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INTRODUCTION

In this monograph we study Markovian control problems. These problems
concern the control of systems which have a dynamic structure, i.e. deci-
sions have to be made at different points in time. If a decision is made,
then the behaviour of the system is uncertain, i.e. the state of the sys-
tem at the next decison time point is not deterministic, but is given by a
probability distribution on the state space.

An example o f such a control problem is the following (cf. ROSS [1970]
pp.138-139). Suppose a person wants to sell his house and an offer is made
every week. The seller has two possible decisions: to reject or to accept
the offer. If he rejects the offer, then the offer is no longer available
vand the offer of the next week is uncertain. Furthermore, a maintenance
cost is incurred for each week that the house remains unsold. Which policy
has to be chosen to obtain the maximum eXpected profit?

In this monograph, we shall pay special attention to the construction of
algorithms, based on linear programming, to compute optimal policies for
several optimality criteria. We will discuss finite Markov decision prob-
lems, semi-Markov problems and stochastic games.

Markov decision problems can be characterized by a state space, an
action space, transition probabilities, rewards and a utility function.

The system is observed at discrete time points to be in one state of the
state space. Then the decision maker chooses an action from the action
space and two things occur:

(1) a reward is earned,

(2) the next state of the system is chosen according to a probability

distribution on the state space.
If the decision maker uses a stationary policy, i.e. the chosen action only
depends on the state of the system, then the sequence of states form a
Markov chain. For this reason the problem is called a Markov decision prob-
lem. Markov decision models were introduced by BELLMAN [1957] and HOWARD
[1960]. At this moment, there is an extensive literature on this subject
and there are several books which deal with Markov decision problems, e.g.
DERMAN [1970], ROSS [1970], MINE & OSAKI [1970], HINDERER [1970] and
HORDIJK [1974].
The semi—-Markov decision models differ from the (discrete) Markov deci-

sion models by the fact that the times between the several decision points



are raﬂdom variables. Hence, if the decision maker uses a stationary policy,
then the process {X(t), t > 0}, where X(t) describes the state at time t,

is a semi-Markov process. Semi-Markov decision models were introduced by

DE CANI [1964], HOWARD [1963], JEWELL [1963] and SCHWEITZER [1965].

The third class of models that are studied, are the stochastic games .
In a stochastic game several players control the system simultaneously. At
any decision time point all players independently choose an action from
their own action space. These choices produce a reward for every player,
and the next state of the system is determined by a probability distribu-
tion which depends on the present state and the chosen actions. Stochastic
games were introduced by SHAPLEY [1953], thus before the Markov decision
model. If all players except one have only one action available in each
state, then the stochastic game reduces to a Markov decision problem.

Methods to solve finite Markovian control problems are based on tech-
niques such as policy improvement, successive approximation or linear prog-
ramming.

The policy improvement method is an iterative procedure that computes
a sequence of so-called pure and stationary policies such that subsequent
policies give a higher value of the utility function. Since there exists
a pure and stationary optimal policy and since the set of pure and station-
ary policies is finite, the procedure terminates after a finite number of
iterations with an optimal pure and stationary policy.

The maximum value of the utility function satisfies a functional equa-
tion. By the method of successive approximation the solution of this equa-
tion is approximated, and corresponding policies are computed, using the
well-known techniques on contraction mappings.

In this thesis we will discuss linear programming methods for the
solution of several Markovian control problems.

The fact that linear programming can be used is based on the property
that the maximal value of the utility function is the smallest so-called
superharmonic vector. Since the superharmonic property is a condition for-
mulated in terms of linear inequalities, we have to find the smallest ele-
ment which satisfies a system of linear inequalities. Therefore, this maxi-
mal value can be found as the optimal.solution of a linear program and an
optimal policy may be obtained from the optimal solution of the dual program.
It will be shown that the complementary slackness property plays an important
role in proving the optimality properties. The concept of superharmonicity

was introduced by HORDIJK [1974].



Already in 1960, linear programming formulations were known for some
Markov decision models (cf. DE GHELLINCK [1960], D'EPENOUX [1960] and MANNE
[1960]). We will prove similar results to several other Markovian control
problems. For a short review we refer to HORDIJK & KALLENBERG [1981d]. The
linear pfogramming approach has some advantages in coméarison with other
techniques, e.g.

(1) In many industrial environments linear programming computer codes
are available. Hence, linear programming algorithms can be made
operational very easily.

(2) If we use linear programming, then we have the opportunity to apply
sensitivity analysis on the optimal solution. Therefore, the deci-
sion maker may obtain information about the behaviour of the optimal
policy when the data are changed.

(3) By linear programming we can solve Markovian control problems with
additional constraints. As far as we know, linear programming is
the only technique for the solution of this kind of problems.

In this thesis, we only discuss models with a finite state space and a
finite action space. If we drop the finiteness, then linear programming
formulations also may be obtained (e.g. HEILMANN [1977]). Since the empha-
sis of our work is on the construction of finite algorithms for the solu-

tion of Markovian control problems, we restrict ourselves to finite models.

The scope of the monograph is as follows. In the first two chapters we
survey some basic results from the theory of linear programming (chapter 1)
and from the theory of Markov decision processes (chapter 2).

In chapter 3 we consider Markov decision problems with the expected
total reward as utility function. We introduce the concept of superharmo-
nicity and we prove that the optimal utility vector - when we restrict the
policies to the class of transient policies - is the smallest superharmo-
nic vector. Hence, the linear programming approach is applicable. We pre-
sent a linear programming formulation which gives a pure and stationary
policy that is optimal in the class of transient policies. Also, the rela-
tion between stationary transient policies and the feasible solutions of
the linear program is analysed. These results generalize the well-known
linear programming method for discounted dynamic programming. Moreover,
we discuss the Markov decision problem with additional constraints and we
show that a stationary optimal transient policy can be found by the solu-
tion of a linear program. As special cases, we present the optimal stop-

ping problem and the contracting dynamic programming problem. For the



latter model, we prove that the linear programming method and the policy
improvement method are equivalent and that the elimination of suboptimal
actions can be implemented in the algorithm. In this chapter we also treat
the positive and the negative dynamic programming models and, for both
models, finite algorithms are derived for the determination of a pure and
stationary optimal policy.

Chapter 4 deals with the expected average reward as utility function.
Although we can present an approach similar to the previous chapter, the
analysis of this model is more complex and we have to perform more calcu-
lations to obtain optimal policies. The concept of a superharmonic vector
is introduced such that the optimal utility vector for the present crite-
rion is the smallest superharmonic vector. A pure and stationary optimal
policy can be obtained directly from an extreme optimal solution of a
linear program. If we consider special models for which the Markov chains
induced by stationary (optimal) policies are unichained, then the linear
programs may be simplified considerably. It will be shown that there is a
close relationship between the linear programming method and the policy
improvement method. The determination of an optimal policy for the Markov
decision model with additional constraints is complicated. We will con-
struct an algorithm for the computation of a memoryless optimal policy.
Although there exists no stationary optimal policy in general, fortunately,
in many cases a stationary optimal policy may be found. We give sufficient
conditions for its existence, and we present an algorithm for the computa-
tion of a stationary policy which is optimal when these conditions are sat-
isfied. In the unichain case, a stationary optimal policy always exists and
a simplified algorithm may be used.

Sometimes, a criterion that is more selective than the average reward
criterion is preferable. In chapter 5, we discuss such a criterion. An op-
timal policy with respect to this criterion is a so-called bias-optimal
policy. We present two algorithms for its computation. The first algorithm,
which will be favourable when the number of average optimal pure and sta-
tionary policies is small, enumerates the extreme optimal solutions of the
linear program used in chapter 4. For any optimal solution we have to per-
form additional computations to obtain the so-called bias-value. A policy
which maximizes this bias-value is a bias-optimal policy. In the second
algorithm, which is a modification of DENARDO [1970al], a pure and station-
ary bias-optimal policy is obtained by the solution of three linear pro-

grams and one search procedure, in the worst case. We also present a



simplified algorithm for the unichain case.

In chapter 6 we consider a two-person zero-sum stochastic game. We
only consider models in which‘the transition probabilities are controlled
by one player (otherwise the linear programming approach is not possible).
The total reward criterion (under a contraction assumption) and the average
reward criterion will be treafed analogously. We show that the value of the
game is the smallest superharmonic vector which can be found as the optimal
solution of a linear program. Stationary optimal policies for both players
can be obtained from the optimal solution of the dual program. Moreover, the
linear programming approach provides a new proof of the existence of the
value of the game.

In the final chapter, the semi-Markov decision model is studied. Also
for these models we can introduce a concept of superharmonicity which leads
to a linear programming formulation. In the discounted reward case as well
as in the average reward case we obtain pure and stationary optimal policies
from the linear programming solution. We also show the equivalence with cer-
tain discrete Markov decision models. Hence, the results of the chapters 3
and 4 may also be applied on the semi-Markov decision model.

In this monograph Markovian control problems over an infinite horizon
are considered. The linear programming approach is also applicable for fi-

nite horizon models (cf. KALLENBERG [1981al).






CHAPTER 1

LINEAR PROGRAMMING

1.1. INTRODUCTION AND SUMMARY

In this chapter we shall present a survey of some basic results in
the theory of linear programming. In the sequel of this monograph it will be
shown that linear programming is a useful approach to derive finite algo-
rithms for a number of Markovian control problems.

In section 1.2 we mention some properties of convex polyhedra. Convex
polyhedra play an important role in the theory of linear programming. We
present a theorem on separating hyperplanes and we give a characterization
of the set of extreme points of a convex polyhedron.

Then, in section 1.3, the linear program is introduced and the well-
known optimality and duality theorems are summarized, including the com-
plementary slackness property. Optimality and duality properties will be
a useful instrument for the proofs of the theorems in the following chap-
ters.

Section 1.4 deals with the simplex method, developed by G.B. Dantzig
in 1947. The simplex tableau is presented. Moreover, we derive an algorithm

to compute all extreme optimal solutions of a linear program.

The theory of linear programming can be found in many text books.

For the proofs of the theorems we refer to these books.

NOTATIONS 1.1.1.

(i) A (column) vector x with n components is denoted by x = (x1,x2,...,
T . A

xn) or by x = (xi); a matrix A with (i,j)-th element aijis denoted

by A = (aij); the k-th column and the i-th row of A are denoted by

a.k respectively ai_.
(ii) Let x and y be n-component vectors. Then x 2 y denotes that xi > vy

for all i, x > y means x 2 y and x # y, X > y signifies that



(iii)

(iv)

(v)
(vi)
(vii)

(viii)

(ix)

(%)

X, > vy for all i; we denote x < @ if and only if X, <o i=1,2,...,n.

When the range of a variable is unspecified, then its entire range

X . n T .
is intended, e.g. Zixi = Zi=1 2,...,xn) ; the dimen-

sion of vectors and matrices is not always explicitly mentioned, but

x, if x = (x,,x
i 1

this dimension will be clear from the context.
IN is the set of positive integers: N = {1,2,...};:N0 is the set
0 = {0,1,...}.

n . + 1
IR is the set of all real n-component vectors; R = {aeR |a>0}.

of nonnegative integers: IN

By |E| we denote the cardinality of a set E.

E\F is the set of all elements of E which do not belong to F.

The notation x := y will be used to indicate that the variable x gets
the value y.

The symbol [J indicates the end of a proof.

For a € 3&1 we denote by lLal] the largest integer not greater than a.

DEFINITIONS 1.1.1.

(1)

(ii)

(iii)

The null-vector, denoted by 0, has all components zero; the null
matrix, also denoted by 0, has all elements zero; the identity
matrix, denoted by I, has elements (Gij), where dij is Kronecker's
delta; the j-th unit vector, notated by ey is the vector witg all
entries zero except entry j, which is a one; e := (1,1,...,1)" is
the sum vector.

The inner product of two real n-component vectors x and y is denoted

by xTy and defined by XT§ 1= E.X.'yi-

i7i
The (supremum) norm of x ¢ IR is defined by Ixl := max [xi[; the
<i<n
(supremum) norm of a matrix A is defined by IAl := sup laxl. (1t
Ixl=1

can easily be verified that lal = max Ejiaijl)-
i

1.2. CONVEX POLYHEDRA

In this section we review some results about convex polyhedra that are

fundamental for the theory of linear programming.

DEFINITIONS 1.2.1.

(1)

n o,
S ¢ R is a convex set if for any two vectors x,y € S and any

Ae (0,1) Ax + (1-1) y € S; the convex hull of a set S c IRn is the



intersection of all convex sets containing S as subset; the closed
convex hull of S is the smallest closed convex set containing S as
subset (this closed convex hull will be denoted by S).

(ii) A face of a convex set S is a convex subset S' of S such that every
closed line segment in S with a relative interior point in S' has
both endpoints in S'. The zero-dimensional faces of S are called the
extreme points of S. (Then x € S is an extreme point of S if and only
if there do not exist points y,z € S distinct from x for which x =
Ay+(1-1)z for some A € (0,1)). If S' is a half-line face of S, then
we call the direction of S' an extreme direction of S.

(iii) A convex polyhedron R is the intersection of a finite number of
closed half-spaces, i.e. R = {x]ax < b} for some mxn matrix A_and
some vector b € B£n. A bounded convex polyhedron is a polytope.

(iv) c c ®R" is a cone if for any x € C, Ax € C for every A 2 0; a convex
polyhedral cone generated by the mXn matrix A is the set
{yly = ATu; u = 0}. The vectors (ai.)T are the extreme rays of the
cone; the dual cone C* is defined by C* = {ylyTx < 0 for every

x ¢ C}.

n
THEOREM 1.2.1, Let S ¢ R be any closed convex set and suppose that x ¢ S.

Then there exists a vector r € nfl and a real number rO such that

T T
rx > r, >ry for every y € S.

PROOF. See KARLIN [1959] pp.397-398. [J

Consider the set R := {x|Ax = b; x 2 0}, where x ¢ nfﬂ b e B and
A an mXn matrix. Since each equality may be replaced by two inequalities,

R is a convex polyhedron.

THEOREM 1.2.2. X € R is an extreme point if and only if {a.klxk > 0} is a

linearly independent set of vectors.
PROOF. See COLLATZ & WETTERLING [1966] pp.9-10. [

LEMMA 1.2.1. The number of extreme points and extreme directions of R is

finite.
PROOF. See ROCKAFELLAR [1970] pp. 170-172. O

LEMMA 1.2.2. If R is non-empty, then also the set of extreme points of R

is non-empty.
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PROOF. See COLLATZ & WETTERLING [1966] pp.10-11. ]

k}i_ and extreme

THEOREM 1.2.3. If R is non-empty with extreme points {x 1

, , 2. L ,
directions {s }K—l' then any X € R can be written as

K k L £
= Demy N+ Lpoy mes

K
where Ak >0k=1,2,...,K, Zk=1 Ak = 1 and Hp >04&=1,2,...,L.

PROOF. See ROCKAFELLAR [1970] pp.170-172. 0O

COROLLARY 1.2.2. Any polytope is the convex hull of its extreme points.

1.3. OPTIMALITY AND DUALITY

DEFINITIONS 1.3.1. The linear programming problem is the problem of finding

n T . .
a vector x € IR which maximizes a linear form p x (called the objective
. . . . m
function), subject to the linear constraints Ax < b, x 2 0, where b € IR

and A is an mXn matrix. This problem is usually notated by
T
(1.3.1) max{p x | Ax < b; x > 0}.
A linear programming problem is also called a linear program. The convex
polyhedron R := {x|Ax < b; x > 0} is said to be the feasible region. Any

x € R is called a feasible solution. For any x € R we define y := b-Ax;

m
then y ¢ R and y > 0. Furthermore, we introduce

Then we can write the linear program (1.3.1) as

v

(1.3.2) max{p % | 3% = b; % 2 0}

1
g
%
1%
o
2

with feasible region R := {X|Ax

A similar formulation is

(1.3.3) max{pTx | aAx + y =b; x>0, y = 0}.
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THEOREM 1;3.1. x is an extreme point of R if and only if X is an extreme

point of R.
PROOF. The proof is straightforward. [

DEFINITIONS 1.3.2. Given a linear programming problem, there are three

possibilities:

1. There is no feasible solution. In this case the problem is said to be
infeasible. ]

2. There is a feasible solution xo with érxo 2 érx for every x € R. Then
x° is called an optimal solution and we say that the linear program has
a finite solution.

3. There is a feasible solution xo € R and a vector so € Efl such that
érso > 0 and x° + As’ € R for all A > 0. Then the objective function
can be made arbitrarily large and the problem is said to be unbounded
or has an infinite solution. The vector s’ is called an infinite direc-

o
tion in x .
THEOREM 1.3.2. If the linear program has a finite solution, then it has
an optimal extreme solution.
PROOF. See COLLATZ & WETTERLING [1966] pp.12-13. [
LEMMA 1.3.1. The set of optimal solutions is convex.
PROOF. See COLLATZ & WETTERLING [1966] p.11. [J

n
DEFINITIONS 1.3.3. A vector s € IR is said to be a feasible direction in

a point x € R if there exists a A > O such that x + As € R. If, in addi-

T
tion, p's > 0 then s is said to be a usable direction. For any X € R we

T
define M(x) := {ila] x = b}, NG := {3 | () x = 0} and
ari.s <0, ieMx
S(x) :=<s € IRn
|(—ej)Ts <0, j € N(x)

S(x) is the cone of feasible directions in x.

THEOREM 1.3.3. (Optimality theorem) X € R is an optimal solution of the
linear program (1.3.1) if and only if there exist vectors u e nfn, veR

T
such that p = A’u-v, u>20, v 20 and uT(b—Ax) = vTx = 0.
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PROOF. See ZOUTENDIJK [1976] pp.23-24. O

REMARK 1.3.1. Suppose that x is an optimal solution of the linear program
(1.3.1). Then from the convexity of the set of optimal solutions (see lem-
ma 1.3.1) it follows that x is the unique optimal solution if and only if
st < 0 for all s € S(x). Hence, x is unique if énd only if p is an inte-

rior point of the dual cone of cone S(x).

DEFINITIONS 1.3.4. We define for the linear programming problem (1.3.1) the

dual problem by

(1.3.4) min{b™u | aTu > p, u > 0}

with feasible region D := {u[ATu > p; u > 0}. Defining the vector v by
T

v := A u-p, the dual problem can also be written as

(1.3.5) min{b u ] aTu-v = p;i u=0; v=0}.

Problem (1.3.1) is said to be the primal problem.

THEOREM 1.3.4. (Duality theorem)

(1) The dual problem of the dual problem is the primal problem.
(ii) If x € R and u € D, then pTx < bTu.

(iii) If the primal problem has an optimal solution xo, then the dual

problem has also a finite optimal solution, say u’®. Moreover,

px’ =bu’, @) wax’) =0 and (x)T(aTu’-p) = 0.

. . T
(iv) If x € R and u € D satisfy u (b-Ax) = XT(ATu—p) = 0, then x and u
are optimal solutions of the primal and the dual problem respectively.

(v) If the primal problem has an infinite solution, then the dual problem

is Infeasible.

(vi) If the primal problem is infeasible, then the dual problem either has

an infinite solution or it is infeasible.
PROOF. See ZOUTENDIJK [1976] pp.24-26. [J

COROLLARY 1.3.1. (Complementary slackness property) Suppose that (x,y) and

(u,v) are optimal solutions of the programs (1.3.3) and (1.3.5) respective-

ly. Then
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(i) X, >0=v, = 0.
J J

. N =o0.

(ii) vy 0= u, 0

(iii) u, >0 = yi = 0.

(iv) v, > 0=x, = 0.
J J

1.4. SIMPLEX METHOD

Consider the linear programming problem formulated as (1.3.2). Assume
that the columns of A are rearranéed such that A = (B,N), where B is an mXm
nonsingular matrix. Let X = (xB,xN)T, where xB is the vector of variables
corresponding to the columns of B, and Xy is the vector of variables that
correspond to the columns of N. Then, Ax = b can be written as BxB-+Nx =b.

N

. . . . . -1 . .
Since B is nonsingular, the inverse matrix B exists and we obtain

-1 -1 -
Xp =B b-B NxN. Assume, in addition, that B 1b 2 0. Then, by theorem

1.2.2, the solution xB = B_lb, XN = 0 is an extreme point of the feasible
35 T
region R. We say that the matrix B is a basis matrix and that (xB,xN) is

a basic solution, where xB are the basic variables and xN the nonbasic
variables. The corresponding value x0 of the objective function satisfies

T T T T -
(1.4.1) xO =P X = ppXy + PNXN = pBB

1 T T -1
b + (pN-—pBB N)xN.

T
We define the (n+m)-component vector d = (dB,dN) by dB := 0 and dN i=
T -1 T
pBB N—pN. The vector d may also be partitioned into parts corresponding

T n
to the original vectors y and x: d = (u,v) , where u € ﬂén and v ¢ IR .

THEOREM 1.4.1. The vectors u and v, defined above, satisfy

T T
Au-v = p; uy = vTx = 0.

PROOF. See ZOUTENDIJK [1976] pp.36-37. [

REMARK 1.4.1. Theorem 1.4.1 implies that if 4 2 0, then (u,v) is a feasible
solution of the dual program (1.3.5). Therefore, d is called the vector of
dual variables. Moreover, theorem 1.3.4(iv) implies that x and (u,v) are

optimal solutions of the primal and dual linear program respectively.
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REMARK 1.4.2. In the simplex method basic solutions are iteratively com-
puted such that the value of the objective function in subsequent itera-
tions never decreases. To be sure that the simplex method is finite, it

is sufficient to prove that a basis matrix cannot return. If B_lb > 0 for
every basis matrix B, then the value of the objective function increases
at each iteration. Problems which have this property are said to be non-
degenerated. Hence, the simplex method is finite for nondegenerated prob-
lems. Forkdegenerated problems we need sophisticated rules to determine
different basis matrices in subsequent iterations. A very elegant rule has
been developed by BLAND [1977]. For the details of the simplex method, in-
cluding its numerical aspects, we refer the reader to the chapters 3 and 4

in ZOUTENDIJK [1976].

For the computation of an optimal solution by the simplex method we
use the so-called simplex tableau. In this tableau we store the basic and
nonbasic variables but also the dual variables. This tableau has the fol-

lowing form

XN
(1.4.2) g B_lb B In
T -1 T _ T -1 T
) pBB b dN = pBB N pN

REMARK 1.4.3. We have assumed that the columns of A can be rearranged such
that A = (B,N), where B is a nonsingular matrix satisfying B_lb > 0. In
general, such a partition is not possible; moreover, if a partition is
possible, then we don't know which columns can be chosen to form a regular
basis matrix. Fortunately, by adding some artificial variables, we can
overcome this difficulty if we apply the so-called phase I - phase II sim-
plex method. Therefore, we partition the contraints of the linear program-

ming problem in three subsets:

Nq
»
k
A
o

and b, 20: I

o~
_D’
x
A
o

and b, <0:1I
i
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. a, . x, = b, : I

zJ 1373 i 3

(we may assume that biz 0, i€ 13, because otherwise the equality can be
multiplied by -1). Introducing nonnegative slack variables Yo ie I1 u 12,

and artificial variables L ieI,u I3, we consider the linear program

2
Zjaijxjwi = b, i€l x 20 J=1,2,....m
. . - - - + = o . ; 2 . 3
(1.4.3) max zizi Zj aijxj v, tz; bi i eIz v, 0 i 511 UI2

1]

zjaijxj+zi bi ieI3; ziZO ieI vl
Then, we can start taking as basis matrix the identity matrix corresponding
to the columns of yi, ie Il' and zi, ie 12 u 13. This matrix satisfies
the assumptions and we can apply the simplex method in order to obtain an
optimal solution of (1.4.3). This is called the phase I. Suppose that
(xo,yo,zo) is an optimal solution of (1.4.3).

1f Zi z; > 0, then the original problem is infeasible.

If Zi z; = 0, then we have a feasible solution (xo,yo).
In the latter case, we take as new objective function the original objec-
tive function Ej pjxj and continue the simplex method, maintaining Zi z, = 0,
to obtain an optimal solution for the original problem. This is called the
phase II.

It may occur that the linear programming problem has an infinite solu-
tion. Then, we shall obtain a simplex tableau with a nonpositive column
corresponding to a nonbasic variable, say (xN)k, such that (dN)k < 0.

Define the direction vector s by

~-1
sy = (-B N)-k
(1.4.4)
Sy T -
Then, we have
s 20
As = Bs. + = - + =
s s NsN N-k N-k 0
-T T T -1 T
= + = (-p_B "N+ = - >
P s = PpSp + pysy = Py Pyl y Ay > 0
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Consequently, s is an infinite direction.

We close this section with a discussion about the problem of finding
all optimal basic solutions of a linear program. Suppose that the optimal
simplex tableau (we assume that the linear program has a finite solution)

is given by

(1.4.5)

0 0 " Ly 3Ry

*
Since bo is the optimal value and all variables are nonnegative, it follows

from (1.4.5) that any optimal solution x satisfies

(1) (XN)k =0 if (dN)k > 0, . . .
(ii) (x.). = 0 if for some i b, = 0, a, =2 0 and a,, > O.
N k i i ik
If we know that (x ), = 0 for any optimal solution, then we may remove

Nk
the corresponding column from the tableau; after this reduction we have

(dN)k = 0 for every k. Hence, we may apply the following rule:
(iii) Every variable (xN)k may enter the basis to obtain an optimal
solution with a new basis matrix.
If bz = 0 and a:. = 0, then we can remove this row from the tableau.
Hence, we obtain a tableau with dN = 0 and with in any row i where b; =0
at least one negative coefficient.

The optimal simplex tableau may contain artificial variables as basis
variables. These variables can be removed from the tableau in the follow-
ing way. Suppose that (xB)i is an artificial variable, say ZK' Then b; =0
and consequently there exists an index k such that a;k < 0. Exchange the
variables (x_), and zz by pivoting with pivot element a;

N'k k
becomes nonbasic and the corresponding column can be removed.

. The variable zp

Mostly, we can simplify the tableau considerably by the rules stated
above. In the reduced tabl:au, we may apply rule (iii) and the following
rule (iv) in order to determine all optimal extreme solutions.

(iv) If b: = 0 and a;k # 0, then the variables (XN)k and (xB)i can be
exchanged and an optimal solution with a new basis matrix is
obtained.

Since the set of optimal solutions is convex, we can compute all
extreme optimal solutions by successive computation of all extreme opti-

mal solutions that are adjacent to the present extreme optimal solution
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(cf. HADLEY [1962] pp.166-168). This computation is elaborated in the fol-

lowing algorithm:

Algorithm I for the computation of all extreme optimal solutions of a linear

program.

step 1:

step 2:

step 3a:

step 3b:

step 3c:

step 3d:

step 4:

step 5:

step 6:

step 7:

step 8:

Determine an optimal solution by the simplex method and denote
the coefficients of the optimal simplex tableau by (b:), (a:j)
and ((dN)j). v

If (dN)j > 0 for all j, then the optimal solution is unique (STOP).
For every k such that (dN)k > 0, remove the corresponding column
from the tableau.

* ) *
For every k such that a,, > 0 for some i which satisfies bi =0
i .

k
*
and ai‘ > 0, remove the corresponding column from the tableau.

* *
For every i such that bi = 0 and ai. = 0, remove the correspond-

ing row from the tableau.

For every i such that (xB)i is an artificial variable, iay
(xB)i = 2zp, execute one pivot step with pivot element ay <0
and remove the column corresponding to zp from the tableau.

Put the basis matrix on the list L1 (L1 will contain all basis

matrices corresponding to extreme optimal solutions; the basis
natrices, for which the adjacent extreme optimal solutions al-
ready are determined, are markéd); put the optimal solution x on

the list L2 (L2 will contain all extreme optimal solutions); set

L3 =0 (L3 will contain all extreme infinite directions).

If all elements of L1 are marked, then all extreme optimal solu-

tions are stored in L2 (extreme solutions) and L3 (extreme direc-

tions); STOP.

Take any unmarked basis from L,, mark this basis and determine

1
the corresponding simplex tableau (denote the coefficients again
* *
by (b, L d.).)).
y ( 1)’ (al]) and (( N)j)) . .
For every i and k such that bi = 0, aik # 0 and such that the basis
where the variables (xN)k and (xB)i are exchanged is not in Ll:

put this new basis on Ll'

*
For every k such that a < 0 and such that the direction vector

s, where
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step 9:

mag if xj = (xB)i
sj := 1 if xj = (xN)k
0 elsewhere

does not belong to the list L

3:
put this direction s on L3.
For every k such that
*
(1) a,. > 0 for at least one i
ik
(ii) minf{bi/a’, | a¥, >0} =b*/a" >0
i’ ik ik r rk

(iii) the basis matrix which is obtained after exchanging

the variables (xN)k and (xB)r is not in L1
do: a. put this new basis matrix on Ll'
b. if the solution corresponding to this new basis is not in

L.+ then put this solution on the list L

2 2°

step 10: Go to step 5.
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CHAPTER 2

MARKOV DECISION PROCESSES

2.1. INTRODUCTION AND SUMMARY

In this chapter we present a survey of some results about Markov
chains and Markov decision processes. This survey is far from comprehen-
sive. We only discuss the topics we need in the following chapters of this
monograph.

In section 2.2 we introduce the Markov decision models with various
optimality criteria such as discounted optimality, average optimality, bias
optimality and Blackwell optimality. Furthermore, we give some notations
and definitions.

Section 2.3 deals with the theory of Markov chains. We give a summary
of some well-known results on the transition matrix and the stationary ma-
trix. Also we present an algorithm for identifying the ergodic sets and
the transient states of a stochastic matrix, and an algorithm for the com-
putation of the stationary matrix.

In section 2.4 we review some results on (sub)stochastic matrices.

We present some properties of the stationary, the fundamental and the
deviation matrix.

In section 2.5 we mention results about the existence of optimal pure
and stationary policies for the optimality criteria introduced in section
2.2. Also, we present a theorem, due to Derman and Strauch, which implies
that restriction to Markov policies is allowed. Furthermore, we give a
result, due to Blackwell, which relates discounted rewards to average re-—

wards for discount factors near to 1.

2.2. MARKOV DECISION MODELS

Consider a dynamic system that is observed at discrete time points

t=1,2,... . We allow that with positive probability the system breaks
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down and then the process is terminated. If at any discrete time point t
the system is in one of a finite number of states, then an action has to
be chosen. The state space is denoted by E = {1,2,...,N} and A(i) is the
finite set of possible actions in state i, i € E. If the system is in
state i and action a € A(i) is chosen, then the following happens, inde-
pendently of the history of the process:
1. A reward ria is earned immediately.
2. The next state of the process is chosen according to the transition prob-
abilities piaj' where piaj 2 0 and Zj piaj < 1 for every a € A(i)
and i,j € E.
A (discrete) Markov decision problem is given by a four-tuple (E,A,p,r), where
- E is the state space,
- A= UiEE A(i) is the action space,
- p is a transition probability from E x A to E,
- r is a real-valued reward function on E x A,
(E XA has to be interpreted as {(i,a)|i € E, a € A(i)}). A Markov decision
problem is also called a (stochastic) dynamic programming problem.
Let Ht denote the set of possible histories of the system up to time

t, i.e.

H :={(i1,a i

N ,lt)llkeE,akeA(lkL k=1,2,...,t—1;1t€E}.

17 1%

- t . . . .
A decision rule m at time t is a nonnegative function on HtXA such that

for every (ll,al,...,lt) € Ht
t . .
"ia ...ia -0 iEa fAl)
171" tt
and
t
za i a ia - b
t 7117 T e
. . . 1 2 t
A policy R is a sequence of decision rules: R= (7,7 ,...,7T ,...). We let

C denote the class of all policies. A policy R = (nl,n2,...) is said to be
)

memoryless if the decision rule nt is independent of (il'al""'it—l'at~1
for every t € IN. Memoryless policies are also called Markov policies.

By CM we denote the class of Markov policies. We let CS denote the class
of stationary policies, i.e. the Markov policies for which nt is time
invariant. Hence, a stationary policy is completely determined by a deci-

sion rule which depends only on the last state i. We will denote the
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stationary policy R = (m,m,...) by ﬂm. By CD we denote the subclass of Cs
consisting of the pure and stationary policies, i.e. stationary policies
with nonrandomized decisionvrules. Therefore, a pure and stationary policy
can be described by a function f defined on E such that f(i) € A(i), i € E.

We will denote this policy by fm.

t s 14
For any R = (nl,ﬂz,...) e C, we denote by pija the probability that the
system is at time t in state j and then action a is chosen, given that the
t
system is at time t =1 in state i. For R € CM the numbers pija(R) can be com-

puted iteratively:

1 {0 j# i, a € A(3)
1

Pija(R) =
“ja j = 1i, a € A(J)
t+1 . )
Ffl(R) = Z pF. (R) *p. Lo, , jeE,aeA(j), teIN.
ija e, i iaj Ja
ltl t
Let us define the matrix P(n") by P(10) := (I ) tel
et us define the matrix P(m v : aPiajTia) ’ .
Then, for R € CM we have
t+1 _ 1 2 t JL -2 5 S .
pija(R) = [p(nl)yp(n)...P(7 )]ij “ja » J€E, a €A(d), t e Wy,
where P(vl)P(ﬂ2)...P(nt) := 1 1if t = 0.

Let {Xt, t=1,2,...} and {Yt, t =1,2,...} be the sequences of ran-
dom variables denoting the observed states and chosen actions respectively.
Then, we can also write

Em =P (x, =3, v =alx =1
Pija*™ = S e T B
t
Furthermore, we denote by pij(R) the probability that the system is at

time t in state j, given that state i is the starting state. Hence, we obtain

t . o . _ .
pij(R)—JPR(Xt—J le-l) —ZaIPR(Xt—j,Yt—aIX =1i).

t t t
The matrix P (R) is defined by P (R) := (pigl(R)).
The expected reward in the t-th period, given initial state i and the

t
use of policy R, is denoted by vi(R), i.e.



22

e

t : - = i)
v, (R) :=Lza]PR(Xt=],Y =a | X, =1i)er,

J

The expected total reward over an infinite horizon, given initial state i
. . . T t .

and the use of policy R, where R is such that lim Zt=1 vi(R) exists

(possibly +» or -«), is denoted by vi(R), i.e.

v.R) =), V) B (X =3,¥Y =alx =i-r
i t=1L5La "R Tt t 1 ja
For a real number a € [0,1) the expected discounted reward, given initial

state i and the use of policy R, is denoted by v?(R), i.e.

o ©  t-1 . .
.= = Y = X = er. .
vi(R) Zt=1a Xan]PR(Xt Jr g =2 l 1 2 rja
o is called the discount factor. The expected average reward over an
infinite horizon, given initial state i and the use of policy R, is de-

noted by ¢i(R) and defined by

1 ¢T

:=1i i - =3j,Y = X, = i)e°r, .
¢i(R) lim inf T t=1ZanIPR(Xt Iy, a | 1 i

ja
For a Markov decision model with as utility function the total reward
criterion we will use the name TMD-model. In a TMD-model we define the

TMD-value-vector v by
1= su v, (R i e E.
Vi pR l( )

* *
A policy R is said to be total optimal if v(R ) = v. A Markov decision
model with the discounted reward criterion is called a DMD-model. The

DMD-value-vector v* is defined by
o o
1= su v, (R i e E.
Vi Pp i R

A policy R* is a-discounted optimal if va(R*) = va; a policy R* is said
to be bias optimal if lima+1{vZ(R*)-v$} =0, 1 € E; a policy R* is
called Blackwell optimal if for some o, € [o,1) R* is a-discounted opti-
mal for every a € [a_,1).

If we use as utility function the average reward criterion, then the

name of the model will be abbreviated by AMD-model. The AMD-value-vector
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¢ is defined by
= R i E.
o, sup, ¢i( ) ie
* *
The policy R is average optimal if ¢(R ) = ¢.

. . L t
The policy R is said to be a transient policy if Zt_lpij(R) < o for
every i,j € E. Hence, for any trans;ent policy Vi(R) is finite for every

ie E. If R = (nl,ﬂz,...) € CM is transient, then we may write

v = Jo pahe@ et e,

where
t t
r(n) := (Za r o)
Furthermore, if nm € CS is transient, then we have (cf. KEMENY g& SNELL
[1960] p.22)

vy = I 2" mrm = e e,

If a TMD-model satisfies the condition that every policy is transient,
then the model is called a transient dynamic programming problem.

A TMD-model with ria 2 0ae€A(i), i € E, is said to be a positive
dynamic programming model; if all rewards are nonpositive, then we have
a negative dynamic programming model.

A dynamic programming problem is called contracting if there exists

a vector p >> 0 and a scalar a € [0,1) such that
X. P,..H. S a u, a e A(i), 1 € E.

Any DMD-problem is contracting (re-define piaj i= apiaj
and take u = e); it can easily be verified that in a contracting dynamic

i,j € E, a € A(i)

programming problem any policy is transient. Hence, the transient dynamic
programming problem is a generalization of the contracting dynamic prog-
ramming problem (in fact, these problems are equivalent as will be shown
in theorem 3.2.4). The name contracting dynamic programming was introduced
by van Nunen and Wessels, who have studied this model systematically (e.g.

VAN NUNEN & WESSELS [1977]).
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REMARK 2.2.1. In the sequel we will present examples of models and illus-
trate them in a picture. In these models the transition probabilities will
always be degenerated, i.e..for any a € A(i) and i € E we have piaj # 0 for
at most one state j. Hence, to indicate which state is the next state of
the system, when in state i action a is chosen, we can use in the picture an
arc from state i to state j where j is such that piaj # 0. For the differ-

ent actions 1,2,...,k, in state i, these arcs are drawn as
: i

e——p———e (action 1), G————bb-———o (action 2) etc.
i 3j i 3

In the TMD-models we add to every arc that corresponds to (i,a) and is

r. ,p.,_. . For AMD-models we
ia’Fiaj

shall assume that Zj Piaj= 1 for every aeA(i), i€ E. Therefore, we may

directed from state i to state j the pair

add to an arc only the number
ria . Figure 2.2.1 gives the <:::::>
picture which corresponds to
the following TMD-model:
E={11213}; A(i) ={1I2}I ieE;
=1/20 Py 53711 Pyy1=1/2: Py
=1/2 (the other

P112 =1/4,

P3y3=1r P3y
transition probabilities are zeros);

r11=1, r12=0, r21=—1, r22=2, r31=—2, r32=0.
Figure 2.2.1
2.3. MARKOV CHAINS
Assume that Zj Piaj = 1 for all a € A(i), i € E. Then for any station-

ary policy m the sequence of observed states {xt, t=1,2,...} is a finite
stationary Markov chain with transition probabilities pij = Zapiajnia’i'j €E.
Hence, the theory of Markov chains plays an important role in the analysis of
Markov decision models. In this section we will summarize some results for
reference purposes. For the proofs we will refer to one of many books that
deal with Markov chains. We assume that the reader is familiar with concepts
such as: transient state, recurrent state, ergodic set, communicating states,
absorbing state and absorption probabilities.

The Markov chain is-called completely ergodic if all states are recurrent



25

and there is exactly one ergodic set. If there is exactly one ergodic set
plus possibly some transient states, then the Markov chain is said to be
unichained. A subset E0 of E is said to be closed under P if pij = 0 for

all i € E0 and j e E\EO.

Let El'EZ""'Em be the ergodic sets and let F be the set of all
transient states of a Markov chain with state space E = {1,2,...,N}. Then,

by appropriate rearranging, we obtain the following form for the transi-

tion matrix P:

P1 0 ceee 0 0 E1
0 P2 . . E2
(2.3.1) P= . . . . .
0 PPN P E
m m
R1 R2 . Rm Q F
THEOREM 2.3.1. The matrix I-Q is nonsingular and (I—Q)_1 = Z:—O Qn.
PROOF. See KEMENY & SNELL [1960] p.46. [
DEFINITION 2.3.1. Let Bl'BZ"" and B be real kxk matrices, and let
~ 1 .n . ~ .
Bn =3 Z£=1 BK' ne N. If B = llmn+w Bn' then we write
(e) . ) .
B = lim B (the notation (c) stands for Cesaro limit).
no® n
THEOREM 2.3.2.
*
(1) P 52) lim p" exists.
n->oo

. * * *_* *
(ii) PP =PP =PP =P .
s s ) * *
(iii p;, = Pj,
the same ergodic set.

*
and Pij > 0 for any pair (i,j) such that i and j belong to

*
(iv) p

g - 0 for any transient state i.

PROOF. See DOOB [1953] p.175. (]

DEFINITIONS 2.3.2.

(1) The matrix P* is called the stationary matrix of matrix P.
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(ii) Any solution of the set of equations

T T T
x =20, X e =1 and X =XP

is a stationary probability distribution of the Markov chain.

THEOREM 2.3.3. Let x be any stationary probability distribution of the

Markov chain. Then

0 if i e F

* NP ) . s m _
ckpii if i e Ek where c satisfies Zk=1 ck = 1.

PROOF. See DOOB [1953] p.183. [

T T . ,
COROLLARY 2.3.1. If x = x P and Ex := {ilxi > 0}, then E_is the union

of some ergodic sets and consequently, Ex is a closed set.

NOTATION 2.3.1. For any transient state i we denote the absorption prob-
ability that the process will be ultimately absorbed into the ergodic set

Ek by aik k=1,2,...,m.

THEOREM 2.3.4. For any ergodic set E , we have

k

* * . .
pij = aikpjj' ieF, je Ek

and {aik,i € F} is the unique solution of the linear system

~ . - .
ik ZjeEkpij jerPijdypr L €F

PROOF. See FELLER [1967] p.403. [

If the ergodic sets and the transient states of a Markov chain are
identified, then the stationary matrix P* can be computed using the results
of the theorems 2.3.4. We will describe an algorithm proposed by FOX & LANDI
[1968] to find the ergodic sets and the transient states. This algorithm is
based on repeated use of the following rules:

1. State i is absorbing if and only if pij =0 for all j # i.

2. If state i is absorbing and pki > 0, then state k is transient.

3. If state i is transient and pki > 0, then state k is also transient.
4. If state i communicates with state j and state j communicates with

state k, then state i communicates with state k.
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The search for a set of communicating states is conducted by generating a
chain of states smch that each state can be reached from its predecessor
with positive probability in one transition. If the chain encounters a
state that has already been classified to be transient, then all states in
the chain are transient. Otherwise, a circuit of states is obtained. Then,
this circuit is replaced by one composite state. If by rule 1 the composite
state is absorbing, then the states of the composite states form an ergodic
set and the states in the chain that p;ecede the circuit are transient;
otherwise, extension of the chain is continued from the composite state.
Hence, in a finite number of steps at least one state is classified to be
recurrent or transient. This guarantees the finiteness of the following

algorithm.

ALGORITHM II for identifying the ergodic sets and the transient states of

a Markov chain with transition matrix P.

step 1: Take s; = {i} for every state i.

step 2a: Every state i such that pij = 0 for all j # i is labeled as an
absorbing state.

step 2b: For each identified absorbing state i, label state i as an ergodic
set, and label every state k satisfying = > 0 as transient state.

step 3: If all states are labeled, then go to step 6.
Otherwise, go to step 4a.

step 4a: Choose any unlabeled state i, set r = 1 and let ir = 1i.

step 4b: Search in row ir for a positive element, say pirir+1’ such that
ir ? ir+1'
step 4c: If state ir+1 is labeled as a transient state, then:
(i) label each state in the set {Silusizu-°-usir} as transient,
(ii) go to step 3.
Otherwise, go to step 4d.
step 4d: If ir+1 = ik for some k € {1,2,...,r-1}, then go to step 5a.

Otherwise, r := r+l1 and go to step 4b.

step 5a: Replace row i, by the sum of the rows {i_,i

k k+1""'ir} and delete

the rows {ik+1'ik+2' . 'ir} from the matrix; replace column ik by
the sum of the columns {ik'ik+1""’ir} and delete the columns

r
(i) pyripypreneri }s set Siy = jgk Sig-

step 5b: If the composite state ik is absorbing, then:
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P NP § as

(1) label i, as an ergodic set and i1, k=1

transieit states,
(ii) 1label every state j which satisfies Zz=1pji£:>0 as
transient state,
(iii) go to step 3.
Otherwise, r := k and go to step 4b.
step 6: The transient states are labeled as transient, and every other
state i, (whether or not composite) corresponds to an ergodic

k
set and Si contains the states of this ergodic set.
k

*
The results stated above imply that the stationzry matrix P can be

determined by the following algorithm.

*
ALGORITHM III for the computation of the stationary matrix P .

step 1: Identify the transient states F and the ergodic sets E, ,E ,...,Em

1772
of the Markov chain by algorithm II.
step 2: Determine for k = 1,2,...,m

(1) the unique solution {x?,j € Ek} of the linear system

~k .
ZjeEk(SjK—ij)xj =0 L e E,
~k
ZjeEk xj =1

(ii) the unique solution {a?,j € F} of the linear system

Nk .
Lier (843 P;y)ay = XjeEkpij LeF
step 3:
k . .
xj ie Ek' Jj e Ek' k=1,2,...,m,
* k_k ) .
piﬁ = aixj ieF , je Ek’ k=1,2,...,m,
0 elsewhere.

2.4. SUBSTOCHASTIC MATRICES

DEFINITION 2.4.1. A real nxn matrix P = (pij) is said to be substochastic

if pij 2 0 for all i,j and ijij < 1 for all i; if, moreover, ijij =1

for all i, then P is called a stochastic matrix.
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Throughout this section we assume that P is a substochastic matrix.
In the following theorem we summarize some well-known results of sub-
stochastic matrices. For the proofs we refer to BLACKWELL [1962] and
VEINOTT [1974].

THEOREM 2.4.1.

. * (c) . n ., L. * * *_% *
(1) P == llmn+w P exists and satisfies PP =PP =P P =P .

L . o k * k _
(ii) llma+1 il o) Zk=0 o (P-P ) = 0.
(iii) I-P+P 1is nonsingular and moreover

* =1 X L k * k
(I-p+P°) " = lim_,, Zk=0 o (P-P ).
* -1 _*
(iv) Let D := (I-P+P ) -P . Then
1 L-1 _«

. i k k _* _ . 1l ¢k _
D=lim,, ) oo (F=P)=lim =)' T, & -P)
and

* * * *
PD=DP = (I-P)D+P -I = D(I-P)+P -I = 0.

* * -
DEFINITION 2.4.2. The matrices P , (I-P+P ) ! and D are said to be the

stationary, the fundamental and the deviation matrix of the substochastic

matrix P, respectively.

LEMMA 2.4.1. If the matrix P 1is stochastic, then De = 0.

PROOF. Using theorem 2.4.1(iv), we obtain

) 1 vn vk £-1 _*
De = llmn n zk=122=1(P -P e
. 1 yn vk £-1
= llmn n zk=12£=1(P e-P e)

=0. 0O

Any stochastic NXN matrix may be interpreted as the transition matrix
of a Markov chain with state space {1,2,...,N}. In the following chapters
we also encounter substochastic matrices that are not stochastic. However,
such a matrix may be interpreted as a submatrix of the transition matrix

P of a Markov chain with state space {0,1,...,N}, where
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(2.4.1) P =

~ ~k ~
Since P and P are stochastic and, by lemma 2.4.1, De = 0, it follows from

(2.4.1) that

*
where P and D are the stationary and deviation matrix of P, respectively.
The additional state 0 is an absorbing state. Suppose that there are fur-
in the Markov chain

thermore m (possibly m = 0) ergodic sets E, ,E

1 2,...,Em
with state space {0,1,...,N} and let F be the set of transient states. The
number of states in Ek is denoted by Nk, k=1,2,...,m. By appropriate re-

arranging, we may write P in the form

P, O ... 0] o0 E,
Py . 2

(2.4.2) p=| . . . .. )
\o 0 ... p,| 0 E_

R, Ry ... R | Q F

* *
The matrix Pk has identical rows; denote this row by the Nk—vector pk.

Then using the result of theorem 2.3.4, it can be verified that we may

*
write P and D as

/¥] 0 ... 0o D, .. 0 0
*
/ 0 P2 ... O D2 .. O 0
*
(2.4.3) P = . . . . . , D= ‘ . .

. . . .* \ . . P .
0 ... Ppl o0 \O 0 ... Dy 0
By By -ee B B, B B (I—O)_1
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where
-1 * T
Ak=[(I-Q) Rke](pk) k=1,2,...,m
* -1 *
Dk- (I-Pk+Pk) - Py k=1,2,...,m
B = (1-0) Y(R-A) (D +5) -a  k=1,2
k - Q) (RemA ) (D Py k = telree. e

* -
If m = 0, then P is the null-matrix and D = (I-Q) 1. For the sequel

of this section, we assume that m = 1. Let ik be an arbitrary state in the

ergodic set E k=1,2,...,m. Suppose that r is any N-vector and that B

kl
is any diagonal NxN matrix with nonnegative elements. Then we have the fol-

lowing result (cf. DENARDO [19711]).

LEMMA 2.4.2. Suppose that x is a solution of the linear system

(I-P)X = 0
(2.4.4)
* ~ *
PBXx =P r.
Then

* . _
(P r)i //(P*Be), ie Ek' k=1,2,...,m
k ip
®*n)
m )iy )
Z 1 %k ieF.
(P Be) lk

The following lemma gives a related result for a system of inequalities.

LEMMA 2.4.3. Suppose that x is a solution of (2.4.4) and that X satisfies

(I-P)x 2 0

Then, X > X.

- *
PROOF. Let a = (I-P)xX. Then, a 2 0 and P a = 0, implying that a, = 0
- - * e
i € E\F. Consequently, X, = (P}_{)i i ¢ E\F and also xi = (P x)i, i € E\F.
Hence, the value of X is constant on any ergodic set. Therefore, we can

write
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'),
(2.4.5) x, > ——;——3; =x,, i € E\F.
REG~ Be), *

Let EF consist of the components of x corresponding to the transient states.

Then, X = Px, (2.4.2) and (2.4.5) imply
> . > . + .
P Demp Xy R Y O 2 Dy Xy cRee b 0%
Since (I-Q) is nonsingular and nonnegative, we obtain

m -1
Xp > Zk=1 xik'(I—Q) Rke.

