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CHAPTER 1

INTRODUCTION

In this monograph initial value problems are considered for systems of
M ordinary differential equations, where M > 1. We deal with the problem of
enclosing the solution numerically for arbitrary values of the independent
variable t.

We allow that the initial value is not exactly known, but is only known
to be contained in a given initial value set. In that case we want to enclose
the corresponding set of solutions for arbitrary t.

In enclosing the solution or set of solutions we take rigorously into
account all possible sources of errors, including rounding errors due to the
finite precision of a computer. For this purpose use is made of rounded-
interval arithmetic (see MOORE [19661]).

We will formulate and analyse a numerical method for solving the afore-
mentioned problem. Other methods of solving the problem have been treated by
MOORE [1966], KRUCKEBERG [1969], HUNGER [1971], MARCOWITZ [1973, 19751,
CONRADT [1980], STERN [1980] and others.

All these methods produce for certain grid-points tg <t < eee <ty a
set y enclosing the set of solutions at the grid-point to- For n = 1,2,..., N
the set Y is computed in such a way that it contains the value at t = t_ of

n

any solution of the differential system whose value at t = to belongs to

n-1
In the methods of Hunger and Marcowitz, and, at least for non-linear

differential systems, in the methods of Conradt and Stern, these sets ;ﬁ are
chosen so as to be vector intervals, i.e., M-dimensional blocks with their
edges parallel to the coordinate axes. Moore has shown that in this case the
diameter of the sets ;n may grow considerably faster, as n increases, than
is inherent in the nature of the differential system. Therefore he and
Kriuckeberg use sets ;; that are linear transformations of vector intervals.

We will do the same in our method.



Hunger's method first computes an approximate solution and then solves
a linear interval differential system for the error function (see also BAUCH
[1977], which contains a survey of related methods).

The method of Marcowitz also starts with an approximate solution.
However, in order to bound the error function a system of non-linear differ-
ential inequalities is solved. The number of inequalities of this system is
twice the number of differential equations of the original system.

Conradt considers a variant of the method of Marcowitz. Furthermore,
for linear differential systems only, Conradt discusses a method in which the
sets ;ﬁ are polyhedra. This method is based on an idea, independently found
by LOHNER & ADAMS [1978] and NICKEL [1979].

Stern works out theoretical details of the method of Marcowitz. Further
he considers, for linear differential systems with constant coefficients
only, a method in which the sets ;ﬁ are ellipsoids.

Kriickeberg's method computes in each step an inclusion of the solution

with an arbitrary fixed initial value Vo1 € and then computes an in-

1 ~1
clusion of the perturbation of the solution duz to a variation of the initial
value y € §h—1'

Moore's method is based on consecutive Taylor series expansions of the
solutions at the points tgstyseeesty qo

In this monograph we will deal with a method based on the same principle
as Moore's method. However, we will work this principle out in a different
way, Firstly, a step size hn =t -t is computed such that it approxi-
mates a prescibed value Hn. This improves the possibility of controlling
the step size. Secondly, the set ;n enclosing the set of solutions, is not,
as in Moore's method, obtained by transforming the differential system into
a more complicated form, but it is computed in a more direct way.

In chapter 2 we will present definitions, notations and properties,
mostly of interval analytic concepts. In section 2.l concepts related to the
ordering of ]f” and BQM’M will be considered, especially the vector interval,
the matrix interval and the rounding operator. Section 2.2 deals with opera-
tions on sets of vectors and matrices, in particular on vector intervals and
matrix intervals. In section 2.3 the concepts of norm, diameter and distance
are introduced and a number of properties are derived. Section 2.4 treats
some notations and properties related to the initial value problem we are
considering. Finally, in section 2.5 we consider the remaining definitions

and properties we want to treat in this chapter.



Chapter 3 gives an outline of the numerical method we treat in this
monograph. For certain grid-points tg <ty < ee <ty this method produces
a set y enclosing the set of solutions at the grid-point . This set Y, is
a linear transformation of a vector interval. The n'th step of the method
consists of the determination of a suitable new grid-point t and the set
Y for a given t-1 and a given set Yo-1° This n'th step consists of two
parts, treated in chapters 4 and 5, respectively.

In chapter &4 the first part of the n'th step of the method is considered.
After the introductory section 4.1 this part is described in section 4.2 by
Algorithm I. The algorithm determines a suitable step size hn and thus the
new grid-point to=t ¢t hn. This is necessary since the step size cannot be
prescribed arbitrarily. Further the algorithm computes a rough inclusion bn
of the set of solutions U(t) for tn_‘s tsto. We show that the algorithm,
which contains an iteration process, is finite. In section 4.3 we prove that
the vector interval Eg produced by Algorithm I is indeed an inclusion as re-
quired. Section 4.4 deals with the analysis of the step size hn' In particu-
lar we consider how close this value is to the prescribed parameter Hn’ which
can be considered as the step size the algorithm aims at. In section 4.5 we
analyse some variants of Algorithm I and compare them with the version of
Algorithm I described in section 4.2. In particular we show that a variant
suggested by MOORE [1966] is in general not a finite algorithm,

Chapter 5 treats the second part of the n'th step of the method. After
an introductory section 5.1 this part is described in section 5.2 by
Algorithm II. Using the inclusion B; produced by Algorithm I, Algorithm II
determines a set Y enclosing the set of solutions U(tn). This set Y, is a
linearly transformed vector interval, represented by a non-3ingular trans-—
formation matrix An and a vector interval 55. In section 5.3 we prove that
the set Y, indeed encloses the set of solutions at the grid-point t. In
section 5.4 the concept of local error is defined using the Hausdorff dis-
tance. Further we derive an estimate for the local error. Section 5.5 com—
pares the method with other methods. We show that the transformation matrix
used by MOORE [1966] can cause the local error to be essentially greater
than in our method. Further we show that the same can hold for the local
error of the method of KRUCKEBERG [19691.

In chapter 6 the global behaviour of the method is studied. In section
6.1 the concept of global error is defined. Further a theorem is proved
giving conditions under which the method is applicable on a prescribed

interval [0,T], and giving a bound on the global error in terms of the



diameter of the initial value set, the maximal step size and the value of t.
Section 6.2 deals with a further analysis of the global error and clarifies
the bound obtained in section 6.1 by considering a limit case. In section 6.3
we consider the global error in the case where the set ;; is required to be
a vector interval, HUNGER [1971] and MARCOWITZ [1973, 1975] give methods for
which this limitation on ;ﬁ holds. An example of MOORE [1966], showing that
in this case the global error can grow unfavourably, is analysed in more de-
tail. In section 6.4 we show that the error term of order 62, where § is the
diameter of the initial value set, in the bound on the global error is un-
avoidable. Section 6.5 describes a method to vary the step size and the
order of the method for each step, so as to satisfy a prescribed condition
on the local error per unit step as efficiently as possible. Finally, section
6.6 discusses the effect of rounding errors on the global error.

Chapter 7 gives and explains a computer program for the method treated
in this monograph. The program is written partly in Algol 60 and partly in
Triplex-Algol 60, described in WIPPERMANN [1968].

Numerical results obtained with this program are given in chapter 8.



CHAPTER 2

PRELIMINARIES

2.1. ORDERING

2.1.1, Vector intervals and matrix intervals

In this monograph IR denotes the set of real numbers, IRM the set of

real M-dimensional vectors and ]RM’M

tify lR] with R.

the set of real MxM matrices. We iden-

For -a vector x ¢ IRM the i'th component is denoted by [x]i (1 <1is M.
We write [A]i. for the element in the i'th row and j'th column of a matrix

AeIRM’M (1 <£i<M, 1 <3j<M.
Symbols with a bar, like x and A, always denote sets.

