
ELSEVIER Science of Computer Programming 29 (1997) 259 -278

Science of
Computer
Programming

Detecting feature interactions with CJESAR/ ALDEBARAN 1

Henri Korver *
CWJ, P. 0. Box 94079, /090 GB Ams1erdam, Netherlands

Abstract

Bouma and Zuidweg (Dutch PTT) fonnalised a simple example of feature interaction between

two telephone services in LOTOS. The interaction takes place between the Abbreviated Dialling

and Originating Call Screening service in the IN CS-! Global Functional Plane. This paper

reports on the results that were gained by analysing the example in C.4'SAR• ALDEBARA!\. which

is an advanced LOTOS verification toolbox. The results show that even for very small examples,

verification goes beyond simulation and testing. © 1997 Elsevier Science B.V.

Keywords: ALDEBARAN; CAESAR; Feature interaction; Intelligent networks (IN). LOTOS

1. Introduction

Over the last ten years, telecommunication industry has been engaged in increasing

the number of services that are supplied by the telephone networks. For instance, in

many countries, new services like Call Forwarding and Call ~Vaiting are being added

to the conventional telephone service, and in fact, a large and rapid development of

such and more advanced services has been started. However, service engineers stress

that unwanted interactions cause difficulties in controlling the proper functioning of

services. This problem, where unwanted interactions interfere with the desired behaviour

of services, is called feature interaction.

In this paper, it is demonstrated by a small example how formal methods and veri­

fication tools can be used for detecting feature interactions. In particular, an example

of feature interaction by Bouma and Zuidweg [I] is verified in C>ESAR / ALDEBARAN [2 J.
This work extends the results of [l] where the example is only tested.

The example centres around a LOTOS specification of two telephone services,

Abbreviated Dialling (ABD) and Originating Call Screening (OCS). ABO allows a

user to use abbreviated numbers, which will be expanded by the ABO service into

* E-mail: henri@cwi.nl.
I This work was supported by the European Communities under RACE project No. 2076, Bmadband

Object Oriented Service Technology (BOOST).

0167-6423/971$17.00 © 1997 Elsevier Science B.V. All rights reserved.

Pll SOI 67-6423(96)00037-8

260 H. Korver I Science of Computer Programming 29 (1997) 259-278

network addresses. OCS offers the possibility to forbid call set-up to numbers which
are included in a screening list, e.g. your mother-in-law. In principle, these two services
can exhibit unwanted interaction: if a dialled number is expanded too late, it might not
be recognised as belonging to the list of numbers to be screened.

In [1], a desired property (feature) of a service is represented by a formula of a
modal/temporal logic. In this approach, feature interactions can be detected by checking
whether the conjunction of individual service features still holds. For example, suppose
that the services S1 and S2 satisfy the properties </J1 and </J2, respectively. When both
services run in parallel, the property <P 1 /\ </J2 (the conjunction of <P 1 and </J2) should
hold, else there has been some (unwanted) interaction between the two services.

In the example considered in this paper, modal/temporal formulas are only used for
recording feature interactions in a formal way. Unfortunately, the formulas used in the
example contain datatype definitions, which currently cannot be checked automatically.
(Although there is sufficient technology, such tools have not yet been implemented.)

To cope with this complication, in [l] an alternative route was stipulated by using
testers. A tester is a simple LOTOS specification, which encodes a property to be
checked, and runs in parallel with the original specification. As soon as the property is
violated, the tester generates a special error transition. Bouma and Zuidweg used this
technique in LITE 2 for checking negative properties about services in their example.
However, they claimed that UTE was not powerful enough for proving positive prop­
erties (correctness). This was mainly due to the fact that the verification tools in LITE
cannot yet handle full LOTOS.

In this paper, a simple extension of the testing method is presented which also allows
for proving positive properties in CJESAR/ ALDEBARAN. It works as follows. Hide all the
gates except the error gate in the parallel composition of the tester and the original
specification. If the generated graph (obtained by using CJESAR) of the resulting process
contains an error transition, then the property is violated; otherwise the property is
satisfied. (ALDEBARAN was merely used for reducing the size of generated graphs with
respect to Milner's observation equivalence.)

By using CJESAR/ ALDEBARAN, I was able to verify all the service features (and in­
teractions between them) that are stated in [1]. Moreover, during the checking a bug
was found in the GPF model of [l]. This was due to a subtlety in one of the initial
values of the main LOTOS specification. To repair the error, the implementation of
the ABD service had to be changed. This is a typical illustration that even in this very
simple example, one can benefit from formal methods as set-up in [l]; in particular,
when automatic verification tools are used as is shown here.

The paper is organised as follows. In the next section, the IN CS-1 GFP model
as given in [1] is quickly reviewed. ln Section 3, the example of feature interaction
between the ABD and OCS service is presented. Then the example is analysed with
the CJESAR/ ALDEBARAN verification toolbox in Section 4. Conclusions drawn from the
analysis are discussed in Section 5.

2 LITE has been developed within the ESPRIT project 3204 (LOTOSPHERE).

H. Korver I Science of Computer Programming 29 (1997) 259-278 261

2. The GFP model in LOTOS

In [1], a LOTOS specification of the IN CS-1 Global Functional Plane (GFP), fol­
lowing the CCITT recommendations as close as possible, was given. The interested
reader can find the LOTOS code in the Appendix.

