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CHAPTER 1 

GENERAL INTRODUCTION 

In this introductory chapter first (section 1) an informal description is 

given of the Markov decision processes and Markov games that will be stu­

died. Next (section 2) we consider the optimality equations, also called 

the functional equations of dynamic programming. The optimality equations 

are the central point in practically each analysis of these decision 

problems. In section 3 a brief overview is given of the existing algorithms 

for the determination or approximation of the optimal value of the decision 

process. Section 4 indicates aims and results of this monograph while 

summarizing the contents of the following chapters. Then (section 5) we 

formally introduce the Markov decision process to b~ studied (the formal 

model_ description of the Markov game will be given later). We define the 

various strategies·that will be distinguished, and introduce the criterion 

of total expected rewards and the criterion of average rewards per unit 

time. Finally, in section 6 some notations are introduced. 

1. 1. INFORMAL VESCRIPT1ON OF THE MOVELS 

This monograph deals with Markov decision processes and two-person zero-sum 

Markov (also called stochastic) games. Markov decision processes (MDP's) 

and Markov games (MG's) are mathematical models for the description of 

situations where one or more decision makers are controlling a dynamical 

system, e.g. in production planning, machine replacement or economics. In 

these models it is assumed that the Markov property holds. I.e., given the 

present state of the system, all information concerning the past of the 

system is irrelevant for its future behaviour. 

Informally, an MDP can be described as follows: 
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Informal description of the MDP model 

There is a dynamical system and a set of possible states it can occupy, 

called the state space, denoted by S. Here we only consider the case that 

Sis finite or countably infinite. 

Further, there is a set of actions, called the action space, denoted by A. 

At discrete points in time, t = 0,1, •.• , say, the system is observed by a 

controller or decision maker. At each decision epoch, the decision maker 

- having observed the present state of the system - has to choose an action 

from the set A. As a joint result of the state i ES and the action a EA 

taken in state i, the decision maker earns a (possibly negative) reward 

r(i,a), and the system moves to state j with probability p(i,a,j), j ES, 

with l p(i,a,j) = 1. 
jES 

The situation in the two-person zero-sum game is very similar. Only, now 

there are two decision makers instead of one - usually called players -

and two action sets, A for player I and B for player II. In the cases we 

consider,A and Bare assumed to be finite. At each decision epoch, the 

players each choose - independently of the other - an action. As a result 

of the actions a of player I and b of player II in state i, player I re­

ceives a (possibly negative) payoff r(i,a,b) from player II (which makes 

the game zero-sum), and the system moves to state j with probability 

p(i,a,b,j), j ES, with l p(i,a,b,j) = 1. 
jES 

The aim of the decision maker(s) is to control the system in such a way as 

to optimize some criterion function. Here two criteria will be considered, 

viz. the criterion of total expected rewards (including total expected dis­

counted rewards), and the criterion of average rewards per unit time. 



1.2. THE FUNCTIONAL EQUATIONS 

Starting point in practically each analysis of MDP's and Markov games are 

the functional equations of dynamic programming. 

* Let us denote the optimal-value function for the total-reward MDP by V , 
* i.e. V (i) is the optimal value of the total-reward MDP for initial state 

* i, i E s. Then V is a solution of the optimality equation 

( 1. 1) v(i) (Uv) (i) := max {r(i,a) + I p(i,a,j)v(j)} i E S • 

aEA jES 

Or in functional notation 

( 1. 2) v = Uv 

A similar functional equation arises in the total-reward Markov game. In 

that case (Uv) (i) is the game-theoretical value of the matrix game with 

entries 

r(i,a,b) + I p(i,a,b,j)v(j) , a EA, b EB. 
jES 

In many publications on MDP's and MG's the operator U is a contraction. 
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For example, in SHAPLEY [1953], where the first formulation of a Markov 

game is given, there is an absorbing state,* say, where no more returns 

are obtained, with p(i,a,b,*) > 0 for all i, a and b. Since S, A and Bare 

in Shapley's case finite, this implies that the game will end up in*, and 

that U is a contraction and hence has a unique fixed point. Shapley used 

this to prove that this fixed point is the value of the game and that there 

exist optimal stationary strategies for both players. 

In many of the later publications the line of reasoning is similar to that 

in Shapley's paper. 

* In the average reward MDP the optimal-value function, g say, usually 

called the gain of the MDP, is part of a solution of a pair of functional 

equations in g and v: 

( 1. 3) g(i) max I p(i,a,j)g(j) I 

aEA jES 

(1.4) v(i) +g(i) max {r(i,a) + I p (i,a,j)v(j)} , 
aEA(i) jES 

where A(i) denotes the set of maximizers in (1.3). 
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In the first paper on MDP's, BELLMAN [1957] considered the average-reward 

MDP with finite state and action spaces. Under an additional condition, 

* guaranteeing that g is a constant function (i.e. the gain of the MDP is 

independent of the initial state), Bellman studied the functional equations 

(1.3) and (1.4) and the dynamic programming recursion 

(1.5) vn+l = Uvn, n = 0,1, ••. , 

where U is defined as in (1.1). 

* He proved that vn - ng is bounded, i.e., the optimal n-stage reward minus 

n times the optimal average reward is bounded. Later BROWN [1965] proved 

* that vn -ng is bounded for every MDP, and only around 1978 a relatively 

* complete treatment of the behaviour of vn - ng has been given by SCHWEITZER 

and FEDERGRUEN [1978], [1979]. 

The situation in the average-reward Markov game is more complicated. In 

1957, GILLETTE [1957] made a first study of the finite state and action 

average-reward MG. Under a rather restrictive condition, which implies the 

existence of a solution to a pair of functional equations similar to (1.3) 

and (1.4) with g a constant function, he proved that the game has a value 

and that stationary optimal strategies for both players exist. He also 

described a game for which the pair of functional equations has no solu­

tion. BLACKWELL and FERGUSON [1968] showed that this game does have a 

value; only recently it has been shown by MONASH [1979] and, independently, 

by MERTENS and NEYMAN [1980] that every average-reward MG with finite state 

and action spaces has a value. 

1.3. REVIEW OF THE EXISTING ALGORITHMS 

An important issue in the theory of MDP's and MG's is the determination, 

usually approximation, of v* (in the average-reward case g*) and the de­

termination of (nearly-) optimal,preferably stationary, strategies. This 

also is the main topic in this study. 

* Since in the total-reward case, for the MDP as well as for the MG, v is a 

solution of an optimality equation of the formv = Uv, one can try to ap­

* proximate v by the standard successive approximation scheme 
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If U is a contraction, as in Shapley's case, then v will converge to v*. 
n * 

Further, the contractive properties of U enable us to obtain bounds on v 

and nearly optimal stationary strategies; see for the MDP a.o. MAC QUEEN 

[1966], PORTEUS [1971], [1975] and Van NUNEN [1976a], and for the MG a.o. 

CHARNES and SCHROEDER [1967], KUSHNER and CHAMBERLAIN [1969] and Van der 

WAL [1977a]. 

For this contracting case various other successive approximation schemes 

have been proposed. Viz., for the MDP the Gauss-Seidel method by HASTINGS 

[1968] and an overrelaxation algorithm by REETZ [1973], and for the MG the 

Gauss-Seidel method by KUSHNER and CHAMBERLAIN [1969]. As has been shown 

by WESSELS [1977a], Van NUNEN and WESSELS [1976], Van NUNEN [1976a], Van 

NUNEN and STIDHAM [1978] and Van der WAL [1977a], these algorithms can be 

described and studied very well in terms of the go-ahead functions by 

which they may be generated. 

The so-called value-oriented methods, first mentioned by PORTEUS [1971], 

and extensively studied by Van NUNEN [1976a], [1976c], are another type of 

algorithms. In the value-oriented approach each optimization step is 

followed by a kind of extrapolation step. Howard's classic policy itera­

tion algorithm [HOWARD,1960] can be seen as an extreme element of this set 

of methods, since in this algorithm each optimization step is followed by 

an extrapolation in which the value of the maximizing policy is determined. 

The finite contracting MDP can also be solved by a linear programming ap­

proach, see d'EPENOUX [1960]. Actually, the policy iteration method is 

equivalent to a linear program where it is allowed to change more than one 

basic variable at a time, cf. WESSELS and Van NUNEN [1975]. 

If U is not a contraction, then the situation becomes more complicated. 

For example, v need no longer converge to v*.And even if v converges to 
n n 

* v, it is in general not possible to decide whether v is already close to 
* n 

v and to detect nearly-optimal (stationary) strategies from the successive 

approximations scheme. 

For the average reward MDP there exists by now, as mentioned before, a 

relatively complete treatment of the method of standard successive approx­

imations, see SCHWEITZER and FEDERGRUEN [1978], [1979]. 
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Alternatively, one can use Howard's policy iteration method [HOWAB.D,1960], 

which, in a slightly modified form, always converges, see BLACKWELL [1962]. 

Furthermore, several authors have studied the relation between the average­

reward MDP and the discounted MDP with discountfactor tending to one, see 

e.g. HOWARD [1960], BLACKWELL [1962], VEINOTT. [1966], MILLER and VEINOTT 

[1969] and SLADKY [1974]. This has resulted for example in Veinott's ex­

tended version of the policy iteration method which yields strategies that 

are stronger than merely average optimal. 

Another.algorithm that is based on the relation between the discounted and 

the average-reward MDP, is the unstationary successive approximations 

method of BATHER [1973] and HORDIJK and TIJMS [1975]. In this algorithm 

the average-reward MDP is approximated by a sequence of discounted MDP's 

with discountfactor tending to one. 

Also, there is the method of value-oriented successive approximations, 

which has been proposed for the average-reward case, albeit without con­

vergence proof, by MORTON [1971]. 

And finally, one may use the method of linear programming, cf. De GHELLINCK 

[1960], MANNE [1960], DENARDO and FOX [1968], DENARDO [1970], DERMAN [1970], 

HORDIJK and KALLENBERG [1979] and KALLENBERG [1980]. 

The situation is essentially different for the average-reward MG. In 

general, no nearly-optimal Markov strategies exist, which implies that 

nearly-optimal strategies cannot be obtained with the usual dynamic pro­

gramming methods. Only in special cases the methods described above will 

be of use, see e.g. GILLETTE [1957], HOFFMAN and KARP [1966], FEDERGRUEN 

[1977], and Van der WAL [1980]. 

1.4. SUMMARY OF THE FOLLOWING CHAPTERS 

Roughly speaking one may say that this monograph deals mainly with various 

dynamic programming methods for the approximation of the value and the 

determination of nearly-optimal stationary strategies in MDP's and MG's. 

We study the more general use of several dynamic programming methods, which 

were previously used only in more specific models (e.g. the contracting 

MDP). This way we fill a number of gaps in the theory of dynamic program­

ming for MDP's and MG's. 
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Our intentions and results are described in some more detail in the follow­

ing summary of the various chapters. 

The contents of this book can be divided into three parts. Part 1, chapters 

2-5, considers the total-reward MDP, part 2, chapters 6-9, deals with the 

average-reward MDP, and in part 3, chapters 10-13, some two-person zero-sum 

MG's are treated. 

In chapter 2 we study the total-reward MDP with countable state space and 

general-action space. First it is shown that it is possible to restrict 

the considerations to randomized Markov strategies. Next some properties 

are given of the various dynamic programming operators. Then the finite­

stage MDP and the optimality equation are considered. These results are 

used to prove that one can restrict oneself even to pure Markov strategies 

(in this general setting this result is due to Van HEE [1978a]). 

This chapter will be concluded with a number of results on the existence 

or nonexistence of nearly-optimal strategies with certain special proper­

ties, e.g. stationarity. Some of the counterexamples may be new, and it 

seems that also theorem 2.22 is new. 

In chapter 3 the various successive approximation methods are introduced 

for the MDP model of chapter 2. First a review is given of several results 

for the method of standard successive approximations. Then, in this general 

setting, the set of successive approximation algorithms is formulated in 

terms of go-ahead functions, introduced and studied for the contracting 

MDP by WESSELS [1977a], Van NUNEN and WESSELS [1976], Van NUNEN [1976a], 

and Van NUNEN and STIDHAM [1978]. Finally, the method of value-oriented 

successive approximations is introduced. This method was first mentioned 

for the contracting MDP by PORTEUS [1971], and studied by Van NUNEN [1976c]. 

In general, these methods do not converge. 

Chapter 4 deals with the so-called strongly convergent MDP (cf. Van HEE 

and Van der WAL [1977] and Van HEE, HORDIJK and Van der·wAL [1977]). In 

this model it is assumed that the sum of all absolute rewards is finite, 

and moreover that the sum of the absolute values of the rewards from time 

n onwards tends to zero if n tends to infinity, uniformly in all strate­

gies. It is shown that this condition guarantees the convergence of the 

successive approximation methods generated by nonzero go-ahead functions, 

i.e., the convergence of v to v*. Further, we study under this condition 
n 

the value-oriented method and it is shown that the monotonic variant, and 

therefore also the policy iteration method, always converges. 
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In chapter 5 the contracting MDP is considered. We establish the (essential) 

equivalence of four different models for the contracting MDP, and we review 

* some results on bounds for v and on nearly-optimal strategies. 

Further, for the discounted MDP with finite state and action spaces, some 

Laurent.series expansions are given (for example for the total expected 

discounted reward of a stationary strategy) and the more sensitive optimal-

·ity criteria are formulated (cf. MILLER and VEINOTT [1969]). The results of 

this chapter are needed in chapters 6-8 and 11. 

In chapter 6 the average-reward MDP with finite state and action spaces is 

introduced. This chapter serves as an introduction to chapters 7-9, and 

for the sake of self-containedness we review several results on the exis­

tence of optimal stationary strategies, the policy iteration method and 

the method of standard successive approximations. 

Chapter 7 deals with the more sensitive optimality criteria in the dis­

counted and the average-reward MDP and re-establishes the equivalence of 

k-discount optimality and (k+l)-order average optimality. This equivalence 

was first shown by LIPPMAN [1968] (for a special case) and by SLADKY 

[1974]. We reprove this result using an unstationary successive approxima­

tion algorithm. As a bonus of this analysis a more general convergence 

proof is obtained for the algorithm given by BATHER [1973] and some of the 

alqorithms given by HORDIJK and TIJMS [1975]. 

In chapter 8 it is shown that in the policy iteration algorithm the im­

provement step can be replaced by a maximization step formulated in terms 

of go-ahead functions (cf. WESSELS [1977a] and Van NUNEN and WESSELS 

[1976]). In the convergence proof we use the equivalence of average and 

discounted optimality criteria that has been established in chapter 7. A 

special case of the policy iteration methods obtained in this way is 

Hastings' Gauss-Seidel variant, cf. HASTINGS [1968]. 

Chapter 9 considers the method of value-oriented successive approximations, 

which for the average-reward MDP has been first formulated, without conver­

gence proof, by MORTON [1971]. Under two conditions: a strong aperiodicity 

assumption (which is no real restriction) and a condition guaranteeing that 

the gain is independent of the initial state, it is shown that the method 

yields arbitrary close bounds on g*, and nearly-optimal stationary strate­

gies. 

Chapter 10 gives an introduction to the two-person zero-sum Markov game. 

It will be shown that the finite-stage problem can be 'solved' by a 



dynamic programming approach, so that we can restrict ourselves again to 

(randomized) Markov strategies. We also show that the restriction to 

Markov strategies in the nonzero-sum game may be rather unrealistic. 
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In chapter 11 the contracting MG is studied. For the successive approxima­

tion methods generated by nonzero go-ahead functions we obtain bounds on 

* v and nearly-optimal stationary strategies. These results are very similar 

to the ones in the contracting MDP (chapter 5). Further, for this model the 

method of value-oriented successive approximations is studied, which con­

tains the method of HOFFMAN and KARP [1966] as a special case. 

Chapter 12 deals with the so-called positive MG. In this game it is assumed 

that r(i,a,b) ~ c > 0 for all i, a and band some constant c, thus the 

second player looses at least an amount c in each step. However, he can 

restrict his losses by terminating the game at certain costs (modeled as a 

transition to an extra absorbing state in which no more payoffs are ob­

tained). We show that in this model the method of standard successive ap-

* proximations provides bounds on v and nearly-optimal stationary strate-

gies for both players. 

Finally, in chapter 13, the method of standard successive approximations 

is studied for the average-reward Markov game with finite state (and 

action) space(s). Under two restrictive conditions, which imply that the 

value of the game is independent of the initial state, it is shown that 

the method yields good bounds on the value of the game, and nearly-optimal 

stationary strategies for both players. 

1.5. FORMAL VESCRIPTION OF THE MVP MOVEL 

In this section a formal characterization is given of the MDP. The formal 

model of the Markov game will be given in chapter 10. 

Formally, an MDP is characterized by the following objects. 

S: a nonempty finite or countably infinite sets, called the state space, 

together with the a-field S of all its subsets. 

A: an arbitrary nonempty set A, called the action space, with a a-field 

A containing all one-point sets. 

p: a transition probability function p: S x A x S + [ 0, 1], called the 

transition 7,,CJJ.,J. I.e., p(i,a, •) induces for all (i,a) E s x A a proba-
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bility measure on (S,S) and p(i,•,j) is A-measurable for all i,j ES. 

r: a real-valued function r on S x A called the reward function, where we 

require that r(i,•) is A-measurable for all i Es. 

At discrete points in time, t = 0,1, ••• say, a decision maker, having ob­

served the state of the MDP, chooses an action, as a result of which he 

earns some immediate reward according to the function rand the MDP reaches 

a new state according to the transition law p. 

In the sequel also state-dependent action sets, notation A(i), i ES, will 

be encountered. This can be modeled in a similar way. We shall not pursue 

this here. 

Also it is assumed that p(i,a,•) is, for all i and a, a probability mea­

sure, whereas MDP's are often formulated in terms of defective probabili­

ties. Clearly, these models can be fitted in our framework by the addition 

of an extra absorbing state. 

In order to control the system the decision maker may choose a decision 

rule from a set of control functions satisfying certain measurability 

conditions. To describe this set, define 

H := (SXA)n x S, n = 1,2, ... 
n 

So, Hn is the set of possible histories of the system starting at time 0 

upto time n, i.e., the sequence of preceding states of the system, the 

actions taken previously and the present state of the system. We assume 

that this information is available to the decision maker at time n. 

On H we introduce the product cr-field H generated by Sand A. 
n n 

Then a decision rule 1T the decision maker is allowed to use, further 

called strategy, is any sequence rr0 ,rr 1 , ••• such that the function rrn' 

which prescribes the action to be taken at time n, is a transition proba­

bility from Hn into A. So, let rrn(Cjhn) denote for all sets CE A and for 

all histories hn E Hn the probability that at time n given the history hn 

an action from the set C will be chosen, then rr (CJ·) is H -measurable for 
n n 

all CE A and rrn(•Jhn) is a probability measure on (A,A) for all hn E Hn. 

Notation: rr = (rr0 ,rr 1 , ••. ). Thus we allow for randomized and history-depen­

dent strategies. The set of all strategies will be denoted by IT. 

A subset of IT is the set RM of the so-called randomized Markov strategies. 

A strategy rr E IT belongs to RM if for all n = 1, 2, •.• , for all 



hn = (i0 ,a0 , ... ,in) E Hn and for all CE A, the probability rrn(clhn) de­

pends on hn only through the present state in. 
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The set M of all pure Markov strategies, or shortly Markov strategies, is 

the set of all TIE RM for which there exists a sequence f 0 ,f1 , ..• of 

mappings from S into A such that for all n = 0,1, .•. and for all 

(i0 ,a0 , ... ,in) E Hn we have 

TI ( { f ( i ) } I ( io, ao, ... , i )) 1 • n n n n 

Usually a Markov strategy will be denoted by the functions f 0 ,f1 , ... 

characterizing it: rr = (f0 ,f1 , ... ). 

A mapping f from S into A is called a policy. The set of all policies is 

denoted by F. 

A stationary strategy is any strategy TI= (f,f 1,f2 , ... ) EM with fn = f 

for all n = 1,2, ... ; notation TI= f(oo). When it is clear from the context 

that a stationary strategy is meant, we usually write f instead of f(oo). 

Note that since it has been assumed that A contains all one-point sets, any 

sequence f 0 ,f1, •.• of policies actually gives a strategy TIE M. 

Each strategy TI= (TI0 ,TI 1 , ... ) E IT generates a sequence of transition 

probabilities pn from Hn into A x S as follows: For all C E A and D E S 

and for n = 1,2, ... 

I p<io,a,j) , 
jED 

f Tin (da 

C 

i E S 

Endow Q := (S x A) 00
, the set of possible realizations of the process, with 

the product a-field generated by Sand A. Then for each TIE IT, the sequence 

of transition probabilities {p} defines for each initial state i ES a 
n 

probability measure JP. on Q and a stochastic process {(X ,A ),n=0,1, •.• }, 
1,TI n n 

where Xn denotes the state of the system at time n and An the action 

chosen at time n. 

The expectation operator with respect to the probability measure 

will be denoted by E. 
1, TI 

JP. 
1, TI 
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Now we can define the total expected reward, when the process starts in 

state i ES and strategy TT E IT is used: 

(1.6) V(i,TT) := E. l r(X ,A) 
i,TT n=O n n 

whenever the expectation at the right hand side is well-defined. 

In order to guarantee this, we assume the following condition to be ful­

filled throughout chapters 2-5, where the total-reward MDP is considered. 

CONDITION 1.1. For all i Es and TT E IT 

"' 
( 1. 7) U (i,TT) :=lE. l r+(X,A)<oo, 

i,TT n=O n n 

where 

r+(i,a) := max {O,r(i,a)}, i ES, a EA. 

Condition 1.1 allows us to interchange expectation and summation in (1.6), 

and implies 

(1.8) 

where 

(1.9) 

lim vn (i,TT) 
n~ 

v(i,TT) , 

n-1 
:= lE. l r(Xk,~) • 

J.,TT k=O 

The value of the total-reward MDP is defined by 

* (1.10) v (i) := sup v(i,TT) i E S • 

TTEIT 

REMARK 1.2. An alternative criterion is that of total expected discounted 

rewards, where it is assumed that a unit reward earned at time n is worth 

only Sn at time 0, with S, 0 $ S < 1, the discountfactor. 

The total expected $-discounted reward when the process starts in state 

i ES and strategy TT E IT is used, is defined by 

"' 
(1.11) v 0 (i,TT) :=lE. l Snr(X,A), 

µ J.,TT n=O n n 

whenever the expectation is well-defined. 



The discounted MDP can be fitted into the framework of total expected 

rewards by incorporating the discountfactor into the transition probabi­

lities and adding an extra absorbing state,* say, as follows: 

Let the discounted MDP be characterized by the objects S, A, p, rand S, 

then define a transformed MDP characterized by S,A,p,r with § = s u {*}, 

* is, A 
p(i,a,*) 

A, r(i,a) = r(i,a), r(*,a) = 0, p(i,a,j) = Sp(i,a,j), 

1 - S and p(*,a,*) 1 for all i,j ES and a EA. 

Then, clearly, for all i ES and TT E IT the total expected reward in the 

transformed MDP is equal to the total expected S-discounted reward in the 

original problem. 

13 

Therefore we shall not consider the discounted MDP explicitly, except for 

those cases where we want to study the relation between the average reward 

MDP and the S-discounted MDP with S tending to one. 

The second criterion that is considered is the criterion of average reward 

per unit time. 

The average reward per unit time for initial state i ES and strategy TT E IT 

is defined by (cf. (1.9)) 

(1.12) 
-1 

g(i,u) := liminf n vn (i,u) 
n+oo 

Since this criterion is considered only for MDP's with finite state and 

action spaces, g(i,u) is always well-defined. 

The value of the average-reward MDP is defined by 

(1.13) * g (i) := sup g(i,u) , i E S • 
TTEIT 

1.6. NOTATIONS 

This introductory chapter will be concluded with a number of notations and 

conventions. 

lR : = the set of real numbers, 

lR := lR u {-co} 

For any x E lR we define 
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So, 

x+ := max {x,O} 

x := min {x,O} 

+ 
X = X +x and 

The set of all real-valued functions on Sis denoted by V: 

(1. 14) V := {v: S + lR} 

and V denotes the set 

(1.15) V : = { V: S + JR} • 

For any v and W E V we write 

V < 0 if v(i) < 0 for all i E s , 

and 

V < w if v(i) < w(i) for all i E s 

Similarly, if < is replaced by ~, =, ;,:: or >. 

For a function v from S into lR U { + 00} we write 

V < 00 if v(i) < 00 for all i E s , so if V E 

For any v EV define the elements v+ and v in V by 

( 1. 16) 

and 

(1. 17) V (i) := (V(i)) i E S • 

For any v EV the function lvl EV is defined by 

(1.18) lvl (i) := lv(i) I , i E S • 

The unit function on S is denoted by e: 

( 1.19) e(i) = 1 for all i ES, 

V . 

If, in an expression defined for all i ES, the subscript or argument 

corresponding to the state i is omitted, then the corresponding function 

on Sis meant. For example, v(n), u(n) and g(TI) are the elements in V with 

i-th component v(i,TI), u(i,n) and g(i,n), respectively. Similarly, if in 

IP. ( • ) or lE. ( • ) 
1,1r 1,1T 

the subscript i is omitted, then we mean the corre-

ponding function on S. 



Letµ EV satisfyµ 

defined by 

2c O, then the mapping II II from V into 1R u {+ 00 } is 
µ 

(1.20) II viiµ : = inf { c E 1R J Iv I !, cµ} , v E V , 

where, by convention, the infimum of the empty set is equal to + 00 • 

The subspaces V of V and V+ of V are defined by 
µ µ 

(1.21) V := 
µ 

{v EV I llvll < 00 } µ 

and 

( 1. 22) 
+ 

:= {v E + 
E V } V V V µ µ 

The space V µ with norm llvllµ is a Banach space. 

In the analysis of the MDP a very important role will be played by the 

Markov strategies and therefore by the policies. For that reason the fol­

lowing notations are very useful. For any f E F let the real-valued func­

tion r(f) on Sand the mapping P(f) from S xs into [0,1] be defined by 

(1.23) (r(f))(i) :=r(i,f(i)), iES 

and 

(1.24) (P(f)) (i,j) := p(i,f(i) ,j) , i,j ES • 
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Further we define, for all v EV for which the expression at the right hand 

side is well defined, 

{1.25) 

( 1. 26) 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

( 1. 31) 

(1. 32) 

(P(f)v) (i) := I p(i,f(i) ,j)v(j) , i E S, f E F , 
jES 

Uv := sup P{f)v, 
fEF 

L(f)v := r(f) + P(f)v , f E F , 

Uv := sup L(f)v, 
fEF 

L+(f)v : == (r (f)) + + P{f)v , f E F , 

+ L+(f)v UV := sup , 
fEF 

Labs(f)v := lr(f)I + P(f)v, f E F, 

Uabsv := sup Labs(f)v, 
fEF 
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where the suprema are defined componentwise. 

Finally, we define the following functions on S: 

( 1. 33) u*(i) := sup u(i,11) I i E s I 

11EIT 

00 

(1.34) Z (i ,11) := lE. 2 Ir (X ,A ) I i 
1,11 n=O n n 

E s I 11 E IT I 

( 1. 35) z*(i) := sup Z (i,11) I i E s I 

11EIT 

00 

( 1. 36) w(i,11) lE. 2 -
(Xn,An) i IT I := r E S I 11 E 

1 ' 11 n=O 

( 1. 37) w*(i) := sup w(i,11) i E s 
11EIT 
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CHAPTER 2 

THE GENERAL TOTAL-REWARD MOP 

2. 1. INTROVUCTION 

In this chapter we will perform a first analysis on the general total-reward 

MDP model formulated in section 1.5. 

Throughout this chapter we assume condition 1.1: 

(2 .1) U('TT) < for all TT E II 

A major issue in this chapter is the proof of the following result due (in 

this general setting) to Van HEE [1978a]: 

* (2.2) sup v(i,TT) = v (i) , i ES. 
'TTEM 

I.e., when optimizing v(i,TT) one needs to consider only Markov strategies. 

The proof given here is essentially Van Hee's, but the steps are somewhat 

more elementary. 

While establishing (2.2) we will obtain a number of results of independent 

interest. 

First (in section 2) an extension of a theorem of DERMAN and STRAUCH [1966] 

given by HORDIJK [1974] is used to prove that for a fixed initial state i 

any strategy TT E II can be replaced by a strategy TT' ERM which yields the 

same marginal distributions for the process {(Xn,An), n = 0,1, •.. }. This 

implies that in the optimization of v(i,TT), u(i,TT), etc., one needs to 

consider only randomized Markov strategies. Hordijk's result is even 

* stronger and also implies that u < 00 • 

Further it is shown in this preliminary section that the mappings P(f), U, 

L(f), U, L+(f) and U+ defined in (1.25)-(1.30), are in fact operators on 
+ v+ Vu*' i.e. they map u* into itself. These operators will play an important 

role in our further analysis, particularly in the study of successive 
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approximation methods. 

A first use of these operators is made in section 3, where it is shown that 

the finite-horizon MDP can be treated by a dynamic programming approach. 

This implies that in the finite-horizon MDP one needs to consider only 

Markov strategies. 

The results for the finite-horizon case imply that also u(i,n) is optimized 

within the set of Markov strategies: 

(2. 3) sup u(i,n) 
nEM 

* u (i) i E S • 

Next, in section 4, we consider the optimality equation 

(2.4) V =UV, 

and we show that v* is a (in general not unique) solution of this equation. 

In section 5 it is shown that, if v* ~ 0, the fact that v* satisfies (2.4) 

implies the existence of a nearly-optimal Markov strategy uniformly in the 

initial state. I.e., there exists a Markov strategy n such that 

(2.5) v(n) * <!: V - E:e 

In section 6 we prove (2.2) using the fact that in finite-stage MDP's one 

may restrict oneself to Markov strategies and using the existence of a 

uniformly nearly-optimal Markov strategy in =-stage MDP's with a nonposi­

tive value. 

Finally, in section 7, we present a number of results on nearly-optimal 

strategies. One of our main results is: if A is finite, then for each 

initial state i ES there exists a nearly-optimal stationary strategy. 

2.2. SOME PRELIMINARY RESULTS 

In this section we first want to prove that we can restrict ourselves to 

randomized Markov strategies and that condition 1.1 implies that u* < =. 

To this end we use the following generalization of a result of DERMAN and 

STRAUCH [1966], given by HORDIJK [1974, theorem 13.2]. 

LEMMA 2.1. Let n(l) ,n(2) , ••• bean arbitrary sequenae of strategies and 

Zet c 1 ,c2 , ••• be a sequenae of nonnegative real, numbers with i::;=l ck = 1. 
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Then there exists for each i E s a strategy 1r E RM such that 

(2.6) lP. (X 
l., 1T n 

for all j Es, all c € A and all n = 0,1, .•. 

PROOF. Let (1To,1T1,···) € RM be defined by 

I ck P_ (k) (Xn j, A € C) 
n 

1T eel j) 
k=1 ]. ,1T 

n 00 

I ck P_ (k) (Xn = j) 
k=l l.,1T 

for all j ES, for all n = 0,1, ..• and all C € A, whenever the denominator 

is nonzero. Otherwise, let 1T (• jj) be an arbitrary probability measure on 
n 

(A,A). 