For a set x ¢ ]RM we define

(2.1.1) pi(z) ={lx); | xex} (1 <iswM.

. . - M,M .

Similarly for a set A ¢ IR we define

(2.1.2) pij(K) = {[A]ij | A e &} (1<is<sM, 1 <j<M.

We define the relation "<" on ]RM by

(2.1.3) a.<.1>4=»[a]is[b:|i (1 £1i<sM

and on IRM’M by

(2.1.4) AsB=>[A]ijs[B]ij (1 <i<M, 1< 3j<M.

As can easily be verified this relation "<" on V, with V = IRM or V= ]RM’M,

is a partial ordering, i.e., it satisfies for all a,b,c € V



a<a (reflexivity),
(2.1.5) (a<sb,b<sc)=acsc (transitivity),

(a<b,b<a)=a

]
o

(anti-symmetry) .

Let (V,<) be a partially ordered set, For all a,b ¢ V with a < b we
define the interval [a,b] by

(2.1.6) [a,b] = {x | x e V, a<x <b}.

In accordance with the notation of KULISCH [1976] the set of all intervals
in V is denoted by II V. The elements of II R, ]I[]RM and lI]RM’M are called
real intervals, vector intervals and matrix intervals, respectively. Elements
of IR" can be interpreted geometrically as rectangles with their sides par-
allel to the coordinate axes., Similarly, elements of IIIR3 can be interpreted

as rectangular parallelepipeds, with their edges parallel to the coordinate

axes.

We define for El""’EM e IR

3
1 P —
(2.1.7) : ) =1ix | xe RY, [x], € §, (1 < i<W}
M
andforfi.ellIR (1<is<sM, 1<j<M
Eir er Ein
(2.1.8) =a]ae®PM (a1, T

(1<is<M, 1<3j<M}.

If we write a vector some of whose components are real intervals and others
are real numbers then each real component Ei should be interpretéd as the
set {Ei}, in other words, as the interval [Ei,gi]. The notation of a matrix
whose elements are partly real intervals and partly real numbers should be
interpreted correspondingly.

Using these notations we can formulate the following elementary proper-—

ties.



[al,BI oy 8,
(2.1.9) . = . N . e IR
[aM,BM] o.

(for ai,Bi e R, a. < B. (1 <1i<M),

[all’Bll]'"'[alM’BlM] Qppees Oy Blyeee BIM y
(2.1.10) : : =l eee s sl o e o e IR
[uMl’BMl]"'[aMM’BMM] Oypeee Oy Bypeee BMM
(for aij’ﬁij e R, aij < Bij (1 <i<sM,1<3j<M)),
p, (0
- - M
(2.1.11) X = . (for x e IR),
Py (%)
_ Py Q) ... le(A) _ "
(2.1.12) A= .. . (for Ae IR ),
le(A) ces pMM(A)

(2.1,13) pi([a,b]) = [[a]i,[b]i]
(for all a,b ¢ R with a<b, and 1 < i < M),

(2.1.14) pij([A’B]) = [[A]ij’[B]ij]

(for all A,B ¢ RN

with A<B, and 1 <i <M, 1< j<M,

By virtue of (2.1.11) we find that a vector interval x is uniquely defined
by the specification of the sets pi(;) (1 <i <M). In view of (2.1.13)
these sets are real intervals. A similar remark can be made for a matrix

interval, due to (2.1.12) and (2.1.14).

REMARK 2.1.1. Let an iZnterval vector be a vector whose components are real

intervals. From (2.1.9) we see that a vector interval can be characterized

by a corresponding interval vector. Several authors in the field of interval

M



arithmetic, for instance ALEFELD & HERZBERGER [19747, HANSEN [1965], HUNGER
[1971], KRUCKEBERG [1969] and MOORE [1966], start with the concept of inter—
val vector., Some of them observe that an interval vector can be identified
with a set of vectors.

However, although we will use notation (2.1.7) whenever this is con-—
venient, we prefer to use the concept of vector interval, defined as a set
of vectors of a special kind, rather than the concept of interval vector.
It enables us to apply basic set—theoretic concepts like intersection and
inclusion to vector intervals without specially defining them. Further mo-
tives of our choice will be given in section 2.2, where the distinction be-
tween vector intervals and interval vectors becomes more important.

Similar considerations apply to the concepts of matrix interval and

interval matrix, respectively. [J
With respect to the intersection and inclusion we easily obtain

Xnye ]I]RM,

(2.1.15) { o _ _
p,(xny) =p;x)np(y) (1 <isM

(for all X,7 ¢ IR withXny @),

(2.1,.16) _ _ _
p::(An B) = pij(A) n pij(B) (1l <is<M, 1 <3j<M

{for all A,B ¢ o’ withZn B + 0,
(2.1,17) xcy e pi('i) c piG) (1<isM
- M
(for X,y ¢ IR ),

(2.1,18) A cB e p..A) c pi.(E) (Q<isM, 1<j<M

(2.1.19) [a,b] ¢ [¢,d] & a=2¢c, b

[7:N
=N

(for all a,b,c,d € V with a < b and ¢ < d, where V = IRM or

v = ’HM),



Rules (2.1.15) and (2.1.16), and, implicitly, rules (2.1.17) and (2.1.18)
can be found in ALEFELD & HERZBERGER [1974].

2,1.2, The minimum, maximum, infimum and supremum

0.

if y < x for all x € %, and an

Let V be either IRM or IRM’M , X cV,

X
vy € V is said to be a lower bound of x
upper bound of x if y 2 x for all x € x.

The minimum of x, if it exists, is the y ¢ x, which is a lower bound of
X, and it is denoted by "min X". The maximum of x, if it exists, is the y € x
which is an upper bound of X, and it is denoted by "max x". We observe that
the concepts of minimum and maximum should not be confused with those of
minimal and maximal element, respectively (defined for instance in KULISCH

[19761).

Obviously an interval in V has a minimum and a maximum and we have
(2.1.20) a = min [a,b], b = max [a,b]
(for all a,b ¢ V with a < b),
(2.1.21) % = [min X, max xJ (for x e I V).
Using (2.1.13), (2.1.14) and (2.1.20) we immediately obtain

[min ;]i = min pi(;c-),

(2.1.22) {

[max ;]i max pi(§)

(for ¥ € I[IRM and 1 < i < M),

[(min A]ij min Pij ),

(2.1,23) {

[max A]ij max pij (4)

(for A e TRPM and 1 <i<M 15§ <M.

Let X ¢ V be bounded and non-empty. We define the <nfimum of x, denoted

by “inf X", if it exists, by

(2.1.24) infx =max {y | y € V, y is a lower bound of x},
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and we define the supremum of x, demoted by "sup x", if it exists, by
(2.1.25) sup x =min {y | y € V, y is an upper bound of x}.

If min X exists then inf x also exists and inf x = min x. Similarly, if max x

exists then sup x exists and sup X = max Xx.

THEOREM 2.1.2. For bounded and non—empty x c R’ , inf x and sup x exist and

satisfy
(2.1.26) [inf §]i = inf pi&) (1<is<M,
(2.1.27) [sup ;]i = sup pi(;) (1 <1 <M.

PROOF., For | < i < M the sets pi(§) are bounded and non-empty subsets of R

and therefore have a finite infimum. Consider the vector

inf P, )
z = . .

inf p,(x)

First we show that z is a lower bound of X. Let x ¢ X. For | < i <M
we have I:x]i € pi(;) and hence [x]i > [z]i. Therefore x > z for all x € x,
which was to be shown.

