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INTRODUCTION. 

One of the fundamental problems in models of mathematical 

statistics is that of identifiability, that is the occurrence 

of observationally equivalent parametervalues. Two parameter­

values are called observationally equivalent if they corres-

pond to the same probability distribution. Clearly, one cannot 

distinguish between two such values on the basis of observa­

tions, and any attemptto do so is a priori meaningless. For 

example in a cointossing experiment it does not make sense to 

say something about the value of the coin (the unknown parame­

ter), on the basis of the outcome head or tail (the observation). 

We shall refer to the definition of identifiability given 

above as the olassi~al definition in contrast with more recent 

concepts of identifiability (for a survey see SCH~NFELD [ 31] ). 

The problem is often to see whether there exist observationally 

equivalent parameter values. In spite of its fundamentality 

only little attention had been paid to this kind of problem 

until 1950, when KOOPMANS and RIERSOL ( [23] and [ 27]) tackled 

the problem for relatively simple linear relationships. Further 

BOSE introduced the concept of estimability ( [ 3]), a concept 

closely related to identifiability, but less fundamental. How­

ever, when the models under consideration became more complica­

ted, the identifiability problems became - from a mathematical 

point of view - more interesting, and often more difficult. 

Therefore it is not surprising that the most difficult identi­

fiability problems arise in multivariate analysis, as for 

example in factor analysis and in econometric models (simul­

taneous equations). It is a remarkable fact, that FISHER, who 

treated the latter identifiability problem in 1966 [ 13] , defi­

nes observational equivalence (and thus identifiability) in a 

way that is only valuable for the specific model under conside­

ration. This is a dangerous approach as it may suggest that 

this definition can be generalized in a trivial way to models 

with lagged (dependent) variables (stochastic difference equa­

tions). This, however, is definitely not the case, and one of 

our goals is to make this point clear. 
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Another class of statistical problems where difficult 

identifiability problems arise is the statistical analysis of 

time series. Most important and widely used are stationary 

time series. The special identifiability problems are first 

recognized by HANNAN who in a fundamental paper ([ 18]) in 1968 

treats the mixed autoregressive moving average model (ARMA): 

1 Ak ~t-k = r B. ~t-J· 
k=0 j=0 J 

t o, + 1, ... 

Where them-variate random process {~t} is observable. (Through­

out this thesis random variables will be denoted by underlined 

(lower case) letters). 

In 1971 HANNAN, one of the leading authors in the field of 

identifiability in time series, also treated the multiple 

equation model with moving average errors ([ 17] ). We also refer 

to DEISTLER, who treated models with stationary explanatory 

variables. ([4] and [SJ.) 

Although most authors refer to the fundamental paper of HANNAN, 

and consider the ARMA case as completely solved, there is one 

important but unrecognized problem unsolved. To see what this 

problem is, it should be noted that instead of "probability 

distribution" in the classical definition it is more realistic 

to read: "probability distribution of the observed sample". 

Now the basic tool in the papers of HANNAN and DEISTLER is 

unique factorization of spectral densities and in this approach 

one has to study the probability law of the whole (observable) 

process rather than that of some finite sample. Since in prac­

tice one always has a finite sample, the identifiability pro­

blems have, in fact, only partially been solved. As far as we 

know, problems of this kind are not treated in the literature. 

Only recently MARAVALL [25] proved to be aware of it in the 

summary of his thesis. MARAVALL studied local identifiability 

in dynamic shock error models in contrast to the classical 

definition which is sometimes called global identifiability. 



3 

We shall not pay much attention to local identifiability in 

this thesis. Furthermore we shall restrict our attention to 

stochastic processes in discrete time. Identifiability problems 

for processes in continuous time are hardly found in literatu­

re; we refer to WESTCOTT [36]. 

Fairly general approaches to the theory of identifiabili­

ty have been made by SCHONFELD [31] and more recently by van 

der GENUGTEN [ 14]. Following SCHONFELD one can easily get the 

impression that there is a close connection between identifi­

cation and estimation and therefore that identifiability pro­

blems are part of estimation theory. This, however, is rather 

misleading. As van der GENUGTEN points out, identifiability 

problems may arise in other statistical problems such as hypo­

thesis testing. 

In Chapter I we shall present a general approach to iden­

tifiability, that enables us to recognize identifiability 

problems in all ,kinds of statistical problems, in particular 

in statistical prediction problems. 

Although we shall not be concerned with Bayesian inference and 

statistical decision theory, we shall make one excursion into 

those fields.KADANE [22] says: 

"One general question unresolved in this literature is, 

whether Bayesian theory requires a different definition 

of identification from the classical one". 

Or ROTHENBERG ([29] p. 14): 

"We leave unanswered the question of an appropriate 

Bayesian definition of identification". 

MORALES ([26] p. 20) reports: 

"The concept of identification in a Bayesian context is 

not alltogether clear. We shall adopt the view of consi­

dering a structure 'identified' if the posterior density 

of the parameters of the model is not 'flat' on a sub­

space of the parameter space. This point of view may not 

be entirely satisfactory". 

Although the problem is not completely ignored, (as is in fact 
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done by LINDLEY ([24] p 46, footnote 34)) the only author dea­

ling with this problem is KADANE who presented a Bayesian 

approach in 1975 using the classical definition. As this in 

our opinion is not quite satisfactory we present an alterna­

tive approach in§ 1.5. KADANE also pays some attention to the 

role of identification in statistical decision theory, a topic 

hardly treated in literature. However, the question what iden­

tifiability really means in a decision-theoretic setting re­

mains unanswered. A few ideas are presented in§ 1.2. 

In Chapter II univariate stationary models are treated, 

and in Chapter III the corresponding multivariate models, We 

treat them separately, not only for sake of clarity but also 

because most multivariate problems are essentially more diffi­

cult than the corresponding univariate ones, and the 'obvious' 

generalization may be false. The results of these two chapters 

may have some interest outside the probabilistic setting as 

they can be seen as results in the theory of matrices with 

rational functions of a complex variable as elements. 

In Chapter IV we shall deal with dynamic simultaneous 

equations with moving average errors, using results of Chap­

ter III. 
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CHAPTER I 

A GENERAL APPROACH TO IDENTIFICATION 

1.1 CLASSES OF IDENTIFIABLE STATISTICAL STATEMENTS 

In (non-sequential) statistical inference the observatio­

nal material (the sample) is considered to be a realization of 

some random vector or process~ that takes its values in a 

measurable space (X, ;& ) (the sample space). The only thing the 

statistician knows about the true distribution of xis that it 

belongs to a given class '.P of probability distributions on 

(X,53 ). 

In most statistical problems the class~ admits a natural and 

simple parametric representation. More precisely, a mapping P 

is given from a known parameterspace 8 into a given class of 

probability distributions on (X, ;B ). The range of this mapping 

is 'f> and if Pe denotes the image of e E 8 under P then we can 

shortly write' f>= {Pe I e E 8}. The corresponding statistical 

problem will be denoted by the triple (~,'P, 8). The goal of 

a statistician is to know something more about the true para­

metervalue than that it belongs to 8. Thus it is natural to 

consider subsets of 8 and to identify them with statistical 

statements. This leads to the following definition. 

DEFINITION 1.1.1 A statistical statement is a subset 

8 0 C 8. 

REMARK.A possible interpretation is that a statement is true 

iff the unknown parametervalue belongs to it. 

The parametric formulation is very attractive because of the 

direct interpretation of the parameter. However, it can intro­

duce the problem of identification. Suppose there exist 

e E 8 and 01 E 8 C with Pe = Pe . and We say that 0 0 0 0 0 
0 1 

e are observationally equivalent if Pe Pe • The statistician 1 
0 1 
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should then refuse to make the statement 80 (or 8~) because it 

discriminates between the observationally equivalent values 

0 and 01 while 0 indicates that 8 is true and 01 that it is 
0 0 0 

false. Therefore a natural concept in statistical inference is 

the identifiability of statements. 

DEFINITION 1.1.2 The statistical statement 8 is called iden­o 
tifiable w.r.t. J> or equivalently~ is said to be informative 

for 80 , if for all 0 1 , 0 1 E 8 we have the implication 

0 E 8 
0 0 

It should be noted that observational equivalence is an equi­

valence relation on 8 and therefore induces a dissection of 8 

into equivalence classes, called observational equivalence­

classes. Thus, if we accept the axiom of choice, it is formally 

always possible to avoid identifiability problems by defining 

a new parameterspace consisting of one element out of each 

equivalence class. Of course such a reduction may be difficult 

to perform in practice, but that would not be a fundamental 

objection. This reduction is in general not reasonable because 

it may destroy the simple and natural form of the parameter­

space in which case the parameter looses its natural interpre­

tation. 

From a mathematical point of view it is interesting to 

consider classes of statements. 

THEOREM 1.1.3 Let J be the class of all identifiable sta-

tements. Then we have 

a) 8 E J ¢⇒ 8c E J 
0 0 

b) 8 E J ' V E N ⇒ n 8 E J for arbitrary index set N. 
V E N V 

V 

The simple proof is omitted. 
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REMARK.a) and b) imply 

c) 8 E J, 
\) 

v E N 

d) 0 E J, 8 E J 

⇒ u 
v E N 

8 E J 
\) 

In most statistical problems the statistician is not interested 

in all statements but merely in a certain class of statements. 

If {Elv}v EN is a class of statements the statistician is 

interested in, which means that he is willing to say whether 

ev is true or false for all v EN, then he should also be 

interested in all statements that can be formed from them by 

taking complements and/ or intersections. Thus the statisti­

cian is in fact interested in a class of statements with the 

properties a) and b). Therefore we define 

DEFINITION 1.1.4 A class of statements with the properties a) 

and b) is called an informational class. 

REMARK 1. Statements of an informational class are not necessa­

rily identifiable. 

REMARK 2. If J 0 is the smallest informational class that con­

tains a given set of statements {Elv}v EN then J 0 is said to 

be generated by {Elv}v EN" 

Two simple examples will illustrate the ideas. 

EXAMPLE 1.1.5 If the statistician is interested in point 

estimation he will consider all one-point subsets (singletons). 

The smallest informational class that contains all singletons 

is the class of all statements. 

EXAMPLE 1.1.6 If the statistician is dealing with a hypo-

thesis testing problem, he will consider only two complementa­

ry subsets 8 and ec. The smallest informational class that 
0 0 

contains El (and Elc) is {El , ec, 0, 8} and will be denoted by 
0 0 0 0 
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Both examples are special cases of the more general situation 

where the statistician is primarily interested in the value 

taken by a given mapping qi : 8 + A from 8 into some space A. 

In such cases attention is restricted to statements that can 

be formulated in terms of qi. Formally 

DEFINITION 1.1.7 A statistical statement 8 0 is said to be in 

terms of qi: 8 + A if there exists a subset A0 c A such that 

8 = qi-l (A ) • 
0 0 

LEMMA 1. 1.8 The class of all statements in terms of qi is 

an informational class. 

The proof is very simple and will be omitted. The informatio­

nal class is said to be generated by qi and will be denoted by 

J • qi 

EXAMPLE 1.1.9 (see also examples 1.1.5 and 1.1.6) 

a) If qi: 8 + 8 is the identity map, then Jqi is the class 

of all subsets. 

b) If qi 

then 

= 1 is the indicatorfunction of a subset 8 of 8, 
80 o 

J = { 8 , El c 0 , El } = J 8 • 
qi o o' 

0 

DEFINITION 1.1.10 The mapping qi is called identifiable w.r.t. 

:P, or equivalently~ is said to be informative for qi, if 

every statement in terms of qi is identifiable. 

REMARK. It follows from the remark on theorem 1.1. 3 that for qi 

to be identifiable it is sufficient that qi- 1 ({A}) is identi­

fiable for all A EA. 

EXAMPLE 1 . 1 . 11 (see also example 1.1.9). The statement 8 0 is 

identifiable iff its indicator function 18 
0 

is identifiable. 

The following lemma shows that a mapping qi is identifiable iff 

it is constant on observational equivalence classes and thus 

definition 1.1.10 is indeed what we intuitively want it to be. 
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LEMMA 1.1.12 ~ is informative for <p: 

0 2 E 0 the implication <p(0 1 ) f: <p(0 2 ) 

G -'· /, iff fer aJ J € 1 , 

~ P f: P holds. 
01 02 

PROOF. Let~ be informative for <p and <p(0 1 ) f: <p(0 2 ). Then the 

statements <p~ 1 ({ <p(0 1)}) and <p- 1 ({ <p(G 2 )}) are identifiable 

-1 -1 a since <pis and <p ({ <p(G 1 )}) n <p ({<p(G 2 )}) ="' since 

Conversely let the implication hold and A EA be such that 

<p- 1 ({A}) f: 0 and <p-l({A}) f: 8. It follows immediately that 

<p-l({A}) is identifiable and since A was arbitrary the result 

follows from the remark following def. 1.1.10 □. 

REMARK.From the lemma it follows that xis informative for <p 

iff there exists a 

mapping a tp + A 8 

such that <p a o P. 

In particular it follows 

that xis informative for its moments. A 

So far the consideration of classes of statements does not 

give new results. However it turns out that it is a fruitful 

basis for the presentation of new ideas and for extending the 

theory to Bayesian statistics and statistical decision theory. 

This will be done in the next sections. 

1.2 CONDITIONAL IDENTIFIABILITY AND INFORMATIONAL INDEPENDENCE 

Let 8 be an arbitrary statement. Then we shall denote 
0 C 

the dissection {8 0 , 8 0 } of 8 by ~8 • More generally we con-
o 

sider arbitrary dissections {Dv}v EN of 8. A mapping <p : 8 + A 

induces. a dissection :O<p = {DA} A EA of 8 where DA : 
-1 

<p ({ >.}) • 

(Every dissection can be generated in this way by a function). 

Consider the dissection ~ = {Dv}v EN' We shall call the 
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values 01 and 02 ID-equivalent if they belong to the same Dv 

and write 01 ~ 02 . It is often easy to see that for some m, 

~ - equivalent values of 0 are not observational equivalent. 

Therefore we define 

DEFINITION 1.2.1 The statement 81 is said to be identifiable 

conditional on the dissection 'JJ, or equivalently x is called 

informative for 01 conditional on ~ if for all 01 , 02 E e the 

following implication holds 

l => PG t- PG . 
1 -2 

The mapping qi 1 : e + A is said to be identifiable conditional 

on~ if every statement in terms of qi 1 is. The statement e1 
or the mapping qi 1 is called identifiable conditional on~ 

if~= ~. 
Q) 

In the same way as lemma 1.1.8 we have 

LEMMA 1.2.2 The mapping Q)l : e + A is identifiable condi-

tional on Q) 2 : e + n iff for all 01 , 02 E 8 the following 

implication holds 

} 
REMARK.It follows from this lemma that xis informative for 

qil : e ➔ A conditional on (!)2 : 8 ➔ n iff there exists a mapping 

Cl n X 'j-) ➔ A such that Q)l = a 0 ijJ where ijJ: 8 ➔ n X 'fl is 

defined by iJJ ( 0) = ( Q)2 ( 0)' p 0) 0 E 8. 

x'P 
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THEOREM 1.2.3 (Conditional identification theorem). 

If xis informative for ~l conditional on ~2 and xis informa­

tive for ~2 , then~ is informative for ~1 • 

PROOF. Suppose ~1( 01) -:f ~l (G2). If ~2( 01) = ~2 (e2) we have 

Pe -:f Pe by lemma 1. 2. 2. If ~2 ( 81) -:f ~2 ( 0 2) we have Pe -:f Pe 
1 2 1 

since ~ is informative for ~2. □ 

EXAMPLE 1.2.4 Consider the following simple model 

where E{£} = 0 , V{!:_} = 1, and where a E Ac IR+ and 

2 

µ E M c JR are unknown constants. The random variable .f. is unob­

servable and xis observable. If~ E Z is a parameter that 

characterizes the distribution of~ then we may put 0: = (a, µ,~) 

and the natural parameterspace is 8 =Ax M x z 
Let the functions ~land ~2 be defined by ~1 (0) = a, 0 E 8 

and ~2 (0) = µ , 0 Ee. Since Ac IR+, different a-values cor­

respond to different variances of x and therefore to different 

distributions of x. Hence xis informative for ~1 • On the other 

hand, if a is held fixed, different µ-values correspond to 

different expectations of~ and thus~ is informative for ~2 
conditional on ~1 . By the conditional identification theorem it 

follows that~ is informative for ~1 . Note that µ1 -:f µ2 does 

not imply different expectations for~-

Intuitively one could expect that if the mappings ~1 and 

~2 are in some sense 'independent', conditional identifiability 

should imply identifiability. In the next section we develop 

such a concept of independence. 

Let 8 c 8 be a statistical statement. Then there surely 
0 

exist identifiable statements that have 80 as a subset (e.g. 8), 

and it is easily seen that there exists a uniquely determined 

smallest identifiable statement with this property (take the 

union of all observational equivalence classes that have nonempty 
intersection with 8 0 ). Therefore we put 



DEFINITION 1.2.5 The identifiable hull X(8 0 ) of 8 0 is the 

smallest identifiable statement that has 8 0 as a subset 

X (80) = { 0 E 8 i ~ 00 E eo, Pe 

iff 9 is identifiable. 
0 

P 0 }. Clearly, X (8 0 ) 

0 

REMARK.Since X (8 0 ) n X (8 1 ) is an identifiable statement as 

intersection of identifiable statements we always have 

X {80 n el) C X (80) n X (81). 

l 3 

DEFINITION 1.2.6 The informational classes J 0 and J 1 are cal­

led informationally independent if for all 80 E~ and 81 E J 1 

we have JC (80 n 13i) = X (80 ) n X (81 ). Two mappings {Jll and {Jl 2 

are informationally independent if the informational classes 

J and J are. Two statements 80 and e1 are informationally 
{Jll {Jl2 

independent if J and J 8 are. 
,eo 1 

Before we can establish the relation between conditional 

identifiability and informational independence we need the 

following lemma. 

LEMMA 1.2. 7 Let x be informative for {jl2 conditional on {Jll. 

If 8 E J 0 E 8 and 8 -1 
( { {Jll ( 8 1) } ) then , : {Jll 0 {jl2 1 0 1 

X ( 8 n 81) n 81 80 n 81. 0 

PROOF, One way (~)being trivial we only have to prove 

x(e 0 n e1 ) n 0 1 c e0 n 0 1 • If e0 n e1 = 0 this is 

trivial, so suppose 8 0 n e1 i 0- Let 0 0 EX (8 0 n B1 ) n e1 

be arbitrary. Then 0 0 E e1 and thus we have to prove 0 0 E e0 • 

C 
Suppose 0 0 E 0 0 • Then by the definition of x (B 0 n e1 ) there 

such that P0 = P0 . We also have 0 0 i 0 2 
o 2 

= , 1 10 1 ) since 0 0 , 0 2 E e1 • But then 

we have P0 i P0 since {Jl 2 (and thus e0 ) is identifiable condi-
o 2 
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tional on ~1 . Thus we have a contradiction and the lemma is 

proved, □ 

THEOREM 1.2.8 If~ is informative for ~2 conditional on ~l 

and ~l and ~2 are informationally independent then ~ is informa­

tive for ~2 . 

PROOF, Let 8 E J be arbitrary and 0 E 8. If 0 E 8c then 
O ~2 1 o 2 o 

-1 
we have to prove that P0 I P 0 . Put 81 ~1 ({~ 1 (0 1 )}). 

1 2 
Then 01 E 81 and since xis informative for ~2 conditional on 

~1 we have by lemma 1.2.7 

(1.2.1) 

By informational independence we also have 

(1.2.2) 

and since E\ C JC (81 ) , (1.2.1) and (1.2.2) imply 

JC (8 n e ) = e n 8 • 
O l o l 

Thus 80 n~ is an identifiable statement with 01 E 90 n e1 and 

C 02 E (9 0 n e1 ) • Hence P 0 f P 0 and the theorem is proved. □ 
1 2 

We shall consider one important case more closely. Sup­

pose 8 is of the form 9 c U x V and let 0 = (~ 1 (0) , ~2 (0)) , 

0 E 8 where u: = ~l (0) EU and v = ~2(0) EV. Thus ~l (0) 

and ~2 (0) are projections of 0 on U and V, respectively, and 

the question arises when ~land ~2 are informationally inde­

pendent. We have 

THEOREM 1.2.9 The projections ~land ~2 are informationally 

independent iff all classes of observationally equivalent values 
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of 0 are of the form U0 x V0 , U0 c U, V0 c V. 

PROOF. (If) Let U0 and V0 be two arbitrary subsets of U and V 

respectively. Then we have to prove 

JC (U x V ) = JC (U x V) n JC (U x V ) 
0 0 0 0 

v· 

V 
0 

1' 
JC (U X V) 

- q 

,- ------------- -. 
I 
I 

, 0 I 0 
, 1 tr··········• 2 

I 
I 

: I 

u 
0 

> I 

,. 

,I, 

'JC (U X V ) 
0 0 

u 

One inclusion (C) being trivial 

(~). Let 00 E JC (U 0 x V) n 'JC (U 

we only have to prove the other 

x V ). Because 0 E 'JC (U x V0 ) 
0 0 

there exists 01 EU x V0 with P 0 = P 0 and since the observa-
o t 

tional equivalence class to which 0 belongs is of the form 
0 

v 1 , 01 can be chosen such that ~1 (0 1 ) = ~1 (0 0 ) and 

U x V0 • In the same way there exists 02 E U0 x v0 such 

P 0 = P 0 and ~2 (0 2 ) = ~2 (0 1 ). But then we have P 0 
2 1 o 

and so 0 E 'JC (U x V ) • 
0 0 0 

(Only if) Let ~land ~2 be informationally independent and 

suppose there exists an equivalence class Sc 0 which is not 

the cartesian product of subsets of U and V. Then there exist 



16 

Suppose 0 3 (/: S. 

(see figure). 

Choose u0 : = {U2 } 

and v0 : = {v1 }. Then 

u0 x V0 = {03 } and so 

x (U xv) n s = ¢ 
0 0 

since Sis an equivalence 

class and 03 ~ S. 

We also have 

Similarly 

X (U X V) ::) s 
0 

X (U x V 0) :::l 

V 

since 02 E (U 0 x V) n S. 