Then one can prove by induction that 1T = (1r0 ,1r 1 , .•• ) satisfies (2.6) for 

all j € S, all C € A and all n = 0,1, ..•. For details, see HORDIJK 

[1974]. D 

The special case of this lemma with c 1 = 1, c = 0, n = 0,1, .•. , shows that 
(1) n 

any strategy 1T € IT can be replaced by a strategy 1T € RM having the same 

marginal distributions for the process {(X ,A), n = 0,1, ... }. This leads 
n n 

to the following result: 

COROLLARY 2.2. For each initial state i Es and each 1r E IT there exists a 

strategy i ERM such that 

Therefore 

v(i,1r) = v(i,TT) 

sup v(i,1r) 
1T€IT 

sup v(i,1r) • 
1T€RM 

Similarly, if vis replaced by vn, u or z. 

Since for corollary 2.2 to hold with v replaced by u, condition 1.1 is not 

needed, it follows from this corollary that condition 1.1 is equivalent to: 

u ( 1T) < 00 for al 1 1T E RM . 
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Another way in which one can use lemma 2.1 is the following. 

Suppose that in order to control the process we want to use one strategy 
( 1) (2) 

out of a countable set {TT ,TT , •.. }. In order to decide which strategy 

to play, we start with a random experiment which selects strategy rr(k) with 

probability ck. Then formally this compound decision rule is not a strategy 

in the sense of section 1.5 (as the prescribed actions do not depend on the 

history of the process only, but also on the outcome of the random experi­

ment). Lemma 2.1 now states that, although this decision rule is not a 

strategy·, there exists a strategy TT E RM which produces the same marginal 

distributions for the process as the compound strategy described above. 

Using lemma 2.1 in this way, we can prove the following theorem. 

THEOREM 2.3. For all i Es, 

PROOF. Suppose that for some i ES we have u*(i) = 00 • Then there exists a 

sequence TT(l) ,TT< 2 l , ••• of strategies with u(i,TT(k)) ~ 2k. Now, applying 
-k 

lemma 2.1 with ck= 2 , k = 1,2, ... , we find a strategy TT ERM satisfying 

(2.6). For this strategy TT we then have 

00 

u(i,TT) ' (. (k)) _> l ck u i,TT 
k=l 

00 • 

But this would contradict condition 1.1. Hence u*(i) < 00 for all i ES. D 

Since, clearly, v(TT) ~ u(TT) for all TT E IT, theorem 2.3 immediately yields 

COROLLARY 2.4. For all i Es, 

v* (i} < oo • 

In the second part of this section we study the mappings P(f), L(f), etc. 
+ It will be shown that these mappings are in fact operators on the space Vu*· 

First we prove 

LEMMA 2.5. For all f E F, 
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PROOF. Choose f E F and£> 0 arbitrarily. As we shall show at the end of 

* the proof, there exists a strategy 11 E JI satisfying u(11) ?: u - £e. Further, 

the decision rule: "use policy fat time O and continue with strategy 11 at 

time 1 (pretending the process to restart at time 1)" is also an element of 

JI. Thus, denoting this strategy by f o 11, we have 

(r(f))+ + P(f)u(11) + £e = u(fo11) + £e $ u*+£e 

Since£> 0 and f E Fare chosen arbitrarily, the assertion follows. 

It remains to be shown that for all£> 0 there exists a strategy 11 E JI 

satisfying u (1T) ?: u* - £e. 
i Certainly, there exists for all i ES a strategy 11 E JI which satisfies 

u(i,1ri) ?: u* (i) - £. But then the strategy 11 E JI, with 

for all CE A, all n = 0,1, •.. and all (i0 , ..• ,in) E Hn, satisfies 

u(11) * ?: u - £e 

From this lemma we obtain 

+ + 
THEOREM 2.6. P(fl, u, L(f), u, L (fl and u are (for all f E F) operators 

□ 

+ + + 
on Vu*' i.e., they are properly defined on vu* and they map vu* into itself. 

+ PROOF. Since for all v E Vu* (and all f E F) 

it is sufficient to prove the theorem for U+ 

That U+ is properly defined on V+* and maps V+* into itself follows from 
u u 

lemma 2.5, since for all v EV+*' 
u 

□ 

Similarly, one may prove 
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THEOREM 2.7. If z* < 00, then P(f), U, L(f), U, L+(f), U+(f), Labs(f) a:nd 
abs u are operators on vz*' 

2.3. THE FINITE-STAGE MVP 

In this section we study the finite-stage MDP. It is shown that the value 

of this MDP as well as a nearly-optimal Markov strategy can be determined 

by a dynamic programming approach. 

We consider an MDP in which the system is controlled at the times 

t = 0,1, ••• ,n-1 only, and if - as a result of the actions taken - the 

system reaches state j at time n, then there is a terminal payoff v(j), 

j ES. This MDP will be called then-stage MDP with terminal payoff v 

(V E V). 

By vn(i,TI,v) we denote the total expected reward in then-stage MDP with 

initial state i and terminal payoff v when strategy TIE IT is used, 

(2. 7) [
n-1 ] 

:= lE, I r(Xk,A.) +v(X ) , 
1,TI k=O k n 

provided the expression is properly defined. To ensure that this is the 

case some condition on vis needed. We make the following assumption which 

will hold throughout this section. 

CONDITION 2. 8. 

sup ]E V + (X ) < 00 I 

TIE IT TI n 
n 1, 2,.. . . 

Note that it follows from lemma 2.1 that condition 2.8 is equivalent to 

n 1 , 2, • • • for all TI E RM • 

Now let us consider the following dynamic programming scheme 

(2. 8) 

Uv n n = 0,1, •••• 

We will show that vn is just the value of then-stage MDP with terminal 

payoff v and that this scheme also yields a uniformly E-optimal Markov 



strategy. In order to do this we first prove by induction formulae (2.9)­

(2. 11) . 

(2.9) 

(2. 10) 

(2. 11) 

+ + 
L (f)vn-l < (X) for all f E F and n 

vn<"', n=l,2, •... 

1, 2 I••• • 

For all£> 0 there exist policies f 0 ,f1 , •.• such that 

-n 
L(fn_ 1) ... L(f0Jv ~ vn - £ (1 - 2 )e 
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That (2.9)-(2.11) hold for n = 1 can be shown along exactly the same lines 

as the proof of the induction step and is therefore omitted. 

Let us continue with the induction proof. Assuming that (2.9) - (2.11) hold 

for n t, we prove them to hold for n = t + 1. 

Let f E F be arbitrary and ft-l'ft_2 , .•. ,f0 be a sequence of policies 

satisfying (2.11) for n = t. Denote by TT the (t+l)-stage strategy 

TT= (f,ft-l'ft_2 , .•. ,f0 ) (we specify TT only for the first t+l stages). 

Then 

So, by condition 1.1 and condition 2.8 formula (2.9) holds for n 

And also 

by theorem 2.3 and condition 2.8. Thus (2.10) also holds for n 

vt+l <"' implies the existence of a policy ft such that 

So, 

t + 1. 

t + 1. But 



24 

-t 
L(ft)L(ft_ 1) ... L(f0)v ~ L(ft)(vt-e:(1-2 }e) 

-t -t-1 
~ L(ft)vt-e:(1-2 )e ~ vt+l-e:(1-2 )e 

Which proves (2.11) for n = t+l. 

This completes the proof of the induction step, thus (2.9)-(2.11) hold for 

all n. 

In particular we see that for all n = 1,2, ... a Markov strategy 

1T(n) = (.fn-l'fn_2 , ... ,f0 ) exists such that 

(2 .12) 

Hence, as e: > 0 is arbitrary, 

(2 .13) sup vn(1r,v) ~ vn. 
1TEM 

So, what remains to be shown is that 

(2 .14) 

Using lemma 2.1 one easily shows that it is sufficient to prove (2.14) for 

all 1T ERM (take c 1 1, en= O, n = 1,2, .•. ). 
+k 

Let 1T (1r0 ,1r 1, ... ) ERM be arbitrary, and let 1T denote the strategy 

(1Tk,1rk+l'"" "). 

Then we have for all k = 0,1, ••. ,n-1 and all i ES 

Hence, 

+k 
vn-k (i,1r ,v) 

+k 
vn-k (1T ,v) $ 

f (d I . ) [ (. ) , (. . ) ( . +k+l ) J 1Tk al. r i,a + l p i,a,J vn-k-l J,11 ,v 
A j 

, . . . +k+l 
:S sup {r(i,a) + lJ. p(i,a,J)vn-k-l (J,1T ,v)} 

aEA 

+k+l 
Uvn-k-1 (,r ,v) ' 

+n 
and by the monotonicity of u and v0 (1r ,v) v0 we have 

••• $ 
n +n 

U VO (1T ,v) V 
n 

As 1T ERM was arbitrary, this proves (2.14) for all 1r ERM and thus, as we 

argued before, (2.14) holds for all 1T E IT. 



Summarizing the res~lts of this section we see that we have proved 

THEOREM 2.9. If v Ev satisfies condition 2.8, then for aZZ n 

(i) sup vn(TT,v) 
lfEJI 

sup v (TT,v) = Unv; 
TTEM n 

(ii) for aZZ £ > O there exists a strategy lf EM satisfying 

1, 2, ... 

Note that then-stage MDP with terminal payoff vis properly defined and 

can be treated by the dynamic programming scheme (2.8) under conditions 

less strong than conditions 1.1 and 2.8. 

It is sufficient that 

and that 

n-1 
lElf l r + (¾: ,J\l < co for all TT E JI (TT E RM) 

k=O 

+ ]Elf v (¾:) < co , k = 1 , 2 , .•. , n , for all TT E JI ( TT E RM) 

So, for example, theorem 2.9 also applies when rand v are bounded but 

* u co 

From these results for the finite-stage MDP we immediately obtain the 

following result for the co-stage MDP. 

THEOREM 2.10. For aZZ i Es 

* u (i) sup u(i,TT) • 
lfEM 

PROOF. For all£> 0 there exists a strategy TT E JI such that 

u(i,TT) ~ u*(i) -£/2. Then there also exists a number n such that 

u (i,il ~ u* (il - £ 
n 

where un(i,TT) is defined by 

(2 .15) 
n-1 

:= lE. l 
i,lf k=O 

Now we can apply theorem 2.9 (i) to then-stage MDP with terminal payoff 

25 
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V 0 and rewards r+ instead of r to obtain 

sup un(i,TT) 
1TEM 

:?: u (i,-rr) 
n 

* :?: U (i) - E • 

Thus, with u(i,TT) :?: un(i,TT) for all 1T E IT, also 

* sup u(i,TT) 2 u (i) -E. 
7TEM 

As this .holds for all E > 0, the assertion follows. 

2.4. THE OPTIMALITY EQUATION 

As we already remarked in chapter 1, the functional equation 

(2 .16) V = UV 

□ 

plays an important role in the analysis of the MDP. Equation (2.16) is also 

called the optimalit;y equation. Note that in general Uv is not properly 

defined for every v EV. 

THEOREM 2.11. v* is a solution of (2.16). 

* PROOF. First observe that by theorem 2.6 Uv is properly defined as 

* * v $ u. In order to prove the theorem we follow the line of reasoning in 

ROSS [1970, theorem 6.1]. The proof consists of two parts: first we prove 
* * * * v 2 Uv and then v $ Uv. 

Let E > 0 and let 1T E IT be a uniformly E-optimal strategy, i.e., 

v(TT) :?: v* - Ee. That such a strategy exists can be shown along the same lines 

as in the proof of theorem 2.5. Let f be an arbitrary policy. Then the deci­

sion rule: "use policy f at time 0 and continue with strategy 1T at time 1, 

pretending the process started at time 1" is again a strategy. We denote it 

by fo TT, 

So we have 

v*:?: v(fo1f) = L(f)v(7T):?: L{f)v*-E:e 

As f E F and E > 0 are arbitrary, also 

* * V 2 UV 

In order to prove v* $ uv; let 1T (7T0 ,TT 1 , .•. ) be an arbitrary randomized 
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+-1 
Markov strategy and let TI ERM be _the strategy (TI1 ,TI2 , ••. ). Then we have 

V(i,TI) f TI0 (daJi) [r(i,a + I p(i,a,j)v(j,TI+-l)] 

A 
j 

$ I TI0 (daJil [r(i,a) + I p(i,a,j)v*(j)] 

A j 

$ f TIO ( da Ji) (Uv *) ( i) = (uv*) (i) 

A 

Taking the supremum with respect to TIE RM we obtain, with corollary 2.2, 

* * v 5 Uv, which completes the proof. 

In general, the solution of (2.16) is not unique. For example, if 

* r(i,a) = 0 for all i ES, a EA, then v = 0, and any constant vector 

solves (2.16). 

* In chapters 4 and 5 we will see that, under certain conditions, v is the 

unique solution of (2.16) within a Banach space. This fact has important 

consequences for the method of successive approximations. 

From theorem 2.11 we immediately have 

THEOREM 2.12 (cf. BLACKWELL [1967, theorem 2]). If v ~ o, v satisfies con­

dition 2.8 and v ~ Uv, then v ~ v* 

PROOF. By theorem 2.9 (ii) and the monotonicity of U we have for all TIE IT 

and all n 

So, 

Hence 

1, 2 I••• 

V (TI) 
n 

V(TI) 

* V 

$ uno $ Unv 

lim 
n-+<x> 

vn (TI) $ 

sup v(TI) 5 v • 
TIE IT 

n-1 
U Uv $ 

n-1 
U V $ $ V • 

V . 

Note that in the conditions of the theorem we can replace "v satisfies 

condition 2. 8 11 by ·~uv + < 0011 , because V ~ Uv and Uv + < 00 already imply that 

the scheme (2.8) is properly defined. 

D 

D 
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* For the case v ~ 0 we obtain from theorem 2.12 the following characteriza-

* tion of v 

COROLLARY 2.13. If v* ~ o, then v* is the smallest nonnegative solution of 

the optimalit;y equation. 

2.5. THE NEGATIVE CASE 

* In this section we will see that the fact that v solves the optimality 

equation implies the existence of uniformly nearly-optimal Markov strate­

gies, if v* SO or if v* satisfies the weaker asymptotic condition (2.18) 

below. 

* From v * Uv we have the existence of a sequence of policies f 0 ,f1, ••• 

satisfying 

(2 .17) * * -n-1 L (fn) v ~ v - £ 2 e , n = 0, 1,... • 

Then we have 

THEOREM 2.14. Let TI£= (f0 ,f1 , ••• ) be a Markov strategy with fn satisfying 

(2.17) for all n = 0,1, .•.• If 

(2 .18) lim sup JE v* (X ) S O , 
TI n 

n+ 00 £ 

then TI£ is unifomly £-optimal, i.e. v(TI) 

* * ~ * + PROOF. v s u. So, by theorem 2.6, uv E Vu*' and, by induction, 

u°"v* EV~*' hence u°"v* < 00 for all n = 1,2, ••.• So, vn(TI£,v*) is properly 

defined for all n, and we have 

lim V (TI) ~ lim sup V (TI ,v*) 
n £ n £ 

n--►oo n-+ oo 

* lim sup L(f0 ) ••• L(fn_ 1)v 
n-+00 

* -n ~ lim sup {L(f0) ••• L(fn_2Jv -£2 e} ~ ~ 
n-+00 

~ lim sup {v*-£(2-1 +2-2 + ... +2-n)e} 
n+00 

* V - Ee □ 
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An important consequence of this theorem is the following corollary which 

is used in the next section to prove that in the optimization of v(i,n) we 

can restrict ourselves to Markov strategies. 

COROLLARY 2.15. If v* ~ 0, then there exists a uniformly £-optimal Markov 

strategy. In particular, there exists for all£> O a strategy TIE M satis­

fying 

w(n) 2: w* - e:e 

(For the definition of w(TI) and w*, see (1.36) and (1.37)). 

As a special case of theorem 2.14 we have 

THEOREM 2.16 (cf. HORDIJK [1974, theorem 6.3.c)J. If f is a policy satis­

fying 

* * L(f)v V 

and 

lim sup * lEf V (Xn) ~ 0 , 
n+oo 

then f is uniformly optimal: v(f) * 
V • 

As a corollary to this theorem we have 

COROLLARY 2.17 (cf. STRAUCH [1966, theorem 9.1]). If A is finite and for 

all f E F 

* lim sup lEf v (Xn) ~ 0 , 
n+oo 

then there exists a uniformly optimal stationary strategy. 

PROOF. By the finit,,mess of A and theorem 2.11 there exists a policy f 

satisfying L(f)v* = v\ then the assertion follows with theorem 2.16. D 

We conclude this section with the following analogue of theorem 2.12 and 

corollary 2 .13: 

THEOREM 2. 18. 

(i) If v ~ 0 and v ~ Uv then v ~ v*. 

(ii) If v* ~ 0 then v* is the largest nonpositive solution of (2.16). 
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PROOF. 

(i) As vs 0, v clearly satisfies condition 2.8. And as vs Uv we can find 

policies fn' n = 0,1, ... , satisfying 

where 8 > 0 can be chosen arbitrarily small. 

Then, analogous to the proof of theorem 2.14 we have for TI 

v(TI) lim vn (TI) ~ lim sup vn (TI,v) ~ v - Ee . 
n-><» n +"" 

* * So also v ~ v-Ee and, as Eis arbitrary, v ~ v. 

(ii) Immediately from (i). D 

2.6. THE RESTRICTION TO MARKOV STRATEGIES 

In this section we use the results of the previous sections, particularly 

corollary 2.2, theorem 2.9 and corollary 2.15, to prove that we can restrict 

ourselves to Markov strategies in the optimization of v(i,TI). 

THEOREM 2.19 (Van HEE [1978a]). For all i E s 

sup v(i,TI) 
TIEM 

* V (i) 

PROOF. The proof proceeds as follows. First observe that there exists a 

randomized Markov strategy TT which is nearly optimal for initial state i 

(corollary 2.2). Then there is a number n such that practically all positive 

rewards (for initial state i and strategy TT) are obtained before time n. 

From time n onwards we consider the negative rewards only. For this "nega­

tive problem" there exists (by corollary 2.15) a uniformly nearly optimal 

Markov strategy n. Finally, consider then-stage MDP with terminal payoff 

w(i). For this problem there exists (by theorem 2.9) a nearly optimal Markov 
(n) 

strategy TI • 
(n) 

Then the Markov strategy: "use TI until time n and TI afterwards, pretend-

ing the process restarts at time n" is nearly optimal in the 00-stage MDP. 

So, fix state i ES and choose E > 0. Let n ERM be E-optimal for initial 

state i: v(i,TT) ~ v*(i) -E. Now split up v(i,TT) into three terms, as fol­

lows: 
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(2 .19) 

with n so large that 

(2. 20) 

Next, let ,r (f0 ,f1, ••• ) EM satisfy (cf. corollary 2.15) 

(2.21) * ~ W - Ee 

If we now replace w by 1T from time n onwards, i.e., replace ,rt by ft-n' 

t = n, n+ 1, ... , and ignore the positive rewa,rds from time n onwards, then we 

obtain an n-stage MDP with terminal payoff w(TI) in which we use strategy ,r. 

For this n-stage problem, by theorem 2.9 there exists a Markov strategy 

1T = (f0 ,f1 , .•• ) which is £-optimal for initial state i. Hence 

V (i,;,w(rr)) ~ V (i,rr,w(rr)) - E 
n n 

* Finally, consider the Markov strategy ,r 

strategy which plays 1T upto time n - 1 and then switches to iii. For this 

strategy we have 

(2. 22) 

So 

(2.23) 

* v(i,,r) 
00 

vn(i,,r,w(,r)) + lE. * l r+(Xk,J\l 
1 ' ,r k=n 

~ v (i,;',w(TI)) ~ v (i,11 ,w(i)) - E • 
n n 

With (2.20) it follows that 

(2.24) 

Hence, from (2.22)-(2.24) and v(i,11) ~ v*(i) - E, 
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As E > 0 is arbitrary, the proof is complete. 

So, for each initial state there exists a nearly-optimal Markov strategy. 

If v* ~ O, then even a uniformly E-optimal Markov strategy exists. (Note 

that this uniformity was essential in order to obtain (2.23) .) In the next 

section (example 2.26) we will see that in general a uniformly nearly-op­

timal Ma_rkov strategy does not exist. 

2.7. NEARLY OPTIMAL STRATEGIES 

□ 

In this section we derive (and review) a number of results on nearly-optimal 

strategies. In the previous sections we already obatined some results on the 

existence of nearly optimal strategies (theorems 2.14, 2.16 and 2.19, and 

corollaries 2.15 and 2.17). 

One of the most interesting (and as far as we know new) results in given in 

theorem 2.22: if A is finite, then for each state i there exists an E-op­

timal stationary strategy. If Sis also finite, then there even exists a 

uniformly optimal stationary strategy. 

Further some examples are given showing that in general uniformly nearly­

optimal Markov, or randomized Markov, strategies do not exist. 

The first question we address concerns the existence of nearly-optimal 

stationary strategies. 

In general, E-optimal stationary strategies do not exist, as is shown by 

the following example. 

EXAMPLE 2.20. S = {1}, A= (0,1], r(i,a) = -a, p(1,a,1) 

* Clearly, v = 0, but for all f E F we have v(f) - 00 

In this example the nonfiniteness of A is essential. 

1, a E A. 

If A is finite, then we have the following two theorems which we believe to 

be new in the setting considered here. 

THEOREM 2.21. Ifs a:nd A are finite, then there exists a unifoY'171ly optimal 

stationary strategy. 

The proof of this theorem is postponed until chapter 5, section 5. 



Using theorem 2.21 we prove 

THEOREM 2.22. If A is finite, then for each E > 0 and for each initial 

state i Es there exists an E-optimaZ stationary strategy. 
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PROOF. The proof is rather involved. Roughly, it goes like this. First let 

TT be an E-optimal Markov strategy for initial state i. Then we construct a 

finite set B such that, if the process starts in state i and strategy TT is 

used, nearly all positive rewards are obtained before the system leaves B. 

From that moment on we consider only the negative rewards. For this nega­

tive problem by corollary 2.17 there exists a uniformly optimal stationary 

* strategy h 1 : w(h 1) = w. 

Next we consider the finite state MDP with state space B, where as soon as 

the system leaves Band reaches a state j i B we obtain a terminal reward 

* w (j). For this MDP by theorem 2.21 there exists an optimal stationary 

strategy h2" 

Finally we prove that the stationary strategy f with f(i) = h 2 (i) for i EB 

and f(i) = h 1 (i) if ii Bis nearly optimal for initial state i. 

So, fix i ES and choose E > 0. Then there exists (by theorem 2.19) an E­

optimal Markov strategy TT for initial state i: v(i,TT) ;c:: v* (i) - E. 

Next we construct a_finite set B c S, with i EB, such that practically all 

positive rewards (for initial state i and strategy TT) are obtained before 

the system first leaves B. 

Let n0 be such that (cf. (2.15)) u (i,TT) - u (i,TT) ~ E and define for no 

With TT 

Clearly, for all j ES and n = 0,1, .•• ,n0-2, there exists a finite set 

Bn+l (j) such that only a fraction EO (to be specified below) is lost: 

Define 
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and 

and 

B := Bn -1 • 
0 

:= B 
n 

u 

Now we will show that indeed nearly all positive rewards are obtained be­

fore Bis left (if EO is chosen sufficiently small). 

Let T be the first-exit time from the set B: 

for all i O EB and i 1,i2 , •.. Es. 

Then for the sum of all positive rewards until the first exit from B we 

have, with u(nol (TT) = o, 

T-1 
JE. l r+(X ,A) 

i,TT n=O n n 

min(T-1,no-1) 
2 JE. l r+(X ,A ) 

i,TT n=O n n 

2 

~ 

2 

n 0-1 
,T>n)r+(j,f (j)) I I lPi,TT (Xn = j 

n=O jEB n 

n 0-1 
, T >n)[ (1-E0 )u(n) (j,TT) I I JI\, TT (Xn = j + 

n=O jEB 

- I 
kEB 

p (j, f (j) ,k) u (n+l) (k,TT)] 
n 

n 0-1 
(1-E0 ) l l lP. (Xn =j, T >n)u(n) (j,TT) + 

n=O jEB i,-rr 

no 
1 1 (n) 
l l lP. (Xn =k, T > n)u (k,TT) 

n=l kEB i,TT 

no-1 
, T > n) u (n) (j, TT) u (i, TT) - €0 I I lP. (X n = j 

no n=O jEB 
J_, TT 

n 0-1 
lP. (X =j)u(n)(j,TT) u (i,TT) - €0 I I no n=O jEB J_, TT n 

n 0-1 
(n} u (i,TT) - €0 I JE. u (X ,TT) 2 

no n=O 1- ,TT n 



as clearly 

(n) 
;,, lE, u (X ,11) 

i, 7T n 

So, choosing E: 0 = E: /n0 u (i,11), we have 
no 

(2. 25) 
T-1 

lE. l r+(X ,A);,, u (i,11) -E:;,, u(i,11) -2E:. 
i, 11 n=O n n no 
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Next consider the MDP where, once the process has left B, we continue with a 

* stationary strategy h 1, satisfying w(h 1) = w (which exists by corollary 

2.17), counting the negative rewards only. This MDP is essentially equi­

valent to anMDP with finite state space S := B u {*} (* i V), action space 

A= A, rewards r(i,a) and transition probabilities p(i,a,j), defined by 

(2.26) 

r(i,a) := r(i,a) + l p(i,a,j)w* (j) , i E B , 
j/B 

r(*,a) := 0 , 

p (i,a,j) p(i,a,j) , i,j E B 

p(i,a,*) I p(i,a,j) , i E B 
j/B 

p(*,a,*) 1 , for all a E A 

So, as soon as the system leaves Bit is absorbed in state* and we there­

fore adapt the immediate rewards. 

For this finite-state MDP there exists by theorem 2.21 an optimal stationary 

strategy h 2 • 

Now we want to show that the stationary strategy f defined by 

{ f (j) 

f (j) 

j E B 

j ¢ B 

is nearly optimal for initial state i. 

Before we do this, we have to derive some important inequalities for the 

MDP defined by (2.26). 

Denote the total expected reward for initial state j EB and strategy 11 E IT 

by v(j,11) (formally we should say i E ft, but there is a clear correspondence 
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between strategies in IT and in TI). Then for all j EB and TIE IT 

Particularly, 

(2. 27) * <! w (j) ' 

where the second inequality follows from 

v(j ,h1) ]E. I r-1 

J ' h l n=O 
r(Xn,An) + w*(x,,] 

<! lE. h Ct r - (X ,A ) + w(x,,h 1)] = w(j ,h 1) 
J, 1 n n 

w* (j) • 

And 

(2.28) JE. ['i1 
r(Xn,An) + w*(x~)] 

i 'TI n=O ' 

"' 
lE. l r(Xn,An) - lE. }: r+(X ,A) 

l., TI n=O l., TI n=, n n 

<! v(i,TI) - 2e: <! v* (i) - 3e: • 

Finally, we can prove that f is 3e:-optimal for initial state i in the 

original MDP. 

We will prove that v(i,f) <! v(i,h2), which by (2.28) is sufficient. 

To this end we define the stopping times , 1,,2 , .•. , where 'n is the time of 

then-th switch from B to S\B or vice versa. I.e., for any I;;= (i0 ,i1, ... ) 

and n <! 1 

'n ( I;;) inf {k > , 1 ( 1;;) I if i ( E B then ik i B else ik E B}, 
n- 'n-1 I;;) 

with 'O (I;;) o. 
Clearly 'n <! n. So 

'n-1 
v(i, f) lim lEi,f l r (~•¾' . 

n-><x> k=O 



Thus, since w* ~ 0, 

(2.29) 

Further,·we have for all j € B, using (2.27) and f = h2 on B, 

(2. 30) 

lE. ryl r(X ,A.) + w*cxTl)l = v(j,h2) ~ w*(j) 
J ,h2 lk=O k -ic 

And for all j / B, 

(2. 31) 

Thus, for n = 1,2, ••• , we get from (2.30) and (2.31), 

(2.32) 

where we write (~,!\:) and (Xi,Ai) in order to distinguish between the 

process starting at time O and the process starting at time Tn_ 1• 

Repeatedly applying (2.32) we obtain 

37 
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as Tl= T for initial state i. 

So, with (2.28), 

* V(i,f) <'. V (i) - 3e: , 

which, as e: > 0 is arbitrary, completes the proof. 

As we remarked before, there does not necessarily exist a uniformly nearly 

optimal stationary (or even a Markov or randomized Markov) strategy. This 

will be shown in the examples 2.24-2.26. 

However, if all rewards are nonnegative, the so-called positive dynamic 

programming case, we have the following theorem due to ORNSTEIN [1969]. 

THEOREM 2.23. If r(i,a) ;::: 0 for all i Es, a EA, then for every e: > 0 a 

stationary strategy f exists, satisfying 

(2. 33) 

PROOF. For the very ingenious proof see ORNSTEIN [1969]. 

Note, that in theorem 2.23 the action space A need not be finite. 

D 

So, in the positive dynamic programming case there does exist a stationary 

strategy that is uniformly e:-optimal in the multiplicative sense of (2.33). 

* Clearly, if v is bounded, then theorem 2.23 also implies (for the positive 

case) the existence of a stationary strategy f which is uniforraly e:-optimal 

in the additive sense: 

(2. 34) * v(f) ~ v - e:e 

In general, however, even if A is finite, a stationary strategy satisfying 

(2.'.34) need not exist. 

This is shown by the following example given by BLACKWELL [1967]. 
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EXAMPLE 2.24. S := {0,1,2, •.• }, A {1,2}. State O is absorbing: r(O,a) = 0, 

p ( 0, a, 0) = 1 . In state i , i = 1 , 2 , ... , 

we have r(i, 1) 0, p(i,1,i+l) = 

= p(i,1,0) = ½ and r(i,2) = 2i - 1, 

p(i,2,0) = 1. So, in state i you either 

receive 2i - 1 and the system moves to 

state O, or you receive nothing and the 

system moves to states O and i + 1, each 

with probability½. 

2i, i = 1,2, .•.. Now let f be a stationary 

strategy. Then either f(i) = 1 for all i = 1,2, ... , thus v(f) 0, or 

* f(i) = 2 for at least one i, i 0 say. But then v(i0 ,f) = v (i0 ) - 1. 

Hence no stationary strategy can be e:-optimal in the sense of (2.34) for 

Q$e:<1. 

However, if we consider also 'randomized' stationary strategies, then a 

stationary strategy that is uniformly e:-optimal in the sense of (2.34) does 

exist, at least in this example. 

We call a strategy TIE RM, TI= (TI0 ,TI 1 , •.. ) randomized stationary if 

Tin= TI 0 , n = 1,2,... In this example TI is completely characterized by the 

probability pi by which action 1 is chosen in state i, i ES. If pi= p for 

all i Es, then we have 

v(i,TI) 
i i+l '+2 

(1-p)(2 -1) +p•½(1-p)(2 -1) +p•½•p•½(1-p)(21 -1) + ..• 

2i - (1-p) (1-½p)-l . 

Thus, if O < e: < 1 and p > 1 - ½e: (then (1-p) (1- ½Pl-l < e:), then we have 

V(TI) * :CO: V - e:e 

This example demonstrates that it may happen that there exists no 'pure' 

stationary strategy that is e:-optimal in the sense of (2.34), whereas a 

randomized stationary strategy having this property does exist. 

