢n = g, iff k is the label of n in F.

k
(See fig. 22, where €p = J(elfJ(J(egfsl?’eé?).)

2.10.2. DEFINITION (of GC, the universe of GC-sequences).
GC = {eleF : (e,F) a restriction},

i.e. each GC-sequence ¢ is given to us by a restriction (e,F), the Znitial
restriction for €, and conversely, each restriction is the initial restric-
tion of some € € GC. If (e,F) is the initial restriction for € ¢ GC, then

e is the Znitial dressing for e, and F the initial frame.

2.10.3. REMARK. One may compare the construction of GC from GCC to the con-
struction of LS from PLS (the universe of proto-lawless sequences). The
data available to us on the values of a proto-lawless o at stage z of its
construction, consist of:

(i) an initial segment v of a, and

(ii) the name o of the source of future values (which plays a rGle in de-

ciding the extensional equality betwee proto-lawless sequences).
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The restriction (e,F) for a carrier

(v,a) for a proto-lawless sequence.

at stage z, is the analogon of the pair

Proto-lawless sequences are, unlike

GC-carriers, individualistic. There is a condition on the set Rz of all

available pairs (v,0) at stage z in PLS namely
Vodiv((v,a) € RZ).

Now LS can be defined as

LS = {v*a: (v,a) € RO},

where RO satisfies

(1) Vadlv((v,a) € RO)
and

(2) Vv3a((v,a) € Ry),

i.e. LS is obtained from PLS by 'prefixing' a complete (i.e. satisfying con-
dition (2)) and consistent (i.e. satisfying condition (1)) set of initial
pairs (v,a).

Analogously, GC is obtained from GCC by 'prefixing' a complete set of ini-
tial restrictions. (Complete in the sense that all restrictions occur as
initial restriction.) In this case there is no consistency condition, at

least not modulo extensional equivalence.

2.10.4. LEMMA (Closure of GC under continuous-function-application and
pairing).

If €,n € GC and e € K, then e[e € GC and j(e,n) € GC.

PROOF. If € € GC is given by the initial restriction (£,F), then e]e is
given by (e:f,F).

If € = f[eF and n = g[sG, then j(e,n) = (ng)[j(eF,eG). (For £ A g see
1.3.23.)J(€F,€G) =

a common topnode, F to the left of G. (See fig. 23, recall the definition

€FAG’ where F A G is obtained by putting F and G below

of nesting, 2.9.5.)

So j(e,n) has the initial restriction (fAg,FAG). [
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N
o
o

-
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™
-

™
k=

€ € 0
€1
€ €0 L €2 €1
- - G - j(EF,EG)—‘:EF/\G -

fig. 23

2.10.5. The restriction for € at stage z (eeGC) is defined as follows

(example).
The restriction for € at stage 0 is the initial restriction for e. Let

this restriction be (e,F), as in fig. 24a, then
(@)) € = eleF,

€., represented as in fig. 24b.

F
At stage z+1 we have equations

e = dn(z+1)|src(n,z+1)

for each n, in particular for the n which occur as label in F, so the re-

presentation of ep can be refined to the one given in fig. 24c.
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/\,/\j/\

dl(z+1)|src(l,z+l) I
d. (z+1)|src(2,z+
F b ep 2

1
[¢

! ) 4

src(l,z+1) src(2,z+1)
dl(Z+]) £ d2(z+1) d
src(F,z+1) e
fig. 24

Using distributivity of .|. over nesting we find that

(2) = f|src(F,z+l1),

°F
f represented as in fig. 24d, src(F,z+1), the source for €p at stage z+l
represented as in 24e.

We write dF(z+l) for the mapping f of (2), and put:

the dressing for e at stage z+1 is e :dF(z+l), e as in (1), i.e. the ini-

tial dressing. dF(z+1) is the dressing for ep at stage z+l.

For each n we have a frame fn(z+]) at stage z+l and a corresponding repre-

sentation of src(n,z+1), the source for €, at stage z+1 (see fig. 25).

/\ /\ E 1

3 4 | J “ Epn®
E_(3) E 4

fl(z+1) z+1 src(?j;+]) fZ(Z+]) src(2,z+1)

fig. 25




61

N

I I ! ’
src(l,z+1) src(2,z+1) i } Ez+l(3) 3 4

src(F,z+1) E . (3) E' (4) fF(z+1), the frame for

z+1 z+1
src(F,z+1) € at stage z+l

fig. 26

So the representation of src(F,z+1) of fig. 24e (=fig.26a) can be refined
to the one of fig. 26b, by simply substituting the representation of
src(n,z+1) for src(n,z+1) itself, for each label n of F.

The frame for € = eIeF at ét&ge z+l is obtained by replacing empty parts

by their names in this last representation, or equivalently by substituting

fn(z+1) for each node n of F with label n, and deleting the original label
We write fF(z+1) for the frame for e[eF at stage z+l1, and put:

the restriction for e = e]eF at stage z+1 is (e:dF(z+l), fF(z+l)).

2.10.6. REMARK. GCC is a subset of GC, the carrier € is given by the ini-
tial restriction (id,°n). (°n is the frame with a single node, labelled n.)
However, there is no extensional distinction between the carriers and the
other sequences of GC. We know that for each k, all but finitely many car-
riers have an initial segment Az.0(k). Now let € be such a carrier. If we
are presented with the sequences €n € GC and sklzg € GC (given by the re-
striction (sk,°m)) there is no way—bf deciding, labking at their values
only, which of the two is the carrier: it may the first one, from which
the second one is obtained by deleting the first k zero's (as is actually
the case), but it may also be the second one, from which the first one is
obtained by prefixing Az.0(k).

Thus, the undesired side-effects of our method of guaranteeing that for

each n, E;(z+l) is available at stage z+l, are neutralized in GC.




62

2.11. GCC(C) AND GC(C)

In this section we relativize the notions of GC-carrier and -sequence

to special subsets of K.

2.11.1. DEFINITION (of GC-carriers w.r.t. C c K).
Let C be a subset of K. GCC(C), the universe of GC-carriers w.r.t. C, is de-
fined as GCC, except that if we decide to make a carrier jump at some

stage, then our choice of a jumpfunction is restricted to the set C.

Note that GCC itself is GCC(K).

Concepts like the dressing for € at stage z, the frame for € at stage

z and the restriction for € at stage z, are defined for €, € Gee(C), C ar-

bitrary, exactly as in the special case €y € GCC.

For any restriction (e,F) we can arrange in GCC, by a proper choice of

jumps, jumpfunctions and generated values, the existence of an €1 such that

g = e .
k" ele
Therefore it makes sense to define GC, the universe of GC-sequences, as the

set of sequences of the form e[sF where (e,F) ranges over all restrictioms.

In GCC(C), the dependencies that can be created between one carrier
and a nest of others are limited.
We can achieve that €5.= e]eg‘or EE-= el(em,en) for e € C, by making ¢
jump at stage 1 with jumpfunction e.

k

. . x . x
It is also possible to have g, = [v]:e:s fsm, or g = [v]:e:s |(em,en),

k
where x = 1th(v), e ¢ C,by making € dependent on the empty part sxlém or
X - . . — .
+
s I(SE}EE? of ae.or (Eﬂfsg? respectively at stage z+1, via the jumpfunction
e, after having generated the sequence v for €t

Combination of these two possiblities can yield the relation

o]
| =
]

e[([v]:fl:sx|eE?[u]:f2:sy|eE? =

e: (([v]:fl:sx)Aau]:fz:sY))1(EE,82)

where e,fl,f2 are elements of C.

In general, we can create dependencies

e, = ele

k

F
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in GCC(C), where e is constructed from elements f e C and neighbourhood-

. z o ..
functions of the form [v] and s~, by means of composition and pairing.

2.11.2. DEFINITION (of dependency-closed).
A subset C of K is dependency—closed iff
(i) Wv([vJeC), whence also id ¢ C,

(ii) vz(s®c),

(ii) C is closed under composition :,

(iv) C is closed under pairing A.

2.11.3. LEMMA. If C <s dependency-closed then:

(a) For each n and z, the dressing for €, € GCC(C) at stage z, dn(z), be-
longs to C.
If F = fn(z), the frame for e, at stage z, and x 18 the number of
values generated through the stages z' < z, for each of the carriers
e, that are fresh at stage z, then e = dn(z): sx|eF, dn(z): s¥ e C.

(b) If e € C, F an arbitrary frame, then we can arrange for the existence

of an e € GCC(C) such that & = e|eF.

PROOF.

(a) Trivial from the construction of dn and the definition of dependency-
closed. (Note that if C is closed under pairing, then it is also closed
under nesting.)

For the equation €, = dnz :sxle recall that by definition

€ = dnz]src(n,z). src(n,z) is E?e nesting of empty parts of carriers.
These empty parts can be obtained from the carriers themselves by de-
leting the values already generated. If the number of these values is
x, and F = fn(z), then src(n,z) = sxleF.

(b) We give a characteristic example. Let F be the frame of fig. 27a. We

shall arrange that

€3 = e]eF.
! /\ " )
0 0

4

0 0 i

F 1 2
1 2 2
a b c
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First split F into F1 and F2 as in figs. 27b and c, thereby introducing a

new label 4.

At stage 1 make €q jump to €024 with jumpfunction e, i.e.

(1) e§‘= e|(egfsé?.

Choose values for €42€12€, and eo in such a way that

(2) ei(X) = eFZ(X),

where x = 1 + upbl. (I.e. we make the choice of values for €4 dependent
on the choices for €158y and éb:) -

Now split F2 into Fé_aﬂg F4 as in figs. 28a and b

AN | AN

fig. 28

At stage 2 make €, jump to (es,eo) with jumpfunction id, i.e. we arrange

that -

(3) Az.e4(x+z) = j(Az.eS(x+z),Az.eo(x+z)).

Choose values for €02€1°€9 and €g in such a way that those for €5 coincide
with those for €F, ;'jfhlfhzx i.e. we arrange that now -

(4) i(xw) Eg(xw) ,
where y = 1 + upbz-

At stage 3 finally we make €g dependent on (el,ez) via id, i.e. we arrange
that - -7

(5) Az.es(x+y+z) = j(Az.el(x+y+z),kz.82(x+y+z)).
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From (3) and (5) we now read:

(6) Az.ea(x+y+z) = \z.e, (x+y+z).
Fy

From (4) and (6) we find
(7) €, =€
From (1) and (7) we find

(8) €4 = el(egfer).

Obviously j(e ) = €ps i.e. we have the desired relation. [J

»E
0 F2

This lemma justifies the following

2.11.4. DEFINITION (of GC(C), C dependency-closed).
If C ¢ K is dependency-closed, then GC(C), the universe of GC sequences

w.r.t. C, is defined as
GC(C) = {elaF te € C, F a frame}

where g is a nest of GC-carriers w.r.t. C.

2.11.5. REMARKS.
(a) We shall not define GC(C) for arbitrary C.
(b) Since dependency-closed sets contain all mappings [v] and sz, remark

2.10.6 also holds for GC(C), and GCC(C), C dependency-closed.

2.11.6. LEMMA (closure of GC(C), C dependency-closed, under pairing and
e|.,e € C.)

If €,n € GC(C), C dependency-closed, then ele e GC(C) and j(e,n) e GC(C).

PROOF. See 2.10.4, for e!e € GC(C) use that C is closed under composition,
for j(e,n) € GC(C) use that C is closed under pairing. [

2.12. PROJECTION MODELS FOR GC(C)

In the construction of projection models for GC(C) we shall proceed

as follows:
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(a) We construct a universe which imitates the behaviour of {Az.fnz tne N},
where fnz is the frame for the carrier e, € GCC(C) at stage z.

(b) We define a (class of) universe(s) imitating the behaviour of
{Az.dnz tne N}, dnz the dressing for e, € GCC(C) at stage z.

(c) From the imitation of dressing sequences under (b), we define the imi-

tation of carriers, using the observation that
€z =y Va[(dn(z+1)[a)(z) =yl

cf. 2.9.9 (3) and (4).

(d) From the imitation of carriers we define the imitation of GC(C).

We turn to the projection model construction in chapter 4. First we

give the formal theory of frames and nestings in chapter 3.
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CHAPTER 3

FRAMES AND NESTINGS

In this chapter we introduce the tools that are needed for the defini-
tion of projectionmodels of GC(C)-sequences, and the derivation of their
properties. The reader should concentrate on the definitions that are pre-
sented, and try to get used to the notation. Once the definitions have been
understood, the facts and lemmata will be simple. It suffices to form an im-
pression of their contents. It is not necessary to study them in full de-

tail.

3.1. FRAMES

fig. 1

Fig. la shows a picture of a finite strictly binary tree. The little
circles are the nodes of the tree, the highest node in the picture, marked
T, is the top-node. All nodes, except the top-node, immediately descend
from (i.e. are connected by a line with) a higher node. A node without
descendants is a terminal- or bottom-node (the node marked B in fig. 1).
Bottom-nodes will also be called branches; this name is explained by the
identification of the node with the path that connects it with the top-node.
Each non-terminal node has exactly two immediate descendants (hence strict—
ly binary tree).

In fig. 1b all nodes of the tree, except the top-node, are marked by

zero or one; zero for left-hand immediate descendants, one for the right-
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hand immediate descendants. Thus each node is identified by a finite 0-1
sequence: the top-node by < >, and e.g. the nodes marked A and B by <0, 1>
and <0,1,1> respectively.

We might define a strictly binary tree in the usual manner, i.e. as a

finite set S of finite 0-1 sequences, satisfying two closure conditions:
(1) Jw(v*weS) > v € S,
(2) v%<0>€S <> vx<1> ¢ S.

However, we shall mainly be interested in the relation 'v is a branch of S',
and less in the more general 'v is a node of S'. Therefore it is slightly

more economical to define trees as sets of branches, as follows:

3.1.1. DEFINITION (of finite strictly binary tree).

(a) A finite strictly binary tree T is a non—empty finite set of finite
0-1 sequences such that
(1) veT A vxweT > w=< >,
(ii) Iw(v*<0>*weT) <> Iw(ux<I>*weT).
We call the elements of T branches, terminal-nodes or bottom-nodes.
(i) states that each branch is maximal w.r.t. , (ii) corresponds to (2)
above: it expresses that T is strictly binary branching. (The tree of fig. 1
e.g. would be formally defined as {<0,0>,<0,1,0>,<0,1,1>,<1>}.)

(b) If T is a finite strictly binary tree, then
nT 2 def {v : 3w(v*weT) }.

We call the elements of nT the nodes of T. If v and w are nodes of T and

v { w, then w descends from, is a descendant of or is below v. If

w = vk<x> for some x € {0,1}, then w is an Zmmediate descendant of v.
(c) Equality between finite strictly binary trees is extensional

equality between sets, i.e.

T=S8 Edef Vv (veT <« veS).
3.1.2. NOTATION. We use T,S,TO,SO,... as variables for strictly binary
trees. Script letters b,n with sub- or superscripts are used as syntactic

variables for finite 0-1 sequences. b is used especially for branches of
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trees, n for nodes.

3.1.3. PACTS. (a) If T is a finite strictly binary tree, then nT satisfies
(1) and (2) above.

(b) The empty sequence is a node of every finite strictly binary tree.
We call it the top-node.

(c) Branches are nodes, i.e. T ¢ nT, the only descendant of a branch is
the branch itself.

(d) T = S iff nT = nS (the second equality is extensional set equality).

fig. 2

Fig. 2 shows two pictures of frames: finite strictly binary trees with a
natural number attached as a label to each of their branches. Formally we

put

3.1.4. DEFINITION (of frame).

(a) A frame F is a pair <T,¢> consisting of a finite strictly binary
tree T, the tree of F and a mapping ¢ : T ~ N, the Zabelling of F.
- b e F, read 'b is a branch of F', stands for 'b is a branch of the tree
of F'. (If F = <T,¢> then beF = beT.)
- nF, read 'the nodes of F', stands for 'the set of nodes of the tree of F'
(1f F = <T,¢> then nF = nT.)
- ZbF, read 'the label of b in F' stands for 'the image of b under the
labelling of F'. (If F = <T,¢> then KbF = ¢b.)
- LF, the set of labels of F, is the set {n:3b ¢ F(Kb =n) }.

(b) Two frames F and G are equal iff their trees and labellings are

extensionally equal, i.e.

F =G =, ¢ Vbn(beF A £F=n «> beG A £,G=n).
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3.1.5. EXAMPLE. The frames of fig. 2 are formally defined as the pairs

< T,¢$>,<S,y>, where

T = {<0,0>,<0,1>,<1>}, ¢(<0,0>) = 0, ¢(<0,1>) = 1, ¢(<1>) = 2 and
{<0>,<1,0,0>,<1,0,1>,<1,1>}, $(<0>) = P(<1,0,1>) = 3, ¥(<1,0,0>) =1,
P(<1,1>) = 0.

3.1.6. NOTATION. We use F,G,H,F_,G.,H

0°%o as variables for frames.

0% "

3.1.7. DEFINITION. Let n be a natural number, then °n is the single-node
frame with label n, i.e. °n satisfies
(i) be(°n) <> b=< >,

(ii) £< >(°n) = n.

Note that instead of °n we sometimes write (°n); obviously £(°n) = {n} and
(°n)=(°m) <> n=m.

Fig. 3 shows how two frames F and G can be paired into a single frame H,

by putting them below a common top-node, F to the left of G. We denote this

pairing operation by A.

fig. 3

3.1.8. DEFINITION (of FAG). Let F and G be frames. F A G is the frame which
satisfies:

(i)  beFAG « HbleF(b=<0>*b]) v abzeG(b=<1>*b2),

(ii) Vb e F(£ p (FAG) = EbF),

<0>*%
(iii) vb € (L b(FAG) = ZbG).

<I>x
3.1.9. FACTS. £(FAG) = £F v £G and FAG = F'AG' <> (F=F')A(G=G').
3.1.10. REMARK. One easily verifies by comparing FAG and GAF (F and G as in

fig. 3) that A is not commutative. If one compares FA(GAF) with (FAG)AF, it

turns out that A is also not associative.

3.1.11. DEFINITION (of ht). Let F be a frame. ht(F), read: the height of F,
is the length of the longest branch of F, i.e.
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ht(F) = max{1th(b) : beF}.

def
3.1.12. FACTS (properties of ht).
(a) ht(F) = 0 iff In(F=°n),

(b) ht(FAG) 1 + max(ht(F),ht(G)),
(c¢) ht(F)>0 -> 3GH(F=GAH).

3.1.13. PROPOSITION (induction over frames). Let Q be a property of frames,
then

vn Q(°n) A VFG(Q(F)AQ(G) + Q(FAG)) -~ VH Q(H).
PROOF. By induction over N w.r.t. ht(H). 0O

3.1.14, DEFINITION. (a) FRAME denotes the set of frames.
(b) A lawlike sequence of frames is a lawlike mapping § : N - FRAME.

3.1.15. NOTATION. We use lower case script letters 6,9,6',g',60,go,... as

variables for lawlike sequences of frames.

F

0 1 1 2

6] 6] I I6

VANNEVAN

1 3 3 4
a b
fig. &4

Fig. 4a shows a frame F and 4]MF for some lawlike sequence {§ of frames.
If we 'replace' each terminal node b ¢ F by the frame 6(£bF) (and delete
the original labelling), we obtain a new frame G (see fig. 4b). For the
frame G thus constructed from F and § we write F[{].

Note that (°n)[4] is just $n. Moreover, the replacement of terminal
nodes by values of {§ is distributive over pairing, i.e.

(FAG)[4] = F[41 A GL4]. This leads us to the following definition by recur-

sion.
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3.1.16. DEFINITION (of F[4] and G 2 F). (a) Let § be a lawlike sequence of
frames. F[{] is the image of F under the mapping from FRAME into FRAME de-
fined by the following recursion equations:

(°n)[§] = §n, (FrG)[4] = FL4IrGL4].

If G = F[4] we say that § produces G from F.

(b) G>F

m

F<G % def 34(G=FL41) .

If G 2 F then we say that G can be produced from F.

3.1.17. FACTS.

(a) F=G » FL§1=GL{].

(b) L(FL4]) = Vel £(fn).

Tc) nF < n(F[§1), G 2 F > nF c nG, in particular VbeF(ben(F[§])) and
G = F » VbeF(benG) .

(d) ht(FL[§]) = ht(F), G = F > ht(G) = ht(F).

3.1.18. LEMMA (explicit characterization of F[41).

Let F be a frame, f a lawlike sequence of frames. Then b is a branch of
FL4] ©ff <t has the form b]*bz, where b1 € F and b2 € f§n, n the label of
b] in F. The label of such a branch b = b]*b2 in FL§] is the label of b2

in {n.
PROOF. By induction over frames. See also fig. 4. [

3.1.19. LEMMA (properties of F[4], G = F).
(a) (FL$1)[g] = FlAn.4nlgl].

(b) FL41 = F[g]l <> VnelF(§n=gn).

(¢) F[An.(°n)] = F.

(d) F[4] = F <> VnelF(§n=°"n).

(e) The >-relation between frames is transitive and reflextve.

PROOF. For (a), (b) and (c) use induction over frames and 3.1.9:
FAG = F'AG' <> F=F' A G=G', £F c £(FAG) and £G c L(FAG),
(d) is a corollary of (b) and (c), (e) follows from (a) and (c). [

3.1.20. DEFINITION. FNGEdef F>G A G2F.

If F ~ G then we call F and G equivalent.
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E.g. the frames F and G of fig. 5 are equivalent since for {§ and g satis-

fying §0 = °1, §1 = °3 and gl = °0, g3 = °1 we have G = F[{] and F = G[g].

fig. 5

3.1.21. FACTS.

(a) If F and G are both single-node frames, F = °n and G = °m say, then
F ~ G (F=G[Ak.(°n)], G=F[Ak.(°m)]).

(b) If F ~# G then F and G have the same height, nodes and branches (cf.
3.1.17, (e¢), (d)).For the relation between their labellings see the

next lemma.

3.1.22, LEMMA (alternative characterization of equivalence between frames).
Two frames F and G are equivalent iff there is a lawlike a: N -+ N, which
maps LF one-one onto LG, such that

G = F[An.%an].

PROOF. (<) If G = F[An.%an] then G 2 F by definition. If a maps £F one-one
onto £G, then we can find a b : N » N such that VnelF(b(an)=n). For this
b we have F = G[An.°bn] i.e. F 2 G.

(=) Assume that F & G, G = F[4], F = G[g].

Then F = (F[{1)[gl, i.e. F = FlAn.4nl[gll, by 3.1.19(a).

Hence VnefF(§nlgl=°n), by 3.1.19(d).

Hence VnelF(ht(4n)=0), by 3.1.17(d).

So VnelFIm(4n=°m), and hence G = F[{J = F[An.%°an] for some a.

This a maps LF onto £G by 3.1.17(b), and it is one-one on £F, since it
satisfies VnelF(g(an)=°"n). 0

3.2. NESTINGS

3.2.1. DEFINITION (of pairing w.r.t. ND). Let D be a set,~D an equivalence

relation on D. A mapping p:DxD =+ D is a pairing operation on D w.r.t. ~p*
iff
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Vxyx'y'eD(p(x,y) = p(x',y") oxv o xt A y~y').

P is a pairing operation on D iff there is an equivalence relation ~p on D
such that p is a pairing w.r.t. ~p*
3.2.2, EXAMPLES.
(a) j is a pairing on N and N w.r.t. extensional equality.
(b) A is a pairing on K w.r.t. the equivalence =, defined by
e =~ f=Va(ela=fla). (See 1.3.24(e).)
(c) A is a pairing on FRAME w.r.t. extensional equality as defined in
3.1.4(b).

3.2.3. REMARK. The more usual definition of pairing claims the existence of
pairing left-inverses PysPy> defined on the subset {p(x,y) : xeD,yeD} of D,
satisfying p]p(x,y) = x and pzp(x,y) = y.

In example (a) such pairing left-inverses j],jz exist. They are in
fact pairing inverses since j(jla’jza) =aforae N or acelh.

In examples (b) and (c) pairing left inverses can be defined, but their

existence is irrelevant for our purposes.

3.2.4. FACT. For each n, the mapping (an,bn) » 3(a,b)(n), a,b lawlike ele-
ments of N, is a pairing on the set of finite sequences with length n, w.r.t.
equality; k1 and k2 (cf. 1.3.5(d), 1.3.6) are the inverses to this pairing.
Let D be a set with a pairing operation p:D x D.+-D. (We shall be interest-
ed in the cases D= N, D= N and D = K, with p = Jj, p =] and p = A respec—
tively.) Let ¢ be a mapping from IN into D.

= p(p(¢0,p(91,90)),92)

5 p(40,p(¢1,40)) 2 —¢2

0 ¢lz 40 ~— —=p(91,90)
¢1 $0 a b

fig. 6

Fig. 6a shows a frame F with ¢[(£F). ¢ induces a mapping b ~ ¢(£bF) from

the terminal nodes of F into D. Fig. 6b shows how this mapping can be
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naturally extended to a mapping ¢' : nF - D by putting:

¢'b = ¢(£bF) for all branches b of F,

¢'(n) = p(¢' (nx<0>), ¢'(n*x<1>)) for non-terminal nodes n of F,

i.e. the image of a non-terminal node under ¢' is found by pairing the
values assigned to its immediate descendants.

For the image of the top-node under ¢' we write \)?’pq), we call it 'the F-

nesting of ¢ (w.r.t. p)'. Formally we put:

3.2.5. DEFINITION (of vF). Let D be a set with a pairing operation

pP:D x D> D, and let ¢ be a mapping from N into D. By vg’p¢ we denote the
image of F under the mapping from FRAME into D, defined by the recursion
equations

D’ > s ’
visnyo = én,  vprPe = p(2*Pe, vO°Py).

If a € D and a = vg’pqﬁ, we say that a is the F-nesting of ¢ (w.r.t. p).
A
’

¢.

n

N,j . N,j . 1 K K
For Vo ¢ we write \)F¢, for Vg ¢ we write \)F¢, and we put \)F¢ \)F

3.2.6. EXAMPLES.

¢ : N>N satisfies

0 $0=2, ¢1=0 vpd = 3(2,3(0,2))
¢ ]
2 1 0
o] ol
0
F ¢ : N> K satisfies

$0=g, ¢1=£, ¢3=e v§¢ (eAf) A(gAf)

-«
-
-
<
=3
Me——
=N

¢ : N+ N satisfies
1 $0=a, ¢1=b

<
o —
=
1]

j(i(a,b),b)

-
-
-
<«
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3.2.7. REMARKS. (a) Note that the pairing p itself is a special case of F-
nesting w.r.t. p: p(x,y) = v?’p¢, where F = °0A°1, and ¢ : N»D is defined
by ¢n = x if n = 0 and ¢n = y otherwise.

(b) Let § be a lawlike sequence of frames, F a frame. The F-nest of § w.r.t.

vFRAME,A
F

A, i.e. > is exactly the frame produced by § from F, i.e. F[{].

(See def.3.1.16.)

3.2.8. FACTS. (a) Let ¢ map N into N (i.e. ¢neN, ¢n(z)eN). Then

v;¢ = Az.vF(Xn.¢n(z)), since the pairing j on N is defined from the pairing
j on N by j(¢,9) = rz.j(¢z,yz).

(b) If a subset D' of D is closed under the pairing p, then it is closed

under F-nesting w.r.t. p.

If D= N or D = N, with the pairing operation j from D x D onto D,
and pairing-inverses jl’jZ :D =+ D, we can reverse the construction of nest-
ings as follows. '

Let @ be an element of D, T a finite strictly binary tree.

j]a<—l

33,8 15348 [
33,8

I13939® Jpdpdp?

fig. 7

Fig. 7 shows how we can associate with the pair (a,T) a mapping ¢ : nT -+ D,

by putting:

¢< > = a,

¢ (n*x<0>) = j](¢n), o (nx<1>) = j2(¢ﬂ),

i.e. ¢ assigns the value @ to the top-node of T, to the left-hand immediate
descendant of a node n it assigns jl(¢n) and to the right-hand immediate
descendant of n it assigns j2(¢n).

Note that ¢#u can be computed independently of the tree T. If

n = <x0,...,xp>, xie{O,]}, for i = 0,...,p, then ¢n = jip...jioa, where
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iq =1 iff xq = 0 and iq = 2 iff xq = 1 (0<q<p).
We write jna for the value ¢n. The mapping n+ jna thus defined on
finite 0-1 sequences, can be extended to a mapping v v jva defined on ar-

bitrary finite sequences, by putting jva = a, where

—_ Isg(v) _
sg(<x0,...,xp>) = <sgx0,...,sgxp>. (I.e. for a 0-1 sequence n, sgh = n.)

Formally:

3.2.9. DEFINITION (of jva, ae N or aeN). Let Dbe N or N, @ an element
of D. The mapping v+ jva from N into D is defined by the recursion equa-

tions

i,(G,@ if sg(x) =0,

i a=a =
] » Jegony B

Jv(Jza) otherwise.

A mapping a jva from D into D (velN), 1is called a nesting—inverse.

3.2.10. REMARK. Since our notation does not distinguish between the indices
1 and 2 and the number ter@s 1 = SO and 2 = SSO, we can interpret j1 and j2
in two ways: as pairing inverses, where 1 and 2 are indices for the first
and the second member of the pair respectively, and as nesting inverses,
where | and 2 are natural numbers coding finite sequences. We shall assume
that 1 codes the sequence <0> and 2 the sequence <1>. Thus we make both

readings of j],j2 coincide.

3.2.11. FACTS.

(@) J 2 = 1,35

(b) If ¢ € N then jv¢ = Ax.jv(¢x), since the pairing inverses ji :N >N,
i = 1,2 are defined by ji¢ = Ax.ji(¢x).

3.2.12. DEFINITION (of kv: N - N). kv: N »> N is defined by the equations:
kv< > =< >, kv(w*i) = kvw*<jvx>,

i.e. kv(<x0,...,xp>) = <va0,...,3vxp>.

3.2.13. FACTS.

(a) kv*wu = kw(kvu),
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(b) kv(klw) if sg(x) =0
Koay ¥ =

kv(kzw) otherwise,
(c) if ¢ € N, then jv(u*¢) = kvu*jv¢,
(@) if ¢ € N, then k_(3x) = j—v¢(x),

(e) ku(v*w) = kuv*kuw.

3.2.14, LEMMA. Let F be a frame. Then

x=y > VbeF (3, %=3,7),
=w <> VbeF (kbv=kbw) ,

o=y <~ VbeF(jb¢=jbw), where ¢, € N.

PROOF. By induction over frames. [J

3.2.15. NOTATION. Let ¢ = ¢[n] be an element of N for all n ¢ N. We write
)\]n.cb for the mapping x 1> ¢[x/n] from N into N.
If ¢ = ¢[n] is an element of K for each n ¢ W, then )\Kn.¢ stands for

the mapping x#> ¢[x/n] from N into K.

3.2.16. LEMMA (properties of nestings and nesting-inverses). D 7s a set with

an equivalence velation ~p+ P:DXD=>D 18 a pairing w.r.t. ~p Then
(a) V¢\b£DN (vg’p¢ ~> \)g’plp > VneEF(¢n~Dz,(m)) .

(b) V¢eN VbeF[jb(de>) = ¢(£bF)],
veNT vber ; NOERTIAINE

() VoeK™ vyeN VbeFLi, (vpo|¥) = 6(LpF) | 3,01,

(d) For ¢ : N -+ D, {§ a lawlike sequence of frames, ¥ and G frames, G = FL{1:
D,p D,p
Yo oY ¥

where Y : N - D 78 defined by yn = V]z;lp¢'
(e) V¢weK1\](v§¢ : v§¢ o2 v?()\Kn.ctn :yn)).
(H) \Jg()\Kn.id) =~ id, \)g()\Kn.sm) o~ §".

(g) For ¢ : N > N (Z.e. ¢neN, ¢n(m) <s the initial segment of the infinite
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sequence ¢n with length m),

[vpo@ ] = vy (. [Fa(m) 1) .

PROOF. All assertions by induction over frames.

(a) and (b) are immediate from the definitions of vg’p and jb. (a) just
generalizes the characteristic property of the pairing p, namely
p(x,y) b p(x',y'") «— xf~Dx' A yAE)x', (b) formally explains the name
nesting-inverse for mappings jb.

(¢) is shown in detail below.

(d) states that if G is obtained from F by substituting values of § for
terminal nodes of F, then the G-nesting of ¢ is obtained by first deter-
mining all fn-nestings of ¢ for values {n of {§ and then applying F-nesting.

(e) says that composition of neighbourhood-functions is distributive
over nesting, for the proof one uses the corresponding property of :w.r.t.
pairing A, i.e. (eAf):(e'Af')=(e:e')A(f:f") (cf. 1.3.24.(f)).

(f) says that a nesting of identities is an identity and a nesting of
shifts over m is a shift over m. Here use that id A id = id, sm A sm =] sm
(cf. 1.3.24(g)).

(g) is shown in detail below.

The detailed proofs of (c) and (g) can be skipped at first reading.

PROOF of (c):

(i) For £ = °n, (c) becomes

(1 i 5O ony8lv) = gnlv.

) ig >(vf°n)¢lw by definition of j_ (3.2.9),
K e e K

(3) V(°n)¢ = ¢n by definition of v (3.2.5),

(2) and (3) yield (1).

(ii) For F = GAH (c) is the conjunction of two statements

. K .
(4 VbeG(§ o p Coag® ) = ¢ O |3 o, p»)  and

<0>%

. K ]
(5) VbeH(J<]>*b(vGAH¢|¢) = ¢(£bH)|J<1>*bw)'

We show (4).
5o Congt |9 = G| Vgag|9)) by definition of j_ (3.2.9),
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K K K P K
vGAH¢[¢ = (vG¢AvH¢)|w by definition of v (3.2.5),
and eAf[¢ = j(e|jl¢, fljzw) by definition of A (1.3.23),
. K . K.
hence j o 0 (o W) = 3, (voli ).
Moreover: jb(vg¢]j1w) = ¢(£bG)|jb(jlw) by induction hypothesis,

and jb(j]w) = bw by definition of jv’ which yields (4).

J<0>*

PROOF of (g):
(i) For F = ok, (g) becomes

(6) [vl(°k>¢(m)] o vlﬁom S @) .

1 _ e e 1
v(Ok)¢ = ¢k by definition of v, hence

1 —
) [V (o) @) T = [Pk (m) 1.

On the other hand

vK
(

(7) and (8) yield (6).

(ii) If F = GAH then

(8) ok)(xKn.[R(m)J) = [$k(m) 1, by definition of v<.

© @] = (306,56, @1,

: _ 1 | c e 1
with ¢1 = vG¢, ¢2 = VH¢, by definition of v .
On the other hand

(10) vI;(xKn.tq,—n(m)J) = enf,

with e = vg(lKn.[$H(m)]) and f = vE(AKn.[EH(m)]), by definition of vK.

By induction hypothesis e = [¢1m], f e [¢2m].

E;Lm = ki(m)(m)) by 1.3.6, for i = 1,2, [k vIAlk,vI~{v] by 1.3.24(g),
hence eAf =~ [j(¢1,¢2)(m)]-

Combining this with (9) and (10) yields the desired result. [J

3.2.17. COROLLARIES.

(a) For $,¢: N >N : V¢ = vy <> VnelF (¢n=yn),
for ¥, : W >N : v%¢ = Vé¢ ++ VnelF (¢n=1n),
for ¢, : N > K : v§¢ I~ V§¢ <> VnelF (¢n=4n) .

[Special cases of 3.2.16(a).]
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(b) If G = F[{1, then
for ¢ : N >N : vG¢ = vF(A?.v6n¢),
for ¢ : N >N : vé¢ = v;(x n.vkn¢),
for ¢ : N+ K : vg¢ v%(AKn.v§n¢).
[Special cases of 3.2.16(d).]

R

() For y: N >N & VbeF(k, (vp() = $CLGE) () .
[By 3.2.16(b) and 3.2.13(d).]

(d) For ¢ : N+ K : VnelF(¢n~id) <« v§¢ ~ id, and

VnelF (¢pn=s™) > v§¢ ~ g™,

[By 3.2.16(a) and (f).]

REMARK. 3.1.19(a) and (b) (properties of F[{§]) are special cases of 3.2.16(d)
and (a) respectively, since F[4] = ngAME’A §. (See remark 3.2.7(b).)

3.2.18. DEFINITION (of "parallel to"). (a) Let ¢ € N, F ¢ FRAME. ¢ is paral-
lel to F, iff there is a y: N > N such that ¢ = v;w, or, equivalently, iff
for each pair b,b' of branches of F having the same label in F, jb¢ = jb,¢.
We write ¢//F for ¢ is parallel to F. In formula:

O//F = Vbb'eF (L F=L \,F > j 6 = jp.9).

(b) A finite sequence v is parallel to the frame F iff for all branches

b and b' of F with the same label in F, kv = kb,v. I.e.
v//[F = vbb'eF(tbF=£b,F > kbv = kb,v).

(c) An element ¢ of K is C-parallel to the frame F, where C is a subset
of K, iff there is a ¢ : N +C such that ¢ = vﬁw. We write ”C for C-parallel

to. Formally, we put
- K
0//F = 3y : N >Cl¢=vpy).

We denote the negation of parallel to by #.

3.2.19. REMARK. The property of being parallel to F is generally a non-tri-
vial one. E.g. if a # b, then j(a,b) is not parallel to the frame "0 A °0.
On the other hand, all ¢ € N are parallel to °0 A °1 (see 3.2.21(e)).

A similar observation does not hold for ”C’ even if we take C = K. Consider
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e.g. the mapping e e K such that e|j(a,b) = j(b,a). This e is not K-parallel
to °0 A °1: if e =~ fAg then e[j(a,b) = j(f|a,g]b), and the assumption that

for all a and b f|a = b and g|b = a is obviously contradictory.

