Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

The Mathematical Centre, founded 11th February 1946, is a non-profit institution for the promotion of pure and applied mathematics and computer science. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

MATHEMATICAL CENTRE TRACTS 148

LINEAR PROGRAMMING AND FINITE MARKOVIAN CONTROL PROBLEMS

L.C.M. KALLENBERG

MATHEMATISCH CENTRUM AMSTERDAM 1983

-

1980 Mathematics subject classification: 90C40

ISBN 90 6196 236 6 Copyright © 1983 Mathematisch Centrum, Amsterdam

ACKNOWLEDGMENTS

This monograph is a slightly revised version of my thesis which was written under the supervision of professor A. Hordijk. I am highly grateful to him not only for introducing me in the field of Markovian decision theory but especially for the guidance and stimulating discussions during the course of the investigations. Without his cooperation this book would not have been written.

Also, I am independent to professor G. Zoutendijk, who aroused my interest for linear programming, and to professor J. Wessels. They read the manuscript and made a number of helpful comments. Furthermore, I would like to thank P.J. van den Berg for the computer programming.

I thank the Mathematical Centre for the opportunity to publish this monograph in the series Mathematical Centre Tracts and all those at the Mathematical Centre who have contributed to its technical realization.

i

CONTENTS

INTRODUCTION

CHAPTER 1. LINEAR PROGRAMMING			
	1.1. Introduction and summary	7	
	1.2. Convex polyhedra	8	
	1.3. Optimality and duality	10	
	1.4. The simplex method	13	
CHAPTER 2.	MARKOV DECISION PROCESSES	19	
	2.1. Introduction and summary	19	
	2.2. Markov decision models	19	
	2.3. Markov chains	24	
	2.4. Substochastic matrices	28	
	2.5. Existence of optimal policies	32	
CHAPTER 3.	TOTAL REWARD CRITERION	35	
	3.1. Introduction and summary	35	
	3.2. Preliminaries	36	
	3.3. Optimal transient policies	49	
	3.4. Contracting dynamic programming	64	
	3.5. Positive dynamic programming	77	
	3.6. Negative dynamic programming	86	
CHAPTER 4.	AVERAGE REWARD CRITERION	95	
	4.1. Introduction and summary	95	
	4.2. Linear programming formulation	97	
	4.3. Relations between stationary policies and		
	feasible solutions	108	
	4.4. Policy improvement and linear programming	117	
	4.5. The weak unichain case	125	
	4.6. The completely ergodic and the unichain case	128	
	4.7. Additional constraints	133	
	4.7.1. Introduction	133	
	4.7.2. Limit points of state-action frequencies	134	
	4.7.3. Computation of a Markovian optimal policy	140	
	4.7.4. Computation of a stationary optimal policy		
	(general case)	144	

iii

4.7.5. Computation of a stationary optimal policy (unichain case)

CHAPTER 5. BIAS OPTIMALITY	161				
5.1. Introduction and summary	161				
5.2. Some theorems	162				
5.3. Linear programming approach (general case)	166				
5.4. Linear programming approach (special cases)	181				
CHAPTER 6. TWO-PERSON ZERO-SUM STOCHASTIC GAMES IN WHICH ONE					
PLAYER CONTROLS THE TRANSITION PROBABILITIES	186				
6.1. Introduction and summary	186				
6.2. Total reward criterion	192				
6.3. Average reward criterion	199				
CUADED 7 CENT MADYOU DECISION DECCESS					
7 1 Introduction and summary	210				
7.2. Discounted rewards	210				
7.3. Undiscounted rewards	212				
/.s. charboounced rewards	215				
REFERENCES					
LIST OF ALGORITHMS					
AUTHOR INDEX					
SUBJECT INDEX					
SYMBOL INDEX	244				

iv

INTRODUCTION

1

In this monograph we study *Markovian control problems*. These problems concern the control of systems which have a dynamic structure, i.e. decisions have to be made at different points in time. If a decision is made, then the behaviour of the system is uncertain, i.e. the state of the system at the next decison time point is not deterministic, but is given by a probability distribution on the state space.

An example of such a control problem is the following (cf. ROSS [1970] pp.138-139). Suppose a person wants to sell his house and an offer is made every week. The seller has two possible decisions: to reject or to accept the offer. If he rejects the offer, then the offer is no longer available and the offer of the next week is uncertain. Furthermore, a maintenance cost is incurred for each week that the house remains unsold. Which policy has to be chosen to obtain the maximum expected profit?

In this monograph, we shall pay special attention to the construction of *algorithms*, based on *linear programming*, to compute optimal policies for several optimality criteria. We will discuss *finite* Markov decision problems, semi-Markov problems and stochastic games.

Markov decision problems can be characterized by a state space, an action space, transition probabilities, rewards and a utility function. The system is observed at discrete time points to be in one state of the state space. Then the decision maker chooses an action from the action space and two things occur:

- (1) a reward is earned,
- (2) the next state of the system is chosen according to a probability distribution on the state space.

If the decision maker uses a stationary policy, i.e. the chosen action only depends on the state of the system, then the sequence of states form a Markov chain. For this reason the problem is called a Markov decision problem. Markov decision models were introduced by BELLMAN [1957] and HOWARD [1960]. At this moment, there is an extensive literature on this subject and there are several books which deal with Markov decision problems, e.g. DERMAN [1970], ROSS [1970], MINE & OSAKI [1970], HINDERER [1970] and HORDIJK [1974].

The *semi-Markov decision models* differ from the (discrete) Markov decision models by the fact that the times between the several decision points

are random variables. Hence, if the decision maker uses a stationary policy, then the process $\{X(t), t \ge 0\}$, where X(t) describes the state at time t, is a semi-Markov process. Semi-Markov decision models were introduced by DE CANI [1964], HOWARD [1963], JEWELL [1963] and SCHWEITZER [1965].

The third class of models that are studied, are the *stochastic games*. In a stochastic game several players control the system simultaneously. At any decision time point all players independently choose an action from their own action space. These choices produce a reward for every player, and the next state of the system is determined by a probability distribution which depends on the present state and the chosen actions. Stochastic games were introduced by SHAPLEY [1953], thus before the Markov decision model. If all players except one have only one action available in each state, then the stochastic game reduces to a Markov decision problem.

Methods to solve finite Markovian control problems are based on techniques such as policy improvement, successive approximation or linear programming.

The policy improvement method is an iterative procedure that computes a sequence of so-called pure and stationary policies such that subsequent policies give a higher value of the utility function. Since there exists a pure and stationary optimal policy and since the set of pure and stationary policies is finite, the procedure terminates after a finite number of iterations with an optimal pure and stationary policy.

The maximum value of the utility function satisfies a functional equation. By the method of successive approximation the solution of this equation is approximated, and corresponding policies are computed, using the well-known techniques on contraction mappings.

In this thesis we will discuss linear programming methods for the solution of several Markovian control problems.

The fact that linear programming can be used is based on the property that the maximal value of the utility function is the smallest so-called *superharmonic* vector. Since the superharmonic property is a condition formulated in terms of linear inequalities, we have to find the smallest element which satisfies a system of linear inequalities. Therefore, this maximal value can be found as the optimal solution of a linear program and an optimal policy may be obtained from the optimal solution of the dual program. It will be shown that the complementary slackness property plays an important role in proving the optimality properties. The concept of superharmonicity was introduced by HORDIJK [1974]. Already in 1960, linear programming formulations were known for some Markov decision models (cf. DE GHELLINCK [1960], D'EPENOUX [1960] and MANNE [1960]). We will prove similar results to several other Markovian control problems. For a short review we refer to HORDIJK & KALLENBERG [1981d]. The linear programming approach has some advantages in comparison with other techniques, e.g.

- In many industrial environments linear programming computer codes are available. Hence, linear programming algorithms can be made operational very easily.
- (2) If we use linear programming, then we have the opportunity to apply sensitivity analysis on the optimal solution. Therefore, the decision maker may obtain information about the behaviour of the optimal policy when the data are changed.
- (3) By linear programming we can solve Markovian control problems with additional constraints. As far as we know, linear programming is the only technique for the solution of this kind of problems.

In this thesis, we only discuss models with a finite state space and a finite action space. If we drop the finiteness, then linear programming formulations also may be obtained (e.g. HEILMANN [1977]). Since the emphasis of our work is on the construction of finite algorithms for the solution of Markovian control problems, we restrict ourselves to finite models.

The scope of the monograph is as follows. In the first two chapters we survey some basic results from the *theory of linear programming* (chapter 1) and from the *theory of Markov decision processes* (chapter 2).

In chapter 3 we consider Markov decision problems with the expected total reward as utility function. We introduce the concept of superharmonicity and we prove that the optimal utility vector - when we restrict the policies to the class of transient policies - is the smallest superharmonic vector. Hence, the linear programming approach is applicable. We present a linear programming formulation which gives a pure and stationary policy that is optimal in the class of transient policies. Also, the relation between stationary transient policies and the feasible solutions of the linear program is analysed. These results generalize the well-known linear programming method for discounted dynamic programming. Moreover, we discuss the Markov decision problem with additional constraints and we show that a stationary optimal transient policy can be found by the solution of a linear program. As special cases, we present the optimal stopping problem and the contracting dynamic programming problem. For the latter model, we prove that the linear programming method and the policy improvement method are equivalent and that the elimination of *suboptimal actions* can be implemented in the algorithm. In this chapter we also treat the *positive* and the *negative* dynamic programming models and, for both models, finite algorithms are derived for the determination of a pure and stationary optimal policy.

Chapter 4 deals with the expected average reward as utility function. Although we can present an approach similar to the previous chapter, the analysis of this model is more complex and we have to perform more calculations to obtain optimal policies. The concept of a superharmonic vector is introduced such that the optimal utility vector for the present criterion is the smallest superharmonic vector. A pure and stationary optimal policy can be obtained directly from an extreme optimal solution of a linear program. If we consider special models for which the Markov chains induced by stationary (optimal) policies are unichained, then the linear programs may be simplified considerably. It will be shown that there is a close relationship between the linear programming method and the policy improvement method. The determination of an optimal policy for the Markov decision model with additional constraints is complicated. We will construct an algorithm for the computation of a memoryless optimal policy. Although there exists no stationary optimal policy in general, fortunately, in many cases a stationary optimal policy may be found. We give sufficient conditions for its existence, and we present an algorithm for the computation of a stationary policy which is optimal when these conditions are satisfied. In the unichain case, a stationary optimal policy always exists and a simplified algorithm may be used.

Sometimes, a criterion that is more selective than the average reward criterion is preferable. In chapter 5, we discuss such a criterion. An optimal policy with respect to this criterion is a so-called *bias-optimal* policy. We present two algorithms for its computation. The first algorithm, which will be favourable when the number of average optimal pure and stationary policies is small, enumerates the extreme optimal solutions of the linear program used in chapter 4. For any optimal solution we have to perform additional computations to obtain the so-called bias-value. A policy which maximizes this bias-value is a bias-optimal policy. In the second algorithm, which is a modification of DENARDO [1970a], a pure and stationary bias-optimal policy is obtained by the solution of three linear programs and one search procedure, in the worst case. We also present a simplified algorithm for the unichain case.

In chapter 6 we consider a *two-person zero-sum stochastic game*. We only consider models in which the transition probabilities are controlled by one player (otherwise the linear programming approach is not possible). The total reward criterion (under a contraction assumption) and the average reward criterion will be treated analogously. We show that the value of the game is the smallest superharmonic vector which can be found as the optimal solution of a linear program. Stationary optimal policies for both players can be obtained from the optimal solution of the dual program. Moreover, the linear programming approach provides a new proof of the existence of the value of the game.

In the final chapter, the *semi-Markov decision model* is studied. Also for these models we can introduce a concept of superharmonicity which leads to a linear programming formulation. In the discounted reward case as well as in the average reward case we obtain pure and stationary optimal policies from the linear programming solution. We also show the equivalence with certain discrete Markov decision models. Hence, the results of the chapters 3 and 4 may also be applied on the semi-Markov decision model.

In this monograph Markovian control problems over an infinite horizon are considered. The linear programming approach is also applicable for finite horizon models (cf. KALLENBERG [1981a]).

CHAPTER 1

LINEAR PROGRAMMING

1.1. INTRODUCTION AND SUMMARY

In this chapter we shall present a survey of some basic results in the theory of linear programming. In the sequel of this monograph it will be shown that linear programming is a useful approach to derive finite algorithms for a number of Markovian control problems.

In section 1.2 we mention some properties of convex polyhedra. Convex polyhedra play an important role in the theory of linear programming. We present a theorem on separating hyperplanes and we give a characterization of the set of extreme points of a convex polyhedron.

Then, in section 1.3, the linear program is introduced and the wellknown optimality and duality theorems are summarized, including the complementary slackness property. Optimality and duality properties will be a useful instrument for the proofs of the theorems in the following chapters.

Section 1.4 deals with the simplex method, developed by G.B. Dantzig in 1947. The simplex tableau is presented. Moreover, we derive an algorithm to compute all extreme optimal solutions of a linear program.

The theory of linear programming can be found in many text books. For the proofs of the theorems we refer to these books.

NOTATIONS 1.1.1.

- (i) A (column) vector x with n components is denoted by $x = (x_1, x_2, ..., x_n)^T$ or by $x = (x_i)$; a matrix A with (i,j)-th element a_{ij} is denoted by A = (a_{ij}) ; the k-th column and the i-th row of A are denoted by $a_{\cdot k}$ respectively $a_{i \cdot}$.
- (ii) Let x and y be n-component vectors. Then $x \ge y$ denotes that $x_i \ge y_i$ for all i, x > y means $x \ge y$ and $x \ne y$, x >> y signifies that

 $x_i > y_i$ for all i; we denote $x < \infty$ if and only if $x_i < \infty$ i = 1,2,...,n.

- (iii) When the range of a variable is unspecified, then its entire range is intended, e.g. $\Sigma_i x_i = \Sigma_{i=1}^n x_i$ if $x = (x_1, x_2, \dots, x_n)^T$; the dimension of vectors and matrices is not always explicitly mentioned, but this dimension will be clear from the context.
- (iv) \mathbb{N} is the set of positive integers: $\mathbb{N} = \{1, 2, ...\}; \mathbb{N}_0$ is the set of nonnegative integers: $\mathbb{N}_0 = \{0, 1, ...\}.$
- (v) \mathbb{R}^n is the set of all real n-component vectors; $\mathbb{R}^+ = \{a \in \mathbb{R}^1 | a > 0\}.$
- (vi) By |E| we denote the cardinality of a set E.
- (vii) $E \setminus F$ is the set of all elements of E which do not belong to F.
- (viii) The notation x := y will be used to indicate that the variable x gets the value y.
- (ix) The symbol \square indicates the end of a proof.
- (x) For $a \in \mathbb{R}^{1}$ we denote by [a] the largest integer not greater than a.

DEFINITIONS 1.1.1.

- (i) The null-vector, denoted by 0, has all components zero; the null matrix, also denoted by 0, has all elements zero; the identity matrix, denoted by I, has elements (δ_{ij}) , where δ_{ij} is Kronecker's delta; the j-th unit vector, notated by e_j , is the vector with all entries zero except entry j, which is a one; $e := (1, 1, ..., 1)^T$ is the sum vector.
- (ii) The inner product of two real n-component vectors x and y is denoted by $x^T y$ and defined by $x^T y := \sum_i x_i \cdot y_i$. (iii) The (supremum) norm of $x \in \mathbb{R}^n$ is defined by $||x|| := \max_{1 \le i \le n} ||x_i||$; the
- (iii) The (supremum) norm of $\mathbf{x} \in \mathbb{R}^n$ is defined by $\|\mathbf{x}\| := \max_{\substack{1 \le i \le n \\ 1 \le i \le n \\ i}} |\mathbf{x}|$; the (supremum) norm of a matrix A is defined by $\|\mathbf{A}\| := \sup_{\substack{1 \le i \le n \\ x \ge i}} \|\mathbf{A}\mathbf{x}\|$. (It can easily be verified that $\|\mathbf{A}\| = \max_{\substack{1 \le i \le i \\ i \ge i}} \sum_{\substack{1 \le i \le i \\ i \ge i}} |\mathbf{a}_{ij}|$).

1.2. CONVEX POLYHEDRA

In this section we review some results about convex polyhedra that are fundamental for the theory of linear programming.

DEFINITIONS 1.2.1.

(i) $S \subset \mathbb{R}^n$ is a *convex set* if for any two vectors $x, y \in S$ and any $\lambda \in (0,1)$ $\lambda x + (1-\lambda) y \in S$; the *convex hull* of a set $S \subset \mathbb{R}^n$ is the

intersection of all convex sets containing S as subset; the *closed* convex hull of S is the smallest closed convex set containing S as subset (this closed convex hull will be denoted by \overline{S}).

- (ii) A face of a convex set S is a convex subset S' of S such that every closed line segment in S with a relative interior point in S' has both endpoints in S'. The zero-dimensional faces of S are called the *extreme points* of S. (Then $x \in S$ is an extreme point of S if and only if there do not exist points $y, z \in S$ distinct from x for which x = $\lambda y+(1-\lambda)z$ for some $\lambda \in (0,1)$). If S' is a half-line face of S, then we call the direction of S' an *extreme direction* of S.
- (iii) A convex polyhedron R is the intersection of a finite number of closed half-spaces, i.e. $R = \{x | Ax \le b\}$ for some m×n matrix A and some vector $b \in \mathbb{R}^{m}$. A bounded convex polyhedron is a polytope.
- (iv) $C \in \mathbb{R}^{n}$ is a cone if for any $x \in C$, $\lambda x \in C$ for every $\lambda \ge 0$; a convex polyhedral cone generated by the m×n matrix A is the set $\{y | y = A^{T}u; u \ge 0\}$. The vectors $(a_{i})^{T}$ are the extreme rays of the cone; the dual cone C^{*} is defined by $C^{*} := \{y | y^{T}x \le 0 \text{ for every } x \in C\}$.

<u>THEOREM 1.2.1</u>. Let $S \subseteq \mathbb{R}^n$ be any closed convex set and suppose that $x \notin S$. Then there exists a vector $r \in \mathbb{R}^n$ and a real number r_0 such that

$$\mathbf{r}^{\mathrm{T}}\mathbf{x} > \mathbf{r}_{0} > \mathbf{r}^{\mathrm{T}}\mathbf{y}$$
 for every $\mathbf{y} \in \mathbf{S}$.

PROOF. See KARLIN [1959] pp.397-398.

Consider the set R := $\{x | Ax = b; x \ge 0\}$, where $x \in \mathbb{R}^{n}$, $b \in \mathbb{R}^{m}$ and A an m×n matrix. Since each equality may be replaced by two inequalities, R is a convex polyhedron.

<u>THEOREM 1.2.2</u>. $x \in R$ is an extreme point if and only if $\{a_{\cdot k} | x_k > 0\}$ is a linearly independent set of vectors.

PROOF. See COLLATZ & WETTERLING [1966] pp.9-10.

<u>LEMMA 1.2.1</u>. The number of extreme points and extreme directions of R is finite.

PROOF. See ROCKAFELLAR [1970] pp. 170-172.

LEMMA 1.2.2. If R is non-empty, then also the set of extreme points of R is non-empty.

PROOF. See COLLATZ & WETTERLING [1966] pp.10-11.

 $\frac{\text{THEOREM 1.2.3.} If R is non-empty with extreme points {x}^{k}}{\text{directions } \{s^{\ell}\}_{\ell=1}^{L}, \text{ then any } x \in R \text{ can be written as }}$

$$\mathbf{x} = \sum_{k=1}^{K} \lambda_{k} \mathbf{x}^{k} + \sum_{\ell=1}^{L} \mu_{\ell} \mathbf{s}^{\ell},$$

where $\lambda_k \ge 0$ k = 1,2,...,K, $\Sigma_{k=1}^K \lambda_k = 1$ and $\mu_l \ge 0$ $\ell = 1,2,...,L$.

PROOF. See ROCKAFELLAR [1970] pp.170-172.

COROLLARY 1.2.2. Any polytope is the convex hull of its extreme points.

1.3. OPTIMALITY AND DUALITY

<u>DEFINITIONS 1.3.1</u>. The linear programming problem is the problem of finding a vector $\mathbf{x} \in \mathbb{R}^n$ which maximizes a linear form $p^T \mathbf{x}$ (called the *objective* function), subject to the linear constraints $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$, where $\mathbf{b} \in \mathbb{R}^m$ and A is an m×n matrix. This problem is usually notated by

(1.3.1)
$$max\{p^{T}x \mid Ax \leq b; x \geq 0\}.$$

A linear programming problem is also called a *linear program*. The convex polyhedron R := $\{x | Ax \le b; x \ge 0\}$ is said to be the *feasible region*. Any $x \in R$ is called a *feasible solution*. For any $x \in R$ we define y := b-Ax; then $y \in \mathbb{R}^{m}$ and $y \ge 0$. Furthermore, we introduce

$$\bar{A} := (A, I), \quad \bar{x} := \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{and} \quad \bar{p} := \begin{pmatrix} p \\ 0 \end{pmatrix}.$$

Then we can write the linear program (1.3.1) as

(1.3.2)
$$max\{\overline{p}^T\overline{x} \mid \overline{A}\overline{x} = b; \overline{x} \ge 0\}$$

with feasible region $\overline{R} := {\overline{x} | \overline{A} \overline{x} = b; \ \overline{x} \ge 0}.$ A similar formulation is

(1.3.3) $max\{p^{T}x \mid Ax + y = b; x \ge 0, y \ge 0\}.$

<u>THEOREM 1.3.1</u>. x is an extreme point of R if and only if \bar{x} is an extreme point of \bar{R} .

PROOF. The proof is straightforward.

DEFINITIONS 1.3.2. Given a linear programming problem, there are three possibilities:

- 1. There is no feasible solution. In this case the problem is said to be *infeasible*.
- 2. There is a feasible solution \mathbf{x}° with $\mathbf{p}^{\mathrm{T}}\mathbf{x}^{\circ} \ge \mathbf{p}^{\mathrm{T}}\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}$. Then \mathbf{x}° is called an *optimal solution* and we say that the linear program has a finite solution.
- 3. There is a feasible solution $\mathbf{x}^{\circ} \in \mathbb{R}$ and a vector $\mathbf{s}^{\circ} \in \mathbb{R}^{n}$ such that $\mathbf{p}^{T}\mathbf{s}^{\circ} > 0$ and $\mathbf{x}^{\circ} + \lambda \mathbf{s}^{\circ} \in \mathbb{R}$ for all $\lambda \ge 0$. Then the objective function can be made arbitrarily large and the problem is said to be *unbounded* or has an *infinite solution*. The vector \mathbf{s}° is called an *infinite direction* in \mathbf{x}° .

THEOREM 1.3.2. If the linear program has a finite solution, then it has an optimal extreme solution.

PROOF. See COLLATZ & WETTERLING [1966] pp.12-13.

LEMMA 1.3.1. The set of optimal solutions is convex.

PROOF. See COLLATZ & WETTERLING [1966] p.11.

DEFINITIONS 1.3.3. A vector $s \in \mathbb{R}^n$ is said to be a *feasible direction* in a point $x \in \mathbb{R}$ if there exists a $\lambda > 0$ such that $x + \lambda s \in \mathbb{R}$. If, in addition, $p^T s > 0$ then s is said to be a *usable direction*. For any $x \in \mathbb{R}$ we define $M(x) := \{i | a_{i}^T x = b_i\}, N(x) := \{j | (e_j)^T x = 0\}$ and

$$\begin{split} \mathbf{S}\left(\mathbf{x}\right) &:= \left\{ \mathbf{s} \ \epsilon \ \mathbf{R}^{n} \left| \begin{array}{lll} \mathbf{a}_{\mathbf{i}}^{\mathrm{T}} \mathbf{s} &\leq \mathbf{0} \text{,} & \mathbf{i} \ \epsilon \ \mathbf{M}\left(\mathbf{x}\right) \\ & & & \\ \left(-\mathbf{e}_{\mathbf{j}}\right)^{\mathrm{T}} \mathbf{s} &\leq \mathbf{0} \text{,} & \mathbf{j} \ \epsilon \ \mathbf{N}\left(\mathbf{x}\right) \end{array} \right\} \text{.} \end{split} \right. \end{split}$$

S(x) is the cone of feasible directions in x.

<u>THEOREM 1.3.3</u>. (Optimality theorem) $x \in \mathbb{R}$ is an optimal solution of the linear program (1.3.1) if and only if there exist vectors $u \in \mathbb{R}^{m}$, $v \in \mathbb{R}^{n}$ such that $p = A^{T}u - v$, $u \ge 0$, $v \ge 0$ and $u^{T}(b-Ax) = v^{T}x = 0$.

PROOF. See ZOUTENDIJK [1976] pp.23-24.

<u>REMARK 1.3.1</u>. Suppose that x is an optimal solution of the linear program (1.3.1). Then from the convexity of the set of optimal solutions (see lemma 1.3.1) it follows that x is the unique optimal solution if and only if $p^{T}s < 0$ for all $s \in S(x)$. Hence, x is unique if and only if p is an interior point of the dual cone of cone S(x).

DEFINITIONS 1.3.4. We define for the linear programming problem (1.3.1) the dual problem by

(1.3.4)
$$\min\{\mathbf{b}^{\mathrm{T}}\mathbf{u} \mid \mathbf{A}^{\mathrm{T}}\mathbf{u} \ge \mathbf{p}, \mathbf{u} \ge \mathbf{0}\}$$

with feasible region D := $\{u | A^T u \ge p; u \ge 0\}$. Defining the vector v by $v := A^T u - p$, the dual problem can also be written as

(1.3.5)
$$\min\{b^{T}u \mid A^{T}u - v = p; u \ge 0; v \ge 0\}.$$

Problem (1.3.1) is said to be the primal problem.

THEOREM 1.3.4. (Duality theorem)

- (i) The dual problem of the dual problem is the primal problem.
- (ii) If $x \in R$ and $u \in D$, then $p^{T}x \leq b^{T}u$.
- (iii) If the primal problem has an optimal solution x° , then the dual problem has also a finite optimal solution, say u° . Moreover,

$$p^{T}x^{\circ} = b^{T}u^{\circ}$$
, $(u^{\circ})^{T}(b-Ax^{\circ}) = 0$ and $(x^{\circ})^{T}(A^{T}u^{\circ}-p) = 0$.

- (iv) If $x \in R$ and $u \in D$ satisfy $u^{T}(b-Ax) = x^{T}(A^{T}u-p) = 0$, then x and u are optimal solutions of the primal and the dual problem respectively.
- (v) If the primal problem has an infinite solution, then the dual problem is infeasible.
- (vi) If the primal problem is infeasible, then the dual problem either has an infinite solution or it is infeasible.

PROOF. See ZOUTENDIJK [1976] pp.24-26.

COROLLARY 1.3.1. (Complementary slackness property) Suppose that (x,y) and (u,v) are optimal solutions of the programs (1.3.3) and (1.3.5) respectively. Then

- (i) $x_j > 0 \Rightarrow v_j = 0.$ (ii) $y_i > 0 \Rightarrow u_i = 0.$ (iii) $u_i > 0 \Rightarrow y_i = 0.$ (iv) $v_j > 0 \Rightarrow x_i = 0.$
- 1.4. SIMPLEX METHOD

Consider the linear programming problem formulated as (1.3.2). Assume that the columns of \overline{A} are rearranged such that $\overline{A} = (B,N)$, where B is an m×m nonsingular matrix. Let $\overline{x} = (x_B, x_N)^T$, where x_B is the vector of variables corresponding to the columns of B, and x_N is the vector of variables that correspond to the columns of N. Then, Ax = b can be written as $Bx_B + Nx_N = b$. Since B is nonsingular, the inverse matrix B^{-1} exists and we obtain $x_B = B^{-1}b - B^{-1}Nx_N$. Assume, in addition, that $B^{-1}b \ge 0$. Then, by theorem 1.2.2, the solution $x_B = B^{-1}b$, $x_N = 0$ is an extreme point of the feasible region \overline{R} . We say that the matrix B is a *basic matrix* and that $(x_B, x_N)^T$ is a *basic solution*, where x_B are the *basic variables* and x_N the *nonbasic variables*. The corresponding value x_0 of the objective function satisfies

(1.4.1)
$$\mathbf{x}_{0} = \mathbf{p}^{\mathrm{T}}\mathbf{x} = \mathbf{p}_{\mathrm{B}}^{\mathrm{T}}\mathbf{x}_{\mathrm{B}} + \mathbf{p}_{\mathrm{N}}^{\mathrm{T}}\mathbf{x}_{\mathrm{N}} = \mathbf{p}_{\mathrm{B}}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b} + (\mathbf{p}_{\mathrm{N}}^{\mathrm{T}} - \mathbf{p}_{\mathrm{B}}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{\mathrm{N}}.$$

We define the (n+m)-component vector $d = (d_B, d_N)^T$ by $d_B := 0$ and $d_N := p_B^{T-1} N - p_N^T$. The vector d may also be partitioned into parts corresponding to the original vectors y and x: $d = (u, v)^T$, where $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$.

THEOREM 1.4.1. The vectors u and v, defined above, satisfy

$$\mathbf{A}^{\mathrm{T}}\mathbf{u} - \mathbf{v} = \mathbf{p};$$
 $\mathbf{u}^{\mathrm{T}}\mathbf{y} = \mathbf{v}^{\mathrm{T}}\mathbf{x} = 0.$

PROOF. See ZOUTENDIJK [1976] pp.36-37.

<u>REMARK 1.4.1</u>. Theorem 1.4.1 implies that if $d \ge 0$, then (u,v) is a feasible solution of the dual program (1.3.5). Therefore, d is called the *vector of dual variables*. Moreover, theorem 1.3.4(iv) implies that \overline{x} and (u,v) are optimal solutions of the primal and dual linear program respectively.

<u>REMARK 1.4.2</u>. In the *simplex method* basic solutions are iteratively computed such that the value of the objective function in subsequent iterations never decreases. To be sure that the simplex method is finite, it is sufficient to prove that a basis matrix cannot return. If $B^{-1}b \gg 0$ for every basis matrix B, then the value of the objective function increases at each iteration. Problems which have this property are said to be *nondegenerated*. Hence, the simplex method is finite for nondegenerated problems. For degenerated problems we need sophisticated rules to determine different basis matrices in subsequent iterations. A very elegant rule has been developed by BLAND [1977]. For the details of the simplex method, including its numerical aspects, we refer the reader to the chapters 3 and 4 in ZOUTENDIJK [1976].

For the computation of an optimal solution by the simplex method we use the so-called *simplex tableau*. In this tableau we store the basic and nonbasic variables but also the dual variables. This tableau has the following form

(1.4.2)

		×N
×в	в ⁻¹ ь	B ⁻¹ N
x ₀	$p_B^T B^{-1} b$	$\mathbf{d}_{\mathbf{N}}^{\mathrm{T}} = \mathbf{p}_{\mathrm{B}}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} - \mathbf{p}_{\mathrm{N}}^{\mathrm{T}}$

<u>REMARK 1.4.3</u>. We have assumed that the columns of \overline{A} can be rearranged such that $\overline{A} = (B,N)$, where B is a nonsingular matrix satisfying $B^{-1}b \ge 0$. In general, such a partition is not possible; moreover, if a partition is possible, then we don't know which columns can be chosen to form a regular basis matrix. Fortunately, by adding some artificial variables, we can overcome this difficulty if we apply the so-called *phase I - phase II* simplex method. Therefore, we partition the contraints of the linear programming problem in three subsets:

$$\sum_{j} a_{ij} x_{j} \leq b_{i} \quad \text{and} \quad b_{i} \geq 0: I_{1},$$

$$\sum_{j} a_{ij} x_{j} \leq b_{i} \quad \text{and} \quad b_{i} < 0: I_{2},$$

$$\sum_{j} a_{ij} x_{j} = b_{i} \qquad : I_{3},$$

(we may assume that $b_i \ge 0$, $i \in I_3$, because otherwise the equality can be multiplied by -1). Introducing nonnegative *slack variables* y_i , $i \in I_1 \cup I_2$, and *artificial variables* z_i , $i \in I_2 \cup I_3$, we consider the linear program

$$(1.4.3) \qquad \max\left\{-\sum_{i} z_{i} \left| \begin{array}{c} \sum_{j} a_{ij} x_{j} + y_{i} &= b_{i} & i \in I_{1}; x_{j} \geq 0 \quad j = 1, 2, \dots, n \\ -\sum_{j} a_{ij} x_{j} - y_{i} + z_{i} &= -b_{i} & i \in I_{2}; y_{i} \geq 0 & i \in I_{1} \cup I_{2} \\ \sum_{j} a_{ij} x_{j} + z_{i} &= b_{i} & i \in I_{3}; z_{i} \geq 0 & i \in I_{2} \cup I_{3} \end{array} \right\}$$

Then, we can start taking as basis matrix the identity matrix corresponding to the columns of y_i , i $\in I_1$, and z_i , i $\in I_2 \cup I_3$. This matrix satisfies the assumptions and we can apply the simplex method in order to obtain an optimal solution of (1.4.3). This is called the phase I. Suppose that $(x^{\circ}, y^{\circ}, z^{\circ})$ is an optimal solution of (1.4.3).

If $\Sigma_i z_i^{\circ} > 0$, then the original problem is infeasible.

If $\Sigma_i z_i^\circ = 0$, then we have a feasible solution $(\mathbf{x}^\circ, \mathbf{y}^\circ)$. In the latter case, we take as new objective function the original objective function $\Sigma_j p_j \mathbf{x}_j$ and continue the simplex method, maintaining $\Sigma_i z_i = 0$, to obtain an optimal solution for the original problem. This is called the phase II.

It may occur that the linear programming problem has an infinite solution. Then, we shall obtain a simplex tableau with a nonpositive column corresponding to a nonbasic variable, say $(x_N)_k$, such that $(d_N)_k < 0$. Define the direction vector s by

(1.4.4)
$$\begin{cases} s_{B} := (-B^{-1}N)_{k} \\ s_{N} := e_{k}. \end{cases}$$

Then, we have

$$s \geq 0$$

$$\overline{A}s = Bs_{B} + Ns_{N} = -N_{\cdot k} + N_{\cdot k} = 0$$

$$\overline{p}^{T}s = p_{B}^{T}s_{B} + p_{N}^{T}s_{N} = (-p_{B}^{T}\overline{p}^{-1}N + p_{N}^{T})_{k} = -(d_{N})_{k} > 0.$$

Consequently, s is an infinite direction.

We close this section with a discussion about the problem of finding all optimal basic solutions of a linear program. Suppose that the optimal simplex tableau (we assume that the linear program has a finite solution) is given by

(1.4.5)
$$\begin{cases} (\mathbf{x}_{B})_{i} = \mathbf{b}_{i}^{*} - \sum_{j} \mathbf{a}_{ij}^{*}(\mathbf{x}_{N})_{j} & i = 1, 2, \dots, m \\ \\ \mathbf{x}_{0} = \mathbf{b}_{0}^{*} - \sum_{j} (\mathbf{d}_{N})_{j} (\mathbf{x}_{N})_{j} \end{cases}$$

Since b_0^* is the optimal value and all variables are nonnegative, it follows from (1.4.5) that any optimal solution x satisfies

(i) $(\mathbf{x}_{N})_{k} = 0$ if $(\mathbf{d}_{N})_{k} > 0$,

(ii) $(x_N)_k^* = 0$ if for some i $b_i^* = 0$, $a_{i\cdot}^* \ge 0$ and $a_{ik}^* > 0$. If we know that $(x_N)_k^* = 0$ for any optimal solution, then we may remove the corresponding column from the tableau; after this reduction we have $(d_N)_k^* = 0$ for every k. Hence, we may apply the following rule:

(iii) Every variable $(x_N)_k$ may enter the basis to obtain an optimal solution with a new basis matrix.

If $b_i^* = 0$ and $a_{i^*}^* = 0$, then we can remove this row from the tableau. Hence, we obtain a tableau with $d_N^* = 0$ and with in any row i where $b_i^* = 0$ at least one negative coefficient.

The optimal simplex tableau may contain artificial variables as basis variables. These variables can be removed from the tableau in the following way. Suppose that $(x_B)_i$ is an artificial variable, say z_ℓ . Then $b_i^* = 0$ and consequently there exists an index k such that $a_{ik}^* < 0$. Exchange the variables $(x_N)_k$ and z_ℓ by pivoting with pivot element a_{ik}^* . The variable z_ℓ becomes nonbasic and the corresponding column can be removed.

Mostly, we can simplify the tableau considerably by the rules stated above. In the reduced tableau, we may apply rule (iii) and the following rule (iv) in order to determine all optimal extreme solutions.

(iv) If $b_i^* = 0$ and $a_{ik}^* \neq 0$, then the variables $(x_N)_k$ and $(x_B)_i$ can be exchanged and an optimal solution with a new basis matrix is obtained.

Since the set of optimal solutions is convex, we can compute all extreme optimal solutions by successive computation of all extreme optimal solutions that are adjacent to the present extreme optimal solution

(cf. HADLEY [1962] pp.166-168). This computation is elaborated in the following algorithm:

Algorithm I for the computation of all extreme optimal solutions of a linear program.

<u>step 1</u>: Determine an optimal solution by the simplex method and denote the coefficients of the optimal simplex tableau by (b_i^*) , (a_{ij}^*) and $((d_N)_i)$.

<u>step 2</u>: If $(d_N)_j > 0$ for all j, then the optimal solution is unique (STOP). <u>step 3a</u>: For every k such that $(d_N)_k > 0$, remove the corresponding column

from the tableau.

<u>step 3b</u>: For every k such that $a_{ik}^* > 0$ for some i which satisfies $b_{i}^* = 0$ and $a_{i}^* \ge 0$, remove the corresponding column from the tableau.

step 3c: For every i such that $b_i^* = 0$ and $a_i^* = 0$, remove the corresponding row from the tableau.

- <u>step 3d</u>: For every i such that $(x_B)_i$ is an artificial variable, say $(x_B)_i = z_\ell$, execute one pivot step with pivot element $a_{ik}^* < 0$ and remove the column corresponding to z_ℓ from the tableau.
- <u>step 4</u>: Put the basis matrix on the list L_1 (L_1 will contain all basis matrices corresponding to extreme optimal solutions; the basis matrices, for which the adjacent extreme optimal solutions already are determined, are marked); put the optimal solution x on the list L_2 (L_2 will contain all extreme optimal solutions); set $L_3 = \emptyset$ (L_3 will contain all extreme infinite directions).
- <u>step 5</u>: If all elements of L_1 are marked, then all extreme optimal solutions are stored in L_2 (extreme solutions) and L_3 (extreme directions); STOP.
- <u>step 6</u>: Take any unmarked basis from L_1 , mark this basis and determine the corresponding simplex tableau (denote the coefficients again by (b_i^*) , (a_{ij}^*) and $((d_N)_j)$).
- <u>step 7</u>: For every i and k such that $b_i^* = 0$, $a_{ik}^* \neq 0$ and such that the basis where the variables $(x_N)_k$ and $(x_B)_i$ are exchanged is not in L_1 : put this new basis on L_1 .
- step 8: For every k such that $a_{\cdot k}^{\star} \leq$ 0 and such that the direction vector s, where

$$s_{j} := \begin{cases} -a_{ik}^{\star} & \text{if } x_{j} = (x_{B})_{i} \\ 1 & \text{if } x_{j} = (x_{N})_{k} \\ 0 & \text{elsewhere} \end{cases}$$

does not belong to the list ${\rm L}^{}_3\colon$

put this direction s on ${\rm L}_{\rm 3}.$

- (i) $a_{ik}^* > 0$ for at least one i (ii) $\min\{b_i^*/a_{ik}^* \mid a_{ik}^* > 0\} = b_r^*/a_{rk}^* > 0$ (iii) the basis matrix which is obtained after exchanging

the variables $(x_N^{})_k^{}$ and $(x_B^{})_r^{}$ is not in L $_1^{}$ do: a. put this new basis matrix on L $_1^{}\prime$

b. if the solution corresponding to this new basis is not in

 L_2 , then put this solution on the list L_2 .

step 10: Go to step 5.

CHAPTER 2

MARKOV DECISION PROCESSES

2.1. INTRODUCTION AND SUMMARY

In this chapter we present a survey of some results about Markov chains and Markov decision processes. This survey is far from comprehensive. We only discuss the topics we need in the following chapters of this monograph.

In section 2.2 we introduce the Markov decision models with various optimality criteria such as discounted optimality, average optimality, bias optimality and Blackwell optimality. Furthermore, we give some notations and definitions.

Section 2.3 deals with the theory of Markov chains. We give a summary of some well-known results on the transition matrix and the stationary matrix. Also we present an algorithm for identifying the ergodic sets and the transient states of a stochastic matrix, and an algorithm for the computation of the stationary matrix.

In section 2.4 we review some results on (sub)stochastic matrices. We present some properties of the stationary, the fundamental and the deviation matrix.

In section 2.5 we mention results about the existence of optimal pure and stationary policies for the optimality criteria introduced in section 2.2. Also, we present a theorem, due to Derman and Strauch, which implies that restriction to Markov policies is allowed. Furthermore, we give a result, due to Blackwell, which relates discounted rewards to average rewards for discount factors near to 1.

2.2. MARKOV DECISION MODELS

Consider a dynamic system that is observed at discrete time points $t = 1, 2, \ldots$. We allow that with positive probability the system breaks

down and then the process is terminated. If at any discrete time point t the system is in one of a finite number of states, then an action has to be chosen. The state space is denoted by $E = \{1, 2, ..., N\}$ and A(i) is the finite set of possible actions in state i, i ϵ E. If the system is in state i and action a ϵ A(i) is chosen, then the following happens, independently of the history of the process:

- 1. A reward r is earned immediately.
- 2. The next state of the process is chosen according to the transition probabilities p_{iaj} , where $p_{iaj} \ge 0$ and $\sum_{j} p_{iaj} \le 1$ for every $a \in A(i)$ and $i, j \in E$.

A (discrete) Markov decision problem is given by a four-tuple (E,A,p,r), where

- E is the state space,
- $A = \bigcup_{i \in E} A(i)$ is the action space,
- p is a transition probability from E × A to E,
- r is a real-valued reward function on $E \times A_r$

(E × A has to be interpreted as {(i,a) | i \in E, a \in A(i)}). A Markov decision problem is also called a *(stochastic) dynamic programming problem*.

Let ${\tt H}_{t}$ denote the set of possible $\mathit{histories}$ of the system up to time t, i.e.

$$\mathbf{H}_{t} := \{ (\mathbf{i}_{1}, \mathbf{a}_{1}, \dots, \mathbf{i}_{t-1}, \mathbf{a}_{t-1}, \mathbf{i}_{t}) \mid \mathbf{i}_{k} \in \mathbf{E}, \mathbf{a}_{k} \in \mathbf{A}(\mathbf{i}_{k}), \ k=1, 2, \dots, t-1; \ \mathbf{i}_{t} \in \mathbf{E} \}.$$

A decision rule π^{t} at time t is a nonnegative function on $H_{t}^{\times A}$ such that for every $(i_{1}, a_{1}, \dots, i_{t}) \in H_{t}$

$$\pi^{t}_{i_{1}a_{1}\cdots i_{t}a_{t}} = 0 \quad \text{if } a_{t} \notin A(i_{t})$$

and

$$\sum_{a_t} \pi_{i_1 a_1 \cdots i_t a_t}^t = 1.$$

A policy R is a sequence of decision rules: $R = (\pi^{1}, \pi^{2}, \dots, \pi^{t}, \dots)$. We let C denote the class of all policies. A policy $R = (\pi^{1}, \pi^{2}, \dots, \pi^{t}, \dots)$ is said to be memoryless if the decision rule π^{t} is independent of $(i_{1}, a_{1}, \dots, i_{t-1}, a_{t-1})$ for every $t \in \mathbb{N}$. Memoryless policies are also called Markov policies. By C_{M} we denote the class of Markov policies. We let C_{S} denote the class of stationary policies, i.e. the Markov policies for which π^{t} is time invariant. Hence, a stationary policy is completely determined by a decision rule which depends only on the last state i. We will denote the stationary policy $R = (\pi, \pi, ...)$ by π^{∞} . By C_D we denote the subclass of C_S consisting of the *pure and stationary policies*, i.e. stationary policies with nonrandomized decision rules. Therefore, a pure and stationary policy can be described by a function f defined on E such that $f(i) \in A(i)$, $i \in E$. We will denote this policy by f^{∞} .

For any $R = (\pi^1, \pi^2, ...) \in C$, we denote by p_{ija}^t the probability that the system is at time t in state j and then action a is chosen, given that the system is at time t=1 in state i. For $R \in C_M$ the numbers $p_{ija}^t(R)$ can be computed iteratively:

$$p_{ija}^{1}(R) = \begin{cases} 0 \quad j \neq i, \quad a \in A(j) \\ \pi_{ja}^{1} \quad j = i, \quad a \in A(j) \end{cases}$$

$$p_{ija}^{t+1}(R) = \sum_{\substack{i \neq a \\ i \neq a \\ t}} p_{iia}^{t} (R) \cdot p_{ita \neq j} \cdot \pi_{ja}^{t+1} , \quad j \in E, a \in A(j), \quad t \in \mathbb{N}.$$

Let us define the matrix $P(\pi^t)$ by $P(\pi^t) := (\Sigma_a p_{iaj} \pi_{ia}^t)$, $t \in \mathbb{N}$. Then, for $R \in C_M$ we have

$$\mathbf{p}_{\text{ija}}^{t+1}(\mathbf{R}) = \left[\mathbf{P}(\pi^{1})\mathbf{P}(\pi^{2})\ldots\mathbf{P}(\pi^{t})\right]_{\text{ij}}\cdot\pi_{\text{ja}}^{t+1}, \text{ j}\in E, \text{ a}\in A(\text{j}), \text{ t}\in \mathbb{N}_{0},$$

where $P(\pi^1)P(\pi^2)...P(\pi^t) := I \text{ if } t = 0.$

Let $\{x_t, t = 1, 2, ...\}$ and $\{Y_t, t = 1, 2, ...\}$ be the sequences of random variables denoting the observed states and chosen actions respectively. Then, we can also write

$$p_{jja}^{t}(R) = \mathbb{P}_{R}(x_{t} = j, Y_{t} = a | x_{1} = i).$$

Furthermore, we denote by p_{ij}^t (R) the probability that the system is at time t in state j, given that state i is the starting state. Hence, we obtain

$$p_{ij}^{t}(R) = \mathbb{P}_{R}(X_{t} = j | X_{1} = i) = \Sigma_{a} \mathbb{P}_{R}(X_{t} = j, Y_{t} = a | X_{1} = i).$$

The matrix $P^{t}(R)$ is defined by $P^{t}(R) := (p_{ij}^{t+1}(R))$.

The expected reward in the t-th period, given initial state i and the use of policy R, is denoted by $v_i^{t}(\text{R})$, i.e.

$$v_{i}^{t}(R) := \sum_{j \geq a} \mathbb{P}_{R} (x_{t} = j, y_{t} = a \mid x_{1} = i) \cdot r_{ja}.$$

The expected total reward over an infinite horizon, given initial state is and the use of policy R, where R is such that $\lim_{T\to\infty} \Sigma_{t=1}^T v_i^t(R)$ exists (possibly + ∞ or - ∞), is denoted by $v_i(R)$, i.e.

$$\mathbf{v}_{i}(\mathbf{R}) := \sum_{t=1}^{\infty} \sum_{j \in \mathbf{A}} \mathbb{P}_{\mathbf{R}}(\mathbf{x}_{t} = j, \mathbf{y}_{t} = a \mid \mathbf{x}_{1} = i) \cdot \mathbf{r}_{ja}.$$

For a real number $\alpha \in [0,1)$ the *expected discounted reward*, given initial state i and the use of policy R, is denoted by $v_i^{\alpha}(R)$, i.e.

$$v_{i}^{\alpha}(R) := \sum_{t=1}^{\infty} \alpha^{t-1} \sum_{j} \sum_{a} \mathbb{P}_{R} (x_{t} = j, y_{t} = a | x_{1} = i) \cdot r_{ja}$$

 α is called the *discount factor*. The *expected average reward* over an infinite horizon, given initial state i and the use of policy R, is denoted by $\phi_i(R)$ and defined by

$$\phi_{i}(\mathbf{R}) := \lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{j} \sum_{a} \mathbb{P}_{\mathbf{R}}(\mathbf{x}_{t} = j, \mathbf{y}_{t} = a \mid \mathbf{x}_{1} = i) \cdot \mathbf{r}_{ja}.$$

For a Markov decision model with as utility function the total reward criterion we will use the name TMD-model. In a TMD-model we define the TMD-value-vector v by

$$v_i := \sup_{R} v_i(R), \quad i \in E.$$

A policy R^* is said to be *total optimal* if $v(R^*) = v$. A Markov decision model with the discounted reward criterion is called a *DMD-model*. The *DMD-value-vector* v^{α} is defined by

$$v_{i}^{\alpha} := sup_{R} v_{i}^{\alpha}(R), \quad i \in E.$$

A policy \mathbb{R}^* is α -discounted optimal if $\mathbf{v}^{\alpha}(\mathbb{R}^*) = \mathbf{v}^{\alpha}$; a policy \mathbb{R}^* is said to be bias optimal if $\lim_{\alpha \uparrow 1} \{\mathbf{v}^{\alpha}_{\mathbf{i}}(\mathbb{R}^*) - \mathbf{v}^{\alpha}_{\mathbf{i}}\} = 0$, $\mathbf{i} \in \mathbf{E}$; a policy \mathbb{R}^* is called *Blackwell optimal* if for some $\alpha_{\circ} \in [0,1)$ \mathbb{R}^* is α -discounted optimal for every $\alpha \in [\alpha_{\circ}, 1)$.

If we use as utility function the average reward criterion, then the name of the model will be abbreviated by *AMD-model*. The *AMD-value-vector*

 ϕ is defined by

$$\phi_i := \sup_{\mathbf{R}} \phi_i(\mathbf{R}), \quad i \in \mathbf{E}.$$

The policy R^{\star} is average optimal if $\phi(R^{\star}) = \phi$.

The policy R is said to be a *transient policy* if $\Sigma_{t=1}^{\infty} p_{ij}^{t}(R) < \infty$ for every i, j ϵ E. Hence, for any transient policy $v_{i}(R)$ is finite for every i ϵ E. If $R = (\pi^{1}, \pi^{2}, \ldots) \epsilon C_{M}$ is transient, then we may write

$$v(R) = \sum_{t=1}^{\infty} P(\pi^{1}) P(\pi^{2}) \cdots P(\pi^{t-1}) r(\pi^{t}),$$

where

$$r(\pi^{t}) := (\sum_{a} r_{ia} \pi_{ia}^{t}).$$

Furthermore, if $\pi^{\infty} \in C_{S}^{}$ is transient, then we have (cf. KEMENY & SNELL [1960] p.22)

$$v(\pi^{\infty}) = \sum_{t=1}^{\infty} P^{t-1}(\pi)r(\pi) = (I-P(\pi))^{-1}r(\pi).$$

If a TMD-model satisfies the condition that every policy is transient, then the model is called a *transient dynamic programming problem*.

A TMD-model with $r_{ia} \ge 0$ a ϵ A(i), i ϵ E, is said to be a *positive* dynamic programming model; if all rewards are nonpositive, then we have a negative dynamic programming model.

A dynamic programming problem is called *contracting* if there exists a vector $\mu >> 0$ and a scalar $\alpha \in [0,1)$ such that

Any DMD-problem is contracting (re-define $p_{iaj} := \alpha p_{iaj}$ i,j ϵ E, a ϵ A(i) and take $\mu = e$); it can easily be verified that in a contracting dynamic programming problem any policy is transient. Hence, the transient dynamic programming problem is a generalization of the contracting dynamic programming problem (in fact, these problems are equivalent as will be shown in theorem 3.2.4). The name contracting dynamic programming was introduced by van Nunen and Wessels, who have studied this model systematically (e.g. VAN NUNEN & WESSELS [1977]). <u>REMARK 2.2.1</u>. In the sequel we will present examples of models and illustrate them in a picture. In these models the transition probabilities will always be degenerated, i.e. for any a ϵ A(i) and i ϵ E we have $p_{iaj} \neq 0$ for at most one state j. Hence, to indicate which state is the next state of the system, when in state i action a is chosen, we can use in the picture an arc from state i to state j where j is such that $p_{iaj} \neq 0$. For the different actions 1,2,...,k_i in state i, these arcs are drawn as

$$\begin{array}{ccc} \bullet & \bullet & \bullet & \bullet \\ i & j & i & j \end{array} (action 1), \quad \bullet \bullet \bullet & \bullet & \bullet & \bullet \\ i & j & j & j & \bullet & \bullet \\ \end{array} (action 2) etc. \cdot \\ \end{array}$$

In the TMD-models we add to every arc that corresponds to (i,a) and is directed from state i to state j the pair r_{ia} , p_{iaj} . For AMD-models we shall assume that $\sum_{j} p_{iaj} = 1$ for every $a \in A(i)$, $i \in E$. Therefore, we may add to an arc only the number

 $\begin{array}{c} r_{ia} & . \mbox{ Figure 2.2.1 gives the} \\ \mbox{picture which corresponds to} \\ \mbox{the following TMD-model:} & 1 \\ \mbox{$E = \{1,2,3\}; A(i) = \{1,2\}, i \in E; $$} \\ \mbox{$p_{112}=1/2, p_{123}=1, p_{211}=1/2, p_{222}=1/4, $$} \\ \mbox{$p_{313}=1, p_{322}=1/2$ (the other $$ 0$ transition probabilities are zeros); $$} \\ \mbox{$r_{11}=1, r_{12}=0, r_{21}=-1, r_{22}=2, r_{31}=-2, r_{32}=0. $} \end{array}$

2.3. MARKOV CHAINS

Assume that $\Sigma_{j} p_{iaj} = 1$ for all $a \in A(i)$, $i \in E$. Then for any stationary policy π^{∞} the sequence of observed states $\{x_{t}, t = 1, 2, ...\}$ is a finite stationary *Markov chain* with transition probabilities $p_{ij} = \Sigma_{a} p_{iaj} \pi_{ia}$, $i, j \in E$. Hence, the theory of Markov chains plays an important role in the analysis of Markov decision models. In this section we will summarize some results for reference purposes. For the proofs we will refer to one of many books that deal with Markov chains. We assume that the reader is familiar with concepts such as: transient state, recurrent state, ergodic set, communicating states, *absorbing state and absorption probabilities*.

The Markov chain is called completely ergodic if all states are recurrent

and there is exactly one ergodic set. If there is exactly one ergodic set plus possibly some transient states, then the Markov chain is said to be *unichained*. A subset E_0 of E is said to be *closed* under P if $p_{ij} = 0$ for all $i \in E_0$ and $j \in E \setminus E_0$.

Let E_1, E_2, \ldots, E_m be the ergodic sets and let F be the set of all transient states of a Markov chain with state space $E = \{1, 2, \ldots, N\}$. Then, by appropriate rearranging, we obtain the following form for the transition matrix P:

		/ ^P 1	0	••••	0	0 \	^Е 1
		0	^P 2		•	• \	^E 2
		•	•	•	•	•	•
(2.3.1)	P =	•	•	•	•		•
		\ •	•	•	•	•	•
		0	0	••••	Pm	0 /	Em
		\ _R 1	R ₂	••••	R m	Ω /	F

<u>THEOREM 2.3.1</u>. The matrix I-Q is nonsingular and $(I-Q)^{-1} = \sum_{n=0}^{\infty} Q^n$.

PROOF. See KEMENY & SNELL [1960] p.46.

(c) $B = \lim_{n \to \infty} B_n$ (the notation (c) stands for *Cesaro limit*).

THEOREM 2.3.2. (i) $P^* \stackrel{(C)}{:=} \lim_{n \to \infty} P^n \text{ exists.}$ (ii) $P^*P = PP^* = P^*P^* = P^*.$ (iii) $p_{i\cdot}^* = p_{j\cdot}^* \text{ and } p_{ij}^* > 0 \text{ for any pair (i,j) such that i and j belong to the same ergodic set.}$ (iv) $p_{\cdot i}^* = 0 \text{ for any transient state i.}$

PROOF. See DOOB [1953] p.175.

DEFINITIONS 2.3.2.

(i) The matrix P^{*} is called the *stationary matrix* of matrix P.

(ii) Any solution of the set of equations $x \ge 0$, $x^{T}e = 1$ and $x^{T} = x^{T}P$ is a stationary probability distribution of the Markov chain.

<u>THEOREM 2.3.3</u>. Let x be any stationary probability distribution of the Markov chain. Then

$$\mathbf{x}_{i} = \begin{cases} 0 & \text{if } i \in \mathbf{F} \\ \\ \mathbf{c}_{k} \mathbf{p}_{ii}^{*} & \text{if } i \in \mathbf{E}_{k} \text{ where } \mathbf{c}_{k} \text{ satisfies } \boldsymbol{\Sigma}_{k=1}^{m} \mathbf{c}_{k} = 1 \end{cases}$$

PROOF. See DOOB [1953] p.183.

<u>COROLLARY 2.3.1</u>. If $\mathbf{x}^{\mathrm{T}} = \mathbf{x}^{\mathrm{T}} \mathbf{p}$ and $\mathbf{E}_{\mathbf{x}} := \{i | \mathbf{x}_{i} > 0\}$, then $\mathbf{E}_{\mathbf{x}}$ is the union of some ergodic sets and consequently, $\mathbf{E}_{\mathbf{y}}$ is a closed set.

NOTATION 2.3.1. For any transient state i we denote the absorption probability that the process will be ultimately absorbed into the ergodic set E_k by a_{ik} k = 1,2,...,m.

THEOREM 2.3.4. For any ergodic set E_k , we have

 $p_{ij}^{\star} = a_{ik}p_{jj}^{\star}$, $i \in F, j \in E_k$

and {a_{ik}, i \in F} is the unique solution of the linear system

$$\widetilde{a}_{ik} = \sum_{j \in E_k} p_{ij} + \sum_{j \in F} p_{ij} \widetilde{a}_{jk}, \quad i \in F.$$

PROOF. See FELLER [1967] p.403.

If the ergodic sets and the transient states of a Markov chain are identified, then the stationary matrix P^* can be computed using the results of the theorems 2.3.4. We will describe an algorithm proposed by FOX & LANDI [1968] to find the ergodic sets and the transient states. This algorithm is based on repeated use of the following rules:

- 1. State i is absorbing if and only if $p_{ij} = 0$ for all $j \neq i$.
- 2. If state i is absorbing and $p_{ki} > 0$, then state k is transient.
- 3. If state i is transient and $p_{ki} > 0$, then state k is also transient.
- 4. If state i communicates with state j and state j communicates with

state k, then state i communicates with state k.

The search for a set of communicating states is conducted by generating a chain of states such that each state can be reached from its predecessor with positive probability in one transition. If the chain encounters a state that has already been classified to be transient, then all states in the chain are transient. Otherwise, a circuit of states is obtained. Then, this circuit is replaced by one composite state. If by rule 1 the composite state is absorbing, then the states of the composite states form an ergodic set and the states in the chain that precede the circuit are transient; otherwise, extension of the chain is continued from the composite state. Hence, in a finite number of steps at least one state is classified to be recurrent or transient. This guarantees the finiteness of the following algorithm.

ALGORITHM II for identifying the ergodic sets and the transient states of a Markov chain with transition matrix P.

- step 1: Take $S_i = \{i\}$ for every state i.
- step 2a: Every state i such that $p_{ij} = 0$ for all $j \neq i$ is labeled as an absorbing state.
- step 2b: For each identified absorbing state i, label state i as an ergodic set, and label every state k satisfying $p_{ki} > 0$ as transient state.
- step 3: If all states are labeled, then go to step 6. Otherwise, go to step 4a.
- step 4a: Choose any unlabeled state i, set r = 1 and let $i_r = i$.

step 4b: Search in row i for a positive element, say p_{i_r,i_r+1} , such that $i_r \neq i_{r+1}$

- step 4c: If state i_{r+1} is labeled as a transient state, then: (i) label each state in the set $\{S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_r}\}$ as transient,
 - (ii) go to step 3.
 - Otherwise, go to step 4d.
- step 4d: If $i_{r+1} = i_k$ for some $k \in \{1, 2, \dots, r-1\}$, then go to step 5a. Otherwise, r := r+1 and go to step 4b.
- step 5a: Replace row i_k by the sum of the rows $\{i_k, i_{k+1}, \dots, i_r\}$ and delete the rows $\{i_{k+1}, i_{k+2}, \dots, i_r\}$ from the matrix; replace column i_k by the sum of the columns $\{i_k, i_{k+1'_r}, \dots, i_r\}$ and delete the columns $\{i_{k+1}, i_{k+2}, \dots, i_r\}; \text{ set } S_{i_k} = \bigcup_{j=k}^{k+1} S_{i_j}.$ step 5b: If the composite state i_k is absorbing, then:

- (i) label i_k as an ergodic set and i_1, i_2, \dots, i_{k-1} as transient states,
- (ii) label every state j which satisfies $\Sigma_{\ell=1}^{k} p_{ji_{\ell}} > 0$ as transient state,

(iii) go to step 3.

Otherwise, r := k and go to step 4b.

<u>step 6</u>: The transient states are labeled as transient, and every other state i_k (whether or not composite) corresponds to an ergodic set and S_{i_k} contains the states of this ergodic set.

The results stated above imply that the stationary matrix P^* can be determined by the following algorithm.

ALGORITHM III for the computation of the stationary matrix P*.

- <u>step 1</u>: Identify the transient states F and the ergodic sets E_1, E_2, \dots, E_m of the Markov chain by algorithm II.
- <u>step 2</u>: Determine for k = 1, 2, ..., m(i) the unique solution $\{x_{j}^{k}, j \in E_{k}\}$ of the linear system

$$\begin{cases} \sum_{j \in E_{k}} (\delta_{j\ell} - p_{j\ell}) \widetilde{x}_{j}^{k} = 0 & \ell \in E_{k} \\ \sum_{j \in E_{k}} \widetilde{x}_{j}^{k} = 1 \end{cases}$$

(ii) the unique solution $\{a_{i}^{k}, j \in F\}$ of the linear system

$$\sum_{j \in F} (\delta_{ij} - p_{ij}) \widetilde{a}_{j}^{k} = \sum_{j \in E_{k}} p_{ij} \qquad i \in F$$

step 3:

$$p_{ij}^{\star} := \begin{cases} x_j^{\mathsf{k}} & i \in \mathsf{E}_{\mathsf{k}}, \ j \in \mathsf{E}_{\mathsf{k}}, & \mathsf{k} = 1, 2, \dots, \mathsf{m}, \\ a_i^{\mathsf{k}} x_j^{\mathsf{k}} & i \in \mathsf{F}, \ j \in \mathsf{E}_{\mathsf{k}}, & \mathsf{k} = 1, 2, \dots, \mathsf{m}, \\ 0 & \text{elsewhere.} \end{cases}$$

2.4. SUBSTOCHASTIC MATRICES

<u>DEFINITION 2.4.1</u>. A real n×n matrix $P = (p_{ij})$ is said to be substochastic if $p_{ij} \ge 0$ for all i,j and $\Sigma_j p_{ij} \le 1$ for all i; if, moreover, $\Sigma_j p_{ij} = 1$ for all i, then P is called a stochastic matrix.
Throughout this section we assume that P is a substochastic matrix. In the following theorem we summarize some well-known results of substochastic matrices. For the proofs we refer to BLACKWELL [1962] and VEINOTT [1974].

THEOREM 2.4.1.

(i) $P^* \stackrel{(C)}{:=} \lim_{n \to \infty} P^n$ exists and satisfies $P^*P = PP^* = P^*P^* = P^*$. (ii) $\lim_{\alpha \neq 1} (1-\alpha) \sum_{k=0}^{\infty} \alpha^k (P-P^*)^k = 0$. (iii) $I - P + P^*$ is nonsingular and moreover

$$(I-P+P^{*})^{-1} = \lim_{\alpha \uparrow 1} \sum_{k=0}^{\infty} \alpha^{k} (P-P^{*})^{k}.$$

(iv) Let
$$D := (I-P+P^*)^{-1}-P^*$$
. Then

 $D = \lim_{\alpha \uparrow 1} \sum_{k=0}^{\infty} \alpha^{k} (P^{k} - P^{\star}) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{\ell=1}^{k} (P^{\ell-1} - P^{\star})$ and $P^{\star}D = DP^{\star} = (I-P)D + P^{\star} - I = D(I-P) + P^{\star} - I = 0.$

<u>DEFINITION 2.4.2</u>. The matrices P^* , $(I-P+P^*)^{-1}$ and D are said to be the stationary, the fundamental and the deviation matrix of the substochastic matrix P, respectively.

LEMMA 2.4.1. If the matrix P is stochastic, then De = 0.

PROOF. Using theorem 2.4.1(iv), we obtain

De =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{\ell=1}^{k} (p^{\ell-1} - p^{\star}) e^{\ell}$$

= $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{\ell=1}^{k} (p^{\ell-1} - p^{\star}) e^{\ell}$
= 0.

Any stochastic N×N matrix may be interpreted as the transition matrix of a Markov chain with state space $\{1, 2, ..., N\}$. In the following chapters we also encounter substochastic matrices that are not stochastic. However, such a matrix may be interpreted as a submatrix of the transition matrix \tilde{P} of a Markov chain with state space $\{0, 1, ..., N\}$, where

(2.4.1)
$$\widetilde{P} = \begin{pmatrix} 1 & 0 \\ (I-P)e & P \end{pmatrix}$$
.

Since \tilde{P} and \tilde{P}^* are stochastic and, by lemma 2.4.1, $\tilde{D}e$ = 0, it follows from (2.4.1) that

$$\widetilde{\mathbf{P}}^{\star} = \begin{pmatrix} 1 & 0 \\ \hline (\mathbf{I} - \mathbf{P}^{\star}) \mathbf{e} & \mathbf{P}^{\star} \end{pmatrix}$$
 and $\widetilde{\mathbf{D}} = \begin{pmatrix} 0 & 0 \\ \hline -\mathbf{D}\mathbf{e} & \mathbf{D} \end{pmatrix}$,

where P^* and D are the stationary and deviation matrix of P, respectively. The additional state 0 is an absorbing state. Suppose that there are furthermore m (possibly m = 0) ergodic sets E_1, E_2, \ldots, E_m in the Markov chain with state space {0,1,...,N} and let F be the set of transient states. The number of states in E_k is denoted by N_k , $k = 1, 2, \ldots, m$. By appropriate rearranging, we may write P in the form

The matrix P_k^* has identical rows; denote this row by the N_k -vector p_k^* . Then using the result of theorem 2.3.4, it can be verified that we may write P^* and D as

$$(2.4.3) \qquad P^{*} = \begin{pmatrix} P_{1}^{*} & 0 & \dots & 0 & | & 0 \\ 0 & P_{2}^{*} & \dots & 0 & | & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & P_{m}^{*} & 0 \\ \hline A_{1} & A_{2} & \dots & A_{m}^{*} & 0 \end{pmatrix}, D = \begin{pmatrix} D_{1} & 0 & \dots & 0 & | & 0 \\ 0 & D_{2} & \dots & 0 & | & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & D_{m} & 0 \\ \hline B_{1} & B_{2} & \dots & B_{m} & (I-Q)^{-1} \end{pmatrix}$$

where

$$A_{k} = [(I-Q)^{-1}R_{k}e](p_{k}^{*})^{T} \qquad k = 1, 2, ..., m$$
$$D_{k} = (I-P_{k}+P_{k}^{*})^{-1} - P_{k}^{*} \qquad k = 1, 2, ..., m$$
$$B_{k} = (I-Q)^{-1}(R_{k}-A_{k})(D_{k}+P_{k}^{*}) - A_{k} \qquad k = 1, 2, ..., m.$$

If m = 0, then P^* is the null-matrix and $D = (I-Q)^{-1}$. For the sequel of this section, we assume that $m \ge 1$. Let i_k be an arbitrary state in the ergodic set E_k , k = 1, 2, ..., m. Suppose that r is any N-vector and that B is any diagonal N×N matrix with nonnegative elements. Then we have the following result (cf. DENARDO [1971]).

LEMMA 2.4.2. Suppose that x is a solution of the linear system

(2.4.4)
$$\begin{cases} (I-P)\widetilde{x} = 0 \\ P^{*}B\widetilde{x} = P^{*}r. \end{cases}$$

Then

$$\mathbf{x}_{i} = \begin{cases} \left(\mathbf{p}^{*}\mathbf{r}\right)_{i_{k}} / \left(\mathbf{p}^{*}\mathbf{Be}\right)_{i_{k}} & i \in \mathbf{E}_{k}, k = 1, 2, \dots, m \\ \\ \sum_{k=1}^{m} \mathbf{a}_{i_{k}} \frac{\left(\mathbf{p}^{*}\mathbf{r}\right)_{i_{k}}}{\left(\mathbf{p}^{*}\mathbf{Be}\right)_{i_{k}}} & i \in \mathbf{F}. \end{cases}$$

The following lemma gives a related result for a system of inequalities.

LEMMA 2.4.3. Suppose that x is a solution of (2.4.4) and that \bar{x} satisfies

$$\begin{cases} (I-P)\bar{x} \geq 0 \\ \\ P\bar{B}\bar{x} \geq Pr. \end{cases}$$

Then, $\bar{\mathbf{x}} \geq \mathbf{x}$.

<u>PROOF</u>. Let $a = (I-P)\bar{x}$. Then, $a \ge 0$ and $P^*a = 0$, implying that $a_i = 0$ i $\in E \setminus F$. Consequently, $\bar{x}_i = (P\bar{x})_i$ i $\in E \setminus F$ and also $\bar{x}_i = (P^*\bar{x})_i$, i $\in E \setminus F$. Hence, the value of \bar{x} is constant on any ergodic set. Therefore, we can write

(2.4.5)
$$\bar{\mathbf{x}}_{i} \geq \frac{(\mathbf{p}^{*}\mathbf{r})_{i}}{(\mathbf{p}^{*}Be)_{i}} = \mathbf{x}_{i}, \quad i \in E \setminus F$$

Let \bar{x}_F consist of the components of \bar{x} corresponding to the transient states. Then, $\bar{x} \ge P\bar{x}$, (2.4.2) and (2.4.5) imply

$$\bar{\mathbf{x}}_{\mathrm{F}} \geq \sum_{k=1}^{m} \bar{\mathbf{x}}_{i_{k}} \cdot \mathbf{R}_{k} \mathbf{e} + Q \bar{\mathbf{x}}_{\mathrm{F}} \geq \sum_{k=1}^{m} \mathbf{x}_{i_{k}} \cdot \mathbf{R}_{k} \mathbf{e} + Q \bar{\mathbf{x}}_{\mathrm{F}}.$$

Since (I-Q) is nonsingular and nonnegative, we obtain

$$\bar{\mathbf{x}}_{\mathrm{F}} \geq \sum_{k=1}^{\mathrm{m}} \mathbf{x}_{i_{k}} \cdot (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{R}_{k} \mathbf{e}.$$

Hence,

$$\bar{\mathbf{x}}_{j} \geq \sum_{k=1}^{m} [(\mathbf{I}-\mathbf{Q})^{-1} \mathbf{R}_{k} \mathbf{e}]_{j} \cdot \mathbf{x}_{i_{k}}, \quad j \in \mathbf{F}.$$

Theorem 2.3.4 implies that

$$(2.4.6) \quad \bar{x}_{j} \geq \sum_{k=1}^{m} a_{jk} x_{ik}, \qquad j \in F.$$

The inequalities (2.4.5) and (2.4.6) yield $\bar{x} \ge x$. []

2.5. EXISTENCE OF OPTIMAL POLICIES

The following theorem, due to DERMAN & STRAUCH [1966] and generalized by STRAUCH & VEINOTT [1966] and HORDIJK [1974] pp.115-117, indicates that we may restrict ourselves to memoryless policies.

<u>THEOREM 2.5.1</u>. Given any initial distribution $\beta = (\beta_1, \beta_2, \dots, \beta_N)$, any sequence of policies R_1, R_2, \dots and any sequence of nonnegative real numbers p_1, p_2, \dots with $\sum_{k=1}^{\infty} p_k = 1$, there exists a memoryless policy R such that

(2.5.1)
$$\sum_{i} \beta_{i} \cdot \mathbb{P}_{R} (X_{t} = j, Y_{t} = a \mid X_{1} = i) =$$
$$\sum_{i} \beta_{i} \sum_{k} p_{k} \mathbb{P}_{R_{k}} (X_{t} = j, Y_{t} = a \mid X_{1} = i) \quad t \in \mathbb{N}, a \in A(j), j \in E.$$

<u>COROLLARY 2.5.1</u>. Given any initial state i ϵ E and any policy R ϵ C, there exists a policy R_o ϵ C_M such that

$$\mathbb{P}_{R_{o}}(X_{t} = j, Y_{t} = a \mid X_{1} = i) = \mathbb{P}_{R}(X_{t} = j, Y_{t} = a \mid X_{1} = i)$$
$$t \in \mathbb{N}, a \in A(j), j \in E$$

We continue this section with some properties of the DMD-model. The results are folklore and for the proofs we will refer to a standard book on Markov decision processes

THEOREM 2.5.2.

(i) The DMD-value-vector \mathbf{v}^{α} is the unique solution of the functional equation

(2.5.2)
$$x_i = max_a \{r_{ia} + \alpha \sum_j p_{iaj} x_j\}, i \in E.$$

(ii) Let $a_i \in A(i)$ be such that

$$\mathbf{r}_{ia_{i}} + \alpha \sum_{j} \mathbf{p}_{ia_{j}} \mathbf{v}_{j}^{\alpha} = \max_{a} \{\mathbf{r}_{ia} + \alpha \sum_{j} \mathbf{p}_{iaj} \mathbf{v}_{j}^{\alpha}\}, \quad i \in E.$$

Then the pure and stationary policy f^{∞} , where $f(i) = a_i$, $i \in E$, is α -discounted optimal.

PROOF. See ROSS [1970] pp.121-128.

THEOREM 2.5.3. There exists a pure and stationary Blackwell optimal policy. PROOF. See DERMAN [1970] pp.24-25.

If π^{∞} is a stationary policy, then $\mathbb{P}_{\pi^{\infty}}(X_t = j | X_1 = i) = (P^{t-1}(\pi))_{ij}, t \in \mathbb{N}, i, j \in E$. Hence,

(2.5.3)
$$v^{t}(\pi^{\infty}) = p^{t-1}(\pi)r(\pi), \quad t \in \mathbb{N},$$

where $r(\pi) := (\Sigma r \pi_i)$. We also have

$$(2.5.4) \qquad \phi(\pi^{\infty}) = \lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} P^{t-1}(\pi) r(\pi) = P^{*}(\pi) r(\pi).$$

If the Markov chain induced by π^{∞} is *unichained*, (i.e. there is at most one ergodic set, then $P^{*}(\pi)$ has identical rows, and consequently $\phi(\pi^{\infty})$ has identical components.

NOTATION 2.5.1. For any stationary policy π° , we denote the vector $D(\pi)r(\pi)$, where $D(\pi)$ is the deviation matrix of $P(\pi)$, by $u(\pi^{\circ})$:

(2.5.5)
$$u(\pi^{\infty}) := D(\pi)r(\pi).$$

From theorem 2.4.1(iv) it follows that

$$(2.5.6) u(\pi^{\infty}) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \{\sum_{s=1}^{t} v^{s}(\pi^{\infty}) - t\phi(\pi^{\infty})\}$$

and

$$u(\pi^{\infty}) = \lim_{\alpha \uparrow 1} \sum_{t=1}^{\infty} \alpha^{t-1} \{ P^{t-1}(\pi) r(\pi) - P^{*}(\pi) r(\pi) \}$$
$$= \lim_{\alpha \uparrow 1} \{ v^{\alpha}(\pi^{\infty}) - \frac{\phi(\pi^{\infty})}{1-\alpha} \}.$$

Hence,

(2.5.7)
$$\mathbf{v}^{\alpha}(\pi^{\infty}) = \frac{\phi(\pi^{\infty})}{1-\alpha} + u(\pi^{\infty}) + \varepsilon(\alpha),$$

where $\lim_{\alpha \uparrow 1} \epsilon(\alpha) = 0$.

THEOREM 2.5.4. Any Blackwell optimal policy is average optimal as well as bias optimal.

<u>PROOF</u>. From the definition of bias optimality it is obvious that Blackwell optimality implies bias optimality. In DERMAN [1970] pp.25-26 is shown that Blackwell optimality implies average optimality.

COROLLARY 2.5.2. There exist pure and stationary average optimal and bias optimal policies.

<u>REMARK 2.5.1</u>. In chapter 5 we will show that bias optimality implies average optimality.

REMARK 2.5.2. A finite algorithm to compute a Blackwell optimal policy can be found in HORDIJK, DEKKER & KALLENBERG [1981].