One of the objectives was that formal specifications allow for computer-assisted anal­
ysis of feature interactions. In this section, the example will be explained informally.
For a more thorough treatment, one is referred to [1].

2.1. Datatype definitions

The GFP model has abstract datatypes definitions for the following data:
Network addresses abstractly identify points in the network. In our example, we

actually have three addresses: al, a2 and null. In fact, null is a special case: it is
the address which is not associated with any point in the network.

Dialled numbers represent the numbers that can be dialled on a terminal. In the
example, there are four numbers that can be dialled: d1 , d2, wrong_number and
abd2 (the abbreviation of d2). Furthermore, there is a function translate which
expands abbreviated numbers. The following definition is specific for the example:

translate(abd2)= d2 ;

not(dn eq abd2) => translate(dn) = dn;

where dn is a variable ranging over dialled numbers. There is also a function
get_address which computes the destination address of a dialled number. In our
particular example, we have

get_address(d1) = a1;

get_address(d2) = a2;

get_address(wrong_number) = null;

get_address(abd2) = null;

Lastly, there is a function screen which is used by the OCS service for screening
telephone numbers. The following definition is specific for the example:

screen(d1) = no_match;

screen(d2) = match;

screen(abd2) = no_match;

screen(wrong_number) = error;

Call reference provides a unique identifier for each basic call process. Because we
shall only consider one incoming telephone call, the call reference (which is represented
by a natural number) will always be zero.

Call instance data is the record carrying the information associated with a Basic
Call Process. It contains a call reference (which is here always set to zero), a calling
line identity (which is not used here), a dialled number and a destination number.

262 H. Korverl Science of Computer Programming 29 (1997) 259-278

SIB end is the type covering all possible termination values for SIBs.
Detection points are used for modelling the (dis)arming of triggers which invoke

the telephone services.

2.2. Processes

The LOTOS model is built around two gates: poi (point of invocation) and por
(point of return). Values of the detection_point type are used to identify particular
points in the Basic Call Process where telephone services are invoked. All interactions
in the LOTOS model are of the form:

poi <detection point> <call instance date>

por <detection point> <call instance date>

For example,

poi! address_collected !cid(call..ref, cli,dialled_nr, dest_nr)

por! continue_as_is ?new_cid: call_instance_data

The following processes are distinguished in the LOTOS model:
SIB processes: Each Service Independent Building Block (SIB) is represented by a

LOTOS process that performs a particular function, such as Screen and Translate.
These functions are used for building services. A service can be composed by the usual
LOTOS operators like parallel composition, enabling, disabling and choice.

Basic call process (BCP): This process describes the interactions (poi and por) in
a telephone network. An example of this is given in Fig. l.

Trigger detection: This process determines whether a trigger is armed and calls the
'Invoke service' process if appropriate.

Invoke service: This process determines which service script to call if a particular
trigger point is detected.

Service logic processes: A service is modelled by a LOTOS process that calls one
or more SIBs.

2.3. Reformulating the specification

For being able to analyse the LOTOS specification in CESAR several parts had to be
reformulated. For the interested reader some modifications are mentioned here:
• Some datatypes, e.g. Dialled numbers, had to be polished, as they were not accepted

by the CAESAR compiler. In polishing the datatypes, the function mlcdialled_
number was removed and the constants di , d2 were added. Moreover, I changed
the name of the constant ab (the abbreviated number of d2) in abd2 which is in
my opinion a more appealing name. At last, for coherent notation, I redefined the
equality function for dialled numbers via the equality between natural numbers, as
was already done for the other types.

0

3_ OJ
(.) -c:
" I
::1 ' er ' OJ
"'1 4 ·15 -

0.. -' ' -
6 --(

' -----.J<
/ --:~ I

I
I / I

I
I (' -I I I I

(\
(' I I ' I I ' ' I I

' ' \ I 9-
\ I -(
I \ ' I \ '

\ \
\ I

' • ' ' ' ' ' ' ' -
' ' '

IO

I
-\--

\ ' '
' ' ' '

H. Korver I Science of Computer Programming 29 (1997) 259-278

poi! call_originated !mk_call_instance_datu(0,abd2,null,a2)
2

'
por !continue as_is !mk_call_instance data(O,abd2,nu11,a2) I -
poi !addres:s_collected !mk_call_instance_dat.a(O,abd2,null,a2) II - '
por !continue _a'i_is !mk_call_instance_data(O,abd.2,nu11,a2) I -
poi !address_analysed !mk_call_instance_data(O,abd2.null,a2) 5

'
par !continue_with_new_daf.a !mk_call_instance_data(O,d2,null,a2) \

/ -
poi !complete_call !mk_call_inslance_data(O,d2,null,a2) 12 -

oor !continue as is !mk call instance data(0,d2 null,a2) -J

O" poi !busy 'm.k c 11 • I~ . - a _mstance_dsra(O,d2,null,a2)
7 ::T

~·
lmk call instance_data(O.d2,null,a2) ~ ,, " poi !no_answer. - -

\'

(' ' I ' por !continue_as_is !mk_call_instance_data(O,d2,null,a2) / \ -
13~- ',

\

poi !end_of_call !mk_call_instance_data(O.d2,null,a2)
' \ \

\

I
I I

J I
por !continue_as_is !mk_call_instance_data(O.d2,null,a2) / J I

I I
I

/ I I
poi !end_of_call !mk_call_instance_data(O,d2.null,a2) / (I

I I

poi !call_ucceptance !mk_call_instance_daca(O,d2,null,a2) (I
14 I I -' I I

por !continue_as_is !mk_call_instance_data(O,d2,null,a2) I , I - / I
/ I

poi !end_of_cull !mk_call_instance_data(O,d2,null,a2) / /
/ I

I

ooi !active !mk call instance data!O,d2,null,a2)
/

Fig. l. IN CS-! global functional plane.

