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PREFACE 

This volume contains the contributions to a symposium in honour of 

Professor A.C. Zaanen, which was held at Leiden on July 5 - 6, 1982, on 

the occasion of his retirement. There were three invited lectures, the 

speakers being H.H. Schaefer, F. Smithies and B~ Sz.-Nagy. The other 

authors are all among Zaanen's former Ph.D. students. 

"From A to Z" is of course a play with Zaanen's initials. On the 

other hand it reflects Zaanen's mathematical career over more than forty 

years. During this period Zaanen made essential contributions to several 

parts of mathematics, mainly in functional analysis, integration theory 

and Riesz space theory. Through these four decades Zaanen established his 

own school of thought with its centre of gravity in Leiden and with its 

representatives abroad. 

We do not pretend to give a survey of Zaanen's contributions 

to mathematics in this volume, However, all papers are in one way or 

another connected with Zaanen's work or his interests. 

This volume is dedicated to Professor Zaanen as a token of respect 

and gratitude from his former Ph.D. students. 

V 

We would like to thank the Mathematical Centre for their willingness 

to publish these proceedings. We are also extremely grateful to Sonja 

Wassenaar, Netty Zuidervaart, Ellen Janssen and Len Koerts for the 

excellent typing work. 

The editors. 
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ORUCZ SPACES - A SURVEY OF CERTAIN ASPECTS 

J.J. Grobler 

I am honored to have been invited by the organizing committee to lec

ture on the subject of 0rlicz spaces, a subject to which professor Zaanen 

has made fundamental contributions during his career as a mathematician. 

His first paper in this field dates back to 1946 [71] and the most recent 

paper was published with W.J. Claas in 1978 [12]. He was also one of the 

first to bring the theory of 0rlicz spaces to the attention of a wider 

mathematical audience by means of his book "Linear Analysis" ([74]). 

The aim of this lecture is to present some basic facts on 0rlicz 

spaces and to survey some recent developments. In this we shall concentrate 

mainly on those parts of the theory to which professor Zaanen has contri

buted, either personally or through his students. Time and space do not 

permit us to survey the whole field. In fact, 0rlicz spaces have become 

such a well established part of functional analysis that the literature on 

the subject is vast and it involves almost every facet of the theory of 

Banach spaces. 

1 • General theory 

0rlicz spaces were introduced in 1932 by W. 0rlicz [53] who discov

ered that with each increasing convex function M there corresponds a Banach 

space in much the same way as the Lebesgue space LP corresponds to the 

convex function M(t) = tp (t ~ O, p > 1). His discovery was preceded by an 

investigation by W.H. Young [70] on the properties of such functions and on 

the properties of classes of functions satisfying a condition of the type 

fM( I f(t) I )dµ < oo 

Let¢ be a non-zero, increasing, real function defined on [0, 00 ) such 

that ¢(0) 0 and such that¢ is left continuous on (0, 00). Let w be its 

left continuous inverse. Then Mand N defined on [0, 00 ) by the Lebesgue 

integrals 
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M(u) 
u 

:= J¢(t)dt, N(v) 
0 

V 

:= fijJ(t)dt 
0 

are called complementary Young (or Orlicz) functions. For such Mand None 

gets 

(i) uv s M(u) + N(v) for all u,v 2 0 

(ii) N(v) = sup{uv - M(u) : u 2 O}, M(u) sup{uv - N(v) : v 2 0}. 

Young [70] published a proof for the inequality (i), valid under cer

tain continuity restrictions on¢. The first general proof (though geometric 

in character) is due to A.C. Zaanen [72], and W.A.J. Luxemburg [40] gave a 

purely analytic proof.Recently, C. Bylka and W. Orlicz published further 

generalizations of the inequality (i) [JO]. The relations (ii) originate 

withs. Mandelbrojt [46]. 

For any measurable function f, Orlicz defined 

llfllM := sup{Jlfgldµ : JN(lgl)dµ S I} and~:= {f : llfllM < 00 }. He then 

showed (at least for continuous M and N) that (~, II • IIM) is a Banach space. 

Obviously, if M(t) = tp (I < p < 00), then II fllM is equivalent to the 1P

norm off. His definitions did not include the spaces 1 1 and 100
, This de

fect was remedied by Zaanen [72] who considered the case that N may jump 

to infinity, extended Young's inequality to this case and showed that 1 1 

and 100 are Orlicz spaces in the new context. 

Luxemburg [38] defined an equivalent norm pM on~ as follows. 

J -I 
pM(f) := inf{a I a> 0, M(a lfl)dµ SI}. 

For an excellent exposition motivating the introduction of this norm, we 

refer to [4 J]. 

It is clear that the Young function M determines the properties of the 

Orlicz space~- Generally speaking, an Orlicz space has "nice" properties 

if the rate of growth of Mis restricted. In his first paper on the sub

ject [53], Orlicz considered functions M satisfying 

M(2u) s CM(u) for some constant C > 0 and all u 2 0. 

Such functions were previously studied by Orlicz and Birnbaum (7]. We refer 

to this condition as the (6 2,~2)-property. If M(2u) s CM(u) holds for large 
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values of u, we say M satisfies the 62-condition and if it holds for small 

values of u we say that M satisfies the o2-condition. These 6-conditions and 

their effect on ½1 were studied by many authors. (See [32), [38) and [15).) 

Zaanen himself showed in his first paper on Orlicz spaces that if the 

underlying measure is the Lebesgue measure and if the (0 2 ,62)-condition 

holds, then ¼i is separable and every continuous linear functional on ½1 
can be represented by an element of~ ([71)). (See also [72).) Nowadays 

we know that the essential point is that these different 6-conditions force 

the norm on ¼i to be order continuous, i.e., 0 s fn E ¼i and fn + 0 point

wise a.e. implies 11 fnl!M + O. (Which 6-condition to use depends on the un

derlying measure space.) De Jonge [15) gives a rather complete picture of 

this situation; for example, if the measure space is N with the counting 

measure, o2 is used; when a finite diffuse measure space is considered, 62 
is used and when a space has infinite measure (0 2,62) is required. In [32) 

much additional information about the 6-conditions is collected. 

From the remarks made above and the general theory of Banach function 

spaces as it was developed by Luxemburg and Zaanen in the period 1955-1966 

[44) it follows that an Orlicz space ½1-is reflexive if bothM and its comple

mentary function N satisfy an appropriate 6-condition, that ½1 is 

separable if the measure µ is separable and if M sat is fies an appropriate 

6-condition, and that i.:r = LN if the appropriate6-condition holds for M. 

In the latter case it was already illustrated by Orlicz [54) that the Haar

functions form a basis in ½1· In the case of Orlicz sequence spaces the 

unit vectors on are a basis £or ¼i if M satisfies o2 [37). Finally, Luxem

burg [38) shows that if Mis strictly convex and satisfies (0 2,62) then 

<¼i,PM) is uniformly convex. 

2. Linear functionals on Orlicz spaces 

It was discovered by T. Ando [2) that singular functionals on Orlicz spaces 

have the remarkable property that they satisfy the triangle equality. A 

linear functional FE i.:r is called singular whenever g E ~ and 

lffgdµI s l<f,F>I for all f E ¼i implies g = 0. The closed linear space of 

all singular linear functionals on ¼i is denoted by i.:r,s· If M satisfies an 

appropriate 6-condition then L* = {0} but, whenever dim L* > 0, it 
* ~,s ~,s * 

follows that dim L_ = 00 [15). De Jonge [15) proves that, in general, L__ ·M,s -M,s 
is an abstract L-space. This generalizes the result of Ando who proved it 

in a special case [2). M.M. Rao [60) proved a similar (but less general) 
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result. 

If we denote by r.: the set of all f E 1'M satisfying fM(alfl)dµ < 00 

for all a E JR, we have that r.: is a closed solid subspace of 1'M with the 

property that the norm restricted tor.: is order continuous. Moreover 

(1'M/r.:)* = ~,s.(See [38].) Hence, for Orlicz spaces 1'Mlr.: is an abstract 

M-space. This led De Jonge to his definition of semi-M-spaces in general 

[ 15] • 

In [43] Luxemburg and Zaanen considered the problem of extending the 

modulars 1\i(f) := fM(lfl)dµand mif):=JN(lfl)dµ and the :orms 11,IIM' PM/nd 

11, IIN, PN defined on 1'M and LN to the conjugate spaces L c 1'M and L c 
PN PN 

c LN in such a way that the relations which exist between the functionals 

persist to hold in the larger domain. 

3. Indices for Orlicz spaces 

W. Matuszewska and W. Orlicz introduced in 1960 [55] as a gauge for 

the rate of growth of a Young function M numbers 

t\1 : = lim log [ lim sup M(s t) /M( t)] /log s 
t-+oo 

~ := lim log [lim inf M(st)/M(t)]/log s 
t-+oo s-+oo 

-I -I 
called indices for 1'M which satisfy O ~ ~ ~ ~ ~ 00 and aM + SN = I, 
-I -I 

aN + SM = I. In [24] I showed that ifµ is a finite diffuse measure, 

these indices can be defined in terms of the so called l -decomposition 
p 

property and l -composition 
p 

coincide with the notions of 

property of the space 1'M· These notions also 

lower-p-estimate and upper-p-estimate as used 

by T. Figiel-W.B. Johnson [19] and B. Maurey [48]. (See also P.G. Dodds 

[16].) In these terms SM= oM with oM := inf {p: 1'M has the lp-decomposi

tion property} and~= sM with sM := sup {p: 1'M has the lp-composition 

property}. For Orlicz spaces the indices sM and o Ii are also the reciprocals 

of those defined by D.W. Boyd [9] for rearrangement invariant function 

spaces. In [9] Boyd calculates these indices in Orlicz spaces. In the 

formulas the underlying measure space plays a role in much the same way as 

it influences the choice of l-conditions in some of our earlier remarks. 

Ifµ is the counting measure on :N the indices are characterized by the 

fact that lp is isomorphic to a subspace of~ if and only if sM ~ p ~ oM 
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(lp = c0 if p = 00). This result is due to J. Lindenstrauss and L. Tzafriri 

[ 35]. It is easily seen that I < sM ~ crM < 00 implies that \r is refle.xive 

[24]. Lindenstrauss and Tzafriri show that the converse is true for se

quence spaces if M has a continuous strictly increasing derivative (35]. 

Generalizing a theorem of R.R. Pitt [58], T. Ando proved in [3] that 

if sM > crM then every integral operator on \r into \r is compact (µ is 
I 2 I 2 

a finite diffuse measure); Lindenstrauss and Tzafriri proved for 

sequence spaces that if moreover M1 and M2 satisfy o2 then every 

linear operator from ~ into ~ is compact if and only if sM 
I 2 I 

Orlicz 

bounded 

In conclusion we mention that these results can be generalized to 

Banach lattices. (See (16], (17].) 

4. The structure of Orlicz spaces 

Initiating papers in this field were papers by K.J. Lindberg (34) and 

Lindenstrauss and Tzafriri [35, 36]. Structural questions studied are inter 

alia the uniqueness of symmetric bases in Orlicz sequence spaces, minimal 

Orlicz sequence spaces and the question which sequence spaces are isomorphic 

to subspaces of a given separable sequence space. 

Though it is not true in general for Banach spaces, it is shown that 

every Orlicz sequence space has a subspace isomorphic to either c0 or lp, 

I~ p < 00 • (See section 3.) 

A complete survey of these and related questions can be found in 

Lindenstrauss and Tzafriri's monograph (37]. In these investigations a sig

nificant role is played by the indices and also by the following non-void 

norm compact subsets of Young functions in C[O,!] 

E. := {M(st)/M(s) 
~,J\ 

0 < s < A}, 0 < J\ ~ oo, 

n CM J\ with M a Young function. 
J\>O , 

A few sample results are: 

An Orlicz space~ is isomorphic to a subspace of the sequence space 

~ if and only if M is equivalent to some Young function CN 1• 
' Let~ be a reflexive Orlicz space with complementary Young function 

M*. Then~ is isomorphic to a quotient space of~ if and only if N* is 

equivalent to a function in~* 1• , 
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A Young function M with o2 is called minimal if EN,I = ~,I for every 

NE EM,I• It is conjectured that if Mis minimal then every complemented 

subspace of~ is isomorphic to~• (See (37].) 

Finally we mention works of N.J. Kalton ((27, 28]), G.E. Thebucava 

[63], N.J. Nielsen [50], D. Dacunha-Castelle (14] and R.P. Macleev and 

S. Trojanski (45]. 

5. Representation of abstract Orlicz spaces 

A well known result in the theory of LP-spaces is that a Banach lat

tice with p-additive norm is isomorphic to a space LP(x,A,µ), (X,A,µ) some 

measure space. (See (6], [8], (12] and (47].) A non-negative real function 

Mon a Riesz space Lis called a modularif M(f) = 0 if and only if f = 0, 

lfl ~ Jgl implies M(f) ~ M(g) and if Mis convex. A Riesz space equipped 

with a modular is called amodulared space (49]. The Minkowski functional 

of the set {x EL: M(x) ~ I} is a norm on L. The modular Mis called an 

Orlicz modular if M(2f) ~ CM(f) for some constant C > 0 and all f EL and 

if moreover M(f+g) = M(f) + M(g) for disjoint f and g. Lis called an . 
Orlicz lattice if (L,pM) is complete. L is called component invariant if 

Lhasa weak order unite and if, for every component p of e the relation 

M(ae)/M(e) = M(ap)/M(p) holds for all a~ 0. These definitions are due to 

W.J. Claas and A.C. Zaanen [15] who proved that every component invariant 

, Orlicz lattice is isomorrphic to a real Orlicz space ½1(X,A,µ). Recently 

P. Kranz and W. Wnuk improved this result by showing that the fi-condition 

on M, and the component invariance of L can be dropped. (See (31] and 

[ 69].) 

6. Applications 

From the very early days of the theory, 0rlicz spaces were used in 

applications. In his 1946 paper Zaanen already investigated compactness 

properties of kernel operators on Orlicz spaces with the idea to solve 

linear integral equations (71]. In [73] he developed the Fredholm deter

minant theory for kernel operators of finite double norm in Orlicz spaces. 

Incidentally, a problem posed in this paper concerning determinant inequal

ities was only recently solved by P. Nowosad and R. Tovar (51] who gener

alized the Carleman inequalities for kernel operators, which were original

ly proved for Hilbert-Schmidt operators on L2, to the case of operators of 



finite double norm on reflexive Orlicz spaces. These operators were also 

studied by J.J. Uhl [68) who proved Bochner integral representation 

theorems for them in Orlicz spaces. 

7 

Today there is hardly a sphere of linear (and non-linear) analysis in 

which Orlicz spaces do not find applications. For instance in the theory of 

partial differential equations the role played by LP-space in the definition 

of Sobolev spaces is taken over by Orlicz spaces. The resulting space, 

called an Orlicz-Sobolev space is the object of study of many authors. The 

interested reader is referred to the following papers: [I, II, 18, 22, 23, 

26, 29, 30, 57, 61, 65). For applications to inteY'{Jolation theory the reader 

is referred to [25, 29, 64), and we also find that the calculus of 

variations is studied in the setting of Orlicz spaces. (See [5, 21).) In 

[52) O'Neil studies integral transforms in Orlicz spaces. Finally we mention 

the success which met the study of non-linear integral equations by 

Krasnosell'skii and Rutickii. We refer to their monograph [32) for results 

in this direction. 

7. Concluding remarks 

As was mentioned in the introduction we touched only a few subjects 

and without doubt there are many important contributions to the theory that 

we did not mention. This is because of the fact that for almost every prop

erty a Banach space may have, there is a paper investigating the property 

in Orlicz spaces. Thus, J.B. Turett and J.J. Uhl [66) investigate the 

Radon-Nikodym property in this connection, A.J. Pach, M.A. Smith and 

B. Turett [56) prove that under certain conditions an Orlicz space is fiat. 

B. Turett [67) finds conditions for an Orlicz space to be rotund and 

Lindenstrauss and Tzafriri [36] show that every reflexive Orlicz space has 

the uniform approximation property. C.D. Aliprantis and 0. Burkinshaw study 

minimal topologies on Orlicz spaces [4] and W. Fischer and U. Scholer [20) 

study the range of vector measures in Orlicz spaces. (See also M.S. Skaff 

[62).) Finally we mention also the construction of . ultraproducts of Orlicz 

spaces by D. Dacunha-Castelle [ 13] and the study of Hardy-Orlicz spaces by 

R. Lesniewicz [33). 
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ORTHOMORPH ISMS 

C.B. Huijsmans 

The Riesz space (vector lattice) A is called a Riesz algebra 

(lattice ordered algebra) if A is a real algebra such that the ordering 

and the (not necessarily commutative) multiplication are compatible, i.e., 

u,v EA+ implies uv EA+. If A has the additional property that 

u Av O in A implies that (uw) Av= (wu) Av= 0 for all w EA+, 

then A is called an £-algebra (generalized_iunction-algebra). The latter 

property is equivalent to saying that fig in A implies fh i g and 

hf i g for all h EA. Furthermore, it is not difficult to show that 

the lattice ordered algebra A is an £-algebra if and only if 

{fg}dd c {f}dd n {g}dd for all f,g EA, a characterization due to 

S.J. Bernau ([3], 1965). Denoting the left multiplication by h with 

nf and the right multiplication with TI~, these mappings have the 
l ft property that fig implies nh fig and nh fig. This observation 

gives rise to the definition of a so-called orthomoxphism in a Riesz space 

L (which, so to say, takes over the role of the multiplication in an 

£-algebra A). For the sake of convenience, we assume from now on that 

all Riesz spaces involved in this paper are Archimedean. 

DEFINITION. The order bounded linear mapping n from the Riesz space 

L into itself is called an orthomorphism if it follows from 

L that nf i g (equivalently, u Av= 0 implies nu iv). 

£ i g in 

Obviously, the order bounded linear mapping TI is an orthomorphism 

if and only if n leaves all bands invariant (i.e., 'IT is so-called 

band preserving). Any positive orthomorphism on L is evidently a lattice 

homomorphism. 

The first to define a notion which is more or less the same as an 

orthomorphism was H. Nakano ([16], 1940). Apart from a continuity condition 

he calls a positive linear operator on a Dedekind a-complete Riesz space 
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a dilitator whenever it connnutes with all order projections. The following 

theorem shows that for this class of Riesz spaces such operators are 

precisely the positive orthomorphisms. 

THEOREM. Let L be a Riesz spaae with the prinaipal projeation property 

and n: L ➔ L a positive linear operator on L. Then n is a positive 

orthrmorphism iff nP = Pn for all order projeations P. 

PROOF. Let n be an orthomorphism and P 

principal band Bu generated by some u E 

the element (I-P)f E Bd, it follows that 
u 

the order projection on the 

L+. Since for every f EL 

n(I-P)f E Bd and so 
u 

Pn(I-P)f = 0. Hence, 

nf n(I-P)f + nPf 

implies that Pnf = PnPf = nPf, on account of nPf E Bu 

Conversely, take u EL+ and let P be the order projection on 

B 
u Since u =Pu, it follows that 

implies innnediately that n(B) c B 

nu nPu = Pnu, so 

for all bands B in L 

nu EB 
u 

• This 

The notion of (positive) orthomorphism according to the above definition 

is due to A. Bigard and K. Keimel ([6], 1969) and, indeoendently, to 

P .F. Conrad and J .E.Diem ( [8] ,1971). The latter authors use the name of polar 

preserving endomorphisms. The main result in both papers (the proof is 

by means of representation theory) is that the set of all orthomorphisms 

on a Riesz space is an Archimedean £-algebra with unit element with respect 

to pointwise vector space operations, pointwise ordering and the composition 

as multiplication. Because of its importance we state this result as a 

theorem. 

THEOREM ((6],[8],[9],(14]). Let L be an Arahimedean Riesz spaae. Then the 

set Orth(L) of all orthomorphisms on L is an Arahimedean £-algebra 

with unit element. 

However, this result can be proved without using any repre~entation 

theory. This was done for the first time by W.A.J. Luxemburg, but not 

published before 1978 in (13] (see also (12] and (17]). The key to his 

proof is the fact that any orthomorphism n on L is order continuous 

(i.e., u i O implies inflnu I= 0) and so n can be extended uniquely 
T T 

to the Dedekind completion of L. After him several other authors 
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succeeded to prove the above theorem without representation ([1],[4]). 

In the above mentioned pioneering papers on orthomorphisms ([6] and 

[8]) there is a remarkable lack of examples. A.C. Zaanen deserves praise 

for filling up this gap in [19]. We list some of his examples. 

EXAMPLES. 

(I) For any Archimedean f-algebra A with unit element every orthomorphism 

of A is a multiplication by a fixed element of A. In other words, A 

and Orth(A) can be identified. This holds in particular for the following 

Archimedean unital f-algebras. 

(a) A= C(X) , the f-algebra of all real continuous functions on some 

topological space X. 

(b) A= Cb(X) , the f-algebra of all real continuous bounded functions on 

X 

(c) A= M(X,µ) , the f-algebra of all real µ-almost everywhere finite 

µ-measurable functions (with identification of µ-almost equal 

functions) on some measure space (X,µ) • 

(d) A= L00 (X,µ) , the f-algebra of all essentially bounded functions on 

(X, µ) 

(e) A is one of the following sequence spaces: (s) , l 00 , (c) , the space 

of all eventually constant sequences and the space of all sequences 

with only finitely many different values. 

(f) A = C" (V) , the second commutant of a commuting subset V of the 

ordered vector space of all bounded Hermitian operators on some 

Hilbert space. 

(II) Also in cases there is not a unit element available the space of 

orthomorphisms can be determined. 

(a) 

(b) 

(c) 

A= (c 00) , the sequence space of all eventually zero sequences. Every 

orthomorphism on A is a coordinatewise multipl,ication by some 

arbitrary sequence. 

A= (c0) . Every orthomorphism on A is a multiplication by some 

l 00-sequence. 

A= C (X) , the Riesz space of all real continuous functions with 
C 

compact carrier on some locally compact Hausdorff space X. Every 

orthomorphism on A is a multiplication by some fixed continuous 

function, so Orth(A) can be identified with C(X) • 
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(d) A= C00 (X) , the Riesz space of all real continuous functions on some 

locally compact, a-compact Hausdorff space X which vanish at 

infinity. In this case Orth(A) = Cb(X) • 

(III) Let (X,µ) be a a-finite measure space and L be the Riesz space 

Lp(X,µ) , (O<p<00 ) Every orthomorphism on L is a multiplication by some 

essentially bounded function, so Orth(L) = L00 (X,µ) . 

(IV) Let L be a Banach function space L (i.e., a linear subspace of 
p 

the space of all real µ-measurable functions on some a-finite measure 

space (X,µ) , norm complete with respect to a Riesz norm p) • Again, 

Orth(L) = L00 (X,µ) • 

(V) Obviously, every scalar multiple al of the identity mapping I on 

some Archimedean Riesz space L is an orthomorphism. We call these the 

trivial orthomorphisms. In all examples above there exist non-trivial 

orthomorphisms. However, there are Riesz space with only the trivial 

orthomorphisms. We mention one. 

Let L be the Riesz space of all real continuous functions f on 

some interval [a,b] such that f is piecewise linear (i.e., the graph 

of f consists of but a finite number of line segments). Then 

dim Orth(L) = 1 

One of the most interesting problems in £-algebra theory is the 

interplay of order properties and algebraic properties. There is a famous 

result of this kind, namely that every Archimedean £-algebra is commutative. 

Though the credit for this theorem is often given to G. Birkhoff and 

R.S. Pierce ([7], 1956), the first proof seems to go back to I. Amemiya, 

who gave the proof by means of spectral functions ([2], 1953). Birkhoff 

and Pierce prove that the inequality 

2 2 nlfg-gfl ~ f + g (n=1,2, .•• ) 

holds for any £-algebra. They show this by observing that the class of 

lattice ordered algebras is "equationally definable" and that due to this 

fact the £-algebra can be treated as if it was totally ordered. Using this 

metamathematical theorem, the above inequality needs only a proof in the 

class of totally ordered £-algebras in which it is almost trivial. 

Obviously, the present inequality implies immediately that any Archimedean 
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f-algebra is commutative. 