CHAPTER 3

TOTAL REWARD CRITERION

3.1. INTRODUCTION AND SUMMARY

In this chapter we consider Markov decision problems with the expected total reward as optimality criterion. Already in 1953 SHAPLEY [1953] has analysed this type of problems in the context of stochastic games. The special case that we have a discounted dynamic programming problem has been studied extensively (see for instance the books written by HOWARD [1960], DERMAN [1970], ROSS [1970], MINE & OSAKI [1970] and HORDIJK [1974]). Linear programming formulations for the discounted dynamic programming problem are due to D'EPENOUX [1960] and DE GHELLINCK & EPPEN [1967].

In section 3.2 we show that a pure and stationary policy, which is optimal with regard to the total reward criterion, always exists. Furthermore, we give a slight extension of Veinott's result (VEINOTT [1969]) concerning equivalent formulations of the concept of a contracting dynamic programming problem. From these results we derive two algorithms for checking the contraction property of a given dynamic programming problem.

Section 3.3 deals with the problem of finding optimal policies in the class of transient policies. We shall show that we can obtain such optimal policies from optimal solutions of a linear programming problem. If we use the simplex method to solve this linear program, then a pure and stationary optimal policy is obtained (see algorithm VI). We also discuss a constrained dynamic programming problem, where the constraints are linear functions of the expected number of times of being in state j and then choosing action a, a ϵ A(j), j ϵ E. Then, in general, there exists no optimal policy that also belongs to the class $C_{\rm D}$. However, we can find by linear programming an optimal policy that is stationary (algorithm VII). Moreover, we show a one-to-one correspondence between the transient stationary policies and the feasible solutions of the proposed linear programming problem such that pure policies are mapped on extreme feasible solutions. We close this sec-

tion with an application of the optimal stopping problem.

In section 3.4 we discuss the contracting dynamic programming problem. In this problem, all policies are transient; consequently, the results of section 3.3 are applicable. The results of section 3.3 can even be extended on some points (cf. theorem 3.3.4 versus theorem 3.4.8). Furthermore, we prove that, for this problem, linear programming by the simplex method is equivalent to the policy improvement method. We also show that elimination of suboptimal actions, as introduced by MACQUEEN [1967], can be implemented in the simplex method very easily using the dual variables appropriately. We close this section by the observation that discounted dynamic programming and contracting dynamic programming are equivalent models for unconstrained as well as for constrained Markovian decision problems.

Positive dynamic programming is the subject of section 3.5. We prove that, if the optimum of the linear programming problem is finite, then a pure and stationary optimal policy can be obtained directly from the linear programming solution. If the optimum is infinite, then by the linear program we can find a policy that, in general, is optimal only on a subset E_1 of the state space E. However, since $E \setminus E_1$ is closed under any policy, we may repeat the same procedure on the remaining states. In this way, we can construct a finite algorithm for positive dynamic programming (algorithm XII).

In section 3.6, where the negative dynamic programming problem is studied, we can derive a finite algorithm in a way similar to the analysis of section 3.5. In the algorithms of the sections 3.5 and 3.6 we have, besides solving linear programs, also to determine the structure of the Markov chain induced by some pure and stationary policies.

<u>NOTATION 3.1.1</u>. In this chapter, and also in the following chapters, we often use a vector, say x, with components x_{ia} , $a \in A(i)$, $i \in E$. However, we will also use the same notation x for the N-dimensional vector which has the components $x_i := \sum_{a} x_{ia}$, $i \in E$. Which vector is meant will always be clear from the context. Furthermore, we use the notation E_x , where E_x is defined by $E_x := \{i \in E \mid \sum_{a} x_{ia} > 0\}$.

3.2. PRELIMINARIES

In this section we discuss some properties of the TMD-value-vector v and we prove some theorems about transient policies. In order to have a well-defined concept of the expected total reward we use throughout this

section the following assumption.

<u>ASSUMPTION 3.2.1</u>. For any initial state i and any policy R the expected total reward $v_i(R)$ exists (possibly $\pm \infty$).

We will show that, under the above assumption, there exists a pure and stationary optimal policy. First, we notice that the TMD-value-vector v exists (possibly $v_i = \pm \infty$ for some i ϵ E). For the proof of the existence of an optimal policy which belongs to the class C_D , we need the following lemma.

LEMMA 3.2.1. For any initial state i and any policy R, we have

$$\lim_{\alpha \uparrow 1} v_{i}^{\alpha}(R) = v_{i}(R).$$

PROOF. (cf. pp.65-67 in HORDIJK & TIJMS [1970]). Take any initial state i ϵ E and any policy R ϵ C. We distinguish the following cases: (i) $-\infty < v_i(R) < +\infty$ (ii) $v_i(R) = +\infty$ (iii) $v_i(R) = -\infty$.

case (i): Take any $\varepsilon > 0$. Then, there exists an integer T such that

$$|v_i(R) - \sum_{t=1}^{T} v_i^t(R)| < \epsilon$$
 for every $T > T_o$.

Since $|v_i^t(R)|$ is bounded for all t (e.g. by $\max_{i,a} |r_i|$), the power series

$$v_{i}^{\alpha}(R) := \sum_{t=1}^{\infty} \alpha^{t-1} v_{i}^{t}(R)$$

has radius of convergence at least 1. The series $\sum_{t=1}^{\infty} \alpha^{t-1}$ has radius of convergence 1. Hence, for any $\alpha \in [0,1)$, we may write

$$(1-\alpha)^{-1} \mathbf{v}_{i}^{\alpha}(\mathbf{R}) = \sum_{s=1}^{\infty} \alpha^{s-1} \sum_{t=1}^{\infty} \alpha^{t-1} \mathbf{v}_{i}^{t}(\mathbf{R})$$
$$= \sum_{t=1}^{\infty} (\sum_{s=1}^{t} \mathbf{v}_{i}^{s}(\mathbf{R})) \alpha^{t-1}.$$

Therefore,

$$\left| (1-\alpha)^{-1} \{ \mathbf{v}_{\mathbf{i}}^{\alpha}(\mathbf{R}) - \mathbf{v}_{\mathbf{i}}(\mathbf{R}) \} \right| \leq \sum_{t=1}^{\infty} \left| \sum_{s=1}^{t} \mathbf{v}_{\mathbf{i}}^{s}(\mathbf{R}) - \mathbf{v}_{\mathbf{i}}(\mathbf{R}) \right| \alpha^{t-1} =$$

$$\sum_{t=1}^{T_{o}} \left| \sum_{s=1}^{t} v_{i}^{s}(R) - v_{i}(R) \right| \alpha^{t-1} + \sum_{t=T_{o}+1}^{\infty} \left| \sum_{s=1}^{t} v_{i}^{s}(R) - v_{i}(R) \right| \alpha^{t-1}.$$

Let M:= $\max_{1 \le t \le T_o} |\Sigma_{s=1}^t v_i^s(R) - v_i(R)|$. Then we can write

$$(1-\alpha)^{-1} |\mathbf{v}_{i}^{\alpha}(\mathbf{R}) - \mathbf{v}_{i}(\mathbf{R})| \leq M \cdot \frac{1-\alpha}{1-\alpha} + \varepsilon \sum_{t=T_{o}+1}^{\infty} \alpha^{t-1} < \frac{2\varepsilon}{1-\alpha}$$

for $\alpha \in [\alpha_1, 1)$, where $\alpha_1 < 1$ satisfies $M(1-\alpha^T) < \varepsilon$ for $\alpha \ge \alpha_1$. Hence, we have shown that

$$\lim_{\alpha \uparrow 1} v_{i}^{\alpha}(R) = v_{i}(R).$$

<u>case (ii)</u>: Choose any M > 0. Then, it follows that there exists an integer T_o such that $\Sigma_{t=1}^{T} v_i^t(R) > M$ for all $T > T_o$. Similarly to case (i), we can write

$$(1-\alpha)^{-1} \mathbf{v}_{i}^{\alpha}(\mathbf{R}) = \sum_{t=1}^{\infty} \left(\sum_{s=1}^{t} \mathbf{v}_{i}^{s}(\mathbf{R}) \right) \alpha^{t-1}$$
$$= \sum_{t=1}^{T_{o}} \left(\sum_{s=1}^{t} \mathbf{v}_{i}^{s}(\mathbf{R}) \right) \alpha^{t-1} + \sum_{t=T_{o}+1}^{\infty} \left(\sum_{s=1}^{t} \mathbf{v}_{i}^{s}(\mathbf{R}) \right) \alpha^{t-1}$$
$$> \mathbf{m} \cdot \frac{1-\alpha}{1-\alpha} + \mathbf{M} \cdot \frac{\alpha}{1-\alpha} \ge \frac{1/2}{1-\alpha} \cdot \mathbf{M}$$

for every $\alpha \in [\alpha_2, 1)$, where α_2 satisfies $\frac{3}{4} \leq \alpha_2 < 1$ and $\mathbf{m} \cdot (1 - \alpha_2^{T^\circ}) \geq -\frac{1}{4}M$ with $\mathbf{m} := \min_{1 \leq t \leq T_\circ} \sum_{s=1}^t \mathbf{v}_i^s(\mathbf{R})$. Therefore, we have shown that $\lim_{\alpha \uparrow 1} \mathbf{v}_i^{\alpha}(\mathbf{R}) = +\infty$. case (iii): The proof is similar to the proof of case (ii).

THEOREM 3.2.1. There exists a pure and stationary optimal policy.

<u>PROOF</u>. (cf. HORDIJK [1976]). Theorem 2.5.3 implies the existence of a real number $\alpha_{\circ} \in [0,1)$ and of a policy $f^{\circ} \in C_{D}$ such that

$$v^{\alpha}(f^{\infty}) = v^{\alpha}$$
 for all $\alpha \in [\alpha, 1)$.

Then, from lemma 3.2.1, it follows that

$$v_{i}(f^{\infty}) = \lim_{\alpha \uparrow 1} v_{i}^{\alpha}(f^{\infty}) = \lim_{\alpha \uparrow 1} v_{i}^{\alpha}$$
$$\geq \lim_{\alpha \uparrow 1} v_{i}^{\alpha}(R) = v_{i}(R), \quad i \in E, R \in C.$$

Hence,

$$v_{i}(f^{\infty}) = sup_{R} v_{i}(R), \quad i \in E,$$

i.e. $f^{\overset{\infty}{}}$ is a pure and stationary optimal policy. $\hfill\square$

<u>DEFINITION 3.2.1</u>. For any $c \in [-\infty, +\infty]$ we define $0 \cdot c := 0$; moreover, we call a vector x with components $\mathbf{x}_i \in [-\infty, +\infty]$, $i \in E$, *p*-summable if $\sum_j p_{iajj} \mathbf{x}_j$ is well-defined for all $a \in A(i)$, $i \in E$ (i.e. not both of the values $+\infty$ and $-\infty$ may occur in the summation).

The following example shows that, in general, the TMD-value-vector v is not p-summable.

EXAMPLE 3.2.1. E = {1,2,3}; A(i) = {1}, i \in E; $p_{112} = p_{113} = \frac{1}{2}, p_{212} = 1,$ $p_{313} = 1; r_{11} = 0, r_{21} = 2, r_{31} = -1.$ Since all action sets consist of one element, there is only one policy, say R. Assumption 3.2.1 is satisfied, namely $v_1(R) = v_2(R) = +\infty, v_3(R) = -\infty$. Notice that in this example v = v(R). Then, $\sum_j p_{11j} v_j$ is not defined, and consequently v is not p-summable.

THEOREM 3.2.2. If v is p-summable, then v satisfies the functional equation

$$\begin{cases} x_{i} = max_{a} \{r_{i} + \Sigma_{j} p_{iaj} x_{j}\}, & i \in E, \\ \\ x \text{ is } p-summable. \end{cases}$$

<u>PROOF</u>. Theorem 3.2.1 implies that $v = v(f^{\infty})$ for some pure and stationary policy f^{∞} . Since v is p-summable, we may write

$$(3.2.1) v_i = v_i(f^{\infty}) = r_{if(i)} + \sum_j p_{if(i)j}v_j(f^{\infty})$$
$$\leq max_a \{r_{ia} + \sum_j p_{iaj}v_j\}, \quad i \in E.$$

Let $a_i \in A(i)$, $i \in E$, be such that

$$\mathbf{r}_{ia_{i}} + \sum_{j} \mathbf{p}_{ia_{j}j} \mathbf{v}_{j} = max_{a} \{\mathbf{r}_{ia} + \sum_{j} \mathbf{p}_{ia_{j}} \mathbf{v}_{j}\}.$$

Take policy R = $(\pi^1, \pi^2, ...) \in C_M$ such that

$$\pi_{ia}^{1} = \begin{cases} 1 & a = a_{i} \\ 0 & a \neq a_{i} \end{cases} \quad i \in E, \text{ and } \pi_{ia}^{t} = \begin{cases} 1 & a = f(i) \\ 0 & a \neq f(i) \end{cases} \quad i \in E, t \ge 2.$$

Then we can write

$$(3.2.2) v_{i} \ge v_{i}(R) = r_{ia_{i}} + \sum_{j} p_{ia_{j}j}v_{j}(f^{\infty}) = max_{a}\{r_{ia} + \sum_{j} p_{ia_{j}}v_{j}\}, i \in E.$$

The relations (3.2.1) and (3.2.2) imply

$$v_i = max_a \{r_{ia} + \sum_j p_{iaj}v_j\}, \quad i \in E,$$

which completes the proof. \Box

THEOREM 3.2.3. If there exists a transient policy, then there also exists a transient pure and stationary policy.

<u>PROOF</u>. Since the existence of a transient policy is independent of the values of the rewards, we may assume that $r_{ia} = -1$, $a \in A(i)$, $i \in E$. Let \tilde{R} be any transient policy, i.e.

$$\sum_{t=1}^{\infty} \mathbb{P}_{\widetilde{R}} (x_t = j \mid x_1 = i) < \infty \quad \text{for all } i, j \in E.$$

Hence,

$$v_i(\tilde{R}) = \sum_{t=1}^{\infty} \sum_j \sum_a \mathbb{P}_{\tilde{R}}(x_t = j, y_t = a \mid x_1 = i) \cdot (-1) > -\infty, i \in E.$$

Since $v_i = sup_R v_i(R)$, $i \in E$, we have $-\infty < v_i \le 0$, $i \in E$. Theorem 3.2.1 implies the existence of a pure and stationary policy f^{∞} such that $v_i(f^{\infty}) = v_i$, $i \in E$. Therefore,

$$-\infty < v_{i}(f^{\infty}) = \sum_{t=1}^{\infty} \sum_{j \leq a} \mathbb{P}_{f^{\infty}}(x_{t} = j, y_{t} = a \mid x_{1} = i) \cdot (-1) \leq 0, i \in E.$$

Consequently,

$$\sum_{t=1}^{\infty} \mathbb{P}_{f^{\infty}}(x_{t} = j \mid x_{1} = i) < \infty \quad \text{for every } i, j \in E,$$

i.e. \textbf{f}^{∞} is a transient policy. $\hfill\square$

REMARK 3.2.1. For another proof of theorem 3.2.3 we refer to remark 3.3.2.

Next, we will give some equivalent characterizations of a transient dynamic programming problem. For the presentation of this result we use the following definition and lemma.

DEFINITION 3.2.2. Suppose that we change a TMD-model in another TMD-model in the following way:

$$\begin{split} \widetilde{\mathbf{E}} &:= \mathbf{E} \cup \{\mathbf{0}\} \\ \widetilde{\mathbf{A}}(\mathbf{i}) &:= \begin{cases} \mathbf{A}(\mathbf{i}) & \mathbf{i} \neq \mathbf{0} \\ \{1\} & \mathbf{i} = \mathbf{0} \end{cases} \\ \widetilde{\mathbf{A}}(\mathbf{i}) &:= \begin{cases} \mathbf{P}_{\mathbf{i}\mathbf{a}\mathbf{j}} & \mathbf{i} \neq \mathbf{0}, \, \mathbf{j} \neq \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \mathbf{1} - \boldsymbol{\Sigma}_{\mathbf{k}=1}^{\mathbf{N}} \mathbf{p}_{\mathbf{i}\mathbf{a}\mathbf{k}} & \mathbf{i} \neq \mathbf{0}, \, \mathbf{j} = \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \mathbf{0} & \mathbf{i} = \mathbf{0}, \, \mathbf{j} \neq \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \mathbf{1} & \mathbf{i} = \mathbf{0}, \, \mathbf{j} = \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \mathbf{1} & \mathbf{i} = \mathbf{0}, \, \mathbf{j} = \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \widetilde{\mathbf{r}}_{\mathbf{i}\mathbf{a}} &:= \begin{cases} \mathbf{r}_{\mathbf{i}\mathbf{a}} & \mathbf{i} \neq \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \mathbf{0} & \mathbf{i} = \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \\ \mathbf{0} & \mathbf{i} = \mathbf{0}, \, \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}) \end{cases} \end{split}$$

Then the transformed model is called the extended TMD-model. LEMMA 3.2.2. Let the sequence of vectors $\{y^t, t = 0, 1, ...\}$ be defined by

$$\begin{aligned} \mathbf{y}_{i}^{0} &:= 1 & i \in \mathbf{E} \\ \mathbf{y}_{i}^{t} &:= \max_{\mathbf{a}} \sum_{j} \mathbf{p}_{iaj} \mathbf{y}_{j}^{t-1}, i \in \mathbf{E}, t \in \mathbf{N}, \end{aligned}$$

and let the sequence of pure and stationary policies $\{f_t^{\infty},t=1,2,\ldots\}$ satisfy

$$y_{i}^{t} = \sum_{j} p_{if_{t}(i)j} y_{j}^{t-1}$$
, $i \in E, t \in \mathbb{N}$.

Then,

$$y_{i}^{t} = \sum_{j} p_{ij}^{t+1}(R_{t}) = sup_{R} \sum_{j} p_{ij}^{t+1}(R), i \in E, t \in \mathbb{N}_{0},$$

where

$$R_t := (f_t, f_{t-1}, \dots, f_2, f_1, f_1, \dots), t \ge 1, and R_0 is an arbitrary cy.$$

polic

PROOF. We will apply induction on t. t = 0: For any policy R and any initial state i we have $\Sigma_j p_{ij}^1(R) = 1$. Hence,

$$1 = y_{i}^{0} = \sum_{j} p_{ij}^{1}(R_{0}) = sup_{R} \sum_{j} p_{ij}^{1}(R), \quad i \in E.$$

Suppose that the result is correct for t = $1, 2, \ldots, T-1$. We shall show that the lemma is also true for t = T. Take any i ϵ E. By corollary 2.5.1, it is sufficient to show that $y_{i}^{t} = \sum_{j} p_{ij}^{t+1}(R_{t}) = sup_{R \in C} \sum_{j} p_{ij}^{t+1}(R)$. Take any arbitrary $R = (\pi^{1}, \pi^{2}, ...) \in C_{M}$. Then, we obtain

$$\sum_{j} p_{ij}^{T+1}(R) = \sum_{j} \sum_{k} p_{ik}(\pi^{1}) p_{kj}^{T}(\pi^{2}, \pi^{3}, ...) \leq \sum_{k} p_{ik}(\pi^{1}) y_{k}^{T-1} \leq y_{i}^{T}.$$

Since R is an arbitrarily chosen policy, we obtain

$$y_{i}^{T} \geq sup_{R} \sum_{j} p_{ij}^{T+1}(R)$$
.

On the other hand,

$$y_{i}^{T} = max_{a} \sum_{k} p_{iak} y_{k}^{T-1} = \sum_{k} p_{ik} (f_{T}) y_{k}^{T-1} = \sum_{k} p_{ik} (f_{T}) \sum_{j} p_{kj}^{T} (R_{T-1})$$
$$= \sum_{j} p_{ij}^{T+1} (R_{T}) \leq sup_{R} \sum_{j} p_{ij}^{T+1} (R) .$$

Hence,

$$y_{i}^{T} = \sum_{j} p_{ij}^{T+1}(R_{T}) = sup_{R} \sum_{j} p_{ij}^{T+1}(R).$$

THEOREM 3.2.4. The following five statements are equivalent.

(i) Every pure and stationary policy is transient.

(ii) Every policy is transient. (iii) $\max_i y_i^N < 1$, where y^N is defined by (3.2.3).

- The TMD-model is contracting. (iv)
- (v) The linear programming problem

$$\max \left\{ \sum_{i} \sum_{a} x_{ia} \middle| \begin{array}{c} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} \leq \beta_{j} & j \in E \\ \\ x_{ia} \geq 0 & i \in E, a \in A(i) \end{array} \right\}$$

where β_{i} > 0, j ϵ E, are arbitrarily chosen,

has a finite solution.

<u>REMARK 3.2.2</u>. The equivalence of the first three statements has been proven by VEINOTT [1969] for nonrandomized policies. HORDIJK [1976] has shown the equivalence of the first four statements for general policies. The equivalence between (i) and (v) is also established by DENARDO & ROTHBLUM [1979].

PROOF OF THEOREM 3.2.4.

(i) ⇒ (ii): Let i and j be two arbitrarily chosen states. Consider the dynamic programming problem with the rewards

$$r_{ka} := \begin{cases} 1 & k = j, a \in A(k) \\ \\ 0 & k \neq j, a \in A(k) \end{cases}$$

Then, for any policy R, we have

$$v_{i}(R) = \sum_{t=1}^{\infty} \sum_{k} \sum_{a} \mathbb{P}_{R}(x_{t} = k, Y_{t} = a | x_{1} = i) \cdot r_{ka}$$
$$= \sum_{t=1}^{\infty} \mathbb{P}_{R}(x_{t} = j | x_{1} = i).$$

Let f^{∞} be a pure and stationary optimal policy (the existence of f^{∞} is implied by theorem 3.2.1). Since we have assumed that f^{∞} is a transient policy, we obtain

$$\sum_{t=1}^{\infty} \mathbb{P}_{R}(x_{t} = j \mid x_{1} = i) = v_{i}(R) \leq v_{i} = v_{i}(f^{\infty}) =$$
$$\sum_{t=1}^{\infty} \mathbb{P}_{f}^{\infty}(x_{t} = j \mid x_{1} = i) < \infty,$$

i.e. R is a transient policy.

(ii) \Rightarrow (iii): By lemma 3.2.2, it is sufficient to show that $\Sigma_{j} p_{ij}^{N+1}(R) < 1$ for all $i \in E$ and all policies $R = (f_1, f_2, ...)$, where $f_t^{\infty} \in C_D$, $t \in \mathbb{N}$. Consider the extended TMD-model. Then $\Sigma_{j} p_{iaj} = 1$ for all $a \in \widetilde{A}(i)$, $i \in \widetilde{E}$. Since $\widetilde{A}(0) = \{1\}$ and $\widetilde{p}_{010} = 1$, $\widetilde{r}_{01} = 0$, any policy R that is defined for the original model corresponds uniquely to a policy \widetilde{R} in the extended model and $v_i(R) = \widetilde{v}_i(\widetilde{R})$, $i \in E$, where $\widetilde{v}_i(\widetilde{R})$ is the expected total reward in the extended model. Take any $i \in E$ and choose any policy $R = (f_1, f_2, \ldots)$, where $f_t^{\infty} \in C_D$, $t \in \mathbb{N}$. For $k = 1, 2, \ldots$ we define subsets T_k of the state space \widetilde{E} by

$$T_{1} := \{i\}$$
$$T_{k} := \{j \in \widetilde{E} \mid p_{ij}^{k}(\widetilde{R}) > 0\} \qquad k = 2, 3, \dots$$

For the proof that statement (iii) follows from statement (ii) we need the following three propositions.

<u>PROPOSITION 1</u>. If, for any integer n such that $1 \le n \le N$, $0 \notin \bigcup_{\ell=1}^{n} T_{\ell}$ implies that $T_{n+1} \notin \bigcup_{\ell=1}^{n} T_{\ell}$, then statement (iii) holds. <u>PROOF</u>. Since state 0 is an absorbing state, $0 \in \bigcup_{\ell=1}^{n} T_{\ell}$ implies that $0 \in T_{n+1}$. Suppose that $0 \notin \bigcup_{\ell=1}^{N} T_{\ell}$. Then $0 \notin \bigcup_{\ell=1}^{n} T_{\ell}$ for $n = 1, 2, \ldots, N$. Then, by the assumption of the proposition, we have that $\bigcup_{\ell=1}^{n+1} T_{\ell}$ has at least one state more than $\bigcup_{\ell=1}^{n} T_{\ell}$ for all $n = 1, 2, \ldots, N$. Consequently, $\bigcup_{\ell=1}^{N+1} T_{\ell} = \widetilde{E}$ which implies that $0 \in T_{N+1}$. Hence,

$$\sum_{j} p_{ij}^{N+1}(R) = 1 - \widetilde{p}_{i0}^{N+1}(\widetilde{R}) < 1, \text{ i.e. statement (iii) holds.}$$

<u>PROPOSITION 2</u>. Suppose that the integer n is such that $1 \le n \le N$, $0 \notin \bigcup_{\ell=1}^{n} T_{\ell}$ and $T_{n+1} \subseteq \bigcup_{\ell=1}^{n} T_{\ell}$. Let the pure and stationary policy \tilde{f}^{∞} be defined by

$$\widetilde{f}(j) := \begin{cases} f_k(j) & \text{ if } j \in T_k \setminus \bigcup_{\ell=1}^{k-1} T_\ell \\ \\ \\ arbitrarily \ chosen & \text{ if } j \notin \bigcup_{\ell=1}^n T_\ell. \end{cases}$$

Define $T_1^\star:=\{i\} \text{ and } T_k^\star:=\{j \in \widetilde{E}\,|\, \widetilde{p}_{\texttt{ij}}^k\,(\widetilde{f}^\infty)>0\}\ k=2,3,\ldots$. Then,

$$\mathbf{T}_{k}^{\star} \subset \bigcup_{\ell=1}^{n} \mathbf{T}_{\ell}, \quad k \in \mathbb{N}.$$

PROOF. The proof is given by induction on k.

$$\mathbf{k} = 1: \mathbf{T}_{1}^{*} = \mathbf{T}_{1} \subset \bigcup_{\ell=1}^{n} \mathbf{T}_{\ell}.$$

44

Ł

Suppose that $T_k^* \subset \bigcup_{\ell=1}^n T_\ell$, $k = 1, 2, \dots, m$. Take any $j \in T_{m+1}^*$. Then, there exists a state $s \in T_m^*$ such that $p_{s\widetilde{f}(s)j} > 0$. Since $s \in \bigcup_{\ell=1}^n T_\ell$, we have $\widetilde{f}(s) = f_k(s)$ where k satisfies $s \in T_k \setminus \bigcup_{\ell=1}^{k-1} T_\ell$. From $s \in T_k$ and $\widetilde{f}(s) = f_k(s)$ it follows that

$$p_{ij}^{k+1}(\widetilde{R}) \ge p_{is}^{k}(\widetilde{R}) \cdot p_{sf(s)j} > 0.$$

Hence,

$$j \in T_{k+1} \subset U_{\ell=1}^{n+1} T_{\ell} = U_{\ell=1}^{n} T_{\ell},$$

which completes the proof that $T_{m+1}^* \subset \bigcup_{\ell=1}^n T_\ell$. <u>PROPOSITION 3</u>. Suppose that we have the same assumptions as in proposition 2. Then, policy f^{∞} is nontransient.

<u>PROOF</u>. Since $0 \notin \bigcup_{\ell=1}^{n} \mathbb{T}_{\ell}$ and $\mathbb{T}_{k}^{*} \subset \bigcup_{\ell=1}^{n} \mathbb{T}_{\ell}$ for all $k \in \mathbb{N}$, we have $p_{10}^{k}(\widetilde{f}) = 0$, $k \in \mathbb{N}$. Consequently, $\Sigma_{j} p_{1j}^{k}(f) = 1$ for all $k \in \mathbb{N}$. Hence,

$$\sum_{t=1}^{\infty} \sum_{j} \mathbb{P}_{t} (x_{t} = j \mid x_{1} = i) = +\infty,$$

implying that the pure and stationary policy f^{∞} is nontransient.

We can complete the proof of statement (iii) as follows. Statement (ii) implies that any policy is transient. Then, by proposition 3, the assumptions of proposition 2 are not satisfied. Therefore, by proposition 1, statement (iii) holds.

(iii) \Rightarrow (iv): Let a := $max_i y_i^N$ and b := $a^{1/(N+1)}$. Then, $a \le b < 1$. Take α such that $b < \alpha < 1$ and define the vector μ by

$$\mu_{i} := \sup_{\mathbf{R}} \sum_{t=1}^{\infty} (1/\alpha)^{t-1} \sum_{j} \mathbb{P}_{\mathbf{R}} (\mathbf{X}_{t} = j \mid \mathbf{X}_{1} = i), \quad i \in \mathbb{E}.$$

From lemma 3.2.2 it follows that

$$\begin{aligned} \mathbf{a} &= \max_{\mathbf{i}} \sup_{\mathbf{R}} \sum_{j} p_{\mathbf{i}j}^{\mathbf{N}+1}(\mathbf{R}) &= \max_{\mathbf{i}} \max_{\mathbf{R} \in \mathcal{C}_{\mathbf{M}}} \sum_{j} p_{\mathbf{i}j}^{\mathbf{N}+1}(\mathbf{R}) \\ &= \max_{\mathbf{R} \in \mathcal{C}_{\mathbf{M}}} \max_{\mathbf{i}} \sum_{j} p_{\mathbf{i}j}^{\mathbf{N}+1}(\mathbf{R}) &= \max_{\mathbf{R} \in \mathcal{C}_{\mathbf{M}}} \|\mathbf{p}^{\mathbf{N}+1}(\mathbf{R})\|. \end{aligned}$$

Hence, for any policy R ϵ C_{M} and any t ϵ \mathbb{N} , we may write

$$\|\mathbf{p}^{\mathsf{t}}(\mathbf{R})\| \leq \|\mathbf{p}^{\lfloor \mathsf{t}/(\mathsf{N}+1) \rfloor} \cdot (\mathsf{N}+1) (\mathbf{R})\| \leq a^{\lfloor \mathsf{t}/(\mathsf{N}+1) \rfloor} \leq a^{-1} \cdot b^{\mathsf{t}}.$$

Consequently,

$$\sum_{t=1}^{\infty} (1/\alpha)^{t-1} \sum_{j \in \mathbb{P}_{R}} (x_{t} = j \mid x_{1} = i) \leq \sum_{t=1}^{\infty} (1/\alpha)^{t-1} \| p^{t}(R) \| \leq a^{-1} b \cdot \sum_{t=1}^{\infty} (b/\alpha)^{t-1} = \frac{\alpha b}{a(\alpha - b)}$$

Therefore, μ_{i} is well-defined, i \in E.

Similarly to the proof of theorem 2.5.2 it can be shown that

$$\mu_{i} = max_{a} \{1 + \frac{1}{\alpha} \sum_{j} p_{iaj} \mu_{j} \}, \quad i \in E.$$

Then, we obtain

$$\alpha \mu_{i} \geq \alpha + \sum_{j} p_{iaj} \mu_{j} \geq \sum_{j} p_{iaj} \mu_{j}, \quad a \in A(i), i \in E,$$

i.e. the TMD-model is contracting.

 $(iv) \Rightarrow (v)$: Suppose that the linear program has no finite solution. Since the linear program is feasible (for instance x = 0 is a feasible solution), the optimum value is in infinity. Then, from the theory of linear programming it follows that there exists a vector $s \neq 0$ such that

$$(3.2.4) \qquad s_{ia} \ge 0, a \in A(i), i \in E, and \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) s_{ia} \le 0, j \in E.$$

Define the stationary policy π^{∞} by

$$(3.2.5) \qquad \pi_{ia} := \begin{cases} s_{ia}/s_{i} & a \in A(i), i \in E_{s} \\ \\ arbitrarily & a \in A(i), i \in E \setminus E_{s}. \end{cases}$$

From (3.2.4) it follows that

$$0 \le s_{j} = \sum_{a} s_{ja} \le \sum_{i} \sum_{a} p_{iaj} s_{ia} = \sum_{i} (\sum_{a} p_{iaj} \pi_{ia}) \cdot s_{i} = \sum_{i} p_{ij} (\pi) \cdot s_{i}, j \in E,$$

or in vector notation

(3.2.6)
$$0 \le s^T \le s^T P(\pi)$$
.

By iterating (3.2.6), we obtain

-

m

$$(3.2.7) \qquad 0 \leq \mathbf{s}^{\mathrm{T}} \leq \mathbf{s}^{\mathrm{T}} \mathbf{P}^{\mathrm{n}}(\pi) \qquad \mathbf{n} \in \mathbb{N}.$$

Since the dynamic programming problem is contracting, there exists a vector μ >> 0 and a real $\alpha \in$ [0,1) such that

$$\sum_{j} p_{iaj} \mu_{j} \leq \alpha \mu_{i} \qquad a \in A(i), i \in E.$$

Hence,

$$0 \leq P(\pi)\mu \leq \alpha \mu$$

and consequently,

$$0 \leq P^{n}(\pi)\mu \leq \alpha^{n}\mu$$
 for all $n \in \mathbb{N}$,

implying that $P^{n}(\pi) \rightarrow 0$ for $n \rightarrow \infty$.

Then, from relation (3.2.7), it follows that s = 0, which gives a contradiction. This completes the proof of statement (v).

(v) \Rightarrow (i): Suppose that statement (i) is not true. Then, there exists a pure and stationary policy $f^{\overset{\infty}{}}$ such that

$$\sum_{t=1}^{\infty} \mathbb{P}_{f}(X_{t} = j \mid X_{1} = i) = +\infty \quad \text{for certain } i, j \in E.$$

Then, we obtain

$$(3.2.8) \qquad \sum_{t=1}^{\infty} \beta^{T_{p}t-1}(f) e = \sum_{\ell} \beta_{\ell} \cdot \sum_{t=1}^{\infty} \sum_{k} p_{\ell k}^{t-1}(f) = +\infty.$$

Consider the sequence $\{x^n, n = 1, 2, ...\}$, defined by

$$\mathbf{x}_{ia}^{n} := \begin{cases} \sum_{t=1}^{n} \left[\beta^{T} \mathbf{p}^{t-1}(\mathbf{f})\right]_{i} & a = f(i) \\ & & n \in \mathbb{N}, \\ 0 & a \neq f(i) \end{cases}$$

Vector \mathbf{x}^{n} has the following properties:

1.
$$x_{ia}^{n} \ge 0$$
 a ϵ A(i), i ϵ E.

2.
$$\sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia}^{n} = \sum_{i} (\delta_{ij} - p_{ij}(f)) \sum_{t=1}^{n} \sum_{\ell} \beta_{\ell} p_{\ell i}^{t-1}(f) =$$

$$\sum_{\ell} \beta_{\ell} \sum_{t=1}^{n} \sum_{i} p_{\ell i}^{t-1}(f) (\delta_{ij} - p_{ij}(f)) = \sum_{\ell} \beta_{\ell} \sum_{t=1}^{n} \{ p_{\ell j}^{t-1}(f) - p_{\ell j}^{t}(f) \} =$$

$$\sum_{\ell} \beta_{\ell} \{ \delta_{\ell j} - p_{\ell j}^{n}(f) \} = \beta_{j} - \sum_{\ell} \beta_{\ell} p_{\ell j}^{n}(f) \le \beta_{j}, \quad j \in E.$$
3.
$$\sum_{i} \sum_{a} x_{ia}^{n} = \sum_{i} \sum_{t=1}^{n} [\beta^{T} p^{t-1}(f)]_{i} = \sum_{t=1}^{n} \beta^{T} p^{t-1}(f) e.$$

Hence, we have a sequence $\{x^n, n = 1, 2, ...\}$ of feasible solutions such that $\sum_i \sum_a x^n_{ia} \to +\infty$ for $n \to \infty$. This contradicts the assumption that the linear program has a finite solution. Therefore, we have shown that statement (i) is true. \Box ment (i) is true. \Box

The characterizations (iii) and (v) of theorem 3.2.4 give two finite algorithms in order to check the contraction property for a given Markov decision problem. Below we present these algorithms.

ALGORITHM IV for the verification of the contraction property for a Markov decision problem (iterative approach).

otherwise, t := t+1 and go to step 2.

ALGORITHM V for the verification of the contraction property for a Markov decision problem (linear programming approach).

<u>step 1</u>: Take any vector β such that $\beta_j > 0$, $j \in E$. <u>step 2</u>: Solve the linear programming problem

If the linear program has a finite solution, then the problem is contracting (STOP).

Otherwise, the problem is not contracting (STOP).

<u>REMARK 3.2.3</u>. If we use algorithm V and the algorithm shows that the problem is contracting, then we can obtain, from the dual program, a vector $\mu >> 0$ and a scalar $\alpha \in [0,1)$ such that

Namely: The dual linear program is

$$\min \left\{ \sum_{j} \beta_{j} \mu_{j} \middle| \begin{array}{c} \sum_{j} (\delta_{ij} - p_{iaj}) \mu_{j} \geq 1 & a \in A(i), i \in E \\ \\ \mu_{i} \geq 0 & j \in E \end{array} \right\},$$

and has also an optimal solution, say μ . Then we have

$$\mu_{i} \geq 1 + \sum_{j} p_{iaj,j} > 0, \quad i \in E$$

and for $\alpha := 1 - (\max_{i} \mu_{i})^{-1}$ we have $\alpha \in [0,1)$ and

$$\sum_{j} p_{iaj} \mu_{j} \leq \mu_{i} - 1 \leq \mu_{i} - \frac{\mu_{i}}{max_{i} \mu_{i}} = \alpha \mu_{i} \qquad a \in A(i), i \in E.$$

3.3. OPTIMAL TRANSIENT POLICIES

In this section we discuss the problem of finding an optimal policy in the class of the transient policies, i.e. a policy R^{\star} such that

$$(3.3.1) v_i(R^*) = sup\{v_i(R) \mid R \text{ is a transient policy}\}, i \in E.$$

Such a policy may be of interest, for instance in the so-called optimal stopping problem (see application 3.3.1 at the end of this section). A related optimal stopping problem, whose utility function is exponential, is discussed by DENARDO & ROTHBLUM [1979]. The problem of finding an optimal policy in the class of the transient policies can also be solved for models with $\Sigma_j p_{iaj} > 1$ for some $i \in E$, $a \in A(i)$ (cf.HORDIJK & KALLENBERG [1981a]). Another related paper is HORDIJK & KALLENBERG [1981c].

Any policy is transient in a contracting dynamic programming problem. In that case a policy which satisfies (3.3.1) is an optimal policy in the class of all policies. In general, the problem of finding an optimal transient policy is only relevant if there exists at least one transient policy. Therefore, we introduce the following assumption.

ASSUMPTION 3.3.1. There exists a transient policy.

Further on, we will show how, for a given problem, this assumption can be verified by linear programming.

The total expected reward of any transient policy is finite. However, the vector w, where

$$(3.3.2) \quad w_{i} := \sup\{v_{i}(R) \mid R \text{ is a transient policy}\}, \quad i \in E,$$

is not necessarily finite.

EXAMPLE 3.3.1. Consider the model of figure 3.3.1. The sequence $\{\pi^{\infty}(n), n = 1, 2, ...\}$ of stationary policies defined by

$$\pi_{1a}(n) := \begin{cases} 1 - 1/n & a = 1 \\ & & , & \pi_{21}(n) := 1, & n \in \mathbb{N} \\ 1/n & a = 2 \end{cases}$$

satisfies:

$$\sum_{t=1}^{\infty} \mathbb{P}_{\pi^{\circ}(n)}(x_{t}=j | x_{1}=i) = \begin{cases} n & i=1, j=1 \\ 2 & i=1, j=2 \\ 0 & i=2, j=1 \\ 2 & i=2, j=2 \end{cases} \xrightarrow{figure 3.3.1} Figure 3.3.1$$

Hence, every policy $\pi^{\infty}(n)$ is transient, but $w_1 \ge \sup_n v_1(\pi^{\infty}(n)) = +\infty$.

THEOREM 3.3.1. If w is finite, then w is a solution of the functional equation $(1 + 1)^{1/2} = 1$

$$x_i = max_a \{r_{ia} + \sum_j p_{iaj} x_j\}, i \in E.$$

<u>PROOF</u>. Let $R = (\pi^1, \pi^2, ...)$ be an arbitrary transient Markov policy. Then,

$$v_i(R) = r_i(\pi^1) + \sum_j p_{ij}(\pi^1)u_j(R), \quad i \in E,$$

where $u_{i}(R)$ represents the expected total reward earned from time 2, given

that the state at time 2 is j. Let \tilde{R} := $(\pi^2,\pi^3,\ldots),$ then we can write

$$^{\infty} > \sum_{t=2}^{\infty} \mathbb{P}_{R}(x_{t} = k \mid x_{1} = i) = \sum_{j} p_{ij}(\pi^{1}) \sum_{t=2}^{\infty} \mathbb{P}_{R}(x_{t-1} = k \mid x_{1} = j) \quad i,k \in E.$$

Hence, $\Sigma_{t=1}^{\infty} \mathbb{P}_{\widetilde{R}} (x_t = k | x_1 = j) < \infty$ for every k and every j with $\Sigma_{j} p_{j}(\pi^1) > 0$. Therefore, we have

$$u_j(R) = v_j(\widetilde{R}) \le w_j$$
 for all j such that $p_{ij}(\pi^1) > 0$ for some $i \in E$

Then, we obtain

$$v_i(R) \leq \sum_a \pi_{ia}^1 \{r_{ia} + \sum_j p_{iaj} w_j\} \leq max_a \{r_{ia} + \sum_j p_{iaj} w_j\}, \quad i \in E.$$

Theorem 2.5.1 and the fact that R is arbitrarily chosen imply that

$$(3.3.3) \quad w_{i} \leq \max_{a} \{r_{ia} + \sum_{j} p_{iaj} w_{j}\}, \quad i \in E.$$

Take any $\varepsilon > 0$. Suppose that for every $j \in E, R := (\pi^1(j), \pi^2(j), ...)$ is a transient policy that satisfies $v_j(R_j) \ge w_j - \varepsilon$. Again, by theorem 2.5.1, we may assume that R_i is a Markov policy.Let $a_i \in A(i)$, $i \in E$, be such that

$$r_{ia_{i}} + \sum_{j} p_{ia_{j}} w_{j} = max_{a} \{r_{ia} + \sum_{j} p_{iaj} w_{j}\}, \quad i \in E.$$

Let $\stackrel{\wedge}{R} = (\pi^1, \pi^2, ...)$ be the policy with $\pi^t_{i_1a_1...i_ta_t} := \pi^{t-1}_{i_ta_t}(i_2), t \ge 2$, and $\pi^1_{i_a} := \begin{cases} 1 & a = a_i, & i \in E \\ 0 & a \neq a_i, & i \in E. \end{cases}$

Hence, policy $\stackrel{\wedge}{R}$ is transient and we obtain

$$(3.3.4) \quad w_{i} \geq v_{i}(\hat{R}) = r_{ia_{i}} + \sum_{j} p_{ia_{i}j} v_{j}(R_{j}) \geq r_{ia_{i}} + \sum_{j} p_{ia_{i}j}(w_{j}-\epsilon) \geq max_{a} \{r_{ia} + \sum_{j} p_{iaj} w_{j}\} - \epsilon, \quad i \in E.$$

Since ε is arbitrarily chosen, (3.3.3) and (3.3.4) imply that

$$w_{i} = max_{a} \{r_{ia} + \sum_{j} p_{iaj} w_{j}\}, \quad i \in E. \square$$

EXAMPLE 3.3.2. E = {1}; A(1) = {1,2}; p_{111} = 1, p_{121} = \frac{1}{2}; r_{11} = 0, r_{12} = -1. It is easy to see that $w_1 = -2$; the functional equation is $x_1 = \max \{x_1, -1 + \frac{1}{2}, x_1\}$ with solution set $\{x_1 \mid x_1 \ge -2\}$. Hence, the solution of the functional equation is not unique.

DEFINITION 3.3.1. A vector $\tilde{w} \in \mathbb{R}^{N}$ is TMD-superharmonic if

$$\widetilde{w}_{i} \geq r_{ia} + \sum_{j} p_{iaj} \widetilde{w}_{j}$$
, $a \in A(i)$, $i \in E$.

THEOREM 3.3.2. Suppose that w is finite. Then, w is the smallest TMD-superharmonic vector.

<u>PROOF</u>. Theorem 3.3.1 implies that w is TMD-superharmonic. Suppose that \tilde{w} is also a TMD-superharmonic vector. From theorem 2.5.1 it follows that it is sufficient to prove that $\tilde{w} \ge v(R)$ for any transient Markov policy R. Let $R = (\pi^1, \pi^2, \ldots)$ be an arbitrary transient Markow policy. Since \tilde{w} is TMD-superharmonic, we have

(3.3.5)
$$\widetilde{w} \ge r(\pi^{t}) + P(\pi^{t})\widetilde{w}, \quad t \in \mathbb{N}.$$

By iterating (3.3.5), we obtain

$$\widetilde{w} \geq \sum_{t=1}^{n} \mathbb{P}(\pi^{1}) \mathbb{P}(\pi^{2}) \cdots \mathbb{P}(\pi^{t-1}) \mathbb{r}(\pi^{t}) + \mathbb{P}(\pi^{1}) \mathbb{P}(\pi^{2}) \cdots \mathbb{P}(\pi^{n}) \widetilde{w}, \quad n \in \mathbb{N}.$$

Because R is a transient Markov policy

$$P(\pi^{1})P(\pi^{2}) \cdot \cdot \cdot P(\pi^{n}) \to 0 \quad \text{for } n \to \infty$$

and

$$\mathbf{v}(\mathbf{R}) = \lim_{n \to \infty} \sum_{t=1}^{n} \mathbf{P}(\pi^{1}) \mathbf{P}(\pi^{2}) \cdots \mathbf{P}(\pi^{t-1}) \mathbf{r}(\pi^{t}).$$

Consequently,

$$\widetilde{w} \geq v(R)$$

which completes the proof of the theorem. $\hfill\square$

Theorem 3.3.2 implies that, if w is finite, then w is the unique optimal solution of the linear programming problem

$$(3.3.6) \quad \min\{\sum_{j} \beta_{j} \widetilde{w}_{j} \mid \sum_{j} (\delta_{ij} - p_{iaj}) \widetilde{w}_{j} \geq r_{ia}, \quad a \in A(i), i \in E\}$$

where $\beta_j > 0$, $j \in E$, are given numbers. The dual linear programming problem is:

Notice that any feasible solution x of program (3.3.7) satisfies

$$\mathbf{x}_{j} := \sum_{a} \mathbf{x}_{ja} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj} \mathbf{x}_{ia} \ge \beta_{j} > 0, \quad j \in E.$$

We define for any feasible solution x of program (3.3.7) a stationary policy $\pi^{\widetilde{w}}(x)$ by

$$(3.3.8) \quad \pi_{ia}(x) := x_{ia}/x_{i} \quad a \in A(i), i \in E.$$

Since $x_{ia} = \pi_{ia}(x) \cdot x_{i}$, $a \in A(i)$, $i \in E$, we can write

$$\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})\pi_{ia}(x)\cdot x_{i} = \beta_{j}, \quad j \in E.$$

Hence, we have

(3.3.9)
$$\mathbf{x}^{\mathrm{T}} = \boldsymbol{\beta}^{\mathrm{T}} + \mathbf{x}^{\mathrm{T}} \mathbf{P}(\boldsymbol{\pi}(\mathbf{x})).$$

By iterating (3.3.9), we obtain

$$\mathbf{x}^{\mathrm{T}} = \sum_{t=1}^{n} \beta^{\mathrm{T}} \mathbf{p}^{t-1} \left(\pi(\mathbf{x}) \right) + \mathbf{x}^{\mathrm{T}} \mathbf{p}^{n} \left(\pi(\mathbf{x}) \right) \geq \sum_{t=1}^{n} \beta^{\mathrm{T}} \mathbf{p}^{t-1} \left(\pi(\mathbf{x}) \right), \quad n \in \mathbb{N}.$$

Hence,

$$\sum_{t=1}^{\infty} \beta^{T} p^{t-1}(\pi(x)) < \infty,$$

and consequently,

$$\sum_{t=1}^{\infty} \mathbb{P}_{\pi^{\infty}(\mathbf{x})} (\mathbf{x}_{t} = j \mid \mathbf{x}_{1} = i) = \sum_{t=1}^{\infty} [\mathbb{P}^{t-1}(\pi(\mathbf{x}))]_{ij} < \infty, \quad i, j \in E.$$

So, the policy $\pi^{\infty}(x)$ is transient and therefore we can write (cf. KEMENY & SNELL [1960] p.22)

(3.3.10)
$$\mathbf{x}^{\mathrm{T}} = \beta^{\mathrm{T}} (\mathbf{I} - \mathbf{P}(\pi(\mathbf{x})))^{-1}$$
.

Conversely, let π^{∞} be any transient stationary policy. Then, the inverse $(I-P(\pi))^{-1}$ exists. We define the vector $\mathbf{x}(\pi)$ by

(3.3.11)
$$x_{ia}(\pi) := [\beta^{T}(I-P(\pi))^{-1}]_{i} \cdot \pi_{ia}, a \in A(i), i \in E.$$

THEOREM 3.3.3. The mapping defined by (3.3.11) is a one-to-one mapping of the transient stationary policies onto the set of feasible solutions of the linear program (3.3.7) with (3.3.8) as the inverse mapping. Furthermore, the set of extreme feasible solutions of program (3.3.7) corresponds to the transient stationary policies which are pure.

<u>PROOF</u>. First, we prove that $x(\pi)$ is a feasible solution of program (3.3.7). Let π^{∞} be an arbitrarily chosen transient stationary policy. Then $x(\pi)$ satisfies

1.
$$\mathbf{x}_{ia}(\pi) = [\beta^{T}(\mathbf{I}-\mathbf{P}(\pi))^{-1}]_{i} \cdot \pi_{ia} = [\beta^{T} \Sigma_{t=1}^{\infty} \mathbf{P}^{t-1}(\pi)]_{i} \cdot \pi_{ia} \ge 0, \ \mathbf{a} \in \mathbf{A}(\mathbf{i}), \mathbf{i} \in \mathbf{E}.$$

2. $\Sigma_{i} \Sigma_{a} (\delta_{ij} - \mathbf{P}_{iaj}) \mathbf{x}_{ia}(\pi) = \Sigma_{a} \mathbf{x}_{ja}(\pi) - \Sigma_{i} \Sigma_{a} \mathbf{P}_{iaj} \mathbf{x}_{ia}(\pi)$
 $= [\beta^{T}(\mathbf{I}-\mathbf{P}(\pi))^{-1}]_{j} - [\beta^{T}(\mathbf{I}-\mathbf{P}(\pi))^{-1}\mathbf{P}(\pi)]_{j}$
 $= [\beta^{T}(\mathbf{I}-\mathbf{P}(\pi))^{-1}(\mathbf{I}-\mathbf{P}(\pi))]_{j} = \beta_{j}, \quad \mathbf{j} \in \mathbf{E}.$

Hence, $\mathbf{x}(\pi)$ is a feasible solution of (3.3.7). From (3.3.10) and (3.3.11) it follows that $\mathbf{x} = \mathbf{x}(\pi(\mathbf{x}))$, implying that the mapping is onto. Since $\pi_{ia}(\mathbf{x}(\pi)) = \pi_{ia}$, $a \in A(i)$, $i \in E$, the mapping is one-to-one and the inverse mapping is given by (3.3.8).

Let f^{∞} be an arbitrarily chosen pure and stationary transient policy. Suppose that x(f) is not an extreme feasible solution. Then, there exist feasible solutions x^1 and x^2 of program (3.3.7) and a real number $\lambda \in (0,1)$ such that $x^1 \neq x^2$ and $x(f) = \lambda x^1 + (1-\lambda) x^2$. Since $x_{ia}(f) = 0$, $a \neq f(i)$, $i \in E$, we also have $x_{ia}^1 = x_{ia}^2 = 0$, $a \neq f(i)$, $i \in E$. Hence, the N-dimensional vectors $x^1 = (x_{if(i)}^1)$ and $x^2 = (x_{if(i)}^2)$ are solutions of the linear system $x^T(I-P(f)) = \beta^T$. Since f^{∞} is a transient policy, the matrix (I-P(f)) is nonsingular and consequently, the system has a unique solution, namely $\beta^{T}(I-P(f))^{-1}$. This implies that $x^{1} = x^{2}$, giving a contradiction. Hence, we have proved that x(f) is an extreme solution.

Conversely, let x be any extreme feasible solution of program (3.3.7). Since N is the number of constraints in program (3.3.7), x has at most N positive components. On the other hand, it follows from

$$\sum_{a} x_{ja} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj} x_{ia} > 0, \quad j \in E,$$

that in each state j there is at least one positive component. Consequently, x has in each state j exactly one component which is positive. Hence, the corresponding policy $\pi^{\infty}(x)$ is a pure policy.

For a given initial distribution $\beta = (\beta_1, \beta_2, \dots, \beta_N)^T$, where $\beta_i > 0$ i ϵ E, we denote for any transient policy R the expected number of times of being in state j and then choosing action a by

$$(3.3.12) \qquad x_{ja}(R) := \sum_{i} \beta_{i} \cdot \sum_{t=1}^{\infty} \mathbb{P}_{R} (x_{t} = j, x_{t} = a \mid x_{1} = i).$$

Since R is a transient policy, we have $x_{ja}(R) < \infty$, a $\epsilon A(j)$, $j \epsilon E$. The definitions (3.3.11) and (3.3.12) imply that

$$\mathbf{x}_{ja}(\boldsymbol{\pi}^{\boldsymbol{\varpi}}) = [\boldsymbol{\beta}^{\mathrm{T}}(\mathbf{I}-\mathbf{P}(\boldsymbol{\pi}))^{-1}]_{j} \cdot \boldsymbol{\pi}_{ja} = \mathbf{x}_{ja}(\boldsymbol{\pi}), \quad \mathbf{a} \in \mathbf{A}(j), \ j \in \mathbf{E}.$$

NOTATION 3.3.1.

 $K := \{x(R) \mid R \in C \text{ and transient}\}$ $K(M) := \{x(R) \mid R \in C_{M} \text{ and transient}\}$ $K(S) := \{x(R) \mid R \in C_{S} \text{ and transient}\}$ $K(D) := \{x(R) \mid R \in C_{D} \text{ and transient}\}$

$$P := \left\{ \mathbf{x} \middle| \begin{array}{c} \sum_{i} (\delta_{ij} - p_{iaj}) \mathbf{x}_{ia} = \beta_{j} & j \in \mathbf{E} \\ \\ \mathbf{x}_{ia} \geq 0 & a \in \mathbf{A}(i), i \in \mathbf{E} \end{array} \right\}$$

THEOREM 3.3.4. $\overline{K(D)} \subset K(S) = K(M) = K = P$.

<u>PROOF</u>. The equality K = K(M) follows from theorem 2.5.1. Since P is a convex polyhedron, theorem 3.3.3 implies that $\overline{K(D)} \subset P = K(S) \subset K(M) = K$. Therefore, it is sufficient to show that $K(M) \subset P$. Take any $x(R) \in K(M)$ and suppose that $R = (\pi^1, \pi^2, \ldots)$. Then, we obtain

$$\begin{split} &\sum_{i}\sum_{a}(\delta_{ij}-P_{iaj}) \times_{ia}(R) = \\ &= \sum_{i}\sum_{a}(\delta_{ij}-P_{iaj})\sum_{\ell}\beta_{\ell}\cdot\lim_{n\to\infty}\sum_{t=1}^{n}\{P(\pi^{1})\cdots P(\pi^{t-1})\}_{\ell i}\cdot\pi_{ia}^{t} \\ &= \sum_{\ell}\beta_{\ell}\cdot\lim_{n\to\infty}\sum_{t=1}^{n}\sum_{i}\{P(\pi^{1})\cdots P(\pi^{t-1})\}_{\ell i}\cdot(\delta_{ij}-P_{ij}(\pi^{t})) \\ &= \sum_{\ell}\beta_{\ell}\cdot\lim_{n\to\infty}\sum_{t=1}^{n}\{P(\pi^{1})\cdots P(\pi^{t-1})\cdot(I-P(\pi^{t}))\}_{\ell j} \\ &= \sum_{\ell}\beta_{\ell}\cdot\lim_{n\to\infty}\{I-P(\pi)P(\pi^{2})\dots P(\pi^{n})\}_{\ell j} = \sum_{\ell}\beta_{\ell}\cdot\delta_{\ell j} = \beta_{j}, \quad j \in E. \end{split}$$

Hence, $x(R) \in P$, which completes the proof.

REMARK 3.3.1. The next example shows that $\overline{K(D)} \neq P$ is possible.

Hence, $\overline{K(D)} \neq P$.

<u>REMARK 3.3.2</u>. Suppose that $K \neq \emptyset$, then also $P \neq \emptyset$. Lemma 1.2.2 implies the existence of an extreme feasible solution of program (3.3.7). Then, by theorem 3.3.3, the existence of a transient pure and stationary policy is shown. This argument provides another proof of theorem 3.2.3.

<u>REMARK 3.3.3</u>. Since assumption 3.3.1 is satisfied if and only if $P \neq \emptyset$, this assumption can be verified by linear programming: we have to check the feasibility of program (3.3.7).

<u>REMARK 3.3.4</u>. If the vector w is finite, then it follows from theorem 3.3.2 that the linear programming problem (3.3.7) has a finite optimum. The following theorem shows that the reverse statement is also true. Furthermore, this theorem proves the correctness of algorithm VI for the determination of an optimal transient policy.

<u>THEOREM 3.3.5</u>. Let x^* be an extreme optimal solution of the linear programming problem (3.3.7). Then, the pure and stationary policy f_*^{∞} , where $f_*(i)$ satisfies $x^*_{if_*(i)} > 0$, $i \in E$, is optimal in the class of transient policies.

<u>PROOF</u>. In the proof of theorem 3.3.3 we have seen that, from the fact that x^* is an extreme solution, it follows that f_{\star}^{∞} is transient and is uniquely determined by the condition $x^*_{if_{\star}(i)} > 0$, $i \in E$.

Since $x_{if_{\star}(i)}^{\star} > 0$ for every $i \in E$, it follows from the complementary slackness property of linear programming that $(I-P(f_{\star})) = r(f_{\star})$. Hence,

$$w = (I-P(f_*))^{-1} r(f_*) = v(f_*^{\infty}),$$

i.e. f_{\downarrow}^{∞} is an optimal transient policy. []

ALGORITHM VI for the construction of an optimal pure and stationary transient policy in a TMD-model.

step 1: Take any vector β such that $\beta_j > 0$, $j \in E$.

step 2: Use the simplex method to compute an optimal solution x^* of the linear programming problem

(if the problem is infeasible, then there exists no transient policy; if the problem has an infinite solution, then there exists no optimal transient policy).

step 3: Take f_*^{∞} such that $x_{if_*}^{*}(i) > 0$, $i \in E$.

<u>REMARK 3.3.5</u>. Since any extreme solution x of program (3.3.7) satisfies $x_{ia_{\underline{i}}} > 0$ for exactly one $a_{\underline{i}} \in A(\underline{i})$ for every $\underline{i} \in E$, the linear program is nondegenerated.

The following example shows that the policy f_{\star}^{∞} , obtained by algorithm VI, is in general not optimal in the class of all policies.

EXAMPLE 3.3.4. Consider the model of figure 3.3.3. The corresponding linear program is:

$$\max \left\{ -x_{11}^{-1} - x_{21}^{-1} \left| \begin{array}{c} x_{21}^{+1} + x_{12}^{-1} - x_{22}^{-1} \\ -x_{12}^{+1} + x_{21}^{-1} + x_{22}^{-1} \\ x_{11}^{-1} + x_{21}^{-1} + x_{22}^{-1} \\ x_{21}^{-1} + x_{21}^{-1} + x_{22}^{-1} \end{array} \right\}.$$

An extreme optimal solution is $(\mathbf{x}_{11}^{\star} = 0, \mathbf{x}_{12}^{\star} = \frac{1}{2}, \mathbf{x}_{21}^{\star} = 2, \mathbf{x}_{22}^{\star} = 0)$. The pure and stationary policy $\mathbf{f}_{\mathbf{x}}^{\mathbf{x}}$ satisfies $\mathbf{f}_{\mathbf{x}}(1) = 2, \mathbf{f}_{\mathbf{x}}(2) = 1$. If can easily be verified that $\mathbf{v}_{1}(\mathbf{f}_{\mathbf{x}}^{\infty}) = \mathbf{v}_{2}(\mathbf{f}_{\mathbf{x}}^{\infty}) = -2$. However, the policy \mathbf{f}^{∞} where $\mathbf{f}(1) = \mathbf{f}(2) = 2$ gives $\mathbf{v}_{1}(\mathbf{f}^{\infty}) = \mathbf{v}_{2}(\mathbf{f}^{\infty}) = 0$.

THEOREM 3.3.6. The correspondence between the transient stationary policies and the feasible solutions of the linear program preserves the optimality property, i.e.

- 1. if π^{∞} is a stationary optimal transient policy, then $x(\pi)$ is an optimal solution of the dual linear programming problem (3.3.7).
- 2. If x is an optimal solution of the linear program (3.3.7), then the stationary policy $\pi^{\infty}(x)$ is an optimal transient policy.

PROOF.

2.

1. Since w is an optimal solution of the primal problem and $x(\pi)$ is feasible for the dual problem, it follows from theorem 1.3.4 that it is sufficient to prove that $\sum_{i=a}^{n} r_{i=a} x_{i=a} (\pi) = \sum_{j=1}^{n} \beta_{j=j} w_{j=j}$. We can write

$$\sum_{i}\sum_{a}r_{ia}x_{ia}(\pi) = \sum_{i}\sum_{a}r_{ia}\left[\beta^{T}(I-P(\pi))^{-1}\right]_{i}\cdot\pi_{ia}$$
$$= \beta^{T}(I-P(\pi))^{-1}r(\pi) = \beta^{T}v(\pi^{\infty}) = \beta^{T}w,$$

which completes the proof of this part of the theorem.

$$\beta^{\mathrm{T}}\mathbf{v}(\pi^{\infty}(\mathbf{x})) = \beta^{\mathrm{T}}(\mathbf{I} - \mathbf{P}(\pi(\mathbf{x})))^{-1}\mathbf{r}(\pi(\mathbf{x})) = \sum_{i} \sum_{a} r_{ia} x_{ia}(\pi(\mathbf{x}))$$
$$= \sum_{i} \sum_{a} r_{ia} x_{ia} = \beta^{\mathrm{T}} w.$$

Since $\beta >> 0$ and $v(\pi^{\infty}(x)) \leq w$, it follows that $v(\pi^{\infty}(x)) = w$, i.e. $\pi^{\infty}(x)$ is an optimal transient policy.

REMARK 3.3.6. Theorem 3.3.6 implies that all optimal pure and stationary transient policies can be determined by the computation of all optimal extreme solutions of the dual program (3.3.7). In chapter 1 such an algorithm is presented (see algorithm I).

We continue this section with a discussion on Markov decision problems under constraints. We suppose that $\beta = (\beta_1, \beta_2, \dots, \beta_N)^T$ is a known initial distribution such that $\beta_j > 0$ for all $j \in E$. We exclude distributions where $\beta_j = 0$ for some $j \in E$. The reason is that in that case it will in general not be possible to distinguish the transient policies from the nontransient policies (see example 3.3.7). In the unconstrained case we can find a policy R^{*} that is optimal simultaneously for all initial states i ϵ E. In the constrained case, a policy which is optimal for all initial states does not exist in general (see example 3.3.5). Therefore, we use the concept of optimality with regard to a given initial distribution β .

We consider constraints that are linear functions of x(R), e.g.

 $\sum_{i} \sum_{a} q_{iak} x_{ia}(R) \leq b_{k}$ for the k-th constraint.

Notice that, by formula (3.3.12), the constraints depend on the initial distribution.

Markov decision problems under constraints may be of importance if we are interested in more than one reward function. Then, for instance, we want to maximize one reward function subject to the constraints that the other reward functions are bounded by some given quantities.

Linear programming seems extremely suitable for solving this kind of problems. The other standard techniques to solve unconstrained Markov decision problems (policy improvement and successive approximation) cannot handle these constrained problems. We shall show that there always exists an optimal *stationary* transient policy and we shall present an algorithm to compute one.

EXAMPLE 3.3.5. Consider the model of figure 3.3.4. Suppose that we have one reward function, which is indicated in the figure, and that we have the constraint $v_1(R) + v_2(R) \le 3$. Then we can formulate two constrained problems:

- (1) $sup\{v_1(R) \mid v_1(R) + v_2(R) \le 3\}$ which has as optimal solution f_1^{∞} , where $f_1(1) = 1$ and $f_1(2) = 2$
- (2) $\sup\{v_2(R) \mid v_1(R) + v_2(R) \le 3\}$ which has as optimal solution f_2^{∞} , where $f_2(1) = 2$ and $f_2(2) = 1$.

Hence, there exists no policy which is optimal for both problems simultaneously.

The constrained Markov decision problem can be formulated as:

In order to solve problem (3.3.13) we consider the following linear programming problem:

$$(3.3.14) \quad \max\left\{\sum_{i}\sum_{a}r_{ia}x_{ia} \middle| \begin{array}{l} \sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} = \beta_{j} & j \in E \\ \sum_{i}\sum_{a}q_{iak}x_{ia} \leq b_{k} & k = 1,2,\ldots,m \\ & x_{ia} \geq 0 & a \in A(i), i \in E \end{array}\right\}$$

THEOREM 3.3.7.

- Problem (3.3.13) is feasible if and only if problem (3.3.14) is feasible.
- (ii) The optima of the problems (3.3.13) and (3.3.14) are equal.
- (iii) If x is an optimal solution of the linear program (3.3.14), then $\pi^{\infty}(x)$ is an optimal solution of (3.3.13).
- (iv) If R is an optimal solution of problem (3.3.13), then x(R) is an optimal solution of program (3.3.14).

<u>PROOF</u>. The proof is straightforward using the following properties:

- (1) K = P.
- (2) Every transient policy R satisfies $\Sigma_{i}\beta_{i}v_{i}(R) = \Sigma_{i}\Sigma_{a}r_{ia}x_{ia}(R)$.
- (3) $x = x(\pi^{\infty}(x))$ for every $x \in P$.

<u>REMARK 3.3.7</u>. From theorem 3.3.7 it follows that, if the linear program (3.3.14) has a finite optimum, then problem (3.3.13) has an optimal solution that is stationary. The next example shows that, in general, problem (3.3.13) has no optimal solution in the class of pure and stationary policies, even in the case that $\overline{K(D)} = P$.

EXAMPLE 3.3.6. Consider the model of example 3.3.5 with the exception that $r_{11} = 0$. Take $\beta_1 = \beta_2 = \frac{1}{2}$, m = 1 and let the constraint be $x_{21}(R) \le \frac{1}{2}$. The polyhedron P is given by

$$\mathbf{P} = \left\{ \mathbf{x} \mid \begin{vmatrix} \mathbf{1}_{2}\mathbf{x}_{11} + \mathbf{x}_{12} & -\mathbf{1}_{2}\mathbf{x}_{22} = \mathbf{1}_{2} \\ & -\mathbf{1}_{2}\mathbf{x}_{12} + \mathbf{1}_{2}\mathbf{x}_{21} + \mathbf{x}_{22} = \mathbf{1}_{2} \\ & \mathbf{x}_{11}, \mathbf{x}_{12}, \mathbf{x}_{21}, \mathbf{x}_{22} \ge \mathbf{0} \end{vmatrix} \right\}.$$

We have drawn the polyhedron **x**22 P in the 3-dimensional space with coordinates x_{12}^{\prime} , x_{21}^{\prime} and x_{22}^{2} (x₁₁ is given by $x(f_2)$ x(f be defined by: $x(f_1)$ $f_1(1)=f_1(2)=1; f_2(1)=1,$ **x**21 $f_{2}(2)=2; f_{3}(1)=2,$ $f_{3}^{2}(2)=1; f_{4}^{2}(1)=f_{4}^{2}(2)=2.$ The vectors $x(f_{k})$ are $x(f_{2})$ denoted in figure 3.3.5, Figure 3.3.5 ×12 k = 1, 2, 3, 4. Since the

objective function is $x_{21}^{}$, it can also be seen in the picture that the linear program has no optimal solution which corresponds to a pure policy.

ALGORITHM VII for the construction of an optimal stationary transient policy in a contrained TMD-model with initial distribution $\beta >> 0$.

step 1: Compute an optimal solution x^* of the linear programming problem

$$\max \left\{ \sum_{i} \sum_{a} r_{ia} x_{ia} \right| \left\{ \begin{array}{c} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = \beta_{j} & j \in E \\ \sum_{i} \sum_{a} q_{iak} x_{ia} \leq b_{k} & k = 1, 2, \dots, m \\ & x_{ia} \geq 0 & a \in A(i), i \in E \end{array} \right\}.$$

(if the program is infeasible, then the constrained TMD-problem is also infeasible; if the program has an infinite solution, then there exists no optimal transient policy).

step 2: Take π^{∞} such that $\pi_{ia} := x_{ia}^* / \Sigma_a x_{ia}^*$, $a \in A(i)$, $i \in E$.

<u>REMARK 3.3.8.</u> Since $x_j = \sum_{a j a} x_{j} = \beta_j + \sum_{i} \sum_{a} p_{iaj} x_{ia} > 0$ for every $j \in E$, the policy π^{∞} is well-defined in step 2 of the algorithm. The correctness of algorithm VII is a consequence of theorem 3.3.7.

<u>REMARK 3.3.9</u>. If we allow that $\beta_j = 0$ for some $j \in E$, then we can loose the one-to-one correspondence between the stationary transient policies and the feasible solutions of the dual linear program (3.3.7). Furthermore, we can obtain nontransient policies, as is shown in the next example.

EXAMPLE 3.3.7. The problem is given by figure 3.3.6. Suppose that we have the constraint $-x_{12}(R) \leq -\frac{1}{2}$. Then the linear program is as follows:

An extreme solution is: $(x_{11}^* = 0, x_{12}^* = x_{21}^* = x_{22}^* = 0, x_{22}^* = 0, x_{31}^* = 2)$. The corresponding policy f_*^{∞} , where $f_*(1) = 2$, $f_*(2) = 1$, $f_*(3) = 1$, is non-transient.

APPLICATION 3.3.1. Optimal stopping problem.

In an optimal stopping problem we have two possible actions in each state. The first action corresponds with stopping and if the second action is chosen, then the process proceeds. If the stopping action is chosen in state i, then a final reward r_i is earned and the process breaks down, i ϵ E. If the second action is chosen in state i, then we receive a reward c_i and the probability of being in state j at the next time point is p_{ij} , i, j ϵ E. Our aim is to find an optimal transient policy. It is obvious that there exists a transient policy, namely the policy f° where f(i) = 1, i ϵ E. The primal and dual linear programming problems for the optimal stopping problem are:

$$\min\left\{\sum_{j}^{\widetilde{w}_{j}}\beta_{j}\widetilde{\widetilde{w}}_{j} \middle| \begin{array}{ccc} \widetilde{w}_{i} \geq r_{i} & i \in E \\ \sum_{j}\beta_{j}\widetilde{w}_{j} & \sum_{j}(\delta_{ij}-p_{ij})\widetilde{w}_{j} \geq c_{i} & i \in E \end{array}\right\}$$

 $max\left\{\sum_{i}x_{i}x_{i}+\sum_{i}c_{i}y_{i} \middle| \begin{array}{c} x_{j} + \sum_{i}(\delta_{ij}-p_{ij})y_{i} = \beta_{j} & j \in E \\ \\ x_{i},y_{i} \ge 0 & i \in E \end{array}\right\}$

respectively. The adaptation of algorithm VI to the optimal stopping problem gives the following algorithm.

ALGORITHM VIII for the construction of an optimal pure and stationary transient policy in an optimal stopping problem.

step 1: Take any vector β such that $\beta_j > 0$, $j \in E$. step 2: Use the simplex method to compute an optimal solution (x^{*}, y^{*}) of the linear programming problem

$$max \begin{cases} \sum_{i} r_{i} x_{i}^{+} \sum_{i} c_{i} y_{i} \\ x_{i}^{+}, y_{i}^{-} \geq 0 \end{cases} \begin{vmatrix} x_{j} + \sum_{i} (\delta_{ij} - p_{ij}) y_{i} &= \beta_{j} \\ x_{i}^{+}, y_{i}^{-} \geq 0 \end{vmatrix} i \in E \end{cases}$$

(if the problem has an infinite solution, then there exists no optimal transient policy).

step 3: Take f_{\star}^{∞} such that

$$f_{\star}(i) = \begin{cases} 1 & \text{if } x^{\star} > 0 \\ i & \text{i} \\ 2 & \text{if } y^{\star}_{i} > 0 \end{cases} \quad i \in E.$$

<u>REMARK 3.3.10</u>. The constraints of the linear program imply that $x_j^* + y_j^* = \beta_j^+$ $\sum_{i} p_{ij} y_i^* > 0$, $j \in E$. Since the simplex method gives an extreme solution and since any extreme solution has at most N (the number of constraints) positive components, we have either $x_i^* > 0$ or $y_i^* > 0$ for every $i \in E$. Hence, policy f_{\star}^{∞} is well-defined.

REMARK 3.3.11. Suppose that the linear programming problem has a finite optimum. Then, the vector w, defined by (3.3.2), is finite. Let Γ := $\{i \in E | w_i = r_i\}$. The existence of a pure and stationary optimal policy and the definition of Γ imply that an optimal stopping rule is stop on Γ and to continue on E\r. From the complementary slackness property of linear programming, it follows that $E_* \subset \Gamma$.

and

<u>REMARK 3.3.12</u>. DERMAN ([1970], chapter 8) presents analogous formulations for the entrance-fee problem, i.e. the optimal stopping problem with $r_i = 0$ for all $i \in E$.

3.4. CONTRACTING DYNAMIC PROGRAMMING

Throughout this section we have the following contraction assumption.

ASSUMPTION 3.4.1. There exists a $\mu >> 0$, $\mu \in \mathbb{R}^{N}$, and a real number $\alpha \in [0,1)$ such that $\Sigma_{i} p_{iai} \mu_{i} \leq \alpha \mu_{i}$, $a \in A(i)$, $i \in E$.

In theorem 3.2.4 is shown that in a contracting dynamic programming problem any policy is transient. Hence, optimal transient policies are also optimal in the class C of all policies. This is true in the unconstrained case as well as in the constrained case. Therefore, we can use the results of the previous section to obtain optimal policies in both cases. Moreover, we can slightly extend some results of section 3.3. Below we summarize for the sake of completeness the results for the contracting dynamic programming problem.

THEOREM 3.4.1. The TMD-value vector v is the smallest TMD-superharmonic vector.

<u>PROOF</u>. Since any policy is transient, we have v = w. Theorem 3.2.1 implies the existence of a pure and stationary optimal (transient) policy f^{∞} . Then $v(f^{\infty})$ is finite, and consequently v is finite. Now, apply theorem 3.3.2 to complete the proof.

<u>THEOREM 3.4.2</u>. The mapping $x_{ia}(\pi) := \left[\beta^T (I-P(\pi))^{-1}\right]_i \cdot \pi_{ia}$, $a \in A(i)$, $i \in E$, is a one-to-one mapping of the set of stationary policies onto the set of feasible solutions of the dual linear program (3.3.7). The inverse mapping is given by $\pi_{ia}(x) := x_{ia}/x$, $a \in A(i)$, $i \in E$. Furthermore, this mapping has the property that pure policies correspond to extreme feasible solutions.

PROOF. See theorem 3.3.3.

THEOREM 3.4.3. The linear programming problem (3.3.7) has a finite optimal solution. Moreover, if x^* is an optimal solution of (3.3.7), then any pure and stationary policy f_*^{∞} such that $x^*_{if_*}(i) > 0$, $i \in E$, is an optimal policy.
<u>PROOF</u>. Since v is the (finite) optimal solution of program (3.3.6), the dual program (3.3.7) also has a finite optimal solution. Let x^* be any optimal solution of (3.3.7). Then $\sum_a x_{ia}^* > 0$, $i \in E$, and consequently, we can take a pure and stationary policy f_{\star}^{∞} such that $x_{if_{\star}(i)}^* > 0$, $i \in E$. The complementary slackness property of the primal and dual linear program implies that $v = r(f_{\star}) + P(f_{\star})v$. Since f_{\star}^{∞} is transient, the matrix $I-P(f_{\star})$ is nonsingular. Hence,

$$v = (I-P(f_{\perp}))^{-1}r(f_{\perp}) = v(f_{\perp}^{\infty}),$$

implying that f_{\downarrow}^{∞} is optimal. \Box

As a consequence of theorem 3.4.3, a pure and stationary optimal policy can be obtained by the following algorithm.

