


PJt,[n:ted a.t the Ma.themati.c.al. CenbLe, 413 KJU.w..la.a.n, Aw.,tvuiam. 

The Ma.themati.c.al. CentlLe , 6ounded the 11-.th 06 Febn.uaJuJ 1946, -iJ.. a. non
p!WfU bu,.tltu.ti.on a,im,i,ng a.t the p!Wmo:Uon 06 pWte mathemati.C-6 and d6 
a.ppUc.ati.on&. It -iJ., .&pon&Ol[.ed by the Nethe.llla.n.d.6 Govvmmen:t th!Wu9h the 
Nethel!land6 01tga.ruzati.on 6 M the Adva.nc.emen:t o 6 PUite Re.& e.a.Jr.c.h ( Z. W. 0. ) . 



MATHEMATICAL CENTRE TRACTS 144 

THE SOLUTION OF 

INITIAL VALUE PROBLEMS 

USING INTERVAL ARITHMETIC 

FORMULATION AND ANALYSIS 
OF AN ALGORITHM 

P. EIJGENRAAM 

MATHEMATISCH CENTRUM AMSTER DAM 1981 



1980 Mathematics subject classification: 65105, 65GI0, 65-04 

ISBN 90 6196 230 7 



ACKNOWLEDGEMENTS 

First of all I want to express my gratitude to prof.dr. M.N. Spijker 

for his many critical and stimulating remarks. 

Further I thank prof.cir. G. Alefeld and prof.cir. L.A. Peletier for their 

useful comments. 

Finally, I am grateful to the Mathematical Centre for the opportunity 

to publish this monograph in their series Mathematical CentreTracts, and 

all those at the Mathematical Centre who have contributed to its technical 

realization. 





CONTENTS 

CHAPTER 1 INTRODUCTION 

CHAPTER 2 PRELIMINARIES 

2.1. Ordering 

2.1.1. Vector intervals and matrix intervals 

2.1.2. The minimum, maximum, infimum and supremum 

2.1.3. The rounding operator 

2.2. Operations on sets 

2. 2. I. General 

2.3. 

2.4. 

2.5. 

CHAPTER 3 

CHAPTER t, 

2.2.2. Addition and subtraction 

2.2.3. Multiplication 

2.2.4. Integration 

2.2.5. Taylor series 

2.2.6. Set valued functions 

The norm, diameter and distance 

2. 3. I. The norm of a set 

2.3.2. The diameter of a set 

2.3.3. The distance between sets 

The initial value problem 

Miscellaneous definitions and properties 

OUTLINE OF THE METHOD 

COMPUTATION OF A SUITABLE STEP SIZE AND A ROUGH 

INCLUSION OF THE SOLUTION 

4.1. Introduction 

4.2. Description and finiteness of Algorithm I 

4.3. Correctness of Algorithm I 

4.4. Bounds on the obtained step size 

4.5. Comparison with other methods 

4.5.1. Variants of Algorithm I 

4.5.2. Moore's method 

i 

5 

5 

5 

9 

1 I 

15 

15 

20 

23 

28 

29 

30 

31 

31 

36 

39 

45 

49 

55 

59 

59 

61 

65 

69 

75 

75 

77 



ii 

CHAPTER 5 COMPUTATION OF THE FINAL INCLUSION OF THE SOLUTION 

5.1. Introduction 

5.2. Description and finiteness of Algorithm II 

5.3. Correctness of Algorithm II 

5.4. The local error 

5.5. Comparison with other methods 

5.5.I. Moore's method 

5.5.2. Kriickeberg's method 

CHAPTER 6 THE GLOBAL BEHAVIOUR OF THE METHOD 

6. I'. The global method, its applicability and the global 

error 

6.2. A further analysis of the global error 

6.2.1. The condition of A n 
6.2.2. The global error for small Hand I:, 

6.3. Comparison with other methods 

6.4. The necessity of the error term of order o2 

6.5. Step size and order control 

6.5.1. Introduction 

6.5.2. The step size for a given order 

6.5.3. The choice of the order 

6.6. The effect of rounding errors 

CHAPTER 7 COMPUTER PROGRAM 

7. I. Introduction 

7.2. Description of auxiliary procedures 

7. 3. Description of procedure TAYL 

7.4. Description and explanation of procedure 

7.5. Description and explanation of procedure 

7.6. Explanation of procedure TAYL 

7.7. Description and explanation of procedure 

7.8. Description and explanation of procedure 

7.9. Text of the procedures 

CHAPTER 8 NUMERICAL EXPERIMENTS 

HB 

INVI 

soc 
SOLVE 

79 

79 

81 

83 

87 

91 

91 

94 

99 

99 

115 

I 15 

121 

123 

127 

129 

129 

130 

132 

135 

137 

137 

139 

141 

145 

147 

149 

151 

153 

155 

163 



iii 

REFERENCES 179 

SUBJECT INDEX 183 

SYMBOL INDEX 184 





CHAPTER 1 

INTRODUCTION 

In this monograph initial value problems are considered for systems of 

M ordinary differential equations, where M ~I.We deal with the problem of 

enclosing the solution numerically for arbitrary values of the independent 

variable t. 

We allow that the initial value is not exactly known, but is only known 

to be contained in a given initial value set. In that case we want to enclose 

the corresponding set of solutions for arbitrary t. 

In enclosing the solution or set of solutions we take rigorously into 

account all possible sources of errors, including rounding errors due to the 

finite precision of a computer. For this purpose use is made of rounded

interval arithmetic (see MOORE [1966]). 

We will formulate and analyse a numerical method for solving the afore

mentioned problem. Other methods of solving the problem have been treated by 

MOORE [1966], KRUCKEBERG [1969], HUNGER [1971], MARCOWITZ [1973, 1975], 

CONRADT [1980], STERN [1980] and others. 

All these methods produce for certain grid-points t 0 < t 1 < ••• < tN a 

set y enclosing the set of solutions at the grid-point t. For n = 1,2, ••• , N 
n n 

the set yn is computed in such a way that it contains the value at t = tn of 

any solution of the differential system whose value at t = tn-l belongs to 

Yn-1' 
In the methods of Hunger and Marcowitz, and, at least for non-linear 

differential systems, in the methods of Conradt and Stern, these sets y are 
n 

chosen so as to be vector intervals, i.e., M-dimensional blocks with their 

edges parallel to the coordinate axes, Moore has shown that in this case the 

diameter of the sets y may grow considerably faster, as n increases, than n 
is inherent in the nature of the differential system. Therefore he and 

Kruckeberg use sets yn that are linear transformations of vector intervals. 

We will do the same in our method. 



2 

Hunger's method first computes an approximate solution and then solves 

a linear interval differential system for the error function (see also BAUCH 

[1977], which contains a survey of related methods). 

The method of Marcowitz also starts with an approximate solution. 

However, in order to bound the error function a system of non-linear differ

ential inequalities is solved. The number of inequalities of this system is 

twice the number of differential equations of the original system. 

Conradt considers a variant of the method of Marcowitz. Furthermore, 

for linear differential systems only, Conradt discusses a method in which the 

sets yn are polyhedra. This method is based on an idea, independently found 

by LOHNER & ADAMS [1978] and NICKEL [1979]. 

Stern works out theoretical details of the method of Marcowitz. Further 

he considers, for linear differential systems with constant coefficients 

only, a method in which the sets y are ellipsoids. n 
Kriickeberg's method computes in each step an inclusion of the solution 

with an arbitrary fixed initial value y 1 E y 1 and then computes an in-
n- n-

clusion of the perturbation of the solution due to a variation of the initial 

value y E yn_ 1• 

Moore's method is based on consecutive Taylor series expansions of the 

solutions at the points t 0 ,t1, ... ,tN-I" 

In this monograph we will deal with a method based on the same principle 

as Moore's method. However, we will work this principle out in a different 

way, Firstly, a step size hn tn - tn_ 1 is computed such that it approxi

mates a prescibed value Hn. This improves the possibility of controlling 

the step size. Secondly, the set y enclosing the set of solutions, is not, 
n 

as in Moore's method, obtained by transforming the differential system into 

a more complicated form, but it is computed in a more direct way. 

In chapter 2 we will present definitions, notations and properties, 

mostly of interval analytic concepts. In section 2,1 concepts related to the 

ordering of IRM and IRM,M will be considered, especially the vector interval, 

the matrix interval and the rounding operator. Section 2.2 deals with opera

tions on sets of vectors and matrices, in particular on vector intervals and 

matrix intervals. In section 2.3 the concepts of norm, diameter and distance 

are introduced and a number of properties are derived. Section 2,4 treats 

some notations and properties related to the initial value problem we are 

considering. Finally, in section 2.5 we consider the remaining definitions 

and properties we want to treat in this chapter. 
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Chapter 3 gives an outline of the numerical method we treat in this 

monograph. For certain grid-points t O < t 1 < ••• < tN this method produces 

a set yn enclosing the set of solutions at the grid-point t. This set y is 
n n 

a linear transformation of a vector interval. The n'th step of the method 

consists of the determination of a suitable new grid-point tn and the set 

yn, for a given tn-l and a given set yn_ 1• This n'th step consists of two 

parts, treated in chapters 4 and 5, respectively. 

In chapter 4 the first part of the n'th step of the method is considered. 

After the introductory section 4.1 this part is described in section 4.2 by 

Algorithm I. The algorithm determines a suitable step size hn and thus the 

new grid-point tn = tn-l + hn. This is necessary since the step size cannot be 

prescribed arbitrarily. Further the algorithm computes a rough inclusion b n 
of the set of solutions U(t) for tn_ 1ststn. We show that the algorithm, 

which contains an iteration process, is finite. In section 4.3 we prove that 

the vector interval b produced by Algorithm I is indeed an inclusion as re-
n 

quired. Section 4.4 deals with the analysis of the step size hn. In particu-

lar we consider how close this value is to the prescribed parameter Rn, which 

can be considered as the step size the algorithm aims at. In section 4.5 we 

analyse some variants of Algorithm I and compare them with the version of 

Algorithm I described in section 4.2. In particular we show that a variant 

suggested by MOORE [1966] is in general not a finite algorithm. 

Chapter 5 treats the second part of the n'th step of the method, After 

an introductory section 5,1 this part is described in section 5.2 by 

Algorithm II. Using the inclusion b produced by Algorithm I, Algorithm II 
n 

determines a set y enclosing the set of solutions U(t ). This set y is a 
n n n 

linearly transformed vector interval, represented by a non-singular trans-

formation matrix A and a vector interval x. In section 5.3 we prove that 
n n 

the set yn indeed encloses the set of solutions at the grid-point tn. In 

section 5.4 the concept of local error is defined using the Hausdorff dis

tance. Further we derive an estimate for the local error. Section 5.5 com

pares the method with other methods. We show that the transformation matrix 

used by MOORE [1966] can cause the local error to be essentially greater 

than in our method, Further we show that the same can hold for the local 

error of the method of KRDCKEBERG [1969]. 

In chapter 6 the global behaviour of the method is studied. In section 

6.1 the concept of global error is defined. Further a theorem is proved 

giving conditions under which the method is applicable on a prescribed 

interval [O,T], and giving a bound on the global error in terms of the 
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diameter of the initial value set, the maximal step size and the value of t·. 

Section 6.2 deals with a further analysis of the global error and clarifies 

the bound obtained in section 6.1 by considering a limit case. In section 6.3 

we consider the global error in the case where the set y is required to be n 
a vector interval. HUNGER [1971] and MARCOWITZ [1973, 1975] give methods for 

which this limitation on y holds. An example of MOORE [1966], showing that 
n 

in this case the global error can grow unfavourably, is analysed in more de-

tail. In section 6.4 we show that the error term of order o2, where o is the 

diameter of the initial value set, in the bound on the global error is un

avoidable. Section 6.5 describes a method to vary the step size and the 

order of the method for each step, so as to satisfy a prescribed _condition 

on the local error per unit step as efficiently as possible. Finally, section 

6.6 discusses the effect of rounding errors on the global error. 

Chapter 7 gives and explains a computer program for the method treated 

in this monograph. The program is written partly in Algol 60 and partly in 

Triplex-Algol 60, described in WIPPERMANN [1968]. 

Numerical results obtained with this program are given in chapter 8. 
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CHAPTER 2 

PRELIMINARIES 

2. 1 • ORDERING 

2.1.1. Vector intervals and matrix intervals 

M In this monograph lR denotes the set of real numbers, lR the set of 

real M-dimensional vectors and lRM,M the set of real MxM matrices. Weiden

tify lR.1 withlR. 

For -a vector x E ]RM the i'th component is denoted by [x]i (1 sis M). 

We write [A] .. for the element in the i'th row and j'th column of a matrix 
l.J 

A E lRM,M ( 1 S i s M, 1 S j S M) • 

Symbols with a bar, like x and A, always denote sets. 
- . M 

For a set x c lR we define 

(2. 1 • 1) p. ex) 
l. 

{[x]. I X E x} 
1 

- MM Similarly for a set Ac lR' we define 

(2. 1.2) p .. CA) 
lJ 

{[A] .. I A E A} 
l.J 

( I s i s M). 

(1 sis M, Is j s M). 

We define the relation "s" on ]RM by 

(2.1.3) a s b- [a]. s [b]. (I s i s M) 
l. l. 

and on lRM,M by 

(2,1,4) A s B- [A] .. 
l.J 

s [BJ .. 
l.J 

(I s i s M, I s j s M) • 

As can easily be verified this relation "~" on V, with V = lRM or V lRM,M 
' 

is a partial ordering, i.e., it satisfies for all a,b,c E V 
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{ 
a :o; a (reflexivity), 

(2. I .5) (a :<;; h, b :<;; c) ~a $ C (transitivity), 

(a $ b, b $ a) ~a b (anti-symmetry). 

Let (V,:o;) be a partially ordered set, For all a,b EV with a$ b we 

define the interval [a,b] by 

(2.1.6) [a,b] {x I x EV, a$ x $ b}. 

In accordance with the notation of KULISCH [1976] the set of all intervals 
M MM in V is denoted by II V. The elements of II JR, II JR and II 1R ' are called 

real intervals, vector intervals and matrix intervals, respectively. Elements 

of IIJR2 can be interpreted geometrically as rectangles with their sides par-

11 1 d . . · 1 f 3 b . d a e to the coor 1nate axes. S1m1 arly, elements o II JR can e 1nterprete 

as rectangular parallelepipeds, with their edges parallel to the coordinate 

axes. 

We define for l 1, ••• ,sM E IlJR 

(2.1.7) 

and for f .. E Il JR 
1J 

(I$ i $ M, I$ j $ M) 

(

f11 iIM) . . • • • • • = 

-i-Ml .. • -i-MM 

I MM -
{A A E IR ' ' [A]. . E s .. 

1J 1J 

(I$ i $ M, I $ j :o; M)}. 

If we write a vector some of whose components are real intervals and others 

are real numbers then each real component si should be interpreted as the 

set {s.}, in other words, as the interval [s.,s,J, The notation of a matrix 1 1 1 
whose elements are partly real intervals and partly real numbers should be 

interpreted correspondingly. 

Using these notations we can formulate the following elementary proper

ties. 



(2. 1.9) 

( I $ i $ M)) , 

(2.1.10) 

(for a . . ,S .. E lR, a .. $ s .. (I $ i $ M, I $ j $ M)), 
l.J l.J l.J l.J 

(2.1.11) 
X {'!~) (for x° E Il IR.M), 

pM(x) 

(for A E Il lR M,M), 

(2.1,13) 

(for all a,b E lRM with a$ b, and I $ i $ M), 

(2.1.14) p .. ([A;HJ) = [[A] .. ,[BJ .. ] 
l.J l.J l.J 

(for all A,B E lRM,M with A $ B, and I $ i $ M, I $ j $ M). 

By virtue of (2.1.11) we find that a vector interval xis uniquely defined 

by the specification of the sets p.(x') (I $ i $ M), In view of (2.1.13) 
l. 

these sets are real intervals. A similar remark can be made for a matrix 

interval, due to (2.1.12) and (2.1.14). 

7 

REMARK 2.1.1, Let an intewal vector be a vector whose components are real 

intervals. From (2.1.9) we see that a vector interval can be characterized 

by a corresponding interval vector. Several authors in the field of interval 
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arithmetic, for instance ALEFELD & HERZBERGER [1974], HANSEN [1965], HUNGER 

[1971], KRUCKEBERG [1969] and MOORE [1966], start with the concept of inter

val vector, Some of them observe that an interval vector can be identified 

with a set of vectors. 

However, although we will use notation (2,1,7) whenever this is con

venient, we prefer to use the concept of vector interval, defined as a set 

of vectors of a special kind, rather than the concept of interval vector, 

It enables us to apply basic set-theoretic concepts like intersection and 

inclusion to vector intervals without specially defining them, Further mo

tives of our choice will be given in section 2,2, where the distinction be

tween vector intervals and interval vectors becomes more important. 

Similar considerations apply to the concepts of matrix interval and 

interval matri~, respectively, D 

With respect to the intersection and inclusion we easily obtain 

(2.1,15) 
p . (x n y) = p . (x) n p . (y) (I s i s M) 

1 1 1 

(for all x,y E IlJRM with x n y f 0), 

(2,1,16) 
- - MM 

{An~E~lR' ,_ 
p .. (A n B) = p .. (A) n p1.J.(B) (Isis M, Is j s M) 

1J 1J 

tfor all A,B E Il JRM,M with A n B + 0), 

(2,1,17) 

(for x,y E II JRM), 

(2,1,18) A C B - p .. (A) C p .. (B) ( I s i s M, I s j s M) 
1J 1J 

(for A,B E II JRM,M), 

(2,1,19) [a,bJ c [c,d] - a~ c, b s d 

(for all a,b,c,d EV with as band cs d, where V JRM or 
V = JRM,M) • 



Rules (2.1.15) and (2.1.16), and, implicitly, rules (2.1.17) and (2.1.18) 

can be found in ALEFELD & HERZBERGER [1974]. 

2.1.2, The minimum, maximum, infimum and supremum 

Let V be either IR.M or IR.M,M, x c V, x + ~-
y EV is said to be a lower bound of x if y:,; x for all x Ex, and an 

upper bound of x if y ~ x for all x Ex. 

9 

The minirrrum of x, if it exists, is they Ex, which is a lower bound of 

x, and it is denoted by "minx", The mazirrrum of x, if it exists, is they Ex 

which is an upper bound of x, and it is denoted by "max x". We observe that 

the concepts of minimum and maximum should not be confused with those of 

minimal and maximal element, respectively (defined for instance in KULISCH 

[ 1976]). 

Obviously an interval in V has a minimum and a maximum and we have 

(2.1.20) a = min [a,b], b = max [a,b] 

(for all a,b EV with a:,; b), 

(2.1,21) X =[minx, max x] (for x E II V ) • 

Using (2,1,13), (2.1,14) and (2,1.20) we immediately obtain 

(2,1.22) 

(2.1,23) 

[max x]. = max p.(x) 
]. ]. 

- M (for x E II.IR and I:,; i:,; M), 

{ t'min A]ij 

[max A] .. 
l.J 

= min p .. (A), 
l.J 

= max p .. (A) 
J.J 

(for A E II.IR.M,M and I :,; i:,; M, I :,; j:,; M). 

Let x c V be bounded and non-empty, We define the infirrrum of x, denoted 

by "inf x", if it exists, by 

(2.1.24) inf X = max {y I y € v, y is a lower bound of x}, 
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and we define the suprerrrwn of x, denoted by "sup x", if it exists, by 

(2.1.25) sup X = min {y I y EV, y is an upper bound of x}. 

If minx exists then inf x also exists and inf x =minx. Similarly, if max x 

exists then sup x exists and sup x = max x. 

THEOREM 2.1.2. For bounded and non-empty x c lR.M, inf x and sup x exist and 

satisfy 

(2.1.26) 

(2.I.27) 

[inf x]. 
1 

[sup x]. 
1 

inf p. (x) 
1 

sup p. (x) 
1 

(Isis M), 

( I s i s M). 

PROOF. For I sis M the sets p.(x) are bounded and non-empty subsets of IR 
1 

and therefore have a finite infimum. Consider the vector 

First we show that z is a lower bound of x. Let x Ex. For Isis M 

we have [x]. E p.(x) and hence [x]. ~ [z] 1'.. Therefore x ~ z for all x Ex, 
1 1 1 

which was to be shown. 

Now assume that y is an arbitrary lower bound of x. Let I sis M. For 

all XE X we have [y]i $ [x]i, hence [y]i is a lower bound of pi(x) and 

therefore [y]i s [z]i. Thus we have y s z. Consequently z is the maximum of 

the set of lower bounds of x, that is, z = inf x. This proves (2,1.26), 

The second part of the theorem can be proved analogously. 0 

THEOREM 2. I • 3. For bounded and non-empty A c IRM ,M , inf A and sup A exist 

and satisfy 

(2. I. 28) 

(2,1,29) 

[inf AJ .. 
1J 

[sup A] .. 
1J 

inf p .. (A) 
1J 

sup p .. (A) 
1J 

(I sis M, Is j s M), 

(Isis M, I s j s M). 



PROOF, The proof is analogous to that of theorem 2.1.2. D 

- M - M,M 
Finally we define for x <c II.IR and for x <c TI IR 

(2. 1 ,30) mean X = ½ (min X + max x) . 

2,1,3. The rounding operator 

Let x c V be bounded and non-empty, where V 

define the roundin,g operator □ by 

(2.1.31) C x = [inf x, sup x]. 

For V IR2 this is illustrated in figure 2.1.1. 

sup x 

inf X 

fig. 2.1.1 

I I 

IRM,M. We 

The following theorem gives some fundamental properties of the operator 

□ and can essentially be found in KULISCH [1976], p. 399. 

THEOREM 2, 1,4, For V = IRM or V = IRM,M we have 

(2. 1.32) xc □ x ,(for aZZ bounded, non-errrpty x c V) , 
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(2.1.33) 

(2. 1 • 34) 

(2.1.35) 

(2.1.36) 

(for all bounded, non-errrpty x c V and alZ y E II V) , 

□ x n y ( for aZ Z bounded, non-errrpty x c V) 

y~II_V 
y=>x 

□ x=x (for x E II V ) , 

(for aZZ bounded, non-errrpty x,y c V). 

PROOF. Let x c V be bounded and non-empty. 

(2.1,32) follows immediately from the fact that inf x and sup x are a 

lower bound and an upper bound, respectively, of the set x. 

Let y :::, x, y E II ]RM. min y is a lower bound of y and therefore of x, 

hence min y ~ inf x. Similarly max y ~ sup x. Using (2.1.21), (2.1.19) and 

(2.1,31) we obtain 

y = Cmin y, max yJ :::, Cinf x, sup xJ = □ x 

and (2.1.33) has been proved. 

(2.1.34) immediately follows from (2.1.32) and (2.1.33). 

For x E II V we have 

□ x = [inf x, sup xJ [minx, max x] = x, 

and (2.1,35) has been proved. 

Let x c y c V with x and y bounded and non-empty. Using (2.1.32) we 

obtain x c Dy. Applying (2.1.33), with Dy substituted for y, yields 

(2.I.36). D 

By virtue of (2.1,32), (2.1.35) and (2.1.36) the operator Dis, in the 

terminology of KULISCH [1976], a monotonous, upwards directed rounding with 

respect to the inclusion relation. Indeed, it is convenient to think of 

□ x as the result of rounding the set x to an interval, comparable with the 

rounding of a real number to a number representable in a computer. In fact 

D xis the smallest interval containing the set x, as is shown by (2.1.32) 

and (2. 1.33). 
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THEOREM 2, 1,5. 

- M (for' aU bounded, non-empty x c IR ) , 

- MM (for' aU bounded, non-empty A c IR ' ) • 

PROOF. Using (2.1,26) and (2,1,27) we find 

□ X = { y I y E lR.M , inf X $ y s sup x} 

= { y I y E lR.M , [inf x] . $ [ y] . s [ sup x] . ( 1 s i s M) } 
1 1 1 

= { y I y E lR.M, inf p.(x) s [y]. s sup p.(x) (1 sis M)} 
1 1 1 

{ Y I y E m.M , [ y J . E □ P . <x> c I s i s M> } 
1 1 

Using (2,1,28) and (2,1,29), (2,1,38) can be proved analogously, D 





2,2, OPERATIONS ON SETS 

2.2.1, General 

For a function g X + Y we define 

(2,2, I) g(x> {g(x) I X E x} (for x c X). 

This is a special case of the "united extension", used by MOORE [1966]. 

Since no confusion can arise we use the same symbol gin the expressions 

g(x) and g(x). 

Note that, if we define for x E IRM, s i s M, 

and for A E lRM,M, sis M, Is j s M, 

p .. (A) = [A] .. , 
1.J 1.J 

then definitions (2,1,1) and (2,1 ,2) can be considered as special cases of 

definition (2,2,1), 

For a function h Q + Z with Q c X * Y (where* denotes the direct 

product) we define 

(2.2,2) h(x,y) {h(x,y) I x Ex, y E y 1 (for x * y c Q) , 

(2.2.3) h(x,y) h(x,{y}) (for x * {y} c Q), 

(2,2,4) h(x,y) = h({x},y) (for {x} * y c Q), 

15 

where, for any u, {u} denotes of course the set with u as its only element. 

Similarly, for a binary operation 0 Q + Z where Q c X * Y we define 

(2.2,5) X 0 y {x 0 y Ix Ex, y E y} ( for x * y c Q) , 

(2,2.6) X 0 y = X 0 {y} (for x * {y} c Q), 

(2.2.7) X 0 y = {x} 0 y (for {x} * y c Q). 
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In particular these definitions apply'to the operations 

I 
+: V * V -+ V (for V IRM IRM,M), 

' 
-· V * V -+ V (for V IRM, IRM,M), 

(2.2.8) 
IR, IRM,M and IRM, IRM,M), . : V * w -+ w (for V w = 

/: IR * (IR \ {O})-+ IR. 

From definitions (2.2.1), (2.2.2) and (2.2,5) we immediately obtain the 

following fundamental properties: 

(2.2.9) xi C x 2 c x .. g(x1) C g(x2), 

(2.2.10) xi C x2 , Y1 c Y2• X2 * Y2 c Q => h(xl ,yl) c h(x2,'y2), 

(2. 2.11) xi C x2, Y1 c Y2, X2 * Y2 c Q => xi @ YI C x2 @ Y2• 

Similarly, for V = IRM, JRM,M we define 

(2.2.12) -x = {-x I X € x} (for x c V) 

and obtain 

(2.2.13) 

Finally, for an arbitrary integer k ~ I we define, similar to (2.2.1), 

(2.2,14) 

and obtain 

(2.2.15) 

-k 
~ (for f c IR) 

-2 Note that in general we do not have~ = ~ ~,etc.For instance, 

[ - I , I J 2 = [ 0, I J, while [ - I , I J • [ - I , I J = [ - I , I J. 
M MM --For V = IR , IR ' and x,y c V we have 

(2.2.16) X - y = X + (-J).y, 



1 7 

(2.2. 17) -x = (-'-1) • x. 