Hence,

X
I

m -1 .
; > zk=1 [(1-9) Rke]j xik, j e F.

Theorem 2.3.4 implies that
(2.4.6) x, 2 ax j e F.
The inequalities (2.4.5) and (2.4.6) yield x > x. []

2.5. EXISTENCE OF OPTIMAL POLICIES

The following theorem, due to DERMAN & STRAUCH [1966] and generalized
by STRAUCH & VEINOTT [1966] and HORDIJK [1974] pp.115-117, indicates that

we may restrict ourselves to memoryless policies.

THEOREM 2.5.1. Given any initial distribution B = (61,82,...,BN) , any

sequence of policies R,,R.,... and any sequence of nonnegative real num-

172
bers pl,p2,... with Zk—l p = 1, there exists a memoryless policy R such
that
. =9, = X, = =
(2.5.1) 18Py (X, =3, Y =a | X, =1)

XisizkkaRk(thj’ Y =a | x,=1) teN,aca(f),JeE.



COROLLARY 2.5.1. Given any initial

exists a policy R_ ¢ CM such that

=a|X1

]PRO(Xt =3 Yy

We continue this section with
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state i € E and any policy R ¢ (, there

i) i
teN,aen(j), jeE.

some propérties of the DMD-model. The

results are folklore and for the proofs we will refer to a standard book

on Markov decision processes

THEOREM 2.5.2.

(i) The DMD-value-vector ch

is the unique solution of the functional

equation
.5. = + i .
(2.5.2) x; maxa{r:,La a Zj Piaj xj}, iecE
(ii) Let ai € A(i) be such that

r

+
ia,
i

o . . .V,
zJ plaij j

Then the pure and stationary

a-discounted optimal.
PROOF. See ROSS [1970] pp.121-128.
THEOREM 2.5.3. There exists a pure

PROOF. See DERMAN [1970] pp.24-25.

+
mgx{ria a Zj p

3,

L. V. i e E.
iaj J

policy fm, where f£(i) =a;, i€ E, is

a

and stationary Blackwell optimal policy.

If 1 is a stationary policy, then P (Xt=j|X1 =1i) = (Ptul(‘n))ij,
™
t e N, i,j € E. Hence,
(2.5.3) v = mrm, temw,
where r(m) := (Z_x, 7, ). We also have
a ia ia
[+ -
(2.5.4) ¢(m ) = lim inf LyT Pt 1('rr)r(1T) = P*(ﬂ)r('n).

T>e T

t=1
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If the Markov chain induced by . is unichained, (i.e. there is at most
* ©
one ergodic set, then P (m) has identical rows, and consequently ¢ (m ) has

identical components.

(o]
NOTATION 2.5.1. For any stationary policy m , we denote the vector D(m)x(m),

where D(m) is the
©
u(m )

(2.5.5)

From theorem

(o]
deviation matrix of P(w), by u(m ):
:= D(m)xr(m).

2.4.1(iv) it follows that

(2.5.6)  u@) = limy Iy (I vB) —ten)
and
un™ = tin, To oS mem -2 mrm)
= lima+1{va(nw)'- Qé%gl}.
Hence,
(2.5.7) ™y = "’1(’_':) +u(r?) + e,
where limmM e(a) = 0.

THEOREM 2.5.4. Any Blackwell optimal policy is average optimal as well as

bias optimal.

PROOF. From the definition of bias optimality it is obvious that Blackwell
optimality implies bias optimality. In DERMAN [1970] pp.25-26 is shown that
Blackwell optimality implies average optimality. 0

COROLLARY 2.5.2. There exist pure and stationary average optimal and" bias

optimal policies.

REMARK 2.5.1. In chapter 5 we will show that bias optimality implies

average optimality.

REMARK 2.5.2. A finite algorithm to compute a Blackwell optimal policy can
be found in HORDIJK, DEKKER & KALLENBERG [19811].
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CHAPTER 3

TOTAL REWARD CRITERION

3.1. INTRODUCTION AND SUMMARY

In this chapter we consider Markov decision problems with the expect-
ed total reward as optimality criterion. Already in 1953 SHAPLEY [1953]
has analysed this type of problems in the context of stochastic games. The
special case that we have a discounted dynamic programming problem has been
studied extensively (see for instance the books written by HOWARD [19607,
DERMAN [1970], rOsSs [1970]1, MINE & OSAKI [1970] and HORDIJK [1974]). Linear
programming formulations for the discounted dynamic programming problem are
due to D'EPENOUX [1960] and DE GHELLINCK & EPPEN [1967].

In section 3.2 we show that a pure and stationary policy, which is
optimal with regard to the total reward criterion, always exists. Further-
more, we give a slight extension of Veinott's result (VEINOTT [1969]) con-
cerning equivalent formulations of the concept of a contracting dynamic
programming problem. From these results we derive two algorithms for check-
ing the contraction property of a given dynamic programming problem.

Section 3.3 deals with the problem of finding optimal policies in the
class of transient policies. We shall show that we can obtain such optimal
policies from optimal solutions of a linear programming problem. If we use
the simplex method to solve this linear program, then a pure and stationary
optimal policy is obtained (see algorithm VI). We also discuss a constrained
dynamic programming problem, where the constraints are linear functions of
the expected number of times of being in state j and then choosing action
a, a € A(j), jJ € E. Then, in general, there exists no optimal policy that
also belongs to the class CD' However, we can find by linear programming an
optimal policy that is stationary (algorithm VII). Moreover, we show a one-
to-one correspondence between the transient stationary policies and the
feasible solutions of the proposed linear programming problem such that

pure policies are mapped on extreme feasible solutions. We close this sec-
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tion with an application of the optimal stopping problem.

In section 3.4 we discuss the contracting dynamic programming problem.
In this problem, all policies are transient; consequently, the results of
section 3.3 are applicable. The results of section 3.3 can even be extend-
ed on some points (cf. theorem 3.3.4 versus theorem 3.4.8). Furthermore, we
prove that, for this problem, linear programming by the simplex method is
equivalent to the policy improvement method. We also show that elimination
of suboptimal actions, as introduced by MACQUEEN [1967], can be implemented
in the simplex method very easily using the dual variables appropriately.
We close this section by the observation that discounted dynamic program-
ming and contracting dynamic programming are equivalent models for uncon-
strained as well as for constrained Markovian decision problems.

Positive dynamic programming is the subject of section 3.5. We prove
that, if the optimum of the linear programming problem is finite, then a
pure and stationary optimal policy can be obtained directly from the linear
programming solution. If the optimum is infinite, then by the linear program
we can find a policy that, in general, is optimal only on a subset E1 of
the state space E. However, since E\E1 is closed under any policy, we may
repeat the same procedure on the remaining states. In this way, we can con-
struct a finite algorithm for positive dynamic programming (algorithm XII).

In section 3.6, where the negative dynamic programming problem is
studied, we can derive a finite algorithm in a way similar to the analysis
of section 3.5. In the algorithms of the sections 3.5 and 3.6 we have, be-
sides solving linear programs, also to determine the structure -of the

Markov chain induced by some pure and stationary policies.

NOTATION 3.1.1. In this chapter, and also in the following chapters, we
often use a vector, say x, with components xia' a € A(i), i € E. However,
we will also use the same notation x for the N-dimensional vector which
has the components xi i= Ea Xia' i € E. Which vector is meant will always
be clear from the context. Furthermore, we use the notation Ex' where Ex

is defined by E_ := {i ¢ E | £ x,_ > 0}.
X a ia
3.2. PRELIMINARIES
In this section we discuss some properties of the TMD-value-vector v

and we prove some theorems about transient policies. In order to have a

well-defined concept of the expected total reward we use throughout this
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section the following assumption.

ASSUMPTION 3.2.1. For any initial state i and any policy R the expected

total reward Vi(R) exists (possibly *«).

We will show that, under the above assumption, there exists a pure
and stationary optimal policy. First, we notice that the TMD-value-vector
v exists (possibly v, = t~ for some i € E). For the proof of the existence
of an optimal policy which belongs to the class CD' we need the following

lemma.

LEMMA 3.2.1. For any initial state i and any policy R, we have

. o -
llma+1 vi(R) Vi(R)'

PROOF. (cf. pp.65-67 in HORDIJK & TIJMS [1970]). Take any initial state

i € E and any policy R ¢ C. We distinguish the following cases:

(1) -o < Vi(R) < 4o
(ii) vi(R) = 4o
(iii) Vi(R) = -o,

case (i): Take any € > 0. Then, there exists an integer T_ such that

T t
lvi(R) - zt=1 vi(R)\ <e forevery T >T_.

Since IVE(R)I is bounded for all t (e.g. by max lrial), the power series

i,a
o L t-1 t
Vi(R) 1= zt=1 a vi(R)
has radius of convergence at least 1. The series ) at-l has radius of

t=1
convergence 1. Hence, for any a € [0,1), we may write

(l—a)_l o z: s=1 ¢ t-1_t

vi(R) -1 2t=1a vi(R)

Lo Qe vimnatt.

Therefore,

-1 o t t-1
| (1-a) ’{v?(R) —vi(R)}l < Zt=1|§s=1 vj(R) -v,® a7 =
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o t t-1 ) t t-1
Loy llgovi ® -v, ® a7+ ;t=T°+1lzs=1vi(R) -V ® e

Let M:= max IZt v?(R)-—v.(R)l. Then we can write
ey, S=1 4 t
TO
-1, a 1-a 100 t-1 2¢
- - < Me + < ==
(1-o) " |vi(R) -v, (R ] < Mo e Zt=T0+1“ 1-o

To
< 1 satisfies M(l-a ) < € for o 2 a,. Hence, we

for o ¢ [al,l), where o 1

1
have shown that

. a _
llmu+1 Vi(R) = vi(R).

case (ii): Choose any M > 0. Then, it follows that there exists an integer

7, such that Zz=1 VE(R) > M for all T > T, Similarly to case (i), we can

write
-1 a L t s t-1
(1-o) vy (®) = J_ (I v (R)a
= FT° (Zt VS(R))at_l + Zw (zt VS(R))at_l
T lg=1'tg=11 t=T°+1 s=11i
1 To To 1/2
-0, o)
. + M- > oM
>m 1-a M 1-a 1-a
T
for every o € [az,l), where a, satisfies % < a, < 1 and m-(l—a2 °) = - %M
z E ' o
with m := min Zt v?(R). Therefore, we have shown that lim £ v, (R) = +w.
1gtgr, s=1 i o t

case (iii)i_The proof is similar to the proof of case (ii). 0
THEOREM 3.2.1. There exists a pure and stationary optimal policy.

PROOF. (cf. HORDIJK [1976]). Theorem 2.5.3 implies the existence of a real
number a, € [0,1) and of a policy f°° € CD such that

va(fw) =v*  for all a € [ao,l).
Then, from lemma 3.2.1, it follows that

v, (£9)
i -

. o, ® o
llma¢1 vi(f ) = llma+1 Vi

[\

. a _ .
llmu+1 Vi(R) = vi(R), ieE, ReC.

Hence,
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vi(f )y = sup, vi(R), ieE,

00
i.e. £ 1is a pure and stationary optimal policy. [

DEFINITION 3.2.1. For any c € [-»,+»] we define O-c := 0; moreover, we call

a vector x with components xi € [-»,+»], i € E, p-summable if Zj piajxj is
well-defined for all a € A(i), i € E (i.e. not both of the values +« and

-o may occur in the summation).

The following example shows that, in general, the TMD-value-vector v

is not p-summable.

EXAMPLE 3.2.1. E = {1,2,3}; a(i) = {1}, i € E; 1,

1; =0,

Py = Pyy3 = % Pyyp =
Pyy3 = T T, = 2, r31 = -1, Since all action sets consist of one
element, there is only one policy, say R. Assumption 3.2.1 is satisfied,

namely Vl(R) = vz(R) = 4o, v3(R) = -», Notice that in this example v =Vv(R).

Then, Ej plljvj is not defined, and consequently v is not p-summable.

THEOREM 3.2.2. If v is p-summable, then v satisfies the functional equation

X, = max {r, + I ieE
i a{ 1a p 1, '

. P, _.X.
J "1aj 3]
X 1Is p-summable.

PROOF. Theorem 3.2.1 implies that v = v(fm) for some pure and stationary

policy £7. since v is p-summable, we may write

00 o
.2, = = + .
(3.2.1) Vi T ViE D) =T Zj Pig(i);V3E )
< + i .
maxa{ria Xj piajvj}' i€ E
Let ai € A(i), i € E, be such that
+ . = + ). V.
Tia, 2j piaijvj maxa{ria 2j pia]vj

T =1 + ieE,and'nt,:=
0 ia
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Then we can write

. o]
2. 2 v, = + . =
(3.2.2) v, 2 v, (R) Tiay Zj piaijvj(f )
+
maxa{ria zj piajvj , ie€eE
The relations (3.2.1) and (3.2.2) imply
= + ) i

vy maxa{ria Xj piajvj}’ ieE,

which completes the proof. ]

THEOREM 3.2.3. If there exists a transient policy, then there also exists

a transient pure and stationary policy.

PROOF. Since the existence of a transient policy is independent of the
values of the rewards, we may assume that ria= -1, a € A(i), i € E. Let R

be any transient policy, i.e.

¥ P (X_. =3 | X, =1i) <® for all i,j € E.
Hence,
t

v, (R) = Xt=1zjza ]PE (x, =3, ¥, =alx =11 >-= iceE.

Since v, = supR vi(R), i ¢ E, we have -» < vi < 0, i € E. Theorem 3.2.1
0
implies the existence of a pure and stationary policy £ such that

™
Vi(f ) = vi, i € E. Therefore,

-oo<vi(f ) = zt=1zj2a ]me(Xt=j, Yt=a | X1=1)-(—1) <0, i€ E.

Consequently,
zoo . ] £
= = i < o 1,3
=1 Ef«>(xt Jj X1 i) or every i,j € E,

00
i.e. £ is a transient policy. O

REMARK 3.2.1. For another proof of theorem 3.2.3 we refer to remark 3.3.2.
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Next, we will give some equivalent characterizations of a transient

dynamic programming problem. For the presentation of this result we use

the following definition and lemma.

DEFINITION 3.2.2. Suppose that we change a TMD-model in another TMD-model

in the following way:

E : E u {0}

. A(L) i #0
A(i) :=
{1} i=0
i#0,3#0, aeca(i)
- .= k 1Piax 1L #0, 3 =0, aeA(d)
Lal i=0,3#0, aeA(i)
i=0,3=0,aceAa(i
N i#0, ace X(i)
ria = ~
= 0, a € A(1i)

Then the transformed model is called the extended TMD-model.

t
LEMMA 3.2.2. Let the sequence of vectors {y ,t = 0,1,...

t-1
max 2 plaJ j , 1 e E, t e N,

=
1

and let the sequence of pure and stationary policies {f:,

t t-1

v, = Zj pift(i)j yj , 1€ E, te IN.

Then,

1

where

} be defined by

t=1,2,...} satisfy

t .
Y, = zj (R ) = supp Z p (R), ieE, te INO,
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R, := (f

t t’ ),tZl,andR

ft—l""’f £,,f is an arbitrary

177177 0

policy.

PROOF. We will apply induction on t.

t = 0: For any policy R and any initial state i we have Z] p (R) = 1. Hence,

1= = E p = sup z p (R), i€ E.

j l]

Suppose that the result is correct for t = 1,2,..., T-1. We shall show that

the lemma is also true for t = T. Take any i € E. By corollary 2.5.1, it is
- t t+1 _ t+1

sufficient to show that y% = Z Py i (Rt) = supp o E] p (R) .

Take any arbitrary R = (w, w ,...) € qw. Then, we obtaln

1 -1
Zj Pigl(R) = ijk P, (W ) pk (n ,n P Z p; (n ) YE < yI.

Since R is an arbitrarily chosen policy, we obtain

T T+1
y; % supp Zj iy (R).
On the other hand,
T -1 T
Yy T max, L plakyk = 2k Py () v = L Py () zj Py (Rp_q)
T+1 T+1
= <
zj Pij (RT) < supg Xj pij (R) .
Hence,
T T+1 T+1
v; = Iy pyy Ry = supg f_j Py (R)- 0

THEOREM 3.2.4. The following five statements are equivalent.
(i) Every pure and stationary policy is transient.

(ii) Every policy is transient.

(iii) max y? < 1, where yN is defined by (3.2.3).

(iv) The TMD-model is contracting.

(v) The linear programming problem
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IN
™

.
m
o]

.
Liya(sij “Piaj)¥ia = By
max zizaxia

x, =20 i e E, a € A(1)
ia .

where Bj > 0, j € E, are arbitrarily chosen,
has a finite solution.
REMARK 3.2.2. The equivalence of the first three statements has been prov-
en by VEINOTT [1969] for nonrandomized policies. HORDIJK [1976] has shown

the equivalence of the first four statements for general policies. The equiv-

alence between (i) and (v) is also established by DENARDO & ROTHBLUM [1979].

PROOF OF THEOREM 3.2.4.
(i) = (ii): Let i and j be two arbitrarily chosen states. Consider the

dynamic programming problem with the rewards

1 k=3, aehnk)
r = {

0 k # j, a € A(k).

Then, for any policy R, we have

v® = o LT P =k v =alx =i)er

Let fm be a pure and stationary optimal policy (the existence of £ is
implied by theorem 3.2.1). Since we have assumed that £ is a transient

policy, we obtain

o

1]

2t=1 P (X =3 |x1=i) =v,(R <v, = v, (£)

leag Bem (e =3 1%y =1) <=

i.e. R is a transient policy.
+
(ii) = (iii): By lemma 3.2.2, it is sufficient to show that Zj p?jl(R) <1
0
2,...), where ft 3 CD'Nt € WN. .
Consider the extended TMD-model. Then Zj piaj =1 for all a € A(i), i € E.
= 0, any policy R that is defined for

for all i € E and all policies R = (fl'f

Since A(0) = {1} and Po1p = 1, oy 5
the original model corresponds uniquely to a policy R in the extended model
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and vi(R) = vi(R), i € E, where ;i(E) is the expected total reward in the

extended model. Take any i ¢ E and choose any policy R = (f,,f_,...), where

1772

0 ~
ft € CD' t € N. For k = 1,2,... we define subsets Tk of the state space E

by

T1 := {i}

'I‘k = {jEEIP];j(E)>O} ko=2,3,... .

For the proof that statement (iii) follows from statement (ii) we need the

following three propositions.
n
PROPOSITION 1. If, for any integer n such that 1 < n <N, 0 ¢ KUI Tﬂ

n
. . ! s
implies that Tn+1 ¢ Eil Tﬂ’ then statement (iii) holds.

n
PROOF. Since state 0 is an absorbing state, 0 € UZ—l Tﬁ implies that
N n
I =
0 e Tn+1. Suppose that 0 ¢ U£=1 TZ' Then 0 ¢ J£=1 TK for nn+11,2,...,N.
Then, by the assumption of the proposition, we have that Uﬁ—l Tﬂ has at
least one state more than UE=1 T[ for all n=1,2,...,N. Consequently,

N+1

U£=1 TK = E which implies that 0 € T . Hence,

N+1

N+1 ~N+1 ~ . c
zj Py (R) = 1—pi0 (R) <1, i.e. statement (iii) holds.

PROPOSITION 2. Suppose that the integer n is such that 1 < n <N,

n n s . Hoo
0 ¢ U’@:1 TZ and Tn+1 c U£=1 TK' Let the pure and stationary policy f
be defined by

. . . k-1
. fk(J) if j € Tk\U£=1 T,
£(j) :=

n
. ) e |
arbitrarily chosen if j ¢ J£=1 TK'
. * X * ~ ~k ~o
Define T1 := {i} and Tk :={j € Elpij(f )> 0} k =2,3,...

Then,

* n
Tk c UZ=1 Tﬂ' k € N.

PROOF. The proof is given by induction on k.

k=1:T =7 cU?
= 1: = c .
1 1 £=1 "L
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* n . *
Suppose that Tk c U£=1T£,k =1,2,...,m. Take any Jj € Tm+1' Then, there

. * . n
Sx1sts a state s € Tm such- that ps%(s)j ;-?. Since s € U£=1 TZ' we have
f(s) = fk(s) whe:e k satisfies s € Tk\U£=1 TK'
From s € Tk and f(s) = fk(s) it follows that
k+1 ~ k ~
= ‘p > 0.

Piy B 2p; (R0

Hence,
n+1 n

Je Ty < Ypng Tp = Ypoy Ty

* n
. | .
which completes the proof that Tm+1 c J£=1 T£

PROPOSITION 3. Suppose that we have the same assumptions as in propo-
sition 2. Then, policy fm is nontransient.
*
PROOF. Since 0 ¢ Uz T, and T. < U . T, for all k ¢ N, we have
x = =1 "L k £=1k 4
pio(f) = 0, k € N. Consequently, Zj pij(f) = 1 for all k € NWN.

Hence,
© . .
Zt=12j me(xt=3 I %, =1) = +=,

implying that the pure and stationary poclicy f°° is nontransient.

We can complete the proof of statement (iii) as follows. Statement (ii)
implies that any policy is transient. Then, by proposition 3, the assump-
tions of proposition 2 are not satisfied. Therefore, by proposition 1,
statement (iii) holds. '

a1/(N+1)

. N
(iii) = (iv): Let a := maxi yi and b := . Then, a < b < 1. Take

o such that b < o < 1 and define the vector u by

o t-1 . . .
Wy i= supy zt=1(1/a) Ej]PR (Xt-] lx1 =i), i e E.

From lemma 3.2.2 it follows that

N+1 N+1
a = max, sup, jpij (R) = max, maXReCM ijij (R)
N+1 N+1
= Y. = I I.
maxRécM max inj (R) maxRECM P (R)

Hence, for any policy R € CM and any t € N, we may write

Lt/ (N+1) e (N+1) < aLt/(N+1)J < a—1 t

Ipt(®) I <lp ® Bt
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Consequently,

IA

w t-1 Cilx =
Looqy (/) P X =3 1% =)

- @b
" a(a-b)

© t-1, t -1 I !
I < . .

Loy (/) THRT (RN < @ e ], (b/a)

Therefore, ui is well-defined, i ¢ E.

Similarly to the proof of theorem 2.5.2 it can be shown that

}1 i€ E.

1
= +=
L maxa{l o zj Piajuj

Then, we obtain

)

aui > o + z P a e A(i), i € E,

P, _LH. P, _LH.
jPia3"; jTiaj i’
i.e. the TMD-model is contracting.

(iv) = (v): Suppose that the linear program has no finite solution. Since
the linear program is feasible (for instance x = 0 is a feasible solution),
the optimum value is in infinity. Then, from the theory of linear program-

ming it follows that there exists a vector s # 0 such that

> . . _ < . .
(3.2.4) Sia 0, a € A(i), i € E, and Xiza(sij piaj)sia 0, JjeE

Define the stationary policy T by

S, / ae€ A(i), i € E
iafs; s
(3.2.5) T, ==
arbitrarily ae A(i), i € E\Es.

From (3.2.4) it follows that
< = < = . = . 5
0<s, 2asja"zizapiajsia Ei(zapiajnia) Si zipij(“) Sir J€E,

or in vector notation

T T
(3.2.6) 0 <s < s P(m.

By iterating (3.2.6), we obtain
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(3.2.7) 0<s' <sP' 1) neN.

Since the dynamic programming problem is contracting, there exists a vector

u >> 0 and a real a € [0,1) such that

. ML < . A(i i E.
ZJ piaju:l o ul ae A(i), i€ ‘
Hence,
0 <P(Mu<awu
and consequently,
n n
0O<P (Mu<saou for all n € N,

implying that Pn(w) > 0 for n =+ .,

Then, from relation (3.2.7), it follows that s = 0, which gives a con-
tradiction. This completes the proof of statement (v).

(v) = (i): Suppose that statement (i) is not true. Then, there exists a

pure and stationary policy f°° such that
Zw P (X =75 |x, =i + £ in i,7
£=1 - t—j 1—1)— or certain i,j € E.
Then, we obtain
© T t-1 L t-1
/ = . Y =
3.2.8) LooiB R T(fle = LpBpell i Lipp (£) = e,
Consider the sequence {xn, n=1,2,...}, defined by
T t-
e e, a= £
t=1 i
0 a # £(i)
Vector X" has the following properties:

1. x0 20 aeAad(i), i e E.
1ia
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n _ _ n t-1 _
2. L (8 Py %y, T B (8P (BT 2pBpPpy (£)
n t-1 : _ n t-1 _t -
ZKBKZt=1ZipKi (f)(éij-pij(f)) = ZEBEZt=1{pﬂj (£) sz(f)}
n _a n .
n D rgTptt npTptligye,

=12y 87 e, =T,

3 I ia T it

Hence, we have a sequence {xn, n=1,2,...} of feasible solutions such
that Ziza x? + 4o for n - . This contradicts the assumption that the
linear program has a finite solution. Therefore, we have shown that state-
ment (i) is true. 0

ment (i) is true. []

The characterizations (iii) and (v) of theorem 3.2.4 give two finite
algorithms in order to check the contraction property for a given Markov

decision problem. Below we present these algorithms.

ALGORITHM IV for the verification of the contraction property for a Markov

decision problem (iterative approach) .

step 1: t := 0; yg := 1, i € E.
t+1 t .
step 2: yi = maxa Zj piajyj' i e E.

t+1
step 3: If maxi V. < 1, then the problem is contracting (STOP),
i

otherwise, go to step 4.
step 4: If t = N+1, then the problem is not contracting (STOP),

otherwise, t := t+l and go to step 2.

ALGORITHM V for the verification of the contraction property for a Markov

decision problem (linear programming approach) .

step 1: Take any vector B such that Bj >0, j € E.
step 2: Solve the linear programming problem

IN

Lila(8;57Piai)®in S By T cE ]
max Zizaxia .
x,_ 20 a € A(i), 1 €E
ia
If the linear program has a finite solution, then the problem is
contracting (STOP) .

Otherwise, the problem is not contracting (STOP).
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REMARK 3.2.3. If we use algorithm V and the algorithm shows that the prob-
lem is contracting, then we can obtain, from the dual program, a vector

u >> 0 and a scalar a € [0,1) such that

. LM, S A(i i E.
ZJ piajuj a ui ae A(i), i €

Namely: The dual linear program is

[\
-

2 Zj(sij_piaj)uj a e A(i), 1 € E
ming).B.u. ,
J Ju

J
€ E

=
v
o

j.-

and has also an optimal solution, say u. Then we have

= + > i
ui 1 zj piajyj 0, ieE
and for a := 1-—(maxi ui)_1 we have a ¢ [0,1) and
Yy
<qu.-1< -t - Gy s )
sziajuj ui 1 ui maxlui aui ae A(i), 1 € E

3.3. OPTIMAL TRANSIENT POLICIES

In this section we discuss the problem of finding an optimal policy

in the class of the transient policies, i.e. a policy R* such that
*
(3.3.1) Vi(R ) = sup{vi(R) | R is a transient policy}, i e E.

Such a policy may be of interest, for instance in the so-called opti-
mal stopping problem (see application 3.3.1 at the end of this section).
A related optimal stopping problem, whose utility function is exponential,
is discussed by DENARDO & ROTHBLUM [1979]. The problem of finding an optimal
policy in the class of the transient policies can also be solved for models
with Zj piaj > 1 for some i € E, a € A(i) (cf.HORDIJK & KALLENBERG [1981al).
Another related paper is HORDIJK & KALLENBERG [1981c].

Any policy is transient in a contracting dynamic programming problem.
In that case a policy which satisfies (3.3.1) is an optimal policy in the
class of all policies. In general, the problem of finding an optimal tran-

sient policy is only relevant if there exists at least one transient policy.
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Therefore, we introduce the following assumption.

ASSUMPTION 3.3.1. There exists a transient policy.

Further on, we will show how, for a given problem, this assumption can
be verified by linear programming.
The total expected reward of any transient policy is finite. However,

the vector w, where
(3.3.2) w, o= sup{vi(R) | R is a transient policy}, i€ E,
is not necessarily finite.

EXAMPLE 3.3.1. Consider the model of figure 3.3.1. The sequence {nm(n),

n=1,2,...} of stationary policies defined by

1-1/n a=1
Wla(n) = , v21(n) =1, ne N
1/n a=2
satisfies:
n i=1,j=1 1 5
- i=1,3=2
P, (X =jlx=i) = ()
=l %y O 0 i=2,j=1

2 i=2,j=2 @ ‘ @

Figure 3.3.1

m+2 i=1
(1" (n))
v,(m (n =
* 2 i=2.
Hence, every policy ﬂm(n) is transient, but w1 > supn vl(ﬂw(n)) = 4o,

THEOREM 3.3.1. If w is finite, then w is a solution of the functional

equation

x, = max_{r, }, i e E.
a i

+

a zj Piaj ™y
1 2 . . .

PROOF. Let R = (7w ,m ,...) be an arbitrary transient Markov policy. Then,

1 1 .
Vi(R) = ri(ﬂ ) + zj pij(n )uj(R), i€ E,

where uj(R) represents the expected total reward earned from time 2, given
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. A ~ 2 3 .
that the state at time 2 is j. Let R := (m ,m ,...), then we can write

=le1=j) i,k €E.

© o 1, pe
w > zt=2]1>R(xt=k lx, =1) = Zj Py (T )Zt=2m§(xt_1

Hence, IPﬁ (Xt =k | X1 = j) <o for every k and évery j with

Zt=1
Zipij(ﬂl) > 0. Therefcre, we have

uj(R)==vj(§) < wj for all j such that pij(nl) >0 for some i € E.
Then, we obtain

1 .
v, (R) SZaﬂia{ria'+ijiajwj} < maxa{ria-fsziajwj}, i€ E.

Theorem 2.5.1 and the fact that R is arbitrarily chosen imply that

}r i€ E.

<
(3.3.3)  w, < maxa{ria+2 p

P._.W.

J 1iaj j
. 1 . 2 . .

Take any € > 0. Suppose that for every j € E, R := (7 (j),m (j),...) is a

transient policy that satisfies vj(Rj) > wj—e. Again, by theorem 2.5.1, we

may assume that Rj is a Markov policy.Let ai e A(i), i € E, be such that

+ = + § .
Tia, sziaijwj max {r;, +ypyaqmyls L E
A 1 2 . . t L t-1 (i), t = 2, and
et R = (n°,7°,...) be the policy with m, . =T, i), > 2,
rer ijay..-iag iag
al .= 1 a=a;, 1¢€¢kE
ia ° 0 a# aj s i € E.

A
Hence, policy R is transient and we obtain

A
(3.3.4)  w, =2v.(R) =r -+ y.p

. P, .v.(R) 2r _+).p . (w,-e) >
ia,” “3%ia,373 ia; “37ia;3 3

max {r, +).p. .w.,}-e, i e E.
a“ia “jviaj 3]

Since € is arbitrarily chosen, (3.3.3) and (3.3.4) imply that

= r, + . i .
W, maxa{ ia sziajwj}' ieE 0
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EXAMPLE 3.3.2. E = {1}; a(1) = {1,2}; p,,, = 1, pyyy =i ¥y =0, ry, =-1.
It is easy to see that w1 = - 2; the functional equation is
X, = max {xl,-l + % xl} with solution set {x1 ]x1 > - 2}. Hence, the solu-

tion of the functional equation is not unique.

~ N
DEFINITION 3.3.1. A vector w ¢ IR is TMD-superharmonic if

w > + ). ,N, a i i E.
wi ria szia]wj' € A(i), i €

THEOREM 3.3.2. Suppose that w is finite. Then, w is the smallest TMD-super-

harmonic vector.

PROOF. Theorem 3.3.1 implies that w is TMD-superharmonic. Suppocse that W is
also a TMD-superharmonic vector. From theorem 2.5.1 it follows that it is

sufficient to prove that W > v(R) for any transient Markov policy R. Let

R = (nl,ﬂz,...) be an arbitrary transient Markow policy. Since G is TMD-

superharmonic, we have
(3.3.5) w>r(r) +P(nO%, te N.
By iterating (3.3.5), we obtain
we I pahrah et hra® rp@he@d e p @™, ne w

Because R is a transient Markov policy

p(n)P(12)ee-p(r) > 0 forn +w
and

V(R) = lim Z:=1P(ﬂ1)P(ﬂ2)--°P(ﬂt—1)r(ﬂt).

Consequently,
w > v(R),
which completes the proof of the theorem. O

Theorem 3.3.2 implies that, if w is finite, then w is the unique opti-

mal solution of the linear programming problem
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(3.3.6)  min{} B.w. |}.(8 .-p, Jw, 2xr,_, aceAh(),icE}
333 'J 1] "1iaj ] ia
where Bj >0, j € E, are given numbers.

The dual linear programming problem is:

Xiza(‘sij"Piaj)xia =By JeE
(3.3.7) max zizariaxia _ .

x, =20 ae A(i), i € E
ia

Notice that any feasible solution x of program (3.3.7) satisfies

X,
J

.

= zaxja = Bj * XiXaPiajxia zB8y>0, 3 eE.

We define for any feasible solution x of program (3.3.7) a stationary
policy ﬂm(x) by
(3.3.8) ma () = Xiﬁéﬁ. aeA(i), i € E.

Since x, =7, (x)*x., a € A(i), i € E, we can write
ia ia i

Lila 84 Pyay) Tia®) X, = By 3 € E.

Hence, we have

(3.3.9)  x% = 8T 4 xTP(m(x)).

By iterating (3.3.9), we obtain
T zn T

=1 Pt—l(ﬂ(x)), n € NWN.

BT ) +x B () 2 I0_ 8

Hence,

i T t-1
Loy BP (1(x) <,

and consequently,

1o P (=3 1%, =) = Jo 2" el <= 6 e E,
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So, the policy wm(x) is transient and therefore we can write (cf. KEMENY

& SNELL [1960] p.22)

(3.3.10) %% = gT(1-p(n(x))) .

Conversely, let i be any transient stationary policy. Then, the inverse
-1
(I-P(m)) exists. We define the vector x(m) by
T =1 . .
(3.3.11) x, (m) := [B (I-P(m)) ~1,+m, , ae A(i), 1 € E.
ia i ‘ia
THEOREM 3.3.3. The mapping defined by (3.3.11) is a one-to-one mapping of
the transient stationary policies onto the set of feasible solutions of
the linear program (3.3.7) with (3.3.8) as the inverse mapping. Further-
more, the set of extreme feasible solutions of program (3.3.7) corresponds

to the transient stationary policies which are pure.

PROOF. First, we prove that x(w) is a feasible solution of program (3.3.7).

o
Let m be an arbitrarily chosen transient stationary policy. Then x(m)

satisfies
_ raT -1 o roTee _t-1 Sy s
1. xia(w) = [B  (1-P(m)) ]i Tia = [B Et=1P (11)]i LI > 0, aeA(i),ie€E.
2. Eiza(dij-piaj)xia(n) = z:axja(ﬂ) - Zizapiajxia(w)

(8T (z-p (m) "}

1, - [BT(I-P(W))—IP(H)]j

[sT(I—P(n>)'1(I—P(n))]j =8, ek

Hence, x(m) is a feasible solution of (3.3.7). From (3.3.10) and (3.3.11)
it follows that x = x(m(x)), implying that the mapping is onto. Since
via(x(n)) =T 2 € A(i), i € E, the mapping is one-to-one and the inverse
mapping is given by (3.3.8).

Let £ be an arbitrarily chosen pure and stationary transient policy.
Suppose that x(f) is not an extreme feasible solution. Then, there exist
feasible solutions x1 and x2 of program (3.3.7) and a real number A € (0,1)

such that x1 # x2 and x(f) = Xx1+(1—A)x2.

1 2
Since xia(f)=0, a# f(i), i € E, we also have xia =X, = 0, a # £(i),
2 2
i € E. Hence, the N-dimensional vectors x1= (x, ..) and x = (x, ..) are
if (i) if (i)

solutions of the linear system xT(I—P(f)) = gT.

Since £ is a transient policy, the matrix (I-P(f)) is nonsingular and
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consequently, the system has a unique solution, namely BT(I—P(f))_l.
L. . 2
This implies that x1 = X , giving a contradiction. Hence, we have proved
that x(f) is an extreme solution.

Conversely, let x be any extreme feasible solution of program (3.3.7).

Since N is the number of constraints in program (3.3.7), x has at most

N positive components. On the other hand, it follows from

X = + X > j E

La 5a = By Zizapiaj ia > 9 3 E€E

that in each state j there is at least one positive component. Consequently,
x has in each state j exactly one component which is positive. Hence, the

corresponding policy ﬂm(x) is a pure policy. 0

T
For a given initial distribution B = (81,82,...,BN) , where Bi >0
i € E, we denote for any transient policy R the expected number of times

of being in state j and then choosing action a by

(3.3.12) Xia(R) i= zisi-it=1mR (x =3, ¥ =alx =i).

Since R is a transient policy, we have xja(R) < ®, a € A(j), j € E. The

definitions (3.3.11) and (3.3.12) imply that

w T -1
xja(w )y = [B7 (z-P(m)) ]j-wja

= xja(v), a e A(j), j € E.
NOTATION 3.3.1.

K := {x(R) | R ¢ C and transient}

K(M) := {x(R) | R ¢ CM and transient}

K(S) := {x(R) | R ¢ CS and transient}
K(D) := {x(R) | R ¢ CD and transient}
ziza(sij_piaj)xia = Bj JeE
P :=<{x .
x, =20 aeA(i), i € E
ia

THEOREM 3.3.4. K(D) < K(S) = K(M) = K P.

PROOF. The equality K = K(M) follows from theorem 2.5.1. Since P is a con-
vex polyhedron, theorem 3.3.3 implies that K(D) ¢ P = K(S) < K(M) = K.
Therefore, it is sufficient to show that K(M) < P. Take any x(R) € K(M)

and suppose that R = (vl,ﬂz,...). Then, we obtain
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2L (8, P, Jx, (R) =

i ij “iaj

[}

t-1 t
1 piMia

. . .
Y.y (5--‘P-aj)Xzsg‘llmnamzﬁ=1{P(“ )eeeB (T

ifa ij Ti

. n 1 t-1 . _ t
LpBp-lim 30 Y AP(r)eeepin 1, (8;57Py5 (™)

. n 1 t-1 t
LoBprlim  }' {B(n7)---P (1 )+ (I-B(m 1) 3

. : 2 . n _ .
LpBp-lim  {I-P(m )P(1%)...P(n )1g5 = LoBp ey = Bjr 3 € E.
Hence, x(R) € P, which completes the proof. 0

REMARK 3.3.1. The next example shows that K(D) # P is possible.

EXAMPLE 3.3.3. Consider the model X1
of example 3.3.1 and take Bl=62=%.
There is only one transient pure
and stationary policy, namely fm,
where £(1) = 2 and £(2) = 1.
The solution x(f) satisfies xll(f) = 0,
x12(f) = 1/2 and x21(f) = 2. The set P

is given by 21

i

x(£) = K(D)

1]
o

P =4x | - X12+1§x2

%

1

Figure 3.3.2
2'%217%11

Hence, K(D) # P.

REMARK 3.3.2. Suppose that K # f§, then also P # ¢. Lemma 1.2.2 implies
the existence of an extreme feasible solution of program (3.3.7). Then,
by theorem 3.3.3, the existence of a transient pure and stationary policy

is shown. This argument provides another proof of theorem 3.2.3.

REMARK 3.3.3. Since assumption 3.3.1 is satisfied if and only if P # @,
this assumption can be verified by linear programming: we have to check

the feasibility of program (3.3.7).
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REMARK 3.3.4. If the vector w is finite, then 1t follows from theorem 3.3.2
that the linear programming problem (3.3.7) has a finite optimum. The fol-
lowing theorem shows that the reverse statement is also true. Furthermore,

this theorem proves the correctness of algorithm VI for the determination

of an optimal transient policy.

THEOREM 3.3.5. Let x* be an extreme optimal solution of the linear program-
ming problem (3.3.7). Then, the pure and stationary policy f:, where f*(i)

* . .
satisfies xif (i) >0, 1 € E, is optimal in the class of transient policies.
*

PROOF. In the proof of theorem 3.3.3 we have seen that, from the fact that

* o
X 1s an extreme solution, it follows that f* is transient and is uniquely

*
determined by the condition x, ., >0, i€ E.
" if, (1)
Since xif (i) > 0 for every i € E, it follows from the complementary slack-
*

ness property of linear programming that (I—P(f*)) w = r(f*). Hence,
-1 _ ©
w = (I-P(f,)) ~ r(f) = v(£),
i.e. f: is an optimal transient policy. [

ALGORITHM VI for the construction of an optimal pure and stationary tran-

sient policy in a TMD-model.

step 1: Take any vector B such that Bj >0, j € E.
*
step 2: Use the simplex method to compute an optimal solution x of the

linear programming problem

]
w
.
m

=

§. .- .
ziza( ij piaj)xia j
r
max 2iza iaxia
x, =20 ae€ A(i), i e E
ia
(if the problem is infeasible, then there exists no transient
policy; if the problem has an infinite solution, then there exists
no optimal transient policy).

) *
step 3: Take f* such that x, >0, i € E.

if (i)

*

REMARK 3.3.5. Since any extreme solution x of program (3.3.7) satisfies
Xia;> 0 for exactly one ai € A(i) for every i € E, the linear program is
nondegenerated.

The following example shows that the policy f: , obtained by aigorithm VI,

is in general not optimal in the class of all policies.
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EXAMPLE 3.3.4. Consider the model of <:::>
figure 3.3.3. The corresponding linear

program is:

T B I s
maxy-X, =X, —x12+5x21+x22=5f. 1 9
X117%127%21 %2270 Figure 3.3.3

. . . * _ * —_ * = * =
An extreme optimal solution is (:11 =0, x12 =%, x21 2, x22 0).
The pure and stationary policy f* satisfies f*(l) =2, f*(2) = 1.
If can easily be verified that vl(f:) = vz(f:) = =2,

However, the policy foo where £(1) = £(2) = 2 gives vl(fm) = vz(fw) = 0.

THEOREM 3.3.6. The correspondence between the transient stationary policies
and the feasible solutions of the linear program preserves the optimality
property, i.e.
1. if ™ is a stationary optimal transient policy, then x(m) is an
optimal solution of the dual linear programming problem (3.3.7).
2. If x is an optimal solution of the linear program (3.3.7), then

the stationary policy nm(x) is an optimal transient policy.

PROOF .
1. Since w is an optimal solution of the primal problem and x(m) is feasi-

ble for the dual problem, it follows from theorem 1.3.4 that it is suf-

ficient to prove that Z,Z_r, x, (m) = IZ,B.w.. We can write
ia ia ia J3J3

(m) = ).).r (8T (1-p (1)) 1], om

ziiariaxia ita ia i ia

8T (1-p(m)) lr(m) = gTv (1) = BTw,

which completes the proof of this part of the theorem.

B (") = €T PN rr) = [ L r x  (n(0)

a ia ia

1

T
zixariaxia = B w.

Since B >> 0 and v(ﬂw(x)) < w, it follows that V(ﬂw(x)) =w, i.e. ﬂw(x)

is an optimal transient policy. [



59

REMARK 3.3.6. Theorem 3.3.6 implies that all optimal pure and stationary
transient policies can be determined by the computation of all optimal
extreme solutions of the dual program (3.3.7). In chapter 1 such an algo-

rithm is presented (see algorithm I).

We continue this section with a discussion on Markov decision problems
under constraints. We suppose that B = (61,82,...,BN)T is a known initial
distribution such that Bj > 0 for all j € E. We exclude distributions where
Bj = 0 for some j € E. The reasqn is that in that case it will in general
not be possible to distinguish the transient policies from the nontransient
policies (see example 3.3.7). In the unconstrained case we can find a poli-
cy R* that is optimal simultaneously for all initial states i € E. In the
constrained case, a policy which is optimal for all initial states does
not exist in general (see example 3.3.5). Therefore, we use the concept of
optimality with regard to a given initial distribution B.

We consider constraints that are linear functions of x(R), e.g.

(R) < b for the k-th constraint.

XiXa cIiakxia k

Notice that, by formula (3.3.12), the constraints depend on the initial
distribution.

Markov decision problems under constraints may be of importance if we
are interested in more than one reward function. Then, for instance, we
want to maximize one reward function subject to the constraints that the
other reward functions are bounded by some given quantities.

Linear programming seems extremely suitable for solving this kind of
problems. The other standard techniques to solve unconstrained Markov deci-
sion problems (policy improvement and successive approximation) cannot
handle these constrained problems. We shall show that there always exists
an optimal stationary transient policy and we shall present an algorithm

to compute one.

EXAMPLE 3.3.5. Consider the model of

figure 3.3.4. Suppose that we have one 1 2

reward function, which is indicated in

the figure, and that we have the con-
straint vl(R)-sz(R)S 3. Then we can <:::> <:::>

formulate two constrained problems: Figure 3.3.4
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(1) SUP{Vl(R)[ Vl(R) + V2(R) < 3} which has as optimal solution fT,
where f1(1) =1 and f1(2)= 2
) o

’

(2) sup{vz(R){ v, (R) + v2(R) < 3} which has as optimal solution f2

where f2(1) =2 and f2(2)= 1.

Hence, there exists no policy which is optimal for both problems simulta-

neously.

The constrained Markov decision problem can be formulated as:

Lila9apXia(® By k=1.2,...m
(3.3.13) SUP.XiBiVi(R)

R is transient

In order to solve problem (3.3.13) we consider the following linear program-

ming problem:

T .
- = E
LiZa(sij Piaj)¥ia = By T €
< = ..
(3.3.14) max zizariaxia ziza 9 ak¥ia < bk k=1,2,...,m
x, 20 ae€ A(i), i e E

ia

THEOREM 3.3.7.

(1) Problem (3.3.13) is feasible if and only if problem (3.3.14) is
feasible.

(ii) The optima of the problems (3.3.13) and (3.3.14) are equal.

(iii) If x is an optimal solution of the linear program (3.3.14), then
ﬂw(x) is an optimal solution of (3.3.13).

(iv) If R is an optimal solution of problem (3.3.13), then x(R) is an

optimal solution of program (3.3.14).

PROOF. The proof is straightforward using the following properties:

(1) XK = P.
(2) Every tzan51ent policy R satisfies ZiBivi(R) = ZiZariaxia(R).
(3) x = x(7m (x)) for every x ¢ P. [

REMARK 3.3.7. From theorem 3.3.7 it follows that, if the linear program

(3.3.14) has a finite optimum, then problem (3.3.13) has an optimal solu-
tion that is stationary. The next example shows that, in general, problem
(3.3.13) has no optimal solution in the class of pure and stationary poli-

cies, even in the case that K(D) = P.
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EXAMPLE 3.3.6. Consider the model of example 3.3.5 with the exception that

= 0. Take 81 =B, =%, m=1 and let the constraint be x21(R) < L.

11 2
The polyhedron P is given by

=t ¥y Ty, =k
P =14x - %xlz + %x21 Xy, = Ly .
¥117%0r %11 %pp 2
We have drawn the polyhedron ' X5
P in the 3-dimensional space y
. . /

with coordinates x12, x21 //
and X5y (x11 is given by //
x11 =1+ x22 - 2x12).

£, f., £, and £,
Let £, £yr 13 4
be defined by:

= =1 = 3/2
f1(1) f1(2) 1; f2(1) 1, /

f2(2)=2; f3(1)=2,
/ —
- £
TM\mmmsxﬁﬂ are /Ji~” x(y

denoted in figure 3.3.5,
k=1,2,3,4. Since the

Figure 3.3.5

objective function is x it can also be seen in the picture that the

21’
linear program has no optimal solution which corresponds to a pure policy.

ALGORITHM VII for the construction of an optimal stationary transient pol-

icy in a contrained TMD-model with initial distribution B >> O.

*
step 1: Compute an optimal solution x of the linear programming problem

zixa(sij_piaj)xia = Bj j eE
< =
max Eiiariaxia ziza qiakxia < bk k 1,2,...,m .
X >0 a e A(i), i € E

ia

(if the program is infeasible, then the constrained TMD-problem
is also infeasible; if the program has an infinite solution, then
there exists no optimal transient policy).

oo * *
step 2: Take 4T such that «Tia ° Xia/zaxia' a € A(i), i € E.

|
|
|
| |
| i
| ! / X
| : ‘\\\\\\\:2:;///
=1; = = Y L, ____2Z=

f3(2) 1; f4(1) f4(2) 2. : + —=

|
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= =8, +I.I_p, . >0 f y
REMARK 3.3.8 0eslnce xj Eaxja Bj Zi a Plajxia or every j € E,
the policy &7 is well-defined in step 2 of the algorithm. The correctness

of algorithm VII is a consequence of theorem 3.3.7.

REMARK 3.3.9. If we allow that Bj = 0 for some j € .E, then we can loose
the one-to-one correspondence between the stationary transient policies
and the feasible solutions of the dual linear program (3.3.7). Further-

more, we can obtain nontransient policies, as is shown in the next example.

EXAMPLE 3.3.7. The problem is given by
figure 3.3.6. Suppose that we have the
constraint —x12(R) < -%. Then the linear

&)
@D

program is as follows:

¥127%21 =0
X2t %1% =0 3
max x11+x12+x21+x22+x31 —X22+%x31 =1
=, <y B,=0,8,=0,8,=1
x11,x12,x21,x22,x3120 Figure 3.3.6
An extreme solution is: (x* =0, x* =x* =%, x* =0, x* =2).
11 12~ %21 22 31

The corresponding policy f:, where f*(l) =2, f*(2) =1, f*(3) =1, is non-

transient.

APPLICATION 3.3.1. Optimal stopping problem.

In an optimal stopping problem we have two possible actions in each state.
The first action corresponds with stopping and if the second action is
chosen, then the process proceeds. If the stopping action is chosen in state
i, then a final reward ri is earned and the process breaks down, i € E. If
the second action is chosen in state i, then we receive a reward ci and

the probability of being in state j at the next time point is Pij' i,j € E.
Our aim is to find an optimal transient policy. It is obvious that there
exists a transient policy, namely the policy fm where £(i) = 1, i € E. The
primal and dual linear programming problems for the optimal stopping prob-

lem are:

v
a
-
m
&3]

w, .