3.2.20. LEMMA (properties of // and // for consultation when needed) .

(a) For y: N > N : véwﬂF.

(®) VbéF(jb¢=¢) > ¢//F.

(c) VbeF(kbv=u) -+ v//F.

(d) Vx(9//F <> ¢x//[F A Az.¢(x+z) [/F).

(e) vxw//[F <> v//F A w//F.

(£) ¢HFAG%'j]¢”F Aj2¢ﬂG-

(g) eAf”CFAG - eﬂCF A fﬂCG.

(h) LFnLG = @ > (5 ¢/ F A j,0// G > ¢/ FAG).

(1) £FnlG = @ ~» (e//CFA f//CG > eAf//CF/\G).

(3) ¢//G AG = F > ¢//F.

(k) If C is closed under N then eﬂCG AG =2F > eﬂcF.

(1) F~G ~ (e//CF<—> e//CG).

(m) If C 2s closed under A then eﬂCG +e € C.

(n) VeeCVn(eﬂd;(°n)).

(o) ideC —» idﬂCF.

(p) s"eC » sm”CF.

(@) Let ¢ be a right—inverse to the labelling of F, Z.e.
VnelF (¢neF A £¢nF=n), then uf/F+ [u] = vE(AKn.[k nu]).

u)em;A¢ﬂF+eMﬂm

(s) If C Zs closed under.: then eﬂCF A fﬂCF-+ e:fﬂbF.

C b

¢

PROOF .

(a) by 3.2.16(b).

(b) and (c) by definition of //.

(d) ¢ = 5x*Az.¢(x+z) and jb($x*Az.¢(x+z)) = kbEX*jb(kz.¢(x+z)) by 3.2.13(c),
. now apply the definition of //.

(e) by 3.2.13(e).

(f) AssumenﬁbF = Eb,F, b,b'eF, and ¢//FAG. Then £

by definition of FAG, hence j

<05xb FAC) = £ g 1 (FAG)

<0>xb? = J<o>ubr® Py definition of //.

Jomab® = 3p(319)s Jgoupr® = Jp1(3;9) by definition of j_, hence
j1¢ﬂF. By a similar argument we find j2¢ﬂG.

(g) Assume eAfﬂC FAG, i.e. eAf = ¢ for some ¢ : N - C.

v
K K K ., G
vFAG¢ = VF¢ A vG¢ by definition of v, and
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(q)
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enf =~ \)?(b A vléda > (eﬁv§¢)A(f2vIé¢) since A is a pairing w.r.t. =~ (see
3.2.2(b)). Hence e//CF and f//CG.

Let <x>xb, <y>*b' be branches of FAG with the same label, assume that
LFnlG = @, then either x =y = 0 and b,b'e¢F or x =y = 1 and b,b'¢G. In

the first case j = J<y>*b'¢ follows from the definition of i, and

<>xb®
the assumption j]4>//F, in the second case this equality follows from

ijelc.

Assume that e = v§¢1

K
and f =~ VG¢2’ ¢1,¢2 : N »>C.
¢ if n e £F
Define y : N -~ C by yn =
¢2n otherwise.
1f ZFnI,G ¢ then VnelF (Yyn=¢ n) and Vne«CG(tpn-cpzn), whence e = ng and
K K
f o va b; 3.2.17(a). So eAf v w/\va, Fq; AV ‘P = vFAGqJ by defini-
tion of v, and hence eAf//C FAG.
Assume G = F[4], ¢/G and let b,b' be branches of F with the same label

n. We show that
Vb"eﬁn(jbn(jbd’) = jbu(jbvd’)),

then jb¢ = jb,¢ followé by 3.2.14.

To prove (1) we argue as follows:

Jpn(p®) = Jp,pnts Jpn(Gpr9) = dpi pné by 3.2.11(a). bxb" and b"xb" are
both branches of G = F[§], with the same label f,b.,(ﬂn), by 3.1.18. Since
$//G then ju iué = Jpi puod-

Let G = F[4], e = vléq) for ¢ : N >~C. Then e = v?(AKn.vIZntb) by 3.2.17(b).
If C is closed under A then vlg ¢ € C by 3.2.8(b), so e// F.

Let F ~ G, then F = G[An.(°an)] for some a, by 3.1.22. If e// F then

e F¢ for somed) N ->C v¢f--'\) ()\nv6 ¢), where 4n = (°an) by
3.2.17(b), i.e. 4> & e (A n. ¢(an)) A n.¢(an) : N > C, so e// G. The
converse implicatlon follows from the symmetry of =,

by 3.2.8(b).

e v%on)()\Km.e), if e € C then )\Km.e : IN > C.

and (p) by 3.2.16(f).

Assume u//F, ¢: N > N satisfies VneﬂF(¢neFA£¢nF=n). We show that

for all a
. K, .K .
VbeF(Jb(vF(A n-[k¢nu])la) = Jb([u]Ia)),

then [u] = vg(AKn.[k¢nu]), i.e.Va(ulla = vg(AKn.[k(wu]) la), follows

by 3.2.14. [ulla = uxa by definition of u, jb(u*a) = kbu*jba by
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(r)
(s)

3.2
(a)
(b)
(c)

(d)

(e)

(£)

(g)
(h)
(1)
)

(k)
(¢9)

(m)

3.2.13(c). On the other hand jb(vgw[a) = w(ﬂbF)Ijba by 3.2.16(c), i.e.
_ K,.K .. K - LD .

for ¢ = vF(A n.[k¢nu])- Jb(vo[a) = [k¢(£bF)u]|Jba = k¢(£bF)u*Jba° But

¢(£bF) is a branch of F with label KbF, whence, since u//F, =

kbu = k¢(£bF)u.

by 3.2.16(c).

by 3.2.16(e). O

.21. COROLLARIES (for consultation when needed).
For ¢ ¢ N : Vvn(¢/(en)). [By 3.2.20(b)]
Vvvn(v//(°n)). [By 3.2.20(c)]
v//FAG ~ klv//FAk v //G.
[V/EAG > vxv) .(\'n.A2.0)/FAG by 3.2.20(a) and (4),
v J/FAG jl(v*¢)//FA i, (vx¢) G by 3.2.20(f),
jl(v*¢) = klv*jl¢’ jz(v*¢) = kzv*j2¢ by 3.2.13(c) hence
ji(v*¢)//Hi+ kiv//Hi bg_/ 3.2.20(d), where i = 1,2, H =TF,H, = G.]
LFnlG = ¢ > (e, VHENR,Y /] G > V/[FAG) .
[By 3.2.20 (a), (d) and (h), use a similar argument as for (c) above.]
If F has a 1-1 labelling, i.e. Vbb'eF(ﬂbF=£b,F + b=b'), then VoeN(¢//F)
and Vv (v//F).
[From corollaries (a), (b), (d) and 3.2.20(h) by induction over frames.]
v//G AG 2 F » v/[F.
[By 3.2.20(a), (d) and (j), use a similar argument as for corollary (c).]
F~G~> (¢//F«~ ¢//G). [By 3.2.20(j).]
F S8 G ~> (v//[F<+> v//G). [By corollary (£f).]
If Yv([vleC) then u//F > [u]”CEl[By 3.2.20(q).]
e//CF A Vv/[F > elv//F.
[el/F A vHE> el (vrup (0. (02.00)) /F by 3.2.20 (a), (&) and (¥),
el (vx¢) € elv by definition of elv, Y//F A peu » u//F by 3.2.20(d).]
jl¢”F'A mélF -+ ¢//F A(°m). [By 3.2.20(h) and corollary (a).]
Vadb((b//(°n) AF) A j b=a). [Take b = O 'm.a) and use 3.2.20(a)
and 3.2.16(b).]
Vudv ((v//(°n) AF) A k v=u).
[Apply corollary (1) with a = uxiz.0, take v = b(1th(u)), use 3.2.20(d).]

1
V(on)AF
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CHAPTER 4

PROJECTION MODELS FOR GC(C)

4.1. INTRODUCTION

We consider projected universes Ug = {e|6 :e € M}, where M is a subset
of K. Each e € K is the neighbourhood-function of a continuous Pe: N - N.

A set M = {re te € M}, M c K, is (externally) a subset of the Moschovakis
model for Baire-space over Baire-space. Validity in U? can be reinterpreted
as validity in the submodel M.

We shall not construct a single projected universe imitating GC(C).
Instead we define a class US(C) of universes of the form UM, all imitating
GC(C), and prove the existence of a U6 € US(C) for suitable C.

The lawless sequence §, the generator of the universes UG € UG(C)’
plays the following rdle: the value 6x is a numerical code for the choiceks
one makes at stage x+1 in the construction of the universe of GC-carriers.
It is convenient to think of § as a triple of sequences. We put o = j?d,

B = jgﬁ and y = 36. As long as § does not appear .in the same context we

J
can think of a,B an Y as being lawless.

From ax = j?(&x), or rather, from ax and ax, we read whether any car-
rier jumps at stage x, and if so, which one and where to.

yx codes the preliminary choice of values at stage x, that is to say,
the preliminary choice of values for carrier n at stage x will be (Yx)n.
(cf. 2.8.1(a).)

The choice of a jump-function is made (if necessary, i.e. if a(x+1)
codes the decision to have a jump at stage x) via a lawlike J: N - C: if
there is a jump at stage x, then J(Bx) is the jump-function.

The imitation of GC(C) in projection models is therefore successful
only if there is a J which maps N onto C, at least modulo =¢, i.e. if

VeeCIn(Jnee) .
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4.2. We sketch the construction of US(C)' The detailed explanation of the

construction is given in the sections 4.3-4.6 below.

A universe Ll(s € UG(C) has the form
Ud = {e|nF6: F ¢ FRAME, e ¢ C}.

For each F ¢ FRAME, T

§. The universe

is an element of K, ﬂFG abbreviates nF|6, we put
Trn(S Edef 1T(°n)

{nnd :n e N}

imitates GCC(C), HFG is a nest of carriers, that is to say, WFG behaves as
eF(cf.Z.lO.l).

Each mapping T is related to a sequence {dFv :v € N} of elements of
K, by

0 =0, ﬂF(i*v)=y+l +»-Va[(dFv|a)(x)=y].
= (° = 4 =
If F = (°n), then dFv = d(°n)v dnv, where
dn(gx) is the dressing for the carrier nnG at stage x.

The K-element dFv is the image of the triple (0,F,v) under a mapping
d: N x FRAME x N - K. In general, we write dgv for d(w,F,v), that is to
say, dFv abbreviates dgv.
d belongs to a set DG(J), where J maps N onto C modulo =. If d € DG(J)
we say that d generates a universe of dressing sequences w.r.t. J.
The definition of DG(J) uses the auxiliary mappings jf and gv.
jf (for jump-function) is a mapping from IN into Klq:
if E(x+]) codes the decision to make carrier n jump at stage x+I,
then it jumps with jump-function j£(5(x+1))(n) = J(Bx),
if carrier n does not jump at stage x+1 then jf(E(x+1))(n) = id.
gv (for generated values) is a mapping from N into Kl\I :
gv(g(x+]))(n) has the form [m], m is the sequence of generated values
for carrier n at stage x+1.
d is an element of DG(J) iff it satisfies the following equivalences (some

of which are redundant):
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d 0 =~ id,

ro K .o, .a. K -
dn(v*x) = dnv 'vﬁnV JE(vxR) :vﬂn(v*i) gv(vxxk),
a’0 ~ id

n

Va K . a .. K a

dnx o vénvgf(v*x) .vén(v*i)gv(v*x)

v v VHEW,
d (wx®) 2dw:d %
n n n

K

§ v(xKn.de), if ht(F) > 0.
F

v
de oy
In these equivalences, 5nv and 6Fv are frames.
6Fv is the image of the pair (F,v) under a mapping from FRAME x N in-
to FRAME: and 6nv = 6(°n)V;
6n(6x) is the frame for the carrier nnd at stage X.
The mapping (F,v) = éFv is defined by the following clauses:
6n0 = °n, .
- . 3, &
§, (v*%) = § vlips (k] (vx%)) 1,
6Fv = F[kn.ﬁnv]. N
jps (for jumps) is a mapping from N into FRAME :

if jps(ax)(n)
if jps(ax)(n)

°k, k # n, then carrier n jumps to carrier k at stage x,

(°k)A(°m), k # n, m # n, then carrier n jumps to the
carriers k and m at stage x,
if jps(ax)(n) = °n, then carrier n does not jump at stage x.

Note that ax = k?(gx).
4.3. THE CREATION OF DEPENDENCIES BETWEEN CARRIERS IN PROJECTION MODELS
4.3.1. a = j?ﬁ governs the creation of dependencies in the GCC-projection

models {ﬂn6 :n € N}. The numerical value ax contains the suggestion for a

jump at stage x+1. The suggestion is coded as follows:

ox v3(0,k,m) stands for 'try to make carrier k dependent on carrier

ax v3(n+l,k,m) stands for 'try to make carrier k dependent on the

carriers j.m and j,m'.

1 2
In other words, each y ¢ N can be treated as the code of a suggested jump;

jgy is the name of the carrier which should jump, jgy contains the name(s)
of the carrier(s) it should jump to; if j]y = 0 then a singular jump is

suggested: jgy is to be made dependent on jgy, if j?y # 0 then a binary
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jump is suggested: jgy should be made dependent on jl(j§Y) and jz(jgy).
We can not always create the dependency that ax suggests, since

(a) it is impossible for a carrier to jump to itself (which might be sug-
gested),

(b) a carrier can only jump to carriers that are still fresh (that is to
say, we have to check that the jump which ox suggests, is not in con-
flict with the dependencies already created, following 'previous sug-
gestions' ax), and

(c) only fresh carriers can jump.
4.3.2. DEFINITION. new = 3i<1th(w)((w)i=n), néw = Wnew).

4.3.3. DEFINITION. A(n,y,w) is the formula which expresses:

'y suggests that carrier n should jump. If w is the full list of non-fresh
carriers, then we can follow the suggestion, since it is not in conflict
with (a), (b) and (c) above'.

Formally:

A(H,Y,W) Edef n=j:23y A np.‘w A
.3 . .
L(37y=0 A ng#n A ngéw) v

.3 . .3 . .3
Gyy#o A A (5,339 A 5L (G3y)éw)) .
1 . 173 173
i=1,2
We use A(n,y,w) to define two mappings: nf: N - IN and jps:
N 9’(FRAMEm).
nf stands for 'non-fresh', nf(&x) is the full list of names of carriers
that have been made dependent on others through the stages z < x.

jps stands for 'jumps', jps(ax) is a lawlike sequence of frames.

jps(ax)n = °n expresses 'carrier n does not jump at stage x',

jps(ox)n = °k, k # n, expresses 'carrier n jumps to carrier k at stage x',

jps(&x)n (°k)A(°m), k # n, m # n, expresses 'carrier n jumps to the car-

riers k and m at stage x'.

4.3.4. DEFINITION (of nf and jps, see example 4.3.5).

(a) nf : N - N is the mapping which satisfies:

nf(v)*<idy> if AGDY,y,nE(),
nf(0)= < >, nf(v+y) =

nf(v) otherwise.



(b) jps: N ~ FRAMElq is defined by:

jps(0) = in.(°n),

jps(vx§)n

4.3.5. EXAMPLE.

°n if=1A(n,y,nf(v)),

89

“k if Aln,y,nf(v)), j7y=0 and j§y=k,
(*K)A(°m) if A(n,y,nf(v)), i y40,
. .3 . .
j;G3y)=k and j,(i3y)=m.

X ax ips (a(x+1)) nf(a(x+1)) comment
°2 if n=1
0 v3(0,1,2) n4> <1>
°n othw
' ax suggests that 2
1 v3(|,2,j(2,3)j nb °n <> should jump to 2
and 3, which is im-
possible.
ax suggests that O
2 v3(0,0,o$ nk °n <1> should jump to O.
Nothing happens.
(°3)A(°4)ifn=2
3 v3(l,2,j(3,4»[lH- <1,2>
°n othw
ox suggests that 1
4 v3(0,],4) nrH °n <1,2> should jump to 4,
but 1 is non-fresh.
ax suggests that 3
5 1 v;(1,3,3(2,5) nr en <1,2> should jump to 2

and 5, but 2 is

non-fresh.

4.3.6. LEMMA (properties of jps and nf).

(a) jps(v+§)m #°m ~ m=jgy A nf (v§)=nf (v) *<m>.

(b) jps(v+¥)m #°m ~

. ” . .3
(JPS(V*Y)m=°J§Y A J3y¢m) v

(ps (va§)m=C°3 (i) A °5,(i)) A A X i, Gy,
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(c) nf (vx§)=nf (v)*<m> -+ m=j§y A jps (v*$)m#°m.

(d) jps(v*$)m=F A F#°m -> VkelF (ké¢nf (v+$)).
PROOF. Trivial by definition. [

4.3.7. COROLLARIES.
(a) jps(a(x+1))mfem + Vk(k#m > jps (a(x+1))k="k).
[The model has the 'single jump property' (2.4.4), by 4.3.6(a).]
(b) jps(a(x+1))k#ek + Imn[m#k A n#k A (ips(a(x+1))k=°m v jps(a(x+1))k=Cmr°n))]
[The model has 'restriction to binary jumps' (2.4.4), by 4.3.6(b).]
(c¢) menf(v) <+ Jugv(jps (W)m#°m), or equivalently
ménf (v) <> Vugv(jps (u)m=°m).
[If ménf(a(x+1)) then carrier m is fresh at stage x+1, by induction w.r.t.
1th(v) from 4.3.6(a) and (c).]
(d) jps(a(x+1))k=F A F#°k + VmelF Vy<x+1(jps(ay)m=°m).
[If carrier k jumps at stagé x+1, then the carrier(s) it jumps to is (are)
fresh at stage x+1, by (c) above and 4.3.6(d).]

4.3.8. Fig. | shows a possible frame foz for the carrier €, € GCC(C) at some

0
stage z, and for a number of possible jumps at stage z+l, the resulting

frame fO(z+1) for ¢, at stage z+l. (cf. 2.9.7-8.)

0

jumps at stage z+1

/X
1 2
€ jumps to e, and € 2 f0(2+1)
2
3 4
2«////:::>>\\\\b
5 2
5/>\
! 5

|
| &

fo(z+l)
€. jumps to €

|»n

SE jumps to € fo(z+l)

[

Fig. 1
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The construction of fnz has been described in 2.9.8. We can rephrase
that description, in the terminology of chapter 3, as:
fn0 = °n, and fn(z+1) is produced from fnz by a mapping 6z+1: N - FRAME,

which satisfies:

°n if n does not jump at stage z+l,
6z+ln = 4°k if n jumps to k at stage z+1,

°kA°m if n jumps to k and m at stage z+l.

(For 'produced from F by {' see 3.1.16.)

In the GCC(C) projection models {nndzneN},jpsa(z+l) plays the role of 6z+1.

4.3.9. We introduce a mapping (n,v) » 6nv from N x IN into FRAME. 6nv is
the frame for m, at v, 5n(§x) is the frame for m at stage X.

DEFINITION. 6 v is the image of a mapping from N x N into FRAME defined by
6n0 °n, 6n(v*x) § v[Jps(k (vx%)) 1.
(Recall that o = 316, whence a(z+l) k (6(z+1)) )

w

4.3.10. LEMMA (properties of 6nv).

(a) VugkJv(jps(u)n=en) > §_v=sn.

(A carrier which has not jumped, is. independent of others.)

(b) 6nv#°n - 6n(v*2)#°n.

(4 carrier which depends on others at stage z, will not be independent of
others at stage z+l.)

() Vmel (§_v) (ménf (3v)) .

(The labels of the frame for ™ at stage x, refer to fresh carriers.)

(d) VngVn(ﬁn(v*w)=6nv[g]).

(With each y there is a g: W - FRAME, which produces the frame for m, at
stage x+y from. the one at stage x, for all n.)

PROOF .

(a) By induction w.r.t. 1lth(v).

() §_(v+%) = §_v[ips(k)(v*%))] by definition, hence ht(f_(v+®)) > ht(f_v)
by 3.1.17(d), so if ht(ﬁ v) > 0 then ht(6 (v*%)) > 0 and 6 (v*X)#°n.
If ht(4 v)—O, i.e. § v—°m, m#n, then nenf(v) by (a) and 4. 3 7(c). Hence
néﬂ(]ps(k (v¥%))m), by 4.3.6(d), and hence also néﬁ(é (v*8)), i.e.
ﬁn(v*x)#°n.

(c) By induction w.r.t. lth(v):
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(i) nf(0) = < >, then certainly Vke£(§_0) (k¢nf (0)).
@1i) Assume (induction hypothesis):
(1) Vkel(§ _v) (kénf (k V))
meﬂ(ﬁ (v*%)) > kel (f v) [mel(Jps(k (v %))k)], by definition of
6 (v*x) and 3.1.17(b). Let kel(f v), then by (1) and 4.3.7(c)
(2) Vugk V(JPS(u)k—°k)
Either Jps(k (v*%))k=°k, then kénf(v*X) by (2) and 4.3.7(c),
or Jps(k (v*x))k—F F#°k, then VmelF (ménf (v+R)) by 4.3.6(d).
(d) By deflnltlon, Vn(ﬂ (uxR)=§ u[g]), for g = JpS(k (u*k)) .
The desired result now follows from 3.1.19(a) by induction w.r.t.
lth(w). 0

4.3.11. COROLLARIES.

() nénf(K3v) > § v=en. [+ by 4.3.10(a) and 4.3.7(c), < by 4.3.10(c).]
(b) 6nv=°n +a»Vu<k?v(jps(u)n=°n). [By (a) and 4.3.7(c).]

(c) § (v*&)=>n < § v=en. [By 4.3.10(b).]

(d) Vmel(ﬁnv)(ﬁmv=°m). [By 4.3.10(c), 4.3.7(c) and 4.3.10(a).]

In 2.10.5 we have defined the frame for the GC-sequence a=eleF at stage
z as 'obtained from the initial frame F by substituting fnz for each label

n in F', i.e., in the terminology of chapter 3, as F[An.fnz].

4.3.12. DEFINITION. 6Fv is the image of the pair (F,v) under the mapping
from FRAME x N - FRAME, defined by 6Fv = F[Xn.énv].

We call ﬂFv the frame for m, at v, 6F(§x) is the frame for m, at stage x.
Note that 5(°n)v=6nv, 6FAGV=6FV A 6GV by definition of F[.].

4.3.13. LEMMA. § (vsR) = v ips (k3 (v+2)) 1.

PROOF . 6 v[Jps(k (vx%))] = (F[An.§ v])[Jps(k (v*®))] by 4.3.12,
(F[An. 6 v])[Jps(kB(v*x))] = Flin.§ v[Jps(k (v*x))]] by 3.1.19(a),
An. § v[Jps(k (v+¥%))] = An. ﬂn(v*x), by 4.3.9, and finally
F[Xn.ﬂn(v*x)] = 6F(v*x) by 4.3.12. O

4.3.14, LEMMA (characteristic properties of 6Fv,6nv).
(a) §50 =

(b) VngVF(ﬂF(v*w)=ﬁFv[g])

(c) Vnel(ﬂFv)(ﬁnv=°n)

(d) VvVn3m>n(6mv=°m)
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PROOF.

(a) 6F0 = F[An.6n0] by definition, 6n0 = °n by definition, and F[An.°n] = F
by 3.1.19(e).

(b) 6F(v*§) = ﬁFv[g] with g = jps(k?(v*%)) by 4.3.13. Use induction w.r.t.
lth(w) and apply 3.1.19(a).

(c) neK(ﬁFv) > SkeﬂF(neﬂ(ékv)), by definition of 6Fv and 3.1.17(b). Now
apply 4.3.11(c).

(d) By 4.3.11(a) we find that even Vnénf(k?v)(ﬁnv=°n). ]

4.3.15. COROLLARY. 6F(v*w)=6Fv[An.6n(v*w)].

PROOF. Let g satisfy VF(ﬁF(v*w)=6Fv[g]) (4.3.14(b)). Then in particular

6m(v*w)=6mv[g] for all m. By 4.3.14(c), ﬁmv=°m for meK(éFv), whence, for
those m, gm=6mv[g]=6m(v*w) (cf. def. Flgl, 3.1.16(a)). By 3.1.19(b) it

follows that 6Fv[g]=5Fv[Xm.ﬁm(v*w)], hence the desired equation. [J

4.4, PROJECTED UNIVERSES OF DRESSING SEQUENCES

With each GC-carrier e, ve have associated a sequence dneKlq, where
dnz = the dressing for € at stage z. dn will be imitated by a projected
sequence dné. Note that a;z can be determined at stage z, i.e. in the pro-
jection model dn6(z) will have the form dg(gz), where do: (n,v) H—dgv is a
mapping from N x IN into K. With each do: N xIN - K we can associate se-
quences dnd = Az.dg(gz), but only for special do this will yield faithful
imitations of 'the sequence of dressings for er. 0

Our first aim in this section is to define the set DG (J) (D for
'dressing', G for 'generate', J a mapping from N into K; the superscript
zero will be explained in 4.4.17). DGO(J) is to contain exactly those

dO: N x N - K which yield sequences Az.dg(gz) imitating 'the sequence of

dressings for sn'

{Jn:neN}).

, wWhere €, € GCC(range (J)) (i.e. jump-functions are

4.4,1. From 2.9.8 we recall that

dno = id, dn(z+l) = dnz: £ g

n,z+1° °n,z+1’

Fig. 2 shows an example of the construction of the mappings £
(See also 2.9.7.)

g

, .
n,z+l n,z+1
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at stage z, e _ = dnz]src(n,z),
src(n,z) is 'the source for €l at I
] - E (n,)
stage z. z 1 i 1

Ez(n2) Ez(n3)

src(n,z)
at stage z+1, ¢ jumps to
o
EE] and ekz with jumpfunction i
e B Ez(nl) I
el (B (k) ,E _(k,)) L (ny)
src(n,z)

distributivity of +|- over Vg yields

applied to
E (n )
E (n ) 1

E (n )
e id

e|<Ez(k,) E_(k,) Ez<n ) (k) Ez<k )

n,z+1

By definition: J
Ez(nl) I
E (n )
Ez(n3)

iE, (k) E_(k,))
Z( 3) z 17 E (k)

at stage z+1 the values

m,My,Mmy m, are generated for
E_ € e, and € respectively
o, E] Ez Iy

[m]]|E2+](n ?

[m 1E +] n,

n,)

k)

1
[m JIE [m 1E
Z Z

+l X +1 2)

Fig. 2. The construction of dn(z+1) from dnz (to be continued.)
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By an application

of distributivity of -I- over Vv X equals

F’

applied to

[m,]
1 I : (n3)
[m4] . I(k : I
[I z+1" 1 Ez+](k2)
m2] [m3]
gn,z+l src(n,z+1)

Fig. 2. The construction of dn(z+1) from dnz.

We can rephrase the definition of f and g 1’ given in 2.9.8, using

n,z+l
the terminology of chapter 3, as follows:

n, z+

_ K - .K N
fn,z+l - vfnz ¢z+]’ gn,z+1 - vfn(z+l) Ipz+l’ ¢z+]’ ¢z+] € K,
where
[4 . . . . .
e if e, Jjumps at stage z+l1 with jump-function e
¢z+1m =
id otherwise,
and
[u] if €n is fresh at stage z+1, and u is the sequence
¢z+1m = of values generated for e, at this stage

arbitrary, if €n is not fresh at stage z+l.

4.4.2. The definition of DGO(J) will have the form:

dO € DGO(J) iff d0 satisfies:
a% =~ iq,
n
0, 0. K .., .a. K o
dn(v*x) ] dnv. vﬁnvjf(v*x). vﬂn(v*i)gv(v*x),
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d_(80) = id,

UO.’:SO

d (8(x+1)) =~ d (Gx) 6 (5x )Jf(6(x+1)) .vﬁ (3 (x +1))gv(cS(xH))

Here 6n(§z) is the frame for m at stage z as in the previous section, and
jf (for jump-function) and gv (for generated values) are mappings from N
into K]q yet to be definmed. j£(8(x+1)) is to play the role of ¢
gv(g(x+1)) will play the role of wx+l

x+1°

4.4.3, DEFINITION. jf is the mapping from N into KN which satisfies:

5£(0) = An.id,

3(33%) if jps(c (v))n # °n,
JjE(v*%)n =

id otherwise,

that is to say: if L Jumps at stage x+1 then Jf(G(x+l))n = J(Bx) (recall
that 6x = Vs (ox, Bx,yx), Jz(éx)— Bx), otherwise Jf(6(X+1))n—1d
It is not so easy to define the mapping gv: N - K]N in such a way that
gv(S(z+1)) behaves as the wz+l which assigns to n the K-element [ul, where
u is the sequence of generated values for e, € GCC(range(J)) at stage z+1
(if € is fresh at stage z+1).
From 2.8.1-2 we recall that at each stage, the process of generating
values is started by making a preliminmary choicg of values for all fresh

carriers, from which the guiding sequences are constructed.

4.4.4, DEFINITION.
(i) 1f ﬂn(g(x+l)) = °n, i.e. L is fresh at stage x+1, then the preliminary
choice of values for L at stage x+1 is the finite sequence (Yx)n.

(ii) 1f én(v*i) = °n then the guiding sequence for m, at vxR® is
gs_ (v¥2) = (i x) #1z.0.
n 37 n

We call gs, (8(x+1)) the guiding sequence for ™, at stage x+1.
gsn(G(x+l)) (Yx) *\z.0 (if 6 (8(x+1))=°n), since 33(6x)

4.4.5, The next step is to determine the upperbound for the relevant values
of the guiding sequences.

At stage z we have for each carrier € the equation



=d
€n nz|src(n,z)

where src is the source for € at stage z (cf. 2.9.2-3). src(n,z) is con-—

structed from empty parts of carriers at stage z, in the terminology of

chapter 3 we can say:

1 1
src(n,z) = vfnz(x k.Ez(k))

(see fig. 3, for Ez(k) see definition 2.9.1).
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e =d_z|src(n,z) 1 n
n n 1
- .E (n,)
z 1 i n n3
E_(n,) E_(nj) 2
src(n,z) fnz
at stage z+l, EEZ jumps :
to €1, and g, with n
L B (n) ‘
jump-function e: z 1 )
E (n n
= H Z3 3
EE. dnz. fn,z+l|w
Ez(kl) Ez(kZ) k1 k2
" falz+1)

Fig. 3

At stage z+l we first decide whether there will be a jump and if so,
which one and with which jump-function. Then we have, for each carrier n,
an equation (cf.2.9.9, see fig.3)

(n dz:f

n

€pn =

. _ 1 1
n,z+]|x with x = vdn(z+])(k k.Ez(k)).

To determine upbz+l, the upperbound for the relevant values of the
guiding sequences at stage z+l, we make a list of all the equations (1)
for non-fresh carriers n. In these equations we replace empty parts of

carriers by guiding sequences, i.e. (1) is replaced by
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(2) € =/an: £

1
n,z+l]X

where jb x' is the guiding sequence for €

in fn(z+l). (See fig.4.)

| at stage z+l, if b has label k

v
gs !
n] v w
gs
S n
g k, gsk2 3

Fig. 4.

From (2) we can determine €n2 the computation of this value requires only

an initial segment of x'. Put

(3) Un is the minimal k such that iTk suffices to determine €2 from
(2). N
Then
upbz+1 = max{Un: carrier n non-fresh at stage z+l}.
The construction of upb is imitated as follows.

z+1

4.4.6. DEFINITION (of guiding sequence for ﬂn). For each n, 8s, is a mapping

from N into N.
gsn0 = Az.0,
gs_(vi®) = v 0k, (G3%). %22.0).
n - 6n(v*§) 37k

We call gsn(v*i) the guiding sequence for L at v+, gsn(g(x+l)) is the

gutding sequence for ™, at stage x+1.
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For n satisfying 6n(v*§) = on, this notion has been defined before,
in 4.4.4. Note that both definitions coincide. For n satisfying
6n(3(x+])) # °n (i.e. m is non-fresh at stage x+l1), gsn(g(x+1)) is the

sequence x' of equation (2) above.

4.4.7. DEFINITION (of (d:JF)). Let d be a mapping from N x N into K,

d: (n,v) H-dnv. Then
(d:3F) (n,v4R) = d_v: vy JE(vsR),
n 6nv

that is to say: if we think of dn(gx) as the dressing for carrier n at

stage x, then (d:JF)(n,g(x+l)) plays the role of dnx: fn as in equation

S X+1

(2). (For the relation between jf and fn see 4.4.1-2.)

s X+1

4.4.8. DEFINITION (of mk(e,x,a)). For e ¢ K, x € N and a ¢ N, mk(e,x,a) is

the minimal k such that ak suffices to determine ela(x), i.e.
mk(e,x,a) = mink(e(<x>*5k)#0).

uk ((d:JF) (n,3(z+1)), z, gs;(g(z+l))) plays the rBle of U_in (3).

4.4.9. DEFINITION (of upb). Let d be a mapping from N x N into K.

.upb(d,v*g) = max{Un(v*ﬁ) : nenf(k?(v*i))},
where

Un(v*i) = mk((d:JF) (n,v*R), 1th(v), gsn(v*i)).

We call upb(d,v+®) the upperbound at v+% w.r.t. d, upb(d,8(x+1)) is the
upperbound at stage x+! w.r.t. d.

Once we have upb, the sequence of generated values for the fresh
carrier n is easily determined: it is the initial segment with length

1+upb of the guiding sequence for carrier n.

4.4.10. DEFINITION. gv (for generated values) is a mapping which assigns to
each pair (d,v), d a mapping from N x N into K, v ¢ N, an element

gv(d,v) € KIE as follows:
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gv(d,0) = A*n.id,

gv(d,vig) = xKn.[(jgx)n*xz.O(1+upb(d,v*§))J.

4.4.11. DEFINITION. DGO(J) is the set which contains all mappings

do: N x N -+ K, with the property that Az.dg(gz) imitates the behaviour of

the sequence of dressings for the carrier € in GCC(range(J)), where
J: N —>K and dov do(n,v). -

d0 € DG J) 1ff

(=)

40 ~ id,

.'30’.5

0. K ... . .K 0. o
d (viR) = dnv .vénvjf(v*x) .vﬂn(v*ﬁ)gv(d ,VAR) .

4.4,12. REMARK. Strictly speaking only the d0 € DGO(J) which satisfies the

equations

0
(@) dn0 =~ id, and

& 0 .. K .., . . K .
(2) n(v*x) dnv 'vﬁanf(v*x) .vén(v*i)gv(v*x)

imitates the dressing construction as outlined in chapter 2 (2.9.7-8). The
other elements of DGO(J) result so to speak from the choice of a 'non-

standard neighbourhood function' for the continuous I' in the equation

e, = T(sre(n,2)),  (cf.2.9.2-3)
for some n and z.
Such a non-standard choice at stage z affects the upb-computation at

\}
stage z+1. If d0 and d0 are elements of DG (J) and dov o do v, but

dov # d0 v, for some n then it is possible that do(v*x) is not even equiv-—
alent to dg (v*R). 0

The existence of a d~ which satisfies (1) and (2) and hence belongs
to DGO(J) is easily proved by an appeal to the recursion theorem (uniform
in J), or by first showing that for each v there is a do(v) e N such that
for all w,w*%<v and for all n Az.do(v)(v3(n,w,z)) and XZ.do(v)(v3(n,w*§,z))
belong to K and satisfy the equations (1) and (2) above, then putting these
together in a single D by AC-NF, and finally 'diagonalizing' the desired d0
out of D.
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In the appendix we shall show that we can explicitly define an element
of DGO(J), primitive recursive in J. This element however shall not satisfy
the equation (2), but only the corresponding equivalence, i.e. it is 'non-
standard'. (Note that in the right-hand side of (2) there is an unbounded

minimum operator, in the upb construction).

4.4.13, DEFINITION (of UPB). Let d: N x N +K. Av.UPB(d,v) is the mapping

from N into N which satisfies:

UPB(d,0) = 0,

UPB(d,v*X) = UPB(d,v)+(1+upb(d,v+X)).

If no confusion can arise we write gv(v), upb(v) and UPB(v) for gv(d,v),

upb(d,v) and UPB(d,v) respectively.

4.4,14, LEMMA. If a carrier is fresh at stage z+l, Z.e. if ﬂn(S(xH)) = on,
then the dressing dn(g(xﬂ)) has the form [wl, where 1th(w) = UPB(8(x+1)).
Formally: if d € DGO(J) then

Vo¥n(f_v=en > Ju(dovarlul A 1th(w)=UPB(v))).

PROOF. By induction w.r.t. 1th(v).
(1) For v=<> take w = < >,
(ii) Now let v = v'*X, assume

(1) 6nv = on, then

(2) 6nv' = °n by 4.3.11(c),

whence. by induction hypothesis we have a w' such that
(3) vt > [w'] and 1th') = UBB(V').

By definition of DGO(J),

0 0,. K . . K .
dnvudnv °v6nV'Jf(v) .vénvgv(v), i.e.

4) dgv o dgv' :jE(v)n : gv(v)n,

K
by (1), (2) and the definition of v .
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From (1) and 4.3.11(b) we find that jps(k?v)n = °n, hence by definition of
if

(5) jf(v)n = id.

(6) gv(v)n

[(33%0,#A2.0(1+upb ()1,

by definition of gv.
From (4), (3), (5) and (6) we find

dgv o [w'*((jgx)n*kz.0(1+upb(v)))],

i.e. dgv =~ [w], where w = w'*((jgx)n*kz.0(1+upb(v))).
So 1th(w) = lth(w')+(l+upb(v)), while 1th(w') = UPB(v') by (3), hence
1th(w) = UPB(v) by definition of UPB. [

4.4,15. LEMMA.

v?n(v*i)gv(v*ﬁ) IS [gsn(V*i)(l+upb(v*§))].