The following example which is only a slight modification of example 2.24 

shows that in general also a randomized stationary strategy satisfying 

(2.34) need not exist. 

D 
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EXAMPLE 2.25. All data are identical to those in example 2.24, except for 

v*(i) 

as b. + 1 for i ➔ 00 • 
]. 

the following: r(i,2) = 2i and 

p(i,1,i+1) = ai = bi/2bi+l' with 
.-1 bi= 1 +i , p(i,1,0) = 1-ai, 

i = 1, 2 , • • • . Thus, for i = 1 , 2, ... , 

... } 

Let TI be any randomized stationary strategy, then TI is again completely 

characterized by the probabilities pi by which action 1 is chosen in state 

i, i = 1,2, •.•. 

* In order that v (TI) ~ v - e, it is certainly necessary that for all 

i = 1, 2, ••• 

or, after some algebra, 

1 - p < i2-i . 
i -

Since otherwise, 

v(i,TI) = (1-p.)2i+p.a.v(i+1,TI) 
]. ]. ]. 

But then, using ai ::; 2/3 , pi :,; 1 and 1 - pi :,; i2-i, i 

v(i,TI) 

+ ..• 3i + 6 • 

So, for i ~ 4, 

v(i,TI) < v* (i) - 1 . 

Hence, no randomized stationary strategy TI can satisfy 

* V (TI) ~ V - E:e . 

1 , 2, ..• , we get 
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Extending this example, one may show that there need not even exist a 

randomized Markov strategy 11 satisfying v(11) ~ v* - e:e. Recall that the 

possibility of restriction to randomized Markov strategies (corollary 2.2) 

holds only componentwise. 

EXAMPLE 2.26. S := {0} u { (k,i) J k,i 1, 2, ••• , k $ i}, A ={ 1, 2}. 

All rewards and transition probabilities are zero except for the following: 

r((i,i),2) = 2i, p((k,i) ,a, (k+1,i)) = 1, p((i,i) ,1, (i+1,i+1)) = ai, 

p((i,i),1,0) = 1-ai, p((i,i),2,0) = 1, p(0,a,0) = 1, i = 1,2, •.. , k < i 

and a EA. Here ai is defined as in example 2.25. The states (i,i) play the 

same role as in the states i in example 2.25. 

Clearly, 

* V ( (k,i)) 

Let us fix i and look for a randomized Markov strategy 11 that is 1-optimal 

for all states (i,i), (i,i+1), (i,i+2), ••. , simultaneously. 

The relevant actions for state (i,i+t) are the actions at time tin state 

(i+t,i+t) fort~ i. 

Denote by pi+t the probability that in state (i+t,i+t) action 1 is taken at 

time i. Then one easily verifies that again we need to have 

-t 
1-pt $ t2 , t = i,i+1, ..•. 

But this again implies v( (i,i) ,11) $ 3i +6, contradicting for i ~ 4 the 1-

optimality of 11 for initial state (i,i). 

Hence, there does not exist a uniformly e:-optimal strategy 11 ERM in the 

additive sense of (2.34). 

In Van HEE, HORDIJK and Van der WAL [1977] an example is given with both 

positive and negative rewards and finite action space in which neither in 

the additive nor in the multiplicative sense a uniformly e:-optimal strategy 

exists. 
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CHAPTER 3 

SUCCESSIVE APPROXIMATIONS FOR THE TOTAL-REWARD MDP 

3. 1. INTROVUCTION 

Our main interest when studying the total reward MDP (or any other decision 

process) is to determine the value of the MDP and to determine a (nearly) 

optimal strategy. 

In this chapter some methods are studied by which the first part of this 

problem, the approximation of v*, might be solved. 

We know that v* is a solution of the optimality equation 

(3 .1) Uv V 

(theorem 2.11). So ·we can try to approximate a solution of this equation 

(hoping it to be the right one), for example by the so-called method of 

standard successive approximations 

(3.2) v = Uv n+l n n = O, 1, ••• 

This method will be studied in section 2. Further some (partly known) con-

* ditions are given which guarantee that vn converges to v. In general, as 

is shown in example 3.2, the method of standard successive approximation 

need not converge. 

There are several other iterative methods by which a solution of an equa­

tion like (3.1) might be approximated. See, for example, VARGA [1962, chap­

ter 3] for a description of the Jacobi, the Gauss-Seidel and the overrelax­

ation methods for the solution of a simple matrix equation. The latter 

three methods, Jacobi iteration, Gauss-Seidel iteration (see HASTINGS 

[1968]) and overrelaxation (see REETZ [1973]) have also been studied for 

contracting MDP's. 

It is possible to describe all these successive approximation methods in 

terms of go-ahead functions. This has the advantage that one can study the 
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convergence of these methods simultaneously. The go-ahead function approach 

has been introduced for the contracting case by WESSELS [1977a], Van NUNEN 

and WESSELS [1976], Van NUNEN [1976a] and Van NUNEN and STIDHAM [1978]. In 

section 3 we introduce the go-ahead function technique for the general 

total reward MDP model of section 1.5. The corresponding dynamic program­

ming operators are studied in section 4, where it is shown that v* is in­

deed a fixed point of each of these operators. 

In section 5 a subset is considered of the set of all go-ahead functions 

which still contains all those go-ahead functions, by which the algorithms 

we are interested in can be described. It is shown that for this set of go­

ahead functions one needs to consider in the optimization step only Markov 

strategies. 

* A second set of algorithms for the approximation of v is the set of value-

oriented successive approximation methods. These methods have been first 

mentioned for the contracting MDP by PORTEUS [1971] and have been exten­

sively studied and shown to converge by Van NUNEN [ 1976a]. In the value­

oriented approach each optimization step is followed by some kind of extra­

polation. We will consider these methods in section 6. 

3.2. STANVARV SUCCESSIVE APPROXIMATIONS 

In this section we first study the method of standard successive approxima­

tions for the solution of the optimality equation (3.1) hoping to obtain an 

approximation of v*. 

Standard successive approximations. 

( 

Choose v0 

Determine 

vn+l 

+ 
E Vu* (v0 is often called the scrapvalue) 

for n O, 1, .•• 

Uv 
n 

From theorem 2.6 it follows that this scheme is properly defined. 

Another way of looking at the method of standard successive approximations 

is to consider it as an approximation of the oo-horizon MDP by finite-stage 

MDP's. Then the question is: can we approximate the oo-horizon MDP by a 

sequence of finite-stage MDP's (with terminal payoff v0 ), i.e. does vn 

* converge to v. 
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We will say that the method of standard successive approximations for scrap-
n * value v0 converges if lim U v0 exists and is equal to v. 

n-+co 
Define v00 by 

(3. 3) V := liminf ~0, 
00 

n+oo 

where the liminf is taken componentwise. 

Then we have the following well-known result. 

LEMMA 3.1 (SCHAL [1975, formula (2.5)]). 

* V ?:. V 
00 

PROOF. For all TI€ n we 

vn(TI) + v(TI) if n + oo). 

have v (TI) s uno, so 
n also v(TI) S V 

Hence, v* sup v(TI) 
TIEil 

S V • 
00 

00 
(from 

D 

In general, v00 may be larger than v* as the following simple example shows. 

EXAMPLE 3.2 (Van HEE, HORDIJK and Van der WAL [1977]). S := {1,2,3}, 

r=O 

Clearly, v* (1) 

A= {1,2}, r(1,1) = r(3,a) = 0, 

r(1,2) = 2, r(2,a) = -1, p(1,1,1) 

p(1,2,2) p(2,a,3) = p(3,a,3) = 1, 

a€ A. 

2 for all n?:. 1. So v*(1) < v (1). 
00 

The problem in this example is that we can postpone negative rewards, which 

in the 00-horizon MDP are unavoidable. This leads us to the following theo­

rem. 

THEOREM 3.3 (Van HEE, HORDIJK and Van der WAL [1977, theorem 3.5]). 

If 
liminf inf lE v* (X ) ?:. 0 

TI n n +oo TIEM 

then 

* V V 
00 

PROOF. By lemma 3.1 it is sufficient to prove that limsup uno s v*. 

We have 
n +oo 
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tfo n * * * lE v* (X ) $ UV - inf lE v (X ) V - inf 
1TEM 

1T n 
1TEM 1T n 

So, 

uno * * * limsup $ V - liminf inf lE1T V (Xn) $ V 
n +oo n +oo 1TEM 

D 

COROLLARY 3.4 (cf. BLACKWELL [1967, theorem 3]). If for all i Es a:nd a EA 

we have r(i,a) ~ 0 (the positive dynamic programrrring case), then the method 

of sta:ndard successive a:pproximations with scra:pvalue O converges. 

As we have seen in example 3.2, finiteness of A is in general not sufficient 

for the convergence of UnO to v*. In case all r(i,a) 5 0, however, one has 

the following result. 

THEOREM 3.5 (STRAUCH [1966, theorem 9.1]). If A is finite and r(i,a) $ 0 

for all i Es and a EA, then the method of sta:ndard successive approxima­

tions with scra:pvalue O converges. 

PROOF. By lemma 3.1 and theorem 2.18 it-is sufficient to prove Uv00 ~ v00 

(clearly v 5 0). Therefore choose some arbitrary state i ES. Then, by the 

finiteness
00

of A, there exist an action a and a subsequence {unko} of {uno}, 

such that 

r(i,a) + I p(i,a,j) (Ul\:0) (j) 
j 

n. +1 
(U k 0) (i) , k 0 I 1, • • • • 

As the sequence vn is monotonically nonincreasing (U0 5 0, so by the mono­

tonicity of u also un+lo s UnO), we have 

Hence, 

n 
I p(i,a,j) (U kO) (j) + I p(i,a,j)v00 (j) (k + 00 ) • 

j j 

(Uv00 ) (i) ~ r(i,a) + I p(i,a,j)v00 (j) 
j 

n 
lim {r(i,a) + I p(i,a,j) (U kO) (j)} 
k+oo j 

As i has been chosen arbitrarily, the proof is complete. 

V (i) 
00 

D 



Clearly, theorem 3.5 also holds if the action set in state i varies with i 

but is still finite for all i ES. 
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If A is not finite, however, then the method of standard successive approx­

imations (with v0 = 0 and r(i,a) ~ 0) need not converge,as is shown by the 

following example. 

EXAMPLE 3.6 (STRAUCH [1966, example 6.1]). S := {0,1,2, ... }, A= {2,3,4, ... }. 

For all a EA: r(i,a) 0, if, 2, 

r(2,a) = -1, p(l,a,1) 1 = 

=p(i+1,a,i),i~1, andp(0,a,a) =1. 

Clearly (UnO) (0) = 0 for all n, 

but v*(O) = -1. So v00 (0) > v*(O). 

A nice result, from which lemma 3.1 and corollary 3.4 follow immediately, is 

the following. (Recall the definition of w* in (1.37).) 

THEOREM 3. 7. The method of standard successive approximations converges for 
. h * * all scrapvalues v0, w~t w ~ v0 ~ v. I.e., for all these scrapvalues we 

have 

lim Unv0 exists and is equal to v* 
n....,, 

PROOF. By the monotonicity of u we have for all w* ~ v0 ~ v* 

hence 

So it is sufficient to prove 

liminf Unw* ~ v* . 
n _-+ 0) 

* V n=l,2, ..• , 

Let 7T (f0 ,f1 , .•• ) EM be an arbitrary strategy. Then for all n 

V (7T) 

Further we have, with 7T+n 
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So for all n 

n * Uw 

JE w(X ,ir-<-n) ~ 
1T n 

1, 2, ... 

[n-1 ] ~ ]E l r(¾,1\_l +w* (X ) 1T k=O n 

* JE w (X ) 
1T n 

00 

~ ]E [nf r(¾,¾_l + I r-(¾,¾_l] 1T v(ir)-JE l r+(¾,¾_l-
1T k=n k=O k=n 

By condition 1.1 we have 

00 

JEir l r+(¾_,¾l -->- 0 
k=n 

(n -->- oo) , 

hence 

liminf Unw* ~ v(ir) (componentwise). 
n-->-oo 

Taking the (pointwise) supremum with respect to 1T EM, we obtain 

liminf Unw* ~ v* . 
n-->-oo 

* * So, for all w ~ v0 ~ v, 

n * lim U w 
n➔oo 

n 
lim U VO 
n➔oo 

* V 

In the next chapter we consider a fairly general condition, which implies 

that 

limsup sup JE1T Iv* (X ) J O , 
n-->- 00 1TEIT n 

□ 

and thus, by theorem 3.3, implies the convergence of the method of standard 

successive approximations for scrapvalue O. This condition excludes the 

possibility of postponing negative rewards which is essential in the coun­

terexamples 3.2 and 3.6. 
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3. 3. SUCCESSIVE APPROXIMATION METHOVS ANV GO-AHEAV FUNCTIONS 

Besides-the method of standard successive approximations considered in the 

previous section, there are several other successive approximation tech­

niques one could try to use to determine (approximate) the value of an MDP. 

Three well-known variants of the method of standard successive approxima­

tions are the following. 

Jacobi or total, step iteration. 

Choose v0 • 

Determine for n = 0,1, ••• 

vn+l (i) = sup {r(i,a) + l p(i,a,j)v (j) + p(i,a,i)v +l (i)} • 
aEA j;&i n n 

Gauss-Seidat iteration. 

Choose v0 • 

Determine for n = 0,1, .•. 

vn+l (i) = sup fr(i,a) + l p(i,a,j)v (j) + l p(i,a,j)v +l (j)} • 
aEA j>i n jSi n 

Suaceasive ovel'l'etag;ation method. 

Choose v0 • 

Determine for n = 0,1, ••• 

vn+l (i) = (1-a)vn(i) + a =~i {r(i,a) + jt p(i,a,j)vn(j) + 

+ l p(i,a,j)vn+l (j) + cvn+l (i) + [p(i,a,i) - c]v (i)} , 
j<i n 

with Os as 1 and Os cs inf p(i,a,i). 
i,a 

These methods are known from numerical analysis. For example, they can be 

used for the iterative solution of systems of linear equations, see VARGA 

[1962, chapter 3]. 

In the context of MDP's the Gauss-Seidel method has been introduced by 

HASTINGS [1968] and the method of successive overrelaxation by REETZ [1973] 

(the special case a = 1). 

For each of these algorithms, one wants to investigate whether vn converges 

to v*. In order to avoid the necessity of treating these algorithms one 
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after another, we would like to have a unifying notation which enables us 

to study these algorithms simultaneously. 

Such a unifying notation is the description of successive approximation 

methods by go-ahead functions as introduced by WESSELS [1977a] and further 

elaborated by Van NUNEN and WESSELS [1976], Van NUNEN [1976a] and Van NUNEN 

and STIDHAM [1978]. In order to see that the go-ahead function approach is 

very natural, consider for example the improvement step in the Gauss-Seidel 

iteration. In words, we could describe this step as follows. 

"In order to obtain vn+l (i) take action a in state i; if the next state is 

a state j > i, then you stop and receive a terminal reward vn(j), if the 

next state is a state j ~ i, then you go ahead to obtain vn+l(j)." 

We see that Jacobi iteration, Gauss-Seidel iteration and standard successive 

approximations are algorithms which can be described by a (go-ahead) func­

tion o from s 2 into {0,1}; if for a pair of states i,j you have o(i,j) = 1, 

then you go ahead after a transition from i to j, and if o(i,j) = O, then 

you stop. 

In the successive overrelaxation algorithm, however, the situation is dif­

ferent. First, it has to be decided whether the iteration process will 

start, which happens with probability a, and then: if in state i action a 

has been taken and the system makes a transition from state i to i, then we 

go ahead with probability c /p(i,a,i) and we stop with probability 

(p(i,a,i) -c) /p(i,a,i). 

So in this case the choice between going ahead and stopping has to be made 

by a random experiment, which at time 1 (and thereafter) also depends on 

the action a. 

Thus the overrelaxation algorithm can be described by a (go-ahead) function 

o from Su SXAXS into [0,1], with o(i) = a, o(i,a,j) = 1 if j < i, 

o (i ,a, j) 0 if j > i and o(i,a,i) = c/p(i,a,i), i Es, a EA. 

DEFINITION 3.8. A go-ahead function a is a map from 

s u U (S X A) n U 

n=1 

"' 
U (S X A) n x S 

n=1 

into [0,1] which is measurable with respect to the a-field generated by S 

and A. 
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The interpretation is as follows: 

Let (i0 ,a0 ,i1 , ••• ) be a realization of the process, then the observation of 

the process (and its earnings) is stopped at time n before action an is 

chosen with probability 1 - o(i0 ,a0 , •.• ,in) (provided the observations have 

not been stopped before) and it is stopped after action an is chosen - but 

before it is executed - with probability 1 - o (i0 ,a0 , ••• ,in,an) (if the obser­

vations did not terminate before). 

We define the go-ahead function also on (S x A) n since this can be used to 

restore the equal row-sum property in the case of (essentially) sub-stochas­

tic transition matrices (arising e.g. from semi-Markov decision problems 

with discounting), see Van NUNEN and STIDHAM [1978]. 

In order to be able to cope with the fact that a go-ahead function not only 

takes the values O and 1, we have to incorporate this random aspect of the 

go-ahead device in the probability space. Therefore we extend the space 

fl= (S XA) 00 to a space fl0 := (S XE XA xE) 00
, where E := {0,1}. On Ewe con­

sider the a-field E of all subsets, and on (S XE xA xE)n the a-field 

generated by S, A and E. 
As in section 1.5 we can now generate for all TI= (TI0 ,TI 1 , ••. ) E IT, transi­

tion probabilities p~ from S into E x A x E x S and p~ from S x (E x Ax E x S) n 

into E x A x E x S, n = 1, 2, ••• , by e.g. 

p~({1} xc x {o} XD I io) = O(iol f TIO(da J io) (1- o(i,a)) 

C 

and for n 1, 2, ••• 

• f Tin (da 

C 

~ p(i0 ,a,j) , 
jED 

for all CE A and DES. Here yn = 0 if the observation of the process 

stops immediately after in has been observed (if it did not stop before) 

and Yn = 1 if we go ahead. And zn O if the observations terminate after 

action an is selected but before it is executed, zn = 1 if the observations 

continue. 

Further we endow fl 0 with the product a-field generated by S, A and E. Then 

for each TIE IT the sequence of transition probabilities {p0 , n o 1 } n , , •.• 

defines for each initial state i E S a probability measure ll?? on fl and 
l. 1 TI 0 
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a stochastic process {(X ,Y ,A ,z ), n = 0,1, ... }, where Y and Z are the n n n n • n n 
outcomes of the random experiments immediately after state Xn has been ob-

served and A has been chosen. 
n o o 

We denote by JE. the expectation operator with respect to F 
1,'IT i,1T 

Next, define the function Ton n0 by 

So Tis a stopping time which denotes the time upon which the observation 

of the process is stopped. 

For any TT E IT and go-ahead function o, we define the operator L0 (TT) for all 

v EV for which the expectation is properly defined by 

(3.4) (L0 (TT)v) (i) := ]E~ [Tt r(X ,A ) +v(X )] 
1., TT n=O n n T 

i E S , 

where v(XT) is defined O if T = 00 

+ We will see later that L0 (TT)v is properly defined for all v E vu* (or 
+ * VE Vz* if z < oo). 

Further we define u0v by 

(3. 5) := sup L0 (TT)V. 
TTE IT 

Note that the improvement step of the algorithms described at the beginning 

of this section, can now be formulated as 

with a the corresponding go-ahead function. 

+ abs + abs 
Further, define the operators L0 (TT), L0 (TT), u0 and U0 by 

+ 
]E~ [Tf r + (X , A ) + v (X ) ] L0 (TT)V : == 

n=O n n T 

1 + 
U0v := sup L0 (TT) V 

TTEIT 

abs 
L0 (TT)v := JE 0 [Tf lr(X ,A >I +v(X )] ' 

TT n=O n n T 



abs 
U0 V 

abs 
:= sup L0 (1T)V 

1TE II 

for all v EV for which the expectations are properly defined. 

3.4. THE OPERATORS L6(rr) ANV u6 

In this section it will be proved that L0 (1T) and U0 are for all go-ahead 

functions o operators on V+* and if z* < 00 also operators on V+*. 
u z 

The main result of this section is that for all go-ahead functions o 

In order to prove this we need the following basic inequality. 

For all 1T(l) and 1r( 2) E II and for all go-ahead functions o 

(3.6) Lo (1T (1) )V(1T (2j) * S V 
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This result is intuitively clear. Playing strategy ,r(l) until time, and 

then switching over to 1T (2 ) can never yield more than v *. Howeve·r, this 

decision rule is in general (if o does not take on only the values O and 1) 

not a strategy in the sense of section 1.5. This is caused by the measur­

ability problems which arise from fitting 1T(l) and 1r( 2) together at a time, 

that is determined by the outcomes of a series of random experiments upon 

which a strategy may not depend. So (3.6) still needs a proof. 

The line of reasoning we follow is simple. It only has to be shown that the 

decisionmaker cannot benefit from knowledge about the outcomes of these 

random experiments, or any other data that are independent of the future 

behaviour of the process. 

Therefore, let (S,A,p,r) characterize our original MDP and let (S,A,p,r) be· 

another MDP with S = S, A = A x B, where B is some arbitrary space, 

r(i. ra,b)) = r(i,a) and p(i, (a,b) ,j) = p(i,a,j) for all i,j E sand 

(a,b) E Ax B; Let further B be the a-fielr\ containing all subsets of B and 

A, the a-field on A, be the product a-field generated by A and B. 
So the transition probabilities and the immediate rewards depend on 

(a,b) E A XB only through the first coordinate. (In order to prove (3.6) we 

will let B contain the outcomes of the random experiments.) To see that the 
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two MDP's are essentially equivalent! observe the following. Any (random­

ized) Markov strategy in (S,A,p,r) induces a (randomized) Markov strategy in 

(S,A,p,r) and conversely, each (randomized) Markov strategy in (S,A,p,r) 

yields a whole set of (randomized) Markov strategies in (S,A,p,r), where 

these co~responding strategies have the same value. 

Marking all objects corresponding to the MOP (S,A,p,r) by a - we obtain the 

following important lemma. 

LEMMA 3.9. 

* u -* V * V and z* * z 

~- By corollary 2.2 we can restrict ourselves to the consideration of 

randomized Markov strategies. So the result is immediate from the observed 

relation between randomized Markov strategies in the two problems. 

THEOREM 3.10. For aZZ TI(l) and TI( 2) E IT and for aZZ go-ahead funations o 

(i) L0 (TI(1))v(TI( 2)) s * V 

(ii) L; (TI (1) )u (TI (2)) s * u 

(iii) Lts(TI(l))Z(TI(2)) * s z 

D 

} (1) ~ (2) PROOF. We will apply lemma 3.9 with B = {0,1. The triple TI ,u,TI yields 

a strategy in (S,A,p,r), namely the strategy w defined as follows. 

If b0 =bl= ••• = bn-l = 1, then 

and 

And if b0 

W (C X { 1} 
n 

o(io,ao,···•in) I o(io,ao,···•in,a)TI~1) (da I io,ao, ... ,in) 

aEC 

+ o(io•·••1in) I [1-o(io, ... ,in,a)h~1) (da I io, ... ,in)Tii2' cclin) 

aEA 

0, ts n-1, then 
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and 

So inf {n I bn = O} corresponds with the stopping time T in the original MOP 

upon which we switch from strategy 11(l) to 11(2 ) Hence, clearly 

L0 (11 (1) )v(11 (2)) * v (by lemma 3.9). 

Similarly, one obtains (ii) and (iii). 

COROLLARY 3.11. For all 11 E IT and all go-ahead functions o: 

(i) 
+ + + 

L0 (11), L0 (11),u 0 and u0 are operators on vu*" 

* h + abs + d uabs (ii)Ifz < 00 ,tenL0 (11),L0 (11),L0 (11),U0 ,U0 an O areoperators 

on vz*" 

PROOF. 

(i) 

(3.7) 

+ One may easily verify that it follows from the monotonicity of L0 (11) 
+ + 

and U0 and from L0 (11)v $ L0 (11)v, that it is sufficient to pr9ve 

for all 11 E IT 

Let 11( 2) be a strategy with u(11( 2)) ~ u* -e:e, then we have for all 

11 E IT 

(by theorem 3.10(ii)). 

Ase:> 0 can be chosen arbitrarily, we also have (3.7). 

(J.·i·) , abs ) * * It is sufficient to prove L0 (11 z $ z for all 11 E IT, the proof of 

D 

which is identical to the proof of (3.7). 0 

Similarly we can prove 

COROLLARY 3.12. For all 11 E IT and all go-ahead functions owe have 
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hence 

* * In order to prove U O v "' v , which together with corollary 3 .12 would yield 

* * U0v = v, we need the following lemma. 

LEMMA 3.13. For all~ E IT and for all go-ahead functions owe have 

(i0 ,a0 ,i 1, ••• ,an) 
PROOF. Let for any n"' 0 and (i0 ,a0 ,i 1, ••• ,an) the strategy~ 

be defined by 

and fork= 1,2, .•• 

Then 

ex, 

JE~ l r(Xn,An) 
n=T 

From this lemma one immediately has 

COROLLARY 3.14. For all~ E IT and all go-ahead functions owe have 

whence also 

"' sup v(~) 
~€IT 

* V 

D 
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PROOF. For all 11 E II and c, 

* JEc [Tt r(X ,A) +v*(x )] Lc(11)v 
1T 

n=O 
n n T 

Ci: 
00 

;,: JEc r(Xn,An) + I r(X ,A )] 
1T n n 

n=T 

And finally we obtain from corollaries 3.12 and 3.14, 

THEOREM 3.15. For all go-ahead functions c 

* V * u and * z 

v(11) D 

So it makes sense to study the following successive approximation procedures 

+ * l Choose v0 (in vu* or, if z < 00 , in vz*). 

Determine for n = 0,1, ••. 

vn+1 = ucvn · 

* Clearly, in order to have vn converge to v one needs conditions on v0 and 

the MDP ,(the reward structure for example). But we do also need a condition 

on c. For example, if in the successive overrelaxation algorithm of section 

3.3 we have a= 0, then ucvO = v0 for any v0 Ev, so the method will never 

* * converge to v if v0 ~ v. 

Therefore it seems natural to consider go-ahead functions satisfying the 

following definition. 

DEFINITION 3.16. A go-ahead function c is called nonzero if 

ac := inf inf c(i)c(i,a) > 0 
iES aEA 

Note that for the go-ahead function c which corresponds to the overrelaxa­

tion algorithm with a= 0 we have ac = O. 
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3. 5. THE RESTRICTION TO MARKOV STRATEGIES IN u6 v 

In general it will not be possible to consider only Markov strategies in 

the optimization of L0 (TI)v, since o may be history dependent. 

An interesting question is now for which go-ahead functions o can we re­

strict ourselves to the consideration of Markov strategies, i.e. for which 

o do we have 

(3. 8) sup L0 (TI)V, 
TIEM 

where the supremum is taken componentwise. 

In this section we show that for a certain class of go-ahead functions 

(3.8) does hold. 

WESSELS [1977a] and Van NUNEN [1976a] have shown for action-independent go­

ahead functions that in the contracting case one can restrict the attention 

to stationary strategies in the maximization of u0v if o(i0 , ... ,in+l> = 

= o(in,in+l) for all n = 1,2, .••. Go-ahead functions having this property 

they called "transition memoryless". Van NUNEN and STIDHAM [1978] remarked 

that this result can be extended to action-dependent go-ahead functions for 

which o(i0 , .•• ,an) 

n = 1,2, ...• 

DEFINITION 3.17. A go-ahead function o is called Markov, if for all 

n = 0,1, .•• and all i 0 ,a0 ,i1 , ... the probabilities o(i0 ,a0 , .•. ,an) and 

o(i0 ,a0 , ..• ,an,in+l> only depend on the last two or three coordinates, 

respectively, and on n. I.e., there exist functions o0 ,o 1 , ... from 

s x A u s x A x s into [ o, 1 J such that o (i0 , ... , i , a ) = o (i , a ) and 
n n n n n 

o(i0 , ... ,in,an,in+l) =on(in,an,in+l> for all n = 0,1, .••• 

There is some similarity between the effects of the go-ahead function and 
00 

the transition law. And as a stochastic process on S is an (inhomogenous) 

Markov process if the probabilities lP (Xn+l = j I x0 = i 0 , ••• ,xn = in) 

depend on in' j ,;ud n only, it seems natural to use the term Markov for the 

go-ahead functions of definition 3.17. 

In the terminology of Wessels and Van Nunen one might use the term "time 

dependent transition memoryless". 

Using the similarity between go-ahead functions and transition laws, we 

prove the following result. 
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THEOREM 3.18. If o is a Markov go-ahead funation and v Ev:* (or, if z* < 00, 

v Ev*), then for all i Es 
z 

sup (L0 (,r)v) (i) = (U0v) (i) 
1fEM 

PROOF. The line of proof is essentially the same as in the proofs by 

WESSELS [1977a] and Van NUNEN [1976a] for the result that, for transition 

memoryless go-ahead functions, one can restrict the attention to stationary 

strategies in the contracting case; 

Incorporating the effects of the go-ahead function in the rewards and trans­

ition probabilities, we construct an MDP characterized by (S,A,p,r) which 

corresponds in a natural way to the problem of optimizing L0 (,r). 

Define S := {(i,t) I i Es, t 0,1, ••• } u {*} and A := A. Assuming (without 

loss of generality) that o(i) 

i Es and a EA 

1 for all i Es, we define fort= 0,1, ••• , 

r ( (i,t) ,a) [1- ot(i,a)]v(i) + 

+ ot(i,a)[r(i,a) +}: p(i,a,j)[1-ot+1(i,a,j)]v(j)], 
j 

p((i,t) ,a, (j,t+1)) ot(i,a)p(i,a,j)ot+1 (i,a,j) j E S , 

p((i,t> ,a,*> 1 - }: ot<i,a>p<i,a,j)ot+l (i,a,j> 
j 

r(*,a) = O and f>(*,a,*) = 1 • 

+ + + As for v E Vu* we have L0 (,r)v < 00 ·for all ,r E 11, one easily observes that 

also the MDP (S,A,p,r) satisfies condition 1.1. Further, any strategy ,r for 

the problem of optimizing L0 ( •) v yie·lds a strategy -rr for the initial states 

(i,O) in (S,A,f,,r), with (L0 (,r)v) (i) = ,>( (i,O) ,u), and any strategy ,r for 

the MDP (S,A,p,r) induces a strategy ,r with v( (i,O) ,u) = (L0 (,r)v) (i). And 

as Markov strategies in (S,A,p,r) are also Markov strategies in the origin­

al MDP, we have for all i ES 

(U0v) (i) = sup v( (i,O) ,,r) 
·11dl 

sup v( (i,O) ,,r) 
'ITEM 

sup (Lo (,r) v) (i) • D 
1fEM 

Observe that the three algorithms presented in section 3.3 all correspond 

to Markov go-ahead functions. In fact, the corresponding go-ahead functions 

belong to an even more restricted class: the set of stationary go-ahead 

functions. 
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DEFINITION 3.19. A go-ahead function o is called stationary if for all 

n = 1,2, ... we have o(i0 ,a0 , ••• ,in,anl 

o(io,ao,···•in,an,in+1) o(in,an,in+1>· 

Wessels and Van Nunen use the term transition memoryless for these go-ahead 

functions. For the same reason as mentioned before (the similarity between 

go-ahead functions and transition laws) we prefer the term stationary. 