. - i i
miny).B.w.
zJ J3J

\%2
Q
s
m
=

(8,.-p..)w,
Z]( 1] PlJ) J
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and

]
™
.
m
B

max zirixi+ziciyi

respectively. The adaptation of algorithm VI to the optimal stopping prob-
lem gives the following algorithm.

ALGORITHM VIII for the construction of an optimal pure and stationary

transient policy in an optimal stopping problem.

step 1: Take any vector B such that Bj >0, j € E.
* *
step 2: Use the simplex method to compute an optimal solution (x ,y ) of

the linear programming problem

€ E

]
™
o

xg * Zi(dij-pij)yi

max Zirixi+Xiciyi

1\
o
=

X.1Y., € E

1 1

(if the problem has an infinite solution, then there exists no
optimal transient policy).

step 3: Take f: such that

*

1 if x, >0

f*(i) = i e E.

* M

2 ify, >0

.

* *
REMARK 3.3.10. The constraints of the linear program imply that xj+yj =Bj+

*

Zi Pijyi > 0, j € E. Since the simplex method gives an extreme solution

and since any extreme solution has at most N (the number of constraints)
* *

positive components, we have either x, > 0 or yi > 0 for every i € E.

Hence, policy f: is well-defined.

REMARK 3.3.11. Suppose that the linear programming problem has a finite
optimum. Then, the vector w, defined by (3.3.2), is finite. Let T :=

{ie EIwi = ri}. The existence of a pure and stationary optimal policy
and the definition of T' imply that an optimal stopping rule is stop on T
and to continue on E\T'. From the complementary slackness property of lin-

ear programming, it follows that E , < T.
X
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REMARK 3.3.12. DERMAN ([1970], chapter 8) presents analogous formulations
for the entrance-fee problem, i.e. the optimal stopping problem with ri_=0
for all i € E. '

3.4. CONTRACTING DYNAMIC PROGRAMMING

Throughout this section we have the following contraction assumption.

N
ASSUMPTION 3.4.1. There exists a u >> 0, u ¢ R , and a real number o € [0,1)

such that I.p,__.U.
JplaJuJ

< o Hyroa e A(i), i € E.

In theorem 3.2.4 is shown that in a contracting dynamic progranring
problem any policy is transient. Hence, optimal transient policies are
also optimal in the class C of all policies. This is true in the uncon-
strained case as well as in the constrained case. Therefore, we can use
the results of the previous section to obtain optimal policies in both
cases. Moreover, we can slightly extend some results of section 3.3. Below
we summarize for the sake of completeness the results for the contracting

dynamic programming problem.

THEOREM 3.4.1. The TMD-value vector v is the smallest TMD-superharmonic

vector.

PROOF. Since any policy is transient, we have v = w. Theorem 3.2.1 implies
the existence of a pure and stationary optimal (transient) policy £°. Then
v(fm) is finite, and consequently v is finite. Now, apply theorem 3.3.2 to

complete the proof. [

THEOREM 3.4.2. The mapping xia(ﬂ) 1= [BT(I--P(W))“1

J.em, , a e A(i), i € E,
i ia

is a one-to-one mapping of the set of stationary policies onto the set of
feasible solutions of the dual linear program (3.3.7). The inverse mapping
is given by ﬂia(x) nzxia/x r a € A(i), 1 € E. Furthermore, this mapping has

the property that pure policies correspond to extreme feasible solutions.
PROOF. See theorem 3.3.3. [J

THEOREM 3.4.3. The linear programming problem (3.3.7) has a finite optimal
solution. Moreover, if x* is an optimal solution of (3.3.7), then any pure

* .
and stationary policy f: such that X ¢ (1) >0, i € E, is an optimal policy.
*



65

PROOF. Since v is the (finite) optimal solution of program (3.3.6), the
dual program (3.3.7) also has a finite optimal solution.

* ; *
Let X be any optimal solution of (3.3.7). Then Za xia >0, i € E, and

]
consequently, we can take a pure and stationary policy f* such that
*

*if, (1) o
dual linear program implies that v = r(f*)+P(f*)v. Since f* is transient,

> 0, i € E. The complementary slackness property of the primal and

the matrix I—P(f*) is nonsingular. Hence,

1

v = (I-P(£)) r(£,) = v(£),

implying that f: is optimal. [

As a consequence of theorem 3.4.3, a pure and stationary optimal

policy can be obtained by the following algorithm.

ALGORITHM IX for the construction of a pure and stationary optimal policy

in a contracting dynamic programming problem (linear programming) .

step 1: Take any vector B such that Bj >0, j € E.

*
step 2: Compute an optimal solution x of the linear programming problem

DO SR L JeE
max-zizariaxia .
S . .
xia >0 ae A(i), i € E
step 3: Take f: such that xf >0, i € E.

1f*(i)

THEOREM 3.4.4. The correspondence between the stationary policies and the
feasible solutions of the linear program preserves the optimality property,
i.e.
1. If wm is a stationary optimal policy, then x(w) is an optimal solu-
tion of the linear program.
2. If x is an optimal solution of the linear program, then the station-

ary policy ﬂw(x) is an optimal policy.
PROOF. See theorem 3.3.6. O

We continue this section with a discussion about the relation between

the policy improvement method and the linear programming approach. The
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policy improvement method for discounted dynamic programming is due to
HOWARD [1960]. We give the analogon for contracting dynamic programming
and we establish that this method is equivalent to a particular linear
programming method, called the simplex method with block-pivoting (cf.
DANTZIG [1963] pp.201-202). Furthermore, we show that the standard simplex
algorithm is equivalent to a special policy improvement algorithm.

For every i € E and every £ € CD, we define a set A(i,f) by

AL, ) :={a e A)] x, +].p, v (£) > v (£)}.

jTiaj j

The policy improvement method is based on the following theorem.

THEOREM 3.4.5. Let £ be any pure and stationary policy.

(i) If A(i,£) =@, i ¢ E, then £ is an optimal policy.

(ii) If A(i,f) # @ for some i € E, then v(d») > v(fw), where g°° # £ is
any pure and stationary policy which satisfies for each i € E either

g(i) = £(i) or g(i) e A(i,f).

PROOF. (The proof of this theorem is similar to the proof of theorem 3 in
BLACKWELL [1962]).

(i) Since A(i,f) =@ for all i ¢ E, we have r(g) +P(g)v(f ) < v(f ) for
! p*!g) 20,

any pure and stationary policy gm. Since (I-P(g))- = E:=

1
we obtain

v(£") 2 (1-p(g) r(g) = vig")

for any pure and stationary policy gw. Hence, £ is an optimal policy.
(ii) Let gm # £ be such that for each i € E either g(i) = £(i) or
g(i) € A(i,f). Then,

r,(g) + (BV(E)), 2 v (£), 1icE,

with strict inequality for at least one i. Then, we obtain analogous-

ly to part (i) of the proof

vi(gé) = Z:=1 Ptnl(g)r(g) > vi(fw), ie E,

with strict inequality for at least one 1i. Hence,,v(gw) >v(fw), which

completes the proof of the theorem. [
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The policy improvement algorithm can be formulated as follows.

ALGORITHM X for the construction of a pure and stationary optimal policy

in a contracting dynamic programming problem (policy improvement) .

step 1: Take any pure and stationary policy fm.

step 2: Compute v(fm) as the unique solution of the linear system
= + i .
x; = x (f) Xj piy(B)x ic€E
step 3: Determine for every i ¢ E

A(,E) :={aeca@lr + Lp v.(E) >v (£}

jTiaj j

step 4: If A(i,f) =@, i € E, then £° is an optimal policy (STOP).
Otherwise, go to step 5.

step 5: Take any policy g°° such that g # £ and such that for each i ¢ E
either g(i) = £(i) or g(i) e A(i,f).

step 6: £ := g and go to step 2.

THEOREM 3.4.6. Algorithm X determines an optimal policy in a finite num-

ber of iterations.

PROOF. If in step 5 policy gm is found as successor of fm, then v(gm) >v(fm)
(see theorem 3.4.5). Hence, each pure and stationary policy cccurs at most
once. Since ICDI < », the algorithm terminates after a finite number of
iterations. Consequently, we finish with a policy f: such that A(i,f*) =@

for all i € E. Then, theorem 3.4.5 implies that the policy f: is optimal. [J
Consider an iteration in the policy improvement algorithm. If

y £) < v (£ 11 i
ria + jpiajvj( ) < vi( ) for a a e A(1),

then g(i) = £(i). Otherwise, we may take for g(i) any action a for which

£ ¥ )

By theorem 3.4.2, the vector x(fw) which is defined by formula (3.3.12)

o 0
jpiajvj(f ) > v (f).

is an extreme feasible solution of the linear program (3.3.7). The linear
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ﬁrogramming tableau corresponding to this extreme feasible solution x(fm)
has as basis matrix (I—P(f))T. From theorem 1.4.1 and tableau (1.4.2), it
follows that the coefficients of the transformed objective function have
the values of the corresponding dual variables. Hence, the column of a
nonbasic variable xia(fw) has in the transformed objective function the

value

ia 1" %a” ijiajwj :

i
=2

(3.4.1) da

Here, %i is the variable which corresponds to the i-th equality of problem
(3.3.7). Since wi, i € E, are unrestricted in sign, they are orthogonal

to the artificial variables zi' i € E, of problem (3.3.7). Therefore, if
we want to know the values ;i' i € E, then we have to keep into the sim-

plex tableau the artificial variables. Since xi (£) > 0, 1 € E, it

£(1)
follows from the orthogonality of the corresponding primal and dual vari-

ables in the simplex tableau, that d = 0, i € E. Then, we obtain

~ ~ JAf(1)
w = r(f) +P(f)w which implies that w = v(f ). Hence, formula (3.4.1) may
be written as
0
(£).

(3.4.2) a, := vi(f°°) -r p

ia ia 7 Ly®ia3"s
Since a € A(i,f) if and only if dia < 0, it follows that the set of
actions from which g(i) may be chosen is exactly the set of possible pivot
columns in the simplex method. Let E := {i € Elg(i) # £(i)}. If we exchange
the nonbasic variables corresponding to g(i), i € E , and the basic vari-
ables corresponding to £(i), i € EO, then we obtain a linear programming
algorithm in which more than one pivot step is performed simultaneously.
Such an algorithm is called a block-pivoting algorithm. In the standard
simplex method we choose as pivot column the column which has the most
negative dia—coefficient. Since this rule may also be used in the policy
improvement method, the standard simplex method is equivalent to a parti-
cular policy improvement algorithm. We summarize the above statements in

the following conclusions.

CONCLUSIONS.
1. Any policy improvement algorithm is equivalent to a block-pivoting

simplex algorithm.
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2. The standard simplex algorithm is equivalent to a particular policy

improvement algorithm. ) <:::>

EXAMPLE 3.4.1. We compute an

optimal policy for the model
given in figure 3.4.1, by the <:::>
policy improvement method as
well as by the equivalent

standard simplex method.
Policy improvement

Iteration 1:

1. £(1) =3, £(2) =2, £(3) = 1.

2. v(£%) = (28/3,24/3,38/3) . B, =B, =By =1/3
3. A(l,f) =g, A(2,£) = {1,3}, A(3,f) = {2,3}. Figure 3.4.1.

5. dia is minimal for i = 2, a = 3: g(1) = 3, g(2) = 3, g(3) = 1.
6. £(1) = 3, £(2) =3, £(3) = 1.

Iteration 2: Iteration 3:

2. v(£) = (28/3,34/3,38/3)". 2. v(£9) = (32/3,38/3,46/3) .

3. A(1,£) =g, A(2,£) =g, A(3,£) ={2,3}. 3. A(1,f) = A(2,£) = A(3,£) = g.
5. d,, is minimal for i =3, a = 2. 4. £ is optimal.

g(l) =3, g(2) =3, g(3) = 2.
6. £(1) =3, £(2) = 3, £(3) = 2.

Linear programming

Iteration 1:
Policy fm, where £(1) =3, £(2) =2, £(3) =1, corresponds to the simplex
tableau with x,  ,x and x As the basic variables. This tableau has

137722 31
the following form:

11, X4 B X9 Fp ¥y3 Z3 Kyy ¥y
X5 | 2/3| 2/3 4/3 4/3 -2/3 0 -1/3 2/3 2/3 1/3
Xy | 23] 0 -1 0 2 2 @ o -1 0
xyy | 2/3| 1/3 2/3 2/3 -3 0 -2/3 4/3 4/3 2/3
x, | 10 [11/3 7/3 28/3 -2/3 8 -10/3 38/3 -1/3 -2/3
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Iteration 2:

The variables x and x are exchanged.

23 22
11 *1p B Fpy ¥y Py P35 F3p  ¥33
x5 | /9| 2/3 7/6 4/3 -1/3 1/6 173 2/3 1/2 1/3
x,5 | V3] 0 -1/2 0 1 1/2 1 o -1/2 0
xy | 89| /3 /3 2/3 1/3 /3 2/3 4/3 D /3
x, 1100/¢ | 11/3 2/3 28/3 8/3 5/3 34/3 38/3 -2 -2/3

Iteration 3:

The variables x32 and x31 are exchanged.

*11. 12 %y ¥py ¥pp By X3y Z3 o Xgg
x5 | /3| /2 1 1 -1/2 0 0 -1/2 0 0
x5 | 7/9| 1/6 -1/3 1/3 /6 2/3 4/3 12 2/3 1/3
xyy | 8/9| /3 1/3 2/3 1/3 /3 2/3 1 4/3  2/3
x, |116/9 | 13/3 4/3 32/3 10/3 7/3 38/3 2  46/3 2/3
* * * * * * * *
(1(11—0, x12—0, x13—1/3, x21—-0, x22—m0, x23—7/9, x31—0, x32—8/9,

x33=0) is an optimal solution. Then, f*, where f*(l) =3, £,(2) =3,

and f*(3) =2, is an optimal policy.

Suppose that an upper bound b of the TMD-value-vector v is known.
Then, the calculations can often been accelerated by the elimination of
suboptimal actions. An action a € A(i) is said to be suboptimal if there
does not exist an optimal policy £ e CD with £(i) = a. Since v is TMD-
superharmonic and since £ is optimal if and only if v = r(£f) +P(f)v, an

action a € A(i) is suboptimal if and only if
)

r, P, _.V., <V,
ia j¥iaj ' j i

The concept of suboptimal actions was introduced by MACQUEEN [1967].

THEOREM 3.4.7. Suppose that b is an upper bound for v. Let, in the sim-
plex tableau corresponding to the extreme feasible solution x(f). dia be
the value of the variable dual to xia(f)' a € A(i), 1 € E. If a:,L € A(i)

satisfies
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3.4.3 a > mi + - ®
( ) ia, min d ijiaij(bj vi(ED),

then action a; is suboptimal.

PROOF. Using the formulae (3.4.2) and (3.4.3) we may write

r, +).p._ .v.,Sr _ +).p _ b, =
ia; 37ia;373 ia; 37ia,373
=-a, v (£ +) (b (£
T %a, Y \5Pia 3B V5 E D)
1 1
e .
< -4, +v. (f) + 4, -min d, =
ia, 1 ia, a la
1 1
v (fm) + max {r, + 2 v (fw)-v (fw)}
i a‘Fia T L3Pia3Yy i
< m + LV, = ..
aXa{ria szia]v]} Vi

This completes the proof that a; is a suboptimal action. ]

Let £ be any pure and stationary policy. Then, we have observed that
x(fw) is an extreme feasible solution of the linear programming problem
(3.3.7) . Furthermore, we have seen that vj(fw), j € E, are the values of
the dual variables that correspond to the artificial variables of program
(3.3.7); the other dual variables, namely the variables that are orthogon-
al to xia(f)’ a € A(i), i € E, have the values dia’ defined by (3.4.2),

a e A(i), i € E.

Hence, in the simplex tableau that corresponds to any pure and station-
ary policy fw, we can easily compute the vector b (f), defined by

min min dia/ui

(3.4.4) b (f) := v(f) - 1 o,

where u and o are the quantities introduced in the first paragraph of this
section. If these quantities are unknown, then they can be computed by
linear programming (see remark 3.2.3).

We will show that b (£f) is an upper bound for the TMC-value-vector v.

Then, b(f) can be used in the suboptimality test (3.4.3).

LEMMA 3.4.1. b(f), defined by formula (3.4.4), is an upper bound for the

TMD-value-vector v.
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PROOF. Let M := minimina dia/ui. Suppose that gm is a pure anc¢ stationary
optimal policy (theorem 3.2.1 implies its existence).
Then,
, ") -r, (g)- £,
M < dig(l) _ vi(f ) rl(g) (Plg)v( 1 icE.

Ui Ui

Consequently,

r(g) € (I-P(g) v(E) -Mep.

This implies that

(3.4.5) v = v(g) = (I-P(q)) ‘r(g) < v(£7) -M- (I-P(g)) .
From the contraction property it follows that
3.4.6)  (1pign hw = I P < T o = e T
Then (3.4.5) and (3.4.6) imply that
- M - min,mina dia/ui
v <v(f) - T = v(f ) - - *u = b (£),

completing the proof of this lemma. O

REMARK 3.4.1. Any feasible solution of the linear programming problem
(3.3.6) is also an upper bound for v and can be used in the suboptimality

test.

REMARK 3.4.2. The use of suboptimality tests is a familiar concept in the
method of successive approximations. The elimination of suboptimal actions
may improve the efficiency considerably. We have seen that we can very

easily implement the suboptimality test (3.4.3) in the linear programming
algorithm IX. Moreover, we may expect for the linear programming approach

the same acceleration as it has in the method of successive approximations.

Next, we will discuss the constrained Markov decision problem. Let

: T
B = (81,62,...,BN) be any given initial distribution. In contrast with
section 3.3, we allow in this section that Bj = 0 for some j € E. In the

same way as in section 3.3, we define the vector x(R) for R ¢ C and the
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sets K, K(M), K(S), K(D) and P. Notice that in this section the restriction
to transient policies can be dropped.

The constrained Markov decision problem is then formulated by

R) £b_  k=1,2,...,m}.

(3.4.7) supR{Zieivi<R) |Zizaq. X

1akxia
THEOREM 3.4.8. K(D) = K(S) = K(M) = K = P.

PROOF. The proof is similar to the proof of theorem 3.3.4. However, it is
not a direct consequence because we have in theorem 3.3.4 K(D) < K(S);
furthermore, we here allow that Bj = 0 for some j € E.
We first prove that K(S) = P. For any x € P, we define a stationary policy
nw(x) by
X, / a e A(i), 1 € E

iafx, X

(3.4.8) m a(x) =

arbitrarily a e A(i), i¢é EX.

T
Since xia = ﬂia(x)'xi for all a € A(i) and 1 ¢ E, we obtain BT = x (I-P(m(x)).

Consequently,

T -1 L . ,
X4 = [B (I-P(m(x))) ]i Tia = xia(ﬂ (x)) a e A(i), i € E.
Hence, x € K(S).

Conversely, let x(ﬁw) € K(S). Then, analogously to the proof of theorem

1

3.3.3, it follows that x(r) = x(m) € P, where x,_(m) := (8T (z-p(m)~ IR

ia
In the same way as in theorem 3.3.4 it can be shown that

X(D) c K(S) = K(M) = K = P.

Suppose that K(D) # K(S). Then there exists a stationary policy T such
that x(m) ¢ K(D). Since K(D) is a closed convex set, it follows from theo-

rem 1.2.1 that there exist real numbers rja' a € A(j), j € E, such that

ijarjaxja(ﬂ) > zjzarjaxja for all x € ETB).

Hence,

(3.4.9) Zisivi(w ) = zjzarjaxja(n) > ijarjaxja(f) = Zisivi(f:
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for all f ¢ CD. Since there exists a pure and stationary policy which is
optimal with respect to the rewards rja' relation (3.4.9) gives a contradic-
tion. Hence, we have shown that K(D) = K(S), which completes the proof of

the theorem. 0

REMARK 3.4.3. We can also prove, similar to theorem 3.3.3, that x is an
extreme point of P if and only if x € K(D). However, we can loose the one-
to-one correspondence if Bj = 0 for some j € E. E.g., choose in the model

be such that f1(1) =f1(2) =1,

eofoo
1772
f2(1) =2, f2(2) =1. Then, it can easily be verified that x(fl) =x(f2) =x,

of example 3.3.4 81 = 0, 82 = 1, and let f

= = =O =2.
where x11 x12 x21 v x22

In order to solve (3.4.7) we consider the following linear programming

problem
Xiza(aij_piaj)xia =B JeE
.4. < = cee .
(3.4.10)  max ZiZariaxia Zizaqiakxia b, k=1,2,....m
X 20 ae A(i), i € E

ia
Analogously to theorem 3.3.7, we can prove the following theorem.

THEOREM 3.4.9.

(i) Problem (3.4.7) is feasible if and only if problem (3.4.10) is
feasible. '

(ii) The optima of the problems (3.4.7) and (3.4.10) are equal.

(iii) If x is an optimal solution of the linear program (3.4.10), then the
stationary policy nm(x), defined by (3.4.8) is an optimal solution of
problem (3.4.7).

(iv) If R is an optimal solution of problem (3.4.7), then x(R) is an opti-

mal solution of the linear programming problem (3.4.10).

Theorem 3.4.9 provides an algorithm for contracting dynamic program-

ming with additional constraints.

ALGORITHM XI for the construction of a stationary optimal policy in a con-
tracting dynamic programming problem with additional constraints and with

initial distribution B = 0.



*
step 1: Determine an optimal solution x of the

ziZa(éij_piaj) *ia

IA
o

max zizariaxia zizaqiakxia

X
\%
o

ia

(if the problem is infeasible, then the

also infeasible).

]
™
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linear programming problem

j € E

~
1

=1,2,...,m

A(i), i € E

constrained TMD-problem is

step 2: Take *ﬂw such that
* * . .
Xia/xi ae€ A(i), i € Ex*
* ia =
arbitrarily

a€An(i), ié¢ E 4
X

REMARK 3.4.4. The DMD-problem, which may be viewed as a TMD-problem with

Z.p = o < 1 for all states i and all actions

o% iii contracting dynamic programming problem.
equivalent in the following sense: the expected
R in the two models differs by a multiplicative
on the initial state.

To prove this equivalence, we consider for

a € A(i), is a special case
In fact, these models are
total reward of any policy

factor which only depends

a contracting dynamic prog-

ramming model (E,A,p,r) a transformed model (E,X,E,?), which is defined as

follows:
E := {0,1,...,N}
. A(l) 1ieE
A(i) :=
{1} i=0
-1 H ieE, a
Ui piaj i ’
-1 .
T R LR e tekoa
1aj a i=20,a
0 i=20,a
- ria/u ae A(i), i € E
r., i
0 a=1, i= 0.

m
=

€ A(i1), J

€ A(i), j =

|
o

]

1, j=0

1, j € E



76
The model (E,Z,;,;) is a DMD-problem, namely

P =a ae A(i), i € E.

z ot T‘"’iaj4= Piao * z iaj

j€E jeE

In order to analyse the rewards, we may, by theorem 2.5.1, restrict
ourselves to Markov policies. Since state 0 is absorbing and the reward in

~ A A
state 0 is zero, v(R) = v(R) for any policy R, where v(R) is the expected

AANAA .
total reward in the model (E,A,p,r), defined by

A
E :=E
A ~ A
A(i) := A(1) i€ E
S B, iefiachm, e
1= ie a e i
Piaj '~ Piaj ’ v e
A ~ . A AL
Y, =:=7r, ieE, ae A(i).
ia ia

ANAA
Let R = (Fl,ﬁ2,...) be any Markov policy in model (E,A,p,r). We observe

that

A 1A _
Bl b@H1,, =L eahp@®) e, on
ij ui ij ]
for all i,j € E and t € N. Therefore, we can write
$.(®) = 1im P2 (Bl e Bt H2 N 1,
i nsoeo ~t=1 i
r (wt)
. -1 1.2 t-1 L3
= lim 2t=12jui PR ep () oy -

- 1 2 t- t
= v +lim [T TR () e en BEICRR

vty ®), i E.
1 1

1]

Hence, it follows that a policy is optimal in the undiscounted TMD-
model if and only if the policy is optimal in the corresponding DMD-model.
The transformations, that were used above, are due to VEINOTT [1969] (see
also VAN HEE, HORDIJK & VAN DER WAL [1977]).

Next, we consider what happens in a constrained dynamic programming
problem. Suppose that we want to solve problem (3.4.7) for a contracting

dynamic programming problem. Then we solve the following constrained prob-
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lem for the corresponding discounted model (E,A,p,r):

~T~ ~ o~ ~
< = o e
(3.4.11)  sup {8 v(R) | [} a, x (R <b  k=1,2,...,m},
where
o B.u ie€eE
B, := { *
0 i=0
a . qiak/ui aeA(i), ieE k=1,2,...,m
iak 0 a=1, i=0 k=1,2,...,m
b, = b, k=1,2,...,m.

The equivalence between the problems (3.4.7) and (3.4.11) is a conse-

quence of the following properties:
t-1
)

},oeme
ij Ja

]

) 5 BB ) e e B
) xja(R) Zisi.2t=1{P(7‘ YP(m )eeeP (T

© 1. 1. 2 t-1 t
AT MR s e JC IR I RPN

t-1 t

ja

© 1 2
uj-Xisi-thl{P<w YRS e R (m ) e
= pu.*x, (R) a € A(j), j € E.

(ii) BT (R)

~ o~ -1
Lilarsaksa® = Lilorauy nyxy, ®

T
ZjZarjaxja(R) = B V(R).

. o -1
(116) LN F, R R = Lidaag by wyx (R = Ll % ().

CONCLUSION: Discounting dynamic programming and contracting dynamic prog-
ramming are equivalent models for unconstrained as well as for constrained

Markov decision models.
3.5. POSITIVE DYNAMIC PROGRAMMING

Positive dynamic programming problems are dynamic programming problems

that satisfy the following assumption.
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ASSUMPTION 3.5.1. ria 20 ae€ A(i), 1 € E.

THEOREM 3.5.1. v is the smallest nonnegative TMD-superharmonic vector.

PROOF. (cf. HORDIJK [1974] p.25). From theorem 3.2.2 and assumption 3.5.1,
it follows that v is a nonnegative TMD-superharmonic vector. Suppose that

w is also a nonnegative TMD-superharmonic vector. Since v, = max{vi(fm)|

£ e CD}, i € E, it is sufficient to show that v(f ) < w for every f e CD.
Let £ be an arbitrarily chosen pure and stationary policy. Then the super-
harmonicity of w implies that ; > r(f)-+P(f)$. By iterating this inequality,

we obtain

w > 2:=1Pt_1(f)r(f)-+Pn(f); > z:=1Pt_1(f)r(f) ne N.

Hence, for n - « we find

[\

v o e = v,

which completes the proof of the theorem. 0

In order to find an optimal policy, theorem 3.5.1 suggests the use of

the following linear program:

v
2]

Xj(dij_Piaj)wj ia ae€ A(i), i € E

(3.5.1) min{y . B.w ,
ZJBJ j

where Bj > 0, j € E, are given numbers. The dual linear programming problem

is:

IA
™
.
m
=

Y.Y (5. .-p. L)%, .

ifa’'ij Tiaj Tia 3j
(3.5.2) max{).V r, x, .

ita"ia"ia
x, 20 ae A(i), i € E
ia
This dual program is feasibles (e.g. x = 0 is a feasible solution).

Therefore, there are two possibilities: the optimum of (3.5.2) is finite

or infinite. We will treat these possibilities as two separate cases and

we will see that the construction of optimal policies (in class C of all
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policies) is different. If the dual program has a finite solution, then an
optimal policy can be obtained directly from the optimal solution of the
linear program. In the infinite case, we need some analysis of the under-
lying Markov chain structure. Fortunately, also in this case we can present

a finite algorithm to determine an optimal pure and stationary policy.

*
THEOREM 3.5.2. Suppose that x 1is an extreme optimal solution of the dual

program. Then, the pure and stationary policy f:, defined by

*
a, such that x, >0 i€ E_4
i ia, X
f*(l) 2=

arbitrarily i Ex*'

is an optimal policy.

PROOF. By introducing slack variables, we can write the constraints of the

problems (3.5.1) and (3.5.2) as follows

zj(dij_Piaj)wj-uia =T ae A(i), i € E
(3.5.3) wj > j € E
u,_ = ae€ A(i), 1 € E
ia
and
XiZa(‘Sij'Piaj)xia tyy=8y JeE
S . .
(3.5.4) xia 0 ae€A(i), i e E
.20 j € E
Y:I J
respectively.

Theorem 3.5.1 implies that v is the optimal solution of problem (3.5.1). Let

* . .
u,, = Xj(éij—piaj)vj - T ae€ A(i), i € E
* * .
TR PURC I UL R

Then, it follows from the theory of linear programming that

z - z zariaxza

PLV, .
JBJ J 1

and
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* * *
= u = 0.
zjijj Ll ia¥ia
* ’ .

since x 1is an extreme point and the dual program has N constraints, the

*x % T .
vector (x ,y )  has at most N positive components. Then,

* * *
+ = + . 2 g, >0 j € E
zaxja Y4 Bj E:izapiajxia Bj v !

implies that for every j € E , there is exactly one action aj € A(j) such
x" .

that xfa > 0. Hence, the policy f: is uniquely determined on Ei*' Also it

turns out that any extreme solution is nondegenerated. Furthermore we can

write

7T = @-yHT + N TRg).

By iterating this equality, we obtain

T = T e+ N TNE) n e

Consequently,

) Tree) = ey T P e ) + TN x(E,), e

t_
Since v(f:) = Zm P 1(f*)r(f:k) < v and v is finite, it follows that

t=1

. n _
llmn+w P(f)r(f) = 0.

Therefore, we get

T * * T _ B * T o T ©
Bv = Ll r % = (k) x(£) = (B-y ) v(E) < BVIE),

implying that f: is an optimal policy. ]

REMARK 3.5.1. If we use the simplex method to solve the linear programming
problem (3.5.2) and it turns out that this problem has a finite optimum,

then an optimal extreme solution is obtained.

REMARK 3.5.2. If the Markov decision problem is contracting, then the
linear programs have finite solutions. The following example shows that
the converse statement is not true, in genéral; in this example, an opti-

mal nontransient policy is found.
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EXAMPLE 3.5.1. The problem of figure 3.5.1 <:::>
2

has only one policy and this policy is non-

transient. The dual program is

< L > = =
x“_lz, X, 20 By=B,=%
maxjx, . .
—x <y ox > 0 Figure 3.5.1

>
21

= 3,

This problem has a finite optimum, namely x11
Suppose that the dual program (3.5.2) has an infinite optimum. Then,

if we solve this problem by the simplex method starting with the extreme
feasible solution x = 0, we obtain after a finite number of iterations a
simplex tableau with a nonpositive column. In this column, the coefficient
of the transformed objective function is strictly negative. Therefore, we
have in this tableau an extreme feasible solution x and a direction vector
s such that

(1) x(A) := x + As is feasible for all A 2 O.

(ii) ZiZariaxia(A) + +o for A > o,
Since x is an extreme solution, it follows from the proof of theorem 3.5.2
that for every j € Ex’xjaj
Therefore, if the linear program (3.5.2) has an infinite solution, we can

is positive for exactly one action aj € A(J).

find by the simplex method an extreme feasible solution x, a direction vec-

tor s and actions aj € A(J), J € Ex' such that:

(3.5.5) ZiZa(Gij—piaj)sia <0 jeE

(3.5.6) Sia >0 ae€ A(i), i € E
(3.5.7) Ziiariasia >0

(3.5.8) Xaxja = xjaj >0 jeE,.

Corresponding to the direction vector s, we define a stationary policy nw
by

s, / aehA(i), i e E

ia/s; s

(3.5.9) m,_ o=

arbitrarily a e A(i), i ¢ Es.
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THEOREM 3.5.3. The policy ﬂm, defined by (3.5.9), can be chosen from CD.

*
PROOF. Let a-ﬂ be the nonpositive column in the simplex tableau from which
the infinite solution is obtained. Suppose that this column corresponds to
the nonbasic variable L Then the direction vector s is given by
o
*
-a, if j e E, a = a, and x, is the basic variable
ikl X as

corresponding to row ij of the simplex tableau

1 if j =k, a = a

| o elsewhere.

Hence, to prove that 7 can be chosen from CD' it is sufficient to show
that I s =g . Assume the contrary. Then, k € E_ and s > 0. For
a ka ka, X kax
every i € E\Es, we choose an arbitrary action a, € A(i) and we take m;, =1
i

and Tia :=0, a # a,- Then it can be verified that

(3.5.10) P(m) = G-P(fl) + (1—6)°P(f2),

1]

o 00
s and £,,f, € CD such that

-1 .
where § = g(1-¢) with € kay 15

£ 4 #k
f,(i) :=a,, 1 € E, and £,(i) :=
1 i 2

a i= k.
o
From (3.5.5)-(3.5.7) and (3.5.9) it follows that
< = <
0 < zjsj = ijizapiaj“iasi 2isi(szij(“” < 184

Hence

[]
-

(3.5.11) ijij(n) ieckE,

(3.5.12) s'e = s'p(m)e.

T T T T
Since s° < s P(m); (3.5.12) implies that s° = s P(m) and consequently,
T T %
s° = s P (m). Therefore, ES c R(m), where R(m) is the set of recurrent
states in the Markov chain induced by P(m), and Es is closed under P(m).

By (3.5.10) and (3.5.11) we also have

ijij(fk) =1, 1ie€ Es' and ES is closed under P(fk) k=1,2.
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Therefore, we find

(3.5.13) Z] )(f ) = ZjeE ()

= i E n .
(fl) 1 iekE, e N
Since x is an extreme feasible solution and since ES c Ex' we have on the

other hand

(f )x . j e Es.

= 2.8, +
(3.5.14) xjaj Bj + Ziiapiajxia Bj ELGE a,

Because ES is closed under P(fl)’ we obtain by iterating (3.5.14)

(e-1) )

(£ + Z

> )| .
xjaj B z1eE 81 2t—1p (f V¥, ia; jeB,yneN

Consequently, Em -1 p(t 1)(f )<, i€Eg, JE€ E , implying that p( )(f ) >0

(n)

for n» », i € Es’ j e ES. Then Ej (f ) > O for n » o, i € ES, Wthh

eEs
contradicts to (3.5.13). This yields the theorem. [

Let f: be the policy, defined by (3.5.9) and for which, as has been

shown in theorem 3.5.3, we may assume that it belongs to CD.

THEOREM 3.5.4. vj(f:) = +o for at least one state j.

PROOF. From the proof of theorem 3.5.3 it follows that ES c R(fs) and that
ES is closed under P(f ).

Furthermore, (3.5.7) lmplles that sTr(f ) > 0. Hence, there exists a state
L e ES such that rﬂ(fs) > 0. For any state j in the same ergodic set as

state £, we have

1l
=
|
8

n~1- n [ t-1
n>© n “t=1

) o t-1
v () = Yooy [® (£)r(£) ]y (£Qr(£) ]

and

n

, 1 ¢tn t-1
lim =) [P (EJr(£) ]y

* *
o = [p (fs)r(fs)]j ijﬂ(fs)rﬂ(fs) > 0.

o
Consequently, vj(fs) = 4o, O
We can find a pure and stationary policy in the following way. First,

we identify all ergodic sets in Es which have a state £ such that rk(fs) > 0.

For any state i in these ergodic sets we define f*(i)==fs(i). Outside these
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ergodic sets, we choose actions which lead to these ergodic sets, if possible.
00

Then f* has for certain initial states, say Eo, a total reward +«, and E\E°

is closed under any policy. We repeat the same approach on E\Eo. This method

is outlined in the following algorithm.

ALGORITHM XII for the construction of a pure and stationary optimal policy

in positive dynamic programming.

step 1: Use the simplex method to solve the linear program

A

Lila(8357Pyay)®y, < 65 3 € B

(3.5.15)  max ZiZariaxia .

v
o

x a e A(i), i € EJ

ia
*

If a finite optimal solution x is obtained, then go to step 2.

If an infinite optimum is discovered, then go to step 3.

step 2: Choose f: € CD such that x >0, i € E 4.
—_— x

*
- if, (1)
Then, f* is an optimal policy (STOP).
*
step 3: Let ap be the nonpositive column in the simplex tableau from which
the infinite solution is obtained. Suppose that this column corres-

ponds to the nonbasic variable x. , and suppose that the simplex

ka
o
tableau corresponds to the extreme feasible solution x. Define s by

*
-a, if j € E_ and x, is the basic variable of row
il x as

B g
ij of the simplex tableau
s, = 1 if j =k and a = a
ja °
0 elsewhere.
o
: T > i .
step ake £ € CD such that Sif*(i) 0 ice€ Es

step 5: Determine on Es the ergodic sets in the Markov chain induced by
P(f*) (see algorithm II).

step 6: Determine the unicn E° of the ergodic sets under P(f*), which con-
tain a state j such that rj(f*) > 0.

)

step 7: If E, = E, then f* is an optimal policy (STOP).
Otherwise, go to step 8.

step 8: Search for a triple i € E\Eo, a, € A(i), J € E, such that pi . >0

i a:j

i
If such triple is found: f (i) := a;r B, = E_ U {i}, go to step 7.

Otherwise, go to step 9.
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step 9: For E := E\Eo repeat the algorithm, starting in step 1.

THEOREM 3.5.5. Algorithm XIT determines a pure and stationary optimal policy

0
f* in a finite number of iterations.

PROOF. If the linear programming problem, that is solved in step 1, has a
finite optimal solution x*, then theorem 3.5.2 implies that the policy f:
is optimal. Suppose that program (3.5.15) has an infinite solution. Then,
by the theorems 3.5.3 and 3.5.4, the policy fj which is defined in step 4
satisfies vj(f:) = +» for every j € E_, where E_ is the nonempty set de-
fined in step 6. Hence, if E =E, then the algorithm terminates in step 7
with an optimal policy f:.

Now, suppose that E, # E. Then, in step 8 the policy f: may be re-defined
in a state i € E\Eg such that pij(f*) >0 foz at least one state j ¢ E .
Consequently, vi(f*) > ri(f*) + pij(f*)-vj(f*) = +@. Next, E_ is replaced
by E_ u {i} and the steps 7 and 8 are repeated. We remark that the property
that vj(f:) = 4+ for all j € E_  is maintained. If step 9 is reached, then
piaj = 0 for all triples (i,a,j) such that i € E\Eo, ate A(i), j € E_.
Hence, the set E\EO is closed under any policy, i.e. pij(R) = 0 for all
ie E\Eo, j e E,te¢N, Re C. Therefore, we may repeat the algorithm on
the state space E\Eo. Since E # f at each iteration, algorithm XII deter-

mines a pure and stationary optimal policy in at most N iterations. O

EXAMPLE 3.5.2. We shall show the working of algorithm XII in order to find

a pure and stationary optimal policy for the model of figure 3.5.2.

Iteration 1:
1. Starting the simplex method with x = 0, we find an infinite solution in

the following simplex tableau (the column of x is deleted since all com-

11
ponents are equal to zero):
"
*12 ¥21 Y5 *31 ¥33 ¥33 ¥g1 ¥40 ¥s1 Fs5o ¥s53 ¥g1 ¥g1 *92
v, [V/7] 1 -1 =)
X, 1/7 11 -1
v, 1/7 | -1 % 1 1 -1 -5
v, |2/7 1 1 Y
v |1/ 1 11
-1 1 -1
Yo 1/7
Yq 1/7 -5 L 1
%, 1177 1 1 -1 -1 -1 -2 -1 -2 -3 -1 -1 -1
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522=1, s42=1: Es={2,4}.
4. £,(2) =2, £, (4) = 2.
5. E1={2,4}
6. E =1{2,4}
8. 9514>o: £,(5) = 1,E°={2,4,5}

9. E=1{1,3,6,7}

Iteration 2:
1. Starting the simplex method
with x = 0, we find an in-

finite solution in the

following simplex tableau:

B, = 1/7 i=1,2,...,7

1
M 3. k=1 =2
¥12 *31 Y3 ¥*33 %61 *71 *72 s REAE
v, 2/7 L, 1 1 s32=1,512=1:ES={1,3}
X3 1/7 | -1 P 1 1 4, f*(l) =2, f*(3)= 2
Y 1/7 1 -1 5. E1={1,3}
v, 1/7 -1 =% % 1 6. B ={1,3}
. 1/71-1 % 1 -1 -1 -1 7. E=1{6,7}.
Iteration 3:
. . R . y_ X y
1. A finite optimal solution is obtained: 6 71 77
2
x5, = 4/7, x5 = 3/7 Xy [4/7] 2 1
61 72 o . |3/7]1 1 2
2. f*(6) =1, f*(7) =2: f* is optimal, where 72
X 1 3 1 4
f*(i) =2, f*(2) =2, f*(3) =2, f*(4) =2, 0

£,(5) =1, £,(6) =1, £.(7) =2.

REMARK 3.5.3. The results of the sections 3.5 and 3.6 are based on KALLENBERG
[1983].

3.6. NEGATIVE DYNAMIC PROGRAMMING

Negative dynamic programming problems are dynamic programming problems

which satisfy the following assumption.

ASSUMPTION 3.6.1. ria <0 aeA(i), 1€ E.
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If there exists a transient policy R, then we have v(R) < v < 0. Hence,
the TMD-value-vector v is finite. In contrast with section 3.3, in this sec-
tion we also allow nontransient policies. Intuitively, it is obvious that
nontransient optimal policies must contain an ergodic set such that the cor-
responding rewards are zero for each state in this ergodic set. Such ergodic
sets can be obtained from an average optimal policy. The computation of an
average optimal policy by linear programming will be discussed in section
4.2 (see algorithm XIV). However, in chapter 4 we have assumed that the
transition probabilities satisfy Zj piaj =1 for all i € E, a € A(i). There-
fore, we have to use the extended TMD-model given by definition 3.2.2. The
state space of the extended model is again denoted by E.

THEOREM 3.6.1. Let fT be any pure and stationary average optimal policy.
(1) vi = -» for every i such that ¢i(fT) < 0.

© )
(ii) v, = vi(fl) = 0 for every i such that ¢i(f1) = 0 and i is a recurrent

i
state in the Markov chain induced by P(fl)'

PROOF .
(1) From (2.5.7) it follows that for any pure and stationary policy fw,

we have

VHET) = (1ma) TR (£T) + w(ED) + e(a),

where e(a) ~ 0 for a + 1. Since ¢(f ) < ¢(f°1°) and v(£) = lim v (£7)
(see lemma 3.2.1), we obtain
o -1 ) oo
(3.6.1) v(f) = 1imaﬂ{(1-a) cd(f ) +u(f) + e(a)}
< lim |, {(1-0) " Leg (7 £ + }
< lim o -0 ¢ ( 1) + u( e(a)}.
Let i € E such that ¢i(fT) < 0. Then (3.6.1) implies that vi(fm) = -,

Since £ is arbitrarily chosen and since there exists a pure and sta-
tionary optimal policy (theorem 3.2.1), it follows that vi = -,

(ii) Suppose that ¢i(fT) =0 and i € E, where E, is an ergodic set in the

k
Markov chain induced by P(fl)' Then (cf. (2.4.3))

¥ (£
k" Pig'th1
t

pij(fl)

* ‘ . Iy
pij(fl) >0 JjeE 0 J ¢ Ek andv

0 j ¢ Ek' t € ]NO.
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Since
£ = Typp4 £) =7 ¥ €T (£)
( ) p ( 1)rj( ) = jeEkpij 1 rj n
we get
rj(fl) =0 j e Ek.
Hence,
SN t-1 -y v =
v, (£) = 2 ijlj (£)x (£) = Looi) JeEk g (f )r (£,) = 0.
Consequently, Vi = Vi(fT) = 0, completing the proof. o

From theorem 3.6.1 it follows that if ¢i(fT) < 0, where fT € CD is an

average optimal policy then Vi(R) = - for all R ¢ C. Hence, for the deter-
mination of an optimal policy, we may remove from the state space the statec
in which ¢i(fT) < 0. Therefore, we may restrict ourselves to the states i

®
in which ¢i(f1) = 0. We can find (e.g. by algorithm II) the set R(fl) of
states that are recurrent in the Markov chain induced by P(fl)' Theorem 3.6.1

implies that in the states of R(fl) fco takes already optimal actions. If all

1
states belong to R(fl)’ then we have found an optimal policy. Otherwise, we

try to find in E\R(f,) an ergodic set with respect to another average opti-

1
mal policy, say f:. Therefore, we change the model in the following way

E := E\R(f,) U {0}
A(i) i#0
A(i) :=
{1} i=0
piaj i#0, j#0, ae A(i)
2keR(fl“Piak i#0,3=0,aca()
piaj :
1 i=0,j=0, aeA(i)
0 i=0, 3 #0, aen(i)
[r. i #0, aea(i)
r, .= ia
e -1 i=0, acea().

0
In this new model we compute an average optimal policy, say f2. Then, there
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are two possibilities:
1. ¢i(f;) = 0 for at least one state i:

We remove the states j for which ¢j(f;) < 0. Let E1 be the set of removed

states. Then, the state 0 belongs to El' ‘
If the remaining state space coincides with R(f2)’ then vi(f;) = 0 for all

0
remaining states, and consequently, f2 gives optimal actions for these

states.
Otherwise, we repeat the analysis described above to obtain recurrent
states in E\R(fz).
0
2. ¢i(f2) < 0 for all states i:
Redefine r01 =0, p01j

with the set E1 of already removed states, we compute an optimal fransient

policy by algorithm VI.

:= 0 for all j. For the remaining states together

Every time that we encounter possibility 1, the state space decreases with
at least one state. Hence, after a finite number of iterations either we
have possibility 2 or we have an average optimal policy f: such that all
states i with ¢i(fZ) = 0 are recurrent in the Markov chain induced by P(fz).
Hence, the following algorithm gives in a finite number of iterations a pure
and stationary policy f:. In theorem 3.6.2 we will show that f: is an opti-

mal policy.

ALGORITHM XIII for the construction of a pure and stationary policy in nega-

tive dynamic programming.

. . < . . , i), i
step 1 If ZJ piaj 1 for at least one pair (i,a), where a € A(i),. i € E,

then construct the extended model in the following way:

E := E v {0}

A(i) i #0
A(i) :=
{1} i=0
piaj i#olj#O,aGA(i)
o _ 1_Zk#0 piak i#0, j=0, aceA(i)
= 0 i=0,3#0, aea(i)

1 i=0,3=0, aceAaA(i)
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r, i#0, aea(i)
la
1a 0 i=0, aeali).

©

step 2: Compute an average optimal policy f by algorithm XIV.

1
step 3a: Let EO i= {i| ¢i(fT) < 0}; E1 :=0; Al(i) := A(i) for all i € E\EO.
step 3b: Define f*(i) i= fl(i)' ie EO.
step 3c: If EO = E, then go to step 9.
Otherwise, go to step 3d.
. . . S
step 3d: For every a € A(i), where i € E\EO, such that ZjeEO piaj 0 do

A(i) :=a(i)\{al.

step 3e: E := E\EO.

step 4a: Determine by algorithm II the set R(fl) of the recurrent states of
E in the Markov chain induced by P(fl)'

step 4b: Define f_ (i) := fl(i)’ ie R(fl)'

step 4c: If R(fl) = E, then go to step 7a.
Otherwise, go to step 4d.

step 4d: E := E\R(fl) v {0}
A(i) i#0
A(i) :=
{1} i=0
Piaj i#0, j#0, aeA(i)
2keR(fl)piak 1#0,3=0,aend)
Piajy *7 1 i=0,3=0, acha(i
0 i=0,3#0, aceA(i)
. i#0, aeA(d)
ria =
-1 i=0, acean@.

o

step 5: Compute an average optimal policy £, by algorithm XIV.

tep 6a: E, := {i] ¢, (£) < 0} '

step 6a: p = 11 ¢i 1 O}.

step 6b: If E = E,, then E, := E, U (E\{0}) and go to step 7a.
Otherwise, E, := B, U (E2\{0}) and go to step 6c.

£ . . . >

step 6 For every a € A(i), where i € E\E2, such that zjeEzpiaj 0 do
A(i) := A(i)\{al.

step 6d: E := E\E2 and go to step 4a.

step 7a: If E1 = @, then go to step 9.
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Otherwise, go to step 7b.

step 7b: E:=E U {0}
A () 1#0
A(i) :=
{1} i=0
piaj i#0, j#0, ace (i)
Piay i= 1—Zk€E1piak i#0, 3=0, aca(i
0 i=0, je€E, aceA(i)
r, i# 0, a e A(1)
r .= l1a
e 0 i=0, aehn(i)

step 8a: Compute an optimal transient policy f° by algorithm VI.

<::::> 2
@

@

step 8b: Define f*(i) = fo(i) i e E.

step 9: f: is an optimal policy.
EXAMPLE 3.6.1. We illustrate algo-
rithm XIII for the negative

dynamic programming problem <::::>
of figure 3.6.1 (without the

1
N
\
dotted part).

Iteration 1: @
1. The extended model is drawn <

in figure 3.6.1 by the dotted

/
/3
/
v
/

lines. - \
2. £, (1) =1, £,(2)=1,£,(3) =1, £ (4) = 1, AN
£ 1 / \
£,00)=1; 6, (£)=0,i=0,1,...,4.
3. By =0; E = ¢; a,(0) ={1}; A(l)—{123} A (2) ={1,2};

A (3) = {1}, A (4) = {1,2,3}. @

4. R(f)) ={0}; £,(0) =1; the new model is
the same as the old model except that Figure 3.6.1
ryy = -1.

5. f1(1l=2, f1£°2) =2, f°1°(3) =1, f1°i4) =1, fwl(O) =1.
¢1(f1) =q>2(f1) =¢4(f1) =0, ¢3(f1) =¢O(f1) =-1.