1

PROOF. Put m = l+upb(v*®). By definitions 4.4.10 and 4.4.6 of gv and gs:

X %) = & T3 o
vﬁn(v*g)gv(v*x) = vén(v*i)(AKk.[(J3x)k*x2_o(m)])

and

& (D) (m) = v% (v*i)(x‘k.(jgx)k*xz.O)(m>.
n
Now apply 3.2.16(g): for ¢ : N> N
[ug¢ @] = vi(F 0. [Fn@ ). 0O

The complex definition of gv was motivated by our wish to achieve the

following.

4.4,16. LEMMA. If d° € DGO(J) then dg(g(z+l)) determines a value for z, i.e.

VnHyV¢[(dn(v*i)|¢)(lth(v))=y].
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PROOF. Put m = 1+upb (v*X). Let nenf(k?(v*i)). By the foregoing lemma and
the definitions 4.4.7, 4.4.11, we have for d ¢ DGO(J)

& (vxz) = (@°:37) (a,vs2) : [gs (o) () ],
i.e. for all ¢

Q) [0 = (@ 2F) (n, v48) | (g5 D) (m)*0).
so (&2(v+2)[$) (Lth(v)) = y iff
(1 (% :0F) (n,v#R) (<Lth (v)>w) = y+1

for some initial segment w of EEEFEEB(m)*¢. By definition of upb(=mel),
there is a y such that (1) holds for w = gsn(v*i)(m;l), i.e. (1) holds for
w and y independent of ¢.

If n ¢ nf(k?(v*i)) then dg(v*i) =~ [w] for some w with lth(w) = UPB(v*X),
by 4.4.14, One easily verifies that UPB(v*X) > lth(v), i.e. in this case

VAL (&) (vR) [9) (LER () = @)y 3T+ O

In the sequel we shall not only be interested in the dressing of a
carrier at stage z, but also in the 'difference' between the dressing for
carrier n at stage z and the dressing for the same carrier at stage z+z',

and in the dressing for a nest of carriers at stage z.

4.4.17. DEFINITION (of DG(J)). Let J be a mapping from N into K. DG(J) is
a set of mappings d: N x FRAME x N »>K, d:(v,F,w) » d;,'w.
v . v 0 . _ .0

For d(on)w we write dnw, for de we write de, and we put dnw = d(On)w.
d belongs to DG(J) iff

(a) AKnAKw.dnw belongs to DGO(J),

(b) dZw is the 'difference' between dnv and dn(v*w), and

(¢c) if ht(F)>0 then dgw is the 6Fv—nesting of AKn.dZw (i.e. dFW is the
F-nesting of AKh.dnw, dF(gx) behaves as the dressing de for Ep at
stage x, c¢f.2.10.5).
Formally, d € DG(J), iff
K_ .K 0 .

(a) A n.A w.dnw e DG (J), i.e.
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(1) 4.0 =id,
(11) d_(w*R) o d w:ve FE@HR) : Vo gv(a,u2)
v 6nW H 6n(w*§) s s

where dO = AKn.AKw.dnw;

(b)) dZO ~ id,

=}

=]

.. Va K . s . K 0 a
(ii) dnx o~ v6 va(v*x) : vén(v*ﬁ)gv(d ,VAR),

n
where d0 = AKn.AKw.d w, and

. .. V, A v VAWA
1ii) d_(wxX) ~d w:d H
(1ii) 47 (wR) = dw : dVVg;

(c) d;w ] vK (AKn.de), for frames F with ht(F)>0.
6Fv n
If d € DG(J) then d generates a universe of dressing sequences w.r.t. J.

4.4.18, LEMMA. If d € DG(J) then dF(g(xH)) determines a value for x, i.e.
1f d € DG(J) then

(1) 3yVel (dy, (va2) [ $) (Lth () =y].

PROOF. In lemma 4.4.16 we have proved this assertion for F = (°n). For F
with ht(F)>0 we argue as follows:
dp (veR) o \)g()\Kn.dn(v*?c)) by definition 4.4.17(c) and 4.3.14(a) (§,0=F). Hence

VbeF (i, (d, (v4R) [4) = R lipe)s

by 3.2.16(c).
So

VbeF3zVel i, ((d (v¥R) |$) (Lth(v)))=z21,

By 4.4.16, which immediately yields (1). [

4.4.19. LEMMA (the extension of a do € DGO(J) to a d e DG(J)). Let
d0 € DGO(J). Define d: N x FRAME x N ~ K by:

1) 400, (°n),v) = dv,

(2) if 1th(w)>0: d(w,(°n),v) = sOrB(¥) “’16( L)),
n

(3) if ht(F)>0: d(w,F,v) = v? L0,

F

where d::v 7g d(w,(°n),v) as defined in (2) and (1). Then d € DG(J).
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PROOF. d fulfills 4.4.17(a) and (¢) by (1) and (3).

By (2)
a0 = sUPB(W) : vK (XKm.dow).
n g w m
n
SUPBG) o K Kp SUPBODy o 5 0 16(8),
§.w
n
hence
(4) a0 ~ "16( SO "By,
n

by distributivity of: over v (3.2.16(e)). By lemma 4.3.12(c)
Vmel’,(ﬁnw) (6nw:=°m), hence, by 4.4.14,
Vel (§ w)3u(lth (u)=UPB(w) A dgw ~ [ul), i.e.

(5) Vmeﬂ(ﬂnw) (SUPB(W)

: v = id).
m
By (4), (5) and 3.2.17(d) we find that d fulfills 4.4.17(b) (i): d:O =~ id.
Also by (2): ’

SUPB (w) : \)K

§

6) & vz = W(AKm.dg(w*v*fc) ).

n

Since d0 € DGO(J), dg(w*v*i) is equivalent to

0 K . o L R
dm(w*v) HAV 6m(W*V) JE(wrv*R) t v gv (wrvxR).

K
6m(w*v*i)

Hence, by distributivity of: over v (3.2.16(e))

K K 0 - K ,.K .0 K K
(7) vﬁnw()\ m.dm(w*v*x)) [~ vénW(A m.dm(w*v)) : vﬂnw¢ : vﬁnww,
where
(8 4= AKm.lem(w*v)jf(w*v*i)s
and
€))] V=

K K a
A m.\)6 (w*v*ﬁ)gv(w*v*x) .
m
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By 4.3.15
6nw[)\m.6m(w*v)] = ﬂn(W*V),
whence
K . ~ K K K . a
vén(w*V)Jf(w*v*x) o~ vénw(k m.vém(w*v):lf(w*v*x)) (3.2.17(b)),
i.e.
K K . a
(10) vénW¢ o Vﬂn(w*V)Jf(w*v*x) .
Similarly
K K o
(11) vénww o vén (W*v*i)gv(w*v*x) .

By (6), (7), (10) and (11), d:(v*fc) is equivalent to

SUPBGW) | vlg W(AKm.dg(W*V)): €,

n
where
_ K . . K -

e = vﬁn(w*v)Jf(w*V) 'vﬁn(w*V*ﬁ)gv(w*v*X)'
By (2)

SUPB(W) :v? W(AKm.dg(W*v)) = dzv,

n

whence

W, oA w . K . ay . K a
(12) dn(v*x) & dv: vﬂn(w*V)Jf(w*v*x) : vﬁn(w*v*:?)gv(w*v*X) .

(12) and 4.4.17(b)(i), which we proved above, yield 4.4.17(b) (ii) and
(iii). 0O

4.4.20. LEMMA. d: N xFRAME x N + K belongs to DG(J) Zff for all F and v:

(1 d_ 0 = id,
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Vv, A v K . a K 0 -
(2) dF(w*x) o de 'vﬁF(v*W)Jf(V*W*X) .vﬁF(V*W*ﬁ)gV(d S VAW*R) ,

where i N x N > K 4s defined by do(n,v) = d%on)v.

PROOF .

(+) If we take v = 0, F = (°n) in (1) and (2) we find that do € DGO(J).
(b)(i) follows by (1), (b)(ii) by (1) and (2), (b)(iii) by (2) and (b)(ii).
(¢) By induction w.r.t. lth(w):

(i) % ~id by (1), id = v&
F 6Fv
v, _ K K v
(1), hence a;0 = véFv(A n.dn0).

(n.id) by 3.2.16(£), \*n.id = ’n.d’0 by

(ii) Assume

(3) d;w I~ vK (AKn.de) (induction-hypothesis).
6Fv n

6F(v*w) = 6Fv[kn.6n(v*w)] by 4.3.15, hence

K . ~ K K K . -
(4) véF(v*W)Jf(v*w*x) = véFv(A n.vﬁn(v*W)Jf(v*w*x)) by 3.2.17(b).
Likewise
5) vlgF(v*w*S‘c)gv(dO,v*w*i) = vI;Fv(xKn.vIZn (viwR) gv(do,v*w*:*c)) .

Substitute (3), (4) and (5) in (2) and apply distributivity of: over nesting,
(3.2.16(e)), this yields

Vo, o« K K wv . K . ay .
(6) dp (wxg) o Vg JAndw ‘Vﬁn(v*w)Jf(v*w*X) Ty

)gv(do,v*w*ﬁ)),
n

K
6n(v*w*i
i.e. by (2)

d;(w*i) o~ v?nv(AKn.dZ(w*i)).
(+) 1f d € DG(J) then, by 4.4.17(a) and (b)

(7) (1) and (2) hold for F = (°n).

If ht(F)>0, then (1) follows from 4.4.17(b) and (c) by 3.2.16(f). By
4.,4.17(c) and (7) we find for F with ht(F)>0:
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Vo, oa K K v K . a . K 0 Py

dF(w*x) o vﬁFV(A n.dnw .vﬂn(v*w)Jf(v*w*x) 'vﬁn(v*w*ﬁ)gv(d ,V*W*R))
whence by distributivity of: over vK, (4) and (5)

V, & K K v K . s . K 0 I’

dF(w*x) o vﬁFV(A n.dnw) 'vﬁF(v*w)Jf(v*w*x) 'vﬁF(v*w*i)gv(d s VAW R)

and hence, by 4.4.17(c), (2). O

4.4.21. LEMMA. If d e DG(J) then
(a) d;o ~ id

v K K v
(b) dFW o véFv(A n.dnw)

(c) d;(v*w) o d;v : d%Y,

W
F
(d) Zf Vn(JneC), Vv([vleC) and C is closed under : and A then de e C

(e) VvﬂaVn(ﬂnv=°n +—dnv =~ [an]).

PROOF. (a) by definition, (d) trivial, (e) by lemma 4.4.14. (b) is a corol-
lary to the proof of 4.4.20: in the proof of 4.4.17(c) from 4.4.20(1) and
(2), we do not use the assuymption ht(F)>0. For (c) we use the characteriza-
tion of DG(J) in lemma 4.4.20. We proceed by induction w.r.t. lth(w):

(1) w = 0: dp(v0) = dpv e dpv : id, and id = d' "0 by 4.4.20(1)-

(ii1) w = w'*%: by 4.4.20(2)

.o K ..k
1¢)) d;(v*w) o~ d;(v*w ) .véF(u*v*w,)Jf(u*v*w) .véF(u*v*w)gv(u*v*w).

By induction hypothesis

u 1y o~ g%y . qUFVoe
(2) dF(v*w ) —-dFv .dF

By 4.4.20(2)

u*xv
F

3) Q¥ vy .

K .
F 'véF(u*v*w')Jf(u*v*w)'

K
véF(u*v*W)gv(u*v*w) ~d

u*v O

If we substitute (2) in (1) and apply (3) we find d;(v*w) o d;v :dF W.
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4.5. PROJECTED UNIVERSES OF NESTS OF GC-CARRIERS

4.5.1. DEFINITION. A mapping J: N~ K enumerates the subset C of K modulo

equivalence (or modulo =) iff e ¢ C +»> In(Jneze).

4.5.2. DEFINITION (of 'to generate nests of GC-carriers' and of CUG(C)).

(a) A mapping m: F > T from FRAME into K generates nests of GC-car-
riers w.r.t. C ¢ K iff there are a J: N~ K which enumerates C modulo equiv-
alence and a d ¢ DG(J) such that, for all F, FFI§ is the intersection of

the ranges of the mappings dF(Ex)I-, more precisely, such that
mo(&xw) = y+1 > Val (de|a) (x) = yl.

(C£.2.9.9,(3)~(5) and 4.4.18.) We abbreviate wFls to .
(b) If 7 generates nests of GC-carriers w.r.t. C, J enumerates C

modulo =~ and d € DG(J) satisfies
TrF(i*w)=y+1 - Val (de|a) (x)=y],

then d_(3x) is the dressing for m_§ at stage x, d generates the dressings
ng F g

for w. 6F(§x) is the frame for nFG at stage x, and the pair (dF(Ex),ﬁF(Ex))

is the restriction for T8 at stage x.

Instead of dressing, frame and restriction for w_§, we shall also say

F
dressing, frame and restriction for Mg )
(c) CUa(C) is the set of all universes U(S of the form

u(S = {1rF6 :F ¢ FRAME},

where 7 generates nests of GC-carriers w.r.t. C. An element us € GU(5 (C) is
a projected universe of nests of GC-carriers w.r.t. C.

(d) We write L for Ton)® If UG € CU(S(C), then the subuniverse
{1rn6:n e N} < UG

is a projected universe of GC-carriers w.r.t. C. An element T8 e U6 is a

ecarrier of U(S'

4.5.3. REMARK. The elements 1rF6 of a universe U(s € CU(S(C) are to imitate

the nests of carriers ep (w.r.t.C). This is clear for the carriers nna of
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UG. For frames F with ht(F)>0, we have defined

_ 1,1
ep = vF(A n.sn),

(c£.2.10.1) while here we put
7.8 = N range (A¢p.d_(8x)]¢).
FO T, Froxl

In lemma 4.5.5 below we shall prove that

1,.1
m.8 = vF(A n.ﬂné).

FG

4.5.4. LEMMA. If m generates nests of GC-carriers w.r.t. C and d generates
the dressings for w, then

n8(x) =y < Val (d; (B x+1) [2) 0 =y].
PROOF. By lemma &.4.18
3zVal (d, (8 (x+1)) |a) (x)=2],
hence it suffices to show that
T8 (x)=y A Va[(dF(S(x+1))|a)(x)=zJ +y=z.
If m.8(x) =y, then nF(i*E(kn)) = y+1 for some k, hence
Va[(dF(E(k+1)>|a)(x)=yJ (by definition).
Now assume that we also have
Val (4, (8(x+1)) |a) (x)=z].
If k > x, then dF(E(k+1)) o~ dF(E(x+1)): e for some e. (4.4.21(c)) Hence

d,(8(+1)) [a = 4 (8(x+1)) [b for b=e|a, this yields y=z.
If k < x then dF(E(x+l)) = dF(g(k+1)) : e for some e, and then also y=z. [



4.5.5. LEMMA, If = generateé nests of GC-carriers w.r.t. C then
VbeFVn[ZbF=n > Jb(nF6)=ﬂn6],

. RPN
Z.e. 1TF<5//F, 8 = vF()\ n.nns).

PROOF. Let b ¢ F have the label n, assume that

n WFS(X) = vy.
We show
(2) T 8(x) = jpy.

Let d generate the dressings for m, then (1) is equivalent to
(3 Va[(dF(g(x+1))|a)(X)=y],
by the previous lemma. By lemma 4.4.21(b) and 4.3.14(a)

a4, (3Gx+1)) = vi(An.d_(Fxr1))),
s0

Jpldp8(x+1))a) = d (B(x+1))|jpa  (3.2.16(c)),

whence
Vb (d_ (8 (x+1)) [b) (x)=3p¥],

by (3), and hence (2) by 4.5.4. [

4.5.6. LEMMA. Let J: N +K enumerate C modulo =, let d be an element of
DG(J). Define m:F - T from FRAME into K by

ﬂF0=0, wF(ﬁ*W)=sg(1th(w)ax)'[dF(a(x+1))(§*w)],

where w(x+1) = werz.0(x+1). Then m generates nests of GC-carriers w.r.t.
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C.
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PROOF.
(a) (ﬂFEK). Put e = Au.sg(lth(u)=x), then e € K by 1.3.14 and

exu#O > Xw.ﬂF(i*u*w) = Aw.[dFG(x+l)(i*u*w)] € K,

(since dFG(x+1)eK) hence, by 1.3.13(3) Vx(nF(i*w)eK), whence, by (K2),
ﬂF e K.
(b) (NF(ﬁ*W)=y+l > Va[(dela)(x)=y]). 1f ﬂF(ﬁ*w) = y+1 then

w = vxZ2%u, where lth(v) = x, and
Vaew[(dF(V*E)]a)(x)=(dF(v*2)Ia)(lth(v))=y].

Now apply 4.4.18. [

4.5.7. REMARK. Let 7 generate nests of GC-carriers w.r.t. C and let d
generate dressings for m. From lemma 4.4.21(e) we know that if m8 is fresh
at stage x, i.e. if ﬂn(‘Gx) = on, then dn(6x)e=[aﬁ] for some a: N > N . That
is to say, if 6n(6x) = ©°n, then the empty part of m_& at stage x, i.e. the
part of ﬂn6 that is not yet available at stage x, is Slth(an) Iwné.

The source for a carrier €n at stage x is represented by substituting
the empty part of e, at stage x for each occurrence of the label n in the

frame for e, 3t stage x (cf.4.4.5). So the source for wm6 at stage x is

1 1 1th(an)
vém(gx)(k n.s | LECR

€n is related to its source src(m,x) at stage x via dmx, its dressing at
stage x, by the equation €n = dmx[ src(m,x). (Cf£.4.4.5.)

For ﬂm6 we can prove the corresponding equation

) _ - 1 1 1th(an)

wmé = dm(dx) |(v6m(6x)(l n.s |nn6)).
We postpone the proof till chapter 6 (6.3.4(d)).
4.6. PROJECTED UNIVERSES OF GC-SEQUENCES W.R.T. C

4.6.1. DEFINITION. Ud(C) is the set of all universes U(s of the form

ua = {el'nFG :e € C, F e FRAME},
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where m generates nests of carriers w.r.t. C. If C is dependency-closed,

then a universe Us € UG(C) is a projected universe of GC-sequences w.r.t. C.
This is completely analogous to the definition of GC(C) from GCC(C).

4.6.2. DEFINITION. Let U, = {elﬂFG te e C, Fe FRAME} belong to U (C), and
let d generate dressings for m.

(e,F) is the initial restriction for e|m.s « Ug> e is the initial dressing
for eInFG, F its <nitial frame.

(e:dF(éx),ﬁF(Gx)) is the restriction for e|wF6 at stage x, e :dF(Gx) is

the dressing for e|nF6 at stage x, 6F(6x) is the frame for e|nF6 at stage x.

4.6.3. LEMMA. If C c K Zs dependency-closed and J : N+ K enumerates C modulo
~, then UG(C) 18 not empty: there exists a projected universe of GC-sequences
w.r.t. C.

PROOF. It suffices to show that there is a m which generates nests of GC-
carriers. By 4.5.6 the problem is reduced to showing that DG(J) contains
an element d. This follows from 4.4.19 and the fact that there is a

a® ¢ o) 4.4.12). O

4.7. At any stage in the construction of the lawless sequence §, there is
only an initial segment of that sequence available to us. If at stage z we
have generated the initial segment 8%, then we can make no prediction
whatsoever about the §(x+y) yet to be determineq.

Part of the lawless behaviour of 6§ is reflected in the behaviour of the
sequence of restrictions Ax.(dF(gx),ﬂF(Ex)) for WFG in a projected universe
of nests of GC-carriers, but not all.

E.g. we know that 6F(§(x+y)) can be produced from 6F(§x) by a lawlike
g : N> FRAME, and that

- = 5x 8% K _ K .8x
dp(8(x+y)) = dp(8x) :dpw, dpw = vﬁF(Gx)(A n.d "),

where w = Az.8(x+y)(z). (C£.4.3.15(b), 4.4.21(b) and (c).) Moreover, we
know that dF(S(x+y)) will determine values for the arguments 0,... xX+y=l.
The next chapter is devoted to the question of the freedom of continua-

tion for sequences of restrictions Ax.(dF(Ex),ﬁF(Ex)).
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CHAPTER 5

THE ORDERING OF RESTRICTIONS AND THE OVERTAKE PROPERTY

5.1. THE ORDERING OF RESTRICTIONS

5.1.1. The frame for Te at v*w(ﬁF(v*w)), can be produced from the frame for

e at v(éFv), i.e.

(1 Hg(ﬁF(v*w) = 6FvEg]), or shortly, 6F(v*w) > 6Fv (4.3.14(b)).

If d € DG(J), then

(2) dy () = dv :d;w (4.4.21(c)),
and
(3) d;w o v?FV(XKn.dZW) (4.4.21(b)).

Moreover, if J enumerates C modulo = and C is dependency-closed, then

4) Vn(dZweC) (4.4.21(d)).
Hence
(5) Egﬂ(;ﬁFV(dF(V*W) o dFV=g) (by (2), (3) and (4)).

5.1.2. DEFINITION (of stronger than between restrictions). Let (e,F) and
(£,G) be two restrictions. (e,F) is stronger than (£,G), or equivalently,
(£,6) is weaker than (e,F), iff it is consistent with (1) and (5) above that
(£,G) is the restriction for a projected nest of carriers ﬂH5 at stage x,
and (e,F) is the restriction for the same sequence at some stage x' 2 x.

We denote (e,F) is stronger than (£,G) by (e,F) = (£,G) or by
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(£,G) £ (e,F). In formula:.
(e,F) =2 (£,G6) = (£,G) < (e,F) = F=G A E\g//C G(ex=f:g).

5.1.3. REMARK. The terminology and the notation are not quite accurate. In-
stead of 'stronger than' we should say 'stronger than w.r.t. C ¢ K', in-
stead of > we should use >_,. Since we shall use 2 only w.r.t. subsets of K

C
denoted by C, this omission will not cause confusion.

5.1.4. FACT. If d € DG(J), J enumerates C modulo =, and C is dependency-

closed, then
(dp (viw) o f 5 (i) = (dpv, §v) (c£.5.1.1).

5.1.5. DEFINITION (of equivalence between restrictions). Two restrictions
(e,F) and (£,G) are equivdlent, which we denote by (e,F) ~ (£,G), iff (e,F)

is both stronger and weaker than (£,G), i.e.
(e,F) = (£,6).= (e,F)=(£f,6) A (e,F)=<(£,6).

5.1.6. LEMMA (properties of > and »).

(a) If id € C then (e=~f) A (FNG) - (e,F)™~ (£,G).

(b) If C Zs closed under : and A then 2 is transitive, Z.e.
(e,F)=(£,6) A (£,6)=(g,H) > (e,F)=(g,H).

(c) If vv([vleC) then Vy//F ((e:[y],F) = (e,F)).

(d) (£,F)=2(g,G) » (e:f,F)=(e:g,G).

PROOF .

(a) If F~G then F 2 G and F < G by definition 3.1.20.
If e = f then e = f:id and f ~ e:id, while if id ¢ C then VH(id//CH) by
3.2.20(0).

(b) If F 2 G =2 H then F 2 H by 3.1.19(e).
Assume e o f:gl,gl//CG and f = g:g,, gz//CH. Then gl//CH’ since G = H and
C is closed under A (3.2.20(k)), and gzzg]//CH (3.2.20(s)), i.e.
e = gi(gyig))s 8yig M He

(¢) 1f VYv([v]eC) and y//F then [y]//CF by 3.2.21(i).

(d) If £ = g:g', g'// G, then e:f = (e:f):g', g'//CG. 0
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5.1.7. COROLLARIES. .

(a) If id € C then (e,F) ~ (e,F). [By 5.1.6(a).]

(b) If C is closed under pairing and composition, then = respects ©, and
18 transitive. [By 5.1.6(b).]

We shall give more properties of > and =~ in chapter 7. Note that the
conditions on C in 5.1.6(a)-(c) and 5.1.7 are all fulfilled if C is depen-

dency-closed.

5.2. FREEDOM OF CONTINUATION FOR SEQUENCES OF RESTRICTIONS: THE 'STRONG
OVERTAKE PROPERTY'.

5.2.1. First we formulate the (false) principle of 'full freedom of conti-
nuation for sequences of restrictions':

Let C c K be dependency-closed, let J: N ->K enumerate C modulo =,
let d € DG(J) and let 6Fv be as defined in 4.3.9, 4.3.12. Then we can find,
for each restriction (e,F) stronger than (dF(Sx),ﬁF(Gx)) a lawless sequence
§'" € 6x and a y = x such that (dF(G'y),ﬁF(S'y)) ~ (e,F), i.e. each restric-

tion stronger than the restriction at stage x can be reached at a stage
y 2 x; in a formula:
V(e,F)2(dv, fov)Iw((e,F) ™ (d (viw),f (vw))).
This principle leads to a contradiction. Consider the sequence of re-

strictions {(sn,°m): n e N}. By full freedom of continuation for sequences

of restrictions, there is a ¢ € N such that
m Vadxl (d_(4x),6_(6x)) ~ (s7,°m) .

On the other hand, .the determination of a value for the argument zero must

be guaranteed, i.e.
V63z3yVal (dm(Ez) |a) (0)=y].
By the extension principle we find a z such that for the ¢ of (1)

(2) ByVaE(dm($Z)|a)(0)=y].
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By (1) there are n € N and e”c°m such that s™ = dm($z):e, whence by (2)
EyVa[(snla)(O) = y], which is obviously false.

Note that the contradiction arises from the fact that we have to
guarantee the determination of a value for each argument, and not from the

method by which this guarantee is provided.

5.2.2. With each e ¢ K and n € N we can find an f ¢ K such that if w lies
in the bar f, i.e. fw # 0, then e:[w] determines a value for all arguments

m<n, i.e.
vwl fw#0 ~ VmSnByVa((e:[w]la)(m)=y)].

We might replace the principle of full freedom of continuation for
sequences of restrictions by the following:

Let C,J, d and 6Fv be as above. Then
(1) V(e,6)2(dpv, §vIVe /G Fxal(d frxw) , f (vaw)) & (e:[¢x1,6)1,

i.e. we can 'overtake' each restriction (e,G) stronger than the restriction
(dF(Sz),ﬁF(Ez)) at stage z, and reach a restriction of the form (e:[$x1,G)
stronger than (e,G) at some stage z' 2 z. The finite sequences u for which
(e:[ul,G) can be reached form a bar in the set of sequences {¢ ¢ N: ¢//G}.

This principle is valid, as will be shown below. A somewhat weaker
formulation is:

Let C,J,d, and ﬂFv be as before. Then
(2) v<e,a>z(dFv,5Fv)v¢//caxw[(e,c) < (@ (vnw), fp (va)) < (e:l4x1,0)1,

which says that we can 'overtake' (e,G) and reach a restriction which lies
between (e,G) and (e:[¢x],G). Obviously (1) implies (2), hence this prin-

ciple is also valid.

5.2.3. If (e,G) = (dFv,ﬂFv) then G > 6Fv and

(3) e = dFv:f, for some f//C ﬁFv.

By 4.4.21(c) we have for d e DG(J)
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(4) dp (vw) dFv:d;w.
So we can replace (e,G) < (dF(v*w),ﬁF(v*w)) < (e:[$x1,G) by
(dpv:£,6) < (dFv:d;w,ﬂF(v*w)) < (dpv:(£:09x1),6),

which is equivalent by (3), (4), 5.1.7(a) and (b).
We change 5.2.2(2) into:
Let C,J,d and 6Fv be as before. Then

(5) VEI] , §5VG26 Vo //GII(£,6) < (d;w,éF(v*w)) < (£:09x1,6)1,

i.e. instead of dF(v*W) overtaking e, we now have d;w (the difference be-
tween dFv and dF(V*W)), overtaking the difference between dFv and e.

(5) implies (2) by the remarks above and 5.1.6(d). (5) is valid, in
fact we can prove a stronger form, with (d;w,ﬁF(v*w)) ~ (f:[¢x],G) instead
of (£,6) < (d‘F’w,ﬂF(v*w)) < (£:0$x1,6).

In the final formulation of the 'overtake property', we replace
V¢//G3xh(¢x) by the stronger JeVu//G [eu#0 > Aul, i.e.

5.2.4. DEFINITION (of overtake property and strong overtake property). Let
d: N xFRAME x N - K, 4: FRAME x N - FRAME be two lawlike mappings, put
v -

de = d(v,F,w), 6Fv = §(F,v).

(a) The pair (d,4) has the overtake property iff

(6) VEN o §VVG26 vIeVu//G [eubd > Fw((£,6) < (d}F’w,ﬂF(v*w)) < (£:[ul,6)) 1.
(b) (d,4) has the strong overtake property iff

(7) Vfﬂc6FVVG26FvVg3eVuﬂG[eu#0 -

Iw(gw#0 A (f,G)S(d;w,5F(v*w))s(f:[u],(}))],

that is to say, the strong overtake property does not only claim that we
can overtake (f,G) by choosing the right w, thereby remaining below a 'bar
of restrictions' of the form (f:[u],G), but also that we can choose w in a

bar given by g.
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5.2.5. LEMMA (the strong overtake property for the projections of chapter 4).
Let C be dependency-closed, let J enumerate C modulo =~, let d be an ele-
ment of DG(J) and let :(F,v) H—ﬁFv be as defined in 4.3.9, 4.3.12. Then
(d,§) has the strong overtake property.

5.3. THE PROOF OF LEMMA 5.2.5

The proof of the validity of the strong overtake property is a long
and complicated one. In this section we shall outline the proof, using some
exarples. We present the details in 5.4. The reader is advised to skip those
details at first reading. If one is willing to accept lemma 5.2.5 without

proof, one can skip even this section and continue with chapter 6.

5.3.1. Throughout the rest of this chapter

C is a dependency-closed subset of K,

J: N + K is lawlike and enumerates C modulo o~
d is an element of DG(J), and

for all F and v, 6Fv is the frame for Tp at v.

5.3.2. We show that for all F, v and g
(1) VG2{ WVE// , §vWeCSLI[$x//G + Fw(gwhO A d‘lgw  £:09x] A f(vaw) » G)],

where CSL (for 'continuous image of a single lawless sequence') is the set
{ela:e € K, a € LS}. In words: (d;w,ﬂF(v*w)) can overtake the restriction
(£,6), f#c 6Fv, G > 6Fv, and reach a restriction (£f:[¢x]1,G) for any ¢ of
the form e|a, which has a sufficiently long initial segment ¢x parallel to
G. In overtaking w reaches the bar g.

The strong overtake property for (d,§) states that there is a bar given
by an e € K, such that (dgw,ﬁF(v*w)) can overtake (£,G), f”(IﬁFv’ G > 6Fv
and reach a restriction which lies between (£,G) and (£:[u],G), for any
u//G in the bar e. Again, in overtaking w reaches the bar g. In formula:

for all F, v, and g
(2) VG2 wE/ ; vIeVu//G [eutO > Fu(gwhO A (f',G)s(d;w,ﬁF(v*w))S(f:[u],G))].

LEMMA. (1) Zmplies (2).

This is proved by an appeal to the continuity axiom
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(3) Vo3xA(a,x) + JeVuleu#0 - VaecuA(o,eusl)].

The proof is relatively simple. The reader can skip it and continue with
5.3.3.

PROOF. Let G 2= 6Fv and f//C 6Fv be arbitrary and put
A(p,x) = [5x//G-> Jw(gw#0 A d;wuf:ljx] A 6F(V*W)NG)].

Assume (1), then in particular Va3xA(a,x) and hence, by (3), there is an e’

such that
(4) Vule'u#0 + VaecuA(a,e'u =21)1].

Define e by eu = e'ussg(lth(u)=:e'u), then

(5) eu#0 - eu=e'u,
and

(6) eu#0 + eu<lth(u).
We prove

Vu//G [eu#0 + Jw(gw#0 A (f,c)s(d‘F’w,ﬁF(v*w))s(f:[u],G))J.

Let u//G be arbitrary and assume that eu # 0. Then VacuA(a,eusl) by (4) and
(5), i.e.

(7) Vaeula(eusl) /G Fw(gw#0 A d}’wuf:[a(eual)] A fg (viw)nG) 1.

By (6) and the assumptions eu # 0, u//G we have u = u KU, where
lth(ul) = eusl, ul//G and u2//G. Hence, if a € u then a(euzl) = us u]//G .

I.e. (7) yields a w which satisfies

(8) gw#0 A d}F’w = £:0u,] A § (viw) ~ G.

o
€
|

o f:[ul], u1//G and 6F(v*w) ~ G imply

(£,6) < (dgw,fp(vxw))  (by 5.1.6(c),(a));

o
3]
1

f:[ul], filul = f:[uI]:[uZJ, u2//G and 6F(v*w) ~ G imply
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(d;w,ﬂﬁv*w)) < (£:[ul,G) (also by 5.1.6(c),(a)).

So (8) yields gw#0 A (f,G)s(d;w,ﬂF(v*w))S(f:[u],G). ]

Note that we apply (3) in this proof with a formula A not in the lan-
guage of LS. A is a formula of LSF, a definitional extension of L§ to be

discussed in chapter 7, i.e. A can be translated into an L§ formula.

5.3.3. We can split 5.3.2(1) into two 'semi-overtake properties' and a

'continuation till bar property': for all F, v and g

(1) Vf//céFvV¢eCSL3x[$x//6Fv -> Bw(d;wuf:ﬁxj A fp(rxa) & §ov)]
(i.e. d;W can overtake fA%ﬂFv, while the frame remains equivalent),
(2) VGZﬁFvV¢eCSL3x[$XﬂG-+-3w(d§wﬁ£[$x] A ﬁF(v*w) ™~ G)]J

(i.e. 6F(v*w) can overtake G 2 6Fv, while the dressing follows ¢),
(3) V¢eCSL3x[$xﬂG-; Jw(gw#0 A d;w o [¢x] A 6F(V*W)=6FV]

(i.e. we can leave the frame unchanged and make dzw follow ¢ until w reaches

the bar g).

LEMMA. The universal closures of (1), (2) and (é) Zmply 5.3.2(1).

The proof of this lemma is also simple. It may be skipped. In that

case, go on with 5.3.4.

PROOF. Let G 2 6Fv, fﬂ(:ﬂFv and ¢ € CSL be arbitrary. Apply (1).

Either we find an X, such that $x] %LﬂFv, then $x1-£ﬁG (3.2.21(£f)) and
5.3.2(1) follows trivially,

or we find an X and a w] such that

v

(4) del o f:[$x]] A 6F(v*w1) ~ éFv.

x
Apply (2) with v*w, for v and s ]|¢ for ¢. Since G 2 ﬁFv by assumption and

1
6F(v*w1) ~ ﬂFv by (4), we have G Z,AF(V*WI) (3.1.19(e)). So

either we find an X, such that sxl]¢(x2) 4 G, then $(xl+x2) 4 G and
s

5.3.2(1) follows trivially,
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or we find an X, and a w2 such that

v

X
(5) dF*Wl w, = [s ]|¢(x2)] A fg(vew ww)) ~ G.

Combination of (4) and (5) yields (use 4.4.21(c)):
(6) d;(wl*wz) o~ f:[&(x]+x2)] and 6F(v*wl*w2) ~ G.

X+X
Finally apply (3) with v*w W, for v, s ! 2|¢ for ¢ and Aw.g(wl*wz*w) for g.

X . +X

1
Either we find an Xy such that s ! 2|¢(x3)~AL-6F(v*w]*w2), then

Riizome _
s |¢(x3)-ﬁL G, by (6) and 3.2.21(h), hence ¢(xl+x2+x3) 4 G and (1)
follows trivially,

or we find X, and L&) such that

X, +x

VKWWY o o [s 1

2
F 3 ¢ Gx3)3

g(w]*wz*w3) #0, d
and
6F(v*w]*w2*w3) = 6F(v*wl*w2).

Combination of these with (6) yields 5.3.2(1) with x = x1+x2+x3 and

WS W KW kW 0

5.3.4. DEFINITION.

(a) The jps—part of y is j?y.
(b) The jf-part of y is j;y.
(c) The gv-part of y is jgy.

5.3.5. FACTS.
(a) The jps—part of y determines 6F(v*§), that is to say

.3_.3 " ~
=iz > 6F(V*y)=6F(v*Z),

since ﬂF(v*ﬁ) = 6Fv[jps(k?(v*?))] (4.3.13), and k?(v*y) = k?v*<j?y> by
definition of ki (1.3.5(d)).
(b) If the jps-part of y makes n jump, i.e. if jps(k?(v*?))n # °n,

then the jf-part of y determines the jumpfunction, since (cf.4.4.3)
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id if jps(k?(v*?))m = °m,
JE(v*§)m =
J(jgy) otherwise.

(c) The gv-part of y determlnes the guiding sequences gs, (v*y) for n
fresh at v*§, i.e. n ¢ nf(k (v*§)); for those n, gs, (v+§) = (sz) *1z.0.

(d) If the jps—part of y is Vg (0,0,0) then JPS(k?(V*y)) An.°n and
6(v*y)—6v(cf 4.3.4, 4313and3 1.19(c)).

(e) Let k,m,n satisfy k ¢ nf(k v), m ¢ nf(k v), n ¢ nf(k v), k # m and
k # n.
If the jps-part of y is v (0 k,m), then Jps(k (v*¥))k = °m, and
Jps(k (v¥§))k' = °k' for k' #+ k.
If the jps-part of y is V3 (1,k,j(m,n)), then Jps(k (v*§))k = om A °n and
Jps(k (vx§))k" = °k' for k' # k.

(f) Let m and n be labels of 6 v, m # n. Then m ¢ nf(k v) and

n ¢ nf(k v) by 4.3.14(c) and 4.3.11(a), hence, if we take v (O n,m) for the
jps-part of y, then 6 (vx§) is obtained from 6 v by erasing all labels n and

putting the label m in its place. See fig.l.

if the jps—part of y
is

v3(0,3,1) then 6F(v*y) is 0

Fig. 1

(g) If m is a label of ﬁFv, k ¢ nf(k?v), k ¢ K(ﬁFv) and the jps-part
of y is v3(0,m,k), then jps(k?(v*?)) has the form An.°an, where am = k and
am' = m' if m' # m. Since 'k ¢ E(ﬁFv); a-is 1+1 on Z(ﬁFv), hence
6F(v*§) ~ ﬂFv by 3.1.22.

