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INTRODUCTION

In the beginning of his celebrated 1868 paper "On governors', James
Clerk Maxwell made a careful distinction between two types of regulators.
One type consists of the so-called 'moderators', which are only able to
diminish the effect of the disturbances. After describing a few mechanisms

of this sort, Maxwell writes:

"In all these contrivances an increase of driving-power produces an
increase of velocity, though a much smaller increase than would be produced
without the moderator. But if the part acted on by centrifugal force,
instead of acting directly on the machine, sets in motion a contrivance
which continually increases the resistance as long as the velocity is
above its normal value, and reverses its action when the velocity is below
that value, the governor will bring the velocity to the same normal value
whatever variation (within the working limits of the machine) be made in
the driving-power or the resistance.

I propose at present, without entering into any details of mechanism,
to direct the attention of engineers and mathematicians to the dynamical
theory of such governors." (MAXWELL (1868; p.271))

In today's terminology, the second type of regulators to which Maxwell
refers is said to provide dynamic feedback. The offset is eliminated via an
integration of the error, which means that the controller brings its own
dynamics into the feedback loop.

The concept of dynamic feedback (or integral control) has given rise
to important theoretical developments from its very inception on. Second-
order models were used to study the motion of engines, but the combination
with an integral controller led Maxwell to consider third-, fourth- or
even fifth-order equations. The resulting question of giving verifiable
necessary and sufficient conditions for a polynomial of arbitrary degree
to have only roots with negative real parts led to the well-known theorems
of E.J.Routh and A.Hurwitz. An interesting survey of the developments
around the stability of polynomials has been given by BENNETT (1979), and
a detailed account can be found in BATEMAN (1945).

In the fast and sweeping development of mathematical control theory



in the last twenty or so years, dynamic feedback has not been a central
concepé. Rather, one can say that a key role has been played by the notion
of state feedback. In a rough paraphrase of the system-theoretic definition,
the state of a system at a given time consists of a complete specification
of the parameters that determine the system's future behaviour. So when
studying state feedback, one assumes that all relevant information about
the system is available to the controller.

This idealization turned out to be extremely useful for the description
of fundamental properties of systems such as controllabillity (introduced
by R.E.Kalman at the end of the fifties). Moreover, the theory of state
feedback was used in dual form to obtain an observer theory, which answered
the question of how to reconstruct the state from the given measurements.
Thus, a feasible controller could be derived by combining a state feedback
law with an observer. The solution obtained in this way could in fact even
be proved to be the optimal solution for the standard regulator problem of
stochastic control; this is the so-called separation principle.

The method of reducing a two-sided problem (input/output) to two easier
to solve one-sided problems (input/state and state/output) has been one of
the main successes of the state space approach to control theory. Not
surprisingly therefore, the method is also strongly present in the 'geometric'
approach to linear multivariable systems. This approach was developed from
1969 on by G.Basile, G.Marro, A.S.Morse, W.M.Wonham and many others; it is
characterized by its consistent formulation of results in terms of subspaces
of the state space. In Wonham's trend-setting book (WONHAM (1974)), a
systematic pattern is discernible which proceeds from 'restricted' to
'extended' problems. Problems of the first kind have to be solved using
state feedback, while an observer is added to study the 'extended' problem
in which the control has to be based on the observations. The reliance on
duality and the resulting one-sidedness of the theory are clearly illustrated
by the fact that the concept of 'controlled invariant subspace' (i.e., a
subspace that can be made invariant by state feedback) is used throughout
Wonham's book, whereas the dual concept of 'conditioned invariant subspace'
is only mentioned in one of the exercises.

In the present monograph, we want to show that it is possible to go
one step further and to develop a two-sided approach. This means that we are
going to make a direct study of dynamic feedback. The basic idea is the
introduction of the concept of a compensator cqyple (Section 2.2), which is

used to describe the subspaces that can be made invariant by dynamic feed-



back. The two-sidedness of our method is reflected in the fact that a
compenéator couple is a paZr of subspaces, one of which is controlled
invariant and the other conditioned invariant.

The price one has to pay for the use of the separation method is
particularly clear in the context of systems with an infinite-dimensional
state space (ditributed parameter systems). One has been able, for instance,
to solve the linear-quadratic optimal control problem for several important
classes of infinite-dimensional systems, but the resulting controllers are of
infinite order and therefore impractical. To design finite-dimensional
compensators, one has to leave the idea of separation. In Chapter 5, we shall
present a method of compensator design based on a certain adjustment between
the 'feedback' and the 'observer' parts (Section 5.4). This method is able to
produce controllers of low order, as will be illustrated in various examples.
Moreover, we shall prove the existence of a stabilizing compensator of finite
order for a large class of infinite-dimensional systems, including those
described by diffusion and delay equations (Thm.5.2).

The theory of Ch.5 is based on that of Ch.2, in which we treat the
stabilization problem for finite-dimensional systems. A general construction
theorem is given (Thm.2.4), which is based on the notion 'compensator couple'.
We prove that the traditional state-space techniques of compensator design can
all be described within this framework (Section 2.4). We also investigate the
question of when a separation between 'feedback' and 'observer' action is
possible for a given compensator. We propose a precise definition of this
separation, taken here in a more general sense than that of the 'separation
principle' (Section 2.2), and we prove that any compensator for which such a
separation is possible can be constructed by our method.

Although in Wonham's book the disturbance decoupling problem more or less
bears the banner of the 'geometric approach', the "DDP" is only solved for
state feedback, whereas the natural extension to output feedback is not even
mentioned. Indeed, one needs a compensator couple to solve the general problem.
We give the solution in Ch.3 as a special case of a theorem (Thm.3.3) that
attains a level of generality which seems to be new. Distqrbance decoupling
is combined with a regulation task, and not only the solution of the problem
of disturbance decoupling by observation feedback but also many other results
are recovered as special cases (Section 3.4). Even at this level of generality,
the solution we obtain is completely constructive (Section 3.3).

In the final Chapter 6, we consider tracking and regulation problems for

infinite-dimensional systems. Again, we give an existence theorem for finite-



dimensional controllers (Thm.6.2) and an algorithm for the actual design of
such controllers (Section 6.5). The practicability of the method is shown
by several examples. One of these examples concerns a delay systems which is
to be protected against constant disturbances (Section 6.7). The ability of
a regulator to eliminate the effect of a constant disturbance is cited by
Maxwell as a typical distinction between 'moderators' and 'governors'
(MAXWELL (1868; p.274)). Also, one may note that delay effects were at least
partially responsible for the 'hunting' of steam engines (slow oscillatory
variations in the work of the engine), one of the main energy problems of
the nineteenth century. Our solution is simple enough to have been
implementable by the methods of Maxwell's time.

Admittedly, this solution is a bit on the late side. Our final example
(Section 6.8) is perhaps more modern in that it has been inspired by a problem

in nuclear reactor design.

Organization

This work is divided in two parts, each consisting of three chapters.
The first part is concerned with finite-dimensional systems, the second with
systems having an infinite-dimensional state space. Both parts are organized
in the same way: the first chapter (Ch.l1 and Ch.4) contains introductory
material, the second chapter (Ch.2 and Ch.5) is concerned with stabilization
problems, and regulation problems are treated in the third chapter of each
part (Ch.3 and Ch.6).

The reader who is interested in the finite-dimensional theory and who
is reasonably well acquainted with the 'geometric' approach to linear
multivariable systems could skim over Ch.l to pick up the new results and
then proceed directly to Ch.2 or Ch.3. The third chapter is fairly independent
from the second, except for the definition of a '"compensator couple'" that is
given in Section 2.2. The reader who is not initiated in the 'geometric'
theory could read Ch.l as an introduction, but it should be said that the
primary purpose of this chapter has not been to give an extensive motivation
for the presented theory from a more general control point of view.

Although some of the main ideas of the second part are already present
in the first part, both parts are mathematically independent and so the
reader who is interested in control of distributed parameter systems could
start immediately with Ch.4. Most of the materigl in this chapter will be

familiar to those versed in the 'semigroup' approach to infinite-dimensional



systems. Although in principle Ch.6 is independent from Ch.5, the idea of
constructing a finite~dimensional controller is developed in Ch.5 in a some-
what easier context, so the reader is advised to read these chapters in
their natural order.

All chapters are divided into sections. At the beginning of each chapter,

a brief description of the organization of the sections is given.



CHAPTER 1

CONTROL AND OBSERVATION

We start our treatise by briefly explaining some of the central notions
of linear systems theory, such as: the concept of state, the notions of
stability, controllability and observability, and the relationship
between deconposition of systems and invariant subspaces. The problem of
changing the dynamics of a given system by state feedback is fundamental.

On one hand, we have at our disposal the solution of the ''pole placement
problem", which allows us to relocate eigenvalues. On the other hand, the
structural change in a system brought about by state feedback may be captured

in the concept of "

controlled invariant subspace'. Combining the two results

we can also consider pole placement problems under certain structural restric-
tions on the nature of the feedback. Motivated by our needs in later chapters,
we give a rather extensive treatment of this type of problems and present

some new results. The theory will also be needed in its dualized form, and

so many results will be given together with their mirror images obtained by
dualization.

The chapter contains five sections. The first section gives a brief
introduction into linear systems and explains some notation and termi-
nology. In the second section, we give the basic standard results on pole
placement. Controlled and conditioned invariant subspaces are defined in
section 3, and section 4 considers pole placement with certain restrictions
oin the feedback map. Finally, in section 5 we discuss stabilizability and

detectability properties related to invariant subspaces.

1.1. Introduction to linear systems

Let us suppose that we have a process which evolves in time according
to a set of differential equations, which in the first part of this thesis,
we shall assume to be ordinary differential equations. Furthermore, we shall
always assume that the equations are linear and have constant coefficients.
If we take all equations together and write them in a first-order form, then

the evolution of the process under consideration is described by an equation



a.n x'(t) = Ax(t)

where x(-) is a function of time with values in some finite-dimensional
linear space X called the state space, and A is a linear mapping from X
into X to which we shall refer as the system matrixz. The vector x(t) is

0 is
given, then the future behaviour of the system is completely determined by

called the state of the system at time t; if the state at some time t

the equation (1.1). The 'state space approach' will be used troughout
in this work.

In the real world, the evolution of a process is always affected by
disturbances. There are many ways in which such disturbances can be modeled,
and we shall encounter some of them further on. The simplest
model for a disturbance is obtained by setting a non-zero initial condition
for the equation (1.1). This represents a sudden departure of the system
from the origin, which is thought of as representing the nominal operating
mode of the system. It is a well-known fact that the state will
return to the originbregardless of the initial condition, if and only if

- the eigenvalues of the mapping A are in the left half of the complex plane:
O(A) ctC:=1{)e¢ EI Re A < 0}.

(This result, and in fact all the necessary material on ordinary differen-
tial equations, is covered in textbooks like HIRSCH & SMALE (1974)

or ARNOLD (1973)). Moreover, the rate of convergence will be faster accor-—
ding as the eigenvalues of A are situated further to the left. In general,
we shall say that the mapping A is stable if its eigenvalues are contained
in some prescribéd part of the complex plane demoted by Eg. Here, 'g" means
"good". The complement of Eg will be denoted by Eb, where '"b" stands for
"bad".

Very broadly speaking, the purpose of control is to make the controlled
process satisfy certain performance specifications which would not be satis-—
fied if the system was left to itself. For instance, the uncontrolled system
(1.1) may not be stable in the above sense. Of course, we have to make
certain assumptions about how the control enters into the system. We shall
assume that the control is a function of time with values in a finite-
dimensional linear space U, and which acts on the system through a linear

mapping B from U to X, in the following way:



(1.2) x'(t) = Ax(t) + Bu(t).

The operator B is called the Znput mapping; clearly, it is no restric-
tion to assume that this operator is injective, and we shall always do so.
If we want to talk about feedback, then the action of the control is to be
based on some observation of the state. We shall assume that this observation
is provided by some linear operator C mapping X into another finite-dimen-

sional linear space Y:

(1.3) y(t) = Cx(t).

The operator C is called the output mapping, y(t) € Y is called the obser-—
vation at time t. Without loss of generality, we can assume that C is sur-—
jective.

A fundamental notion describing the relation between the system matrix
A and the input mapping B is that of controllability. Suppose that the sys—
tem (1.1) has been obtained by combining two sets of linear differential

equations, of the following form:

(1.4.1) xi(t) A]lxl(t) + A]ZXZ(t)

(1.4.2) xé(t) = A22x2(t)'

Also suppose that the input mapping is such that the control u(-) only

‘affects the first set of state variables, so that (1.2) reads:
<! =
(1.5.1) Al(t) A]]xl(t) + AIZXZ(t) + Blu(t)
(1.5.2)  x5(t) = Aj,x,(¢).
Then it is clear that the behaviour of x2(-) is not influenced by the control
function. In particular, if A22 is unstable, then there is no way in which

the system as a whole can be stabilized by a suitable choice of u(:).

Pictorially, the situation can be described as follows.



X, (t)

4

u(t) Xl(t)

Fig. 1.1. Uncontrollable system

Whether this phenomenon occurs or not depends on the mappings A and B. The
pair (A,B) is said to be controllable if there is no decomposition of (1.2)
in the form (1.5).

A similar situation can arise with respect to the observation. If the
system (1.1) is decomposed as in (1.4) and if the output equation (1.3) is

actually of the form
(1.6) y(t) = szz(t)

then one sees that the observation y(t) does not contain any information

about xl(t). We can illustrate this in a diagram:

XZ(t) C

>y (t)

Y

xl(t)

Fig. 1.2. Unobservable system

This phenomenon depends on the mappings A and C. The pair (C,A) is called
observable if the equations (1.1) and (1.3) do not decompose into (1.4) and
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(1.6). The concepts of controllability and observability also play a crucial
role in realization theory, in which a state space description is construc-—
ted from a system's input-output behaviour (see for instance KALMAN, FALB

& ARBIB (1969)).

One may note that the figures 1.1 and 1.2 can be obtained from each-
other by reversing the arrows (and renaming the parts). In the language of
linear algebra, this duality just comes down to transposition of matrices.
In such a way, statements concerning a pair consisting of a system matrix
and an input mapping can be turned into statements about a pair consisting
of a system matrix and an output mapping, and vice versa. In the rest of
this chapter, we shall omit proofs of dual results with reference to this
principle of duality.

If we reconsider the system matrix A and the input mapping B as they
appear in the uncontrollable system (1.5), we see that these mappings can

be written down in a "block matrix" format in the following way:

(1.7)

0 A22 0

Ao (An A1z B

From this, it is clear that the controllable vector Xl(t) corresponds to a
(nom-trivial) subspace of the state space X which is invariant for A and
which contains the range of the input mapping B. So we can say: The pair

of mappings (A,B) is controllable if and only if the only A-invariant sub-
space containing Im B (the range of B) is the trivial one, namely the whole

state space X on which A acts. If we write

(1.8) <A | V> =n {WAw ¢ W, W> V}

for the smallest A-invariant subspace containing !/, then the condition

for controllability is:

(1.9) <A | Im B> = X.

Dually, a decomposition in the form (l1.4) and (1.6) can be made if and only

if there is a non-trivial A-invariant subspace contained in Ker C (the kernel

of C). The largest A-invariant subspace in KerC will be denoted by

(1.10) <W|a> =z Waw=w,We V.



Then the condition for observability is
(1.11) . <Ker C|A> = 0.

(We use the symbol O for the trivial subspace conmsisting of only the zero
element.)

This discussion of contrcllability and observability also shows the
importance of invariant subspaces in describing structural properties of
linear systems. Below, we shall introduce the concepts of "controlled in-
variant subspace'" and "conditioned invariant subspace', which arise natu-
rally in this context. The approach to linear systems that makes strong
use of these invariant subspaces has been initiated by G. BASILE &

G. MARRO (1969b) and by W.M. WONHAM & A.S. MORSE (1970)3; it is now commonly
described as the 'geometric' approach (WONHAM (1974,1979)).

Let us conclude this section by briefly reviewing the basic notation
and terminology that will be used in the sequel. In the first part of this
work  (chapters 1 to 3), all spaces will be finite-dimensional real vector
spaces. The standard complexifications of these vector spaces will be used
ocasionally without change of notation. Spaces and subspaces will be denoted
by script capitals, some of which have a standard meaning: X will always be
the state space and its dimension will always be denoted by n. U will be the
input space (of dimension m), and Y is the output space (of dimension p). The
elements of these vector épaces will as a rule be denoted by the corresponding
lower case letters: x € X, u ¢ U etc.. Roman capitals will be used for linear
mappings, and the following denotations will be standard: A: X -+ X is the
system matrix, B: U -+ X is the input mapping, and C: X -+ Y is the output
mapping. The words "matrix", "mapping" and '"operator" will all be used as
synonyms for 'linear mapping'". If V c X is an invariant subspace for T, then

we shall write
(1.12) T: V = restriction of T to V
(1.13) T: X/V = quotient mapping induced by T on X/V.

(Quotient mappings and all of the further material on linear algebra we shall
need can be found, for instance, in GANTMACHER (1959)). More generally, if

V1 and V2 are T-invariant subspaces and V] c V2’ then we shall write
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(1.14) T: VZ/V1 restriction of T: X/V] to VZ/VI =

quotient mapping induced by T: V2 on VZ/VI°

We have already used the notation O(T) for the set of eigenvalues of T.
We shall want to add spectra of different operators 'counting multiplicities".
To be able to state this properly, we introduce the spectral multiplicity

function which is the following function from € to Z.

(115 o(m®)

k if A is an eigenvalue of T with multiplicity k

0 if X is not an eigenvalue of T.

Such functions inherit a natural additive structure anda partial ordering from
Z . We shall freely use simple properties of the spectral multiplicity func-
tion, such as

(1.16) o(T: (V]+V2)/V1) = 0(T: V2/(V]nV2))

where V] and V2 are T-invariant subspaces.

1.2. Basic results on pole placement

The eigenvalues of the system matrix are often called '"poles" in the
control literature; this -terminology stems from the transfer function ap-—
proach to linear systems, in which these eigenvalues appear as the zeros
of the denominator polynomial of the transfer function. The problem of pole
placement by state feedback is: Given a system matrix A and an input mapping
B, find a feedback mapping F such that the eigenvalues of A + BF have a
prescribed location. A celebrated theorem says that if the pair (A,B) is
controllable, then this can always be done subject only to the restrictions
imposed by the dimension of the state space and by the use of the real number
field. The version we shall present is a slight variation of the one given
by WONHAM (1967); other versions were proved by J. Bertram in 1959 (according
to KALMAN, FALB and ARBIB (19693 p.49)), RISSANEN (1960) and POPOV (1964).

To get a proper statement of the result, let us introduce some
terminology. A multiplicity function will be a nonnegative function from

T to Z that assumes nonzero values only at finitely many points of &. The



total multiplicity of such a function is defined by
(1.17) ) m(f) = XEE £(A).

We shall say that a multiplicity function f is symmetric if £(X) = f(X) for

all X € C. Now we can state:

THEOREM 1.1 Let a system matrixz A: X ~ X and an input mapping B: U + X pe
given, and suppose that the pair (A,B) is controllable. For any symmetric
multiplicity function £ of total multiplicity n (= dim X), there exists a
real feedback mapping F: X + U such that o(A+BF) = f.

PROOF See WONHAM (1979; p. 50) 3

More detailed results are known (see ROSENBROCK (1970)), but this form
of the theorem will suffice for our purposes. One may ask what happens if
the pair (A,B) is not controllable; the answer follows almost immediately

from the theorem.

COROLLARY 1.2 Let a system matrixz A: X + X and an input mapping B: U » X
be given. For all F: X + U, the subspace <A | Im B> is (A+BF)-invariant,

and we have
(1.18) o(A: X/<A| Im B>) = o(A + BF: X/<A| Im B>).

On the other hand, given any symmetric multiplicity function f with total

multiplicity equal to dim<A | Im B>, there exists an F: X > U such that

(1.19) o(A + BF: <A| Im B>) = f.

PROOF Take x € <A| Im B> and F: X » U; then Ax ¢ <A| Im B> because

<A| Im B> is A-invariant and BFx ¢ <A| Im B> because BFx ¢ Im B. So
(A+BF)x ¢ <A] Im B> and we see that <Al Im B> is (A+BF)-invariant for all
F. The actions of A and A + BF modulo <Al Im B> are the same because
Im(A-(A+BF)) < Im B; hence the equality (1.18). The final statement of the
corollary follows by applying Theorem 1.1 to the pair of mappings obtained

by restriction to <A | Im B>. b
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We shall say that the pair (A,B) is stabilizable if there exists a feed-
back mapping F such that o (A+BF) < Eg.

COROLLARY 1.3 The pair (A,B) is stabilizable if and only if

(1.20) o(A: X/<A| Im B>) < mg.

PROOF. This is immediate from the foregoing corollary. X

We shall also need the dual results with respect to a pair consisting
of a system matrix A and an output mapping C. The problem is then to assign
the eigenvalues of A + GC by a suitable choice of the Znjection matrix

G: ¥ » X. By dualization of Corollary 1.2, we obtain:

COROLLARY 1.4 Let a system matriz A: X > X and an output mapping C: X + Y
be given. For all G: Y + X, the subspace <Ker C | A> is (A+GC)-imvariant,

and we have

(1.21) o(A: <Ker C|A>) = o(A + GC: <Ker C| A>).

On the other hand, given any symmetric multiplicity function f with total
multiplicity equal to dim X/<Ker C | A>, there exists a G: Y -+ X such
that

(1.22) o(A + GC: X/<Ker C| A>) = f.

The pair (C,A) is said to be detectable if there exists an injection

mapping G such that o(A+GC) < Eg.

COROLLARY 1.5 The pair (C,A) is detectable if and only if
(1.23) o(A: <Ker C| A>) < T,

The pole placement results of Corollary 1.2 and Corollary 1.4 can be
expressed by means of simple lattice diagrams. The word "free'" indicates
parts on which eigenvalues can be freely assigned (these are 0(A + BF:
<A IIm B>) in Corollary 1.4, and o(A + GC: X/<Ker CI A>) in Corollary 1.6),
whereas the word "fixed" refers to parts on which the poles are fixed (which

are, respectively, o(A + BF: X/<A |Im B>) and o(A + GC: <Ker C IA>)).



X X
fixed free
<A | Im B> <Ker C | A>
free fixed
0 0
A+BF A+GC
(F:X=>U) (G:Y+X)

Figure 1.3: Pole placement.
These diagrams should be compared to the block diagrams in figs. 1.1
and 1.2. Further on, we shall use more complicated diagrams of the above

kind.

1.3. Controlled and conditioned invariance

We - do not only want to consider the change in eigenvalues that can be
brought about by going from A to A + BF; we also need to have information
about the subspaces which can be made invariant by feedback. This may be
necessary, for instance, to see if certain structural features
can be assigned by a suitable choice of the control law. So let us suppose
that a system matrix A, acting on the state space X, and an input mapping
B are given. We are led to the following definition: A subspace V of X is a

eontrolled invariant subspace if there exists a feedback mapping F such that
(A+BF)V < V.

There are many ways to characterize controlled invariant subspaces;
for instance, one can show that V is controlled invariant if and only if
for every X € V there is a piecewise continuous control function u(:) such
that the solution of the controlled equation (1.2) remains in V for all time
(see BASILE & MARRO (1969b)). One characterization that is particularly
convenient, because it is stated purely in terms of the pair (A,B) and the

subspace , is the following:

PROPOSITION 1.6 A subspace V of X is controlled invariant if and only <f

(1.24) AV c V + Im B.

PROOF The proof is found in WONHAM (1979; p.88). X



Controlled invariant subspaces are also called (A mod B)-invariant
subspaces, or (A,B)-invariant subspaces; the reason for this terminology
is given by the above proposition. The term "controlled invariant" stems
from BASILE & MARRO (1969); the adjective "(A,B)-invariant" has been
introduced by WONHAM & MORSE (1970).

Dually, we define: A subspace T of X is a conditioned invariant sub-—
space (with respect to a given pair (C,A)) if there exists an injection

mapping G such that (A+GC)T < T. We have the following characterization:

PROPOSITION 1.7 A subspace T of X is conditioned invariant if and only if

(1.25) A(T n Ker C) < T.

It is immediately clear from Prop. 1.6 that the set of controlled in-
variant subspaces is closed under the operation of subspace addition. This
implies that, with every subspace K of X, there is a largest controlled
invariant subspace contained in K; this subspace will be denoted by V*(K).

We have the following algorithm to compute V*(K) for any K.

PROPOSITION 1.8 Let a pair of mappings (A,B) and a subspace K of X be given.

Define the sequence Vk(k = 0,1,2,...) according to

(1.26.1) V0 =K

ktl {x e K | Ax € V< + In B}.

(1.26.2) v
Then the sequence vk s decreasing, and the limit subspace (which is reached

after a number of steps at most equal to dim K) Zs V*(K).
PROOF See WONHAM (1979; p.91). X

Again, other interpretations of V*(K) are possible; for instance, this
subspace can also be considered as the set of initial values such that the
solution of the equation (1.2) can be kept inside K by a piecewise continu-
ous control function u(+) (see HAUTUS (1980)). If one uses a discrete time
parameter, then this idea naturally leads to the algorithm (1.26).

From Prop. 1.7, one sees that the set of conditioned invariant sub-
spaces is closed under intersection. Consequently, given a subspace E of

X there is a smallest conditioned invariant subspace containing E, which
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is denoted by T*(E), and which can be computed by an algorithm dual to the

one given above.