S. Hence 

s c X (U x V) n X (U x v ) . 
0 0 

Since (Jll and (Jl 2 are informationally independent we have 

X (U x V) n X (U x V) = X (U xv) and sos c X (U xv). 
0 0 0 0 0 0 

This contradicts X (U x V) n S = 0 and proves the theorem. □ 
0 0 

EXAMPLE 1.2.10 Consider the standard univariate linear regres­

sion model 

E{_£} = 0 

where y is then-vector of observations, Xis a known n x k 

matrix of k explanatory variables, Sis a k-vector of unknown 

regression coefficients and.£ is an n-vector of (unobservable) 

errors. If ~ E V is a parameter that characterizes the distri­

bution of .£ and S E U c IR~ we may put 0 : = ( S , 1;) and the 

natural choice for 8 is U x V. Note that the distribution P0 
of y depends on S through E {y} = X s. Thus if 0 1 = (S 1 , 1:: 1 ) 

and 0 2 = (S 2 , i; 2 ) are observationally equivalent we must have 

X s1 = X s2 • But then (s 1 ,i; 1 ) and (s 2 , i; 1 ) are observatio­

nally equivalent and also (S 1 , i; 2 ) and (s 2 , i; 2 ). 
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Thus the observational equivalence classes are of the form 

U0 x V0 , U0 c U, V0 c V and so Sands are informationally 

independent by theorem 1.2.9. It follows from theorem 1.2.8 

that in order to investigate identifiability of s we may con­

sider y - XS as observable, and for identification of S we 

may consider y - ~=XS as observable. The latter implies the 
- k 

well-known results that if 8 = IR x V, n ~ k then a necessary 

and sufficient condition for identifiability of Sis r [X] = k, 
k and that for identifiability of d'S , d E IR a necessary and 

sufficient condition is d E < X' > • 

EXAMPLE 1.2.11 (Error in variables model) Let the variables µt 

and vt be related through 

t 1 , 2 , .•• 

Suppose we can only observe µt and vt with observational error, 

i.e. we observe at t 1, . . . , n 

where E {~t} = E {nt} = 0. Lets EV be a parameter characte-

rizing the distribution of (~t, nt) , t 1, 2, , n. 

Put B : = (a, S, v1 ••• , vn , s ). Obviously, if 8 is such that 

vt is allowed to be constant over time, (a , S) is in general 

not identifiable. We shall show that if 8 is a subset of JR n+2 x V 

such that vt is not constant over time, then (a , S) is iden­

tifiable. The model can be put in the form of a linear regres­

sion model with unknown regressor vt 

Yt =a+ s Vt+ nt t=l,2, .•. ,n 

Since vt is not constant over time, it follows from example 

1.2.10 that (a, S) is identifiable conditional on (v 1 .•. vn). 

However, (v 1 ... vn) is identifiable since it is the expecta­

tion of the observable vector (~1 .•. ~n). Thus it follows by 

theorem 1.2.3 that (a , S) is identifiable. 
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1.3 IDENTIFICATION AND STATISTICAL PROCEDURES 

In this section we present some new ideas on identifica­

tion that, roughly speaking, tell the statistician what statis­

tical procedures should be forbidden in the presence of obser­

vationally equivalent e's. 

Let J 
0 

denote the informational class of statements the 

statistician is interested in. Note that since 8 E J there 
0 

is no value of e that is excluded a priori by the statistician 

from being the true value. Although not all statements in J 0 

need to be identifiable, there exist identifiable statements 

in J 0 (e.g. 8) and there exists a largest informational class 

J of identifiable statements in J • Suppose J is endowed 
0 0 0 

with a cr-field J' of subclasses such that J E S. 
0 

DEFINITION 1.3.1 A statistical procedure is a measurable map­

ping d : (X, 2 ) + (J O , J') with the interpretation that if x 

is observed,' then the statistician makes the statement d(x). 

Before a statistician answers the question what 'good' statis­

tical procedures are, he should answer the question what pro­

cedures he will consider as a priori meaningless. Intuitively 

it seems reasonable to ignore procedures that can produce un-

identifiable statements with positive probability for some 

e E 8. This motivates the following definition. 

DEFINITION 1.3.2 A statistical procedure dis called ignorable 

if Pe {d(~) E J0 } < 1 for some e E 8. 

Thus the statistician will only consider statistical procedu­

res d with 

1 e E 8 

EXAMPLE 1.3.3 Consider the case where J is the class of all 
0 

statistical statements. This implies that the statistician is 
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interested in point estimates of 0 , Then definition 1.3.2 

implies that a non-ignorable estimator takes its values almost 

surely in one-point observational equivalence classes or, 

equivalently, with probability one (V 0 ) it does not discrimi­

nate between observational equivalent values of 0. In the case 

that all observational equivalence classes contain more than 

one element (or: there is no identifiable singleton) the sta­

tistician should refuse to produce point estimates. It is 

important to mention however, that this does not imply that 

every other statistical statement such as region estimates or 

acceptation of a hypothesis, is a priori meaningless. 

1.4 IDENTIFICATION IN STATISTICAL DECISION THEORY 

In this section we extend the statistical problem 

(~, P, 8) to the statistical decision problem(~,~, e, A, L), 

where -A is the space of actions (or strategies) for the 

statistician, 

-Lis a mapping from ex A into a space C, called the 

space of consequences. In most cases L takes real values and 

is then called the loss function or pay-off function, and \ 

L (0 , a) is interpreted as the penalty for the statistician 

for taking action a if 0 is the true parameter. 

Let La(0) : = L (0 , a) , 0 E 8 denote the section of Lat 

a EA. Thus La is a mapping from 8 into the space of consequen­

ces c. 
When the statistician has to make up his mind whether he shall 

take action a or not, he will base his decision on the conse­

quence La(0). This is,however, impossible if La(0) is unknown 

but he may hope that if~ is informative for La' he can make a 

choice which is not a pure gamble. 

Let A0 denote the set of actions a such that xis informa­

tive for La. Suppose further that A is endowed with a a-field 

di of subsets of A such that A0 E,fl . A measurable mapping 
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d : (X , c;fj ) -+ (A , cf/) , with the interpretation that action 

d(x) is taken if xis observed, is called a decision rule. 

DEFINITION 1.4.1 A decision ruled is called ignorable if 

Pe {d(~) E A0 } < 1 for some e E e. 

Thus the statistician should only consider decision rules d 

with Pe {d(~) E A0 } = Pe {Ld(~) identifiable}= 1 , e E 8. 

In fact, any statistical problem can be considered as a 

special case of a statistical decision problem. To see this we 

take A= J 0 , the informational class of statements the statis­

tician is interested in and for La mapping into a set consis­

ting of two consequences c0 and c1 (c0 f c1 ) to be interpreted 

as 'true' and 'false' respectively, 

e E a 

(1.4.1) 

A decision rule is now a statistical procedure and the follo­

wing theorem shows that then definitions 1.3.2 and 1.4.1 are 

equivalent. 

THEOREM 1.4,2 If A is a class of statements and Lis given 

by (1.4.1), then a decision ruled is ignorable iff it is 

ignorable as a statistical procedure. 

PROOF, The theorem follows if we can prove: Ld(x) identifiable 

a.s. iff d(~) identifiable a.s. Let a EA be arbitrary and 

suppose that La is identifiable. Then L: 1 ({c 0 }) = a is iden­

tifiable. On the other hand suppose a is identifiable. Then 
~1 -1 

also La ({c0 }) is identifiable as the complement of a= La ({c0 }). 

Thus by the remark following definition 1.1.10 L is identi-
a 

fiable. D 
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If all actions are statistical statements, then a decision­

rule is a statistical procedure and the question arises for 

which loss functions the definitions of ignorability are equi­

valent for all rules d. Thus we are looking for functions 

L : 8 + C such that L is identifiable iff a is identifiable. 
a a 

Necessary and sufficient for La to have this property is 
C La(0 1 ) = La(0 2 ) ~⇒ (0 1 , 0 2 Ea v 01 , 0 2 Ea ) 

Thus L must be constant on a and on ac. 
a" 

Hence Lis of the form 

( 1.4. 2) l C0 (a) 

L (0 , a) = 

c1 (a) 

0 E a 

EXAMPLE 1.4.3 (Estimation) Let 8 A IR and consider the 

usual quadratic loss function 

2 L (0 ,a) : = (0 - a) , 0 E 8 a E A 

Since L is not constant for 0 i a, this loss function is 
a 

clearly not of the form (1.4.2). 

EXAMPLE 1,4.4 (Hypothesis testing) Let 8 = IRk and consider 

the problem of testing H0 : 0 E 8 0 against H1 : 0 E 8~ where 

8 is a (measurable) subset of 8. 
0 

C Let A {8 0 , 80 } , and take 

L (0 , a) : = 1 - 1 (0) 
a 

a E A , 0 E 8. 

Obviously it is of the form (1.4.2). Note, that a decision rule 

for this problem is not ignorable iff the statement 8 is 
0 

identifiable. 



22 

1.5 IDENTIFICATION IN BAYESIAN INFERENCE 

Let.fl be a a-field of subsets of 8, and T some measure on 

(8 , '-'.q), called the prior measure. Following KADANE [ 22] we 

shall interpret T as an opinion on 0 adopted by the statistician 

before xis observed. It is clear that subsets of 8 of T-measure 

zero cannot play a role anymore and that the classical concept 

of identification becomes rather meaningless. Fu~thermore, when 

the statistician has the opinion Ton (8 ,~~) this implies that 

he will consider only c,1-measurable statistical statements. It 

should be noted that there exist identifiable statements in cfv 
(e.g. 8), and a good Bayesian definition of identifiability is 

of course such that these statements are also identifiable in 

the Bayesian sense. This leads to the following definition. 

DEFINITION 1.5.1 A statistical statement 8 E0~ is called iden­
o 

tifiable w.r.t, Tor equivalently xis said to be informative 

for 8 w.r.t. T, if for some N E,f/ with T {N} = 0 and for all 
0 

0 1 , 0 2 E 8 - N we have the implication: 0 1 E 80 , 0 2 E 8~~ P0 jP0 . 
1 2 

REMARK, By choosing for Ta measure that assigns positive mass 

to all points of 8, identifiability w.r.t. Tis equivalent to 

identifiability. However in most practical situations this 

would imply that the measure Tis not ~-finite. Since such 

models are analytically not very attractive, the statistician 

shall prefer ~-finite prior measures. 

Obviously all statements of T-measure o and tneir complements 

are identifiable w.r.t. T and the analogue of theorem 1.1.3 is 

that the class of all statements which are identifiable w.r.t. 

T is a sub a-field of ~ . 

Since functions of 0 are now functions on the measurable 

space ( 8 , .fl) , it will be clear that the only functions cp the 

statistician can be interested in, are measurable functions. 

Let ( A , .£ ) be some measurable space, where .£ is a a-field of 

subsets of A. 
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DEFINITION 1. 5. 2 The measurable function qi : ( 8 , ,:,,ct'./) + ( A. , I:., ) 

is called identifiable w.r.t. t, or equivalently~ is said to 

be informative for qi w.r.t. T if~ is informative for qi-l (A. 0 ) 

w.r.t. T for all A. E £ . 
0 

Although definition 1.5.2 is the obvious generalization 

of def. 1.1.10 it gives rise to a remarkable difference between 

classical and Bayesian theory since the obvious analogue of 

lemma 1.1.12 does not hold. More precisely we have 

LEMMA 1. 5. 3 If there exists a set N E ,fJ with T {N} = 0 

such that for all 0 1 , 0 2 E 8 - N we have the implication 

qi(0 1 ) I qi (0 2 ) ~ P0 I P 0 , then~ is informative for qi 
1 2 w.r.t. T. 

PROOF. 

T { qi -1 

-1 
Let A. be arbitrary with T {qi (A.)}> 0 and 

0 0 

(fi.c)} > o. (If qi- 1 (A) or qi-l (fi.c) hast-measure zero, 
0 , 0 0 

nothing remains to prove). 

Let 0 1 E qi-l (A. 0 ) - N and 0 2 E qi-l(fi.~) - N. 

qi(0 1 ) I qi(0 2 ) since qi(0 1 ) E t,_ 0 and qi(0 2 ) E 

P 0 I P 0 and so~ is informative for qi- 1 (A. 0 ) 

1 2 

Then 

fi.c . Hence 
0 

w.r.t. T • D 

That the converse does not hold in general can be seen as fol­

lows. Let A. be a non-denumerable set and£ a a-field of 

subsets of A. that contains all one point subsets. Suppose the 

measurable function qi : (8 , cf:/ ) + (A. , £ ) is identifiable 

w.r.t. some prior measure T. 

Let A E f,_ be arbitrary and let NA E .:fl be a null set such 

that for all 0 1 , 0 2 E e - NA the implication 

0 E 
-1 

( {),_ } ) 0 2 E ( qi -1 ({A}))c ~ P t p0 1 
qi , 

0 
1 2 

set N, such that for all 0 1 , 0 2 E 8 - N we have 

qi(0) ~ P I P0 , is equal to 
2 01 2 

u 
AEA. 

holds. Then a 

Since A. was non-denumerable, N need not be a null set, or may 
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even be nonmeasurable. 

In order to obtain the equivalence in lemma 1.5.3 we need 

a stronger concept of identifiability of functions w.r,t. ,. 

DEFINITION 1.5.4 The measurable function~ 

is called uniformly identifiable w.r.t. ,, or equivalently x 

is said to be uniformly informative for~ w.r.t. T, if there 

exists a set N E <:fl with T {N} = 0 such that for all A E £ and 
0 

0 1 ,0 2 E 8 - N we have the implication 0 1 E ~-\A 0 ) , 

-1 
02 E ~ (A~) ⇒ p01-/' p02' 

The difference between definitions 1.5.2 and 1.5.4. is 

that in the former definition the set N may depend on A0 • It 

is now easily seen that the function~ is uniformly identifia­

ble w. r. t. T iff there exists a null set N E d'J such that for 

all 01 , 0 2 E 8 - N we have 

Although the concept of identification introduced in defi­

nitions 1,5.l and 1.5.2 is different from that in KADANE [ 22] 

(who in fact uses the classical concept) the next theorem will 

show that the concept of identification introduced in this 

section is just what we intuitively want it to be. 

For terminological convenience we shall restrict ourselves 

to the case where Tis a probability measure. It is then called 

the prior distribution and the identity on (8 ,r)4) can be 

considered as a random object Q, To avoid problems with con­

ditional probabilities we shall suppose that Q is a random vec­

tor and that x takes its values in a complete separable metric 

space. Suppose further that for all X E ~ the function 
0 

'I': (8 ,dv} ➔ ([O,l], :J3) where :0 is the Borelfield on (0,1], 
0 0 

is defined by 'I' (0) : = P0 {X} and is cfil-measurable. (For 
- 0 

details on conditional probabilities see ASH [ 2] p. 262 - 265) 

Then P 0 can be interpreted as conditional distribution of x 

given 0 and we may write down the posterior distribution Tx' 

the distribution of 0 conditional on x. It is interpreted as 

the opinion on 0 after x has been observed, and roughly speaking 

one could expect the opinion on 0 (non degenerate) to be 



changed with positive probability if~ is informative for 0 

w.r.t. ,. Let P denote the joint distribution of~ and Q. 
We have 

THEOREM 1.5.5 If O <, {80} < 1 for some ea E J1 and if x 

is informative for 80 w.r.t., then P{,x f ,} > 0. 

PROOF, We have 'x =, a.e. (x) iff the random variables x and 

~ are independent or equivalently P0 = F a. e. (0) where F 

denotes the marginal distribution of~- Since~ is informative 

for 8 0 w.r.t. ,, there exists a null-set N Ecf) such that 

01 E 80 - N , 0 2 Ee~ - N implies P0 f P0 • Since both 80 - N 
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1 2 
and e~ - N have positive ,-measure we cannot have P0 = F a.e. (0). 

Hence { x I T f T} must have positive probability (unconditio-x 
nal to 0). D 

REMARK 1. If all e O E .fl have ,-measure O or 1 , Q is identifiable 

w.r.t. T regardless what P0 is. Of course such an opinion, is 

not a very realistic one. 

REMARK 2. Conversely, if P {, f ,} > 0 then x and 0 
X 

are not independent and so there exist 0 0 , 0 1 E 8 with Pe f Pe . 
o l 

Hence there exist 

statements 80 c 8 

Glear whether they 

nontrivial identifiable statements (i.e. 

with 8 f !Ii and 8c f !Ii). It is however not 
0 0 

are cfl -measurable. 

1,6 FINITE INFORMATIVE SAMPLES FROM STOCHASTIC PROCESSES 

AND THE PROBLEM OF MINIMUM INFORMATIVE SAMPLE SIZE 

Let {~t; t = 1, 2, •.• } be a (possibly vector-valued) 

observable stochastic process in discrete time. If the distri­

bution of the process is characterized by some unknown parame­
ter 0 E 8 we put p(m) = {P(oo) I 0 E 8} where P(oo) denotes the 

0 0 
(infinite dimensional) distribution of the process { ~t}. 
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Suppose we observe the process { ~t} at t = 1, 2, ..• , n. 

Then our actual sample is (~1 , ~ 2 , ... ~n). The joint distri­

bution P~n) of this sample is a marginal distribution of P(oo). 
Let J)(n) = { P(n) 8 E 8}. 

8 
It will be clear now, that inferences about a function~ : 8 + A, 

based on the sample (~t , ~2 , ••• ~n) only make sense if~ is 

identifiable w.r.t. 'fl n) rather than w.r.t. 'P (oo). 

Therefore the sample must be informative for~- Obviously iden­

tifiability with respect to p(n) implies identifiability with 

respect to f->(oo), but the converse does not hold in general. 

Although it follows from KOLMOGOROVS extension theorem that 

P~ 00
) is determined by the sequence P~n) , n = 1, 2, .•. there 

need not exist some finite sequence P~l) , •.. , P~N) that 

determines P~ 00
) uniquely for all 8 E 8. To be more precise; 

let 0 1 , 0 2 E 8 be such that P~ 00
) f P~ 00

) and let N = N (8 1 , 0 2 ) 
l 2 

be the smallest value of n such that P~n) f P~n). 
l 2 

Since N need not be bounded in 0 1 and 0 2 , it will be clear 

that in general identification w.r.t. :P(oo) is an essentially 

weaker concept than identification w.r.t. p(n) for some 

finite n. This fact is important because e.g. in estimation 

theory it implies that the existence of consistent estimators 

for ~(8) does not guarantee a finite sample to be informative 

for ~(8). The following example may clarify this. 

EXAMPLE 1.6.l Let ~l , ~ 2 , ... be a sequence of independent 

Bernoulli trials with P{ ~t = l} Gt , P{ ~t = 0 } = l - Gt' 

0 < 8 < l such that the sequence 8 = {8 1 , 0 2 , .•• ) has a well - t -
defined Cesaro limit 

lim 
n+oo 

l 
n 
l: 

11 t=l 
8 t 

Suppose the Gt are unknown, and the statistician wants to 

estimate ~(8). The natural choice for 8 is 



n 
(8 1 , 0 2 ... ) , lim l I 

n➔ 00 n t=l 
8 t 

(jl ( 8) } • 

The obvious estimator based on the sample ~l , ~ 2 ••. ~n is 

n 1 
I ~t 

n t=l 
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It is easily seen to be asymptotically unbiased, Furtherrnore,for 

its variance we have 

n 
=..!_ E8 (1-8)< 

n2 t=l t t 4n 

1 
➔ 0, n-+ co,. 

Thus in is a (weakly) consistent estimator for ~(8). Neverthe­

less it is easily seen that no finite sample is informative 

for qi(8). 

The previou~ discussion motivates the following definition. 

DEFINITION 1.6.2 The sample size n is called informative for 

the function (jl 8 ➔ A if for all 0 1 82. E 8 we have the 

implication qi(8 l) -:f qi(82) => P(n/ -:f p\n) 
8 8 

1 2 

REMARK.If the proces { ~t} is strictly stationary, and the 

sample size n is informative for qi, then any sample of the 

process taken at n consecutive time points is informative for qi. 

If the sample size n is informative for qi, then any sample 

size N > n is informative for qi because of the implication 

0 1 , 0 2 E 8 • Therefore an 

interesting but often very difficult problem is to find the 

minimum informativ~ sample size, or at least an upperbound for 

it. In the case of a sample from a moving-average process the 

minimum can be found and in mixed autoregressive moving average 

models an upperbound can be found (Chapter II univariate,and 

Chapter III multivariate). 
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1.7 IDENTIFICATION AND PREDICTION 

In this section we consider the statistical prediction 

problem, that is the problem of predicting the random variable 

(or - vector) yon the basis of the observable vector x where 

the joint distribution of x and y depends on some unknown para­

meter 0 E 8. The problem needs some special attention since it 

does not fit the framework of 9 1.1 - § 1.3 in a trivial way. 

Let P0 denote the joint distribution of~ and y and put 

'j"J = { P 0 I 0 E e } • Then the triple ( (~ , y) , f> , e) is 

not a relevant statistical problem since only~ is observable 

and not (~, y). The relevant statistical problem is represen­

ted by ( ~, P1 , e) where '.P1 = { P110 I 0 Ee} and P 110 
denotes the marginal distribution of x. 

If the statistician is interested in prediction of yon the 

basis of ~,he is, in fact, interested in statements in terms 

of the mapping'¥: e +'? defined by '¥(0) = P0 , 0 Ee. This 

leads to the 'following definition. 

DEFINITION 1.7.1 y_ is said to be predictable w.r.t. x if xis 

informative for the mapping'¥. 

Thus y is predictable w.r.t. x iff we have the following impli-

cation for all 0 1 , 02 Ee: P0 f P0 ~ P f P (see 
1 2 1,01 1,02 

lemma 1. 1.12). 

Two examples may clarify the ideas. 

EXAMPLE 1.7.2 Let~ and y be independent normal variables 

with unknown mean 0 and unit variances. Then for all 0 1 
we have the implications P0 t P0 ⇒ 0 1 t 02 ⇒ P1 0 f 

1 2 ' 1 
Hence y is predictable w.r.t. x. 

EXAMPLE 1.7.3 Let ( ~, y) be binormal with zero means, 

unit variances and unknown correlation-coefficient 0. Then we 

have P 
1,01 

P for all 0 1 , 0 2 Ee= [-1 , l] 
1,02 

and so y 
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is not predictable w.r.t. ~- It should be noted, that if 0 were 

known, then y would be predictable in a trivial way. However, 

in that case we don't have a real statisticai prediction problem, 

but merely a probabitistic prediction problem which can be 

defined as a triple ( (~, y) , 'P , 8) for which the condi­

tional distribution of y given~ does not depend on 0 (a.s. 

P110 V0 ) . Clearly observational equivalence of values of 0 

is irrelevant for such prediction problems. 

Let x = ( ~ 1 , ~ 2 ••. , ~n) be a sample taken from a 

stochastic process{~, t = 1, 2, ... } with probability law 
( 00) 

P0 , 0 Ee. Let N > n+l. Then y = ~N is predictable if the 

sample size n is informative for P~N) (def. 1.6.2) or equiva­

lently if for all 01 , 0 2 Ee we have the implication 

(1.7.1) 

Usually the index t represents time; therefore {~n+l , ~n+ 2 , ••• } 

is called the future of the process. Thus the future is predic­

table iff (1.7.1) holds for all N ~ n+l. In analogy with 

def. 1.6.2 we put 

DEFINITION 1.7.4 The sample size n is called predictive if 

(1.7.1) holds for all N > n+l. 

Of course, if the sample size n is predictive, any sample size 

m ~ n is predictive and so the problem of the minimum predic­

tive sampte size makes sense. The problem is closely related 

to that of minimum informative sample sizes. It differs so far 

as in (1.7.1) the set { P~N) N = n+l , n+2 , ••. } depends 

on n. The relation to the minimum informative sample size (if 

it exists) is given in the next theorem. 

THEOREM 1.7.5 If N is the minimum informative sample size 
(j) 

for qJ : e + A and n 0 is the minimum predictive sample size 
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then we haven > N. If~ is 1 - 1 then n 0 N. 
0 ~ ~ 

PROOF, Since N is minimal informative for~ we have for 
~ 

If~ is 1 - 1 we also have for all 0 1 , 0 2 E 8 

which implies that N is predictive and so N 
~ ~ 

EXAMPLE 1.7.6 Consider the linear regression model of exam-

ple 1.2.10. We rewrite it as 

k 
xt E IR • 

Suppose the ~tare i.i.d variables with common distribution­

function Fs , s Ev. We shall prove that y: = (y1 .•. yn)' is 

predictive for Yn+l iffy is informative for x~+l s. 

