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CHAPTER 1 

INTRODUCTION 

1. 1. HIGHER ORDER ASYMFTOTICS AND SI:MPLE LINEAR RANK STATISTICS 

I 

As higher order asymptotics is the topic of this study, we shall start 

by providing a rough outline of this area. For reasons of simplicity we re

strict ourselves at this point to the classical case of sums of independent 

and identically distributed random variables. For a complete and much more 

eloquent account one should consult e.g. FELLER (1971) Chapter XVI, PETROV 

(1975) Chapters V and VI and for the multidimensional case BHATTACHARYA & 

RAO ( 1976). 

According to the central limit theorem standardized s11ms of indepen

dent and identically distributed random variables with finite variance are 

asymptotically nor1oally distributed. The first question that is discussed 

in second order asymptotics is that of the rate of convergence to this nor

mal limit. 

THEOREM 1.1.1. Let Y1,Y2 , ••• be independent and identically distributed 

more let FN stand for the distribution function of the normalized swn 
-½ N N r. I y .. Then 

J= J 

(I.I.I) sup 
X€lR 

where A is an universal constant a1'td tp denotes the standard nor1mal distri

bution function. 

PROOF. See e.g. PETROV (1975), Theorem V 2.4. 0 

Theorem 1.1.1 is called the Berry-Esseen theorem for sums of indepen

dent and identically distributed random variables. It follows that a Berry

Esseen bound is of the order O(N-½). 
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The logical next step is to go beyond limit theorems and investigate 

higher order terms of the distribution functions of asymptotically nor1nal 

s11ms of random variables. For the special case of sums of independent and 

identically distributed random variables we may follow the account given 

in Section 2 of VAN ZWET (1977). 

Let Y 
1

, Y 
2
,.. • be independent and identically distributed random vari-

4 
µ 3 and EY 1 = µ 4 • Furthermore, let F and 

~I denote the distribution function and the characteristic function of Y
1 

respectively. Moreover, we assume that Cramer's Condition (C) is satisfied; 
• i.e. 

( I • I • 2) lim sup 1~ 1(t) I < I. 
· I t 1 ➔00 
' 

We remark that (I.I .2) is satisfied if F has an absolutely continuous com

ponent. Define 

_1 

F (x) = P(N 2 
N 

N 

I 
j=l 

Y. ~ x), 
J 

for - 00 < x < co. 

THEOREM 1.1.2. Suppose 4 that EY 1 = µ 4 < 00 and (l.1.2) are satisfied. Then 

(1.1.3) as N ➔ 00 , 

where 

(l.1 .. 4) 
2 

(x -1) 
3 

(x -3x) 

2 

72N 

and cp denotes the stand.a.rd normal density. 

result like (1.1.3) is called an Edgeworth expansion with remainder 
_! -1 

that µ 3N 2 and (µ 4-3)N are for the distribution function FN. Note 
_ 1 N 

Theorem I. I .3 is based on an application of the smoothing lern,11a (cf. ESSEEN 

( 1945)) • 
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Fa distribu-LEMMA I. 1. 3. (Smoothing le11i,11a). Let M be a positive number., 

tion function on IR and Fa differentiable f2,1,nction of bounded • • vanat-ion on JR 
,-..., ,...., ,...., 

with F(-00 ) = 0, F(00 ) = 1 and IF' I s M. Define the Fourier-Stieltjes trans-
,,.._, ,.._, 

forms tJJ(t) = Jexp(itx)dF(x) and \J)(t) = Jexp(itx)dF(x). Then there exists a 

constant C such that for every T > 0 

T 

(1.1.5) sup 
XElR 

IF(x) - F(x) I < I -
1f 

-T 

With this in mind, the proof now proceeds as follows. Let $N denote the 

characteristic function of N-½ I:~ Y. and choose T = N log N. It follows 
J=l J 

log lJJ (t) = 
N 

2 -½t -

and this expansion is easily converted into 

2 
( ) ..... ( ) (N- 1 4 - ! t ) lJJN t = lJJN t + o t e , 

where 

(1.1.6) 

4 

4 
t -

For any sufficiently small 6 > 0 this expansion for lJJN(t) remains valid for 

ltl s o✓N because 

for It! s c✓N. Hence 

t 
-1 

o (N ) • 

-o/N 
From the definition of ljJN in (1.1.6) and µ 4 < 00 it follows th~t 

It I 2=0 IN 
Finally, CramP.r's Condition (C) (cf. (1.1.2)) guarantees that 
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t 
6 /Ns; It I sN log N 

,.._, ,.._, 

Since ~N is the Fourier Stieltjes transform of FN (cf. (1.1.4)) the proof 

of Theorem 1.1.2 is complete. 

In recent years much effort has been devoted to extending the theory 

of higher order asyrnptotics from s1,1Lus of independent and identically distri

buted random variables to the estimators and test statistics that interest 

statisticians. In this study we deal with the problem of obtaining Berry

Esseen bounds and Edgeworth expansions for simple linear rank statistics. 

Let x
1
,x

2
, ••• ,~ be independent random variables with continuous dis

tribution functions F 1,F2 , ... ,FN respectively. If Xl:N < x2 :N < ••• < ~:N 

denotes the sequence x
1
,x

2
, ••• ,~ arranged in increasing order then the 

rank R.N of X. is defined by X. = XR.N·N, j = 1,2, ... ,N. For specified vec-
J J J J • 

tors of real numbers cN = (c 1N,cZN'···,cNN) (regression constants) and 8N = 

(a 1N,a2N, ... ,~N) (scores) 

N 
(1.1.7) TN= .I c.NaR. N 

3=1 J JN 

is called a simple linear rank statistic. It may be used for testing the 

null-hypothesis H0 : F
1 

= F2 = .•. = FN against certain classes of alterna

tives indicated by the choice of regression constants and scores. This test 

is distributionfree and under the null-hypothesis the random vector (RlN' 

R2N, ••. , ) equals each permutation of the numbers 1,2, ..• ,N with probabil

ity I /N ! . 

As an example, we consider the problem of regression in location. Take 

a random sample of size N of independent observations x1 ,x2 , ••• ,~, where 

Xj has density fj, j = 1,2, .•. ,N. The null-hypothesis H0 is £ 1 = f 2 = .•. = 
fN = f, where the co1111c1on density f is arbitrary. The one-sided alternative 

of interest will be f.(x) = f(x- ~c.) for j = 1,2, ..• ,N with b. > 0. If we 
J J 

ass11me that f is absolutely continuous with derivative f' such that JI f' I < 00 

and define 
• 

(1.1.8) 

then the test with critical region 



N 

I 
j=l 

c.aR N 
J jN 

5 

is the locally most powerful rank test for H0 against {TTf(x-~cj), ~ > O} at 

the level of significance determined by the choice of k. 

More generally, for almost all well-known linear rank tests, the 

scores are generated by a function Jon (0,1) in either one of the follow

ing two ways 

(l.1.9) 

(I.I.IO) 

(exact scores) 

(approximate scores) 

= EJ(U. N), 
J : 

• 
J = 1,2, ••• ,N, 

j = 1,2, .... ,N. 

Here U. N denotes the j-th order statistic in a random sample of size N 
J : 

from the uniform distribution on (0,1). Scores given by (1 .1.9) occur in 

statistics yielding locally most powerful rank tests (cf. (1. 1.8)). Those 

given by (1.1.10) have the appeal of simplicity. 

Well-known special cases of (1.1.7) are linear rank statistics for the 

two-sample problem, where Fj = F, cjN = 0, for j = 1,2, •.• ,n and Fj = G, 

cjN = I, for j = n+l, ••• ,N and Spearrrian's rank correlation coefficient pN 

which, under the null-hypothesis of independence, is distributed as TN under 

HO with cjN = ajN = j for j = 1,2, .•. ,N. 

The distribution of a simple linear rank statistic is determined by 

the following three entities: first, the distribution functions F
1

,F
2

, ••• 

•.• ,FN of the observations x1,x2 , ••• ,~, second, the regression constants 

c 1N,c 2N, ••. ,cNN and finally, the scores a 1N,aZN'···,~N· 

Define, for each N ~ 2, 

( 1 • 1 • 1 I ) , 

(1.1.12) for - 00 < x < oo. 

In asymptotic theory one studies the behavior of the distribution function 

* FN for large values of N both under the null-hypothesis as well as under 

various types of alternatives. 

Many authors have established the asymptotic no11nal ity of 

ferent sets of conditions (see Section 1.2 for a review); i.e. 

* TN under dif 



6 

(l.l.13) lim sup 
N-+00 XE:IR. 

where~ denotes the standard normal distribution function. This first order 

result justifies the use of the normal approximation to compute the criti

cal value and the power of a simple linear rank test for large values of 

the sample size N. Furthermore, it enables us to find the limiting power 

of the test under contiguous alternatives and to make a comparison with 

other tests on that basis • 
• 

The next question is to obtain the rate of convergence in (I.I .13). 
_1 

Under some regularity conditions this will typically be of the order N 2 ; 

• 1.e. 

Quite often, however, one needs more precise information than asymp

totic normality can provide. To achieve this one needs an asymptotic expan

order o(N- 1). Such expansions will 

they are of the type typically be Edgeworth expansions; i.e. 

2 

(1) (x) -
K K3N 2 K4N 

(x -1) + 24 
3 

(x -3x) 

where~ denotes the standard normal density, the quantities K3N and K4N are 

the leading te1.ms in asymptotic expansions for the third and fourth cumu

lants of T; (cf. (1.1.11)). To establish such an expansion one has to com-
,.._, 

pute FN and prove 

as N -+ 00 • 

An excellent review of the developments in the area of Edgeworth expan

sions in nonparametric statistics was given by BICKEL ( 1974). He notes that 

these expansions are of interest on various grounds: 

( 1) Taking one of the two ter11:is of the expansion frequently improves the 

basic nor1aal approximation strikingly .. Examples of this phenomenon may 

be found in FIX & HODGES (1955) and in Section 3.5 of the present study. 

(2) The higher order terc11s give some qualitative insight into the regions 

of unreliability of first order results. For instance, the third and 

fourth c1,1mulants typically correct for skewness and kurtosis. 
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(3) The expansions can be used to discriminate between procedures equiva

lent to £irs t order. For a complete account one should consult HODGES & 

LEHMANN ( 1970) • 

(4) Last but not least, the probabilistic problems involved are very chal

lenging. 

The organization of this study is as follows. In this chapter we re

view the literature on simple linear rank statistics. Furthermore, we formu

late a lem,r,::i which will be a basic tool in the Chapters 2 through 4. Chap

ter 2 is devoted to the problem of establishing Berry-Esseen theorems for 

simple linear rank statistics under the null-hypothesis. In Chapter 3 we 

establish Edgeworth expansions for these statistics under the null-hypo

thesis, whereas Chapter 4 deals with asymptotic expansions under contiguous 

alternatives. 

I • 2. RELATION TO PREVIOUS WORK 

The concept of a simple linear rank statistic is essential in nonpara

metric theory. For an introduction to this subject the reader is referred 
- ,J -

to LEHMANN (1975). More advanced text books were written by HAJEK & SIDAK 

(1967) and PURI&SEN(1971). The latter deals with multivariate problems. 

The first central problem concerning simple linear rank statistics is 

their asymptotic normality. This problem was discussed in increasing gener

ality in long series of papers beginning with HOTELLING & PABST (1936). 

They prove asymptotic normality for Spearman's rank correlation coefficient 

under the null-hypothesis of independence .. 'fhe1.r work was generalized to 

statistics of the form (1.1.7) by WALD & WOLFOWITZ (1944). The method of 

proof consists of showing that the moments of T; (cf. (1.1.11)) converge 

to those of the standard nor111al distribution. NOETHER ( 1949) showed that 

the condition on the scores could be weakened. In a formulation later given 

by HOEFFDING(l951) Noether's condition is 

(1.2.1) 

where 
• totic 

- -1 N 1 f f a = N E. 
1 

a.N. The series of every more genera proo so asymp-
N J= J 

nor1·11ality of T~ under the null-hypothesis culminated in a paper by 

-HAJEK (1961) providing necessary and sufficient conditions. For exact scores 
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his result reads as follows. 

THEOREM l • 2. I • Sz,t.ppose that the reg1">ession constants satisfy Noether 's eon

di tion (cf. (1.2.I)J. Let J(t)~ 0 < t < l~ be squar>e integrable such that 

J{J(t)-J} 2dt > O~ whePe J = JJ(t)dt. UndeP the null-hypothesis 

(1.2.2) T = 
N 

N 

I 
j=l 

= EJ(U. N) 
N J: 

E. I c.N. 
J= J 

(cf. (I.1.9)):t 

Parallel to this development an attack was made on the related but 

somewhat easier problem of proving asymptotic normality for samples from a 

finite population (the two-sample case under the null-hypothesis). Among 

others we mention the papers of l1ADOW ( 1948) and DWASS ( 1955). For this 
-problem, necessary and sufficient conditions were given by ERDOS & RENYI 

(1959). 'J;hey derive a representation for the characteristic function for 

random sampling without replacement which is not only useful to prove asymp

totic normality but also for establishing Berry-Esseen bounds and Edgeworth 

expansions as will become clear in the sequel. 

For more 

i, j = 1, 2, ••• ,N are N2 real nli1,ibers, sufficient conditions for asymptotic 

normal.ity under the null-hypothesis were established in HOEFFDING ( 1951). 

MOTOO (1957) proved asymptotic normality for these statistics under a 

Lindeberg type condition which appears to come close to being necessary. The 

paper of FRASER (1956) deals with a vector form of the Wald-Wolfowitz

Noether-Hoeffding theorem. 

Under the alternative the problem of asymptotic noriuality is much more 

difficult to handle. The first attempt to treat the asymptotic distribution 

in the two-sample case in any generality was made by DWASS ( 1956). He was 

successful for a polynomial scores generating function J only (cf. (I.I .9), 

(I.I.IO)). The first general paper for the two-sample case was written by 

CHERNOFF & SAVAGE (1958) and this work formed the basis for all further 
• 

• 

developments until 1968, excepting those based on the contiguity approach. 

Their work was generalized by GOVINDARAJULU, LECAM & RAGHAVACHARI (1967). 

By a totally different approach, based on properties of the empirical pro

cess, PYKE & SHORACK ( 1968) were able to give somewhat shorter proofs of 

the results in CHERNOFF & SAVAGE (1958) and to weaken the smoothness and 



tail behavior conditions on the scores generating function. 

The line of development initiated by CHERNOFF & SAVAGE (1958) culmin-
-ates in a paper of HAJEK (1968). In this paper Hajek introduces the method 

of projection and a variance inequality. With these two tools he was able 

to prove asymptotic no~mality for simple linear rank statistics (cf. 

(1.1.7)) under fixed alternatives and for broad classes of regression con

stants and scores generating functions. Hajek's results were extended to 
• ..J scores generating functions which are not absolutely continuous by DUPAC & 

9 

HAJEK (1969). HOEFFDING (1973) showed that centering at the asymptotic mean 

instead of the mean is permissible if one of Hajek's conditions is strength-
"" ened slightly. DUPAC (1970) modified the theorems of his article with Hajek 

by allowing a different centering and generalized one of the res·ults in 
-HAJEK (1968) to the case of unit step scores generating functions. 

A different type of approach is to prove asymptotic norrr1ality for sim

ple linear rank statistics under contiguous sequences of alternatives only • 
.,.. .., ..... 