Several years later S.J. Bernau ([3], 1965) published an elementary, 

though not very transparent proof of the inequality in question. In 1975 

A.G. Zaanen showed in his paper on orthomorphisms ([19]) that the fact that 

all Archimedean f-algebras are commutative can also be proved by means 

of the theory of orthomorphisms. We sketch his proof. 

THEOREM. Any Archimedean f-algebra A is commutative. 

PROOF. The first observation to be made is that two orthomorphisms n1 and 

n2 coinciding on an order dense subset D of A are necessarily equal. 

Indeed, putting n = n1 - n2 , the kernel K of the order continuous 
ddn 

orthomorphism n is a band and so Kn Kn Since D c Kn and 

Ddd =A, we derive Kn= A, so n = 0, i.e., n1 = n2 on A. 

Secondly, observe that it follows immediately from 

{fg}dd c {f}dd n {g}dd = {lflAlgl}dd that f Lg in A implies fg = 0 

Finally as before we denote for any f EA the left multiplication 

by f 
l 

nf 
/[_ 

and the right multiplication by f with nf; as stated 
/[_ 

and nf are orthomorphisms. It follows from the second 
l /[_ d 

before 

observation above that 
l /[_ 2 

nfg = nfg = ,o for all g E {f} • Furthermore, 

nl = n/[_ on the order dense set {f} U {f}d nff = nff = f • Hence, 
f f l /[_ 

By the first remark above we have nf = nf on A. This holding for all 

f EA, the theorem is proved, 

There is some connection between the notion of an orthomorphism and 

the concept of a centralizer (generalized translation). The linear mapping 

operator n on some algebra A is said to be a centralizer whenever 

n(fg) = (nf)g = f(ng) for all f,g EA (see [11], 1964). Other closely 

related notions are the notions of noY'ITlalizer, ~ultiplier and fraction. 

THEOREM. Let A be an Archimedean f-algebra without nonzero nilpotents 

and n: A+ A a positive linear operator. Then n is an orthomorphism 

if and only if n is a centralizer. 

PROOF. Note first that in A we have f Lg if and only if fg = 0. As 

observed in an earlier stage, lfl A lgl = 0 implies fg 0 . Conversely, 

it follows from (lflAlgl/::a lfl. lgl lfgl that fg = 0 implies 
2 so, by hypothesis, lfl lgl = 0 • (lflAlgl) = 0 ' A 
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Since Orth(A) is an Archimedean f-algebra, any two orthomorphisms 

on A commute. Furthemore, A is commutative as well .so we can write nf 
1- ft 

instead of nf = nf 

Now take O $ n E Orth(A) • For all f,g EA we have 

(nnf)(g) = (nfn)(g) , in other words n(fg) = f(ng) • Similarly, 

n(fg) = (nf)g, proving that n is a centralizer. 

Conversely, let n be a centralizer and suppose that u Av 0 in 

A. It follows from uv 0 that n(uv) = n(u)v = 0 and hence 

(nu) Av= 0, and thus n is an orthomorphism. 

After the papers on orthomorphisms of the late sixties and the early 

seventies several new results on the subject have been published. We 

mention some. 

Whereas the kernel K of an orthomorphism n is always a band 
Rd 

n 
(actually, Kn ' 

where R denotes the range of n) , the image n n 
R need not be so. By way of example, let in L = C([O, 1]) the positive 

n 
orthomorphism n be defined by nf = i.f (where i(x) = X for all 

0 ~ X $ 1 ) . Putting u(x) = Ix sin~I on (0, 1 ] and u(O) 0 

the continuous function u satisfies 0 $ u $ i However, i E R but 
n 

u t Rn, showing that Rn is not even an ideal. 

In [3] (1972) A. Bigard proves that in any Dedekind complete Riesz 

space the range of every orthomorphism is an ideal. This result is improved 

by C.B. Huijsmans and B. de Pagter in [10] (1982).They show in fact that if 

the Archimedean Riesz space L is uniformly complete and has, in addition, 

the property that every proper prime ideal contains a unique minimal prime 

ideal, the range of every orthomorphism on L is necessarily an ideal. 

Another striking result was also proved by A. Bigard in [3]. He 

showed that if L is a Dedekind complete Riesz space, the space Orth(L) 

is nothing else than the band BI generated by the identity mapping I 

on L in the Riesz space of all order bounded linear operators on L 

It is always a good custom to end a paper with an open problem. In 

the definition of an orthomorphism n on an Archimedean Riesz space L it 

is required that n, besides being linear and band preserving, is order 

bounded. This condition is not redundant, as shown by M. Meyer in [15] 

(1979) (see also [4] (1981)) in the following example. 

Let L be the Archimedean Riesz space of all real functions f on 

[ 0, 1) for which there exists a partition 0 =XO< ... < X = 1 such n 
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that the restrictions f/[x. 1,x.) (i=1, ••• ,n) are linear. Define ~f to 
i- ]. 

be the right derivative of f. It is not hard to show that ~ is a linear 

band preserving operator on L, which is not order bounded. 

This suggests the problem of determining the class of all Archimedean 

Riesz spaces for which the band preserving property of the linear operator 

implies the order boundedness, by W.A.J. Luxemburg in [12] referred to as 

"the automatic order boundedness problem". It does not seem easy to find a 

simple characterization for this class of Riesz spaces. For instance, 

A.W. Wickstead has shown in [18] (1980), that there exist Dedekind complete 

and universally complete Riesz spaces which admit band preserving linear 

operators which are not order bounded. It can be shown that the above 

mentioned class includes all Banach lattices. 

Another approach of the problem is the following. What additional 

condition has to be imposed on the linear band preserving operator to be 

order bounded? One particular condition is given by S.J. Bernau in [4]. 

He actually proves that every linear band preserving operator which is 

relative uniformly continuous is an orthomorphism. 
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I. Introduction. 

Throughout this paper, [3] will be the standard reference for Riesz 

space theory and terminology. From now on L will always be an Archimedean 

Riesz space. We shall discuss Riesz subspaces of L which are regular and/ 

or normal (see section 2 below). In section 3 an application will be given 

in the theory of mathematical statistics. 

To motivate the discussion from a Riesz space theoretical point of 
2 view, let T: L + L be a positive linear map such that T = T and such 

that f * 0 implies Tf * 0 (i.e., Tis a strictly positive projection). Set 

M=T(L). Then we have 

THEOREM I.I. For L, T and Mas above the following hold: 

(a) Mis a Riesz subspaee of L; 

(b) if f + O in M+, then f + 0 in L +; 
T T 

(e) if f EM+ and f EL+ are s.ueh that f t fin L+, then f EM. 
T T 

Hence, the image of a strictly positive projection is a Riesz subspace 

which is "nicely embedded". By way of an example we show how strictly 

positive projections occur in mathematical statistics. 



22 

EXAMPLE 1.2. (Sufficiency). Let X be a point set and let a be a a-algebra 

of subsets of X. Furthermore, let {Pe: e E O} be a class of probability 

measures on a. Set 

N {A Ea: Pe(A) = 0 for all e E O}. 

Define L (a) to be the collection of all real-valued a-measurable functions 
00 

on X and let L0 denote the ideal of L00 (a) consisting of all functions 

which vanish outside an N-set. Finally, set 

Then L is a Dedekind a-complete Riesz space. Next, let a0 be a ,sub 

a-algebra of a such that N ca. The space L (a) is defined similarly as 
0 00 0 

above. Clearly L c L (a). Hence, setting 
0 00 0 

M L (a ) / L , 
00 0 0 

it follows that Mis a Riesz subspace of L. We shall say that a0 is 

sufficient for {Pe : e E O}whenever for all f EL there exists an f 0 EM 

such that 

f f dPe = f f O dPe 
A A 

holds for all A Ea and for all 
0 

e E 0 . Obviously, if for f EL such an 

f 0 EM exists, then it must be unique. Hence, assuming that ao is 

sufficient, it follows that we can define a map T : L + M by setting 

Tf=f for all f EL. It is easily verified that Tis linear, strictly 
0 2 

positive and that T =T. For the theory of sufficiency we refer to [I]. 

In section 3 we continue our discussion on sufficiency, but first 

some Riesz space theory has to be developed. 

2. Riesz subspaces 

Throughout this section, let M be a Riesz subspace of L. Furthermore, 

let B(L), B (L) and P(L) denote the collection of bands, the collection 
p 
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of principal bands and the collection of projection bands of L respectively. 

Similarly we can define the classes B(M), B (M) and P(M) for the Riesz 
p 

space M. 

Let BE B(M). Setting 

Bdd (in L), 

it follows that ,rM(B) E B(L). The map TIM: B(M) + B(L) thus defined, is 

easily verified to be a one-one Boolean homomorphism from B(M) into a 

principal ideal of B(L). Furthermore, if BE B(M), then we can retrieve 

B from its image ,rM(B) in B(L) simply by 

However, if CE B(L) is arbitrary, then it does not automatically follow 

that C n Mis a band in M (although it is always an ideal). We also observe 

that if B -1-' {O} in the Boolean algebra B(M), then it is not necessarily 
T 

true that ,rM(B T) -1- {O} in B(L), i.e., 1T M is not always order continuous. 

Next, in view of theorem 1.1.b, we define 

DEFINITION 2.1. We say that Mis a regular Riesz subspace of L whenever 

it follows from f EM+ and f -1- 0 in M that f -1- 0 in L+. 
T T T 

We note that ideals and one-dimensional Riesz subspaces are always 

regular. On the other hand, considering C([O,I]) as a Riesz subspace of 

L00 ([0,I]) it is easily verified that C([0,1]) is not regular. 

With respect to the introductory remarks above, we now have 

THEOREM 2.2. The following are equivalent. 

(a) Mis a regular Riesz subspace of L; 
(b) for aU C E B(L) we have C n M E B(M); 

B(M) + B(L) is order continuous; 

B (M) + B (L) is order continuous. 
p p 

Next, motivated by thoerem 1.1.c, we turn our attention to another 

property that M might have. 

DEFINITION 2.3. We say that Mis a noPmal Riesz subspace of L whenever 
+ + it follows from fT EM, f EL and fT t fin L that f EM (i.e., 
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whenever Mis closed for taking arbitrary suprema). 

Note that an ideal is always regular but not necessarily normal. On the 

other hand, normal Riesz subspaces need not always be regular as we shall 

see from theorem 2.5 below. Thus, regularity and normality are in general 

independent properties. Normal Riesz subspaces are nice in the sense that 

they inherit many properties. For instance 

THEOREM 2.4. Let M be a normal Riesz subspace of L. If Lis either 

Dedekind a-complete or Dedekind complete, then Mis Dedekind a-complete 

or Dedekind complete. If L has the (principal) projection property, then 

M has the (principal) projection property. 

Somewhat more general than above, one can show that if Mis a normal 

Riesz subspace of Land if BE B(M) is such that C = TIM(B) E P(L), then 

BE P(M). Furthermore, in that case, if f EM, then Pcf EM, where P0 

denotes the band projection. 

Obvious examples of normal Riesz subspaces are bands and one

dimensional Riesz subspaces. Furthermore, if we define for BE B(L) and 

f EL+ 

M(B, f) {g EL g E b + a.f , b E B, a. E lR } , 

then M(B,f) is also a normal Riesz subspace. In connection with regularity 

we now have 

THEOREM 2.5. The following are equivalent. 

(a) L has the projection property; 

(b) every normal Riesz subspace of Lis regular; 

(c) for all BE B(L) and for all f EL+, M(B,f) is regular. 

Returning to strictly positive projections, we conclude this section 

with the following result. 

THEOREM 2.6. Let T: L + L be a strictly positive projection and let 

M = T(L). Then we have 

(a) Mis a regular and normal Riesz subspace of L; 

(b) if either Tis a-order continuous or if the ideal in L generated 

by M equals L and if furthermore 
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BE TIM(B(M)) n P(L), then we have PBTf = TPBf for all f EL; 

{c) conversely, if L has the projection property and if either Tis 

a-order continuous or if the ideal in L generated by M equals 

L, then TIM(B(M)) can be described as follows: for BE B(L) we 

have BE TIM(B(M)) if and only if PBTf TPBf for all f EL. 

The proofs of all above results are given in [2]. 

3. Applications to sufficiency 

Using the results of section 2, we are now able to make some 

statements on sufficient a-algebras. Therefore, in this section, we assume 

the notations and terminology of example 1.2. Furthermore, we set 

a a/N 

and similarly if a is a sub a-algebra of a containing N,we set 
0 a = a /N. Clearly a is a Boolean sub a-algebra of the a-complete 

0 0 0 

Boolean algebra a. Also it is well-known that (for Land Mas in example 

1.2) 

a ';;f P(L) = 8 (L) and a ';;f P(M) 
p 0 

8 (M) 
p 

as Boolean algebras. In view of theorems 2.2 and 2.6 the following is 

therefore immediate, 

COROLLARY 3.1. Assume that a0 is sufficient for {Pe : e E 0}. Then we 

have 

(a) if A E a and if nA = {O} in a , then OA = {O} in a ; 
T O T O T 

(b) if A E a , A Ea and if A = UA , then A E a • 
T O T O 

(Intersections and unions should be taken in the Boolean algebra sense). 

We note that if a has the so-called countable chain property, then 

(a) and (b) of corollary 3.1 are satisfied for every sub a-algebra a 
0 

of a. However as soon as a lacks this property, then this does not need 

to be the case. Since a having the countable chain property is equivalent 

to the existence of a a-finite measureµ on a with the property that 

µ(A)= 0 implies A EN (i.e.,µ dominates {Pe : e E 0}), the above 
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corollary explains why the theory of sufficient a-algebras is much more 

involved in the general case than in the dominated case (see [I]). For 

instance, corollary 3.1 above shows that if 

and if a1 is sufficient, then a2 does not need to be sufficient, because 

it may not satisfy (a) or (b) of corollary 3.1. 

Although it is not an immediate consequence of the previous results, 

I would like to conclude with the following extension of the well-known 

Halmos-Savage theorem. An elegant proof can be given without using 

Radon-Nikodym derivates. Instead one should apply the Riesz space theory 

from [3] and some results from [2]. 

THEOREM 3.2. Asswne that a is a complete Boolean algebra. 

(a) If a0 is sufficient for {P0 : e E 0}and if a1 is a sub a-algebra 

of a such that a0 c a1,then a1 is sufficient for {Pe : e E 0} 

if and only if a1 satisfies (a} and (b) of corollary 3.1. 

(b) Let E denote the class of all sub a-algebras of a which contain 

N and which are sufficient for {Pe : e E e}.Then E has a 

smallest element. In other words, 

n{a' : a' E E} E L 
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SYMMETRISABLE OPERATORS AND MINIMAL FACTORIZATION 

M.A. Kaashoek 

O. Prologue 

It is a pleasure to participate in this symposium honoring professor 

A.C. Zaanen. My own mathematical work is to a large extent a product of 

Zaanen's interest in functional analysis and operator theory. Naturally, 

as one of his students, I learned a lot from the lectures Zaanen gave. 

But most effective has been a two hour session Zaanen had with me on a 

hot day in the summer of 1960 in his room on the top floor of the former 

mathematical institute of Leiden University in the Vreewijkstraat. What 

was supposed to be an oral examination was transformed by Zaanen, maybe 

because of the temperature, into a private course on basic ideas concerning 

integral equations and linear operators, after which I decided that I 

should learn more about these topics. Later Zaanen introduced me to Kato's 

perturbation theory for nullity and deficiency of linear operators, which 

together with the Gohberg-Krein paper on the same subject became the 

starting point for my Ph.D. work under his supervision. It was also the 

beginning of a friendship. I mention this with great respect and gratitude. 

I. Introduction 

In his earlier papers on integral equations and also in "Linear 

Analysis" A.C. Zaanen has used the concept of a symmetrisable operator 

as a tool to give a smooth, coherent and concise treatment of selfadjoint 

integral equations and non-selfadjoint integral equations with kernels like 

Marty kernels, Pell kernels and Garbe kernels. The work Zaanen did on this 

subject may be regarded as a beginning of what is nowadays called the 

theory of selfadjoint operators on spaces with an indefinite inner product 

(see [4]). 

In my contribution to this symposium I would like to discuss another 

instance in which synmetrisable operators can be employed as a useful tool. 
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I have in mind factorization problems. For simplicity I shall restrict the 

attention to one case, namely to minimal factorization of non-negative 

rational matrix functions. The results I shall mention are not new and 

concern mainly symmetrisable operators acting on finite dimensional spaces. 

They serve as a sample of several recent developments in which symmetrisable 

operators play an important role (cf., [5,6,7,8,11,14]). 

2. Definition and first remarks 

Throughout this section Xis a complex Hilbert space with inner 

product(.,.) and H: X +Xis a bounded selfadjoint operator on X. 

Following [16], Section 12 of Chapter 9, a bounded linear operator K: X + X 

is called syrrmetrisabZe relative to the operator H if HK is selfadjoint, 

or, equivalently, if 

With the selfadjoint operator Ha so-called indefinite inner product 

is associated (see [4] for the terminology), namely the form [x,y] = (Hx,y). 

In terms of this indefinite inner product formula (I) can be rewritten as 

(2) [Kx,y] [x,Ky]. 

Thus K is symmetrisable relative to H if and only if K is selfadjoint on 

X endowed with the indefinite inner product[.,.]. The latter property is 

summarized as K is H-selfadjoint. 

Let L be the kernel of H, and put M = L~ (= Im H). The fact that K 

is symmetrisable relative to H implies that Lis invariant under K. Thus 

with respect to the decomposition X =Li M we can write 

(3) K 

Let~ be the restriction of H to M. Since K is symmetrisable relative to 

H, the operator~ is symmetrisable relative to~• 

Conversely, if the operator~: M +Mis symmetrisable relative to 
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1\i• then for any choice of the operators KL and C the operator K defined 

by (3) will be symmetrisable relative to H. It follows that from the 

property of symmetrisability one cannot deduce any information concerning 

the operators~ and C. 

For this reason we add to the definition of symmetrisability that 

the self-adjoint operator His injective. In case Xis finite dimensional 

this implies that His invertible. 

3. Symmetrisable operators on finite dimensional spaces 

When is an operator K: X ➔ X symmetrisable? In the finite dimensional 

case this question can be answered completely. First of all, if Xis finite 

dimensional, then K is symmetrisable if and only if HK= K*H for some 

invertible selfadjoint operator H. Thus if K is symnetrisable, then K is 

similar to K*. This condition is not only necessary, but also sufficient. 

To see this, let us consider some simple examples of symnetrisable 

operators on ta. (In what follows an ax a matrix is identified with the 

operator induced by its action on the standard basis of ~a.) Let J (A) 
et 0 

be a Jordan block of order a with single eigenvalue A0 , and let Pet be the 

a x a permutation matrix defined by Pet = [ o. . 1 ]~ • 1 • If A0 is real, 
1.,a-3+ 1.,3= 

then Jet(A 0 ) is symmetrisable relative to P and to -P. If A is not real, et et 0 
then the 2a x 2a Jordan form 

J (A ,I0) 
et 0 

is symmetrisable relative to the selfadjoint operator P2et. 

Now assume that K: ~n ➔ ~n is similar to its own adjoint K*. Then 

the eigenvalues of Kare symmetric with respect to the real axis and the 

partial multiplicities of a given eigenvalue A0 of Kare equal to those of 

A0 • It follows that the Jordan normal form J of K is a direct sum of Jordan 

blocks 

A0 • Let 

Jet(A 0 ) with real eigenvalues and of blocks Ja(A 0 ,I0) with non-real 

P J be a corresponding direct sum consisting of signed matrices 
E:' 

Pet, one of appropriate size for each real Jordan block in J, and of blocks 

P2a for each block J (A ,I). The sub-index e: denotes the ordered set of 
et O 0 

signs of the blocks Pet corresponding to the real eigenvalues. The operator 
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P constructed in this way is invertible and selfadjoint,and J is sym-E,J 
metrisable relative to P • Let S be a similarity between Kand its Jordan 

E,~l * 
normal form J, i.e., K = S JS, and put H = S PEJS. Then His an invertible, 

selfadjoint matrix and K is sym:netrisable relative to H. Thus in the finite 

dimensional case K is sym:netrisable if and only if K is similar to its 

adjoint. 

The remark of the previous paragraph is the beginning of a much 

deeper result which states that for a finite dimensional operator K any H 

for which K is symmetrisable may be obtained in the way described above. 

The following theorem holds. 

THEOREM I. Let the operator K: tn + ~n be syrrmetrisable relative to H, 

and let J be a Jordan normal form of K. Then there exists a unique ord,ered 

set of signs E and an invertible operator S such that 

K H * SP JS. 
E, 

The ordered set of signs Eis unique up to permutations within 

subsets of E corresponding to Jordan blocks with the same eigenvalue and 

of the same size. The set Eis called the K-sign characteristic of H. 

Theorem I and its proof appear in [6] (see also [7]), but in various forms 

the result has been known for many years. 

The sign characteristic serves as a complete set of invariants in the 

following sense (see [8]): 

THEOREM 2. For i = 1,2 let the operator K. : tn + tn be syrrmetrisable rela
i 

tive to H •• Then there exists an invertible operator S such that 
i 

if and only if K1 and K2 have the same Jordan normal form and the K1-sign 

characteristic of H1 is equal to the K2-sign characteristic of H2 • 

The structure theorems for symmetrisable operators stated above are 

most useful. For example, they can be employed to construct invariant sub

spaces of a symmetrisable operator K which are positive, negative or 

neutral with respect to H. As an example I mention the paper [15], where 

under certain conditions on the K-sign characteristic of Ha full descrip-



tion is given of all K-invariant subspaces of «:n that are H-neutral and 

of maximal dimension. Recall that a subspace M of ~n is called H-neutral 

if (Hx,x) = 0 for each x EM. 

THEOREM 3. Let the operator K: «:n->- «:n be syrronetrisable relative to H, 

and assume that the signs corresponding to the Jordan blocks of K with 

31 

the same real eigenvalue are of equal type (i.e., either' aZZ equal to 1 or 

all equal to -1). Put 

r 
V = ).; 

i=l 

where m1, ••• ,mr are the sizes of the Jordan blocks of K with real eigen

values and [a] is the integer part of the positive number a. Then vis the 

maximal possible dimension of a K-invariant H-neutral subspace, and if 

M+ is the spectral subspace of K corresponding to the eigenvalues in the 

open upper halfplane, then the map 

Nl-+MnN 
+ 

establishes a one-one correpondence between all K-invariant H-neutral sub

spaces N of maximal dimension and the K-invariant subspaces of M+. 

4. Minimal factorizations 

The notion of minimal factorization arises in mathematical systems 

theory. In so-called state space representation a (time-invariant linear 

dynamical) system is given by two equations: 

(I) { 
x(t) = Ax(t) 

y(t) = Cx(t) 

+ Bu(t), 

+ Du(t), 

Here u(t) represents the input at time t and y(t) is the output at time t. 

The functions u(t) and y(t) are vector functions with values in «:m, say. 

The function x(t) represents the internal state of the system and takes 

values in ~n, where n may be larger than m. The coefficients A,B,C and D 

are matrices of sizes corresponding to the lengths of the vectors u(t), x(t) 

and y(t). 

If the system is at rest at t 0, then after Laplace transformation 
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the system may be written as 

(2) 
Ax(>..) + Bu(>..), 

Cx(A) + Du(A). 

Hence the relation between input and output is given by 

y(>..) [D + C(H - A)-IB]u(A) . 
n 

Here In denotes then x n identity matrix. The function 

(3) W(A) 

is called the transfer function of the system e = [A,B,C,D]. 

The transfer function of the cascade connection (or series connection) 

of two systems is equal to the matrix product of the corresponding transfer 

functions. Thus factorizations of transfer functions are important, because 

they can be used to construct a system with a prescribed transfer function 

from simpler elements. In general one is only interested in factorizations 

in which no pole-zero cancellation occurs. To define these so-called 

minimal factorizations we need the concept of degree fora transfer function. 