If o is stationary, then one can construct an MDP characterized by (S,A,p,r) 
which corresponds to the problem of finding U0v, which is considerably 

simpler than the MDP in the proof of theorem 3.18. Namely (assuming again 

without loss of generality o(i) = 1 for all i E SJ, the MDP (S,A,p,r) with 

for all i ES and a EA, 

(3.9) 

r (i,a) := [ 1 - o (i,a)] v(i) + 

+ a(i,aHr(i,a> +I p(i,a,j)[1-o(i,a,j>Jvu>J , 
j 

p(i,a,j) := o (i,a)p(i,a,j)o (i,a,j) , j E s , 

p(i,a,*> := 1 - I o (i,a)p(i,a,j)a (i,a,j) , 
j 

r(*,a) := 0 and p(*,a,*) = 1 . 

We see that there is a one-to-one correspondence between strategies in the 

original MDP and the part of the strategies for (S,A,p,r) on S. So, if in 

the MDP (S,A,p,r) we can restrict ourselves to stationary strategies, then 

also 

sup L0 (f)v 
fEF 

U0v, componentwise. · 

For example, we have 

THEOREM 3.20. Leto be a stationary go-ahead function, then either of the 

fol.1,,.,,_Jing two conditions guarantees that 

(3. 10) sup (L0 (f) v) (i) 
fEF 

(i) r(i,a) ~ 0 for all i Es and a EA and v ~ 0. 

(ii) A is finite and v Ev+*. 
u 
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PROOF. Immediate from theorems 2.22 and 2.23. 

If the action set in state i, A(i), depends on i, then we may replace in 

theorem 3.20(i) the condition A is finite by A(i) is finite for all i Es. 

[I 

In chapter 4 we consider another condition which guarantees (3.10) to hold. 

3.6. VALUE-ORIENTEV SUCCESSIVE APPROXIMATIONS 

Another variant of the method of standard successive approximations is the 

method of value-oriented (standard) successive approximations. 

In all successive approximation methods considered in the previous sections, 

the algorithm consisted of a sequence of optimization steps. In the value­

oriented methods, each optimization step is followed by some kind of extra­

polation. 

Value-oriented standa,rd successive approximations 

(3.11) 

(3. 12) 

+ Choose v0 E Vu*' A E {1,2, .•• } and a sequence {dn, n = 0,1, ... } 

of strictly positive real~valued functions on S (dn(i) > 0 for 

all i E S) with dn ➔ 0 (n ➔ 00 ). 

Determine for n = 0,1, .•. a policy fn+l such that 

and define 

The reason why we consider arbitrary functions dn and not just functions 

Ee will become clear in section 4.8. n 
So, after each optimization step we determine a policy fn+l' then vn+l is 

obtained by using fn+l during A periods of time in the }--stage MDP with 

terminal pay-off vn. This can be seen as a kind of extrapolation. 

Note that if A is finite, we do not need the functions dn and (3.11) can be 

replaced by L(fn+l)vn = Uvn. 

For the contracting MDP this method has been first mentioned (without con­

vergence proof) by PORTEUS [1971]. Van NUNEN [1976a,1976c] has proved that 

in the contracting case the value-oriented method converges, i.e., vn 
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converges to v* for suitably chosen scrap-values v0 . 

The value-oriented variant can also be formulated for the successive approx­

imations methods generated by a go-ahead function o. In that case (3.11) and 

(3 12 ) 1 db ( (n+l)) LA( (n+l)) . are rep ace y L0 rr vn :2' U0vn -dn and vn+l O rr vn' 

respectively. 

For the contracting MDP the combination of go-ahead functions and value­

oriented methods has been studied by Van NUNEN [1976a] and Van NUNEN and 

WESSELS [1977b]. 

Here we only consider the value-oriented variant of the method of standard 

successive approximations. 

It is clear that the value-oriented method will not converge in general, 

since for v0 = 0 the method of standard successive approximations not even 

needs to converge. But even if the method of standard successive approxima­

tions does converge, then the value-oriented method may not converge. 

EXAMPLE 3.21. S = {O} u {(i,k) I i E {1,2, •.. }, k E {1,2}}, A= {1,2}, 

r((i,1),1) = ri+2 , r((i,1),2) 

approximations converges as UO * 

2-i+l, p((i,1) ,1, (i,2)) 

p((i,1),2,(i+l,1)) = 1, 

r((i,2),a) =-1-2-i+2, 
p( (i,2) ,a,O) = p(O,a,O) 1, 

r(O,a) = 0, a EA. 

Consider the case v0 = 0, A= 2, 

dn_= O, n = 0,1, .... Clearly 

the method of standard successive 

v However, as one may verify, the sequence 

vn obtained for the value-oriented variant converges to a vector v with 

v((i,1)) =v*((i,1))-1. 

Conversely, the method of value-oriented successive approximations may con­

verge in cases where the method of standard successive approximations does 

not ronverge. For example, consider the MDP of example 3.2. With v0 = 0 the 

method of standard successive approximations does not converge whereas the 

value-oriented method converges for all A> 1. 

The question of convergence is somewhat more transparent in the following 

monotonic version of the value-oriented method. 
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Monotone vaiw-oriented stancJard sucaessive approximations 

Choose some v0 € v:* for which there exists a policy f such that 

L(f)v0 ~ v0 ; choose A€ {1,2, ••• } and a sequence of real-valued 

functions {d , n = 0,1, ••• } on S with d > O for all n = 0,1, ••• 
n n 

and lim d = 0. n 
n--

Determine for n = 0,1, ••• a policy fn+l such that 

(3.13) L(f +l)v ~ max {v , Uv -d } n n n n n 

and define 

V = n+l · 

Since L(fn)vn ~ vn for all n = 0,1, ••• (as one may easily show by induction) 

there exists for all n a policy fn+l satisfying (3.13). It is also clear 

(from v0 € V+*) that Uv is properly defined for all n. 
u n 

As vn+l ~ vn for all n, the sequence {vn} converges to a limit, v say. And 

1 • v+ a so v € u*· 

The question remains, when do we have v = v*. In chapter 4, section 8, we 

consider a rather general condition, which guarantees that the monotone 

variant converges for all v0 € Vz* for which there exists a policy f such 

that L(f)v0 ~ v0 • 

Here we only prove. the following result (cf. theorem 3.7). 

THEOREM 3.22. For aii v0 € v with w* s v0 s v* for which there exists a 

policy f with L(f)v0 ~ v0, the monotone vaiw-oriented standard successive 

approximations method converges. 

0,1, ••• } be the sequence generated by the method and 

v = lim vn. As v0 s v*, we have by induction 
n-­

Namely, suppose vn s v*, then vn+l 

also vs v*. 

v S v* for all n = 1,2, •.• 
n 

But from (3.13) and the monotonicity of L(fn+l) we also have 

Letting n tend to infinity, we get with the monotonicity of vn and dn + 0 

(n ➔ oo) 
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v :,, Uv 

Hence also 

v :,, lim Unv z lim Unw * * V (by theorem 3. 7). 
Il4<><> Il4<><> 

So v * v, which completes the proof. 

COROLLARY 3.23. If for all i Es and a EA we have r(i,a) z o, then the 

monotone value-oriented method converges for scrapvalue v0 = O. 

D 
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CHAPTER 4 

THE STRONGLY CONVERGENT MDP 

4. 1. INTROVUCTION 

In chapters 2 and 3 we analysed the general total-reward MDP. We have seen 

that in general the method of (standard) successive approximations does not 

converge, and that in general nearly-optimal stationary strategies do not 

exist. 

In this chapter we study the total-reward MDP under some additional assump­

tions concerning the absolute values of the income streams. Mostly we have 

assumptions at least as strong as 

CONDITION 4. 1. 

co 
(4. 1) (i) * lE 2 Ir (X ,A ) I z sup < co , 

1TEJI 1T n=0 n n 

and 

co 
(4.2) (ii) lim sup 2 lE Ire¾•¾:' I 0 

1T n-+<>e 1TEM k=n 

Condition 4.l(ii) is also called the unifoY'ITI tail condition. 

It will be clear that (4.2) implies that the co-horizon MDP can be approxi­

mated by finite-stage MDP's, so that the method of standard successive ap­

proximations with scrapvalue 0 will converge. 

A main point in this introductory section is to show that condition 4.1 is 

equivalent to a so-called strong convergence condition, and implies 

(4.3) lim sup lE z* (X ) 
n-+<>e 1TEM 1T n 

0 • 

From this in sections 2, 3 and 4 we obtain the equivalence of conserving­

ness and optimality, the convergence of the method of standard successive 
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approximations for any scrapvalue v 0 E Vz* and the convergence of the policy 

iteration method. In section 5 it is shown how the strong convergence condi­

tion relates to the concept of Liapunov functions as introduced in the con­

text of MDP's by HORDIJK [1974]. In section 6 the convergence is studied of 

the successive approximations methods, generated in section 3.3 by means of 

go-ahead functions. In section 7 it is shown that for stationary go-ahead 

functions one needs to consider only stationary strategies in the optimiza­

tion of L0 (•)v. Finally, in section 8, we consider the method of value­

oriented successive approximations. 

The results of sections 1, 3, 4, 5 and part of section 2 can also be found 

in Van HEE, HORDIJK and Van der WAL [1977] and/or Van HEE and Van der WAL 

[1977]. Related results can be found in SCHAL [1975] and STIDHAM [1978]. 

Stidham also compares the conditions in Van HEE, HORDIJK and Van der WAL 

[1977], scHAL [1975] and STIDHAM [1978]. 

In the remainder of this introductory section we establish the equivalence 

of condition 4.1 to the strong convergence condition (condition 4.2). 

To formulate this condition define@ as the set of all sequences 

~ = (~0 ,~ 1 , .•. ) with ~n EV for all n = 0,1, ... , with ~O ~ e, ~n+l ~ ~n for 

all n 0, 1, ... , and with ;!! ~n = 00 (pointwise). (So, ~O (i) ~ 1 and 

~n(i) t 00 (n + 00 ) for all i ES.) 

For all~ E@ we define 

(4.4) 

(4.5) 

z (i,1r) := :IE. l ~ (i) jr(X ,A ) I , 
~ 1 , 7f n=0 n n n 

z*(i) 
~ 

sup z (i,1r) 
7rEM ~ 

iES,7rEIT, 

CONDITION 4.2 (Strong-convergence condition). There exists a~ E @ for 

which 

* z < 00 • 

~ 

An MDP which satisfies the strong converg~nce condition is called strongly 

convergent. 

In order to show that condition 4.2 is equivalent to condition 4.1, we 

first derive the following lemma from which we see that condition 4.2 im­

plies condition 4.1: 
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LEMMA 4.3. For all, 

00 

(i) Ei ,r l lrcxk,J\) I S c,nci»-1 z,(i,,r) , 
' k=n 

iES,1TEM, 

and thus 

00 

(ii) sup Ei ,r }: lr<¾,J\> I s c,nCill-l z;(i) 
1TEM ' k=n 

i E S • 

PROOF. It is sufficient to prove (i) since (ii) follows from (i) immediately. 

For all i Es and all 1T EM, 

00 

S c,n (i))-l E. l 'k (i) lrcxk,J\> I 
i,,r k=0 

So we see that, if z* < 00 for some, E ~, then condition 4.1 is satisfied. 

' 
THEOREM 4.4. An MDP-is strongly convergent if and only if condition 4.1 

holds. 

PROOF. As we already remarked, the "only if" part follows immediately from 

lemma 4.3. 

□ 

In order to prove the "if" part we construct a sequence, for which z* < 00 • 

' First define 

00 

:= sup l 
1TEM k=n 

E. Ir (X. ,A. l I , . 
1 1 1T ·ic --Jc 

Clearly, bn ~ bn+l" Next, for i ES define 

and 

N.t+l (i) :=·max {min {n I bn (i) 

And finally define, by 

i E S, n = 0,1, .... 

R, =0,1, .... 

'n (i) := R, + 1 if NR, (i) s n < N.t+l (i) , iES,n 0,1, •••• 



68 

Then 

NHl (i)-1 

sup l cpk(i)JEi,1r !r(Xk,J\ll $ (R-+1)2-R,, fl 
11EM k=NR, (i) 

Consequently, for all i Es, 

N 1 (i)-1 

* 

1, 2,... . 

* z (i) $ 
cp sup 

11EM 

l E. Ir (X. , A. ) I + 
k=O 1,11 k k 

z (i) + 3 < = , 

which completes the proof. 

Next we show that condition 4.1 (or condition 4.2) implies (4.3). To prove 

this we need the following lemma. 

LEMMA 4.5. For all n Qt 1, • • • 

sup 
1TEM 

□ 

PROOF. Let 11 = (f0 ,f1 , ... ) EM be arbitrary, then conditioning on Xn yields 

* lE z (X ) 
1T n 

+n 
where 11 = (fn,fn+1, ..• ). 

So, it is sufficient to show that 

sup 
11EM 

~suplE z*(x) 
1T n 

11EM 

Let E > 0 be arbitrary, then by theorem 2.23 a stationary strategy f exists 

with 

z (f) * ~ Z (1-E) 

* ~ (1-E)lE z (X) 
1T n 

Hence also 
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sup JETT l Ir (Xk •¾:) I 
TTEM k=n 

* ~ (1 - E:) sup JETT z (Xn) 
TTEM 

As E: > 0 is arbitrary, the proof is complete. □ 

THEOREM 4.6. If condition 4.1 or condition 4.2 holds, then 

* (i) lim sup JE z (X ) 0 ; TT n n--->oo TTEM 

(ii) lim 
~n 
UV 0 for aU v E vz* (for the definition of v see (1.27)). 

n--->oo 

PROOF. (i) follows 

from (i), with tfv 

immediately from lemmas 4.5 

= sup JE v (X ) and Iv I ~ cz * 
TT n 

and 4.3(ii), and (ii) follows 

for some c E m.. 
TTEM 

An important consequence of theorem 4.6 is 

THEOREM 4.7. If condition 4.1 or 4.2 holds, then v* is the unique solution 

of the optimality equation uv = v within vz*" 

* * 

□ 

PROOF. alearly v E Vz*' and by theorem 2.11 v solves the optimality equa-

tion. So it remains to prove the uniqueness. 

From theorem 2.7 we know that U and U map Vz* into itself. Let v be a solu­

tion of Uv = v, with v E V z*, and therefore Iv - v * I E V z* as well. Then 

(4.6) 

The inequality in (4.6) holds for any two functions v and win Vz*' as 

follows from 

Uv-Uw sup [L(f)v-uw] ~ 
fEF 

U(v -w) ~ Div -wl 

Iterating (4.6) yields 

sup [L(f)v-L(f)w] 
fEF 

So, letting n tend to infinity, and using theorem 4.6(ii), we obtain 

which proves the uniqueness within Vz*' D 
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4.2. CONSERVINGNESS ANV OPTIMALITY 

In this section it is investigated whether the concepts (nearly-) conserving 

and (nearly-) optimal coincide if the MDP is strongly convergent (i.e., if 

condition 4.1 or 4.2 is satisfied). 

A policy f is called conserving if 

(4. 7) 

and called £-conserving if 

(4.8) * * L(f)v 2:v-Ee, £>0. 

So, conserving policies preserve the possibility of ultimately obtaining 

* v. However, as we see from example 3.2, a conserving policy need not yield 

an optimal stationary strategy. Namely, let f be a policy with f(1) = 1, 
* * * then L(f)v = v but v(1,f) = 0 < v (1) = 1. 

For a conserving policy f to yield an optimal stationary strategy, it is 

necessary that f is also equalizing, i.e. that 

and this condition is not satisfied in example 3.2. 

From theore.m 4. 6 (i) and the fact that Iv* I 5 z * it follows that for a 

strongly convergent MDP all strategies are equalizing, so in this case 

conservingness and optimality coincide. 

The case of £-conservingness is somewhat more complicated. 

The notions conserving and equalizing were introduced by DUBINS and SAVAGE 

[1965], and have been used in the context of MDP's by HORDIJK [1974] and 

GROENEWEGEN [1978] to characterize optimal strategies. 

THEOREM 4.8. If the MDP is strongly convergent, then we have: 

(i) if f is conserving, then v(f) = v*, 

(ii) for all£> O there exists a Markov strategy TI satisfying 

V (TI) * 2: V - Ee 

PROOF. 

(i) Iterating (4.7) yields 
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Letting n tend to infinity the result now follows with I 
theorem 4.6 (see also theorem 2.16). 

* s; z from 

(ii) Construct TT= (f0 ,f1 , •.. ) EM along the lines of (2.17). Then use theo­

rem 2.14, since (2.18) follows from theorem 4.6(1) with Jv*J s; z*. D 

The strong-convergence condition implies that one needs to consider only 

stationary strategies in the optimization of v (i, TT) for a fixed initial 

state. 

THEOREM 4.9. If the MDP is strongly convergent, then for any E > 0 and any 

initial state i Es a stationary strategy f exists 

* V(i,f) ;:>: V (i) -E. 

PROOF. Let~ E W be such that 

* Z < OO e 

~ 

Let n be so large that 

and let f be 3: - conserving, i.e. 

* * L (f} V ;:>: V 

Then 

e: 
- -e 

3n 

e: 
3 

[! 

In theorems 4.10 and 4.11 some results on the existence of uniformly nearly­

optimal strategies for the strongly convergent MDP are given. 

* -1 * THEOREM 4.10. If for some~ E w we have z < 00 and(~ (i)) z (i) con-
~ n ~ 

verges to zero uniformly on s, then for every e: > 0 a stationary strategy f 

exists satisfying v(f);:,, v*-e:e. 
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PROOF. The proof is almost identical to the proof of theorem 4.9. 

THEOREM 4.11. Let q> E I. If q, -+ m miform7,y on s, and if z* < m, then for n q> 
every e > O a stationary strategy f exists satisfying 

v(f) * * ;:: v -ez 
q> 

PROOF. Fix E > 0. Choose n such that 

and a policy f satisfying 

Then 

* .!: V E * - 2 £ z* .!: * * - ) Z 3 Q) V - EZQ) , 

where we used 

and lemmas 4.5 and 4.3(ii). 

Note the following. If state j can be reached from state i, i.e., for some 

n .!: 0 and some n € M we have 

lPi (X = j ) > 0 , ,n n 

then clearly 

(XI 

l q>k+n (i) lEj ,no Ir C¾ ,¾l I < ex, for all n° € M. 
k=O 

0 

D 
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Hence, if the MDP is strongly convergent, and if there exists a state i ES 

from which all states can be reached, then there also exists a~ E ~ with 

* ~n ➔ 00 uniformly on S, for which z~ < 00 • 

In chapter 5, where the contracting MDP is studied, theorem 4.11 will be 

applied. Theorem 4.10 can be used in the discounted MDP with bounded re­

wards. 

4.3. STANVARV SUCCESSIVE APPROXIMATIONS 

Consider the standard successive approximations scheme 

{ Choose v0 ' vz*. 

(4. 9) Determine for n 0 t 1, • • • 

· vn+l := Uv n 

By theorem 2. 7 this scheme is properly defined for all v O E V z*. If the MDP 

is strongly convergent, then we see from theorem 4.6(i) that the condition 

in theorem 3.3 holds, hence the method of standard successive approxima­

tions with scrapvalue O converges. 

The following theorem states: if the MDP is strongly convergent, then the 

scheme (4.9) converges for all v0 E Vz*' 

THEOREM 4.12. If the MDP is strongly convergent then for aZZ v0 E vz* 

lim v n 
n➔oo 

* V 

PROOF. The proof is similar to the proof of theorem 4.7. 

Let v0 E vz* then 

J v - v * J = J Uv - Uv * J ~ U J v - v * J ~ n+l · n n 

Since v0 - v* E V z* we have by theorem 4.6 (ii) 

(n ➔ oo) • 
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Hence 

lim v 
n 

n-+co 
* V 

4.4. THE POLICY ITERATION METHOV 

* Another technique, which can be used for approximating v is the policy 

iteration method introduced by HOWARD [1960] for the discounted MDP with 

finite state and action spaces. 

Policy iteration method 

(4.10) 

Choose some initial policy f 0 and a sequence of constants 

{e:n, n = 0,1, •.. } with e:n > 0 and lim e:n = 0. 

Define v0 := v(f0). 
n-+co 

Determine for n = 0,1, ••. a policy fn+l satisfying 

L(f 1)v ~ max {v ,Uv -e: e}, 
n+ n n n n 

and define 

In this section it will be shown that, if the MOP is strongly convergent, 

the policy iteration method converges, i.e., 

(4. 11) lim v n n-+co 
* v (pointwise). 

In the remainder of this section we assume that MDP under consideration to 

be strongly convergent. 

□ 

In order to prove (4.11) we first show that the sequence vn converges mono­

tonically to a limit, v say, with v E vz* and v ~ v*. 

LEMMA 4.13. If for some v E vz* and some f E F we have L(f)v ~ v, then 

v(f) ~ L(f)v. 

PROOF. Iterating L(f)v ~ v we get by the monotonicity of L(f) 

n-+co n-+co 



From theorem 4.6(ii) it follows that Pn(f)v ➔ 0 (n ➔ 00 ). Hence 

v(f) ~ L(f)v. 

Using (4.10), we immediately obtain from lemma 4.13: 

COROLLARY 4.14. Let f 0 be an arbitrary policy, a:nd let {vn} be a sequence 

obtained by the policy iteration method with initial policy f 0, then 

lim v exists. Further it is clear that 
n 

n➔oo 

lim v 
n 

n➔oo 

* $ V and 
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□ 

LEMMA 4.15. Let {vn} be a sequence as in corollary 4,14 and let v be defined 

by v := lim vn, then 
n➔oo 

Uv $ v 

PROOF. By (4.10) and lemma 4.13 we have 

So, with the monotonicity of vn, we obtain letting n ➔ 00 , 

Now we can prove 

THEOREM 4.16. Let {vn} be as in lemma 4.15, Then 

* lim V V 
n 

n➔oo 

* PROOF. By corollary 4.14 the limit v of the sequence vn satisfies v $ v. 

It remains to be shown that v ~ v*. Since v EV* (corollary 4.14) it 
z 

follows from lemma 4.15, the monotonicity of U and theorem 4.12, that 

Hence v 

* V 

* V • 

lim U~v $ v 
n➔oo 

[l 

□ 
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4.5. STRONG CONVERGENCE ANV LIAPUNOV FUNCTIONS 

Consider a sequence of functions 21,22 , ... from S into [0, 00 ] satisfying for 

all f E F 

(4.12) 
n = 0,1, .... 

A set of finite functions 21,22 , ••• ,2m satisfying (4.12) upto n 

called a system of Lia:punov functions of order m for the MDP. 

m, is 

In the context of MDP's Liapunov functions are first studied by HORDIJK 

[1974, chapters 4 and 5] and [1976]. The relation between the existence of 

a system of Liapunov functions for the MDP and the method of standard 

successive approximations has been studied by Van HEE, HORDIJK and Van der 

WAL [1977]. It is shown for example, that the existence of a system of 

Liapunov functions of order 2 implies the convergence uf the standard 

* successive approximations to v, for all scrapvalues in Vz*" 

In this section we consider the relation between the existence of Liapunov 

* functions of order m and special sequences~ E ~ for which z is finite. 
~ 

First define the sequence {y} 
n 

(4. 13) 00 

sup ]E l yn (Xk) , 
7!EM 71 k=O 

n 0, 1, ... 

So, yn may be equal to oo 

Then we have the following result. 

THEOREM 4.17. Let 21,22 , •.. ,2m be a system of Lia:punov functions of order m 

for the MDP. Then for the functions y 1, .•• ,ym defined in (4.13) we have 

n = 1,2, ... ,m . 

PROOF. The proof proceeds for fixed m by ~nduction on n. First we examine 

the case n 1. From 

Labs(f)2 for all f E F, 
1 



we have for any 11 

(4.14) 

Hence also 

Labs(fO) ••• Labs(f )9, 
k-1 1 

* . z = sup lim zk(TI) ~ R- 1 , 
1TE:M k-+oo 

which completes the proof for n 

theorem 2.12. 

1. Note that this is a special case of 
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Now assume yn ~ 9,n for some n < m. Then one easily shows along the lines of 

(4.14) that 

00 

9,n+l 2 sup lE I 9,n(¾) 
1TEM 11 k=0 

Hence 

00 00 

9,n+l 2 sup lE I 9, n(¾) 2 sup lE I yn(Xk) Yn+l 
1TEM 11 k=0 1TEM 11 k=0 

So 9, z yn for all n = 1,2, ... ,m. 
n □ 

We see that the existence of a system of Liapunov functions of order m 

implies that ym is finite. The following theorem relates the finiteness of 

* ym to a special sequence cp E: <I> for which z is still finite. 
cp 

THEOREM 4.18. For all m = 1,2, •.• 

(4.15) 

PROOF. The proof proceeds by induction on m. Form= 1 formula (4.15) holds 

by definition (with equality). Assume (4.15) holds form= n. Then for all 

11 = (f0 ,f1 , ... ) EM 

where P(f0 )P(f_ 1) is defined to be the identity operator. So 
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2 P(f) ·••P(f ) 2 t+t-l)P(f) •••P(f )jr(f ll 
0 k-1 t=O t k k+t-1 k+t k=O 

00 00 

\' \' (n+t-l)P(f) (f )j (f )j l l t O • •. P k+t-1 r k+t 
k=O t=O 

00 S 

k+;\;=s 2 2 t+t-l)P(f ) ••· P(f ) jr(f ) I 
s=O t=O t O s-1 s 

00 

2 t+s)P(f)•••P(f Jjr(f)j 
s=O s O s-1 s 

Here we used 

Taking the supremum with respect ton EM we obtain (4.15) form 

Hence (4.15) holds for all m = 1,2, •... 

n + 1. 

So the existence of a system of Liapunov functions of order m implies that 

* z~ is finite for the sequence~= (~ 0 ,~ 1 , ... ) with 

Specifically, if there exists a system of Liapunov functions of order 2, 

then y 2 < 00 implies by (4.15) that the MDP is strongly convergent. 

One might ask whether ym is finite if and only if 

00 

(4.16) \' m+k-1 I I sup lEn l ( k ) r(¾,f\l 
TIEM k=O 

< 00 • 

The following example shows that this is not the case. 

EXAMPLE 4.19. S = {0;1,2, •.• }, A {1,2}. State O is absorbing with 

[I 

r(O,a) = 0, a= 1,2. In state i ~ 1, we 

have r(i,1) 0, p(i,1,i+1) 1, 
-1 

r(i,2) = i , p(i,2,0) = 1. So with 

~n = n + 1 (the case m = 2) we have for 



all 11 E M 

However, 

lE L (n + 1) Ir (X ,A ) I ,,; e . 
1T n=O n n 

y 1 (i) 
.-1 
]_ i 1, 2,... , 

so for strategy f with f(i) 1 for all i ES, we have 

* Hence z(f) < 00 for the sequence (f) 

imply y 2 < 00 

(n + 1) e does not 

A slightly stronger condition than (4.16), however, implies that ym is 

finite. 

THEOREM 4.20. Let (f) E ~ be a sequence with (f)n 

b 0 ~ 1 and bn+l ~ bnJ, satisfying 

b := I 
n=O 

< 00 and * zcp < oo ., 

then the functions y 1 , ... ,ym are finite 

PROOF. By induction on kit will be shown that 

bm-le, n = 0,1, ... (so 
n 

(4.17) 
* k-1 k-m ,,; z b b 
(f) n 

k 1, 2, ... , m-1 , n 0, 1, .... 

Once we have (4.17) fork= m-1 and for all n 

obtain 

0,1, ... , we immediately 

(4.18) sup lE l ym-1 (Xn) ,,; l 
11EM 11 n=O n=O 

* m-2 -1 z b b 
(f) n 

So indeed, it is sufficient to prove (4.17). 

* m-1 z b 
(j) 

< 00 • 

First consider the case k = 1. As y 1 = z*, we have by lemmas 4.5 and 

4.3 (ii) 

n = O, 1, .•.. 
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So, (4.17) holds fork= 1 and all n = 0,1, .... Now assume that {4.17) 

holds for k = k0 < m - 1 and all n = 0, 1, . . . • Then 

sup lE yk 1 (X ) 
1TEM 1T o+ n 

s 

sup 
11EM 

00 

I 
t=n 

lE 
1T 

sup 
11EM 

00 

I yko (Xt) 
t=n 

00 

lE11 yko (Xt) s I z * bko-1 bko-m 

t=n q, t 

Hence, ( 4. 17) also holds for k = k0 + 1 and thus by induction for k 

and all n = 0,1, .•.. Then (4.18) completes the proof. 

4.6. THE CONVERGENCE OF U~v TO v* 

m-1 

In this section we consider the set of algorithms introduced in chapter 3, 

sections 3-5, by means of go-ahead functions. 

□ 

The main result of this section is, that if the MDP is strongly convergent, 

we have 

* v for all v E vz* 

for any nonzero go-ahead function c. 

Define the operators Lc(11) and Uc on vz* analogously to L(f) and u by 

lEc v(X ) 
1T T 

Then for all v E Vz*' 

(4.19) 

since for all v,w E Vz* 

sup [Lc(11)v-Ucw] S 

1TE:11 



$ sup [L0 (7T)v-L0 (7T)W] 
m:JI 

sup Lo(7T) (v-w) $ uolv-wl 
7TEJI 

Iterating (4.19) yields for all n = 1,2, ... 

So, we see that if v EV* (thus also lv-v*! 
z 

n * condition for the convergence of U0v to v 

E Vz*), then a sufficient 
~n * is the convergence of U0z to 

zero. 
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In order to prove that if the MDP is strongly convergent, then ~z* con­

verges to zero for any nonzero go-ahead function o, we first have to derive 

two lemmas. 

LEMMA 4.21. If v ~ O and uv :s v, then we have 

(4. 20) 

for all go-ahead functions o. 

PROOF. In order to prove this lemma we construct an optimal stopping problem 

which has value v from which we will. conclude that U O v $ v for all o. 

Define the MDP characterized by (S,A,p,r), with 

s := s u {*} (* '- S) , A := A u {+} (+ '- A) , 

r (i, a) 

r<i,+l 

0 , p(i,a,j) = p(i,a,j) a EA, i,j ES, 

v(i) r<*,al = o, pCi,+,*l = p(*,a,*l = 1 , a EA 

In this newly defined MDP the action denoted by the character+ corresponds 

to stopping and transfers the system to the absorbing state *. Denote all 

objects in this MDP by a-, and define v by v(i) = v(i), i Es, and 

v(*) = 0. Then clearly 

L(f)v $ V for all f E F and L(f+)v V 

where f+ is a policy with f+(i) =+for all i Es. 

Hence, with theorem 2.12 

-* -V = V • 

Since any 7T E JI (extended with the behaviour in*) is a strategy in the 

stopping problem (without ever stopping). we have (by theorem 3.15) 
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Further, we have on S 

Hence 

sup L0 (1T)V '.> V . 
1TEII 

Note that lemma 4.21 not only holds for nonzero go-ahead functions. For 

nonzero go-ahead functions a somewhat stronger result then (4.20) holds. 