PROOF, 

P (n+l) 
0 

(Only if) Let x~+l s1 f x~+l s2 . Then we have also 

l 
f P(n+l) and since y is predictive for Yn+l this implies 

02 

P(n) 
0 

1 

= F and s2 

Hence y is informative for x~+l S (lemma 1.1.12). 

P(n) . Then we have 
02 

where X denotes then x k matrix n 

of regressors. Since P(n+l) is 
0 

completely determined by Fs and 

Xn+l S , where 



l 
X n 

31 

1 
we must have 

this implies 

so x~+l s1 i x~+l s2 . But 

informative for x~+l s. 

Thus we have a contradiction proving that y is predictive for 

Yn+l' □ 

1.8 WEAK CONCEPTS OF OBSERVATIONAL EQUIVALENCE AND STRONGLY 

INFORMATIVE SAMPLES 

The concept of identification introduced in the preceding 

sections is in fact based on the classical concept of obser-

vational equivalence, that is on equality of distributions. 

As SCHONFELD [ 31] allready pointed out, any other equivalence 

relation on 'F can serve as a basis of a (weaker) alternative 

concept of observational equivalence, and so a stronger notion 

of informativeness. Let~ denote an arbitrary equivalence 

relation on?. Then the values 0 1 EB and 0 2 EB are called 

weakly ~-observational equivalent if P0 ~ P0 It is easily 
l 2 

seen , that all results of the preceding sections remain 

valid if (in)-equality of distributions is replaced by (non-) 

~ equivalence. 

We shall consider two possibilities for~, where the first one 

(Mr-equivalence) is the most important (particularly from a 

practical point of view) and the second (t-equivalence) is of 

some theoretic importance since it enables us to see a link 

between the classic concept of identification and sufficient 

statistics. 

Let Mr(e) denote the set of all moments up to order r of 

the distribution P0 (r = 1, 2, ••• ). 
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DEFINITION 1.8.1 If Mr(e 1 ) = Mr(e 2 ) then the distributions 
M 

P0 and P0 are said to be M~-equivalent P0 ~r P 
1 2 ' 1 °2 

The values 0 1 and 0 2 are then said to be weakly observational 

equivalent to the order r. The corresponding concept of infor­

mativeness (identifiability) is called strong r-th order infor­

mativeness (strong r-th order identifiability) 

Although the corresponding definitions of (minimum) strongly 

r-th order informative sample size and strong r-th order pre­

dictability are obvious, as an example we shall give the defi­

nition of r-th order predictive sample sizes. Let M(n)(0) r 
denote the set of all moments up to order r of the sample 

~ = (~1 , ~ 2 ••• ~n) taken from the process {~t, t = 1, 2, •.. }. 

Then the sample size n is called strongly r-th order predictive 

if for all N > n+l and 0 1 , 0 2 Ee we have the implication 

M(n) (0 ) t-
r 1 

M (n) (0 ) 
r 2 

Clearly if we are studying weakly stationary processes and 

regression models, then r = 2 is the most important case. Of 

course, if the observable random vector is normal, informative­

ness is equivalent to strong second order informativeness. The 

main advantage however of using definition 1.8.1 rather than 

the classical concept is, that it is not necessary to give a 

complete specification of the class 'P. 

EXAMPLE 1.8.2 (Continuation of example 1.2.10) 

Clearly the function µ(0) : = X s = E0{ y} is strongly first­

order identifiable regardless the distribution of£· Further-

more if cp ( 0) : = ( S , Q) where Q Q ( 0) : = E { e: e: 1, } , 
0 - -

then a sufficient condition for cp to b~ strongly second-order 

identifiable is r(X) = k. If e lRk x V then the condition 

is also necessary. 

In the next section we shall develop the concept of 



t-informativeness. Let (T,'t) be a measurable space, and let 

t : (X, ~ ) + (T, 't \ be a measurable function. Then t induces 

the probability distribution P0 t- 1 on (T ,/). The random 

quantity t(~) is called a statistic and is interpreted as a 

reduction of the observational material. 

DEFINITION 1.8.3 If P0 t-l = P0 t-l then the distributions 
1 2 

P0 and P0 are said to bet - equivalent: P0 t P0 . The 
1 2 1 2 
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values 0 1 and 02 are then said to bet - observationally equi-

valent. The corresponding concept of informativeness is called 

t - informativeness. 

The function t transforms the statistical problem (~, fJ, 8) 
'\, 

into the new statistical problem ( t (~) , :P , 8) where 

:P = { fl0 I fl0 = P0 t- 1 , 0 E s } . 

THEOREM 1.8.4 ~ is t - informative for~ 0 + A iff t(~) 

is informative for~-

PROOF. Follows immediately from def. 1.8.3 and lemma 1.1.12. □ 

Obviously we have for all 01 , 02 E 8 

(1.8.1) 

Thus t - informativeness is stronger than informativeness. Of 

course, if tis 1 - 1 the concepts are identical but this is 

not a necessary condition, and the question arises for what 

functions t the equivalence holds. In general the answer is 

not very interesting as the following example may show. 

EXAMPLE 1.8.5 Let x = (~1 , ••• , ~n) be a random sample 

from N(O, 0) 1 0 E (0, 00 ) and t(~) : = ~1 . Then equivalence 
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holds in a trivial way. 

The point is, that statistics like t(~) in the above example 

ignore a lot of information. Sufficient statistics,however,are 

not 1 - 1 in general but don't ignore any relevant information. 

We have 

THEOREM 1.8.6 Let t(~) be sufficient for 0. Then~ is infor-

mative for 0 iff t(~) is informative for 0. 

PROOF. Let P0 denote the joint distribution of x and t(~). 

Then for all 0 1 , 02 Ee we have P0 i P0 ⇒ P0 i P0 
1 2 1 2 

Since t(~) is sufficient, the conditional distribution of x 

given t(x) does not depend on 0 and since 1\ is completely 

determined by this conditional distribution and P0 t- 1 (the 

marginal distribution of t(~)). We also have 

⇒ 

for all 01 , 02 E 8. Combination with (1.8.1) completes the 

proof. □ 

1.9 LOCAL IDENTIFIABILITY 

So far we considered the identification problem from the 

point of view that a fixed parameterspace 8 is given. Therefore 

there was no need to refer to it explicitly. However sometimes 

it is convenient to consider the problem for subsets~ of e. 
Since the identifiability then depends on the specific choice 

~ c 8, in this section we shall refer to it by saying that a 

statement (or a function) is identifiable w.r.t. ~' or equiva­

lently that~ is informative w.r.t. ~ for that statement (or 

that function). Thus e.g. a statement e c ~ is identifiable 
0 

w.r.t. ~ if for all 0 0 , 0 1 E ~ we have 

0 ES 0E~-8 ⇒ p -tp 
o o' 1 o 0 re· 

o 1 
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If a topology is given on 8, we have the possibility of consi­

dering the identifiabilityproblem in a neighbourhood of a given 

point. Let the statisticican be interested in the function 

~ : 8 + A, where the space A is endowed with a topology T. 
Without loss of generality we can assume that q> is onto. 

DEFINITION 1.9.1 The function qi is said to be locally identi­

fiable for~ at \ 0 EA, or equivalently~ is called locally 

informative for q> at \ 0 if there exists a neigbourhood u, ET 

of \ 0 such that~ is identifiable w.r.t. ; 1 (u, ). 0 

0 

The function q> is said to be locally identifiable on A c A 
0 

if it is locally identifiable at all\ EA • 
0 0 

REMARK.Local identifiability in all points\ EA does not imply 

identifiability in the sense of def. 1.1.10. 

Obviously local 1dentifiability is a weaker concept of identi­

fiability. Therefore we shall only use this concept in situa­

tions where non-identifiability can be sharpened to non-local 

identifiability or even nowhere local identifiability on some 

set A0 c A. We shall shortly say that qi is nowhere locally 

identifiable if it is nowhere locally identifiable on A. The 

following lemma is helpful. 

LEMMA 1.9. 2 Let D c A be a set that is dense in A and 

let~ 8 + A be nowhere locally identifiable on D. Then~ is 

nowhere locally identifiable. 

PROOF. Suppose ~ is locally identifiable in \ 0 E A. Then there 

exists a neighbourhood U, E L of \ such that for all 
1\.0 0 
-1 -1 

\ l , \ 2 E U \ and 0 1 E ~ { \ l} , 0 2 E q> { \ 2 } we have 
0 

• However, since Dis dense in A there 

exists a d ED with d 0 Eu, . But then qi is locally identifia-
o 0 
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bleat d 0 which contradicts the fact that~ is nowhere locally 

identifiable on D. □ 

By replacing P0 by M (0) (the set of all moments up to 

order r of P0 ) we obtain tte definition of local rt~ order 

identifiability and local rtf1:_order informativeness. We could 

also define concepts as locally informative sample size etc. 

but since we will not use all of these concepts, we shall not 

do so here. 

The concepts introduced here, will be used to obtain 

strong results in problems of minimum informative sample size 

for moving average processes. The important concept then is 

local second-order informative sample size. 
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CHAPTER II 

INFORMATIVE SAMPLE SIZES IN UNIVARIATE STATIONARY MODELS 

2.1 INTRODUCTION AND PRELIMINARY RESULTS 

In this chapter we shall derive informative and predictive 

sample sizes for a class of weakly stationary univariate pro­

cesses { ~t, t = 1, 2, ••. }. For reasons of mathematical 

elegance all processes are allowed to be complex valued, and 

are defined on t = 0, ± 1, ± 2, ••• (Every weakly stationary 

process {~t , t = 1, 2, •.. } can be extended to a weakly sta­

tionary process on ••• -1, O, 1, 2, ••. ) • 

We are interested in weakly stationary observable processes 

{ ~t} that satisfy a linear stochastic difference equation of 

the form 

(2. 1. 1) t o, + 1, + 2, .•. 

with p, q .:'.. 0 and a = b = 1' and where { £t' t o, + 1' ... } 
0 0 

is a (non-observable) white noise process , 
(i.e { - } 2 2 0) E £t .f.s = 0t-s cr , t, s = 0, + 1' ... I cr > 

with E { £t } = 0 for all t. 

The integers p and q are supposed to be known. 

If p = 0 , q > 1, then { ~t} is called a moving average process 

of order q, if p.::. 1, q = O, an autoregressive process of order 

p and if p q > 1, a mixed autoregressive moving average process 

of order (p, q). The usual abbreviations are MA(q), AR(p) 

and ARMA(p, q) respectively. The (complex) coefficients 
2 a 1 , a 2 .•• ap, b 1 ..• bq and cr are supposed to be unknown. 

If~ E Z is a parameter that characterizes the distribution of 

the process { .f.t }, then we write cr 2 = cr 2(~) and put 

0: = (a1 , a 2 ap, b 1 ••. bq, ~). In order to describe the 

parameter space e and the spectral measure F 0 of { ~t} we 
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introduce the generating functions 

A ( z) 
p k 
l: ak z 

k=o 
B ( z) 

m 
z z E (C • 

To ensure the existence of a unique weakly stationary solution 

{ ~t} of (2.1.1) we must restrict the range of (a 1 , ... , ap) 

to S c a:P with S : = { (a 1 , .•. ,a) I A(z) 'f O, lzl = 1 }. p p p 
(see appendix theorem A.1.4). Thus we must choose 8 such that 

8 c S x (Cq x Z. Models of this type are frequently used, and 
p 

particularly in econometrics, where often only small samples 

are available, the question of informative sample sizes is in­

teresting. The function of interest in practice is 

, (0) : = (a 1 , .•. ap, b 1 ..• bq, cr 2 l As ~tis linearly expres­

sible in the process { ~t} (appendix theorem A.1.4), it fol­

lows that E0{ ~t} = 0 , 0 E 8. Furthermore we don't make 

any assumptions about the type of distributions P0 and there­

fore we restrict our attention to the second order properties 

of the proce'ss, that is to the covariance function 

Ys Ys(B) : = E0 {~t ~t-s} t,s = 0, ~ 1, .•• Thus the 

"natural" concept is second order strong informativeness. From 

now on we shall omit the word "strong(ly)". 

Note that y_s = ys, s = 0, 1, 2, •.• Because of the 1 - 1 

correspondence between covariance functions and spectral mea­

sures (concentrated on (-TI , TI]) of weakly stationary processes 

(see [ 11] p. 633) we could equivalently look at the spectral 

measure F 0 of { ~t }. It is known to be absolutely continuous 

with density 

(2.1.2) f (},.) 
0 

2 
a 
2 TI 

;\ E (-TI , TI] 

( see appendix, the discussion following theorem A. l. 4) . 

Thus if R~n) denotes the covariance matrix of ~l , ~ 2 , 

for all 01 , 02 E 8 we have the implication 

X ' -n 
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(2.1.3) n=l,2, ... 

Thus a necessary condition for some sample size to be second­

order informative for 1(0) is that different 1 - values imply 

different spectral measures. Since the spectral measure depends 

on 0 only through the absolute values of the polynomials A(z) 

and B(z) on the unit circle it is not surprising that the 

following lemma is fundamental. 

LEMMA 2.1.1 Let the function P(z) be analytic on Jzl < p for 

a p> 1, and P(O) t- 0. Then there exists a function Q(z), 

analytic on Jzl < p satisfying 

a) 

b) 

I z I < i 

A E (-71 , 'IT] 

Furthermore, Q(z) is uniquely determined except for a multi­

plicative constant of modulus one. In the special case that 

P (z) is a polynomial of degree p, the function Q(z) also is 

a polynomial of degree p. 

PROOF. Existence (see also RIESZ [ 28]) If P(z) has no zeros 

in Jzl < l, we can take Q(z) = P(z). If O< Jz 0 1 < 1 is a zero 

of P(z) then we write P(z) = (z - z 0 ) P1 (z) with P1 (z) 

analytic on JzJ < p. Let Q 1 (z) = (z z0 -1) P1 (z). Then, 

counting a zero of multiplicity n 0 as n 0 zeros, Q1 (z) has 

one zero less inside the unit circle than P(z) and since 
-H - lz - HI lz - e-HI e z -1 e = , we have 

0 0 0 

Ql (e -H) \e 
-H - IP 1 (e-H)I = zo - 1 = 

so that 

Q 1 (z) satisfies condition b). The procedure can be repeated 

for every zero of P(z) inside the unit circle and since there 

are only a finite number of them we can find in finitely many 

steps an analytic function Q(z) satisfying a) and b). It 
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follows from the construction that if P(z) is a polynomial of 

degree p, then Q(z) is also a polynomial of degree p. 

Uniqueness Let Q{z) be an analytic function satisfying a) 

and b). Then we have to prove Q(z) = Q(z) eia for some real a. 

If z 1 ••• zm are the zeros of P(z) on the unit circle (if any) 

then also Q(z) and Q(z) have these zeros and we can write 

m 
Q(z) q ( z) II (z - zk) with q ( z) 'f 0 ' I z I < l 

k=l -

m 
Q(z) q(z) JI (z - zj) with q(z) 'f 0 ' I z I < l • 

j=l -

Hence, it suffices to prove 

function 

q(z) q(z) ia 
e Consider the 

h( z) = 3J..tl. 
q(z) 

I z I < Po 

with Po > l such that q (z) q(z) 'f 0 ' I z I < Po· Then both 

h ( z) and 1/h ( z) can be expanded into a powerseries 

(2.1.4) h(z) - 1-;:c L j I I h ( z) j = 0 nj z ' z < Po • 

We also have using b) and the continuity of h(z) on lzl < p 0 

(2.1.5) 
'),_ 2 

g(e -1 ) I = 
~ -H 
q(e ) 

lim 
-H 

n+e 

12(n) 12 
p(n) 1 A E (-11 , 11]. 



Hence 1/ h(e-iA) 

we find 

00 

" -ijA = 
t., nJ. e 

j=O 
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and with (2.1.4) for z = e 
-H 

Since both the Fourier series converge absolutely, it follows 
-by equating coefficients that n0 = m0 and nk = mk = O, k ~ 1. 

Thus h( z) = n0 or equivalently q( z) = n0 q ( z) V z and from 

(2.1.5) it follows that ln0 1 = 1. This proves the lemma. □ 

It follows from the lemma and (2.1.2) that if e = s p X a:q X z 
then there exist e = (al a I bl ... b I 1;) and 1 p q 

02 = (al ... a I i\ . .. f, I I;) with e "F e and fe = fe p q 1 2 1 2 

Hence by (2 .1. 3)' we have R(n) = R(n) n= 1, 2, ... and so no e e , 
1 2 

sample size is second-order informative for the coefficients 

(a1 ••• ap, b1 .•• bq). We may hope, however, that it is 

sufficient to prescribe A(z) and B(z) to have no zeros inside 

(or outside) the unit circle. The "natural" choice is no zeros 

inside the unit circle. Therefore we define 

and 

In the next sections we shall derive informative sample sizes 

for the case 0 c s:R x s~ x z. The following lemmas will be 

needed. 

LEMMA 2 • 1 • 2 If in ( 2 • 1 . 1) A( z ) =j, 0 for I z I ,::. 1 , then the 

covariance function ys , s = O, ± 1, of {~t} satisfies 
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s = q 

(2.1.6) 

s = q+l , q+2 , ... 

PROOF. Let the process {~t} have the spectral representation 

iU e z {d7d 
-e: t o, + 1, ... 

Then the process {~t} can be written 

f 7f it1. 
X = e -t 

-7r. 

and so (see appendix, (A.1.7)) 

2 j (j 

27fi 

J z I =1 

s-1 z 

B(e-D) 

A(e-H) 

t 

-iU 
e 

B(z) d = ~2~ .A(z) z V \JS 

o, + 1, ... 

d 1. 

s = 0,1,~, .•. 

where the last equality follows from Cauchy's residu's theorem, 

since A(z) has no zeros in lzl ~ 1, and A(0) = B(0) = 1. 

Thus multiplying (2.1.1) by Rt-s for s = q, q + 1, •.. and 

taking expectations gives (2.1.6). D 

REMARK, In the case of an autoregressive process (q = 0) equa­

tions (2.1.6) are often called the YULE-WALKER equations. 

LEMMA 2.1.3 (FEJ£R and RIESZ) If 

1 q -ik1. 
27f i:: yk e > 0 , 

k=-q 
A E (-7r 1 7r] 



and f(\) is not identically zero, f(\) can be represented in 

the form 

1 
q -ik\ f ( \) = ~ L ak e 

k=O 

q 
zk where a > 0 and L ak 'f 0 

0 k=O 

The representation is unique. 

PROOF. see HANNAN [20] p. 63. □ 

12 

, I z I < 1. 
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We conclude this section with some conventions for notational 

convenience. In definitions 1.1.10 and 1.2.1 the space A is 

arbitrary. In particular A is allowed to be a space of measures 

or a space of functions. In the first case we shortly call 

the measure \ 0 {.} = (j)(0) identifiable if the mapping (j) is. 

In the second e.g. if A is a space of functions of the complex 

variable z, we call the function \ 0 (z) : = (j)(0) identifiable 

if (j) is. 

Thus we may speak of informative sample sizes for the spectral 

measure F 0 , or for the functions A(z), B(z), B(z)/A(z) etc. 

Clearly a sample is informative for A(z) iff it is informative 

for (a1 , .•. ap). 

2.2 THE MINIMUM INFORMATIVE SAMPLE SIZE FOR MA(q) PROCESSES 

Before we deal with the general case, we consider a simple 

example. 

EXAMPLE 2.2.1 Consider the MA(l) process 

t = 0 , ±. 1 , • . • Let y s , s=O,.:tl, ... 

denote the covariance function of{~}. A simple approach to 

finding second-order informative sample sizes is solving the 

covariance equations 
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Even in this simple case one can feel the need of a general 

powerful approach; as is easily verified, the equations are in 

general not uniquely solvable for a and 0 2 , and it is hard to 

see what are reasonable conditions. 

Suppose we are sampling from the MA(q) process 

t 

We have 

0, + 1, ••• (b 
0 

1) • 

MA THEOREM 2.2.2 If in the MA(q) case 8 = S x Z then the 

sample size q+l is second-order informative ior (B(z) , 0 2 ). 

PROOF. Since,the covariance function y vanishes for 
s 

isl ~ q+l, for all 0 1 , 0 2 E 8 we have the implication 

( 2. 2. 1) 

This implies that it is sufficient to prove the whole process 

to be second-order informative for (B(z) , 0 2 ), or equivalently 

to prove the spectral density f 0 (A) to have a unique decom­

position 

A E (-11 , 11] • 

Suppose there exist B(z) and ; 2 such that 

A E (-11 , 11] • 

Since B(z) and B(z) have no zeros inside the unit circle, 

by lemma 2.1.1 we have 



cr B(z) ; B(z) ia e , z E a: 

for a real a. As B(0) = B(O) = 1 , it follows that a= 0, 
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cr = cr and so B(z) = B(z), z Ea:. This proves the sample size 

q+l to be second-order informative for (B(z), cr 2 ). D 

If cr 2 is completely unknown, i.e. if cr 2 (z) = (0, 00 ) we 

can prove that the sample size q is not second-order informa­

tive for (B(z), cr 2 ), and therefore that q+l is the minimum 

second-order informative sample size. We shall not do this but 

we shall prove a much stronger result on nowhere local identi­

fiability. Here "local" is with respect to the Euclidean topo­

logy on a:q+l restricted to SMA x (0, 00 ). We need the following 
q 

1-emma. 

LEMMA 2.2.3 Let D: = {(b1 

Then Dis a dense subset of 

B(z) =I- 0, JzJ < 1 } 

PROOF. See DEISTLER DUNSMUIR and HANNAN [ 8], Lemma 1.0 

THEOREM 2. 2. 4 If in the MA (q) case 9 = sMA x Z and cr 2 is 
q 

completely unknown, then the sample size q is nowhere locally 
2 second-order informative for (B(z), cr ). 

PROOF, By lemma 2.2.3 and lemma 1.9.2 it follows that it suf-
2 

fices to prove the theorem for 9 = D x Z. Let (B (z), cr) be 

arbitrary such that B (z) =I- 0, lzJ ~ 1. Then the theorem is 

proved if we can find a sequence (B(n) (z), cr~) converging to 

(B(z), cr 2 ) (convergence of coefficients) such that B (n) (z) =I- 0 
I I ( (n) 2 . 

on z ~ 1 for all n, and such that B (z), on) is not 

identical with (B(z), cr 2 ) but generates the same covariances 

ys for s = 0, ± 1, ••• ± (q-1). 

Introduce the covariance generating function 
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G (z) 
q 
z: 

s=-q 
z i O. Using the convention bk 

fork< 0 and k > q we can write 

2 z: bk bk+s s = 0' + 1 ' .•• Hence 
Ys = a 

k=-oo 
, 

2 q 2 
00 00 

G ( z) = a z: z: bk bk+s 
z-s a z: bk z: bk+s 

s=-q k=-oo k=-oo s=-oo 

2 
B(~) i = a B ( z) z 0 

z 

0 

-s-k z z 

Note, that G(e-H) o2I B(e-H) J 2 > 0, A E (-11' 11 l , since 

B ( z) has no zero on I z I = 1. Thus we may define 0 > 0 by 

o = min G(e-i;I.) 
;\E(,-11,11) 

1 Let n > 8 and put 

z i 0 

Then G (n) (e -U) is also real valued and for all A E (-11, 11] . 