263

·.·.·.··.·c:J
···[::J

• The function update_destination_number was added for revising the ABD ser­
vice.

• We changed the BCP process because CESAR does not allow recursive process in­
stantiation on the left (and also the right) side of a parallel operator. In the original
specification of the BCP process such infinitely growing recursion is used for mod­
elling arbitrary many incoming phone calls from the external world. We remedied

this by changing the specification in such way that only one particular phone call
can be considered at the time.
The code that was actually analysed in CJESAR/ ALDEBARAN can be found in the

appendix.

3. The example: ABD and OCS

The example of Bouma and Zuidweg consists of two services: Abbreviated Dialling

(ABD) and Originating Call Screening (OCS). ABD allows a user to use abbreviated
numbers which then will be expanded by the ABD service into network addresses.

264 H. Konw I Science of Computer Programming 29 (1997) 259-278

OCS gives the possibility to forbid call set-up to numbers included in a screening list.
In principle, these two services can exhibit unwanted interaction: if a dialled number
is expanded too late, it might not be screened.

A desired property of the ABO service could be that the dialled number must have
been translated before the call is completed, i.e. the connection is established. This
feature is formalised by the following ACTL formula:

</> 1 : AF {poi ! complete_call ! cid}
(get_destination_number(cid) eq

get_address(translate(get_dialled_number(cid))))

This is a refonnulation of a formula given in [I]. Note that this formula has not been
checked directly. As far as l know currently no tools exist for checking formulas that
are parametrised by data. However, it can be checked by encoding the formula into
a tester as is described in the next section. Here logic formulas are only used for
recording service features (and their interactions) in an elegant way.

For OCS a similar formula can be written:

<f>2 : AF {poi ! complete_call ! cid}
(screen(get_dialled_number(cid)) eq no_match)

The specification of these services is straightforward. ABO is realised by definition of
a LOTOS process ABO that invokes a SIB called Translate. This SIB in its tum
consults a function translate: dialled_number->dialled_number. ABO is instan­
tiated through update of the function trigger _ABD: trigger _points, calLinstance
_data->Bool.

The OCS service is defined in a similar manner: define a process OCS invoking
an SIB taking care of the actual screening. The screening is realised by a function
screen: dialled_number->SIB_end, which has the output values match and
no_match.

The full LOTOS specification of the IN CS-1 GFP, the ABO and OCS service and
the relevant SIBs, can be found in the appendix.

The next section reports on how I checked that GFP + ABO f- cp 1 and GFP +
OCS f- </>2. Moreover, to discover interaction, I checked the property cp 1 /\ </>2 relative
to GFP +ABO+ OCS. lt is proved that GFP + ABD + OCS r/- <f> 1 /\ cjJ2 . This confirms
that indeed dialled numbers are expanded too late such that they could not be screened.
lt also has been verified that if the order of invocation of the ABD and OCS service
is reversed, no (unwanted) interaction occurs.

All these results confirm the statements made in [I]. However, it turned out that still
something was not in order. Namely, after switching the ABD service off, property
</>1 was still satisfied (GFP f- </; 1) which certainly is undesirable. This was due to
a subtility in the initialisation of the main process in the LOTOS specification. In the
next section, one can read how the bug is repaired.

H. Korverl Science of Computer Prugramming 29 (1997) 259-278 265

4. Analysis in CJEsAR/ALDEBARAN

CJESAR/ALDEBARAN is an advanced verification toolbox for LOTOS programs, and
it basically consists of two tools. CESAR is a tool that allows for generating the
transition graph of a LOTOS specification. To our knowledge, CESAR is at the mo­
ment the only tool which can handle 'full' LOTOS up to some reasonable restric­
tions. The graphs that are generated by CJESAR can be used by several other tools
like ALDEBARAN, AUTO, MEC and XESAR. One of these tools called ALDEBARAN
has also been integrated in CAESAR. This tool is used for reducing and com­
paring transitions graphs with respect to several behavioural equivalences, e.g.
Milner's observation equivalence. In the analysis of the example, I used both
tools.

4.1. Generating graphs

As a first experiment, I generated with CAiSAR the graph of the main specification
(the GPF including the ABD and OCS service) which is denoted by the following
LOTOS process header:

IN_Global_Functional_Plane poi, por]
(mk_call_instance_data(O, abd2, null, a2))

Here the initial values mk_calLinstance (0, abd2, 0, a2) are taken from [l]. For
this situation, a graph containing 23 states and 26 edges was generated by using
CJ£SAR. By ALDEBARAN, the graph was reduced to 15 states and 18 edges with
respect to Milner's observation equivalence. The minimised graph is given
below:

des CO, 18, 15)

(0, "POI !CALLORIGINATED !MK-CALLINSTANCEJ)ATA (0, ABD2, NULL, A2)" ,2)

(2,"PDR 'CDNTINULAS_IS !MK_CALLINSTANCE..DATA (0, ABD2, NULL, A2)",3)

(3,"POI !ADDRESS_COLLECTED !MK-CALLINSTANCEJ)ATA (0, ABD2, NULL, A2)",11)