LEMMA 4.22. If v ~ O and uv '.> v, then we have 

(4. 21) 

□ 

for any go-ahead function Ii. (For the definition of a 0 see definition 3.16.) 

PROOF. Intuitively (4.21) follows straightforwardly from the optimal stop­

ping problem constructed in (4.20). Namely from Uv '.> v it follows that the 

sooner you stop the better. Since a O is~ lower bound for the pr~bability 

that you stop after time O, (1-a0)v+a0uv is an upper bound on u 0v. 

Formally (4.21) can be proved as follows by conditioning on xO, AO and x1 • 

Define for all i ES and a EA by o(i,a) the go-ahead function with for all 

and 

(i,a) . · 
And define by 1T the strategy with for all n, all i O,aO,i1 , ..• and all 

C E A 

Then we have for all i ES and 1T E II 

(4. 22) (L,5(1T)v) (i) = J 1To(da I i){[l-o(i)o(i,a)]v(i) +o(i)o(i,a) lP(i,a,j). 
A j 

•(L (' )(1T(i,a))v)(j)} 
0 i, a 



By lemma 4.21 

(4. 23) 

Further, 

(4.24) 

and 

(4. 25) 

L . (11 (i,a) )v $ V for all i E s, a E A, 
0 (1,a) 

l p(i,a,j)v(j) s (Uv) (i) for all i E S, a E A, 
j 

c1- o(ilo(i,alJv(il + o(ilo(i,al (uvi (il 

(1-ao)v(i) + ao(Uv)(i) + [o(i)o(i,a)-ao](Uv-v)(i) 

S (1-a0)v(i) + a 0 (Uv) (i) 

Substituting subsequently (4.23), (4.24) and (4.25) into (4.22) yields 

(Lo(11)v)(i) $ J11o(da lil[(l-ao)v(i) +ao(Uv)(i)] 

A 

Taking the supremum with respect to 11 E IT finally yields (4.21). 

Now we can prove our main result. 

THEOREM 4.23. If the MDP is strongly convergent~ then 

n * lim u0v = v for all v E vz* 
n-+oo 

for any nonzero go-ahead function o. 

PROOF. As has been remarked before, it is sufficient to prove 

~n * U0z + 0 (n + oo) 

Clearly for all m = 0,1, ••. 

~ * * Further it follows from Uz s z with the monotonicity of U that 

~ ~m * = * U(U z) SU z . 

So we can apply lemma 4.22 to obtain 
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m 0 I 1, • • • • 

Hence, 

Since C\') > 0 

we also have 

~n * for a nonzero go-ahead function o and since U z + 0 (n + 00), 

"'11 * U 11 z + 0 (n + oo) • [' 

For the case of nonrandomized go-ahead functions theorem 4.23 (with v = 0) 

has already been given by Van HEE [ 1978b]. Recall that this is the case in 

which there are no measurability problems when fitting two strategies to­

gether at time T. 

In general the method of successive approximations need not converge for a 

nonzero go-ahead function o. 
The following lemma states that, if in the optimization of v(TT) one needs 

to consider only stationary strategies, then 

This will enable us to show that in two special cases: 

(i) the positive dynamic programming case; 

(ii) the case that A is finite and v* ~ O, 

we have 

* V 

for any nonzero go-ahead function 8. 

LEMMA 4.24. If for initial state i Es we have 

sup v(i,f) = v* (i) , 
fEF 

then for any nonzero'go-ahead function 8 

liminf (U~O) (i) ~ v*(i) . 
n +oo 



PROOF. It is sufficient to prove 

lim (L~ (fl OJ (i) 
n-->oo 

since this implies 

liminf (U~O) (i) <: 
n +ro 

* 

v(i,f) for all f E F with v(i,f) > - "' , 

sup lim (L~ (f) 0) (i) 
fEF n-->oo 

sup v(i,f) 
fEF 

* V (i) 
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Assume v (i) > - 00 , otherwise the result is trivial. And let f be any policy 

with v(i,f) > - 00 • Now consider the MDP in which in each state j ES all 

actions except f(j) are eliminated, i.e. the MDP (S,A,p,r) with for all 

i,j ES 

A= {1}, r(i,ll = r(i,f(i)l and p(i,1,j) = p(i,f(i),j) . 

If v(f) >-"',then clearly this MDP is strongly convergent. So for this 

problem the method of successive approximatiorts with scrapvalue O converges 

for any nonzero go-ahead function o. Thus 

L~(f)O + v(f) (n + oo) 

If v (j, f) = - "' for some j, then we can restrict S to the set of states k 

for which v (k, f) > '-"' since v (j ,fl 

lP. f (X = j) 
i, n 

0 for all n 

and follow the same reasoning. 

Hence 

(L~ (f) 0) (i) ➔ V (i, f) (n ➔ oo) 

- oo implies 

for all f with v (i, f) > - 00 , and the proof is complete. 

THEOREM 4.25. For each of the following two conditions we have 

v* for all v with O 5 v 5 v*, 

for any nonzero go-ahead function o: 
(i) r(i,a) ;,: 0 for all i Es, a EA; 

(ii) A is finite and v*;,: 0. 

PROOF. By the monotonicity of U0 we have for each of the two conditions 

□ 
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for all v with O 5 v 5 v* and all n = 0, 1 , • . . . 

So it is sufficient to show that 

Hence (i) follows immediately from theorem 2.23 and lemma 4.24 and (ii) 

follows from theorem 2.22 and lemma 4.24. 

We conjecture that for all nonzero owe have 

lim lf:v = v* for all v with w* 5 v 5 v* 
0 n4-CO 

compare theorem 3.7. 

4.7. STATIONARY GO-AHEAV FUNCTIONS ANV STRONG CONVERGENCE 

In section 3.5 the question has been raised whether 

(4. 26) sup (L0 (f)v) (i) = (U0v) (i) for all i E S , 
fEF 

if o is a stationary go-ahead function. 

[' 

And it has been shown that if, for the transformed MDP (S,A,pifl defined in 

( 3 • 9) , we have 

(4.27) sup v(i,f) 
fEF 

v*(i) foralliES, 

then (4.26) holds (see also theorem 3.20). 

In this section the following result will be shown. 

THEOREM 4.26. If the MDP is strongly convergent and o is a stationary go­

ahead function, then 

sup (L0 (f)v) (i) = (U0v) (i) for aZZ i Es and aZZ v E vz*. 
fEF 

PROOF. We will show that the MDP defined in (3.9) is strongly convergent. 

By theorem 4.9 this implies that (4.27) holds, which - as has been argued 

in section 3.5 - proves the theorem. From (3.9) it follows that it suffices 

to consider the case v = z*. 
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We use the indicator function notation on n0 (= (S x Ex Ax E) 00
). I.e., for 

any subset B of n0 we consider the function IB on n0 , defined by IB(w) = 1 

if w EB and O elsewhere, w E n0 . All objects concerning the transformed 

MDP will be marked by a hat. Let n be an arbitrary strategy in Mand rr the 

* corresponding strategy in M, then we have for the case v = z, 

(4. 28) 

(4. 29) 

and 

(4. 30) 

+ o(¾•¾l[r(xk.'¾l +~ p(xk,¾,jl(l-o(¾,¾•jJz*<j)JI 
J 

0 * 
~ JErrI{T;,:k}((Xo,Yo,Ao,···))[(1-o(¾,¾))z (Xk) +o<¾·¾l· 

[Jr(Xk'¾l J +~ p(¾•¾•j)z*(j)] + 
J 

- o(xk,Ak) ~p(¾•¾·j)O(Xk'¾'j)z*(j)] 
J 

Jr(i,a) I+ l p(i,a,j)z*(j) ~ z*(i) for all i ES and a EA, 
j 

Substituting (4.29) and (4.30) in (4.28) yields 

0 * ~ JErrI{T;,:k}((XO,YO,AO, ..• ))z (Xk) + 

0 * - JErr I{T;,:k+l} ( (XO,YO,AO, ... )) z (Xk+l) 

Hence 

(4. 31) 

Also 

(4. 32) 

(k + oo) (theorem 4.6). 
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Finally, substitution of (4.32) in (4.31) yields 

~n * ~ u z • 

So condition 4.1 holds and the transformed MDP is strongly convergent by 

theorem 4.4, which completes the proof. 

4.8. VALUE-ORIENTEV SUCCESSIVE APPROXIMATIONS 

□ 

In this section the convergence is studied of the method of value-oriented 

successive approximations, which was introduced in section 3.6, for the 

strongly convergent MDP. It will be shown that the monotone value-oriented 

method converges for all vO E vz* for which there exists a policy f satis­

fying L(f)vO ~ vO. 

Further, two conditions will be given, each of which guarantees that the 

nonmonotonic version converges. 

THEOREM 4.27. If the MDP is strongly convergent, then the monotone value­

oriented method defined in section 3,6 converges for all v0 E vz* for which 

there exists an f E F satisfying L(f)vO ~ vO• 

PROOF. Note that if the MDP is strongly convergent, then the policy itera­

tion method of section 4.4 is just the monotone value-oriented method with 

"}.. = 00 " Namely, for the strongly convergent MDP we have 

}.. 
lim L (f)v = v(f) for all f E F and all v E Vz* • 
}..-+<x> 

To prove the theorem we follow the line of reasoning of section 4.4. 

As remarked in section 3.6 

Further, 

lim v exists. 
n 

n-+<><> 

Hence, with theorem 4.6, 



v := lim v 
n 
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Also v E Vz* and, by lemma 4.15, Uv ~ v, from which one proves (as in theo­

rem 4.16) that v = v*. D 

Now let us consider the nonmonotonic value-oriented method. Let {f} and 
n 

{vn} be sequences of policies and value functions obtained from the method 

of value-oriented standard successive approximations. So 

(4.33) 

where {d} is the sequence of strictly positive real-valued functions on S n 
with dn -+ O (n -+ oo). 

And 

(4. 34) n 0, 1, . • • • 

* In order to investigate whether vn converges to v, we follow the line of 

reasoning in the proofs by Van NUNEN [1976a] and ROTHBLUM [1979]. 

Clearly 

Further, 

limsup vn ~ lim ~Av0 
n -+ 00 n-+oo 

* V 

k-1 
:<;; vn+k + l uk-m-1 (Uv - V ) 

m=O n+m n+m+l ' 

as follows from 

So, since 

uv ~ uw + U(v-w) for all v,w E Vz* • 

* V 

* it is sufficient for the convergence of vn to v that 
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( 4. 35) 0 • 

THEOREM 4.28. Each of the following two conditions guarantees that the 

method of value-oriented successive approximations converges: 

(i) 

(ii) 

00 

, ~n * 
l U z < 00 and d. n n=0 

00 

, ~n * 
l (n + l)U z 

n=0 
< 00 and d 

n 

E + 0 (n + oo) • 
n 

00 

En' n = 0,1, ••• and l En 
n=0 

with En+l ~ En' n = 0,1, .•• and 

< 00 

PROOF. We will show that each of the conditions (i) and (ii) implies (4.35), 

which, as has been argued before, is sufficient. Therefore we first derive 

some inequalities for Uvn+m - vn+m+l • 

From (4.33) and (4.34) follows for all n 0, 1, •.• 

(4. 36) 

And 

(4. 37) 

A-2 
~ l Pk (f 1) (Uv - v - d ) + Uv - d 

k=0 n+ n n n n n 

A 
Uvn+l -vn+l ~ L(fn+l)vn+l -vn+l = P (fn+l) (L(f)vn -vn) 

~ PA(f +l)(Uv -v -d) n n n n 

Repeated application of (4.37) yields 

(4.38) 

And from (4.36) and (4.38) we obtain 



91 

(4. 39) Uv -v 
n+m n+m+l 

;l.-2 
S d ~ Pk (f ) (Uv - v - d ) 

n+m - l n+m+l n+m n+m n+m 
k=O 

;l.-2 
s d + l Pk(f )[d + PA(f )d 1 + .•• + 

n+m k=O n+m+l n+m n+m n+m-

Let K:?: 2 be such that !v0 ! s ½Kz*, then !vk-Uvkl s Kz* for all k 

(since v0 E Vz* such a K exists). Then substitution in (4.39) of 

0, 1, •.. 

and 

gives 

* v -Uv SKz 
m m 

P(f)v s Uv for all VE vz* and f E F 

em+k s em for all m,k = 0,1, ••• 

U:(v+w) s Uv+Uw for all v,w E Vz* 

;l.-2 
* ~ ~k * ~;l. * ~n;l. * ~n;l. * 

Uv - v S e z + l U [ e z + U e 1z + ••• + U e z + U Kz ] 
n+m n+m+l n+m k=O n+m n+m- m 

* s g z 
n+m 

* ;l.~2 ~k * ;l.~2 ~k+;l.~ z* ;l.~2 ~k+n;l. * 
s e z + l u e z + l lY-- ~ l + ••• + l u (eo + K) z 

n k=O n k=O n- .k=O 

~k * * With U z S z for all k this simplifies to 

So, 

k·-l ~k-m-1 
l U (Uvn+m - vn+m-1) s 

m=O 

~m * u g z 
n + l 

m=O 

=;i. * u u e 1z + ... + n-
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Or, with 

"':'In* u z , 

(4.40) 

Finally, we have to show that each of the conditions (i) and (ii) guarantees 

that the right-hand side in (4.40) tends to zero if n tends to infinity. 

(i) Fix some state i ES and some e > 0. From 

(ii) 

00 

~ ~n * l U z < 00 

n=O 

it follows that cn(i) + 0 (n + 00). So, we can choose integers k0 and 

n0 ~ k0 such that 

00 

cko+l (i) I ~ 
e e 3 I 

n=O n 

and 

~~ Kc (i) and e 
no 3 

Then for n > no with ek+l 

n 
l ck (i) en-k + en (i) K 

k=O 

ko 

I ck (i) ~ 
e 
3 no-ko k=O 

~ ek and ck+l ~ ck for all k QI 1, • • • 

So, since i and e > 0 can be chosen arbitrarily, the right hand side 

in (4.40) tends to zero if n tends to infinity and thus (4.35) holds. 

Hence v + v* (n + 00). 
n 

00 

~n * u z 
00 n 

I I 
n=O k=O 

~n * u z 
00 

~ ~n * l (n + 1) U z 
n=O 

< 00 • 

So the proof can be given in exactly the same way as in (i) with the 

roles of ek and ck(i) reversed. □ 
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CHAPTER 5 

THE CONTRACTING MOP 

5.1. INTROVUCTION 

The most intensively studied MDP's, at least with respect to computational 

procedures, are the contracting models. Of these the most common model is 

the discounted MDP with bounded reward structure (cf. SHAPLEY [1953], 

HOWARD [1960] and BLACKWELL [1962,1965]. In the case of a countable state 

space the reward structure is typically unbounded. For example, in inven­

tory control models and queueing models part of the costs will tend to in­

finity if the stock or the number of customers in the queue increases. 

In order to be able to deal with unbounded rewards, we assume the existence 

of a nonnegative functionµ on s, called a bounding function. It is assumed 

that all rewards are bounded with respect to this function, i.e., r(f) EV 
+ µ 

for all f E F (or bounded from above: r(f) EVµ). Further it is assumed 

that the transition matrices are contractions with respect to the µ-norm: 

P(f)µ!,pµ for some p < 1 and all f E F. 

The use of bounding functions in this way has been introduced by WESSELS 

[1977b]. Bounding functions used as strongly excessive functions also ap­

pear in VEINOTT [1969], in a lemma due to Hoffman, and in WIJNGAARD [1975]. 

Another idea for coping with the unbounded reward structure has been intro­

duced by HARRISON [1972]. He considers the discounted MDP and assumes (in 

essence) the existence of a function b such that r(f) -bis bounded for all 

f E F and that for some p < 1 also P(f)b - pb is bounded. 

These two ideas are combined in the contracting MDP model of Van NUNEN 

[1976a] and the slightly extended model of Van NUNEN and WESSELS [1977a]. 

In this chapter we first consider four different models for a contracting 

MDP. It will be shown that these models are equivalent with respect to the 

important features in the 00-horizon problem (section 2). Next we relate the 

contraction model to the strongly converge·nt MDP of chapter 4 ( section 3) . 
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* In section 4 some results are reviewed with respect to bounds on v and 

nearly-optimal stationary strategies for the successive approximation algo­

rithms generated by nonzero go-ahead functions. In chapter 11 very similar 

results will be obtained for the contracting Markov game. 

The discounted MDP with finite state and action spaces is studied in some 

detail in section 5. We derive Laurent series expansions for v6 (f) and 

r(h) + 6P(h)v6 (f) in 1 - 6 when 6 tends to 1 (cf. MILLER and VEINOTT [1969]). 

In section 6 various more sensitive optimality criteria are formulated for 

the case that 6 tends to 1 (cf. BLACKWELL [1962] and VEINOTT [1966]). The 

results of the latter two sections will be used extensively in chapters 

6 - 8. 

5,2. THE VARIOUS CONTRACTIVE MVP MOVELS 

In this section subsequently four different models for the contracting MDP 

will be studied. It will be shown that these models are equivalent with 

respect to the =-horizon behaviour. 

The first, and most general, model is the following. 

Mod.el I 

Define r(i) := sup r(i,a), i Es. (Then r < m by condition 1.1.) There 
aEA 

exists a nonnegative real-valued functionµ on S (µEV) such that: 

(i) For some constants p 1 and M1 , with OS p 1 < 1 and M1 ~ 0, 

(5.1) 

(ii) For some constant p 2 , with Os p 2 < 1, 

(5.2) P(f)µ S p 2µ for all f E F. 

(iii)" There exists a policy h E F and constants M2 ,M3 ~ O, such that 

(5. 3) 

This model is somewhat more general than the model studied in Van NUNEN and 

WESSELS [1977a], where it is assumed that r-r(h) S M3µ for all h E F, and 

than the model of Van NUNEN [1976a], who assumes that (5,3) holds for all 

h E F, 
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First the model I assumptions will be analyzed, from which we see that we 

can a priori eliminate in each state a number of suboptimal actions. After 

this elimination the MOP (with now state-dependent action sets) fits into 

the contracting model of Van NUNEN [1976a]. Further two data transformations 

will be considered. The first one transforms Van Nunen's model into the 

model of WESSELS [1977b] and the second one transforms Wessels' model into 

the 'standard' discounted model. 

Now let us consider model I. 

From (5.1)-(5.3) one can already obtain some bounds on v*. By the definition 

of r we have for all TI= (f0 ,f1 , ... ) EM, 

(5.4) V (TI) 
n 

:<; r+P(f0)r + •.• + P(fO) ••• P(f )r 
n-2 

Define p* := max {p 1,p 2}, then we have the following lemma. 

LEMMA 5.1 (cf. Van NUNEN [1976a, lemma 3.1.2]). For aZZ f 0 , ... ,fk E F we 

have (within MoikZ I) 

(5. 5) k 1, 2, . . . . 

PROOF. From (5.1), (5.2) and the definition of p*, 

Substitution of (5.5) into (5.4) yields for all TIE M, 

(5 .6) 

On the other hand, we have for any policy h E F satisfying (5.3), 

□ 
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(5. 7) r(h) - r + P(h) (r(h) -r) + ... + Pn-l(h) (r(h) -r) + 

- - n-1 -
+ r + P(h)r + •.. + P (h)r 

n-1 n-1 -
~ (I+P(h)+ ... +P (h))(-M3 µ) + (I+P(h)+ ... +P (h))r 

k -
P (h)r . 

Further, the following analogon of lemma 5.1 holds. 

LEMMA 5.2 (cf. Van NUNEN [1976a, lemma 3.1.2]). For a:ny policy h E F satis­

fying (5.3) we have 

(5 .8) k=l,2, .•.. 

PROOF. Similar to the proof of lemma 5.1. 

So, from (5. 7), (5.8) and (5.2), also 

(5. 9) 
n-1 n-1 n-2 

<;' k- <;' k <;' k 
l p 1 r - l p 2 M3 \J - l (k + 1 ) p * M2 \J • 

k=0 k=0 k=0 

Letting n tend to infinity in formulae (5.6) and (5.9) yields, since by 

theorem 2.19 one has to consider only Markov strategies, 

THEOREM 5.3. For an MDP satisfying the assumptions of model I we have 

The second inequality in theorem 5.3 implies, with lemma 5.1 and (5.2), 

also that 

(5 .10) * limsup lE11 v (Xn) S 0 for all 11 EM. 
n +oo 

Hence, by theorem 2.14, a uniformly £-optimal Markov strategy (in the ad­

ditive sense) exists. 

(5.10) can also be used to prove the following result for stationary 

strategies. 

□ 

THEOREM 5.4. For an MDP satisfying the assumptions of model I, there exists 

for all £ > 0 a policy f E F satisfying v(f) ~ v* - £µ. 



PROOF. Since v* satisfies the optimality equation, there exists for all 

E > 0 a policy f for which 

Then, for all n, 

(5.11) 

Further, 

v(f) 

So, with (5.10) and (5.11), 

n+oo 

lim[Ln(f)v* -Pn(f)v*J 
n-+oo 

n+oo 
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□ 

This result enables us to eliminate some of the suboptimal actions from the 

MDP, so that after the action elimination procedure all policies will satis­

fy (5.3) (with different constants M2 and M3). 

From theorem 5.4 it follows that, if in each state i ES all actions a EA 

satisfying 

(5 .12) r(i,a) + l p(i,a,j)v*(j) < v*(i) -Kµ(i) 
jES 

are eliminated (K > 0 is some arbitrary cons1=:ant), then the value of the MDP 

will remain unchanged. However, the set of actions in state i may now be 

different for each i. Moreover, there will still exist for all E > 0 a 

stationary "Eµ-optimal" strategy. 

Using this idea we introduce the following elimination procedure. 

A priori aation elimination proaediwe 

Eliminate in each state i ES those actions for which 

(5 .13) ~ -1 - -2 r(i,a) + l p(i,a,j)[(1-p 1) r(j) + (1-p*) M1µ(j)] < 
jES 

-1 -1 -2 
< (1-p 1) r(i) - (1-p 2) M3µ(i) - (1-p*) M2µ(i) - µ(i). 
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One may easily verify that it follows from theorem 5.3 that all actions 

satisfying (5.13) also satisfy (5.12) with K = 1. So, using the action 

elimination procedure we obtain an MDP which, with respect to the value and 

(nearly-) optimal stationary strategies, is equivalent to the original 

model I MDP. 

For the remaining actions in state i we have 

with 

r(i,a) - r(i) + (1-pl)- 1[ l p(i,a,j)r(j) -plr(i)];:: -M4µ(i), 
jES 

So, clearly 

(5 .14) 

and 

(5 .15) 

r(i,a) - r(i) 

l p(i,a,j)r(j) -pi(i) ;:: - (1-p1)M4µ(i) 
jES 

Thus after the a priori action elimination procedure we obtain an MDP (with 

state dependent action sets A(i)), which satisfies the following conditions. 

Model II 

Define r(i) := sup r(i,a). 
aEA(i) 

There exists a nonnegative real-valued functionµ on S such that: 

(i) For some constant M1 ;:: 0, 

(5 .16) for all f E F. 

(ii) For some constants p1 and M2 , with O ~ p1 < 1 and M2 ~ 0, 

(5 .17) for all f E F 

(iii) For some constant p2 , with O ~ p2 < 1, 

(5 .18) for all f E F. 

This is precisely the model studied by Van NUNEN [1976a]. 
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For the model II MDP we have the following result. 

THEOREM S.S. For an MDP satisfying the asswrrptions of modeZ II, we have fpr 

aZZ w € rr and aZZ n = 1,2, ••• 

(i) 

PROOF. 

(i) For all w € M (i) follows analogously to (5.4) and (5.7). Since in the 

maximization of vn(~) and (here) also in the minimization one may re­

strict oneself to Markov strategies, (i) holds for all w € IT. 

(ii) is obtained from (i) by letting n tend to infinity. □ 

-1 -
So, all strategies in model II have an co-horizon reward of ( 1 - p 1) r plus 

some term which is bounded in µ-norm. 

Using the following transformation of the immediate rewards, which is due 

to PORTEUS [197S];we obtain from the model II MDP a new MDP that fits into 

the framework of the model studied by WESSELS [1977b]. See also Van NUNEN 

and WESSELS [1977a]. 

(5. 19) ~ -1 -
r(i,a) = r(i,a) - (1 -p 1) [r(i) I p(i,a,j>r<j)J 

jES 

Then it follows immediately from (5.16) and (5.17) that 

r(f) € V 
µ 

for all f € F • 

Combined with (5.18), this implies that the newly obtained MDP satisfies 

the conditions of WESSELS [1977b]. 

Further, let vn(w) and v(w) denote then-period and co-horizon total expected 

rewards in the MDP with r instead of r. Then for all w = ( f 0 , f 1 , ••• ) € M, 

(5.20) ; (w) 
n 

+ ••• + P(f0 ) ••• P(f );(f ) n-2 n-1 

-1 - -r(fO) - (1-p 1) (r-P(fO)r) + 

-1 - -+ P(fO) [r(f1) - (1 -p 1) (r - P(f1) r)] + 
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+ ..• +P(f0)•••P(f )[r(f )-(1-p)-l(r-P(f )r)] 
n-2 n-1 1 n-1 

r(fO) + P(f0)r(f1) + .•. + P(f0) ••• P(fn_ 2)r(fn-l) + 

(1-p 1)-l[r-P(f0)r+P(f0 )r+ ... -P(f0 ) ••• P(fn_ 1)r] 

Since P(f) ••• P(f )r tends to zero if n tends to infinity (cf. lemmas 
0 n-1 

5.1 and 5.2), we obtain from (5.20) 

THEOREM 5.6. For all TT E IT, 

PROOF. For TT EM the result follows from (5.20) with n + 00 • For arbitrary 

TT E IT the result can be obtained in an analogous way, see Van NUNEN and 

WESSELS [1977a]. □ 

So, the model II MDP and the transformed problem obtained from it via (5.19) 

are equivalent with respect to the 00-horizon behaviour, since the total ex-
-1 -

pected rewards differ only by a strategy-independent amount (1 -p 1) r. 

The successive approximations, however, may differ as we see from (5.20), 

since the term P(f) ·••P(f )r is not independent of the strategy. 
0 n-1 

Therefore, if we are not interested in the finite-horizon behaviour, we can 

just as well perform transformation (5.19) which leads to a third and some­

what simpler model. 

Model III 

A nonnegative real-valued functionµ on Sexists such that: 

(i) For some constant M ~ 0 

lr(f) I :,; Mµ for all f E F. 

(ii) For some constant p, with 0:,; p < 1, 

P(f)µ $ pµ for all f E F 

As remarked before, this is the contracting model considered in WESSELS 

[1977b]. 



With a second data transformation an MDP of the model III type can be 

transformed into the 'standard' discounted model with bounded rewards. 

This so-called similarity transformation is due to VEINOTT [1969], and 

applied to this model it can be found in Van NUNEN and WESSELS [1977a]. 

Let A be the diagonal matrix defined by 

A(i,i) := µ(i) , 

and let A- be the diagonal matrix with 

:= [ 
µo(iJ-1 

A-(i,i) 
if µ (i) > 0 , 

elsewhere. 

Now consider the following transformation 

(5.21) { 
r(i,a) := A-(i,i)r(i,a) , i E s, 

p(i,a,j) := A-(i,i)p(i,a,j)A(j,j) , 

So for policies, 

and 

P(f) A- P(f) A. 

Then for all f E F, 

(5. 22) 

and 

(5. 23) f, (f) e 

a E A , 

i,j E S , a E A • 
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Further, let vn(11) and v(11) denote then-period and ®-horizon total expected 

rewards, respectively, in the MDP obtained from a model III MDP via trans­

formation (5.21). Then we have 

(5. 24) v (11) 
n 

A-_r(fO) + A- P(f0 )AA- r(f1) + ... + 

+ A- P(f0) A••• A- P(fn_ 2) AA- r(fn_ 1) 

If µ(i) > 0, then AA-(i,i) 1 and if µ (i) 0, so for 
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all v E V 
µ 

(if v EV and µ(i) = 0 then also v(i) = 0). Thus 
µ 

AA r ( f) = r ( f) and AA- P(f)v = P(f)v 

Substitution of this into (5.24) yields 

V (11) = A- V (11) 
n n 

And, with n ➔ 00 , also 

for all f E F and v EV. µ 

So this second data transformation leads to a completely equivalent model: 

essentially the same n-period rewards and thus the same successive approxi­

mations, and the same 00-horizon rewards. 

Only, note that (5.23) states that the matrices P(f) are no longer stochas­

tic. This can be simply repaired by the addition of an extra absorbing 

state, but we will not do this explicitly here. 

Thus from a model III MDP we obtain by transformation (5.21) the equivalent 

Mockl IV 

(i) There exists a constant M ~ 0 such that 

!r(f) I:;; Me for all f E F. 

(ii) There exists a constant p, with O:;; p < 1, such that 

P(f)e :;; pe for all f E F 

An example of a model IV MDP is obtained if in the finite state discounted 

MDP the discountfactor is incorporated in the transition probabilities, but 

the additional state is not introduced. 

Model IV is slightly simpler to deal with than model III. However, for two 

reasons we prefer not to transform a model III MDP into a model IV MDP: 

(i) the reward structure in a countable state MDP is typically unbounded; 

(ii) the 'transition probabilities' in a model IV MDP obtained via (5.21) no 

longer have this physical interpretation with respect to the original MDP. 

Whenever in the following two sections we speak of a contracting MDP we will 

mean an MDP of the model III type. 
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5.3. CONTRACTION ANV STRONG CONVERGENCE 

This section deals with the relation between the contraction assumption 

{model III) and the strong-convergence condition. 

For a model III contracting MDP we have for all n 

lE lr<x ,A >I= P{f0 ) •••P(f 1>lr(f >I n n n n- n 

:;; P{f) ... P(f )Mµ:;; pnMµ 
0 n-1 n = 1,2, ••• , 

which yields the following result. 

THEOREM 5.7 (cf. Van HEE, HORDIJK and Van der WAL [1977]). An MDP that is 

contracting in the sense of mod.el III satisfies the strong convergence con­

dition for a sequence~= {~0 ,~1 , ••• ) €~with ~n = Ane, n = 0,1, •.• , where 

A is any constant satisfying 1 <A< p-l 

PROOF. 

* z~ = sup }: 
nEM n=O 

-1 
:;; M { 1 - AP) µ < oo 

Further we have 

THEOREM 5.8. Ifs is finite, then the following two conditions are equi­

valent: 

{i) The MDP is contracting (in the sense of modEl III). 

{ii) The MDP is strongly convergent • 

. ~• By theorem 5.7 it only remains to be shown that (ii) implies (i). 

By the strong convergence and the finiteness.of Sa constant a, 0:;; a< 1, 

and an integer no exist such that 

sup lE z * {X ) :;; a no z * . 
nEM n no 

Now, following WALTER [1976], we define 

* ·-1 ~ * -2~2 * -n0+1 ~n0-1 * 
\I := z + a Uz + a U z + ••• + a U z • 

Then for all f E F 

D 
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av • 

Further, lr(f) I~ z* ~ v for all f E F. Hence the MDP satisfies the assump-

tions of model III withµ= v, M and p = a. □ 

If Sis countable, then strong convergence need not imply contraction, as we 

see in ~he following example. 