6. E2={3,0}; E1={3}; a(1) ={2}, a(2) ={2}, a4) ={1,2}; E={1,2,4}.
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Iteration 2:

4. R(fl) ={1,2}; £,(1) =£_(2) =2; The model 4
is reduced to the model of figure 3.6.2; <::::>
E = {4,0}. @
£ £)=-1 '
5. f1(4) =1, fl(O)—1;¢4( 1) —¢O( 1) =-1. '
6. E,={0,4}; E =1{3,4} Figure 3.6.2
7. We obtain the model of figure 3.6.3
8. £,(3)=1,f_(4) =1, £ (0) =1.
f£(3) =1, f*(4) 1 4
9. f*, where f*(l) =2, f*(2)= 2,f*(3) =1,

£,(4) =1, is an optimal policy. GE:E;)

THEOREM 3.6.2. Algorithm XIITI determines a pure

1]

and stationary optimal policy fi in a finite

number of iterations.

PROOF. First, we consider the finiteness. The only
loop in the algorithm may possibly occur in the Figure 3.6.3
steps 4 until 6. However, each time that we go back
ta step 4, the number of states in E decreases, namely:
The model defined in step 4d has state 0 as absorbing state and ¢O(fT)==—1.

Then 0 € E_,, where E, is defined in step 6a. Hence, if we go back to step

2 2
4a the number of states decreases by lR(fl)l.
2]
Consequently, algorithm XIII determines a pure and stationary policy f* in
a finite number of iterations. This policy f: has the following properties:
o
(1) v ()

(ii) vi(f:)

. - for all i € E,.
i 0

v, =0 for all i € E\(E.UE,)
i 01

]
<
]

(iii) f: is an optimal transient policy in the model defined in step 7b.
We will show that f:, computed in step 8a, is an optimal policy for the
model defined in step 7b. Suppose that f? is not optimal. Then, there exists
a nontransient optimal policy, say fw. Since fw is nontransient, we have

2 2
R(f2) n E1 # @. From the construction of E1 (see step 6b) it follows that

¢i(f2) < 0, ic¢€ R(fz). Then relation (3.6.1) implies that vi(fz) = -,
ie R(f2), which is in contradiction with the assumption that f; is optimal.
Next, we will prove that f: is an optimal policy. By the properties (i) and

(ii), it is sufficient to show that vi(f:) > vi(fm) for all i e E1 and all
£ e C_.
D
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For any £ € CD' let V(fw) be the expected total reward obtained in the

model of step 7b when policy.fco is used. Since r.(f*) = 0 for every j € E\

(EOUEl)' we can write for i € E

© J
1 and £ ¢ CD:

v (£)) = ¥ (£)

v

v.(£) =

expected total reward until a state of E\E1 is reached

v

expected total reward over the infinite horizon =

v.(fm).
1

This completes the proof of the theorem. 0

REMARK 3.6.1. From theorem 3.6.1 and relation (3.6.1) it follows that an

optimal policy can also be obtained in the following way:

1. Construct the extended model with Zj piaj= 1 for all i € E, a € A(i).
2. Compute an average optimal policy fT by algorithm XIV.
3. Define f*(i) := fl(i) for i € EO u E2, where
E_:= {j] ¢.(£) < 0} and E E\E ) n R(f,)
0 = 3j ¢j 1 an 5 = ( EO n R( 1)~

4. Construct the model with state space E := E\(EOUEz) u {0} as in step 44

of algorithm XIII but with r01 := 0 instead of ro1 = =1,
5. Compute a bias optimal policy f; by algorithm XXII or XXIII presented

in chapter 5, i.e. f; satisfies

0 Lo 0
u(f,) = max{u(£)] ¢(£) = o}

6. Define £, (i) := £,(i) 1 # 0.

The policy f: is an optimal policy since for all states i and policies £

such that ¢i(fm) = 0, we have (cf. (3.6.1)) vi(fw) = ui(fw).






CHAPTER 4

AVERAGE REWARD CRITERION

4.1. INTRODUCTION AND SUMMARY

The linear programming approach for the average reward criterion was
introduced by DE GHELLINCK [1960] and MANNE [1960]. They have proposed a
linear program from which a pure and stationary optimal policy can be ob-
tained if for any stationary policy nw the Markov chain induced by P(w) is
completely ergodic.

The first analysis of a linear program in the general multichain case
has been presented in DENARDO & FOX [1968] and DENARDO [1970b]. DERMAN
[1970] has streamlined and slightly improved their results. He has shown
that, in order to find an optimal policy, there have to be solved two linear
programming problems and one combinatorial problem, in the worst case.
DIRICKX & RAO [1979] have shown that the second linear program may be re-
placed by a search procedure. In the first part of this chapter we will show
that a pure and stationary optimal policy can be obtained by solving only
the first one of the two linear programming problems introduced in DENARDO
& Fox [1968].

In section 4.2 we review some relevant theorems which lead to the lin-
ear programming formulation. The main result is that a pure and stationary
optimal policy can be obtained directly from any extreme optimal solution
of the linear program. Since the simplex method gives such an extreme opti-
mal solution, we have an elegant algorithm for the construction of a pure
and stationary average optimal policy in the multichain case.

In section 4.3 we study the correspondence between feasible solutions
of the linear program and stationary policies of the Markov decision prob-
lem. In contrast with the contracting dynamic programming problem, it is
not possible to construct a one-to-one correspondence between these feasible
solutions and these (randomized) stationary policies. As it turns out, we
have to use equivalence classes of feasible solutions. We will construct a
one-to-one correspondence between the stationary policies and the represen-

tatives of the equivalence classes. Furthermore, this mapping preserves the
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opfimality property, i.e. optimal solutions are mapped on optimal policies
and optimal policies correspond to representatives which are optimal solu-
tions of the linear program.

Then in section 4.4 we compare the linear programming approach with
the policy improvement algorithm. We can concluae that the policy improve-
ment algorithm is equivalent to an algorithm for the optimal solution of
the linear program in which successive solutions are extreme but not neces-
sarily adjacent points of the set of feasible solutions. Such an algorithm
is called a block-pivoting algérithm.

In the sections 4.5 and 4.6 we give simplified algorithms for some
special models. In section 4.5 we discuss the case that the Markov chain
induced by P(f), where f°° is any pure and stationary optimal policy,‘is uni-
chained. Then a pure and stationary optimal policy can be obtained by the
solution of a linear program, that needs half of the number of constraints
and variables in comparison with the program used in section 4.2, plus a
simple search procedure.

Section 4.6 deals with the completely ergodic as well as with the uni-
chain case. In both cases a pure and stationary average optimal policy can
be obtained directly (without the search procedure) from the smaller linear
program used in section 4.5. v

We close this chapter with a discussion about the constrained Markov
decision model. In this model there are some additional constraints for the
limit points of the expected state - action frequencies. Such models are of
importance e.g. if there are more than one reward or cost functions. In con-
trast with the policy improvement method and the method of successi&e approx-
imations, the linear programming method can also solve this kind of models.
In general, these models have no stationary optimal policies. First, we
shall prove some properties of the set of limit points of the state-action
frequencies. We present an algorithm for the construction of an average op-
timal policy for a constrained Markov decision problem. However, this algo-
rithm requires an enormous quantity of calculations. Fortunately, in many
cases an optimal stationary policy can be computed. We give sufficient con-
ditions for the existence of optimal stationary policies. These conditions
include the unichain case. We also present an algorithm by which a station-
ary, but not necessary optimal, policy is computed. We give some numerical
results about its performance. These results are very encouraging; a station-
ary optimal policy was always found, if one exists, for the 400 test prob-

lems that we have analysed. In the unichain case a stationary optimal policy
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always exists and we present a simple algorithm to construct one.
The results of the sections 4.2, 4.3 and 4.7 are based upon HORDIJK &
KALLENBERG [1978a], [1978b], [1979al, [1979b] and [1981b].

4.2. LINEAR PROGRAMMING FORMULATION

We assume in this chapter that Zj Piaj= 1 for every pair (i,a) aeA(i),
ieE. If this assumption is not satisfied, then we can change the model in-

to the extended model as described in definition 3.2.2. From definition
3.2.2 and the analysis in section 2.4 it follows that ¢(nm) = $(n“) for every

(o] ~
m € C_., where ¢(m ) denotes the expected average reward in the extended

model.ssince there exists a stationary average optimal policy (cf. corollary
2.5.2), the assumption that Z p ]— 1 for every pair (i,a) a € A(i), i € E
is no real restriction for the determination of an average optimal policy.
Before we give the linear program from which an average optimal policy
can be obtained, we first present some theorems and we introduce the concept

of superharmonicity for the AMD-model.

THEOREM 4.2.1. Let ff be a Blackwell optimal pure and stationary policy.
Then ¢° = ¢(ft) and u’ := D(fo)r(fo) satisfy the pair of optimality equa-

tions
(4.2.1) ~ ~ .
= E.
¢i ma aEA(l)Xj 1aj¢3 tE
.2. $, +u, = i
(4.2.2) 6, +uy = max_ = fjpla] b ieE
where A(i) := {a ¢ A(l)[¢i = j 1aj¢]}' i e E.

00
PROOF. Since fo is a Blackwell optimal policy, there exists a nonnegative
real number a, < 1 such that va(ft) = v® for all a € [ao,l). From theorem

3.4.1 it follows that
o, _® a, . ® ; .
vi(fo) > oo + o sziajvj(fo) aeA(i), i € E, a € [uo,l).

Equation (2.5.7) implies that

(4.2.3) CHEDY = (- Rl v ul e (@), ieE,
1 o 1 1 1
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where lim €. (a) =0, i € E.
atl i

Hence, we obtain

(1-a) 1% +ud + e (o) 2
1 1 1

Tia o Lypgy - Tl 4 al v @) -

’ -1 o ° _
oot {1—(1—a)},2jpiaj{(1—a) ¢j + uy + ej(a)} =

1-a) "'} + ) ) ;r o @
(-0 TPy ags ¥ Fia * LyPiag®y T Lipiaghy + 8000

where

si(a):=2jpiaj{ej(a)—(1-a)uj—(1—a)ej(a)}, ach(i), icE, aelay ).

Therefore, llma+1éi(a) =0, i € E, and we get

o

o
S . .
b, = ijiajtbj aeA(i), i€E,
fp -).p 4. =r +).p, u-¢° ach(i), iecE.
3j 1aj j 3j 1a;| Jj ia jiaj j i
For the actions a, = £ (i), i € E, we have equality since by theorem 2.4.1

we obtain

8" = ¢(£) = PY(E)x(£,) = P(£)P"(£)x(£,) = P(£,)¢
and
¢° +u - P(fo)u°

1]

PY(£)r(£) + (I-P(£))D(£,)x(£,)

]

* *
PY(E)X(£)) + (I-P (£ )x(f) = x(f).

Consequently, we have proved that

o
¢i = maxaeA(i) sziaj¢j' i€ E,
o =] o
+ = - + i .
o, +uy maxaeA(i){ria sziajuj}' ieE 0

~ N . . .
DEFINITION 4.2.1. A vector ¢ ¢ R is AMD-superharmonic if there exists a

vector u € IR such that

.2, > ® i), i ,
(4.2.4) ¢i sziaj¢j ae A(i), i € E
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and

.2. 5. +u, = + u i), i .
(4.2.5) ¢, tuy 2 r. ijiajuj aeA(i), i eE
REMARK 4.2.1. The inequalities (4.2.4) and (4.2.5) have to hold for all ac-
tions. Since in (4.2.2) the inequalities have to be satisfied only for the
actions which yield equality in the first set of equations, the AMD-super-

harmonicity is a stronger condition.

THEOREM 4.2.2. The AMD-value-vector ¢ is the smallest AMD-superharmonic

vector.

PROOF. Let fj be any Blackwell optimal pure and stationary policy. From the
property that fj is average optimal (cf. theorem 2.5.4) and from theorem

4.2.1 it follows that

> . .
¢ sziaj¢j aeA(i), i €E,
+u 2 +2 A(i :
¢l ui > ria jpiajuj a e A(i), i € E,
where
: (£ a ad {aea@ly, =) }, iecE
u, = ui c) an (i) := {a € A(i ¢i = jpiaj¢j ' i€ E.
Define:
* o o
. _ . + + .
A" (i) {aen o, +u <xr ):jpiajuj} i e E.
sia .= ¢i - ijiaj¢j a € A(i), 1 € E.
t, = ¢, +u, y A(i), i € E
ja T ¢i uw, - r. jpiajuj ae€ A(i), i € E.
h *(; -- _ . d *
Then, A (i) n A(i) =@, i € E, é? 2% (1) A(i)
> . . A S ; ; . > =
Sia Oa€Ail),l€E,Sia OaéA*(l),leE sia 0 sia>0 Sia 0
t, 20 ada(i),ieE;t, <O0Oaeh (i), i€E. t, <0 t, = t, 20
ia ia ia ia ia
Let
t *
M := min{g——- aed (i), i € E} , and u := u’ - Mo
ia

(if A*(i) = @ for all i € E, then we define M := 0)

For a € i(i), we have
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0, = ijiaj¢j
and
+u +u, -M z -M).p. .0, =
bptyy T 0y u Z:lplaj j szlaj b ijlald’J
szlaj 3’
For a € A*(i) , we obtain
>
¢, ijiaj¢j
and
+ = +u° M(s +2 $.)
O Uy = 0y, mMIs, AP a9y
=r, +).p, .(u.-Mp,) + (t, -Ms )
ia jTiaj J 3j ia ia
> +).P, _.U,.
ria 2Jplajuj
If a ¢ A*(i)UZ_A(i) then we get
>
05 ijiaj¢j
and
+u, = ¢, +u, -Mp, = +r. +) ‘oM
;U = bty MO, =t T T AP Yy T M
> + +) (u -Mp.) = +)
2t T a T LRy Uy TMOy) 2wy P, Yy

Hence, we have shown that the AMD-value-vector ¢ is AMD-superharmonic. Sup-

pose that ¢ € R is also AMD-superharmonic. Then (4.2.4) implies that
(4.2.6) ¢ 2 P(£)G.
By iterating (4.2.6) we obtain E > Pt(fo)g for all t € N, and consequently

(4.2.7) ® > lim

1 - € _ .~ % ~
o 7 Leeq® (E)0 = P (£)9.

From (4.2.5) it follows that
* ~ o~ * ~ o * ~
(4.2.8) P (fo)(¢+u) > P (fc)(r(fo)-+P(fo)u) = ¢(f°)+P (fo)u =
* ~
¢ +P (£))u.

Then, using (4.2.7) and (4.2.8), we can complete the proof as follows.
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e
v
el
~

o

Py
v
;9-

i.e. ¢ is the smallest AMD-superharmonic vector. O

Next, we shall show that a pure and stationary average optimal policy

is also an optimal policy if the following stronger criterion should be used:
A 1 ¢T :

4.2. = : — =4 = =1i) e i .

(4.2.9) ¢i(R) llmsupT T zt=12jzanxi(xt i, ¥ alx i)er, , 1€E

Notice that for any 7 e CS

; 1yT = - - -
lim T tzlszaPﬂm(Xt 3eY, ale i) i

1 ET

i mrmd, = Y mrml.,  ieE,
t=1 i i

and consequently,
-4 A © *
¢(m ) = ¢(m ) =P (mrx(m.

o
THEOREM 4.2.3. Let £ be any pure and stationary average optimal policy.
A o A
Then, ¢(f ) = ¢(R) for all R e C.

PROOF. From theorem 2.5.1 it follows that it is sufficient to prove that

$(£7) 2 $(R) for all R « C,-

1
Let R = (m ,ﬂ2,...) be an arbitrarily chosen Markov policy. Since ¢ is AMD-

. . N
superharmonic, there exists a u ¢ R such that

t t
m > LT . a € A(i ie E, t e N
¢ a 2 LiPiasTats (1), ' '
and
t t t t
™ + ™ > + . .
biMia ¥ WMy 2 T P LTyl @ € A, E e B, te W
Consequently,

P(vrt)cb < ¢ and r(ﬂt) < ¢+u—P(1Tt)u t e IN.

Hence, we obtain
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1.

T 1 2 t-1 t T 1 2 t-
Lo PP eeep(n () £ ) P(T)P(M) e -P(m
{¢+u—P(nt)u} < T-¢‘fu-—P(nl)P(nz)--oP(nT)u T € NN.

2
Since %‘{U—P(ﬂl)P(ﬂ )---P(nT)u} +> 0 for T > », we can write A

1

A . T 1 2 t-1 t
¢i(R) = 11msupT+m T t=1[P(ﬂ )P(ﬂ‘)-.-P(w Yr(m )]i

IA

limsup, %‘{T'¢~+u-—P(W1)P(ﬂ2)"'P(NT)U}i =
¢i = ¢i(f ), i e E.

This completes the proof. [

COROLLARY 4.2.1. Any pure and stationary average optimal policy is also

optimal for the stronger criterion with utility function (4.2.9).

REMARK 4.2.2. In DERMAN [1970] p.26 the above result is also mentioned.
However, as was pointed out by HORDIJK & TIJMS [1970] p.93, Derman's proof

is incorrect.

We will formulate a pair of dual linear programs and we will show that
a pure and stationary average optimal policy can be obtained from the opti-
mal solution of the dual program. Since ¢ is the smallest AMD-superharmonic

vector, it is plausible to consider the following linear programming prob-

lem
~ > ~ . .
N ¢i 2 sziaj¢j ae A(i), i1 € E
(4.2.10) ming).B.¢.
zJ 5% - N
+ > i i
¢, +u, ria'+sziajuj aeA(i), i € E

where Bj > 0, j € E, are given numbers with Zij = 1. The dual linear prog-

ramming problem is

[

OljﬁE

)

(4.2.11)  max Zizariaxia zaxja

1.(8, .-p. )%,

i*a ij “iaj "ia
+ - = i € E
Ziza(sij piaj)yia Bj' )€

X, >0 ae€ A(i)}, i€E
ia"Yia !

REMARK 4.2.3. From theorem 4.2.2 it follows that there exists a vector
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u EIRN such that (¢,u) is an optimal solution of the primal program (4.2.10).
Then theorem 1.3.4 implies that the dual program (4.2.11) has also an optimal

* %
solution, say (x ,y ), which satisfies .B.¢. = Z.Z r, X, .
37373 i“a"ia’ ia

* *
THEOREM 4.2.4. If (x ,y ) is an optimal solution of the linear program

(4.2.11) such that (x*,y*) is an extreme point of the set of feasible solu-

tions, then the policy f:, where

*
X, >0 ieE
1aj x*
£ (i) := a, such that
* i
* .
Y. >0 liE\E*r
1ai X

is an average optimal policy.

REMARK 4.2.4. The above theorem says that an optimal policy is obtained by
taking an arbitrary action for which the x*—variable is positive, if pos-
sible; otherwise, by taking an arbitrary action for which the y*—variable
is positive. Indeed, it is possible to obtain an optimal solution where in
some states there is more than one positive variable (see example 4.2.1).
In that case we can construct different policies. Any of these policies is

average optimal.

PROOF OF THEOREM 4.2.4. From the constraints of program (4.2.11) it follows

that

* * ’ *
Xaxja * zayja = Bj * Zizapiajyia = Bj >0, 3 ek
Hence, the policy f: is well-defined. Let (¢,u) be an optimal solution of
the primal problem (4.2.10).
The remaining part of the proof has the following structure. First,
we give three separate propositions. After presenting the proofs of these
propositions, we complete the proof of the theorem by some final conclu-

sions.

PROPOSITION 4.2.1.

v - = i E
.+ =P, au, = (f i E ,.
65 Zj<aij plf*(l)J)uJ r (£) iek,
. * . * . .
PROOF. Since Xif*(i) >0, ic¢€ Ex*’ and yif*(i) >0, i€ E\EX*, it follows
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from the complementary slackness property of linear programming (see corol-

lary 1.3.1) that

Y. (8

- )b, =0 i e E\E .
3 %13 Pif, (i) ¢J x*

and
03 * L0y e (5509 T E D) L e B

The primal program (4.2.10) implies

(8, .-p,_ )9, =20 a e A(i), i € E.
ZJ( 15P1a3’ %y !
Suppose that
= E .
zj(skj pkf k)3)¢ for some k € "
Si * >0 btai
ince ka*(k) , we obtain
7G5 .-p ), > 0.
J k] Tk (k)FTTI Tki, (k)
Furthermore, we have
z (8,.-p,_.)¢ xi >0 a € A(i), i € E.
j ij Tiaj’ "j "ia

Hence, we get

*
Zizazj(aij—p.aj>¢j-xia > 0.

1

On the other hand, it follows from the constraints of program (4.2.11) that

* *
ziZazj(Gij—P'aj)¢j.xia - zj{Ziza(‘Sij‘Pia')Xia}'¢j = 0.

L

This contradiction implies that I.(§..-p. n )b, =0, i € E which
® 5%137Pie (1)5) %5 ! x*'
completes the proof.
PROPOSITION 4.2.2. E is closed under P(f ), i.e. p, =0 ieE ,
o if,(1)3 x*
Jj é¢ Ex*‘

and £ € E\E . From the
o

PROOF. Suppose that pkf k)£ > 0 for some k ¢ E o

constraints of program (4 2.11) it follows that

*
0= Ea 22 = L zaplaz ia = Pxf, 00 L%, 0 0 O
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implying a contradiction.

. are transient in the Markov chain

PROPOSITION 4.2.3. The stateé of E\E
x
induced by P(f*).

which is nontransient. Since

PROOF. Suppose that there is a state j € E\E _
X

E , is closed under P(f*) (see proposition 4.2.2), there has to exist a non-
X% ;

* ok .
which is ergodic. Because (x ,y ) is an extreme point

empty set J ¢ E\E__
X

* .
and yjf ) >0, j € J, theorem 1.1.2 implies that the corresponding columns
i *

{q?, 3 € 3}, where

0 k=1,2,...,N

3
e
-p K = N+1,N+2,...,2N,

5w T Py, (9) (k)

are linearly independent. Let J = {jl,jz,...,jm}. Since J is an ergodic set,

we have

0 j e J, k-N ¢ J.

=p, . =6,
Pie, (3) =) T O3 (k-m)
Hence, q:j = 0 for all k ¢ {N+j1,N+j2,...,N+jm}. Therefore, the vectors
2
{bl,b ,...,bm}, where
) 3.
i .
b = qujk ik =1,2,...,m,

are also linearly independent. However,

m i _ tm
zk=1bk B Zk=1(‘S

=1 -y

P. . .
= £
k=1 Ji *(]i)Jk

P )

P W FEG PR

|
-

—zp. . =0,

k Jif*(Ji)k
which is contradictory to the independency of {bl,bz,...,bm}. This completes
the proof of the proposition 4.2.3.

Now, we can finish the proof of theorem 4.2.4 by the following argu-
ments. From proposition 4.2.1 it follows that P(f*)¢ = ¢ and consequently,
*
P (f*)¢ = ¢. Since the states of E\E , are transient under P(f*) (see pro-
X

position 4.2.3), we have pzk(f*) =0, i € E, k € E\E
X

%"
Hence,
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]

oo *
¢i(f*) (p (f*)r(f*))i

]

*
kaik(f*)rk(f*)

* - _
= lken *Pik(l*){¢k+zj(6kj Pkf*(k)j)uj}
p:9

]

zkpzk(f*”’k'*zj{xkp:k(f*)f(ij“pkf*(k)j)}uj' ieE.

Because P*(f*)¢ = ¢ and P*(f*)(I—Pkf*)) = 0 (cf. theorem 2.4.1), we obtain
¢, (£) =6, iecE

i.e. f: is an average optimal policy. [

The solution of a linear program by the simplex method always gives an
optimal solution which is an extreme point of the set of feasible solutions.
Hence, the above theorem implies that a pure and stationary average optimal

policy is obtained by the following algorithm.

ALGORITHM XIV for the construction of a pure and stationary average optimal

policy (multichain case).

step 1: Take any choice for the numbers Bj such that Bj >0, j e E, and
L.B. = 1.
* ok
step 2: Use the simplex method to compute an optimal solution (x ,y ) of

the linear programming problem

Ziza(dij—Piaj)xia =0, J€E
max Xizariaxia Xa X + ziza(sij_piaj)yia B Bj’ j€eE

X, ,¥._ 20 a € A(i), ieE
ia'fia

ja

*
step 3: For each i € E choose an arbitrary action a; from the set A (i),

where

{a] x5 > 0} ie€ekE

* ia x*
A (1) :=
*
> i E

{a] Yi, > 0} ie \Ex*

step 4: £°, where £(i) := ai,i.eE, is a pure and stationary average optimal

policy.



107

EXAMPLE 4.2.1. The data of the model
can be found in figure 4.2.1 and
should be interpreted as exposed in
remark 2.2.1. The linear program is:

maximize x, , +2x,_ . +4x 1 + 3x22

1 21 3
subject to
11 ¥ 0 =8,=
% -x . =0 81_82_;&1 63=1i
21 32
-X,, - X, +X_ +X =0
X11 21 31 32 . _ -y Figure 4.2.1
11 Y11 Y31
*21 t¥y ¥y
LYV CPIRR CYILS VIR £Vl

2 .
Xypr¥gp Xy iXni¥yqe¥yr¥3yi¥3y =0

Th Luti (** h *_*_*_*_l‘*_*_*_*_o
e solution (x ',y ), where X, ) =X, =Xy =X =%/ ¥11 =¥y =¥31=¥3, 70
is an extreme point of the set of feasible solutions and is also an optimal
solution. In state 3 there are two actions for which the corresponding vari-

* * :
ables x31and X3, are positive. Hence, we can construct two pure and station-

© ©

ary average optimal policies, namely f1 and f2, where f1(1) =f2(1) =f1(2)=
f2(2) =f1(3) =1 and £,4(3) =2.

* *
REMARK 4.2.5. For every optimal solution (x ,y ) which is an extreme point

of the set of feasible solutions, we define

* .
e {a] X o} ie Ex*
Ai{(x Y)Y oa=
* .
{a] Yi, > 0} ie E\Ex*
Frlx,y)) = £« CDl f£(i) € A:{(x*,y*)}, i ¢ E}
F*oi= ur Ly )

From theorem 4.2.4 it follows that any £ € F* is average optimal. Conversely,
for any pure and stationary optimal policy fw, there is an extreme optimal
solution (x(f),y(f)). such that £ e F*{(x(f),y(f))} (this fact is shown in
the theorems 4.3.3 and 4.3.4). Hence, all pure and stationary optimal poli-
cies cAn be detarmined -y the computation of all extreme optimal solutions

of program (4.2.11). In chapter 1 we have derived an algorithm to perform

this computation {(algorithm I).



108
4.3. RELATIONS BETWEEN STATIONARY POLICIES AND FEASIBLE SOLUTIONS

For any feasible solution (x,y) of the linear programming problem

(4.2.11) we define a stationary policy ﬂm(x,y) by

A (i i E

xia zaxia ae€ A(i), i € <
(4.3.1) m a(x,y) o=

v, a e A(i), i € E\E .

ia/ ) vy. X
a‘ia

Unfortunately, in contrast with the contracting dynamic programming model,
in the AMD-model it is possible that two different feasible solutions are

mapped on the same stationary policy. We give an example.

EXAMPLE 4.3.1. Figure 4.3.1 presents the AMD-model. The formulation of the
linear program becomes:
imi + + + + +
maximize X, X, T Xy, F Xy F Ry, FX,,
subject to

14 X33 =0
Xy T Ey T Ey =0
"% 39 =0
T *92 =0
*11 Y TY3,=E
¥y1 ¥ %9 TY Ty Yy, =%
®31 *¥3p eI tY3,=
*41 ~ Yo =
PR P L YIS PILITE PR SYRR OPI £ VIR

The following two feasible solutions
(xl,yl) and (xz,yz) are mapped on the
same pure and stationary policy fm,
where £(1) =£(2) =1, £(3) =2 and
£(4) =1:

x1
11

1=

1 = .
32 1/4,x41—1/4,

1 1 1
~1/4,x21—1/4,x22~0,x31—0,x

1 1 1 1

Y9100 ¥y =0y, =0, y3,=0- @

2 2 2 2 2 2 .,
x11~1/6,x21~1/6,x22—0,x31—0,x32—1/6,x41—1/2, o g o et
2 1 By =B3=B,=

- 2 _ 2 2
Y11—1/6,y21—0,y22—1/4,y32—1/12.

Figure 4.3.1
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Since there is no one-to-one correspondence between the stationary poli-
cies and the feasible solutions of the linear programming problem (4.2.11),
we introduce an equivalence relation. We call two feasible solutions (x ,yl)
and (x2,y2) equivalent if wia(xl,yl) = nia(xz,yz) a € A(i), i € E. This
equivalence relation divides the set of feasible solutions in equivalence
classes.

Conversely, let m be a stationary policy. Consider the Markov chain
induced by P(m). Suppose that there are m ergodic sets, say El'E ,...,Em

2
and let F be the set of the transient states. We define the vectors x(m)

and y(m) by
x,_(m) := [BTP*(W)],-W_ aeA(i), i € E
ia i ia
(4.3.2)
y. (m := [8TD(m +y B (M1, o, acA(i), ickE
ia 1 la
where
0 ieF
(4.3.3) Yi =
* . .
é?gf{—szﬁdkK(w)/ZkEEjpkz(ﬂ)} ie Ej' 1<9 <m.
J

Notice that y is constant on every ergodic set.

THEOREM 4.3.1. (x(m),y(m)), defined by (4.3.2), is a feasible solution of

the linear programming problem (4.2.11).

*
PROOF. In the proof we will use some properties of the matrices P (m) and

D(m) as mentioned in theorem 2.4.1.

Y.Y (5, .-p, Jx (M) = zaxja(w) -ziZap. x, ()

ica ij “iaj iaj ia

= [87P" (m) )y - 8% (e (m) y=0, 3eE

zaxja-kzi (m)

1, (8. P,

ij 1aj)yia

[sTp*(n)Jj + 8D (m) +y TR (m) 1, - (8"D(m) P (m) 4y B* (1P (m) i3

(8T(p" (m) +D(m (1-P(m) 1+ [yTP* (m) (1-P(m)) )y

(87 {p" (m +1—p*(m}1j =85, 3 eE.
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xia(ﬂ) =20 a € A(i), i € E.

* . :
yia(ﬂ) = {szkdki(n)-szykp ki(ﬂ)}-ﬂia a e A(i), i € E.

If i € F, then pfi(n) = 0 and d.i(ﬂ) = Z:=1p?;1(n) > 0. Consequently,
9] t-1

= . . S . . .

v, (m Eksk zt=1pki (mem, 20 aeA(i), i eF

. .
If i ¢ F, say i € Ej, then Ykpki(n) = 0 for every k ¢ Ej' Hence, we get

*
¥iamM = (LB d, m + zkeEijpki(“)}'"ia

]

3
By (M + Yi'zkeEjpki(”) AL

[\

: * -1 *
(0 B8 M - (stkdki(“))'(xkeEjpki(ﬁ)) '(zkeEjpki(“m'"ia

=0 a e A(i), i ¢ F.

This completes the proof of the theorem. 0

For a stationary policy nw, let (X(m),¥Y(m)) be the class of correspond-
ing equivalent feasible solutions. We choose the element (x(w),y(w)) as the

representative of this equivalence class.

THEOREM 4.3.2. The mapping defined by (4.3.2) is a one-to-one mappiﬁg of
the stationary policies onto the set of representatives with (4.3.1) as

the inverse mapping.

PROOF. It is obvious that the stationary policies are mapped onto the set
1 1 2 2
of representatives. Suppose that m #nz and (x(wl),y(w ) = (x(n7),y(n7)).

Then, we obtain

1 1 1, 2 2, _ 2
Ta = %ial” )/Xaxia(ﬂ )= x )/Xaxia(1T ) =T
ae€A(i), i € E 1, = E 2y
and x(mt) x(mé)
1 _ 1 1 _ 2 2. 2
Mia = Yy, (T )/Zayia(n ) =y, )/Zayia(n )=
a e A(i), i € E\Ex(wl) = E\EX(“2).

1
Hence, m = ﬂ2 implying a contradiction. 0



REMARK 4.3.1. Suppose that (x,y) is a feasible solution of program (4.2.11).

Then, if we define x. := I x. , jJ € E, we have
J a ja

%57 2axja = zizapiajxia - ZiZapiajniaxi = Zixipij (M. 3 <k

and

o~
I

zj{sj - ziza(éij-Piaj)yia}

[

Ly8y~1ila10y055 ~ Lypyagtvss = 185 = 10
Hence, x is a stationary probability distribution of the Markov chain in-
duced by P(m(x,y)).

Conversely, if x is a stationary probability distribution of the Markov
chain induced by P(m) for some stationary policy ﬂm, then in general x can-
not be completed by a y such that (x,y) is a feasible solution of the linear
programming problem (4.2.11). For instance, in the AMD-model of example 4.3.1
X := (1/3,1/3,1/3,0)T is a stationary probability distribution of the Mar-
kov chain induced by P(f), where f satisfies f£(1) =£(2) =1, £(3) =2 and
£f(4) =1. There is no corresponding feasible solution since for any feasible
solution X4q > 4. ,

From example 4.3.1 it also follows that X(m) can have more than one
element. If the Markov chain induced by P(m) is unichained, then it follows
from theorem 2.3.3 that the stationary probability distribution is unique.
Hence, X(m) consists of one element: X(m) = {x(m)}. Similarly to theorem
4.3.1, it can be shown that any (x,y), where x = x(7) and y € Yo(ﬂ) =
{ylyia = yia(")+[cTP*(“)]%.“ia for some c = 0} is a feasible solution of
program (4.2.11). Hence Y (m) c Y(m). The next example shows that it may oc-

cur that Y (m) # Y(m. <:>

EXAMPLE 4.3.2. Consider the model of figure
4.3.2. The linear programming problem is:
maximize x11 +x12 +x21 +x22 +x31

subject to

*11 %12 T¥22 =0 @

1 Ty P Eyy T Xy =0
T X1 7% * X3 =0
*11 %0 ¥y *tYn ~Y52 =% >
¥21 %22 AT TR Ve L A B

X34 “Yyp Yoy Yy, = Figure 4.3.2
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Take the pure and stationary policy £ such that £f(i) = 1, i € E. Then,
xll(f) =0, X12(f) =0, le(f) =%, X22(f) =0, X31(f) =3;

(£) =%, vy, (£) =0, yzl(f) =%, ¥,,(£) =0, Y31(f) =0.

The feasible solution (x,y), where x = x(f) and Yqq = %, y12 =0, y21 =1,

Y11

Yoy = %, Yy = % is an element of Y(f). Suppose that y € Yo(f). Since state
1 is transient under P(f), each ; € Yo(f) satisfies ;11 = y11(f) = %. Hence,
° .

Y (f) # Y(£f).

THEOREM 4.3.3. The corresponcd .nce between the stationary policies and the
feasible solutions of the linear program (4.2.11) preserves the optimality
property, i.e. .
1. If ™ is a stationary average optimal policy, then (x(m),y(m)) is an
optimal solution of the linear program (4.2.11).
2. If (x,y) iIs an optimal solution of the linear program (4.2.11), then

the stationary policy Ww(x,y) is an average optimal policy.

PROOF.

1. Let (¢,u) be an optimal solution of the linear programming problem
(4.2.10) . Since (x(m),y(m)) is a feasible solution of program (4.2.11),
it follows from the theory of linear programming (cf. theorem 1.3.4)

that it is sufficient to prove that IL.ZI r, x, _(m) = I.B.¢.. We have
i“a"ia"ia 3373

T %
Lilario®atm = L l,r, I8 e (M em

ita" ia ia

Il

8  (mr(m = 86 (n") = 8%,

which completes the proof of the first part of the theorem.

2. The proof has the same structure as the proof of theorem 4.2.4. We first
present three propositions which are similar to the propositions 4.2.1,
4.2.2 and 4.2.3. Then we complete the proof. Throughout the proof (¢,u)

is an optimal solution of program (4.2.10).

" PROPOSITION 4.3.1.

o
aeA (1), 1 € E,

1]
o

Y. (8, .-p. )

J 13 "1iaj]

o
aeA (i), i€ E

1]
2]

¢+ 108 5py g0y = Ty



where

A (i) := {a e a(1)] nia(x,y) >0}, i e E.

o o .
PROOF. Since x, >0, a € A (i), i e E andy, >0, a e A (i), i € E\E_, it
—_— ia X ia . X
follows from the complementary slackness property of linear programming

(see corollary 1.3.1) that

zj(aij_piaj)¢j =0 "ae€eA (i), i e E\Ex

and

o
+ - = : : .
¢i Xj(aij piaj)uj r,, ac A (1), i € EX

Suppose that Ej(é )¢j # 0 for some a, € Ao(k) and k ¢ Ex' Since

k
> 0, and consequently

k3 Pkay ]

[ k(x,y) > 0, we also have x

ka kay

1.(8 .-p _ D¢.xm > 0.
J k3 kakj 3j kak
Moreovér, we have
- ) > i i

Xj(dij piaj)d)j xia >0 ae A(i), 1 ¢ E.

Hence, we obtain
S, .- Jo.ex, > 0.
XizaZj( ij piaj)¢j xla 0

On the other hand, the constraints of (4.2.11) imply that

2izazj(‘sij'piaj”’j'xia = zj{zixa(‘sij'Piaj)xia}d’j = 0.

This contradiction completes the proof.

PROPOSITION 4.3.2. EX is closed under P(7m(x,y)).

PROOF. Suppose that pkz(ﬂ(x,y)) > 0 for some k € EX and £ ¢ E\EX. Since
pkﬂ(ﬂ(x,y)) = Zapkalﬂka(x'y)’ there exists an action a,
and nkak(x,y) > 0. From the constraints of program (4.2.11) it follows that

such that pkak£3>0

0 ='zax a 2izapia/(’.xia = pkakaﬂxkak > 0

implying a contradiction.
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PROPOSITION 4.3.3. For any feasible solution (x,y) of the linear program

(4.2.11), EX is the set of recurrent states in the Markov chain induced by

P(m(x,y)).

PROOF. Let x, := I x, andy, := Ly, , i € E. We have seen in remark 4.3.1
—_— i a ia i a“ia

that x is a stationary probability distribution in the Markov chain induced
by P(m(x,y)). Theorem 2.3.3 implies that F c E\Ex, where F is the set of
transient states in this Markov chain. Suppose that F # E\Ex. Since EX is

closed under P(m(x,y)), there is an ergodic set E<:E\EX. Hence, we can write

1

0= ZjéEliieElpij(Mx,y))-

Then, we also have
0= Zjf_‘ElzieElzaPiajyia

and

0 < zjeEisj = zjeElyj - zjeEliizapiania =

zjeElyj"zjzieElzapiania+zngiZieElEapiajyia'ijeElzigElzapiania

zjeElyj _ZieEliaYia.-XjeElzi¢Elzapiajyia
- zjeElzi¢Elzapiajyia <0

implying a contradiction. This yields the proof.

We complete the proof as follows. From proposition 4.3.1 it follows
*
that P (m(x,y))¢ = ¢. Since E\Ex is the set of transient states, we have
*
p.i(ﬂ(x,y)) =0, ic¢€ E\EX. Then, using proposition 4.3.1 we can write

o (n7(x, 7)) = P (m(x, ) (T (x,¥))

]

*
P (m(x,y)){¢ + (I-P(m(x,y)))ul

*
P (m(x,y))¢

]

= 4.
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Hence, ﬂw(x,y) is an average optimal policy. 0

REMARK 4.3.2. Proposition 4.3.3 differs from proposition 4.2.3 by the fact

that in theorem 4.2.4 the states of Ex may contain transient states. Con-
0

1
but state 2 is transient in the Markov chain induced by P(fl)'

sider for instance example 4.2.1. The policy £, is average optimal, EX = E,

REMARK 4.3.3. If ™ is an optimal stationary policy and if (x,y) is a feasi-
ble solution of program (4.2.11) such that ww(x,y) = ww, then in general

(x,y) is not an optimal solution of (4.2.11). Below we give an example.

EXAMPLE 4.3.3. Consider the model of figure 4.3.3. The corresponding linear
programming problem is:

maximize X, ,

subject to

x11+x12 —x22 =0
—x11 +x22 =0
—x12 =0
*11 %% TV Y, TV =3
¥p1 %%y TYy TYpy=1/3 3
*31 EREY) =1/3
Xyqr¥ pe¥yg 1 XoprXy 1Y 1Y p1¥py 2 0

The pure and stationary policy £ such
that £(1) =1, £(2) =2, £(3) =1 is aver-
age optimal. The vector (x,y), where
X1 =16 =%y, 22 =16
X31=2/3: ¥, =0y, =1/3,v,,=1/6,

=0, x

is a feasible solution and wm(x,y)==fw. 8

=82=B3=1/3

However, (x,y) is not an optimal solu- 1

tion of the linear programming problem. Figure 4.3.3

THEOREM 4.3.4. Let fw be any pure and stationary policy. Then the correspond-
ing vector (x(f),y(£f)), defined by (4.3.2), is an extreme feasible solution

of the linear programming problem (4.2.11).

PROOF. Suppose that (x(f),y(f)) is not an extreme point of the set of feasi-
ble solutions of program (4.2.11). Then there exist different feasible solu-

101
tions (x ,y’ ) and (x2,y2) such that for some A € (0,1)



x(f) = kxli-(l—k)xz

Ayli-(l—ljyz

y(f) =
Since
Xia(f) = yia(f) =0 a# f(i), i € E,
we have
1 2 _ 1t _ 2 _ .
X, = xla = Yia=VYia < 0 a # £(i), i € E.
Let
P := P(f), X = (Xif(i) (£)), y (yif(.) (£)),
~1 1 ~2 2 ~1
Xoam (gpegy)e X m ey ) Y= Wipqyy)
and
~2 2
Y= Wiggy)-

Then (;,;), (;1,;1) and (;2,§2) are solutions of the linear system

%" (1-P) =0
(4.3.4)
xT + yT(I—P) = éT.

T T
Hence, for any solution (x,y) of (4.3.4) we obtain x = X P, and consequent-

T _*
X

* *
1y x° = xp* = gTp* - yT(1-p)p* = 8TP*, implying that

~ ~1 ~2 T %
X=%x =Xx =8P .

We also get

T * T T T * T *

y (I-P+P) = B~ -x -+yTP* =R (I-P ) +y P .
From theorem 2.4.1 it follows that

T T * * T * * T T *
(4.3.5) y =R (I-P )(D+P ) +y P (D+P ) = B D+y P .

Consider the Markov chain induced by the transition matrix P. Suppose that
there are m ergodic sets, say EI'EZ""'Em' and let F be the set of transient
states. Then, (4.3.5) implies that any solution (x,y) of (4.3.4) satisfies

T
v, = (8 D)i' i € F. Consequently,

o S S
v, v, = vy ie F.



By the definition of y given in (4.3.3), there is in each ergodic set E
. ~ ~1 _~2 . ~1 o~
a state, say ir such that yik = 0. Then also yik = yik = 0. Since (x,y")

and (§2,§2) are solutions of the linear system (4.3.4) which satisfy

~1 ~2 ~1 ~2 . ~1 ~2 ,
X =X, yi - yi =0,1i¢ F, yik - yik =0, k=1,2,...,m, we obtain from
(4.3.4)

~1 ~2 ~1 2

— = - E

Yy 7Yy zﬂeEk(yZ YplPpy € Ey
(4.3.6) k=1,2,...,m

~1 ~2 ’

yl - yl =0,

k k
Let z, := gl -2 i € E, and i= i.j € E Then, we have
1Ty T Yy k djq T Pyqr 23 € By ’

* *
Since Ek is an ergodic set, theorem 2.3.2 implies that qi. = qj. >> 0 for
all i,j € Ek. Hence, we get

=q Z z i € E

2y T %i7lyer %5 ¢ Rk
k
z, = 0.
1x
Then,
= = i E .

zjeEk zj 0 and consequently, z; 0 ieE

~

~1 )
Therefore, we have shown that y = y2, which completes the proof that

(x(£f) ,y(f)) is an extreme point. [

* %
REMARK 4.3.4. In example 4.2.1 we have found an extreme point (x ,y ) of
the set of feasible solutions such that the corresponding policy is not

pure. Hence, the reverse statement of theorem 4.3.4 is in general not true.

REMARK 4.3.5. Take any stationary policy T and let R(m) be the set of re-
current states in the Markov chain induced by P(m). Then proposition 4.3.3
implies that for every feasible solution (x,y) of (4.2.11) such that (x,y)e
(X(m) ,¥(m)) Ex = R(m) . Consequently, elements in the same equivalence class

have the same positive x-components.
4.4. POLICY IMPROVEMENT AND LINEAR PROGRAMMING

In this section we shall discuss some relations between the policy
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improvement method and the linear programming approach. The idea of policy
improvement was introduced by HOWARD [1960]. BLACKWELL [1962] has given an
elegant mathematical foundation of the policy improvement method, treating
the average reward case as a limiting case of the a-discounted reward case.
By Blackwell's algorithm a pure and stationary average optimal policy is
obtained. VEINOTT [1966] and DENARDO [1970a] have generalized this algorithm
to an algorithm by which a pure and stationary bias optimal policy can be
determined. MILLER & VEINOTT [1969] have exténded these results. They pre-
sent a Laurent expansion in (1-a) for va(fm) by which algorithms can be
constructed in order to find optimal policies with regard to more selective
criteria. In particular, a finite algorithm was proposed to obtain a Black-
well optimal policy. Other references on this subject are DENARDO & MILLER
(19681, VEINOTT [1969], DENARDO [1973], VEINOTT [1974] and HORDIJK [1976].

THEOREM 4.4.1. For any pure and stationary policy fm, the linear system

(I-P(£))9 =0
(4.4.1) % + (I-P(£))T r(£)
U+ (I-P(£))Z

]
o

has a feasible solution (¢,u,z). Moreover any feasible solution (¢,0,Z) of

(4.4.1) satisfies ¢ = ¢(£) and ¥ = u(f ).

PROOF. (cf. HORDIJK [1976]). In the proof we use repeatedly the results of
theorem 2.4.1. Let ¢ := ¢(£), U := u(f) and 2 := -D(£)u(f"). Then, we

obtain

(I-P(£))$ = (I-P(£))P" (£)x (£)

= 0.

§ + (I-P(£)F = {P"(£) + (I-P(£))D(£) }r (£)
= (P¥(£) + I-P" () Y (£)
= r(f).

U+ (I-P(£f))Z = D(£) {I-(I-P(£))D(£) }x(£)

= D(£)P* (£)r (£)
= 0.

Suppose that ($,G,E) is a feasible solution of (4.4.1). Then we have
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s =P(6)$ =P (£)O
= P*(E){r(f) - (I-P(£))T} = P (D) x(H)
= ().
~ * -1 * ~
a = (I-P(f) + P (f)) ~(I-P(f) + P (f))W

(D(£)+P™ (£)) (I-P (£)+P™ (£)) T

I

(D(£)+P™ (£)) (£ (£)-4)

D(E)r(f) = u(f). 0O

]

We define for any pure and stationary policy fao the sets A(i,f), i € E,

by

LjPagts (£ > 0,5 or [ip, o (£) =
(4.4.2) A(i,f) = {a € A(i) .

0, (£) ax, + ) piajuj(f ) > ¢, (£ )+u, (£)

B
THEOREM 4.4.2. Let £ be a pure and stationary policy.
1. If A(i,f) = @ for all i € E, then £ is an average optimal policy.
2. If A(i,f) # @ for some i ¢ E, and g°° is a pure and stationary policy
such that g(i) € A(i,f) for at least one i € E and g(i) = £(i) when-
ever g(i) ¢ A(i,f), then ¢(g ) = ¢(£) and v¥(g) > v*(£) for all

o sufficiently near to 1.

PROOF. (cf. BLACKWELL [1962]).
1. Let goo be an arbitrarily chosen pure and stationary policy. Since

A(i,f) = @ for all i € E, we have
(4.4.3) P(q)¢(f) < ¢(£) and r (@) + (p(g)u(f‘”))i < ¢i(fw)+ui(fw)
for each i which satisfies (P(g)¢(f°°))i = ¢i(fw).

Let R := (g,f,f,...). Then Va(R) = r(g)-FaP(g)va(fw) and it follows from

(2.5.7) that we can write

v (R) = r(g) + {1-(1-0) }P(g) { (1-0) "1+ (£7) + u(£™) +e (o) )
= (1-0) "Lep(@) 4 (£7) +1(q) +P(Q)u(ED) =P (9) 6 (£7) +e2(a)
where lim ek(a) = 0 for k = 1,2. Hence,

otl
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(4.4.4) VHET) v (R) = (1-0) Ll (EV-P(@) ¢ (£} + u(ET) + P(@ (£ -

£(g) - P(Qu(e) + e (a),

. 3 _

where llma+1 € (a) = 0.
Therefore, it follows from (4.4.3) and (4.4.4) that for o sufficiently near
to 1

o, ® o . 3 . 3
(4.4.5) vi(f) - v (R 2z e (a) and 11ma+1 e (o) = 0.

. 3
Let (o) := min, €] (o). Then,

ii

o, _® o o, _®

(4.4.6) v (f) 2v (R) +e(a)ee = r(g) +e(a)e+aP(g)v (f ).

By iterating (4.4.6), we obtain

L 0Lt«lPt—l
t=1

e ()
1-a

(4.4.7) e 2 ) (@) (r(g) +e(a)+e) =vP(g") + e
From (2.5.7) and (4.4.7) it follows that

¢(fw)—¢(gm)—e(a)°e

rulE) —ug+ed @) 20 a e [0,1),

1-a
here lim 84(a) =0 d lim e(a) =0
w Y| =Y and M = e
Consequently,
] (o]
(4.4.8) d(f ) =2 ¢d(g ).

Since g°° has been chosen arbitrarily and since there exists an average opti-
mal policy in the class of pure and stationary policies, (4.4.8) implies
that £ is an average optimal policy.
2. Let gm be such that g(i) € A(i,f) for at least one i € E and g(i) = £(i)
if g(i) ¢ A(i,f). Define the policy R by R := (g,f,f,...). Notice that
(4.4.4) is also valid in this case. Then, it follows that

(a) if g(i) = £(i), then VZ(R) - vi(fw).