(4,"POI !ADDRESS..ANALYSED !MK-CALLINSTANCE..DATA (0, ABD2, NULL, A2)",5)

(5,"POR !CONTINULWITH_NEW_.DATA !MK_CALLINSTANCEJ)ATA (0, D2, NULL, A2)",6)

(6,"POI !COMPLETE-CALL !MK-CALL_INSTANCLDATA (0, D2, NULL, A2)",12)

(7,"POR !CONTINUE..AS_IS !MK_CALL_INSTANCE..DATA (0, D2, NULL, A2)",9)

(8, "POI !BUSY !MK-CALLINSTANCE_.DATA (0, D2, NULL, A2) ", 7)

(8,"POI !NO..ANSWER !MK_CALLINSTANCE..DATA (0, D2, NULL, A2)",7)

(8, "POI !CALL..ACCEPTANCE !MK-CALLINSTANCE_.DATA (0, D2, NULL, A2)", 14)

(8,"POI !END_OLCALL !MK_CALLINSTANCE..DATA (0, D2, NULL, A2)",13)

(9,"POI !END_OLCALL !MK_CALLINSTANCE..DATA (0, D2, NULL, A2)",13)

(10,"POI !END_OF_CALL !MK_CALLINSTANCE..DATA (0, D2, NULL, A2)",13)

(10, "POI ! ACTIVE ! MK_CALLINSTANCEJ)ATA (0, D2, NULL, A2)", 7)

(11,"POR !CONTINUE..As_rs !MK_CALLINSTANCE..IlATA (0, ABD2, NULL, A2)",4)

266 H. Korver I Science of Computer Programming 29 (1997) 259-278

(12, "POR. ! CONTINUE....AS_IS !MK_CALLINSTANCE..DATA (0, 02, NULL, A2) ",8)

(13,"PDR. !CONTINUE....AS_IS !MK_CALLINSTANCE..DATA (0, 02, NULL, A2)",1)

(14,"POR. !CONTINUE....AS_IS !MK_CALL_INSTANCE..DATA (0, 02, NULL, A2)",10)

In Fig. l, this graph is represented in the style adopted from [3] which is (hopefully)
more readable. This picture can be interpreted as the transition graph given above in the
following sense. The points where the arrows bounce against the boxes in the picture
correspond to the states in the transition graph. These points have been labelled with
the original state names. Furthermore, to guide the intuition, I have also visualised the
places where the ABD and OCS services are invoked.

Due to the small size of the graph one can easily check that property <P1 is satis­
fied: every time an attempt is made to establish the connection (COMPLETLCALL) the
destination address corresponds with the expansion of the abbreviated number that was
dialled.

On the other hand, property <fJ2 does not hold because one can see in the same graph
that the call has not been rejected (by returning a CLEAR_CALL). This is caused by the
fact that the number d2 could not be screened while it was abbreviated (as abd2) when
the OCS service was active. This is a typical example of feature interaction because
property <f>2 holds when the OCS service operates in isolation (which I also checked),
but does not hold when the ABD service is involved.

To this point the computer analysis confirms the statements of Bouma and Zuidweg.
However, we are not done yet. Remarkably, I found out that property </> 1 was still
satisfied when the ABD service was switched off, which means that </J 1 is always true.
Clearly, this does not meet with our expectations, because when the ABD service is
switched off one would like to have that abbreviated numbers cannot be used any more.
This inconsistency is due to the strange initialisation of the GFP process, where the
call instance data is initialised by

mk_call_instance(O,abd2,null,a2).

However, the telephone network may not know in advance that a2 is the destination
address of the (abbreviated) dialled number abd2. We corrected this by changing the
last initialisation parameter as follows:

mk_call_instance(O,abd2,null,get_address(abd2))

saying that initially the system tries to find the destination address of the dialled num­
ber itself. In this example (see the Appendix) this means that in the beginning the
destination address is undefined as the dialled number is an abbreviation. Recall that
in Section 2 we defined that get_address(abd2)=null. But then, it appeared that
property </J1 was not satisfied any more when turning the ABD service on again. This
was due to the fact that in the original specification the ABD service only updates
dialled numbers (if abbreviated), but it should also update the corresponding destina­
tion address, as this is not done by the telephone network in the example. After fixing
this, the service behaved properly.

H. Korver I Science of Computer Programming 29 (1997) 259-278 267

As a final example of our verification, the following graph shows there is no feature
interaction when the ABD and OCS service are invoked in reverse order. (The graph
is generated by C!ESAR and minimised with respect to observation equivalence with
ALDEBARAN.)

des (0, 6, 7)

(0, "PO! !CALL_ORIGINATED !MK_CALLINSTANCE.J)ATA (0, ABD2, NULL, NULL)" ,2)

(2,"POR !CONTINUE_AS_IS !MLCALLINSTANCE.J)ATA (0, ABD2, NULL, NULL)",3)

(3, "PO! ! ADDRESS_COLLECTED ! MICCALL_INSTANCE_DATA (0, ABD2, NULL, NULL)" ,4)

(4, "POR !CONTINUE_WITH_NEW..DATA !MK_CALLINSTANCE..DATA (0, D2, NULL, A2)" ,5)

(5, "PO! !ADDRESS_ANALYSED !MLCALLINSTANCE..DATA (0, D2, NULL, A2)" ,6)

(6,"POR !CLEAR_CALL !MK_CALL_INSTANCE_DATA (0, 02, NULL, A2)",1)

In this graph, one can see that the abbreviated number is expanded before the
screening took place. And, as we wished, the call is rejected (CLEAR_CALL). Note that
in our specific example, number d2 has been inserted in the screening list; screen

(d2) =atch as is defined in Section 2.