Since a transfer function W(>..) is analytic at infinity, its Laurent 

expansion at infinity is of the following form: 

W(A) 

Consider the p x p block Hankel matrix 

T [n .. ) p • 
p i+J-1 i,j=I 

The rank of T is independent of p for p sufficiently large. By definition 
p 

the McMillan degree of Wis the number 

cS (W) sup rank T ( < +oo ). 
p;>:J p 

The McMillan degree satisfies a certain sub-logarithmic property, that is, 

if 
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(4) 

is a product of transfer functions, then o(W) ~ o(W1) + o(W2). The factori

zation (4) is called minimal if o(W 1) = o(W 1) + o(W2). The study of minimal 

factorizations is the main topic of [2,3). 

To find the minimal factorizations of a given transfer function we 

return to the expression (3). From (3) it is clear that a transfer function 

is a rational matrix-valued function which is analytic at infinity. From 

mathematical systems theory it is well-known that the converse is also true. 

This is the so-called realization problem. Thus any rational matrix function 

W(\) which is analytic at infinity, can be written in the form (3). The 

(right hand side of the) identity (3) is called a realization of W. 

In general,for a given rational matrix function many different 

realizations are possible. We call a realization minimal if ~he dimension 

of the state space (that is the number n in (3)) is as small as possible. 

Alternatively, the realization (3) is minimal if and only if 

00 00 

(5) n Ker CAV (0), span u AvB tn. 
v=O v=O 

~ec= prove that in that case n is precisely equal to the McMillan degree 

of W. 

If (S) holds, then the system 0 [A,B,C,D] is called minimal. If two 

minimal systems 0, = [A.,B.,C.,D.], i 1,2, have the same transfer func-
i i i i i 

tion, then D1 D2 and there exists a unique invertible operator S such that 

(6) 

In that case the two systems are said to be similar and Sis called a system 

similarity. Of course, conversely, if (6) holds and D1 D2, then the 

systems [A1,B1,c1,D1] and [A2,B2,c2,D2] have the same transfer function. 

THEOREM I. Let W(\) = I + C(\I - A)-IB be a minimal realization, and let 
m n 

IT be a projection of tn such that 
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(7) A[Ker IT] c Ker IT, (A - BC)[Im IT] c Im IT. 

Consider the functions 

(Ba) WI(\) I + C(H - A) -I (I - IT)B, m n n 

(8b) W2(\) = I + CIT(H - A)- 1B. 
m n 

Then W(\) = w1(\)W2(\) is a minimal factorization of Wand any minimal 

factorization of W may be obtained in this way. 

A projection IT of Cn with the properties (7) is called a supporting 

projection of the system [A,B,C,I ]. If in Theorem I we consider only fac
m 

tors that have the value Im at infinity, then there is a one-one correspon-

dence between the supporting projections of the minimal system [A,B,C,I] 
m 

and the minimal factorizations of its transfer function. For the proof of 

Theorem I and more information concerning minimal factorization we refer to 

[2]. 

The operator A - BC appearing in the second part of (7) is called the 

associate operator of the system [A,B,C,I] and will be denoted by Ax. 
m 

5. Non-negative rational matrices 

In this section we shall use basic information about symmetrisable 

operators to construct minimal factorizations of a non-negative rational 

matrix function V(\). Recall that a rational m x m matrix function Vis 

said to be non-negative if 

0 s <V(\)y,y> s +oo 

A method to obtain minimal factorizations of the fonn V(\) = L*(\)L(\) 

will be explained. Here L (\) = L(~)*. 
* We start with a selfadjoint rational matrix function Wand assume that 

for W the following minimal realization is given: 

(I) W(\) 
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First let us see how symmetrisability comes to play a role. The fact that 

W(A) is selfadjoint means that W*(A) = W(A). So for W we also have the 

following realization 

(2) W(A) * -I * - A ) C • 

Since the realization (I) is minimal, the same is true for the realization 

(2), and hence we have two minimal realizations for the same function. But 

then there exists a unique invertible operator H: tn + tn such that 

(3) B -I * H C , C 

By taking adjoints in (3) one sees that also 

(4) 

* B H. 

* * C = B H • 

Because of minimality the operator His uniquely determined by the identi

ties in (3). So from (4) we may conclude that H = H* and hence His an 

invertible selfadjoint operator. Now the first identity in (3) tells us 

that A is symmetrisable relative to Hand from all three identities in (3) 

it is clear that the same is true for the associate operator Ax= A - BC. 
X 

So both A and A are symmetrisable relative to H. 

Next we consider a minimal factorization 

(5) W(A) K(A)L(A) 

with factors that have the value I at 
m 

supporting projection U of the minimal 

infinity. There exists a unique 

system [A,B,C,I] which yields the 
m 

factorization (5) (in the sense of Theorem I of the previous section). 

Since W(A) is selfadjoint, we have W(A) = L*(A)K*(A), Again this is a 

minimal factorization of W with factors that have the value Im at infinity, 

and it can be shown that the corresponding supporting projection of the 

system [A,B,C,I] is equal to H- 1(1 - rr*)H. 
m n 

For a non-negative function W we are interested in minimal factoriza-

tions of the form (5) with K = L*. From the remarks made in the previous 

paragraph it is clear that in (5) we have K = L* if and only if for the 

corresponding supporting projection the following identity holds: 
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(6) HJIH-1 * I - !I . 
n 

Formula (6) is equivalent to the statement that both Ker !I and Im !I are 

H-neutral subspaces of maximal dimension, which in this case is equal to 

½n. 

Now assume that W(A) is non-negative.Then the sizes of the Jordan 

blocks of A and Ax corresponding to real eigenvalues are even and both 

the A-sign characteristic and the Ax-sign characteristic of H consist of 

the integers +I only. But then we can apply Theorem 3 in Section 2 to find 

all H-neutral subspaces of dimension ½n that are invariant under A and all 

H-neutral subspaces of dimension ½n that are invariant under Ax. Let Mand 

Mx be two such subspaces, where Mis invariant under A and Mx is invariant 

under Ax. Then automatically Mand Mx form a direct sum decomposition of 

«:n, i.e., 

n X • 
and hence the projection !I of C along M onto M is a supporting projection. 

So for a non-negative function W (which has the value Im at infinity) we 

have sketched a method to construct all minimal factorizations of the form 

L*(A)L(A) with 1(00 ) =Im.By using this method a theorem of the following 

type may be derived. 

THEOREM I. Let V be a non-negative rational matrix function, and assume 

that det V(A) does not vanish identically. Let a be a set of poles 

and T be a set of zeros of V which are m=imal with respect to inclusion 

and do not contain real numbers or pairs of complex conjugate numbers. 

Then V admits a minimal factorization 

such that the set of non-real poles of Lis cr and the set of non-real 

zeros of L is T 

To prove the above theorem, choose AO E lR such that A0 is neither a 



pole nor a zero of V. Put 

W(:\) 

Then Wis a non-negative rational matrix function which is analytic at 

infinity and has the value I at infinity. Next choose a minimal system 
m 

[A,B,C,I] such that the representation (I) holds. But then we can apply 
m 

the method outlined above to get the desired result. See [13,14) for the 

full proof and further details. 

37 

In the present paper only one example is given of the use of sym

metrisable operators in factorization problems. Many others, involving 

symmetrisable operators acting on finite and infinite dimensional spaces, 

could be added. See, e.g., [10,9,12), all of which concern infinite 

dimensional problems, and [5,6,8), which deal mainly with finite dimensio

nal synmetrisable operators. Further, the use of synmetrisable operators is 

not restricted to factorization problems, but there are several other 

branches of analysis and its applications where synmetrisable operators play 

an important role (see, e.g., [I) and [II, 15)). 

Acknowledgement: I am grateful to A.C.M. Ran who read the first version of 

this paper. 
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ORTHOMORPHISMS AND THE RADON-NIKODY M 

THEOREM REVISrfED 

W.A.J. Luxemburg* 

1. Introduction 

It is with the greatest pleasure that I present this article 

honoring my former teacher and friend Professor A.C, Zaanen. 
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I met Professor Zaanen for the first time in 1951. At that time we 

were both members of the Mathematics Department of the T.H. in Delft, all 

be it, in totally different capacities. A year or so later, it was my 

priviledge to become Zaanen's assistant. One of my first tasks was to help 

with the proof reading of the galleys of Zaanen's first major treatise 

entitled "Linear Analysis", I do not recall now whether I found many 

misprints, but I do remember vividly how much functional analysis I learned 

in the process. Despite the fact that I divided my time between finding 

misprints and learning about Banach spaces and integral equations, I must 

have done a reasonable job, because as a reward I could keep a copy of the 

last corrected proof sheets. To put them to good use, I made three hard 

covered books out of them by binding together each of the three parts that 

make up the book. I hasten to add, however, that when "Linear Analysis" 

finally appeared Professor Zaanen presented me, to my pleasant surprise, 

with an autographed copy with an inscription thanking me for my help. 

These books are now a treasured possession. The proofsheet copies are still 

frequently consulted and borrowed by my colleagues and students. The 

autographed copy I keep for myself in a safe place. 

But "Linear Analysis" did more for me, it aroused my interest in 

functional analysis, and so I became Zaanen's first Ph.D. student. This 

association grew into a long lasting collaboration which produced numerous 

*Part of this work was supported by a Grant from the National Science 

Foundation, 
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joint papers and the book on Riesz spaces. Later this year we may 

celebrate the thirtiet'h anniversary of our collaboration and friendship 

and I am looking forward for many more years of the same. 

I may be permitted to use this forum to express my sincere 

feeling of respect and gratitude towards my former teacher. I thank him 

for the countless hours he spent in reading, improving and rewriting of my 

mathematical messages. From this exchange of ideas I learned, at a very 

early stage of my career, what mathematical research is all about. 

Clearly, Professor Zaanen's mathematical contributions have been 

ionninent. This is also reflected in the mathematical contributions of his 

many students. This booklet is further testimony of the influence of 

Zaanen's work on the development of functional analysis. During all these 

years, Zaanen established his own school of thought in functional analysis 

with its center of gravity in Leiden and with its representatives abroad. 

I very much hope that my former teacher will accept this con

tribution as a token of my respect and gratitude and as a reminder of our 

many coonnon interests. 

2. "Examples of orthomorphisms" revisited 

When I started to think seriously what to contribute I was drawn 

inevitably to the mathematical work of Zaanen for a point of contact. Soon 

I found one in a paper listed as number,sixty entitled "Examples of 

Orthomorphisms". 

In this paper the theory of £-algebras is firmly and elegantly 

established on the theory of orthomorphisms. We remind the reader that 

orthomorphisms are order bounded linear transformation with a strong 

local behavior in that they preserve disjointness. As is characteristic 

of Zaanen's work the results are illustrated with a number of very 

important worked-out examples. An important group among them are the 

£-algebras of orthomorphisms of C(K)-type spaces. This brought again 

to my mind the example of the abstract L-space whose elements can be 

written as the difference of two positive harmonic functions in the unit 

circle whose f-algebra of orthomorphisms was still to be determined. 

These considerations led to the following observations. 
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The reader will understand that in an article of this size and 

purpose there is little room for a detailed explanation of the terminology, 

notation and the various results that are used. Two good sources of 

information are the book on Riesz Spaces referred to above and my 

Arkansas Lecture Notes entitled "Some Aspects of the Theory of Riesz 

Spaces". 

Let (L, II • 11) be an abstract L-space in the sense of Kakutani. This 

means that (L,11,11) is a Banach lattice whose norm is additive on the 

cone of the non-negative elements of L. It is important to keep 

in mind that we assume that L is norm-complete. From this assumption 

it follows that the norm is order continuous and L is Dedekind complete. 

The linear functional e(f) := llf+II - llf-11 , f EL , is order continuous 

and strictly positive. The latter implies in particular, that L is 

also order separable. 

* The Banach dual space (M, 11 .II) : = (L, II. II) is an abstract M-space 

in the sense of Kakutani. Its norm has the dual property 

llsup(f,g)II = sup(llfll,llgll) on the cone M+ of the non-negative elements 

of M. The strictly positive linear functional e defined above is a 

strong order unit of M of norm one. From the order continuity of the 

norm of L it follows that M = L~ the Riesz space of all order n , 
continuous linear functionals of L. Furthermore, (L~)~ = 

n n 
is, L is perfect. M~ f M*, the dual of M, except when 

n 
dimensional. 

M~ = L , that 
n 

L is finite 

For many spaces of type M the £-algebras of its orthomorphisms are 

identified in Zaanen's paper referred to in the title of the section. 

It is a natural question to ask what can be shown about the £-algebras 

of orthomorphisms of abstract L-spaces? Since such spaces, as defined 

here, are Banach lattices, it is well-known that their £-algebras of 

orthomorphisms coincide with their centers. The center Z(L) of an 

abstract L-space consists of the order ideal generated by the identity 

operator in the algebra of all bounded linear operators of L into 

itself. I remind the reader that for art abstract L-space bounded linear 

transformations are order bounded. Thus Orth(L) , the £-algebra of the 

orthomorphisms of L, is itself an abstract M-space. Hence, the question 

arises whether Orth(L) and the dual M of L are somehow related? 
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As may be glanced from Zaanen's paper such is definitely the case if L 
1 is an L -space of integrable functions. 

By using Kakutani's representation theory of abstract L- and M-spaces 

it is easy to conclude that M and Orth(L) are the same. However, as 

Zaanen and I have shown at a number of occasions, a direct analysis, 

bypassing representations, often reveals more about the situation, and this 

case, I believe, is no exception. 

For a better understanding of the theorem of this section let me 

briefly recall the process of defining an operation of multiplication in an 

abstract M-space with a strong order unit such as the dual M of L 

If a and b are components of the strong order unit e of M 

then we define ab:= inf(a,b); analogous with the case of characteristic 
n m 

functions of sets. If f := r 1 fiai and g := r 1 gjbj are two step 

elements of M in canonical form, i.e., the real numbers f 1, .•. ,fn, 

g1, ••. ,gm are all non-zero and {a1, ... ,an} and {b 1, ... ,bm} 

are two systems of mutually disjoint components of e, then we define 

fg := E .. f.g.(a.b.) . An application of Freudenthal's spectral theorem 
1.' J 1. J 1. J 

finishes the process. 

On the basis of these preliminaries we are now in a position to 

prove the following theorem. 

THEOREM 2. 1 . If 

Kakutani, then 

isomorphic with 

(L, II. II) is an abstract L-space in the sense of 

Orth(L), the f-algebra of its orthomorphisms, is 

M , the dual space of L 

PROOF. The main ingredient of the proof is the result that the adjoint 

of an orthomorphism is an orthomorphism. This fact enables us to assign to 

each TE Orth(L) , the uniquely determined bounded linear functional 

,: (T) : = T*e of L , where e E M is the strong order unit of M and T>~ 

is the adjoint of T. If T is the identity operator E of L ,then 

obviously 1:(E) = e. It follows readily that if T = P is a band 

projection operator of L, then ,:(P) is a component of e 

The mapping ,: is obviously linear and positive. To show that the 

mapping is one-to-one, assume that T1,T2 E Orth(L) and ,:(T 1) = ,:(T2) 



43 

The latter condition means that the two orthomorphisms T* and T* take 
. d 1 2 

on the same value on the complete element e (i.e., {e} = {O}) and from 

a well-known property of orthomorphisms it follows that T7 = T1; and 

finally T1 = T2 We shall now show that T is onto. To this end, observe 

that if ¢EM, then there exists a unique orthomorphism Sf Orth(M) such 

that ¢ Se The adjoint S* of S is anorthomorphism of M* = L** 

Using the fact that L is perfect and that orthomorphisms are order 

continuous it follows immediately that S* leaves L ~ L** invariant. 

From this we may conclude that if T ( Orth(L) denotes the restriction 

of S* to L, then T* = S and ,(T) = T*e =Se=¢ . In addition we 

may conclude that the inverse mapping of , is positive and, hence , is 

a Riesz homomorphism of Orth(L) onto M 

Finally, observe that since the ,-image of a band-projection of L 

is a component of e it follows readily that T preserves multiplication 

as well. We shall leave the details to the reader to verify this statement 

and remark only that if P1,P2 are bandprojections of L, then 

,(P1P2) = inf(,(P1),,(P2)) and an application of Freudenthal's spectral 

theorem will finish the proof, 

Perhaps it may be useful to point out here that since the algebras 

involved are commutative, we have that if T1,T2 E Orth(L) , then 

(T1T2)* = T1Tt = TtT1. 

From the proof it follows also that M is isomorphic with its own 

f-algebra of orthomorphisms. We shall list this in the following Corollary. 

COROLLARY 2.2. If L is an abstract L-space in the sense of Kakutani and 

M is its dual space, then the £-algebras Orth(L) , Orth(M) and M 

are all isomorphic. 

We shall now turn to the examples. 

EXAMPLES. 1. Let L be the Riesz space of all harmonic functions u in 

the unit circle A= {z:lzl<1} which can be written as the difference 

of two positive harmonic functions. L can be made into a normed space by 

means of the definition !lull := llµII , where llµII denotes the total 

variation of the representing measure µ of u on the boundary 

T = {z:lzl=1} of A. Under this norm L is an abstract L-space in the 
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sense of Kakutani which is Riesz isomorphic to the space M(T) of all 

bounded Borel measures on T. Since M(T) is the dual of the space C(T) 

of all real continuous functions on T, it follows from the above Theorem 

that Orth(L) is isomorphic with C**(T) , the second dual of C(T) . 

The structure of the £-algebra C**(T) , although complicated, has been 

extensively studied, notably by S. Kaplan and his school. It is not the 

place here to show how these results can be exploited in the theory of 

harmonic functions, 

2. Let B denote a non-degenerate Boolean algebra with smallest element 

o and unit element E . By .m(B) we shall denote the abstract L-space 

of all the real finitely additive measures µ of finite total variation 

lµl(E) < 00 , with norm llµII := lµl(E) < 00 • As is well-known m(B) is the 

dual space of the Banach lattice C(8) , the uniform completion of the 

Riesz space of all finitely valued place functions of B in the sense of 

Caratheodory. The reader who is not familiar with the theory of place 

functions may consult the book by C. Caratheodory entitled "Mass und 

Integral und Ihre Algebraisierung" or D.R. Fremlin's book entitled 

"Topological Riesz Spaces and Measure Theory". If n denotes the Stone 

representation space of B , then the finite place functions of B can be 

represented as the step functions w.r.t, the algebra of the open and 

closed subsets of n 
' 

and C (B) can be represented by the space C (fl) 

of all real continuous functions on the compact Hausdorff space n The 

L-space m(B) of measures on B is of course isomorphic to the dual 

space C*(n) of c(n) of all regular Borel measures on n . From the 

Theorem of this section it follows then readily that Orth~(B)) is 

isomorphic to the second dual space C**(n) of c(n) 

For later use the following remark concerning mQ3) is inserted 

here. If the Bo,olean algebra B is a subalgebra of a Boolean algebra A, 

then an element µ Em(B) is called A-countably additive (A-corrrpletely 

additive) whenever for every decreasing sequence {A} , n=1,2, ... , of 
n 

elements of B (for every downward directed system {A } , a, E {a,} , of 
Cl, 

elements of B ) satisfying inf A . = 0 (inf A = 0 ) , where the "inf" n n a, a, 

symbol refers to the Boolean operations in A (A EA and A~ A for 
n 

all n implies A= 0, similarly for the directed system), we have 

inf Iµ I (A ) = o (inf Iµ I (A ) = o ) • 
n n a, a, 
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In the case A = B , the A-countably additive measures on B are 

the cr-order continuous measures and the A-completely additive measures on 

B are the order continuous measures (normal measures) respectively. 

With this definition we shall show that for each non-degenerate Boolean 

algebra B there exists a Boolean algebra A containing B as a sub

algebra with the property that every µ E m(B) is A-completely additive. 

Indeed, we may take for A the Boolean algebra of all subsets of the Stone 

representation space n of B , since in that case if {A} , a· E {a} , 
Ci, 

is a downwards directed set of open and closed subsets of n satisfying 

inf A 
Ci, Ci, 

0 in A, i.e., n A = 0, then, by the compactness of n, we 
Ci, Ci, 

have that for some a E {&}, A = 0. Hence, with this choice of A all 
Ci, 

the measures on B are A-completely additive in a trivial way. 

We may use this observation, however, to conclude that each element 

µEm($) may be extended uniquely, by the Caratheodory extension 

procedure, to a countably additive measure whose domain of definition 

contains the smallest cr-algebra, say A, generated by the open and closed 

subsets of n. 

3 .• The Radon-Nikodym theorem revisited 

In this section we shall show that the Theorem of Section 1 may also 

be used to prove a general Radon-Nikodym type theorem for general measures. 

It is well-known that Riesz space type techniques are effective 

tools in dealing with Radon-Nikodym type theorems. In our book on Riesz 

spaces one may find such an elegant proof of the classical Radon-Nikodym 

theorem for cr-finite countably additive positive measures. In two very 

interesting papers (numbers 36 and 37) Zaanen deals with the non-cr-finite 

case. Here we shall not deal with this aspect of the theorem, but rather 

indicate what form the Radon-Nikodym Theorem takes for measures which are 

not necessarily countably additive. 

The setting we shall need for this purpose is that defined in the 

example 2 of the preceding section. 

We recall that if µ, \I E m(B) we say that \I is absolutely 

continuous with respect to µ, and we write \I<<µ, whenever for each 

€ > 0 such that for all A E B satisfying lµl(A) < o we have 

I\) I (A) < € • 
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This notion of absolute continuity, which originated with Lebesgue, 

can be characterized in terms of the Riesz space structure of m(B) in the 

following well-known manner, 

LEMMA 3.1. If µ,v E m(B) , then v is µ-absolutely continuous if and 

only if v is in the band P generated by µ in m(B) . 
µ 

PROOF. We may assume without loss of generality that µ and v are both 

positive. Assume first that v E Pµ. Then v = supn vn where 

v = inf(v~nµ) (n=1,2, ... ) • Since for each n = 1,2, ••• , the measure 
n 

v is µ-absolutely continuous and llv -vii+ 0 as n + co we obtain that 
n n 

V << µ 

Conversely, assume that v is µ-.absolutely continuous. Then v 
may be decomposed in the form 

the disjoint complement of P 
µ 

v = v 1 + v2 with v 1 E Pµ 

in m(B) . Since both v 1 

and 

and V are 

µ-absolutely continuous it follows that v2 is µ-absolutely continuous 

as well. But inf(v 2,µ) = 0 implies that inf(v 2 (E'-A)+µ(A):ACB) = 0 . 

Hence, there exists a sequence {A}, n=1,2, ••• , of B such that µ(A) n n 
tends to zero as n + co and v2 (E'-An) tends to zero as n + 00 • Since 

v is µ-absolutely continuous it follows that v2 (An) tends to zero as 

n + oo as well. Hence, for all n = 1,2, ••• , v2(E) = v2 (E'-An) + v2(An) 

implies i.e.' V E P 
µ 

and the proof is finished. 

The reader may ask whether the elements of the ideal generated by 

µ can be characterized in a similar way? There is a way to do this. The 

reader may judge for himself whether it is the kind of answer he may have 

been looking for. The following condition is analogous to that for 

functions satisfying a Lipschitz condition. 

LEMMA 3.2. If µ,v E m(B) , then 

m(B) , if and only if for each 

for all finite systems 

[~lµl(Ai) < o we have 

v EI , the ideal generated by µ in 
µ 

E > O there exists a o > 0 such that 

This result is more a curiosity and left to the reader as an 

exercise. 
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If f E C(B) and µEm (B) , then it is obvious that the measure 

v := f,µ is µ-absolutely continuous. Conversely, however, not every 

µ-absolutely continuous measure is of this form. To see this the following 

additional notation is introduced. If A EB, then we shall denote by PA 

the band projection of m(B) defined as follows: (PAµ)(B) := µ(inf(A,B)) 

for all µ E m(B) and for all B E B • The measure PAµ , being the 

restriction of µ to the principal ideal of B generated by A in B 

is a special component of µ. If now $ E C*>'<(B) , then the measure 

v := $,µ defined by the formula for all A EB , v(A) :=$(PAµ)= <PAµ,$> 

is µ-absolutely continuous. In fact, $,µ is even contained in the ideal 

I generated by 
µ 

µ, and so satisfies a Lipschitz condition w.r.t. µ • 

To see this observe that for all A EB we have I v (A) I :;; 11$ 11. I µ I (A) , 

where II $II denotes the norm of the functional $ 

It is not without interest that the following converse holds. 