EXAMPLE 5.9. S = {1,2, •.• }, A 

satisfy for all i ES 

r(i, 1) ~ Mµ (i) 

but also 

or 

{1}, p(i,1,i+l) = 1 and r(i,1) = i-2 • This 

MDP is clearly strongly convergent; 

take for example~ (i) = ✓i+n. In order 
n 

that this MDP is contracting with bound-

ing functionµ, the functionµ has to 

This is impossible, so this MDP is not contractive in the sense of model III. 

One may verify that also in the sense of model II this example is not con­

tracting. 

For some further discussion on the relation between contraction, bounding 

functions and the spectral radius of the MDP, see Van HEE and WESSELS [1978] 

and ZIJM [1978]. 

5.4. CONTRACTION ANV SUCCESSIVE APPROXIMATIONS 

In this section we will consider in some detail the various successive ap­

proximation methods for the model III MDP. First the set of algorithms 

generated by means of (nonzero stationary) go-ahead functions is considered. 

The use of these go-ahead functions in the case of contraction has been ex­

tensively studied by WESSELS [1977a], Van NUNEN and WESSELS [1976,1977b], 

Van NUNEN [1977a] and Van NUNEN and STIDHAM [1978]. All results presented 

here can be found in one of these papers. We review these results here for 

the sake of completeness and for later reference in chapter 11. 
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From theorems 5.7 and 4.12 it follows that the method of standard successive 

approximations converges. Further we have from lemma 4.22 

THEOREM 5.10. For any go-ahead funation o, for all ,r € II and for all v,w € vµ 

(i) IILO(,r)v-Lo(,r)wllµ s (1-ao+aop)llv-wllµ 

(ii) llu0v-u0wll s (1-a0 +a0p)llv-wllµ. 

PROOF. We only prove (i) since the proof of (ii) is very similar. 

With Uµ s pµ, it follows from lemma 4.22 that 

So 

Reversing the roles of v and w yields 

from which the proof is immediate. 

Since the space V is a Banach space we have µ 

□ 

COROLLARY 5.11. If a 0 > o, trzen L0 (irl and u 0 are aontraations on vµ with 

radius less than or equal to (1-a0 +a0p), and thus have unique fixed points 

(within vµ). 

Trze fixed point of L0 (fl is v(f), the fixed point of u0 is v*. 

Note that in general the fixed point of L0 (,r) will be unequal to v(,r). 

A very important consequence of the contraction assumption is that it allows 

for extrapolations that yield bounds on v* and enable us to recognize nearly­

optimal strategies •. 

In order to formulate the results, we use the following notations. Let 15 be 

a nonzero stationary go-ahead function (if one is interested in convergence 

of successive approximations and stationary strategies it is reasonable to 

consider only these go-ahead functions). Define 
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llwllmax := inf {c ER w $ cµ} for all w E V µ µ 

llwllmin := sup {c E JR I w :?: cµ} for all w E V 
µ µ 

pi;ax(f) := IIL0 (fl µ11:ax for all f E F , 

P;in(f) := IILo(f)µll:in for all f E F , 

max p~ax(f} P5 := sup , 
fEF 

min 
inf P;in (f} P5 := 
fEF 

Further, define for all V E Vµ' 

,-[ P~ax(f) min 
if IIL0 (f)v- viiµ < 0 

Po,v (f) 

p:in(f) min 
if II LO ( f) v - vii µ :?: 0 , 

and 

,-[ 
max 

if llu v - vii max > 0 P5 0 µ 
* 

Po ,v 
min 

II U O v - vii :ax 5 P5 if 0 

Then we have the following theorem. 

THEOREM 5.12. Let 5 be a nonzero stationary go-ahead function and let v Ev 
µ 

and f E F be arbi tra:ry. Then 

(i) v(f) -1 min 
:?:L,.(f)v+p,. (f)(l-p,. (f)) IIL,.(f)v-vll µ, 

u u,v u,v u µ 

(ii) * * * -1 max v 5 u,.v + p,. (1-p:r ) llu,.v-vll µ. 
u u,v u,v u µ 

PROOF. 

(i} By corollary 5.~1, 

n v(f) = lim L0 (f)v 
n-+«> 

Further,, for all n :?: 1, 
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n-1 min 
<". L,. ( f) v + [ p,. ( f) + .•• + p,. ( f)] II L,. ( f) v - vii µ . 

u u,v u,v u µ 

Hence (i) follows by letting n tend to infinity. 

(ii) Having noted that v(TI) is optimized by stationary strategies, (ii) 

follows in an analogous way. 

Now consider for a nonzero go-ahead function o the following successive ap­

proximation scheme: 

(5.25) [ 

Choose v0 
Determine 

vn+l 

E V • 
µ 

for n = 0,1, ••• 

Then it follows from theorem 5.10 that 

Further, for all v EVµ and all E > 0 a policy f exists satisfying 

That such a uniformly nearly-optimal policy indeed exists can be shown for 

example with theorems 5.7 and 4.11 and the proof of theorem 4.26, since for 

* the sequence~ mentioned in theorem 5.7 also z EV. 
~ µ 

Thus there also exists a policy fn such that 

IIL,. (f ) V - V II 
u n n n µ 

is small if n is large. 

From this and theorem 5.12 it follows that we can obtain bounds on v* and 

nearly-optimal stationary strategies from the successive approximation 

scheme (5.25). 

A second type of algorithms is formed by the set of value-oriented methods. 

These methods converge for any sequence dn ~ Enµ with En+ 0, as follows 

from theorem 5.7 and a slightly changed variant of theorem 4.28(ii) (using 

□ 



108 

* -1 z ::; M(l - p) µ). Though, as has been shown by Van NUNEN [1976a], the 

mapping that generates vn+l from vn is neither necessarily monotone, nor 

* necessarily contracting, one may easily show that vn converges to v expo-

nentially fast (compare the proof of theorem 4.28(ii)). 

Further, one can use theorem 5.12, for the o corresponding to the method of 

standard successive approximations, to obtain bounds on v* and nearly-optimal 

stationary strategies. 

5.5. THE VISCOUNTEV MVP WITH FINITE STATE ANV ACTION SPACES 

In this section we study a special contracting MDP, namely the discounted 

MDP with finite state space S = {1,2, •.• ,N} and finite action space. Because 

of the relation with the average-reward MDP (which will be studied in chap­

ters 6.9) we consider in particular the case that the discount factor ap­

proaches 1. 

Moreover, we prove theorem 2.21, the proof of which we postponed. 

The total expected $-discounted reward, when strategy~ is used, is defined 

by (see (1.11)) 

(5.26) ~ E II , 

Clearly, the expectation is properly defined for all 0::; f3 < 1, since 

00 

lE l Bnr+(X ,A) ::; 
~ n=0 n n 

(1-f3)-l max r+(i,a)e < 00 • 

i,a 

Further, define 

(5. 27) 

As already remarked in section 1.5 this discounted MDP can be fitted into 

the general model by the addition of an absorbing state,* say. Defining the 

functionµ on Su{*} by µ(i) = 1, i ES andµ(*)= 0, one easily verifies 

that this extended MDP is contracting in the sense of model III. 

We will not incorporate the discountfactor into the transition probabili­

ties, since we want to study the case of a varying discountfactor, but we 

do use the fact that the discounted MDP is contracting. 



In order to study the S-discounted MDP, it is convenient to define the 

operators LS(f} and US on V by 

(5.28) 

and 

(5. 29) USv := max LS(f)v. 
fEF 
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As A is finite, there exists for each SE [0,1} a policy fS satisfying the 

optimality equation 

(5. 30) 

Further, by corollary 5.11, 

(5. 31) 

Hence 

(5. 32) 

vS(f) = lim L~(f)v 
n--><x> 

for all V E V • 

which is merely a special case of theorem 4.8(i). This leads to the follow­

ing result which has already been proved by SHAPLEY [1953]. 

THEOREM 5.13. Ifs and A are finite, then there exists for all 6 E [0,1) an 

optimal stationary strategy for the S-discounted MDP, i.e., a policy fS 

satisfying 

An important consequence of this result is, that it enables us to prove 

theorem 2.21, the proof of which has been postponed. 

THEOREM 2.21. Ifs and A are finite and condition 1.1 holds, then there 

exists a stationary strategy f, satisfying v(f) v*. 

PROOF. Since Sand A are finite, there ar~ only finitely many policies. So, 

let {Sn' n 0,1, .•• } be a sequence of discount factors with Sn tending to 1, 

then there exists a subsequence {Sn, k = 0,1, ... } and a policy f* such that 
k 

fork 0 I 1 I • • • • 
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Further, let 1T be an arbitrary strategy, then we have 

v(1r} = lim v B (1T} 
B+l 

Thus for all 1T € II 

V (1T} = lim v B (1T} = lim V (1T} 5 lim vB (f*) 
B+l k-+<o Bnk k-+<» ~ 

Hence, 

v(f*} * = V 

= v(f*} . 

D 

In the remainder of this section the case that the discountfactor tends to 

1 will be studied. our interest in this case is caused by the relationship 

that exists between the average-reward MDP and the discounted MDP with dis­

countfactor close to 1, see e.g. BLACKWELL [1962], VEINOTT [1966] and 

MILLER and VEINOTT [1969]. 

First let us derive a Laurent series expansion in powers of 1 - B for vB (f}, 

for B tending to 1. Miller and Veinott already derived the Laurent series 
-1 

expansion in B (1 - B}, but for our purpose (particularly chapter 8} it is 

more convenient to deal with the expansion in 1 - B. 

For any stationary strategy f we have 

(5. 33} 

Define 

(5.34} 

Then 

(5.35) 

* p (f} 

00 

l BnPn(f} r(f) 
n=O 

n-1 
:= lim n-l I Pk(f)r(f) • 
~ k=O 

p*(f)r(f) 
_1 n-1 

limn I Pk(f)r(f) 
n-+<o k=O 

-1 
limn vn(f) = g(f) , 
n"'"" 

where g(f) is the average reward per unit time for strategy f (cf. (1.12}}. 

Hence, (5.33) can be rewritten as follows, 

.., 

I 
n=O 

00 

(1-B}- 1 g(f) + I Bn[Pn(f)-p*(f)]r(f). 
n=O 
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Since 

(5.36l 

also 

This gives 

00 

(5.37l 
-1 t (1-Bl g(fl-g(fl+ l 

n=O 

-1 * -1 = (1 - Bl g(fl - g(fl + [I - BP(f) + BP (f)] r(f) . 

That I - BP(fl + BP* (fl is nonsingular for all B, with O ~ B ~ 1 (1 included), 

can be seen as follows. Let x satisfy 

(5. 38l 

then premultiplication with p*(fl yields, with (5.36l, 

Substituting this in (5.38l yields x = BP(flx, so for B < 1 we have x 0, 

If B = 1, then iterating and averaging x = P(flx yields 

X = 

so, with n + 00 , x = p*(flx = 0. 

* From the nonsingular! ty of I - P (fl + P (fl we obtain a Laurent series expan-

sion for I - BP (fl + BP* ( f) in 1 - B, for B sufficiently close to 1, in the 

following way. 

* Writing Q for P(fl - P (fl, we have 

(5.39l 
-1 -1 -1 -1 -1 

(1-BQl = (I-Q+(l-BlQl = (I+Cl-Bl(I-Q) Ql (I-Q) 

cc 

l (-1)k(1-B)k[(I-Q)-1Q]k(I-Q)-1. 
k=O 

So, for B sufficiently close to 1, we have the following expansion for 

VB(fl, 

00 

(5.40l VB(f) l (1 - B? ck (f) 
k=-1 
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with 

c_ 1 (f) = g(f) , 

( I - Q) - l r ( f) - g ( f) , 

k = 1,2, •••• 

It is notationally convenient when comparing stationary strategies for dis­

countfactors close enough to 1 to use the following two partial orderings 

on F: 

For all i Es 

(5.41) f): h -· 
and for all k = 0,1, ••• 

(5.42) f ;,, h - f ~ h and not h ~ f . 

Then we have 

LEMMA 5.14. For any two policies f and h there exists a constant S(f,h), 

with O $ S(f,h) < 1, such that for aZZ S with S(f,h) $ S < 1 

PROOF. Immediately from 

«> 

vs(f)-vs(h) = l (1-S)k[ck(f)-ck(h)] 
k=-1 

and the definition off >,:,h. 

An immediate consequence of this lemma is 

THEOREM 5.15 (cf. BLACKWELL [1962]). Th.ere exists a constant s 0, with 

O $ s0 < 1, such that for aZZ f and hand aZZ s0 $ S < 1 

Moreover there exists a stationary strategy f* such that for aU f E F we 
have f* ~ f. 

□ 
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PROOF. The first assertion follows from lemma 5.14 and the fact that (since 

Sand A are finite) there are only finitely many policies. The second asser­

tion follows along the same lines as the proof of theorem 2.21 in this sec­

tion, namely, take f* such that v 8 (f*) = v; for some sequence Sn t 1. D 
n n 

We conclude this section with some results concerning Laurent series expan-

* * sions for L8 (f)v8 (h), in particular for h = f, where f is a stationary 

strategy that is optimal for all 8 sufficiently close to 1. 

For all f and h E F we have 

00 

r(f) + [P(f)-(1-8)P(f)] l (1-s/ ck(h). 
k=-1 

This yields the following expansion for LS(f)v8 (h): 

(5.43) 

with 

(5. 44) 

(5.45) 

(5.46) 

co 

}: o - s/ dk(f,hJ 
k=-1 

k 1, 2, • • . . 

With S = {1,2, ... ,N} we can interpret d(•) and ck(•) as column vectors in 

lRN andP(f) as an (NXN)-matrix. 

For all f and h E F let us denote by C (fl and D (f ,h) the (N x 00)-matrices 

(N is the number of states in S) with columns 7((f) and ~(f,h), 

k = -1,0,1, ... , respectively. 

For equally sized matrices define the following two partial orderings: 

( 5. 4 7) 

(5 .48) 

P :J,, Q - In each row of the matrix P - Q the first nonzero 
element (if any) is positive. 

P >- Q - P.~ Q and not Q >,,: P. 

So f ~ h [f >- h] is equivalent to C (f) ~ C (h) [C (f) >- C (h)]. 

Then we have the following theorem. 
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THEOREM 5 • 16 

(i} For aZZ f E F 

D(f,f) = C(f) 

(ii) For au f and h E F 

D (f ,h) ~ C (h) => f ~ h 

(iii) If f* satisfies f* >,:: f for aU f E F, then 

PROOF. 

(i) Follows immediately from 

(ii) If D(f,h) ~C(h), then for all f3 sufficiently close to 1 

So, with the monotonicity of Lf3(f) and (5.32), for all f3 sufficiently 

close to 1 

v 13 (f) = lim L;(f)vf3(h) ~ Lf3(f)vf3(h) ~ v 13 (h) • 
n....,, 

Hence, by theorem 5 .15, f ~ h. 

(iii) f* ,:::,- f for all f E F implies v 13 (f*) 

to 1. So 

and for all f E F 

for f3 close enough to 1. Hence 

D(f,f*) :=E: C(f*) for all f E F . 

* v 13 for all f3 sufficiently close 

D 



5.6. SENSITIVE OPTIMALITY 

In the literature various criteria of optimality have been introduced for 

the case that the discountfactor tends to 1. 
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BLACKWELL [1962] studied this problem, and he introduced the following two 

concepts of optimality. 

He called a strategy n nea;r,ly optimal if 

(5.49) 

and a strategy n optimal if 

(5.50) v8(n) for all 8 close enough to 1. 

(We shall use these concepts only in this section.) 

VEINOTT [1969] introduced the following more sensitive optimality criteria. 

A strategy; is called k-disaount optimal, k E {-1,0,1, ••• }, if 

(5.51) 
-k A 

liminf (1-8) [v8 (n) -v8 (n)] <! 0 for all n E Il. 
a+ 1 

Finally, a strategy is called =-disaount optimal if it is k-discount optimal 

for all k = -1, 0, 1, •••• 

Clearly, a nearly optimal strategy in the sense of (5.49) is 0-discount 

optimal. Substituting for n in (5.51) a strategy f* satisfying v8 (f*) = v; 

for 8 sufficiently close to 1, we see that a 0-discount optimal strategy is 

nearly optimal in the sense of (5.49). So these two concepts are equivalent. 

Further we see that optimality in the sense of (5.50) is equivalent to•­

discount optimality. 

In chapter 7 it will be shown that there is a close relationship between k­

discount optimality and more sensitive optimality criteria in the average­

reward case (cf. SLADKY [1974]). 

The relation between the discounted MDP when the discountfactor tends to 1 

and the average-reward MDP, and in particular the policy iteration method 

for the average-reward case, has been studied in various publications. 

BLACKWELL [1962] showed that Howard's policy iteration method for the aver­

age reward MDP [HOWARD, 1960] yields, under certain condit.tons, a nearly 

optimal policy. VEINOTT [1966] extended Howard's method in such a way that 

it always produces a nearly optimal stationary strategy. A further exten­

sion of the policy iteration method by MILLER and VEINOTT [1969] yields k­

discount optimal policies for all k = -1,0, ••• ,=. 
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In chapter 8 we use the concept of go-ahead functions to derive variants of 

the policy iteration method that also yield k-discount optimal stationary 

strategies. 



CHAPTER 6 

INTRODUCTION TO THE AVERAGE-REWARD MDP 

In the chapters 6 - 9 we consider the average-reward MDP. Throughout these 

four chapters both the state space and the action space are assumed to be 

finite, and the states will be labeled 1,2, •.• ,N, so S = {1,2, ••• ,N}. 

Further, condition 1.1 no longer holds. 
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This chapter serves as an introduction to the average-reward MDP and reviews 

some results on these processes. In particular, results on the existence of 

optimal stationary strategies (section 1), on the policy iteration method 

(section 2), and on the method of standard successive approximations (sec­

tion 3). 

6. 1. OPTIMAL STATIONARY STRATEGIES 

In this section it will be shown that an optimal stationary strategy exists 

for the average reward per unit time criterion. Namely, a (the) strategy f* 

that satisfies f* ~ f for all f € F (for the existence of such a policy f* 

see theorem 5.15). (For the average optimality of a policy h the condition 

h ~ f for all f is, however, not necessary.) 

Recall that the average reward per unit time- g for a strategy~ E IT has been 

defined by (see (1.12)) 

(6.1) gM 
-1 1 n-1 

liminf n vn c~, = liminf n- lE l r(¾,1\_l 
n+co n+oo ~k=O 

For a stationary strategy f E F we have (cf. (5.35)) 

*' 
(6.2) g(f) = P (f)r(f) , 

where (cf. (5.34)·) 

(6.3) 
n-1 

p* (f) = lim n- 1 }: Pk(f) • 
n-- k=O 
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We want to show that 

(6.4) g* := sup g(TT) = max g(f) 
TTElI fEF 

In order to show that any policy f* satisfying f* ~ f for all f E F (cf. 

(5.41) and theorem 5.15) is average optimal we need the following lemma. 

LEMMA 6.1 (cf. BROWN [1965]). Let f* be a poZicy satisfying f* >,:::- f for aU 

f E F, then for all sufficiently large KE lR 

(6. 5) * * * * * L(f)[Kg(f) +c0 (f )] $ L(f )[Kg(f) +c0 (f )] 

* * * * = U[Kg(f) +c0 (f )] = (K+l)g(f) + c0 (f) 

PROOF. Let f be an arbitrary policy, then we have from theorem 5.16 and 

(5.44) and (5.45): 

For all i ES 

and if 

then 

(P(f)g(f*)) (i) 

* g(i,f) 

* * * * 
$ r(i,f (i)) + (P(f ) c0 (f ) ) (i) - g(i,f ) 

So, for all K sufficiently large, 

* * * * * 
$ KP(f )g(f) + r(f) + P(f )c0 (f) 

* * * * * = L(f )[Kg(f J +c0 (f )] = (K+ l)g(f) + c0 (f) 

With this lemma we can prove the following well-known result. 

THEOREM 6.2. Let f* be a policy satisfying f* ~ f for aU f E F (such a 

policy exists by theorem 5.15). Then 

* * g(f ) = g (= sup g(TT)) • 
TTEJI 

□ 
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PROOF. Let~ be an arbitrary strategy, and let K0 be a constant such that 

(6.5} holds for all K ~ K0 • Then 

(6.6) 

Hence 

g(~} 

* g 

= liminf 
n -+-oo 

liminf 
n -+-oo 

= liminf 
n -+-oo 

sup g(~) 
~€II 

-1 
V (~} ~ liminf n-luno n 

n n -+-oo 

-1 n * * n u [K0 g(f > +c0 Cf JJ 

-1 * n [{K0 +n)g(f) * +c0 (f )] 

* ~ g(f ) 

Clearly, g* ~ g(f*), so the proof is complete. 

* g(f ) 

Note that (6.6} also holds if liminf is replaced by limsup (apart from the 

first equation). So f* remains optimal if we use the maximality of 

-1 
limsup n vn (~) 

n-+-oo 

as a criterion. 

D 

So we see from theorem 6.2 that, when we are looking for an optimal or 

nearly-optimal strategy, we can restrict ourselves to stationary strategies. 

This is done in the policy iteration algorithm. 

6.2. THE POLICY ITERATION METHOV 

Before formulating the policy iteration method we give the following charac­

terization of g(f) and c0 (f). 

LEMMA 4.3 (BLACKWELL [1962]). The system of Zinear equations in g and v, 

g,v € V, 

(i) P(f)g = g 

(6.7) (ii) L(f}v = v+g 

(iii} p*(f)v = 0 

has the unique solution g = g(f), v = c0 (f). 
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PROOF. First we show that (g(f) ,c0 (f)) solves (6.7). That g(f) and c0 (f) 

satisfy (i) and (ii) follows from (5.44) and (5.45) with f =hand by theo­

rem 5.16 (i). 

* * To prove P (f)c0 (f) = O, premultiply v 8(f) with P (f), which yields 

"" 
P*(f) l BkPk(f)r(f) 

k=O 

"' 

I BkP*(f)Pk(f)r(f) 
k=O 

l Bk p* (f)r(f) -1 
(1 - Bl g(fl 

k=O 

where we used (5.36). Also 

p*(f)v8 (f) = p*(f)[(l-Bl-l g(f) +c0 (f) +0(1-8)] 

(1-Bl-l g(fl + p*(f)c0 (fl + 0(1-B) (B + 1). 

so 

To prove the uniqueness of the solution (g(f) ,c0 (f)), let us assume that 
0 0 1 1 (g ,v) and (g ,v) both solve (6.7). Iterating and averaging (i) we get 

* 0 0 p (f)g = g and * 1 1 p (f)g = g 

* And premultiplying (ii) by P (fl we obtain 

* * 0 * 1 P (f)r(f) = P (f)g = P (f)g • 

So (with (6. 2)) 

0 1 
g = g = g(f) • 

To prove v0 = v 1, subtract L(f)v1 v 1 + g(f) from L(f)vO = v0 + g(f) to 

obtain 

0 1 0 1 
P ( f) (v - v ) = (v - v ) . 

Iterating and averaging this equality yields 

0 1 * 0 1 
V - V = P (f) (V - V ) 

But from (iii) we have 
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0 
Hence v 

1 
v, which proves that the solution of (6.7) is unique. 

In the sequel we often write v(f) instead of c0 (f). 

Now let us formulate Howard's policy iteration algorithm for the average 

reward case [HOWARD, 1960] with the modification due to BLACKWELL [1962] 

that guarantees convergence. 

Policy iteration algorithm 

Choose f E F. 

Value determination step 

Determine the unique solution (g(f),v(f)) of (6.7). 

Policy improvement step 

Determine for each i ES the set 

□ 

A(i,f) := {a EA I l p(i,a,j)g(j,f) 
jES 

max l p ( i , a0 , j ) g ( j , f) } 
a0 EA jES 

and subsequently 

B(i,f) := {a E A(i,f) I r(i,a) + l p(i,a,j)v(j,f) 
jES 

max {r(i,a0J + l p(i,a0 ,j)v(j,f)}} . 
a0EA(i,f) jES 

Replace policy f by a policy h with h(i) E B(i,f) and h(i) = f(i) 

if f(i) E B(i,f) for all i Es, and return to the value determina­

tion step. Repeat until the policy f cannot be improved anymore, 

i.e., until f(i) E B(i,f) for all i ES. 

For the policy iteration method we have the following convergence result. 

THEOREM 6.4 (see BLACKWELL [1962, theorem 4]). Let policy h be an improve­

ment of the policy f obtained by the policy improvement step of the policy 

iteration algorithm, then 

(il if h f, then g(f) = g*, 

(ii) if h f, f, then !'1 ~ f. 

From (i) and (ii) it follows, as Fis finite by the finiteness of sand A, 

that the policy iteration method converges, i.e., it yields an average 

optimal policy after finitely many iterations. 
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PROOF. For a proof see BLACKWELL [1962]. We don't give the proof here, 

since theorem 6.4 is merely a special case of theorem 8.7 which we prove in 

chapter 8. 

VEINOTT [1966] and MILLER and VEINOTT [1969] have shown that the policy 

iteration method can be extended in such a way that the algorithm terminates 

with a policy which not only maximizes g(f) but also some (or all) subse­

quent terms of the Laurent series expansion for v 8 (f). 

HASTINGS [1968] introduced a modified version of the policy iteration for 

the case that all P(f) are irreducible. (P(f) is irreducible if for each 

pair i,j ES there exists a number n such that (Pn(f)) (i,j) > 0.) In that 

case p*(f) will have equal rows and g(f) will be independent of the initial 

state, so A(i,f) = A(i) for all i Es. 

Hastings showed that the standard successive approximation step in the 

definition of B(i,f) can be replaced by a Gauss-Seidel step. 

In chapter 8 the concept of go-ahead functions is used to study this and 

other variants of the (standard) policy iteration method, as well as several 

variants of the extended versions of this method as formulated by VEINOTT 

[1966] and MILLER and VEINOTT [1969]. It will also be shown that these algo­

rithms converge (not only if P(f) is irreducible), and that the extended 

versions again yield more sensitive optimal strategies. 

Closely related to the policy iteration method are the linear programming 

formulations. After d'EPENOUX [1960] introduced linear programming for the 

discounted MDP, De GHELLINCK [1960] and MANNE [1960], independently, gave 

the linear programming formulation for the average-reward criterion in the 

unichain case. (The case that for each policy f the underlying Markov chain 

has one recurrent subchain and possibly some transient states.) The multi­

chain case has been attacked a.o. by DENARDO and FOX [1968], DENARDO [1970] 

and DERMAN [1970]. Recently their results have been improved considerably 

by HORDIJK and KALLENBERG [1979]. 



6.3. SUCCESSIVE APPROXIMATIONS 

Another method to determine optimal or nearly-optimal policies, is the 

method of standard successive approximations: 

l Choose v0 • 

Determine for n 

v = uv n+1 n 

0, 1, ••. 
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From lemma 6.1 we immediately have the following result to to BROWN [1965]. 

* THEOREM 6.5. vn -ng is bounded inn for all v0 Ev. 

PROOF. Let K0 be so large that (6.5) holds for all K ~ K0 . Then using the 

finiteness of S, we have for all n = 1,2, ... 

!Iv - ng *11 
n e 

* In general, however, v n - ng need not converge. 

EXAMPLE 6.6. S := {1,2}, A 

0 
{1}, r(1,1) 2, r(2,1) = 0, p(l,1,2) 

= p(2,1,1) 1. 

For this MDP clearly g* = (1,1)T, but 

UnO-ng* oscillates between (1,-1)T and 0. 

Further, if v - ng* does not converge, then it need not be that for suffi-n 
ciently large n a policy fn satisfying L(fn)vn = vn+l is average optimal. 

This is shown by an example of LANERY [1967]. 

In case of convergence, however, we have the following result. 

THEOREM 6.7. Let v -ng* converge. Then, if n is sufficiently large, a 
n 

policy f satisfying L(f )v = vn is average optimal. n n n 

PROOF. Define 

Then 

* v : = lim [ v n - ng J 
n--><x> 

□ 
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L(f )v = L(f )[ng* +v+o(l)] * -v n+ 1 = (n + 1) g + v + o ( 1) (n + 00) • 
n n n 

Hence, since Fis finite, we have for n sufficiently large 

(6 .8) 

and 

(6. 9) 

* g 

L (f ) v = v + g * 
n 

* * * Iterating and averaging (6.8), we get P (fn)g g. 

So, premultiplication of (6.9) by p*(f) yields 
n 

p*(f )r(f) = g(fn) = p*(f )g* 
n n n * g 

* WHITE [ 1963] has shown that v n - ng converges if there exists a specific 

state i 0 ES and an integer r such that 

(6.10) 

for all policies f 1, ..• ,fr and all i' ES. 

* DENARDO [ 197 3] proved convergence of v n - ng under the weaker hypothesis 

that all P(f) are unichained (one recurrent class and possibly some trans­

ient states) and aperiodic. Note that the matrix in example 6.6 is perio­

dic. 

□ 

The general multichained case with periodicities has been studied by BROWN 

[1965] and LANERY [1967]. Finally, a relatively complete treatment has been 

given by SCHWEITZER and FEDERGRUEN [197@, 1979]. The latter two authors 

* established e.g. that vn -ng converges 'if all P(f) are aperiodic (even 

under weaker conditions) and that there always exists an integer J, the 

"essential period of the MDP", such that 

UnJ+m v - nJg* 0 converges for all m = 0,1, .•• ,J-1 . 

The latter result (with incorrect proofs) was also given by Brown and by 

Lanery. 

Periodicity, however; need not be a problem. SCHWEITZER [1971] has given a 

data transformation which transforms any MDP into an equivalent MDP that is 

aperiodic. 



ApeY'iodici-ty tra:nsfo=ation 

Let the MDP be characterized by S, A, p and r. Construct a new 

MDP withs, A, p andras follows: 

Choose a E (0,1) and define 

f 

r(i,a) (1- a)r(i,a) , i E: s, a E A 

(6 .11) p(i,a,i) a+ (1 - a)p(i,a,i) i E: s , a E: A 

p(i,a,j) (1-a)p(i,a,j) i,j E: s , j ,f i and a E A. 

We will show that the two MDP's are indeed equivalent. Denote all objects 

in the transformed MDP by a-. Then for all f E: F 

P (f) = aI + (1 - a) P (f) , 

so, clearly, P(f) is aperiodic for all f E F, and 

r(f) = (1 - a)r(f) 

One easily verifies that 

(6.12) P(fJg(fJ = g(fl 

and 

(6 .13) r(f) + P(f)v(f) v(f) + (1 - a) g(f) • 

Further we have 

- * aP* (f) (1 -a)P(f)P*(f) p* (f) P(f)P (f) + I 

so also 

-* * :I> (f)P (f) p* (f) 

And 

-* i:>* (f) [ 1 - a) -l P (f) - aI] ·* P (f)P(f) p (f) , 

hence 

·* * P (f)P (f) p* (f) 

This implies 

thus 

(6.14) -* P (f)v(f) 0 • 
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So it follows from (6.12)-(6.14) and lemma 4.3 that the transformed MDP is 

equivalent to the original =-horizon MDP, with 

(g(f} ,v(f}} = ((1 - a} g(f} ,v(f}) 

The finite horizon MDP's, however, are different. 

So from now on it may be assumed that the MDP under consideration is aperio­

dic in the strong sense of (6.11}, i.e., all p(i,a,i} are strictly positive. 

