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INTRODUCTION 

In this monograph we study Markovian control problems. These problems 

concern the control of systems which have a dynamic structure, i.e. deci­

sions have to be made at different points in time. If a decision is made, 

then the behaviour of the system is uncertain, i.e. the state of the sys­

tem at the next decison time point is not deterministic, but is given by a 

probability distribution on the state space. 

An example of such a control problem is the following (cf. ROSS [1970] 

pp.138-139). Suppose a person wants to sell his house and an offer is made 

every week. The seller has two possible decisions: to reject or to accept 

the offer. If he rejects the offer, then the offer is no longer available 

and the offer of the next week is uncertain. Furthermore, a maintenance 

cost is incurred for each week that the house remains unsold. Which policy 

has to be chosen to obtain the maximum expected profit? 

In this monograph, we shall pay special attention to the construction of 

algorithms, based on linear programming, to compute optimal policies for 

several optimality criteria. We will discuss finite Markov decision prob­

lems, semi-Markov problems and stochastic games. 

Markov decision problems can be characterized by a state space, an 

action space, transition probabilities, rewards and a utility function. 

The system is observed at discrete time points to be in one state of the 

state space. Then the decision maker chooses an action from the action 

space and two things occur: 

(1) a reward is earned, 

(2) the next state of the system is chosen according to a probability 

distribution on the state space. 

If the decision maker uses a stationary policy, i.e. the chosen action only 

depends on the state of the system, then the sequence of states form a 

Markov chain. For this reason the problem is called a Markov decision prob­

lem. Markov decision models were introduced by BELLMAN r1957J and HOWARD 

[1960]. At this moment, there is an extensive literature on this subject 

and there are several books which deal with Markov decision problems, e.g. 

DERMAN [1970], ROSS [1970], MINE & OSAKI [1970], HINDERER [1970] and 

HORDIJK [ 1974]. 

The semi-Markov decision models differ from the (discrete) Markov deci­

sion models by the fact that the times between the several decision points 
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are random variables. Hence, if the decision maker uses a stationary policy, 

then the process {X(t), t ~ 0}, where X(t) describes the state at time t, 

is a semi-Markov process. Semi-Markov decision models were introduced by 

DE CANI [1964], HOWARD [1963], JEWELL [1963] and SCHWEITZER [1965]. 

The third class of models that are studied, are· the stochastic games. 

In a stochastic game several players control the system simultaneously. At 

any decision time point all players independently choose an action from 

their own action space. These choices produce a reward for every player, 

and the next state of the system is determined by a probability distribu­

tion which depends on the present state and the chosen actions. Stochastic 

games were introduced by SHAPLEY [1953], thus before the Markov decision 

model. If all players except one have only one action available in each 

state, then the stochastic game reduces to a Markov decision problem. 

Methods to solve finite Markovian control problems are based on tech­

niques such as policy improvement, successive approximation or linear prog­

ramming. 

The policy improvement method is an iterative procedure that computes 

a sequence of so-called pure and stationary policies such that subsequent 

policies give a higher value of the utility function. Since there exists 

a pure and stationary optimal policy and since the set of pure and station­

ary policies is finite, the procedure terminates after a finite number of 

iterations with an optimal pure and stationary policy. 

The maximum value of the utility function satisfies a functional equa­

tion. By the method of successive approximation the solution of this equa­

tion is approximated, and corresponding policies are computed, using the 

well-known techniques on contraction mappings. 

In this thesis we will discuss linear.programming methods for the 

solution of several Markovian control problems. 

The fact that linear programming can be used is based on the property 

that the maximal value of the utility function is the smallest so-called 

superharmonic vector. Since the superharmonic property is a condition for­

mulated in terms of linear inequalities, we have to find the smallest ele­

ment which satisfies a system of linear inequalities. Therefore, this maxi­

mal value can be found as the optimal solution of a linear program and an 

optimal policy may be obtained from the optimal solution of the dual program. 

It will be shown that the complementary slackness property plays an important 

role in proving the optimality properties. The concept 0£ superharmonicity 

was introduced by HORDIJK [1974]. 
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Already in 1960, linear programming formulations were known for some 

Markov decision models (cf. DE GHELLINCK [1960], D'EPENOUX [1960] and MANNE 

[1960]). We will prove similar results to several other Markovian control 

problems. For a short review we refer to HORDIJK & KALLENBERG [1981d]. The 

linear programming approach has some advantages in comparison with other 

techniques, e.g. 

(1) In many industrial enviro~ments linear programming computer codes 

are available. Hence, linear programming algorithms can be made 

operational very easily. 

(2) If we use linear programming, then we have the opportunity to apply 

sensitivity analysis on the optimal solution. Therefore, the deci­

sion maker may obtain information about the behaviour of the optimal 

policy when the data are changed. 

(3) By linear programming we can solve Markovian control problems with 

additional constraints. As far as we know, linear programming is 

the only technique for the solution of this kind of problems. 

In this thesis, we only discuss models with a finite state space and a 

finite action space. If we drop the finiteness, then linear programming 

formulations also may be obtained (e.g. HEILMANN [1977]). Since the empha­

sis of our work is on the construction of finite algorithms for the solu­

tion of Markovian control problems, we restrict ourselves to finite models. 

The scope of the monograph is as follows. In the first two chapters we 

survey some basic results from the theory of linear programming (chapter 1) 

and from the theory of Markov decision processes (chapter 2). 

In chapter 3 we consider Markov decision problems with the expected 

total reward as utility function. We introduce the concept of superharmo­

nicity and we prove that the optimal utility vector - when we restrict tl~e 

policies to the class of transient policies - is the smallest superharmo­

nic vector. Hence, the linear programming approach is applicable. We pre­

sent a linear programming formulation which gives a pure and stationary 

policy that is optimal in the class of transient policies. Also, the rela­

tion between stationary transient policies and the feasible solutions of 

the linear program is analysed. These results generalize the well-known 

linear programming method for discounted dynamic programming. Moreover, 

we discuss the Markov decision problem with additional constraints and we 

show that a stationary optimal transient policy can be found by the solu­

tion of a linear program. As special cases, we present the optimal stop­

ping problem and the contracting dynamic programming problem. For the 
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latter model, we prove that the linear programming method and the policy 

improvement method are equivalent and that the elimination of suboptimal 

actions can be implemented in the algorithm. In this chapter we also treat 

the positive and the negative dynamic programming models and, for both 

models, finite algorithms are derived for the determination of a pure and 

stationary optimal policy. 

Chapter 4 deals with the expected average reward as utility function. 

Although we can present an approach similar to the previous chapter, the 

analysis of this model is more complex and we have to perform more calcu­

lations to obtain optimal policies. The concept of a superharmonic vector 

is introduced such that the optimal utility vector for the present crite­

rion is the smallest superharmonic vector. A pure and stationary optimal 

policy can be obtained directly from an extreme optimal solution of a 

linear program. If we consider special models for which the Markov chains 

induced by stationary (optimal) policies are unichained, then the linear 

programs may be simplified considerably. It will be shown that there is a 

close relationship between the linear programming method and the policy 

improvement method. The determination of an optimal policy for the Markov 

decision model with additional constraints is complicated. We will con­

struct an algorithm for the computation of a memoryless optimal policy. 

Although there exists no stationary optimal policy in general, fortunately, 

in many cases a stationary optimal policy may be found. We give sufficient 

conditions for its existence, and we present an algorithm for the computa­

tion of a stationary policy which is optimal when these conditions are sat­

isfied. In the unichain case, a stationary optimal policy always exists and 

a simplified algorithm may be used. 

Sometimes, a criterion that is more selective than the average reward 

criterion is preferable. In chapter 5, we discuss such a criterion. An op­

timal policy with respect to this criterion is a so-called bias-optimal 

policy. We present two algorithms for its computation. The first algorithm, 

which will be favourable when the number of average optimal pure and sta­

tionary policies is small, enumerates the extreme optimal solutions of the 

linear program used in chapter 4. For any optimal solution we have to per­

form additional computations to obtain the so-called bias-value. A policy 

which maximizes this bias-value is a bias-optimal policy. In the second 

algorithm, which is a modification of DENARDO [1970a], a pure and station­

ary bias-optimal policy is obtained by the solution of three linear pro­

grams and one search procedure, in the worst case. We also present a 
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simplified algorithm for the unichain case. 

In chapter 6 we consider a two-person zero-sum stochastic game. We 

only consider models in which the transition probabilities are controlled 

by one player (otherwise the linear programming approach is not possible). 

The total reward criterion (under a contraction assumption) and the average 

reward criterion will be treated analogously. We show that the value of the 

game is the smallest superharmonic vector which can be found as the optimal 

solution of a linear program. Stationary optimal policies for both players 

can be obtained from the optimal solution of the dual program. Moreover, the 

linear programming approach provides a new proof of the existence of the 

value of the game. 

In the final chapter, the semi-Markov decision model is studied. Also 

for these models we can introduce a concept of superharmonicity which leads 

to a linear programming formulation. In the discounted reward case as well 

as in the average reward case we obtain pure and stationary optimal policies 

from the linear programming solution. We also show the equivalence with cer­

tain discrete Markov decision models. Hence, the results of the chapters 3 

and 4 may also be applied on the semi-Markov decision model. 

In this monograph Markovian control problems over an infinite horizon 

are considered. The linear programming approach is also applicable for fi­

nite horizon models (cf. KALLENBERG [198la]). 
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CHAPTER 1 

LINEAR PROGRAMMING 

1.1. INTRODUCTION AND SUMMARY 

In this chapter we shall present a survey of some basic results in 

the theory of linear programming. In the sequel of this monograph it will be 

shown that linear programming is a useful approach to derive finite algo­

rithms for a number of Markovian control problems. 

In section 1.2 we mention some properties of convex polyhedra. Convex 

polyhedra play an important role in the theory of linear programming. We 

present a theorem on separating hyperplanes and we give a characterization 

of the set of extreme points of a convex polyhedron. 

Then, in section 1.3, the linear program is introduced and the well­

known optimality and duality theorems are summarized, including the com­

plementary slackness property. Optimality and duality properties will be 

a useful instrument for the proofs of the theorems in the following chap­

ters. 

Section 1.4 deals with the simplex method, developed by G.B. Dantzig 

in 1947. The simplex tableau is presented. Moreover, we derive an algorithm 

to compute all extreme optimal solutions of a linear program. 

The theory of linear programming can be found in many text books. 

For the proofs of the theorems we refer to these books. 

NOTATIONS 1 . 1 . 1 . 

(i) 

(ii) 

A (column) 

X )Tor by 
n 

vector x with n components is denoted by x = (x1 ,x2 , ... , 

x = (xi); a matrix A with (i,j)-th element aijis denoted 

=(a .. ); the k-th column and the i-th row of A are denoted by by A 
lJ 

a.k respectively ai•" 

Let x and y be n-component vectors. Then x 2 y denotes that X, 2 Yi l 

for all i, X > y means X 2 y and x f, y, X >> y signifies that 
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xi> yi for all i; we denote x < 00 if and only if xi < 00 i=l,'2, .•• ,n. 

(iii) When the range of a variable is unspecified, then its entire range 

is intended, e.g. Eixi = E~=l xi if x = (x 1 ,x2 , ... ,xn)T; the dimen­

sion of vectors and matrices is not always explicitly mentioned, but 

this dimension will be clear from the context. 

(iv) lN is the set of positive integers: lN = {1,2, ••• }; lN0 is the set 

of nonnegative integers: lN0 = { 0, 1, ••• } • 

(v) nl is the set of all real n-component vectors; JR+ = {a E JR.1 la> O}. 

(vi) By IE I we denote the cardinality of a set E. 

(vii) E\F is the set of all elements of E which do not belong to F. 

(viii) The notation x := y will be used to indicate that the variable x gets 

the value y. 

(ix) 

(x) 

The symbol D indicates the end of a proof. 
1 For a E JR we denote by LaJ the largest integer not greater than a. 

DEFINITIONS 1.1.1. 

(i) The null-vector, denoted by 0, has all components zero; the null 

matrix, also denoted by O, has all elements zero; the identity 

(ii) 

(iii) 

matrix, denoted by I, has elements (o .. ) , where o .. is Kronecker's 
iJ iJ 

delta; the j-th unit vector, notated bye., is the vector with all 
J 

entries zero except entry j, which is a one; e 

the sum vector. 

:= (1,1, .•. ,l)T is 

The inner product of two real n-component 

by xTy and defined by xTy := E.x.•y .. 

vectors x and y is denoted 

i i i 

The (supremum) norm of x E lRn is defined by llxll := max Ix. I; the 
1::Si:Sn i 

(supremum) norm of a matrix A is defined by IIAII := sup IIAxll. (It 

can easily be verified that IIAII = max EJ.laiJ'f). 
i 

II xli=l 

1.2. CONVEX POLYHEDRA 

In this section we review some results about convex polyhedra that are 

fundamental for the theory of linear programming. 

DEFINITIONS 1.2.1. 

(i) S c lRn {s a • convex set if for any two vectors x,y Es and any 

A E (0,1) AX+ (1-.>..) y E S; the convex hull of a set Sc ]Rn is the 



intersection of all convex sets containing Sas subset; the closed 

convex hull of Sis the smallest closed convex set containing Sas 

subset (this closed convex hull will be denoted by S). 
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(ii) A face of a convex set Sis a convex subset S' of S such that every 

closed line segment in S with a relative interior point in S' has 

both endpoints in S'. The zero-dimensional faces of s are called the 

extreme points of S, (Then x €Sis an extreme point of S if and only 

if there do not exist points y,z € S distinct from x for which x = 
\y+(l-\)z for some A€ (O,i)). If S' is a half-line face of S, then 

we call the direction of S' an extreme direction of S. 

(iii) A convex polyhedron R is the intersection of a finite number of 

closed half-spaces, i.e. R = {x!Ax ~ b} for some mxn matrix A and 

some vector b E lRm. A bounded convex polyhedron is a polytope. 

(iv) C c lRn is a cone if for any x E C, AX € C for every A ~ O; a convex 

polyhedral cone generated by the mxn matrix A is the set 

{yly = ATu; u ~ O}. The vectors (a, )Tare the extreme rays of the 
* l.' * T cone; the dual cone C is defined by C := {yly x ~ 0 for every 

X € C}, 

THEOREM 1.2.1. Let Sc lRn be any closed convex set and suppose that xi S. 

Then there exists a vector r E lRn and a real number r 0 such that 

T . T 
r x > r 0 > r y for every y Es. 

PROOF. See KARLIN [1959] pp.397-398. □ 

Consider the set R := {x!Ax = b; x ~ O}, where x E lRn, b E lRm and 

A an mxn matrix. Since each equality may be replaced by two inequalities, 

Risa convex polyhedron. 

THEOREM 1.2.2. x ER is an extreme point if and only if {a,klxk > O} is a 

linearly independent set of vectors. 

PROOF. See COLLATZ & WETTERLING [1966] pp.9-10. □ 

LEMMA 1.2.1. The number of extreme points and extreme directions of R is 

finite. 

PROOF. See ROCKAFELLAR [ 1970] pp. 170-172. 0 

LEMMA 1.2.2. If R is non-empty, then also the set of extreme points of R 

is non-empty. 
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PROOF. See COLLATZ & WETTERLING [1966] pp.10-11. □ 

k K 
THEOREM 1.2.3. If R is non-empty with extreme points {x }k=l and extreme 

l L 
directions {s }l=l' then any x ER can be written as 

1, 2, •.. ,K, 1,2, ... ,L. 

PROOF. See ROCKAFELLAR [1970] pp.170-172. □ 

COROLLARY 1.2.2. Any polytope is the convex hull of its extreme points. 

1.3. OPTIMALITY AND DUALITY 

DEFINITIONS 1.3.1. The linear programming problem is the problem of finding 

a vector x E 1Rn which maximizes a linear form pTx (called the objective 

function), subject to the linear constraints Ax$ b, x 2 0, where b E 1Rm 

and A is an mxn matrix. This problem is usually notated by 

( 1. 3 .1) 

A linear programming problem is also called a linear program. The convex 

polyhedron R := {xlAx $ b; x 2 O} is said to be the feasible region. Any 

x ER is called a feasible solution. For any x ER we define y := b-Ax; 

then y E 1Rm and y 2 0. Furthermore, we introduce 

A := (A,I), and p := (~). 

Then we can write the linear program (1.3.1) as 

( 1. 3. 2) max{r7x I Ax b; x 2 0} 

with feasible region R := {xlAx 

A similar formulation is 

( 1. 3. 3) 

b; x 2 0}. 

b; x 2 0, y 2 O}. 



THEOREM 1.3.1. xis an extreme point of R if and only if xis an extreme 

point of R. 

PROOF. The proof is straightforward. D 

D~FINITIONS 1.3.2. Given a linear programming problem, there are three 

possibilities: 

1. There is no feasible solution. In this case the problem is said to be 

infeasible. 
o T o T 

2. There is a feasible solution x with p x ? p x for every x ER. Then 
0 

11 

x is called an optimal solution and we say that the linear program has 

a finite solution. 
o o n 

3. There is a feasible solution x E R and a vector s E JR such that 

pTs 0 > 0 and x 0 + As 0 ER for all A? O. Then the objective Eunction 

can be made arbitrarily large and the problem is said to be unbounded 

or has an infinite solution. The vector s 0 is called an infinite direc-
0 

tion in x. 

THEOREM 1.3.2. If the linear program has a finite solution, then it has 

an optimal extreme solution. 

PROOF. See COLLATZ & WETTERLING [1966] pp.12-13. 0 

LEMMA 1.3.1. The set of optimal solutions is convex. 

PROOF. See COLLATZ & WETTERLING [1966] p.11. 0 

DEFINITIONS 1.3.3. A vectors E JRn is said to be a feasible direction in 

a point x ER if there exists a A> 0 such that x +ASE R. If, in addi-

tion, pTs > 0 thens is said to be a usable direction. For any x ER we 

define M(x) := {ila: x 
1-. 

T 
bi}, N(x) := {j I (ej) x = O} and 

{" 
T 

'., 0, i c M(x)} a. s 
i· 

S(x) := ]Rn 

, (-e .) Ts '., o, j E N(x) 
J 

S(x) is the cone of feasible directions in x. 

THEOREM 1.3.3. (Optimality theorem) x ER is an optimal solution of the 

linear program (1.3.1) if and only if there exist vectors u E JRm, v E ]Rn 

such that p = ATu-v, u? 0, v? 0 and uT(b-Ax) = vTx = 0. 
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PROOF. See ZOUTENDIJK [1976] pp.23-24. 0 

REMARK 1.3.1. Suppose that x.is an optimal solution of the linear prograw 

(1.3.1). Then from the convexity of the set of optimal solutions (see lem­

ma 1.3.1) it follows that xis the unique optimal solution if and only if 

pTs < 0 for alls E S(x). Hence, xis unique if and only if pis an inte­

rior point of the dual cone of cone S(x). 

DEFINITIONS 1.3.4. We define for the linear programming problem (1.3.1) the 

dual problem by 

(1. 3.4) 

with feasible region D := {ulATu 2 p; u 2 O}. Defining the vect:or v by 
T 

v := A u-p, the dual problem can also be written as 

(1. 3. 5) p; u 2 O; v 2 O}. 

Problem (1.3.1) is said to be the primal problem. 

THEOREM 1.3.4. (Duality theorem) 

(i) The dual problem of the dual problem is the primal problem. 

(ii) If XE Rand u ED, then pTx ~ bTu. 
0 

(iii) If the primal problem has an optimal solution x, then the dual 

problem has also a finite optimal solution, say u 0
• Moreover, 

T o 
p X 

T o 
b u , 

o T o 
(u ) (b-Ax ) 

(iv) If XE Rand u ED satisfy uT(b-Ax) 

0 and 
o T T o 

(x ) (A u -p) o. 

are optimal solutions of the primal and the dual problem respectively. 

(v) If the primal problem has an infinite solution, then the dual problem 

is infeasible. 

(vi) If the primal problem is infeasible, then the dual problem either has 

an infinite solution or it is infeasible. 

PROOF. See ZOUTENDIJK [1976] pp.24-26. 0 

COROLLARY 1.3.1. (Complementary slackness property) Suppose that (x,y) and 

(u,v) are optimal solutions of the programs (1.3.3) and (1.3.5) respective­

ly. Then 
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(i) X, > 0 =+ V, o. 
J J 

(ii) Yi > 0 =+ U, o. 
l. 

(iii) U, > 0 =+ Yi o. 
l. 

(iv) V, 
J 

> 0 .. x. o. 
J 

1.4. SIMPLEX METHOD 

Consider the linear programming problem formulated as (1.3.2). Assume 

that the columns of A are rearranged such that A= (B,N), where Bis an mxm 
- T nonsingular matrix. Let x = (xB,xN) , where xB is the vector of variables 

corresponding to the columns of B, and~ is the vector of variables that 

correspond to the columns of N. Then, Ax = b can be written as BxB + NxN = b. 

Since Bis nonsingular, the inverse matrix B-l exists and we obtain 
-1 -1 -1 

~ = B b - B N~. Assume, in addition, that B b :::C O. Then, by theorem 

1.2.2, the solution~= B-lb, ~ = 0 is an extreme point of the feasible 
T 

region R. We say that the matrix Bis a basis matrix and that (xB,~) is 

a basic solution, where xB are the basic variables and xN the nonbasic 

variables. The corresponding value x0 of the objective function satisfies 

(1.4.1) 

We define the (n+m)-component vector d = (dB,~)T by dB:= 0 and dN := 
T -1 T 

pBB N-pN. The vector d may also be partitioned into parts corresponding 

to the original vectors y and x: d = (u,v)T, where u E m.m and v E m.n. 

THEOREM 1.4.1. The vectors u and v, defined above, satisfy 

T 
A u-v p; 

T 
u y 

T 
V X o. 

PROOF. See ZOUTENDIJK [1976] pp.36-37. 0 

REMARK 1.4.1. Theorem 1.4.1 implies that if d :::C 0, then (u,v) is a feasible 

solution of the dual program (1.3.5). Therefore, dis called the vector of 

dual variables. Moreover, theorem 1.3.4(iv) implies that x and (u,v) are 

optimal solutions of the primal and dual linear program respectively. 
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REMARK 1.4.2. In the simplex method basic solutions are iteratively com­

puted such that the value of the objective function in subsequent itera­

tions never decreases. To be sure that the simplex method is finite, it 

is sufficient to prove that a basis matrix cannot return. If B-lb » 0 for 

every basis matrix B, then the value of the objective function increases 

at each iteration. Problems which have this property are said to be non­

degenerated. Hence, the simplex method is finite for nondegenerated prob­

lems. For degenerated problems we need sophisticated rules to determine 

different basis matrices in subsequent iterations. A very elegant rule has 

been developed by BLAND [1977]. For the details of the simplex method, in­

cluding its numerical aspects, we refer the reader to the chapters 3 and 4 

in ZOUTENDIJK [1976]. 

For the computation of an optimal solution by the simplex method we 

use the so-called simplex tableau. In this tableau we store the basic and 

nonbasic variables but also the dual variables. This tableau has the fol­

lowing form 

XN 

(1. 4. 2) XB 
-1 

B b B-lN 

T -1 dT T -1 T 
XO pBB b = pBB N-pN N 

REMARK 1.4.3. We have assumed that the columns of A can be rearranged such 

that A (B,N), where Bis a nonsingular matrix satisfying B-lb? 0. In 

general, such a partition is not possible; moreover, if a partition is 

possible, then we don't know which columns can be chosen to form a regular 

basis matrix. Fortunately, by adding some artificial variables, we can 

overcome this difficulty if we apply the so-called phase I - phase II sim­

plex method. Therefore, we partition the contraints of the linear program­

ming problem in three subsets: 

/.j a, ,X. s b. and b, ? 0: Il' lJ J l l 

Ij a. ,X, s b, and b. < 0: I2, 
lJ J l l 



z:J. a .. x. 
1-] J 

b. 
]_ 
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(we may assume that bi ~0, i E 1 3 , because otherwise the equality can be 

multiplied by -1). Introducing nonnegative slack variables yi, i E r 1 u r 2 , 

and artificial variables zi, i E 1 2 u r 3 , we consider the linear program 

( 1.4. 3) maxi-}:. z. ]_ ]_ 

z:. a .. x. + z. 
J 1-J J ]_ 

b. 
]_ 

-b 
i 

b. 
]_ 

z > 0 i -

j = 1,2, ... ,nl· 
i E 1i U I 2 

iEI2 ur 3 

Then, we can start taking as basis matrix the identity matrix corresponding 

to the columns of yi, i E r 1 , and zi, i E r 2 u r 3 . This matrix satisfies 

the assumptions and we can apply the simplex method in order to obtain an 

optimal solution of (1.4.3). This is called the phase I. Suppose that 

(x 0 ,y 0 ,z 0
) is an optimal solution of (1.4.3). 

0 

If Li zi > 0, then the original problem is infeasible. 
0 

If Li z i 0, then we have a feasible solution (x 0 ,y 0
). 

In the latter case, we take as new objective function the original objec-

tive function L. p.x. and continue the simplex method, maintaining L. z. = 0, 
J J J ]_ ]_ 

to obtain an optimal solution for the original problem. This is called the 

phase II. 

It may occur that the linear programming problem has an infinite solu­

tion. Then, we shall obtain a simplex tableau with a nonpositive column 

corresponding to a nonbasic variable, say (xN)k, such that (dN)k < 0. 

Define the direction vectors by 

-1 

i:B 

:= (-B N) 
•k 

( 1. 4.4) 
:= ek. -N 

Then, we have 

s ~ 0 

As BsB + NsN -N + N = 0 
•k •k 

-T T T T -1 T 
-(dN)k p s pBsB + pNsN ( -pBE N+ pN) k > 0. 
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Con·sequently, s is an infinite direction. 

We close this section with a discussion about the problem of finding 

all optimal basic solutions of a linear program. Suppose that the optimal 

simplex tableau (we assume that the linear program has a finite solution) 

is given by 

i 1, 2, ... ,m 

( 1.4. 5) 

* Since b 0 is the optimal value and all variables are nonnegative, it follows 

from (1.4.5) that any optimal solution x satisfies 

(i) (xN)k 0 if (dN\ > o, 
* * * (ii) (xN)k 0 if for some i b. = o, a. 2 0 and aik > o. 
l. ].• 

If we know that (xN)k = 0 fo, any optimal solution, then we may remove 

the corresponding column from the tableau; after this reduction we have 

(dN)k = 0 for every k. Hence, we may apply the following rule: 

(iii) Every variable (xN)k may enter the basis to obtain an optimal 

solution with a new basis matrix. 

* 0 and a. = 0, then we can remove this row from the tableau. 
l.. 

Hence, we obtain a tableau with d = 0 and with in any row i where b* O 
N i 

at least one negative coefficient. 

The optimal simplex tableau may contain artificial variables as basis 

variables. These variables can be removed from the tableau in the follow­

* ing way. Suppose that (xB)i is an artificial variable, say z1 . Then bi= O 

* and consequently there exists an index k such that aik < O. Exchange the 

* variables (xN)k and z1 by pivoting with pivot element aik. The variable zl 
becomes nonbasic and the corresponding column can be removed. 

Mostly, we can simplify the tableau considerably by the rules stated 

above. In the reduced tabl· au, we may apply rule (iii) and the following 

rule (iv) in order to determine all optimal extreme solutions. 

(iv) * * If bi= 0 and aik ~ 0, then the variables (xN)k and (xB)i can be 

exchanged and an optimal solution with a new basis matrix is 

obtained. 

Since the set of optimal solutions is convex, we can compute all 

extreme optimal solutions by successive computation of all extreme opti­

mal solutions that are adjacent to the present extreme optimal solution 
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(cf. BADLEY [1962] pp.166-168). This computation is elaborated in the fol­

lowing algorithm: 

Algorithm I for the computation of all extreme optimal solutions of a linear 

program. 

step 1: Determine an optimal solution by the simplex method and denote 

* * the coefficients of the optimal simplex tableau by (bi), (aij) 

and ( (dN) j) . 

step 2: If (dN)j > 0 for all j, then the optimal solution is unique (STOP). 

step 3a: For every k such that (dN)k > O, remove the corresponding column 

from the tableau. 

* * k such that aik > O for some i which satisfies bi= 0 

0, remove the corresponding column from the tableau. 

i such that b~ = 0 and a~ = 0, remove the correspond-
l l" 

step 3b: For every 

* and a. ;,, 
i• 

step 3c: For every 

ing row from the tableau. 

step 3d: For every i such that (xB)i is an artificial variable, :ay 

(xB)i = zl' execute one pivot step with pivot element aik < 0 

and remove the column corresponding to zl from the tableau. 

step 4: Put the basis matrix on the list L1 (L 1 will contain all basis 

matrices corresponding to extreme optimal solutions; the basis 

matrices, for which the adjacent extreme optimal solutions al­

ready are determined, are marked); put the optimal solution x on 

the list L2 (L2 will contain all extreme optimal solutions); set 

L3 = 0 (L3 will contain all extreme infinite directions). 

step 5: If all elements of L1 are marked, then all extreme optimal solu­

tions are stored in L2 (extreme solutions) and L3 (extreme direc­

tions); STOP. 

Take any unmarked basis from L1 , mark t.his basis and determine 

the corresponding simplex tableau (denote the coefficients again 

* * by (b.), (a .. ) and ((dN) .)). 
l , lJ J * * 

For every land k such that bi= 0, aik ~ 0 and such that the basis 

where the variables (xN)k and (xB)i are exchanged is not in L1 : 

put this new basis on L 1 . 

* For every k such that a.k 5 0 and such that the direction vector 

s, where 
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{-a:k if x. (xB)i 
J 

s. := 1 if X. (xN)k 
J J 

0 elsewhere 

does not belong to the list L3 : 

put this directions on L3 . 

step 9: For every k such that 

* (i) aik > 0 for at least one i 

* * I * * * (ii) min{bi/aik aik > O} = br/ark > 0 

(iii) the basis matrix which is obtained after exchanging 

the variables (xN)k and (xB)r is not in L1 

do: a. put this new basis matrix on L1 , 

b. if the solution corresponding to this new basis is not in 

L2 , then put this solution on the list L2 . 

step 10: Go to step 5. 
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CHAPTER 2 

MARKOV DECISION PROCESSES 

2.1. INTRODUCTION AND SUMMARY 

In this chapter we present a survey of some results about Markov 

chains and Markov decision processes. This survey is far from comprehen­

sive. We only discuss the topics we need in the following chapters of this 

monograph. 

In section 2.2 we introduce the Markov decision models with various 

optimality criteria such as discounted optimality, average optimality, bias 

optimality and Blackwell optimality. Furthermore, we give some notations 

and definitions. 

Section 2.3 deals with the theory of Markov chains. We give a summary 

of some well-known results on the transition matrix and the stationary ma­

trix. Also we present an algorithm for identifying the ergodic sets and 

the transient states of a stochastic matrix, and an algorithm for the com­

putation of the stationary matrix. 

In section 2.4 we review some results on (sub)stochastic matrices. 

We present some properties of the stationary, the fundamental and the 

deviation matrix. 

In section 2.5 we mention results about the existence of optimal pure 

and stationary policies for the optimality criteria introduced in section 

2.2. Also, we present a theorem, due to Derman and Strauch, which implies 

that restriction to Markov policies is allowed. Furthermore, we give a 

result, due to Blackwell, which relates discounted rewards to average re­

wards for discount factors near to 1. 

2.2. MARKOV DECISION MODELS 

Consider a dynamic system that is observed at discrete time points 

t 1,2, .... We allow that with positive probability the system breaks 
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down and then the process is terminated. If at any discrete time point t 

the system is in one of a finite number of states, then an action has to 

be chosen. The state space is denoted by E {1,2, ... ,N} and A(i) is the 

finite set of possible actions in state i, i EE. If the system is in 

state i and action a E A(i) is chosen, then the following happens, inde­

pendently of the history of the process: 

1. A reward ria is earned immediately. 

2. The next state of the process is chosen according to the transition prob­

abilities piaj' where piaj? 0 and rj piaj ~ 1 for every a E A(i) 

and i,j EE. 

A (discrete) Markov decision problem is given by a four-tuple (E,A,p,r),where 

Eis the state space, 

A= uiEE A(i) is the action space, 

pis a transition probability from Ex A to E, 

r is a real-valued reward function on Ex A, 

(E x A has to be interpreted as { (i,a) Ii E E, a E A (i) }) . A Markov decision 

problem is also called a (stochastic) dynamic programming problem. 

Let Ht denote the set of possible histories of the system up to time 

t, i.e. 

A decision rule rrt at time tis a nonnegative function on H xA such that 
t 

and 

A policy Risa sequence of decision rules: R = (rr 1 ,rr 2 , ... ,TTt, ... ). We let 

C denote the class of all policies. A policy R = (rr 1 ,rr 2 , ... ) is said to be 

memoryless if the decision rule rrt is independent of (i 1 ,a1 , •.. ,it-l'at-l) 

for every t E lN. Memoryless policies are also called Markov policies. 

By CM we denote the class of Markov policies. We let CS denote the class 

of stationary policies, i.e. the Markov policies for which TTt is time 

invariant. Hence, a stationary policy is completely determined by a deci­

sion rule which depep.ds only on the last state i. We will denote the 
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00 

stationary policy R = (TI,TI, ... ) by TI . By C0 we denote the subclass of C5 

consisting of the pure and stationary policies, i.e. stationary policies 

with nonrandomized decision rules. Therefore, a pure and stationary policy 

can be described by a function f defined on E such that f(i) E A(i), i EE. 

We will denote this policy by f 00
• 

For any R = (TI 1 ,TI 2 , ... ) EC, we denote by p1ja the probability that the 

system is at time tin state j and then action a is chosen, given that the 
t 

system is at time t=l in state i. For RE CM the numbers pija(R) can be com-

puted iteratively: 

1 
pija (R) 

t+l 
pija (R) 

Jo 
I 1 
'TI 

ja 

I 
it,at 

j f- i' 

j i, 

a E A(j} 

a E A(j) 

t t t 
Let us define the matrix P(TI) by P(TI) := (LapiajTiia)' 

Then, for RE CM we have 

t+l 
pija (R) 

, jEE,aEA(j), tEJN. 

tEJN. 

Let {xt, t = 1,2, ... } and {Yt' t = 1,2, ... } be the sequences of ran­

dom variables denoting the observed states and chosen actions respectively. 

Then, we can also write 

p ~. {R) = JP (X = j, Yt 
lJa R t 

i). 

Furthermore, we denote by p~. {R) the probability that the system is at 
lJ 

time tin state j, given that state i is the starting state. Hence, we obtain 

j i) i). 

The matrix Pt(R) is defined by Pt(R) 
t+l 

:= (pij (R)). 

The expected reward in the t-th period, given initial state i and the 

use of policy R, is denoted by v~(R), i.e. 
l 
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The expected total reward over an infinite horizon, given initial state i 

and the use of policy R, where R is such that lim LT vt, (R) exists 
T->oo t=l i 

(possibly +00 or -oo), is denoted by vi (R), i.e . 

V. (R) 
]_ 

. - ,oo 'i' 'i' 1P (X = 
lt=lljla R t 

For a real number a E [0,1) the expected discounted reward, given initial 

state i and the use of policy R, is denoted by v~(R), i.e. 
]_ 

i) •r .. 
Ja 

a is called the discount factor. The expected average reward over an 

infinite horizon, given initial state i and the use of policy R, is de­

noted by ¢i (R) and defined by 

¢ (R) := lim inf l zT 'i' 'i' ]P (X = j, y = a I xl = i) ·r' . 
i T->oo T t=l l/·a R t t Ja 

For a Markov decision model with as utility function the total reward 

criterion we will use the name TMD-model. In a TMD-model we define the 

TMD-value-vector v by 

i EE. 

* * A policy R is said to be total optimal if v(R) = v. A Markov decision 

model with the discounted reward criterion is called a DMD-model. The 

DMD-value-vector va is defined by 

i EE. 

A policy R* is a-discounted optimal if va(R*) = va; a policy R* is said 

to be bias optimal if lim tl{v~(R*)-v~} 0, i EE; a policy R* is 
a i i 

called Blackwell optimal if for some a 0 E [0,1) R* is a-discounted opti-

mal for every a E [a
0
,l). 

If we use as utility function the average reward criterion, then the 

name of the model will be abbreviated by AMD-model. The AMD-value-vector 



qi is defined by 

i EE. 

* * The policy R is average optimal if qi(R) qi. 

00 t 
The policy R is said to be a transient policy if L 1p, .(R) < 00 for 

t= 1-J 
every i,j E E. Hence, for any t.,:-ansi.ent policy vi (R) is finite for every 

i EE. If R = (11 1 ,11 2 , ••• ) E CM 4.s transient, then we may write 

v(R) 

where 

loo 1 2 t-1 t 
P(11 )P(11 )•••P(11 )r(11), 

·t=l 

Furthermore, if 11 E CS is transient, then we have (cf. KEMENY & SNELL 

[1960] p.22) 

,:00 t-1 
lt=l P (11) r (11) 

-1 
(I-P(11)) r{11). 

If a TMD-model satisfies the condition that every policy is transient, 

then the model is called a transient dynamic programming problem. 

A TMD-model with ria ~ 0 a E A(i), i EE, is said to be a positive 

dynamic programming model; if all rewards are nonpositive, then we have 

a negative dynamic programming model. 

A dynamic programming problem is called contracting if there exists 

a vectorµ>> 0 and a scalar a E [0,1) such that 

a E A(i), i EE. 

Any DMD-problem is contracting (re-define p, . := ap .. i,j EE, a E A(i) 
iaJ iaJ 

and takeµ= e); it can easily be verified that in a contracting dynamic 

23 

programming problem any policy is transient. Hence, the transient dynamic 

programming problem is a generalization of the contracting dynamic prog­

ramming problem (in fact, these problems are equivalent as will be shown 

in theorem 3.2.4). The name contracting dynamic programming was introduced 

by van Nunen and Wessels, who have studied this model systematically (e.g. 

VAN NUNEN & WESSELS [1977]). 
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REMARK 2.2.1. In the sequel we will present examples of models and illus­

trate them in a picture. In these models the transition probabilities will 

always be degenerated, i.e. for any a E A(i) and i EE we have P .. # 0 for 
iaJ 

at most one state j. Hence, to indicate which state is the next state of 

the system, when in state i action a is chosen, we can use in the picture an 

arc from state i to state j where j is such that piaj # o. For the differ-

ent actions 1,2, ••• ,k. 
l. 

in state i, these arcs are drawn as ___ ._., ___ _ 
(action 1), 

____... _ 
(action 2) etc .. 

i j i j 

In the TMD-models we add to every arc that corresponds to (i,a) and is 

directed from state i to state j the pair ria'piaj . For AMD-modeis we 

shall assume that E. p .. = 1 for every a E A(i), i EE. Therefore, we may 
J iaJ 

add to an arc only the number 

r. ia Figure 2.2.1 gives the 

picture which corresponds to 

the following TMD-model: 

E = {1,2,3}; A(i) = {1,2}, i EE; 

P112=1/2, P123=l, P211=1/2, P222=1/4, 

p 313 = 1, p322 = 1/2 (the other 

transition probabilities are zeros); 

2.3. MARKOV CHAINS 

Figure 2.2.1 

Assume that E. P .. = 1 for all a E A(i), i EE. Then for any station-
) iaJ 

ary policy n00 the sequence of observed states {xt' t = 1,2, ••• } is a finite 

stationary Markov chain with transition probabilities pij = Eapiajnia'i,j EE. 

Hence, the theory of Markov chains plays an important role in the analysis of 

Markov decision models. In this section we will summarize some results for 

reference purposes. For the proofs we will refer to one of many books that 

deal with Markov chains. We assume that the reader is familiar with concepts 

such as: transient state, recurrent state, ergodic set, communicating states, 

absorbing state and absorption probabilities. 

The Markov chain is·called completely ergodic if all states are recurrent 



and there is exactly one ergodic set. If there is exactly one ergodic set 

plus possibly some transient states, then the Markov chain is said to be 

uni chained. A subset E0 of E is said to be closed under P if p .. 
J.J 

0 for 

all i EEO and j E E\E0 . 
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Let E 1 ,E2 , ... ,Em be the ergodic sets and let F be the set of all 

transient states of a Markov chain with state space E = {1,2, ... ,N}. Then, 

by appropriate rearranging, we obtain the following form for the transi­

tion matrix P: 

I Pl 0 0 0 El 

0 p2 E2 

(2. 3 .1) P= I 

\ 0 0 p 0 E 
m m 

Rl R2 R Q F 
m 

-1 
THEOREM 2.3.1. The matrix I-Q is nonsingular and (I-Q) 

PROOF. See KEMENY & SNELL [1960] p.46. 0 

DEFINITION 2.3.1. Let B1 ,B2 , ... and B be real kxk matrices, and let 

_!_ i:n f Bn n l=l Bl' n E JN. I B = limn-+= Bn' then we write 

(c) 
B lim B 

n-+= n 
(the notation (c) stands for Cesaro limit). 

THEOREM 2.3.2. 

(i) p* }~) lim Pn exists. 
n-+= 

* * * * * (ii) pp pp =pp = p . 

* * * (iii) pi• pj• and pij > O for any pair (i,j) such that i and j belong to 

the same ergodic set. 

* (iv) P.i = 0 for any transient state i. 

PROOF. See DOOB [1953] p.175. 0 

DEFINITIONS 2.3.2. 

(i) The matrix p* is called the stationary matrix of matrix P. 
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(ii) Any solution of the set of equations 

x ~ o, xTe = 1 and XT = XTP 

is a stationary p.robability distribution of the Markov chain. 

THEOREM 2.3.3. Let x be any stationary probability distribution of the 

Markov chain. Then 

if i E F 

X. 
1. · L:i if E Ek where satisfies m 

1. i ck Ek=l ck 

PROOF. See DOOB [1953] p.183. 0 

COROLLARY 2.3.1. If XT = XTP and E := 
X 

{ilx. > O}, then E 
1. X 

of some ergodic sets and consequently, Ex is a closed set. 

is the union 

NOTATION 2.3.1. For any transient state i we denote the absorption prob­

ability that the process will be ultimately absorbed into the ergodic set 

Ek by aik k = 1,2, ... ,m. 

THEOREM 2.3.4. For any ergodic set Ek, we have 

i E F, j E Ek 

and {aik'i E F} is the unique solution of the linear system 

i E F. 

PROOF. See FELLER [1967] p.403. 0 

If the ergodic sets and the transient states of a Markov chain are 

* identified, then the stationary matrix P can be computed using the results 

of the theorems 2.3.4. We will describe an algorithm proposed by FOX & LANDI 

[1968] to find the ergodic sets and the transient states. This algorithm is 

based on repeated use of the following rules: 

1. State i is absorbing if and only if p,. 0 for 
1.J 

all j I i. 

2. If state i is absorbing and pki > o, then state k is transient. 

3. If state i is transient and pki > o, then state k is also transient. 

4. If state i communicates with state j and state j communicates with 

state k, then state i communicates with state k. 
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The search for a set of communicating states is conducted by generating a 

chain of states s',ch that each state can be reached from its predecessor 

with positive probability in one transition. If the chain encounters a 

state that has already been classified to be transient, then all states in 

the chain are transient. Otherwise, a circuit of states is obtained. Then, 

this circuit is replaced by one composite state. If by rule 1 the composite 

state is absorbing, then the states of the composite states form an ergodic 

set and the states in the chain that precede the circuit are transient; 

otherwise, extension of the chain is continued from the composite state. 

Hence, in a finite number of steps at least one state is classified to be 

recurrent or transient. This guarantees the finiteness of the following 

algorithm. 

ALGORITHM II for identifying the ergodic sets and the transient states of 

a Markov chain with transition matrix P. 

step 1: Take S. = {i} for every state i. 
]. 

step 2a: Every state i such that pij = 0 for all j ~ i is labeled as an 

absorbing state. 

step 2b: For each identified absorbing state i, label state i as an ergodic 

set, and label every state k satisfying pki > 0 as transient state. 

step 3: If all states are labeled, then go to step 6. 

Otherwise, go to step 4a. 

step 4a: Choose any unlabeled state i, set r = 1 and let i 
r 

i. 

step 4b: Search in row ir for a positive element, say p .. 
1 rir+l 

such that 

step 4c: If state ir+l is labeled as a transient state, then: 

(i) label each state in the set {si 1usi 2 u•••usir} as transient, 

(ii) go to step 3. 

Otherwise, go to step 4d. 

step 4d: If ir+l = ik for some k E {1,2, ... ,r-1}, then go to step Sa. 

Otherwise, r := r+l and go to step 4b. 

step Sa: Replace row ik by the sum of the rows {ik,i , ... ,i} and delete 
k+l r 

the rows {ik+l'ik+2 , ... ,ir} from the matrix; replace column ik by 

the sum of the columns {ik,i 1 , ... ,i} and delete the columns 
k+ r r 

{ik+l'ik+2•···•ir}, set sik = j~k sij. 

step Sb: If the composite state ik is absorbing, then: 
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(i) label ik as an ergodic set and i 1 ,i2 , ... ,ik-l as 

transient states, 

(ii) 
k 

label every state j which satisfies i:l=lpj i > 0 as 
l 

transient state, 

(iii) go to step 3. 

Otherwise, r := k and go to step 4b. 

step 6: The transient states are labeled as transient, and every other 

state ik (whether or not composite) corresponds to an ergodic 

set and S. contains the states of this ergodic set. 
ik 

* The results stated above imply that the stationccry matrix P can be 

determined by the following algorithm. 