'vie have 

1 
2 0 

Furthermore, 

k 

l 
Ys Is I 0, 1, ... , q-1 

(2.2.2) 1 
_J11 

is;I. G(n) (e-H)d;1. 1 
Is I ~ e Ys +- q 4n 

0 Is I q+ 1, q+2, •.• 

Hence by lemma 2.1.3 (n) -H G (e ) can be decomposed into 
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). E (-.r, .r] where B(n) (z) is a polynomial 

of degree~ q without zeros in jz\ ~ 1. Since cr 2 is completely 

unknown, cr~ may be chosen to obtain B(n) (0) = 1. We may even 

express cr B(n) (z) explicitly in G(n) (z) as 
n 

(2.2.3) crB(n)(z) 
n = exp [!.J 

(see HANNAN [20] p. 142 theorem 5). From (2.2.2) and (2.2.3) 

it follows that we must have 

lim crn B(n) (z) G B(z) z E a: 

Taking z 
B(n)(z) 

n+oo 

(B(n)(z) 

properties. 

0 it follows that cr + cr , n + 00 and so n 
B(z) , n + oo z Ea:. Thus we found a sequence 

cr 2 ) converging to (B(z) cr 2 ) with the desired n 

This proves the theorem • □ 

REMARKl.Note that the minimum informative sample size equals 

the number of unknown parameters of the model. 

REMARK 2.For q > 1 , bq is allowed to be zero. 

2.3 INFORMATIVE SAMPLES FROM AR(p) PROCESSES 

Suppose we are sampling from the weakly stationary process 

{3S_t} satisfying 

(2.3.1) t = O, + 1, ... , a 0 = 1 

We have 
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AR 
THEOREM 2.3,1 If in the AR(p) case 8 = S x Z then the 

sample size p+l is second order-informative 1or (A(z), cr 2 ). 

PROOF. Since A ( z) f, 0 , I z I < 1 lemma 2. L 2 is applicable 

with q = 0 and yields 

p 2 
~ ak Y s-k = CT o s , 

k=O 
s = o, 1, 2, ... 

Using y_:.s =;, the first p + 1 of these equations can be writ­
s 

ten in matrix notation as follows 

(2. 3. 2) (al ... a p' 
CT2) w + (y 0 . .. yp) = 0 

where W is the (p + 1) X (p + 1) matrix given by 

Y1 Yo yp-1 Y1 

Y2 yl yp-2 Y2 

( 2. 3. 3) w = = R(p) 

yp Yp-1 ... Yo Yp 

-1 0 ... 0 -1 0 0 

Suppose the sample size p + 1 is not second-order informative 

for (A(z) , CT 2 ). Then there exist pairs (A(l) (z), CT~) ~ 
(A( 2 ) (z), CT~) that generate the same ys for s = O, ± 1, .•• + p. 

But then it follows from (2.3.2) that W must be singular and 

by (2.3.3) this is equivalent to singularity of R(p). Hence 

there exist numbers c 0 ••• cp-l' not all zero, such that 

p-1 
(2.3.4) ~ ck ~t-k = 0 

k=O 
(a.s.) t = O, + 1, .•. 



Since the process {~t} has the spectral density 

2 
a 
21T 

1 \ E (-1T , 1T] 

the relation (2.3.4) implies 

1 p-1 e-ik\12 
L ck 

k=0 
0 

a.e. w.r.t. Lebesgue measure. As A(z) f O on lzl 
p-l -ik\ 

follows that L ck e = 0 and so ck= 0 , k 
k=0 

= 1, it 

0, 1, ... , 
Thus we have a contradiction and the theorem is proved. □ 
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p-1. 

REMARK.It is not necessary that cr 2 is completely unknown (com­

pare th. 2.2.1) since we di.t not prove the sample size p + 1 

to be minimal. It is not easily seen how we could prove the 

minimality due to the fact that lemma 2.1.3 has no analogue 

applicable to spectra of autoregressive processes. 

2.4 INFORMATIVE SAMPLES FROM ARMA(p,q) PROCESSES 

In spite of the remarkable difference in the proofs in 

the MA(q) und AR(p) case, combining the methods points the way 

to treating the ARMA(p,q) case. However, since the spectral 

density (2.1.2) (and so the covariance function) depends only 

on the ratio B(z) / A(z), we cannot expect any sample size to 

be second-order informative for (A(z) , B(z) , cr 2 ) if A(z) 

and B(z) are allowed to have common factors. Thus A(z) and 

B ( z) 

(A ( z) 

must have no zeros in common, or,equivalently, 

, B(z))f (0,0) z E ~. Let 

'If z } 
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clearly 

Notice that the condition 

satisfied if p = 0 or q = 
Before we can establish a 

need the following lemma. 

(a , b) 'I (0 , 0) is automatically 
p q 

0 since a 0 = b 0 = 1. 

result on the ARMA(p,q) case we 

LEMMA 2.4.1 Let the function ~(z) be analytic on lzl < p for 

some p > 1, and ~ ( z) ,f O, I z I < 1. 

(2. 4 .1) 

-7f r is.\ 
e 0 Is I q , q+l, ... 

then ~(z) is a polynomial whose degree is at most q-1. 

PROOF. From relation (2.4.1) it follows that I ~(e-i.\) 1 2 

can be written in the form 

q-l ik.\ 
l: ak e 

k=-q+l 

k=0,l, .•• q-1. Hence by lemma (2.1.3) there 

exists a polynomial P(z) of degree at most q-1 such that 

and P( z) -I 0, I z I < 1. 

But then by lemma 2.1.1 we have ~(z) = ia 
e P ( z) , I z I < p for 

some real a and so ~(z) is a polynomial of degree~ q-1. D 

ARMA THEOREM 2.4.2 If in the ARMA(p,q) case 8 = S x Z then p,q 
the sample size p + q + 1 is second-order informative for 

2 (A(z) , B(z) , cr ). 
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PROOF. The proof consists of three steps; in the first step we 

prove the sample size p + q + 1 to be second-order informative 

for A(z). In the second step we prove it to be second-order 

informative for (B(z) , o 2 ) conditional on A(z) (see def. 

1.2.1 and lemma 1.2.2). In the third step we apply the condi­

tional identification theorem (th. 1.2.3) to obtain the result. 

For q = 0 theorem 2.3.1 applies. Thus suppose q ~ 1. 

1) Since A(z) f O, lzl ~ 1 it follows from lemma 2.1.2 that 

( 2. 4. 3) 0 ' s = q+l , q+2 , ..• 

Since a 1, the first p of these equations can be put into 
0 

matrixform 

where the p x p matrix R is given by q 

Yq Yq+l Yq+p-1 

Yq-1 Yq Yq+p-2 

R q 

Yq-p+l yq-p+2 

Suppose the sample size p + q + 1 is not second-order informa­

tive for A(z). Then there exist A(l) (z) and A( 2 l (z) t A(l) (z) 

that correspond to the same ys for s = 0, ± 1, .•. ± (p+q). 

From (2.4.4) it then follows that R must be singular. (Note 
~ q 

that Rq is not a principal minor of a covariance matrix if 

q ~ 1 so that the method of proof of theorem 2.3.1 fails.) 

We shall derive a contradiction. 

Let c 0 ••• cp-l be numbers, not all zero s~ch that 
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(2.4.5) 0 s=q, q+l , .•. q+p-1 

From {2.4.3) we have 

(2.4.6) s = q+l , q+2 , ... 

and in particular 

p 
(2.4.7) l: ak y + k , s = 0 , 1 , • • • , p- 1 • 

k=l q p-s-

Multiplying by c summing overs and using (2.4.5) yields 
s 

(2.4.8) 
p-1 

l: 
s=O 

cs Yq+p-s 0. 

Thus the range of validity of (2.4.5) is extended to the value 

s = q+p. However the same procedure can be repeated an arbi­

trary number of times, which proves the validity of (2.4.5) 

for alls~ q. 

Let ' t = o, + 1, .... 

Without loss of generality we may suppose c 0 f 0. (If 

c 0 ••• - cj-l = O, cj f O then we can take 

p-j-1 
Yt = i: 

k=O 

~ 
ck ~t-k where ck= ck+j ). 

Introducing the generating function C(z) : 
p-1 

l: ck zk the 
k=O 

spectral density of the process {yt} can be written 

(2.4.9) g (A) 
2 

(J 

z; 
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Furthermore, since (2.4.5) holds for alls> q 

p-1 
(2.4.10) k;,O ck Ys+j-k 

0 ,s+j>q. 

-Multiplying with cj, summing over j, and using (2.4.10) gives 

( 2. 4. 11) 

p-1 p-1 

j:o cj k:O ck Ys+j-k 
0,s>q. 

Using (2.4.9), we see that this is equivalent to 

(2.4.12) cr2. f1r eis>.. I C(e-H) B_ (e-D) 12 _ _....:....;... _ _,_....;;;;....,~_.._ d >.. = O, Isl ::_ q. 
21r -1r A(e-i>..) 

By lemma 2. 1. 1, C ( z) can be chosen such that C ( z) fO, I z I < 1. 

Hence, lemma 2.4.l is applicable if q ~ l because C(z) B(z)/ 

A(z) is analytic on lzl < p for some p > l since A(z) f 0, 

!zl ~ 1. It follows that C(z) B(z) / A(z) is a polynomial 

of degree at most q-1. But then it follows that we must have 

ap = bq 0 since A ( z) and B·( z) have no common factors. 

Thus we have a contradiction proving the sample size p + q + l 

to be second-order informative for A(z). 

2) We now fix A(z) and put 

(2.4.13) 
q 
r bJ. .£t-J', 

j=0 
t o, + 1, ... 

Then {~t} is a MA(q) process with unknown coefficients (b 1 ••• bq) 

and cr 2 , and according to theorem 2.2.2 a sample of size q+l of 
2 this process is second-order informative for (B(z) , cr ). 
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Using (2.4.13) it follows that a sample of size p + q + 1 of 
2 the process {~t} is second-order informative for (B(z) , cr ) 

conditional on A(z) (see also lemma 1.2.2). 

3) Application of theorem 1.2.3 to 1) and 2) gives the desired 

result. □ 

REMARK I.It follows from the proof that if A(z) and B(z) have 

no factor in common and (a , b) ¥ (0, O), then the matrix 
p q 

Rq is nonsingular. Hence we may express (a1 ... ap) by (2.4.4) 

explicitly in the first p + q + 1 covariances. This may be 

important to initiate estimation procedures (see HANNAN [ 19]). 

In the next section we shall see that as far as identification 

is concerned, the condition (ap, bq) t (0, 0) can be dropped. 

REMARK 2.The proof given here is of special interest because 

HANNAN proved in [ 19] for them-variate case a matrix like R 
to be nonsingular. However in chapter III we shall show that 

q 

HANNAN'S proof is not correct and even that the result is false 

in general, if m > 1. 

2.5 INFORMATIVE SAMPLES FOR THE SPECTRAL MEASURE; 

PREDICTABILITY 

Let ~l , ~ 2 , •.• , ~n be a sample from a weakly stationary 

process {~t} with spectral measure F0 , 0 E 8 . Two fundamental 

problems are 

1) finding second-order informative sample sizes for F0 
2) second-order predictability of the future, or equivalently 

finding second-order predictive sample sizes. 

The following lemma shows that these problems are equivalent. 

LEMMA 2.5.1 The sample size n is second-order predictive iff 

it is second-order informative for the spectral measure. 
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PROOF, Let the sample size n be second-order predictive, and 

let e 1 ,e 2 E 8 such that F0 i F0 . Since the spectral 
1 2 

measure is uniquely determined by the covariances of the process 

{~t} there exist an integer N such that R(N) f R(N). 
01 02 

If N < nit follows that R(n) f R(n) and if N > n we have 
01 02 

R(n) i R(n) since n was predictive. Thus the sample size n is 
01 . 02 

second-order informative for F0 • 

Let the sample size n be second-order informative for F0 

Then for all 0 1 , 0 2 E 8 and all N we have the implications 

which proves the sample size n to be predictive. D 

Let {~t} be an ARMA(p,q) process. Then it follows from 

(2.1.2) and lemma 2.1.1 that the sample size n is second-order 

informative for the spectral measure iff it is informative for 

a , provided e c SAR x sMA x z. 
q q 

In particular, if the sample size n is second-order informa­

tive for (A(z), B(z), cr 2 ), it is second-order informative 

for the spectral measure thus we may hope that relatively weak 

conditions on (A(z), B(z), cr 2 ) can lead to predictability 

of the future. We have the following result. 

AR q THEOREM 2.5.2 If in the ARMA(p,q) case 8 = S x ~ x z p 
then the sample size p + q + 1 is second-order informative for 

the spectral measure, or, equivalently, second-order predic­

tive. 

PROOF. Assume the sample size p + q + 1 is not second-order 

informative for the spectral measure. Then there exist 

0, 0 E 8 with F0 f F0 such that 
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(2.5.1) (y ' Y1 . •. y + ) 0 p q 

where ys and ys denote the covariance functions corresponding 

to F 0 and F 0 respectively. 
p k 

Let A(z) = L ak z correspond to 0 and A(z) 
k=O 

to 0. Since both A(z) and A(z) have no zeros on !zl ~ 1 it 

follow$ from lemma 2.1.2 that 

I 
p 
L ak Ys-k 

k=O 

(2.5.2) 

l p 
~ L ak Ys-k 

k=O 

0 s = q+l, q+2, ... 

0 s = q+l, q+2, ... 

By (2.5.1) it follows 

(2.5.3) 0 s = q+l, q+2, ..• , q+p, 

We shall prove (2.5.3) to be valid for s q + p + 1 and so by 

induction for all s ~ q + p + 1. 
~ Since 1 have a a = we 

0 0 

p 
Ys L a. Ys-j 

j=l J 
s = q+l, q+2, •.• 

Hence 

p p p 
L ak y 

k=O p+q+l-k L ak L a]. Yp+q+l-k-J" 
k=O j=l 

p p 

L a]. L ak Yp+q+l-J"-k 
j=l k=O 

= 0 

where the last equality follows from (2.5.3). 
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Thus 
p p 

r ak Yp+q+l-k = - r ak Yp+q+l-k 
k=l k=l 

Yp+q+l 

and by induction it follows that we must have ys = Ys for alls. 

But then it follows that the spectral measures F0 and F0 must 

be identical which contradicts our assumption, and proves the 

theorem. □ 

Theorem 2.5.2 enables us to prove a slight generalization of 
theorem 2.4.2. Let §ARMA be obtained from sARMA by deleting p,q p,q 
the condition (ap, bq) ~ (0,0). Then we have 

THEOREM 2.5.3 If in the ARMA(p,q) case 0 = sARMA X z then 
p,q 

the sample size p + q + 1 is second-order informative for 
2 (A(z) , B(z) , cr ) • 

PROOF, By theorem 2.5.2 the sample size p + q + 1 is second-or­

der informative for the spectral density which is known to be 

of the form 

\ E (-1r , 1r] 

Here cp( z) is rational, nonzero in I z I < 1, and analytic on 

I z I < p for some p > 1. Furthermore cp(O) = 1. Thus by lemma 

2. 1.1 f(\) determines (cp(z), cr2) uniquely. But then A(z) 

and B(Z) are uniquely determined by f(\) since they are known 

to have no common factor and A(O) = B(O) = 1. This proves 

the theorem. □ 

REMARK. The generalization is possible since we do not need 

the condition (a , b) ~ (0,0) for the numerator and denomina-p q 
tor of the rational function A(z) / B(z) to have no common 

factor. We shall see that in the multivariate case such a gene­

ralization is not possible. 



58 

2.6 APPLICATION TO LINEAR REGRESSION WITH MA-ERRORS AND 

STATIONARY LAGGED EXPLANATORY VARIABLES 

The methods used in the preceding sections admit appli­

cations in several kinds of problems. 

We give two examples. 

a) Linear regression with MA-errors 

We consider the regression model 

q 
y = 6 1 x + L bk .E.t-k 

t t k=O 

is white noise with 

t 1 

2 
CJ > QI where {_£t} 

6 E IR k is 

E lRk xt 

a vector of (unknown) regression coefficients and 

t = 0, ± 1 1 ••• is a sequence of predetermined 

regressors. Since the model is essentially that of example 

1.2.10, we may, treat the identification of 6 in the same way 

we did there. Therefore suppose a sample of {yt} taken at 

t = 1, 2, ••• , n is first-order informative for s. Putting 

B(z) i bk zk it follows from theorem 2.2.2 that if 
k=O 

n ~ q+l and B(z) ~ 0, lzl < 1 then the sample is second-

order informative for (B(z), cr 2 ) conditional on s. 
Hence by (the conditional indentification) theorem 1.2.3 it 

follows that we may treat the identification of 6 and (B(z), cr 2 ) 

separately, the latter by considering Yt - s'xt' t = 1, ••. , n 

as observable. 

b) Linear regression with stationary lagged explanatory 

variables and MA-errors 

Consider the model 

p q 
(2.6.1) L ak ~t-k + L bJ. Et . , t = 0, ± 1, •.. 

k=O j=O - -J 
b 1 

0 

where {~t} is a weakly stationary (observable) process with 



59 

E {~t} = 0 and known absolutely continuous spectral measure 

with density fx; {£t} is white noise with E{£t} = 0 and 

E {1£ti 2 } = cr 2 > O. (It is not essential that fx known, because 

we can treat its identifiability separately). The process {~t} 

and {£t} are supposed to be mutually orthogonal. 

Let~ E Z characterize the distribution of {£t} and put 

0 : = (a0 , a 1 ••. ap; b 1 .•. bq, ~). Since both {yt} and {~t} 

are observable, we have, in fact, bivariate observations, and 

'sample size' shall be interpreted as the number of points in 

time that the bivariate process (yt, ~t) is observed. However, 

the model (2.6.1) is essentially univariate and admits a treat­

ment analogous to that of the univariate models in the prece­

ding sections. Therefore the problem is treated at this stage. 

As usual, let the generating functions of the a's and b's be 

denoted by A(z) and B(z) respectively. 
p 

Notice that Z ak ~t-k can be considered as the linear regres­
k=O 

sion function of,yt on (~t, ~t-l' •.. ~t-p). Therefore we may 

hope that we do not need any restriction on A(z). 

THEOREM 2.6.1 If in the model (2.6.1) 8 = rep+! x sMA x z 
q 

then the sample size p + q + 1 is second-order informative 
2 for (A ( z) , B ( z) ' CT ) • 

PROOF, Compare the proof of theorem 2.4.2 for the ARMA(p,q) 

case. First we prove the sample size p + 1 to be second-order 

informative for A(z). Let 

E { ~t+s ~t} l s,t o, + 1, ... 

Because {~t} and {£t} are mutually orthogonal processes it 

follows from (2.6.1) that 
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s = o, + 1, •.. 

Put the first p+l of these equations into matrix form 

Yo r 
a l 0 

yl al 

(2.6.2) R(p+l) 
X 

where R(p+l) denotes the 
X 

Suppose the sample size 

for A(z). Then (2.6.2) 

a p 

covariance matrix of (x ... x ). -o -p 
p+l is not second-order informative 

implies that R(p+l) must be singular, 
X 

and so there exist numbers c , •.• , c not all zero such that 
0 p 

a.s. 

Since {~t} is weakly stationary this implies 

p 
r ck ~t-k = 0 

k=O 
a.s, t = 0, + 1, ... 

Thus {~t} satisfies a homogeneous difference equation and so 

it must have a spectral measure that is concentrated in a 

finite set. (appendix corollary A.1.3). This contradicts the 

absolute continuity and proves the sample size p+l to be second­

order informative for A (z). 

In the same way as in the proof of theorem 2.4.2 we can now 

prove the sample size p + q + 1 to be second-order informative 

for (B(z), cr 2 ) conditional on A(z) and application of the 

conditional identification theorem (theorem 1.2.3) completes 

the proof. D 

REMARK,(2.6.2) are the normal equations of the regression 

problem (2.6.1). 
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CHAPTER III 

INFORMATIVE SAMPLE SIZES IN MULTIVARIATE STATIONARY MODELS 

3.1 INTRODUCTION 

In this chapter we treat multivariate analogues of the 

problems of informative sample sizes of Chapter II. As in the 

univariate case all stochastic processes are supposed to be 

defined fort= 0, ± 1, ..• and are allowed to have complex 

valued components. Thus we are interested now in m-variate 

weakly stationary observable processes {~t} that satisfy a 

linear stochastic difference equation of the form 

(3.Ll) 
q 

i:: BJ . ..St-J' , 
j=0 

t o, + 1, ... 

where {£t} is a (non-observable) m-variate white noise process 

( i • e . : E { £t £: } : = o t- s i:: £ , t = 0 , ± 1 , ... , i:: 2 .:':. 0 ) with 

E {£t} = 0, Vt· As in the univariate case the integers p and 

q are supposed to be known and we shall use the same terminology 

for the cases p=0, q=0 and pq .:':. 1, respectively. Them x m 

matrices A1 , ••• ,Ap, B1 , ••• ,Bq, i::£ are supposed to be unknown 

and are allowed to have complex components. If~ E Z is a 

parameter that characterizes the distribution of the process 

{£t} , then we write i:: = i:: (~) and we put 
£ £ 

0 = (A1 , A2 , ••. ,AP, B1 , ... , Bq, ~). Define the matrix 

generating functions 

A (z) B ( z) ~ B zj 
t., J' 

j=0 
z E (C 

Matrix valued functions of this type are called matrix 

polynomials. If A i 0, then pis the degree of A(z) {similarly p 
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for B(Z)). 

Let ~(m) denote the set of all complex m x m matrices, and 

~n(m) its n-fold cartesian product. Then we can write 

(A1 , ••. , AP) E ~P(m) and in order to ensure the existence of 

a unique weakly stationary solution of (3.1.1), we must restrict 

the range of (A1 , •.. , AP) to Sp(m) c ~P(m) where 

So e should be chosen such that 

e c s (m) x ~q (m) x z 
p 

det A ( z) -,f O, I z I 1} • 

In this case the process {~t} has a spectral density matrix 

f 0 given by 

(3 1 2) f ( -L\) = l A- 1 (e-L\)B(e-L\) L B1•(e-L\)A- 11'(e-L\), 
• • 0 e, -2 TT £ 

(see appendix). Here it will become clear why the multivariate 

case is essentially more difficult than the univariate case; 

in the latter case we could give conditions in terms of zeros 

of polynomials; however, one cannot expect to find conditions 

purely in terms of zeros of determinants of matrixpolynomials 

since the spectra depend explicitly on the matrix polynomials 

themselves. It turns out that the zeros of determinants only 

partly take over the role of zeros of polynomials in the 

univariate case. 

Another source of possible trouble is the fact that for 

some matrixpolynomial Q(z), det Q(z) may vanish identically, 

while Q(z) does not. As a consequence, an m-variate weakly 

stationary process satisfying a homogeneous difference equation 

does not necessarily have a singular spectral measure (see 

theorem A.2.1 appendix). 