1.4. Pole placement under restrictions

In sections 1.2 and 1.3, we have discussed the effect of state feed-
back on the eigenvalues and on the invariant subspaces of the system matrix.
We now want to combine these two aspects. One important question is: How
much freedom is left in the assignment of eigenvalues of A + BF, if it is
required that a given subspace should be made invariant ?

Let us introduce, for a controlled invariant subspace V,
(1.27) F(V) = {F: X > U | (A+BF)V < V}.
Dually, we write for a conditioned invariant subspace T:
(1.28) G(T) = {G: ¥ » X| (A+GC)T < T}.

Our problem is now to determine the amount of freedom one has in
choosing the eigenvalues of A + BF when F is restricted to F(V). This can be

solved completely.

THEOREM 1.9 Let a system matrix A: X ~ X and an input mapping B: U + X
be given; let V be a controlled invariant subspace with respect to the pair
(A,B). For all F: X + U, the subspace <A | Im B + V> ©s (A+BF)-invariant,

and we have
(1.29) o(A: X/(<A | Im B> + V)) = g(A + BF: X/(<A | Im B> + V)),
Moreover, if we define the subspace RF for F e F(V) by

(1.30) R = <A¥BF | Im B n V>,

then for all F], F, ¢ F(V) we have RF] = RF : =R and

2 2

(1.31) O (A+BF V/IR) = o (A+BF,: V/R).

On the other hand, given any symmetric multiplicity
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funetion £, with total multiplicity equal to dim R, and another symmetric

1

multiplicity function £, with total multiplicity equal to dim(<A | Im B>+V)/V,

there exists an F ¢ F(V) such that

(1.32) o (A+BF: R) = f1

(1.33) o(A*BF): (<A|Im B> + V)/V) = £,.
Before we turn to the proof of this theorem, let us make some remarks.
The theorem says that if a feedback mapping makes V invariant for A + BF,
then it must do the same with R and <A | Im B> + V. The three subspaces
R, V and <A | Im B> + V form a chain, and so we can draw the following
lattice diagram to describe the pole placement properties announced in the

theorem:

fixed

<AI Im B> + V

free
fixed

free

Lo
A+BF
(FeE(V))

Figure 1.4: Pole placement

under invariance of V.

This corresponds to the following block diagram (compare Fig. 1.1):



X/ (<A| ImB>V/)

v

(<A | ImB+V) /V

A

V/R

Figure 1.5: A system with a prescribed

invariant subspace.

PROOF It follows immediately from Prop. 1.6 that <A | Im B> + V is an A-in-
variant subspace containing Im B; the statements concerning this subspace
then follow as in the proof of Cor. 1.2. For the second part of the proof,
take F] and F2 from F(V), and let x ¢ V. Then we must have (A+BF1)x -

- (A+BF2)x e V, but also (A+BF1)x - (A+BF2)X B(Fl—Fz)x € Im B. It is now
1 vy - (A+BF2: /)) ¢ Im B n V for all FI’FZ e F(V);

consequently, R, = R, for all such F, and F,, and (1.31) holds.
Fl F2 1 2

Now, let multiplicity functions fl and f2 be given as described in the

statement of the theorem. Then we must show that a feedback mapping F can

clear that Im((A+BF

be constructed satisfying (1.32) and (1.33). To do this, we start by picking
an arbitrary F e F(V). write Ay = A+ BF: V; define UO ={uelU|Buce

and write B, for the restriction of B to Uo, considered as a mapping to V.

Then we have R = <AO IIm BO>, and by Cor. 1.2 there exists a mapping

F]: V- UO such that g(A0+B0F]: R) = fl'
For the next step, let P be the canonical projection of X onto the
) = A S BFO: X/V and define Bz: u- X/V by

B2 = PB. Denote S = P(<A | Im B> + V). Then we have: S = <A

For, from the fact that <A |Im B> + V is A + BF

factor space X/V. Write A
2 [ Im B2>.

O—invariant and contains

Im B, it follows readily that S is Az—invariant and contains Im B2. Let
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S be another Az—invariant subspace of X/V containing Im B,; then

{x e X|Px e 3} is an A + BFO—invariant subspace of X containing both Im B
and V,.so that we get {x ¢ X|Px ¢ KJEEIRIN | Im B> + V and consequently,

S 5 S, Now we can again appeal to Cor. 1.2 and conclude that there

exists a mapping F,: X/V » U such that gﬂA2+B2F2: S) = f2.
We now construct our feedback matrix F. Let F3 be any extension of

F, to a mapping from X into U such that Im F, c UO, and define

Fl: X > U by F4 = FZP' Then F = F0 + F3 + F435atisfies (1.32) and (1.33):
(1.34) g(A+BF: R) = g(A+BF0+BF3: R) =
= gﬁAO+BOF1: R) = f1
(1.35) o (A+BF: (<A | Im B> + V)/V) =
= gﬁA+BFO+BF4: (<A | Im B> + V)/V) =
= Q(A2+32F2: S) = f2' X

Results like this have appeared before in the literature, although not in
the complete form as given above; see WONHAM (1979; p. 111) and MORSE
(1973b; Appendix, Lemma A. 2). An alternative proof using matrix arguments
has been given in SCHUMACHER (1980 a).

We shall also need an extension of the theorem, in which F is restric-
ted to an intersection of two sets of the form F(V). First we mention a
simple result which can easily be proved (see also WONHAM (1979; exercise

9.1)).

LEMMA 1.10 Let V1 and V2 be controlled invariant subspaces with respect
to the pair (A,B) and suppose that V1 c Vz. Given any Fle E(Vl), there

exists an F, « Eﬁvz) n E(Vl) such that A + BF,: V. = A+ BF : V.

28 Y 1
In particular, the lemma shows that EKVI) n E(Vz) is non-empty if
V1 c VZ' We can consider the pole placement problem when F is restricted

to a set of this type; again, a complete solution is available.

THEOREM 1.11 Let a system matrix A: X -+ X and an input mapping B: U + X
be given; let V1 and V2 be controlled invariant subspaces with respect to
the pair (A,B), and suppose that V1 < V,. Then Ryt = <A+BF | V, n Im B>
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and RZ: = <A+BF | V2 n Im B> do not depend on the specific choice of F from
E(Vl) n g(Vz). All subspaces in the chain

(1.36) OCRICV]CV1+R2CV2CV2+<AlImB>CX
are invariant for each F e E(V]) n E(VZ). Our freedom in selecting the

eigenvalues of A + BF when F is restricted to E(Vl) A E(Vz) can be

described in the following lattice diagram:

TX
fixed
TV, + <A | Im B>
free
--V2
fixed
E V] + R2
free
__Vl
fixed
--R]
free
Lo
A+BF

(FE(V)) n E(V,))

Figure 1.6: Pole placement under

invariance of V] and V2.

PROOF The facts that Rl and RZ do not depend on F € E(Vl) n E(Vz) and that
the subspaces in the chain (1.36) are invariant for any such F follow just
as in the proof of Theorem 1.9. The same holds for the 'fixed' parts in

the above diagram.

It remains to show that an F can be selected to obtain any desired
eigenvalues (with suitable symmetry and multiplicity) in the parts marked
'free' in the lattice diagram. To do this, first consider the subspace VZ'
€ E(Vl) n E(Vz)' Write A, = A + BF.: V; define

0 0
for the restriction of B to UO’ conside-

Take an arbitrary FO

UO ={uel lBu € Vz} and write B,

red as a mapping to V2. Then Vl is a controlled invariant subspace with
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respect to (AO,BO) (V1 is even A -invariant), and so we can apply Thm.1.9

0

to conclude that there exists a feedback matrix F]: V2 - UO such that

Ay + By, VZ/(V1 + <Ay | Im By>) and Ay + B.F : <A |V] n Im B

cribed multiplicity functions. Note that Im B

0> have pres-

=V
0 2 n Im B so that

0 0> = <A0| V) n Im B> = R,.

If we extend F] in an arbitrary way to a mapping F3: X + U such that

Im F3 c UO’ then we shall have A + B(FO+F3): V2/(V1+R2) =

= . . = . N a;
Ay + BOF]. Vz/(V]+R2) and A + B(FO+F3). Rl AO + ByF,: R. Now we can

proceed just as in the proof of Thm. 1.9 to find a suitable mapping

F: X/V » U, We finally define F by F = F, * Fy + F, where F, = F,P. Then

A + BF will have the desired properties. X

<A, | Im B> = R, and <Aj |V1 n Im B

We could go on by induction and prove a pole placement theorem for
F e E(Vl) n..n E(Vk) (for a chain V1 c..c Vk of controlled invariant sub-
spaces), but perhaps this would take us a little bit too far at this point.
Note that there is a striking contrast between our success in dealing with
such restrictions on F, and the great difficulties that arise when one tries
to do pole placement for F € {F: X » U |K c Ker F}, where K is an arbitrary
given subspace. (This is the problem of "pole placement by output feedback';
F can be written as F = KC for some K if and only if Ker C c Ker F.)

We may extend the lattice diagram in Fig. 1.6 to get a more complete

picture of the situation, as follows: (see Fig. 1.7, next page)

This diagram shows that the poles that are fixed when F is restricted
to E(Vl) n E(VZ) are precisely the fixed poles following from the restric-
tion F € E(V]) Faken together with those following from the restriction
F e E(Vz), with the understanding that overlapping parts are counted only
once. So the restrictions F ¢ EﬁVl) and F € E(Vz) do not interfere,
in the sense that combining them does not add any extra fixed poles to those

that must be present due to each restriction taken separately.

1.5. Stabilizability and detectability

Thm. 1.9 leads easily to a characterization of those controlled invariant
subspaces V for which there exists an F ¢ F(V) such that o(A+BF: V) < mg.
These subspaces are called stabilizability subspaces (HAUTUS (1980)). The
name controllability subspace is used in the special case where the eigen-

values of A + BF: U can freely be assigned by a suitable choice of F ¢ F(V).
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fixed

V, + <A | Im B>

Lo

Figure 1.7: Overlap of fixed spectra.

This term is much older (WONHAM & MORSE (1970)). For alternative
interpretations of these concepts, we refer again to HAUTUS (1980).
Sometimes, it will be important to know something about o(A+BF: X/V).
We shall say that the controlled invariant subspace V is outer-stabilizable
if there exists an F ¢ F(V) such that A + BF: X/V is stable. Correspondingly,
stabilizability subspaces will sometimes be called Zmner-stabilizable. We
also introduce the dual terminology. If T is a conditioned invariant sub-
space, then we shall say that T is outer—detectable (or that T is a detec-
tability subspace) if there exists a G € G(T) such that A + GC: X/T is
stable, and we shall say that T is ¢nner-detectable if there exists a
G ¢ G(T) such that A + GC: T is stable.
From Thm. 1.9, we immediately obtain the following characterization

of inner-and outer-stabilizable controlled invariant subspaces.
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PROPOSITION 1.12 Let V be a controlled invariant subspace with respect to
the pair (A,B) . Then V is inner-stabilizable if and only if

(1.37) 0(A+BF: V/(<A+BF |V n Im B>)) < L,
for any F € F(V), and V is outer-stabilizable if and only if
(1.38) o(A: X/(V + <A | Im B>)) < mg,

The characterization of stabilizability subspaces given by (1.37) is
not always convenient, because it depends on the computation of an
F ¢ F(V). This dependence is not present in the following characterization
of stabilizability subspaces, which as far as the author knows is new
(see also SCHUMACHER (1980 d)).

THEOREM 1.13 ILet V be a controlled invariant subspace with respect to the
paitr (A,B). Then V is inner-stabilizable <if and only if

(1.39) A=-AW + ImB=V+ In B for all X € mb.
PROOF "only Zf": Suppose that the controlled invariant subspace l is inner-
stabilizable; then we can find F ¢ F(V) such that A + BF: V is stable. No

A e Eb is an eigenvalue of A + BF: V, and consequently

(1.40) (A=(A+BF))V = V for all A ¢ Eb.

The desired conclusion now follows from noting that, for all F ¢ F(V),
(1.41) (A=(A+BF))V + Im B = (A-A)V + Im B.

"if': Now suppose that V is a controlled invariant subspace for which
(1.39) holds. By Thm. 1.9, we can take F ¢ E(V) such that A + BF: R is
stable, where R is defined by (1.30). With F chosen in this way, we contend
that A + BF: V is stable.

Take any A € Eb. From (1.39) and the general equality (1.41), we get

(1.42) V ¢ (A\=-(A+BF))V + Im B.
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Because (A-(A+BF))V < V , this is equivalent to
(1.43), V < (A-(a+BF))V + (V n Im B)
which immediately implies
(1.44) Ve (A-(a+BF))V + R.
Because it follows from A ¢ o(A+BF: R) that (A-(A+BF))R = R, we obtain:
(1.45) V c (A-(a+BF))V + (A-(A+BF))R = (A-(A+BF))V < V.
So our final conclusion is
(1.46) V = (A=(a+BF))V
which shows that A is not an eigenvalue of A + BF: V. X
The dua; result is

THEOREM 1.14 Let T be a conditioned inmvariant subspace with respect to the
pair (C,A). Then T is outer-detectable if and only if

-1
(1.47) (A-=A) TnKer C=T n Ker C for all A € mb.
Of course, A - A need not be invertible for all A ¢ T
()x-'A)-—l T, we mean {x ¢ X | (A-A)x ¢ T}.
The condition (1.39) can be formulated somewhat differently if we note

that the inclusion (A-A)V + Im B ¢ U+ Im B holds for any A € T if V is

b3 by the notation

controlled invariant; this follows readily from Prop. 1.6. Also, the inclu-

sion Im B ¢ (A-A)V + Im B is trivial. So we get:

COROLLARY 1.15 Let V be a controlled invariant subspace with respect to
the pair (A,B). Then V is inner-stabilizable if and only if

(1.48) Ve (A-A)V + Im B for all X € Eb.

The dual version reads:
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COROLLARY 1.16 Let T be a conditioned invariant subspace with respect to
the pair (C,A). Then T is outer-detectable if and only if

(1.49) T 5 (A-A)"!T n Ker ¢ for all ) € T,
From Thm. 1.13, it follows immediately that the set of stabilizability
subspaces is closed under the operation of subspace addition. In particular,
to every given subspace K in X there is a largest stabilizability subspace
contained in K. This also proved, but by a different method, in WONHAM
(1979; p. 114). We shall denote the largest stabilizability subspace in K
by V;(K). Of course, there is also a smallest detectability subspace con-
taining a given subspace E; this will be denoted by T*(E). There is a
constructibe procedure available to compute V*(K) forgany given K; see
WONHAM (1979; p.114). A dual procedure computes T;(E) for any E. We shall
denote the largest element in the set of all stabilizability subspaces by
X and Xd

stab’
subspaces.

ct will be the smallest element in the set of all detectability
The span of the generalized eigenspaces of the system matrix A associ-

ated with eigenvalues in Eg will be denoted by Xg(A). That is, if we fac-

torize the characteristic polynomial p(A) of A as p(A) = pg(x) pb(A) where

pg has its zeros in Eg and Py has its zeros in T,, then

b
(1.50) Xg(A) = Ker(pg(A)).

Likewise, we define

(1.51) Xb(A) = Ker(pb(A))

and this is the span of the generalized eigenspaces of A that are associated

with eigenvalues in T

b’
After these definitions, we are able to identify XStab as follows.
LEMMA 1.17 X, . = Xg(A) + <A | Im B>.

PROOF Clearly, Xg(A) is a stabilizability subspace; <A |Im B> is even a
controllability subspace. So X (A) + <A [Im B> is a stabilizability sub-
space and hence we must have Xstab > Xg(A) + <A | Im B>. We see that
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X 5> Im B and so X must be A-invariant. Now take F such that A + BF:
stab stab

X is stable. Then
stab

(1.52) o (A+BF: X

seap! KB + <A | Im B>)) =

= o(A: Xstab/(Xg(A) + <A | Im B>)).
On the one hand, we have

(1.53) o(A: X /(Xg(A) + <A | Im B>)) < o(A+BF: X o

) ¢
stab ab g

but on the other

(1.54) o(A: Xstab/(Xg(A) + <A | Im B>)) < o(A: X/Xg(A)) <.

This can only be so if XS is in fact equal to Xg(A) + <A | Im B>. X

tab

The dual result is

LEMMA 1.18 X, . = X (A) n <Ker c|as.

We can use the subspace Xsta to give an alternative characterization

b
of outer-stabilizability.

PROPOSITION 1.19 A controlled invariant subspace V <8 outer—-stabilizable

2f and only if

(1.55) V+ X X.

stab
PROOF First suppose that |/ is outer-stabilizable. Then it follows from
Prop. 1.12 that V + <A | Im B> > Xb(A)' Hence, V + XStab B Xb(A) + Xg(A) = X,
Now suppose that (1.55) holds. Then (using (1.16)):

(1.56) o(A: X/(V + <A | Im B>)) =

o(A: (V + <A | Im B> + Xg(A))/(V + <A | Im B>)) =
o(hs X (A)/ (X @) n (V+ <a | Im B>))) <

o(A: Xg(A)) c Eg.

1]

n
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This shows that V is outer-stabilizable. &

We can easily derive some alternative characterizations of stabiliza-

bility of a pair (A,B) from the above results.

COROLLARY 1.20 Let a system matrix A and an input mapping B be given. Then

the following statements are equivalent:

(Z) the pair (A,B) is stabilizable;
(i) X (&) < <A | Im B> ;

(227) XStab = X;

(Zv) Im(A-A) + Im B = X for all X € T, -
PROOF The equivalence between (i) and (ii) is just a reformulation of

Cor. 1.3. The pair (A,B) is stabilizable if and only if the zero subspace
is outer-stabilizable; the equivalence between (i) and (iii) thus follows
from Prop. 1.19. Also, the pair (A,B) is stabilizable if and only if the
whole'space X is inher—stabilizable; then Thm. 1.13 shows that (i) and (iv)

are equivalent. X

The criterion given in (iv) is called the Hautus test for stabiliza-
bility (HAUTUS (1969)). The corresponding characterizations of detectability

are given by our final result in this chapter.

COROLLARY 1.21 ILet a system matrix A and an output mapping C be given.
Then the following statements are equivalent:

(Z)  the pair (C,A) is detectable;

(Z7) Xg(A) > <Ker C | A>;

(242) Xdet = 0;

(Z7v) Ker(A-A) n Ker C = 0 for all X « T, -
Note that the criterion (iv) may be rephrased as follows: The output

mapping C does not annihilate any eigenvector of A corresponding to a 'bad'

eigenvalue of A.
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CHAPTER 2

THE COMPENSATOR PROBLEM

In this chapter, we begin our study of dynamic feedback. The problem
we shall consider is a basic one: to stabilize a given system (described
by a system matrix, an input mapping and an output mapping) by adding a com—
pensator. The compensator brings its own dynamics into the feedback loop,
which is why the term "dynamic feedback" is used for this type of automatic

control.
It is easy to give necessary and sufficient conditions for the solvabili-

ty of the problem of stabilizing a given system by dynamic feedback. Serious
difficulties are encountered, however, if one tries to minimize the order of
the dynamics that are introduced in the feedback loop. We shall present a new
and general approach to the compensator problem, which allows for low-order
solutions. The basic idea of this method is that reduction of the compensator
order can be obtained if the 'feedback' and the 'observer' part of the
controller are suitably adapted to each other.

We also describe the class of compensators that can be obtained by our
method. It will be shown that this class is given precisely by those com-—
pensators that have a 'feedback-observer' interpretation. Comparing the
usual state-space methods of compensator design with our approach, we find
that all these methods are recovered as special cases of our theory. Finally,
we are also able to present a systematic searching procedure for low-order
compensators.

The chapter is organized as follows. In the first section, we discuss the
concept of dynamic feedback and introduce some notation. The second section
gives an extensive discussion of the compensator problem and of our main
results an their interpretation. Proofs are given in Section 3 (for the con-
struction theorem) and in Section 5 (for the interpretation of the class of
compensators that are thus constructed). In the intermediate Section 4 we

discuss several methods of compensator design, including our own proposal.

2.1. Introduction

Our starting point is the linear system givén by
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(2.1.1) x'(t) = Ax(t) + Bu(t)

(2.1.2) y(t) = Cx(t).

This system can be represented by the following block diagram:

sO——25 > y(t)

Figure 2.1: Open-loop system.

We now want to '"close the loop" by connecting the output y(t) to the input
u(t). Of course one can imagine many ways to do this, but our object of
study will be linear dynamic feedback. This term is used for the form of
automatic control that is provided by an additional finite-dimensional
linear system (the compensator) which takes the observation y(t) as its

input and which specifies the control function u(t) at its output, in the

following way:
(2.2.1) w'(t) = Nw(t) + My(t)
(2.2.2) u(t) = Lw(t).

Combining (2.1) and (2.2) gives us the closed-loop system.

x(t)

u(t) A, Yyt

w(t)

Figure 2.1: Closed-loop system.
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The word "dynamic feedback' is used because the compensator introduces
dynamics in the feedback loop; sometimes one also uses the term "integral
control", because in (2.2) the control function is obtained via an inte-
gration of the observed variable y(t). One may also apply "static feedback"

or "proportional control" by directly connecting the control to the obser-—
vation:

(2.3) u(t) = Ky(t).

0f course, one can easily combine the two types of feedback in one

compensator equation, by replacing (2.2.2) by
(2.2.2)" u(t) = Lw(t) + Ky(t).

In a block diagram, this may be illustrated as follows:

B C
x(t)
U(C)A e ] VY(t)

| ) |
| & |
i

| [T w(t) Ml
i I
| |
o d

Figure 2.3: Dynamic and static feedback combined.

However, we shall prefer to consider static and dynamic feedback as
separate processes. So we shall only consider compensators of the 'purely
integral' form (2.2), but sometimes we shall first change the system matrix
from A to A + BKC by static feedback before adding a compensator of this
type. The overall result is still the same; ©of course, and the correspon-—
ding controller will be referred to as a PI-compensator (proportional/
integral). Our view of this type of compensator is represented by Fig.2.4

rather than by Fig.2.3.



32

i

B c i

x(t) i

i

|

|

3 a

] D ]

¢S Yy
L M
w(t)

Figure 2.4: Dynamic and static feedback

separated.

Now let us explain some notation and terminology that will be used
in the sequel. The state space of the compensator equation (2.2) will be
written as W; the dimension of this space is called the order of the compen-—
sator, for which we shall use the letter k. The equations (2.1) and (2.2)
can be taken together to form the extended system equation:

A BL

@6 OO - @ HdOo.

This is a differential equation in the extended state space X ® W which

has dimension n + k. The matrix

(2.5) A= (A BL

e MC N)

is called the extended system matrix.

There are two natural mappings between the original state space X and
the extended state space X ® W: the natural embedding Q: X -~ X 8 W defined
by
(2.6) Qx = () (x e X

and the canonical projection P: X & W > X defined by

(2.7) P = x () eXow.
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Accordingly, there a two subspaces of X naturally related to any subspace
Mof X 0 W:

(2.8) QM = fx e X[ () e M)
(2.9) PM = {x e X| 3w e W: (:) e M}.

The first subspace can be considered as the intersection of M with
the X-plane, where as the second is the projection of M onto that same
plane. It should be noted, however, that both subspaces are considered as
subspaces of X; one may view the pair (Q_IM,PM) in some sense as the repre-
sentative, within the gZven state space X, of a subspace in the extended
state space X ® W which the designer has to construct. Below, we shall

give a more precise meaning to this vague idea.

2.2. Problem statement and main results

In this chapter, disturbances will be modeled simply by a non—zero
initial condition for the controlled system (2.4), and the purpose of the
control will be to make the system return to its nominal operating
point (represented by the origin in the state space) after such a distur-
bance. We shall consider more elaborate disturbance models and other control
objectives in Chapter 3. Our problem here can thus be formulated as follows:
Given a system matrix A; an input mapping B and an output mapping C, find
a linear space W and mappings N: W - W, L: W -~ U and M: ¥ > W such that
the extended system matrix Ae defined in (2.5) is stable; moreover, do this
using a space W of lowest possible dimension. The latter requirement is
added because low-order compensators are in general easier to implement
and more reliable than high-order compensators.

We shall call a compensator of the form (2.2) a stabilizing compensator
if it is defined by mappings L, M and N that make the extended system matrix
Ae stable. The conditions under which such a compensator exists are simple

and well-known. (See also Section 3.2 and Section 2.4).

THEOREM 2.1 There exists a stabiliszing compensator for the system (2.1)
if and only if the pair (A,B) is stabilizable and the pair (C,A) is detect—
able.
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Several methods are known to construct a stabilizing compensator if
one exists; we shall discuss some of them in Section 2.4. However,
the minimal compensator problem of finding the minimal order of a stabilizing
compensator for a given system has not been solved (and it will not be
solved here). Still we can present a further analysis of the compensator
problem; this will provide more insight into the problem and, moreover,
suggest a way to find low-order compensators.

Our starting point is an observation concerning the pair (Q—IM,PM)
related to any invariant subspace M of an extended system matrix of the form
(2.5). To formulate this, let us say that a pair (T,V) of subspaces of X isa

compensator couple (with respect to the triple (C,A,B)) if the following holds:

(cel) T is conditioned invariant (with respect to the pair (C,A))
(ce2) V is controlled invariant (with respect to the pair (A,B))
(ce3) TcV

(cek) AT < V,

This concept will be very important for us. For instance, we have the
following result (which also explains the nomenclature); the proof will be

given in Section 3.2, as we shall not need it in this chapter.

THEOREM 2.2 Suppose that M ¢ X @ W 2 an <nvariant subspace for an extended
system matrix Ae of the form (2.5). Then (Q_lM, PM) Zs a compensator couple.