Using (2.2.16). from many properties of the addition. corresponding proper

ties of the subtraction can easily be derived. We will not always state the 

latter. 

In theorems 2.2.1. 2.2.2 and 2.2.3 we will treat some properties of 

operations on sets. as defined by (2.2.5). 

THEOREM 2.2.1. The following corrmutativity properties hold. 

(2.2.18) X + y = y + X 

(2.2.19) A+ B = B + A (for A.B c IRM.M) • 

(for ~.-n C IR). 

PROOF. For x.y c IRM we have 

x + y {x + y x Ex. y E y} 
{y + X X € Xt y € y} 
y + x. 

The other properties are proved analogously. D 

THEOREM 2.2.2. For I.ii c IR, x,y,z c IRM, A,B,C c IRM,M we have 

(2.2.21) <x + y) + z = x + <Y + z>, 

(2.2.22) (A+ B) + c =A+ (B + c), 

(2.2.23) <Iii> x = I <iix) = µ(Ix) , 

(2.2.24) <I ii> A = I < ii A) = ii<IA), 

{2.2.25) <I A) x = I(Ax) = A(Ix) , 

(2, 2 .. 26) (IA) B = I(AB) = A(IB) , 
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(2.2.27) (AB) x = A(Bx) , 

(2.2.28) (AB) c = A(BC) • 

PROOF. All properties are proved analogously. For instance 

<IA) x {(AA) x A E I, A E A, x E x} 
{;>,_(Ax) 

= I(Ax) • 

A E A, A E A, x E x} 

By virtue of theorem 2.2,2 expressions like x + y + z, A+ B + C, 

□ 

Iµx, etc., without brackets, are not ambiguous. The same holds for more com

plicated expressions, such as IµABx. 

Let V = lRM or V = lRM,M. For x 1 ,x2, ••• •~ c V the expression 

:!: x 1 :!: x 2 :!: ••• :!: xk should be evaluated from left to right. Equivalently, 

it should be interpreted as the sum (:!: x 1) + (:!: x 2) + ••• + (:!: ;) , where, of 

course,+ xl = xl (Isl s k). 

Further we define for an arbitrary integer k ~ 

(2,2,29) 
k 
l xl =xi+ x2 + .•• + ~ 

l=I 

MM M M,M h h THEOREM 2.2.3. For V = lR, lR ' and X = lR , lR we ave t e distribu-

tivity properties 

(2.2.30) v(x + y) vx + vy (for VE V and x,y C X), 

(2.2,31) (v + w)x = vx + wx (for v,w c V and x EX) 

and the subdistributivity properties 

(2.2.32) v(x + y) C V X + Vy (for V CV and x,y C X), 

(2.2.33) <v + w)x c vx + w x (for v, w c V and x c X) • 

PROOF. For VE V and x,y C X we have 



v(i + y) = {v(x + y) 

= {vx + vy 

.. vx + vy. 

(2.2.31) is proved analogously. 

X E X, y E y} 
X E X, y E y} 

For V CV and x,y C X we have 

v(i + y) = {v(x + y) VE v, XE X, y E y} 

= vx + vy. 

(2.2.33) is proved analogously. 0 
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NOTE. YOUNG [1931] introduced definition (2.2.5) for sets of real numbers. 

The theorems 2.2.1, 2.2.2 and 2.2.3 are simple generalisations of properties 

observed in this work. D 

For a,a,y,o E 1R with as a and y so we have the following rules (for 

a proof, see for instance ALEFELD & HERZBERGER [1974]). 

(2.2.34) [a,a] + [y,o] =[a+ y, a+ o], 

(2.2.35) [a.a] - [y,o] - [a - o, a - y], 

(2.2.36) [a,aJ • [y,oJ .. [min(ay,ao,ay,ao), max(ay,ao,ay,ao)J, 

(2.2.37) [a,a] / [y,o] = [a,a] • [l/o,1/y] (if o i [y,o]). 

In particular we observe that for e = +,-,, ,/ and ~.ii E Il 1R (with O f ii if 

fl) =/)we have 

(2,2.38) ~ 8 ii E Il 1R. 

For , E lR we define 

(2.2.39) 
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Now we can easily derive from (2.2.36) 

(2.2.40) [0,;1.J • [a,SJ 

(for all ;l.,a,S E lR with ;1. ~ O, as S). 

2.2.2. Addition and subtraction 

THEOREM 2.2.4. Let the operator ® be + or -. For"[., n. E II.JR (I s i ~ M) 
1 1 

we have 

(2,2.41) 

and for "[ .. ,n- . E II.JR 
11 1J 

(Isis M, Is j ~ M) we have 

(

"f11 

(2.2.42) ~ 

sMI 

"[IM) (nl I 
: ® : ••• 

"fMM ~Ml ... 
PROOF, 

(U ·OJ 
{z I z E ]RM' [z]. E "[. ® n- (I s i s M)} 

1 1 1 

(2.2.42) can be proved analogously, D 

°flM~nlM) 
• E 

sMM®nMM 

II1RM,M. 



THEOREM 2.2.5. For x,y c ]RM we have 

(2.2,43) p . <x + y) = p. <x> + p. c"y> , 
i i i 

-- MM and for A,B c 1R ' and I $ i $ M, I $ j $ M we have 

(2.2.44) 

PROOF. 

p .. (A + B) = p .. (A) + p .. (B) • 
iJ iJ iJ 

p. <x + y) 
i 

{ [ z ] . I z E X + y} 
i 

{[x+y]i XE x, y E y} 
Hx]i + [y]i I x E x, y E y} 

{ F,; + n I F,; E p /x) ' n E pi (y) } 

= p . <x> + p . G> . 
i i 

(2.2.44) can be proved analogously. D 

THEOREM 2.2,6. For V = IRM, lRM,M and for ail a,b,c,d E Il V with a $ b, 

c $ d we have 

(2.2.45) [a,b] + [c,d] = [a+c, b+d]. 

PROOF, Let a,b,c,d E IllRM with a$ b, c $ d, By virtue of (2.2,43), 

(2,1,13) and (2,2.34) we have for I$ i $ M 

pi([a,b] + [c,d]) = pi([a,b]) + pi([c,d]) 

= [[a]i,[b]i] + [[c]i,[d]i] 

[[a]i + [c]i' [b]i + [d]i] 

[ [a+c]i, [b+d] i] 

pi([a+c, b+d]). 

In view of (2,2,41) we have [a,b]+[c,d] E IIlRM. Using (2.1.11) we obtain 

(2.2.45). 
MM 

For V = 1R ' the proof is obtained analogously. D 

21 
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THEOREM 2.2.7. For V 

and y EV we have 

]RM' ]RM,M and for alZ bounded, non-errrpty x,y C V 

(2.2.46) inf(x + y) inf x + inf y, 

(2.2.47) sup(x + y) sup x + sup y, 

(2.2.48) □ (x + y) = □ x + □ y , 

(2.2.49) □ (x + y) = □ x + y. 

PROOF. Consider first the case V ]RM. Let x,y c ]RM· be bounded and non-

empty. 

By virtue of (2.I.26) and (2.2.43) we have for I~ i ~ M 

[inf(x + y)J. 
l. 

inf p. (x + y) 
l. 

inf(p. (x) + p. (y)) 
l. l. 

inf p. (x) + inf p. (y) 
l. l. 

[inf x]. + [inf y]. 
l. l. 

[inf x + inf y]., 
l. 

which proves (2.2.46). 

(2.2.47) can be proved analogously. 

Combining (2.2.46) and (2.2.47) and using (2,2.45) we obtain 

D(x + y) [inf(x + y), su~(x + y)J 

[inf x + inf y, sup x + ,sup, y]. 

[inf x, sup xJ + [inf y, sup yJ 

=Dx+Dy. 

(2,2.49) is a direct consequence of (2.2.48) 

For the case V = lRM,M the proof is obtained analogously, D 

.\1.·f' 
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2.2.3. Multiplication 

THEOREM 2.2.s. For ;\. e: 1R and ~I' ••• '~M e: n 1R we have 

and for ;\. e: 1R and ~- . e: n 1R ( I s i s M, s j s M) we have 
l.J 

(2.2.51) 

PROOF. 

;\. (t} {AX' I XI!: lRM • [x]. e: ~i (I s i s M)} 
l. 

{y I Y e: lRM [y]i e: ;\.~. (I i s M)} s • l. 

= ('t} Il lRM. 

;\.~M 

(2.2.51) can be proved analogously, □ 

- - M THEOREM 2.2.9. Let ;\. c 1R. For au x c 1R and I s i s M we have 

(2.2.52) p. <Ii> = r p. <i> 
l. l. 

- MM and for aU A c 1R ' and I s i s M, s j s M we have 



24 

PROOF, 

p. (Ix> {DxJ. A E I, X E x} 
l. l. 

{A[x]. 
l. 

A E I, X E x} 

{:\~ I A E I, ~ E p. (x)} 
l. 

= I pi <i>. 

(2,2,53) can be proved analogously, D 

NOTE, We use the notational convention that, if the rounding operator □ is 

followed by any product, then this product should be evaluated before apply

ing the rounding operator, For instance, □ Ax should be interpreted as 
-- - MM - M - -

□(Ax), for A c JR ' , x c JR , A and x bounded and non-empty, D 

THEOREM 2,2, 10, Let IE II JR. For ~I' ... '~M E II JR we have 

and for ~ .. E Il JR ( I ,,; i ,,; M, I ,,; j ,,; M) we have 
l.J 

(2.2,55) 

PROOF, For I:<; i :<; M we have, by virtue of (2.1 .37), (2.2,52) and (2.2.38), 

In view of (2.1,11) this proves (2,2,54). 

(2.2.55) can be proved analogously. D 



REMARK 2. 2.11. In general we do not have Ii E TI lRM for "I E lI lR and 

x E TI.lRM. This is illustrated in fig. 2.2.1 for M = 2, A= [1,2] and 

i = n: :~D . In this figure the shaded hexagon represents "Ii. 

( [1,3]) 
[1,2]. [1,2],, 

(1) 
2 

(6) 
2 

I 
I 

/ (1) 
I 1~ 

I / // 
~ ,,, 

I// ,-' 
~ _, _, 

xi + 

fig. 2.2.1 

Similarly, in general we do not have TA E TI lRM,M for "I E TI lR and 

A€ TI ]RM,M. D 
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THEOREM 2. 2. 12. For V = lRM , lRM ,M , :>- E lR and bound.ed and non-empty i c V 

we have 

(2.2.56) D :>- x 

PROOF. Let l c lR be bounded and non-empty and let A E lR. For A~ 0 we have 
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[inf A°[, sup A "f J D inf "f, A sup °[] A[inf E;, sup f;] 

and for A < 0 we have 

[inf A "f, sup A "f J D sup "f, A inf "f] A[inf E;, sup "f]. 

Therefore for all A E IR we have 

[inf A "f, sup A "f J A[inf "f, sup "f] 

and hence 

(2.2.57) □ A I; A □ I;. 

Now let x c IRM be bounded and non-empty, and let again A E IR. By 

virtue of (2.1.37), (2.2.52) and (2.2.57) we have 

Pi•< □ AX)= □ p.(Ax) = □ A p.(x) 
l. l. 

A □ p. (x) 
l. 

A P. < □ x) = p. <A □ x). 
l. l. 

We have □ Ax E IlIRM and, by virtue of (2,2.50), A □ x E II lRM. Therefore, 

and in view of (2.1.11), we obtain (2.2,56). 
MM For V =JR' the proof is obtained analogously. D 

The following theorem can essentially be found in KULISCH [1976], 

pp. 41 2, 414. 

THEOREM 2.2.13, For A E II lRM,M, X E II IR.M and 1 5 i 5 M we have 

M 
(2.2.58) p. (Ax) 

l. I 
j=l 

and for A,B E Il IRM,M, 

(2.2.59) p .. (AB) 
l.J 

p .. (A) • p. (x) 
l.J J 

5 i 5 Mand 1 5 j 5 M we have 



PROOF, 

p. (Ax) 
1 

{[AxJ. 1 A E A, x E x} 
1 

M 
{ l [Al .. [x]. I A E A, X E x} 

j= 1 1J J 

M 
{ 1. ct. ~ . CL • E P .• <X) , ~ . E P . <x) < 1 $ j $ M) } 
j=l J J J 1J J J 

M 
I fo . ~ . CL • E P •• <X) , ~ . E P . <x) } 

j= 1 J J J 1J J J 

M 
I p .. <X) p . <x) • 

j=l 1J J 

p .. a B) = {[AB]. • A E x, B E B} 
1J 1J 

M 

{ I [AJi/BJkj A E A, B EB} 
k=l 

M 

{ I CLk 1\ CLk E Pik (A)' 13k E pkj(B)(l $ k $ M)} 
k=l 
M 
I fok 13k 

k=l 
I CLk E pik (A)' 13k E pkj (B)} 

M 
I pik (A)pkj (B). 

k=l 
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□ 

REMARK 2,2,14, As we mentioned in remark 2.1.1, many authors use interval 

vectors and interval matrices rather than vector intervals and matrix inter

vals, Most of them (for instance ALEFELD & HERZBERGER [1974], HANSEN [1965], 

HUNGER [1971] and MOORE [1966]) define the product of two interval matrices 

AI and BI as the interval matrix AIBI satisfying 

M 
(2.2.60) [~BI]ij = k~l [AI]ik[BI]kj' 

Here [AI]ij is the element in the i'th row and j'th column of AI. In view 

of theorem 2,2.13 the set of matrices corresponding to the interval matrix 

AIBI is □ AB, where A and Bare the matrix intervals corresponding to AI 

and BI respectively. 

Our main reason for using the concept of matrix interval as a special 

kind of set of matrices, and for using the general definition (2,2,5) for 



28 

operations on sets, is that we are thus able to distinguish between the 

sets AB ahd □ AB. 
Similar considerations apply to the product of a matrix interval and a 

vector interval, and to the product of a real interval and a vector interval 

or matrix interval. D 

2.2.4. Integration 

Let a,S E lR with a s S. For a continuous function x: [a,S] ➔ lRM 

define JS x(t)dt, as usual, by 
a 

s s 
(2.2.61) [ f x(t)dt]i = f [x(t)]idt ( I s i s M). 

a a 

we 

Similarly, for a continuous function A: [a,S] ➔ lRM,M we define J! A(t)dt by 

s s 
(2.2.62) [ I A(t)dt] .. = f [A(t) J .. dt 

l.J l.J 
(I s i s M. 1 s j s M). 

a a 

The following theorem gives an inclusion of these integrals. 

THEOREM 2.2.15. Let a,S E lR with a s S and let V be lRM or lRM,M; For a 

continuous function x: [a,S] ➔ V we have 

s 
(2.2.63) I x(t)dt E (S-a). D x([a,S]). 

a 

PROOF. Let V ]RM , a < S and I s i s M. For a s t s S we have 

hence 

Therefore, and by virtue of 

[-1-
S-a 1 x(t)dt]i 

a 

(2. 1.26), we obtain 

= S-a 

s 

f [x(t)J. dt 
l. 

a 

[inf x([a,S])J .• 
l. 

This holds for 1 sis M, hence 



B I x(t)dt ~ inf x([a,8]). 

a 

Analogously we can derive 

B 

B-a I x(t)dt s sup x([a,8]). 

a 

Consequently 

1 x(t)dt ED x([a,8]), 

a 

which proves (2.2.29). 

For a= B the proof is trivial. 

For the case V = lR.M,M the proof is obtained analogously. □ 

2.2.S. Taylor series 

THEOREM 2,2.16. Let a,B E lR. with as B, Zet V be lR.M or lR.M,M, and Zet k 
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be an integer with k ~ I. Let x.: [a,B] + V be a k times continuousZy differ

entiabZe function. For ta,t E [a,(3] we have 

(2.2,64) 
k-1 

x(t) E x(t0) + l 
j=I 

PROOF. Let V = lR.M. We have 

x(t) • r, 

where r E lR.M is such that for all i with ::; i s M there is an si E [a,8] 

such that 

Therefore 

[r]. 
l. 

[r]l.. E p. (/k) ([a,B])) c □ p. (x(k) ([a,8])) 
l. l. 

( I s i s M), 
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Consequently, using (2.I.37) we obtain 

which proves (2.2.64). 
MM For the case V = lR' the proof is obtained analogously. D 

M M NOTATION. Let V c 1R be open and let g : V -->- 1R be given. If g is differ-

entiable then we denote by g'(x) the matrix of partial derivatives of 

g in x. D 

LEMMA 2,2,17. Let V c lRM be open and let g :V-->- JRM be continuously differ

entiable. Let x c V be convex. For all x1,x2 E xwe have 

(2.2.65) 

1 

g(x 1) - g(x2) = [ J g'(x2 + s(x 1-x2))dsl(x1-x2). 

0 

PROOF. We dispense with the simple proof. D 

THEOREM 2.2.18. Let V c lRM be open and let g: V-->- lRM be continuously 

differentiable, Let x c V be bounded and convex, For all x 1,x2 Ex we have 

(2.2.66) 

PROOF, Combining lennna 2.2.17 and theorem 2.2.15 we obtain 

In view of the convexity of x this implies (2.2.66). D 

2.2.6. Set valued functions 

A set valued function is denoted by a symbol with a bar, for instance f. 

For a set V the set of all subsets of V (i.e., the power set of V) is 

denoted by lP V. 

DEFINITION 2,2.19. Let V and W be sets and let X c lPV, A function 

I : X -->- lP W is said to be inclusion isotonic if it satisfies 

(2.2.67) 



2.3. THE NORM, DIAMETER AND DISTANCE 

2.3.1. The norm of a set 

We define the norm of a vector x E lR.M by 

(2.3.1) llxll max I [x]i ! 
)SiSM 

ana of a matrix A E lR.M,M.by 

(2.3.2) 
M 

IIAII = max l 
lSiSM j=l 

I [A] .. I. 
l.J 

We thus use the maximum norm for vectors and the norm for matrices induced 

by this vector norm. 

For a bounded, non-empty set l c 1R. we define 

(2.3.3) m sup Isl (the absolute value of l> 
sEl 

and for bounded, non-empty --:- M sets x c 1R. and Ac lR.M,M we define 

(2.3.4) llxll su.E. llxll 
XEX 

and 

(2.3.5) IIAII sup IIAII. 
AEA 
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As in APOSTOLATOS & KULISCH [1968], where these definitions can be found, we 

will call Hill and IIAII the norm of x and A, respectively. Note however that 

these functions are not norms in the strict sense, since they are not de

fined on vector spaces. 

NOTE. The real number Ill should not be confused with the set g(f), where 

the function g : 1R. ➔ 1R. is defined by g(F,;) = Is I - In fact Ill = sup g([). 

Similar remarks apply to the norm of a set of vectors and of a set of ma

trices. D 
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From the definitions (2,3.3), (2.3.4) and (2.3.5) we immediately obtain 

the following theorem. 

THEOREM 2.3.1. For bounded, non-empty ,;,11 c ]R we have 

(2.3.6) 

For v ]RM, ]RM,M and bounded, non-empty x,y c v we have 

(2.3.7) X C y ~ llxll $ llyll • 

THEOREM 2,3.2. For o:,S E ]R with a ,:; S we have 

(2.3,8) I [a,$ J I = max ( { a I , 18 I) = max (-a, S) • 

- M For bounded, non-empty x c ]R we have 

(2.3.9) llxll Ip. (x) I. 
]. 

For bounded, non-empty A c ]RM,M we have 

(2.3,10) 
M 

!IA.ii ,:; max L 
l,c;i,:;M j=I 

Ip .. (A) I. 
l.J 

If A E II ]RM,M then (2,3.10) can be replaced by the stronger statement 

(2.3. I I) IIA.11 
M 

max l 
l,c;i,:;M j=I 

Ip .. (A) I. 
l.J 

PROOF. (2,3.8) can easily be derived from definition (2.3.3). 

llxll SUE_ max l[x]il 
XEX J,:;ic<;M 

max sup I,; I 
I ,:;i,:;M ,;E p. (x) 

]. 

max Ip . (x) I . 
l,c;i,:;M i 

D 



M 
OJI = sup max L 

AEA lSiSM j=l 

M 

l[A] .. I 
l.J 

s max }: su.E_ l[AJ .. I 
lSiSM j=l AE.A l.J 

M 
max }: Ip .. (A) I. 

l.J lSisM j=l 

If A E ll RM,M then there is a matrix A E A such that 

I [AJ .• I = Ip .. (A) I 
l.J l.J 

For this matrix A we have 

M 
II AR s IA.II s max }: 

lSiSM j=l 

which implies (2.3.11). 0 

(I s i s M, 1 s j s M) • 

IP .. (A) I 
l.J 
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THEOREM 2.3.3. Let V = 1R.M or V = 1R.M,M. For aU bounded, non-empty I c 1R., 
-- - MM . 
x,y c V and A c 1R ' we have 

(2.3.12) Ux:tyUsUxl+llyll, 

(2.3.13) DixD = III . lxt , 

c2.3. 14) uxxn s ux n. ax n. 

PROOF. 

Hx:tyl =su.£_Hx:tyH ssu.E_(HxH+llyH)=llxll +llyll. 
XEX 

YEY 
XEX 

YEY 

IIxH sup hxll = SU.£. (P,1.HxU) = 1r1.nxn. 
AEI AEA 
XEX XEX 
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IIAxll = sup 
AEA 
XEX 

II Axil s sup 
AEA 
XEX 

IIAII • llxil • 

THEOREM 2. 3 .4. For all bounded, non-empty s c lR , 

we have 

X C 

(2.3.15) I □ I I= ill, 

(2.3. 16) II □ xii = llxll, 

(2.3.17) D All s M.IIAII. 

PROOF. By virtue of (2.3.8) we have 

I □ II= max(-inf I, sup l) = sup maxC-s,s) 
sEt 

Using (2.3.9), (2,1.37) and (2.3.15) we obtain 

□ xii max Ip. C □ x) I max I □ p. (x) I 
1sisM 

]. 
ISiSM 

]. 

max Ip. Cx) I llxil. 
ISiSM 

]. 

In view of (2. 3. I I), (2. 1.38) and (2.3.15) we find 

M M 
o All max }: Ip .. C □ A) I max }: 

lsisM j=I l.J lsisM j=I 

M M 

sup Isl - ti!. 
SEE; 

I □ p .. (A) I 
l.J 

max }: Jp .. (A) I max }: sup I [A] .. J 
l.J AEA l.J lsisM j=I lsisM j=I 

M 
$ max }: sup IIAII = M. IIAII. 

lsisM j=I AEA 

□ 

□ 

REMARK 2.3.5. For arbitrary M there are non-trivial sets A for which we have 

equality in (2.3.17). For instance, let 

A= {A I AE ]RM,M, IIAII $ I}, 



then 

□ A = {A I A E IR.M,M ' I [AJ., I s I 
l.J 

Thus we see that IIA.11 = I and □ A II = M. D 

We define e E IT IR.M by 

_e = ([-
00

1
0

,I]) 
(2.3.18) 

[-1,1] 
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( I s i s M, I s j s M)}. 

The following theorem gives a number of properties of this vector interval, 

THEOREM 2.3.6, 

(2.3. 19) Hell = I, 

( 2. 3. 20) >. e = { x I x E IR.M , llx II s I>. I} (for A E IR. ) , 

(2.3.21) x c llxll , e - M (for bounded, non-empty x c lR ) , 

(2.3.22) (for A,µ E IR. ) , 

{2.3.23) Te = 11"I • e (for 1° E II IR. ) • 

PROOF. (2,3,19) follows from (2,3,18) and (2.3.9). 

For A E IR. we have by virtue of (2.2.50) 

{ X I X E IR.M ' llxll s I >- I }. 

(2.3.21), (2.3.22) and (2,3.23) are consequences of (2.3.20). D 

THEOREM 2. 3 • 7 • Let V c IR.M be open and let g : V + IR.M be continuously di ff er

entiab le. Let x c V be bounded and convex. For all x 1,x2 E xwe have 
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(2.3.24) 

PROOF. Using lennna 2.2.17 we obtain 

I 

llg(x 1) - g(x2)11 $ I llg'(x2 + s(x1 - x2))11ds. llx1 - x211. 

0 

Due to the convexity of x this implies (2.3,24). D 

2.3.2, The diameter of a set 

For V 

of x by 

]RM, JRM,M and bounded, non-empty x E V we define the diameter 

(2.3.25) diam x = sup _ llx1 - x211 • 
x 1 ,x2Ex 

The following theorem gives some properties of the diameter, which are direct 

consequences of the definition. 

THEOREM 2. 3. 8. For V = ]RM , JRM' M a:nd bounded, non-empty x, y c V and i E x 

we have 

(2.3.26) x c y ~ diam x $ diam y, 

(2.3.27) diam X = fix - XII' 

(2.3.28) diam x $ 211x II , 

(2.3.29) llx - i II $ diam x. 

THEOREM 2. 3. 9 • For bounded, non-empty x c JRM we have 

(2.3.30) 

(2.3.31) 

diam x = diam p. (x), 
]. 

diam □ x = diam x. 

□ 



PROOF, 

diam x = sup_ max l[x1Ji - [x2Jil 
x 1,x2Ex lsisM 

max sup l~I - ~21 
lsisM ~1,~ 2€pi(x) 

max diam p. (x). 
JsisM 1. 

By virtue of (2.3,27) and (2,3.16) we have 

diam ( D x) = II D x - D x II = II D (x - x) II 

= 11x - x II = diam x 

THEOREM 2.3.10. For aU bounded, non-errrpty I c 1R and x,y c ]RM and aZZ 

>.. E 1R and y E lRM we have 

(2.3.32) diam (x + y) s diam x + diam y, 

(2.3.33) diam (x + y) = diam x, 

(2.3,34) diam (>.. x) I >..I • diam x, 

(2.3.35) diam (Ix) :::: III • diam x. 

PROOF. 

diam (x + y) = II (x + y) - (x + y) II 

II (x - x) + (y - y) II $ llx - XII + lly - y II 

diam x + diam y. 

diam (x + y) 11 <x + y) - <x + y)II 11x - xii diam x. 
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□ 
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Using (2.2.30) we obtain 

diam O,x) II>. x- >.xii II >.(x - x)II 

I A I • diam x. 