In the univariate case the singularity was used in the proof 

of theorem 2.6.1. 
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Finally, we want to mention an intuitive argument for the 

separate treatment of univariate and multivariate models. In 

the univariate case we proved a sample to be informative when 

its dimensionality (i.e. the number of observed random varia­

bles) equals the number of unknown parameters (e.g. theorem 

2.2.1 remark 1). However, in the multivariate case this num­

ber increases rapidly with m, and, as we shall see, the num­

ber of observed random variables may be smaller then the num­

ber of·unknown parameters and still be informative for those 

parameters. 

3,2 THE FUNDAMENTAL LEMMA AND SOME SPECIAL MATRIX THEORY 

The role of absolute values of polynomials in the uni­

variate case is in the multivariate case taken over by hermi­

tian positive semi-definite quatratic forms. Further the zeros 

of determinants, are important, and therefore we have to make 

sure that determinants do not vanish identically. Necessary 

and sufficient for this to be so is that the matrixpolynomial 

is nonsingular for at least one point z1 E ~- In order to 

obtain a generalization of lemma 2.1.1 we consider m x m ma­

trices. Their elements are functions that are analytic on 

lzl ~ p for some p > 1. We have 

LEMMA 3.2.1 Let them x m matrix P(z) be analytic on lzl < p 

for p > 1, and let P(0) be nonsingular. 

If Eis an arbitrary hermitian positive definite m x m matrix, 

then there exists a matrix function Q(z), analytic on I z I < p, 

and satisfying 

a) 

b) 

detQ(z) :f-: 0 I z I < 1, 

Furthermore, Q(z) is uniquely determined except for a right-

multiplicative constant m x m matrix H with HEH* = E. 

In the special case that P(z) is a polynomial of degree p, 
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the matrix Q(z) is also a polynomial of degree p. 

PROOF. Since L can be decomposed into TT* and the (non singu­

lar) matrix T can be absorbed into P(z) (leaving the degree 

invariant), it is no restriction to take L = Im' them x m 

unit matrix. 

Existence. If det P(z) f 0, lzl < 1 we can take Q(z) = P(z). 

Thus suppose det P (z 0) 0 for some z 0 E a: with O < J z 0 1 < 1, 

and let c 1 , .•. , ck be an orthonormal basis for ker P(z 0 ). 

The matrix with columns c 1 , ••. , ck is denoted by c. 
Let a1 , .•• , dm-k be an orthonormal basis for [ker p(z 0 )]~, 

the orthogonal complement of ker P(z 0 ) and denote the matrix 

with columns a1 , ... , dm-k by D. Put U = [C; DJ ; then we 

have 

(3. 2 .1) 

Since P (z 
0 

u,·, u 

C 

I 
m 

0 we can write 

P(z) C Z E (]: 

where p 1 (z) is a m x k matrix function. Hence 

P(z) DJ , z E a:, 

Post multiplying by U* and using (3.2.1) yields 

Put 

Then we have 

det Q (z) 
0 

P(z) P(z) DJ u,~ , z E a: . 

P(z) DJU* ,z Ea:. 

P(z) DJ det U>'• 
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Thus, ignoring multiplicities, det Q0 (z) has at least one zero 

less than det P(z) in lzl < 1. 

Furthermore 

so that Q (z) satisfies condition b). The procedure can be 
0 

repeated for every zero of det P(z) that lies inside the unit 

circle and since there are only a finite number of them we can 

find in finitely many steps an analytic matrix Q(Z) satisfying 

a) and b). It follows from the construction that if P(z) is 

a matrix polynomial of degree p, then Q(z) is also a matrix 

polynomial of degree p. 

Uniqueness Let Q(z) be a matrix function, analytic on lzl 

satisfying a) and b). Then we have to prove Q(z) = Q(z) H 

for some unitary (constant) matrix H. Let z be a zero of 
0 

det P ( z) 

det Q ( z) 

with lz I = 1 (if any). Then also det Q(z) and 
0 

have that zero and b) implies 

ker 01' ( z ) 
0 

ker Q•'• ( z ) 
0 

Thus we can write as before 

and 

Q>'<(z) = [{(z - z) Q (z)}•'• o 1 

~ 

Qt,(z) D]U1: 

1 Z E (I: 

I z E a: 

where Q1 (z) and Oiz) are now k x m matrix-functions. Put 

< p 



66 

- r a,{:) ] q(z) 

D'" Q ( z) 

and 

[a,<,> ] 
q(z} 

D'' Q ( z) 

Then we have Q(z) 

where 

W(z)q(z) 

Thus for all z we have 

Hence 

q(z} = lim w- 1 (n}Q(z) 
n+z 

and Q(z) = W(z)q(z) 

q(z) 

I z E a: 

1 im w- 1 ( c; ) Q ( z ) • 
E;+Z 

Thus we have ker qt, (z ) ker q''' (z ) and the multiplicity of 
0 0 

the zero z 0 of det q(z) (or det q(z)} is k units less than 

the multiplicity of z 0 as a zero of det Q(z) (or det Q(Z)). 

In this way we can remove all zeros from the unitcircle and 

therefore it is no restriction to assume Q(z) and Q(z) non 

singular on I zl = 1. 
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Consider 

Using b) we have 

or,equivalently, V(z) is unitary on lzl =I.Furthermore V(z) 

is analytic on lzl < p for some p0 > I and nonsingular there. 
o -I 

Therefore both V(z) and V (z) can be expanded into a power-

series 

V(z) = lz I < P 
0 

Since both series converge on the unit circle and V(e-iA) is 

unitary we have 

As in the univariate case we obtain 

k > I 

E 
k=O 

M"' e ikA 
k 

by simply equating coefficients. It follows that V( z) = N or 
0 

equivalently Q(z) 

lemma. □ 

Q(Z) N with N unitary. This proves the 
0 0 

REMARK I. It should be noted that if p(O) is prescribed 

(e.g. Im)' then Q(z) is uniquely determined. 
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REMARK 2. If P(0) = Q(0) = I , if follows from the construc-
m 

tion given in the proof, that although det P(z) and det Q(z) 

have different zeros, they have the same nullspaces. Furthermore, 

if P(z) is a polynomial of degree p, the coefficients 

Q1 Qp of Q(z) depend continuously on the coefficients 

P1 Pp of P(z). 

In the following section we shall use this lemma to solve the 

problem of minimum informative sample size for them-variate 

MA process. Furthermore it is the basis for finding informative 

sample sizes for a range of models with MA errors. 

REMARK.In m-variate models "sample size" must be interpreted 

as the number of points in time the observable m-variate pro­

cess is observed; when the sample size is k, then mk random 

variables are observed. 

We conclude this section with some special matrix theory. 

Let P(z), H(z) and Q(z) be matrix polynomials. If P(z) = 
H(z) Q(z) z E ~, then H(z) is called a left factor (-divisor) 

of P(z) and P(z) is called a right multiple of H(z) (similar 

for right factors and left multiples). Two polynomials P(z) 

and P(z) have a common left factor if they can be written 
-

P(z) = H(z) Q(z) and P(z) = H(z) Q(z). The matrix polynomial 

H(z) is called a greatest common,left divisor (g.c.l.d.) for 

P(z) and Q(z) if any other common left factor has H(z) as a 

right multiple. If H0 (z) is another g.c.l.d. then we have 

H (z) = H(z) U(z) where U(z) is unimodular (Mc DUFFEE [ 10] p.35) 
0 

A matrix polynomial U(z) is called unimodular if it has constant 

determinant. A simple example is 

u1,1 [: :] 

The following lemma will be useful. 

LEMMA 3. 2. 2 Let v, w E ~m be orthogonal (v•'• w 0). Then 



det (I + w v* z) 
m 

1, zE(t. 

PROOF. Using v* w = 0 we have 

(I + w v* z) (I - w v* z) m m 

z E (t • 

-1 Hence (I + w v* z) 
m (Im - w v* z), and so 

(3.2.2) det (Im+ w v* z) 
-1 

= {det (Im - w v* z)} , z E (t • 

Since both the determinants of Im + w v•·• z and Im - w vi, z 
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are either constant or a polynomial in z, (3.2.2) implies that 

they must be constant. Taking z = 0 it follows that they must 

be equal to 1. □ 

From (3.1.2) it can be seen that in the ARMA (p,q) case 

we can not expect to find second-order informative sample sizes 

if the matrix polynomials A(z) and B(z) have a common left 

factor. Therefore the factorization of matrix polynomials 

deserves some attention. However, it will be clear now that 

matrixpolynomials don't factorize as simply as scalar polyno­

mials do; e.g. det A(z) = det B(z) = O for some z 0 E ct does 
0 0 

not imply that A(z) and B(z) have a (non trivial) common fac-

tor. As the following two lemmas show,the corresponding null­

spaces of A*(z) and B*(z) play a role. 
0 0 

LEMMA 3. 2. 3 Let P, Q E ct (m) • Then kerP•'• n ker Q•'• 

r [P; Q] = m 

PROOF.we have 

{0} iff 
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r [ P Q] f QI 

•• c* Pf O v c* Q f 0 

m CE (I'. 1 Cf O •• 

•• ker P* n ker Q* { 0} • D 

LEMMA 3.2.4 Two arbitrary m x m matrix polynomials A(z) and 

B(z) have a non-unimodular common left factor iff 

r [A(z 0 ) ; B(z0 )] < m for some z 0 E (I'.. 

PROOF. (Only if) Let H(z) be a non-unimodular common left fac-

tor. Then det H(z) is a polynomial and so there exist a z 0 E (I'. 

with det H(z 0 ) = O. 
Hence there exist a v E (tm such that v,·, H ( z ) = 0 and so 

0 

v•'< [A(z 0 ) ; B(z 0 )] = 0. This implies that r [A(z 0 ) ; B(z 0 )] 

r [A(z) ; B(z )] < m. Then by lemma 3.2.3 follows 
0 0 

< m. 

(If) let 

that the 

section. 

null spaces of A*(z 0 ) and B*(z 0 ) have non-null inter-

Let C be an m x c matrix the columns of which are an 

orthonormal basis for ker A•'• ( z ) 
0 

an m x (m-c) matrix with columns 

(ker A*(z) n ker B*(z ))~. 
0 0 

n ker B*(z ), and let D be 
0 

an orthonormal basis for 

Using the same partitioning as in the proof of the uniqueness 

part of lemma 3.2.1 we can write 

u,·, A(z) 

where u 

Hence 

f
-(z - z 0 ) A 1 (21· 

, u,·, B(z) 

D•'<A(z) 

= [C D] I UU>'• U>'• U 

,z E (I'. 



A(z) = U 

and 

B(z) u 

(z - z ) I ; 0 
0 c. 

0 I m-c 

(z - z ) I : 0 
0 c. · 

0 I m-c 

which proves the lemma. □ 
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01, A(z) 

1 z E (t 

01, B(z) 

COROLLARY. Them x m matrix polynomials A(z) and B(z) have Im 

as a g.c.l.d. iff r [A(z) ; B(z)] = m, for all z Ea:. 

Let O(z) be a rational m x m matrix function (i.e. a matrix 

with rational functions as elements). Then O(z) can be written as 

A- 1 (z) B(z) where A(z) and B(z) are m x m matrix polynomials. 

We shall say that O(z) is decomposed into a right numerator 

B(z) and a left denominator A(z). Clearly there also exists 
-1 

a decomposition P(z) Q (z) where P(z) is called a left nume-

rator and Q(z) a right denominator, but we shall not consider 

such decompositions. The following lemma gives conditions under 

which the decomposition of a rational matrix function into a 

right numerator and a left denominator is unique. 

LEMMA 3.2.5 Let the rational m x m matrix function O(z) decam-
p k 

pose into the left denominator A(z) = i:: Ak z and the right 
k=0 

numerator B(z) = i Bk zk with A(0) 
k=l 

Im , r [ A ( z) , B ( z ) ] 

and r [AP, Bq] = m. Then A(z) and B(z) are uniquely determined 

by O ( z). 

PROOF. Suppose there exist an alternative left denominator A(z) 

m 
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and right numerator B(z) satisfying the conditions of the theo­

rem. Since A(o) = A(O) Im the function 

C(z) : = ! (A(z) - A(z)) 

is a matrix polynomial of degree< p-1. Furthermore 

C(z) D(z) 
l -

= z (B(z) - B(z)) 

and since B(O) = B(O) = D(O) the matrix C(z) D(z) is a polyno­

mial of degree 2 q-1. 

As det A(z) does not vanish identically since A(O) = Im' 

det A(z) is a polynomial. Denote the degree of det A(z) by d. 

Put 

K(z) = (det A(z)) A- 1 (z) . 

Then K(z) is a matrix polynomial in z, and so S(z) : = C(z) K(z) 

is a polynomial. Ifs denotes the degree of S(z) we may write 

s ( z) = S ,f 0 
s 

l) Supposed 2 s. Since S(z) B(z) = C(z) D(z) det A(z) is a 

matrix-polynomial of degree at most q-1 + d we must have 

s 
l: Sk B. k = 0 , 

k=O J-
j = q + d, q + d + l , ... 

Similarly for S(z) A ( z) = C(z) det A(z) we obtain 

s 
i:: Sk A n-k 0 , n p + d , p + d + l , 0 •• 

k=O 

Choosing j g + s and n p + s yields 

s B s A = 0 s q s p 

which contradicts r [AP , Bq] = m. 
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2) If d > s+l there exist at least one zero, say z , of 
- 0 

det A(z) such that S(z) ~ 0. 
0 

Since (det A(z))-l S(z) B(z) = C(z) D(z) is a matrix-polynomial 

it follows that we must have 

(3.2.3) S(z)B(z) 
0 0 

0 

We also have 

(3.2.4) C ( z ) det A ( z ) 
0 0 

0 

Since (3.2.3) and (3.2.4) contradict the condition 

r [A(z) , B(z)] = m, the lemma is proved. D 

The following lemma gives a usefull criterion for divisibility. 

LEMMA 3.2.6 (Generalized BtZOUT - theorem) 

Let G(z) = 
g k 
L Gk z be an arbitrary m x m matrix-polynomial 

k=0 

and A an arbitrary m x m matrix. Then G(z) is divisible by the 

binomial z Im - A on the right (left) iff 

G (A) r 

g 
L 

k=0 

PROOF. see GANTMACHER [ 15] p. 81 • □ 

g 
L 

k=0 
0 ) • 

REMARK.In general we have Gr(A) ~ G1 (A) since A and Gk need 

not commute fork= 0, 1, .•• , g. Therefore divisibility on 

the right (left) does not imply divisibility on the left (right). 

As an application of the generalized BEZOUT theorem we shall 

prove a lemma that is important for the ARMA(p,q) case. 

LEMMA 3.2.7 Let A and A be two arbitrary m x m matrices. Then 
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there exist m x m matrices c 0 , c1 ... , Cm such that 

PROOF, Put 

G(z) = 

m 
z: 

k=0 
and ;;_m+l m ~k 

Z: Ck A . 
k=0 

~ 
{det(z I - A)}(z I - A) m m 

z E (t • 

Since det(z Im - A) is a scalar polynomial of degree exactly 

m, it follows that G(z) is a matrix polynomial of degree exact­

ly m+l, and so it can be written as 

m+l m 
zk (3.2.5) G(z) I z z: Ck z E (t . m k=0 

We also have 

G ( z) (z Im - ii.) det (z I - A) m 

( z Im - Al {det (z I - A)} (z Im - A)-1 (z I - A) m m 

(z I - A) { Adj(z Im - A)} (z Im - A) z E (t 
m 

where Adj(M) denotes the adjoint of M. 

Thus G(z) is a matrix polynomial of degree not exceeding m+l 

with Im as leading coefficient matrix, that is divisible on the 

right by z Im - A as well as by z Im - A. But then it follows 

from the generalized BEZOUT theorem that we must have 

G (A) r G (A) 
r o. 

By ( 3. 2. 5) this implies 

Am+l 
m 

C Ak ;;_m+l 
m 

C Ak = z: = z: , 
k=0 k k=0 k 
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and the lemma is proved. D 

Finally we state a lemma that is them-variate generalization 

of the theorem of FEJ~R and RIESZ (lemma 2.1.3). 

Lemma 3.2.8 If 

1 q -ik;\ 
-2 ,: rk e > o , " E (-TI , TI] 

TI k=-q 

and f(;\) has a determinant not identically zero, then f(;\) can 

be represented in the form 

where A0 is Hermitian positive definite and no zeros of 

det £ Ak zk lie inside the unit circle. The representation 
k=O 

is unique. 

PROOF.See HANNAN [20] p. 64 - 65 for the construction of a 

factorization. The uniqueness follows from lemma 3.2.1 □ 

REMARK.An explicit expression for i Ak zk as in the univari­
k=O 

ate case(2.2.3) is not known. However, it follows from the 

construction in the first part of HANNAN'S proof, that there 

exists a factorization such that A0 ••• Aq depend continuously 

on r r . 
0 q 

By remark 2 on the fundamental lemma 3.2.1 it then follows that 

also for the unique factorization A0 ••• Aq depend continuously 

on r 0 r q 
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3,3 THE MINIMUM INFORMATIVE SAMPLE SIZE FOR MULTIVARIATE 

MA(q) PROCESSES 

suppose we are sampling from them-variate MA(q) process 

t o, + 1, ... 

Similar to the univariate case we introduce 

B 
0 

I 
m 

Let a:+ (m) denote the set of all positive definite hermitian 

m X m matrices. Then l: is said to be completely unknown if 
E: + a:+ (m). the range of l: is equal to a: (m) , i.e. if l: (Z) = 

E: E: 

MA THEOREM 3.3.1 If in them-variate MA(q) case 8 = S (m) x Z p 
and l: (Z) ca:+ then the sample size q+l is second-order infor-

s m 
mative for (B(z), l: ) • 

E: 

PROOF. let r denote the covariance function of the process i.e. 
s 

r 
s 

t, s = o, + 1, •.. 

Since this function vanishes for Isl ~ q+l, in the same way as 

in the univariate case it is sufficient to prove that the spec­

tral density matrix f 0 (A) has a unique decomposition of the form 

( 3. 3 .1) 

Suppose there exist B(z) and l: such that 
E: 

( 3. 3. 2) 

A E C-1r, 7r l. 

A E (-7r, 7r l • 
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As LE and LE are nonsingular there exists a (nonsingular) m x m 

matrix V such that 

~ 
L V L v,'< 

E E 

Since det B ( z) -I' 0, \ z \ < 1 and det B ( z) -I' 0 for \ z \ < 1, it 

follows from lemma 3.2.1 that there exists a matrix H (which 

does not depend on z) such that 

B(z) V H B ( z l z E 0:. 

Substituting z 0 we obtain 

B(O) VH = VH = B(O) Im 

~ 
Hence B(z) = B(z) z Ea: and so (by (3.3.1) and (3.3.3)) 

LE = l\. This proves the sample size q+l to be second-order 

informative. D 

REMARK 1. It is noteworthy that the distribution of a sample of 

size q+l is in fact an m(q+l)-dimensional distribution, 
2 since the total number of unknown parameters equals m q 

form> 1 one hase identification een though the number 

and, 
1 + 2m(m+l} , 

of 

observations is less than the number of unknown parameters. 

REMARK 2.That the theorem does not hold in general if L is 
E 

allowed to be singular, can be seen as follows. Let L be 
m m E 

singular and v Ea: such that L v = O. Let w Ea: be orthogo­
E 

nal to v. Then by lemma 3.2.2 we have 

det (Im+ w v* z) = 1 Z E 0: • 

We also have 

(3.3.3) ( I + w v 1• z) L 
m E 

L ( I + V wt, z) 
E m 

L 
E 

Z E 0:. 
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Put B = 0 and B (z) (I + w v,·, z). Then B (z) is a matrixpoly-q m 
nomial of degree at most q, and we have by (3.3.3) 

A E (-TT , 1T] • 

Thus (B(z) , LE) generates the same covariances as (B(z) L ) • 
E 

The following theorem shows that under the additional condition 

that LE is completely unknown, the sample size q+l is the 

minimum second-order informative sample size. As in the uni­

variate case we shall prove a much stronger result on nowhere 

local identifiability. Local identifiability here refers to 
, 'd m2- (q+l) . MA + the Euc&~ ean topology on cr restricted to S (m) x cr (m) 

q m2 'q+l) 
i.e. by considering (B1 ••• B , L) as vector in cr 1 • 

q E 

As in the univariate case we need a lemma. 

LEMMA 3.3.2 let D: = {(B1 

Then Dis a dense subset of 

det B(z) ,f O , z < 1} 

PROOF.see DEISTLER, DUNSMUIR and HANNAN [8] , lemma 1. □ 

THEOREM 3.3.3 If in them-variate MA(q) case 8 

LE is completely unknown, then the sample size q is nowhere 

locally second-order informative for $(z), LE). 

PROOF.Since Dis dense in SMA(m) by lemma 3 3 2 D x cr+(m) is q •• , 

MA + dense in Sq (m) x cr (m) and so by lemma 1.9.2 it is sufficient 

to prove the theorem for 8 = D x z. 

Let (B(z) , L ) be such that B(z) is nonsingular on lzl ~ 1. 
E 
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Then the theorem is proved if we can find a sequence 

lB(n) (z) , E (n)) converging to (B(z) , E ) (convergence of 
E E 

coefficients) such that for all none has det B(n) (z) i O for 

lzl..:::. 1, (B(n)(z) , E~n)) is not identical to (B(z) , EE) , 

and (B(n) (z) , E(n)) generates the same covariances 
E 

rs ( s = O , + 1 , . . . + ( q-1 ) ) as ( B ( z ) , E E ) • 

As in the univariate case (theorem 2.2.4) we introduce the 

covariance generating function 

G ( z) 
q 
E z i 0. 

Similar to the univariate case we obtain 

G(z) B(z) z i o. 

Note, that 

A E (-1T , 1T 

since B(z) is nonsingular on lzl = 1. Thus we may define o > 0 

by 

0 m i n 
)_E(-1r,1r] 
aEa:m,afO 

1 Let n > 8 and put 

Then we have 

a 1' G(e-iA) a 

a'' a 

and so for all vectors a i O and A E (-1r ,1r] 

, A E (-1T ,1r] 
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,., (n) -L\ 1, {at•G(e-L\)a 1 } 
a G ( e ) a = a a a,., a + 2n cos q :\ > 

r , Is I= o, 1 , ... q-1 
s 

(3.3.4) 1 r is> G(n) (e-H)d:\ r¢.- I , Is I= - e q 
2 1T s 4n m 

- 1T 

0 , Is I= q+l I 1+2, •.• 

Hence by lemma 3.2.8 it follows that G(n) (e-i") can be decom­

posed into 

where B(n) (z) is a matrix polynomial of degree_::_ q with 

det B (n) ( z) 'f O, [ z [ _::_ 1. Since I: E is completely unknown, 

,;(n) may be chosen to obtain B(n) (0) =I. Finally, it follows 
E m 

from (3.3.4) and the remark following lemma 3.2.8 that we must 

have 

(3.3.5) 

"'(n) ':i ,.,½ where~ and~ denote 

definit! square roo~s of ,;(n) 
E 

we obtain 

lim ,;(n) = 
E n+oo 

,; 
E 

and so with (3.3.5) 

lim B(n) (z) = B(z) 
n+oo 

':i B ( z) ,; 
E 

z E ([ 

the (unique) hermitian positive 

and,; respectively. Taking z = 0 
E 

Z E Q: 



Thus we found a sequence (B(n) (z) L(n)) converging to 
I £ 

(B(z) , LE) with the desired properties. 