The concept of continguity is due to LECAM (1960) (see also HAJEK & SIDAK 

(1967), Chapter VI) and is basic for the most successful asymptotic theory 

of hypothesis testing. It ensures that the power does not tend to the signi

ficance level a or to one as the sample size tends to infinity. For these 
.,,. 

alternatives HAJEK (1962) proved asymptotic normality in a situation where 

the regression constants satisfy Noether's condition (cf. (1.2.1)) and the 

scores generating function is square integrable. For a detailed discussion 

ans further results until the mid-sixties, 
.,. 

the reader is referred to HAJEK & 
,J -SIDAK (1967), Chapters V and VI. 

The first result for the rate of convergence for a linear rank stat-

istic was derived by STOKER (1954). For the Wilcoxon statistic he found 

that,. under the null-hypothesis, the rate of convergence to the norrnal dis

tribution is O((m+n)-½+£), where£> 0 and m, n denote the sample sizes. 

For sampling from a finite population BIKELIS (1969) proved a Berry-Esseen 

bound of the order O(N-!) using the representation of the characteristic 

function as given in ERDOS & RENY! (1959). In a more general paper which 

covers the two-sample problem under the null-hypothesis as a sp~cial case 

von BAHR (1972) derived the same result. A general attempt to .treat simple 
"' -linear rank statistics was made by JURECKOVA & PURI (1975). They consider 

approximate scores and show, both under the null-hypothesis and under cer

tain contiguous location alternatives that the rate of convergence is of 

order O(N-½+E), for any E > O. Under the null-hypothesis their result is 

valid for scores generating functions having a bounded first derivative and 
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• • under the alternative they assume the boundedness of the fourth derivative. 

In two related papers von BAHR (1976) and HO & CHEN (1978) consider 

statistics of - X = {X(i,j): 1 ~ i,j ~ N} is a 

square matrix of random variables with independent row vectors. These 
-1 

authors obtain as a by-product Berry-Esseen bounds of order O(N 2 ), under 

the null-hypothesis, for simple linear rank statistics with bounded scores 
-1 

and regression constants. This natural bound of order O(N 2
) was also 

proved under the null-hypothesis, under certain contiguous alternatives as 
.., -

well as under certain fixed alternatives in HUSKOVA (1977a, 1979a, 1979b). 

She considers bounded scores only, which excludes an important special case, 

namely the normal quantile function. Related results for bounded scores but 
_l 

without the optimal rate of convergence O(N 2
) were proved in BERGSTROM & 

PURI (1977) and SERFLING (1980). 

of 

Under the null-hypothesis MASON (1981) obtains a rate of convergence 
-!+e order O(N ), where E > 0, when the scores generating function tends 

to infinity in the neip-hborhood of O and 1. In Chapter 2 we shall prove, 
_1 

that under the null-hypothesis, the natural bound of order O(N 2 ) holds even 

when the scores generating functions do not remain bounded. Our theorems in

clude the norr,1al quantile function, cp-l (see also DOES (198Ia)). Finally, 
.J ~ -1+£ 

we note that in HUSKOVA (1977b) rates of convergence of order O(N 2 ) for 

the distribution functions of quadratic rank statistics to the chi-squared 

distribution are derived. 

Turning now to Edgeworth expansions, we note that the first general 

result for rank statistics was obtained in the one-sample problem by ALBERS, 

BICKEL & VAN ZWET (1976). They establish the Edgeworth expansion under the 

hypothesis of syiiniietry as well as under contiguous location alternatives .. 

Some extensions of this paper can be found in ALBERS (1974). The same pro

gran,u,e was carried out for the two-sample problem in BICKEL & VAN ZWET 

(1978). Under the null-hypothesis the same result was proved by ROBINSON 

(1978). Recently ROBINSON (1980) has established an asymptotic expansion 

for rank tests for several samples. Extension of these results to the case 

of simple linear rank statistics remained an open problem (cf •. BICKEL (1974) 
.J -

and HUSKOVA (1977a)). 
To establish Edgeworth expansions for simple linear rank statistics a 

bound on its characteristic function is obviously required to play the role 

of Cramer's Condition (C) in the case of sums of independent and identically 

distributed random variables (cf. (1.1.2)). This problem was solved by 
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V1~~ ZWE'I' ( 198{)). In Sec·tio11 i .. 3 we reproduce :i version of i1is tt1eorem. In _, 
t':t1apt.er 3 we derive an Edgeworth expans i.on w i tr1 rema i11der cJ (N ') for simple 

lintr?.ttr rank stat.istics a1nder the null-hyp,:>tl1esis. 'rl:1e tl,1eorem i.s proved f1.Jr 

a wi.de class of scores generating functions wr1icr1 inc.ludes the 11.ormal quan

tile functi.c:)n (see also l>OES ( 1981b). In tt1e liist chapter we consider con

tigu,)us alternatives. Our tl1eorem in this case is valid for bounded sc<.,res 

,1nly .. In a f11..>rtl,coming paper (DOES ( 1982)) we shall establisl1 asymptotic 

expansions under co11tiguous alternatives with a different standardization 

than ia used in Chapter 4. 

The reader m&}" have noticed that we r1ave not disc1.1ssed U-statistics al

tt1ough some li.near rank statistics are of this type. For those wt10 a.re in

terested .in these statistics an introduction is found in LEHMANN (1975). 

The best result concerning Berry-Esseen bounds is establisl1ed in HELl1ERS 

VAN ZWET ( 198 l). An Edgewortl1 expansion can be found in CALLAERT, JANSSEN & 

VERAVERBEKE ( 1980). 

I .. 3. A BASIC LEMMA AND SO!-m. NOTATION 

Let x1 ,x2 , .... ,~ be i.ndependent random variables with probability dens-

ity functio11s f 1 ,£ 2 , .... ,fN respectively. If x 1 :N < x 2 :N < ••• < ¾:N denotes 

the seqt1ence of x1 , x2 , ..... ,~ arranged in increasing order, then the rank RjN 

of Xj is defined by Xj == XRjN:N, j = 1,2, ••• ,N. For sequences of real nu:m·" 

hers c 1N,cZN'···,~N and a 1N,a2N, ... ,aNN 

(l.3 .. 1) T = 
N 

N 

1 
. l J llllll 

is called a simple linear rank statistic (cf. (1.1.7)). 

Define 

(l .. 3 .. 2) l N - I CN - cjN' N 
j • l 

-

and for~> 0, let y(a 1N,a2N, ••. ,aNN;,) denote the Lebesgue measure A of the 

t-neighborhood of the set {a 1N,a2N, ••. ,a~"N}, thus 

(1 .. 3.3.) 



In this tiection we considE!r tt1e behavior of the characteristic function q;N 

of tl1e centered simple l inea:r rank stat is tic TN for large values of the 

arg~nt. 'We qw.'»te a result from VAN ZWET (1980) which makes it possible to 

obtain Edaeworth expansions for stat is tics of the form ( l. 3. 1) both under 

t.he null-hypothesis and under contiguous alternatives. 

-
.. , ""~ ............. , , J .. : .~.: ... ~.. Ls t cN i'lll! 0 

(1 .. 3 .. 6) , ,k < C!,;1 1-k/2 
Jc.~1 - ~ • J t"II " 

N 

I 
j=l 

( 1 .. 3.8) ~N 1· -3/2 ~ u l;, or some l; ~ N log N, 

~ . 2 f {f.(x)-f(x)} 

I 
,I 

Thsri the1~e e:r1:st po,aiti1.ie nwrbers b., B artd B depending only on c., a, A., o 
ar>~ the BfU"Jl,,U;?"flOe EN and such tht7.t 

PROOF. This let11·r1a is an irrnn~diate consequence of Theorem 2 .. l and the com

ments in Section 3 of VAN ZWET (1980). O 
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To conclude this chapter we introduce some notation which will be used 

throughout this study. The symbols 0, o denote the well-known Landau symbols; 

i.e. as N ➔ 00
, bN = O(dN) denotes the boundedness of bN/dN and bN = a(dN) 

means that bN/dN tends to zero. Furthermore, bN ~ dN stands for bN/t\J tends 

to one, as N ➔ 00 • 

The standard normal distribution function will be denoted by~ and its 

density by¢. In this study 

I I 
(j , k) :r 

or I I I 
(j ,k,l)=, 

etc. 

denote the su.11111tation over all non-negative distinct integers j, k or j, k, 

l etc. over a certain range which will be specified. 
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CHAPTER 2 

BERRY-ESSEEN THEOREMS UNDER THE NULL-HYPOTHESIS 

2. I • Il'ITRODUCTION AND BERRY-ESSEEN THEOR.E!-1S 

In this chapter we limit ourselves to the null-hypothesis; • i.e. 

X1,x2 , ••• ,~ are independent and identically distributed random variables 

with a conn11on continuous distribution function F. If x1 : N < x2 :N < ••• < ¾ :N 

denotes the sequence x1,x2 , ••• ,~ arranged in increasing order, then the 

rank R.N of X. is defined by X. = XR.N·N and the antirank D.N is defined by 
J J J J • J 

XnjN = Xj:N' j = 1,2, .•• ,N. For specified vectors of real I"111mbers ~ = (clN' 

c 2N, ••• ,cNN) (regression constants) and aN = (a 1N,aZN'···,-~) (scores) 

(2.1.1) T = 
N 

N 

I 
j=l 

is called a simple linear rank statistic. 

The purpose of this chapter is to obtain precise inforn1ation about the 

rate of convergence of the distribution functions of 
I 
TN to their norrt1al limit·, 

We shall establish Berry-Esseen bounds of order O(N- 2 ) for these statistics. 

These have been derived in DOES (1981a); the present chapter contains the 

results of that paper. Our two theorems allow unbounded scores generating 

functions and include the important special case of the normal quantile 

function. For bounded scores and under some additional assiunptions on the 
_1 

regression constants Berry-Esseen bounds of order O(N 2 ), under the null-
✓ ,.. 

hypothesis, were obtained by von BAHR (1976), HUSKOVA (1977a, 1979b) and 

HO & CHEN (1978). 

Throughout this chapter we make the following assumption about the re-
• gression constants. 

ASSillIPTION (2A). The regression constants c 1N,c 2N, .•. ,cNN satisfy 

N 

I 
j=l 

= o, 
N 2 
l c.N = 1 

j=l J 

N 3 
and 

-1 
= O(N 2

). 



NtJte ttiat 1\11umption (2A) implies tt1at E'rN • O. 

Wt: 11lS(l x1eed a condition wi1,ich t,,nsures that the derivative of a func

tit111 dc,e11 not oscillztte too wildly near O ar1d l (cf. Appe11dix 2 of ALBERS, 

s:rc~,!:1,, & V,AN ZWET ( 1976)) .. 

(~Ol~I>I 'l' l\JN R .. ,~·r:,r• 
JM\.it.ffll.ll 'Iii ~~ 'NJ.-!tllii;;-· J-191.0S'W,l,..,,s, r 

1 im sup t ( i-t) 
t:·t>O ll' l 

l + l . 
r 

~rhe scores a 1N,aZN'···,8NN are generated by a function J(t), 0 < t < 1 

in either one t,f the following two wa,·s 

(approximate scores) j = 1,2, ..• ,N, 

(ex,1c.t scores) a.N = EJ(U. N), 
J J: 

J. = I ? N 
' ,., ... , ... 

Hi!!!ire UQ den<,tes the J·-th order statistic in a random sample of size N J:N 
from th• uniform distribution on (0,1). For almost all well-known 

- -I 
these two types. Taking~= N rank tests tl1e scores are 

we find that the vari.arice 

2 
a • 

N 
2 

a (T ) 
N 

one 
2 

a 
N 

I 
N-1 

of 

of TN (cf. (2.1.l)) is given by 

.... 
(~iee e .. g .. Theore• II 3 .. l .. c of HAJEK 

.,. 
· IDAK ( 196 7)) .. 

Define for each N ~ 2, 

(2 .. 1 .. 5) 

(2.1.6) for -..,00 < x < oo. 

linear 
N 

E. 1 .a.N J= j. ' 

·ro fonaul.ate our ti1eorems we. need some smoothness ass1.1.mptions for the scores 

1enerating function J .. 



• 

I 

} 

0 

J(t)dt = 0, 

I 

0 

I 7 

I 

and 

0 

ASSUMPTION (2C). The scores generating function J is continuously differen

tiable on (0,1). There exist positive numbers r > 0 and a< 5/4 such that 

its first derivative J' satisfies 

lJ'(t)I ~ f{t(l-t)}-a for t E (0, 1) • 

For exact scores 

distribution function 

Theorem 

* r~N (cf. 

2.1.l provides 

* (2.1.6)) of TN 

deals with the case of approximate scores • 

a Berry-Esseen theorem for the 

(cf. ( 2. 1 • 5)) . Theorem 2. I • 2 

THEOREM 2.1.1. Take ajN = EJ(Uj:N) for j = 1,2, ... ,N. Assume that Assump

tions (2A) and (2B) are satisfied and that 

N 
(2.1.7) I 

j=l 

Then 

(2.1.8) sup 
XEJR. 

THEOREM 2.1.2. Take ajN = J(j/(N+l)) for j = 1,2, .... ,N. Assume that -the re

gression constants satisfy Assumption (2A) and that the scores generating 

funation J satisfies Condition R1~ Assumptions (2B) and (2C). Then 

(2.1.9) sup 
X€lR. 

We shall show in Lenuna 2.2.1 that, if the scores generating function J 

satisfies As~umption (2C), then Condition (2.1.7) in Theorem 2.1.1 is ful

filled. It follows that the assumptions of Theorem 2.1.2 imply those of 

Theorem 2. 1. 1. We note that Ass111ription (2B) reduces to a norming asstunption 

if J satisfies Ass111nption (ZC). Furtherr11l)re, we note that Theorems 2. 1. 1 
• 

and 2.1.2 both allow scores generating functions tending to infinity in the 
-1/4+£ neighborhood of O and 1 at the rate of {t(l-t)} fore> 0. 

Section 2.2 contains a n1.1mber of preliminary le1s1111as. The proofs of the 

theorems are contained in Section 2.3. 
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2.2. PRELIMINARIES 

The aim in this section is threefold. In the first place we obtain 

bounds for moments of functions of order statistics. For this we shall draw 

heavily on the results in Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976). 

Secondly, we consider the behavior of the characteristic function of T; (cf. 

(2. I • 5)) for large values of the argument. We shall prove a le,1111,a which can 

be reduced to a special case of Theorem 2.1 of VAN ZWET (1980). Finally> we 

prove a technical leii11na needed in the proof of Theorem 2. 1 .. 2. From this 

point on we shall suppress the index N whenever it is possible: in particu-

lar we shall write a. and c. instead 
J J 

and 

LEMMA 2.2. l. If J satisfies Assumption (2C), then there exists a nwnber 

o € (O,¼), such that uniformly for integers 1 $ k ~ l $ N~ 

(2.2.1) 
l 
l E{J(U. ) -J( j )}2 = O({ k }-½+28 + 

J :N N+l N+l j=k 
{N+l-£.}-½+2r5) 

N+l ' 

(2.2.2) 
N I 

j=l J. 

If J also satisfies Condition R
1 
~ then uniformly in k and l.., 

(2.2.3) 
l 
2 

j=k 

. 2 -1 N+l-f. -3/2+2o 
+ N { N+l } ). 