* ALGORITHM III for the computation of the stationary matrix P. 

step 1: Identify the transient states F and the ergodic sets E 1 ,E2 , ... ,Em 

of the Markov chain by algorithm II. 

step±.' Determine fork= 1,2, ... ,m 

(i) the unique solution {x~,j E Ek} of the linear system 

0 

(ii) the unique solution {a~,j E F} of the linear system 
J 

i E F 

k 
i E j r Ek, E Ek, 

p~. := 3xk i E F , j E Ek, l.J J. J 

0 elsewhere. 

k 1,2, ... ,m, 

k 1,2, ... ,m, 

2.4. SUBSTOCHASTIC MATRICES 

DEFINITION 2.4.1. A real nxn matrix P = (p .. ) is said to be substochastic 
J.J 

if Pij ~ 0 for all i,j and Ljpij ~ 1 for all i; if, moreover, rjpij = 1 

for all i, then Pis called a stochastic matrix. 



Throughout this section we assume that Pis a substochastic matrix. 

In the following theorem we summarize some well-known results of sub­

stochastic matrices. For the proofs we refer to BLACKWELL [1962] and 

VEINOTT [1974]. 

THEOREM 2 . 4 . 1 . 

(i) 

(ii) 

(iii) 

(iv) 

* (c) Pn exists and * * * * p := lim satisfies p p pp p p p 
n-+oo 

(1-a) "' ak(P-P*)k 
limatl l:k=O = 0. 

* I-P+P is nonsingular arid moreover 

* -1 ,"' k * k 
(I-P+P) = limatl lk=O a (P-P) . 

* -1 * Let D := (I-P+P) -P. Then 

D 
,"' k k * 1 ,n ,k l-1 * 

limat 1 l.k=O a (P -P ) = limn-+oo ~ /.k=l L,{=1 (P -P ) 

and 

* p D * DP * (I-P)D+P -I D(I-P)+P*-I 0. 

* 

* * -1 DEFINITION 2.4.2. The matrices P, (I-P+P) and Dare said to be the 
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stationary, the fundamental and the deviation matrix of the substochastic 

matrix P, respectively. 

LEMMA 2.4.1. If the matrix Pis stochastic, then De 0. 

PROOF. Using theorem 2.4.l(iv), we obtain 

De 
1 ,n ,k l-1 * 

limn-+oo; l.k=lll=l (P -P )e 

1 ,n ,k l-1 * 
limn-+oo ~ lk=lll=l (P e-P e) 

o. □ 

Any stochastic NXN matrix may be interpreted as the transition matrix 

of a Markov chain with state space {1,2, ... ,N}. In the following chapters 

we also encounter substochastic matrices that are not stochastic. However, 

such a matrix may be interpreted as a submatrix of the transition matrix 

P of a Markov chain with state space {0,1, •.. ,N}, where 
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(2. 4 .1) 

~* Since P and P are stochastic and, by lemma 2.4.1, De 0, it follows from 

(2.4.1) that 

:.) and 

* where P and Dare the stationary and deviation matrix of P, respectively. 

The additional state 0 is an absorbing state. Suppose that there are fur­

ther~ore m (possibly m = 0) ergodic sets E1 ,E2 , ... ,Em in the Markov chain 

with state space {0,1, .•. ,N} and let F be the set of transient states. The 

number of states in Ek is denoted by Nk, k = 1,2, ... ,m. By appropriate re­

arranging, we may write Pin the form 

Pl 0 0 0 

0 p2 

(2.4.2) p 

\ 
0 0 Pm 0 

Rl R2 R Q 
m 

* The matrix Pk has identical rows; denote 

Then using the result 

* write P and D as 

Ip; 
I 0 

(2.4.3) * p = 

0 

Al 

of theorem 2.3.4, 

0 

* p2 

0 

A2 

0 

0 

A 
m 

0 

0 

0 

0 

El 

E2 

E 
m 

F 

* this row by the Nk-vector pk. 

it can be verified that we may 

e 0 0 0 

D2 0 0 

, D 
( . 

\ 

\0 
0 Dm 0 

-1 
Bl B2 Bm (I-Q) 
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where 

Ak 
-1 * T 

[(I-Q) J\e](pk) k 1,2, ... ,m 

Dk 
* -1 

(I-Pk+Pk) 
* 

- Pk k 1,2, ... ,m 

Bk 
-1 * 

(I-Q) (J\-Ak) (Dk+Pk) - Ak k 1,2, ... ,m. 

* -1 If m = 0, then P is the null-matrix and D = (I-Q) . For the sequel 

of this section, we assume that m ;;c 1. Let ik be an arbitrary state in the 

ergodic set Ek, k = 1,2, ... ,m. Suppose that r is any N-vector and that B 

is any diagonal NxN matrix with nonneg'.'ltive elements. Then we have the fol-

lowing result (cf. DENARDO [1971]). 

LEMMA 2.4.2. Suppose that xis a solution of the linear system 

(2.4.4) {
(I-P)x 

* ~ PBX 

0 

* P r. 

Then 

{(P'r)ik/<•'~)ik i E Ek, k 1,2, ... ,m 

x. 
J. 

(P r)ik 

r:=1 aik i E F. 
* 

(P Re) ik 

The following lemma gives a related result for a system of inequalities. 

LEMMA 2.4.3. Suppose that xis a solution of (2.4.4) and that x satisfies 

* ;;c P r. 

Then, x ;;c x. 

* PROOF. Let a= (I-P)x. Then, a ;;c 0 and Pa= 0, implying that ai = 0 

i E E\F. Consequently, x. = (Px). i E E\F and also x. = (P*x) ., i E E\F. 
J. J. J. J. 

Hence, the value of xis constant on any ergodic set. Therefore, we can 

write 
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* (P r). 
(2.4. 5) 

* 
]_ 

i E E\F. 
(P Be). 

]_ 

-Let xF consist of the components of x corresponding to the transient states. 

Then, x 2'. Px, (2.4.2) and (2.4.5) imply 

X > ,m X •Re+ Qx 2'. ,m X •Re+ QxF. 
F - 1·k=1 ik k F Lk=l ik k 

Since (I-Q) is nonsingular and nonnegative, we obtain 

Hence, 

- > ,m [(I-Q)- 1Re].•x., 
xj - L.k=l k J ik j E F. 

Theorem 2.3.4 implies that 

(2.4.6) j E F. 

The inequalities (2.4.5) and (2.4.6) yield x 2'. x. D 

2.5. EXISTENCE OF OPTIMAL POLICIES 

The following theorem, due to DERMAN & STRAUCH [1966] and generalized 

by STRAUCH & VEINOI'T [1966] and HORDIJK [1974] pp.115-117, indicates that 

we may restrict ourselves to memoryless policies. 

THEOREM 2.5.1. Given any initial distribution S = (S 1 ,s2 , ... ,SN) , any 

sequence of policies R1,R2 , ... and any sequence of nonnegative real num­

bers p 1 ,p2 , ••• with r:=l pk= 1, there exists a memoryless policy R such 

that 

(2. 5.1) 

tEJN,aEA(j),jEE. 
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COROLLARY 2.5.1. Given any initial state i EE and any policy RE r, there 

exists a policy R 0 E CM such that 

:IPR (Xt = j, Y t = a I x 1 = i) 
0 

tEJN,aEA(j), jEE. 

We continue this section with some properties of the DMD-model. The 

results are folklore and for the proofs we will refer to a standard book 

on Markov decision processes 

THEOREM 2.5.2. 

(i) The DMD-value-vector va is the unique solution of the functional 

equation 

(2. 5. 2) i EE. 

(ii) Let ai E A(i) be such that 

i EE. 

<X> 

Then the pure and stationary policy f , where f ( i) = ai, i E E, is 

a-discounted optimal. 

PROOF. See ROSS [1970] pp.121-128. 0 

THEOREM 2.5.3. There exists a pure and stationary Blackwell optimal policy. 

PROOF. See DERMAN [1970] pp.24-25. 0 

If 'IT is a stationary policy, then :IP 00 (Xt = j IX 1 = i) 
'IT • 

t-1 
(P ('TT)) .. I 

l.J 
t E JN, i, j E E. Hence, 

(2. 5. 3) 
t 00 t-1 

V ('TT)= P ('TT)r('TT), t E JN, 

where r('TT) := (l; r. 'IT. ) • We also have 
a ia ia 

(2.5.4) 1 ,T t-1 
lim infT_, T lt=lp ('TT)r('TT) * P ('TT)r('TT). 
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If the Markov chain induced by n00 is unichained, (i.e. there is at most 

one ergodic set, then p*(TT) has identical rows, and consequently ~(TT00
) has 

identical components. 

NOTATION 2.5.1. For any stationary policy TT 00
, we denote the vector D(TT)r(TT), 

where D(TT) is the deviation matrix of P(TT), by u(TT00
): 

(2.5.5) 

From theorem 2.4.l(iv) it follows that 

(2.5.6) 

and 

~00 t-1 t-1 * 
limatl lt=l a {P (TT) r (TT) - p (TT) r (TT)} 

C1, 00 ~(TT00
)}. 

limatl {v (TT ) - l-a 

Hence, 

(2.5.7) 

where limatl £(a) = 0. 

THEOREM 2.5.4. Any Blackwell optimal policy is average optimal as well as 

bias optimal . 

PROOF. From the definition of bias optimality it is obvious that Blackwell 

optimality implies bias optimality. In DERMAN [1970] pp.25-26 is shown that 

Blackwell optimality implies average optimality. D 

COROLLARY 2.5.2. There exist pure and stationary average optimal ana' bias 

optimal policies. 

REMARK 2.5.1. In chapter 5 we will show that bias optimality implies 

average optimality. 

REMARK 2.5.2. A finite algorithm to compute a Blackwell optimal policy can 

be found in HORDIJK, DEKKER & KALLENBERG [1981]. 
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CHAPTER 3 

TOTAL REWARD CRITERION 

3.1. INTRODUCTION AND SUMMARY 

In this chapter we consider Markov decision problems with the expect­

ed total reward as optimality criterion. Already in 1953 SHAPLEY [1953] 

has analysed this type of problems in the context of stochastic games. The 

special case that we have a discounted dynamic programming problem has been 

studied extensively (see for instance the books written by HOWARD [19601, 

DERMAN [1970], ROSS [1970], MINE & OSAKI [1970] and HORDIJK [1974]). Linear 

programming formulations for the discounted dynamic programming problem are 

due to D'EPENOUX [1960] and DE GHELLINCK & EPPEN [1967]. 

In section 3.2 we show that a pure and stationary policy, which is 

optimal with regard to the total reward criterion, always exists. Further­

more, we give a slight extension of Veinott's result (VEINOTT [1969]) con­

cerning equivalent formulations of the concept of a contracting dynamic 

programming problem. From these results we derive two algorithms for check­

ing the contraction property of a given dynamic programming problem. 

Section 3.3 deals with the problem of finding optimal policies in the 

class of transient policies. We shall show that we can obtain such optimal 

policies from optimal solutions of a linear programming problem. If we use 

the simplex method to solve this linear program, then a pure and stationary 

optimal policy is obtained (see algorithm VI). We also discuss a constrained 

dynamic programming problem, where the constraints are linear functions of 

the expected number of times of being in state j and then choosing action 

a, a E A(j), j EE. Then, in general, there exists no optimal policy that 

also belongs to the class CD. However, we can find by linear programming an 

optimal policy that is stationary (algorithm VII). Moreover, we show a one­

to-one correspondence between the transient stationary policies and the 

feasible solutions of the proposed linear programming problem such that 

pure policies are mapped on extreme feasible solutions. We close this sec-
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tion with an application of the optimal stopping problem. 

In section 3.4 we discuss the contracting dynamic programming problem. 

In this problem, all policies are transient; consequently, the results of 

section 3.3 are applicable. The results of section 3.3 can even be extend­

ed on some points (cf. theorem 3.3.4 versus theorem 3.4.8). Furthermore, we 

prove that, for this problem, linear programming by the simplex method is 

equivalent to the policy improvement method. We also show that elimination 

of suboptimal actions, as introduced by MACQUEEN [1967], can be implemented 

in the simplex method very easily using the dual variables appropriately. 

We close this section by the observation that discounted dynamic program­

ming and contracting dynamic programming are equivalent muJels for uncon­

strained as well as for constrained Markovian decision problems. 

Positive dynamic programming is the subject of section 3.5. We prove 

that, if the optimum of the linear programming problem is finite, then a 

pure and stationary optimal policy can be obtained directly from the linear 

programming solution. If th2 optimum is infinite, then by the linear program 

we can find a policy that, in general, is optimal only on a subset E 1 of 

the state space E. However, since E\E 1 is closed under any policy, we may 

repeat the same procedure on the remaining states. In this way,we can con­

struct a finite algorithm for positive dynamic programming (algorithm XII). 

In section 3.6, where the negative dynamic programming problem is 

studied, we can derive a finite algorithm in a way similar to the analysis 

of section 3.5. In the algorithms of the sections 3.5 and 3.6 we have, be­

sides solving linear programs, also to determine the structure .of the 

Markov chain induced by some pure and stationary policies. 

NOTATION 3.1.1. In this chapter, and also in the following chapters, we 

often use a vector, say x, with components xia' a E A(i), i EE. However, 

we will also use the same notation x for the N-dimensional vector which 

has the components x. := r x, , i EE. Which vector is meant will always 
l 3. 1a 

be clear from the contexc. Furthermore, we use the notation E, where E 

is defined by Ex := {i EE I L X, > O}. 
a ia 

3.2. PRELIMINARIES 

X X 

In this section we discuss some properties of the TMD-value-vector v 

and we prove some theorems about transient policies. In order to have a 

well-defined concept or the expected total reward we use throughout this 
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ASSUMPTION 3.2.1. For any initial state i and any policy R the expected 

total reward vi(R) exists (possibly ±00 ). 
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We will show that, under the above assumption, there exists a pure 

and stationary optimal policy. First, we notice that the TMD-value-vector 

v exists (possibly vi= ±00 for some i EE). For the proof of the existence 

of an optimal policy which belongs to the class CO, we need the following 

lemma. 

LEMMA 3.2.1. For any initial state i and any policy R, we have 

v. (R). 
l 

PROOF. (cf. pp.65-67 in HORDIJK & TIJMS [1970]). Take any initial state 

i EE and any policy REC. We distinguish the following cases: 

(i) -oo < v. (R) < +oo 
l 

(ii) vi (R) +oo 

(iii) V. {R) 
l 

case (i): Take any£> 0. Then, there exists an integer T 0 such that 

for every T > T 0 • 

Since lv~{R) I is bounded for all t (e.g. by max Ir. ll, the power series 
i i,a ia 

has radius of convergence at least 1. The series r00 at-l has radius of 
t=l 

convergence 1. Hence, for any a E [0,1), we may write 

Therefore, 

-1 a 
(1-a) v.(R) 

l 

,oo ,t s t-1 
lt=l (ls=lvi (R))a . 

,oo 
1
,t s I t-1 

lt=l ls=l vi (R) - vi (R) a 
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Let M:= max !Et 1v~(R) -v. (R) I- Then we can write 
1StST 0 s= 1 1 

To 

(1-ci)-1 !vci. (R) -v. (R) I SM•~+ e: t 00 C!t-l 
i i 1-ci lt=T +1 

0 

2e: 
< --1-ci 

To 
for ct E [ci1,1), where ci 1 < 1 satisfies M(l-ci ) < e: for ct~ ci 1 . Hence, we 

have shown that 

case (ii): Choose any M > 0. Then, it follows that there exists an integer 

T0 such that E:=l v1(R) > M for all T > T0 • Similarly to case (i), we can 

write 

for every 

with m := 

-1 Cl 
( 1-ci) V. (R) 

1 

t 00 tt S t-1 
f.t=l (ls=lvi (R))ct 

ci2 satisfies\ S ci2 < 1 and m•(1-ci 2T0 ) ~ - ¼M 

T~erefore, we have shown that limcitl v~(R) = +00 • 

case (iii): The proof is similar to the proof of case (ii). D 

THEOREM 3.2.1. There exists a pure and stationary optimal policy. 

PROOF. (cf. HORDIJK [1976]). Theorem 2.5.3 implies the existence of a real 

number ci 0 E [0,1) and of a policy f 00 E CO such that 

Then, from lemma 3.2.1, it follows that 

Hence, 

V. (R), 
1 
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supR vi(R), i EE, 

i.e. f 00 is a pure and stationary optimal policy. D 

DEFINITION 3.2.1. For any c E [-00 ,+00 ] we define 0•c := 0; moreover, we call 

a vector x with components xl.. E [-00 ,+00 ], i EE, p-summable if r. p . . x. is 
J iaJ J 

well-defined for all a E A(i), i EE (i.e. not both of the values +00 and 

may occur in the summation). 

The following example shows that, in general, the TMD-value-vector v 

is not p-surnrnable. 

EXAMPLE 3.2.1. E = {1,2,3}; A(i) = {1}, i EE; p 112 = P 113 = ½, P212 = 1, 

P313 = 1; r 11 = 0, r 21 = 2, r 31 = -1. Since all action sets consist of one 

element, there is only one policy, say R. Assumption 3.2.1 is satisfied, 

namely v 1 (R) = v 2 (R) = +00 , v 3 (R) = -oo. Notice that in this example v=v(R). 

Then, r. p 11 .v. is not defined, and consequently vis not p-surnrnable. 
J J J 

THEOREM 3.2.2. If vis p-summable, then v satisfies the functional equation 

{
xxi = 

is 

i EE, 

p-summable. 

PROOF. Theorem 3.2.1 implies that v = v(f00
) for some pure and stationary 

00 

policy f . Since vis p-surnrnable, we may write 

(3. 2 .1) v. 
l. 

Let a. E A(i), i EE, be such that 
l. 

Take policy R 
1 2 

("IT ,"IT, ••• ) E CM such that 

i EE. 

a a. 
l. t fl 

i E E, and "IT = 
ia lo a i a. 

l. 

a f (i) 

a f. f(i) 
i E E, t 2 2. 
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Then we can write 

(3. 2 .2) 

i EE. 

The relations (3.2.1) and (3.2.2) imply 

i EE, 

which completes the proof. LJ 

THEOREM 3.2.3. If there exists a transient policy, then there also exists 

a transient pure and stationary policy. 

PROOF. Since the existence of a transient policy is independent of the 

values of the rewards, we may assume that ria -1, a E A(i), i EE. Let R 

be any transient policy, i.e. 

i) < 00 for all i,j EE. 

Hence, 

i) • ( -1 ) > - 00 , i E E . 

Since vi= supR vi (R), i EE, we have - 00 <vi$ O, i EE. Theorem 3.2.1 

implies the existence of a pure and stationary policy f 00 such that 

i EE. Therefore, 

100 
' ' ll? ( x - J. Y = a I X = i) · ( -1) s O, i E E. lt=lljla 00 t - ' t 1 

f 

Consequently, 

j for every i,j EE, 

i.e. f 00 is a transient policy. D 

REMARK 3.2.1. For another proof of theorem 3.2.3 we refer to remark 3.3.2. 



Next, we will give some equivalent charac~erizations of a transient 

dynamic programming problem. For the presentation of this result we use 

the following definition and lemma. 
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DEFINITION 3.2.2. Suppose that we change a TMD-model in another TMD-model 

in the following way: 

E := E u {O} 

t' i -f- 0 
A(il := 

{ 1} i 0 

piaj i -f- o, j -f- o, a E A{i) 

N 
-f-

l:k=lpiak i o, j o, a E A(i) 

piaj := 

0 i o, j -f- o, a E A(i) 

1 i o, j o, a E A(i) 

i -f- O, a E A(i) 

i 0, a E A(i) 

Then the transformed model is called the extended TMD-model. 

LEMMA 3.2.2. Let the sequence of vectors {yt, t = 0,1, ... } be defined by 

max 
a 

i E E 

and let the sequence of pure and stationary policies {f: , t 
i E E, t E lN. 

Then, 

where 

1,2, ... } satisfy 
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policy. 

PROOF. We will apply induction on t. 

t = 0: For any policy Rand any initial state i we have Z. p 1 .(R) 
J l.J 

i E E. 

1. Hence, 

Suppose that the result is correct fort= 1,2, ... , T-1. We shall show that 

the lemma is also true fort= T. Take any i EE. By corollary 
t+l 

supREC zj pij (R) . 
t t+l 

sufficient to show that Yi= Z. piJ' (Rt) 
1 2 J 

Take any arbitrary R = (rr ,rr , ••• ) E CM. Then, weM obtain 

Since R is an arbitrarily chosen policy, we obtain 

On the other hand, 

Hence, 

max 
a 

THEOREM 3.2.4. The following five statements are equivalent. 

(i) Every pure and stationary policy is transient. 

(ii) Every policy is transient. 

(iii) N N . a·:t· d maxi Yi < 1, ~,here y 1.s e.1.ne by (3.2.3). 

(iv) The TMD-model is contracting. 

(v) The linear programming problem 

2.5.1, it is 

□ 



-+,.·,. IJa< 0ij -piaj>xia 
,;:; s. j E E 

J 

x. :2, 0 i EE, 
ia 

where S. > O, j EE, are arbitrarily chosen, 
J 

has a finite solution. 
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a' ,J 
REMARK 3.2.2. The equivalence of the first three statements has been prov­

en by VEINOTT [1969] for nonrandomized policies. HORDIJK [1976] has shown 

the equivalence of the first four statements for general policies. The equiv­

alence between (i) and (v) is also established by DENARDO & ROTHBLUM [1979]. 

PROOF OF THEOREM 3.2.4. 

(i) => (ii): Let i and j be two arbitrarily chosen states. Consider the 

dynamic programming problem with the rewards 

:= r 
0 

k j,aEA(k) 

k f, j, a E A(k). 

Then, for any policy R, we have 

v. (R) 
1. 

r 1l l n> (X = k, Y = a I x1 = i) •rk t= k a R t t a 

00 

Let f 00 be a pure and stationary optimal policy (the existence off is 

implied by theorem 3.2.1). Since we have assumed that f 00 is a transient 

policy, we obtain 

'
00 n> (X - j I X - i) = vl.. (R) ,;:; vl.. = vl.. (f00

) lt=1 R t - 1 -

'
00 n> 00 (X = j I X = i) < OO I 

Lt=1 f t 1 

i.e. Risa transient policy. 

(ii)=> (iii): By lemma 3.2.2, it is sufficient to show that E. p:+J_ 1 (R) < 1 
00 J 

for all i EE and all policies R = (f 1 ,f2 , ... ), where ft E C0 ,~t E :IN. 

Consider the extended TMD-model. Then E. P .. = 1 for all a E A(i), i E E. 
J iaJ 

Since A(O) = {1} and p010 = 1, r 01 = 0, any policy R that is defined for 

the original model corresponds uniquely to a policy R in the extended model 
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and vi (R) = vi (R), i EE, where vi (R) is the expected total reward in the 

extended model. Take any i EE and choose any policy R = (f 1 ,f2 , ... ), where 

f: E C0 , t E JN. Fork= 1,2, ... we define subsets Tk of the state space E 

by 

Tl := {i} 

{j k ~ o} 2, 3, ... Tk E E pij (R) > k 

For the proof that statement (iii) follows from statement (ii) we need the 

following three propositions. 
n 

PROPOSITION 1. If, for any integer n such that 1 $ n $ N, 0 i U T 0 
l=1 "-n 

implies that T 1 ¢ U 
n+ l=l 

Tl' then statement (iii) holds. 

PROOF. Since state O is an 
n 

absorbing state, OE Ul=l Tl implies that 
N n 

0 E Tn+l" Suppose that O ,!_ Ul=l Tl" Then O i Ul=l Tl for n = 1,2, ... ,N. 
n+l 

Then, by the assumption of the proposition, we have that Ul=l Tl has at 
n 

least one state more than Ul=l Tl for all n = 1,2, ... ,N. Consequently, 

UN+l 1 0 l=l Tl= E which imp ies that E TN+l· Hence, 

,;- N+l 
lj pij (R) 

~N+l ~ 
1-piO (R) < 1, i.e. statement (iii) holds. 

PROPOSITION 2. Suppose that the integer n is such that 1 ,c; n ,c; N, 

0 i u1=l Tl and Tn+l c u1=l Tl. Let the pure and stationary policy f 00 

be defined by 

rk(jJ k-1 
if. j E Tk \Ul=l Tl 

* Define T 1 

Then, 

f(j) 

: = arbitrarily chosen if j i Un 
l=l 

* := {i} and Tk 
~ ~k ~oo 

:= {j E Elp,.(f )> O} k 
1.J 

k E JN. 

PROOF. The proof is given by induction on k. 

Tl° 

2, 3,... . 
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* n Suppose that Tk c Ul=l * Tl' k = 1,2, ... ,m. Take any j E Tm+l · 

* exists a states ET such that p ~f(). > 0. Since 
m s s J k-l 

n 
s E ul=l 

Then, there 

Tl' we have 

f(s) fk(s) where k satisfies s E Tk\Ul=l Tl. 

From s E Tk and f(s) = fk(s) it follows that 

Hence, 

J. T Un+l 
E k+l C l=l Tl 

* n which completes the proof that Tm+l c Ul=l Tl. 

PROPOSITION 3. Suppose that we have the same assumptions as in propo­

sition 

PROOF. 

2. Then, policy f 00 is nontransient. 

Since O I. ul=l Tl and T: c ul=l Tl for 
~ 
P i0 (f) = 0, k E JN. Consequently, ,: . p~. (f) = 

J l.J 

all k E lli, we have 

1 for all k E JN. 

Hence, 

00 

implying that the pure and stationary policy f is nontransient. 

We can complete the proof of statement (iii) as follows. Statement (ii) 

implies that any policy is transient. Then, by proposition 3, the assump­

tions of proposition 2 are not satisfied. Therefore, by proposition 1, 

statement (iii) holds. 
N 1/(N+l) 

(iii)~ (iv): Let a:= maxi yi and b := a Then, as b < 1. Take 

a such that b <a< 1 and define the vectorµ by 

i EE. 

From lemma 3.2.2 it follows that 

, N+l , N+l 
a= max. sup l·P,. (R) = max. maxR C L-P,. (R) 

l. R J l.J l. EM J l.J 

, N+l 
max C max. L-P .. (R) 

RE M l. J l.J 
N+l 

max C II P (Rl II . 
REM 

Hence, for any policy R E CM and any t E JN, we may write 

llpt(R) II s llpl t/ (N+l) J • (N+l) (R) II s Lt/(N+l)J a s -1 t 
a •b . 
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Consequently, 

00 t 1 t -1 ~00 t-1 
Lt=l (1/a) - II P (R) II 5 a b• lt=l (b/a) 

Therefore, µi is well-defined, i EE. 

Similarly to the proof of theorem 2.5.2 it can be shown that 

i EE. 

Then, we obtain 

a E A(i), i E E, 

i.e. the TMD-model is contracting. 

ab 
a(a-b) 

(iv)~ (v): Suppose that the linear program has no finite solution. Since 

the linear program is feasible (for instance x = 0 is a feasible solution), 

the optimum value is in infinity. Then, from the theory of linear program­

ming it follows that there exists a vectors i Osuch that 

(3.2.4) 

00 

Define the stationary policy TT by 

(3. 2. 5) 
ra/s, 

:= arbitrarily 

From (3.2.4) it follows that 

or in vector notation 

(3.2.6) 

By iterating (3.2.6), we obtain 

a E A(i), i E E 
s 

a E A(i) 1 i E E\E 
s 
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(3. 2. 7) n E JN. 

Since the dynamic programming problem is contracting, there exists a vector 

µ >> 0 and a real a E [0,1) such that 

Hence, 

, p µ ,; a µi lJ· . . . iaJ J 

0,; P(11)µ,; aµ 

and consequently, 

n 
a µ 

a E A(i), i EE. 

for all n E JN, 

implying that Pn(1!) + O for n + oo 

Then, from relation (3.2.7), it follows thats= O, which gives a con­

tradiction. This completes the proof of statement (v). 

(v) ~ (i): Suppose that statement (i) is not true. Then, there exists a 

pure and stationary policy f 00 such that 

for certain i,j EE. 

Then, we obtain 

13 .2.8) +oo. 

Consider the sequence {xn, n = 1,2, ... }, defined by 

Vector xn has the following properties: 

1. x~ 2 0 a E A(i), i EE. 
ia 

a f(i) 

n E JN. 

a ,f, f(i) 
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Hence, we have a sequence {xn, n = 1,2, ... } of feasible solutions such 

that L.L x~ + +00 for n + oo. This contradicts the assumption that the 
1. a 1.a 

linear program has a finite solution. Therefore, we have shown that state-

ment (i) is true. D 

ment (i) is true. n 

The characterizations (iii) and (v) of theorem 3.2.4 give two finite 

algorithms in order to check the contraction property for a given Markov 

decision problem. Below we present these algorithms. 

ALGORITHM IV for the verification of the contraction property for a Markov 

decision problem (iterative approach). 

~:t:= 

t+l 
step 2: yi 

0; y? := 1, i EE. 
1. 

:= max 
a 

t 
Lj piajYj, i EE. 

t+l 
~: If maxi Yi < 1, then the problem is contracting (STOP), 

otherwise, go to step 4. 

step 4: If t = N+l, then the problem is not contracting (STOP), 

otherwise, t := t+l and go to step 2. 

ALGORITHM V for the verification of the contraction property for a Markov 

decision problem (linear programming approach). 

~: Take any vector S such that S. > 0, j EE. 
J 

step 2: Solve the linear programming problem 

Iiia( 0ij-piaj)xia 
,:; 

sj j E E l ma+! x. 
EEJ 

1. a 1.a 

Xia "' 0 a E A(i), i 

If the linear program has a finite solution, then the problem is 

contracting (STOP). 

Otherwise, the problem is not contracting (STOP). 
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REMARK 3.2.3. If we use algorithm V and the alqorithm shows that the prob­

lem is contracting, then we can obtain, from the dual program, a vector 

µ >> 0 and a scalar a E [0,1) such that 

a E A(i), i E E. 

Namely: The dual linear program is 

µ' ~ 0 
J 

a E A(i), 

j E E 

and has also an optimal solution, sayµ. Then we have 

i E E 

and for a 
-1 : = 1 - (maxi µ i) we have a E [ O, 1) and 

µi 
µ,-1 $ 

]_ 
µ,----= 

i maxiµi 
a E A(i), i E E. 

3.3. OPTIMAL TRANSIENT POLICIES 

In this section we discuss the problem of finding an optimal policy 

* in the class of the transient policies, i.e. a policy R such that 

(3. 3 .1) sup{v. (R) IR is a transient policy}, 
]_ 

i EE. 

Such a policy may be of interest, for instance in the so-called opti­

mal stopping problem (see application 3.3.1 at the end of this section). 

A related optimal stopping problem, whose utility function is exponential, 

is discussed by DENARDO & ROTHBLUM [1979]. The problem of finding an optimal 

policy in the class of the transient policies can also be solved for models 

with Z:. p .. > 1 for some i E E, a E A(i) 
J iaJ 

(cf.HORDIJK & KALLENBERG [1981a]). 

Another related paper is HORDIJK & KALLENBERG [1981c]. 

Any policy is transient in a contracting dynamic programming problem. 

In that case a policy which satisfies (3.3.1) is an optimal policy in the 

class of all policies. In general, the problem of finding an optimal tran­

sient policy is only relevant if there exists at least one transient policy. 
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Therefore, we introduce the following assumption. 

ASSUMPTION 3.3.1. There exists a transient policy. 

Further on, we will show how, for a given problem, this assumption can 

be verified by linear programming. 

The total expected reward of any transient policy is finite. However, 

the vector w, where 

(3.3.2) := sup{v. (R) IR is a transient policy}, 
l. 

is not necessarily finite. 

i E E, 

EXAMPLE 3.3.1. Consider the model of figure 3.3.1. The sequence {TT00 (n), 

n = 1,2, •.. } of stationary policies defined by 

satisfies: 

.·= 11 -1/n 
TT 1a (n) 

1/n 

= {·n +
2 

2 
V. (TT 00 (n)) = 

l. 

i 

i 

a = 1 

a = 2 

2. 

,r21 (n) := 1, 

i=1, j=1 

i=1,j=2 

i=2,j=1 

i=2,j=2 
([D 

n E ]N 

Figure 3.3.1 

Hence, every policy TT00 (n) is transient, but w1 ~ supn v1 (TT00 (n)) +00 • 

THEOREM 3.3.1. If w is finite, then w is a solution of the functional 

equation 

x. 
l. 

PROOF. Let R 

v. (R) 
l. 

i EE. 

1 2 
(TT ,TT, ••• ) be an arbitrary transient Markov policy. Then, 

i EE, 

where u.(R) represents the expected total reward earned from time 2, given 
J 



that the state at time 2 is j. Let R := (TI 2 ,TI 3 , ... ), then we can write 

Hence, i::=l :p?R (Xt = k I x1 = j) < 00 for every k and every j with 

l:ipij(TI1) > 0. Therefore, we have 
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uj (R) =vj (R) ~ wj for all j such that pij (TI1 ) > 0 for some i E E. 

Then, we obtain 

i EE. 

Theorem 2.5.1 and the fact that R is arbitrarily chosen imply that 

(3.3.3) w. ::; max {r. + I,p, .w.}, 
i a ia J iaJ J 

i EE. 

Take any E: > 0. Suppose that for every j EE,R := (TI 1 (j),TI 2 (j), ... ) is a 
j . 

transient policy that satisfies v.(R.) ~ w.-E:. Again, by theorem 2.5.1, we 
J J J 

may assume that Rj is a Markov policy.Let ai E A(i), i EE, be such that 

i E E. 

I\ (TI l, TI 2 t t-1 
Let R , ... ) be the policy with TI. := TI. (i 2) 1 

J.1a1···itat 1.tat 
1 {; a = ai , i E E 

1[. 
f,. i E E. ia a ai 

I\ 
Hence, policy R is transient and we obtain 

(3. 3.4) 

max { r . + I, p . . w . } - E: , 
a ia J 1.aJ J 

i EE. 

Since E: is arbitrarily chosen, (3.3.3) and (3.3.4) imply that 

w, 
1. 

max { r . + /,. p . . w . } , 
a 1.a 'J iaJ J 

i E E. D 

t ~ 2, and 
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EXAMPLE 3.3.2. E = {l}; A(l) = {1,2}; plll = 1, P 121 = ½; rll O,r12=-l. 

It is easy to see that w1 = - 2; the functional equation is 

x 1 max {x 1 ,-1 + ½ x 1 } with solution set {x1 I x 1 ~ - 2}. Hence, the solu­

tion of the functional equation is not unique. 

DEFINITION 3. 3. 1. A vector w E :al is TMD-superharmonic if 

a E A ( i) , i E E. 

THEOREM 3.3.2. Suppose that w is finite. Then, w is the smallest TMD-super-

harmonic vector. 

PROOF. Theorem 3.3.1 implies that w is TMD-superharmonic. Suppose that w is 

also a TMD-superharmonic vector. From theorem 2.5.1 it follows that it is 

sufficient to prove that w ~ v(R) for any transient Markov policy R. Let 

R = (TT 1 ,'lf 2 , ... ) be an arbitrary transient Markow policy. Since w is TMD­

superharmonic, we have 

(3. 3.5) t E ]N. 

By iterating (3.3.5), we obtain 

,n 1 2 t-1 t 1 2 n ~ 
w ~ lt=lP(TT )P(TT )•••P(TT )r(TT) +P('lf )P('lf )•••P('lf )w, n E JN. 

Because Risa transient Markov policy 

1 2 n 
P(TT )P(TT )•••P(TT ~ + 0 for n + 00 

and 

,n 1 2 t-1 t 
v(R) limn+«> lt=lP(11 )P(11 )•••P(11 )r(11 ). 

Consequently, 

w ~ v(R), 

which completes the proof of the theorem. D 

Theorem 3.3.2 implies that, if w is finite, then w is the unique opti­

mal solution of the linear programming problem 



(3. 3 .6) a E A(i), i E E} 

where S. > 0, j EE, are given numbers. 
J 

The dual linear programming problem is: 

(3. 3. 7) 

l.ila< 0ij-piaj)xia s. j E E 
J •+ l r. x. i a ia ia 

Xia ? 0 a E A(i), 

Notice that any feasible solution x of program (3.3.7) satisfies 

j EE. 

We d~fine for any feasible solution x of program (3.3.7) a stationary 

policy 11co(x) by 

(3. 3.8) 

Since x. 
ia 

a E A(i), i E E. 

11. (x)•x., a E A(i), i EE, we can write 
ia i 

L-l (o .. -p .. )11. (x)•x. 
i"a iJ iaJ ia i s.' 

J 
j EE. 

Hence, we have 

(3.3 .9) 
T 

X 

By iterating (3.3.9), we obtain 

T ,n T t-1 T n ,n T t-1 
x =lt=lSP (11(x))+xP(11(x))?lt=lSP (11(x)), 

Hence, 

co T t-1 
}:t=l SP (11(x)) < co, 

and consequently, 

l,co_lll?co (Xt=jlXl=i) 
t- 11 (x) 

,co t-1 
lt=l[P (11(x))]ij < co, 

n E JN. 

i,j EE. 

53 
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So, the policy TT 00 (x) is transient and therefore we can write (cf. KEMENY 

& SNELL [1960] p.22) 

(3. 3 .10) 
T 

X 
T -1 

13 (I-P(TT(x))) . 

Conversely, let TT be any transient stationary policy. Then, the inverse 
-1 

(I-P(TT)) exists. We define the vector x(TT) by 

(3. 3.11) X. ( TT) 
ia 

a E A(i), i EE. 

THEOREM 3.3.3. The mapping defined by (3.3.11) is a one-to-one mapping of 

the transient stationary policies onto the set of feasible solutions of 

the linear program (3.3.7) with (3.3.8) as the inverse mapping. Further­

more, the set of extreme feasible solutions of program (3.3.7) corresponds 

to the transient stationary policies which are pure. 

PROOF. First, we prove that x(TT) is a feasible solution of program (3.3.7). 
00 

Let TT be an arbitrarily chosen transient stationary policy. Then x(TT) 

satisfies 

'f' 00 t-1 
[13 t.t lp (Tr)]. •TT. ~ 0, aEA(i) ,iEE. 

= i ia 

2. I. . I. ( 0 .. -p. . ) X. (TT) 
i a l.J iaJ ia 

[l3T(I-P(TT))-l]. - [l3T(I-P(TT))-lP(TT)]. 
J J 

[l3T(I-P(TT))-l(I-P(TT))]. = 13., j EE. 
J J 

Hence, x(TT) is a feasible solution of (3.3.7). From (3.3.10) and (3.3.11) 

it follows that x x(TT(x)), implying that the mapping is onto. Since 

TTia(x(TT)) =TTia' a E A(i), i EE, the mapping is one-to-one and the inverse 

mapping is given by (3.3.8). 

Let f 00 be an arbitrarily chosen pure and stationary transient policy. 

Suppose that x(f) is not an extreme feasible solution. Then, there exist 

feasible solutions x 1 and x 2 of program (3.3.7) and a real number A E (0,1) 

such that x 1 ~ x 2 and x(f) Ax 1+(1-A)x2 . 
1 

Since x. (f) =O, a~ f(i), i EE, we also have x. 
ia 1 1 ia 

i E E. Hence, the N-dimensional vectors x = (x. f ( . ) ) 
T l. i 

solutions of the linear system x (I-P(f)) = 13T. 

xfa= 0, a~ f(i), 
2 2 

and x = (xif(i)) are 

Since f 00 is a transient policy, the matrix (I-P(f)) is nonsingular and 



consequently, the system has a unique solution, namely ST(I-P(f))- 1 • 

This implies that x 1 = x 2 , giving a contradiction. Hence, we have proved 

that x(f) is an extreme solution. 

Conversely, let x be any extreme feasible solution of program (3.3.7). 

Since N is the number of constraints in program (3.3.7), x has at most 

N positive components. On the other hand, it follows from 

j EE, 
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that in each state j there is at least one positive component. Consequently, 

x has in each state j exactly one component which is positive. Hence, the 

corresponding policy TT00 (x) is a pure policy. 0 

T 
For a given initial distribution S = (S 1 ,S2 , ••• ,SN) , where Si> 0 

i EE, we denote for any transient policy R the expected number of times 

of being in state j and then choosing action a by 

(3.3.12) 

Since Risa transient policy, we have x. (R) < 00, a E A(j), j EE. The 
Ja 

definitions (3.3.11) and (3.3.12) imply that 

NOTATION 3. 3. 1 . 

K := {x(R) 

K(M) := {x(R) 

K(S) := {x(R) 

K(D) := {x(R) 

p := X 

T -1 
[S (I-P(TT)) ].•TT. 

J Ja 
X, ( TT) , 

Ja 

R E C and transient} 

R E C 
M 

and transient} 

R E cs and transient} 

R E CD and transient} 

s. j E E 
J 

aEA(j),jEE. 

{ !,!.co,j-piaj)xia 

X, "' 0 aEA(i), i J ia 

THEOREM 3.3.4. K(D) c K(S) = K(M) = K = P. 

PROOF. The equality K = K(M) follows from theorem 2.5.1. Since Pis a con­

vex polyhedron, theorem 3.3.3 implies that K(D) c P = K(S) c K(M) = K. 

Therefore, it is sufficient to show that K{M) c P. Take any x(R) E K(M) 

and suppose that R = (TT 1 ,TT 2 , ... ). Then, we obtain 



56 

t t · t . tn 1 t-1 t 
l·l (o .. -p. ,)l 0 S0 •ll.m lt 1{P(TT ) 00 •P(TT )} 0 .•TT. i a iJ iaJ ~ ~ n.._ = ~i ia 

Hence, x(R) E P, which completes the proof. D 

REMARK 3.3.1. The next example shows that K(D) f Pis possible. 

EXAMPLE 3.3.3. Consider the model 

of example 3.3.1 and take a1 =S2 =12. 

There is only one transient pure 

and stationary policy, namely f 00
, 

where f(l) = 2 and f(2) = 1. 

The solution x(f) satisfies x 11 (f) = O, 

x 12 (f) = 1/2 and x21 (f) = 2. The set P 

is given by 

{x 
x12 l p - x12+ 12x21 

x12'x21'x11 ~ 

Hence, K(D) F P. 

12---------
x(f) 

Figure 3.3.2 

p 

K(D) 

2 

REMARK 3.3.2. Suppose that K f 0, then also Pf 0· Lemma 1.2.2 implies 

the existence of an extreme feasible solution of program (3.3.7). Then, 

by theorem 3.3.3, the existence of a transient pure and stationary policy 

is shown. This argument provides another proof of theorem 3.2.3. 

REMARK 3.3.3. Since assumption 3.3.1 is satisfied if and only if Pf 0, 
this assumption can be verified by linear programming: we have to check 

the feasibility of program (3.3.7). 
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REMARK 3.3.4. If the vector w is finite, then it follows from theorem 3.3.2 

that the linear programming problem (3.3.7) has a finite optimum. The fol­

lowing theorem shows that the reverse statement is also true. Furthermore, 

t~is theorem proves the correctness of algorithm VI for the determination 

of an optimal transient policy. 

THEOREM 3.3.5. Let x* be an extreme optimal solution of the linear program­

ming problem (3.3.7). Then, the pure and stationary policy f:, where f*(i) 

* satisfies xif*(i) >0, i EE, is optimal in the class of transient policies. 

PROOF. In the proof of theorem 3.3.3 we have seen that, from the fart that 

x* is an extreme solution, it follows that f 00 is transient and is uniquely 
* * determined by the condition xif*(i) > 0, i EE. 

* Since xif (i) > 0 for every i EE, it follows from the complementary slack-

* ness property of linear programming that (I-P(f*)) w = r(f*). Hence, 

w 

i.e. f: is an optimal transient policy. D 

ALGORITHM VI for the construction of an optimal pure and stationary tran­

sient policy in a TMD-model. 

step 1: Take any vector S such that Sj > 0, j EE. 

* step 2: Use the simplex method to compute an optimal solution x 

linear programming problem 

max{L- l r . x . i a ia ia 

j E E 

a E A(i), 

of the 

(if the problem is infeasible, then there exists no transient 

policy; if the problem has an infinite solution, then there exists 

no optimal transient policy). 
co * step 3: Take f* such that xif (i) > 0, i EE. 

* 

REMARK 3.3.5. Since any extreme solution x of program (3.3.7) satisfies 

x. > 0 for exactly one a, E A(i) for every i EE, the linear program is 
iai ~ 

nondegenerated. 

The following example shows that the policy f 00
, obtained by aigorithm VI, 

* 
is in general not optimal in the class of all policies. 
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EXAMPLE 3.3.4. Consider the model of 

figure 3.3.3. The corresponding linear 

program is: 

½x11+x12 -x22=½l 

-x12+½x21+x22=½r. 

x11'x12'x21'x22~oJ Figure 3.3.3 

An extreme optimal solution is 

The pure and stationary policy 

If can easily be verified that 

* * * * 
(x11 = O, x12 = ½, x21 = 2 ' x22 

f 00 satisfies f (1) = 2, f*(2) 
* * 

v 1 (f:) = v 2 (f:) = -2. 

However, the policy f 00 where f(1) = f(2) = 2 gives v 1 (f00
) 

= 0). 

1. 

THEOREM 3.3.6. The correspondence between the transient stationary policies 

and the feasible solutions of the linear program preserves the optimality 

property, i.e. 

1. if JT 00 is a stationary optimal transient policy, then x(JT) is an 

optimal solution of the dual linear programming problem (3.3.7). 

2. If xis an optimal solution of the linear program (3.3.7), then 

the stationary policy JT00 (x) is an optimal transient policy. 

PROOF. 

1. Since w is an optimal solution of the primal problem and x(JT) is feasi­

ble for the dual problem, it follows from theorem 1.3.4 that it is suf-

2. 

, , T -1 
l·l r. [8 (I-P(rr)) ]. •JT. i a ia i ia 

T -1 B (I-P (TT)) r(TT) 
T oo 

B V (JT ) 

which completes the proof of this part of the theorem. 

T oo 
Bv(TT(x)) 

T -1 B (I-P(JT(x))) r(TT(x)) 

Since B >> 0 and v(JT00 (x)) ~ w, it follows that v(JT00 (x)) 

is an optimal transient policy. 0 
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REMARK 3.3.6. Theorem 3.3.6 implies that all optimal pure and stationary 

transient policies can be determined by the computation of all optimal 

extreme solutions of the dual program (3.3.7). In chapter 1 such an algo­

rithm is presented (see algorithm I). 