4.2. Checking features with testers

In the previous section, we just looked into the generated graph for checking whether
certain properties (features) were satisfied. Of course, this is not the way we want to
do it in general, for the graphs are mostly much larger and the properties to be verified
more intrinsic. It would be better to check the properties directly with an automatic
model checker. Unfortunately, we are not aware of a tool supporting a modal /temporal
logic which incorporates data. (This is despite the fact that we have the technology for
implementing such tools.)

For this reason, we follow here an alternative route which is based on testers as
described in(!]. A tester is a simple LOTOS specification which encodes a property to
be checked and runs in parallel with the original specification. As soon as the property
to be tested is violated, the tester fires a special error transition. In [1], testers are only
used for discovering errors, but not for proving positive properties.

However, here we describe a simple trick which also allows us drawing positive
conclusions by using testers. It works as follows: hide all gates except the error gate,
in the parallel composition of the tester and the process to be verified. Then generate
with CJESAR the graph of the resulting process. If the graph contains an error tran­
sition than we know the property is violated (false), and otherwise the property is

true.
Next, it is shown how property </> 1 is actually checked with this method in the

revised example (see the previous section).

We placed a tester (ABD_tester) encoding the property </> 1 of the ABD ser­
vice in parallel with the main specification (IN_GlobaLFunctionaLPlane) and
hid all gates except the error gate. The resulting process is denoted by Test.

268 H. Korverl Science of Computer Programming 29 (1997) 259-278

In LOTOS:

specification Test [error] exit
hide poi, por in

IN_Global_Functional_Plane [poi, por]
(mk_call_instance_data(O, abd2, null,

get_address(abd2)))
I [poi] I

ABD_tester [poi, error]

endspec (* Test *)

C.'ESAR/ALDEBARAN generated the following minimised graph for process Test:

des (0, 0, 1)

This represents a graph containing just one state. It is trivial to see that this trivial
graph does not contain an error transition. Thus, it can be concluded that the ABD
service does satisfy property </>i.
Note that when graphs are larger, say 1 OOO.OOO states, one can search for an
error transition by the various pattern matching algorithms that are available on
the UNIX operating system, e.g. the grep command. Such commands can be used
without any risk as CIESAR always generates connected graphs (unless CIESAR is
wrong). So, it can not be the case that the error transition was found by a pattern
matching command (grep) although the error occurred harmless in a disconnected
part of the graph.

In an analogous way, we should be able to verify the other properties </;2 and </; 1 /\</;2.

However, we did not verify these properties by testers as Bouma and Zuidweg did
not specify the tester encoding </J2. Note that we did verify these properties by just
observing the generated graphs as we did in the previous section.

5. Discussion

I consider the experiment as successful: the results of Bouma and Zuidweg are
strengthened by the application of verification tools. In particular, a bug was found
in the example during verification in CIESAR which was not detected while testing in
UTE.

It turned out that the graphs generated by C!ESAR were extremely small: not more
than 23 states and 26 edges. Maybe a lot of possible branches had to be explored
internally but due to the presence of data most branches could be cut off. Nevertheless,
it indicates that far more complicated examples can be handled than the one that is
analysed in this paper.

H. Korver I Science of Computer Proyramminy 29 (1997) 259-278 269

There are also several points for improvement. For instance, I am looking forward
using modal /temporal property checkers that are parametrised with data. In my opinion,
it really would be a step forward if we reach the point where one can check the logic
properties given in this paper directly, without first having to encode them into testers.
Since one can already introduce errors while translating properties into testers.

Another improvement would be to generalise the example such that it can handle
more than one incoming phone call in parallel. Then, it can be investigated whether the
properties checked in this paper still hold in such more realistic setting. Moreover, it
would be interesting to see how fast the state space of this new example grows in the
number of incoming phone calls. Maybe the CJESAR/ ALDEBARAN toolbox will already
be pushed to its limit for just a small number of incoming calls.

Acknowledgements

In the first place, I would like to thank Wiet Bouma and Han Zuidweg for their
correspondence and making their LOTOS code available to me. Furthermore, I am
indebted to Hubert Garavel for answering all my questions about the CJESAR/ ALDEBARAN

tools. Lastly, I would like to thank Frits Vaandrager for spotting a bug in, and for his
helpful feedback on, an earlier version of this paper.

Appendix. The main specification

In the definition of the abstract datatypes one can find annotations of the form
(* ! ... *). These are used by a preprocessor of CJESAR called caesar. adt for compiling
the datatypes into efficient C code.

specification Example [poi, por] : exit

library Boolean endlib

library NaturalNumber endlib

behaviour

IN_Global_Functional..Plane [poi, por]

(mk_call_instance_data(O, abd2, null, get_address(abd2)))

(* In the original specification the instance is

'mk_call_instance_data(O, abd2, null, a2)' *)

where

type Address is Boolean, NaturalNumber

sorts address (*! implementedby ADT..ADDRESS comparedby ADT_CMP..ADDRESS

enumeratedby ADT..ENUM..ADDRESS printedby ADT..PRINT..ADDRESS *)

opns null (*! implementedby ADT_NULL constructor*),

270 H. Korver I Science of Computer Programming 29 (1997) 259-278

a1 (*! implementedby ADT_A1 constructor*),

a2 (*!