(b) if g(i) # £(i), then V?(R) > v?(fw) for a sufficiently near to 1.

Hence,

(4.4.9) v (E) <vu(R)==r(g)-+aP(g)va(fm) o € [a, 1), where a_ € [0,1).
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By iterating (4.4.9) we obtain

t-1_t-1

@.a.100 v < Jo_ o T H@irg) = V() ae Lo, ).
Since

0<v¥(g) -v¥(E) = iﬁﬁf—fl rulg?) —ulf) +e (@, aela, 1),
where lim eS(a) = 0, we get

otl

(4.4.11) 6(g) 2 d(E).

Combining (4.4.10) and (4.4.11) completes the proof. O

Next, we formulate and prove the correctness of the following policy

improvement algorithm.

ALGORITHM XV for the construction of a pure and stationary average
optimal policy by the policy improvement method (multichain case).

case) .

step 1: Take an arbitrary £ e CD.

step 2: Compute ¢(fw) and u(fm) by solving the linear system

(I-P(£)) % =0
% + (I-P(£))3 = r(f)
U+ (I-P(£))Z =0

step 3: Determine for every i ¢ E

)

Piaghy(E) > 0, (£ or sziaj¢j(f ) =
A(i,f) :=4a € A(i)

¢i(f°°) er, +Lp u, (£ > ¢i<f°°)+ui(f°°)

jTiaj 3

step 4: If A(i,f) = @ for all-i € E, then £ is an average optimal policy
(STOP) .
Otherwise, go to step 5.

step 5: Take goo such that
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g(i) € A(i,f) if A(i,£) # £
’ i e E.

g(i) = £(1i) if A(i,f) = @

step 6: £ i= gw and go to step 2.

THEOREM 4.4.3. The policy improvement algorithm XV provides an average op-

timal policy within a finite number of iterations.

PROOF. If in the algorithm the policy gm is taken as successor of fw, then
it follows from theorem 4.4.2 that va(gm) > vu(fm) for o near enough to 1.
Therefore, each pure and stationary policy can occur only once. Since there
are a finite number of pure and stationary policies, the policy improvement
algorithm terminates after a finite number of iterations with a policy fmeCD
which satisfies A(i,f) =@ for all i € E. This policy fOo is by theorem 4.4.2

an average optimal policy. 0

9]

Let fk be the pure and stationary policy obtained in the k-th step of

algorithm XV. In theorem 4.3.4 we have shown that (x(fk),y(fk)), defined by
(4.3.2), is an extreme point of the set of feasible solutions of the linear
program (4.2.11). The value of the objective function satisfies
_ T * _ ST _* _ T o

LilariaXia (£ = Liry (B (BTRT(£)), = BP (E)r(£) =B 0(£)).
00
kl
set of feasible solutions of program (4.2.11). From theorem 4.4.2 we know

The successive policies £ k=1,2,..., correspond to extreme points of the
that the values of the objective function are nondecreasing and it follows
also from theorem 4.4.2 that cycling cannot occur. The successive extreme
points (x(fk),y(fk)), k=1,2,..., are not necessarily adjacent. Hence, the
policy iteration algorithm is not equivalent to the standard simplex algo-
rithm but rather to another linear programming algorithm in which pivot
operations on many variables are performed simultaneously. Such an algorithm
is called a block-pivoting algorithm and may be viewed as a special case of
the general class of methods of feasible directions as introduced by

ZOUTENDIJK [1960].

CONCLUSION: The policy improvement algorithm is equivalent to a block-

pivoting simplex algorithm.
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EXAMPLE 4.4.1. For the model
given in figure 4.4.1 (cf.

HOWARD [1960] p.65) we dis-

play the policy improve-

ment algorithm and we show
how the successive iterations
can be viewed as block-pivoting

in the simplex algorithm.
Policy improvement

Iteration 1:

1. Take fT such that fl(l) =3,
£,(2) =2, £,3) =1.

2. ¢(£)) = (11/2,4,11/2)%; u(f°1°) = (-5/4,0,5/4)". By =B,=83=1/3

3. A(llfl) =@; A(2,f1) ={1,3}; A(3,f1) ={3}.

5. Take g such that g(1) =3, g(2) =1, g(3) =3.

6. £,(1) =3, £,(2) =1, £,(3) =3.

Figure 4.4.1

Iteration 2:

2. 9(6) = (7,7, u(£)) = (-4,-5,0)".

3. A(l,f230=¢; A(2,£,) ={3}; A(3,£,) =0

5. Take g such that g(1) =3, g(2) =3, g(3) =3.
6. £5(1) =3, £,(2) =3, £5(3) =3.

Iteration 3:
2. 9(£) = (1,7,17; u(£) = (-4,-2,0)T.
3. A(L,£) =8 A(2,£,) =0; A(3,£,) =0.

4. f; is an average optimal policy.
Linear programming

Iteration 1:
0

1
Since the three states are recurrent in the Markov chain under P(fl)' the

Policy £, chooses in the three states the actions 3,2 and 1 respectively.

variables x13,x22 and X4 are basic-variables. The corresponding simplex
tableau is as follows (the z-variables are artificial variables; the vari-
ables ¥117Y99 and Y35 can be omitted since the corresponding coefficients

are all zeros).
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X11 ¥y X1 ¥p3 X35 ¥33 Yyp Y43 Y1 Yo3 Y31 Y3

x4 | 173 1 1 . NGO -1

z, 0 -1 11 -1

24 0 1 -1 -1 1

xy | 13 ] 1 1 11 - -1

Xy, | 1/3 11 -1 1 -1
2 0o | -1 -1 Tt -1 -2 1 -1 2 1
z 5 10 T 6 -1 -9 -7 7 11 -7 4 -11 -4

Iteration 2:
Since the Markov chain under :(Ez) has only state 3 as
f2(3) = 3) and since f2(1)= 3 and f2(2)= 1, we let enter

Yy and x into the basis and we require that x

33 137%22

recurrent s+ te (with
the varlables Yq3r

and x31 become non-

basic or basic with value 0. Then, after 3 standard pivot iterations, we ob-

0

tain the tableau corresponding to f

2

¥11 *12 ¥21 ¥23 ¥32 Y12 ¥13 ¥op Y23 Y31 Y3
Y5 | 23] T T 1 1 1 1 1 -1 -1
z, 0 -1 01 1 -1
2, 0 1 -1 -1 1
Xy | O -1 1 -1
oy | 173 11 -1 1 @ -1
x5 | 1 12 11 2 1
z 7 6 4 2 2 -2 0 3 3 0 0 o0

Iteration 3:

The average optimal policy f: is obtained by changing the variables Y91 and

y23 (this choice follows ‘again from the analysis of the Markov chain in-

duced by P(f3)). The corresponding tableau becomes:

*11 *12 o1 ¥p3 ¥3p Y1p *q3 ¥pg Yo Y31 Y3
Vi | /3] T 1 1 1 S
2, 0 11 1 -1
z4 1 -1 -1 1
x5 | O -1 1 -1
Vo | 173 11 -1 11 -1
Xy | 1 12 1 2 1
z 7 6 4 2 2 -2 0 3 3 0 0 0
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REMARK 4.4.1. The final tableau is in the usual context of the simplex
method not an optimal tableau. In an optimal tableau the row of the dual
variables (i.e. the row at the bottom) has to be nonnegative. We can obtain

such an optimal simplex tableau by changing the variables zg and Xqge Then

the corresponding policy is again f3

4.5. THE WEAK UNICHAIN CASE
Throughout this section we have the following assumption.

ASSUMPTION 4.5.1.(i) The AMD value-vector ¢ has identical components.

(ii) For any pure and stationary average optimal policy £ and for an arbi-
trary ergodic set El(f) in the Markov chain induced by P(f), there exists
a policy gc° € CD such that ga° is also average optimal and El(f) are the re-

current states in the Markov chain induced by P(g).

If assumption 4.5.1 is satisfied, then the model is called weakly uni-
chained. The weak unichain case includes the completely ergodic case, the
unichain case (cf. section 4.6) but also the communicating case (i.e. for
each pair i,j € E there exists a policy fj € CD and an integer t € W such
that Pf? 03:=jlx1 =1i) > 0). The term communicating comes from BATHER
[1973]; this concept is also used in HORDIJK [1974], chapter 8.

Let £ be an average optimal policy and g°u the policy mentioned in as-
asumption 4.5.1. Then, this assumption implies that the policy fT, where

£(1) ie El(f)

fl(i) :=

g(i) i e E\E, (f)

is also average optimal. Furthermore, it is obvious that the Markov chain
induced by P(f1) is unichained. Since ¢j is independent of the initial state
j, we m?y use instead of the AMD-value-vector ¢ a ¢° € IR1 such that

¢ = ¢, *e. From the results of section 4.2, it follows that ¢ is the op-
timal solution of the linear program )

(4.5.1) min{$°]$°-+ﬁ, >r, + z aeA(i), i € E}.

i ia T £5P1a9%y

The corresponding dual linear programming problem is
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1]

- i € B
ziza(‘sij Piaj)¥ia =00 3

i
-
.

(4.5.2) max ziiariaxia zj_zaxia

x, 20, a € a(i), . i € E
ia

Below, we present an algorithm for the determination of an optimal policy

and we prove its correctness.

ALGORITHM XVI for the construction of a pure and stationary average opti-

mal policy (weak unichain case).

*
step 1: Use the simplex method to compute an optimal solution x of the

linear programming problem

]
o
~
.
m

]

ziza(éij_piaj)xia

1]
-
.

max Zizariaxia zizaxia
X0 >0, a € A(i), ieE
. * .
step 2: Take f*(l) such that xif*(i) >0, 1ic¢€ Ex*.
step 3: Let Eo = Ex*.
0
step 4: If E = E, then f* is an average optimal policy (STOP).
Otherwise: go to step 5.
step 5a: Choose a triple (i,ai,j) that satisfies i € E\Eo,ai € A(i), j € E
> 0.
and piaij 0
step 5b: Define f (i) := a;r E_ := E U{i}; go to step 4.

THEOREM 4.5.1. Algorithm XVI determines an average optimal policy within a

finite number of steps.

*
PROOF. The simplex method is finite and gives an optimal solution x of

o

program (4.5.2). Let (¢°,u*) be an optimal solution of program (4.5.1). The

algorithm terminates after a finite number of steps and determines a set E
(possibly equal to E) such that E\E° is closed under any policy. Similarly
to proposition 4.2.2 it can be shown that Ex* is closed under P(f*), where
f* is any completion of the function f* already defined on E_. Since the

states of E°\Ex*

are transient under P(f*) and are absorbed in E , with
x

probability 1, we have

o
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* : " .
(4.5.3) pij(f*) =0 ieE, JEE ,-

x*

The complementary slackness property of linear programming (cf. corollary

1.3.1) and the choice of f* in step 2 imply that
*
(4.5.4) ¢° + ui = ri(f*) + (P(f*)u)i, iekE _.

From (4.5.3) and (4.5.4) it follows that

© *
(4.5.5) NCRILDN RCRENCR

]

*
Ejpij (£, 1o, +u, - kajk(f*mk}

]

* *
¢°-ijij(f*) + [P7(£,) (T1-P(£ )]
=9, iekE.

o
Hence, f* is average optimal on the set E_.

(=]
Suppose that E # E. Let g be a pure and stationary average optimal policy.

£

The policy f1 defined by
£(1) iekE,
£,(1) :=
1 . .
g(i) i e E\E,

is also average optimal and the Markov chain induced by P(fl) has an ergodic
o © .

set, say El(fl)’ in E_. Obviously, ¢i(f1) =¢ = maxj€E¢j(f1),1 € El(fl)'

Then, assumption 4.5.1 is contradictory to the fact that E\E_ is closed

under any policy. Consequently, we have shown that E, = E. Then, (4.5.5)

implies that f: is average optimal. [

REMARK 4.5.1. In DENARDO & FOX [1968] the so-called general single chain
case is treated, i.e. the case in which there exists a pure and stationary
average optimal policy :Eo° such that the Markov chain induced by P(f) has one
ergodic set plus a (perhaps empty) set of transient states. They claim that
in this case an average optimal policy can be obtained by algorithm XVI. In
example 4.5.1 we show that this is in general not true since the algorithm
may terminate with E # E. However, in the general single chain case an av-

erage optimal policy can be obtained by successive application of algorithm
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XVI on E\Eo until E_ = E.

EXAMPLE 4.5.1. It can easily be

verified that the model of fig-
ure 4.5.1 belongs to the general
single chain case. The lingar

program is:

X1p7%yy X3 =0 2
X121 =
max x“+x31 x32 =0 Figure 1.5.1
Xy R Ry PR PRy =
Xpqr¥ pr¥pq %317 X35 20

* imal solution wh Xk =xt =xT_ =0, xs, =1
x 1is an extreme optimal solution where x11-—x12-—x21 =X3, r X3 .

Since E = {3} and E\E . is closed under any policy, algorithm XVI gives
be X
not an optimal policy.

4.6. THE COMPLETELY ERGODIC AND THE UNICHAIN CASE

We first discuss the completely ergodic AMD-model, i.e. the AMD-model

under the following assumption.

0
ASSUMPTION 4.6.1. For any pure and stationary policy £ all states belong

to a single ergodic set in the Markov chain induced by P(f).

This case is the classical one and the solution by linear programming
is well-known. We discuss in this monograph the completely ergodic case by
reason of completeness. The linear programming formulation was first pre-
sented by MANNE [1960] and DE GHELLINCK [1960]. The algorithm is similar to
algorithm XVI but the ster; 3 until 5 are superfluous because there are no

transient states. Hence, we obtain the following algorithm.

ALGORITHM XVII for the construction of a pure and stationary average optimal

policy (completely ergodic case).

step 1: Use the simplex method to compute an optimal solution x* of the

linear programming problem



129

LI 8,.p, Jx, =0, jeE

i ij Tiaj
T —

(4.6.1) max Xizariaxia Lizaxia 1

X, 20, ae A(i), ie€eE
ia
*
N . N . .
step 2: Take f*(l) such that xif*(i) 0, i€ E

LEMMA 4.6.1. If the Markov chain induced by P(f) has at most one ergodic
set for every £ e CD' then the Markov chain induced by P(m) has also at

o
most one ergodic set for every m € CS.

PROOF. Suppose that there is a nw € Cs such that the Markov chain induced

by P(m) has more than one ergodic set. Then we can write

P1 0 0
P(m) =| 0 P2 0 , where P1 # 0 and P2 # 0.
Ry Ry @
0
Define f € CD by £(i) := a, such that "iai > 0, i € E. Notice that pij(ﬂ)=0

implies pij(f) = 0. Hence the Markov chain induced by P(f) has also at

least two ergodic sets. This yields a contradiction. 0

From assumption 4.6.1 and lemma 4.6.1 it follows that for any station-
ary policy nm the Markov chain induced by P(w) has exactly one ergodic set.
Furthermore by the same argument as used in lemma 4.6.1 it can be shown
that there are no transient states. Hence, the theorems 2.3.2 and 2.3.3
imply that P*(n) has identical rows , say p*(ﬂ), with p*(ﬂ) >> 0 and such

that p*(n) is the unique solution of the so-called steady-state equations:
S, .- = y

Xi( ij pij(TT))xi 0 j € E
(4.6.2)

VL%, = 1.

ii

(o]

For any T € Cs we define x(m) by

(4.6.3) xia(n) := pz(").“ia ae A(i), i € E

and for any feasible solution x of the linear program (4.6.1) we define

Trm(x) by
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(4.6.4) T (%) = Xia/z . aca(i), i e E.
a lia

THEOREM 4.6.1. The mapping xia(n) = pz(ﬂ)'ﬂia a € A(i), i € E, is a one-to-
one mapping of the set of stationary policies onto the set of feasible solu-
tions of the linear programming problem (4.6.1) with (4.6.4) as the inverse
mapping. Furthermore, this mapping has the property that pure policies cor-

respond to extreme feasible solutions.

PROOF. Let T be any stationary policy. Then x(r) defined by (4.6.3) satis-

fies

ziXa(Gi.-p. .)xia(ﬂ)

* .
5Py Zi(aij-pij(n))pi(n) =0 3jeE,

]
-

LI m = L pm and % _(m 20 aeA(i),icE.

Hence, x(m) is a feasible solution of program (4.6.1).
Let x be an arbitrarily chosen feasible solution of (4.6.1). Then, ﬁia(x)
is well-defined on E and x, =7, (X)*x,,a € A(i), i € E, where x, :=

X ia ia i i

Z x _and m, (x) is arbitrarily chosen on E\E_. We obtain
a ia ia X

o
]

EiZa(sij-piaj)nia(x)-xi = Xi(sij—pij<w<x>))-xi jeE

Lidamia 0 ey = 1y
implying that x is a solution of the steady-state equations. Hence, xi =
p:(ﬂ(x)), i € E. Therefore, it follows that m(x) is well-defined on E and
that x = x(m(x)), i.e. wm(x) is well-defined and the mapping (4.6.3) is on-
to. Since wia(x(w)) =T, ac A(i), i € E, the mapping is one-to-one and
(4.6.4) is the inverse mapping.

Let fco be any pure and stationary policy. Suppose that x(f) is not an

extreme point, i.e. x(f) = Ax1-+(1-A)x2 where A ¢ (0,1), x1 # x2 and xl,x2
are feasible solutions of (4.6.1). Since x% = x? =x, (£f) =0, a # f£(i)
ia ia ia

1 2
i e E, X and X are feasible solutions of the linear system

{XT(I—P(f)) =0

T
X e =1,

. . . 1 .
This system has a unique solution and consequently x = x2, implying a con-
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tradiction. Hence, we have shown that x(f) is an extreme solution of (4.6.1).
Conversely, let x be any extreme feasible solution of program (4.6.1). Since
the sum of the first N components yields a zero in every column, the rank

of the system of the N+1 equations is at most N. Therefore, any extreme so-
lution has at most N positive components. Since Zaxia >0, i € E, x has in
each state i exactly one positive component. Hence, the corresponding policy

is pure. This completes the proof. [

Consider the policy improvement hethod for the completely ergodic case.
Since ¢(fm) has identical components, we may replace ¢(fm) by ¢°(fm)-e,
where ¢°(fw) € IRl. Furthermore, we remark that the set A(i,f) defined by
(4.4.2) becomes

A6 = {a e AW 0, (£) + [ (6, p, Du (£ <x ).

Look at one iteration of the policy improvement algorithm. If A(i,f) =0,
then g(i) := £(i). Otherwise, we may take g(i) from A(i,f). By theorem 4.6.1
the vector x(f) defined by (4.6.3) is an extreme feasible solution of the

linear program (4.6.1). The dual program of (4.6.1) is
in{$|3 §,.-p, )W, =r ).
min{¢|¢ + zj( i piaj)u] rla}
In the simplex tableau corresponding to x(f), the column of a nonbasic

xia(f) has in the transformed objective function the value (cf. theorem

1.4.1 and tableau (1.4.2))

(4.6.5) A, = ¢+ 1y08;5mp, 8- x

Since xif(i)(f) >0, i € E, it follows from the orthogonality of the cor-

responding primal and dual variables in the simplex tableau that d, =0,
i

f£(i)
i € E. Then, we obtain

$ee = B*(£) (3+e) = P () {x(£)-(1-P(£))T} = P (E)r(£) = 6(£7).

Since

$(£) + (I-P(£))u(f ) O (£7) + (I-P(£))D(£) r (£)

]

$(£) + (I-P” (£)) x (£)

r(f),



132

We have

(I-P(£)) (u(£)-Ty = 0.
Then

w(E) -F = P (£) (u(£) 1) .

* © . R
Because P (f) has identical rows, u(f )-u has identical components and con-

sequently
~ . oo
(S, .-p,_u, = ). (§,.-p,_Ju.(f ).
zJ( ij pla:l) 3 zJ( ij PlaJ) 3 )
Hence, (4.6.5) can be written as

(4.6.6) a,_=¢ (£) +J.(s Yu, (£7)

.6. ja - ¢° 19945 Piaj uj ria'
Since a € A(i,f) if and only if dia < 0, it follows that the set of actions
from which g(i) can be chosc. . corresponds to the possible choices for the

pivot column in the simplex method. Hence, we have shown the following.

CONCLUSIONS.

1. Any policy improvement algorithm is equivalent to- a block-pivoting sim-
blex algorithm.

2. The standard simplex algorithm is equivalent to a particular policy im-

provement algorithm.

We continue this section under the following assumption (unichained-

ness) .

ASSUMPTION 4.6.2. For any pure and stationary policy fm, the Markov chain

induced by P(f) has one ergodic set plus a (perhaps empty) set of transient

states.
In this case an optimal policy can be determined by the following algorithm.

ALGORITHM XVIII for the construction of a pure and stationary average opti-

mal policy (unichain case).

) *
step 1: Use the simplex method to compute an optimal solution x of the

linear programming problem
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1]

o
.
m
=

Ziza (847Piay) %10

]
-
.

(4.6.7) max Zizariaxia ziZaXia

x, 20, a A(i ie&E
ia ’ € (i), .

o=
step 2: Take f* such that
% .
ai where xia >0 ieE
arbitrarily i€ E\E -
X

THEOREM 4.6.2. Algorithm XVIIT provides a pure and stationary average opti-

mal policy in the unichain case.

PROOF. Since the Markov chain induced by P(f*) has only one ergodic set and
since E * is closed under P(f*) (the proof is similar to the proof of pro-
X

*
P(f*). Then, the proof of the theorem is similar to the proof of theorem

4.5.1. 0O

position 4.2.2), it follows that the states of E\E are transient under
X

REMARK 4.6.1. In the unichain case there is in general no one-to-one cor-
respondence between the feasible solutions of program (4.6.7) and the sta-

tionary policies.
4.7. ADDITIONAL CONSTRAINTS
4,7.1. INTRODUCTION

We will discuss the problem of finding an optimal policy when there
are some additional constraints on the limit points of the expected state-
action frequencies. Such problems may for instance occur if more than one
reward function is of importance. Then we want to maximize the expected
average reward with regard to one reward function while we restrict the
other reward functions by some bounds.

DERMAN [1970], chapter 7, has considered the unichain case and he has
solved this problem by linear programming. In DERMAN & VEINOTT [1972] an
iterative algorithm, based on the Dantzig-Wolfe principle was proposed.

They write "until the faces of the linear programming polytope are found,
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routine application of the simplex method is generally not possible".
Therefore, they need the decomposition principle.

In section 4.7.2 we shall characterize this linear programming polytope
and we prove some properties of the limit points of the state-action fre-
quencies. We present a treatment of the general multichain case based on
the solution of one linear program.

In general, there does not exist a stationary optimal solution. We will
derive an algorithm for the construction of a memoryless optimal policy. For
practical purposes, this algorithm needs too many calculations; furthermore,
memoryless (i.e. Markov) policies are unusual in practice.

Fortunately, if certain conditions are satisfied, then optimal policies
can be computed that are stationary. In section 4.7.4 we shall discuss these
conditions.

We close the treatment of additional constraints with a description in
section 4.7.5 of the unichain case. In this case a stationary optimal poli-
cy can always be found. We shall show this result by a proof different from
the proof of theorem 3 on page 95 in DERMAN [1970] and we present an algo-

rithm to perform the calculations.
4.7.2. LIMIT POINTS OF STATE-ACTION FREQUENCIES

Since the state-action frequencies depend on the initial distribution

we assume that B = (81,6 ,...,BN) is a known initial distribution, i.e.

2
B, 20, je€eE, and © B, = 1.
J J 3

REMARK 4.7.1. In contrast with the use of the vector B in the sections 4.2,

4.3 and 4.4, we allow in this section that Bi = 0 for some i € E. DERMAN &
VEINOTT [1972] discuss the constrained problem for a fixed starting state i.

For any policy R and any T € IN, we denote the expected state-action

frequencies in the first T periods by xT(R), i.e.

T o _ 1T . _ . . .
(4.7.1) xja(R) =0 t=12i6i ]PR(Xt-—j, Y =a |X1-l) aeA(j), jeE.
By X(R) we denote the set of all limit points of the vectors {xT(R),
T =1,2,...}. These limit points are limit points in the vector space of

T T -
the vectors x (R). Any x (R) satisfies ijaxga(R) = 1 and therefore also



T
ZjZaxja(R) = 1 for every x(R) € X(R). Furthermore, if x k(R) -+ X(R) for
, Tx
k > «, then llmk»wxja(R) = xja(R) for all a € A(j), j € E.
Let C1 := {R e CIIX(R)I = 1}. In section 4.3 we have already seen that for

any stationar& policy ww the set X(nm) consists of one element, namely
o T %
(4.7.2) X(m ) = {x(m)}, where xja(w) :=[BP (W)Jj-wja, aeA(j), j e E.

Hence, C1 contains all stationary policies.

We introduce the following notations:

L :={x(R) ¢ X(R)' Re C}
L(M):= {x(R) € X(R)| R € CM}
L(C):= {x(R) € X(R)| R € C1}
L(S):= {x(R) € X(R)| R € CS}

L(D):= {2x(R) ¢ X(R)| R € CD}.

THEOREM 4.7.1. L(D) = L(S) = L(C) = L(M) = L.

PROOF. (cf. DERMAN [1970] pp.93-94). It is obvious that L(D) < L(S) < L(C)
c L. We first prove that L < L(D). Suppose the contrary. Then, there ex-
ists a policy R such that x(R) € L and x(R) ¢ L(D). Since L(D) is a closed
convex set, it follows from theorem 1.2.1 that there exist coefficients rja

such that

(4.7.3) zjz r, x. (R) > z_z r, for all x € L(D).

a ja ja j~a Jaxja
Theorem 4.2.3 implies that there is for the AMD-model with rewards ria a
pure and stationary policy £ which is optimal with respect to the utility
function $, defined in (4.2.9). Because x(R) € L, there is a sequence
{Tk, k=1,2,...} such that

T
s k . .
xja(R) = 11mk_)oo xja(R) a € A(j), j € E.

Hence,

T
_ 1 k
ijarjaxja(R) = ijarja lJ.mk xja (R)

T
: 1 vk
lim o 5; Zt=1zisi'zjzaJPR(xt= JoY . =al X, =1) oo
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]

T
. 1 kyv = = =1) e
zigi.llmk Tk zt=1 jLa]PR(Xt I Yt a X1 i) rja

IA

" 1T . .
ziBi-limsupM T zk=12jzaIPR(Xt= 3 Yt = a|X1= i) -rja=

TA TA ) ©
B H(R) < B G(f ) = inarjaxjaw ),
which contradicts (4.7.3): we have shown that L < L(D).
Since L(D) ¢ L(S) ¢ L ¢ L(D), we obtain L(S) = L(D). From

LM ¢ L cL(S) = L(D)
and

L(C) ¢ L c L(S) = L(D)

it follows that for the proof of the theorem it remains to prove that
L(D) < L(M) n L(C).
D e oo kel oo
Therefore, take any X ¢ L(D). Let CD = {fl'f ,...,fn}. Then we can

2
write

—Z 1pkja k) a.€ A(j), j € E,

for certain Py > 0 such that zllz=1pk = 1.

The existence of a Markov policy R satisfying

zisi-IPR(Xt= j,¥ =alx =1i) =

Xisi.zkpkpfi(xtr—:l' v, =a | X, =1 teN,achA(j), jeE,
is shown in theorem 2.5.1. Hence,

(£,)

ja = DPrtya i

T

X 1
kak'llmT—m T Et 12 B, IP;(X =3,Y

[l

, 1 T o .
Limp . 7 beeyLiBy zkpklpfi(xt—J' ve=alx =1

]

l'T_mT ZB =j,Yt=a|X1=i)

= xja(R) for all a € A(j), j € E.
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T
Consequently, x = x(R) € L(M) and x = limTémx (R) € L(C), which completes

the proof of the theorem. [

REMARK 4.7.2. Theorem 4.7.1 shows that for any utility function, which is
based on the limit points of the expected state-action frequencies, it is
sufficient to consider only the policies of class Cl' For instance, the
"weak" criterion ¢(R) and the "strong” criterion $(R) are in fact the same

A
optimality criterion, since ¢(R) = ¢(R) for any R € C1 (cf£. theorem 4.2.3).

We are interested in the problem to find, for a given initial distri-
bution, a policy which is optimal in the set of policies that satisfy some
additional constraints. These constraints will be linear functions of the
expected state-action frequencies.

Let £, g (R) £ b, be the k-th constraint. Then we formulate the

ia 1ak ia k
constrained Markov decision problem by

Eifaqiakxia(R) <b  k=1,2,...m
(4.7.4) supR ¢ (B,xr) v
x(R) € X(R)
where ¢ (B,R) := lim inf LyT s B®(x =3, ¥, = a|x,=1i)r
Tao T “t=1“3a"i"i" R ‘'t s 1 ja°

By the result of theorem 4.7.1 we may replace (4.7.4) by

(4.7.5) supRGC {o(8,R) | Z ) adiaXia® b k=1,2,...m}

Notice that for R e Cl¢(B,R) =3, Zaxja(R)rja.
In order to solve problem (4.7.5), we propose - inspired by the linear
programming formulation for the unconstrained Markov decision problem, giv-

en in section 4.2 - to study the following linear programming problem:

Xiza(sij_piaj)xia =0, ,J€E
La¥, +).) (8, .-p, )y, =B, J€E
(4.7.6) max{} Za ia¥ia a ja ita'"ij Fiaj'*ia 3’
s za 9iak*ia <b,, l<ksm

> . .
xia’yia 20, a€ A(1), i €E

The fact that program (4.7.6) can be used to solve problem (4.7.5) is

based upon the following theorem. Consider the linear system
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- = ] E
Xiza(dij Piai'¥ia 0, Je
(4.7.7) Zaxja + Xiza(sij—piaj)yia =85 JeE[.
S , .
xia'yia 20, a € A(i), ie€eE

Define the set X by

(4.7.8) X := {x| there exists a y such that (x,y) is feasible for (4.7.7)1}.

THEOREM 4.7.2. L = X.

PROOF. Theorem 4.7.1 implies that it is sufficient to prove that L(D) = X.
From theorem 4.3.1 it follows that L(S) < X (it can easily be checked that
the proof of theorem 4.3.1 may also be used when Bj = 0 for some j € E).
Hence, certainly L(D) c X.

Since X is the projection of a polyhedron, X is also a polyhedron and con-
sequently L(D) < X. From (4.7.7) it follows that xia > 0 for all a € A(i),
i € E, and that Zizaxia = 1. Therefore, X is a polytope, i.e. X is a bound-
ed polyhedron. Then from corollary 1.2.2 it follows that X is the closed
convex hull of a finite number of extreme points. Hence, it is sufficient
to show that any extreme point of X belongs to L(D).

Let x be an arbitrarily chosen extreme point of X, and let X be the closed
convex hull of the extreme points of X that are different from X. Then X ¢ X
and theorem 1.2.1 implies the existence of coefficients ria ae€ A(i), i € E

such that

4.7. x,_ > £ X.
( 9) ziiariaxia zizariaxia or every x € X
Therefore it follows from (4.7.9) that any optimal solution (x*,y*) of the

linear program

ziza(‘sij'piaj)xia =0, JeE
4.7. — = :
(4.7.10) max zizariaxia Zaxja + Xiia(sij piaj)yia Bj’ jeE
S : .
xia'yia'o' aecA(i), 1ie€Ej

* -
satisfies x = x.
Consider the AMD-model with rewards ria' a € A(i), i € E. Let f: be any

pure and stationary average optimal policy. Then (x(f*),y(f*)), defined
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in (4.3.2), is by theorem 4.3.3 an optimal solution of program (4.7.10).
Hence, X = x(£,) € L(D), which completes the proof. 0

REMARK 4.7.3. Recently, we learned from VEINOTT [1973] that the result of

theorem 4.7.2 was already known to him in 1973.

REMARK 4.7.4. From the theorems 4.7.1 and 4.7.2 it follows that any extreme

point of X is an element of L(D). The next example shows that the converse

statement is not true, in general. Furthermore, this example displays that

0, j e E [
1

0
stationary policy m the transi- X >0, a € A(i), ie€eE
1

L(S) # X is possible, and that X is a real subset of

l ziEa(‘sij"piaj)xia

EXAMPLE 4.7.1. Consider the model

of figure 4.7.1 and write for any x zizaxia

ia
tion matrix as

*
It can easily be verified that P (m)

and x(m) are given by:

81 = 82 = 63 =1/3

a. T, = 1:

1 b
Figure 4.7.1
-1 -1
T (1+4m,) (1+4m,) 0
Y 2 2, 2,
P (m) = w2'(1+n2) (1+w2) 0
0 0 1 = =
(xp 0%, %5, =1,
-1 1/3£x3132/3}
xll(ﬂ) = xzz(") = (2/3)-1r2-(1+1-1r2) ;
Xy, (M) = (2/3)-(1-n2).(1+n2)" ;
x12(“) = 0; x31(n) = 1/3. .
b. T, = 0 and m # 1: b4
. 0 ﬂ1 1-w1 21
P(m) ={0 1 O
0 0 1 _ -
- {2x11+x21—2/3,x31—1/3}
( 11
x,,(m) =x _(m) =x__(m) = 0;
- (m) = (173)+ (14105 X, = (1/3)~ (2-1.) Figure 4.7.2
21 17" 731 17"
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c. T, # 0 and ™ # 1:

q = = = = H ) =
X () X}_z(ﬂ) Hoq (M) xzz(w) 0 x31(1r; 1
Since ws always have that Eip = ¢ and Koy = Kygr we can draw the sets L(D),
L(S) a.! ¥ in the 3-dimensio: .. space with coordinates x. Koy and %31
(see firure 4.7.2).
3 4, i . . . .
L(D) = {xl,xz,x ;X 1, where xl, 1 €1 < 4, is drawn in iicure 4.7.2.
1 2 3 .
(8 consists of » and the points between x and x , together with
3 4 . . . .
the points hetwsen ¥ and X the dark lines in the figure).
1 2 3 4
is the corvzn .. of {x ,x",x2 ,x }, i.e. the polytope

{x Xpq bRy TRy TRy bRy = L x5 =05 %y =Xy

X, X 2 0; x31 > 1/3

117%12%21" %22
2
In figure 4.7.2 we see that x“ is not an extreme point of X, although

2
X € L(D). Moreover, it follows that L(S) # X.
4.7.3. COMPUTATION OF A MARKOVIAN OPTIMAL POLICY

In this section we present an algorithm for the construction of a
Markovian optimal policy. We first show that the problems (4.7.5) and
(4.7.6) are strongly related.

THEOREM 4.7.3.

(i) Problem (4.7.5) is reasible if and only if problem (4.7.6) is feasible.

(ii) The optima of the problems (4.7.5) and (4.7.6) are equal.

(iii) If R is an optimal solution of problem (4.7.5), then x(R) is an optimal
solution of problem (4.7.6).

(iv) Let (x,y) be an optimal solution of problem (4.7.6), and let

X =T 1By P preeeiE = C

Suppose that R € CM is the policy, introduced in theorem 2.5.1, such

that

x(fk), where P, 2 0 such that I =1, and {fl'f
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(4.7.11) ziei-pr<xt=j, Y =al X, =1i) =

lesz =54, Y. =a|Xx, =1i) teN,achA(j), jeE.
£ .

Then, R is an optimal solution of problem (4.7.5).

PROOF. The theorems 4.7.1 and 4.7.2 imply that X = L(C). Moreover, any R eCl
satisfies $ (B,R) = Zanxja(R)rja.'By these observations, the parts (i), (ii)
and (iii) are straightforward.

For the proof of part (iv) we can similarly as in the proocf of theorem 4.7.1

show that x = x(R), and R € Cl' Consequently,

o (R/R) = Zizariaxia(R) = zizariaxia = optimum (4.7.6).

Hence, R is an optimal solution of problem (4.7.5). ]

* *
REMARK 4.7.5. To compute an optimal policy from an optimal solution (x ,y )
*
of the linear program (4.7.6), we first have to write x as

*
= zkpkx(fk), where p, 2 0 and z =1.

kP

1 2
Next, we have to determine R = (7 ,7T ,...) € CM such that R satisfies
t
(4.7.11) . The decision rules m , t € N, can be obtained from DERMAN &
STRAUCH [1966].

ALGORITHM XIX for the construction of an optimal Markov policy in a con-
strained AMD-model.

* %
step 1: Determine an optimal solution (x ,y ) of the linear programming

problem
ziza(aij_piaj)xia =0, j€E
E X, +2.z (8,.-p._.)y._=B., J€E
(4.7.12) max z za R a ja ifa'"ij Tiaj'fia 3
<k<
DACHREIN <b . 1<ksm

(if problem (4.7.12) is infeasible, then problem (4.7.5) is also

infeasible) .
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©

2,...,f:}. Compute P*(fk) by algorithm III,

o]
step 2a: Suppose that CD = {fl'
k=1,2,...,n.

step 2b: Take
T _* .
[gp (fk)]j a = fk(J)
X r= jeE, k=1,2,...,n.
0 a # £, (3)

step 3: Determine pk (k =1,2,...,n) as a feasible solution of the linear

system
k * . .
kakxja = xja ae€ A(j), j e E
(4.7.13) kak =1

p, =0 k=1,2,...,n

(this can be performed by the so-called phase I of the simplex

method) .
step 4: R* = (ﬂl,ﬂz,...), where
c -1
LB;-Lop [ €5 % 5) o1
. — if Zisi-kak[P (fk)Jij#o
Tia = Ziei-zkpktp (fk)]ij

. . . t-1 _
arbitrarily if zisi kak[P (fk)]ij—O.
Then, R* is an optimal Markov policy for the constrained AMD-model.

REMARK 4.7.6. Algorithm XIX is inattractive for practical problems. The num-
ber of calculations is prohibitive. Moreover, the use of Markov policies is

inefficient in practice. Therefore, in the next section we discuss the prob-

lem of finding an optimal stationary policy, if one exists.
1

EXAMPLE 4.7.2. We apply algorithm XIX to the model
of figure 4.7.3 with additional constraints
k< x21(R) < %. Since for any policy R we
have xll(R) = x12(R) = x32(R) = 0, we

can illustrate the points x(R) in the 2-

dimensional space with coordinates x

21
and X3q- It can easily be verified that (:)
any stationary policy ™ satisfies (see
figure 4.7.4): B1 =4/16, 62= 3/16, S3 =9/16

Figure 4.7.3
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if n31#1: xli(w)=x12(v)=x31(n)=x32(w)=0;x21(v)=1.
if n31=1: (w)=x12(n)=x32(ﬂ)=0;
)i

).

*11
Xoy (m)=(1/16) « (3+41T11

X34 (m)=(1/16) (13—41r11

Let x ,x ,X be the points corres-
ponding to pure policies which are x31 x3
drawn in figure 4.7.4. Then |
L(D) = {xl.x2,x3}. E <!
L(s) = {x%} u {x',x} : |
LM = L(C) =L=x={x!,x2,x%}. !
The formulation of program (4.7.12) becomes : :
(if Piai = 1, then the coefficients of the E | ,
variable yia are all zeroes; therefore, we [ : bd
remove such variables from the formulation) : % % % % Xy
maximize X5
subject to Figure 4.7.4
*11 Y ¥12 =
11 T¥32 =
"X x5 =
Xyt ¥, +Y11+Y12 =4/16
*21 RET "¥3, =3/16
*31 7 %32 Yy *¥3, =9/16
Xyq < 1/2
X5 <-1/4

>
X110%197 %011 X311 ¥30¥ 1Y p1¥35 2 0

Algorithm XIX gives for this problem the following results.

* * * * * * * *
step 1: X4 =0, x12=0, Xyy = 1/2, X3y = 1/2, X39 =0; Yyq =0, Yi,= 1/4, s, =5/16.

step 2a: Let f:, k=1,2,3,4, be such that
fl(l) =1, f1(2) =1,f1(3) =1; f2(1) =1, f2(2) =1, f2(3) =2;
f3(1) =2, f3(2) =1, f3(3) =1; f4(1) =2, f4(2) =1, f4(3) =2.

By algorithm III we obtain
0 1 0
P*() =0 1 0 |;
’ 2 - ’
0 1 O

0O 1 o0
*
P(f1)=010

0 0
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0 0 1 0 0
(£ =0 1 P(£) =0 1 0
pM(£,) = o) - ) = .

00 1 0 0

1
11 _. 1 _.1 .
step 2b: x11-x12-x32-0, %54 7/16; x31 9/16.
2 2 2 2 2
Xy TE T %3, =00 %y =1 ¥3,=0-
3 3 3 3 3
x11—x12—x32—0; x21f3/16, x31—13/16.
4 _ 4 _ 4 _ . 4 _,. 4 _
Ky TX =¥ =00 %y, =1 ¥31=0-

step 3: p1=8/9; pz=1/9; p, =07 P4=0-
step 4: Since

0 1 0 /@ 1 0
t t
P(f1)=010 and P7(f)) =0 1 0], teN,
0 0 1is \O 1 0
* 1 =z
we get R = (1,7 ,...), where
t t
1r11 1 t € IN; ’IT21 1 t € IN;
ﬂt ~ {8/9 t =1 “t _ {1/9 t=1
3t 1 t 2 2; 32 0 t 2 2.

4.,7.4. COMPUTATION OF A STATIONARY OPTIMAL POLICY (GENERAL CASE)

* *
Suppose that we have obtained an optimal solution (x ,y ) of problem

*
(4.7.12) . Then we define the stationary policy (m )m by

r

* * . .
Xia/zaxi% ae€ A(i), i € Ex*
(4.7.14) m,_ ={y" /Y y" A(i), i € E \E
o ia ° Yia'la¥ia a € e 1€ v ox*
arbitrarily elsewhere.

* T % % *
Then, x, (m ) = [B'P (7w )], -m, ae€ A(j), j € E.
ja (m) 3" 5a (3), 3

REMARK 4.7.7. Since it is possible that Sj = 0 for some j, it is also pos-
sible that E +UE & # E. Therefore (4.7.14) differs from (4.3.1).
> x*y
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THEOREM 4.7.4. If x* = x(n*), then (ﬂ*)m is an optimal solution of problem
(4.7.5).

*
PROOF. Since x* = x(ﬂ*) it is obvious that (mw )oo is a feasible solution
of (4.7.5). Moreover, by theorem 4.7.3,

68, (1) = )

X, r, = optimum (4.7.6) = optimum (4.7.5),
a’ja ja _

i.e. (ﬂ*)w is an optimal solution of problem (4.7.5). 0

If we compute P*(n*), which can be done by algorithm III, then we can
check whether x;a = [BTP*(n*)]jwﬂ:a a € A(j), j € E. However, in certain
cases we may decide that x* = x(n%) without the computation of P*(n*i. In
the following theorem we present some sufficient conditions for the property

* *
that x = x(m ).

THEOREM 4.7.5.
*
(i) If the Markov chain under P(m ) has one ergodic set plus a (perhaps
* *
empty) set of transient states, then x = x(m ).
(i) ify, /iy _ = A(i), i € E 40E ,, then x = x(1)
i) ify /Py, =T, ac i), i € x*n y*’ en x = x(m).
PROOF.
. *
(1) From remark 4.3.1 it follows that x is a stationary probability dis-
*
tribution of the Markov chain induced by P(m ). Then theorem 2.3.3
* * *
implies that xf =p,,(m), i € E. Since the Markov chain under P(7T )
i i . T % % * -
has only one ergodic set, we have x,_ = [B'P (w )], *m, = x,_(m)
ia i ia ia
a e A(i), i € E.
(21) si Y/ =m_ aca), icE h
= a
21 ince y, /Jy, =7 € i), i € .1 we have

* *

* * *
By = zaxja * Ziza(aij—piaj)yia =x 4 Ziza(dij—Piaj)ﬁia.yi

x4 Yoyre(s M), jeE

i iyi i3 Pij ™ ' J e k.
* %

Therefore, (x ,y ) satisfies

* T

7T = & Ter™

T = Ty e ().



146

Consequently,
O I P R A W S A W A BT ¢ S T A PP S
= 8" ().
Hence,
X = [BTP*(ﬂ*)]_-nf =x, (1) aea(i), ieE. 0O
ia 1 1la ia

*
The next example shows that in general (w )°° is not an optimal solu-
tion of problem (4.7.5) although in this example there exists a stationary

optimal solution.

EXAMPLE 4.7.3. Consider the model of example 4.7.2 with the additional con-

straint x21(R) < 1/4. The optimal solution of the linear program is:

¥ =3/4, %, =0;

* * *
%11 =00 % 5= 0%y, =174, %5y 32

11

* * * . _
yll-o,ylz-1/4,y32— 1/16; optimum = 1/4.

. *, © N . * _ _ =
The policy (w ) satisfies le = ﬂ21 n31 1.

* ©
(m ) 4is not optimal, since

¢(S,(ﬂ*)m) = BTP*(ﬂ*)r(ﬂ*) = 3/16 < 1/4 = optimum value.

Consider the stati licy 7", where 7. = 1/4, 7. _ = 3/4, &
onsider the stationary policy m , where m,, = P, = P Ty S Mgy =

Since

x, . (M Mm =x._(M =0, x

- Ay A =
11 =%, 32 (m) = 1/4 and x_, (7 3/4,

32
R . Ao . T A

we have a feasible solution m of problem (4.7.5) with B¢ (m ) = 1/4 =
optimum value. Hence, in this example there exists a stationary optimal
solution.

T le 4.7.3 A E i), i

n example 4.7.3, we have yia/yi # Wia or some a i A(i), i € Ex*nE "
However, if we can find for the same x another y, say y, such that the

* ~
new point (x ,y) is feasible for (4.7.12) and satisfies
*

4.7. v v, = i i n ,"
(4.7.15) yia/yi Tia ae A(i), i e Ex* E'17
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~0

then, by the same arguments as in theorem 4.7.5, the stationary policy T
defined by
*
T, a e A(i), i € E_\E
o ia ¥ x*
(4.7.16) m,_ =

ia

yia/yi a e A(i), i € E§\Ex*

is an optimal policy of problem (4.7.5).

The claim that (4.7.15) is satisfied is equivalent to the requirement that

<

=5 e a e A(i), i E
ia = ¥i'Mia € Alll, 1 ¢ <
Hence, to find a ¥ such that (4.7.15) is satisfied is equivalent to the

determination of a feasible solution of the linear system

~ * ~ *
YoL8..p. Y.+ ) (8,.-p.. (T))Y, =B,~X., j €E
iéE . a 1] iaj ia icE 1] 1] 1 J J

*
(4.7.17) x X

Yia >0, a € A(i), i € E\Ex*; v; >0, 1ic¢ EX*

The feasibility of system (4.7.17) can be checked by the so-called phase I

of the simplex method. Hence, we have shown the following result.

THEOREM 4.7.6. If § is a feasible solution of (4.7.17), then ?m is an opti-

mal solution of problem (4.7.5), where 7 is defined by (4.7.16).

EXAMPLE 4.7.4. We consider the same model as in example 4.7.3. The optimal

. *  * . * * * .
solution (x ,y ) does not satisfy yia/yi = "ia' ae€ A(i), i € Ex*nEy*.
Hence, we introduce system (4.7.17):

~

Yyq + Yy = 4/16
¥, = -1/16
- y12 = -3/16

- .
Y0¥y, = 0.

This system has a feasible solution, namely ;11 = 1/16, §12 = 3/16.

= 1/4, Tig = 3/4, Toy = T3q =

N
|
-

~

~00 ~
Hence, the stationary policy m , where ﬂll

is an optimal solution of (4.7.5).-
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THEOREM 4.7.7. If the linear system (4.7.17) is infeasible and if every

*
optimal solution (x,y) of problem (4.7.12) satisfies x = x , then problem
(4.7.5) has no optimal solution which belongs to the class of stationary

policies.

o
PROOF. Suppose that (4.7.5) has an optimal stationary policy, say m . Then

(x(m) ,y(m)) is a feasible solution of problem (4.7.12) and satisfies

zizariaxia(ﬂ) Ziza ria(BTP*(ﬂ))i.ﬂia = BTP*(“)r(“)

optimum (4.7.5).

Hence, (x(w),y(m)) is an optimal solution of problem (4.7.12). Consequently,
*
x(m) = x . Then, however, y(m) is a feasible solution of (4.7.17), which is

contradictory to the assumption that (4.7.17) is infeasible. 0

REMARK 4.7.8. If the con:iitions of theorem 4.7.7 hold and consequently no
stationary optimal policy exists, then we can use algorithm XIX for: the

construction of an optimal (Markov) policy.

EXAMPLE 4.7.5. Consider the model of example 4.7.2 with the same constraint
1/4 < le(R) < 1/2, We have observed that (x*,y*) is an optimal solution of
- * * * * *

e 2 il = 0, Xy = 0, x21 =1/2, x31 =1/2, x32 =0
and Yy = o, Yy, = 1/4, Yqy = 5/16. It can easily be verified that x is

problem (4.7.12), where x
unique and that the linear system (4.7.17) i.e.

¥y + y12 = 4/16

= -5/16
1/16

Yi91¥p 2 O

is infeasible. Hence, thi: example has no stationary optimal policy. An

optimal Markov policy for this problem was computed in example 4.7.2.

If the linear system (4.7.17) is infeasible and x* is not unique, then
it is possible that problem (4.7.5) has a stationary optimal solution, even
if (x*,y*) is.an extreme point of (4.7.12). Hence, we can compute every
optimal extreme point of the linear program (4.7.17) and in each of the ob-

tained points we can perform the analysis described above in order to find
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a stationary optimal policy.

EXAMPLE 4.7.6. Consider the model described in example 4.7.1 and add the

constraint x21(R) > 1/9. The formulation of problem (4.7.17) is:

maximize X5y + X3y
subject to x11 + x12 —x22 =0
X4 +x22 =0
*12 =0
117 ¥ ¥yt ¥y Ty T /3
¥21 * ¥oo ERLE! * gy T VY
*31 Y12 =13
TXyy S
TP L SR IS TR PP SPI PP
(x*,y*), where x:l =0, x:2 = 0, x;1 =1/9, x;2 = 0, X;l = 8/9 and yIl = Q,

* * ;
Yip = 5/9, Yoy = 2/9, iz an extreme optimal solution, but x is not unique.