Finally~ if in addition J satisfies Assumption (2B)~ then 

N 
(2.2.4) L 

j=l i=l N+l 

PROOF. Without loss of generality, we suppose that Assumption (2C) holds for 

a E (l ,5/4) and we take o = 5/4 -a. Leth be a function on (0, l) with h' (t).::: 

r{t(l-t)}-S/
4

+o and write A.= j/(N+l). Since h satisfies Condition R 
J 2' 

Lt:!111111a A .. 2.3 of ALBERS, BICKEL & VAN ZWET (1976) yields 

2 E { h ( U. N) - h ( A . ) } 
J! J 

= 0 
{A.(l-A.)}-3/2+2o 

J .J 
N ' • 

uniformly in j. Because IJ' (t) I :s; h' (t) we have IJ(s) - J(t) I~ lh(s) - h(t) f 

for every s,t E (0,1) and hence 

= 0 
N , 
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uniformly in j. Now (2.2.1) follows by s11111t11ation and (2.2.2) is implied by 

J: J: J 
If J also satisfies Condition R1 then, in view of (A.2.1 I) in ALBERS, 

BICKEL & VAN ZWET (1976), we have 

A.(1-A.)+IJ'(A.) I 
I EJ (U. N) - J ( >-. • ) I = 0 ,,J J . · .. -J .. ~ (2.2.5) 

J: J N = 0 

uniformly in j; (2.2.3) follows by s1m1111ation. 

If J also satisfies Assumption (2B), then 

-- l N • 
N I ·-

j=l 
• 

because of (2.2.5). Furthermore, in view of (2.2.1) and (2.2.5), 

N 

2 
j=l 

N 
s; I 

j=I 

J2 ( j ) - N 
N+l 

--
N 

I 
j=l 

• 2 
+ 2 

which proves (2.2.4) and the lemma. D 

N • • 

I 
j=l 

* We now consider the behavior of the characteristic function of TN for 

large values of the arg1rment. Let 

(2.2.6) 

LEMMA 2.2.2. Suppose ~hat the assianptions of either Theorem 2.1.1 or Theorem 

2.1.2 CU'e satisfied. Then there exist positive numbers B, Sandy such that 

(2.2.7) 

for log N s ltl s yN½ and N = 2,3, .••• 

PROOF. The present le.1111r1a is essentially a special case of Lermna 1 .3.1, where 

(2.2.7) is proved for log N ~ ltl s yN312 • Since we are concerned with in

dependent and identically distributed random variables x1,x2 , ••. ,¾ - which 
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we may ass1.une to be uniformly dis t:ributed without loss of generality· - Con

dition (1.3.9) of this len11na is clearly satisfied. Moreover, it is easy to 

see that Condition (1.3.8) is superfluous in our case since we are only con

cerned with values of !ti~ yN½. It follows from Assumption (2A) that for 

k = 3 Condition (1.3 .. 6) is satisfied. Hence the existence of positive n11m

bers c and C such that 

(2 .. 2.8) 
N 

l 
j== l 

- 2 (a. - a) ;?: cN, 
J 

N 

I 
j=l 

suffices to prove the present lerr1r,1a. 

For exact scores 

fJ = 0 and 

a.= EJ(U. N), 
J J : 

Assumption (2B) and (2.1.7) imply that 
-a = 

N 

z: 
j=l 

N 

I 
j=l 

2 
a., = 

J 

N 

I 
j=l 

3 I a. I s 
J 

N 

J : I 
j=l 

N l 

I = N 
j=l 

0 

and (2.2.8) follows. For approximate scores aj = J(j/(N+l)), 

consequence of Assumptions (2B) and (2C) (cf. also (2.2.4)) .. 

(2.2.8) 

□ 

• 
1S a 

Let [x] denote the largest integer not exceeding x. Define m = [NI/3 ] 

and I= {I,2, ••• ,m,N-m+l, ••• ,N-1,N}. Take o E (O,¼) as in Lerx1111a 2.2.1. 

LEMMA 2.2.3. If Assumptions (2A) and (2C) are satisfied~ ~hen 

(2.2.9) E( I 
♦ 

JEI 

PROOF. According to 

E c ~ s max I c . I E I c . I 3 
J J J 

Assumption (2A), Ee. = 0, Ee~= I, 
-2/3 J J 

= O(N ). Hence, straightforward 

that for d1"st1.·nct 1.· J. h k EI , , , , 

Ass1UDption (2C) ensures that for J!_ = I , 2, 3 ,4, 

3 -½ Ejc. I = O(N ) and 
J 

computation shows 



(2.2.IO) 
• 

J ( J_ ) 
N+l 

-2/3 
N 

0 
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{IJ(t)I£ + IJ(l-t) l~}dt 

Direct computation of the left-hand side of (2.2.9) now produces the result 

of the lem111a. D 

2.3. PROOFS OF THE THEOREMS 

To establish a Berry-Esseen theorem one usually invokes Esseen's smooth

ing leio111.8 (cf. Len1111a 1.1.3), which implies that for ally> 0 

(2 .. 3.1) 

* 

sup 
xe:JR 

1 
s; -

1T 

2 

--~--- dt + O(N-!), I t I 

where lJ,,N denotes the characteristic function * TN (cf. (2.2.6)). 

It follows from Len·11na 2.2.2 that in order to prove Theorems 2. 1. I and 

2.1.2 it is sufficient to show that 

(2.3.2) 

It I S:log N 

We first prove Theorem 2 .. 1.I. Let R = (R1 ,R2 , ••• ,~) and D = (D
1

,D
2

, ••• 

.•. ,DN) denote the vectors of ranks and antiranks respectively and define 

(2.3.3) 
N 

I 
j=l 

c .. J (U.) = 
J J 

N 

I 
j=l 

cD J (U. ·N), • J • 
J 

where u1,u2, ... ,UN are independent and uniformly distributed random vari

ables on (0,1). Since the vector of order statistics is independent of R, 

we have 

N 
(2.3.4) I 

j=l 

and it follows that 
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itT 

Hence 

(2.3.5) 

and because of (2.3.4), Assumption (2B) and (2.1.7) 

(2.3.6) 

2 
E(SN-TN) 

N 

2 
j=l 

l =--N-1 
2 o (J (U. ) ) -

J:N 

As SN is a su:m of independent random variables with ESN = 
Assumptions (2A) and (2B)), 

V 2. l of PETROV ( 1975) to obtain that for It I ~ log N:, 

(2.3.7) 

Finally we note that (2.3.6) implies that 

(2.3.8) 

2 
O, cr (SN)= 1 and 

we ma.y apply Lema 

Combining (2.3.5) through (2.3.8) we arrive at (2.3.2) and the proof of 

Theorem 2.1.1 is complete. 

We now turn to the proof of Theorem 2.1.2. To distinguish simple linear 

rank statistics with exact scores and with approximate scores we define 

(2.3.9) 

and 

(2.3.10) 

T1 = 
N 

T = 
N 

N 

2 
j=l 

N 

I 
j=l 

R. N 

1 
j=I 

cD EJ(U. ·N). . J • 
J 

' 

Because of Lertuna 2. 2. 1, the ass 1.1rr1ptions of Theorem 2. 1 • 2 imply those of 

Theorem 2.1.1. and we may therefore conclude from the proof of Theorem 2.1.l 

that 
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(2.3.11) 
itTN -!t2 

IEe -e I dt = 
I t I 

_1 

O(N ~). 

I t I :5: log N 

A Taylor expansion yields 

(2.3.12) 
itTN itT' itT' 

Ee = Ee N + 

In the situation of Theorem 2.1.2 the scores generating function satisfies 

both Assumption (2C) and Condition R1 , so that we may apply Leir1111a 2.2. I 

to find that for some c E (O,¼), 

(2.3.13) 

E(T -T') 2 
N N 

1 N 
= N I 

j=l 

N 
= E( I 

j=l 

• 

. 2 

-- 1 
N-1 

1 - ----,---,-. 
N (N-1) 

• 

{EJ(Ui :N) - J(N~l)} 

N 

I 
. 2 

j=l 

1 ----N(N-1) 

N 

< I 
j=l 

{EJ(U. ) - J( j ·) }) 2 = O(N-½-20 ). 
J : N N+ I 

Define m = [N 113 J and I= {l,2, ••. ,m,N-m+l, •.• ,N-1,N} as in Section 2.2. 

Repeating the argument of (2. 3. 13) for restricted s11ms we find 

(2.3.14) 
N-m . 

J=m+ 1 J J 

Combining (2.3.11) through (2.3.14) we see that, in order to prove (2.3.2) 

we have to show that 

(2.3.15) 

ltl~logN 

We note that (2.3.13) 

(2.3.16) E( I 
jEI J 

itT' 
IE(e N l 

jc:I 

and (2.3.14) imply that 
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Let n = { D. : j 
J 

let w = {d.: j EI} 
J 

EI} be the set of antiranks 

be a possible realization of 

itT' 
E(e N l cD {EJ(U. ·N) . J • jEI J 

.. 

D. with indices in I and 
J 

n. We have 

(2.3.17) 
N-m 

= E{E(exp{it l 
j=m+l 

c0 • J (·N·¾ 1 ) } I n) E ( exp { i t I 
J jEI 

• 

. 2 
jc: I J 

N-m Conditionally on n = w, E. 1 c 0 .J(j/(N+I)) is distributed as a simple 
J=m+ J 

linear rank statistic for sample size N - 2m based on a set of regression 

constants {c 1,c2 , ••• ,cN}\{cdj: j EI} and having a scores generating func-
• tion 

J (m+ (N-2m+ l) x) 
N+l 

for x E (0,1). 

We write this simple linear rank statistic as 

(2.3.18) T = wN 

~1 

I 
j=l 

Q. 
J 

M+l ' 

where M = N-2m, {b 1,b2 , ••• ,bM} = {c 1,c2 , •.• ,cN}\{cdj: j EI}, Q
1

,Q
2

, •.• ,QM 

are the ranks of v1,v2, •.• ,VM, which are independent and uniformly distribut

ed random variables on (0,1). Define 

(2.3.19) s = wN 

M 

I 
j=l 

b.JN(V.). 
J J 

LEMMA 2.3.1. UndeP the assumptions of Theorem 2. 1.2 we have 

(2.3.20) 

PROOF. 

--

+ 



Because 1 and 

I I I b.b. I 
(i,j )# ]_ J 

M 
= I( I 

j=l 

the Cauchy-Schwarz inequality yields 

Further1nore we have 

I M 
= - I l·f 

j=l 

M 

L 
j=l 

I ( I 
jEI 

2 
C ) -
d. 

J 
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M 

I 
j=l 

where Vl:M < v2 :M < ••• < VM:M denote the order statistics of v1,v2 , ••• ,VM. 

We note that IJ~(t) I is bounded above by 

where h is defined as in the proof of Le.rn111a 2. 2. 1. Since hN satisfies Con

dition R2 , we can argue as in the proof of Lenr111a 2. 2. 1 to show that 

M 

L 
j=l 

1 

= 

0 

• 2 

= 0 

m 
l - N+ 1 

m 
N+l 

j ( j ) { ' ( j ) } 2) 
M+ 1· l - M+ 1 hN M+ I 

and the proof of the lem1,1a is complete. 0 

It follows from Len101a 2. 3. 1 that 

(2.3.21) 
itT N itS N 

Ee w - Ee w = 0 ( I t [ N -1 / 3- 2cS / 3 { I + ( I 
jEl 
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Since SwN is a si:11n of independent random variables, with variance (cf. 

Assumption (2A)) 

(2.3.22) ( 1 - 2 
jEI 

Lemma V 2.1 of PETROV (1975) together with Assumptions (2A) and (2B) yield 

(2.3.23) 
it(S N-ES N) 

Ee w w - e 

2 2 -!-rt 
w _l 3 

= 0 (N 2 It I ) , 

for all ltl ~ log N. Furthermore, in view of Assumptions (2A), (2B) and 

(2C), 

(2.3.24) 

Defining 

(2.3.25) 

it(S N-ES N) 
Ee w w 

= It! 
M 
~ b. 

j=l J 

1 

0 

itSwN 
- Ee ~ 

I C • I 
J 

m 
N+l 

0 

L 
jEI 

{J(t) + J(l-t) }dt 

and noting that 

2 2 -!-rt 
w 

e 

2 2 -!-r t 
N 

- e < 1 2 2 2 
- 2 I -r w - TN I t , 

we combine (2.3.21) through (2.3.24) to arrive at 

• 1 2 2 
1tTwN -~TNt 

Ee - e (2.3.26) = 

m 
l - N+l 

m 
N+l 

J(t)dt 

. I . w N JE J 
• 

for all ltl slog N and uniformly in w. Substituting this result in (2.3.17), 

we obtain by repeated use of the Cauchy-Schwarz inequality 



27 

itT' 
Ee N I 

jEI 

2 2 
-~TNt . . 

--
JE J JEl J 

(2.3.27) 
JEI J J JEI J 

211 \ 2 - Ml ) ) +t -Len N 
jEl j 

JEI J J JEI J 

. ID. JE J JEI J 

for all ltl ~ log N. 

We note that Assumptions (2A) and (2C), (2.2.5) and (2.2.10) imply 

• • 

IE { 1 + it . L CD. J (N~ l)} . l CD. { EJ (U. : N) - J ( Ni 1) } I 
JEl J JEI J J 

• • 

(2 .. 3.28) 
JEI 

Furthermore, we obtain by applying Le1,1,r1a 2. 2. 3 

(2.3.29) 

Finally, 

(2.3.30) 
je:I J 

and 
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(2.3.31) {E ( l 
jE:I 

2 
C -D. 

J 

according to Ass1.1J11ption (2A). Combining (2.3 .. 16) and (2 .. 3.28) through 

(2.3.31) and substituting these results in the right-hand side of (2.3.27) 

we find that 

(2.3.32) 
itT' 

E(e N l 
j EI 

for all !ti slog N. To conclude we note that it follows from (2.2.4) that 

(2.3.33) 1 =--
N-1 

N 

t 
j== l 

N 

I 
i-= 1 

J( i ))2 = 
N+l 

We see that the proof of Theorem 2.1.2 is complete by combining (2.3.1), 

Lemma 2.2.2, (2.3.11) through (2.3.14), (2.3.32) and (2.3.33). D 
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CHAPTER 3 

EDGEWORTH EXPANSIONS UNDER THE NULL-HYPOTHESIS 

3.1. INTRODUCTION AND EDGEWORTH EXPANSION 

In the present chapter we investigate third order approximations for 

the distribution functions of simple linear rank statistics under the null

hypothesis., We shall establish Edgeworth expansions for these statistics 

with remainder o(N- 1). This chapter contains the results of DOES (1981b) 

where these expansions have been derived. 

Let x1,x2 , .•• ,~ be independent and identically distributed random 

variables with a coii:i,rion continuous distribution function F. If x
1 

:N < x
2

:!~ 

< ••• < ~:N denotes the 

then the rank R.N of X. 
J J 

defined by XnjN = xj:N' 
statistic 

N 
(3.1.1) L 

j=l 

sequence x1,x2 , ••• ,~ arranged in increasing order, 

is defined by X. = XR-N·N and the antirank D.N is 
J J • ' J 

j = 1,2, ... ,N. We consider the simple linear rank 

R.N 
J . 

N+l 
--

N • 

I 
j=l 

where c 1N,c 2N, ••• ,cNN' N = 1,2, ••• , is a triangular array of regression con

s tan ts a11d J is a scores generating function defined on (O, I). 

Throughout this chapter we make the following ass1Jmptions. 