(h) If the jps-part of y is v,(0,0,0) then jE(v+9) = A“n.id, by (d)
above and the definition of jf (4.4.3).

(i) If the jps-—part of y makes n jump and e ¢ C, then we can choose
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the jf-part of y in such a way that (an equivalent of) e is generated as
the jumpfunction. (By assumption, J enumerates C modulo =, cf.5.3.1.).

(j) We can choose a value z for the jf-part of y such that Jz = id.
(C is dependency-closed, hence id € C). In that case jf(vx§) = AKn.id, in-
dependent of the jps—part of y.

5.3.6. DEFINITION. JF(F,v+§) = vi if(v+§), GV(F,v*§) = v& . . gv(v+§).
- 6Fv 6F(V*Y)

Definitions 5.3.4 and 5.3.6 will not be used outside this chapter.

5.3.7. FACTS.

(a) dFy ~ JF(F, v*y) GV(F,v*¥), by 4.4.20.

(b) If jE(vx§) =~ A n.id then JF(F,v*§) =~ id by 3.2.16(f), and hence
dpF = GV(F,v+9) by (a).

(c) If the jps-part of y is v3(0,0,0) then JF(F,v*§) =~ id and
d;? e GV(F,v*y) by 5.3.5 (h). and (b) above.

(d) We can choose the jf-part of y in such a way that (independent of
the jps—-part of y) JF(F,v*§) =~ id and d;? =~ GV(F,v*§) by 5.3.5(j) and by
(b) above.

(e) JF(F,v*y) is completely determined by the jps— and the jf-part of
y, since these two together determine jf(v*§y). The same holds for
(d:JF) (n,v*§) as defined in 4.4.7.

5.3.8. LEMMA (freedom of generated values). Let the jps— and the jf-part

of y be given, and let G be the frame 6 (vx§), as determtned by the jps-
part of y (Z.e. G = 6 v[Jps(k v+§))1 = 6 v[Jps(k (V<] y>)]) With any se—
quence ¢ € N we can find

either an initial segment ¢x which is not parallel to G,

or an x and a value for the gv-part of y such that ox//G and GV(F,v+§) =[¢x].

In formula
Yy VeTyLidy=y, A aymy, A xllfy(vsd) > GV(E,v9) = [5x])].

(The formula does not quite match the informal description, but it expresses
the same: since ExﬂﬂF (v*§) is decidable, ExﬂﬂF(v*y) + A is equivalent to
0x M 5 (v*9) vV @M fL(vx§) A A).)

PROOF. See 5.4.1. O
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Now we can turn to the proofs of the semi-overtake properties and the
continuation to bar property 5.3.3(1)-(3). We consider them in the reverse

order.

5.3.9. The continuation to bar property (5.3.3.(3)) states that for all
F,v,g and ¢ of the form e|a we can find

either an x such that ¢x 7‘)"6Fv,

or an x and a w such that gw#0 A d;w o [px] A ﬁF(v*w) = 6Fv.

First we show

LEMMA. For all F,v and ¢ we can find
either an X, such that $x] bV,
or an x, and a y such that d;? o~ [Exl] and 6F(v*?) = ﬁFv.

T.e.
VFv¢ax1[$xl//5Fv-> ay(d‘F’y > (%] A fL(w§)=f V).

(That is to say: we can take one step towards the bar g.)

PROOF (can be skipped.)
Choose X, and y as follows ((i)-(iii)):
(i) For the jps—part of y take v3(0,0,0), then

(1 6F(v*?) = 6Fv (by 5.3.5(d)) and ‘

(2) d‘F’y o GV(F,v+§) (by 5.3.7(c)).

(ii) For the jf-part of y take any value you like, the previous choice of
the jps—part makes the jf-part irrelevant.

(iii) Now apply lemma 5.3.8:

either we find an x, such that Exl'ﬁ“ ﬁF(v*ﬁ), then Exl -+ ﬂFv by (1),

1

which proves the lemma, or we find an x, and a value for the gv-part of y

1
such that

(3) GV (F,v+§) =~ taxlj,

which, in combination with (1) and (2), also proves the lemma. [J
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To prove the continuation to bar property itself, one shows that this
lemma implies the existence of two mappings fl’f2 € K such that for all ¢

and z
$(0,2) # fpv V(dp(3,(2)) = [6(4,2)] A §(vxd,2)=f)>

where ¢l = fl|¢, ¢2 = f2|¢. By the extension principle we find a z such
that g($;(zo)) # 0, the continuation to bar property follows with ¢]zo for

x and 5220 for w. For the details see section 5.4.2.

5.3.10. The semi-overtake property for frames 5.3.3(2) states that for all
F,v,¢ and G 2 ﬁFv we can find
either an x such that ¢x—7# G,
or an x and a w such that d;w = [gx] and ﬁF(v*w) ~ G.

Recall that H s~ G iff there is an a: N > N such that G = H[An.(°an)]
and alfH is 1-1 (lemma 3.1.22).

First we prove the semi-overtake property for frames under the addi-

tional assumption that G = 6Fv[An.(°bn)] for some b, i.e.

5.3.11. LEMMA. Let F,v and ¢ be arbitrary and assume that for some b: N~ N
(1 G = fpvlin.(°bn)].

Then
either there is an x such that ¢x 7~ G,

or there are x and w such that d;w e [¢x] and 6F(v*w) ~ G.

PROOF (in sketch, for details see 5.4.3). Fig.2 shows a possible 5Fv and
. = = o =
two frames G;»6y5 G, ﬂFv[An.(°b1n)], G, 6Fv[An.( bzn)], where bIO b12

=1 and bll = b13 = 0, while b20 =1 and b21 = b22 = b23 = 0.

Fig. 2
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If the b in assumption (1) is a 1-1 mapping on Z(ﬂFv), then 6Fv NG
by the remark preceding this lemma, hence we can take x = 0, w = 0.

If b is not 1-1 there is a non-empty set of pairs (n,m), n € Z(ﬂFv),
m e Z(ﬁFv), n'# m, such that bn = bm. In the examples we find the set
{(0,2), (1,3)} for b1 and {(1,2),(2,3),(1,3)} for b2'
We measure the extent to which b is not 1-1 by counting the members of this
set. The formal proof proceeds by induction w.r.t. the resulting number.

In the examples we have b ,3 = bll and by3 = b

1
X, can be determined as follows ((i)-(iii)):

21. In both cases, y and

(i) For the jps-part of y take v3(0,3,1), then 6F(v*§) is the frame pictured
in fig.3 (5.3.5(f)).

fp (v*9) G e

Fig.3

(ii) Choose the jf-part of y in such a way that the jumpfunction id is
generated, i.e. such that (5.3.7(d))

(2) d;? ~ GV(F,v+§) .

(iii) Apply lemma 5.3.8:

either we find an X, such that ¢x - 6F(V*§), since G] > 6F(v*?) and
G, 2 6F(V*§) (see fig.3) then also ¢x # Gl’ Ex-%kcz and we have the result

we want,
or we find an X, and a value for the gv-part of y such that

(3) GV(F,v*§) = [¢x,1],

whence d;? o [$x1] by (2).
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Note that G] = ﬁF(v*ﬁ)[An.(°bin)] and G2 = 6F(V*§)[An.(°bén)], where
biO = b;Z =1, bl] = 0, and béO =1, bél = béZ = 0; that is to say, for b;
as well as for bé there is only a single pair (n,m) of labels of 6F(v*§)
such that n # m and bin = bim.

If we have found x, and y such that ¢x1ﬂGi , i=1o0ri= 2 respec—
tiveiy, and d;? o [$x1], then we repeat the construction, with v*§ for v
an s |¢ for ¢, and with the remaining pair (n,m) such that bin = bim in-
stead of (1,3). -

Either we find that s ]|¢(x2)-ﬁL 6F(Y*<y,y'>)_£9£_§ome X5

or we find 6F(V*<y,y'>) NG, and d;*yq'> o~ [sxllq;(xz)].

In both cases we obtain the desired result. [

5.3.12. Next we prove a lemma which reduces the semi-overtake property for

frames to the property proved in the previous lemma.

LEMMA. Let F,v and ¢ be arbitrary and assume that G = 6Fv. Then we can find
either an x such that ¢x # G,

or an x, awand a b: W > N such that G = éF(v*w)[An.(°bn)] and

d;w ~ [¢x].

PROCF . (in sketch, see also 5.4.3). If G 2 6Fv then G = 6Fv[9] for some
g: N - FRAME. 6Fv, G and g might be e.g. as in fig.4.

Fig. 4

We measure the extent to which g differs from a mapping of the form
An.°bn by counting for each m ¢ K(ﬂFv) the number of non-empty nodes in
gm and ‘adding the results.

The formal proof proceeds by induction w.r.t. to this number.
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If it is 0, then, for all m ¢ 2(6Fv), the only node of gm is the empty
one, and g can be replaced by An.(°bn) for some b.

In the example gl has 4 non-empty nodes, g0 has none. Note that a frame
which has non-empty nodes is a pair H, A H,. In the example gl = H AHZ’

1 2 1

with Hl’ H2 as in fig.5(a).

/\ °o By fpv*9)
i

Fig.5

The first step towards constructing x and w such that
G = 6F(v*w)[kn.(°bn)] for some b and d;w e [¢x] would be to determine y and
X, as follows ((i)-(ii)): 5 5
9 such that n, # ny, 1, ¢ nf(klv), n, ¢ nf(klv), g] ¢ K(ﬁFv),
n, ¢ K(ﬁFv), and take v3(1,1,j(n1,n2)) for the jps-part of y.

(i) Choose n,n

Then jps(k?(v*?))] = °n1A°n2 by 5.3.5(e) and 6F(v*?) is the frame pictured
in fig.5c.
(ii) Choose the jf-part of vy, X, and the gv-part of y as in the previous

lemma, i.e. such that either

) b, 0 o)

or

Va -
dFy -[¢x]].

Note that G = 6F(v*?)[g'], where g'0 = °1, g'n] =H, g'n2 = H, (see
figs.5b,c), hence if (1) is the case then also gx]-%L G and the lemma is

proved.
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If (2) is the case, then we repeat the construction above with v*§ for

jump to k. and k k1 # k2,

x
v, § 1|¢ for ¢, and g' for g: now we make n 1 99

k],k2 ¢ {O,n],nz}.

Note that the distance between g' and a mapping An.(°bn) is smaller

1

than the one between g and a mapping An.(°bn): only g'n1 has non-empty
nodes, namely two. In our example we need one repetition of the construction
given above to reduce the remaining distance to zero; in general, more re-

petitions will be necessary. [
5.3.13. Now we can prove
LEMMA. The semi-overtake property for frames holds.

PROOF. By a simple combination of the foregoing two lemmata (details in
5.4.3). 0O

5.3.14. The semi-overtake property for dressings (i.e. 5.3.3(1)) states
that with all F,v,¢ and fﬂc 6Fv we can find
either an x such that ¢xﬂ6Fv,
or an x and a w such that d;w ~ £:[¢x] and ﬁF(v*w) ~ ﬁFv.
We illustrate the proof of this property with a simple example. The
formal proof is given in 5.4.4. Let 6Fv be the frame (°0)A(°1) as in fig.6a.

A N I

bV [az,]  [bzy] b (ox9) 3z, id
a f [Sz]]m?zzj b{ n #0,n #1 cJE(F,v*‘}‘r)'_V_[;zl]Aid
Fig.6.

Since f//C 6Fv we have a mapping Y: N +C such that f = \)IZ GV For
F
6FV = (°0)A(°1) this yields:

(1) f o YOAPL.



132

Now we make an additional assumption, namely

(2) Vneﬂ(ﬂFv)Hu(wncifu]).

Let e.g. 0 = [gz]] and Y1 = [Bzz]. We find (see fig.6b.):
(3) £ ~ [az Ialbz,].

Now determine y and x, as follows ((i)-(iii)):

1
(i) Choose the jps-part of y in such a way that jps(k?(v*?))o # °0 and

) bp(ve9) m §v  (5.3.5(p)),

then 6F(v*?) has the form (°n1)A(°]), n, + 0, n, # 1 as in fig.6c.

(ii) Choose the jf-part of y in such a way that j£(vx§)0 = [azl] and
jE(v*§)m =~ id if m # 0. (Use 5.3.5(i), note that [az]] € C since C is de-
pendency—-closed.) Then

"

(5) JF(F,v+§) v§£vjf(v*§) = JE(IONE(vA§) 1 = [az,Inid.

(See figs.6d,7a.)

(iii) Note that f = [Ezl]A[Ezz] satisfies f = JF(F,v*?):(idA[Ezz]).

We incorporate the difference between f and JF(F,v*§), i.e. (idA[bzzj) in
the generated values, that is to say: we apply 5.3.8 with

(1dalbz, 1) [¢ = §(j b,bz,*j,0) for ¢.

Note that (idA[bzz])|¢ﬂ6F(V*?) due to the special structure of 6F(v*§)
(by 3.2.21(e), in this respect the example is not quite characteristic).

Hence we find an X and a value for the gv-part of y such that

GV(F,v*§) e (idA[Ezz]) ¢(xl)]
or equivalently
(6) GV(F,v+9) = [T,8(x)) Inlbzy*j 4 (x ).

(See fig.7b.) Since, by definition,
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oy - K s
GV(F,v+§) = vﬂF(v*-};)gV(V*y),
and
K o o N
"ﬂF(v*y)g"("*Y) =~ gv(vi§)n Ag (v+§)1

(6F(V*§) = (°n)A(°1)), (5) can also be expressed as:

gv (v, = [T 0(x )], gv(v§)1 = [bzyxj,o(x))].

I |
laz,]1 id (360G [hzyxigp(x)] [bz,y*j 0 (x )] [bz,*3,0(x))]

JF (F,v*3) GV (F,v+§) dpy

¢ a b c

Fig.7
From (5) and (6) we find
(7 d;? = [az 3 9(x ) IAlbz,*j 0 (x ) 1.

(Use 5.3.7(a), see fig.7c.)
Note that, since f = [Ez]]A[Ezzl and [E(xl)] o [§T$(x1)]A[3;$(x2)],

f:[¢x1] o [azl*Jl¢(xl)]A[bz2*32¢(x])],
whence
(8) £:09%,] & d7g: (idru),
where u is the finite sequence such that

Szz*j2¢(xl)*u = Ez2*§;$(xl).



134
Recall that our aim is to find a w and an x such that
v -
dpwes £ Lox] A 6F (vxw) ~ 6Fv.

(gx is always parallel to 6Fv due to our special choice of 6Fv.) From (4)

and (8) we see that it suffices to comstruct y' and x, such that -

2
vx§ . *1
(10) dF <y'> =~ (idAu):[s |¢(x2)]
and
(1 fp(va<y,y'>) ™ . (vx9),

for in that case

X
v Yo o AVa VXY vl e 1 : ey
dF<y,y > o dFy'dF <y'> >~ f:fs |¢(x2)] o f.[¢(xl+x2)].

The construction of y' and x, satisfying (10) and (11) is analogous to the

2

construction of y and x, above, with the label | in the rdle of 0, with u

1

- X
in the rdle of az, and with s ]|¢ instead of ¢.

Now we drop the assumption (2) and consider a more general example,

where

(12), f e ne e ,e

"y &8y € C.

2

We must construct w and x such that
v -

(13) deu (elAe2)°[¢X] A 6F(V*W)N6Fv.

It suffices to show that there are w, x and f' such that
v 4 A o’ . Iy

(14) de.f o (e]Aez).[¢x] and 6F(v*w) N 6Fv,

where f' has the form [uIJA[uZJ since by the argument above we can find w'

and x' such that

(15) fp (vxwnu') ~ 6F(v*w) and d;,’*ww' ~ £':0s™[9(x")1;
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combination of (14) and (15) yields

6F(v*w*w') ~ 6Fv
and

dp(wea') = diwedp ™' o dpwif s ™[0 (x")] = (egne,) (9 Gxerx") .

/\ /\ /\1 A]
0 n 1 1
I | I J [j ¢(1 )]
X N
e b (9 ~ fov ! T e 3,0 ]
f o~ e e, JF(F,V*?)c:elAid GV (F,v+§)

[ a——
o
I
o

Fig.8

We start our construction of w and x for (14) in the same way as above,

i such that ((i)-(iii)):

() s (v4§))0 = °n, m, # 0, n # 1, hence

i.e. we determine y and x

(16) g (v2§) ™ fov3

(ii) jE(v*§)0 = e , and jf(v*§)m = id if m # O, hence
1

(17) JF(F,vx§) = elAid;

(iii) GV(F,v*§) = [(idAez) ¢(xl)], where idAe2 is the difference between f
and JF(F,v*§). Then

(18) GV(E,v+§) = [J ¢ (x)ale, [T,6(x) ],
where [j_IE(xl)J = gv(vx§)n,, [ZZTJ"ZE(XI)] e~ gv(va§) 1.

(See fig.8.) Thus we achieve that

(19) 4y = (e :LT0(x ) IALe, T30 (x )]



136

(by (17), (18), 5.3.7(a) and distributivity of: over A).

Next we choose y', x; and X, as follows ((i)-(iv)):

(i) The jps-part of y' is such that jps(k?(v*<y,y'>))l = °n2, n, #1,

n, + n, whence
(20) fp(va<y,y'>) ® §(v+§)

(ii) x; > X, satisfies Vm < xl(e2(<m>*§;$(xi)) #0), i.e. j2¢(xi) suffices

to determine e, j2¢(x]), whence
(21) vz 2 x;((ezz[fgg(z)])la €e, j2¢(x1)).
(iii) The jf-part of y' is such that

JE(vx<y,y'>)1 = eé, and jf(vx<y,y'>)m =~ id, for m # 1,

where
X, -
(22) eé = s :e2:[j2¢(x1)].
Then
X -
(23) JF (F,v*<y,y'>) =~ idA(s :eZ:[j2¢(x;)]).

Note that eé € C since e, € C and C is dependency-closed. Note also that
by (21)

(24) [e2 j2¢(xl)]:eé o e2:[§;$(x;)].
So
(25) dpF :JF (F,va<y,y'>) = (e :[3 6 (x) DAle,:[T,0 D),

by (19), (23), distributivity of : over A and (24).

(iv) Finally, the gv-part of y and x, are such that

2

X
GV(F,vi<y,y'>) = [(s As 1) [o(x,)],
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i.e
x 1
(26) GV(F,va<y,y'>) = [s '[0(x)Ials '4(x,)1.
Now d;<y,y'> o~ d;?:d;*y<y'>, (4.4.21(c)), and
T ay'> & JEE,veey,y'>) (Y (E, vrey,y'>) (5.3.7(a),
hence
d;f<y,y'> o d;§=JF(F,V*<y,y'>) 1GV(F,vx<y,y'>)
whence
(27) Fyay'> & (o ptlT R0t DAy T (e D ((25),(26)).

By distributivity of : over A
v ] ~ sy o
(28) d<y,y'> & (e ne,) (03¢ (x +x,) AL ¢ (x1+x,) 1)

Now put u = <jl¢(x]+x2),..., j1¢(xi+x2:l)>, (i.e. u=<> if xi = Xl)’ and
£f' = [ulaid, then

(29) d;gy,y'>:f' '~ (elAez):[$(xi+x2)].

Moreover

§plvx<y,y"™>) ~ fv  ((15),(20)),

so we have (14) with <y,y'> for w and x;+x2 for x. 0O

5.4. THE PROOF OF THE STRONG OVERTAKE PROPERTY (2)

In this section we give extra details of the proof of lemma 5.2.5,
which were left out in the preceding section. This section is to be read

only in connection with 5.3. (And at first reading it is to be skipped.)

5.4.1. First we provide a proof for lemma 5.3.8 on the freedom of generated

values, which states:
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Let the jps- and the jf-part of y be fized, let G be 6F(v*§) as deter-
mined by the jps—part of y (5.3.5(a)), and let ¢ be an element of N. Then
we can find
either an x such that ¢x #G,
or an x and a value for the gv-part of y such that ¢x /| G and
GV(F,v+§) =~ [¢x].

PROOF. By definition 5.3.6, GV(F,v*§) vggv(v*ﬁ).

gv(v*§)n = [(j3y)n*kz.0(1+upb(v*§))], by definition 4.4.10.

(jgy)n*kz.o = gsn(v*ﬁ), for n fresh (i.e. such that ﬁn(v*?) = °n), by de-
finition of gsn (4.4.4, 4.4.6).

Labels of G(EﬁF(v*§)) are fresh (4.3.14(c)), hence for n e £G

gv(v*§)n = [gsn(v*§)(l+upb(v*§))], whence

GV (F,v49) = vi(Xn.[Bs_(va) (1+upb (v§)) 1) .
Now put
gsp(v49) = vy 'n.gs_(v9)),
then
GV(F,v+§) = [gs (v¥§) (1+upb(v+$))]  (3.2.16(g)).

Fig. 9 shows an example of G and gsF(v*§).

0

2
| 2 ! |
gs, (v*§) AN ()] 1 0 .
0 N s W0 1 i
I I jwl(¢) Jw0¢
gsl(v*§) gso(v*ﬁ) a
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Let ¢ be a mapping from N into the set of branches of G, which satis-
fies:

if n € £G then yn has label n in G.
If ¢ is parallel to G, then jb¢ = j¢n¢ for all branches b of G with label
n. I.e. in that case, ¢ = vé(kln.jwn¢) (3.2.14, 352.16(b), see fig. 9).

Our problem is to choose the gv-part of y, jay, in such a way that for
all n ¢ LG, gsn(v*?) coincides with jwn¢ over a sufficiently long initial
segment.

To make this choice we introduce the pseudo guiding-sequences p8s -

As an auxiliary we put:

» an¢ if n € £G,
Ve (n,¢) =

Az.0 otherwise.

The pseudo guiding-sequence for n is defined by

_ 1
(1 pgs, = vﬂn(V*?

1 -1
)(X k-VG (k,9))
i.e. for n ¢ £G, pgs = an¢.
Now we perform the upperbound computation (cf.def.4.4.9) with pgs,

instead of 8, » i.e. we put
pupb = max{mk((d:JF) (n,v+9), 1th(v), pgs ) : n « nf(k?(v*?))}.

Note that pupb can be determined independently of the gv-part of y,
(d:JF) (n,v*§) depends on the jps— and jf-part of y only (4.4.7 and 5.3.7(e)).
Now take

vy (0,4) () (@)

for the gv-part of y, (jgy), where x = l+pupb, and m = 1 + max(£G). Then

vk, 9)(®) ifk <m
3
(J3Y)k =

0 otherwise.
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Since v;l(k,¢) = Az.0 for k > m, we find that for all k

G539y, ¥22.0 = vk, $) () %220

37k G U
Hence
oy 1 1, -1

(2) gsn(v*y) = vﬁn(v*?)(k k.vG (k,¢) (x)*Arz.0).
From (1) and (2) we find (using 3.2.14(b) and 3.2.17(c)) that for all n

gsn(v*?)(x) = pgsn(x).

Hence, if we compute upb(wv*¥§), we find

upb (v*§) = pupb,’
whence, for all k
a -1
gv(vs9)k = [vg' (k,8) () 1.

For n ¢ 4G, v;l(n,¢)(x) = jwn¢(x) = k¢n($x). The proof is now completed by

observing that hence
9%/ G + vlégv(v*gz)uﬁx], by 3.2.20(@). 0

5.4.2, Next recall that we have reduced the strong overtake property to two
'semi-overtake' properties and a 'continuation to bar' property (5.3.3).
The latter says (c£.5.3.3(3) and 5.3.9):
(A) Let F,v,g and ¢ = e|labe arbitrary, then
either there is an x such that ¢x ﬁ#éFv,
or there are x and w such that gw # 0, éF(v*w) = 5Fv and d;w==[$x].
As a first step of the proof we have shown in 5.3.9:
(B) For all F,v and ¢ = e|oa we can find
etther an x such that $x-£L6Fv,
or an x, and a y such that dgy o [Ex]] and 6F(V*§) = 6Fv.

LEMMA. (A) follows from (B) by AC-NF, Va3dx-vontinuity and the extension
principle EP.
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PROOF. Let F,v,g,e and o be arbitrary and put

bnp = (s™:e) B (i.e. byp = Azee|B@m2); ¢ =

1
Oe—
]
(0]
Q

Let A(m,w,B,xl,y) be the formula
—— *W A —— ~
¢m,6(xl)”6F(v*w)'+ d; Wy = [¢m,8(xl)] A 6F(V*W*y) = 6FV'
(B) states that

VmeB3x |y A(m,w,s,xl,y),

hence

Vmw3E} £3V8 A(m,w,8,£(8),£5(8)), (VB3z-continuity),
whence
(1 3f | £,VmwB A(m,w,8,£, |B(m,w),£,[B(m,w)) (AC-NF).

(Here filB(m,w) abbreviates fi|6(j(m,w)), i=1,2.) Let £  and f2 be witnesses

1
to (1). By a simultaneous recursion we define wl and wz(eN):

¥, (0) = £,1a(0,0), ¥,(0) = £,]a(0,0);

wl(n+1) ¢1n+f1|a(¢]n,$;(n+l)),

by (+1) = £, |alhn,¥,(n+1)).

The reasons for this definition are explained by the following observation
- v — - — _
(2) Vo9 (b n) /fgv > dp (b, (n+1)) o Lo (¥ m) T A § (vip, (n+1))=fv),

which is proved by induction w.r.t. n.

For n = 0, (2) is simply A(O,O,a,fl|u(0,0),f2|a(0,0)), which holds by
(1.
Now assume (2) to hold for n, and let $(¢1(n+1)) be parallel to AFV. Then
¢(¢]n) / 6Fv, whence by induction hypothesis
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(3) 6F(V*_w_2-(n+1)) = 6FV
and
4) d;f(tp_z(nﬂ)) = [$(w1n)]-

Moreover, if a(w](n+l)) / 6Fv, hence
Xz 6@ nra) (£, |a 0,0y (1)) / §v

by definition of wl(n+1), whence by (3) and the definitions of ¢,¢m W'
¢¢ln,a(f,Ia(wln,$2<n+1>))ﬂ fp(vri, (n+1)) .

So if we apply (1), with m = by, W= E;(n+l), and o for B, we find

(5) i (V*ﬁfg(n+1)*<f2 lo(h n,¥,(n+1))3) = §(vxp, (n+1))
and
v*ﬁE{(n+1) -— —_— -—
(6) dy <E,a(h n, v, (n+1))> = [ (£ laCyn, 0, (D)),

wln,a

Combining (3) with (5) and (4) with (6) yields (2) for n+l.
All we have to do now in order to prove (A), is to observe that for some n,
g($31n+l)) # 0 by the extension principle: i.e. (A) holds with E;(n+]) for

w and ¥ n for x. [

Note that we use instances of AC-NF and VB3z-continuity here that are
not in the language of LS. They can be translated into that language however,

cf. chapter 7.

5.4.3. Of the two semi-overtake properties yet to be proved, the semi-over-—
take property for frames is the simplest. It states (cf.5.3.3(2) and 5.3.10):
(A) For all F,v,¢ and G = 6Fv there avre x and w such that either ¢x -G,
or d;w o [$x] A 6F(v*w) N G.

As shown in 5.3.11-5.3.13, this assertion can be proved in three
steps. First one shows (cf. lemma 5.3.11):

(B) If G = 5Fv 18 replaced by the stronger assumption Ib(G= ﬁFVEXn.(°bn)]),



143

then (A) holds.

PROOF. (Compare the sketch in 5.3.11.)

For an arbitrary finite set S put

eq(b,S) {(m,n) : meS, neS, m#n, bn=bm},

and put
hl(b,H) = card(eq(b,£ZH)).

Let b be such that G = 6Fv[xn.(°bn)], to prove (B) we apply induction
w.r.t. h = hl(b,ﬁFv).

If hl =0 then b is 1-1 on K(ﬁFv) whence G ~ 6Fv by 3.1.22, and we
can take w = x = 0.

Now let h1 = z+1. Choose a pair (m,n) € eq(b,ﬂ(ﬁFv)) and determine y
and X, as follows ((i)-(iii)):
(i) For the jps—part of y take v3(0,n,m), then 6F(v*§) = 6Fv[g], where

g satisfies: gk = °k if k # n, and gn = m (5.3.5(f)).

(ii) For the jf-part take some value such that

v

dp

§ = GV(F,vx§) (5.3.7(d)).

(iii) Apply lemma 5.3.8 to find an x, and a value for the gv-part of y such

1
that either $xl ﬁL-ﬁF(vtﬁ) or ¢x1” 6F(v*§) and GV(F,v*y) = [¢X]], i.e.
by (ii)

- -

dFy o [¢xl].

Once y and x, have been determined, we can check whether or not ExlﬂG.

If not, then (B) ;s proved.
Otherwise we note that G = ﬁF(V*?)[An.(°bn)].
(By assumption G = 6Fv[kn.(°bn)], by (i) 6F(v*?) = 6Fv[g] for a g which
maps both n and m on °m; bn = bm so (6Fv[g])[kn.(°bn)] is simply 6Fv[kn.0%n)]J
It follows that ExlﬂﬁF(v*§), whence by (iii) d;? o [$x1]. Moreover,

hl(b,ﬂ(ﬂF(v*?))) < hl’ i.e. we can apply induction hypothesis with v*§ for
X
v and s 1|¢ for ¢, to find either an x

X
2 such that s 1|4>(x2) # G, which

proves (B), or X, and w' such that
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- X
- vy 1
ﬂF(v*y*w') =G and dj w' =~ [s |¢(x2)],

in which case we also have (B). [

The next step towards proving (A) is to show that (cf.5.3.12)~
(C) For F,v,¢ and G = ﬁFv we can find x,w and b such that either ox 4G, or
9x//6, dgw = [§x] and G = b (vrw) D (°bm) J.

This claim is also proved by induction. If G = 6Fv then G = 6FV[g]

for some g. We put

h,(g,H) = }  ne(gm),
melH
where ne(F) is the number of nonempty nodes in F. The induction is w.r.t.
hz(g,ﬂFv). We trust that the reader can find the proof from the sketch given
in 5.3.12 and the foregoing proof of (B).

The final step to be taken is to show that (cf.5.3.13)
LEMMA. (B) and (C) imply (A).

PROOF. Let F,v,¢ and G = 6Fv be arbitrary. Apply (C) to find X 5W and b
such that either $x1 #G, which yields (A), or _xlﬂG,~ d;w o [$x1] and
G = 6F(v*w)[kn.(°bn)]. x
In the second case apply (B) with s 1|¢ for ¢ and vw for v. We find
X, and w' such that either s ]]¢ // G, which yields (A), or
X] o= -
s |¢(x2)”G, whence (since ¢xlﬂG) ¢(x1+x2)ﬂG, and

&y = [s"|¢(x,)]. Then by 4.4.21(c)

X
a¥(aea') = [Fx 1ils [0 (x)] & [§x +x,) ]

and
6F(v*w*w') ~ G.

I.e. in the second case we also have (A), with x1+x2 for x and wiw' for
w., [

5.4.4. The most complex part of the verification of the overtake property

is the proof of the semi-overtake property for dressings, which states
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(c£.5.3.3(1) and 5.3.14):
(A) For all F,v,¢ and 6”0 6Fv we can find w and x such that either
$Xv£lﬁFv, or 6F(v*w) ~ 6Fv A d;w o £:0¢x].

The structure of the proof of this assertion resembles that of the
proof of 5.4.3(A): it consists of two auxiliary lemma's, the first one
claims that (A) holds under additional assumptions, the second one claims
that the general form of (A) can be reduced to the special form of the first
lemma. Both lemmata are proved by induction over N . First we show:

(B) If the assumption f£// c 6Fv is replaced by the stronger

JpeN(E o v% OXn.wnl)), then (A) holds.

Fv
PROOF. We show that

(1) ' VvF¢¢[nz(¢,6Fv)=n > 3xw($xﬂ6Fv9-d;w==f:[$x] A 6F(V*W)N6Fv)],

where ¢,y range over N, £ =~ v? V(AKn.[wn]) and
F

nz(w,ﬁFv) = card{meﬂ(éFv) : ym#0} (nz for non-zero).

The proof proceeds by induction w.r.t. n.

If n = 0, then ym = 0 for all m ¢ K(ﬁFv), whence [¢m] = id for all
me Z(ﬁFv), whence f =~ id, and (1) holds for x = w = 0.

Now assume (1) to hold for n (inductionhypothesis). Let v,F and ¢ be
arbitrary, and let { be such that nz(w,ﬂFv) = nt+l1. Then there is a label,
say m, of 6Fv for which ym # 0. Determine y and x, as follows ((i)-(iii)):

1
(i) For the jps-part of y take v3(0,m,m'), m' ¢ K(ﬂFv), then

(2) 5F(v*§) ~ ﬁFv (5.3.5(@)).

(ii) Choose the jf-part of y in such a way that jf(v*$)m =~ [ym] and
JE(*§)k = [0] (=id) for k # m (c£.5.3.5(i)). Let jf* be the mapping from
N into N such that for all k, jE(vx§)k = [jf*k]. Let JF abbreviate
JF (F,v+¥) .
(iii) Put (y-jf™)
k # m. Put

Ak. (WkejE¥k), i.e. (y=jE)m = 0, and (y-j£ )k = yk if

K
fgv

(£-JF) X35k .
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Now apply lemma 5.3.8 with (£-JF)|¢ instead of ¢. This yields an x, and a

1
value for the gv-part of y such that

either (f—JF)!¢(x)) %LﬁF(v*§),
or GV(F,v+y) = [(f—JF)[¢(x])].
We assume that gxlﬂﬁFvu Note that for b € 6Fv,

E—
(3) ky ((E=TF) 6 (x))) = JCE-TO[9) (x) = [O-3E )k 50 (),

where k = Kb(ﬁFv). Let 1k be the length of the finite sequence (w-jf*)k.

yields
) kg (EmID T6(x)) = (W=3b ) *T b (x, 210,
whence, by the assumption that $x1//6Fv,
ETO 6 (e ) v
and since §v ~ §.(v+§) by (1), (ﬁm(xl)//gF(vw). Then
GV(F,v*y) = [(?:3f7T$(xl)] (see (iii)),
whence
d;? =~ JF:GV(F,v+§) =~ JF:[mbcl)‘].
Using (4) one finds that for b ¢ 6Fv with label k
(5) ip (ATl = 3 Mox (V=38 ) *T§ (e 21k) 5 X
(x € N arbitrary). Now define 4 by
<ipd(x21K) ey po(x 21>, if ko€ £(fV),

bk =

0 otherwise,

(3)

where b ¢ ﬁFv is such that Kb(ﬁFv) = k (which b one chooses is irrelevant,

since Ex]ﬂéFv). If k € Z(ﬁFv) and 1k = 0, then wlk = 0.
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One easily sees that
(6) Vk(pk=0 ~ ¢ k=0),
(7) ¢1m =ym' = 0.

(m" replaces m in 6F(V*§), see (i), m' ¢ ﬂ(éFv)). Now put

£1 = vIZFV(AKk.[w]k]), then
(8) £ = vIZF(W?) Ofk.ly kD) by (1)
and
€)) nz(¥ 55 (v*§)) =n (by (6) and (7).
Moreover

NG RICHIDIRE RICHIS 108
whence

IpdRg et X0 = WexTph (x ) *ipx
for any b € 6Fv with label k (by (5)), i.e.

VA |l ~J - T
(10) dpg:f' o £:0¢x 7.

By induction hypothesis, applied with v*§ for v, sxl|¢ for ¢ and w], f' for
Y and f respectively (cf. (8),(9)), we find X, and w' such that
eitherﬂsx1|¢(x2) i#ﬁF(v*§), which proves (B),

;*yw o f':[;xTTg(xz)] and ﬁF(v*§*w’) ~ 6F(v*§). In that case (B) follows
from (2) and (10) with x1+x2

or d

for x and $§*w' for w. [0

Finally we prove
(C) For arbitrary F,v,¢ and v: N =+ C, we can find x,w and ' e N such that
etther $xl-£# 6Fv,
or 6F(v*w) ~ 6Fv and d;w:f' o~ f:[¢x],

v LK K ' e.'K
where f' o vﬁF(v*w)(A n.[y'n]) and £ = v

b’
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(We leave it to the reader to verify that (B) and (C) imply (A)).

PROOF. The proof is very similar to the proof of (B) above. We show that

(@D) VvF¢VweC1q[nix(w,6Fv)Sn >
aq;'eNaxw(&x//ng d;w:f' o £:[px] A fp(vew) ™ 601,

K

61:- (v*w
the formula which expresses that we have a subset of Z(ﬁFv) with

where f =~ v?Fvw and f' =~ v )(AKn.[w'n]), and where nix(w,ﬁFv) < n is
card(ﬂ(ﬁFv));n labels to which ¢ assigns a value of the form [u]. ([ul|-

prefixes the finite sequence u to elements of N, nix is a contraction of

non-prefix.)

The proof proceeds by induction w.r.t. n.

If n = 0 then Yk has the form [u] for all k ¢ Z(ﬁFv), i.e. there is a
P' such that Vkeﬂ(ﬂFv)(wk ~ [y'k]), and (1) follows trivially with
x =w= 0.

Now assume (1) to hold for n. Let v,F and ¢ be arbitrary, and assume
nix(¢,6Fv) < nt+l. Let m be.a label of 6Fv outside the given set of labels k
for which yk has the form [u].