This completes the proof. □ 

3.4 INFORMATIVE SAMPLES FROM MULTIVARIATE AR(p) PROCESSES 

For the case that we are sampling from a process {~t} 

satisfying them-variate vectorial difference equation 

(3. 4 .1) 

we introduce 

we have 

p 

L ¾ ~t-k 
k=O 

t O, + 1, • • • , A0 

THEOREM 3.4.1 If in them-variate AR(p) case 0 = SAR(m) x Z 
+ p 

and LE(z) c ~ (m), then the sample size p+l is second-order 

informative for (A(z) , L ) 
£ 

PROO~ Let rs denote the covariance function of {~t} i.e. 

r 
s 

{ X,~ } 
= E ~t -t-s t,s = 0, + 1, ... 

As in the univariate case (theorem 2.3.1) we may write down 

the YULE-WALKER equations 

( 3. 4. 2) {

L 
£ 

r -
s-k - O 

s = 0 

s = 1, 2, ... , p. 

81 

As r -s r* , these equations can be written in matrix form as 
s 

( 3. 4. 3) Q / 
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where w is the m(p+l) X m(p+l) matrix given by 

r''' r r r''' 
1 0 p-1 1 

r ,., 
2 

r ,., 
1 

r 
p-2 

r"' 
2 

(3.4.4) w R(p) 

r"' 
. ,. ., . 

r''' r .. 1 ..• r .. 
p p- 0 p 

-I m 0 0 -Im 0 0 

Suppose the sample size p+l is not second-order informative 

for (A(z),ZE ). Then there exist pairs 

(A (1) (z) zll)) -f (A ( 2 ) (z) z( 2 )) that generate the same rs 
1 E I E 

for s = 0, ± 1, ... ± p. 

It follows from (3.4.3) that in that case W must be singular 

and by (3.4.4') this is equivalent to singularity of R(p). 

Hence there exist vectors c. E ~m, j = O, 1, ..• p-1 not all 
J 

zero, such that 

(3.4.5) 
p-1 

z 
j=O 

0 (a. s) , t o, + 1, ... 

Since the process {~t} has the spectral density matrix 

f (A ) , A E (-rr ,rr] 

relation (3.4.5) implies 

a.e. w.r.t. Lebesgue measure. Since f(\) is a nowhere singular 

matrix it follows that 

, A E (-rr ,rr] 
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and so cj = 0, j = 0, 1, •.. , p-1. Thus we have a contradiction 

and the theorem is proved. D 

REMARK.As in the MA-case the theorem does not hold in general 

when EE is allowed to be singular. To see this, take v, w E ~m 

orthogonal such that EE v = 0 and put AP= 0. 

Let A(z) : = (Im - w v* z) A(z). Then we have 

and so (A(z) , EE) generates the same covariances as (A(z) ,EE). 

3.5 INFORMATIVE SAMPLES FROM MULTIVARIATE ARMA(p,q) PROCESSES; 

PREDICTABILITY. 

So far the multivariate generalizations of the results in 

Chapter II where straightforward, except for some minor diffi­

culties. However, the multivariate generalizations of theorems 

2.4.2 and 2.5.2 for the ARMA case have given some real trouble, 

since it turned out that the 'obvious' generalizations are not 

true. To be more precise, suppose we are sampling from the 

model (3.1,1) with p q ~ 1. Put 

s:~(m) = fA1 •.• Ap,B1 ... Bq)ldet A(z)~0,z2l;det B(z)~0,z<l 

r [Ap,Bq] = m and r[A(z),B(z)]= m Vz }· 

For the existence of second-order informative sample sizes for 

(A(z), B(z), EE), the condition r [A(z), B(z)] =mis clearly 

necessary as can be seen from (3.1.2) and lemma 3.2.4. In con­

trast to the univariate case we cannot drop the condition 
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r [ AP , Bq] 

with v•'<A 
p 

= m either; if r [A, B] < m, there exists v E ~m 
p q 

v•':B = 0, v t- 0 and choosing w E ~m, w t- 0 such 
q 

that w•':v = 0, by lemma 3. 2. 2 we see that Im + w v•'<z is a uni­

modular left factor that does not increase the degree of A(z) 

and B(z). Thus the 'obvious' generalization of theorem 2.4.2 

is: If 8 
ARMA = S (m) x Z and p,q 

+ L (Z) c ~ (m), then the sample 
E: 

size p+q+l is second-order informative for (A(z), B(z),LE: ). 

If rs ,s = O, ± 1, ... denotes the covariance function of the 

observable process, then a natural attempt to prove this, would 

be to write down the covariance equations similar to (2.4.3) 

(3.5.1) 
p 
L Ak rs-k 

k=O 
0 ' s q+l, q+2 , .•• , 

and to prove ,the equations for s = q+l, q+2, •.. q+p to be 

uniquely solvable for A1 ... AP. In matrix notation we have 

( compare ( 2. 4. 4) ) 

R + q r q+ 1 ' ..• ' r q+pl 

where Rq is now the mp x mp matrix given by 

r q 

r q-1 

(3. 5. 2) R q 

r q-p+l 

~ 

rq+l 

r q 

r q-p+2 

r q+p-1 

rp+p-2 

r q 

o, 

However, proving that R is nonsingular in a similar way as in q 
the univariate case is impossible because we cb not have the 

multivariate analogue of lemma 2.4.1 for vectorvalued functions. 

Nevertheless HANNAN stated in 1975 ([19]) that R is nonsingular, 
q 



85 

but the proof given there is incorrect as was pointed out in 

TIGELAAR [ 34). The example we shall present shows, in fact, 

that the statement is false. Before doing so we consider the 

problem of finding second-order informative sample sizes for 

the spectral measure, or, equivalently, second-order predic­

tive sample sizes for the future. The 'obvious' generalization 

of theorem 2.5.2 is, that if 8 = SAR(m} x ~q x z, then the 
p 

sample size p+q+l is second-order informative for the spectral 

measure. It turns out that the same counterexample proves this 

statement to be false, and it is instructive to see where the 

'natural' attempt to prove it goes wrong. To see this, let 

(A(z}, B(z), i::) ,j: (A(z}, B(z), i::) and let {r s = O, ~ l, •.. } 
_ E E S 

and {r s = 0, + l, .•• } be the corresponding covariance func-
s -

tions. Then we have to prove the implication 

[ (r ••• r + )=(r , ••• r + )) ⇒( {r ,s=O,+l, ... }={r ,s=O,+l, .•• }] 
0 p q O p q S - S -

Them-variate analogues of (2.5.2) and (2.5.3) are 

p 
i:: Ak r s-k k=O 

0 s = q+l, q+2, ... 

(3.5.3) 
p -
i:: Ak r s-k k=O 

0 s = q+l, q+2, ..• 

and 

p 
(3.5.4) i:: Ak r s-k k=O 

0 , s = q+l, q+2, ... q+p 

When we try to prove the validity of (3.5.4) for s = p+q+l by 

the method of the univariate proof we must substitute 

rs 

into 

p 

i:: Ak rs-k 
k=l 

p 
i:: Ak r k=O q+p+l-k 

s = q+l, q+2, ..• 
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to obtain 

p p -
( 3. 5. 5) Z Z A.Akr + +l-'-k" 

k=l j=O J q p J 

Since in general the matrices Aj and Ak do not commute, it is not 

possible to put the last expression equal to the zero matrix 

as in the univariate case. It is, however, not necessary that 

the matrices A. and Ak commute for all j and k. To see this, 
_] 

let f(A) and f(A) denote the spectral density matrices corres-

ponding tor and r respectively. s s 
Substituting for r in (3.5.3) and (3.5.5) its spectral repre­

s 
sentation 

-r 
s 

we obtain 

-rr 

s=O,+l, ..• , 

ITTeiSAi(e-iA) f(A)dA 0 , s q+l, q+2, ... , 

and (using r = f , s = o, ... , q+p) s s 

iT 

j ei(q+p+l)AA(e-iA) (Im-A(e-iA))f(A)dA 
-rr 

- -iA -iA If in the last expression A(e ) and I - A(e ) may be 
m 

interchanged, we obtain 



So it would be sufficient that the polynomials A(z) and A(z) 

commute on lzl = 1. However, they do not in general and a 

challenging problem arises. Before we try to find informative 

sample sizes we now present the counterexample. In fact we 

only prove the existence of a counterexample, and therefore we 

state the following theorem. 

87 

THEOREM 3.5.1 If in the bivariate ARMA(l,l) case 8 = SARMA(2) x Z 1,1 
and t: fs completely unknown, then the sample size 3 is not 

E: 

second-order informative for the spectral measure (and so not 

for (A ( z) , B ( z) , t: ) ) • 
E: 

PROOF. Let E: and o be positive numbers yet to be chosen. Con­

sider the matrices 

(3.5.6) G(;I.):= , 

and 

Both G(;I.) and G(;I.) tend to I 2 (uniformly in ;1.) as E: 1 8 + 0 and 

so they are positive definite for all" E (-n, n] if E: and o 
are sufficiently small. 

Introduce 

A O ] and 

0 . 

A 
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and put A(z) = I2 - Az, A(z) = I2 - Az. 

Then det A(z) = 1 - oz, det A(z) 1, z E a: and so E: and 0 

may be chosen in such a way that 

det A(z) 'f 0 , I z I < 1 -
det A(z) 'f 0 , I z I < 1 -
G(;\) is positive definite for all A 

G(A) is positive definite for all A 

hold simultaneously. Thus G(;\) and G(;\) are hermitian positive 

definite trigonometric matrix polynomials of degree 1. Hence 

by lemma 3.2.8 there exist matrix polynomials B(z) and B(z) 

both of degree 1 and hermitian positive definite matrices z 

and z such that B(O) = B(O) = r 2 , 

( 3. 5. 8) G(;\) ;\ E (-11 , 11] 

(3. 5. 9) G(A) ;\ E (-11 , 11] 

and detB ( z) 'f O, I z I < 1 detB ( z) f O , I z I < 1. 

Note, that z, z E ZE:(Z) since ZE: is completely unknown. 

Let B(z) r 2 + Bz and B(z) = r 2 + Bz. We shall first prove 

ARMA ~ ~ ARMA 
that (A, B) E s1,1 (2) and (A, B) E s1,1 (2). 

Comparing coefficients of e-i;\in (3.5.6) and (3.5.8) we obtain 

Z B 

and so r[B]= 2. Similarly from (3.5.7) and (3.5.9) it follows 

that r[B]= 2, and therefore 
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r [A, BJ = r[A, BJ 2. 

Furthermore r lA(zlJ = 2 I z E a: and so r l A(z), B(zlJ= 2 I z E (I;. 

Remains to prove that r[ A ( z) , B(z)J= 2, z E a:. 
If r[ A ( z) , B ( z) J < 2 I then by lemma 3.2.4 A ( z) and B(z) have 

a non unimodular left factor in common, and this can only be, 

the case if A ( z) =B(z), z E a: since both have degree 1 and 

A(O) B(O) = r 2 • But then B A and so r[BJ = 1 contradicting 

r[ BJ = 2. 

Next we shall prove that (A(z), B(z), Z) and (A(z), B(z), Z) 
generate the same covariances rs for s = O, 1, 2. Let f and f 

denote the spectral density matrices corresponding to (A(z), 

B(z), Z) and (A(z), i(z), z), respectively. 

Straightforward calculation yields 

1 f(:>..)=-21T 

and 

- 1 f(:>..)=-
21T 

Calculation of the Fourier coefficients off (the covariances) 

gives 

r 
0 I2 ' rl = e: 

1 

1 l k=2,3, ... 
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and for f 

~ r 
0 

I 
2 

E: 0 [ 1 1 

0 0 

Thus ,fork =O, 1, 2 (=p+q) we have rk = rk and since e o > 0 

we have rk irk fork= 3, 4, ... Hence the sample size 3 is 

not second-order informative for the spectral measure. □ 

~ 
REMARK.Since p=q=l we have Rq = r 1 (see (3.5.2)) which is 

singular and so we have indeed a counterexample for HANNAN'S 

lemma in [ 19] . 

As a first step in obtaining informative sample sizes we 

shall restate and prove HANNAN'S classical result on the 

ARMA(p,q)-case in the terminology and notation introduced in 

the preceding sections. 

THEOREM 3.5.2 (HANNAN 1968) If in them-variate ARMA(p,q) case 

8 = SARMA(m) x Zand L (z) c ~+(m), then the whole process 
p,q € 

{~t} is second-order informative for (A(z), B(z), LE:). 

PROOF.The proof is complete if we can prove the factorization 

(3.1.2) of the spectral density matrix to be unique. Suppose 

we have an alternative factorization into A(z), B(z) and~­

Then we have from lemma 3.2.1 

I z I .::. 1 

and as A(O) B(O) = Im 1 this implies L =Land A- 1 (z) B(z) = 

A- 1 (z) B(z), jzj .::_ 1. Since both (A(z), B(z)) and (A(z), B(z)) 

satisfy the conditions of lemma 3.2.5 it follows that we must 

have A(z) = A(z), B(z) = B(z). D 



REMARK.In HANNAN'S paper [ 18] the matrix I: is allowed to be 
E 

singular but we already showed in the MA-case and the AR-case 

that the result is then in general false. 
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Intuitively one can feel that there must be some finite 

sample size that is second order informative for (A(z), B(z), I: ) 
E 

(or the spectral measure) and that its minimum value depends 

on m. We have 

THEOREM 3.5.3 If in them-variate ARMA(p,q) case 

8 = S~R(m) x ~q(m) x Z then the sample size q+(m+l)p is second­

order informative for the spectral measure, or, equivalently, 

second-order predictive for the future. 

PROOF. Let {~t} be the observable process. 

Putting 

t 0, + 1, ... 

~t-p+l 

we obtain an mp-variate process {yt} satisfying 

Al A2 

-I 0 m 

(3.5.10) Yt + 0 -I 

0 0 

m 

A 

0 

0 

-I 0 
m 

p 

- q 
I: Bk£t-k 

k=0 

Yt-1= 0 

0 

t=0,,±.1, ... 

Thus {yt} is an mp-variate ARMA(l,q) process that is equivalent 
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to {~t} in the sense that prediction of {~t} is the same pro­

blem as prediction of {yt}. Therefore we may restrict oursel­

ves to the case p = 1 without loss of generality. The fact 

that the error process in (3.5.10) has a singular covariance 

matrix is not important since we did not assume IEE ~+(m). 

Furthermore it is important to note that a sample of sizes 

from the process {yt} corresponds to a sample of sizes+ p - 1 

from the process {~t} (sample size must as before be interpre­

ted as the number of points in time the process under conside­

ration is observed). 

So, consider them-variate ARMA(l,q) model 

~t - A ~t-1 

with covariance function rs,s 

specification,be denoted by 

with covariance function rs,s 

prove the implication 

t o, + 1, ... 

O, + 1, ..• and let an alternative 

t = o, + 1, ... 

O, + 1, ••. Then we have to 

r 
s rs' s = o, + 1, .•. .:!:_(q+m)J ~[rs rs, s = o, + 1, ..• J • 

From (3.5.2) we obtain 

r A r r A r s = q+l, q+2, • • • I s s-1 s s-1 

or, equivalently, 

(3. 5.11) r As-q r r As-q r I s = q+l, q+2' ... s q s q 
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Suppose we have rs= rs , s = 0, ± 1, .•• ± (q+m). 

By lemma 3.2.7 there exist m x m matrices C0 , ••• , C such that 
m 

m 
E 

k=O 
and 

Hence, using (3.5.11) and r 
s 

m 
E 

k=O 
C Ak 

k 

r s = 0, + 1 , ... , + ( q+m) 
s 

and so, by induction rs rs s = 0, ± 1, ... 

Thus we proved for an m-variate ARMA(l,q) process the sample 

size q+m+l to be second-order informative for the spectral 

measure; hence for an m-variate ARMA(p,q) process the sample 

size q+mp+l+p-1 = q+(m+l)p is second-order informative for the 

spectral measure. This completes the proof. □ 

REMARK.The informative sample size in the theorem has less 

intuitive appeal than the previous results, since only for 

m=p=l it corresponds to the result of theorem 2.5.2. Form~ 2, 

the number q+(m+l)p - (p+q+l) = mp-1 can be interpreted a penal­

ty for allowing the coefficients to be elements of a non com­

mutative ring. It is, however, not certain that this penalty 

is the minimal one. 

As an immediate consequence of theorems 3.5.2 and 3.5.3 

we have 

THEOREM 3.5.4 If in them-variate ARMA(p,q) case 8 = SARMA{m)xZ p,q 
+ and r (z) c ~ (m) then the sample size q + (m+l)p is second­

£ 
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order informative for (A(z), B(z), Z ). 
E: 

PROOF. let (A1 ( z) , B1 ( z) , Z E:, l) -/- (A2 ( z) . B2 ( z) , Z E:, 2 ) corres­

pond to 0 1 and 0 2 respectively. If F0 denotes the spectral 

measure and R0 the covariance matrix of a sample of size 

q + (m+l)p, then it follows from theorem 3.5.2 that we must 

have F0 t- F0 • Hence by theorem 3.5.3 R0 t- R0 . This proves 
1 2 1 2 

the theorem. D 

REMARK.In the counterexample presented in theorem 3.5.1 we 

found that in the case m = 2, p = q = 1 the sample size 3 is 

not second-order informative for (A(z), B(z), z ). Theorem 
E: 

3.5.4 implies that the sample size 4 is second-order informa-

tive for (A(z}, B(z), z ) and so we found in that particular 
E: 

case the minimum second-order informative sample size. 
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CHAPTER IV 

DYNAMIC SIMULTANEOUS EQUATIONS WITH MA-ERRORS 

4.1 INTRODUCTION 

Consider them-variate ARMA(p,q) model 

(4.1.1) t o, + 1, ... 

As most econometric models of this type contain one or more 

identities, i.e., equations with known coefficients and zero 

errors, we cannot apply the theory of chapter III to such models 

(exept for theorem 3.5.3). Moreover, most model specifications 

are such that A0 ~ Im. In econometrics such models are called 

systems of simultaneous equations. If p > O, among the equati­

ons there are difference equations, and the model is then cal­

led dynamic. 

In the sequel we shall frequently use partitioned matrices and 

vectors. If necessary for the sake of clarity, we shall indi­

cate the dimensions of the partition as follows: 

[····!····1 
(nl) 

f · .. 
(nl) 

or 

(n2) (n2) 
(kl) (k2) 

We shall make the following assumptions. 

a) The last m0 equations in (4.1.1) are identities , 

(O < m0 ~ m-1), i.e., ~t can be written as 
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= l :t (m-m0 ) 

E-t t 0' + 1' ... 
(mo) 

We shall assume that {~t} is (m-m0 )-variate white noise with 

unknown_. Hence 

l: 
€ 

E{it i:} > 0 which is supposed to be 

l: 0 
€ 

0 0 

(m-m ) (m ) 
0 0 

(m-m) 
0 

(m) 
0 

We shall use a similar partitioning for Ak and Bk' 

A (11) 
. 

A (12) A (1) . k . k k 

Ak .. • • • • • ",. ..... 0 ...... 
A (21) 

k 
A (22) 

k 
A (2) 

k 

(m-m) 
0 

(mo) 

The matrices Bk are supposed to be of the form 

with B (o) = 
0 

I m-m 
0 

B (o) o 
k • 

. .............. 
0 0 

(m-m) 
0 

(m) 
0 

k 

(m-m0 ) 

k=O,l, ..• p. 

(m) 
0 

0,1, ... ,q, 



For A(z) 

write 

(4.1.3) 

(4.1.4) 

p k 
l: Ak z 

k=O 
and B(z) 

q 
i:: 

j=O 
B. zj we can now 

J 

~ :::::~'..I.~:'.~::~'.] A(l)(z) (m-m) 
0 

A ( z) ....... 
A (21) (z) : A (22) (z) A (2 ) (z) (m ) 

0 

B ( z) 

B (o) (z) 

. 

(m ) 
0 

0 

. . . . . • ............. . 
0 0 

(m-m ) (m ) 
0 0 

(m ) 
0 

z E 0: • 
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z E 0: 1 

Since the last m0 rows of A(z) correspond to the identities, 

A( 2 ) (z) is a known matrixpolynomial. 

b) A0 is nonsingular. In econometrics the model is then said 

to be complete. Obviously we need this assumption if we want 

A(z) to be nonsingular on [z[ ~ 1. 

c) A~22 ) is nonsingular. This assumption makes it possible 

to interpret the identities as definitions of the last m0 com­

ponents of ~t and enables us to substitute them into the first 

m-m0 equations. 

d) degree {A( 2 ) (z)} : = p < max (O, p-1). 
0 -

This assumption states, roughly speaking, that for p ~ 1 the 

identities do not contain components of ~t-i for the maximum 

time-Zag t=p. Of course the assumption is not restrictive if 

p=O. 

e) A( 22 ) (z) is a proper matrix polynomial (i.e. a matrix-
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polynomial with nonsingular leading coefficient matrix). 

Lets E Z be a parameter characterizing the distribution 

of the process {~t}. Then we can write ZE ZE(s) and z_ = Z_(s). 

We can take 0 

Putting 

(A(ll, ... ,A(l) 
0 p 

(ll Ol I I I -S = { (A , •.• ,A ) det A ( z) -f O, z - 1} , 
0 p 

then the parameterspace e is supposed to satisfy 

8 C 8 ~ ~q (m-m) X Z . 
0 

E E 

In econometrics (4.1.1) is called the structural form of the 

model. Premultiplying with A-l yields the so called reduced 
0 

form, 

p q 
(4.1.5) z Pk ~t-k z Qk 21t-k ' 

t = 0' + 1 ' •.. ' 
k=O k=O 

where p I ' Pk 
A-1 

Ak' k 1' 2, • • • I p, 
0 m 0 

Qk 
A-1 

Bk A k = o, 1' 2' ... q, 
0 0 

and 2lt 
A-1 

~t t 0' + 1 ' •.• 0 

Let P(z) : = A-l A(z) and Q(z) : = A-l B(z) A denote the gene-
o O 0 

rating functions of (Pk) and (Qk) and let Zn 

A sample is called (second-order) informative for the structu­

ral form if it is informative for (A(z), B(z), Z ), and it is 
E 

called informative for the reduced form if it is informative 

for (P(z), Q(z), Z ). 
n 

It should be noted that in order to find informative sample 

sizes for the reduced form we cannot apply theorem 3.5.4 to 

(4.1.5) since z is allowed to be singular. We can however apply 
n 

theorem 3.5.3 to find informative sample sizes for the spectral 
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measure and we may hope that prior knowledge on (A(z), B(z), E ) 
£ 

enables us to identify it. 

In section 4.2 we shall find informative sample sizes for the 

reduced form. 

In section 4.3 we shall consider the structural form. 

4.2 INFORMATIVE SAMPLES FOR THE REDUCED FORM 

Consider the model (4.1.1) under the assumptions a) - e). 