We continue this section with a discussion on Markov decision problems 

under constraints. We suppose that 13 
T initial = (131 113 21 ••• ,SN) is a known 

distribution such that 13. > 0 for all j E E. We exclude distributions where 
J 

13. = 0 for some j EE. The reason is that in that case it will in general 
J 

not be possible to distinguish the transient policies from the nontransient 

policies (see example 3.3.7). In the unconstrained case we can find a poli-

* cy R that is optimal simultaneously for all initial states i EE. In the 

constrained case, a policy which is optimal for all initial states does 

not exist in general (see example 3.3.5). Therefore, we use the concept of 

optimality with regard to a given initial distribution 13. 

We consider constraints that are linear functions of x(R), e.g. 

for the k-th constraint. 

Notice that, by formula (3.3.12), the constraints depend on the initial 

di. str ibution. 

Markov decision problems under constraints may be of importance if we 

are interested in more than one reward function. Then, for instance, we 

want to maximize one reward function subject to the constraints that the 

other reward functions are bounded by some given quantities. 

Linear programming seems extremely suitable for solving this kind of 

problems. The other standard techniques to solve unconstrained Markov deci­

sion problems (policy improvement and successive approximation) cannot 

handle these constrained problems. We shall show that there always exists 

an optimal stationary transient policy and we shall present an algorithm 

to compute one. 

EXAMPLE 3.3.5. Consider the model of 

figure 3.3.4. Suppose that we have one 

reward function, which is indicated in 

the figure, and that we have the con­

straint v 1 (R) + v 2 (R) ,c; 3. Then we can 

formulate two constrained problems: Figure 3.3.4 
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(1) sup{v1 (R) I v 1 (R) + v 2 (R) <: 3} 

where f 1 (1) = 1 and f 1 ( 2) = 2 

(2) sup{v2 (R) I v 1 (R) + v 2 (R) s 3} 

where f 2 ( 1) = 2 and f 2 ( 2) = 1. 

which has as optimal solution f7, 

which has as optimal solution f;, 

Hence, there exists no policy which is optimal for both problems simulta-

neously. 

The constrained Markov decision problem can be formulated as: 

(3. 3 .13) { 

lilaqiakxia(R) s bk 

sup l, fl. v. (R) 
l l l 

R is transient 

k 

In order to solve problem (3.3.13) we consider the following linear program­

ming problem: 

Zilac 0ij-piaj>xia /3. j E E 

J 
J 

(3. 3 .14) m+ l r. x. l)a qiakxia s bk k 1, 2, ... ,m 
1 a ia ia 

Xia ~ 0 a E A(i), i E 

THEOREM 3.3.7. 

(i) Problem (3.3.13) is feasible if and only if problem (3.3.14) is 

feasible. 

(ii) The optima of the problems (3.3.13) and (3.3.14) are equal. 

(iii) If xis an optimal solution of the linear program (3.3.14), then 

TI 00 (x) is an optimal solution of (3.3.13). 

(iv) If R is an optimal solution of problem (3.3.13), then x(R) is an 

optimal solution of program (3.3.14). 

PROOF. The proof is straightforward using the following properties: 

(1) K = P. 

(2) Every transient policy R satisfies ZiSivi (R) 

(3) x = x(TI00 (x)) for every x E P. D 

REMARK 3.3.7. From theorem 3.3.7 it follows that, if the linear program 

(3.3.14) has a finite optimum, then problem (3.3.13) has an optimal solu­

tion that is stationary. The next example shows that, in general, problem 

(3.3.13) has no optimal solution in the class of pure and stationary poli­

cies, even in the case that K(D) = P. 
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EXAMPLE 3.3.6. Consider the model of example 3.3.5 with the exception that 

r 11 = 0. Take s1 = s2 = ½, m = 1 and let the constraint be x 21 (R) ~ ½. 

The polyhedron Pis given by 

½x11 + x12 -½x22 J· p ½x12 + ½x21 + x22 

x11 'x12'x21 'x22 

We have drawn the polyhedron 

Pin the 3-dimensional space 

with coordinates x 12 , x 21 

and x22 (x 11 is given by 

x11 =rol + x22 - 2x12). 

Let f 1 , f;, f; and f: 

be defined by: 

f 1 (1)=f1 (2)=1; f 2 (1)=1, 

f2(2)=2; f3(1)=2, 

f3(2)=1; f4(1)=f4(2)=2. 

The vectors x(fk) are 

denoted in figure 3.3.5, 

k = 1,2,3,4. Since the 

I 
I 
I 
I 
I 
I 
I 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

I ½ - - - + _/_ - - - - - - - -
I 1/ ----
1 __,, __ _ 

1 ------
Figure 3.3.5 

3/2 
/ 

/ 
/ 

objective function is x 21 , it can also be seen in the picture that the 

linear program has no optimal solution which corresponds to a pure policy. 

ALGORITHM VII for the construction of an optimal stationary transient pol­

icy in a contrained TMD-model with initial distribution B >> 0. 

* step 1: Compute an optimal solution x of the linear programming problem 

l- l ( o . . -p . . ) x . B. j E E 

J-
1. a 1.J 1.aJ 1.a J •+1 r. x. IJa qiakxia ~ bk k 1,2, ... ,m 

1. a 1.a 1.a 

Xia ;,, 0 a E A(i), i E 

(if the program is infeasible, then the constrained TMD-problem 

is also infeasible; if the program has an infinite solution, then 

there exists no optimal transient policy). 

00 * * step 2: Take *TI such that *Tiia := xia/~axia, a E A(i), i EE. 
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REMARK 3.3.8. Since x. = L x. = S. + L.L P . . x. > 0 for every j EE, 
J a Ja J i a iaJ ia 

the policy *TT00 is well-defined in step 2 of the algorithm. The correctness 

of algorithm VII is a consequence of theorem 3.3.7. 

REMARK 3.3.9. If we allow that S. = 0 for some j EE, then we can loose 
J 

the one-to-one correspondence between the stationary transient policies 

and the feasible solutions of the dual linear program (3.3.7). Further­

more, we can obtain nontransient policies, as is shown in the next example. 

EXAMPLE 3.3.7. The problem is given by 

figure 3.3.6. Suppose that we have the 

constraint -x12 (R) ~-½.Then the linear 

program is as follows: 

x12-x21 

-xl 2 +x21 +x22 

max x11+x12+x21+x22+x31 -x22+½x31 

-x12 

=O 

=O 

=1 

~-½ 

GJ) 

Figure 3.3.6 

* * * * * An extreme solution is: (x11 =O, x 12 =x21 =½, x 22 =0, x 31 =2). 

The corresponding policy f 00
, where f (1) =2, f (2) =1, f (3) =1, is non-

* * * * 
transient. 

APPLICATION 3.3.1. Optimal stopping problem. 

In an optimal stopping problem we have two possible actions in each state. 

The first action corresponds with stopping and if the second action is 

chosen, then the process proceeds. If the stopping action is chosen in state 

i, then a final reward ri is earned and the process breaks down, i EE. If 

the second action is chosen in state i, then we receive a reward c. and 
i 

the probability of being in state j at the next time point is p .. , i,j EE. 
J.J 

our aim is to find an optimal transient policy. It is obvious that there 

exists a transient policy, namely the policy f°' where f(i) = 1, i E E. The 

primal and dual linear programming problems for the optimal stopping prob­

lem are: 

~ c. 
i 

i E EE} 

i E 



and 

maxf I.r.x.+I.c,y, l i i i i i i 
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j E EE] 

i E 

respectively. The adaptation of algorithm VI to the optimal stopping prob­

lem gives the following algorithm. 

ALGORITHM VIII for the construction of an optimal pure and stationary 

transient policy in an optimal stopping problem. 

~: Take any vector S such that Sj > 0, j EE. 

* * step 2: Use the simplex method to compute an optimal solution (x ,y) of 

the linear programming problem 

maxJI.r.x.+I.c.y. l i i i i i i 

j E EE) 

i E 

(if the problem has an infinite solution, then there exists no 

optimal transient policy). 
00 

step 3: Take f* such that 

* if x. > 0 
i i EE. 

if * 
Yi > 0 

* * REMARK 3.3.10. The constraints of the linear program imply that x.+y. =S.+ 
J J J 

* ~i pijyi > 0, j EE. Since the simplex method gives an extreme solution 

and since any extreme solution has at most N (the number of constraints) 

* * positive components, we have either xi> 0 or yi > 0 for every i EE. 

Hence, policy f 00 is well-defined. 
* 

REMARK 3.3.11. Suppose that the linear programming problem has a finite 

optimum. Then, the vector w, defined by (3.3.2), is finite. Let r := 

{i E E!w. = r.}. The existence of a pure and stationary optimal policy 
i i 

and the definition of r imply that an optimal stopping rule is stop on r 
and to continue on E\f. From the complementary slackness property of lin­

ear programming, it follows that Ex* c r. 
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REMARK 3.3.12. DERMAN ([1970], chapter 8) presents analogous formulations 

for the entrance-fee problem, i.e. the optimal stopping problem with ri = 0 

for all i EE. 

3.4. CONTRACTING DYNAMIC PROGRAMMING 

Throughout this section we have the following contraction assumption. 

ASSUMPTION 3.4.1. There exists aµ>> O, µ E lRN, and a real number a E [0,1) 

such that Ejpiajµj ~ a pi, a E A(i), i EE. 

In theorem 3.2.4 is shown that in a contracting dynamic prograr;uing 

problem any policy is transient. Hence, optimal transient policies are 

also optimal in the class C of all policies. This is true in the uncon­

strained case as well as in the constrained case. Therefore, we can use 

the results of the previous section to obtain optimal policies in both 

cases. Moreover, we can slightly extend some results of section 3.3. Below 

we summarize for the sake of completeness the results for the contracting 

dynamic programming problem. 

THEOREM 3.4.1. The TMD-value vector vis the smallest TMD-superharmonic 

vector. 

PROOF. Since any policy is transient, we have v = w. Theorem 3.2.1 implies 

the existence of a pure and stationary optimal (transient) policy f 00
• Then 

v(f00
) is finite, and consequently vis finite. Now, apply theorem 3.3.2 to 

complete the proof. D 

THEOREM 3.4.2. The mapping 

is a one-to-one mapping of 

X. (1T) := [l:?(I-P(1T))-l].•1f. , 
ia i ia 

the set of stationary policies 

a E A(i), i E E, 

onto the set of 

feasible solutions of the dual linear program (3.3.7). The inverse mapping 

is given by 1r,a(x) ,~x /x , a E A(i), i E E. Furthermore, this mapping has 
L ia 

the property that pure po1.icies correspond to extreme feasible solutions. 

PROOF. See theorem 3.3.3. D 

THEOREM 3.4.3. The linear programming problem (3.3.7) has a finite optimal 

solution. Moreover, if x* is an optimal solution of (3.3.7), then any pure 

00 * and stationary policy f such that x.f (') > O, i EE, is an optimal policy. 
* i * i 



PROOF. Since vis the (finite) optimal solution of program (3.3.6), the 

dual program (3.3.7) also has a finite optimal solution. 
* . * Let x be any optimal solution of (3.3.7). Then Ea xia > O, i EE, and 
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consequently, we can take a pure and stationary policy f: such that 

x:f*(i) > O, i EE. The complementary slackness property of the primal and 

dual linear program implies that v = r(f*)+P(f*)v. Since f: is transient, 

the matrix I-P(f*) is nonsingular. Hence, 

V 

implying that f: is optimal. D 

As a consequence of theorem 3.4.3, a pure and stationary optimal 

policy can be obtained by the following algorithm. 

ALGORITHM IX for the construction of a pure and stationary optimal policy 

in a contracting dynamic programming problem (linear programming). 

step 1: Take any vector S such that Si> 0, j EE. 

step 2: Compute an optimal solution x of the linear programming problem 

max{l•l r. x. i a ia ia 

step 3: Take f: such that x:f (i) > 0, i EE. 

* 

j E E } 

a E A(i), i EE • 

THEOREM 3.4.4. The correspondence between the stationary policies and the 

feasible solutions of the linear program preserves the optimality property, 

i.e. 
00 

1. If n is a stationary optimal policy, then x(n) is an optimal solu-

tion of the linear program. 

2. If xis an optimal solution of the linear program, then the station­

ary policy n 00 (x) is an optimal policy. 

PROOF. See theorem 3.3.6. D 

We continue this section with a discussion about the relation between 

the policy improvement method and the linear programming approach. The 
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policy improvement method for discounted dynamic programming is due to 

HOWARD [1960]. We give the analogon for contracting dynamic programming 

and we establish that this method is equivalent to a particular linear 

programming method, called the simplex method with block-pivoting (cf. 

DANTZIG [1963] pp.201-202). Furthermore, we show that the standard simplex 

algorithm is equivalent to a special policy improvement algorithm. 

For every i EE and every f 00 E CD, we define a set A(i,f) by 

The policy improvement method is based on the following theorem. 

00 

THEOREM 3.4.5. Let f be any pure and stationary policy. 

(i) If A(i,f) = ¢, i EE, then f 00 is an optimal policy. 

(ii) If A(i,f) ~¢for some i EE, then v(g00
) > v(f00

), where g00 ~ f 00 is 

any pure and stationary policy which satisfies for each i EE either 

g(i) = f(i) or g(i) E A(i,f). 

PROOF. (The proof of this theorem is similar to the proof of theorem 3 in 

BLACKWELL [1962]). 

(i) Since A(i,f) = ¢ for all i EE, we have r(g) +P(g)v(f00
) :$; v(f00

) for 
00 -1 00 t-1 

any pure and stationary policy g. Since (I-P(g)) = l:t=lp (g) ~O, 

we obtain 

for any pure and stationary policy g00
• Hence, f 00 is an optimal policy. 

(ii) Let g00 ~ f 00 be such that for each i EE either g(i) = f(i) or 

g(i) € A(i,f). Then, 

i EE, 

with strict inequality for at least one i. Then, we obtain analogous­

ly to part (i) of the proof 

00 t00 t-1 00 

vi (g) = lt=l P (g)r(g) ~ vi(f ), i EE, 

with strict inequality for at least one i. .Hence,_ v_{g00
) >v(f00

), which 

completes the proof of the theorem. D 



The policy improvement algorithm can be formulated as follows. 

ALGORITHM X for the construction of a pure and stationary optimal policy 

in a contracting dynamic programming problem (policy improvement). 

~: Take any pure and stationary policy f 00
• 

step 2: Compute v(f00
) as the unique solution of the linear system 

i EE. 

step 3: Determine for every i EE 

A (i, f) 

step 4: If A(i,f) = 0, i EE, then f 00 is an optimal policy (STOP). 

Otherwise, go to step 5. 

step 5: Take any policy g00 such that g if and such that for each i EE 

either g(i) = f(i) or g(i) E A(i,f). 

step 6: f := g and go to step 2. 

THEOREM 3.4.6. Algorithm X determines an optimal policy in a finite num­

ber of iterations. 

00 

PROOF. If in step 5 policy g is found as successor of 
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(see theorem 3.4.5). Hence, each pure and stationary policy occurs at most 

once. Since IC I< 00 , the algorithm terminates after a finite number of 
D 

iterations. Consequently, we finish with a policy f: such that A(i,f*) = 0 
for all i EE. Then, theorem 3.4.5 implies that the policy f: is optimal. D 

Consider an iteration in the policy improvement algorithm. If 

for all a E A(i), 

then g(i) f(i). Otherwise, we may take for g(i) any action a for which 

By theorem 3.4.2, the vector x(f00
) which is defined by formula (3.3.12) 

is an extreme feasible solution of the linear program (3.3.7). The linear 
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programming tableau corresponding to this extreme feasible solution x(f00
) 

has as basis matrix (I-P(f))T. From theorem 1.4.1 and tableau (1.4.2), it 

follows that the coefficients of the transformed objective function have 

the values of the corresponding dual variables. Hence, the column of a 

nonbasic variable x. (f00
) has in the transformed objective function the 

ia 
value 

(3.4.1) 

Here, wi is the variable which corresponds to the i-th equality of problem 

(3.3.7). Since wi, i € E, are unrestricted in sign, they are orthogonal 

to the artificial variables z., i € E, of problem (3.3.7). Therefore, if 
~]. 

we want to know the values wi, i € E, then we have to keep into the sim-

plex tableau the artificial variables. Since xif(i) (f) > 0, i € E, it 

follows from the orthogonality of the corresponding primal and dual vari­

ables in the simplex tableau, that dif(i) = 0, i € E. Then, we obtain 

w = r(f) +P(f)w which implies that;= v(f00
). Hence, formula (3.4.1) may 

be written as 

(3.4.2) 

Since a€ A(i,f) if and only if dia < 0, it follows that the set of 

actions from which g(i) may be chosen is exactly the set of possible pivot 

columns in the simplex method. L.et E0 := {i € Elg(i) # f(i)}. :rf we exchange 

the nonbasic variables corresponding to g(i), i € E0 , and the basic vari­

ables corresponding to f(i), i € E0 , then we obtain a linear programming 

algorithm in which more than one pivot step is performed simultaneously. 

Such an algorithm is called a block-pivoting algorithm. In the standard 

simplex method we choose as pivot column the column which has the most 

negative dia-coefficient. Since this rule may also be used in the policy 

improvement method, the standard simplex method is equivalent to a parti­

cular policy improvement algorithm. We summarize the above statements in 

the following conclusions. 

CONCLUSIONS. 

1. Any policy improvement algorithm is equivalent to a block-pivoting 

simplex algorithm. 



2. The standard simplex algorithm is equivalent to a particular policy 

improvement algorithm. 

EXAMPLE 3.4.1. We compute an 

optimal policy for the model 

given in figure 3.4.1, by the 

policy improvement method as 

well as by the equivalent 

standard simplex method. 

Policy improvement 

Iteration 1: 

1. f(l) = 3, f(2) = 2, f(3) = 1. 
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2. v(f00
) = (28/3,24/3,38/3)T. 

3. A(1,f) = 0, A(2,f) {1,3}, A(3,f) = {2,3}. 

S1 = B2 = S3 = 1/3 
Figure 3.4.1. 

5. dia is minimal for i = 2, a 3: g(l) = 3, g(2) 3, g(3) = 1. 

6. f(l) = 3, f(2) = 3, f(3) = 1. 

Iteration 2: Iteration 3: 

2. v(f00
) = (28/3,34/3,38/3)T. 2. v(f00

) = (32/3,38/3,46/3)T. 

3. A(l,f) =0, A(2,f) =0, A(3,f) = {2,3}. 3. A(l,f) = A(2,f) = A(3,f) = 0-
00 

5. d. is minimal 
ia 

for i = 3, a = 2. 4. f is optimal. 

g(l) 3, g (2) 3, g (3) 2. 

6. f (1) 3, f (2) 3, f (3) 2. 

Linear programming 

Iteration 1: 

Policy f 00
, where f(1) = 3, f(2) = 2, f(3) = 1, corresponds to the simplex 

tableau with x 13 ,x22 and x 31 ~s the basic variables. This tableau has 

the following form: 

I xll x12 zl X 
21 z2 x23 z3 x32 x33 

x13 2/3 2/3 4/3 4/3 -2/3 0 -1/3 2/3 2/3 1/3 

x22 2/3 0 -1 0 2 2 @ 0 -1 0 

x31 2/3 1/3 2/3 2/3 -1/3 0 -2/3 4/3 4/3 2/3 

X 
0 

10 11/3 7/3 28/3 -2/3 8 -10/3 38/3 -1/3 -2/3 
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Iteration 2: 

The variables x 23 and x 22 are exchanged. 

xll x12 zl x21 x22 z2 z3 x32 x33 

x13 7/9 2/3 7/6 4/3 -1/3 1/6 1/3 2/3 1/2 1/3 

x23 1/3 0 -1/2 0 1 1/2 1 0 -1/2 0 

x31 8/9 1/3 1/3 2/3 1/3 1/3 2/3 4/3 CD 2/3 

X 
0 

100/9 11/3 2/3 28/3 8/3 5/3 34/3 38/3 -2 -2/3 

Iteration 3: 

The variables x 32 and x31 are exchanged. 

xll x12 zl x21 x22 z2 x31 z3 x33 

x13 1/3 1/2 1 1 -1/2 0 0 -1/2 0 0 

x23 7/9 1/6 -1/3 1/3 7/6 2/3 4/3 1/2 2/3 1/3 

x32 8/9 1/3 1/3 2/3 1/3 1/3 2/3 1 4/3 2/3 

XO 116/9 13/3 4/3 32/3 10/3 7/3 38/3 2 46/3 2/3 

* * * * * * * * (x11 = O, x 12 = 0, x 13 = 1/3, x21 = 0, x22 = 0, x23 = 7/9, x31 = O, x 32 = 8/9, 

x;3 =0) is an optimal solution. Then, f:, where f*(1) =3, f*(2) =3, 

and f * ( 3) = 2, is an optimal policy. 

Suppose that an upper bound b of the TMD-value-vector vis known. 

Then, the calculations can often been accelerated by the elimination of 

suboptimal actions. An action a E A(i) is said to be suboptimal if there 

does not exist an optimal policy f 00 E C0 with f(i) a. Since vis TMD­

superharmonic and since f 00 is optimal if and only if v = r ( f) + P ( f) v, an 

action a E A(i) is suboptimal if and only if 

r. + L-P .. v. < v .. 
ia J iaJ J i 

The concept of suboptimal actions was introduced by MACQUEEN [1967]. 

THEOREM 3.4.7. Suppose that bis an upper bound for v. Let, in the sim­

plex tableau corresponding to the extreme feasible solution x(f), dia be 

the value of the variable dual to xia(f), a E A(i), i EE. If ai E A(i) 

satisfies 



(3.4. 3) d, 
ia. 

l. 

> min d 
a ia 

then action ai is suboptimal. 

PROOF. Using the formulae (3.4.2) and (3.4.3) we may write 

This completes the proof that ai is a suboptimal action. D 
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Let f 00 be any pure and stationary policy. Then, we have observed that 

x(f00
) is an extreme feasible solution of the linear programming problem 

(3.3.7). Furthermore, we have seen that v.(f00
), j EE, are the values of 

J 
the dual variables that correspond to the artificial variables of program 

(3.3.7); the other dual variables, namely the variables that are orthogon­

al to xia(f), a E A(i), i EE, have the values dia' defined by (3.4.2), 

a E A(i), i E E. 

Hence, in the simplex tableau that corresponds to any pure and station­

ary policy f 00
, we can easily compute the vector b(f), defined by 

(3.4.4) b (f) • µ, 

whereµ and a are the quantities introduced in the first paragraph of this 

section. If these quantities are unknown, then they can be comput8d by 

linear programming (see remark 3.2.3). 

We will show that b (f) is an upper bound for the TM])-value-vector v. 

Then, b(f) can be used in the suboptimality test (3.4.3). 

LEMMA 3.4.1. b(f), defined by formula (3.4.4), is an upper bound for the 

TMD-value-vector v. 
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PROOF. Let M := min.min d. /µ,. Suppose that g is a pure and stationary 
i a ia 1. 

optimal policy (theorem 3.2.1. implies its existence). 

Then, 

i EE. 

Consequently, 

This implies that 

(3.11.5) 
00 -1 00 -1 

v(g )= (I-P(g)) r(g):, v(f) -M•(I-P(g)) µ. V 

From the contraction property it follows that 

(3.4.6) -1 t 00 t-1 
(I-P(g)) µ = lt=1p (g)µ:::; 

Then (3.4.5) and (3.4.6) imply that 

completing the proof of this lemma. D 

\'00 t-1 
lt=la. µ 

-1 (1-a.) µ. 

REMARK 3.4.1. Any feasible solution of the linear programming problem 

(3.3.6) is also an upper bound for v and can be used in the suboptimality 

test. 

REMARK 3.4.2. The use of suboptimality tests is a familiar concept in the 

method of successive approximations. The elimination of suboptimal actions 

may improve the efficiency considerably. We have seen that we can very 

easily implement the suboptimality test (3.4.3) in the linear programming 

algorithm IX. Moreover, we may expect for the linear programming approach 

the same acceleration as it has in the method of successive approximations. 

Next, we will discuss the constrained Markov decision problem. Let 
T 6 = (61 ,62 , •.. ,SN) be any given initial distribution. In contrast with 

section 3.3, we allow in this section that Sj = 0 for some j EE. In the 

same way as in section 3.3, we define the vector x(R) for REC and the 
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sets K, K(M), K(S), K(D) and P. Notice that in this section the restriction 

to transient policies can be dropped. 

The constrained Markov decision problem is then formulated by 

(3.4.7) k 1,2, ... ,m}. 

THEOREM 3.4.8. K(D) = K(S) = K(M) = K = P. 

PROOF. The proof is similar to the proof of theorem 3.3.4. However, it is 

not a direct consequence because we have in theorem 3.3.4 K(D) c K(S); 

furthermore, we here allow that S. = 0 for some j EE. 
J 

We first prove that K(S) = P. For any x E P, we define a stationary policy 

1100 (x) by 

r ✓ 
a E A(i), i E E 

ia xi X 

(3.4.8) 11, (x) := 
ia 

arbitrarily a E A(i), i i E 
X 

Since x. = 11. (x)•x. for all a E A(i) and i EE, we obtain ST 
ia ia i 

XT (I-P (11 (x)). 

Consequently, 

T -1 
[S (I-P(11(x))) J.•11. 

i ia 
a E A(i), i E E. 

Hence, X E K(S). 

Conversely, let x(1100
) E K(S). Then, analogously to the proof of theorem 

3.3.3, it follows that x(1100
) = x(11) E P, where x. (11) := [ST(I-P(11))- 1].•11. 

ia i ia 
In the same way as in theorem 3.3.4 it can be shown that 

K(D) c K(S) K(M) K P. 

Suppose that K(D) ~ K(S). Then there exists a stationary policy 11 such 

that x(11) i K(D). Since K(D) is a closed convex set, it follows from theo­

rem 1.2.1 that there exist real numbers r. , a E A(j), j EE, such that 
Ja 

for all XE K(D). 

Hence, 

(3.4.9) L-L r. x. (11) > L-L r. x. (f) 
J a Ja Ja 'J a Ja Ja 
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for all f E C0 . Since there exists a pure and stationary policy which is 

optimal with respect to the rewards r. , relation (3.4.9) gives a contradic­
Ja 

tion. Hence, we have shown that K(D) = K(S), which completes the proof of 

the theorem. D 

REMARK 3.4.3. We can also prove, similar to theorem 3.3.3, that xis an 

extreme point of P if and only if x E K(D). However, we can loose the one­

to-one correspondence if S. = 0 for some j EE. E.g., choose in the model 
J . 

of example 3.3.4 S1 0, S2 = 1, and let f;,f; be such that f 1 (1) =f1 (2) = 1, 

f 2 (1) =2, f 2 (2) =1. Then, it can easily be verified that x(f1) =x(f2) =x, 

X 
21 

In order to solve (3.4.7) we consider the following linear programming 

problem 

lila( 0ij-piaj)xia s. j E E 

J-
J 

(3.4.10) m={n r. x LJaqiakxia 
:,; bk k 1,2, ... ,m 

1. a 1.a ia 

x. ~ 0 a E A(i),iE 
ia 

Analogously to theorem 3.3.7, we can prove the following theorem. 

THEOREM 3.4.9. 

(i) Problem (3.4.7) is feasible if and only if problem (3.4.10) is 

feasible. 

(ii) The optima of the problems (3.4.7) and (3.4.10) are equal. 

(iii) If xis an optimal solution of the linear program (3.4.10), then the 

stationary policy n00 (x), defined by (3.4.8) is an optimal solution of 

problem (3.4.7). 

(iv) If R is an optimal solution of problem (3.4.7), then x(R) is an opti­

mal solution of the linear programming problem (3.4.10). 

Theorem 3.4.9 provides an algorithm for contracting dynamic program­

ming with additional constraints. 

ALGORITHM XI for the construction of a stationary optimal policy in a con­

tracting dynamic programming problem with additional constraints and with 

initial distribution S ~ 0. 
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step 1: Determine an optimal solution x* of the linear programming problem 

Iiia< 0ij-piaj>xia sj j E E 

J ~+! r. X 
lilaqiakxia ~ bk k 1,2, ... ,m 

1 a 1a ia 

x. <". 0 a E A(i),iE 
1a 

(if the problem is infeasible, then the constrained TMD-problem is 

also infeasible). 

step 2: Take *TI such that 

* I f . aEA(i), i E E * ia xi X 

*Tiia 
: = arbitrarily aEA(i), i i E * 

X 

REMARK 3.4.4. The DMD-problem, which may be viewed as a TMD-problem with 

Ejpiaj =a< 1 for all states i and all actions a E A(i), is a special case 

of the contracting dynamic programming problem. In fact, these models are 

equivalent in the following sense: the expected total reward of any policy 

R in the two models differs by a multiplicative factor which only depends 

on the initial state. 

To prove this equivalence, we consider for a contracting dynamic prog-
rv rv rv rv 

ramming model (E,A,p,r) a transformed model (E,A,p,r), which is defined as 

follows: 

E := {0,1, ... ,N} 

t(i) i E E 
A(i) := 

{1} i 0 

-1 
i E, µi piajµj E a E A(i), j E E 

-1 
lkPiak ~ i E, A (i), j 0 a - µ. E a E 1 

Piaj := 

a i o, a = 1, j 0 

0 i o, a = 1, j E E 

tia/µi 
a E A(il, i E E 

r. := 
1a 

0 1, i a = o. 
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The model (E,A,p,r) is a DMD-problem, namely 

a E A(i), i EE. 

In order to analyse the rewards, we may, by theorem 2.5.1, restrict 

ourselves to Markov policies. Since state O is absorbing and the reward in 
~ A A 

state 0 is zero, v(R) = v(R) for any policy R, where v(R) is the expected 
A A A A 

total reward in the model (E,A,p,r), defined by 

A 
E := E 

~(i) ACil 
A 

:= i € E 

A 
Piaj := Piaj i E 

A 
E, a € ~(i), j € 

A 
E 

A A 
~(i). r. := r. i € E, a € ia ia 

Let R = (7T 1 ,7T2 , •.• ) be any Markov policy in model (~'~'~'~). We observe 

that 

A 1A 2 At 1 1 2 t 
[P(7T )P(7T )•••P(7T )] .. = - [P(7T )P(7T )•••P(7T )] .. •µ. 

l.J µi l.J J 

for all i,j E E and t E JN. Therefore, we can write 

◊. (R) 
l. 

tn A 1 A 2 A t-1 A t 
lim lt=1[P(7T )P(7T )•••P(7T )r(7T )]l.. 
n4<><> 

t r. (7T ) 
lim t }:_µ~1•{P(7T1)P(7T2)• .. P(7Tt-1)}. .•µ.• _J___ 
n-+<x> t=1 J 1. 1.J J µj 

-1 tn 1 2 t-1 t 
µi •lim lt=l[P(7T )P(7T )•••P(7T )r(7T )]i 

n4<><> 

i EE. 

Hence, it follows that a policy is optimal in the undiscounted TMD­

model if and only if the policy is optimal in the corresponding DMD-model. 

The transformations, that were used above, are due to VEINOTT [1969] (see 

also VAN HEE, HORDIJK & VAN DER WAL [1977]). 

Next, we consider what happens in a constrained dynamic programming 

problem. Suppose that we want to solve problem (3.4.7) for a contracting 

dynamic programming problem. Then we solve the followi~g constrained prob-
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,..., ,..., ,..., ,..._, 

lem for the corresponding discounted model (E,A,p,r): 

(3.4.11) 
~~ 

supR{S v(R) I Li la qiaiia (R) ,,; bk k 1,2, ... ,m}, 

where 

tiµi 
i E E 

Si := 

0 i 0 

tiak/µi 
a E A(i), i E E, k 1,2, ..• ,m 

qiak := 

0 a = 1, i 0, k 1, 2, ... ,m 

k 1,2, ..• ,m. 

The equivalence between the problems (3.4.7) and (3.4.11) is a conse­

quence of the following properties: 

(i) x. (R) 
Ja 

(ii) ~(R) 

~ ~ ~00 ~ 1 ~ 2 ~ t-1 t 
l,S.•lt 1{P(7f )P(7f )•••P(7f )} .. •7f. 

i i = 1.J Ja 

~ ~00 1 2 t-1 t 
µ.•l.S·•lt 1{P(7f )P(7f )•••P(7f )} .. •7f, 

J 1. 1. = 1.J Ja 

aEA(j),jEE. 

CONCLUSION: Discounting dynamic programming and contracting dynamic prog­

ramming are equivalent models for unconstrained as well as for constrained 

Markov decision models. 

3.5. POSITIVE DYNAMIC PROGRAMMING 

Positive dynamic programming problems are dynamic programming problems 

that satisfy the following assumption. 
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ASSUMPTION 3.5.1. r. ~ 0 a E A(i), i EE. 
1a 

THEOREM 3.5.1. vis the smallest nonnegative TMD-superharmonic vector. 

PROOF. (cf. HORDIJK [1974] p.25). From theorem 3.2.2 and assumption 3.5.1, 

it follows that vis a nonnegative TMD-superharmonic vector. Suppose that 

w is also a nonnegative TMD-superharmonic vector. Since v. = max{v. (f00
) I 

l l 

f 00 E CD}, i EE, it is sufficient to show that v(f00
) S; for every f 00 E CD. 

Let f 00 be an arbitrarily chosen pure and stationary policy. Then the super­

harmonicity of; implies that w ~ r(f) +P(f)w. By iterating this inequality, 

we obtain 

n E lN. 

Hence, for n + 00 we find 

~ ,;-oo t-1 
w ~ lt=lp (f)r(f) 

which completes the proof of the theorem. D 

In order to find an optimal policy, theorem 3.5.1 suggests the use of 

the following linear program: 

{ !;<0,;-piajl;j ~ r. aEA(i), i 'l 1a 
(3. 5.1) min I,s,;, 

J J J ~ 
w. ~ 0 j E E 

J 

where Bj > 0, j EE, are given numbers. The dual linear programming problem 

is: 

{ 1,1.< 0,j-piaj)xia 
,,; B. j E E 

J· J 
(3. 5. 2) max I.I r. x. 1 a 1a 1a 

x. ~ 0 a E A(i), i 
1a 

This dual program is feasible, (e.g. x = 0 is a feasible solution). 

Therefore, there are two possibilities: the optimum of (3.5.2) is finite 

or infinite. We will treat these possibilities as two separate cases and 

we will see that the construction of optimal policies (in class C of all 
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policies) is different. If the dual program has a finite solution, then an 

optimal policy can be obtained directly from the optimal solution of the 

linear program. In the infinite case, we need some analysis of the under­

lying Markov chain structure. Fortunately, also in thi.s case we can present 

a finite algorithm to determine an optimal pure and stationary policy. 

THEOREM 3.5.2. Suppose that x* is an extreme optimal solution of the dual 

program. Then, the pure and stationary policy f:, defined by 

* 

r such that x. > 0 i E Ex* 

a:bitrarily 

i.a. 
f*(i) 

l. 
:= 

i i Ex*' 

is an optimal policy. 

PROOF. By introducing slack variables, we can write the constraints 0£ the 

problems (3.5.1) and (3.5.2) as follows 

r J "ij-Piaj)Wj - "1a r. a E A(i), i E E 
i.a 

(3.5.3) w. ;:,c 0 j E E 
J 

u. ;:,c 0 a E A(i), i E E 
i.a 

and 

{l,l.< 0,,-piaj)xia + yj s. j E E 
J 

(3.5.4) Xia ;:,c 0 a E A(i), i E E 

yj ;:,c 0 j E E 

respectively. 

Theorem 3.5.1 implies that vis the optimal solution of problem (3.5.1). Let 

* U, 
i.a : = I. ( 0 , . -p, . ) V . - r, 

J 1.J 1.aJ J 1.a 
aEA(i),iEE 

j EE. 

Then, it follows from the theory of linear programming that 

and 
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Since x* is an extreme point and the dual program has N constraints, the 

vector (x*,y*)T has at most N positive components. Then, 

* * \ X + y 
la ja j 

j E E, 

implies that for every j EE* there is exactly one action a. E A(j) such 
X J 

that x~ > 0. Hence, the policy f 00* is uniquely determined on E '*• Also it 
Jaj X 

turns out that any extreme solution is nondegenerated. Furthermore we can 

write 

* T * T (S-y) + (x) P(£). 

By iterating this equality, we obtain 

* T * T,n t-1 * T n 
(x ) = (S-y ) l 1P (f ) + (x ) P (f ) 

t= * * 
n E JN. 

Consequently, 

i;00 Pt-l (f )r( f) '., v and v is finite, it follows that 
t=l * * 

Therefore, we get 

implying that f: is an optimal policy. D 

REMARK 3.5.1. If we use the simplex method to solve the linear programming 

problem (3.5.2) and it turns out that this problem has a finite optimum, 

then an optimal extreme solution is obtained. 

REMARK 3.5.2. If the Markov decision problem is contracting, then the 

linear programs have finite solutions. The following example shows that 

the converse statement is not true, in general; in this example, an opti­

mal nontransient policy is found. 



EXAMPLE 3.5.1. The problem of figure 3.5.1 

has only one policy and this policy is non­

transient. The dual program is 

Figure 3.5.1 

This problem has a finite optimum, namely x 11 ½. 
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2 

Suppose that the dual program (3.5.2) has an infinite optimum. Then, 

if we solve this problem by the simplex method starting with the extreme 

feasible solution x = O, we obtain after a finite number of iterations a 

simplex tableau with a nonpositive column. In this column, the coefficient 

of the transformed objective function is strictly negative. Therefore, we 

have in this tableau an extreme feasible solution x and a direction vector 

s such that 

(i) x(\) := x +\sis feasible for all\~ 0. 

(ii) l:,l: r. x. (A)+ +oo for A+ 00 • 

1 a ia ia 
Since xis an extreme solution, it follows from the proof of theorem 3.5.2 

that for every j EE ,x. is positive for exactly one action a. E A(j). 
X Jaj J 

Therefore, if the linear program (3.5.2) has an infinite solution, we can 

find by the simplex method an extreme feasible solution x, a direction vec­

tors and actions a. E A(j), j EE, such that: 
J X 

(3. 5.5) LiLa( 0ij-piaj)sia :;; 0 j E E 

(3.5.6) s. ~ 0 ia 
a E A(i), i E E 

(3. 5. 7) LJariasia > 0 

(3. 5 .8) Laxja = xja. > 0 
J 

00 

Corresponding to the direction vectors, we define a stationary policy TI 

by 

r•/s, a E A(i), i E E 
s 

(3. 5.9) TI. := 
ia 

arbitrarily a E A(i), i ,t_ E 
s 
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THEOREM 3.5.3. The policy TT, defined by (3.5.9), can be chosen from CD. 

* PROOF. Let a.l be the nonpositive column in the simplex tableau from which 

the infinite solution is obtained. Suppose that this column corresponds to 

the nonbasic variable xk . Then the direction vectors is given by 
ao 

,c r'.'' 
if j EE, a= a. and x. is the basic variable 

X J Jaj 

s. 
corresponding to row i. of the simplex tableau 

J 
Ja 

l o 

if j = k, a 

elsewhere. 

a 
0 

Hence, to prove that TT 00 can be chosen from CD, it 

that E sk = s Assume the contrary. Then, k E 
a a ka 0 

is sufficient to show 

E and sk > 0. For 
x ak 

every i E E\Es' we choose an arbitrary action a. E A(i) and we take TTia,== 1 
i i 

and rria :=0, a f ai. Then it can be verified that 

(3. 5 .10) 

where o 

p ( TT) 

-1 
E (1-s) with E 

.·= {fal (i) f 1 (i) := ai, i E E, and f 2 (i) 

0 

From (3.5.5)-(3.5.7) and (3.5.9) it follows that 

Hence 

(3. 5 .11) 

(3. 5 .12) 

l,P .. (TT) = 1 
J iJ 

T 
s e 

i E E , 
s 

i f k 

i k. 

Since sT :s sTP(rr), (3.5.12) implies that sT = sTP(TT) and consequently, 

sT = sTP*(rr). Therefore, E c R(rr), where R(rr) is the set of recurrent 
s 

states in the Markov chain induced by P(TT), and Es is closed under P(TT). 

By (3.5.10) and (3.5.11) we also have 
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Therefore, we find 

(3. 5.13) i E E , n E JN. 
s 

Since xis an extreme feasible solution and since E c E, we have on the 
S X 

other hand 

(3. 5.14) 

Because Es is closed under P(f1), we obtain by iterating (3.5.14) 

x. 
Ja. 

J 

.,.oo (t-1) (f l . . Consequently, ,.t=l p,. 1 < 00 , 1. E Es, J E E , 
1.J (n) s 

(n) 
implying that p .. (f 1) + 0 

1.J 
for n + oo, i E E , j E E . Then L . E P. . (fl) + 0 

S S JE s 1.J 
for n + oo, i E Es, which 

contradicts to (3.5.13). This yields the theorem. □ 

Let f 00 be the policy, defined by (3.5.9) and for which, as has been 
s 

shown in theorem 3.5.3, we may assume that it belongs to C0 • 

THEOREM 3.5.4. v.(f00
) = +00 for at least one state j. 

J s 

PROOF. From the proof of theorem 3.5.3 it follows that Es c R(fs) and that 

is closed under P(f ). E 
s 

Furthermore, 
s 

(3.5.7) implies that sTr(f) > 0. Hence, there exists a state 
s 

l E E 
s 

such that rl(fs) > 0. For any state j in the same ergodic set as 

state l, we have 

, 00 t-1 
l 1[P (f)r(f)]. 
t= s s J 

. 1 ,n t-1 
11.m n•- l 1[P (f )r(f )]. 

n+oo n t= s s J 

and 

. 1 ,n t-1 
11.m - lt 1[P (f )r(f )]. 

n+oo n = s s J 
* * [P (f )r(f )]. <!p, 0 (f )r 0 (f) >0. 

s s J J-(.. s ,(.. s 

Consequently, v. (f00
) 

J s 
+oo. □ 

We can find a pure and stationary policy in 

we identify all ergodic sets in E which have a 
s 

For any state i in these ergodic sets we define 

the following way. First, 

state l such that rl(fs) > o. 
f (i) = f (i). Outside these 
* s 
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ergodic sets, we choose actions which lead to these ergodic sets, if possible. 
00 

Then f* has for certain initial states, say E 0 , a total reward +00 , and E\E 0 

is closed under any policy. We repeat the same approach on E\E 0 • This method 

is outlined in the following algorithm. 

ALGORITHM XII for the construction of a pure and stationary optimal policy 

in positive dynamic programming. 

step 1: Use the simplex method to solve the linear program 

Iiia( 0ij-piajixia 
,,; e. j E E 

f 
J 

(3. 5.15) =+l r. x 'J. a ia ia 
x. 2:: 0 a E A(i), i E EJ ia 

* If a finite optimal solution x is obtained, then go to step 2. 

If an infinite optimum is discovered, then go to step 3. 

step 2: Choose f: E CD such that x:f*(i) > 0, i E Ex*" 

Then, f: is an optimal policy (STOP). 

* step 3: Let a.f be the nonpositive column in the simplex tableau from which 

the infinite solution is obtained. Suppose that this column corres­

ponds to the nonbasic variable xka, and suppose that the simplex 
0 

tableau corresponds to the extreme feasible solution x. Defines by 

if j E Ex and x. is the basic variable of row 
Jai 

ij of the simplex tableau 

s. 
Ja 

if j k and a= a 
0 

elsewhere. 

step 4: Take f: E CD such that sif*(i) > 0 i E Es. 

step 5: Determine on Es the ergodic sets in the Markov chain induced by 

P(f*) (see algorithm II). 

step 6: Determine the unicn E0 of the ergodic sets under P(f*), which con­

tain a state j such that r.(f) > O. 
J * 

step 7: If E0 = E, then f: is an optimal policy (STOP). 

Otherwise, go to step 8. 

step 8: Search for a triple i E E\E 0 , aJ.. E A(i), j EE such that p_ . > 0. 
o iaiJ 

If such triple is found: f*(i) := ai, E 0 := E 0 u {i}, go to step 7. 

Otherwise, go to step 9. 
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step 9: For E := E\E 0 repeat the algorithm, starting in step 1. 

THEOREM 3.5.5. Algorithm XII determines a pure and stationary optimal policy 

f: in a finite number of iterations. 

PROOF. If the linear programming problem, that is solved in step 1, has a 

finite optimal solution x*, then theorem 3.5.2 implies that the policy f: 

is optimal. Suppose that program (3.5.15) has an infinite solution. Then, 

by the theorems 3.5.3 and 3.5.4, the policy f: which is defined in step 4 

satisfies v. (f00
) = +00 for every j E E 0 , where E is the nonempty set de-

J * 0 

fined in step 6. Hence, if E 0 E, then the algorithm terminates in step 7 

with an optimal policy f:. 

Now, suppose that E 0 f E. Then, in step 8 the policy f: may be re-defined 

in a state i E E\E such that P .. (f) > 0 for at least one state j E E 0 • 

0 1.J * 
Consequently, v. (f00

) ~ r. (f) + p .. (f )•v. (f00
) = +00 • Next, E0 is replaced 

1. * 1. * 1.J * J * 
by E 0 u {i} and the steps 7 and 8 are repeated. We remark that the property 

that v.(f00
) = +00 for all j E E0 is maintained. If step 9 is reached, then 

J * 
p .. = 0 for all triples (i,a,j) such that i E E\E 0 , a E A(i), j E E0 • 

iaJ t 
Hence, the set E\E 0 is closed under any policy, i.e. pij(R) = 0 for all 

i E E\E 0 , j E E0 , t E JN, RE C. Therefore, we may repeat the algorithm on 

the state space E\E 0 • Since E0 f 0 at each iteration, algorithm XII deter­

mines a pure and stationary optimal policy in at most N iterations. D 

EXAMPLE 3.5.2. We shall show the working of algorithm XII in order to find 

a pure and stationary optimal policy for the model of figure 3.5.2. 