Similarly, in view of (2.2.32) we have 

diam (Ix) IIIx- Ixll ~ III(x - x)II III • llx - x II 

III .diamx 

THEOREM 2. 3 • 11 • For x E Il JR M we have 

(2.3.36) llx - mean xii ½ diam x 

PROOF. For a, f3 E lR with a s f3 we have 

I [a,S] - mean [a,S]I = l[-½(S-a),!(S-a)JI 

½(S-a) = diam([a,S]). 

Let x E II JRM, x = mean x. We have 

[x]. = mean p. (x) 
l. l. 

( I s i s M). 

Hence, using (2.3.30) and (2.3.9) we obtain 

diam X = max diam p. (x) 
]SiSM l. 

2 max lpi(x) - mean pi(x)I 
lsisM 

2 max 
]SiSM 

lp.(x) - cxJ.1 
l. l. 

2 llx - x II 

which proves (2.3.36). D 

2 max 
]SiSM 

lp.(x-x>I 
l. 



THEOREM 2,3, 12, Let V c lRM be open and let g : V-+- lRM be aontinuously 

differentiable, Let x c V be bowuied and aonvex, For all non-empty y c x 
we ha,ve 

(2,3,37) diam g(y) s U g' (x) U , diam y, 
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PROOF, The theorem is a direct consequence of theorem 2,3,7 and the defini

tion of the diameter, D 

2.3,3, The distance between sets 

The set of compact, non-empty subsets of ]RM is denoted by lK, We define 

the distanae q(x,y) between the sets x,y E lK by 

(2,3,38) q(x,y) = max(ma_! mi~ Dx-y II , max min Ux-y D ) • 
X€X YEY YEY X€X 

For more general sets x and y the function q(x,y) was introduced by HAUSDORFF 

[1914], It was used in interval arithmetic by MOORE [1966], among others, but 

only for vector intervals (more accurately, for interval vectors). 

THEOREM 2,3,13, The·mazima and minima in (2,3.38) exist. Furthermore, the 

funation q is a metria, that is, it satisfies for all x,y,z E lK 

(2,3,39) 

(2,3,40) 

(2,3.41) 

q(x,y) ~ o, with equality if and only if x = y, 

q(x,y) = q(y,x), 

q(x,z> s q(x,y) + q(y,z) 

(the triangle inequality), 

PROOF, Let x,y € lK, For x € x, Hx-yll is a continuous function of y € y, 

and y is compact. Therefore 

mi~ Rx-y II 
YEY 

exists for all x Ex. 

Furthermore, this minimum is a continuous function of x € x, since 
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lmiE_ llx 1-y II - miE_ llx2-y II I s llx 1-x211 

YEY YEY 

for all x1,x2 Ex. In view of the compactness of x this implies the existence 

of 

Similarly 

exists, 

max min II x-y II 

XEX YEY 

max min II x-y II 
YEY XEX 

For the proof that q is a metric, see HAUSDORFF [1914]. D 

For x,y E lR.M and x,y E lK we define 

(2.3.42) q(x,y) q(x,{y}), 

(2.3.43) q(x,y) q( {x} ,y) • 

THEOREM 2.3.14. For ;>.. E lR., y E lR.M, A E lR.M,M and x,y,z E lK we have 

(2.3.44) y c x ~ q(x,y) = max min llx-y II 
XEX YEY 

<2.3.45) z c Y c x~ q(y,z) s q(x,z), 

(2.3.46) q(x,y) = llx-y II , 

(2.3.47) q( D x, x) s diam x 

(2.3.48) q(Ax,Ay) l;>...l.q(x,y), 

(2.3.49) q(A x, Ay) s IIA II • q(x,y), 

(2.3.50) X + y E lK and q (x + y' X) $ II y II ' 

(2.3.51) X C y + q (X, y) • e , 

(2.3.52) diam x s diam y + 2q(x,y). 



PROOF. (2.3.44) follows immediately from the definition of q, and (2.3.45) 

is a consequence of (2.3.44). 

q(x,y) = max(ma!_ Ux-y I , min Rx-y t) 
X€X X€X 

= ma.! Rx-y H = Hx-y A • 

X€X 

q(ox,x>= max mi~ Nx-y II:,; sup llx-y U 
Y€ Ox X€.X x,y€ Ox 

= diam ( Ox) = diam x. 

(2,3.49) can be proved analogously. 

It is not difficult to prove x + y € I{. 

q(x + y, x) = max(ma!_ mi~ llx+y-xiH,ma!_ mi~ Hx-x1 -yll). 
X€!_ X)€X X€X X)€X 
Y€Y y €Y 

Choosing x 1 = x we obtain 

q(x + y, x):,; max(ma,! Dyll, mi~ llyll) llyU. 
Y€Y Y€Y 

Let x € x. We have 

mi~ llx-y H :,; q(x,y). 
YEY 

Hence there is a y € y such that 

llx-y D s;; q(x,y). 

Using (2.3.20) we obtain 

X = y + (x-y) € y + q(x,y) • e. 

Since this holds for all x € x, it proves (2.3.51). 

41 
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By virtue of (2.3.51) we can derive 

diam x s diam(y + q(x,y)e) s diam y + q(x,y) diam e 

diam y + 2q(x,y). □ 

LEMMA 2.3.15. For x,y E lK we have 

(2.3.53) q(x,y) ,! max q(pi(x), P/Y)). 
lshM 

-- M If x,y E II IR then we have 

(2.3.54) q(x,y) 

PROOF. Let x,y E lK. 

max min llx-y II= max min max I [x]i - [y]il 
xEx YEY xEx yEy IsisM 

max max min I s-n I • 
lsisM sEp,(x) T)Ep,(y) 

l. l. 

For y E IT IRM the inequality changes into an equality. 

Similarly, 

max min II x-y II ,! max max min I s-nl, 
YEY XEX lsisM T)Ep.(y) sEp.(x) 

l. l. 

with equality for x E II IRM • 

Using the definition of q we thus arrive at (2.3.53) and (2.3.54). D 

LEMMA 2.3.16. For M = I and '[,i, E lK we have 

(2.3.55) q( □ '[, □ ii") $ q('[,i,). 



43 

PROOF. Since l;,n E lK these sets have a minimum and a maximum. Let a= mini;, 

8 =max{, y = min n, o = max n. 

Similarly we have 

ls-nl = max min max(s-n,n-1;) 
/;E°[ nETJ 

~ max max(min(l;-n), miE_(n-1;)) 
/;E°[ nETJ nEn 

= max max(l;-o,y-1;) 
/;E°[ 

= max(S-6,y-a). 

max min I l;-n I ~ max(o-8,a-y). 
nEn /;Es 

Consequently 

q(°[,n) ~ max(a-y,y-a,8-6,o-8) 

It is easy to verify, and mentioned in ALEFELD & HERZBERGER [1974], that 

(2.3.56) q (fo,8], [y ,o]) = max'( i a-yl , I 8--'o I). 

Since □ °[ = [a,8] and On = [y,o] this proves the lemma. 0 

THEOREM 2.3.17, For x,y E lK we have 

(2.3.57) 4 < □ x, □ y);,; 4 cx,y). 

PROOF. Using (2.3,54), (2,3.55) and (2.3.53) we obtain 

q( Ox, Dy) max 
l:5i:5M 

max 
I ::;i::;M 

q < p . < □ x) , P . < □ y) ) 
l. l. 

q c □ p. <x) , □ p . (y) ) 
l. l. 

$ max q <Pi <x) , P /Y) ) $ q <x, y) . 
I :5i:5M 

D 
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THEOREM 2. 3. 18. Let V c lRM be open and let g : V ➔ lRM be continuously 

differentiable. Let x c lRM be bounded arnd convex. For all xI ,x2 E lK with 

xI c x and x2 c x we have 

(2.3.58) 

PROOF. The theorem is a consequence of theorem 2.3.7 and the definition 

of q. D 



2,4. THE INITIAL VALUE PROBLEM 

In this monograph we always consider the autonomous system of M ~ 1 

differential equations 

(2.4. 1) U' (t) = f(U(t)), 

where f: ]RM ➔ 1RM is a given continuously differentiable function (as is 

well-known, every system can be transformed into an autonomous system, see 

e.g. GEAR [1971]). 

Let t ~· 0 and x E 1RM. If the initial value problem 

(2.4.2) 
{ U'(s) = f(U(s)) (O :S s :S t), 

U(O) = x 
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has a solution, then it is well-known (see for instance COPPEL [1965]) that 

the solution is unique, In this case we denote the vector U(t) by U(t,x). 

According to the general definitions (2.2.2) - (2.2.4) we have 

U(t,x) = {UCt,x) I X € x} 

etc,, provided that all the U(t,x) concerned exist. 

DtU and DxU denote the derivatives of the function U with respect to its 

first and second argument, respectively. n!u means the second derivative of 

U with respect to its first argument, etc. 

Let the set of pairs (t,x) E [0, 00 ) * 1RM for which U(t,x) exists be 

denoted by Q, We have the following theorems (see e.g. COPPEL [1965]). 

THEOREM 2.4.1. Q is open relative to [0, 00 ) * 1RM. D 

k+I 
THEOREM 2.4.2. If f is k times continuously differentiable then Dt U(t,x) 

k 
and DtDxU(t,x) exist and are continuous for (t,x) ,;: Q. D 

THEOREM 2.4,3. For (t0 ,x) E Q the matrix function DxU(t,x) satisfies the 

differential system 

(2.4.3) 
□ 
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for an arbitrary induced norm for matrices a corresponding Zoga;r>ithmic 

norm can be defined. This concept was introduced separately by DAHLQUIST 
V 

[1959] and LOZINSKI! [1958]. For the norm defined in (2.3.2) the correspond-

ing logarithmic norm of a matrix A E lR.M,M is 

(2.4.4) µ[A] max 
lsisM 

M 

L 
j=I 
Hi 

I [AJ .. I). 
l.J 

Note that µ[A] is not a norm because it can take negative values. Obviously 

for A E lR.M,M we have 

(2.4.5) µ[A]+ µ[-A]~ 0, 

THEOREM 2.4.4. For (t,x) E Q the matrix D U(t,x) is reguZ= (i.e., non
x 

singular) and 

(2.4.6) 

(2.4.7) 

t 

IIDxU(t,x)II s exp( f µ[f' (U(s,x))]ds), 

0 
t 

ll[DxU(t,x)J- 111 s exp( f µ[-f'(U(s,x))]ds). 

0 

PROOF, Let (t0 ,x) E Q, and let v E lR.M be arbitrary. Define for Ost s t 0 

(2.4.8) 

In view of theorem 2,4.3 we have 

(2.4.9) V' (t) f' (U(t,x)) V(t) 

This implies (see e.g. COPPEL [1965]) 

to 
(2.4,10) llvll exp(- f µ[-f'(U(t,x))Jdt) s IIV(t)II 

0 
to 

s llvll exp( I µ[f'(U(t,x))]dt). 

0 

V(O) 

Since v E lR.M is arbitrary this proves the theorem, D 

v. 
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For Ac lRM,M the set µ[A] is defined by 

(2.4.11) µ[AJ {µ[A] I A E A}, 

according to the general definition (2,2.1), Now from theorem 2.4.4 we im

mediately obtain the following corollary. 

COROLLARY 2.4.5. For (t,x) E Q we have 

(2.4.12) 

(2.4.13) 

II D U ( t, x) II ~ exp ( t max µ[ f' (U ( [ 0, t], x))]), 
X 

-1 ll[D U(t,x)] II~ exp(t max µ[-f'(U([O,t],x))J). 
X □ 





2.5. MISCELLANEOUS DEFINITIONS AND PROPERTIES 

In this section we will treat miscellaneous definitions, notational 

conventions and properties which we need in this monograph. 

For all real numbers s > 0 we define 3 = 00 • 
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In addition to the definitions of minimum and maximum, given in section 

2.1.2, we have of course min(s, 00 ) = s for s E IR, etc. 

Fork> l we define 

l 
I o. 

i=k 

Similarly we define for instance L~=l,jfi ••· 0 for i = M = I. 

We define the function w IR -+ IR by 

(2.5.1) 
(for sf O), 

(for s O). 

THEOREM 2.5.1. For alls E IR we have 

(2.5,2) w(s) > o. 

Fu:t>thermore, sw(as) is a non-decreasing function of a ands• 

PROOF. (2.5.2) is trivial. Fors~ 0 we have 

w(s) 

w' (s) 

and for s > 0 

w(-0 

w'(-s) 

oo si 
I-(. l)' i=O i..+ • 

00 

'i' i i-1 
l (i+l)! s 

i=I 

d 
- - [w(-S) J 

ds 

00 

'i' i+l i 
l (i+2)! s ~ O, 

i=O 

d -s --(e w(s)) 
ds 



so 

Thus we have 

(2.5,3) w' (0 2 0 for all I; E lR. 

Consequently 

2 
/; (lJ I ( O./;) 2 0, 

Finally 

which proves the theorem, D 

THEOREM 2,5.2, For real o.,S,h,h0 with S 2 O, 0 sh s ho we have 

(2,5.4) 
I ho. hOo.-
h log(e + hS) s min(o. + Se , o.w(-h0o.-) + S). 

PROOF. 

I ho. I -ho. h log(e + hS) = o. + h log(!+ hSe ) 

Since ho. 2 -h0a we obtain 

(2.S.S) 
h o. 

I ho. 0 h log(e + hS) so.+ Se 

Furthermore 

I ho. h log(e + hS) 
I h log(I + h[o.w(ho.) + SJ) s aw(ha) + S, 

Since o.w(ha) is isotonic with respect to h we find 

(2.5.6) 

For a 2 0 {2,S,4) follows from (2,S.S) and for o. < 0 it is the result of com

bining (2,5,S) and (2,5,6), D 



THEOREM 2.5.3. Let a,8,H E JR, 8 ~ 0. For I 

define for O s n s N 

::;; n::;; N let O < h ::;; Hand 
n 

n 
t = I h .• 
n i=I 1 

If the real nwribers s 0 ,s 1, ••• ,sN satisfy 

h a 
(2.5. 7) 

n 
sn s e sn-l + hnB 

then we have 

(2.5.8) 

PROOF.From (2,5.7) we easily derive 

(2.5.9) 
n 

0 t h a(t -t.) s s µ l .e n 1 
n i=I t 

( I :5: n ::;; N), 

(0 ::;; n ::;; N). 

(0:5:n:5:N). 

For I::;; i::;; n::;; N and ti-I::;; t::;; ti we have 

Thus we obtain from (2.5.9) 

t. 
1 n 

f ea(tn-ti)dt s s B I n i=I 

t 
ti-I 

n 

$ B I ea(tn-t)+Ha-dt 

0 

so o, 
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□ 
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. M,M d" . For a regular matrix A E lR the con ~t~on, denoted by cond A, is 

defined by 

(2,5,10) cond A = II A II • II A - I II • 

THEOREM 2.5.4. Let A,B E lRM,M, where A is a regular matrix, and assume 

(2,5 .11) IIA-B II £, 

(2.5.12) 0 < 1. 

Then Bis regular and 

(2.5.13) 

PROOF. 

cond B ~ cond A+ - 8- (I+ cond A). 1-0 

0 < I. 

Consequently the matrix A-IB is regular and 

(see for instance STOER [1972]). 

This implies that Bis regular and we obtain 

cond A 0 0 
= --r=e- + 1 _0 = cond A + 1 _0 ( I + cond A) • 

As usual the expression 

(2.5.14) 

□ 
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M with x,x0 E lR , ¢ 1(x),¢ 2(x),~(x) E JR, means that there are positive real 

numbers o and K such that for all x E lRM with II x-x011 s; o we have 

(2.5.15) 

If we replace (2.5.14) by 

then (2.5.15) has to be replaced by 

If, for instance, ¢3 (x) = ¢4 (x) ¢ 1(x) and ¢ 1(x) satisfies (2.5.14), then we 

may write 





CHAPTER 3 

OUTLINE OF THE METHOD 

Let the following be given: 

I • an integer M ~ I ; 

2. a continuously differentiable function f 

3. - M a set Yo C 1R of initial values; 

4. a real number T > o. 

Consider the differential system 

(3, I) U' (t) f (U ( t)) (O s t s T). 

Assume that for all x E_yO there is a function U on [O,T] satisfying (3.1) 

and U(O) = x. In other words, assume that U(T,yO) exists. 

55 

We will deal with a numerical method of enclosing U(T,yO). It proceeds 

in the following way. 

For certain grid-points O = t O < t 1 < ••• < tN = T a set yn is com

puted such that 

(3. 2) 

consecutively for n = 1,2, ••• ,N. We use a one-step-method in the sense that 

yn is computed from yn-l' without using yi for i < n-1, namely such that 

U(t -t 1•Y I) c yn n n- n- for n = 1,2, ••• ,N. 

From this the required inclusion (3.2) follows easily by induction. 

(3.3) 

The step sizes 

h n 
( I s n s N) 
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and hence the grid-points tn cannot be prescribed arbitrarily. They are 

found in the course of the process. 

Thus, for a given set y I c ]RM, the n'th step of the method consists 
n-

of the computation of a step size hn and a set yn c lRM such that 

(3.4) 

(see fig. 3.1). 

fig. 3.1 



This process does not necessarily succeed in reaching the grid-point 

tN =Tin a finite number of N steps. We may have an infinite process with 

lim t :,:; T. 
n 
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n--- -The existence of U(T,y0) is a necessary condition for the finiteness of 

the process. However, it is not a sufficient condition. U(T - t, y) may 
n n 

not exist for some n, due to the fact that inclusion (3.2) is in general not 

an equality. Then the process is infinite all the same. 

Therefore in chapter 6 we will give conditions under which we do reach 

the point tN 

ing U(T,y0). 

Tin a finite number of N steps and hence succeed in enclos-

We note that, for our numerical method, (3.2) and (3.4) hold for all 

appropriate n, whether or not U(T,y0) exists and whether or not the process 

is finite. 

In practice the sets yn have to be easily representable. Therefore we 

have to choose a suitable class Yr of sets to which Yo is assumed to belong 

and from which we will choose the sets y (n ~ I). 
n 

An obvious choice is Yl = IIJRM. HUNGER [1971] and MARCOWITZ [1973, 

1975] use this class. However, the necessity to choose the sets y from 
n 

this class Yl can cause. an unfavourable growth of diam y , independently 
n 

of the actual method and of the step sizes. We will show this in section 

6.2 by an example. 

The choice we make for the class Yl is the following: 

(3.5) Yl {Ax I A € JRM,M is regular, x € II lRM}. 

Now we can write 

(3.6) Ax 
n n 

(n ~ O) 

. h 1 . A € lRM,M d . 1 € II lRM • wit a regu ar matrix n an a vector interva xn 

Iri the n'th step we have at our disposal a regular matrix An-I € lRM,M, 

a vector interval xn-l € II lRM and a grid-point tn-l € [O,T) such that 

where y0 and yn-l are defined by (3.6). 
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Performing the n'th step we first compute a suitable step size 

hn E (O,T-tn-l] and a rough inclusion bn E ITJR.M of the set U([O,hn],yn-I). 

This part of the n'th step will be described and analysed in chapter 4. 

Using the inclusion b we compute a regular matrix A E JR.M,M and a vector 
n n 

interval x E II JR.M such that (3.4) holds, where y is defined by (3.6). 
n n 

This part of the n'th step will be described and analysed in chapter S. 

Finally, the formal description of the global method will be given in 

chapter 6. 



CHAPTER 4 

COMPUTATION OF A SUITABLE STEP SIZE 

AND A ROUGH INCLUSION OF THE SOLUTION 

4.1. INTRODUCTION 
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In this chapter we consider the first part of the n'th step of the 

method (n ~ I). A regular matrix An-I E lRM,M, a vector interval xn-l E Il lRM 

and a grid-point t E [0,T) are given such that for y 1 = A 1x I we n-1 n- n- n-
have 

(4.1.1) 

We will give an algorithm, which we will call Algorithm I, that com

putes a suitable step size hn E (O,T-tn-l] and a rough inclusion bn E IllRM 

of U([O,h ],y 1). 
n n-

This algorithm contains a parameter Hn > 0, which may depend on n, such 

that the step size hn is, if possible, approximately equal to this pre

scribed value Hn. This enables us to control the step size. 

In general we cannot compute f(x) or even □ f(x) exactly for arbitrary 

x E Il lRM. In practice we have available (due to the use of (rounded-) inter-
- M M val arithmetic, see chapter 7) a function f 0 : IIlR -->- II JR such that 

( 4. I • 2) 

Similarly we assume the availability of a function g0 
satisfying 

(4.1.3) 

In section 4.2 we describe Algorithm I and in section 4.3 we prove its 

correctness. Section 4.4 deals with bounds on the obtained step size hn. 

Finally, in section 4.5 we compare our algorithm with some alternatives. 





4,2. DESCRIPTION AND FINITENESS OF ALGORITHM I 

In this section we describe Algorithm I and prove some of its proper

ties, among which the finiteness of the algorithm. 

Roughly speaking, Algorithm I consists of the following parts: 

I. computation of a suitable vector interval to enclose U(t) (statements 

(4.2.t) - (4.2.6)); 

2, computation of a corresponding step size (statement (4.2.7)); 

3. if the step size is not satisfactory, reiteration of parts I and 2 with 

other values of parameter H (statements (4.2.8) - (4.2.10)); 

4. iterative improvement of the vector interval of part I (statements 

( 4. 2. I I) , ( 4. 2. 12)) • 

ALGORITHM I. 

(4.2. I) 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(if a < 1110>, 
(if 1/10 s ~ s 1/2), 

(if ; > I /2). 

(4.2.5) B := _la Hfo< □ Y 1)11. -a n-

(4.2.6) 

(4.2.7) 

h := min 
ISiSM 

. ( □ ) . (-(0)) 
( 

min p. y 1 - min p. b 
• i n- i 

min _ -(O) _ 
[min pi(f0 (b ))J 

i i n-
max p. (b(O)) - max p. ( D Y 1) ) 

fi := H 
n 

{0}). 

61 



62 

if 

<ii= H and h < lH) or <ii <H and h old 
< h < H) 

(4.2.8) n-- 2 n n--

then 

begin H := ii12; h old := h; b old 
·= b(O). . ' goto (4.2.3); end. 

(4.2.9) l if H < H and h ld e: - n-- o 

begin H := 2H; h := 

h then 

(4.2.10) 

(4. 2. 1 I) 

(4.2.12) b 
n 

For in we choose the smallest value of i e: I satisfying 

(4.2, 13) (for all j with I~ j ~ M), 

but we maximally choose in= 10. In other words, we continue the iteration 

process (4.2.11) as long as the diameter of the real interval p.(b(i)), for 
J 

any j, is decreased by more than 10%, or until 10 iteration steps have been 

performed. 

NOTE, In practice we calculate Dy 1 directly from A 1 and x 1, instead n- n- n-
of first calculating y 1 and then □ -y 1 (which would be impossible), How-n- n-
ever, for convenience in the interpretation and analysis of our method we 

formulate the algorithm using the set y 1, defined by (4,2.1). Because this 
n-

set only occurs in the combination Dy 1 in the algorithm, no practical n-
difficulties can arise, 

THEOREM 4.2.1. The vaZue of his weZZ-defined by (4.2.7). Moreover we have 

0 <h < 00 • 

PROOF • Assume 

(4.2.14) s o. 



By virtue of (4.2,5) we have 

(4.2.15) {O}. 

-(0) -
Consequently, using (4.2,6), we get b = □ yn-l' Using (4.2.15) again we 

obtain 

(4.2. 16) f (i,(O)) 
0 

{O}. 

Hence (4.2.14) implies (4,2.16). 

Now assume 

(4.2.17) 
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then S > O. Hence, using (4.2.6), we obtain that □ yn-l is in the interior 

of b(O). Consequently the numerators occurring in (4.2.7) are all positive. 

From (4,2.17) we conclude that for some i, I $ i $ M, we have 

and therefore 

Hence the denominators occurring in (4.2.7) are not all zero. Moreover they 

are all non-negative. 

Combining this with the result that the numerators are all positive 

yields that h is well-defined and that O < h < 00 • D 

THEOREM 4.2.2. Algorithm I is finite, 

PROOF. With each iteration of the statements (4,2.3) - (4,2,8) the value of 

His halved, see (4.2.8). Therefore after a finite number of iterations we 

have h $ hold (that is, h does not increase any more) or h ~ H, In both 

cases the iteration process is stopped. D 
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4.3. CORRECTNESS OF ALGORITHM I. 

For methods that only appro:cimate the solution of an initial value 

problem one is interested in the applicability (for instance for implicit 

methods) and the error. However, for methods that enalose solutions of ini

tial value problems, it is essential to consider something else as well, 

namely the correctness. For the method of this chapter, this means that the 

following theorem holds. 

THEOREM 4.3.1. If the pair (hn,bn) is produaed by Algorithm I then the set 

U([O,hn], yn_ 1) e:cists and 

(4 .3.1) U([O,h ], y 1> c b. n n- n 

Before we give the proof of this theorem, we formulate a lemma. 

LEMMA 4.3.2. Eaah time that (4.2.7) is exeauted, the value fi obtained by this 

statement is the greatest value of h satisfying 

(4.3.2) 

PROOF. (4.3.2) holds if and only if 

(4.3.2a) sup( □ yn-1 + [O,h] I 0 (b(O))) ~ max b(O) 

and 

(4.3.2b) inf( □ y l + n-
[O,h] I 0 (b(O))) :?: min b(O). 

Let 1 ~ i s M. 

[max( □ y 1) + sup([O,h] I O(b(O)))J. 
n- L 
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Therefore (4.3.2a) holds if and only if 

( I $ i ,:; M). 

Analogously (4.3.2b) holds if and only if 

(I ,:; i $ M). 

Combining these results yields that (4.3.2) holds if and only if h $ h, which 

proves the lemma. D 

PROOF OF THEOREM 4.3.I. Leth and b(O) have their final values. 

Define 

(4.3.3) Z {U U : [O,h] + IRM, U continuous}, 

(4.3.4) X = {U u E Z, U(t) E b(O) (O $ t $ h)}. 

Let y E yn-I" Define S : X + Z by 

t 

(4.3.5) (SU)(t) = y + f f(U(s))ds 

0 

(O ,:; t ,:; h) . 

By virtue of lemma 4.3.2, (4.3.2) holds for h = h. Hence, using (2.2.63) and 

(4.1'.2), we have 

(4.3.6) S(X) C x. 