ALGORITHM IX for the construction of a pure and stationary optimal policy in a contracting dynamic programming problem (linear programming).

step 1: Take any vector β such that $\beta_j > 0$, $j \in E$. step 2: Compute an optimal solution \mathbf{x}^* of the linear programming problem

step 3: Take f_{\star}^{∞} such that $x_{if_{\star}}^{\star}(i) > 0$, $i \in E$.

THEOREM 3.4.4. The correspondence between the stationary policies and the feasible solutions of the linear program preserves the optimality property, i.e.

- 1. If π^{∞} is a stationary optimal policy, then $x(\pi)$ is an optimal solution of the linear program.
- 2. If x is an optimal solution of the linear program, then the stationary policy $\pi^{\widetilde{\alpha}}(x)$ is an optimal policy.

PROOF. See theorem 3.3.6.

We continue this section with a discussion about the relation between the *policy improvement* method and the linear programming approach. The

policy improvement method for discounted dynamic programming is due to HOWARD [1960]. We give the analogon for contracting dynamic programming and we establish that this method is equivalent to a particular linear programming method, called the simplex method with *block-pivoting* (cf. DANTZIG [1963] pp.201-202). Furthermore, we show that the standard simplex algorithm is equivalent to a special policy improvement algorithm.

For every i ϵ E and every f^{∞} ϵ C_n, we define a set A(i,f) by

$$A(i,f) := \{a \in A(i) \mid r_{ia} + \sum_{j} p_{iaj} v_{j}(f^{\infty}) > v_{i}(f^{\infty}) \}.$$

The policy improvement method is based on the following theorem.

THEOREM 3.4.5. Let f^{∞} be any pure and stationary policy.

- (i) If $A(i,f) = \emptyset$, $i \in E$, then f^{∞} is an optimal policy.
- (ii) If $A(i,f) \neq \emptyset$ for some $i \in E$, then $v(g^{\infty}) > v(f^{\infty})$, where $g^{\infty} \neq f^{\infty}$ is any pure and stationary policy which satisfies for each $i \in E$ either g(i) = f(i) or $g(i) \in A(i,f)$.

PROOF. (The proof of this theorem is similar to the proof of theorem 3 in BLACKWELL [1962]).

(i) Since A(i,f) = \emptyset for all $i \in E$, we have $r(g) + P(g)v(f^{\infty}) \le v(f^{\infty})$ for any pure and stationary policy g^{∞} . Since $(I-P(g))^{-1} = \sum_{t=1}^{\infty} P^{t-1}(g) \ge 0$, we obtain

$$v(f^{\infty}) \ge (I-P(g))^{-1}r(g) = v(g^{\infty})$$

for any pure and stationary policy g^{∞} . Hence, f^{∞} is an optimal policy. (ii) Let $g^{\infty} \neq f^{\infty}$ be such that for each $i \in E$ either g(i) = f(i) or $g(i) \in A(i, f)$. Then,

$$r_{i}(g) + (P(g)v(f^{\infty}))_{i} \geq v_{i}(f^{\infty}), \quad i \in E,$$

with strict inequality for at least one i. Then, we obtain analogously to part (i) of the proof

$$v_i(g^{\infty}) = \sum_{t=1}^{\infty} P^{t-1}(g)r(g) \ge v_i(f^{\infty}), \quad i \in E,$$

with strict inequality for at least one i. Hence, $v(g^{\tilde{o}}) > v(f^{\tilde{o}})$, which completes the proof of the theorem.

The policy improvement algorithm can be formulated as follows.

ALGORITHM X for the construction of a pure and stationary optimal policy in a contracting dynamic programming problem (policy improvement).

step 1: Take any pure and stationary policy f^{∞} . step 2: Compute v(f^{∞}) as the unique solution of the linear system

$$x_i = r_i(f) + \sum_j p_{ij}(f) x_j, \quad i \in E.$$

step 3: Determine for every i ϵ E

$$A(i,f) := \{a \in A(i) \mid r_{ia} + \sum_{j} p_{iaj} v_{j}(f^{\infty}) > v_{i}(f^{\infty}) \}.$$

<u>step 4</u>: If $A(i,f) = \emptyset$, $i \in E$, then f^{∞} is an optimal policy (STOP). Otherwise, go to step 5.

step 5: Take any policy g^{∞} such that $g \neq f$ and such that for each $i \in E$ either g(i) = f(i) or $g(i) \in A(i, f)$.

step 6: f := g and go to step 2.

THEOREM 3.4.6. Algorithm X determines an optimal policy in a finite number of iterations.

Consider an iteration in the policy improvement algorithm. If

$$r_{ia} + \sum_{j} p_{iaj} v_{j}(f^{\infty}) \leq v_{i}(f^{\infty})$$
 for all $a \in A(i)$,

then g(i) = f(i). Otherwise, we may take for g(i) any action a for which

$$r_{ia} + \sum_{j} p_{iaj} v_{j}(f^{\infty}) > v_{i}(f^{\infty})$$

By theorem 3.4.2, the vector $\mathbf{x}(\mathbf{f}^{\infty})$ which is defined by formula (3.3.12) is an extreme feasible solution of the linear program (3.3.7). The linear

programming tableau corresponding to this extreme feasible solution $x(f^{\circ})$ has as basis matrix $(I-P(f))^{T}$. From theorem 1.4.1 and tableau (1.4.2), it follows that the coefficients of the transformed objective function have the values of the corresponding dual variables. Hence, the column of a nonbasic variable $x_{ia}(f^{\circ})$ has in the transformed objective function the value

$$(3.4.1) d_{ia} := \tilde{w}_i - r_{ia} - \sum_j p_{iaj} \tilde{w}_j.$$

Here, $\widetilde{w_i}$ is the variable which corresponds to the i-th equality of problem (3.3.7). Since $\widetilde{w_i}$, i ϵ E, are unrestricted in sign, they are orthogonal to the artificial variables z_i , i ϵ E, of problem (3.3.7). Therefore, if we want to know the values $\widetilde{w_i}$, i ϵ E, then we have to keep into the simplex tableau the artificial variables. Since $x_{if(i)}(f) > 0$, i ϵ E, it follows from the orthogonality of the corresponding primal and dual variables in the simplex tableau, that $d_{if(i)} = 0$, i ϵ E. Then, we obtain $\widetilde{w} = r(f) + P(f)\widetilde{w}$ which implies that $\widetilde{w} = v(f^{\circ})$. Hence, formula (3.4.1) may be written as

$$(3.4.2) d_{ia} := v_i(f^{\infty}) - r_{ia} - \sum_j p_{iaj} v_j(f^{\infty}).$$

郡<text><text>

CONCLUSIONS.

1. Any policy improvement algorithm is equivalent to a block-pivoting simplex algorithm.

2. The standard simplex algorithm is equivalent to a particular policy improvement algorithm. $(2, \frac{1}{2})$

1,1

EXAMPLE 3.4.1. We compute an optimal policy for the model given in figure 3.4.1, by the policy improvement method as well as by the equivalent standard simplex method.

Policy improvement

Iteration 1:

1. f(1) = 3, f(2) = 2, f(3) = 1. 2. $v(f^{\infty}) = (28/3, 24/3, 38/3)^{T}$. 3. $A(1,f) = \emptyset$, $A(2,f) = \{1,3\}$, $A(3,f) = \{2,3\}$. 5. d_{ia} is minimal for i = 2, a = 3: g(1) = 3, g(2) = 3, g(3) = 1. 6. f(1) = 3, f(2) = 3, f(3) = 1.

Iteration 2: 2. $v(f^{\infty}) = (28/3, 34/3, 38/3)^{T}$. 3. $A(1,f) = \emptyset$, $A(2,f) = \emptyset$, $A(3,f) = \{2,3\}$. 5. d_{ia} is minimal for i = 3, a = 2. g(1) = 3, g(2) = 3, g(3) = 2. 6. f(1) = 3, f(2) = 3, f(3) = 2. Iteration 3: 2. $v(f^{\infty}) = (32/3, 38/3, 46/3)^{T}$. 3. $A(1,f) = A(2,f) = A(3,f) = \emptyset$. 4. f^{∞} is optimal.

Linear programming

Iteration 1:

Policy f^{∞} , where f(1) = 3, f(2) = 2, f(3) = 1, corresponds to the simplex tableau with x_{13}, x_{22} and x_{31} as the basic variables. This tableau has the following form:

		×11	×12	z ₁	× 21	^z 2	×23	z ₃	×32	× 33
x13	2/3	2/3	4/3	4/3	-2/3	0	-1/3	2/3	2/3	1/3
×22	2/3	0	-1	0	2	2	2	0	-1	0
×31	2/3	1/3	2/3	2/3	-1/3	0	-2/3	4/3	4/3	2/3
x	10	11/3	7/3	28/3	-2/3	8	-10/3	38/3	-1/3	-2/3

69

2

5,12

4,2

6,

3

3, 3

Iteration 2:

The variables x_{23}^{23} and x_{22}^{23} are exchanged.

	1	×11	×12	z ₁	×21	×22	^z 2	z ₃	x 32	× 33
×13	7/9	2/3	7/6	4/3	-1/3	1/6	1/3	2/3	1/2	1/3
x ₂₃	1/3	0	-1/2	0	1	1/2	1	0	-1/2	0
×31	8/9	1/3	1/3	2/3	1/3	1/3	2/3	4/3	1	2/3
x ₀	100/9	11/3	2/3	28/3	8/3	5/3	34/3	38/3	-2	-2/3

Iteration 3:

The variables x_{32} and x_{31} are exchanged.

		×11	×12	^z 1	*21	x 22	^z 2	×31	z ₃	x 33
×13	1/3	1/2	1	1	-1/2	0	0	-1/2	0	0
x 23	7/9	1/6	-1/3	1/3	7/6	2/3	4/3	1/2	2/3	1/3
×32	8/9	1/3	1/3	2/3	1/3	1/3	2/3	1	4/3	2/3
×	116/9	13/3	4/3	32/3	10/3	7/3	38/3	2	46/3	2/3

 $(x_{11}^{*}=0, x_{12}^{*}=0, x_{13}^{*}=1/3, x_{21}^{*}=0, x_{22}^{*}=0, x_{23}^{*}=7/9, x_{31}^{*}=0, x_{32}^{*}=8/9, x_{33}^{*}=0)$ is an optimal solution. Then, f_{\star}^{∞} , where $f_{\star}(1) = 3$, $f_{\star}(2) = 3$, and $f_{\star}(3) = 2$, is an optimal policy.

Suppose that an upper bound b of the TMD-value-vector v is known. Then, the calculations can often been accelerated by the *elimination of* suboptimal actions. An action a ϵ A(i) is said to be suboptimal if there does not exist an optimal policy $f^{\infty} \epsilon C_{D}$ with f(i) = a. Since v is TMDsuperharmonic and since f^{∞} is optimal if and only if v = r(f) + P(f)v, an action a ϵ A(i) is suboptimal if and only if

$$r_{ia} + \sum_{j} p_{iaj} v_{j} < v_{i}$$

The concept of suboptimal actions was introduced by MACQUEEN [1967].

<u>THEOREM 3.4.7</u>. Suppose that b is an upper bound for v. Let, in the simplex tableau corresponding to the extreme feasible solution x(f), d_{ia} be the value of the variable dual to $x_{ia}(f)$, $a \in A(i)$, $i \in E$. If $a_i \in A(i)$ satisfies

$$(3.4.3) \quad d_{ia_{i}} > \min_{a_{ia}} + \sum_{j} p_{ia_{j}}(b_{j} - v_{j}(f^{\infty})),$$

then action a_i is suboptimal.

PROOF. Using the formulae (3.4.2) and (3.4.3) we may write

$$r_{ia_{i}} + \sum_{j} p_{ia_{j}} j v_{j} \leq r_{ia_{i}} + \sum_{j} p_{ia_{j}} j^{b}_{j} =$$

$$= -d_{ia_{i}} + v_{i} (f^{\circ}) + \sum_{j} p_{ia_{j}} (b_{j} - v_{j} (f^{\circ}))$$

$$< -d_{ia_{i}} + v_{i} (f^{\circ}) + d_{ia_{i}} - min_{a} d_{ia} =$$

$$v_{i} (f^{\circ}) + max_{a} \{r_{ia} + \sum_{j} p_{iaj} v_{j} (f^{\circ}) - v_{i} (f^{\circ})\}$$

$$\leq max_{a} \{r_{ia} + \sum_{j} p_{iaj} v_{j}\} = v_{i}.$$

This completes the proof that a_i is a suboptimal action. \Box

Let f^{∞} be any pure and stationary policy. Then, we have observed that $x(f^{\infty})$ is an extreme feasible solution of the linear programming problem (3.3.7). Furthermore, we have seen that $v_j(f^{\infty})$, $j \in E$, are the values of the dual variables that correspond to the artificial variables of program (3.3.7); the other dual variables, namely the variables that are orthogonal to $x_{ia}(f)$, $a \in A(i)$, $i \in E$, have the values d_{ia} , defined by (3.4.2), $a \in A(i)$, $i \in E$.

(3.4.4)
$$b(f) := v(f^{\infty}) - \frac{\min_{i} \min_{a} d_{ia}/\mu_{i}}{1-\alpha} \cdot \mu,$$

where μ and α are the quantities introduced in the first paragraph of this section. If these quantities are unknown, then they can be computed by linear programming (see remark 3.2.3).

We will show that b(f) is an upper bound for the TMD-value-vector v. Then, b(f) can be used in the suboptimality test (3.4.3).

LEMMA 3.4.1. b(f), defined by formula (3.4.4), is an upper bound for the TMD-value-vector v.

<u>PROOF</u>. Let $M := \min_{i} \min_{a} d_{ia}/\mu_{i}$. Suppose that g^{∞} is a pure and stationary optimal policy (theorem 3.2.1 implies its existence). Then,

$$M \leq \frac{d_{ig(i)}}{\mu_{i}} = \frac{v_{i}(f^{\circ}) - r_{i}(g) - (P(g)v(f^{\circ}))_{i}}{\mu_{i}}, \quad i \in E.$$

Consequently,

$$r(q) \leq (I-P(q^{\infty}) v(f^{\infty}) - M \cdot \mu.$$

This implies that

$$(3.4.5) v = v(g^{\infty}) = (I-P(g))^{-1}r(g) \le v(f^{\infty}) - M \cdot (I-P(g))^{-1}\mu.$$

From the contraction property it follows that

(3.4.6)
$$(I-P(g))^{-1}\mu = \sum_{t=1}^{\infty} P^{t-1}(g)\mu \leq \sum_{t=1}^{\infty} \alpha^{t-1}\mu = (1-\alpha)^{-1}\mu.$$

Then (3.4.5) and (3.4.6) imply that

$$v \leq v(f^{\infty}) - \frac{M}{1-\alpha} \cdot \mu = v(f^{\infty}) - \frac{\min \min_{\alpha} d_{\alpha}/\mu_{1}}{1-\alpha} \cdot \mu = b(f),$$

completing the proof of this lemma.

<u>REMARK 3.4.1</u>. Any feasible solution of the linear programming problem (3.3.6) is also an upper bound for v and can be used in the suboptimality test.

Next, we will discuss the constrained Markov decision problem. Let $\beta = (\beta_1, \beta_2, \dots, \beta_N)^T$ be any given initial distribution. In contrast with section 3.3, we allow in this section that $\beta_j = 0$ for some $j \in E$. In the same way as in section 3.3, we define the vector x(R) for $R \in C$ and the

The constrained Markov decision problem is then formulated by

$$(3.4.7) \qquad sup_{R} \{ \sum_{i} \beta_{i} \mathbf{v}_{i}(\mathbf{R}) \mid \sum_{i} \sum_{a} q_{iak} \mathbf{x}_{ia}(\mathbf{R}) \leq \mathbf{b}_{k} \quad k = 1, 2, \dots, m \}.$$

THEOREM 3.4.8. $\overline{K(D)} = K(S) = K(M) = K = P$.

<u>PROOF</u>. The proof is similar to the proof of theorem 3.3.4. However, it is not a direct consequence because we have in theorem 3.3.4 $\overline{K(D)} \subset K(S)$; furthermore, we here allow that $\beta_j = 0$ for some $j \in E$.

We first prove that K(S) = P. For any $x \in P$, we define a stationary policy $\pi^{\infty}(x)$ by

(3.4.8)
$$\pi_{ia}(x) := \begin{cases} x_{ia}/x_{i} & a \in A(i), i \in E_{x} \\ arbitrarily & a \in A(i), i \notin E_{x}. \end{cases}$$

ʻ''"""""""""""""""""""""

$$\mathbf{x}_{ia} = \left[\beta^{\mathrm{T}}(\mathbf{I}-\mathbf{P}(\pi(\mathbf{x})))^{-1}\right]_{i} \cdot \pi_{ia} = \mathbf{x}_{ia}(\pi^{\infty}(\mathbf{x})) \qquad a \in A(i), i \in \mathbb{E}.$$

Hence, $x \in K(S)$.

$$\overline{K(D)} \subset K(S) = K(M) = K = P.$$

Suppose that $\overline{K(D)} \neq K(S)$. Then there exists a stationary policy π^{∞} such that $x(\pi) \notin \overline{K(D)}$. Since $\overline{K(D)}$ is a closed convex set, it follows from theorem 1.2.1 that there exist real numbers r_{ja} , $a \in A(j)$, $j \in E$, such that

$$\sum_{j} \sum_{a} r_{ja} x_{ja}(\pi) > \sum_{j} \sum_{a} r_{ja} x_{ja} \quad \text{for all } x \in \overline{K(D)}.$$

Hence,

(3.4.9)
$$\sum_{i} \beta_{i} v_{i}(\pi^{\infty}) = \sum_{j} \sum_{a} r_{ja} x_{ja}(\pi) > \sum_{j} \sum_{a} r_{ja} x_{ja}(f) = \sum_{i} \beta_{i} v_{i}(f^{\infty})$$

$$(3.4.10) \quad \max\left\{\sum_{i}\sum_{a}r_{ia}x_{ia} \middle| \begin{array}{l} \sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} = \beta_{j} & j \in E \\ \sum_{i}\sum_{a}q_{iak}x_{ia} \leq b_{k} & k = 1,2,\ldots,m \\ & x_{ia} \geq 0 & a \in A(i), i \in E \end{array} \right\}.$$

Analogously to theorem 3.3.7, we can prove the following theorem.

THEOREM 3.4.9.

- (i) Problem (3.4.7) is feasible if and only if problem (3.4.10) is feasible.
- (ii) The optima of the problems (3.4.7) and (3.4.10) are equal.
- (iv) If R is an optimal solution of problem (3.4.7), then x(R) is an optimal solution of the linear programming problem (3.4.10).

Theorem 3.4.9 provides an algorithm for contracting dynamic programming with additional constraints.

ALGORITHM XI for the construction of a stationary optimal policy in a contracting dynamic programming problem with additional constraints and with initial distribution $\beta \ge 0$. step 1: Determine an optimal solution x^* of the linear programming problem

$$max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \\ \sum_{i} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= \beta_{j} & j \in E \\ \sum_{i} \sum_{a} q_{iak} x_{ia} &\leq b_{k} & k = 1, 2, \dots, m \\ x_{ia} \geq 0 & a \in A(i), i \in E \end{cases}$$

(if the problem is infeasible, then the constrained TMD-problem is also infeasible).

step 2: Take π^{∞} such that

$$*^{\pi}_{ia} := \begin{cases} x^{*}_{ia} / x^{*}_{i} & a \in A(i), i \in E_{x} \\ \\ arbitrarily & a \in A(i), i \notin E_{x} \end{cases}$$

$$\widetilde{E} := \{0, 1, \dots, N\}$$

$$\widetilde{A}(i) := \begin{cases} A(i) & i \in E \\ \{1\} & i = 0 \end{cases}$$

$$\widetilde{P}_{iaj} := \begin{cases} \mu_i^{-1} p_{iaj} \mu_j & i \in E, a \in \widetilde{A}(i), j \in E \\ \alpha - \mu_i^{-1} \sum_k p_{iak} \mu_k & i \in E, a \in \widetilde{A}(i), j = 0 \\ \alpha & i = 0, a = 1, j = 0 \\ 0 & i = 0, a = 1, j \in E \end{cases}$$

$$\widetilde{r}_{ia} := \begin{cases} r_{ia} / \mu_i & a \in \widetilde{A}(i), i \in E \\ 0 & a = 1, i = 0. \end{cases}$$

The model $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$ is a DMD-problem, namely

$$\sum_{j \in \widetilde{E}} \widetilde{p}_{iaj} = \widetilde{p}_{iao} + \sum_{j \in E} \widetilde{p}_{iaj} = \alpha \quad a \in \widetilde{A}(i), i \in \widetilde{E}.$$

$$\begin{split} & \stackrel{\wedge}{E} := E \\ & \stackrel{\wedge}{A}(i) := \widetilde{A}(i) & i \in \widehat{E} \\ & \stackrel{\circ}{p}_{iaj} := \widetilde{p}_{iaj} & i \in \widehat{E}, a \in \widehat{A}(i), j \in \widehat{E} \\ & \stackrel{\wedge}{r}_{ia} := \widetilde{r}_{ia} & i \in \widehat{E}, a \in \widehat{A}(i). \end{split}$$

Let R = $(\pi^1, \pi^2, ...)$ be any Markov policy in model $(\stackrel{\wedge}{E}, \stackrel{\wedge}{A}, \stackrel{\wedge}{p}, \stackrel{\wedge}{r})$. We observe that

$$\left[\stackrel{\Lambda}{P}(\pi^{1}) \stackrel{\Lambda}{P}(\pi^{2}) \cdots \stackrel{\Lambda}{P}(\pi^{t}) \right]_{ij} = \frac{1}{\mu_{i}} \left[\mathbb{P}(\pi^{1}) \mathbb{P}(\pi^{2}) \cdots \mathbb{P}(\pi^{t}) \right]_{ij} \cdot \mu_{j}$$

for all i,j ϵ E and t ϵ IN. Therefore, we can write

$$\begin{split} \hat{\nabla}_{i}(\mathbf{R}) &= \lim_{n \to \infty} \sum_{t=1}^{n} \left[\hat{P}(\pi^{1}) \hat{P}(\pi^{2}) \cdots \hat{P}(\pi^{t-1}) \hat{r}(\pi^{t}) \right]_{i} \\ &= \lim_{n \to \infty} \sum_{t=1}^{n} \sum_{j} \mu_{i}^{-1} \cdot \left\{ P(\pi^{1}) P(\pi^{2}) \cdots P(\pi^{t-1}) \right\}_{ij} \cdot \mu_{j} \cdot \frac{r_{j}(\pi^{t})}{\mu_{j}} \\ &= \mu_{i}^{-1} \cdot \lim_{n \to \infty} \sum_{t=1}^{n} \left[P(\pi^{1}) P(\pi^{2}) \cdots P(\pi^{t-1}) r(\pi^{t}) \right]_{i} \\ &= \mu_{i}^{-1} \nabla_{i}(\mathbf{R}), \quad i \in E. \end{split}$$

Hence, it follows that a policy is optimal in the undiscounted TMDmodel if and only if the policy is optimal in the corresponding DMD-model. The transformations, that were used above, are due to VEINOTT [1969] (see also VAN HEE, HORDIJK & VAN DER WAL [1977]).

Next, we consider what happens in a constrained dynamic programming problem. Suppose that we want to solve problem (3.4.7) for a contracting dynamic programming problem. Then we solve the following constrained prob-

lem for the corresponding discounted model $(\tilde{e}, \tilde{A}, \tilde{p}, \tilde{r})$:

$$(3.4.11) \qquad sup_{R} \{ \widehat{\beta}^{T} \widetilde{v}(R) \mid \sum_{i} \sum_{a} \widetilde{q}_{iak} \widetilde{x}_{ia}(R) \leq \widetilde{b}_{k} \qquad k = 1, 2, \dots, m \},$$

where

$$\widetilde{\beta}_{i} := \begin{cases} \beta_{i}\mu_{i} & i \in E \\ 0 & i = 0 \end{cases}$$

$$\widetilde{q}_{iak} := \begin{cases} q_{iak}/\mu_{i} & a \in \widetilde{A}(i), i \in E, k = 1, 2, \dots, m \\ 0 & a = 1, i = 0, k = 1, 2, \dots, m \end{cases}$$

$$\widetilde{b}_{k} := b_{k} \quad k = 1, 2, \dots, m.$$

The equivalence between the problems (3.4.7) and (3.4.11) is a consequence of the following properties:

(i)
$$\tilde{\mathbf{x}}_{ja}(\mathbf{R}) = \sum_{i} \tilde{\beta}_{i} \cdot \sum_{t=1}^{\infty} \{\tilde{\mathbf{P}}(\pi^{1}) \tilde{\mathbf{P}}(\pi^{2}) \cdots \tilde{\mathbf{P}}(\pi^{t-1})\}_{ij} \cdot \pi_{ja}^{t}$$

$$= \sum_{i} \beta_{i} \mu_{i} \cdot \sum_{t=1}^{\infty} \mu_{i}^{-1} \{\mathbf{P}(\pi^{1}) \mathbf{P}(\pi^{2}) \cdots \mathbf{P}(\pi^{t-1})\}_{ij} \mu_{j} \cdot \pi_{ja}^{t}$$

$$= \mu_{j} \cdot \sum_{i} \beta_{i} \cdot \sum_{t=1}^{\infty} \{\mathbf{P}(\pi^{1}) \mathbf{P}(\pi^{2}) \cdots \mathbf{P}(\pi^{t-1})\}_{ij} \cdot \pi_{ja}^{t}$$

$$= \mu_{j} \cdot \mathbf{x}_{ja}(\mathbf{R}) \quad \mathbf{a} \in \mathbf{A}(j), \ j \in \mathbf{E}.$$
(ii) $\tilde{\beta}^{T} \tilde{\mathbf{v}}(\mathbf{R}) = \sum_{j} \sum_{a} \tilde{\mathbf{r}}_{ja} \tilde{\mathbf{x}}_{ja}(\mathbf{R}) = \sum_{j} \sum_{a} \mathbf{r}_{ja} \mu_{j}^{-1} \mu_{j} \mathbf{x}_{ja}(\mathbf{R})$

$$= \sum_{j} \sum_{a} r_{ja} \mathbf{x}_{ja}(\mathbf{R}) = \beta^{T} \mathbf{v}(\mathbf{R}).$$
(iii) $\sum_{i} \sum_{a} \tilde{\mathbf{q}}_{iak} \tilde{\mathbf{x}}_{ia}(\mathbf{R}) = \sum_{i} \sum_{a} q_{iak} \mu_{i}^{-1} \mu_{i} \mathbf{x}_{ia}(\mathbf{R}) = \sum_{i} \sum_{a} q_{iak} \mathbf{x}_{ia}(\mathbf{R}).$

<u>CONCLUSION</u>: Discounting dynamic programming and contracting dynamic programming are equivalent models for unconstrained as well as for constrained Markov decision models.

3.5. POSITIVE DYNAMIC PROGRAMMING

្

ASSUMPTION 3.5.1. $r_i \ge 0$ a ϵ A(i), i ϵ E.

THEOREM 3.5.1. v is the smallest nonnegative TMD-superharmonic vector.

$$\widetilde{w} \geq \sum_{t=1}^{n} p^{t-1}(f)r(f) + p^{n}(f)\widetilde{w} \geq \sum_{t=1}^{n} p^{t-1}(f)r(f) \qquad n \in \mathbb{N}.$$

Hence, for $n \rightarrow \infty$ we find

$$\tilde{w} \geq \sum_{t=1}^{\infty} P^{t-1}(f)r(f) = v(f^{\circ}),$$

which completes the proof of the theorem. $\hfill\square$

In order to find an optimal policy, theorem 3.5.1 suggests the use of the following linear program:

$$(3.5.1) \quad \min\left\{\sum_{j}\beta_{j}\widetilde{w}_{j}\middle| \begin{array}{c} \sum_{j}(\delta_{ij}-p_{iaj})\widetilde{w}_{j} \geq r_{ia} & a \in A(i), i \in E \\ \\ \widetilde{w}_{j} \geq 0 & j \in E \end{array}\right\},$$

$$(3.5.2) \qquad \max \left\{ \sum_{i} \sum_{a} r_{ia} x_{ia} \middle| \begin{array}{c} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} \leq \beta_{j} & j \in E \\ \\ x_{ia} \geq 0 & a \in A(i), i \in E \end{array} \right\}.$$

This dual program is feasible. (e.g. x = 0 is a feasible solution). Therefore, there are two possibilities: the optimum of (3.5.2) is finite or infinite. We will treat these possibilities as two separate cases and we will see that the construction of optimal policies (in class C of all

ී<table-cell>policies) is different. If the different dif

<u>THEOREM 3.5.2</u>. Suppose that x^* is an extreme optimal solution of the dual program. Then, the pure and stationary policy f_*^{∞} , defined by

$$f_{*}(i) := \begin{cases} a_{i} \text{ such that } x_{ia_{i}}^{*} > 0 & i \in E_{x^{*}} \\ arbitrarily & i \notin E_{x^{*}}, \end{cases}$$

is an optimal policy.

PROOF. By introducing slack variables, we can write the constraints of the problems (3.5.1) and (3.5.2) as follows

$$(3.5.3) \begin{cases} \sum_{j} (\delta_{ij} - p_{iaj}) \widetilde{w}_{j} - u_{ia} = r_{ia} & a \in A(i), i \in E \\ & \widetilde{w}_{j} \ge 0 & j \in E \\ & u_{ia} \ge 0 & a \in A(i), i \in E \end{cases}$$

and

$$(3.5.4) \begin{cases} \sum_{i}\sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} + y_{j} = \beta_{j} \quad j \in E \\ x_{ia} \ge 0 \quad a \in A(i), i \in E \\ y_{j} \ge 0 \quad j \in E \end{cases}$$

respectively.

$$\begin{aligned} \mathbf{u}_{ia}^{\star} &:= \sum_{j} (\delta_{ij} - \mathbf{p}_{iaj}) \mathbf{v}_{j} - \mathbf{r}_{ia} \quad \mathbf{a} \in \mathbf{A}(i), \ i \in \mathbf{E} \\ \mathbf{y}_{j}^{\star} &:= \beta_{j} - \sum_{i} \sum_{a} (\delta_{ij} - \mathbf{p}_{iaj}) \mathbf{x}_{ia}^{\star} \quad j \in \mathbf{E}. \end{aligned}$$

Then, it follows from the theory of linear programming that

$$\sum_{j^{\beta}j^{\nu}j} = \sum_{i} \sum_{a^{r}ia^{\nu}} x_{ia}^{*}$$

and

$$\sum_{j} y_{j}^{*} v_{j} = \sum_{i} \sum_{a} u_{ia}^{*} x_{ia}^{*} = 0.$$

Since x^* is an extreme point and the dual program has N constraints, the vector $(x^*, y^*)^T$ has at most N positive components. Then,

$$\sum_{a} x_{ja}^{*} + y_{j}^{*} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj} x_{ia}^{*} \ge \beta_{j} > 0, \quad j \in E,$$

ถ

$$(x^{*})^{T} = (\beta - y^{*})^{T} + (x^{*})^{T} P(f_{*}).$$

By iterating this equality, we obtain

$$(\mathbf{x}^{*})^{\mathrm{T}} = (\beta - \mathbf{y}^{*})^{\mathrm{T}} \sum_{t=1}^{n} p^{t-1} (\mathbf{f}_{*}) + (\mathbf{x}^{*})^{\mathrm{T}} p^{n} (\mathbf{f}_{*}) \qquad n \in \mathbb{N}.$$

Consequently,

$$(\mathbf{x}^{*})^{\mathrm{T}} \mathbf{r}(\mathbf{f}_{*}) = (\beta - \mathbf{y}^{*})^{\mathrm{T}} \sum_{t=1}^{n} \mathbf{p}^{t-1}(\mathbf{f}_{*}) \mathbf{r}(\mathbf{f}_{*}) + (\mathbf{x}^{*})^{\mathrm{T}} \mathbf{p}^{n}(\mathbf{f}_{*}) \mathbf{r}(\mathbf{f}_{*}), \ n \in \mathbb{N} .$$

Since $v(f_*^{\infty}) = \sum_{t=1}^{\infty} p^{t-1}(f_*)r(f_*) \le v$ and v is finite, it follows that

$$\lim_{n\to\infty} P^{''}(f_*)r(f_*) = 0.$$

Therefore, we get

$$\beta^{\mathrm{T}} \mathbf{v} = \sum_{i} \sum_{a} \mathbf{r}_{ia} \mathbf{x}_{ia}^{\star} = (\mathbf{x}^{\star})^{\mathrm{T}} \mathbf{r}(\mathbf{f}_{\star}) = (\beta - \mathbf{y}^{\star})^{\mathrm{T}} \mathbf{v}(\mathbf{f}_{\star}^{\omega}) \leq \beta^{\mathrm{T}} \mathbf{v}(\mathbf{f}_{\star}^{\omega}),$$

implying that f_{\star}^{∞} is an optimal policy. \Box

<u>REMARK 3.5.1</u>. If we use the simplex method to solve the linear programming problem (3.5.2) and it turns out that this problem has a finite optimum, then an optimal extreme solution is obtained.

<u>REMARK 3.5.2</u>. If the Markov decision problem is contracting, then the linear programs have finite solutions. The following example shows that the converse statement is not true, in general; in this example, an optimal nontransient policy is found.

EXAMPLE 3.5.1. The problem of figure 3.5.1 has only one policy and this policy is non-transient. The dual program is

 $\max \left\{ x_{11} \middle| \begin{array}{c} x_{11} \leq t_{2}; x_{11} \geq 0 \\ \\ \\ -x_{11} \leq t_{2}; x_{21} \geq 0 \end{array} \right\} .$

This problem has a finite optimum, namely $x_{11} = \frac{1}{2}$.

Suppose that the dual program (3.5.2) has an *infinite optimum*. Then, if we solve this problem by the simplex method starting with the extreme feasible solution x = 0, we obtain after a finite number of iterations a simplex tableau with a nonpositive column. In this column, the coefficient of the transformed objective function is strictly negative. Therefore, we have in this tableau an extreme feasible solution x and a direction vector s such that

(i) $\mathbf{x}(\lambda) := \mathbf{x} + \lambda \mathbf{s}$ is feasible for all $\lambda \ge 0$.

(ii) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{j}(\lambda) \rightarrow +\infty$ for $\lambda \rightarrow \infty$.

$$(3.5.5) \qquad \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) s_{ia} \le 0 \qquad j \in E$$

$$(3.5.6) \qquad s_{ia} \geq 0 \quad a \in A(i), i \in E$$

$$(3.5.7) \qquad \qquad \sum_{i} \sum_{a} r_{ia} s_{ia} > 0$$

$$(3.5.8) \qquad \sum_{a j a} = x_{jaj} > 0 \quad j \in E_x.$$

Corresponding to the direction vector s, we define a stationary policy π^∞ by

(3.5.9)
$$\pi_{ia} := \begin{cases} s_{ia}/s_{i} & a \in A(i), i \in E_{s} \\ arbitrarily & a \in A(i), i \notin E_{c}. \end{cases}$$

THEOREM 3.5.3. The policy π^{∞} , defined by (3.5.9), can be chosen from $C_{\rm D}$.

<u>PROOF</u>. Let a_{ℓ}^{\star} be the nonpositive column in the simplex tableau from which the infinite solution is obtained. Suppose that this column corresponds to the nonbasic variable $x_{ka_{c}}$. Then the direction vector s is given by

$$s_{ja} := \begin{cases} -a_{ij\ell}^{*} & \text{if } j \in E_{x}, a = a_{j} \text{ and } x_{ja_{j}} \text{ is the basic variable} \\ & \text{corresponding to row } i_{j} \text{ of the simplex tableau} \\ 1 & \text{if } j = k, a = a_{o} \\ 0 & \text{elsewhere.} \end{cases}$$

Hence, to prove that π^{∞} can be chosen from C_{D} , it is sufficient to show that $\Sigma_{a}s_{ka} = s_{ka_{o}}$. Assume the contrary. Then, $k \in E_{x}$ and $s_{ka_{k}} > 0$. For every $i \in E \setminus E_{s}$, we choose an arbitrary action $a_{i} \in A(i)$ and we take $\pi_{ia_{i}} := 1$ and $\pi_{ia} := 0$, $a \neq a_{i}$. Then it can be verified that

$$(3.5.10) P(\pi) = \delta \cdot P(f_1) + (1-\delta) \cdot P(f_2),$$

where $\delta = \varepsilon (1-\varepsilon)^{-1}$ with $\varepsilon = s_{ka_k}$ and $f_1^{\infty}, f_2^{\infty} \in C_D$ such that

$$f_1(i) := a_i, i \in E, and f_2(i) := \begin{cases} f_1(i) & i \neq k \\ a_o & i = k. \end{cases}$$

From (3.5.5)-(3.5.7) and (3.5.9) it follows that

$$0 < \sum_{j} s_{j} \leq \sum_{j} \sum_{i} \sum_{a} p_{iaj} \pi_{ia} s_{i} = \sum_{i} s_{i} (\sum_{j} p_{ij}(\pi)) \leq \sum_{i} s_{i}.$$

Hence

(3.5.11)
$$\sum_{j} p_{ij}(\pi) = 1$$
 i ϵE_{s} ,
(3.5.12) $s^{T}e = s^{T}P(\pi)e$.

Since $s^T \leq s^T P(\pi)$, (3.5.12) implies that $s^T = s^T P(\pi)$ and consequently, $s^T = s^T P^*(\pi)$. Therefore, $E_s \subset R(\pi)$, where $R(\pi)$ is the set of recurrent states in the Markov chain induced by $P(\pi)$, and E_s is closed under $P(\pi)$. By (3.5.10) and (3.5.11) we also have

$$\sum_{j} p_{ij}(f_k) = 1$$
, $i \in E_s$, and E_s is closed under $P(f_k) = 1, 2$.

Therefore, we find

(3.5.13)
$$\sum_{j} p_{ij}^{(n)}(f_{1}) = \sum_{j \in E_{s}} p_{ij}^{(n)}(f_{1}) = 1$$
 i $\in E_{s}$, $n \in \mathbb{N}$.

Since x is an extreme feasible solution and since ${\tt E}_{\tt S} \subset {\tt E}_{\tt X},$ we have on the other hand

$$(3.5.14) \qquad x_{ja_{j}} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj} x_{ia} \ge \beta_{j} + \sum_{i \in E_{s}} p_{ij}(f_{1}) x_{ia_{i}} \qquad j \in E_{s}.$$

Because E_{c} is closed under $P(f_{1})$, we obtain by iterating (3.5.14)

$$\mathbf{x}_{ja_{j}} \geq \sum_{i \in E_{s}} \beta_{i} \cdot \sum_{t=1}^{n} p_{ij}^{(t-1)}(f_{1}) + \sum_{i \in E_{s}} p_{ij}^{(n)}(f_{1}) \mathbf{x}_{ia_{j}} \quad j \in E_{s}, n \in \mathbb{N}.$$

ഒConsequently, $\sum_{i=1}^{\infty} p_i^{(i-1)}(i) \leq 1$, $\sum_{i=1}^{\infty} p_i^{(i-1)}($

Let f_{s}^{∞} be the policy, defined by (3.5.9) and for which, as has been shown in theorem 3.5.3, we may assume that it belongs to C_{D} .

THEOREM 3.5.4.
$$v_j(f_s^{\infty}) = +\infty$$
 for at least one state j.

<u>PROOF</u>. From the proof of theorem 3.5.3 it follows that $E_s \subset R(f_s)$ and that E_s is closed under $P(f_s)$.

Furthermore, (3.5.7) implies that $s^{T}r(f_{s}) > 0$. Hence, there exists a state $\ell \in E_{s}$ such that $r_{\ell}(f_{s}) > 0$. For any state j in the same ergodic set as state ℓ , we have

$$\mathbf{v}_{j}(\mathbf{f}_{s}^{\infty}) = \sum_{t=1}^{\infty} \left[\mathbf{p}^{t-1}(\mathbf{f}_{s}) \mathbf{r}(\mathbf{f}_{s}) \right]_{j} = \lim_{n \to \infty} n \cdot \frac{1}{n} \sum_{t=1}^{n} \left[\mathbf{p}^{t-1}(\mathbf{f}_{s}) \mathbf{r}(\mathbf{f}_{s}) \right]_{j}$$

and

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \left[P^{t-1}(f_s) r(f_s) \right]_j = \left[P^{*}(f_s) r(f_s) \right]_j \ge p_{j\ell}^{*}(f_s) r_{\ell}(f_s) > 0.$$

Consequently, $v_j (f_s^{\infty}) = +\infty$.

ALGORITHM XII for the construction of a pure and stationary optimal policy in positive dynamic programming.

step 1: Use the simplex method to solve the linear program

$$(3.5.15) \quad max \left\{ \sum_{i} \sum_{a} r_{ia} x_{ia} \middle| \begin{array}{c} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} \leq \beta_{j} & j \in E \\ \\ x_{ia} \geq 0 & a \in A(i), i \in E \end{array} \right\}$$

If a finite optimal solution \mathbf{x}^* is obtained, then go to step 2. If an infinite optimum is discovered, then go to step 3.

<u>step 2</u>: Choose $f_{\star}^{\infty} \in C_{D}$ such that $x_{if_{\star}(i)}^{\star} > 0$, $i \in E_{x^{\star}}$. Then, f_{\star}^{∞} is an optimal policy (STOP).

$$s_{ja} := \begin{cases} -a_{ij\ell}^{*} & \text{if } j \in E_{x} \text{ and } x_{ja_{j}} \text{ is the basic variable of row} \\ & i_{j} \text{ of the simplex tableau} \\ 1 & \text{if } j = k \text{ and } a = a_{o} \\ 0 & \text{elsewhere.} \end{cases}$$

<u>step 4</u>: Take $f_{\star}^{\infty} \in C_{D}$ such that $s_{if_{\star}(i)} > 0$ i $\in E_{s}$.

- <u>step 5</u>: Determine on E the ergodic sets in the Markov chain induced by $P(f_{\downarrow})$ (see algorithm II).
- <u>step 6</u>: Determine the union E_{o} of the ergodic sets under $P(f_{\star})$, which contain a state j such that $r_{i}(f_{\star}) > 0$.

<u>step 7</u>: If $E_0 = E$, then f_{\star}^{∞} is an optimal policy (STOP). Otherwise, go to step 8.

<u>step 9</u>: For E := $E \setminus E_{e}$ repeat the algorithm, starting in step 1.

<u>PROOF</u>. If the linear programming problem, that is solved in step 1, has a finite optimal solution x^* , then theorem 3.5.2 implies that the policy f_{\star}^{∞} is optimal. Suppose that program (3.5.15) has an infinite solution. Then, by the theorems 3.5.3 and 3.5.4, the policy f_{\star}^{∞} which is defined in step 4 satisfies $v_j(f_{\star}^{\infty}) = +\infty$ for every $j \in E_o$, where E_o is the nonempty set defined in step 6. Hence, if $E_o = E$, then the algorithm terminates in step 7 with an optimal policy f_{\star}^{∞} .

郡 public pu

EXAMPLE 3.5.2. We shall show the working of algorithm XII in order to find a pure and stationary optimal policy for the model of figure 3.5.2.

Iteration l:

1. Starting the simplex method with x = 0, we find an infinite solution in the following simplex tableau (the column of x_{11} is deleted since all components are equal to zero):

									+						
		×12	x 21	У ₂	×31	×32	x 33	×41	x ₄₂	× ₅₁	^ب 52	x 53	× 61	×71	x 72
У ₁	1/7	1	-1			-1									
x 22	1/7		1	1					-1						
У ₃	1/7	-1			1 <u>-</u> 2	1	1	-1			$-\frac{1}{2}$				
У ₄	2/7		1	1				1		$-\frac{1}{2}$					
Υ ₅	1/7									1	1	1			
У У6	1/7											-1	1		-1
У ₇	1/7												$-\frac{1}{2}$	12	1
x ₀	1/7		1	1	-1	-1	-1	-1	-2	-1	-2	-3	-1	-1	-1

$$\beta_i = 1/7$$
 i = 1,2,...,7

3. k = 1, $a_0 = 2$ $s_{32} = 1$, $s_{12} = 1$: $E_s = \{1,3\}$ 4. $f_*(1) = 2$, $f_*(3) = 2$ 5. $E_1 = \{1,3\}$ 6. $E_0 = \{1,3\}$ 7. $E = \{6,7\}$.

Iteration 3:

1. A finite optimal solution is obtained: $x_{61}^{\star} = 4/7, x_{72}^{\star} = 3/7$ 2. $f_{\star}(6) = 1, f_{\star}(7) = 2; f_{\star}^{\infty}$ is optimal, where $f_{\star}(1) = 2, f_{\star}(2) = 2, f_{\star}(3) = 2, f_{\star}(4) = 2,$ $f_{\star}(5) = 1, f_{\star}(6) = 1, f_{\star}(7) = 2.$ $x_{1} = \frac{y_{6} x_{71} y_{7}}{x_{61} 4/7 2 1 2}$ $x_{72} 3/7 1 1 2$ $x_{0} = \frac{y_{6} x_{71} y_{7}}{x_{61} 4/7 2 1 2}$

3.6. NEGATIVE DYNAMIC PROGRAMMING

ASSUMPTION 3.6.1. $r_i \leq 0$ a ϵ A(i), i ϵ E.

្\mathrm $\text{ for } 0 \in \mathbb{N} \ \text{ for } 0 \in \mathbb{N} \ \text{$

<u>THEOREM 3.6.1</u>. Let f_1^{∞} be any pure and stationary average optimal policy. (i) $v_i = -\infty$ for every i such that $\phi_i(f_1^{\infty}) < 0$. (ii) $v_i = v_i(f_1^{\infty}) = 0$ for every i such that $\phi_i(f_1^{\infty}) = 0$ and i is a recurrent state in the Markov chain induced by $P(f_1)$.

PROOF.

(i) From (2.5.7) it follows that for any pure and stationary policy f° , we have

$$v^{\alpha}(f^{\infty}) = (1-\alpha)^{-1} \cdot \phi(f^{\infty}) + u(f^{\infty}) + \varepsilon(\alpha),$$

where $\varepsilon(\alpha) \to 0$ for $\alpha \uparrow 1$. Since $\phi(\tilde{f}^{\infty}) \leq \phi(\tilde{f}^{\infty})$ and $v(\tilde{f}^{\infty}) = \lim_{\alpha \uparrow 1} v^{\alpha}(\tilde{f}^{\infty})$ (see lemma 3.2.1), we obtain

$$(3.6.1) \qquad v(f^{\infty}) = \lim_{\alpha \uparrow 1} \{ (1-\alpha)^{-1} \cdot \phi(f^{\infty}) + u(f^{\infty}) + \varepsilon(\alpha) \}$$
$$\leq \lim_{\alpha \uparrow 1} \{ (1-\alpha)^{-1} \cdot \phi(f^{\infty}_{1}) + u(f^{\infty}) + \varepsilon(\alpha) \}.$$

Let $i \in E$ such that $\phi_i(f_1^{\infty}) < 0$. Then (3.6.1) implies that $v_i(f^{\infty}) = -\infty$. Since f^{∞} is arbitrarily chosen and since there exists a pure and stationary optimal policy (theorem 3.2.1), it follows that $v_i = -\infty$.

(ii) Suppose that $\phi_i(f_1^{\infty}) = 0$ and $i \in E_k$, where E_k is an ergodic set in the Markov chain induced by $P(f_1)$. Then (cf. (2.4.3))

$$p_{ij}^{*}(f_{1}) > 0 \quad j \in E_{k}, p_{ij}^{*}(f_{1}) = 0 \quad j \notin E_{k} \text{ and}$$

$$p_{ij}^{t}(f_{1}) = 0 \quad j \notin E_{k}, t \in \mathbb{N}_{0}.$$

Since

$$0 = \phi_{i}(f_{1}^{\infty}) = \sum_{j} p_{ij}^{*}(f_{1})r_{j}(f_{1}) = \sum_{j \in E_{k}} p_{ij}^{*}(f_{1})r_{j}(f_{1}),$$

we get

$$r_{j}(f_{1}) = 0 \quad j \in E_{r}$$

Hence,

$$\mathbf{v}_{i}(\mathbf{f}_{1}^{\infty}) = \sum_{t=1}^{\infty} \sum_{j} p_{ij}^{t-1}(\mathbf{f}_{1}) \mathbf{r}_{j}(\mathbf{f}_{1}) = \sum_{t=1}^{\infty} \sum_{j \in \mathbf{E}_{k}} p_{ij}^{t-1}(\mathbf{f}_{1}) \mathbf{r}_{j}(\mathbf{f}_{1}) = 0.$$

Consequently, $v_i = v_i (f_1^{\infty}) = 0$, completing the proof.

$$E := E \setminus R(f_{1}) \cup \{0\}$$

$$A(i) := \begin{cases} A(i) & i \neq 0 \\ \{1\} & i = 0 \end{cases}$$

$$p_{iaj} := \begin{cases} p_{iaj} & i \neq 0, j \neq 0, a \in A(i) \\ \sum_{k \in R(f_{1})^{p_{iak}} & i \neq 0, j = 0, a \in A(i) \\ 1 & i = 0, j = 0, a \in A(i) \\ 0 & i = 0, j \neq 0, a \in A(i) \end{cases}$$

$$r_{ia} := \begin{cases} r_{ia} & i \neq 0, a \in A(i) \\ -1 & i = 0, a \in A(i) \\ -1 & i = 0, a \in A(i) \end{cases}$$

are two possibilities:

1. $\phi_i(f_2^{\omega}) = 0$ for at least one state i:

We remove the states j for which $\phi_j(f_2^{\infty}) < 0$. Let E_1 be the set of removed states. Then, the state 0 belongs to E_1 .

If the remaining state space coincides with $R(f_2)$, then $v_i(f_2^{\infty}) = 0$ for all remaining states, and consequently, f_2^{∞} gives optimal actions for these states.

Otherwise, we repeat the analysis described above to obtain recurrent states in $E\setminus R(f_2)$.

2. $\phi_i(f_2^{\infty}) < 0$ for all states i:

Redefine $r_{01} := 0$, $p_{01j} := 0$ for all j. For the remaining states together with the set E_1 of already removed states, we compute an optimal transient policy by algorithm VI.

<u>step 1</u>: If $\Sigma_{j} p_{iaj} < 1$ for at least one pair (i,a), where $a \in A(i)$, $i \in E$, then construct the extended model in the following way:

 $E := E \cup \{0\}$

$$A(i) := \begin{cases} A(i) & i \neq 0 \\ \{1\} & i = 0 \end{cases}$$

$$p_{iaj} := \begin{cases} p_{iaj} & i \neq 0, j \neq 0, a \in A(i) \\ 1 - \sum_{k \neq 0} p_{iak} & i \neq 0, j = 0, a \in A(i) \\ 0 & i = 0, j \neq 0, a \in A(i) \\ 1 & i = 0, j = 0, a \in A(i) \end{cases}$$

$$\mathbf{r}_{\mathbf{i}\mathbf{a}} := \begin{cases} \mathbf{r}_{\mathbf{i}\mathbf{a}} & \mathbf{i} \neq \mathbf{0}, \mathbf{a} \in \mathbf{A}(\mathbf{i}) \\\\ \mathbf{0} & \mathbf{i} = \mathbf{0}, \mathbf{a} \in \mathbf{A}(\mathbf{i}) . \end{cases}$$

step 2: Compute an average optimal policy f_1^{∞} by algorithm XIV. step 3b: Define $f_{\star}(i) := f_1(i), i \in E_0$. step 3c: If $E_0 = E$, then go to step 9. Otherwise, go to step 3d. step 3d: For every a ϵ A(i), where i $\epsilon \in E \setminus E_0$, such that $\sum_{j \in E_0} p_{iaj} > 0$ do $A(i) := A(i) \setminus \{a\}.$ step 3e: $E := E \setminus E_0$. 郡<table-cell><table-cell> E in the Markov chain induced by $P(f_1)$. step 4b: Define $f_{\star}(i) := f_{1}(i), i \in R(f_{1})$. step 4c: If $R(f_1) = E$, then go to step 7a. Otherwise, go to step 4d. step 4d: $E := E \setminus R(f_1) \cup \{0\}$ $A(i) := \begin{cases} A(i) & i \neq 0 \\ \{1\} & i = 0 \end{cases}$ $P_{iaj} := \begin{cases} p_{iaj} & i \neq 0, j \neq 0, a \in A(i) \\ \sum_{k \in R(f_1)} p_{iak} & i \neq 0, j = 0, a \in A(i) \\ 1 & i = 0, j = 0, a \in A(i) \\ 0 & i = 0, j \neq 0, a \in A(i) \end{cases}$ $i \neq 0, a \in A(i)$ $i = 0, a \in A(i).$ $r_{ia} := \begin{cases} r_{ia} \\ -1 \end{cases}$ step 5: Compute an average optimal policy f_1^{∞} by algorithm XIV. <u>step 6a</u>: $E_2 := \{i \mid \phi_i(f_1^{\infty}) < 0\}.$ step 6b: If $E = E_2$, then $E_1 := E_1 \cup (E \setminus \{0\})$ and go to step 7a.

Otherwise, $E_1 := E_1 \cup (E_2 \setminus \{0\})$ and go to step 6c. step 6c: For every $a \in A(i)$, where $i \in E \setminus E_2$, such that $\sum_{j \in E_2} p_{iaj} > 0$ do

 $A(i) := A(i) \setminus \{a\}.$

step 6d: E := $E \setminus E_2$ and go to step 4a.

step 7a: If $E_1 = \emptyset$, then go to step 9.

Otherwise, go to step 7b. $E := E_1 \cup \{0\}$ step 7b: $A(i) := \begin{cases} A_1(i) & i \neq 0 \\ \{1\} & i = 0 \end{cases}$ $\mathbf{p}_{iaj} := \begin{cases} \mathbf{p}_{iaj} & i \neq 0, j \neq 0, a \in A(i) \\ 1 - \sum_{k \in \mathbf{E}_1} \mathbf{p}_{iak} & i \neq 0, j = 0, a \in A(i) \\ 0 & i = 0, j \in \mathbf{E}, a \in A(i) \end{cases}$ $i \neq 0, a \in A(i)$ $i = 0, a \in A(i)$ $r_{ia} := \begin{cases} r_{ia} \\ 0 \end{cases}$ step 8a: Compute an optimal transient policy f_{α}^{∞} by algorithm VI. step 8b: Define $f_{\star}(i) := f_{o}(i)$ $i \in E$. <u>step 9</u>: f_{\downarrow}^{∞} is an optimal policy. 0,1 EXAMPLE 3.6.1. We illustrate algorithm XIII for the negative -1,12 0,1 dynamic programming problem of figure 3.6.1 (without the dotted part). (0,1 Iteration 1: (0,1)-1,¹2 1. The extended model is drawn in figure 3.6.1 by the dotted $-1, \frac{1}{2}$ lines. -1,¹2 2. $f_1(1) = 1$, $f_1(2) = 1$, $f_1(3) = 1$, $f_1(4) = 1$, $f_1(0) = 1$; $\phi_1(f_1^{\infty}) = 0$, $i = 0, 1, \dots, 4$. 3. $E_0 = \emptyset; E_1 = \emptyset; A_1(0) = \{1\}; A_1(1) = \{1, 2, 3\}; A_1(2) = \{1, 2\};$ $A_1(3) = \{1\}; A_1(4) = \{1,2,3\}.$ 0,1 4. $R(f_1) = \{0\}; f_*(0) = 1;$ the new model is the same as the old model except that Figure 3.6.1 $r_{01} = -1$. 5. $f_1(1) = 2$, $f_1(2) = 2$, $f_1(3) = 1$, $f_1(4) = 1$, $f_1(0) = 1$. $\phi_1(f_1^{\infty}) = \phi_2(f_1^{\infty}) = \phi_4(f_1^{\infty}) = 0$, $\phi_3(f_1^{\infty}) = \phi_0(f_1^{\infty}) = -1$. 6. $E_2 = \{3,0\}; E_1 = \{3\}; A(1) = \{2\}, A(2) = \{2\}, A(4) = \{1,2\}; E = \{1,2,4\}.$

Iteration 2:

92

- 4. R(f₁) = {1,2}; f_{*}(1) = f_{*}(2) = 2; The model
 is reduced to the model of figure 3.6.2;
 E = {4,0}.
- 5. $f_1(4) = 1$, $f_1(0) = 1$; $\phi_4(f_1^{\infty}) = \phi_0(f_1^{\infty}) = -1$. 6. $E_2 = \{0, 4\}$; $E_1 = \{3, 4\}$
- 7. We obtain the model of figure 3.6.3
- 8. f_o(3) = 1, f_o(4) = 1, f_o(0) = 1. f_{*}(3) = 1, f_{*}(4) = 1 9. f[∞]_{*}, where f_{*}(1) = 2, f_{*}(2) = 2, f_{*}(3) = 1, f_{*}(4) = 1, is an optimal policy.

Figure 3.6.2

<u>THEOREM 3.6.2</u>. Algorithm XIII determines a pure and stationary optimal policy f_{\star}^{∞} in a finite number of iterations.

<u>PROOF</u>. First, we consider the finiteness. The only loop in the algorithm may possibly occur in the steps 4 until 6. However, each time that we go back

Figure 3.6.3

to step 4, the number of states in E decreases, namely:

Consequently, algorithm XIII determines a pure and stationary policy f_{\star}° in a finite number of iterations. This policy f_{\star}° has the following properties:

- (i) $v_i(f_{\star}^{\infty}) = v_i = -\infty$ for all $i \in E_0$.
- (ii) $v_{i}(f_{\star}^{\infty}) = v_{i} = 0$ for all $i \in E \setminus (E_{0} \cup E_{1})$

For any $f^{\overset{\infty}{\sim}} \in {\mathcal C}_{\stackrel{}{D}}$, let $\widetilde{v}(f^{\overset{\infty}{\sim}})$ be the expected total reward obtained in the model of step 7b when policy f^{∞} is used. Since $r_{i}(f_{*}) = 0$ for every $j \in E \setminus$ $(E_0 \cup E_1)$, we can write for $i \in E_1$ and $f^{\infty} \in C_D$:

$$v_{i}(f_{*}^{\infty}) = \widetilde{v}_{i}(f_{*}^{\infty})$$

 $\geq \widetilde{v}_{i}(f^{\infty}) =$
expected

d total reward until a state of $E \setminus E_1$ is reached > expected total reward over the infinite horizon = v,(f^{°°}).

This completes the proof of the theorem.

REMARK 3.6.1. From theorem 3.6.1 and relation (3.6.1) it follows that an optimal policy can also be obtained in the following way:

1. Construct the extended model with $\sum_{j} p_{iaj} = 1$ for all $i \in E$, $a \in A(i)$. 2. Compute an average optimal policy f_1^{∞} by algorithm XIV.

- 3. Define $f_{\star}(i) := f_{1}(i)$ for $i \in E_{0} \cup E_{2}$, where

$$\mathbf{E}_{0} := \{ \mathbf{j} \mid \phi_{\mathbf{j}}(\mathbf{f}_{1}^{\infty}) < 0 \} \text{ and } \mathbf{E}_{2} := (\mathbf{E} \setminus \mathbf{E}_{0}) \cap \mathbf{R}(\mathbf{f}_{1}).$$

- 4. Construct the model with state space $E := E \setminus (E_0 \cup E_2) \cup \{0\}$ as in step 4d of algorithm XIII but with $r_{01} := 0$ instead of $r_{01} := -1$. 5. Compute a bias optimal policy f_2^{∞} by algorithm XXII or XXIII presented
- in chapter 5, i.e. f_2^{∞} satisfies

$$u(f_2^{\infty}) = max\{u(f^{\infty}) \mid \phi(f^{\infty}) = 0\}.$$

6. Define $f_{*}(i) := f_{2}(i)$ $i \neq 0$.

The policy f_{\star}^{∞} is an optimal policy since for all states i and policies f_{\star}^{∞} such that $\phi_i(f^{\infty}) = 0$, we have (cf. (3.6.1)) $v_i(f^{\infty}) = u_i(f^{\infty})$.

b

8888

භ

ث

ም

ት

CHAPTER 4

AVERAGE REWARD CRITERION

4.1. INTRODUCTION AND SUMMARY

The linear programming approach for the average reward criterion was introduced by DE GHELLINCK [1960] and MANNE [1960]. They have proposed a linear program from which a pure and stationary optimal policy can be obtained if for any stationary policy π^{∞} the Markov chain induced by $P(\pi)$ is completely ergodic.

optimality property, i.e. optimal solutions are mapped on optimal policies and optimal policies correspond to representatives which are optimal solutions of the linear program.

ៃ<text>

We close this chapter with a discussion about the constrained Markov decision model. In this model there are some additional constraints for the limit points of the expected state - action frequencies. Such models are of fiómath. In contatt. ేimating imaging In general, these models have no stationary optimal policies. First, we shall prove some properties of the set of limit points of the state-action frequencies. We present an algorithm for the construction of an average optimal policy for a constrained Markov decision problem. However, this algorithm requires an enormous quantity of calculations. Fortunately, in many cases an optimal stationary policy can be computed. We give sufficient conditions for the existence of optimal stationary policies. These conditions ary, but not necessary optimal, policy is computed. We give some numerical љ, results about its performance. The results are results about the results are ary optimal policy was always found, if one exists, for the 400 test prob-្uation of a second of a second

always exists and we present a simple algorithm to construct one.

The results of the sections 4.2, 4.3 and 4.7 are based upon HORDIJK & KALLENBERG [1978a], [1978b], [1979a], [1979b] and [1981b].

4.2. LINEAR PROGRAMMING FORMULATION

<u>THEOREM 4.2.1</u>. Let f_{\circ}° be a Blackwell optimal pure and stationary policy. Then $\phi^{\circ} := \phi(f_{\circ}^{\circ})$ and $u^{\circ} := D(f_{\circ})r(f_{\circ})$ satisfy the pair of optimality equations

(4.2.1)
$$\widetilde{\phi}_{i} = \max_{a \in A(i)} \sum_{j} p_{iaj} \widetilde{\phi}_{j}, \qquad i \in E.$$

(4.2.2)
$$\widetilde{\phi}_{i} + \widetilde{u}_{i} = \max_{a \in A(i)} \sum_{j} p_{iaj} \widetilde{\phi}_{j}, \qquad i \in E.$$

$$(4.2.2) \qquad \phi_{i} + u_{i} = \max_{a \in \overline{A}(i)} \{r_{i}a + \sum_{j} p_{i}a_{j}j\}, \quad i \in E$$

where $\overline{A}(i) := \{a \in A(i) | \widetilde{\phi}_i = \Sigma_j p_{iaj} \widetilde{\phi}_j \}, i \in E.$

<u>PROOF</u>. Since f_{\circ}^{∞} is a Blackwell optimal policy, there exists a nonnegative real number $\alpha_{\circ} < 1$ such that $v^{\alpha}(f_{\circ}^{\infty}) = v^{\alpha}$ for all $\alpha \in [\alpha_{\circ}, 1)$. From theorem 3.4.1 it follows that

$$v_i^{\alpha}(f_o^{\infty}) \ge r_{ia} + \alpha \sum_j p_{iaj} v_j^{\alpha}(f_o^{\infty})$$
 $a \in A(i), i \in E, \alpha \in [\alpha_o, 1).$

Equation (2.5.7) implies that

(4.2.3)
$$\mathbf{v}_{i}^{\alpha}(\mathbf{f}_{\circ}^{\infty}) = (1-\alpha)^{-1}\phi_{i}^{\circ} + u_{i}^{\circ} + \varepsilon_{i}(\alpha), \quad i \in E,$$

where $\lim_{\alpha \uparrow 1} \varepsilon_i(\alpha) = 0$, i ϵ E. Hence, we obtain

$$(1-\alpha)^{-1}\phi_{i}^{\circ} + u_{i}^{\circ} + \varepsilon_{i}(\alpha) \geq$$

$$r_{ia} + \alpha \sum_{j} p_{iaj} \{ (1-\alpha)^{-1}\phi_{j}^{\circ} + u_{j}^{\circ} + \varepsilon_{j}(\alpha) \} =$$

$$r_{ia} + \{ 1-(1-\alpha) \} \sum_{j} p_{iaj} \{ (1-\alpha)^{-1}\phi_{j}^{\circ} + u_{j}^{\circ} + \varepsilon_{j}(\alpha) \} =$$

$$(1-\alpha)^{-1} \sum_{j} p_{iaj} \phi_{j}^{\circ} + r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} - \sum_{j} p_{iaj} \phi_{j}^{\circ} + \delta_{i}(\alpha) ,$$

where

$$\delta_{i}(\alpha) := \sum_{j} p_{iaj} \{ \varepsilon_{j}(\alpha) - (1-\alpha)u_{j}^{\circ} - (1-\alpha)\varepsilon_{j}(\alpha) \}, a \in A(i), i \in E, \alpha \in [\alpha_{0}, 1) \}$$

Therefore, $\lim_{\alpha \uparrow 1} \delta_i(\alpha) = 0$, $i \in E$, and we get

$$\phi_{i}^{\circ} \geq \sum_{j} p_{iaj} \phi_{j}^{\circ} \qquad a \in A(i), i \in E,$$

$$u_{i}^{\circ} \geq r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} - \sum_{j} p_{iaj} \phi_{j}^{\circ} = r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} - \phi_{i}^{\circ} \qquad a \in \overline{A}(i), i \in E.$$

and

$$\phi^{\circ} = \phi(f_{\circ}^{\circ}) = P^{*}(f_{\circ})r(f_{\circ}) = P(f_{\circ})P^{*}(f_{\circ})r(f_{\circ}) = P(f_{\circ})\phi^{\circ}$$

$$\phi^{\circ} + u^{\circ} - P(f_{\circ})u^{\circ} = P^{*}(f_{\circ})r(f_{\circ}) + (I-P(f_{\circ}))D(f_{\circ})r(f_{\circ})$$

$$= P^{*}(f_{\circ})r(f_{\circ}) + (I-P^{*}(f_{\circ}))r(f_{\circ}) = r(f_{\circ}).$$

Consequently, we have proved that

$$\phi_{i}^{\circ} = max_{a \in A(i)} \sum_{j} p_{iaj} \phi_{j}^{\circ}, \quad i \in E,$$

$$\phi_{i}^{\circ} + u_{i}^{\circ} = max_{a \in \overline{A}(i)} \{r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ}\}, \quad i \in E. \square$$

 $\underline{\text{DEFINITION 4.2.1}}. \text{ A vector } \widetilde{\phi} \in \mathbb{R}^N \text{ is AMD-superharmonic if there exists a vector } \widetilde{u} \in \mathbb{R}^N \text{ such that }$

$$(4.2.4) \qquad \widetilde{\phi}_{i} \geq \sum_{j} p_{iaj} \widetilde{\phi}_{j} \qquad a \in A(i), i \in E,$$

(4.2.5)
$$\widetilde{\phi}_{i} + \widetilde{u}_{i} \ge r_{ia} + \sum_{j} p_{iaj} \widetilde{u}_{j}$$
 $a \in A(i), i \in E$

<u>REMARK 4.2.1</u>. The inequalities (4.2.4) and (4.2.5) have to hold for all actions. Since in (4.2.2) the inequalities have to be satisfied only for the actions which yield equality in the first set of equations, the AMD-superharmonicity is a stronger condition.

THEOREM 4.2.2. The AMD-value-vector $\boldsymbol{\varphi}$ is the smallest AMD-superharmonic vector.

<u>PROOF</u>. Let f_{\circ}^{∞} be any Blackwell optimal pure and stationary policy. From the property that f_{\circ}^{∞} is average optimal (cf. theorem 2.5.4) and from theorem 4.2.1 it follows that

$$\phi_{i} \geq \sum_{j} p_{iaj} \phi_{j} \qquad a \in A(i), i \in E,$$

$$\phi_{i} + u_{i}^{\circ} \geq r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} \qquad a \in \overline{A}(i), i \in E,$$

where

$$\stackrel{\circ}{i} := u_{i}(f_{o}^{\infty}) \text{ and } \overline{A}(i) := \{a \in A(i) | \phi_{i} = \sum_{j} p_{iaj} \phi_{j} \}, \quad i \in E.$$

Define:

u

$$A^{*}(i) := \{a \in A(i) | \phi_{i} + u_{i}^{\circ} < r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} \} \quad i \in E.$$

$$s_{ia} := \phi_{i} - \sum_{j} p_{iaj} \phi_{j} \qquad a \in A(i), i \in E.$$

$$t_{ia} := \phi_{i} + u_{i}^{\circ} - r_{ia} - \sum_{j} p_{iaj} u_{j}^{\circ} \qquad a \in A(i), i \in E.$$

Then, $A^{*}(i) \cap \overline{A}(i) = \emptyset$, $i \in E$, and $s_{ia} \geq 0 \ a \in A(i)$, $i \in E$; $s_{ia} \geq 0 \ a \notin \overline{A}(i)$, $i \in E$. $t_{ia} \geq 0 \ a \notin A^{*}(i)$, $i \in E$; $t_{ia} < 0 \ a \in A^{*}(i)$, $i \in E$. Let

A (i)		Ā(i)					
s > 0 ia	s > 0 ia	s_ = 0 ia					
t_ < 0 ia	$t \ge 0$ ia	t_≥0 ia					

$$M := min \left\{ \frac{t_{ia}}{s_{ia}} \mid a \in A^{*}(i), i \in E \right\}, and u := u^{\circ} - M\phi$$

(if $A^*(i) = \emptyset$ for all $i \in E$, then we define M := 0) For $a \in \overline{A}(i)$, we have

and

100

and

$$\phi_{i} = \sum_{j} p_{iaj} \phi_{j}$$

$$\phi_{i} + u_{i} = \phi_{i} + u_{i}^{\circ} - M \sum_{j} p_{iaj} \phi_{j} \ge r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} - M \sum_{j} p_{iaj} \phi_{j} = r_{ia} + \sum_{j} p_{iaj} u_{j}.$$

For a $\in A^*(i)$, we obtain

and

$$\phi_{i} > \sum_{j} p_{iaj} \phi_{j}$$

$$\phi_{i} + u_{i} = \phi_{i} + u_{i}^{\circ} - M(s_{ia} + \sum_{j} p_{iaj} \phi_{j})$$

$$= r_{ia} + \sum_{j} p_{iaj} (u_{j}^{\circ} - M \phi_{j}) + (t_{ia} - M s_{ia})$$

$$\geq r_{ia} + \sum_{j} p_{iaj} u_{j}.$$

If a $\notin A^{\star}(i) \cup \overline{A}(i)$ then we get

 $\phi_i > \sum_{j p_{i, p_j}} \phi_j$

and

$$\phi_{i} + u_{i} = \phi_{i} + u_{i}^{\circ} - M\phi_{i} = t_{ia} + r_{ia} + \sum_{j} p_{iaj} u_{j}^{\circ} - M\phi_{i}$$
$$\geq t_{ia} + r_{ia} + \sum_{j} p_{iaj} (u_{j}^{\circ} - M\phi_{j}) \geq r_{ia} + \sum_{j} p_{iaj} u_{j}.$$

(4.2.6)
$$\widetilde{\phi} \ge P(f_{\circ})\widetilde{\phi}.$$

$$(4.2.7) \qquad \widetilde{\phi} \geq \lim_{T \to \infty} \frac{1}{T} \widetilde{\chi}_{t=1}^{T} P^{t}(f_{\circ}) \widetilde{\phi} = P^{*}(f_{\circ}) \widetilde{\phi}.$$

From (4.2.5) it follows that

$$(4.2.8) \qquad P^{*}(f_{\circ})(\widetilde{\phi}+\widetilde{u}) \geq P^{*}(f_{\circ})(r(f_{\circ}) + P(f_{\circ})\widetilde{u}) = \phi(f_{\circ}^{\infty}) + P^{*}(f_{\circ})\widetilde{u} = \phi + P^{*}(f_{\circ})\widetilde{u}.$$

Then, using (4.2.7) and (4.2.8), we can complete the proof as follows.
$$\widetilde{\phi} \ge P^*(f_o)\widetilde{\phi} \ge \phi,$$

i.e. ϕ is the smallest AMD-superharmonic vector. $\hfill\square$

Next, we shall show that a pure and stationary average optimal policy is also an optimal policy if the following stronger criterion should be used:

(4.2.9)
$$\oint_{i}^{\wedge}(R) := \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{j}^{n} \mathbb{P}_{R} (X_{t} = j, Y_{t} = a | X_{1} = i) \cdot r_{ja}, i \in E.$$

Notice that for any $\pi^{\infty} \in C_{s}$

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{T} \sum_{n=1}^{T} \sum_{n=1}^{T} \sum_{n=1}^{T} \left[\mathbf{p}^{t-1}(n) \mathbf{r}(n) \right]_{i} = \left[\mathbf{p}^{t}(n) \mathbf{r}(n) \right]_{i}, \quad i \in E,$$

and consequently,

$$\phi(\pi^{\infty}) = \dot{\phi}(\pi^{\infty}) = P^{\star}(\pi)r(\pi).$$

THEOREM 4.2.3. Let f^{∞} be any pure and stationary average optimal policy. Then, $\hat{\phi}(f^{\infty}) \ge \hat{\phi}(R)$ for all $R \in C$.

PROOF. From theorem 2.5.1 it follows that it is sufficient to prove that

$$\hat{\phi}(\mathbf{f}^{\infty}) \geq \hat{\phi}(\mathbf{R}) \quad \text{for all } \mathbf{R} \in \mathcal{C}_{\mathbf{M}}.$$

Let $R = (\pi^1, \pi^2, ...)$ be an arbitrarily chosen Markov policy. Since ϕ is AMD-superharmonic, there exists a $u \in \mathbb{R}^N$ such that

and

$$\phi_{i}\pi_{ia}^{t} \geq \sum_{j}p_{iaj}\pi_{ia}^{t}\phi_{j} \qquad a \in A(i), i \in E, t \in \mathbb{N},$$

$$\phi_{i}\pi_{ia}^{t} + u_{i}\pi_{ia}^{t} \geq r_{ia}\pi_{ia}^{t} + \sum_{j}p_{iaj}\pi_{ia}^{t}u_{j} \qquad a \in A(i), i \in E, t \in \mathbb{N}.$$

Consequently,

$$P(\pi^{t})\phi \leq \phi$$
 and $r(\pi^{t}) \leq \phi + u - P(\pi^{t})u$ $t \in \mathbb{N}$.

Hence, we obtain

102

$$\begin{split} \sum_{t=1}^{T} \mathbb{P}(\pi^{1}) \mathbb{P}(\pi^{2}) \cdots \mathbb{P}(\pi^{t-1}) \mathbb{r}(\pi^{t}) &\leq \sum_{t=1}^{T} \mathbb{P}(\pi^{1}) \mathbb{P}(\pi^{2}) \cdots \mathbb{P}(\pi^{t-1}) \, . \\ & \{\phi + u - \mathbb{P}(\pi^{t}) u\} \leq T \cdot \phi + u - \mathbb{P}(\pi^{1}) \mathbb{P}(\pi^{2}) \cdots \mathbb{P}(\pi^{T}) u \qquad T \in \mathbb{N} \, . \end{split}$$

Since $\frac{1}{T} \{u-P(\pi^1)P(\pi^2) \cdots P(\pi^T)u\} \neq 0$ for $T \neq \infty$, we can write

$$\begin{split} \hat{\phi}_{i}(\mathbf{R}) &= \operatorname{limsup}_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \left[\operatorname{P}(\pi^{1}) \operatorname{P}(\pi^{2}) \cdots \operatorname{P}(\pi^{t-1}) \operatorname{r}(\pi^{t}) \right]_{i} \\ &\leq \operatorname{limsup}_{T \to \infty} \frac{1}{T} \left\{ \operatorname{T} \cdot \phi + u - \operatorname{P}(\pi^{1}) \operatorname{P}(\pi^{2}) \cdots \operatorname{P}(\pi^{T}) u \right\}_{i} = \\ &\phi_{i} = \phi_{i}(f^{\infty}), \quad i \in E. \end{split}$$

This completes the proof. $\hfill\square$

<u>COROLLARY 4.2.1</u>. Any pure and stationary average optimal policy is also optimal for the stronger criterion with utility function (4.2.9).

REMARK 4.2.2. In DERMAN [1970] p.26 the above result is also mentioned. However, as was pointed out by HORDIJK & TIJMS [1970] p.93, Derman's proof is incorrect.