The notion "compensator couple" is introduced here for the first time,
although situations in which pairs of controlled and conditioned invariant
subspaces arise have been studied before, particularly in the early Italian
work on the geometric approach to linear systems (see for instance BASILE
& MARRO (1969a)). In SCHUMACHER (1980 d,e), the notion of "(C,A,B)-pair
of subspaces'" has been used; this is the same as a compensator couple,
except that the condition (cc4) is lacking in the definition of a (C,A,B)-
pair. The two concepts are related via static feedback, in the following

way.

LEMMA 2.3 Let (T,V) be a (C,A,B)-pair. Then there exists a static feedback
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mapping K: Y + U such that (T,V) is a compensator couple with respect to
the triple (C,A+BKC,B).

This lemma is a special case of Lemma 3.6, which will be proved in
Ch. 3. We shall not need the result in this chapter.

Of course, the interesting question is whether we can reverse Thm. 2.2
in some way or another. Given a compensator couple, can we construct a

compensator from it ? The answer is yes, if certain additional conditions
hold.

THEOREM 2.4 Suppose that we have a compensator couple (T,V) and mappings
F e F(V) and G € G(T) such that

(2.10.1) Ker Fo T

(2.10.2) Im G c V »

(2.11.1) o (A+BF: V) < Eg

(2.11.2)  o(A+GC: X/T) < C,.

Then there exists a stabilizing compensator of order dim V - dim T.

The proof is by construction; it will be given in Section 2.3. In Section
2.4, we shall show that several well-known methods of compensator design can
‘be derived as special cases of the above theorem. There we shall also discuss
the question hoﬁ the theorem can be used in a systematic search for low-order
compensators. Because the pole placement properties of A + BF under a res-
triction of the form (2.10.1) are not easily described (a similar remark holds
for A + GC, of course), the utility of the theorem is certainly not immedia-
tely clear.

A nice theoretical property is that the conditions of the theorem are
symmetric with respect to dualization. That is, if one would try to dualize
the theorem, one would only get back the same statement (of course, and as
always, after suitable renaming). Note that the compensator problem itself
is also symmetric with respect to dualization.

To get some intuitive feeling for the conditions of the theorem, it is

perhaps best to consider first the standard procedure for full-order
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compensator design. This procedure is based on the idea of applying feed-
back to an estimate of the state. Suppose that the system (2.1) has been
given, ‘and define g(t) by the equation

(2.12) S5 R(0) = (AEO)R(E) - Gy(1) + Bu(b).

One easily checks that Q(t) is an estimate of x(t) in the sense that

(2.13) é%{x(t) - x(£)) = (A+GC) (x(t) - %(t)).

If the matrix A + GC is stable, the error x(t)- X(t) will approach zero for
any initial values x(0) and Q(O). Let us assume that we have chosen G such
that A + GC is stable, and also that we have found a feedback mapping F such
that A + BF is stable. Defining u(t) by

(2.14) u(t) = Fx(t)
we obtain the following form for the equation (2.1.1):
(2.15) x'(t) = (A+BF)x(t) - BF(x(t) - x(t)).

Together with (2.13), this shows that x(t) will approach zero, as well
as g(t), for any initial values x(0) and %x(0). In other words, the equations
(2.12) and (2.14) constitute a stabilizing compensator. We can write the
equations in the form (2.2):

(2.16.1)  SR(6) = (A+BF+GC) &(t) - Gy(t)

(2.16.2)  u(t) = Fx(t).

The extended system matrix Ae (as defined in (2.5)) becomes:

_(A BF
(2.17) Be = (-GC A+BF+GC)

It follows from (2.13) and (2.15) that
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(2.18)  o(a) = o(A+BF) + g(A+GC).

This formula is connected to a natural interpretation of the action of
the compensator (2.16), in which there is a 'separation' between 'feedback
dynamics' represented by o(A+ BF)and the 'observer dynamics' represented by
g(A + GC). Now, let us note that the equation (2.16.1) can also be written
in the following form:

(2.19) () = (MBP)R(E) - GCGx(t) - 2())

Viewed in this way, the evolution of x(t) is described by the dynamics
of A + BF together with an input signal that enters through G. Now suppose
that V is an (A + BF)-invariant subspace such that ImG c I/ (as in the
conditions of the theorem). Then it is clear from (2.19) that E(t) will
always_remain in V if it starts there. Because the compensator should work
for any value of §(0), this suggests (and we shall establish the correctness
of this idea in the proof of Thm.2.4) that the state space of %(t) could be
taken equal to V instead of X. Consequently, the compensator order is
reduced from dim X to dim V.

The order reduction is possible because we are using informatiom about
the feedback in the construction of the observer. The equation (2.12) has
the strong property of defining an observer for x(t) without any information
about the control function u(t), but as a consequence the equation has to be
formulated in the complete state space X. (For a more precise discussion of
the order of observers, see SCHUMACHER (1980b)). In the closed-loop situation,
the control function u(t) is given by (2.14). We may use this information to
obtain a reduced-order compensator, as indicated above. In this situation,
we shall say that we are using a feedback adapted observer and the corres-—
ponding compensator will be called an FAO -compensator.

Dually, we can also consider observer-adapted feedback. This occurs
when there is an (A + GC)-invariant subspace T such that T c Ker F. Under
these conditions, the control law (2.14) is defined even if %(t) is only an
estimate "modulo T". This means that the compensator order can be reduced
from dim X to dim X - dim T. A compensator obtained in this way will be
called an OAF -compensator.

Finally, it is also possible to combine the two design methods under

the further condition that T c V. (Note that this, together with
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(A + BF)Vc V and Ker F > T, implies automatically that AT < V). The compen-
sator order is reduced to dim V - dim T. This is precisely the statement of
Thm. 2.4. We may speak of "mutual adaption" in this case, and the corres-
ponding compensators will be called MA-compensators.

The construction that will be given in Section 2.3 leads to an extended

system matrix Ae whose spectrum is given by

(2.20) gﬁAe) = o(A+BF: V) + o(A+GC: X/T).

This should be compared to the formula (2.18) which holds for the 'classical'
full-order compensator. The equation (2.20) is in line with the interpre-
tation of our compensation method as one which is still based on 'feedback
applied to an estimate of the state", be it that the feedback and the
observer action are adapted to eachother in order to obtain the reduction

of the compensator order.

An obvious question that should be answered is, which compensators of
the general form (2.2) can be interpreted as MA-compensators. Stated more
precisely: Given a closed-loop system of the form (2.4), when do we have a
compensator couple (T,V) and corresponding mappings F and G such that (2.10),
(2.11) and (2.20) hold? The discussion above suggests that there should be
a feedback-observer interpretation available if a compensator is to be of
the MA-type, and a conjecture might be that all compensators that have a
feedback-observer interpretation are in fact MA-compensators.

To proceed in this direction, we have to make precise what we mean by
the statement that a compensator "has a feedback-observer interpretation'.
Consider a compensator of the general form (2.2), giving rise to the closed-
loop system (2.4). As a preliminary definition, let us say that the given
compensator has a feedback-observer interpretation if there exists a sub-
space T of X and a mapping ¢ : X &  ~ X/T (which we shall call the error
mapping) with the following properties:

(i) © can be factored as & = T(I -S) where S is a linear mapping from W to

X and T is the canonical mapping from X to X/T;

(ii) if @(328%) = 0, then @(’;EE;) =0 for all t > 0;
Gii) if @(zggg) = 0 and moreover x(0) = 0, then x(t) = 0 for all t > 0.

The mapping ¢ gives an observer interpretation to the closed-loop

dynamics, in the following way. To every vector (3) in the extended state
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space X ® W, ¢ associates the error of Sw as an estimate of x modulo T; this
is stated in (i) above. The condition (ii) says that the error will remain
zero for all time if it is zero initially. This means that the error
satisfies an autonomous differential equation. Finally, the condition (iii)
seems to be natural: if in the initial situation the state is at the nominal
point zero and also the estimation error is zero, then no reasonable compen-
sator should cause an excitationm.

The conditions (i) - (iii) can also be expressed in terms of M := Ker o.

It follows easily from (i) - (iii) that M satisfies the following conditions:
(i)' QWM =T, and din M = dim 0 + dinm T;
(ii)! M is Ae—invariant;
(iii)" M_ = {() € M|x = 0} is A -invariant.
w w e

Note that we may just as well require

ceenm _
(iii) MW 0
instead of (iii)', because an Ae—invariant subspace that is fully contained
in (the natural embedding of) W represents a redundant part of the compen-
sator. If MW is non-trivial, then the compensator order can be reduced by
factoring out this subspace.

Motivated by this development, let us say that a subspace M of an ex-

tended state space X ® W is a separating subspace if the following is true:

(2.21.1)  dim M = dim W + dim Q" 'M

(2.21.2) dimM = dim PM.

The condition (2.21.1) is equivalent to (i)' above if we define T as Q—IM,
and (2.21.2) is equivalent to (iii)". So the conditions (i)', (ii)' and
(1ii)" imply that Ae has a separating invariant subspace. On the other hand,
suppose that an extended system matrix Ae of the form (2.5) has been given,
and that Ae has a separating invariant subspace M. Then it is not difficult
to see that there exist a subspace T of X and a mapping ¢ : X ® W > X/T such
that (i) - (iii) above are satisfied. (Take T = Q_IM; By (2,21); dim W =

= dim PM - dim Q_IM so there exists a surjective mapping from PM to W whose
kernel is precisely Q—IM. Let S be a right inverse of this mapping, and

define ® by ¢ = T(I -S) where T is the canonical mapping from X to X/T),
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So our final definition is: The compensator (2.2) for the system (2.1)
has a feedback-observer interpretation if the corresponding extended system
matrix'Ae, as given by (2.5), has a separating invariant subspace. We can

now state the following theorem, which will be proved in Section 2.5.

THEOREM 2.5. Suppose that (2.2) gives a stabilizing compensator for the
system (2.1) which has a feedback-observer interpretation (in the above
sense). Then there exist a compensator couple (T,V) and corresponding map-
pings F and G such that (2.10), (2.11) and (2.20) hold.

In other words, the conjecture that we formulated above is true: any
compensator that has a feedback-observer interpretation is in fact an MA-
compensator. It will follow from the discussion in Section 2.5 that each
separating invariant subspace M of Ae gives rise to a compensator couple
T = Q‘]M, V = PM that satisfies the conditions of Thm.2.5. Correspondingly,
the eigenvalues of Ae : M can be called 'feedback poles', and the eigen-
values of Ae : (X ® W)/M can be labeled 'observer poles'.

There is no reason to assume that the decomposition in a 'feedback' and
an 'observer' part is unique. Rather, the converse is likely to be true: in
general, there will be many separating invariant subspaces and so there will
be many decompositions of the closed-loop spectrum in 'feedback poles' and
'observer poles'. A full discussion of this subject would take us into
algebraic geometry and outside the scope of the present work, but we would
like to indicate what is probably true. The conditions (2.21) describe a
transversality relation in the sense of WONHAM (1979; p.29) in case the

following relation holds for M:
(2.22) dim W < dim M < dim X.

This implies that subspaces of X ® W that satisfy (2.22) will 'in general'
be separating. If dim W < dim X, there will be 'in general' many invariant
subspaces of a given extended system matrix Ae satisfying (2.22). So it seems
not unreasonable to conjecture that there will 'in general' be many separa-
ting invariant subspaces of a given extended system matrix.

This needs proof, of course. Our point here is mainly to argue that it
can not be expected . that there is an intrinsic property that divides

the closed—loop poles into 'feedback poles' and 'observer poles'. A given
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compensator could be interpreted as a combination of 'slow' feedback with
a 'fast' observer or vice versa, without any preference for one of the two
interptetations. This point of view is untraditional. In many textbooks
(for instance KWAKERNAAK & SIVAN (1972, p. 383,387)), the designer is advised
to choose the 'observer poles' somewhat faster than the 'feedback poles'.
The implicit assumption that there is such an intrinsic distinction should,
at least, not be taken for granted.

The question if there are compensators that are not of the '"MA" type
is easily answered. If dim ( > dim X, then there are no separating subspaces
of X ® W. Consequently, no compensator of order larger than the order of the
original system can be an MA-compensator. This example is unsatisfactory
insofar as it is always possible to comstruct a stabilizing compensator of
order n if one can be constructed at all. Another example is the extended

system matrix
(2.23) Ae = leeotees

which has no invariant separating subspace. If we suppose that -1 ¢ mg,
then the extended system is stable but the original system is also stable,
so that in this case it is unnecessary to add a compensator. If -1 ¢ mg the
original system is unstable, but then the compensator does not stabilize
it. So this example is also unsatisfactory. One is tempted to think that
the only examples of extended system matrices that do not have a separating
invariant subspace are those for which there is a trivial reduction of the

compensator order. We shall leave this as a conjecture.
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2.3. The construction lemma

In this section, we approach the compensator problem from the construc-
tive side; applications will be given in the next section. Our main objec-—
tive is to prove Thm. 2.4. The following construction lemma (similar lemmas
will be proved in the next chapter) already provides all the material that

we shall need.

LEMMA 2.6 Suppose that we are given a compensator couple (T,V) and mappings
Fe F(V) and G € G(T) such that Ker F > T and Im G c V. Then we can construct
an extended system matrix A, acting on an extended state space of dimension

n + dim V - dim T, such that Ae has an invariant subspace M with the
following properties:

(2.24.1) QM =T, BM =V

(2.24.2) g(Ae: M) = o(A+BF: V)

(2.24.3)  g(A,: (XeW)/M) = o(a+GC: X/T).

PROOF Let w‘be a linear space of dimension k = dim V - dim T, and let R

be a mapping of V onto W such that Ker R = T. Because R is surjective, there

is a right inverse R': W~ V such that RR' = Iw. We now define Ae by

[ A BL
(2.25) A, = <MC N)

where the mappings L, M and N are defined as follows:

(2.26.1) L =R
(2.26.2) M = -RG
(2.26.3) N = R(A+BF+GC)R .

. + . . . . .
The mapping R is not determined uniquely (if T # 0); but if RT and
+ . .
R2 are both right inverses to R then we must have Im(RT—R;) c T, so that,
. . + . . .
in particular, FR] = FR;. So we see that (2.26.1) uniquely defines a mapping

L. The definition (2.26.2) is justified because G maps into V which is
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precisely the domain of R. As to (2.26.3), it should be noted that both T
and V are invariant for A + BF + GC; from this it follows that N is well-
defined and that N is uniquely determined by (2.26.3), despite the non-
uniqueness of R+.

Now consider the subspace
- X - -
(2.27) Moo= L) [xed

of X® W. It is immediately clear that PM = V and Q_IM = T. Moreover we

have for all x ¢ V

(A+BF)x

R(A+BF)% © M-

(2.28) A () = (

(This is seen by noting that R(I—R+R) = R —(RR+)R =0 so that T - R+R maps in-—

to Ker R = T. Consequently, (A+BFR+R)x = (A+BF)x and R(A+BF+GC)R+RX - RGCx =

= R(A+BF)x for all x e V.) From (2.21), we see that M is Ae—invariant.
Moreover, if we denote by P the restriction of P to M considered as a

mapping to PM = U, then P is an isomorphism, and the following diagram

commutes:

(2.29) P 5

A+BF :V
This gives us (2.24.2). Finally, define the mapping Q: X/T = (XeW)/M by
(2.30) Qlx] = [Qx]

(where, of course, the first equivalence class is modulo T and the second
is modulo M). The mapping @ is well-defined because QT ¢ M. Moreover, Q is

an isomorphism between X/T and (X&W)/M. (To see this, note that Q is injec—

tive because Qx ¢ M implies x € T, and compute: dim(XeéW)/V
= (dim X + dim V - dim T) - dim V = dim X/T.)

For all x € X, we have
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(2.31) Q(A+GC)x — AgQx = ((A+8C)X) - (—SSCX) -
GCx
= (rocx) € M

so that we have the following equality in (X@W)/M:
(2.32) [AeQx] = [Q(A+GC)x].

In other words, the diagram

X/T ATGC:X/T o w7

(2.33) Q Q

(Xew) /M _— 5 (XeW)/M
' Ae:(XQW)/M

commutes. We already noted that Q is an isomorphism; thus (2.24.3)

follows. X

A graphical illustration of the lemma may be given by a set of three
lattice diagrams, in which we use corresponding letters to indicate the

equalities (2.24.2) and (2.24.3).

X X X oW
a a
T 4 M
b b
0 0 0
A+GC A+BF A,

Figure 2.5: Compensator construction.

This is fairly simple, but we shall encounter more complicated versions
in the next chapter.
Of course, Thm. 2.4 as announced in the previous section follows

immediately from an application of the construction lemma that we have just
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proved.

2.4. Methods of compensator construction

In this section, we present several methods of compensator design
which can be derived from Thm. 2.4. Four of these contain well-known re-
sults, which are now brought within a single theoretical framework; we

shall also present a fifth method which is new and different in nature.

2.4.1. The full-order compensator

COROLLARY 2.7 Let the system (2.1) be given, and suppose that (A,B) is
stabilizable and (C,A) is detectable. Then the system can be stabilized by

a compensator of order n.

PROOF Take F such that A + BF is stable and G such that A + GC is stable.
Then apply Thm. 2.4 with V = X and T = 0. ®

This is the standard "full-order compensator' that appears in many

textbooks. (See for instance KWAKERNAAK & SIVAN (1972; §5.2))

2.4.2. The reduced-order compensator

It is possible to reduce the order of the compensator by employing

static output feedback. First we make the following simple observation.

LEMMA 2.8 For any given feedback mapping F and any given subspace T such
that T ® Ker C = X, there exists a static output feedback mapping K: ¥V - U
and a feedback mapping Fy such that A + BF = A + BKC + BF and Ker Fy 2 T.

PROOF Define T: ¥ -+ X by Im T = T and CT = Iy. Then TC is the projection

along Ker C onto T. Take K = FT and FO = F(I-TC); then A + BF =

= A + BKC + BFO, and Ker FO > T. X
Of course, the idea is to use the pair (T,X) as the compensator couple
that is used in Thm. 2.4, after the system matrix has been changed to

A + BKC by static feedback. Note that any complement T of Ker C is
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conditioned invariant. However, we need more than that: T has to be a detec-

tability subspace. On this, we have the following result.

LEMMA 2.9 Let a system matrix A and an output mapping C be given, and
suppose that the pair (C,A) is detectable. Then we can find an outer-—
detectable complement of Ker C.

PROOF Take an arbitrary complement TO of Ker C, and define T0 by Im TO =

= TO and CTO = Iy. Then we can consider (I—TOC)A: Ker C as a system matrix
acting on the state space Ker C, and we may view TO as an output space and
TOCA as an output mapping from Ker C to TO' We contend that the pair
(TOCA,(I—TOC)A) is detectable. For, suppose the contrary; then it follows
from Cor. 1.21 that there would exist A ¢ T, and x € Ker C (x#0) such that

b
(I-TOC)Ax = Ax and T.CAx = 0. But then we would have Ax = Ax and Cx = 0,

contradicting the asgumption that the pair (C,A) is detectable.

We conclude that there exists a mapping Z: TO + Ker C such that
(I—TOC)A + ZTOCA = (I—(TO—ZTO)C)A is stable (on Ker C). Write T: =
=T, - 2T,, and T: = Im T. Then T is a complement of Ker C, since CT =
= CT0 = Iy. Again proceeding by contradiction, suppose that T would not
be a detectability subspace. Then, by Thm. 1.14, there would exist x € Ker C
(x # 0) such that (A-A)x € T for some X € Eb.

(A=-(I-TC)A)x = (I-TC)(A-A)x = 0, contradicting the fact that (I-TC)A: Ker C

But then we would also have
is stable. X

This result is a variant of Thm. 3.3 in WONHAM (1979; p. 64); we have
replaced observability with detectability. Using Thm. 1.14, the result may

also be stated as follows: if (A—A)-IO n Ker C = 0 for all A ¢ T,, then

s
there exists a complement T of Ker C such that (A—A)—lT n Ker C 2 0 for
all X € Eb. This formulation clearly shows that the condition of detecta-
bility is not only sufficient but also necessary for such a T to exist.

Now we are able to derive the compensator that is commonly known as
the "reduced-order compensator" (LUENBERGER (1964)). Its order is n-p

where p = dim Y (the number of outputs).

COROLLARY 2.10 Let the system (2.1) be given, and suppose that (A,B)
18 stabilizable and (C,A) ig detectable. Then the system can be stabilized
by a PI-compensator of order n-p.
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PROOF Take F such that A + BF is stable. Let T be an outer-detectable
complement of Ker C, and take G e G(T) such that A + GC: X/T is stable.
Define Tby Im T = T and CT = Iy. Now apply Thm. 2.4 to the system matrix

A + BFTC with the feedback mapping F.: = F(I-TC) and the injection mapping

0°
GO:= G - BFT, using the compensator couple (T,X). ‘ &
The procedure can be dualized to give a compensator of order n-m, where
m = dim U is the number of inputs; Thm. 2.4 is then applied to a compensator
couple (0,V) where V is a suitable complement of Im B. This possibility was

first noted by F.M.Brasch (according to LUENBERGER <{1971)).

2.4.3. The Brasch—Pearson compensator

We can find yet another bound for the compensator order by using a
lemma that has its origin in observer theory. The result, which we state
here in a dualized and somewhat adapted form, is due to LUENBERGER (1966),
with a minor correction by WONHAM & MORSE (1972). The lemma uses the
notion of the controllability index of the pair (A,B). This is one of the
structural invariants of linear systems (see, for instance, MORSE (1973a)),

defined, for a controllable pair (A,B), by
koi-
(2.34) K, = min{k ¢ N [iél A” (Im B) = X},

LEMMA 2.11 Let (A,B) be a controllable pair. Then, for any one~dimensional
subspace T of X, there exists a stabilizability subspace V, of dimension
equal to or less than Koo such that T c V.,

PROOF See WONHAM (1979; § 3.9). X

We want to use a pair (T,V) as in the lemma to construct a compensator
of order < K~ 1. This can be done using a procedure which is applicable

in a more general situation.

LEMMA 2.12 Suppose that we have an outer—detectable complement T of Ker C
and a stabilizability subspace V such that T < V. Then we can construct a

stabilizing PI-compensator of order dim V - dim T = dim V - p.

PROOF Take F ¢ F(V) such that A + BF: V is stable; define T: X+ ¥ by
ImT =T and CT = Iy. If we take G = -AT, then G ¢ G(T) because
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(A+GC)T = A(I-TC)T = 0 < T. Moreover, A + GC: X/T is stable; for, if this
was not the case, there would exist an x € Ker C (x # 0) such that
A(I-TC)x - Ax = Ax = Ax ¢ T for some X ¢ Eb’ contradicting the outer-detect—
ability of T.

Now we apply Thm. 2.4 with the system matrix A + BFTC, the feedback

mapping FO: = F(I-TC) and the injection mapping G.: = G — BFT = —-(A+BF)T,

o
using the compensator couple (T,V). This is possible because (A+BFIC)T =
= (A+BF)T < (A+BF)V < V; also, Ker Fo 2 T and Im G, = (A+BF)T < V. ®

From the foregoing lemmas, we now immediately have the following result.

COROLLARY 2.13 Let the system (2.1) be given; suppose that (A,B) is control-
lable, (C,A) is detectable, and p =dim Y =1. Then the system can be stabi-

lized by a PI-compensator-of order less than or equal to Ko = 1.

PROOF By Lemma 2.9, we can find an outer-detectable complement T of Ker C;
we shall have dim T = p = 1. Then we can apply Lemma 2.11 to find a stabi-
lizability subspace V of dimension < €, such that T < V. Finally, a compen-

sator of order < K, = 1 is then obtained from Lemma 2.12. X

If p is larger than 1, the number of outputs can of course be reduced
simply by replacing C by C: = HC, where H is any functional on ¥; but this
has to be done in such a way that the pair (C,A) will be detectable. Under
general circumstances this can easily be done, but there are special cases
in which this is not possible. If the original pair (C,A) is observable (and
(A,B) is controllable), then one can prove that there is a preliminary
0 such that A + BKOC is cyclic (see WONHAM (1979;

p. 74)), and then again there is no problem in performing the reduction

(use Cor. 1.1 in WONHAM (1979; p. 43)).

static output feedback K

Of course, there is also a dual procedure leading to a compensator
of order < Ky = 1 where s is the observability index of the pair (C,A)
(see also WONHAM (1979; § 3.8)). The compensator order we have found is due
to BRASCH & PEARSON (1970).

2.4.4. Zero-order compensators

It is seen from Lemma 2.12 that if we can find a complement of Ker C

that is at the same time a stabilizability subspace and a detectability
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subspace, then it is possible to construct a stabilizing PI-compensator of
order 0; that is, the system can be stabilized by static output feedback
only. The following lemma implies that such complements of Ker C are 'almost
always' present if the total number of inputs and outputs exceeds the state

space dimension.

LEMMA 2.14 The property "V is a controllability subspace with respect to
the pair (A,B)" is generic in the set of triples (A,B,V) where A is a system
matrix acting on a fixed n—-dimensional state space X, B s an input mapping
with dim Im B equal to some fized number m, and V < X is a subspace of

dimension larger than n - m + 1.

PROOF In the indicated set, we have generically V + Im B = X, in which
case V is a controlled invariant subspace. We can then take a projection P
on X such that Im P = V and Ker P ¢ Im B. Because Im(I-P) ¢ Im B, there
exists H: X » U such that T - P = BH. Consequently, PA = A — BHA is of the
form A + BF, and of course PAV c V. Also note that Im(PB) = Im B n V. By
genericity of controllability (see, for instance, WONHAM (1979; Thm. 1.3)),
the equality <PA | Im(PB)> = V (implying that V is a controllability sub-

space) will hold generically. X

An alternative proof based on the characterization of controllability
subspaces given by the "controllability subspace algorithm" (WONHAM (1979;
p. 106)) has been given in SCHUMACHER (1980 e).