Now assume that y is an arbitrary lower bound of x. Let 1 < i < M, For
all x € x we have [y]i < EXJi’ hence [y]i is a lower bound of pi(;) and
therefore [y]i < [z]i. Thus we have y < z., Consequently z is the maximum of
the set of lower bounds of x, that is, z = inf x., This proves (2.1.26).

The second part of the theorem can be proved analogously. [

THEOREM 2.1.3. For bounded and non-empty A c RYM | inf X and sup & exist

and satisfy

inf p; (B (1

IA
-
IA
&
IA
—
IA

(2.1.28) [inf K]ij M,

SUp P, (4) (1

IA
-
IA
=
IA
(o
IA

(2.1.29)  [sup K]ij M.



PROOF, The proof is analogous to that of theorem 2.1.2. [J

. . - —_ M,M
Finally we define for x € ]I]RM and for x ¢ TR’

(2.1.30) mean x = }(min x + max x).

2.1.3, The rounding operator

Let x ¢ V be bounded and non-empty, where V= R or V = R . We

define the rounding operator [ by
(2.1.31) T x = [inf X, sup xJ.

For V = lR2 this is illustrated in figure 2.1.1.

sup x

A

inf x J

fig. 2.1.1

The following theorem gives some fundamental properties of the operator
[0 and can essentially be found in KULISCH [1976], p. 399.

THEOREM 2,1.4, For V = IRM or V = IRM’M we have

(2.1.32) xcO%x {for all bounded, non-empty x < V),



(2.1.33) ;c;=>D;c;

(for all bounded, non—empty x < V. and all y ¢ T V),

= N ¥ (for all bounded, non-empty x < V)

X

(2.1.,34) O
yeL v
yox
(2.1,35) Ox=%x (for x e L V),
(2.1.36) xcy=0%xcOYy (for all bounded, non-empty x,y c V).

PROOF. Let ; c V be bounded and non-empty.

(2,1,32) follows immediately from the fact that inf X and sup X are a
lower bound and an upper bound, respectively, of the set X.

Let y o X, y € ]I]RM . miny is a lower bound of y and therefore of x,
hence min y < inf x. Similarly max y > sup x. Using (2.1.21), (2.1.19) and

(2.1.,31) we obtain
y = [min y, max y] o [inf x, sup x] =0 x

and (2.1.33) has been proved.
(2.1.34) immediately follows from (2.1.32) and (2.1.33).

For X ¢ IL V we have
Ox = [inf %, sup x] = [min X, max x] = x,

and (2.1,35) has been proved.

Let X ¢ y ¢ Vwith X and y bounded and non-empty. Using (2.1.32) we
obtain x < O y. Applying (2.1.33), with O y substituted for y, yields
(2.1.36). 0O

By virtue of (2.1.32), (2.1.35) and (2.1.36) the operator O is, in the
terminology of KULISCH [1976], a monotonous, upwards directed rounding with
respect to the inclusion relation. Indeed, it is convenient to think of
O X as the result of rounding the set X to an interval, comparable with the
rounding of a real number to a number representable in a computer. In fact
O x is the smallest interval containing the set x, as is shown by (2.1.32)
and (2.1.33).



THEOREM 2,1.5.

0p,&
(2.1.37) Ox-= :
a pM(E)

(for all bounded, non—empty x < rY),

Op,,® ...0p,®A
(2,1.38) OA = : :

O le(A) ... 0 pMM(A)
(for all bounded, non-empty A c rHMy,
PROOF. Using (2.1.26) and (2.1.27) we find

M

Ox={y|yeR , inf X < y < sup x}

{y|yemrY, Linf X1, < [yl <[

{y|ye IRM, inf pi(;) < I:y:li <

0p, &

0 py (D

sup ;]i (1 <is<sM}

sup pi(;) (1 <i<M)}

{ylyem?t, [yl e 0p,® (1 <is<mw)

Using (2.1.28) and (2.1.29), (2.1.38) can be proved analogously., [

13
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2,2, OPERATIONS ON SETS
2,2.1, General
For a function g : X - Y we define
(2.2.1) g(x) = {g&x) | x e X} (for X c X).

This is a special case of the "united extension", used by MOORE [1966].
Since no confusion can arise we use the same symbol g in the expressions
g(x) and g(x).

Note that, if we define for x ¢ D@n, 1 <1is<M,
pi(X) = [x]i
andforAe]RM’M, 1 <i<M,1<j<M,
pij(A) = [A]ij’
then definitions (2,1.,1) and (2.1.2) can be considered as special cases of
definition (2.2.1).
For a function h : Q > Z with Q ¢ X * Y (where * denotes the direct

product) we define

(2.2,2) h(x,y) = {h(x,y) | xe X, yeyl (forx*ycQqQ),

[}

(2.2.3) h(x,y) = h(x,{y}) (for x * {y} < Q),

(2.2.4) h(x,y) = h({x},y) (for {x} » y ¢ Q),

where, for any u, {u} denotes of course the set with u as its only element,

Similarly, for a binary operation ® : Q > Z where Q ¢ X * Y we define

(2.2,5) x0y={x8y|xeXx,yeyl (forxx*xycQ),

~
(3]
~
g
%
®
<
"

x® {y} (for x » {y} ¢ Q,

~~
N
o
S
N
%
®
<
1

{x} 7y (for {x} *x yc Q).



In particular these definitions apply’to the operations

+ VXV >V (for v = ®Y, ®DY),
-t Vx V>V (forV=]RM,]RM’M),
(2.2.8)
: VxW->W (forV=]R,]RM’M andW=IRM,IRM’M),

/: R x (R \ {0}) > R.

From definitions (2.2.1), (2.2.2) and (2.2.5) we immediately obtain the

following fundamental properties:

(2.2.9) % <%, cX=g®x) < gk,

(2.2.10) %, © Xy, ¥, € ¥, X, ¥ ¥, € Q= h(x,y)) © h(x,,y,),
(2.2.11) 321 c;z, ;1 c§72, 322 *?2 c Q=>§l s?l c 322@;2.

Similarly, for V = IRM, RM we define

(2.2.12) =x={-x | x € x} (for x c V)

and obtain

(2.2.]3) X] c x2 c V= "‘X] c _xz.

Finally, for an arbitrary integer k > 1 we define, similar to (2.2.1),
(2.2.16) EX = (% | £ e} (for € ¢ R)

and obtain

= - -k -k
(2.2.15) El CEZCJR=>£] CEZ .
Note that in general we do not have EZ =t . E , etc. For instance,
[-1,11% = [0,11, while [-1,1] . [-1,1] = [-1,1].

For V = IRM , ]RM’M and X,y c V we have

(2.2.16) x -y =x%x+ (-1).y,



(2.2.17) -x = (~1) . x.

Using (2.2.16), from many properties of the addition, corresponding proper-
ties of the subtraction can easily be derived. We will not always state the
latter.

In theorems 2,2,1, 2,2.2 and 2.2.3 we will treat some properties of

operations on sets, as defined by (2.2.5).

THEOREM 2.2.1. The following commutativity properties hold.

(2.2.‘8) ;{—+37-=.}7+; (fOI‘ '}-{-,.}_YC ]RM),
(2.2,19) A +B=B +4 (for A8 IRM’M),
(2.2.20) _E-.n_ = }T‘g (fOP 'é'"n' c ]R).

PROOF. For X,y c ]RM we have

FeFolkrylxeRyed

{y+'x|xe-§,ye;}

y + X.