Iteration 1: 

1. Starting the simplex method with x = 0, we find an infinite solution in 

the following simplex tableau (the column of x 11 is deleted since all com-

ponents are equal to zero): 

+ 
x12 x21 Y2 x31 x32 x33 x41 x42 x51 ?{52 x53 x61 x71 x72 

yl 1/7 1 -1 -1 

x22 1/7 1 -1 

Y3 1/7 -1 ½ 1 1 -1 -½ 

Y4 2/7 1 1 1 -½ 

1/7 1 1 
Y5 

-1 -1 
y6 1/7 

Y7 1/7 -½ ½ 

XO 1/7 1 -1 -1 -1 -1 -2 -1 -2 -3 -1 -1 -1 
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3. k=4,a =2; 
0 

s 22 = 1, s 42 = 1: Es= {2,4}. 

4. f*(2)=2,f*(4)=2. 

5. El= {2,4} 

6. E0 = {2,4} 

8. p >0:f (5)=1,E ={2,4,5} 
514 * 0 

9. E={l,3,6,7} 

Iteration 2: 

1. Starting the simplex method 

with x = 0, we find an in­

finite solution in the 

following simplex tableau: 

x12 x31 Y3 X33 x61 x71 x72 

yl 2/7 ½ 1 1 

x32 1/7 -1 ½ 1 1 

y6 1/7 1 -1 

Y7 1/7 -1 -½ ½ 1 

X 
0 

1/7 -1 -½ 1 -1 -1 -1 

Iteration 3: 

1. A finite optimal solution is obtained: 
* * 3/7 x61 = 4/7, x72 = 

00 

2. f* (6) = 1, f*(7)=2: f is optimal, where 
* 

f*(1)=2, f* (2) = 2, f*(3) =2, f*(4)=2, 

f*(5)=1, f*(6)=1, f*(7)=2. 

~ 2 

~ 

6 

Si= 1/7 i = 1,2, ..• ,7 

Figure 3.5.2 

3.k=1,a=2 
0 

s 32 =1, s 12 =1:Es={1,3} 

4. f* (1) = 2, f* (3) = 2 

5. El= {1,3} 

6. E = {1,3} 
0 

7. E={6,7}. 

y6 x71 Y7 

x61 4/7 2 1 2 

x72 3/7 1 1 2 

XO 1 3 1 4 

REMARK 3.5.3. The results of the sections 3.5 and 3.6 are based on KALLENBERG 

[ 1983]. 

3.6. NEGATIVE DYNAMIC PROGRAMMING 

Negative dynamic programming problems are dynamic programming problems 

which satisfy the following assumption. 

ASSUMPTION 3.6.1. ria $ 0 a E A(i), i EE. 
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If there exists a transient policy R, then we have v(R) s vs 0. Hence, 

the TMD-value-vector vis finite. In contrast with section 3.3, in this sec­

tion we also allow nontransient policies. Intuitively, it is obvious that 

nontransient optimal policies must contain an ergodic set such that the cor­

responding rewards are zero for each state in this ergodic set. Such ergodic 

sets can be obtained from an average optimal policy. The computation of an 

average optimal policy by linear programming will be discussed in section 

4.2 (see algorithm XIV). However, in chapter 4 we have assumed that the 

transition probabilities satisfy r. p, . = 1 for all i EE, a E A(i). There-
J iaJ 

fore, we have to use the extended TMD-model given by definition 3.2.2. The 

state space of the extended model is again denoted by E. 

THEOREM 3.6.1. Let f7 be any pure and stationary average optimal policy. 

(i) V, 
l 

- 00 for every i such that ¢i (f7) < O. 

(ii) vi vi (f7) = 0 for every i such that ¢i (f7) 

state in the Markov chain induced by P(f1). 

0 and i is a recurrent 

PROOF. 

(i) From (2.5.7) it follows that for any pure and stationary policy f 00
, 

we have 

-1 00 00 

(1-a) •¢ (f ) + u(f ) + E (a), 

where E(ct) + 0 for at 1. Since ¢(f00
) s ¢(f7) and v(f00

) 

(see lemma 3.2.1), we obtain 

1 . vet (f00
) 

imatl 

(3. 6. 1) 
-1 00 00 

limatl { (1-a) • ¢ (f ) + u (f ) + E (a)} 

-1 00 00 

s limat1{(1-a) •¢(f1 ) + u(f) + E(a)}. 

Let i EE such that ¢i (f~) < 0. Then (3.6.1) implies that vi (f00
) = - 00 

00 

Since f is arbitrarily chosen and since there exists a pure and sta-

tionary optimal policy (theorem 3. 2 .1) , it follows that V, -oo 
l 

(ii) Suppose that ¢i (f7) = 0 and i E Ek, where Ek is an ergodic set in the 

Markov chain induced by p (f 1). Then (cf. (2.4. 3)) 

0 j i. Ek and 

0 j f. Ek, t E ]NO. 
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Since 

0 

we get 

0 

Hence, 

Consequently, vi 0, completing the proof. n 

From theorem 3.6.1 it follows that if $i (f7) < O, where f7 E C0 is an 

average optimal policy then v. (R) = - 00 for all REC. Hence, for the deter-
J. 

mination of an optimal policy, we may remove from the state space the states 

in which $i(f7) < O. Therefore, we may restrict ourselves to the states i 

in which $i(f7) O. We can find (e.g. by algorithm II) the set R(f 1) of 

states that are recurrent in the Markov chain induced by P(f1). Theorem 3.6.1 

implies that in the states of R(f1) f7 takes already optimal actions. If all 

states belong to R(f 1), then we have found an optimal policy. Otherwise, we 

try to find in E\R(f1) an ergodic set with respect to another average opti­

mal policy, say f;. Therefore, we change the model in the following way 

E := E\R(f1) u {O} 

t(i) 
i -:) 0 

A(i) := 
{1} i 0 I Piaj 

i -:) o, j -:) o, a E A(i) 

lkER~f 1,Piak 
i -:) o, j o, a E A(i) 

piaj := 

i o, j o, a E A(i) 

0 i 0, j -:) o, a E A(i) 

f ria i -:) o, a E A(i) 

ria := 1 -1 i 0, a E A(i). 

00 

In this new model we compute an average optimal policy, say f2. Then, there 
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are two possibilities: 

1. ¢i (f;) = 0 for at least one state i: 

We remove the states j for which ¢j (f;) < 0. Let E 1 be the set of removed 

states. Then, the state 0 belongs to E1 . 

If the remaining state space coincides with R(f2 ), then vi(f;) 0 for all 
00 

remaining states, and consequently, f 2 gives optimal actions for these 

states. 

Otherwise, we repeat the analysis described above to obtain recurrent 

states in E\R(f2). 

2. ¢i(f;) < 0 for all states i: 

Redefine r 01 := 0, pOlj := 0 for all j. For the remaining states together 

with the set E1 of already removed states, we compute an optimal transient 

policy by algorithm VI. 

Every time that we encounter possibility 1, the state space decreases with 

at least one state. Hence, after a finite number of iterations either we 

have possibility 2 or we have an average optimal policy f; such that all 

states i with ¢i (f;) = 0 are recurrent in the Markov chain induced by P(f2 ). 

Hence, the following algorithm gives in a finite number of iterations a pure 
00 00 

and stationary policy f*. In theorem 3.6.2 we will show that f* is an opti-

mal policy. 

ALGORITHM XIII for the construction of a pure and stationary policy in nega­

tive dynamic programming. 

step 1: If L, p, . < 1 for at least one pair (i,a), where a E A(i), i EE, 
J 1.aJ 

then construct the extended model in the following way: 

E := E U {0} 

r(i) 
i f 0 

A(i) := 

{1} i 0 I Piaj 

i f 0, j f o, a E A(i) 

l-}:k:O piak i f 0, j 0, a E A(i) 

piaj .-
i o, j f o, a E A(i) 

1 i 0, j 0, a E A(i) 
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tt i f o, a E A(i) 
r. := 
ia 

i o, A(i). a E 

00 

step 2: Compute an average optimal policy f 1 by algorithm XIV. 

step 3a: Let Eo := {ii ~i (f7) < 0}; El := 0; Al (i) := A(i) for all i E E\Eo· 

step 3b: Define f* (i) := f 1 (i), i E E0 . 

step 3c: If E0 = E, then go to step 9. 

Otherwise, go to step 3d. 

step 3d: For every a E A(i), where i E E\E0 , such that ~jEEo piaj > 0 do 

step 3e: 

step 4a: 

step 4b: 

step 4c: 

step 4d: 

A(i) := A(i) \{a}. 

E := E\E0 . 

Determine by algorithm II the set R(f 1) of the recurrent states of 

E in the Markov chain induced by P(f1). 

Define f*(i) := fl (i), i E R(f 1). 

If R(f 1) = E, then go to step 7a. 

Otherwise, go to step 4d. 

E := E\R(f) u {0} 
1 

i f 0 

i 0 

piaj 

lkER(f 1) piak 

piaj := 
1 

0 

r· r. := 
ia 

-1 

i -j, o, 

i f o, 

i 0, 

i 0, 

i -j, 0, 

i o, 

j f 0, a E A(i) 

j 0, a E A(i) 

j 0, a E A(i) 

j -j, o, a E A(i) 

a E A(i) 

a E A(i). 

step 5: Compute an average optimal policy f7 by algorithm XIV. 

step 6a: E2 := {ii ~i(f7) < 0}. 

step 6b: If E = E2 , then El := El u (E\{0}) and go to step 7a. 

Otherwise, E1 := E 1 u (E2 \{0}) and go to step 6c. 

step 6c: For every a E A(i), where i E E\E 2 , such that ~jEEzpiaj > 0 do 

A(i) := A(i) \{a}. 

step 6d: E := E\E2 and go to step 4a. 

step 7a: If E1 = 0, then go to step 9. 
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Otherwise, go to step 7b. 

step 7b: E := E u {o} 
1 rl (i) 

i f,. 0 
A(i) := 

{ 1} i 0 

{ Piaj 
i f,. o, j f,. 0, a E A(i) 

Piaj := 
l-Ik:Eliak 

i f,. 0, j 0, a c A(i) 

i o, j EE, a E A(i) 

tia i f,. o, a E A(i) 
r. := 
ia 

0 i o, A(i) a E 

step Sa: Compute an optimal transient policy f: by algorithm VI. 

step Sb: Define f*(i) := f 0 (i) i EE. 

step 9: f: is an optimal policy. 

EXAMPLE 3.6.1. We illustrate algo­

rithm XIII for the negative 

dynamic programming problem 

of figure 3.6.1 (without the 

dotted part) . 

Iteration 1: 

1. The extended model is 

in figure 3.6.1 by the dotted 

lines. 

2. f1(1)=1,f1(2)=1,f1(3)=1,f1(4)=1, 

f 1 (0) = 1; ¢i (f7) =O, i=0,1, .•. ,4. 

3. E0 =0;E1 =0;A1 (0)={1}; A1 (1)={1,2,3}; 

Al (3) = {1}; Al (4) = {1,2,3}. 

4. R(f 1 ) = {O}; f*(O) = 1; the new model is 

the same as the old model except that 

r01 = -1. 

'\ 
'\ 

'\ 
'\ 

'\ 

'\ 4 \ 

', \~ ---®~P 
@---'{_a 

/ '\ 

I I 

, I 
@~ 

Al (2) = {1,2}; 

Figure 3.6.1 

5. f 1 (1) = 2, f 1 (2) = 2, f 1 (3) = 1, f 1 (4) = 1, f 1 (0) = 1. 

¢1(f7) =¢2(f7) =¢4(f7) =O, ¢3(f7) =¢o(f7) =-1. 

6. E2 ={3,0}; El ={3}; A(l) ={2}, A(2) ={2}, A(4) ={1,2}; E={l,2,4}. 



92 

Iteration 2: 

4. R(f 1) ={1,2}; f*(l) =f*(2) aa2; The model 4 

is reduced to the model of figure 3.6.2; 

E = {4,0}. 

5. fl (4) = 1, f 1 (0) = 1; rJ, 4 (f7) =rj,0 (f7) =-1. 

6. E2 ~ {0,4}; El= {3,4} 

7. We obtain the model of figure 3.6.3 

8. f 0 (3) = 1, f 0 (4) = 1, f 0 (0) = 1._ 

f*(3) = 1, f*(4) = 1 
00 

9. f *' where f*(l) =2, f*(2) = 2, f*(3) = 1, 

f* (4) = 1, is an optimal policy. 

THEOREM 3.6.2. Algorithm XIII determines a pure 
00 

and stationary optimal policy f* in a finite 

number of iterations. 

PROOF. First, we consider the finiteness. The only 

loop in the algorithm may possibly occur in the 

steps 4 until 6. However, each time that we go back 

to step 4, the number of states in E decreases, namely: 

Figure 3.6.2 

Figure 3.6.3 

The model defined in step 4d has state O as absorbing state and rJ, 0 (f7) = -1. 

Then OE E2 , where E2 is defined in step 6a. Hence, if we go back to step 

4a the number of states decreases by !R(f1) !. 
00 

Consequently, algorithm XIII determines a pure and stationary policy f* in 

a finite number of iterations. This policy f 00 has the following properties: 
* 

(i) V, (f00
) V, for all i E EO. 

1. * 1. 
00 

(ii) V, (f ) V, 0 for all i E E\(E0 uE 1) 
~ * 1. 

(iii) f is an optimal transient policy in the model defined in step 7b. 
* 

00 

We will show that f 0 , computed in step Sa, is an optimal policy for the 
00 

model defined in step 7b. Suppose that f 0 is not optimal. Then, there exists 

a nontransient optimal policy, say f;. Since f; is nontransient, we have 

R(f2 ) n E1 i 0- From the construction of E1 (see step 6b) it follows that 

rj,i (f;) < 0, i E R(f2 ). Then relation (3.6.1) implies that vi (f;~ = - 00 , 

i E R(f2 ), which is in contradiction with the assumption that f 2 is optimal. 
00 

Next, we will prove that f* is an optimal policy. By the properties (i) and 

(ii), it is sufficient to show that vi (f:) ~ vi (f00
) for all i E E1 and all 

00 

f E CD. 
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For any f 00 E CD, let v(f00
) be the expected total reward obtained in the 

model of step 7b when policy.f00 is used. Since rj(f*) = 0 for every j EE\ 

(E0uE 1), we can write for i E E1 and f 00 E CD: 

00 00 

v. (f ) v. (f ) 
l. * l. * 

00 
;;:: v. (f ) 

l. 

expected 

;;:: expected 
00 

v. (f ) • 
l. 

total 

total 

reward 

reward 

until a state of E\E1 is reached 

over the infinite horizon= 

This completes the proof of the theorem. D 

REMARK 3.6.1. From theorem 3.6.1 and relation (3.6.1) it follows that an 

optimal policy can also be obtained in the following way: 

1. Construct the extended model with r. p, . = 1 for all i EE, a E A(i). 
J iaJ 

2. Compute an average optimal policy f7 by algorithm XIV. 

3. Define f*(i) := f 1 (i) for i E E0 u E2 , where 

4. Construct the model with state space E := E\(E0uE2) u {O} as in step 4d 

of algorithm XIII but with r 01 := 0 instead of r 01 := -1. 

5. Compute a bias optimal policy f; by algorithm XXII or XXIII presented 

in chapter 5, i.e. f; satisfies 

6. Define f*(i) := f 2 (i) i ~ O. 

The policy f: is an optimal policy since for all states i and policies f 00 

such that ~.(f00
) = 0, we have (cf. (3.6.1)) v.(f00

) = u.(f00
). 

l. l. l. 
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CHAPTER 4 

AVERAGE REWARD CRITERION 

4.1. INTRODUCTION AND SUMMARY 

The linear programming approach for the average reward criterion was 

introduced by DE GHELLINCK [1960] and MANNE [1960]. They have proposed a 

linear program from which a pure and stationary optimal policy can be ob­

tained if for any stationary policy TI00 the Markov chain induced by P(TI) is 

completely ergodic. 

The first analysis of a linear program in the general multichain case 

has been presented in DENARDO & FOX [1968] and DENARDO [1970b]. DERMAN 

[1970] has streamlined and slightly improved their results. He has shown 

that, in order to find an optimal policy, there have to be solved two linear 

programming problems and one combinatorial problem, in the worst case. 

DIRICKX & RAO [1979] have shown that the second linear program may be re­

placed by a search procedure. In the first part of this chapter we will show 

that a pure and stationary optimal policy can be obtained by solving only 

the first one of the two linear programming problems introduced in DENARDO 

& FOX [ 1968]. 

In section 4.2 we review some relevant theorems which lead to the lin­

ear programming formulation. The main result is that a pure and stationary 

optimal policy can be obtained directly from any extreme optimal solution 

of the linear program. Since the simplex method gives such an extreme opti­

mal solution, we have an elegant algorithm for the construction of a pure 

and stationary average optimal policy in the multichain case. 

In section 4.3 we study the correspondence between feasible solutions 

of the linear program and stationary policies of the Markov decision prob­

lem. In contrast with the contracting dynamic programming problem, it is 

not possible to construct a one-to-one correspondence between these feasible 

solutions and these (randomized) stationary policies. As it turns out, we 

have to use equivalence classes of feasible solutions. We will construct a 

one-to-one correspondence between the stationary policies and the represen­

tatives of the equivalence classes. Furthermore, this mapping preserves the 
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optimality property, i.e. optimal solutions are mapped on optimal policies 

and optimal policies correspond to representatives which are optimal so1,~­

tions of the linear program. 

Then in section 4.4 we compare the linear programming approach with 

the policy improvement algorithm. We can conclude that the policy improve­

ment algorithm is equivalent to an algorithm for the optimal solution of 

the linear program in which successive solutions are extreme but not neces­

sarily adjacent points of the set of feasible solutions. Such an algorithm 

is called a block-pivoting algorithm. 

In the sections 4.5 and 4.6 we give simplified algorithms for some 

special models. In section 4. 5 we discuss the case that the, Markov chain 

induced by P (f) , where f°" is any pure and stationary optimal policy, is uni­

chained. Then a pure and stationary optimal policy can be obtained by the 

solution of a linear program, that needs half of the number of constraints 

and variables in comparison with the program used in section 4.2, plus a 

simple search procedure. 

Section 4.6 deals with the completely ergodic as well as with the uni­

chain case. In both cases a pure and stationary average optimal policy can 

be obtained directly (without the search procedure) from the smaller linear 

program used in section 4.5. 

We close this chapter with a discussion about the constrained Markov 

decision model. In this model there are some additional constraints for the 

limit points of the expected state - action frequencies. Such models are of 

importance e.g. if there are more than one reward or cost functions. In con­

trast with the policy improvement method and the method of successive approx­

imations, the linear programming method can also solve this kind of models. 

In general, these models have no stationary optimal policies. First, we 

shall prove some properties of the set of limit points of the state-action 

frequencies. We present an algorithm for the construction of an average op­

timal policy for a constrained Markov decision problem. However, this algo­

rithm requires an enormous quantity of calculations. Fortunately, in many 

cases an optimal stationary policy can be computed. We give sufficient con­

ditions for the existence of optimal stationary policies. These conditions 

include the unichain case. We also present an algorithm by which a station­

ary, but not necessary optimal, policy is computed. We give some numerical 

results about its performance. These results are very encouraging; a station­

ary optimal policy was always found, if one exists, for the 400 test prob­

lems that we have analysed. In the unichain case a stationary optimal policy 
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always exists and we present a simple algorithm to construct one. 

The results of the sections 4.2, 4.3 and 4.7 are based upon HORDIJK & 

KALLENBERG [1978a], [1978b], [1979a], [1979b] and [1981b]. 

4.2. LINEAR PROGRAMMING FORMULATION 

We assume in this chapter that I:. p, . = 1 for every pair (i,a) a E A(i), 
J iaJ 

i EE. If this assumption is not satisfied, then we can change the model in-

to the extended model as described in definition 3.2.2. From definition 

3.2.2 and the analysis in section 2.4 it follows that ¢(rr 00
) = i(rr00

) for every 

TT E CS, where i(rr00
) denotes the expected average reward in the extended 

model. Since there exists a stationary average optimal policy (cf. corollary 

2.5.2), the assumption that I:. p, . = 1 for every pair (i,a) a E A(i), i E E 
J iaJ 

is no real restriction for the determination of an average optimal policy. 

Before we give the linear program from which an average optimal policy 

can be obtained, we first present some theorems and we introduce the concept 

of superharmonicity for the AMD-model. 

00 

THEOREM 4.2.1. Let f 0 be a Blackwell optimal pure and stationary policy. 

Then ¢ 0 := ¢(f:) and u 0 := D(f 0 )r(f 0 ) satisfy the pair of optimality equa­

tions 

(4. 2 .1) 
¢i maxaEA{i)ljPiaj;j, 

(4.2.2) ¢i + U, = max - ( . ) { r . 
]. aEA i ia 

where A(i) := {a E A(i) \;. 
]. 

+ l,jPiaj;;:j}, 

i E E. 

i E E, 

PROOF. Since f 00 is a Blackwell optimal policy, there exists a nonnegative 
0 

real number a < 1 such that va(f00
) = va for all a E [a ,1). From theorem 

0 0 0 

3.4.1 it follows that 

, a oo 
r. +aL,P, .v.(f) 
ia J iaJ J o 

a E A(i), 

Equation (2.5.7) implies that 

(4.2.3) 
a oo 

V, (f ) 
]. 0 

i EE, 
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where limatl Ei (a) 

Hence, we obtain 

0, i E E. 

-1 0 0 

(1-a) </>. + u. + E.(a) ~ 
]. ]. ]. 

where 

0 

+ u. 
J 

+ E. (a)} 
J 

o.(a):=L,P .. h.(a)-(1-a)u~-(1-a)E.(a)}, aEA(i), iEE, aE[a0 ,1). 
J. J iaJ J J J 

Therefore, limatloi(a) = 0, i EE, and we get 

aEA(i), iEE, 

aE:A(i), iEE. 

For the actions ai := f 0 (i), i EE, we have equality since by theorem 2.4.1 

we obtain 

0 

<I> * P (f ) r(f ) 
0 0 

* P(f )P (f )r(f) 
0 0 0 

P (f ) </>o 
0 

and 
0 0 

<I> + u - P(f )u 0 

0 

* * P (f )r(f ) + (I-P (f ) )r(f ) 
0 0 0 0 

r(f). 

Consequently, we have proved that 

0 

ljPiaj</>;, <l>i = max 
aEA(i) i E E, 

0 0 

max -(_){r. ljPiaju;}, D <l>i + u. = + i E E. 
]. aEA i ia 

DEFINITION 4.2.1. A vector <I> E JRN is AMD-superharmonic if there exists a 

vector u E JRN such that 

(4.2.4) a E A(i), i E E, 
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and 

(4. 2. 5) aEA(i),iEE. 

REMARK 4.2.1. The inequalities (4.2.4) and (4.2.5) have to hold for all ac­

tions. Since in (4.2.2) the inequalities have to be satisfied only for the 

actions which yield equality in the first set of equations, the AMD-super­

harmonicity is a stronger condition. 

THEOREM 4.2.2. The AMD-value-vector $ is the smallest AMD-superharmonic 

vector. 

PROOF. Let f 00 be any Blackwell optimal pure and stationary policy. From the 
0 

property that f 00 is average optimal (cf. theorem 2.5.4) and from theorem 
0 

4.2.1 it follows that 

$i 2 ljPiaj$j a E A(i), i EE, 

0 

ljPiaju; A(il, $i + U, 2 ria + a E i E E, 
l. 

where 

:= U, (f00
) 

l. 0 
and A(i) := {a E A(i) l$i 

Define: 

i EE. 

a E A(i), i E E. 

a E A(i), i EE. 

0, i EE, and 

s. ?'.0 aEA(i), iEE,s. >0 a iA(i),iEE. 
1-a * 1-a * 

t 20 aiA(i),iEE;t, <0aEA (i),iEE. 
ia 1-a 

Sia > 

t < 
ia 

Let 

and u 

(if A*(i) = 0 for all i EE, then we define M := 0) 

For a E A(i), we have 

0 Sia > 0 

0 tia 2 0 

0 

:= u - M$ 

i EE. 

A(i) 
S, = 1-a 
t, 

1-a 
2 

0 

0 
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and 

* For a EA (i), we obtain 

and 

* -If a i A (i)uA(i) then we get 

and 

Hence, we have shown that the AMO-value-vector¢ is AMD-superharmonic. Sup­
N 

pose that ¢ E lR is also AMD-superharmonic. Then (4.2.4) implies that 

(4.2.6) 

By iterating (4.2.6) we obtain¢~ Pt(f ); for all t E JN, and consequently 
0 

(4.2.7) 

From (4.2.5) it follows that 

(4.2.8) 00 * ~ ¢(f )+P (f )u 
0 O 

* ~ ¢+P(f)u. 
0 

Then, using (4.2.7) and (4.2.8), we can complete the proof as follows. 
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i.e.¢ is the smallest AMD-superharmonic vector. D 

Next, we shall show that a pure and stationary average optimal policy 

is also an optimal policy if the following stronger criterion should be used: 

(4.2.9) 

Notice that for any TT E CS 

lim"'-'- -T1 lTt-il-l lP oo (Xt=j, Y =a[x =i)•r 
i-~ - J a TT t 1 ja 

i EE, 

and consequently, 

/\ 00 

¢ ( TT * P(1r)r('rr). 

00 

THEOREM 4.2.3. Let f be any pure and stationary average optimal policy. 
/\ 00 /\ 

Then, ¢(f) ~ ¢(R) for all REC. 

PROOF. From theorem 2.5.1 it follows that it is sufficient to prove that 

/\ 00 /\ 

¢(f) ~ ¢(R) for all RE CM. 

Let R = (1r 1,1r2 , ..• ) be an. arbitrarily chosen Markov policy. Since¢ is AMD­

superharmonic, there exists a u E JRN such that 

t 
¢i1Tia ~ ljPiajTT~a¢j a E A(i), i E E, t E JN, 

and 

¢.TT: +u,TT: ~ riaTT~a + ljPiajTT1auj a E A (i), 
1 1a 1 1a i E E, t E JN. 

Consequently, 

and t E JN. 

Hence, we obtain 
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I T 1 2 t-1 t IT 1 2 t-1 P(TT )P(TT )•••P(TT )r(TT) S P(TT )P(TT )•••P(TT ). 
t=l t=l 

t 1 2 T 
{q,+u-P(TT )u} s T•q,+u-P(TT )P(TT )• .. P(TT )u T E JN. 

1 1 2 T 
Since T {u-P(TT )P(TT )•••P(TT )u} ➔ O for T + 00 , we can write 

$. (R) 
l 

1 2 T 
s limsupT+oo T {T•q,+u-P(TT )P(TT )•••P(TT )u}i 

i EE. 

This completes the proof. D 

COROLLARY 4.2.1. Any pure and stationary average optimal policy is also 

optimal for the stronger criterion with utility function (4.2.9). 

REMARK 4.2.2. In DERMAN [1970] p.26 the above result is also mentioned. 

However, as was pointed out by HORDIJK & TIJMS [1970] p.93, Derman's proof 

is incorrect. 

We will formulate a pair of dual linear programs and we will show that 

a pure and stationary average optimal policy can be obtained from the opti­

mal solution of the dual program. Since q, is the smallest AMD-superharmonic 

vector, it is plausible to consider the following linear programming prob­

lem 

(4.2 .10) 

where Sj > 0, j EE, are given numbers with LjSj 

ramming problem is 

(4. 2 .11) 

Iiia 10 ij-piaj>xia 

Iaxja 

a E A(i), 

a E A(i), 

i E EE} 

i E 

1. The dual linear prog-

0 , 

a E A(i), 

~ E El 
J EE 

iEE 

REMARK 4.2.3. From theorem 4.2.2 it follows that there exists a vector 
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N 
u E IR such that (cj,,u) is an optimal solution of the primal program (4.2.10). 

Then theorem 1.3.4 implies that the dual program (4.2.11) has also an optimal 
* * * solution, say (x ,y), which satisfies E.S.cj,. = E.E r. x .. 

J J J i a ia ia 

* * THEOREM 4.2.4. If (x ,y) is an optimal solution of the linear program 

* * (4.2.11) such that (x ,y) is an extreme point of the set of feasible solu-

tions, then the policy f 00
, where 

* 
X, 

{ 
* 
ia· 

f (i) :=a.such that 1 

* 1 

is an average optimal policy. 

* yia 
1 

> 0 

> 0 

i E E 
x* 

i E E\E *, 
X 

REMARK 4.2.4. The above theorem says that an optimal policy is obtained by 

taking an arbitrary action for which the x*-variable is positive, if pos­

sible; otherwise, by taking an arbitrary action for which the y*-variable 

is positive. Indeed, it is possible to obtain an optimal solution where in 

some states there is more than one positive variable (see example 4.2.1). 

In that case we can construct different policies. Any of these policies is 

average optimal. 

PROOF OF THEOREM 4.2.4. From the constraints of program (4.2.11) it follows 

that 

j EE. 

00 

Hence, the policy f* is well-defined. Let (cj,,u) be an optimal solution of 

the primal problem (4.2.10). 

The remaining part of the proof has the following structure. First, 

we give three separate propositions. After presenting the proofs of these 

propositions, we complete the proof of the theorem by some final conclu­

sions. 

PROPOSITION 4.2.1. 

cj, . + L, ( o . . -p . f ( . ) . ) u . 
1 J 1] 1 * 1 J J 

0 

r. (f ) 
1 * 

i EE, 

i EE*" 
X 
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from the complementary slackness property of linear programming (see corol­

lary 1. 3. 1) that 

Ijc 0ij-pif*(i)j>~j 0 

and 

~i + Ij< 0ij-pif*(i)jluj r. (f ) 
l. * 

The primal program (4.2.10) implies 

Suppose that 

* Since ~f*(k) > 0, we obtain 

F'urthermore, we have 

Hence, we get 

i E E\E *' 
X 

i E E * X 

a E A(i), i E E. 

for some k EE 
x* 

a E A(i), i EE. 

On the other hand, it follows from the constraints of program (4.2.11) that 

This contradiction implies that r.(o .. -p,f (') .)~. = O, i EE*' which 
J l.J l. * l. J J X 

completes the proof. 

PROPOSITION 4.2.2. Ex* is closed under P(f*), i.e. pif*(i)j 

j i. E • 
x* 

0 i E E , 
x* 

PROOF. Suppose that pkf*(k)l > 0 for some k E Ex* and l E E\Ex* 

constraints of program (4.2.11) it follows that 

From the 



implying a contradiction. 

PROPOSITION 4.2.3. The states of E\E * are transient in the Markov chain 
X 

induced by P(f*). 
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PROOF. Suppose that there is a state j E E\E * which is nontransient. Since 
X 

E * is closed under P(f*) (see proposition 4.2.2), there has to exist a non-

X * * empty set Jc E\E which is ergodic. Because (x ,y) is an extreme point 
x* 

* and y 'f ( ') > 
. J * J 

0, j E J, theorem 1.1.2 implies that the corresponding columns 

{qJ, j E J}, where 

k 1, 2, .•• ,N 

- pjf (j) (k-N) 
* 

k N+1,N+2, .. ,2N, 

are linearly independent. Let J 

we have 

0 j E J, k-N ,/. J. 

j 
Hence, qk = 0 for all k i {N+j 1 ,N+j 2 , ... ,N+jm}. Therefore, the vectors 

1 2 ID 
{b ,b , ... ,b }, where 

i,k = 1,2, ... ,m, 

are also linearly independent. However, 

1 - lkP . f ( . ) k = 0 , 
Ji * Ji 

which is contradictory to the independency of {b 1 ,b 2 , ... ,bm}. This completes 

the proof of the proposition 4.2.3. 

Now, we can finish the proof of theorem 4.2.4 by the following argu­

ments. From proposition 4.2.1 it follows that P(f*)¢ =¢and consequently, 

* P (f*)¢ =¢.Since the states of 

* * position 4.2.3), we have pik(f) 

Hence, 

E\E * are transient under P(f*) (see pro­
x 

= 0, i EE, k E E\E *" 
X 
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00 

* (P (f )r(f ) ) . 
* * ]_ 

lkEE *p:k(i*){¢k+Lj(okj-pkf*(k)j)uj} 
X 

= lkP:k (f*J ¢k + lj {Lkp:k (f*J • (okj-pkf* (kl j J }uj' i EE. 

0 (cf. theorem 2.4.1), we obtain 

i EE, 

i.e. f* is an average optimal policy. D 

The solution of a linear program by the simplex method always gives an 

optimal solution which is an extreme point of the set of feasible solutions. 

Hence, the above theorem implies that a pure and stationary average optimal 

policy is obtained by the following algorithm. 

ALGORITHM XIV for the construction of a pure and stationary average optimal 

policy (multichain case). 

~: Take any choice for the numbers s. such that s. > 0, j E E, and 
J J 

z:ij = 1. 
* * step 2: Use the simplex method to compute an optimal solution (x ,y ) of 

the linear programming problem 

maJL-l r. x. 1 i a ia ia 

= 0 , 

a E A(i), 

j EE} 
j EE 

iEE 

* step 3: For each i EE choose an arbitrary action ai from the set A (i), 

where 

,- C: 
* > O} i X, E E 

* 
ia x* 

A (i) 

* > O} i E E\E yia x* 

_step 4: f 00
, where f(i) : =a. , i EE, is a pure and stationary average optimal 

]_ 

policy. 
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EXAMPLE 4.2.1. The data of the model 

can be found in figure 4.2.1 and 

should be interpreted as exposed in 

remark 2.2.1. The linear program is: 

maximize x 11 + 2x21 + 4x31 + 3x22 

subject to 

x11 -x31 

x21 - x32 

-x11 - x21 + x31 + x32 

x11 - y 31 

=O 

=O 

=O 

+y21 -y32=J..i 

x31 + x32 - Y 11 - y 21 + y 31 + y 32 = l-:i 

3 

Figure 4.2.1 

** * * * * * * * * The solution (x ,y), where x 11 =x21 =x31 =x32 =¼, Y11 =y21 =y31 =y32 =O, 

2 

is an extreme point of the set of feasible solutions and is also an optimal 

solution. In state 3 there are two actions for which the corresponding vari-

* * ables x 31and x 32 are positive. Hence, we can construct two pure and station-

ary average optimal policies, namely f7 and f;, where f 1 (1) = f 2 (1) = f 1 (2) = 

f 2 ( 2) = f 1 ( 3) = 1 and f 2 ( 3) = 2. 

* * REMARK 4.2.5. For every optimal solution (x ,y) which is an extreme point 

of the set of feasible solutions, we define 

r * > O} i E E Xia 
A~{(x*,y*)} 

x* 
:= 

1. 

{al * > O} i E E\E yia x* 

i EE} 

00 * From theorem 4.2.4 it follows that any f E F is average optimal. Conversely, 

for any pure and stationary optimal policy f 00
, there is an extreme optimal 

solution (x(f),y(f)) such that f 00 E F*{(x(f),y(f))} (this fact is shown in 

the theorems 4.3.3 and 4.3.4). Hence, all pure and stationary optimal poli­

cies r;a,; be d:c,i: 2~~i~.sc: =:i '::he computation of all extreme optimal solutions 

of program (4.2.11). In chapter 1 we have derived an algorithm to perform 

'::cd.s computation (algorithm I). 
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4.3. RELATIONS BETWEEN STATIONARY POLICIES AND FEASIBLE SOLUTIONS 

For any feasible solution (x,y) of the linear programming problem 

(4.2.11) we define a stationary policy n00 (x,y) by 

(4. 3. 1) nia(x,y) 

aE:A(i),iEE 
X 

a E: A(i), i E: E\E 
X 

Unfortunately, in contrast with the contracting dynamic programming model, 

in the AMO-model it is possible that two different feasible solutions are 

mapped on the same stationary policy. We give an example. 

EXAMPLE 4.3.1. Figure 4.3.1 presents the AMO-model. The formulation of the 

linear program becomes: 

maximize x 11 +x21 +x22 +x31 +x32 +x41 

subject to 

x11 -x32 

-xl 1 + x21 + x22 

- x21 +x32 

- x22 

x11 + y11 

x21 + x22 -y11+y21+y22 

x31 + x32 - Y21 

x41 

x11'x21'x22'x31'x32'x41'Y11•Y21•Y22•Y32 

The following two feasible solutions 
1 1 2 2 

(x ,y) and (x ,y) are mapped on the 

same pure and stationary policy f 00
, 

where f ( 1) = f ( 2) = 1 , f ( 3) = 2 and 

f(4) = 1: 

1 1 1 1 1 1 
x 11=1/4,x21=1/4,x22=o,x31=o,x32=1/4,x41=1/4; 

1 1 1 1 
y 11 = O' y 21 = O' y 22 = O' y 32 = O. 

2 2 2 2 2 2 
x 11=1/6,x21=1/6,x22=o,x31=o,x32=1/6,x41=1/2; 

2 2 2 2 
y 11 = 1/6, y 21 = O, y 22 = 1/4, y 32 = 1/12. 

=O 

=O 

=O 

=O 

- Y32 =¼ 

=la 

+ y 32 = ¼ 

0 

G) 
2 

G) 
4 

Figure 4.3.1 
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Since there is no one-to-one correspondence between the stationary poli­

cies and the feasible solutions of the linear programming problem (4.2.11), 
. . 1 1 

we introduce an equivalence relation. We call two feasible solutions (x ,y) 
22. 11 22 

and (x ,y) equivalent if 11ia(x ,y) = 11ia(x ,y) a E A(i), i EE. This 

equivalence relation divides the set of feasible solutions in equivalence 

classes. 

Conversely, let 11 be a stationary policy. Consider the Markov chain 

induced by P(11). Suppose that there are m ergodic sets, say E1,E2 , ... ,Em 

and let F be the set of the transient states. We define the vectors x(11) 

and y(11) by 

(4. 3.2) {

xia(11) 

yia(TI) := 

a E A(i), i EE 

where 

i E F 

(4.3.3) 

i E E . , 1 ~ j ~ m. 
J 

Notice that y is constant on every ergodic set. 

THEOREM 4.3.1. (x{11),y(11)), defined by (4.3.2), is a feasible solution of 

the linear programming problem (4.2.11). 

* PROOF. In the proof we will use some properties of the matrices P (11) and 

D(11) as mentioned in theorem 2.4.1. 

j EE. 

T * T T * T T * [ (3 P ( 11)] . + [ (3 D (or) +y P ( 11) ] . - [ S D ( 11) P ( 11) +y P ( 11) P ( 11) ] . 
J J J 

j EE. 
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a€ A(i), i € E. 

a€ A(i), i € E. 

0. Consequently, 

a€ A(i), i € F. 

* If ii F, say i € Ej, then ykpki (TI) = 0 for every k i Ej. Hence, we get 

{Lk8k<\i (TI)+ lk€Ejykp:i (TI)}•Tiia 

{Lk8k<\i (TI) + yi-Ik€Ejp:i (TI)}•Tiia 

0 

This completes the proof of the theorem. D 

a€ A(i), ii F. 

For a stationary policy TI00
, let (X(TI),Y(TI)) be the class of correspond­

ing equivalent feasible solutions. We choose the element (x(TI) ,y(TI)) as the 

representative of this equivalence class. 

THEOREM 4.3.2. The mapping defined by (4.3.2) is a one-to-one mapping of 

the stationary policies onto the set of representatives with (4.3.1) as 

the inverse mapping. 

PROOF. It is obvious that the stationary policies are mapped onto the set 
-- 1 2 1 1 2 2 
of representatives. Suppose that TI -/, TI and (x(TI ) ,y(TI ) ) = (x(TI ) ,y(TI ) ) . 

Then, we obtain 

and 
1 TI, 
ia 

1 \" 1 
xi (TI )/l xi (TI) a a a 

1 \" 1 y, (TI lh Y. (TI ) · 1.a a 1.a 

2 \" 2 
xi (TI )/l xi (TI) = a a a 

1 Hence, TI 2 TI implying a contradiction. □ 
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REMARK 4.3.1. Suppose that (x,y) is a feasible solution of program (4.2.11). 

Then, if we define x. := L x. , j EE, we have 
J a Ja 

j EE, 

and 

Hence, xis a stationary probability distribution of the Markov chain in-

duced by P(TI(x,y)). 

Conversely, if xis a stationary probability distribution of the Markov 

chain induced by P(TI) for some stationary policy TI00
, then in general x can­

not be completed by a y such that (x,y) is a feasible solution of the linear 

programming problem (4.2.11). For instance, in the AMD-model of example 4.3.1 

x := (1/3,1/3,1/3,0)T is a stationary probability distribution of the Mar­

kov chain induced by P (f), where f satisfies f ( 1) = f (2) = 1, f (3) = 2 and 

f(4) =1. There is no corresponding feasible solution since for any feasible 

solution x41 ~ ¼. 

From example 4.3.1 it also follows that X(TI) can have more than one 

element. If the Markov chain induced by P(TI) is unichained, then it follows 

from theorem 2.3.3 that the stationary probability distribution is unique. 

Hence, X(TI) consists of one element: X(TI) = {x(TI)}. Similarly to theorem 

4.3.1, it can be shown that any (x,y), where x = x(TI) and y E Y0 (TI) := 

{yly. = Y. (TI)+[cTP*(TI)].·TI. for some c ~ O} is a feasible solution of 
ia ia i ia 

program (4.2.11). Hence Y0 (TI) c Y(TI). The next example shows that it may oc-

cur that Y0 (TI) f Y(TI). 

EXAMPLE 4.3.2. Consider the model of figure 

4.3.2. The linear programming problem is: 

maximize x 11 +x 12 +x21 +x22 +x31 

subject to 

-x11 +x21 +x22 -x31 

-x12-x21 +x31 

x11 +x12 +yll +y12 -Y22 =¼ 

x21+x22 -yll +y21+Y22-Y31=½ 

x31 -y12 -y21 +y31 =¼ 

0 

3 

81 =¼, 82=½, 83 =¼ 

Figure 4.3.2 
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00 

Take the pure and stationary policy f such that f(i) = 1, i EE. Then, 

x 11 (f)=O, x12 (f)=O, x21 (f)=l:i, x 22 (f)=O, x31 (f)=l:i; 

y 11 (fl=¼, y12 (f) =O, y 21 (fl=¼, y 22 (fl =O, y 31 (fl =O. 

The feasible solution (x,y), where x = x(f) and y 11 = l:i, y 12 = 0, Y21 = l:i, 

y22 = ¼, y 31 =¼is an element of Y(f). Suppose that y E Y0 (f). Since state 

1 is transient under P(f), each y E Y0 (fl satisfies y11 = y 11 (fl = ¼. Hence, 

Y0 (f)-/, Y(f). 

THEOREM 4.3.3. The correspondence between the stationary policies and the 

feasible solutions of the linear program (4.2.11) preserves the optimality 

property, i.e. 

1. If TT00 is a stationary average optimal policy, then (x(TT) ,y(TT)) is an 

optimal solution of the linear program (4.2.11). 

2. If (x,y) is an optimal solution of the linear program (4.2.11), then 

the stationary policy TT 00 (x,y) is an average optimal policy. 

PROOF. 

1. Let (¢,u) be an optimal solution of the linear programming problem 

(4.2.10). Since (x(TT),y(TT)) is a feasible solution of program (4.2.11), 

it follows from the theory of linear programming (cf. theorem 1.3.4) 

that it is sufficient to prove that EiEariaxia(TT) = EjSj¢j. We have 

T * S p (TT) r (TT) 
T s ¢, 

which completes the proof of the first part of the theorem. 

2. The proof has the same structure as the proof of theorem 4.2.4. We first 

present three propositions which are similar to the propositions 4.2.1, 

4.2.2 and 4.2.3. Then we complete the proof. Throughout the proof (¢,ul 

is an optimal solution of program (4.2.10). 

PROPOSITION 4. 3.1. 

Lj( 0ij-piajl¢j 
0 

0 a E A (i), i € E, 

¢i + Lj( 0ij-piajluj 
0 

r, a E A (i), i € Ex' ia 



where 

{a E A(i) I 1T. (x,y) > o}, 
1a 
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i E E. 

PROOF. Since x. >0, a E A0 (i), i EE and y, >0, a E A 0 (i), i E E\E, it 
1a x 1a x 

follows from the complementary slackness property of linear programming 

(see corollary 1.3.1) that 

0 

and 

a E A O (i) , i E E\E 
X 

a E A0 (i), i EE. 
X 

Suppose that E (o -p )~ f O for some ak E A0 (k) and kc E. Since 
j kj kakj j x 

1Tk (x,y) > 0, we also have x. > 0, and consequently 
ak kak 

Moreover, we have 

a E A(i), i E E. 

Hence, we obtain 

On the other hand, the constraints of (4.2.11) imply that 

This contradiction completes the proof. 

PROPOSITION 4.3.2. Ex is closed under P(TI(x,y)). 

PROOF. Suppose that pkl{TI(x,y)) > O for some k E Ex and l E E\Ex. Since 

pkl (1T (x,y)) = Eapkal1Tka (x,y), there exists an action ak such that pkakl > 0 

and 1Tk (x,y) > 0. From the constraints of program (4.2.11) it follows that 
ak 

implying a contradiction. 
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PROPOSITION 4.3.3. For any feasible solution (x,y) of the linear program 

(4.2.11), Ex is the set of recurrent states in the Markov chain induced by 

P(7r(x,y)). 