We will formulate a pair of dual linear programs and we will show that a pure and stationary average optimal policy can be obtained from the optimal solution of the dual program. Since ϕ is the smallest AMD-superharmonic vector, it is plausible to consider the following linear programming problem

$$(4.2.10) \quad \min\left\{\sum_{j}\beta_{j}\widetilde{\phi}_{j} \middle| \begin{array}{c} \widetilde{\phi}_{i} \geq \sum_{j}p_{iaj}\widetilde{\phi}_{j} & a \in A(i), i \in E \\ \\ \widetilde{\phi}_{i} + \widetilde{u}_{i} \geq r_{ia} + \sum_{j}p_{iaj}\widetilde{u}_{j} & a \in A(i), i \in E \end{array}\right\}$$

where $\beta_j>0,\ j\in E,$ are given numbers with $\Sigma_j\beta_j$ = 1. The dual linear programming problem is

$$(4.2.11) \quad \max\left\{\sum_{i}\sum_{a}r_{ia}x_{ia}\right| \begin{array}{l} \sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} &= 0, j \in E\\ \sum_{a}x_{ja} &+ \sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})y_{ia} &= \beta_{j}, j \in E\\ x_{ia},y_{ia} \geq 0 \quad a \in A(i), i \in E \end{array}\right\}$$

REMARK 4.2.3. From theorem 4.2.2 it follows that there exists a vector

 $u \in \mathbb{R}^{N}$ such that (ϕ, u) is an optimal solution of the primal program (4.2.10). Then theorem 1.3.4 implies that the dual program (4.2.11) has also an optimal solution, say (x^{*}, y^{*}) , which satisfies $\sum_{j} \beta_{j} \phi_{j} = \sum_{i} \sum_{j} \alpha_{i} \alpha_{i}^{*}$.

THEOREM 4.2.4. If (x^*, y^*) is an optimal solution of the linear program (4.2.11) such that (x^*, y^*) is an extreme point of the set of feasible solutions, then the policy f_*^{∞} , where

$$f_{\star}(i) := a_{i} \text{ such that} \begin{cases} x_{ia_{i}}^{\star} > 0 & i \in E \\ y_{ia_{i}}^{\star} > 0 & i \in E \setminus E \\ y_{ia_{i}}^{\star} > 0 & i \in E \setminus E \\ x^{\star} \end{cases},$$

is an average optimal policy.

<u>REMARK 4.2.4</u>. The above theorem says that an optimal policy is obtained by taking an arbitrary action for which the x^* -variable is positive, if possible; otherwise, by taking an arbitrary action for which the y^* -variable is positive. Indeed, it is possible to obtain an optimal solution where in some states there is more than one positive variable (see example 4.2.1). In that case we can construct different policies. Any of these policies is average optimal.

PROOF OF THEOREM 4.2.4. From the constraints of program (4.2.11) it follows that

$$\sum_{a} \mathbf{x}_{ja}^{*} + \sum_{a} \mathbf{y}_{ja}^{*} = \beta_{j} + \sum_{i} \sum_{a} \mathbf{p}_{iaj} \mathbf{y}_{ia}^{*} \ge \beta_{j} > 0, \quad j \in E.$$

Hence, the policy f_{\star}^{∞} is well-defined. Let (ϕ, u) be an optimal solution of the primal problem (4.2.10).

The remaining part of the proof has the following structure. First, we give three separate propositions. After presenting the proofs of these propositions, we complete the proof of the theorem by some final conclusions.

PROPOSITION 4.2.1.

$$\sum_{j} (\delta_{ij} - p_{if_{\star}(i)j}) \phi_{j} = 0 \qquad i \in E,$$

$$\phi_{i} + \sum_{j} (\delta_{ij} - p_{if_{\star}(i)j}) u_{j} = r_{i}(f_{\star}) \qquad i \in E_{\chi^{\star}}.$$

<u>PROOF</u>. Since $x_{if_{\star}(i)}^{\star} > 0$, i $\in E_{x^{\star}}$, and $y_{if_{\star}(i)}^{\star} > 0$, i $\in E \setminus E_{x^{\star}}$, it follows

from the complementary slackness property of linear programming (see corollary 1.3.1) that

 $\sum_{j} (\delta_{ij} - p_{if_{\star}(i)j}) \phi_{j} = 0 \qquad i \in E \setminus E_{x'}$

and

$$\phi_{i} + \sum_{j} (\delta_{ij} - p_{if_{\star}(i)j}) u_{j} = r_{i}(f_{\star}) \qquad i \in E_{x^{\star}}.$$

The primal program (4.2.10) implies

$$\sum_{j} (\delta_{ij} - p_{iaj}) \phi_{j} \ge 0 \qquad a \in A(i), i \in E.$$

Suppose that

$$\sum_{j} (\delta_{kj} - p_{kf_{*}(k)j}) \phi_{j} > 0 \qquad \text{for some } k \in E_{x^{*}}.$$

Since $x_{kf_{\star}(k)}^{\star} > 0$, we obtain

$$\sum_{j} (\delta_{kj} - p_{kf_{\star}(k)j}) \phi_{j} \cdot \mathbf{x}_{kf_{\star}(k)}^{*} > 0.$$

Furthermore, we have

$$\sum_{j} (\delta_{ij} - p_{iaj}) \phi_{j} \cdot \mathbf{x}_{ia}^{*} \geq 0 \qquad a \in A(i), i \in E.$$

Hence, we get

$$\sum_{i}\sum_{a}\sum_{j}(\delta_{ij}-p_{iaj})\phi_{j}\cdot x_{ia}^{*} > 0.$$

On the other hand, it follows from the constraints of program (4.2.11) that

$$\sum_{i}\sum_{a}\sum_{j}(\delta_{ij}-p_{iaj})\phi_{j}\cdot \mathbf{x}_{ia}^{*} = \sum_{j}\{\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})\mathbf{x}_{ia}^{*}\}\cdot\phi_{j} = 0.$$

This contradiction implies that $\sum_{j} (\delta_{ij} - p_{if_*(i)j}) \phi_j = 0$, $i \in E_{x^*}$, which completes the proof.

PROPOSITION 4.2.2. E_{x^*} is closed under $P(f_*)$, i.e. $p_{if_*(i)j} = 0$ i $\in E_{x^*}$, $j \notin E_{x^*}$.

<u>PROOF</u>. Suppose that $p_{kf_*(k)\ell} > 0$ for some $k \in E_{x^*}$ and $\ell \in E \setminus E_{x^*}$. From the constraints of program (4.2.11) it follows that

$$0 = \sum_{a} x_{\ell a}^{*} = \sum_{i} \sum_{a} p_{i a \ell} x_{i a}^{*} \ge p_{k f_{*}(k)} x_{k f_{*}(k)}^{*} > 0,$$

implying a contradiction.

PROPOSITION 4.2.3. The states of $E \setminus E_{x^*}$ are transient in the Markov chain induced by $P(f_{\star})$.

<u>PROOF</u>. Suppose that there is a state $j \in E \setminus E_{x^*}$ which is nontransient. Since E_{x^*} is closed under $P(f_*)$ (see proposition 4.2.2), there has to exist a non-empty set $J \subseteq E \setminus E_{x^*}$ which is ergodic. Because (x^*, y^*) is an extreme point and $y_{jf_*(j)}^* > 0$, $j \in J$, theorem 1.1.2 implies that the corresponding columns $\{q^j, j \in J\}$, where

$$q_{k}^{j} := \begin{cases} 0 & k = 1, 2, \dots, N \\ \\ \delta_{j(k-N)} - p_{jf_{\star}(j)(k-N)} & k = N+1, N+2, \dots, 2N, \end{cases}$$

are linearly independent. Let $J = {j_1, j_2, ..., j_m}$. Since J is an ergodic set, we have

$$0 = p_{jf_{*}(j)(k-N)} = \delta_{j(k-N)} \qquad j \in J, \ k-N \notin J.$$

Hence, $q_k^j = 0$ for all $k \notin \{N+j_1, N+j_2, \dots, N+j_m\}$. Therefore, the vectors $\{b^1, b^2, \dots, b^m\}$, where

$$b_{k}^{i} := q_{N+j_{k}}^{j_{i}}$$
 $i, k = 1, 2, ..., m,$

are also linearly independent. However,

$$\sum_{k=1}^{m} b_{k}^{i} = \sum_{k=1}^{m} (\delta_{j_{i}j_{k}} - p_{j_{i}f_{*}}(j_{i})j_{k})$$
$$= 1 - \sum_{k=1}^{m} p_{j_{i}f_{*}}(j_{i})j_{k}$$
$$= 1 - \sum_{k} p_{j_{i}f_{*}}(j_{i})k = 0,$$

which is contradictory to the independency of $\{b^1, b^2, \dots, b^m\}$. This completes the proof of the proposition 4.2.3.

Now, we can finish the proof of theorem 4.2.4 by the following arguments. From proposition 4.2.1 it follows that $P(f_*)\phi = \phi$ and consequently, $P^*(f_*)\phi = \phi$. Since the states of $E \setminus E_x$ are transient under $P(f_*)$ (see proposition 4.2.3), we have $p^*_{ik}(f^*) = 0$, $i \in E$, $k \in E \setminus E_x$. Hence,

$$\begin{split} {}_{i}(f_{*}^{\infty}) &= (P^{*}(f_{*})r(f_{*}))_{i} \\ &= \sum_{k} P^{*}_{ik}(f_{*})r_{k}(f_{*}) \\ &= \sum_{k \in E_{x^{*}}} P^{*}_{ik}(f_{*})\{\phi_{k}+\sum_{j}(\delta_{kj}-P_{kf_{*}}(k)j)^{u}_{j}\} \\ &= \sum_{k} P^{*}_{ik}(f_{*})\phi_{k} + \sum_{j}\{\sum_{k} P^{*}_{ik}(f_{*})\cdot(\delta_{kj}-P_{kf_{*}}(k)j)\}^{u}_{j}, \quad i \in E. \end{split}$$

Because $P^{*}(f_{*})\phi = \phi$ and $P^{*}(f_{*})(I-P(f_{*})) = 0$ (cf. theorem 2.4.1), we obtain

$$\phi_{i}(f_{\star}^{\infty}) = \phi_{i}, \quad i \in E,$$

i.e. $f_{\star}^{^{\infty}}$ is an average optimal policy. $\ \ \square$

The solution of a linear program by the simplex method always gives an optimal solution which is an extreme point of the set of feasible solutions. Hence, the above theorem implies that a pure and stationary average optimal policy is obtained by the following algorithm.

ALGORITHM XIV for the construction of a pure and stationary average optimal policy (multichain case).

step 1: Take any choice for the numbers β_j such that $\beta_j > 0$, $j \in E$, and $\Sigma_j \beta_j = 1$.

step 2: Use the simplex method to compute an optimal solution (x^*, y^*) of the linear programming problem

$$max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \\ \sum_{a} \sum_{a} r_{ia} x_{ia} \\ \sum_{a} x_{ja} \\ x_{ia} + \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} = \beta_{j}, j \in E \\ x_{ia} y_{ia} \ge 0 \quad a \in A(i), i \in E \end{cases}$$

step 3: For each i ϵ E choose an arbitrary action a from the set A^{*}(i), where

step 4: f° , where $f(i) := a_i$, $i \in E$, is a pure and stationary average optimal policy.

106

φ

EXAMPLE 4.2.1. The data of the model can be found in figure 4.2.1 and should be interpreted as exposed in remark 2.2.1. The linear program is: maximize $x_{11} + 2x_{21} + 4x_{31} + 3x_{22}$ subject to

The solution (x^*, y^*) , where $x_{11}^* = x_{21}^* = x_{31}^* = x_{32}^* = 4$, $y_{11}^* = y_{21}^* = y_{31}^* = y_{32}^* = 0$, is an extreme point of the set of feasible solutions and is also an optimal solution. In state 3 there are two actions for which the corresponding variables x_{31}^* and x_{32}^* are positive. Hence, we can construct two pure and stationary average optimal policies, namely f_1^{∞} and f_2^{∞} , where $f_1(1) = f_2(1) = f_1(2) = f_2(2) = f_1(3) = 1$ and $f_2(3) = 2$.

<u>REMARK 4.2.5</u>. For every optimal solution (x^*, y^*) which is an extreme point of the set of feasible solutions, we define

$$A_{i}^{*}\{(x^{*}, y^{*})\} := \begin{cases} \{a \mid x_{ia}^{*} > 0\} & i \in E \\ \{a \mid y_{ia}^{*} > 0\} & i \in E \setminus E \\ \{a \mid y_{ia}^{*} > 0\} & i \in E \setminus E \\ x^{*} \end{cases}$$

$$F^{*}\{(x^{*}, y^{*})\} := \{f^{\infty} \in C_{D} \mid f(i) \in A_{i}^{*}\{(x^{*}, y^{*})\}, \quad i \in E\}$$

$$F^{*} := \cup F^{*}\{(x^{*}, y^{*})\}.$$

From theorem 4.2.4 it follows that any $f \in F^*$ is average optimal. Conversely, for any pure and stationary optimal policy $f \in F^*$, there is an extreme optimal solution (x(f), y(f)) such that $f \in F^*\{(x(f), y(f))\}$ (this fact is shown in the theorems 4.3.3 and 4.3.4). Hence, all pure and stationary optimal policies can be determined by the computation of all extreme optimal solutions of program (4.2.11). In chapter 1 we have derived an algorithm to perform this computation (algorithm I).

4.3. RELATIONS BETWEEN STATIONARY POLICIES AND FEASIBLE SOLUTIONS

For any feasible solution (x,y) of the linear programming problem (4.2.11) we define a stationary policy $\pi^{\infty}(x,y)$ by

(4.3.1)
$$\pi_{ia}(\mathbf{x},\mathbf{y}) := \begin{cases} \mathbf{x}_{ia} / \sum_{a} \mathbf{x}_{ia} & a \in A(i), i \in \mathbf{E}_{\mathbf{x}} \\ \mathbf{y}_{ia} / \sum_{a} \mathbf{y}_{ia} & a \in A(i), i \in \mathbf{E} \setminus \mathbf{E}_{\mathbf{x}} \end{cases}$$

Unfortunately, in contrast with the contracting dynamic programming model, in the AMD-model it is possible that two different feasible solutions are mapped on the same stationary policy. We give an example.

EXAMPLE 4.3.1. Figure 4.3.1 presents the AMD-model. The formulation of the linear program becomes:

maximize $x_{11} + x_{21} + x_{22} + x_{31} + x_{32} + x_{41}$ subject to

Since there is no one-to-one correspondence between the stationary policies and the feasible solutions of the linear programming problem (4.2.11), we introduce an equivalence relation. We call two feasible solutions (x^1, y^1) and (x^2, y^2) equivalent if $\pi_{ia}(x^1, y^1) = \pi_{ia}(x^2, y^2)$ a ϵ A(i), i ϵ E. This equivalence relation divides the set of feasible solutions in equivalence classes.

Conversely, let π^{∞} be a stationary policy. Consider the Markov chain induced by $P(\pi)$. Suppose that there are m ergodic sets, say E_1, E_2, \dots, E_m and let F be the set of the transient states. We define the vectors $x(\pi)$ and $y(\pi)$ by

(4.3.2)
$$\begin{cases} x_{ia}(\pi) := [\beta^{T}p^{*}(\pi)]_{i} \cdot \pi \qquad a \in A(i), i \in E \\ \\ y_{ia}(\pi) := [\beta^{T}D(\pi) + \gamma^{T}p^{*}(\pi)]_{i} \cdot \pi \qquad a \in A(i), i \in E \end{cases}$$

where

(4.3.3)
$$\gamma_{i} := \begin{cases} 0 & 1 \in F \\ \\ \max \left\{ -\sum_{k} \beta_{k} d_{k\ell}(\pi) / \sum_{k \in E_{j}} p_{k\ell}^{*}(\pi) \right\} & i \in E_{j}, 1 \leq j \leq m. \end{cases}$$

Notice that $\boldsymbol{\gamma}$ is constant on every ergodic set.

THEOREM 4.3.1. $(x(\pi), y(\pi))$, defined by (4.3.2), is a feasible solution of the linear programming problem (4.2.11).

<u>PROOF</u>. In the proof we will use some properties of the matrices $P^{*}(\pi)$ and $D(\pi)$ as mentioned in theorem 2.4.1.

$$\begin{split} & \sum_{i} \sum_{a} (\delta_{ij} - P_{iaj}) x_{ia}(\pi) = \sum_{a} x_{ja}(\pi) - \sum_{i} \sum_{a} P_{iaj} x_{ia}(\pi) \\ & = \left[\beta^{T} P^{*}(\pi) \right]_{j} - \left[\beta^{T} P^{*}(\pi) P(\pi) \right]_{j} = 0, \quad j \in E. \\ & \sum_{a} x_{ja} + \sum_{i} \sum_{a} (\delta_{ij} - P_{iaj}) y_{ia}(\pi) \\ & = \left[\beta^{T} P^{*}(\pi) \right]_{j} + \left[\beta^{T} D(\pi) + \gamma^{T} P^{*}(\pi) \right]_{j} - \left[\beta^{T} D(\pi) P(\pi) + \gamma^{T} P^{*}(\pi) P(\pi) \right]_{j} \\ & = \left[\beta^{T} \{ P^{*}(\pi) + D(\pi) (I - P(\pi)) \} \right]_{j} + \left[\gamma^{T} P^{*}(\pi) (I - P(\pi)) \right]_{j} \\ & = \left[\beta^{T} \{ P^{*}(\pi) + I - P^{*}(\pi) \} \right]_{j} = \beta_{j}, \quad j \in E. \end{split}$$

110

If

If

and

$$\begin{aligned} \mathbf{x}_{\mathbf{i}\mathbf{a}}(\pi) &\geq 0 \qquad \mathbf{a} \in \mathbf{A}(\mathbf{i}), \ \mathbf{i} \in \mathbf{E}, \\ \mathbf{y}_{\mathbf{i}\mathbf{a}}(\pi) &= \{\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi) + \sum_{\mathbf{k}} \gamma_{\mathbf{k}} \mathbf{p}^{*}_{\mathbf{k}\mathbf{i}}(\pi)\} \cdot \pi_{\mathbf{i}\mathbf{a}} \qquad \mathbf{a} \in \mathbf{A}(\mathbf{i}), \ \mathbf{i} \in \mathbf{E}, \\ \mathbf{i} \in \mathbf{F}, \ \text{then } \mathbf{p}^{*}_{\cdot \mathbf{i}}(\pi) &= 0 \ \text{and } \mathbf{d}_{\cdot \mathbf{i}}(\pi) = \sum_{\mathbf{t}=1}^{\infty} \mathbf{p}^{\mathbf{t}-1}_{\cdot \mathbf{i}}(\pi) \geq 0. \ \text{Consequently}, \\ \mathbf{y}_{\mathbf{i}\mathbf{a}}(\pi) &= \sum_{\mathbf{k}} \beta_{\mathbf{k}} \cdot \sum_{\mathbf{t}=1}^{\infty} \mathbf{p}^{\mathbf{t}-1}_{\mathbf{k}\mathbf{i}}(\pi) \cdot \pi_{\mathbf{i}\mathbf{a}} \geq 0 \qquad \mathbf{a} \in \mathbf{A}(\mathbf{i}), \ \mathbf{i} \in \mathbf{F}, \\ \mathbf{i} \notin \mathbf{F}, \ \text{say } \mathbf{i} \in \mathbf{E}_{\mathbf{j}}, \ \text{then } \gamma_{\mathbf{k}} \mathbf{p}^{*}_{\mathbf{k}\mathbf{i}}(\pi) = 0 \ \text{for every } \mathbf{k} \notin \mathbf{E}_{\mathbf{j}}. \ \text{Hence, we get} \\ \mathbf{y}_{\mathbf{i}\mathbf{a}}(\pi) &= \{\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi) + \sum_{\mathbf{k} \in \mathbf{E}_{\mathbf{j}}} \gamma_{\mathbf{k}} \mathbf{p}^{*}_{\mathbf{k}\mathbf{i}}(\pi)\} \cdot \pi_{\mathbf{i}\mathbf{a}} \\ &= \{\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi) + \gamma_{\mathbf{i}} \cdot \sum_{\mathbf{k} \in \mathbf{E}_{\mathbf{j}}} \mathbf{p}^{*}_{\mathbf{k}\mathbf{i}}(\pi)\} \cdot \pi_{\mathbf{i}\mathbf{a}} \\ &\geq \{\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi) - (\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi)) \cdot (\sum_{\mathbf{k} \in \mathbf{E}_{\mathbf{j}}} \mathbf{p}^{*}_{\mathbf{k}\mathbf{i}}(\pi))\} \cdot \pi_{\mathbf{i}\mathbf{a}} \\ &\geq \{\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi) - (\sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{d}_{\mathbf{k}\mathbf{i}}(\pi)) \cdot (\sum_{\mathbf{k} \in \mathbf{E}_{\mathbf{j}}} \mathbf{p}^{*}_{\mathbf{k}\mathbf{i}}(\pi)) \cdot \pi_{\mathbf{i}\mathbf{a}} \\ &= 0 \qquad \mathbf{a} \in \mathbf{A}(\mathbf{i}), \ \mathbf{i} \notin \mathbf{F}. \end{aligned}$$

This completes the proof of the theorem. \Box

For a stationary policy π^{∞} , let $(X(\pi), Y(\pi))$ be the class of corresponding equivalent feasible solutions. We choose the element $(x(\pi), y(\pi))$ as the *representative* of this equivalence class.

THEOREM 4.3.2. The mapping defined by (4.3.2) is a one-to-one mapping of the stationary policies onto the set of representatives with (4.3.1) as the inverse mapping.

<u>PROOF</u>. It is obvious that the stationary policies are mapped onto the set of representatives. Suppose that $\pi^1 \neq \pi^2$ and $(\mathbf{x}(\pi^1), \mathbf{y}(\pi^1)) = (\mathbf{x}(\pi^2), \mathbf{y}(\pi^2))$. Then, we obtain

$$\pi_{ia}^{1} = x_{ia}(\pi^{1}) / \sum_{a} x_{ia}(\pi^{1}) = x_{ia}(\pi^{2}) / \sum_{a} x_{ia}(\pi^{2}) = \pi_{ia}^{2}$$

$$a \in A(i), i \in E_{x}(\pi^{1}) = E_{x}(\pi^{2}),$$

$$\pi_{ia}^{1} = y_{ia}(\pi^{1}) / \sum_{a} y_{ia}(\pi^{1}) = y_{ia}(\pi^{2}) / \sum_{a} y_{ia}(\pi^{2}) = \pi_{ia}^{2}$$

$$a \in A(i), i \in E \setminus E_{x}(\pi^{1}) = E \setminus E_{x}(\pi^{2}).$$

Hence, $\pi^1 = \pi^2$ implying a contradiction. []

<u>REMARK 4.3.1</u>. Suppose that (x,y) is a feasible solution of program (4.2.11). Then, if we define $x_j := \sum_{a} x_{ja}$, $j \in E$, we have

 $\mathbf{x}_{i} = \sum_{i} \mathbf{x}_{i} = \sum_{i} \sum_{j} \mathbf{p}_{i} \mathbf{x}_{i} = \sum_{i} \sum_{j} \mathbf{p}_{i} \mathbf{x}_{i} = \sum_{i} \sum_{j} \mathbf{x}_{i} \mathbf{p}_{i} \mathbf{x}_{i} = \sum_{i} \mathbf{x}_{i} \mathbf{p}_{i} \mathbf{x}_{i} (\mathbf{\pi}), \quad \mathbf{j} \in \mathbf{E},$

and

$$\sum_{j} x_{j} = \sum_{j} \{\beta_{j} - \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} \}$$
$$= \sum_{j} \beta_{j} - \sum_{i} \sum_{a} \{\sum_{j} \delta_{ij} - \sum_{j} p_{iaj} \} y_{ia} = \sum_{j} \beta_{j} = 1.$$

Hence, x is a stationary probability distribution of the Markov chain induced by $P(\pi(x,y))$.

Conversely, if x is a stationary probability distribution of the Markov chain induced by $P(\pi)$ for some stationary policy π^{∞} , then in general x cannot be completed by a y such that (x,y) is a feasible solution of the linear programming problem (4.2.11). For instance, in the AMD-model of example 4.3.1 x := $(1/3, 1/3, 1/3, 0)^{T}$ is a stationary probability distribution of the Markov chain induced by P(f), where f satisfies f(1) = f(2) = 1, f(3) = 2 and f(4) = 1. There is no corresponding feasible solution since for any feasible solution $x_{41} \geq \frac{1}{4}$.

From example 4.3.1 it also follows that $X(\pi)$ can have more than one element. If the Markov chain induced by $P(\pi)$ is unichained, then it follows from theorem 2.3.3 that the stationary probability distribution is unique. Hence, $X(\pi)$ consists of one element: $X(\pi) = \{x(\pi)\}$. Similarly to theorem 4.3.1, it can be shown that any (x,y), where $x = x(\pi)$ and $y \in Y^{\circ}(\pi) := \{y | y_{ia} = y_{ia}(\pi) + [c^{T}p^{*}(\pi)]_{i} \cdot \pi_{ia}$ for some $c \ge 0\}$ is a feasible solution of program (4.2.11). Hence $Y^{\circ}(\pi) \subset Y(\pi)$. The next example shows that it may occur that $Y^{\circ}(\pi) \neq Y(\pi)$.

EXAMPLE 4.3.2. Consider the model of figure
4.3.2. The linear programming problem is:
maximize
$$x_{11} + x_{12} + x_{21} + x_{22} + x_{31}$$

subject to
 $x_{11} + x_{12} - x_{22}$
 $-x_{11} + x_{21} + x_{22} - x_{31}$
 $-x_{12} - x_{21} + x_{31}$
 $x_{11} + x_{12}$
 $x_{21} + x_{22} - y_{11}$
 $x_{21} + x_{22} - y_{21}$
 $x_{21} + x_{22} - y_{21}$
 $x_{21} + x_{22} - y_{21}$
 $x_{21} + y_{22} - y_{21}$
 $x_{21} + y_{21} - y_{21}$
 $x_{21} + y_{21} - y_{21}$
 $x_{21} + y_{21} - y_{21}$
 $x_{21} - y_{21} - y_{21} - y_{21}$
 $x_{21} - y_{21} - y_{21} - y_{21} - y_{21}$
 $x_{21} - y_{21} - y_{21}$

 $x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, y_{11}, y_{12}, y_{21}, y_{22}, y_{31} \ge 0$

Take the pure and stationary policy f^{∞} such that f(i) = 1, i ϵ E. Then,

$$\begin{aligned} & \mathbf{x}_{11}(f) = 0, \ \mathbf{x}_{12}(f) = 0, \ \mathbf{x}_{21}(f) = \frac{1}{2}, \ \mathbf{x}_{22}(f) = 0, \ \mathbf{x}_{31}(f) = \frac{1}{2}; \\ & \mathbf{y}_{11}(f) = \frac{1}{4}, \ \mathbf{y}_{12}(f) = 0, \ \mathbf{y}_{21}(f) = \frac{1}{4}, \ \mathbf{y}_{22}(f) = 0, \ \mathbf{y}_{31}(f) = 0. \end{aligned}$$

The feasible solution (x,y), where x = x(f) and $y_{11} = \frac{1}{2}$, $y_{12} = 0$, $y_{21} = \frac{1}{2}$, $y_{22} = \frac{1}{4}$, $y_{31} = \frac{1}{4}$ is an element of Y(f). Suppose that $y \in Y^{\circ}(f)$. Since state 1 is transient under P(f), each $\tilde{y} \in Y^{\circ}(f)$ satisfies $\tilde{y}_{11} = y_{11}(f) = \frac{1}{4}$. Hence, $Y^{\circ}(f) \neq Y(f)$.

THEOREM 4.3.3. The correspondence between the stationary policies and the feasible solutions of the linear program (4.2.11) preserves the optimality property, i.e.

- 1. If π^{∞} is a stationary average optimal policy, then $(x(\pi), y(\pi))$ is an optimal solution of the linear program (4.2.11).
- 2. If (x,y) is an optimal solution of the linear program (4.2.11), then the stationary policy $\pi^{\infty}(x,y)$ is an average optimal policy.

PROOF.

1. Let (ϕ, u) be an optimal solution of the linear programming problem (4.2.10). Since $(\mathbf{x}(\pi), \mathbf{y}(\pi))$ is a feasible solution of program (4.2.11), it follows from the theory of linear programming (cf. theorem 1.3.4) that it is sufficient to prove that $\sum_{i} \sum_{i} r_{ia} \mathbf{x}_{ia}(\pi) = \sum_{i} \beta_{i} \phi_{i}$. We have

$$\sum_{i}\sum_{a}r_{ia}x_{ia}(\pi) = \sum_{i}\sum_{a}r_{ia}\left[\beta^{T}p^{*}(\pi)\right]_{i}\cdot\pi_{ia}$$
$$= \beta^{T}p^{*}(\pi)r(\pi) = \beta^{T}\phi(\pi^{\infty}) = \beta^{T}\phi$$

which completes the proof of the first part of the theorem.

2. The proof has the same structure as the proof of theorem 4.2.4. We first present three propositions which are similar to the propositions 4.2.1, 4.2.2 and 4.2.3. Then we complete the proof. Throughout the proof (ϕ, u) is an optimal solution of program (4.2.10).

PROPOSITION 4.3.1.

$$\sum_{j} (\delta_{ij} - p_{iaj}) \phi_{j} = 0 \qquad a \in A^{\circ}(i), i \in E,$$

$$\phi_{i} + \sum_{j} (\delta_{ij} - p_{iaj}) u_{j} = r_{ia} \qquad a \in A^{\circ}(i), i \in E_{x},$$

113

$$A^{\circ}(i) := \{a \in A(i) \mid \pi_{ia}(x,y) > 0\}, \quad i \in E.$$

<u>PROOF</u>. Since $x_{ia} > 0$, $a \in A^{\circ}(i)$, $i \in E_x$ and $y_{ia} > 0$, $a \in A^{\circ}(i)$, $i \in E \setminus E_x$, it follows from the complementary slackness property of linear programming (see corollary 1.3.1) that

$$\begin{split} \sum_{j} (\delta_{ij} - p_{iaj}) \phi_{j} &= 0 \qquad a \in A^{\circ}(i), i \in E \setminus E_{x} \\ \phi_{i} + \sum_{j} (\delta_{ij} - p_{iaj}) u_{j} &= r_{ia} \qquad a \in A^{\circ}(i), i \in E_{x}. \end{split}$$

Suppose that $\Sigma_j (\delta_{kj} - p_{ka_k j}) \phi_j \neq 0$ for some $a_k \in A^\circ(k)$ and $k \in E_x$. Since $\pi_{ka_k}(x,y) > 0$, we also have $x_{ka_k} > 0$, and consequently

$$\sum_{j} (\delta_{kj} - p_{ka_{k}j}) \phi_{j} \cdot x_{ka_{k}} > 0.$$

Moreover, we have

$$\sum_{j} (\delta_{ij} - p_{iaj}) \phi_{j} \cdot x_{ia} \ge 0 \qquad a \in A(i), i \in E.$$

Hence, we obtain

$$\sum_{i}\sum_{a}\sum_{j}(\delta_{ij}-p_{iaj})\phi_{j}\cdot x_{ia} > 0.$$

On the other hand, the constraints of (4.2.11) imply that

$$\sum_{i}\sum_{a}\sum_{j}(\delta_{ij}-p_{iaj})\phi_{j}\cdot x_{ia} = \sum_{j}\{\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia}\}\phi_{j} = 0.$$

This contradiction completes the proof.

PROPOSITION 4.3.2. E_x is closed under $P(\pi(x,y))$.

<u>PROOF</u>. Suppose that $p_{k\ell}(\pi(x,y)) > 0$ for some $k \in E_x$ and $\ell \in E \setminus E_x$. Since $p_{k\ell}(\pi(x,y)) = \sum_{a} p_{ka\ell} \pi_{ka}(x,y)$, there exists an action a_k such that $p_{kak\ell} > 0$ and $\pi_{ka_k}(x,y) > 0$. From the constraints of program (4.2.11) it follows that

$$0 = \sum_{a} x_{\ell a} = \sum_{i} \sum_{a} p_{ia\ell} x_{ia} \ge p_{ka_k} \ell^{k} x_{ka_k} > 0,$$

implying a contradiction.

where

and

<u>PROPOSITION 4.3.3</u>. For any feasible solution (x,y) of the linear program (4.2.11), E is the set of recurrent states in the Markov chain induced by $P(\pi(x,y))$.

<u>PROOF</u>. Let $x_i := \sum_{a i a} x_{ia}$ and $y_i := \sum_{a} y_{ia}$, $i \in E$. We have seen in remark 4.3.1 that x is a stationary probability distribution in the Markov chain induced by $P(\pi(x,y))$. Theorem 2.3.3 implies that $F \subset E \setminus E_x$, where F is the set of transient states in this Markov chain. Suppose that $F \neq E \setminus E_x$. Since E_x is closed under $P(\pi(x,y))$, there is an ergodic set $E_1 \subset E \setminus E_x$. Hence, we can write

$$O = \sum_{j \notin E_1} \sum_{i \in E_1} p_{ij}(\pi(\mathbf{x}, \mathbf{y})).$$

Then, we also have

$$0 = \sum_{j \notin E_1} \sum_{i \in E_1} \sum_{a^p_{iaj} y_{ia}}$$

and

$$0 < \sum_{j \in E_{1}} \beta_{j} = \sum_{j \in E_{1}} y_{j} - \sum_{j \in E_{1}} \sum_{i} \sum_{a} p_{iaj} y_{ia} = \sum_{j \in E_{1}} y_{j} - \sum_{j} \sum_{i \in E_{1}} \sum_{a} p_{iaj} y_{ia} + \sum_{j \notin E_{1}} \sum_{i \in E_{1}} \sum_{a} p_{iaj} y_{ia} - \sum_{j \in E_{1}} \sum_{i \notin E_{1}} \sum_{a} p_{iaj} y_{ia} = \sum_{j \in E_{1}} y_{j} - \sum_{i \in E_{1}} \sum_{a} y_{ia} - \sum_{j \in E_{1}} \sum_{i \notin E_{1}} \sum_{a} p_{iaj} y_{ia} = -\sum_{j \in E_{1}} \sum_{i \notin E_{1}} \sum_{a} p_{iaj} y_{ia} \le 0$$

implying a contradiction. This yields the proof.

We complete the proof as follows. From proposition 4.3.1 it follows that $P^*(\pi(x,y))\phi = \phi$. Since $E \setminus E_x$ is the set of transient states, we have $p^*_{\cdot i}(\pi(x,y)) = 0$, $i \in E \setminus E_x$. Then, using proposition 4.3.1 we can write

$$\phi(\pi^{\infty}(\mathbf{x},\mathbf{y})) = \mathbf{P}^{*}(\pi(\mathbf{x},\mathbf{y}))\mathbf{r}(\pi(\mathbf{x},\mathbf{y}))$$
$$= \mathbf{P}^{*}(\pi(\mathbf{x},\mathbf{y}))\{\phi + (\mathbf{I}-\mathbf{P}(\pi(\mathbf{x},\mathbf{y})))\mathbf{u}\}$$
$$= \mathbf{P}^{*}(\pi(\mathbf{x},\mathbf{y}))\phi$$
$$= \phi.$$

Hence, $\pi^{\infty}(x,y)$ is an average optimal policy.

<u>REMARK 4.3.2</u>. Proposition 4.3.3 differs from proposition 4.2.3 by the fact that in theorem 4.2.4 the states of E_x may contain transient states. Consider for instance example 4.2.1. The policy f_1^{∞} is average optimal, $E_x = E$, but state 2 is transient in the Markov chain induced by $P(f_1)$.

<u>REMARK 4.3.3</u>. If π^{∞} is an optimal stationary policy and if (x,y) is a feasible solution of program (4.2.11) such that $\pi^{\infty}(x,y) = \pi^{\infty}$, then in general (x,y) is not an optimal solution of (4.2.11). Below we give an example.

EXAMPLE 4.3.3. Consider the model of figure 4.3.3. The corresponding linear programming problem is:

maximize x₁₁ subject to

<u>THEOREM 4.3.4</u>. Let f^{∞} be any pure and stationary policy. Then the corresponding vector (x(f),y(f)), defined by (4.3.2), is an extreme feasible solution of the linear programming problem (4.2.11).

<u>PROOF</u>. Suppose that (x(f), y(f)) is not an extreme point of the set of feasible solutions of program (4.2.11). Then there exist different feasible solutions (x^{1}, y^{1}) and (x^{2}, y^{2}) such that for some $\lambda \in (0, 1)$

116

$$\mathbf{x}(\mathbf{f}) = \lambda \mathbf{x}^{1} + (1-\lambda) \mathbf{x}^{2}$$
$$\mathbf{y}(\mathbf{f}) = \lambda \mathbf{y}^{1} + (1-\lambda) \mathbf{y}^{2}$$

Since

$$a(f) = y_{ia}(f) = 0$$
 $a \neq f(i), i \in E,$

we have

х

$$x_{ia}^{1} = x_{ia}^{2} = y_{ia}^{1} = y_{ia}^{2} = 0 \quad a \neq f(i), i \in E.$$

$$P := P(f), \qquad \widetilde{x} := (x_{if(i)}(f)), \qquad \widetilde{y} := (y_{if(i)}(f)),$$

$$\widetilde{x}^{1} := (x_{if(i)}^{1}), \qquad \widetilde{x}^{2} := (x_{if(i)}^{2}), \qquad \widetilde{y}^{1} := (y_{if(i)}^{1})$$

and

Let

$$\tilde{y}^2 := (y^2_{if(i)})$$

Then $(\widetilde{x},\widetilde{y})$, $(\widetilde{x}^1,\widetilde{y}^1)$ and $(\widetilde{x}^2,\widetilde{y}^2)$ are solutions of the linear system

(4.3.4)
$$\begin{cases} x^{T} (I-P) = 0 \\ x^{T} + y^{T} (I-P) = \beta^{T}. \end{cases}$$

Hence, for any solution (x,y) of (4.3.4) we obtain $x^{T} = x^{T}P$, and consequently $x^{T} = x^{T}P^{*} = \beta^{T}P^{*} - y^{T}(I-P)P^{*} = \beta^{T}P^{*}$, implying that

$$\tilde{\mathbf{x}} = \tilde{\mathbf{x}}^1 = \tilde{\mathbf{x}}^2 = \beta^{\mathrm{T}} \mathbf{p}^*.$$

We also get

$$y^{T}(I-P+P^{*}) = \beta^{T} - x^{T} + y^{T}P^{*} = \beta^{T}(I-P^{*}) + y^{T}P^{*}.$$

From theorem 2.4.1 it follows that

(4.3.5)
$$y^{T} = \beta^{T} (I-P^{*}) (D+P^{*}) + y^{T}P^{*} (D+P^{*}) = \beta^{T}D + y^{T}P^{*}.$$

Consider the Markov chain induced by the transition matrix P. Suppose that there are m ergodic sets, say E_1, E_2, \ldots, E_m , and let F be the set of transient states. Then, (4.3.5) implies that any solution (x,y) of (4.3.4) satisfies $y_i = (\beta^T D)_i$, $i \in F$. Consequently,

$$\widetilde{\mathbf{y}}_{\mathbf{i}} = \widetilde{\mathbf{y}}_{\mathbf{i}}^{1} = \widetilde{\mathbf{y}}_{\mathbf{i}}^{2}$$
, $\mathbf{i} \in \mathbf{F}$.

By the definition of γ given in (4.3.3), there is in each ergodic set \mathbf{E}_k a state, say \mathbf{i}_k , such that $\widetilde{\mathbf{y}}_{\mathbf{i}_k} = 0$. Then also $\widetilde{\mathbf{y}}_{\mathbf{i}_k}^1 = \widetilde{\mathbf{y}}_{\mathbf{i}_k}^2 = 0$. Since $(\widetilde{\mathbf{x}}^1, \widetilde{\mathbf{y}}^1)$ and $(\widetilde{\mathbf{x}}^2, \widetilde{\mathbf{y}}^2)$ are solutions of the linear system (4.3.4) which satisfy $\widetilde{\mathbf{x}}^1 = \widetilde{\mathbf{x}}^2$, $\widetilde{\mathbf{y}}_{\mathbf{i}}^1 - \widetilde{\mathbf{y}}_{\mathbf{i}}^2 = 0$, $\mathbf{i} \in \mathbf{F}$, $\widetilde{\mathbf{y}}_{\mathbf{i}_k}^1 - \widetilde{\mathbf{y}}_{\mathbf{i}_k}^2 = 0$, $\mathbf{k} = 1, 2, \dots, m$, we obtain from (4.3.4)

(4.3.6)
$$\begin{cases} \widetilde{y}_{i}^{1} - \widetilde{y}_{i}^{2} = \sum_{\ell \in \mathbf{E}_{k}} (\widetilde{y}_{\ell}^{1} - \widetilde{y}_{\ell}^{2}) p_{\ell i} & i \in \mathbf{E}_{k} \\ \\ \widetilde{y}_{i_{k}}^{1} - \widetilde{y}_{i_{k}}^{2} = 0, \end{cases} \quad k = 1, 2, \dots, m$$

Let $z_i := \tilde{y}_i^1 - \tilde{y}_i^2$, $i \in E_k$ and $q_{ij} := p_{ij}$, $i.j \in E_k$. Then, we have $z^T = z^T Q = z^T Q^*$.

Since E_k is an ergodic set, theorem 2.3.2 implies that $q_i^* = q_j^* >> 0$ for all i,j $\in E_k$. Hence, we get

$$\begin{cases} z_{i} = q_{ii}^{*} \cdot \sum_{j \in E_{k}} z_{j} & i \in E_{k} \\ z_{ik} = 0. \end{cases}$$

Then,

$$\sum_{j \in E_k} z_j = 0$$
 and consequently, $z_i = 0$ i $\in E_k$.

Therefore, we have shown that $\tilde{y}^1 = \tilde{y}^2$, which completes the proof that (x(f), y(f)) is an extreme point. \Box

<u>REMARK 4.3.4</u>. In example 4.2.1 we have found an extreme point (x^*, y^*) of the set of feasible solutions such that the corresponding policy is not pure. Hence, the reverse statement of theorem 4.3.4 is in general not true.

<u>REMARK 4.3.5</u>. Take any stationary policy π^{∞} and let $R(\pi)$ be the set of recurrent states in the Markov chain induced by $P(\pi)$. Then proposition 4.3.3 implies that for every feasible solution (x,y) of (4.2.11) such that $(x,y) \in (X(\pi), Y(\pi)) = R(\pi)$. Consequently, elements in the same equivalence class have the same positive x-components.

4.4. POLICY IMPROVEMENT AND LINEAR PROGRAMMING

In this section we shall discuss some relations between the policy

improvement method and the linear programming approach. The idea of policy improvement was introduced by HOWARD [1960]. BLACKWELL [1962] has given an elegant mathematical foundation of the policy improvement method, treating the average reward case as a limiting case of the α -discounted reward case. By Blackwell's algorithm a pure and stationary average optimal policy is obtained. VEINOTT [1966] and DENARDO [1970a] have generalized this algorithm to an algorithm by which a pure and stationary bias optimal policy can be determined. MILLER & VEINOTT [1969] have extended these results. They present a Laurent expansion in $(1-\alpha)$ for $v^{\alpha}(f^{\infty})$ by which algorithms can be constructed in order to find optimal policies with regard to more selective criteria. In particular, a finite algorithm was proposed to obtain a Blackwell optimal policy. Other references on this subject are DENARDO & MILLER [1968], VEINOTT [1969], DENARDO [1973], VEINOTT [1974] and HORDIJK [1976].

THEOREM 4.4.1. For any pure and stationary policy f^{°°}, the linear system

(4.4.1)
$$\begin{cases} (I-P(f))\widetilde{\phi} &= 0\\ \widetilde{\phi} + (I-P(f))\widetilde{u} &= r(f)\\ \widetilde{u} + (I-P(f))\widetilde{z} = 0 \end{cases}$$

has a feasible solution $(\phi, \tilde{u}, \tilde{z})$. Moreover any feasible solution $(\phi, \tilde{u}, \tilde{z})$ of (4.4.1) satisfies $\phi = \phi(f^{\infty})$ and $\tilde{u} = u(f^{\infty})$.

<u>PROOF</u>. (cf. HORDIJK [1976]). In the proof we use repeatedly the results of theorem 2.4.1. Let $\tilde{\phi} := \phi(\tilde{f}^{\circ})$, $\tilde{u} := u(\tilde{f}^{\circ})$ and $\tilde{z} := -D(f)u(\tilde{f}^{\circ})$. Then, we obtain

$$(I-P(f))\widetilde{\phi} = (I-P(f))P^{*}(f)r(f)$$

= 0.
$$\widetilde{\phi} + (I-P(f))\widetilde{u} = \{P^{*}(f) + (I-P(f))D(f)\}r(f)$$

= $\{P^{*}(f) + I-P^{*}(f)\}r(f)$
= $r(f)$.
$$\widetilde{u} + (I-P(f))\widetilde{z} = D(f)\{I-(I-P(f))D(f)\}r(f)$$

= $D(f)P^{*}(f)r(f)$
= 0.

Suppose that $(\widetilde{\phi},\widetilde{u},\widetilde{z})$ is a feasible solution of (4.4.1). Then we have

$$\widetilde{\phi} = P(f)\widetilde{\phi} = P^{*}(f)\widetilde{\phi}$$

$$= P^{*}(f)\{r(f) - (I-P(f))\widetilde{u}\} = P^{*}(f)r(f)$$

$$= \phi(f^{\infty}).$$

$$\widetilde{u} = (I-P(f) + P^{*}(f))^{-1}(I-P(f) + P^{*}(f))\widetilde{u}$$

$$= (D(f)+P^{*}(f))(I-P(f)+P^{*}(f))\widetilde{u}$$

$$= (D(f)+P^{*}(f))(r(f)-\widetilde{\phi})$$

=
$$D(f)r(f) = u(f^{\infty})$$
.

We define for any pure and stationary policy $f^{^{\infty}}$ the sets A(i,f), i ϵ E, by

$$(4.4.2) \qquad A(i,f) = \left\{ a \in A(i) \middle| \begin{array}{l} \sum_{j} p_{iaj} \phi_{j}(f^{\infty}) > \phi_{i}(f^{\infty}) & \text{or} \quad \sum_{j} p_{iaj} \phi_{j}(f^{\infty}) = \\ \phi_{i}(f^{\infty}) & a r_{ia} + \sum_{j} p_{iaj} u_{j}(f^{\infty}) > \phi_{i}(f^{\infty}) + u_{i}(f^{\infty}) \end{array} \right\}$$

THEOREM 4.4.2. Let f^{∞} be a pure and stationary policy.

If A(i,f) = Ø for all i ∈ E, then f[∞] is an average optimal policy.
 If A(i,f) ≠ Ø for some i ∈ E, and g[∞] is a pure and stationary policy such that g(i) ∈ A(i,f) for at least one i ∈ E and g(i) = f(i) whenever g(i) ∉ A(i,f), then φ(g[∞]) ≥ φ(f[∞]) and v^α(g[∞]) > v^α(f[∞]) for all α sufficiently near to 1.

<u>PROOF</u>. (cf. BLACKWELL [1962]). 1. Let g^{ω} be an arbitrarily chosen pure and stationary policy. Since $A(i,f) = \emptyset$ for all $i \in E$, we have

$$(4.4.3) P(g)\phi(f^{\infty}) \leq \phi(f^{\infty}) \text{ and } r_i(g) + (P(g)u(f^{\infty}))_i \leq \phi_i(f^{\infty}) + u_i(f^{\infty})$$

for each i which satisfies $(P(g)\phi(f^{\infty}))_i = \phi_i(f^{\infty})$. Let R := (g,f,f,...). Then $v^{\alpha}(R) = r(g) + \alpha P(g)v^{\alpha}(f^{\infty})$ and it follows from (2.5.7) that we can write

$$v^{\alpha}(\mathbf{R}) = \mathbf{r}(\mathbf{g}) + \{\mathbf{1} - (\mathbf{1} - \alpha)\}\mathbf{P}(\mathbf{g})\{(\mathbf{1} - \alpha)^{-1} \cdot \phi(\mathbf{f}^{\infty}) + \mathbf{u}(\mathbf{f}^{\infty}) + \varepsilon^{1}(\alpha)\}$$
$$= (\mathbf{1} - \alpha)^{-1} \cdot \mathbf{P}(\mathbf{g})\phi(\mathbf{f}^{\infty}) + \mathbf{r}(\mathbf{g}) + \mathbf{P}(\mathbf{g})\mathbf{u}(\mathbf{f}^{\infty}) - \mathbf{P}(\mathbf{g})\phi(\mathbf{f}^{\infty}) + \varepsilon^{2}(\alpha)\}$$

where $\lim_{\alpha \uparrow 1} \epsilon^{k}(\alpha) = 0$ for k = 1, 2. Hence,

$$(4.4.4) \qquad v^{\alpha}(f^{\infty}) - v^{\alpha}(R) = (1-\alpha)^{-1} \cdot \{\phi(f^{\infty}) - P(g)\phi(f^{\infty})\} + u(f^{\infty}) + P(g)\phi(f^{\infty}) - r(g) - P(g)u(f^{\infty}) + \varepsilon^{3}(\alpha),$$

where $\lim_{\alpha \uparrow 1} \epsilon^3(\alpha) = 0$.

Therefore, it follows from (4.4.3) and (4.4.4) that for α sufficiently near to 1

(4.4.5)
$$v^{\alpha}(f^{\infty}) - v^{\alpha}(R) \ge \varepsilon^{3}(\alpha)$$
 and $\lim_{\alpha \uparrow 1} \varepsilon^{3}(\alpha) = 0$.

Let $\varepsilon(\alpha) := \min_{i \in i} \varepsilon_i^3(\alpha)$. Then,

$$(4.4.6) v^{\alpha}(f^{\infty}) \ge v^{\alpha}(R) + \varepsilon(\alpha) \cdot e = r(g) + \varepsilon(\alpha) \cdot e + \alpha P(g) v^{\alpha}(f^{\infty})$$

By iterating (4.4.6), we obtain

(4.4.7)
$$\mathbf{v}^{\alpha}(\mathbf{f}^{\infty}) \geq \sum_{t=1}^{\infty} \alpha^{t-1} \mathbf{p}^{t-1}(\mathbf{g}) (\mathbf{r}(\mathbf{g}) + \varepsilon(\alpha) \cdot \mathbf{e}) = \mathbf{v}^{\alpha}(\mathbf{g}^{\infty}) + \frac{\varepsilon(\alpha)}{1-\alpha} \cdot \mathbf{e}$$

From (2.5.7) and (4.4.7) it follows that

$$\frac{\phi(\mathbf{f}^{\infty}) - \phi(\mathbf{g}^{\infty}) - \varepsilon(\alpha) \cdot \mathbf{e}}{1 - \alpha} + u(\mathbf{f}^{\infty}) - u(\mathbf{g}^{\infty}) + \varepsilon^{4}(\alpha) \geq 0 \qquad \alpha \in [0, 1),$$

where $\lim_{\alpha \uparrow 1} \epsilon^4(\alpha) = 0$ and $\lim_{\alpha \uparrow 1} \epsilon(\alpha) = 0$. Consequently,

$$(4.4.8) \qquad \phi(f^{\infty}) \geq \phi(g^{\infty}).$$

Since g^{∞} has been chosen arbitrarily and since there exists an average optimal policy in the class of pure and stationary policies, (4.4.8) implies that f^{∞} is an average optimal policy.

2. Let g^{∞} be such that $g(i) \in A(i,f)$ for at least one $i \in E$ and g(i) = f(i)if $g(i) \notin A(i,f)$. Define the policy R by R := (g,f,f,...). Notice that (4.4.4) is also valid in this case. Then, it follows that

(a) if g(i) = f(i), then $v_i^{\alpha}(R) = v_i^{\alpha}(f^{\alpha})$. (b) if $g(i) \neq f(i)$, then $v_i^{\alpha}(R) > v_i^{\alpha}(f^{\alpha})$ for α sufficiently near to 1. Hence,

$$(4.4.9) v^{\alpha}(f^{\infty}) < v^{\alpha}(R) = r(g) + \alpha P(g) v^{\alpha}(f^{\infty}) \alpha \in [\alpha, 1), \text{ where } \alpha \in [0, 1).$$

By iterating (4.4.9) we obtain

$$(4.4.10) \qquad v^{\alpha}(f^{\infty}) < \sum_{t=1}^{\infty} \alpha^{t-1} p^{t-1}(g) r(g) = v^{\alpha}(g^{\infty}) \qquad \alpha \in [\alpha_{o}, 1).$$

Since

$$0 < v^{\alpha}(g^{\infty}) - v^{\alpha}(f^{\infty}) = \frac{\phi(g^{\infty}) - \phi(f^{\infty})}{1 - \alpha} + u(g^{\infty}) - u(f^{\infty}) + \varepsilon^{5}(\alpha), \quad \alpha \in [\alpha_{o}, 1),$$

where $\lim_{\alpha\uparrow 1}\ \epsilon^5\left(\alpha\right)$ = 0, we get

$$(4.4.11) \qquad \phi(g^{\infty}) \geq \phi(f^{\infty}).$$

Combining (4.4.10) and (4.4.11) completes the proof. \Box

Next, we formulate and prove the correctness of the following policy improvement algorithm.

ALGORITHM XV for the construction of a pure and stationary average optimal policy by the policy improvement method (multichain case). case).

<u>step 1</u>: Take an arbitrary $f^{\infty} \in C_{D}^{\circ}$. <u>step 2</u>: Compute $\phi(f^{\infty})$ and $u(f^{\infty})$ by solving the linear system

$$\begin{cases} (\mathbf{I}-\mathbf{P}(\mathbf{f}))\widetilde{\phi} &= 0\\ \widetilde{\phi} + (\mathbf{I}-\mathbf{P}(\mathbf{f}))\widetilde{u} &= \mathbf{r}(\mathbf{f})\\ \widetilde{u} + (\mathbf{I}-\mathbf{P}(\mathbf{f}))\widetilde{z} &= 0 \end{cases}$$

step 3: Determine for every $i \in E$

$$A(\mathbf{i},\mathbf{f}) := \left\{ a \in A(\mathbf{i}) \middle| \begin{array}{l} \sum_{\mathbf{j}} p_{\mathbf{i}\mathbf{a}\mathbf{j}} \phi_{\mathbf{j}}(\mathbf{f}^{\infty}) > \phi_{\mathbf{i}}(\mathbf{f}^{\infty}) \text{ or } \sum_{\mathbf{j}} p_{\mathbf{i}\mathbf{a}\mathbf{j}} \phi_{\mathbf{j}}(\mathbf{f}^{\infty}) = \\ \phi_{\mathbf{i}}(\mathbf{f}^{\infty}) & & \\ a \in \mathbf{h}(\mathbf{i},\mathbf{f}^{\infty}) = \\ \phi_{\mathbf{i}}(\mathbf{f}^{\infty}) & & \\ a \in \mathbf{h}(\mathbf{i},\mathbf{f}^{\infty}) = \\ a \in \mathbf{h}(\mathbf{i},\mathbf{f}^{\infty}) = \\ a \in \mathbf{h}(\mathbf{i},\mathbf{f}^{\infty}) = \\ \phi_{\mathbf{i}}(\mathbf{f}^{\infty}) = \\ a \in \mathbf{h}(\mathbf{i},\mathbf{f}^{\infty}) = \\ a \in \mathbf{h}(\mathbf{h}(\mathbf{i},\mathbf{f}^{\infty})) = \\ a \in \mathbf{h}(\mathbf{h}(\mathbf{h},\mathbf{h})) = \\$$

step 4: If $A(i,f) = \emptyset$ for all $i \in E$, then f^{∞} is an average optimal policy (STOP).

Otherwise, go to step 5.

step 5: Take g^{∞} such that

$$\begin{cases} g(i) \in A(i,f) & \text{if } A(i,f) \neq \emptyset \\ & , & \text{i} \in E. \end{cases}$$
$$g(i) = f(i) & \text{if } A(i,f) = \emptyset \end{cases}$$

step 6: $f^{\infty} := g^{\infty}$ and go to step 2.

THEOREM 4.4.3. The policy improvement algorithm XV provides an average optimal policy within a finite number of iterations.

PROOF. If in the algorithm the policy g^{∞} is taken as successor of f^{∞} , then it follows from theorem 4.4.2 that $v^{\alpha}(g^{\infty}) > v^{\alpha}(f^{\infty})$ for α near enough to 1. Therefore, each pure and stationary policy can occur only once. Since there are a finite number of pure and stationary policies, the policy improvement algorithm terminates after a finite number of iterations with a policy $f^{\infty} \in C_{D}$ which satisfies A(i,f) = \emptyset for all i ϵ E. This policy f^{∞} is by theorem 4.4.2 an average optimal policy.

Let f_k^{∞} be the pure and stationary policy obtained in the k-th step of algorithm XV. In theorem 4.3.4 we have shown that $(x(f_k), y(f_k))$, defined by (4.3.2), is an extreme point of the set of feasible solutions of the linear program (4.2.11). The value of the objective function satisfies

$$\sum_{i}\sum_{a} \mathbf{r}_{ia} \mathbf{x}_{ia}(\mathbf{f}_{k}) = \sum_{i} \mathbf{r}_{i}(\mathbf{f}_{k}) \left(\beta^{\mathrm{T}}\mathbf{p}^{\star}(\mathbf{f}_{k})\right)_{i} = \beta^{\mathrm{T}}\mathbf{p}^{\star}(\mathbf{f}_{k}) \mathbf{r}(\mathbf{f}_{k}) = \beta^{\mathrm{T}}\phi(\mathbf{f}_{k}^{\infty}) \,.$$

The successive policies f_k^{∞} , k = 1, 2, ..., correspond to extreme points of the set of feasible solutions of program (4.2.11). From theorem 4.4.2 we know that the values of the objective function are nondecreasing and it follows also from theorem 4.4.2 that cycling cannot occur. The successive extreme points $(x(f_k), y(f_k))$, k = 1, 2, ..., are not necessarily adjacent. Hence, the policy iteration algorithm is not equivalent to the standard simplex algorithm but rather to another linear programming algorithm in which pivot operations on many variables are performed simultaneously. Such an algorithm is called a *block-pivoting* algorithm and may be viewed as a special case of the general class of methods of feasible directions as introduced by ZOUTENDIJK [1960].

CONCLUSION: The policy improvement algorithm is equivalent to a blockpivoting simplex algorithm.

EXAMPLE 4.4.1. For the model given in figure 4.4.1 (cf. HOWARD [1960] p.65) we display the policy improve-1 ment algorithm and we show how the successive iterations can be viewed as block-pivoting in the simplex algorithm.

Policy improvement

Iteration 1:

3

Iteration 2:
$$\infty$$

2.
$$\phi(f_2) = (7,7,7)^{-1}; u(f_2) = (-4,-5,0)^{-1}.$$

3. $A(1,f_2) = \emptyset; A(2,f_2) = \{3\}; A(3,f_2) = \emptyset$
5. Take g° such that $g(1) = 3, g(2) = 3, g(3) = 3$
6. $f_3(1) = 3, f_3(2) = 3, f_3(3) = 3.$

Iteration 3:

2. $\phi(f_3^{\infty}) = (7,7,7)^{\mathrm{T}}; u(f_3^{\infty}) = (-4,-2,0)^{\mathrm{T}}.$ 3. $A(1,f_3) = \emptyset; A(2,f_3) = \emptyset; A(3,f_3) = \emptyset.$ 4. f_3^{∞} is an average optimal policy.

m

Linear programming

Iteration 1:

Policy f_1^{∞} chooses in the three states the actions 3,2 and 1 respectively. Since the three states are recurrent in the Markov chain under P(f_1), the variables x_{13}, x_{22} and x_{31} are basic-variables. The corresponding simplex tableau is as follows (the z-variables are artificial variables; the variables y_{11}, y_{22} and y_{33} can be omitted since the corresponding coefficients are all zeros).

123

2

6

		×11	x ₁₂	×21	x 23	x 32	x 33	^y 12	У ₁₃	^у 21	У ₂₃	У ₃₁	У ₃₂
×13	1/3	1	1					1	1	-1		-1	
^z 2	0		-1	1	1	-1							
z ₃	0		1	-1	-1	1							
×31	1/3	1		1				1	1	-1		-1	
×22	1/3			1	1			-1		1	1		-1
z ₆	0	-1		-1		1	1	-1	-2	1	-1	2	1
z ₀	5	10	1	6	-1	-9	-7	7	11	-7	4	-11	-4

Iteration 2:

Since the Markov chain under $P(f_2)$ has only state 3 as recurrent state (with $f_2(3) = 3$) and since $f_2(1) = 3$ and $f_2(2) = 1$, we let enter the variables Y_{13} , Y_{21} and x_{33} into the basis and we require that x_{13}, x_{22} and x_{31} become non-basic or basic with value 0. Then, after 3 standard pivot iterations, we obtain the tableau corresponding to f_2^{∞} :

		×11	×12	^x 21	x 23	x 32	^y 12	×13	^x 22	^y 23	У ₃₁	У ₃₂
У ₁₃	2/3	1	1	1	1			1	1	1	-1	-1
^z 2	0		-1	1	1	-1						
z3	0		1	-1	-1	1						
×31	0		-1	1				-1				
y ₂₁	1/3			1	1		-1		1	1		-1
×33	1	1	2		1	1		2	1			
^z 0	7	6	4	2	2	-2	0	3	3	0	0	0

Iteration 3:

The average optimal policy f_3^{∞} is obtained by changing the variables y_{21} and y_{23} (this choice follows again from the analysis of the Markov chain induced by $P(f_3)$). The corresponding tableau becomes:

		× ₁₁	×12	x ₂₁	×23	x 32	^y 12	×13	×22	^y 21	У ₃₁	У ₃₂
У ₁₃	1/3	1	1				1	1		-1	-1	
z2	0		-1	1	1	-1						
z3	0		1	-1	-1	1						
×31	0		-1	1				-1				
У ₂₃	1/3			1	1		-1		1	1		-1
×33	1	. 1	2		1	ŕ		2	1			
z ₀	7	6	4	2	2	-2	0	3	3	0	0	0

<u>REMARK 4.4.1</u>. The final tableau is in the usual context of the simplex method not an optimal tableau. In an optimal tableau the row of the dual variables (i.e. the row at the bottom) has to be nonnegative. We can obtain such an optimal simplex tableau by changing the variables z_3 and x_{32} . Then the corresponding policy is again f_3^{∞} .

4.5. THE WEAK UNICHAIN CASE

Throughout this section we have the following assumption.

<u>ASSUMPTION 4.5.1</u>.(i) The AMD value-vector ϕ has identical components. (ii) For any pure and stationary average optimal policy f^{∞} and for an arbitrary ergodic set $E_1(f)$ in the Markov chain induced by P(f), there exists a policy $g^{\infty} \in C_{D}$ such that g^{∞} is also average optimal and $E_1(f)$ are the recurrent states in the Markov chain induced by P(g).

If assumption 4.5.1 is satisfied, then the model is called *weakly uni*chained. The weak unichain case includes the completely ergodic case, the unichain case (cf. section 4.6) but also the communicating case (i.e. for each pair i, j ϵ E there exists a policy $f_{\circ}^{\infty} \epsilon C_{D}$ and an integer $t \epsilon \mathbb{N}$ such that $\mathbb{P}_{f_{\circ}^{\infty}}(X_{t} = j | X_{1} = i) > 0$). The term communicating comes from BATHER [1973]; this concept is also used in HORDIJK [1974], chapter 8.

Let f^{∞} be an average optimal policy and g^{∞} the policy mentioned in asasumption 4.5.1. Then, this assumption implies that the policy f_1^{ω} , where

$$f_{1}(i) := \begin{cases} f(i) & i \in E_{1}(f) \\ & & \\ g(i) & i \in E \setminus E_{1}(f) \end{cases}$$

is also average optimal. Furthermore, it is obvious that the Markov chain induced by P(f₁) is unichained. Since ϕ_j is independent of the initial state j, we may use instead of the AMD-value-vector $\phi = \phi_o \in \mathbb{R}^1$ such that $\phi = \phi_o \cdot e$. From the results of section 4.2, it follows that ϕ_o is the optimal solution of the linear program

$$(4.5.1) \quad \min\{\widetilde{\phi}_{\circ} | \widetilde{\phi}_{\circ} + \widetilde{u}_{i} \geq r_{ia} + \sum_{j} p_{iaj} \widetilde{u}_{j} \quad a \in A(i), i \in E\}.$$

The corresponding dual linear programming problem is

(4.5.2)
$$max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = 0, & j \in E \\ \sum_{i} \sum_{a} x_{ia} = 1 \\ x_{ia} \ge 0, a \in A(i), & i \in E \end{cases}$$

Below, we present an algorithm for the determination of an optimal policy and we prove its correctness.

ALGORITHM XVI for the construction of a pure and stationary average optimal policy (weak unichain case).

step 1: Use the simplex method to compute an optimal solution x^* of the linear programming problem

$$\max \left\{ \sum_{i} \sum_{a} r_{ia} x_{ia} \middle| \begin{array}{c} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = 0, \quad j \in E \\ \sum_{i} \sum_{a} r_{ia} x_{ia} = 1 \\ x_{ia} \ge 0, a \in A(i), \quad i \in E \end{array} \right\}$$

THEOREM 4.5.1. Algorithm XVI determines an average optimal policy within a finite number of steps.

<u>PROOF</u>. The simplex method is finite and gives an optimal solution x^* of program (4.5.2). Let (ϕ_o, u^*) be an optimal solution of program (4.5.1). The algorithm terminates after a finite number of steps and determines a set E_o (possibly equal to E) such that $E \setminus E_o$ is closed under any policy. Similarly to proposition 4.2.2 it can be shown that E_{x^*} is closed under $P(f_*)$, where f_* is any completion of the function f_* already defined on E_o . Since the states of $E_o \setminus E_x^*$ are transient under $P(f_*)$ and are absorbed in E_x^* with probability 1, we have

(4.5.3)
$$p_{ij}^{*}(f_{*}) = 0$$
 i ϵE_{o} , $j \notin E_{x^{*}}$.

The complementary slackness property of linear programming (cf. corollary 1.3.1) and the choice of f_{\downarrow} in step 2 imply that

(4.5.4)
$$\phi_{\circ} + u_{i}^{*} = r_{i}(f_{*}) + (P(f_{*})u)_{i}, \quad i \in E_{x^{*}}.$$

From (4.5.3) and (4.5.4) it follows that

$$(4.5.5) \qquad \phi_{i}(f_{\star}^{\infty}) = \sum_{j} p_{ij}^{\star}(f_{\star}) r_{j}(f_{\star})$$
$$= \sum_{j} p_{ij}^{\star}(f_{\star}) \{\phi_{\circ} + u_{j} - \sum_{k} p_{jk}(f_{\star}) u_{k}\}$$
$$= \phi_{\circ} \cdot \sum_{j} p_{ij}^{\star}(f_{\star}) + [P^{\star}(f_{\star})(I - P(f_{\star})u]_{i}$$
$$= \phi_{\circ}, \quad i \in E_{\circ}.$$

Hence, f_{\star}^{∞} is average optimal on the set E_{\circ} . Suppose that $E_{\circ} \neq E$. Let g^{∞} be a pure and stationary average optimal policy. The policy f_{1}^{\sim} defined by

$$f_{1}(i) := \begin{cases} f(i) & i \in E_{o} \\ g(i) & i \in E \setminus E_{o} \end{cases}$$

is also average optimal and the Markov chain induced by $P(f_1)$ has an ergodic set, say $E_1(f_1)$, in E_o . Obviously, $\phi_1(f_1^{\infty}) = \phi_o = \max_{j \in E} \phi_j(f_1^{\infty})$, $i \in E_1(f_1)$. Then, assumption 4.5.1 is contradictory to the fact that $E \setminus E_o$ is closed under any policy. Consequently, we have shown that $E_o = E$. Then, (4.5.5) implies that f_{\downarrow}^{∞} is average optimal. \Box

<u>REMARK 4.5.1</u>. In DENARDO & FOX [1968] the so-called general single chain case is treated, i.e. the case in which there exists a pure and stationary average optimal policy f^{∞} such that the Markov chain induced by P(f) has one ergodic set plus a (perhaps empty) set of transient states. They claim that in this case an average optimal policy can be obtained by algorithm XVI. In example 4.5.1 we show that this is in general not true since the algorithm may terminate with $E_{o} \neq E$. However, in the general single chain case an average optimal policy can be obtained by successive application of algorithm XVI on $E \setminus E_0$ until $E_0 = E$.

EXAMPLE 4.5.1. It can easily be verified that the model of figure 4.5.1 belongs to the general single chain case. The linear program is:

 x^* is an extreme optimal solution where $x_{11}^* = x_{12}^* = x_{21}^* = x_{32}^* = 0$, $x_{31}^* = 1$. Since $E_{x^*} = \{3\}$ and $E \setminus E_{x^*}$ is closed under any policy, algorithm XVI gives not an optimal policy.

4.6. THE COMPLETELY ERGODIC AND THE UNICHAIN CASE

We first discuss the completely ergodic AMD-model, i.e. the AMD-model under the following assumption.

ASSUMPTION 4.6.1. For any pure and stationary policy f^{°°} all states belong to a single ergodic set in the Markov chain induced by P(f).

This case is the classical one and the solution by linear programming is well-known. We discuss in this monograph the completely ergodic case by reason of completeness. The linear programming formulation was first presented by MANNE [1960] and DE GHELLINCK [1960]. The algorithm is similar to algorithm XVI but the ster 3 until 5 are superfluous because there are no transient states. Hence, we obtain the following algorithm.

ALGORITHM XVII for the construction of a pure and stationary average optimal policy (completely ergodic case).

step 1: Use the simplex method to compute an optimal solution x^* of the linear programming problem

$$(4.6.1) \qquad \max\left\{\sum_{i}\sum_{a}r_{ia}x_{ia} \left| \begin{array}{c}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} = 0, \quad j \in E\\\sum_{i}\sum_{a}x_{ia} = 1\\x_{ia} \geq 0, a \in A(i), \quad i \in E \end{array} \right\}\right\}$$

step 2: Take $f_{\star}(i)$ such that $x_{if_{\star}(i)}^{\star} > 0$, $i \in E$.

LEMMA 4.6.1. If the Markov chain induced by P(f) has at most one ergodic set for every $f^{\infty} \in C_{D}$, then the Markov chain induced by P(π) has also at most one ergodic set for every $\pi^{\infty} \in C_{S}^{-}$.

<u>PROOF</u>. Suppose that there is a $\pi^{\infty} \in C_{S}$ such that the Markov chain induced by P(π) has more than one ergodic set. Then we can write

$$P(\pi) = \begin{pmatrix} P_1 & 0 & 0 \\ 0 & P_2 & 0 \\ R_1 & R_2 & Q \end{pmatrix} , \text{ where } P_1 \neq 0 \text{ and } P_2 \neq 0.$$

Define $f \in C_D$ by $f(i) := a_i$ such that $\pi_{ia_i} > 0$, $i \in E$. Notice that $p_{ij}(\pi) = 0$ implies $p_{ij}(f) = 0$. Hence the Markov chain induced by P(f) has also at least two ergodic sets. This yields a contradiction.

From assumption 4.6.1 and lemma 4.6.1 it follows that for any stationary policy π^{∞} the Markov chain induced by P(π) has exactly one ergodic set. Furthermore by the same argument as used in lemma 4.6.1 it can be shown that there are no transient states. Hence, the theorems 2.3.2 and 2.3.3 imply that P^{*}(π) has identical rows, say p^{*}(π), with p^{*}(π) >> 0 and such that p^{*}(π) is the unique solution of the so-called *steady-state equations:*

(4.6.2)
$$\begin{cases} \sum_{i} (\delta_{ij} - p_{ij}(\pi)) \mathbf{x}_{i} = 0 \quad j \in \mathbf{E} \\ \sum_{i} \mathbf{x}_{i} = 1. \end{cases}$$

For any $\pi^{\infty} \in \mathcal{C}_{S}$ we define $\mathbf{x}(\pi)$ by

$$(4.6.3) \qquad x_{ia}(\pi) := p_i^*(\pi) \cdot \pi_{ia} \qquad a \in A(i), i \in E$$

and for any feasible solution x of the linear program (4.6.1) we define $\pi^{\overset{\infty}{\pi}}(x)$ by

(4.6.4)
$$\pi_{ia}(x) := x_{ia} / \sum_{a ia} a \in A(i), i \in E.$$

THEOREM 4.6.1. The mapping $x_{ia}(\pi) = p_i^*(\pi) \cdot \pi_{ia}$ a $\in A(i)$, $i \in E$, is a one-toone mapping of the set of stationary policies onto the set of feasible solutions of the linear programming problem (4.6.1) with (4.6.4) as the inverse mapping. Furthermore, this mapping has the property that pure policies correspond to extreme feasible solutions.

<u>PROOF</u>. Let π^{∞} be any stationary policy. Then $x(\pi)$ defined by (4.6.3) satisfies

$$\sum_{i}\sum_{a} (\delta_{ij} - p_{iaj}) \mathbf{x}_{ia}(\pi) = \sum_{i} (\delta_{ij} - p_{ij}(\pi)) p_{i}^{*}(\pi) = 0 \quad j \in \mathbf{E},$$
$$\sum_{i}\sum_{a} \mathbf{x}_{ia}(\pi) = \sum_{i} p_{i}^{*}(\pi) = 1 \quad \text{and} \quad \mathbf{x}_{ia}(\pi) \ge 0 \qquad a \in \mathbf{A}(i), i \in \mathbf{E}.$$

Hence, $\mathbf{x}(\pi)$ is a feasible solution of program (4.6.1). Let x be an arbitrarily chosen feasible solution of (4.6.1). Then, $\pi_{ia}(\mathbf{x})$ is well-defined on $\mathbf{E}_{\mathbf{x}}$ and $\mathbf{x}_{ia} = \pi_{ia}(\mathbf{x}) \cdot \mathbf{x}_{i}$, $\mathbf{a} \in \mathbf{A}(i)$, $i \in \mathbf{E}$, where $\mathbf{x}_{i} := \sum_{\mathbf{a} ia} \operatorname{and} \pi_{ia}(\mathbf{x})$ is arbitrarily chosen on $\mathbf{E} \setminus \mathbf{E}_{\mathbf{x}}$. We obtain

$$0 = \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) \pi_{ia}(\mathbf{x}) \cdot \mathbf{x}_{i} = \sum_{i} (\delta_{ij} - p_{ij}(\pi(\mathbf{x}))) \cdot \mathbf{x}_{i} \qquad j \in E$$

$$1 = \sum_{i} \sum_{a} \pi_{ia}(\mathbf{x}) \cdot \mathbf{x}_{i} = \sum_{i} \mathbf{x}_{i},$$

implying that x is a solution of the steady-state equations. Hence, $x_i = p_i^*(\pi(x))$, $i \in E$. Therefore, it follows that $\pi(x)$ is well-defined on E and that $x = x(\pi(x))$, i.e. $\pi^{\infty}(x)$ is well-defined and the mapping (4.6.3) is on-to. Since $\pi_{ia}(x(\pi)) = \pi_{ia}$ a $\in A(i)$, $i \in E$, the mapping is one-to-one and (4.6.4) is the inverse mapping.

Let f^{∞} be any pure and stationary policy. Suppose that x(f) is not an extreme point, i.e. $x(f) = \lambda x^{1} + (1-\lambda)x^{2}$ where $\lambda \in (0,1)$, $x^{1} \neq x^{2}$ and x^{1}, x^{2} are feasible solutions of (4.6.1). Since $x_{ia}^{1} = x_{ia}^{2} = x_{ia}(f) = 0$, $a \neq f(i)$ i $\in E$, x^{1} and x^{2} are feasible solutions of the linear system

$$\begin{cases} x^{T}(I-P(f)) = 0 \\ x^{T}e = 1. \end{cases}$$

This system has a unique solution and consequently $x^1 = x^2$, implying a con-

tradiction. Hence, we have shown that x(f) is an extreme solution of (4.6.1). Conversely, let x be any extreme feasible solution of program (4.6.1). Since the sum of the first N components yields a zero in every column, the rank of the system of the N+1 equations is at most N. Therefore, any extreme solution has at most N positive components. Since $\sum_{a ia} > 0$, $i \in E$, x has in each state i exactly one positive component. Hence, the corresponding policy is pure. This completes the proof. \Box

Consider the policy improvement method for the completely ergodic case. Since $\phi(\tilde{f})$ has identical components, we may replace $\phi(\tilde{f})$ by $\phi_{\circ}(\tilde{f}) \cdot e$, where $\phi_{\circ}(\tilde{f}) \in \mathbb{R}^{1}$. Furthermore, we remark that the set A(i,f) defined by (4.4.2) becomes

$$A(i,f) = \{a \in A(i) | \phi_{o}(f^{\infty}) + \sum_{j} (\delta_{ij} - p_{iaj}) u_{j}(f^{\infty}) < r_{ia} \}.$$

Look at one iteration of the policy improvement algorithm. If $A(i,f) = \emptyset$, then g(i) := f(i). Otherwise, we may take g(i) from A(i,f). By theorem 4.6.1 the vector x(f) defined by (4.6.3) is an extreme feasible solution of the linear program (4.6.1). The dual program of (4.6.1) is

$$\min\{\widetilde{\phi} | \widetilde{\phi} + \sum_{j} (\delta_{ij} - p_{iaj}) \widetilde{u}_{j} \geq r_{ia} \}.$$

In the simplex tableau corresponding to x(f), the column of a nonbasic $x_{ia}(f)$ has in the transformed objective function the value (cf. theorem 1.4.1 and tableau (1.4.2))

(4.6.5)
$$d_{ia} = \tilde{\phi} + \sum_{j} (\delta_{ij} - p_{iaj}) \tilde{u}_{j} - r_{ia}$$

Since $x_{if(i)}(f) > 0$, $i \in E$, it follows from the orthogonality of the corresponding primal and dual variables in the simplex tableau that $d_{if(i)} = 0$, $i \in E$. Then, we obtain

$$\widetilde{\phi} \cdot \mathbf{e} = \mathbf{p}^{\star}(\mathbf{f}) (\widetilde{\phi} \cdot \mathbf{e}) = \mathbf{p}^{\star}(\mathbf{f}) \{ \mathbf{r}(\mathbf{f}) - (\mathbf{I} - \mathbf{P}(\mathbf{f}))\widetilde{\mathbf{u}} \} = \mathbf{p}^{\star}(\mathbf{f}) \mathbf{r}(\mathbf{f}) = \phi(\mathbf{f}^{\infty})$$

Since

$$\phi(f^{\infty}) + (I-P(f))u(f) = \phi(f^{\infty}) + (I-P(f))D(f)r(f)$$
$$= \phi(f^{\infty}) + (I-P^{*}(f))r(f)$$
$$= r(f),$$

132

We have

$$(I-P(f))(u(f))-\widetilde{u}) = 0.$$

Then

$$u(f^{\circ}) - \widetilde{u} = P^{*}(f)(u(f^{\circ}) - \widetilde{u}).$$

Because $P^{*}(f)$ has identical rows, $u(f^{\infty}) - \tilde{u}$ has identical components and consequently

$$\sum_{j} (\delta_{ij} - p_{iaj}) \tilde{u}_{j} = \sum_{j} (\delta_{ij} - p_{iaj}) u_{j} (f^{\circ}).$$

Hence, (4.6.5) can be written as

$$(4.6.6) d_{ia} = \phi_{o}(f^{\infty}) + \sum_{j} (\delta_{ij} - p_{iaj}) u_{j}(f^{\infty}) - r_{ia}.$$

Since a ϵ A(i,f) if and only if d_{ia} < 0, it follows that the set of actions from which g(i) can be chosen corresponds to the possible choices for the pivot column in the simplex method. Hence, we have shown the following.