The other properties are proved analogously. [J

THEOREM 2.2.2. For X,y ¢ R, X,y,z < R , 4,B,C RM e nave

(2.2.21) (x+y) +z=%+(y+72),
(2,2.22) (@A +B)+C=A4A+ (B+0),
(2.2.23)  QAWx=3(¥x) =u(x), .
(2.2.24) (XWA=%(ud) =u(X3d),
(2.2,25) (A)x=21A%x) =4a(Qx),
(2.2.26) (XA)B =1(AB) = A(3B),
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(2.2.27) @B)x = A(BX),

(2.2.28) (AB)C =A(BC).

L}

PROOF. All properties are proved analogously. For instance

GA)x={(0A) x| reX, Ac A, x e x}

{){Ax) IAeX,Ae_A',xe;}

AAEX) . 0

By virtue of theorem 2.2.2 expressions like x +y + z, A + B + C,
X ux, etc., without brackets,. are not ambiguous. The same holds for more com-
plicated expressions, such as A uABx.

M,M

Let V = ]RM or V=1 . For ;] ,;2,...,;1( c V the expression

+ _)Z] + ;2 ol t ;k should be evaluated from left to right. Equivalently,
it should be interpreted as the sum (1-;]) + (:§2) + .. * (j;k), where, of
course, + ;Z = _[‘ (1 <2 <k).

Further we define for an arbitrary integer k = 1

k
(2.2.29) [ZI Xp = X + X, + ... + X, (for xl,.xz,...,xk c V).
THEOREM 2.2.3. For V= R, R*M and X = R", BN we have the distribu-

tivity properties

(2.2.30) v(x +7y) =vx + vy (for v € V and X,y c X),

(2.2.31) (v + Wx = vx + wx (for v,w c V and x € X)

and the subdistributivity properties

X,

%1
<
n

(2.2.32) vV +y) cvx +vy (for v < V and

s

cVand x c X).

=]

(2.2.33) (V+WXcvx +wx (for v,

PROOF, For v ¢ V and X,y ¢ X we have
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v(x +y)

vx+y) | xex, yey}

{vk +vy | xex, yeyl}

= vx + Vy.

(2.2.31) is proved analogously.

For v c V and X,y © X we have

]

VE+y) ={vix+y) | veVv,xeX, yey}

n

{le+v2y | MO V,X€ X,y €y}

VX +Vy.,

(2.2.33) is proved analogously. [

NOTE. YOUNG [1931] introduced definition (2.2.5) for sets of real numbers.
The theorems 2.2.1, 2,2.2 and 2.2.3 are simple generalisations of properties

observed in this work. [

For a,B,Y,8 €¢ IR with o < B and vy < § we have the following rules (for
a proof, see for instance ALEFELD & HERZBERGER [19741]).

(2.2,34)  [o,B] + [v,8] = [o + v, B + 8],

(2,2.35) [o,B] = [y,8] =[a ~ &, B - v1,

(2.2.36) [o,B] . [¥,8] = [min(ay,ad,BY,BS), max(ay,ad,By,B8)],

(2.2.37)  [a,B) / [v,8] = [a,B] . [1/8,1/y1 (if 0 & [v,81).

In particular we observe that for & = +,-,.,/ and £,n ¢ IR (with 0 * n if

® =/ ) we have
(2.2.38) E®ne IR,
For £ ¢ R we define

(2.2.39) &' = max(£,0), £ = max(-£,0).
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Now we can easily derive from (2.2.36)
(2.2.40)  [0,2] . [a,B] = [-xa ,A8"]

(for all A,a,B € R with A = 0, a < B).

2.2.2. Addition and subtraction

THEOREM 2.2.4. Let the operator & be + or -. For Ei’ ;i e IR (1 <ic<M

we have
€ n €, @n,
. ® | . = . M
(2.2.41) . : : e IR ,
ey Ny &y ® Ny

and for Eii,ﬁ.. e IR (1 <i<M, 15 j<M we have

ij
Enoer Bl M1oct i E®My s P .
(2.2.42) | ... & ¢ ... s = . . e IR,
Sui o b LY ALY Y Ei®Mr oo M
PROOF.
3 "
. e . =
v My
={x@y | xye R, [x], ¢ E., [yl, e, (1 <is<M}
, » [xly e gy, Iyly emy (Dds

]
~—
N
N

¢ B, [2), T, en, (1<ism)

[}
m
H
%Z

(2.2.42) can be proved analogously. [J
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THEOREM 2.2.5. For X,y c R’ we have
(2.2.43)  p;Gx+y) =p;(® +p, (),
= M,M . .
and for A,B ¢ R and 1 < i <M, 1 £ j< Muwe have
(2.2.44) pij(A +B) = pij(A) + pij(B)‘

PROOF .

pi(; +7y) {[z].l | zex+ 7y}

xsyl; | x e % yey)

[}

{Cx]; + [yl; | x e x, y ey}

{e+n]eep,®,nep;M}

p,® +p; M.

(2.2.44) can be proved analogously. [J

THEOREM 2.2.6. For V = R, R oM

c < d we have

and for all a,b,c,d ¢ I V with a < b,

(2.2.45) [a,b] + [c,d] = [a+c, b+d].

PROOF, Let a,b,c,d ¢ I[lRyI with a < b, ¢ < d, By virtue of (2,2,43),

(2.1.13) and (2.2.34) we have for 1 < i <M

p; (La,b] + [c,d]) = p;([a,b]) + p;(Lc,dl) =

[(al;,[b1,] + [Lel;,[dl;]

Clal; + [el;, [bI; + [d1]

[}

[[a+c]i, [b+d]i]

pi([a+c, b+dl).

In view of (2.2.41) we have [a,b]+[c,d] € I[ng. Using (2.1.11) we obtain
(2.2.45).
M,M

For V=R the proof is obtained analogously., [J
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M
THEOREM 2.2.7. For V = BT, B>

and y € V we have

and for all bounded, non-empty X,y c V

(2.2.46) inf(x + §) inf x + inf ;,

(2.2.47) sup(x +y) = sup x + sup y,

(2.2.48) O(x +7y) =

I
O
»
+
O

<

(2.2.49) O(x + y)

]
O
x|

+
<

PROOF. Consider first the case V = IRM. Let X,y IRM‘ be bounded and non-
empty.
By virtue of (2.1.26) and (2.2.43) we have for 1 < i <M

[inf(x + ;)]i = inf pi(; +y)

inf(p; (x) + p; ()

inf p;(®) + inf p,(¥)

[inf x], + [inf ?]i

[inf X + inf ?Ji,

which proves (2.2.46).
(2.2.,47) can be proved analogously.
Combining (2.2.46) and (2.2.47) and using (2.2.45) we obtain

O +y) = [iqf(;f ), sup(x + y)]

4
i

[inf X + inf y, sup x + sup, ;] .

[inf x, sup x] + ['i‘n,f Y, sup _}7] ‘

Ox +0y .

(2.2.49) is a direct consequence of (2.2.48) SECIEALEE
R

For the case V = the proof is obtained analogously. [J

1

o \ Y - R T ' ' LS PRI
O A RN B L S S | ) (RS A W g i



2.2.3, Multiplication

THEOREM 2,2,8, For A ¢ R and El,...,EM e IR we have

£, AE

M

(2.2.50) Af | = | |enr,
2y Aoy

andforAeIRandEijeI[]R (1 <i<M, 1<]j<M we have

S G My eee Mgy M,M
CR T T T I 2
E.Ml E:MM “:Ml )‘EMM
PROOF .
g
Mot x| xe R, Ix] e g (1 <is<m)
) M _
=ly|ye®r, [yl eE, (1sism}
A’g’l
= : |e ar".
A’g‘M

(2.2.51) can be proved analogously. [J

THEOREM 2.2.9. Let X ¢ R. For all X ¢ R and 1 < i < M we have
(2,2.52) pi(kx) =2 pi(x)

and for all & c rM and 1 <1 <M, 1< j<Muwe have

(2.2.53) piJ.(TK) =% pij(K).