COROLLARY 2.15 Let the system (2.1) be given; suppose that (A,B) is stabili-
zable, (C,A) 7is detectable, and dim Im B =2 dim Ker C + 1| (som+ p 2mn + 1).
Also suppose that mg s an open set. Then it is generically (with respect to

A and B) possible to stabilize the system by static output feedback only.

PROOF By Lemma 2.9, we can find an outer—detectable complement T of Ker C;
note that the property of being an outer-detectable complement of Ker C is
preserved under small perturbations of T. We have dim T > n - m + 1 so,
generically, T is a stabilizability subspace and we can apply Lemma 2.12

to arrive at the desired conclusion. &

The result is related to the material presented in WANG & DAVISON
(1975) and KIMURA (1975; 1978).
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2.4.5 An iterative approach

The success of the above methods in reducing the compensator order is
moderate; for instance, for single-input single-output systems none of
these methods gives a better estimate than n - 1. This is in sharp contrast
with practical experience; as a rule, engineers are able to stabilize rather
complicated systems (notably of the single-input-single-output type) using
relatively simple controllers. The reason may be that most systems met in
practice are ''reasonably stabilizable'" (in a sense that is not easily made
precise), whereas the methods used above perform a '"worst case analysis" in
that they consider all systems of a given order, with additional information
cansisting oﬁly of the number of inputs and outputs, and in some cases the
controllability (or observability) indices.

So one would like to see methods which give low-order compensators
for some restricted class of 'reasonably stabilizable" systems; but then
one has the problem of how to describe sucha class. Under these circumstances,
it is reasonable to look for a procedure which allows one to perform a more
or less systematic search for low-order compensators, without trying to
give an a priori bound for the compensator order that will ultimately be
found. It is indeed possible to give such a procedure, based on Thm. 2.4.

Consider the following steps.
|. Find F and G such that A + BF and A + GC are stable.

2. Among the subspaces of dimension k(= p) that are invariant for A + BF,
find one that is close (in the sense of some metric in the set of sub-

spaces of X) to Im 6; call this subspace V.
3. Let G be a (small) perturbation of G such that Im G < V.

4., See if A + GC is still stable; if so, apply Thm. 2.4 with the mappings
F and G that are now found, using the compensator couple (0,V). If not,

re-initialize (Step 1) or go back to Step 2 replacing k by k + 1.

This is basically the procedure we shall use in the second half of this
work to find finite-dimensional stabilizing compensators for infinite-
dimensional systems. (See Ch. 5 for a detailed discussion and examples.) We
shall not go into the details here; just note that we have taken T = 0 to
satisfy the requirement Ker F > T automatically, and to avoid difficulties
in Step 3 stemming from the requirement G ¢ G(T). An alternative would be

to base the procedure on Lemma 2.12 instead of Thm. 2.4} the outer-detectable
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complement T of Ker C then replaces Im G, and the compensator order is

decreased by p.

2.5 Separating subspaces

In this section, we approach the .compensator problem from the 'mecessity’
point of view. The conditions of Thm. 2.4 may seem rather special; are they
necessary for a stabilizing compensator to exist ? We now show that these
conditions must hold in every situation in which the extended system matrix

has an invariant subspace that satisfies a simple dimensional relation.

THEOREM 2.16 Let Ae be a stable extended system matrix of the form (2.5),
and suppose that A, has an invariant subspace M with the following property:

(2.35)  dim PM = dim W + dim Q 'M.

Then there exists a compensator couple (T,V) (in the original state space
X) such that dim W = dim V - dim T, and there exist mappings F e F(V) and
G e G(T) such that

(2.36.1) Ker Fo T

(2.36.2) Im G c V

(2.37.1) o(A+BF: V) c Eg

(2.37.2) o(A+GC: X/T) < Eg.

In the course of the proof, we shall need the following lemma.

LEMMA 2.17 For any subspace M of the extended state space X ® W, the

following inequalities hold:
(2.38) dim W + dim Q 'M = dim M > dim PM.
PROOF Introduce the following operator from M to W:

(2.39) () bow () e M.
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Because Ker Pw is isomorphic to Q_lM and Im Pw is contained in W, we get
(2.40) dim M = dim Ker P+ dim Im P < dim W + dim Q_lM.

The second inequality in (2.35) is of course trivial. X

PROOF (of Thm. 2.16) Take T = Q—lM and V = PM. Then it follows immediately
from (2.35) that dim W = dim V - dim 7, and also it is clear that T < V.
From (2.35) and Lemma 2.17 it follows that dim M = dim PM; thus, there

exists a ﬁapping R: V> W such that
X
(2.41) M= 1) | x e V3.

Of course, Ker R = Q—lM = T and because dim V = dim W + dim T it follows
that R must be surjective. Consequently, R has a right inverse which we
shall denote by RY: w - v,

Now, define F: X > U to be any extension to X of the mapping LR
(which is defined on V), and let G be equal to —R+M considered as a mapping
from ¥ to X; here, the mappings L and M are taken from the extended system

matrix in its form

A BL

(2.5) A= Go 1)

Clearly, (2.36)is satisfied. For any x ¢ V, we have

A

(2.42) Gy SO = GEEAE) el

MCx+NRx

so that (A+BLR)x = (A+BF)x ¢ V. We see that V is controlled invariant and
that F € E(V). Moreover, if we let P denote the restriction of P to M con-
sidered as a mapping onto PM = V, then P is an isomorphism and (2.42) shows

that the diagram

A 4

(2.43)

A+BF:V/
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commutes. Hence, we obtain
(2.44) o (A+BF: V) = o(Ae: My < mg.

Furthermore, for any x € T we have

+ +
A BL,,x _ Ax. _, (A-R'MC)x R MCx
(2.45) Ge 826 = Gex = C g D)+ Cyeg ) € M
Because
R Mex R MCx
(2.46) Cuex ) = Grmex) € M

this shows that T is conditioned invariant and that G € g(T). If we define
Q: X/T » (XeW)/M by Qlx] =[Qx] (which is justified since QT < M), then Q

is an isomorphism and (2.45) shows that the diagram

A+GC:X/T

X/T X/T

(2.47)

Ol
o

eWy/M o (Xew)/M
Ae:(X@w)/M

commutes. So we obtain
(2.48) o(A+GC: X/T) = c(Ae:(XGW)/M) c Eg.

We still have to show that AT c V. This follows, for instance, from

AT = (A+BF)T < (A+BF)V < V,

5

The theorem that has been announced in Section 2.2 (Thm. 2.5) now
follows immediately from the proof, using (2.44) and (2.48).

The condition (2.35) appears to be important for the separation of
the closed-loop eigenvalues into '"feedback poles'" and "observer poles'
(according to the interpretation given in Section 2.3). This is why we
have called subspaces X ® W that satisfy this condition separating sub-

spaces.
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CHAPTER 3

TRACKING, REGULATION AND DISTURBANCE LOCALIZATION

After having treated the fundamental problem of stabilization by
dynamic feedback, we now turn to more complex problems. The complexity
arises from setting new control objectives and considering more elaborate
disturbance models. We shall require that some given set of state variables
follows ('tracks") a signal produced by some independent finite-dimensional
linear system. We shall assume that the system is affected by disturbances;
for some of these disturbances we may have a dynamic model, but others may
be completely unknown functions. Protection against modeled disturbances
is called "regulation'"; the term '"disturbance localization'" is used when
there is no model available.

The subjects of "tracking'" and 'regulation' can be brought into one
setting, and they have been extensively studied in thisway. Disturbance loca-
lization is a problem of which the state feedback solution is well-knownj;
the solution by dynamic output feedback has only recently been obtained.
Here the two lines of research are brought together into a single frame-
work. A very general problem is obtained but nevertheless we are able to
give a completely constructive solution, in which the concept of 'compen-
sator couple'" is again crucial. The main theorem, which provides
this solution, enables us to derive many of the existing results both on
tracking and regulation and on disturbance localization as special cases.

There are five sections. The first section provides the motivation for
the problem as we state it. In the second section, we give preliminary
results: an adapted version of Thm. 2.16, and an extended construction
lemma. The main theorem follows in Section 3, and in Section 4 we give a

number of special cases, some of which contain earlier results. Section 5

contains a brief discussion of order reduction.

3.1. Problem statement

In the previous chapter, disturbances were modeled by nonzero initial
conditions. Of course, this is not always a suitable model and so we consider

some alternatives. For instance, assume that a disturbance function q(t)



55

enters the system in the following way (where E is a linear mapping into

X):
(3.1.1) x'(t) = Ax(t) + Bu(t) + Eq(t)
(3.].2) y(t) = Cx(t).

If we now add a compensator of the form (2.2), the closed loop system
becomes:

G2 SO m = HO® + Gao.

Clearly, it would be asking too much if we would require that the full
state vector should approach zero as t - «©, regardless of the behaviour of
the function q(t). So we suppose that there is a special set of variables

in which we are interested. Call these the variables—to-be-controlled (to

be denoted by z(t)), which depend on x(t) via a linear mapping D:
(3.3) z(t) = Dx(t).

The equation (3.2) becomes supplemented by the equation for the variables—

to-be-controlled
(3.4) 2(e) = (@ 0C)(L).

We may now require that the evolution of z(-) is independent of q(-);
we shall then say that the disturbance has been localized with respect
to the variables-to-be-controlled. This means that there is a subspace
of the extended state space X ® W with the following properties (where

A is, as usual, the extended system matrix appearing in (3.2)):
(3.5.1) AeM c M

E
(3.5.2) Im(o) c McKer(D 0).

(See also WONHAM (1979; p. 87).) Moreover, the variable z(t) will have the

required stability properties if
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(3.5.3) O(Ae: (X8Ww) /M) < mg.

In this set-up, there is no assumption on the behaviour of the function
q(t) (except for the usual regularity hypotheses, for instance piecewise
continuity). In many cases however, it may be possible to give a description
of the disturbance; for instance, it may be constant over long periods of
time, or behave like a sine function of known frequency. Then we can re-write

the equation (3.1.1) using a different notation:
1 -
(3.6.1) xl(t) = Al]x](t) + Blu(t) + Alzxz(t)

and we can add the model for the disturbance, which in general has the

following form:
] -
(3.6.2) xz(t) = A22x2(t)

So the disturbance signal is generated by the matrix A for instance,

223
by taking A22 = 0 one gets a constant function whose value is determined
by x2(0). The equations (3.6.1) and (3.6.2) can be combined into one equa-

tion:
(3.7.1) x"(t) = Ax(t) + Bu(t)

where

A A B
(3.7.2) A = (')1 A’Z , B =< l>.
, 22

Now the system equations are again in the standard form, but one sees
that the pair (A,B) is not controllable. Therefore, one can only hope to

stabilize a set of variables—to-be-controlled:
%
(3.8) z(t) = Dx(t) = (D, D )( )(t).
1 2 x2

From the context, it is reasonable to assume that one would put D2 =0 in
the matrix D.

After having discussed these extended disturbance models, let us now
take a look at alternative control objectives. In the previous chapter, we

have worked with a setpoint at O to which the system should return after
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an initial disturbance, However, it may be required that the system stays
at a non-zero setpoint, which may be changed from time to time. More
generally, one may require that some set of variables-to-be-controlled
follows a reference signal, modeled as ;he output of an autonomous linear

system. For such a situation, we can write down the following equations:

1]

(3.9.1) xi(t) Allxi(t) + B]u(t)

(3.9.2) xé(t) = Azzxz(t)
(3.9.3) é(t) = Dlx](t) + D2X2(t)'

Here, the reference signal is given by the variable xz(t), and the
desired relation between xl(t) and xz(t) is expressed in (3.9.3) where
z(t) should approach zero. Again, the system equations may be written down

in the concise form

(3.10.1) x'(t) = Ax(t) + Bu(t)

(3.10.2) é(t) = Dx(t)

where, in this case, the matrices A, B and D are given by

(3.11) A = 0 , B = , D= (D1 D

0 2

We see that the pair (A,B) is not controllable. In contrast with the setting
‘ we derived above, the matrix D2 will not be equal to zero. The purpose of
the control, however, is the same: z(t) has to approach zero at some pres-—
cribed rate.

We have now discussed three possible extensions of the compensator
problem: localization of an unmodeled disturbance, regulation against a
modeled disturbance, and tracking of a modeled reference signal. Comparing
the condensed forms of the system equations in each case, it is clear that
it is possible to cover all cases in one general framework, given by the

following set of equations:

(3.12.1) x"(t) = Ax(t) + Bu(t) + Eq(t)
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Cx(t)

(3.12.2) y(t)

(3.12.3) z(t)

Dx(t).

Pictorially, the situation can be described as follows:

q(t) ____>_L

u(t) ——>—

.._.'L»—_ .Z(t)

> y(t)

Figure 3.1: Setting for general regulator problem.

This setting has a natural generality. There are two kinds of inputs:
one is available to the controller, the other is chosen by 'mature'". There
are also two kinds of outputs: one is the observation that can be used by
the controller, the other defines the control objective. After closing
the loop, only one input and one output remain.

While the formulation (3.12) has the important advantage of combining
generality with simplicity, it is not immediately clear how the control
objectives should be described in this framework. The '"disturbance locali-
zation" requirement already has been given in (3.5), but to cover the

"tracking" and '"regulation" aspects we first return to the more explicit

a [ % (P AR\ (A B E

Fra <X2>(t) —< 0 A22><x2) (t) +<0 u(t) + E, q(t)
X

o ool

%y
@, D2)<x2) (t).

When a compensator of the form (2.2) is added, eqn. (3.13.1) becomes:

form

(3.13.1)

(3.13.2) y(t)

(3.13.3) z(t)

A B.L A X

4 x1 11 1 12 1 1)
(3.14) E_E(Z )(t) = MCl N MC2 w|(t) +| 0 lq(b).
2 0 0 A X E

22/ V2 2
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The extended system matrix has a block-diagonal structure. If the pair
s
clear that the left upper block may be stabilized by a suitable choice of

Bl) is stabilizable and the pair (CI’A]l) is detectable, then it is

L, M and N; and this is certainly a reasonable design objective. On the

other hand, it is clear that the eigenvalues of A_, cannot be shifted by

dynamic output feedback. 2

We can formulate the requirement "left upper block stable" in coordi-
nate-free terms, in the following way. Roughly stated, what we want is
that the unstable poles of the closed-loop system are precisely the un-—
stabilizable poles of the open-loop system. Let us write XE(Ae) for the
unstable subspace of Ae(cf.(l.S.l)). Then our requirement can be expressed
as follows:

. e .
(3.15) dim XbQAe) = codim Xstab

where the subspace on the right-hand side is the one defined in Section
1.5 (see also Lemma 1.17). One can say that in the coordinate-free ter-

minology, the subspace X takes the place of the state space of xl(t)

stab
in the explicit form (3.13). (This identification assumes, of course,

that the pair (A Bl) is stabilizable. If this is not the case, then

11°
the "left upper block' cannot be made stable and the problem in the form

we want to pose it is not solvable. The identification assumes also that
A22 is completely unstable, but this is less essential.)

We now have two stability requirements, one in (3.5.3) and one in (3.15).
In (3.5), the behaviour of the variables-to-be-controlled is in focus,
whereas (3.15) gives a condition for all stabilizable state variables. The
two staBility requirements do not have to be the same; in fact, it is quite
natural to assume that a slow response of a large part of the system would
be satisfactory whereas the variables-to-be-controlled should behave
much faster. Therefore, we should use two partitionings of the complex

plane instead of one, as illustrated below.

N

Figure 3.2: Two partitionings of the complex plane.
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Further on, we shall assume that two parts of the complex plane have been

given, denoted by Ef ("f" for "fast") and T_ ("s" for "slow"). We shall also
assume that Ef c ES, and denote mt = E\Ef (
("u" for "unstable"). Because of the condition T

"t" for "tardy'") and mu = E\ES
c ES, what we obtain is

ES n Et and

f

a division of the complex plane into three disjoint parts: Ef,
Eu. We shall change our notations in an obvious way to conform to the new

. . . - . s o
situation; for instance Xs will denote the largest stabilizability sub-

space of the pair (A,B) wizibrespect to the division T = Es u Eu, Xu(A)
will denote the span of the generalized eigenvectors of A associated with
eigenvalues in Eu, etc..

We can now give the following problem statement: Given a system of
the form (3.12), find a compensator of the form (2.2) such that the exten-

ded system matrix Ae satisfies

. e .S
(3.16) dim Xu(Ae) = codim Xstab
and such that there is a subspace M of the extended state space X & W/

satisfying

(3.17.1) AeMcM

(3.17.2) Im(g) cMcRer (D 0)
(3.17.3) c(Ae: (XeW) /M) < Tg.

We shall refer to this problem as the regulator problem. The problem
will be solved completely in Section 3.3; we shall formulate necessary
and sufficient conditions for the solvability of the problem, give a con—
structive algorithm to verify these conditions, and present a method
to construct a solution if there exists omne.

The regulator problem as we formulate it is a generalization of a
number of problems which have been studied separately in the past. There
are two lines of research that can be distinguished. On one hand, we have
the theory of "tracking and regulation'" which has aroused considerable
interest; see for instance JOHNSON (1968, 1971), YOUNG & WILLEMS (1972),
DAVISON & GOLDENBERG (1975), WONHAM & PEARSON (1974), FRANCIS (1977),
WONHAM (1979). In this theory, one does not consider the presence of an

unmodeled disturbance (i.e., E = 0 in the system (3.12)). On the other
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hand, such a disturbance is the central object of study in the theory of
"disturbance localization'". Here, one usually assumes that the pair (A,B)
is stabilizable. Without stability requirements, the state feedback solution
of the problem is perhaps the simplest application of the idea of controlled
invariant subspaces (see WONHAM (1974) or, for a dual version, BASILE &
MARRO (1969¢)), but the solution by dynamic output feedback has only recent-
ly been obtained (AKASHI & IMAI (1979), SCHUMACHER (1979)). For a treat-
ment of the latter problem with stability requirements added, see WILLEMS

& COMMAULT (1981) and IMATI & AKASHI (1981).

Many of the results in the above articles follow as special cases of
the general theorem we shall prove. We shall perform a number of these
specializatiéns in Section 3.4. Our partitioning of the complex plane into
three parts (instead of the usual number of two) is essential to obtain
one general theorem, which simultaneously treats the problems with "output

stability'" and 'internal stability" (terminology of WONHAM (1979)).

3.2. Preliminary results

First, we give a result that will be helpful in proving the 'necessity'
part of the main theorem. The result may be compared to Thm. 2.16. Again,
we consider an invariant subspace of the extended state space and the related
pair of subspaces in the original state space. But now we do not assume
that the invariant subspace is separating, and so our conclusions are some-
what weaker. One remark on notation: we shall use Eg which may denote either

Ef or ms.

THEOREM 3.1 Let Ay be an extended system matrix of the form (2.5). For

any Ae—ihvariant subspace M, the pair (Q_IM,PM) 18 a compensator couple.
Moreover, if Ae: M Zs stable, then Q_lM 18 inner—-detectable and PM is inner-
stabilizable. Also, if Ae: (XeW) /M Zs stable, then Q_IM 18 outer—detectable
and PM is outer—stabilizable.

-1
PROOF Let M be Ae—invariant. Take x € Q M; then (g) € M so that x ¢ PM

and, moreover, Ax ¢ PM because

A BL, ,x

Ax
MC N ) (

Xy o =
(3.18) A = ( o = Gex) € M-

-1 . o . . -1
To show that Q M is conditioned invariant, take x € Q "M n Ker C; then

-1 . . .
(3.18) shows that Ax ¢ Q M and we obtain the desired conclusion from
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Prop. 1.7. Next, take x ¢ PM. Then there exists w ¢ W such that (:) e M,
and consequently:

A

X, _ BL, x, _ ,Ax+BLw
(3.19) A = G NG =«

MCX+NW) < M

Hence, Ax + BLw ¢ PM which implies Ax ¢ PM + Im B; we may conclude that PM
is controlled invariant using Prop. 1.6.
Now, let us assume that Ae: M is stable. To prove that PM is a stabi-

lizability subspace, it is sufficient (in view of Cor. 1.15) to show that

(3.20) PM ¢ (A-A)PM + Im B for all X € Eb.

But because o(Ae: M) < Eg, we know that

(3.21) M= (A~Ae)M for all A € Eb.

From this we obtain (3.20) immediately by noting that for (3) e M,
(3.22) P(A-A)(5) = (A-A)x - BLw € (A-A)PM + Im B.

Still assuming that Ae: M is stable, let us now show that Q_lM is
inner-detectable. Suppose the contrary; then it follows from Prop. 1.19
(in dualized form) and Lemma 1.18 that Q—IM n <Ker C | A> n Xb(A) # 0. So

-1
there would exist x # 0 and A € T, such that x € Q M n Ker C and Ax = Ax.

b
Then we would have (g) e M and

Ax X
o) = (D)

xy _ A BL,,x, _
(3.23) A = G w2 = (
. . . . -1 .
contradicting our assumption that Ag: M is stable. Thus, Q M must be inner-
detectable.

The rest of the proof follows by duality. X

The fact that PM is a stabilizability subspace if Ae: M is stable has
also been proved by IMAI & AKASHI (1981); these authors used a diffe-
rent method requiring the computation of an F ¢ F(PM). We did not menticn
the inner-detectability of Q_IM in Thm. 2.16; however, this follows imme-
diately from the statement of the theorem because (using (2.36.1) and
(2.37.1))
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(3.24) o (A+GC: Q_lM n <Ker C| A>) =

o(A: Q-IM n <Ker C|A>) =

0 (A+BF: Q_lM n <Ker C| A>) <

n

o (A+BF: PM) < mg.

Also, Thm. 3.1 gives the 'necessity' part of the proof of Thm. 2.1
(for instance, take M = 0). Of course, the 'sufficiency' part of this
proof is provided by Cor. 2.7.
As in Ch. 2, the proof of the main theorem will be based on a construc-—

tion lemma, which we now present.

LEMMA 3.2 Suppose that we are given three compensator couples (TS,VS),
(Tf,Uf) and (TC,VC), such'that TS c Tf and Vs c Vf. Further suppose that

we are also given a mapping F e E(Vs) n E(Vf) n _Ii(Vc) with Ker F o TC and

a mapping G e Q(Ts) n g(Tf) n Q(Tc) with Im G © Vc. Let W be a linear space
Zsomorphic to VC/Tc and let R be a mapping of VC onto W such that Ker R = TC.
Let R" be any right inverse of R, and define

+
A BFR

(3.25) A¢ = (Rec R(a+BF+GC)R™)"

Then the subspaces of X @ W defined by

(3.26.1) Ms = {(g) I X € TS} + {(;;) [ X € VS n Vc}

(3.26.2) Mg = {() | xe T+ () | xeVon v
X

(3.26.3) M, = {() | x e V.3

are all A ~invariant, and we have the fellowing relations:

(3.27.1)  o(A+BF: VS n Vc) = gﬁAe: MS n Mc)
e
(3.27.2)  o(A+BF: anVc/VSnVc) = g(A: anMc/MsnMc)

o e.
(3,27.3? o (A+BF: Vf+Vc/Vf) = og(A: Mf+MC/Mf)



64

- e.
(3.27.4)  o(A+GC: TS/TSnTC) = o(A: MS/MSnMc)
- e,
(3.27.5)  o(A+GC: Tf+TC/TS+TC) =g(A: Mf+MC/MS+MC)

: . = e- €
(3.27.6)  o(A+GC: X/TAT ) = o(A™: X7/Mc+M ).

Before embarking on the proof of this lemma, let .us make a few remarks.
The spectral relations in (3.27) can conveniently be summarized in the

following scheme:

Fig. 3.3. Regulator construction
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Corresponding letters are used to indicate the equalities in (3.27);
compare Fig. 2.5. It should be noted that Vs + (anVC) = Vf n (VS+VC)(the
'distributive law' may be applied because VS c Vf), and that similar re-
marks can be made concerning the other diagrams (it follows immediately
from the definitions that “S S Mf). As a final remark note that MC can be

described similarly as MS and Mf:
_ X X
(3.28) M, = {(0>[ xeT )+ {(RX)[ x e V3.

To see this, note that Rx = 0 for x € Tc'

PROOF First we have to show that the subspaces defined in (3.26) are Ae—

invariant; so let us consider Mj with j € {s,f,c}. If x ¢ Tj’ then

Ax o _ (A+GO)x GCx y

Xy _ -
(3.29) A = Creex o 77 (oo <M

because Tj is (A+GC)~-invariant, and because GCx = (A+GC)x - Ax € V. n Vc

(using that ATj c Uj and that Im G < Vc). Let us next take x € Vj n Vc’

then

+
Ax+BFR Rx
R(A+BF+GC)R Rx—RGCx

X

(3.30) Ae(Rx

) = ( ).