* * And thus that vn - ng converges (which clearly implies vn+l -vn ➔ g } • So 

theorem 6.7 applies. However, in order to obtain an appropriate algorithm, 

one has to be able to verify whether n is already so large that v 1 - v is 
* n+ n 

close tog and that fn is nearly optimal. 

* If g (i) is independent of the initial state, which, for example, is the 

case if all P(f} are unichained, then the following lemma makes it possible 

to recognize near-optimality. 

LEMMA 6.8 (cf. HASTINGS [1968] and HORDIJK and TIJMS [1975]}. Let v EV be 

a:r-bitrary and Zet f be a poZiay satisfying 

L(f}v = Uv. 

Then 

min (Uv-v) (i)e s g(f) s g* s max (Uv-v) (i)e • 
iES iES 

PROOF. For all h € F we have 

(6.15} p*(h} (L(h)v-v) = p*(h)r(h) g(h) • 

so, with h = f, 

g(f) p*(f) (L(f)v-v} = p*(f} (Uv-,v) 

:::: p* (f) min (Uv - v) (i) e = min (Uv - v} (i} e 
iES iES 

Clearly, g(f} s g*, and applying (6.15) with h = f* (g(f*} g *) we obtain 

* s P (f) max 
iES 

(Uv-v} (i)e = max (Uv-v} (i)e 
iES 

* * * If g is constant and vn - ng converges, then Uvn - vn converges to g , so 

□ 



max (Uvn - vn) (i) - min (Uvn - vn) (i) ➔ 0 (n ➔ 00 ) • 

iES iES 

So in this case lemma 6.8 shows us that the method of standard successive 

* approximations yields (arbitrarily close) bounds on g and nearly-optimal 

stationary strategies. 

* 
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It is also clear that lemma 6.8 is not of much help if g is not constant. 

One may also try to use the method of value-oriented successive approxima­

tions. For the average-reward case this method has been proposed by MORTON 

[1971], who, however, does not give a convergence proof. 

In chapter 9 we study the value-oriented method under the so-called strong 

aperiodicity assumption that P(f) ~ aI for some a> 0 and all f (cf. (6.11)), 

and under various conditions concerning the chain structure of the MDP, all 

* guaranteeing that g is constant. 

Another variant of the method of standard successive approximations has 

been introduced by BATHER [1973] and by HORDIJK and TIJMS [1975]. This 

method approximates the average-reward MDP by a sequence of discounted 

MDP's with discountfactor tending to 1. 

(6.16) 

Choose v0 Ev. 

Determine for n QI 1, , • • 

where {S} is a sequence of discount factors tending to 1. 
n 

* * HORDIJK and TIJMS proved, that if g is constant, vn+l - vn converges to g 

if the sequence {B} satisfies the following.two conditions: 
n 

-b A possible choice for { S } is B = 1 - n , 0 < b ~ 1, n = 1, 2, . . . • The 
n n 

-b convergence, however, is rather slow, namely of order n ln n. BATHER 

[1973] has considered the special case Sn= 1-n-1• 
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In chapter 7 we introduce a nonstationary variant of the method of standard 

successive approximations to study the relation between the more sensitive 

optimality criteria in the average-reward case and the discounted case. 

This nonstationary method turns out to be equivalent to the method of 

Hordijk and Tijms for sequences Sn= 1 : • From our analysis it will 

* follow that for these sequences the method (6.16) also converges if g (i) 

depends on the initial state. 
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CHAPTER 7 

SENSITIVE OPTIMALITY 

7. 1. INTROVUCTION 

In this chapter we consider some more sensitive optimality criteria for the 

average-reward MDP with finite state space S = {1,2, ..• ,N} and finite action 

space. 

The criterion of average reward per unit time is often rather unsatisfactory, 

since the criterion value depends only on the tail of the income stream, and 

not on the rewards during the first, say 1000, periods. 

In order to overcome this problem, one may consider more sensitive optimality 

criteria. 

One of these is the criterion of average overtaking optimality introduced by 

VEINOTT [ 1966]. 

DEFINITION 7.1. A strategy rr Err is aaZled average overtaking optimal, if 

for all 1T E IT 

(7.1) liminf n-l 
n 
l [v (rr) - V (11)] ~ 0 • 

m=l m m 

Veinott proved that an average overtaking optimal oplicy is nearly optimal 

in the sense of Blackwell, formula (5.49), and therefore also 0-discount 

optimal in the sense of (5.51). Veinott conjectured the reverse to be true 

as well. This conjecture was proved to be correct by DENARDO and MILLER 

[1968]. LIPPMAN [1968] proved that average overtaking optimality and 0-dis­

count optimality are equivalent (not only for stationary strategies). 

A stronger criterion than (7.1) is the following, introduced by DENARDO and 

ROTHBLUM [1979]. 
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DEFINITION 7.2. A strategy TT E IT is called overtaking optimal if for all 

1T E JI 

liminf [v (TT) - v (rr)] ~ 0 • n n n -+oo 

In general, there need not exist an overtaking optimal policy, since for 

t tak . t' 1 t t · (l) and ff( 2), the d1.'fference wo average over 1.ng op 1.ma s ra eg1.es rr " 

v (rr(l)) - v (rr( 2)) may oscillate around 0. BROWN [1965] gives an example 
n n 

where this oscillation is not caused by the periodicity of the transition 

matrices. Denardo and Rothblum proved that under certain conditions an 

overtaking optimal strategy does exist. 

An extension of the concept of average overtaking optimality has been given 

by SLADKY [1974]. 

Define for n = 0,1, ••• 

(7. 2) [ 
Then 

(7. 3) 

v(O) (rr) 
n 

v(k) (rr) 
n 

v (k) (rr) 
n 

:= V (rr) 
n ' 

n-1 

I (k-1) ( ) := V R, 1T 

R-=O 
k 1, 2, ••• . 

DEFINITION 7.3 (SLADKY [1974]). A strategy rr E IT is called k-order average 

optimal, if for all rr E IT 

0 • 

So, a 0-order average-optimal strategy is average optimal and a 1-order 

average-optimal strategy is average overtaking optimal. Sladky has shown 

that a strategy rr is k-order average-optimal if and only if it is (k- !)­

discount optimal. 

Here (in section 2) we will prove this result for stationary strategies 

following a somewhat different line of reasoning. The case of arbitrary 

strategies is notationally more complicated. As a byproduct of our approach 

we obtain a successive approximations algorithm yielding k-order average 

optimal policies; the problem to recognize these policies, however, remains. 
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In section 3 we obtain a relation between this algorithm and the algorithms 

by BATHER [1973] and HORDIJK and TIJMS [1975] as formulated in (6.16). 

7.2. THE EQUIVALENCE OF k-ORVER AVERAGE OPTIMALITY ANV (k- /)-VISCOUNT 
OPTIMALITY 

In this section we show that a policy is k-order average optimal if and 

only if it is (k- 1)-discount optimal. Part of the results in this section 

can be found in Van der WAL and ZIJM [1979]. 

In order to prove this we study the following dynamic programming scheme 

[ 
(k) 

Q I VQ := 

(7 .4) 

v(k) := max { (~) r (f) + P(f)v(k)} n = 0, 1, •.. , n+l fEF n 

n 
where (kl := 0 if k > n. 

The reason why we study this scheme will become clear from the following 

analysis. 

Let rr = (f0 ,f1 , ••• ) be an arbitrary Markov strategy, and let v~k) (rr) be 

defined as in (7.2). Then, by definition 

v(O) (rr) = O , 
0 

from which we obtain with (7.2) inductively, 

v (k) (rr) = 0 f 11 < k n or a n - , n, k = O , 1 , • • • • 

Further we have for all n ~ k the following recursion 

(7. 5) V (k) (rr) 
n+l 

v (k) (rr) + v (k-l) (rr) 
n n 

From (7.5) we can obtain the following lemma, which gives a recursion 

similar to (7.4) for an arbitrary strategy. 

LEMMA 7.4. Let rr 

aZZ n,k = 0,1, ••• 

(f0 ,f1 , ••• ) be an arbitrary Markov strategy~ then for 
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(7.6) V (k) ('IT) 
n+l 

PROOF. With (2) 0 for all 2 < m, we see that (7.6) holds for all points 
m 

(n,k) with n < k. Clearly, (7.6) also holds fork= 0, since in that case 

(7.6) reduces to 

We will prove that (7.6) holds for all n,k ~ 0 by induction on n and k 

simultaneously. 

Assume that (7.6) holds for the pairs (n0-1,k0) and (n0-1,k0-1), then we 

have with (7.5) 

+1 Applying (7.5) with 'IT replaced by 'IT we obtain using 

(7.7) 

that 

So, (7.6) holds for (n0 ,k0). As (7.6) holds for all n < k and also for 

k = O, it follows by induction that (7.6) holds for all n,k = 0,1,.... D 

For a stationary strategy this yields 

(7 .8) f E F • 

The similarity with the scheme (7.4) is clear. Before we study this scheme, 

we first analyze the recursion (7.8) in somewhat more detail. 

To this end define for all f E F (cf. (5.40)) 

(7.9) (k) n n-1 n-k-1 
Dn (f) := (k+l) g (f) + ( k ) c0 (f) + ••• + ( O ) ck (f) if n > k 

and 



D (k) (f) := 0 if n $ k • 
n 
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We will show that v (k) (f) - D (k) (f) is bounded if n tends to infinity (for 
n n 

fixed k and f). To prove this we need the following lemma. 

LEMMA 7.5. For aU n ~ k and all f E F 

t)r(f) + P(f)D(k) (f) = D(k) (f) 
k n n+1 

PROOF. For all n ~ k and all f E F we have, with (7.7), 

n-k+l 
+ ••• + ( l )[P(f)ck-l (f) -P(f)ck_2 (f)] + 

Hence, with (5.44)-(5.46) for h = f, theorem 5.16(i), and (n-~-l) - (11~k) O, 

where we used (7.7) once more with (i,m) = (n+1,k+1). D 

Now we can prove 

THEOREM 7.6. For aZZ k = 0,1, •.• and f E F 

(7. 10) v(k) (f) = D(k) (fl + 0(1) 
n n 

(n + oo) 

PROOF. For all n > k· and all f E F, 

v (k) (f) - D (k) (f) 
n+l n+l 

P(f)[v(k) (f) -D(k) (f)] 
n n 
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Hence 

V (kl (fl - D (kl (fl 
n n 

0(1l (n + 00l • 

Note, that if P(fl is aperiodic, then 

v(kl (fl - D(kl (fl converges for n + 00 • 
n n 

Theorem 7.6 enables us to compare stationary strategies fork-order average 

optimality. In order to consider also nonstationary strategies (as we have 

to according to definition 7.3l, we consider the dynamic programming scheme 

(7. 4l. 

For this scheme one can easily prove inductively that 

for all 7f E M , 

and along similar lines as in section 2.3 one can then show 

(7. lll v (kl ~ 
n 

V (kl (7r) 
n 

for all 7f E JI. 

To prove a similar asymptotic result as (7.10l for v(kl we need the follow­
n 

ing lemma. 

LEMMA 7.7. For each k 

for aU n ~ n0 

(7. 12l 

0,1, .•• there exists an integer n0 > k such that 

where f* is a policy satisfying f*~ f for all f E F (cf. theorem 5.15). 

PROOF. With (7.7l we get for f E F and n > k, 

(7 .13l 

+ n-k * * + ( O )[P(flck(f) -P(flck-l (fl] 

n n -k n JI, JI, J/,-1 
Since (k+ll = k+1 (kl and for all JI, and m, (ml= iii (m_ 1), we see that the 

subsequent terms on the right hand side in (7.13) decrease by an order n. 
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So, if n is sufficiently large, say n ~ n0 , then in order to maximize the 

left-hand side of (7.13) we can maximize separately the subsequent terms on 

* the right-hand side. I.e., first maximize P(f)g(f ), next 

n [ * J * (kl r(f) +P(f)c0 (f) , etc. Then it follows with (5.44)-(5.46) for h = f 

and theorem 5.16(iii) and (i) that (7.13) is maximal for f = f*. Finally, 

(7.12) follows from lemma 7.5 with f = f*. 

Now we can obtain the asymptotic behaviour of v(k). 
n 

THEOREM 7.8. For all k = 0,1, ... 

(n + oo) , 

where f* is again a poliay as mentioned in theorem 5.15, 

PROOF. From (7.11) and theorem 7.6 we have 

(k) ~ D(k)(f*) + 0 (1) (n + oo) V n n 

So it suffices to prove 

(k) $ D(k) (f*) + 0 (1) (n + oo) V 
n n 

To prove this, define 

ti (k) (k) - D(k)(f*) n > k := V I n n n 

Then we have for all n ~ n0 (the constant mentioned in lemma 7.7), 

max { (~)r(f) + P(f)D(k) (f*) + P(f)ti (k)} 
ftF n n 

$ max {(~)r(f) + P(f)D(k) (f*)} + max P(f)ti(k) 
fe:F n fe:F n 

So, 

ti (k) $ uti (k) 
n+l n 

Hence, 

0(1) (n + 00 ) , 

which completes the proof. 

□ 

□ 
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Finally, we can prove 

THEOREM 7. 9. A policy f is (k - !)-discount optimal if and only if f is k­

ordEr average optimal. 

PROOF. 

(i) First we prove the 'if' part. Let f be k-order average optimal, then 

certainly 

0 • 

So, with theorem 7.6, 

0 • 

* Thus, in order that f is k-order optimal we certainly need c Jl ( f) = c Jl ( f ) , 

Jl = -1, ••. ,k-1 (cf. (7 .6)). Hence a k-order average optimal policy is 

also (k - 1) -discount optimal. 

(ii) To prove the 'only if' part, let f be a (k-1)-discount optimal policy. 

* Then CJl (f) = CJl (f ) , Jl = -1, ••• ,k-1. So 

D (k) (f) 
n 

(n + oo) • 

Hence, for all 11 € IT, 

v (k) (f) - v (k) (11) 
n n 

0(1) (n+oo) 

Dividing by n we see that f is indeed k-order average optimal. D 

As mentioned before, SLADKY [1974] has proved that theorem 7.9 holds for 

arbitrary strategies. 

More or less as a byproduct of our analysis we have obtained the dynamic 

programming scheme (7.4). We end this section with some remarks about this 

scheme. We obtained 

(7. 14) 
(k) 

V n 
n * n-1 * n-k * (k+l)g(f) + ( k )c0 (f) + ••. + ( l )ck-l (f) +0(1) (n + oo) 

and one may even show that if e.g. all P(f) are aperiodic (cf. SCHWEITZER 

and FEDERGRUEN [1979]) the term 0(1) can be replaced by wk+ O(pn) for some 

wand some p < 1, i.e., 
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(7 .15) (n ➔ oo) • 

From (7.14) we have 

(n ➔ oo) • 

From (7.15), however, we can obtain 

(n ➔ oo) 

and for example, if k > O, 

(n ➔ oo) • 

Further, a policy fn maximizing 

will be (k - 2) -discount optimal for n sufficiently large (n ?: n0 ) • This 

follows from the fact that (for n?: n0) policy fn satisfies 

(f*, g(f*) co + 

Q, = 1, ... ,k-1 , 

and the fact that the solution {g,c0 ,c 1 , ••• ,ck_2) of the system 

1, ... ,k-2 

is unique and equal to (g(fn),c0 (fn), .•• ,ck_2 (fn)). So g(fn) = g(f*) and 

* cQ,(fn) = cQ, (f) for Q, = 0,1, ..• ,k-2. 
(k) (k) * 

If, moreover, vn - Dn (f) converges for n ➔ oo, then the stationary 

strategy fn will be even (k - 1) -discount optimal if n is sufficiently large. 
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The argument is similar as in theorem 6.7. However, we cannot simply verify 

whether for a specific (large) n the policy fn is already 1-order average 

optimal (we encountered the same problem in the case of standard successive 

* approximations if g is not constant). 

7.3. EQUIVALENT SUCCESSIVE APPROXIMATIONS METHOVS 

In this section we want to show that the dynamic programming scheme (7.4) is 

equivalent with the successive approximations method of HORDIJK and TIJMS 

[1975] for a special choice of their sequence {Sn}. 

In order to do so, define for fixed k and all n = k+1,k+2, ••. 

and 

Then for all 11 

where 

(7 .16) S (k) := 
n 

Similarly, we obtain 

for all 11 E JI , 

1 - ~ 
n 



So the dynamic programming scheme (7 .4) is equivalent to the following 

algorithm: 

(7 .17) 

(k) 
Define wk := 0. 

Determine for n = k,k+l, ... 

max 
fEF 

with B(k) defined by (7.16). 
n 
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This is merely a special case of the set of algorithms introduced by HORDIJK 

and TIJMS [1975]. Fork= 1, this is the method introduced by BATHER [1973]. 

Further we see from (7.14) that 

So, 

(k) 
w 

n 
~ (k) 
V 

n 

(k) (k) 
w -w 

n+l n 

(n -+ oo) • 

(n ➔ oo) • 

From the equivalence of the schemes (7.4) and (7.17) and the observations 

made in the preceding section, we see that a policy that maximizes 

will not only be average optimal, but even (k - 1)-order average optimal, 

* provided n is sufficiently large. For this to be true, g need not be inde-

pendent of the initial state as has been assumed by Bather and by Hordijk 

and Tijms. 
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CHAPTER 8 

POLICY ITERATION, 

GO-AHEAD FUNCTIONS AND SENSITIVE OPTIMALITY 

8. 1. INTROVUCTION 

This chapter deals with policy iteration algorithms for the determination 

of sensitive optimal policies for the average-reward MDP with finite state 

space S := {1,2, .•. ,N} and finite action space A. 

There are two variants of Howard's policy iteration algorithm [HOWARD, 1960] 

(with the modification by BLACKWELL [1962]) which have been introduced by 

HASTINGS [1968] and MILLER and VEINOTT [1969]. Hastings replaced the policy 

improvement step by a Gauss-Seidel step, cf. section 3.3, and proved con­

vergence for the case that all P(f) are unichained. Miller and Veinott ex­

tended the improvement step in such a way that the algorithm can produce 

not only average-optimal but also n-order average optimal policies. 

In this chapter we will formulate, in terms of certain stationary go-ahead 

functions, a set of policy iteration algorithms, which includes the methods 

of Hastings and Miller and Veinott. It will be shown that these methods all 

converge in finitely many steps, and yield n-order average-optimal poli­

cies, where n will depend on the algorithm under consideration. 

The line of reasoning is very similar to that in MILLER and VEINOTT [1969] 

and VEINOTT [1966]. 

We restrict ourselves to the consideration of stationary go-ahead functions, 

for which, as we have seen in sections 3.5 and 4.7, the restriction to 

policies is permitted under certain conditions. Further we require that 

o (i) = o (i, a) = 1 fo,r all a E A and i E S. Thus tr.e go-ahead function is 

completely characterized by the function o(i,a,j), and stopping only occurs 

immediately after a transition has been made. 

From a practical point of view this is not a serious restriction, since in 

the policy iteration algorithm one is mostly not interested in extrapola-
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tions, and thus not very interested in preserving the equal row sums. Recall 

that it was precisely for this reason that one wanted to have the possibility 

to choose o(i) and o(i,a) less than 1. The reason for the restriction to 

these stationary go-ahead functions is that it considerably simplifies the 

notations, which already will become rather complex. The extension to the 

case O < a 0 < 1 (for stationary go-ahead functions) is, however, straight­

forward. 

Further we have to require 

(8 .1) < 00 for all f e: F 

0 
In the algorithms in section 3.3 the only situation in which lEf -r may not 

be finite, is the case that for some i e: Sand a e: A we have p(i,a,i) 

= o(i,a,i) 

holds again. 

1. If, in this case, one takes o (i,a,i) = 1 - e:, then (8.1) 

In section 2 the policy iteration algorithm, with improvement step formula­

ted in terms of a go-ahead function, is studied for a fixed discount factor 

B < 1. This analysis gives us an idea of how to construct the improvement 

step for the average-reward MOP, treating it again as the limiting case for 

B tending to 1. Next (in section 3) a Laurent series expansion is obtained 

for 

in ( 1 - B) for B tending to 1 . In section 4 we derive from this expansion 

the policy improvement step for the policy iteration algorithm. The conver­

gence proof will be given in section 5. 

8.2. SOME NOTATIONS ANV PRELIMINARIES 

Define for all f e: F the operator L810 (f) on V (=JRN) by 

(8. 2) 

We only consider policies, since for stationary go-ahead functions we can 

restrict ourselves to stationary strategies in the maximization of L810 (•)v. 

Clearly, L810 (f) ismonotone. Further L810 (f) is a contraction with a con-



traction radius of at most S for go-ahead functions with o(i) 

or T z 1. Namely, for all v,w EV 

(8. 3) II LS, 0 (f) v - Ls, 0 (f)wll e 
0 T 

IIEfB (v-w) (X )II 
T e 

Further it is obvious that 

So 

(8 .4) for all VE V. 

And we also have: 

(8.5) 

Namely, 

VB(f) = lim L: o(f)v z •.. z LS,o(f)v. 
k-- , 

Sllv -wll 
e 

o (i ,a) 

Now let us consider the policy iteration algorithm for a fixed S < 1 with 

the improvement step formulated in terms of a go-ahead function. 

Policy iteration algorithm 

(8.6) 

(8. 7) 

Let f be the actual policy. 

Determine 

and replace f by a maximizer of (8.6), until 

In order to formulate some results for this algorithm it is convenient to 

define the partial ordering > on V by 

(8.8) v ;,,- w if and only if v z w and v # w • 

From (8.5) we see that if 
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then 

So, since there are only finitely many policies, after finitely many re­

placements (8.7) will hold. Then we have 

for all h E F , 

hence, analogously to (8.5), 

for all h E F , 

or f is optimal for discount factor S: 

However, we are not interested in the case of a fixed discount factor S, 
but in the case that S approaches 1 (cf. chapter 7). 

The following two lemmas for the case St 1 give us already an idea of the 

kind of policy improvement step, for the determination of an n-order 

average-optimal policy, we should look for. 

LEMMA 8.1. If for all S sufficiently close to 1 

then for all S close enough to 1 

hence also h >- f·. 

LEMMA 8.2. If 

(8.9) 

then 

(8.10) (S t ll • 

CS t 1) , 

Hence, if (8.9) hold.s for all h E F, then f is (n-1)-discount optimal and 
n-order average optimal. 

~- In order to prove that (8.9) implies (8.10), first observe that, 

similar to (8.3), we have for all v,w EV, 



and thus 

Hence, 

-1 n+l 
( 1 - B) 0 ( (1 - B) e) + v B ( f) 

(B + 1) • 

Lemmas 8.1 and 8.2 suggest that we should try to find a policy iteration 

algorithm of the following form: 

Algorithm 

Let f be the actual policy 

Poiiey improvement step 

Find a policy h, such that 

(8.11) L810 (h)v8 (f) >- v8 (f) for all B close enough to 1 

replace f by h. 

Repeat the policy improvement step until_ a policy f is found which 

satisfies 

(8.12) 
n+l 

:s:v8 (f)+0((1-Bl el for all h E F . 

In section 4 we will see that it is possible to check, in a relatively 

simple way, whether (8.12) holds. 

Observe, that since ~here are only finitely many policies, one will have 

for all h E F and all B close to 1, 

after only finitely many executions of the policy improvement step. So 

after finitely many improvement steps one obtains a policy f satisfying 

(8.12). 
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8.3. THE LAURENT SERIES EXPANSION OF LB, 0(h)va(6) 

In order to find a policy h which satisfies (8.11) or to check whether a 

policy f satisfies (8.12), we will derive the Laurent series expansion of 

LS,o(h)v6 (f) in 1 - 13 for 13 t 1. It will turn out that this Laurent series 

expansion has a relatively simple form because of the simple structure of 

the go-ahead functions: stationary, with o(•) = o(•,•) = 1. To exploit this 

structure we split up the transition probabilities in two parts: 

and 

p0 (i,a,j) :=p(i,a,j)(1-o(i,a,j)), ae:A, i,j e:S. 

So, with probability ~o a transition is made after which one goes ahead, 

and with probability p0 the transition is followed by stopping. 

Further define the matrices P0 (h) and P0 (h) by 

Po(h) (i,j) := po(i,h(i),j) , i,j € s, h € F. 

So, 

From the analogy with the MDP defined in (3.9) it follows that for all 

hE:FandvEV 

Hence, 

Further it has been assumed that 

o - -2 
lEh T = e + PO (h) e + PO (h) e + ••• < oo • 

-n -
So P0 (h) + 0 (n + 00), hence I-P0 (f) is nonsingular. Thus, with (5.39) we 

' - -1 obtain the following expansion of [ I - SP O (h) ] in powers on 1 - S for S + 1 
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And with the expansion (5.40) for vS(f), 

(8.13) l o - s/ c-1)k{[1 -i\ (hl J- 1 i\5 (hl }k[I - i\5 (hl J- 1 • 
k=O 

• [ r (h) + [ 1 - ( 1 - 13)] 1\ (h) ~ (1 - 13) t ct (f)] ( S t 1) . 
t=-1 

To simplify this expression we define the following notations: 

(the expected reward until time T); 

(P0 (h) (i,j) is the probability of stopping in state j); 

(Q0 {h) (i,j) is the expected number of visits to state j before time T); 

(R0 (h) (i,j) is the expected number of visits to state j after time O and 

before time T) • 

Substituting this into (8.13) yields 

Or 

with 

(8.14) 

; k k k 
L010 (h)v0 (f) = l (1-S) (-1) R0 (h) • 

" " k=O 

I (1 - S)k ~ (h,f) 
k=-1 

and, fork= 0,1, ••. , 
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(8.15) 

where the dependence of dk(h,f) on o has been suppressed. 

The expression (8.15) can be simplified further to 

(8.16) 

and 

(8.17) 

So, if one wants to maximize L810 (•)v8 (f) for all B sufficiently close to 1, 

then one has to maximize first d_ 1 (•,f), next one has to maximize d 0 (•,f) 

over those policies which maximize d_ 1 (•,f), etc. In section 4 it will be 

shown that this can be done in a relatively simple way. 

For later use we want to rewrite the equations (8.14), (8.16) and (8.17). 

Therefore, define for all f and h E F 

(8.18) 

(~k(h,f) depends of course also on o). 
Clearly, since L810 (f)v8 (f) = v8(f), we have 

Substituting (8.18) into (8.14), (8.16) and (8,17) yields 

(8.19) 

(8.20) 

(8.21) 

Or, upon premultiplication with I - PO (h), 

(8.22) 
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(8. 23l 

(8.24l 

In the next section we will see how to obtain from equations (8.22l-(8.24l 

a characterization of the set of policies which subsequently maximize 

d _ 1 ( • , f) , d0 ( • , fl , . • • until dn (•,fl . 

This section is concluded with a restatement of lemmas 8.1 and 8.2 in terms 

of the functions 1/ik(h,fl. 

Define the matrix 'l'n (h,fl as the (N x (n + 2l l - matrix with columns ~•-l (h,fl, 

lji 0 (h,fl , ••• ,ljin(h,fl, and define the matrix '1'00 (h,fl as the (N x 00 l -matrix 

with columns 1/!_ 1 (h,fl,1/!0 (h,fl ,... Then lemmas 8.1 and 8.2 state that 

if '1'00 (h,fl >- 0, then h >- f, 

and 

if 'l'n (h,fl ~ 0 for all h E F, then t is n-order average optimal. 

8.4. THE POLICY IMPROVEMENT STEP 

In this section a policy inprovement step will be constructed which, given 

a policy f E F, either produces a policy h E F satisfying 'I' 00 (h, fl >- 0, or 

signals that 'I' (h,f) ~ O for all h E F. 
n 

In section 3 it has been shown, that in order to maximize L610 (•lv6 (fl for 

all S sufficiently close to 1, one has to maximize subsequently the terms 

1/!_ 1 (•,fl,1/!0 (•,fl, ••• (or d_ 1 (•,fl,d0 (•,fl, ••• l. Since in the maximization 

of 1/!0 (•,fl only those policies need to be considered that maximize 1/!_ 1 (•,fl, 

we first derive a characterization of the set of policies maximizing 

1/!_ 1 (•,fl. 

Leth maximize 1/!_ 1 (•;fl, 

(8. 25l lji_ 1 (h,fl = max lji_ 1 (g,fl =: lji_ 1 (fl • 
gEF 
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The existence of such a uniformly maximizing policy follows from the fact 

that the MDP which is equivalent to the problem of maximizing P0 (•)c_ 1 (f) 

(constructed along the lines of (3.9)) is contracting. This follows from 

P~(•) + 0 (n + 00 ) and the finiteness of Sand A. 

For h we have 

(8.26) 

and 

(8.27) 

Now, define y_ 1 (i,a,f) for all i ES and a EA by 

(8.28) _L p0 (i,a,j)c_ 1 (j,f) + l p0 (i,a,j)(c_ 1 (j,f) +1/J_ 1 (j,f)) 
JES jES 

Then it follows from (8.27) that y_ 1 (i,h(i),f) = 0 for all i ES. Further, 

y_ 1 (i,a,f) ~ 0 for all i ES, a EA. Namely, suppose y_ 1 (•,•,f) > 0 for 

some pair (i,ai), then we have for the policy h defined by h(i) ai, and 

h(j) = h(j), j -/ i, with y_ 1 (h,f) (i) = y_ 1 (i,h(i) ,f), 

- - -1 So, after premul tiplication with [ I - P O (h)] , and some reordering 

Since y_ 1 (h,f) >- O, also 

00 

l P~(h)y_l (h,f) ~ Y_1 (h,f) >- 0 . 
k=O 

But this would contradict the definition of 1/J_ 1 (f). So, y_ 1 (i,a,f) ~ 0 for 

all i Es and a EA. 

Similarly, let g be a policy with y _ 1 (g, f) -< 0, then 



Hence the set of policies which maximize $_1 (•,f) can be characterized by 

the actions having y_ 1 (i,a,f) = O. I.e., a policy g has w_ 1 (g,f) = $_ 1 (f) 

if and only if y_ 1 (i,g(i),f) = 0 for all i Es. 

This result can also be obtained from the observation that 

max {Po(g)c_l(f) + Po(g)(c_l(f) +w_l(f))} = c_l(f) +w_l(f) 
gEF 
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is just the optimality equation for the MDP which is equivalent to the pro­

blem of maximizing P0 (•)c_1 (f). 

Now define for all i ES 

A_ 1 (i,f) := {a E A I y_ 1 (i,a,f) = O} 

and define the restricted policy set F_ 1 (f) by 

F_1 (f) := {g E F I g(i) E A_ 1 (i,f) for all i E s} • 

So F_ 1 (f) is ~ust the set of maximizing policies of $_ 1 (•,f). 

Next one has to maximize w0 (•,f) over all policies which maximize w_ 1 (•,f), 

i.e., over the policies in F_1 (f). 

From now on we are, strictly speaking, considering a restricted MDP with 

state-dependent action sets A_ 1 (i,f), i ES. Define 

max w0 Cg,f) , 
gEF _ 1 (f) 

and define y0 (i,a,f) for all i ES and a E A_ 1 (i,f) by 

(8.29) r(i,a) + l po(i,a,j)co(j,f) - c_l (i,f) - $_1 (i,f) + 
jES 

+ .l po(i,a,j)(co(j,f) +wo(j,f)) 
JES 

(compare (8.23)). 