ASSUMPTION (3A). The regression constants c 1N,c2N, ..• ,cNN satisfy 

N 

I and 
j == I 

This asslunption implies that ETN = 0. 

max 
lSjSN 

ASSUMPTION (3B). The saores generating function J is three times differenti

ab Ze on ( O , l ) and 
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( 3. I • 2) lim sup t ( 1-t) 
t+O, 1 

J'' ( t) 
J' ( t) 

-there exist positive numbers r > 0 and a. < 3 + 1 /14 such that its third de

rivative J''' satisfies 

(3.1.3) IJ''' (t) I ~ r{t(l-t) }-a. fo:r t E (O, 1). 

Furthermore 

I I 

(3.1.4) J(t)dt = 0, 

0 0 

We note that (3.1.2) ensures that the function J' does not oscillate 

too wildly near O and l (see also Appendix 2 of ALBERS, BICKEL & VAN ZWET 

(1976)). Ass11mption (3.1.4) c.anbemade without loss of generality. 

Taking 

(3.1.5) 
N 

J = I I 
N . 1 J= 

we know that the • variance 
2 

crN of TN (cf. (3.1.1)) 

I 
N 

(3.1.6) 
N-1 I 

j=l 

(J ( j ) - J) 2 
N+l 

is given by 

... 
(see e.g. Theorem II 3.1.c of HAJEK & 

..) .... 
SIDAK (1967)). Define, for each N ~ 2, 

(3.1.7) 

and 

(3.1.8) for -ro < x < oo. 

,.._, 

Furthermore define for each N ~ 2 and real x, the function FN by 

2 
,..., K 3N 2 K 4N 3 K 3N 5 . 3 

(3.1.9) FN(x) = ~(x) - qi(x) 6 (x -1) + 24 (x -3x) + 72 (x -IOx +15x) 

where the quantities K3N 

N 
(3.1.10) I 

j=l 

and K 4N are given by 

1 

0 



and 

N 
(3.I.11) I 

j=l 

1 

-
0 

3 
N 

l 

Our theorem reads as follows. 

l'HEOREM 3. 1. 1. If the Assumptions (3A) a,id (3B) are satisfied., then as 
N -+ oo 

(3. l • 12) 

We note that K 3N and K 4N (cf. (3.1.10) and (3.1.11) are asymptotic 

pressions for the third and 
-1 

o(N ) have been neglected. 
. * Edgeworth expansion for FN. 

* fourth cumulants of TN where terms of order 
,..._, 

Hence FN may be said to constitute a genuine 

We should also point out that Theorem 3.1.1 
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ex-

allows scores generating functions tending to infinity in the neighborhood 

of O and 1 at the rate of {t(l-t)}-I/I 4+£ for some E > 0. It is clear that 

this includes the nor11ia l q uant il e -I function, ¢ . 

Whenever we shall suppose in the remainder of this chapter that (3.1.3) 

in Assumption (3B) is satisfied, we shall tacitly and without loss of gen

erality ass1n11e that a € (3,3+1/14) and define c = 3+1/14 - a. Hence from now 

on we replace (3.1.3) in AsstlilJption (3B) by 

(3.1.13) JJ''' (t) I ~ r{t(l-t)}-(3+I/I4)+o fort€ (0,1), 

where 

(3.1.14) 0 < 6 < 1/14. 

The reason for making the obviously superfluous assumption that a> 3 

and hence that 8 < 1/14, is that some of our intermediate results hold only 

in that case. 

In Section 3.2 we prove a n1.unber of preliminaries. The proof of Theorem 

3. I .I is contained in Section 3.3. In Section 3.4 we compare our results 

with those in BICKEL & VAN ZWET (1978) for the two-sample linear rank stat

istics. Finally, in the last section we discuss briefly the numerical as

pee ts of our expansions. 
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3.2. PRELIMINARY LEMMAS 

The aim of this section is threefold. In the first place we approxi-

mate study the behavior 

of the characteristic function of T; (cf. (3.1.7)) for large values of the 

argument. To this end we shall provide a le1111na which is a special case of 

Theorem 2. l of VAN ZWET ( 1980). Finally we prove two technical le111rnas, the 

purpose of which will become clear in Section 3.3. 

As in Chapter 2 we shall suppress the index N whenever it is possible: 

in particular we shall write cj, Rj and Dj instead of cjN' RjN and DjN. Let 

u1,u2, ••. ,UN be independent and uniformly distributed random variables on 
' 

(0,1) and Ul:N<UZ:N< .... <UN:N the corresponding uniform order statistics. 

LE}ll1A 3.2.1. If J satisfies Assumption (3B), then 

N 
(3.2.1) 2 

j=l 

with o as in (3.1.13) and (3.1.14). 

PROOF. Take o as in (3.1.13) and (3.1.14), let h be a function on (0,1) with 

h'(t) E r{t(l-t)}~lS/l 4+5 and write~-= j/(N+l). Since 
J 

lim sup 
t-+O, 1 

t(l-t) h '' ( t) 
h' (t) 

3 
< 2 , 

Lemma A.2.3 of ALBERS, BICKEL & VAN ZWET (1976) yields 

= 0 N ' 

uniformly in j. Because IJ'(t) I ~ h'(t) we have IJ(s)-J(t) I ~ lh(s)-h(t) I 
for every s,t € (0,1) and hence 

(3.2.2) 
2 

E { J (U. N) - J ( A . ) } = 0 
J! J N 

, 

uniformly in j. As J satisfies (3.1.2), we also have, in view of (A.2.11) 

in ALBERS, BICKEL & VAN ZWET (1976), 

• 
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(3.2.3) 
A.(1-A.)+IJ'(A.) I 

I EJ ( u . N) - J ( >- • ) I = 0 J · · ·- J .. J 
J: J N . = a 

N 

uniformly in j. Since JJ = 0 and 6 E (0,1/14) (cf. (3.1.4) and (3.1.14)), 

it follows that 

(3.2.4) 
l N 
N l 

j=I 
J(>i..) 

J 
--

1 N 
N l 

j=l 
{J(>...) -EJ(U. N)} 

J J: 

Furthermore, in view of (3.2.2) and (3.2.3) and since JJ 2 = 1 and 

o e: (O, I/ 14) 

N 

I 
j=l 

N 
s I 

j=l 

N 
-- I 

j=l 

2 
E{J(U. N)-J(A.)} + 2 

J: J 

which proves the le1111,1a. D 

N 

I 
j=I 

• 

l J ( A . ) I I EJ ( u . N) - J ( A • ) I 
J J: J 

We now consider the behavior of the characteristic function of T* for 
N 

large values of the arg1ment. Let 

(3.2.S) 

• 

LE:MMA 3.2.2. If Assumptions (3A) and (3B) are satisfied~ then there exist 

positive nwribers B, Sandy such that 

. (3.2.6) 

f'or log N s ltl s yN312 and N = 2,3, •••• 

, 

PROOF. The present le a is a special case of Le11011a 1. 3. 1. Since we are con-
• 

cerned with independent and identically distributed random variables - which 

we may assume to be unifo~mly distributed without loss of generality - Con

dition (1.3.9) of this le1n1ria is clearly satisfied. Moreover, Ass11mption (3B) 

guarantees that there exists a positive fraction of the scores which are at 

a distance of at least N-312 1ogN apart from each other, so Condition (1.3.8) 
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is also fulfilled. It follows from Ass11mption (3A) that for k :::: 4 Condition 

(1.3.6) of Lemma 1.3.1 is satisfied. Hence the existence of positive num

bers c and C such that 

N 
(3.2.7) I 

j=l 
( J ( j ) - J) 2 ~ cN , 

N+l 

N 

2 CN 
j=l 

suffices to prove the present leca11nA.. However (3.2.7) is a consequence of 

Ass11111ption (3B) (cf. (3.2.1)). D 

Let [x] denote the largest integer not exceeding x. Define m = [N8115 J 

and I= {1,2, .•• ,m,N-m+l, ... ,N-1,N}. 

LEMMA 3.2.3. If Assumptions (3A) and (3B) are satisfied~ then 

(3.2.8) 

(3.2.9) 
N-m 

{ 1 \ 
N..,.2m • l 

J=m+l 

with o as in (3.1.13) and (3.l.14). 

J 

• 

PROOF. According to Ass111nption (3A) LC. 
J 

2 = 0, Ee.= I and 
J 

N 

I 
j=l 

k IC. I ~ 
J 

N 

I 
j=l 

fork> 2. It follows that for distinct i,j,h,g,k,l EI 

6 -3 
EcD. = O(N ) , 

1. 

5 -4 
EcD. cD. = 0 (N ) , 

1. J 

4 2 -3 
EcD. cD . = 0 (N ) , 

1 J 

3 3 -3 
EcD . cD . = 0 (N ) , 

4 -4 3 2 -4 

1. J l. J l. J 

2 2 2 -3 
EcD • cD • cD = 0 (N ) , 

i J h 

3 -5 

l. J g 

. ., 2 2 -4 

l. J g 

2 -5 
EcD . cD • cD cD cD = 0 (N ) , 

1. J h g k 

-6 

l. J 

Furthermore, Holder's inequality yields 



(3.2.10) 

In view of (3 .. 1 .13) and (3. I .14) we have for k = 1,2, .... ,6 
m 

jEl 
!J( j) !k = 0 

N+l 

(3.2.11) 

• • Direct computation of the 
2 -1 Since Ee.= 0, Ecn. = N 

J J 

N-m 
E( I 

j=m+l 

0 

--

right-hand side of (3.2.10) produces (3.2.8). 
-1 

and Ecn.cn. = -{N(N-1)} for i ~ j, we have 
l. J 

Similarly we find that, in view of (3.2.4) and (3.2.11), 

(3.2. 12) 

N-m 
I l I 
N • 

J=m+l 
J( j) I= I I I J( j )I + O(N-13/14-c) 

N+l N. I N+l 
JE 

= O ( {m} l 3/ l 4+8) 
N 

and the le-i11111a fol lows. 0 

To conclude this section we prove 

35 

LEMMA 3.2.4. If Assumption (3A) is satisfied, then for any y < 1 and N ➔ 00 

(3.2.13) P( l 
j El J 

PROOF. Since E(r. I 
J€ 

2 

2 -1 en . ) = 2mN and 
J 

E( I 
jEl 

C -D. 
2m(N-2m) = _____ .,......... 
N(N-1) 

J 

N 

< I 
j=l 

4 
C • -

J 

the Bienayme-Chebyshev inequality ensures that for every y < I 

p ( I l c 2 - 2m I ~ 
. I D. N J€ J 

1-y 
2 ) 

The le1,11,,a follows 
-1 

because mN ➔ 0 as N ➔ 00 • 

• 

2 2m)2 = O(N-22/15). 
CD. - N · 

J 

□ 



36 

3.3. PROOF OF THEOREM 3.1.l 

To prove Theorem 3.1.1 we start with an application of Esseen's smooth

ing le11aiia. (cf. Lemma l. 1.3), which implies that for all Y > 0 

(3 .. 3 .. l) sup 
XE:lR 

l 
< mo 'v ' ' d t + 0 ( N - 3 / 2) , 

I t I -

where 
,.., . 

notes the Fourier-Stieltjes transform of FN (cf. (3.1.9)), i.e. 

00 

• 

(3.3.2) 

~ The derivative of 1./JN is uniformly bounded and also 

-= 1/JN(O) = 1, we have 

(3.3 .. 3) 

Similarly, Leuao.a. 3.2.2 and (3.3.2) ensure that 

(3.3.4) 

3/2 logN:S:lttsyN 

K4N 4 
24 t -

and 
,..., 
1./J deN 

From (3 .. 3.1), (3.3.3) and (3.3.4) it follows that, in order to prove Theorem 

3.1.1 it suffices to show that 

(3.3 .. 5) 

where A 

tcA 
-3/2 

= { t : N s I t I :S: 1 og N} • 

• 

To solve this problem we use a conditioning argument. We take o as in 
. . 8/15 (3.1.13) and (3.l.14) and define m = [N ] and I= {1,2, ••• ,m,N-m+l, ••• 

with indices in I and let w = {d.: j E I} be a possible realization of n. 
J 



Finally define 

(3.3.6) 

Because 

(3.3.7) 

z = 
N 
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and ZN are conditionally independent given n, we have 

. -1 
1. tcr Z 

n)E(e N Nin)] 

J=m+ J 
tributed as a simple linear rank statistic for sample size N - 2m based on 

a set of regression constants {c 1,c 2 , ••• ,cN}\{cdj: j EI} and having a 

scores generating function 

(3.3.8) J(m+(N-2m+l)t) 
N+l fort E (0,1). 

We write this simple linear rank statistic as 

(3.3.9) T = wN 

M 

I 
j=l 

Q. 
J 

M+l ' 

where M = N- 2m, {b 1 ,b 2 , .•• ,bM} = {c 1 ,c2 , .•• ,cN}\{cdj: j € I}, Q1 ,Q 2 , ·•.QM 

are the ranks of V 1 , V 2 , ••• , VM, which are independent and uniformly distri

buted random variables on (0,1). 

Define for j = 1,2, ••• ,M 

(3.3.10) 
..... 
V. = E 

J 

Q. 
-- l 

M+l 
M-1 

+ M+l Vj 

and let SwN be a three-term Taylor expansion of TwN' 

(3. 3. 1 I) s = wN 

M 

I 
j=l 

.,... 
b. {JN(V.) 

J J 

Q. J .... 
M+l - Vj 

• 
Vl.Z. 

2 
} . 

We shall approximate (TwN - ETwN) by (SwN-ESwN) and for this we need 

LEMMA 3.3.1. Under the Assumptions (3A) and (3B) we have~ uniformly in w, 



38 

(3.3.12) 
w w • I 

JE J 

with o as in (3.1.13) and (3.1.14). 

PROOF. Let, for j = 1,2, ... ,M, 

Q. 

Because 1 and 

M 

= IC l 
j=l 

s I + ( I 
jEI 

the Cauchy-Schwarz inequality yields 

+ 
(j, k),' J 

s <2 + { I 
j EI 

Q. 1 .... 

M+l J 2 

M 
= E( I 

j=l 

+ (1 + { 

2 
C ) -d. 

J 

2 M 
b.Y.) = I 

J J j=l 

I 
ji::I J 

Q. 
J 

M+l 

.... 
- V. 

J 

2 

M 
l b~ 

j ~ I J 

Define 
-1 r(t) = {t(l-t)} . By Taylor's theorem, (3.3.8), (3.1.13) and the 

convexity of the function r(t) we see that 

Ql .... 6 QI 
EY2 I .... 2 

{J''' (n < E M+l - V 1 sup + ( 1-n)V l)} 
1 - 36 N M+l 

Osnsl 

6 
..... 

r2 QI .... {r6+1 /7-20 m+Ql 6+1 /7-26 m+(M+l )VI 
} . < 36 E M+l - V l + r - N+l N+l 

} . 

The independence of the vector of ranks (Q 1,Q2 , ••• ,QM) and the vector of 

order statistics (Vl:M'VZ:M, .... ,VM:M) and Le11ar1a A.2.3 of ALBEHS, BICKEL & 

V.AN ZWBT (1976) imply 

• 



( 3. 3. I 3) ·r 
6+1 /7-26 

1 M 
= o - I 

M4 j=l 

m+Ql 

N+l 

m+Ql 

M+l 

1 M 
~ M I 

j=l 
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6 

Furthermore, the conditional distribution of Q1 - 1 given v1 is binomial with 

parameters M-1 and v 1 and by application of a recursion formula for the cen

tral moments of this distribution (cf. JOHNSON & KOTZ (1969), p. 52) we find 

Hence, 
..... 

m+(l1+ l )VI 

N+l 
= 0 E + 

(3.3.14) ,.. 