The linear system (4.7.17) is infeasible, namely:

Yip v ¥, = 13

Y11 = 2/9
- ¥y = 75/9

Y910¥yp = 0-

A A A
It can easily be verified that (Q,Q), where Xy = 0, Xy, = 0, Xy = 2/3,

A A A A , .
Xpo = 0, Xy = 1/3 and y11 =1/3, Yy, = 0, Yoo = 0 is also an extreme OE:l
mal solution of program (4.7.12). Then theorem 4.7.5 (ii) implies that =

A A A
is an optimal solution of problem (4.7.5), where m =T =T = 1.

11 21 31

THEOREM 4.7.8. Let (x*,y*) be an optimal solution of problem (4.7.12).

Consider the nonlinear system

r _ *
ZiZariaxia _ Xizariaxia
Lila%iakXsa < b, 1sksm
. 5. .-p. )y,
(4.7.18) < za *ja " iééxza( i37Pia3 Via ¥

lEEx(Gij—zapiaj xia/iaxia)yi = Bj’ j € E

DRI SEN Or J ek

x > . . ) > sy s . > .
ia O,aeA(i), i€E; Yia 0,aecA(i), lGE\EX, Y O,. ie Ex
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~OO

(i) If (;,;) is a feasible solution of (4.7.18), then the policy T de-

fined by
xia/iaxia a € A(i), i € E§
’I'I’ia 1= yia/zayia ae A(i), i e Eg\Ei

arbitrarily elsewhere

is an optimal solution of probiem (4.7.5).
(ii) If (4.7.18) is infeasible, then problem (4.7.5) has no stationary opti-

mal policy.

PROOF.
(i) Theorem 4.7.6 implies that X = x(T). Hence, T is a feasible solution

of problem (4.7.5) with as value of the objective function

vy © Ty = It = *
$(B, () ) zjzarjaxja(“) - 2jzarjaxja B zjzarjaxja

optimum (4.7.12).

Hence, ?m is an optimal solution of problem (4.7.5).
A
(ii) Suppose that T is a stationary optimal solution of problem (4.7.5).

A A
Then (X,y) such that

X, =x (M i), icE
xia = xia T ae A(i), i € E,

¥, =y, (M A(i), i € E\E
yia = yia T ae i), i € Q
A A .

y, = zayia(ﬂ) ie EQ'

A A
where x(m) and y(m) are defined by (4.3.2), is a feasible solution of

(4.7.18). This implies a contradiction. 0

REMARK 4.7.9. In general, it is a difficult problem to find a feasible solu-
tion of problem (4.7.18). However, computational results indicate that it is
mostly not necessary to solve problem (4.7.18) in order to obtain a station-
ary optimal solution of (4.7.5), if one exists. Below we present an algo-
rithm for the construction of a stationary policy. This algorithm is based
on the theorems 4.7.4-4.7.7. We have tested 400 problems and the algorithm
has always given an optimal stationary policy, if one exists. Furthermore,

if the stationary policy is nonoptimal, then this policy may be considered
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as an approximate solution of problem (4.7.5). For this approximation we
know the deviation to the optimal value and also we know which constraints

are violated.

ALGORITHM XX for the construction of a stationary poliéy in a constrained

AMD-model (multichain case).

*
step 1: Use the simplex method to compute an optimal solution (x ,y*) of

the linear programming problem

- = j € E
XiEa(‘Sij piaj)xia _ 03¢
X, +).) (8, .-p, )y, =8B.,]¢€E
(4.7.19) max z z r x Za ja Elza 1] PlaJ Yia 3’ J |
T ita“ia"ia
L 9 a®ia < b, isksm
Xia'yia > 0,a € A(1) , 1 € E

(if this linear program is infeasible, then the constrained Markov
decision problem (4.7.5) is also infeasible).

* ©o
step 2: Determine the stationary policy (7 ) such that

* *
X X e A(i i .
ia/Xa ia a (1), 1 € Ex*
* * *
= € A(i i E E .
Tia yia/Xayia @ (1), 1 e Y*\ x*
arbitrarily elsewhere.
* * *
step 3a: If yf /T y. =7, for all a € A(i), i € E_,NE ,, then (w )° is an
ia’ "a‘ia ia x* 'y

optimal solution of problem (4.7.5) (STOP).
step 3b: Go to step 4a or to step 4b (comment is given in remark 4.7.10) .
step 4a: Compute an optimal solution (¥,Z) of the linear program

* *

) Y (8,.-p._ )y._ + )L (8, .-p..(m))y.+z, =B.-x., J€E
) 1€E\E . a ij "iaj “ia i€E , ij “1ij i3 j o3

min zjzj X X

20, a€eA(d iecE\E «; 20, 1 €E 4; 2.2 j € E
Y2200 (i), i€ E\ o ' r 1€E & z:J 0, 3

If ijj = 0, then ?m, where
~ ~ A s . E
N Vio/ladia 2 €BW, L BAR
T, := .
ia N
m elsewhere

ia
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is an optimal solution of problem (4.7.5) (STOP).
Otherwise, go to step 5.
*
* % 2
of the stationary matrix P (7" ) can be performed by algorithm III).

T *
step 4b: Compute xia(ﬂ*) := [B P*(ﬁ )]i'ﬂ. , a € A(i), i € E (the computation

* .
If x* = X(ﬂ*), then (w )0o is an optimal solution of problem (4.7.5)
(STOP) .
*
< = e e o
iakxia(z ) < bk k 1,2, ,m al;:do°
.2 r x (m) =T%L,Lr x,, then (m) 1is an
i"aia ia i“a ia’ia
optimal solution of problem (4.7.5) (STOP).

Otherwise: if L.Z g
ia

Otherwise, go to step 5.
step 5: Put (Tr*)00 on the list %1 of stationary policies and x* on the list
L2 of solutions that have been analysed.
step 6: If there exists an extreme optimal solution (Q,Q) of program
(4.7.19) such that % 7 L, then:
(x*,y*) = (Q,Q) and go to step 2
(the determination of all extreme optimal solutions can be per-
formed by algorithm I).
Otherwise: go to step 7.

*
step 7: Any stationary policy (m )Oo from the list L, may be viewed as an

1
approximate solution of problem (4.7.5).

REMARK 4.7.10. If the condition yza/zay:a = ﬂ;a, ae A(i), i € Ex*nE « is
not satisfied in step 3a, then we have to decide for a continuation in step
4a or step 4b. When |E ,| is small with respect to |E|, then the linear
program of step 4a hasxmany variables. In this case we propose to perform
step 4b. When IEX*I is (nearly) equal to |E|, then we propose to continue

in step 4a.

REMARK 4.7.11. Suppose that there exists an optimal stationary policy ﬂw

such that x(m) is an extreme point of 2, where

X ={x e X | (x,y) is an optimal solution of problem

(4.7.5) for some y}.

Then, algorithm XX will find an optimal stationary policy. Unfortunately,
it is possiblé that x(m) is not an extreme point of X for every optimal

stationary policy Wm. In example 4.7.7 we show this phenomenon.
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EXAMPLE 4.7.7.
Consider the
model drawn in
figure 4.7.5,

with the con-

straints
x31(R) < 5/12,
x61(R) < 5/12,
x31(R)+x61(R) <
. = = = = = =1/6
2/3. It can 81 82 53 34 55 8 /
easily be veri-
fied that the Figure 4.7.5
set of optimal x-
vectors is given by
= == = = = =0; + = 3 + =1 ;
|11 T F 2 TR TRy TRy THsp T 0T Koy 3y THey THey 2| 5
< < : = . >0
x31._5/12, Xeq <5/12; Xyy tXgy 2/3; Ryq1¥gqr¥gy Koy 0;
By the dependency of X5 and x51 on X, and X1
x61 respectively, we can draw the set X
in the 2-dimensional space with the coor- 2/3

dinates X3, and x61 (see figure 4.7.6).

Consider the policy £, where £(1) =2,
£(2) =1, £(3) =1, £(4) =2, £(5) =1,
£(6) =1. Then, x(f) satisfies xll(f)=
41(f) =x42(f) =x52(f) =0,
Xy, () =251('f) =1/6, x4, (f) =x, (f) =1/3.
Hence, £ is an optimal solution of problem —>
x

1/3 5/12 2/3
(4.7.5), but x(f) is not an extreme point of /3 5/ / 31

5/12f-----
1/3f======-

x12(f) =x22(f) =X

|
1
|
I
1
1

X. Moreover, it can be verified that L(8)nX = {x(f)}. Figure 4.7.6

REMARK 4.7.12. If X = L(S), then algorithm XX will find a stationary opti-
mal solution as soon as step 4a is visited. In theorem 4.7.9, we present a
sufficient condition for the equality of the sets X and L(S). This condi-
tion is always satisfied in the unichain case as will be shown in section

4.7.5.

LEMMA 4.7.1. For every triple (j,a,R), where j € E, a € A(j) and R ¢ C1,
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we have
x. (R) = lim (1—0L)-Zm at—l-z B, (X, =3,¥Y =alXx, =1i).
ja atl t=1 i"i Rt t 1
PROOF. For the proof of this lemma we use the same arguments as in HORDIJK

[1971]. Let R € C1 and suppose that x(R) = lim xT(R). Take a fixed pair

(j,a), where j € E, a € A(j). Then,

. 1 T
xR = limp o Leat¥er

where
w, = XiBi-]PR(Xt=3,Yt=a]X1=1), t e N.
. . . © t-1
Since thl is bounded by 1 for all t, the power series Zt=1wta has
radius of convergence at least 1. The series Z:_la "* has radius of con-

vergence 1. Hence, for a ¢ [0,1), we may write

t-1

t-1 o t
)= Loy Qo)

t-1

(1-a) _1'z:=1wt°‘ = (y:=1°‘t

-1 ]
RN

-2 L t-1 .
From (l-a) =3I, ,to for 0 £ a < 1, we obtain

©  t-1 iy - -y -
%5, ®) - (L-a) ], o B P (X =3,Y =alx =i) =

t
2p 1 ¢t t-1
(1-0) zt=1{xja(R) -t Xs=1 ws}toz .
1 .T
S . N . = : -5
Choose € 0 arbitrarily small. Since xja(R) l:.mT_>°° T =1 wt, there

exists an integer Te such that

T
!

1
< = > T,
t=1wt 5 € for all T Te

1
|xja(R) ~r z

Hence,

T
2v e 1vt t-1
| (1-a) zt=1{xja(R) —€X5=1 w ita” 7| <

T
2 -
(1-a) M-ztilTeut e -;—e for a sufficiently near to 1 and

t
[

1
> R) - —
M > max Ix,a( ) T Lomt¥s

1<t<T
>
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2 g 1ot t-1
| (1-a) Zt=T€+1{xja(R) - Zs=1ws}ta | <

2 e e, t-1 _¢ 2p0 . t-1 1
(1-a) Zt=T€+1 S te <= (1)) ta” = Je.

Hence

x, (®) = lim  (1-a)-J°_ o 1T 8 P (x =3,v =alx =1),
ja atl t=1 iti TRt 7Tt 1
completing the proof. [

THEOREM 4.7.9. If x(m) is continuous in T, then X = L(S).

PROOF. Theorem 4.7.1 implies that it is sufficient to show that L(C) < L(S).
Take any x(R) € L(C). From theorem 3.4.8 it folléws that for any a ¢ [0,1)
there exists a stationary policy ﬂa such that xa(R) = xa(na), where xa(-)
is defined by

o

~ ©  t-1 N ) s -
xja(R) := Zt=1a .ziBi PE(Xt—-j,Yt-—a [X1 i) jeE, aeA(j) ,ReC.

Choose a fixed pair (j,a), j € E, a € A(j). Introduce a reward function by

rib = b e A(i), i € E.
0 elsewhere
Then,
BTva(ﬂa) = x> (na) and BT¢(wa) = x (ﬂa) a e [0,1)
ja ja e

Hence, we can write by lemma 4.7.1

- 11 a2 - 13 by O O
(4.7.20) xja(R) = llmu¢1(1 a)xja(R) 11ma+1(; a)xja(ﬂ )

lima+1(1—a)-BTva(wu).

o
Qmﬁmraswmmm{%,k=1J““}smhﬂmta'flmdwk+ﬂ.ﬁme

Qg Ok k
for any i € E the sequence {(l—ak)vi (m ™), k =1,2,...} is dominated by
Ctk . . U.k
the sequence {(1—qk)vi , k=1,2,...} and since llmkaw(l—ak)vi = ¢i (cf.
(2.5.7)), there exists a limit point, say x, of the sequence of vectors
U.k Q.
{(1—uk)v (m k), k =1,2,...}. Therefore, we may assume that

Q. Q

o oa B k k .
(4.7.21) xi = llmk»m(l ak)vi (m ™), i e E.

From (4.7.20) and (4.7.21) it follows that
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Q. [0}
T _ k, "k
(4.7.22) Bx = ZiBi-llmk+w(1—ak)vi (m )
Q.

. Q.
1imk+®(1—ak)sTv Ko %y = %, ().

The continuity of x(T) as function of T implies

“k
xja(v) = limk xja(n )
o

. Q.
Lim _(1-a) Jo_ o 18T (n Myr(r ¥

o a a
T b t-1_t-1 k
limk+m6 P (n k)(l—ak)2t=1ak P (% k)r(ﬂ )

Q. Q. a
Lim Gt )T (- v Ko 6

1]

(4.7.23) (x(m)Tx = 8Tp* (M) x.

o
Since for every a ¢ [0,1} va(ﬂa) = r(nu)+aP(ﬂa)va(ﬂ ), it follows from

(4.7.21) that

X = P(m)x.

Consequently,
*
(4.7.24) x =P (mx.

Then the relations (4.7.22), (4.7.23) and (4.7.24) imply that

T T _*
xja(R) =Bx =8P (Mx = xja(ﬂ).
Since m is independent of the choice of the pair (j,a), we have proved that

x(R) € L(S). This yields t“e theorem. [

REMARK 4.7.13. It will be shown in section 7.4.5 that unichainedness implies
continuity of x(m), and consequently X = L(S). If we relax the unichained-
ness to communicating (i.e. for each pair i,j € E there exists a policy

£ ¢ CD and an integer t ¢ N such that Iwa (Xt=j IX1 =i) > 0), then

X # L(S), in general. Below we give an example.
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EXAMPLE 4.7.8. Consider the model corres- 1
ponding to figure 4.7.7. This model is
obviously communicating. It can easily be

verified that

2 3
N R TP L P PIAC TP H T A
Ry PR3p=hi Xy rXyprXy Xy prKyyrKgy207
Take X such that §11=§22=§12=§‘32=0, B =B =B =1/3
§m=1/m§m=3m.Sqm%etMt§=xﬁ) 1 2 73

for some stationary policy ?m. From §21 >0, Figure 4.7.7

~

X5 =0 it follows that '1721 =
2 is absorbing in the Markov chain induced by P (7). Consequently, x21(?) >
62==1/3 > 1/4 = X,

X # L(S).

1. Hence, state

1 implying a contradiction. Therefore, in this model

We close this section with the presentation of some numerical results
obtained by algorithm XX. We have solved 400 test problems. These problems
can be divided in 8 classes of 50 problems as indicated in table 4.7.1 (£ =

the number of actions in each state; m = the number of constraints)

Table 4.7.1

All problems have been generated as follows:
(i) the number of states is 10, i.e. E = {1,2,...,10}
(ii) for each pair (i,a), where i € E and a € A(i), the transition
probabilities are such that Piaj # 0 for exactly one j which is
randomly chosen from E.
(iii) the reward tia is a random choice from {0,1,...,10},a ¢ A(i), i € E.
(iv) the coefficients qiak are randomly chosen from {-10,-9,...,+10}
ieE, aeA(i), k=1,2,...,m.
(v) b =0 k=1,2,...,m.
The numerical results are summarized in table 4.7.2 and give rise to the

following statements:
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1. 8% of the problems is infeasible and in 16% the algorithm does not

find a stationary optimal policy. We have analysed that all these

problems do not have stationary optimal policies. Hence, for every

problem which has a stationary optimal policy algorithm XX gives one.

2. 70% of the 306 problems for which a stationary optimal policy was

found, this policy was found in step 4 of the algorithm.

3. For only 9 problems the stationary optimal policy was obtained by the

analysis of more than one extreme optimal solution. Hence, in 97% of

the problems for which a stationary optimal policy was found, this

policy was obtained from the first analysed optimal solution of prog-

ram (4.7.19).

Total Policy obtained from the Policy
number Infeasi-| first analysed LP-solution|obtained|No sta-
of bility Termination Termination|from tionary
Class | k | m |problems || (step 1)| in step 3 in step 4 second, |optimal
third policy
etc.
LP-
solution
A 201 50 1 20 22 2 5
B 212 50 2 13 25 1 9
C 213 50 4 6 29 - 11
D 214 50 11 21 2 11
E 215 50 13 3 25 - 9
F 411 50 - 22 26 - 2
G 4|3 50 - 12 29 4 5
H 415 50 - 4 35 - 11
Total 400 31 85 212 9 63

4.7.5. COMPUTATION OF A STATIONARY OPTIMAL POLICY (UNICHAIN CASE)

Throughout this section we use the following assumption.

ASSUMPTION 4.7.1. For any pure and stationary policy fm, the Markov chain

induced by P(f) has one ergodic set plus a (perhaps empty) set of transient

states.
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]

THEOREM 4.7.10. X L(S).

PROOF. By theorem 4.7.9 it is sufficient to show that x(m) is continuous in

m. Let limk+mw(k) = m(0), where w(k)c° € CS' k e N By lemma 4.6.1 and as-

0
sumption 4.7.1, the Markov chain under P(m(k)) has at most one ergodic set

for every k € N Theorem 2.3.3 implies that x(w(k)) is the unique solution

o
of the linear system

1]

Xi(aij—pij(wm)))xi 0,3 cE

(4.7.25)

]
-

Lix;

for every k € WN Since w(k) = w(0) for k - «, we also have P(m(k)) »P(mw(0))

o
for k > ®. Consequently, any limit point of {x(m(k)), k = 1,2,...} is a
solution of (4.7.25) with k = 0. Hence, x(m(0)) = limkém x(m(k)), i.e. x(m)

is continuous in 7. [

ALGORITHM XXI for the construction of a stationary optimal policy in a con-

strained AMD-model (unichain case).

*
step 1: Use the simplex method to determine an optimal solution x of the

linear programming problem

ziza(aij_piaj)xia =0, jeE
Y.lox, =1
(4.7.26) max Zizariaxia ira 1a
Lo i n $b, k=1,2,...,m
{ xiazo,aeA(i), ieE J

(if this linear program is infeasible, then the constrained Markov
decision problem is also infeasible).

*
step 2: Take (m )m such that

* *
X, /Z X, a € A(i), i e E
* ia' fa'ia x*
m, =
ia
arbitrarily elsewhere.

* . o
THEOREM 4.7.11. The policy (mw )°° obtained by algorithm XXI is an optimal

solution of problem (4.7.5).
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*
PROOF. From the definition of m it follows that

* * .
zi(aij—pijm ))(Zaxia) =0, JeE
(4.7.27)
*
zi(zaxia) =t

Similarly as in the proof of theorem 4.7.10, we can show that (4.7.27) im-
* * )
plies that x* = x(m ). Hence, (m )oo is a feasible solution of problem (4.7.5).

Moreover,

o8, (1)) = ¥

lx

., X, = optimum (4.7.26).
a lia 1a

i

From theorem 4.7.10 it follows that there exists a stationary optimal solu-
tion of problem (4.7.5), say %w. Let X = x(F). Then, X is a feasible solu-

tion of program (4.7.26) and consequently,

. _ ~. © _ ~% - ~%k _ * oo
optimum (4.7.5) = ¢(8, (M) =12 r ¥ <) [ x X =0, )%.

% ©o
Hence, (m ) 1is an optimal solution of problem (4.7.5). ]
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CHAPTER 5

BIAS OPTIMALITY

5.1. INTRODUCTION AND SUMMARY

The use of the expected average reward as utility function is sometimes
unsatisfactory. For any stationary policy wm, rewards that are earned when
the process is in a state which is transient under P(m) do not influence the
outcome of the average reward ¢(ﬂm). Therefore, the average reward criterion
is in some sense too little selective. The concept of bias optimality is a
more selective criterion. This criterion was introduced by BLACKWELL [1962]
(actually Blackwell used the term "nearly optimal). A first algorithm to
compute a bias optimal policy was presented in VEINOTT [1966]. DENARDO
[1970a] has refined this method to a three-step proceaure which can be ex-
ecuted by linear programming as well as by policy improvement.

In chapter 2 we have presented the definition of a bias optimal policy:

*
R € C is said to be a bias optimal policy if
. o, * ay _ .
(5.1.1.) llmu+1{vi(R ) - Vi} =0, i e E.

Corollary 2.5.2 implies the existence of a pure and stationary bias optimal
policy.

In section 5.2 we present some equivalent statements for the concept of
bias optimality. One of these statements gives rise to an algorithm for the
computation of a bias optimal policy.

Then, in section 5.3, we present some theorems which lead to another

algorithm. This algorithm is a modification of the algorithm presented in
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DENARDO [1970al. The algorithm can be divided into three parts and in each
part a linear program has to be solved. For the determination of an average
optimal policy - which has to be performed in the parts 1 and 2 for two dif-
ferent AMD-models - we use the results of chapter 4. Furthermore, we show
that Denardo's search procedure of the third part can be cancelled and that

a bias optimal policy can be obtained directly from the solution of the

third linear program. Some of the material of this section can also be found
in KALLENBERG [1981b]. ]

We close this chapter by section 5.4 in which we discuss the weak uni-
chain case, the completely ergodic case and the unichain case. For these mo-

dels the algorithm can be simplified.

5.2. SOME THEOREMS

We assume in this chapter that ij = 1 for every pair (i,a), aeA(i),

i € E. If this assumption is not satisfi:é, then we can change the model
into the extended model, with state space E U {0}, as described in defini-
tion 3.2.2. From definition 3.2.2 and the analysis on page 30 it follows
that vg(R) = V:(R) i # 0, for every R € C and all o ¢ [0,1), where F*(R)

denotes the expected discounted reward in the extended model.
LEMMA 5.2.1. For any policy R we have

$. (R) 2 lim sup ., (1-0)v*(R), i € E

i = Pat1 i :

PROOF. The proof is similar to the proof of lemma 4.7.1. Take any R € C and

i € E. Let W i = ZjZaEEz(Xt=J,Yt = a|X

we may write

1= i)-rja, t € N. Then, for o €[0,1)

1 t-1 t-1

- © t A 2A 4
(1-a) Vz(R) = 2t=1(zs=1ws)u and ¢i(R) =(1-a) ¢i(R) Xt=1t o

Hence, we have

t
A o _ 2 e A 1 t-1
9, (R) - (1-a)v/(R) = (1-)" ' {6, R) - ] _,w. }ta .

e Y S 1.7 )
Choose € > 0 arbitrarily. Since ¢i(R) = lim SUPL, T Zt=1wt’ there exists

an integer T€ such that

A 1 1
. >
$.(R) > = w, - 5 € for every T 2 Te'
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Therefore,
T -1
2 € A 1 ¢t t-1
(- ® L5 (6, -p ) jw leta "2
T -1
2 2 A 1 ¢t € t-1 S
(1-a)%) min {9, (R)- ¢ Loy v Ly to 72

T 1 t-1

2 € 1 - h to 1
(1-a) " (-M) zt=1 TEa > 5 e for o sufficiently near enoug o1,

w } = - M.

e Y T
where M > 0 satisfies 15@2%5'1 ¢i )= EZemq Vs
Furthermore,
o
2 A 1yt t-1 1- 2 ¢ (—ie)tat_lz——
(1-a) zt=T€{¢i(R)-tzs=1 w)ta  2(1-a) Zt=T€ 3

Then, for o sufficiently near enough to 1, we have
A o
> (1- R) -
¢i(R) (1 a)vi( ) €,

A . Q
implying that ¢i(R) > 1lim supa+1(1—a)vi(R)- o

THEOREM 5.2.1. If R is bias optimal, then R is also an average optimal
policy; if R is average optimal, then R is not a bias optimal policy, in

general.

PROOF. Let f be a pure and stationary Blackwell optimal policy. Then,
va(fw) = v® for o sufficiently near to 1, and, by theorem 2.5.4, ¢(fm) = ¢.

Hence, using (2.5.7), we obtain

(5.2.1) 1i (1-0)v% = 1i 1-) v (£7) = ¢, (F) = i ¢ E
.2, 1ma+1 o vi = 1ma¢1( -a, vi = ¢i : = ¢i, i e E.
Since R is a bias optimal policy, we have lima¢1{v (R)—v?} = 0, i € E. There-
. . o oy _ . . oy .a
fore, certainly llma+1(1—u){vi(R)—vi} 0. The existence of llma¢1(1 a)vi ’
i € E, implies that limaTl(l-a)vg(R) = ¢i, i € E. From lemma 5.2.1 it follows
that

A . o _ .
¢i(R) > llnlsupa¢1(1—a)vi(R) = ¢i, i€ E.

Then, the results of section 4.2 imply that R is average optimal.
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The policy £, ¢ CD such that <:>
f*(l) = f*(2) = 1 is an average Op-
timal policy for the model of figure 1 5 (:>

. o, @ _

5.2.1. Since vl(f*) = 0 for all a € [0,1) ‘ (:)

a LI

= 1 for all a ¢ [0,1), £, is not a

and Vl s Figure 5.2.1

bias optimal policy. [0

THEOREM 5.2.2. Let f: € CD' Then, the following four statements are equiv-

alent:

(i) fi is bias optimal.

(ii) limufl{va(f:)-va(fm)} > U for each £ « CD'
(iii)u (£)) = max{u (£) = ¢.}, i € E, and ¢(£,) = ¢.

v rm 2 BT T D -3 (e 2 0 for cach £7 € C,
PROOE.

(1) = (ii): Suppose that fj is a bias optimal policy. Take any £ eC

D
Since va(fw) < v¥ for all o e [0,1), we obtain

, o, ® a, @ . a, _® oy _
llma¢1{v (f*)-v ()} = 11mu¢1{v (£) -v } =o0.

(ii) = (iii): From (2.5.7), it follows that

ol o o, o ¢(f°:)_¢(f°°) ] o
llmu+1{v (£,) -v (£ )} = llma+1{————zt%r———~+ u(f*)-iu(f ) 3.

o, o, o
Consequently, lima+1{v (£,) -v (f )} 2 0 implies that
£) = ¢(£ a B ®)yif £ satisfi ® ©
¢ ( *) 2 ¢(f ), an ui(f*)_ ui(f )i satisfies ¢i(f )y = ¢i(f*)_

(o]
Hence, ¢(f*) = max ., c ¢(fw) = ¢. Then, we can write
£ e(p

ui(f:)= max{ui(f )I¢i(fm) - ¢i}’ ieE.

?f;g = (iv): Let f* be such that ui(f*) = max{ui(fw)]¢i(fw) = ¢i}’ i € E, and
) = ¢.
*
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o
We have for any f ¢ CD

t s, ® s, .® t s-1 _ s-1 _
Lo v ) -vi(E) ) = ] IP7 T (g)x(E) -7 (A)x(f)]} =

t s-1 * s-1 *
Lo LETTTE) —PE )X (£) - (BT 7(£) ~P (£))x(D)] +

{6 (£) - 9(£) .

Then, we get

1 ¢T ¢t S, .® s, ® 1 _ T+l o ©

(5.2.2) T leeg Lo VO ED = (E) ) = le(e ) —o(E) ) +
1 ¢T ¢t s-1 * s-1 * v
T lenqlocg LT T(E) —PENE(EY - (BT (5 ~P (D) r(H) ]

Since ¢(f:) ¢ 2 ¢(£) and

. 1 T t s—-1 * _ )
i o T Do e%THE RN @ e = uie)

(cf. theorem 2.4.1(iv)) for all f e €. it follows from (5.2.2) that

T
1i L

t S @ SN °
im T t=lzs=1{v (£,)-v (£)} 20 for each £ ¢ C_.

D

©

(iv) = (i): Let fo be any Blackwell optimal policy. From (5.2.2) it follows
that

0<lim__ 277

t S, S,
Tom T bemglemg (v (EQ) — Vv (E)] =

Lim [To(£]) - 63 + (a(ED-u(g)} + {e(£,,™) - e(£,,D ]

where limTéwe(f*,T) = ¢(£,T) = 0. Therefore, ¢(f*)

¢ and u(f*) > u(fg).

Hence, we have

. a, Ay _ 4. o, ®  _a
llma#l{v (£,) - v } = llma+1{v (£,) -v (fo)}
$(£)-0 (£7)

limu“{—T— + u(f*)—u(fo)} = u(f)- u(fo) >0. [

REMARK 5.2.1. DENARDO & MILLER [1968] have proved the equivalence of the
first three statements. This equivalence was conjectured by VEINOTT [1966].
In HORDIJK & SLADKY [1977] the equivalence is shown for a countable state

space under a condition of Lyapunov function type. For a finite state space
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this condition is equivalent to the assumption that a fixed state can be

reached from each initial state under any stationary policy.

DEFINITION 5.2.1. Let fi be a pure and stationary bias optimal policy. Then,

u = u(f:) is called the bias-value-vector.

REMARK 5.2.2. From statement (iii) in theorem 5.2.2 and the results of chap-
ter 4, it follows that a pure and stationary bias optimal policy can be ob-
tained from the algorithm stated below. This algorithm may be very attrac-

tive if the linear program (4.2.11) has only a few extreme optimal solutions.

ALGORITHM XXII for the construction of a pure and stationary bias optimal

policy by analysing the average optimal policies.

step 1: Determine by algorithm II all extreme optimal solutions, say (xk,yk)
k=1,2,...,K, of the linear programming problem (4.2.11).
0 * -1 *
step 2: Compute u(fk) 1= {[I—P(fk)-+P (fk)] -P (fk)}r(fk)' k € F_, where

F, := {x| ﬂw(xk,yk), defined by (4.3.1), belongs to CD},
and let f: := ﬂw(xk,yk), k € F*.
0 00 ]
step 3: Take f* € F* such that u(f*) > u(fk), k € F*.

THEOREM 5.2.3. The pure and stationary policy f: determined by algorithm

XXIT is a bias optimal policy.

PROOF. From the construction of the policy f: it follows that u(f:) =
max{u(fm)]fm € F*}. Hence, theorem 5.2.2 implies that it is sufficient to
prove that fo° € F* if and only if f°° is average optimal. The identity of
F* and the set of pure and stationary average optimal policies is a con-

sequence of the theorems 4.3.3 and 4.3.4. [
5.3. LINEAR PROGRAMMING APPROACH (GENERAL CASE)

In order to compute a bias optimal policy, we first solve the linear
program for the computation of a pure and stationary average optimal policy
(see algorithm XIV). Therefore, we have to compute optimal solutions

* *
(¢*,u ) and (x ,y*) of the pair of dual linear programs
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Xj(sij-piaj)$j >0 , aeA(i), i€E
A

5.3.1 I .B.o.

( ) mn zJ B30y

A A .
- > A i
¢i + zj(sij piaj)uj T 3¢ (1), i €E
and
- = 5 E
ziZa(sij Piai®ia 0, Je
+3. + - = —
(5.3.2) max 2izariaxia zaxja ziZa(aij piaj)yia Bj' Je

= A(i iecE
xia'yia 0, a € A(1), 1ie
respectively, where Bj >0, j € E, are given numbers with Z,Bj =1,

After the solution of the linear program (5.3.1), we can determine

A1) :={a e A(D)] Zj(sij-piaj)¢; = 0}, ieckE

~ - % *
A(i) := A(d + 8§, .- =r i€ E.
(1) {aen@l ¢, zj( i3 piaj)uj ia}’ E
Moreover, theorem 4.2.2 implies that ¢* = ¢, where ¢ is the AMD-value-vector.
00
For any £ ¢ CD we may consider the Markov chain induced by P(f). For

this Markov chain we introduce the following notations:

R(f) : the set of recurrent states.
T(f): the set of transient states.

n(£f): the number of ergodic sets.

Furthermore, we define
E := {i € E| A(i) # ¢}

o0
LEMMA 5.3.1. Let £ be any pure and stationary average optimal policy.
Then,

(1) £(i) € A(i), i € E.
(i) £(i) € A(1), i € R(f).

(1i1) u, (£%) = v’ - @"(B)u),, 1 € R(E).
1 ® J * *l

(iv) uw,(f) cu¥ - (P (B)u )., i e T(f).
1 1 1

PROOF .
(i) Since P(£f)¢

It
1]

P(E)P(£)r(£) = P (£)r(f) = ¢, we have £(i) ¢ A(i),
ie E.

(ii) From theorem 4.3.3 it follows that (x(f),y(f)), defined by (4.3.2),
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(iii)

(iv)

is an optimal solution of program (5.3.2). Proposition 4.3.3 implies

that R(f) = E From the complementary slackness property of linear

x(£)° .
programming, we obtain f£(i) € A(i), i € Ex(f) = R(f).

Since dij(f) =0, i € R(f), j € T(f) (see formula (2.4.3)), it follows
from part (ii) that

[D(£){¢ +(1—p(f>)u*}]i =[o(B)r(6l, = ui(f”), i e R(f).
Hence

u, (£7) = [D(0)P* (D) x(£) + D(E) (1-(£))n" ], ie R(E).

Then, by theorem 2.4.1, we get

w, (£9) =u' - @ (5, i€ R(E).
1 1 1

Since dij(f) >0, i,j ¢ T(f) (see formula (2.4.3) and theorem 2.3.1),

we obtain
*
- > .o
aij(f){¢j+zk(csjk %kwngg._dﬁ(ﬂrﬂfh i, €T(£).
Part (ii) of the theorem implies that
*
- = i j e R(£) .
dij(f>{¢j+2k(6jk Py ()} = 4 (D (), 1eT(H), JeR(E)
Hence, we have, using theorem 2.4.1,

u () = OrH ] = [D(£) (2™ (£)x (£) + (1-P(£))u"}], =
W et e, ieT(). O
1 1

In the second part of the algorithm, we try to find the bias-value-

vector u for the states that are recurrent under at least one bias optimal

policy. Lemma 5.3.1 implies that the states of E\E are transient under all

average optimal policies and that in the recurrent states i the chosen ac-

tions belong to A(i). Hence, in the second part of the algorithm we restrict

ourselves to the states of E and the actions of Z(i), i e E.

We want to solve a second Markov decision problem with state space E

and action sets A(i), i € E. Therefore, for every i ¢ E we remove the ac-

tion

a; from A(i) when I > 0. Hence, using the procedure stated

JeE\E piaij
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below, we obtain a subspace E of E and subsets A(i) of A(i), i € E, such

that E is closed under any policy which takes actions only from A(i), i € E.

Procedure

step 1: If piaj =0 for all i ¢ E, a € A(i), j € E\E: STOP.
Otherwise, go to step 2.

step 2: Eake i ENE, a € A(i), j € E\E such that piaj > 0;
A(i) := A(i)\{al;
If A(i) = @, then E := E\{i};

Go to step 1.

~ ~ ~00
For any policy £ such that £(i) € A(i), i € E, we denote by f ' the
~ ~ ~% ~ ~ *
restriction to E; similarly, we denote by ¢, u , r(f),P(f) and P (f) the res-

~ * *
triction to E of ¢, u , r(f), P(f) and P (f) respectively.

LEMMA 5.3.2. Let £ be any pure and stationary average optimal policy. Sup-
pose that the sets E and X(i) are the sets obtained by the above procedure.
Then,
(1) R(f) c E and £(i) € A(i), i € R(£).
(ii) The policy fT defined such that

a, € A(i) i e E\R(f)

£,(1) := +
£(1i) elsewhere

. . oy _ ®. _ . =
satisfies: 1. ¢i(f1) = ¢i(f ) = ¢i' i€ E.
2. u, () =u (£) =T - @"E)TH,, ieRrE.
i1 i i 1 i

PROOF .

(i) Lemma 5.3.1 implies that R(f) c E and f£(i) € X(i), i € R(f), where E
and Z(i), i € R(f), are the sets before the above procedure is applied.
Since E\E c T(f), it follows that if £(i) € X(i) is removed during the
procedure, then i e T(f). Consequently, after the performance of the
procedure, we still have that R(f) c E and £(i) € X(i), i e R(f).

(ii) Since pi'(fl) = pi.(f) for every i € R(f), it follows that the ergodic
sets under P(f) are also ergodic sets under P(fl) (possibly there are
some additional ergodic sets under P(fl))' Hence, Pz-(f1) = pz.(f) for
every i € R(f), and consequently (see formula (2.4.3)) di-(f )

1
di°(f) for every i € R(f). Then, using lemma 5.3.1(iii), we can write
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o
"
1]

(D(fl)r(fl))i = (D(fl)r(fl))i = (D(f)r(f))i = ui(f ) =

~ ~ o~k
w - @ euh), =T - e ENT ., ie R
i i i 1 i
Furthermore, we have since fl(i) € K(i), ie E:

(-p(F,)8 =0 ana §+(-pENT = £(H).
Hence,
() = @ EprE N, = @ E)D, =3, = i ¢ E
05 (£y) = PrED) = Py =0y = ¢ 1eE
This completes the proof of the lemma. ]
Consider an average optimal policy £ € CD' Lemma 5.3.2 implies that

1
we want to find in this second part of the algorithm the bias-value-vector

0
for the maximization of ui(fm), i € R(f), we may replace £ by f,. Because
u in the states that are recurrent under at least one bias optimal policy,
we may restrict ourselves to the action sets A(i), i € E. For any policy

00 ~ ~
f such that f£(i) € A(i), i € E, we have

(5.3.3) o(E) =2 "B r® = O G+ @-PENTY =" HF =%
and
(5.3.4) uE) =p®r® =0p@® %+ T-pENHT} =T -2 (BT

From lemma 5.3.2 it also follows that maximizing ui(fw) is equivalent to

maximizing - p*(%)ﬁ*. Notice that the maximum value of - P*(E)H* is the

AMD-value-vector, say y, of the Markov decision problem with state space

E, action sets A(i), i € E, transitign probabiiities Eiaj := piaj' ae A(i),

i,j € E and rewards ;ia := —E;, ae A(i), 1 e*E.*
From theorem 4.2.2 it follows that if (Y ,v ) is an optimal solution of

the linear program

N Zj(sij—piaj)wj > 0, acA(i), ieE
(5.3.5) min BLY,
ZJBJ¢J - s N
+ -
byt 15 055Riy)Ys

v

~% ~ . . ~
fui, aeA(i), 1 €E
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Theorem 4.2.4 implies that an average optimal policy for this second
AMD-model can be found by the following rule:
Let (t*,s*) be an extreme optimal solution of the linear program dual to

program (5.3.5), i.e. the linear programming problem

ziza(‘sij'Piaj)tia 0 rdcE
~* _ LS
max zi(_ui)zatia zatja + ziza(sij_piaj)sia = Bj,] €E .

,S >0, ae A(i), 1e€E

ia’ ia
~o0

Then any policy f*, where

tf >0 i €E ,
~ ~ iaj t

(5.3.6) f*(i) = ai € A(i) such that
i >0 ieBE\E ,
lai t

is an average optimal policy.

~oo

THEOREM 5.3.1. Let f* be any average optimal policy for the AMD-model
oo

(E,X,E,?) and let f* be a policy for the Markov decision problem (E,A,p,r)
such that f*(i) = E*(i), ie E. Then,

(£)
u, (£) =u,
for every state i which is recurrent under at least one bias optimal policy.

PROOF. Let gm be any bias optimal policy for the Markov decision problem

(E,A,p,x). Define the policy g, by

a, e A(i) i e E\R(qg)

g(i) elsewhere.
~00 oo ~
Let g1 be the restriction of 9 to E. Then, by lemma 5.3.2,
(5.3.7) =u,(g) =u @) =8 - @ (GHTH i € R(g)
.3, u, =u, (g =u,(g) =u g)u )y, ie g).
Since E is closed under P(f*), it follows from (2.4.3) that

0 ~0O .
ui(f*) = ui(f*), i € E.
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~oo ~N o~
Because f* is average optimal in model (E,A,p,r), we can write, using (5.3.4),

S o ~o L~k P* E ~k S
(5.3.8) u, 2 ui(f*) = ui(f*) =u, - (P (£ )u )i 2
~k * o~ K . ~
u, - (P (gl)u )i' i € E.
Then, (5.3.7) and (5.3.8) imply that

ui = ui(f*), i €.R(qg),

which completes the proof. [J

REMARK 5.3.1. The policy fj <efined in the above theorem is bias optimal
for the states that are recurrent under at least one bias optimal policy.
Unfortunately, this set of states is unknown; we only know that it is a
subset of E. Moreover, (5.3.8) implies that

~% * o~ ~% * .
u, 2u, - (P (£)u ), =u, +y,, i€ E.
i i * i i i

N . s
DEFINITION 5.3.1. A vector z € IR is said to be bias superharmonic if

\%

Xj(sij_piaj)zj ria - ¢i ae A(i), i € E
(5.3.9) ~
. u, + P, ieE
i i i

v

z

* ~ -
where ¢, u , ¥, E and A(i) are as defined in the previous part of this

section.

THEOREM 5.3.2. The bias-value-vector u is the smallest bias superharmonic

vector.

PROOF. We first show that u is bias superharmonic. We have already seen in

remark 5.3.1 that

Next, we assume that

(5.3.10) Z.(G..—p. Ju, <r, - ¢, for some i € E and a € A(i).
J 1] "1aj 3 ia i
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Let g°° be a bias optimal policy. Then, using theorem 2.4.1, we can write

(5.3.11)  (I-P(g))u = (I-P(9))D(g)r(g) = (I-P (g))r(g) = r(g)-9.
Define the policy gT by

g(3) AL
gi(j) =
a j = 1i.

- * ’
Since gl(j) € A(j), jJ € E, we have P (g1)¢ = ¢. The transition matrices

P(g) and P(gl) only differ in row i. Hence, (5.3.10) and (5.3.11) imply

u, - (P(gl)u)i < ri(gl) - ¢i

u, - (p yu) . . - ¢, j i.
: (Plg)u) rJ(gl) 9y AL
Suppose that i € T(gl). Then R(gl) c R(g) and, consequently

(5.3.12) uj(gl) = uj(g ) = uj, j e R(gl).
Hence
(5.3.13) (" (g)w, = [P (g )ulg], = [P (g,)D(g)zr(g)], =0

-3 (gdu); =[P (gy)ulgy)]; =[P (g))Dlgy)xlgy)]; = 0.
Since 1 € T(gl), it follows from (2.4.3) that dii(gl) > 0. Then, we obtain

u, (g,) = [D(gl)r(gl)Ji > [D(gl){(I—P(gl))u + ¢}]i =
* * *
[u-P (gi)u-FD(gl)P (gl)d)]i = [u-pP (gl)u]i =y,

implying a contradiction.

If i€ R(gl), then pzi(gl) > 0, and consequently
0 = [P*(g,) (I-P(g,))ul, < [P (g,) (x(g)-0)], = ¢.(g)=¢, < O
= 1P gy (Implg Dudy < IR {gy) (xlgy)=0) ]y = 0, (gy) =0, = 0.
implying also a contradiction. Therefore, it has been shown that u is a

bias superharmonic vector.

Let z also be a bias superharmonic vector. Assume that
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[(I-P(g))z]i > ri(g)-¢i for some i € R(g).
Then,

0= [P*(g)(I-P(g))z]i > [P*(g)(r(g)—¢)]i =0,

which yields a contradiction. Hence,

[(I—P(g))z]i ri(g)—¢i, i e R(g)
[(I—P(g))z]i > ri(g)-¢i, i e T(g).

Since D(g))-i 2 0 for i € T(g), we obtain

u(g™) = D(g)r(g) < D(g) {(I-P(g))z+é} = z-P" (9) z.

u

If i € R(g), then (5.3.7) and (5.3.8) imply that ui = uz + wi. Because z

is bias superharmonic, we get z; 2 ui, i € R(g). Consequently,
* * *
us<z-P(g)z<2z-P (gJu=2-P (g)D(g)r(g) = z.

Hence, we have shown that u is the smallest bias superharmonic vector. 0

REMARK 5.3.2. The property of bias superharmonicity depends on the value

*
of u which is found in the optimal solution of program (5.3.1). However,
the property of being the smallest bias superharmonic vector is independent

of which optimal solution is found.

REMARK 5.3.3. The result of theorem 5.3.2 is related to the functional equa-
tions of undiscounted Markov decision theory (cf. SCHWEITZER & FEDERGRUEN
[1978]).

From theorem 5.3.2 it follows that the bias-value-vector u can be

found as the optimal solution of the following linear programming problem

— > - , - . .
Ej(sij Piaj)zj zr. . ¢i aecA(l), i e E
(5.3.14) min{} .B.z. .
3373 * ~
z; > u, + wi’ iekE

The dual program is
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. . ~ * ~
(5.3.15)  maximize ],  J. 2, (r; 0%+ [, mluirboy,

!

subject to ) -p, JX _+ ) ~, .9 =8, JeE

i€E aei(i)(sij iaj’ “ia ieE ij i 3

X,,20,ac¢ A(i), i € E; ;i >0, 1ie€E.

The nexﬁ theorem shows that a pure and stationary bias optimal policy
can be obtained from an optimal solution of the linear program (5.3.15). If
we solve this linear program by the éimplex method, then an extreme optimal
solution is obtained and, furthermore, we obtain the bias-value-vector u as
the optimal solution of program (5.3.14). The solution of this pair of dual
linear programs will be the third part of the algorithm.

THEOREM 5.3.3. Let (§*,§*) be an extreme optimal solution of program (5.3.15),
Suppose that E: is the policy defined in (5.3.6). Then, the pure and

(-]
stationary policy 9,7 where

~ *
i i eE :={jeElu, =u,+P.}
£ (1) ieE, :={J lj 3"’3
g*(i) :=
- . ~x .
ai e A(i) such that xiai >0 i eE\E*,

is bias optimal.

PROOF. Suppose that j € E\E*. Then, the complementary slackness property
~% )
of linear programming (corollary 1.3.1) implies that yj = 0. From the con-

straints of program (5.3.15) it follows that

Taci(i)%5a = &5 * Licnlac %o 2
aea(i)¥ja = Fj icElaea(i)Piaj¥ia = ©j

o
Hence, the policy g is well-defined.
The proof of this theorem has the same structure as the proof of theorem

4.2.4, i.e. we first prove three separate propositions and then we complete

the proof of the theorem.

PROPOSITION 5.3.1. Let f: be any policy for the Markov decision problem

(E,A,p,xr) such that.f*(i) = f*(i), i € E. Then,

u - (BEJW = x (E) - ¢, ieE,.
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PROOF. Notice that from the construction of E it follows that E is closed
T~ * * N~ L~

under P(f*). Hence, (P(f*)u)i = (P(f*)u)i and (P if*)u)i = (P (f*)u)i' ieE,

where U is the restriction of u to the states of E. Furthermore, (5.3.3)

LR ) * —_ -N - —

implies that [P (f*)r(f*)]i = ¢;,» i € E. Suppose that uy (P(f*)u)j #rj(f*) ¢j

for some j € E_. Then, the constraints of program (5.3.14) imply that

ui - (P(f*)u)i > ri(f*) - ¢i ieE
and

uj - (P(f*)u)j > rj(f*) - ¢j; where j € E*.
If j e R(f*), then we get a contradiction, namely

= * - * ~4 = £y = =

0 =1[p (f*){u P(f*)u}]j > [p (f*)(r(fﬁ) ¢)]j ¢j(”*) ¢, 0.
Consequently, we have

ui - (P(fﬁ)u)i = ri(f*)—¢i, ie R(f*)nE*.
From formula (2.4.3), it follows that

= E >

djk(f*) 0, k ¢ E, djk(f*) 20, ke T(f*) and djj(f*) > 0.
Hence, we can write, using the results of theorem 2.4.1,
5.3.1 (F) =V.a (£ £
(5.3.16) uj *) = by *)rk( «

a - -
< k%5 (f*){uk (P(f*)u)k+¢k}
EE W, < (P* (£, )ul(£,))
u, - u), < u, - u . = u,.
J * J J * * ] J

~oo ~N N~
Since f* is an average optimal policy in the AMD-model (E,A,p,r), it follows

from (5.3.4) that

~I00 * .
(5.3.17) ui(f*) = ui-%wi = ui, ie E*.

Because j ¢ E , (5.3.16) iscontradictory to (5.3.17). This completes the

proof of the proposition.
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PROPOSITION 5.3.2. E, is closed under P(g*) .

PROOF. Let f: be any policy for the Markov decision problem (E,A,p,r) such
that £, (i) = £ (i), i ¢ E, Since g (i) = £ (i), i € E,, it is sufficient to
prove that E, is closed under P(f*). By proposition 5.3.1, (5.3.17) and

theorem 2.4.1, we have for any i € E*

o
]

ui-(P&*hni—riﬁ*)+¢i

u, (£) +[P(£) (€ -w ], = (P(E)u(E)) —x (£) +¢,

[P(£,) (u(£)) -w 1, +[{D(£,) (T-P(£,))-T+p" (£) Ir(£) ],

[P(f*)(U(f*)—u)]i

0
= ~ £ £ )-u.).
ZjeE\E*pij( RECHCIRELH
0 ~
SlnSe uj(f*)«uj < 0 for Svery j e E\E*, it follows that pij(f*) =0, i €E_,
3j eE\E*. Because f*(i) € A(i), 1 € E, it follows from the construction of

E that E is closed under P(f*). Hence, E* is closed under P(f*).

PROPOSITION 5.3.3. The states of E\E* are transient in the Markov chain

induced by P(g*).