THEOREM 3.1. A measure v E m(B) is contained in the ideal I of a 
µ 

measure µ E m(B) if and only if there exists a bounded linear 

functional $ E C** (B) such that v = $. µ . 

PROOF. We have already shown that if v is of the form $, µ , $ E C**(B) 

then v EI 
µ 

To prove the converse, we may assume, without loss of 

generality, that O:;; v;;; µ Then, by Freudenthal's spectral theorem, 

we have that v = !6 tdPtµ, where is the spectral system of v 

w.r.t. µ , 

by (tµ-v)+ 

i.e., Ptµ is the projection of µ on the band generated 

The system of band projections of m(B) 

is a spectral system and well of the ortbomorphism 

T := f6 tdPt E Orth(m(B)) , Hence, by the representation theorem of the 

preceding section, there exists a unique positive linear functional $ 

on m(B) , i.e., 0 :;; $ E C** (B) , such that T*e = $ . Hence, for all 

A EB , we have v(A) = ~PATµ,e> <TPAµ,e> 

($.µ)(A) ; and the proof is finished. 

A number of remarks are in order, From the definition of $ we 

observe immediately that $ ( ((I )d)~ in C**(B) , i.e. $ vanishes 
µ 

on all the measures in m(B) 

course uniquely determined. 

disjoint from µ. In that sense $ is of 
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At the end of the preceding section we have shown that every 

µ E m(B~ uniquely extends to a countably-additive measure µ defined 

on the a-algebra A generated by the open and closed subsets of the Stone 

representation space n of B If O ~ v ~µ•then this relation is 

preserved under the Caratheodory extension process. Hence, by the 

classical Radon-Nikodym theorem for finite countably additive measures, 

there exists a non-negative A-measurable function f on n such that 

and v = f.µ, i.e., v(A) = JA fdµ for all A€ A. The main 

purpose of the above theorem is to provide a representation of v in terms 

of µ without referring directly to the Stone representation of B 

It is not without interest to ask when <f> may be represented by an 

element of C(B) For this to happen it is obviously necessary and 

sufficient that v must have the property that all the components Ptµ, 

where Pt is the projection on the band generated by (tµ-v)+, are 

of the form PAµ for some A EB This in turn is equivalent to the 

statement that the orthomorphism T = f~ tdPt is a(m(8),C(8) )-continuous. 

Unfortunately, I do not know of any interesting intrinsic characterization 

of those components of a measure µ that are of the form PAµ. From 

the results of R.R. Phelps concerning subreflexivity contained in his 

paper "Some subreflexive Banach spaces", Arch. der Math. 10, p. 162-169 

(1959), one may conclude that the following result holds. 

THEOREM 3.2. If O ~ v, µ E m(B) , then v is a component of µ of 

the fo'I'Tfl PAµ for- some A E 8 if and only if the measur-e µ - 2v 

consider-ed as a linear- functional on c(8) attains its maximum on the 

unit baU of C (B) and v is a component of µ • 

We shall only present a sketch of the proof. If v is a component 

of µ, then µ - v = (µ-2v)+ and v = (µ-2v) • Now, if f E c(S) 

satisfies llµ-2vll = f.(µ-2v) , then lµ-2vl = f.(µ-2v) and 

f (1-lfl)dlµ-2vl = 0 • So except for a lµ-2vl -null set the place 

values of f are +1 or -1 • From the theory of place functions it 

follows now that there exists an element A EB such that A contains 

the spectral set E\{f~1} and its complement B = E\A contains the set 

{f~-1}. Then the complementary pair A,B of elements-of B determines 

a Hahn-decomposition of the measure µ - 2v, and so v = PAµ 



We may draw the attention of the reader to one special case namely 

if O ~ µ E m(B) is totally additive or normal on B in the sense of 

the definition contained in Example 2 of Section 2. In that case, the set 

where µ vanishes is a complete ideal and so a principal ideal. Its 

disjoint complement being a principal ideal generated by say A~ B may 

be called the carrier or support of µ, because it has the property: 

µ=PAµ Since the component of a normal measure µ is normal it is of 

the form PBµ for some B E B Hence, for normal measures one has the 

result. If µ·, is normal and 0 ~ V ~ µ 
' 

then there exists an element 

f E C(B) such that V = f.µ For further details concerning normal 

measures the reader should consult the author's paper "On the existence 

of cr-complete prime ideals in Boolean algebras" Colloq. Math. 19, 

p. 51-58(1968). 

If O ~vis µ-absolutely continuous, then it follows from Theorem 

3.1 that v E P , the band generated by the positive measure µ. Hence, 
µ 

in that case, v = supn inf(v,nµ) • From this observation the following 

general Radon-Nikodym type result follows easily. 

THEOREM 3.3. If v,µ E m(B) , then v is µ-absolutely continuous if and 

only if there exists a sequence of bounded linear functionals 

¢n E C**(B) (n=1,2, ••• ) such that for all A E 8 we have 

v(A) = lim ¢ (PAµ) • n+co n 
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the 

If v and µ are positive, then there exists an increasing sequence 

{¢n} of positive linear functionals of C**,(8) with the property of the 

theorem. The reader who is familiar with the notion of the extended order 

dual introduced in my joint paper with J.J. Masterson, Canad. J. of Math. 

19, p. 488-498(1967), will innnediately recognize the following formulation 

of the preceding theorem. 

THEOREM 3.4. If O ~ v, µ E m(B) , then v is µ-absolutely continuous 

if and only if there exists an extended positive order continuous linear 

functional ¢ E r(m(8)) whose order dense domain contains µ such that 

v (A) = ¢(PAµ) for all A E ·g 

If v,µ E m(B) and if < p <co, then v is called of finite 

p-variation with respect to µ, whenever 
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llvll p,µ 

where the sup is taken over all finite systems {A1, ••• ,An} of .mutually 

disjoint elements of B • Finite 1-variation means finite total variation 

and v EI , the ideal generated by µ, corresponds to p = 00 • 
µ 

If II vii < 00 , then v << µ , and so, by the preceding Theorem, p,µ 
v = ~.µ with ~ € r(rr(B)) , and ~ may be represented by an element of 

Lp(rl,A,µ) • 

A similar characterization for absolutely continuous functions with 

LP-derivatives is due to F. Riesz. 

Finally, we remark that, by approximation, the following result is 

immediate. If v,µ E m(B) , then v is µ-absolutely continuous if and 

only if for each 8 > 0 there exists a finitely valued place function 

f such that lv-f.µI < 8 • 
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ON THE RADON-NIKODYM THEOREM 

P. Maritz 

1. Introduction 

I am much obliged to the organizers of this symposium for their 

kindness in inviting me, especially since this is a most suitable occasion 

to pay tribute to prof. dr. A.C. Zaanen, under whose guidance some of us 

had, and others still have, the opportunity to do some research. During a 

conversation in 1974, prof. Zaanen indicated to me that the notion of a 

direat sum measure is slightly stronger than the notion of a Zoaalizable 

measure. That remark had had the effect that I became more acquainted 

with certain aspects of Radon-Nikodym (R-N) theory, and that in turn led 

to some positive results at that time. 

In this paper we mention a few aspects of the Radon-Nikodym theorem 

and the Radon-Nikodym property (RNP). It must, however, be emphasized that 

this is neither a comprehensive discussion nor a survey of RNP. The Radon

Nikodym theorem (sometimes called the Lebesgue-Nikodym theorem) was proved 

first by Lebesgue in 1904 in terms of point functions on the real line, 

then by Radon in 1913 for Borel measures in lR n, and by Nikodym in 1930 

in the general form. 

2. Radon-Nikodym for Banach spaces 

The standard reference for measure theoretic properties is [6]. 

Tis a non-empty set on which no topological structure is required, 

X a Banach space and X* its topological dual. If A is a ring of subsets 

of T and F: A+ X a measure of finite variation IFI on A, then JFI can 

be extended to a measure IFJ* onthecr-algebra P(IFI) of all !Fl-measurable 

sets. Then r(IFI) is the o-ring of all IFJ-integrable sets. 

JFJ = IFl*I r (IF!). Fon A can be extended to a measure, again denoted 

by F, on r(IFI); this Fis also of finite variation. If A is a a-algebra 
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and !Fl is complete on A, then A= E(IFI) = P(IFI}, 

Let A now be a a-algebra and consider the finite positive measure 

space (T,A,µ). If 1 ~ p < 00 , the symbol Lp(T,A,µ,X) will stand for allµ

Bochner integrable functions f: T + X with the usual norm. 

2.1 DEFINITIONS. 

(1) X has RNP with respeat to (T,A,µ) if for each measure F: A+ X, 

where F << µ and F is of finite variation , there exists a Bochner inte

grable f: T + X such that F(E) = (Bochner)- IE f dµ for every EE A. 

(2) X has RNP if X has RNP with respect to evei?f finite measure space. 

(3) A bounded linear operator 4>: L 1 (T ,A,µ, lR) + X is Riesz representable 

if there exists g E L00 (T,A,µ,X) such that 4>f = IT fg dµ for all 
1 f E L (T,A,µ,JR). 

It is known that X has RNP with respect to (T,A,µ) if and only if 

each 4> E L(L1(T,A,µ,lR);X) is Riesz representable. See [5), p. 63. 

2.2 EXAMPLES ([5],p.60,61). 

(1) The failure of the R-N theorem for a c0-valued measure. 

(2) The failure of the Riesz representation theorem for an operator 
1 4>: L [O,l] ➔ cO• 

(3) The failure of the R-N theorem for an L1(T,A,µ,lR)-valued measure, 

withµ non-atorrria on A. See also 4.3(1) and 5.4(1). 

(4) The failure of the Riesz representation theorem for the identity 

operator on L1(T,A,µ,JR). 

The relationships between examples (1) and (2), and between (3) and 

(4) are by no means accidental. 

The space 1 1 has RNP.This follows from the fact that 11 has a boun
dedZy aompZete Schauder basis. The following theorem of Dunford-Morse is 

a corollary to a theorem in [11). 

2. 3 THEOREM. If X has a boundedZy aomp Zete Sahauder basis (x ) , then X 
n 

has RNP. 

Consequently, 

Schauder basis. The 

1 neither c0 nor L (T,A,µ,lR) has a boundedly complete 

space 11 plays an important role in the study of RNP. 
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2.4 THEOREM ([JO]). X has RNP if and only if every <I> E L(L I (T,A,µ,lR) ;X) 

factors through t 1 • 

In spite of theorem 2.4 above, it is not true that every space with 

RNP contains a copy of t 1• An example of such a space is t 2, which by 

theorem 2.3, has RNP. The notion of WRNP is useful in this respect. 

2.5 DEFINITION. X has the weak RNP (WRNP) if for each (T,A,µ) and each 

F: A+ X with F << µ, F of finite variation, there exists a function 

f: T + X such that F(E) = (Pettis) - fE f dµ, for all EE A. 

2.6 THEOREM ([18)). If X* has WRNP, then X does not contain any iso

morphic copy of t 1 • 

The classical results pertaining to the RNP are the following. 

2.7 THEOREMS. (1}.([7]) Separable dual spaces have RNP; (2). ([20)) 

Reflexive Banach spaces have RNP. 

Grothendieck ([8]) gave a number of new directions to modern 

functional analysis; the theorems above were useful in doing so. 

There is a close connection between separable dual spaces and 

reflexive spaces on the one hand, and RNP on the other, 

2.8 THEOREM ( [25)). If every separable closed linear subspace of X is 

isomorphic to a subspace of a separable dual space, then X has RNP. 

2.9 THEOREM ([23], [25)). X* has RNP if and only if every separable sub

space of X has a separable dual. 

An example of a separable Banach space with RNP which is not 

isometric (but is isomorphic) to a subspace of a separable dual, is given 

in [16]. An example of a separable Banach space X with RNP that is not 

isomorphic to a subspace of a separable dual space, is given in [17]. In 

[9] James and Ho introduced the notion of asymptotic-norming properties 

(ANP). It is shown that ANP is satisfied by a larger class of Banach 

spaces than those that are isomorphic to subspaces of separable duals, 

and that ANP is a sufficient condition for RNP. To show that ANP is more 

general than "isomorphism with a subspace of a separable dual", James and 

Ho show that there is a separable Banach space that has ANP and that is 
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not isomorphic to any subspace of a separable dual. 

3. Geometrical properties 

Rieffel's ([21]) "dentable theorem" led Maynard ([15]) to the first 

internal characterization of the RNP for a Banach space X. 

3. 1 THEOREM ( [ 5] , [ 1 5]) • The fo Uowing statements a:r'e equi vaient: 

(1) Evel'Y bounded subset of X is dentabZe. 

(2) EVel'IJ bounded subset of X is a-dentabZe. 

(J) X has RNP. 

If we add "cZosed convex" to (1) and (2) above, we have, from [26]: 

(4) EVel'IJ bounded cZosed convex subset of Xis weak dentabZe. 
Then (1) ,. (2) -. (J) ,. (4) ,. (1). 

A connection between extreme point structure and RNP is suggested 

by theorem 3.1. 

3.2 DEFINITIONS, 

(1) Xis said to have Krein-Milman property (KMP) if every bounded closed 

convex Ac: X has at least one extreme point. 

(2) Xis said to have the strong KMP (SKMP) if for every bounded Ac: X, 

co (A) has an extreme point in the strong closure of A. 

(3) Xis said to have the weak KMP (WKMP) if for every bounded Ac: X, 

co (A) has an extreme point in the weak closure of A. 

3. 3 THEOREM ( [ 26]) • RNP, SKMP and WKMP a:r'e equi va Zent for Banach spaces . 

It is known that RNP •KMP ([19]), but it is not known whether the 

converse is true. However, from [5], if X"' has RNP, then X* has KMP, and 

conversely. 

An interesting result is the following, with special reference to 

example 5.4(2). 

3,4 THEOREM ([5]). A Banach space X Zacks RNP if and only if there is 

a bounded open convex set Bin X and a norm closed subset A of B such 

that the closed convex huZZ of A coincides with B. 



In a somewhat different setting, but still in connection with KMP: 

3.5 THEOREM ( [2]). (1) A c*-algebra X is scattered if, and only if, its 

dual X* has RNP. 

(2) If M is a Von Neumann algebra, then its predual M* has RNP if, and 

only if, Mis a direct sum of type I factors. 

55 

The proof of (2) above only requires the KMP of M* and thus:RNP ~KMP 

in the predual of a Von Neumann algebra. 

4. Ranges of measures 

A. Zonoids 

A zonoid is the range R(F) of a non-atomic vector measure 

F: ~(IF!)+ X. The theorem of Lyapunov (1940) and his counterexample (1946) 

on zonoids are well known. The following theorem was originally formulated 

by Uhl for X a reflexive or a separable diial space. Let A be a a-algebra 

and F:A + X of finite variation. 

4.1 THEOREM ([24)). Suppose X has RNP. 

(1) Then R(F) is precompact in the norm topology of X. 

(2) If Fis non-atomic, then R(F) is convex and norm compact. (Weak 

Lyapunov theorem for the strong topology.) 

4.2 COROLLARY. Under the hypotheses of 4.1: 

(1) If R(F) is closed, then it is norm compact. 

(2) Let F be non-atomic. If R(F) is closed, then it is norm compact 

and convex. 

4.3 EXAMPLES. 

(1).([24]). See also 2.2(3). A non-atomic vector measure F of finite 

variation with R(F) closed but non-convex and non-compact. Let T=[0,1], 

A be bhe Lebesgue a-algebra of subsets of T and A the Lebesgue measure 

on A. Define F: A+ L1(T,A,A,:rn.) by F(E) = XE· Then Fis a non-atomic 

measure of finite variation !Fl on A and !Fl= A on A. But R(F) is 

not precompact and R(F) is non-convex. (In Uhl's original formulation 

of the theorem above, this example provides another proof of the fact 

that the separable space L1(T,A,A,:rn.) is not a dual space. Of course, 
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this space does not have RNP.) 

(2) For Lyapunov's 1946-example of an i 2-1)alued non-atorrrie veetor measure 

of finite variation whose mnge is non-eonvex, see (S] or [24). 

(3) For a c0-valued measure whose range is weakly compact and convex, 

see [S). 

It is interesting to note that theorem 4.1 is a direct consequence 

of theorem 2 in [4). 

B. Average ranges 

4 4 F I A+ -- {A E A Iµ (A) } f A . DE IN TION. Let > 0. The average range o F: + X 
A+ • over A E with respect toµ is 

{ F(B) I +} RA(F) = µ(B) B c A, BE A • 

The results below are examples of the usage of average ranges; the 

terminology is the usual. 

4.5 THEOREM ([JS)). X has RNP if and only if RA (F) is o-dentable (or, 
+ if and only if RA(F) is loeally relatively weakly eompaet) for all A€ A. 

4.6 THEOREM ((5)). Let F: A+ X and let F <<µ.If RA(F) is relatively 

no1'11l (weakly) eompaet for all A E A+, then there exists a µ-measurable, 

Pettis integrable g: T + X sueh that 

F(E) = (Pettis)-f g dµ 
E 

for all EE A. If Fis of finite variation (as usual), then g is also 

Boehner integrable. 

Theorem 4.1(2) can be written in the following form: 

4.7 THEOREM ([22)). Let X be a quasi-eomplete loeally eonvex Hausdorff 

spaee in whieh every bounded subset is metrizahle. Let X have RNP, let 

F: A+ X be sueh .that F « µ, letµ be non-atomie and suppose that RA (F) 

is bounded. Then l<(F) is eonvex and eompaet. 
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5. Multifunctions 

The bilinear integral is in the sense of Dinculeanu [6]. Let Y and Z 

be Banach spaces and consider a bilinear transformation (x,y) + xy on Xx Y 

into Z such that I l(x,y)I I~ I lxl I .I lyl I. For the terminology concerning 

multifunctions, see [12] • If A: T + Y is a multifunction, we have 

f A(t)dF = { f f(t)dF If is an F-integrable selector of A }c Z, 
A A 

where A E P(!FI). 

5.1 THEOREM ([12]). Let A: T + Y be a rrrultifunction, A E E(IFI) arid 
F: E(lml) + X non-atorrric. If Z is finite dimensional, then f A(t)dF 

is convex. A 

If IF! has the direct sum property ([6], p. 179), then !Fl is 

localizable, see [27], p. 180. If Tis a countable union of sets of 

E(!F!), then F has the direct sum property. 

5. 2 THEOREM ( [ 13]) • If F : A + lR p has the direct sum property and 

A: T + lR n is an integrub ly bounded point-compact convex IF 1-measurab le 

rrrultifunction, then fAA(t)dF is a convex and compact subset of lR.np 

for every A E P(!FI). 

If A: T ➔ Y is a multifunction, let (ext A)(t) = {y E A(t)I y is 

an extreme point of A(t)}. 

The following theorem is based on a generalized version of the 

Radon-Nikodym theorem ([6]) and also on some results in [12] 

5.3 THEOREM ([12]). Let T be a countable union of sets of A, A:T + lR n 

integrably bounded, point-compact convex and !Fl-measurable and let 

F: E ( IF I ) + lR P be non-atorrric. Then 

f A(t)dF 
A 

f (ext A)(t)dF, 
A 

In dealing with ext A, we make freely use of the fact that a non

empty compact subset of a locally convex linear Hausdorff space has extreme 
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points, and also of the Krein-Milman theorem. 

5.4 EXAMPLES ([13),[14]). 

(1) We refer to examples 2.2(3) and 4.3(1), which we use as the basis of 

some of our examples. Let T, A and F be as in 4.3(1) and put Z = 
I L (T,A,µ,lR). 

(a) Theorem 5.1 fails if Z is infinite dimensional: define A: T + lR 

by A(t) = {0,1} for all t ET. Then J A(t)d(F) = R(F), which is not convex. 

(b) Theorem 5.2 fails if Z is infinite dimensional: define A: T + lR by 

A(t) = [O,l] for all t ET. Then F has the direct sum property and A 

satisfies all the necessary conditions. Since R(F) c J A(t)dF, it follows 

that J A(t)dF is not compact. 

(2) Theorem 5.3 fails if A is not point-compact. We refer to examples 

2.2(1) and 4.3(3) - the space c0 • The closed unit ball A of c0 is non

compact and convex. Let T = [O,l], Ebe the Lebesgue cr-algebra of subsets 

of T and F the Lebesgue measure on T. Consider c0 = L(lR ,c0). Define 

A: T + c0 by A(t) = A for all t ET. Then A is clearly IF I-measurable 

and integrably bounded. Since ext A= 0, it follows that 

f (ext A) (t)dF = 0 'f' f A(t)dF. 

6. Miscellaneous 

(1) Let (T,A,µ) be a non-atomic measure space and Ea Dedekind 

complete Banach lattice. In [3] De Jonge describes all E-valued measures 

that have R-N-derivate, for all E not containing c0 • The result is that 

although L1(T,A,µ,E) does not have RNP, all the L1-valued measures that 

have R-N derivative,are described. 

(2) For the X of theorem 4.7, we have from [22]: if C is a closed 

bounded convex subset of X, then the following are equivalent: (a) Chas 

RNP; (b) C is subset dentable; (c) C is subset cr-dentable. (Compare with 

theorem 3. 1) 

(3) Andrews and Uhl([!]) developed an easy technique (originally 

developed by Figiel) by means of which weakly compact subsets of 

L00 (T,A,µ,lR) can be studied, where (T,A,µ) is a finite measure space. 

(4) Thus far, we have been dealing with a finite measure space. 

For cr-finite and non-cr-finite cases, we refer to Zaanen [27),where both 

the integral and measure versions of the R-N theorem (for Stieltjes-
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Lebesgue integrals) are given. It is shown that if the measureµ has the 

finite subset property, thenµ is localizable if and only ifµ has the R-N 

property (for measures). This result is then extended to establish the 

equivalence between localizability and the R-N property forµ (without the 

finite subset property). On p. 180 in [27], we have the result that ifµ 

has the direct sum property, thenµ is localizable. Professor Zaanen, thank 

you very rrruch for that remark in 1974! 
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DUALITY IN THE THEORY OF BANACH LAmCES 

B. de Pagter* 

The concept of duality plays an important role in the theory of 

normed linear spaces, especially the embedding of a normed linear space 
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in its second dual and the reflexivity of such a space. In their series of 

papers "Notes on Banach function spaces" W.A.J. Luxemburg and A.C. Zaanen 

have discussed these and related problems for normed Riesz space extensively. 

It is the purpose of the present note to give a survey of their 

contributions to this part of the theory of normed Riesz spaces. In the 

discussion which follows we shall restrict ourselves to Banach lattices 

only, although many of the results do have analogues for normed Riesz 

spaces, 

As is the case in many parts of the theory of Banach lattices, most 

of the theorems concerning duals and biduals of Banach lattices have their 

origin in the theory of Banach function spaces. We shall discuss, therefore, 

the situation for these spaces first. 

~e assume that (X,A,µ) is a a-finite measure space and we denote 

by M(X,µ) the collection of all µ-measureable functions which are finite 

almost everywhere. As usual, we identify functions which differ only on 

a set of measure zero. We shall restrict ourselves here to real-valued 

functions, although most of the theory is also valid for the complex case. 

Let p be a function norm on M(X,µ) , i.e. p is a function defined 

on M(X,µ) with values in R+ U {oo} with the properties: (i) p (f) = 0 

iff f = 0 p (a.f) = la.lp(f) (a.ER) and p(f+g) :a p(f) + p(g) 

(ii) p(f) :a p (g) whenever I fl :a lgl If we denote by L the p 

*Work on this paper was supported by a Nato-Science Fellowship from the 

Netherlands Organisation for Advancement of Pure Research (Z,W.O.). 