The spectral density matrix f 8 of the process {~t} is given by 

( 4. 2 .1) 

or, equivalently, 

( 4. 2. 2) 

Although the sample size 

for the spectral measure 

second-order informative 

;\ E (-rr, TT] 

;\ E (-rr, rr] 

q+(m+l)p is second-order informative 

E ) since I is 
n n 

by theorem 3.5.3, it is not necessarily 
a -1 

for (P (z) Q(z), 

singular (see the MA case§ 3.3). But even if prior knowledge 

enables us to identify P-1 (z) Q(z) we have a problem, since 

the conditions of lemma 3.2.5 under which rational matrix func­

tions uniquely decompose into a left denominator and a right 

numerator are not realistic for most simultaneous equation 

models. To see this, note that the condition r [P, Q] =mis p q 
equivalent tor [A, B] = m and since B has zeros in the last 

m rows (and colu~s) fhis implies that qA( 2 ) has rank m, which 
0 p 0 

is almost never fulfilled in practice. Therefore we shall prove 

the following modification of Lemma 3.2.5 for partitioned ma­

trices. 
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LEMMA 4.2.1 Let the rational m x m matrix function D(z) decom­

pose as 

D(z) 
-1 A (z) B(z), 

with A(0) = A0 , and where A(z) is of the form (4.1.3) satisfying 

assumptions b) - e), B(z) is of the form (4.1.4) and 

r [A(z), B(z)] = m, for all z E cr. Moreover, suppose degree 
{A(l 2 ) (z)} < p and r [A(ll) B(o)l = m - m. 

• -o p 'q 0 

Then A(z) and B(z) are uniquely determined by A, A( 2 ) (z) and 
0 

D (z). 

PROOF. For p = 0 nothing remains to prove so let p > 1. 

Suppose there exist an alternative decomposition 

--1 -
D(z) = A (z) B(z), 

satisfying the conditions of the theorem, such that A(O) = A(0) 

and A( 2 ) (z) A( 2 ) (z) for all z E cr. Then the funtion 

C(z) l (A(z) 
z 

-
A(z)) 

is a polynomial of degree~ p-1, and can be partitioned as 

(4.2.3) C(z) 

0 

(m-m) 
0 

where degree {c( 2 ) (z)} < 

We also have 

p -1. 
0 

0 

C (z) D(z) 1 (B(z) - B(z)), 
z 

(m) 
0 



which is a polynomial of degree~ q-1 since B(O) = B(O) = A~1 D(O). 

Let d denote the degree of the polynomial det A(z). As in the 

proof of Lemma 3.2.5 we introduce the matrixpolynomial 

S ( z ) : = C ( z ) A- l ( z) det A ( z) , 

with degree {S(z)} = s. From (4.2.3) it follows that S(z) can 

be partioned into 

( 4. 2. 4) 

0 0 

(m-m) 
0 

(m ) 
0 

Supposed< s. Let S(l) (z) = 
s 
l: 

k=0 
and 

s( 2 ) (z) = 
s 
l: 

k=0 

S (2) k 
k z We shall first prove that S(l) t 0. If 

s 

S(l) = 0 then we must have s( 2 ) t 0. 
s s 

From S ( z) A ( z ) 

and ( 4. 2. 4) 

C(z) det A(z) we obtain using (4.1.3), (4.2.3) 

s(l) (z) A(l 2 ) (z) + s( 2 ) (z) A( 22 ) (z) = c( 2 ) (z) det A(z). 

The first term on the left has degree~ s-l+p0 , since S~l) = 0 

and degree {A(l 2 ) (z)} ~ p0 • The second term has degrees+ p0 

since s( 2 ) t O and A( 22 ) (z) is proper by assumption e). Hence 
s 

c( 2 ) (z) det A(z) has degree s+p0 • But we also have 

degree {c( 2 ) (z) det A(z)} < p -l+d, 
- 0 

and since d < s we have a contradiction, proving S(l) t 0. 
s 
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Since S(z)B(z) = C(z)D(z)det A(z) is a matrix polynomial of 

degree at most q-l+d, and has the same degree as S(l) (z) B(o) (z), 

we must have 

s 
I: 

k=O 
0 1=q+d, q+d+l, ... 

Similarly for S(z) A(z) C(z) det A(z) we obtain 

Q In p+d, p+d+l, ... 

Choosing l=q+s and n=p+s yields 

( 4. 2. 5) 0 [ S ( 1) 

' s ' 
0. 

From degree {A( 2 ) (z)} < p ~ p-1 it follows that the second 
- 0 

relation in (4.2.5) is equivalent to 

S(l) A(ll) 0 
s p 

which together with the first relation in (4.2.5) contradicts 

r [A(ll) B (o)] p , q = m-m0 • 

Now supposed> s+l. Then we obtain in a similar way as in 

Lemma 3.2.5 a contradiction tor [A(z), B(z)] = m. This proves 

the Lemma. D 

REMARK 1. Form = 0 and A I we obtain the result of Lemma o o m 
3.2.5, thus we have a genuine generalization. 
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REMARK 2. If A(z) in (4.1.1) does not satisfy degree{A(l 2 ) (z)}< 

then one can always , by means of substitutions, obtain 
Po' 
an equivalent model specification 

dition, since A( 22 ) (z) is proper. 

ral condition for identifiability. 

Put 

that does satisfy this con­

Therefore it is a rather natu-

det B ( o) ( z) t- 0, I z I < 1 r [ A ( 11 ) B ( o) ] = 
p ' q 

m-m 
0 

r [A(z), B(z)] m "'l z and degree {A (l 2 ) (z)} < p 0 }. 

Since A~22 ) is nonsingular we can (by substitution of the m0 

identities into the first m-m equations) rewrite (4.1.1) as 
0 

(4.2.6) 

where 

A (11) 
0 

0 

-
A ............. 

0 

A (21) 
. 

A (22) . 
0 0 

(m-m) 
0 

(mo) 

(m-m) 
0 

(m) 
0 

t 0, + 1, .•. , 

Since the reduced form of (4.2.6) is equal to the reduced form 

of the original model ( 4 .1. 1 ), it is sufficient to prove the 

identifiability of the reduced form under the extra assumption 

that A(l 2 ) = O. In that case A(ll) is nonsingular. Let SDSE be 
0 0 

the set obtained from SDSE by adding the condition A(l 2 ) = 0. 
0 
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LEMMA 4.2.2 Let S be a nonsingular ll\)(m matrix, and A and B 

arbitrary mxm matrices. Then r [A,B] =miff r [SA, SBS- 11 = m. 

-1 -1 
PROOF. Since Sis nonsingular we haver [SA, SBS l = r [A, BS ] . 

Moreover, {r [A, BS- 1 ] 

LEMMA 4.2.3 Consider an arbitrary sample size for the model 
~DSE (4.1.1), and let e = S x Z with E- completely unknown. 

f; 

Then the functions p(0): = A0 and '!'(0}: = (P(z), Q(z), En) 

are second-order informationally independent. 

PROOF. Put v(0) = (p(0), '!'{0}). We shall first prove that 

v(S) p(El) x '!'(El). Let A.0 E '!'(13) and (P(z), Q{z),En) = 

( A - l A ( z ) , A - l B ( z) A , A - l A - l ,., ) E '!' ( 8) b b . t Th 
0 0 0 0 EE O ear i rary. en 

we have to show that (A , P(z), Q(z), E) E v(El), or, equiva-
o n 

lently, that 

( 4. 2. 7) 

and that the last 

-1 
A E 

0 £ 

-1* 
A 

0 

• • "' I 

-m0 rows and columns of A0 En A0 
- ,~ 
A 0 ) are zero. (= Ao 

Since A (12) 
0 

-1 O, the matrix A0 has the form 

and since the last 

-
it follows that A0 

(m-m) 
0 

(m) 
0 

m0 rows of A0 and A0 are equal (assumption a)), 

A -l has the form 
0 



A A-1 
0 0 

So 

A Q ( z) A-1 = 
0 0 

and 

Furthermore Lemma 

r [A0 P (z), 

and 
r [ T A~ll), 

We also have 

T 0 

............... 

0 I m 
0 

(m-m) 
0 

(mo) 

T B (O) (z) T-1 

(m-m) 
0 

(m) 
0 

(det 

0 

.............................. 

0 

4.2.2 gives 

- --1 A Q (z) Ao l 0 

T B (o) T-1] 
q 

m, 

m-m . 
0 

0 

Z E 0:, 

(m-m) 
0 

(m) 
0 

T 

, 

and so degree {T A(l 2 ) (z)} = degree {A(l 2 ) (z)} ~ p 0 • 
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'f 0). 

z E a: 
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r Finally, dettA0 P(z)} and det A(z) have the same zeros and 

det{T B(O) (z) T- 1}= det B(O) (z), z E ~- Thus we proved (4.2.7), 

and from (4.2.8) together with the fact that E~ is completely 
f; 

unknown it follows that (A0 , P(z), Q(z), En) e v(s). 

We recall that two values v 1 and v 2 are second-order obser­

vationally equivalent if they generate the same covariance 

structure for the sample. From the second-order version of 

theorem 1.2.9 it follows that it is necessary and sufficient 

to prove the equivalence classes to be of the form U0 x V 0 , 

where U0 c p(S) and V0 c T(S). This follows immediately from 

the facts that v(S) = p(S) x T(S) and that the spectral measu­

re (and hence the covariance structure of the sample) only 

depends on T(e). □ 

THEOREM 4.2.4 If in a dynamic system of simultaneous equations 
DSE 

8 = S x Z,,then the sample size q + (m+l)p is second-order 

informative for the reduced form. 

PROOF. Without loss of generality we can take 8 = SDSE x Z 

and assume Ef completely unknown. Let 0 and 0 2 E 8 correspond 
~ ~ ~ 1 

to (A(z), B(z), E ) and (A(z), B(z), E ) , respectively, where 
~ E E 

A(O) = A(O) = A0 • Let R0 denote the covariance matrix of a 

sample of size q+(m+l)p, and suppose R = R From theorem 
01 02 

3.5.3 it follows that then the spectral measures also coincide 

i.e. 

(4.2.9) 

Putting W(z) 
~-1 

A ( z) A ( z) , from ( 4. 2. 9) we obtain 
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(4.2.10) 

B(e-L\) r 
E 

A E (-11, 11] • 

Let W(z) be partitioned in the same way as A(z) and B(z) as 

W(z) = 

w(21) {z) : w(22) (z) 

-
Since B(z), B(z), rE and rE have zeros in the last m0 rows and 

columns and B(o), (e-i>.) iE is nonsingular a.e. it follows from 

(4.2.10) that w< 21 ) (z) = a, z E ct. (Since A( 2 ) (z) = A.( 2 ) (z), 

z E ct and r [A( 2 ) (z)] = m for almost all z E ct). It now follows 
0 

from W{z) A(z) = A{z) that we must have w< 22 ) (z) = Im
0 

But then 

it follows from (4.2.10) that 

(4.2.11) 

(o) -iA {o)•~ -H 
B (e ) r_ B (e ) 

£ 
w(ll) (e-iA)B(o) (e-u)~_B(o)•''(e-iA) 

E 

w<ll) (e-u). 

As W(ll) (z) is analytic on lzl < p for a p > 1 (because A(z) 
--1 

and A (z) are), it follows from (4.2.11) and the fundamental 

Lemma 3,2.1 that 

But then we also have B(z) = W(z) B(z) and so A- 1 (z) B(z) = 

A- 1 (z) B(z), z Ea:. Since A A and A( 2 ) (z) = A( 2 ) (z) it 
0 0 



108 

follows from Lemma 4.2.l that A(z) = A(z) and B(z) = B(z), z E ~­

Thus we proved the sample size q+(m+l)p to be second order 

informative for (A(z), B(z), E ) conditional on A. But then 
C 0 

the sample size q+(m+l)p is also second order-informative for 

(P(z), Q(z), E ) conditional on A, and since A and (P(z), 
n o o 

Q(z), E ) are second-order informationally independent by 
n 

Lemma 4.2.2, it follows by theorem 1.2.8 that the sample size 

q+(m+l)p is second-order informative for (P(z), Q(z), E ). □ 
n 

We shall show by an example that we cannot drop the condi­

tion degree {A(l 2 ) (z)} < p 0 • It is a slight modification of an 

example from KOOPMANS, RUBIN and LEIPNIK (see THEIL [32] , 

p. 494). 

EXAMPLE 4.2.5 Consider the following simple two-equation system 

( 4. 2 .12) t 

where y is a known non-zero constant. Thus we have p=l, q=0, 

p 0 =0 and 

A(z) 

Hence 

When we lag the second equation in (4.2.12) and add the result 

to the first equation, we obtain a system with coefficient ge-
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nerating function 

A ( z) 

The corresponding reduced form is 

(4.2.14) 

Clearly, (4.2.13) and (4~2.14) are indistinguishable. 

Note, that if we replace the second equation by ~t2 + Y~tl = ~t2 , 

then the argument does not apply, because in that case the 

bivariate AR(l) model would become a bivariate ARMA(l 1 1) model. 

4.3 INFORMATIVE SAMPLES FOR THE STRUCTURAL FORM. 

Intuitively it is clear that in general under the condi­

tions of theorem 4.2.4 we do not have identifiability of the 

structural form, or,equivalently, of the functions 

o ( 0) = (A(z), B(z)) 0 E 8 

and rE. On the other hand in most systems of simultaneous equa­

tions there is prior knowledge, which is usually restricted to 

A(z), such as zero-restrictions and A having unit diagonal 
0 

elements. Therefore we may hope that certain functions of 0(0) 

can be identified. 

Throughout this section we assume 8 
DSE an open subset of S . 

Let 

'¥(8(0)) (P(z), Q(z)) 

t,, x Z where t,, = o ( e) is 

0 E 8 
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and let o: n + A be an arbitrary function. Since the sample 

size q+(m+l)p is second-order informative for foo by theorem 

4.2.4, a sufficient condition for this sample size to be second­

order informative for p0 o, is the existence of a function 

v: f(n) + A, such that poo vofoo. We shall see that, if 

L~ is completely unknown, this condition is also necessary. 
E 

REMARK. In order to obtain necessary conditions, one sometimes 

meets the condition that the ft are i.i.d. and that the class 

of distributions of ft is closed under nonsingular linear 

transformations, i.e. if st has distribution P and TE ~(m) is 
- ~ f; -1 

nonsingular, then there exists f; E z such that Pf; T 

Since we consider second-order identifiability, it is more 

natural to assume L~ completely unknown. 

Let R(n) 
0 

n, and Ln (0) 

LEMMA 4.3.1 

E 

denote the covariance matrix of a sample of size 
A-1 _. -1~', 

0 uE A0 • We have 

PROOF. Follows immediately from the fact that the spectral mea­

sure, and so Rin), is uniquely determined by 1(0(0)) and Ln• □ 

THEOREM 4.3.2 If LE is completely unknown, then the sample size 

n ~ q + (m+l)p is second-order informative for poo iff there 

exists a function V such that poo = vofoo, 

PROOF. The "if" part being trivial,we shall only prove the 

"only if" part. Suppose the sample size q+(m+l)p is second­

order informative for p0 o • Let o1 = (A(z), B(z)) and 
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o2 (A(z), B(z)) be such that p(o 1 } =/: p(o 2). Let further 

s1 E Z be arbitrary and put 

0 = (A ( 1} • • • A ( 1} , B 1( o} • • • B ( o) , s 1) • 
1 o p q 

-1 Since'A0 A0 can be written as 

it follows that 

Since Tis nonsingular and 

(m-m) 
0 

(m} 
·O 

( det T =/: 0) , 

(m ) 
0 

E- is completely unknown, there 
€: 
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exists s2 E z such that T El 
-1 -He· 

E_ (s 2), Then we have A0 E8 A0 

T* = E_(s 2 ). Let~ correspond 
£ e: 

to i: := 
e: 

A-l ~ i-0 1*. Putting 
0 e: 

e: 

(A-(ll ••. A~(l), -(o) -(o) ) 
02 o p Bl .•• Bq , s2 

we obtain En (0 1 ) = En (0 2 ). 

We also have R(n) =/: R(n) for n ~ q+(m+l)p, since the sample 
01 02 

size q+(m+l)p is second-order informative for p0 o. Thus by 

Lemma 4.3.1 it follows that we must have 1(0(0 1 )) =/: 1(0(0 2 )). 

Thus we proved the implication 
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which in turn implies the existence of a function v such that 

foo = vo'¥oo. □ 

The practical value of this theorem is limited, since the 

condition is difficult to verify. More tractable conditions 

can be obtained by considering the equations separately. We 

shall make the following assumption. 

ASSUMPTION. The matrix A has unit diagonal elements. 
0 

First we introduce some notations and conventions. Let aki 

denote the i th row of the matrix Ak (k=0, •.. p). Clearly, if 

a'. is identifiable for all i=l, ••. ,m-m then A is identifia-
01. 0 0 

ble and therefore (A(z), B(z), L ), since the reduced form is 
E: 

identifiable by theorem 4.2.4. Therefore we do not care about 

the error part for the moment and define 

DEFINITION 4.3.3 A sample (size) is said to be second-order 

informative for the i th equation, if it is second-order infor-

mative for [a0 i apil • 

Let i be fixed. For notational convenience we re-order the 

equations in such a way, that a'. takes the form 
01. 

a'. 
01. ( 1 ' 

( 1) 

Cl I• 
01. 

0 

(m-m.-1) 
1. 

Thus ( 1, a' . )' is the (m. +l )-vector of coefficients of the non-
01. 1. 

lagged variables that occur in the i th equation. Then A can be 
0 

partitioned as 

A 
0 

(m.+l) 
1. 

(m-m.-1) 
1. 

( 1) 

(m-1) 
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Let kih denote the number of variables with lag h occurring 

in the i th equation (h=l,2, .•• ,p) and let ahi denote the kih­

vector of coefficients. Then (after re-ordering) the matrix 

Ah can be written as 

( 1) l at'ii : o 

A
.::::~ .A.•.•. 

h=l,2, ••. ,p. 

hi • hi (m-1) 

Let the matrix Ph be partitioned as 

. . . . . . . . . . . . . . . 

rrrest 
hi 

(kih) 

: Tih. • 1 

Tirest 
hi 

( 1) 

(m.) 
1 , 

(m-m.-1) 
1 

h=l, 2, •.• ,p. 

Thus ~hi is the kih-vector of coefficients in the i th equation 

from the reduced form, of the variables that occur in the i th 

structural equation, etc. The relation A0 Ph= Ah can now be 

written as 

( 4. 3. 1) 

1 0 

. . 
6 6 6 6 • 6 6 8 II • 6 6 6 8 • • • • 6 6 • 6 0 o 

Ar7st • A . rr 
01 01 hi 

rr rest: ,....rrrest 
hi : hi 

0 

Arest:A 
hi ' hi 
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which implies 

( 4. 3. 2) + ' 11 hi = 
, 

rrhi aoi ahi 

and 

' " ( 4. 3. 3) rrhi + aoi 11 hi 0 

LEMMA 4.3.4 r [i1i. , ••• , IT .)+m-m.-1 pi i 

PROOF. From (4.3.1) we obtain 

( 1) 

(m-m.,-1) rrrest 
i hi 

We also have 

( 1) 

(m-m.-1) 
i 

0 

0 

1m-m.-l 
i 

0 

Combining (4.3.4) and (4.3.5) yields 

0 : ':;;'h. 
• i 

( 4. 3. 6) 0 : rrh. • i 

I : Ilrest 
m-m.-1: hi 

i 

0 

A . oi 

h=l, •.• ,p, 

h=l, ..• ,p. 

r [ A . , ••• ,A . ) oi pi 

( 1) 

h=l,2, ••• ,p. 
(m-1) 

( 1) 

(m-1) 

0 

h=l, •.. ,p. 



From (4.3.3) it follows that ~hi is linearly expressible in 

the rows of rrhi and so (4.3.6) implies 

( 4. 3. 7) + m-m.-1 
l. 

which implies the result. □ 

h=l, ••• ,p, 

We can now prove the rank condition for the reduced form. 
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THEOREM 4.3.5 Let the sample size n be second-order informative 

for the reduced form of a dynamic system of simultaneous equa­

tions. Then a sufficient condition in order to be second-order 

informative for the i th structural equation is 
'"' " r [rr 1 i, ••• ,rrpil =mi, 0 Ee. If q=O and LE is completely 

unknown, then this condition is also necessary. 

PROOF. If r [Illi', ••• ,rrpil = mi 0 E 8, then the equations 

(4.3.3) can be solved uniquely for aoi' and so a 1i, ••• ,api are 

uniquely determined by (4.3.2). Hence by theorem 4.3.2 the 

sample size n is second-order informative for a ., ••. ,a . or 
th o1. pi 

equivalently for the i structural equation. 

Suppose q=O, that L- is completely unknown and that 

< m .• 
l. 

mi 
Then there exists s E ~ , s i Osuch that 

' s rrhi = 0, h=l,2, •.. ,p. Since the function p defined by p(o(0))= 

(a 0 i, ••• ,api), 0 E 8 is continuous and~ is open, f(~) is also 

open. Hence there exists£> 0 such that (a 0 i, ••. ,api) E f (~), 
where 

a oi a oi + £ s 

and 

' ahi ahi + £ s' rrhi h=l,2, ••• ,p. 

Since also (; 0 i, ••• ,api) solves (4.3.2) and (4.3.3), and q=O, 

it follows from theorem 4.3.2 that the sample size n is not 
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second-order informative for (a 0 i, ••. ,api), D 

COROLLARY 4.3.6 (order condition) If q=O and r_ is completely 
~ 

unknown, a necessary condition for identifiability of the i th 

structural equation is 

mp> m. + 
1 

PROOF. Follows at once from the fact that [rr 1 . , ... IT .] is an 
p 1 pi 

m. x L (m-k.h) matrix which can only have rank mi if 
1 h=l 1 

p 
mi< r (m-k.h). □ 

h=l 1 

In practice the following theorem is more efficient than 

theorem 4.3.5, since it does not require calculation of the 

reduced form. 

THEOREM 4.3.7 (rank condition for the structural form) Let the 

sample size n be second-order informative for the reduced form 

of a dynamic system of simultaneous equations. Then a sufficient 

condition for that sample size to be second-order informative 

for the i th structural equation is r [ A . , ••. ,A . J = m-1, 0E8. 
01 pi 

If q=O and L- is completely unknown, then the condition is also 

necessary. 

PROOF. Follows immediately from (4.3.7) and theorem 4.3.5. □ 

4.4 THE NON-HOMOGENEOUS CASE 

In this section we shall treat the case where the system 

of simultaneous equations is allowed to contain a deterministic 

component µt E ~m. Consider the system 

(4.4.1) t=O, + 1, ••• 
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We shall suppose that the homogeneous system satisfies assump­

tions a) - e) and that µt = cut t=0,±1, •.• where ut E ~k is a 

known sequence of non-random regressors. Furthermore, we assume 

that 

C = l ~~~~1 C (2) 

(k) 

(m) 
0 

With c( 2 ) known and C(l) unknown. In econometrics ut is called 

the vector of exogenous variables (and ~t the vector of endo­

genous variables). First of all we have to define the process 

{~t} properly. 

DEFINITION 4.4.1 The sequence {ut} is said to be non-exponen­

tially ina~easing as t+- 00 , if for all p>l we have 

t 
lim p ut = 0. 
t+-oo 

From now on we shall assume that {ut} is non-exponentially 

increasing as t+- 00 • Note that then also {µt} is non-exponential­

ly increasing. 