PROOF. Let xi:= Eaxia and yi := Eayia' i EE. We have seen in remark 4.3.1 

that xis a stationary probability distribution in the Markov chain induced 

by P(7r(x,y)). Theorem 2.3.3 implies that F c E\Ex' where Fis the set of 

transient states in this Markov cha_in. Suppose that F '/ E\Ex. Since Ex is 

closed under P(7r(x,y)), there is an ergodic set E1cE\Ex. Hence, we can write 

0 = l•-'E li E p,.(7T(x,y)). 
J" 1 E 1 1.J 

Then, we also have 

and 

0 < ljEE Sj = ljEE Yj - ljEE lilaPiajyia = 
1 1 1 

ljEE yj-LjliEE laPiajyia +tjiE liEE iaPiajyia-ljEE liiE laPiajyia 
1 1 1 1 1 1 

ljEE y j - IiEE laY ia - IjEE LuE laPiajy ia 
1 1 1 1 

- ljEE liiE laPiajYia s O 
1 1 

implying a contradiction. This yields the proof. 

We complete the proof as follows. From proposition 4.3.1 it follows 

* that P (7T(x,y))¢ ¢. Since E\Ex is the set of transient states, we have 

* P.i(7r(x,y)) = O, i E E\Ex. Then, using proposition 4.3.1 we can write 

¢ (7T"' (x,y)) * P (7r(x,y))r(7r(x,y)) 

* P (7T (x,y)) {¢ + (I-P (7T (x,y))) u} 

* P (7r(x,y))¢ 

¢. 
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Hence, TI
00 (x,y) is an average optimal policy. D 

REMARK 4.3.2. Proposition 4.3.3 differs from proposition 4.2.3 by the fact 

that in theorem 4.2.4 the states of E may contain transient states. Con-
x 00 

sider for instance example 4.2.1. The policy f 1 is average optimal, Ex= E, 

but state 2 is transient in the Markov chain induced by P(f1). 

REMARK 4.3.3. If TI is an optimal stationary policy and if (x,y) is a feasi­

ble solution of program (4.2.11) such that TI
00 (x,y) = TI

00
, then in general 

(x,y) is not an optimal solution of (4.2.11). Below we give an example. 

EXAMPLE 4.3.3. Consider the model of figure 4.3.3. The corresponding linear 

programming problem is: 

maximize x 11 
subject to 

x1l+x12 -x22 =0 

-x11 +x22 =0 

- x12 =0 

x11 + x12 +y11 +y12-y22 = l/3 

x21 + x22 - y 11 +y22 = 1/3 

x31 - Y12 

x11'x12'x21'x22'x31'Y11'Y12'Y22 ~ O 

The pure and stationary policy f 00 such 

that f(1) = 1, f(2) = 2, f(3) = 1 is aver­

age optimal. The vector (x,y), where 

x 11 = 1/6, x 12 = x21 = 0, x22 = 1/6, 

= 1/3 

x 31 = 2/3, y 11 = 0, y 12 = 1/3, y22 = 1/6, ~ 

is a feasible solution and TI 
00 (x,y) = f 00

• \!!.J 
However, (x,y) is not an optimal solu-

tion of the linear programming problem. 

00 

1 

0 

Figure 4.3.3 

THEOREM 4.3.4. Let f be any pure and stationary policy. Then the correspond-

ing vector (x(f),y(f)), defined by (4.3.2), is an extreme feasible solution 

of the linear programming problem (4.2.11). 

PROOF. Suppose that (x(f) ,y(f)) is not an extreme point of the set of feasi­

ble solutions of program (4.2.11). Then there exist different feasible solu-
. 1 1 2 2 

t1.ons (x ,y) and (x ,y) such that for some A E (0,1) 
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f"' AX 
1 

+(1-A)X 
2 

y(f) \y 
1 

+ (1-\) y 
2 

Since 

x. (f) 
ia yia (f) 0 a ,f f(i), i EE, 

we have 
1 2 1 2 

0 a ,f f(i), i x. X yia yia EE. 
ia ia 

Let 

p := P(f), X := (xif(i) (f)), y := (yif(i) (f)), 

~1 1 ~2 2 ~1 1 
X :::..: (xif(i))' X := (xif(i))' y := (yif(i)) 

and 
~2 2 
y := (yif(i)). 

0 
(4.3.4) 

T + y (I-P) 
T 

f3 • 

T 
Hence, for any solution (x,y) of (4.3.4) we obtain x xTP, and consequent-

T T * T * T . * T * ly x = x P f3 P y (I-P)P = f3 P, implying that 

We also get 

X 
~1 
X 

T * y (I-P+P ) T T T * f3 -x +y p 

From theorem 2.4.1 it follows that 

T * T * f3 (I-P ) +y P . 

(4.3.5) T T * * T * * y = f3 (I-P ) (D+P ) + y P (D+P ) T T * f3 D +y p . 

Consider the Markov chain induced by the transition matrix P. Suppose that 

there are m ergodic sets, say E1 ,E2 , ... ,Em' and let F be the set of transient 

states. Then, (4.3.5) implies that any solution (x,y) of (4.3.4) satisfies 

y. = (f3TD)., i E F. Consequently, 
l. l. 

i E F. 
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By the definition of y given in (4.3.3), there is in each ergodic set Ek 
~ ~l ~2 ~l ~l 

a state, say ik, such that yik 0. Then also Yik = Yik = 0. Since (x ,y l 

and (x2 ,y2J are solutions of the linear system (4.3.4) which satisfy 

~1 ~2 ~1 ~2 . ~1 ~2 2 b • f x = x , y i - y i = 0, l E F, y ik - Yik = 0, k = 1, , ...• ,m, we o tain rom 

(4.3.4) 

(4.3.6) k 1,2, ... ,m 

~l ~2 i and i. j Then, Let zi := Yi - Yi' € Ek qij := pij' € Ek. 

T T T * z z Q z Q 

* Since Ek is an ergodic set, theorem 2.3.2 implies that qi• 

all i,j E Ek. Hence, we get 

Then, 

z. 0 
J 

and consequently, z. 
l 

0 

'Ile have 

* qj• >> 0 for 

~1 Therefore, we have shown that y y2 which completes the proof that 

(x(f),y(f)) is an extreme point. □ 

* * REMARK 4.3.4. In example 4.2.1 we have found an extreme point (x ,y) of 

the set of feasible solutions such that the corresponding policy is not 

pure. Hence, the reverse statement of theorem 4.3.4 is in general not true. 

REMARK 4.3.5. Take any stationary policy TI and let R(n) be the set of re­

current states in the Markov chain induced by P(TI). Then proposition 4.3.3 

implies that for every feasible solution (x,y) of (4.2.11) such that (x,y)E 

(X(n),Y(n)) Ex R(n). Consequently, elements in the same equivalence class 

have the same positive x-components. 

4.4. POLICY IMPROVEMENT AND LINEAR PROGRAMMING 

In this section we shall discuss some relations between the policy 
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improvement method and the linear programming approach. The idea of policy 

improvement was introduced by HOWARD [19G0]. BLACKWELL [1962] has given an 

elegant mathematical foundation of the policy improvement method, treating 

the average reward case as a limiting case of the a-discounted reward case. 

By Blackwell's algorithm a pure and stationary average optimal policy is 

obtained. VEINOTT [1966] and DENARDO [1970a] have generalized this algorithm 

to an algorithm by which a pure and stationary bias optimal policy can be 

determined. MILLER & VEINOTT [1969] have extended these results. They pre­

sent a Laurent expansion in (1-al for va(f00 l by which algorithms can be 

constructed in order to find optimal policies with regard to more selective 

criteria. In particular, a finite algorithm was proposed to obtain a Black­

well optimal policy. Other references on this subject are DENARDO & MILLER 

[1968], VEINOTT [1969], DENARDO [1973], VEINOTT [1974] and HORDIJK [1976]. 

THEOREM 4.4.1. For any pure and stationary policy f 00
, the linear system 

(4. 4. ll l(I-P(fll! 

¢ + (I-P (fl lu 

u + (I-P(fl lz 

0 

r(fl 

0 

has a feasible solution (i,u,zl. Moreover any feasible solution (i,u,zl of 

(4.4.ll satisfies¢= ¢(f00 l and u = u(f00 l. 

PROOF. (cf. HORDIJK [1976]l. In the proof we use repeatedly the results of 

theorem 2.4.1. Let¢:= ¢(f00l, u := u(f00 l and z := -D(flu(f00
). Then, we 

obtain 

(I-P (fl l ¢ 

¢ + (I-P(fl lu 

u+(I-P(fllz 

* (I-P(fllP (flr(fl 

0. 

{p*(fl + (I-P(fllD(fl}r(f) 

{p* (fl + I-P* (fl }r(fl 

r(fl. 

D(fl{I-(I-P(fllD(fl}r(fl 

D (f) p* (f) r (fl 

0. 

Suppose that (i,u,z) is a feasible solution of (4.4.1). Then we have 



Ll = 

~ * ~ P(f)cj, = P (f)cj, 

P*(f){r(f) - (I-P(f))u} 

q,(f°"). 

* P (f) r(f) 

(I-P(f) + P*(f)}-l(I-P(f) + p*(f)}u 

(D(f)+P* (f)) (I-P(f)+P* (f) )u 

* ~ (D(f)+P (f)) (r(f)-q,) 

D(f)r(f) = u(f00
). D 

00 
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We define for any pure and stationary policy f the sets A(i,f), i EE, 

by 

(4. 4.2) A(i,f) E A(i) 

00 

THEOREM 4.4.2. Let f be a pure and stationary policy. 
00 

1. If A(i,f) 0 for all i E E, then f is an average optimal policy. 

2. If A(i,f) -I¢ for some i E E, and g is a pure and stationary policy 

such that g(i) E A(i,f) for at least one i EE and g(i) = f(i) when­

ever g(i) i A(i,f), then cj,(g00
) 2 q,(f00

) and va(g00
) > va(f00

) for all 

a sufficiently near to 1. 

PROOF. (cf. BLACKWELL [1962]). 

1. Let g be an arbitrarily chosen pure and stationary policy. Since 

A(i,f) = 0 for all i EE, we have 

(4.4. 3) and 

for each i which satisfies (P(g)cj,(f00
)), = q,, (f00

). 

a i i a oo 
Let R := (g,f,f, ... ). Then v (R) = r(g) +aP(g)v (f) and it follows from 

(2.5.7) that we can write 

-1 00 00 1 
r(g) +{1-(1-a)}P(g){(l-a) •cj,(f) +u(f) +s (a)} 

-1 00 00 00 2 
(1-a) •P(g)q,(f) +r(g) +P(g)u(f) -P(g)q,(f) +s (a), 

k 
where limatl E: (a) = 0 fork= 1,2. Hence, 
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(4.4.4) 
et 00 ct -1 00 I.O 00 00 

V (f )-v (R) = (1-a) •{<j,(f )-P(g)<j,(f )} + u(f) + P(g)<j,(f) -

where limatl £ 3 (a) = 0. 

Therefore, it follows from (4.4.3) and (4.4.4) that for a sufficiently near 

to 1 

(4.4.5) 

Let £(a) := min,E~(a). Then, 
1. 1. 

and o. 

(4.4.6) 
a oo 

r(g) +£(a)•e+aP(g)v (f ). 

By iterating (4.4.6), we obtain 

(4.4. 7) a oo \'oo t-1 t-1 +E(~)•e)=va(g00 ) + E(a) v (f ) ~ lt=la P (g) (r(g) ~ 1-a •e 

From (2.5.7) and (4.4.7) it follows that 

a E [0,1), 

where limatl E4 (a) 

Consequently, 

0 and limatl E(a) 0. 

(4.4.8) 

Since g has been chosen arbitrarily and since there exists an average opti­

mal policy in the class of pure and stationary policies, (4.4.8) implies 

that f 00 is an average optimal policy. 
00 

2. Let g be such that g(i) E A(i,f) for at least one i EE and g(i) = f(i) 

if g(i) i A(i,f). Define the policy R by R := (g,f,f, ... ). Notice that 

(4.4.4) is also valid in this case. Then, it follows that 

(a) if 

(b) if 

Hence, 

(4.4.9) 

g(i) f (i), then 

g(i) -I f (i) , then 

v~{R) 
1. 

v~(R) 
]. 

a oo 
V, (f ) • 

1. 00 

> v~(f) for a sufficiently near to 1. 
1. 

a 00 a a 00 

v (f )<v (R)=r(g)+aP(g)v (f) 
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By iterating (4.4.9) we obtain 

(4.4.10) 
a oo , 00 t-1 t-1 

v (f) < lt=la P (g)r(g) 
a oo 

V (g ) a E [a , 1) • 
0 

Since 

0, we get 

(4. 4.11) 

Combining (4.4.10) and (4.4.11) completes the proof. D 

Next, we formulate and prove the correctness of the following policy 

improvement algorithm. 

ALGORITHM XV for the construction of a pure and stationary average 

optimal policy by the policy improvement method (multichain case). 

case/. 

00 

~: Take an arbitrary f E CD. 

step 2: Compute ¢(f00
) and u(f00

) by solving the linear system 

{

(I-P(f))I 0 

¢ + (I-P(f))u r(f) 

u + (I-P(f))z 0 

step 3: Determine for every i EE 

A(i,f) 

ljPiaj¢j(f
00

) > ¢i (f
00

) or ljPiaj¢j(f00
) = } 

¢.(f00
) & r. + l-P . . u.(f00

) > ¢.(f00 )+u.(f00
) 

i ia J iaJ J i i 

step 4: If A(i,f) 

(STOP). 

0 for all·i EE, then f00 is an average optimal policy 

Otherwise, go to step 5. 

step 5: Take g00 such that 
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Jg(i) 

lg (i) 

E A(i,f) if A(i,f) ,f, f 

f(i) if A(i,f) 0 

step 6: f 00 := g and go to step 2. 

i EE, 

THEOREM 4.4.3. The policy improvement algorithm XV provides an average op­

timal policy within a finite number of iterations. 

?ROOF. If in the algorithm the policy g is taken as successor of f 00
, then 

it follows from theorem 4.4.2 that va(g00
) > va(f00

) for a near enough to 1. 

Therefore, each pure and stationary policy can occur only once. Since there 

are a finite number of pure and stationary policies, the policy improvement 

algorithm terminates after a finite number of iterations with a policy f 00 E CO 

which satisfies A(i,f) = 0 for all i EE. This policy f 00 is by theorem 4.4.2 

an average optimal policy. D 

Let f: be the pure and stationary policy obtained in the k-th step of 

algorithm XV. In theorem 4.3.4 we have shown that (x(fk) ,y(fk)), defined by 

(4.3.2), is an extreme point of the set of feasible solutions of the linear 

program (4.2.11). The value of the objective function satisfies 

The successive policies f:, k = 1,2, ..• , correspond to extreme points of the 

set of feasible solutions of program (4.2.11). From theorem 4.4.2 we know 

that the values of the objective function are nondecreasing and it follows 

also from theorem 4.4.2 that cycling cannot occur. The successive extreme 

points (x(fk),y(fk)), k = 1,2, ... , are not necessarily adjacent. Hence, the 

policy iteration algorithm is not equivalent to the standard simplex algo­

rithm but rather to another linear programming algorithm in which pivot 

operations on many variables are performed simultaneously. Such an algorithm 

is called a block-pivoting algorithm and may be viewed as a special case of 

the general class of methods of feasible directions as introduced by 

ZOUTENDIJK [1960]. 

CONCLUSION: The policy improvement algorithm is equivalent to a block­

pivoting simplex algorithm. 



EXAMPLE 4.4.1. For the model 

given in figure 4.4.1 (cf. 

HOWARD [1960] p.65) we dis­

play the policy improve­

ment algorithm and we show 

how the successive iterations 

can be viewed as block-pivoting 

in the simplex algorithm. 

Policy improvement 

Iteration 1: 

1. Take f7 such that f 1 (1) = 3, 

fl (2) = 2, fl (3) = 1. 
°' T °' T 2. <j>(f 1) = (11/2,4,11/2) ; u(f1) = (-5/4, 0,5/4) . 

3. A(1,f 1) =0; A(2,f1) ={1,3}; A(3,f1) ={3}. 

5. Take g00 such that g(l) =3, g(2) =1, g(3) =3. 

6. f2(1)=3, f2(2)=1, f2(3)=3. 

Iteration 2: 
00 T 00 T 

2. <j> (f2) = (7, 7, 7) ; u(f2) = (-4,-5,0) . 

3. A(1,f2) = 0; A(2,f2) = {3}; A(3,f2) =0 

5. Take g00 such that g(l) = 3, g(2) = 3, g(3) = 3. 

6. f3(1) =3, f3(2) =3, f3(3) =3. 

Iteration 3: 
00 T 00 T 

2. <j>(f 3) = (7,7,7) ; u(f3) = (-4,-2,0) . 

3. A(1,f3) = 0; A(2,f3) = 0; A(3,f3) = 0. 

4. f; is an average optimal policy. 

Linear programming 

Iteration 1: 

123 

Figure 4.4.1 

Policy f7 chooses in the three states the actions 3,2 and 1 respectively. 

Since the three states are recurrent in the Markov chain under P(f1), the 

variables x 13 ,x 22 and x 31 are basic-variables. The corresponding simplex 

tableau is as follows (the z-variables are artificial variables; the vari­

ables y 11 ,y22 and y 33 can be omitted since the corresponding coefficients 

are all zeros). 
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x11 x12 x21 x23 x32 x33 Y12 Y13 Y21 Y23 Y31 Y32 

x13 1/3 1 1 1 Q) -1 -1 

z2 0 -1 1 1 -1 

z3 0 1 -1 -1 1 

x31 1/3 1 1 1 1 -1 -1 

x22 1/3 1 1 -1 1 (D -1 

z6 0 -1 -1 1 G) -1 -2 1 -1 2 1 

zo 5 10 1 6 -1 -9 -7 7 11 -7 4 -11 -4 

Iteration 2: 

Since the Markov chain under _, (f2) has only state 3 as recurrent f'':'te (with 

f 2 (3) = 3) and since f 2 ( 1) = 3 a:--,d f 2 (2) = 1, we let enter the varinbles y 13 , 

y21 and x33 into the basis and we require that x 13 ,x22 and x31 become non­

basic or basic with value O. Then, after 3 standard pivot iterations, we ob­

tain the tableau corresponding to f;: 

x11 x12 x21 x23 x32 Y12 x13 x22 Y23 Y31 Y32 

Y13 2/3 1 1 1 1 1 1 1 -1 -1 

z2 0 -1 1 1 -1 

z3 0 1 -1 -1 1 

x31 0 -1 1 -1 

Y2{ 1/3 1 1 -1 1 CD -1 

x33 1 1 2 1 1 2 1 

z 
0 

7 6 4 2 2 -2 0 3 3 0 0 0 

Iteration 3: 
00 

The average optimal policy f3 is obtained by changing the variables y21 and 

Y23 (this choice follows again from the analysis of the Markov chain in-

duced by P(f3)). The corresponding tableau becomes: 

x11 x12 x2, x23 x32 Y12 x13 x22 Y21 Y31 Y32 

Y13 1/3 1 1 1 1 -1 -1 

z2 0 -1 1 1 -1 

z3 0 1 -1 -1 1 

x31 0 -1 1 -1 

Y23 1/3 1 1 -1 1 1 -1 

x33 1 1 2 ~ 2 1 

zo 7 6 4 2 2 -2 0 3 3 0 0 0 
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REMARK 4.4.1. The final tableau is in the usual context of the simplex 

method not an optimal tableau. In an optimal tableau the row of the dual 

variables (i.e. the row at the bottom) has to be nonnegative. We can obtain 

such an optimal simplex tableau by changing the variables z 3 and x32 . Then 

the corresponding policy is again f;. 

4.5. THE WEAK UNICHAIN CASE 

Throughout this section we have the following assumption. 

ASSUMPTION 4.5.1.(i) The AMD value-vector~ has identical components. 

(ii) For any pure and stationary average optimal policy f 00 and for an arbi­

trary ergodic set E1 (f) in t~e Markov chain induced by P(f), there exists 

a policy g00 E C0 such that g is also average optimal and E1 (f) are the re­

current states in the Markov chain induced by P(g). 

If assumption 4.5.1 is satisfied, then the model is called weakly uni­

chained. The weak unichain case includes the completely ergodic case, the 

unichain case (cf. section 4.6) but also the corrununicating case (i.e. for 

each pair i, j E E there exists a policy f 00 E C and an integer t E JN such 
o D 

that JP f: (Xt = j I x1 = i) > 0). The term communicating comes from BATHER 

[1973]; this concept is also used in HORDIJK [1974], chapter 8. 

Let f~ be an average optimal policy and g 00 the policy mentioned in as­

asumption 4.5.1. Then, this assumption implies that the policy f7, where 

.·= {f(i) 
f 1 (i) 

g(i) i E E\El (f) 

is also average optimal. Furthermore, it is obvious that the Markov chain 

induced by P(f 1) is unichained. Since ~j is independent of the initial state 

j, we m:3-y use instead of the AMD-value-vector ~ a ~ 0 E JR1 such that 

~ = ~o •e. From the results of section 4.2, it follows that ~o is the op­

timal solution of the linear program 

(4.5.1) a E A(i), i E E}. 

The corresponding dual linear programming problem is 
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(4.5.2) 

lila(0ij-piaj)xia O, 

lilaxia 1 

x. ~ 0, a E A(i), 
i.a 

j € EE} 

i € 

Below, we present an algorithm for the determination of an optimal policy 

and we prove its correctness. 

ALGORITHM XVI for the construction of a pure and stationary average opti­

mal policy (weak unichain case). 

* step 1: Use the simplex method to compute an optimal solution x of the 

step 2: 

step 3: 

step 4: 

step Sa: 

step Sb: 

linear programming problem 

lila( 0ij-piaj)xia o, 

lilaxia 1 

Xia ~Q, a€ A(i), 

j € EE} 

i € 

* Take f*(i) such that xif*(i) > 0, i E Ex* 

Let E0 := Ex*" 
00 

If E0 = E, then f* is an average optimal policy (STOP). 

Otherwise: go to step 5. 

Choose a triple (i,ai,j) that satisfies i € E\E, a. 
0 l. 

E A(i), j € 

and p, . > o. 
i.aiJ 

E0 u{i}; Define f* (i) := ai, E := go to step 4. 
0 

E 

THEOREM 4.5.1. Algorithm XVI determines an average optimal policy within a 

finite number of steps. 

* PROOF. The simplex method is finite and gives an optimal solution x of 

0 

* program (4.5.2). Let ($ 0 ,u) be an optimal solution of program (4.5.1). The 

algorithm terminates after a finite number of steps and determines a set E0 

(possibly equal to E) such that E\E 0 is closed under any policy. Similarly 

to proposition 4.2.2 it can be shown 

f* is any completion of the function 

states of E \E * are transient under 
o X 

probability 1, we have 

that E is closed under P(f*), where 
x* 

f* already defined on E0 • Since the 

P(f*) and are absorbed in Ex* with 



(4.5.3) 0 

The complementary slackness property of linear programming (cf. corollary 

1.3.1) and the choice off* in step 2 imply that 

(4.5.4) * qi + u. = r,(f) + (P(f )u)., 
O i i * * i 

From (4.5.3) and (4.5.4) it follows that 

(4.5.5) 

i E E 
x* 

qi \' * (f) + [p*(f) (I-P(f )u] 
o. ljP ij * * * i 

i E E • 
0 

Hence, f: is average optimal on the set E 0 • 

00 
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Suppose that E 0 IE. Let g be a pure and stationary average optimal policy. 

The policy f7 defined by 

{
f (i) 

f 1 (i) := 

g(i) 

i E E 
0 

i E E\E 
0 

is also average optimal and the Markov chain induced by P(f 1) has an ergodic 

set, say E1 (f 1), in E • Obviously, qi. (f00

1) = qi = max. qi. (f00
1), i E E1 (f1). 

o i o JEE J 
Then, assumption 4.5.1 is contradictory to the fact that E\E 0 is closed 

under any policy. Consequently, we have shown that E 0 = E. Then, (4.5.5) 

implies that f: is average optimal. D 

REMARK 4.5.1. In DENARDO & FOX [1968] the so-called general single chain 

case is treated, i.e. the case in which there exists a pure and stationary 

average optimal policy f 00 such that the Markov chain induced by P(f) has one 

ergodic set plus a (perhaps empty) set of transient states. They claim that 

in this case an average optimal policy can be obtained by algorithm XVI. In 

example 4.5.i we show that this is in general not true since the algorithm 

may terminate with E 0 IE. However, in the general single chain case an av­

erage optimal policy can be obtained by successive application of algorithm 
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XVI on E\E until E E. 
0 0 

EXAMPLE 4.5.1. It can easily be 

verified that the model of fig­

ure 4.5.1 belongs to the general 

single chain case. The linear 

program is: 

-x32 = 01 
=O 

x32 = 0 

x11+x12+x21+x31+x32 = 1 

x11,x12'x21 'x31 'x32;,, OJ 

0 3 

2 

Figure 1,5.1 

* * * * * * 1 x is an extreme optimal solution where x 11 =x 12 =x21 =x32 =O, x 31 = · 
Since E = {3} and E\E is closed under any policy, algorithm XVI gives 

x* x* 
not an optimal policy. 

4.6. THE COMPLETELY ERGODIC AND THE UNICHAIN CASE 

We first discuss the completely ergodic AMO-model, i.e. the AMD-model 

under the following assumption. 

00 

ASSUMPTION 4.6.1. For any pure and stationary policy f all states belong 

to a single ergodic set in the Markov chain induced by P(f). 

This case is the classical one and the solution by linear programming 

is well-known. We discuss in this monograph the completely ergodic case by 

reason of completeness. The linear programming formulation was first pre­

sented by MANNE [1960] and DE GHELLINCK [1960]. The algorithm is similar to 

algorithm XVI but the ster, 3 until 5 are superfluous because there are no 

transient states. Hence, we obtain the following algorithm. 

ALGORITHM XVII for the construction of a pure and stationary average optimal 

policy (completely ergodic case). 

* ~: Use the simplex method to compute an optimal solution x of the 

linear programming problem 



(4. 6.1) max{L, l r . x . i. a i.a i.a 

2i2a( 0ij-piaj)xia o, 
~- \' 
lilaxia 1 

Xia~ o, a E A(i), 
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j E EE) 

i E 

LEMMA 4.6.1. If the Markov chain.induced by P(f) has at most one ergodic 

set for every f 00 
E CD, then the Markov chain induced by P(TI) has also at 

most one ergodic set for every ir
00 

E CS. 

00 

PROOF. Suppose that there is a TI E CS such that the Markov chain induced 

by P(TI) has more than one ergodic set. Then we can write 

Define t'" E CD 

implies p .. (fl 
J.J 

, where P1 f O and P2 f 0. 

by f(i) := a. such that TI, > 0, i EE. Notice that p, .(TI)=O 
J. i.ai J.J 

= O. Hence the Markov chain induced by P(f) has also at 

least two ergodic sets. This yields a contradiction. D 

From assumption 4.6.1 and lemma 4.6.1 it follows that for any station­

ary policy TI 00 the Markov chain induced by P(TI) has exactly one ergodic set. 

Furthermore by the same argument as used in lemma 4.6.1 it can be shown 

that there are no transient states. Hence, the theorems 2.3.2 and 2.3.3 

* * * imply that P (TI) has identical rows , say p (TI), with p (TI) >> 0 and such 

* that p (TI) is the unique solution of the so-called steady-state equations: 

(4.6.2) 

00 

{
li (oij-pij(TI))xi 

liXi 

0 

1. 

For any TI E CS we define x(TI) by 

(4.6.3) 

j E E 

a E A(i), i E E 

and for any feasible solution x of the linear program (4.6.1) we define 

TI 00 (x) by 
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(4.6.4) a E A(i), i EE. 

. * THEOREM 4.6.1. The mapping xia(n) = pi(n)•nia a E A(i), i EE, is a one-to-

one mapping of the set of stationary policies onto the set of feasible solu­

tions of the linear programming problem (4.6.1) with (4.6.4) as the inverse 

mapping. Furthermore, this mapping has the property that pure policies cor­

respond to extreme feasible solutions. 

00 

PROOF. Let n be any stationary policy. Then x(n) defined by (4.6.3) satis-

fies 

and x. (n) ~ O 
ia 

Hence, x(n) is a feasible solution of program (4.6.1). 

0 j EE, 

a E A(i),iEE. 

Let x be an arbitrarily chosen feasible solution of (4.6.1). Then, nia(x) 

is well-defined on E and x. = n. (x)•x., a E A(i), i EE, where x. := x ia ia l. i 
Eaxia and nia(x) is arbitrarily chosen on E\Ex. We obtain 

0 j E E 

1 = }:.}: n. (x) •xi.= }:.x., i a ia l. l. 

implying that xis a solution of the steady-state equations. Hence, xi= 

* pi(n('X)), i EE. Therefore, it follows that n(x) is well-defined on E and 

that x = x(n(x)), i.e. n00 (x) is well-defined and the mapping (4.6.3) is on­

to. Since nia(x(n)) = nia a E A(i), i EE, the mapping is one-to-one and 

(4.6.4) is the inverse mapping. 

Let f 00 be any pure and stationary policy. Suppose that 

extreme point, i.e. x(f) = :>..x 1 + (1-:>..)x2 where :>.. E (0,1), x 1 

are feasible solutions of (4.6.1). Since x~ x~ = x. (f) 

x(f) is not an 
2 1 2 

,f, x and x ,x 

0, a ,f, f (i) 
1 2 ia ia ia 

i EE, x and x are feasible solutions of the linear system 

T 
rT (I-P(f)) 

X e 

0 

1. 

1 This system has a unique solution and consequently x 2 
x , implying a con- · 
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tradiction. Hence, we have shown that x(fl is an extreme solution of (4.6.1l. 

Conversely, let x be any extreme feasible solution of program (4.6.1l. Since 

the sum of the first N components yields a zero in every column, the rank 

of the system of the N+1 equations is at most N. Therefore, any extreme so­

lution has at most N positive components. Since LaXia > 0, i EE, x has in 

each state i exactly one positive component. Hence, the corresponding policy 

is pure. This completes the proof. D 

Consider the policy improvement method for the completely ergodic case. 

Since ¢(f00 l has identical components, we may replace ¢(f00 l by¢ (f00 l•e, 

where¢ (f00 l E JR1• Furthermore, we remark that the set A(i,fl ~efined by 
0 

(4.4.2l becomes 

A(i,fl = {a E A(ill¢ (f00 l + L,(o,.-p, .lu.(f00 l < r.}. 
o J iJ iaJ J ia 

Look at one iteration of the policy improvement algorithm. If A(i,fl = ~, 

then g(il := f(il. Otherwise, we may take g(il from A(i,fl. By theorem 4.6.1 

the vector x(fl defined by (4.6.3l is an extreme feasible solution of the 

linear program (4.6.1l. The dual program of (4.6.1l is 

r. }. 
ia 

In the simplex tableau corresponding to x(fl, the column of a nonbasic 

xia(fl has in the transformed objective function the value (cf. theorem 

1.4.1 and tableau (1.4.2ll 

(4.6.Sl ~ \ ~ 
¢ + l . ( cS • • -p . . l u . - r . . 

J iJ iaJ J ia 

Since xif(il (fl > 0, i EE, it follows from the orthogonality of the cor­

responding primal and dual variables in the simplex tableau that dif(il = O, 

i EE. Then, we obtain 

* ~ P (fl (¢•el P*(fl{r(fl-(I-P(fllu} * P (flr(fl 

Since 

¢ (f00 l + {I-P (fl l U (f ¢(f00l + (I-P(fllD(flr(fl 

r (fl, 
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We have 
(I-P (f)) (u (f00

) -u)" 0. 

Then 

* 00 ~ Because P (f) has identical rows, u(f )-u has identical components and con-

sequently 

Hence, (4.6.5) can be written as 

(4.6.6) 

Since a E A(i,f) if and only if dia < 0, it follows that the set of actions 

from which g(i) can be chose corresponds to the possible choices for the 

pivot column in the simplex method. Hence, we have shown the following. 

CONCLUSIONS. 

1. Any policy improvement algorithm is equivalent to a block-pivoting sim­

plex algorithm. 

2. The standard simplex algorithm is equivalent to a particular policy im­

provement algorithm. 

We continue this section under the following assumption (unich9ined­

ness). 

00 

ASSUMPTION 4.6.2. For any pure and stationary policy f, the Markov chain 

induced by P(f) has one ergodic set plus a (perhaps empty) set of transient 

states. 

In this case an optimal policy can be determined by the following algorithm. 

ALGORITHM XVIII for the construction of a pure and stationary average opti­

mal policy (unichain case). 

* step 1: Use the simplex method to compute an optimal solution x of the 

linear programming problem 



(4.6. 7) max{}:i}: r. x. a 1.a 1.a 

lila(oij-piaj)xia O 

Lilaxia 1 

xia 2:0, a€ A(i), 

j € EE} 

i € 

step 2: Take f: such that 

r where 

:= a:bitrarily 

> 0 i € E * 
X 

i € E\E *' 
X 

133 

THEOREM 4.6.2. Algorithm XVIII provides a pure and stationary average opti­

mal policy in the unichain case. 

PROOF. Since the Markov chain induced by P(f*) has only one ergodic set and 

since E is closed under P (f_J (the proof is similar to the proof of pro-
x* " 

position 4.2.2), it follows that the states of E\E are transient under 
x* 

P(f*). Then, the proof of the theorem is similar to the proof of theorem 

4.5.1. 0 

REMARK 4.6.1. In the unichain case there is in general no one-to-one cor­

respondence between the feasible solutions of program (4.6.7) and the sta­

tionary policies. 

4.7. ADDITIONAL CONSTRAINTS 

4.7.1. INTRODUCTION 

We will discuss the problem of finding an optimal policy when there 

are some additional constraints on the limit points of the expected state­

action frequencies. Such problems may for instance occur if more than one 

reward function is of importance. Then we want to maximize the expected 

average reward with regard to one reward function while we restrict the 

other reward functions by some bounds. 

DERMAN [1970], chapter 7, has considered the unichain case and he has 

solved this problem by linear programming. In DERMAN & VEINorT [1972] an 

iterative algorithm, based on the Dantzig-Wolfe principle was proposed. 

They write "until the faces of the linear programming polytope are found, 



134 

routine application of the simplex method is generally not possible". 

Therefore, they need the decomposition principle. 

In section 4.7.2 we shall characterize this linear programming polytope 

and we prove some properties of the limit points of. the state-action fre­

quencies. We present a treatment of the general multichain case based on 

the solution of one linear program. 

In general, there does not exist a stationary optimal solution. We will 

derive an algorithm for the construction of a memoryless optimal policy. For 

practical purposes, this algorithm needs too many calculations; furthermore, 

memoryless (i.e. Markov) policies are unusual in practice. 

Fortunately, if certain conditions are satisfied, then optimal policies 

can be computed that are stationary. In section 4.7.4 we shall discuss these 

conditions. 

We close the treatment of additional constraints with a description in 

section 4.7.5 of the unichain case. In this case a stationary optimal poli­

cy can always be found. We shall show this result by a proof different from 

the proof of theorem 3 on page 95 in DERMAN [1970] and we present an algo­

rithm to perform the calculations. 

4~7.2. LIMIT POINTS OF STATE-ACTION FREQUENCIES 

Since the state-action frequencies depend on the initial distribution 

we assume that 8 = (81 ,82 , ••• ,BN) is a known initial distribution, i.e. 

8j ~ 0, j EE, and Ej8j = 1. 

REMARK 4.7.1. In contrast with the use of the vector 8 in the sections 4.2, 

4.3 and 4.4, we allow in this section that 8. = 0 for some i EE. DERMAN & 
J. 

VEINOTT [1972] discuss the constrained problem for a fixed starting state i. 

For any policy Rand any TE JN, we denote the expected state-action 

frequencies in the first T periods by xT(R), i.e. 

(4. 7.1) a E A(j), j E E. 

By X(R) we denote the set of all limit points of the vectors {xT(R), 

T = 1,2, ••• }. These limit points are limit points in the vector space of 

the vectors xT(R). Any xT(R) satisfies EjE x: (R) = 1 and therefore also 
a Ja 
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L.L x. (R) = 1 for every x(R) E X(R). Furthermore, if xTk(R) ➔ x(R) for 
J a Ja Tk 

k ➔ 00 , then lim. x. (R) = x. (R) for all a E A(j), j EE. 
k..;.c, Ja Ja 

Let C1 :={RE C!Jx(R) I= 1}. In section 4.3 we have already seen that for 

any stationary policy TI00 the set X(TI00
) consists of one element, namely 

(4. 7. 2) X(TI00
) = {x(TI)}, where x. (TI) :=[ilP*(TI)J.•-rr., a E A(j), j EE. 

Ja J Ja 

Hence, C1 contains all stationary policies. 

We introduce the following notations: 

L := {x(R) E X(R) 1 R E C } 

L (M) := {x (R) E X (R) I R E CM} 

L(C) := {x(R) E X(R) I R E Cl} 

L(S) := {x(R) E X (R) I R E Cs} 

L(D) := {x(R) E X(R) I R E CD}. 

THEOREM 4 • 7 . 1 . L(D) = L(S) = L(C) = L(M) = L. 

PROOF. (cf. DERMAN [1970] pp.93-94). It is obvious that L(D) c L(S) c L(C) 

c L. We first prove that L c L(D). Suppose the contrary. Then, there ex­

ists a policy R such that x (R) E L and x (R) f. L (D) . Since L (D) is a closed 

convex set, it follows from theorem 1.2.1 that there exist coefficients r. 
Ja 

such that 

(4. 7 .3) for all x E L(D). 

Theorem 4.2.3 implies that there is for the AMO-model with rewards ria a 

pure and stationary policy f 00 which is optimal with respect to the utility 

function~, defined in (4.2.9). Because x(R) EL, there is a sequence 

{Tk, k = 1,2, .•• } such that 

a E A(j), j E E. 

Hence, 



136 

T 

Lil\•li1\:.-: Lt~lljlalE'R(Xt=j,Yt=a I x 1 =i)•rja 
k 

s Iiai•limsupT-+oo ½ l.~=lljla]E>R(Xt=j,Yt=alx1=i)•rja 

TA TA oo ~ ~ oo 
6 $ (R) S 6 iji (f ) = L .• l r. X. (f ) , 

'J a Ja Ja 

which contradicts (4.7.3): we have shown that L c L(D). 

Since L(D) C L(S) CL C L(D), we obtain L(S) = L(D). From 

L(M) c L c L(S) = L(D) 

and 

L(C) c L c L(S) L(D) 

it follows that for the proof of the theorem it remains to prove that 

L(D) c L(M) n L(C). 

Therefore, take any x, L(D). Let C0 

write 

a € A(j), j € E, 

for certain pk~ 0 such that l.~=lpk = 1. 

The existence of a Markov policy R satisfying 

is shown in theorem 2.5.1. Hence, 

te:lN,ae:A(j), je:E, 

li-:_Pk •limT-+oo ½ I:=liiai •]E>f;(Xt = j, yt = a I xl = i) 

= li~ ½ I:=liiai. lkPklPfoo(Xt = j, yt = a I xl = i) 
k 

= limT-+oo ½ I:=liiai,JE>R(Xt= j, yt =al xl = i) 

x. (R) 
Ja 

for all a e: A(j), j e: E. 



Consequently, x = x(R) E L(M) and x 

the proof of the theorem. 0 

lill\r->«>xT(R) E L(C), which completes 

REMARK 4.7.2. Theorem 4.7.1 shows that for any utility function, which is 

based on the limit points of the expected state-action frequencies, it is 

sufficient to consider only the policies of class C1 • For instance, the 
A 
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"weak" criterion q,(R) and the "strong" criterion q,(R) are in fact the same 
A 

optimality criterion, since q,(R) = q,(R) for any RE C1 (cf. theorem 4.2.3). 

We are interested in the problem to find, for a given initial distri­

bution, a policy which is optimal. in the set of policies that satisfy some 

additional constraints. These constraints will be linear functions of the 

expected state-action frequencies. 

Let LiLaqiakxia(R) $ bk be the k-th constraint. Then we formulate the 

constrained Markov decision problem by 

(4. 7 .4) 1 l,l q, kx. (R) $ bk i a ia ia 
supR q, (f3,r) 

x(R) E X(R) 

where q,({3,R) := lim infT->«> ½ L!=lLjLaLif3iJPR (Xt =j, Yt = a I x 1 = i) rja" 

By the result of theorem 4.7.1 we may replace (4.7.4) by 

(4. 7 .5) supR C { q>Cf3,R) I Z:.I q,akx. (R) $ bk E 1 i a i ia k 1,2, •.. ,m}. 

Notice that for RE C1 q,(f3,R) = L,L x. (R)r .. 
J a Ja Ja 

In order to solve problem (4.7.5), we propose - inspired by the linear 

programming formulation for the unconstrained Markov decision problem, giv­

en in section 4.2 - to study the following linear programming problem: 

(4.7.6) 
}:axja 

l)aqiakxia 

=IJ, ,j EE 

+IJa< 0ij-piaj)yia=f3j, j EE 

$bk, l$k$m 

The fact that program (4.7.6) can be used to solve problem (4.7.5) is 

based upon the following theorem. Consider the linear system 
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{lila(Oij-piaj)xia 
o, j E 

l (4.7.7) l X, + lila(oij-piajlyia s., j E 
a Ja J 

xia'yia :?: 0, a E A (i), i E 

Define the set X by 

(4.7.8) X := {xi there exists a y such that (x,y) is feasible for (4.7.7)}. 

THEOREM 4.7.2. L = X, 

PROOF. Theorem 4.7.1 implies that it is sufficient to prove that L(D) = X. 

From theorem 4.3.1 it follows that L(S) c X (it can easily be checked that 

the proof of theorem 4.3.1 may also be used when S. = 0 for some j E El. 
J 

Hence, certainly L(D) c X. 

Since Xis the projection of a polyhedron, Xis also a polyhedron and con­

sequently L(D) c X. From (4.7.7) it follows that x. ~ 0 for all a E A(i), 
ia 

i EE, and that EiEaxia = 1. Therefore, Xis a polytope, i.e. Xis a bound-

ed polyhedron. Then from corollary 1.2.2 it follows that Xis the closed 

convex hull of a finite number of extreme points. Hence, it is sufficient 

to show that any extreme point of X belongs to L(D). 

Let x be an arbitrarily chosen extreme point of X, and let X be the closed 

convex hull of the extreme points of X that are different from x. Then xi X 

and theorem 1.2.1 implies the existence of coefficients ria a E A(i), i EE 

such that 

(4. 7 .9) for every x Ex. 

* * Therefore it follows from (4.7.9) that any optimal solution (x ,y) of the 

linear program 

(4.7.10) max{}:.}: r. x 
i a ia ia 

* satisfies x x. 

}:Ja (oij-piajlxia = o, 

}:axja + LJa<oij-piajlyia =Sj, 
~EE} 
J EE 

iEE 

Consider the AMO-model with rewards ria' a E A(i)-, i € E, Let f: be any 

pure and stationary average optimal policy. Then (x(f*) ,y(f*)), defined 



in (4.3.2), is by theorem 4.3.3 an optimal solution of program (4.7.10). 

Hence, x = x(f) E L(D), which completes the proof. 0 
* 

REMARK 4.7.3. Recently, we learned from VEINOTT [1973] that the result of 

theorem 4.7.2 was already known to him in 1973. 
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REMARK 4.7.4. From the theorems 4.7.1 and 4.7.2 it follows that any extreme 

point of Xis an element of L(D). The next example shows that the converse 

statement is not true, in general. Furthermore, this example displays that 

L(S) 'IX is possible, and that Xis a real subset of 

EXAMPLE 4.7.1. Consider the model 

of figure 4.7.1 and write for any 

"' stationary policy TI the transi-

tion matrix as 

p (TI) 

* It can easily be verified that P (TI) 

and x(TI) are given by: 

a. TI l = 1: 

* p ( TI) 

l 
lila( 0ij-piaj)xia O, j E E 

LJaxia 1 

X, ;,: o, a E A(i), i E E 
ia 

0 

Figure 4.7.1 

l 
r 

{x11=0,x2l+x31=1, 

I 1/3~x31 ~2/3} 

b. 

I 

'1/3 

x12(TI) = x22(TI) = 0; 

(1/3)•(1+TI 1); x31 = (1/3)•(2-TI1). 

1/3 2/3 

Figure 4.7.2 
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c. f O and TI 1 f 1: 

* P (n) 

0 1 

0 

0 1 

L 

Since always have that 
2 

C and x2 ; = x 11 , we can draw the sets L(D), 

L(S) a,, X in the 3-di:neirn,01 c:,, space wi,::b coordinates x 

( see f L ,un, , •. 7 • 2) • 

L(D) 

L(S consists of 

points 

and the points between x 2 and x 3 , together with 

x 3 and x 4 :':he dark lines in the figure). 

:,f {x1 ,:/, ,x4 }, i.e. the polytope 

J lx11 +x12 ,x21 +x22+x31 = l; x12=0; 

lx x11'x12'x21'x22 2 O; x31 2 1/3 

2 
In figure 4.7.2 we see that x is not an extreme point of X, although 

2 
x E: L(D). Moreover, it follows that L(S) ;l X. 

4.7.3. COMPUTATION OF A MARKOVIAN OPTIMAL POLICY 

In this section we pre,,ent an algorithm for the construction of a 

Markovian optimal policy. We first show that the problems (4.7.5) and 

(4.7.6) are strongly related. 

THEOREM 4.7.3. 

(i) Problem (4.7.5) is leasible if and only if problem (4.7.6) is feasible. 

(ii) The optima of the problems (4.7.5) and (4.7.6) are equal. 

(iii)If R is an optimal solution of problem (4.7.5), then x(R) is an optimal 

solution of problem (4.7.6). 

(iv) Let (x,y) be an optimal solution of problem (4.7.6), and let 

- ,.n (f ) x - uk=ipkx k , where pk 2 

Suppose that RE: CM is the 

that 

0 such that l:kpk=l, and {f1 ,f2 , ... ,fn}= C0 . 

policy, introduced in theorem 2.5.1, such 
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(4.7.11) 

Lil\· LkPklPf°' (Xt = j, Yt = a I x 1 = i) 

k 

tE]N,aEA(j), jEE. 