62 

collection of all f E M(X,µ) for which p(f) < oo, then L 
p 

is a normed 

is Banach iff p satisfies Riesz space with norm p . The space L 
00 p 

the Riesz-Fischer condition, i.e., Ln=l p(un) < oo (O~u EM(X,µ)) implies 
n 

that p(L00 

1 u) < 00 • If L is Banach, then L is called a Banach n= n p p 
function space. It should be pointed out that in the first papers on 

general Banach function spaces (e.g. [2],[3] and [4]) it was assumed that 

the norm p has some additional properties. In particular it was assumed 

that p has the Fatou property, i.e., if 0 ~ u t u in M(X,µ) • then 
n 

p(u) t p(u) The general definition of a Banach function space as n 
given above first appeared in [ 1], Section 4. 

If p is a function norm on M(X,µ) , then the associate function 

norm is defined by 

p'(g) = sup{f lfgldµ:fELP,p(f)~1}. 
X 

The associate function norm p' always has the Fatou property. The 

collection of all g E M(X,µ) for which p'(g) ~ 00 is denoted by L' 
p 

and is called the associate space of L . Since the Fatou property implies 
p 

the Riesz-Fischer property, L; is a Banach function space. The associate 

function norm of p' is called the second associate function norm of p , 

denoted by p". Since p" ~ p, the inclusion L c L" 
p p always holds. 

In fact, p" = p holds iff p has the Fatou property, a result proved 

by W.A.J. Luxemburg in his thesis ([4]), and also proved independently 

by G.G. Lorentz. 

It is possible that L = L" although p p , p 'F p" • If L = L" . p p , 

then L is called perfect. The space is perfect iff 
p 

p has the weak 

Fatou property, i.e., 0 ~ un tu and sup p(un) < 00 in M(X,µ) implies 

p(u) < 00 • The notion of perfectness for Banach function spaces has been 

introduced by G.G. Lorentz and G.D. Wertheim ([3]). 

Considering the Banach function space as a Banach lattice, there 

is a nice characterization of the associate space. In fact L' can be 
p 

identified with the space of normal integrals (order continuous linear 

' i.e.' cf, is a linear functional on L p with the functionals) on 

property that .j. 0 whenever u + 0 in L iff there exists a 

function g in L' 
p 

such that 

L . In other words L' 
p p 

can be identified with 

L* 
P ,n 

(L* )* p,n n 

a. p 
cf,(f) = I fgdµ for all functions f in 

X 

Similarly, the second associate space 

Since L and L* are Banach lattices, p p,n 



we have (L* )* 
P,n n 

Riesz space L. 

(L~ )~, where L~ denotes the order dual of the p,n n 

These last remarks show µs that it is of some interest to study the 

63 

relation between L and 

L is a Riesz space and 

separate the points of 

(L~)~ for an arbitrary Riesz space L. Suppose 

L(LE)n= {O} (i.e., the normal integrals on 1 
n 

1 ). Each element f E 1 can be considered as 

a linear functional f" on 1~ by defining 
n 

f"(tf>) = tj>(f) for all 

The mapping which assigns to each tf> EC n 
f the functional f" is an 

embedding of L in (1~)~, which is investigated in [1], VIII, Section 28. 
n n 

In this situation 1 is always a Riesz subspace of (L~)~, whereas 1 n n 
an ideal in (L~)~ iff 1 is Dedekind complete. If L is not Dedekind n n 
complete, then the ideal generated by 1 in <C>~ is the Dedekind n n 
completion of 1, which is proved in [1], X, Theorem 32.8. 

space 

Analogous to the situation for Banach function spaces, the Riesz 

1 is called perfect if 1 = (L~)~, and the characterization of 
n n 

is 

perfect Riesz spaces is in a certain sense similar to the characterization 

of the perfect Banach function spaces. Indeed, L is perfect iff 

L(1~) {O} and if O ~ u t 
n T 

in L such that sup tf>(u) < 00 for all 
T 

0 ~ tf> E 1~ then u tu for some 
n T 

u ~ L. This shows in particular that 

L~ and L~ are perfect for any Riesz space 
n 

The situation 

L 

is a becomes more interesting if we assume that 1 
p 

Banach lattice such that L(L* ) = {O} Again we consider the embedding 
P ,n 

of L 
p 

as a Riesz subspace in (1* )* p,n n The norms in L* 
P,n 

and 

(L* )* p,n n are denoted by p' and p" respectively. The restriction of p" 

(considered as a subspace of (L* )*) is a norm on p p,n n to L L , given 
p 

by p"(f) = sup{ltf>(f)l:O;atf>EL* ,p'(u)~1}. We always have 
P ,n 

p" ~ p, but in 

general p and p" are not even equivalent. By way of example, define 

for any real sequence f (f(1),f(2), .•• ) the function norm p by 

p{f) poo(f) + sup {k limsup If (n) I} 
k nENk 

where P00 (f) = suplf(n)I and Nk are countable, mutually disjoint subsets 
00 

of N such that u Nk N. Let 1 be the corresponding Banach 
k=1 

p 

1* = L' = l (and 
p ,n p 1 

p' is the .e.1 -norm) , function space. Then 

(L* )* = L" = f. and p,nn p oo p1' = p00 • Clearly is properly contained in 

f.00 and p is not equivalent with 
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If LP is a Banach lattice such that .L(L* ) = {O}, then p" is 
P ,n 

a norm in L which is Fatou (i.e. 0 :ii u tu implies that p"(u) t p"(u)), 
p T T 

since p" is the supremum of an upwards directed set of seminorms which 

are all Fatou. Indeed, p" = sup{p.1.:0:aicfiEL* ,p*(4>):ai1}, where P.1. is .., p,n 'f' 

defined by p4>(f) = 4,((fl) . This implies that if p and p" are 

equivalent, then p must be weakly Fatou (i.e., there exists a constant 

k(p) :l: such that O ~ u, tu implies that 

is in addition Dedekind complete, then p L 
p 

p(u) 

and 

p is weakly Fatou, and in this situation p" :ii p :ii 

:ii k(p).sup p(u) ). If 
T 

p" are equivalent iff 

k2(p)p" holds. This 

is essentially proved in [1], XIII, Lemma 41.1. In particualar we see that 

p = p" holds iff p is Fatou (in this case k(p) = 1 ). 

If p = p" holds on L , then it is not necessarily true that 
p 

(L* )*, i.e., L p,n n P is not necessarily perfect. As an example, let 

be the space (c0) of all sequences converging to zero with the 

supremum norm. Then p is Fatou, but (L* )* = l . Observe that if L p,nn 00 p 
is perfect, then p and p" are two norms on L such that L is a 

Banach lattice with respect ot both norms. Therefore p and p" are 

equivalent in this case, so p must be at least weakly Fatou. Perfect 

Banach lattiaes are completely characterized in [1], XIII, 

is perfect iff .L(L* ) = {O} 

Theorem 41.1, 

where it is shown that L 
p 

the weak Fatou property for directed sets 
p,n 

(i.e., if 

and 

0 ::a u t 
T 

L 
p 

and 

has 

sup p(u) < 00 

T 
in L , then there exists u EL such that u tu). 

p p T 

If LP 
directed 

is a Banach lattice which has the weak Fatou property for 

sets, then L is Dedekind complete and p is weakly Fatou. 
p 

However, if L 
p 

is perfect, then we do not have p = p" in general. By 

way of example, define for any sequence f = (f(1),f(2), ... ) the function 

norm 

p(f) = p00 (f) + limsuplf(n)I , 

and let L 
p 

be the corresponding Banach function space. Then L = L" = l 
p p oo' 

so L 
p 

is perfect, but p # p = p". It follows from the above that the 

is perfect00and p = p" iff J.:(L* ) = {0} and L Banach lattice L 
p p,n P 

has the Fatou property for directed sets (i.e., if O :ii u + and 
T 

sup p(u) < 00 in L , then there exists u EL such that u tu and 
T p 

p(u) t p(u) ). In this situation we say that 
T 

p T 

p is a Fatou norm. 
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The Banach dual 

Theorem 40.2), since 

L* 
p 

L* 
p 

of any Banach lattice LP is perfect ([1), XIII, 

has the weak Fatou property for directed sets. 

Furthermore P* is Fatou. Indeed, for any 0 ~$EL* we have 
p 

supft(u):O~uEL ,p(u)~1} ~ 
l P 

~ sup{~(t):O~~E(L* )*,P**(~)~1} ~ p*($) , p,n n 

so p* = sup{p!:0~~E(L*)*,P**(~)~1}, i.e., p* is the supremum of an 
,., P n 

upwards directed set of seminorms which are all Fatou. Hence p* is a 

Fatou norm. 

Since any Banach lattice L 
p 

is in particular a Banach space, we 

can also investigate the embedding of L 
p 

in its second Banach dual 

by assigning to each f EL the functional f** on L* defined by 
p p 

L** 
p 

f**(t) = $Cf) By this embedding L p can be considered as a Riesz sub-

space of L** and P** p on L Since any f** is a normal integral p p 
on LP*, the embedding is actually into (L*)*. In general this embedding 

P n 
does not preserve arbitrary suprema and infima. In fact, this embedding 

preserves suprema and infima of arbitrary sets iff the norm p is order 

continuous (i.e., u + 0 in L implies p(u) + 0 ), and in this 
T .P T 

L* = L* situation we have 

The question 
P P ,n 

([1], XII, Theorem 38.3). 

arises under what conditions L 
p 

is an ideal or a 

band in L** and if it 
p ' 

is possible to find necessary and sufficient 

conditions such that L 
p 

= L** (i.e., such that L is reflexive). These 
p p 

and related problems were studied in [1], XII, Sections 38, 39 and 40. 

First of all it was proved in [1), XII, Theorem 39.1 that L is an 
p 

ideal in L** iff L is super Dedekind complete and p p p is order 

continuous. This last condition, in his turn, is equivalent to the property 

that any order bounded increasing sequence in L has a norm limit ([1), 
p 

X, Theorem 33.4). If we replace in this condition "order bounded" by the 

weaker condition "norm bounded" we get the property that any norm bounded 

increasing sequence in L 
p 

has a norm limit, which is equivalent to the 

weak Fatou property for directed sets together with the order continuity 

of p ([1], XI, Theorem 34.2). A Banach lattice L 
p 

with order continuous 

norm and the weak Fatou property for directed sets is sometimes called a 

KB-space (KB= Kantorovitch-Banach). It follows now easily from the above 

results that KB-spaces are precisely those Banach lattices L p which are 
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a band in 

and L 
p 

L**. Indeed, L 
p p 

is a band in L** 
p 

iff p is order continuous 

is perfect, i.e., iff p is order continuous and L 
p 

has the 

weak Fatou property for directed sets. 

A Banach lattice LP is reflexive iff LP is a KB-space and 

L** = (L*)*. Therefore, L is reflexive iff p and p* are both order 
P P n P 

continuous and L has the weak Fatou property for directed sets. This is 
p 

Ogasawara's theorem ([5]). An elegant proof of this result has been given 

in [1], XIII, Theorem 40.1. Observe that reflexive Banach lattices are 

precisely those Banach lattices 

spaces. 

L 
p 

for which both L 
p 

and L* 
p 

are KB-

As we have seen above, the Banach lattice L is a band in L** 
p p 

iff is perfect and the norm p is order continuous. In this situation 

it is clear that there exists a positive projection P in L** onto L 
p p 

(take for P simply the order projection onto the band L in L** ). 
. p p 

For Banach lattices L with ~(L* ) = {O}, the existence of such a 
p P,n 

onto L 
p 

positive projection in L** 
p 

is in fact equivalent to perfectness 

of L 
p 

This result shows us once again the importance of the perfectness 

property for Banach lattices. 

The theory of Banach lattices has developed rapidly during the last 

20 years. Overlooking the above mentioned results we. may conclude that the 

contribution of Luxemburg and Zaanen to the theory of Banach lattices is 

of fundamental importance for the development of this theory. 
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SOME RECENT RESULTS ON POSITIVE GROUPS AND SEMI-GROUPS 

H .H. Schaefer 

Even though ordered Banach spaces and the related operator theory 

can be traced back almost to the beginning of functional analysis, the mod

ern theory of normed Riesz spaces (Banach function spaces, or Banach lat

tices) begins much later and has much of its origin in the well known 

series of papers by W.A.J. Luxemburg and A.C. Zaanen [6], which contain a 

wealth of material. Similarly, even though there are some earlier exten

sions to infinite dimensions of the classical Perron-Frobenius theory, a 

systematic study of order bounded operators - and especially of the spec

tral theory of positive linear operators - was not initiated until the 

early 1960's. 

Thereafter, the latter theory progressed rather rapidly, and a survey 

of the results obtained can be found in [8]. The present contribution is 

concerned with recent applications of the spectral theory of positive 

operators (or equivalently, of discrete monothetic semi-groups) to the 

normed structures of groups of positive operators on an arbitrary Banach 

lattice (Section 2), and with the extension of that theory to strongly 

continuous one-parameter semi-groups of positive operators (Section 3). 

For reasons of space, only a few results from each of these areas could 

be selected. However, in the interest of independent readability, those 

results on which our applications are based or of which they are exten

sions, are quoted and briefly discussed in Section I. Each section ends 

with a ntnnber of open problems. 

I. The peripheral spectrum of positive operators 

We are concerned with the spectral behavior of positive linear opera

tors on an arbitrary complex Banach lattice and we will use [8] as a gener

al reference. The reader who is not familiar with .the notions and 
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techniques involved may visualize the spaces C(K) (complex continuous 

functions) or M(K) (complex Radon measures) on a compact space K, or the 

spaces 1P(X,E,µ) (I$ p $ 00 ) as typical examples. The simplest example of 

all is, of course, the space Cn provided with its usual absolute value 

(modulus) and some lattice no!'771(i.e., some norm for which lxl $ lyl 

(modulus) implies llxll $ IJyJI). 

On «:n a positive (linear) operator is given by an n x n-matrix A with 

non-negative entries; such a matrix is called irreducible (or indecompo

sable) if A leaves no non-trivial lattice ideal I of tn invariant. The 

complex of results available for irreducible and general positive matrices 

is usually referred to as the Perron-Frobenius Theory; a systematic 

account from an operator theoretic point of view is given in [8], Chapter I. 

Also in [8], the reader can find bibliographical sketches of the develop

ment that led to an extension of the Perron-Frobenius Theory to infinite

dimensional Banach lattices, up to the early 1970's. In the sequel we only 

pick out a few central results whose bearing on groups and one-parameter 

semi-groups will be discussed below. 

Let T be a positive linear operator on a (complex) Banach lattice E. 

By r we will denote the spectral radius of T, and the subset 

{A E «:: IAI r} n cr(T) of the spectrum cr(T) will be called theperipheml 

spectrwn of T. Accordingly, the peripheral point spectrwn of Tis the set 

of all eigenvalues of T of modulus r. The operator T is called irreducible if 

for any closed lattice ideal I of E, T(I) c I implies I= {O} or I= E. 

(For example, if E = C(K) and~ is an ergodic flow on K, then the operator 

T defined by Tf = f o ~ (f E C(K)) is irreducible on E.) 

I.A THEOREM. Let T denote a positive irreducible operator on E, and suppose 

r = I. 

(i) If the peripheral point spectrwn IT of Tis nonvoid and T' possesses a 

positive fixed vector, then IT is a subgroup of the circle group, and each 

of its elements has geometric multiplicity I. 

(ii) If A= I is a pole of the resolvent R(A,T) = (A - T)- 1, the peripheral 

spectrwn of T consists entirely of first order poles of R(A,T). 

While assertion (i) is comparatively easy to prove, (ii) is much har

der and highly technical; in full generality (with respect to the under

lying Banach lattice) (ii) was first proved by I. Sawashima and F. Niiro 

(see [8], V.5.). If Tis an irreducible operator with spectral radius 



r > O, the assumption r = I is a mere normalization; however, there are 

examples of irreducible operators on spaces L1(µ) that are topologically 

nilpotent. 
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What can be said about the peripheral spectrum in general? It was 

proved by the author [7] that the peripheral spectrum of an irreducible 

Markov operator on C(K) (K compact) is always a subgroup of the circle 

group, but not much more seems to be known in the irreducible case. On the 

other hand, if the irreducibility assumption is dropped, the case of an 

n x n-matrix A~ O shows what can at best be expected, namely: If T ~ 0 

is an operator with spectral radius r = I, then the peripheral spectrum 

TI of Tis a union of subgroups of the circle group (i.e., a E TI ~ 

an E TI for all n E ?Z). However, in infinite dimensions even this plausi-

ble assertion could so far only be proved under additional assumptions. 

One of these is that T be a lattice homomorphism (or Riesz homomorphism), 

the other consists in placing a gr()1J)th condition on the resolvent R(A,T): 

I.B DEFINITION. A positive operator T, with spectral radius r, is said to 

satisfy Condition (G) if (A - r)R(A,T) is bowided as Air.Tis called 

(G)-solvable if there exists a chain of closed T-invariant ideals: 

{O} = E0 c E1 c ••• c En E, such that for each v (I~ v ~ n) the operator 

T induced by Ton E /E I satisfies (G). 
V V v-

Let us point out briefly how this growth condition enters the pic

ture. If T ~ O, r = I and ax= Tx where x IO, lal = I, then obviously 

lxl ~ Tix!; what one would like to have is equality, lxl = Tix!, because 

then it follows that anx(n) = Tx(n) (n E ?Z) for suitably defined vectors 

x(n). (In the case of a function lattice, x(n) lxl.(sign x)n, and this 

can be extended without difficulty to abstract Banach lattices.) Now if T 

satisfies (G) (r = I) and we have lxl ~ Tix!, it is possible to find a 

closed T-invRriant ideal E1 such that lxl - Tix! E E1 but xi E1; then 

ax= Tx and lxl =Tix! for the element XE E/EI corresponding to x, hence, 

the group {an: n E ?Z} is in the point spectrum of the operator Ton E/E 1 
induced by T and, consequently, in cr(T). This method was apparently first 

employed by the author in 1962; later H.P. Lotz introduced the more 

general notion of (G)-solvability and extended the results on the periph

eral point spectrum to the peripheral spectrum through the use of ultra

products (for details, see [8], V.4-5.). On the other hand, if Tis a 

Riesz homomorphism, then ax= Tx (lal = I) implies lxl = Tix! without 
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further assumptions; however, Scheffold [IO] proved that in this case, for 

any element A= IAIY E cr(T) one has IAIYn E cr(T) for all n E 7l (i.e., the 

entire spectrum of a Riesz homomorphism is cyclic). We summarize: 

I.C THEOREM. Let T be a positive linear operator on a Banach lattice E. 

(i) If,T is (G)-solvable, the peripheral spectrwn of Tis cyclic. 

(ii) If Tis a Riesz homomorphism, the entire spectrwn cr(T) is cyclic. 

It should be pointed out that Tis (G)-solvable whenever the spectral 

radius r of Tis a pole of the resolvent;so far, this seems to be the 

principal application of that concept. 

I.D OPEN PROBLEMS. We conclude this section with several problems which, to 

the best knowledge of the author, are so far unsolved. 

(i) Is the peripheral spectrwn of a positive operator on any Banach lattice 

necessarily cyclic? 

(ii) Is the peripheral spectrum of an irreducible positive operator on any 

Banach lattice necessarily of the form rH, where His a subgroup of the 

circle group? 

(iii) Can a compact irreducible positive operator be topologically nilpo

tent? 

As was pointed out above, the answer for (ii) is in the affirmative 

for Markov operators in C(K) [7]; also, (iii) has a negative answer in 

certain cases (e.g., E = C(K) or E = L1(µ); for details, see [8], V.6). 

2. Groups of positive operators 

The purpose of this section is to discuss the application of the 

spectral theory of Section 1 to the structure (in the norm topology) of 

groups G of positive operators on arbitrary Banach lattices. As an impor

tant auxiliary concept, we need the notion of the center (or ideal center) 

of a complex Banach lattice E. The algebraic theory of orthomorphisms of a 

Riesz space has recently been discussed in [2]; in the case of a Banach 

lattice, the situation is much simpler. We define the center C(E) of a 

Banach lattice E as the set of all linear operators T: E ➔ E satisfying 

JTxl ~ klxl for all x EE, where k is a constant depending on T. It follows 

that each TE C(E) is a bounded (and even order bounded) operator on E, and 



the best constant k in the above estimate turns out to be IITII; but 

actually more is true. 

2,A LEMMA. Let Ebe a:ny (complex) Ba:nach lattice a:nd denote by C(E) the 

center of E. Then: 

(i) C(E) is a full subalgebra of the operator algebra L(E) a:nd closed in 

the strong operator topology. 
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(ii) With respect to the norm, order, a:nd algebraic structures induced by 

L(E), C(E) is isometrically isomoPphic to the Banach algebra C(¾) for 

some compact space¾· 

Thus if E = C(K) for some compact space K, ¾ can be identified with 

Kand the operators TE C(E) viewed as multiplication by continuous 

functions; the situation is similar for E = LP(µ) (Is p s 00), and here 

¾ is the Stone space of the underlying measure algebra. For our purposes, 

the main conclusion from Lemma 2.A is the fact that for each TE C(E), the 

spectrum cr(T) of T (in L(E)) coincides with the spectrum of Tin C(¾), 

i.e., with the range of the continuous function on¾ corresponding to T. 

The following spectral characterization [9] of those Riesz iso

morphisms of a Banach lattice E which belong to C(E), arose from the 

question if a Riesz homomorphism T of E satisfying cr(T) ={!}is necessari

ly the identity map IE of E. 

2.B THEOREM. For any Riesz isomoPphism of a complex Ba:nach lattice E, the 

following assertions are equivalent: 

(a) T EC(E) 

(b) The spectrum cr(T) is contained in (0,+00), 

In particular, if Tis a Riesz homomoPphism satisfying cr(T) {I} then 

The pLoof of the equivalence (a)* (b) is far from straightforward 

(see [9]). However, the final assertion of 2.B is an easy consequence: 

A Riesz homomorphism T satisfying cr(T) = {I} is invertible, hence a Riesz 

isomorphism, and thus we have T E C(E); from 2.A it now follows that T is 

the unit of C(E). Consequently, 0 s Tx s x and Os T- 1x s x for all 

0 S x EE which shows that T = IE. 

The proof of 2.B does not make use of the cyclicity of the spectrum 

of arbitrary Riesz homomorphisms established in Theorem I.C (ii); the 

combination of 1.C with 2.B yields the following interesting lemma [9]. 
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2.C LEMMA. Let T be a Riesz isomorphism of E and Zet b-l := r(T- 1). If the 

speatrai radius of IE-T satisfies r(IE-T) < II+b+b2 , then T E C(E); in 

partiau.Zar, 1.c1e have T E C(E) ic,henever II IE-TII $ I. 

In fact, if Ti C(E) then by 2,B we have cr(T) ¢ (O,+00); thus by 

1.C (ii) there existsµ E cr(T), µ + O, such that 2n/3 $ arg µ $ 4n/3 

whence ..;.I$ Re(µ/lµI) $-!.This implies r(IE-T/ ~ lµ-11 2 ~ lµl 2 + lµI + I. 
-1 -I -I -I 

But cr(T) = cr(T ) by the spectral mapping theorem, so lµI $ r(T ) 

and lµI ~ b;therefore we obtain r(JE-T) 2 ~ b2 + b + I, contradicting our 

hypothesis. From the preceding argument we note the following special 

cases: If Tis a Riesz isomorphism not in C(E), then (a) r(T- 1) $ I implies 

r(IE-T) ~ 13 and (a) -1 E cr(T) implies r(IE-T) ~ 2. 

We now consider groups G of positive operators on Banach lattices E, 

with IE the group identity and group multiplication defined by composition. 

These will briefly be called positive groups. 

2,D THEOREM. Let Ebe any Banaah Zattiae and Zet G be a positive group on 

E. If G is non-aentrai, i.e. if G n C(E) = {IE}, then G is disarete in the 

no1'171 topoZogy. Moreover ic,e have: 

(i) I< 11S - Tl!. min(IIS- 111,IIT-1 11) 1.c1henever S,T E G, S + T. 

(ii) If G is bounded then 13 $ II S - T II .min(II s-111, U T- 111) (S + T). 

(iii) If G is a torsion-free group of isomet'l'ies then 11S - TII 2 (S ,f, T). 