Determine x, and y as follows ((i)-(iii)):

1
(i) For the jps—part of y take v3(0,m,m'), m' ¢ E(éFv), then

(2) 6F(V*§) N 6FV-
(ii) Choose the jf-part of y in such a way that jf(m) = ym, jf£(k) = id for
k # m, where jf = jE£(v*§). JF will abbreviate JF(F,vxy).
(iii) Let (y-jf) be the mapping from N into C such that
(b-if)m = id and (y-jf)k = Yk for k # m. Put (£-JF) = \)IZFV(w—jf).
Apply lemma 5.3.8 with (f—JF)|¢ for ¢. We find x, and a value for the gv-
part of y such that either (f—JF)l¢ ﬁﬁéF(v*ﬁ),
or GV(F,v*y) = [(f:jijg(xl)].

By 1.3.12 there is an x; > x, such that (f:3F7T$(x]) is an initial
segment of (f—JF)P¢(xi).
We assume that ¢(x;)ﬂ6Fv.
Since (f—JF)//C 6Fv by definition, then also (f—JF)rE(x;)ﬂﬁFv (3.2.21(3)),
whence (E=JF)[¢(x|)//§,v (3.2.20(e)). Then (E=JF) [§(x))//§,(v¥§), by (2),
so GV(F,v*§) = [(f:3F7T$(xl)] (see (iii) above), i.e.
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Fy e~ JF:[ (£-JF) (x ) 1.

We put

£ =s 1:(f-JF):[$(x;)].

x
fl‘. is the composition of three mappings, [¢(x;)]l-, (£-JF) |+ and s !

For all ¥, [;xijlx = Exi*x; (£-JF) | - maps all sequences wi;h initial seg-
ment $xi onto sequences with initial segment (f—JF)ngi; s ]|- deletes the
first X, values of all sequences, for sequences with initial segment
(f-JF)PEx' these first X, values are (?:EfSTEle). That is to say
[(f:jfyTg(xl)]:f] o (f-JF):[$xi], and

Vo.r o e (f= o'l o £y’
(3) dFy.f1 ~ JF:(f JF).[¢x]] o~ f.[¢x1].

(The equivalence JF:(f-JF) =~ f is easily verified.)
Define wlz N »> C by

s l:wkf[kxk(gx;)] if k # m',
s :[kxm'(¢xi)] for k =

where x is a labelling-inverse for 6F(v*§), such that for all
k € Z(ﬂF(v*ﬁ)) xk is a branch of ﬁF(v*ﬁ) with label k. One may verify that
K
vﬁF(V*?)d) 1?
Vkeﬂ(ﬁF(V*?)) (Fu@k=[ul) » Iv(yp k=~[v])),
and

3u(¢1m' ~[ul).

So nlx(w],ﬁ (v*§)) < n, and we can apply induction hypothesis with v*§ for
V, ll¢ for ¢ and ¢l,f]
¥' € N such that either s 1|¢(x ) # 5 (v*§), which proves (C)

or

for ¢ and f respectively, to find Xy w' and
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i 1
- ~ vx§ 1
4) 6F(v*y*w‘) ~ 6F(v*y) and dg Yot if' &~ fl:[s |¢(x2)],
, K K
where f' = vﬂF(v*ﬁ*w)(A n.[y'n]).
In that case (C) follows immediately by (2) and (3), with §*w' for w, x'1+x2

for x; in particular we have

dpwif! o d;?:d;*?w':f' (by 4.4.21(c)),
and
~ X
d;?:d;*yw:f' N d;?:f]:[s 1|¢(x2)] (by (4)),
whence

ag:g ils oG] & £:08G]HRT by (3)). [
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CHAPTER 6

THE CONCEPT OF A DOMAIN

In the next chapters we intend to show that for a special class of
dependency-closed subsets of K, each projected universe UG of GC-sequences
w.r.t. C is a model for CS(C) (cf.1.3.29).

In the definition of US(C)’ the set of projected universes of GC-se-
quences w.r.t. C, we have used natural numbers to 'code' all kinds of in-
formation: ax codes the jumps at stage x+1, Bx codes the choice of a jump-
function and yx codes the preliminary choice of values at stage x+1.

The coding which we use is fairly arbitrary. E.g. ax = v3(0,k,m) ex-
presses 'if possible, make k jump to m', and ax = v3(z+l,k,j(n,m)) expresses
'if possible, make k jump to n and m'. For the same purpose we could also
have used ox =j(2k,m) and ax = j(2k+l,j(n,m)) respectively.

Moreover, the concept of GC-sequence that is imitated in universes
U(S € UG(C) has some special features like the single jump property, the
restriction to binary jumps and the guarantee that at stage x for all car-
riers the initial segment with length x is available.

It would be most satisfactory if we could show that the validity of
CS(C) in universes UG € US(C) is independent of our choice of coding and
of the special features of our concept of GC-sequence.

To achieve this we introduce for each C < K a class DG(C) of domains
w.r.t. C. The definition of DS(C) is coding-independent, and does not re-
quire any of the special features of the universes U(S € UG(C)' For depen-
dency-closed C, UG(C) c Da(C). For suitable dependency-closed C, all
DG € DG(C) are models of CS(C).

6.1. THE DEFINITION OF DOMAIN

A domain w.r.t. C (to be defined formally in 6.1.1 below) is a uni-

verse of the form
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Dsi {elnFG : e e C, F e FRAME},

where HFG = HFIG, Tp € K the image of F ¢ FRAME under the mapping w, i.e.
a domain w.r.t. C has the same structure as a universe UG € Ué(C).

With each domain there are two lawlike mappings d and § from
NXFRAME x N into K and from FRAME x N into FRAME respectively. We put
dpw = d(v,F,w), dw = d(0,F,w), dw = d(v,(°n),w), v = §(F,w),

v v
stage x', 6F(6x) the 'frame for HF5 at stage x', just as for universes
U(S € UG(C)'

"

§((°n),w) and m = ﬂ(on), and we call dF(Ex) the dressing for ﬂFG at

The mappings m,d and { associated with a domain, satisfy the following
'axioms':

(a) For the relation between m and d:
(1) wF(i*w)=y+] > Va[(dela)(x)=y]

which expresses that ﬂFG is the intersection of the ranges of the mappings
A¢.dF(§x)|¢.

(b) For d:
(2) d;< > o~ id,
(3) d;w e C
and
4) d;(v*w) I~ dgvzd;*vw.

The last axiom expresses that d;*vw is the difference between d;(v*w) and

d;v, in particular d;w is the difference between dFv and d_(v*w). Note that

F
dF5X is (modulo equivalence) completely determined by the values d;y<6y>,
y < X.

(c) For the relation between d and $((5),(6)):
v K K v
(5 dgw —-vﬂFv(A n.d w).

From this axiom and (1) one finds that there is a relation between ﬂFG and

the sequences wn6, ne Z(ﬂng). From (5) and (4) it follows that dF(Sx) is
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completely determined by the values {dgy<6y>:n € @(6F§y)} for y < x. The
axioms do not specify any further properties of dgy<6y> for n ¢ ﬂ(ﬁF(Sy)),

Sy

in particular it is not required that dn

<8y> is built from jf and gv or

similar mappings.
=0 o~

(6) 6nv n - au(dnv (ul),
which expresses that if nn6 is independent of others at stage x, i.e.
6n(3x) = °n, then there is only an initial segment of ﬂn6 available at
stage x.

(d) For §((7)-(10)):
€)] fg< > = F,

(8) VngVF(ﬂF(v*w) = 6Fv[g]),

which expresses that 6F§(x+y) is produced from 6F(§x) by the same g for all

F. This axiom is equivalent to
angVF(ﬁF(v*ﬁ) = ﬁFv[g]).

The axioms do not require that g has the properties of jps like the re-

striction to binary jumps and the single jump property.

9) Vneﬂ(ﬂFv)(ﬂnv=°n),

i.e. if n occurs as a label in 6Fv then it is itself independent of others.
(10) Vm3n>m(6nv=°n),

i.e. there are infinitely many n which are independent of others
(e) For d and § finally:

(11) the strong overtake property (5.2.4)

which expresses the freedom of continuation of sequences of restrictions
Az.(dF(éz),ﬁF(Gz)).
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All these axioms hold for projected universes of GC-sequences w.r.t. C,

see definition 4.5.2 and the lemmata 4.3.14, 4.4.21 and 5.2.5.

6.1.1. DEFINITION (of domain).

Let m and d be mappings from FRAME into K and from IN x FRAME x N into
K respectively. Let T be the image of F under w, and d;w the image of
(v,F,w) under d. Let § be a mapping from FRAME x IN into FRAME, and let 6Fv
be the image of (F,v) under §.

Put m = ™ (on)” dw = d(°n)w, v = ﬁ(OH)v, dpv = dpv and m 8 = w |s.

F
m,d and § define a domain w.r.t. C iff the following hold:

(1) Vv(nF(ﬁ*v)=y+l > Va[(dFv|a)(x)=y]),
(D2a) 6F0 =F,

(D2b) vaagVF(ﬂF(v*w)=6Fv[g]),

(D3a) d0 = id,

(D3b) d;(v*w) I~ d;v:d;*vw,

(D3c) d;w o v%Fv(kKn.dzw),

(D3d) d;w €C, ’

(D4) Vnel(ﬁFv)(ﬁnv=°n),

(D5) Vn3m>n(6mv=°m),

(D6) aaVn(ﬁnv=°n > dnv =~ [an]),

(D7) the strong overtake property for d and s i.e.

VfﬂcﬂFvVGzﬁFvVgaeVuﬂG[eu#O >
3w (gw#0 A (f,G)S(d‘F’w,ﬂF(v*w))s(f:[u],G))].

We call (D1)-(D7) the domain axioms.

A universe DG projected from the single lawless sequence § is a domain
w.r.t. C iff there are w,d and § which define a domain w.r.t. C such that
Dy = {e]wFG:e € C, F ¢ FRAME}.

The - sequences wnszare the. carriers of. the domain DG’ dF(Gx) is the
dressing, 6F(6x) is the frame and (dF(Gx),ﬁF(Gx)) is the restriction for
nFG at stage x. DG(C) is the set of all domains w.r.t. C

6.2. THEOREM (models are domains).
If U(S € U6(C)’ C dependency-closed, then U6 € Da(C)’ Z.e. 1f m generates
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nests of GC-carriers and d generates the dressings for w (cf. definition
4.5.2) and { is the mapping which assigns to (F,v) the frame for T at v
(ef. definition 4.3.12) then w,d and { define a domain.

PROOF. Immediate from definition 4.5.2 and the lemmata 4.3.14, 4.4.21 and
5.2.5. 0O

6.3. PROPERTIES OF DOMAINS

6.3.1. LEMMA. Let w,d and § define a domain, then { satisfies:
(@) fgv = Flin.§ v,

(b) 6F/\Gv = 6FVA6GV’
(c) 6Fv=ﬂcv > 6F(V*W)=6G(V*W),

(d) 66FV(V*W) = fp (vew) .
PROOF .

(a) Let g satisfy
(D VE (§pv=65< >[g D),
such a g exists by (D2b). By (D2a), (1) yields
(2) VF (§5v=Flg]),

whence in particular, for all n, 6nv = (°n)[g] = gn (by definition of F[{§],

3.1.16), i.e. g = An.énv. Hence (2) becomes
(3) VF(§ v=F[An.§ v1).

(Compare the proof of corollary 4.3.15.)
(b) éFAGv = (FAG)[An.ﬁnV] = F[An.ﬁnv]AG[Xn.ﬁnvj = 6FVA6GV, the first
and last equality by (a), the second one by definition of F[4], 3.1.16.

(c) Assume ﬁFv = 6Gv, let g satisfy VH(éH(v*w)= 6Hv[g]). Then
ﬁF(v*w) = 6Fv[g] = 6Gv[g] = 6G(v*w).

(d) In view of (c) it suffices to show that § o= ﬂFv. We find
66FVV = éFv[An.ﬁnv] by (a), and Vmeﬂ(ﬁFv)(ﬂmv=°m) by (D4), hence
6Fv[An.6nv] = 6Fv by 3.1.19¢d). O
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6.3.2. LEMMA. Let w,d and § define a domain, then d satisfies:
v v v
(a) dFAGW o deAdFW,

v v

(b) dﬂFVw o de,
v

(c) de//C 6Fv, de//CF,

(d) Va(dgwlaeu) > uﬂfFv,

(e) Va(dFvla(x)=y) -> \'/a(dF (v*w) Ia(x)=y) .

PROOF .
(a) The following equivalences hold by (D3c), 6.3.1(b), the definition

of v? (3.2.5) and (D3c) respectively:

v K

dFAGw o \)6

K v K
(A n.d w) v
racy n 6FvAﬁGv

K K v K
v (A n.d_w)Av
4 = n v

K v

(A n.dnw) o
K v v A

(A n.dnw) I~ deAde.

(b) Like (a) above, now using (D3c) and 6.3.1(d).

(c) The first assertion is immediate from (D3c) and (D3d), the second
assertion follows from the first one by (D2a).

(d) Assume Va(d}’w!aeu), then in particular Va//ﬂFv(d;w|asu) . By (c)
and 3.2.20(r) we find Va//ﬂFv(d‘F’w[a//ﬁFv, hence u//ﬁFv, by 3.2.20(d).

(e) Immediate from (D3b). [

6.3.3. COROLLARY. If m,d and § define a domain, -then
Vevwl (e :dF (v*w), 6F (vrw))=(e :dFv, 6Fv) 1.

v v
PROOF. By (D3b), e:dF(v*w) o e:dFv:de, by 6.3.2(c) dellcﬁFv, and
6F(v*w) = 6Fv[g] for some g by (D2b). 0O

6.3.4. LEMMA. Let w,d and § define a domain. Then
(a) an(x)=y <> Fv(Sev A Va(dFvla(x)=y)),
(b) Vnvb (ZbF=n > jb(ﬂF6)=1rn6), and hence nFG//F,
(c) TrFaeu <> Iv(8ev A Va(dFv[aeu)),
) 3gV6ev(1rF6=dFv[(g|6) A g|5//6FV)-
(d) states that TchS € range()ub.dF(Ex) [¢), and that the sequence ¢ such

that 1TF<’S = dF((_Sx) H} has the form g|6 and is parallel to 6F(Ex). Inspection
of cthe proof will show that
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_ b 1 bn
P o= vﬂF(Gx)(A n.s |nn6),

where bn is the length of the initial segment of wn6 that is available to us
at stage x (for fresh n). I.e. in projection models ¢ is the source for

HFS at stage x, and this result is the one that was announced in 4.5.7.

PROOF .

(a) The implication from left to right follows trivially from (DI).

From right to left: let v be an initial segment of § which satisfies
(1 Va(dpv|a(x)=y),

let w be an initial segment of § such that

(2) mo(&xw) # 0.

Since v and w are initial segments of the same sequence §, we have v = w*u
or w = vxu'. In both cases we find wF(i*w) = y+1:
if v = w¥u, then (2) implies (by (D1)) Va(dela(x)=ﬂF(§*w);l), hence
Va(dFWI(d;ula)(x)=ﬂ(§*w);lj, hence (by (D3b)) Va(dFvla(x)=n(i*w):l), hence,
by (1), m(%&*w) = y+1; if on the other hand w = v*u', then by (1) and (D3b)
Va(de|a(x)=y), while by (2) and (D1) Va(de|a(x)=n(§*w);1), hence
m(Rrw) = y+1.

(b) The second assertion is an immediate corollary of the first one.
To prove the first assertion let n be a label of F, and b € F a branch such
that EbF = n. Let x and y be such that wFé(x) = y, we show that
nn6(x) = jby.
By (a) above, there is an initial segment v of § such that
Va(dFv|;(x;=y). Hence Va(jb(dFvla)(x)=jby). By (D3c), (D2a)
dFv o~ vF(A n.dnv), hence (by 3.2.16(c)), jb(dFv‘a) = dnv|jba, and we find
Va(dnv]jba(x)=jby), i.e. Vb(dnv|b(x)=jby), whence by (a): wnﬁ(x) = jby.
(Cf£.4.5.5.)

(c) This is an easy corollary of (a) and (D3b).

(d) By (D6) and (D4) there is an a such that Vneﬁ(ﬂFV)(dnveﬁfan]).
Put b = An. 1th(an), e = vKFv(AKn.sbn), f= - and g = e:f.
Then g satisfies (i) VS(glG//ﬂFv), (ii) Vdev(dFv|(g|6)=nF6).

(i) By (b), £|6(=ﬂ6 VG) is parallel to ﬂFv, eﬂKF by definition, hence
e:f|8//F by 3.2.20(x).
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(ii) Let 6 have initial segment v, and assume (dFv:gIG)(X) =y, i.e.

there is a u such that

(1) dFv(i*u) = y+1
and
(2) gls e u.

We show that there is a w such that § € v*w and
(3) Va(dp (vw) [a(x)=y),

whence (by (a)) VG'ev*w(nFG'(x)=y), hence WFS(X) =y.
From (2) and the definition of g (g = e:f), we find a u' such that

(4) Vceu' (e|ceu)
and
(5) £]6 € u'.

f|6 = “6FV6’ so by (5) and (c) we find a w such that § ¢ v*w and
(6) Va(d6 v(v*w)laeu').
F

Hence by (4)

(7) Va(e:déFv(v*w)laeu).
By (D3b)
e:d (vxw) =~ e:d vid, w.
gV §gv bV
Now

K K K

bn K K K bn
(8) e.d6 o véFv(k n.s ).véFv(A n.dnv) o vﬁFv(A n.s .dnv),

F

the first equivalence by definition of e, 6.3.2(b) and (D3e), the second one



by 3.2.16(e). By definition of b,'s?n:dnv =~ id for all n ¢ K(ﬁFv), hence

(by (8) and 3.2.19(d) e:d, v =~ id, whence

v F

e:d (viw) o id:dy w e dVw
bV b

the second equality by 6.3.2(b)). So (7) yields

9) Va(d;w|a€u).
Then
(10) Va(dFv:d;wla(x)=y)

follows by (1), hence (3) holds by (D3b). O

6.3.5. LEMMA. Let m,d and { define a domain. Then

(a) (f,G)Z(e:dFv,ﬁFv) >

Je,Vu//G Le,ut0 > W ((£,6)< (e 1d (vaw) , . (vw)) S (£:[ul,6))],

(b) <f id € C then
VeIHeZVuﬂﬂFv[ezu#O >
Hw(e]w#o A (e:dF(v*w),6F(v*w))S(e:dFv?[u],ﬁFv))],
(¢) 2f [ul € C for all u, then VaﬂéFvVXSGGV(;;}Kx) = dFv a(x))],
(d) wvaVWLEl//§ v A Vx(£(R*w)#0 > Va(d;w[a(x)=f(§*w);l))],

e) zZf s"ec for all n and C is closed under composition, then
VeZHeIVw[elw#O >

BuﬂﬂFv(ezu#O A (e:dFv:[u],ﬂFv)s(e:dF(v*w),ﬂF(v*w)))],
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(£) Zif s"ec for all n and C is closed under composition and pairing, then

VgeCVHVFVu3feC3G

[((e:dFu)A(f:dGu), 6FuA6Gu)2((e:dFu)Ag, 6FuAH)].

Note that the conditions on C in (b), (c), (e) and (f) are automatical-

ly fulfilled if C is dependency-closed.

(a), (b), (c) and (e) are corollaries of the strong overtake property

7).
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(a) says that with any restriction (£,G) stronger than (e:dFv,ﬁFv) we
can find a bar e, such that with all u parallel to G in this bar there is
a w such that (e:dF(v*w)ﬁF(V*w» overtakes (£,G), but remains weaker than
(£:[ul,G).

(b) says that with each bar e, we can find a bar e, such that if
uﬂﬁFv lies in the bar e, then there is a w in the bar e, such that the re-
striction (e:dF(v*w),ﬁF(v*w)),.which is stronger than (eEdFv,ﬁFv), is still
weaker than (e:dFv:[u],ﬁFv).

(c) says that we can choose § € v such that the initial segment
F;EKX) of ﬂFd equals EEGTEKX), for any aﬂﬁFv. (Recall that by 6.3.4(d)
for all § ¢ v, nF6 = dFv|¢, for some wﬂﬂFv.)
there is a bar e, such that if w lies

2 1
in the second bar then (e:dF(v*w),éF(v*w)) is stronger than (e:dFv:[u],ﬂFv)

(e) says that with any bar e

for some u”éFv in the first bar.

(d) says that there is a mapping f such that for all ¢ f|¢ is the in-
tersection of the ranges of Alw. d;(gx)lw. (E.g. for v = 0, we can take
£ = m, by (D1).) £ satisfies V¢(f[¢//6Fv).

(f) finally says something about the existence of restrictions of the
form (f:dGu,ﬁGu).
Let (e:dF(Ex),ﬁF(gx)) be the restriction for ele6 at stage x and let (g,H)
be an arbitrary restriction, g € C.
Note that ((e:dF(Ex))A(f:dG(Ex)), 6F(§x)A6G(§x)) is equivalent to
((eAf):dFAG(Gx), ﬂFAG(Gx)), by distributivity of: over A,6.3.2(a) and
6.3.1(b). The second restriction is the restriction for

eAf | 6(=j(e|wF6,f|wG6)) at stage x.

FAG
The claim is that we can choose f and G in such a way that this restriction

is stronger than ((e:dF{EX))Ag, 6F(§x)AH).

PROOF (of 6.3.5).
(a) Assume (f,G) = (e:dFv,ﬁFv), then we can find an f' and a g such that

(1) G = 6Fv[g],
(2) f e e:dFv:f', f'ﬂC 6Fv,
i.e. we have (f',G) = (id,ﬂFv).

By (D7) we find an e, such that if uﬂﬁFv and eyu # 0 then for some w
(£',6) < (dgw, 6 (vxw)) < (£':[ul6).
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But then

(e:dFv:f',G) < (e:dFV:d;w,ﬁF(v*w)) < (e:dFv:f':[u],G),
by 5.1.6(d), and hence by (2) and (D3b)

(f,6) < (e:dF(V*w),ﬂF(v*w)) < (£:lul,E).

(b) If id € C, then (id,ﬂFv) > (id,ﬁFv). Hence, by (D7) we find

Ve, Je Vu//§ v [e,ut0 + Jw(e,wt0 A (d;w,ﬁF(v*w))s([u],ﬁFv))].

IA

But if (d;w,ﬂF(V*w)) (Cul,§,v), then also (by 5.1.6(d))
(e:dFv:[u],ﬁFv), i.e. (by (D3b))

(e:dFv:[u],ﬁFv).

IA

(e:dFv:d;w, 6F(V*W))
(e:dF(v*w), 6F(V*W))

I

(c) Let aﬂﬂFv and x be arbitrary. Let y satisfy
(3) dFVI‘(e_ly) > dvlax) (1.3.12).
Since [v] € C for all v,
(dFv:[;y],ﬁFv) > (dFv,éFv) (5.1.6(c)),
hence, by (a) above, there is a w such that
(dF(v*w),ﬂF(v*w)) > (dFv:[;y],ﬁFv),
whence dF(V*W) = dFv:[ay]:f for some f. But then we find that for all b
4) ¢ dpGvsw) [b = dovilayl|(£]b) e dvMay) (1.3.11),
hence ((3), (4)):
Vb(dF(v*vO|bédFv|a(x)).

By 6.3.4(a) this yields
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VG'ev*w(wFé'edFv a(x)),
whence by LSl (which implies 38 (8evxw))
Béev(igg(x) = dFv|a(x)).

(d) Let v be arbitrary. It suffices to show that there exists an f € K such

that
Vxwl £ (R%w)#0 Va(d‘F’wla(x) =f(%*w) =1) ],

for such an f will automatically satisfy VwVa(d;w|aefPW), whence, by
6.3.2(d), frw//ng.

Let a be such that Vnei(ﬂFv)(d ve[an]) (cf£.(D6) and (D4)), put

b = An.lth(an), e = v? v()\-Kn.s n), g = w6 v (See the proof of 6.3.4(d).)
Define f by f0 = 0, f(X*w) = (e:g) (Bxv*w) = e(®*gl(v*w)). Obviously, f is
an element of K. Now assume f(%*w) = y+1, i.e. e(R*gl(v*w)) = y+1. By (DI)

we have:

Va(dﬁFv(v*w)la e glvxw)) (g =

hence
Va(e(i*dﬂFv(v*w)Ia)=y), i.e. Va(e:dégv(v*w)la(x)=y).

As in the proof of 6.3.4(d) we have e:dﬂFv(v*w) o d;w, so we find
Va(d;wla(x)=y), where y = £(%*w)+1, as desired.

(e) Let e, be arbitrary. Put e, = e

2 17 &2
that ew # 0, i.e. ez(ffw) # 0, we must find a uﬂﬂFv such that e,u # 0 and

(e:dFv:[u],ﬂFv) < (e:dF(v*w),ﬂF(v*w)).

f = Aw.ez(frw); f as in (d). Assume

We take u = flw, then uﬂﬂFv (by (d)) and eyu # 0. In order to prove
that

(e:dFv:[ffw];ﬂFv) < (e:dF(v*w),ﬁF(v*w)),

it suffices to show that there are g and f' such that
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(5) 6F(v*w) = 6FV[g]a
(6) [fMwl:f' =~ d;w, €'/ fzv (use (D3b)).

(5) follows immediately from (D2b).
For (6), take f' = sn:d;w, where n = 1th(flw). We find that by (d)

Va(d;wla = (frw)*kz.d;w|a(n+z))

hence [flwl:f' =~ d w.
n K K n v K K v
Moreover s = vﬁFV(A m.s ) by 3.2.16(f), de o vﬂFV(A m.dmw) by (D3c),
hence f' o v?-v(ka.sn:d;W) by 3.2.16(e).
F
s"ec by assumption, Vm(d;w € C) by (D3d), hence Vm(sn:d;W € C) (by assump-

tion C is closed under composition) and this yields f'”cﬁFv.

(f) Let g € C, H, F and u be arbitrary. We first construct a g and a G such
that 6FuA6Gu = (6FuAH)[g].
Let m be a label of 6Fu. Let g satisfy

J°m if n ¢ £(fgu)
gn =
l°n otherwise.

Put G = H[gl. ‘
By definition of G and g, kef(G) +'ke£(6Fu), hence (by (D4))
kel (G) +~6ku=°k and hence ﬁGu = G[Ak.ﬁku] = G (the first equality by

6.3.1(a)). By definition of g we have keﬂ(ﬁFu) + gk=°k, hence 6Fu[g] = ﬁFu.
So

(7 6FuA5Gu = 6Fu[g]AG = ﬁFu[g]AH[g] = (6FuAH)[g].

(The first equality is immediate from the foregoing, the second from the
definition of G, the last one holds by definition of F[41, (3.1.16).)

Next we construect an f € C such that f:dGu ~ g,

Let a be such that Vnel(éFu)(dnue=[an]), this a exists by (D4) and
(D6) . Put b = An.lth(an), £' = vEOKn.s"™ and £ = g:f'.
By assumption, C contains all functions s" and is closed under pairing,

hence £f' ¢ C. By assumption g ¢ C, and C is closed under composition, hence

f ¢ C. Moreover
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K,.K  bn K, .K
f.dGu = g.vG(A n.s ).VG(A n.dnu),
by definition of £, £', (D3c), and the fact that 5Gu = G. By 3.2.16(e)
K, . K

bn K,.K K, .K bn
vG(A n.s ).vG(k n.dnu) o2 vG(A n.s .dnu).

All labels of G are labels of f§_u, hence by definition of b sbn:dnu =~ id
for all n € £(G), whence vg(AKn.sbn:dnu) =~ id and

(8) fid u g,

From (7) and (8) we find

((e:dFu)A(f:dGu), 6FuA6Gu) > ((e:dFu)Ag, § unH) . 0

F
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CHAPTER 7

FORMAL SYSTEMS; SUMMARY OF TECHNICAL RESULTS

7.1. OUTLINE

This chapter consists of two parts, 7.2 and 7.3.
In 7.2 we shall show that the results we have obtained so far can be

formally expressed and derived in IDB, and LS. More precisely: we shall in-

1

troduce definitional extensions IDBF  and LSF~ of IDB, and LS respectively

(F for frame) in which the foregoing can be formalizeé. The fact that these
extensions are definitional means that we can translate our results into
2221 and LS.
In 7.3 we have listed the lemmata and facts of the previous chapters
to which we shall refer in the sequel, supplemented with some properties
of the >-relation between restrictions which have not been proved before.
This chapter does not claim to contribute to a better understanding
of projected universes of GC-sequences and of domains and their properties.
The reader is advised to glance through 7.2 and to skip 7.3 altogether
(it is to be used merely as a source of reference) except maybe subsection

7.3.7 which contains the new results on the 2=-relation.

7.2. FORMAL SYSTEMS
The system IDBF (7.2.1-7.2.7).

7.2.1. IDBF is a definitional extension of LQEO (i.e. without K-variables,
cf.1.3.8, [KT70] section 3.1) in which the theory of frames and nestings
of chapter 3 can be formalized.

(a) Symbols of the language of IDBF are those of IDB. and in addition:

0
(i) two countable sets of variables, for frames (F,G,H,FO,GO,HO,...) and

for lawlike sequences of frames (6,9,50,90,...) respectively;

(ii) the constants nodes, £, o, A, prod (for the definition of frames



166

F[41), ¥ (to be explained below), HF (for the definition of frames by

recursion), v, XF, = and branch-of.

(b) Besides number- and function terms (Tm and F-Tm), IDBF has frame-
terms (Fr-Tm, meta-variables F,G etc.) and frame-function-terms (Frf-Tm,
meta-variables F],G] etc.). The term-formation rules are those of 1220 and
(i) if F € Fr-Tm, t € Tm, then nodes(F), KtF, Y(F) and vF¢

are number terms;

(ii) frame-variables are frame-terms; if F,G ¢ Fr-Tm, t € Tm, Fl € Frf-Tm
then F A G, prod(F,Fl) (or shortly F[F]]), and HF(F,Fl,t) are frame-
terms;

(iii) frame-function-variables are element of Frf-Tm; the constant o be-
longs to Frf-Tm; if F € Fr-Tm, n a number variable then
AFn.F € Frf-Tm. (We shall omit the superscript F below.)

(¢) Prime-formulae and formulae are defined as usual, with two addi-
tional prime-formula clauses: if t € Tm, F,G ¢ Fr-Tm then branch-of (t,F)
(or shortly t € F) and F =z G are prime-formulae. (We shall omit the sub-
script F below.)

(d) The axioms of IDBF are those of ;ng (schemata extended to the new
language), AC-NF (also in the language of IDBF) and

o A

(i) the defining axioms for the constants branch-of, nodes, £, = °

s
prod and v as given in chapter 3;

(ii) the defining axioms for HF (which allow a special kind of definition
of frames by recursion): HF(F,ﬁ,O) =F,
I (F,§,0+1) = (I(F,§,0)) [Am. 4 (n,m) 15

(iii) the axioms for V:
Y(F) = ¥(G) <+ F =G, (Y is a 1-1 extensional mapping)
3F (n=YF) A-13F(n=YF) (range (¥) is decidable);

. F .
(iv) the A -conversion rule;

(v) the choice-axiom (AC-NFrf)

Vn3f A(n,§) = 3g¥n A(n,Am.gj(n,m)).

7.2.2. FACTS.

(a) The properties of °n, F A G, F[41, vF¢ which we derived in chapter
3 are provable in IDBF.

(b) If v and w are two finite sequences of equal length, v is without

repetitions and the relation 3n<1th(v)(b=(v)n) between b and v satisfies
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the axioms of the relation bfanch—of, then there is an F such that b ¢ F
iff 3n<lth(v) (b=(v)n) and ZbF =m for b € F iff In<lth(v) (b=(v)n A m=(w)n).
This is provable in IDBF by induction w.r.t. the length of v.

(c) The properties of ht given in 3.1.12 are derivable in IDBF. To
prove ht(F)>0 -~ JGH(F=GAH) we need fact (b).

(d) The principle of induction over frames is provable in IDBF by a
reduction to ordinary induction over N via ht as indicated in 3.1.13.

(e) All properties of frames expressible in IDBF are extensional, i.e.
IDBF |- F=G ~ (A(F) <> A(G)).

7.2.3. It is easy to see that IDBF is indeed a definitional extension of
LQQO. One can define in LQQO a subset FRAMECODE of N with a primitive
recursive characteristic function, which may serve as the range of the
frame-variables and frame-terms. Frame-function-variables and -terms can
then be interpreted as lawlike mappings from N into N whose range is a
subset of FRAMECODE, constants like v,£,A etc. are interpreted by (suitably
chosen) mappings from N into N, and definition of frames by recursion
reduces to ordinary definition by recursion. The constant ¥ can be inter-
preted by the identity mapping.

7.2.4, The addition of the constant HF to IDBF and its defining axioms are
completely ad hoc: they make it possible to construct terms jpslv,n],
§[n,v] and 4[F,v] which satisfy the defining equations for jps(v)(m), 6nv

and 6Fv of chapter 4, (Of course nf(v) is definable already in IDB:.)

7.2.5. Via the constant ¥ we can reinterpret mappings from IN into IN as
mappings from FRAME into N. With a:IN - N we associate ¢: FRAME + N where
¢ is defined by ¢(F) = a(¥F). That is to say, in IDBF we can quantify in-
directly over lawlike mapping from FRAME - N, and if we combine the use of

(FRAMEx ) FRAMEXFRAME
s, N e

Y with pairing also over WN te.

7.2.6. Pairing (as we have seen before) makes it possible to reinterpret a

lawlike b:N + N as a lawlike ¢:IN - N. With b we associate the mapping

$: n+ (b)n. Hence we can discuss (and quantify over) lawlike mappings

from N into the lawlike part of N in IDBF. In particular we can put for

¢ € F-Tm, F ¢ Fr—-Tm: )\ln.tb[n] % dof )\z.cb[j]z](jzz) (cf.3.2.15), then

Mno @) = ¢, and vio = vl n.(9) ) =, Az (o (9)_(2)) (e£.3.2.8(a)).
Using ¥ as in 7.2.5 we can also talk about lawlike mappings from FRAME

into the lawlike part of N inside IDBF.
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Just as we use b € N to 'code' mappings ¢: N - N we can use
§ e FRAME?N to 'code' mappings ¢: N - FRAMEI{ I.e. in IDBF we can in-
directly discuss and quantify over lawlike mappings from N (or FRAME or

N x FRAME etc.) into FRAMEIN.

7.2,7. FACT. The nesting-and //- properties not involving vk or ”C can be

expressed and proved in IDBF.

The system IDBF. (7.2.8-7.2.11).

1

7.2.8. IDBF is obtained from IDBF by adding K-variables and constants for

elements oflK and operations on K to the language, and specifying term—for-
mation rules for a set of K-terms. (I.e. the relation between IDBF and
IDEE,
EQQEI is in 7.2.9 below.

Note that we can associate with each e € K a mapping ¢: N - K, putting

¢(n) = Av.e(<n>*v). In IDBF

is like the relation between IDB and LQQI.) The full description of

we can quantify indirectly over KI“, and, if

! FRAME _ IN XFRAME
s, K e

we use ¥ as in 7.2.5-6, also over K

IDBE

tc.
1 has constants AK and vK, and the rules for term-formation speci-
fy that if F € Fr-Tm, ¢’e K-Tm, n is a numerical variable then XKn.¢ and
v§¢ are K-terms. (see 7.2.9).

AKn.¢[n] is the element of K which represents the mapping
nv ¢[n] € K]N , i.e. AKn.¢[n] is defined by the axioms
An.90n1(0) = 0, 2n.4[n1E*v) = $[xI(v). It follows that
e o AKn.(Av.e(<n>*v)).
er is the F-nesting of the mapping n » Av.e(<n>*v) € KN represented

F
by e, i.e. as axioms we have

K K _ K. K
Vone = Av.e(<n>*v), vFAGe = vFeAvGe.
7.2.9. The complete definition of IDBF. is as follows:

1
(a) The language of IDBF. consists of the language of IDBF plus

¢02£9+89
(ii) constants appgys apPp; (for neighbourhood-function-application -() and

1
(i) a set of K-variables e,f,g,

etc.

-I-),A' (for K-abstraction), AK (for the formation of Klq—elements),
shift, prix, nestinv, dpl and nest (to form neighbourhood-functions in
K for the shift- (a & Az.a(n+z)), prefix— (a v v*a), nesting-inverse-
(a» Az.j,a), duplicate- (a » j(a,a)) and F-nest-mapping

(a H—v;(k n.a)) respectively), and constants for operations on K
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(ii)

new

(1)

(ii)
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namely HRELY x,\)K (nesting) .

(b) The term formation rules for IDBF. are those of IDBF plus

the formation rules for the set of K—lerms (K-Tm, ¢ and Y are used as
meta-variables for this set), namely:

K-variables are in K-Tm; the constant dpl is in K-Tm; if t € Tm,

F € Fr-Tm, n and m are distinct numerical variables and ¢ and { are
K-terms then A'n.Sm, A'v.¢(t*v), A'v.h(¢,v) (h as defined in 1.3.19),
AKn.¢, shift(t) (shortly st), prix(t) (shortly[t]), nestinv(t)
(shortly jt), nest(F) (written as nestF), o3P, d:P, AP, ¢XyY and
finally v§¢ are elements of K-Tm;

the following new formation rules for Tm and F~Tm: if t € Tm,
w],...,wp € F-Tm and ¢ € K-Tm then ¢t € Tm, app0(¢,w],...,wp) e Tm and
app](¢,¢],...,¢p) € F-Tm. For app0(¢,wl,...,wp) we write ¢(wl,...,wp)
app1(¢,w],...,wp) is abbreviated to ¢|(¢],...,¢p).

(c) Formulae and prime-formulae are constructed as in IDBF.