CONCLUSIONS.

- 1. Any policy improvement algorithm is equivalent to a block-pivoting simplex algorithm.
- 2. The standard simplex algorithm is equivalent to a particular policy improvement algorithm.

We continue this section under the following assumption (unichained-ness).

ASSUMPTION 4.6.2. For any pure and stationary policy f^{∞} , the Markov chain induced by P(f) has one ergodic set plus a (perhaps empty) set of transient states.

In this case an optimal policy can be determined by the following algorithm.

ALGORITHM XVIII for the construction of a pure and stationary average optimal policy (unichain case).

step 1: Use the simplex method to compute an optimal solution x^* of the linear programming problem

(4.6.7)
$$max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \\ \sum_{i} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = 0 & j \in E \\ \sum_{i} \sum_{a} x_{ia} = 1 \\ x_{ia} \ge 0, a \in A(i), i \in E \end{cases}$$

step 2: Take f_{\star}^{∞} such that

$$f_{\star}(i) := \begin{cases} a_{i} & \text{where } x_{ia_{i}}^{\star} > 0 & i \in E_{\star} \\ \\ arbitrarily & i \in E \setminus E_{\star} \\ \\ x^{\star} \end{cases}$$

THEOREM 4.6.2. Algorithm XVIII provides a pure and stationary average optimal policy in the unichain case.

<u>PROOF</u>. Since the Markov chain induced by $P(f_*)$ has only one ergodic set and since E_{x^*} is closed under $P(f_*)$ (the proof is similar to the proof of proposition 4.2.2), it follows that the states of $E \setminus E_{x^*}$ are transient under $P(f_*)$. Then, the proof of the theorem is similar to the proof of theorem 4.5.1. \Box

<u>REMARK 4.6.1</u>. In the unichain case there is in general no one-to-one correspondence between the feasible solutions of program (4.6.7) and the stationary policies.

4.7. ADDITIONAL CONSTRAINTS

4.7.1. INTRODUCTION

We will discuss the problem of finding an optimal policy when there are some additional constraints on the limit points of the expected stateaction frequencies. Such problems may for instance occur if more than one reward function is of importance. Then we want to maximize the expected average reward with regard to one reward function while we restrict the other reward functions by some bounds.

DERMAN [1970], chapter 7, has considered the unichain case and he has solved this problem by linear programming. In DERMAN & VEINOTT [1972] an iterative algorithm, based on the Dantzig-Wolfe principle was proposed. They write "until the faces of the linear programming polytope are found,

routine application of the simplex method is generally not possible". Therefore, they need the decomposition principle.

In section 4.7.2 we shall characterize this linear programming polytope and we prove some properties of the limit points of the state-action frequencies. We present a treatment of the general multichain case based on the solution of one linear program.

In general, there does not exist a stationary optimal solution. We will derive an algorithm for the construction of a memoryless optimal policy. For practical purposes, this algorithm needs too many calculations; furthermore, memoryless (i.e. Markov) policies are unusual in practice.

Fortunately, if certain conditions are satisfied, then optimal policies can be computed that are stationary. In section 4.7.4 we shall discuss these conditions.

We close the treatment of additional constraints with a description in section 4.7.5 of the unichain case. In this case a stationary optimal policy can always be found. We shall show this result by a proof different from the proof of theorem 3 on page 95 in DERMAN [1970] and we present an algorithm to perform the calculations.

4.7.2. LIMIT POINTS OF STATE-ACTION FREQUENCIES

Since the state-action frequencies depend on the initial distribution we assume that $\beta = (\beta_1, \beta_2, \dots, \beta_N)$ is a known initial distribution, i.e. $\beta_i \ge 0$, $j \in E$, and $\Sigma_i \beta_i = 1$.

<u>REMARK 4.7.1</u>. In contrast with the use of the vector β in the sections 4.2, 4.3 and 4.4, we allow in this section that $\beta_i = 0$ for some $i \in E$. DERMAN & VEINOTT [1972] discuss the constrained problem for a fixed starting state i.

For any policy R and any T ϵ IN, we denote the *expected state-action* frequencies in the first T periods by $x^{T}(R)$, i.e.

(4.7.1)
$$\mathbf{x}_{ja}^{\mathrm{T}}(\mathbf{R}) := \frac{1}{\mathrm{T}} \sum_{t=1}^{\mathrm{T}} \sum_{i} \beta_{i} \cdot \mathbb{P}_{\mathbf{R}} (\mathbf{x}_{t} = j, \mathbf{y}_{t} = a \mid \mathbf{x}_{1} = i) \quad a \in A(j), j \in \mathbf{E}.$$

By X(R) we denote the set of all limit points of the vectors $\{x^{T}(R), T = 1, 2, ...\}$. These limit points are limit points in the vector space of the vectors $x^{T}(R)$. Any $x^{T}(R)$ satisfies $\sum_{j} \sum_{a} x_{ja}^{T}(R) = 1$ and therefore also

 $\begin{array}{l} \sum\limits_{j}\sum\limits_{a}x_{ja}^{}(R) = 1 \ \text{for every } x(R) \ \epsilon \ X(R). \ \text{Furthermore, if } x^{}^{}^{}^{}^{}^{}_{K}(R) \ \rightarrow x(R) \ \text{for } \\ k \rightarrow \infty, \ \text{then } \lim_{k \rightarrow \infty} x^{}^{}_{ja}(R) = x_{ja}^{}(R) \ \text{for all } a \ \epsilon \ A(j), \ j \ \epsilon \ \text{E.} \\ \text{Let } C_1 := \{ R \ \epsilon \ C \ | \ X(R) \ | \ = 1 \}. \ \text{In section } 4.3 \ \text{we have already seen that for } \\ \text{any stationary policy } \pi^{^{\infty}} \ \text{the set } X(\pi^{^{\infty}}) \ \text{consists of one element, namely} \end{array}$

(4.7.2) $X(\pi^{\infty}) = \{x(\pi)\}, \text{ where } x_{ja}(\pi) := [\beta^T p^*(\pi)]_j \cdot \pi_j, a \in A(j), j \in E.$

Hence, C_1 contains all stationary policies.

We introduce the following notations:

$$\begin{split} \mathbf{L} &:= \{\mathbf{x}(\mathbf{R}) \in \mathbf{X}(\mathbf{R}) \mid \mathbf{R} \in \mathbf{C} \} \\ \mathbf{L}(\mathbf{M}) &:= \{\mathbf{x}(\mathbf{R}) \in \mathbf{X}(\mathbf{R}) \mid \mathbf{R} \in \mathbf{C}_{\mathbf{M}} \} \\ \mathbf{L}(\mathbf{C}) &:= \{\mathbf{x}(\mathbf{R}) \in \mathbf{X}(\mathbf{R}) \mid \mathbf{R} \in \mathbf{C}_{\mathbf{1}} \} \\ \mathbf{L}(\mathbf{S}) &:= \{\mathbf{x}(\mathbf{R}) \in \mathbf{X}(\mathbf{R}) \mid \mathbf{R} \in \mathbf{C}_{\mathbf{S}} \} \\ \mathbf{L}(\mathbf{D}) &:= \{\mathbf{x}(\mathbf{R}) \in \mathbf{X}(\mathbf{R}) \mid \mathbf{R} \in \mathbf{C}_{\mathbf{D}} \}. \end{split}$$

THEOREM 4.7.1. $\overline{L(D)} = \overline{L(S)} = L(C) = L(M) = L$.

<u>PROOF</u>. (cf. DERMAN [1970] pp.93-94). It is obvious that $L(D) \subset L(S) \subset L(C) \subset L$. We first prove that $L \subset \overline{L(D)}$. Suppose the contrary. Then, there exists a policy R such that $x(R) \in L$ and $x(R) \notin \overline{L(D)}$. Since $\overline{L(D)}$ is a closed convex set, it follows from theorem 1.2.1 that there exist coefficients r ja such that

(4.7.3)
$$\sum_{j} \sum_{a} r_{ja} x_{ja}^{(R)} > \sum_{j} \sum_{a} r_{ja} x_{ja}$$
 for all $x \in \overline{L(D)}$.

Theorem 4.2.3 implies that there is for the AMD-model with rewards r_{ia} a pure and stationary policy f^{∞} which is optimal with respect to the utility function $\hat{\phi}$, defined in (4.2.9). Because $\mathbf{x}(\mathbf{R}) \in \mathbf{L}$, there is a sequence $\{\mathbf{T}_{k}, k = 1, 2, \ldots\}$ such that

$$x_{ja}^{(R)} = \lim_{k \to \infty} x_{ja}^{(R)} \quad a \in A(j), j \in E.$$

Hence,

$$\begin{split} \sum_{j} \sum_{a} r_{ja} x_{ja}(R) &= \sum_{j} \sum_{a} r_{ja} \cdot \lim_{K \to \infty} x_{ja}^{T_{k}}(R) \\ &= \lim_{K \to \infty} \frac{1}{T_{k}} \sum_{t=1}^{T_{k}} \sum_{i} \beta_{i} \cdot \sum_{j} \sum_{a} \mathbb{P}_{R}(X_{t} = j, Y_{t} = a \mid X_{1} = i) \cdot r_{ja} \end{split}$$

$$= \sum_{i} \beta_{i} \cdot \lim_{k \to \infty} \frac{1}{T_{k}} \sum_{t=1}^{T_{k}} \sum_{j} \sum_{a} \mathbb{P}_{R} (X_{t} = j, Y_{t} = a \mid X_{1} = i) \cdot r_{ja}$$

$$\leq \sum_{i} \beta_{i} \cdot \lim_{T \to \infty} \frac{1}{T} \sum_{k=1}^{T} \sum_{j} \sum_{a} \mathbb{P}_{R} (X_{t} = j, Y_{t} = a \mid X_{1} = i) \cdot r_{ja} =$$

$$\beta^{T} \phi(R) \leq \beta^{T} \phi(f^{\infty}) = \sum_{j} \sum_{a} r_{ja} x_{ja} (f^{\infty}),$$

which contradicts (4.7.3): we have shown that $L \subset \overline{L(D)}$. Since $L(D) \subset L(S) \subset L \subset \overline{L(D)}$, we obtain $\overline{L(S)} = \overline{L(D)}$. From

$$L(M) \subset L \subset \overline{L(S)} = \overline{L(D)}$$

and

 $L(C) \subset L \subset \overline{L(S)} = \overline{L(D)}$

it follows that for the proof of the theorem it remains to prove that $\overline{L\left(D\right)}\ \subset\ L\left(M\right)\ \cap\ L\left(C\right)$.

Therefore, take any $x\in \widetilde{L(D)}$. Let $\mathcal{C}_D=\{f_1^{^{\infty}},f_2^{^{\infty}},\ldots,f_n^{^{\infty}}\}.$ Then we can write

$$\mathbf{x}_{ja} = \sum_{k=1}^{n} p_k \mathbf{x}_{ja}(\mathbf{f}_k)$$
 $a \in A(j), j \in E,$

for certain $\textbf{p}_k^{} \geq 0$ such that $\sum_{k=1}^n \textbf{p}_k^{}$ = 1. The existence of a Markov policy R satisfying

$$\sum_{i} \beta_{i} \cdot \mathbb{P}_{R}(x_{t} = j, y_{t} = a \mid x_{1} = i) =$$

$$\sum_{i} \beta_{i} \cdot \sum_{k} \mathbb{P}_{k} \mathbb{P}_{f_{k}}(x_{t} = j, y_{t} = a \mid x_{1} = i) \qquad t \in \mathbb{N}, a \in A(j), j \in E,$$

is shown in theorem 2.5.1. Hence,

$$\begin{split} \mathbf{x}_{ja} &= \sum_{k} \mathbf{p}_{k} \mathbf{x}_{ja}(\mathbf{f}_{k}) \\ &= \sum_{k} \mathbf{p}_{k} \cdot \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{i} \beta_{i} \cdot \mathbf{P}_{f_{k}}^{\infty} (\mathbf{X}_{t} = \mathbf{j}, \mathbf{Y}_{t} = \mathbf{a} \mid \mathbf{X}_{1} = \mathbf{i}) \\ &= \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{i} \beta_{i} \cdot \sum_{k} \mathbf{p}_{k} \mathbf{P}_{f_{k}}^{\infty} (\mathbf{X}_{t} = \mathbf{j}, \mathbf{Y}_{t} = \mathbf{a} \mid \mathbf{X}_{1} = \mathbf{i}) \\ &= \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{i} \beta_{i} \cdot \mathbf{P}_{R} (\mathbf{X}_{t} = \mathbf{j}, \mathbf{Y}_{t} = \mathbf{a} \mid \mathbf{X}_{1} = \mathbf{i}) \\ &= \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{i} \beta_{i} \cdot \mathbf{P}_{R} (\mathbf{X}_{t} = \mathbf{j}, \mathbf{Y}_{t} = \mathbf{a} \mid \mathbf{X}_{1} = \mathbf{i}) \\ &= \mathbf{x}_{ia} (\mathbf{R}) \qquad \text{for all } \mathbf{a} \in \mathbf{A}(\mathbf{j}), \mathbf{j} \in \mathbf{E}. \end{split}$$
Consequently, $\mathbf{x} = \mathbf{x}(R) \in L(M)$ and $\mathbf{x} = \lim_{T \to \infty} \mathbf{x}^{T}(R) \in L(C)$, which completes the proof of the theorem. \Box

REMARK 4.7.2. Theorem 4.7.1 shows that for any utility function, which is based on the limit points of the expected state-action frequencies, it is sufficient to consider only the policies of class C_1 . For instance, the "weak" criterion $\phi(R)$ and the "strong" criterion $\hat{\phi}(R)$ are in fact the same optimality criterion, since $\phi(R) = \hat{\phi}(R)$ for any $R \in C_1$ (cf. theorem 4.2.3).

We are interested in the problem to find, for a given initial distribution, a policy which is optimal in the set of policies that satisfy some additional constraints. These constraints will be linear functions of the expected state-action frequencies.

Let $\sum_{i=1}^{k} a_{iak}^{k} x_{iak}^{k}$ (R) $\leq b_{k}$ be the k-th constraint. Then we formulate the constrained Markov decision problem by

(4.7.4)
$$\sup_{\mathbf{R}} \left\{ \phi(\beta,r) \middle| \begin{array}{l} \sum_{i} \sum_{a} q_{iak} x_{ia}(\mathbf{R}) \leq b_{k} \quad k = 1, 2, \dots, m \\ \mathbf{x}(\mathbf{R}) \in \mathbf{X}(\mathbf{R}) \end{array} \right\}$$

where $\phi(\beta,R) := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{j} \sum_{a} \sum_{i} \beta_{i} \mathbb{P}_{R} (x_{t} = j, x_{t} = a \mid x_{1} = i) r_{ja}$ By the result of theorem 4.7.1 we may replace (4.7.4) by

$$(4.7.5) \qquad sup_{R \in \mathcal{C}_{1}} \{ \phi(\beta, R) \mid \sum_{i} \sum_{a} q_{iak} x_{ia}(R) \leq b_{k} \quad k = 1, 2, \dots, m \}.$$

Notice that for $R \in C_1 \phi(\beta, R) = \sum_j \sum_a x_{ja}(R)r_{ja}$. In order to solve problem (4.7.5), we propose - inspired by the linear programming formulation for the unconstrained Markov decision problem, given in section 4.2 - to study the following linear programming problem:

$$(4.7.6) \quad \max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \\ \sum_{i} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= 0, \ , j \in E \\ \sum_{a} x_{ja} &+ \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} = \beta_{j}, \ j \in E \\ \sum_{i} \sum_{a} q_{iak} x_{ia} &\leq b_{k}, \ 1 \leq k \leq m \\ & x_{ia}, y_{ia} \geq 0, \ a \in A(i), \ i \in E \end{cases}$$

The fact that program (4.7.6) can be used to solve problem (4.7.5) is based upon the following theorem. Consider the linear system

138

(4.7.7)
$$\begin{cases} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = 0, \quad j \in E \\ \sum_{a} x_{ja} + \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} = \beta_{j}, \quad j \in E \\ x_{ia}, y_{ia} \ge 0, a \in A(i), \quad i \in E \end{cases}$$

Define the set X by

(4.7.8) $X := \{x \mid \text{there exists a y such that } (x,y) \text{ is feasible for } (4.7.7) \}.$

THEOREM 4.7.2. L = X.

<u>PROOF</u>. Theorem 4.7.1 implies that it is sufficient to prove that $\overline{L(D)} = X$. From theorem 4.3.1 it follows that $L(S) \subset X$ (it can easily be checked that the proof of theorem 4.3.1 may also be used when $\beta_j = 0$ for some $j \in E$). Hence, certainly $L(D) \subset X$.

Since X is the projection of a polyhedron, X is also a polyhedron and consequently $\overline{L(D)} \subset X$. From (4.7.7) it follows that $x_{ia} \ge 0$ for all $a \in A(i)$, $i \in E$, and that $\sum_{i} \sum_{a} x_{ia} = 1$. Therefore, X is a polytope, i.e. X is a bounded polyhedron. Then from corollary 1.2.2 it follows that X is the closed convex hull of a finite number of extreme points. Hence, it is sufficient to show that any extreme point of X belongs to L(D).

Let \bar{x} be an arbitrarily chosen extreme point of X, and let \bar{x} be the closed convex hull of the extreme points of X that are different from \bar{x} . Then $\bar{x} \notin \bar{x}$ and theorem 1.2.1 implies the existence of coefficients $r_{ia} \in A(i)$, $i \in E$ such that

(4.7.9)
$$\sum_{i} \sum_{a} r_{ia} \overline{x}_{ia} > \sum_{i} \sum_{a} r_{ia} x_{ia} \text{ for every } x \in \overline{x}.$$

Therefore it follows from (4.7.9) that any optimal solution (x^*, y^*) of the linear program

(4.7.10)
$$max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \\ \sum_{a} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} \\ \sum_{a} \sum_{ja} + \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} = \beta_{j}, \quad j \in E \\ x_{ia}, y_{ia} \ge 0, \quad a \in A(i), \quad i \in E \end{cases}$$

satisfies $x^* = \overline{x}$.

Consider the AMD-model with rewards r_{ia} , a ϵ A(i), i ϵ E. Let f_{\star}^{∞} be any pure and stationary average optimal policy. Then $(x(f_{\downarrow}), y(f_{\downarrow}))$, defined

in (4.3.2), is by theorem 4.3.3 an optimal solution of program (4.7.10). Hence, $\bar{x} = x(f_{\perp}) \in L(D)$, which completes the proof.

<u>REMARK 4.7.3</u>. Recently, we learned from VEINOTT [1973] that the result of theorem 4.7.2 was already known to him in 1973.

<u>REMARK 4.7.4</u>. From the theorems 4.7.1 and 4.7.2 it follows that any extreme point of X is an element of L(D). The next example shows that the converse statement is not true, in general. Furthermore, this example displays that $L(S) \neq X$ is possible, and that X is a real subset of

c.
$$\pi_2 \neq 0$$
 and $\pi_1 \neq 1$:
 $P^*(\pi) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $\mathbf{x}_{11}(\pi) = \mathbf{x}_{12}(\pi) = \mathbf{x}_{21}(\pi) = \mathbf{x}_{22}(\pi) = 0; \ \mathbf{x}_{31}(\pi) = 1.$

Since we always have that $x_{12} = 0$ and $x_{22} = x_{11}$, we can draw the sets L(D), L(S) and X in the 3-dimensional space with coordinates x_{11}, x_{21} and x_{31} (see figure 4.7.2).

$$\begin{split} \mathbf{L}(\mathbf{D}) &= \{\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \mathbf{x}^4\}, \text{ where } \mathbf{x}^i, \ 1 \leq i \leq 4, \text{ is drawn in Figure 4.7.2.} \\ \mathbf{L}(\mathbf{S}) & \text{ consists of } \mathbf{x}^1 \text{ and the points between } \mathbf{x}^2 \text{ and } \mathbf{x}^3, \text{ together with } \\ & \text{ the points between } \mathbf{x}^3 \text{ and } \mathbf{x}^4 \text{ (the dark lines in the figure).} \\ & \text{ is the convex out of } \{\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \mathbf{x}^4\}, \text{ i.e. the polytope} \end{split}$$

$$\left\{ \mathbf{x} \begin{vmatrix} \mathbf{x}_{11} + \mathbf{x}_{12} + \mathbf{x}_{21} + \mathbf{x}_{22} + \mathbf{x}_{31} = 1; \ \mathbf{x}_{12} = 0; \ \mathbf{x}_{11} = \mathbf{x}_{22} \\ \mathbf{x}_{11}, \mathbf{x}_{12}, \mathbf{x}_{21}, \mathbf{x}_{22} \ge 0; \ \mathbf{x}_{31} \ge 1/3 \end{vmatrix} \right\}$$

In figure 4.7.2 we see that x^2 is not an extreme point of X, although $x^2 \in L(D)$. Moreover, it follows that $L(S) \neq X$.

4.7.3. COMPUTATION OF A MARKOVIAN OPTIMAL POLICY

In this section we present an algorithm for the construction of a Markovian optimal policy. We first show that the problems (4.7.5) and (4.7.6) are strongly related.

THEOREM 4.7.3.

- (i) Problem (4.7.5) is feasible if and only if problem (4.7.6) is feasible.
- (ii) The optima of the problems (4.7.5) and (4.7.6) are equal.
- (iii) If R is an optimal solution of problem (4.7.5), then x(R) is an optimal solution of problem (4.7.6).
- (iv) Let (x,y) be an optimal solution of problem (4.7.6), and let $x = \sum_{k=1}^{n} p_{k} x(f_{k})$, where $p_{k} \ge 0$ such that $\sum_{k} p_{k} = 1$, and $\{f_{1}, f_{2}, \dots, f_{n}\} = C_{p}$. Suppose that $R \in C_{M}$ is the policy, introduced in theorem 2.5.1, such that

$$(4.7.11) \qquad \sum_{i} \beta_{i} \cdot \mathbb{P}_{R}(X_{t} = j, Y_{t} = a \mid X_{1} = i) = \sum_{i} \beta_{i} \cdot \sum_{k} p_{k} \mathbb{P}_{f_{k}^{\infty}}(X_{t} = j, Y_{t} = a \mid X_{1} = i) \qquad t \in \mathbb{N}, a \in A(j), j \in E.$$

Then, R is an optimal solution of problem (4.7.5).

<u>PROOF</u>. The theorems 4.7.1 and 4.7.2 imply that X = L(C). Moreover, any $R \in C_1$ satisfies $\phi(\beta, R) = \sum_{j=a}^{\infty} \sum_{j=a}^{\infty} (R) r_{ja}$. By these observations, the parts (i), (ii) and (iii) are straightforward.

For the proof of part (iv) we can similarly as in the proof of theorem 4.7.1 show that x = x(R), and $R \in C_1$. Consequently,

$$\phi(\beta,R) = \sum_{i} \sum_{a} r_{ia} x_{ia}(R) = \sum_{i} \sum_{a} r_{ia} x_{ia} = \text{optimum } (4.7.6).$$

Hence, R is an optimal solution of problem (4.7.5).

<u>REMARK 4.7.5</u>. To compute an optimal policy from an optimal solution (x^*, y^*) of the linear program (4.7.6), we first have to write x^* as

$$x^* = \sum_k p_k x(f_k)$$
, where $p_k \ge 0$ and $\sum_k p_k = 1$.

Next, we have to determine $R = (\pi^1, \pi^2, ...) \in C_M$ such that R satisfies (4.7.11). The decision rules π^t , $t \in \mathbb{N}$, can be obtained from DERMAN & STRAUCH [1966].

ALGORITHM XIX for the construction of an optimal Markov policy in a constrained AMD-model.

<u>step 1</u>: Determine an optimal solution (x^*, y^*) of the linear programming problem

$$(4.7.12) \quad \max\left\{\sum_{i}\sum_{a}r_{ia}x_{ia}\right| \begin{bmatrix}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} &=0, j \in E \\ \sum_{a}x_{ja} & +\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})y_{ia}=\beta_{j}, j \in E \\ \sum_{i}\sum_{a}q_{iak}x_{ia} & \leq b_{k}, 1 \leq k \leq m \\ x_{ia}, Y_{ia} \geq 0, a \in A(i), i \in E \end{bmatrix}$$

(if problem (4.7.12) is infeasible, then problem (4.7.5) is also infeasible).

step 2a: Suppose that $C_{D} = \{f_{1}^{\infty}, f_{2}^{\infty}, \dots, f_{n}^{\infty}\}$. Compute $P^{*}(f_{k})$ by algorithm III, $k = 1, 2, \dots, n$.

step 2b: Take

$$\mathbf{x}_{ja}^{k} := \begin{cases} \begin{bmatrix} \boldsymbol{\beta}^{T} \boldsymbol{p}^{\star}(\mathbf{f}_{k}) \end{bmatrix}_{j}^{k} & a = \mathbf{f}_{k}(j) \\ & j \in E, \ k = 1, 2, \dots, n. \\ 0 & a \neq \mathbf{f}_{k}(j) \end{cases}$$

<u>step 3</u>: Determine p_k (k = 1,2,...,n) as a feasible solution of the linear system

(4.7.13)
$$\begin{cases} \sum_{k} p_{k} x_{ja}^{k} = x_{ja}^{*} \quad a \in A(j), j \in E \\ \sum_{k} p_{k} = 1 \\ p_{k} \geq 0 \quad k = 1, 2, \dots, n \end{cases}$$

(this can be performed by the so-called phase I of the simplex method).

<u>step 4</u>: $R^* := (\pi^1, \pi^2, ...)$, where

$$\mathbf{T}_{ja}^{t} := \begin{cases} \frac{\sum_{i} \beta_{i} \cdot \sum_{k} \mathbf{p}_{k} \left[\mathbf{p}^{t-1}\left(\mathbf{f}_{k}\right)\right]_{ij} \cdot \delta_{af_{k}}(j)}{\sum_{i} \beta_{i} \cdot \sum_{k} \mathbf{p}_{k} \left[\mathbf{p}^{t-1}\left(\mathbf{f}_{k}\right)\right]_{ij}} & \text{if } \sum_{i} \beta_{i} \cdot \sum_{k} \mathbf{p}_{k} \left[\mathbf{p}^{t-1}\left(\mathbf{f}_{k}\right)\right]_{ij} \neq 0 \\ & \text{arbitrarily}} & \text{if } \sum_{i} \beta_{i} \cdot \sum_{k} \mathbf{p}_{k} \left[\mathbf{p}^{t-1}\left(\mathbf{f}_{k}\right)\right]_{ij} = 0. \end{cases}$$

Then, R^{\star} is an optimal Markov policy for the constrained AMD-model.

<u>REMARK 4.7.6</u>. Algorithm XIX is inattractive for practical problems. The number of calculations is prohibitive. Moreover, the use of Markov policies is inefficient in practice. Therefore, in the next section we discuss the problem of finding an optimal stationary policy, if one exists.

EXAMPLE 4.7.2. We apply algorithm XIX to the model of figure 4.7.3 with additional constraints $\frac{1}{4} \leq x_{21}(R) \leq \frac{1}{2}$. Since for any policy R we have $x_{11}(R) = x_{12}(R) = x_{32}(R) = 0$, we can illustrate the points x(R) in the 2dimensional space with coordinates x_{21} and x_{31} . It can easily be verified that any stationary policy π^{∞} satisfies (see figure 4.7.4): β_1

$$\begin{array}{l} \text{if } \pi_{31} \neq 1: \ \mathbf{x}_{11} (\pi) = \mathbf{x}_{12} (\pi) = \mathbf{x}_{31} (\pi) = \mathbf{x}_{32} (\pi) = 0; \\ \text{if } \pi_{31} = 1: \ \mathbf{x}_{11} (\pi) = \mathbf{x}_{12} (\pi) = \mathbf{x}_{32} (\pi) = 0; \\ \mathbf{x}_{21} (\pi) = (1/16) \cdot (3 + 4\pi_{11}); \\ \mathbf{x}_{31} (\pi) = (1/16) \cdot (13 - 4\pi_{11}). \end{array}$$

Let x^{1}, x^{2}, x^{3} be the points corresponding to pure policies which are drawn in figure 4.7.4. Then

$$L(D) = \{x^{1}, x^{2}, x^{3}\}.$$

$$L(S) = \{x^{2}\} \cup \{x^{1}, x^{3}\}.$$

$$L(M) = L(C) = L = X = \{x^{1}, x^{2}, x^{3}\}.$$

The formulation of program (4.7.12) becomes (if $p_{iai} = 1$, then the coefficients of the variable y are all zeroes; therefore, we remove such variables from the formulation): maximize x₂₁ subject to

_

.

$$\begin{array}{c} x_{11} + x_{12} & = 0 \\ x_{11} & -x_{32} & = 0 \\ -x_{12} & +x_{32} & = 0 \\ x_{11} + x_{12} & +y_{11} + y_{12} & = 4/16 \\ & x_{21} & -y_{11} & -y_{32} = 3/16 \\ & x_{31} + x_{32} & -y_{12} + y_{32} = 9/16 \\ & x_{21} & \leq 1/2 \\ & x_{21} & \leq 1/2 \\ -x_{21} & \leq -1/4 \\ x_{11} \cdot x_{12} \cdot x_{21} \cdot x_{31} \cdot x_{32} \cdot y_{11} \cdot y_{12} \cdot y_{32} \geq 0 \end{array}$$

×31 $\frac{7}{16}$ $\frac{1}{2}$ $\frac{3}{16} \frac{1}{4}$ ×21

Algorithm XIX gives for this problem the following results.

<u>step 1</u>: $x_{11}^{*} = 0$, $x_{12}^{*} = 0$, $x_{21}^{*} = 1/2$, $x_{31}^{*} = 1/2$, $x_{32}^{*} = 0$; $y_{11}^{*} = 0$, $y_{12}^{*} = 1/4$, $y_{32}^{*} = 5/16$. <u>step 2a</u>: Let f_{k}^{∞} , k = 1, 2, 3, 4, be such that

$$\begin{array}{l} f_1(1)=1,\ f_1(2)=1,\ f_1(3)=1;\ f_2(1)=1,\ f_2(2)=1,\ f_2(3)=2;\\ f_3(1)=2,\ f_3(2)=1,\ f_3(3)=1;\ f_4(1)=2,\ f_4(2)=1,\ f_4(3)=2. \end{array}$$

By algorithm III we obtain

$$P^{*}(f_{1}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; P^{*}(f_{2}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix};$$

$$P^{*}(f_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} ; P^{*}(f_{4}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} .$$

<u>step 2b</u>: $x_{11}^1 = x_{12}^1 = x_{32}^1 = 0$; $x_{21}^1 = 7/16$; $x_{31}^1 = 9/16$. $x_{11}^2 = x_{12}^2 = x_{32}^2 = 0$; $x_{21}^2 = 1$; $x_{31}^2 = 0$. $x_{11}^3 = x_{12}^3 = x_{32}^3 = 0$; $x_{21}^3 = 3/16$; $x_{31}^3 = 13/16$. $x_{11}^4 = x_{12}^4 = x_{32}^4 = 0$; $x_{21}^4 = 1$; $x_{31}^4 = 0$.

<u>step 3</u>: p₁ = 8/9; p₂ = 1/9; p₃ = 0; p₄ = 0. <u>step 4</u>: Since

$$P^{t}(f_{1}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } P^{t}(f_{2}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} , t \in \mathbb{N},$$

we get
$$\mathbb{R}^{t} = (\pi^{1}, \pi^{2}, ...)$$
, where
 $\pi_{11}^{t} = 1$ $t \in \mathbb{N};$ $\pi_{21}^{t} = 1$ $t \in \mathbb{N};$
 $\pi_{31}^{t} = \begin{cases} 8/9 & t = 1 \\ 1 & t \ge 2; \end{cases}$ $\pi_{32}^{t} = \begin{cases} 1/9 & t = 1 \\ 0 & t \ge 2. \end{cases}$

4.7.4. COMPUTATION OF A STATIONARY OPTIMAL POLICY (GENERAL CASE)

Suppose that we have obtained an optimal solution (x^*, y^*) of problem (4.7.12). Then we define the stationary policy $(\pi^*)^{\infty}$ by

 $(4.7.14) \quad \pi_{ia}^{\star} := \begin{cases} x_{ia}^{\star} / \sum_{a} x_{ia}^{\star} & a \in A(i), i \in E \\ y_{ia}^{\star} / \sum_{a} y_{ia}^{\star} & a \in A(i), i \in E \\ y_{ia}^{\star} / \sum_{a} y_{ia}^{\star} & a \in A(i), i \in E \\ arbitrarily & elsewhere. \end{cases}$

Then, $\mathbf{x}_{ja}(\pi^*) = [\beta^T p^*(\pi^*)]_{j} \cdot \pi^*_{ja} \quad a \in A(j), j \in E.$

<u>REMARK 4.7.7</u>. Since it is possible that $\beta_j = 0$ for some j, it is also possible that E $\bigcup_{x^* \in y^*} \neq E$. Therefore (4.7.14) differs from (4.3.1).

THEOREM 4.7.4. If $\mathbf{x}^* = \mathbf{x}(\pi^*)$, then $(\pi^*)^{\infty}$ is an optimal solution of problem (4.7.5).

<u>PROOF</u>. Since $\mathbf{x}^* = \mathbf{x}(\pi^*)$ it is obvious that $(\pi^*)^{\infty}$ is a feasible solution of (4.7.5). Moreover, by theorem 4.7.3,

$$\phi(\beta,(\pi^*)^{\infty}) = \sum_{j} \sum_{a} x_{ja}^* r_{ja} = \text{optimum} (4.7.6) = \text{optimum} (4.7.5),$$

i.e. $(\pi^*)^{\infty}$ is an optimal solution of problem (4.7.5).

If we compute $P^*(\pi^*)$, which can be done by algorithm III, then we can check whether $x_{ja}^* = [\beta^T P^*(\pi^*)]_{j} \cdot \pi_{ja}^*$ a $\epsilon A(j)$, $j \epsilon E$. However, in certain cases we may decide that $x^* = x(\pi^*)$ without the computation of $P^*(\pi^*)$. In the following theorem we present some sufficient conditions for the property that $x^* = x(\pi^*)$.

THEOREM 4.7.5.

(i) If the Markov chain under $P(\pi^*)$ has one ergodic set plus a (perhaps empty) set of transient states, then $x^* = x(\pi^*)$.

(ii) if
$$y_{ia}^*/\Sigma_a y_{ia}^* = \pi_{ia}^*$$
 a $\in A(i)$, $i \in E_{x^*} \cap E_{y^*}$, then $x^* = x(\pi^*)$.

PROOF.

(i) From remark 4.3.1 it follows that \mathbf{x}^* is a stationary probability distribution of the Markov chain induced by $P(\pi^*)$. Then theorem 2.3.3 implies that $\mathbf{x}_i^* = \mathbf{p}_{ii}^*(\pi^*)$, i ϵ E. Since the Markov chain under $P(\pi^*)$ has only one ergodic set, we have $\mathbf{x}_{ia}^* = [\beta^T \mathbf{p}^*(\pi^*)]_i \cdot \pi_{ia}^* = \mathbf{x}_{ia}(\pi^*)$ a ϵ A(i), i ϵ E.

a \in A(i), i \in E. (ii) Since $y'_{ia}/y'_{i} = \pi'_{ia}$ a \in A(i), i \in E_y, we have

$$\beta_{j} = \sum_{a} x_{ja}^{*} + \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia}^{*} = x_{j}^{*} + \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) \pi_{ia}^{*} \cdot y_{ja}^{*}$$
$$= x_{j}^{*} + \sum_{i} y_{i}^{*} \cdot (\delta_{ij} - p_{ij}(\pi^{*})), \quad j \in E.$$

Therefore, $(\mathbf{x}^{*}, \mathbf{y}^{*})$ satisfies

$$\begin{cases} (\mathbf{x}^{\star})^{\mathrm{T}} = (\mathbf{x}^{\star})^{\mathrm{T}} P(\pi^{\star}) \\ \\ \\ \\ \\ (\mathbf{x}^{\star})^{\mathrm{T}} = \beta^{\mathrm{T}} - (\mathbf{y}^{\star})^{\mathrm{T}} (\mathbf{I} - P(\pi^{\star})) . \end{cases}$$

Consequently,

$$(\mathbf{x}^{*})^{T} = (\mathbf{x}^{*})^{T} \mathbf{p}^{*}(\pi^{*}) = \beta^{T} \mathbf{p}^{*}(\pi^{*}) - (\mathbf{y}^{*})^{T} (\mathbf{I} - \mathbf{P}(\pi^{*})) \mathbf{p}^{*}(\pi^{*})$$
$$= \beta^{T} \mathbf{p}^{*}(\pi^{*}) .$$

Hence,

$$\mathbf{x}_{ia}^{\star} = [\beta^{\mathrm{T}} \mathbf{p}^{\star}(\pi^{\star})]_{i} \cdot \pi_{ia}^{\star} = \mathbf{x}_{ia}(\pi^{\star}) \quad a \in A(i), i \in E.$$

The next example shows that in general $(\pi^*)^{\infty}$ is not an optimal solution of problem (4.7.5) although in this example there exists a stationary optimal solution.

EXAMPLE 4.7.3. Consider the model of example 4.7.2 with the additional constraint $x_{21}(R) \leq 1/4$. The optimal solution of the linear program is:

$$\mathbf{x}_{11}^{\star} = 0, \ \mathbf{x}_{12}^{\star} = 0, \ \mathbf{x}_{21}^{\star} = 1/4, \ \mathbf{x}_{31}^{\star} = 3/4, \ \mathbf{x}_{32}^{\star} = 0; \\ \mathbf{y}_{11}^{\star} = 0, \ \mathbf{y}_{12}^{\star} = 1/4, \ \mathbf{y}_{32}^{\star} = 1/16; \text{ optimum } = 1/4.$$

The policy $(\pi^*)^{\infty}$ satisfies $\pi_{12}^* = \pi_{21}^* = \pi_{31}^* = 1$. $(\pi^*)^{\infty}$ is not optimal, since

$$\phi(\beta, (\pi^*)^{\infty}) = \beta^{T} p^*(\pi^*) r(\pi^*) = 3/16 < 1/4 = \text{optimum value.}$$

Consider the stationary policy $\hat{\pi}^{\infty}$, where $\hat{\pi}_{11} = 1/4$, $\hat{\pi}_{12} = 3/4$, $\hat{\pi}_{21} = \hat{\pi}_{31} = 1$. Since

$$\mathbf{x}_{11}(\hat{\pi}) = \mathbf{x}_{12}(\hat{\pi}) = \mathbf{x}_{32}(\hat{\pi}) = 0, \ \mathbf{x}_{21}(\hat{\pi}) = 1/4 \text{ and } \mathbf{x}_{32}(\hat{\pi}) = 3/4,$$

we have a feasible solution $\stackrel{\Lambda\infty}{\pi}$ of problem (4.7.5) with $\beta^{\rm T}\phi$ ($\stackrel{\Lambda\infty}{\pi}$) = 1/4 = optimum value. Hence, in this example there exists a stationary optimal solution.

In example 4.7.3, we have $y_{ia}^*/y_i^* \neq \pi_{ia}^*$ for some $a \in A(i)$, $i \in E_{x^*} \cap E_{y^*}$. However, if we can find for the same x^* another y, say \tilde{y} , such that the new point (x^*, \tilde{y}) is feasible for (4.7.12) and satisfies

(4.7.15) $\tilde{y}_{ia}/\tilde{y}_{i} = \pi^{*}_{ia}$ $a \in A(i), i \in E_{x} \cap E,$

$$(4.7.16) \qquad \widetilde{\pi}_{ia} = \begin{cases} \pi^*_{ia} & a \in A(i), i \notin E \setminus E \\ & & \widetilde{Y} x^* \\ \\ \widetilde{Y}_{ia}/\widetilde{Y}_{i} & a \in A(i), i \in E \setminus E \\ & & & \\ \end{array}$$

is an optimal policy of problem (4.7.5).

The claim that (4.7.15) is satisfied is equivalent to the requirement that

$$\widetilde{\mathbf{y}}_{\mathbf{i}\mathbf{a}} = \widetilde{\mathbf{y}}_{\mathbf{i}} \cdot \pi_{\mathbf{i}\mathbf{a}}^{*}$$
 $\mathbf{a} \in A(\mathbf{i}), \mathbf{i} \in \mathbf{E}_{\mathbf{x}^{*}}.$

Hence, to find a \tilde{y} such that (4.7.15) is satisfied is equivalent to the determination of a feasible solution of the linear system

$$(4.7.17) \qquad \begin{cases} \sum\limits_{i \notin E} \sum\limits_{x^*} (\delta_{ij} - p_{iaj}) \cdot \widetilde{y}_{ia} + \sum\limits_{i \in E} (\delta_{ij} - p_{ij}(\pi^*)) \cdot \widetilde{y}_{i} = \beta_j - x_j^*, \ j \in E \\ x^* \\ \widetilde{y}_{ia} \ge 0, \ a \in A(i), \ i \in E \setminus E_{x^*}; \ \widetilde{y}_{i} \ge 0, \ i \in E_{x^*} \end{cases}$$

The feasibility of system (4.7.17) can be checked by the so-called phase I of the simplex method. Hence, we have shown the following result.

THEOREM 4.7.6. If \tilde{y} is a feasible solution of (4.7.17), then $\tilde{\pi}^{\infty}$ is an optimal solution of problem (4.7.5), where $\tilde{\pi}^{\infty}$ is defined by (4.7.16).

EXAMPLE 4.7.4. We consider the same model as in example 4.7.3. The optimal solution (x^*, y^*) does not satisfy $y_{ia}^*/y_i^* = \pi_{ia}^*$, $a \in A(i)$, $i \in E_{x^*} \cap E_{y^*}$. Hence, we introduce system (4.7.17):

$$\begin{cases} \widetilde{y}_{11} + \widetilde{y}_{12} = 4/16 \\ -\widetilde{y}_{11} = -1/16 \\ - \widetilde{y}_{12} = -3/16 \\ \widetilde{y}_{11}, \widetilde{y}_{12} \ge 0. \end{cases}$$

This system has a feasible solution, namely $\tilde{y}_{11} = 1/16$, $\tilde{y}_{12} = 3/16$. Hence, the stationary policy $\tilde{\pi}^{\infty}$, where $\tilde{\pi}_{11} = 1/4$, $\tilde{\pi}_{12} = 3/4$, $\tilde{\pi}_{21} = \tilde{\pi}_{31} = 1$, is an optimal solution of (4.7.5). THEOREM 4.7.7. If the linear system (4.7.17) is infeasible and if every optimal solution (x,y) of problem (4.7.12) satisfies $x = x^*$, then problem (4.7.5) has no optimal solution which belongs to the class of stationary policies.

<u>PROOF</u>. Suppose that (4.7.5) has an optimal stationary policy, say π° . Then $(\mathbf{x}(\pi), \mathbf{y}(\pi))$ is a feasible solution of problem (4.7.12) and satisfies

$$\sum_{i}\sum_{a}r_{ia}x_{ia}(\pi) = \sum_{i}\sum_{a}r_{ia}(\beta^{T}p^{*}(\pi))_{i}\cdot\pi_{ia} = \beta^{T}p^{*}(\pi)r(\pi)$$
$$= \text{optimum (4.7.5).}$$

Hence, $(\mathbf{x}(\pi), \mathbf{y}(\pi))$ is an optimal solution of problem (4.7.12). Consequently, $\mathbf{x}(\pi) = \mathbf{x}^*$. Then, however, $\mathbf{y}(\pi)$ is a feasible solution of (4.7.17), which is contradictory to the assumption that (4.7.17) is infeasible.

<u>REMARK 4.7.8</u>. If the conditions of theorem 4.7.7 hold and consequently no stationary optimal policy exists, then we can use algorithm XIX for the construction of an optimal (Markov) policy.

EXAMPLE 4.7.5. Consider the model of example 4.7.2 with the same constraint $1/4 \le x_{21}(R) \le 1/2$. We have observed that (x^*, y^*) is an optimal solution of problem (4.7.12), where $x_{11}^* = 0$, $x_{12}^* = 0$, $x_{21}^* = 1/2$, $x_{31}^* = 1/2$, $x_{32}^* = 0$ and $y_{11}^* = 0$, $y_{12}^* = 1/4$, $y_{32}^* = 5/16$. It can easily be verified that x^* is unique and that the linear system (4.7.17) i.e.

$$\begin{cases} \widetilde{\mathbf{y}}_{11} + \widetilde{\mathbf{y}}_{12} = 4/16 \\ -\widetilde{\mathbf{y}}_{11} = -5/16 \\ - \widetilde{\mathbf{y}}_{12} = 1/16 \\ \widetilde{\mathbf{y}}_{11}, \widetilde{\mathbf{y}}_{12} \ge 0, \end{cases}$$

is infeasible. Hence, this example has no stationary optimal policy. An optimal Markov policy for this problem was computed in example 4.7.2.

If the linear system (4.7.17) is infeasible and x^* is not unique, then it is possible that problem (4.7.5) has a stationary optimal solution, even if (x^*, y^*) is an extreme point of (4.7.12). Hence, we can compute every optimal extreme point of the linear program (4.7.17) and in each of the obtained points we can perform the analysis described above in order to find

a stationary optimal policy.

EXAMPLE 4.7.6. Consider the model described in example 4.7.1 and add the constraint $x_{21}(R) \ge 1/9$. The formulation of problem (4.7.17) is:

maximize
$$x_{21} + x_{31}$$

subject to $x_{11} + x_{12} - x_{22} = 0$
 $-x_{11} + x_{22} = 0$
 $-x_{12} = 0$
 $x_{11} + x_{12} + y_{11} + y_{12} - y_{22} = 1/3$
 $x_{21} + x_{22} - y_{11} + y_{22} = 1/3$
 $x_{31} - y_{12} = 1/3$
 $-x_{21} + x_{22} - y_{11} + y_{22} = 1/3$
 $x_{31} - y_{12} = 1/3$
 $-x_{21} + x_{22} - y_{11} + y_{22} = 1/3$
 $-x_{21} + x_{22} - y_{11} + y_{22} = 1/3$
 $-x_{21} + x_{22} - y_{12} = 1/3$
 $-x_{21} + x_{22} - y_{22} = 0$

 (x^*, y^*) , where $x_{11}^* = 0$, $x_{12}^* = 0$, $x_{21}^* = 1/9$, $x_{22}^* = 0$, $x_{31}^* = 8/9$ and $y_{11}^* = 0$, $y_{12}^* = 5/9$, $y_{22}^* = 2/9$, is an extreme optimal solution, but x^* is not unique. The linear system (4.7.17) is infeasible, namely:

$$\begin{cases} \tilde{\mathbf{y}}_{11} + \tilde{\mathbf{y}}_{12} = 1/3 \\ -\tilde{\mathbf{y}}_{11} = 2/9 \\ - \tilde{\mathbf{y}}_{12} = -5/9 \\ \tilde{\mathbf{y}}_{11}, \tilde{\mathbf{y}}_{12} \ge 0. \end{cases}$$

It can easily be verified that $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$, where $\hat{\mathbf{x}}_{11} = 0$, $\hat{\mathbf{x}}_{12} = 0$, $\hat{\mathbf{x}}_{21} = 2/3$, $\hat{\mathbf{x}}_{22} = 0$, $\hat{\mathbf{x}}_{31} = 1/3$ and $\hat{\mathbf{y}}_{11} = 1/3$, $\hat{\mathbf{y}}_{12} = 0$, $\hat{\mathbf{y}}_{22} = 0$ is also an extreme optimal solution of program (4.7.12). Then theorem 4.7.5 (ii) implies that $\hat{\pi}^{\infty}$ is an optimal solution of problem (4.7.5), where $\hat{\pi}_{11} = \hat{\pi}_{21} = \hat{\pi}_{31} = 1$.

THEOREM 4.7.8. Let (x^*, y^*) be an optimal solution of problem (4.7.12). Consider the nonlinear system

$$(4.7.18) \begin{cases} \sum_{i} \sum_{a} x_{ia} x_{ia} &= \sum_{i} \sum_{a} x_{ia} x_{ia}^{*} \\ \sum_{i} \sum_{a} q_{iak} x_{ia} &\leq b_{k} & 1 \le k \le m \\ \sum_{a} x_{ja} + \sum_{i \neq E_{x}} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} + \\ &\sum_{i \in E_{x}} (\delta_{ij} - \sum_{a} p_{iaj}) x_{ia} / \sum_{a} x_{ia}) y_{i} = \beta_{j}, j \in E \\ \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= 0, j \in E \\ x_{ia} \ge 0, a \in A(i), i \in E; y_{ia} \ge 0, a \in A(i), i \in E \setminus E_{x}; y_{i} \ge 0, i \in E_{x} \end{cases}$$

(i) If $(\widetilde{x},\widetilde{y})$ is a feasible solution of (4.7.18), then the policy $\widetilde{\pi}^{\infty}$ defined by

$$\widetilde{\pi}_{ia} := \begin{cases} \widetilde{\mathbf{x}}_{ia} / \sum_{a} \widetilde{\mathbf{x}}_{ia} & a \in A(i), i \in \mathbf{E}_{\widetilde{\mathbf{x}}} \\ \widetilde{\mathbf{y}}_{ia} / \sum_{a} \widetilde{\mathbf{y}}_{ia} & a \in A(i), i \in \mathbf{E}_{\backslash \mathbf{E}} \\ arbitrarily & elsewhere \end{cases}$$

is an optimal solution of problem (4.7.5).

(ii) If (4.7.18) is infeasible, then problem (4.7.5) has no stationary optimal policy.

PROOF.

(i) Theorem 4.7.6 implies that $\tilde{x} = x(\tilde{\pi})$. Hence, $\tilde{\pi}^{\infty}$ is a feasible solution of problem (4.7.5) with as value of the objective function

$$\phi(\beta, (\tilde{\pi})^{\infty}) = \sum_{j} \sum_{a} r_{ja} x_{ja} (\tilde{\pi}) = \sum_{j} \sum_{a} r_{ja} \tilde{x}_{ja} = \sum_{j} \sum_{a} r_{ja} x_{ja}^{*}$$
$$= \text{optimum (4.7.12)}.$$

Hence, $\widetilde{\pi}^{\infty}$ is an optimal solution of problem (4.7.5).

(ii) Suppose that $\stackrel{\Lambda^{\infty}}{\pi}$ is a stationary optimal solution of problem (4.7.5). Then $\stackrel{\Lambda}{(x,y)}$ such that

where $x(\hat{\pi})$ and $y(\hat{\pi})$ are defined by (4.3.2), is a feasible solution of (4.7.18). This implies a contradiction.

<u>REMARK 4.7.9</u>. In general, it is a difficult problem to find a feasible solution of problem (4.7.18). However, computational results indicate that it is mostly not necessary to solve problem (4.7.18) in order to obtain a stationary optimal solution of (4.7.5), if one exists. Below we present an algorithm for the construction of a stationary policy. This algorithm is based on the theorems 4.7.4-4.7.7. We have tested 400 problems and the algorithm has always given an optimal stationary policy, if one exists. Furthermore, if the stationary policy is nonoptimal, then this policy may be considered

as an approximate solution of problem (4.7.5). For this approximation we know the deviation to the optimal value and also we know which constraints are violated.

ALGORITHM XX for the construction of a stationary policy in a constrained AMD-model (multichain case).

step 1: Use the simplex method to compute an optimal solution (x^*, y^*) of the linear programming problem

$$(4.7.19) \quad \max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \\ \sum_{i} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= 0, j \in E \\ \sum_{a} x_{ja} &+ \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} &= \beta_{j}, j \in E \\ \sum_{i} \sum_{a} q_{iak} x_{ia} &\leq b_{k}, 1 \leq k \leq m \\ x_{ia}, y_{ia} \geq 0, a \in A(i), i \in E \end{cases}$$

(if this linear program is infeasible, then the constrained Markov decision problem (4.7.5) is also infeasible).

step 2: Determine the stationary policy $(\pi^*)^{\infty}$ such that

$$\pi_{ia}^{\star} := \begin{cases} x_{ia}^{\star} / \sum_{a} x_{ia}^{\star} & a \in A(i), i \in E \\ y_{ia}^{\star} / \sum_{a} y_{ia}^{\star} & a \in A(i), i \in E \\ y_{ia}^{\star} / \sum_{a} y_{ia}^{\star} & a \in A(i), i \in E \\ arbitrarily elsewhere. \end{cases}$$

step 3a: If $y_{ia}^{\star}/\Sigma_{a}y_{ia}^{\star} = \pi_{ia}^{\star}$ for all $a \in A(i)$, $i \in E_{x^{\star}} \cap E_{y^{\star}}$, then $(\pi^{\star})^{\infty}$ is an optimal solution of problem (4.7.5) (STOP).

step 3b: Go to step 4a or to step 4b (comment is given in remark 4.7.10). step 4a: Compute an optimal solution (\tilde{y}, \tilde{z}) of the linear program

$$\min\left\{\sum_{j} z_{j} \middle| \begin{array}{c} \sum\limits_{i \in E \setminus E} (\delta_{ij} - p_{iaj}) y_{ia} + \sum\limits_{i \in E} (\delta_{ij} - p_{ij}(\pi^{*})) y_{i} + z_{j} = \beta_{j} - x_{j}^{*}, j \in E \\ y_{ia} \ge 0, a \in A(i), i \in E \setminus E_{x}^{*}; y_{i} \ge 0, i \in E_{x}^{*}; z_{j} \ge 0, j \in E \end{array} \right\}.$$

If $\Sigma_{j} \widetilde{z}_{j} = 0$, then $\widetilde{\pi}^{\infty}$, where

$$\widetilde{\pi}_{ia} := \begin{cases} \widetilde{\Upsilon}_{ia} / \widetilde{\Sigma}_a \widetilde{\Upsilon}_{ia} & a \in A(i), i \in E_{\widetilde{\Upsilon}} \setminus E_{\widetilde{\Upsilon}} \\ & & \widetilde{\Upsilon} \times \\ \pi_{ia}^* & elsewhere \end{cases}$$

is an optimal solution of problem (4.7.5) (STOP). Otherwise, go to step 5.

<u>step 4b</u>: Compute $x_{ia}(\pi^*) := [\beta^T p^*(\pi^*)]_i \cdot \pi^*_{ia}$, $a \in A(i)$, $i \in E$ (the computation of the stationary matrix $P^*(\pi^*)$ can be performed by algorithm III). If $x^* = x(\pi^*)$, then $(\pi^*)^{\infty}$ is an optimal solution of problem (4.7.5) (STOP).

> Otherwise: if $\sum_{i=a}^{\infty} \sum_{i=a}^{\infty} x_i(\pi^*) \leq b_k = 1,2,\ldots,m$ and $\sum_{i=a}^{\infty} \sum_{i=a}^{\infty} x_i(\pi^*) = \sum_{i=a}^{\infty} \sum_{i=a}^{\infty} x_i(\pi^*)$ is an optimal solution of problem (4.7.5) (STOP).

> > Otherwise, go to step 5.

- <u>step 5</u>: Put $(\pi^*)^{\infty}$ on the list L_1 of stationary policies and x^* on the list L_2 of solutions that have been analysed.
- <u>step 6</u>: If there exists an extreme optimal solution (\hat{x}, \hat{y}) of program (4.7.19) such that $\hat{x} \notin L_2$, then:

$$(\mathbf{x}^{\star}, \mathbf{y}^{\star}) := (\mathbf{x}, \mathbf{y})$$
 and go to step 2

(the determination of all extreme optimal solutions can be performed by algorithm I).

Otherwise: go to step 7.

step 7: Any stationary policy $(\pi^*)^{\infty}$ from the list L₁ may be viewed as an approximate solution of problem (4.7.5).

<u>REMARK 4.7.10</u>. If the condition $y_{ia}^{*}/\Sigma_{a}y_{ia}^{*} = \pi_{ia}^{*}$, $a \in A(i)$, $i \in E_{x} \cap E_{y}^{*}$ is not satisfied in step 3a, then we have to decide for a continuation in step 4a or step 4b. When $|E_{x}^{*}|$ is small with respect to |E|, then the linear program of step 4a has many variables. In this case we propose to perform step 4b. When $|E_{x^{*}}|$ is (nearly) equal to |E|, then we propose to continue in step 4a.

<u>REMARK 4.7.11</u>. Suppose that there exists an optimal stationary policy π^{∞} such that $x(\pi)$ is an extreme point of \tilde{X} , where

 $\widetilde{X} = \{x \in X \mid (x,y) \text{ is an optimal solution of problem}$ (4.7.5) for some $y\}.$

Then, algorithm XX will find an optimal stationary policy. Unfortunately, it is possible that $x(\pi)$ is not an extreme point of \tilde{X} for every optimal stationary policy π^{∞} . In example 4.7.7 we show this phenomenon.

$$\left\{ \mathbf{x} \begin{vmatrix} \mathbf{x}_{11} = \mathbf{x}_{12} = \mathbf{x}_{22} = \mathbf{x}_{41} = \mathbf{x}_{42} = \mathbf{x}_{52} = 0; \ \mathbf{x}_{21} + \mathbf{x}_{31} = \mathbf{x}_{51} + \mathbf{x}_{61} = 1/2; \\ \mathbf{x}_{31} \le 5/12, \ \mathbf{x}_{61} \le 5/12; \ \mathbf{x}_{31} + \mathbf{x}_{61} = 2/3; \ \mathbf{x}_{21}, \mathbf{x}_{31}, \mathbf{x}_{51}, \mathbf{x}_{61} \ge 0; \end{vmatrix} \right\} = \widetilde{\mathbf{x}}.$$

By the dependency of x_{21} and x_{51} on x_{31} and x_{61} respectively, we can draw the set \tilde{X} in the 2-dimensional space with the coordinates x_{31} and x_{61} (see figure 4.7.6). Consider the policy f^{∞} , where f(1) = 2, f(2) = 1, f(3) = 1, f(4) = 2, f(5) = 1, f(6) = 1. Then, x(f) satisfies $x_{11}(f) =$ $x_{12}(f) = x_{22}(f) = x_{41}(f) = x_{42}(f) = x_{52}(f) = 0$, $x_{21}(f) = x_{51}(f) = 1/6$, $x_{31}(f) = x_{61}(f) = 1/3$. Hence, f^{∞} is an optimal solution of problem (4.7.5), but x(f) is not an extreme point of \tilde{X} . Moreover, it can be verified that $L(S) \cap \tilde{X} = \{x(f)\}$.

<u>REMARK 4.7.12</u>. If X = L(S), then algorithm XX will find a stationary optimal solution as soon as step 4a is visited. In theorem 4.7.9, we present a sufficient condition for the equality of the sets X and L(S). This condition is always satisfied in the unichain case as will be shown in section 4.7.5.

LEMMA 4.7.1. For every triple (j,a,R), where j \in E, a \in A(j) and R \in C1,

we have

$$\mathbf{x}_{ja}(\mathbf{R}) = \lim_{\alpha \uparrow 1} (1-\alpha) \cdot \sum_{t=1}^{\infty} \alpha^{t-1} \cdot \sum_{i} \beta_{i} \cdot \mathbb{P}_{\mathbf{R}}(\mathbf{X}_{t} = j, \mathbf{Y}_{t} = a \mid \mathbf{X}_{1} = i).$$

<u>PROOF</u>. For the proof of this lemma we use the same arguments as in HORDIJK [1971]. Let $R \in C_1$ and suppose that $x(R) = \lim_{T \to \infty} x^T(R)$. Take a fixed pair (j,a), where $j \in E$, $a \in A(j)$. Then,

where

$$w_t := \sum_{i} \beta_i \cdot \mathbb{P}_R(x_t = j, y_t = a \mid x_1 = i), \quad t \in \mathbb{N}.$$

Since $|w_t|$ is bounded by 1 for all t, the power series $\sum_{t=1}^{\infty} w_t \alpha^{t-1}$ has radius of convergence at least 1. The series $\sum_{t=1}^{\infty} \alpha^{t-1}$ has radius of convergence 1. Hence, for $\alpha \in [0, 1)$, we may write

$$(1-\alpha)^{-1} \cdot \sum_{t=1}^{\infty} w_t \alpha^{t-1} = (\sum_{t=1}^{\infty} \alpha^{t-1}) \cdot (\sum_{t=1}^{\infty} w_t \alpha^{t-1}) = \sum_{t=1}^{\infty} (\sum_{s=1}^{t} w_s) \alpha^{t-1}.$$

From $(1-\alpha)^{-2} = \sum_{t=1}^{\infty} t\alpha^{t-1}$ for $0 \le \alpha < 1$, we obtain

 $x_{ja}(R) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} w_t$

$$x_{ja}^{(R)} - (1-\alpha) \cdot \sum_{t=1}^{\infty} \alpha^{t-1} \cdot \sum_{i} \beta_{i} \cdot \mathbb{P}_{R}^{(X_{t}=j, Y_{t}=a \mid X_{1}=i)} = (1-\alpha)^{2} \sum_{t=1}^{\infty} \{x_{ja}^{(R)} - \frac{1}{t} \sum_{s=1}^{t} w_{s}\} t \alpha^{t-1}.$$

Choose $\varepsilon > 0$ arbitrarily small. Since $x_{ja}(R) = \lim_{T \to \infty} \frac{1}{T} \Sigma_{t=1}^{T} w_{t}$, there exists an integer T_{ε} such that

$$\left|\mathbf{x}_{ja}(\mathbf{R}) - \frac{1}{T}\sum_{t=1}^{T} \mathbf{w}_{t}\right| \leq \frac{1}{2}\varepsilon$$
 for all $T > T_{\varepsilon}$.

Hence,

$$\begin{split} |(1-\alpha)^{2} \sum_{t=1}^{T_{\varepsilon}} \{\mathbf{x}_{ja}(\mathbf{R}) - \frac{1}{t} \sum_{s=1}^{t} \mathbf{w}_{s} \} t\alpha^{t-1} | \leq \\ (1-\alpha)^{2} \mathbf{M} \cdot \sum_{t=1}^{T_{\varepsilon}} \alpha^{t-1} \leq \frac{1}{2} \varepsilon \quad \text{for } \alpha \text{ sufficiently near to 1 and} \end{split}$$

$$M \geq \max_{\substack{1 \leq t \leq T_{\varepsilon}}} |\mathbf{x}_{ja}(\mathbf{R}) - \frac{1}{t} \sum_{s=1}^{t} |\mathbf{w}_{s}|,$$

and

155

$$|(1-\alpha)^{2} \sum_{t=T_{\varepsilon}+1}^{\infty} \{x_{ja}(R) - \frac{1}{t} \sum_{s=1}^{t} w_{s}\} t\alpha^{t-1}| \leq (1-\alpha)^{2} \sum_{t=T_{\varepsilon}+1}^{\infty} \frac{\varepsilon}{2} t\alpha^{t-1} \leq \frac{\varepsilon}{2} (1-\alpha)^{2} \sum_{t=1}^{\infty} t\alpha^{t-1} = \frac{1}{2} \varepsilon.$$

Hence

$$\mathbf{x}_{ja}(\mathbf{R}) = \lim_{\alpha \uparrow 1} (1-\alpha) \cdot \sum_{t=1}^{\infty} \alpha^{t-1} \cdot \sum_{i} \beta_{i} \cdot \mathbf{P}_{\mathbf{R}}(\mathbf{x}_{t} = j, \mathbf{y}_{t} = a \mid \mathbf{x}_{1} = i),$$

completing the proof. \Box

THEOREM 4.7.9. If
$$x(\pi)$$
 is continuous in π , then $X = L(S)$.

<u>PROOF</u>. Theorem 4.7.1 implies that it is sufficient to show that $L(C) \subset L(S)$. Take any $x(R) \in L(C)$. From theorem 3.4.8 it follows that for any $\alpha \in [0,1)$ there exists a stationary policy π^{α} such that $x^{\alpha}(R) = x^{\alpha}(\pi^{\alpha})$, where $x^{\alpha}(\cdot)$ is defined by

$$\mathbf{x}_{ja}^{\alpha}(\widetilde{\mathbf{R}}) := \sum_{t=1}^{\infty} \alpha^{t-1} \cdot \sum_{i} \beta_{i} \cdot \mathbb{P}_{\widetilde{\mathbf{R}}}(\mathbf{X}_{t} = j, \mathbf{Y}_{t} = a \mid \mathbf{X}_{1} = i) \quad j \in \mathbb{E}, a \in \mathbb{A}(j), \widetilde{\mathbf{R}} \in \mathbb{C}.$$

Choose a fixed pair (j,a), j \in E, a \in A(j). Introduce a reward function by

$$r_{ib} := \begin{cases} 1 & i = j & b = a \\ & & b \in A(i), i \in E. \end{cases}$$

Then,

$$\beta^{\mathrm{T}}v^{\alpha}(\pi^{\alpha}) = x_{ja}^{\alpha}(\pi^{\alpha}) \quad \text{and} \quad \beta^{\mathrm{T}}\phi(\pi^{\alpha}) = x_{ja}(\pi^{\alpha}), \quad a \in [0,1).$$

Hence, we can write by lemma 4.7.1

$$(4.7.20) \qquad x_{ja}(R) = \lim_{\alpha \uparrow 1} (1-\alpha) x_{ja}^{\alpha}(R) = \lim_{\alpha \uparrow 1} (1-\alpha) x_{ja}^{\alpha}(\pi^{\alpha})$$
$$= \lim_{\alpha \uparrow 1} (1-\alpha) \cdot \beta^{T} v^{\alpha}(\pi^{\alpha}).$$

Consider a sequence $\{\alpha_k, k = 1, 2, ...\}$ such that $\alpha_k \uparrow 1$ and $\pi^{\alpha_k} \to \pi$. Since for any $i \in E$ the sequence $\{(1-\alpha_k)v_i^{\alpha_k}(\pi^{\alpha_k}), k = 1, 2, ...\}$ is dominated by the sequence $\{(1-\alpha_k)v_i^{\alpha_k}, k = 1, 2, ...\}$ and since $\lim_{k\to\infty}(1-\alpha_k)v_i^{\alpha_k} = \phi_i$ (cf. (2.5.7)), there exists a limit point, say x, of the sequence of vectors $\{(1-\alpha_k)v_i^{\alpha_k}(\pi^{\alpha_k}), k = 1, 2, ...\}$. Therefore, we may assume that

(4.7.21)
$$x_i = \lim_{k \to \infty} (1-\alpha_k) v_i^{\alpha_k} (\pi^{\alpha_k}), \quad i \in E.$$

From (4.7.20) and (4.7.21) it follows that

 $(4.7.22) \qquad \beta^{T} \mathbf{x} = \sum_{i} \beta_{i} \cdot \lim_{k \to \infty} (1 - \alpha_{k}) \mathbf{v}_{i}^{\alpha} (\pi^{\alpha} \mathbf{k})$ $= \lim_{k \to \infty} (1 - \alpha_{k}) \beta^{T} \mathbf{v}^{\alpha} (\pi^{\alpha} \mathbf{k}) = \mathbf{x}_{ja}(\mathbf{R}).$

The continuity of $\mathbf{x}(\widetilde{\pi})$ as function of $\widetilde{\pi}$ implies

$$\begin{aligned} \mathbf{x}_{ja}(\pi) &= \lim_{k \to \infty} \mathbf{x}_{ja}(\pi^{\alpha_k}) \\ &= \lim_{k \to \infty} (1 - \alpha_k) \sum_{t=1}^{\infty} \alpha_k^{t-1} \beta^T \mathbf{p}^*(\pi^{\alpha_k}) \mathbf{r}(\pi^{\alpha_k}) \\ &= \lim_{k \to \infty} \beta^T \mathbf{p}^*(\pi^{\alpha_k}) (1 - \alpha_k) \sum_{t=1}^{\infty} \alpha_k^{t-1} \mathbf{p}^{t-1}(\pi^{\alpha_k}) \mathbf{r}(\pi^{\alpha_k}) \\ &= \lim_{k \to \infty} (\mathbf{x}(\pi^{\alpha_k}))^T (1 - \alpha_k) \mathbf{v}^{\alpha_k}(\pi^{\alpha_k}) \\ &= (\mathbf{x}(\pi))^T \mathbf{x} = \beta^T \mathbf{p}^*(\pi) \mathbf{x}. \end{aligned}$$

(4.7.23)

Since for every $\alpha \in [0,1)$ $v^{\alpha}(\pi^{\alpha}) = r(\pi^{\alpha}) + \alpha P(\pi^{\alpha}) v^{\alpha}(\pi^{\alpha})$, it follows from (4.7.21) that

$$\mathbf{x} = \mathbf{P}(\pi)\mathbf{x}$$
.

Consequently,

(4.7.24)
$$x = P^{*}(\pi)x$$
.

Then the relations (4.7.22), (4.7.23) and (4.7.24) imply that

$$x_{ja}(R) = \beta^T x = \beta^T P^*(\pi) x = x_{ja}(\pi).$$

Since π is independent of the choice of the pair (j,a), we have proved that $x(R) \in L(S)$. This yields the theorem.

<u>REMARK 4.7.13</u>. It will be shown in section 7.4.5 that unichainedness implies continuity of $x(\pi)$, and consequently X = L(S). If we relax the unichainedness to communicating (i.e. for each pair i, $j \in E$ there exists a policy $f^{\infty} \in C_{D}$ and an integer $t \in \mathbb{N}$ such that $\mathbb{P}_{f^{\infty}}(X_{t} = j \mid X_{1} = i) > 0$), then $X \neq L(S)$, in general. Below we give an example.

EXAMPLE 4.7.8. Consider the model corresponding to figure 4.7.7. This model is obviously communicating. It can easily be verified that

$$\mathbf{x} = \left\{ \mathbf{x} \middle| \begin{array}{c} \mathbf{x}_{11} = \mathbf{x}_{22}; \ \mathbf{x}_{12} = \mathbf{x}_{32}; \ \mathbf{x}_{11} + \mathbf{x}_{12} + \mathbf{x}_{21} + \mathbf{x}_{22} \\ \mathbf{x}_{31} + \mathbf{x}_{32} = 1; \ \mathbf{x}_{11}, \mathbf{x}_{12}, \mathbf{x}_{21}, \mathbf{x}_{22}, \mathbf{x}_{31}, \mathbf{x}_{32} \ge 0 \end{array} \right\}$$

Take $\tilde{\mathbf{x}}$ such that $\tilde{\mathbf{x}}_{11} = \tilde{\mathbf{x}}_{22} = \tilde{\mathbf{x}}_{12} = \tilde{\mathbf{x}}_{32} = 0$, $\tilde{\mathbf{x}}_{21} = 1/4, \tilde{\mathbf{x}}_{31} = 3/4$. Suppose that $\tilde{\mathbf{x}} = \mathbf{x}(\tilde{\pi})$ for some stationary policy $\tilde{\pi}^{\infty}$. From $\tilde{\mathbf{x}}_{21} > 0$, $\tilde{\mathbf{x}}_{22} = 0$ it follows that $\tilde{\pi}_{21} = 1$. Hence, state

2 is absorbing in the Markov chain induced by $P(\tilde{\pi})$. Consequently, $x_{21}(\tilde{\pi}) \ge \beta_2 = 1/3 > 1/4 = \tilde{x}_{21}$, implying a contradiction. Therefore, in this model $x \ne L(S)$.

We close this section with the presentation of some numerical results obtained by algorithm XX. We have solved 400 test problems. These problems can be divided in 8 classes of 50 problems as indicated in table 4.7.1 (ℓ = the number of actions in each state; m = the number of constraints)

	A	В	С	D	Е	F	G	н
l	2	2	2	2	2	4	4	4
m	1	2	3	4	5	1	3	5

All problems have been generated as follows:

(i) the number of states is 10, i.e. $E = \{1, 2, ..., 10\}$

- (ii) for each pair (i,a), where i ϵ E and a ϵ A(i), the transition probabilities are such that $p_{iaj} \neq 0$ for exactly one j which is randomly chosen from E.
- (iii) the reward r_{ia} is a random choice from {0,1,...,10}, a \in A(i), i \in E.
- (iv) the coefficients q_{iak} are randomly chosen from $\{-10, -9, \ldots, +10\}$ i $\in E$, a $\in A(i)$, k = 1,2,...,m.

(v) $b_k = 0 \quad k = 1, 2, \dots, m.$

The numerical results are summarized in table 4.7.2 and give rise to the following statements:

- 8% of the problems is infeasible and in 16% the algorithm does not find a stationary optimal policy. We have analysed that all these problems do not have stationary optimal policies. Hence, for every problem which has a stationary optimal policy algorithm XX gives one.
- 70% of the 306 problems for which a stationary optimal policy was found, this policy was found in step 4 of the algorithm.
- 3. For only 9 problems the stationary optimal policy was obtained by the analysis of more than one extreme optimal solution. Hence, in 97% of the problems for which a stationary optimal policy was found, this policy was obtained from the first analysed optimal solution of program (4.7.19).

Class	k	m	 Infeasi- bility (step 1)	 	
A	2	1	 1	 	
в	2	2	 2	 	
с	2	3	 4	 	
D	2	4	 11	 	
Е	2	5	 13	 	
F	4	1	 -	 	
G	4	3	 -	 	 5
н	4	5	 -	 	 11
		 31	 	 63	

4.7.5. COMPUTATION OF A STATIONARY OPTIMAL POLICY (UNICHAIN CASE)

Throughout this section we use the following assumption.

ASSUMPTION 4.7.1. For any pure and stationary policy f^{∞} , the Markov chain induced by P(f) has one ergodic set plus a (perhaps empty) set of transient states.

THEOREM 4.7.10. X = L(S).

<u>PROOF</u>. By theorem 4.7.9 it is sufficient to show that $\mathbf{x}(\pi)$ is continuous in π . Let $\lim_{k\to\infty} \pi(k) = \pi(0)$, where $\pi(k) \stackrel{\infty}{\sim} \in \mathcal{C}_S$, $k \in \mathbb{N}_0$. By lemma 4.6.1 and assumption 4.7.1, the Markov chain under $P(\pi(k))$ has at most one ergodic set for every $k \in \mathbb{N}_0$. Theorem 2.3.3 implies that $\mathbf{x}(\pi(k))$ is the unique solution of the linear system

(4.7.25)
$$\begin{cases} \sum_{i} (\delta_{ij} - p_{ij}(\pi(k))) x_{i} = 0, j \in E \\ \\ \sum_{i} x_{i} = 1 \end{cases}$$

for every $k \in \mathbb{N}_0$. Since $\pi(k) \to \pi(0)$ for $k \to \infty$, we also have $P(\pi(k)) \to P(\pi(0))$ for $k \to \infty$. Consequently, any limit point of $\{x(\pi(k)), k = 1, 2, ...\}$ is a solution of (4.7.25) with k = 0. Hence, $x(\pi(0)) = \lim_{k \to \infty} x(\pi(k))$, i.e. $x(\pi)$ is continuous in π .