6+ I /7-26 
•r 

m+(M+l )VI 

N+l 

This proves 

the 1 e1nr11a • D 

It follows from Le11roia 3.3.1, (3.1.6) and (3.2. 7) that 

. -1 

(3.3.15) 

unifo~mly int and w. 

Our next task is 

doing this resembles 

of (O,~) and define 

. -· 1 
1toN (SN-ES N) 

E 
w w 

- e 

= 0( It IN-1-78/15{ 1 + ( I 
jEl 

-1 
to evaluate E exp{itcrN (SwN-ESwN)} • The technique for 

' 

that in HEJ.MERS (1980). Let X be the indicator function 



40 

M M 
~ ~ ~ ~ 

s1 = b.(JN(V.) 
j= 1 J J j = 1 J J 

--

(j ,k);& J J J J 

(3.3 .. 16) 
2(1I+l) (j,k);& J J J J 

1 s =---
4 2(M+I) 2 

• 

It is w w v=l v v 
0 for v = 1,2,3,4. 

First of all we compute a number of moments. 

LEMMA 3.3.2. Under the Assumptions (3A) and. (3B) we have, uniformly in w, 

(3 .. 3.17) 

with o as in (3.1.13) and (3.1.14). 

PROOF. 
..... 

distinct j and k, h(V., Vk) = J~(V.) (x (V .-Vk) - V.). Define h(x,x) = 0 for all 
J J 4 J J 

0 < x < 1. Direct computation of ES 2 shows that 

(3. 3. 18) 

M 
ES~ = l 4 E{ L b. 

(M+l) j=l J 

M 

I 
k=l 

M }1 M 1'1 ?·1 

(M+l) j=l J r=l 
=--- I 

s=l 
I L ~h(V 1,Vr}h(V1,V

5
)h(V1,Vt)h(V1,vu)} 

t=l u=l 

M M M M 
+ 4 I I I I Eh(V 1,Vr)h(V1,V

5
)h(V1,Vt)h(V2,Vu)} 

(j,k);& J r-1 s=I t=l u=l 

2 M lvl M 11 
+ 3 I I I Eh(V 1,Vr)h(V1,V

8
)h(V2,Vt)h(V2,Vu)} 

(j ,k);E J r=l s=l t=l u=l 

M M M 
+ 6 I I I 

s=l t=l u=l 

M M M M 
+ l l I l b . bkb ,eh { I l 

(j , k, l, n) =r J n r= 1 s= 1 
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To bound the right-hand side of (3.3.18) we note that an expectation in 

(3.3.18) equals zero if at least one of the indices (r,s,t,u) occurs only 

once. With the aid of the Cauchy-Schwarz inequality the non-zero expecta-

tions may be bounded by either 
2 2 {Eh (V

1
,v2)} and we obtain 

(3.3.19) (j,k);' J 

(j, k),' J 

4 4 ½ 2 Eh (V 1,v2), {Eh (V 1,v2)} Eh (V 1,v
2

) or 

In view of (3. 3. 8) and Ass11mpt ion (3B) we have, for I :5; k :5; 4, 

( 3. 3. 20) 
== 0 

= 0 

l _ m+l 
N+l 

m+l 
N+l 

::; 2E J' 
m+l+(M-l)V

1 
N+l 

I - m 
N 

{t(l-t)}l-15k/14+k6dt = O(Nk/2-14/I5-7ko/15). 
m 
N 

According to Asstrmption (3A) and the fact that {b 1 ,b 2 , ••• ,bM} = {c 1 ,c2 , • • • 

.•. ,cN}\{cd.: j € I}, we have 
J 

M 

I l 
j=l 

and similarly 

b . I 
J 

- 0 m - ;r 
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(3.3.21) l + 

I l l 
(j, k) ;! 

O(N-7/15), 

Combining (3.3.19) through (3.3.21) we 

and hence In the same way one can obtain the other 

two assertions in (3.3.17). D 

Define, for real t and N 2 2, 

(3.3.22) 

and 

(3.3.23) 

-I 
itoN S 1 it 

Ee {l + -
ON 

The next l.t!rttroA. shows that pN can be approximated by P tN· 

LE:MMA 3.3.3. Under the Assumptions (3A) and (3B) we have, uniformly for 

ltl $; log N and w 

(3.3.24) 

with o as in (3.1.13) and (3.1.14). 

PROOF. Repeated use of Lenn1ta XV 4. 1 of FELLER ( 1971) yields 

From (3.1.6) and (3.2.7) it follows that 

exist positive n,unhers e: 1 s; c: 2 such that 

the desired result. 0 

for all sufficiently large N there 
2 

E 1 s; oN $; e: 2 • Le11,,,1a 3. 3. 2 produces 

Clearly, our next task is to evaluate the right-hand 

and we start with the leading term. According to (3.3.16) 

side 

s = 
I 

of (3.3.23) 
M ,..., "" 

1:. I b.JN(V.) .. 
J= J J 
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r,J ""' 

We,~have EJN (V l) 

n111obers y 
1 

:S y 
2 

= 0 and for all sufficiently large N, there exist 
..... z ..... 

such that y 1 S EJN(V 1) s Yz (cf. (3.1.4)). In the 

. .. 
pos1t1.ve 

sequel we 
shal 1 ass1.rroe 

(3. 3. 25) < l - y 

for some y E (0, 1), to guarantee that 

(3.3.26) 
2 

cr (S 1) 

Finally we note that Ass11mptions (3A) and (3B) . 1 M b4 O(N- 1) imp y that E. 
1 

• = 
"' -and that the random variable JN(V 1) has a 

J= J 
finite 14-th absolute moment. It 

follows from the classical theory of Edgeworth expansions for s11ms of inde

pendent and non-identically distributed random variables (see e.g. Le1ua1a VI 

4. 11 in PETROV (1975)) that 

(3.3.27) 

uniformly 

t by tN = 

It J ::;; log 

(3. 3. 28) 

IE 

M 

I 
j=l 

M 
{ I 
j=l 

- t2 ----

4 ..... 4 - ~2 - 2 
bj{EJN(V 1) - 3[EJN(V1)J } 

for ltl slog N and w for which (3.3.25) is satisfied. Replacing 

N and w for which (3.3.25) is satisfied 

- -

6oN j= 1 

M 
{ I 

j=l 

that uniformly for 

t2 2 2 
2 (oN - a (S 1)) 

2oN 

2 2 M 3 ..... 3 -

J=l 



44 

where O < e 1 
< 2 and P1 and P2 are fixed polynomials. 

We now turn to the remaining terms on the right in (3.3.23). Let 

(3. 3. 29) 

,..., ..... 
denote the characteristic function of JN(V 1), so that 

(3 .. 3. 30) 
M 

= .TII 
J= 

b.t 
J 

• 

From the Assiunptions (3A) and (3B) it follows by Taylor expansion that for 

distinct integers £ 1, ••. ,ln where I :S n :S 4 

(3.3.31) 
n 
TI 

v=l 

t2 n 
=l--2{2 

2crN v=l 

uniformly for It I :S log N and w for which (3. 3. 25) is satisfied. 

In the last two lemi11as of this section we s11111niarize the results we 

need. 

LEl-iMA. 3.3.4. Under the Assumptions (3A) and (3B) we have, unifor,mly for, 

It! :Slog N and w for whieh (3.3.25) is satisfied . 

(3.3.32) 

(3.3.33) 

(3.3.34) 

. -1 
1tcr S 

. -1 
1.to S 

-1 
ito S . 

- Ee N l{it ES S 
ON 1 2 

1 where O < e < 2 , £ > 0 and Pis a fixed polynomial. 
• 

PROOF. Because the statements (3.3.32) through (3.3.34) are all proved in 

essentially the same manner, we shall only prove the first statement, by way 

of an example. An application of Le1n111a XV 4. 1 of FELLER ( 1971) shows 



- ·1 ,..,., -" ,..,.,,,, ,A, 

lexp{itcrN (bjJN(Vj) + bkJN(Vk))} 

(it) 2 ~ - ~ - 2 
---2- (b.JN(V.)+bkJN(Vk)) -

2cr J J 
N 

t4 
<--

ON 

It fallows that 

(3.3.35) 

We note that it is easy to check that 

(3.3.36) 

• 

and hence 

45 
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- it = E[ JN' (V.) (x (V. -Vk) - V.)] [ 
J J J ON 

--s2 
1 202 1 

N 

From (3.3.31) it follows that for distinct integers 1 ~ j,k s Mand 

ltl slog N 

(3.3.37) 

-1 
itoN s1 

= Ee { l + -2 . k N 1 ' 
2 J 

ON 

uniformly for ltl ~ log N and oo for which (3.3.25) is satisfied. Hence, 

combining (3.3.35) through (3.3.37) and Assumption (3A), we find after some 

algebra 

(3.3.38) 

b. 
I I J 

(j ,k),' M+ I 
TI 

l:/:j,k 

3 
b.bk 3 (" )3 

+ _ J '3 cv ) J + it 
M+l N k 2 3 

aN 

N 

2 2 
b . bk(b . +bk) 

I }: 3 J 
(j ,k)=,' M+ l 
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uniforrnly for ltl ~ log N and w for which (3.3.25) is satisfied. From Ass1imp

tion (3B) and (3.3.8) it follows that (see also (3.3.20)) 

• 

(3.3.39) 

EIJ2(V )J (V )J'(v""' )I = O(Nl/10-70/5),· 
N 1 N 2 N I 

Ei~J (V- )J' (V- )I= O(Nl/15-146/15),· 
N l 1-:J I 

Finally we obtain by partial integratio11 

(3.3.40) 

Coltlbining (3 .. 3.38) through (3.3.40) a11d (3.3.21) we arrive at (3.3.32). D 

LEMMA 3.3.5. Under the Assumptions (3A) and (3B) we have, uniformly for 

!ti~ log N and w for which (3.3.25) is satisfied,· 

(3.3.41) 

whe~e O < e 

• 

-1 
itcrN S l 2 it 

- Ee {ES 2 + 
, ON 

2 
ES 1s2 

2 -1-e: -et = 0 (N I t l P ( t) e ) , 

PROOF .. The proof of the statement (3.3.41) is similar to that of L~n1ma 

3.3.4 and we shall only provide a sketch. Throughout, all order symbols will 

be uniform for ltl ~ log N and w for which (3.3.25) is satisfied. Let, for 

distinct j and k, 

( { . -1 } 2) E exp itoN s 1 s 2 

..... 
h(V. ,,~Vk) = JN' (V.) (x (V. -Vk) - V.). Direct computation of 

J J J J . 
shows 
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(3.3.42) 

M 
= E(e { I 

j=l 

b. 
' J 
M+l 

l M 2 -1 ~ ..... ~ .... 2 
= ---2 [ I b.{ I E exp{itoN (bjJN(Vj) +brJN(Vr))}h (Vj,Vr) 

(M+ I ) j = 1 J rf j 

• TT 
blt 

l=,j,r 

-1 ;-,..I ~ 
•exp{itaN b JN(v ) }h(V. ,V )h(V. ,V ) 

s ... s Jr J s 

' - 1 ,...,, .,..,, "' "" 
exp { i to N ( b j J l~ ( V j ) + bk J N (V k) ) } h ( V j , V k) h ( V k, V j ) 

-1 r-.; ""' ,,..._, ....... ,..._, .,.._ 

+ l E exp{ itaN (b .JN(V.) + bkJN(Vk) + b JN(V ) ) } 
..1.·k J J r r rTJ, 

•[h(V.,V )h(Vk,V) + 2h(V.,V )h(Vk,V.)] TT 
J r r J r J o..J.• k 

-LT J , , r 

+ l 
r=,j,k ..J. J J r J r srj,k,r 

} ] . 

Using Le11111)a XV 4. I of FELLER ( 1971), we expand all six exponents in the 

right-hand side of (3.3.42) (cf. (3.3.35)). From (3.3.31) it follows that 

for distinct integers ~ 1, .•. ,~n where l ~ n ~ 4 we have (cf. (3.3.37)) 

n 
= Ee { I + 2 { l 

2oN v=l 

(3.3.43) 

With the aid of (3.3.43) and the expansions of the exponents we proceed 

as in (3.3.38). For example, 

right in (3.3.42) equals 

.. 

the term involving h(V.,V )h(Vk,V) on the 
J r r 



l b,e_t 
2 

(J.vl+ 1) (j,k,r);& J l#j ,k,r 0 N J N J 

. -1 
1tcr S 

= Ee N I { l I I 
(j ,k,r);& 

b.bk 
.. J 2 [ Eh ( V . , V ) h ( Vk , V ) 

(M+l) J r r 

t2 
• h(V., V )h (Vk, V ) ] + 

2 J r r 2 

2 2 2 
(b.+bk+b) 

J r 
crN 

2 

From the Assumptions (3A) and (3B) and (3.3.8) we are able to calculate 

these s11ms (cf. (3 .. 3. 21) and (3. 3. 39)). Note that by partial integration 

we have 

Following this progra1c,111e, we finally arrive at 

• 

49 
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1 
b..e,t .. _ 1 ,.., .,... 

(j,k,r):# llJ,k,r N 

-1 "J .-.... ,...,.,, ,,,._ 

•exp{ i tcrN (bkJ1'1(Vk) + b rJN(V r)) }h (V j, V r)h (,Jk, V r) 

i tcr -l S 

= Ee N 
1 

{ l L l 
(j,k,r),& 

b.bk 
J 2[Eh(V.,V )h(Vk,V) 

(M+l) J r r 

• (. ) 2 it it 
+ - ES l h (V. , V ) h (Vk, V ) ] + 2 ON J r r 4<:JN 

I I 
(j,k),' 

where O < 

right-hand side of 

polynomjal. All other texms in 

(3.3.42) can be handled in the same way. 0 

the 

From Ler111oas 3.3.4 and 3.3.5 it follows that uniformly for I tl ~ log N 

and w for which (3.3.25) is satisfied (cf. (3.3.23)), 

where e; > 

3.3.1 and 3.3.2, as well as the fact that ES 1s4 = 0, 

(3. 3. 44) 

w . I JE J 

Using (3 ~ 3. 26), Ler,1mas 

we obtain 

uniformly for w satisfying (3.3.25). Writing h(V 1 ,v2) = J~(V1) (x(v 1-v2) -v 1) 

as before, we find by repeated use of Assumptions (3A) and (3B) (cf. 

(3.3.20}, (3.3.21) and (3.3.39)) that, unifortnly for w satisfying (3.3.25), 



where e:: > 0 and 

(3.3.45) 

l 2 N I I 
(j ,k) ;& 

It follows that uniforruly for I ti ~ log N and w satisfying (3. 3 .. 25), 

(3.3.46) 
(it) 3 AlN 

+ 3 N 
2crN 

l l b~b -_,,;.,__;....,,_ 
(j ,k),' J k 

2 

Jt::I J 

where E > 0, 0 < e 

51 

Let us return to our starting point (3.3.7). Choose y € (0,1) and de-

( cf. (3. 3. 25) )'. According to Ler1rrna 3. 2 .. 4, 

. * 1.tT 

s -1-10/3 I 2 From Le1r111aa 3.2.3 it follows that El ~I = O(N ) and E(E(TN-ZN '2)) == 

O(N-4/ 3-i 4 o/lS). Hence by Taylor expansion we obtain 

. * 1.tTN 
= Ee 

' 

(3. 3. 4 7) 

+ 
N ---- 2aN 

6crN 24crN 

+ O (N-2 2 / 1 5 ) + O ( [ t 2 + I t I 5] N - I - 7 o / 3) , 
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uniformly for ltf ~ log N. In view of (3.3.15), (3.3.22) and (3.3.24) we 

have, uniformly for ltl $ log N and w satisfying (3.3.25) 

. -1 

E (e N N N N I n = w) 
1.taN (TN-ET N) 

= E(e w w ) 

(3.3.48) 

JEI 

where e > 0 and Pis a fixed polynomial. 