(d) The axioms of IDBF] are those of IDBF (schemata extended to the

language) and
the defining equivalences for app and app, (1.3.10):
e(a],...,ap)=y > Hv(»p(al,...,ap)sv A ev=y+l)
el(a],...,ap)(x)=y > Ev(vp(al,...,ap)ev A e(Rxv)=y+1) ;.
the A'-conversion-rule: A'n.t[nl(x) = t[x], the AK—conversion rules

(see 7.2.8);

(iii) the defining equations for the remaining constants (for dpl and nest

(iv)

7.2.
(a)

(b)

(c)

these are given in 9.2.1, for sn, [v],jb the precise choice is irrele-
vant (cf.1.3.16), for ;,:,A,x the definitions are given in 1.3.17,18,

21 and 23, for vK finally the defining axioms are specified in 7.2.8

above) ;
the axiom expressing that K-variables range over K, i.e.
VaVe(Vz(az=ez) <> K(a)).

10 REMARKS.

We shall omit the superscript 'in A' below, i.e. we do not make the

syntactic distinction between e.g. the K-element A'v.e(<n>xv) and the

mapping Av.e(<n>*v) € N as ;gggl does.

So for we have not used the mappings dpl and nest_. They will play a

F
r6le only in chapter 9.
Until now jva was used to abbreviate Ax.jv(ax). From now on we put

jva = jv]a (which is extensionally equal to Ax.jv(ax)), i.e. we treat
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Iy

(d) Our choice of K-Tm is a matter of convenience. It makes it possible to

in jva as a neighbourhood-function.

express the properties which we are interested in, without much circum-

scription, in the language of IDBFI-

7.2.11. FACT. The systems IDBF1 and IDBF are equivalent: there is a trans-

lation from IDBF. into IDBF which preserves derivability and which maps

1

each sentence A of IDBF, to a sentence A' of IDBF which is equivalent (in

1

IDBFI), moreover the range of the K-variables and all constants of LQEEI

are definable in IDBF.

PROOF. The only problem is to eliminate the constant vK. The axioms of
IDBE, define this constant by recursion over frames, but such a definition
is not generally possible in IDBF. Combining the vK—axioms with the axioms

for A (definition 1.3.23) we find that

e(<n>) if F = °n,
K
vFe(O) =

0- otherwise;
vge(i*v) = $(F,e,Rev) + (14w, Owrh (0, F e, 250))) -

Here ¢(F,e,&*v) = sg(ﬂbeFe(<ﬂbF>*i*kbv)),
Y(w,F,e,Xxv) = e(<KwF>*§*kwv)=1, and F' is the frame with the same branches
as F, but satisfying VbeF(KbF'=b) (each branch is labelled with itself).

There is a term tl[e,F,OJ of IDBF. which satisfies the equation for

v?e(o), there is a term s[e,F,i*vg which satisfies the equation for

¢ (F,e,%*v) (use nodes(F) to construct a term card(F) and an enumeration of
the branches of F, then nbeF can be defined by an ordinary primitive re-
cursion), there is a term s'[w,e,F,%*v] which satisfies the equation for
Y(w,F,e,X*v), it remains to show that there is a frame-term F(F) such that
VbeF (£, (F(F))=b) .

This term is constructed as follows.

(a) Using nodes(F) construct a mapping ¥ such that yn = 0 if n ¢ nodes(F)
or n*<0> ¢ nodes(F) or n*<1> ¢ nodes(F) and which gives the value 1 other-
wise.

(b) Put g = An.(°(n*<0>)A°(n*<1>)), § = Xm.g(jzm) (i.e. $(k,n) = gn), and

put §' = An.HF(°n,6,Xn); then fn = °n if n is not in n(F) or n is a terminal
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node of F, and {'n = °(n*<0>)A°(n*<1>) if n is a non-terminal node of F.
(e) Put F(F) = I (°0,Mm. 4" (§m) ,he (F)).

The proof of the correctness of this definition is given by introducing
F(F,k), defined as F(F) but with k instead of ht(F), and then showing that
b ¢ F(F,k) iff 1th(b) < k and b ¢ nodes(F), while Zb(F(F,k)) = b. This is
done by induction w.r.t. k using the explicit characterization of F[{]
(3.1.18). O

For the formulation and proofs of the ﬂc-properties and the properties
of 2 between restrictions and for the treatment of models and domains, we

enrich IDBFI to the system IDBF .

7.2.12. IDBF® is IDBF, with two additional constants in its language, C and

J, a term—formation rlle J € K-Tm and a new type of prime-formulae: if
¢ € F-Tm, then C(¢) is a prime-formula. Axioms to be added are:

C is a subset of K: C(a) » Je(a=e),

C is closed under = (cf.1.3.26): C(Az.ez) A ex~f > C(Az.fz).

For C(Az.ez) we shall simply write e € C. J will be used only as re-
presentative of the mapping n v Av.J(<n>*v) ¢ Klq. Therefore Jn will mean
Awv.J(<n>*v). ’

All properties of vF,v;,vg,”, ”C and = (between restrictions) that

have been stated so far can be formulated and proved in IDBF .

7.2.13. Models and domains in IDBF .

There is a frame-term jpslv,x] of IDBF such éhat for all v the de-
fining equations for jps(v) (4.3.4) are provable in IDBF for Ax.jps[v,x].

Using jpslv,x] we can express by a formula GFS({) (GFS for 'generates
frame-sequences') that the mappings (n,v) = {(¥(°n),v) and
(F,v) ~ §(¥(F),v) satisfy the defining equations for ﬁnv,ﬁFv respectively
(4.3.9,4.3.12).

In fact there is a frame-term F(n,v) of IDBF which satisfies the equa-
tions for 6nv (4.3.9), hence for the mapping § such that
4§ (¥(F),v) = F[An.F(n,v)] we can prove GFS(4) in IDBF.

The properties of jps and ﬁFv that are derived in 4.3 are provable in
IDBF for the corresponding term jps[v,x] and the mappings 4 satisfying
GFS({§).

In the language of lggg* there are formulae JPF(e), UP(a,e,f,f) and
GEV(g,a) which express the following: JPF(e): the mapping Aw.e(<v,n>*w)
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behaves as jf(v)n (4.4.3) (in JPF the constant J occurs),
UP(a,e,f,4): a(v) behéves as upb(d,v) (4.4.9) if \w.e(<v,n>*w) is used as
JEW)(n) and §j(YF,v) as 6Fv while the rdle of d: N x N +K is played by
f, i.e. dnv € K is Aw.f(<v,n>*w),
GEV(g,a): Aw.g(<v,n>*w) behaves as gv(d,v)n (4.4.10) if a(v) is used as
upb(d,v).

In LQQE* one can prove Je JPF(e), Vef43da UP(a,e,f,f) and Vadg GEV(g,a).
For JPF one easily defines an F-Tm ¢ such that LQQE* F Je(ex¢ A JPF(e)).

We can use JPF, UP and GEV to construct formulae DGO(f,ﬁ) and DG(g,4)
which express that the mappings dO: N x N+ K represented by f(i.e.
Aw.f (<n,v>*w) = dny) and d: Nx FRAME x N - K represented by g (i.e.
Au.g(<v,¥(F),w>*u) = d;w) belong to DGO(J) and DG(J) respectively (the
formulae DG0 and DG contain the constant J in JPF), if § plays the rdle of
frame-sequence-generator. (cf.4.4.11,4.4.17.)

In LQQE* we can prove 3If DGO(f,ﬂ) (4.4.12). In the appendix we show
that there is an F-Tm ¢[n,v] of LQQE* such that 3f (Vovw(¢[n,vI(w) =
= f(<n,v>*w))ADG0(f,6)). Once we have an f such that DGO(f,ﬁ) we can con-—
struct a g such that DG(g,4) (4.4.19). All properties of d0 € DGO(J) and
d € DG(J) mentioned in chapter 4 can be derived (assuming GFS({), DGO(f,ﬂ),
DG(g,4)) for the mappings (n,v) b Aw.f(<n,v>*w) and (v,F,w) »
= Au.g(<v,¥(F),w>*u) respectively in EQEE*.

There also is a formula GNGC(e,g,$) which expresses that w: F > Ty € K
defined by T = Aw.e(<¥F>*w) generates nests of GC-carriers, that
d: N x FRAME x N - K defined by dgw z d(v,F,w) = .u.g(<v,¥(F),w>*u)
generates the dressings for m, and that {j(¥(F),v) is the frame for g at
v (4.5.2). GNGC(e,g,4) has 'J enumerates C modulo =' as a sub-formula. The
existence of g,e, and § such that GNGC(e,g,§) is provable in LQQE* from the
assumption 'J enumerates C modulo ='., (It suffices to comstruct T from 4
as in 4.5.6.)

We shall continue to use w,d,4 and expressions like m dgw, 6FV etc.

s
as in chapter 4 but now as abbreviations for K-terms in ngg . E.g. for
GNGC(e,g,4) we write GNGC(w,d,{).
From GNGC(w,d,§) we can derive the properties of m mentioned in 4.5.
Obviously there is an ZQQE* sentence dclosed(C) which expresses that
C is dependency-closed. For dclosed(C) A GNGC(w,d,{) we write model (w,d,4)
In 5.2.4 we have given the formula which expresses that the pair (d,{)
has the strong overtake property. The.proof of model(m,d,§) -.strong over-

take(d,§) (5:.2.5) as.given.in 5.3, 5.4 can be formalized.in_kﬁg* (to be
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discussed below) hence this implication is provable in IDBF" (via the eli-
mination theorem).

Finally we can express in LRQE* that m,d and § satisfy the domain-
axioms (6.1.2). The formula which does so is denoted by domain(w,d,{). The
properties of domains derived in 6.3 can be formally proved in EQQE*. The
same holds for the theorem that models are domains (6.2):

EQEE* |- model(m,d,4) - domain(w,d,{).
We conclude section 7.2 with the introduction of LSF* (7.2.14-15).

7.2.14, Over lgég* we define a formal system for the theory of lawless se-

quences ggg* as follows (cf. the description of LS in [T771):

(a) To the language of LQQE* we add variables for lawless sequences
a,a4,0, ete.

(b) We introduce a set L-Tm of lawless sequence terms, which contains
only the lawless variables.

(c) We leave the definitions of Tm, F-Tm, Fr—-Tm, FrF-Tm and K-Tm un-—
changed, so these contain only terms with lawlike parameters, and add a set
To* of terms which may contain lawless variables. Tm" contains the same ex-—
pressions and is closed under the same term—formation rules as Tm (with
one exception, see below), and satisfies in addition:
if a,a],...,ap € L-Tm; t e Tm" then at e Tm*, e(ul,...,ap) € Tm" and
el(al,...,ap)(t) € Tm . .

(d) The formation rule for recursion terms in Tm  is slightly changed
w.r.t. the corresponding rule for Tm (the exception mentioned above) as
follows: ‘

if tl’t2’t3 € Tm* and*x is a numerical variable, then

n(t],(kx;t'z),t3) e Tm .

Thus we introduce expressions for natural numbers defined by recursion

w.r.t. a lawless parameter (like e.g. ax), without having function-terms

for constructs of lawless sequences.

(e) Prime formulae and formulae are defined as usual.

(f) Axioms for the theory are:

(i)  The axioms of LQQE* (schemata in the new language, but with the
stipulation that instances of AC-NF cannot contain a lawless parameter,
and terms now ranging over Tm* instead of Tm.

(ii) The defining axioms for e(al,...,ap), el(al,...,ap)(x), similar to
those for the lawlike case.

(i1ii) Axioms for the new recursion terms (obvious).
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(iv) The usual LS-axioms, in the new language.

7.2.15. REMARKS.

(a) Elements of K-Tm and F-Tm in E§§* cannot contain lawless variables,
so [ox], s*® are not in K-Tm. Such K-functions can be discussed only in-
directly in the language of Lﬁz*. Moreover, in the prime formulae K(¢) and
C(¢), ¢ is an element of F-Tm, hence these formulae are lawlike.

(b) Q§E* does not contain expressions for constructs of lawless se-
quences like ela, but it does contain expressions for the values of such
constructs. Still we use expressions of the form e[a, e(f]a)frequently be-
low. For the formalization of our arguments this is harmless, eventually we
are interested only in the values of such sequences.

(c) Note that we can formally define what we mean by the substitution
of an expression e|f for o (and of e|(f|B) for a, etc.) in a term tla].
Some examples:
ax[ (e|B) /ol = e|B(x),
ela()L(£|R)/al = e:f|B(x),
e(a)[(£]B)/al = e;£(B),

e(a ,a,)[(£]B) /a1 = e;(£Aid) (B,a,),
el(al:az)(x)[(flﬂ)/dzl = e:(idAf)l(al,B) etc.
(d) All theorems in the sequel can be formalized in the monadic part

of ng* (domains and models are projected from a single lawless sequence §).

7.2.16. LEMMA.

(a) The following continuity schemata are derivable in kgg*:
Vodr A(a,F) -+ JdeVv(ev#0 - IFVoaev A(a,F)),
Vadg§ Aa,{§) > JeVv(ev#0 + 3fVaev Aa,f)).

(b) The elimination theorem for L§ relative to IDB, can be extended to
LSF" relative to IDBE .

PROOF.

(a) VYoIF A(a,F) is equivalent to VoIndF(¥(F)=n A A(a,F)). By the or-
dinary Vodn-continuity axiom we find that for some e if ev # O then
InVoevIF (Y (F)=n A A(o,F)). But ¢(F) = n uniquely determines F, so we can
interchange Voev and JF. Va3f A(a,§) is treated similarly.

(b) By a straightforward adaption of the original proof of the elimina-
tion theorem. Note that the new classes of terms Fr-Tm and Frf-Tm will pose

no problem because their elements are lawlike. [



175

7.3. SUMMARY OF LEMMATA

In this section we have put together the technical results of the pre-
vious chapters which remain important in the sequel, supplemented with some
properties of the 2-relation between restrictions which have not yet been

discussed but will be used later on.

K-functions and related topics (7.3.1-7.3.5).

7.3.1. With each e € K and finite sequence w we have associated (in 1.3.11)
a finice sequence elw such that

lth(elw) = mink<1th(w)(e(<k>*w)=0) [=1lth(w) if Vk<lth(w) (e(<k>*w)#0) 1,
Vx<1th(eTw)((e[‘w)x = e(®*xw)=1).

Properties of elw are (1.3.12):

(a) Vxdyx(ela(x)  el(ay)),

(b) Vydx < y(el(ay) = ela(x)).

Remember that ejf Edef aw.e(Ehw) (1.3.17).

7.3.2. A is a pairing operation on K w.r.t. =, which satisfies

(@) j,(erfla) =eljja, j,(erfla) = flj)a (1.3.23)
(b) (enf):(e'Af") = (e:e')A(f:f") (1.3.24(£))
(c) ene' = fAf' iff exf A e' o f! (1.3.24(e)).

7.3.3. [v] denotes the neighbourhoodfunction such that [v]|a = v*a,

s" is an element of K satisfying snla = Az.a(n+z) (1.3.16).

[ 1 satisfies:

(a) [k,zlalk, z] == [z] (1.3.24(g))
! 2 1th(v)

(b) Va(elaev) » e = [v]:s ce (1.3.24(c))

Note that as a corollary of (b) and 7.3.1(b) we have

(c¢) f:lv] = [ffv]:sm:f:[v], where m = 1th(flv). (1.3.24(d))

7.3.4. The mapping exf (composition of the bars e and f) is defined as
Au.sg(eu).f(<h(e,u);l>*hc(e,u)) (1.3.21), whence exf(u)#0 - eu#0 and even

exf(u)=m+1 » Ivw(u=vrw A ev#0 A f(<v>*w)=m+1).

7.3.5. As an important property of K-nestings we recall

VbeF (j, (Vb la) = (4,0 [3,2) (3.2.16(c)).
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7.3.6. The relations // and //C (3.2.18-21).

A sequence ¢ € N is parallel to the frame F, notation ¢//F, iff
vbb'eF(sz=£b.F > jb¢=jb,¢).

Likewise, if v is a finite sequence, then

= ' =, =
v//F = def vbb sF(IZbF I’b'F - kbv kb,v).
An element e of K is C-parallel to F (e//CF) iff there is a ¢: N~ C

(represented by £ € K through ¢n = Av.f(<n>*v)) such that e = \)?d).

Properties of // and //C

(a)
(b)
(c)
(d)
(e)
(£)
(8)

(h)
)
(k)

If F has a 1-1 labelling, then Va(a//F) and Ww(v//F) (3.2.21(e))
Va(a//¢n)), Vv(v//(n)), VeeC(e//,(n)) (3.2.20(n),21(a), (b))
a//[FAG > jla//FA jza//G, v/[FAG klv//FA kzv//G (3.2.20(£),21(c))
af/F A m¢LF + Vb(j(a,b) /FACM)) (3.2.21(k))
Vvﬂv'v"(klv'=v A kzv'=v" A v' /[ (CO)AH) (3.2.21(m))
a//F > V¥x(ax//[F A Az.a(x+z) [/F) (3.2.20(d))

a//GA G=F > a//F, (3.2.20(3))

v//GA G=F » v//F (3.2.21(£))

if C is closed under pairing then e//CGA G=F ~ e//CF (3.2.20(k))
F~G » Va(a//G <> a//F) (3.2.21(g))
e//CFA a//F > ela//F, e//CF A v/[F~> elv//F (3.2.20(r),21(3))
if C is closed under pairing then e//CF—> eeC (3.2.20(m)) .

7.3.7. The 2-relation between restrictions (5.1.2-7).

(£,6) = (e,F) =, Jg// F(E= eg) A G2F,

def
(£,6) m (e,F) =, . (£,6)2(e,F) A (e,F)2(£,6).

Properties of =

(a)

(b)

(c)
(d)

(e)

If id € C then ex~f A F~G » (e,F)~(f,G) whence in particular

(e,F) » (e,F), exf > (e,F) N (f,F), F ™ G ~ (e,F) ®~ (e,6).

(5.1.6(a),7(a))
If C is closed under pairing and composition, then the 2-relation is
transitive. (5.1.6(b))
If [v] € C for all v then y//F~> (e:[yl,F)=(e,F) (5.1.6(c))

(i) VeeCVF[(e,F)=(id,°n)],
(ii) VeeCL(f:e,°n)=(f,°n)].
1f s" e C, then (f:sn,F) > (£,F).
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(£) (£,G)=(e,F) A nélF ~ VgeCVHL (fAg,GAH) = (eAaid,FA(°n))],
if id ¢ C and n ¢ £G, then Vg'eCVH[ (fA(g:g"'),GAH) = (fAg,GA(°n))

(g) (£,6)=(e,F) > Ve'F'IEf'G'[ (£Af",GAG"') = (eAre',FAF') ], where if C is
closed under pairing and composition then e'eC - f'eC.

(h) 1If C is closed under composition, Vn(sneC) and W({v]eC), and if G =2 F
then g//CFA y/F~ (e:g:[yl,G)2(e:lglyl,F).
If C is also closed under pairing, then we may replace the premiss
g//CFA y//F of the implication by g//CGA yli/lG -
(or g//CF/\ y//G, g//CGA y//F), by 7.3.6(g).

Note that the conditions on C occurring in (a), (b), (c), (e), (£),
(g) and (h) are fulfilled if C is dependency-closed.

PROOF (of (d)-(h)).

(d) and (e) are trivial, observe that F
(c£.7.3.6(b)) and s™eC ~ snﬂCF by 3.2.20(p).

(£)(i) if n ¢ LF and G = F[4], then GAH = (FA(°n))[gl, where gm = {m
if n # m and gn = H. If f =~ e:v?:p, ¢:N- C, and g ¢ C, then

(°n)[Am.F], eeC - e//c(°ﬂ)

¢ ~ . _
fAg = (eAld).\)FA(on)w, where ym = ¢m if m # n, and yn = g.

(£) (1i) GAH = GA(°n) b& the same argument as above;

fr(g:g') = (ng):ng(on)cb, where ¢m = id if m # n, and ¢n = g.

(g) If G = F[{] then GAF'[§]1 = (FAF')[{]1, so take G' = F'[4]. If
f o e:\)§¢, ¢: N >C, then fA(e':v§,¢) o (eAe'):v?AFﬁb, so take f' = e':\)g,zb.
If C is closed under pairing, then v§,¢ € C, if C is closed under composi-
tion and e' ¢ C, then f' = e':\)g,(b € C.
(h) Note that g:[y] = [gl‘y]:sm:g:[y], where m = 1th(gly) (7.3.3(c)).
e C then sm//CF, (3.2.20(p)), if Wv([vleC) and y//F then [y]//CF
(3.2.21(1)). g//CF by assumption, so if C is closed under composition then
sm:g:[y]//cF (3.2.20(s)). O

1f s

7.3.8. Finally we recall a number of the domain properties of section 6.3:

let m,d and § define a domain then

(@ fgagv = Spvrbgy (6.3.1(b))
(b) dp v = dpwadiw (6.3.2(a))
() Ww((exdy(vaw),f . (vaw)) = (e:dv,fpv)) (6.3.3)

(@) Vovb(LyF=n > j (n 8)=m_¢) (6.3.4(b))

(e) BgVGEV(TrF(S=dFv|(g[6) A ng//ﬂFV) (6.3.4(d))
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(£

(g)

(h)
(i)

(k)

(f,G)z(e:dFv,ﬁFv) ->
HeZVuﬂG[ezu#0-+ Ew((f,G)S(e:dF(v*w),ﬂF(v*W))S(f:[u],G))]
(6.3.5(a))

If id € C then

VeIHeZVuﬂﬁkazu#O > 3W(e1w¥0 A (e:dF(v*w),ﬂF(v*w))s(e:dFv:[u],ﬁFv))]
(6.3.5(b))

If VYu([uleC), then VaﬂﬂFkaadev(Fgg(x)=dFv|a(x)) (6.3.5(c))

If s" € C for all n and C is closed under composition, then
VezaeIVw[elw¥0 -
HuﬂﬁFv(eZu#OA (e:dFv:[u],ﬂFv)S(e:dF(v*W),6F(v*w)))]
(6.3.5(e))
If Vn(s™eC) and C is closed under composition and pairing, then
VgeCVHFqueCEG[((e:dFu)A(f:dGu), 6FUA6Gu) > ((e:dFu)Ag, 6FuAH)]
(6.3.5(£)).

Note that the conditions on C in (g)-(k) are fulfilled if C is dependen-

cy-closed.
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CHAPTER 8

THE ELIMINATION THEOREM FOR DOMAINS

8.1. OUTLINE

In this section we shall take the first step towards proving that
suitable domains are models for the system CS(C), by deriving an elimina-
tion theorem for domains.

First we introduce the language Le (in which CS(C) is formulated).

Le is the same as the language of Egg*, except that it has choice variables
€5M5€q5M etc., instead of the lawless variables a,B etc.

With each formula A(el,...,ap) of L€ we associate a formula
As(ellnpl,...,ep|an) of ng*, which expresses that A holds if we let its
choice quantifiers range over the domain 05 = {eleG:e € C, F ¢ FRAME} and
interpret the choice parameters € in A by eileiG € 06 (i =1,...,p).

Next we expand Le to a language L: by adding a clause to the formula-
definition, saying that if A is a formula then so is Vee(¢,F)A, where
¢ € K-Tm, F ¢ Fr-Tm (i.e.(¢,F) denotes a restriction).

Then we define an elimination translation which maps formulae of L:
onto formulae of LQEE*. For this translation T we derive two lemmata,
stating properties that are essential for all its further uses.

The proof of the elimination theorem concludes this chapter.
8.2. THE LANGUAGES LE AND Lz, THE SYSTEM gg(C)

8.2.1. DEFINITION (of Le,L:).

(a) LE is the language of ng* with choice variables €,n,z,¢c etc.

0°"0%0
instead of the lawless variables a,B etc.
(b) L: is the language obtained from Le by adding the clause:
'if ¢ € K-Tm, F € Fr-Tm and A is a formula, then Vee(¢,F)A is a formula'

to the clauses defining the set of formulae (see 8.2.5).
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In Le we formulate the axioms of CS(C) (cf.1.3.29).

8.2.2. DEFINITION. CS(C) is the system with the following axioms and axiom
schemata:
Ccs(C)1 VenVeeC3z (z=e|(e,n)),
C5(C)2  A(e) » JeeC(In(e=e|n) A V¢ A(e|T)),
CS(C)3  Veda A(e,a) - JeVu(eu#0 + 3aVe A([ulle,a)),
CS(C)4  Vedn B(e,n) - VedfeC A(e,fle),
where A and B are formulae of Le containing no choice parameters besides
those shown in notation, and @ is a meta-variable for 'any lawlike variable
of LE'.

From now on we shall frequently use the meta-variable a for the same

purpose as in definition 8.2.2, namely to abbreviate 'any lawlike variable
* Al
of Le (Le)'

8.2.3. DEFINITION. A is a closed formula of L_ (L:), if it contains no

choice parameters.

Convention
* . .
If we denote a formula of Le’ Le by A(el,...,ep), we mean that it contains

no choice parameters besides ¢ vs€ .

ERRRELN
8.2.4. DEFINITION. Let m,d and § define a domain, put Dd = {e[an: e e C,
F ¢ FRAME}. With each formula A of LE we associate a formula A(S in. the
language of kﬁE*’ which expresses that Dé fulfills A, as follows:

A6 is obtained from A by replacing, for each i € N, all occurrences of the

i-th choice variable u; in A by vi+j|ﬂwi+k6 and all quantifiers Vui, Bui by
Vvi+iji+k, 3vi+jawi+k respectively, where vi+j is the i+j-th K-variable,

Yk is the i+k-th frame-variable, j is 1 plus the maximum of the indices
of the K-variables occurring in A and k is 1 plus the maximum of the in-
dices of the frame-variables occurring in A.
. $ ..
For (A(e],...,gp))6 we write A (e1|ﬂF],...,ep|ﬂFp), to indicate that

eileiG replaces €; (1=1,...,p).

NOTE: when we replace a choice variable € by a term e|nF6, we follow the

conventions of 7.2.15(c).

3 * P .

8.2.5. We introduce the language LE for purely formal reasons: it 1s easier
. . . s *

to describe a translation which eliminates choice quantifiers from Le than

to describe such a translation directly for Le' (It is an elimination

translation for L€ which interests us.)
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Yet, it would be convenient if we could assign some meaning to the re-
stricted quantifiers Vee(e,F). To do so we consider another expansion Ls’
of LE, obtained by adding the clause

"if ¢ € K~Tm, F € Fr-Tm and € is a choice-variable then € ¢ (¢,F) is a

prime formula"
to the formula definition.

The 6§ translation of definition 8.2.4 above, which gives us the inter-
pretation of a formula A of L€ in the domain Dé’ can be extended to Lg by
requiring that subformulae ¢ ¢ (¢,F) of a formula A are replaced by
Ex[(e:dF(gx),ﬂF(Ex))2(¢,F)], where e[an replaces ¢ everywhere else.

That is to say, € € (¢,F) is interpreted as: 'there is an x such that
the restriction for e at stage x is stronger than (¢,F)'. We abbreviate this
to: 'e meets the restriction (¢,F)' (where € ranges over the sequences eIﬂFé
in the domain DG)'

L: can be defined as a sublanguage of L25 we can put
Vee(d,F) A Zdef Ve(ee(d,F) = A).

Thus Vee(¢,F) A says: all sequences ¢ which meet the restriction (¢,F)

satisfy A.
8.3. THE ELIMINATION TRANSLATION

8.3.1. The translation 1 to be defined in this section maps closed formulae
of L: onto formulae of L(EQEE*), i.e. it eliminatés choice quantifiers.
The idea behind the translation is (in complete analogy with the elimina-
tion translations for L§ and CS) to replace quantifiers Je not in the scope
of a universal choice quantifier by JeeCIFVee(e,F), to contract pairs of
universal choice quantifiers into a single one, and to push universal
choice quantifiers not in the scope of other universal choice quantifiers
inwards over the other logical signs A,Vv,>,Va 3@ and Je, until we are left
with a formula which contains only universal choice quantifiers in front of
prime formulae, which are then replaced by lawlike quantifiers.

As will become clear on inspection of the definition of the elimination
mapping T (8.3.3-7), the translated sentence TA is equivalent to A if we
assume the following principles (in the language Lg):

(a) Vee(e,F)Vne(£,6)3z(ge(erf,FAG) A J'1C=€ A §ot=n),
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(b) Vze(eAf,FAG)3edn(ec(e,F) A ne(£,6) A j Z=e A j,z=n),

(c) VeeCVF3e(ee(e,F)),

(d) ee(e,F) A ee(£f,G) + (e,F)2(£,6) v (f,6)2(e,F),

(e) Ae » JeeC3IF(eec(e,F) A Vne(e,F) An),

(£) Vee(e,F)3a A(e,a) <> JeVu//F [eu#0 > JaVee(e:[ul,F) A(e,a)],

(g) Vee(e,F)3n B(e,n) <« JeVu//F [eu#0 + 3feCIGVLe ((e:lul)Af,FAG) B(j,2,3,8) 1,
(h) Vee(e,F)(tlel=slel) «> Va//F (tlel|al=slelal).

We shall prove the elimination theorem without relying on (a)-(h). However,
these principles may help to explain the successful use of the elimination
translation: in content they are close to the CS-axioms, in form they re-

semble the axioms for lawless sequences (in particular (e), (£) and (g)).

8.3.2. The translation t below is obtained by reworking a notion of forcing
introduced by Dragalin in [Dr74]. In fact, in [Dr74] a whole range of no-
tions of forcing is introduced, generalizing both the elimination transla-
tions for L§ and for CS. It is proved that one of these notions provides a
model for the CS-axioms (6ur theorem 9.2.10) but without using the key-—
lemma 9.2.9 which is essential for our proof.

Dragalin seems to claim that his forcing is 'essentially' Beth-forcing.
From our point of view the reduction to Beth-forcing is far from trivial,
this reduction is proved in the elimination-theorem 8.4.2 below. Though
Dragalin's forcing is obviously inspired by Troelstra's description of
GC-sequences, it does not provide a notion of sequence which fulfills the

CS—axioms.
prsh

Before we define the actual elimination translation, we introduce an
auxiliary mapping ». In 8.3.3 and 8.3.4 ¢ and ¥ range over K-Tm, F and G

range over Fr-Tm.

8.3.3. DEFINITION. » is a partial mapping from the set of closed formulae
of L: into itself. A closed formula ¢ is in the domain of & iff
® = Vee(¢p,F) Ae, ® = Ve Ac or, ® = Je Ac for some formula A of L:. The

image of ¢ under » is constructed as follows:
(i) Vee (¢,F) (tlel=sle]) » Vaf/F(tl¢|al=sl¢|al),

(ia) Vee (¢,F) Ky » Ky,
(ib) Vee(o,F) Cy B Cy,
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(ii) Vee(d,F) (AAB) Vee(d,F) A A Vee($,F) B,
(iii)  Vee(¢,F) (AVB) »  JeVy//Fley#0 ~
Vee(¢p:Lyl,F) A v Vee(¢:[yl,F) BI,

¥

(iv) Vee (¢,F) (A>B) b V(£,6)2(¢,F)[Vee(f,6) A > Vee(£f,G)B] ,
(v) Vee (¢,F)Vaa » VaVee(¢,F) A,
(v)Cl  Vee(¢,F)¥n A(e,n) b VeeCVGVEe (dAe,FAG) A(jll:jzﬁ)’
(vV)C2  Vee($,F)Vne(®,6) Ale,n) b Yee(oay,FAG) A(§;8,5,0),
(vi) Vee(¢,F)3a A v  JeVy//Fley#0 - JaVee(¢:[yl,F) Al,
(vi)C Vee($,F)3an A(e,n) b JeVy//Fley#0 ~
AfeCAGVZe ((9:LyI) AL, FAG) A(jlz;,jzc)],
(vii) Ve Ae b VeeCVFVee(e,F) Ae,
(viii) e Ae » JeeCIFVee(e,F) Ac.

8.3.4. REMARKS.

(a) The choice-quantifier in Vee(¢,F) K¢,Vee(4,F) Cy is void, since ¢
in this context must be lawlike. The mapping + deletes such quantifiers
(see (ia), (ib) above). In proofs by induction w.r.t. the logical complexi-
ty of formulae, involving #, we shall omit these (trivial) cases.

(b) Note that ' treats.disjunction as if it were defined as follows:

A v B = 3x[(x=0 > A) A (x#0 > B)]. This means that we can omit the disjunc-

tion—-case in inductive proofs too.

8.3.5. DEFINITION., Let & be a closed formula of L:. Let A be a subformula of
® in the domain of », let B be such that A » B. @' <s obtained from & by
an application of v, if &' is the result of a replacement of an occurrence

of A in &, not in the scope of a choice-quantifier, by an occurrence of B.

8.3.6. FACTS.
(a) If & is closed and ¢' is obtained from & by an application of %,
then ¢' is closed.
(b) c(®) = the number of logical operations (connectives and quanti-
fiers) occurring in ¢ in the scope of a choice quantifier +
the number of restricted choice quantifiers in ¢ +
twice the number of unrestricted choice quantifiers in &.
We find that
(1) if @' is obtained from ¢ by an application of », then c(®') < c(9),
(ii) if ¢ is closed, c(®) > 0, then there is a ¢' that can be obtained
from ® by an application of ¥, and

(iii) if ¢ is closed, c(®) = 0, then ® is lawlike.
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(c) Let @', o" be distinct formulae, obtained from ¢ by an application
of b, &' resulting from a replacement of an occurrence of A, ¢" from a re-
placement of an occurrence of B. Then these occurrences of A and B must be
disjoint, hence there is a formula ¢'" which can be obtained from ¢' as well
as from ¢" by an application of +.

(d) From (a)-(c) we can conclude that with each closed formula ¢ of
L: there is a unique formula ¥ such that
(i) V¥ is lawlike, and
(ii) there is a finite sequence ¢ = @0,...,¢p = ¥ of closed formulae of L:

such that for all i < p, @,

i+l is obtained from @i by an application of

P,

8.3.7. DEFINITION (of ®' and t). Let @ be a closed formula of L:, then "0 '
is the unique lawlike formula ¥ which satisfies 8.3.6(d) (ii).

T is the translation which carries ¢ into o .

Since T eliminates choice variables from closed formulae of L: we call it

an elimination translation for L:.

8.3.8. FACTS. )

(a) A ~X+ B =TA" -—7:*'_}3_', A and B closed.
A

(b) "Qa A'=qa'a’,

sort.

closed, Q = 3 or Q =V, a a lawlike variable of any

(c) Ve & VeeCVF";fee(e,F) A', see 8.3.3 (the definition of ¥).

(d) Fe A

{1

JeeCIF'Vee (e,F) A’ , see 8.3.3.

(e) If ¢
sign of &, see 8.3.3.

Vee(9,F) A, then the structure of @' depends on the main logical

1

The next two lemmata, 8.3.9 and 8.3.11, state important properties of

T. The reader is advised to skip their proofs at first reading.

8.3.9. LEMMA (monotonicity of T).

Let Ae be a formula of Le with at most one choice parameter: e. Let (e,F)
and (£,G) be restrictions. Assume

(a) C is dependency-closed,

(®) (£,6) = (e,F),

() l-\7’s:e(e,F) Ae'.

Then

(@) Vee(£,6) A€’
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18 derivable; the derivation ecan be formalized in IDBF*, T.e.

LQQE* |- dclosed(C) ~

V(e,F)[rVee(e,F) Ag’ +~V(f,G)2(e,F)rVee(f,G) Ac' .

PROOF. We proceed by induction w.r.t. the logical complexity of A. The proof
is subdivided into cases, one for each possible main logical sign in A. The
numbering of these cases corresponds to that of 8.3.3. By assumption (a) we

can apply all 2-properties:(7.3.7.).

case (i) Ae = tlel=sle].

Assumption (c) becomes in this case
(n Va//F(tlelal = slelal).
To derive (d), i.e. in this case
(2) Vb/G(tLElb] = s[£1bD),

it suffices to show that for each b//G there is an a//F such that f|b = ela.
Let b//G be arbitrary. By assumption (b) there is an § such that G = F[{],
so (by //-property 7.3.6(g)) b//F.

Also by assumption (b) there is an e' such that £ =~ e:e' and e'ﬂCF.

Put a = e'|b. Then a//F by 7.3.6(j) and £|b = eze'|b = e]a.

case (ii) Ae = BeACe,

trivial by induction-hypothesis.

case (iii) Ae = BevCe,

can be treated as Ae = 3x D(e,x), see 8.3.4(b).

case (iv) Ae = Be - Ce.
By assumption (a), C is dependency-closed, hence the relation 2 between re-
strictions is transitive (z-property 7.3.7(b)). (d) immediately follows

from (c¢) by this transitivity.

case (v) Ae = Va B(e,a),

trivial by induction-hypothesis.

case (v)C Ae = Vn B(e,n).
In this case assumption (c) reads VgeCVHere(eAg,FAH) B(jlc,j26)1-
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id € C by assumption (a), hence this specializes to
(3) VndlF Vee (enid,FA(°n)) B(j,,3,0) -
By assumption (b) and z-property 7.3.7(f)
nélF -+ VgeCVHL (fAg,GAH)2(eAid,FA(°n)) ],

whence (3) yields by induction-hypothesis, VgeCVHrVCe(ng,GAH) B(jlc,jZC)v,
i.e. r-Vee(f,G)Ae—'.

case (vi) Ae = 3a B(e,a).

By assumption (c) we have an e, € K such that

(4) Vy//Fle y#0 > Ja Vee (e:[y1,F) B(e,a) 1.

To derive (d) we must construct an e, € K such that

(5) Vy//Gle ,y#0 > Ja"Vee(£:[y1,6) B(e,a) 1.

By assumption (b), (£,G) = (e,F), there is a g such that gAEF‘ and f ~ e:g.
Put e, = e g. (7.3.1.) To show that e, fulfills (5), let y//G satisfy
e,y #0, i.e. el(g?y) # 0. By (4) we find an a such that

(6) Tvee(e:lglyl,F) B(e,a) .