Define on Z the norm 

(4.3. 7) 

where 

(4.3.8) 

IIU II= max (e-Lt HU(t)II) 
o:;t,:;fi: 



It is easy to verify that, with respect to this norm, Sis a contraction 

mapping and Xis closed (compare e.g. C0PPEL [1965]). By virtue of the 

Contraction Mapping Theorem of Banach (see e.g. SMART [1974]) we may con

clude that S has a fixed point, Consequently, U([O,h],y) exists and 

(4.3.9) - -(0) U([0,h],y) Cb • 

This holds for ally E yn-l' and hn ~ h. Hence 

(4.3.10) 

By induction (4,3.1) follows easily from (4.3,10), (4,2,11), (2.2,63) 

and (4.2.12). D 
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4.4. BOUNDS ON THE OBTAINED STEP SIZE 

In this section we will give bounds on the obtained step size hn' 

especially in relation to the prescribed value Hn' which is the step size 

we aim at. 
. - M Define for an arbitrary set x c 1R 

(4.4.1) K(x) = sup { 

where sup~= 0, Define 

q{Io<Y) ,Io<z)) 

q{y,z) 
z + y }, 

(4.4.2) KO= K(b(O)), with b(O) defined by (4,2,2) - (4.2.6). 

Assume 

(4.4.3) 

This will generally be true in practice for a reasonable choice of the 

function I0 • 
A 4 -(0) A 

Let H = Hn and let a,a,B,b and h have the values corresponding to 
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this value of H. In view of (4.4.1), (4.4.2), (2.3,51) and (2.3,22) we have 

(4.4.4) 

From (4,2,6), (2.3.50), (4.2.5) and (4,2,4) we have 

q(b(O) D -y ) s 
' n-1 □ [O,H J Io< □ y I) + H Ben n n- n 

I-a 
s H • (B. - + B) n a 

=HI n'a 

Combining this with (4.4.4) yields 
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(4.4.5) 

Define 

(4.4.6) h min Cl. 
(-K ' H ) • 

0 n 

By using (4.4.5), (4.2.6) and the subdistributivity property (2.2,32) we 

obtain the relations 

C □ yn-1 + [O,h] Io< □ yn-1) + [0,h] . Ko. Hn. ~. e 

hK0 _ 
= □ yn-1 + [O,h] IO( D yn-1) + Hni3 a e 

-(0) 
C b • 

Consequently 

By virtue of lemma 4.3.2 and (4.2.7) we find h ~ h or h Hn' hence using 

definition (4.4,6) we have 

(4.4. 7) h ~ min(Ka , H ) . 
0 n 

By virtue of (4.2.8) and (4.2.9) the final value of his not smaller than 

the first value. Therefore, using (4.2.10), we obtain 

(4.4.8) h ~ min(h,H ,T-t 1) for the first value of h. n n n-

Combining this with (4.4.7) we find 

(4.4.9) h ~ min(Ka ,H , T-t I). n O n n-
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I In view of (4.2.4) we have a~ To, thus arriving at the following theorem. 

THEOREM 4.4.1. Assume that K0 < 00 , where K0 is defined by (4.4.2). Let a 

be defined by (4.2.2), (4.2.3) and (4.2.4). We ha»e 

(4.4.10) 

In chapter 6 we will use this result to prove the applicability of 

our method on the whole interval [O,T]. 

!)efine 

(4.4.11) 

then we have the following theorem. 

□ 

THEOREM 4.4.2. Let K0 be defined by (4.4.2) and K 1 by (4.4.11). Assume K0 < 00 , 

(4.4.12) 

and 

(4.4.13) 

Then 

(4.4.14) where min(§, I) I • 

. 
PROOF. Let a and a be defined by (4.2.2), (4.2.3) and (4.2.4). By virtue of 

(4.2.3), (4.2.2) and (4.4.11) we have 

(4.4. 15) 

Using (4.4.12) this implies a~ ½, Therefore, by virtue of (4.2.4) we have 

a~ a. Combine this with (4.4.15) and apply theorem 4.4.1, then we find 

(4.4.16) 

Using (4.4.13) and (4.2.10) this proves the theorem. D 

If we define I0 by 
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then in view of (4.I.2) and (2.1.33) the set I 0(x) is as small as possible 
- M -for any x E IIJR • If f is a simple function, the function f O, which we 

must be able to evaluate practically, can often be chosen according to this 

definition. 

THEOREM 4.4.3. Let the function I0 be d.efined by (4.4.17) and b(O) by 

(4.2.2) - (4.2.6). Asswne that (4.4.12) and (4.4.13) hold, where K1 is 

d.efined by (4.4.11). Then 

(4.4.18) 
Ilia< o YrH)II 

llg0 (b(O))II 

h 
<__E_ $ I, - H 

n 

0 where min ( 0, I ) I. 

PROOF. Let y,z E IllRM, y,z c b(O). Using (2.3.57) and (2.3.58) we find 

4 < □ f (y) , □ f <z)) 

$ q < f (y) , f <z) ) 

::; 11£' (b(O))II • q(y,z). 

By virtue of ( 4 .4. I) this implies KO ::; 11£' (b(O) )JI, where KO is defined by 

(4.4.2). Using (4.1.3) and (2.3,7) we find 

Applying theorem 4.4.2 we find (4.4.14). Combining this with (4.4.19) and 

(4,4,11) yields (4.4.18) and the theorem has been proved, D 

INTERPRETATION OF THEOREM 4.4.3. If Hn is small, then the sets b(O) and 

D yn-l will not differ very much in general. Consequently we have 

(4.4.20) 

Therefore (4.4.18) implies 

(4.4.21) 

which was our aim, O 



COROLLARY 4. 4. 4. Let the function gO be de fined by gO ( x) C (x E II lRM ) , 

where CE IIlRM,M, and the function I 0 by (4.4.17). Assume 

H :,;_I_ 

n 2llcll 

and tn-l + hn < T. Then hn = Hn. 0 

If the function f is such that the set f'(lRM) is bounded and can 

practically be enclosed in a matrix interval, then the function gO can be 

chosen to be constant, and corollary 4.4.4 can be applied. 

EXAMPLE 4.4.5. 

If 

B E ]RM,M ' C E ]RM • 

f(x) =Bx+ c 

I 0<x) = □ Bx+ c 

i 0 <x) = {B} 

(XE 

(XE 

(XE 
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4,5. COMPARISON WITH OTHER METHODS 

4.5.1. Variants of Algorithm I 

Let Algorithm I' be obtained from Algorithm I by leaving out statements 

(4.2,8) and (4.2.9). We will compare both algorithms and thus explain why 

these statements have been built in in Algorithm I. First we give a theorem 

showing that Algorithm I is, in a certain sense, at least as good as Algo-

rithm I~ Then we will give example 4.5.2 showing 

that Algorithm I can be considerably better than Algorithm I'. Finally we 

motivate the presence of the term HSe in (4.2.6). 

THEOREM 4.5.1. Leth* and b(O)* be the values of h and b(O) respectively, 
n n 

produced by Algorithm I'. We have 

(4 .5. I) h* 5 h 5 H 
n n n 

and 

(4.5.2) -(0) -(0)* b C b • 

PROOF. According to (4.2.10) we have 

(4.5.3) * - -hn = min(h,Hn,T-tn_ 1) for the first value of h, 

Combining this with 

we have h 5 H and n n 
In Algorithm I 

(4.4.8) yields h ;;: h*. Furthermore, by virtue of (4.2.10) n n 
(4.5.1) has been proved, 

the final value of b(O) is computed according to (4.2.3) -

(4.2,6) with a value of H satisfying H 5 

is used in (4.2.3) - (4.2.6). Therefore, 

H. In Algorithm I' the value H = H 
n n 

using (4.2.2) - (4,2.6), we obtain 

(4.5.2) and the theorem has been proved. D 

EXAMPLE 4.5,2, 

M = 2 

2 

f ((~I))= ( ~2) 
~2 I 
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The exact solution is 

(t;:: O). 

Let n = I, hence tn-l 0, and let T = I, 

For any positive value of H, the statements (4.2,3) - (4.2.7) give the 

following results. 

I -91 •11( 0 )11 a = O, a = To , S g• 

( 00 ) + □ [O,H] (. 0 ) - ( + s i'ie = H 

h- . ( SH SH riii (l+S)H ) 
= min O ' (l+S)2 H2 ' 0 ' I ' 

hence 

(4.5.4) h=min( S ,(l+S)H). 
( l+S) 2 ff 

Substituting S = & we obtain 

(4.5.5) h = min ( --9- .!.Q. H )· 
100 ii ' 9 

[-S,S] ) , 
[-S' I +SJ 

Thus we see that for large values of H the value of his very small, -and that halving such a large value of H causes a doubling of h. Consequently, 

if H is large then h' is very small but h can be much larger than h'. n n n n 
Take for instance H = I, then we have hn' = 0.09, and executing Algorithm I 

n -
we have successively H = I, h = 0.09, H = 0,5, h = 0,18, H = 0,25, h ~ 0.278, 

and hn ~ 0,278. Of course the quotient hn/h~ can even be larger if Hn is 

larger, O 
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Let Algorithm I" be obtained from Algorithm I by replacing (4.2.6) by 

-b(O) .·= □ -y + □ [0 H] f ( □ - ) 
n-1 ' 0 yn-1 ' 

or equivalently, by replacing (4.2.5) by B := O. Let us apply this algorithm 

to the initial value problem of example 4.5.2. By substituting 8 = 0 in 

(4,5.4) we obtain h = 0 for any value of H. In particular, for H = H and for 
n 

H = H /2 we have h = O. Consequently h = 0, which would render the n'th step 
n n 

of the method (and all succeeding steps) useless. This shows the necessity 

of the term H 8 e in ( 4. 2. 6) • 

4.5.2. Moore's method 

Along the lines of MOORE [1966], p. 102, we can formulate the following 

alternative algorithm to compute the step size hn. 

(4.5.11) H := H/2. 

(4.5. 12) goto (4.5.8). 

Moore expects such an algorithm to be finite. However, we will give an 

example showing that this need not to be true. 

EXAMPLE 4.5.3. 

M = I. 

f(x) = x 2 (x E lR), -2 = X (x E TI JR). 
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Yo= {I}, n = I, 

Write a max a, then a necessary condition for 

- 2 is I+ Ha s a, and therefore Ha< I. For the values of Hand a occurring 

in the course of the execution of the algorithm we have successively 

H I ' a 2, a > 4, H 1/2, 

a > 8, H 1/4, 

a > 16, ii 1/8, -a > 32, H 1/16, etc., 

and the process never ends. 0 



CHAPTER 5 

COMPUTATION OF THE FINAL INCLUSION OF THE SOLUTION 

5,1, INTRODUCTION 

In this chapter we consider the second part of the n'th step of the 

method (n ~ I) which we will call Algorithm II. 

A regular matrix A E IR.M,M, a vector interval x I E II IR.M and a 
~I ~ 

grid-point tn-l E [0,T) are given such that 

(5,1.1) 

where 

(5. 1.2) A Ix 1· n- n-

Furthermore, a step size hn E (0, T-tn-I] and a vector interval bn E II ]RM 

are given such that U(hn,Yn-I) exists and we have the rough inclusion 

(5, 1.3) 

X E 
n 

We want to compute a regular matrix An E IR.M,M and a vector interval 

II IR.M such that 

(5.1,4) 

where 

(5,1,5) 

U(h ,y I) c Yn• n n-

y =AX. n n n 
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Our method contains an integer parameter k z 2. We assume that f is (k-1) 

times continuously differentiable. 

Define f.: lR.M ➔ lR.M (i = 0,1, ••• ,k-1) recursively by 
]. 

(5 .1 .6) 
1 , 2, ••• , k- 1 ) , 

We assume that we can evaluate fi(x) and fi(x) for Os is k-2 and every 

XElR.M. 

Furthermore, we assume that we have available a function fk-l : IIlR.M 

➔ II lR.M satisfying 

(S. 1. 7) 

and functions gi II lR.M ➔ II lR.M,M (O s i s k-2) satisfying 

(S. I ,8) f! (x) c g. (x) (x E II lR.M , 0 s i s k-2). 
]. ]. 

Note that the function g 0 has already been introduced (see section 4.1). 

REMARK 5.1.1. For a large class of functions f the functions fk-l and gi 

(Os is k-2) can be evaluated recursively. In that case explicit formulas 

for fk-l and gi (which may be very complicated) are not required (see 

MOORE [1966], chapter 11 and [1979], section 3.4). D 



5.2. DESCRIPTION AND FINITENESS OF ALGORITHM II 

In this section we describe Al3orithm II and prove its finiteness. 

ALGORITHM II. 

(5.2.1) 

(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5) 

(5.2,6) 

s n 

k-1 
:=I+ l 

i=l 

k-1 
C := l 

i=I 

k-1 hi 
l ;;. [g. I ( □ y I) 

i=I i. i- n-

if An is singular then begin hn := hn/2 goto (5,2,2); end. 
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REMARK 5.2.1. Statement (5.2.5), with An replaced by Sn, could have been 

inserted between (5.2.2) and (5.2.3), However, in practice the singularity 

of An is detected during the execution of statement (5.2.6). Therefore 

(5.2.5) has been placed immediately before (5.2.6). D 

THEOREM 5.2.2. Algorithm II is finite, 

PROOF. If hn + 0 then llsn-I II + 0 for the matrix Sn that corresponds to hn 

according to (5.2.2). Therefore after a finite number of halvings of hn we 

have II Sn-I II < I. Then Sn is regular. 

Furthermore the matrix An-I is regular. Therefore An is regular and the 

process of halving hn is stopped. D 

REMARK. 5,2.3. In the rest of this chapter the variables hn, Sn' An and c 

refer to their final values in the course of the execution of Algorithm II. 

Note that (5.1.3) remains valid if hn is interpreted according to this 

rule. D 





5. 3. CORRECTNESS OF ALGORITIL.'1 II 

In this section we will prove the correctness of Algorithm II in the 

sense of the following theorem, 

THEOREM 5. 3. I • For h , A and x produced by Algorithm II we have n n n 

(5.3.1) 

where 

(5.3.2) y =AX. n n n 

PROOF, Let y E yn-l be arbitrary. By virtue of (5.1'.3), U(hn,y) exists and 

(5.3.3) 
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By induction we easily see that U(t,y) is k times continuously differentiable 

with respect tot and that we have 

(5.3.4) 

Expanding U(t,y) in a Taylor series with respect tot we find 

(5.3.5) 

k-1 hi . 
, n l. 

y + l IT Dt U(O,y) + R 
i=I 

where RE ]RM is such that for Is j s M we have 

hk 
n k [R]. = k' [Dt U(s.,y)J. for some s. E (O,h ). 

J • J J J n 

Using (5,3.4) we find that the vector R satisfies 

(5.3.6) (lsjsM). 

By virtue of (5.1,3) we have 

U(s.,y) Eb, 
J n 
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and therefore, using (5.1.7), 

Consequently, using (S.3.6), we have 

hk 
n - -[ R] . E p- p . ( fk l (b ) ) 

J • J - n 

By virtue of (2,2.52), (2,1.11) and Ik_ 1(bn) E lilRM we find 

hk 
(5.3.7) n- -

R E k! fk-1 (bn) • 

Using (5.3.5) and (5.3.4) yields 

k-1 
y + I 

i=l 

i 
k-1 hn 

= y + I Tr f. l(y) + R. 
i=l 1., 1.-

Applying (2.2,66) and using y,yn-l ED yn-l we find 

k-1 
U(hn,y) E yn-1 + I 

i=l 

By virtue of (5,1.8) and (2.1,33) this yields 

k-1 hi n A 

U(hn,y) E Yn-1 + iII i! fi-l(yn-1) 

k-1 hi 
+[I+ I .~g. )(Dy l)J(y-y I)+ R. 

i=I l.. 1.- n- n-

Using (5,2.2), (2,2,30), (2.2.31) and y E □ y I we find n-



k-1 
U(hn,y) E yn-1 + l 

i=I 

+ S (y - y I) n n-

hi 
-Ji. f. I (y I) 
l., i- n-

k-1 hi \ n A A A 

c Sny + l -,, [f. I (y I) - fi!-1 (yn-1 )yn-1 J i=I 1.' 1.- n-

k-1 hi 
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+ ( l -~ Cg. 1< □ Y I) - fi!-l(yn-1)])( □ Y I -y I) +R. i=I i. i- n- n- n-

Combining this with (5.3.7) and (5,2,4) yields 

(5.3.8) 

Consequently, using (5,1,2), (5,2.3), (2,2,30), (5.2,6) and (5,3,2) we have 

= A X + C n n-1 

= A [x + A-I c] 
n n-1 n 

C A [x I + □ A - I c] 
n n- n 

=Ax=-y 
n n n' 

and the theorem has been proved, D 





5,4. THE LOCAL ERROR 

In the n'th step of the method we compute a set y for which (5.1.4) 
n 

holds. Of course we prefer y to be a narrow inclusion of U(h ,y 1). In n n n-
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order to measure how good (that is, how narrow) the inclusion is, we intro-

duce the local error of the n'th step, defined by 

(5.4. I) £ q(yn' U(h ,y I))• n n n-

Thus we use the Hausdorff dis.tance between the enclosing and the enclosed 

set, Note that U(hn,Yn-l) is compact because of the compactness of yn-l and 

the continuity of U(hn,x) with respect to x. 

We will formulate a theorem that gives an upper bound of £n, In prepara

tion for this theorem we give some definitions. 

Define for x c lRM, x f 0, 

(5.4.2) 

L(x) = 2-U.E_ 
ycx 
yEil ]RM 

and 

diam Ik-l (y) 

diam y 

diam g. (y) 
]. 

diam y 

0 where O 0, Furthermore, define 

(5.4.3) on-I = diam yn-l' 

THEOREM 5 .4, I. Assume 

(5.4.4) 

a:na 
(5.4.5) 

Then 

L(b ) < 00 

n 

L. ( □ y 1) < oo 
l. n-

(0 s i s k-2). 

(0 sis k-2), 

(5.4.6) 
k- l I - 2 i I - k -

£ $ ½(I +cond A)[ I 7Ti•. Li.-l(Dy l)o lh +-k, L(b )h diamb ]. n n i=I n- n- n • n n n 
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PROOF. Using (5.2.1), (2.3.36) and (2.3.31) we derive 

I -
2 diam yn-l • 

Hence with definition (5.4.3) we find 

(5.4.7) 

Using (5.2.4), (2.3.32), (2.3.31), (2.3.28), (5.4.2), (2.3.14), (2.3.12), 

(2.3.13), (2.3.29) and (5.4.7) we derive 

k-1 hi 
diamcsdiam([I ~[g. !(Dy 1)-f! 1<Y 1>J](Dy 1-y 1>) i=l i. i- n- i- n- n- n-

hk 
+ p-n L(b ) diam b 

• n n 

(
k-1 hi 

s 2. l ~Ilg. !(Dy 1)-f! (y 1>11). II Dy -y II i=l i. i- n- i-1 n- , n-1 n-1 

hk 
+ p-n L(b ) diam b 

• n n 

(
k-1 hi hk 

s 2. }: ~ diam g. 1( Dy 1)). ! on-I + k~ L(b) diam b. 
i=l i. i- n- • n n 

Consequently, using (5.4,2) and (5,4.3) we have 

(5.4.8) 
k-1 

diam cs }: 
i=I 



By virtue of (5.4.I), (2,3.44) and (5.3.1) we have 

E: max min II u-U(h ,y) U. 
n n 

Combining this with (5.3.2), (5.2.6) and (5,3.8) we find 

E: max min IIA x-U(h ,y)II 
n XEX 

n 
n n 

,,; max min max IIA (x1 + z) - S y - ell. n n 
x 1Exn-l YEYn-I CEC 

ZE □ A-le 
n 

Choosing y = An_ 1x1, defining c = mean c and using (5.2.3), (2.3.12), 

(2.2.30), (2.2.49), (2,3.14), (2.3.16) and (2.3.36) we obtain 

E: n 
,,; max 

XJEXn-1 

zE □ A- 1e 
-n 

max IIA (x 1 + z) - S A 1x 1 - c II - n n n-
cEc 

= max max II A z - ell 
-1- cEe n 

ZE □ A C 
n 

,,; II A II • II □ A-I (e - ~) II + lie - ; II 
n n 

II A II • II A - 1 (e - 2) II + II e - ~ II 
n n 
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=(I+ cond A) ! diam c, 
n 

Combining this with (S.4,8) we obtain (5.4.6) and the theorem has been 

proved. 0 
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5 .5. COMPARISON WITH OTHER METHODS 

5.5.1, Moore's method 

In this section we will compare our method in some respects with the 

method of MOORE [1966], chapters 10 and 13. 

Using our notation we can say that in MOORE [1966], like in our method, 

the set U(t ,y0) is enclosed in a set y =Ax, with A a regular matrix 
_ nM n n n n 

and xn E lI lR • The matrix An is still computed by An = Sn An-I (i.e., 

according to (5.2.3)), but Moore chooses for S the matrix 
n 

(5.5.1) s I + h f I (y ) 
n n n-1 

(cf. (5.2.2)). 

We will show by means of example 5.5.1 that this choice of Sn can cause 

the local error to be essentially greater than is ever possible in our method, 

independently of the actual method for computing x. 
n 

EXAMPLE 5,5.1. 

I, I, 

( 
[O,o]) 

, where o > O. 
[O,o] 

The general solution of the differential system is given by 

U ( t,x) C(t)x, 

where 

C(t) 

2. Let SI be defined by (5.5. I). Let Y1 Six], with xi E IT ]RM, be an in

clusion of U(h 1,y0), produced by any method. 

Consider the local error E 1, 
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where the last inequality holds by virtue of (2.3.49). Since 

and x1 E II lR.M, we have by virtue of (2.1.33) and (2.3.45) 

(5.5.2) 

SI I + h/' (yo) I+ h 1B = 
(+hi hi) 

0 l+h I 

-] -I ( -hi (l+~l)-1) 
SI ( I + h I) 

0 

) . 

By virtue of (5.5.2), (2.2.56) and (2.3.48) this implies 

(5.5.3) I h1 -I 
q < □ Q xo, Q xo> , EI ?: -_-1- e (l+h 1) 

where 
II s I II 

( ~ 
qo 

) and q0 = hf ( l+hl) 
- I 

Q = 

hence 

Consequently, 

?: miE_ II ( ( I +qo) cS ) - Qx II 
XEX 0 

0 

= min max([(l+q0)o - (i:; 1 +q0 i:; 2) l,lt; 21) 
Q$/;1$Q 

o:,;1;2:,;cS 

= min max(q0 (a-t; 2) + (o-t; 1),t; 2) 
Q$/;l$o 

0$/;2$6 

X ::, 
l 



min max(qo(o-s2>,s2) 
os;s 2s;o 0 

qo 
= l+qO • o 

oh~ (l +0(h 1)) 

Furthermore, fig. 5.5.l 

Therefore we obtain from (S.5.3) 

(5.5,4) 

3. Now consider the local error El for our method, defined in sections 4.2 

and 5. 2. Under weak conditions it can be proved that 

(S.5.5) 

and we may derive from (S.4.6) 

(5,5,6) 

or, equivalently, 

(5.5.7) 
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The proof of (S,5,5), (S.5.6) and (S.5,7) and the precise conditions will 

not be given here, since these matters are treated in chapter 6 as part of 

the analysis of the global method (cf. (6.1.45), (6.1.54) and (6.1.55)). 

If we put for instance o = h~/Z and let h 1 + 0 and hence also o + 0, 

then (S.5.4) implies 

while we have for our method, in view of (S,5.6) or (S.5.7), 
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if we take k > 2. 

This shows that fork> 2 the local error El does not satisfy (5.5.6) 

or (5.5.7), whenever s 1 is defined by (5,5.1). Fork= 2 the definitions 

(5.2.2) and (5.5.1) coincide. D 

Concluding the comparison of the method of Moore with our method we 

observe that the former requires the inclusion of the set of inverses of all 

matrices in a given matrix interval, namely in 

while the latter only requires the inversion of one matrix An. The first 

computation is more complicated, especially if some matrix in the interval 

is close to a singular matrix. Furthermore, if the matrix interval contains 

a singular matrix, then the computation is even impossible. This eventuality 

is more likely to occur than the singularity of our matrix An. 

5.5.2. Kruckeberg's method 

In this section we will compare the method of KRtl'CKEBERG [1969] with 

our method, and show by means of an example that the local error for the 

method of Kruckeberg can be essentially greater than is ever possible for 

our method. 

Let us consider the n' th step of his method, omitting details irrele

vant for our purpose and using our own notation. As Kruckeberg explains, 

there are a large number of numerical realizations for his method, However, 

we will try to make our considerations, as far as possible, independent of 

the realization actually chosen. 

Like in our method, we have in the n'th step at our disposal a set 

yn-l E YI (where Yr is defined by (3.5)) and a grid-point tn-l E [O,T) 

such that 

(5.5.8) 

The n' th step is composed of three par ts, process ( 1) , process ( r I.) 

and process (III). 
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Process (I) contains a parameter k. Let us choose k = 0, which, accord

ing to Kruckeberg, is sufficient, and which is the only value for which 

process (III) is described, Then process (I) consists of the computation of 

a step size hn > 0 and a vector interval bn E n 1RM such that 

(5.5,9) 

For this process Kruckeberg refers to MOORE [1966]. In section 4,5,2 we com

pared our Algorithm I with this process of Moore. 

Process (II) consists of finding an inclusion of the vector U(hn,yn··I), 

for some fixed vector yn-I E Yn-l' 

In process (III) a matrix interval Sn is computed such that 

(5.5.10) 

This S is defined by an infinite series. The precise computation of S is 
n n 

not specified, but for our comparison it suffices that Sn satisfies 

h2 
(5.5,11) sn =I+ hngO(bn) + ; D[go(bn)J[go(bn)J + R, 

where R E II ]RM,M depends on hn and satisfies IIR II = O(h~), and the function 

g0 : Il1RM ➔ IllRM,M satisfies (4,1.3), just as for our method. 

Combining the results of process (II) and process (III) Kruckeberg ob

tains an inclusion y E YT of U(h ,Y 1). This y satisfies n n n- n 

(5.5.12) yn :, U (h 'y I ) + S (y I - y I ) ' n n- n n- n-

Note that for process (III) the existence and availability off' is 

necessary. Whether higher derivatives off have to exist and be available 

depends on the actual realization of process (II). 

2 -EXAMPLE 5.5.2. M = I, f(x) = x, Yo= [l,l+o], where o > 0. 