ALGORITHM XXI for the construction of a stationary optimal policy in a constrained AMD-model (unichain case).

step 1: Use the simplex method to determine an optimal solution x^* of the linear programming problem

$$(4.7.26) \quad \max\left\{\sum_{i}\sum_{a}r_{ia}x_{ia} \left| \begin{array}{c}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} = 0, \quad j \in E\\ \sum_{i}\sum_{a}x_{ia} = 1\\ \sum_{i}\sum_{a}q_{iak}x_{ia} \leq b_{k}, \quad k = 1, 2, \dots, m\\ x_{ia} \geq 0, a \in A(i), \quad i \in E \end{array} \right\}$$

(if this linear program is infeasible, then the constrained Markov decision problem is also infeasible). step 2: Take $(\pi^*)^{\infty}$ such that

$$\pi_{ia}^{\star} := \begin{cases} x_{ia}^{\star} / \sum_{a} x_{ia}^{\star} & a \in A(i), i \in E \\ \\ a \\ arbitrarily \\ elsewhere. \end{cases}$$

THEOREM 4.7.11. The policy $(\pi^*)^{\infty}$ obtained by algorithm XXI is an optimal solution of problem (4.7.5).

<u>PROOF</u>. From the definition of π^* it follows that

(4.7.27)
$$\begin{cases} \sum_{i} (\delta_{ij} p_{ij}(\pi^*)) (\sum_{a} x_{ia}^*) = 0, \quad j \in E \\ \\ \sum_{i} (\sum_{a} x_{ia}^*) = 1. \end{cases}$$

Similarly as in the proof of theorem 4.7.10, we can show that (4.7.27) implies that $x^* = x(\pi^*)$. Hence, $(\pi^*)^{\infty}$ is a feasible solution of problem (4.7.5). Moreover,

$$\phi(\beta,(\pi^*)^{\infty}) = \sum_{i} \sum_{a} r_{ia} x_{ia}^* = \text{optimum } (4.7.26).$$

From theorem 4.7.10 it follows that there exists a stationary optimal solution of problem (4.7.5), say $\tilde{\pi}^{\infty}$. Let $\tilde{x} = x(\tilde{\pi})$. Then, \tilde{x} is a feasible solution of program (4.7.26) and consequently,

optimum (4.7.5) =
$$\phi(\beta, (\tilde{\pi})^{\infty}) = \sum_{i} \sum_{a} r_{ia} \tilde{x}_{ia}^{*} \leq \sum_{i} \sum_{a} r_{ia} \tilde{x}_{ia}^{*} = \phi(\beta, (\pi^{*})^{\infty}).$$

Hence, $(\pi^*)^{\infty}$ is an optimal solution of problem (4.7.5). \Box

CHAPTER 5

BIAS OPTIMALITY

5.1. INTRODUCTION AND SUMMARY

The use of the expected average reward as utility function is sometimes unsatisfactory. For any stationary policy π° , rewards that are earned when the process is in a state which is transient under $P(\pi)$ do not influence the outcome of the average reward $\phi(\pi^{\circ})$. Therefore, the average reward criterion is in some sense too little selective. The concept of *bias optimality* is a more selective criterion. This criterion was introduced by BLACKWELL [1962] (actually Blackwell used the term "*nearly optimal*"). A first algorithm to compute a bias optimal policy was presented in VEINOTT [1966]. DENARDO [1970a] has refined this method to a three-step procedure which can be executed by linear programming as well as by policy improvement.

In chapter 2 we have presented the definition of a bias optimal policy: R $\!\!\!\!^\star \ \epsilon \ {\rm C}$ is said to be a bias optimal policy if

$$(5.1.1.) \quad \lim_{\alpha \uparrow 1} \{v_i^{\alpha}(R^{\star}) - v_i^{\alpha}\} = 0, \quad i \in E.$$

Corollary 2.5.2 implies the existence of a pure and stationary bias optimal policy.

In section 5.2 we present some equivalent statements for the concept of bias optimality. One of these statements gives rise to an algorithm for the computation of a bias optimal policy.

Then, in section 5.3, we present some theorems which lead to another algorithm. This algorithm is a modification of the algorithm presented in

DENARDO [1970a]. The algorithm can be divided into three parts and in each part a linear program has to be solved. For the determination of an average optimal policy - which has to be performed in the parts 1 and 2 for two different AMD-models - we use the results of chapter 4. Furthermore, we show that Denardo's search procedure of the third part can be cancelled and that a bias optimal policy can be obtained directly from the solution of the third linear program. Some of the material of this section can also be found in KALLENBERG [1981b].

We close this chapter by section 5.4 in which we discuss the weak unichain case, the completely ergodic case and the unichain case. For these models the algorithm can be simplified.

5.2. SOME THEOREMS

We assume in this chapter that $\sum_{j} p_{iaj} = 1$ for every pair (i,a), $a \in A(i)$, i \in E. If this assumption is not satisfied, then we can change the model into the extended model, with state space E \cup {0}, as described in definition 3.2.2. From definition 3.2.2 and the analysis on page 30 it follows that $v_i^{\alpha}(R) = \widetilde{v}_i^{\alpha}(R)$ i \neq 0, for every R \in C and all $\alpha \in [0,1)$, where $\widetilde{v}^{\alpha}(R)$ denotes the expected discounted reward in the extended model.

LEMMA 5.2.1. For any policy R we have

$$\hat{\phi}_{i}(R) \geq \lim \sup_{\alpha \uparrow 1} (1-\alpha) v_{i}^{\alpha}(R)$$
, $i \in E$.

<u>PROOF</u>. The proof is similar to the proof of lemma 4.7.1. Take any R ϵ C and i ϵ E. Let w_t : = $\sum_j \sum_a \mathbb{P}_R (X_t = j, Y_t = a | X_1 = i) \cdot r_{ja}$, t ϵ IN. Then, for $\alpha \epsilon [0,1]$ we may write

$$(1-\alpha)^{-1} \mathbf{v}_{\mathbf{i}}^{\alpha}(\mathbf{R}) = \sum_{t=1}^{\infty} (\sum_{s=1}^{t} \mathbf{w}_{s}) \alpha^{t-1} \text{ and } \phi_{\mathbf{i}}(\mathbf{R}) = (1-\alpha)^{2} \phi_{\mathbf{i}}(\mathbf{R}) \sum_{t=1}^{\infty} t \alpha^{t-1}.$$

Hence, we have

$$\hat{\phi}_{i}(\mathbf{R}) - (1-\alpha)\mathbf{v}_{i}^{\alpha}(\mathbf{R}) = (1-\alpha)^{2} \sum_{t=1}^{\infty} \{ \hat{\phi}_{i}(\mathbf{R}) - \frac{1}{t} \sum_{s=1}^{t} \mathbf{w}_{s} \} t \alpha^{t-1}.$$

Choose $\varepsilon > 0$ arbitrarily. Since $\phi_i(R) = \limsup_{T \to \infty} \frac{1}{T} \Sigma_{t=1}^T w_t$, there exists an integer T_{ε} such that

$$\oint_{i} (R) > \frac{1}{T} \sum_{t=1}^{T} w_{t} - \frac{1}{2} \varepsilon \quad \text{for every } T \ge T_{\varepsilon}.$$

Therefore,

$$(1-\alpha)^{2} \sum_{t=1}^{T_{\varepsilon}-1} \{ \phi_{i}(R) - \frac{1}{t} \sum_{s=1}^{t} w_{s} \} t \alpha^{t-1} \geq$$

$$(1-\alpha)^{2} \min_{1 \leq t \leq T_{\varepsilon}-1} \{ \phi_{i}(R) - \frac{1}{t} \sum_{s=1}^{t} w_{s} \} \sum_{t=1}^{T_{\varepsilon}-1} t \alpha^{t-1} \geq$$

$$(1-\alpha)^{2} (-M) \sum_{t=1}^{T_{\varepsilon}-1} T_{\varepsilon} \alpha^{t-1} > \frac{1}{2} \varepsilon \text{ for } \alpha \text{ sufficiently near enough to } 1$$

where M > 0 satisfies $\min_{1 \le t \le T_{\epsilon}} 1^{\{ \varphi_i(R) - \frac{1}{t} \sum_{s=1}^{t} w_s \}} \ge - M.$ Furthermore,

$$(1-\alpha)^{2} \sum_{t=T_{\varepsilon}}^{\infty} \{ \phi_{i}(R) - \frac{1}{t} \sum_{s=1}^{t} w_{s} \} t \alpha^{t-1} \ge (1-\alpha)^{2} \sum_{t=T_{\varepsilon}}^{\infty} (-\frac{1}{2}\varepsilon) t \alpha^{t-1} \ge -\frac{1}{2} \varepsilon.$$

Then, for α sufficiently near enough to 1, we have

$$\phi_{i}(\mathbf{R}) \geq (1-\alpha) v_{i}^{\alpha}(\mathbf{R}) - \varepsilon,$$

implying that $\oint_{i}^{}(R) \geq \lim \sup_{\alpha \uparrow 1} (1-\alpha) v_{i}^{\alpha}(R)$.

<u>THEOREM 5.2.1</u>. If R is bias optimal, then R is also an average optimal policy; if R is average optimal, then R is not a bias optimal policy, in general.

<u>PROOF</u>. Let f be a pure and stationary Blackwell optimal policy. Then, $v^{\alpha}(f^{\infty}) = v^{\alpha}$ for α sufficiently near to 1, and, by theorem 2.5.4, $\phi(f^{\infty}) = \phi$. Hence, using (2.5.7), we obtain

(5.2.1) $\lim_{\alpha \uparrow 1} (1-\alpha) v_{i}^{\alpha} = \lim_{\alpha \uparrow 1} (1-\alpha) v_{i}^{\alpha} (f^{\infty}) = \phi_{i} (f^{\infty}) = \phi_{i}, i \in E.$ Since R is a bias optimal policy, we have $\lim_{\alpha \uparrow 1} \{v^{\alpha}(R) - v_{i}^{\alpha}\} = 0, i \in E.$ Therefore, certainly $\lim_{\alpha \uparrow 1} (1-\alpha) \{v_{i}^{\alpha}(R) - v_{i}^{\alpha}\} = 0.$ The existence of $\lim_{\alpha \uparrow 1} (1-\alpha) v_{i}^{\alpha}, i \in E.$ From lemma 5.2.1 it follows that

$$\phi_{i}^{\wedge}(R) \geq \limsup_{\alpha \uparrow 1} (1-\alpha) v_{i}^{\alpha}(R) = \phi_{i}, i \in E.$$

Then, the results of section 4.2 imply that R is average optimal.

163

The policy $f_{\star}^{\infty} \in C_{D}$ such that $f_{\star}(1) = f_{\star}(2) = 1$ is an average optimal policy for the model of figure 5.2.1. Since $v_{1}^{\alpha}(f_{\star}^{\infty}) = 0$ for all $\alpha \in [0,1)$ and $v_{1}^{\alpha} = 1$ for all $\alpha \in [0,1)$, f_{\star}^{∞} is not a bias optimal policy. \Box

THEOREM 5.2.2. Let $f_{\star}^{\overset{\infty}{}} \in C_{D}^{}.$ Then, the following four statements are equivalent:

(i) f_{\star}^{∞} is bias optimal. (ii) $\lim_{\alpha \uparrow 1} \{v^{\alpha}(f_{\star}^{\infty}) - v^{\alpha}(f^{\infty})\} \ge 0$ for each $f^{\infty} \in C_{D}$. (iii) $u_{i}(f_{\star}^{\infty}) = max\{u_{i}(f^{\infty}) = \phi_{i}\}, i \in E, and \phi(f_{\star}^{\infty}) = \phi$. (iv) $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{t} \{v^{s}(f_{\star}^{\infty}) - v^{s}(f^{\infty})\} \ge 0$ for each $f^{\infty} \in C_{D}$.

PROOF.

(i) \Rightarrow (ii): Suppose that f_{\star}^{∞} is a bias optimal policy. Take any $f^{\infty} \in C_{D}^{\bullet}$. Since $v^{\alpha}(f^{\infty}) \leq v^{\alpha}$ for all $\alpha \in [0,1)$, we obtain

$$\lim_{\alpha \uparrow 1} \{ v^{\alpha}(f_{\star}^{\infty}) - v^{\alpha}(f^{\infty}) \} \geq \lim_{\alpha \uparrow 1} \{ v^{\alpha}(f_{\star}^{\infty}) - v^{\alpha} \} = 0.$$

(ii) \Rightarrow (iii): From (2.5.7), it follows that

$$\lim_{\alpha \uparrow 1} \{ v^{\alpha}(f_{\star}^{\infty}) - v^{\alpha}(f^{\infty}) \} = \lim_{\alpha \uparrow 1} \{ \frac{\phi(f_{\star}^{\infty}) - \phi(f^{\infty})}{1 - \alpha} + u(f_{\star}^{\infty}) - u(f^{\infty}) \}.$$

Consequently, $\lim_{\alpha \uparrow 1} \{ v^{\alpha}(f_{\star}^{\infty}) - v^{\alpha}(f^{\infty}) \} \ge 0$ implies that

$$\phi(f_{\star}^{\infty}) \geq \phi(f^{\infty}), \text{ and } u_{\underline{i}}(f_{\star}^{\infty}) \geq u_{\underline{i}}(f^{\infty}) \text{ if } f^{\infty} \text{ satisfies } \phi_{\underline{i}}(f^{\infty}) = \phi_{\underline{i}}(f_{\star}^{\infty}).$$

Hence, $\phi(f_{\star}^{\infty}) = \max_{\substack{f \in C_D}} \phi(f^{\infty}) = \phi$. Then, we can write

$$u_{i}(f_{\star}^{\infty}) = max\{u_{i}(f^{\infty}) | \phi_{i}(f^{\infty}) = \phi_{i}\}, i \in E.$$

(iii) \Rightarrow (iv): Let f_{\star}^{∞} be such that $u_{i}(f_{\star}^{\infty}) = \max\{u_{i}(f^{\infty}) | \phi_{i}(f^{\infty}) = \phi_{i}\}$, $i \in E$, and $\phi(f_{\star}^{\infty}) = \phi$.

We have for any $f^{\infty} \in C_{D}$

$$\begin{split} \sum_{s=1}^{t} \{ v^{s}(f_{\star}^{\infty}) - v^{s}(f^{\infty}) \} &= \sum_{s=1}^{t} \{ P^{s-1}(f_{\star}) r(f_{\star}) - P^{s-1}(f) r(f) \} = \\ \sum_{s=1}^{t} \{ (P^{s-1}(f_{\star}) - P^{\star}(f_{\star})) r(f_{\star}) - (P^{s-1}(f) - P^{\star}(f)) r(f) \} + \\ & t \{ \phi(f_{\star}^{\infty}) - \phi(f^{\infty}) \}. \end{split}$$

Then, we get

$$(5.2.2) \qquad \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{t} \{ v^{s}(f_{\star}^{\infty}) - v^{s}(f^{\infty}) \} = \frac{T+1}{2} \{ \phi(f_{\star}^{\infty}) - \phi(f^{\infty}) \} + \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{t} \{ (P^{s-1}(f_{\star}) - P^{\star}(f_{\star}))r(f_{\star}) - (P^{s-1}(f) - P^{\star}(f))r(f) \}.$$

Since $\phi(f_{\star}^{\infty}) = \phi \ge \phi(f^{\infty})$ and

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{t} (P^{s-1}(f) - P^{*}(f))r(f) = u(f^{\infty})$$

(cf. theorem 2.4.1(iv)) for all $f^{\infty} \in \mathcal{C}_{D}$, it follows from (5.2.2) that

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{t} \{ v^{s}(f_{\star}^{\infty}) - v^{s}(f^{\infty}) \} \ge 0 \quad \text{for each } f^{\infty} \in \mathcal{C}_{D}.$$

(iv) \Rightarrow (i): Let f_0^{∞} be any Blackwell optimal policy. From (5.2.2) it follows that

$$0 \leq \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{t} \{ v^{s}(f^{\infty}_{\star}) - v^{s}(f^{\infty}) \} =$$
$$\lim_{T \to \infty} [\frac{T+1}{2} \{ \phi(f^{\infty}_{\star}) - \phi \} + \{ u(f^{\infty}_{\star}) - u(f^{\infty}_{0}) \} + \{ \varepsilon(f_{\star}, T) - \varepsilon(f_{0}, T) \}]$$

where $\lim_{T \to \infty} \varepsilon(f_*, T) = \varepsilon(f, T) = 0$. Therefore, $\phi(f_*) = \phi$ and $u(f_*) \ge u(f_0^{\infty})$.

Hence, we have

$$\lim_{\alpha \uparrow 1} \{ \mathbf{v}^{\alpha}(\mathbf{f}_{\star}^{\infty}) - \mathbf{v}^{\alpha} \} = \lim_{\alpha \uparrow 1} \{ \mathbf{v}^{\alpha}(\mathbf{f}_{\star}^{\infty}) - \mathbf{v}^{\alpha}(\mathbf{f}_{0}) \} = \lim_{\alpha \uparrow 1} \{ \frac{\phi(\mathbf{f}_{\star}^{\infty}) - \phi(\mathbf{f}_{0}^{\infty})}{1 - \alpha} + u(\mathbf{f}_{\star}^{\infty}) - u(\mathbf{f}_{0}^{\infty}) \} = u(\mathbf{f}_{\star}^{\infty}) - u(\mathbf{f}_{0}^{\infty}) \ge 0. \quad \Box$$

REMARK 5.2.1. DENARDO & MILLER [1968] have proved the equivalence of the first three statements. This equivalence was conjectured by VEINOTT [1966]. In HORDIJK & SLADKY [1977] the equivalence is shown for a countable state space under a condition of Lyapunov function type. For a finite state space this condition is equivalent to the assumption that a fixed state can be reached from each initial state under any stationary policy.

<u>DEFINITION 5.2.1</u>. Let f_{\star}^{∞} be a pure and stationary bias optimal policy. Then, $u := u(f_{\downarrow}^{\infty})$ is called the *bias-value-vector*.

<u>REMARK 5.2.2</u>. From statement (iii) in theorem 5.2.2 and the results of chapter 4, it follows that a pure and stationary bias optimal policy can be obtained from the algorithm stated below. This algorithm may be very attractive if the linear program (4.2.11) has only a few extreme optimal solutions.

ALGORITHM XXII for the construction of a pure and stationary bias optimal policy by analysing the average optimal policies.

<u>step 1</u>: Determine by algorithm II all extreme optimal solutions, say (x^k, y^k) k = 1,2,...,K, of the linear programming problem (4.2.11).

<u>step 2</u>: Compute $u(f_k^{\infty}) := \{ [I-P(f_k) + P^*(f_k)]^{-1} - P^*(f_k) \} r(f_k), k \in F_*, where$

 $F_{\perp} := \{k \mid \pi^{\infty}(x^{k}, y^{k}), \text{ defined by (4.3.1), belongs to } C_{n}\},\$

and let $f_k^{\infty} := \pi^{\infty}(x^k, y^k)$, $k \in F_*$. <u>step 3</u>: Take $f_*^{\infty} \in F_*$ such that $u(f_*^{\infty}) \ge u(f_k^{\infty})$, $k \in F_*$.

<u>THEOREM 5.2.3</u>. The pure and stationary policy f_{\star}^{∞} determined by algorithm XXII is a bias optimal policy.

<u>PROOF</u>. From the construction of the policy f_{\star}^{∞} it follows that $u(f_{\star}^{\infty}) = max\{u(f^{\infty}) | f^{\infty} \in F_{\star}\}$. Hence, theorem 5.2.2 implies that it is sufficient to prove that $f^{\infty} \in F_{\star}$ if and only if f^{∞} is average optimal. The identity of F_{\star} and the set of pure and stationary average optimal policies is a consequence of the theorems 4.3.3 and 4.3.4.

5.3. LINEAR PROGRAMMING APPROACH (GENERAL CASE)

In order to compute a bias optimal policy, we first solve the linear program for the computation of a pure and stationary average optimal policy (see algorithm XIV). Therefore, we have to compute optimal solutions (ϕ^*, u^*) and (x^*, y^*) of the pair of dual linear programs

(5.3.1)
$$\min \left\{ \sum_{j} \beta_{j} \hat{\phi}_{j} \right| \left| \begin{array}{c} \sum_{j} (\delta_{ij} - p_{iaj}) \hat{\phi}_{j} & \geq 0 \\ \hat{\phi}_{i} + \sum_{j} (\delta_{ij} - p_{iaj}) \hat{u}_{j} \geq r_{ia}, a \in A(i), i \in E \\ \end{array} \right\}$$

(5.3.2)
$$max \begin{cases} \sum_{i} \sum_{a} r_{ia} x_{ia} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= 0, j \in E \\ \sum_{a} x_{ja} &+ \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} = \beta_{j}, j \in E \\ x_{ia}, y_{ia} \ge 0, a \in A(i), i \in E \end{cases}$$

respectively, where $\beta_j > 0$, j ϵ E, are given numbers with $\sum_{j=1}^{j} \beta_j = 1$. After the solution of the linear program (5.3.1), we can determine

 $\overline{A}(i) := \{a \in A(i) \mid \sum (\delta, -p, .)\phi^* = 0\},\$

and

$$\widetilde{A}(i) := \{a \in \overline{A}(i) \mid \phi_i^* + \sum_{j \in ij} (\delta_j - p_{ij}) u_j^* = r_{ia}\}, \quad i \in E.$$

Moreover, theorem 4.2.2 implies that $\phi^{\star} = \phi$, where ϕ is the AMD-value-vector.

For any f $\overset{\infty}{\sim} \in \mathcal{C}_{D}$ we may consider the Markov chain induced by P(f). For this Markov chain we introduce the following notations:

> R(f): the set of recurrent states. T(f): the set of transient states. n(f): the number of ergodic sets.

Furthermore, we define

$$\widetilde{E} := \{ i \in E | \widetilde{A}(i) \neq \emptyset \}$$

LEMMA 5.3.1. Let f^{∞} be any pure and stationary average optimal policy. Then,

- (i) $f(i) \in \overline{A}(i)$, $i \in E$. (ii) $f(i) \in \widetilde{A}(i)$, $i \in R(f)$. (iii) $u_{i}(f^{\infty}) = u_{i}^{*} - (P^{*}(f)u^{*})_{i}$, $i \in R(f)$. (iv) $u_{i}(f^{\infty}) \le u_{i}^{*} - (P^{*}(f)u^{*})_{i}$, $i \in T(f)$.

PROOF.

- Since $P(f)\phi = P(f)P^{*}(f)r(f) = P^{*}(f)r(f) = \phi$, we have $f(i) \in \overline{A}(i)$, (i) $i \in E$.
- (ii) From theorem 4.3.3 it follows that (x(f), y(f)), defined by (4.3.2),

iεE

is an optimal solution of program (5.3.2). Proposition 4.3.3 implies that $R(f) = E_{x(f)}$. From the complementary slackness property of linear programming, we obtain $f(i) \in \widetilde{A}(i)$, $i \in E_{x(f)} = R(f)$.

(iii) Since $d_{ij}(f) = 0$, $i \in R(f)$, $j \in T(f)$ (see formula (2.4.3)), it follows from part (ii) that

$$\left[D(f) \left\{ \phi + (I-P(f)) u^* \right\} \right]_i = \left[D(f)r(f) \right]_i = u_i(f^{\infty}), \quad i \in R(f).$$

Hence

$$u_{i}(f^{\infty}) = [D(f)P^{*}(f)r(f) + D(f)(I-P(f))u^{*}]_{i}, \quad i \in \mathbb{R}(f).$$

Then, by theorem 2.4.1, we get

$$u_{i}(f^{\infty}) = u_{i}^{*} - (P^{*}(f)u^{*})_{i}, \quad i \in R(f).$$

(iv) Since $d_{\mbox{ij}}(f) \geq 0, \mbox{i,j} \in T(f)$ (see formula (2.4.3) and theorem 2.3.1), we obtain

$$d_{ij}(f) \{\phi_j + \sum_k (\delta_{jk} - p_{jk}(f)) u_k^*\} \ge d_{ij}(f) r_j(f), \qquad i, j \in T(f).$$

Part (ii) of the theorem implies that

$$d_{ij}(f) \{\phi_j + \sum_k (\delta_{jk} - p_{jk}(f)) u_k^* \} = d_{ij}(f) r_j(f), \quad i \in T(f), j \in R(f).$$

Hence, we have, using theorem 2.4.1,

$$u_{i}(f^{\infty}) = [D(f)r(f)]_{i} \leq [D(f)\{P^{*}(f)r(f) + (I-P(f))u^{*}\}]_{i} = u_{i}^{*} - (P^{*}(f)u^{*})_{i}, \quad i \in T(f).$$

In the second part of the algorithm, we try to find the bias-valuevector u for the states that are recurrent under at least one bias optimal policy. Lemma 5.3.1 implies that the states of $E \setminus \widetilde{E}$ are transient under all average optimal policies and that in the recurrent states i the chosen actions belong to $\widetilde{A}(i)$. Hence, in the second part of the algorithm we restrict ourselves to the states of \widetilde{E} and the actions of $\widetilde{A}(i)$, i $\in \widetilde{E}$.

We want to solve a second Markov decision problem with state space \tilde{E} and action sets $\tilde{A}(i)$, $i \in \tilde{E}$. Therefore, for every $i \in \tilde{E}$ we remove the action a_i from $\tilde{A}(i)$ when $\sum_{j \in E \setminus \tilde{E}} p_{ia_j j} > 0$. Hence, using the procedure stated

below, we obtain a subspace \tilde{E} of E and subsets $\tilde{A}(i)$ of A(i), $i \in \tilde{E}$, such that \tilde{E} is closed under any policy which takes actions only from $\tilde{A}(i)$, $i \in \tilde{E}$.

Procedure

<u>step 1</u>: If $p_{iaj} = 0$ for all $i \in \tilde{E}$, $a \in \tilde{A}(i)$, $j \in E \setminus \tilde{E}$: STOP. Otherwise, go to step 2. <u>step 2</u>: Take $i \in \tilde{E}$, $a \in \tilde{A}(i)$, $j \in E \setminus \tilde{E}$ such that $p_{iaj} > 0$; $\tilde{A}(i) := \tilde{A}(i) \setminus \{a\}$; If $\tilde{A}(i) = \emptyset$, then $\tilde{E} := \tilde{E} \setminus \{i\}$; Go to step 1.

For any policy f^{∞} such that $f(i) \in \widetilde{A}(i)$, $i \in \widetilde{E}$, we denote by \widetilde{f}^{∞} the restriction to \widetilde{E} ; similarly, we denote by $\widetilde{\phi}$, \widetilde{u}^* , $r(\widetilde{f})$, $P(\widetilde{f})$ and $P^*(\widetilde{f})$ the restriction to \widetilde{E} of ϕ , u^* , r(f), P(f) and $P^*(f)$ respectively.

LEMMA 5.3.2. Let $f^{\tilde{e}}$ be any pure and stationary average optimal policy. Suppose that the sets \tilde{E} and $\tilde{A}(i)$ are the sets obtained by the above procedure. Then,

(i) $R(f) \subset \widetilde{E}$ and $f(i) \in \widetilde{A}(i)$, $i \in R(f)$. (ii) The policy f_1^{∞} defined such that

 $f_{1}(i) := \begin{cases} a_{i} \in \widetilde{A}(i) & i \in \widetilde{E} \setminus R(f) \\ f(i) & elsewhere \end{cases}$

satisfies: 1. $\phi_{i}(\widetilde{f}_{1}^{\infty}) = \phi_{i}(f^{\infty}) = \phi_{i}, \quad i \in \widetilde{E}.$ 2. $u_{i}(\widetilde{f}_{1}^{\infty}) = u_{i}(f^{\infty}) = \widetilde{u}_{i}^{*} - (P^{*}(\widetilde{f}_{1})\widetilde{u}^{*})_{i}, \quad i \in R(f).$

PROOF.

- (i) Lemma 5.3.1 implies that $R(f) \subset \widetilde{E}$ and $f(i) \in \widetilde{A}(i)$, $i \in R(f)$, where \widetilde{E} and $\widetilde{A}(i)$, $i \in R(f)$, are the sets before the above procedure is applied. Since $E \setminus \widetilde{E} \subset T(f)$, it follows that if $f(i) \in \widetilde{A}(i)$ is removed during the procedure, then $i \in T(f)$. Consequently, after the performance of the procedure, we still have that $R(f) \subset \widetilde{E}$ and $f(i) \in \widetilde{A}(i)$, $i \in R(f)$.
- (ii) Since $p_{i}(f_1) = p_{i}(f)$ for every $i \in R(f)$, it follows that the ergodic sets under P(f) are also ergodic sets under P(f_1) (possibly there are some additional ergodic sets under P(f_1)). Hence, $p_{i}^*(f_1) = p_{i}^*(f)$ for every $i \in R(f)$, and consequently (see formula (2.4.3)) $d_{i}(f_1) = d_{i}(f)$ for every $i \in R(f)$. Then, using lemma 5.3.1(iii), we can write

$$u_{i}(\tilde{f}_{1}^{\infty}) = (D(\tilde{f}_{1})r(\tilde{f}_{1}))_{i} = (D(f_{1})r(f_{1}))_{i} = (D(f)r(f))_{i} = u_{i}(f^{\infty}) = u_{i}(f^{\infty}) = u_{i}(f^{\infty})_{i} =$$

Furthermore, we have since $f_1(i) \in \widetilde{A}(i)$, $i \in \widetilde{E}$:

$$(\mathbf{I}-\mathbf{P}(\widetilde{\mathbf{f}}_1))\widetilde{\phi} = 0$$
 and $\widetilde{\phi} + (\mathbf{I}-\mathbf{P}(\widetilde{\mathbf{f}}_1))\widetilde{\mathbf{u}}^* = \mathbf{r}(\widetilde{\mathbf{f}}).$

Hence,

$$\phi_{i}(\widetilde{f}_{1}^{\infty}) = (P^{*}(\widetilde{f}_{1})r(\widetilde{f}_{1}))_{i} = (P^{*}(\widetilde{f}_{1})\widetilde{\phi})_{i} = \widetilde{\phi}_{i} = \phi_{i}, \quad i \in \widetilde{E}.$$

This completes the proof of the lemma.

Consider an average optimal policy $f^{\infty} \in C_{D}$. Lemma 5.3.2 implies that for the maximization of $u_{i}(f^{\infty})$, $i \in R(f)$, we may replace f^{∞} by f_{1}^{∞} . Because we want to find in this second part of the algorithm the bias-value-vector u in the states that are recurrent under at least one bias optimal policy, we may restrict ourselves to the action sets $\widetilde{A}(i)$, $i \in \widetilde{E}$. For any policy $f^{\widetilde{\omega}}$ such that $f(i) \in \widetilde{A}(i)$, $i \in \widetilde{E}$, we have

$$(5.3.3) \qquad \phi(\widetilde{f}^{\infty}) = P^{*}(\widetilde{f})r(\widetilde{f}) = P^{*}(\widetilde{f})\{\widetilde{\phi} + (I-P(\widetilde{f}))\widetilde{u}^{*}\} = P^{*}(\widetilde{f})\widetilde{\phi} = \widetilde{\phi}$$

and

$$(5.3.4) u(\widetilde{f}^{\infty}) = D(\widetilde{f})r(\widetilde{f}) = D(\widetilde{f})\{\widetilde{\phi} + (I-P(\widetilde{f}))\widetilde{u}^{*}\} = \widetilde{u}^{*} - P^{*}(\widetilde{f})\widetilde{u}^{*}.$$

From lemma 5.3.2 it also follows that maximizing $u_i(f^{\infty})$ is equivalent to maximizing - $P^*(\tilde{f})\tilde{u}^*$. Notice that the maximum value of - $P^*(\tilde{f})\tilde{u}^*$ is the AMD-value-vector, say ψ , of the Markov decision problem with state space \tilde{E} , action sets $\tilde{A}(i)$, $i \in \tilde{E}$, transition probabilities $\tilde{p}_{iaj} := p_{iaj}$, $a \in \tilde{A}(i)$, $i, j \in \tilde{E}$ and rewards $\tilde{r}_{ia} := -\tilde{u}_i^*$, $a \in \tilde{A}(i)$, $i \in \tilde{E}$.

From theorem 4.2.2 it follows that if (ψ^*, v^*) is an optimal solution of the linear program

$$(5.3.5) \quad \min\left\{ \sum_{j} \beta_{j} \widetilde{\psi}_{j} \middle| \begin{array}{c} \sum_{j} (\delta_{ij} - p_{iaj}) \widetilde{\psi}_{j} &\geq 0, \quad a \in \widetilde{A}(i), \ i \in \widetilde{E} \\ \\ \widetilde{\psi}_{i} + \sum_{j} (\delta_{ij} - p_{iaj}) \widetilde{\psi}_{j} &\geq -\widetilde{u}_{i}^{*}, \ a \in \widetilde{A}(i), \ i \in \widetilde{E} \end{array} \right\}$$

then $\psi^* = \psi$.

Theorem 4.2.4 implies that an average optimal policy for this second AMD-model can be found by the following rule:

Let (t^*, s^*) be an extreme optimal solution of the linear program dual to program (5.3.5), i.e. the linear programming problem

$$\max \left\{ \sum_{i} (-\widetilde{u}_{i}^{*}) \sum_{a} t_{ia} \middle| \begin{array}{l} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) t_{ia} &= 0, j \in \widetilde{E} \\ \sum_{a} t_{ja} &+ \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) s_{ia} &= \beta_{j}, j \in \widetilde{E} \\ t_{ia}, s_{ia} \geq 0, a \in \widetilde{A}(i), i \in \widetilde{E} \end{array} \right\}.$$

Then any policy $\widetilde{f}_{*}^{\infty}$, where

$$(5.3.6) \quad \widetilde{f}_{*}(i) := a_{i} \in \widetilde{A}(i) \text{ such that} \begin{cases} t^{*}_{ia_{i}} > 0 & i \in E_{t} \\ s^{*}_{ia_{i}} > 0 & i \in \widetilde{E} \setminus E_{t} \\ s^{*}_{ia_{i}} > 0 & i \in \widetilde{E} \setminus E_{t} \end{cases}$$

is an average optimal policy.

THEOREM 5.3.1. Let $\widetilde{f}_{\star}^{\infty}$ be any average optimal policy for the AMD-model $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$ and let f_{\star}^{∞} be a policy for the Markov decision problem (E,A,p,r) such that $f_{\star}(i) = \widetilde{f}_{\star}(i)$, $i \in \widetilde{E}$. Then,

$$u_{i}(f_{\star}^{\infty}) = u_{i}$$

for every state i which is recurrent under at least one bias optimal policy.

<u>PROOF</u>. Let g^{∞} be any bias optimal policy for the Markov decision problem (E,A,p,r). Define the policy g_1^{∞} by

$$g_{1}(i) := \begin{cases} a_{i} \in \widetilde{A}(i) & i \in \widetilde{E} \setminus \mathbb{R}(g) \\ \\ g(i) & elsewhere. \end{cases}$$

Let \tilde{g}_1^{∞} be the restriction of g_1^{∞} to \tilde{E} . Then, by lemma 5.3.2,

(5.3.7)
$$u_{\underline{i}} = u_{\underline{i}}(\underline{g}^{\infty}) = u_{\underline{i}}(\widetilde{g}_{\underline{i}}^{\infty}) = \widetilde{u}_{\underline{i}}^{*} - (P^{*}(\widetilde{g}_{\underline{i}})\widetilde{u}^{*})_{\underline{i}}, \quad \underline{i} \in R(\underline{g}).$$

Since \tilde{E} is closed under P(f,), it follows from (2.4.3) that

$$u_{i}(f_{*}^{\infty}) = u_{i}(\tilde{f}_{*}^{\infty}), \quad i \in \tilde{E}.$$

Because $\widetilde{f}_{\star}^{\infty}$ is average optimal in model $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$, we can write, using (5.3.4),

$$(5.3.8) \qquad u_{\underline{i}} \geq u_{\underline{i}}(\underline{f}_{\star}^{\infty}) = u_{\underline{i}}(\widetilde{f}_{\star}^{\infty}) = \widetilde{u}_{\underline{i}}^{\star} - (P^{\star}(\widetilde{f}_{\star})\widetilde{u}^{\star})_{\underline{i}} \geq \\ \widetilde{u}_{\underline{i}}^{\star} - (P^{\star}(\widetilde{g}_{1})\widetilde{u}^{\star})_{\underline{i}}, \quad \underline{i} \in \widetilde{E}.$$

Then, (5.3.7) and (5.3.8) imply that

$$u_i = u_i(f_*^{\infty})$$
, $i \in R(g)$,

which completes the proof. $\hfill\square$

<u>REMARK 5.3.1</u>. The policy f_{\star}^{∞} defined in the above theorem is bias optimal for the states that are recurrent under at least one bias optimal policy. Unfortunately, this set of states is unknown; we only know that it is a subset of \tilde{E} . Moreover, (5.3.8) implies that

$$u_{i} \geq \widetilde{u}_{i}^{*} - (P^{*}(\widetilde{f}_{*})\widetilde{u}^{*})_{i} = u_{i}^{*} + \psi_{i}, \quad i \in \widetilde{E}.$$

DEFINITION 5.3.1. A vector $z \in \mathbf{I\!R}^N$ is said to be *bias superharmonic* if

(5.3.9)
$$\begin{cases} \sum_{j} (\delta_{ij} - p_{iaj}) z_{j} \ge r_{ia} - \phi_{i} & a \in \overline{A}(i), i \in E \\ z_{i} \ge u_{i}^{*} + \psi_{i} & i \in \widetilde{E}, \end{cases}$$

where ϕ , u^* , ψ , \tilde{E} and $\bar{A}(i)$ are as defined in the previous part of this section.

THEOREM 5.3.2. The bias-value-vector u is the smallest bias superharmonic vector.

 $\underline{\text{PROOF}}.$ We first show that u is bias superharmonic. We have already seen in remark 5.3.1 that

$$u_{i} \geq u_{i}^{*} + \psi_{i}$$
, $i \in \widetilde{E}$.

Next, we assume that

(5.3.10)
$$\sum_{j} (\delta_{ij} - p_{iaj})^{u}_{j} < r_{ia} - \phi_{i}$$
 for some $i \in E$ and $a \in \overline{A}(i)$.
Let $g^{\tilde{\omega}}$ be a bias optimal policy. Then, using theorem 2.4.1, we can write

 $(5.3.11) \quad (I-P(g))u = (I-P(g))D(g)r(g) = (I-P^{*}(g))r(g) = r(g)-\phi.$

Define the policy g_1^{∞} by

$$g_1(j) := \begin{cases} g(j) & j \neq i \\ a & j = i. \end{cases}$$

Since $g_1(j) \in \overline{A}(j)$, $j \in E$, we have $P^*(g_1)\phi = \phi$. The transition matrices P(g) and $P(g_1)$ only differ in row i. Hence, (5.3.10) and (5.3.11) imply

$$\begin{cases} u_{i} - (P(g_{1})u)_{i} < r_{i}(g_{1}) - \phi_{i} \\ u_{j} - (P(g_{1})u)_{j} = r_{j}(g_{1}) - \phi_{j} \quad j \neq i \end{cases}$$

Suppose that i \in T(g₁). Then R(g₁) \subset R(g) and, consequently

$$(5.3.12) \qquad u_{j}(g_{1}^{\infty}) = u_{j}(g^{\infty}) = u_{j}, \quad j \in R(g_{1}).$$

Hence

(5.3.13)
$$(P^*(g_1)u)_i = [P^*(g_1)u(g_1^{\infty})]_i = [P^*(g_1)D(g_1)r(g_1)]_i = 0.$$

Since $i \in T(g_1)$, it follows from (2.4.3) that $d_{ii}(g_1) > 0$. Then, we obtain

$$u_{i}(g_{1}^{\infty}) = [D(g_{1})r(g_{1})]_{i} > [D(g_{1}) \{ (I-P(g_{1}))u + \phi \}]_{i} = [u - P^{*}(g_{1})u + D(g_{1})P^{*}(g_{1})\phi]_{i} = [u - P^{*}(g_{1})u]_{i} = u_{i},$$

implying a contradiction.

If $i \in R(g_1)$, then $p_{ii}^*(g_1) > 0$, and consequently

$$0 = \left[P^{*}(g_{1})(I-P(g_{1}))u\right]_{i} < \left[P^{*}(g_{1})(r(g_{1})-\phi)\right]_{i} = \phi_{i}(g_{1}^{\infty})-\phi_{i} \leq 0,$$

implying also a contradiction. Therefore, it has been shown that u is a bias superharmonic vector.

Let z also be a bias superharmonic vector. Assume that

174

$$[(I-P(g))z]_i > r_i(g)-\phi_i$$
 for some $i \in R(g)$.

Then,

$$0 = [P^{*}(g)(I-P(g))z]_{i} > [P^{*}(g)(r(g)-\phi)]_{i} = 0$$

which yields a contradiction. Hence,

$$\begin{cases} [(I-P(g))z]_{i} = r_{i}(g) - \phi_{i}, & i \in R(g) \\ \\ [(I-P(g))z]_{i} \ge r_{i}(g) - \phi_{i}, & i \in T(g). \end{cases}$$

Since D(g) ≥ 0 for $i \in T(g)$, we obtain

$$u = u(g^{\infty}) = D(g)r(g) \le D(g) \{ (I-P(g))z+\phi \} = z-P^{*}(g)z.$$

If $i \in R(g)$, then (5.3.7) and (5.3.8) imply that $u_i = u_i^* + \psi_i$. Because z is bias superharmonic, we get $z_i \ge u_i$, $i \in R(g)$. Consequently,

$$u \le z - P^{*}(g)z \le z - P^{*}(g)u = z - P^{*}(g)D(g)r(g) = z.$$

Hence, we have shown that u is the smallest bias superharmonic vector. $\hfill\square$

<u>REMARK 5.3.2</u>. The property of bias superharmonicity depends on the value of u^* which is found in the optimal solution of program (5.3.1). However, the property of being the smallest bias superharmonic vector is independent of which optimal solution is found.

REMARK 5.3.3. The result of theorem 5.3.2 is related to the functional equations of undiscounted Markov decision theory (cf. SCHWEITZER & FEDERGRUEN [1978]).

From theorem 5.3.2 it follows that the bias-value-vector u can be found as the optimal solution of the following linear programming problem

(5.3.14)
$$\min\left\{\sum_{j}^{i}\beta_{j}z_{j}\left|\begin{array}{c}\sum_{j}^{i}(\delta_{j}-p_{iaj})z_{j} \geq r_{ia}-\phi_{i}, \quad a \in \overline{A}(i), \quad i \in E\\\\z_{i} \geq u_{i}^{\star}+\psi_{i}, \quad i \in \widetilde{E}\end{array}\right\}$$

The dual program is

$$(5.3.15) \quad maximize \; \sum_{i \in E} \sum_{a \in \overline{A}(i)} (r_{ia} - \phi_{i}) \widetilde{x}_{ia} + \sum_{i \in \widetilde{E}} (u_{i}^{\star} + \psi_{i}) \widetilde{y}_{i}$$
$$subject \; to \; \sum_{i \in E} \sum_{a \in \overline{A}(i)} (\delta_{ij} - p_{iaj}) \widetilde{x}_{ia} + \sum_{i \in \widetilde{E}} \delta_{ij} \widetilde{y}_{i} = \beta_{j}, \quad j \in E$$
$$\widetilde{x}_{ia} \geq 0, \; a \in \overline{A}(i), \; i \in E; \; \widetilde{y}_{i} \geq 0, \; i \in \widetilde{E}.$$

The next theorem shows that a pure and stationary bias optimal policy can be obtained from an optimal solution of the linear program (5.3.15). If we solve this linear program by the simplex method, then an extreme optimal solution is obtained and, furthermore, we obtain the bias-value-vector u as the optimal solution of program (5.3.14). The solution of this pair of dual linear programs will be the third part of the algorithm.

THEOREM 5.3.3. Let $(\tilde{x}^*, \tilde{y}^*)$ be an extreme optimal solution of program (5.3.15). Suppose that \tilde{f}^{∞}_{*} is the policy defined in (5.3.6). Then, the pure and stationary policy g^{ω}_{*} , where

$$g_{\star}(i) := \begin{cases} \widetilde{f}_{\star}(i) & i \in E_{\star} := \{j \in \widetilde{E} | u_{j} = u_{j}^{\star} + \psi_{j} \} \\ \\ a_{i} \in \overline{A}(i) \text{ such that } \widetilde{x}_{ia_{j}}^{\star} > 0 & i \in E \setminus E_{\star}, \end{cases}$$

is bias optimal.

<u>PROOF</u>. Suppose that $j \in E \setminus E_*$. Then, the complementary slackness property of linear programming (corollary 1.3.1) implies that $\widetilde{y}_j^* = 0$. From the constraints of program (5.3.15) it follows that

$$\sum_{a \in \overline{A}(i)} \widetilde{x}_{ja}^{*} = \beta_{j} + \sum_{i \in E} \sum_{a \in \overline{A}(i)} p_{iaj} \widetilde{x}_{ia}^{*} \ge \beta_{j} > 0.$$

Hence, the policy g_{\star}^{∞} is well-defined.

The proof of this theorem has the same structure as the proof of theorem 4.2.4, i.e. we first prove three separate propositions and then we complete the proof of the theorem.

PROPOSITION 5.3.1. Let f_{\star}^{∞} be any policy for the Markov decision problem (E,A,p,r) such that $f_{\star}(i) = \tilde{f}_{\star}(i)$, $i \in \tilde{E}$. Then,

$$u_i - (P(f_*)u)_i = r_i(f_*) - \phi_i, \quad i \in E_*.$$

<u>PROOF</u>. Notice that from the construction of \tilde{E} it follows that \tilde{E} is closed under P(f_{*}). Hence, (P(f_{*})u)_i = (P(\tilde{f}_{*}) \tilde{u})_i and (P^{*}(f_{*})u)_i = (P^{*}(\tilde{f}_{*}) \tilde{u})_i, i $\in \tilde{E}$, where \tilde{u} is the restriction of u to the states of \tilde{E} . Furthermore, (5.3.3) implies that $[P^*(f_*)r(f_*)]_i = \phi_i$, i $\in \tilde{E}$. Suppose that $u_j - (P(f_*)u)_j \neq r_j(f_*) - \phi_j$ for some $j \in E_*$. Then, the constraints of program (5.3.14) imply that

$$u_{i} - (P(f_{*})u)_{i} \ge r_{i}(f_{*}) - \phi_{i} \quad i \in E_{*}$$

$$u_j - (P(f_j)u_j) > r_j(f_j) - \phi_j, \text{ where } j \in E_*$$

If $j \in R(f_1)$, then we get a contradiction, namely

$$0 = [P^{\star}(f_{\star}) \{u-P(f_{\star})u\}]_{j} > [P^{\star}(f_{\star})(r(f_{\star})-\phi)]_{j} = \phi_{j}(f_{\star}^{\infty})-\phi_{j} = 0.$$

Consequently, we have

$$u_i - (P(f_*)u)_i = r_i(f_*) - \phi_i, \quad i \in R(f_*) \cap E_*.$$

From formula (2.4.3), it follows that

$$d_{jk}(f_*) = 0, k \notin \widetilde{E}, d_{jk}(f_*) \ge 0, k \in T(f_*) \text{ and } d_{jj}(f_*) > 0.$$

Hence, we can write, using the results of theorem 2.4.1,

$$(5.3.16) \quad u_{j}(\tilde{f}_{*}^{\infty}) = \sum_{k} d_{jk}(f_{*})r_{k}(f_{*})$$
$$< \sum_{k} d_{jk}(f_{*})\{u_{k} - (P(f_{*})u)_{k} + \phi_{k}\} =$$
$$u_{j} - (P^{*}(f_{*})u)_{j} \le u_{j} - (P^{*}(f_{*})u(f_{*}))_{j} = u_{j}$$

Since $\widetilde{f}_{\star}^{\infty}$ is an average optimal policy in the AMD-model $(\widetilde{E},\widetilde{A},\widetilde{p},\widetilde{r})$, it follows from (5.3.4) that

(5.3.17)
$$u_{i}(\tilde{f}_{\star}^{\infty}) = u_{i}^{\star} + \psi_{i} = u_{i}, \quad i \in E_{\star}.$$

Because j \in E_*, (5.3.16) is contradictory to (5.3.17). This completes the proof of the proposition.

and

PROPOSITION 5.3.2. E, is closed under P(g,).

<u>PROOF</u>. Let f_{\star}^{∞} be any policy for the Markov decision problem (E,A,p,r) such that $f_{\star}(i) = \tilde{f}_{\star}(i)$, $i \in \tilde{E}$, Since $g_{\star}(i) = f_{\star}(i)$, $i \in E_{\star}$, it is sufficient to prove that E_{\star} is closed under P(f_{\star}). By proposition 5.3.1, (5.3.17) and theorem 2.4.1, we have for any $i \in E_{\star}$

$$0 = u_{i} - (P(f_{*})u_{i} - r_{i}(f_{*}) + \phi_{i}$$

$$= u_{i}(f_{*}^{\infty}) + [P(f_{*})(u(f_{*}^{\infty}) - u)]_{i} - (P(f_{*})u(f_{*}^{\infty}))_{i} - r_{i}(f_{*}) + \phi_{i}$$

$$= [P(f_{*})(u(f_{*}^{\infty}) - u)]_{i} + [\{D(f_{*})(I - P(f_{*})) - I + P^{*}(f_{*})\}r(f_{*})]_{i}$$

$$= [P(f_{*})(u(f_{*}^{\infty}) - u)]_{i}$$

$$= \sum_{j \in \widetilde{E} \setminus E_{*}} p_{ij}(f_{*})(u_{j}(f_{*}^{\infty}) - u_{j}).$$

Since $u_j(f_*^{\infty}) - u_j < 0$ for every $j \in \widetilde{E} \setminus E_*$, it follows that $p_{ij}(f_*) = 0$, $i \in E_*$, $j \in \widetilde{E} \setminus E_*$. Because $f_*(i) \in \widetilde{A}(i)$, $i \in \widetilde{E}$, it follows from the construction of \widetilde{E} that \widetilde{E} is closed under $P(f_*)$. Hence, E_* is closed under $P(f_*)$.

<u>PROPOSITION 5.3.3</u>. The states of $E \setminus E_{\star}$ are transient in the Markov chain induced by $P(g_{\star})$.

<u>PROOF</u>. Suppose that there is a state $j \in E \setminus E_*$ which is recurrent under $P(g_*)$. Since E_* is closed under $P(g_*)$, there has to exist a nonempty ergodic set $J \subset E \setminus E_*$. Let $J = \{j_1, j_2, \dots, j_m\}$. The constraints of program (5.3.15) imply that

and

$$\sum_{\mathbf{a}\in\overline{\mathbf{A}}(\mathbf{j})} \widetilde{\mathbf{x}}_{\mathbf{j}\mathbf{a}} + \widetilde{\mathbf{y}}_{\mathbf{j}} = \beta_{\mathbf{j}} + \sum_{\mathbf{i}} \sum_{\mathbf{a}\in\overline{\mathbf{A}}(\mathbf{i})} p_{\mathbf{i}\mathbf{a}\mathbf{j}} \widetilde{\mathbf{x}}_{\mathbf{i}\mathbf{a}} \ge \beta_{\mathbf{j}} > 0, \quad \mathbf{j}\in\widetilde{\mathbf{E}}$$

$$\sum_{\mathbf{a}\in\overline{\mathbf{A}}(\mathbf{j})} \widetilde{\mathbf{x}}_{\mathbf{j}\mathbf{a}} = \beta_{\mathbf{j}} + \sum_{\mathbf{i}} \sum_{\mathbf{a}\in\overline{\mathbf{A}}(\mathbf{i})} p_{\mathbf{i}\mathbf{a}\mathbf{j}} \widetilde{\mathbf{x}}_{\mathbf{i}\mathbf{a}} \ge \beta_{\mathbf{j}} > 0, \quad \mathbf{j}\in\mathbf{E}\setminus\widetilde{\mathbf{E}}$$

Since $(\tilde{\mathbf{x}}^*, \tilde{\mathbf{y}}^*)$ is an extreme solution and since the linear program has N constraints, it follows that we have in each state either $\tilde{\mathbf{y}}_j^* > 0$ and $\tilde{\mathbf{x}}_{ja}^* = 0$ for all $\mathbf{a} \in \bar{\mathbf{A}}(\mathbf{j})$ or $\tilde{\mathbf{x}}_{ja}^* > 0$ for exactly one $\mathbf{a} \in \bar{\mathbf{A}}(\mathbf{j})$, say for the action \mathbf{a}_j . From the complementary slackness property of linear programming it follows that $\tilde{\mathbf{y}}_i^* = 0$ for every $\mathbf{i} \in \tilde{\mathbf{E}} \setminus \mathbf{E}_*$. Hence, in every state of J we have exactly one positive variable, namely $\tilde{\mathbf{x}}_{j,a,j}^*$, $\mathbf{i} = 1, 2, \ldots, m$. Consequently, by theorem 1.2.2, the vectors $\{\mathbf{q}^1, \mathbf{i} = 1, 2, \ldots, m\}$ where

$$q_{k}^{i} = \delta_{j_{i}k} - p_{j_{i}a_{j_{i}}k}, \quad k = 1, 2, ..., N$$

are linearly independent. The definition of g_{\star}^{∞} implies that $g_{\star}(j_{i}) = a_{j_{i}}$, i = 1,2,...,m. Since J is closed under $P(g_{\star})$, we have $q_{k}^{i} = 0$, k \notin J, i = 1,2,...,m. Hence, the contracted (i.e. delete the components k $\in E \setminus J$ which are all zeroes) vectors { b^{i} , i = 1,2,...,m}, where

$$b_{k}^{i} = \delta_{j_{i}j_{k}} - p_{j_{i}a_{j_{i}}j_{k}}, k = 1, 2, ..., m,$$

are also linearly independent. On the other hand, we have

$$\sum_{k=1}^{m} b_{k}^{i} = \sum_{k=1}^{m} (\delta_{j_{i}j_{k}} p_{j_{i}a_{j_{i}}j_{k}}) = 1 - \sum_{k=1}^{m} p_{j_{i}a_{j_{i}}j_{k}} = 0,$$

which contradicts the independency of the vectors $\{b^i, i = 1, 2, ..., m\}$. This completes the proof of the proposition.

We can complete the proof of the theorem as follows. Since $\tilde{x}_{ig_{\star}(i)}^{\star} > 0$, $i \in E \setminus E_{\star}$, it follows from the complementary slackness property that

(5.3.18)
$$u_{i} - (P(g_{*})u)_{i} = r_{i}(g_{*}) - \phi_{i}, \quad i \in E \setminus E_{*}.$$

 $P(g_*)$ and $P(f_*)$, where f_*^{∞} is the policy of proposition 5.3.1, have the same rows i for $i \in E_*$. Consequently, (5.3.18) and proposition 5.3.1 imply that

$$u - P(g_1)u = r(g_1) - \phi.$$

Since $g_{\star}(i) \in \overline{A}(i)$, $i \in E$, we have $\phi = P^{\star}(g_{\star})\phi$ and, consequently

$$D(g_{\star})\phi = D(g_{\star})P^{\star}(g_{\star})\phi = 0.$$

Then,

$$u(g_{*}^{\infty}) = D(g_{*})r(g_{*}) = D(g_{*})(I-P(g_{*}))u = u - P^{*}(g_{*})u.$$

From proposition 5.3.3 we get $R(g_*) \subset E_*$. Moreover, because E_* is closed under $P(g_*)$ and, by (5.3.17), $u_i = u_i(\widetilde{f}_*^{\infty}) = u_i(\widetilde{g}_*^{\infty})$, $i \in E_*$, we obtain

$$u(g_{\star}^{\infty}) = u - P^{\star}(g_{\star})u = u - P^{\star}(g_{\star})u(g_{\star}) = u,$$

i.e. g_{\downarrow}^{∞} is a bias optimal policy. \Box

Above, we have derived that a pure and stationary bias optimal policy can be determined by the following algorithm.

ALGORITHM XXIII for the construction of a pure and stationary bias optimal policy (general case).

step 1a: Take any choice for the numbers β_j such that $\beta_j>0,\;j\in E,\;and$ $\Sigma_j\beta_j\;=\;1.$

<u>step 1b</u>: Compute an optimal solution (ϕ^*, u^*) of the linear programming problem

$$\min\left\{\sum_{\mathbf{j}\in \mathbf{E}}\beta_{\mathbf{j}}\hat{\phi}_{\mathbf{j}}\middle| \begin{array}{c}\sum_{\mathbf{j}\in \mathbf{E}}(\delta_{\mathbf{i}\mathbf{j}}-\mathbf{p}_{\mathbf{i}\mathbf{a}\mathbf{j}})\hat{\phi}_{\mathbf{j}} \ge 0, \ \mathbf{a}\in \mathbf{A}(\mathbf{i}), \mathbf{i}\in \mathbf{E}\\ \hat{\phi}_{\mathbf{i}}+\sum_{\mathbf{j}\in \mathbf{E}}(\delta_{\mathbf{i}\mathbf{j}}-\mathbf{p}_{\mathbf{i}\mathbf{a}\mathbf{j}})\hat{\mathbf{u}}_{\mathbf{j}}\ge \mathbf{r}_{\mathbf{i}\mathbf{a}}, \ \mathbf{a}\in \mathbf{A}(\mathbf{i}), \mathbf{i}\in \mathbf{E}\end{array}\right\}.$$

step 1c: Determine the following sets:

$$\begin{split} \bar{A}(i) &:= \{ a \in A(i) \mid \sum_{j \in E} (\delta_{ij} - p_{iaj}) \phi_j^* = 0 \}, & i \in E. \\ \tilde{A}(i) &:= \{ a \in \bar{A}(i) \mid \phi_i^* + \sum_{j \in E} (\delta_{ij} - p_{iaj}) u_j^* = r_{ia} \}, & i \in E. \\ \tilde{E} &:= \{ i \in E \mid \tilde{A}(i) \neq \emptyset \}. \end{split}$$

<u>step 1d</u>: If $p_{iaj} = 0$ for all $i \in \tilde{E}$, $a \in \tilde{A}(i)$, $j \in E \setminus \tilde{E}$, then go to step 2a. Otherwise, go to step 1e.

<u>step 1e</u>: Take $i \in \widetilde{E}$, $a \in \widetilde{A}(i)$, $j \in E \setminus \widetilde{E}$ such that $p_{iaj} > 0$; $\widetilde{A}(i) := \widetilde{A}(i) \setminus \{a\}$; if $\widetilde{A}(i) = \emptyset$, then $\widetilde{E} := \widetilde{E} \setminus \{i\}$; go to step 1d.

step 2a: Use the simplex method to compute optimal solutions (ψ^*, v^*) and (t^*, s^*) of the pair of dual linear programming problems

$$\min \left\{ \sum_{j \in \widetilde{E}} \beta_{j} \widetilde{\psi}_{j} \middle| \begin{array}{c} \sum_{j \in \widetilde{E}} (\delta_{ij} - p_{iaj}) \widetilde{\psi}_{j} & \geq 0 \quad , \ a \in \widetilde{A}(i), i \in \widetilde{E} \\ & \widetilde{\psi}_{i} + \sum_{j \in \widetilde{E}} (\delta_{ij} - p_{iaj}) \widetilde{\psi}_{j} \geq -u_{i}^{*}, \ a \in \widetilde{A}(i), i \in \widetilde{E} \end{array} \right\}$$

$$\max \left\{ \sum_{i \in \widetilde{E}} (-u_{i}^{*}) \sum_{a \in \widetilde{A}(i)} t_{ia} \middle| \begin{array}{c} \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} (\delta_{ij} - p_{iaj}) t_{ia} = 0, \ j \in \widetilde{E} \\ \sum_{a \in \widetilde{A}(i)} t_{ia} + \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} (\delta_{ij} - p_{iaj}) s_{ia} = \beta_{j}, \ j \in \widetilde{E} \\ t_{ia}, s_{ia} \ge 0, \ a \in \widetilde{A}(i), \ i \in \widetilde{E} \\ \end{array} \right\}$$

respectively.

step 2b: Take any policy $\tilde{f}_{\star}^{\infty}$, where

$$\widetilde{f}_{\star}(i) := a_{i} \in \widetilde{A}(i) \text{ such that} \begin{cases} t_{ia_{i}}^{\star} > 0 & i \in E_{t}^{\star} \\ \\ s_{ia_{i}}^{\star} > 0 & i \in E \setminus E_{t}^{\star} \end{cases}$$

step 3a: Use the simplex method to compute optimal solutions z^* and (x^*, y^*) of the pair of dual linear programming problems

$$\begin{array}{ll} \textit{minimize} & \sum_{j \in E} \beta_j z_j \\ \textit{subject to} & \sum_{j \in E} (\delta_{ij} - p_{iaj}) z_j \geq r_{ia} - \phi_i^*, & a \in \overline{A}(i), i \in E \\ & z_i \geq u_i^* + \psi_i^*, & i \in \widetilde{E} \end{array}$$

and

maximize
$$\sum_{i \in E} \sum_{a \in \overline{A}(i)} (r_{ia} - \phi_i^*) x_{ia} + \sum_{i \in \widetilde{E}} (u_i^* + \psi_i^*) y_i$$

subject to
$$\sum_{i \in E} \sum_{a \in \overline{A}(i)} (\delta_{ij} - p_{iaj}) x_{ia} + \sum_{i \in \widetilde{E}} \delta_{ij} y_i = \beta_j, j \in E$$

$$x_{ia} \ge 0, a \in \overline{A}(i), i \in E; y_{i} \ge 0, i \in \widetilde{E}$$

respectively.

<u>step 3b</u>: Determine the set $E_{\star} := \{i \in \widetilde{E} | z_i^{\star} = u_i^{\star} + \psi_i^{\star}\}.$ <u>step 3c</u>: Take g_{\star}^{∞} such that

$$g_{\star}(i) := \begin{cases} \tilde{f}_{\star}(i) & i \in E_{\star} \\ \\ a_{i} & \text{such that } x_{ia_{i}}^{\star} > 0 & i \in E \setminus E_{\star}. \end{cases}$$

The algorithm is displayed in the following simple example.

EXAMPLE 5.3.1. Consider the model of figure 5.3.1. The following calculations can easily be verified. Step 1a: We define $\beta_1 := \beta_2 := \beta_3 := \beta_4 := 1/4$. Step 1b: $\phi^* = (1,1,1,1)^T$; $u^* = (2,1,0,6)^T$. Step 1c: $\bar{A}(1) = \bar{A}(2) = \bar{A}(3) = \bar{A}(4) = \{1,2\}$; $\bar{A}(1) = \bar{A}(2) = \bar{A}(3) = \{1,2\}$; $\bar{A}(4) = \emptyset$ $\tilde{E} = \{1,2,3\}$. (2) (4) (3) (4) (3) (4) (5) Figure 5.3.1)

$$\begin{array}{l} \underline{\text{step 1e}}: \ i = 3, \ a = 2, \ j = 4: \ \widetilde{A}(3) = \{1\}.\\\\ \underline{\text{step 1d}}: \ p_{iaj} = 0 \ \text{for all } i \in \widetilde{E}, \ a \in \widetilde{A}(i), \ j \in E \setminus \widetilde{E}.\\\\ \underline{\text{step 2a}}: \ \psi^* = (-1/2, -1/2, -1/2)^T; \ v^* = (1/2, 0, 1/2)^T;\\\\ t_{11}^* = t_{12}^* = t_{21}^* = 0, \ t_{22}^* = t_{31}^* = 3/8; \ s_{11}^* = 1/4, \ s_{12}^* = s_{21}^* = s_{31}^* = 0, \ s_{22}^* = 1/8.\\\\ \underline{\text{step 2b}}: \ \widetilde{f}_*(1) = 1, \ \widetilde{f}_*(2) = 2, \ \widetilde{f}_*(3) = 1.\\\\ \underline{\text{step 3a}}: \ z^* = (3/2, 1/2, -1/2, 9/2)^T; \ x_{11}^* = x_{12}^* = x_{21}^* = x_{22}^* = x_{31}^* = x_{32}^* = x_{42}^* = 0,\\\\ x_{41}^* = 1/4; \ y_1^* = 1/2, \ y_2^* = 1/4, \ y_3^* = 1/4.\\\\ \underline{\text{step 3b}}: \ E_* = \{1, 2, 3\}.\\\\ \underline{\text{step 3c}}: \ g_*(1) = 1, \ g_*(2) = 2, \ g_*(3) = 1, \ g_*(4) = 1.\\ \end{array}$$

5.4. LINEAR PROGRAMMING APPROACH (SPECIAL CASES)

In this section we present three special cases which were also considered for the average reward criterion (see the sections 4.5 and 4.6). In the weak unichain case (i.e. when assumption 4.5.1 is satisfied), the linear programming problems which occur in the steps 1b and 2a can be simplified. For the problem used in step 1b, we have presented a simpler program in section 4.5. For the problem studied in step 2a, we take actions from $\tilde{A}(i)$, $i \in \tilde{E}$. Hence (cf. formula (5.3.3)), any pure and stationary policy is average optimal in the AMD-model ($\tilde{E}, \tilde{A}, p, r$). Consequently, the assumption of weak unichainedness is also verified in the AMD-model ($\tilde{E}, \tilde{A}, p, r$) has identical components, we have $\tilde{A}(i) = A(i)$ for every $i \in E$. Therefore, the algorithm for the weak unichain case can be formulated as follows.

ALGORITHM XXIV for the construction of a pure and stationary bias optimal policy (weak unichain case).

step 1a: Compute an optimal solution (ϕ^*, u^*) of the linear programming problem

$$\min\{\hat{\phi}|\hat{\phi}+\sum_{j\in E}(\delta_{ij}-p_{iaj})\hat{u}_{j} \geq r_{ia}, a \in A(i), i \in E\}.$$

step 1b: Determine the following sets:

$$\widetilde{A}(i) := \{ a \in A(i) | \phi^* + \sum_{j \in E} (\delta_{ij} - p_{iaj}) u_j^* = r_{ia} \}, \quad i \in E.$$

$$\widetilde{\mathsf{E}} := \{ \mathtt{i} \in \mathsf{E} | \widetilde{\mathsf{A}}(\mathtt{i}) \neq \emptyset \}.$$

step 1c: If $p_{iaj} = 0$ for all $i \in \tilde{E}$, $a \in \tilde{A}(i)$, $j \in E \setminus \tilde{E}$, then go to step 2a. Otherwise, go to step 1d.

step 1d: Take
$$i \in \widetilde{E}$$
, $a \in \widetilde{A}(i)$, $j \in E \setminus \widetilde{E}$ such that $p_{iaj} > 0$; $\widetilde{A}(i) := \widetilde{A}(i) \setminus \{a\}$;
if $\widetilde{A}(i) = \emptyset$, then $\widetilde{E} := \widetilde{E} \setminus \{i\}$; go to step 1c.

step 2a: Use the simplex method to compute optimal solutions (ψ^*, v^*) and t^{*} of the pair of dual linear programming problems

$$\min\{\widetilde{\psi}|\widetilde{\psi} + \sum_{j \in \widetilde{E}} (\delta_{j} - p_{iaj})\widetilde{v}_{j} \geq -u_{i}^{*}, \quad a \in \widetilde{A}(i), i \in \widetilde{E}\}$$

and

$$max \begin{cases} \sum_{i \in \widetilde{E}} (-u_{i}^{*}) \sum_{a \in \widetilde{A}(i)} t_{ia} \\ \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} (\delta_{ij} - p_{iaj}) t_{ia} = 0, j \in \widetilde{E} \\ \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} t_{ia} = 1 \\ \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} t_{ia} = 0, a \in \widetilde{A}(i), i \in \widetilde{E} \end{cases}$$

respectively.

<u>step 2b</u>: Take $\tilde{f}_{*}(i)$ such that $t_{i\tilde{f}_{*}(i)}^{*} > 0$, $i \in E_{t^{*}};$ Let $E_{\circ} := E_{t^{*}}.$ <u>step 2c</u>: If $E_{\circ} = \tilde{E}$, then go to step 3a.

Otherwise, go to step 2d.

step 2d: Take
$$i \in \widetilde{E} \setminus E_{o}$$
, $a \in \widetilde{A}(i)$, $j \in E_{o}$ such that $p_{iaj} > 0$;
 $\widetilde{f}(i) := a; E_{o} := E_{o} \cup \{i\}$; go to step 2c.

step 3a: Use the simplex method to compute optimal solutions z^* and (x^*, y^*) of the pair of dual linear programming problems

$$\min \left\{ \sum_{j \in E} z_{j} \middle| \begin{array}{l} \sum_{j \in E} (\delta_{ij} - p_{iaj}) z_{j} \geq r_{ia} - \phi^{*} & a \in A(i), i \in E \\ \\ z_{i} \geq u_{i}^{*} + \psi^{*} & i \in \widetilde{E} \end{array} \right\}$$

and

maximize
$$\sum_{i \in E} \sum_{a \in A(i)} (r_{ia} - \phi^*) x_{ia} + \sum_{i \in E} (u_i^* + \psi^*) y_i$$

subject to
$$\sum_{i \in E} \sum_{a \in A(i)} (\delta_{ij} - p_{iaj}) x_{ia} + \sum_{i \in E} \delta_{ij} y_i = 1, \quad j \in E$$
$$x_{ia} \ge 0, \ a \in A(i), \ i \in E; \ y_i \ge 0, \quad i \in \widetilde{E}$$

respectively.

<u>step 3b</u>: Determine the set $E_{\star} := \{i \in \widetilde{E} | z_i^{\star} = u_i^{\star} + \psi^{\star}\}.$ <u>step 3c</u>: Take g_{\star}^{∞} such that

$$g_{\star}(i) := \begin{cases} \tilde{f}_{\star}(i) & , i \in E_{\star} \\ a_{i} & \text{such that } x_{ia_{i}}^{\star} > 0, i \in E \setminus E_{\star}. \end{cases}$$

In the completely ergodic case (i.e. when assumption 4.6.1 is satisfied) the algorithm becomes rather simple. Since all states are recurrent under every pure and stationary policy, lemma 5.3.1 and theorem 5.3.1 imply that $\tilde{E} = E$ and that \tilde{f}_{*}^{∞} , defined in step 2, is a bias optimal policy. Hence, step 3 can be deleted and we obtain the following algorithm.

ALGORITHM XXV for the construction of a pure and stationary bias optimal policy (completely ergodic case).

<u>step 1a</u>: Compute an optimal solution (ϕ^*, u^*) of the linear programming problem

$$\min\{\hat{\phi} \mid \hat{\phi} + \sum_{j \in E} (\delta_{ij} - p_{iaj}) \hat{u}_{j} \geq r_{ia}, \quad a \in A(i), i \in E\}.$$

step 1b: Determine

$$\widetilde{A}(i) := \{a \in A(i) | \phi^* + \sum_{j \in E} (\delta_{ij} - p_{iaj}) u_j^* = r_{ia}\}, \quad i \in E.$$

step 2a: Use the simplex method to compute an optimal solution t^{*} of the linear programming problem

$$max \left\{ \sum_{i \in E} (-u_{i}^{*}) \sum_{a \in \widetilde{A}(i)} t_{ia} \middle| \begin{array}{c} \sum_{i \in E} \sum_{a \in \widetilde{A}(i)} (\delta_{ij} - p_{iaj}) t_{ia} = 0, j \in E \\ \sum_{i \in E} \sum_{a \in \widetilde{A}(i)} t_{ia} = 1 \\ t_{ia} \ge 0, a \in \widetilde{A}(i), i \in E \end{array} \right\}$$

step 2b: Take $\tilde{f}_{\star}^{\infty}$ such that $t_{i\tilde{f}_{\star}(i)}^{\star} > 0$, $i \in E$.

We close this chapter with the presentation of the algorithm for the *unichain case*, i.e. when assumption 4.6.2 is satisfied. From the results of the sections 4.6 and 5.3 it is straightforward that in this case a bias optimal policy can be determined by the following algorithm.

ALGORITHM XXVI for the construction of a pure and stationary bias optimal policy (unichain case).

<u>step 1a</u>: Compute an optimal solution (ϕ^*, u^*) of the linear programming problem

$$\min\{\hat{\phi}|\hat{\phi} + \sum_{j \in E} (\delta_{ij} - p_{iaj})\hat{u}_{j} \geq r_{ia}, \quad a \in A(i), i \in E\}.$$

step 1b: Determine the following sets:

$$\begin{split} \widetilde{A}(i) &:= \{a \in A(i) | \phi^* + \sum_{j \in E} (\delta_{ij} - p_{iaj}) u_j^* = r_{ia} \}, \quad i \in E. \\ \widetilde{E} &:= \{i \in E | \widetilde{A}(i) \neq \emptyset \}. \end{split}$$

 $\underline{step \ 1c}: \ If \ p_{iaj} = 0 \ for \ all \ i \ \epsilon \ \widetilde{E}, \ a \ \epsilon \ \widetilde{A}(i) \ , \ j \ \epsilon \ E \backslash \widetilde{E}, \ then \ go \ to \ step \ 2a. \\ Otherwise, \ go \ to \ step \ 1d.$

<u>step 1d</u>: Take $i \in \widetilde{E}$, $a \in \widetilde{A}(i)$, $j \in E \setminus \widetilde{E}$ such that $p_{iaj} > 0$; $\widetilde{A}(i) := \widetilde{A}(i) \setminus \{a\}$; if $\widetilde{A}(i) = \emptyset$, then $\widetilde{E} := \widetilde{E} \setminus \{i\}$; go to step 1c.

step 2a: Use the simplex method to compute optimal solutions (ψ^*, v^*) and t^{*} of the pair of dual linear programming problems

$$\min\{\widetilde{\psi}|\widetilde{\psi} + \sum_{j \in \widetilde{E}} (\delta_{ij} - p_{iaj}) \widetilde{v}_{j} \ge -u_{i}^{*}, \quad a \in \widetilde{A}(i), i \in \widetilde{E}\}$$

and

$$\max \left\{ \sum_{i \in \widetilde{E}} (-u_{i}^{*}) \sum_{a \in \widetilde{A}(i)} t_{ia} \middle| \begin{array}{l} \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} (\delta_{ij} - p_{iaj}) t_{ia} = 0, \quad j \in \widetilde{E} \\ \sum_{i \in \widetilde{E}} \sum_{a \in \widetilde{A}(i)} t_{ia} = 1 \\ t_{ia} \ge 0, \quad a \in \widetilde{A}(i), \quad i \in \widetilde{E} \end{array} \right\}$$

respectively. <u>step 2b</u>: Take $\widetilde{f_{*}}$ such that

$$\widetilde{f}_{\star}(i) := \begin{cases} a_{i} & \text{where } t_{ia_{i}}^{\star} > 0, & i \in E_{t}^{\star} \\ & a_{i} & & \\ arbitrarily & i \in \widetilde{E} \setminus E_{t}^{\star}. \end{cases}$$

step 3a: Use the simplex method to compute optimal solutions z^* and (x^*, y^*) of the pair of dual linear programming problems

$$\min \left\{ \sum_{j \in E} z_{j} \middle| \begin{array}{c} \sum_{j \in E} (\delta_{ij} - p_{iaj}) z_{j} \geq r_{ia} - \phi^{*}, \quad a \in A(i), i \in E \\ z_{i} \geq u_{i}^{*} + \psi^{*}, \quad i \in \widetilde{E} \end{array} \right\}$$

and

$$\begin{array}{ll} \textit{maximize} \quad \sum_{i \in E} \sum_{a \in A(i)} (r_{ia} - \phi^*) x_{ia} + \sum_{i \in \widetilde{E}} (u_i^* + \psi^*) y_i \\ \textit{subject to} \quad \sum_{i \in E} \sum_{a \in A(i)} (\delta_{ij} - p_{iaj}) x_{ia} + \sum_{i \in \widetilde{E}} \delta_{ij} y_i = 1, \quad j \in E \\ \\ x_{ia} \geq 0, \ a \in A(i), \ i \in E; \ y_i \geq 0, \ i \in \widetilde{E} \end{array}$$

respectively. <u>step 3b</u>: Determine the set $E_{\star} := \{i \in \widetilde{E} | z_{i}^{\star} = u_{i}^{\star} + \psi^{\star}\}.$ <u>step 3c</u>: Take g_{\star}^{ω} such that

$$g_{\star}(i) := \begin{cases} \widetilde{f}_{\star}(i) & i \in E_{\star} \\ \\ a_{i} & \text{such that } x_{ia_{i}}^{\star} > 0, & i \in E \setminus E_{\star}. \end{cases}$$

۰. ۲.