- eq -

ord

implementedby ADT_A2 constructor *) : -> address

(*! implementedby ADT..EQ...ADDRESS *):address, address -> Bool

(*! implementedby ADT_ORD..ADDRESS *) : address -> Nat

eqns forall ad1, ad2 : address

ofsort Nat

ord(null) = O;

ord(al) = Succ(ord(null));

ord(a2) = Succ(ord(al));

ofsort Bool

adl eq ad2 = ord(ad1) eq ord(ad2);

end type

type Dialled_Number is

Boolean, Address, SIB.End, NaturalNumber

sorts dialled_nwnber

(*! implementedby ADT.DIALLED_NUMBER comparedby AOT_CMP.DIALLED_NUMBER

enumeratedby ADT..ENUM.DIALLED-NUMBER printedby ADT..PRINT..DIALLED_NUMBER *)

opns wrong_number (*! implementedby ADT_WRONG_NUMBER constructor *),

abd2 (*! implementedby ADT_ABD2 constructor*),

d1 (*! implementedby ADT..D1 constructor *) : -> dialled_number

d2 (* ! implementedby ADT .D2 constructor *) : -> dialled_number

get_address (* ! implementedby ADT _GET ...ADDRESS *) : dialled_number -> address

- eq - (* ! implementedby ADT ..EQ..DIALLED_NUMBER *) : dialled_number,

dialled_number -> Bool

screen (*! implementedby ADLSCREEN *) : dialled_number -> SIB_end

translate (*! implementedby ADT_TRANSLATE *) : dialled_number -> dialled-number

abbreviated (*! implementedby ADT...ABBREVIATED *),

ok (*! implementedby ADT-OK *) : dialled_number -> Bool

ord (*! implementedby ADT_ORD...AD *) : dialled_number -> Nat

eqns forall ad, ad1, ad2: address, dn, dn1, dn2: dialled_number

ofsort address

(* get_address(mk_dialled_number(ad))

get_address(d1) al;

get_address(d2) a2;

get_address(wrong_number) =null;

get_address(abd2) = null;

ofsort Nat

ord(-wrong_number) = O;

ord(abd2) = Succ(ord(-wrong_number));

ord(d2) = Succ(ord(abd2));

ofsort Bool

ok(dn) = not(dn eq wrong_number);

end type

H. Korver I Science of Computer Programminy 29 (1997) 259-278

dnl eq dn2 = ord(dnl) eq ord(dn2);

abbreviated(abd2) = true;

not(dn eq abd2) => abbreviated(dn)

ofsort dialled_number

false;

(* The following equations are specific for the example *)

translate(abd2) = d2;

not(dn eq abd2) => translate(dn) dn;

ofsort SIB-end

screen(dl) no_match;

screen(d2) match;

screen(abd2) = no_match;

screen(wrong_number) = error;

type SIB-End is

Boolean, NaturalNumber

sorts SIB_end (*! implementedby ADT_SIB_END comparedby ADT_CMP_SIB..END

enumeratedby ADT_ENUM_SIB_END printedby ADLPRINLSIB..END *)

opns match(*! implementedby ADT...MATCH constructor*),

no_match (*! implementedby ADT_NO...MATCH constructor*),

success (*! implementedby ADT_SUCCESS constructor*),

error (*! implementedby ADT_ERROR constructor *) : -> SIB-end

ord (*! implementedby ADT_ORD_SIB_END *) : SIB_end -> Nat

- eq - : (*! implementedby ADT..EQ_$IB_END *) SIB_end, SIB_end -> Bool

eqns forall x, y: SIB_end

ofsort Bool

x eq y = ord(x) eq ord(y);

ofsort Nat

ord(error) O;

ord(success) = Succ(ord(error));

ord(no_match) = Succ(ord(success));

ord(match) = Succ(ord(no_match));

endtype (* SIB-End *)

type CalLinstance...Data is

Address, Dialled_Nwnber, NaturalNumber

sorts call_instance_data (*! implementedby ADT_CALL_INSTANCE...DATA

comparedby ADT_CMP_CALL_INSTANCE...DATA

enumeratedby ADT_ENUM_CALL_INSTANCE_J)ATA

printedby ADT..PRINT_CALL_INSTANCE...DATA *)

271

opns mk_call_instance_data (*! implementedby ADT...MK_CALL_INSTANCE...DATA constructor *)

:Nat, dialled_number, address, address-> call_instance_data

get_call_reference (*! implementedby ADT_GET_CALL..REFERENCE *)

272 H. Korver I Science of Computer Programming 29 (1997) 259-278

:call_instance_data -> Nat

get_ealling_line_identity (*! implementedby ADT_GET_CALLING..LINE_IDENTITY *)

:eall_instanee_data -> address

get_dialled_nu.mber (*! implementedby ADT_GETJ)IALLED-NUMBER *)

:eall_instance_data -> dialled_nu.mber

get_destination_number (*! implementedby ADT_GETJ)ESTINATIQN_NUMBER *)

:eall_instance_data -> address

update_dialled_number (*! implementedby ADT_UPDATEJ)IALLED_NUMBER *)

:dialled_number, call_instanee_data -> eall_instance_data

update_destination_nu.mber (*! implementedby ADT_UPDATE.JJESTINATIQN_NUMBER *)