Write x = R'Rx + %, then Rx = 0 so that x € Tc c Ker F. Thus we have
FR+RX = Fx. Moreover, R(A+GC)R+RX = R(A+GC)x — R(A+GC)x = R(A+GC)x because
(A+GO)X € TC. We find that R(A+BF+GC)R Rx - RGCx = R(A+BF+GC)x - RGCx =
= R(A+BF)x. So (3.30) becomes

(3.32) A () = ((&FBE)X oy (e Vb,

R(A+BF)x ]

This completes the first part of the proof. The second part (to prove
the relations (3.27)) is an exercise in finding natural isomorphisms between
subspaces and constructing commutative diagrams. We shall not work this out

completely; by way of example, let us prove (3.27.5).
We define a mapping Q: Tp+T /T _+T, ~ Mf+Mc/Ms+Mc as follows:

(3.33) Qlx] = [ox] (x € TeaTy)
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First of all we have to show that this mapping is well~defined; this follows

from the fact that Q(TS+TC) c MS + Mc' Because Q(Tf+TC) c Mf + MCs Q does

indeed map into Mf+MC/MS+MC. Next we show that § is in fact an isomorphism.

1f Q[x] = 0 for some x € Tf + Tc’ then Qx € Ms + MC = QTS + TC; this gives

X € Q—l(QTS+MC) = Ts + Tc' So Q is injective. Surjectivity of Q follows

from the fact that Mf +ch = QTf + Mc c Q(Tf+TC) + (MS+MC). -
Finally, we prove that the following diagram, in which A + GC and Ae

denote the induced mappings on the indicated factor spaces, commutes.

A+GC
_—
Tf+TC/Ts+TC Tf+Tc/Ts+Tc
(3.34) Q Q
A
e
_—
Mf+MC/MS+MC Mf+MC/MS+MC

The proof is by direct computation: for x € Tf + TC we have

S Ax
(3.35) A, Qlxl = [ el

and on the other hand

(3.36) Q A+ GC[x] = [((A+((‘;C)x)].

Both results are equal because

Ax GCx

(A+GC) x =
(3.37) " -recx’ = (Recx

)y - ( ye M M+ M. X

The situation described by Fig. 3.3 simplifies considerably if we

assume that T < T < T_and V < V_ c V . The corresponding picture is:
c s £ s £ c
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_X T X Xew
a
T Vc -JE
b c
T Vf ';Ts
d e
LV 1T
s c
f
Lo Lo
A+BF A+GC

Figure 3.4: Regulator construction, simplified version.

3.3. Main theorem

We now state the necessary and sufficient conditions for a solution

of the regulator problem to exist.

THEOREM 3.3. Let the system (3.12) be given. Then there exists a solution
of the regulator problem as formulated in (3.16) and (3.17) if and only <f
there exist two compensator couples (TS,VS) and (Tf,Vf) with the following

properties:

(3.38.1) TS c Tf, VS c Vf
(3.38.2) Tf 18 outer-detectable and Vf 18 outer—-stabilizable, both with
respect to Ef

(3.38.3) Im E c Tf c Vf < Ker D

(3.38.4) T is outer-detectable with respect to T , and V_® X° = X
s s s stab

(3.38.5) Vf = US ® S for some inner-stabilizable (with respect to Es)

controlled invariant subspace S.

PROOF Necessity Assume that Ae is an extended system matrix (of the form

(2.5)) satisfying (3.16), and let M be a subspace of X ® W such that (3.17)
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holds. Denote the unstable subspace (in the sense of Eu) of Ae by Xi(Ae),
. P BT ) _ e -1 _

and define TS =Q Xu(Ae), VS = PXu(Ae), Tf =Q M and Vf = PM. It follows

immediately from Thm. 3.1 that (TS,VS) and (Tf,Vf

and that (3.38.2) holds; (3.38.4) will follow from Thm. 3.1 and Prop. 1.19

) are compensator couples,
if we can also show that

e s _
(3.39) PXu(Ae) n XStab = 0.
But this is immediate from (3.16).

Because mu c mt (see Fig. 3.2) and because of (3.17.3), we have
XE(Ae) < Xi(Ae) c M and this immediately gives (3.38.1). Finally, define
S by '

e
(3.40) S=PMn Xs(Aé))‘

Then it is clear that S is inner-stabilizable with respect to Es, so that

ScXx® Since X°(A ) © M, we also have
sta u e

b
(3.41) M= X2(a) 8 (Mo n XS(a)).
Projecting both sides into X, we obtain
(3.42) V.=V + 8.

But we already noted that Vsn x°

_ s .
ctab = 0 and that S c Xstab’ so in fact

we have Vf = VS ® S.
Sufficiency. Now we suppose that two compensator couples (TS,VS) and

(Tf,Vf) are given for which (3.38) holds. We construct F € E(Vs) n E(Vf)

and G ¢ Q(Ts) n Q(Tf) as follows. Because Vs o X°

stab
separately. On VS, we define F such

= X, we may specify
.. . . v XS
F by giving its action on s and stag
that F € F(V ). Note that V o T o5 X7 because T is outer-detectable; as
=''s s s det s

aAXS < x5 ¢ VS, we can assume that Ker F o XZ (In fact, it is not

det det et’
difficult to show that F is uniquely defined on VS by the requirement

F e E(Vs), so that the relation Xzet c Ker F holds necessarily. Also,

+BF: = o(A: X/X5 ct.
o (A+BF VS) . (A: X/ Stab) Eu )
As to Xstab’ we note that this is an A-invariant subspace containing

s
stab’
With respect to this pair, the subspace S is inner-

Im B; so we can consider the pair (A: X B) where B is viewed as a

e X5 .
mapping 1into stab
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stabilizable w.r.t. ES as well as outer-stabilizable w.r.t. Ef (the latter

. £ _ f _ yS .
because it follows from Vf + Xstab = X that S + Xstab = Xstab’ note that

£ s . s ¢ . 3
stab © Xstab)' So we can define F on Xstab such that F € F(S), o(A+BF: S)c

c ES and o (A+BF: thab/s) c Ef. Finally, it follows from the dual of Thm.

1.11 that we can choose G € Q(TS) n Q(Tf) such that o(A+GC: X/Tf) ct
s

and o (A+GC: Tf/Xdet) c ms_

The spectral situation for A + BF and A + GC can be summarized as

f

follows:

+ X - X
bl - in Ef al — in Ef
+ Vf + Tf
d{ — 1n ES c| - 1n ES
+v +T
s s
f| — 1n Eu e -Sln ES
4 + X
. 0 det
A+BF - in T
u
Lo
A+GC

Figure 3.5: Basis situation for the construction lemma.

Now, we apply Lemma 3.2 with Tc = Xzet and Vc = X. The conditions of
the lemma are all satisfied, and so we obtain the matrix Ae of (3.25) for
which the scheme (3.27) holds. Comparing Fig. 3.5 with Fig. 3.4, we see
g We have Im E < Tf c Q—IMf c
c PMf c Vf c Ker D so Im(g) S Mf c Ker(D 0); thus, (3.17) is satisfied.
It is also clear from Fig. 3.4 and Fig.3.5 that Xﬁ(Ae) = Ms n Mc’ and
that gﬁAe: XE(Ae)) = O(A+BF: VS) = g(A+BF:X/X§tab) = o(A: X/thab) which
shows that (3.16) holds. X

immediately that Mf is outer-stable w.r.t. L

The result as it has been stated here is given in terms of the exis*
tence of two compensator couples satisfying (3.38). So of course one may
ask: Is there an algorithm by which one (knowing the system operators A,B,
C,D and E) can find out if two such pairs exist ? And if this is the case,
can such pairs be constructed ? If these questions admit a positive answer,
then we are entitled to say that the regulator problem has been solved in

a constructive way. We shall show that this is indeed the case.
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In the formulation of the theorem, there are four subspaces tobe selected.

However, this amount can readily be reduced to one.

PROPOSITION 3.4 There exist two compensator couples (TS,VS) and (Tf,Vf)
satisfying (3.38) if and only if there exists a controlled invariant sub—

space V such that

S

(3.43.1) Ve XStab =

s
(3.43.2) Vo Xdet

(3.43.3) 'V c Ker D
(3.43.4) V + v’;(Ker D) > Te(Im E) + AT;(Im E)
and 1f, moreover,

* f _ yS
(3.44) VS(Ker D) + Xstab = Xstab'

PROOF First assume that we have two compensator couples (TS,VS) and
(Tf,Uf) satisfying (3.38). Then Vf = VS ® S where S is a controlled inva-
riant subspace that is inner-stabilizable w.r.t. Es. Because Vf c Ker D,

*
we also have S ¢ Ker D; so S ¢ VS(Ker D). From the fact that Vf is outer-

S

stabilizable it follows that S + xE Xstab; so (3.44) certainly holds.

stab
Now take V = Vs. We already noted that V:(Ker D) » S; thus, V + V;(Ker D) o

>+ 8= Vf; because T;(Im E) c Tf, (3.43.4) follows. Also, we have
s . s _
V> Té > Xdet' Finally, V < V¢ © Ker D, and Ve Xstab = X by (3.38.4).
Now assume that a controlled invariant subspace V that satisfies

(3.43) has been given. Define T = Xget’ Vg =V, Tg = TE(Im E) and

S

- * s f *
Vf =l + VS(Ker D). Then (3.38.1) holds because Xd c Xdet c Tf(Im E).

et

£ s _ . e
For (3.38.2), we note that Vf + Xstab =l + Xstab = X so that Vf is indeed
outer—-stabilizable w.r.t. Ef. The other conditions in (3.38) are trivially
verified. X
It should be noted that the subspaces X5 Xf x5 V*(Ker D)
stab’ “stab’ “det’ s

and T;(Im E) can all be considered as known, in view of the algorithms
mentioned in Section 1.4. So the condition (3.44) can be verified immedia-

tely and the remaining question is: How can we verify the existence of a
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controlled invariant subspace satisfying (3.43), and how can we find such
a subspace if it exists ? (Note that the two compensator couples of Theorem
3.3 can then be constructed as in the proof of the proposition.)

We shall solve this problem by introducing coordinates relative
to X:tab.Fix a basis {xl""’xE?x£+l’°"’xn} for X such that {Xl""’xﬂ}
is a basis for X°

stab’
matrices of A,B and D be given by

(All AIZ)
0 Ay
()

0

(3.45.3) D = (D1 DZ)'

With respect to the thus partitioned basis, let the

(3.45.1) A

(3.45.2) B

, . . s
Also, we introduce basis matrices for the known subspaces Xd

T;(Im E) + AT;(Im E), and V:(Ker D):

et’

s X1
(3.45.4) Xdet = sp(xz)

W
(3.45.5) T;(Im E) + AT;(Im E) = sp(w;)

(3.45.6) V7 (Ker D) = sp(g).

We state the following result.

COROLLARY 3.5 Let the system (3.12) be given. Then there exists a solution
to the regulator problem as formulated in (3.16) and (3.17) if and only if

(3.44) holds and (using the notation (3.45)) there exist matrices V,Q and
R such that

(3.46.1) Ay = VA, - AV + BR
(3.46.2) XI = VX2

(3.46.3) D, = -D,V

(3.46;4) W, = SQ + VW
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Moreover, if these conditions are fulfilled then a compensator as required
can be constructed as in the proof of Thm. 3.3, using the compensator
couples (TS,VS) and (Tf,Vf) gitven by

: X v
(3.47.1) TS = sp(xz> , Vs SP(I)

W
1 s Vv
(3.47.2) T, sp(w2> > Ve = sp(p 1)+

PROOF We use Prop.3.4. With respect to the basis used in (3.45), denote U by
} V]

(3.48) V = SP(Y ).

2

Now we can start translating the conditioms (3.43) into matrix terms.
It follows from (3.43.1) that V should be (n-{)-dimensional, so that the
matrix V2 in (3.48) can be taken square. Then (3.43.1) says that the

nxn-matrix

I, V
PO
(3.49) (O Vz)

should be nonsingular. This will be the case if and only if V2 is invertible.

But then we have
v v vVt
(3.50) sp( M- sp ! V_1 = sp( 12 >
) A \4 2 I
2 2
and consequently, we shall from now on describe l by

(3.51) v = sp(¥).

It is required that V should be a controlled invariant subspace; this

means that there should exist matrices Q and R such that

=

A A B
(3.52) ol A = @ (0‘>
22

It readily follows that we must have Q

A22. Thus,  is controlled inva-

riant if and only if there is a matrix R such that
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(3.53) A]]V + A12 = VA22 + BIR.

Next, (3.43.2) is equivalent to the existence of a matrix Q such that

' X
(3.54) (X') - )i
) ‘

This is clearly equivalent to
(3.55) X = VX, .
To translate (3.43.3) is very simple too:

(3.56) (® DZ)(¥) =D,V +D, = 0.

1 2

Finally, (3.43.4) holds if and only if there exist matrices Q and ﬁ

such that
W
1 S V.2
(3.57) (w2> = e+ (DR
We get R = Wz, and so (3.43.4) is equivalent to the existence of matrix Q
such that

(3.58) W, = SQ + VW,

The mapping that takes (V,Q,R) to (VAZZ—A V+B1R, vX,, -D,V, SQ+VW2)

11 2 1

is a linear mapping between linear spaces of finite dimension, and so it

is in principle straightforward to verify the condition of the corollary (it
is in the form "a given vector must be in the range of a given linear

operator"). Thus, we have indeed obtained a fully constructive solution.

3.4. Comparison with other work

In order to compare our results withearlier work on tracking, regulation
and disturbance localization problems, we have to take into account the

fact that most authors allow the use of static feedback in the solution of
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these problems. That is, one constructs extended system matrices not of

the form (2.5) but of the form

A+BKC BL

(3.59) A = ( MC N

).
We shall refer to the regulator problem in this modified form as the
relaxed regulator problem. The link between the two versions is given by

the following lemma.

LEMMA 3.6 Let (TS,VS) and (Tf,Vf) be two pairs of subspaces such that
TS c Tf and VS c Vf, and suppose that both pairs satisfy the conditions
(cc1-3) (see Section 2.2). Then there exists a mapping K such that (TS,VS)

and (T ) are compensator couples with respect to the triple (C,A+BKC,B).

f’Vf

PROOF We have to show that, under the given conditions, there exists K
such that (A+BKC)TS c VS and (A+BKC)Tf c Vf. Because Ts c Tf, there exists
a projection P: X - X with Im P = Ker C such that PTSC'TS and PTf < Tf.
Because VS c Vf, there exists F ¢ E(VS) n E(Vf). Write P = I - TC (with
T: ¥ > X); then K: = FT will do.

To verify this statement, note that Ts = PTS ® TCTS and Tf =

= PTf 0 TCTf. Moreover, PTS = TS n Ker C and PTf =T_n Ker C. We get

f
(3.60) (A+BFTC)T s = (A+BFTC)(TSnKer c) + (A+BFTC)TCTS c

c A(T nKer C) + (A+BF)T < T + V <l
s s s s s
and similarly for the pair (Tf,Vf). B

Using this lemma, it is easy to see that necessary and sufficient
conditions for the solvability of the relaxed regulator problem can be given
precisely as in Thm. 3.3, with only one modification: the pairs (TS,VS) and
(Tf,Vf) are not required to satisfy all conditions (ccl-4), but only the
conditions (ccl-3). (Compare SCHUMACHER (1980 d), where such pairs (' (C,A,B)-
pairs'") were used throughout.) Accordingly, the necessary and sufficient
conditions can also be given in the form of Prop. 1.4, if (3.42.4) is

replaced by

(3.61) v+ V:(Ker D) o T’;(Im E).
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Note that both versions coincide if E = 0. This means that in this
case the solvability conditions for the regulator problem and its relaxed
version are the same; of course, adding static feedback may still be useful
to obtain improved bounds for the compensator order (see WONHAM (1979),
SCHUMACHER (1980 d), JANSSEN (1981)).

Following WONHAM (1979), we use the term "output stability'" to describe
the situation in which Es'has been set equal to T, so that there is only
a stability requirement on the variables-to-be-controlleéd. In this situation,
the complex plane has in effect been divided into two parts (Ef and Et) and

we shall fall back on the old notation, writing Eg instead of Ef etc..

COROLLARY 3.7 The regulator problem with output stability is solvable if
and only 1f

(3.62.1) V" (Ker D) T;(Im E)
(3.62.2) U*(Ker D) > AT;(Im E)

*
(3.62.3) V" (Ker D) + Xstab = X.

] s * T
PROOF 1If T, =T, then XStab = X, xdet = 0 and VS(Ker D) = V" (Ker D). The
statement now follows immediately from Thm. 3.3 and Prop. 3.4. X

The necessary and sufficient conditions for the solvability of the
relaxed regulator problem are, of course, given by (3.62.1) and (3.62.3);
see SONNEVEND (1977; Thm. 3). We can specialize further by assuming that
E = 0; then we obtain the "Extended Regulator Problem'" of WONHAM (1979;
p. 139). The solution is as follows (Wonham's Thm. 6.2).

COROLLARY 3.8 The regulator problem with output stability and E = 0 is
solvable if and only <if

( 3.63.1) Xdet c Ker D

(3.63.2) X (&) < V'(Ker D) + <A | Im B>.

det The condition (3.62.2) is then implied

by (3.62.1) which is in its turn equivalent to (3.63.1), because Xdet is

PROOF If E = 0, then T;(Im E) = X
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A-invariant and hence also controlled invariant. Further, (3.63.2) is equi-

valent to (3.62.3) by Prop. 1.12 and Prop. 1.19. B

Another possible specialization is to set ES equal to Ef, so that
there is no distrinction between the stability requirements for the variables-
to-be-controlled and the other controllable variables. We may call this
"maximal stability". Again, we are left with a division of the complex
plane into two parts; so we shall use the T - [, -notation.

b
The general result in this situation is the following.

COROLLARY 3.9 The regulator problem with maximal stability is solvable

if and only <f there exists a controlled invariant subspace V such that

(3.64.1) Ve XStab = X ,

(3.64.2) Xdet c V/ < Ker D

(3.64.3) T;(Im E) c U + V;(Ker D)
(3.64.4) AT;(Im E) c U + v’;(Ker D).

PROOF Immediate from Thm. 3.3 and Prop. 3.4. ®

We may once more remove the 'disturbance decoupling' aspect by setting

E = 0; then the result is as follows.

COROLLARY 3.10 The regulator problem with maximal stability and E = 0 s
solvable if and only if there exists a controlled invariant subspace V such
that

(3.65.1) V&KX X

stab

(3.65.2) Xdet c ¢ Ker D.

PROOF Immediate from the foregoing corollary. K

If we assume that Xdet = 0, then our concept of "maximal stability"
coincides with the notion of "internal stability" used in WONHAM (1979);

and if we further assume that XSt = <A [Im B>, then Cor. 3.10 specializes

ab
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to Thm. 8.1 in WONHAM (1979; p. 179).

It should be noted that it is quite reasonable to set X equal to

zero beforehand (see FRANCIS (1977)). If one does not take iﬁgs approach
then there is a question how to deal with non-detectability of the pair
(C,A) in the formulation of the regulator problem. Our approach is diffe-
rent from that of Wonham, who calls a closed-loop system '"internally
stable" also in the case where unstable closed-loop poles are due to inde-—
tectability rather than instabilizability (see WONHAM (1979: p. 147)). In
the author's opinion, one may doubt the naturalness of this formulation.
A discussion of formulation differences for the regulator problem has been
given in JANSSEN (1981).

The "tracking and regulation' aspect is removed if we assume that
thab = X (which means that the pair (A,B) is Es—stabilizable). In this
case, the condition (3.16) simply says that the extended system matrix

should be stable in the sense of Es. We obtain the following corollary.

COROLLARY 3.11 Let the system (3.12) be given. Then there exists a compen—
sator such that the extended system matrixz is stable in the sense of T,
and has the disturbance localization property described in (3.17) if and
only 2f (A,B) s ms—stabilizable, (C,A) s Es—detectable, and moreover

(3.66.1) T;(Im E) V:(Ker D)

(3.66.2) AT;(Im E) c V:(Ker D)

* £
(3.66.3) VS(Ker D) + XStab = X.
PROOF Immediate from Thm. 3.3 and Prop. 3.4. X

This result is for a compensator of the form (2.5); if static feedback
is allowed, the condition (3.66.2) disappears. Under the further assumption

that ES =T the condition (3.66.3) is also removed and we recover, in

>
a slightly iestated form, the results on "disturbance decoupling by obser-
vation feedback with stability" of WILLEMS & COMMAULT (1981) and IMAI
& AKASHI (1981).

As a final specialization, let us set Es = L. = T; this means that we

£
do not impose any stability conditions.
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COROLLARY 3.12 Let the system (3.12) be given. Then there exists an

extended system matrix A, of the form (3.59) having an invariant subspace
M such that

(3.67) Im(g) c M cRer (D 0)
if and only if
(3.68) T"(Im E) ¢ V*(Ker D).

PROOF Immediate from the foregoing corollary. &

This is the result on '"disturbance localization by observation feed-
back" of AKASHI & IMAI (1979) and SCHUMACHER (1979). The 'necessity' part
of the statement was already proved in BASILE & MARRO (1969 a).

3.5. Final remarks

We have formulated a very general problem in the synthesis of linear
systems with specified structural features, and we have solved this problem
completely. However, there are some aspectsthat we did not discuss.

One of these aspects is order reduction. The construction lemma of Section
3.2 gives rise to a compensator order which equals dim Vc—dim TC; so there
is room for low-order compensation, at least in principle. In case E = 0,
the situation is relatively easy; we can set TS = Xiet’ Tf = Xget and

TC = (0, and then the condition G € g(Ts) n E(Tf) n E(TC) will be satisfied
automatically. It is then not difficult to extend the methods of Section
2.4 to the present case. In particular, the method suggested in subsection
2.4.5 will be used in Ch. 6 to construct low-order regulators for infinite-
dimensional systems.

The problem of order reduction becomes more difficult in the presence
of an unmodeled disturbance (i.e., E # 0). It has been shown in SCHUMACHER
(1980 d) that the compensator order can be decreased by p (the number of
observation outputs) by the use of static feedback. The basic idea is the
same as in subsection 2.4.2, but the extension is not trivialj; one has to
show that the method of order reduction is compatible with the special
structural requirements of the regulator problem. A different approach has

been given by WILLEMS & COMMAULT (1981), who solve the problem in three
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successive steps and who obtain a bound on the compensator order which may
be either larger or smaller than the order of the original system. Because

the method we presented here can only produce compensators of order < n,
it seems unlikely that there is a simple relation between our method and
that of Willems and Commault.



80

CHAPTER 4

BASIC CONCEPTS OF INFINITE-DIMENSIONAL SYSTEMS

This is the first chapter of the second part of this monograph, in
which we study a wider class of linear systems. The assumption of finite-
dimensionality of the state space is dropped, so that we are able to in-
clude processes of a distributed nature into our considerations.

The present chapter has an introductory character, and we do not give
any essentially new results. We shall use semigroup theory as a convenient
framework for studying infinite-dimensional systems. Some of the basic facts
of this theory are given in Section 4.1. Just as we did in the first part,
we shall make extensive use of 'block matrix' representations of operators.
However, it requires a little bit more care to do this in the infinite-
dimensional context and so we have collected the basic results in Section
4.2. Section 4.3 deals with the concepts of stabilizability and detectability,
and here we also present the important method of spectral decomrosition.

In Section 4.4, we give a list of the assumptions that will be used
to prove the main results in the subsequent chapters. These assumptions
together define the class of systems to which our theory is applicable,
and we discuss in some detail which physical systems are contained in this
class. Also in Section 4.4, we try to explain briefly the key ideas in our
approach to infinite-dimensional systems. Finally, some introductory remarks

on the examples we shall use are given in Section 4.5.

4.1. Semigroup theory

In the first three chapters, we have always considered systems for
which the state x(t) is an element of a finite-dimensional linear space.
In many applications, however, the assumption of finite-dimensionality is
restrictive. In order to deal with systems modeled by partial or functional
differential equations, we need to consider infinite-dimensional state
spaces.

There is a general theory available to describe the evolution of linear
deterministic time-invariant systems on a Banach space. This is the theory

of semigroups, explained in great detail in HILLE & PHILLIPS (1957). We
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shall restrict ourselves to the concept of a sStrongly continuous semigroup
of bounded linear operators. By definition, this is a function T(t) from
[0,0) to the space of bounded linear operators on a Banach space X, which

has the following properties:

('4.1.1) T(t+s) = T(t)T(s) Vs, t € [0,x)
(4.1.2) T(0) =1

(4.1.3) T(-)x € C([0,=);X) vx e X.

When we use the word "semigroup'" below, we shall always mean a strongly
continuous semigroup of bounded linear operators on a Banach space.

Although the semigroup property (4.1.1) was already formulated in

HADAMARD (1903,1924) (where it is referred to as the major premise of
Huygens' principle), the extensive development of semigroup theory started
in the late 1940's in the works of E.Hille, R.S.Phillips, K.Yosida, W.Feller,
I.Miyadera and many others. The semigroup approach has been used in systems
theory  since FATTORINI (1964) and it has been systematically applied
to control broblems by many authors; see CURTAIN & PRITCHARD (1978) and
the references cited therein. The main advantage of the use of semigroups
to study infinite-dimensional control theory is that one obtains general
results that are applicable to systems of many different types (parabolic,
hyperbolic, delayed, etc.) Other approaches are also feasible, however.
In particular, one should note the strongly PDE-oriented approach of LIONS
(1971) to problems of optimal control. For a transfer function approach to
feedback design for some classes of infinite-dimensional systems, one may
consult, for instance, CALLIER & DESOER (1978).

The semigroup T(t) generalizes the fundamental matrix exp(tA) in the
theory of ordinary linear differential equations. The exponential function
exp(tA) is said to be generated by the matrix A. In general, the infinite-
simal generator of a semigroup T(t) is defined by specifying its domain

T(t)x—-x

(4.2.1) D(A) = {x ¢ X | %ig — exists}

and its action on the elements of this subspace:
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(4.2.2) Ax = lim (x € D(A)).

Some of the elementary properties of the infinitesimal generator are given

as follows.