CHAPTER 6

TWO-PERSON ZERO-SUM STOCHASTIC GAMES IN WICH ONE PLAYER CONTROLS THE TRANSITION PROBABILITIES

6.1. INTRODUCTION AND SUMMARY

In this chapter we investigate a two-person zero-sum stochastic game. This game can be described as follows. Consider a system with a finite state space $E = \{1, 2, ..., N\}$ that is observed at discrete time points t = 1, 2, If the system is in state i (at some time point t), then both players choose simultaneously an action from their own finite action sets A(i) and B(i) for player I and player II respectively. If in state i player I chooses action $a \in A(i)$ and player II action $b \in B(i)$, then the following occurs:

- 1. Player I receives an immediate reward r from player II.
- 2. The next state of the system is chosen according to the transition probabilities p_{iabj} , where $p_{iabj} \ge 0$ and $\sum_{j} p_{iabj} \le 1$ for every $a \in A(i)$, $b \in B(i)$, $i \in E$.

A two-person zero-sum stochastic game is denoted by a five-tuple (E,A,B,p,r), where

- E is the state space
- $A = U_{i \in E}$ A(i) is the action space for player I
- $B = U_{i \in E} B(i)$ is the action space for player II
- p is a transition probability from $E \times A \times B$ to E
- r is a real-valued reward function on $E \times A \times B$

(E×A×B has to be interpreted as $\{(i,a,b) \mid i \in E, a \in A(i), b \in B(i)\}$). Stochastic games are also called *Markov games*. If the action space for one of the two players consists of one element, then the game becomes a Markov decision problem.

Let ${\rm H}_{\rm t}$ denote the set of possible histories of the system up to time t, i.e.

A decision rule π^{t} for player I at time t is a nonnegative function on $H_{t} \times A$ such that for every $(i_{1}, a_{1}, b_{1}, \dots, b_{t-1}, i_{t}) \in H_{t}$

and

$$\pi_{i_1a_1b_1\cdots b_{t-1}i_ta_t}^{t} = 0 \quad \text{if } a_t \notin A(i_t)$$

$$\sum_{i_1} \pi_{i_1a_1}^{t} = 0 \quad \text{if } a_t \notin A(i_t)$$

A policy R_1 for player I is a sequence of decision rules: $R_1 = (\pi^1, \pi^2, ..., \pi^t, ...)$. A decision rule ρ^t for player II at time t is a nonnegative function on $H_t \times B$ such that for every $(i_1, a_1, b_1, ..., b_{t-1}, i_t) \in H_t$

$$\overset{\text{bt}}{\overset{\text{i}}{\underset{1}{}^{a_{1}}}} = 0 \quad \text{if } b_{t} \notin B(i_{t})$$

and

$$\sum_{b_t} \rho_{i_1 a_1 b_1 \cdots b_{t-1} i_t b_t}^t = 1.$$

A policy R₂ for player II is a sequence of decision rules: R₂ = $(\rho^1, \rho^2, ..., \rho^t, ...)$. If the decision rules of a policy are independent of the histories and the time points, then the policy is said to be *stationary*; furthermore, if the decision rules are nonrandomized, then the policy is said to be *pure*.

For any pair (R_1, R_2) of policies for player I and player II, we denote by $p_{ijab}^t (R_1, R_2)$ the probability that-given that the system starts in state i - the system is at time t in state j and then the actions a and b are chosen by player I and player II respectively. Let $\{X_t, t = 1, 2, ...\}$, $\{Y_t, t = 1, 2, ...\}$ and $\{Z_t, t = 1, 2, ...\}$ be the sequences of random variables denoting the observed states, the actions chosen by player I and the actions chosen by player II respectively. Then, we can also write

$$p_{ijab}^{t}(R_{1}, R_{2}) = \mathbb{P}_{R_{1}, R_{2}}(x_{t} = j, Y_{t} = a, Z_{t} = b | x_{1} = i)$$

The expected reward in the t-th period, when the policies ${\rm R}^{}_1$ and ${\rm R}^{}_2$ are used and i is the initial state, is denoted by $v^{\rm t}_i({\rm R}^{}_1,{\rm R}^{}_2)$, i.e.

$$v_{i}^{t}(R_{1},R_{2}) := \sum_{j} \sum_{a} \sum_{b} \mathbb{P}_{R_{1},R_{2}}(x_{t}=j, y_{t}=a, z_{t}=b \mid x_{1}=i) \cdot r_{jab}$$

The expected total reward over an infinite horizon, when the policies R_1

and R_2 are used and i is the initial state, is denoted by $v_1(R_1, R_2)$, i.e.

$$v_{i}(R_{1},R_{2}) := \sum_{t=1}^{\infty} \sum_{j} \sum_{a} \sum_{b} \mathbb{P}_{R_{1}}, R_{2}(X_{t} = j, Y_{t} = a, Z_{t} = b | X_{1} = i) \cdot r_{jab}.$$

Using the above notation we assume that $\lim_{T\to\infty} \Sigma_{t=1}^{T} v_{i}^{t}(R_{1},R_{2})$ exists (possibly $+\infty$ or $-\infty$). For a Markov game with as utility function the total reward criterion we will use the name *TMG-model*. Player I wants to maximize his rewards and player II wants to minimize his payments. Hence, the aim is to find policies R_{1}^{*} and R_{2}^{*} such that

$$(6.1.1) \quad v(\mathsf{R}_1,\mathsf{R}_2^{\star}) \leq v(\mathsf{R}_1^{\star},\mathsf{R}_2^{\star}) \leq v(\mathsf{R}_1^{\star},\mathsf{R}_2) \quad \text{for all policies } \mathsf{R}_1,\mathsf{R}_2.$$

If R_1^* and R_2^* satisfy (6.1.1), then R_1^* and R_2^* are called *optimal policies* for player I and player II respectively. We are also interested in the value of $v(R_1^*, R_2^*)$ which will be denoted by val(TMG) and is called the value of the TMG-model or the value of the game.

In section 6.2 we consider the total reward criterion under the contraction assumption as introduced in section 3.4. It is well-known that in this model the value of the game exists. We will see that, in general, the value of the game does not lie in the same field as the field generated by the data r iab, p iab, i, j \in E, a \in A(i), b \in B(i). In the simplex method only the operations addition, subtraction, multiplication and division are used. Hence, in general, the value of the game cannot be computed by linear programming. If we assume that the transition probabilities only depend on one player, say player I, then it can be shown that the value as well as stationary optimal policies for both players can be computed by linear programming. For this reason we investigate the model in which one player controls the transition probabilities. We shall show that the value of the game is the smallest vector which satisfies a superharmonic property. Then, we can formulate a pair of dual linear programs. Stationary optimal policies as well as val(TMG) can be obtained from optimal solutions of these linear programs. Hence, we can present an algorithm to compute these quantities by linear programming.

Section 6.3 deals with the average reward criterion. The *expected average reward* over an infinite horizon, when the policies R_1 and R_2 are used and state i is the initial state, is denoted by $\phi_i(R_1,R_2)$ and defined by

$$\phi_{i}(R_{1},R_{2}) := \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{j} \sum_{a} \sum_{b} \mathbb{P}_{R_{1},R_{2}}(X_{t}=j,Y_{t}=a,Z_{t}=b \mid X_{1}=i) \cdot r_{jab}.$$

This model is called the AMG-model. The policies R_1^* and R_2^* are said to be optimal for player I and player II respectively if

$$(6.1.2) \qquad \phi(\mathsf{R}_1,\mathsf{R}_2^{\star}) \leq \phi(\mathsf{R}_1^{\star},\mathsf{R}_2^{\star}) \leq \phi(\mathsf{R}_1^{\star},\mathsf{R}_2) \qquad \text{for all policies } \mathsf{R}_1,\mathsf{R}_2.$$

If R_1^* and R_2^* are optimal policies, then $\phi(R_1^*, R_2^*)$ is the value of the game, denoted by val(AMG).

Also for the AMG-model, we shall assume that only one player controls the transition probabilities. We will present a pair of dual linear programming problems, and we will prove that stationary optimal policies as well as the value of the game can be obtained from optimal solutions of these linear programs. Hence, we can formulate a finite algorithm to construct stationary optimal policies. Furthermore, the linear programming approach provides a new proof for the existence of the value of a stochastic game in which one player controls the transition probabilities. We close section 6.3 by a description in which way the algorithm may be simplified in the unichain case.

LEMMA 6.1.1. Let f be a real-valued function defined on X×Y, where X and Y are given sets. Suppose that $x^* \in X$ and $y^* \in Y$ satisfy

 $f(x,y^*) \leq f(x^*,y^*) \leq f(x^*,y)$ for every $x \in X$ and $y \in Y$.

Then,

$$f(\mathbf{x}^{\star},\mathbf{y}^{\star}) = \sup_{\mathbf{x}\in\mathbf{X}} \inf_{\mathbf{y}\in\mathbf{Y}} f(\mathbf{x},\mathbf{y}) = \inf_{\mathbf{y}\in\mathbf{Y}} \sup_{\mathbf{x}\in\mathbf{X}} f(\mathbf{x},\mathbf{y}).$$

PROOF. Since

$$up_{\mathbf{x},\mathbf{y}}f(\mathbf{x},\mathbf{y}) \geq f(\mathbf{x},\mathbf{y})$$

for every
$$\mathbf{x} \in \mathbf{X}$$
 and $\mathbf{y} \in \mathbf{Y}$

we have

$$inf_{y \in Y} sup_{x \in X} f(x, y) \ge inf_{y \in Y} f(x, y) \quad \text{for every } x \in X.$$

Consequently,

(6.1.3)
$$inf_{y \in Y} sup_{x \in X} f(x, y) \ge sup_{x \in X} inf_{y \in Y} f(x, y).$$

Since $f(x,y^*) \le f(x^*,y^*)$ for every $x \in X$, it follows that $f(x^*,y^*) = \sup_{y \in Y} f(x,y^*)$. Hence, we can write

(6.1.4)
$$\inf_{\mathbf{y}\in\mathbf{Y}}\sup_{\mathbf{x}\in\mathbf{X}}\mathbf{f}(\mathbf{x},\mathbf{y}) \leq \sup_{\mathbf{x}\in\mathbf{X}}\mathbf{f}(\mathbf{x},\mathbf{y}^{*}) = \mathbf{f}(\mathbf{x}^{*},\mathbf{y}^{*}) \leq \mathbf{f}(\mathbf{x}^{*},\mathbf{y}), \quad \mathbf{y}\in\mathbf{Y}.$$

Similarly, we can derive that

(6.1.5)
$$sup_{x \in X} inf_{y \in Y} f(x, y) \ge inf_{y \in Y} f(x^*, y) = f(x^*, y^*) \ge f(x, y^*), x \in X.$$

Combining (6.1.3), (6.1.4) and (6.1.5) yields

$$f(\mathbf{x}, \mathbf{y}^{\star}) \leq \sup_{\mathbf{x} \in \mathbf{X}} \inf_{\mathbf{y} \in \mathbf{Y}} f(\mathbf{x}, \mathbf{y})$$

$$\leq \inf_{\mathbf{y} \in \mathbf{Y}} \sup_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}, \mathbf{y})$$

$$\leq f(\mathbf{x}^{\star}, \mathbf{y}) \quad \text{for every } \mathbf{x} \in \mathbf{X} \text{ and } \mathbf{y} \in \mathbf{Y}.$$

Hence,

$$f(\mathbf{x}^{*},\mathbf{y}^{*}) = \sup_{\mathbf{x}\in\mathbf{X}} \inf_{\mathbf{y}\in\mathbf{Y}} f(\mathbf{x},\mathbf{y}) = \inf_{\mathbf{y}\in\mathbf{Y}} \sup_{\mathbf{x}\in\mathbf{X}} f(\mathbf{x},\mathbf{y}),$$

completing the proof of the theorem. $\hfill\square$

COROLLARY 6.1.1. (i) If (R_1^*, R_2^*) is a pair of optimal policies for the TMG-model, then

$$\mathbf{v}(\mathbf{R}_{1}^{\star},\mathbf{R}_{2}^{\star}) = sup_{\mathbf{R}_{1}} inf_{\mathbf{R}_{2}} \mathbf{v}(\mathbf{R}_{1},\mathbf{R}_{2}) = inf_{\mathbf{R}_{2}} sup_{\mathbf{R}_{1}} \mathbf{v}(\mathbf{R}_{1},\mathbf{R}_{2})$$

(ii) If (R_1^*, R_2^*) is a pair of optimal policies for the AMG-model, then

$$\phi(\mathbf{R}_{1}^{\star},\mathbf{R}_{2}^{\star}) = sup_{\mathbf{R}_{1}} \inf_{\mathbf{R}_{2}} \phi(\mathbf{R}_{1},\mathbf{R}_{2}) = inf_{\mathbf{R}_{2}} sup_{\mathbf{R}_{1}} \phi(\mathbf{R}_{1},\mathbf{R}_{2}).$$

Let π^{∞} and ρ^{∞} be stationary policies for player I and player II respectively. We introduce the following notations:

$$\begin{split} r_{ia}(\rho) &:= \sum_{b} r_{iab} \rho_{ib} & a \in A(i), i \in E, \\ r_{ib}(\pi) &:= \sum_{a} r_{iab} \pi_{ia} & b \in B(i), i \in E, \\ r_{i}(\pi, \rho) &:= \sum_{a} \sum_{b} r_{iab} \pi_{ia} \rho_{ib} & i \in E, \\ p_{iaj}(\rho) &:= \sum_{b} p_{iabj} \rho_{ib} & a \in A(i), i, j \in E, \\ p_{ibj}(\pi) &:= \sum_{a} p_{iabj} \pi_{ia} & b \in B(i), i, j \in E, \\ p_{ij}(\pi, \rho) &:= \sum_{a} \sum_{b} p_{iabj} \pi_{ia} \rho_{ib} & i, j \in E. \end{split}$$

<u>REMARK 6.1.1</u>. Let ρ^{∞} be any stationary policy for player II. Consider the Markov decision problem $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$, where

$$\widetilde{\mathbf{E}} := \mathbf{E},$$

$$\widetilde{\mathbf{A}}(\mathbf{i}) := \mathbf{A}(\mathbf{i}), \qquad \mathbf{i} \in \widetilde{\mathbf{E}},$$

$$\widetilde{\mathbf{p}}_{\mathbf{i}\mathbf{a}\mathbf{j}} := \mathbf{p}_{\mathbf{i}\mathbf{a}\mathbf{j}}(\rho), \qquad \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}), \quad \mathbf{i}, \mathbf{j} \in \widetilde{\mathbf{E}},$$

$$\widetilde{\mathbf{r}}_{\mathbf{i}\mathbf{a}} := \mathbf{r}_{\mathbf{i}\mathbf{a}}(\rho), \qquad \mathbf{a} \in \widetilde{\mathbf{A}}(\mathbf{i}), \qquad \mathbf{i} \in \widetilde{\mathbf{E}}.$$

Let $R_1 = (\pi^1, \pi^2, ...)$ be any policy for player I. Then R_1 induces a policy $\widetilde{R}_1 = (\widetilde{\pi}^1, \widetilde{\pi}^2, ...)$ for the Markov decision problem $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$, where

$$\widetilde{\pi}^{t}_{i_{1}a_{1}\cdots a_{t-1}i_{t}a_{t}} := \mathbb{P}_{R_{1},\rho^{\infty}}(Y_{t}=a_{t}|X_{1}=i_{1},Y_{1}=a_{1},\cdots,Y_{t-1}=a_{t-1},X_{t}=i_{t})$$

for every $t \in \mathbb{N}$ and every history $(i_1, a_1, \dots, a_{t-1}, i_t)$. Then, by induction on t, it can easily be verified that

(6.1.6)
$$\mathbb{P}_{\widetilde{R}_{1}}(X_{1} = i_{1}, Y_{1} = a_{1}, \dots, Y_{t-1} = a_{t-1}, X_{t} = i_{t}, Y_{t} = a_{t}) = \mathbb{P}_{R_{1}}, \rho^{\infty}(X_{1} = i_{1}, Y_{1} = a_{1}, \dots, Y_{t-1} = a_{t-1}, X_{t} = i_{t}, Y_{t} = a_{t})$$

for every $t \in \mathbb{N}$, every history $(i_1, a_1, \dots, a_{t-1}, i_t)$ and every $a_t \in A(i_t)$. (6.1.6) implies that

$$\mathbb{P}_{\widetilde{R}_{1},\rho^{\infty}}(X_{1} = i_{1}, Y_{1} = a_{1}, Z_{1} = b_{1}, \dots, X_{t} = i_{t}, Y_{t} = a_{t}, Z_{t} = b_{t}) =$$
$$\mathbb{P}_{R_{1},\rho^{\infty}}(X_{1} = i_{1}, Y_{1} = a_{1}, Z_{t} = b_{1}, \dots, X_{t} = i_{t}, Y_{t} = a_{t}, Z_{t} = b_{t})$$

for every $(i_1, a_1, \dots, i_t, a_t, b_t)$, $t \in \mathbb{N}$. Therefore, the policies $(\widetilde{R}_1, \rho^{\widetilde{n}})$ and $(R_1, \rho^{\widetilde{n}})$ are equivalent for any utility function. However, the policy \widetilde{R}_1 is a feasible policy for the Markov decision problem $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$. If $\widetilde{v}(\widetilde{R}_1)$ and $\widetilde{\phi}(\widetilde{R}_1)$ denote the expected total reward and the expected average reward respectively in the Markov decision problem $(\widetilde{E}, \widetilde{A}, \widetilde{p}, \widetilde{r})$, then we have

1.
$$\vec{v}(\mathbf{R}_1) = v(\mathbf{R}_1, \rho^{\circ})$$

2. $\sup_{\mathbf{R}_1} v(\mathbf{R}_1, \rho^{\circ}) = \sup_{\pi} v(\pi^{\circ}, \rho^{\circ})$

3.
$$\phi(\tilde{R}_1) = \phi(R_1, \rho^{\infty})$$

4. $sup_{R_1} \phi(R_1, \rho^{\infty}) = sup_{\pi} \phi(\pi^{\infty}, \rho^{\infty})$

Furthermore, changing the roles of the players I and II, we obtain

5.
$$inf_{R_2} v(\pi^{\circ}, R_2) = inf_{\rho} v(\pi^{\circ}, \rho^{\circ})$$

6. $inf_{R_2} \phi(\pi^{\circ}, R_2) = inf_{\rho} \phi(\pi^{\circ}, \rho^{\circ})$.

6.2. TOTAL REWARD CRITERION

In this section we consider the TMG-model under the following contraction assumption (cf. assumption 3.4.1).

ASSUMPTION 6.2.1. There exists a vector μ >> 0 and a scalar $\alpha \in$ [0,1) such that

$$\sum_{j} p_{iabj} \mu_{j} \leq \alpha \mu_{i}, \quad a \in A(i), b \in B(i), i \in E.$$

Assumption 6.2.1 guarantees that the expected total reward is welldefined for any pair (R_1, R_2) of policies. The following theorem has been proved already in 1953 by SHAPLEY [1953] for the discounted Markov game, i.e. the TMG-model under assumption 6.2.1 with $\mu = e$. The extension of the theorem to general positive μ -vectors is straightforward (cf. VAN DER WAL & WESSELS [1977]).

THEOREM 6.2.1. There exist stationary optimal policies for both players.

The above theorem implies that val(TMG) exists. The next example will show that, in general, val(TMG) is not an element of the field generated by the data r_{iab} , p_{iabj} , $a \in A(i)$, $b \in B(i)$, $i,j \in E$. Hence, this val(TMG) cannot be computed as solution of a linear program which has all coefficients in this field. Since we study in this monograph linear programming methods, we shall not di cuss the general TMG-model, but a model with an additional assumption. Under this assumption, we can compute val(TMG) as well as stationary optimal policies by linear programming. The TMG-model under this additional assumption was first studied by PARTHASARATHY & RAGHAVAN [1977]. The following example is also due to them.

EXAMPLE 6.2.1. Consider the discounted TMG-model of figure 6.2.1 with α = 0.5. The interpretation of the figures for TMG-models is similar to

Let y := val(TMG). Since $v_2(R_1, R_2) = 0$ for all R_1, R_2 , we have $y_2 = 0$. It can be shown that y_1 is the value of the matrix game with pay-off matrix

$$\begin{pmatrix} 1 + \frac{1}{2}y_1 & 0 \\ 0 & 3 + \frac{1}{2}y_1 \end{pmatrix} .$$

Then, using results from the theory of matrix games (e.g. KARLIN [1959] p.50), one can find that

$$y_1 = \frac{(1 + \frac{1}{2}y_1) \cdot (3 + \frac{1}{2}y_1)}{(1 + \frac{1}{2}y_1) + (3 + \frac{1}{2}y_1)} ,$$

implying that $y_1 = \frac{1}{3}(-4+\sqrt{13})$. Hence, $[val(TMG)]_1$ is not an element of the field of the rational numbers, i.e. the field generated by the data of the above problem.

<u>DEFINITION 6.2.1</u>. A vector $y \in \mathbb{R}^{N}$ is said to be *TMG-superharmonic* if there exists a stationary policy ρ^{∞} for player II such that

$$y_i \ge r_{ia}(\rho) + \sum_j p_{iaj}(\rho) y_j, \quad a \in A(i), i \in E.$$

THEOREM 6.2.2. val(TMG) is the smallest TMG-superharmonic vector.

<u>PROOF</u>. Let $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ be stationary optimal policies for player I and player II respectively (theorem 6.2.1 implies the existence of such a pair of policies). If player II uses policy $(\rho^*)^{\infty}$, then the stochastic game may be interpreted as a Markov decision problem (see remark 6.1.1). Furthermore, since $(\rho^*)^{\infty}$ is optimal for player II, we have $sup_{R_1}v(R_1,(\rho^*)^{\infty}) = val(TMG)$. Hence, the TMD-model has TMD-value-vector val(TMG). Consequently, theorem 3.4.1 implies that val(TMG) is TMD-superharmonic, i.e.

$$[val(TMG)]_{i} \geq r_{ia}(\rho^{*}) + \sum_{j} p_{jaj}(\rho^{*})[val(TMG)]_{j}, a \in A(i), i \in E.$$

Therefore, val(TMG) is also TMG-superharmonic.

Suppose that y is another TMG-superharmonic vector with corresponding stationary policy ρ^{∞} . Then, it follows from definition 6.2.1 that $y \ge r(\pi^*, \rho) + P(\pi^*, \rho)y$. Assumption 6.2.1 and theorem 2.3.1 imply that $(I-P(\pi^*, \rho))^{-1} = \Sigma_{+-1}^{\infty} P^{t-1}(\pi^*, \rho)$. Hence,

$$y \geq \sum_{t=1}^{\infty} p^{t-1}(\pi^{*}, \rho) r(\pi^{*}, \rho) = v((\pi^{*})^{\infty}, \rho^{\infty}).$$

Since $(\pi^*)^{\infty}$ is optimal for player I, we have

$$y \ge v((\pi^*)^{\infty}, \rho^{\infty}) \ge v((\pi^*)^{\infty}, (\rho^*)^{\infty}) = val(TMG)$$

This completes the proof.

From theorem 6.2.2 it follows that val(TMG) is the optimal solution of the following nonlinear programming problem in which the objective function is linear and there are linear as well as quadratic constraints (cf. ROTHBLUM [1979]):

$$\begin{array}{ll} \mbox{minimize} & \sum_{j} \beta_{j} y_{j} \\ \mbox{subject to } y_{i} \geq \sum_{b} r_{iab} \rho_{ib} + \sum_{j} \sum_{b} p_{iabj} \rho_{ib} y_{j}, & a \in A(i), i \in E, \\ & \sum_{b} \rho_{ib} = 1 & i \in E, \\ & \rho_{ib} \geq 0 & , b \in B(i), i \in E, \end{array}$$

where $\beta_j > 0$, $j \in E$, are given numbers.

To obtain a linear program we assume that we have in the remaining part of this section the following assumption.

ASSUMPTION 6.2.2. The transition probabilities p_{iabj} , $j \in E$, do not depend on b for all $i \in E$, $a \in A(i)$.

Because of assumption 6.2.2, we will denote the transition probabilities p_{iabj} by p_{iaj} and the transition matrix $P(\pi,\rho)$ by $P(\pi)$. Under this assumption we obtain the following linear programming problem

$$(6.2.1) \quad \min\left\{\sum_{j}\beta_{j}y_{j} \middle| \begin{array}{c} \sum_{j}(\delta_{ij}-p_{iaj})y_{j} - \sum_{b}r_{iab}\rho_{ib} \geq 0, \quad a \in A(i), i \in E \\ \sum_{b}\rho_{ib} = 1 \quad , i \in E \\ \rho_{ib} \geq 0, \quad b \in B(i), i \in E \end{array}\right\}.$$

The dual linear programming problem is

(6.2.2)
$$max \begin{cases} \sum_{i} z_{i} \\ -\sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} \\ -\sum_{a} r_{iab} x_{ia} \\ x_{ia} \\ -\sum_{a} r_{iab} x_{ia} \\ x_{ia} \\ -\sum_{a} r_{iab} x_{i$$

<u>THEOREM 6.2.3</u>. Let (y^*, ρ^*) and (x^*, z^*) be optimal solutions of the linear programming problems (6.2.1) and (6.2.2) respectively. Define the stationary policy $(\pi^*)^{\infty}$ by

$$\pi_{ia}^{\star} := x_{ia}^{\star} / \sum_{a} x_{ia}^{\star}, \quad a \in A(i), i \in E.$$

Then, $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies for player I and player II respectively, and γ^* is the value of the game.

PROOF. Theorem 6.2.2 implies that y * is the value of the game. Since

$$\sum_{a} \mathbf{x}_{ja}^{*} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj} \mathbf{x}_{ia}^{*} \ge \beta_{j} > 0, \quad j \in E,$$

the stationary policy $(\pi^*)^{\infty}$ is well-defined. From the constraints of program (6.2.1) it follows that

$$(I-P(\pi))y^* \ge r(\pi,\rho^*)$$
 for every stationary policy π^{ω} .

Since $(I-P(\pi))^{-1} = \Sigma_{t=1}^{\infty} P^{t-1}(\pi)$, we get

(6.2.3)
$$y^* \ge \sum_{t=1}^{\infty} p^{t-1}(\pi) r(\pi, \rho^*) = v(\pi^{\infty}, (\rho^*)^{\infty})$$
 for every stationary policy π^{∞} .

 $\pi_{ia}^* > 0$ if and only if $x_{ia}^* > 0$ and, consequently, the complementary slackness property of linear programming (cf. corollary 1.3.1) implies that

$$\sum_{a} \pi_{ia}^{*} \cdot \{\sum_{j} (\delta_{ij} - p_{iaj}) y_{j}^{*}\} = \sum_{a} \pi_{ia}^{*} \cdot \sum_{b} r_{iab} \rho_{ib}^{*}, \quad i \in E.$$

.

196

Hence,

$$(I-P(\pi^{*}))y^{*} = r(\pi^{*}, \rho^{*}),$$

implying that

$$y^{*} = (I-P(\pi^{*}))^{-1}r(\pi^{*},\rho^{*}) = v((\pi^{*})^{\infty},(\rho^{*})^{\infty}).$$

Analogously to theorem 3.4.2, we can obtain

$$\mathbf{x}_{ia}^{\star} = \left[\beta^{\mathrm{T}}(\mathbf{I}-\mathbf{P}(\pi^{\star}))^{-1}\right]_{i} \cdot \pi_{ia}^{\star}, \quad \mathbf{a} \in \mathbf{A}(i), \ i \in \mathbb{E}.$$

Since the optima of (6.2.1) and (6.2.2) are equal, we get

$$\begin{split} & \sum_{j} \beta_{j} \mathbf{v}_{j} \left(\left(\pi^{*} \right)^{\infty}, \left(\rho^{*} \right)^{\infty} \right) = \sum_{j} \beta_{j} \mathbf{v}_{j}^{*} = \sum_{i} \mathbf{z}_{i}^{*} \leq \\ & \sum_{i} \sum_{a} \sum_{i} \mathbf{z}_{i}^{a} \mathbf{z}_{b} \mathbf{z}_{i}^{a} \mathbf{z}_{i}^{a} = \sum_{j} \beta_{j} \mathbf{v}_{j} \left(\left(\pi^{*} \right)^{\infty}, \rho^{\infty} \right) \quad \text{for every } \rho^{\infty}. \end{split}$$

Hence, $(\rho^*)^{\infty}$ is a stationary optimal policy in the Markov decision problem corresponding to policy $(\pi^*)^{\infty}$ for player I. Consequently,

(6.2.4)
$$y^* \leq v((\pi^*)^{\infty}, \rho^{\infty})$$
 for every stationary policy ρ^{∞} .

Since $\sup_{R_1} v(R_1, (\rho^*)^{\infty}) = \sup_{\pi} v(\pi^{\infty}, (\rho^*)^{\infty})$ and $\inf_{R_2} v((\pi^*)^{\infty}, R_2) = \inf_{\rho} v((\pi^*)^{\infty}, \rho^{\infty})$ (see remark 6.1.1), it follows from (6.2.3) and (6.2.4) that

$$v(R_{1},(\rho^{*})^{\infty}) \leq v((\pi^{*})^{\infty},(\rho^{*})^{\infty}) \leq v((\pi^{*})^{\infty},R_{2}) \quad \text{for all } R_{1},R_{2},$$

i.e. $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies for player I and player II respectively. \Box

<u>REMARK 6.2.1</u>. Since the optimal policies and the value of the game are obtained as optimal solutions of the linear programs (6.2.1) and (6.2.2), the components of the value of the game as well as the components of the optimal decision rules belong to the algebraic field generated by the rewards and the transition probabilities. This result is also shown by PARTHASARATHY & RAGHAVAN [1978]. <u>REMARK 6.2.2</u>. In this remark we will show that the optimality of the policies $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$, which were defined in theorem 6.2.3, can also be established without the use of theorem 6.2.1. Then, we have a constructive proof for the existence of the value of the game and the existence of stationary optimal policies for the two players. This proof only needs results from the theory of linear programming and the theory of Markov decision processes. Consider the linear programming problem (6.2.2). By theorem 3.4.8,

is feasible and bounded, and it follows from the constraints of problem (6.2.2) that this linear program has a finite optimal solution. Again, let (y^*, ρ^*) and (x^*, z^*) be optimal solutions of the linear programs (6.2.1) and (6.2.2) respectively. Similarly as in the proof of theorem 6.2.3 it can be shown that

$$\mathbf{v}(\mathbf{R}_{1},(\boldsymbol{\rho}^{\star})^{\infty}) \leq \mathbf{y}^{\star} = \mathbf{v}((\boldsymbol{\pi}^{\star})^{\infty},(\boldsymbol{\rho}^{\star})^{\infty}) \leq \mathbf{v}((\boldsymbol{\pi}^{\star})^{\infty},\mathbf{R}_{2})$$

for all policies R_1, R_2 , i.e. $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies and γ^* is the value of the game.

ALGORITHM XXVII for the construction of the value of the game and of stationary optimal policies for the two players in a contracting TMG-model in which one player controls the transition probabilities.

<u>step 1</u>: Choose the numbers β_j such that $\beta_j > 0$, $j \in E$. <u>step 2</u>: Compute optimal solutions (y^*, ρ^*) and (x^*, z^*) of the pair of dual linear programming problems

$$min \begin{cases} \sum_{j} \beta_{j} Y_{j} & \sum_{j} (\delta_{ij} - p_{iaj}) Y_{j} - \sum_{b} r_{iab} \rho_{ib} \geq 0, \quad a \in A(i), i \in E \\ & \sum_{b} \rho_{ib} = 1, \quad i \in E \\ & \rho_{ib} \geq 0, \quad b \in B(i), i \in E \end{cases}$$

and

respectively.

step 3: val(TMG) := y^* ;

 $(\rho^*)^{\infty}$ is an optimal policy for player II; $(\pi^*)^{\infty}$, where $\pi^*_{ia} := x^*_{ia}/\Sigma_a x^*_{ia}$, a ϵ A(i), i ϵ E, is an optimal policy for player I.

For any stationary policy π^{∞} for player I, we define

$$\begin{aligned} \mathbf{x}_{ia}(\pi) &:= \left[\beta^{\mathrm{T}} \left(\mathbf{I} - \mathbf{P}(\pi)\right)^{-1}\right]_{i} \cdot \pi_{ia} , & \mathbf{a} \in \mathbf{A}(i), i \in \mathbf{E}, \\ \mathbf{z}_{i}(\pi) &:= \min_{\mathbf{b} \in \mathbf{B}(i)} \mathbf{r}_{ib}(\pi) \cdot \sum_{\mathbf{a}' ia} (\pi), & i \in \mathbf{E}. \end{aligned}$$

The relation between the stationary policies and the feasible solutions of program (6.2.2) is given in the following theorem.

THEOREM 6.2.4.

(i) $(x(\pi), z(\pi))$ is a feasible solution of the linear programming problem (6.2.2) with

$$\sum_{\mathbf{i}} \mathbf{z}_{\mathbf{i}}(\pi) := \min_{\rho} \sum_{\mathbf{j}} \beta_{\mathbf{j}} \mathbf{v}_{\mathbf{j}}(\pi^{\infty}, \rho^{\infty}) \,.$$

(ii) If (x,z) is a feasible solution of problem (6.2.2), then x = $x(\pi)$ and $z \ \le \ z(\pi) \ , \ where$

$$\pi_{ia} := x_{ia} / \sum_{a} x_{ia}, \quad a \in A(i), i \in E.$$

PROOF.

(i) Theorem 3.4.2 implies that $\sum_{i=a}^{\infty} (\delta_{ij} - p_{iaj}) x_{ia}(\pi) = \beta_j$, $j \in E$, and $x_{ia}(\pi) \ge 0$, $a \in A(i)$, $i \in E$. Furthermore, we have

$$z_{i}(\pi) \leq r_{ib}(\pi) \cdot \sum_{a} x_{ia}(\pi) = \sum_{a} r_{iab} x_{ia}(\pi), \quad b \in B(i), i \in E.$$

Hence, $(\mathbf{x}(\pi), \mathbf{z}(\pi))$ is a feasible solution of program (6.2.2). Let ρ^{∞} be any stationary policy for player II. Then, we can write

$$(6.2.5) \qquad \sum_{i} z_{i}(\pi) = \sum_{i} (\sum_{b} \rho_{ib}) z_{i}(\pi)$$
$$\leq \sum_{i} \sum_{b} \sum_{a} r_{iab} \rho_{ib} x_{ia}(\pi) = \sum_{j} \beta_{j} v_{j}(\pi^{\circ}, \rho^{\circ}).$$

Define the stationary policy $\widetilde{\rho}^\infty$ by

$$\widetilde{\rho}_{ib} := \begin{cases} 1 & b = b_i \\ 0 & b \neq b_i \end{cases}$$

where b satisfies

$$z_{i}(\pi) = r_{ib_{i}}(\pi) \cdot \sum_{a} x_{ia}(\pi), \quad i \in E.$$

Thus,

(6.2.6)
$$\sum_{i} z_{i}(\pi) = \sum_{i} \sum_{b} \sum_{a} r_{ib}(\pi) \cdot \widetilde{\rho}_{ib} \cdot x_{ia}(\pi) = \sum_{j} \beta_{j} v_{j}(\pi^{\infty}, \widetilde{\rho}^{\infty})$$

From (6.2.5) and (6.2.6), it follows that

$$\sum_{\mathbf{i}} \mathbf{z}_{\mathbf{i}}(\pi) = min_{\rho} \sum_{\mathbf{j}} \beta_{\mathbf{j}} \mathbf{v}_{\mathbf{j}}(\pi^{\infty}, \rho^{\infty}) \,.$$

(ii) Let (x,z) be any feasible solution of problem (6.2.2). Theorem 3.4.2 implies that $x = x(\pi)$. Hence, z satisfies

$$\mathbf{z}_{i} \leq \sum_{a} \mathbf{r}_{iab} \mathbf{x}_{ia}(\pi) = \sum_{a} \mathbf{r}_{iab} \pi_{ia} \cdot \sum_{a} \mathbf{x}_{ia}(\pi) = \mathbf{r}_{ib}(\pi) \cdot \sum_{a} \mathbf{x}_{ia}(\pi)$$

for every $b \in B(i)$ and $i \in E$. Consequently,

$$z_{i} \leq min_{b\in B(i)}r_{ib}(\pi) \cdot \sum_{a}x_{ia}(\pi) = z_{i}(\pi), \quad i \in E,$$

which completes the proof of the theorem. $\hfill\square$

<u>REMARK 6.2.3</u>. The linear programming approach is also applicable to solve the *constrained Markov game*, where the constraints are imposed on the expected state-action frequencies for the player who controls the transitions. The analysis is analogous to the treatment of the constrained Markovian decision problem of section 3.3 (cf. HORDIJK & KALLENBERG [1981e]).

6.3. AVERAGE REWARD CRITERION

In this section we deal with the AMG-model. As in chapter 4, we assume that the summation of the transition probabilities equals 1, i.e. $\sum_{j} p_{iabj} = 1$ for every $i \in E$, $a \in A(i)$, $b \in B(i)$. In the AMG-model, in general, there do not exist stationary optimal policies as shown in the following example due to GILLETTE [1957].

EXAMPLE 6.3.1. Suppose that the AMG-model corresponding to figure 6.3.1 has stationary optimal policies $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ for player I and player II respectively. Then,

 $\phi(\pi^{\infty},(\rho^{*})^{\infty}) \leq \phi((\pi^{*})^{\infty},(\rho^{*})^{\infty}) \leq \phi((\pi^{*})^{\infty},\rho^{\infty}) \qquad \text{Figure 6.3.1}$

for all stationary policies $\pi^{\widetilde{}}$ and $\rho^{\widetilde{}}.$ Hence (cf. corollary 6.1.1),

$$sup_{\pi}inf_{\rho}\phi(\pi^{\infty},\rho^{\infty}) = inf_{\rho}sup_{\pi}\phi(\pi^{\infty},\rho^{\infty}).$$

However, it can be verified that the model of figure 6.3.1 satisfies

$${}^{\mathbf{L}}_{\mathbf{z}} = sup_{\pi} inf_{\rho} \phi_{1}(\pi^{\infty},\rho^{\infty}) < inf_{\rho} sup_{\pi} \phi_{1}(\pi^{\infty},\rho^{\infty}) = 1.$$

<u>REMARK 6.3.1</u>. BLACKWELL & FERGUSON [1968] have shown that for the model of figure 6.3.1

$$sup_{R_1}inf_{R_2}\phi_1(R_1,R_2) = inf_{R_2}sup_{R_1}\phi_1(R_1,R_2) = \frac{1}{2}.$$

Moreover, they have proved that there do not exist optimal policies for the two players; only player II has an optimal policy. Recently, MONASH [1979] and MERTENS & NEYMAN [1980] have shown that any AMG-model satisfies the minimax theorem, i.e.

$$sup_{\mathsf{R}_{1}} inf_{\mathsf{R}_{2}} \phi(\mathsf{R}_{1},\mathsf{R}_{2}) = inf_{\mathsf{R}_{2}} sup_{\mathsf{R}_{1}} \phi(\mathsf{R}_{1},\mathsf{R}_{2}).$$

DEFINITION 6.3.1. A vector $\psi \in \mathbb{R}^N$ is said to be *AMG-superharmonic* if there exist a vector $t \in \mathbb{R}^N$ and a stationary policy ρ^{∞} for player II such that

$$\begin{split} \psi_{i} & \geq \sum_{j} p_{iaj}(\rho) \psi_{j} , \quad a \in A(i), i \in E, \\ \psi_{i} + t_{i} &\geq r_{ia}(\rho) + \sum_{j} p_{iaj}(\rho) t_{j}, \quad a \in A(i), i \in E. \end{split}$$

THEOREM 6.3.1. If there exist stationary optimal policies for both players, then val(AMG) is the smallest AMG-superharmonic vector.

<u>PROOF</u>. Suppose that $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies for the two players. Since player II uses a stationary policy, the AMG-model may be interpreted as an AMD-model with rewards $r_{ia}(\rho^*)$ and transition probabilities $p_{iaj}(\rho^*)$ (see remark 6.1.1). Because $(\rho^*)^{\infty}$ is an optimal policy for player II, we have furthermore, $sup_{R1}\phi(R_1,(\rho^*)^{\infty}) = val(AMG)$. Consequently, val(AMG) is the AMD-value-vector in the corresponding AMDmodel. Theorem 4.2.2 implies that val(AMG) is AMD-superharmonic. Hence, val(AMG) is also AMG-superharmonic with corresponding stationary policy $(\rho^*)^{\infty}$ for player II.

Suppose that ψ is also AMG-superharmonic with corresponding vector t and policy ρ^{∞} . Then, definition 6.3.1 implies that

$$\psi \geq P^{*}(\pi^{*},\rho)\psi$$
 and $\psi \geq r(\pi^{*},\rho) + (I-P(\pi^{*},\rho))t$.

Hence, we get

$$\psi \geq P^{*}(\pi^{*},\rho) \{ r(\pi^{*},\rho) + (I-P(\pi^{*},\rho))t \} =$$

$$P^{*}(\pi^{*},\rho)r(\pi^{*},\rho) = \phi((\pi^{*})^{\infty},\rho^{\infty}).$$

Since the policy $(\pi^*)^{\infty}$ is optimal for player I, it follows that

$$\psi \geq \phi((\pi^*)^{\infty}, \rho^{\infty}) \geq \phi((\pi^*)^{\infty}, (\rho^*)^{\infty}) = val(AMG),$$

i.e. val(AMG) is the smallest AMG-superharmonic vector.

From theorem 6.3.1 it follows that, if there are stationary optimal policies for both players, then the value of the game can be computed as the optimal solution of the following mathematical programming problem

$$\min \left\{ \sum_{j} \beta_{j} \psi_{j} \middle| \begin{array}{l} \sum_{j} (\delta_{ij} - \sum_{b} p_{iabj} \rho_{ib}) \psi_{j} &\geq 0, \ a \in A(i), \ i \in E \\ \psi_{i} + \sum_{j} (\delta_{ij} - \sum_{b} p_{iabj} \rho_{ib}) t_{j} - \sum_{b} r_{iab} \rho_{ib} &\geq 0, \ a \in A(i), \ i \in E \\ \sum_{b} \rho_{ib} &= 1, \qquad i \in E \\ \rho_{ib} &\geq 0, \ b \in B(i), \ i \in E \end{array} \right\}$$

where $\beta_j > 0$, $j \in E$, are given numbers.

REMARK 6.3.2. In BEWLEY & KOHLBERG [1978] sufficient conditions can be found for the existence of stationary optimal policies in an AMG-model.

201 .

An example of such a condition is the case that assumption 6.3.1, which is stated below, is satisfied.

Since we are interested in the computation of stationary optimal policies by linear programming, we have to impose an assumption to our model. Similarly as in the previous section for the TMG-model, we will assume that the transition probabilities depend only on the maximizing player. The following assumption holds for the remaining part of this section.

<u>ASSUMPTION 6.3.1</u>. The transition probabilities p_{iabj} , $j \in E$, do not depend on b for all $i \in E$, $a \in A(i)$.

We will denote the transition probabilities p_{iabj} by p_{iaj} and the transition matrix $P(\pi,\rho)$ by $P(\pi)$. Theorem 6.3.1, remark 6.3.2 and assumption 6.3.1 imply that val(AMG) can be found as the optimal solution of the following linear programming problem:

$$(6.3.1) \quad \min\left\{\sum_{j}\beta_{j}\psi_{j} \middle| \begin{array}{l} \sum_{j}(\delta_{ij}-P_{iaj})\psi_{j} &\geq 0, a \in A(i), i \in E \\ \psi_{i}+\sum_{j}(\delta_{ij}-P_{iaj})t_{j}-\sum_{b}r_{iab}\rho_{ib} &\geq 0, a \in A(i), i \in E \\ \sum_{b}\rho_{ib} &= 1, i \in E \\ \rho_{ib} &\geq 0, b \in B(i), i \in E \end{array}\right\}$$

The dual linear programming problem is

$$(6.3.2) \quad \max\left\{\sum_{i} z_{i} \left| \begin{array}{c} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= 0, \quad j \in E \\ \sum_{a} x_{ja} &+ \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) y_{ia} &= \beta_{j}, \quad j \in E \\ - \sum_{a} r_{iab} x_{ia} &+ z_{i} \leq 0, \quad b \in B(i), i \in E \\ & x_{ia}, y_{ia} \geq 0, \quad a \in A(i), i \in E \end{array} \right\}.$$

<u>THEOREM 6.3.2</u>. Let (ψ^*, t^*, ρ^*) and (x^*, y^*, z^*) be optimal solutions of the linear programming problems (6.3.1) and (6.3.2) respectively. Define the stationary policy $(\pi^*)^{\infty}$ by

$$\pi_{ia}^{*} := \begin{cases} x_{ia}^{*} / \sum_{a} x_{ia}^{*}, & a \in A(i), i \in E_{x}^{*} \\ y_{ia}^{*} / \sum_{a} y_{ia}^{*}, & a \in A(i), i \in E \setminus E_{x}^{*}. \end{cases}$$

Then, $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies for player I and player II respectively, and ψ^* is the value of the game.

<u>PROOF</u>. From theorem 6.3.1 and BEWLEY & KOHLBERG [1978] it follows that ψ^* is the value of the game. The constraints of program (6.3.2) imply that

$$\sum_{a} x_{ja}^{*} + \sum_{a} y_{ja}^{*} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj} y_{ia}^{*} \ge \beta_{j} > 0, \quad j \in E.$$

Hence, the policy $(\pi^*)^{\infty}$ is well-defined. The constraints of program (6.3.1) imply for any policy π^{∞}

$$\psi^* \ge P(\pi)\psi^*$$
 and $\psi^* \ge r(\pi, \rho^*) - (I-P(\pi))t^*$.

Therefore, we obtain

(6.3.3)
$$\psi^* \ge P^*(\pi)\psi^* \ge P^*(\pi)r(\pi,\rho^*) - P^*(\pi)(I-P(\pi))t^* = \phi(\pi^{\infty},(\rho^*)^{\infty})$$

for any policy π^{∞} . Since $\pi^{*}_{ia} > 0$ if and only if

$$\begin{cases} x_{ia}^{*} > 0 & \text{for } a \in A(i) \text{ and } i \in E_{x}^{*} \\ \\ y_{ia}^{*} > 0 & \text{for } a \in A(i) \text{ and } i \in E \setminus E_{x}^{*}, \end{cases}$$

if follows from the complementary slackness property of linear programming (cf. corollary 1.3.1), that

$$\begin{split} & \sum_{a} \pi_{ia}^{*} \cdot \{\sum_{j} (\delta_{ij} - p_{iaj}) \psi_{j}^{*}\} \\ & = 0, \quad i \in E \setminus E_{x^{*}}, \\ & \sum_{a} \pi_{ia}^{*} \cdot \{\psi_{i}^{*} + \sum_{j} (\delta_{ij} - p_{iaj}) t_{j}^{*} - \sum_{b} r_{iab} \rho_{ib}^{*}\} = 0, \quad i \in E_{x^{*}}. \end{split}$$

Suppose that

$$\pi_{\mathrm{ka}_{k}}^{*} \cdot \{\sum_{j} (\delta_{kj} - p_{\mathrm{ka}_{k}j}) \psi_{j}^{*}\} \neq 0$$

for some $k \in E_{x^*}$ and $a_k \in A(k)$. Then, the definition of π^* and the constraints of program (6.3.1) imply that

$$x_{ka_{k}}^{*} \cdot \{ \sum_{j} (\delta_{kj} - p_{ka_{k}j}) \psi_{j}^{*} \} > 0.$$

204

Hence, we get

$$\sum_{i}\sum_{a}x_{ia}^{*}\cdot\{\sum_{j}(\delta_{ij}-p_{iaj})\psi_{j}^{*}\}>0,$$

which is contradictory to

$$\begin{split} & \sum_{i} \sum_{a} \mathbf{x}_{ia}^{*} \cdot \{ \sum_{j} (\delta_{ij} - \mathbf{p}_{iaj}) \psi_{j}^{*} \} = \\ & = \sum_{j} \{ \sum_{i} \sum_{a} (\delta_{ij} - \mathbf{p}_{iaj}) \mathbf{x}_{ia}^{*} \} \psi_{j}^{*} = 0. \end{split}$$

Therefore, we have

$$\begin{cases} \sum_{a} \pi_{ia}^{*} \cdot \{\sum_{j} (\delta_{ij} - p_{iaj}) \psi_{j}^{*}\} &= 0, \quad i \in E, \\ \sum_{a} \pi_{ia}^{*} \cdot \{\psi_{i}^{*} + \sum_{j} (\delta_{ij} - p_{iaj}) t_{j}^{*} - \sum_{b} r_{iab} \rho_{ib}^{*}\} &= 0, \quad i \in E_{x}^{*} \end{cases}$$

1. Å

i.e.

$$\begin{cases} [(I-P(\pi^{*}))\psi^{*}]_{i} = 0, \quad i \in E, \\ \psi^{*}_{i} + [(I-P(\pi^{*}))t^{*}]_{i} = r_{i}(\pi^{*},\rho^{*}), \quad i \in E_{x^{*}}. \end{cases}$$

Since E is the set of recurrent states in the Markov chain induced by $P(\pi^*)$ (see proposition 4.3.3), we obtain

(6.3.4)
$$\psi^* = P^*(\pi^*)\psi^* = P^*(\pi^*)r(\pi^*,\rho^*) = \phi((\pi^*)^{\infty},(\rho^*)^{\infty}).$$

Let $\mathbf{x}_{i}^{\star} := \Sigma_{a} \mathbf{x}_{ia}^{\star}$, $i \in E$. Suppose that $\mathbf{E}_{1}, \mathbf{E}_{2}, \dots, \mathbf{E}_{m}$ are the ergodic sets and that F is the set of transient states in the Markov chain induced by $P(\pi^{\star})$. Let $\mathbf{n}_{k}^{} := |\mathbf{E}_{k}^{}|$, $k = 1, 2, \dots, m$. Then, we shall show that

$$(\mathbf{x}^{\star})^{\mathrm{T}} = \gamma^{\mathrm{T}} \mathbb{P}^{\star} (\mathbb{R}^{\star}),$$

for certain vector γ >> 0, where

(6.3.5)
$$\gamma_{\ell} := \begin{cases} \frac{1}{n} , \ell \in F \\ \frac{1}{n_{k}} \sum_{j \in E_{k}} \{x_{j}^{*} - \frac{1}{n} \sum_{i \in F} p_{ij}^{*}(\pi^{*})\}, \ell \in E_{k}, k = 1, 2, \dots, m \end{cases}$$

(choose n sufficiently large such that $\gamma >> 0) \, .$ Then, definition (6.3.5) implies that

$$(6.3.6) \qquad \sum_{\ell} \sum_{j \in \mathbf{E}_{k}} \gamma_{\ell} p_{\ell j}^{\star}(\pi^{\star}) = \\ = \sum_{\ell \in \mathbf{F}} \sum_{j \in \mathbf{E}_{k}} \gamma_{\ell} p_{\ell j}^{\star}(\pi^{\star}) + \sum_{i \in \mathbf{E}_{k}} \sum_{j \in \mathbf{E}_{k}} \gamma_{i} p_{i j}^{\star}(\pi^{\star}) \\ = \frac{1}{n} \sum_{\ell \in \mathbf{F}} \sum_{j \in \mathbf{E}_{k}} p_{\ell j}^{\star}(\pi^{\star}) + \sum_{i \in \mathbf{E}_{k}} \gamma_{i} \\ = \frac{1}{n} \sum_{\ell \in \mathbf{F}} \sum_{j \in \mathbf{E}_{k}} p_{\ell j}^{\star}(\pi^{\star}) + \sum_{j \in \mathbf{E}_{k}} \{\mathbf{x}_{j}^{\star} - \frac{1}{n} \sum_{\ell \in \mathbf{F}} p_{\ell j}^{\star}(\pi^{\star})\} \\ = \sum_{j \in \mathbf{E}_{k}} \mathbf{x}_{j}^{\star}, \quad k = 1, 2, \dots, m.$$

From program (6.3.2) and the definition of π^* it follows that $(x^*)^T = (x^*)^T P(\pi^*)$ and, consequently, $(x^*)^T = (x^*)^T P^*(\pi^*)$. Because, by proposition 4.3.3, $x_i^* = 0$ for all $i \in F$, and, by theorem 2.3.2, $p_{\cdot i}^*(\pi^*) = 0$ for all $i \in F$, we have

(6.3.7)
$$x_{i}^{*} = (\gamma^{T} P^{*}(\pi^{*}))_{i} = 0, \quad i \in F.$$

For any $i \in E_k$, we obtain using (6.3.6)

$$(6.3.8) \qquad \mathbf{x}_{i}^{\star} = \sum_{j} \mathbf{x}_{j}^{\star} \mathbf{p}_{ji}^{\star}(\pi^{\star}) = \sum_{j \in \mathbf{E}_{k}} \mathbf{x}_{j}^{\star} \mathbf{p}_{ji}^{\star}(\pi^{\star}) = \mathbf{p}_{ii}^{\star}(\pi^{\star}) \cdot \sum_{j \in \mathbf{E}_{k}} \mathbf{x}_{j}^{\star} = \\ = \mathbf{p}_{ii}^{\star}(\pi^{\star}) \cdot \sum_{\ell} \sum_{j \in \mathbf{E}_{k}} \gamma_{\ell} \mathbf{p}_{\ell j}^{\star}(\pi^{\star}) = \sum_{\ell} \gamma_{\ell} \cdot \sum_{j \in \mathbf{E}_{k}} \mathbf{p}_{\ell j}^{\star}(\pi^{\star}) \cdot \mathbf{p}_{ji}^{\star}(\pi^{\star}) = \\ = \sum_{\ell} \gamma_{\ell} \cdot \mathbf{p}_{\ell i}^{\star}(\pi^{\star}) = (\gamma^{T} \mathbf{p}^{\star}(\pi^{\star}))_{i}.$$

Hence, (6.3.7) and (6.3.8) imply that $(\mathbf{x}^*)^T = \gamma^T p^*(\pi^*)$. Again using the complementary slackness property yields

$$\sum_{i}\sum_{b}\rho_{ib}^{*}(z_{i}^{*}-\sum_{a}r_{iab}x_{ia}^{*}) = 0.$$

Therefore,

(6.3.9)
$$\sum_{i} z_{i}^{\star} = \sum_{i} \sum_{b} \rho_{ib}^{\star} z_{i}^{\star} = \sum_{i} \sum_{b} \sum_{a} r_{iab} \rho_{ib}^{\star} \pi_{ia}^{\star} \cdot \sum_{a} x_{ia}^{\star}$$
$$= \sum_{i} (\gamma^{T} p^{\star} (\pi^{\star}))_{i} r_{i} (\pi^{\star}, \rho^{\star}) = \gamma^{T} \phi ((\pi^{\star})^{\infty}, (\rho^{\star})^{\infty})$$

For any stationary policy ρ^{∞} for player II, we have in view of the constraints of the linear program (6.3.2)

$$(6.3.10) \qquad \sum_{i} z_{i}^{\star} = \sum_{i} \sum_{b} \rho_{ib} z_{i}^{\star} \leq \sum_{i} \sum_{b} \sum_{a} r_{iab} \rho_{ib} \pi_{ia}^{\star} \cdot \sum_{a} x_{ia}^{\star} = \gamma^{T} \phi((\pi^{\star})^{\infty}, \rho^{\infty}).$$

If the policy $(\pi^*)^{\infty}$ is used by player I, then the AMG-model may be viewed as an AMD-model (cf. remark 6.1.1). Since $\gamma >> 0$, it follows from (6.3.9), (6.3.10) and the property that an optimal policy maximizes the rewards simultaneously for all initial states, that

$$(6.3.11) \qquad \phi((\pi^*)^{\infty},(\rho^*)^{\infty}) \leq \phi((\pi^*)^{\infty},\rho^{\infty}) \qquad \text{for every stationary policy } \rho^{\infty}.$$

Since $sup_{R_1}\phi(R_1,(\rho^*)^{\infty}) = sup_{\pi}\phi(\pi^{\infty},(\rho^*)^{\infty})$ and $inf_{R_2}\phi((\pi^*)^{\infty},R_2) = inf_{\rho}\phi((\pi^*)^{\infty},\rho^{\infty})$ (see remark 6.1.1), it follows from (6.3.3), (6.3.4) and (6.3.11) that

$$\phi\left(\mathtt{R}_{1},\left(\boldsymbol{\rho}^{\star}\right)^{\infty}\right) \leq \phi\left(\left(\boldsymbol{\pi}^{\star}\right)^{\infty},\left(\boldsymbol{\rho}^{\star}\right)^{\infty}\right) \leq \phi\left(\left(\boldsymbol{\pi}^{\star}\right)^{\infty},\mathtt{R}_{2}\right)$$

for all R_1, R_2 , i.e. $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies for player I and player II respectively.

<u>REMARK 6.3.3</u>. Recently, we learned that another proof of the above theorem was developed by VRIEZE [1980] at the same time.

<u>REMARK 6.3.4</u>. We can show the optimality of the stationary policies $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$, defined in theorem 6.3.2, without using the results of BEWLEY & KOHLBERG [1978]. This provides a constructive proof for the existence of the value of the game and of stationary optimal policies.

Consider the linear programming problem (6.3.2). Since any feasible solution (x,y,z) satisfies

$$\sum_{i} z_{i} \leq \sum_{i} \sum_{a} r_{iab} x_{ia} \leq M \cdot \sum_{i} \sum_{a} x_{ia} = M \cdot \sum_{j} \beta_{j},$$

where $M := \max_{i,a,b} r_{iab}$, the linear program (6.3.2) has a finite optimum. Using the results of chapter 4, it is obvious that this linear program is also feasible. Hence, the pair of dual linear programming problems (6.3.1) and (6.3.2) has finite optimal solutions, say (ψ^*, t^*, ρ^*) and (x^*, y^*, z^*) respectively. In the proof of theorem 6.3.2 we have shown that

$$\phi(\mathbf{R}_{1},(\boldsymbol{\rho}^{\star})^{\infty}) \leq \psi^{\star} = \phi((\boldsymbol{\pi}^{\star})^{\infty},(\boldsymbol{\rho}^{\star})^{\infty}) \leq \phi((\boldsymbol{\pi}^{\star})^{\infty}),\mathbf{R}_{2})$$

206

for all policies R_1 and R_2 , i.e. $(\pi^*)^{\infty}$ and $(\rho^*)^{\infty}$ are stationary optimal policies for player I and player II respectively, and ψ^* is the value of the game.

ALGORITHM XXVIII for the construction of val(AMG) and of stationary optimal policies for the two players in an AMG-model in which one player controls the transition probabilities (multichain case).

<u>step 1</u>: Take the numbers β_j such that $\beta_j > 0$, $j \in E$, and $\sum_j \beta_j = 1$. <u>step 2</u>: Compute optimal solutions (ψ^*, t^*, ρ^*) and (x^*, y^*, z^*) of the pair of dual linear programming problems

and

respectively.

step 3: val(AMG) := ψ^* ;

 $(\rho^*)^{\infty}$ is an optimal policy for player II;

$$(\pi^{\star})^{\infty}, \text{ where } \pi^{\star}_{ia} := \begin{cases} x_{ia}^{\star} / \sum_{a} x_{ia}^{\star}, & a \in A(i), i \in E_{x}^{\star} \\ y_{ia}^{\star} / \sum_{a} y_{ia}^{\star}, & a \in A(i), i \in E \setminus E_{x}^{\star}, \end{cases}$$

is an optimal policy for player I.

<u>REMARK 6.3.5</u>. From the linear programming approach it also follows that the value and the optimal stationary policies lie in the same ordered field as the data. This property was already shown by PARTHASARATY & RAGHAVAN [1978]. The first finite algorithm to compute stationary optimal policies was developed by FILAR & RAGHAVAN [1979]. Their algorithm seems to have a prohibitive amount of computations.

<u>REMARK 6.3.6</u>. Analogously to the results of section 4.7 the constrained Markov game can be solved by linear programming. An extensive treatment of this subject can be found in HORDIJK & KALLENBERG [1981f].

We close this section with the *unichain case*, i.e. when assumption 4.6.2 is satisfied. For this case we propose algorithm XXIX. In theorem 6.3.3 we will prove that this algorithm finds stationary optimal policies for both players as well as the value of the game.

ALGORITHM XXIX for the construction of val(AMG) and of stationary optimal policies for the two players in an AMG-model in which one player controls the transition probabilities (unichain case).

<u>step 1</u>: Compute optimal solutions (ψ^*, t^*, ρ^*) and (x^*, z^*) of the pair of dual linear programming problems

(6.3.12)
$$\min \left\{ \psi \middle| \begin{array}{c} \psi + \sum_{j} (\delta_{i,j} - p_{i,i,j}) t_{j} - \sum_{b} r_{i,ab} \rho_{i,b} \ge 0, \quad a \in A(i), i \in E \\ \sum_{b} \rho_{i,b} = 1, \quad i \in E \\ \rho_{i,b} \ge 0, \quad b \in B(i), i \in E \end{array} \right\}$$

and

$$(6.3.13) \quad max \begin{cases} \sum_{i} z_{i} \\ \sum_{i} z_{i} \end{cases} \begin{vmatrix} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} &= 0, & j \in E \\ \sum_{i} \sum_{a} x_{ia} &= 1 & \\ -\sum_{a} z_{iab} x_{ia} &+ z_{i} \leq 0, & b \in B(i), i \in E \\ & x_{ia} \geq 0, & a \in A(i), i \in E \end{cases}$$

respectively.

step 2: val(AMG) := $\psi^* \cdot e$;

 $\left(\rho^{\star}\right)^{\infty}$ is an optimal policy for player II;

$$(\pi^{\star})^{\infty}$$
, where $\pi_{ia}^{\star} := \begin{cases} x_{ia}^{\star} / \sum_{a}^{\star} x_{ia}^{\star}, & a \in A(i), i \in E \\ arbitrarily, & a \in A(i), i \in E \setminus E \\ x^{\star} \end{cases}$

is an optimal policy for player I.

THEOREM 6.3.3. Suppose that we have a unichained AMG-model. Then, algorithm XXIX gives the value of the game as well as stationary optimal policies for the two players.
<u>PROOF</u>. Lemma 4.6.1 together with theorem 2.3.2 imply that for any stationary policy π^{∞} the stationary matrix $P^{*}(\pi)$ has identical rows. Hence, val(AMG) has identical components. Then, by theorem 6.3.1, val(AMG) is the optimal solution of the linear programming problem (6.3.12). Moreover, we have

$$(x^{*})^{T}(I-P(\pi^{*})) = 0$$
 and $(x^{*})^{T}e = 1$.

Consequently,

(6.3.14)
$$x^* = p^*(\pi^*)$$
,

where $p^{*}(\pi^{*})$ is the vector corresponding to the identical rows of $P^{*}(\pi^{*})$. From the constraints of program (6.3.12) it follows that

(6.3.15)
$$\psi^* \cdot e \ge \phi'(\pi^{\infty}, (\rho^*)^{\infty})$$
 for every stationary policy π^{∞} .

By the complementary slackness property it holds that

(6.3.16)
$$\sum_{i} z_{i}^{\star} = \sum_{i} \sum_{a} \sum_{b} r_{iab} \rho_{ib}^{\star} \pi_{ia}^{\star} \cdot x_{i}^{\star} = (p^{\star}(\pi^{\star}))^{T} r(\pi^{\star}, \rho^{\star}) =$$
$$= \phi_{j}((\pi^{\star})^{\infty}, (\rho^{\star})^{\infty}) \qquad \text{for every } j \in E.$$

Then, by theorem 1.3.4, we obtain

(6.3.17)
$$\psi^* = \sum_{i} z_i^* = \phi_j((\pi^*)^{\circ}, (\rho^*)^{\circ})$$
 for every $j \in E$.

The constraints of program (6.3.13) imply that

(6.3.18)
$$\sum_{i} z_{i}^{\star} \leq \sum_{i} \sum_{a} \sum_{b} r_{iab} \rho_{ib} \pi_{ia}^{\star} \cdot x_{i}^{\star} = (p^{\star}(\pi^{\star}))^{T} r(\pi^{\star}, \rho) =$$

$$\phi_{j}((\pi^{*})^{\widetilde{o}},\rho^{\widetilde{o}})$$
 for every stationary policy $\rho^{\widetilde{o}}$ and j ϵ E

Combining (6.3.15), (6.3.17) and (6.3.18) yields

$$\boldsymbol{\varphi}(\boldsymbol{\pi}^{\boldsymbol{\infty}},(\boldsymbol{\rho}^{\star})^{\boldsymbol{\infty}}) \hspace{0.1 cm} \leq \hspace{0.1 cm} \boldsymbol{\psi}^{\star} \boldsymbol{\cdot} \boldsymbol{\mathrm{e}} \hspace{0.1 cm} = \hspace{0.1 cm} \boldsymbol{\varphi}((\boldsymbol{\pi}^{\star})^{\boldsymbol{\infty}},(\boldsymbol{\rho}^{\star})^{\boldsymbol{\infty}}) \hspace{0.1 cm} \leq \hspace{0.1 cm} \boldsymbol{\varphi}((\boldsymbol{\pi}^{\star})^{\boldsymbol{\infty}},\boldsymbol{\rho}^{\boldsymbol{\infty}})$$

for all stationary policies π^{∞} and ρ^{∞} . Then, using remark 6.1.1, it follows that $(\pi^{*})^{\infty}$ and $(\rho^{*})^{\infty}$ are optimal policies and that ψ^{*} is the value of the game. \Box

CHAPTER 7

SEMI-MARKOV DECISION PROCESSES

7.1. INTRODUCTION AND SUMMARY

In this chapter we shall investigate the *semi-Markov decision process* which was introduced by DE CANI [1964], HOWARD [1963], JEWELL [1963a], [1963b] and SCHWEITZER [1965]. In the discrete Markov decision model that was studied in the preceding chapters, the decision time points were equidistant. In the semi-Markov model, the times between the decision time points will be random variables. We can describe the semi-Markov decision model in the following way.

Consider a dynamic system that is observed at decision time points t, starting at t = 0. At each decision time point the system is in one of a finite number of states and an action has to be chosen. Let E = $\{1, 2, ..., N\}$ be the *state space* and A(i) the finite set of possible *actions* in state i, i ϵ E. If the system is in state i and action a ϵ A(i) is chosen, then the following occurs independently of the history of the process:

- The next state of the process is chosen according to the transition probabilities p_{iaj}, where p_{iaj} ≥ 0 and ∑_jp_{iaj} = 1 for every a ∈ A(i) and i,j ∈ E.
- 2. Conditional on the event that the next state is j, the *sojourn time* t_{iaj} until the next decision time point is a random variable with probability distribution $F_{iaj}(t)$, i.e. $F_{iaj}(t) = \mathbb{P}(t_{iaj} \leq t)$.
- 3. A reward r_{ia} is earned immediately and, in addition, a reward rate s_{ia} is imposed until the next transition occurs, i.e. if the next decision time point falls after t_{ia} units of times, then the reward in this epoch is given by $r_{ia} + t_{ia} \cdot s_{ia}$.

A semi-Markov decision process is also called a *Markov renewal program*. A *policy* R is a sequence of decision rules: $R = (\pi^1, \pi^2, ...)$, where π^n denotes the decision rule for the n-th decision time point. This deci-

sion rule may depend on the whole history of the process, i.e. on the

observed states $\{x_1, x_2, \ldots, x_n\}$ and the chosen actions $\{y_1, y_2, \ldots, y_{n-1}\}$. A policy is called *stationary* if the chosen action only depends on the state of the process; if this choice is nonrandomized, then the policy is said to be *pure and stationary*. Similarly as for the Markov decision model, we denote by C, C_S and C_D the set of all policies, stationary policies and pure and stationary policies, respectively.

In section 7.2 we discuss the expected *discounted* reward criterion. We introduce for this model the concept of superharmonicity and we prove that the reward vector of an optimal policy is the smallest superharmonic vector. We can compute this vector as optimal solution of a linear program. Furthermore, we will show that the complementary slackness property of linear programming provides an optimal policy from the optimal solution of the dual program. Moreover, this dual program will give the equivalence between the semi-Markov model and a contracting TMD-model. Hence, also for the semi-Markov model we may apply the results shown in section 3.4 as

- one-to-one correspondence between stationary policies and feasible solutions of the dual program
- policy improvement
- elimination of suboptimal actions.

Some of the above observations were already presented in WESSELS & VAN NUNEN [1975]. However, their analysis was based on the correspondence between stationary policies and feasible solutions of the dual program. In our treatment the results are consequences of the concept of superharmonicity.

Section 7.3 deals with the *undiscounted* rewards. Also for this model we can present the property of superharmonicity. Using DENARDO [1971], we shall show that the reward vector of an optimal policy is the smallest superharmonic vector. Similarly as in chapter 4, we can formulate a linear program such that a pure and stationary optimal policy can be obtained directly from the optimal solution of the linear program. This linear program was also used by DENARDO & FOX [1968], but they did not show how an optimal policy can be found. The linear programming problem can be transformed into the linear program which was derived for the AMD-model. The transformations are the same as proposed by SCHWEITZER [1971]. By these transformations we show that the semi-Markov model with the average reward criterion is equivalent to an AMD-model.

We close the chapter by the presentation of simplified algorithms for the weak unichain case, the unichain case and the completely ergodic case.

7.2. DISCOUNTED REWARDS

Let $\alpha \in (0,1)$ be any discount factor. Then, $\alpha^{t} = e^{-\lambda t}$, where $t \in \mathbb{R}^{1}$ and $\lambda := -\ell n \alpha$. Throughout this section we have the following assumption.

ASSUMPTION 7.2.1.
$$\int_{0}^{\infty} e^{-\lambda t} dF_{iaj}(t) < 1 \text{ for every } i, j \in E \text{ and } a \in A(i).$$

<u>REMARK 7.2.1</u>. Assumption 7.2.1 guarantees that the probability distributions $F_{iaj}(t)$ are not degenerated in t = 0. Consequently, the expected number of transitions in a finite interval is finite. Furthermore, DENARDO [1967] has shown that the discounted Markov renewal program with assumption 7.2.1 possesses the contraction property. We shall call this model a *DRD-model*.

For any policy R and any initial state i, we define the expected discounted reward $v_{i}^{\lambda}\left(R\right)$ by

(7.2.1)
$$v_{i}^{\lambda}(R) := \mathbb{E}_{R} \left[\sum_{n=1}^{\infty} e^{-\lambda (T_{1}+T_{2}+\ldots+T_{n-1})} \cdot \{r_{X_{n}}Y_{n}^{+s}X_{n}Y_{n} \int_{0}^{T_{n}} e^{-\lambda t} dt \} | x_{1} = i \right],$$

where $T_1 + T_2 + \ldots + T_{n-1} := 0$ for n = 1.

LEMMA 7.2.1.

$$v_{i}^{\lambda}(R) = \sum_{n=1}^{\infty} \sum_{j} \sum_{a} \int_{0}^{\infty} r_{ja}^{*} e^{-\lambda t} d\pi_{iaj}(n,t,R), \quad i \in E, R \in C,$$

where

and

$$r_{ja}^{*} := r_{ja} + s_{ja} \sum_{k} p_{jak} \int_{0}^{\infty} \int_{0}^{-\lambda t} e^{-\lambda t} dt dF_{jak}(\tau)$$

$$\pi_{iaj}(n,t,R) := \mathbb{P}_{R}(x_{n} = j, Y_{n} = a, T_{1}+T_{2}+...+T_{n-1} \le t | x_{1} = i).$$

PROOF. First, we remark that

$$\mathbb{E}_{R} [r_{X_{n}Y_{n}} + s_{X_{n}Y_{n}} \int_{0}^{T_{n}} e^{-\lambda t} dt | X_{n} = j, Y_{n} = a] =$$

$$= \sum_{k} \mathbb{E}_{R} [r_{ja} + s_{ja} \int_{0}^{T_{n}} e^{-\lambda t} dt | X_{n} = j, Y_{n} = a, X_{n+1} = k] \cdot \mathbb{P}_{R} [X_{n+1} = k | X_{n} = j, Y_{n} = a]$$

$$= \sum_{k} \mathbb{P}_{jak} \{r_{ja} + s_{ja} \int_{0}^{\infty} \int_{0}^{\tau} e^{-\lambda t} dt dF_{jak}(\tau)\} = r_{ja}^{*}.$$

Since the random variables ${\tt T_1+T_2+\ldots+T_{n-1}}$ and ${\tt T_n}$ are conditional independent, given ${\tt X_n}$ and ${\tt Y_n},$ we obtain

$$\mathbb{E}_{R} \left[e^{-\lambda (T_{1} + T_{2} + \dots + T_{n-1})} \cdot \{r_{X_{n}Y_{n}} + s_{X_{n}Y_{n}} \int_{0}^{T_{n}} e^{-\lambda t} dt \} | x_{1} = i \right] =$$

$$= \sum_{j} \sum_{a} \int_{0}^{\infty} e^{-\lambda t} \cdot r_{ja}^{*} \cdot d\mathbb{P}_{R} (x_{n} = j, Y_{n} = a, T_{1} + T_{2} + \dots + T_{n-1} \leq t | x_{1} = i)$$

$$= \sum_{j} \sum_{a} r_{ja}^{*} \int_{0}^{\infty} e^{-\lambda t} d\pi_{iaj} (n, t, R) .$$

 $\int_{0}^{\infty} e^{-\lambda t} d\pi_{iaj}(n,t,R) \text{ may be interpreted as the expected discounted probability that } x_n = j, Y_n = a, given X_1 = i. We have the recursion$

(7.2.2)
$$\sum_{a} \int_{0}^{\infty} e^{-\lambda t} d\pi_{iaj}(n,t,R) = \sum_{\ell} \sum_{\ell} \sum_{b} \int_{0}^{\infty} e^{-\lambda t} d\pi_{ib\ell}(n-1,t,R) \cdot p_{\ell bj} \int_{0}^{\infty} e^{-\lambda s} dF_{\ell bj}(s).$$

We define

$$(7.2.3) \quad w_{n} := \sum_{j} \sum_{a} \int_{0}^{\infty} e^{-\lambda t} d\pi_{iaj}(n,t,R), \quad n \in \mathbb{N},$$

$$(7.2.4) \quad M := \max_{i,a} \{r_{ia} + \lambda^{-1} \cdot s_{ia}\},$$

$$(7.2.5) \quad \rho := \max_{i,a,j} \int_{0}^{\infty} e^{-\lambda t} dF_{iaj}(t).$$

Then, (7.2.2), (7.2.3) and (7.2.5) imply that

$$\begin{split} w_{n} &= \sum_{\ell} \sum_{b} \int_{0}^{\infty} e^{-\lambda t} d\pi_{ib\ell} (n-1,t,R) \cdot \sum_{j} p_{\ell bj} \int_{0}^{\infty} e^{-\lambda s} dF_{\ell bj} (s) \\ &\leq \sum_{\ell} \sum_{b} \int_{0}^{\infty} e^{-\lambda t} d\pi_{ib\ell} (n-1,t,R) \cdot \rho = \\ &= \rho w_{n-1} \leq \ldots \leq \rho^{n-1} \cdot w_{1} = \rho^{n-1}. \end{split}$$

2 ° °

Furthermore, we have

$$\begin{aligned} \mathbf{r}_{ja}^{\star} &\leq |\mathbf{r}_{ja}| + |\mathbf{s}_{ja}| \cdot \sum_{k} \mathbf{p}_{jak} \int_{0}^{\infty} \lambda^{-1} (1 - e^{-\lambda \tau}) dF_{jak}(\tau) \\ &\leq |\mathbf{r}_{ja}| + \lambda^{-1} |\mathbf{s}_{ja}| \cdot \sum_{k} \mathbf{p}_{jak} \int_{0}^{\infty} dF_{jak}(\tau) \leq M. \end{aligned}$$

Consequently,

$$\sum_{n=1}^{\infty}\sum_{j}\sum_{a}\int_{0}^{\infty}|r_{ja}^{*}|e^{-\lambda t}d\pi_{iaj}(n,t,R) \leq \sum_{n=1}^{\infty}Mw_{n} \leq \frac{M}{1-\rho} < \infty.$$

Hence,

$$\mathbf{v}_{i}^{\lambda}(\mathbf{R}) = \mathbf{E}_{\mathbf{R}} \left[\sum_{n=1}^{\infty} e^{-\lambda (\mathbf{T}_{1} + \mathbf{T}_{2} + \dots + \mathbf{T}_{n-1})} \cdot \{\mathbf{r}_{\mathbf{X}_{n} \mathbf{Y}_{n}} + \mathbf{s}_{\mathbf{X}_{n} \mathbf{Y}_{n}} \int_{0}^{\mathbf{T}_{n}} e^{-\lambda \mathbf{t}} d\mathbf{t} \} | \mathbf{x}_{1} = \mathbf{i} \right]$$
$$= \sum_{n=1}^{\infty} \mathbf{E}_{\mathbf{R}} \left[e^{-\lambda (\mathbf{T}_{1} + \mathbf{T}_{2} + \dots + \mathbf{T}_{n-1})} \cdot \{\mathbf{r}_{\mathbf{X}_{n} \mathbf{Y}_{n}} + \mathbf{s}_{\mathbf{X}_{n} \mathbf{Y}_{n}} \int_{0}^{\mathbf{T}_{n}} e^{-\lambda \mathbf{t}} d\mathbf{t} \} | \mathbf{x}_{1} = \mathbf{i} \right]$$
$$= \sum_{n=1}^{\infty} \sum_{j} \sum_{a} \int_{0}^{\infty} \mathbf{r}_{ja}^{*} e^{-\lambda \mathbf{t}} d\mathbf{\pi}_{iaj}(n, \mathbf{t}, \mathbf{R}), \quad \mathbf{i} \in \mathbf{E}, \ \mathbf{R} \in \mathbf{C}.$$

<u>NOTATION 7.2.1</u>. We will denote the DRD-model by the five-tuple (E,A,p,r^{*},F). <u>DEFINITION 7.2.1</u>. The DRD-value-vector v^{λ} is defined by $v_{i}^{\lambda} := \sup_{R} v_{i}^{\lambda}(R)$, $i \in E$.