23
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PROOF .

pi(x;) {D‘X:Ii | » e X, x e x}

(Alx1; | A e X, x e x}

{xg I Xe T’ £ e Pl(;)}

X p, ().
(2.2.53) can be proved analogously. [

NOTE, We use the notational convention that, if the rounding operator O is
followed by any product, then this product should be evaluated before apply-

ing the rounding operator. For instance, 00 Ax should be interpreted as
M,M

ORx), forAc R’ , xc ]RM, A and X bounded and non-empty. []
THEOREM 2.2.10. Let X ¢ IR . For El”"’EM e IR we have

1 rE

andfor_g'ije]IIR (1<isM, 1<3j<M wehave

TR NEy +or AEpy
(2.2.,55) Ox| < ... . = . coee s .
Bt G XEyy -+ X

PROOF., For 1 < i < M we have, by virtue of (2.1.37), (2.2.52) and (2.2.38),

E.l E1
pi([]k : >=Dpi()\ ; )=DX£1=A€1.
EM EM

In view of (2.1.11) this proves (2.2.54).
(2.2,55) can be proved analogously. [
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REMARK 2.2.11. In general we do not have A x ¢ ORY for 7 ¢ IR and

% ¢ ILRY. This is illustrated in fig. 2.2.1 for M = 2, X = [1,2] and
- _ ([1,3]

x=|r 2]) . In this figure the shaded hexagon represents A X .
Lis

2 r1,3] 6
() [1,21.([1,2], ()

SN

AN\ &
P .

fig. 2.2.1

Similarly, in general we do not have XA ¢ I[]RM’M

Tenr™™, O

for A ¢ IR and

M _M,M

THEOREM 2.2.12. For V=R , R’ , A ¢ R and bounded and non-empty x c V

we have

(2.2.56) O rx =A0%.

PROOF. Let £ ¢ R be bounded and non-empty and let A ¢ IR. For A > 0 we have



26

[inf AE, sup A E] [x inf €, A sup £] = Alinf €, sup £

and for A < 0 we have

[inf XE, sup A E]

[x sup E, A inf £] = Alinf €, sup £].

Therefore for all A € IR we have
[inf A€, sup AE] = Alinf €, sup E]

and hence

(2.2.57) OAE =A0FE.

Now let x c lRM be bounded and non-empty, and let again A ¢ IRR. By
virtue of (2.1.37), (2.2.52) and (2.2.57) we have

pi( O A;) =0 Pi()\;) =0 A pi(;) =0 Pi(;) =

= A pi(DE) = pi(ADE).

We have 0 A X ¢ I[]RM and, by virtue of (2.2.50), A0 X ¢ ]IIRM. Therefore,
and in view of (2.1.11), we obtain (2.2.56).

M,M

For V= R the proof is obtained analogously. [

The following theorem can essentially be found in KULISCH [1976],
PpP. 412, 414,

THEOREM 2.2.13, For & ¢ TR, X ¢ TRT and 1 < i < M we have

M
(2.2.58)  p;(Ax) = ] p; (B®).p;(®)
j=1

and for A,B e IIIRM’M, l<is<Mand 1< j< Muwe have

M
(2.2.59) pij(AB) =¥ pik(X).pkj(E).
k=1
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PROOF .
Pi(K;) = {[Ax]i | Aed, xex}
M _ _
= {jzl [A]ij[x]j [ Ac A, x e x}
M — —
= . &, . .. . . < j <M
{jzl oy &5 | oy epy @, £ e p; DA s j s W]
M — —
= jzl{aj Ej | ay € pij(A)’ Ej € pj(x)}
M — —
= JZ] Pij(A)Pj(x)-
pij(“AE)= {CAB]; | Ae¢’, Be B}

M
{kzl [A]ik[B]kj | Ae@d, Be B}

= {kgl o B | a, € pik(Z), By € pkj(ﬁ)(l <k <M1}
M R p—
= kzl{ak By | o € Py (A), By € pkj(B)}
M _ _
= kzl pik(A)pkj(B)' O

REMARK 2.2,14., As we mentioned in remark 2.1.1, many authors use interval
vectors and interval matrices rather than vector intervals and matrix inter-—
vals., Most of them (for instance ALEFELD & HERZBERGER [1974], HANSEN [1965],
HUNGER [1971] &4nd MOORE [1966]) define the product of two interval matrices
AI and BI as the interval matrix AIBI satisfying

M
(2.2.60)  [AB;]; . = kzl [Apd [Brdy ;e
Here [AI]ij is the element in the i'th row and j'th column of A;. In view
of theorem 2,2.13 the set of matrices corresponding to the interval matrix
ABr is O AB, where A and B are the matrix intervals corresponding to A
and BI respectively.
Our main reason for using the concept of matrix interval as a special

kind of set of matrices, and for using the general definition (2.2.5) for
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operations on sets, is that we are thus able to distinguish between the
sets AB and O AB,

Similar considerations apply to the product of a matrix interval and a
vector interval, and to the product of a real interval and a vector interval

or matrix interval. [J
2.2.4, Integration
M

Let a,8 ¢ R with a < B. For a continuous function x: [a0,B] + R we

define fs x(t)dt, as usual, by

(2.2.61) [ [ x(t:)dt]i = J [x(t)]idt (1 <i=<M.
a a

Similarly, for a continuous function A: [a,B] - B@iﬁd we define fs A(t)dt by
B8 8

(2.2.62) [ JA(t)dtJij = f [A(t)]ijdt (1 <i<M. 153 <M.
o a

The following theorem gives an inclusion of these integrals.

THEOREM 2.2.15. Let a,B € IR with o < B and let V be Bﬁn or BQM’M . For a

continuous function x: [a,Bl + V we have
B

(2.2.63) f x(t)dt € (B-a). O x([a,B]).
a

PROOF. Let V = Bﬁﬂ, o <Band 1 <1 <M, For a < t £ B we have

[x(t)]i € pi(x([a,B]))s
hence

[x(0)]; = inf p; (x([a,81)).

Therefore, and by virtue of (2.1.26), we obtain

B8 8
1 1
[E:a' I X(t)dt]i = a f [x(t)]idt
a a

> inf pi(x([a,B])) = [inf x([u,B])]i.

This holds for 1 < i < M, hence



B
ﬁ f x(t)dt = inf x([a,B]).
¢}

Analogously we can derive

B
Eé; J x(t)dt < sup x([a,B]).
a
Consequently
8
= JﬂﬁﬂeDXQmML
o

which proves (2.2.29).
For a = B the proof is trivial,

M,M

For the case V = IR the proof is obtained

2.2,5. Taylor series

THEOREM 2,.2.16. Let o, ¢ R with o < B, let V be
be an integer with k 2 1. Let x: [a,B] > V be a k
entiable function. For tyst € Ta,B] we have

k=1 (t-t)d .
(2.2,64) x(t) € x(to) + z —_—Tg—_ x(J)(tO) +
j=1 it
PROOF, Let V = D@i. We have
k=1 (t-t)d .
x(t) = x(to) + z ——O'—X(J)(to) +
j=1 it

where r ¢ n@‘ is such that for all i with 1 £ 1i <

such that

[r1; = x® (s 1;.