PROOF. Suppose that there is a state j € E\E* which is recurrent under P(g*).
Since E, is closed under P(g*), there has to exist a nonempty ergodic set

J c E\E*. Let J = {j1,j2,...,jm}. The constraints of program (5.3.15) imply

that
- X . = - X, = > j E
zaeA(j)Xja Yy o= By +ziZasA(i)Piania B;>0, e
and
- e = + - X =z > j E.
ZaeA(j)xja By zizaeA(i)piajxia B;>0, 3 € E\

~K ok . . .
Since (x ,y ) is an extreme solution and since the linear program has N

constraints, it follows that we have in each state either ;; > 0 and

ja
action aj. From the complementary slackness property of linear programming

X* =0 for all a € i(j) or §;a > 0 for exactly one a € i(j), say for the

o

it follows that y; = 0 for every i € E\E*. Hence, in every state of J we

*

j.as '
i, 1773

ly, by theorem 1.2.2, the vectors {q~, i = 1,2,...,m} where

have exactly one positive variable, namely % i=1,2,...,m. Consequent-
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q = S, - p. k=1,2,...,N

ik jiajik'

are linearly independent. The definition of g: implies that g*(ji) = aji'
i=1,2,...,m. Since J is closed under P(g*), we have q; =0, k ¢ J,
i =1,2,...,m. Hence, the contracted (i.e. delete the components k € E\J
which are all zeroes) vectors {bl, i=1,2,...,m}, where

i

b §. . - p. ... k=1,2,...,m
k iiik pjiaji]k’ 14y m,

are also linearly independent. On the other hand, we have

zm i m (

m
k=12 = lx=1(8 ) =1 ‘Zk=1p' =0

. .~ D, . .
Jilx Jiajijk Jiajijk

which contradicts the independency of the vectors {bl, i=1,2,...,m}.

This completes the proof of the proposition.

~k
We can complete the proof of the theorem as follows. Since X, >0,

g, (1)
ie E\E*, it follows from the complementary slackness property that

(5.3.18) ui-—(P(g*)u)i = ri(g*) —¢i, ie E\E*.

P(g*) and P(f*), where f: is the policy of proposition 5.3.1, have the same

rows i for i ¢ E*. Consequently, (5.3.18) and proposition 5.3.1 imply that
u-P(g*)u = r(g*)—¢.
_ *
Since g*(i) € A(i), i € E, we have ¢ = P (g*)¢ and, consequently
=D * =0
D(g, )¢ = D(g )P (g, )¢ = O.
Then,

u(g,) = Dlg,)r(g,) = D(g,) (I-P(g,))u = u-P (g )u.

From proposition 5.3.3 we get R(g*) < E,. Moreover, because E_ is closed

under P(g ) and, by (5.3.17), u, = ui(%:) = ui(g:), i € E,, we obtain
© - * *
u(g,) =u-P (g lu=u-P (g lulg) =u,

i.e. g: is a bias optimal policy. ]



179

Above, we have derived that a pure and stationary bias optimal policy

can be determined by the following algorithm.

ALGORITHM XXIII for the construction of a pure and stationary bias optimal

policy (general case).

step la: Take any choice for the numbers Bj such that Bj >0, j € E, and

r.B. =1,
33 .
step 1b: Compute an optimal solution (¢*,u*) of the linear programming
problem
Z (6, .-p )$ 20 , aeA(i),i€E
A jeE ij Tiaj' 'j
min{). _B.b, .
zJEE J¢J

¢ +z (8, .- )A zr acA(i) ,icE
$i Y 23er(057Piay) 43T a0 e

step lc: Detérmine the following sets:

= _ . _ * _ .
A(i) := {a € A(1) | zjeE(Gij piaj)cbj 0}, i e E.
A1) :={aeA(] ¢ +). (5..-p, Ju. =r 3}, ickE

. i &3eE'Tij Yiaj' ) ia”’ -

E :={i e E| A(i) #0}.

step 1d: If piaj = 0 for all i ¢ E, ae X(i), j € E\E, then go to step 2a.
Otherwise, go to step le.

step le: TakS ieE, ac Z(i), j~€ E\E such that Pjaj > 0; A(i) := A(i)\{a};
if A(i) =@, then E := E\{i}; go to step 1d.

step 2a: Use the simplex method to compute optimal solutions (w*,v*) and

* %
(t ,s ) of the pair of dual linear programming problems

~ - o > N > . ~
. EjeE(sij piaj)wj 20 , aeA(i),ieE
min{ ), ~B.y.
zjeEijJ ~ - * ~ ~
T s - . o
wi XjeE(ﬁij piaj)vj ui, aeA(i) ,icE
and

ZieEZaeK(i)(‘sij'Piaj)tia =0/ jeE
* Lo~
maxi ] 5 Lok (1) Fia Yaca(1) tia *Li eplaei (1) $157Piay) S1a=Byr I€E

t, s, 20 ,ace€ X i ieE
ia’%ia ' (i)
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respectively.

~00
step 2b: Take any policy f*,Awhere

*
[t. >0 ie€E 4
~ ~ 1a; t
f*(i) i=a; € A(i) such that
*
s, >0 i € E\E ,-
iaj t

‘ * * K
step 3a: Use the simplex method to compute optimal solutions z and (x ,y )

of the pair of dual linear programming problems

minimize . Bz,
zJeE 173
* —
j - > - e A(d i, E
subject to XjeE(sij Piaj)zj ri. by a (1), 1«
* * ~
z, 2u, + Y, ieE
i i i

and

* * *
imiz - - X + ~(u,+
maximrze EieEEasA(i)(ria 0% o+ Lyl

subject to J; o). 7 (1) G157 Piay) ®ia * Licglig¥; = By I € E

v
o
[ S
m
12

X, 20, aceh(i), i€ E; vy,
ia |
respectively.
~ * * *
step 3b: Determine the set E_ := {i ¢ Elzi = ui-+wi}.

step 3c: Take g: such that

*
a, such that x. >0 i € E\E .
1 lai *

The algorithm is displayed in the following simple example.

EXAMPLE 5.3.1. Consider the model of figure 5.3.1.

The following calculations can easily be verified. <:>
S
step la: We define 61:=82:=83:=B4n=1/4. (:)
step 1b: ¢" = (1,1,1,1)%; u*=(2,1,0,6)T
p : = 1l S 1Y, . @ 0 e @
step lc: A(1)=A(2)=A(3)=A(4)={1,2};
A(1)=A(2)=A(3)={1,2}; A(4)=0 W =
E = {1,2,3}. D)

Figure 5.3.1



step le: i=3,a=2,3=4: A(3) ={1}.

step 1d: piaj==0 for all i € E, a € A(i), j € E\E.
* T * T
step 2a: ¥ =(-1/2,-1/2,-1/2)"; v =(1/2,0,1/2)";
* * * * * * * * *
BTt Tty S0ty =t = 3/85s ) =1/4r s =8, =85, =0,

step 2b: £ (1) =1, F (2)=2, £, (3) =1.

step 3a: z" =(3/2,1/2,-1/2,9/2)7; 'x‘:l =x’;2 =‘x;1 =x;2 =} =xl, =%y,
le =1/4; vy} = 1/2, v =1/4, ¥} = 1/4.

step 3b: E_ = {1,2,3}.

step 3c: g*(l) =1, g*(2) =2, g*(3) =1, g*(4) =1,

5.4. LINEAR PROGRAMMING APPROACH (SPECIAL CASES)
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In this section we present three special cases which were also consid-

ered for the average reward criterion (see the sections 4.5 and 4.6). In

the weak unichain case (i.e. when assumption 4.5.1 is satisfied), the lin-

ear programming problems which occur in the steps 1b and 2a can be simpli-

fied. For the problem used in step lb, we have presehted a simpler program

in section 4.5. For the problem studied in step 2a, we take actions from

X(i), ie E. Hence (cf. formula (5.3.3)), any pure and stationary policy

is average optimal in the AMD-model (E,X,p,r). Consequently, the assumption

of weak unichainedness is also verified in the AMD-model (E,K,ﬁ,?)-of step

2a. Moreover, since the AMD-value-vector ¢ of model (E,A,p,r) has iaentical

components, we have A(i) = A(i) for every 1 € E. Therefore, the algorithm

for the weak unichain case can be formulated as follows.

ALGORITHM XXIV for the construction of a pure and stationary bias optimal

policy (weak unichain case) .

* *
step la: Compute an optimal solution (¢ ,u ) of the linear programming

problem

. AA A
+ - > ’ i), i .
min{$|¢ XjeE(sij Pioy)ly 2Ty, @€ AW, i E}

step 1b: Determine the following sets:

-p, Jur =r 1, i e E.

A = { 016"+, (8
i) :={a e A() |d + jsE( i3 Piaj) % ia
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= {i € E|A(L) # ¢}.

step lc: If Piaj =0 for all i € E, a € X(i), j € E\E, then go to step 2a.
Otherwise, go to step 1d.

step 1d: Take i € E, a e A(l), j € E\E such that P > 0; X(i) H=K(i)\{a};
if A(i) = @, then E := E\{i}; go to step 1c.

step 2a: Use the simplex method to compute optimal solutions (w*,v*) and t*

of the pair of dual linear programming problems

. ~L ~ * ~ . . it
min{y |y + zjeE(Gij_p Jvyz-u, aehrd), ie E}

iaj’ j
and
o gt =0, 38
Lieilach(s) Ci5Piag’tia = 00 3 €
*
=1
max z1eE ')ZaeA(l) ia 2J.eEXaeA(l) ia
t, =20, ace€ Z(i) , 1€ E
ia
respectively.

~ *
step 2b: Take f*(l) such that tif (1)

>O,iEE*;
* t

Let E :=E ,.
o ~ t

step 2c: If E, = E, then go to step 3a.

Otherwise, go to step 24.
step 2d: Take i € E\Eo, a e X(i), j e Eo such that Piaj > 0;

F(i) := a; E_  := E U{i}; go to step 2c.

*

step 3a: Use the simplex method to compute optimal solutions z and

*
(x ,y*) of the pair of dual linear programming problems

*
XjeE(Gij_piaj)zj ria-¢ a e A(l), i € E

v

miny). _Z,.

zjeE 3 % %
. u, +vy ie
i i

N
\2
2

and

. * *
maximize zieEEaeA(i)(rla—¢ )xia + z_ “(u.-fw )yi

(857Py a5 % + ). =1, jeE

subject to ZleEEaeA(l) iaj' “ia 1eE ij 1

2

xia >0, a€ A(i), 1 € E; yi =z 0, ie

respectively.
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~ * * *

t 3b: Det i th t E = {i E = + .
step e ermine e set E_ {ie Izi u, Y }
step 3c: Take 9, such that
f*(i) B ie E*

a, such that x._ >0, i e E\E..

1 1ai *

In the completely ergodic case (i.e. when assumption 4.6.1 is satis-
fied) the algorithm becomes rather simple. Since all states are recurrent
under every pure and stationary policy, lemma 5.3.1 and theorem 5.3.1 im-
ply that E = E and that %:, defined in step 2, is a bias optimal policy.

Hence, step 3 can be deleted and we obtain the following algorithm.

ALGORITHM XXV for the construction of a pure and stationary bias optimal

policy (completely ergodic case).

* %k
step la: Compute an optimal solution (¢ ,u ) of the linear programming

problem

AVA
. B S s
m1n{¢|¢-+zj€E(6ij piaj) j 2Ty, B A(i), i € E}.

step 1b: Determine

~ ] . — s * _ * = .
A(L) :={a e A(D) |¢ -szeE(sij piaj)uj ria}, i€ E.

. ]
step 2a: Use the simplex method to compute an optimal solution t of the

linear programming problem

~ §, .~ . = j E
Lienlach (1) 13 Piag) tia = 00 3 €
*
max zieE(_ui)Xan(i)t;‘La zieEXaeA(i)tia =1 ’
t, 20, ace X(i), ieE
ia
) —~o % .
step 2b: Take f* such that tif*(i) >0, i e E.

We close this chapter with the presentation of the algorithm for the
unichain case, i.e. when assumption 4.6.2 is satisfied. From the results of
the sections 4.6 and 5.3 it is straightforward that in this case a bias op-

timal policy can be determined by the following algorithm.
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ALGORITHM XXVI for the construction of a pure and stationary bias optimal

policy (unichain case).

' * %
step la: Compute an optimal solution (¢ ,u ) of the linear programming

problem

AA A
, _ S . .
min{¢|¢ + ZjeE(Gij Piaj)uj 2r.r ae A(i), i € E}.

step 1b: Determine the following sets:

o . . * _. *: .
A(i) :={a € A(i)1¢ '*ZjeE(dij piaj)uj ria}’ i€ E.

E := {i e E]A(1) # g}

step lc: If Piaj = 0 for all i € E, a e X(i), j e E\E, then go to step 2a.
Otherwise, go to step 1d.

step 1d: Take i e E, ae X(i), 3 e E\E such that Piay > 0 A(i) := A(i)\{a};
if A(i) = @, then E := E\{i}; go to step lc.

step 2a: Use the simplex method to compute optimal solutions (w*,v*) and t*

of the pair of dual linear programming problems
~ ~ ~ * ~ ~
, - _ S - . .
min{y|p + ZjeE(sij Di,y)¥y 2 W, @AW, icE)
and

Xieﬁzaeg(i)(sij—piaj)tia =0 JeE
*
maxi L 59D T % (1) Cia|Lieilach(o) tia

0, aeh(i),icE

o+
v

ia
respectively.
A0
step 2b: Take f* such that
*
a, where t, >0, ieE 4
- i ia, t

arbitrarily ie E\Et*-

*
step 3a: Use the simplex method to compute optimal solutions z and (x*,y*)

of the pair of dual linear programming problems



maximize

subject to

respectively.
step 3b: Determine the
step 3c: Take g: such

g, (1) :=

£

a,
1

o~
'~
|
o
_
N
v
K
1
-

.o (8, L)z, .
jeE  ij “iaj j ia

*
XieEzaeA(i)(ria_¢ )xia

-p. .jx

)N L (8, L+
ieEfaeA(i) ij “iaj’ “ia

x, 20, aedn(), i
ia

' ae€ A(i), i ¢ E

* *
+ ~ +
Ljegtng+o

zieE‘Sijy

EE;in

~ * * *
:= i E = + .
set E_ {i e Izi u, + v }

that
L (1)

*
such that x, > 0,
lai

ie E\E*.

ie
)Yi
. =1,
i
0, i€ E

€
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CHAPTER 6

TWO-PERSON ZERO-SUM STOCHASTIC GAMES IN WICH
ONE PLAYER CONTROLS THE TRANSITION PROBABILITIES

6.1. INTRODUCTION AND SUMMARY

In this chapter we investigate a two-person zero-sum stochastic game.
This game can be described as follows. Consider a system with a finite state
space E = {1,2,...,N} that is observed at discrete time points t = 1,2,... .
If the system is in state i (at some time point t), then both players choose
simultaneously an action from their own finite action sets A(i) and B(i) for
player I and player II respectively. If in state i player I chooses action
a € A(i) and player II action b ¢ B(i), then the following occurs:

1. Player I receives an immediate reward riab from player II.

2. The next state of the system is chosen according to the transition
probabilities piabj' where piabj 2 0 and Zj Piabj < 1 for every ae A(i),
beB(i), i€E.

A two-person zero-sum stochastic game is denoted by a five-tuple (E,A,B,p,r),
where

is the state space

UieE A(i) is the action space for player I
Ui€E B(i) is the action space for player II
is a transition probability from E XA xB to E

R o W » H
]

- is a real-valued reward function on E XA xB
(EXAXB has to be interpreted as {(i,a,b)]i € E, a € A(i), b € B(i)}). Sto-
chastic games are also called Markov games. If the action space for one of
thé two players consists of one element, then the game becomes a Markov
decision problem. .

Let Ht denote the set of possible histories of the system up to time

t, i.e.

lk€E’>ak€A(lk)'b €B(lk)

k
Ht = (ll'al'bl""'1t—1'at—1'bt-1'it) .

k=1,2,...,t-1; itEE
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- t . .
A decision rule m for player I at time t is a nonnegative function on

,it) € H

H, xA such that for every (il,a /b ,..-,bt €

t 171 1

t

m, . =0 if a, ¢ A(i,)
llalbl"'bt—lltat t t
and
t
z . . = 1.
a, llalbl"'bt—lltat
" . - 1 2
A policy R1 for player I is a sequence of decision rules: R1 = (m ,m ...,
ﬂt,...). A decision rule pt for player II at time t is a nonnegative func-
tion on Ht‘XB such that for every (ll'al'bl""'bt—l'lt) € Ht
ot =0 if b_ ¢ B(i,)
llalbl"'bt—lltbt t t
and
prti:ab b .ib ~ I
t 171717 T -1
A policy R2 for player II is a sequence of decision rules: R2 = (pl,pz,...,
t

P s...). If the decision rules of a policy are independent of the histories
and the time points, then the policy is said to be stationary; furthermore,
if the decision rules are nonrandomized, then the policy is said to be pure.
For any pair (Rl'R2) of policies for player I and player II, we denote
by pzjab(Rl,Rz) the probability that - given that the system starts in state
i - the system is at time t in state j and then the actions a and b are
chosen by player I and player II respectively. Let {Xt, t=1,2,...1,
{Yt' t=1,2,...} and {Zt, t =1,2,...} be the sequences of random variables
denoting the observed states, the actions chosen by player I and the actions

chosen by player II respectively. Then, we can also write
t  (R,R) =D (X, =3,Y_=a,2 _=blx =1i)
Pijab ™17’ = SheteTmar e T

The expected reward in the t-th period, when the policies R1 and R2 are

used and i is the initial state, is denoted by v:(Rl.Rz), i.e.

t : = = =1i)e
v (R /R)) := zjzaXbEE{ (X, =3, ¥ =a, 2, =D IXl i) b

)

The expected total reward over an infinite horizon, when the policies R1
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and R_ are used and i is the initial state, is denoted by Vi(Rl'R2)' i.e.

2
Vi(Rl'Rz) 1= zt=1zjza2bPR1,R2(Xt=J' Y =a, Z =b le =1)-rjab.
Usi the ab tati that lim iT vt(R R,.) exists (pos-
sing the above notation we assume - =173 (R /Ry P

sibly +» or -«). For a Markov game with as utility function the total re-
ward criterion we will use the name TMG-model. Player I wants to maximize
his rewards and player II wants to minimize his payments. Hence, the aim

* *
is to find policies R, and R, such that

1 2
6.1.1 (R,,RS) <v(R\,R.) =v(R,,R,) for all policies R ,R
(6.1.1) v 17’y _v(Rl,R2)‘:v(R1,R2 or a policies RysR,.
* * * * . )
If R1 and R2 satisfy (6.1.1), then R1 and R2 are called optimal policies

for player I and player II respectively. We are also interested in the value
of v(RI,R;) which will be denoted by val(TMG) and is called the value of the
TMG-model or the value of the game.

In section 6.2 we consider the total reward criterion under the contrac-
tion assumption as introduced in section 3.4. It is well-known that in this
model the value of the game exists. We will see that, in general, the value
of the game does not lie in the same field as the field generated by the data
riab' piébj’ i,j € E, a € A(i), b € B(i). In the simplex method only the op-
erations addition, subtraction, multiplication and division are used. Hence,
in general, the value of the game cannot be computed by linear programming.
If we assume that the transition probabilities only depend on one p}ayer,
say player I, then it can be shown that the value as well as stationary
optimal policies for both players can be computed by linear programming.

For this reason we investigate the model in which one player controls the
transition probabilities. We shall show that the value of the game is the
smallest vector which satisfies a superharmonic property. Then, we can for-
mulate a pair of dual linear programs. Stationary optimal policies as well
as val(TMG) can be obtained from optimal solutions of these linear programs.
Hence, we can present an algorithm to compute these quantities by linear
programming.

Section 6.3 deals with the average reward criterion. The expected av-
erage reward over an infinite horizon, when the policies R, and R_ are used

1 2
and state i is the initial state, is denoted by ¢i(R1'R2) and defined by

1 T
R .= limi =" = = =1) e
¢, (R{/R)) :=liminf, T zt:lzjzaszPRl,Rz(Xt 3i¥ =a,2, b[X1 1)‘rj b
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*

*
This model is called the AMG-model. The policies R1 and R2 are said to be

optimal for player I and player II respectively if

* * * *
< .
(6.1.2) ¢(R1,R2) S¢(R1,R2) _¢(R1,R2) for all policies R1’R2'
* * * %
If R1 and R2 are optimal policies, then ¢(R1,R2) is the value of the game,

denoted by val (AMG). ‘

Also for the AMG-model, we shall assume that only one player controls
the transition probabilities. We will present a pair of dual linear program-
ming problems, and we will prove that stationary optimal policies as well
as the value of the game can be obtained from optimal solutions of these
linear programs. Hence, we can formulate a finite algorithm to constfuct
stationary optimal policies. Furthermore, the linear programming approach
provides a new proof for the existence of the value of a stochastic game
in which one player controls the transition probabilities. We close section
6.3 by a description in which way the algorithm may be simplified in the

unichain case.

LEMMA 6.1.1. Let £ be a real-valued function defined on XXY, where X and Y

* *
are given sets. Suppose that x € X and y ¢ Y satisfy

* *  x *
f(x,y ) < f(x ,y) < £(x ,y) for every x € X and y € Y.
Then,

—_— . .
f(x ,vy ) = squeXlnferf(x'y) = 1nfy€Ysupx€xf(x,y).

PROOF. Since

supXEXf(x,y) > f(x,y) for every x € X and y € Y,
we have
. 5 i
1nf§€Ysupx€Xf(x,y) > 1nf§eyf(x,y) for every x € X.
Consequently,
6.1.3 1 £ > ] .
( ) lnnyYsquéx (x,v) supxexlnfy€yf(x,y)

* * *
Since f(x,y ) < £(x ,y ) for every x ¢ X, it follows that f(x*,y*) =

% .
u £ . i
sup, v (x,y ). Hence, we can write

3 * * * *
(6.1.4) J.nfy€Ysupx€Xf(X:Y) < squeXf(x'y ) =f(x,y) £ f(x,y), y €Y.
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Similarly, we can derive that
6.1.5) inf __£(x,y) 2 inf___£(x",y) = £(x,y) = £(x,y" X
(6.1. supxexln yey X,y) 2 in yey X ,y) = £(x ,y > X,y ), X € X.
Combining (6.1.3), (6.1.4) and (6.1.5) yields

* .
f(x,y ) < squexlnf§er(x'y)

<
< 1nfysysupxexf(x,y)

I

f(x*,y) for every x € X and y € Y.

Hence,
f(x 1'% ) = sup inf f(xlf) = inf sup f(xlf)l
xeX YEY yéy xeX

completing the proof of the theorem. [

COROLLARY 6.1.1.

*
(1) If (Rlsz) is a pair of optimal policies for the TMG-model, then
®RY) = inf_ v(R,,R)) = inf v(R, ,R,)
V(R /R)) = supRlln sz 1'Ry) = 1in stupR1 1Ry

* %
(ii) If (R1,R2) is a pair of optimal policies for the AMG-model, then

* % . .
¢(R1,R2) = supy .mfR ¢(R1,R2) = J.nfR supp ¢(R1,R2).
1 2 2 1
Let . and p°° be stationary policies for player I and player II res-

pectively. We introduce the following notations:

ria(p) 1= Ebriabpib ae A(i), 1 € E,
rib(ﬂ) 1= zariab“ia b e B(i), i € E,
o) = T TP 1 ek,

piaj(o) 1= priabjoib a e A(i), i,J € E,

pibj(w) 1= zapiabj“ia b e B(1), i, € E,

pij(n,p) = i,j e E.

zapriabj“iapib
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REMARK 6.1.1. Let p°° be any stationary policy for player II. Consider the

Markov decision problem (E,A,P,T), where

E := E,
A(i) := A(d), ieck,
piaj := piaj(p), ae A(i), i,j € E,
Y. =1, (p), a e A(i), ieE.
ia ia
1 2 . . .
Let R1 = (T ,7 ,...) be any policy for player I. Then R1 induces a policy
El = (?1,?2,...) for the Markov decision problem (E A,p,r), where
?: a a ia TP pw(Yt=at| X =iY =a,,. Y, gTaL X s
17171t t 1’

for every t € N and every history (il'al""'at—l'it)° Then, by induction

on t, it can easily be verified that

(6.1.6) ]P§1 (X

P YT = g X Sl Yy

P m(Xl=i1,Y

ZaA,re0000Y
Rllp ’ '

1 1 t-1 “t-1"Tt Tt Tt Tt

for every t € N, every history (il,al,...,a 'it) and every a, A(it)°

t-1
(6.1.6) implies that

v (X, =i,,Y, = =b, ..., X, =i =
IPRl,o Xy =iy, ¥ =25, 2 =bysee X =1, ¥, =2a,,2 =b

Al .
R,p (x1=l ,Y

1 1 =a1,Zt=b e X =1 _,¥Y =a

1 177" Tt e Tt e Tt

for every (i s, 47.+0,i,_,a_,b ), t € N. Therefore, the policies (El,pm)

1 tTt Tt

and (R 0 ) are equivalent for any utility function. However, the policy
R1 is a feasible policy for the Markov decision problem (E A,p,r) If
V(Ri) and ¢(R1) denote the expected total reward and the expected average

reward respectively in the Markov decision problem (E,X,B,?), then we have
1. V(R)) = V(R ,p)

o oo o]
2. suPRlv(Rl'p ) = supﬂV(ﬂ )



192

3. ¢(R1) = ¢(R1,p )
4. supy ¢(R1,o ) = supﬂ¢(ﬂ 0 ).

1
Furthermore, changing the roles of the players I and II, we obtain

]

5. 1nfR2v(w ,R2)
6. 1nfR2¢(ﬂ ,R2)

. oo (o]
1nfpv(ﬂ 0 )

(o] (=]
inf ¢o(m ,p ).
o
6.2. TOTAL REWARD CRITERION

In this section we consider the TMG-model under the following contrac-

tion assumption (cf. assumption 3.4.1).

ASSUMPTION 6.2.1. There exists a vector u >> 0 and a scalar o < [0,1) such

that

sziabjuj < a ui, ae€ A(i), b € B(i), 1 € E.

Assumption 6.2.1 guarantees that the expected total reward is well-
defined for any pair (Rl’R2) of policies. The following theorem has been
proved already in 1953 by SHAPLEY [1953] for the discounted Markov game,
i.e. the TMG-model under assumption 6.2.i with pu = e. The extension of the
theorem  to general positive u-vectors is straightforward (cf. VAN DER WAL
& WESSELS [19771]).

THEOREM 6.2.1. There exist stationary optimal policies for both'plagers.

The above theorem implies that val(TMG) exists. The next example will
show that, in general, val(TMG) is not an element of the field generated

by the data ri , a € A(i), b € B(i), i,j € E. Hence, this val (TMG)

ab’ Piabj
cannot be computed as solution of a linear program which has all coeffi-

cients in this field. Since we study in this monograph linear programming
methods, we shall not di cuss the general TMG-model, but a model with an

additional assumption. Under this assumption, we can compute val(TMG) as

well as stationary optimal policies by linear programming. The TMG-model

under this additional assumption was first studied by PARTHASARATHY &

RAGHAVAN [1977]. The following example is also due to them.

EXAMPLE 6.2.1. Consider the discounted TMG-model of figure 6.2.1 with

a = 0.5. The interpretation of the figures for TMG-models is similar to
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the interpretation of the
figures for TMD-models
except that a positive

S s as a
pikﬂj is indicated by

an arc from state i to
state j with k times ® Figure 6.2.1
and £ times ».

Let y := val(TMG). Since V2(R1,R2) = 0 for all R,,R_, we have y2 = 0. It

1’72
can be shown that y1 is the value of the matrix game with pay-off matrix

(1 +hy, O
0 3+1§y1’

Then, using results from the theory of matrix games (e.g. KARLIN [1959]
p.50), one can find that

(1+%y1)'(3+%y1)
¥y = (1+5y )+ 34y )

implying that v, = %{—4+V13). Hence, [val(TMG)]1 is not an element of the
field of the rational numbers, i.e. the field generated by the data of the

above problem.

DEFINITION 6.2.1. A vector y € Iﬁq is said to be TMG-superharmonic if there

exists a stationary policy pm for player II such that

S . .
v, 2 ria(p) + ijiaj(o)yj, aeA(l), ie€kE.

THEOREM 6.2.2. val(TMG) is the smallest TMG-superharmonic vector.

PROOF. Let ('rr*)°° and (p*)w be stationary optimal policies for player I and
player II respectively (theorem 6.2.1 implies the existence of such a pair
of policies). If player II uses policy (p*)m, then the stochastic game may
be interpreted as a Markov decision problem (see remark 6.1.1). Furthermore,
since (p*)oo is optimal for player II, we have supRlv(Rl,(p*)w) = val (TMG) .
Hence, the TMD-model has TMD-value-vector val(TMG). Consequently, theorem

3.4.1 implies that val(TMG) is TMD-superharmonic, i.e.

[ val(TMG) ]i > ria(p*) + ijiaj(p*)[val(TMG) ]j, aeA(i), ieE.
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Therefore, val(TMG) is also TMG-superharmonic.
Suppose that y is another TMG-superharmonic vector with corresponding
*
stationary policy pw. Then, it follows from definition 6.2.1 that y2r(m ,p)+

* * -
P(m ,p)y. Assumption 6.2.1 and theorem 2.3.1 imply that (I-P(m ,p)) L

3

t-1, *
2t=1P (m ,p). Hence,

0o

t-1,  * * %k o o
e=1F (moaplx(m,p)=vm) o).

y 2]
% oo
Since (m ) is optimal for player I, we have
* * *
y 2 v((@) 7,07 2 v, (0)) = val(TMg).
This completes the proof. O

From theorem 6.2.2 it follows that val(TMG) is the optimal solution
of the following nonlinear programming problem in which the objective func-
tion is linear and there are linear as well as quadratic constraints (cf.
ROTHBLUM [1979]) :

minimize B.y.
ZJ JyJ

subject to yi > ae A(i), 1 € E,

+
b*iab’ ib zjsziabjpibyj'

Xbpib =1 ieE,

1\
o

[ b e B(i), i € E,

ib !
where Bj > 0, j € E, are given numbers.

To obtain a linear program we assume that we have in the remaining

part of this section the following assumption.

ASSUMPTION 6.2.2. The transition probabilities Piabj' j € E, do not depend

onb for all i ¢ E, a € A(i).

Because of assumption 6.2.2, we will denote the transition probabil-
ities piabj by piaj and the transition matrix P(m,p) by P(m). Under this

assumption we obtain the following linear programming problem
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§..-p.-.)y. - > A(i i E
Xj( 197 Pia3)¥y T LpfiapPip 2 0 2 €AW, de

.2.1 1 = i Ep .
(6.2.1) min szjyj P ib 1 r 1€
pib 2 0, b e B(i), i € E
The dual linear programming problem is
- = i E

ziza(‘sij Piaj' *ia. By )€

- < . .
(6.2.2) max zizi Zariabxia + zi <0, be B(i), i € E

X 20, a€ A(i), i € E

*
THEOREM 6.2.3. Let (y*,p ) and (x*,z*) be optimal solutions of the linear
programming problems (6.2.1) and (6.2.2) respectively. Define the station-

*
ary policy (m ) by

* *
T, iFE X, * s
ia 1a//é X, , ace€A(i), iceE.
a ia

* *
Then, (m )°° and (p )oo are stationary optimal policies for player I and

*
player II respectively, and y 1is the value of the game.

*
PROOF. Theorem 6.2.2 implies that y is the value of the game. Since

Y x, =8, +).)p .x;_28.>0, JecE,

X, Lo X,
a ja j i iaj ia 3j

* ©o
the stationary policy (m ) is well-defined. From the constraints of prog-

ram (6.2.1) it follows that

* *
(I-P(m))y = r(m,p ) for every stationary policy nm.

. -1 © t-1
Since (I-P(m)) = Zt=1P (m), we get
* 00 —-
(6.2.3) y = Et=1Pt 1(n)r(n,p*) = v(nm,(p*)w) for every stationary

L=
policy T .

* *
“ia > 0 if and only if xia > 0 and, consequently, the complementary slack-

ness property of linear programming (cf. corollary 1.3.1) implies that

* * * * .
La"ia {zj(sij—piaj)yj} = La"a bpTiapfipr L€ E
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Hence,
* * * *
(I-P(m ))y = x(m ,p ),
implying that

v = @p ) e 0" = v @™, 0.

Analogously to theorem 3.4.2, we can obtain

xf = [BT(I—P(W*))—lj,-nf , ae A(i), i € E.
ia i ia

Since the optima of (6.2.1) and (6.2.2) are equal, we get

* o * o * *
stjvj((n Y e = stjyj =)z <

)

z Z v o = z B.v ((w*)m,pm) for every 0.
ifafb iab i: ia 3 J3

*
Hence, (p )°o is a stationary optimal policy in the Markov decision problem

corresponding to policy ('rr*)°° for player I. Consequently,
* * o o) Y
(6.2.4). y <v((m) ,p) for every stationary policy p .

i R, (67 = (", (0™)™) anad infp v((r)",R ) =
Since supRlv mll o ) = supﬂv T ,(p an 1n'R2v m Ry =
infpv((n*)w,p ) (see remark 6.1.1), it follows from (6.2.3) and (6.2.4)
that

) for all R, ,R,,

VR (0D < v, 01T < v R, LRy

* ©o *
i.e. (m) and (p )°° are stationary optimal policies for player I and play-

er II respectively. [J

REMARK 6.2.1. Since the optimal policies and the value of the game are ob-
tained as optimal solutions of the linear programs (6.2.1) and (6.2.2),
the components of the value of the game as well as the components of the
optimal decision rules belong to the algebraic field generated by the re-
wards and the transition probabilities. This result is also shown by

PARTHASARATHY & RAGHAVAN [1978].
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REMARK 6.2.2. In this remark we will show that the optimality of the poli-
cies ('rr*\')00 and (p*)w, which were defined in theorem 6.2.3, can also be
established without the use of theorem 6.2.1. Then, we have a constructive
proof for the existence of the value of the game and the existence of sta-
tionary optimal policies for the two players. This proof only needs results
from the theory of linear programming and the theory of Markov decision

processes. Consider the linear programming problem (6.2.2).By theorem 3.4.8,

€ E

»
o~
[N
~1
o
O»
[N
.
|
'o
-
()
~
X
I
™
o

X >0, a e A(i), 1 € E

is feasible and bounded, and it follows from the constraints of problem
(6.2.2) that this linear program has a finite optimal solution. Again, let
(y*,p*) and (x*,z*) be optimal solutions of the linear programs (6.2.1) and
(6.2.2) respectively. Similarly as in the proof of theorem 6.2.3 it can be
shown that

* 00 * * oo * © * o
V(Rll(p))Sy =v((m) ,() ) 2 v((m) ,R2)

* *
for all policies R1'R2’ i.e. (mw )°° and (p )°0 are stationary optimal policies

*
and y 1is the value of the game.

ALGORITHM XXVII for the construction of the value of the game and of sta-
tionary optimal policies for the two players in a contracting TMG-model

in which one player controls the transition probabilities.

step 1: Choose the numbers Bj such that B, > 0, j € E.
* * *
step 2: Compute optimal solutions (y ,p ) and (x ,z*) of the pair of dual

linear programming problems

zj(aij_piaj)yj - briabpib > 0, ae A(i), i € E

in{y 8. =1 i
mn zJB:IYj b°ib ' 1ekE

pib >0, b e B(i), i € E
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ziza(ﬁij-piaj)xia = Bj, j eE
a - < . .
max zizi zariabxia + z, o, b e B(i), 1 ¢ E
X, =20, a e A(i), i € E
ia
respectively.

step 3: val(TMG) := y*;
%k o
(p ) is an optimal policy for player II;
*m * * * s . . s )
(m ) , where Tia = xia/zaxia' a e A(i), i € E, is an optimal policy
for player I.

For any stationary policy T for player I, we define

x, (m) := [BT(I-P(m)) ] -m, , aeali), ickE,
lila 1 lia

z (M) := minbeB(i)rib(w)-zaxia(w), i€ E.

The relation between the stationary policies and the feasible solutions of

program (6.2.2) is given in the following theorem.

THEOREM 6.2.4.
(i) (x(m),z(m)) is a feasible solution of the linear programming problem

(6.2.2) with
zizi(n) := minpzjsjvj(ﬂ o).

(ii) If (x,2z) is a feasible solution of problem (6.2.2), then x = x(m) and

z < z(m), where

i 1= i i .
ia Xii/% x ae A(i), 1 € E
a“ia

PROOF.
(i) Theorem 3.4.2 implies that Z,Z (§,.-p, .)x, (m) =B8., j € E, and
i“a ij Yiaj'Tia 3j

xia(w) 2 0, a € A(i), i € E. Furthermore, we have
<’ . = i i
zi(ﬂ) < rib(ﬂ) Xaxia(ﬂ) zariabxia(“)’ b e B(i), i € E.

Hence, (x(m),z(7w)) is a feasible solution of program (6.2.2). Let p°° be

any stationary policy for player II. Then, we can write

(6.2.5) Lz (m = Zi(szib)zi(n)

< Lo apfipXia ™ = Zijvj(ﬂ o).
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Define the stationary policy Sw by

where b, satisfies
i

z,(m) = ribi(""zaxia("" i€ E.

Thus,
~ [N
= . . = ™ -

(6.2.6) Lz, (M Zizbiarib(n> Pip%ia (M Zjejvj( 0 )
From (6.2.5) and (6.2.6), it follows that

Y.z, (m) in ¥ B.v, (1,0 )

z, (m) = min ) B.v, (W .

i%i pl3"3V5 " 1P
(ii) Let (x,z) be any feasible solution of problem (6.2.2). Theorem 3.4.2
implies that x = x(w). Hence, z satisfies

205 Liap®ia™ = LiTiapiatlaka ™ = 2y (M L xg (M

for every b € B(i) and i € E. Consequently,

z, < min (n)-zaxia(n) =z (m, ickE

beB (i) " ib
which completes the proof of the theorem. [

REMARK 6.2.3. The linear programming approach is also applicable to solve the
constrained Markov game, where the constraints are imposed on the expected
state—action frequencies for the player who controls the transitions. The
analysis is analogous to the treatment of the constrained Markovian decision

problem of section 3.3 (cf. HORDIJK & KALLENBERG [1981el]).

6.3. AVERAGE REWARD CRITERION

In this section we deal with the AMG-model. As in chapter 4, we assume
that the summation of the transition probabilities equals 1, i.e. ijiabj=1
for every i € E, a € A(i), b € B(i). In the AMG-model, in general, there
do not exist stationary optimal policies as shown in the following example

due to GILLETTE [1957].
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EXAMPLE 6.3.1. Suppose that
the AMG-model corresponding
to figure 6.3.1 has station-
ary optimal policies (Tr*)°°
and (p*)°° for player I and
player II respectively.

Then,

o * ©0 * 00 * ©o - * 00 =]
d(m , (0 ) ) So(m) ,(p ) )< U(m) ,p) Figure 6.3.1
oo (=]
for all stationary policies m and p . Hence (cf. corollary 6.1.1),
. oo (o] . (<) [eo]

supﬂlnfp¢(n 0 ) = 1nfbsupn¢(n 0 ).

However, it can be verified that the model of figure ¢.3.1 satisfies
[ee] 0 © o
L = supﬂinfp¢1xw o) < infpsupﬂ¢1(w 0 ) = 1.

REMARK 6.3.1. BLACKWELL & FERGUSON [1968] have shown that for the model of

figure 6.3.1
supRllnfR2¢1(R1,R2) = 1nfstupR1¢1(R1,R2) =1,

Moreover, they have proved that there do not exist optimal policies for the

two players; only player II has an optimal policy. Recently, MONASH [1979]
and MERTENS & NEYMAN [1980] have shown that any AMG-model satisfies the

minimax theorem, i.e.

supR infR ¢(R1,R2) = infk supp ¢(R1,R2).
1 2 2 1

N
DEFINITION 6.3.1. A vect . ¢ € IR is said to be AMG-superharmonic if there

. N
exist a vector t € R and a stationary policy pco for player II such that

<
\

, el

+ . .
ria(o) sziaj(p)tj’ aeA(i), i € E.

jpiaj(p)wj , a e A(i), i € E,

<
+
t
\%

THEOREM 6.3.1. If there exist stationary optimal policies for both players,

then val (AMG) is the smallest AMG-superharmonic vector.
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PROOF. Suppose that (Tr*)m and (p*)w are stationary optimal policies for
the two players. Since player II uses a stationary policy, the AMG-model
may be interpreted ai an AMD-model with rewards ria(p:)wand transition
probabilities piaj(p ) (see remark 6.1.1). Because (p )* is an optimal
policy for player II, we have furthermore, supR1¢(R1,(p ) ) = val(AMG).
Consequently, val(AMG) is the AMD-value-vector in the corresponding AMD-
model. Theorem 4.2.2 implies that val (AMG) is AMD-superharmonic. Hence,
val (AMG) is also AMG-superharmonic with corresponding stationary policy
(p*)°° for player II.

Suppose that Yy is also AMG-superharmonic with corresponding vector t and

policy pw. Then, definition 6.3.1 implies that
* % * *
Y 2P (1 ,p)y and ¢ = xr(m ,p) + (I-P(m ,p))t.
Hence, we get
* % * *
v 2P (m,p){x(r ,p) + (I-BP(m ,p))t} =
* * * * o o
P (m ,p)x(m ,p) =¢((m) ,p0 ).

Since the policy ('n*)°° is optimal for player I, it follows that
* © o * * o
vz o((mr) o) 2 ¢((r) ,(p) ) = val(aMe),

i.e. val(AMG) is the smallest AMG-superharmonic vector. O

From theorem 6.3.1 it follows that, if there are stationary optimal
policies for both players, then the value of the game can be computed as

the optimal solution of the following mathematical programming problem

zj (sij_sziabjpib) vy

[\

0, acA(i), i€E
+ - _ 5 ' .
min Z B U wi E:j((sij sziabjpib)tj Zbriabpib 0, aeA(i), 1 €¢E
37373 . )
prib L i€E

]

[\

p 0, beB(i), 1i€E

ib

where Bj >0, j € E, are given numbers.

REMARK 6.3.2. In BEWLEY & KOHLBERG [1978] sufficient conditions can be

found for the existence of stationary optimal policies in an AMG-model.
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An example of such a condition is the case that assumption 6.3.1, which is

stated below, is satisfied.

Since we are interested in the computation of stationary optimal poli-
cies by linear programming, we have to impose an aséumption to our model.
Similarly as in the previous section for the TMG-model, we will assume that
the transition probabilities depend only on the maximizing player. The fol-

lowing assumption holds for the remaining paft of this section.

ASSUMPTION 6.3.1. The transition probabilities Piabj' j € E, do not depend

onb for all i ¢ E, a € A(i).

We will denote the transition probabilities Piabj by piaj and the
transition matrix P(m,p) by P(m). Theorem 6.3.1, remark 6.3.2 and assump-
tion 6.3.1 imply that val(AMG) can be found as the optimal solution of the

following linear programming problem:

(8, .-p. ), >0, aeA(i) ,i€E
ZJ( ij Piaj w:

Y.+). (8, .-p,_)t,-Lr. . p. 20,acA(i), icE
(6.3.1) min stjwj i ®%j ij “iaj’ j “bTiab ib

szlb =1, i€eE
Pip > 0, beB (i) ,iecE
The dual linear programming problem is
ZiZa(Gij_piaj)xia =0, jeE
X, +).) (8,.-p, )Y, = B., jeE
(6.3.2) max zizi a ja i%a "ij Tiaj'“ia 3
- < o
zariabxia tz, = 0 , beB(i),icE
Xia¥ia 20 , aeA(i),icE

*
THEOREM 6.3.2. Let (y*,t*,0%) and (x",y",2") be optimal solutions of the
linear programming problems (6.3.1) and (6.3.2) respectively. Define the

*
stationary policy (m )c° by
* * A(.) . E
X, v a e i ie
* o E:axia ' x*

* . .
yla/z % ! a e A(i), i € E\Ex* .

a ia
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* * ® .
Then, (m )w and (p ) are stationary optimal policies for player I and

*
player II respectively, and  is the value of the game.

*
PROOF. From theorem 6.3.1 and BEWLEY & KOHLBERG [1978] it follows that

is the value of the game. The constraints of program (6.3.2) imply that

*

*
zaxja * 2 =8 +Zizapiajyia

*
> > j .
ayja 3 Bj ‘ o, j € E

Hence, the policy (1r*)°° is well-defined. The constraints of program (6.3.1)

imply for any policy ﬂw
* * * * *
Yy o= P(my and ¢ =2 r(m,p ) - (I-P(mM))t .
Therefore, we obtain
6.3.3)  v* 2 P My 2 P (mrlm e - pFm (-t =6 (7, (0

*
for any policy nm. Since “ia > 0 if and only if

*
x, >0 for a € A(i) and 1 € E 4
la b

* . .
>
Yia 0 for a € A(i) and i € E\EX*,

if follows from the complementary slackness property of linear programming

(cf. corollary 1.3.1), that

* * .
za“ia {Zj(sij-piaj)wj} =0, 1ice E\Ex*,

* * * *
. + - - = i .
Xawia {wi zj(aij Piaj)tj b¥i pib} 0, i€k,
Suppose that

* *
ﬂkak-{zj(skj-pkakj>wj} # 0

*
for some k ¢ E , and ak € A(k). Then, the definition of m and the con-
% )

straints of program (6.3.1) imply that

* *
xkak-{zj<skj-pkakj)wj} > 0.
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Hence, we get
Zizaxza'{ij(dijnp;aj)w;} >0
which is contradictory to
zizaxza.{zj(aij—piaj)w;} =
- LT, 0, ey W = 0.

Therefore, we have

* * ) -
Xania-{fj(éij-piaj)wj} =0, i=«E,
* * * * .
za"ia'{"’i'*zj(éiﬁ-Piaj)tj - Pl T 0 Le B xr
l.€.
[(z-p(n)u"], =0 .,  ieE,
* * ok * ok .
¢i + [(I-P(m )t ]i = ri(n 00 ), ie Ex*.

Since E , is the set of recurrent states in the Markov chain induced by
X

*
P(m ) (see proposition 4.3.3), we obtain

* * k% *x ok * ok * *
(6.3.4) Yo=P (m)Y =P (m)r(m,0 ) =4¢((m) ,(p) ).
Let x. =L X , ie¢E. S that E, ,E E h ai
e xi =LK i € E. Suppose a El' g B are the ergodic sets

and that F is the set of transient states in the Markov chain induced by

*
P(m ). Let nk = IEk|, k=1,2,...,m. Then, we shall show that

=T =y 0N,

for certain vector y >> 0, where

=R

, LerF
(6.3.5)

* 1 * *
by EjeE ;7 m zierij(ﬂ )}, L E, k=1,2,...,m
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(choose n sufficiently large such that y >> 0).

Then, definition (6.3.5) implies that
* *
(6.3.6) ZzijeEkszlj(w ) =

* * * *
= XzeFZjeEkYZPZj(“ )+ zieEkzjeEkYipij(" )

1 * *
“n zKerjeE Pﬂj(w )+ zieE Yy
k k
1 * * * 1 * *
= H'XzeFXjeEkpzj(” )+ zjeEk{xj T n zzeFPZj(" '}
=V, x5, ok =1,2 m.
jEEk j’ r AN

* T
From program (6.3.2) and the definition of ﬂ* it follows that (x ) =

*
(x )TP(ﬂ*) and, consequently, (x*)T = (X*)TP*(W*). Because, by proposition
* *
4.3.3, xz = 0 for all i € F, and, by theorem 2.3.2, p, (1) = 0 for all

i € F, we have
T
(6.3.7) xz = (y P*(ﬂ*))i =0, iePF.

For any i € E , we obtain using (6.3.6)

k

X*_
jeE, S

1]

)

* * * * * * * * *
6.3.8) X, X.p.. (m) =), _x.p,.(m) =p,  (7m)-
( i j Jpjl 2jsEk Jpjl Pll z

* * ' * * * * % *
Py (7 )'zzzjeEkszzj(“ ) = XKYK.ZjeEkPZJ(W )*py; ()

* % T % %
XKYK pzi(ﬂ ) = (Y P (m)),.
* T T % * .
Hence, (6.3.7) and (6.3.8) imply that (x ) = y P (m ). Again using the
complementary slackness property yields
* * *
LilePin(®s = LaTiap¥is) = O

Therefore,

* *  x * ok *
(6.3.9) Lizg = Likesp?; = Lilpla®sanin™ia  ta¥ia

[

T % % * % T * o *
LR M r (me’) =y e L) ).
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For any stationary policy pm for player II, we have in view of the con-

straints of the linear program (6.3.2)
* * * * T * © o
6.3.100  Fiz =L 0ei; < Ll anipTiatlakia = Y O up ).

If the policy ('rr*)°° is used by player I, then the AMG-model may be viewed
as an AMD-model (cf. remark 6.1.1). Since y >> 0, it follows from (6.3.9),
(6.3.10) and the property that an .optimal policy maximizes the rewards

simultaneously for all initial states, that
*x *© * oo * o o o
(6.3.11) d((m ) ,(p) ) <od((m) ,p ) for every stationary policy p .

. * o _ oo * o . * oo i *
S;nce supR1¢(R1,(p ) ) = supn¢(ﬂ ,(p ) ) and 1nfR2¢((ﬂ ) ,R2) 1nfp¢((w )
p ) (see remark 6.1.1), it follows from (6.3.3), (6.3.4) and (6.3.11) that

e (617 <007, 017 < 007 R

* *
1,R2, i.e. (m )°° and (p )°° are stationary optimal policies for

player I and player II respectively. 0

for all R

REMARK 6.3.3. Recently, we learned that another proof of the above theorem
was developed by VRIEZE [1980] at the same time.

REMARK 6.3.4. We can show the optimality of the stationary policies (n*)w
and (p*)m, defined in theorem 6.3.2, without using the results of BEWLEY
& KOHLBERG [1978]. This provides a constructive proof for the existence of
the value of the game and of stationary optimal policies.