:address, call_instanee_data -> eall_instance_data

eqns forall er : Nat, dn, dn1 : dialled_number,

cli, dst, ad1 : address

ofsort Nat

get_call_referenee(mk_call_instanee_data(cr,dn,eli,dst)) er;

ofsort dialled_number

get_dialled_number(mk_call_instanee_data(cr,dn,cli,dst)) dn;

ofsort address

get_calling_line_identity(mk_eall_instance_data(cr,dn,eli,dst)) = eli;

get_destination_number(mk_call_instanee_data(cr,dn,cli,dst)) = dst;

ofsort call_instance_data

update_dialled_number(dn1, mk_eall_instance_data(er, dn, cli, dst))

mk_calLinstance_data (er, dn1, cli, dst) ;

update_destination_number(ad1, mk_call_instanee_data(er, dn, eli, dst))

mk_eall_instanee_data(cr, dn, cli, adl)

endtype (* Call_Instanee.Jlata *)

type Trigger_Foints is

NaturalNumber, Boolean, CalLinstance..Data

sorts trigger_points

(*! implementedby ADT_TRIGGER_FOINTS comparedby ADT_CMP_TRIGGER_FOINTS

enumeratedby ADT..ENUM_TRIGGER_FOINTS printedby ADT_FRINLTRIGGER_FOINTS *)

opns call_originated (*! implementedby ADT_CALL_ORIGINATED constructor *)

address_collected (*! implementedby ADT..ADDRESS_COLLECTED constructor*),

address_analysed (*! implementedby ADT..ADDRESS..ANALYSED constructor *),

complete_call (*! implementedby ADT_COMPLETE_CALL constructor*),

busy(*! implementedby ADT...BUSY constructor*),

no_answer (*! implementedby ADT..ANSWER constructor*),

call_aeeeptance (*! implementedby ADT_CALL..ACCEPTANCE constructor*),

active (*! implementedby ADT..ACTIVE constructor*),

end_of_eall (*! implementedby ADT..END_QF_CALL constructor*),

continue_as_is (*! implementedby ADT_CONTINUE..AS constructor*),

continue_with_new_data (*! implementedby ADT_CQNTINUE_WITH_NEWJ)ATA constructor*),

H. Korver I Science of Computer Programming 29 (1997) 259-278

handle_as_transit (*! implementedby ADT.JlANDLE.AS_TRANSIT constructor *),

initiate_call (*! implementedby ADT_INITIATE_CALL constructor*),

party...handling (*! implementedby ADT...PARTY.JlANDLING constructor*),

clear_call (*! implementedby ADT_CLEAR_CALL constructor *) : -> trigger_points

ord (*! implementedby ADLORD_TRIGGER...POINTS *) : trigger_points -> NAT

- eq - (*! implementedby ADT..EQ_TRIGGER...POINTS *):

trigger_points, trigger_points -> Bool

is_armed (*! implementedby ADLIS.ARMED *) :

trigger_points, call_instance_data -> Bool

trigger_ABD (*! implementedby ADT_TRIGGER..ABD *)

trigger_points, call_instance_data -> Bool

trigger_OCS (*! implementedby ADT_TRIGGER_ocs *) :

trigger_points, call_instance_data -> Bool

eqns

forall t, tl, t2: trigger_points, cid: calLinstance_data,

er : Nat, dn : dialled_number, cli, dst : address

ofsort Nat

ord(call_originated) O·
'

ord(address_collected) = Succ(ord(call_originated));

ord(address_analysed) = Succ(ord(address_collected));

ord(complete_call) = Succ(ord(address_analysed));

ord(busy) = Succ(ord(complete_call));

ord(no_ansver) = Succ(ord(busy));

ord(call_acceptance) = Succ(ord(no..answer));

ord(active) = Succ(ord(call_acceptance));

ord(end_of_call) = Succ(ord(active));

ord(continue_as_is) = Succ(ord(end_of_call));

ord(continue_with_new_data) = Succ(ord(continue_as_is));

ord(handle_as_transit) = Succ(ord(continue_with_new_data));

ord(initiate_call) = Succ(ord(handle_as_transit));

ord(party...handling) = Succ(ord(initiate_call));

ord(clear_call) = Succ(ord(party...handling));

of sort Bool

tl eq t2 = ord(tl) eq ord(t2);

trigger..ABD(tl, cid) tl eq address_analysed;

trigger_OCS(tl, cid) = tl eq address_collected;

is_armed(tl, cid) = trigger..ABD (tl, cid) or

trigger_OCS(tl, cid);

endtype (* Trigger...Points *)

process Poi_sequence [poi,call_terminate] : exit

poi ! calLoriginated ?cid: calLinstance_data;

273

274 H. Korver I Science of Computer Programming 29 (1997) 259-278

poi ! address_collected ?cid: calLinstance_data;

poi ! address_analysed ?cid: calLinstance_data;

poi ! complete_call ?cid: calLinstance_data;

poi ! busy ?cid: calLinstance_data;

exit

[]

poi ! no_answer ?cid : calLinstance_data;

exit

[]

poi ! calLacceptance ?cid: calLinstance_data;

poi ! active ?cid: calLinstance_data;

[>

exit

poi! end_of_call ?cid: call_instance_data;

exit

[]

call_terminate; exit

endproc (* Poi_sequence *)

Process Por_choice [poi, por, call_setup call-terminate]

(cid: calLinstance_data) : exit

:=

poi?dp trigger_points !cid;