From the proof of lemma 7.2.1 it follows that $|v_i^{\lambda}| \leq \frac{M}{1-\rho}$, i ϵ E.

DEFINITION 7.2.2. A vector $\tilde{v} \in \mathbb{R}^{N}$ is DRD-superharmonic if

$$\widetilde{v}_{i} \geq r_{ia}^{\star} + \sum_{j} p_{iaj} \int_{0} e^{-\lambda t} dF_{iaj}(t) \cdot \widetilde{v}_{j}, \quad a \in A(i), i \in E,$$

where r_{ia}^{*} is defined as in lemma 7.2.1.

THEOREM 7.2.1. The DRD-value-vector v^{λ} is the smallest DRD-superharmonic vector.

<u>PROOF</u>. Choose $\varepsilon > 0$ arbitrarily. Take policy R_j such that $v_j^{\lambda}(R_j) \ge v_j^{\lambda} - \varepsilon$, $j \in E$. Let $a_i \in A(i)$ be such that

(7.2.6)
$$r_{ia_{j}}^{\star} + \sum_{j} p_{ia_{j}j}^{\star} v_{j}^{\lambda} = max_{a} \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} v_{j}^{\lambda}\}, \quad i \in E,$$

where

$$p_{iaj}^{*} := p_{iaj} \int_{0}^{\infty} e^{-\lambda t} dF_{iaj}(t).$$

We denote by \hat{R} the policy that chooses at t = 0 action a_i , for initial state i, and then follows policy R_j , if the next state is j, while the process is considered as starting in state j. Then we obtain

$$v_{i}^{\lambda} \geq v_{i}^{\lambda}(\hat{R}) = r_{ia_{i}}^{\star} + \sum_{j} p_{ia_{j}}^{\star} v_{j}^{\lambda}(R_{j})$$
$$\geq r_{ia_{i}}^{\star} + \sum_{j} p_{ia_{j}}^{\star} v_{j}^{\lambda} - \varepsilon \sum_{j} p_{ia_{j}}^{\star} j$$
$$\geq max_{a} \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} v_{j}^{\lambda}\} - \varepsilon \cdot \rho, \quad i \in E,$$

where ρ is defined by (7.2.5). Since ϵ is arbitrarily chosen, it follows that

(7.2.7)
$$v_{i}^{\lambda} \geq \max_{a} \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} v_{j}^{\lambda}\}, \quad i \in E,$$

i.e. v^{λ} is a DRD-superharmonic vector.

Next, we will show that (7.2.7) holds with equalities instead of inequalities. Let $R = (\pi^1, \pi^2, ...)$ be any policy. Then, we can write

$$v_{i}^{\lambda}(R) = \sum_{a} \pi_{ia}^{1} \cdot \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} u_{j}^{\lambda}(R)\}, i \in E,$$

where $u_j^{\lambda}(R)$ represents the expected discounted reward earned from the second decision time point, given that the state at the second decision time point is j. Therefore, $u_j^{\lambda}(R) \leq v_j^{\lambda}$, $j \in E$. Hence,

$$v_{i}^{\lambda}(\mathbf{R}) \leq \sum_{a} \pi_{ia}^{1} \cdot \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} v_{j}^{\lambda}\}$$
$$\leq \sum_{a} \pi_{ia}^{1} \cdot max_{a} \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} v_{j}^{\lambda}\} =$$
$$max_{a} \{r_{ia}^{\star} + \sum_{j} p_{iaj}^{\star} v_{j}^{\lambda}\}, \quad i \in \mathbf{E}.$$

Since R is arbitrarily chosen, we obtain

(7.2.8)
$$v_i^{\lambda} \leq \max_a \{r_{ia}^{\star} + \sum_j p_{iaj}^{\star} v_j^{\lambda}\}, \quad i \in E.$$

Combining (7.2.7) and (7.2.8) yields

(7.2.9)
$$v_i^{\lambda} = max_a \{r_{ia}^{\star} + \sum_j p_{iaj}^{\star} v_j^{\lambda}\}, \quad i \in E.$$

Suppose that \tilde{v} is also a DRD-superharmonic vector. Let a_i , $i \in E$, again satisfy (7.2.6). Then, we have

$$\widetilde{\mathbf{v}}_{i} - \mathbf{v}_{i}^{\lambda} \geq \mathbf{r}_{ia_{i}}^{\star} + \sum_{j} \mathbf{p}_{ia_{i}j}^{\star} \widetilde{\mathbf{v}}_{j} - \mathbf{r}_{ia_{i}}^{\star} - \sum_{j} \mathbf{p}_{ia_{i}j}^{\star} \mathbf{v}_{j}^{\lambda} = \sum_{j} \mathbf{p}_{ij} (\widetilde{\mathbf{v}}_{j} - \mathbf{v}_{j}^{\lambda}), \quad i \in \mathbf{E},$$

.

. م

where $p_{ij} := p_{ia_jj}^*$ for all $i \in E$. Thus, we may write in vector notation

$$\widetilde{v} - v^{\lambda} \ge P(\widetilde{v} - v^{\lambda}) \ge \ldots \ge P^{n}(\widetilde{v} - v^{\lambda}) \quad \text{for all } n \in \mathbb{N}$$

Using assumption 7.2.1 and (7.2.5), we obtain

$$\|\mathbf{p}\| = \max_{i} \sum_{j} \mathbf{p}_{ia_{j}j} \leq \max_{i} \sum_{j} \mathbf{p}_{ia_{j}j} \cdot \mathbf{p} = \mathbf{p} < 1.$$

Consequently, $\lim_{n \to \infty} \operatorname{p}^n$ = 0. Hence, it follows that

$$\widetilde{v} - v^{\lambda} \ge \lim_{n \to \infty} P^n (\widetilde{v} - v^{\lambda}) = 0,$$

i.e. $\widetilde{v} \geq v^\lambda.$ This completes the proof that v^λ is the smallest DRD-super-harmonic vector. \Box

DEFINITION 7.2.3. A policy R^* is said to be an *optimal policy* for the DRD-model if $v^{\lambda}(R^*) = v^{\lambda}$.

THEOREM 7.2.2. Let $a_i \in A(i)$ satisfy

$$\mathbf{r}_{ia_{i}}^{\star} + \sum_{j} \mathbf{p}_{ia_{i}j}^{\star} \mathbf{v}_{j}^{\lambda} = \mathbf{v}_{i}^{\lambda}, \quad i \in \mathbf{E}.$$

Then, the pure and stationary policy f^{∞} , where $f(i) := a_i$, $i \in E$, is an optimal policy for the DRD-model.

PROOF.

$$\mathbf{v}_{i}^{\lambda}(\mathbf{f}^{\infty}) - \mathbf{v}_{i}^{\lambda} = \mathbf{r}_{ia_{i}}^{*} + \sum_{j} \mathbf{p}_{ia_{i}j}^{*} \mathbf{v}_{j}^{\lambda}(\mathbf{f}^{\infty}) - \mathbf{r}_{ia_{i}}^{*} - \sum_{j} \mathbf{p}_{ia_{i}j}^{*} \mathbf{v}_{j}^{\lambda}$$
$$= \sum_{j} \mathbf{p}_{ia_{i}j}^{*} (\mathbf{v}_{j}^{\lambda}(\mathbf{f}^{\infty}) - \mathbf{v}_{j}^{\lambda}), \quad i \in \mathbf{E}.$$

Let P := $(p_{ia_{1}j}^{\star})$. Then, similarly as in the proof of theorem 7.2.1, we obtain

$$v^{\lambda}(f^{\infty}) - v^{\lambda} = P(v^{\lambda}(f^{\infty}) - v^{\lambda}) = P^{n}(v^{\lambda}(f^{\infty}) - v^{\lambda}) \rightarrow 0 \quad \text{for } n \rightarrow \infty.$$

Consequently, $v^{\lambda}(f^{\infty}) = v^{\lambda}$, i.e. f^{∞} is an optimal policy. []

Theorem 7.2.1 implies that the DRD-value-vector v^{λ} can be found as optimal solution of the linear programming problem

$$(7.2.10) \quad \min\{\sum_{j}\beta_{j}\widetilde{v}_{j} | \sum_{j} (\delta_{ij} - p_{iaj}^{*})\widetilde{v}_{j} \geq r_{ia}^{*}, \quad a \in A(i), i \in E\},$$

where $\beta_{j} > 0$, $j \in E$, are given numbers. The dual program of (7.2.10) is

(7.2.11)
$$\max\left\{\sum_{i}\sum_{a}r_{ia}^{*}x_{ia}\right| \begin{bmatrix}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj}^{*})x_{ia} = \beta_{j}, & j \in E\\ \\ x_{ia} \ge 0, & a \in A(i), i \in E \end{bmatrix}\right\}.$$

THEOREM 7.2.3. Let x^* be an optimal solution of the linear programming problem (7.2.11). Then, any pure and stationary policy f_*^{∞} such that $x_{if_{+}(i)}^* > 0$, $i \in E$, is an optimal policy.

<u>PROOF</u>. Since v^{λ} is the finite optimal solution of program (7.2.10), the dual program (7.2.11) has also a finite optimal solution. Let x^{\star} be any optimal solution of program (7.2.11). Then,

$$\sum_{a} \mathbf{x}_{ja}^{*} = \beta_{j} + \sum_{i} \sum_{a} p_{iaj}^{*} \mathbf{x}_{ia}^{*} \ge \beta_{j} > 0, \quad j \in E.$$

The complementary slackness property of linear programming (cf. corollary 1.3.1) implies that

$$\sum_{j} (\delta_{ij} - p_{if_{\star}(i)j}^{\star}) v_{j}^{\lambda} = r_{if_{\star}(i)}^{\star}, \quad i \in E.$$

It follows from theorem 7.2.2 that f_{\star}^{∞} is an optimal policy. \Box

A pure and stationary optimal policy for the DRD-model can be determined by the following algorithm.

ALGORITHM XXX for the construction of a pure and stationary optimal policy

in a discounted semi-Markov model.

step 1: Compute

$$\mathbf{r}_{ia}^{\star} := \mathbf{r}_{ia} + \lambda^{-1} \mathbf{s}_{ia} \sum_{j} \mathbf{p}_{iaj} \{1 - \int_{0}^{\infty} e^{-\lambda t} dF_{iaj}(t)\}, \quad a \in A(i), i \in E,$$
$$\mathbf{p}_{iaj}^{\star} := \mathbf{p}_{iaj} \int_{0}^{\infty} e^{-\lambda t} dF_{iaj}(t) \qquad , \quad a \in A(i), i, j \in E.$$

step 2: Choose the numbers β_j such that $\beta_j > 0$, $j \in E$. step 3: Compute an optimal solution x^* of the linear program

$$\max\left\{\sum_{i}\sum_{a}x_{ia}^{*}x_{ia}\right| \left| \begin{array}{c}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj}^{*})x_{ia} = \beta_{j}, & j \in E\\ \\ x_{ia} \ge 0, & a \in A(i), i \in E \end{array} \right\}$$

step 4: Take f_{\star}^{∞} such that $x_{if_{\star}(i)}^{\star} > 0$, $i \in E$.

<u>REMARK 7.2.2</u>. Consider the TMD-model (E,A,p^{*},r^{*}). It can easily be verified that this model satisfies the contraction assumption of section 3.4 for μ := e and α := ρ . Furthermore, algorithm IX applied on this TMD-model is identical to algorithm XXX. It can also easily be verified that $v^{\lambda}(\pi^{\infty}) = v^{*}(\pi^{\infty})$ for every stationary policy π^{∞} , where $v^{*}(\pi^{\infty})$ is the expected total reward in the TMD-model. Therefore, the TMD-model (E,A,p^{*},r^{*}) may be considered as *equivalent* to the DRD-model (E,A,p,r^{*},F), and we may apply the results of section 3.4 to the DRD-model.

<u>REMARK 7.2.3</u>. The above analysis is also applicable on the *two-person zero-sum semi-Markov game* in which one player controls the transition probabilities and the sojourn times. This DRG-model can be described as follows. If in state i player I chooses action a ϵ A(i) and player II action b ϵ B(i), then the following occurs:

- 1. The next state of the process is chosen according to the transition probabilities $\mathbf{p}_{\text{iai}}.$
- 2. Conditional on the event that the next state is j, the time t_{iaj} until the next decision time point is a random variable with probability distribution F_{iaj}(t).
- 3. Player I receives an immediate reward r_{iab} from player II, and, in addition, player II is indebted to player I an amount s_{iab} t_{ia} if the next decision time point falls after t_{ia} units of time.

If we define

$$r_{iab}^{*} := r_{iab}^{+} s_{iab}^{-} \sum_{j} p_{iaj}^{\infty} \int_{0}^{\infty} e^{-\lambda s} ds dF_{iaj}^{-}(t), \quad a \in A(i), b \in B(i), i \in E$$
$$p_{iaj}^{*} := p_{iaj}^{-} \int_{0}^{\infty} e^{-\lambda t} dF_{iaj}^{-}(t) , \quad a \in A(i), i, j \in E,$$

then similarly to theorem 6.2.1 we can prove that there exist stationary optimal policies for both players. Moreover, it can straightforward be shown that the DRG-model (E,A,B,p, r^* ,F) and the TMG-model (E,A,B, p^* , r^*) are equivalent and that algorithm XXVII applied on the TMG-model provides stationary optimal policies for both players in the DRG-model.

7.3. UNDISCOUNTED REWARDS

For any policy R and any initial state i, the average reward per unit time is denoted by $\chi_{i}\left(R\right)$ and defined by

$$\chi_{i}(R) := \liminf_{T \to \infty} \frac{1}{T} V_{i}^{T}(R)$$
,

where $v_i^{T}(R)$ denotes the expected undiscounted reward earned in the interval [0,T). For a Markov renewal program with as utility function the average reward per unit time, we will use the name *ARD-model*. The *ARD-value-vector* χ is defined by

$$\chi_i := sup_R \chi_i(R), \quad i \in E,$$

and policy R^* is said to be *optimal for the* ARD-model if $\chi(R^*) = \chi$. A policy R_{\circ} is called a *Blackwell optimal* policy if there is a $\lambda_{\circ} > 0$ such that $v^{\lambda}(R_{\circ}) = v^{\lambda}$ for every $\lambda \in (0, \lambda_{\circ}]$.

Throughout this section we have the following assumption.

ASSUMPTION 7.3.1.
$$0 < \int_{0}^{\infty} t^2 dF_{iaj}(t) < \infty$$
 for all $a \in A(i)$, $i, j \in E$.

The above assumption implies the following results due to DENARDO [1971]:

1. Let π^{∞} be any stationary policy. Then,

(7.3.1)
$$v^{\lambda}(\pi^{\infty}) = \lambda^{-1}\chi(\pi^{\infty}) + w(\pi^{\infty}) + \varepsilon(\lambda),$$

where $\lim_{\lambda \neq 0} \varepsilon(\lambda) = 0$.

Moreover, $\chi(\pi^{\infty})$ is the unique solution of the equations

(7.3.2)
$$\begin{cases} (I-P(\pi)) \mathbf{x} = 0 \\ P^{*}(\pi) T(\pi) \mathbf{x} = P^{*}(\pi) \hat{r}(\pi), \end{cases}$$

where

$$\hat{r}_{i}(\pi) := \sum_{a} \pi_{ia} \cdot \{r_{ia} + s_{ia} \sum_{j} p_{iaj} \int_{0}^{\infty} t dF_{iaj}(t) \}, \quad i \in E,$$

and T(π) is the diagonal matrix with t (π) := δ_{iji} (π) and

$$\tau_{i}(\pi) := \sum_{a} \pi_{ia} \cdot \sum_{j} p_{iaj} \int_{0}^{\infty} t dF_{iaj}(t), \quad i, j \in E.$$

Furthermore, $w(\pi^{\widetilde{}})$ is a solution of the linear system

(7.3.3)
$$(I-P(\pi))y = \hat{r}(\pi) - T(\pi)\chi(\pi^{\infty}).$$

2. There exists a Blackwell optimal pure and stationary policy.

LEMMA 7.3.1.
$$\liminf_{\lambda \neq 0} \lambda v_{i}^{\lambda}(R) \geq \chi_{i}(R), \quad i \in E, R \in C.$$

<u>PROOF</u>. Since $v_i^{\lambda}(R) = \int_0^{\infty} e^{-\lambda t} dv_i^{t}(R)$, $i \in E, R \in C, \lambda > 0$, the proof follows from an Abelian theorem (cf. WIDDER [1946], chapter V).

THEOREM 7.3.1. Any pure and stationary Blackwell optimal policy is also optimal for the ARD-model.

<u>PROOF</u>. Let f_{\circ}^{∞} be a Blackwell optimal policy. Take an arbitrary R ϵ C. Then, (7.3.1) and lemma 7.3.1 imply that

$$\chi_{i}(\mathbf{R}) \leq \text{liminf}_{\lambda \downarrow 0} \lambda \mathbf{v}_{i}^{\lambda}(\mathbf{R}) \leq \text{liminf}_{\lambda \downarrow 0} \lambda \mathbf{v}_{i}^{\lambda}(\mathbf{f}_{\circ}^{\infty}) = \chi_{i}(\mathbf{f}_{\circ}^{\infty}), \quad i \in \mathbf{E}.$$

Consequently, $\chi(f_{\circ}^{\infty}) = \chi$, i.e. f_{\circ}^{∞} is an optimal policy for the ARD-model. \Box

From theorem 7.3.1 it follows that for the determination of an optimal policy in the ARD-model, we may restrict ourselves to the pure and stationary policies. Consider a pure and stationary policy f^{∞} . Then, (7.3.2) and

lemma 2.4.2 imply that $\chi(f^{\infty})$ depends on the rewards and the transition times only through $\mathring{r}(f)$ and $\tau(f)$ respectively. Hence, for the computation of $\chi(f^{\infty})$ it is sufficient to know the values τ_{ia} , a $\in A(i)$, i $\in E$, where

(7.3.4)
$$\tau_{ia} := \sum_{j} p_{iaj} \int_{0} t dF_{iaj}(t)$$

instead of explicit knowledge about the probability distributions $F_{iaj}(t)$. We may assume that

(7.3.5)
$$F_{iaj}(t) = \begin{cases} 0 & t < \tau_{ia} \\ & , a \in A(i), i, j \in E. \\ 1 & t = \tau_{ia} \end{cases}$$

Therefore, we shall denote an ARD-model by (E,A,p,r,τ) , where $r_{ia} := r_{ia} + s_{ia} \cdot \tau_{ia}$, $a \in A(i)$, $i \in E$.

DEFINITION 7.3.1. A vector $\stackrel{\sim}{\chi} \in \mathbb{R}^N$ is ARD-superharmonic if there exists a vector \tilde{w} such that

$$\widetilde{\chi}_{i} \geq \sum_{j} p_{iaj} \widetilde{\chi}_{j}, \quad a \in A(i), i \in E,$$

$$\tau_{ia} \widetilde{\chi}_{i} + \widetilde{w}_{i} \geq \hat{r}_{ia} + \sum_{j} p_{iaj} \widetilde{w}_{j}, \quad a \in A(i), i \in E.$$

THEOREM 7.3.2. The ARD-value-vector $\boldsymbol{\chi}$ is the smallest ARD-superharmonic vector.

<u>PROOF</u>. (cf. theorem 4.2.1). Let f_{\circ}^{∞} be any pure and stationary Blackwell optimal policy. Since there exists a $\lambda_{\circ} > 0$ such that

$$v^{\lambda}(f_{o}^{\infty}) = v^{\lambda}$$
 for every $\lambda \in (0, \lambda_{o}]$,

theorem 7.2.1 implies that

$$v_{i}^{\lambda}(f_{o}^{\infty}) \geq r_{ia}^{\star} + \sum_{j} p_{iaj} \int_{0}^{\infty} e^{-\lambda t} dF_{iaj}(t) \cdot v_{j}^{\lambda}(f_{o}^{\infty}),$$

$$a \in A(i), i \in E, \lambda \in (0, \lambda_{o}],$$

where

$$\mathbf{r}_{ia}^{\star} := \mathbf{r}_{ia} + \mathbf{s}_{ia} \sum_{j} \mathbf{p}_{iaj} \int_{0}^{\infty} \int_{0}^{t} e^{-\lambda s} ds dF_{iaj}(t).$$

Then, it follows from (7.3.5) that

$$\mathbf{v}_{i}^{\lambda}(\mathbf{f}_{\circ}^{\infty}) \geq \mathbf{r}_{ia} + \mathbf{s}_{ia} \sum_{j} \mathbf{p}_{iaj} \lambda^{-1} (1 - e^{-\lambda \tau} \mathbf{i}^{a}) + \sum_{j} \mathbf{p}_{iaj} e^{-\lambda \tau} \mathbf{i}^{a} \cdot \mathbf{v}_{j}^{\lambda}(\mathbf{f}_{\circ}^{\infty})$$

for all a ϵ A(i), i ϵ E, $\lambda \epsilon$ (0, λ_{\circ}]. Using (7.3.1) and the expansion $e^{-\lambda \tau}$ ia = $1-\lambda \tau_{ia} + o(\lambda)$, we obtain

$$\lambda^{-1}\chi_{i}(f_{\circ}^{\infty}) + w_{i}(f_{\circ}^{\infty}) + o(1) \geq \lambda^{-1}\sum_{j}p_{iaj}\chi_{j}(f_{\circ}^{\infty}) + r_{ia} + s_{ia}\tau_{ia} + \sum_{j}p_{iaj}\cdot w_{j}(f_{\circ}^{\infty}) - \tau_{ia}\sum_{j}p_{iaj}\chi_{j}(f_{\circ}^{\infty})$$

for all a ϵ A(i), i ϵ E and $\lambda \epsilon$ (0, λ_{o}]. Since $\chi(f_{o}^{\infty}) = \chi$, it follows that

(7.3.6)
$$\chi_{i} \geq \sum_{j} p_{iaj} \chi_{j}$$
 $a \in A(i), i \in E,$

and

$$\begin{split} \mathbf{w}_{i}(\mathbf{f}_{\circ}^{\infty}) &\geq \hat{\mathbf{r}}_{ia} + \sum_{j} \mathbf{p}_{iaj} \mathbf{w}_{j}(\mathbf{f}_{\circ}^{\infty}) - \tau_{ia} \sum_{j} \mathbf{p}_{iaj} \chi_{j} = \\ &\hat{\mathbf{r}}_{ia} + \sum_{j} \mathbf{p}_{iaj} \mathbf{w}_{j}(\mathbf{f}_{\circ}^{\infty}) - \tau_{ia} \chi_{i}, \qquad \mathbf{a} \in \bar{\mathbf{A}}(\mathbf{i}), \ \mathbf{i} \in \mathbf{E}, \end{split}$$

where

$$\bar{A}(i) := \{a \in A(i) \mid \chi_i = \sum_j p_{iaj} \chi_j\}, \qquad i \in E.$$

Then, similarly as in theorem 4.2.2 we can prove that

(7.3.7)
$$\widetilde{w}_{i} \geq r_{ia} + \sum_{j} p_{iaj} \widetilde{w}_{j} - \tau_{ia} \chi_{i}$$
, $a \in A(i), i \in E$,

where

$$\widetilde{w} := w(f_{o}^{\infty}) - M \cdot \chi$$

and

$$M := \min \left\{ \frac{\tau_{ia} \chi_{i}^{+} w_{i}^{-} (f_{o}^{m}) - r_{ia}^{\Lambda} - \sum_{j} p_{iaj} w_{j}^{-} (f_{o}^{m})}{\chi_{i}^{-} \sum_{j} p_{iaj} \chi_{j}} \right| a \in A^{*}(i), i \in E \right\},$$

with

$$A^{*}(i) := \{a \in A(i) \mid \tau_{ia}\chi_{i} + w_{i}(f_{\circ}^{\infty}) < \hat{r}_{ia} + \sum_{j} p_{iaj}w_{j}(f_{\circ}^{\infty})\}, i \in E.$$

(if $A^{\star}(i) = \emptyset$ for all $i \in E$, then we define M := 0). Consequently, (7.3.6) and (7.3.7) imply that the ARD-value-vector χ is ARD-superharmonic.

Suppose that $\stackrel{\sim}{\chi}$ is also ARD-superharmonic with corresponding vector $\stackrel{\sim}{w}.$ Then,

$$(I-P(f_{o}))\widetilde{\chi} \geq 0$$
 and $T(f_{o})\widetilde{\chi} + \widetilde{w} \geq \widehat{r}(f_{o}) + P(f_{o})\widetilde{w}.$

Consequently,

$$(I-P(f_{o}))\widetilde{\chi} \geq 0$$
 and $P^{*}(f_{o})T(f_{o})\widetilde{\chi} \geq P^{*}(f_{o})r(f_{o})$.

Then, (7.3.2) and lemma 2.4.3 imply that $\chi \geq \chi$, completing the proof that χ is the smallest ARD-superharmonic vector.

Since $\boldsymbol{\chi}$ is the smallest ARD-superharmonic vector, we consider the following linear programming problem:

(7.3.8)
$$\min\left\{\sum_{j}\beta_{j}\widetilde{\chi}_{j}\middle|\begin{array}{c} \sum_{j}(\delta_{ij}-p_{iaj})\widetilde{\chi}_{j} \geq 0, a \in A(i), i \in E\\ \tau_{ia}\widetilde{\chi}_{i}+\sum_{j}(\delta_{ij}-p_{iaj})\widetilde{w}_{j} \geq \hat{r}_{ia}, a \in A(i), i \in E \right\},$$

where $\beta_j > 0$, $j \in E$, are given numbers with $\sum_{j} \beta_j = 1$. The dual linear programming problem is:

(7.3.9)
$$\max\left\{\sum_{i}\sum_{a}\hat{r}_{ia}x_{ia}\right| \left| \begin{array}{c}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} = 0, \quad j \in E\\ \sum_{a}\tau_{ja}x_{ja} +\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})y_{ia}=\beta_{j}, \quad j \in E\\ x_{ia},y_{ia}\geq 0, \quad a \in A(i), i \in E \end{array} \right\}.$$

THEOREM 7.3.3. If (x^*, y^*) is an optimal extreme solution of the linear program (7.3.9), then the policy f_{y}^{∞} , where

$$f_{\star}(i) := a_{i} \text{ such that} \begin{cases} x_{ia_{i}}^{\star} > 0, & i \in E_{x}^{\star} \\ y_{ia_{i}}^{\star} > 0, & i \in E \setminus E_{x}^{\star} \end{cases}$$

is an optimal policy for the ARD-model.

PROOF. (cf. theorem 4.2.4). Let (χ^*, w^*) be an optimal solution of the linear

programming problem (7.3.8). Then, $\chi^* = \chi$, and analogously to the proof of theorem 4.2.4 we can show that

- 1. f_{*}^{∞} is well-defined.
- 2. $\Sigma_{j}(\delta_{ij}-p_{if_{*}(i)j})\chi_{j} = 0,$ $i \in E,$
- 3. $\tau_{if_{\star}(i)}\chi_{i} + \Sigma_{j}(\delta_{ij}-p_{if_{\star}(i)j})w_{j}^{\star} = \hat{r}_{if_{\star}(i)}, i \in E_{x^{\star}}$

4. The states of $E \setminus E_{x^*}$ are transient in the Markov chain induced by $P(f_*)$. From the above properties it follows that

$$\begin{cases} (I-P(f_{\star}))\chi = 0 \\ P^{\star}(f_{\star})T(f_{\star})\chi = P^{\star}(f_{\star})\hat{r}(f_{\star}) \end{cases}$$

Hence, (7.3.2) implies that $\chi(f_{\star}^{\infty}) = \chi$, i.e. f_{\star}^{∞} is an optimal policy.

<u>REMARK 7.3.1</u>. The linear programming problems (7.3.4) and (7.3.5) were already proposed by DENARDO & FOX [1968]. However, they only proved that the program (7.3.8) determines the vector χ , but they did not prove the optimality of the policy f_{\star}^{∞} .

ALGORITHM XXXI for the construction of a pure and stationary optimal policy in an undiscounted semi-Markov model (multichain case).

step 1: Take any choice of the numbers β_j such that $\beta_j > 0$, $j \in E$, and $\sum_{j} \beta_j = 1$.

step 2: Use the simplex method to compute an optimal solution (x^*, y^*) of the linear programming problem

$$\max\left\{\sum_{i}\sum_{a}\hat{r}_{ia}x_{ia}\left|\begin{array}{ccc}\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})x_{ia} & =0, \quad j\in E\\ \sum_{a}r_{ja}x_{ja} & +\sum_{i}\sum_{a}(\delta_{ij}-p_{iaj})y_{ia}=\beta_{j}, \quad j\in E\\ & x_{ia},y_{ia}\geq 0, \quad a\in A(i), i\in E\end{array}\right\}.$$

step 3: For each i ϵ E, take an arbitrary action a from the set $A^{\star}(i)$, where

$$\mathbf{A}^{\star}(\mathbf{i}) := \begin{cases} \{\mathbf{a} \mid \mathbf{x}_{\mathbf{i}\mathbf{a}}^{\star} > 0\} & \text{ if } \mathbf{i} \in \mathbf{E}_{\mathbf{x}^{\star}} \\ \\ \{\mathbf{a} \mid \mathbf{y}_{\mathbf{i}\mathbf{a}}^{\star} > 0\} & \text{ if } \mathbf{i} \in \mathbf{E} \setminus \mathbf{E}_{\mathbf{x}^{\star}}. \end{cases}$$

step 4: f_{\star}^{∞} , where $f_{\star}(i) := a_i$, $i \in E$, is a pure and stationary optimal policy.

Consider the linear programming problem (7.3.8) and substitute

$$(7.3.10) \begin{cases} \bar{\chi}_{i} := \tilde{\chi}_{i} , i \in E \\ \bar{w}_{i} := \tau^{-1} \cdot \tilde{w}_{i} , i \in E \\ \bar{r}_{ia} := \tau_{ia}^{-1} \cdot \hat{r}_{ia} , a \in A(i), i \in E \\ \bar{p}_{iaj} := \delta_{ij} - (\delta_{ij} - p_{iaj}) \cdot (\tau/\tau_{ia}), a \in A(i), i, j \in E \end{cases}$$

where $\boldsymbol{\tau}$ satisfies

$$0 < \tau \leq \min_{i,a} \left\{ \frac{\tau_{ia}}{1 - p_{iai}} \mid p_{iai} \neq 1 \right\}.$$

Then, $\bar{p}_{iaj} \ge 0$ and $\sum_{j} \bar{p}_{iaj} = 1$ for every $a \in A(i)$, $i, j \in E$. Furthermore, we obtain

$$\begin{split} \sum_{j} (\delta_{ij} - p_{iaj}) \widetilde{\chi}_{j} &\geq 0 \iff \sum_{j} (\delta_{ij} - \overline{p}_{iaj}) \overline{\chi}_{j} \cdot (\tau_{ia}/\tau) \geq 0 \\ &\iff \sum_{j} (\delta_{ij} - \overline{p}_{iaj}) \overline{\chi}_{j} \geq 0 \quad \text{for all } a \in A(i), i \in E, \end{split}$$

and

$$\tau_{ia}\tilde{\chi}_{i} + \sum_{j} (\delta_{ij} - p_{iaj})\tilde{w}_{j} \ge \hat{r}_{ia} \iff \tau_{ia}\bar{\chi}_{i} + \sum_{j} (\delta_{ij} - \bar{p}_{iaj}) \cdot (\tau_{ia}/\tau) \cdot \tau \bar{w}_{i} \ge \hat{r}_{ia}$$
$$\iff \bar{\chi}_{i} + \sum_{j} (\delta_{ij} - \bar{p}_{iaj}) \bar{w}_{i} \ge \bar{r}_{ia}$$

for all a ϵ A(i), i ϵ E.

Hence, the linear program (7.3.8) can also be written as

$$(7.3.11) \quad \min\left\{\sum_{j}\beta_{j}\bar{\chi}_{j} \middle| \begin{array}{c} \sum_{j}(\delta_{ij}-\bar{p}_{iaj})\bar{\chi}_{j} &\geq 0 \quad , \ a \in A(i) \, , \ i \in E \\ \\ \bar{\chi}_{i} + \sum_{j}(\delta_{ij}-\bar{p}_{iaj})\bar{w}_{j} \geq \bar{r}_{ia} \, , \ a \in A(i) \, , \ i \in E \end{array}\right\}$$

and $(\tilde{\chi}, \tilde{w})$ is a feasible solution of program (7.3.8) if and only if $(\tilde{\chi}, \tau^{-1} \cdot \tilde{w})$ is a feasible solution of program (7.3.11). The transformations (7.3.10) were proposed by SCHWEITZER [1971].

<u>REMARK 7.3.2</u>. Notice that the linear programming problem (7.3.11) is similar to program (4.2.10), with \bar{p}_{iaj} and \bar{r}_{ia} instead of p_{iaj} and r_{ia} . Hence, algorithm XIV for the AMD-model (E,A, \bar{p}, \bar{r}) is identical to algorithm XXXI for the ARD-model (E,A, p, \hat{r}, τ). Furthermore, it can easily be verified that $\chi(\pi^{\infty}) = \bar{\phi}(\pi^{\infty})$ for every stationary policy π^{∞} , where $\bar{\phi}(\pi^{\infty})$ is the expected average reward in the AMD-model (E,A, \bar{p}, \bar{r}). Hence, the ARD-model and the corresponding AMD-model may be viewed as equivalent.

<u>REMARK 7.3.3</u>. Linear programming can also be used for the *two-person zero-sum semi-Markov game* in which one player controls the transition probabilities and the transition times. If we define

then similarly as in section 6.3 it can be shown that there exist stationary optimal policies for both players. Moreover, it can be proved that algorithm XXVIII applied on the transformed AMG-model (E,A,B,\bar{p},\bar{r}) , where

$$\bar{p}_{iaj} := \delta_{ij} - (\delta_{ij} - p_{iaj}) \cdot (\tau/\tau_{ia}), \quad a \in A(i), i, j \in E,$$

$$\bar{r}_{iab} := \tau_{ia}^{-1} \cdot \hat{r}_{iab}, \quad a \in A(i), b \in B(i), i \in E,$$

yields stationary optimal policies for the two players.

We close this section with the presentation of algorithms for the weak unichain case, the unichain case and the completely ergodic case. We say that an ARD-model is weakly unichained, unichained or completely ergodic if the equivalent AMD-model satisfies assumption 4.5.1, assumption 4.6.2 or assumption 4.6.1 respectively. Then, the results of the sections 4.5 and 4.6 imply that we can use the following algorithms.

ALGORITHM XXXII for the construction of a pure and stationary optimal policy in an undiscounted semi-Markov model (weak unichain case).

step 1: Use the simplex method to compute an optimal solution \mathbf{x}^{\star} of the linear programming problem

$$max \begin{cases} \sum_{i} \sum_{a} \hat{r}_{ia} x_{ia} \\ \sum_{i} \sum_{a} \hat{r}_{ia} x_{ia} \\ \sum_{i} \sum_{a} \tau_{ia} x_{ia} \\ x_{ia} \geq 0, \quad a \in A(i), \quad i \in E \end{cases}$$

step 5b: Define
$$f_{\star}(i) := a_i$$
 and $E_{\circ} := E_{\circ} \cup \{i\}$; go to step 4.

ALGORITHM XXXIII for the construction of a pure and stationary optimal policy in an undiscounted semi-Markov model (unichain case).

step 1: Use the simplex method to compute an optimal solution
$$x^*$$
 of the linear programming problem

$$max\left\{\sum_{i}\sum_{a} \sum_{i=1}^{n} x_{ia} \left| \begin{array}{ccc} \sum_{i}\sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = 0, & j \in E \\ \sum_{i}\sum_{a} \tau_{ia} x_{ia} & = 1 \\ \sum_{i}\sum_{a} \tau_{ia} x_{ia} & = 1 \\ x_{ia} \geq 0, & a \in A(i), i \in E \end{array} \right\}.$$

step 2: Take f_{\star}^{∞} such that

$$f_{*}(i) := \begin{cases} a_{i} & \text{where } x_{ia}^{*} > 0, \quad i \in E_{x^{*}} \\ i & i \\ arbitrarily & , \quad i \in E \setminus E_{x^{*}}. \end{cases}$$

ALGORITHM XXXIV for the construction of a pure and stationary optimal policy in an undiscounted semi-Markov model (completely ergodic case).

step 1: Use the simplex method to compute an optimal solution x^* of the linear programming problem

$$max \left\{ \sum_{i} \sum_{a} \sum_{i=1}^{A} x_{ia} \left| \begin{array}{ccc} \sum_{i} \sum_{a} (\delta_{ij} - p_{iaj}) x_{ia} = 0, & j \in E \\ \sum_{i} \sum_{a} \tau_{ia} x_{ia} & = 1 \\ \sum_{i} \sum_{a} \tau_{ia} x_{ia} & = 1 \\ & x_{ia} \geq 0, & a \in A(i), i \in E \end{array} \right\}.$$

step 2: Take f_{\star}^{∞} such that $x_{i\bar{r}_{\star}(i)}^{\star} \ge 0$, $i \in \mathbb{Z}$.

REFERENCES

- BATHER, J. [1973]. Optimal decision procedures for finite Markov chains. Part II: Communicating systems. Advances in Applied Probability, 5, 521-540.
- BELLMAN, R. [1957]. Dynamic programming. Princeton University Press, Princeton.
- BEWLEY, T. & E. KOHLBERG [1978]. On stochastic games with stationary optimal strategies. Mathematics of Operations Research, 3, 104-125.
- BLACKWELL, D. [1962]. Discrete dynamic programming. Annals of Mathematical Statistics, 33, 719-726.
- BLACKWELL, D. & T.S. FERGUSON [1968]. The big match. Annals of Mathematical Statistics, 39, 159-163.
- BLAND, R.G. [1977]. New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2, 103-107.

COLLATZ, L. & W. WETTERLING [1966]. Optimierungsaufgaben. Springer, Berlin.

DANTZIG, G.B. [1963]. Linear programming and extensions. Princeton University Press, Princeton.

- DE CANI, J.S. [1964]. A dynamic programming algorithm for embedded Markov chains when the planning horizon is at infinity. Management Science, 10, 716-733.
- DE GHELLINCK, G.T. [1960]. Les Problèmes de décisions sequentielles. Cahiers du Centre d'Etudes de Recherche Opérationelle, 2, 161-179.
- DE GHELLINCK, G.T. & G.D. EPPEN [1967]. Linear programming solutions for separable Markovian decision problems. Management Science, <u>13</u>, 371-394.
- DENARDO, E.V. [1967]. Contraction mappings in the theory underlying dynamic programming. SIAM Review, 9, 165-177.
- DENARDO, E.V. [1970a]. Computing a bias-optimal policy in a discrete-time Markov decision problem. Operations Research, 18, 279-289.
- DENARDO, E.V. [1970b]. On linear programming in a Markov decision problem. Management Science, <u>16</u>, 281-288.

DENARDO, E.V. [1971]. Markov renewal programs with small interest rates. Annals of Mathematical Statistics, 42, 477-496.

DENARDO, E.V. [1973]. A Markov decision problem, pp. 33-68 in T.C. Hu & S.M. Robinson (eds.), Mathematical programming, Academic Press, New York.

DENARDO, E.V. & B.L. FOX [1968]. Multichain Markov renewal programs. SIAM Journal on Applied Mathematics, 16, 468-487.

DENARDO, E.V. & B.L. MILLER [1968]. An optimality condition for discrete dynamic programming with no discounting. Annals of Mathematical Statistics, 39, 1220-1227.

DENARDO, E.V. & U.G. ROTHBLUM [1979]. Optimal stopping, exponential utility, and linear programming. Mathematical Programming, <u>16</u>, 228-244.

D'EPENOUX, F. [1960]. Sur un problème de production et de stockage dans l'aléatoire. Revue Française de Recherche Operationelle, <u>14</u>, 3-16.

DERMAN, C. [1970]. Finite state Markovian decision processes. Academic Press, New York.

DERMAN, C. & R. STRAUCH [1966]. A note on memoryless rules for controlling sequential control problems. Annals of Mathematical Statistics, 37, 276-278.

DERMAN, C. & A.F. VEINOTT Jr. [1972]. Constrained Markov decision chains. Management Science, 19, 389-390.

DIRICKX, Y.M.J. & M.R. RAO [1979]. Linear programming methods for computing gain-optimal policies in Markov decision models. Cahiers du Centre d'Etudes de Recherche Opérationelle, <u>21</u>, 133-142.

DOOB, J.L. [1953]. Stochastic processes. Wiley, New York.

FELLER, W. [1968]. An introduction to probability theory and its applications. Volume I, third edition, Wiley, New York.

FILAR, J.A. & T.E.S. RAGHAVAN [1979]. An algorithm for solving an undiscounted stochastic game in which one player controls transitions. Report.

FOX, B.L. [1966]. Markov renewal programming by linear fractional programming. SIAM Journal on Applied Mathematics, <u>14</u>, 1418-1432.

FOX, B.L. & D.M. LANDI [1968]. An algorithm for identifying the ergodic subchains and transient states of a stochastic matrix. Communications of the ACM, <u>11</u>, 619-621. GILLETTE, D. [1957]. Stochastic games with zero stop probabilities, pp. 179-187 in M. Dresher, A.W. Tucker and P. Wolfe (eds.), Contributions to the theory of games, volume 3, Annals of Mathematical Studies no. 39, Princeton University Press, Princeton.

HADLEY, G. [1962]. Linear programming. Addison-Wesley, Reading.

- HEE, K.M. VAN, A. HORDIJK & J. VAN DER WAL [1977]. Successive approximations for convergent dynamic programming, pp. 183-211 in H.C. Tijms and J. Wessels (eds.) Markov decision theory, Mathematical Centre Tract no. 93, Mathematical Centre, Amsterdam.
- HEILMANN, W.-R. [1977]. Lineare Programmierung stochastischer dynamischer Entscheidungsmodelle. Ph.D. dissertation, Hamburg.
- HINDERER, K. [1970]. Foundations of non-stationary dynamic programming with discrete time parameter. Springer, Berlin.
- HORDIJK, A. [1971]. A sufficient condition for the existence of an optimal policy with respect to the average cost criterion in Markovian decision processes. Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Academia, Prague, 263-274.
- HORDIJK, A. [1974]. Dynamic programming and Markov potential theory. Mathematical Centre Tract no. 51, Mathematical Centre, Amsterdam.
- HORDIJK, A. [1976]. Stochastic dynamic programming. Course notes, University of Leiden (in Dutch).
- HORDIJK, A., R. DEKKER & L.C.M. KALLENBERG [1981]. A simplex-like algorithm to compute a Blackwell-optimal policy. Report no. 81-37, Institute of Applied Mathematics and Computer Science, University of Leiden.
- HORDIJK, A. & L.C.M. KALLENBERG [1978a]. Linear programming and Markov decision chains I. Report no. 78-1, Institute of Applied Mathematics and Computer Science, University of Leiden.
- HORDIJK, A. & L.C.M. KALLENBERG [1978b]. Linear programming and Markov decision chains II. Report no. 78-5, Institute of Applied Mathematics and Computer Science, University of Leiden.
- HORDIJK, A. & L.C.M. KALLENBERG [1979a]. Linear programming and Markov decision chains. Management Science, 25, 352-362.
- HORDIJK, A. & L.C.M. KALLENBERG [1979b]. On solving Markov decision problems by linear programming. Proceedings of the Manchester Conference on Markov decision processes (to appear).

- HORDIJK, A. & L.C.M. KALLENBERG [1981a]. Transient policies in discrete dynamic programming: linear programming including suboptimality tests and additional constraints. Report no. 81-30, Institute of Applied Mathematics and Computer Science, University of Leiden.
- HORDIJK, A. & L.C.M. KALLENBERG [1981b]. Constrained undiscounted stochastic dynamic programming. Report no. 81-53, Institute of Applied Mathematics and Computer Science, University of Leiden.
- HORDIJK, A. & L.C.M. KALLENBERG [1981c]. Algorithms for the computation of an optimal transient policy in unconstrained and constrained dynamic programming. Methods of Operations Research, <u>41</u>, 37-40.
- HORDIJK, A. & L.C.M. KALLENBERG [1981d]. Linear programming methods for solving finite Markovian decision problems, pp. 468-482 in G. Fandel et. al. (eds.) Operations Research Proceedings, Springer, Berlin.
- HORDIJK, A. & L.C.M. KALLENBERG [1981e]. Linear programming and Markov games I, pp. 291-305 in O. Moeschlin and D. Pallaschke (eds.) Game theory and mathematical economics, North-Holland, Amsterdam.
- HORDIJK, A. & L.C.M. KALLENBERG [1981f]. Linear programming and Markov games II, pp. 307-320 in O. Moeschlin and D. Pallaschke (eds.) Game theory and mathematical economics, North-Holland, Amsterdam.
- HORDIJK, A. & K. SLADKY [1977]. Sensitive optimality criteria in countable state dynamic programming. Mathematics of Operation Research, <u>2</u>, 1-14.
- HORDIJK, A. & H.C. TIJMS [1970]. Colloquium Markov-programming. Mathematical Centre Report BC 1/70, Mathematical Centre, Amsterdam (in Dutch).
- HOWARD, R.A. [1960]. Dynamic programming and Markov processes. M.I.T. Press, Cambridge, Massachusetts.
- HOWARD, R.A. [1963]. Semi-Markovian decision processes. Proceedings International Statistical Institute, Ottawa.
- JEWELL, W.S. [1963a]. Markov renewal programming. I: Formulation, finite return models. Operations Research, <u>11</u>, 938-948.
- JEWELL, W.S. [1963b]. Markov renewal programming. II: Infinite return models, example. Operations Research, <u>11</u>, 949-971.

- KALLENBERG, L.C.M. [1981a]. Unconstrained and constrained dynamic programming over a finite horizon. Report no. 81-46, Institute of Applied Mathematics and Computer Science, University of Leiden.
- KALLENBERG, L.C.M. [1981b]. Linear programming to compute a bias-optimal policy, pp. 433-440 in B. Fleischman et.al. (eds.) Operations Research Proceedings 1981, Springer, Berlin.
- KALLENBERG, L.C.M. [1983]. Finite algorithms for positive and negative dynamic programming. Report, Institute of Applied Mathematics and Computer Science, University of Leiden.
- KARLIN, S. [1959]. Mathematical methods and theory in game programing and economics. Vetume I, Addison-Wesley, Reading, Massachusetts.
- KEMENY, J.G. & J.L. SNELL [1960]. Finite Markov chains. Van Nostrand, Princeton, New Jersey.
- MACQUEEN, J. [1967]. A test or suboptimal actions in Markovian decision problems. Operations Research, <u>15</u>, 559-561.
- MANNE, A.S. [1960]. Linear programming and sequential decisions. Management Science, 6, 259-267.
- MERTENS, J.F. & A. NEYMAN [1980]. Stochastic games, Report, Université Catholique de Louvain.
- MILLER, B.L. & A.F. VEINOTT Jr. [1969]. Discrete dynamic programming with a small interest rate. Annals of Mathematical Statistics, <u>40</u>, 366-370.
- MINE, H. & S. OSAKI [1970]. Markovian decision processes. Elsevier, New York.
- MONASH, C.A. [1979]. *Stochastic games: the minimax theorem*. Ph.D. dissertation, Harvard University, Cambridge, Massachusetts.
- NUNEN, J.A.E.E. Van [1976]. Contracting Markov decision processes. Mathematical Centre Tract no. 71, Mathematical Centre, Amsterdam.
- NUNEN, J.A.E.E. Van & J. WESSELS [1977]. Markov decision processes with unbounded rewards, pp.1-24 in H.C. Tijms and J. Wessels (eds.) Markov decision theory, Mathematical Centre Tract no. 93, Mathematical Centre, Amsterdam.
- PARTHASARATHY, T. & T.E.S. RAGHAVAN [1977]. Finite algorithms for stochastic games. Paper presented at the International Conference on Dynamic Programming, Vancouver.

PARTHASARATHY, T. & T.E.S. RAGHAVAN [1978]. An order field property for stochastic games when one player controls the transition probabilities. Paper presented at the Game Theory Conference, Cornell, Ithaca.

- ROCKAFELLER, R.T. [1970]. Convex analysis. Princeton University Press, Princeton, New Jersey.
- ROSS, S.M. [1970]. Applied probability models with optimization applications. Holden-Day, San Francisco, California.
- ROTHBLUM, U.G. [1979]. Solving stopping stochastic games by maximizing a linear function subject to quadratic constraints, pp. 103-105 in O. Moeschlin and D. Pallaschke (eds.) Game theory and related topics, North Holland, Amsterdam.
- SCHWEITZER, P.J. [1965]. Perturbation theory and Markovian decision processes. Ph.D. dissertation, M.I.T. Operations Research Center Report 15.
- SCHWEITZER, P.J. [1971]. Iterative solution of the functional equations of undiscounted Markov renewal programming. Journal of Mathematical Analysis and Applications, <u>34</u>, 495-501.
- SCHWEITZER, P.J. & A. FEDERGRUEN [1978]. The functional equations of undiscounted Markov renewal programming. Mathematics of Operations Research, 3, 308-321.
- SHAPLEY, L.S. [1953]. Stochastic games. Proceedings National Academy of Sciences U.S.A., 39, 1095-1100.
- STRAUCH, R. & A.F. VEINOTT, Jr. [1966]. A property of sequential control processes. Rand McNally, Chicago, Illinois.
- VEINOTT, A.F. Jr. [1966]. On finding optimal policies in discrete dynamic programming with no discounting. Annals of Mathematical Stattistics, 37, 1284-1294.
- VEINOTT, A.F. Jr. [1969]. Discrete dynamic programming with sensitive discount optimality criteria. Annals of Mathematical Statistics, <u>40</u>, 1635-1660.
- VEINOTT, A.F. Jr. [1973]. State-action frequencies in Markov decision chains. Unpublished manuscript.

- VEINOTT, A.F. Jr. [1974]. Markov decision chains. pp. 124-159 in G.B. Dantzig, & B.C. Eaves (eds.) Studies in Mathematics, Volume 10: Studies in optimization. The Mathematical Association of America.
- VRIEZE, O. [1980]. Linear programming and undiscounted stochastic games in which one player controls the transitions. Mathematical Centre Report BW 122/80, Mathematical Centre, Amsterdam.
- WESSELS, J. & J.A.E.E. Van NUNEN [1975]. Discounted semi-Markov decision processes: linear programming and policy iteration. Statistica Neerlandica, 29, 1-7.
- WIDDER, D.V. [1946]. The Laplace transform. Princeton University Press, Princeton, New Jersey.
- ZOUTENDIJK, G. [1960]. Methods of feasible directions, a study in linear and nonlinear programming. Elsevier, New York.
- ZOUTENDIJK, G. [1976]. Mathematical programming methods. North-Holland, Amsterdam.

LIST OF ALGORITHMS

Chaptor 1		
chapter i	Computation of all outnome entirel colutions of a	
1.	linear program	17
	linear program	17
·Chapter 2		
II.	Identification of the ergodic sets and the transient states	
	of a Markov chain with transition matrix P	27
III.	Computation of the stationary matrix P*	28
Chapter 3		
IV.	Verification of the contraction property (iterative	
	approach)	48
V.	Verification of the contraction property (linear	
	programming approach)	48
VI.	Construction of an optimal pure and stationary transient	
	policy in an unconstrained TMD-model	57
VII.	Construction of an optimal stationary transient policy in	
	a constrained TMD-model	61
VIII.	Construction of an optimal pure and stationary policy in	
	an optimal stopping problem	63
IX.	Construction of a pure and stationary optimal policy in a	
	contracting dynamic programming problem (linear programming)	65
х.	Construction of a pure and stationary optimal policy in a	
	contracting dynamic programming problem (policy improvement)	67
XI.	Construction of a stationary optimal policy in a <i>contracting</i>	
	dynamic programming problem with additional constraints	74
XII.	Construction of a pure and stationary optimal policy in	
	positive dynamic programming	84
XIII.	Construction of a pure and stationary optimal policy in	
	negative dynamic programming	89
Chapter 4		
XIV.	Construction of a pure and stationary average optimal policy	
	by the linear programming method (multichain case)	106
xv.	Construction of a pure and stationary average optimal policy	
	by the policy improvement method (multichain case)	121
XVI.	Construction of a pure and stationary average optimal policy	
	(weak unichain case)	126

XVII.	Construction of a pure and stationary average optimal polic	У
	(completely ergodic case)	128
XVIII.	Construction of a pure and stationary average optimal polic	У
	(unichain case)	132
XIX.	Construction of an optimal Markov policy in a constrained	
	AMD-model	141
XX.	Construction of a stationary policy in a constrained	
	AMD-model (multichain case)	151
XXI.	Construction of a stationary optimal policy in a con-	
	strained AMD-model (unichain case)	159

Chapter 5

XXII.	Construction of a pure and stationary bias optimal policy	
	by analysing the average optimal policies	166
XXIII.	Construction of a pure and stationary bias optimal policy	
	(general case)	179
XXIV.	Construction of a pure and stationary bias optimal policy	
	(weak unichain case)	181
XXV.	Construction of a pure and stationary bias optimal policy	
	(completely ergodic case)	183
XXVI.	Construction of a pure and stationary bias optimal policy	
	(unichain case)	184

Chapter 6

XXVII.	Construction of val(TMG) and of stationary optimal policies	
	in a contracting TMG-model in which one player controls	
	the transition probabilities	197
XXVIII.	Construction of val(AMG) and of stationary optimal policies	
	in an AMG-model in which one player controls the transition	
	probabilities (multichain case)	207
XXIX.	Construction of val(AMG) and of stationary optimal policies	
	in an AMG-model in which one player controls the transition	
	probabilities (unichain case)	208

.

×

Chapter 7

XXX.	Construction of a pure and stationary optimal policy in a	
	discounted semi-Markov model	217
XXXI.	Construction of a pure and stationary optimal policy in an	
	undiscounted semi-Markov model (multichain case)	224

XXXII.	Construction	of a pure and stationary optimal policy in an	
	undiscounted	semi-Markov model (weak unichain case)) É
XXXIII.	Construction	of a pure and stationary optimal policy in a.	
	undiscounted	semi-Markov model (unichain case)	227
XXXIV.	Construction	of a pure and stationary optimal policy in an	
	undiscounted	semi-Markov model (completely ergodic case)	n e Na An

-

AUTHOR INDEX

В Bather, J. 125 Bellman, R. 1 Bewley, T. 201,203,206 Blackwell, D. 29,66,118,119,161,200 Bland, R.G. 14 С Collatz, L. 10,11 D Dantzig, G.B. 66 De Cani, J.S. 2,210 De Ghellinck, G.T. 3,35,95,129 34 Dekker, R. Denardo, E.V. 4,31,43,49,95,118,127,161,162,165,211,212,219,224 D'Epenoux, F. 3,35 Derman, C. 1,32,33,34,35,64,95,102,133,134,135,141 Dirickx, Y.M.I. 95 Doob, J.L. 25,26 Ε Eppen, G.D. 35 F Federgruen, A. 174 Feller, W. 26 200 Ferguson, T.S. Filar, J.A. 207 Fox, B.L. 26,95,127,211,224 G Gillete, D. 199 Н Hadley, G. 17 Hee, van K.M. 76 Heilmann, W.-R. 3 Hinderer, K. 1

Hordijk, A.	1,2,3,32,34,35,37,38,43,49,76,78,97,102,118,125,154, 165,199	
Howard, R.A.	1,2,35,66,118,123,210	
J.		
Jewell, W.S.	2,210	
Κ́.		
Kallenberg, L.C.M.	3,5,34,49,86,97,199	
Karlin, S.	9,193	
Kemeny, J.G.	25,53	
Kohlberg, E.	201,203,206	
L		
Landi, D.M.	26	
Μ		
Mac Queen, J.	36,70	
Manne, A.S. Mertens, J.F.	3,95,128 200	
Miller, B.L.	118,165	
Mine, H.	1,35	
Monash, C.A.	200	
N		
Neyman, A.	200	
Nunen, van J.A.E.E.	23,211	
0		
Osaki, S.	1,35	
Р		
Parthasarathy, T.	192,196	
R		
Raghavan, T.E.S.	192,196,207	
Rao, M.R.	95	
Rockafellar, R.T.	10	
Ross, S.M.	1,33,35	
Rothblum, U.G.	43,49,194	

S ·

Schweitzer, P.J.2,174,210,211,225Shapley, L.S.2,35,192Sladkey, K.165Snell, J.L.25,53Strauch, R.E.32,141

Т

Tijms, H.C.

۷

Veinott, A.F. Jr.	29,32,35,43,76,118,133,134,139,161, 165
Vrieze, O.J.	206

37,102

W

Wal, van der, J.	76,192
Wessels, J.	23,192,211
Wetterling, W.	10,11
Widder, D.V.	220

í

Ζ

Zoutendijk, G.

12,13,14,122

SUBJECT INDEX

A		constrained Markov decision	
absorbing state	24	problem 60	,73,137
absorption probability	24	contracting dynamic programming	g 3,23
action space	20,186,210	contraction	64
additional constraints	3,4	convex hull	9
a-discounted optimal	22	convex polyhedral cone	9
AMD-model	. 22	convex polyhedron	9
-superharmonic	98	convex set	9
- -value-vector	22		
AMG-model	189		
-superharmonic	200	decision rule	20 , 187
ARD-model	219	deviation matrix	29
-superharmonic	221	discounted dynamic programming	3
-value-vector	219	DMD-model	22
artificial variables	15	-value-vector	22
average optimal policy	22	DRD-model	212
average reward criterion	4,219	-superharmonic	214
		-value-vector	214
В		dual cone	9
basic solution	13	duality theorem	12
basic variable	13	dual problem	12
basis matrix	13	dual variables	14
bias optimal policy	4,22,161	dynamic programming problem	20
bias superharmonic	171	F	
bias-value-vector	166		
Blackwell-optimal policy	22,196	equivalent solutions	109
block-pivoting	66	ergodic set	24
		expected average reward	22,188
C		expected discounted reward	22,212
Cesaro-limit	25	expected state-action	
closed convex hull	9	frequencies	134
communicating	24,125	expected total reward	22,187
complementary slackness	13	extended TMD-model	41
completely ergodic	24,128,226	extreme direction	9
cone	9	extreme point	9
cone of feasible direction	s 12	extreme ray	9

241

. • سر

F		norm	8
		null-matrix	8
face	9	null-vector	8
feasible direction	11		-
feasible region	10	0	
feasible solution	10	objective function	10
finite solution	11	optimal colution	11
fundamental matrix	29	optimal stopping problem	
G		opermar scopping problem	
-		Р	
general single chain case	127	phase I - phase II method	15
Н		policy	20,187,210
	00 100	policy improvement method	65
history	20,186	polytope	9
I		positive dynamic programmin	ng 4,23
	0	p-summable	39
identity matrix	8	pure and stationary policy	21
infeasible problem	11		
infinite direction	11	R	
infinite solution	11	recurrent state	24
inner product	8	reward function	20,186
L			
linear programming puchlom	10	S	
IIIear programming problem	10	semi-Markov decision model	1,5
Μ		semi-Markov decision proces	ss
Markov chain	24	simplex method	14
Markov decision problem	1.20	simplex tableau	14
Markov decision process	-,20	slack variables	15
Markov games	186	state space	20,186,210
Markovian control problem	1	stationary matrix	25
Markov policy	- 20	stationary policy	20
Markov renewal program	210	stationary probability	
Memoryless policy	20	distribution	25
		steady-state equations	129
Ν		stochastic dynamic program	ming
negative dynamic programming	4,23	problem	20
nonbasic variable	13	stochastic games	2
nondegenerated problem	14	stochastic matrix	28

suboptimal actions	5 , 70	
substochastic matrix	28	
sum vector	8	
superharmonic vector	2, 51,98, 193	
	200,214,221	
Т		
TMD-model	22	•
-superharmonic	51	
-value-vector	22	
TMG-model	188	
-superharmonic	193	
total optimal policy	22	•
total reward criterion	3	
transient dynamic program	ming	
problem	23	
transient policy	23	
transient state	24	
transition probability	20,186,210	
two-person zero-sum semi-	Markov	
stochastic game	218,226	
two-person zero-sum stoch	astic	
game	5,186	
U		
unbounded solution	11	
unichain case	132,183,226	
unichained Markov chain	25,34	
unit vector	8	
usable direction	11	
V		
val(AMG)	189	
val(TMG)	188	
value of the game	188	
inf		
acal anichained	125,226	

SYMBOL INDEX

(Symbols with only local significance are not included)

GREEK		LATIN		
α	22	A(i)	20 , 186	
β	52 , 72	A(i,f)	66,119	
Y .	1 09, 204	Ā(1)	160	
δ	8	Ã(1)	160	
λ	212	B(1)	186	
μ	23	с	20	
τ π	20,187	C _D	21	
∞ π	21	c,	20	
π [∞] (x)	53		20	
$\pi^{\infty}(\mathbf{x}, \mathbf{y})$	108		29	
τ	221	D(π)	34	1
φ	23	e	8	1
φ(f [∞])	22	E	20,186	
φ (πຶ)	34	Ĕ	160	
φ(R)	22	E	36	
$\phi(\mathbf{R}_1,\mathbf{R}_2)$	188	(E,A,p,r)	20	
$\phi(\mathbf{R})$	101	(E,A,B,p,r)	186	
x	219	(E,A,p,r [*] ,F)	214	
χ(R)	219	(E,A,p [*] ,r [*])	218	
ψ	170	(E,A,p,r,τ)	221	
		(E,A,p,r)	226	
		f	21	
		H_	20, 186	
		I	8	
		ĸ	55	
		K (D)	55	
		К (М)	55	
		K(S)	55	
		L	135	
		L(C)	135	
		L (D)	135	
		L (M)	135	
		L(S)	135	

¥

244

••
			245
N	20	$ _{\mathbf{v}}^{\lambda}$	214
1N		$v^{\lambda}(R)$	212
101	. 8	val(AMG)	189
0 n(f)	160	val(TMG)	189
n(π)	32	w	50
Pichi	186	x(f)	135
	20,210	x(R)	55,135
$p_{i,j}^{t}(\mathbf{R})$	21	x (π)	54,109,135
т) Р	55	$\mathbf{x}^{\mathrm{T}}(\mathrm{R})$	134
Ρ(π)	21	x	138
$P(\pi^t)$	21	x	211
P(f)	21	x ₊	21,187
Ρ(π,ρ)	190	y(f)	109
P [*]	25	Υ (π)	109
R	20	Yn	211
\mathbb{R}^1	8	Y _t	21,187
R(f)	160	Ζ(π)	198
R(π)	32	zt	187
r	20,210	-	
ŕ	221		
r iab	186		
r (π)	34		
r (π,ρ)	190		
s	210		
T(f)	160		
Τ(π)	32		
u *	166		
u ື ∞	166		
u(π ⁻)	34		
v	22		
V (R)	22		
$\frac{v(R_1, R_2)}{t}$	188		
v (R) t	21		
V ⊂ (R)	219		
ν(π) ∞	23		
v(f)	22		
v ~	22		
v~(R)	22		

۵. ۲۰۰۰ ۲۰۰۰ م

MATHEMATICAL CENTRE TRACTS

1 T. van der Walt. Fixed and almost fixed points. 1963.

2 A.R. Bloemena. Sampling from a graph. 1964.

3 G. de Leve. Generalized Markovian decision processes, part 1: model and method. 1964.

4 G. de Leve. Generalized Markovian decision processes, part II: probabilistic background. 1964.

5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian decision processes, applications. 1970.

6 M.A. Maurice. Compact ordered spaces. 1964.

W.R. van Zwet. Convex transformations of random variables. 1964.

8 J.A. Zonneveld. Automatic numerical integration. 1964.

9 P.C. Baayen. Universal morphisms. 1964.

10 E.M. de Jager. Applications of distributions in mathematical physics. 1964. 11 A.B. Paalman-de Miranda. Topological semigroups. 1964.

12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, A. van Wijngaarden. Formal properties of newspaper Dutch. 1965.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; replaced by MCT 54.

14 H.A. Lauwerier. Calculus of variations in mathematical physics. 1966.

15 R. Doornbos. Slippage tests. 1966.

16 J.W. de Bakker. Formal definition of programming languages with an application to the definition of ALGOL 60. 1967.

17 R.P. van de Riet. Formula manipulation in ALGOL 60, part 1. 1968.

18 R.P. van de Riet. Formula manipulation in ALGOL 60, part 2. 1968.

19 J. van der Slot. Some properties related to compactness. 1968

20 P.J. van der Houwen. Finite difference methods for solving partial differential equations. 1968.

21 E. Wattel. The compactness operator in set theory and topology. 1968.

22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, part 1. 1968.

23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in numerical algebra, part 2. 1968.

24 J.W. de Bakker. Recursive procedures. 1971.

25 E.R. Paërl. Representations of the Lorentz group and projective geometry. 1969.

26 European Meeting 1968. Selected statistical papers, part I. 1968.

27 European Meeting 1968. Selected statistical papers, part II. 1968.

28 J. Oosterhoff. Combination of one-sided statistical tests. 1969

29 J. Verhoeff. Error detecting decimal codes. 1969.

30 H. Brandt Corstius. Exercises in computational linguistics. 1970.

31 W. Molenaar. Approximations to the Poisson, binomial and hypergeometric distribution functions. 1970.

32 L. de Haan. On regular variation and its application to the weak convergence of sample extremes. 1970.

33 F.W. Steutel. Preservation of infinite divisibility under mix-ing and related topics. 1970.

34 I. Juhász, A. Verbeek, N.S. Kroonenberg. Cardinal func-tions in topology. 1971.

35 M.H. van Emden. An analysis of complexity. 1971.

36 J. Grasman. On the birth of boundary layers. 1971. 37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper, F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap-Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica Symposium. 1971.

38 W.A. Verloren van Themaat. Automatic analysis of Dutch compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.

40 H.C. Tijms. Analysis of (s,S) inventory models. 1972.

41 A. Verbeek. Superextensions of topological spaces. 1972.

42 W. Vervaat. Success epochs in Bernoulli trials (with applica-tions in number theory). 1972.

43 F.H. Ruymgaart. Asymptotic theory of rank tests for independence. 1973.

44 H. Bart. Meromorphic operator valued functions. 1973. 45 A.A. Balkema. Monotone transformations and limit laws. 1973.

1975.
46 R.P. van de Riet. ABC ALGOL, a portable language for formula manipulation systems, part 1: the language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for formula manipulation systems, part 2: the compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the MC-compiler for the EL-X8. 1973.
40 H. Mch. Generated and the server 1974.

49 H. Kok. Connected orderable spaces. 1974. 50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G. Fisker (eds.). Revised report on the algorithmic language ALGOL 68. 1976.

51 A. Hordijk. Dynamic programming and Markov potential theory. 1974.

52 P.C. Baayen (ed.). Topological structures. 1974.

53 M.J. Faber. Metrizability in generalized ordered spaces. 1974.

54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974. 55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1: theory of designs, finite geometry and coding theory. 1974.

56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: graph theory, foundations, partitions and combinatorial geometry. 1974.

57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3: combinatorial group theory. 1974.

58 W. Albers. Asymptotic expansions and the deficiency con-cept in statistics. 1975.

59 J.L. Mijnheer. Sample path properties of stable processes. 1975. 60 F. Göbel. Queueing models involving buffers. 1975.

63 J.W. de Bakker (ed.). Foundations of computer science. 1975.

64 W.J. de Schipper. Symmetric closed categories. 1975. 65 J. de Vries. Topological transformation groups, 1: a categorical approach. 1975.

66 H.G.J. Pijls. Logically convex algebras in spectral theory and eigenfunction expansions. 1976.

68 P.P.N. de Groen. Singularly perturbed differential operators of second order. 1976.

69 J.K. Lenstra. Sequencing by enumerative methods. 1977.

70 W.P. de Roever, Jr. Recursive program schemes: semantics and proof theory. 1976.

71 J.A.E.E. van Nunen. Contracting Markov decision rocesses. 1976.

72 J.K.M. Jansen. Simple periodic and non-periodic Lamé functions and their applications in the theory of conical waveguides. 1977.

73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979. 74 H.J.J. te Riele. A theoretical and computational study of generalized aliquot sequences. 1976.

75 A.E. Brouwer. Treelike spaces and related connected topological spaces. 1977.

76 M. Rem. Associons and the closure statement. 1976.

77 W.C.M. Kallenberg. Asymptotic optimality of likelihood ratio tests in exponential families. 1978.

78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz

spaces. 1977. 79 M.C.A. van Zuijlen. Emperical distributions and rank statistics. 1977.

80 P.W. Hemker. A numerical study of stiff two-point boundary problems, 1977

81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer science II, part 1. 1976.

82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer science II, part 2. 1976.

83 L.S. van Benthem Jutting. Checking Landau's "Grundlagen" in the AUTOMATH system. 1979.

84 H.L.L. Busard. The translation of the elements of Euclid from the Arabic into Latin by Hermann of Carinthia (?), books vii-xii. 1977.

85 J. van Mill. Supercompactness and Wallman spaces. 1977. 86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program-ming system for operations on vectors and matrices over arbi-trary fields and of variable size. 1978.

88 A. Schrijver. Matroids and linking systems. 1977. 89 J.W. de Roever. Complex Fourier transformation and analytic functionals with unbounded carriers. 1978.

90 L.P.J. Groenewegen. Characterization of optimal strategies in dynamic games. 1981.

91 J.M. Geysel. Transcendence in fields of positive characteristic. 1979 92 P.J. Weeda. Finite generalized Markov programming. 1979.

93 H.C. Tijms, J. Wessels (eds.). Markov decision theory. 1977

94 A. Bijlsma. Simultaneous approximations in transcendental number theory. 1978.

95 K.M. van Hee. Bayesian control of Markov chains. 1978. 96 P.M.B. Vitanyi. Lindenmayer systems: structure, languages, and growth functions. 1980.

97 A. Federgruen. Markovian control problems; functional equations and algorithms. 1984.

98 R. Geel. Singular perturbations of hyperbolic type. 1978. 99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas (eds.). Interfaces between computer science and operations research. 1978.

100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-ings bicentennial congress of the Wiskundig Genootschap, part 1. 1979.

101 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-ings bicentennial congress of the Wiskundig Genootschap, part 2. 1979.

102 D. van Dulst. Reflexive and superreflexive Banach spaces. 1978.

103 K. van Harn. Classifying infinitely divisible distributions by functional equations. 1978.

104 J.M. van Wouwe. Go-spaces and generalizations of metri-zability. 1979.

105 R. Helmers. Edgeworth expansions for linear combinations of order statistics. 1982. 106 A. Schrijver (ed.). Packing and covering in combinatorics.

1970

107 C. den Heijer. The numerical solution of nonlinear opera-tor equations by imbedding methods. 1979.

108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of computer science III, part 1. 1979.

109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of computer science III, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, part 1: historical review and discussion of the implementation model. 1979.

111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen-tation model. 1979.

112 H.C.P. Berbee. Random walks with stationary increments and renewal theory. 1979.

113 T.A.B. Snijders. Asymptotic optimality theory for testing problems with restricted alternatives. 1979.

114 A.J.E.M. Janssen. Application of the Wigner distribution to harmonic analysis of generalized stochastic processes. 1979. 115 P.C. Baayen, J. van Mill (eds.). Topological structures II, part 1. 1979.

116 P.C. Baayen, J. van Mill (eds.). Topological structures 11, part 2. 1979.

117 P.J.M. Kallenberg. Branching processes with continuous state space. 1979.

118 P. Groeneboom. Large deviations and asymptotic efficient cies. 1980.

119 F.J. Peters. Sparse matrices and substructures, with a novel implementation of finite element algorithms. 1980.

120 W.P.M. de Ruyter. On the asymptotic analysis of large-scale ocean circulation. 1980.

121 W.H. Haemers. Eigenvalue techniques in design and graph theory 1980

122 J.C.P. Bus. Numerical solution of systems of nonlinear equations. 1980.

123 I. Yuhász. Cardinal functions in topology - ten years later. 1980

124 R.D. Gill. Censoring and stochastic integrals. 1980.

125 R. Eising. 2-D systems, an algebraic approach. 1980. 126 G. van der Hoek. Reduction methods in nonlinear pro-gramming. 1980.

127 J.W. Klop. Combinatory reduction systems. 1980.

128 A.J.J. Talman. Variable dimension fixed point algorithms and triangulations. 1980.

129 G. van der Laan. Simplicial fixed point algorithms. 1980. 130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. Sint, A.H. Veen. *ILP: intermediate language for pictures.* 1980.

131 R.J.R. Back. Correctness preserving program refinements: proof theory and applications. 1980.

132 H.M. Mulder. The interval function of a graph. 1980. 133 C.A.J. Klaassen. Statistical performance of location esti-

mators, 1981. 134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna-tional conference on ALGOL 68. 1981.

135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof (eds.), Formal methods in the study of language, part I. 1981.

136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof (eds.). Formal methods in the study of language, part II. 1981. 137 J. Telgen. Redundancy and linear programs. 1981.

138 H.A. Lauwerier. Mathematical models of epidemics. 1981. 139 J. van der Wal. Stochastic dynamic programming, succes-sive approximations and nearly optimal strategies for Markov decision processes and Markov games. 1981.

140 J.H. van Geldrop. A mathematical theory of pure exchange economies without the no-critical-point hypothesis. 1981.

141 G.E. Welters. Abel-Jacobi isogenies for certain types of Fano threefolds. 1981.

142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order structures, part 1. 1981.

143 J.M. Schumacher. Dynamic feedback in finite- and infinite-dimensional linear systems. 1981.

144 P. Eijgenraam. The solution of initial value problems using interval arithmetic; formulation and analysis of an algorithm. 1981.

145 A.J. Brentjes. Multi-dimensional continued fraction algo-rithms. 1981.

146 C.V.M. van der Mee. Semigroup and factorization methods in transport theory. 1981.

147 H.H. Tigelaar. Identification and informative sample size. 198

148 L.C.M. Kallenberg. Linear programming and finite Mar-kovian control problems. 1983.

149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, W.K. Vietsch (eds.). From A to Z, proceedings of a symposium in honour of A.C. Zaanen. 1982.

150 M. Veldhorst. An analysis of sparse matrix storage schemes. 1982.

151 R.J.M.M. Does. Higher order asymptotics for simple linear rank statistics. 1982.

152 G.F. van der Hoeven. Projections of lawless sequences. 1982

153 J.P.C. Blanc. Application of the theory of boundary value problems in the analysis of a queueing model with paired services. 1982.

Vices. 1962.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational methods in number theory, part II. 1982.

156 P.M.G. Apers. Query processing and data allocation in distributed database systems. 1983.

157 H.A.W.M. Kneppers. The covariant classification of two-dimensional smooth commutative formal groups over an alge-braically closed field of positive characteristic. 1983.

158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of computer science IV, distributed systems, part 1. 1983.

159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of computer science IV, distributed systems, part 2, 1983.

160 A. Rezus. Abstract AUTOMATH. 1983.

161 G.F. Helminck. Eisenstein series on the metaplectic group, an algebraic approach. 1983.

162 J.J. Dik. Tests for preference. 1983.

163 H. Schippers. Multiple grid methods for equations of the second kind with applications in fluid mechanics. 1983.

164 F.A. van der Duyn Schouten. Markov decision processes with continuous time parameter. 1983. 165 P.C.T. van der Hoeven. On point processes. 1983.

166 H.B.M. Jonkers. Abstraction, specification and implemen-tation techniques, with an application to garbage collection. 1983

1763.
167 W.H.M. Zijm. Nonnegative matrices in dynamic programming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of diophantine equations. 1983.

169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order structures, part 2. 1983.

CWI TRACTS

1 D.H.J. Epema. Surfaces with canonical hyperplane sections. 1984.

1 D. H.J. Epeina. Surfaces with canonical hyperplane sections. 1984.
2 J.J. Dijkstra. Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal approach. 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie groups. 1984.
6 A.P.W. Böhm. Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoorn. Algorithms and approximations for queueing systems. 1984.
9 C.P.J. Koymans. Models of the lambda calculus. 1984.