The general solution of the differential equation is given by 

Therefore 

U(t,x) = -_-1-
x -t 
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-I 
[I, I +o] - h I 

and 

I + cS I 
I - h 1 (!+6) -~ 

Furthermore, 

-I 
[ I , I +6] - [ 0, h I ] 

and 

I ] = [1, l+o+hl+O((o+hl/)] (o+O,hl ➔ O) 
( I +o) -I - h 1 

By virtue of (S.5.12), (2.3.35) and (S.5.11) we have in Kruckeberg's method 



In view of (2.3.52) the local error £ 1 in Kruckeberg's method satisfies 

Hence 

If we put for instance o 
then we conclude 

h~/ 2 and let h 1 ->- 0 and hence also o->- O, 

We have for our method, in view of (5.5.7), 

if we take k > 2. 
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This shows that for Kruckeberg's method the local error can be essen

tially larger than is ever possible for our method. D 





CHAPTER 6 

THE GLOBAL BEHAVIOUR OF THE METHOD 

6.1. THE GLOBAL METHOD, ITS APPLICABILITY AND THE GLOBAL ERROR 

In this chapter we will discuss the global method. The n'th step of 

this method is mainly composed of Algorithm I and Algorithm II, described 

in chapters 4 and S, respectively. 

Throughout this section we will assume the following to be given: 

I. integers M ~ I and k ~ 2; 

2. a (k-1) times continuously differentiable function f: lRM 
- M M M M -

3. functions fo : TI lR ➔ TI IR , fk-l : II ]R ➔ II lR and gi 

(0 $ i $ k-2), satisfying (4.1.2), (S.1.7) and (5.1.8) respectively; 

4. a regular matrix A0 E · lRM,M; 

S. a real number T > O. 
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If we further assume that a vector interval x0 E IT ]RM is given, as 

well as values Hn > 0 for all appropriate n ~ I, then the global method can 

be described as follows. 

THE GLOBAL METHOD. 

to := 0 ; n := 0 

newstep n := n + I; 

Algorithm I; 

Algorithm II; 

tn := tn-1 + hn; 

if tn < T then goto newstep, 



JOO 

Our method produces a grid-point tn' a regular matrix An and a vector 

interval xn for any n 2 I, as long as we do not have tn-l = T. For these tn, 

A and x we have n n 

(6.1.1) 

where, as previously defined, 

(6.1.2) y. 
]_ 

A.x. for all appropriate i 2 0. 
]_ ]_ 

Just as the narrowness of inclusion (S.1.4) is measured by the local 

error, defined by (S.4.1), we measure the narrowness of inclusion (6.1,1) 

by the global error, defined by 

(6.1.3) 

Thus in analogy to the local case we use the Hausdorff distance between the 

enclosing and the enclosed set. 

We will formulate a theorem that gives an upper bound on Yn• 

As we pointed out in chapter 3, the assumption that U(T,y0) exists 

does not simply imply that the global method is capable of reaching the 

grid-point tN =Tin a finite number of N steps. Therefore we will give 

conditions under which the global method is applicable on the whole interval 

[O,T]. 

The problems of applicability and bounding the global error are treated 

in one theorem because of their strong relationship. 

THEOREM 6.1.1 (about the applicability and the global error of the method). 

Let XO E ]RM and define Yo = Aoxo· Asswne that U(T,yo) exists. Further

more, asswne that K(x), L(x) and L.(x)(O ~ i ~ k-2), defined by (4.4.1) and 
]_ 

(S.4.2), as well as sup{llfo(y)II IY E IllRM,y c x}, are finite for every non-
- M empty bounded set x c 1R • 

Then there are values 6 > 0, H > 0, s1 2 O and s2 2 Osuch that con

clusions I and II are valid whenever the following asswnptions A and B hold. 



ASSUMPTIONS. 

- M 
A. XO E II ]R 

~ 

mean xO xO, 

and with y0 = A0x0 and 

(6.1.4) cl= diam Yo 

we have 

(6.1.5) cl s 6. 

B. 

(6. I .6) H s Hn s H foP all appPopPiate n, 

foP some fixed value H > 0. 

CONCLUSIONS. 

I. The global method is applicable on the whole intewal [O,T], Peaching 

the gnd-point tN =Tin a finite nwnbeP of N steps. 

II. The global ePPOP yn, de.fined by (6.1.3), satisfies 

(6.1.7) 

whePe 

(6. I.8) h = max h, 
max l$n$N n 

H max max 
l$n$N 

H • 
n 

$ n s N), 

10 I 

The values of 6, H, s1 and s2 can be defined accoPding to (6.1.9) - (6.1.28). 

REMARK 6.1.2. Both as an extension of theorem 6.1.1 and in preparation for 

its proof we define a combination of possible values for 6, H, s1 and s2 
using a number of auxiliary sets and variables. 

Let v1,v2 > 0 be arbitrary (we could have defined here for example 

v1 = I, v2 = I; however, our approach is somewhat more general and gives 

values of 6, H, s1 and s2 depending on these parameters). 

(6.1.9) 
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where e is defined by (2.3.18). 

(6.1.10) 

(6.1.11) a 1 = max µ[f'(B)], 

whereµ denotes the logarithmic norm, defined by (2.4.4). Because of the 

compactness of the set Band the continuity of the functions f' andµ, the 

set µ[f'(B)] is compact and therefore has a maximum. 

(6.J.12) a 2 = max µ[-f'(B)], 

where the existence of the maximum is shown analogously to that of the 

maximum in (6. I • I I). 

(6. I. 13) 

where v3 > 0 is chosen such that we have 

(6.1.14) 

and 

(6. I. I 5) 2v 3 sup{III0 (x)ll jx c II lRM • X CO y} ,; v2 . 

(6.1.16) 
a3 

( I 
v3(al+a2) 

a4 al + a2 + l + e ) • 
- a3v3 

(6.1.17) I 
a 4T 

• cond AO, as + e 

where cond A0 is the condition of the matrix A0 , defined by (2.5.10). 

(6.1.18) 

(6.1.19) 

( 6. I • 20) 

I )<.-I I - i-1 
-2 as l -., L. I ( □ Y) • V3 

i= I 1.' 1.-



NOTE. By virtue of theorem 2.5.2, a 8 is finite and satisfies 

where the function w is defined by (2.5.1). 0 

(6. 1. 21) 

( 6. 1 • 22) 

(6.1.23) 
a 

all = ~ L(B)sup{diam([O, l]fo(x)) Ix E IT ]RM, x c B}. 

NOTE. The finiteness of the supremum in (6.1.23) follows from the finite

ness of 

sup{llfo(x)II Ix E IT ]RM' X CB}, 

since 

diam([O, 1Jf0 (x)) s; 211 [O, 1 JI/x)II □ 

Choose H llnrl /\ such that 

(6. 1 • 24) 0 < H s; V3, 
+ 

-al T 
(6.l.25) 0 < /'; s; vi e 

and 

(6.1.26) 

Then, finally,we can define s1 and s2 as follows. 

as H 
I (6.1.27) SI e T w (ci8T) (a9 + 2al0). 

a8 H I k-2 (6. 1.28) S2 e T w (a8T) (a 1 I + 2alOH ). □ 
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PROOF OF THEOREM 6. 1 • 1 • 

1. Let the values /\., H, s 1 and s2 and all auxiliary values be defined and 

chosen according to (6. 1. 9) - (6.1.28). Let x0 E: II ]RM' such that 

mean x0 = ~O and (6. 1 .5) holds. Furthermore, let H > 0 and assume (6.1.6). -

2. We will prove by induction 

(6.1.29) 

(6.1.30) 

(6.1.31) 
and hi need not be halved according to (5.2.5), 

for all i > 1 for which the i'th step is performed. 

Assume that (6.1.29) - (6.1.31) hold for 1 sis n-1, where n 2 I is 

such that tn-l < T. We will prove (6.1.29) - (6. 1.31) for i = n. This 

proof will be given in the parts 3 - 8. Note that for n = we do not 

assume (6.1.29) - (6.J.31) for any i. 

3. Assume n > I. Define 

(6.1.32) * h = max hi, 
1sisn-l 

then from (6.1.29) (Isis n-1) and a 10 ,a 11 2 0 we have 

(6.1.33) 
hia8 2 * k-1 * k 

yise yi_ 1 +h/a9o +a 10 .o.(h) +a 11 (h)] (1:s-i:s-n-1). 

By virtue of theorem 2.5.3 and using Yo= 0 we find 

(6. l . 34) 

By virtue of (4.2.10), (6.1.6) and (6.1.32) we have 

H. SH. 
l. 

In view of theorem 2.5.1, (6.1.5), (6.1.34) and a9 ,a 10 ,a 11 c'. 0 we thus 

have 



(6.1.35) 

Using (6.J.26) we conclude 

(6. 1.36) 

which is also (trivially) true for n = I. 

Assume again n > I. By virtue of (6.J.30) for i n-1, (2.4.12) and 

(6. I.JI) we have 

Therefore 

(6.1.37) 
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which is also true. for n = I, because DxU(O,y0) 

tion n > I. 

I. Now drop the assump-

It is easy to verify that we have 

Thus the definitions of y0 and y0 used in this chapter are in accordance 

with (5.2.JJ. 

Using (2.3.24), (6.J.37), (5.4.7), (6.J.4) and (6.J.5) we obtain 

Combining this with (6.J.25) we find 

(6. 1.38) 
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By virtue of the triangle inequality for the Hausdorff distance, and using 

(6.1.36) and (6. 1.38) we obtain 

In view of (2.3.51) and (2.3.22) this implies 

Using (6. 1.9) we find 

(6.1.39) 

4. Let the variable b(O) have one of the values assigned to it in the course 

of the execution of Algorithm I. According to (4.2.6) we have 

(6.1.40) 

where Sis defined by (4.2.3) - (4.2.5) and H has a value satisfying 

H $ Hn. Combining this with (6.1 .6) and (6. 1.24) we find 

(6.1.41) 

By virtue of (4.2.4) we have a$~, which implies, using (4.2.5), 

(6. 1.42) 

Furthermore 



Using (6.1.42), (6.1.41), (6.1.15) and (6.1.39) this implies 

Consequently, by virtue of (6.1.40) and (6.1.39) we have 

-b(O) C □ -y + v2e. 

From this we conclude, using (6.1.10), 

(6. 1.43) -b(0) CB. 

Let 1,(0) have its final value. As long as we have not proved that hn 

is not halved according to (5.2,5), let hn have the value produced by 

Algorithm I, and let the matrix S be defined by (5.2.2) for this value 
- n 

of h. 
n 

In view of (4.3.1), (4.2.12), (4.2.11) and (6.1.43) we have 

(6. 1.44) 

From (4.2.11), (4.2.12) and (5.4.3) we have 

Using (6.1.44) and (6.1.23) this implies 

(6.1.45) 
_ _ _ 2k!a 1 I 

L(B). diam b $ L(B). o I + h • ---
n n- n as 
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5. By virtue of (5.4.3), (2.3.52), (2.3.37), (6.1.3), (6.J.37) and (6.1.4) 

we have 

diam y 1 n-

Thus we have obtained 

(6. I .46) 

6. In view of (2.4.12), (2.4.13), (6.1.44), (6.1.11) and (6.J.12) we find 

(6. I .47) 
_ a 1t 

IID U(t,y 1)11 s e 
X n-

and 

(6. I .48) II [D U(t,y )l- I 11 
X n-1 

The function f is (k-1) times continuously differentiable. Therefore 

the functions n!nxU(t,x) exist for Os is k-1, for values oft and x 

for which U(t,x) exists. 

Expanding the matrix function D U(t,y 1) in a Taylor series around 
X n-

t = 0 and using (2.2.64), (5.3.4) and (5.2.2) we have 

k-2 hi . 
\ Il 1 A 

l ..,,- D tD U ( 0, y I ) 
i=I i. x n-

D U(h ,y 1) EI+ 
x n n-

k-2 hi 
I:' n ' ~ 

c I + L ..,,- f. l (y l ) 
i_;I i. i- n-
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hk-1 

+ (k~I)! D {Dx[fk_2(U(t,x))JI0 $ t $ hn' x = yn_ 1} 

hk-1 

c Sn+ (k~I)! [n fk-2(u(ro,hnJ,yn-l))DxU('0,hn],yn-l) 

Using (2.3. 17), (S.2.1), (6. 1.44), (6. 1.47) and (6. 1.39) this implies 

II D U (h , y I ) - S II x n n- n 

- f' (y ) II 
k-2 n-1 

hk-1 

$ (k~I)! • [M. llfk_2 (u([O,hn],yn-l))II. IIDxU([O,hu],yn-l)II 

By virtue of (4.2.10) and (6.1.41) we have 

(6.1.49) 

Therefore we may conclude, using (6.1.13), 

(6.1.50) 

For any matrix A E IRM,M we have, according to (2.4.5), 

µ[A]+ µ[-A]~ 0. 
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Therefore, using (6.1.11) and (6.1.12), we have 

(6.J.51) 

Consider theorem 2.5.4 with D U(h ,y 1) and S substituted for A and x n n- n 
B, respectively. By virtue of (6.1.50), (6.1.48), (6.1.49) and (6.1.14) 

we have 

+ 

IIA - B II s hna 3e 
-v3a2 

E = 

e dA- 111 s 
a2hn 

E • e 

+ 
v 3a2 

S E. e s hna3 s v3a3 < 

and 
alhn a2hn hn <ata2) 

cond A IIAII. IIA-l II s e e e n 

Hence we can apply the theorem so as to obtain the following results. 

In the first place the matrix Sn and hence also An is regular. There

fore no halvings of hn according to (5.2.5) are needed, and we need not 

distinguish any more between the values of hn produced by Algorithm I 

and Algorithm II, nor between the corresponding matrices Sn. 

In the second place we obtain 

e 
cond Sn s cond A+ T=o (1 + cond A) 

hn(al+a2) a3 hn(al+a2) 
Se +h.---(l+e ). 

n 1-a3 v 3 

Using (6.1.51), (6.I.49), (2.5.4) and (6.1.16) this implies 

(6.1.52) cond S n 

and (6.1.31) has been proved for i = n. 

By virtue of (6.1.1) with n replaced by n-1, (6.1.44), and (6.1.30) 

for i n-1, we obtain (6.1.30) for i = n. Thus only (6.1.29) for i = n 

remains to be proved. 

7. By virtue of (6.1.31) for sis n we have 

cond A s 
n 

n tna4 
Tl cond Si) . cond A0 s e cond A0 . 

i=l 



Using (6.1.17) and a4 ~ 0 this implies 

(6. 1.53) 

Define En by (5.4.1) and combine (5.4.6), (6.J.53), (6.J.39), (6.J.44) 

and (5.4.2) so as to obtain 

By virtue of (6.1.18) and (6.1.49) this implies 

(6. 1.54) 

Using (6.J.54), (6.1.45), (6.1.46), (6.1.21) and (6.J.22) we find 

+ 
a5 - al T k k+I 

+ 2k! L(B)(e 0 + 2Yn-l )hn + al lhn 

+ 
al T as - hk-1] ,,; hn yn_l[4a6e o + 4a6yn-l + k! L(B) n 

By virtue of (6.1.5), (6.1.19), (6.J.25), (6.J.36) and (6.J.49) this 

implies 

(6. ! .55) 

I I I 

8. Using (6.1.3), the triangle inequality for the Hausdorff distance, (5.4.1) 

and (2.3.58) we have 
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q(u(h ,Y 1) ,u(h ,u(t 1,y0))) + £ n n- n n- n 

~ II D U (h , y ) II • y I + £ • x n n-1 n- n 

+ £ n 

Combining this with (6.1.47) and (6.1.55) we obtain 

(6. 1.56) 

Using (6.!.20) and (6.1.49) this proves (6.1.29) for i = n. 

Thus we have completed the induction step and proved (6.J.29), (6.1.30) 

and (6.1.31) for all i z I for which the i'th step of the method is per~ 

formed. 

9. Now we will show that after a finite number of N steps the grid-point 

tN =Tis reached. 

Let n z I be such that the n'th step of the method is performed. Using 

(6.1.43) and (4.4.1) we find K0 ~ K(B), with K0 defined by (4.4.2). By 

virtue of theorem 4.4.1 and (6.1.6) we obtain 

h z min( IOIKO, Hn' T-t I) z min(--1- ,H_, T-tn-l). 
n n- !OK(B) 

Combined with (4.2.10) this shows that the grid-point tN Tis reached 

for some N with 

hence 

(6. J .57) 

T 
N < -----,-----

min(-1-
IOK(B) 

H_) 
+ I, 

N < T. max(JOK(B), H ) + I. 
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JO. Let I$ n $ N. Analogously to the derivation of (6.J.34) we may deduce, 

using (6.1.8), 

(6. 1.58) 
a- h 

ynse 8 maxtnw(a8t)[ao2 +a 10o(h )k-l+a 11 (h /J 
n 9 max max · 

By virtue of (6.1.8), (4.2.10) and (6.1.6) we have 

(6. 1.59) h ,,; H ,,; H. 
max max 

Using (6.1.58), (6.1.59), theorem 2.5.1 and y0 = 0 we find 

(6. 1.60) 
a8 H 2 k-1 k 

yn s e T w(a8T)[a9o +a 10o(hmax) +a 11 (hma) J (OsnsN). 

Furthermore, by virtue of (6.1.59) we have 

Together with (6.1.60), (6.1.27) and (6.1.28) this implies 

(6.J.61) (Os n s N). 

Combining this with (6.1.59) yields (6.1.7) and the theorem has been 

proved. D 

REMARK 6.1.3. In practice one will often be interested in the vector inter

val Dy, instead of A and i, together representing the set y. The small-n n n n 
est vector interval enclosing the set U(tn,yO) is D U(tn,yO). Therefore, in 

addition to the quantity yn' defined by (6.1.3), an important quantity is 

y~, defined by 

(6.1.62) 

By virtue of (2.3.57) we have a simple relation between yn and y~, namely 

(6. J.63) 

Therefore theorem 6.J.1 is also valid if we replace yn in (6.1.7) by y~. D 
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REMARK 6.1.4. Assume H 
n 

H ( I s n s N), 

O<H s--1-
IOK(B) 

F s H. 

Combining (6.1.7) and (6.J.57) we obtain 

(6. I. 64) 

Thus we have a simple relation between the number of steps and the global 

error. D 



6.2. A FURTHER ANALYSIS OF THE GLOBAL ERROR 

6.2.1. The condition of A 
n 

Let the assumptions of theorem 6.1.1 and those formulated in part I 

of its proof, hold. Let Is n s N. 

From part 8 of the proof we obtain 

(6.2.1) 

Using (6.1.47) this implies 

(6.2.2) $ 
al¾ 

+ yn e yn-1 £ n 

Since Yo 0 we therefore have 

n al(tn-ti) 
(6.2.3) yn $ L e £ •• 

i=I l 
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Thus we see that the global error can be bounded by the sum of the 

local errors, each multiplied by a factor. This factor depends on the dis

tance tn-ti between the two grid-points concerned and on the number a 1, which 

according to (6.1.11) is defined by 

(6.2.4) a 1 = max µ[f'(B)], 

where Bis defined by (6.1.11). Thus a 1 depends on the nature of the differ-
a1(t -t•) 

ential system. Since its value may be negative, the factor e n 1 may be 

smaller than I. In that case the local error of the i'th step propagates in 

a favourable way. If we would have used the norm of f'(B) instead of the 

logarithmic normµ, this property could not have been revealed. 

Let us now consider the local error En. From the proof of theorem 

5.4.1 we obtain 

(6.2.5) 

where c is defined by (5.2.4) and depends on n. Let us consider the origin 

and necessity of the factor ~(I+ cond An). 
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According to (5.3.8) we have 

(6.2.6) 

for ally E yn-l • Thus we have 

(6.2. 7) 

Therefore if we would not demand yn E Yf, then we could have chosen yn 

Sn yn-l + c. Then the local error would be 

max min 11S y + c - U(h ,y1)11 
n n 

YEY n-1 y I EYn-1 
CEC 

:s; max 

YEYn-1 
CEC 

$ max 

YEYn-1 
CEC 
CIEC 

11S y + c - U(h ,y)II 
n n 

II s y + C - (S y +CI) II n n 

II c-c 1 II diam c. 

Thus we have arrived at the following estimate. 

(6.2.8) + c, U(h ,y 1)) n n- $ diam c. 

From the proof of theorem 5.3.1 we obtain 

(6.2.9) u<h ,-Y 1) cs y + c = A x + c = A ex 1 + A- 1 cJ. 
n n- n n-1 n n-1 n n- n 

By virtue of (6.1.2) and (S.2.6) we have 



1 1 7 

(6.2. 10) Ax + A □ A-l c. 
n n-1 n n 

Comparing (6.2.9) and (6.2.10) we see that yn is (with respect to the 

inclusion) the smallest set of the form Anxn with xn E Il 1R M fnr which we 

have 

(6. 2. 11) 

Thus, if we compare (6.2.8) and (6.2.5) it becomes plausible that the factor 

½(1 + cond An) in (6.2.5) is a consequence of the necessity to choose for yn 

a set of the form A x with x E IT lRM. n n n 
A similar phenomenon is observed by JACKSON [1975]. He considers linear 

differential systems and he deals with the ideal case that 

(6.2.12) A 
n 

(which does not depend on x). 

Starting from the inclusion 

(6.2.13) 

M 
where xn-l c Il 1R , he assumes that the n'th step of a numerical process 

produces an inclusion 

(6.2.14) 

where x E Il ]RM is such that 

A X 
n 

- M and r E Il1R is a set of error vectors. In order to obtain from (6.2.14) 

an inclusion of the form 

(6.2. 15) U(tn,yO) C yn Ax n n 

with X E IT ]RM, this X has to satisfy n n 

(6. 7.. 16) X :::, X + □ A-1 r. 
n n 

In the best case we have x = x + □ A-l rand we obtain the inclusion 
n n 
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(6.2.17) Ax+ A □ A-Ir. 
n n n 

Comparing this with (6.2.14) we see that the set of errors r has been 

"blown up" to the set A □ A-I r. This effect is similar to· the replacement 
-I - n n_ I 

of An[xn-l + An c] by An □ [xn-l + A: c] (see (6.2.9) and (6.2.10)). 

Jackson considers the differential system 

(6.2.18) U' (t) B U(t), where B c: 
for which we have 

(6.2. 19) 

(6. 2. 20) 

DxU(t,x) = ! (l+e::: 1-e:::)' 
J-e l+e 

-I (l+e2t 1-e2t) 
[DxU(t,x)] = _21 2 2 • 

1-e t l+e t 

Choosing r such that r llr II e he obtains 

(6.2.21) 
2t _ 

r = e n r 

and therefore 

(6.2.22) IIA □ A-l r II 
n n 

2tn 
= e llrll . 

Using the condition of An we have in general 

(6.2.23) II A □ A - I r II $; ( cond An) . II r II • 
n n 

In this example we have 

cond A 
n 

-1 
II D U ( t , x) II . II [ D U ( t , x) J II 

x n x n 

2t 2t 
n n 

• e = e 

Thus we have in (6.2.23) an equality. 
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Let us now return to our method, described in section 4.2, 5.2 and 6.1. 

If we apply this method to the differential system (6.2.18) we have 

and therefore, if we choose A0 I, 

(6. 2. 24) 

Thus we obtain 

(6.2.25) 

Let 

(6.2. 26) c = mean c 

and assume 

(6.2.27) C - C lie -.~II e, 

then we can derive that we have, similar to (6.2.22), 

(6.2.28) 
2t 

n nc -c 11 • 

Thus we see that also in this case the set c - c, which can be considered 
-1 - -to the set A □ A (c - c) with a norm 

n n 
as the "error set", has been "blown up" 

2t 
which is e n times as large. Let us now consider the effect of this phenome-

non on the local error E • Let 
n 

-(6.2.29) u =AX + c, n n-1 V = C - C 

By virtue of (6.2.9), (6.2.10) and (2.3.53) we have 

~ q(u +w, u +v) 



12/J 

max 
1,si,;M 

q(p.(u) + p.(w), p.(u) + p.(v)). 
l 1 1 1 

From (2.3.56) we easily obtain 

(6.2.30) q <"n, Z) 

for l,n,'2"" f lI lR. 

Further we have p.(u), p.(v), p.(w) E IlJR (I,; i,; M). Thus we obtain, 
1 l. l. 

using (2.3.41), (2.3.46) and (2.3.9), 

E ? max q(pi(w), p. <v)) n 1,:;·i,;M l 

? max lq(p. (w) ,o) -q(p.(v),O)I 
l 1 ],si,;M 

max lp.(w)l -lp.(v)I 
leSieSM 1 l 

? I max Ip. (w)I - max 1 P· <v)I 
leSieSM 1 Ie;i,;M 1 

jllwll - 11v11 1. 

Combining this with (6.2.29) and (6.2.28) we obtain for the differential 

system (6.2.18) 

2t 
(6.2.31) E > (e n -1) .lie-ell. 

n ~ 

By virtue of (6.2.26), (2.3.29) and (6.2.25) we find 

(6.2.32) 

Thus we see that cond A can grow exponentially int and that in such 
n 

cases (6.2.5) can give a realistic impression of the local error. This phe-

nomenon may limit the length of the integration interval for which our meth

od, described in sections 4.2, 5.2 and 6.1, can be applied successfully. 

Adopting a suggestion of JACKSON [1975], the following change to our method 

might be an improvement. 
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If for some n, (cond An) has become large, put 

-

(6.2.33) 
:= □ 

{ 
X Yn, n 

A := I. 
n 

Al though this application of the rounding operator· to the set y n causes an 

extra error, it might be worthwhi1e since it reduces the conditions of the 

matrices An and may thus reduce the local errors En for the following steps. 

Whenever (cond An) has become large again, (6.2.33) may be repeated. 

6.2.2. The global error for small Hand 6 

In order to obtain a better insight into the global error yn and the 

estimate (6.1.7), let us consider the coefficients s1 and s2 in (6.1.7) if 

v 1 + 0, v2 ➔ 0, v3 ➔ 0 and H ➔ 0. For simplicity assume that A0 = I, that 

I0 is inclusion isotonic and that f 0 ,L and L0 are continuous with respect to 

the Hausdorff distance. 