1

Therefore

29

analogously. [

RM or mM’M, and let k

times continuously differ—

k
(t-t,)
— 9% 1 x® ([4,87).
!
(t-t"
. T,
Kt

M there is an s; € [a,B]

[r;  p; ™ (Ca,81) < 0 p, M (Ca8) (1< 1 < m),
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Consequently, using (2.1.37) we obtain
relQ ) ([o,8]),

which proves (2.2.64).

For the case V = IRM’M the proof is obtained analogously. [J

NOTATION, Let V « IRM be open and let g :V - R be given. If g is differ-
entiable then we denote by g'(x) the matrix of partial derivatives of

g in x. [

LEMMA 2,2,17., Let V c ]RM be open and let g:V ~ IRM be continuously differ—
entiable. Let x c V be convex. For all X),%, € X we have
1
(2.2.65) g(xl) - g(xz) =[ J g'(x2+ s(xl—xz))ds](x]—xz).
0
PROOF. We dispense with the simple proof. [

THEOREM 2,2.18. Let V c IRM be open and let g :V - IRM be continuously

differentiable. Let x < V be bounded and convex. For all X 5%, € x we have

2
(2.2.66)  g(x)) = g(x,) € [0 g'®I(x;~x,).
PROOF, Combining lemma 2.2.17 and theorem 2.2.15 we obtain

g(x)) - g(xy) e [ O g"(xy + [0,17(x;=%,))1(x;=x%,) .

In view of the convexity of X this implies (2.2.66). [

2.2.6. Set valued functions

A set valued function is denoted by a symbol with a bar, for instance f.
For a set V the set of all subsets of V (i.e., the power set of V) is

denoted by PV,

DEFINITION 2,.,2,19. Let V and W be sets and let X ¢ PV, A function

f:X > IPW is said to be Znclusion isotonic if it satisfies

(2.2.67) V] c 72 =?(V]) c ?(72) (for all 71,72 e X). O
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2.3. THE NORM, DIAMETER AND DISTANCE

2.3.1. The norm of a set

We define the norm of a vector x € IRM by

(2.3.1) Il = max l[x]i{
1<isM

and of a matrix A ¢ IRM’M'by
M
(2.3.2) 1Al = max | JESPAP
1<isM  j=I

We thus use the maximum norm for vectors and the norm for matrices induced
by this vector norm.

For a bounded, non-empty set T c R we define

(2.3.3) " |E| = sup |g] (the absolute value of E)
Eeg

and for bounded, non-empty sets ;c_CIRM and A c IRM’M we define

(2.3.4) =l = sup Il xll
Xex

and

(2.3.5) 1Al = sup al.
AcK

As in APOSTOLATOS & KULISCH [1968], where these definitions can be found, we
will call Ixl and IAl the norm of x and A, respectively. Note however that
these functions are not norms in the strict sense, since they are not de-

fined on vector spaces.

NOTE. The real number |Z| should not be confused with the set g(Z), where
. In fact |E]| = sup g(&).

Similar remarks apply to the norm of a set of vectors and of a set of ma-

the function g: R + R is defined by g(£) = |&

trices. [



32

From the definitions (2.3.3), (2.3.4) and (2.3.5) we immediately obtain

the following theorem.

THEOREM 2.3.1. For bounded, non-empty E,n < R we have

(2.3.6) Ecn=|E] <|n

For V = lRM , IRM’M

and bounded, non-empty x,y < V we have
(2.3.7) xcy=lxl < Iy, 0
THEOREM 2.3.2. For a,B € IR with a < B we have
(2.3.8) [Ca,B]| = max({al, [B]) = max(-a,B).
For bounded, non-empty x c R we have
(2.3.9) IXx = max |p.(x)]|.
1sisy  *t

For bounded, non-empty A c R we have

M
(2.3.10) IAl < max Z Ip..@&) |.
IsisM j=1 M
If & ¢ o ®RYM then (2.3.10) can be replaced by the stronger statement
—_— M —_—
(2.3.11) VAl = max ) |[p,.(A)].
1<isM j=1 M

PROOF. (2.3.8) can easily be derived from definition (2.3.3).

Il

sup max |[x].]|
= . i
Xex 1<i<M

= max sup__ [E]
1<isM Eepi(x)

L[}
8
o
»

=3
~
tad

~
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M
1Al = sup max z |[A]i'l
AeA 1<isM j=1 J

M
max ] sup [[Al. ]
1<isM j=1 AeA J

IA

M —
max ] 15 )1
1<isM j=1

(]

Ifhe et

then there is a matrix A ¢ A such that

LAl 1 = lpij(X)l (1<is<sM 1<jsM,

For this matrix A we have

M
lal < VAl < max § Ip,.(A)| = lal,
1<isM j=1 M3
which implies (2.3.11). [J
M M,M -
THEOREM 2.3.3. Let V=R or V=R . For all bounded, non-empty A ¢ R,
X,y cVand A c ®PY ve nave
(2.3.12) Ix +yl< I+ 150,
(2.3.13)  Ixxl = |%. Izt
(2.3.14)  1ZxI < IZ0,0%0.
PROOF .
Ix + yl = sup Ix + yl < sup (Ixl+ lyl) = Il + iy,
XGEK_ XE_)E
yey yey

Ivxl = sup Ixxl = sup (IA].0xl) = RN
Aex rex
XeX XeX
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A%l = sup laxll < sup (Al iy = 1Al Il 0
AeA AeA
XEX XEX

THEOREM 2.3.4. For all bounded, non—empty & ¢ R, x < ®’Y and & « ®’Y

we have

(2.3.15) | @¢el=|¢l,
(2.3.16) hoxl = II';E]I,
(2.3.17) Iraal < MJIAD,

PROOF. By virtue of (2.3.8) we have

| O €| = max(-inf E, sup ) = sup max(-g,E) = sup |&| = [E].
et 333

Using (2.3.9), (2.1.37) and (2.3.15) we obtain

Il O%xl = max |pi(D§)| = max’ |Dpi(§)|
- 1=isM 1<i<M
= max Ipi(§)l = %,
1<isM

In view of (2.3.11), (2.1.38) and (2.3.15) we find

M M
IO&N = max ) Ip;.(OK) | = max J [Op, A
I<isM j=1 *HJ 1<isM j=1 J
M _ M
= max ) ]pij(A)l = max ) sup IEAJijI
1<isM j=1 1isM j=1 AeA
M —
< max ) sup lAl =M. IAl, 0

1<isM j=1 AeA

REMARK 2.3.5. For arbitrary M there are non-trivial sets A for which we have
equality in (2.3.17). For instance, let

M,M

A={A] Ae R, lal <1},
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then

OK=1{a]|acrHY

A
=
-
IN
[N
N
=
N
——

s l[A]ijl <1 (1I=i

Thus we see that IAl = 1 and | OAN =M, [

We define e € ]I]RM by

The following theorem gives a number of properties of this vector interval,

THEOREM 2.3.6.

(2.3.19) el =1,

(2.3.20) A% = {x]| xe R, Ixl < A} (for A € R),
(2.3.21) xclxl ,e (for bounded, non-empty x c IRM),
(2.3.22) Al s |lul = 2re cue (for A,u € R),

(2.3.23) Ae

Ixl .e (for X e IR).

PROOF. (2.3.19) follows from (2.3.18) and (2.3.9).
For A ¢ R we have by virtue of (2.2.50)

AL[=1,1] =0, 1x13
re = . = .
AL [-1,1] =11, 1211

={x | xe ]RM, Il < 12]3}.