To prove (i), we observe that by hypothesis S,T E G, S + T implies 
-I -I -I 

S T i C(E), hence by 2.C: I < II IE - S Tl! $ II S II II S - Tl! and, similarly, 

I< IIT- 11111S - Tl!. (ii) and (iii) now result in like fashion using remarks 

(a) and (S) above. In fact, if G is bounded then cr(T) c {z EC: lzl = I} 

for all TE G so (a) applies. If G is torsionfree then cr(T) = {lzl = I} 

for each TE G, T + IE, by 2.C (ii); moreover we have IITII = I in this 

particular case for all T E G and hence 2 $ II S - T II $ 2 whenever S + T. 

2,E OPEN PROBLEMS. The following unsolved problems are closely related to 

the material of this section. Recall that a positive operator Ton a space 

C(K) is called a Markov operator if Tl= I (I the constant-one function 

on K). 

(i) Let T be a Markov operator on C(K) satisfying cr(T) = {I}. Is T neaes

sa'l'iZy the id.entity map of C(K)? 
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(ii) Let T be a positive contraction (i.e., T '.2: 0 and \\T\\!> I) on a space 

1P(x,E,µ) (I:'., p < +oo) and satisfying cr(T) c {z E £: lzl = J}. Is T neces

sarily an isometl'!f? 

It was shown by the author that (ii) has a positive answer whenever 

1P(X,E,µ) (I:'.> p < +oo) is finite dimensional. Moreover, if the answer to 
I (ii) is positive for every space L (X,E,µ), then also (i) has a positive 

answer. For, the adjoint T' of a Markov operator T satisfying cr(T) = {I} 

satisfies the assumption of (ii) (for p I); but if T' is an isometry, T' 

is easily seen to be a Riesz isomorphism. Thus so is T and we obtain 

T = IC(K) from Theorem 2.B. 

3. Positive one-parameter semi-groups 

By a one-parameter semi-group we understand, as usual, a homomor

phism t + Tt of the additive semi-group lR+ into the operator algebra L(E) 

of a complex Banach space E, such that T0 = IE and the mapping t + Tt is 

continuous for the strong operator topology on L(E). (We refer the 

interested reader to the excellent recent monograph by E.B. Davies [I].) 

Let us recall that every such semi-group satisfies estimates 

I\T II :'.> Mewt 
t 

for suitable constants M 
. b 1· -ll given ya:= im t og 

t+oo 
convergence (see below). 

The generator Z of 

E lR, w E JR. The greatest lower bound for w is 

II Tt II and is often called the abscissa of absolute 

is a generally unbounded closed operator Z whose dense domain V(Z) consists 

of all x EE for which the limit exists. 

In the following we are interested in the case where Eis a (complex) 

Banach lattice. A semi-group {Tt} on E will be called positive if each 

Tt (t E lR+) is a positive operator. It should be noted that the positivity 

of {Tt} is, in general, in no obvious way reflected by the generator Z; 

for example, if E = 1P(lRn) (I:'.> p < 00 ) then the Laplacian is the generator 

of a positive semigroup (cf. [!], p. 9). It is all the more striking that 
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for positive semi-groups, at least under reasonable assmnptions, the 

spectrtnn of Z has symmetry properties quite analogous to those of the 

spectrum of a positive operator T (or equivalently, of the discrete semi

group generated by T). Those properties have recently been established by 

G. Greiner [4], [5], following preliminary work by Derndinger [3]. It is 

the purpose of this section to report on some of them, in close parallel to 

Section I above.The proofs of the theorems reported are generally sophisti

cated, and not routine generalizations of the discrete case. However, while 

the known spectral properties of bounded positive operators do not enter 

in most of those proofs, the methods employed are widely those developed 

for the discrete case. It is safe to say that without the latter, the 

recent results for positive non-discrete semi-groups would in all likeli-

hood not have been discovered. 

Let {T} be a positive semi-group on E. It is well known (cf. [I]) 
t -I 

that the re.solvent R(A,Z) := (A - Z) exists in an open subset D of C 

containing the right half-plane {A EC: Re A> a}, and for Re A> a is 

given by the Laplace transform 

(x E E); 

hence R(A,Z) is a positive operator on E for all real A, A> a. Thus 

cr(Z) c {z: Re z ~ a}, and p := sup{Re z: z E cr(Z)} is called the spectral 

bound of Z (we let p = - 00 if cr(Z) contains no finite points). In general, 

one hasp< a; it was Greiner's observation that nevertheless, for posi

tive {Tt} formula(*) continues to hold for all A, Re A> p. (The integral 

is then to be understood as an E-valued "improper Riemann integral" not 

necessarily converging absolutely.) From the validity of(*) for all A, 

Re A> p, we conclude at once: For every positive semi-group one has 

p E cr(Z), In particular, R(A,Z) ~ 0 whenever A> p (A E JR). 

Because of the convergence properties of the Laplace integral in(*), 

it is natural to call the set cr(Z) n {A: Re A= p} the peripheral spectrum 

of Z (or of the semi-group {Tt}) and the subset of eigenvalues of Z having 

real part p, the peripheral point spectrum of Z (or of the semi-group). 

Also, the semi-group {Tt} is called irreducible if for any closed lattice 

ideal I of E, Tt(I) c I (all t E JR+) implies I {O} or I = E. (For this 

it is sufficient, but not necessary, that some Tt be irreducible on E.) 

An example of an irreducible semi-group is the semi-group on Lp(JR.n) 
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(I$ p < +oo) generated by the Laplacian ~- We now have the following com

plete analog [5] of Theorem I.A. 

3.A THEOREM. Let {Tt} denote a positive irreducible semi-group on E, and 

suppose p = O. 

(i) If the peripheral point spectrum TT of the generator Z is non-void and 

the adjoint semi-group {T '} possesses a positive fixed vector, then TT is 
t 

a subgroup of the additive group ilR , and eaah 0f its elemrsnts has geo-

metric multiplicity 1. 
-I 

(ii) If p = O is a pole of the resolvent R(A,Z) = (A - Z) , the peripheral 

spectrum of Z consists entirely of first order poles of R(A,Z). 

Concerning the proof of these results, similar observations are valid 

to those made following Theorem I.A: If p > - 00 then the asstm1ption p = 0 

is a mere normalization; if p = - 00 the statements of the theorem lose 

their meaning. Moreover, as before, (ii) is much harder to prove than (i); 

generally the proofs do not rely on transferring the problem to one of the 

operators Tt but on skillfully exploiting the properties (especially posi

tivity) of the resolvent for A€ D, Re A> p. 

What can be said about the peripheral spectrtm1 of Zin general? 

Again (with the exception of semi-groups of Riesz homomorphisms), some 

restriction on the growth of the resolvent, this time of R(A,Z),appears 

indispensable to obtain the desired results. 

3.B DEFINITION. A positive semi-group {Tt}, with spectral bound p > - 00, is 

said to satisfy Condition (G) if (A - p)R(A,Z) is bounded as A+ p. {Tt} is 

called (G)-solvable if there exists a chain of closed {Tt}-invariant 

ideals: {O} = E0 c E1 c ••• c En= E, such that for each v (I$ v $ n), the 

semi-group induced by {T} on E /E I satisfies (G). 
t \) v-

This growth condition enters the proof of 3.C (i) below in a fashion 

somewhat similar to that described following Definition I.B above. For 

example, if p = 0 and if iax Zx for some x 1' 0, 0 1' a € lR, then by known 

properties of R(A,Z) we have x = AR(A + ia)x for all A> 0, Now, if 

lxl = AR(A)lxl, it can be concluded that x(k) = AR(A + ika)4k)for all k E?l 

which, in turn, means that ikax(k) = z/k). The point is thus to obtain 

the equality lxl = AR(A)lxl ; for example, in 3.A above this is ensured by 

irreducibility of {T} and the (strictly) positive fixed vector of {T '} 
t . t 
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whose existence is postulated. In the more general case of non-irreducible 

semi-groups, condition (G) serves to ensure equality in a suitable quotient, 

and the group property of the peripheral point spectrum is generally lost. 

For the still more general case of the peripheral spectrum, transition to 

an ultraproduct leads back to point spectrum of the operator corresponding 

to R(A,Z) ; however, as pointed out in [4], this operator is no longer a 

resolvent in general, but a mere pseudo-resolvent. In order to set the 

analogy of the following result with Theorem 1.C in clear evidence, we will 

call a subset M of C imaginary-additively cyclic (abbreviated i.a. cyclic) 

whenever a. + iS E M (a.,S E lR) implies a. + ikS E M for all k E 7l. 

3.C THEOREM. Let {Tt} be a positive semi-group, with generator Z, on a 

Banach lattice E. 

(i) If {Tt} is (G)-solvable, the peripheral spectrum of Z is i.a. cyclic. 

(ii) If {Tt} is a semi-group of Riesz homomorphisms, the entii•e spectrum 

and the entire point spectrum of Z are i.a. cyclic. 

We point out that {Tt} is (G)-solvable whenever pis a pole of R(A,Z), 

and that the results mentioned here are but a few of those proved in [4], 

[S]. Theorem 3,C (ii) was proved by Derndinger [3]. 

Let us mention an easy consequence of Lemma 2 •. C: Every nonn continu

ous semi-group of Riesz homomorphisms on Eis contained in the center C(E). 

3.D OPEN PROBLEMS. Again in complete analogy with the discrete case, the 

following problems in the spectral theory of positive semi-groups on Banach 

lattices are so far unsolved. 

(i) Is the peripheral point spectrum of an irreducible positive semi-group 

with spectral bound p = O, necessarily a subgroup of ill? 

(ii) Is the peripheral spectrwn of every positive semi-group necessarily 

i. a. cyclic? 
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INTEGRAL OPERATORS 

A.R. Schep* 

I. Introduction 

The study of linear (non-singular) integral operators was originally 

an important stimulus for the development of functional analysis, but it 

was mostly restricted to special classes of integral operators like 

Carleman operators, Hilbert-Schmidt operators or Hille-Tamarkin operators. 

In the last decade there has been a renewed interest in the theory of 

linear integral operators as is shown e.g. by the publication of the book 

[6] by Halmos and Sunder. We shall try to present a survey of most of the 

recent results of these investigations. Most of the results will be 

presented without proofs, but in the last two sections we shall present 

some new results with their proofs. 

The paper is organized as follows. In section 2 we present some 

preliminary material. Section 3 deals with the order structure of order 

bounded integral operators. In section 4 we discuss two recent 

characterizations of integral operators. Both characterizations provide a 

solution to the so-called recognition problem as posed by Halmos and 

Sunder in [6]. In section 5 we derive some compactness properties of 

integral operators. We discuss in particular the compactness in measure 

and "almost-compactness" of integral operators. In section 6 we discuss 

the relation between integral operators and multiplication operators. The 

main result in this section is theorem 6.3, which has not appeared in 

print before. 

2. Preliminaries 

We begin with some simple definitions. Let L0 (Y,v) be the vector 

*Research supported in part by a irant of the University of South Carolina 

Research and Productive Scholarship Fund. 
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space of all real v-measurable functions on the a-finite measure space 

(Y,~,v) with the usual identification of v-almost equal functions. A linear 

subspace L of L0 (Y,v) is called an ideal (or order ideal) if f E L0 (Y,v) , 

g EL and lf(y)I ~ lg(y)I a.e. implies that f EL. Let (X,A,µ) be 

another a-finite measure space and let T(x,y) E 10 (xxY,µxv) . The natural 

(maximal) domain Dy= Dy(T) of the integral operator induced by T(x,y) 

is Dy= {f E 10 (Y,v) : J IT(x,y) f(y)I dv < 00 a.e.} . Clearly Dy is an 

order ideal in 10 (Y,v) and the integral operator T induced by the kernel 

T(x,y) maps Dy into 1 0 (X,µ). This Tis given by 

Tf(x) J T(x,y) f(y) dv a.e. 

for f E Dy. In what follows we shall study the collection of integral 

operators defined on some given ideal L c 10 (Y,v) with range in some 

other given ideal Mc 1 0 (X,µ) , i.e. we shall assume that DY(T) J L for 

each given integral operator T and that T(L) c M. Note that this implies 

that if T(x,y) is the kernel of an integral operator from L into M then 

IT(x,y)I is not necessarily the kernel of an integral operator from L into 

M, but it is the kernel of an integral operator from L into 10 (X,µ). The 

ideal L c L0 (Y,v) is order dense in 10 (Y,v) if every set E of positive 

measure contains a subset F of positive measure such that XF EL. If L 

is order dense in 10 (Y,v) then by a standard measure theoretical 

exhaustion argument one shows that there exist disjoint Yn with Un Yn = Y 

v(Yn) < 00 such that Xyn EL. The following theorem was proved first in 

[I] by N. Aronszajn and P. Szeptycki and then by pure measure theoretical 

arguments in [II] by W.A.J. Luxemburg and A.G. Zaanen. 

THEOREM 2,1. Let T(x,y) E 10 (xxY,µxv) such that Dy is order dense in 

10 (Y,v). Then 

(i} there exists g0 EDY with g0 (y) > 0 a.e.; 

(ii) DX= {g E L0 (X,µ) : f IT(x,y) g(x)I dµ < 00 a.e.} is order dense 

in 10 (X,µ). 

In the next section we shall study the order structure of the set of 

order bounded integral operators from an ideal L of measurable functions 

into an ideal M of measurable functions. We first recall that the linear 

operator T: L + M is said to be positive if T maps non-negative functions 

into non-negative functions and that Tis called order bounded if T = T1 - T2 
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with T1 and T2 positive. The set of all order bounded linear operators 

from L into Mis denoted by Lb(L,M). If M = 1O(X,µ) , then every integral 

operator from L into Mis order bounded. For T, SE Lb(L,M) , the operator 

sup(T,S) is given for O ~ f EL by 

sup(T,S)(f) sup(Tg + Sh g ~ 0, h ~ 0, g + h f) 

Similarly inf(T,S)(f) inf(Tg + Sh g ~ 0 h ~ 0, g + h f) • 

3. Order structure of order bounded integral operators 

In this section we consider integral operators from an ideal Lin 

L0 (Y,v) into an ideal Min 10 (X,µ). We shall assume throughout that Land 

Mare order dense in 10 (Y,v) and 10 (X,µ), respectively. Now let K = K(L,M) 

denote the set of all order bounded integral operators from L into M. The 

following theorem describes how the subspace K is embedded in Lb(L,M). 

Part (ii) of the theorem is due to W.A.J. Luxemburg and A.C. Zaanen ([II], 

1971). The present proof of (ii) is much simpler than that in [II]; it was 

given in [17] by the author, who first proved (i) and used that in the 

proof of (ii). 

THEOREM 3. I. (i) If O ~ S ~ T E K , then S E K • 

(ii) If T,-S. EK, then sup(T,S) EK and sup(T,S) has the 

pointwise supremum of T(x,y) and S(x,y) as kernel. 

(iii) If T0 = sup(T0 : a E {a}) in Lb and if T0 EK for all 

a, then T0 EK 

In the terminology of Riesz spaces (see [IO]) one expresses the 

above theorem by saying that K is a band in Lb. For any subset A of Lb we 

call the band generated by A the smallest subset of Lb containing A and 

satisfying (i), (ii) and (iii) of the above theorem. To give another 

description of K we introduce 

1- = {g E Lo(Y,v) : I lfgl dv < 00 for all f EL} 
y 

Then L - is an order ideal in 1 0 (Y, v) and elements of L - 0 M can be 

identified with integral operators of finite rank from L into M. The 

following theorem was proved in special cases by G.Ya. Lozanovskii ([8]) 
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and by R.J. Nagel and U. Schlotterbeck ([14]), and in the general case by 

A.V. Buhvalov ([2]) and, more elementary, by the author ([17]). 

THEOREM 3.2. If the ideal 1- is also order dense in 1O(Y,v), then the 

band K of all order bounded integral operators is exactly equal to the 

band generated by the finite rank integral operators. 

4. Recognition of integral operators 

As in the preceding sections, let 1 and M be ideals in 10 (Y,v) and 

1 0 (X,µ), respectively. ·we shall assume that 1 and 1- are order dense in 

1O(Y,v). For fn E 1O(Y,v) we write fn t O if every subsequence of 

{f n = 1,2, •.. } contains a subsequence converging to zero a.e. on 
n 

every set of finite measure. Recall that a set H c 10 (X,µ) is called 

equimeasurable if for all E > 0 and all x0 c X with µ(X0) < 00 there 

exists x 1 c x0 with µ(X0-x1),;;;, E such that {hxXJ : h EH} is a 

relatively compact subset of 100 (X,µ). The following theorem was partially 

proved by A.V. Buhvalov in [2], by W. Schachermayer in [15] and by the 

author in [17] and [19]. 

THEOREM 4. I • Let T be a linear operator from 1 into M. Then the 

following are equivalent. 

(a) Tis an integral operator; 

(b) if O,;;;, fn,;;;, f E 1 and fn l O, then 

(c) if O < f < f E 1 and f l O, then = n = n 
order bounded sets into equimeasurable 

Tfn(x) + 0 a.e.; 

Tf * 0 and T maps n 
sets. 

Recently 1. Weis gave in [21] a proof of (b) =i> (a) which does not use 

the order theoretic description of K(1,1O(X,µ)) discussed in Theorem 3.2. 

The proof of (a)~ (c) depends on the following theorem for which we 

refer to [ 19]. 

THEOREM 4.2. Let T: 100 (Y,v) + 100 (X,µ) be an integral operator and 

assume that µ(X) < 00 • Then for all E > 0 there exists x0 c X with 

µ(X-X0),;;;, E such that Pxo•T: 100 (Y,v) + 100 (X,µ) is compact, where PXo 

denotes the operator PX0f = xx0•f 

In the next section we shall discuss an extension of the above 

theorem to 1 -spaces, We also remark that Theorem 4.1 (a) 4'-> (b) has been 
p 



studied for so-called abstract order bounded integral operators on Riesz 

spaces by W.K. Vietsch ([20]) and by P. van Eldik and J.J. Grobler ([4]). 

5. Compactness properties of integral operators 

In this section we shall discuss compactness properties of integral 
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operators defined on a Banach function space L L (Y,v). Recall that L p p p 
is a Banach function space if LP is an order dense ideal in L0 (Y,v) provided 

with a norm p such that lfl ~ lgl implies p(f) ~ p(g) and such that LP 

is norm complete with respect top. For our discussion we shall use the 

following theorem, due to B. Maurey and E.M. Nikish±n,-whi~hhas its origin 

in the theory of factorization of operators (see [13]). 

THEOREM 5.1. Let H c L0 (X,µ) be a convex set of non-negative functions 

which is bounded in measure. Then there exists O < ~ E L0 (X,µ) such 
1 h that $•H = {$: h EH} is norm bounded in L1(X,µ). 

Recall that a function norm pis called order continuous if 

fn(x) + 0 a.e. implies that p(fn) + 0. Recall also that 

p'(g) sup(! lfgl dµ : p(f) < 1) . The following theorem is due to 

V.B. Korotkov ([7]). 

f E L 
n P 

THEOREM 5.2. Let L = L (Y,v) 
p p 

be a Banach function space such that p' 

is order continiuous. Then every integral operator from LP into L0 (X,µ) is 

corrrpact in measure. 

PROOF. Let T be an integral operator from LP into L0 (X,µ) with kernel 

T(x,y). Then H = {J IT(x,y) f(y)I dv: p(f) ~ 1} is convex and bounded 

in measure in L0 (X,µ). Hence by above theorem there exists O < ~ E L0 (X,µ) 

such that ¾•His norm bounded in L1(X,µ). It follows that ¾•Tis an order 

bounded integral operator from LP into L1(X,µ). Hence by lennna 5.2 of [12] 

we know that ¾•Tis compact, so the operator ¾•Tis compact in measure. 

Since ~ > 0 a.e. we can deduce that Tis also compact in measure. 

The above theorem fails in case p 1 is not order continuous, as can be 

seen from the following example. 

EXAMPLE. Let X = Y = [0,1] with Lebesgue measure and let 

T(x,y) = I:=I sin(n~x) • x[ 2-n, 2-n+l](y) • If f E L1[0,1] , then 
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2-n+I I 
f IT(x,y) f(y)I dy ~ I:=I J2-n lf(y)I dy = 0! lf(y)I dy = llfll1 . Hence 

T(x,y) is the kernel of an order bounded integral operator from 1 1[0,I] into 

L.,.(0,1]. Now let fn = 2n•x[ 2-n, 2-n+I] • Then llfnlll = I and Tfn = sin(mrx) 

It is easy to see that {sin(nnx) : n = 1,2, ••• } is not compact in measure. 

It follows that Tis not compact in measure. 

In the following theorem we denote by P~ the multiplication operator 

P~f = ~f and we denote by T' the restriction of the Banach adjoint of T to 

1 1 c L* 
P2 P2 

THEOREM 5.3. Let LPl c Lo(Y,v) and LP2 c Lo(X,µ) be Banaah funation 
spaaes and Let T: L + L be an integPal opePatoP. Then thePe exists 

Pl P2 
~ > 0 in L0 (x, µ) suah that T' •P ~ is an integpai opePatoP fPom 1;2 into 1; 1 

whiah is aorrrpaat in measUPe. 

PROOF. Assume first that (X,µ) is a finite measure space and let E > 0. 

Let O ~ g0 EL such that g0 (y) > 0 v-a.e. and let T(x,y) denote the 
- Pl 

kernel of T. Then 

f IT(x,y) g0 (y)I dv <"' a.e. , 

and so there exists M > 0 such that 

X = {x EX: f IT(x,y) g0 (y)I dv ~M} E,I 

satisfies µ(X~ 1) ~ E/2 and Xx EL , Let 
, . I P2 

Ag = {g E 10 (Y,v) : lgl ~ c g0 f3r some c > O}. Then P* •Tis an 
o Xg,J 

order bounded integrai operator from Ag0 into L..,(xE,l'µ). Note that 

L (X 1,µ) c L • By Theorem 4.2 we know that we can find X c X 1 with 
"' E, P2 E E, 

µ(XE, 1-XE) ~ E/2 such that PX •Tis compact as an operator from Ag into 

L (X ,µ), Using Fubini's theor~m one finds that O 
"' E 

T'·Px : L1(XE,µ) +(Ag)'"" 1 1(g0 dv) is a compact integral operator, so 

also ET'•P : L' + L ~g dv) is a compact integral operator. From 
X P2 I 0 

proposition& 2.1 of [3] we conclude that T'•Px : L' + L' is an integral 
. . E P2 Pl 

operator, which by the above is compact in measure. 

In case Xis of infinite measure, we can write X = Un Xn with the ~•s 

disjoint aJ.'!(i µ(Xn) < "',By the above argument we can-find XEn c: Xn such 

that T'•Px is an integral operator from.L' into L' By piecing the 
En P2 PI 



xx 's appropriately together, we find the function ¢ > 0 with the 
- e:n 

required properties. 

THEOREM 5.4. Let LP c L0(Y,v) be a Banach function space and let 

T: LP+ L0 (X,µ) be an integral operator. Then there exists ¢ > 0 

in L0 (Y, v) such that T • P ¢ is compact in measure. 
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a.e. 

PROOF. As in the proof of Theorem 5.2 we can find x0 > 0 in L0 (X,µ) such 

that P1; •Tis an integral operator from L into L1(X,µ). So by above 
Xo P 

theorem we can find ¢0 > 0 in L0 (X,µ) such that (Pl/x •T)'•P¢ 0= T'•P¢olXo 

is an integral operator from L (X,µ) into L' Applying 2he above theorem 
00 p 

again we find ¢1 > O in L0 (Y,v) such that P¢ Ix •T"•P¢ L~ + L 1(X,µ) 

is compact in measure. As in Theorem 5.2 this igpl~es thal 

T•P ¢ : LP + L0 (X, µ) is compact in measure. 

We now state an extension of Theorem 4. 2 due to W •. Schachermayer and 

L. Weis ([16], see also [21]). 

THEOREM 5.5. Let T: L (Y,v) + L (X,µ) (I< p < 00 ) be an integral 
p p 

operator and assume that µ (X) < 00 • Then for all e: > 0 there exists 

XO C X with µ(X-Xo) ~ e: such that PX •T: L (Y,v) + L (X,µ) is compact, 
0 p ' p 

where PX denotes the operator P • f = Xx • f 
0 XO 0 

Let µ(X) < 00 • Then we call a bounded operator from L (Y,v) into 
p 

L (X,µ) almost compact if it satisfies the conclusion of the above theorem. 
p 

In particular integral operators from L (Y,v) into L (X,µ) (1 < p < 00 ) are 
p p 

almost compact. The following recent theorem due to L. Weis ([21]) gives 

the precise relation between integral operators and almost compact operators. 