PROPOSITION 4.1 The infinitesimal generator A of a semigroup T(t) is a

densely defined closed linear operator. The differential equation

(4.3) x'(t) = Ax(t), x(0) = x, € D(A)

0

has a unique solution which is continuous on [0,) and differentiable on

(0,®), and which is given by
(4.4) x(t) = T(t)xo,

PROOF See CURTAIN & PRITCHARD (1978; p.l14) and, for the uniqueness,
BELLENI-MORANTE (1979; p.163).

For the inhomogeneous equation, we have the following result.

PROPOSITION 4.2 Let T(t) be a semigroup acting on a Banach space X, and

let A be its infinitesimal generator. Let f be a Cl-function with values

in X. Then the differential equation

(4.5) x"(t) = Ax(t) + f(t), x(0) = x. € D(A)

0
has a unique solution which is continuous on [0,») and differentiable
on (0,x), and which s given by

t
(4.6) x(t) = T(t)xy + [ T(t-s) £(s)ds.

0
PROOF See CURTAIN & PRITCHARD (1978; p.29). The uniqueness of the solution
follows from the same fact for the homogeneous equation. X

A basic property describing the 'growth' of a semigroup is the following.

PROPOSITION 4.3 Let T(t) be a semigroup. Then

4.7) inf{L log|T(e)| | & > 0} = Lim ¢ Log|(t) |

1
t
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where both members are either finite or equal to -w.
PROOF See HILLE & PHILLIPS (1957; p.306). X

From this proposition, and from the fact that T(t) is bounded on

bounded intervals (see CURTAIN & PRITCHARD (1978; p.12)), it is clear that

for each w > wj:= lim + log ||T(t) | there exists a constant M such that
to t w
(4.8) Irce) | < m et

Moreover, wg is the smallest number in R U {-«} having this property.
Therefore,,wo is called the growth constant of the semigroup. We shall use
the growth constant to describe the 'degree of stability' of a semigroup
(Section 4.3).

In our constructions; we shall often use operators which are bounded
perturbations of infinitesimal generators. The following lemma states
that such operators are generators too, and it also gives a bound on the

norm of the perturbed semigroup.

LEMMA 4.4 Let T(t) be a semigroup on a Banach space X, and let A be its
infinitesimal generator. For any given bounded linear operator B: X -+ X,
A + B is the generator of a semigroup, which we shall denote by S(t). If

the estimate

(4.9) [tce) | < M exp(wt)

holds for T(t), then the estimate
(4.10) [sce) || < M exp((wM[B[)t)

holds for S(t). In particular, the growth constant of S(t) is smaller than

or equal to w + M|B].
PROOF See CURTAIN & PRITCHARD (1978; p.38). &

Following the finite-dimensional terminology, we shall say that a
linear mapping between two Banach spaces is a similarity transformation if
the mapping is bounded and has a bounded inverse. We have the following

obvious result on modification of semigroups via such a transformation.
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The simple proof will be omitted.

LEMMA 4.5 Suppose that H: X] > X2 18 a similarity transformation between
the Banach spaces X1 and Xy - Let T(t) be a semigroup on X with infinitesimal

generator A and growth constant w,. The function T(t) defined by

o

4.11) T(t) = HT(L)H (t = 0)

then gives a semigroup on Xy The infinitesimal generator of T(t) is the
mapping K:= HAH * with domain D(A) = {x e X, | H 'x ¢ D(A)} = H[D(A)],
and the growth constant of T(t) is wg-

4.2. Composite systems

As we shall consider dynamic feedback, which means that both the ori-
ginal system and the feedback controller will have their own state space,
we shall be concerned with composite systems. Let us first introduce some
terminology in a general setting. The direct sum of two Banach spaces X1

e
. . . 1
and X2 is the defined as the set of pairs {(XZ) | x € Xl’ X, € X2}, made

into a linear space in the obvious way, and endowed with the norm
1
@ IO = maxtle b

In this way, one obtains a new Banach space which is written as X1 ® X2'
The natural embeddings of X1 and X2 are closed linear subspaces of X1 6 Xz,
and the natural projections of Xl ® X2 onto X1 and X2 are continuous.

‘ 117 DA D) > Xy Ay D@ ) > Xy, Ay DA, > Xy
and A22: D(A22) - X2 are linear operators with D(All) c D(A2]) c Xl and

Now suppose that A

D(AZZ) c D(AIZ) c X2. We shall use the notation

A]] A12)
A

(4.13) A= (
Ay Ay

for the operator that is defined as follows:

€ D(AZZ)}

X
@141 D) = () | x, € DA, x,
2
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X A x. + A X X
(4.14.2)  A(] e 122, (.1 e D).

2) (AZIXI * A%y 2
We also want to use the converse process in which a given system is

decomposed. Let X be a Banach space and let X] and X2 be subspaces of X

such that each x ¢ X can be written, in a unique way, as x = X, + X, with

X € Xl and X, € X2. In this case one says that X is the direct sum of

X, and X2, and one writes X = X] 6 X2 (see TAYLOR & LAY. (1980; p.28)). If

1
X, and X2 are both closed subspaces, then the projections of X onto X1

aiong X2 and onto X2 along X1 are continuous (TAYLOR & LAY (1980; p.247))
and there is an obvious identification between the concepts of 'direct
sum' in -one sense or the other. Below, we shall adopt the convention that
the use of the expression X = Xl ® X2 implies that X1 and X2 are closed
subspaces of X or can be ponsidered as such.

Corresponding to a decomposition of the space X, we shall want to
write an operator A acting on X in the 'block' form (4.13). In the case A is
not defined on all of X, we have to take some care to avoid domain problems.
The pertinent facts are given in the following lemma, whose simple proof

will be omitted.

LEMMA 4.6 Let X be a Banach space and let A be a linear operator mapping
its domain D(A) c X into X Assume that X has a direct sum decomposition

X=X, (¢] X2. Let P, be the projection onto X1 along X2, and let P2 be the
projection onto Xy along X{+ Suppose that P, maps D(A) into ttself. Then

the same holds for P., and we have

1

(4.;5) P [D(A)] = X; n D(A), P,[D(A)] = X, n D(A).

Moreover, if we define the mapping A for i,j € {1,2} as the restriction
of P;A to X; n D(A), considered as a mapping into Xis then the following
equality holds:

A11 A12

A )

(4.16) A= (
Byp By

Finally, <f D(A) <s dense in X, then X1 n D(A) Zs dense in Xl and

X2 n D(A) Zs dense in Xz.

A simple sufficient condition for the inclusion PZ[D(A)] c D(A) to
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hold is that X2 be a closed subspace contained in D(A). We shall often use
this condition in the sequel.
We shall now consider situations in which the block matrix appearing

in 4.13 has a triangular structure. The first result is the following.

PROPOSITION 4.7 Suppose that A and A,, are generators of semigroups
T,(t) and T,(t) on the Banach spaces X1 and Xz, with growth constants w,

and w, respectively. Suppose also that A = X1 > X2 is q bounded linear

2
operator. Then the operator

11

(4.17) Ai= (
A1 Ay

18 the generator of a strongly continuous semigroup on X1 ® XZ.This semi—

group s given by

T, (t) 0
(4.18) T(t) = ( )
TZl(t) Tz(t)

where TZl(t) s defined by

t
(4.19) T2](t)x = é T2(t—s) Ay T](s)x ds (x € Xl)'

Moreover, the growth constant of T(t) is equal to max(ml,wz).

PROOF One easily verifies that

is a semigroup with infinitesimal generator

. AL 0
(4.21) A=(, FRE

22

As A is a bounded perturbation of A, it follows from Lemma 4.4 that A is
the generator of a semigroup on X] "] X2. To determine the form of the semi-

group, we solve the differential equation



4.22 4 My - (A” ° yCH, (ho = (19 e pa
(4-22) dt 'x, S Ay Ay R Nk N '

We re-write (4.22) as follows:

(4.23.1) x} (6)

A]lxl(t)’ xl(O) =x . € D(All)

10

(4.23.2) xé(t) A2]x1(t) + A22x2(t)’ x2(0) = Xy € D(Azz).

The solution of (4.23.1) is given by the semigroup generated by All:

(4.24) x,(t) = T](t)xlo.

This is a Cl-function with values in X], and because A21 is bounded it

follows that the function A21 xl(t) is a Cl-function with values in X2.

Thus we can solve (4.23.2) using Prop. 4.2:

t
(4.25) %, (£) = T, (t)x, + é T,(t=s)A,, T (s)x, ds.

It now follows from Prop. 4.1 that the semigroup generated by A is given
by (4.18).
To prove the final assertion, let w be any number larger than

' and w!

max(wl,wz). Then we can make the following estimates, in which Wy )

are numbers such that w, < 0! < w, w, < w! <€ w, and wi #w

.,
1 1 2 2" 2°

X
(4.26) HT(t)(X;)" = max(|[r, (©)x, + T, (O], [T,(0)x,])

t t wé(t-s)
byl ] e

]

9

A

wis
max(Mle "A21” e ”XZHdS,

wét
M2e "XZH) <
1 \J 1 1

wt wot wt wyt
max(M’e le]" + M4 ]e e l ”XZH, Mze ”X2”) s

A

IA

X
t 1
M5ew " (XZ) ” .

87
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This shows that the growth constant of T(t) is smaller than or equal to
max(w],wz). On the other hand, it follows immediately form the triangular

| OF wy-
Hence, equality holds, and the proof is complete. X

form of T(t) that its growth constant cannot be smaller than w

Now suppose that we have a semigroup T(t) acting on a Banach space X
which has a direct sum decompoisition X = X1 2] X2. Also suppose that X2
is contained in the domain of the infinitesimal generatdr A, and that
AX2 c XZ' Then we shall denote the restriction of A to X2 by A: X2. We can
also consider the quotient space X/XZ’ which is defined as the set of

equivalence classes modulo X2, endowed with the norm

(4.27) I[x1] = inf{]x - x2” | x, € XZ}'

With this norm, X/X2 is a Banach space (TAYLOR & LAY (1980; p. 71)). From
the fact that the canonical mapping x + [x] is a continuous mapping of X

onto X/XZ’ it follows that the subspace
(4.28) D(A):= {[x] | x € D(A)}

is dense in X/XZ' It is easily verified that we can define a mapping
A: D(A) X1 by

(4.29) Alx] = [Ax] (x € D(A)).

This mapping, which will sometimes also be denoted by A: X/Xz, is called
the quotient mapping induced by A on X/Xz.

Under the above circumstances, it is possible to define the restric-—
tion and the quotient of the semigroup T(t) with respect to X2' These are

the contents of the next two results.

PROPOSITION 4.8 Suppose that A is the infinitesimal generator of a semi-
Xl ® X2 with X2 c D(A)
and AXZ'C Xz. Then X2 i8 T(t)—invariant for each t 2 0, and T(t): X2 ig a

group T(t) on a Banach space X, and suppose that X

semigroup on X, with A: X2 as its infinitesimal generator.

PROOF. From the fact that A is a closed operator it follows that A: X2 is

also closed. Because A: X2 is defined on all of X2’ the closed graph
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theorem (TAYLOR & LAY (1980; p.213)) shows that A: X2 is bounded. Conse-

quently, the unique solution of the differential equation

(4.30) x'(t) = Ax(t), x(0) = X, € X2
is given by

(4.31) x(t) = exp(tA: Xé)xo

which is clearly in X2 for all t 2 0. It follows from Prop. 4.1 that we

must have

(4.32) T(t)x0 = exp(tA: Xi)xo (t =0, X, € X2)

showing that XZ is T(t)-invariant for each t = 0, and that T(t): X2 is a
semigroup with infinitesimal generator A: X2' X

It should be noted that a subspace X2 which is A-invariant in the
sense that Ax € X2 for x ¢ X2 n D(A) (# XZ) is not necessarily invariant
for the semigroup generated by A (see SCHMIDT & STERN (1980)).

PROPOSITION 4.9 Suppose that A is the infinitesimal generator of a semi—

group T(t) on a Banach space X, and suppose that X = X1 ® X2 with X2 < D(A)
and AX2 c X
t =0, by

9" Then we can define a mapping T(t): X/X2 -+ X/X2, for each

(4.33) T(e)[x] = [T(t)x].

Moreover, T(t) is a semigroup on X/X2 whose generator is an extension of
A (defined in (4.29)).

PROOF The correctness of the definition (4.33) follows from the T(t)-inva-
riance of X2 (Prop.4.8). To show that T(t) is bounded let w be the growth

constant of T(t) and let w' € IR be such that w' > w. Then there exists a

constant M such that for all x € X and x, € XZ:
(4.34) [Tce) (=] = inf{T()x - ]| | v e X} <
< Jreyx - T(0)x, | < M Flx - x, .
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Consequently, we have for all x ¢ X:

Me © inf{|x - x2” | x, € X} =

IA

(4.35) [Tce) x|

e & lx1].

The semigroup axioms (4.1) are easily seem to be satisfied by T(t). Finally,

the fact that
(4.36) lim L(T(t)[x] - [x]) = Alx]  ([x] e DEA))
t¥0 t

follows immediately from the continuity of the canonical mapping x # [x].

The inequality (4.35) shows that the growth constant of the induced
semigroup T(t) is smaller than or equal to that of the original semigroup.
Of course, the same is true of the semigroup T(t): X2 obtained by restric-
tion.

To complete this section, we prove a proposition on the decomposition
of composite systems. We shall say that two semigroups Tl(t) and Tz(t)
acting on Banach spaces Xl and X2 are stmilar if there exists a similarity

transformation H: X1 - X2 such that
(4.37) HTl(t) = Tz(t)H
for all t > 0.

PROPOSITION 4.10 Suppose that A and A,, are generators of semigroups

Tl(tj and Tz(t) on the Banach spaces X1 and X2, respectively, and assume
that Ay s bounded. Suppose also that Ayt X1 - X2 18 a bounded linear
operator. Let T(t) denote the semigroup on X1 ) X2 with generator

11

(4.38) A:= (
Ay1 By

Then the restricted semigroup T(t): X2 is similar to Tz(t), and the
quotient semigroup T(t) on X/X2 18 similar to T](t).

PROOF The first assertion is obvious from the form of the semigroup

T(t) given in (4.18). To prove the second assertion, define the mapping



H: X1 > X/X2 by
(4.39) Hx = [(E)] (x e X).

This is clearly a continuous bijection from X] onto X/XZ' By the open
mapping ~theorem (see TAYLOR & LAY (1980; p.ﬂZ—QB),H-l isalso continuous
so that H provides a similarity between X1 and X/XZ' Using the explicit

form of T(t) again, we have

_ x T](t)x
(4.40) T(Ox = [T(e)(P] =1 ", 1=HT (0)x
for all'x € X2' This completes the proof. X

4.3  Stabilizability, detectability and the spectral decomposition

As in the finite~dimensional case, a 'system' will be described by
three operators. The main operator (or system operator) A will be the
generator of a semigroup T(t) on the state space X. The <mput operator B
will be a bounded mapping from a finite-dimensional space U into X. The
output operator C will be a bounded mapping from X into a finite-dimensional
space Y.

We defined the concept of stability in the finite-dimensional situation
through a partitioning of the complex plane in a part labeled 'stable' and

a part labeled '

unstable'. In the infinite-dimensional context, we want to
use the growth constant as an indicator of stability, and so we shall con-
sider only partitionings in which the parts are divided by a vertical line
in Fhe complex plane. In our discussions, we shall assume that some fixed
constant u ¢ R has been given, and we shall say that a semigroup 1is
exponentially stable (or simply stable) if its growth constant is smaller than
or equal to w. In applications, w is always negative.

We can now define the concepts of stabilizability and detectability.
If A and B are mappings as described above, the pair (A,B) is stabilizable
if there exists a bounded mapping F: X + U such that the semigroup generated
by A + BF is stable. (Note that A + BF is indeed the generator of a semi-
group; this follows from Lemma 4.4.) The pair (C,A), as described above,
is said to be detectable if there exists a bounded mapping G: ¥ -+ X such
that the semigroup generated by A + GC is stable. Of course, Lemma 4.4 is

used again here.
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In the finite-dimensional situation, the modal decomposition of the
state space into a 'good' and a 'bad' A-invariant subspace was useful to
us. We want to use the same idea in the present context, and this is made

possible by the following result.

PROPOSITION 4.11 Let A be the generator of a semigroup on the Banach space

X. Suppose that ¢ is a bounded subset of o(A) and that o is closed and
open in the rvelative topology of o(A). Then there exists a bounded projec—
tion P: X » X such that P[D(A)] < D(A), and with respect to the decompo—

sition X = Im P ® Ker P we have

A]1 0 T]l(t) 0

),  T(t) = ( ).
0 A22 0 T22(t)

(4.41) A= (

Moreover, o(All) =g and'o(Azz) = o(A)\c].

1
PROOF See TAYLOR & LAY (1980; pp. 321-323) and, for the decomposition of
the semigroup, TRIGGIANI (1975; App.2). X

We shall use this spectral decomposition to derive sufficient condi-
tions for stabilizability and detectability. With this in mind, we first
have to discuss the relation between the spectrum of the generator and the

growth constant of the semigroup. The following general result holds:
(4.42) lim % Log|T(t)]| = sup {Re » | A € o(A)}
o

(HILLE & PHILIPS (1957; §.457)). In general, equality does not have to hold
in (4.42); see HILLE & PHILIPS (1957; p.665) and ZABCZYK (1975). In many
cases, however, we do have equality and then the generator is said to
satisfy the spectrum determined growth assumption (TRIGGIANI (1975)). One
of these cases is when the operator T(t) is compact for large t, as is
typically the case in delay equations; see HALE (1971; pp.112-115). Also,
the spectrum determined growth assumption holds if there exists a tg 2 0
such that T(t) is strongly differentiable for t > tO (see SLEMROD (1976)).

This condition is typically satisfied (even with t, = 0) for equations of

0
diffusion type, and the semigroup is also certainly differentiable if the
infinitesimal generator is bounded. In fact, it has been shown that diffe-
rentiability of the semigroup implies compactness if the generator has a

compact resolvent (PAZY (1968; Th. 3.2 and Lemma 2.1)),such as is the case
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for manydiffusion equations. For further discussion on the spectrum determined
growth assumption, see TRIGGIANI (1975).

An infinitesimal generator A is said to satisfy the spectrum decompo-
sition assumption (with respect to some number w denoting the desired degree

of stability) if

(4.43) a,:= {X € o(a) | Re A > w}

is a bounded, closed and open subset of o(A) (TRIGGIANI (1975)). We can
then use Prop. 4.11 to decompose A, and we shall in this special case use

the following notation ('u' for 'unstable', 's' for 'stable'):

(4.44) A

1]
—~
(=1

Also, we shall write the corresponding decomposition of the state space
X as X = Xu ® XS. In. an obvious way, we can write the input operator
B: U~ X as

B

_|u
(4.45) B = BS .

The output operator C: X - Y can likewise be written in matrix form:
(4.46) c=(c, Cs)'

We shall also use the notation Az, Xﬁ etc. if we want to stress the depen-
dence .on w.

In case the subspace Xu is finite-dimensional, the mappings Au’ Bu and
Cu are mappings between finite-dimensional spaces and we can use the con-
cepts of controllability and observability as defined in Ch. 1.

The spectrum decomposition assumption can be checked easily when the
spectrum of the generator consists only of isolated eigenvalues. This is
the case if the resolvent ()\—A)—1 is compact for some X e p(A), which
applies to many differential operators appearing in the classical boundary
value problems of mathematical physics (see KATO (1966; p.187)). The same
type of spectrum is obtained for functional-differential operators des-
cribing delay equations; see HALE (1971; pp.98-101). In both cases, all

eigenvalues have finite multiplicities (which means that the corresponding



94

eigenprojections have finite rank; see TAYLOR & LAY (1980; p.330)) and so
the condition on the finite-dimensionality of Xu comes down to requiring
that there are only finitely many eigenvalues to the right of the line

Re A = w.

Using the spectrum decowmposition assumption and the spectrum deter-
mined growth assumption, we are able to characterize stabilizability and
detectability in finite-dimensional terms if the unstable subspace is finite-
dimensional. The following propositions are proved constructively, and we
shall use them for actual compurations of feedback or injection mappings.
The 'sufficiency' parts of these results are due to TRIGGIANI (1975; Thm.
6.1) and CURTAIN (1979; Thm.3.1).

PROPOSITION 4.12 Suppose thai A satisfies the spectrum decomposition

assumption and that A satisfies the spectrum determined growth assump—
tion. Suppose also that the unstable subspace Xu 18 finite-dimensional.
Then the pair (A,B) is stabilizable if and only if the pair (A,,B,) is

controllable.

PROOF First, let us assume that (Au,Bu) is controllable. There then exists
a mapping P Xu - U such that Au + B F generates a stable semigroup.

Define F: X » U, with respect to the decomposition X = Xu ® Xs’ by
(4.47) F = (Fu 0).

Then we have

A +B F 0
(u u u

(4.%8) A + BF = BF_ AS)
and it follows from Prop.4.7 that the semigroup generated by A + BF is
stable.

Conversely, suppose that F: X > U is a bounded mapping such that A + BF
generates a stable semigroup, and suppose that the pair (A,,B,) would not

be controllable. Decompose Xu as X2 (] X3, where

(4.49) X, = <Au| Im B >

(notation as in (1.8)). Write Xl = XS. Then we have, with respect to the

decomposition X = X1 ® X2 0 X3:
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A, O 0 B,
(4.50) A= 0 A, A, |,B=|B,
0 0 Ay

Here, we have written A . for A, etc.. By our assumptions, the matrix A

11 33

is unstable. If we now write F = (Fl F2 F3), we get

AtBE, BFy BiFy
(4.51) A + BF = BZFI A22+B2F2 A23+B2F3
0 0 I

The upper two-by-two block is the generator of a semigroup because it is a
bounded perturbation of the upper two-by-two block appearing in (4.50). So
we can apply Prop. 4.7 and conclude that the semigroup generated by A + BF
cannot be stable. This is a contradiction. Hence, (Ay,B,) must be controlla-

ble. K

PROPOSITION 4.13 Suppose that A satisfies the spectrum decomposition

assumption and that Al satisfies the spectrum determined growth assumption.
Suppose also that the unstable subspace Xu is finite-dimensional. Then the
pair (C,A) is detectable if and only if the pair (Cy,A,) ts observable.

PROOF We first assume that (Cu,Au) is observable. Then there exists a
mapping Gu: Yy > Xu such that Au + Gucu generates a stable semigroup. Define

Gu: Y + X, with respect to the decomposition X = Xu ® Xs’ by

(4.52) G=(Y.
0
Then we have
A+GC  GC
(4.53) A+gc= (4 ®® us

0 A )
s

and it follows from Prop. 4.7 that A + GC generates a stable semigroup.
Conversely, suppose that G: ¥ - X is a bounded mapping such that A + GC

is the generator of a stable semigroup, and suppose that the pair (Cu,Au)
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would not be observable. Decompose Xu as X2 (0] X3, with

(4.54) Xy = <Ker C_[A >

(notation as in (1.10)). Write X1 = XS, All = AS etc.. Then we have, with

respect to the decomposition X = X1 ] X2 2] X3:

A]| 0 0
(4.55) A=l 0 A22 0 , C= (C1 C2 0).
0 A3 Ay
By our assumptions, the matrix A33 is unstable. Writing
G]
(4.56) G = G2 s
€3
we get
, A”+GIC1 G]C1 0
(4.57) A + GC = G2C1 A22+G2C2 0
63€;  A3p*CCy  Ag

The two-by-two upper left block generates a semigroup because it is a
bounded perturbation of the two-by-two upper left block in (4.55). Using

Prop. 4.7, we see that the semigroup generated by A + GC cannot be stable.

This is a contradiction, and therefore (Cu’Au) must be observable. &

" Another application of the spectral decomposition is to growth esti-
mates for the semigroup. In general, a growth estimate of the form (4.8)

can only be made for w larger than the growth constant w,. Under certain

0
circumstances which will prevail in our examples below, it is nevertheless

possible to give the estimate with w = Wy

LEMMA 4.14 Suppose that T(t) is a semigroup with generator A, and let

= sup {Re X [ X e o(A)}. Suppose that 0 3= {X € o(a) | wy ~ § < Re A £ w,}

Yo 0

satisfies the assumptions of Prop. 4.11, and let the operator A,. satisfy

22
the spectrum determined growth assumption. If 9, consists of finitely many
etgenvalues of A which all have multiplicity one, then there exists a

constant M such that the following holds:
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wAt
(4.58) [rce) | < Me © (t = 0).

PROOF In the decomposition of Prop. 4,11, All is a diagonalizable matrix
whose eigenvalues have real parts < Wy Thus, there exists a constant M
such that "Tl(t)” <M exp(mot) for all t > 0. By the assumption on A22
and the fact that Re A < wg - § for all X € O(AZZ)’ there is a constant M2
such that ”Tz(t)” < M2 exp(wot) for all t = 0. The assertion of the lemma

now follows directly. B

4.4 Remarks on the scope of the theory

In this section, we present a list of the assumptions that determine
the class of systems we shall consider in the subsequent chapters. We shall
also give some comments on the assumptions and on the way we shall use them.
It is assumed that a fixed number w has been given, to indicate the dividing
line between the 'stable' and the 'unstable' part of the complex plane. The
systems we shall study are described by three operators A,B and C under the

following assumptions.