By z-property 7.3.7(h) (f:[y1,G) = (e:lglyl,F), so (6) yields, by induction-
hypothesis "Vee (£:[y1,G) B(e,a) .

case (vi)C Ve = 3n B(e,n).

By assumption (c) we have an e, € K such that

1

) VyﬂF[e]y%0-+ JgeCT Vie ((e:lyl)Aag, FAH) B(jlc,jzc)jl'

To derive (d), an e, € K must be constructed which satisfies

(8) VyﬂG[ezy#O-* 3g'eCTM ' TVre ((£:[y1)Aag', GAH') B(jlg,jzc)jj.

By assumption (b), (£,G) = (e,F), there is an e' such that
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e'ﬂCF and f = e:e'.
Put e, = el;e', then e, fulfills (8):
Let y//G be such that e,y #0, i.e. el(e'Py) # 0. By (7) we find a g € C

and an H such that
(9 "Vee((e:le' tyl)ag, FAH) B(j,L,5,0) -

By 2-property 7.3.7(h) (£:[yl,G) = (e:le'lyl,F).
By =-property 7.3.7(g) we find g' € C and H' such that
((£:LyDAag', GAH') = ((e:[e'lyl)Ag, FAH), so (g) yields by induction-hypo-

thesis
"Vee((£:lyDag', GAH') B(j 53,0 . O

8.3.10 COROLLARIES. Let Ae be a formula with at most one choice parameter:
e, Let B(e,n) have no choice parameters besides ¢ and n. Then, if C is de-
pendency-closed:
(a) Vn(er A rVee(id,°n) Aej),
[From left to right by definition, from right to left by moenotonicity
and 2-property 7.3.7(d).]
(b)  VnélF("Vee(e,F)Vn B(e,n) " <> "Vre(erid,FA(°n)) B(§ 5,30 ),
[From left to right by definition, from right to left by monotonicity
and 2-property 7.3.7(f).]
(¢) ex~f - (rVee(e,F) A rVee(f,F) Aeﬂ),
[By monotonicity and =-property 7.3.7(a).]
) TVe(Ae » Be) T <« VeeCVF (TVee (e, F) AT~ rVee(e,F) Be M.
[By (a) and 2-property 7.3.7(d).]

8.3.11. LEMMA (bar-property of T).

Let Ae be a formula of L: with at most one choice parameter:e. Let £ be an
element of K, (e,F) a restriction. Assume

(a) C <Zs dependency-closed, and

(b) Vy//FLfy#0 + "Vee(e:[yl,F) Ae 'l.

Then

(c) I-\fth:e(e,F) Ae’

18 derivable, the derivation can be formalized in IDBF*, Z.e.
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IDBF” | dclosed(C) -

V(e,F)VE(Vy//FL£y#0 ~ rVee(e:[y],F) A1l > "Vee(e,F) Ae D).

PROOF. By induction w.r.t. the logical complexity of Ae, cf. the proof of the
monotonicity of t. Because we assume C to be dependency-closed, monotonocity

of T can be applied, as well as the 2-properties.

case (1) Ae = tlel = sle].

By assumption (b), f satisfies

(1 Vy//FLEy#0 + Va//F(tle:[yllal = sle:[yllal) 1.
This yields
(2) Vb J/EVx[ £ (bx)#0 > tle:[bx]| (\z.b(x+z))] = sle:[bx]| (Az.b(x+z))1].

Since f € K, we have Vb3x(f(bx)#0), by definition [bx]|(Az.b(x+z)) = b for
all b and x, so (2) yields Vb//F(tle|b]l= s[elbl), i.e. "Vee(e,F) Ae .

case (ii) Ae = BeACe,

trivial by induction-hypothesis.

case (iii) Ae = BevCe,

can be treated as Ae = 3x D(g,x), cf. remark 8.3.4(b).

case (iv) Ae = Be - Ce.

By assumption (b), f satisfies:
(3) Yy //EL£y#0 + V(g,H)2(e:[y],F) [TVee (g,H) Be' + "Vee(g,H) Ce'11.
We want to derive rVa(e,F) Ae”, i.e.

V(e',F')Z(e,F)[rVee(e',F') Be ' > "Vee(e',F') ce'1.

To this end, let (e',F') 2 (e,F) be arbitrary, let g' € K satisfy g'ﬂCF'and

e' ~ e:g' and assume

(4) "Vee(e',F') Be .

Put £' = f;g", let y be parallel to F'. Then (4) yields, by monotonicity
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and >-property 7.3.7(c)
(5) "Vee(e':[yl,F') Be ',
while by 2-property 7.3.7(h)
(6) (e':[yl,F') = (e:lg'}yl,F).
Now assume f'y # 0, i.e. f(g'ly) # 0.
y//F's ¥' > F hence y//F by //-property 7.3.6(g); g'ﬂCF, so g'My//F by
/| -property 7.3.6(j). Hence, (by (3), (5), (6))

£'y#0 > "Vee(e':[y1,F') Ce .

By induction-hypothesis we conclude MVee(e',F') Ce .

case (v) Ae = Va B(e,a),

trivial by induction-hypothesis.

case (v)C Ae = Vn B(e,n). ~

By assumption (b), f satisfies
@) Yy J/FL£y#0 + VgeCVH Ve ((e:[y1)Ag, FAH) B(jlc,jzr,)"'l.
Let g' € C and H' be arbitrary. We want to derive

(8) "Vie(eng' ,FAH') B(§ L,§,0)"

1]

Put f' = Az.f(klz), one easily sees that f' € K. Let z//FAH', then klzﬂF
(7.3.6(c)); suppose f'z # 0, i.e. f(klz) # 0. Then (7) yields

VgeCVH Vze ((e:lk z1)Ag, FAH) B(j 5,3,0) 75
which specializes to
) VnLE Ve ((e:lk 2D)Ag", FA(°m)) B(§,8,3,0) 7.

By assumption (a) C is dependency-closed, whence [kZZ] € C. By 7.3.7(f) we
find for n ¢ £F:
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(10) ((e:[klz])A(g':[kzzj), FAH') > ((e:[k]z])Ag', FA(°n)).
By 7.3.2(b), 7.3.3(a)

(11) (e:[klz])/\(g':[kzz]) =~ (eng'):lz].

If we combine (9), (10), (11) with the monotonicity of T and the corollary
8.3.10(c), we find rV;e((eAg'):[z], FAH') B(le,jo)j. By induction-hypo-
thesis, (8) follows.

case (vi) Ae = 3a B(e,a).

By assumption (b) f satisfies

Vy//FL£y#0 > 3e Vz//FLe 240 > 3a"Vee(e:[yl:[21,F) B(e,a) '1].
Hence, by AC-NF, there is an e' ¢ K such that

Vy//FL£y#0 > Vz//Fle' y>*z)#0 » 3a Vee(e:[y1:[2],F) B(e,a) 1],

We must derive rVae(e,F) Aej, i.e. we have to construct an e, € K such that

(12) Vw//ELe u#0 > Ja"Vee (e:[wl,F) B(e,a) 'l.

Take e, = fxe', i.e. if e, # 0 then there are u and v such that w = u*v,

fu # 0 and e'(<u>*v) # 0 (7.3.4). Then e, clearly satisfies (12).

2
case (vi)C Ae = In B(e,n),

can be treated exactly like case (vi). [

For the proof of the elimination theorem, we need the following three

propositions.

8.3.12. PROPOSITION. With each equation t=s of LSE , there is a formula
(t=s)* of Egg*, provably equivalent to t=s, but which contains only prime-—
formulae of the form t'=s', where s' <s lawlike and t' is either lawlike or
of the form at", t" lawlike.

8.3.13. PROPOSITION. If t=s <8 an equation of L: in a single choice param-

eter e, and (t=s)* 18 1ts translation as in 8.3.12, then
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EQQF*  TVee(e,F) (t=s) ' «— rVee(e,F)(t=s)*-|.

8.3.14. PROPOSITION (extensionality of L§g*). If A(al,...,up) 18 a formula

of ggg*, which may contain more choice parameters besides o ..,ap, then

1°°
L,§E* 3 AIi)=1[VX(eilsi(x)=fi|Yi(x))] ->

(A(el IBI,...,eplsp) > A(fllyl"..’fpl‘Yp))’

where e, |8, fi|yi are substituted for a, (i = 1,...,p) following the con-
ventions of 7.2.15(c).

8.3.14 is proved by formula-induction (straightforward). To give an:
idea of the translation ( )* in 8.3.12 we state some clauses:

if s is not lawlike then (t=s)* = Ix((t=x)* A (s=x)*),

1t

if s is lawlike then e.g.:

(ela()=s)" = Fyv((t=y)" A Va<lth(v) (am=(v) ) A e(F*v)=s+1),
(H(tl,lz.tz,t3)=s)* = 3y,y,v (e =y )" A (tmy )™ A @)=y, A

) == A Va<y, (6,05 ((v)_,m/z1=(w)_, ).

The completion of the definition of ( )* is simple. 8.3.12 is easily proved.
For the proof of 8.3.13 finally, one needs the observation that with each
term tla] of IDBF~ there is an element e, € K such that for all a

tlal = et(a). For terms of IDB. this fact is proved in [KT70].

1
We leave it to the reader to verify that this result also holds for IDBF .

8.4, THE ELIMINATION THEOREM

The hard work for the proof of the elimination theorem is done in the
following lemma. The elimination theorem itself is then easily proved in
8.4.2.

8.4.1, LEMMA. Let Ae be a formula of Le with at most one choice parameter:
€. Assume

(a) C <Zs dependency-closed, and

(b) 1w, d and § define a domain.

Then we can derive

(c) V8ev A6(8|WF) <+~ rVee(e:dFv,ﬁFv) Ae’.

This derivation can be formalized in ggg*, z.e.
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L§E* [ dclosed(C) A domain(m,d,§) -

[VSev Aa(eIﬂF) > r-‘v’e:e(e:dFv,ﬁFv) Al

PROOF. The proof of (c) from (a) and (b) proceeds by induction w.r.t. the
logical complexity of A. Like the proofs of 8.3.9 and 8.3.11 it is subdi-
vided into cases. Each nontrivial case consists of two parts, part (») for
the implication from left to right, part («+) for the converse implication.
By assumption (a), we can use the monotonicity and the bar-property for T,

and all the - and domain-properties (7.3.7 and 7.3.8).

case (1) Ae = t'[el=s'[e].
By propositions 8.3.12 and 8.3.13 we may restrict our attention to formulae

of the form Ae = et = s, t and s lawlike terms.

(+) We assume VSev Aé(e]wF), i.e.

(1) VGasz(e(<t>*nF|6(z))#0 > e(<t>*nFl5(z))=s+l).

Let aﬂﬂFv be arbitrary, and let z be such that e(<t>*dFv|a(z)) # 0. By

domain-property 7.3.8(h) there is a § € v such that nFIG(z) = dFv[a(z), hence
(by (1)) e(<t>*dFv a(z)) = s+l.
(+) For the converse implication we assume rVee(e:dFv,dFv) Asw, i.e.
(2) VaﬂﬁFsz(e(<t>*dFv|a(z))¥0~+ e(<t>*dFvIa(z))=s+1).
In order to derive (1), let 8§ € v and z satisfy

€) e(<t>T 8 (2)) # 0.

By domaim~property 7.3.8(e) we find a g ¢ K such that

() mpd = dpv|(gle)
and
(5) glolfyv.

By 7.3.1(a) and (4) there is a y such that ;;Ekz)=$ dFVP(gIS(y)), so by (3)



e(<t>*;;§(z)) = e(<t>*dFvP§T§(y)).
From this equation and (5) we find an aﬂﬁFv such that
(6) e(<t>*FF_6(z)) = e(<t>*der'a‘y) .
By 7.3.1(b) there is an x such that dFVFEy = EEVTEIX), whence by (6) and

e(<t>*nF6(z)) = e(<t>*dFV]a(x)) # 0. Now apply (2), this yields

e(<t>*}§3(z)) s+1.

case (ii) Ae = Be Ce,
trivial by induction-hypothesis.
case (iii) Ae = BevCe,
3x D(e,x).

can be treated as Ac

case (iv) Ae = Be-Ce.

(+) We assume V8ev As(elnF), or equivalently
[ [
(7) Vw(V8ev*w B (e|ﬂF) + V8evxw C (elnF)).
We want to derive rVee(e:dFv,ﬁFv)Aeﬂ, i.e.
(8) V(f,G)Z(e:dFv,ﬂFv)[rVee(f,G)Baj > "Vee(£,6)ce 1.

Let (£,G) be stronger than (e:dFv,ﬂFv), and assume nVee(f,G) Be .

Then by monotonicity

Vw[(e:dF(v*w),éF(v*w)) > (£,G) » rVee(e:dF(v*w),éF(v*w)) Be '].

By induction-hypothesis (applied to Be), assumption (7), and induction-—

hypothesis, now applied to Ce, this yields
Vw[(e:dF(v*w),ﬂF(v*w)) > (£,G) > ere(e:dF(v*w),ﬁF(v*w)) cel,
whence by monotonicity

9 - VYuwl (£,G) < (e:dF(v*w),ﬁF(v*w)) < (£:lul,G) ~»

"Vee(£:[ul,6) ce'l.
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By domain property 7.3.8(f), there is an e, €K such that
Vu//G[elu#O--> Iw((£,G) < (e:dF(v*w),éF(v*w)) < (£:[ul,G)]. For this e, ve
find (by (9)) VuﬂG[e]u#0-+ Mvee(£:[ul,G) Ce'l. But then "Vee(£f,G) Ce' fol-
lows immediately by the bar—property of .

(+) The derivation of (7) from (8) is trivial, since by domain proper-

ty 7.3.8(c) Vw[(e:dF(v*w),ﬂF(v*w)) > (e:dFv,éFv)].

case (v) Ae = Va B(e,a),

trivial by induction-hypothesis.

case (v)C Ae = Vn B(e,n).

(») We assume VSev As(e|nF), i.e.
(10) V8evVEeCVG Ba(elvF,flﬂG).

We must derive erCVGrVCG((e:dFv)Af,ﬁFvAG) B(le,jZC)—l or equivalently (by
monotonicity, corollary 8.3.10(b))

(11) Indl(§v) Vi ((e:d v)Aid, fova(en)) B(j 5,,0) -
By definition of domain ((D6)), there are infinitely many m and u such that
= = © = =
(12) 6(°m)v 6mv m and d(°m)v dv [ul,
so in particular there are néﬂ(ﬂFv) and u which satisfy (12). Let z be
1th(u); since C is dependency-closed (assumption (a)) s% ¢ C, so (10).spe-
cializes to
(13) Véev Ba(e|n Szlﬂ )
F’ (°n)” "

- z A . _ 2 .

Put ¢ Zdef (eAs )l"FA(°n)’ then j ¢ = elnF, sz s IW(On), so (13) yields,

by extensionality (8.3.14) V8ev B6(j1w,j2¢), which, by induction-hypothesis,

is equivalent to

r z, . . s =
(14) Ve ((ens )-dFA(on)v, 6FA(on)V) B(j,Z,3,0)
By 7.3.8(b) dFA(°n)V o dFVAd(°n)V’ hence, by choice of n,
dF/\(°n)V o~ dFvA[u] .

By 7.3.2(b) (eAsz):(d vAlul) =~ (e:d V)A(sz:[u]), hence, by choice of z,
F F
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(eAsz):(dFvA[u]) o (e:dFv)Aid.
By 7.3.8(a) 6FA(°n)V
So ((eAsz):dFA(On)v, 6FA(°n)
(11) by monotonicity of T.

- 2 - [}
= 6FVA6(°n)V, hence, by choice of n, 6FA(°n)V = 6FVA( n).

v) & ((e:dFv)Aid, 6FVA(°n)), whence (14) yields
(+) Now we assume’rVee(e:dFv,ﬂFv)Aej, i.e.
(15) VgeCVH Ve ((e:dpv)Ag, §ovAH) B(j z,5,8) -

By domain axiom (D3d), VG(deeC); since C is dependency-closed then also
stCVG(f:deeC), so (15) specializes to

(16) erCVGrVCe((e:dFv)A(f:de), 6FVA6GV) B(le,jo)j.

By an argument similar to the one we used to show that (13) implies (11),

but now applied in the reverse direction, (10) is derived from (16).

case (vi) Ae = Ja B(e,a).

(+) We assume VSev AG(eIHF), i.e. we have an e € K such that

(17) Vule,wh0 + FaVéevsu B (e|n,a)],
or equivalently (by induction-hypothesis), such that
(18) Vw[elw#O > Haere(e:dF(v*W),ﬁF(v*w)) B(e,a) 1.

We must derive rVes(e:dFV,ﬂFv) Ac™, so we must find an e, € K such that

(19) Vu//§gvle,ut0 ElarVee(e:dFv:[u],ﬂFv)B(e,a)-'].

By domain property 7.3.8(g) there is an e, such that

VuﬂﬁFv[ezu#0-+ Ew[elw#o A (e:dF(v*w),6F(v*w))s(e:dFv:[u],6FV)]]-

By (18) and monotonicity of t, this e, will fulfill (19).
(«+) Now we assume to have an e, which fulfills (19), we must find an e
which fulfills (17).

By domain property 7.3.8(j), we have an e such that

2 1
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(20) e WA > Ju//fv(eut0 A (e:d (viw),f (viw))2(erdpv:ilul, ).

This e satisfies (17), for let ew # 0, then by (20) we have a uﬂﬂFv such

that

(21) (e:dFv:[u],ﬂFv) < (e:dF(v*w),ﬂF(v*w))
and e,u # 0, whence by (19) there is an a such that
(22) rVee(e:dFv:[u],éFv) B(e,a) .

By monotonicity, (21) and (22) yield ere(e:dF(v*w),ﬁF(v*w)) B(e,a)j,
whence by induction-hypothesis VSev*w BG(E‘HF,a).

case (vi)C Ae = 3n B(e,n).

(+) We assume Véev Aa(e|ﬂF), i.e. we have an e € K such that

(23) Vule wi0 + IfcCaVscvsu B (|, £n ) 1.
We must find an e, € K such that
(24) VuﬂﬂFv[ezu#O-* SgeCEHTV;e«e:dfv:[u])Ag, 6FVAH) B(jlg,jzc)jj.

Take ey such that it satisfies (domain property 7.3.8(8))

(25) VuﬂﬂFv[eZu#0-+ Sw(e]w%o A (e:dF(v*w),ﬁF(v*w))S(e:dFv:[u],ﬂFv))].
e, fulfills (24). Let uﬂﬁFV be such that eyu # 0. By (25) we find a w such
that

(26) (e:dF(v*w),6F(v*w))S(e:dFv:[u],ﬁFv)
and e # 0, whence by (23) we have f € C and G such that

Vevrw Bd(e]nF,flﬂG), and hence, by induction-hypothesis, extensionality

and monotonicity of T:

(27 "VEe ((edy (vww))A(£:d (vaw)), fo(vww) Al (viw)) B(§ T,5,0) 7
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From (26) and 2-property 7.3.7(g), we find a g and an H such that

(28) ((e:dFv:[u])Ag, 6FvAH) >

((e:dF(v*w))A(f:dG(v*w)), 6F(V*W)A6G(v*w)).

f:dG(V*W) e C (because f ¢ C, dG(V*W) € C (domain axiom (D3d)) and C
is dependency-closed), hence (=-property 7.3.7(g)) g € C. By monotonicity of
T we conclude from (27) and (28) rVCe((e:dFv:[u])Ag, 6FVAH) B(jlg,jzg)j.

(») Now we assume to have an e,y which satisfies (24). Let e satisfy
(domain property 7.3.8(j)):
(29) ’elw#O > SuﬂéFv(ezu#OA (e:dF(v*w),6F(V*w))Z(e:dFV:[u],ﬁFv)).

Then e satisfies (23). Let_e]w # 0, then by (29) we have a u”ﬂFv, such
that

(30) (e:dF(v*w),6F(V*w))2(e:dFv:[u],6Fv)
and eyu # 0, whence by (24) we have g € C and H such that
(31) r-Vt;ez((e:dF:.v:[u])/\ga 6FVAH) B(jIC,jZC)j-

From (30) and =-property 7.3.7(g), we find an f'le C (since g € C) and a G'
such that

(32) ((e:dF(v*w))Af', 6F(V*W)AG') > ((e:dFv:[u])Ag, §.vAH) .

F

By domain property 7.3.8(k) we can find an f € C and a G such that

(33) ( (e:dF (vxw) ) A (£ :dG(V*W) ) 6F (V*W)AéG(V*W)) 2

((e:dF(V*w))Af', 6F(V*W)AG').

From (33), (32), transitivity of 2 (7.3.7(b)), (31) and monotonicity of T
we find r-V;e((e:dF(v*W))/\(f:-dG(v*w)), 6F(V*W)A6G(v*w)) B(le,jo.)-I whence
by monotonicity of T, induction-hypothesis and extensionality

[y
Véevxw B (e|nF,flnG). 00
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Note that as a corollary to this lemma and the monotonicity of T we
have the following 'permutability property': if Ae is a formula of Le with

at most one parameter &, then
[ §
(e:dFv,ﬂFv) ~ (f:de,AGw) > (V8ev A (e[nF) > Vew A (flﬂG))
and
[ §
(e:dFv,ﬁFv)s(f:de,ﬁcw) + (V6ev A (e|nF) > V8ew A (f|nG)).

8.4.2. THEOREM (the elimination theorem for domains).
Let ¢ be a closed formula of Le' Assume

(a) C Zs dependency-closed, and

(b) w, d and 4 define a domain.

Then

() 2%« 1o.

This is provable in E§g* Z.e.

£§£* [ dclosed(C) A domain(m,d,§) - (¢6 «> Td).

PROOF. The proof proceeds by induction w.r.t. the logical complexity of A.
Most cases are trivial: closed prime formulae are lawlike, hence for those
@6 = ¢ = 19; if the main logical sign in & is A,V,>, or a lawlike quanti-
fier, then we can simply apply induction-hypothesis. The interesting cases

are & = Ve Ae, & = Je Ae.

(i) ® = Ve Ae.

Assume @6, i.e. VeeCVF AG(eIWF). Then, by open data, there is a v such
that
(1) V8evVeeCVF Aa(elﬂF).

Let n be such that ﬂnv = °n (exists by (D5)) and let u satisfy dnv ~ [u]
(this u exists by (D6)). Since C is dependency-closed, s° e C, where

m = 1th(u). Hence (1) specializes to

Véev Aa(Smlﬂn).
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By lemma 8.4.1 this is equivalent to rVee(sm:dnv,ﬁnv) Asw, but by choice of
m and n,sm:dnv =~ id, ﬁnv = °n, hence rVae(id,°n) Aew, which is equivalent
to 1% by 8.3.10(a).

For the converse implication we assume 1%, i.e. YeeCVF Vee (e,F) Ae”.
By the preceding lemma, (D2a) and (D3a), this is equivalent to
V&VeeCVF As(e]nF), whence in particular ¢6.

(ii) @ = Je Ae.

For the implication from left to right we assume @s, i.e. we have an
e € C and an F such that Aé(eInF), whence by open data for some v
Véev Aﬁ(elﬂF). By lemma 8.4.1 this is equivalent to rVee(e:dFv,ﬁFv) Aej,

hence (since e ¢ C, d_v € C (by (D3d)) and C is closed under composition)

F
3feC3C Vee (£,6) Ac, i.e. TO.

For the converse implication, we assume to have an f € C and a G such
that rVee(f,G) Ae’. By the preceding lemma, (D2a) and (D3a) this yields

v§ As(f]wc), whence in particular QG. ]
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CHAPTER 9

THE MAIN THEOREM AND ITS COROLLARIES

9.1. OUILINE

In this chapter we prove the main theorem, which states that for suit-
able dependency-closed C < K, lggg* I Ty7 for all axioms and instances of
axiom-schemata ¥ of CS(C). Combined with the elimination theorem for domains
this yields that each domain w.r.t. a suitable C is a model of CS(C), from
which we derive (by theorem 6.2) that each projection model for GC-sequences
w.r.t. a suitable C is a model of CS(C).

It is not so that each domain w.r.t. a dependency-closed C is a model
for CS(C). E.g. the set C defined by e ¢ C iff e = v§¢ for some frame F and
mapping ¢ with the property that for all n, ¢n has the form [ul:s™, is de-
pendency-closed. (To prove this use the fact that v§¢ o v§,¢' for some F',¢'
where F' has a 1-1 labelling (a corollary to 3.2.17(b)), 3.2.16(e), (f) and
3.2.20(g).) This set, which is in fact the smallest dependency-closed subset
of K, does not contain (equivalents of) the pairing inverse jl' In a domain

w.r.t. this C the formula
JeeCIe(e = j](e|nn6))

does not hold. (e ranges over the sequences flﬂFG (f € C) in the domain.)
But the formula Je(e = jln) does hold in the domain e.g. for n = “°nAﬁm6'
That is to say, in this domain analytic data is not fulfilled.

The set C defined by: e ¢ C iff either there is an f € K such that
Va(jl(e‘a) = f[jla) or there is an f ¢ K such that Va(jl(ela) = fljza), is
also dependency-closed. It is richer than the previous one since it contains
j] and jZ' A domain w.r.t. this C does not fulfill CS(C)4: it satisfies
Vedn(n = j(e,e)), but there is no e ¢ C such that elnn6 = j(ﬂné,nnG).

It turns out that domains w.r.t. a C ¢ K which is dependency-closed



202

and contains jl’jZ and a neighbourhood-function for the mapping a » j(a,a)
are CS(C)-models. We shall call such a C 'CS-closed' (definition 9.2.3).

The first step towards the main theorem (for CS-closed C) is the in-
troduction of subsets C[F] of C for each frame F. e is an element of C[F]
iff Va(el|a//F) and 3feCVa//F(e|l{f|a)=a) (c£.9.2.5). We derive some properties
of the sets C[FJ], which are used to prove the key lemma for the main theorem,

stating that for CS-closed C
VEcCLF1("Vee (e,F) Ae ' <« "Ve A(e:fle)ﬂ).

The main theorem follows simply from the key lemma.

In the final section of this chapter we show that each subset of K
which can be enumerated modulo = is contained in a CS-closed C c K which
can be enumerated modulo =2. That is to say: with each J: N -+ K there are
C c K and a CS(C)-model UG € UG(C) which satisfies the closure axiom
VenVeerange(J) Ec(g=e[(e,n)).

9.2. THE VALIDITY OF CS(C) UNDER Tt

9.2.1. DEFINITION (of dpl and nestF, cf.7.2.9, 7.2.10(b)).

(a) dpl (for duplicate) is the element of K which satisfies
dp1(0) = 0, dpl(Rxu) = sg(lth(u):x)-(1+j-((u)x,(u)x))-

(b) nestF is the element of K which satisfies

nestFO =0, nestF(i*u) = sg(lth(u);x)(l+vF(An.(u)x)).

9.2.2. FACTS.

(a) For all a and x, dpl(i*a(x+1)) = j(ax,ax)+1. Hence Va(dplla=j(a,a)),
or equivalently Va(jl(dplla)=j2(dp1|a)=a).

(b) For all a and x, nestF(i*a(x+l)) = ]+vF(An.ax). Hence
Va(nestFIa = v;(kln.a)), or equivalently VaVbeF(jb(nestFIa)=a), i.e. nestFI~
maps a onto an F-nest of copies of a.

(c) One easily verifies that a sequence b is parallel to F[Az.0] (the
frame obtained from F by substituting O for all its labels) iff
HcheF(jbb=c). From (b) it follows that Va(nestFlaﬂF[lz.OJ); since
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F[Az.0] = F then also Va(nestFlaﬂF) (7.3.6(g)). In fact: if F and G have
the same branches, then nestFIaﬂG.
(d) With the help of (a) and (b) one easily verifies that

Vn(nest(on) ~ jd) and VFVG(nestFAG =~ (nest AnestG):dpl).

F

9.2.3. DEFINITION (of CS-closed).

We call a subset C of K CS-closed iff

(a) C is dependency-closed,

(b) dpl € C, and

(c) i e C and ip € C.

9.2.4. FACTS. (a) By 9.2.2(d) a CS-closed C < K contains nesty for all F
(proof by induction over frames).

(b) By induction w.r.t. lth(v) one proves that a CS-closed C c K contains

all functions jv.

9.2.5. DEFINITION (of C[FJ]). Let C be a subset of K, let F be a frame. C[F]
is the subset of K defined by

e ¢ C[F] iff e ¢ C, Va(ela//F) and 3IfeCVa//F(e:fla=a),

i.e. an e € C belongs to C[F] iff the functional A$.e|¢
(a) maps N onto the set of sequences parallel to F, and
(b) has a continuous right-inverse on this set, with a neighbourhood-func-

tion £ € C.

9.2.6. LEMMA (properties of C[FI).
(a) F~ G~ C[F] = c[G].
(b) Let F be a frame with a 1-1 labelling, i.e. b # b' implies
ZbF # lb.F for all b,b' ¢ F. In that case, id € C implies id e C[F]. In
particular, <f id € C then id e CL°0] and id e C[°0A°1].
(c) If C is CS—closed and F is a frame in which all branches have the
P € CcLF1.
(d) If C s CS-closed and LF < {0,1} then vI;(AKn.j<n>) mmesty, e CLFI.
(e) Let C be CS-closed, let F and G be frames and assume that e e C[F].
Then there are H, £ and g such that
(1)  (eng):f e CLFAG],
(ii) £ e CL°0AH] and
(iii) g € C.

same label, then nest
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(£) £ e C[F] » W(EIV//F).

PROOF .

(a) follows immediately from 7.3.6(h): F = G - Va(a//F<> a//G).

(b) follows immediately from 7.3.6(a): if F has a 1-1 labelling then
Va(a//F), and the fact that id is its own inverse.

(c) if C is CS-closed then nestF € C by 9.2.4(a); Va(nestFIa//F) by
9.2.2(c); if LF = {m} then Va//F(nestF: jb|a=a) for any branch b of F (as is
easily verified) and if C is CS-closed then jb € C by 9.2.4(b).

(d) Put e = vIF<()\Kn.j<n>) :nestF. If C is CS-closed then nestF e C,
Vn(j<n>eC) and C is closed under pairing and composition, hence e e C.
\7’51(nestF|al/</F)K by 9.2.2(c), \)?()\Kn.jqp)//CF by definition, hence
Va(ela = vi() n.j<n>)|(nestF[a)//F) by 7.3.6(3).

To comstruct the right inverse to e, let b: N - F be a labelling inverse,
i.e. VneKF(Kan=n). Put f = (jboAjbl):dpl. Then £ € C since jbO’jb] and
dpl € C, and C is closed under composition and pairing. Moreover, if a//F
then e:f|la = a, because jba = jb(e:fla) for arbitrary b ¢ F:

Let m ¢ {0,1} be the label of b, then

iple:fla) = jp(el(fla)) = j_  (§p(nest | (fla))) by 7.3.5;

Jeps (Gp(mestl(£la))) = j_  (fla) by 9.2.2(b);

S (E12) = i (Gypghip ) 1 (@plla)) = 3, (G (dplla)), by definition of A
(recall that m ¢ {0,1} i.e. j<m> = jl or j<m> = jz);
jbm(j<m>(dp1|a)) = jbma by 9.2.2(a); and finally
jbma = jba since a//F and m = KbF = ﬂbmF.

(e) Define a by

0 if n ¢ LF,
an =

1 otherwise.
Put H = G[An.°an], H' = °0AH, f = \)K (AKn i ) :nes .
oand, W2 SO, £ 2 vy, 0% ) mesty,
Let bl’bZ be labelling inverses for F and G respectively, i.e.
VnelF (KblnF=n) and VmeﬂG(Lbsz=m) .
Define ¢: N = C by

te if ne LF (i.e. an = 0),

h . otherwise.
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Put g = vg¢.

(iii) g € C since C is closed under pairing.

(ii) £ e CL[°0AH] by (d) above (obviously £(°0AH) < {0,1}).

(i) (eng) :f € CLFAG] is shown as follows.

Firstly (eAg):f € C, since e,f and g belong to C and C is closed under pair-
ing and composition. ‘

Secondly Ve ((eAg):f|lc//FAG). To prove this let b,b' be branches of FAG with

the same label, m say.

Case 1. b = <O>*b1’ b' = <0>*b2, bl,b2 ¢ F. Then

jb((eAg):flc) = jbl(eljl(flc)) by definition of jb and 7.3.2(a);
jb,((eAg):flc) = jbz(elj](flc)) analogously.

eljl(flc)ﬂF since e ¢ C[F], and hence jb](eljl(flc)) = jbz(elj](flc)).

Case 2. b = <0>*b], b' = <l>*b2, b, e F, b2 € G. Then m ¢ £F, hence am = 0.

1
jb((eAg):f]c) = jbl(e!jl(flc)) as in case 1, but now
jpr ((eng):ffc) jbz(gljz(f[c)).

Jbz(gIJZ(flc)) = (Jblm:e)ljszz(flc) by 7.3.5, the definition of g and the

definition of ¢.
<0> and b' = <]>*b2 are both branches of °0AH. Obviously £<O>(°0AH) =0,

) = : o = = = =
but also Zb,( 0AH) = 0 since ﬂb,( 0AH) szH sz(G[Xn.°an]) a(ﬂbzG)
=am = 0,

Since f € CL°0AH] (by (ii)), jl(flc) = jb,(flc) = jbnjz(flc). I.e. we find
that -

. . s ' . . i ' "o s
Jb((eAg).f]c) Jbl(e]c ) and Jb,((eAg).flc) me(elc ) for ¢ J](flc).
By the same argument as in the last step of case 1 we have

s 1y = ¢ '

Jbl(elc ) = Jyplele’).

Case 3. b = <1>*b1, b' = <1>*b2, bl,b2 e G.

If m € £F i.e. if there is a b3 € F such that Lb F = m, then we can apply
the argument of case 2 twice: to the pairs b, <0>*b3 and b', <O>*b3.
Assume m ¢ £F, am = 1.

ip((eng):fle) = jbl(gljz(fIC)), ipr ((eng) :fle) = jbz(gljz(flc))- By 7.3.5,
the definition of g and the definition of ¢

Jb](gIJZ(fIc)) = JpmUpdaEl1e))s dp (@lig(Eled) = 3y 3y 55 (Ele)).

b and b' are branches of °0AH with the same label 1, flc//° OAH by (ii), hence
Jlez(flc) = jplEle) = jpi(fle) = Jszz(f1c).

Finally we must show that (eag):f has a right-inverse in C. One may verify

the following claims:
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L}

if b e FAG, b = <0>xb,, b1 € F then j, ((eng):flc) = jbl(e[jlc),

if b € FAG, b = <1>*b2’ b2 € G then

jb (eljlc) if Kb G ¢ LF, where b3 e F has
3 2
label Zb G,
jp(Cerg) :fle) = 2
jbz(jzc) otherwise.

With these observations one easily proves that the desired right-inverse is
enlAid, i.e. VcﬂFAG((eAg):f:(e_lAid)|c=c), where e—] is such that
VcﬂF(e:e_1|c=c).

(f) follows immediately from the fact that for £ ¢ C[F] we have
f|(v*1z.0) J/F, while by 7.3.1(b), flv = £](v*Az.0) (x) for some x, whence
flv/F by 7.3.6(f). [

9.2.7. COROLLARY. If C s CS—closed then VFIeeC(eeC[F]).

[By induction over frames from 9.2.6(b) and (e).]

To prove the key lemma 9.2.9 we need one more fact, namely

9.2.8. PROPOSITION (extensionality of tT). Let A(e],...,sp) be a formula of

Le’ with no other choice parameters than S ERRRTL Then

* P
IDBE™ |- AT | (f; ~g)) >

.
(Vee(e,B) ACE| 1T, .00 107 o Vee(e,) alglt,..og 1)

where filc, gilr= are substituted for €5 i=1,...,p according to the con-
ventions of 7.2.15(e).

PROOF. Is left to the reader. [

9.2.9. LEMMA. Let C be a CS-closed subset of K, and let Ae be a formula of
LE with at most one choice parameter:e. If F is a frame and f is an element
of CLF] then

"Vee(e,F) Ae ' < Ve A(e:f|s)7.

This is provable in IDBE” 7.e.
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IDBF~ |- CSclosed(C) ~

VEVEeC[F1("Vee(e,F) Ac” <> "Ve A(e:fle) ™).

PROOF. By induction w.r.t. the logical complexity of Ae. The proof is sub-

divided into cases, most of the non-trivial cases consist of a part (=) for
the implication from left to right and a part («) for the converse implica-
tion. The numbering of the cases corresponds to the numbering of definition
8.3.3. In each case we assume f e C[F]. Since CS-closed implies dependency-
closed, we can use all 2-and //- properties, as well as monotonicity and the
bar-property of t. Throughout the proof, 'extensionality' refers to propo-

sition 9.2.8.

case (i) Ae = t[e] = s[e].
Then

"Vee(e,F) Ae ' <> Vb//F(tlelb] = sle|b]) <> Va(tle:flal=s[e:f|a]) <«

Tve A(e:fle)ﬂ,

the first equivalence holds by definition of T (8.3.3-7), the second omne by
definition of C[F], the last one follows from the observations that

"Ve Be ' « "Vee(id,°n) Be ' (8.3.10(a)) and that Va(idla=a//(°n)) (7.3.6(b)).

case (ii) Ae = BeACeg,

trivial by induction-hypothesis.

case (iii) Ae = BevCe,

m

can be treated as Ae 3Ix D(e,x).

case (iv) Ae = Be - Ce.

(+) First we assume 'Vee(e,F) Ac, i.e.
(1 Y(e',F')2(e,F) ("Vee(e,F') Be ' > "Vee(e',F') Ce ).
We must show that (cf.8.3.10(d))
(2) VgeCVH(rVae(g,H) B(e:f|e)ﬂ -> ere(g,H) C(e:fle)1).
Let g € C and H be arbitrary and assume

(3) "Vee(g,H) B(e:f|e)”.
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Let f' be an element of C H , then by induction-hypothesis, (3) is equivalent
to

(4) "Ve B(e:f:g:f'|e)ﬂ.