Then, R is an optimal solution of problem (4.7.5). 

PROOF. The theorems 4. 7.1 and 4. 7.2 imply that X = L(C). Moreover, any RE C1 

satisfies p(S,R) = L,L x. (R)r .. By these observations, the parts (i), (ii) 
• J a Ja Ja 

and (iii} are straightforward. 

For the proof of part (iv) we can similarly as in the proof of theore,n 4. 7 .1 

show that x = x(R), and RE C1 . Consequently, 

¢(~,R) = L-l r. x. (R) = L-l r. x. = optimum (4.7.6). ·· i a ia ia i a ia ia 

Hence, R is an optimal solution of problem (4.7.5). D 

* * REMARK 4.7.5. To compute an optimal policy from an optimal solution (x ,y) 

* of the linear program (4.7.6), we first have to write x as 

* X 1. 

1 2 
Next, we have to determine R = (TI ,TI, ••• ) E CM such that R satisfies 

(4.7.11). The decision rules Tit, t E JN, can be obtained from DERMAN & 

STRAUCH [ 1966] . 

ALGORITHM XIX for the construction of an optimal Markov policy in a con­

strained AMD-model. 

~: 

(4.7.12) 

* * Determine an optimal solution (x ,y) of the linear programming 

problem 

=0, jEE 

s bk, lsksm 

xia'yia;;,, 0,a E A(i), iEE 

(if problem (4.7.12) is infeasible, then problem (4.7.5) is also 

infeasible}. 
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step 2a: Suppose that CD 

k = 1,2, ••• ,n. 

j E E, k 1,2, ••. ,n. 

step 3: Determine pk (k 

system 

1,2, ••• ,n) as a feasible solution of the linear 

r..,.~. * xja 

(4. 7 .13) lkPk 1 

pk 2:: 0 

a E A(j), j E E 

k 1,2, ••• ,n 

(this can be performed by the so-called phase I of the simplex 

method). 

step 4: * 1 2 R := (n ,n , ••• ), where 

!liBi•}:kp~[Pt-l(fk)]ij•oafk(j) 

t t t t-1 
nja := liBi • lkpk[p (fk) ]ij 

arbitrarily t t t-1 
if l • 8. • lkpk[P (fk)] .. =O. 

ii iJ 

Then, R* is an optimal Markov policy for the constrained-AMD-model. 

REMARK 4.7.6. Algorithm XIX is inattractive for practical problems. The num­

ber of calculations is prohibitive. Moreover, the use of Markov policies is 

inefficient in practice. Therefore, in the next section we discuss the prob­

lem of finding an optimal stationary policy, if one exists. 

EXAMPLE 4.7.2. We apply algorithm XIX to the model 

of figure 4.7.3 with additional constraints 

¼ s x21 (R) s ~- Since for any policy R we 

have x11 (R) = x12 (R) = x 32 (R) = 0, we 

can illustrate the points x(R) in the 2-

dimensional space with coordinates x21 
and x31 . It can easily be verified that 

00 

any stationary policy n satisfies (see 

1 

® 

figure 4.7.4): f\ =4/16, 82 =3/16, 83 =9/16 

Figure 4.7.3 



if 11 3 l 1 : x 11 ( 11 ) =x 12 ( 11 ) =x31 ( 11 ) =x 3 2 ( 11 ) =O; x 21 ( 11 ) = 1. 

if 1131 =1: x 11 (11)=x12 (11)=x32 (11)=0; 

x21 (11) =(1/16) • (3+411 11 ); 

x31 (11)=(1/16) • (13-411 11 ). 
1 2 3 

Let x ,x ,x be the points corres-

ponding to pure policies which are 

drawn in figure 4.7.4. Then 
1 2 3 

L(D) {x ,x ,x }. 
2 -1--3 

L(S) {x} u {x ,x} -----
L(M) L(C) =L=X={x1 ,x2 ,x3 }. 

The formulation of program (4.7.12) becomes 

(if piai = 1, then the coefficients of the 

variable yia are all zeroes; therefore, we 

remove such variables from the formulation): 

maximize x21 

3 
X 

3 1 
f6 4 

7 1 
is 2 

subject to Figure 4.7.4 

=O 

=O 

-x12 +x32 =O 

xll +x12 +yll +yl2 = 4/l 5 

x21 -yll -y32= 3/l 5 

x31 + x3 2 - Y 12 + Y 3 2 = 9 / 16 

x21 ,,; 1/2 

-x21 

xll'x12'x2l'x31'x32'Y11'Y12'Y32 

,,; -1/4 

Algorithm XIX gives for this problem the following results. 

143 

2 
X 

step 1: 

step 2a: 

* * * * * * * * x 11 = 0, x 12 = 0, x21 = 1/2, x31 = 1/2, x 32 = O; yll = 0, y 12 = 1/4, y32 = 5/16. 

Let f:, k = 1,2,3,4, be such that 

fl (1) = 1, fl (2) = 1, fl (3) = 1; f 2 (1) = 1, f 2 {2) = 1, f 2 (3) = 2; 

f3(1)=2,f3(2)=1,f3(3)=1; f4(1)=2,f4(2)=1,f4(3)=2. 

By algorithm III we obtain 
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step 2b: 
1 1 1 

x11 = x12 = x32 = O; 
1 1 

x 21 = 7/16; x 31 = 9/16. 

2 2 2 
x11 =x12=x32=0; 

2 
x31 = 0. 

3 3 3 
x11 =x12=x32=0; 

3 
x 31 =13/16. 

4 4 4 
x11 =x12 =x32 =O; 

4 
x31 = 0. 

step 3: p 1 =8/9; p 2 =1/9; p~=O; p 4 =0. 

step 4: Since 

·G 
1 :) Pt(f ) 1 and Pt(f2) 

1 
0 " ; 

* we get R 
1 

( 1f , , ... ) , where 

t t 
1 1f 11 t E ]N; 

TT 21 

t t/9 t 1 

r~9 
t 

1[31 
2; 

1[32 
1 t <': 

(0 
= \: 

t E 

t 

t <': 

1 

1 
:) , t E :IN, 

]N; 

1 

2. 

4.7.4. COMPUTATION OF A STATIONARY OPTIMAL POLICY (GENERAL CASE) 

* * Suppose that we have obtained an optimal solution (x ,y) of problem 
* 00 (4.7.12). Then we define the stationary policy (rr) by r 11 x' 

a E A(i), i E E * ia a i'l X 

* * IL ~ (4.7.14) 1f • := a E A(i), i EE \E 
la yia ayia y* x* 

arbitrarily elsewhere. 

* Then , x . ( TT ) 
Ja 

[ STp* ( rr*) ] . • rr*. A ( . ) ' E aE J,JE. 
J Ja 

REMARK 4.7.7. Since it is possible that S. = 0 for some j, it is also pos­
J 

sible that E UE *FE. Therefore (4.7.14) differs from (4.3.1). 
x* y 
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* THEOREM 4.7.4. If x * * 00 x(TI), then (TI) is an optimal solution of problem 

(4. 7 .5). 

PROOF. Since x* = x(TI*) it is obvious that (TI*) 00 is a feasible solution 

of (4.7.5). Moreover, by theorem 4.7.3, 

optimum (4. 7 .6) optimum (4.7.5), 

i.e. (TT*) 00 is an optimal solution of problem (4.7.5). D 

* * If we compute P (TI), which can 

* check whether x. [f?p* (TI*)]. "TI~ 

be done by algorithm III, then we can 

a E A(j), j EE. However, in certain 

* * without the computation of P (rr ). In 
Ja * J _Ja 

cases we may decide that x = x(TI*) 

the following theorem we present some sufficient conditions for the property 

* * that x = x(TI ) . 

THEOREM 4.7.5. 

* (i) If the Markov chain under P(TI) has one ergodic set plus a (perhaps 

* * empty) set of transient states, then x = x(TI). 

if y~ /E y~ TI~ a E A(i), i EE *nE *' then x* 
1a a 1a 1a x y 

(ii) * X (TI ) . 

PROOF. 

* (i) From remark 4.3.1 it follows that x is a stationary probability dis-

* tribution of the Markov chain induced by P(TI). Then theorem 2.3.3 
* * * implies that xi= pii (TI), i EE. Since * the Markov chain under P(TI) 

[f?p*(TI*)].•TI~ = X, (TI*) * has only one ergodic set, we have xia 

a E A(i), i E E. 

* TI. a E A(i), i EE , we have 
1a y* 

* * Therefore, (x ,y) satisfies 

* T * (X ) P (TI ) 

T * T * f3 -(y ) (I-P(TI ) ) . 

j EE. 

1 1a 1a 
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Consequently, 

Hence, 

* T * * (x ) P ( 71 ) 

T * * S P (71 ) . 

T * * * T * * * S P ( 71 ) - (y ) ( I-P ( 71 ) ) P ( 71 ) 

a E A(i), i E E. D 

* "' The next example shows that in general (71) is not an optimal solu-

tion of problem (4.7.5) although in this example there exists a stationary 

optimal solution. 

EXAMPLE 4.7.3. Consider the model of example 4.7.2 with the additional con­

straint x 21 (R) ~ 1/4. The optimal solution of the linear program is: 

* * * Y11 = 0, y 12 = 1/4, y 32 = 1/16; optimum= 1/4. 

* "' The policy (71) 

* "' 
* satisfies 71 12 

( 71 ) is not optimal, since 

* "' 

1. 

<j,. ( S, ( 71 ) ) T * * * S P (71 )r(71 ) 3/16 < 1/4 

A"' A 
Consider the stationary policy 71, where 71 11 
Since 

1/4 

optimum value. 

and 

A 
3/4, 7121 

3/4, 

we have a feasible solution~"' of problem (4.7.5) with ST<P (~00
) = 1/4 = 

optimum value. Hence, in this example there exists a stationary optimal 

solution. 

In example 4.7.3, we have y~ /y~ t- 71~ for some a E A(i), i EE nE 
ia i * ia x* y* 

However, if we can find for the same x another y, say y, such that the 

* ~ new point (x ,y) is feasible for (4.7.12) and satisfies 

(4.7.15) * 71. ia a E A(i), i E E nE , 
x* y 

1. 



~CX) 

then, by the same arguments as in theorem 4.7.5, the stationary policy TT 

defined by 

(4.7.16) TT. 
ia 

1 
* TT. 
ia 

yia/yi 

aEA(i), i ,f_ E \E 
y x* 

a E A (i) , i EE \E y x* 

is an optimal policy of problem (4.7.5). 

147 

The claim that (4.7.15) is satisfied is equivalent to the requirement that 

~ * y. •TT. 
i ia 

a E A(i), i E E 
x* 

Hence, to find a y such that (4.7.15) is satisfied is equivalent to the 

determination of a feasible solution of the linear system 

{ l l.<,,;-p•aj)•yia • I * ~ * 
(oij-pij (TT ) ) •yi 1=\-xj' j 

iiiE * 1 iEEx* 
(4.7.17) X 

yia '2: 0, a E A(i) , i E E\E *; Yi '2: O, i E E * 
X X 

E E 

The feasibility of system (4.7.17) can be checked by the so-called phase I 

of the simplex method. Hence, we have shown the following result. 

THEOREM 4.7.6. If Y is a feasible solution of (4.7.17), then~ is an opti­

mal solution of problem (4.7.5), where TI00 is defined by (4.7.16). 

EXAMPLE 4.7.4. We consider the same model as in example 4.7.3. The optimal 

solution cx*,y*) does not satisfy y~ /y~ 
ia l. 

Hence, we introduce system (4.7.17): 

r11 
+ Y12 4/16 

-y 11 -1/16 

Y12 -3/16 

Y11 •Y12 
'> o. 

* 
TT ia' a E A(i), i EE nE 

x* y* 

This system has a feasible solution, namely y 11 1/16, y 12 = 3/16. 

Hence, the stationary policy-::', where TI11 = 1/4, TI12 = 3/4, TT 21 = TT 31 

is an optimal solution of (4.7.5). 
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THEOREM 4.7.7. If the linear system (4.7.17) is infeasible and if every 

* optimal solution (x,y) of problem (4.7.12) satisfies x = x, then problem 

(4.7.5) has no optimal solution which belongs to the class of stationary 

policies. 

0, 

PROOF. Suppose that (4.7.5) has an optimal stationary policy, say n. Then 

(x(n),y(n)) is a feasible solution of problem (4.7.12) and satisfies 

optimum (4.7.5). 

Hence, (x(n),y(n)) is an optimal solution of problem (4.7.12). Consequently, 

* x(n) = x. Then, however, y(n) is a feasible solution of (4.7.17), which is 

contradictory to the assumption that (4.7.17) is infeasible. D 

REMARK 4.7.8. If the conjitions of theorem 4.7.7 hold and consequently no 

stationary optimal policy exists, then we can use algorithm XIX for-the 

construction of an optimal (Markov) policy. 

EXAMPLE 4.7.5. Consider the model of example 4.7.2 with the same constraint 

1/4 s x21 (R) s 1/2. We have observed that (x* ,y*) is 
* * * problem (4.7.12), where x 11 = 0, x 12 = 0, x 21 = 1/2, 

* * * and y 11 = 0, y 12 = 1/4, y32 = 5/16. It can easily be 

unique and that the linear system (4.7.17) i.e. 

{ !11 + '" 

4/16 

-y 11 -5/16 

Y12 1/16 

yll ,y12 ~ 0, 

an optimal solution of 

* * x 31 = 1/2, x32 = 0 

* verified that x is 

is infeasible. Hence, thi example has no stationary optimal policy. An 

optimal Markov policy for this problem was computed in example 4.7.2. 

If the linear system (4.7.17) is infeasible and x* is not unique, then 

it is possible that problem (4.7.5) has a stationary optimal solution, even 

* * if (x ,y) is an extreme point of (4.7.12). Hence, we can compute every 

optimal extreme point of the linear program (4.7.17) and in each of the ob­

tained points we can perform the analysis described above in order to find 



a stationary optimal policy. 

EXAMPLE 4.7.6. Consider the model described in example 4.7.1 and add the 

constraint x 21 (R) 2 1/9. The formulation of problem (4.7.17) is: 

maximize 

subject to 

x21 + x31 

xll + xl2 -x 
22 

-xll +x22 

- X 
12 

xl 1 + x12 + Y11 + Y12 

x21 + x22 - Y11 

X31 - Y12 

-x21 

xll'x12'x21'x22'x31•Y11'Y12•Y22 

? 

+ Y22 

0 

0 

0 

1/3 

1/ .\ 

1/3 
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k * * * (x ,y ) , where x 11 = O, x 12 
* * * * = 0, x 21 = 1/9, x 22 = 0, x 31 = 8/9 and y 11 = 0, 

* * 
,, 

Y 12 = 5/9, y 22 = 2/9, is an extreme optimal solution, but x is not unique. 

The linear system (4.7.17) is infeasible, namely: 

{ ~11' 
Y12 1/3 

-y 11 2/9 

- Y12 -5/9 

Y11•Y12 2 0. 

It can easily be verified that(~,~), 
A A A A 

A A 
where x 11 = 0, x 12 

A 

A 
0, x 21 = 2/3, 

an extreme opti-x 22 = 0, x 31 = 1/3 and y 11 = 1/3, y 12 
Aoo 

mal solution of program (4.7.12). Then theorem 4.7.5 (ii) implies that TT 

= 0, y 22 = 0 is also 

A A A 
is an optimal solution of problem (4.7.5), where TT 11 = TT 21 = TT 31 = 1. 

* * THEOREM 4.7.8. Let (x ,y) be an optimal solution of problem (4.7.12). 

Consider the nonlinear system 

(4. 7 .18) 
X • + I I ( 0 . . -p . . ) y . + 

Ja iiEx a 1J 1aJ 1a 

IiEE <o .. -IP .. x. ll x. Jy. 
x 1J a 1aJ 1a a 1a 1 f\, j E E 

0, j E E 
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(i) If (x,y) is a feasible solution of (4.7.18), then the policy n00 de­

fined by 

ia a ia r;p a E A(i), i E: E,, 
X 

TT. := ~ /i, ~ a E A(i), i E: E~\E~ ia yia ayia y X 

arbitrarily elsewhere 

is an optimal solution of problem (4.7.5). 

(ii) If (4.7.18) is infeasible, then problem (4.7.5) has no stationary opti­

mal policy. 

PROOF. 

(i) Theorem 4.7.6 implies that x = x(n). Hence,~ is a feasible solution 

of problem (4.7.5) with as value of the objective function 

optimum (4.7.12). 

~00 

Hence, TT is an optimal solution of problem (4.7.5). 
Aro 

(ii) Suppose that TT is a stationary optimal solution of problem (4.7.5). 
A A 

Then (x,y) such that 

A 
X, (~) Xia a E A(i), i E: E, ia 

A 
y. {~) Yia a E A(i), i E: E\EA ia 

X 

A I Y. (~l Yi i E: EA' a ia X 

where x(~) and y(~) are defined by (4.3.2), is a feasible solution of 

(4.7.18). This implies a contradiction. D 

REMARK 4.7.9. In general, it is a difficult problem to find a feasible solu­

tion of problem (4.7.18). However, computational results indicate that it is 

mostly not necessary to solve problem (4.7.18) in order to obtain a station­

ary optimal solution of (4.7.5), if one exists. Below we present an algo­

rithm for the construction of a stationary policy. This algorithm is based 

on the theorems 4.7.4-4.7.7. We have tested 400 problems and the algorithm 

has always given an optimal stationary policy, if one exists. Furthermore, 

if the stationary policy is nonoptimal, then this policy may be considered 
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as an approximate solution of problem (4.7.5). For this approximation we 

know the deviation to the optimal value and also we know which constraints 

are violated. 

ALGORITHM XX for the construction of a stationary policy in a constrained 

AMD-model (multichain case). 

* * Use the simplex method to compute an optimal solution (x ,y) of 

the linear programming problem 

0 , j E 

(4.7.19) max"·" r. x. Lila ia ia 

s., j E 
J 

E 

E 

5 bk, 1Sk5m 

(if this linear program is infeasible, then the constrained Markov 

decision problem (4.7.5) is also infeasible). 

* "' step 2: Determine the stationary policy (TT) such that r 11 x'. 
a E A(i), i E E 

ia a ia x* 
* * IL * A (i), EE \E TT • := a E i 
ia yia ayia y* x* 

arbitrarily elsewhere. 

step 3a: If y~ /Ly* TT~ for all a E A(i), i EE *nE *' then (TT*)"' is an 
ia a ia ia x y 

optimal solution of problem (4.7.5) (STOP). 

step 3b: Go to step 4a or to step 4b (comment is given in remark 4.7.10). 

step 4a: Compute an optimal solution (y,z) of the linear program 

min{L, z. J J 

I ( o .. -p. . i y. + 
iJ iaJ ia 

iEE\E * a 
I I ( 0 , , -p , , (TT*) ) y , +z . 

lJ lJ l J 
X 

If L.z. 
J J 

iEE * 
X 

~"' O, then TT , where 

.- yia :ayia {
~ I"~ a E A(i), i E E~\E * 

y X 

TT , elsewhere 
ia 
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step 4b: 

step 5: 

step 7: 

is an optimal solution of problem (4.7.5) (STOP). 

Otherwise, go to step 5. 
* T * * * Compute x. (7T ) := [S P (7T ) ] 1. •7r. , a e: A(i), i e: E (the computation 

ia ia 
of the stationary matrix p*(7T*) can be performed by algorithm III). 

If x* x(7T*), then (7T*) 00 is an optimal solution of problem (4.7.5) 

(STOP). 

* Otherwise: if E.E q, kx. (7T) s bk k = 1,2, ••• ,m and 
i a ia ia * * * 00 

E.E r. x (7T) = E.E r. x. , then (7T) is an 
i a ia_ia i a ia ia 

optimal solution of problem (4.7.5) (STOP). 

Otherwise, go to step 5. 

* 00 * Put (7T) on the list Dl of stationary policies and x on the list 

L2 of solutions that have been analysed. 
A A 

If there exists an extreme optimal solution (x,y) of program 
A 

(4.7.19) such that xi L2 , then: 

(x*,y*) := (~ 1 ~) and go to step 2 

(the determination of all extreme optimal solutions can be per­

formed by algorithm I). 

Otherwise: go to step 7. 
* 00 Any stationary policy (7T) from the list L1 may be viewed as an 

approximate solution of problem (4.7.5). 

REMARK 4;7.10. If the condition y~ /I: y~ 7T* a e: A(i), i e: E *nE * is ia a ia ia' x y 
not satisfied in step 3a, then we have to decide for a continuation in step 

4a or step 4b. When IE *I is small with respect to !El, then the linear 
X 

program of step 4a has many variables. In this case we propose to perform 

step 4b. When IE I is (nearly) equal to !El, then we propose to continue 
x* 

in step 4a. 

REMARK 4.7.11. Suppose that there exists an_optimal stationary policy 7T 

such that x(7T) is an extreme point of X, where 

X {x e: XI (x,y) is an optimal solution of problem 

(4.7.5) for some y}. 

00 

Then, algorithm XX will find an optimal stationary policy. Unfortunately, 

it is possible that x(7T) is not an extreme point of X for every optimal 
00 

stationary policy 7T. In example 4.7.7 we show this phenomenon. 



EXAMPLE 4.7.7. 

Consider the 

model drawn in 

figure 4.7.5, 

with the con­

straints 

x31 (R) $ 5/12, 

x61 (R) $ 5/12, 

x31 (R)+x61 (R) s 

2/3. It can 

easily be veri­

fied that the 

set of optimal x­

vectors is given by 

4 

f3 = f3 = f3 = f3 = f3 = f3 = 1/6 
1 2 3 4 5 6 

Figure 4.7.5 

@) 

CD 

{ lx11 =x12 ~x22 =x41 =x42 =x52 =O; x21 +x31 =x51 +x61 = 112 ;} x. 

x x31 $5/12, x61 $5/12; x31 +x61 =2/3; x21'x31'x51'x61 ,:Q; 

By the dependency of x21 and x51 on x 31 and 

x61 respectively, we can draw the set X 
in the 2~dimensional space with the coor­

dinates x31 and x61 (see figure 4.7.6). 

Consider the policy i"', where f ( 1) = 2, 

f(2) =1, f(3) =1, f(4) =2, f(5) =1, 

f(6) = 1. Then, x(f) satisfies x 11 (f) 

x 12 (f) =x22 (f) =x41 (f) =x42 (f) =x52 (f) =O, 

x21 (f) =x51 (f) =1/6, x 31 (f) =x61 (f) =1/3. 

Hence, f 00 is an optimal solution of problem 

(4.7.5), but x(f) is not an extreme point of 

i 
2/3 

1 
X 

5~~:-===~,~~ 2 
I X 
I 
I 
I 
I 
I 

' 

1/3 5/12 

X. Moreover, it can be verified that L(S)nX = {x(f)}. Figure 4.7.6 
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REMARK 4.7;12. If X = L(S), then algorithm XX will find a stationary opti­

mal solution as soon as step 4a is visited. In theorem 4.7.9, we present a 

sufficient condition for the equality of the sets X and L(S). This condi­

tion is always satisfied in the unichain case as will be shown in section 

4.7.5. 

LEMMA 4.7.1. For every triple (j,a,R), where j EE, a E A(j) and RE C1 , 
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we have 

X, (R) = limt1(1-a)•r lat-1 .I,s.•lP (X =j,Yt=alx1=i). 
Ja a t= 1. 1. R t 

PROOF. For the proof of this lemma we use the same arguments as in HORDIJK 

[1971]. Let RE C1 and suppose that x(R) = limT->ooxT(R). Take a fixed pair 

(j,a), where j EE, a E A(j). Then, 

x. (R) = lim__ .!. LT 1wt' 
Ja T..._ T t= 

where 

t E JN. 

00 t-1 
Since lwtl is bounded by 1 for all t, the power series Et=lwta has 

00 t-1 
radius of convergence at least 1. The series Et=la has radius of con-

vergence 1. Hence, for a E [0,1), we may write 

-1 I00 t-1 (1-a) • w a 
t=1 t 

-2 
From (1-a) 

00 t-1 
Et=lta for OS a< 1, we obtain 

, 00 t-1 , 
x. (R)-(1-a)•l a "L,$,•lP (X =j,Y =alx =i) 

Ja t=1 1. 1. R t t 1 

Choose E > 0 arbitrarily small. Since x. (R) 
Ja 

1 . 1 "T h 
1.~ T ~t=l wt' t ere 

exists an integer TE such that 

for all T > T. 
E 

Hence, 

2 TE 1 t t-1 
I (1-a) 't 1{x. (R) --' 1 w }ta Is l = Ja l: ls= s 

1 ,t 
M~ max Ix. (R) -- l _ 1w I, 

1~tST Ja t s- s 
E 

and 
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( l-a)2 , 00 E t-1 E 2,oo t-1 1 
lt=T +1 2 ta ,,; 2 (l-a) lt=lta = 2E. 

Hence 
E 

x. (R) = lim (1-a)•r at- 1 .z:.s.•JP (X =j,Y =al X1=i), 
J a at 1 t= 1 1. 1. R t t 

completing the proof. D 

THEOREM 4.7.9. If x(TI) is continuous in TI, then X = L(S). 

PROOF. Theorem 4.7.1 implies that it is sufficient to show that L(C) c L(S). 

Take any x(R) E L(C). From theorem 3.4.8 it follows that for any a E [0,1) 

there exists a stationary policy Tia such that xa(R) = xa(Tia), where xa(·) 

is defined by 

x~ (R) := r at- 1 • z: S •JP (X = j Y = a IX = i) jEE, aEA(j) ,REC. 
Ja t=l i i R t ' t 1 

Choose a fixed pair (j,a), j EE, a E A(j). Introduce a reward function by 

i j b = a 

== r b E A(i), i EE. 
0 elsewhere 

Then, 

and 

Hence, we can write by lemma 4.7.1 

(4.7.20) 

. T a a 
lJ.matl (1-a) •S v (TI ) . 

Consider a sequence {ak, k 

for any i EE the sequence 
ak 

the sequence {(1-ak)vi, k 

= 1,2, •.. } such that 
ak ak 

{ (1-ak)vi (TI ) , 

= 1,2, ... } 

aE[0,1). 

ak 
ak t 1 and TI +TI.Since 

(2.5.7)), there exists a limit point, say x, of the sequence of vectors 
ak ak 

{(1-ak)v (TI ), k = 1,2, ... }. Therefore, we may assume that 

(4.7.21) i EE. 

From (4.7.20) and (4.7.21) it follows that 
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(4.7.22) 

X. (R). 
Ja 

The continuity of x(i) as function of TI implies 

(4. 7. 23) 

Since for every a E [0,1! va(rra) 

(4.7.21) that 

X = P(TI)X. 

Consequently, 

(4.7.24) * X = P (TI)X. 

Then the relations (4.7.22), (4.7.23) and (4.7.24) imply that 

Since TI is independent of the choice of the pair (j,a), we have proved that 

x (R) E L (S) . This yields t".e theorem. D 

REMARK 4.7.13. It will be shown in section 7.4.5 that unichainedness implies 

continuity of x(TI), and consequently X = L(S). If we relax the unichained­

ness to communicating (i.e. for each pair i,j EE there exists a policy 
00 

f E CD and an integer t E JN such that lP foo (Xt = j I x1 = i) > 0), then 

Xi L(S), in general. Below we give an example. 



EXAMPLE 4.7.8. Consider the model corres­

ponding to figure 4.7.7. This·model is 

obviously communicating. It can easily be 

verified that 

{ I x11=x22; x12=x32; x11+x12+x21+x22+ } 
X = X • 

x31+x32=l; x11'x12'x21'x22'x31'x32~0 

Take x such that x 11 =x22 =i\ 2 =x32 =o, 

x21 = 1/4, x31 =3/4. Suppose that x=x(7i') 
,.,00 

for some stationary policy 1T • From x 21 > 0, 

x22 = 0 it follows that n21 = 1. Hence, state 
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Figure 4.7.7 

2 is absorbing in the Markov chain induced by P (n) • Consequently, x21 (rr) ~ 

S2 =1/3 > 1/4 = x21 , implying a contradiction. Therefore, in this model 

X (, L (S). 

We close this section with the presentation of some numerical results 

obtained by algorithm XX. We have solved 400 test problems. These problems 

can be divided in 8 classes of 50 problems as indicated in table 4.7.1 (l = 

the number of actions in each state; m = the number of constraints) 

A B C D E F G H 

l 2 2 2 2 2 4 4 4 

m 1 2 3 4 5 1 3 5 

Table 4.7.1 

All problems have been generated as follows: 

(i) the number of states is 10, i.e. E = {1,2, .•. ,10} 

(ii) for each pair (i,a), where i EE and a E A(i), the transition 

probabilities are such that p .. (, 0 for exactly one j which is 
iaJ 

randomly chosen from E. 

(iii) the reward r. is a random choice from {0,1, ••• ,10},a E A(i), i EE. 
ia 

(iv) the coefficients qiak are randomly chosen from {-10,-9, .•. ,+10} 

i EE, a E A(i), k = 1,2, ••• ,m. 

(v) bk= 0 k = 1,2, ••• ,m. 

The numerical results are summarized in table 4.7.2 and give rise to the 

following statements: 
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1. 8% of the problems is infeasible and in 16% the algorithm does not 

find a stationary optimal policy. We have analysed that all these 

problems do not have stationary optimal policies. Hence, for every 

problem which has a stationary optimal policy algorithm XX gives one. 

2. 70% of the 306 problems for which a stationary optimal policy was 

found, this policy was found in step 4 of the algorithm. 

3. For only 9 problems the stationary optimal policy was obtained by the 

analysis of more than one extreme optimal solution. Hence, in 97% of 

the problems for which a stationary optimal policy was found, this 

policy was obtained from the first analysed optimal solution of prog­

ram (4.7.19). 

Total Policy obtained from the Policy 
number Infeasi- first analysed LP-solution obtained No sta-

of bility Termination Termination from tionary 
Class k ID problems (step 1) in step 3 in step 4 second, optimal 

third policy 
etc. 
LP-
solution 

A 2 1 50 1 20 22 2 5 

B 2 2 50 2 13 25 1 9 

C 2 3 50 4 6 29 - 11 

D 2 4 50 11 5 21 2 11 

E 2 5 50 13 3 25 - 9 

F 4 1 50 - 22 26 - 2 

G 4 3 50 - 12 29 4 5 

H 4 5 50 - 4 35 - 11 

Total 400 31 85 212 9 63 

4.7.5. COMPUTATION OF A STATIONARY OPTIMAL POLICY (UNICHAIN CASE) 

Throughout this section we use the following assumption. 

ASSUMPTION 4.7.1. For any pure and stationary policy f 00
, the Markov chain 

induced by P (f) has one ergodic set plus a (perhaps empty)_ set of transient 

states. 
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THEOREM 4.7.10. X = L(S). 

PROOF. By theorem 4.7.9 it is sufficient to show that x(TT) is continuous in 

TT. Let lill\--TT(k) TT(O), where TT(k) 00 E cs, k E ]No· By lemma 4.6.1 and as­

sumption 4.7.1, the Markov chain under P(TT(k)) has at most one ergodic set 

for every k E lN0 . Theorem 2.3.3 implies that x(TT(k)) is the unique solution 

of the linear system 

(4. 7. 25) 

Ili (oij-pij(TT(k)))xi = 0, j EE 

hixi 

for every k E JN0 . Since TT(k) ➔ TT(O) fork ➔ 00 , we also have P(TT(k)) ➔ P(TT(O)) 

fork ➔ 00 • Consequently, any limit point of {x(TT(k)), k = 1,2, ... } is a 

solution of (4.7.25) with k = O. Hence, x(TT(O)) = lill\..- x(TT(k)), i.e. x(TT) 

is continuous in TT. D 

ALGORITHM XXI for the construction of a stationary optimal policy in a con­

strained AMD-model (unichain case). 

* ~: Use the simplex method to determine an optimal solution x of the 

linear programming problem 

lila( 0ij-piaj)xia 0, j E E 

LJaxia 1 
(4.7.26) ~111 r. x. i a ia ia 

LJaqiakxia $; bk, k 1, 2, •.. ,m 

l x. :?:0,aE:A(i), 
ia 

i E E 

(if this linear program is infeasible, then the constrained Markov 

decision problem is also infeasible). 

* step 2: Take (TT) such that 

:= JX:/IaX:a 
larbitrarily 

a E A(i), i E E 
x* 

elsewhere. 

THEOREM 4.7.11. The policy (TT*) 00 obtained by algorithm Xxi is an optimal 

solution of problem (4.7.5). 
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* PROOF. From the definition of TT it follows that 

(4.7.27) ll, ( o .. -p .. (TT*) ) ( l x ~ ) 
l lJ lJ a ia 

Li (LaX:a) 1. 

o, j E E 

Similarly as in the proof of theorem 4.7.10, we can show that (4.7.27) im-

* plies that x 

Moreover, 

* * 00 x(TT ). Hence, (TT) is a feasible solution of problem (4.7.5). 

* 00 * ¢(13,(TT)) = l,l r. x. = optimum (4.7.26). 
i a ia ia 

From theorem 4.7.10 it follows that there exists a stationary optimal solu­

tion of problem (4.7.5), say n00
• Let x = x(n). Then, xis a feasible solu­

tion of program (4.7.26) and consequently, 

optimum (4.7.5) 

* 00 Hence, (TT) is an optimal solution of problem (4.7.5). D 
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CHAPTER 5 

BIAS OPTIMALITY 

5.1. INTRODUCTION AND SUMMARY 

The use of the expected average reward as utility function is sometimes 

unsatisfactory. For any stationary policy rr00
, rewards that are earned when 

the process is in a state which is transient under P(rr) do not influence the 

outcome of the average reward ~(rr00
). Therefore, the average reward criterion 

is in some sense too little selective. The concept of bias optimality is a 

more selective criterion. This criterion was introduced by BLACKWELL [1962] 

(actually Blackwell used the term "nearly optimal"). A first algorithm to 

compute a bias optimal policy was presented in VEINOTT [1966]. DENARDO 

[1970a] has refined this method to a three-step procedure which can be ex­

ecuted by linear programming as well as by policy improvement. 

In chapter 2 we have presented the definition of a bias optimal policy: 

* R EC is said to be a bias optimal policy if 

(5.1.1.) 0, i EE. 

Corollary 2.5.2 implies the existence of a pure and stationary bias optimal 

policy. 

In section 5.2 we present some equivalent statements for the concept of 

bias optimality. One of these statements gives rise to an algorithm for the 

computation of a bias optimal policy. 

Then, in section 5.3, we present some theorems which lead to another 

algorithm. This algorithm is a modification of the algorithm presented in 
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DENARDO [1970a]. The algorithm can be divided into three parts and in each 

part a linear program has to be solved. For the determination of an average 

optimal policy - which has to be performed in the parts 1 and 2 for two dif­

ferent AMD-models - we use the results of chapter 4. Furthermore, we show 

that Denardo's search procedure of the third part can be cancelled and that 

a bias optimal policy can be obtained directly from the solution of the 

third linear program. Some of the material of this section can also be found 

in KALLENBERG [1981b]. 

We close this chapter by section 5.4 in which we discuss the weak uni­

chain case, the completely ergodic case and the unichain case. For these mo­

dels the algorithm can be simplified. 

5.2. SOME THEOREMS 

We assume in this chapter that E ,p, . = 1 for every pair (i,a), a E A(i), 
J iaJ 

i EE. If this assumption is not satisfied, then we can change the model 

into the extended model, with state space Eu {O}, as described in defini­

tion 3.2.2. From definition 3.2.2 and the analysis on page 30 it follows 

that v~(R) = v~(R) i ~ 0, for every REC and all a E [0,1), where va(R) 
l. l. 

denotes the expected discounted reward in the extended model. 

LEMMA 5.2.1. For any policy R we have 

PROOF. 

i E E. 

we may 

~- (R) ~ 
l. 

a 
lim supatl (1-a)vi (R), 

The proof is similar to the proof 

Let wt: E/alPR (Xt=j,Yt = aix1 

write 

i EE. 

of lemma 4. 7 .1. Take any R E C and 

= i) •r. , t E ]N. 
Ja 

Then, for aE[0,1) 

,"' ,t t-1 11 2/\ ,"' t-1 
lt=l (ls=lws)a and cj>i (R) = (1-a) cj>i (R) lt=l ta • 

Hence, we have 

i. (R) - (1-a)v~(R) 
l. l. 

I\ 
Choose£> 0 arbitrarily. Since cj>. (R) 

l. 
1 . 1 T 

im supT.._ T Et=l wt, there exists 

an integer T such that 
£ 

1 
T 1 i. (R) > - lt=l wt £ 

l. T 2 
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Therefore, 

T -1 2 \ E A 1 ,t } t-1 
(1-a) lt=l {<jli (R) -t ls=l ws ta ~ 

T -1 
(1-a)2 min {A _ _!_,t w}'E tat-1~ 

l$t$T -1 <Pi (R) t ls=l s lt=l 
e; 
T - 1 1 1 

( 1-a) 2 (-M) ' E T at- > -2 E for a sufficiently near enough to 1, 
lt=l E 

A 1 t } 
where M > O satisfies min 1 {¢. (R)-tl: _ 1 w ~ - M. 

l$t$TE- J. s- s 
Furthermore, 

"' 1 t t 1 2 I"' 1 t-1 1 
(1-N)2' {~(R)--' w}t - ~(1-a) (--E)ta ~--E. ~ l.t=T 'l'i t ls=l s a t=T 2 2 

E E 

Then, for a sufficiently near enough to 1, we have 

THEOREM 5.2.1. If R is bias optimal, then R is also an average optimal 

policy; if R is average optimal, then R is not a bias optimal policy, in 

general. 

PROOF. Let f be a pure and stationary Blackwell optimal policy. Then, 

□ 

va(f00
) = va for a sufficiently near to 1, and, by theorem 2.5.4, ¢(f00

) ¢. 

Hence, using (2.5.7), we obtain 

(5.2.1) lira tl(l-a)v~ = lira tl(1-a)v~(f00
) ¢. (f00

) = ¢., i E E. a i a i i i 

Since Risa bias optimal policy, we have limatl{va(R)-v~} = O, i EE. There-

fore, certainly lira tl(l-a){v~(R)-v~} = 0. The existence of lim tl(l-a)v~, a i i a i 

i EE, implies that limatl (1-a)v~{R) = <Pi, i EE. From lemma 5.2.1 it follows 

that 

~ i {R) ~ lira sup atl ( 1-a) v~ (R) 

Then, the results of section 4. 2 imply that R is average optimal. 
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The policy f 00 € C such that . * D 
f*(l) = f*(2) = 1 is an average op-

timal policy for the model of figure 

5.2.1. Since v~(f:) = 0 for all a E [0,1) 
a [ oo 

1 

CD 
and v = 1 for all a E 0,1), f* is not a 

1 Figure 5.2.1 
bias optimal policy. D 

THEOREM 5.2.2. Let f: E CD. Then, the following four statements are equiv­

alent: 
00 

(i) f* is bias optimal. 

{ 0,00 (),CO CO 

(ii) lim0 t1 v (f*) - v (f ) } ~ J for each f E CD. 

(iii)u. (f00
) = max{u. (f00

) = "'.}, i € E, and "'(f00
) ="' 

J. * ]. "'i 'f' * 'f'. 

. 1 ,T ,t s oo s oo oo 
(iv) li~ T lt=lls=l {v (f*) -v (f ) } ~ 0 for each f E C0 • 

PROOF. 
00 00 

(i)-. (ii): Suppose that f* is a bias optimal policy. Take any f E CD. 
Since v0 (f00

) ~ v 0 for all a E [0,1), we obtain 

(ii)• (iii): From (2.5.7), it follows that 

a.co aoo} Consequently, lim0 t 1{v (f*) -v (f ) ~ 0 implies that 

00 00 001 00 (iii) •(iv): Let f* be such that ul.. (f*) = max{u. (f ). qi, (f) = qi
1
,}, i EE, and 

00 ]. ]. 

qi (f*) = qi. 
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We have for any f 00 
E CD 

Then,' we get 

(5.2.2) 

(cf. theorem 2.4.l(iv)) for all f 00 
E CD, it follows from (5.2.2) that 

1 ,T ,t s oo s oo 
lim_. -l ll 1{v (f )-v (f )} ;?: 0 

'r-+<"' T t= s= * 

(iv)* (i): Let f; be any Blackwell optimal policy. From (5.2.2) it follows 

that 

1 fT ,t s oo s oo 
0 s li~ T lt=lls=l{v (f*) - v (f )} = 

where 

Hence, we have 

a oo a} a oo a } lim0 tl {v (f*) - v = lim0 tl {v (f*) -v (f0 ) = 

. ¢(f:)-¢(f;) 
limatl{ l-a + u(f:)-u(f;)} = u(f:)- u(f;) ;?: O. D 

REMARK 5.2.1. DENARDO & MILLER [1968] have proved the equivalence of the 

first three statements. This equivalence was conjectured by VEINOTT [1966]. 

In HORDIJK & SLADKY [1977] the equivalence is shown for a countable state 

space under a condition of Lyapunov function type. For a finite state space _ 
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this condition is equivalent to the assumption that a fixed state can be 

reached from each initial state under any stationary policy. 

DEFINITION 5.2.1. Let f 00 be a pure and stationary bias optimal policy. Then, 
* 

u := u(f:) is called the bias-value-vector. 

REMARK 5.2.2. From statement (iii) in theorem 5.2.2 and the results of chap­

ter 4, it follows that a pure and stationary bias optimal policy can be ob­

tained from the algorithm stated below. This algorithm may be very attrac­

tive if the linear program (4.2.11) has only a few extreme optimal solutions. 

ALGORITHM XXII for the construction of a pure and stationary bias optimal 

policy by analysing the average optimal policies. 

k k ~: Determine by algorithm II all extreme optimal solutions, say (x ,y) 

k = 1,2, ••• ,K, of the linear programming problem (4.2.11). 
00 * -1 * step 2: Compute u(fk) := {[I-P(fk) +P (fk)] -P (fk)}r(fk), k E F*, where 

I 00 k k 
F* := {k w (x ,Y ), defined by (4.3.1), belongs to CD}, 

00 

THEOREM 5.2.3. The pure and stationary policy f* determined by algorithm 

XXII is a bias optimal policy. 

PROOF. From the construction of the policy f 00 it follows that u(f00*) --- * 
max{u(f00

) lf00 
E F*}. Hence, theorem 5.2.2 implies that it is sufficient to 

prove that f 00 
E F* if and only if f 00 is average optimal. The identity of 

F* and the set of pure and stationary average optimal policies is a con­

sequence of the theorems 4.3.3 and 4.3.4. D 

5.3. LINEAR PROGRAMMING APPROACH (GENERAL CASE) 

In order to compute a bias optimal policy, we first solve the linear 

program for the computation of a pure and stationary average optimal policy 

(see algorithm XIV). Therefore, we have to compute optimal solutions 
* * * * (~ ,u) and (x ,y) of the pair of dual linear programs 
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(5. 3. 1) min{L,13.$. J J J 

' ( o -p ) $ ~ 0 , a E A ( i) , 
lj ij iaj j i EE} 

iEE 

and 

Iiia( 0ij-piaj>xia 0 , 
j e E} 

(5. 3. 2) ma+! r. x. laXja + I. I ( .s .. -p. . > y. 13., j EE 
1 a 1a 1a 1 a lJ 1aJ 1a J 

xia'yia ~ 0, a E A(i), iEE 

respectively, where 13. > 0, j EE, are given numbers with r.13. = 1. 
J J J 

After the solution of the linear program (5.3.1), we can determine 

A(i) := {a E A(i) I Lj( 0ij-piaj)¢; O}, i E E 

and 

{a A(il I * 
Lj(oij-piaj)u; = r. }, A(i) := E ¢i + i E E. 

1a 

Moreover, theorem 4.2.2 implies that¢*=¢, where¢ is the AMD-value-vector. 

"' For any f E C0 we may consider the Markov chain induced by P(f). For 

this Markov chain we introduce the following notations: 

R(f): the set of recurrent states. 

T(f): the set of transient states. 

n(f): the number of ergodic sets. 

Furthermore, we define 

E := {i E El A(i) ,f 0} 

"' LEMMA 5.3.1. Let f be any pure and stationary average optimal policy. 

Then, 

(i) 

(ii) 

(iii) 

(iv) 

PROOF. 

(i) 

f(i) E A(i), 

f (i) E A(i), 

u. (f00
) 

* u. l J. 
00 

u. (f * ~ u. l l 

Since P(f)¢ 

i EE. 

i 

i 

-

-

E E. 

E R(f). 

(p* (f)u * ) . , i E R(f). 
* * l 

(P (f)u ) . , i E T(f). 
l 

* P(f)P (f)r(f) * P (f)r(f) ¢, we have f(i) E A(i), 

(ii) From theorem 4.3.3 it follows that (x(f),y(f)), defined by (4.3.2), 
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is an optimal solution of program (5.3.2). Proposition 4.3.3 implies 

that R(f) = Ex(f)" From the complementary slackness property of linear 

programming, we obtain f(i) E A(i), i E Ex(f) = R(f). 

(iii) Since d .. (f) = O, i E R(f), j E T(f) (see formula (2.4.3)), it follows 
l.J 

from part (ii) that 

Hence 

[D(f){~+ (I-P(f))u*}J, 
l. 

Then, by theorem 2.4.1, we get 

* u. 
l. 

* * (P (f)u ) i' 

[D(f)r(f)]. 
l. 

i E R(f). 

i E R(f). 

i E R(f). 

(iv) Since d .. (f) -:o: 0, i,j , T(f) (see formula (2.4.3) and theorem 2.3.1), 
1.J 

we obtain 

d, .(f){~. +Lk(o.k-p,k(f))u.*} ~ d, .(f)r,(f), 
l.J J J J k l.J J 

i,jET(f). 