(A1) A is thégafrator of a semigroup T(t) on a Banach space X

(A2) B is a bounded mapping from a finite-dimensional space U into X
(A3) C is a bounded mapping from X into a finite-dimensional space Y

(A4) the spectrum of A is discrete, i.e. it consists only of isolated eigen-

values with finite multiplicities

(A5) there exists 8§ > 0 such that {A € T | Re A > w-8} contains only finite-

ly many eigenvalues of A

(A6) the operator A:_G satisfies the spectrum determined growth assumption,
with 8§ as in (A5)

(A7) the pair (Au,Bu) is controllable
(A8) the pair (Cu,Au) is observable

(A9) the eigenvectors of A are complete, in the sense that

span {x ¢ X I 3N e C: 3In e N: (AI-A)®x = 0} is dense in X.
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To prevent confusion, let us point out here that we shall use the term
"discrete spectrum' always in the sense of A4 (cf. KATO (1966; p.187)),
and that the word "multiplicity" will be used for the rank of the eigen-—
projection (cf. KATO (1966; p.181)). Every non-zero vector in the range of
fhe eigenprojection will be termed an "eilgenvector” (so this includes 'gene-
ralized eigenvectors').

The assumptions (A1) and (A2) are relevant for the 'situation in which

the control enters in the following way:
(4.59) x'(t) = Ax(t) + Bu(t).

For systems described by partial differential equations, the control could
also be implemented via the boundary conditions, and then a description
under the assumptions (Al) and (A2) would be impossible. The specifically
infinite-dimensional phenomenon of boundary control is interesting, but we
shall leave it out of our present discussion. Our object of study is given
by (4.59), and it is sometimes called distributed control.

The boundedness assumption on the output operator (A3) excludes point
observationé on an L,-space. However, CURTAIN (1979) and POHJOLAINEN (1980)
show that, under certain conditions, it is very well possible to deal with
unbounded observations in feedback design problems. It seems not unreasonable
to expect that most of our results will remain true if C is relatively
bounded with respect to A (KATO (1966; p.190)).

The assumption (A4) has already been discussed in Section 4.3; we have
argued that a large class of systems described by partial differential
equations on a bounded domain or by functional differential equations of
'delay' type falls within the category described by (A4). Within this class,
there is a distinction between those generators for which there are only
finitely many eigenvalues to the right of any vertical line in the complex
plane, and those for which this is not true. This distinction, which is
obviously of crucial importance in connection with (A5), corresponds to a
well-known classification both in partial differential equations and in
functional differential equations. On one hand, we have parabolic equations
(such as the heat equation) and equations of 'retarded' type (HALE (1971;
p.4)). In systems described by these equations, the real parts of the
eigenvalues tend to —= and so the assumption (A5) will hold for any desired
growth constant w. On the other hand, we have hyperbolic equations (such

as the wave equation) and equations of 'neutral' type (HALE (1971; p.5)).
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Systems of these types have infinitely many eigenvalues in a vertical strip
and so they will only satisfy (A5) if this strip happens to be to the left
of the prescribed value of w. (Note that the real parts of the points in the
spectrum of a generator must be bounded above; this follows from (4.42)
aﬁd Prop.4.3.) In conclusion, we may say that parabolic and retarded systems
will as a rule satisfy the assumption (A5), whereas hyperbolic and neutral
systems will satisfy (A5) only if the system is 'basically' stable.

The assumption (A6) has also been discussed in Section 4.3. We have
formulated the assumption for A:_G and not for A, because this is what is
needed to apply Prop. 4.12 and Prop. 4.13. However, it is easily seen that

if the semigroup generated by A is differentiable for t > t, or compact

for large t, then the same holds for restrictions of the segigroup to a sub-
space of the form XS. It fpllows from Prop. 4.7 and assumption (A5) that the
spectrum determined growth assumption holds for Az if it holds for A:_s.

The assumptions (A7) and (A8) need little explanation; they are just
as important as in the finite-dimensional situation. Finally, the assumption
(A9) will be essential to prove the existence of finite—dimensional control
schemes. The completeness property is quite common in partial differential
equations; in fact, the classical method of solving equations by expansion
in eigenfunctions is based on it. Material on completeness of eigenvectors
can be found, for instance, in TREVES (1975; p.325), MIZOHATA (1973; pp.465-
470) and AGMON (1965; pp.278-289). For completeness of eigenvectors in
functional differential equations, see MANITIUS (1980) and DELFOUR & MANITIUS
(1980 b).

For a given system, the main restrictions on the selection of the
desired growth constant w are given by (A5), (A7) and (A8). We see that g
may be set equal to the largest uncontrollable and/or unobservable eigen-—
value of A. But if there is a vertical 'asymptotic line' (i.e. a line
{A et | ImX=c} such that each strip {A ¢ T | c - e < Im A < ¢ + ¢}
(e > 0) contains infinitely many eigenvalues of A), then w must be to the
right of that line.

The assumptions (Al, 4-6,9) describe which operators are allowed to
occur as the main operator of the systems we shall consider. The following
proposition gives a large class of operators that are contained in this

category.

PROPOSITION 4.15 Suppose that X s a Hilbert space and that A is a densely

defined, self-adjoint linear operator on X. Suppose furthermore that A is
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bounded above (i.e., there is a constant c € R such that (Ax,x) < ¢ for

. . -1,
all x e D(A) with |x| = 1). Finally, suppose that (Ag=A) ~ is compact for
some AO € p(A). Then A satisfies the assumptions (Al,4-6,9) for any w € R.

" PROOF Using the fact that A is closed (because ()\O—A)—1 is closed) and the
estimate [[(A-A) '] < M|A!"!, which holds for A ) ¢ ¢ It Al> e,~Re 2}
(c] > 0,c2 > c) (KATO(1966; p-272)), we derive from Thm. 2.28 in CURTAIN
& PRITCHARD (1978; p.33) that A generates an analytic semigroup. Assumption
(A4) is fulfilled by the compactness of the resolvent; see, for instance,
KATO (1966; p.187). Also by the compactness of the resol&ent, the eigenvalues
of A cannot have a finite accumulation point; and because A is bounded
above and self-adjoint, the eigenvalues are realand they can be numbered in
order of decreasing magnitude A, > X, >.., with A

1 2 k
that (A5) is satisfied for any w € R. Any operator of the form A: will

+ - g5 k > @, This shows

generate an analytic semigroup and so (A6) holds too. Finally, the comple-—
. -1
teness of the eigenvectors of A follows from the same fact for (AO—A) ,

where AO € R and AO»> c (KATO (19663 p.260)). X

The theorem applies, for instance, to elliptic operators of the follow—
ing type: Let © be a bounded domain iniRd with smooth boundary, and let

X = LZ(Q). Define A by

d d 5 5
(4.60) Ap = - 1, jgl 5;; (aij(x) 5;; Q) + c(x)o
where the. functions aij(x) are real-valued and once continuously differen-
tiable, e(x) is real-valued, aij(x).= aji(x) for all i and j, and the

uniform ellipticity condition holds:

d d

461 IanG0 e zalel2 ea, £ erh

where n is a positive constant. Then A satisfies the conditions of the
proposition if we add Dirichlet boundary conditions (see, for instance,
MIZOHATA (1973; Ch.3)).

The self-adjointness assumed in the proposition is not at all essential.
A large class of non-self-adjoint generators of semigroups is given by

delay equations of the following type:

(4.62) %%(t) = dn(e) x(t+)

b
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where n(6) is an nxn-matrix of real functions of bounded variation on
[-h,0]. To this equation, a semigroup can be associated which acts on the
product space‘RP b'e Lz(—h,O) (see VINTER (1978)). How this association is
done will be explained, in a considerably more specific setting, in Section
4.5. The resolvent of the generator turns out to be compact which shows that
(A4) holds. Also the semigroup itself is compact for t < h, and

this entails that (A5) and (A6) are satisfied for any w € R. (For, if there
were infinitely many eigenvalues of A in a strip {\ ¢ T | e, < Re X < cz}
then there would be infinitely many eigenvalues of T(h) in a ring-shaped
domain {A € T | L |A| < e 2"} (HILLE & PHILLIPS (1957; p.467)) and
consequently the eigenvalues of T(h) would have a non-zero accumulation
point, which is impossible by the compactness of T(h).) So the only question
that remains is whether the eigenvectors associated with (4.62) are complete.
Detailed conditions for tﬂis are given in MANITIUS (1980) and DELFOUR &
MANITIUS (1980b), and their results show that the completeness is obtained

in many cases, if the state space is chosen correctly.

Of course, the assumptions (Al-6) and (A9) hold in particular for
finite-dimensional systems. Generally speaking, one might say that the
assumptions aelineate a class of systems that have those features of finite-
dimensional systems that make the constructive methods of Chapters 2 and 3
applicable. Indeed, in the subsequent chapters we shall follow the lines of
these chapters cloéely, although we shall introduce some specializations
and we shall concentrate on construction methods rather than necessary condi-
tions. Controlled invariant subspaces will be replaced by finite~dimensional
subspaces which are invariant for a generator of the form A + BF. The fact
that we shall use finite-dimensional subspaces in our constructions is moti-
vated by our aim to obtain controllers of finite order, but is also helps
to avoid difficulties that arise in connection with infinite-dimensional
spaces. This is the key to our approach in the subsequent chapters, together
withthe relatively simple nature of the systems we shall study and the
availability of a finite-dimensional theory that gives ample opportunity

for low-order controller design.
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4.5 Introduction to the examples

In this section we give some basic facts about the equations we shall
use in our examples. We shall use the one-dimensional heat equation as an
archetype of parabolic equations, and delay equations will be represented
essentially by a scalar equation with one pure delay.

The heat equation, provided with distributed control and observatiom,

has the following form.

3 1 a2 m
(4.63.1) 52~w(x,t) =5 Az o(x,t) + iél bi(x)ui(t) (x € [0,1], £t 2 0)
(4.63.2) 2 0(0,) = %w(l,t) -0 (t > 0)
(4.63.3)  0(x,0) = @y (x) ’ (x ¢ [0,1])
1
(4.63.4) y (£) = f c; (%) @(x,t)dx (1= 1,.25p)-
0

As the state space for this equation, we shall take X L2(O,l). The operator

A is then given by

(4.64.1)  D(A) = {© € L,(0,1) | 372‘3 € 1,(0,1), 22(0) = 221y = o)

1 d?
(4.64.2) Ap = — &—‘2.

It is a well-known fact that this operator generates a semigroup which is
differentiable (even analytic)for t > 0. Furthermore, A has a discrete
spectrum with simple eigenvalues at -k?(k = 0,1,2,..). The corresponding

normalized eigenvectors are given by

(4.65) 0 (x) =1 (k = 0)
Y2 cos kmx (k = 1,2,..)

and they form a complete orthonormal set in L2(0,1).
We shall also use another version of this equation, in which the
Neumann boundary condition (4.63.2) has been replaced by the Dirichlet

boundary condition
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(4.63.2)" ©(0,t) = @(1,t) = 0.
In this case, the operator A is given by

(4.66.1)  D(A) = {0 € L,(0,1) | %;% € L,(0,1), ©(0) = w(1) = 0}

_ 1 d%
(4.66.2) AP = prg R v

Again, A has a discrete spectrum and the eigenvalues, which are now at
-k?(k = 1,2,..), are all simple. The corresponding normalized eigenvectors
are given by

(4.67) wwx)=/25h1Mx (k = 1,2,..)

and these also form a complete orthonormal set in L2(0,1).

The input operator is given by (4.63.1) as B : R > X, with

m m
(4.68) Bu = igl biui (ueR).

Of course, the input functions bi are assumed to be in L2(0,1). The equation

(4.63.4) defines the output mapping C : X >RP as
1

(4.69) (co); = f c; (X)(x)dx (i=1,..,p),
0

where the ¢, are functions in L2(O,]).

The delay equations we shall consider are all of the following type:
(4.70.1)  2'(t) = Ayz(t) + Ajz(e=1) + Byu(t)  (z(t) € RV

(4.71.2)  z(t) = £(t) (t € [-1,0])

(4.71.3) y(t)

Coz(t).

Here, AO and A] are nxn-matrices, B0 is an nxm-matrix and C0 is an pxn-
matrix. We re-write this equation by introducing a function of two variables
©(t,0) with t € [0,) and 8 € [-1,0], which is related to z(t) in the following

way:
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(4.72) ©(t,0) = z(t+8).
Under suitable regularity hypotheses on z(t), this relation implies
(46.73) == @(t,0) = 2 o(t,0)

. 5t Pl 39 AE:9)-
If z(t) satisfies (4.60.1), then we obtain for the function @¥:

a = -

(4.74) Eg-w(t,O) = Aow(t,o) + A]w(t, 1) + BOu(t).

This leads to the following set-up (cf. DELFOUR (1980)). Let
Mz((—I,O);Rn) denote the product space‘lRn X Lz((—l,O)ﬂRn), and let us write
Hl([—l,O];Rn) for the set of R™-valued functions whose distributional deri-
vative is in Lz((—],O)ﬂRn)'(see ADAMS (1975; p.44)). By Sobolev's lemma
(ADAMS (1975; p.97)), we can consider Hl([—],O];Rp) as a subspace of
C([-],O];RF). In particular, the quantities @(0) and @(l) are well-defined
for @ € Hl([—],O];Rn). Now, define the state space by X = MZ((—I,O)ﬂRn) and
define the operator A by

(4.75.1) D) = {(©,,®) | 0, ¢&", ® e HI([-1,05RY), 0(0) = ¥}
(4.75.2)  A(@p9).= (A,0(0) + A0(-1), @").

It has been shown (BORISOVIC & TURBABIN (1969)) that this operator is
the generator of a semigroup T(t) on Mz((—l,O);Rn). See DELFOUR (1980) for
a survey and a further extension of the results in this direction. The
spectrum of A is discrete; this follows from  Prop. 4.2 in DELFOUR &
MANITIUS (1980 b). To the right of any vertical line in the complex plane,
there are only finitely many eigenvalues of A (HALE (1971; p.114)). For
t 2 1, the operator T(t) is compact (DELFOUR & MITTER (1972)). The eigen-
vectors of A are complete in Mz(—l,O) if and only if A] is non-singular
(MANITIUS (1980)).

The input operator B is defined as an operator from U =R™ to
M, ((-1,0)R") by

(4.76) Bu = (BOu,O)



105

. . n
and the output operator C is defined as an operator from Mz((—l,O)ﬂR ) to

y =RP by
(4.77) C(‘-DO,‘D) = Cy%p-

Clearly, B and C are both bounded operators.
A specific example of a delay equation that we shall use in the sequel

is the scalar equation
(4.78) x'(£) = = 5 x(e=1).

The eigenvalues of the associated operator A can be computed as the roots
of the characteristic equation, which is obtained by requiring that

x(t) = ext is a solution of (4.78):
(4.79) A5 et =0,

It is easily seen that two roots of these equation are at gﬁ and at
—-gi, and that the other roots must all be in the left half plane. Apart
from i_gi, the roots can only be calculated approximately. A simple Newton
procedure is sufficient for this purpose, because a good initial guess for
the k~th pair of roots (k = 1,2,..) is given by the asymptotic formula

(4.80) = ~log(4k-3) + 5(4k-3)i.

Ak

Rules for deriving such formulas are given by BELLMAN & COOKE (1963).
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CHAPTER 5

FINITE-DIMENSIONAL COMPENSATORS FOR INFINITE-DIMENSIONAL SYSTEMS

The purpose of this chapter is to describe a method for the design
of stabilizing compensators of finite order for ' a wide class of infinite-
dimensional systems. We prove the existence of a finite-dimensional compen—
sator for systems that satisfy the assumptions of Section 4.4. Moreover,
we give a design procedure that can be used to find such compensators. The
procedure will be illustrated by examples.

The chapter is divided into six sections. In Section 1, we give a
brief discussion of the known results on compensator design for infinite-
dimensional systems, and we indicate what the differences are with the
method we shall use. In Section 2, we formulate the stabilization problem
and present a basic construction theorem. The conditions of this theorem
are not immediately verifiable, however, and we proceed in Section 3 to
prove an existence result that is applicable to any system satisfying the
assumptions.(Al—Q) of Section 4.4. Although the proof of the existence
theorem is constructive, it is preferable to use a somewhat different proce-
dure for the actual design of stabilizing compensators. Such a procedure
is given in Section 4. The design method is illustrated by examples in the
final two sections of this chapter. The first example concerns a diffusion
system, and in the second example we consider a system governed by a delay

equation.

5.1. Introduction

The subject of stabilization for infinite-dimensional systems has been
studied extensively. Many different approaches have been used, and we shall
not attempt to give a survey; the reader is referred to CURTAIN & PRITCHARb
(1978) for a comprehensive bibliography and an exposition of the main results
that have been obtained via the semigroup approach. An even more recent
review can be found in CURTAIN, PRITCHARD et al. (1981).

We shall concentrate on stabilization by dynamic output feedback. A
direct translation of finite-dimensional result to infinite-dimensional

systems leads to compensators of infinite order (BHAT (1976), GRESSANG &
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LAMONT (1975), FUJI (1980)). In practice, such compensators can only be
implemented "approximately". This procedure, which does not seem to be
completely worked out yet, will probably lead to high-order dynamics in the
feedback loop. The 'converse' approach is to find, in some way or another,

a finite-dimensional model for the infinite-dimensional system, and then to
apply the standard finite-dimensional theory. Recently, M.J.Balas has worked
out a proposal to make this approach rigorous, using a singular perturbation
method; but his paper (BALAS (1981)) does not contain a general existence
result.

Reduced-order modeling is known to be a difficult subject, even in the
finite-dimensional centext, and there have been several attempts to develop a
theory for finite-dimensional compensator design without reduction of the
system order. However, the results which have appeared up to now (BALAS
(1978), BALAS (1979), CURTAIN (1981)) are all based on a very special assump-—
tion on the operators defining the system. We shall explain this assumption,
called "zero spillover', in Section 5.5. In practice, the condition of
zero spillover can dnly approximately be met, which means that the theory
of the above-mentioned papers is not really applicable in practical situations.
Moreover, serious design restrictions are introduced if one tries to satisfy
this condition.

Below, we shall present an approach that avoids reduced-order modeling
without introducing special assumptions on the system. Under the assump-
tions (A1-9) of the previous chapter, which represent a wide class of
infinite-dimensional systems, we are able to give a rigorous treatment of
finite-dimensional compensator design and in particular, to prove the exis-
tence of a compensator of finite order. As will be illustrated by examples,
our approach is moreover suited for the actual computation of low-order com-

pensators.

5.2. The basic theorem

We consider a system whose evolution is described by the equations

(5.1.1) x'(t) =Ax(t) + Bu(t) x(t) € X, u(t) e U

(5.1.2) y(t) = Cx(t) y(t) € Y.

The spaces X, U and Y and the operators A, B and C are supposed to satisfy
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at least the assumptions (A1-3) of Section 4.4; the other assumptions will
be appealed to when they are needed. To the system described by (5.1) we
want to add a compensator, in order to obtain improved stability properties.
The compensator will be a new dynamical system taking the observation y(t)
from (5.1) as its input, and specifying at its output the control function

u(t) appearing in (5.1):
(5.2.1) w'(t) =Nw(t) + My(t) w(t) e W
((5.2.2) u(t) = Lw(t).

The order of the compensator will be the dimension of its state space W.
We shall only consider compensators of finite order, so that (5.2) will
represent a finite-dimensional system. Of course, L, M and N are linear
mappings between the appropriate spaces.

The systems (5.1) and (5.2) together give rise to the following set

of equations:
(5.3.1) x'(t) = Ax(t) + BLw(t)

(5.3.2) w'(t)

MCx(t) + Nw(t)
which we may also write in the extended state space X & W:

d x A BL, ,x
G4 OO =G PO®.

Here, the extended system operator

(5.5) A= (o D)
with domain D(A) ® W and range space X ® W is defined in the way explained
in Section 4.2.

The stabilization problem can now be formulated as follows: Given a
system (5.1) under the assumptions (A1-3), find a finite-dimensional
compensator (5.2) such that the extended system operator Ae defined in

(5.5) generates a stable semigroup on the extended state space X & W. The
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notion of 'stability' is assumed to be defined by some fixed (negative)
number w representing the desired growth constant; see Section 4.3. A
compensator that gives a solution to the stabilization problem will be
called a stabilizing compensator.

The following theorem gives sufficient conditions for a stabilizing

compensator of order k to exist. The proof is by construction.

THEOREM 5.1 Consider the system (5.1) under the assumptions (AI1-3). Assume
that there exist bounded mappings F: X~ U and G: ¥ + X, together with a
finite-dimensional subspace V < D(A), such that the following holds:

(5.6.1) A + BF generates a stable semigroup
(5.6.2) A + GC generates a stable semigroup
(5.6.3) (A+BF)x e‘V for all x ¢ V

(5.6.4) Im G c V.

Then there exists a stabilizing compensator of order k, where k = dim V.

PROOF Introduce a new linear space W isomorphic to V, and let R: V » W be

the mapping that provides the isomorphism. Define a éompensator of the

form (5.3) by setting L = FR_I, M = -RG (well-defined by (5.6.4)) and N =

= R(A+BF+GC)R_l (well defined by (5.6.3) and (5.6.4)). We obtain the following

extended system operator:

1

[ a BFR = _
(5.7) Ae=| -RGC R(A+BF+GC)R

We introduce the following subspace of X%:= X 0 W:
X R—lw
(5.8) M= {G) | xeVr=1C_"|wvewl

There is an obvious isomorphism from W to M, given by

-1

(5.9) T: wh (R Y.
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Considering X, W and M as subspaces of X%, we note that X% can be decom-
posed either as X ® W or as X ® M. The similarity transformation from one

decomposition to the other is given by

1

X, _ xR W
(5.10) H: X0 W~>Xo M, H(w) = ( T ).
Written in matrix format, we have
-1 =11
I -R -1 _,I R T
(5.11) H=(, 1), H G 1)

By straightforward computation, we find the following form for the extended

system operator with respect to the 'basis' X & M:

-1 (AtGC 0
e -TRGC ~ TR(A+BF)R T

3
=

(5.12) Ae

The right lower block is clearly similar to A + BF: V, which generates a
stable semigroup by (5.6.1). Because the left upper block is also the
generator of a stable semigroup according to (5.6.2), it follows from Prop.
4.7 that Ae generates a stable semigroup, and Lemma 4.5 shows that the same

must hold for Ae' X

In our formulation of the stabilization problem, we have only allowed inte-—
gral control. We could have added proportional control by letting the

compensator be of the form
(5.13.1) w'(t) = Nw(t) + My(t)
(5.13.2) u(t) = Lw(t) + Ky(t).

In effect, proportional control allows us to change the system operator A
into A + BKC. It should be noted that.the above theorem is applicable to
the triple (C,A+BKC,B) for any K, simply by absorbing the BKC-term into A.
One may use proportional control as an independent means for improving the
stability properties of the system, but we shall not discuss this aspect.

For a treatment of proportional control in an infinite-dimensional context,
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one is referred to POHJOLAINEN (1980).

Thm. 5.1 is clearly not directly applicable, because it is not imme~
diately clear how to find a subspace V and mappings F and G that satisfy
the conditions (5.6). Additional material will be needed to obtain practical

results. In the next two sections, we shall present such material.

5.3. The existence result

Qur aim in this section is to prove the following result.

THEOREM 5.2 Consider the system (5.1). If the assumptions (A1-9) hold, then

there exists a stabilizing compensator of finite order.

This establishes the existence of finite-dimensional stabilizing compen-—
sators for a large class of infinite-dimensional systems (as discussed in
Section 4.4). An upper bound for the compensator order is not given, but the
examples at the end of this chapter suggest that in many practical cases
it will be possible to design compensators of fairly low order.

The proof of the theorem consists of a combination of the results of

two lemmas, which we shall now give.

LEMMA 5.3 Consider the system (5.1) under the assumptions (A1-3). Suppose
that there exist bounded mappings F: X »~ U and G: Y + X such that

(5.14.1) A + BF generates a stable semigroup

(5.14.2) A + BF has a discrete spectrum, and its eigenvectors form a

complete set in X

(5.14.3)  there exists § > 0 such that the semigroup generated by
A + GC + 8I Zs stable.

Then there exists a stabilizing compensator of finite order for the given

system.

PROOF Let S(t) denote the semigroup generated by A + GC. By (5.14.3), the
growth constant of S(t) is less than or equal to w-§ (where w denotes the
growth constant that defines our notion of 'stability'). Consequently, there

exists a constant M such that
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(5.15) [SCe) || < M exp((w-i8)t).
For any G: ¥ » X such that
- R |
(5.16) le -6l < 4™ e s
the operator A + GC will generate a semigroup §(t) with
(5.17) [Se) ]| < M exp(ut)

(Lemma 4.4). Let us write e:= %M_IHC”_IG. Pick some orthonormal basis of Y,
and define 8= Gyi. By the completeness assumption on the eigenvectors of
A + BF, there exists for every i = 1,..,p a finite set {xil""xiN-} of

i

generalized eigenvectors of A + BF such that

(5.18) le; -

for suitable numbers aij(i=1,..,p; j=1,..,Ni). To every pair of indices
(i,j), there exists a Aij € T and an n]._j € N such that (Aij—(A+BF))nijx@g)=o.
Now define the subspace V as follows:

(5.19) V= span {(Aij—(A+BF))kxi.[ i=1,..,05 §=1,..,N;3 k=0,..,n .~1}.