Before substituting this in (3.3.47) we shall provide unifo:.rm bounds 

Theorem II 3.1.c of 

HAJEK & SIDAK (1967) and Ass1mrption (3A) imply that 

where (cf. (3.3.8)) 

M 
J = l I 

N M • l 
J-

<1 - I 
jEI 

. l N m 

J=m+ 

J 

It follows from (3. 2. I 2) that I J I = O(N-I 3/3o-7o / 15) and fro--o Assumption 
l/30 N (3A) that IE. I cd.l = O(N ), hence 

JE: J 

(3.3.49) 2 1 
cr (T ) = - ( 1 - \' wN M-1 .£

1 J€ 

2 M 
Cd) l 

j j=l 

unifotmly in w. Further1uore we know from (3.2.4) that j}( = O(N-lJ/I 4-o), 
so in view of (3.1.6) and Assumption (3B) we have 

N 

I 
j=l 

(J. 3.SO) + O(N-13/15-14&/15) 

_ I 2 j l 2 2m M 

J€I jeI j j=I 

2 M 
Cd) l 

j j=l 

• 
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unif oritily in w. 

To obtain the second bound, we argue as in Ler111na 3.2. l with J and h(t) 

replaced 

1 M 2 . 
M .I JN<Mi1) 

J=l 

On ·1 ·f· h IEJ2 (v) E~J2 (v~) I O(N- 13115-t 4o/lS) d t th e easi y ver1. 1.es t at N 1 - N 1 = an oge • er 

with (3.3.49) and (3.3.16) this yields 

(3.3.51) 

uniforraly in w. 

We now substitute the rando1n versions of (3 .. 3.48), (3.3.46) and (3.3.28) 

in (3.3.47). Using (3.3.50) and (3.3.51) we find after straightforward com

putations that uniformly for ltl ~ log N 

* lj)N ( t) 

+ 

(3.3.52) 

+ 

1 2 • 3 N 
= E [ x (B) { e - 2 t ( 1 - 1. t ( l 

N 
c I 
j=l 

N 

< I 
j=l 

3 
C • -

J I 
• JEI 

N 

I 
j-- l 

2 -1 -et 
+ o(N ltlP(t)e ) 

where£> 0, 0 < e < 
1 and pis a fixed polynomial. 
2 
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First A few more facts are needed to 
-1 we note that for a= (m+l){N+l) = 

-7/15 0 (N ) , Ass11mption (3B) and (3. 3. 8) 

imply that 

a 

0 

fork= 1,2,3,4 and hence 

(3. 3. 53) 

1-a 

a 

1-a 

a 

1-a 

1-a 

a 

J4(t)dt + O(N-13/30-70/15). 

a 

Furthermore, Lemma 3.2.3 yields 

2 2 
E (crN - 0 (TN-~ In)) 

(3 .. 3.54) 
+ O(N-4/3-140/15). 

• 

• 

1-a 

J(t)dt 

a 

Combining (3.3.53) and (3.3.54) with (3.3.52) it follows after some compu

tations and repeated use of Assu1options (3A) and (3B) that, uniformly for 
N-3/ 2 ~ ltl ~ log N, 

(3.3.55) 

½ 2 . 3 
3 K3N + 

6crN 

2 
+ a(N-1lt}P(t)e-et) + O(N-I-EltlP(t)), 

' 
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l • where e: > O, 0 < 0 < 2 > Pis a fixed polynomial and K3N and K4N are given 

by (3.l .. 10) and (3 .. 1.11). 

To conclude the proof of Theorem 3 .. 1 .. l we note that (3. 2 .. l) in1plies 

Substituting this in (3.3.55) we obtain 

the proof of the theorem is complete. 

3.4 .. TWO-SAMPLE LINEAR RA.i'H<. STATISTICS 

r-.J 

(3.3.5) with lJJN • as 1.n (3. 3. 2) and 

' 

In this section we compare our results with the expansions for the two-

sample linear rank statistics in BICKEL & VAN ZWET (1978). Let 1 ~ n ~ N, 

A= nN-l and assume that€~ As 1-e: for some 

fine c. = (1-A)/{NA(l-A)}!, j = 1,2, •.. ,n and c. = -A/{NA(l-A)}!, j = n+l,.o• 
J J 

••• ,N. It is easy to check that in this case the c. 's satisfy Assumption 
J 

(3A) and 

N 

I 
3 l-2A 

j=l 

N 

I 
j=l 

' 

4 l-3>.+3A 2 

cj = N:\.(1-A) • 

Taking a scores generating function J which satisfies Assumption (3B), we 

define the two-sample linear rank statistic as in (3.1.1). For the distribu

tion F; of the standardized version of this statistic Theorem 3cl.1 provides 

an Edgeworth expansion with remainder o(N- 1): if 

(3.4.1) 

then 

1 
...., 
FN(x) = ~(x) - ~(x) 

1-2).. 

6-{ NA 
0

( 1 - 11.) } ½✓ 

(1-2>..) 2 
+ ---,,.-....----

72N:r\ ( l -:,\) 

sup 
xE]R 

l 

0 

I 

0 

3 
2 

5 3 J (t)dt (x -IOx +15x) , 

as N + 00 .. 

2 
(x -1) 
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BICKEL & V.AN ZWET (1978) consider the two-sample linear rank 

TN for an. arbitrary vector of scores a= (a 1,a2 , ... ,~), i.e. 

,. . 
statistic 

(3.4 .. 2) 

where 

v. = 
J 

N 

I 
j=l 

] 

0 

a. V., 
J J 

if 1 ~ D. :S n 
J 

otherwise, 

for j = 1,2, ••• ,N and where D1 ,D2 , .... ,DN denote the antiranks. In their 

paper they establish asymptotic expansions for the distribution function of 
• 

TN under the null-hypothesis as well as under contiguous al ter11atives. A 

related paper is that of ROBINSON (1978) which deals only with the null

hypothesis. 

In order to compare the results in BICKEL & VAN ZWET (1978) with Theo

rem 3. l .. l in the present chapter we introduce the following ass11mption on 

the scores a .. 
J 

ASSUMPTION (3C). Let a.= J(j/(N+l)) for j = 1,2, .•• ,N. This scores generat
J 

ing fu:notion J is t:uJioe continuous"ly diffeN3ntiable on (O, 1) and 

(3.4.3) lim sup t (1-t) 
t + O, I 

J'' ( t) 
J' (t) 

• 

< 2· , 

there exist positive numbers K > 0 and O < B < 1/6 suah that its first 

derivative J' satisfies 

(3.4 .. 4) IJ'(t) I~ K{t(l-t)}-716+S for t E (0 , l ) . 

Furthermore 

l I 

(3.4.5) J(t)dt = 0, 

0 0 

LEM.MA 3. 4. I. If £ ~ "- $ 1-e; for some fixed e: E 

satisfied, then as N -+ 00 

(3.4.6) 

l (0, 2) and Aeswrrption (3C) is 
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,.._, 

where FN is defined in (3.4.1). 

PROOF. The present lemma is almost an immediate consequence of Corollary 2.1 

of BICKEL & VAN ZWET (1978). Assumption (3C) guarantees that there exists a 

positive fraction of the scores which are at a distance of at least 

N-3/ 2 log N apart from each other. Further1r1ore, in view of Lec1nna 3. 2. 1 and 

Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976), Assumption (3C) yields that 

N 

I 
j=l 

N 

I 
j=l 

N 

L 
j=l 

N 

I 
j=l 

2 
a. 

J 

I 

a~= N J 3 (t)dt + O(N½-3B), 
J 

0 

1 

a~= N J 4 (t)dt + O(NZ/ 3- 4s). 
J 

0 
,.._, -

Substituting this in the expansion R(x,A) (cf. (2. 56) in BICKEL & VAN ZWET 

(1978)) and 

lows.. D 

standardizing T~ with the exact variance the result fol-

For the two-sample case Lem,na 3. 4. I is clearly a better result than 

Theorem 3.1.l~ as was to be expected. Roughly speaking, Assumption (3B) in 

Theorem 3. I. l requires a bit more smoothness than Assumption (3C) in Lecmti.B. 

3.4.1; it also requires JIJl 14+s < 00 instead of flJl 6+s <~,where£> 0. 

For practical purposes, however, Assumption (3B) is already quite satisfact

ory. It is gratifying to find that the expansions in the-two results coincide. 

We note that some numerical examples are contained in BICKET~ & VAN ZWET 

(1978) .. 

3.5. FINITE SAMPLE COMPUTATIONS 

In the preceding sections of this chapter we have derived Edgeworth 

expansions with remainder o(N- 1) for the distribution functions of simple 

linear rank statistics .. In this section we investigate the perforniance of 

these expansions as approximations for the finite sample distributions of 

one special statistic, namely Spea1:111an's rank correlation coefficient pN. 

In particular we compare our expansions with the usual norrnal approximation. 

As noted in Chapter 1 we know that, under the null-hypothesis of 
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independence, Spearman's rank correlation coefficient pN is distributed as 

N 
(3. 5. 1) I 

j=l 
jR. 
- J 

3 (N+ l) 

From Theorem 3.1.1 it follows that, as N + ~ 

(3.5.2) 

where 

(3.5.3) 9N
2
-21 1 3 

----- + -- (x - 3x) • 
1 OON (N2 - 1 ) l ON 

We note that the third cumulant is zero because the scores generating func-
. . "'""'"' . ti.on 1.s sy111111etric. 

In OLDS (1938) the exact distribution of * TN under the null-hypothesis 

was given for N = 2 through 7. The same results, together with the exact 

distribution for N = 8, were obtained by KENDALL, KENDALL & BABINGTON SMITH 

( 1939). The 5% significance levels for N = 11 through 30 were derived in 

OLDS (1949). Further extensions of the exact distribution of Spearman's rank 

correlation coefficient under the hypothesis of in_dependence were given in 

DAVID, KENDALL & STUART (1951). They established the exact distribution for 

N = 9 and 10 and showed that the for1t1al Edgeworth expansions including the 

N-3 term would be quite satisfactory in practice for N ~ 10 • 
...., 

In Table 3.5.1 a comparison of the Edgeworth expansion FN and the nor-

mal approximation t with the ,........ sample sizes 
....., 

N = 5, 10 and 20 and various values of the argument. We note that FN is 

truncated at O and 1. Further1nore, we note that for N = 20 we have employed 

a Monte-Carlo simulation based on 90,000 samples to estimate the exact dis-

* tribution function FN. 

Inspection of Table 3.5.1 shows that the agreement between the estimated 

perfect. It 

also shows that the expansion perfot:ms m),1ch better than the norr11al approxi-

= 5 and 

not nearly as good as for N = 20. This is due to the fact that the probabil

ities of single values are still rather large for such small values of N; 
• 

one can't expect to approximate a distribution function with large jtllDpS by 

a continuous one in a satisfactory manner. To overcome this problem, we have 

et11ployed a continuity correction. In Table 3.5.2 we st1111111arize the results 
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with this continuity correction for N = 5 and 10. Inspection of this table 
rv 

shows that the approximations FN are much improved; for sample size N; 10 
...., 

the expansion F 10 performs quite well. It also shows that the expansions 

provide much better approximations than the usual normal approximation. 

TABLE 3.5.l 

Comparison of the exact distribution function with the Edgeworth expansion 

and normal appro~imation for N = 5> 10 and 20. 

* - * 
,._, 

* 
...., 

X FS F5 FlO ~· 10 F20 F20 ~ 

• 

-3.0 0.0000 0.0000 0.0000 0.0000 0.0006 0.0006 0.0013 
-2.8 0.0000 O.OOO<J 0.0001 0.0005 0.0015 0.0015 0.0026 
-2.6 0.0000 0.0000 0.0011 0 .. 0022 0.0033 0.0034 0.0047 
-2.4 0.0000 0.0027 0.0036 0.0054 0.0067 0.0068 0 .. 0082 
-2.2 0.0000 0.0086 0.0,1,01 0 .. 0112 0.0123 0.0125 0.0139 
-2.0 0.0083 0.0188 0.0195 0.0207 0.0217 0.0217 0.0228 
-1.8 0.0417 0.0347 0.0367 0.0353 0.0358 0 .. 0356 0.0359 
-1. 6 0 .. 0667 0.0577 0.0569 0.0563 0.0553 0.0555 0.0548 
-1.4 0.1167 0.0888 0.0893 0.0849 0.0824 0.0828 0.0808 
-1. 2 0. 1750 0. 1285 0.1240 0.1219 0.1178 0. 1 I 85 0.1151 
-1 .. 0 0 .. 2250 0.1766 0. 1740 0. 16 78 0.1637 0. 1632 0. 1587 
-0.8 0.2583 0.2321 0.2240 0.2222 0.2172 0.2170 0.2119 
-0.6 0.3417 0.2938 0.2920 0.2842 0.2794 0.2793 0.2743 
-0.4 0.3917 0.3601 0.3540 o. 3525 0.3472 0.3485 0.3446 
-0.2 0.4750 0.4293 0.4330 0.4251 0.4217 0 .. 4229 0.4207 
0.0 0.5250 0.5000 0.5000 0.5000 Q.5000 0.5000 0.5000 
0.2 o.6083 0.5707 0.5810 0.5749 0.5759 0.5771 0.5793 
0.4 0.6583 0 .. 6399 0.6460 0.6475 0.6506 0.6515 0.6554 
0.6 0.7417 0.7062 0.7200 0.7158 0.7190 0.7207 0.7257 
0.8 0 .. 7750 007679 0.7760 0.7778 0.7821 0.7830 0.7881 
1. 0 0.8250 0.8234 0.8350 0.8322 0.8363 0.8368 0.8413 
1 • 2 0.8833 0 .. 8715 0.8760 0.8781 0.8821 0.8815 0.8849 
l. 4 0.9333 0.9112 0.9169 0.9151 0.9174 0.9172 0.9192 
1. 6 0.9583 0.9423 0.9431 0.9437 0.9450 0.9445 0.9452 
1.8 0.9917 0.9653 0.9666 0.9647 0.9647 0.9644 0.9641 
2.0 l .0000 0.9812 0.9805 0.9793 0.9791 0.9783 0.9772 
2.2 l. 0000 0.9914 0.9913 0 .. 9888 0.9879 0.9875 0.9861 
2.4 t. 0000 0.9973 0.9964 o. 9946 0.9935 0.9932 0.9918 
2.6 1. 0000 I .0000 0.9992 0.9978 0.9966 0.9966 0.9953 
2.8 1. 0000 1 .0000 0.9999 0 .. 9995 0.9984 0 .. 9985 0.9974 
3 .o 1 .. 0000 1. 0000 1. 0000 1. 0000 0.9994 0.9994 0.9987 

• 
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TABLE 3.5.2. 

Comparison of the exact distribution function with the Edgeworth expansion 

and normal distribution after a continuity correction, for N = 5 and 10 

X F* 
,..,,, 

* 
,.._, 

FS t FlO FIO 
. 