[]

por! continue_as_is ?new_cid: call_instance_data;

Por_choice[Poi, Por, call_setup, call_terminate] (cid)

por ! continue_wi th_new_data ?ne1.r_cid: calLinstance_data;

Por_choice[Poi, Por, call_setup, call_terminate](new_cid)

por! initiate_call ?new_cid: call_instance_data;

call_setup! new_cid;

Por_choice[poi, por, call_setup, call-terminate] (cid)

[]

por! handle_as_transit ?new_cid: call_instance_data;

call_setup! new_cid;

call_terminate; exit *)

[l

)

)

H. Korver/Science of Computer Programming 29 (1997) 259-278

por! clear_call ?new_cid: call_instance_data;

call_terminate; exit

endproc (* Por_choice *)

Process Basic_call [poi, por] (cid: call_instance_data): exit :=

hide call_setup in

hide call-terminate in

)

[]

Poi_sequence[poi, call_terminate]

I [poi, call_terminate)I

Por_choice [poi, por, call_setup, call_terminate](cid)

exit

endproc (* Basic_call *)

Process Trigger..Detection [Poi, por] exit

:=

Poi ?detection_point: trigger_points ?cid: call_instance_data;

[is_armed(detection_point, cid)] ->

[]

Invoke_Service(detection_point, cid) >>

accept return_point: trigger_points,

new_cid: calLinstance_data in

por !return_point !new_cid;

Trigger_Detection [Poi, Por]

[not(is_armed(detection_point, cid))] ->

Por !continue_as_is !cid;

Trigger..Detection [Poi, Por]

275

276 H. Korver I Science of Computer Programming 29 (1997) 259-278

[] exit

endproc (* Trigger.Jletection *)

Process Invoke_Service (dp: trigger_points, cid: call_instance_data)

: exit(trigger-points, call_instance_data)

[trigger..ABD(dp, cid)] -> ABD(cid)

[]

[trigger_QCS(dp, cid)] -> OCS(cid)

(*If we want to switch off a service 'ABD(cid)' or 'OCS(cid)'

must be changed in 'exit(dp, cid)' *)

endproc (* Invoke_Service *)

Process Screen (d: dialled_number): exit(SIB_end)

:= exit(screen(d))

endproc (* Screen *)

Process Translate (d: dialled_number): exit (SIB_end, dialled_number)

:=

[ok(d)] -> exit(success, translate(d))

[]

[not (ok(d))] -> exit(error, d)

endproc (* Translate *)

Process ABO (cid: call_instance_data)

: exit(trigger_points, call_instance_data)

:=

Translate(get_dialled_number(cid)) >>

accept termination: SIB_end, new_number: dialled_number in

[termination eq success] ->

[]

exit(continue_with_new_data,

update_dialled_number(new_number,

update_destination_number(get_address(new_number),

cid)))

(* Instead of the original:

'exit (continue_wi th_new_data,

update_dialled_number(new_number, cid))' *)

[not(termination eq success)] ->

exit(clear_call, cid)

H. Korver I Science of Computer Programming 29 (1997) 259-278

endproc (* ABD *)

Process OCS (cid: call_instance_data)

: exit(trigger_points, call-instance_data)

:=

Screen(get_dialled_number(cid)) >>

accept termination: SIB_end in

[termination eq no_match] ->

exit(continue_as_is, cid)

[]

[not(termination eq no_match)] ->

exit(clear_call, cid)

endproc(* OCS *)

Process ABD_tester [Pei, error] exit

:=

Poi? dp : trigger_points ?cid :call_instance_data;

[abbreviated(get_dialled_number(cid))

and (dp eq address_collected)] ->

Check[Poi, error] (get_dialled_number(cid))

[]

[not(aabreviated(get_dialled_number(cid)))

and (dp eq address_collected))] -> ABD_tester[Poi, error]

endproc (* ABD_tester *)

Process Check [Pei, error] (d: dialled_number): exit

:=

Poi? dp trigger-points ?cid :call_instance_data;

[]

[]

[(dp eq complete_call) and

not(get_destination_number(cid)

eq get_address(translate(d)))] ->

error; stop

[not ((dp eq complete_call) and

not(get_destination_number(cid)

eq get_address(translate(d))))] ->

(Check [poi, error] (d))

exit

277

278 H. Korver I Science of Computer Programming 29 (1997) 259-278

endproc (* Check *)

process IN_Global...Functional..Plane [poi, par] (cid :call_instnace_data) exit

:=

(Basic_call [poi, par] (cid)

I [poi, par] I

TriggerJ)etection [poi, por]

endproc (* IN_Global...Functional..Plane *)

ends pee

References

[1] W. Bouma and H. Zuidweg, Formal analysis of feature interactions by model checking, Proc. 2nd
Workshop on Protocol Verification, Eindhoven, Netherlands, 1993.

[2] J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez and J. Sifakis, A toolbox for the
verification of LOTOS programs, Proc. 14th Internal. Con/ on Software Engineering /CSE' 14,
Melbourne, Australia, 1992.

[3] A.S. Klusener, S.F.M. van Vlijmen and A. van Waveren, Service independent building blocks - l;
concepts, examples and formal specifications, Report P93 l 0, Programming Research Group, University
of Amsterdam, 1993. A shorter version of this paper appeared in: Proc. RACE IS & N Con/ (Internal.
Conf on Intelligence in Broadband Services and Networks), Paris, France, 23-25 November, 1993.