THEOREM 5.6. A bounded linear operator T from L (Y,v) into L (X,µ) p p 
(I< p < 00 ) is almost compact if and only if Tis the norm limit of a 

sequence of integral operators from L (Y,v) into L (X,µ) 
p p 

6. Integral operators and multiplication operators 

Throughout this section we shall assume that (Y,v) does not contain 

any atoms, i.e., if Eis a subset of Y of positive measure and if O <a< v(E), 

then there exists a subset E1 of E such that v(E 1) =a. For g E L0(Y,v) 

we denote by P the multiplication operator Pf gf. Our first theorem g g 



88 

specifies the relation between order bounded integral operators and 

multiplication operators. 

THEOREM 6.1. Let L be an order ideal in LO(Y,v). Assume that Tis an order 

bounded integral operator from L into Land that P is a multiplication 
g 

operator from L into L . Then T and Pg are disjoint in Lb(L) i.e., 

inf(ITI ,IPgl) 0 in Lb(L) . 

PROOF. It is no loss in generality to assume that T and P are positive 
g 

operators. Let S = inf(T,P) . Theorem 3.1 (i) implies that Sis an integral 
g 

operator and similarly to [22) we can prove that Sis also a multiplication 

operator, say S = Ph with h ~ 0. If h * 0, then we can find E c Y 

with XE EL and h ~ c > 0 on E. By non-atomicity of (Y,v) we can find 

Enc E with v(En) + 0 such that xEn does not converge to zero a.e .. Since 

Sis an integral operator we know from Theorem 4.1 (a)=> (b), that 

S(xE )(x) + 0 a.e., i.e. 
n 

h·xE (x) + 0 a.e .• But 
n 

so also XE (x) + 0 
n 

a.e., which is a contradiction. 

For non order bounded operators we cannot use the order structure 

to investigate the relation between integral operators and multiplication 

operators. Therefore we shall consider a Banach function space instead of 

an arbitrary order ideal in L0 (Y,v). Consequently, every multiplication 

operator P from L into L is given by g with g E L00 (Y,v) . We first prove 
g p p 

a technical lemma. 

LEMMA 6.2. 

that v(Y) 

such that 

Let T: L00 (Y,v) + L00 (Y,v) be an integral operator and assume 

< 00 • Then for all E > 0 there exists E c Y with v(E) > 0 

IT(xE)I ~ E a.e. on E. 

PROOF. Let E > 0. Then by Theorem 4.2 we can find Y0 c Y with 

v(Y-Y0) ~ ! v(Y) such that Py0•T: L00 + L00 is compact. Let Bn c YO 

with Bn i 0 such that v(Bn) > 0 for all n. Then by order continuity of 

integral operators we have T(xB )(x) + 0 a.e •. On the other hand there 
n 

exists a subsequence xB such that {Py •T(xB )} is convergent in the 
nk O nk 

L00-norm. It follows that IIPu •T(xB )ll+ 0 as n + 00 ,,o nk 
< E. Then obviously IT(xB )I~ E a.e. on B , so take no no 

Let n0 be such that 

II Py •T(xB ) II 
0 no 00 

E = B no 

Recall that a function norm pis called Fatou if p (p')' (cf [9]). 
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THEOREM 6.3. Let L = L (Y,v) be a Banach function space with Fatou norm 
p p 

p and let T: LP+ LP be an integral operator. Then for all g E L00 we 

have I I T - P II > 11 g II g = 00 

PROOF. Let E > 0 and let A c Y of finite positive measure such that 

g (y) ~ ( I - E) 11 g 1100 on A and JA IT(x,y)I dv < 00 a.e. on Y. Then we can 

find B c A of finite positive measure and a constant M > 0 such that 

fA IT(x,y)I dv ~M a.e. on B. 

In particular 

fB IT(x,y)I dv ~M a.e. on B. 

It follows that PB•T maps L00 (B,v) into L00 (B,v) . By the above lemma there 

exists E c B such that v(E) > 0 and IT(xE) I ~ E a.e. on E. We may 
I assume that XE E LP Let 

with p'(hn) = I such that 

on Ec for all n. Now we have 

On the other hand 

f If g h I dv n 

It follows that 

f = P<xi)'XE 

J f hn dv ~ 

. Then we can find O < h EL' = n P 
1 • We may assume that h 
n n 

0 

II T - P II > f I Tf - P f I h dv ~ f I Pgf I h dv - f I Tf I h dv ~ g g n n n 

> (1-E) llglL I ( I - ~) 
n 

for all E > 0 and all n. Hence 11 T - P II > II g 11 • g = 00 

REMARKS. 

I. Above theorem implies that IIP - 1.TII > IIP II for all 1. > 0, i.e., the 
g = g 

multiplication operator P is orthogonal in the sense of Birkhoff to every 
g 

integral operator in the Banach space of all norm bounded operators on L. 
p 
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2. In the book by Halmos and Sunder it is proved that for LP= L2[0,J] 

we have II T - Pg II ~ II g 112 for every integral operator. The above theorem 

therefore not only generalizes this result, but it also gives the correct 

lower bound, i.e., llgll.x, instead of llgll2 . 

3. We note that some results in the present paper, like Theorem 4.1, can be 

specialized for subclasses of integral operators, like the Carleman integral 

operators. For these results we refer to the paper [5] by J.J. Uhl and 

N. Gretzky and to the paper [18] by the author. 
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THE BACKGROUND TO CAUCHY'S DEFINITION OF THE INTEGRAL 

F. Smithies 

My aim in this talk is to say something about the background to 

Cauchy's definition of the integral and about what his new definition 

achieved. I do not intend to go deeply into technical details; I want 

rather to mention some of the difficulties raised by Cauchy's predecessors, 

their tentative suggestions for putting things right, and the effect of 

Cauchy's new approach on the situation. 

Let us begin by taking a look at the concept of the definite 

integral as it existed before Cauchy's time. Leibniz had thought of the 

integral primarily as a sum of infinitesimals, but later in the eighteenth 

century the predominant view was that integration was the process inverse 

to differentiation, the indefinite integral being an antiderivative or 

primitive function, and the definite integral merely the difference between 

two values of the primitive function. A function was generally thought of 

as being given by an analytic expression, and it was taken for granted 

that it always possessed a primitive funtion, whether or not an analytic 

expression could be found for it. 

The use of the definite integral for the evaluation of areas was of 

course well known. Euler, in his book on the integral calculus ([7]) 

considered the approximate evaluation of a definite integral by a sum of 

the form (in modern notation) 

and obtained an upper bound for the error for the case where f(x) is 

monotonic. Lacroix ([IO]) and Legendre ([II]) had refined Euler's argument, 

the latter even applying it to some cases where the integrand has an 

infinity in the interval of integration. 
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We must now turn to some developments in the concept of function. By 

Cauchy's time, the definition of a function as an analytic expression was 

beginning to be found inadequate. 'Arbitrary' functions appeared in the 

general solutions of partial differential equations. Physical considerations 

suggested the desirability of admitting functions other than those given by 

a single analytic expression; thus, to describe the initial configuration 

of a plucked string, one seemed to need different expressions on the two 

sides of the point where the string was plucked. Euler was prepared to admit 

such functions, calling them 'discontinuous', a 'continuous' function being 

one given by the same analytic expression throughout. In a letter to 

D'Alembert (20 December 1763), who refused to recognise such functions as 

being admissable in mathematical analysis, Euler remarked that 'the 

consideration of functions that are subject to no law of continuity opens 

to us a wholly new domain of analysis'. 

Daniel Bernoulli ([l]) suggested that every possible initial 

configuration of a vibrating string could be expressed as a trigonometric 

series; he based this statement almost entirely on physical considerations, 

without any attempt at a mathematical proof. Euler ([6]) expressed 

scepticism about the generality of Bernoulli's solution as a superposition 

of normal modes of vibration, since he was unable to. believe that so 

arbitrary a function could be expanded in a trigonometric series. Later, 

however, Euler seems to have modified his position somewhat, though he 

remained sceptical about the practical possibility of obtaining such 

expansions. In a paper ([2]) published in 1772, Daniel Bernoulli obtained 

the expansion 

1 ( ) • 1 . 2 1 • 3 2 w-x = sin x + 2 sin x + 3 sin x + ••• 

pointing out that equality holds only for O < x < 2w and that, in the 

interval 2(n-l)w < x < 2nw, the sum of the series is (n-})TT-ix. This 

result exhibits the sum of the series as a function that is simultaneously 

'continuous' and 'discontinuous'. Finally, in a paper ([8]) written in 

1777, but not published till 1798, Euler obtained the coefficients of a 

general trigonometric series by term-by-term integration, and quite 

explicitly insists on using the geometrical interpretation of the 

definite integrals 



R, 

f f(s) 
0 

cos ds 

One suspects, though Euler does not say it in so many words, that he was 

contemplating the admission of 'discontinuous' functions f(s) in the 

integrand. 
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In 1820 Poisson published a thought-provoking paper ([12]). In this he 

discusses the difficulties that arise when the integrand becomes infinite 

between the limits of integration. He remarks that mathematicians who have 

found finite values for such integrals have generally supposed that the 

infinities cancel out 'by the opposition of the signs+ and-'. He points 

out that this explanation does not always work; for example, we should have 

1 
f dx =.[-_!_JI = _2 

_ 1 x2 ·· x · - I ' 

whereas dx/x2 is positive throughout the interval. On the other hand, in 

the integral 

1 f dx 
-1 X 

the infinities should cancel, giving the value 0, whereas the usual drill 

leads to 

1 f dx 
-1 X 

I [log xJ_ 1 - log(-1) 

which has the infinity of values (2n+l)ul(-1) ; how, he asks, can the sum 

of the real elements dx/x have several values, all of them imaginary? He 

then states that, at the birth of the integral calculus, the definite 

integral was regarded as the sum of the values of the differential; later, 

therefore, it came to be felt that one had to prove that, if 

dF(x) = f(x) dx , then F(b)-F(a) is the sum of the values of f(x) dx 

when x goes from a to b by infinitely small steps dx. This proposition 

continues to hold if f(x) dx changes sign in the interval, and even if 

it passes through imaginary values, but its proof assumes essentially that 

f(x) remains finite. If it passes through infinity, then, as we have seen, 

there are cases where it ceases to hold. To restore its validity, Poisson 
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suggests making the change of variable 

x =-(cos~+ 1(-1) sin~) 

and integrating from ~ = 0 to ~ = (2n+l)TI, where n is an integer; since 

x does not pass through O, the integrand no longer has an infinity. We then 

obtain 

I f dx 
-I X 

(2n+l)TI 
-/(-1) f d~ 

0 
-(2n+l)Til(-1) 

the result we had before. More generally, he evaluates 

for positive integral values of m; in particular, the argument explains 

why we obtain a negative result when m = 2. 

Thus Poisson seems to be advocating the desirability of returning to 

the definition of the definite integral as being in some sense a sum of 

infinitesimals. 

Let us now look at some early ideas of Cauchy's. What we may perhaps 

call Poisson's puzzle must already have been in the air before 1820, since 

Cauchy made some remarks on it in his famous 1814 memoir ([3]) on definite 

integrals, in which he laid some of the foundations for complex analysis. 

He begins by saying that if the function ¢(z) increases or decreases in a 

continuous manner between the limits z = b' and z = b" (in other words, 

is a continuous function in the sense of the definition he gave in 1821), 

then 

b" 
J ¢' (z) dz 

b' 
Hb") - Hb') 

However, if ¢(z) has a jump discontinuity of amount~ at the point Z of 

the interval, in the sense that 

is close to~ when~ is very small, then 



b" 
f if>' (z) dz 

b' 
if> (b") - if> (b') - b. 

He establishes this by showing that, if~ is small, then 

z-~ 
f + ij>(b") - ij>(Z+~) + ij>(Z-~) - ij>(b') 

b' 

which becomes ij>(b") - if> (b') - b. when~ goes to O. He illustrates this 

by considering 

4 dz f 
-2 z 

Since log~ - log(-~) - log(-!) , we have b. - log(-!) 

4 dz f - = log 4 - log(-2) - b. 
-2 z 

log 4 - log 2 

hence 
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This foreshadows Cauchy's later definition of the principal value of such 

an integral, which indeed he mentions in a footnote added to the memoir 

before its ultimate publication in 1827. 

The principal value itself makes its first appearance in a paper 
x" ([4]) published in 1822, where he defines the general value of x'J f(x) dx 

for a function having an infinity at x0 as 

x -ka' 
f O + 

x' 

x" 
f f(x) dx 

xo+ka" 

where k is infinitely small (i.e. is a variable approaching O); this gives 

I dx 
f 

-I X 

a' 
log a" 

If, in particular, we take a'= a"= I , we obtain what he defines to be 

the principal value of the integral. Later in the same paper he says that 

every definite integral between real limits should be regarded as being 

the sum of the values of the differential corresponding to the values of 

the real variable between the limits. This, he says, applies to all cases, 

even when no primitive function is known, and always gives real values for 

the integrals of real-valued functions. On the other hand, if the integral 

is taken as the difference between two values of the primitive function, 
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this fails to be true in general, e.g. if the latter is discontinuous or if 

we pass from one limit to the other through imaginary values. So far, he 

seems to be echoing Poisson, but he then brings in a new point, remarking 

that the primitive function approach can give either 

2 
J dx = log 2 - log(-!) 

-J X 

or 

2 f dx = 
-} X 

2 x dx 2 2 f - 2- =[½log x ]_ 1 
-I X 

log 2 

Cauchy's formal definition of the definite integral appears first in 

his 1823 book [5]. We have already seen that Euler and others had used 

approximating sums for the evaluation of definite integrals, whose existence 

was taken for granted. Cauchy reverses this procedure, defining the definite 

integral of a continuous function as the limit of sums of the form 

as the maximum length of the subintervals approaches· O, and also giving a 

proof of the existence and uniqueness of the limit. It is well known that 

his proof is not watertight, since his definition of continuity is somewhat 

vague, and could be interpreted as referring to either pointwise or uniform 

continuity, the latter being needed for a rigorous proof. Nevertheless, he 

does enough to convince the reader that the definite integral of a 

continuous function always exists. Shortly afterwards he remarks that one 

could also consider sums of the more general form 

where ~k is an arbitrary point of the interval (~•~+ 1). 

On the basis of his definition, Cauchy proves such elementary 

properties of the integral as 

and 

b 
J f(x+c) dx 

a 

b+c 
J f(x) dx 

a+c 



a 
J f(a-x) dx 

0 

a 
J f(x) dx 

0 
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establishes the linearity of the integral operation and extends his 

definition to complex-valued functions. He also proves that the definite 

integral is an additive function of intervals. He also obtains an estimate 

for the error of an approximating sum in evaluating the integral of a 

piecewise monotonic function. Further on, he defines improper integrals as 

limits in the way that is familiar to us all, and repeats the discussion 

of principal values from his 1822 paper. Finally, he links his new 

definition with the old one by proving that if 

F(x) 
X 

J f(x) dx 
XO 

where f(x) is a continuous function, then F'(x) 

w'(x) = 0, then w(x) must be a constant. 

f(x) , and that if 

We see that Cauchy's new definition of the integral has several 

advantages over the older one; it establishes the existence of the integral 

for a much wider class of functions, namely, the continuous (and indeed 

piecewise continuous) functions, thus opening the way for further 

generalisations, such as Riemann's, and it avoids some of the paradoxes to 

which the older theory was subject. It also made possible a proper 

treatment of integration along paths in the complex plane, as foreshadowed 

in Poisson's 1820 paper, and thus led eventually to the proof of Cauchy's 

theorem and its manifold consequences. 

A few words about the notation for definite integrals may be of 

interest. Euler and his contemporaries had either used the somewhat clumsy 

notation 

J f (x) dx [ x = xO ] 
X = X 

or had specified the limits of integration in the text. The familiar 

notation 

X 
J f(x) dx 

XO 
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was invented by Fourier, who used it in his prize essay of 1811. Although 

Fourier's work did not appear in print till 1822, Cauchy had certainly seen 

a copy of it by 1818, and iDD11ediately adopted the new notation. He had 

himself used the old notation in his 1814 memoir, and didn't trouble to 

alter it in the published version, though the new notation appears in the 

footnotes. However, the editors of Cauchy's collected works did change all 

the definite integrals in the 1814 memoir to the new notation when they 

reprinted it. 
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SOME LATTICE PROPERTIES OF THE SPACE L2 

B. Sz.-Nagy 

1. The classical function spaces 1P (1~p~oo) , C, etc., whose concept 

and basic properties were established since the first decade of this 

century, in particular by F. Riesz, have algebraic (linearity), topological 

(in particular, metric) and order structures, which are compatible in some 

definite senses. The rapid development of the pertaining investigations, 

their importance within mathematics and their various applications, even

tually lead to the evolution of several kinds of abstract linear spaces, 

based on axioms which are distilled from one or another type of structure 

properties of the classical function spaces. Thus, the general linear and 

metric properties are distilled in the axioms of Banach spaces, and in 

particular in the axioms of (abstract) Hilbert space; here the basic, 

axiomatically defined concepts are the nom, and (in the case of Hilbert 

space) the inner product (from which the norm derives as in the classical 

case LP with p=2 ). 

The bases of the abstract theories of Banach and Hilbert spaces 

were laid down in the 2nd and 3rd decade of this century, and opened a 

spectacularly rapid and succesful development in modern mathematics and 

in many of its applications. Axiomatization of the order properties of the 

classical function spaces followed somewhat later, with no, or only a 

slight regard to the metric properties of these spaces. F. Riesz, whose 

pioneering·workof what is now called functional analysis concerned in 

particular linear metric spaces, was also the first to point out, in a 

short note presented to the 1928 Congress at Bologna, the perspectives of 

an abstract theory of ordered linear spaces. He expounded his ideas later, 

in a paper of 1937 in Hungarian, a translation of which appeared in 1940 

in the Annals of Math.,see [R]. 

In the meantime, H. Freudenthal also elaborated and published in 1937 his 

independent theory of partially ordered moduli, see [F]. About the same 
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time, L.V. Kantorovi~ also began extensive investigations in this area, 

in which several Soviet authors took part in the sequel. Today we have 

a highly developed theory on (partially) ordered linear spaces (or "vector 

lattices"), also called - in homage of his pioneering merits - Riesz spaaes. 

Dutch mathematicians, following the path of H. Freudenthal, continued to 

play an important part in this development, namely A.C. Zaanen and some 

of his colleagues and former pupils. His monograph with W.A.J. Luxemburg 

[LZ] is an excellent exposition of the fundamentals of this abstract 

theory. The authors promise to give, in a forthcoming volume of this 

monograph, an exposition also of some connections between the two, rather 

independently grown-up daughters of the classical theory of function 

spaces. 

In the present exposition I shall deal with problems of this nature, 

notably connecting in some sense or other the metric structure of abstract 

Hilbert space with the additional vector lattice structure of the 
2 classical, functional Hilbert space L • 

These results are not new, I obtained them in the years 1936/37 and 

1949, and published in the papers [I-III]. 

Papers [I] and [II] described those subsets E and P of abstract 

(real, separable) Hilbert space H which can be mapped unitarily onto the set 

X(a) of chara~teristic functions, or on the set L!{a) of nonnegative 

functions, in some L2(a) , respectively; a means here a conveniently 

chosen non negative, finite Borel measure. Paper [III] also considers 
2 characterization of sets P in H which can be mapped onto an L+(a) , 

if not by a unitary, but at least by an "affine" transformation of H 

onto L2(a) • 

2. Let us introduce a notation: For any two vectors ~.w EH, 

THEOREM I. Let E be a subset of H (with elements denoted by 

e,f,g,h, ••• ). In order that there e:r:ists a linear isom?itria (i.e., 

unitary) map of H onto some spaae L2(a), which aal'l'ies E preaisely 

on X(a) , it is neaessary and suffiaient that the following aonditions 

hold: 



(I.1) E is complete in H. 

(I.2) 

(I.3) 

(I.4) 

(I.5) 

For e,f E E we have e-f E E iff f,< e . 

For any, e,f EE there exists a g EE such that 

e + f - g EE and g-<_{~. 

E is closed in the sense that it contains the Zimit 

of every convergent "increasing" sequence {e} (i.e. 
n 

such that e 1-< e2< e3~ ••• 

There exists an e* E E such that e ..( e* for aU 

e E E 

Necessity of these conditions is obvious. Indeed, if Xs is the 

characteristic function (in 12(a.)) of an a.-measurable set S then 

Xs-<( Xs, means S c S' , and in this case Xs, - Xs = Xs '-....S ; moreover, 

holds for any S,S' with characteristic functions in L2(a.) . Since 

Xsns• equals Xs. Xs• it is convenient to denote (any) vector g 

associated with e,f in the sense of (I.3) also by e.f. 

The main problem is to establish sufficiency. 

One firstly deduces, in a more or less straightforward way, the 

following properties (where only conditions (I.2 & 3) are used): 

(a) If f,g' and f+g belong to E, then f .l g ; 

(b) e-<(f-<'g implies e -<g ; 

(c) e.f is uniquely determined by e and f, and 

satisfies 2 lle.fll = (e ,f) ; 

(d) The operation e.f is commutative, associative, and 

distributive (i.e., e.(f+g) e.f+e.g whenever e,f 

and f+g belong to E ); 

(e) e .l f implies e'.l f' whenever e'...(e, f'..(..f 

(f) e..c(f implies llell :a llfll. 
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Also using conditions (I.4 & .S) one obtains, furthermore: 

(g) Every "increasing" sequence {en}. in E is c.onvergent 

to an element of E. 

The next step in the proof is to associate with every e EE the 

subspace H of H which is spanned by the set {f:f-<e}; let P 
e e 

denote the orthogonal projection operator from H onto H . Note that 
e 
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condition (I.5) implies H = H. 
e* 

Using the (postulated or deduced) properties of the set E it is 

easy to prove that 

Peg e.g (for every e,g ); 

and hence, that 0, and 

Using now condition (I.1) (completeness of E in H} we deduce hence that 

PePf = PfPe =Pe.£. One deduces in an analogous way that Pe+ Pf= Pe+f 

whenever e+f also belongs to E and, again using conditions (I.4 & 5) 

that P =I, and 
e* 

converging to e in 

p t p 
e e n 
E • 

for every increasing sequence {e} 
n 

At this stage we can refer to the theorem of spectral theory that 

every commuting system of projection operators in Hilbert space has a 

simultaneous spectral representation, i.e. 

P f 1x (x) dE 
e {) e x 

for some spectral measure E(w) defined on the Boole algebra B of Borel 

subsets of [0,1J and for the characteristic function 

X (x) 
e 

X E s 
e 

xE [0,1]'8 
of some 

e 

S E B • 
e 

Let now a(w) be the scalar valued measure a(w) = (E(w)e*,e*) , 

where e* is the maximal element postulated by (I.5). Since Pee*= e 

for every e EE, we have for every finite linear combination 

E c.e. (e.EE) 
1 1 1 

Hence, the map 
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E c.e. + E c.x (x) 
1 1 1 e. 

1 

is isometric (and therefore uniquely defined and linear); by virtue of the 

completeness condition (I.1) it extends by closure to an isometric map of 

the whole space H into the function space L2(a) , every e EE being 
2 carried to Xe· EL (a) The map is actually onto i.e., unitary. It is 

enough to consider the characteristic function xS(x) of an arbitrary set 

SE B in [0,1]. This gives rise to an operator U = J1xs(x)dE on H 
0 X 

The element Ue* of H can be approximated by sums E c.e. as closely 
1 1 

as we wish. Thus, for every e > 0, we can find E c.e. such that 
2 1 1 1 2 2 2 

e > ll-!Ue*-E c.e.11 = 
1 1 

II (U-E c.P )e*II = J lxs(x)-E c.x (x) I da(x) 
1 e. 0 1 e. 