Part (ii) of the theorem implies that 

d,.{f)r.(f), 
l.J J 

iET(f), jER(f). 

Hence, we have, using theorem 2.4.1, 

[D(f)r(f)]. ~ [D(f){P*(f)r(f) + (I-P(f))u*}J. = 
l. l. 

* * * ui - (P (f) u ) i, i E T(f). □ 

In the second part of the algorithm, we try to find the bias-value­

vector u for the states that are recurrent under at least one bias optimal 

policy. Lemma 5.3.1 implies that the states of E\E are transient under all 

average optimal policies and that in the recurrent states i the chosen ac­

tions belong to A(i). Hence, in the second part of the algorithm we restrict 

ourselves to the states of E and the actions of A(i), i EE. 

We want to solve a second Markov decision problem with state space E 

and action sets A{i), i EE. Therefore, for every i EE we remove the ac­

tion ai from A(i) when L \~ p > 0. Hence, using the procedure stated 
jEE E iaij 
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below, we obtain a subspace E of E and subsets A(i) of A(i), i EE, such 

that Eis closed under any policy which takes actions only from A(i), i EE. 

Procedure 

~: If p, . = 0 for all i EE, a E A(i), j E E\E: STOP. 
iaJ 

Otherwise, go to step 2. 

step 2: Take i EE, a E A(i), j E E\E such that p, . > O; 
iaJ 

A(i) := A(il\{a}; 

If A(i) = 0, then E := E\{i}; 

Go to step 1. 

For any policy f 00 such that f(i) E A(i), i EE, we denote by f~ the 

restriction to E; similarly, we denote by¢, u*, r(f),P(f) and p*(f) the res-

* * triction to E of¢, u, r(f), P(f) and P (f) respectively. 

(X) 

LEMMA 5.3.2. Let f be any pure and stationary average optimal policy. Sup-

pose that the sets E and A(i) are the sets obtained by the above procedure. 

Then, 

(i) R(f) CE and f(i) E A(i), i E R(f). 

(ii) The policy f7 defined such that 

:= {ai E A(i) 

f(i) 

satisfies: 1. ¢i <'t7l 

2. ui <'t7l 

PROOF. 

i E E\R(f) 

elsewhere 

~ 
¢i, iEE. 

"'* * "' ~·* ui - (P (f 1)u \• i E R(f) . 

(i) Lemma 5.3.1 implies that R(f) c E and f(i) E A(i), i E R(f), where E 

and A(i), i E R(f), are the sets before the above procedure is applied. 

Since E\E c T(f), it follows that if f(i) E A(i) is removed during the 

procedure, then i E T(f). Consequently, after the performance of the 

procedure, we still have that R(f) c E and f(i) E A(i), i E R(f). 

(ii) Since Pi.(f1) pi 0 (f) for every i E R(f), it follows that the ergodic 

sets under P(f) are also ergodic sets under P(f1) (possibly there are 

* * some additional ergodic sets under P(f1 )). Hence, pi 0 (f1) = pi 0 (f) for 

every i E R(f), and consequently (see formula (2.4.3)) di
0
(f1) = 

di 0 (f) for every i E R(f). Then, using lemma 5.3.l(iii), we can write 
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i E R(f). 

Furthermore, we have since f 1 (i) E A(i), i EE: 

0 and 
,....,, ,....,, ,...,* 
¢+(I-P(f1))u r(f). 

Hence, 

i E E. 

This completes the proof of the lemma. D 

Consider an average optimal policy f 00 E C0 • Lemma 5.3.2 implies that 

for the maximization of ui (f00
), i E R(f), we may replace f 00 by f7. Because 

we want to find in this second part of the algorithm the bias-value-vector 

u in the states that are recurrent under at least one bias optimal policy, 

we may restrict ourselves to the action sets A(i), i EE. For any policy 
00 

f such that f(i) E A(i), i EE, we have 

(5. 3. 3) * ~ ~ P (f)r(f) 
*...., ,....,, ,....,, ,....,,* 

P (f) {¢ + (I-P(f) )u } 

and 

(5.3.4) u(f) D(f}r(f) D (£){¢ + (I-P (f)) u*} "'* *,....,, ....,* 
u - p (f) u . 

From lemma 5.3.2 it also follows that maximizing u. (f00
) is equivalent to 

l. * ,..,, "'* * ...., ,....,,* maximizing - P (f)u. Notice that the maximum value of - P (f)u is the 

AMO-value-vector, say~, of the Markov decision problem with state space 

E, action sets A(i), i E 

i,j EE and rewards r. 
ia 

E, transition probabilities p .. := p, ., a E A(i), 
~* ~ ~ iaJ iaJ 

:= -u., a E A(i), i EE. 
l. * * From theorem 4.2.2 it follows that if(~ ,v) is an optimal solution of 

the linear program 

aEA(i), 

(5. 3.5) 

aEA(i), 

* then ~ ~-
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Theorem 4.2.4 implies that an average optimal policy for this second 

AMD-model can be found by the following rule: 

Let (t*,s*) be an extreme optimal solution of the linear program dual to 

program (5.3.5), i.e. the linear programming problem 

0 , lila(oij-piaj)tia 

latja + I.I (o .. -p, .ls. 13., 
i a iJ iaJ ia J 

"""" Then any policy f*, where 

(5.3.6) {

t* > 0 
ia· 

f*(i) := ai E A(i) such that * i 

is an average optimal policy. 

s. > 0 
iai 

tia'sia ~ 0, a E A(i), 

i E E * 
t 

i E E\E *' 
t 

THEOREM 5.3.1. Let f be any average optimal policy for the AMD-model 
* 

jEE} 
j E ~ • 
iEE 

(E,A,p,r) and let f 00 be a policy for the Markov decision problem (E,A,p,r) 
* 

such that f*(i) = f*(i), i EE. Then, 

for every state i which is recurrent under at least one bias optimal policy. 

00 

PROOF, Let g be any bias optimal policy for the Markov decision problem 

(E,A,p,r). Define the policy g7 by 

A(il i E E\R(g) 

elsewhere. 

~00 

Let g 1 be the restriction of g1 to E. Then, by lemma 5.3.2, 

(5. 3. 7) U, 
i 

~* 
U, 

i 
i E R(g). 

Since Eis closed under P(f*), it follows from (2.4.3) that 

i EE. 
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BeCause f is average optimal in model cE,A,p,r), we can write, using (5.3.4), 
* 

0, 

u.(f) ~* * ~ ~* (5.3.8) U, ? u. (f ) u. - (P (f ) u ) . ? 
l. l. * l. * l. * l. 

~* * ....., rv* u (P (gl)u )i, i E E. 
i 

Then, (5.3.7) and (5.3.8) imply that 

i E.R(g) 1 

which completes the proof. D 

0, 

REMARK 5. 3 .1. The policy f * ,,efined in the above theorem is bias cptimal 

for the states that are recurrent under at least one bias optimal policy. 

Unfortunately, this set of states is unknown; we only :,.now that it is a 

subset of E. Moreover, (5.3.8) implies that 

* ~ ~* (P (f )u ) . 
* l. 

i EE. 

DEFINITION 5.3.1. A vector z E IRN is said to be bias superharmonic if 

{1;'' ij-piaj) "J ? r. cj,i a E A (il, i E E 
ia 

(5.3.9) 
* z. ? U, + 1/J. i E E, 

l. l. l. 

where cj,, 

section. 

* U I 1/J, E and A(i) are as defined in the previous part of this 

THEOREM 5.3.2. The bias-value-vector u is the smallest bias superharmonic 

vector. 

PROOF. We first show that u is bias superharmonic. We have already seen in 

remark 5.3.1 that 

* U, ? U, + 1/J, I 
l. l. l. 

i EE. 

Next, we assume that 

(5. 3.10) for some i EE and a E A(i). 
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Let g be a bias optimal policy. Then, using theorem 2.4.1, we can write 

(5.3.11) (I-P (g)) u (I-P(g))D(g)r(g) * (I-P (g))r(g) r(g)-<j,. 

00 

Define the policy gl by 

{:(j) 
j "f' i 

gl (j) := 

j i. 

Since g 1 (j) E A(j), j EE, we have p*(g1)¢ = <j,. The transition matrices 

P(g) and P(g1) only differ in row i. Hence, (5.3.10) and (5.3.11) imply 

j "f' i. 

Suppose that i E T(g1). Then R(g1) c R(g) and, consequently 

(5.3.12) u', 
J 

Hence 

(5.3.13) o. 
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Since i E T(g1), it follows from (-2.4.3) that dii(g1) > 0. Then, we obtain 

implying a contradiction. 

* If i E R(g1), then pii(g1) > 0, and consequently 

0 

U,, 
l. 

implying also a contradiction. Therefore, it has been shown that u is a 

bias superharmonic vector. 

Let z also be a bias superharmonic vector. Assume that 
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[(I-P(g})z]. > r. (g)-(j>, 
1 1 1 

for some i E R(g). 

Then, 

0 

which yields a contradiction. Hence, 

{
[ (I-P(g})z]i 

[(I-P(g})z], 
1 

i E R(g) 

i E T(g). 

Since D(g)).i ~ 0 for i E T(g), we obtain 

D(g)r(g) S D(g){(I-P(g))z+(j>} 

o, 

* If i E R(g) ,· then (5.3. 7) and (5.3.8) imply that u1 "' ui + 1/Ji. Because z 

is bias superharmonic, we get zi ~ ui, i E R(g). Consequently, 

Hence, we have shown that u is the smallest bias superharmonic vector. D 

REMARK 5.3.2. The property of bias superharmonicity depends on the value 

of u* which is found in the optimal solution of program (5.3.1). However, 

the property of being the smallest bias superharmonic vector is independent 

of which optimal solution is found. 

REMARK 5.3.3. The result of theorem 5.3.2 is related to the functional equa­

tions of undiscounted Markov decision theory (cf. SCHWEITZER & FEDERGRUEN 

[1978]). 

From theorem 5.3.2 it follows that the bias-value-vector u can be 

found as the optimal solution of the following linear programming problem 

(5.3.14) 

The dual program is 
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(5.3.15) 

j € E 

~· x. ~ O, a€ A(i), i € E; yi ~ 0, i € E. 
ia 

The next theorem shows that a pure and stationary bias optimal policy 

can be obtained from an optimal solution of the linear program (5.3.15). If 

we solve this linear program by the simplex method, then an extreme optimal 

solution is obtained and, furthermore, we obtain the bias-value-vector u as 

the optimal solution of program (5.3.14). The solution of this pair of dual 

linear programs will be the third part of the algorithm. 

THEOREM 5,3.3. Let (x*,y*) be an extreme optimal solution of program (5.3.15). 

Suppose that~ is the policy defined in (5.3.6). Then, the pure and 

stationary policy g:, where 

is bias optimal. 

such that x~ > 0 
iai 

~ * iEE :={j,;:Elu.=u.+ljiJ.} * J J 

PROOF. Suppose that j,;: E\E*. Then, the complementary slackness property 

of linear programming (corollary 1.3.1) implies that y~ = 0. From the con­
J 

straints of program (5.3.15) it follows that 

00 

Hence, the policy g* is well-defined. 

The proof of this theorem has the same structure as the proof of theorem 

4.2.4, i.e. we first prove three separate propositions and then we complete 

the proof of the theorem. 

PROPOSITION 5.3.1. Let f: be any policy for the Markov decision problem 

(E,A,p,r) such that. f* (i) f (i), i € E. Then, 
* 

i € 'if 
* 
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PROOF. Notice that from the construction of E it follows that Eis closed 

under P(f*). Hence, (P(f*)u) 1 .. = (P(f )u). and (P*(f )u). = (P*(f )u)., i EE, 
* ]. * ]. * ]. 

where u is the restriction of u to the states of E. Furthermore, (5.3.3) 

* ~ implies that [p (f )r(f )]. = ¢., i EE. Suppose that u.-(P(f )u). ;ofr.(f)-¢. 
* *l.]. J * J J J 

f.or some j EE*. Then, the constraints of program (5.3.14) imply that 

and 

u -
i 

i E E 
* 

u. - (P (f ) u) . > r. (f ) - ¢., where j E E*. 
J * J J * J 

If j E R(f*), then we get a contradiction, namely 

0 > [p* (f ) (r(f )--<!:) J. * ., J 

Consequently, we have 

From formula (2.4.3), it follows that 

o. 

d,k(f) '.2'.0, 
J * 

and d,.(f) > 0. 
JJ * 

Hence, we can write, using the results of theorem 2.4.1, 

(5. 3 .16) u,(f) 
J * 

* u. - (P (f ) u) . :'> 
J * J 

U, - (P*(f )u(f )) , = u,. 
J * * J J 

Since f: is an average optimal policy in the AMO-model (E,A,p,r), it follows 

from (5.3.4) that 

(5. 3. 17) u,(f) 
]. * 

* u, +i/J. 
]. ]. 

i E E • 
* 

Because j EE*, (5.3.16) is contradictory to (5.3.17). This completes the 

proof of the proposition. 
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PROPOSITION 5.3.2. E* is closed under P(g*l. 

00 

PROOF. Let f* be any policy for the Markov decision problem (E,A,p,rl such 

that f*(il = f*(il, i EE, Since g*(il = f*(il, i EE*, it is sufficient to 

prove that E* is closed under P(f*l. By proposition 5.3.1, (5.3.17l and 

theorem 2.4.1, we have for any i EE* 

0 u. - {P(f lul. -r. (fl +<P. 
1 * 1 1 * 1 

u. (f00 l +[P(f l (u(f00 l-ul]. - (P(f lu(f00
)) .-r. (f ) + <P 1. 

1 * * * 1 * * 1 1 * 

[P(f l (u(f00 )-ul J. + [{D(f l (I-P(f ))-r+P* (f l }r(f ) J. 
* * i * * * * i 

[P(f l (u(f00l-ul]. 
* * 1 

Since u. (f00 l -u. < 0 for every j E E\E*, it follows that p,. (f) = 0, i EE , 
J * J 1J * * 

j E E\E*. Because f* (i) E A(il, i E E, it follows from the construction of 

E that Eis closed under P(f*). Hence, E* is closed under P(f*). 

PROPOSITION 5.3.3. The states of E\E are transient in the Markov chain 
* 

PROOF. Suppose that there is a state j E E\E* which is recurrent under P(g*l. 

Since E* is closed under P(g*l, there has to exist a nonempty ergodic set 

Jc E\E*. Let J = {j 1,j 2 , ... ,jm}. The constraints of program (5.3.i5l imply 

that 

and 

l - X aEA(jl ja 

j E E 

j E E\E. 

Since (x*,y*l is an extreme solution and since the linear program has N 

constraints, it follows that we have in each state either y~ > 0 and 
~* - ~* - J x. = 0 for all a E A(jl or x. > 0 for exactly one a E A(j), say for the 

Ja Ja 
action a .• From the complementary slackness property of linear programming 

J 
it follows that y~ = 0 for every i E E\E. Hence, in every state of J we 

1 * ~* have exactly one positive variable, namely xj.a. , i = 1,2, ... ,m. Consequent-
. 1 J. 

ly, by theorem 1.2.2, the vectors {q1 , i = 1,2,.~.,m} where 
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o . k - pJ. · a . k' 
Ji 1 Ji 

k 1,2, ••• ,N 

00 

are linearly independent. The definition of g* implies that g (j.) = aj 1., . * 1 1 
i 1,2, .•• ,m. Since J is closed under P(g*), we have qk = 0, k i J, 

i 1,2, ••• ,m. Hence, the contracted (i.e. delete the components k € E\J 

which are all zeroes) vectors {bi, i = 1,2, ••• ,m}, where 

1,2, ... ,m, 

are also linearly independent. On the other hand, we have 

~m bi= ~m (~ - ) 1 ~m 0 l 1 l 1 u • • p. j = - lk-lpj . = , 
k= k k= JiJk Jiaji k - iajiJk 

which contradicts the independency of the vectors {bi, i = 1,2, ••• ,m}. 

This completes the proof of the proposition. 

~* We can complete the proof of the theorem as follows. Since x. (") > 0, 
ig* 1 

i € E\E*, it follows from the complementary slackness property that 

(5.3.18) 

P(g*) and P(f*), where f: is the policy of proposition 5.3.1, have the same 

rows i for i € E*. Consequently, (5.3.18) and proposition 5.3.1 imply that 

Since g*(i) € A(i), i € E, we have~ * P (g*)~ and, consequently 

D(g )~ = D(g )P*(g )~ = 0. 
* * * 

Then, 

From proposition 5.3.3 we get R(g*) c E*. Moreover, because E* is closed 

under P(g*) and, by (5.3.17), ui = ui <1=> = ui (g), i € E*, we obtain 

u, 

00 

i.e. g* is a bias optimal policy. □ 



179 

Above, we have derived that a pure and stationary bias optimal policy 

can be determined by the following algorithm. 

ALGORITHM XXIII for the construction of a pure and stationary bias optimal 

policy (general case). 

step la: Take any choice for the numbers Sj such that Sj > 0, j EE, and 

* * step lb: Compute an optimal solution (¢ ,u) of the linear programming 

problem 

step le: Determine the following sets: 

A(il := {a E A(i) I ljEE( 0ij-piaj)¢; o}, i EE. 

A(i) := {a E A(il I * I * ¢i + jEE(cSij-piaj)uj ria}' i EE. 

E := {i E El A(i) ~0}. 

step ld: If p .. = 0 for all i EE, a E A(i), j E E\E, then go to step 2a. 
iaJ 

Otherwise, go to step le. 

step le: Take i EE, a E A(i), j E E\E such that p, . > O; A(i) := A(i)\{a}; 
iaJ 

if A(i) = 0, then E := E\{i}; go to step ld. 

step 2a: Use the simplex method to compute optimal solutions (~*,v*) and 

* * (t ,s) of the pair of dual linear programming problems 

and 

=!li,E(-u:>!a,A(i)tia 
liEElaEA(i) (cSij-piaj)tia =O, jEE} 

laEA(i) tia +IiEElaEA(i) (oij-piaj)s~a=Sj,jE: 

t. ,s. 2'. 0 ,a E A(i) ,iEE 
1.a 1.a 
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respectively. 

step 2b: Take any policy f, .where 
* 

i E E * 
t 

i E E\E *" 
t 

* * * step 3a: Use the simplex method to compute optimal solutions z and (x ,y) 

of the pair of dual linear programming problems 

minimize ljEESjzj 

ljEE(oij-piaj)zj 
* subject to ~ ria qi . , 
l. 

a E A Ci), j E E 

* * z. ~ u. + 1jJ i, i E E 
l. l. 

and 

maximize 

xia ~ O, a E A(i), i EE; yi ~ 0 , i EE 

respectively. 

step 3b: Determine the set E* 
00 

step 3c: Take g* such that 

i E E 
* 

The algorithm is displayed in the following simple example. 

EXAMPLE 5.3.1. Consider the model of figure 5.3.1. 

The following calculations can easily be verified. 

step la: We define S1 :=S2 :=S 3 :=S4'= 1/4. 

step lb: qi*= (1,1,1,l)T; u* = (2,1,0,6)T. 

step le: A(l)=A(2)=A(3)=A(4)={1,2}; 

A(l)=A(2)=A(3)={1,2}; A(4)=0 

E = {1,2,3}. 

4 

0 

Figure 5.3.1 

® 



step le: i=3, a=2, j =4: A(3) ={1}. 

step ld: 

step 2a: 

p, . = 0 for all i E ·E, a E A(i), j E E\E. 
iaJ 

ip* = (-1/2,-1/2,-1/2)T; v* = (1/2,0,1/2)T; 
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* * * * * * * * * * 
tll = t12 = t21 = 0, t22 = t31 = 3/8; s11 = 1/4, s12 = s21 = s31 = 0, s22 = 1/8. 

step 2b : f * ( 1 ) = 1 , f * ( 2) = 2 , f * ( 3) = 1. 

step 3a: * T* * * * * * * z = (3/2,1/2,-1/2,9/2) ; _x 11 =x12 =x21 =x22 =x31 =x32 =x42 =O, 

* * * * x41 = 1/4; y1 = 1/2, y 2 = 1/4, y3 = 1/4. 

step 3b: E* = {1,2,3}. 

5.4. LINEAR PROGRAMMING APPROACH (SPECIAL CASES) 

In this section we present three special cases which were also consid­

ered for the average reward criterion (see the sections 4.5 and 4.6). In 

the weak unichain case (i.e. when assumption 4.5.1 is satisfied), the lin­

ear prograunning problems which occur in the steps lb and 2a can be simpli­

fied. For the problem used in step lb, we have presented a simpler program 

in section 4.5. For the problem studied in step 2a, we take actions from 
~ ~ A(i), i EE. Hence (cf. formula (5.3.3)), any pure and stationary policy 

is average optimal in the AMO-model (E,A,p,r). Consequently, the assumption 

of weak unichainedness is also verified in the AMO-model (E,A,p,r)- of step 

2a. Moreover, since the AMO-value-vector~ of model (E,A,p,r) has identical 

components, we have A(i) = A(i) for every i EE. Therefore, the algorithm 

for the weak unichain case can be formulated as follows. 

ALGORITHM XXIV for the construction of a pure and stationary bias optimal 

policy (weak unichain case). 

step la: Compute an optimal solution (~*,u*) of the linear prograunning 

problem 

A A t A 
minh I ~ + l . E ( o .. -p. . ) u . 

JE J.J J.aJ J 
a E A(i), i EE}. 

step lb: Determine the following sets: 

A(i) * t * := {a e: A(i) 14> + l· E(O .. -p, .)u. 
JE J.J iaJ J 

i EE. 
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E := {i E EJA(i) ~ 0}. 

step le: If p, . = 0 for all i EE, a ( A(i), j E E\E, then go to step 2a. 
iaJ 

Otherwise, go to step ld. 

tep ld: Take i EE, a E A(i), J' E E\E such that p .. > O; A(i) :=A(i)\{a}; s iaJ 
if A(i) = 0, then E := E\{i}; go to step le. 

* * * step 2a: Use the simplex method to compute optimal solutions (W ,v) and t 

of the pair of dual linear programming problems 

a E A(i), 

and 

r 
mail,,i(-u;)!a,A(i)tia 

respectively. 

* 

I ~I ~ t iEE aEA(i) ia 

step 2b: Take f*(i) such that tif*(i) > O, i E Et*; 

Let E := E *" 
0 ~ t 

step 2c: If E 0 = E, then go to step 3a. 

Otherwise, go to step 2a. 
step 2d: Take i E E\E, a E A(i), j E E such that p, . 

0 0 iaJ 
f(i) := a; E := 

0 
E u{i}; 

0 
go to step 2c. 

> 

i EE} 

O; 

* step 3a: Use the simplex method to compute optimal solutions z and 

* * (x ,y) of the pair of dual linear programming problems 

and 

maximize 

respectively. 

* * "' u. + w 
]. 

a E A(i), 

1, 

Xia"' o, a E A(i), i EE; Yi"' o, 

j E E 

i E E 



{i ~ * * + iµ*}. step 3b: Determine the set E := E Elz. u. 
* 1. 1. 

00 

step 3c: Take g* such that 

{ f (i) i E E 
g* (i) 

a~ such 

* := 
* E E\E that x. > o, i 

1. iai * 

In the completely ergodic case (i.e. when assumption 4.6.1 is satis­

fied) the algorithm becomes rather simple. Since all states are recurrent 

under every pure and stationary policy, lemma 5.3.1 and theorem 5.3.1 im­

ply that E = E and that f, defined in step 2, is a bias optimal policy. 
* 

Hence, step 3 can be deleted and we obtain the following algorithm. 

ALGORITHM XXV for the construction of a pure and stationary bias optimal 

policy (completely ergodic case). 

* * step la: Compute an optimal solution (~ ,u) of the linear programming 

problem 

step lb: Determine 

~ r. , 
ia 

a E A (i) , i E E}. 

i EE. 

* step 2a: Use the simplex method to compute an optimal solution t of the 

linear programming problem 

~co * step 2b: Take f* such that tif (i) > 0, i EE. 

* 

183 

We close this chapter with the presentation of the algorithm for the 

unichain case, i.e. when assumption 4.6.2 is satisfied. From the results of 

the sections 4. 6 and 5. 3 it is straightforward thi'it in th.is case a bias op­

timal policy can be determined by the following algorithm. 
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ALGORITHM XXVI for the construction of a pure and stationary bias optimal 

policy (unichain case). 

* * step la: Compute an optimal solution(~ ,u} of the linear programming 

problem 

a E A(i), i E E}. 

step 1b: Determine the following sets: 

i EE. 

E := {i E EjA(i) ~ ~}. 

step le: If p, . = 0 for all i EE, a E A(i}, j E E\E, then go to step 2a. 
iaJ 

Otherwise, go to step ld. 

step ld: Take i E E, a E A(i), j E E\E such that p, . > 0; A(i} := A(i} \{ah 
iaJ 

if A(i} =~.then E := E\{i}; go to step le. 
* * * step 2a: Use the simplex method to compute optimal solutions (lj) ,v) and t 

of the pair of dual linear programming problems 

min{~I~ I ~ * + jEE(oij-piaj}vj ~ -ui, a E A(i), i EE} 

and 

=i!,,a<-u~J!a,Ac1,t1a 
liEElaEA(i} (oij-piaj)tia o, j<E} 
I ~I ~ t 1 

iEE aEA(i) ia 

tia ~ o, aEA(i} ,iEE 

respectively. 
,..,.., 

step 2b: Take f 
* 

such that 

* r where t, > o, i E Et* 

f* (i.} 

a:bitrarily 

ia. 
J. 

:= 

i E E\E *" 
t 

step 3a: Use the simplex method to compute optimal solutions * z and (x * ,y*} 

of the pair of dual linear programming problems 



and 

respectively. 

step 3b: Determine the 
co 

ste12 3c: Take g* such 

a E A(i), 

~ 
Xia~ 0, a E A(i), i EE; Yi~ o, i EE 

{i ~ * set E := E Elz. 
* 1. 

that 

* = U, + 
1. 

1i/}. 

i E E 
* 

i E E\E 
* 
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j E E 
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CHAPTER 6 

TWO-PERSON ZERO-SUM STOCHASTIC GAMES IN WICH 
ONE PLAYER CONTROLS THE TRANSITION PROBABILITIES 

6,1, INTRODUCTION AND SUMMARY 

In this chapter we investigate a two-person zero-sum stochastic game. 

This game can be described as follows. Consider a system with a finite state 

space E = {1,2, ..• ,N} that is observed at discrete time points t = 1,2, .•.. 

If the system is in state i (at some time point t), then both players choose 

simultaneously an action from their own finite action sets A(i) and B(i) for 

player I and player II respectively. If in state i player I chooses action 

a E A(i) and player II action b E B(i), then the following occurs: 

1. Player I receives an immediate reward riab from player II. 

2. The next state of the system is chosen according to the transition 

probabilities piabj' where piabj ;,: 0 and Z:j piabj ~ 1 for every aE A(i), 

bEB(i), iEE. 

A two-person zero-sum stochastic game is denoted by a five-tuple (E,A,B,p,r), 

where 

Eis the state space 

A UiEE A(i) is the action space for player I 

B UiEE B(i) is the action space for player II 

p is a transition probability from E x Ax B to E 

r is a real-valued reward function on E x Ax B 

(ExAxB has to be interpreted as {(i,a,b) ]i EE, a E A(i), b E B(i)}). Sto­

chastic games are also called Markov games. If the action space for one of 

the two players consists of one element, then the game becomes a Markov 

decision problem. 

Let Ht denote the set of possible histories of the system up to time 

t, i.e. 



t 
A decision rule TI for player I at time tis a nonnegative function on 

Ht x A such that for every (i1 ,a1 ,b1 , .•. ,bt-l 'it) E Ht 

and 

t 

Tii1a1b1···bt-1itat 
0 
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1 . f 1 . f d · · 1 ( 1 2 A po icy R1 or payer I is a sequence o ec1s1on rues: R1 = TI ,TI, ••• , 

Tit, .•• ). A decision rule pt for player II at time tis a nonnegative func­

tion on Ht x B such that for every (i 1 ,a1 ,b1 , •.. ,bt-l 'it) E Ht 

t 

Pi1a1b1 ... bt-1itbt 
0 

and 

1 2 
A policy R2 for player II is a sequence of decision rules: R2 = (p ,P , ... , 

pt, •.. ). If the decision rules of a policy are independent of the histories 

and the time points, then the policy is said to be stationary; furthermore, 

if the decision rules are nonrandomized, then the policy is said to be pure. 

For any pair (R1 ,R2) of policies for player I and player II, we denote 

by p:jab (R1 ,R2 ) the probability that - given that the system starts in state 

i - the system is at time tin state j and then the actions a and bare 

chosen by player I and player II respectively. Let {Xt' t = 1,2, ... }, 

{Yt' t = 1,2, ... } and {zt, t = 1,2, •.• } be the sequences of random variables 

denoting the observed states, the actions chosen by player I and the actions 

chosen by player II respectively. Then, we can also write 

The expected reward in the t-th period, when the policies R1 and R2 are 
t 

used and i is the initial state, is denoted by vi(R1 ,R2), i.e. 

The expected total reward over an infinite horizon, when the policies R1 
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and R2 are used and i is the initial state, is denoted by vi (R1 ,R2), i.e. 

T t 
Using the above notation we assume that limT-+<» Et=lvi (R1 ,R2) exists (pos-

sibly +oo or -oo). For a Markov game with as utility function the total re­

ward criterion we will use the name TMG-model. Player I wants to maximize 

his rewards and player II wants to minimize his payments. Hence, the aim 

* * is to find policies R1 and R2 such that 

(6.1.1) 

* * * * If R1 and R2 satisfy (6.1.1), then R1 and R2 are called optimal policies 

for player I and player II respectively. We a::e also interested in the value 

* * of v(R1 ,R2) which will be denoted by val (TMG) ,,:.nd is called the value of th-~ 

TMG-model or the value of the game. 

In section 6.2 we consider the total reward criterion under the contrac­

tion assumption as introduced in section 3.4. It is well-known that in this 

model the value of the game exists. We will see that, in general, the value 

of the game does not lie in the same field as the field generated by the data 

riab' piabj' i,j EE, a E A(i), b E B(i). In the simplex method only the op­

erations addition, subtraction, multiplication and division are used. Hence, 

in general, the value of the game cannot be computed by linear programming. 

If we assume that the transition probabilities only depend on one player, 

say player I, then it can be shown that the value as well as stationary 

optimal policies for both players can be computed by linear programming. 

For this reason we investigate the model in which one player controls the 

transition probabilities. We shall show that the value of the game is the 

smallest vector which satisfies a superharmonic property. Then, we can for­

mulate a pair of dual linear programs. Stationary optimal policies as well 

as val(TMG) can be obtained from optimal solutions of these linear programs. 

Hence, we can present an algorithm to compute these quantities by linear 

programming. 

Section 6.3 deals with the average reward criterion. The expected av­

erage reward over an infinite horizon, when the policies R1 and R2 are used 

and state i is the initial state, is denoted by ¢i (R1 ,R2) and defined by 
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* * This model is called the AMG-model. The policies R1 and R2 are said to be 

optimal for player I and player II respectively if 

(6.1.2) 

* * * * If R1 and R2 are optimal policies, then $(R1,R2) is the value of the game, 

denoted by val(AMG). 

Also for the AMG-model, we shall assume that only one player controls 

the transition probabilities. We will present a pair of dual linear program­

ming problems, and we will prove that stationary optimal policies as well 

as the value of the game can be obtained from optimal solutions of these 

linear programs. Hence, we can formulate a finite algorithm to construct 

stationary optimal policies. Furthermore, the linear programming approach 

provides a new proof for the existence of the value of a stochastic game 

in which one player controls the transition probabilities. We close section 

6.3 by a description in which way the algorithm may be simplified in the 

unichain case. 

LEMMA 6.1.1. Let f be a real-valued function defined on XXY, where X and Y 

are given sets. Suppose that x* EX and y* E Y satisfy 

Then, 

PROOF. Since 

we have 

* * * * f(x,y) s f(x ,y) s f(x ,y) 

* * f(x ,y) sup Xinf Yf(x,y) XE yE 

for every x EX and y E Y. 

inf Ysup xf(x,y). YE XE 

for every x EX and y E Y, 

inf Ysup f(x,y) ~ inf Yf(x,y) YE XEX yE for every x EX. 

Consequently, 

(6.1.3) inf Ysup Xf(x,y) ~ sup Xinf Yf(x,y). YE XE XE yE 

* * * * * Since f(x,y) s f(x ,y) for every x Ex, it follows that f(x ,y) 

* supxEXf(x,y ). Hence, we can write 

(6.1.4) * * * f(x ,y ) s f(x ,y), y E Y. 
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Similarly, we can derive that 

(6. 1.5) sup xinf Yf(x,y) ~ inf f(x*,y) 
XE yE yEY 

Combining (6.1.3), (6.1.4) and (6.1.5) yields 

* f(x,y ) s sup inf f(x,y) 
XEX yEY 

s inf Ysup f(x,y) 
YE XEX 

* 

* * * f(x ,y ) ~ f(x,y ) , x E X. 

s f(x ,y) for every x EX and y E Y. 

Hence, 

* * f(x ,y) = sup inf f(x,y) 
XEX yEY inf Ysup Xf(x,y), YE XE 

completing the proof of the theorem. D 

COROLLARY 6.1.1. 

{i) * * If (R1 ,R2) is a pair of optimal policies for the TMG-model, then 

* * (ii) If (R1 ,R2) is a pair of optimal policies for the AMG-model, then 

0, 

sup inf ~(R1 ,R2) 
Rl R2 

Let TI and p be stationary policies for player I and player II res-

pectively. We introduce the following notations: 

ria{p) := lbriabpib a E A(i), i E E, 

rib (TI) := l r.abTI. b a 1. 1.a E B(i), i E E, 

r.(TI,p) 
]. 

:= lalbriabTiiapib i E E, 

piaj(p) := lbPiablib a E A(i), i,j E E, 

pibj (TI) := laPiabjTiia b E B (i), i,j E E, 

pij (TI,p) := lalbPiabjTiiapib i,j EE. 
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00 

REMARK 6.1.1. Let p be any stationary policy for player II. Consider the 

Markov decision problem (E,A,p,r), where 

E := E, 

A(i) := A(i), i E E, 

piaj := Piaj(p), a E A(i), i,j E E, 

ria := r. (p), a 
ia 

E A(i), i E E. 

1 2 
Let R1 = (TT ,TT, ••. ) be any policy for player I. Then R1 induces a policy 
~ ~1 ~2 ~ ~ ~ ~ R1 = (TT ,TT, .•. ) for the Markov decision problem (E,A,p,r), where 

:= ll? oo(Y =a I x1=i 1 ,Y1=a1 , ..• ,Y 1=a 1 ,x =it) 
Rl, P t t t- t- t 

for every t E JN and every history (i 1 ,a1 , .•• ,at-l'it). Then, by induction 

on t, it can easily be verified that 

(6.1.6) 

for every t E JN, every history (i1 ,a1 , ••• ,at-l 'it) and every at E A(it). 

(6.1.6) implies that 

for every (i 1 ,a1 , ••• ,it,at,bt), t E JN. Therefore, the policies (R1 ,p
00

) 

and (R1 ,p 00
) are equivalent for any utility function. However, the policy 

R1 is a feasible policy for the Markov decision problem (E,A,p,r). If 

v(R1) and ~(R1) denote the expected total reward and the expected average 

reward respectively in the Markov decision problem (E,A,p,r), then we have 

1. ;(R1) = v(R1 ,p 00
) 

2. supR1v(R1 ,p00
) = supTTv(TT00 ,p 00

) 
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3. i1i1) = $(R1 ,p00
) 

4. supRl $(Rl,poo) = supTT$(rroo,poo). 

Furthermore, changing the roles of the players I and II, we obtain 

inf v(rr 00 ,P 00
) 

p 

inf $(TT00 ,p00
). 

p 

6.2. TOTAL REWARD CRITERION 

In this section we consider the TMG-model under the following cc:::intrac­

tion assumption (cf. assumption 3.4.1). 

ASSUMPTION 6.2.1. There exists a vectorµ>> 0 and a scalar u c [0,1) such 

that 

Ll µ , , 
l 

a E A(i), b E B(i), i E E. 

Assumption 6.2.1 guarantees that the expected total reward is well­

defined for any pair (R1 ,R2 ) of policies. The following theorem has been 

proved already in 1953 by SHAPLEY [1953] for the discounted Markov game, 

i.e. the TMG-model under assumption 6.2.1 withµ= e. The extension of the 

theorem to general positive µ-vectors is straightforward (cf. VAN DER WAL 

& WESSELS [1977]). 

THEOREM 6.2.1. There exist stationary optimal policies for both players. 

The above theorem implies that val(TMG) exists. The next example will 

show that, in general, val(TMG) is not an element of the field generated 

by the data r.ab, p,ab'' a E A(i), b E B(i), i,j EE. Hence, this val(TMG) 
l. l. J 

cannot be computed as solution of a linear program which has all coeffi-

cients in this field. Since we study in this monograph linear programming 

methods, we shall not di cuss the general TMG-model, but a model with an 

additional assumption. Under this assumption, we can compute val(TMG) as 

well as stationary optimal policies by linear programming. The TMG-model 

under this additional assumption was first studied by PARTHASARATHY & 

RAGHAVAN [1977]. The following example is also due to them. 

EXAMPLE 6.2.1. Consider the discounted TMG-model of figure 6.2.1 with 

a= 0.5. The interpretation of the figures for TMG-models is similar to 



the interpretation of the 

figures for TMD-models 

except that a positive 

piklj is indicated by 

an arc from state i to 

state j with k times• 

and l times ►. 

Figure 6.2.1 

Let y := val(TMG). Since v 2 (R1 ,Ri) = 0 for all R1 ,R2 , we have y2 = 0. It 

can be shown that y 1 is the value of the matrix game with pay-off matrix 

Then, using results from the theory of matrix games (e.g. KARLIN [1959] 

p.50), one can find that 

(l+½y 1) • (3+½y 1) 

(l+½yll+( 3+½yl), 
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implying that yl = ½(-4+/i3). Hence, [val(TMG) ]1 is not an element of the 

field of the rational numbers, i.e. the field generated by the data of the 

above problem. 

DEFINITION 6.2.1. A vector y E :rn.N is said to be TMG-superharmonic if there 

exists a stationary policy p for player II such that 

a E A(i), i E E. 

THEOREM 6.2.2. val(TMG) is the smallest TMG-superharmonic vector. 

*00 *00 
PROOF. Let (TI) and (p) be stationary optimal policies for player I and 

player II respectively (theorem 6.2.1 implies the existence of such a pair 
* 00 of policies). If player II uses policy (p) , then the stochastic game may 

be interpreted as a Markov decision problem (see remark 6.1.1). Furthermore, 
* 00 * 00 since (p) is optimal for player II, we have supR1v(R1,(p) ) = val(TMG). 

Hence, the TMD-model has TMD-value-vector val(TMG). Consequently, theorem 

3.4.1 implies that val(TMG) is TMD-superharmonic, i.e. 

aEA.(i), iEE. 
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Therefore, val(TMG) is also TMG-superharmonic. 

Suppose that y is another TMG-superharmonic vector with corresponding 

stationary policy p00
• Then, it follows from definition 6.2.1 that y:2'.r(TT*,p)+ 

* * -1 P(TT ,p)y. Assumption 6.2.1 and theorem 2.3.1 imply that (I-P(TT ,p)) = 
00 t-1 * 

It=lp (TT ,p). Hence, 

y <'. L°' t-1 * * * 00 oo t=lp (TT ,p)r(TT ,p) = v((TT ) ,P ) • 

* 00 

Since ( TT ) is optimal for player I, we have 

y <'. 
* 00 00 

v((TT ) ,P ) <'. 
*00 *00 v((TT) ,(p)) val(TMG). 

This completes the proof. D 

From theorem 6.2.2 it follows that val(TMG) is the optimal solution 

of the following nonlinear programming problem in which the objective func­

tion is linear and there are linear as well as quadratic constraints (cf. 

ROTHBLUM [1979]): 

minimize 

a E A(i), i EE, 

1 i E E, 

bEB(i),iEE, 

where S. > 0, j EE, are given numbers. 
J 

To obtain a linear program we assume that we have in the remaining 

part of this section the following assumption. 

ASSUMPTION 6.2.2. The transition probabilities piabj' j EE, do not depend 

on b for all i EE, a E A(i). 

Because of assumption 6.2.2, we will denote the transition probabil­

ities p,ab. by p, . and the transition matrix P(TT,p) by P(TT). Under this 
J.. J iaJ 

assumption we obtain the following linear programming problem 
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(6. 2 .1) 

Ibriabpib ? 0, 

IbPib 1 

Pib ? 0, 

a E A(i), i E: 

J i € 

b E B(i), i E: 

The dual linear programming problem is 

Iiia, 0ij-piaj,xia 13 . , j E: 

:} 
J 

(6. 2. 2) -{!.z - I r x + Z, :<,; 0 , b E B (i), i E: 
1. 1. a iab ia 1. 

Xia ? 0 a E A (i) , i E: 

THEOREM 6.2.3. Let (y*,p*) and (x*,z*) be optimal solutions of the linear 

programming problems (6.2.1) and (6.2.2) respectively. Define the station­
* 00 ary policy (TT) by 

a E: A(i), i E E. 

*00 *00 
Then, (TT) and (p ) are stationary optimal policies for player I and 

* player II respectively, and y is the value of the game. 

* PROOF. Theorem 6.2.2 implies that y is the value of the game. Since 

I x~ = 13. + I, I P. .x~ ? 13. > 0, 
a Ja J 1. a 1.aJ 1.a J 

j EE, 

* 00 the stationary policy (TT) is well-defined. From the constraints of prog-

ram (6.2.1) it follows that 

* * (I-P(TT))y ? r(TT,p) for every stationary policy TT . 

Since 
-1 

(I-P (TT)) 
00 t-1 

Et=lp (TT), we get 

(6.2.3) * y ~ 00 t-1 * 
? lt=lp (TT)r (TT ,p ) 

* * 

00 * 00 V(TT ,(p) ) for every stationary 

policy TT 00
• 

TTia > 0 if and only if xia > 0 and, consequently, the complementary slack-

ness property of linear programming (cf. corollary 1.3.1) implies that 

i E: E. 
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Hence, 

* * (I-P(n ))y * * r(n ,P ) , 

implying that 

* y * -1 * * (I-P(n )) r(n ,p ) * 0:, * co V ((11 ) , (p ) ) • 

Analogously to theorem 3.4.2, we can obtain 

T * -1 * [J3 (I-P(n )) J.•11. , 
i ia 

a e A(i), i e E. 

Since the optima of (6.2.1) and (6.2.2) are equal, we get 

00 

for every p • 

* 00 Hence, (p) is a stationary optimal policy in the Markov decision problem 
* 00 corresponding to policy (11) for player I. Consequently, 

* *00 00 00 

(6.2.4). y :::; v( (11 ) ,P ) for every stationary policy p • 

* 00 00 * 0:, * 00 Since supR1v(R1,(p) ) sup11v(n, (p ) ) and infR2v((n) ,R2) = 
inf v((n*) 00 ,p 00

) (see remark 6.1.1), it follows from (6.2.3) and (6.2.4) 
p 

that 

* 00 v(Rl, (p ) ) :::; * 00 * 00 * 00 v((n) ,(p) ) :::; v((n) ,R2) 

*00 *00 
i.e. (11) and (p) are stationary optimal policies for player I and play-

er II respective~y. D 

REMARK 6.2.1. Since the optimal policies and the value of the game are ob­

tained as optimal solutions of the linear programs (6.2.1) and (6.2.2), 

the components of the value of the game as well as the components of the 

optimal decision rules belong to the algebraic field generated by the re­

wards and the transition probabilities. This result is also shown by 

PARTHASARATHY & RAGHAVAN [1978]. 
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REMARK 6.2.2. In this remark we will show that the optimality of the poli-
* oo *00 cies {,r.) and (p) , which were defined in theorem 6.2.3, can also be 

established without the use of theorem 6.2.1. Then, we have a constructive 

proof for the existence of the value of the game and the existence of sta­

tionary optimal policies for the two players. This proof only needs results 

from the theory of linear programming and the theory of Markov decision 

processes. Consider the linear programming problem {6,2.2).By theorem 3.4.8, 

{x 
lila( 0ij-piaj)xia f3j, 

p := 

Xia 2: 0 I a E A(i), 

j E EE} 

i E 

is feasible and bounded, and it follows from the constraints of problem 

(6.2.2) that this linear program has a finite optimal solution. Again, let 

* * * * (y ,p) and {x ,z) be optimal solutions of the linear programs {6.2.1) and 

(6.2.2) respectively. Similarly as in the proof of theorem 6.2.3 it can be 

shown that 

* 00 * 00 * 00 v({,r ) , {p ) ) s v({,r ) ,R2) 

*00 *00 for all policies R1 ,R2 , i.e. {,r) and (p) are stationary optimal policies 

* and y is the value of the game. 

ALGORITHM XXVII for the construction of the value of the game and of sta­

tionary optimal policies for the two players in a contracting TMG-model 

in which one player controls the transition probabilities. 

step 1: Choose the numbers f3. such that f3. > 0, j EE. 
J * * J * * step 2: Compute optimal solutions (y ,p) and (x ,z) of the pair of dual 

linear programming problems 

lj< 0ij-piajlyj lbriabpib 2: 0, a E A(i), i E 

:} ru+,, lbPib 1, i E 
J J J 

Pib 2: 0, b E B(i), i E 

and 
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max{}:.z. ]. ]. 

lila( 0ij-piaj)xia 

- l r x + z a iab ia i 

respectively. 

step 3: val (TMG) * := y i 

* 00 (p) is an optimal policy for player II; 

be: B(i), i € 

a € A(i), i € 

* 00 * * . * (TI) , where Tiia := xia/Eaxia' a e: A(i), i e: E, is an optimal policy 

for player I. 