~ 5 

-3.0 0.0000 0 .. 0000· 0.0019 0.0000 0.0000 0.0014 
-2.8 0.0000 0.0000 0.0035 0.0001 0.0005 0 .. 0026 
-2.6 0.0000 0.0009 0.0062 0. 00 l 1 0.0024 0.0049 
-2.4 0.0000 0.0052 0.0107 0.0036 0.0054 0.0082 
-2.2 0.0000 0.0130 0.0179 0.0101 0.0119 0.0146 
-2.0 0.0083 0.0259 0.0287 0.0195 0.0207 0.0228 
-1. 8 0.0417 0.0452 0.0446 0.0367 0.0369 0.0374 
-1. 6 0.0667 0.0722 0.0668 0.0569 0.0563 • 0.0548 
-1. 4 0.1167 0. 1076 0.0968 0.0893 0.0879 0.0835 
-1. 2 0. 17 50 0.1515 0.1357 0.1240 0.1219 0.1151 
-1. 0 0.2250 0.2035 0.1841 0 .1740 0.1724 0. 1631 
-0.8 0.2583 0.2623 0.2420 0.2240 0.2222 0.2119 
-0.6 0.3417 0.3264 0.3085 0.2920 0.2902 0.2803 
-0.4 0.3917 0.3944 0.3821 0.3540 o. 3525 0.3446 
-0.2 0.4750 0.4646 0.4602 0.4330 0.4319 0.4279 
· o. 0 0 .. 5250 0.5354 0.5398 0 .. 5000 0.5000 0.5000 
0.2 0.6083 0.6056 o.6179 0.5810 0.5816 0.5864 
0.4 0.6583 0 .. 6736 0.6915 0.6460 0.6475 0.6554 
0.6 0.7417 0.7377 0.7580 0.7200 0.7217 0.7318 
0.8 0.7750 0.7965 0.8159 0.7760 0.7778 0 .. 7881 
1. 0 0.8250 0.8485 0.8643 0.8350 0.8367 0.8457 
I. 2 0.8833 0.8924 0.9032 0.8760 0.8781 0.8849 
1. 4 0.9333 0.9278 0.9332 0.9169 0.9181 0.9219 
1. 6 0.9583 0.9548 0.9554 0.9431 0.9437 0.9452 
l. 8 0.9917 0.9741 0.9713 0.9666 0.9663 o. 9655 
2.0 1.0000 0.9870 0.9821 0.9805 0.9793 Q.9772 
2.2 1. 0000 0.9948 0.9893 0.9913 0.9895 0.9867 
2.4 1. 0000 0.9991 0.9938 0.9964 0.9946 0.9918 
2.6 1. 0000 l .0000 0.9965 0.9992 o. 9980 0.9956 
2.8 1.0000 1.0000 0.998) 0.9999 0.9995 0.9974 
3.0 1. 0000 1.0000 0.9995 1.0000 1. 0000 0.9987 

• 
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CHAPTER 4 

ASYMPTOTIC EXPANSIONS UNDER CONTIGUOUS ALTERNATIVES 

4.1. INTRODUCTION AND ASYMPTOTIC EXPANSION 

In the preceding chapter we have derived Edgeworth expansions with re

mainder o(N- 1) for the distribution functions of simple linear rank statis

tics under the null-hypothesis. In the present chapter we turn to the case 

of contiguous alternatives. For simplicity we shall limit our study to con

tiguous location al terr1a tives. Extension of the result to general contiguous 

alternatives is possible. 

Hence, let x
1
,x2 , ••• ,~ be independent random variables with probabil

ity density functions f(x-e 1N), f(x-e 2N), ... ,f(x-eNN), where 
_1 

max
1 

. Nie.NI= O(N 2 ). We consider the simple linear rank statistic 
SJ s; J 

(4.1.1) T = 
N 

N 

I 
j=l 

where c
1
N,c1N, ... ,cNN is a triangular array of regression constants, RjN 

scores generating function defined on (0,1)~ 

Throughout this chapter we make the following ass 1unptions. 

ASSUMPTION (4A). The regression constants c 1N,cZN'···,cNN satisfy 

, r r~ N 

2 I and 
j=I j=l 

ASSUMPTION (4B). The location par>ameters 0 IN' e ZN'•••, eNN satisfy 

N _l 

I 
j=I 

and max 
1 ~j ~N 

the 
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ASSUMPTION (4C). The density function f is absolutely continuous on E. zvith 

Radon-Niko .,.,., d.e.rivative £'. This derivative f' is bounded and JI f' I < 00 • 

ASSUMPTION (4D). The scores generating funation J is three times differen

tiabZ.e on (O ~ l) and its third derivative J''' satisfies a Lipschitz condi-tion 

of the order O < a ~ 1 on [ 0, 1 J. Furthermore 

1 I 

J(t)dt = O, 

0 0 • 
• 

We note that Assumption (4A) is the samP. as Ass111·nption (3A). Assumptions 

(4B) and (4C) appear quite satisfactory for practical purposes. It is easily 

seen that Ass111nption (4C) implies that f is bounded (cf. Len1n1a 1·.2.4.a of 
.,.. .., ... 

HAJEK & SIDAK (1967)). Since we have not required finite Fisher inforn1ation, 

the sequence of alte111atives may not be contiguous. This is not of great 

importance, however, because the rank tests satisfying Assumptions (4A) and 

(4D) will not be consistent against these alternatives. 

Finally we note that Ass11,11ption (4D) is rather restrictive because it 

does not allow scores generating functions 

borhood of O and 1. In particular the case 

not covered. 

Define for each N ~ 2 

(4.1.2) 

tending to infinity in the neigh
-I 

J = ~ , i.e. normal scores, are 

(4.1.3) for · ca < X < co 

Furthermore, define, for 
,.._, 

each N ~ 2 and real x, the function FN by 
,..., 2 

...., K3N 2 K4N 3 K3N 5 3 (4.1.4) FN(x) ~(x) - cp(x) - (x -1) + 24 (x -3x) + 72 (x -1 Ox +15x) - 6 

...., 
where the quantities K3N, K3N and K4N are given by 

' 

, 



....., 

(4.1.5) 

(4. 1 .6) K3N = 

(4. I. 7) 

N 

I 
j=l 

l 

- 3 

0 

3 N 
+ N I 

j=I 

N 

I 
j=l 

N 

I 
j=l 

l 

0 

1 

0 

1 

N 

I 
k=l 

l 

0 

2 
~NekN 

I 

0 

1 

0 

2 -1 
( J ( t) -1 ) J ' ( t) f (F ( t) ) d t 

J ( t) J' ( t) f (F - l ( t) ) d t 

2 -1 
(1 - 3J (t))J' (t)f (F (t))dt, 

1 

J
4 (t)dt - 3 3 - -

N 
0 
"-' 

Note that K 3N is merely the leading ter111 in K 3N' and that K 3N and K 4N are 

the same as in (3.1.10) and (3.1~11). 

THEOREM 4.1.1. If the Assumptions (4A), (4B), (4C) and (4D) are satisfied, 

then as N + oo , 

(4.1.8) 

Section 4. 2 contains two preliminary len·1,11as. In Section 4. 3 we prove 

our theorem. Some com11ients are given in Section 4. 4. 

4.2. PRELIMINARIES 
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In this section we shall present two ler,111'las which we shall need in the 

next section. From this point on we shall suppress the index N whenever pos

sible: in particular we shall write c. and 6. for c.N and e.N. 
J J J J 

LEM-f.A 4.2.1. Let {YN} and {~} be two sequences of random va ·~zes with 

finite seeond moments and let 
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denote the st;andardized versions. Suppose that there exists a number o > 0 

swh tha,t 

(4.2.l) 

and that 

(4.2.2) 

'l!hen 

(4.2.3) 

lim inf 
N 

> o. 

as N-+ 00 

PROOF. Direct computation shows 

2 2 2 2 2 
a (YN-ZN)-cr (YN)-a (~) cr (YN-~)-(cr(YN)-a(ZN)) 

=2+-----------=-------------
0' (YN) cr (ZN) 

Because of (4.2.1) and (4.2.2) we 

2 
2 * * cr (YN - ~) 

see that > 0 and 

• 

Let us now consider the behavior of the characteristic function of 

Tn - ETN for large values of the are1nnent. The following ler1111ia is again a 

special case of Theorem 2.1 of VAN ZWE~ (1980). 

LEMMA 4.2.2. Suppose that the assumptions of Theorem 4.1.1 are satisfied. 

Then there exist positive numbers B, B and y suah that 

(4 .. 2.4) 
it(TN-ETN) l 

!Ee l :s;; BN-s og N, 

3/2 for log N s; I t I :s;; yN and N = 2, 3 , • • • • 

PROOF. In view of Le.n,roa. l • 3. 1 and Le1,,,,,a 3. 2. 2 it remains to be shown that 

N 

I 
00 

{ f (x-0 . ) -f (x) } 2 

j=I 

D 
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as N-+ 00
• It follows from Section 3 of VAN ZWET (1980) that this is implied 

by 

00 

(4.2.5) O ( 1) • 

00 

Assumptions (4B) and (4C) imply that, for a fixed positive constant A., 
00 00 X 

-co x-0. 
J 

00 

< - lf'(y)ldydx = 2AN-! □ 
00 

4.3. PROOF OF THEOREM 4. 1.1. 

The standard approach to prove results like Theorem 4.1.l is to start 

with an application of Es seen' s smoothing lemma (cf. Len,1na I. 1. 3) which im

plies that for ally> 0 

(4 .. 3.1) 

* 

sup 
XE:m_ 

* ....., I tµN (t)-~N (t) I 
1 t l 

where ~N denotes the characteristic function of * TN (cf. (4. 1. 2)) , 

(4.3.2) * WN(t) 

. * itTN 
= Ee 

• 
l.. e. 

~ - ....., 
and wN denotes the Fourier-Stieltjes transform of FN (cf. (4.1.4)), 

00 

(4.3.3) 

• co 

Define, for j = 1,2, .•• ,N, 

R. 
(4.3.4) p .. =-J;..,_= 

J N+l 

where 

,..., 
l 2 K = e - ~ t { l __ 3N 

6 

K 
. t3 + 4N 
1 24 

2 
4 K3N 

t - 72 
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1 if X ~ 0 
x(x) = 

0 otherwise, 

(4.3 .. 5) z; • 
J J J + kij J 

Let SN be a four-term Taylor expansion of TN, viz. 

(4.3.6) 

N 
s = I 

N j= l J J J J J J J J 

J J J 

• 

and let us split the random variable SN - ESN into a n11mber of terms. Define, 

N ,..,, 
C • (J ( <:: • ) - EJ ( z; • ) ) = I C • J ( l; • ) , 

J J J j=l J J 

I I c.J'(l;.)(x(x.-xic) - F(X.-ek)), 
(j ,k);& J J J J 

I = l 
3 2 (N+l) 2 l l l c.J''(r;.) (x(X.-Xic)-F(x.-ek)) (x(X.-X,e_) 

(j ,k,l.) ,' J J J . J J 

- F(Xj- 8_e)), 

(4.3. 7) I = I 
4 2 (N+ 1 ) 2 ( j , k) ,' J J J J 

I = 1 
5 6(N+l) 3 I I 

(j ,k,, 

-F(X.-6 0 ))(x(X.-X )-F(X.-8 )), 
J ,l.. J n J n 

I = 1 
6 2(N+t) 3 

• 

)=/: J J J J J 

- F(Xj-el)), 



sion for 

(4.3.8) 

Define 

(4.3.9) 
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1 I = ___ ..,.. 
7 6(N+l) 3 (j,k),' J J J J 

- EJ''' (i;. )F (X .. -ek) ( 1-F (X. -ek)) ( l-2F (X.-ek))}, 
. J J J j 

I. Our first task is to derive an asymptotic expan
v 

U. = F(X.-0.), 
J J J 

j = 1, 2, .•. ,N, so that u1 , u2 , ..• , UN are independent and uniforrnly distribut

ed random variables on (0,1). 

LEMMA 4. 3. 1. If the assumptions of Theorem 4. 1. 1 aPe satisfied., then 

(4.3.10) 

• 

N 
= l + 2 l 

j=l 

2 c.e .. 
J J 

l 

0 

PROOF. In view of Assumptions (4B) and (4C) Taylor expansion yields 

(4.3 .. 11) 

unifo~mly in x and k. 

follows from (4.3.5), 

Replacing x by X. -e. and ek by ek-6., 
J J J 

for j :/: k, it 

(4.3.9) and Assumption (4B) that 

unifonnly in j and with probability 1. Combining this, the fact that f is 

bounded (cf. Ass11rnption (4C)) and Assumption (4D), it follows by another 

Taylor expansion that, uniformly in j and with probability I, 

(4.3.12) J ( <; • ) = J (U • ) + 0 . f (F - l (U. ) ) J ' (U .. ) + 0 (N - l ) = 
J J J J J 

(4 .. 3.13) J' ( z; • ) = J' (U. ) + 0 . f (F - l (U. ) ) J'' (U.) + 0 (N - l ) 
J J J J J 

(4.3.14) J''(l;.) = J''(U.) + O(N-!), 
J J 

• 

J (U .. ) + 0 (N - ! ) , 
J 

= J' (U. ) + 0 (N -! ) , 
J 
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(4 .. 3.15) 

where O < a ~ 1 • 

From (4.3.11) through (4.3.15) and Assumption (4D) it follows after 

some computations that 

N 
EI2 

I --1 
j=l 

To show 

7 
EI2 I \) 

v=3 

2 that EI2 = 

Le1111na 4. 3. 3. Since 

--

2 ....,z 
l + 2 c.EJ (l;.) --

j J 

0 (N-l). 

N 
1 

2 
J ( t) J' ( t) f (F- l ( t)) d t + 0 (N-l) , I C. 8. 

J J j= l 
0 

technique employed in the proof of 

the result follows. D 

The following le10111a wil 1 enable us to show 

order for our purposes. 

that T - S 
N N 

is of negligible 

LEMMA 4.3.2. If the assumptions of Theorem 4.1.1 are satisfied, then 

(4.3.16) 2( S) = O(N-2-a). o TN- N 

PROOF. Since the third derivative J''' satisfies a .Lipschitz condition of 

order a we have, in view of Ass11mption (4A) and the Cauchy-Schwarz inequal-
• ity, 

Define 

of the 

N 
s E{ l 

j=l 
N 

c~ O(E 
J 

= I 
j=l 

for Xj = x, Yk 
Marcinkievitz, 

= x(x-~) - F(x-ek) for 1 :s; (j ,k),' s N. An application 

Zygmund & Chung inequality (cf. CHUNG (1951)) shows 
that for all r ~ 1 

Y 1
2r 

k s; C (N-1) r, 

where C depends only on r. It follows that for j = 1,2, ••• ,N 

• 



6+2a. Elp.-z;.I 
J J 

= --
1
--,,.-...,,,- E [ E ( I I 

(N+1) 6+2a. klj 

J 6•t 2a 
X ( X. - X. ) - F ( X. -Ok) 1 I X • ) ] 

J k J J 

-3-a. :s CN , 

which proves the lerrnrta. 0 

From Leir1111a.s 4. 3 .. I and 4. 3. 2 it follows that 

(4.3.17) 
N 

1+2 I 
j=l 

1 

0 

This fact, Le1m,1a 4.2.2 and (4.3.3) ensure that (cf. Section 3 in VAN ZWET 

( 1980)) 

(4. 3. 18) 
3/2 logN:sltl:syN 

for some y > O, as N ➔ ~. From (4.3.1) and (4.3.18) we see that, in order 

to prove Theorem 4.1.1, it suffices to show that 

(4.3.19) 

ltl~logN 

To prove this we start with the computation of a number of moments. 