Let Y1 = U([O,TJ,y0), then ai ➔ ai (I $ i $ II), where 

(6.2.34) 

(6.2.35) a2 max µ[ -f' ( D Y1)], 

{ 
M ilf'( □ Yl)II + II f' (Y 1) II (for k 2) , 

(6.2.36) a3 
0 (for k > 2), 

(6.2.37) a4 al + a2 + a3, 

(6.2.38) as + e 
;;4T 

(6.2.39) a6 2 ;;SLO( □ YI), 

(6.2.40) a7 0, 

(6.2.41) a8 a I, 

-+ 

(6.2.42) 
2a 1 T 

ag a6 e 
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A -+ 

(6.2.43) 
A as a 1 T 

L( □ Y1 ), CLIO = 2k! e 

(6.2.44) 
as -

diam ([o,1J 70 < □ Y1)). all = 2k! L( □ y l) 

Further we have /J. ➔ 0, S1 ➔ SI and s2 ➔ s2, where 

(6.2.45) s1 
A A I 

T w(a8T)(a9 + 2 &10), 

A A l A 

(for 2), 
{ 

T w(a8T) (a 11 + 2 a 10 ) k 
(6.2.46) s2 

T w(a8T)a 1 l (for k > 2). 

A further simplification of the estimate (6.1 .7) is possible if we assume 

(6.2.47) 0 o. 

Comparing (6.1 .60) and (6.1.61) in the proof of theorem 6,1.l, we see that 

we can then replace (6.1.28) by 

(6.2.48) 

Therefore we can also replace (6.2.46) by 

(6.2.49) 

Thus we have 

(6.2.50) y s S2 (h ) k 
n max 

A 

where s2 ➔ s2 for Hmax ➔ O, 

(6.2.51) 

and a1 and a 11 are defined by (6.2.34) - (6.2.38)· and (6.2.44). 
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6,3. COMPARISON WITH OTHER METHODS 

In section 4.5.1 we have considered some alternatives of Algorithm I. 

We have shown their disadvantages, which obviously affect the global method. 

If the n'th step of the global method contains a never ending process or 

produces a zero step size, then the global method is not applicable on the 

whole prescribed interval [O,T]. Further, if the step size is unnecessarily 

small, then the global method is of course less efficient than is possible. 

In section 5.5 we have considered the local error for some alternatives 

of our method. We will not analyse the global error for these methods, but 

it is plausible that large local errors cause the global error to be large 

as well. 

HUNGER [1971] and MARCOWITZ [1973,1975] give methods for the inclusion 

of U(T,yO) which are based on the choice 

(6.3.1) Yl 

instead of (3.5). 

MOORE [1966] showed with an example that this choice may cause any 

method with constant step size to behave badly (in the sense that it produces 

rough inclusions), especially for large t. We will treat a slightly modified 

version of this example in our own notation, and for variable step size. 

The example will be analysed in greater detail. The behaviour of the error 

yn for methods based on the choice (6.3.1) will be compared with the behav

iour of yn for our method. 

EXAMPLE 6.3.1. Let M 2, A Ax, Yo ( [-a,a]) 
[-a,a] · 

We have 

(6.3.2) U ( t ,x) 
(cost 

sin t 

-sin t 

cos 
) • x. 

t 

Assume that for any set of grid-points O = t O < t 1 < ••• < tn = T, a method 

has produced for n = 1,2, ••• ,N vector intervals y with the property 
n 

yn:::, U(hn,yn-l), where hn tn - tn-l. 

Using (6.3.2) we find 
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(6.3.3) 

Assume 

(6.3.4) 

y ::, 
n 

cos h 
n 

sin h 
n 

h s ~(Is n s N). 
n 2 

We prove by induction 

(6.3.5) 

It is true for n = 0. Let it be true 

( cos h -sin h 
□ n n 

yn ::, 

sin h cos h n n 

yn-1" 

(0 s n s N). 

if n is replaced by n- I. Then 

) [n-1 
hi)] Yo II (cos h. + sin 

i=l 1 

n-1 

[i~l (cos + sin hi)] 
( cos h -sin h ) ( [-a,a]) 

h. □ n n 
l. sin h h cos [-a,a] n n 

n-1 
+ sin hi)] 

((cos hn)[-a,a] - (sin hn)[-a,a]\ 

[i~l (cos h. 
l. (cos h )[-a a]} (sin hn)[-a,a] + n ' 

[n-1 
sin hi)] i~I (cos h. + (cos h + sin h/y0 l. ·n 

which had to be proved. 
2T -Assume TI"' 2Z, then U(T,y0 ) y0 and 

Write h max 
(hmax ➔ O, 

YN = q(yN,yO) ~ [.~ (cos h. + sin hi) - 1]. a. 
1.=I l 

max h and observe that cos h. + sin h. = ehi(l +O(hmax)) 
ISnSN n. l. l. 

uniform in i). For o, defined in (6.1.4), we have o =2a. 

For fixed T we may now conclude 

(6.3.6) 

i.e., for arbitrary, sufficiently small step sizes, yN is arbitrarily close 
I T to, or greater than, 2(e - I) • o. 
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Define 

(6.3.7) Yn q( □ U(tn,yO), U(tn,yO)) (0 s n s N). 

We have 

(6.3.8) yn ? YN (O s n s N) 

and yn can be interpreted as the part of the error yn which is unavoidable 

due to the demand y E YI = IT IB_M. 
n 

By virtue of (2,3.47) we have 

(6.3.9) O(o) 

and in general yn is not smaller than O(o). 

In view of (6.3.8), yn can therefore not be expected to satisfy 

y = 0(o 2 + h ) 
n max 

as we have for our method, described in the sections 4.2, 5.2 and 6.1 (see 

(6.1.7)). 

Let us now consider the value 

[yN- max y ]. 
OsnsN n 

Using (6.3.9) and (6.3.2) we obtain 

diam [( 
cos t -sin t 

) Yo] n 11 
( !cos tn I + I si'n yn s 

sin t cos t 
n n 

Combining this with (6.3.6) yields 

(6.3. IO) 
I T yN- max y ?[-2 (e -I)- ✓2+0(h )J.o. 

OsnsN n max 

Thus we see that not only yN itself, but even 

y - max y 
N OSnSN n 

tn I) . 2a " olz 

(O s n s N). 
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is, for T large enough 

and hence not of order 

and h small enough, at least proportional to :'' 
? max 

Cr5- + h ) • Furthermore, the coefficient of 5 is ' max 
increasing at least exponentially in T. 

Summarizing the above, we have seen that for any method based on the 

choice (6.3.1) the behaviour of the error yn may be less favourable than 

the general behaviour of the error for our method, at least asymptotically 

as 5 + 0 and meanwhile hmax + 0 fast enough. 

A comparison for the case 8 = 0 is more complicated. ~ote however that 

even in this case it is useful that the error depends in a favourable way 

on 6, because any enclosing set y may be considered as the initial value 
n 

set y0 of a new integration process, for which in general S = diam yn > O. 



127 

6.4. THE NECESSITY OF THE ERROR TERM OF ORDER o2 

Consider the error estimate 

Y ~ 8 o2 + 82 (h )k n I max (O :5 n :5 N) 

(see (6.1.7)). 

For 8 1 > 0 and fixed o > 0 the right-hand side of this inequality does 

not tend to zero ash ➔ 0. Indeed, this cannot be expected, because in max 2 
general U(tn,yO) i YI. One might wonder whether the error term 810 can be 

improved, and for instance be replaced by a term of order o3 • 

With an example we will show that a term of order o2 in the total error 

cannot be avoided, neither in our method, nor in any other method using YI 

as defined in (3.5). 

EXAMPLE 6.4.2. Consider the differential system 

(6 .4. I) U'(t) - ( O ) 
- [U(t)] 2 

I 

with the initial condition 

(6.4.2) U(O) E 

where O :5 ":5 "o· 
We have 

(6.4.3) 

( 
[->..,>..] ) 

0 

(O :5 t :5 T) 

(0 :5 t ::5 T, Iµ I ::5 A). 

Let yN be an inclusion of U(T,y0) produced by any method using ;JI. as 

defined in (3.5). The set yN is convex and contains the vectors 

Hence 

I ( ->.. 
2 n2 
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Therefore 

? min_ II ( \ ) - u II . 
ucU(T,y0) n 

Combining this with (6.4.2) and (6.4.3) yields 

2 2 max (µ,TA - Tµ ) 

+ I 1 +4T2;_2· 

For o, defined by (6.1.4), we have o 2A, hence, using A~ >- 0 , we find 

y ? -----;=====-- . To 2 
N 2(1 + / 1 +4T2;_ 2') 

0 

This shows that y is in general not smaller than of order o2 . 
n 

□ 

Note that this result is still valid if YI, instead of ,lefined by (3. 1), 

is any other class of convex sets, provided that ([-A~A]) E YI.. 
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6.5. STEP SIZE AND ORDER CONTROL 

6.5.1. Introduction 

In section 6.1 we described the global method, which contains a fixed 

parameter value k 2 2. In view of error bound (6.1.7) we call this k the 

order of the method, 

Let kmax be a given integer, kmax 2 2. Let the function f be (kmax-1) 

times continuously differentiable and let the functions f.(1 sis k -1) 
1 max 

and g. (Os is k -2) be given and satisfy (5.1.7) and (5.1.8) for all k 
1 max 

with 2 s ks k 
max 

Although section 6.1 treats the global method for a fixed choice of the 

order, we can also vary the order step-by-step without any difficulty. In 

this section we will consider this generalization of the global method. 

Further we will treat the choice of the parameters Hn(l s n s N), which 

control the step size. 

For the n'th step we try to choose the order kn and the parameter Hn 

such that the local error En (see (5.4.1)) satisfies 

(6. 5. 1) E RI h [E + E • 11 u ([ t 1 , t J, "y0 ) 11 J. n n a r n- n 

Here Ea and Er are prescribed non-negative real numbers, which we call the 

absolute error parameter and the relative error parameter, respectively. 

Thus we use, like e.g. SHAMPINE & GORDON [1975] (see pp. 97, 98 and 164) a 

mixed absolute-relative error criterion for the local error per unit step. 

A discussion on the choice to control the local error per unit step rather 

than the local error per step can be found in GEAR [1971], p. 79. 

In (6,5,1) we approximate the value llu([tn-l'tn],y0)11 by llbn_ 111, where 

bn-l is defined by Algorithm I, described in section 4.2. Thus we try to 

choose H and k such that n n 

(6.5.2) En RI hnE, 

where E is defined by 

(6.5.3) E E + E .lib 111. 
a r n-
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6.5.2. The step size for a given order 

Let k be the order we use in the n'th step. 

From the proof of theorem 5.4.1 we easily obtain 

(6.5.4) diam c,.; 

where c is defined by (5.2.4). 

Assume that cond An~ I and that on-I is small enough. Then in view of 

(6.5,4) and (6.2.5) we have 

hk 
n . - -

E -: p- diam[ fk I (b ) ] • n ~ • - n 
(6.5.5) 

It is not unreasonable to assume that diam[fk-l(bn)J is approximately 

proportional to diam b. In view of (4.2.11) diam b is approximately pro-n n 
portional to hn, where we use again the assumption that on-I is small. Thus 

we obtain 

(6.5.6) 
diam[fk-l (bn) J 

h 

where the quotient 

diam[fk-l (bn)J 

h 
n 

n 

is approximately constant as hn varies. For n > I we approximate this 

quotient by 

diam [fk_ 1(bn-I)J 

hn-1 

Thus in view of (6,5.2) and (6.5.6) a suitable step size seems to be 

(6.5. 7) h I (k) 

However, Algorithm I may also limit the step size, independently of 

the limitation of the step size related to the local error parameters. If 

the prescribed value H is too large, the value of H, initially equal to 
n 

Hn, is halved according to (4.2,8). If this halving is actually performed 



131 

in some step, it is useful to take this fact into account in the following 

steps by limiting the value of Hn. This is done by the demand 

(6.5,8) H ,,; 6 • H' I' n n-

-where H' is the final value of Hin Algorithm I for the (n-l)'st step, and 
n-I 

where 6 > I is some chosen factor. 

If this factor is chosen too small it may slow down a possible and use

ful growth of the step sizes. If it is too large the limitation (6.5.8) has 

little effect and halvings of H may occur in every step. Both would be in

efficient. As a compromise we use the choice 

(6.5.9) e 

where j is the number of the last step for which an actual halving of Hin 

Algorithm I was necessary. 

The value of Hn is the step size Algorithm I aims at. Therefore, in 

order to obtain a step size hn satisfying hn Ri h(k) we might choose Hn =h(k). 

However, in view of a possible systematic deviation between Hn and the cor

responding hn' we put 

(6.5. IO) 
H~-1 

Hn = -h- • h(k). 
n-I 

In order to ensure that (6.5.8) is fulfilled we will compute Hn from (6.5.10) 

with a value of h(k) satisfying 

(6 .5. I I) 

To that end we put 

(6.5.12) h(k) = min(6hn_ 1,h'(k)), 

where h'(k) is defined by (6.5.7) and 6 by (6.5.9), 

This h(k), as a function of k, is the basis for the choice of the order, 

as described in the next subsection. 
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REMARK 6.5.I. For n = I the quotient 

diam[ fk-l (bn)] 

h 
n 

in (6.5.6) is approximated as follows. 

I . - I I -h d1.am[fk_l(b 1)J ~ h llfk-l(b 1)11 .diam b 1 
I I 

~ II fk-I (b1) 11 . diam([O, I JI0 (b(i 1- 1))) 

Thus for n I we obtain instead of (6.5.7) 

(6.5.13) h I (k) 
kl k!E 
✓---

Since this is not defined fork= kmax' we do not use the maximum order for 

the first step. D 

REMARK 6.5.2. For hn-l in (6.5.7) and (6.5.10) we have to take the value 

produced by Algorithm I, even if that value was reduced by Algorithm II. D 

6.5.3. The choice of the order 

For the n'th step (where n ~ 2) we consider two possible orders, namely 

k n-1 and k' • For k 1 and k2 values are prescribed with I k 1 -k2 I I, If n 
n ~ 3 we choose fork' either k n-1 - I or k n-1 +I, namely the value that was 

n 
not considered as possible order for the (n-l)'st step. 

Thus if kn-I > kn_ 2 then kn-I k~-I = kn_ 2 + I and k~ =kn-I+ I, i.e., 

a further increase of the order is considered. Similarly, if kn-I < kn_ 2 

then kn-I = k~- I = kn_2 - I and k~ = kn-I - I, i.e., a further decrease of 

the order is considered. Finally, if k 1 = k 2 then an increase of the 
n- n-

order is considered if for the (n-l)'st st,ep a decrease was considered, and 

vice versa. 
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If k' < 2 or k' > k then we choose kn = kn-I" Otherwise we choose n n max 
k to be the value of k E {k 1,k'} for which h(k)/wk is maximal, where h(k) n n- n 
is computed according to (6.5.12) and wk indicates an estimate of the rela-

tive amount of work involved in the performance of one integration step with 

order k. Thus we maximize the step length we proceed per unit of work, or 

in other words, we minimize the work per unit step (cf. GEAR [1971], pp. 

75,79). 





135 

6.6. THE EFFECT OF ROUNDING ERRORS 

In practice it is in general impossible to perform all interval arith

metic operations exactly. Therefore we have to use rounded-interval arith

metic instead of exact-interval arithmetic (see MOORE [1966]; see also sec

tion 7.1). This section will deal with the effect on the global error of the 

rounding errors thus occurring. 

Assume that, due to rounding errors, (6.1 .55) has to be replaced by 

(6.6.1) 

for some fixed,> O. This value, will in practice be related to the machine 

accuracy and to IIU([O,TJ,y0)11. Then (6.1.56) has to be replaced by 

(6.6.2) 
h al 2 k k I 

(en h) oh oh h + ' y n .,; + o.7 n y n-1 + o.9 n + a IO n + a I I n + 

and (6.1.29) by 

(6.6.3) 

It is easy to see that we therefore have to replace (6.1 .7) by 

(6,6,4) 

where we can choose for the added term neither 

(6.6.5) 

or 

(6.6.6) 

n 

n min h 
J::;n::;N n 

or, of course, the minimum of these values. 

The same term n has to be added in the left hand side of (6.1.26). For 

fixed, it may be impossible to choose Hand 6 such that the new version of 

(6.1.26) holds. However, it is possible if, is small enough. 
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The formulas (6.6.4) - (6.6.6) suggest that the effect of rounding errors 

can become very large if the step sizes are chosen very small. This phenome

non is not surprising and similar to that occurring in the approximative 

solution of differential equations (see e.g. HENRICI [1962]). 
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CHAPTER 7 

COMPUTER PROGRAM 

7.1. INTRODUCTION 

In this chapter we will give a computer program for the numerical 

method described in this monograph. We will use the progranuning languages 

Algol 60 and Triplex-Algol 60. 

The language Triplex-Algol 60 is described in WIPPERMANN [1968]. It has 

been designed to program calculations on real intervals as easily as similar 

calculations on real numbers. For that purpose a new kind of variable of 

type "triplex" has been added to the variables of type "integer", "real", 

"boolean", etc. A triplex variable is a triple U: 1,g,1; 2) of real numbers 

1; 1, g and 1; 2 satisfying 1; 1 s gs 1; 2 • It denotes the real interval [1; 1,1; 2] 

and is supplied with a so-called "main value" g E [1; 1,1; 2]. This main value 

is of little importance for us. In our description we will therefore often 

identify the triplex number (1; 1,~,1;2) with the real interval [1; 1,1; 2]. 

An interval [1; 1,1; 2] is representable in a computer only if the real 

numbers 1; 1 and 1; 2 are representable. Therefore it often occurs that an inter

val resulting from an operation has to be rounded to a representable inter

val. This rounding is always performed outwards so as to guarantee that any 

interval actually computed in the course of the calculations encloses the 

corresponding theoretical interval. 

We use the actual realization of Triplex-Algol 60 described in 

EIJGENRAAM, VAN DE GRIEND & STATEMA [1976]. In this realization the text of 

a program written in Triplex-Algol 60 is translated into an Algol 60 text. 

In the latter calls occur of auxiliary subroutines written in assembler 

language. These subroutines perform basic operations such as computing the 

upwards rounded sum of two real numbers. 

Since, basically, Triplex-Algol 60 is an extension of Algol 60, we 

could have written the whole program in Triplex~Algol 60. However, several 
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parts of the program have been written directly in Algol 60. These parts 

are not subjected to the translation into Algol 60, but inserted into the 

Algol 60 text resulting from the translation of the parts of the program 

written in Triplex-Algol 60. Although this procedure saves computer time 

for the translation of Triplex-Algol 60 statements, its main advantage is 

that it increases the efficiency of the final Algol 60 program. This in

crease is caused by the following. The organisation of the translation pro

gram makes it unavoidable that ordinary Algol 60 statements are often trans

formed into less efficient statements. For instance, an addition of two in

tegers is transformed into a procedure call. 

The parts of the program which are directly written in Algol 60 are 

those between "(IALG" and ''(iTRI". In these parts the three values of a tri

plex Tare referred to by T(/1/), T(/2/) and T(/3/). If S(/I/) is an element 

of a triplex array its three values are referred to by S(/I,1/), S(/I,2/) 

and S(/I,3/), etc. For simplicity in describing the program we will identify 

numbers of type triplex with real intervals and arrays of type triplex with 

vector intervals and matrix intervals, depending on the number of subscripts. 

If a triplex number (~ 1.~ 2.~3) has to be supplied by the user of the program, 

or is produced by the program, the main value ~2 is irrelevant, except that 

in the first case it has to satisfy ~I ~ ~2 ~ ~3 • 

Our computer program has been written in the form of the procedures 

TAYL, SOC and SOLVE. Procedure TAYL calls the procedures HB and INVI, which 

are declared within it. Procedure SOLVE calls TAYL and SOC. For a user it 

is most convenient to call SOLVE. However, if more flexibility is required, 

it is reconnnended to call TAYL and SOC directly. 

Procedures TAYL, SOC and SOLVE call a number of (mostly simple) auxil

iary procedures. The complete texts of TAYL, SOC and SOLVE as well as code 

declarations (i.e., procedure headings followed by 'CODE' or 'TRICODE') of 

the auxiliary procedures are given in ~ection 7.9. Sections 7.2 - 7.8 deal 

with the description and explanation of the procedures. 
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7.2. DESCRlPTION OF AUXILIARY PROCEDURES 

Procedures TAYL, SOC and SOLVE call a number of auxiliary procedures. 

The headings of the latter are given in section 7.9. These procedures have 

the following meaning. 

CM(X) 

CMV(M,T,X) 

CP(X) 

CPM(M,AR,A) 

DIAM(M,T) 

DIAMM(M,A) 

DUPHI(M,X,Y) 

DUPVI(M,X,Y) 

FO4AEA(A,B,N,M,C,IFAIL) 

MAI(M,A,B,C) 

MMMI(M,A,B,C) 

MSI(M,A,B,C) 

MVMI(M,A,X, Y) 

NOR."1(M, T) 

"~ompose _:!l_ean", has the value {mean X}; 

"compose mean of ~ector", X := {mean T} 
- - M 

for T E II IR ; 

"~om.E_ose", has the value {X}; 

"~ompose ~trix", A := {AR} for ARE lR.M,M; 

"diameter", has the value diam T for 
-- M 

TElllR.; 

"diameter of a matrix interval", has the 
. - . M,M 

value diam A for A E II 1R ; 

"duplicate matrix i_nterval", Y := X for 
X-E-Il lllM,M~ 

"duplicate vector i_nterval", Y := X for 
- M 

XEII1R; 

C := A- 1B for a regular matrix A E IRN,N 

and a real NxM matrix B; 

!FAIL is an error indicator; 

see NAG Library Manual [1974]; 

"matrix addition for intervals", 

C := A+B for A,B E II ~M,M; 

"matrix matrix multiplication for i_ntervals", 

C-:= □ A; for A~B E II 1RM,M; 

"matrix subtraction for intervals", 
; MM 

C := A-B for A,B E II lR ' ; 

"matrix vector multiplication for intervals", 

Y := □ A.X for ~ E II lRM,M, X E lI ;M; 

has the value II Tli for T E II 1RM ; 
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N0RMM(M,A) 

SMMI(M,C,A,B) 

SVMI(M,C,X,Y) 

UQTAD(A,B,C) 

UQTA0(A,B,C) 

UQTAV(A,B,C) 

VAI(M,A,B,C) 

VSI(M,A,B,C) 

"norm of a matrix", has the value IIAII 

for A E II IRM,M ; 

"scalar matrix multiplication for intervals", 

B := □ C.A for CE IIIR, A E TIIRM~; 

"scalar vector multiplication for intervals", 
- M-

y:= □ C.X for CE IIIR, XE IIIR; 

has the value A/B, for C -1,0, I rounded 

downwards, ordinarily rounded and rounded 

upwards, respectively; 

has the value A+B, rounded as in UQTAD; 

has the value AxB, rounded as in UQTAD; 

"vector addition for i_ntervals", C := A+B -
for A,B E II IRM; 

"vector subtraction for i_ntervals, C := A-B 
- M 

for A,B E II IR • 
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7.3. DESCRIPTION OF PROCEDURE TAYL 

Procedure TAYL ("method based on a Taylor series") performs one step of 

the method described in sections 4.2, 5.2 and 6.1 to solve an initial value 

problem for an autonomous system of first order differential equations. It 

has the following procedure heading. 

'PROCEDURE' TAYL(M,K,TMAX,F,G,T,A,X,Y,HN,Hl,HR,B,FH,DHH); 

'INTEGER' M,K; 

'REAL' HN,HI ,HR; 

'TRIPLEX' T,MAX; 

'TRIPLEX''ARRAY' A,X,Y,B,FB; 

'BOOLEAN' DHH; 

'PFOCEDURE' F,G; 

Calling TAYL to perform the n'th step of the method, the parameters 

have the following meaning. 

'INTEGER' 

'INTEGER' 

'TRIPLEX' 

I PROCEDURE I 

'PROCEDURE' 

'TRIPLEX' 

M - the number of equations in the differential 

system; 

K - the "order" k of the method; 

TMAX the end T of the integration interval [0,T]; 

if the number Tis a non-representable number, 

then the triplex TMAX must represent a small 

interval containing T; 

F 

G 

T 

an externally declared subroutine to evaluate 

the functions I 0 • Ik-l and fi (1 ~ i ~ k-2) 

(see below); 

an externally declared subroutine to evaluate 

the functions g. (0 ~ i ~ k-2) (see below); 
]. 

on input SUP(T) must have the value tn_ 1; 

on output T has the value tn; 

if tn = TMAX this triplex number may represent 

an interval with small but positive diameter; 

in other cases this diameter is zero; 
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'TRIPLEX' 'ARRAY' A (dimension (/1 : M, I : M/)) -

on input the real matrix An-l' 

on output the'real matrix An 

(we could have used a 'REAL''ARRAY', but it is 

found to be convenient to use a 'TRIPLEX''ARRAY', 

where every element is a 'TRIPLEX' consisting 

of three equal real numbers); 

'TRIPLEX' 'ARRAY' X (dimension (/1 : M/)) -

on input the vector interval xn-l' 

on output the vector interval xn; 

'TRIPLEX"ARRAY 1 Y (dimension (/1 : M/)) -

on input the vector interval □ y 1, 
n-

on output the vector interval D yn; 

'REAL' HN on input the value Hn, 

on output the final value of the variable H 
in Algorithm I; 

'REAL' HI on output the output value of parameter Hof 

procedure HB, called within the body of TAYL; 

'REAL' HR 

'TRIPLEX''ARRAY' B 

1 TRIPLEX' 'ARRAY' FB 

'BOOLEAN' DHH 

on output the 

(dimension (/ l : M/)) -
on output the 

(dimension (/1 : M/)) 

on output the 

on output the 

final step size h n' 

vector interval b n' 
-

vector interval Ik-1 (bn); 
value 'TRUE' if and only if the 

output value of parameter HN is less than its 

input value. 

Procedure F must have a procedure heading of the form 

'PROCEDURE' F(I,X,Y); 'VALUE' I; 

'INTEGER' I; 

'TRIPLEX''ARRAY' X,Y; 

X and Y must be of dimension (/1 M/). The statement F(I,X,Y) must result 

in the calculation of fI(X), for I= 0 (see (4.1.2)) and I= k-1 (see ' 

(5.1 .7)), and in the calculation of a vector interval enclosing fI(X) (see 

(S.1.6)), for Is Is k-2 and for an X representing a set of only one vector. 

This result is assigned to Y. 



Procedure G must have a procedure heading of the form 

'PROCEDURE' G(I,X,Y); 'VALUE' I; 

'INTEGER' I; 

'TRIPLEX''ARRAY' X,Y; 
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X and Y must be of dimension (/1 : M/) and (/1 : M, 1 : M/), respectively. 

The statement G(I,X,Y) must result in the calculation of g1 (X), for 

0 ~I~ k-2 (see (S.1.8)). This result is assigned to Y. 