Suppose det A(z) f 0, lzl < 1. Then A- 1 (z) can be expanded into 

a power series 

-1 
A (z) = z:: 

j=O 

for a p > 1, and so we have 
0 

Hence, 

II µt . II -J 

So 

lim 
j+oo 

!Iv.II 
J 

~ M2 

v. pj = o. 
J 0 

< Ml 
-j 

- Po for some M1 > O. For l<p<p 0 we also have 

p j. 
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(L) 
j 

IIV. µ . II < IIV .1111 µt . II < M1M2 J t-J - J -J - Po 

which implies that E v. µt-j is convergent. 
j=O J 

Put 

"' 
(4.4.2) Yt .!S.t - E v. µt-j t=O, + 1 , ••. 

j=O J 

Then {yt} satisfies the homogeneous system of equations. There­

fore we define the process {.!S_t} by (4.4.2), where {yt} is the 

unique weakly stationary solution of the homogeneous system. 

Then it is easily seen that {.!S_t} is the unique covariance sta­

tionary solution of (4.4.1). 

Let 

0 

and 

e s08E x z x w 

where W (the range of c(l)) 
m-m k 

is some subset of (~ 0 ) 

At first we consider the reduced form i.e. 

(4.4.3) t=0,±1, ••• 

A sample is called second-order informative for the reduced 

form if it is second-order informative for (P(z), Q(z), En' A~ 1c). 

We shall assume that the model is non-collinear i.e. that there 

exists no E N such that 

n 
0 ,., 

r [ E ut ut] = k. 
t=O 
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THEOREM 4.4.1 If in a non-homogeneous dynamic system of simul-
DSE taneous equations 8 S x Z x w, then the sample size max 

(n0 +l+p, q+(m+l)p) is second-order informative for the reduced 

form. 

PROOF. Since the covariance function of the process {~t} is 

generated by the spectral measure of the process {yt} defined 

by (4.4.2), it follows at once from theorem 4.2.4 that the 

sample size q+(m+l)p is second-order informative for 

(P(z), Q(z), l: ). 
n 

p 
Let ~t: = l: Ph ~t-h' t=O~l, .•. Then it follows from (4.4.3) 

h=O 

that a sample of size n 0 +1 from the process {~t} is second­

order (even first-order) informative for A~ 1e. Hence a sample 

of size n +l+p from {xt} is second-order informative for A- 1e 
0 - 0 

conditional on P(z). By theorem 1.2.3 then the sample size 

max (n +l+p, q+(m+l)p) is second-order informative for A- 1e. 
0 , 0 

This proves the theorem. □ 

As in §4.3 we shall now consider the i th structural equa­

tion. After re-ordering the equations we may partition the 

matrix e in a similar way as Ah 

( 1) 

e 

(m-1) 

So ci is the number of exogenous variables in the i th equation. 

Now the relation A (A- 1e) = e plays exactly the same role as 
0 0 

the relation A0 Ph = Ah did in 'i 4. 3. Therefore we c;1n inm1edi.1.-

tely generalize the results of 1i 4. 3 to the non-homogL'l1L'Olls c;1sc 

and obtain the following theorems. 

THEOREM 4.4.2 (or-r/er r,onrUt,inn). If q 00 0 iln<l ): 
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unknown, a necessary condition for identifiability of the i th 

structural equation is 

THEOREM 4.4.3 (rank condition for the structural form). Let 

the sample size n be second-order informative for the reduced 

form of a non-homogeneous dynamic system of simultaneous equa­

tions. Then a sufficient condition for that sample size to be 

second-order informative for the i th structural equation is 

r [A0 i, ••• ,Api' Ci] = m-1, 0 Es. If q=O and LE is completely 

unknown, then the condition is also necessary. 

The proofs of these theorems are similar to the proofs of 

corollary 4.3.6 and theorem 4.3.7 and are omitted. 

To illustrate the results, we shall give an example from 

econometrics. 

EXAMPLE 4.4.4 Consider the following system of simultaneous 

equations 

where 

~tl consumption in period t, 

~t2 = net investments in period t 

~t3 national income in period t 

Vt other expenses in period t 



In the notation of the preceding sections we have 

p=q=l, m=3, m0 =1, p0 =O and 

1 0 

0 1 • - 012 
A(z) = 

-1 -1 1 
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0 

First of all we see that degree {A(l 2 ) (z)} = 1 > p, so we can­
o 

not apply theorem 4.4.1. Therefore we substitute 

~t-l,3 = ~t-l,l + ~t-l, 2 - vt-l into the first equation and 
obtain a model with coefficient generating function 

A(z) 
0 , 1 

-1 -1 1 

Note, that there is a 1-1 correspondence between the coeffi­

cients of A(z) and A(z). Hence, identifiability of A(z) is 

equivalent to identifiability of A ( z) • It should also be noted 

that the substitution introduces vt-1 into the first equation. 

Therefore we have to take 

1 - 001 0 oll 

ut = Vt I C - 002 0 0 

vt-1 0 1 0 

Note, that the model is non-collinear iff the sequence {vt} 

does not satisfy a first-order linear difference equation. We 

shall suppose that n 0 =2, i.e. that 

2 * DSE 
r [ ~ ut ut] = 3. In order that e c S x Z x W, we must have 

t=O 
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-
1) det A ( z) -:f o, I z I < 1 - or, equivalently 

l 0ul < I 1 - 012 - 0211 . 

2) det B(o) (z) -:f QI I z I < 1 or, equivalently 

I ct 1 I < 1 I\ lct2I < 1. -
:..511 -all ct 1 0 

3) r [A(ll) B(o)l= r m-m 2. 
p ' q 0 

0 0 0 ct 2 

Hence, 

0 

4) r [ A ( z ) , B ( z ) l= r 
0 1 

0 
12 0 0 

-1 -1 1 0 0 0 

for all z. This is the case iff 

Thus by theorem 4.4.1 we obtain that the sample size 

max(n +l+p, q+(m+l)p) = max (4,5) = 5 is second-order informa­o 
tive for the reduced form, if the conditions 1) - 4) are satis-

fied. 

Finally we shall consider the rank condition for the 

structural form (theorem 4.4.3). 

For the first equation we have 

• 0 0 

= 2 m-1 

• 0 1 

3 



and for the second equation 

. -o 11 
0 0 

0 0 

0 • 1 

011] O " =2=rn-l 

Thus the sample size 5 is second order-informative for both 

equations if the coefficients satisfy conditions 1) - 4). 
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APPENDIX 

A.l UNIVARIATE SPECTRAL THEORY AND STOCHASTIC DIFFERENCE 

EQUATIONS 

Let A be a finite dimensional Euclidean space and let 

~(A) denote the Borel field of A. Suppose we have a a-finite 

measureµ on (A,~(A)) and a stochastic process {~{s}, sE ~(A)} 

such that 

(A. 1. 1) 

(A.1.2) 

Such processes are called random measures with orthogonaZ incre­

ments. From (A.1.1) and A.1.2) it follows that for disjoint sj 
00 

with L 
j=l 

µ{s.} < 00 , we have 
J 

z{ u 
- j=l 

s.} = L z{s.} 
J j=l - J 

a.s. 

where the convergence of the series on the right is in mean 

square. 

Let L2 (µ) denote the (Hilbert) space of functions f: A+~ that 

are square integrable with respect toµ. We shall give a brief 

exposition how we may define stochastic integrals of the type 

I f(A)~{dA}, f E L2 (µ), 

A 

or J f d~ , for short. 

A 

We follow GRENANDER and ROSENBLATT [ 16] p. 25-27. If s E ~(A) 

with µ{s} < 00 , then we define 

I ls dz : = ~{s}, 

A 
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where ls stands for the indicatorfunction of s. Similarly, for 
n 

simple functions f = k:l akls(k) we put 

(A.1.3) 

A 

n 
l: ak~{s(k)}. 

k=l 

It is not difficult to see that the integral (A.1.3) does not 

depend on the specific representation off. From (A.1.1) and 

(A.1.2) it follows, that for disjoint s(k) we have 

(A.1.4) 

For arbitrary f E L2 (µ) we can find a sequence of simple func­

tions f n = 1, 2, ••• , such that fn converges to fin the norm 
2 n 

of L ( µ) , i.e. 

lim 
n+oo 

Then we have 

f dz - f n -

A 

fmd~l 2 } = f Jfn-fm1 2dµ+O, 

A 

Hence there exists a random variable y with 

1. i.m. I 
n+oo 

A 

and 

f dz n- y, 

A A 

n,m+ 00 
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It is not difficult to see that y does not depend on the parti­

cular sequence fn. Therefore we may define 

J fdz l.i.m. J f dz. 
n+oo 

l\. 

The integral is now defined 

lowing properties • 

(A.1.5) 

l\. 

(A.1.6) l.i.m. J f dz n -n+oo 
l\. 

(A.I. 7) E{J fdz j gd~} 

l\. l\. 

in particular 

E{ if fd~/ 2 } = 

l\. 

n -

l\. 

for all f E L2(µ) and has the fol-

l\. l\. 

J fdz <== lim 
n+oo 

l\. 

f fgdµ 

l\. 

f ifJ2dµ 

l\. 

J 
l\. 

2 f,gEL (µ) 

a, i3E(C 

lf-f 1 2dµ n 

2 
f,fnEL (µ) 

2 f,gEL (µ) 

0 

I 

The proofs are straightforward and will be omitted (see e.g. 

[33] ). Finally, we define f fd~ as J lsfdz for all sE ;B(ll.) and 

s l\. 

fEL 2 (µ). 

Consider the stochastic process {~1{s}, sE ~(ll.)} defined 

by 

~l{s} 

s 
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for some fixed fEL 2 (µ). Then ~ 1{s} is also a random measure 

with orthogonal increments since (A.1.1) is trivially satisfied 

and by (A. 1. 7) 

E{~l{sl}~l{s2}} f i n I fl 2 
sl s2 

dµ 

I\. 

f !f! 2 dµ = µl{slns2} I 

s 1ns 2 

where µ 1 is the measure on(/\.,~(/\.)) which is absolutely con­

tinuous w.r.t. µ with density !fl 2 . Using the usual differen­

tial formalism we write dµ 1= !fl 2 dµ, and in analogy to this 

formalism we shall write d~ 1= fd~. 

From now on we specialize to the case where I\.= (-TI, TI] 

and forµ we take a finite measure F. Thus we have F{(-TI 1 TI] }< 00 

iU 2 and in particular we have e EL (F) for all t E lR. 

Consequently we can define a stochastic process {~t' t=0,~l, •.• } 

by 

(A.1.8) 

By (A.1.7) we obtain 

(A.1.9) E{~t X} -s 

f 
iU e ~{d:>..} 

f ei(t-s):>..F{d:>..} 

(-TI, TI l 

t=0,+l, .•. 

t,s o, + 1, ... 

Hence the process {~t} is weakly stationary. It can be shown 

that every weakly stationary process can be represented in the 

form (A.1.8) and that this representation is unique (see e.g. 

GRENANDER and ROSENBLATT [ 16] p. 27-29). It is then called the 

spectrai representation of the process and (A.1.9) is then cal­

led the spectral representation of the product moment function 
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(or the covariance function if E{~t}= 0, t = 0, ± 1, ••• ). The 

measure Fis called the spectral measure of {~t}, and~{.} is 

called the random measure with orthogonal increments associated 

with {~t}. A theorem due to HERGLOTZ ([ 11] p. 634-635) states 

that a finite measure Fon (-rr,rr] is uniquely determined by the 

sequence of its Fouriercoefficients ys i.e. by 

f 
is>, 

e F{dA} , s=0,+l, .•. 

Hence by (A.1.9) we have a 1-1 correspondence between covariance 

functions of weakly stationary processes and finite measures 

concentrated on (-rr,rr]. We shall use the notations F and z {.} 
X -x 

for the spectral measure and random measure with orthogonal 

increments associated with the weakly stationary process {~t}' 

and use a similar notation when other weakly stationary proces­

ses are involved. 

A linear operation that transforms the process {~t} into 

{yt} such that (in mean square) 

t o, + 1, ... 

is called a (time invariant) linear filter. It follows from 

(A.1.5) and (A.1.6) that 

00 

f eiU( r ck e-ik>,) z {d>,}, t = 0, + 1, ... 
k=0 -x 

00 

,. -ik>, 
where the convergence of ~ ck e is 

k=0 

The function~(>,) is called the frequency res-

ponse function of the linear filter. The following theorem on 

linear filters is fundamental in the theory of stochastic linear 

difference equations. 



THEOREM A.1.1 Let {~t} be weakly stationary and let 

t=0,,±1, ... 

A E (-,r,,r] then 1/~ E L2 (F ) • y 

. If ~(A)= L ck 
k=0 

Furthermore there exist weakly stationary proc'esses {it} and 

{~t}, mutually orthogonal, with 

~t = ~t + ~t 

00 

Yt L ck ~t-k 
k=0 t = 0, + 1, . .. 

f 
iU e 

~t = ;-ITT ~y{dA} 

(-,r,,r] 

PROOF. Define 1/~ constant, (for measurability) on the set 

Since d~y = ~d~x' we have dFY 
Hence, 

1 1 

1~1 2 dF and so F {E} = 0. 
X y 0 

f dF f dF f dF F {EC} 
T;T2 T;T2 

< 00 

y y X X 0 

EC EC (-,r,,r] 
0 0 

Thus 1/~ E L2 (F) and we may define y 

f t=0,+l, ... 

We have 

iU f :(A) ~(A) ~x{dA} = 

EC 
0 

129 
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t o, + 1, ... 

If E0 = i we can take ~t = 0 

is proved. If E0 t- i we put 

t = 0, + 1, ••• and the theorem 

t o, + 1, ... 

Then {~t} is weakly stationary, orthogonal w.r.t. {it} and 

~t + ~t = ~t a.s. t = o, + 1' ... Furthermore, 

00 

I it\ 
l: ck~t-k = Cjl 0.) e z {d>-} 0 t 0' + 1, ... 

k=0 -x 
E 

0 

Hence 

00 00 00 

l: ck~t-k l: ck~t-k - l: ck~t-k l: ck~t-k Yt .□ 
k=0 k=0 k=0 k=0 

Consider the homogeneous difference equation 

(A.1.10) t=0,+l, ••• 

where l: lakl < 00 • We are interested in nonzero weakly statio­
k=0 

nary solutions. Let A(z) = k 
l: akz , z E ~- By the bounded con-

k=0 

vergence theorem of Lebesgue, it follows that A(z) is continuous 

on lzl ~ 1, and so for all finite measures Fon (-rr,rr] we have 

THEOREM A.1.2 The stochastic difference equation (A.1.10) has 
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a nonzero weakly stationary solution iff the set 

E : = {\!A(e-iA) = 0} is nonempty. All weakly stationary solu­
o 

tions {xt} satisfy F {Ec} = 0 
- X 0 

PROOF. (=>) Let {~t} be a nonzero weakly stationary solution. 

Then we have 

J t=0,+l, ••. 

(-11, TT] 

Hence 

f 0, 

(-11, TT] 

-iA 
which implies that A(e ) = 0 Fx-a.e., or equivalently F {Ec}=O. 

X 0 

Thus, since {~t},is a nonzero solution, 

F {E} = 
X 0 

and so E0 must be nonempty. 

(~) If \ 0 E E0 and z is an arbitrary random variable with 

0 < E{l~l 2 } < 00 , then a weakly stationary solution of (A.1.10) 

is given by 

= z e 
-itA 

0 t o, + 1, .•• □ 

COROLLARY A,1,3 If A ( z) is analytic on J z J < p for some p > 1, 

there are at most finitely many zeros on Jzl = 1 and so every 

weakly stationary solution has a spectral measure concentrated 

on a finite set. 

Next we consider the non homogeneous difference equation 

that corresponds to (A.1.10), 
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(A.1.11) t=0,+l, ••• 

where {Xt} is a given weakly stationary process. We have 

THEOREM A.1.4 The stochastic difference equation (A.1.11) has 

a weakly stationary solution {xt} iff A- 1 (e-iA) E L2 (F), where 
- y 

A- 1 (e-iA) is defined to be 00 on the set E = {AIA(e-iA) = 0}. 
0 

Every weakly stationary solution {~t} can be written in the 

form 

f 
iU 

e z { dy} 
A(e:-U) -y 

t o, + 1, .... 

where the process {~t} is a weakly stationary solution of the 

corresponding homogenous equation, which is orthogonal to {~t}. 

Define 

~t 

Then 

00 

E 
k=0 

f 
iU e 

A(e-H) 
(-11, 11 l 

ak~t-k = f 
(-11, 11 l 

iU 
e z { dA} -y 

e 

z { dA} t 0, + 1 ' •.• -y ' . 

iU A(e-H) 
z { dA} 

A(e-H) -y 

f iU 
e z { dA } = y t = 0 , + 1 , • . • . -y t, 

(~) If the weakly stationary proces {~t} satisfies (A.1.11), 
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-1 -L\ 2 
it follows from theorem A.1.1 that we have A (e ) EL (F), y 
and that ~tis of the form stated in the theorem. □ 

It follows from theorems A.l. 2 and A.1. 4 that if A ( z) f O, 

jzj = 1, then the process {~t} vanishes identically (a.s.) and 

iU 
e z { d:\} 

-y t o, + 1, ... 

is the unique weakly stationary solution of (A.1.11). The spec­

tral measure is then absolutely continuous w.r.t. FY and is 

given by 

If in addition F' is absolutely continuous with spectral den­y 
sity fy, then Fx is absolutely continuous with spectral density 

f (:\) 

In particular, if {yt} is a moving average 

2 cr 
2 7f 

t 0,± 1, ... 

2 = cr , we find 

where the function B(e-iA) is defined as the limit in L2 (µ) 

norm(µ= Lebesgue measure), 
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B(e-H) 
n -ik>i. 

= lim z: bk e >i. E (-rr ,rr] 
n+oo k=0 

00 

lbkl2 It is easily seen to exist iff z: < 00 . 
k=0 

A.2 SOME MULTIVARIATE SPECTRAL THEORY 

As in the univariate case, let A denote a finite dimensio­

nal Euclidean space and~(A) its Borelfield. Suppose we have 

a a-finite measureµ taking values in the set of Hermitian po­

sitive semi definite m x m matrices. If {~{s}, s EgJ(A)} is an 

m-variate stochastic process with 

(A.2.1) 

(A.2.2) 

then~{.} is called an m-variate random measure with orthogonal 

increments. 

Consider the real measure µ:=trµ. Obviously the components of 

µ are absolutely continuous w.r.t. µ and so there exists a 

semi positive definite matrix valued function f with dµ=fdµ. 
~ •'( 

If cp is some nxm matrix function on A such that cp f cp' is inte-

grable w.r.t. µ (componentwise) then we shall say that 

cp E L2 (µ}, and we denote,: cpdµcp•'< = cpfcp'''d~. Similar: cpdµ'l'''':=cpf'l''''d~. 

In a way similar to the univariate case we may now introduce 

stochastic integrals w.r.t. the random measure z for functions 

in L2 (µ). The properties corresponding to (A.l.~) - (A.1.7) are 

(A.2.3) f (Af + Bg)d~ 

A A A 

f, g E L 2 (µ) 

A, B E a: (m) 
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(A.2, 4) l.i.m 
n+oo 

lim f (f-f )dµ(f-f) * = 0 
n n 

n+oo 

fl 

(A.2.5) E{ I fd~ ( f gd~) 1'} = I fdµg 
2 f, g E L (µ) • 

fl fl fl 

As in the univariate case it can be shown that every m-variate 

weakly stationary process {~t} has a spectral representation 

I iU. e z { dA} -x 
t=O,+l, .•. , 

and 

f ei(t-s)A F {d;\}, ts 
X , o, + 1, ... 

where ~xis now an m-variate random measure with orthogonal 

increments and the spectral measure Fx takes semi positive 

definite mxm matrices as values. If tr Fx is absolutely conti­

nuous w.r.t. Lebesgue measure, Fx is said to be so and we can 

write dF = f dA. The mxm matrixfunction fx is called the spec-x X 

tral density matrix of the process. For details on multivariate 

spectral theory we refer to HANNAN (20]. 

Consider the process {yt} obtained from {~t} by the linear 

filter 

t 0, + 1, ..• 

where c0 , c1 , ••. are nxm matrices. Then {yt} is an n-variate 

weakly stationary process. Putting C(z):= 

write 

we can 
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f 

and by (A.2.5) it follows that 

(A.2.6) F {d,\} 
y 

t 0, + 1, ..• 

The multivariate generalizations of theorems A.1.1, A.1.2 and 

A.1.4 are now straightforward. As an example we shall prove 

the generalization of theorem A.1.2. 

THEOREM A.2.1 Consider them-variate stochastic difference 

equation 

L A,,.!!t-k 
k=0 ~ 

0 t o, + 1, ..• 

where A0 , A1 ,. . • are mxm matrices such that L II Akll < 00 • Put 
k=0 

oo k 
A(z):= L Akz Then there exist a non-zero weakly stationary 

k=0 . 
solution iff the set E0 :={,\ldet A(e- 1 ,\) = 0} is nonempty. All 

weakly stationary solutions {~t} satisfy Fx{E~} = 0. 

PROOF. ( ⇒) Let {~t} be a nonzero weakly stationary solution. 

Then we can write 

Hence 

f eit,\A(e-i,\)z {d,\} 
-x 

(-rr, rr l 

f 

0 t o, + 1, •.. 
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written 

f 

tr Fx and dFx 
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fxd<!>x this can equivalently be 

0. 

Since A(e-i')i (\)A*(e-i\) is semi positive definite this im­
x 

plies 

0 

-
Thus for almost all\ E Ec (a.e.-<!> ) we must have f (\) 0, 

0 X X 
and so 

f 
-
f ( \) <!> { d\} 

X X 
0 

Hence 

F {E } = F { (-11,11] }= E{xtxt'"} ,f 0 
X O X - -

which implies that E0 is nonempty. 

(¢) If\ EE and z E ~mis some arbitrary random vector with 
0 0 

0 < E{ 11 ~II 2 } < 00 , then a weakly stationary solution is given by 

t QI + 1, •,, □ 

REMARK. If A(z) is analytic on !zl < p for some p > 1, the 

spectral measure is, in contrast to the univariate case, not 

necessarily concentrated on a finite set since det A(e-i\) may 

vanish identically without A(z) being identical to the mxm 

zero matrix. As a concequence, a weakly stationary process 

satisfying a homogeneous difference equation can have an abso­

lutely continuous spectral measure. 



138 

Finally we consider them-variate ARMA(p,q) model (3.1.1). 

q 
Putting Yt l: B ·£t-., t 

j=O J J 
O, + 1, ..• , we can write 

f o, + 1, ... , 

. -u. 
Hence z {d>t} = B(e )z {dA} ;\ E (-11,11]. If det A(z)-/= O,lzl=l -y -E 
it follows from the multivariate generalization of theorem A.1.4 

and theorem A.2.1 that the unique weakly stationary solution 

of ( 3 . 1. 1) is 

f f 
t O, + 1, •.• 

and has a spectral density matrix given by 

A-l(e-i")B(e-i")~ * -i>. -1* -i>. u B (e )A (e ), ;\E(-11,11]. 
E 
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