00 

For any stationary policy TI for player I, we define 

a€ A(i), i € E, 

i € E. 

The relation between the stationary policies and the feasible solutions of 

program (6.2.2) is given in the following theorem. 

THEOREM 6.2.4. 

(i) (x(TI),z(TI)) is a feasible solution of the linear programming problem 

(6.2.2) with 

l- z. (TI) : = min l- 8 . V. ( TI 00
, p 00

) • 

]. ]. p J J J 

(ii) If (x,z) is a feasible solution of problem (6.2.2), then x 

z::; z(TI), where 

a€ A(i), i € E. 

PROOF. 

x(TI) and 

(i) Theorem 3.4.2 implies that E.E (o •. -p, .)x. (TI) 8J., j e: E, and 
i a iJ iaJ ia 

xia(TI) ~ O, a e: A(i), i e: E. Furthermore, we have 

z. (TI) ::; r.b(TI) 'l x. (TI) =}: r.abxi (TI), be: B(i), i e: E. i i a ia a i a 

00 

Hence, (x(TI) ,z(TI)) is a feasible solution of program (6.2.2). Let p be 

any stationary policy for player II. Then, we can write 

(6.2.5) }:.z. (TI) = l- (}:bp,b)z. (TI) 
]. ]. ]. ]. ]. 

::; l- lbl r . abp . bx . (TI) i a i i ia 



~oo 
Define the stationary policy p by 

where b. 
l. 

Thus, 

(6.2.6) 

~ 
Pib := 

satisfies 

z. (ir) 
l. 

r b b. 
l. 

0 b 'I- b., 
l. 

r.b (ir)•L x. (ir), i . a ia 
i € E. 

l. 

l . z . ( 1f) = l- lbl r. b ( 1f) • P. b • x. ( 1f) ii i a i i ia 

From (6.2.5) and (6.2.6), it follows that 

I.z.(ir) 
l. l. 

\ 00 00 

min l . S . v . ( ir , p ) • 
p J J J 
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\ 00 ~oo 
l.S.v.(ir ,P ). 

J J J 

(ii) Let (x,z) be any feasible solution of problem (6.2.2). Theorem 3.4.2 

implies that x = x(ir). Hence, z satisfies 

z. $ l r.abx. (ir) = l r.abir. "l x. (ir) i a i ia a i ia a ia 
r.b(ir) •Ix. (ir) 

J. a ia 

for every b E B(i) and i EE. Consequently, 

z . s minb ( . ) r . b ( ir) • l x . ( ir) = z . ( 1f) , i EB i i a ia i 
i € E, 

which completes the proof of the theorem. D 

REMARK 6.2.3. The linear programming approach is also applicable to solve the 

constrained Markov game, where the constraints are imposed on the expected 

state-action frequencies for the player who controls the transitions. The 

analysis is analogous to the treatment of the constrained Markovian decision 

problem of section 3.3 (cf. HORDIJK & KALLENBERG [1981e]). 

6. 3 • A VE RAGE REWARD CRITERION 

In this section we deal with the AMG-model. As in chapter 4, we assume 

that the summation of the transition probabilities equals 1, i.e. ~-P. b.=1 
J ia J 

for every i EE, a E A(i), b E B(i). In the AMG-model, in general, there 

do not exist stationary optimal policies as shown in the following example 

due to GILLETTE [1957]. 
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EXAMPLE 6.3.1. Suppose that 

the AMG-model corresponding 

to figure 6.3.1 has station-
* 00 ary optimal policies (TI) 

* 00 and (p) for player I and 

player II respectively. 

Then, 

00 * 00 * 00 * 00 * 00 00 
</J(TI ,(p) ) s;<f,((TI) ,(p) ) s;<f,((TI) ,p) 

00 

2 

Figure 6.3.1 

for all stationary policies TI and p • Hence (cf. corolL,rv IS. 1. 1: , 

sup inf <f, ( TI 00
, p 00

) 
TI p 

inf sup </J(TI00 ,p 00
). 

p TI 

However, it can be verified that the model of figure C.3.1 satisfies 

1. 

® 

REMARK 6.3.1. BLACKWELL & FERGUSON [1968] have shown that for the model of 

figure 6.3.1 

inf sup <ti (R1,R2) = ½. 
R2 R1 1 

Moreover, they have proved that there do not exist optimal policies for the 

two players; only player II has an optimal policy. Recently, MONASH [1979] 

and MERTENS & NEYMAN [1980] have shown that any AMG-model satisfies the 

minimax theorem, i.e. 

DEFINITION 6. 3. 1 . A vec1 iµ E lRN is said to be AMG-superharmonic if there 

exist a vector t E lRN and a stationary policy p 00 for player II such that 

a E A(i), i E E, 

a E A(i), i E E. 

THEOREM 6.3.1. If there exist stationary optimal policies for both players, 

then val(AMG) is the smallest AMG-superharmonic vector. 



* CX) * co PROOF. Suppose that (u) and (p) are stationary optimal policies for 

the two players. Since player II uses a stationary policy, the AMG-model 

* may be interpreted as an AMD-model with rewards r. (p) and transition 
* ia * 00 

probabilities p, ,(p) (see remark 6.1.1). Because (p) is an optimal 
iaJ * 00 

policy for player II, we have furthermore, supR1~(R1,(p) ) = val(AMG). 

Consequently, val(AMG) is the AMD-value-vector in the corresponding AMD­

model. Theorem 4.2.2 implies that val(AMG) is AMD-superharmonic. Hence, 

val(AMG) is also AMG-superharmonic with corresponding stationary policy 
* 00 (p) for player II. 

Suppose that$ is also AMG-superharmonic with corresponding vector t and 

policy p00
• Then, definition 6.3.1 implies that 

* * $ ;;:: P (u ,p)$ and * * $;;:: r(u ,p) + (I-P(u ,p))t. 

Hence, we get 

* * * * $;;:: P (u ,p){r(u ,p) + (I-P(u ,p))t} 

* * * * CX) CX) P (u ,p)r(u ,p) = ~ ( (u ) ,P ) • 

* 00 Since the policy (u) is optimal for player I, it follows that 

* CX) CX) * CX) * CX) $;;:: ~((u) ,p);;:: ~((u) ,(p)) = val(AMG), 

i.e. val(AMG) is the smallest AMG-superharmonic vector. D 

From theorem 6.3.1 it follows that, if there are stationary optimal 

policies for both players, then the value of the game can be computed as 

the optimal solution of the following mathematical programming problem 

Ij< 0ij-IbPiabjPib>wj ;;:: o, a E A(i), iEE 

$i+Ij< 0ij-IbPiabjpib)tj-Ibriabpib ;;:: o, a E A(i), iEE 
min Ijr\wj 

IbPib 1, iEE 

Pib 
;;:: o, b E B(i), iEE 

where S. > 0, j E E, are given numbers. 
J 

REMARK 6.3.2. In BEWLEY & KOHLBERG [1978] sufficient conditions can be 

found for the existence of stationary optimal policies in an AMG-model. 

201 . 
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An example of such a condition is the case that assumption 6.3.1, which is 

stated below, is satisfied. 

Since we are interested in the computation of stationary optimal poli­

cies by linear programming, we have to impose an assumption to our model. 

Similarly as in the previous section for the TMG-model, we will assume that 

the transition probabilities depend only on the maximizing player. The fol­

lowing assumption holds for the remaining part of this section. 

ASSUMPTION 6.3.1. The transition probabilities p,ab·' j EE, do not depend 
l. J 

on b for all i EE, a E A(i). 

We will denote the transition probabilities piabj by piaj and the 

transition matrix P(TI,p) by P(TI). Theorem 6.3.1, remark 6.3.2 and assump­

tion 6.3.1 imply that val(AMG) can be found as the optimal solution of the 

following linear programming problem: 

(6.3.1) min 

lj (oij-piaj)t/Jj 

t/Ji+Ij< 0ij-piajltj-Ibriabpib 

lbPib 

The dual linear programming problem is 

2: 0, aEA(i) ,iEE 

2: 0, aEA(i) ,iEE 

= 1, iEE 

lila( 0ij-piaj)xia 0 I jEE 

jEE 
(6.3.2) 

laxja 
max I.z. 

l. l. - \' r X 
la iab ia +z. s 0 

l. 
bEB(i),iEE 

xia'yia 2: 0 , aEA(i) ,iEE 

* * * * * * THEOREM 6.3.2. Let (t/J ,t ,P) and (x ,y ,z) be optimal solutions of the 

linear programming problems (6.3.1) and (6.3.2) respectively. Define the 
* 00 stationary policy (TI) by 

ra/r x~ • 
a E A(i), i E Ex* 

* a ia 
1Tia := 

y:a/ * , a E A(i), i E E\E * 
laYia 

X 



Then, (TI*) 00 and (p*) 00 are stationary optimal policies for player I and 

* player II respectively, and$ is the value of the game. 

PROOF. From theorem 6.3.1 and BEWLEY & KOHLBERG [1978] it follows that$* 

is the value of the game. The constraints of program (6.3.2) imply that 

j € E. 
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* 00 Hence, the policy (TI) is well-defined. The constraints of program (6.3.1) 

imply for any policy TI00 

* * $ ~ P(TI)$ and 

Therefore, we obtain 

(6.3.3) * * * * 00 * 00 ~ p (TI)r(TI,P ) - p (TI) (I-P(TI) )t = <P (TI , (p ) ) 

00 * for any policy TI . Since TI• ia 
> 0 if and only if 

r a € A(i) Xia > 0 for and i € E * 
X 

Y:a > 0 for a € A(i) and i € E\E *' 
X 

if follows from the complementary slackness property of linear programming 

(cf. corollary 1.3.1), that 

o, 

o, 

Suppose that 

i € E\E *' 
X 

for some k € Ex* and ak € A(k). Then, the definition of TI* and the con­

straints of program (6.3.1) imply that 



204 

Hence, we get 

which is contradictory to 

Therefore, we have 

llaTT:a·{Ij(oij-piaj)~;} 

* * * * LaTTia•{~i + lj (oi ;-piaj)tj - lbriabpib} 

o, 

o, 

i.e. l . . [(I-P(TT ))~*Ji 0 

[ (I-P (TT*)) t *]. * * 
~i + r, (TT , p ) , 

l. l. 

i C E, 

i EE*' 
X 

i EE, 

i EE*. 
X 

since Ex* is the set of recurrent states in the Markov chain induced by 

* P ( TT ) ( see proposition 4. 3 . 3) , we obtain 

(6.3.4) * ~ 
* * * p (TT ) ~ * * * * P (TT )r(TT ,p ) 

*00 *00 
q> ( (TT ) '(p ) ) • 

* * Let xi:= l:axia' i EE. Suppose that E1 ,E2 , ..• ,Em are the ergodic sets 

and that Fis the set of transient states in the Markov chain induced by 

* P(TT). Let nk := !Ek!, k = 1,2, ..• ,m. Then, we shall show that 

* T T * k 
(x ) = y P (;, ) ' 

for certain vector y >> 0, where 

.l E F 

(6.3.5) 

1,2, ... ,m 



(choose n sufficiently large such that y >> 0). 

Then, definition (6.3.5) implies that 

(6. 3. 6) 

1 \ \ * * \ 
= ;;- lfEFlJ·EE plJ'(TT) + l· E y, 

= l· Ex~, 
JE k J 

k 1E k 1 

k = 1,2, ••• ,m. 

* * T From program (6.3.2) and the definition of TT it follows that (x) 
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* T * * T * T * * (x) P(TT) and, consequently, (x) = (x) P (TT). Because, by proposition 
* * * 4.3.3, xi= 0 for all i E F, and, by theorem 2.3.2, P.i (TT) = 0 for all 

i E F, we have 

(6. 3. 7) T * * (y p (TT ) \ o, i E F. 

For any i E Ek, we obtain using (6.3.6) 

(6.3.8) * x. 
1 

l * * * I * * * * * I * X p (TT ) - X p (TT ) = p,. (TT ) • . X. = 
j j ji - jEEk j ji 11 JEEk J 

* T Hence, (6.3.7) and (6.3.8) imply that (x) 

complementary slackness property yields 

Therefore, 

(6. 3. 9) 

' T * * * * l· (y P (TT ll .r. (TT ,P ) 
1 1 1 

T *oo *oo 
y ~ ( (TT ) , (p ) ) • 
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00 

For any stationary policy p for player II, we have in view of the con-

straints of the linear program (6.3.2) 

(6.3.10) 

* 00 If the policy (TT) is used by player I, then the AMG-model may be viewed 

as an AMD-model (cf. remark 6.1.1). Since y >> 0, it follows from (6.3.9), 

(6.3.10) and the property that an.optimal policy maximizes the rewards 

simultaneously for all initial states, that 

00 

(6.3.11) for every stationary policy p . 

*oo oo *oo *co *oo 
Since supR <j,(R1,(p)) supTT<j,(TT ,(p)) and infR2¢((TT) ,R2) = infp<j,((TT) 

00 1 
p ) (see remark 6.1.1), it follows from (6.3.3), (6.3.4) and (6.3.11) that 

*oo *co 
for all R1 ,R2 , i.e. (TT) and (p) are stationary optimal policies for 

player I and player II respectively. 0 

REMARK 6.3.3. Recently, we learned that another proof of the above theorem 

was developed by VRIEZE [1980] at the same time. 

* 00 REMARK 6.3.4. We can show the optimality of the stationary policies (TT) 
* 00 and (p) , defined in theorem 6.3.2, without using the results of BEWLEY 

& KOHLBERG [1978]. This provides a constructive proof for the existence of 

the value of the game and of stationary optimal policies. 

Consider the linear programming problem (6.3.2). Since any feasible 

solution (x,y,z) satisfies 

where M := maxi,a,briab' the linear program (6.3.2) has a finite optimum. 

Using the results of chapter 4, it is obvious that this linear program is 

also feasible. Hence, the pair of dual linear programming problems (6.3.1) 

* * * * * * and (6.3.2) has finite optimal solutions, say(~ ,t ,p) and (x ,y ,z) 

respectively. In the proof of theorem 6.3.2 we have shown that 

* 00 * 00 * 00 = <j, ( ( TT ) , ( p ) ) !> <j, ( ( TT ) ) , R2 ) 
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*00 *00 for all policies R1 and R2 , i.e. (TI) and (p) are stationary optimal 

policies for player I and player II respectively, and$* is the value of 

the game. 

ALGORITHM XXVIII for the construction of val(AMG) and of stationary optimal 

policies for the two players in an AMG-model in which one player controls 

the transition probabilities (multichain case) •. 

step 1: Take the numbers 6. such that· 6. > O, j EE, and E.S. = 1. 
J J * * * *J J 

step 2: Compute optimal solutions ($*,t*,p) and (x ,y ,z) of the pair 

of dual linear programming problems 

and 

;;,, 0, aEA(i) ,iEE 

$.+}:.(o. ,-pi .)t.-lbr,abp'b;;,,o, aEA(i),iEE 
i J iJ aJ J i i 

lbPib = 1, iEE 

pib;;,, 0, bEB(i) ,iEE 

lila(0ij-piaj)xia 0 , jEE 

max liZi 
laxja +lila(oij-piaj)yia aj, 

- l r x a iab ia 

respectively. 

* step 3: val(AMG) := $ ; 
* 00 

+ Z, :!, 
1 

0 bEB(i), 

xia'yia ;;,, 0 , aEA(i), 

(p) is an optimal policy for player II; 

* 00 * (TI) , where Tiia 

is an optimal policy for player I. 

a E A(i), i E Ex* 

a E A(i), i E E\E *' 
X 

jEE 

iEE 

iEE 

REMARK 6.3.5. From the linear programming approach it also follows that the 

value and the optimal stationary policies lie in the same .. ordered field as 

the data. This property was already shown by PARTHASARATY & RAGHAVAN [1978]. 

The first finite algorithm to compute stationary optimal policies was de­

veloped by FILAR & RAGHAVAN [1979]. Their algorithm seems to have a prohib­

itive amount of computations. 
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REMARK 6.3.6. Analogously to the results of section 4.7 the constrained 

Markov game can be solved by linear programming. An extensive treatment of 

this subject can be found in HORDIJK & KALLENBERG [198lf]. 

We close this section with the unichain case, i.e. when assumption 4.6.2 

is satisfied. For this case we propose algorithm XXIX. In theorem 6.3.3 

we will prove that this algorithm finds stationary optimal policies for 

both players as well as the value of the game. 

ALGORITHM XXIX for the construction of val(AMG) and of stationary opti­

mal policies for the two players in an AMG-model in which n1e olay;cr con­

trols the transition probabilities (unichain case). 

* * * * ' step 1: Compute optimal solutions (ijl , t , p ) and (x , z ) of ':he pair of 

dual linear programming problems 

,~ + L I 6 --piaj)tj - Ibriabpib 

(6.3.12) mit LbPib 

(6.3.13) 

and 

Iiia( 0ij-piaj>xia 

LJaxia 
max I.z. 

l l - I r X 
la iab ia 

respectively. 

* step 2: val(AMG) := ijl •e; 
* 00 

+ z. 
l 

Xia 

pib 

o, 

1 

<:; 0, 

;,, o, 

;,, 0, aEA(i), i E 

:] 1, i E 

;,, o, bEB(i), i E 

j E E 

b E B (i) , i E E 

a E A(i), i E E 

( p ) is an opb l policy for player II; 

* 00 * (rr ) , where rr. 
ia lX:a/L x~ 1/' a ia := 

arbitrarily, 

is an optimal policy for player I. 

a E A(i), i E Ex* 

a E A(i), i E E\E *' 
X 

THEOREM 6.3.3. Suppose that we have a unichained AMG-model. Then, algorithm 

XXIX gives the value of the game as well as stationary optimal policies 

for the two players. 
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PROOF. Lemma 4.6.1 together with theorem 2.3.2 imply that for any stationary 

"' * policy TT the stationary matrix P (TT) has identical rows. Hence, val(AMG) 

has identical components. Then, by theorem 6.3.1, val(AMG) is the optimal 

solution of the linear programming problem (6.3.12). Moreover, we have 

* T * (x) (I-P(TT )) 

Consequently, 

(6.3.14) * X * * p (TT ) , 

0 and * T (x ) e 1. 

* * * * where p (TT) is the vector corresponding to the identical rows of P (TT). 

From the constraints of program (6.3.12) it follows that 

* 00 * 00 "' (6.3.15) 1/J •e <'. ~• (TT , (p ) ) for every stationary policy TT. 

By the complementary slackness property it holds that 

(6. 3 .16) 

Then, by theorem 1.3.4, we obtain 

(6.3.17) 

* * T * * (p ( TT ) ) r ( TT , p ) 

for every j EE. 

for every j EE. 

The constraints of program (6.3.13) imply that 

(6. 3.18) * * T * (p (TT)) r(TT ,p) 

* "' "' ~.{(TT),p) 
J 

for every stationary policy p and j EE. 

Combining (6.3.15), (6.3.17) and (6.3.18) yields 

"' for all stationary policies TT and p • Then, using remark 6.1.1, it follows 
* 00 * 00 * that (TT) and (p) are optimal policies and that 1/J •e is the value of the 

game. 0 
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CHAPTER 7 

SEMI-MARKOV DECISION PROCESSES 

7.1. INTRODUCTION AND SUMMARY 

In this chapter we shall investigate the semi-Markov decision process 

which was introduced by DE CANI [1964], HOWARD [1963], JEWELL [1963a], 

[1963b] and SCHWEITZER [1965]. In the discrete Markov decision model that 

was studied in the preceding chapters, the decision time points were equi­

distant. In the semi-Markov model, the times between the decision time 

points will be random variables. We can describe the semi-Markov decision 

model in the following way. 

Consider a dynamic system that is observed at decision time points t, 

starting at t 0. At each decision time point the system is in one of a 

finite number of states and an action has to be chosen. Let E = {1,2, ..• ,N} 

be the state space and A(i) the finite set of possible actions in state i, 

i EE. If the system is in state i and action a E A(i) is chosen, then the 

following occurs independently of the history of the process: 

1. The next state of the process is chosen according to the transition 

probabilities piaj' where piaj ~ 0 and Ejpiaj = 1 for every a E A(i) 

and i,j EE. 

2. Conditional on the event that the next state is j, the sojourn time 

t .. until the next decision time point is a random variable with 
iaJ 

probability distribution Fiaj (t), i.e. Fia/tl = lP(tiaj:,; t). 

3. A reward ria is earned immediately and, in addition, a reward rate 

sia is imposed until the next transition occurs, i.e. if the next 

decision time point falls after tia units of times, then the reward 

in this epoch is given by ria + tia•sia" 

A semi-Markov decision process is also called a Markov renewal program. 
1 2 

A policy Risa sequence of decision rules: R = (~ ,~, ••• ),where 

~n denotes the decision rule for then-th decision time point. This deci­

sion rule may depend on the whole history of the process, i.e. on the 
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observed states {x1 ,x2 , ... ,xn} and the chosen actions {Y1 ,Y2 , ..• ,Yn_1}. A 

policy is called stationary if the chosen action only depends on the state 

of the process; if this choice is nonrandomized, then the policy is said 

to be pure and stationary. Similarly as for the Markov decision model, we 

denote by C, CS and CD the set of all policies, stationary policies and 

pure and stationary policies, respectively. 

In section 7.2 we discuss the expected discounted reward criterion. 

We introduce for this model the concept of superharmonicity and we prove 

that the reward vector of an optimal policy is the smallest superharmonic 

vector. We can compute this vector as optimal solution of a linear program. 

Furthermore, we will show that the complementary slackness property of lin­

ear programming provides an optimal policy from the optimal solution of the 

dual program. Moreover, this dual program will give the equivalence between 

the semi-Markov model and a contracting TMD-model. Hence, also for the semi­

Markov model we may apply the results shown in section 3.4 as 

one-to-one correspondence between stationary policies and feasible 

solutions of the dual program 

policy improvement 

elimination of suboptimal actions. 

Some of the above observations were already presented in WESSELS & VAN 

NUNEN [1975]. However, their analysis was based on the correspondence bet­

ween stationary policies and feasible solutions of the dual program. In our 

treatment the results are consequences of the concept of superharmonicity. 

Section 7.3 deals with the undiscounted rewards. Also for this model 

we can present the property of superharmonicity. Using DENARDO [1971], we 

shall show that the reward vector of an optimal policy is the smallest super­

harmonic vector. Similarly as in chapter 4, we can formulate a linear prog­

ram such that a pure and stationary optimal policy can be obtained directly 

from the optimal solution of the linear program. This linear program was al­

so used by DENARDO & FOX [1968], but they did not show how an optimal policy 

can be found. The linear programming problem can be transformed into the 

linear program which was derived for the AMD-model. The transformations are 

the same as proposed by SCHWEITZER [1971]. By these transformations we show 

that the semi-Markov model with the average reward criterion is equivalent 

to an AMD-model. 

We close the chapter by the presentation of simplified algorithms for 

the weak unichain case, the unichain case and the completely ergodic case. 
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7.2. DISCOUNTED REWARDS 

t -At 1 
Let a E (0,1) be any discount factor. Then, a = e , where t Em. 

and A:= -lna. Throughout this section we have the following assumption. 

100 -At 
ASSUMPTION 7.2.1. e dF, .(t) < 1 for every i,j EE and a E A(i). 

0 iaJ 

REMARK 7. 2 .1. Assumption 7. 2 .1. guarantees that the probability distribu­

tions F, .(t) are not degenerated int= O. Consequently, the expected 
iaJ 

number of transitions in a finite interval is finite. Furthermore, DENARDO 

[1967] has shown that the discounted Markov renewal program with assumption 

7.2.1 possesses the contraction property. We shall call this model a DRD­

model. 

For any policy Rand any initial state i, we define the expected dis­
A 

counted reward vi (R) by 

A oo -A(T1+T2+ ••• +Tn-1) JTn -At 
vi (R) := JER[ln=le •{rx Y +sx Y e dt} Jx1 = i], 

n n n n 0 

(7. 2.1) 

LEMMA 7.2.1. 

where 

and 

A 
v. (R) 

l. 

00 

l~=1ljla J 
0 

* -At r. e d1r, .(n,t,R), 
Ja iaJ 

:= rja + sjalkPjak ff e -AtdtdF jak (T) 

0 0 

i E E, R E C, 

1r .. (n,t,R) := IP (X =j,Y =a,T1+T2+ ••. +T 1 :o,tlx1 i). 
iaJ R n n n-

PROOF. First, we remark •--~,at 

0 0 

* r. • 
Ja 
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Since the random variables T1+T2+ •.. +Tn-l and Tn are conditional independent, 

given Xn and Yn' we obtain 

co 

}):a J 
0 

}):ar;a 

co 

-At * . e •r. •dlP (X = J, Y = a, T1+T2+ ••• +T 1 :S Ja R n n n-

co 

J -At e d7T, .(n,t,R). 
iaJ 

0 

i] 

l -At 
e d7T .. (n,t,R) 

0 iaJ 
that xn = j, Yn = a, 

may be interpreted as the expected discountec probability 

given x 1 = i. We have the recursion 

(7 .2. 2) 

We define 

(7.2.3) w 
n 

(7.2.4) M 

(7.2.5) p 

co 

:= 

-At e d7T. . (n,t,R) 
iaJ 

0 

co 

Ijia 
J -At e d7T, . (n,t,R), 

iaJ 
0 

-1 
:= max. {r. + A •s. }, i,a ia 1.a 

co 

I -At 
:= max. . e dFiaj(t). i,a,J 

0 

co 

0 

n E :N, 

Then, (7.2.2), (7.2.3) and (7.2.5) imply that 

co 

wn ltlb I e-Atd7Tibl(n-1,t,R)•}:jplbj I e-AsdFlbj(s) 

0 0 

:S ltlb J e-Atd7Tibl(n-1,t,R)•p 

0 

n-1 
p 
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Furthermore, we have 

00 

* I r j a I + I s j a I • lkP j ak I A-l(l-e-AT)dF. k(T) r. $ 
Ja Ja 

0 
00 

$ -1 I 
Jrjal +A Jsjal• kpjak I dF jak (T) $ M. 

0 
Consequently, 

00 

I * -At Ir. ]e d1r .. (n,t,R) 
Ja iaJ 

,,; \'00 Mw ,,; __!:-!,_ < 00 

ln=l n 1-p 
0 

Hence, 
T 

A 
v. (R) 

l. 
I n -At 

e dt} lx1=iJ 

0 
T I ne-Atdt}Jxl=i] 

I * -At r. e d1r .. (n,t,R), 
Ja iaJ 

i E E, R E C. □ 
0 

NOTATION 7.2.1. We will denote the DRD-model by the five-tuple (E,A,p,r*,F). 

DEFINITION 7.2.1. The DRD-value-vector VA is defined by v~ 

i EE. 

A 
:= supR vi (R), 

From the proof of lemma 7.2.1 it follows that Jv~I ,,; l~p' i EE. 

DEFINITION 7.2.2. A vector v E lRN is DRD-superharmonic if 

I -At ~ 
e dF, .(t)•v., 

iaJ J 
a E A(i), i E E, 

0 

* where r. is defined as in lemma 7.2.1. 
ia 

A 
THEOREM 7.2.1. The DRD-value-vector v is the smallest DRD-superharmonic 

vector. 

A A 
PROOF. Choose E > 0 arbitrarily. Take policy Rj such that v/Rj) ~vj -E, 

j EE. Let ai E A(i) be such that 

(7.2.6) * \' * A max {r. +L,P, .v.}, 
a ia J iaJ J 

i E E, 



where 

* Piaj := Piaj 

" 

00 

I e-).tdF .. (t). 
iaJ 

0 

we denote by R the policy that chooses at t = 0 action ai, for initial 

state i, and then follows policy R., if the next state is j, while the 
J 

process is considered as starting in state j. Then we obtain 

). 
v~(~) * l * A V, ;::, =r. + ,p, .v.(R.) 

l. iai J 1.aiJ J J 

* l * A 
ljP:a,j 

;::, 
ria. + jpiaijvj - E 

l. l. 

max {r~ l * A ;::, + jpiajvj} - E•P, i EE, 
a 1.a 

where pis defined by (7,2.5). Since Eis arbitrarily chosen, it follows 

that 

(7.2.7) A * l * A v > max {r, + J'pi'aJ'vJ.}, i - a 1.a i EE, 

i.e. v). is a DRD-superharmonic vector, 
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Next, we will show that (7.2.7) holds with equalities instead of in-
1 2 

equalities. Let R = (u ,u , ••• ) be any policy. Then, we can write 

). 
where u.(R) represents the expected discounted reward earned from the 

J 
second decision time point, given that the state at the second decision 

time point is j. Therefore, u~(R) ~ v~, j EE. Hence, 
J J 

i EE. 

Since R is arbitrarily chosen, we obtain 

(7.2.8) A * l * A v < max {r. + J'pi'aJ'vJ.}, i - a 1.a i EE. 
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Combining (7.2.7) and (7.2.8) yields 

(7.2.9) A * ~ * A v. = max {r. + l ,p, . v.}, 
1. a 1.a J 1.aJ J 

i E E, 

Suppose that vis also a DRD-superharmonic vector. Let ai, i EE, 

again satisfy (7.2.6). Then, we have 

* 

i EE, 

Where p := p for al 1 
ij iaij 

E E. Thus, we may write i•· vector notation 

A ~ A n ~ A v - v 2 P (v-v ) · ... 2 P (v-v ) for all n E ID. 

Using assumption 7.2.1 and (7.2.5), we obtain 

llpll \ :, ljPia,j•p < 1. max. i /\a. j max. = p 
l. l. 

}_ l. 

Consequently, lim Pn = n-+oo o. Hence, it follows that 

A A 
i.e. v 2 v. This completes the proof that v is the smallest DRD-super-

harmonic vector. D 

DEFINITION 7.2.3. A policy R* is said to be an optimal policy for the DRD­

model if vA(R*) = vA 

THEOREM 7.2.2. Let a. E A(i) satisfy 
l. 

* l * A A 
r. + jpia jvj V,, i E E. 
ia. l. 

l. l 

00 

Then, the pure and stationary policy f, where f(i) := ai, i EE, is an 

optimal policy for the DRD-model. 

PROOF. 

A 00 A 
V, (f )-V, 

l. l. 



* Let P := (p .. ). Then, similarly as in the proof of theorem 7.2.1, we 
iaiJ 

obtain 

A 00 A 
V (f )-V 

A 00 A 
P(v (f )-v) 

n A 00 A P (v (f )-v .) + 0 for n + "'· 

A 00 A "' Consequently, v (f) = v, i.e. f is an optimal policy. D 

Theorem 7.2.1 implies that the ORD-value-vector v" can be found as 

optimal solution of the linear programming problem 

(7.2.10) { r ~ 1r * ~ * min l . B . v . l . ( 6 . . - p . . ) v . ~ r . , 
J J J J J.J iaJ J ia 

a E A{i), i EL 

where B. > O, j EE, are given numbers. The dual program of (7.2.10) is 
J 

(7.2.11) 

B., 
J 

a E A(i), 

j E EE] 

i E 

THEOREM 7.2.3. Let x* be an optimal solution of the linear programming 

problem (7.2.11). Then, any pure and stationary policy f: such that 

* xif*(i) > 0, i EE, is an optimal policy. 

PROOF. Since v" is the finite optimal solution of program (7.2.10), the 

* dual program (7.2.11) has also a finite optimal solution. Let x be any 

optimal solution of program (7.2.11). Then, 

j EE. 
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The complementary slackness property of linear programming (cf. corollary 

1.3.1) implies that 

i EE. 

It follows from theorem 7.2.2 that f 00 is an optimal policy. D 
* 

A pure and stationary optimal policy for the ORD-model can be deter­

mined by the following algorithm. 

ALGORITHM XXX for the construction of a pure and stationary optimal policy 



218 

in a discounted semi-Markov model. 

~: Compute 

* piaj := piaj I -At 
e dF .. (t) 

iaJ 
0 

aEA(i), iEE, 

a E A(i), i,j EE. 

step 2: Choose the numbers S. such that S. > O, j EE. 
J * J 

st~: Compute an optimal solution x of the linear program 

a E A(i), 

j E EE) 

i E 

step 4: Take f 00* such that x* > 0, i EE. 
if*(i) 

* * REMARK 7.2.2. Consider the TMD-model (E,A,p ,r). It can easily be verified 

that this model satisfies the contraction assumption of section 3.4 for 

µ := e and a:= p. Furthermore, algorithm IX applied on this TMD-model is 

identical to algorithm XXX. It can also easily be verified that vA(TI00
) 

*00 00 *00 

v (TI) for every stationary policy TI, where v (TI) is the expected total 

* * reward in the TMD-model. Therefore, the TMD-model (E,A,p ,r) may be con-

* sidered as equivalent to the DRD-model (E,A,p,r ,F), and we may apply the 

results of section 3. 4 to the DRD-model. 

REMARK 7.2.3. The above analysis is also applicable on the two-person zero­

sum semi-Markov game in which one player controls the transition probabil­

ities and the sojourn times. This DRG-model can be described as follows. 

If in state i player I chooses action a E A(i) and player II action b E B(i), 

then the following occurs: 

1. The next state of the process is chosen according to the transition 

probabilities p ... 
iaJ 

2. Conditional on the event that the next state is j, the time t .. 
iaJ 

until the next decision time point is a random variable with probabil-

ity distribution F .. (t). 
iaJ 

3. Player I receives an immediate reward riab from player II, and, in 

addition, player II is indebted to player I an amount siab·tia if the 

next decision time point falls after tia units of time. 
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If we define 

CX) t 

I I ->.s e dsdF .. (t), 
iaJ 

aEA(i), bEB(i), iEE, 

* Piaj := piaj 

0 0 

I e ->.tdF. . (t) 
iaJ 

0 

aEA(i), i,jEE, 

then similarly to theorem 6.2.1 we can prove that there exist stationary 

optimal policies for both players. Moreover, it can straightforward be shown 
* * * that the DRG-model (E,A,B,p,r ,F) and the TMG-model (E,A,B,p ,r) are equiv-

alent and that algorithm XXVII applied on the TMG-model provides stationary 

optimal policies for both players in the DRG-model. 

7.3. UNDISCOUNTED REWARDS 

For any policy Rand any initial state i, the average reward per unit 

time is denoted by xi (R) and defined by 

1 T 
:= li~f T vi (R), 

where v:(R) denotes the expected undiscounted reward earned in the inter-
l. 

val [O,T). For a Markov renewal program with as utility function the aver-

age reward per unit time, we will use the name ARD-model. The ARD-value­

vector xis defined by 

i € E, 

and policy R* is said to be optimal for the ARD-model if x<R*) = X• A 

policy R is called a Blackwell optimal policy if there is a>. > 0 such 
A o >. o 

that v (R0 ) = v for every A€ (0,>. 0 ]. 

Throughout this section we have the following assumption. 

CX) 2 
ASSUMPTION 7.3.1. 0 <ft dF .. (t) <"'for all a€ A(i), i,j EE. 

0 iaJ 

The above assumption implies the following results due to DENARDO 

[1971]: 
CX) 

1. Let 1T be any stationary policy. Then, 

(7. 3.1) >. "' -1 "' "' v C1r > = >. x<1r > + w(1r > + E(>-l, 
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where limHO E (\) = 0. 

Moreover, x(1100
) is the unique colution of the equations 

(7. 3. 2) 

where 

0 

{
(:-P(1T))x 

P (1T)T(1l)X * /I P (11)r(11), 

~i (1r) := la11ia•{ria +sia ljPiaj f 
0 

tdF .. (t)}, 
iaJ 

i EE, 

and T(7r) is the diagonal matrix with t .. (1T) := 8, .-r. (TI) _t,..1d 
1.J 1.J 1. 

Ti (1!) := la11ia 0 jjPiaj f 
0 

tdF .. (t), 
iaJ 

i,j EE. 

Furthermore, w(1100
) is ~ -,.ution of the linear system 

(7.3.3) (I-P(1T))y 

2. There exists a Blackwell optimal pure and stationary policy. 

i EE, REC. 

PROOF. Since v~(R) = 
--- 1. 

Joo -\t t 
e dV. (R), i EE, REC, A> O, the proof follows 

0 1. 

from an Abelian theorem ( cf. WIDDER [ 1946], chapter V) • □ 

THEOREM 7.3.1. Any pure and stationary Blackwell optimal policy is also 

optimal for the ARD-model. 

PROOF. Let f 00 be a Blackwell optimal policy. Take an arbitrary REC. Then, 
0 

(7.3.1) and lemma 7.3.1 imply that 

i EE. 

Consequently, x(f00
) 

0 
x, i.e. f 00 is an optimal policy for the ARD-model. D 

0 

From theorem 7.3.1 it follows that for the determination of an optimal 

policy in the ARD-model, we may restrict ourselves to the pure and station­

ary policies. Consider a pure and stationary policy f 00
• Then, (7.3.2) and 
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lemma 2.4.2 imply that x(f00
) depends on the rewards and the transition times 

only through ~(f) and T(f) respectively. Hence, for the computation of x(f00
) 

it is sufficient to know the values Tia' a E A(i), i EE, where 

(7. 3. 4) tdF, . (t), 
iaJ 

instead of explicit knowledge about the probability distributions F .. (t). 
iaJ 

We may assume that 

(7.3.5) , a E A ( i) , i, j E E. 

Therefore, we shall denote an ARD-model by (E,A,p,~,T), where~-
1.a 

:= 

DEFINITION 7.3.1. A vector x E lRN is ARD-superharmonic if there exists a 

vector w such that 

xi ~ ljPiajxj a E A(i), i E E, 

I\ 

TiaXi + W, ~ ria + 1. ljPiaj;.\, a E A(i), i E E. 

THEOREM 7.3.2. The ARD-value-vector xis the smallest ARD-superharmonic 

vector. 

00 

PROOF. (cf. theorem 4. 2. 1) . Let f O be any pure and stationary Blackwell 

optimal policy. Since there exists a A0 > 0 such that 

A 
V 

theorem 7.2.1 implies that 

where 

for every A E (O,A 0 ], 

00 

J -At A oo 
e dF, .(t)•v.(f ), 

1.aJ J o 

0 

a E A(i), i E E, A E (0,A), 
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Then, it follows from (7.3.5) that 

00 t 

I I ->.s 
e dsdF .. (t). 

iaJ 
0 0 

for all a E A(i), i EE,>. E (0,>. 0 ]. Using (7.3.1) and the expansion e 

1->.Tia + o(>.), we obtain 

for all a E A(i), i EE and>. E (0,>. 0 ]. Since x(f:) = x, it follows that 

(7.3.6) a E A(i), i EE, 

and 

a E A(i), i E E, 

where 

i EE. 

Then, similarly as in theorem 4.2.2 we can prove that 

(7. 3. 7) " t ~ w1. ~ r. + l-P . . w. - T 1.ax1., ia J iaJ J 
a E A(i), i E E, 

where 

and 

* A (i) , 

with 

i EE. 
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(if A*(i) ~ for all i € E, then we define M := 0). Consequently, (7.3.6) 

and (7.3.7) imply that the ARD-value-vector xis ARD-superharmonic. 

Suppose that xis also ARD-superharmonic with corresponding vector w. 

Then, 

(I-P(f))X :2: 0 

Consequently, 

(I-P(f))X :2: 0 

Then, (7.3.2) and lemma 2.4.3 imply that x :2: x, completing the proof that 

xis the smallest ARD-superharmonic vector. D 

Since xis the smallest ARD-superharmonic vector, we consider the 

following linear programming problem: 

(7. 3. 8) 

where Bj > O, j € E, are given numbers with EjBj 

ming problem is: 

1. The dual linear program-

(7 .3.9) 

* * THEOREM 7.3.3. If (x ,y) is an optimal extreme solution of the linear prog-

ram (7.3.9), then the policy f:, where 

> o, 

> o, 

is an optimal policy for the ARD-model. 

i € E * 
X 

i € E\E *' 
X 

* * PROOF. (cf. theorem 4.2.4). Let (x ,w) be an optimal solution of the linear 
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programming problem (7.3.8). Then, x* 

theorem 4.2.4 we can show that 

x, and analogously to the proof of 

00 

1. f is well-defined. 
* 

2. Ej<oij-pif*Ciljlxj = o, i EE, 

* /I 
3. Tif*(i)Xi + Ej(oij-pif*(i)j)wj rif*(i), i e Ex*· 

4. The states of E\E * are transient in the Markov chain induced by P(f*). 
X 

From the above properties it follows that 

Hence, (7.3.2) implies that x(f00
) = x, i.e. 

* 
00 

f* is an optimal policy. D 

REMARK 7.3.1. The linec.' ur•.Jramming problems (7.3.4) and (7.3.5) were al­

ready proposed by DENARDO & FOX [1968]. However, they only proved that the 

program (7.3.8) determines the vector x, but they did not prove the optimal­

ity of the policy f:. 

ALGORITHM XXXI for the construction of a pure and stationary optimal policy 

in an undiscounted semi-Markov model (multichain case). 

~: Take any choice of the numbers Sj such that Sj > 0, j e E, and 

E.S.=l. 
J J 

* * step 2: Use the simplex method to compute an optimal solution (x ,y) of 

the linear programming problem 

lila( 0ij-piaj)xia =O' 

max . r x 
1. a ia ia LaTjaxja +}:i}:a(oij-piaj)yia=Sj, jeE • {l l /\ jeE} 

aeA ( i) , ieF. 

l. * step 3: For each e E, take an arbitrary action ai from the set A (i), 

where 

r * > O} Xia if i E E * 
* 

X 

A (i) := 

{al * > O} yia if i E E\Ex*· 



step 4: f:, where f*(i) := ai, i EE, is a pure and stationary optimal 

policy. 

Consider the linear programming problem (7.3.8) and substitute 

xi := xi i E E 

-1 
w. := T •w. i E E 

(7.3.10) 1. 1. 
-1 /I 

ria := 'ia 0 ria I a E A(i), i E E 

where T satisfies 
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Then, piaj ~ 0 and ~jpiaj 

we obtain 

1 for every a E A(i), i,j EE. Furthermore, 

and 

~ ~ ~ /I - ~ - - /I 
'1.·aX1. +LJ,(o 1.J.-p1,aJ·)wJ. ~ r. - •· X, +L,(o .. -p .. )•(,. /-r)•-rw.~r. 1.a 1.a 1. J 1.J 1.aJ 1.a 1. 1.a 

for all a E A(i), i EE. 

Hence, the linear program (7.3.8) can also be written as 

, a E A(i), 

(7. 3 .11) 

a E A(i), 

i E EE} 

i E 

and (x,w) is a feasible solution of program (7.3.8) if and only if 
~ -1 ~ 
(x,, •w) is a feasible solution of program (7.3.11). The transformations 

(7.3.10) were proposed by SCHWEITZER [1971]. 
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REMARK 7.3.2. Notice that the linear programming problem (7.3.11) is similar 

to program (4.2.10), with p, . and r. instead of p, . and ri. Hence, algo-
iaJ ia iaJ a 

rithm XIV for the AMD-model (E,A,p,r) is identical to algorithm XXXI for the 

ARD-model (E,A,p,~ 1 T). Furthermore, it can easily be verified that x(wm) = 
icwm) for every stationary policy wm, where ~(wm) is the expected average 

reward in the AMD-model (E,A,p,r). Hence, the ARD-model and the correspond­

ing AMD-model may be viewed as equivalent. 

REMARK 7.3.3. Linear programming can also be used for the two-person zero­

sum semi-Markov game in which one player controls the transition probabil­

ities and the transition times. If we define 

A 

r iab : = r iab + s iab •Tia' a€ A(i), b € B(i), i € E, 

then similarly as in section 6.3 it can be shown that there exist stationary 

optimal policies for both players. Moreover, it can be proved that algorithm 

XXVIII applied on the transformed AMG-model (E,A,B,p,r), where 

-1 A 
riab := Tia 0 riab 

a€ A(i), i,j € E, 

a€ A(i), b € B(i), i € E, 

yields stationary optimal policies for the two players. 

We close this section with the presentation of algorithms for the weak 

unic:hain case, the unichain case and the completely ergodic: case. We say that 

an ARD-model is weakly unichained, unichained or completely ergodic if the 

equivalent AMO-model satisfies assumption 4.5.1, assumption 4.6.2 or assump­

tion 4.6.1 respectively. Then, the results of the sections 4.5 and 4.6 imply 

that we can use the following algorithms. 

ALGORITHM XXXII for the construction of a pure and stationary optimal policy 

in an undisc:ounted semi-Markov model (weak unichain case). 

step 1: Use the simplex method to compute an optimal solution x* of the 

linear programming problem 

lila(0ij-piaj)xia o, 

Lil.a Tiaxia 1 

Xia~ 0, a€ A(i), 

j € EE} 

i € 



step 2: 

step 3: 

step 4: 

step Sa: 

step Sb: 

* Take f*(i) such that x.f (') > O, i EE*• 
i * i X 

Let E 0 := Ex*• 

If E0 = E, then f: is an optimal policy (STOP). 

Otherwise, go to step Sa. 

Choose a triple (i,ai,j) that satisfies i E E\E 0 , 

j € E and pia,j > O. 0 
i 

EOU{i}; go to step 4. Define f*(i) := ai and E := 
0 
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a. € A(i), 
i 

ALGORITHM XXXIII for the construction ·of a pure and stationary optimal policy 

in an undiscounted semi-Markov model (unichain case). 

* step 1: Use the simplex method to compute an optimal solution x of the 

linear programming problem 

a€ A(i), 

j € EE} 

i € 

step 2: Take f: such that 

:= {ai where 

arbitrarily i E E\E *. 
X 

ALGORITHM XXXIV for the construction of a pure and stationary optimal policy 

in an undiscounted semi-Markov model (completely ergodic case). 

steo 1: * Use the simplex method to compute an optimal solution x of the 

linear programming problem 

j € EE} 

a€ A(i), i € 

"' * Take f* such that xii (i) > 0, i E z_ 

* 
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