" 
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7.4. DESCRIPTION AND EXPLANATION OF PROCEDURE HB 

Procedure HB ("calculation of!! and~") performs Algorithm I, described 

in section 4.2. It has the following procedure heading. 

'PROCEDURE' HB(M,F,Y,L,HN,H,B,DHH); 

'INTEGER'. !1; 

'REAL' L,HN,H; 

'TRIPLEX''ARRAY' Y,B; 

'BOOLEAN' DHH; 

'PROCEDURE' F; 

Using the notation of Algorithm I, the parameters have the following 

meaning. 

'INTEGER' M 

'PROCEDURE I F 

- as in Algorithm I, i.e., the number of equations 

in the differential system; 

an externally declared subroutine to evaluate 

the function 70 ; 

we use the same procedure F which is parameter 

of procedure TAYL; 

'TRIPLEX''ARRAY' Y (dimension (/1 : M/)) - the vector interval D yn_ 1; 

' REAL' L II g0 ( D y n- I ) II ; 

'REAL' HN 

'REAL' H 

as in procedure TAYL; 

- on output the value min(h,H ), where his as in 
n 

(4.2.10); 

'TRIPLEX''ARRAY' B (dimension (/1 : M/}) - as in procedure TAYL; 

'BOOLEAN' DHH - as in procedure TAYL. 

NOTE. It is convenient to deal with the requirement t s T within procedure n 
TAYL and not in procedure HB. Therefore the output value H is not necessarily 

equal to the value of h n' defined in (4.2.10). □ 

The procedure body of HB is a straight-forward translation of Algorithm 

I and therefore needs no further explanation. 
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7.5. DESCRIPTION AND EXPLANATION OF PROCEDURE INVI 

For a given matrix interval A E II IRM,M procedure INVI ("inversion of 

a matrix i_nterval") enables us to enclose the set B = {A-I IA e: A}. The 

result is given in the form of a matrix interval S E II lRM,M and a real 

number a. ? 0, such that for all B " B there is an S E S with II B-SII s a.. Thus 

we have 

(7 .5. I) p .. (B) E p .. (S) + Cl.. [ -1 • I ] 
l.J l.J 

and for all b E :n: lR.M we have 

(7.5.2) p.(Bb) E p.(Sb) +a.llbll.[-1,1] 
l. l. 

The procedure heading is as follows. 

'PROCEDURE' INVI(M,A,S,R,FAIL); 

'INTEGER' M; 

'REAL' R; 

'TRIPLEX''ARRAY' A,S; 

'LABEL' FAIL; 

The parameters have the following meaning. 

'INTEGER' M - M; 

'TRIPLEX''ARRAY' A (dimension (/1 

'TRIPLEX''ARRAY' S (dimension (/1 

M, 

M, 

interval S; 
- a; 

(Isis M, Is j s M), 

( I s i s M). 

M/)) - the matrix interval A; 

M/)) - on output the matrix 

'REAL' R 

'LABEL' FAIL - label to which is jumped on failure. 

The procedure uses essentially the method of HANSEN [1965]. Using the 

auxiliary procedure F04AEA we first compute a matrix BE lR.M,M with 
- -I B R1 [mean A] • Further we compute 

C := I - □ AB, 
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S. := B + □ S. 1c 
J J-

( I :,; j :,; ,t'.) , 

S := S,e, 

llcll-t'.+I 
a := --- IIBII. 

I -Hell 

It is easy to prove that 

diam{BIB E ]RM,M 
' 

3S ES IIB-S11 5 a} diam S + 2a. 

Therefore we increase -t'. until [diam S + 2a] does not decrease anymore. 
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7.6. EXPLANATION OF PROCEDURE TAYL 

In the procedure body of TAYL first Algorithm I, described in section 

4.2, is performed by a call of procedure HB. For the obtained step size h n 
the value t + h is in general not a representable number. We could en-n-1 n -
close this value in an interval t n' but it is more convenient to use grid-

points tn which are exact real numbers. Therefore we define the grid-point tn 

to be the downwards rounded sum tn-l + hn' and replace the real number hn 

by the interval we obtain by computing tn - tn-l in interval arithmetic. 

We allow the end T of the integration interval [O,T] to be a non-repre

sentable number. Therefore this number is represented by an interval T with 

a small diameter that may be non-zero. 

Let tn be computed as explained above. If tn? max T then tn is re

placed by T, and the last step size h is the result of the rounded interval 
n 

subtraction T - t 1• However, if min T < 
n-

t < max T then t is replaced by 
n n 

min T (this is a rare case and even impossible if Tis the smallest repre-

sentable interval containing the number T). In this case the next step will 

be a very small one to complete the interval [O,T]. 

Further Algorithm II, described in section 5.2, is performed. The com

putation of A, according to (5.2.2) and (5.2.3), has to be performed in 
n 

interval arithmetic and results in a matrix interval A. However, similar to 
n 

our wish to use an exact grid-point tn' we want the matrix An to be an exact-

ly given real matrix. Therefore we put 

(7.6.1) A := mean A • 
n n 

Let x be the vector interval x computed according to Algorithm II, on the 
n 

understanding that the set A-I c in (5.2.6) has been interpreted as the set 
n 

{A-I cl A EA, c E c}. Then (5.3.1) yields 
n 

(7.6.2) U(h ,y I) CA x. n n- n 

In order to ensure that we have 

(7.6.3) 

we compute xn such that 
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(7 .6.4) A X C A X 
n n n 

Since 

A-1 Ji. - A-l[A <Ji. - A ) ]x [I+ -1 - -
X = + A (A -A )]x, n n n n n n n n n 

(7.6.4) holds for X n' defined by 

(7.6.5) x : = □ c r + □ n <Ji. - A ) Jx, n n n 

where D E Il lRM,M is such that 

(7 .6.6) 

After a call of procedure INVI, we can compute in view of (7.5.1) and 

(7.5.2) a suitable D, as well as an inclusion of {A- 1c I A EA, c E c}, 
n 

which we need, according to (5.2.6), to compute x. 
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7.7. DESCRIPTION AND EXPLANATION OF PROCEDURE SOC 

Procedure SOC ("~tep size and ~rder ~ontrol") computes for given values 

of the absolute and relative error parameter a suitable step size and order 

for the next step of the integration process. This is done according to the 

method described in section 6.5. It has the following procedure heading. 

'PROCEDURE' SOC(M,KMAX,ABSERR,RELERR,WPST ,F ,K,Kl ,H,B,FB,HH,HHF); 

'INTEGER' M,KMAX,K,Kl; 

'REAL' ABSERR,RELERR,H,HH,HHF; 

'REAL''ARRAY' WPST; 

'TRIPLEX''ARRAY' B,FB; 

I PROCEDURE I F; 

Calling SOC in preparation for the performance of the n'th step of the 

integration process (n ~ 2), the parameters have the following meaning. 

'INTEGER' M 

'INTEGER' KMAX 

'kEAL' ABSERR 

I REAL I RELERR 

as in procedure TAYL; 

the maximum order k (see section 6.5); rnax 
the absolute error parameter; 

the relative error parameter; 

'ARRAY' WPST (dimension (/2 : KMAX/)) - for 2 ~ K ~ KMAX WPST(/K/) denotes 

an estimate of the relative amount of work to 

perform a step of the integration process with 

order K; 

I PROCEDURE I F 

'INTEGER' K 

I INTEGER' KI 

'REAL' H 

an externally declared subroutine to evaluate 

the functions fi(O ~ i ~ kmax-1) (see below); 

on input the value of parameter K of procedure 

TAYL in the (n-l)'st step; 

on output the value of parameter K of procedure 

TAYL to be used in the n'th step; 

on input the alternative'value of K considered, 

either K-1 or K+l; 

on output the value of this parameter to be 

used in the next call of SOC; 

the output value of parameter HI of procedure 

TAYL in the (n-l)'st step; 
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'TRIPLEX''ARRAY' B (dimension (/1 : M/)) - the output value of parameter B 

of procedure TAYL in the (n-l)'st step; 

'TRIPLEX''ARRAY' FB (dimension (/1 : M/)) - the output value of parameter FB 

of procedure TAYL in the (n-l)'st step; 

'REAL' HH on input the output value of parameter HN of 

procedure TAYL in the (n-l)'st step; 

'REAL' HHF 

on output the input value of parameter HN of 

procedure TAYL to be used in the n'th step; 

the factor 0 indicating the maximally allowed 

increase of HH, i.e., the maximum quotient of 

output and input value of parameter HH (see 

(6.5.8) and (6.5.9)). 

form 

As in procedure TAYL, procedure F must have a procedure heading of the 

'PROCEDURE' F(I,X,Y); 'VALUE' I; 

'INTEGER' I; 

'TRIPLEX''ARRAY' X,Y; 

X and Y must be of dimensiou (/1 : M/). For O s I s kmax-1 the statement 

F(I,X,Y) must result in the calculation of II(X) (see (5.1.7)) and the as

signment of this vector interval to Y. Note that for 2 s ks kmax these re

quirements imply those for procedure Fin TAYL. 

The procedure body of SOC is a straight-forward translation of the 

method of varying the step size and order described in section 6.5 and there

fore needs no further explanation. 

We only mention that it uses an integer or real array FAC with dimension 

(/2: KMAX/) with values FAC(/K/) = K! This array has to be declared and as

signed its values in the main program before calling SOC. Thus we avoid com

puting these values in every step. For KMAX > 12 the array must be of type 

real since integers must be smaller than 231 for the computer implementation 

we use. 



153 

7.8. DESCRIPTION AND EXPLANATION OF PROCEDURE SOLVE 

Procedure SOLVE performs the method described in sections 4.2, 5.2 and 

6. I for solving an initial value problem for an autonomous system of first order 

differential equations. The order and step size are varied automatically, 

according to the method described in section 6.5. The procedure heading is 

as follows. 

'PROCEDURE' SOLVE (M,KMAX,N,TT,ABSERR,RELERR,WORK,YY,F,G); 

'INTEGER' M,KMAX,N; 

'REAL' ABSERR,RELERR; 

'REAL''ARRAY' WORK; 

'TRIPLEX''ARRAY' TT,YY; 

'PROCEDURE' F,G; 

The parameters have the following meaning. 

'INTEGER' M 

I INTEGER I KMAX 

'INTEGER' N 

the number of equations in the differential 

system; 

the value kmax of section 6.5, i.e., the 

maximally allowed order; 

on input the number of grid-points T. for which 
J 

an inclusion of the solution U(T.) is required; 
J 

on output the number of grid-points T. for 
J 

which such an inclusion has been obtained; 

'TRIPLEX''ARRAY' TT (dimension (/1 : N/)) - the grid-points T. = TT(/j/), 
J 

'REAL' ABSERR 

'REAL' RELERR 

satisfying O < T1 < T2 < ••• < TN, for which 

an inclusion of the solution U(T.) is required; 
J 

if, for any j, T. is a non-representable number, 
J 

then the triplex TT(/j/) must represent a small 

interval containing T.; 
J 

the value Ea of section 6.5, i.e., the absolute 

error parameter; 

the value Er of section 6.5, i.e., the relative 

error parameter; 

'REAL''ARRAY' WORK (dimension (/0: KMAX-2/)) - WORK(/k/) indicates an 

estimate of the relative amount of work involved 

in the evaluation of the function gk; 
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1 TRIPLEX''ARRAY 1 YY (dimension (/0: N, 1 : M/)) - the values YY (/0,I/) 

I PROCEDURE I F 

I PROCEDURE I G 

(1 s Is M) denote the given vector interval y0 

of initial values; 

for Is J s N the values YY(/J,I/) (Is Is M) 

denote on output the vector interval O yn (where 

tn = T 1 ), which encloses the solution U (T 1 ); 

an externally declared subroutine to evaluate 

the functions I. (0 sis KMAX-1), see param-
i 

eter F of procedure SOC (section 7.7); 

an externally declared subroutine to evaluate 

the functions g. (0 sis KMAX-2), see (5.1 .8), 
]_ 

similar to parameter F. 

The matrix A0 has been chosen to be the unit matrix. Further we have 

chosen k 1 = KMAX-1, k2 = KMAX-2 (see section 6.5). 

The procedure body of SOLVE consists mainly of the procedure calls of 

TAYL and SOC. 

If, for any n, the step size hn is zero, then the process is stopped 

and the output value of N is smaller than its input value. This may for in

stance occur if, for any j, the diameter of the interval represented by the 

triplex TT(/j/) is too large. 

We observe that the initial value set used for the subinterval [Tj,Tj+l] 

is not the vector interval □ y (where t = T.), but the vector set y, 
n n J n 

represented by the matrix A and the vector interval x (see section 5.2). 
n n 

If one is interested in A and x, or if one wishes to choose other values 
n n 

of A0 , kl or k2, one can call the procedures TAYL and SOC directly. 

Finally we mention that the relative amount of work to perform a step 

of the integration" process with order K is estimated by 2.WORK(/0/) + 
,;-K-2 
lI=I WORK(/I/). The factor 2 is used to account for the work involved in 

the evaluations of I0 • This amount of work is assumed to be related to 

WORK(/0/). 



7.9. TEXT OF THE PROCEDURES 

PROCEDURE TAYL 

'PROCEDURE' TAYL(M,K,TMAX,F,G,T,A,X,Y,HN,Hl,HR,B,FB,DHH); 
'INTEGER' M,K; 'REAL' HN,Hl,HR; 'TRIPLEX' •r,TMAX; 
'TRIPLEX' 'ARRAY' A,X,Y,B,FB; 'BOOLEAN' DHH; 'PROCEDURE' F,G; 

'BEGIN' 

I PROCEDURE I HB (M, F, y, L, HN, H, B, DHH); I INTEGER I M; 
'REAL' L,HN,H; 'TRIPLEX' 'ARRAY' Y,B; 'BOOLEAN' DHH; 
'PROCEDURE' F; 

'BEGIN' 'INTEGER' I,J; 
'REAL' AL,BB,HH,HOLD,Hl,R0,Rl,R2,S,W,WRI; 
'TRIPLEX' 'ARRAY' BOLD,Bl,FB,FBOLD,FY(/1:M/); 
F(0,Y,FY); R0:=NORM(M,FY); HH:=HN; @ALG; 

NEWHH: 
AL:=HH*L; 
'IF' AL<.l 'THEN' AL:=.l 'ELSE' 
'IF' AL>.5 'THEN' AL:=.5; 
Rl: =R0*AL/ ( 1-AL); 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN' 

R2:=FY(/I, 1/); 
'IF' R2>0 'THEN' R2:=0; 
Bl(/I,1/) :=UQTAO(R2,-Rl,-l); R2:=FY(/I,3/); 
'IF' R2<0 'THEN' R2:=0; 
Bl(/I,3/) :=UQTAO(R2,Rl,l); 

'END' ; 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN' 

B(/I,1/) :=UQTAO(Y(/I,1/) ,UQTAV(HH,Bl(/I,1/) ,-1), 
-1); 
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B (/I, 3/) : =U QTAO (Y (/I, 3/) , UQ'rAV (HH, B 1 (/I, 3/) , 1) , 1) ; 
B(/I,2/) :=(B(/I,l/)+B(/I,3/))/2; 

'END' ; 
F(0,B,FB); H:=2*HN/HH; 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN' 

'IF' FB(/I,1/)<0 'THEN' 
'BEGIN' 

Hl:=UQTAD(Bl(/I,1/) ,FB(/I,1/) ,-1); 
'IF' Hl<H 'THEN' H:=Hl; 

I END' ; 
'IF' FB(/I,3/)>0 'THEN' 
'BEGIN' 

Hl:=UQTAD(Bl(/I,3/) ,FB(/I,3/) ,-1); 
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'IF' Hl<H 'THEN' H:=Hl; 
I END I ; 

I END I ; 

H:=UQTAV(H,HH,-1); 
'IF' H>HN 'THEN' H:=HN; 
'IF' (HH=HN&H<HN/2)1 (HOLD<H&H<HH&HH<HN) 'THEN' 
'BEGIN' 

HH:=HH/2; HOLD:=H; @TRI; DUPVI(M,B,BOLD); 
DUPVI (M,FB,FBOLD); @ALG; 'GOTO' NEWHH; 

'END' ; 
'IF' HH<HN&HOLD>=H 'THEN' 
'BEGIN' 

H:=HOLD; HH:=2*HH; @TRI; DUPVI(M,BOLD,B); 
DUPVI (M,FBOLD,FB); @ALG; 

I END' ; 
DHH:=HH<.9*HN; HN:=HH; 
J:=0; 

NEWB: 
J: =J + 1; W: =l; 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN' 

S:=B(/I,3/)-B(/I,l/); R2:=FB(/I,l/); 
'IF' R2>0 'THEN' R2:=0; 
BB :=UQTAO (Y (/I, 1/) , UQTAV(H, R2, -1) ,-1); 
'IF' BB>B(/I,1/) 'THEN' B(/I,1/) :=BB; 
R2: =FB (/I, 3/); 
'IF' R2<0 'THEN' R2:=0; 
BB:=UQTAO(Y(/I,3/) ,UQTAV(H,R2,1) ,1); 
'IF' BB<B(/I,3/) 'THEN' B(/I,3/):=BB; 
'IF' S=0 'THEN' WRI:=l 'ELSE' 
WRI:=(B(/I,3/)-B(/I,l/))/S; 
'IF' WRI<W 'THEN' W:=WRI; 

'END' ; 
@TRI; 
'IF' W<.9&J<l0 'THEN' 
I BEGIN' 

F(0,B,FB); 'GOTO' NEWB 
'END' 

'END' HB; 

'PROCEDURE' INVI (M,A,S,R,FAIL); 'INTEGER' M; 'REAL' R; 
'TRIPLEX' 'ARRAY' A,S; 'LABEL' FAIL; 

'BEGIN' 'INTEGER' I,IFAIL,J,L; 'REAL' NB,NC,P,PO,Q; 
'ARRAY' AR,BR,ER(/1:M,l:M/); 
'TRIPLEX' 'ARRAY' B,C,E(/1:M,l:M/); 
@ALG; 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'FOR' J:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN' 

AR(/I,J/) :=(A(/I,J,1/)+A(/I,J,3/))/2; 
ER(/I,J/) := 'IF' I=J 'THEN' 1 'ELSE' 0; 



'END I ; 

@TRI; F04AEA(AR,ER,M,M,BR,IFAIL); CPM(M,BR,B); 
MMM I ( M, A , B , C ) ; 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'FOR' J:=l 'STEP' l 'UNTIL' M 'DO' 

C(/I,J/) :=CP(ER(/I,J/) )-C(/I,J/); 
NC: =NORMM ( M, C); 
'IF' NC>=l 'THEN' 'GOTO' FAIL; 
NB:=NORMM(M,B); DUPMI(M,B,S); P:=DIAMM(M,S); @ALG; 
Q:=2*NB/(l-NC); P:=P+NC*Q; PO:=P+l; L:=0; 

NEWL: 
L:=L+l; @TRI; MMMI(M,S,C,E); MAI(M,B,E,S); PO:=P; 
P:=DIAMM(M,S); @ALG; P:=P+NC**(L+l)*Q; 
'IF' P<PO 'THEN' 'GOTO' NEWL; 
@TRI; R:=SUP(CP(NB) *CP(NC) **(L+l)/(1-CP(NC))); 

'END' INVI; 

I INTEGER I I I J; 
'REAL' C,L; 
'TRIPLEX' Cl,C2,H,R,Rl,Tl,U; 
'TRIPLEX' 'ARRAY' FY0,V0,Vl,X0,Xl,Y0,Z(/l:M/) ,Al,GY0,M0, 
Ml,M2,M3(/l:M,l:M/); 

G(0,Y,M3); L:=NORMM(M,M3); HB(M,F,Y,L,HN,HR,B,DHH); 
Hl:=HR; T:=CP(SUP(T)); 

NEWH: 
Tl:=CP(INF(T+CP(HR))); 
'IF' Tl>=SUP(TMAX) 'THEN' Tl:=TMAX 'ELSE' 
'IF' Tl>INF{TMAX) 'THEN' Tl:=CP(INF(TMAX)); 
H:=Tl-T; HR:=MAIN{H); CMV(M,X,X0); MVMI(M,A,X0,Y0); 
C2:=H/K; 
'FOR' I:=K-1 'STEP' -1 'UNTIL' 1 'DO' 
I BEGIN I 

F(I-l,Y0,FY0); G(I-l,Y0,GY0); MVMI(M,GY0,Y0,Vl); 
VSI(M,FY0,Vl,Vl); 
'IF' I>l 'THEN' 
'BEGIN' 

G(I-l,Y,M2); MSI(M,M2,GY0,M2) 
'END' 'ELSE' MSI(M,M3,GY0,M2); 
'IF' I<K-1 'THEN' 
'BEGIN' 

VAI(M,Vl,V0,Vl); MAI(M,GY0,M0,GY0); 
MAI(M,M2,Ml,M2); 

'END' ; 
Cl:=H/I; C2:=C2*Cl; SVMI(M,Cl,Vl,V0); 
SMMI(M,Cl,GY0,M0); SMMI(M,Cl,M2,Ml); 

'END' I-LOOP; 
VSI(M,Y,Y0,Z); MVMI(M,Ml,Z,Vl); F(K-1,B,FB); 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN' 

V0 (/I/) : =V0 (II/) +Vl (/I/) +C 2*FB (/I/); 
M0 (/I, I/) : =M0 (/I, I/) +l; 
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'END' ; 
MMMI(M,M0,A,Al); INVI(M,Al,Ml,C,FAIL); MVMI(M,Ml,V0,Vl); 
Rl:=CP(C)*(/-1,0,1/); R:=Rl*CP(NORM(M,V0)); 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 

Vl(/I/) :=Vl(/I/)+R; 
VAI(M,X,Vl,X); 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 
'FOR' J:=l 'STEP' 1 'UNTIL' M 'DO' 
'BEGIN I 

Ml (/I, J/) : =Ml (/I, J/) +Rl; U: =Al (/I, J/); 
Al(/I,J/) :=CM(U); M2(/I,J/) :=U-Al(/I,J/); 

'END' ; 
MMMI(M,Ml,M2,M3); 
'FOR' I:=l 'STEP' 1 'UNTIL' M 'DO' 

M3(/I,I/) :=M3(/I,I/)+1; 
MVMI (M,M3, X, Xl); MVMI (M,Al, Xl, Y); 'GOTO' END; 

FAIL: 
HR:=HR/2; 'GOTO' NEWH; 

END:T:=Tl; DUPVI(M,Xl,X); DUPMI(M,Al,A); 
'END' TAYL; 



PROCEDURE SOC 

'PROCEDURE' SOC(M,KMAX,ABSERR,RELERR,WPST,F,K,Kl,H,B,FB,HH, 
HHF); 'INTEGER' M,KMAX,K,Kl; 'REAL' ABSERR,RELERR,H,HH,HHF; 
'REAL' 'ARRAY' WPST; 'TRIPLEX' 'ARRAY' B,FB; 'PROCEDURE' F; 

'BEGIN' 'INTEGER' AUX; 'REAL' EAO, ERR, ESO, HAO, HSO, Hl; 
ERR:=ABSERR+RELERR*NORM(M,B); Hl:=HHF*H; 
HSO:=(ERR*FAC(/K/)*H/DIAM(M,FB))**(l/K); 
'IF' HSO>Hl 'THEN' HSO:=Hl; 
ESO:=HSO/WPST(/K/); 
'IF' Kl>=2 & Kl<=KMAX 'THEN' 
'BEGIN' 

F ( K 1-1 , B, FB) ; 
HAO:=(ERR*FAC(/Kl/)*H/DIAM(M,FB))**(l/Kl); 
'IF' HAO>Hl 'THEN' HAO:=Hl; 
EAO:=HAO/WPST(/Kl/); 

'END' 'ELSE' EA0:=0; 
'IF' EAO>ESO 'THEN' 
'BEGIN' 

AUX:=K; K:=Kl; Kl:=2*K-AUX; HSO:=HAO; 
'END' 'ELSE' Kl:=2*K-Kl; 
HH:=(HH/H)*HSO; 

'END' SOC; 
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PROCEDURE SOLVE 

'PROCEDURE' SOLVE(M,KMAX,N,TT,ABSERR,RELERR,WORK,YY,F,G); 
'INTEGER' M,KMAX,N; 'REAL' ABSERR,RELERR; 'REAL' 'ARRAY' WORK; 
'TRIPLEX' 'ARRAY' TT,YY; 'PROCEDURE' F,G; 

'BEGIN' 'IN'l'EGER' I,J,K,Kl,T'l'I; 'REAL' ERR,H,HH,HHF,Hl; 
'TRIPLEX' T,TMAX,TOLD; 'REAL' 'ARRAY' WPS'l(/2:KMAX/); 
'TRIPLEX' 'ARRAY' B,FB,X,Y(/1:M/) ,A(/1:M,l:M/); 
'BOOLEAN' DHH,START; 
WPST(/2/) :=2*WORK(/0/); 
'FOR' K:=3 'STEP' l 'UNTIL' KMAX 'DO' 

WPST(/K/) :=WPST(/K-l/)+WORK(/K-2/); 
'FOR' I:=l 'STEP' l 'UNTIL' M 'DO' 
'FOR' J:=l 'STEP' l 'UNTIL' M 'DO' 

A(/I,J/) := 'IF' I=J 'THEN' l 'ELSE' 0; 
'FOR' I:=l 'STEP' l 'UNTIL' M 'DO' 
'BEGIN' 

X (/I/) : =YY (/0, I/); Y (/I/): =YY (/0, I/); 
I END' ; 
T:=0; START:= 'TRUE' ; TTI:=0; 

NEWTT: 
TTI:=TTI+l; TMAX:=TT(/TTI/); 

NEWSTP: 
I IF I s TAR'l' I 'fHEN' 
'BEGIN' 

START:= 'FALSE' ; K:=KMAX-1; Kl:=KMAX-2; HHF:=2; 
F(K,Y,FB); ERR:=ABSERR+RELERR*NORM(M,Y); 
HH:=(ERR*FAC(/K/)/NORM(M,FB))**(l/K); 

'END' 'ELSE' 
'BEGIN' 

'IF' DHH 'THEN' HHF:=l; 
HHF: =l. l *HHF; 
SOC(M,KMAX,ABSERR,RELERR,WPST,F,K,Kl,Hl,B,FB,HH,HHF); 

'END' ; 
TOLD:=CP(SUP(T)); 
TAYL(M,K,TMAX,F,G,T,A,X,Y,HH,Hl,H,B,FB,DHH); 
'IF' T=TOLD 'THEN' 
'BEGIN' 

N:=TTI-1; 'GOTO' END; 
'END I ; 

'IF' T<SUP(TMAX) 'THEN' 'GOTO' NEWSTP; 
'FOR' I:=l 'STEP' l 'UNTIL' M 'DO' 

YY (/TTI, I/) : =Y (/I/) ; 
'IF' TTI<N 'THEN' 'GOTO' NEWTT; 

END: 
'END I SOLVE; 



AUXILIARY PROCEDURES 

'TRIPLEX' 'PROCEDURE' CM(X); 'VALUE' X; 'TRIPLEX' X; 
'TRICODE I 

'PROCEDURE' CMV(M,T,X); dINTEGER' M; 'TRIPLEX' 'ARRAY' T,X; 
'TRICODE' 

'TRIPLEX' 'PROCEDURE' CP(X); 'VALUE' X; 'REAL' X; 'TRICODE' 

'PROCEDURE' CPM(M,AR,A); 'INTEGER' M; 'ARRAY' AR; 
'TRIPLEX' 'ARRAY' A; 'TRICODE' ; 

'REAL' 'PROCEDURE' DIAM(M,T); 'INTEGER' M; 
'TRIPLEX 1 'ARRAY' T; 'TR IC ODE' 

'REAL' 'PROCEDURE' DIAMM(M,A); 'INTEGER' M; 
''fRIPLEX I 'ARRAY' A; 'TRICODE I 

'PROCEDURE' DUPMI(M,X,Y); 'INTEGER' M; 'TRIPLEX' 'ARRAY' X,Y; 
'TRICODE I ; 

'PROCEDURE' DUPVI(M,X,Y); 'INTEGER' M; 'TRIPLEX' 'ARRAY' X,Y; 
'TRICODE I ; 

'PROCEDURE' F04AEA(A,B,N,M,C,IFAIL); 'VALUE' N,M; 
'INTEGER' N,M,IFAIL; 'REAL' 'ARRAY' A,B,C; 'CODE' 

'PROCEDURE' MAI(M,A,B,C); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A,B,C; 'TRICODE' ; 

'PROCEDURE' MMMI(M,A,B,C); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A,B,C; 'TRICODE'; 

'PROCEDURE' MSI(M,A,B,C); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A,B,C; 'TRICODE'; 

'PROCEDURE' MVMI(M,A,X,Y); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A,X,Y; 'TRICODE' ; 

'REAL' 'PROCEDURE' NORM(M,T); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' T; 'TRICODE' 

'REAL' 'PROCEDURE' NORMM(M,A); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A; 'TRICODE' 

'PROCEDURE' SMMI(M,C,A,B); 'VALUE' C; 'INTEGER' M; 
'TRIPLEX' C; 'TRIPLEX' 'ARRAY' A,B; 'TRICODE' ; 

'PROCEDURE' SVMI(M,C,X,Y); 'VALUE' M,C; 'INTEGER' M; 
'TRIPLEX' C; 'TRIPLEX' 'ARRAY' X,Y; 'TRICODE' ; 

'REAL' 'PROCEDURE' UQTAD(A,B,C); 'VALUE' A,B,C; 'INTEGER' C; 
'REAL' A,B; 'CODE' ; 
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'REAL' 'PROCEDURE' UQTAO(A,B,C); 'VALUE' A,B,C; 'INTBGER' C; 
'REAL' A,B; 'CODE' 

'REAL' 'PROCEDURE' UQTAV(A,B,C); 'VALUE' A,B,C; 'INTEGER' C; 
'REAL' A,B; 'CODE' 

'PROCEDURE' VAI(M,A,B,C); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A,B,C; 'TRICODE' ; 

'PROCEDURE' VSI(M,A,B,C); 'INTEGER' M; 
'TRIPLEX' 'ARRAY' A,B,C; 'TRICODE' ; 
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CHAPTER 8 

NUMERICAL EXPERIMENTS 

In this chapter we will give the numerical results of applying proce

dure SOLVE, described in chapter 7, to a number of initial value problems. 