(2.3.21), (2.3.22) and (2.3.23) are consequences of (2.3.20). [

THEOREM 2.3.7, Let V c R pe open and let g : V > R’ be continuously differ—
entiable. Let x < V be bounded and convex. For all XX, € X we have
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(2.3.24)  lg(xp - glx)l < Ig' @I . Ix; - x,l.

PROOF. Using lemma 2.2,17 we obtain
1
"g(xl) - g(xz)" < J llg'(x2 + s(x1 - xz))“ds . ||x] - x2|l.
0
Due to the convexity of x this implies (2.3.24). 0O

2.3.2., The diameter of a set

For V = RT , ®REM ana bounded, non-empty x ¢ V we define the diameter
of X by
(2.3.25) diam x = sup _ ||x1 - x2|| .

X 5K €X

The following theorem gives some properties of the diameter, which are direct

consequences of the definition.

M

THEOREM 2.3.8. For V = R, B g bounded, non-empty X,y < Vand X € x

we have

(2.3.26) X cy= diam x < diam y,

(2.3.27) diam x = Ix - %1,
(2.3.28) diam x < 2Ix1,
(2.3.29) Ix - %I < diam %. O

THEOREM 2.3.9. For bounded, non-empty x c R ve have

(2.3.30) diam x

max diam pi(;) R
1<isM

(2.3,31) diam O % = diam x.
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diam x = sup _ max I[x]]i B [xzjil

X sXo€X 1<isM

max sup  _ lg; - &,
1<isM El,Ezepi(x)

max diam pi(§) .
1<isM

By virtue of (2.3.27) and (2.3.16) we have

diam

(0% =1O0x-0%I =10 &G=-%1

= Ix-%I = diam x . o

THEOREM 2.3.10. For all bounded, non-empty X < R and X,y < R’ and all
e R and y ¢ ]RM we have

(2.3.32)

(2.3.33)

(2.3.34)

(2.3.35)

PROOF .

diam

diam

diam

diam

diam

diam

(x +.y) < diam x + diam y,
(x + y) = diam %,
(Ax) = |A| .diam x,

(A%x) 2 || .diam x .

G+ =lG+y) -+l

[}

A

IG-D + G-l < Ix-Fl+15 =751

diam x + diam y.

GF+y) =lG+y) -G+l =1x-%I =diamx.
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Using (2.2.30) we obtain

diam (Ax) = Iax-Axl = lIx(x - %I Al % = %1

|A] . diam x .

Similarly, in view of (2.2.32) we have

diam (X x) = I x=-xxl = IX(x - I

Xl L Ix =%

X .diam x .

THEOREM 2.3.11. For X ¢ IR T we have
(2.3.36) Ix - mean xIl = {diam x .
PROOF, For o, ¢ R with o < B we have

|[a,B] = mean [a,B]] = [[-}(B-a),i(B-a)]]

$(B-0) = } diam([a,B]).

M

Let x e IR , X = mean x. We have

[;c]i = mean pi(;(-) (1 <£1i<M).
Hence, using (2.3.30) and (2.3.9) we obtain

diam x = max diam pi(;)
1<i<M

2 max Ipi(;) - mean pi(;)l

I<i<M
= 2 max lpi(;) - [§]il = 2 max lpi(; -1
1<isM 1<isM

211x - %1,

which proves (2.3.36). [
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THEOREM 2.3.12, Let V c R’ pe open and let g : V > R be econtinuous Ly
differentiable. Let x < V be bounded and convex. For all non—empty y c x
we have

(2.3,37) diam g(y) < lg'"x) I . diam y.

PROOF, The theorem is a direct consequence of theorem 2.3.7 and the defini-

tion of the diameter. [J

2.3.3. The distance between sets

The set of compact, non-empty subsets of IRM is denoted by K. We define
the distance q(X,y) between the sets X,y ¢ K by

(2.3.38)  q(x,y) = max(max min lx-y !, max min Ix-yI).
X€EX yey JEY XeX

For more general sets X and y the function q(X,y) was introduced by HAUSDORFF
[1914]. It was used in interval arithmetic by MOORE [1966], among others, but

only for vector intervals (more accurately, for interval vectors).

THEOREM 2,3.13. The maxima and minima in (2.3.38) exist. Furthermore, the

function q is a metric, that is, it satisfies for all X,y,z € K
(2.3.39)  q(x,y) 2 0, with equality <if and only if X = v,
(2.3.40)  q(x,y) = q(3,%),

(2.3.41)  q(x,2) < q(x,y) + q(¥,2)

(the triangle inequality).

PROOF. Let x,y € K, For x € X, lx-yll is a continuous function of y ¢ y,

and y is compact. Therefore
min Il x-y I
yey

exists for all x € x.

Furthermore, this minimum is a continuous function of x € x, since
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|min llx]—y I - min lez—y IS "XI_XZH
yey yey

for all X|,X, € X. In view of the compactness of x this implies the existence
of

max min Ix-y |l .

XEX Yey
Similarly
max min lx-y |l
YEY XeX
exists.

For the proof that q is a metric, see HAUSDORFF [1914]. 0

For x,y € ]RM and X,y ¢ K we define

(2.3.42)  q(x,y) = q(x,{y}),

(2.3.43)  q(x,y) = q({x},y).

THEOREM 2.3.14. For A ¢ R, y ¢ R, A ¢ B*™ and %,7,7 ¢ K we have

(2.3.44) ycx=qx,y) = max min Ix-yl ,
XeX yey

(2.3.45) zcycx=q@,2) < qEx,2),

(2.3.46)  q(x,y) = Ix-yl,

(2.3.47) q( 0%, x) < diam x ,

(2.3.48)  q(A%, Ay = [Al.q(x,y),

(2.3.49) q(Ax,Ay) <Al ., qx,7),

+ye XK and qix+y, x) < Iyl

»1

(2.3.50)

<y +axy) e,

]

(2.3.51)

(2.3.52) diam x < diam y + 2q(%,y).



PROOF. (2.3.44) follows immediately from the definition of q, and (2.3.45)

is a consequence of (2.3.44).

q(x,y) = max(max lx-y Il , min Ix-y )
XEX Xe€X
= max lx-y I = Ix=-y I .
XEX
q(O%, x) = max_ min lx-yl< sup _lIx-yl
yeOx xex x,ye Ox

diam (0O%) = diam x.

a(AX,Ay) = max(max min Iix-Ay |, max min fax-Ayl)
XX yey yey xXe€X

(Al . q(x,y).

(2,3.49) can be proved analogously.

It is not difficult to prove x +y ¢ K.

qx +y, x) = max(max min l|x+y—x‘1||,' max min |Ix—x1—yl|) .

XEX X €X XEX X{€X
yey v €F
Choosing X, = X we obtain
qx +y, x) < max(max Iy, min lyl) = Iy,
yey yey

Let x € x. We have
min lx-y I < q(x,y).
yey
Hence there is a y € y such that
Ix-y I < 4(5,7).
Using (2.3.20) we obtain

X=y+ (x=y) e y + q(x,y) . e.

Since this holds for all x e x, it proves (2.3.51).
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By virtue of (2.3.51) we can derive

diam x < diam(y + q(x,y)e) < diamy + q(x,y) diam e
= diam y + 2q(X,y).
LEMMA 2.3.15. For x,y € K we have
(2.3.53) q(x,y) > max q(pi(;), pi(§)).
1<isM
—_— M

If x,y e IR then we have

(2.3.54)  q(x,y) = max q(p,(®), p; ().