Consider the linear programming problem (6.3.2). Since any feasible

solution (x,y,z) satisfies
Lizg < LilTianki, < Wllx, = M'stj'

where M := max, ; the linear program (6.3.2) has a finite optimum.

1,a,briab
Using the results of chapter 4, it is obvious that this linear program is
also feasible. Hence, the pair of dual linear programming problems (6.3.1)
* * * * *
and (6.3.2) has finite optimal solutions, say (¢ ,t ,p ) and (x ,y*,z )

respectively. In the proof of theorem 6.3.2 we have shown that

s N7 9" =67, 0N < 407 Ry



207

* oo * 0o . .
1 and RZ' i.e. (m) and (p ) are stationary optimal

*
policies for player I and player II respectively, and Y is the value of

for all policies R
the game.

ALGORITHM XXVIII for the construction of val(AMG) and of stationary optimal
policies for the two players in an AMG-model in which one player controls

the transition probabilities (multichain case).

step 1: Take the numbers Bj such that 8. > 0, j ¢e E, and £ B, = 1.
step 2: Compute optimal solutions (¢*,t*,p*) and (x*,y*,z*) of the pair

of dual linear programming problems

- > () icE
Zj(sij Pias) Y5 0, aeA(i),ie
+ - - > . .
in Z - wi zj(aij piaj)tj zbriabpib 0, acA(i) ,ieE
33 Xbpib =1, i€E
pinO, beB(i) ,i€E
and
Eiza(sij—piaj)xia =0 jeE
Z X, +ZZ (8,.-p,_.)y,_ = B., jeE
max Xizi a ja i¥a 1] T1iaj a J
- < . .
Xariabxia + zi <0, bEB(l),.léE
X, ,vy.,_ 20, aeA(i), iecE
ia'*ia
respectively.
step 3: val(AMG) := y°;
*
(p )°° is an optimal policy for player II;
x, [y cA(l), icE
. ' a i), i€
% o % ia zaxia <*
(m) , where m,_ :=
ia
* * a € A(i), i € E\E 4+
Yia z v, ' ' x*

a’ia
is an optimal policy for player I.

REMARK 6.3.5. From the linear programming approach it also follows that the
value and the optimal stationary policies lie in the same ordered field as
the data. This property was already shown by PARTHASARATY & RAGHAVAN [1978].
The first finite algorithm to compute stationary optimal policies was de-
veloped by FILAR & RAGHAVAN [1979]. Their algorithm seems to have a prohib-

itive amount of computations.
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REMARK 6.3.6. Analogously to the results of section 4.7 the constrained
Markov game can be solved by linear programming. An extensive treatment of

this subject can be found in HORDIJK & KALLENBERG [1981f].

We close this section with the unichain case, i.e. when assumption 4.6.2
is satisfied. For this case we propose algorithm XXIX. In theorem 6.3.3
we will prove that this algorithm finds stationary optimal policies for

both players as well as the value of the game.

ALGORITHM XXIX for the construction of val(AMG) zand of stationary opti-
mal policies for the two players in an AMG-model in which ~ne player con-

trols the transition probabilities (unichain case) .

* kX * % .
step 1: Compute optimal solutions (¢ ,t ,p ) and (x ,z ) of the pair of

dual linear programming problems

((Juv+V 8 -p. Ot

- > A(i i € E
| L8 Py By T TPy 2 0 @ € AU,

. = i € E
(6.3.12) min{y bPib 1, ie
fib > 0, b e B(i), i € E
and
- _ . E
ziza(ﬁij piaj)xia 0 J e
Llx =1
(6.3.13) max z.z_ ira 1 )
1 z r., . X. +z, <0, b e B(i), i € E
a iab ia i
x, =0, ae€ A(i), 1 € E
ia

respectively.
step 2: val(AMG) := w*-e;
(p*)ec is an opti 1 policy for player II;

ae€A(i), i € E_,
* 00 X

* *
X, '
* 9 zaxia
(m) , where m, :=
ia

arbitrarily, ae A(l), i € E\Ex*,

is an optimal policy for player I.

THEOREM 6.3.3. Suppose that we have a unichained AMG-model. Then, algorithm
XXIX gives the value of the game as well as stationary optimal policies

for the two players. -
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PROOF. Lemma 4.6.1 together with theorem 2.3.2 imply that for any stationary
*

policy T the stationary matxix P (m) has identical rows. Hence, val (AMG)

has identical components. Then, by theorem 6.3.1, val(AMG) is the optimal

solution of the linear programming problem (6.3.12). Moreover, we have

) (1-P(r")) =0 and (x)Te = 1.

Consequently,
(6.3.14) x" =p (1,

* * *. *
where p (m ) is the vector corresponding to the identical rows of P (7 ).

From the constraints of program (6.3.12) it follows that
* © * 0o o
(6.3.15) P oee 2¢(m ,(p) ) for every stationary policy 7 .
By the complementary slackness property it holds that
(6.3.16) Y.z =
i7i

X X Z r p* “* °x* - (p*(ﬁ*))Tr(ﬂ* p*) -
italp iab"ib ia “i !

* o * oo
¢j((ﬂ ) (e )) for every j € E.
Then, by theorem 1.3.4, we obtain
*—-.

(6.3.17) " = Lz,

* * oo
¢j((1r ) (@) ) for every j € E.
The constraints of program (6.3.13) imply that
* * * *, x T *
< ex = -
(6.3.18) ]z, Lilalyt o ipTia®; = ® (1)) x(n ,p)
* oo 0 o

¢j((w ) 40 ) for every stationary policy p and j € E.
Combining (6.3.15), (6.3.17) and (6.3.18) yields

* oo

¢, (07 < e = 60T, (6T < 47,0

for all stationary policies ™ and pm. Then, using remark 6.1.1, it follows

* oo *
that (m ) and (p )°° are optimal policies and that w*-e is the value of the

game. ]
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CHAPTER 7

SEMI-MARKOV DECISION PRO CESSES

7.1. INTRODUCTION AND SUMMARY

In this chapter we shall investigate the semi-Markov decision process
which was introduced by DE CANI [1964], HOWARD [1963], JEWELL [1963al],
[1963b] and SCHWEITZER [1965]. In the discrete Markov decision model that
was studied in the preceding chapters, the decision time points were equi-
distant. In the semi-Markov model, the times between the decision time
points will be random variables. We can describe the semi-Markov decision
model in the following way.

Consider a dynamic system that is observed at decision time points t,
starting at t = 0. At each decision time point the system is in one of a
finite number of states and an action has to be chosen. Let E = {1,2,...,N}
be the state space and A(i) the finite set of possible actions in state i,
i € E. If the system is in state i and action a ¢ A(i) is chosen, then the
following occurs independently of the history of the process:

1. The next state of the process is chosen according to the transition
probabilities piaj' where piaj > 0 and ijiaj = 1 for every a € A(i)
and i,j € E.

2. Conditional on the event that the next state is j, the sojourn time
tiaj until the next decision time point is a random variable with
probability distribution Fiaj(t), i.e. Fiaj(t) = I?(tiajs t).

3. A reward ria is earned immediately and, in addition, a reward rate
sia is imposed until the next transition occurs, i.e. if the next
decision time point falls after tia units of times, then the reward

‘in this epoch is given by ri + t, s

a ia “ia’
A semi-Markov decision process is also called a Markov renewal program.
, . s 1 2
A policy R is a sequence of decision rules: R = (7 ,7 ,...), where

n - .
7 denotes the decision rule for the n-th decision time point. This deci-

sion ruie may depend on the whole history of the process, i.e. on the



211

observed states {Xl,X ,...,Xn} and the chosen actions {Yl'Y ""'Yn—l}' A

2
policy is called stat?onary if the chosen action only depends on the state
of the process; if this choice is nonrandomized, then the policy is said
to be pure and stationary. Similarly as for the Markov decision model, we
denote by C, CS and CD the set of all policies, stationary policies and
pure and stationary policies, respectively.

In section 7.2 we discuss the expected discounted reward criterion.
We introduce for this model the concept of superharmonicity and we prove
that the reward vector of an optimal policy is the smallest superharmonic
vector. We can compute this vector as optimal solution of a linear program.
Furthermore, we will show that the complementary slackness property of lin-
ear programming provides an optimal policy from the optimal solution of the
dual program. Moreover, this dual program will give the equivalence between
the semi-Markov model and a contracting TMD-model. Hence, also for the semi-
Markov model we may apply the results shown in section 3.4 as
- one-to-one correspondence between stationary policies and feasible
solutions of the dual program
- policy improvement
- elimination of suboptimal actions.
Some of the above observations were already presented in WESSELS & VAN
NUNEN [1975]. However, their analysis was based on the correspondence bet-
ween stationary policies and feasible solutions of the dual program. In our
treatment the results are consequences of the concept of superharmonicity.
Section 7.3 deals with the undiscounted rewards. Also for this model
we can present the property of superharmonicity. Using DENARDO [1971], we
shall show that the reward vector of an optimal policy is the smallest super-
harmonic vector. Similarly as in chapter 4, we can formulate a linear prog-
ram such that a pure and stationary optimal policy can be obtained directly
from the optimal solution of the linear program. This linear program was al-
so used by DENARDO & FOX [1968]1, but they did not show how an optimal policy
can be found. The linear programming problem can be transformed into the
linear program which was derived for the AMD-model. The transformations are
the same as proposed by SCHWEITZER [1971]. By these transformations we show
that the semi-Markov model with the average reward criterion is equivalent
to an AMD-model.
We close the chapter by the presentation of simplified algorithms for

the weak unichain case, the unichain case and the completely ergodic case.
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7.2. DISCOUNTED REWARDS

t -\t 1
Let o € (0,1) be any discount factor. Then, o = e , where t ¢ IR

and A := -fna. Throughout this section we have the following assumption.

[=2]
ASSUMPTION 7.2.1. f e—AtdFiaj(t) < 1 for every i,j € E and a € A(i).
0

REMARK 7.2.1. Assumption 7.2.1 guarantees that the probability distribu-
tions Fiaj(t) are not degenerated in t = 0. Consequently, the expected
number of transitions in a finite interval is finite. Furthermore, DENARDO
[1967] has shown that the discounted Markov renewal program with assumption
7.2.1 possesses the contraction property. We shall call this model a DRD-

model.

For any policy R and any initial state i, we define the expected dis-

counted reward v?(R) by

2 n—1.{r

e—)\tdt}lxl =il,

\ . -}\(T1+T +o..+T )
(7.2.1) V(R := B[} e I
0

where T, +T_ +...+T :t= 0 for n = 1.
172 n-1

LEMMA 7.2.1.

A o * _-At
R) = i
Vi( ) Zn=1zjza J rjae dniaj(n,t,R), ieBE Re C,

where 0
o T
* -t
= +
rja rja Sjazkpjak J J e dtdFjak(T)
and 00
. = =7 = +T +... < =1i).
ﬁiaj(n,t,R) ]PR(Xn j,Yn a, T +T, T, t]Xl i)

PROOF. First, we remark ‘l.at
Tn

-at e 4
e dt]xn—g, Y =al =

H
o
M
2]
=
[
+
n
b
]
8 O

]

=%klx =3,¢Y =
sy na]

T

LE [r, +s e_}‘tdtlx =j, Y =a, X_ .=k]:P_[x

k"R “ja ja n-""n " “n+l R n+l
0

@ T
At *
= + = .
kajak{rja Sia J J e dtdFjak(T)} Tia
00
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Since the random variables T1+T2+...+Tn__1 and Tn are conditional independent,

given Xn and Yn, we obtain

n
=A(T,+T +...+T ) J
1 72 n-1 =t .
. =il =
E, (e {r, 4 +sxnY e "at}|x, = il

o
=7.7 e Mt AP (X =3, Y =a, T 4T +...4T < t]x, =1i)
jta ja R n “""'n ""71 72 n-1

0

o

z,z rf J e-ltdﬂ. . (n,t,R).
jta ja iaj
0

(o]
f e—Xtdwiaj(n,t,R) may be interpreted as the expected discounted probability
0

that Xn==j, Yn==a, given x1 =i. We have the recursion

(7.2.2) I f e‘“dniaj (n,t,R) =
0

oo o

—Asd

-At
Eﬂzb j e d“ibﬁ(n-l't'R).Pkbj J e Fﬂbj(S)'

We define

Then, (7.2.2), (7.2.3) and (7.2.5) imply that

- o]

- -t _ . : -As

W= zﬂzb J e dﬂibﬂ(n 1,t,R) szﬂbj J e dFij(s)
0 0
-t

< zﬂzb I e dnibﬂ(n—l,t,R)-p =
0

=0 Wn—1 < . .0 < pn_l-w1 = pn_l.
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Furthermore, we have

-1 -AT
< -
rja < e, | +|sj | kajak [ A T (l-e )dFjak(T)
0
(=<}
-1
< dar < M.
eyl #3070 TP [ 980 <
0
Consequently,
Lo
0 * . —-At o M
< < .
LI | e e e < T s <o
0
Hence,
“A(T 4T _+...4T_ ) Tn
A o 172 """ "n-1 -t
= . + =
v; (R) ]ER[zn=1e {rx v Sy y J e dt}lx1 il
nn ‘nn
0
T
“A(T 4T _+...4+T )
e 172 n-1 -At .
= Lot Egle bry v ¥y v J e "at}|x =11
nn ‘nn
0
o
© *  -At .
= zn=1zjza [ r.e dniaj(n,t,R), ieE, ReC. a
0

NOTATION 7.2.1. We will denote the DRD-model by the five-tuple (E,A,p,r*,F).

A
DEFINITION 7.2.1. The DRD-value-vector VA is defined by vi = sup, Vi(R)'

i e E.

From the proof of lemma 7.2.1 it follows that lvil < I%gy i e E.

~ N ..
DEFINITION 7.2.2. A vector v € IR is DRD-superharmonic if

o
~ * -At ~
> + . : ;
v, Zro ijiaj J e dFiaj(t) Vj' a e A(i), 1 € E,
0

*
where ria is defined as in lemma 7.2.1.

A
THEOREM 7.2.1. The DRD-value-vector v is the smallest DRD-superharmonic

vector.

PROOF. Choose € > 0 arbitrarily. Take policy Rj such that vg(Rj) ng -€,
j € E. Let ai € A(i) be such that

= max {rfa-+z By VA}, ieE,

* * A
+).p, LV, D, .V,
3j 1aij 3j a 1 J iaj ]

(7.2.6) r,
ia,
1
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where
o
*

-\t

.= . dr .

piaj piaj J € iaj(t)
0

A .
We denote by R the policy that chooses at t = 0 action ai, for initial
state i, and then follows policy Rj' if the next state is j, while the
process is considered as starting in state j. Then we obtain
A LA *
v, 2v,(R) =xr, + Z.pf .v%(R.)
i i ia; 7ia,3°3 73

* * A *
+ -
T, * 1Pl s :

ia,J
1

v

. .V, - e ).D
ia ;373 3

\2

* * A
+ - g i
maxa{ria ijiajvj} ep, i€k,
where p is defined by (7.2.5). Since e is arbitrarily chosen, it follows

that
A * * A
S .
(7.2.7) vy 2 maxa{ria + ijiajvj}' i € E,

i.e. VA is a DRD-superharmonic vector.
Next, we will show that (7.2.7) holds with equalities instead of in-

1 2
equalities. Let R = (w ,7 ,...) be any policy. Then, we can write

R T U
v (R) = Zania E ijiajuj(R)}, iekE,

A
where uj(R) represents the expected discounted reward earned from the
second decision time point, given that the state at the second decision

A
time point is j. Therefore, uj(R) < vg, j € E. Hence,

v%(R)
1

A
o~1
s1]

3
[
[

.

1 * * A
< . -
< zawia maxa{ria + sziajvj}

+1.p M, ieE

*
max_{r, P, _ .V,
a jtiaj j

la

Since R is arbitrarily chosen, we obtain

A * * A
2. < + i .
(7.2.8) v, < max_{r, ijiajvj}, ieE
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Combining (7.2.7) and (7.2.8) yields

* A
v.}, i € E.

A *
2. = + ).P._.V.
(7.2.9) Vi maxA{r. szla] 3

ia

Suppose that v is also a DRD-superharmonic vector. Let ai, ieE,

again satisfy (7.2.6). Then, we have

~ * ~ *’
v.—v%zr’.k +).p. V. -r, -Z = ).P, (v—V), i€ E,
i i ia, j"ia.] J ia, 3 la J J JTiJ
i i i
*
where pij Sl S for all . < E. Thus, we may write in vector notation
i

Pn(V-vA) for all n ¢ I,

[\

v-v' o2 P(G—v)‘)

Using assumption 7.2.1 and (7.2.5), we obtain

el = g o < . < 1.
maxi ZJ‘la j maxl ijla 3 P o
Consequently, limn_)mPn = 0. Hence, it follows that
~ A X n,~ A
v-v 2 llmnéwP (v=v") =0,

~ A A
i.e. v 2 v . This completes the proof that v is the smallest DRD-super-

harmonic vector. 0

* e
DEFINITION 7.2.3. A policy R is said to be an optimal policy for the DRD-

model if vA(R*) = VA.

THEOREM 7.2.2. Let ai € A(i) satisfy

*
ia + z.pf ~V%
5 jFia 3]

A ;
=v,, i€ E.
i

Then, the pure and stationary policy fm, where f£(i) := ai, i e E, is an

optimal policy for the DRD-model.

PROOF.

A
v.'(fm)—v).‘ o+ Y. D, (f ) -1, —z.pf .v>.‘
i i 1ai jTia, j ] :Lai j 1aij j

= z.pf .(v}(fw)-v%), i€ E.
J1a;3 3 J



Let P := (p:a j). Then, similarly as in the proof of theorem 7.2.1, we
i
obtain
P E) v = pE) v = PP E) V) 20 for n > .

A, A L .
Consequently, v (£ ) = v , i.e. £ is an optimal policy. M

A
Theorem 7.2.1 implies that the DRD-value-vector v can be found as

optimal solution of the linear programming problem

~ *
DV, 2 ¥, , a e A(i), i - E},
iaj 3J ia

(7.2.10) min{ZijGjIZj(aij—p

where Bj > 0, j € E, are given numbers. The dual program of (7.2.10) is

]
™
(X

m

=

ziEa(sij-pzaj)xia
*
(7.2.11)  max Zizariaxia

v
o

X ’ ae A(i), i € E

ia
*
THEOREM 7.2.3. Let x be an optimal solution of the linear programming

problem (7.2.11). Then, any pure and stationary policy f: such that
*

S . , , oy,

xif*(i) 0, i € E, is an optimal policy

PROOF. Since vx is the finite optimal solution of program (7.2.10), the
*

dual program (7.2.11) has also a finite optimal solution. Let x be any

optimal solution of program (7.2.11). Then, -

* * *
= + 2 B. >0 j E.
Xaxja Bj zizapiajxia SJ ! 1€

The complementary slackness property of linear programming (cf. corollary

1.3.1) implies that

)vx *

A N i e E.
3 1f*(1)

*
zj (Gij_pif* (1)3

It follows from theorem 7.2.2 that f: is an optimal policy. 0

A pure and stationary optimal policy for the DRD-model can be deter-

mined by the following algorithm.

ALGORITHM XXX for the construction of a pure and stationary optimal policy
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in a discounted semi-Markov model.

step 1: Compute

o
i i=r, +A—1s. 1.p, {1 —J e—xtdF. .(t)}, aeA(i), ieE,
ia ia ia 3 iaj iaj
. 0
b . =p M (v , acA(i), i,]cE.
iaj iaj iaj
0

step 2: Choose the numbers Bj such that Bj >0, j € E.

*
step 3: Compute an optimal solution x of the linear program

€ E

[
™
<
.

*
Y.L (8, .-p,_)x,
* i*a "ij Tiaj’ Tia
max ziXariaxia
x, =20, a e A(i), 1 € E
ia

step 4: Take f: such that x:f*(i) >0, i € E.

REMARK 7.2.2. Consider the TMD-model (E,A,p*,r*). It can easily be verified
that this model satisfies the contraction assumption of section 3.4 for

yu := e and o := p. Furthermore, algorithm IX applied on this TMD-model is
identical to algorithm XXX. It can also easily be verified that vx(wm) =
V*(ﬂm) for every stationary policy nw, where V*(ﬂw) is the expected total
reward in the TMD-model. Therefore, the TMD-model (E,A,p*,r*) may be con-
sidered as equivalent to the DRD-model (E,A,p,r*,F), and we may apply the
results of section 3.4 to the DRD-model.

REMARK 7.2.3. The above analysis is also applicable on the two-person zero-
sum semi-Markov game in which one player controls the transition probabil-
ities and the sojourn times. This DRG-model can be described as follows.
If in state i player I chooses action a € A(i) and player II action b ¢ B(i),
then the following occurs:
1. The next state of the process is chosen according to the transition
{14t .
probabilities Piaj
2. Conditional on the event that the next state is j, the time tiaj
until the next decision time point is a random variable with probabil-
ity distribution F, _(t).
iaj
3. Player I receives an immediate reward r,

iab
addition, player II is indebted to player I an amount s;

from player II, and, in

ot
¥ . if the
3 s N . Fall £t t i t £ ti
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If we define

o t
r -
r:ab := riab+siaszpiaj J J e Asddeiaj(t), aeA(i), beB(i), ieE,
. 00
P* s T P._. Je_xtdF. L (B) ' aeA(i), i,jeE,
iaj iaj iaj
0

then similarly to theorem 6.2.1 we can prove that there exist stationary

optimal policies for both players. Moreover, it can straightforward be shown
that the DRG-model (E,A,B,p,r*,F) and the TMG-model (E,A,B,p*,r*) are equiv-
alent and that algorithm XXVII applied on the TMG-model provides stationary

optimal policies for both players in the DRG-model.
7.3. UNDISCOUNTED REWARDS

For any policy R and any initial state i, the average reward per unit

time is denoted by xi(R) and defined by
1T
. (R) := limi =V, (R
xl( ) iminf T i( ),
T

where Vi(R) denotes the expected undiscounted reward earned in the inter-
val [0,T). For a Markov renewal program with as utility function the aver-
age reward per unit time, we will use the name ARD-model. The ARD-value-

vector X is defined by

X; = supri(R), ie E,
*
and policy R is said to be optimal for the ARD-model if x(R*) = X. A
policy R, is called a Blackwell optimal policy if there is a Ao > 0 such
A
that v (R ) = vA for every A e (0,2 1.

Throughout this section we have the following assumption.

©
ASSUMPTION 7.3.1. 0 < [ t2dFiaj(t) < o for all a € A(i), i, € E.
0

The above assumption implies the following results due to DENARDO
[1971]:
1. Let nw be any stationary policy. Then,

(7.3.1) ) = 7@ Fwr) + e,
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where llmx+0 e(A) = 0.

o
Moreover, X(m ) is the unique rolution of the equations

(I-P(mM))x = 0

(7.3.2)
* * A
P (M)T(m)x =P (Mx(m),
where
o]
A .
ri(w) 1= zaﬂia'{ria-bsia Ejpiaj J tdFiaj(t)}, ieE,
0
and T(m) is the diagonal matrix with t,.(m) := §, . 1, (m) and
ij ij i
(o]
-
= .) i,3 .
Ti(“) E:a‘”ia “jpiaj [ tdFiaj(t)' i3 €E
0
Furthermore, w(nm) is a ~-~lution of the linear system
A ©
(7.3.3) (I-P(mM))y = (7} = T(m)x(m ).

2. There exists a Blackwell optimal pure and stationary policy.

' .. A .
LEMMA 7.3.1. 1m1an0 )\vi(R) > xi(R), ieE, ReC.

o

PROOF. Since vz(R) = f e—xtdvz(R), ieE, ReC, » >0, the proof follows
0
from an Abelian theorem (cf. WIDDER [1946], chapter V). [

THEOREM 7.3.1. Any pure and stationary Blackwell optimal policy is also
optimal for the ARD-model.

PROOF. Let ft be a Blackwell optimal policy. Take an arbitrary R ¢ C. Then,
(7.3.1) and lemma 7.3.1 imply that

A, o © .
Avi(fc) = Xi(fo)' i e E.

s A L
Xi(R) < liminf +0Avi(R) < liminf

A AY0

Consequently, X(ft) = X, i.e. fj is an optimal policy for the ARD-model. [J

From theorem 7.3.1 it follows that for the determination of an optimal
policy in the ARD-model, we may restrict ourselves to the pure and station-

ary policies. Consider a pure and stationary policy fm. Then, (7.3.2) and
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lemma 2.4.2 imply that X(fm) depends on the rewards and the transition times
A
only through r(f) and t(f) respectively. Hence, for the computation of x(fm)

it is sufficient to know the values Tia' a € A(i), i € E, where

©

(7.3.4) Tia *% sziaj J tdFiaj(t)'
0

insteadkof explicit knowledge about the probability distributions Fiaj(t).
We may assume that '

0 t < Tia

(7.3.5) Fiag(t) = , aeali), i,i € E.

A A
Therefore, we shall denote an ARD-model by (E,A,p,r,T), where ria =

r. + s, °T, , ac€ A(i), 1 € E.
ia ia ‘ia

~ N P .
DEFINITION 7.3.1. A vector ¥ € IR 1is ARD-superharmonic if there exists a

vector w such that

> ~ s Iy
z ijiajxj + ae€A(i), ic€E,

=

=

baX
+
=
v

A ~
+ . . .
TiaXs 12T, Ejpiajwj’ ae A(i), 1 € E

THEOREM 7.3.2. The ARD-value-vector ¥ is the smallest ARD-superharmonic

vector.

PROOF. (cf. theorem 4.2.1). Let fj be any pure and stationary Blackwell

optimal policy. Since there exists a Ao > 0 such that
A, by
v (fo) =v for every X € (O,Ao],

theorem 7.2.1 implies that

o

RN DA Je'“dr. () v (£,
i'To ia j-iaj iaj j e
0
aeA(i), i e E, A € (O,AO],

where
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o t
*
r, :=r s, ) J J e Asdde. L(e).
ia ia ia %#j iaj iaj
00
Then, it follows from (7.3.5) that
PR Mo T
>r, + -
Vi(E) > rytsy Ly g h (e I+ L4Pa5°

ia A

W (E)
J o

=AT,
la

for all a € A(i), i € E, X € (O,AOJ. Using (7.3.1) and the expansion e =

1-AT,_ + ©(A), we obtain
ia
_1 ) 0 >
by xi(fo) + wi(fo) +0o(1) 2

-1
A ZJ iaj j(f ) +x a'+siaTia'+sziaj

for all a € A(i), i € E and A € (O,AOJ. Since x(ft)

>
(7.3.6) X 2 ijiajxj ac

and

w (£) 22+ Yp w (£)-1, )
itte! = Fia T LiPiagWytte! TTialsPiagXy

R>

o
ta ¥ LyPragy (F =Ty ac

where

A(i) :={a € A(1) ]| X; = sziajxj}’ ie

Then, similarly as in theorem 4.2.2 we can prove that

I\
B>
13

.3. W, L+ )P LW, - T, X,
(7.3.7) Wi ia sziajwj TiaXi? ac

where

~ 0
woe=w(f) - M-y

and
T, x.+W.(f°°)—r Zp W, (£)
M := mln{ la 1 o laj j
X3 szlaj j
with
* A
i) := + f
A" (1) faea@]| WXy bW (£)) <rp o+ 23 1a3”

°w(f)'r ).P.

(f )

ia®j iaj j

X: it follows that

A(i), i € E,

K(i), ieE,

A(i), i € E,

(f )L},
3

* . .
aedA (i), i € E} ’

ieE.
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* .

(if A" (i) = @ for all i € E, then we define M := 0). Consequently, (7.3.6)

and (7.3.7) imply that the ARD-value-vector X is ARD-superharmonic.
Suppose that ; is also ARD-superharmonic with corresponding vector ;.

Then,

[\

(I-P(£,))X 2 0 and T(E)X +w = T(£,) + P(£ )W

Consequently,

\

~ * ~ * A
(I—P(fo))x 0 and P (fo)T(fo)x > P (fo)r(fo).
Then, (7.3.2) and lemma 2.4.3 imply that ; > x, completing the proof that

X is the smallest ARD-superharmonic vector. 0

Since X is the smallest ARD-superharmonic vector, we consider the

following linear programming problem:

- Y > . .
~ zj(sij piaj)xj 20, ac€A(i),icE
(7.3.8)  minj}B.x, '
~ ~ A
- > oy s
Ti_axi-l-}:j ((slj Piaj)wj 2 ria, ae€ A(i),i € E
where Bj >0, j € E, are given numbers with szj = 1. The dual linear program-

ming problem is:

ziZa(‘sij'Piaj)Xia =0 - JeE

(7.3.9) max{). ) % 41304085 57Py 450 ¥y 185 JeE} .

X, LT, X,
i*a"ia ia a ja ja

X, ,¥. 20 , aeA(i) ,i€E
ia'“ia

* %
THEOREM 7.3.3. If (x ,y ) is an optimal extreme solution of the linear prog-
ram (7.3.9), then the policy f:, where

X > 0, i€ E %
x

£ (i) := a, such that
* i %
>0 i E\E
yiai ro LB x*

is an optimal policy for the ARD-model.

* * - -
PROOF. (cf. theorem 4.2.4). Let (x ,w ) be an optimal solution of the linear
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programming problem (7.3.8). Then, x* = ¥, and analogously to the proof of

theorem 4.2.4 we can show that
o0
1. f* is well-defined.

2. Zj(d =0, ieE,

157Pie (3%

* A
3. Tif*(i)xi + Ej(é..-P w

137PE, @35 T i @t S B

4. The states of E\E , are transient in the Markov chain induced by P(f).
X

From the above properties it follows that

(I-P(£,)) X

P(E)T(E,)x = P (£)T(E) .

Hence, (7.3.2) implies that x(f:) = X, i.e. f: is an optimal policy. 0

REMARK 7.3.1. The linee- uroyramming problems (7.3.4) and (7.3.5) were al-
ready proposed by DENARDO & FOX [1968]. However, they only proved that the
program (7.3.8) determines the vector ¥, but they did not prove the optimal-
ity of the policy f:.

ALGORITHM XXXI for the construction of a pure and stationary optimal policy

in an undiscounted semi-Markov model (multichain case).

step 1: Take any choice of the numbers Bj such that Bj >0, j € E, and

Zij = 1. }
step 2: Use the simplex method to compute an optimal solution (x*,y*) of

the linear programming problem

ZiZa(aij_piaj)xia =0 . JeE

max{] T ¥, x )

a“ia"ia| +Eiia(5j"Piaj)Y. =Bj' JeE -

T._ X,
a ja ja J ia

X >0 aeA (i ieR
iaryia ’ eA(i) ,i

*
step 3: For each i € E, take an arbitrary action a, from the set A (i),
where
* .
{al x| > 0} if i € E %
* ia b4
A (i) :=

*
{a] Y. > 0} if i € E\Ex*'
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step 4: fi, where f*(i) = a, i € E, is a pure and stationary optimal

policy.

Consider the linear programming problem (7.3.8) and substitute

ii = ;i , 1 €E
- -1 ~ .
wi =T -wi , 1 € E
(7.3.10) 1A
r, :=T, °r, , a€ A(i), i ¢ E
ia ia “ia .
- := . - - . . . A . . 0y E
piaj 613 (éij plaj) (r/ria), aeA(i), i,j € E,

where T satisfies

T,
ia

0 <t sming iy
' Piai

Piaj 7 1}'

]

Then, Eiaj > 0 and Zjﬁiaj 1 for every a € A(i), i,j € E. Furthermore,

we obtain

v

Zj (cSiJ.—pJ._‘_ﬂ.)x:_| /T 20

0 (8, .-p
j = zJ( i P

ia3)Xy" (T4

-5 y > s .
o> Zj(aij piaj)xj >0 for all a € A(i), i € E,

and

~ A
- >
IRIRDNCH JIRLAES

- - - A
- o ° >
123’ ¥ ja S TiaXg t Xj (cSij P._.) (ria/r) W RE,

iaj
e X +).(8,.-p. .)w, > r,
Xi zJ( ij pia])wl rla
for all a € A(i), i € E.
Hence, the linear program (7.3.8) can also be written as

_— - > . .
zj(sij Piaj)xj 20 , ae€A(i), i € E

7.3.11 min{).B.%.
( ) zJBJXJ

v

X; * Zj (Sij—p. .)wj

r, ,aech(i), i € E
iaj ia

and (;,;) is a feasible solution of program (7.3.8) if and only if
(;,T—l';) is a feasible solution of program (7.3.11). The transformations

(7.3.10) were proposed by SCHWEITZER [1971].
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REMARK 7.3.2. Notice that the linear programming problem (7.3.11) is similar
to program (4.2.10), with‘f)iaj and ;ia instead of piaj and ria' Hence, algo-
rithm XIV for the AMD-model (E,A,p,r) is identical to algorithm XXXI for the
ARD-model (E,A,p,é,r). Furthermore, it can easily be verified that x(ﬂw) =
$(ﬂm) for every stationary policy ww, where $(wm) is the expected average
reward in the AMD-model (E,A,E,f). Hence, the ARD-model and the correspond-

ing AMD-model may be viewed as equivalent.

REMARK 7.3.3. Linear programming can also be used for the two-person zero-
sum semi-Markov game in which one player controls the transition probabil-

ities and the transition times. If we define

A

.= " . . . .
Tiab ot Siap Tiar 2 € A(J.)‘. b e B(i), i € E,
then similarly as in section 6.3 it can be shown that there exist stationary

optimal policies for both players. Moreover, it can be proved that algorithm

XXVIII applied on the transformed AMG-model (E,A,B,ﬁ,?), where

Piaj = Gij—(Gij—piaj)-(T/Tia), a e A(i), i,j € E,
- -1 A . . .
iab = Tia'riab ’ ae€ A(i), b € B(i), i € E,

yields stationary optimal policies for the two players.

We close this section with the presentation of algorithms for the weak
unichain case, the unichain case and the completely ergodic case. We say that
an ARD-model is weakly unichained, unichained or completely ergodic if the
equivalent AMD-model satisfies assumption 4.5.1, assumption 4.6.2 or assump-
tion 4.6.1 respectively. Then, the results of the sections 4.5 and 4.6 imply

that we can use the following algorithms.

ALGORITHM XXXII for the construction of a pure and stationary optimal policy

in an undiscounted semi-Markov model (weak unichain case).

*
step 1: Use the simplex method to compute an optimal solution x of the

linear programming problem

ziza(sij—pia')xia 0. jekE

J
maxl] T2 x |LT <

X, 1 .
a ia’ia

> . .
xia 0, ae€ A(i), 1 € E

L X,
ia ia
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. . *
step 2: Take f*(l) such that xi

step 3: Let E° = Ex*-
00
step 4: If E = E, then f* is an optimal policy (STOP).

£ (1) >0, ice€ Ex*'

*

Otherwise, go to step 5a.

step 5a: Choose a triple (i,ai,j) that satisfies i € E\Eo, ai € A(i),“
j E d . > 0.
j € E, an Piaij 0

step 5b: Define f_(i) := a; and E_ := EOU{l}; go to step 4.

ALGORITHM XXXIII for the construction of a pure and stationary optimal policy

in an undiscounted semi-Markov model (unichain case).

*
step 1: Use the simplex method to compute an optimal solution x of the

linear programming problem

ziza(sij_piaj)xia 0. JekE

]
-
.

A
max{} .} r. x |}V 1, %
17a 1a 1ajl*i1i”a 1a 1a
x, 20, ae€A(l), i € E
ia

step 2: Take fw such that
step ¢ *

*
a, where x, >0, 1ie€ekE_,
i ia X

arbitrarily PR E\Ex*.

ALGORITHM XXXIV for the construction of a pure and stationary optimal policy

in an undiscounted semi-Markov model (completely ergodic case).

*
step 1: Use the simplex method to compute an optimal solution x of the

linear programming problem

Lila(8547Pyag)% 0 = Or jeE

[}
.
.

)
11z )
max\lila®ia®ia|lita T1z¥ia

A
v

., 20, aead),1icE

00 *
step 2: Take £ such that x_ .
— * i€ (1)
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-value-vector 22
TMG-model 188
-superharmonic 193
total optimal policy 22
total reward criterion 3

transient dynamic programming

problem 23
transient pclicy 23
transient state 24
transition probability 20,186,210

two-person zero-sum semi-Markov
stochastic game 218,226

two-person zero-sum stochastic

game 5,186
U

unbounded solution 11
unichain case 132,183,226
unichained Markov chain 25,34
unit vector 8
usable direction 11
v

val (AMG) 189
val (TMG) 188
value of the game 188
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SYMBOL INDEX

(Symbols with only local significance are not included)

GREEK LATIN
a 22 |a(i) 20,186
B 52,72 |A(i,£) 66,119
y 109,204 |A(i) 160
545 8 |A(i) 160
A 212 |B(1) 186
u 23 |C 20
i 20,187 |Cy ' 21
m 21 |C 20
™ (x) 53 |Cg 20
T (x,y) 108 |D 29
T 221 |p(m A
o 23 |e 8 “4
$(£7) 22 |E 20,186
o(m ) 34 |E 160
¢ (R) 22 |E_ 36
i(Rl'Ré) 188 | (E,A,p,x) 20
¢ (R) 101 |(E,A,B,p,r) 186
X 219 |(E,a,p,x" ,F) 214
X (R) 219 (E,A,p*,r*) : 218
¥ 170 | (E,A,p,2,1) oz
(E,A,p,T) 226
£ 21
H 20,186
I 8
K 55
K(D) 55
K (M) 55
K(s) 55
L 135
L(C) 135
L(D) 135
L(M) 135
L(S) 135
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’ A
N 20 |v 214
N 8 v}\(R) 212
NO 8 |val (AMG) 189
n (£) 160 |val (TMG) 189
n(m) 32 |w 50
P} abi 186 |x(f) 135
piaj 20,210 |x(R) 55,135
pE. (R) 21 |x(m) 54,109,135
ij . T
P 55 |x (R) 134
P(m) 21 |x 138
p(n0) 21 (X 211
P(f) 21 |x, 21,187
P(m,p) 190 |y (f) 109
p* 25 |y(m 109
R 20 |y 211
1 n
R 8 |v, 21,187
R(f) 160 |z (w) 198
187
R(m) 32 Zt
r, 20,210
Ala
. 221
b 186
r(m) 34
r(m,p) 190
sia 210
T(f) 160
T(m) 32
u 166
*
u 166
u(ﬂm) 34
v 22
v(R) 22
Vt(:Rl,Rz) 188
v (R) 21
t
V- (R) 219
v(m) : 23
v(£) 22
v 22
v (R) 22







MATHEMATICAL CENTRE TRACTS
1 T. van der Walt. Fixed and almost fixed points. 1963.
2 AR. Bloemena. Sampling from a graph. 1964.

3 G. de Leve. Generalized Markovian decision processes, part
I: model and method. 1964.

4 G. de Leve. Generalized Markovian decision processes, part
1I: probabilistic background. 1964.

5 G. de Leve, H.C. Ti}'ms. P.). Weeda. Generalized Markovian
decision processes, applications. 1970.

6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.

8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
10 E.M. de Jager. Appli i
physics. 1964.

11 A.B. Paal de Miranda. Topological semigroups. 1964.
12 JLA.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54.

14 H.A. Lauwerier. Calculus of variations in mathematical-
Pphysics. 1966.

15 R. Doornbos. Slippage tests. 1966. )

16 J.W. de Bakker. Formal definition of programmin

;967 iges with an application to the definition of ALGOL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 1. 1968.

18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.

Ig J. van der Slot. Some properties related to compactness.
1968.
-20 P.J. van der Houwen. Finite-difference methods for solving
partial differential equations. 1968.: .

21 E. Wattel. The compactness operator in set theory and
topology. 1968.

22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part 1. 1968.

23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.

24 J.W. de Bakker. Recursive procedures. 1971.

25 E.R. Paérl. l;?resenralions of the Lorentz group and projec-
tive geometry. 1969.

26 European M
1968.

b

of distrib in matical

ing 1968. Sele ] | papers, part 1.

%;Jguropean Meeting 1968. Selected statistical papers, part I1.
28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.

29 J. Verhoeff. Error detecting decimal codes. 1969.

30 H. Brandt Corstius. Exercises in computational linguistics.
1970.

31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.

32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.

33 F.W. Steutel. Preservation of infinite divisibility under mix-
ing and related topics. 1970.

34 1. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func-
tions in topology. 1971.

35 M.H. van Emden. An analysis of complexity. 1971.

36 J. Grasman. On the birth of boundary layers. 1971.

37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, EW.

Dill:kstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.EJ. Kruseman Aretz, W.L. van der Poel, J.P. Schaap-
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.

38 W.A. Verloren van Themaat. Automatic analysis of Duich
compound words. 1972.

39 H. Bavinck. Jacobi series and approximation. 1972.

40 H.C. Tijms. Analysis of (s,S) inventory models. 1972.

41 A. Verbeek. Superextensions of topological spaces. 1972.

42 W. Vervaat. Success t]’pochs in Bernoulli trials (with applica-
tions in number theory). 1972.

43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.

44 H. Bart. Meromorphic operator valued functions. 1973.
45 A.A. Balk M transfor and limit laws.
1973.

46 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 1: the language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formul ipulati part 2: the compiler. 1973

48 F.EJ. Kruseman Aretz, P.J.W. ten Ha\Een. H.L.
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.

49 H. Kok. Connected orderable spaces. 1974.

50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.

51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.

52 P.C. Baayen (ed.). Topological structures. 1974.

53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.

54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974.

55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. 1974.

57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.

58 W. Albers. Asyn;amtic expansions and the deficiency con-
cept in statistics. 1975.

59 J.L. Mijnheer. Sample path properties of stable processes.
1975.

60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.

64 W.J. de Schipper. Symmetric closed categories. 1975.

65 J. de Vries. Tg/pologiml transformation groups, 1: a categor-
ical approach. 1975.

66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.

68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976. gy p

69 J.K. Lenstra. Sequencing by enumerative methods. 1977.

70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.

71 JLA.E.E. van Nunen. Contracting Markov decision
processes. 1976.

72 J.LK.M. Jansen. Simple periodic and non-periodic Lamé
Sfunctions and their applications in the theory of conical
waveguides. 1977. :

73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.1.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.

75 A.E. Brouwer. Treelike spaces and related connected topo-
logical spaces. 1977.

76 M. Rem. Associons and the closure statement. 1976.

77 W.C.M. Kallenberg. 4 ic optimality of likelihood
ratio tests in exponentia famiﬁe.v, 1978,

78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.

79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.

80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. 19717.

81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science 11, part 1. 1976. .

82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science I1, part 2. 1976.

83 L.S. van Benthem Jutting, Checking Landau’s
“Grundlagen” in the AUTOMATH system. 1979.

84 H.L.L. Busard. The transiation of the elements of Euclid
Jfrom the Arabic into Latin by Hermann of Carinthia (?), books
vii-xii. 1977.

85 J. van Mill. Supercompactness and Wallman spaces. 1977.

86 S.G. van der Meulen, M. Veldhorst. Torrix 1, a program-
ming system for operations on vectors and matrices over arbi-
trary fields and of variable size. 1978.

88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.




90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic games. 1981.

91 J.M. Geysel. Transcendence in fields of positive characteris-
tic. 1979.

92 P.J. Weeda. Finite generalized Markov prog ing
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory.
1977.

1979.

94 A. Bijlsma. Simull proximations in transcendental

number tJheovy, 1978. #

95 K.M. van Hee. Bayesian control of Markov chains. 1978.

96 P.M.B. Vitanyi. Linde : structure, I

and growth functions. 1980.

97 A. Federgruen. Markovian control problems; functional

equations and algorithms. 1984,

98 R. Geel. Singular perturbations of hyperbolic type. 1978.

99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas

(eds.). Interfaces between computer science and operations

research. 1978.

100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-

llngsgbmemenmal congress of the Wiskundig Genootschap, part
. 1979,

101 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-

ings bl;enlenmal congress of the Wiskundig Genootschap, part

(3

:(g)%sD. van Dulst. Reflexive and superreflexive Banach spaces.

103 K. van Harn. Classip'in infinitely divisible distrib
by functional equations.

104 J.M. van Wouwe. Go-spaces and generalizations of metri-
zability. 1979.

105 R. Helmers. Edgeworth e.
of order statistics. 1

1(9)69A Schrijver (ed.). Packing and covering in combinatorics.

™

for linear

107 C. den Heijer. The numencal solution of nonlinear opera-
tor eq by i 1979.
108 J.W. de Bakker, J. van Leeuwen (eds) Foundations of
computer science 111, part 1. 1979.

109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science 111, part 2. 1979.

110 J.C. van Vliet. ALGOL 68 transput, part I: historical
review and di. of the imp model. 1979.

111 J.C. van Vliet. ALGOL 68 transput, part 11: an implemen-
tation model. 1979.

112 H.C.P. Berbee. Random walks with stationary inc
and renewal theory. 1979
113 T.A.B. Snijd lity theory for testing

problems with re:lrmea/ alternatives. 1979.

114 A.J.EM. Janssen. Application of the Wigner distribution to

harmonic analysis of generalized stochastic processes. 1979.

115 P.C. Baayen, J. van Mill (eds.). Topological structures 11,

part 1. 1979.

116 P.C. Baayen, J. van Mill (eds.). Topological structures 11,

part 2. 1979.

117 P.J.M. Kallenberg. Branching processes with continuous

state space. 1979.

118 P. Groeneboom. Large deviations and asymptotic efficien-

cies. 1980.

119 F.J. Peters. Sparse matrices and substructures, with a novel

q/g":mte le algorithms. 1980.

120 W.P.M. de Ruyter. On the asymptotic analysis of large-

scale ocean circulation. 1980.

121 W.H. H: Ej; I hniques in design and graph

theory. 1980, ° g and grep

122 J.C.P. Bus. Numerical solution of systems of nonlinear

equations. 1980.

:gg L. Yuhasz. Cardinal functions in topology - ten years later.
0.

124 R.D. Gill. Censoring and stochastic integrals. 1980.

125 R. Eising. 2-D systems, an algebraic approach. 1980.

126 G. van der Hoek. Reducti hods in nonlinear pro-
gramming. 1980.

127 J.W. Klop. Combinatory reduction systems. 1980.

128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.

129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. ILP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.

132 H.M. Mulder. The interval function of a graph. 1980.

133 C.AJ. Klaassen. Statistical performance of location esti-
mators. 1981.

134 J.C. van Vliet, H. Wuopiper (eds) Proceedings interna-
tional conference on ALGOL 68. 1981

135 JA.G. Groenendijk, T.M.V. Janssen M.J.B. Stokhof
(eds.). Formal methods in the study of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part 11. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.

138 H.A. Lauwerier. Math 'model:of idemics. 1981.
139 J. van der Wal. Srochastic dy succes-
sive approximations and nearly optimal .rlraleg:es for “Markov
decision processes and Markov games. 1981.

140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point hypothesis.
1981.

141 G.E. Welters. Abel-Jacobi isogenies for certain types of
Fano threefolds. 1981.

142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 1. 1981.

143 J M Schumacher Dynamic feedback in finite- and

I linear
144 P. E!Jgenraam The solution af mmal value problems using
interval ar Sor of an algorithm.

1981

145 AJ. BI'CHIJCS Multi-dimensional continued fraction algo-
rithms. 1981.

146 C.V.M. van der Mee. Semuﬁmup and factorization
methods in transport theory. 198

147 H.H. Tigelaar. Identification and informative sample size.
1982,

148 L.C.M. Kallenberg. Linear programming and finite Mar-

kovian control problems. 1983.

149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,

W.K. Vietsch (eds.). From A to Z, proceedings of a symposium

in honour of A.C. Zaanen. 1982.

150 M. Veldhorst. An analysis of sparse matrix storage

schemes. 1982.

151 RJ.M.M. Does. Higher order asymptotics for simple linear

rank statistics. 1982.

152 G.F. van der Hoeven. Projections of lawless sequences.

1982,

153 J.P.C. Blanc. A;)plualmn of the theory / boundary value

problems in the analysis of a queueing model with paired ser-

vices. 1982.

154 HW. Lenstra, Jr., R. Tijd (eds.). Computational

methods in number theory, pﬂrl 1.1982.

155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational

methods in number lheory, part 11. 1982,

156 P.M.G. Apers. Query processing and data allocation in

distributed database systems. 1983.

157 HA.W. M Kneppers. The covariant classification of two-
00th ¢ hformal groups over an alge-

braically c[osed field of positive characteristic. 1983.

158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of

computer science 1V, distributed systems, part 1. 1983.

159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of

computer science 1V, distributed systems, part 2. 1983.

160 A. Rezus. Abstract AUTOMATH. 1983.

161 G.F. Helminck. Eisenstein series on the metaplectic group,

an algebraic approach. 1983

162 J.J. Dik. Tests for preference. 1983.

163 H. Schippers. Multiple grid methods for ions of the

second kind with appllmlmm' in fluid mechanics. 1983.

164 F.A. van der Duyn Schouten. Markov decision processes

with continuous time parameter. 1983.

165 P.C.T. van der Hoeven. On point processes. 1983.

166 H.B.M. Jonkers. Abstraction, specification and implemen-

tation techniques, with an application to garbage collection.

1983.

167 W.H.M. Zijm. N

ming. 1983.

168 J.H. Evertse. Upper bounds for the numbers of solutions of

diophantine equations. 1983.

169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order

structures, part 2. 1983,

"

ive matrices in ic program-

&'



CWI TRACTS

1 D.H.J. Epema. Surfaces with canonical hyperplane sections.
1984.

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri-
zations of di in terms of negligibility. 1984.

3 A.J. van der Schaft. System theoretic descriptions of physical
systems. 1984.

4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.

5B. Hoogenboom‘ Intertwining functions on compact Lie
groups. 1984,

6 A.P.W. Bshm. Dataflow computation. 1984.

7 A. Blokhuis. Few-distance sets. 1984.

8 M.H. van Hoorn. Algorithms and approximations for queue-
ing systems. 1984.

9 C.P.J. Koymans. Models of the lambda calculus. 1984.