J 1]

Then it is clear that V is a finite-dimensional subspace contained in
D(A+BF) = D(A), and that U is invariant under A + BF.
Write

o
(5.20) g;:= 524 uij xij

and define G: ¥ + X by

(5.21) Gyi = B;-

We then have Im 6 c V. Moreover, (5.16) holds and so A + éc generates a

stable semigroup. We can now apply Thm. 5.1, using the subspace V and the
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mappings F and G, to conclude that there exists a stabilizing compensator

of finite order (equal to dim V). X

Remark In the conditions of the lemma, it is required that the semigroup
generated by A + GC has a certain extra stability margin. In the proof,
this is needed to allow a small perturbation of G without loss of stability.
In the situation where assumption (A5) of Section 4.4 holds, it is possible
to do a spectral decomposition with respect to the set o, = {} e O(A)]Re A >
> w-8}, and then one would want to use a finite-dimensional method to compute
G such that Re X < w-8 for all X € 0(A+GC). However, we have not excluded
that there may be unobservable eigenvalues of A in the strip {A € EI w-§ <
< Re A £ w:h This would make it impossible to shift the eigenvalues of A + GC
to the left of the line Re A = w-§, but we can still reach our ultimate
goal of slightly perturbing G without destroying the stability. This is
seen in the following way.

Decompose Xﬁ—s as X2 @ X3, where

w—38 w=§

(5.22) Xy = <Rer C " |A]

(notation as in (1.10)). Write X] = X:—§ Then we have, with respect to the

decomposition X = X] ® X2 ® X3;

A, O 0
(5.23) a={ v A, 0) c=( ¢ O
0 A3y Ay

. w-¢ . .
Here, we have written A11 for AS , etc.. By our assumptions, the pair

(C2,A22) is observable, and the matrix A., is stable in the sense of w but

33

not in the sense of w-8. If we choose G2 such that (A22+G2C2) c

c {) ¢ E| Re A < w-8}, and if we define G by

(5.24) G

1]
[}

then we shall have

Al 0 0
(5.25) A+ GC= | G,Cl  A,,4+G,C, 0
0 Ay, Agg
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By Prop. 4.7, the two-by-two left upper block is the generator of a semi-

group which is stable in the sense of w-8. If G is perturbed to

g=@Y & &H%, then we get
1 2 3
) Ay *6C) 6,cy 0
(5.26) A+ GC = SZCI A22+?2C2 0
65C, A3p*63Cy  Agg

The two-by-two left upper block will generate a semigroup with growth con-—
stant < w whenever |G - @” is small enough. Prop. 4.7 then shows that the
semigroup generated by A + GC is stable in the senmse of w.

The conclusion of this remark is that the construction of Lemma 5.3
can be done even when there are unobservable nearly unstable eigenvalues.
Of course, the basic reason for this fact is that such eigenvalues are
insensitive to the choice of the injection mapping and can therefore be

discarded when this mapping is manipulated.

It may be possible to verify the conditions of Lemma 5.3 immediately
in some cases where a well-developed theory of completeness of eigenvectors
exists; such a theory is given by MANITIUS (1980) and DELFOUR & MANITIUS
(1980b) for systems described by delay equations. In general, however, only
the completeness of the eigenvectors of A would be known, and we would like
to infer from this that the same property holds for A + BF. An extensive
study of this inference for diffusion processes, based on the sufficient
condition for completeness given in DUNFORD & SCHWARTZ (1963; p.1115), has
been made in VAN HARTEN (1979). However, if the feedback mapping F is con-

structed as in the proof of Prop. 4.12, we can use a much simpler argument.

LEMMA 5.4 Consider the system (5.1). If the assumptions (AI1-7) and (A9)
hold, then there exists a bounded mapping F: X ~ U such that A + BF gene-
rates a stable semigroup, the spectrum of A + BF is discrete and the eigen—
vectors of A + BF are complete. '

PROOF Define F as in the proof of Prop. 4.12, taking care that the eigen-
values of Au + BuFu do not coincide with those of A. From the form (4.48)

of A + BF, we have

(5.27)  G(A+BF) = o(Ag) U O(A*BF ).
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The two parts of the spectrum are separated, so there is a corresponding

spectral decomposition which will be written
(5.28) X=X 0 X_.
s n

The spectrum of A + BF is clearly discrete, and it remains to show that
every element x ¢ X can be approximated arbitrarily close by a finite

linear combination of generalized eigenvectors of A + BF. So take x € X,

and let € be apositive number. We can write x = Xt x with X )2 XS and

X € Xn' The subspace Xn is a finite-dimensional eigenspace of A + BF

and so X is obviously a finite linear combination of eigenvectors of A + BF.
By (A9) and the fact that AXS c Xs’ there is a finite linear combination of
eigenvectors of A in Xs’ which we shall call %, such that "xs - is" < e,
Generalized eigenvectors of A in Xs are also generalized eigenvectors of

A + BF and so is X is a finite linear combination of eigenvectors of

A + BF. Moreover, |x +(xg + xn)” = "xs - is" < e. ®

Using the results of the two lemmas, the proof of Thm. 5.2 follows

almost immediately.

PROOF (of Thm. 5.2) By Lemma 5.4, there exists a bounded mapping F: X > U
such that A + BF generates a stable semigroup, the spectrum of A + BF is
discrete and the eigenvectors of A + BF are complete. By assumption (A5),
there exists a § > 0 such that o, = {}x € og(a) ] Re A > w-8} is a finite set
to which the spectral decomposition (Prop. 4.11) can be applied. If the
resulting finite-dimensional pair (Cl’All) is observable, the procedure of
the proof of Prop. 4.13 leads to an injection mapping G: ¥ + X such that
the semigroup generated by A + GC has a growth constant < w-§, and appealing
to Lemma 5.3 completes the proof. If the pair (CI’AII) is not observable,
a suitable modification of this procedure still leads to the same result;
see the remark following the proof of Lemma 5.3. X
For a discussion of the class of systems for which we now have esta-
blished the existence of a finite-dimensional stabilizing compensator, the

reader is referred to Section 4.4.

5.4 The design procedure

The proof of our existence result has been constructive, and so in

principle we have obtained a method to compute solutions to the stabilization
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problem. For practical purposes, however, the method suggested by the proofs
above would not be very convenient. Below, we shall present an iterative
procedure for the design of low-order cempensators, and the final two sec-
tions of this chapter will be devoted to an illustration of this procedure
by examples. We give the method as a series of steps; comment on each step
will be given afterwards. It is not claimed that the procedure has a very
high degree of numerical refinement, but it is good enough for our purposes
and it may serve as a starting point for further numerical research. We
proceed as follows, assuming that we have a system which satisfies the con-

ditions (A1-9) of Section 4.4.

STEP | Find F such that A + BF has a discrete spectrum, the eigenvectors
of A + BF are complete, and the semigroup generated by A + BF is
stable.

STEP 2 Find G such that the growth constant of the semigroup generated by
A + GC is somewhat smaller than the constant w that indicates the
dividing line between 'stable' and'unstable'.

STEP 3 Approximate the vectors in Im G by linear combinations of k selected
eigenvectors of A + BF, and form the mapping G which is close to G.

STEP 4 See if the semigroup generated by A + GC is stable. If not, select
a different F and/or a different G, or repeat Step 3 with k replaced
by k + 1. If the semigroup is stable, go to Step 5.

STEP 5 Construct the compensator of order k as in the proof of Thm. 5.1.

Comments The feedback mapping F may be constructed by the method of
TRIGGIANI (1975) as we did in the previous section, but any other method
may be used just as well. The stabilization property of F is of course
fundamental. Because A generates a semigroup and BF is a bounded perturba-
tion of finite rank, the spectrum of A + BF must be discrete; this follows
from Thm. 6.2 and Thm. 6.5 in KATO (1966; Ch.IV) and from (4.42) and Prop.
4.3. The question of completeness may be less easy to settle; see Lemma
5.4 and the remarks preceding this lemma. Of course, a check on completeness
is not necessary if one is willing to try the procedure without the guarantee
that it will ultimately be succesful.

The mapping G appearing in Step 2 may also be found by any suitable

method. For the purposes of the design procedure, the effect of 'unobservable
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poles' (eigenvalues with corresponding eigenvectors in Ker C) on the growth
constant of the semigroup generated by A + GC may be discarded, in view of
the remark made after the proof of Lemma 5.3. The words "somewhat smaller"
are vague, of course, but at present we do not have any better. Further
research will have to show if it is possible to give any general guiding
lines for selecting the growth constant of A + GC. The approximation of the
vectors in Im G has to be done in the norm for which the completeness of
the eigenvectors of A + BF has been extablished, if one wants to be assured
of the ultimate sucess of the procedure when k 1s increased. In many
practical cases, however, the use of another norm may be easier computatio-
nally while still giving good results.

In principle, it would be possible to give an a priori estimate on
the compensator order using (5.16), but this bound may be difficult to
compute and it is likely to be comservative. The compensator order found
by the iterative procedure can be much lower. The stability of the semi-
group generated by A.+ GC has to be verified from a computation of the
eigenvalues, and it has to be shown by a direct argument that A + GC satis-
fies the spectrum determined growth assumption.

The eigenvalue computation can conveniently be done by use of the
Weinstein—-Aronszajn-method (see KATO (1966; p.244). The basic idea of this
method can be described in a simple way: Suppose that XO ¢ o(A) is an
eigenvalue of A + GC with corresponding eigenvector x, then we have

(A+§C)x = %Ox and consequently
(5.29) x = (1,~A) Gex

which shows that the kernel of the matrix I - C(AO—A)_la contains the vector
Cx. Because Ao ¢ o(A) we must have Cx # 0, and it follows that the function

det(I—C(A—A)_I@) has a zero at A,. On the other hand, it is shown in KATO

0
(1966) that a zero of this function at a point in the resolvent set of A
gives rise to an eigenvalue of A + GC. Now define the following functions

from € to Z :

(5.30) a(Aa) ( k if A is an eigenvalue of A with multiplicity k

O) 0
=0 if Ao is not an eigenvalue of A
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(5.31) vg(hg) =k if A, is a zero of order k of det (I-C(A-4)"'®)

&« if A, is a pole of order k of det (1-c(-a)"1%)

0 if AO is neither a zero nor a pole

and define g(A+§C) in the same way as 0(A). It is proved in KATO (1966)
that the following formula holds:

(5.32) o(A+GC) = a(A) + v,
or else the 'singular' case occurs in which o(A+GC) = T. In our case, the
latter possibility is excluded because A + GC will always generate a semi-
group so that Re c(A+§C) must be bounded above.

The final step of the procedure is purely a matter of computation.
The numerical results that one obtains could be taken as the starting point
of a process of tuning of parameters aimed at a further improvement of the
system's behaviour, but we shall leave this out of our discussion. By the
results of Section 5.3, the procedure as it stands is already guaranteed

to lead to a stabilizing compensator of finite order.

5.5 Example I: A diffusion system

The evolution of the temperature distribution on a thin, uniform,
isolated rod can be described by the following parabolic partial differen-

tial equation:

2
(5.33.1) 53'5 2(x,t) = }17:—{2 z(x,t) + b(x)u(t) (20, 0<x< 1)
(5.33.2) 22 (0,0) =22 (1,0) = 0 (t 2 0)
9x > 9x > -
(5.33.3) z(x,0) = zo(x) (0<x<1)

We assume a scalar input and a scalar output, given by

(5.33.4) b(x)

/10 (0.2 < x < 0.3)
=0 (0£x<0.2, 0.3 <x<1)
0.8

/10 [ z(x,t)dx.
0.7

(5.33.5) y(t)
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As our state space, we take L2(0,1). The operator A is defined by

"(5.34.1) D) =

(5.34.2) Ap =

The input space

and C are given

(5.35) Bo =

(5.36) co

e, | S0, L0 -2 -0

2
52 @ € D@A)).

B

and the output space are both equal toIR; the mappings B

by

ob (a € R)
0.8

Y10 [ o(x)dx (@ € L,(0,1)).
0.7

Both mappings have been normalized to 1, in order to obtain a clear picture

of the gains that will be needed in the final design. The symmetry between

input and output is inessential.

The pertinent facts about the operator A have been given in Section

4.5. We can calculate the entries of the infinite matrices of B and C with

respect to the orthonormal set {wo,wl,...} of eigenvectors of A:

k B = <brq> M T 0%
0 0.3162 0.3162
1 0.3149 -0.3149
2 0. 0.

3 -0.3047 0.3047
4 -0.4184 -0.4184
5 -0.2847 0.2847
6 0. 0.

7 0.2562 -0.2562
8 0.3385 0.3385
9 0.2209 -0.2209
10 0. 0.

Table 5.1. First entries of B and C.
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We set the desired growth constant w equal to -1. From the remarks in
Section 4.5 and the table above, it is clear that our system satisfies the
assumptions (A1-9) and so Thm. 5.2 guarantees the existence of a finite-
dimensional stabilizing compensator.

The assumption of "zero spillover'" that was alluded to in Section 5.1

comes down to requiring that either the coefficients Bk or the coefficients

Yy would be zero from a certain index k, on. In our example, this is clearly

0
not the case. The presence of both "control spillover'" and "observation
spillover" is not a problem in our approach, however.

Let us follow the procedure given in Section 5.4.

STEP 1 The unstable subspace Xu is the one-dimensional eigenspace corres-—

ponding to the eigenvalue O of A. We have
(5.37) Au =0, B = 0.3162.
The eigenvalue at 0 is shifted to -1.5 by taking
-1
(5.38) Fu =-1.5 BO = -7.906.
If we define F by F = FuP where P is the orthogonal projectiononto Xu, the

operator A + BF has eigenvalues at Mg = -1.5 and at v = k2 (k= 1,2,...),

with corresponding eigenfunctions

-1
(5.39) Ve = Ggma) D (k = 0)
=q)k (k = 1,2,...).
The eigenfunction wo has been normalized such that Fwo = 1.

STEP 2 We consider the subspace X] = span {wo,w]} and the corresponding

mappings:

0

(5.40) All = (0

_?), c, = (0.3162, -0.3149).

The pair (cl’All) is observable. A short calculation shows that we can

assign new eigenvalues of A + GC at -1.1 and -1.2 by defining G as follows:
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(5.41.1) Ga = ag (o € R)

-1 -1
(5.41.2) g =-1.32 Yo 9t 0.02 Y0 =

-4.174 @y - 0.064 @

STEP 3 TFor g, let us take the orthogonal projection of g onto the subspace
span {wo,wl}: )

(5.42) g = 27.216 wo + 5.649 wl'

STEP 4 1In the present case, it follows from the Weinstein-Aronszajn theory
(see Section 5.4) that the eigenvalues of an operator of the form

A+ éc are found as the zeros of the function
(5.43) £Q) =1 -c-a)"' @

together with the eigenvalues of A that are not poles of £(A). If G is

given in terms of the basis {wo,m],...}:
(5.44.1) Ga = af (@ €R)

(5.44.2) g = L o 0

then the function f(A) can be written as
-1 - € 3 3L
(5.45) f(A) =1 kEO akyk(A M) T

Using the expressions for wo and wl given in (5.39) we write £ in the
form (5.44), and then we compute the zeros of the function f appearing in
(5.45). It turns out that the first two eigenvalues of A + GC are at -1.0187=
+ 0.1401i. We also note that A + GC satisfies the spectrum determined
growth condition because the semigroup generated by A + GC is analytic;
this follows from the fact that the semigroup generated by A is analytic
and from the fact that analyticity of the semigroup is preserved under

bounded perturbations of the generator(HILLE & PHILLIPS(1957; p.418)).
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STEP 5 With respect to the basis {wo,wl}, the compensator equations can

now be computed as follows:

w
(5.46.1) L

( 1 27.216
dt Lo}

5.649

-1.929 -8.570

Y = (ol —2.779

Y1
() ® + ) (o

(5.46.2)  u(t) = wl(t).

The eigenvalues of the extended system operator Ae consist of the eigen-
values of A + BF corresponding to wo and wl’ together with all eigenvalues
of A + GC; so we get -1, -1.0187 * 0.1401i,-1.5, -4,.... The growth constant
of the compensated system is thus precisely equal to -1.

Some simulation results showing the effect of the compensator are given

in the Appendix, Fig.Al.

5.6 Example II: A delay system

We consider the following retarded equation, with control and obser-

vation:
(5.47.1)  x(£) = - % x, (1) + x,(t)
xé(t) = u(t)

(5.47.2)  y(t) = x, (1),

The characteristic equation of the open-loop system is given by

(ST
)
1

(5.48) det = 0.

The characteristic function

=\

(5.49) AA(A):= A+ 5e ")

ISIE]

T . T . PP . .
has zeros at 0, 71, -3 i, and at infinitely many other points which are

all in the left half-plane. (See the remarks in Section 4.5.) As our state
space, we take M2(—1,0) ® R or the complexified version of this space. The

operator A is defined by
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(©59)
(5.50.1)  p(a) ={| | 0, €R, @< HI-1,0], o € R, ©(0) = 9 }

©gs®)  [(= 5 @(-D+a, @)
(5.50.2) A( ) ) - . .

This setting for the delay equation has been explained in Section 4.5.
We let the input space U and the output space Y both be equal to R
(or T). The mappings B and C are given by

0

(5.51) Bu = (u) (u € R)
(©y,9) (©y5©)
(5.52) cl W =9 o € My(-1,0) 8 R).

The stabilizability of the pair (A,B) and the detectability of the pair
(C,A) can be verified conveniently using the generalization of the Hautus

test (HAUTUS (1969)) given by K.P.M.Bhat (BHAT (1976)). Because

(5.53) rank( 0 N 1

T =)
Ao e 1 o)
the pair (A,B) is stabilizable with respect to any desired growth constant
w, and detectability of the pair (C,A) also holds for any w because

=X

A+ 1

Ze
(5.54) rank 0 A= 2 VA € T.
1 0
Let us set the desired growth constant w equal to -1. It follows from the
above remarks and from the remarks in Section 4.5 that the system under
consideration satisfies the assumptions (A1-9) of section 4.4. So we start

the design procedure.

STEP 1 A spectral decomposition for an equation closely related to (5.47.1)
is given in HALE (1971; p.117). Using this, we find the following
feedback mapping F, which replaces the eigenvalues of A at O,%i and
- %i by eigenvalues at -1; -1 + %i and -1 - %i for A + BF, while
leaving all the other eigenvalues unchanged.
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@,,9) 0
(5.55) F( % ) = -3¢, +_£ ((gil)cosg@ - %}singe)w(e)de -3a.

The interested reader may wish to verify that indeed the characteristic

function of A + BF, which is given by

m™ =\ -1
A+ Ee
5.56 A A) = det
o avar 3 (E1yeoslo - Dsinleye Oas A+3
—{ 3 cosy 251n2 e
can be calculated as
(5.57) A ) = D (D2 + T 00+ T h oz T
) A+BF 4 2 4 :

All eigenvalues of A + BF are simple, and we proceed to compute the

corresponding eigenvectors. If u is aneigenvalue of A + BF and

@,,9)
Y o= ( g ] € D(A) is the corresponding eigenvector, then the following

equations hold:

(5.58.1)  w@, = --% O-1) + a
(5.58.2) e = @'
(5.58.3) wa = Fy

Because ¥ € D(A), we also must have @ ¢ H1[-1,0] and @(0) = wo. Then
(5.58.2) gives

(5.5 0 = " o

and from (5.58.1) we obtain

(5.60) a= (u+ %e'”)wo.

The eigenvector will be normalized such that Cy = 1 if we put @y = 1.
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STEP 2 We proceed to compute G such that A + GC has its eigenvalues to

the left of the line Re A = -1. It is easy to find the matrices of

Au and Cu with respect to the basis

(1,cos =8 (0,sin —6) (3, E)
(5.61) {( 2)( 2>,(" ™y
0 0 1

of Xu' They are given as follows:

0 im0
2
= -1 = =
(5.62) Au = 3T 0 01, Cu (r o 1T).
0 0 0

By straightforward computation, one finds that A + GC will have eigenvalues

at - g (double) and -m if we take
(5.63.1) Go = ag . (o € R)

(2,cos-g9+2sin-%9+l)
(5.63.2) g=-
‘ g

=

STEP 3 We compute the orthogonal projection (with respect to the norm

of Lz(—l,O) ® R) of g onto the subspace spanned by the eigenvectors of

A + BF corresponding to the eigenvalues at -1 and -1 ifz.i . This gives

(l,e_ecos %6) (O,e_esin %e) (l,e"e
(5.64) g = -1(0.66 _ + 2.89 + 2.66 ).

1 im(l-e) ~1+}me

STEP 4 We need an explicit formula for the eigenvalues of an operator of
the form A + aC, when the range of G is contained in the span of
finitely many eigenvectors of A + BF. It follows from the W-A theory
(see formula (5.32)) that the eigenvalues of A + GC are found as

the zeros of

_lA
(5.65) AA+6C(A) = AA(A)(I—C(A—A) G).

It is seen from (5.59) and (5.60) that the eigenfunctions of A + BF are of

the form
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_ (1,6“6)
(5.66) g = ( T -

+ e
L)

where p is a root of the characteristic function of A + BF (see (5.56) or

. =1 ; i
(5.57)). In order to find (A-A) G, we have to solve the following equation
for X € p(A):

@@\ (1,
(5.67) (A-A) = ( ul (@ € HI[-1,61,0(0) = ¢
o

u+ ge_ O)'
The equation (5.66) is equivalent to
™

(5.68.1) Awo + E—w(—l) -0 = 1

' uo .
(5.68.2) Ap(B) — @' () = e (-1 <6 <0)
(5.68.3) da=u+ze .
We can immediately solve (5.68.2):

A6 ub
_ A8 e -e
(5.69)  ©(0) = &gy - =i
Using this in (5.68.1), we get
-\ -1
T =A _ T e -e
(5.70) (A + 5 e )wo AR T + o + 1.
Multiplying through by A and using (5.68.3), we obtain
-A__-u

=T, &e —e” T H =
(5.71) AA(A) wo =5 A pw— + U+ 7 e + A

_ A ToTA L T TH o

=5y (Arge (W+5e™)) +u+se

1
== 8,00 - 8,G)).

We finally arrive at the following formula:
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1
A-p

(5.72) C(A—A)_l g (1 —(AA(A)'1 A, (m).

Suppose now that G is given by
Hy©

(l,e 7))
Q. 1_ _Uk
1 "k uk+ 2e

~

(5.73) Gl =

e g

k
Then we have, by linearity,

5.74 -0 = 2 o w0~ 00t A

(5.74) O-8)7'6 = I, o, O (=, 8, ().

Inserting this into (5.65) gives the explicit formula that we wanted:

(5.75)  Byae® = 8,00 = E K @,0) - 8,G0).

This formula enables us to compute the eigenvalues of A + aC when G
is of the form (5.73). Of course, this has to be done numerically. For our
purposes , a simple Newton procedure will be sufficient, because the known
eigenvalues‘of A + GC give good initial guesses for the eigenvalues of
A + GC when G is close to G.

We note that A + GC satisfies the spectrum determined growth assump-—
tion for any G. This is because A + GC is the adjoint of an operator to
which the compactness result of DELFOUR & MITTER (1972) applies.

If we define the mapping G by (5.64), then the first eigenvalues of
A + GC can be listed as follows (compared to those of A + GC):
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roots of AA+GC(A) roots of AA+&C(A)
-1.571 (double) -1.491 + 0.288 i
-3.142 -3.401

-1.604 + 7.647 i -1.609 + 7.854 i
-2.198 + 13.98 i =2.197 + 14.14 i
-2.567 + 20.29 i -2.565 + 20.42 i
-2.835 + 26.60 i -2.833 + 26.70 i
-3.046 + 32.89 i -3.045 + 32.99 i
-3.220 + 39.19 i -3.219 + 39.27 i
-3.368 + 45.48 i -3.367 + 45.55 i
-3.497 + 51.77 1 -3.497 + 51.84 i
-3.612 + 58.06 i -3.611 + 58.12 i

Table 5.2. Effects of perturbation of G.

We see that A + GC generates a stable semigroup. Consequently, it turns
out that we are able to construct a stabilizing compensator of order 3 for
our system (5.47). The eigenvalues of the extended system will be those of
A + GC (see the table above) together with the eigenvalues of A + BF corres-
ponding to the eigenvectors used in the approximation; these are the eigen-—
values at -1 and -1 i.%i. The growth constant of the resulting closed-loop

system will be exactly equal to -1.

STEP 5 The form of the compensator is (in sloppy notation - restriction sym—

bols are omitted):
(5.76.1)  w'(t) = (A+BF+Gc)w(t) - Gcx(t)
(5.76.2) u(t) = Fu(t)

where the state space of w(t) is the three-dimensional subspace of M2(—1,0)©R

spanned by the vectors

. (l,e_ecos %9) (O,e_esin %6) (l,e‘e)
(5.77) Wy = -1 2 Vo T ir(l-e) /> Y3 7 \-1+jme |°

The coordinates of G with respect to this basis are given by (5.64):
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-0.66 2.08
(5.78) G=-r| 2.89 ] = [-9.08
2.66 -8.36

The matrices of A + BF and C are easily found:

-1 im0
(5.79) A + BF =| =iw -1 0 , c=(1 0 1).
0 0 -1
To complete the design, we need the numerical values of Fw], sz and

Fw3. These could be computed using the explicit form of F given in (5.55),
but it is considerably easier to combine (5.58.3) and (5.60), which gives
the following formula for an eigenvector Y of A + BF (normed such that

Cy = 1) corresponding to an eigenvalue u:
(5.80) Fy = AA(p).

Taking real and imaginary parts, we get

T2 g2
(5.81.1)  Fw =1-T-+Te =52

(5.81.2) Fw, = - + %; = 1.13

(5.81.3)  Fwy =1 - %; = -3.27.

It is interesting to note that the explicit formula (5.55) has not
been used at all in the design procedure. This means that it is not necessary
to compute the projection corresponding to the spectral decomposition of A.
We leave it as a topic for further research to see under what general cir-
cumstances the computation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>