We consider 4 differential systems, each with both an initial value set con

sisting of only one element and an initial value set which is an interval 

of non-zero diameter. 

The computations have been performed on the AMDAHL V7-B computer of the 

Centraal Rekeninstituut (Central Computing Institute) of the University of 

Leiden. 

DIFFERENTIAL SYSTEM I. 

We consider the differ~ntial equation 

(8. I) U I ( t) -[U(t) J2 

For problem la and problem lb we choose as initial condition 

(8.2) U(O) 

and 

(8.3) U(O) E[0.999,1.001], 

respectively. To (8.1) corresponds, for x > 0, the solution function 

(8.4) U(t,x) = -_-1-
x + t 

The maximum order k is chosen to be 20. The procedure parameters max 
F and G of procedure SOLVE are declared as follows. 
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'PROCEDURE' F{I,X,Y); 'VALUE' I; 'INTEGER' I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN I 

Y(/1/) :={-l)**{I+l)*FAC(/l+l/)*X(/l/)**{I+2); 
'END I F; 

I PROCEDURE I G (I, x, Y); 'VALUE I I; I INTEGER' I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN' 

Y(/1,1/) :={-l)**(l+l)*FAC{/I+2/)*X{/l/)**{I+l); 
'END' G; 

Further we choose 

ABSERR = 0, 

RELERR = l0- 16 

WORK(/!/) = I 

, 
(0 ,:; I ,:; 18). 

With these parameter values procedure SOLVE produces the following 

results. 

PROBLEM la (83 steps performed, computation time 44 sec). 

TT (/J/) yy (/J, I/) DIAM 

0 +l.00000000000000'+00 +l.00000000000000'+00 0 

+1'+01 +9.09090909090907'-02 +9.09090909090912'-02 +5'-16 

+1'+02 +9.90099009900987'-03 +9.90099009900994'-03 +7'-17 

+1'+03 +9.99000999000994'-04 +9.99000999001003'-04 +9'-18 

+1'+04 +9.99900009998986'-05 +9.99900009999114'-05 +2'-17 

+1'+05 +9.99990000099362'-06 +9.99990000101101'-06 +2'-17 
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PROBLEM lb (83 steps performed, computation time 45 sec). 

T'r (/J/) yy (/J, I/) DIAM 

0 +9.98999999999999'-01 +l.00100000000001'+00 +3'-03 

+1'+01 +9.09007936115082'-02 +9.09173882066737'-02 +2'-05 

+1'+02 +9.90089164079777'-03 +9.90108855722204'-03 +2'-07 

+1'+03 +9.98999996586873'-04 +9.99002001415124'-04 +3'-09 

+1'+04 +9.99899909576525'-05 +9.99900110421575'-05 +3'-11 

+1'+05 +9.99989990055304'-06 +9.99990010145159'-06 +3'-13 

Some general remarks on all tables of this chapter: 

I) A'B denotes A.JOB. 

2) Under the heading YY(/J,I/) the tables show for each J the following 

numbers: 

min YY (i J; I/) max YY (/ J , I /) 

min YY(/J,M/) max YY(/J,M/) 

The "main values" (see section 7.1) of the produced triplex numbers 

YY(/J,I/) are irrelevant and have therefore been left out. 

3) Under the heading "diam" the tables show the diameters of the triplex 

numbers YY(/J,I/), rounded upwards. 

We see that the diameter of the solution set y of problem lb decreases 
n 

considerably as n increases, according to the nature of the differential 

equation. Further we remark that the variable step size is very useful for 

problems la and lb, because of the long integration interval [O,J05J. 

DIFFERENTIAL SYSTEM 2. 

We consider the differential system 

(8. 5) 
{ u i ( t) 

} (Osts811). 
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For problem 2a and problem 2b we choose as initial conditions 

{ U I (0) I, 
(8.6) 

u2 (0) 0 

and 

{ U I (O) E [ 0.999,).001], 
(8.7) 

u2(0) E [-0.00I,0.001], 

respectively. To (8.5) corresponds the solution function 

(8 .8) U ( t, x) 
(cost 

sin• t 

-sin t 

cost 
) • X (Os t $ 811). 

Problems 2a and 2b, especially the latter, are of interest since they 

can illustrate the effectiveness of the choice of the class Y , introduced in 

chapter 3. MOORE [1966] showed that the choice Yr=Il ]RM would cause the dia

meter of the solution set to increase exponentially int (compare also ex

ample 6.3.I). 

One "revolution" of the solution set, that is, an increase oft by 211, 

would increase the diameter by a factor e 211 RS 500. 

The maximum order kmax is chosen to be 20. The procedure parameters 

F and G of procedure SOLVE are declared as follows. 

I PROCEDURE I F (I, x, Y); 'VALUE I I; I INTEGER I I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN' I:=I 'MOD' 4; 

'IF' 1=0 'THEN' 
'BEGIN' 

Y (/1/) : =-X (/2/); Y (/2/): =X (/1/) 
'END' 'ELSE' 
'IF' I=l 'THEN' 
'BEGIN' 

Y (/1/) : =-X (/1/); Y (/2/) : =-X (/2/) 
I END I IE LSE I 
'IF' 1=2 'THEN' 
'BEGIN' 

Y (/ 1/) : =X (/2/) ; Y (/2/) : =-X (/1/) 
I END I IE LSE I 
'BEGIN' 

Y (/1/) : =X (/1/); Y (/2/) : =X (/2/) 
'END' 

'END I F; 



'PROCEDURE' G(I,X,Y); 'VALUE' I; 'INTEGER' I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN' I:=I 'MOD' 4; 

'IF' I=0 ''fHEN' 
'BEGIN' 

Y(/1,1/) :=0; Y(/1,2/) :=-1; Y(/2,1/) :=l; Y(/2,2/) :=0 
'END' 'ELSE' 
'IF' I=l 'THEN' 
'BEGIN' 

Y(/1,1/) :=-1; Y(/1,2/) :=0; Y(/2,1/) :=0; Y(/2,2/) :=-1 
'END' 'ELSE' 
'IF' 1=2 'THEN' 
'BEGIN I 

Y(/1,1/) :=0; Y(/1,2/) :=l; Y(/2,1/) :=-1; Y(/2,2/) :=0 
'END' 'ELSE' 
'BEGIN I 

Y(/1,1/) :=l; Y(/1,2/) :=0; Y(/2,1/) :=0; Y(/2,2/) :=l 
'END' 

I END I G; 

Further we choose 

ABSERR = I0- 16 , 

RELERR = 0, 

WORK(/I/) = 
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PROBLEM 2a (48 steps performed, computation time 34 sec). 

T'l' (/J/) YY (/J, I/) DIAM 

0 +l.000000000000000 +l.000000000000000 0 
.000000000000000 .000000000000000 0 

hr -.000000000000001 +.000000000000001 +2'-15 
+.999999999999999 +l.000000000000004 +5'-15 

'If -l.000000000000006 -.999999999999999 +7'-15 
-.000000000000001 +.000000000000001 +2'-15 

J½,r -.000000000000002 +.000000000000001 +3'-15 
-l.000000000000009 -.999999999999998 +2'-14 

2,r +.999999999999998 +l.000000000000012 +2'-14 
-.000000000000002 +.000000000000002 +4'-15 

2h -.000000000000002 +.000000000000003 +5'-15 
+.999999999999997 +l.000000000000015 +2'-14 

3,r -l.000000000000018 -.999999999999997 +3'-14 
-.000000000000003 +.000000000000004 +7'-15 

3½,r -.000000000000005 +.000000000000003 +8'-15 
-1.000000000000021 -.999999999999996 +3'-14 

4,r +.999999999999996 +l.000000000000024 +3'-14 
-.000000000000006 +.000000000000003 +9'-15 

4½,r -.000000000000004 +.000000000000006 +l'-14 
+.999999999999995 +l.000000000000027 +4'-14 

5,r -l.000000000000030 -.999999999999995 +4'-14 
-.000000000000004 +.000000000000007 +2'-14 

5 f'lf -.000000000000011 +.000000000000005 +2'-14 
-l.000000000000034 -.999999999999993 +5'-14 

6,r +.999999999999991 +l.000000000000039 +5'-14 
-.000000000000013 +.000000000000007 +2'-14 

6½,r -.000000000000006 +.000000000000019 +3'-14 
+.999999999999989 +l.000000000000043 +6'-14 

7,r -l.000000000000048 -.999999999999987 +7'-14 
-.000000000000008 +.000000000000021 +3'-14 

7 i,r -.000000000000027 +.000000000000007 +4'-14 
-l.000000000000052 -.999999999999985 +7'-14 

8,r +.999999999999984 +l.000000000000056 +8'-14 
-.000000000000029 +.000000000000009 +4'-14 
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PROBLEM 2b (48 steps performed, computation time 34 sec). 

TT (/J/) yy (/J' I/) DIAM 

0 +.998999999999999 +l.001000000000001 +3'-03 
-.001000000000001 +.001000000000001 +3'-03 

!n -.001000000000001 +.001000000000001 +3'-03 
+.998999999999999 +l.001000000000004 +3'-03 

11 -l.001000000000007 -.998999999999999 +3'-03 
-.001000000000001 +.001000000000001 +3'-03 

q71 -.001000000000002 +.001000000000001 +3'-03 
-l.001000000000009 -.998999999999998 +3'-03 

271 +.998999999999998 +1.001000000000012 +3'-03 
-.001000000000002 +.001000000000002 +3'-03 

2½71 -.001000000000002 +.001000000000003 +3'-03 
+.998999999999997 +l.001000000000015 +3'-03 

371 -l.001000000000018 -.998999999999997 +3'-03 
-.001000000000002 +.001000000000004 +3'-03 

3½71 -.001000000000005 +.001000000000003 +3'-03 
-1.001000000000021 -.998999999999996 +3'-03 

471 +.998999999999996 +l.001000000000024 +3'-03 
-.001000000000005 +.001000000000003 +3'-03 

4½71 -.001000000000004 +.001000000000006 +3'-03 
+.998999999999995 +l.001000000000027 +3'-03 

571 -l.001000000000030 -.998999999999995 +3'-03 
-.001000000000004 +.001000000000007 +3'-03 

5½71 -.001000000000011 +.001000000000005 +3'-03 
-l.001000000000035 -.998999999999993 +3'-03 

671 +.998999999999991 +l.001000000000039 +3'-03 
-.001000000000013 +.001000000000007 +3'-03 

6½71 -.001000000000006 +.001000000000019 +3'-03 
+.998999999999989 +l.001000000000043 +3'-03 

771 -l.001000000000048 -.998999999999987 +3'-03 
-.001000000000008 +.001000000000021 +3'-03 

7½71 -.001000000000027 +.001000000000007 +3'-03 
-l.001000000000052 -.998999999999985 +3'-03 

871 +.998999999999984 +l.001000000000056 +3'-03 
-.001000000000029 +.001000000000009 +3'-03 
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We see that the diameter of the solution set of problem 2b almost does 

not increase for increasing t, while it would have increased enormously 

(i.e., by a factor of approximately 5004 ~ 6.10 10 ) if we would have chosen 

YI= lilRM). 

DIFFERENTIAL SYSTEM 3. 

We consider the differential system 

(8.9) 
{ u; (t) 

t ,c:: 2). 

For problem 3a and problem 3b we choose as initial conditions 

1, 
(8. 1 0) { U l (0) 

Uz(0) 0 

and 

[ 0.9999,1.0001], 
(8. 1 I) { 

u1(0) E 

Uz{0) E [-0.0001,0.0001] 

respectively. 

The maximum order kmax is chosen to be 4. The procedure parameters 

F and G of procedure SOLVE are declared as follows. 

'PROCEDURE' F (I, X, Y); 'VALUE' I; 'INTEGER I I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN' 'TRIPLEX' U,V; 

U:=X(/1/); V:=X(/2/); 
'IF' I=0 'THEN' 
'BEGIN' 

Y(/1/) :=U*V; Y(/2/) :=U-V**2; 
'END' 'ELSE' 
'IF' I=l 'THEN' 
'BEGIN' 

Y(/1/) :=U**2; Y(/2/) :=-U*V+2*V**3; 
'END' 'ELSE' 
'IF' I=2 'THEN' 
'BEGIN' 

Y(/1/) :=2*U**2*V; Y(/2/) :=-U**2+6*U*V**2-6*V**4; 
'END' 'ELSE I 

'BEGIN' 
Y (/1/) : =2*U**3+2* (U*V) **2; 
Y(/2/) :=10*U**2*V-30*U*V**3+24*V**5; 

'END' 
'END' F; 



'PROCEDURE' G(I,X,Y); 'VALUE' I; 'INTEGER' I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN I 'TRIPLEX I u, V; 

U:=X(/1/); V:=X(/2/); 
'IF' I=0 ''fHEN' 
'BEGIN I 
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Y(/1,1/) :=V; Y(/1,2/) :=U; Y(/2,1/) :=l; Y(/2,2/) :=-2*V; 
I END I I ELSE I 

'IF' I=l 'THEN' 
I BEGIN I 

Y(/1,1/) :=2*U; Y(/1,2/) :=0; Y(/2,1/) :=-V; 
Y(/2,2/) :=-U+6*V**2; 

'END' 'ELSE' 
'BEGIN' 

Y(/1,1/) :=4*U*V; Y(/1,2/) :=2*U**2; 
Y(/2,1/) :=-2*U+6*V**2; Y(/2,2/) :=12*V*(U-2*V**2); 

'END' 
'END' G; 

Further we choose 

ABSERR = O, 

RELERR = I0-7, 

WORK(/I/) = I + (I 0,1,2). 

With these parameter values procedure SOLVE produces the following 

results. 
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PROBLEM 3a (196 steps performed, computation time 54 sec). 

T'l' (/J/) 'l'l (/J, I/) DIAM 

.0 +l.00000000 +l.00000000 0 
.00000000 .00000000 0 

+.2 +l.02013422 +l. 02013424 +2'-08 
+.19869300 +.19869303 +3'-08 

+.4 +l. 08219153 +l. 08219158 +5 '-08 
+.39014663 +. 39014669 +6'-08 

+.6 +l.19148303 +l. 19148314 +2'-07 
+.56983919 +. 56983929 +l'-07 

+.8 +l. 35813933 +l. 35813959 +3'-07 
+.73756333 +.73756350 +2'-07 

+1.0 +l. 59952386 +l. 59952449 +7'-07 
+.89765113 +.89765143 +3'-07 

+1.2 +l. 94491190 +l. 94491354 +2'-06 
+l.05847353 +l.05847413 +6'-07 

+1.4 +2.44475395 ➔ 2. 44475871 +5'-06 
+l. 23219075 +l. 23219215 +2'-06 

+1.6 +3.19012706 +3.19014311 +2'-05 
+l. 43570321 +l.43570709 +4'-06 

+1.8 +4. 35724463 +4. 35731072 +7'-05 
+l. 69402347 +l.69403671 +2'-05 

+2.0 +6.32181080 +6.32216318 +4'-04 
+2.04886788 +2.04892556 +6'-05 
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PROBLEM 3b (198 steps performed, computation time 54 sec). 

T1' (/J/) yy (/J, I/) DIAM 

• 0 +.99989999 +l. 00010001 +3'-04 
-.00010001 +.00010001 +3'-04 

+.2 +l.02000990 +l. 02025855 +3'-04 
+.19857518 +.19881084 +3'-04 

+.4 +l.08203262 +l. 08235049 +4'-04 
+.39001551 +. 39027781 +3'-04 

+.6 +l.19127555 +l. 19169061 +5'-04 
+.56969798 +.56998051 +3'-04 

+.8 +l. 35786312 +l. 35841580 +6'-04 
+.73741239 +.73771444 +4'-04 

+l.0 +l. 59914814 +l. 59990021 +8'-04 
+.89748701 +.89781555 +4'-04 

+l.2 +l.94438696 +l. 9454384 7 +2'-03 
+l. 05828830 +l.05865936 +4'-04 

+l.4 +2. 44399411 +2.44551854 +2'-03 
+l. 23197069 +l. 23241221 +5'-04 

+l.6 +3.18897121 +3.19129895 +3'-03 
+l.43542523 +l.43598507 +6'-04 

+l.8 +4.35534170 +4. 35921365 +4'-03 
+l. 69364318 +l. 69441700 +8'-04 

+2.0 +6.31802738 +6.32594659 +8'-03 
+2.04824889 +2.04954456 +2'-03 
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DIFFERENTIAL SYSTEM 4. 

We adopt from HUNGER [1971] the 4 1 th order differential equation 

(8.12) V""(t) = 6V(t). [2(V' (t)l + V(t)V"(t)] 

For problem 4a and problem 4b we choose as initial conditions 

(8. 13) 

and 

(8. I 4) 

{ V(O) • 
V' (O) -1, 

V"(O) 2, 

V"' (O) = -6 

l V(O) E [0.999,1,001], 

V'(O) E -[0.999,1,001], 

V"(O) E 2.[0.999, 1,001], 

V"'(O) E -6.[0.999,1.001], 

respectively. Transforming (8.12) into a system of 4 first order differential 

equations we obtain 

(8. 15) l 
Of course the initial conditions are transformed correspondingly. 

Problem 4a has the solution 

(8. 16) 

The maximum order k is chosen to be 6. The procedure parameters max 
F and G of procedure SOLVE are declared as follows. 



I PROCEDURE I F (I, x, Y); 'VALUE I I; I IN'l'EGER I I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN' 'INTEGER' J,L,P,Q; 'TRIPLEX' SUM,PROD; 

'FOR' J:=l,2,3,4 'DO' 
'BEGIN' 

P:=I+J; SUM:=0; 
'FOR' Q:=l 'STEP' l 'UNTIL' NT(/P/) 'DO' 
'BEGIN' 

PROD:=FPAR(/P,Q,0/); 
'FOR' L:=l,2,3,4 'DO' 

PROD:=PROD*X(/L/)**FPAR(/P,Q,L/); 
SUM: =S UM+PROD; 

'END' Q-LOOP; 
Y (/J/): =SUM; 

'END' J-LOOP; 
'END I F; 

I PROCEDURE I G (I, x, Y); 'VALUE I I; I INTEGER I I; 
'TRIPLEX' 'ARRAY' X,Y; 
'BEGIN' 'INTEGER' J,K,L,P,Q; 'TRIPLEX' SUM,PROD; 

'FOR' J:=l,2,3,4 'DO' 
'BEGIN' 

P:=I+J; 
'FOR' K:=l,2,3,4 'DO' 
'BEGIN' 

SUM:=0; 
'FOR' Q:=l 'STEP' l 'UNTIL' NT(/P/) 'DO' 

'IF' FPAR(/P,Q,K/)>0 'THEN' 
'BEGIN' 

PROD:=FPAR(/P,Q,0/); 
'FOR' L:=l,2,3,4 'DO' 

'IF' L]=K 'THEN' PROD:=PROD*X(/L/)** 
FPAR (/P, Q, L/); 
PROD:=PROD*X(/K/)**(FPAR(/P,Q,K/)-1)* 
FPAR(/P,Q,K/); SUM:=SUM+PROD; 

'END' Q-LOOP; 
Y (/ J , K/) : =SUM ; 

'END' K-LOOP; 
I END I J-LOOP; 

'END' G; 

The values of the integer arrays NT(/1 

are read with the statements 

9/) and FPAR (/ I 9, I 
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10, 0 : 4/) 
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'FOR' P:=l 'STEP' 1 'UNTIL' 9 'DO' 
'BEGIN' 

ININTEGER(0,NT(/P/)); 
'FOR I Q:=l 'STEP' 1 'UNTIL' NT (/P/) 'DO' 
'FOR I S : =0 , 1, 2, 3, 4 'DO' 

ININTEGER(0,FPAR(/P,Q,S/)); 
'END' P-LOOP; 

from the following dataset. 

1 1 0 1 0 0 

1 1 0 0 1 0 

1 1 0 0 0 1 

2 6 2 0 1 0 12 1 2 0 0 

3 6 2 0 0 1 36 1 1 1 0 
12 0 3 0 0 

5 36 4 0 1 0 72 3 2 0 0 
36 1 0 2 0 48 1 1 0 1 
72 0 2 1 0 

6 36 4 0 0 1 576 3 1 1 0 
792 2 3 0 0 120 1 0 1 1 
120 0 2 0 i 180 0 1 2 0 

9 216 6 0 1 0 432 5 2 0 0 
720 3 1 0 1 1296 3 0 2 0 

6264 2 2 1 0 3024 1 4 0 0 
120 1 0 0 2 720 0 1 1 1 
180 0 0 3 0 

10 216 6 0 0 1 6480 5 1 1 0 
10800 4 3 0 0 4752 3 0 1 1 
11304 2 2 0 1 20736 2 1 2 0 
33264 1 3 1 0 3024 0 5 0 0 

840 0 1 0 2 1260 0 0 2 1 

Further we choose 

ABSERR = 10-10 
' 

RELERR = 10- 10 , 
WORK(/I/) = I + (O '.,I'., 4). 

With these parameter values procedure SOLVE produces the following 

results. 
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PROBLEM 4a (15 steps performed, computation time 46 sec). 

TT (/J/) yy (/J, I/) DIAM 

.00 +l. 0000000000000 +l.0000000000000 0 
-1. 0000000000000 -l.0000000000000 0 
+2.0000000000000 +2.0000000000000 0 
-6.0000000000000 -6.0000000000000 0 

+.05 +.9523809523808 +.9523809523811 +3'-13 
-.9070294784584 -.9070294784576 +8'-13 

+l. 7276751970594 +l.7276751970651 +6'-12 
-4.9362148487601 -4.9362148487267 +4 I -11 

+.10 +.9090909090907 +.9090909090911 +4'-13 
-.8264462809928 -.8264462809904 +3'-12 

+l.5026296017946 +l. 5026296018097 +2'-11 
-4.0980807322075 -4.0980807321407 +7'-11 

PROBLEM 4b (16 steps performed, computation time 49 sec). 

TT (/J/) yy (/J, I/) DIAM 

.00 +.9989999999999 +l.0010000000001 +3'-03 
-1. 0010000000001 -.9989999999999 +3'-03 
+l.9979999999999 +2.0020000000001 +5'-03 
-6.0060000000001 -5.9939999999999 +2'-02 

+.05 +.9513283205366 +.9534335842253 +3'-03 
-.9081374873833 -.9059214695326 +3'-03 

+l.7252901146652 +l. 7300602794596 +5'-03 
-4.9454981258636 -4.9269315716257 +2'-02 

+.10 +.9079798025295 +.9102020156523 +3'-03 
-. 8276802271459 -.8252123348373 +3'-03 

+l.4997082227064 +l.5055509808982 +6'-03 
-4.1101182275942 -4.0860432367594 +3'-02 
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