1<isM

PROOF. Let X,y ¢ K.

max min lx-y |l = max min max |[[x]. - [yl.|
X min = = U i i

XEX YEY Xex yey 1<i<M
> max max min I[x]i - nl

xXex 1<isM nepi(—f)

= max max min_ [g-n].
1<isM gep, (x) nep; (y)

For y e I[]RM the inequality changes into an equality.

Similarly,
max min lx-y | 2 max max_ min_ [g-n],
yEY XeX I<i<M nspi(y) Eepi(x)

with equality for X e II]RM .
Using the definition of q we thus arrive at (2.3.53) and (2.3.54).

LEMMA 2.3.16, For M = | and E,n ¢ K we have

(2.3.55) q(OE,O7) < q(E,n).

0
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PROOF. Since £,n ¢ K these sets have a minimum and a maximum. Let a = ming,

B=maxg, y=min;1-, 8§ = max 7.

max min |g€-n| = max min max(E-n,n-g)
E€E nen EeE nen
2 max max(min(£-n), min(n-¢))

Eek nen nen

= max max(g-8,y-£)

Eek
= max(B-§,y-a).
Similarly we have
max min |[£-n| 2 max(§-B,a-y).
nen Egeg

Consequently

q(€,n) 2= max(a-y,y-o,B-8,8-8)

max( fa=y [, [B=6 ]).

It is easy to verify, and mentioned in ALEFELD & HERZBERGER [1974], that

(2.3.56) q(La,Bl,[v,81) = max(ja~y|,|B=81).

Since OZ = [a,B] and On

[v,8] this proves the lemma. [J

THEOREM 2.3.17. For X,y € K we have
(2.3.57) q(O%,0Y) = q(x,y).
PROOF. Using (2.3.54), (2.3.55) and (2.3.53) we obtain

q(O%,0y)

[
g
Y]
»®

(p, (O%),p.(OY))
1<isM PR

max  q(Op;(x),0p;(¥))
1<isM

IA

max  q(p; (3¥),p;(¥)) < q(x,y). 0
1<isM
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THEOREM 2.3,18, Let V ¢ ]RM be open and let g : V » R be continuously
differentiable. Let x R’ be bounded amd convex. For all ;1 ’EZ e K with
;l c§amZ§2 c x we have

(2.3.58)  a(g(x)),g(x,)) = lg' I . a(x,x,).

PROOF. The theorem is a consequence of theorem 2.3.7 and the definition
of q. [
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2.4, THE INITIAL VALUE PROBLEM

In this monograph we always consider the autonomous system of M 2 1

differential equations

(2.4.1) U'(t) = £@WU(L)),
where f : B@d > ngq is a given continuously differentiable function (as is
well-known, every system can be transformed into an autonomous system, see
e.g. GEAR [1971]).

Let t> 0 and x € Bﬁq. If the initial value problem

U'(s) = £(U(s)) (0 <s <t),
(2.4.2) {

U(0) = x

has a solution, then it is well-known (see for instance COPPEL [1965]) that
the solution is unique. In this case we denote the vector U(t) by U(t,x).

According to the general definitions (2.2.2) - (2.2.4) we have
U(t,x) = {U(t,x) | X € x} (for t 2 0 and x < ]ﬁq),

etc,, provided that all the U(t,x) concerned exist.

DtU and DxU denote the derivatives ofzthe function U with respect to its
first and second argument, respectively. DtU means the second derivative of
U with respect to its first argument, etc.

M

Let the set of pairs (t,x) € [0,2) * R for which U(t,x) exists be

denoted by Q. We have the following theorems (see e.g. COPPEL [1965]).
THEOREM 2.4.1. Q ©s open relative to [0,») * nf“. 0

THEOREM 2.4.2. If f 7s k times continuously differentiable then Di+lU(t,x)
and DliU(t,x) exist and are continuous for (t,x) € Q. 0O

THEOREM 2.4.3. For (to,x) € Q the matrix function DXU(t,x) satisfies the
differential system

DthU(t,x) = £'(U(t,x))D U(t,x) (Oststo),
(2.4.3) { X

D _U(0,x) = I. o
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For an arbitrary induced norm for matrices a corresponding logarithmic
norm can be defined. This concept was introduced separately by DAHLQUIST
v
[1959] and LOZINSKII [1958]. For the norm defined in (2.3.2) the correspond-

ing logarithmic norm of a matrix A € Ey’M is

M
(2.4.4) ulA]l = max ([A].. + ILAT..]).
1<sisM i jzl 1
it

Note that p[A] is not a norm because it can take negative values. Obviously
M,M
for A e R’ we have

(2.4.5) ulA] + ul-A] = 0.

THEOREM 2.4.4. For (t,x) € Q the matrix DXU(t,x) 18 regular (L.e., non-

singular) and

t
(2.4.6) "DXU(t,x)"_S exp( I ul£' (U(s,x))1ds),
0
t
(2.4.7) "[DXU(t,x)]—]" < exp( J ul-£"(U(s,x))1ds).
i 0

PROOF, Let (to,x) € Q, and let v € ﬂfﬂ be arbitrary. Define for 0 < t < to
(2.4.8) V(t) = DxU(t,x)v.
In view of theorem 2.4.3 we have

(2.4.9) V'(t) = £'(U(t,x)) V(t) (0<tcs< to), V(0) = v.

This implies (see e.g. COPPEL [1965])

t
0
(2.4.10) vl exp(- J ul=£'(U(t,x))1dt) < lv(p)l
0
to
< v I exp( J ul£'(U(t,x))1dte).
0

. M . . .
Since v € IR™ is arbitrary this proves the theorem. [
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For & ¢ RM the set ulA] is defined by
(2.4.11)  ul[&] = {u[A] | A € A},

according to the general definition (2.2.1). Now from theorem 2.4.4 we im-

mediately obtain the following corollary.

COROLLARY 2.4.5. For (t,x) € Q we have

(2.4.12) ||Dx U(t,x)I < exp(t max ulf'(U(LO0,t],x))]),

(2.4.13) 1D, UCt,x) 1M < exp(t max wl-£' (U(LO,t],%))1). a]
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2.5. MISCELLANEOUS DEFINITIONS AND PROPERTIES

In this section we will treat miscellaneous definitions, notational
conventions and properties which we need in this monograph.

£

For all real numbers £ > 0 we define g =
In addition to the definitions of minimum and maximum, given in section
2.1.2, we have of course min(f,») = £ for £ ¢ R, etc.

For k > £ we define

£

i=k

M
j=1,i%i
We define the functionw : R - R by

Similarly we define for instance ) . =0fori=M=1.

eg-]
(2.5.1)  w(E) ={ °©
1 (for & = 0),

(for & * 0),

THEOREM 2.5.1. For all £ € R we have
(2.5.2) w(g) > 0,

Furthermore, Ew(oE) 28 a non-decreasing function of a and E.

PROOF. (2.5.2) is trivial. For £ = 0 we have

© Ei
w(g) = i§=:0 T

]=°2° i+l i

w'(g) = 'E] (—l—fm gt TT e 2 o,
i=

1=0
and for £ > 0
_g— _
w(-g) = ’ETE_l =e gw(E),
w'(-E) = - ;;ig [w(-£)] = - ailg- (e 5u(e))

e Fu(E) - wE) >0

]
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Thus we have

(2.5.3) w'(g) 20 for all £ e R,
Consequently

Ezw'(ag) > 0.

o [Ew(ad)]
Finally

g%»EEw(a5>]

]
o
v
o

-

which proves the theorem. [J
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