LE~A 4. 3. 3 .. If the asswrrptions of Theorem 4. 1. l a:re satisfied, then 

(4.3.20) 

6 
E( l 

v=3 

EI I = O(N-l-a./ 2) 
1 6 ' 

whe~e O < a. :s 1 (cf. Assumption (4D)J. 
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PROOF. For distinct 

fine h(x,x) = 0 for 

j and k, let h(X. ,~) = J' (c;.) (x (X.-~) - F (X .. -ek)). De-
J J 4 J . J 

all x. Direct computation of EI2 shows that 
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(4.3.21) 

EI4 
= 

2 

N 
i [ I 

(N+ 1) 4 j= l 

4 N 
C. { l 

J r=l 

N 

I 
s=l 

N 

I 
t=l 

N 

I 
u=l 

Eh (X. , X ) h (X • , X ) h (X. , Xt) 
J r J s J 

N N 3 N N 
• h (X. ,X ) } + 4 2 l c • 7<. { l l 

J u ( j , k) ;' J r= I s = l 
I I 

t=l u=l 
Eh(X .. ,X )h (X. ,X ) 

J r J s 

N N N N 
.{ I l r I 

r=l s=l t=] u=I 

N 

I 
t= 1 

N 

I 
u=l 

Eh(X. ,X ) 
J r 

Eh (X • , X ) h (X • , X ) h (X.. , X t) h (X O , X ) } 
J r J s -1.< -t.. u 

N N 

I I 
s=l t=l 

N 

I 
u=l 

Eh(X .. ,X )h(X. ,X) 
J r -7c s 

To bound the right-hand side of (4.3.21) we note that an expectation in 

(4.3.21) equals zero if at least one of the indices (r,s,t,u) occurs only 

once. In view of Assumption (4D) all non-zero expectations are bounded. 

According to Assumption (4A) we have 

N 4 -1 I c. = O(N ), 
j=l J 

I I 
(j ,k) ,' (j ,k)=r J 

Hence the first three texrris in the right-hand 

Similarly, the fourth term equals 

-2 side of (4.3.21) are O(N ). 

6 

Define u 1,u2 , .•• ,UN by (4.3.9) 

Since f is bounded and maxl e. J 
J 

tively, we see that 

r,J 

and h(U .. ,l\) = J' (U.) (x(U.-Uk) - U.) for j ;'k. 
-!J J J J 

= O(N ) by Assu1i1ptions (4C) and (4B) respec-
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uniformly in j and k. Invoking ( 4. 3. 11) and ( 4. } . I 3) we find th,1 t 

h(x X.) h~(U U) O(N-!). j , -1<. = j , k + . 

,..., 
with probability I - O(N-½) and unifor,uly in j and k. Since h and h are bound-

ed, this implies, uniformly in j, k, rand t 

Eh·(X. ,X )h. (X. ,X )h (X. ,Xt)h (X 0 ,X ) 
J r J t -K ~ r 

Note that the leading ter111s on the right of these expansions do not depend 

on the indices j, k, r and t. According to Ass11n1ption (4A) we have 

l t I 
(j,k,l)i 

2 I c j 7c c .e, I = 0 (N) .. 

Combining these results we find that the fourth texm is O(N-312 ). 

The non-zero expectations in the last term are of the fonn 

Eh(X.,X )h(:Jt ,X )h(Xp,X )h(X ,X) or Eh(X.,X )h(X. ,X )Eh(X0 ,X )h(X ,X) 
J 1· -""k r .{., r n r J r -lt r .{., s n s 

where (j,k,l,n,r,s)i. By the same arguments as above we obtain 

1 I I I I I 
(j ,k,l,n,r),' 

c.c.. c 0 c Eh(X.,X )h(X. ,X )h(X0 ,X )h(X ,X) 
J K .{., n J r -1e r .{., r n r 

• 

From (4.3.11) and (4.3.13) we find after straightforward computations that, 

uniforrnly for distinct j, k and r, 

where the constants A1, A2 and A3 are finite and do not depend on j, k and 

r. According to Assumptions (4A) and (4B) we have 
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1 I I I I 
(j ,k,l.,n)~ 

Combining these results we find 

1 I I I I I I 
(j,k,l,n,r,s);' 

1 I I I I 
(j ,k,l,n);' 

(j ,k,l.,n) :/: 

c.e.c.. CoC I 
J J k,.(..ll 

c-~c 0 c Eh(X,,X )h(X. ,X )Eh(X0 ,X )h(X ,Xs) 
J k ,(_, n J r -K r ,(_, s n 

• 

4 -3 2 3 = O(N-9/8). 

The proof of the other assertions in (4.3.20) is easier and is there

fore omjtted. D 

Define, for real t and N ~ 2 (cf. (4.3.6) and (4.3.8)), 

(4. 3.23) 

(4.3.24) 

. * 1.tSN 
= Ee 

and 

(4.3.25) 

The next 

LEMMA 4. 3.4. If the asswnptions of TheoPem 4.1. 1 are satisfied, then 

(4.3.26) 

unifoi"¥fllly fox> It 1 ~ log N. • 

PROOF. It follows fromLe·r11r11as 4.2.I, 4.3.1 and 4.3.2 that 

(4.3.27) * * * * * * -



Furthermore, repeated use of Lerrm1a XV 4. I of FELLER ( 1971) yields 

(4.3.28) 

2 
t 

EII 7 1+ 2 E!r 2 11r3 +1 4 +r5 +16 1 
TN 

t 2 2 2 2 2 
+ 2 E (13 + I4 +IS+ I6) + 

3 

TN TN 
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App lying Le11nnas 4. 3 .. l and 
2 -9/8 

4.3.3 we find that the right-hand side of (4.3.28) 

equals O(ltl (l+t )N ) , unifor111ly for ltl $ log N. Combining this result 

with (4.3.27) we arrive at (4.3.26). D 

It is clear that our next step is to evaluate the right-hand side of 

wn 
-Esw1~)} in the preceding chapter (cf. (3.3. II)). We start with the leading 

,..., 
0 .and for all 

J= J J J 
sufficiently large N, there exist positive constants y 1 s Yz such that y 1 

tions (4A) and (4D) imply that maxlc.l = O(N- 2 ) and that the random variable 
~ J 
J(~.) has finite abso]ute moments of any order, j = 1,2, •.• ,N. It follows 

J 
from the classical theory of Edgeworth expansions for s11ms of independent 

and non-identically distributed random variables (see e.g. Le11,tna VI 4. 11 in 

PETROV (1975)) that 

N 

I 
j=l 

3 "'3 c. EJ (z;:.) 
J J 

t4 
+--4--

N 

I 
4 ~4 ~2 2 

c . [ EJ ( r,: • ) - 3 { EJ ( ~ . ) } ] 
24cr (I l) 

t6 
-----

6 
720 (I l) 

j=l 

N 
{ I 

j=l 

J J J 

3 ,....3 2 
C • EJ ( ~ . ) } } I 

J J 

2 
= o (N - 1 ( t 4 + l t I 9) e - ½ t ) , 

uniformly for ltl ~ log N. Replacing t by tN = 
and us i ng Lerrm1a 4 . 3 . 1 , we find that , 

-1 
tcr(I 1)tN, expanding 

unif orn1ly for 1 t I s log N, 
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N 
(4.3.29) + I 

j=l 

+ 

3 -3 c. EJ ( r;.) 
J J 

4 .....,4 ~2 2 t 6 
c J. [ EJ ( 7; • ) - 3 { EJ ( r; 

3
• ) } ] - 6 

J 72l 
N 

2 
= o(N-1(tlP(t)e-et ), 

a fixed polynomial. 

N 
{ I 
j=l 

We now turr1 to the remaining tercr1s in the right-hand side of (4. 3. 25). 

Let 
• 

,..._, 

(4.3.30) 
i tJ (l';.) 

= Ee J , 

...., 
denote the characteristic function of J(r;.), • 

J --
J 

1,2, ..• ,N, so that 

. -1 
c.t l.tTN I) N J (4.3.31) .TTI Ee - "jN - • J= LN 

From Assumptions (4A) and (4D) it follows by Taylor expansion that for dis

tinct integers ..e. 1, ••. ,ln, where 1 ~ n :s; 4, 

(4.3.32) 
n 

.TTl J= vl.N 
J 

uniformly for ltl ~ log N. 

= 1 -
2 

cl .. 
J J 

In the last lemma we sun1111arize the results we need. 

~~:!-.::4~-~3~·=-5. If the assumptions of Theorem 4. 1. 1 are satisfied then, uni

formly fo~ 1 t I :S log N, 

(4.3.33) 
1 

-
0 
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(4. 3. 34) 

(4.3.35) 

(4.3.36) 
l 

4 
J (s) ds - l 

0 

where O < e <a~ land Pis a fixed polynomial, 

PROOF. Because the statements (4.3.33) through (4.3.36) are all proved in 

essentially the same manner and because these statements resemble those in 

Lerr1,ria 3. 3. 4 and Lemma 3. 3. 5, we shal 1 only prove the first statement, by 

way of an example. An application of Lerr1111a XV 4.1 of FELLER (1971) shows 

that for distinct 1 ~ j,k ~ N 

,.._, 

J J 6-r J J 
N 

t 4 ,.,.. ...., 4 
~ 4 (c .J(?; .) + ~J(z;k)) • 

T J J 
N 

It follows from Assumptions (4A) and (4D) that 

- ,..., 
(cjJ(l;;j) + ~J(?;k)) 

• 

(4.3.37) 
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Note that 

= 0 
6-r J J 

N 

and hence that (4.3.37) equals 

' 

-1 ...., ,..,. 
E exp{itTN (cjJ(r;j) + ~J(z;k))}J' (r;j) (x(Xj-xic) -F(Xj-ek)) 

J J J -rN 2-r 
N (4.3.38) 

From (4.3.32) it follows that for distinct integers 1 ~ j ,k ~ N and 1mifo1.1.ia 

ly for ltl ~ log N 

(4.3.39) 

Combining (4 .. 3.38), (4.3.39), (4.3.22), (4.3 .. 29), (4.3.11), (4.3. 12) and 

(4.3.13) with Assumptions (4A) through (4D) we find after some algebra 

• 

(4.3.40) 



(4. 3.40) 
it-r-lI . 

= Ee N 1[ 1 t EI I + -~ 

1 2 
-u ) - u ) J 2 ] 

Finally we obtain by partial integration 

l 

(4.3 .. 41) I = -""'"'"" 2 
0 

From (4.3.40) and (4.3.41) we conclude (4.3.33). D 

From Le1ri111a 4.3.5 it follows that uniformly for ltl ~ log N (cf. 

(4.3.25)) 

1 

(4.3.42) 4 
J (s)ds - 1 } 

0 

where O < - Using Le1r1,11a 4. 3. 3 

as well as the fact that EI 1I 3 = EI 1I 5 = 0~ we obtain 

(4.3.43) 2EI 1I 2 
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' 

Let, for distinct j and k, h(X.,X..) = J'(t; .. )(x(x.-x_ )-F(X.-ek)). We find by 
J -K. J J -K. J 

repeated use of Assumptions (4A) through (4D) that 

N 
(4.3.44) = - I 

j=l 

-

(j,k),' 

c.e. 
1 J 
N 

I 

0 

2 
cj~ ~2 ~ ~ 

[tJ'' (t) + 2J2 (t)J' (t)]f(F-l (t))dt 
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(4.3 .. 45) 

N 
= I 

j=l 

1 

-

3 

l l -.::.--.,,--2 EJ (l;.) h (X., ~) + 
(j,k),' (N+l) J J (j,k):;& 

c.0. 
J J 
N 

1 

1 

0 

-1 J'' (s) f (F (s)) dsdt 

0 t 

Substituting (4 .. 3.43) through (4 .. 3.45) in (4.3.42). we have that uniformly 

for ltl ~ log N, 

(4.3.46) 

l c.e. 2 1 
J J (1 - 3J (s))J' (s)f(F- (s))ds 
N 

0 
1 

4 
J (s)ds-1 

0 

where O < 
l 

0 < Z" 0 < Cl :i 1 and Pis a fixed polynomial. 

A few more facts are needed to complete our proof of Theorem 4.1.1. 

First we note that Assumptions (4C) and (4D) imply that (cf. ~.3.12) 

1 

(4.3.47) 

EJ(t.) = 8. J'(t)f(F-1(t))dt + O(N- 1), 
J J 

0 

EJ2 (~.) =I+ O(N-J), 
J 



(4.3.47) --

4 EJ (r.) = .,J 

I 

0 

J 

0 
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1 

30. 
J 

0 

uniformly in j. Now we substitute (4.3.29), (4.3.10) and (4.3.47) in (4.3.46) 

and find after some cor11putations that, uniformly for It I s log N. 

2 
+ o(N- 1ltlP(t)e-e t ), 

where O < 0 < 
1 t'V 

2 , Pis a fixed polynomial and the quantities K3N,· K
3
N and 

• 
K 4N are given by (4.1.5), (4.1.6) and (4.1.7). In view of Lex111:11a 4.3.4 and 

our starting point (4.3.19) this result completes the proof of Theorem 

4.1.1. □ 

4.4. C01MENTS 

In this section we provide a discussion of Theorem 4.1.1. First of all 

we note that the standardization of TN with ETN and cr(TN) is not realistic 
' 

because under the alternative these quantities are unknown. However, it is 

possible to prove a modification of Theorem 4.1.l since we can replace these 

quantities by their asymptotic expressions. Let AN denote the asymptotic ex

pectation of TN and wN the asymptotic standard deviation. 

Define, for each N ~ 2, 

(4.4.1) ~(x) = 
TN-AN 

p 
WN 

for 

The problem is now to establish an asymptotic expansion with remainder o (N-l) 

for the distribution function GN. We know that for each N ~ 2 and real x 

(cf. ( 4. 1 • 3) ) 

• • 

Using this identity and applying Theorem 4.1. 1 we find that (cf. (4. 1.4)) 

(4.4 .. 2} 
xwN.+ AN-ETN 

cr(TNJ 
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From (4.4.2) it follows -1 
that we need expansions for wNcr (TN) and (AN - ETN) 

-1 terms of otder o(N ). It will be clear that to 

establish such expansions we have to impose a stronger 

density f than Assumption (4C). In a forthcoming paper 

shall establish these expansions. 

• assumption on the 

(DOES (1982)), we 

We conclude this section with a discussion of Assumption (4C) concern-

ing the density function f. It is remarkable that the strength of this as

sumption is comparable to what is needed for proving asy11tptotically normal-
-........ v' -i ty under these al ter11ati ves (cf. HA.J"EK & SIDAK ( 196 7) Theorem VI 2. 4). 

Moreover, if we compare this assumption with assumptions in related papers 

on asymptotic expansions both in nonparametric statistics (cf. ALBERS, 

BICKEL & VAN ZWET (1976) Section 3 and BICKEL & VAN ZWET (1978) Section 4) 

and in parametric statistics (cf. CHIBISOV (1973a, 1973b) and PFANZAGL 

(1973, 1974, 1979)) we find that in all papers much stronger assumptions on 

the density functions are made. Apparently this is due to the rather re

strictive ass1.111rption concerr1ing the scores generating function and to the 

exact standardization employed in the present chapter. 

• 
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