1 2 1 
This settles the fact that the map is onto L (a) 

[t remains only to show that actually we have Xs = xe for some 

e EE. This can be achieved, starting from the relation above and by 

using properties of the sets S (eEE) deriving of (already known) 
e 

properties of the elements e, namely 

(if e+f also belongs to 

u s 
e n n 

s if 
e 

Sen Sf= se.f' Se U Sf= Se+f 
S '8 CS , and 

e* e e 

and e ·=lime 
n 

This concludes the proof. Let us remark that if we also allow spaces 

L 2 (a) with only a-finite measure a , then condition (I. 5) of the Theorem 

can be omitted. Indeed, the other conditions already imply that E can be 

splitted into countably many "orthogonal parts" each of which has a 

"maximal" element of type e*. 

3. Now we pass to a metric characterization of the set of positive 

functions in L2 , as done in the paper [II]. 

THEOREM II. Let P be a subset of the HiZbert space H (with eZements 

d.enoted by u,v,w, ••• ). In order that there exists a unitary map of H 

onto some L2(a) , carrying P onto the set L:(a) of positive (i.e., 

nonnegative) functions in L2(a) it is necessary and sufficient that the 

foZZowing conditions hoZd: 
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(II.1) (u,v) ~ 0 for all u,v E P. 

(II.2) (u,~) ~ 0 for all ~EH and for all u E P 
implies ~ E P • 

(II. 3) ("Riesz interpolation property".) If u1 + u2 = v 1 + v 2 
for some ui,vk E P then there exist wik E P sueh 

that u. = E w.k, vk = E w.k (i,k=1,2) . 
i k i i i 

[This property readily extends to swns of more than 

f;l,)o terms.] 

The necessity part of the Theorem is fairly obvious. (For (II.2) set, 
• L2(N) in case + ~ , say, w11 = u1 A v 1 , w12 = u1 - w11 , w21 = v 1 - w11 , 

w22 = u2 - w21 .) It is also obvious that none of these three conditions 

is implied by the others.) 

imply 

every 

U J. V 

1/J - ~ 

As for the sufficiency part, note first that conditions (II.1 & 2) 

that 

~ E H 
This 

E p ) 

p is a closed cone in H • issued from the point 

admits a unique decompostion ~ = u-v with 

cone imp lies a vector lattice structure in 

such that 

0 :a u1 :a u2 and O :a v 1 :a v2 (in P) imply 

(u1,v1) :a (u2,v2) 

u,v 

H (~ 

0 , and that 

E p ' 
:a 1/J. iff 

Moreover, it is easy to show that every nondecreasing, normbounded sequence 

{u} in P is convergent. 
n 

The Riesz interpolation condition, combined with the other properties 

already stated, also implies the existence, for any u, v E ·p , of a unique 

greatest minorant u Av and of a smallest majorant u v v in P such 

that 

(uAv) + (uvv) U + V , 

Since we only consider separable Hilbert spaces H, there exists a 

sequence { u (n)} dense in P • Taken appropriate positive numerical 

factors en we can have convergence in E cnu(n) , the sum e* belonging 

to P • 
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Next we consider the set 

By its definition, this set E satisfies condition (I.5) of 

Theorem I. Conditions (I.2 & 3) also follow rather easily from the lattice 

properties of P, namely with e 1.e2 = e 1 A e2 for e1,e2 EE. Again, 

Condition (I.4) is a consequence of the closure of f, and of the 

continuity of the inner product. More work is needed to prove that 

Condition (I.1) is also satisfied, i.e. that our set E is complete in 

P . Since P is complete, and since the sequence { u } we have used to 
n 

define the element e* is dense in P, it is enough to show that every 

element u of this sequence (say u = u(n)) can be approached in H 

as closely as we wish by finite combinations of elements of E 

To this effect, first observe that our u is majored by a positive 

multiple Ae* of e* (indeed, A = 1/c does this). Thus, defining 
n 

we have 

while 

, u 
n 

if A~ A, and is a monotone inareasing, 

is a monotone decreasing function of A. It is easy to 

show that, moreover, uA is a aonvex function of the parameter A, i.e., 

(1-a)uA +auµ~ u( 1-a)A+aµ for A,µ~ 0, 

and O ;a a:;; 1 • 

From known properties of p we infer that the quotient 

belongs to 

belonging to 

p ' and if µ ,j, 

E 

lim - 1- ( uµ-u:>..) 
µH µ-:>.. 

:>.. , tends decreasingly to a 

1 
(¾,;--u:>..) µ-11. 

limit 

Note that for :>..~A. Convexity of u:>.. also implies that e:>.. 

is an increasing function of :>.. and that 

holds for µ > :>.. 
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whence, 

Set v = kA/N, where N 
k 

is a fixed integer ~ 1 and 

k = 0,1, ••• ,N. Choosing µ = vk+l and A= vk in the preceding 

inequalities for k = O, •.. ,N-1 , and adding, we get (recalling that 

uA = Ae*, u0 = u, eA = e*) 

and hence, 

This implies 

N-1 
II (NN) I: 

0 
(e*-ev )-ull;;;; (A/N)lle*II < e 

k 

if N was chosen sufficiently large. As e* - e _ E for every e ( E, 
the proof of completeness of E is complete. 

This is the way, sketched in its main points only, the proof of 

Theorem II was achieved in the paper [II]. 

4. Condition (II.1) implies for any u,v ~ P 

2 llu+vll llull2 + 2(u,v) + llvll2 ·r: llull 2 + llvll 2 

Also recall that, as a consequence of (II.1 & 2), every $EH can be 

decomposed in the form $ u - v with u,v E P and u ~ v; hence, 

This leads to the question what can be said about closed convex 

cones P in H satisfying the weaker conditions: 



(III.1) There exists a constant K > 0 such that 

. 2 2 2 2 llull + llvll :a K llu+vll for any u,v E P . 

(III.2) There exists a constant C > 0 such that every 

element ~EH can be decomposed in the form 

~ = u - v with u,v E P and 
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In contrast to Conditions (II.1 & 2), these conditions are invariant 

not only for unitary, but (with possibly different constants 'K and 

C ) for affine maps of H also. {By affinity we mean a bi continuous 

linear map of H onto itself, or onto another Hilbert space.) The same 

kind of invariance is obvious for Condition (II.3) also. 

This question leads to the following result, proved in the paper 

[III]. 

THEOREM III. Let P be a subset of the Hilbert space H (with elements 

denoted by u,v,w, ... ). In order that there exists an affine map of H 

onto some L2(a), carrying P onto L:(a) , it is ·necessary and 

sufficient that the following conditions hold: 

(III.O) P is a closed, convex cone issued at the origin o. 
(III.1&2) as above. 

(III.3) = (II.3), i.e. Riesz decomposition property. 

Necessity being obvious, the real problem is again with sufficiency. 

The proof is rather involved so we can give a short sketch of it only. 

First we introduce the dual P* of the cone P: 

and the bidual 

and show that P = (P*)*. Using this relation we infer, relying on 

Riesz's method [R] that the order relation in H implied by the cone P 
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renders H a vector lattice with operations v and A having the usual 

properties. 

Next we consider a sequence 

choose numbers c > 0 such that 
n 

{u} of elements dense in P and 
con 
E cu converges; the sum e* will 
0 n n 

also belong to P. Then we introduce the set 

(notice the similarity to, and the difference from the definition of the 

set E in the preceding section). 

We first observe that E is a Boole algebra, 0 ~ E; e* EE. 

e,f EE imply e A f, e v ft: E; and if e.:; f(EE) then e-f E E 
also. 

Next we consider a u E P such that O ~ u ~ Ae*, and show that 

for any integer N ~ 1 we can find a finite linear combination E Akek 

with coefficients Ak ~ 0, of elements ek EE, such that 

and hence, by (III.1), 

the right hand side is as small as we wish if we had chosen N large enough. 

This proves completeness of E in H, and moreover, let us define, 

for any fixed e EE, a bounded linear operator Qe on H , by first 

defining it as 

for finite linear combinations with coefficients Ak ~ 0, of elements 

e EE, and then extending it to H, with essential use of (III.1&2). 

We shall have eventually 

IIQ II s MIi ell with a constant M deriving from e and K 
e 

and e + Qe will turn out to be a uniformly bounded representation of the 
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Boole algebra E by operators on Hilbert space; indeed, with 

Now, by a theorem of Dixmier [D], which in turn is an analog of 

some earlier results in my paper [IV] it follows that this representation 

of E is similar to a representation by (orthogonal) projections, i.e. 

there exists an affinity T in H such that 

are projections. Since these projections are commuting (P Pf= P f= e eA 
Pf = PfP ) they have a simultaneous spectral representation, and the Ae e 
proof concludes in analogy to the proof of Theorem II. 

It is an interesting question to what extent the measure a for 
2 2 which the affine representations H ➔ L (a) , P ➔ L+(a) are valid, are 

determined by further geometric properties of the cone P. 
It turns out (see [III])that a has the same number of atoms as 

there are extremal generatrices of the cone P, and that it is purely 

atomic iff P is spanned by its extremal generatrices. 
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COMPACT OPERATORS 

W.K. Vietsch 

Almost anything we will discuss here, is contained in chapter 18 of 

the forthcoming book [18] by A.G. Zaanen. However, our presentation will 

be somewhat different, since we want to stress the fact that nearly all 

results are due to Prof.dr. A.G. Zaanen, his students or his students' 

students, and that Zaanen played an important role when these ideas origi

nated. The 1963 paper [13] by Luxemburg and Zaanen will be starting point 

for our discussion. 

1. Compact kernel operators 

Let (X,A,µ) be a (totally) er-finite measure space, i.e., X is a non

empty point set, A is a er-algebra of subsets of X, andµ is a non-negative 

er-additive measure on A such that Xis the union of an at most countable 

number of sets of finite measure. We will assume thatµ is not identically 

zero, and that the Caratheodory extension procedure has been applied toµ, 

so any subset of a measurable set of measure zero is also a measurable set 

of measure zero. The set of all rea'1valued µ-almost everywhere finitevalued 

µ-measurable functions on X will be denoted by Mr(X,µ). Functions in 

Mr(X,µ) differing only on a set of measure zero are identified and the set 

of the thus obtained equivalence classes is again denoted by Mr(X,µ), The 

set of all positive functions in Mr(X,µ) will be denoted by M+(X,µ). 
+ + 

The mapping p: M (X, µ) ➔ lR U' {00 } is called a function norm if 

(a) p(u) = 0 iff u = O, 
+ + 

(b). p(au) = a p(u) for all u EM (X,JJ) and all a E lR , 
+ (c) p(u+v) .:5. p(u) + p(v) for all u, v EM (X,µ), 

(d) p(u) .:5. p(v) whenever O .:5. u(x) .:5. v(x) µ-a.e. on X. 

The function norm pis extended to the whole of Mr(X,µ) by setting 

p(f) = p(jf.l) for all f E Mr(X,µ), where lfj(x) jf(x)I µ'-a.e, on X. The 

linear space of all f E Mr(X,µ) satisfying p(f) < 00 is denoted by L (X,µ); 
p 
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such a space is called a (real) normed Kothe space. If LP(X,µ) happens to 

be norm complete, then it is called a (real) Banach fwu:tion space. Defining 

an ordering by f ::._ g iff f(x) 2 g(x) µ-a.e. on X, we see that the Banach 

function space L (X,µ) can be made into a Banach lattice in a natural way. 
p 

For any µ-measurable subset E of X we will denote the characteristic 

function of Eby XE· The projection PE is defined by (PEf)(x) = f(x)xE(x). 

The function norm pis called saturated if for any subset E of X with 

µ(E) > 0 there exists a subset F of E with µ(F) > 0 and p(xF) < 00 • For any 

u E M+(X,µ) the number p'(u) is defined by 

P' (u) sup { JX u(x) v(x) dµ(x) 
+ v EM (X,µ), p(v) < I} • 

If pis saturated, then p' is also a.saturated function norm. The 

corresponding normed Kothe space L'(X,µ) is a Banach function space, which 
p 

is called the associate space of L (X,µ). There is a one-one correspondence 
p 

between the order continuous linear functionals on L (X,µ) and the functions 
p 

in L'(X,µ). 
p 

The subset S of the Banach function space LP(X,µ) with order 

continuous norm is said to be of uniformly order continuous norm if for any 

sequence En+~ and E > 0 there exists an index N such that p(fxE) < E for 
n 

all n > N and all f ES. 

Let LP(Y,v) and MA(X,µ) be Banach function spaces and let t(x,y) be 

a realvalued (µxv)-measurable function on xxy. The operator 

T: LP (Y,v) + HA (X,µ) defined by 

(Tf) (x) J t(x,y) f(y) dv(y) 
y 

is called an absolute kernel operator from LP(Y,v) into MA(X,µ) if for all 

f EL (Y,v) we have 
p 

(+ ). 

We will now assume that the norms in the Banach function spaces MA(X,µ) 

and L'(Y,v) are order continuous and that the adjoint operator T*, which is 
p 

actually given by 
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(T*g) (y) fx t(x,y) g(x) dµ(x) 

is an absolute kernel operator mapping M~(X,µ) into L~(Y,v). The final 

theorem from the paper [13] states that the operator Tis compact iff one 

of the following conditions is satisfied: 

(a) {Tf : p(f) 2 I} is of uniformly order continuous norm, 

(b) II PEn TII -+O whenever E + ~ in X, n 
(c) II T PFnll -+O whenever F + ~ in Y, n 
(d) II PE T Pp II ➔ 0 whenever En +~in X and F +~in Y. 

n n n 
As a special case we obtain the result that operators of finite double-norm, 

and in particular Hille-Tamarkin and Hilbert-Schmidt operators are compact. 

Another special case of the theorem had been obtained earlier by Ando, who 

proved in [2] that for Orlicz spaces condition (d) implies compactness of 

T. 

The above mentioned theorem of Luxemburg and Zaanen has been genera

lized in many ways. Nowadays one knows a rather large number of results on 

compactness of order bounded or simply norm bounded _operators on Banach 

lattices. We will discuss some of these results below. 

2. Compactness in measure 

Studying the proofs in [13] one finds a rather simple way to extend 

the theorem of Luxemburg and Zaanen. First of all, while by assuming(+) we 

restricted ourselves to order bounded operators, we may just as well con

sider norm bounded operators. Secondly, it is an unjustified limitation to 

consider only kernel operators. Indeed, as Fremlin showed in [8], there 

exist compact operators on Banach function spaces which cannot be represen

ted as kernel operators. 

The sequence of functions fn in Mr(X,µ) is said to converge in 

measure on X to f if µ({xEX: If (x) - f(x) I > a}) ➔ 0 as n ➔ 00 for every 
n -

a> O. We say that the subset S of the Banach lattice LP(X,µ) is compact in 

measure if every sequence in S contains a subsequence which converges 

in measure on every subset E of X with µ(E) < 00 • The norm bounded linear 

operator T from the Banach function space L (Y,v) into the Banach 
p 
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function space MA(X,µ) is called compact in measure if the 

image under T of the unit ball of L (Y,v) is compact in measure. 
p 

Assuming that MA(X,µ) has order continuous norm we can prove that the 

norm bounded linear operator T: LP(Y,v) ➔ MA(X,µ) is compact iff one of the 

following conditions is satisfied: 

(a) Tis compact in measure and {Tf: p(f) < I} is of uniformly order 

continuous norm, 

(b) T is compact in measure and II PEnTI! ➔ 0 whenever En + ~ in X. 

If we assume in addition that the norm in L'(Y,v) is order continuous and 
p 

that the adjoint operator T* maps M\(X,µ) into L;(Y,v), we get that Tis 

compact iff one of the following holds: 

(c) T* is compact in measure and II Tfynll ➔ 0 whenever Fn +~in Y, 

(d) T and T* are compact in measure and II PE TPF II ➔ 0 whenever 
n n 

E +~in X and F +~in Y. 
n n 

These results are generalizations of those in the previous section; 

it can easily be proved that any absolute kernel operator is compact in 

measure. Of course, in view of Fremlin's example, the converse is not true. 

Krasnoselskii and several other Soviet mathematicians have 

investigated measure-compact operators on L -spaces with underlying measure 
p . 

spaces of finite Lebesgue measure; their results may be found in [JO]. It 

should be pointed out that the case studied by them is a very special one, 

and that the proofs are therefore much simpler. The results for the general 

case were not written down until 1979 ([17]). By that time however, the 

whole idea had been generalized to a much more general setting. 

3. Compact operators on Banach lattices 

We will consider linear operators from the Banach lattice L into the 

Banach lattice M. Throughout we will assume that the norm in Mis order 

continuous. By f.b(L,M) we denote the set of all order bounded linear 

operators· from L into M. The well-known Riesz-Kantorovitch theorem ( 1936) 

states that f.b(L,M) is a Dedekind complete Riesz space. 

An interesting subset of fb(L,M) is the set of those operators which 

transform order bounded subsets of L into precompact subsets of M. We will 

refer to these operators as the AM-compact operators. Evidently, every 

compact linear order bounded operator is AM-compact. If Lis an AM-space 

with unit, then any AM-compact operator is compact, which explains 
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the terminology. The subset S of Lis said to be almost order bounded if 

for every £ > 0 there exist f, g E L such that Sc [f,g]+{h: II hll ::_ d. It 

is easy to prove AM-compact operators do not only transform order bounded 

sets into precompact sets, but transform almost order bounded sets into 

precompact sets as well. 

AM-compact operators were first studied by Dodds. In 1976 he and 

Fremlin proved that the AM-compact operators form a band in £b(L,M). 

Another interesting subset of 7i(L,M) is the class of operators which 

map norm bounded sets onto almost order bounded sets. These operators were 

first studied in [14] by Meyer-Nieberg, who called them L-weakly compact 

operators. Following the terminology of [18] we will refer to them as 

semi-compact operators. It is easy to prove that compact operators are 

semi-compact. Moreover, any positive operator majorized by a semi-compact 

operator is semi-compact. 

From the properties mentioned above it follows innnediately that if 

0 < S .::_Tin £b(L,L) and the norm in Lis order continuous, then compact

ness of T implies compactness of s2• It is not very difficult to prove that 

in this situation compactness of T implies compactness of s3 even if L does 

not have order continuous norm. Surprisingly, these simple consequences of 

the work of Dodds, Fremlin and Meyer-Nieberg were not noted until a few 

years later, when Aliprantis and Burkinshaw published [I]. Another result 

of this type, due to Van Eldik, states that, without continuity :assump

tions, s4 is compact whenever O < S < T with TAM-compact as well as semi

compact. 

Dodds proved that if L* and M have order continuous norms, 

TE £b(L,M) is compact iff Tis both AM-compact and semi-compact. This is 

a generalization of the order bounded case of the theorem mentioned in the 

previous section, .AM-compactness corresponding with compactness in measure 

and semi-compactness corresponding with the image of the unit ball being 

of uniformly order continuous norm. As a direct consequence we have that 

compactness of T implies compactness of S whenever O ::_ S,:: Tin £b(L,M) 

and L* and M have order continuous norms. This corollary, the main result 

of [5], is known as the Dodds-Fremlin theorem. 

In view of the Dodds-Fremlin theorem one might conjecture that the 

compact order bounded operators from L into M form a band in £b(L,M) if 

the norms in L* and Mare order continuous, Unfortunately this conjecture 

is false. Indeed, in [11] Krengel has given an example of a compact 



118 

operator in ~(t2,t2) with a non-compact modulus, So the class of semi

compact operators does not share the nice order theoretical properties of 

the class of AM-compact operators. 

4. Compact operators and indices 

The Banach lattice Lis said to have the strong t -aorrrposition 
p 

property (I,::. p < m) if there exists a finite positive constant C such that 

for every finite disjoint sequence {u.: i = 1,2, ••• , n} in L+ we have 
1 

The Banach lattice Lis said to have the strong R, -deaorrrposition property 
p 

(I,::. p < m) if there exists a finite positive constant C such that for 

every finite disjoint sequence {u.: i = 1,2, ••• , n} in L+ we have 
1 

The notions of strong R. -composition property and strong R, -decomposition 
p p 

property were introduced by Dodds in [4]. They coincide with the notions 

of upper-p-estimate and lower-p-estimate as used by Figiel and Johnson in 

[7] and by Lindenstrauss and Tzafriri in [12). 

_The Banach lattice Lis said to have the R, -aomposition property 
p 

(1 ·.::. p ,::. "'.) if 

whenever (a 1, a2, ••• ) € 1; and {ui: i = 1,2, ••• } is a disjoint sequence 

in L+ with II u.11 < I for all i. The Banach lattice Lis said to have the 
1 -

R, -deaomposi tion property ( I < p < m) if ( II u1 II , II u2 II , ... ) € R, whenever 
p - - p 

{un: n = 1,2, •• .-} is an order bounded sequence of disjoint positive 

elements in L. Dodds proved in [4] that a Banach lattice has the R, -de-. p 
composition property iff it has the strong R, -decomposition property and 

p 
by a lemma of Meyer-Nieberg ([IS]) we have that a Banach lattice has the 

R, -composition property iff 
p 

R. -composition property and 
p 

Grobler for Banach function 

it has the strong R, -composition property. The 
p 

R, -decomposition property were introduced by 
p 

spaces ([9]) and by Dodds for Banach lattices 
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([4]). 

Every Banach lattice has the R,00-decomposition property, and if L has 

the R,p-decomposition property and r .::_ p, then L has also the tr-decompo

sition property. If L has the ,e, -decomposition property for some p < 00 , 
p 

then the norm in Lis order continuous. The upper index crL of the Banach 

lattice Lis defined by 

crL = inf {p: L has the ,e,p-decomposition property}, 

Every Banach lattice has the ,e, 1-composition property, and if r :5.. p and L 

has the ,e, -composition property, then L has also the ,e, -composition proper-
p r 

ty. The lower index sL of Lis defined by 

sL = sup {p: L has the ,e,p-composition property}. 

It can be proved that 

the ,e, -composition property 
q 

tion property iff L* has the 
-1 -1 -1 

Hence crL + SL* = 1 and SL 

have 1 :5._ sL :5._ cr1 :5._ 00 , 

L has the ,e, -decomposition property iff L* has 
-1 -1 p 

(p + q = 1) and that L has the R,p-composi-
-1 I property (p + q- = 1). ,e, -decomposition 

q -1 
+ crL* = 1. If Lis of infinite dimension, we 

Note that sL = crL = p for L = LP <x,A, µ). The upper and lower indices 

have been calculated for a number of Banach function spaces: by Grobler 

([9]) for Orlicz spaces with non-atomic underlying measure space of finite 

measure and for the space of Korenblyum, Krein and Levin, by Vietsch ([17]) 

for Beurling spaces and for the space of Gould, and by Creekmore and Vietsch 

([3], [17]) for Lorentz spaces. 

Now let Land M be Banach lattices of infinite dimension such that 

sL > crM. Then any order bounded operator from L into Mis semi-compact. It 

follows that in this case TE fb(L,M) is compact iff Tis AM-compact. This 

result is due to Dodds ([5]). Several particular cases of the theorem appear 

in the literature. The oldest result of this kind is a theorem of Pitt 

(1936), who proved in [ 16] that every bounded linear operator from ,e, into 
p 

,e, is compact if 1 < r < p 
r -

< 00 • Ando ([2]) proved the theorem for absolute 

kernel operators on Orlicz spaces, and Grobler ([9]) extended Ando's result 

to general Banach function spaces. 
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5. Epilogue 

We have only described a small part of the theory. For other results, 

e.g. about non order bounded operators on Banach lattices, and for different 

expositions we may refer to [5], [JS], [6], [I]. It has been our purpose 

to emphasize Zaanen's role in the development of the theory. Many of his 

students and his students' students have made a contribution: Luxemburg and 

Zaanen himself, who wrote the inspiring paper [13], Grobler and Dodds, who 

established the theory of indices ([9], [4]), Dodds, who proved 100st of the 

important results ([5]), and Schep, De Pagter, Grobler, Van Eldik and 

Vietsch, who improved and simplified proofs and contributed additional 

results. Compact operators on Banach lattices, or Prof,dr. A.C. Zaanen as 

the head of a mathematical family. 
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