Let a be a labelling-inverse for F, i.e. VneﬂF(KanF=n). (a assigns to each
label of F a branch of F which has this label.) Put f" = VE(AKn.jan:f:g:f').
Then f":nestF =~ f:g:f', which is seen as follows: let b be an arbitrary
branch of F, let n be ZbF, then

: ", = 5 efegef']: .

Jb(f .nestF]b) Jan.f.g.f [Jb(nestFlb) by 7.3.5;

j n:f:g:f'ljb(nestFlb) = janl(fl(g:f']b)) by 9.2.2(b); and

: LEt = 3 LE : = =
Janl(fl(g.f b)) Jb(fl(g-f |b)) since Vc(flc//F) and KanF ZbF n.

a
Hence (4) is, by extensionality, equivalent to
(5 Tve B(e:f":nestFle)7.

= ° =
Put F[OJ = F[Az.(°0) ], then nestp, neStF[OJ

is, by induction-hypothesis, equivalent to

e CLFLO0]] (9.2.2(c)) so (5)

(6) "Vee(e:£",F[0]) Be .

Obviously F[0] = F, moreover f'" = vK(AKn.j :f:g:f")// . F (since j ,f,g
-0 F an’ . [ an’"’

and f' are elements of C and C is closed under composition), hence

(e:f",F[0]) 2 (e,F) and we can apply (1) to (6) yielding

@) "Vee(e:£",F[0T) Ce .

But by the same argument which showed the equivalence between (3) and (6)

above, (7) is equivalent to
(8) T-‘v'ee(g,l-l) C(e:fle)j.

(+) To prove the converse implication, assume (2), let (e',F') 2 (e,F)

be arbitrary and suppose that
(9) "Vee(e',F') Be'.

Let f£' be an element of C[F'], then (9) is equivalent to
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(10) Tve B(e':f'|e)ﬂ

by induction-hypothesis. Since (e',F') > (e,F) we have that (i) F' > F and
for some g (ii) e' =~ e:g, where (iii) gﬂCF. Moreover, the £ of (2) is an
element of C[F], whence for some f_1 e C (iv) VaﬂF(f:f_lla=a) (cf. defini-
tion of C[FJ], 9.2.5).

It follows that e:f:f~1:g:f‘ =~ e:g:f' >~ e':f', in fact we even have
f:f_]:g:f' =~ g:f'., (This is seen as follows: let a be arbitrary, then f'|a//F'
(since £' € C[F']), hence £'|a//F (by (i) and 7.3.6(g)), hence

g:f'la = gl(£']a)//F (by (iii) and 7.3.6(j)) whence f:f-]:g:f'la =g:f'|a
(by (iv)).) So by extensionality, (10) is equivalent to

"Ve B(e:f:f_lzg:f'le)ﬂ,
which (by induction-hypothesis) is equivalent to
(11) rVee(f—l:g,F') B(e:f|e) .

gﬂCF‘ by (iii), C is closed under pairing, hence g € C. f_1 € C by defini-
tion of C[F], C is closed under composition, hence f_l:g € C. So we can

apply (2) to (11) yielding
'rVee(f-I:g,F') C(e:f[e)j.

But this is equivalent to 'Vee(e',F') Ce': simply replace B by C in the
equivalence (9) «> (11).

case (v) Ae = Va B(e,a),

trivial by induction-hypothesis.

case (v)C Ae = Vn B(e,n).

Let m be a natural number, m ¢ £F, then "Vee (e, F)Vn B(e,n)j is equivalent
to

(12) "Vie(enid,Fa’m) B(j T,i,0) "

by 8.3.10(b). If f € C[F] then fAid e C[FA°m], for
(i) £ e€C, id € C, C is closed under pairing, hence fAid ¢ C;
(ii) Va(fAid|a=j(flj]a,jza)ﬂE'A°m) since fljlaﬂF (c£.7.3.6(d));
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(iii) let f_l e C be suchvthat VaﬂF(f:f_1]a=a), then f—]Aid e C (cf.(1))
and (£Aid):(f 'Add)|a = (£:£ )aidla = j(E:€ 15 a,],a); if a//Faem
then jlaﬂF (7.3.6(c)). So f:f_lljla = jl

VaﬂFA°m((fAid):(f_b\id)|a=a), i.e. f 'Aid is a right-inverse to fAid.

a, whence
So (12) is (by induction-hypothesis) equivalent to
Ve B(§, ((enid) 1 (£1d) [2),3,((enid) : (Eid) [0))7,
which (by extensionality) is equivalent to
(13) Vg B(e:f|jz,5,0) "
id € C[°0A°1] by 9.2.6(b), so (13) is equivalent to
"Vie(id,®0n°1) B(e:f|j z,5,8)"

by extensionality and induction-hypothesis. The desired’fVeVn B(e:f|s,n)ﬂ
follows by 8.3.10(a) and (b).

case (vi) Ae = 3a B(e,a).
(+) First we assume rVee(e,F) Aej, i.e. we have an e such that
(14) Vu//Fle ut0 > Fa'Vee (e:[ul,F) B(e,a) 1.

Since for all n and e (e:sn,F) > (e,F), (7.3.7(e)), (14) yields (by mono-

tonicity)

Vu”F[elu#0-+ JaVn'Vee(e:[ul:s™,F) B(e,a) '1,
whence by induction-hypothesis and 8.3.10(a)
(15) VuﬂF[elu%O-+ Javn' Yee (id, °0) B(e:[u]:sn:f|e,a)7].

Since ([v1,°0) 2 (id,°0) for all v (by 7.3.7(c) and 7.3.6(b)), (15) yields

(by monotonicity)

VuﬂF[e]u#O-+ Javnvw' Vee ([w], °0) B(e:[u]:sn:f|e,a)1].
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id € c[0], (9.2.6(b)), hence,‘by induction-hypothesis and extensionality
(16) Vu#F[elu#0-+ Javovw' Ve B(e:[u]:sn:f:[wjle,a)jj.
Now put e

el;f, let v satisfy e,v # 0, i.e. el(frv) # 0. flv//F by

2" 2

9.2.6(f), so
EanﬁfVeB(e:[ffv]:sn:f:[w]le,a)7

follows from (16), whence in particular

a7 3a"ve B(e:[fTv]:sm:f:[v]|e,a)1,

where m = 1th(f[v). [ffv]:sm:f:[v] =~ f:[v] by 7.3.3(c), hence (17) is

equivalent to

3a"Ve B(e:f:[vl|e,a)”
by extensionality, which in‘turn is equivalent to

3a"Vee([v1,°0) B(e:f|e,a)”
by induction-hypothesis and 9.2.6(b): id e C[0]. Thus we have shown that
(18) Vv[ezv%O + 3a"Vee([v1, °0) B(e:fle,a)jj,
i.e. we have ere(id,°0)3a B(e:fle,a)ﬂ or equivalently, by 8.3.10(a)
"Ve3a B(e:f|e,a) .

(+) For the converse implication assume e2 to satisfy (18). Let f-‘l e C
be such that VaﬂF(f:f_1[a=a). f eC, st e C,[w]l € C and C is closed under
composition, hence Van(sn:f_]:[w]:feC), so ([v]:sn:f_]:[w]:f,°0) > ([v1,°0)
for all n and w, by 7.3.7(d). By monotonicity, (18) yields

Vv[ezv#o »»aaVanrVEG([v]:sn:f—l:[w]:f,°0) B(e:f|e,a)1],

which (by induction-hypothesis and 9.2.6(b) (id € C[0])) is equivalent to

(19) Vv[ezv#o ~ JavnVw' Ve B(e:f:[v]:sn:f_l:[w]:f|e,a)1].
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Now put e = ez:f_], let u//F be arbitrary and assume that
eu = e2(f_lfu) # 0. By (19) we find an a such that

VnVw' Ve B(e:f:[f']ru]:s“:f'l:[w]:f|s,a)"
whence in particular
(20) Tve B(e:f:[f_]Fu]:sm:f—I:[u]:f]e,a)ﬂ,

where m = lth(f_lfu). But then [f_lfu]:sm:f—lz[u] o~ f_l:[u] (7.3.3(c)), so

(20) is equivalent to
21 Mve B(e:f:f_]:[u]:fls,a)j

by extensionality. Since f ¢ C[F] whence Va(f|a//F), u//F whence
Vb//F([ul|b = uxb//F) (by‘7.3.6(f)), and Vc”F(f:f—1[c=c), we have
f:f—l:[u]:f =~ [u]:f. Hence (by extensionality) (21) is equivalent to

Tve B(e:[u]:fle,a)ﬂ, which is equivalent to "Vee(e:[ul,F) B(e,a)v by in-

duction-hypothesis. Thus we have shown that
Vu//Fle u#0 > Ja'Vee(e:[ul,F) B(e,a) '],

i.e. we have rVee(e,F) Ae.

case (vi)C Ae = 3n B(e,n).

(+) We assume r—\/ee(e,F) Aej, i.e. we have an e € K such that

Vu//Fle u#0 3geC3G Vre((e:[ul)Ag, FAG) B(jlc,jzz;)"].
As in case (vi)(»>) above we find (by monotonicity)
(22) VuﬂF[elu#0-+ 3geC3eVn Ve ((e:ful:s™)A(g:s™), FAG) B(j]C,jZC)vl.

Now put e, = el;f (f € C[F]), let v be such that eV =

Since flv//F, (22) yields us a g € C and a G such that

el(f[v) # 0.

(23) V' Vie((e:LElvIis™a(g:s™), FAG) B(§;L,3,0) 7
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Let f', £", g' and H satisfy (i) £'= (fag'):f", (ii) £' e C[FAG],

(iii) £f" e C[°0AH] and (iv) g' € C; such f', f", g' and H exist by 9.2.6(e).
Then (23) is equivalent to

(24) vn' Vi B(e:[ffv]:sn:f]j](f"lt), g:sn:g'ljz(f"lC))ﬂ

by induction-hypothesis, (ii), (i) and extensionality; (24) in turn is (by

(iii) and induction-hypothesis) equivalent to
(25) Vo'Vze(id, °0AH) B(e:[£lvIis™:£lj 2, gis"ig'13,0) -

Let v', v" be such that v'// °0AH, k,v' = v, kzv' = vy" (7.3.6(e)), then (25)

1
yields (by monotonicity):

Van;e([v'],°0AH).B(e:[ffv]:sn:fljlc, g:sn:g'ljzc)j.

[v'] e~ [k]v']A[kzv'] (7.3.3(a)), so it follows by induction-hypothesis and

extensionality that
(26) va vz B(e:[flv]:sn:f:[v]ljl(f"|c), g:sn:g':[v"]ljz(f"lz))j.

If n = 1th(f[v) then [f[v]:sn:f:[v] ~ f:[v] (7.3.3(c)), hence we have, as

a special case of (26) (by extensionality):
v B(e:f:[v]lj](f"|€), g:sn:g':[v":llj;(f"lz;))-1

where n = 1th(fMv). By induction-hypothesis, this is equivalent to
rV;e([v]A(g:sn:g':[v"]), °0AH) B(e:f!jlc,jzc)j.

Thus we have shown that
Vv[elv#o + 3g"eCIH"Vre([viag", °0AH) B(e:fljlc,qu)j]

(note that g:s™:g':[v"] e C since g,s",g' and [v"] are elements of C and C

is closed under composition), i.e. we have rVee(id,°0)3n B(e:f|s,n)1.

(=) Conversely, assume Tve A(e:f|s)1, i.e.
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VgeCVHEeiVu”H[e2u¥0-+ 3g'eC3CTVre((g:lulag'), HAG) B(e:f|j];,j2c)1].

Take for g € C the mapping f--1 such that VaﬂF(f:f-]|a=a), take F for H,

then we find an e, such that

Vu//Fleut0 > 3geCa6 Vee((£ ' :lul)Ag, FAG) B(e:f |3 2,3, 71
Let u//F be such that eyu # 0, then we have a g ¢ C and a G such that

r -1 . . |

Vze ((f  :[ul)ag, FAG) B(e:fIch,sz;) .

Let f' e CLFAG] (f' exists by 9.2.7); apply induction-hypothesis and exten-

sionality, this yields
-1 ) )
27 Tve Be:f:f  :[ulli (£']0), gli (€' e,

f' ¢ C[FAG], hence f'|a//FAG for all a, i.e. Va(j](f'la)ﬂF), (7.3.6(c)),
since [ul//F then also [u]ljl(f'la)”F for all a. Hence
Va(f:f_]:[u]lj](f'la) = Eu]ljl(f'la)), so (27) is equivalent to

(28) Ve B(e:lul]j (£']0), gli, (€' o)

by extensionality. But (28) yields rVl;e((e:[u])/\g, FAG) B(j1C9j2€)1 by in-

duction-hypothesis. I.e. we have shown that
Vu//Fle uf0 > 3geCIC Ve ((e:lul)ag, FAG) B(jlc,jzc)w]

so we have rVee(e,F)Hn B(e,n) . O
9.2.9 is the key-lemma for the derivation of the main theorem:

9.2.10. THEOREM. If C Zs CS-closed, then CS8(C) s valid under T, i.e. from
the assumption CSclosed(C) we can prove in ;ggg*

(a) ’gg(c)l“, i.e. VeeCrVenac(c=e[(e,n))1,

() Tcs(c)27, i.e. "Ve(Ae + JeeC(In(e=e|n) A Vz Ale|p))) 7,

(¢) Tcs(c)37, i.e. "VedaA(e,a) ' + JeVuleu#0 » 3a"Ve A([ulle,a) ],

(d) r-Q“S,(C)l&-l, i.e. rVeBn B(t—:,n)-l > TVedeeC B(e,eIe)j,

for all formulae A and B of Le which contain no choice parameters besides

€ and e,n respectively.
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PROOF .

(a) By 8.3.10(a) and (b), 1.3.24(g) (idAid =~ id) and 8.3.10(c) we have
Tcs(C)17 «> VeeCVz'e(id,°0A°1) A(e,z')”, where
A(e,z'") = 3§(§=e|(j]c’,j2c')). By definition of T and 7.3.6(a) (which im-
plies Vu(u// °0A°1)) we have
er'e(id,°0A°l)A(e,;')1 > Ee]Vu[elu#O -+ 3feC3IAG rB(u,f,G,e)ﬁ], where
B(u,f,G,e) <> Vze([ulAaf, (°0A°1)AG)(j2c=e|(j]jlc,jzjlc)) (by 8.3.10(c) and
the definition of 1). To prove rgg(C)? it suffices to show that
VeeCHeIVu[elu#O ~ 3feC3G "B(u,f,CG,e) ']. We shall show that in fact
veeCVulfeCIG rB(u,f,G,e)j: let e € C and u be arbitrary, put £ = e:[u]
(f € C) and G = °0A°l.
Then "B(u,f,G,e) " is equivalent to
"Vee(lula(e:[ul),6h6) (j,z=e|(i,i,
and 7.3.2(a):j1(eAfla) = eljla,jz(eAfla) = f|j2a) equivalent to

g,jzjlc))j which is (by definition of T

VaﬂGAG(e:[u]|j2a = e[([u]ljla)). This is obviously true, since a//GAG

implies a// °0A°0 (by 7.3.6(g)) and a// °0A°0 iff j
(b) By 8.3.10(d), rQQ(C)21 is equivalent to

VEeCVF (TVee (f,F) Ae ' - ers(f,F) Be!) where Be = JeeC D(e,e), and

D(e,e) = 3n(e=e|n) A V¢ A(e|L).

Let f € C and F be arbitrary and assume rVee(f,F) Ae”'. We have to show that

1@ = j2a by definition of //.

r-‘o’ee(f,F) Be ' follows, i.e. (by definition of 1) we must find an e such

that
VuﬂF[elu#O-* BeeCrVee(f:[u],F) D(e,e) 1.
We take e, = Az.S0, i.e. now we have to find for each u//F an e € C such

1
that ere(f:[u},F) D(e,e)j. For e we take e = f:[u]:f', where f' is an

(arbitrarily .chosen) element of C[F].

By definition of T, "Vee(f:[ul,F) D(e,e) ' is the conjunction of
rVee(f:[u],F)Bn(e=e|n)ﬂ and "Vee(£:[ul,F)Vg A(e];)ﬂ (where € does not occur
in A). If we apply the key-lemma 9.2.9 to the first conjunct we find that
it is equivalent to EVeEn(ele=e|n)1 which is easily seen to be true.

Also by 9.2.9 the second conjunct is equivalent to 'VeVc A(e|c)1.
"Vevea(e|z) " <> rV;e(id,"OA"l)A(eljzc)_' by 8.3.10(a), (b), (c),

fVre(id, °0a°1) Ale|jy0) ™+ "Vz A(e]j,0) " by 9.2.9 and 9.2.6(b):

id € CL°0A°1].

74 A(eljzc)ﬂ follows immediately from the assumption "Vee(£f,F) Ac
rVee(e,F) Ae" > "Vee(£:[ul,F) Ae” by monotonicity of T and 7.3.7(c)
(Cul/F);
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"Vee(f:[ul,F) Ae ' + Ve A(e[e)1 by 9.2.9 (e = £:[ul:f', £f' € C[FD);
"Ve ACele)” +r‘v'se(j2,°0) A(ele)” by definition of T (i, €0
'_Vee(jz,"O) ACele) > TVe Ae]j,e) " by 9.2.9 and 9.2.6(b): id e CL°0].
(c) Assume Tvela A(e,a)j then in particular rVee(id,°0)3a A(e,a)7
whence, by definition of T and 7.3.6(b) (Vu(u//°0)).
JeVuleu#0 -+ Ja'Vee([ul,°0) A(e,a) ‘1. By 9.2.9 and 9.2.6(b) (id e C[°01)
r.\'/E(I:u],°0) A(e,a)” is equivalent to 'Ve A([u]|eia)1.
(d) Assume TVean B(s,n)1, then in particular r-\7’t:e(id,"0)iln B(e,n)1,
i.e. we have an e such that
Vu[e]u#O -> SfeCEFrV;e([u]Af,°0AF) B(j];,jzc)j] by definition of T and
7.3.6(b): Yu(u//°0).
We must derive "VedeeC B(e,e|e)ﬂ or equivalently (by 8.3.10(a))
ere(id,°0)3e€C B(a,e|e)1,i.e. (by definition of T and 7.3.6(b)) we must
find an e, such that Vu[elu#o > HeeCrVee([u],°0) B(s,e[a)j].

1
For e, we take the one we have by assumption. Let u be arbitrary, eu + 0,

then ;e have an £ ¢ C and an F such that "Vze([ulAf, °0AF) B(jlg,jzc)j. By
monotonicity of T then also 'Vze([ulAf,G) B(jlg,jzc)1 where

G = (°0AF)[Az.°0]. By 9.2.6(c) nestG e C[G], i.e. we find that

Tve B([u]|j](nestG|;), f[ljz(nestG|C))-| by extensionality and 9.2.9. By
9.2.2(4d), nestG

Va(j](nestG]a) = nestooljl(dplla) = nest°0|a=a) (9.2.2(a), (b)) and

o (nest00 A nestF,): dpl, where F' = F[1z.°0]. Hence

Va(jz(nestG|a) = nestF,|j2(dp1la) = nestF,la) (9.2.2(a)). I.e. by exten-
sionality we obtain rV; B([u][c,f:nestF,|c)1.
Our aim is to find an e € C such that rVee([u],°0) B(e,e|e)7. We take

e = f:nestF,:sn, where n = 1th(u), then e:[u] = f:nest hence the fore-

F"
going yields (by extensionality)rV; B([u][c,e|([u]lc))1, from which the
desired result follows by one more application of 9.2.9 (again using

id € c[°0]). O
9.3. CONCLUSIONS

Combining the results of the previous chapters with theorem 9.2.10 we

obtain the following theorems.

9.3.1. THEOREM. If Ll‘S s a domain w.r.t. a CS-closed C c K, then U6 is a
model for CS(C). This can be shown formally in LSF*, Z.e.

LSF" |- CSclosed(C) A domain (m,d,§) o
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for each axiom and instance of an axiom schema @ of CS(C).

PROOF. Immediately from the main theorem 9.2.10 and the elimination theorem

8.4.2, Observe that CSclosed(C) = dclosed(C) by definition. [

79.3.2. THEQREM, If U(s 18 a projected universe of GC-sequences w.r.t. a

CSlcosed C ¢ K (which means in particular that J enumerates C modulo =) then
Ll(S s a model for CS(C). This can be proved in LSF*, Z.e.

LSF* |- CSclosed(C) A model(m,d,§) + &°

for each axiom and instance of an axiom schema & of CS(C) .

PROOF. Combine theorem 6.2 (models are domains) with the previous theorem.
Note that 6.2 can be formalized in IDBF* (cf£.7.2.13). (Note also that

dclosed(C) and 'J enumerates C modulo =' are subsentences of model (m,d,{)
(cf.7.2.13)) O

9.3.3. THEOREM. With each mapping 1:N - K there exists a universe U‘S of
projections of lawless sequences which satisfies seU6 - Vn(InIeeUa) and
which <s a model for GS(C).

PROOF. It suffices to show that with each mapping I:N - K we can find a
J:N -+ K such that

(a) range(I) c range(J),

(b) C=1{e € k: In(Jn =2 e)} is CS-closed,

for then the desired result follows immediately from 9.3.2 above and the
observation that there exist m,d and § which generate a projected universe
of nests of GC-carriers and the corresponding dressings and frames respec-
tively, whatever J is (cf.7.2.13). (Note that J enumerates C modulo = by
definition of C.)

To make J fulfill (a) and (b) we must ensure that:

(i)  Vn3m(In = Jm),

(ii) VvIn(In = [v]),

(iii) Vodm(Im = s"),
(iv) Eimomlmz(Jmo o j<0> A
(v) VkVmIn(Jn = Jk:Jm),
(vi) VkVm3n(Jn =2 JkAJm) .

This is achieved if we construct J such that J(j(O,n)) = In, J(j(1,v)) = [v],

1

R

Jm A Jm, = dpl),

1% <> 2
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3(5(2,m)) = 8", IG3,00) = g0, IEGLD) = iy, IG(3,2) = dpl,
J(3(3,n+3)) = id, J(j(n+4,2m)) =~ Jn:Jm, and J(j(n+4,2m+1)) =~ JnAJm.
In IDB we can construct an F-Tm ¢ such that K(¢), ¢0 = 0 and Av.¢(<n>*v) be-
haves as desired for Jn, relative to any ¢ such that Vn K(Av.y(<n>*v)), i.e.

such that n » Av.P(<n>*v) can play the rdle of I. U
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APPENDIX

In 4.4.11 we introduced the set DGO(J) of mappings d: N x N - K satis-

fying
(n d 0= id
(2) dn(v*ﬁ) o dnv: JF (n,v*X) :GV(n,v*x)

- K . - - K -
where JF(n,v*X) = v f(v*X) and GV(n,v*X) = v a *X) .
( s ) 6nv J ( ) ( ’ ) 6n(v*x) gV(V X)
In this appendix we shall show that DGO(J) has elements which are primitive

recursive in J.

Since each element e ¢ K is a mapping from N to N, a mapping
d: N x N -+ K can be viewed as a mapping d: N x N x N - N. To construct
the desired d, we use an auxiliary mapping D, which assigns to each k € N
a finite sequence Dk with length k. The finite sequence D(k+1) is to con-
tain the 'initial segment of d', i.e.

_ .3,,.3 .3, ..3 .
D(k+1) = <dj30320(330),...,dj?szk(J3k)>. That is to say, once D has been

defined we shall put
(3) dnv = Au.(D(au+l))au,

where au = v3(n,v,u).

D is defined by an ordinary recursion, its definition has the form
DO = 0, D(k+1) = Dkx<¢ (Dk,k)>.

$(Dk,k) will be the value of dnv(z), where v3(n,v,z) = k. We define ¢(Dk,k)
as follows (k = v3(n,v,z)).

(a) If v = 0 then we put ¢(Dk,k) = id(z). Thus we achieve that for all
n, an will be equal to id eventually.

(b) If z = 0 then also ¢(Dk,k) = 0. It follows that dnv(O) = 0 for all
n and v, this is consistent with (a) above and with equivalence (2), if we
write f[n,v*%] for the right-handside of (2) then f[n,v*x%](0) = O.

(c) If both z and v are unequal zero, say z = §*u, v = w*X, then we

proceed as follows: we put
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fln,w*x] = dnw: JF (n,w*X) :GV(n,w*X)

(i.e. the right-hand side of (2) with w for v) and we try to establish the
value f[n,w*X] (§*u), using only information that is to be found in Dk. If
we succeed we put ¢ (Dk,k) = f[n,w*xX](§*u), otherwise ¢ (Dk,k) = 0.

In order to find f[n,w*X](§*u) we must first try to compute upb(d,w*X) .

upb (d,w*®) is defined as

upb(d,wxX) = max{Um(w*i):m € nf(k?(w*i))}

where

i

Um(w*ﬁ) mk((d:JF)(m,w*i),lth(w),gsm(w*ﬁ))
(see 4.4.9). mk((d:JF)(m,w*ﬁ),lth(w),gsm(w*i)) is the smallest z such that
((d:JF)(m,w*i))(<1th(w)>*gsm(w*§)(z)) # 0 (see 4.4.8) and this inequality

is equivalent to
4) d_w(<lth(w)>+JF_lgs_(2)) # 0,

where JFm = JF (m,w*X) and gs; = gsm(w*i) (see 4.4.7 and the definition of:
in 1.3.18). In computing upb(d,w*X) from the information on d contained in

Dk, we shall first make lists {wm:menf(k?(v*i))} satisfying
zew iff v3(m,w,<lth(w)>*JFm[gsm(z)) < k,

i.e. if z € v then we can use Dk to check whether or not (4) holds. If
there is an m such that (4) does not hold for any of the z ¢ W then Dk
gives us too little information to determine upb(d,w*X) and we shall put
¢ (Dk,k) = 0. Otherwise we compute upb(d,w*X). (We tacilty assume here that
the lists w, are initial segments of N. This will be the case if z < z*Qi

for all z and n, and if v, is monotone in all its arguments. We can do

without such assumptions,3the construction of ¢(Dk,k) will remain essential-
ly the same, but we shall have to proceed with more care.)

Once we have succeeded in finding upb(d,wxX) from Dk we can easily
determine the K-function GV(n,w*X). By definition of:, f[n,w*i)(?*u) (the

value that we want to assign to ¢(Dk,k)) is equal to
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(5) dnw(§*(JFn:GVn)fu),

where JFn = JF(n,w*X), GVn = GV(n,w*X). In order to compute (5) from Dk we
make a list VgaVyseeesVy (possibly empty) of initial segments of (JFn:GVn)Tu,
in which v. occurs iff v3(n,w,§*vj) < k. If for some v, in the list
(Dk)v3(n,w,§*V') = m+l then (5) will yield m+! and we put ¢(Dk,k) = m+l,
otherwise ¢(Dk,k) = 0.

We have to check the following facts for the mappings dnv defined by

d v = Au.(D( 1*“3(n’v’u)))v3(n,V,U) ¥

(1) dnv € K,
(ii) dn0 =~ id, .

(iii) dn(v*i) o dnv:JF(n,v*i):GV(n,v*i).

(ii) is trivial, by (a) above we have dn0 = id, whence also dno e K.
(i) is proved by induction w.r.t. lth(v), in this proof we shall
establish (iii). The basis—step of the proof of (i) (v = 0) is in the proof

of (ii). For the induction step we show that
(6) d (v*%) (F*u) = sg(e(§*u))-(d v:(IF :GV )) (Fru)

for some e € K. Since dn(v*i)(O) = 0 (by (b)) this proves that dn(v*ﬁ) e K,
at the same time it shows (iii).

The left-hand side of (6) is ¢(Dk,k) for k =‘v3(n,v*i,§*u). From (c)
above it follows that we must choose e such that e(§*u) # 0 iff Dk contains
sufficient information to determine a value for (dnv:(GSn:JFn))(§*u). The
existence of such an e follows from the induction-hypothesis: Vm(dmveK).

First one proves that there is an e € K such that e‘(?*u) # 0 iff

Vmenf(k?(v*i‘c))Ez[dmv(<lth(v)>*JFmF§?n:(Z)) 40 A
v3(m,v,<1th(v)>*Jme§§;(z)) < kJ,

then one shows that there is an ey in K such that e2(§*u) # 0 iff

3W4(JFn:GVn)hu(dnv(§*w) #0A v3(n,v,?*w) < k).

Then e can be defined by e(§*u) = el(?*u)'ez(§*u)~
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e is found as a product of mappings el where e m(?*u) # 0 iff
b 3

32(d_v(<lth(v)>+JF_[gs (2)) # 0 A vs(m,v,<1th(v)>*JFmr§§;(z)) <kl;

since dmv € K there is a shortest w of the form <1th(v)>*JFmngm(z) such

that dmv(w) # 0, and we can put el n = Au.sg(v3(n,v*i,u)=v3(m,v,w)). Since
b

v3(m,v,w) is a constant, there is a k such that for all u' with 1lth(u') > k

e m(u'*u) = 1, together with the monotonicity of v3 in its third argument
b
this yields e m € K (see 1.3.13,14).
’
e, is the product of ez’1 and 62’2, where

e, ](§*u) = h(\z.e(§*z), JFn:GVnru) and

b

e (§*u) = sg(v,(n,v*%,F*u) v, (n,v,§*(e (F*u)=1))). e (§*u) # 0 means
2,2 3 3 2,1 2,1

that there is an initial segment w of JFn:Ganu such that dnv(ﬁ*w) # 0, if

e, 1(?*u) # 0 then e, 2('}‘r*u) # 0 means that the shortest w <AJFn:GVnTu such

bl ’
that dnv(§*w) # 0 satisfies v3(n,v,§*w) <k, i.e. dnv(ﬁ*w) can be found in

Dk. We leave it to the reader to verify that e, | € K and ey 5 € K.
b ’
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Baire-space (intuitionistic-)

bar

bar property (of T)
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binary jumps (restriction to-)

branch of finite strictly binary tree
of frame

bottom node

Cardinality (of finite set)
carrier (Znformal)

see also GC-carrier
carrier (projected)
choice sequence
closed formula of Le
closure (CS(C) axiom of-)
codomain (of mapping)
composition

of mappings

of neighbourhood-functions
concatenation
C-parallel
CS-closed
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Density (LS-axiom of-)
dependence tree
dependency (between GC-carriers
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dependency-closed
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1.1, 1.3.29.

1.1

1.3.10
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3.1.1
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3.1.1

3.1.4
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1.3.3
2.2-2.8
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1.1
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distributivity
of application over nesting
of composition over pairing
of composition over nesting
domain (of a mapping)
domain (w.r.t.C)
- axioms
dressing (Znformal)
for €,
for €5 €p
dressing (projected)
for ﬂF,nFG
for eInF, eled

duplicate

Elementary analysis
elimination theorem

for C§

for domains

for LS

for ng*
elimination translation

Dragalin's for L:
empty carrier
empty part of €0 of carrier
enumerate -

modulo =, modulo equivalence
equality

extensional, intensional
equivalent

frames

K-elements

restrictions
extensional equality
extensionality

of LSE"

of 1

2.9.6, 3.2.16
1.3.24
3.2.16

1.3.4

6, 6.1.1
6.1.1

2.9.3, 2.9.7, 2.9.8
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4.6.2
9.2.1

1.3.5

1.1
8.4.2
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2.6.2

2.9.1
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1.3.11
5.1.5

8.3.14
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extension principle

Finite set

finite sequence of natural numbers
finite strictly binary tree

frame

frame for (Znformal)

frame for (projected)
m at v, at stage x
T, at v, at stage x
e|1rF
freedom of continuation
for GC-carriers (Znformal)
for sequences of restrictions
(projected)

fresh carrier

GC-carrier

GC-carrier w.r.t. C

GC-sequence

GC(C)-sequence

generate
a universe of dressing sequences
nests of GC-carriers
dressings for w

generator

guiding sequence (Znformal)

guiding sequence (projected)

Immediate descendant
induction
over frames
over K
initial
dressing, frame, restriction

(Znformal)
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1.1, 1.3.28.

1.3.3

1.3.5

3.1, 3.1.1
2.9.4, 3.1.4

2.9.3
2.10.5

4.3.9
4.3.12, 4.5.2, 6.1.1
4.6.2

2.8.4

4.7, 5.2
2.4.2

2.2-2.8
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4.5.2

4.1
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dressing, frame, restriction
(projected)
intensional equality
Jump (Znformal)
jump (progjected)
jump—function (Znformal)

jump-function (projected)

Label
labelling
lawless sequence

lawlike sequence
Monotonicity of T

Neighbourhood-function
nesting
nesting-inverse

nest of GC-carriers

node

Obtained from & by an application
of »

open data (LS-axiom of-)

overtake property

strong -

Pairing
on FRAME
on K
on N
w.r.t. ~p
pairing left inverse
pairing inverse
parallel
c-
preliminary choice of values
(Znformal)

(projected)

4.6.2

1.1

2.4.3

4.3

2.5
4.4.1-4.4.3.

8.3.9.

1.1, 1.3.10
2.9.5, 3.2.5
3.2.9
2.10.1
3.1.1.

8.3.5
1.1, 1.3.28
5.2.4
5.2.4.

3.1.8, 3.2.2
1.3.23, 3.2.2
1.1, 3.2.2
3.2.1

3.2.3

3.2.3

3.2.18
3.2.18

2.8.1
4.4.4



produce
projected universe
projected universe of
dressing sequences
GC-carriers
GC-sequences
nests of GC-carriers
projection model
see projected universe
projection model for GC
see projected universe of GC-
sequences

proto-lawless sequence

Range (of mapping)
real number
generator
recursor
restriction
restriction for (Znformal)
®n
€
restriction for (projected)
g
eIwFG
restriction of a mapping to subdomain

restriction to binary jumps

Sign-mapping
shift
single jump property
single node frame
source
for €
for €p
stronger than
strong overtake property
subset of K

3.1.16

4.4

4.5.2
4.6.1
4.5.2

1.1.

1.3.4
1.1
1.1
1.3.5
2.9.10

2.9.10
2.10.5

4.5.2, 6.1.1
4.6.2
1.3.4
2.4.4, 4.3.7.

1.3.5
1.3.16
2.4.4, 4.3.7
3.1.7

2.9.2, 2.9.7-2.9.8
2.10.5

5.1.2

5.2.4

1.3.26.
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Terminal node
topnode

tree of a frame

Universe of projections of lawless
sequences

see also projected universe
upperbound for the relevant values

of guiding sequences

Weaker than

3.1.1
3.1.3
3.1.4.
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AXIOMS AND SCHEMATA

AC-NF axiom of choice from numbers to

(lawlike) functions

Vxda A(x,a) > 3bvx A(x,(b),). 1.1, 1.3.27, 1.3.28.
AC-NFrf axiom of choice from numbers to lawlike

sequences of frames:

Vx3§ A(x,§) > Igvx A(x,(g)x). 7.2.1.

CSi, i =1,...,4 CS-axioms 1.1.
cs(c)i, i = 1,...,4 CS(C)-axioms 1.1, 1.3.29.
ECT0 extended Church's thesis 1.1.
EP extension principle:

- VeeK; [VpeNdx(e(4x)#0) . 1.1, 1.3.28.
Lsi, i =1,...,4 LS-axioms 1.1, 1.3.28.
QF-AC quantifier—-free axiom of choice: for

A quantifier-free

Vx3y A(x,y) - JavVx A(x,ax). 1.3.5.

FORMAL LANGUAGES

L(X) X any formal system; the language of X,
see formal systems
LE the language of CS(C) 8.2.1.
LO,L* extensions of L 8.2.1, 8.2.5.
e’’e €
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FORMAL SYSTEMS

The Kreisel-Troelstra
tion of intuitionistic

Relativized C§

Elementary analysis

system for the founda-

analysis

EL + inductively defined set K of neighbour-

hood functions
8
functions

IDB with K-terms

IDB + theory of frames
IDBF with K-terms

IDBF. with additional

The lheory of lawless
The theory of lawless
functions )

The theory of lawless

part IDBF".

+ the axiom of choice from numbers to

constants C and J
sequences

sequences of K-

sequences with lawlike

1.1, 1.3.29,
8.2.2.
1.3.5.

1.3.27.
7.2.1-7.2.7.
7.2.8-7.2.11.
7.2.12.

1.1, 1.3.28.

7.2.14



SETS, UNIVERSES AND CLASSES

CU(©)
CLF]
(1)
DG(J)

D5 (0
FRAME
GC
GCC
Gc(c)
GCc(C)
K

Kis

LS

S
L2]

8
g

The class of projected universes of nests of
GC-carriers w.r.t. C

The subset of C c K which contains exactly
those e such that {e|¢:¢eN} = {YeN:y//F}.
The set of mappings do:]Nx N-+K which
generate dressings for carriers

The set of mappings d:IN x FRAME x N ->K
which generate universes of dressing sequences
The class of domains w.r.t. C

The set of frames

The universe of GC-sequences

The universe of GC-carriers

The universe of GC-sequences w.r.t. C

The universe of GC-carriers w.r.t. C

The inductively defined set of neighbour-

hood functions

The set of neighbourhood functions for
continuous mappings with domain LS

The universe of lawless sequences

The natural numbers

Intuitionistic Baire-space

The universe of proto-lawless sequences
The projected universe {e|8:eeM}

The class of projected universes of

GC-sequences w.r.t. C
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4.5.2.

9.2.5.

4.4.2, 4.4.10

4.2, 4.4.17
6.1.1.
3.1.14.

2.2, 2.10.2.
2.2-2.8.
2.11.4.
2.11.1.

1.1, 1.3.1,
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