Further define 

Yo (i,a,f) O}, i € s 

and 

Fo (f) := {g € F I g(i) € Ao (i,f) for all i € s} • 
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Then similar reasoning as before shows that F0 (fl is just the set of maxi­

mizing policies of ¢0 (•,fl within F_1 (f). 

Continuing in this way, define fork= 1,2, ... 

¢k (fl := max ¢k (g,fl , 
gEFk-1 (fl 

and define yk(i,a,fl by (cf. (8.24l 

(8. 30l l p0(i,a,jl (ck-l (j,fl + ¢k-l (j,fl l 
jES 

~· 
+ l Po(i,a,jl (ck(j,fl -ck-l(j,f)) + 

jES 

+ l p0 (i,a,jl (ck(j,fl +¢k(j,f)) 
jES 

Further define 

¾ (i,fl := {a E ¾-l (i,fl I yk (i,a,fl 

and 

O} , i E s , 

Fk(fl :={g E FI g(il E ¾(i,fl for all i Es}. 

Then Fk(fl is again the set of maximizers of ¢k(•,fl within Fk-l (fl, i.e., 

if g E Fk-l (fl, then ¢k(g,fl = ¢k(fl if and only if g E Fk(fl. 

Now the policy iteration algorithm for the determination of an n-order 

average-optimal policy can be formulated as follows. 

Policy iteration algorithm for an n-order av~rage optimal policy 

Let f be the actual policy. 

(8.31l 

Policy improvement step 

Determine for all i ES the set An(i,fl, and replace f by a policy 

which satisfies for all i ES 

Repeat the policy improvement step until a policy f is found 

which satisfies 

f(il E An(i,fl for all i Es. 
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In the next section it will be shown that the policy h, obtained from f by 

the policy improvement step, satisfies: 

(i) if h # f, i.e., f(i) ¢ An(i,f) for some i ES, then '!'00 (h,f) :;>-0, so 

h "rf; 

(ii) if h = f, i.e., f(i) E An(i,f) for all i ES, then f is n-order average 

optimal. 

8.5. THE CONVERGENCE PROOF 

In order to show that for a policy h obtained from f by the improvement step 

(8.31) one has 

(and hence h >- f), unless h = f, we first need the following lemma. 

LEMMA 8.3. Let f be an arbitrary policy, then 

(i) 1/J _ 1 (f) ~ 0 • 

Moreover, if for some i Es and k E {-1,0, .•• } we have 1/)_ 1 (i,f) 

= 1/Jk (i,f) o, then 

for aZZ j E S(i,f) := {i E s I i\s<i,f(i) ,2) > O}, 

(iii) f(i) E ¾(i,f), 

PROOF. 

(i) From 

it follows that 

Hence 
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1)J_ 1 (f) =maxP 0 (g)c_ 1 (f)-c_1 (f) ~P 0 (f)c_ 1 (f)-c_1 (f) 0. 
gEF 

Next we prove (ii)-(iv) by induction. 

First the case k = -1. Assume 1)!_ 1 (i,f) = O. Then subtraction of equation 

(8.22), with h = f, for state i from equation (8.28) yields, with 

1jJ _ l ( f, f) = 0 , 

I i? 0 <i,f(il,jl1)J_1 <j,fl 
jES 

1)!_1 (i,f) + y_ 1 (i,f(i) ,f) 

Hence, with 1)!_ 1 (i,f) = O, 1)!_ 1 (f) ~ 0 and y_ 1 (i,f(i) ,f) SO, 

y_l (i,f(i),f) = 0, so f(i) E A_ 1 (i,f) 

and 

(8.32) I i? 0 (i,f(iJ,jJ1jJ_ 1 ,j,fl 
jES 

0 , so 1jJ _ l ( j , f) 0 for all j E S (i, f) . 

Now, let 

S _ l ( f) : = { j E S I 1jJ _ l ( j , f) = 0} , 

then it follows from (8.32) that s_1 (f) is closed under P0 (f). Further 

f(j) E A_ 1 (j,f) for all j E s_1 (f). Next, let f be any policy with 

f(f) f(j) for all j E s_ 1 (fl and f(j') E A_ 1 (j,f) elsewhere, then 

f E s_ 1 (f). If the process starts in s_1 (f) and policy f is used, then the 

system will not leave s_ 1 (f) before time T, therefore only actions from f 

will be used. Hence 

1)J 0 (i,f) = max 1)J 0 (i,g,f) ~ 1)J0 (i,f,f) 
gEF_ 1 (f) 

ijJO (i,f,f) 0 • 

This completes the proof fork= -1. 

Now let us assume that (ii)- (iv) hold for k m - 1, and define the sets 

S !I, ( f) , !I, 0, 1, .•. , by 

( 8. 33) S !I, ( f) : = { j E S I 1jJ _ l ( j, f) = . . • = 1jJ !I, ( j, f) = 0} 

Then it follows from the induction assumption that f(j) E Am-l (j,f) for all 

j ES 1 (f), that 1jJ ' 1 (j,f) = 0 for all j belonging to a set S(i,f) for 
m- m-

some i E Sm-l (fl, and that ijJm(j,f) ~ O for all j E Sm-l (fl. 

We will prove (ii)-(iv) fork= m, so assume 1)!_ 1 (i,f) = .•• = ijJm(i,f) = 0. 

The proof is almost identical to the proof of the case k = -1. Subtracting 



(8.24), with h = f, for state i from equation (8.30) yields, with 

ijJm-1 (j' f) 

(8. 34) 

0 for all j E S(i,f) and ijJm-l (f,f) = O, 

l p0 (i,f(i),j)ijJm(j,f) 
jES 
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(Form= 0 one has to subtract (8.23), with h 

which also yields (8.34).) 

f, for state i from (8.29) 

Since f(i) E Am-l (i,f), we have ym(i,f(i),f) ~ O, and since ijJm-l (j,f) = 0 

for all j E S(i,f) by the induction assumption, also ijJm(j,f) ~ 0 for all 

j E S(i,f). 

This implies that both sides in (8.34) must be equal to zero. 

So f(i) E Am(i,f) and ijJm(j,f) = 0 for all j E S(i,f). Hence Sm(f) is closed 

under P0 (f) and the same reasoning as for k = -1 yields ijJm+l (i,f) ~ 0. 

This completes the proof of (ii)-(iv). □ 

This lemma yields the following corollary. 

COROLLARY 8. 4. 

(i) Denote by '!'00 (f) the (N x 00 ) -matrix with columns 1jJ _ 1 (f) , iJ!0 (f) , 1jJ 1 ( f) , · ... , 

then 

(ii) Leth be the (a) policy obtained from f by the policy improvement step 

( B • 31 ) , then 

O only if h (i) f (i) • 

Finally, we can prove that each policy improvement step yields a better 

policy. 

THEOREM 8.5. Leth be a policy obtained from f by the policy improvement 

step (8.31), then 

and 

'!'00 (h,f) = 0 only if h = f. 

PROOF. Let Sn(f) be defined as in (8.33). Then 

(8.35) 
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for all j i Sn(f) and for all e close enough to 1. 

Further, h(i) = f(i) for all i E Sn(f). So, for all i E Sn(f), 

(Le tS(h)ve(f) -ve(f)) (i) = r(i,f(i)) +e .l P15Ci,f(i),j)ve(j,f) + 
' JES 

+ e _l P15 (i,f(i) ,j)LQ t5 (h)vQ (f) (j) - Ve (i,f) • 
JES "' " 

Also, 

r(i,f(i)) + e _l P15 (i,f(i) ,j)ve (j,f) + e _l P15 (i,f(i) ,j)ve (j,f) = Ve (i,f) • 
JES JES 

Together this yields 

(8.36) (Le,tS(h)ve(f) -ve(f)) (i) 

= e _l P15 (i,f(i) ,j) (LQ t5 (h)vQ (f) -vQ (f)) (j) 
JES "' " " 

for all e close enough to 1. 

Iterating (8.36) (on Sn(f)) and letting the number of iterations tend to 

infinity yields 

(8.37) 

for all i E Sn(f) and all e sufficiently close to 1. 

From (8.35) and (8.37) we obtain 

and from (8.35) 

But Sn (f) S implies Vn(f) = O, so, with lemma 8.3(iii), f(i) E An(i,f) 

for all i Es, hence h = f. 

Since there are only.finitely many policies and since V00 (h,f) >- 0 implies 

h >- f, it follows from the transi ti vi ty of the relation >- for policies, 

that the algorithm must terminate after finitely many policy improvements 

with a policy f satisfying f(i) E An(i,f) for all i Es. 

□ 
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It remains to be shown that this policy f is then n-order average optimal. 

By lemma 8.2 it suffices to,prove that for all g E F 

(8 t 1) 

or 

'l'n (g,f) ~ 0 for all g E F . 

To prove this, consider the following analogon of lemma 8.3. 

LEMMA 8.6. If f E Fn(f), so 'l'n(f) = O, then for all g E F 

and further, if for some k < n, some i Es and some g E F we have 

O, then 

(ii) O for all j E S(i,g) , 

(iii) g(i) E ¾_(i,f) , 

(iv) 1/Jk+l (i,g,f) ,.; 0 • 

PROOF. The proof is•similar to the proof of lemma 8.3. 

(i) 1/!_ 1 (g,f) ,.; max 1/!_ 1 (h,f) = 1/!_ 1 (f) = 0 • 
hEF 

The proof of (ii)-(iv) proceeds again by induction on k. 

First the case k -1. So assume I/J_ 1 (i,g,f) = 0. subtracting (8.22), with 

~ = g, for state i from (8.28) we obtain with 1/)_ 1 (i,g,f) = 0 and 1/!_ 1 (f) = O, 

(8.38) l P1/i,g(i),j)I/J_l(j,g,f) 
jES (i,g) 

y_ 1 (i,g(i) ,f) . 

The left-hand side in (8.38) is nonnegative and the right-hand side is non­

positive, so both sides must be equal to zero. Hence, 1/)_1 (j,g,f) = 0 for 

all j E S(i,g) and g(i) E A_l (i,f). 

Let g be an arbitrary policy in F_ 1 (f) with g(j) g(j) for all j with 

g(j) E A_ 1 (i,f), the~ 

max I/Jo (i,h,f) 
hEF -l (f) 

This completes the proof fork -1. 

0 • 
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The case k ~ 0 is completely analogous to the case k ~ 0 in lemma 8.3, and 

is therefore omitted. D 

From lemma 8.6 we immediately have 

THEOREM 8.7. If f E Fn(f), then ~n(g,f)~ 0 for all g E F, hence f is n­

ord£r average optimal. 

Theorems 8.5 and 8.7 together imply that the policy iteration algorithm for 

the determination of an n-order average-optimal policy, formulated in 

(8.31), terminates after finitely many policy improvements with an n-order 

average-optimal policy. 

For the case n = 0, this generalizes the result of HASTINGS [1968] to the 

case of state-dependent gains. Further we see that the algorithm of MILLER 

and VEINOTT [1969] corresponds to the special case o(i,a,j) = 0 for all 

i,j Es and a EA. 



CHAPTER 9 

VALUE-ORIENTED SUCCESSIVE APPROXIMATIONS 
FOR THE AVERAGE-REWARD MOP 

9. 1. INTROVUCTION 

This chapter deals with the method of value-oriented standard successive 

approximations for the average-reward MDP with finite state space 
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S = {1,2, ..• ,N} and finite action space A. As has been shown in chapters 3 

and 4, value-oriented methods can be used for the approximation of the 

value of a total-reward MDP (theorems 3.22, 4.27 and 4.28). For the average­

reward MDP the value-oriented method has been first mentioned by MORTON 

[1971], however, without convergence proof. Here it will be shown that the 

value-oriented method converges under a strong aperiodicity assumption and 

various conditions on the chain structure of the MDP, which have in common 

that they all guarantee that the gain g* of the MDP is independent of the 

initial state. 

The contents of this chapter (except for section 8) can be found in Van der 

WAL [1980a]. 

Let us first formulate the method. 

Value-oriented standard successive approximations 

Choose v0 EV (=JRN) and A E {1,2, ••. }. 

(9 .1) 

(9. 2) 

Determine for n = 0,1, .•• a policy fn+l such that 

and define 

Uv 
n 
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For A= 1 this is just the method of standard successive approximations. As 

we have seen in the total-reward case the method of value-oriented standard 

successive approximations lays somewhere in between the method of standard 

successive approximations and the policy iteration method. At the end of 

this first section we will see that also in the average-reward case the 

value-oriented method becomes very similar to the policy iteration method 

if A is large. 

In general, the sequences {f} and {v} are (given v0 and A) not unique. 
n n 

Let {f ,v} be an arbitrary sequence pair which can be obtained when using 
n n 

the value-oriented standard successive approximations method. Throughout 

this chapter this sequence will be held fixed. The results that will be ob­

tained hold for all sequences which might result from applying the value­

oriented method. 

Except for section 8 we work under the following assumption. 

Strong aperiodicity assumption 

There exists a constant a> 0 such that 

(9. 3) P(f) ~ aI for all f E F, 

where I denotes the identity matrix. 

Recall that in section 6.3 it has been shown, that any average-reward MDP 

can be transformed into an equivalent MDP, which satisfies this strong 

aperiodicity assumption, by means of Schweitzer's aperiodicity transforma­

tion (see SCHWEITZER [1971]). 

Moreover, we always use a condition which guarantees that g* is independent 

of the initial state: the irreducibility condition in section 3, the uni­

chain condition in sections 4 and 5, and in sections 6 and 7 the conditions 

of communicatingness and simply connectedness, respectively. 

Let us already consider the unichain case in somewhat more detail. 

An MDP is called unichained if for all f E F the matrix P(f) is unichained, 

i.e., the Markov chain corresponding to P(f) has only one recurrent sub­

chain and possibly some transient states. 

For a unichained MDP the gain g(f) corresponding to a policy f is indepen­

dent of the initial state, since g(f) = p*(f)r(f) and, in this case, p*(f) 
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* is a matrix with equal rows. Hence (cf. theorem 6.2), also g is independent 

of the initial state. 

It will be convenient to denote for all f E F by gf the scalar with 

g(f) = gfe, and to denote by g* the scalar with g* = g*e. 

As we already remarked, the value-oriented method becomes for large A very 

similar to the policy iteration method. For the unichain case this can be 

easily seen as follows. For all n 

If A tends to infinity, then, by the strong aperiodicity assumption, 

A * P (f 1) converges to the matrix with equal rows P (fn+l). Thus, 
A n+ 

P (fn+l) (vn -v(fn+l)) converges to a constant vector. So, if A is large, 

then also the difference between vn+l and v(fn+l) is nearly a constant 

vector. Hence, if A is sufficiently large, there will exist a policy f 

which maximizes both L(f)vn+l and L(f)v(fn+l). Further, we see that the 

policy improvement step of the policy iteration algorithm, formulated in 

section 6.2, reduces to the maximization of L(f)v(fn+l) if g(fn+l) is a 

constant vector, which happens to be the case if the MDP is unichained. 

So indeed in the unichain case the value-oriented method and the policy 

iteration method become very similar for large A. Approximative algorithms 

based on this idea can be found in MORTON [1971] and Van der WAL [1976]. 

In this chapter it will be shown that under various conditions the value­

oriented method converges. So we have to show that the value-oriented 

method enables us to find for all E > 0 a so~called g-optimal policy, i.e. 

* a policy f which satisfies g(f) e:: g - Ee. 

First (in section 2) some preliminary inequalities are given. Next, the 

irreducible case (the unichain case without transient states) is dealt with 

(section 3). The unichain case is treated in section 4 and in section 5 it 

is shown that in the unichain case the value-oriented method converges 

ultimately exponentially fast. Sections 6 and7 relax the unichain condition 

to communicatingness (cf BATHER [1973]) and simply connectedness (cf. 

PLATZMAN [1977]). Finally, in section 8, an example of a unichained MDP is 

presented which shows that, if instead of strong aperiodicity we only 
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assume that all chains are aperiodic, then the value-oriented method may 

cycle between suboptimal policies. 

9.2. SOME PRELIMINARIES 

Let {f} and {v} be the fixed sequences (section 9.1) obtained from the 
n n 

value-oriented method. 

Define tn and un' n = 0,1, ••• , by 

(9.4) t := min (Uvn - vn) (i) n 
iES 

and 

(9.5) u := max (Uvn - vn) (i) n 
iES 

Then lemma 6.8 states that 

(9.6) 

So, what we would like to show is that un - tn tends to zero if n tends to 

* infinity, so that both tn and un converge tog* (for which of course g has 

to be independent of the initial state). 

A first result in this direction is given by the following lemma. 

LEMMA 9. 1. The sequence { t , n 
n 

PROOF. For all n 

Uv -v 
n n 

0,1, ••• } is monotonicaZZy non&creasing. 

In the special case of A= 1, also the sequence {un} is monotone (actually 

nonincreasing, see ODONI [1969]), This, however, need not be the case if 

A > 1. 

□ 
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EXAMPLE 9.2. S = {1,2}, A(l) { 1 } , A ( 2) = { 1 , 2 } . Furthermore , p ( 1 , 1 , 1) = 1 

and r(l,1) = 100. In state 2 action 1 has r(2,1) = 0 and p(2,1,l} = 0,9 and 

action 2 has r(2,2) = 10 and p(2,2,1) = 0,1. So action 1 has the higher 

probability of reaching state 1 but action 2 has the higher immediate 

reward. 

Now take v 0 = 0 and A = 2. Then Uv 0 - v 0 
T 

v 1 = (200, 29) . Next we compute Uv 1 - v 1 

(100,lO)T, sou = 100 and we get 
0 

(100,153.9)T, thus u 1 = 153.9 > u 0 • 

Our approach in the following section will be as follows. First we examine 

the sequence { Jl,n} for which it will be shown that Jl,n t g*. Next it will be 

shown that un converges to g* as well. Hence un - Jl,n tends to zero, which, 

by (9.6), implies that fn becomes nearly optimal in the long run. 

9.3. THE IRREVUCIBLE CASE 

This section deals with the irreducible MDP, i.e., the case that for all 

f E F the matrix P(f) is irreducible. The analysis of this case is consi­

derably simpler than in the unichain case with transient states, which is 

to be considered in sections 4 and 5. 

So, throughout this section, it is assumed that the matrices P(f) all have 

one recurrent subchain and no transient states. 

Define for n = 0, 1, . . . the vector gn E lRN by 

(9.7) g = uv -v • n n n 

Then (compare the proof of lemma 9.1) 

(9.8) 

And consequently, for all k = 1,2, •.. , 

(9.9) 

Define 

(9 .10) y := min min P(h1)P(h2) • •• P(hN-l) (i,j) . 
i,jES h 1 , ... ,hN-l 

In lemma 9.4 it will be shown that the aperiodicity assumption and the 
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irreducibility assumption together imply that y > 0. Then the following 

lemma implies_ that in converges tog* exponentially fast. 

LEMMA 9.3. If k:>- ~ N - 1, then for all n 

So, 

P(h 1) ••• P(hN_1)gn(i) = _l P(h1) ,., P(hN-l) (i,j)gn(j) 
JES 

Then also for all m > N - 1 and all h 1, ••• ,hm 

Hence, with (9.9), for all k such that kA ~ N-1, 

Thus 

or 

LEMMA 9.4. y > 0. 

PROOF. Since Sand F·are finite, it is sufficient to prove that 

□ 
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Let h 1 ,h2 , ... ,hN-l be an arbitrary sequence of policies. For this sequence 

define for all n 0,1, ... ,N-1 and all i ES the subsets S(i,n) of S by 

S(i,0) := {i} 

S(i,n) := {j ES I P(h1) ••• P(hn) (i,j) > 0} n=l,2, .•. ,N-1. 

Then it has to be shown that S(i,N-1) = S for all i ES. 

Clearly, S(i,n) c S(i,n+l), since (by definition) j E S(i,n) implies 

P(h 1) •••P(hn)(i,j) > 0 and (9.3) implies P(hn+l)(j,j) > 0, hence 

It remains to be shown that the sets S(i,n) are strictly increasing as long 

as S(i,n) # S. 

Suppose S(i,n+l) = S(i,n). Then we have for all j E S(i,n) and all 

k ,f. S(i,n) that P(h 1) (j,k) = 0, otherwise k E S(i,n+l). So S(i,n) is 
n+ 

closed under P(hn+l). Since P(hn+l) is irreducible, this implies S(i,n) s. 
Hence S(i,n) is strictly increasing until S(i,n) = S, so ultimately for 

n = N-1 one will have S(i,n) = S. D 

So, by lemmas 9.3 and 9.4, we now know that in converges tog* exponentially 

fast. Thus f will be £-optimal for n sufficiently large. The problem, how­
n 

ever, is to recognize this. Therefore, we want that also un converges tog*. 

From (5.35) and (5.36) 

Define K by 

(9. 11) K := min min p* (f) (i,j) . 
i,jES fEF 

Clearly, from the irreducibility assumption, one has K > 0. Then we have 

the following lemma. 

LEMMA 9.5. For all n = 0,1, ••. 

u - t 
n n 

PROOF. The assertion is immediate from 

g*e~g e=P*(f )g ~(1-K)te+Kue 
fn+l n+1 n n n 

D 
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Summarizing the results for the irreducible MDP one has 

THEOREM 9.6. 

(i) in converges monotonically and exponentially fast tog*. 

(ii) un converges exponentially fast, though not necessarily monotonically, 

tog*. 

So, in the irreducible case and under the strong aperiodicity assumption 

the value-oriented method converges exponentially fast. 

9.4. THE GENERAL UNICHAIN CASE 

In this section the irreducibility assumption of the previous section is 

replaced by the weaker unichain condition. For the unichained MDP lemma 9.4 

no longer holds and the constant K, defined in (9.11), may be zero, so 

lemma 9.5 can no longer be used. Thus the approach will have to be different 

from the one in the preceding section. 

First we will derive a similar lemma as lemma 9.4, which enables us to show 

that the span of vn is bounded (theorem 9.10), where the span of a vector v, 

notation sp(v), is defined by 

sp(v) := max v(i) - min v(i) . 
iES iES 

Next it is shown that the boundedness of sp(vn) implies that in converges 

tog* and finally we show that there must exist a subsequence of {un} which 

converges to g*. 

So, throughout this section the MDP under consideration is assumed to be 

unichained. 

Define 

(9.12) n := min min l min {P(h1) •••P(hN_ 1)(i,k), 
i,jES h 1 , ••• ,hN-l kES 

Then the unichain condition and the strong aperiodicity assumption yield 

the following result. 

LEMMA 9.7. n > O. 
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This lemma states that for all h 1 , .•. ,hN-l any two states i and j have a 

common successor at time N - 1. Conditions of the type n > 0 are called 

scrambling conditions (cf. e.g. HAJNAL [1958], MORTON and WECKER [1977] and 

ANTHONISSE and TIJMS [1977]), and give contraction in the span-norm. 

PROOF OF LEMMA 9.7. The line of reasoning is similar to the one in the proof 

of lemma 9.4. Again, let h 1 , ••. ,hN-l be an arbitrary sequence of policies 

and define S(i,n), n = 0,1, .•. ,N-1, as in the proof of lemma 9.4. Then, 

clearly, S(i,n) c S(i,n+l), and if S(i,n) = S(i,n+l), then S(i,n) is closed 

under P(hn+l). Now it has to be shown that S(i,N-1) n S(j,N-1) is nonempty 

for all pairs i,j ES. 

Suppose S(i,N-1) n S(j,N-1) is empty. Then S(i,N-1) and S(j,N-1) are both 

proper subsets of S, so there must exist numbers m and n, m,n < N-1, such 

that S(i,m) = S(i,m+l) and S(j,n) = S(j,n+l). But this implies that S(i,m) 

is closed under P(hm+l) and that S(j,n) is closed under P(hn+l), and since 

S(i,N-1) n S(j,N-1) is empty, S(i,m) n S(j,n) is also empty. So, let f be a 

policy with f(s) = hm+l(s) for s E S(i,m) and f(s) = hn+l(s) for s E S(j,n), 

then P(f) has at least two disjoint, nonempty closed subchains: S(i,m) and 

S(j,n), which contradicts the unichain condition. Hence S(i,N-1) n S(j,N-1) 

is nonempty, or 

I min 
kES 

Since Sand Fare finite, also n > 0. 

Further we have 

(9.13) 

□ 

PROOF. Let i and j be a maximal and minimal component of P(h 1) ••• P(hN_ 1)v, 

respectively. Then, writing Q instead of P(h 1) ••• P(hN_ 1), we have 

sp (Qv) = (Qv) (i) - (Qv) (j) l [Q(i,k) -Q(j,k)]v(k) 
kES 

l [Q(i,k) - min {Q(i,k) ,Q(j,k)}]v(k) + 
kES 

l [ Q ( j , k) - min { Q ( i, k) , Q ( j , k) }] v (k) $ 

kES 
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s (1 - n) max v(k) - (1 - n) min v(k) (1-n)sp(v) . 
kES kES 

Define K0 by 

K0 := max r(i,a) - min r(i,a) 
i,a i,a 

then one has the following lemma. 

LEMMA 9.9. For aU v € P..N and aU h 1 , •.• ,hN-l € F we have 

PROOF. By definition of K0 one has sp(r(f)) s K0 for all f € F. Further, 

sp(P(f)v) s sp(v) for all v € P..N and f E F. So 

sp(L(h1) '" L(hN_ 1)v) = sp(r(h1) +P(h 1)r(h2) + 

+ ••• '; P(h 1) .,, P(hN_ 2)r(hN-l) +P(h1) ••• P(hN_ 1)v) 

s (N-1JK0 + (1-n)sp(v) • 

In order to prove that sp(vn) is bounded, we introduce the following nota­

tion 

(9. 14) k = 0,1, ••• and p = 0,1, •.• ,A-1 

Then it follows from lemma 9.9 that for all i = 0,1, .•• and all 

q = 0 , 1 , ... 1 N- 2 , 

sp(wi(N-l)+q) S (N .. l)KO + (1-n)sp(w(i-l)(N-l)+q) S 

i-1 S ••• s (N-l)Ko + (1-n)(N-l)Ko + ••• + (1-n) (N-l)Ko + 

+ (1-n)i sp(wq) • 

Further, it follows from the proof of lemma 9.9 that 

□ 

□ 
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So, for all 2 = 0,1, ... and all q = 0,1, ... ,N-2 

Hence 

(9. 15) m = 0,1, ... . 

This yields 

THEOREM 9.10. sp(vn) is bowided. 

PROOF. Immediately from vn = wnA and (9.15). □ 

Before this can be used to prove that 2* := lim 2 is equal tog, we have 
n--),oo n * 

to derive a number of inequalities. For gn, defined by (9.7), one has (9.8) 

and (9.9) and also 

V -v n+l n 

[PA-l (f ) P(f ) I] n+1 + · · · + n+1 + gn n=0,1, ... 

So, 

(9.16) V -V = n+k n 

n+k-1 
I [PA-1(ft+1) + ... +P(ft+1) +I]gt, 

t=n 

n = 0,1, ... , k = 1,2, .••• 

Let us consider v - v , where m and q are arbitrary for the time being. 
m+q m 

From (9.9) we obtain, with the strong aperiodicity assumption, that for all 

n and k (with a as in (9.3)) 

and 

(9. 17) 

p 0,1, ... ,A-1 . 

Now suppose that i 0 ( S satisfies 
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g (i ) = Jl ($ Jl*) m+q O m+q 

Then (9.17), ·with n+k = m+q and n = t (ms t < m+q), yields 

(9 .18) ( _p ( ) ) (. ) a-A (m+q-t) [ (i ) _ ( 1 _ i (m+q-t)) Jl J 
P-- ft+1 gt 1 0 5 gm+q O t 

5 a -A (m+q-t) [ (i ) _ (1 _ a.A (m+q-t)) Jl J 
gm+q O m 

Jl + a -A (m+q-t) [ (i ) - Jl J 
m gm+q O m 

s 9, + et -Aq[ Jl - 2 ] 
m * m 

p 0, 1, ... , A-1 . 

Hence, with (9.16) and (9.18), 

(9. 19) (v + -v) (i0 ) s qU + qAet-qA(Jl -Jl) . 
mq m m * m 

On the other hand we have u ~ g* for all n. Hence there must exist a state 
n -1 

jD ES which has gm+k(j 0 ) ~ g* for at least N q of the indices 

m + k E {m,m+1, •.. ,m+q-1}. 

So, for this state j 0 , 

(9.20) (v -v ) 
m+q m 

Then it follows from (9.19) and (9.20) that 

(9. 21) 

Now we are ready to prove 

PROOF. Clearly 2* s g*. Assume Jl* < g*. By theorem 9.10 there exists a 

constant K1 such that 

(9. 22) 

Now choose q such that N- 1q(g*-,Q,*) ~ 2K1 +K2 , where K2 is some positive 

constant. Next, choose m such that qAa-qA(Jl - Jl ) < K2 . Then, it follows 
* m 

from (9.21) that 

sp (v - v ) > 2K1 + K2 - K2 m+q m 

Hence, using (9.22) with n m, 
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sp (v ) ~ sp (v - v ) - sp (v ) > 2K1 - Kl Kl , 
m+q m+q m m 

which contradicts (9.22) for n = m+q. 

Therefore we must have i* = g*. □ 

So, we now know that in converges tog*, and, by (9.6), that fn becomes 

nearly optimal if n becomes large. In order to be able to recognize that fn 

is nearly optimal one needs (at least) the following result. 

THEOREM 9.12. g* is a Zimit;point of the sequence {un}. 

PROOF. We know that un ~ g*. Further it follows from the boundedness of 

sp(vn) (theorem 9.10) that also {sp(g )} or {u -i} is bounded. Hence n n n 
also {u} is bounded. Now, suppose the smallest limitpoint of {u} to be n n 
strictly larger than g*. Then one may construct, using a similar reasoning 

as in (9.20) and in the proof of theorem 9.11, a violation of the bounded-

ness of {sp(vn)}. Hence g* is a limitpoint of {un}. □ 

So, if all P(f) are unichained and the strong aperiodicity assumption holds, 

then we see, from theorems 9.11 and 9.12 and from (9.6), that the method of 

value-oriented standard successive approximations converges. I.e., the 

* method yields an approximation of the gain g of the MDP and nearly-optimal 

stationary strategies. 

In the next section it will be shown that g* is not only a limitpoint of 

{un}, but that un converges tog*, exponentially fast. 

9.5. GEOMETRIC CONVERGENCE FOR THE UNTCHATN CASE 

For the irreducible case we have obtained that sp(gn) converges to zero 

geometrically. For the general unichain case it has only been shown that 

there exists a subsequence of {gn} for which sp(gn) converges to zero. 

In this section it will be shown that also in the unichain case sp(gn) 

converges to zero exponentially fast. 

So, the MDP under consideration is again assumed to be unichained. 

Since sp(vn) is bounded, also vn -vn(N)e is bounded. Further, g*e is a 

limitpoint of {gn}. And since there are only finitely many policies, there 
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exists a subsequence of {v} 
n 

(and {gn}) with gn ➔ g e, f 
k * nk+l 

v - v (N) e ➔ v (k ➔ 00 ) for some f E F and v E ]RN. 
nk nk 

Then for all k 

max L(h)v -v 
hEF nk nk 

Letting k tend to infinity yields 

(9.23) max L(h)v-v = L(f)v-v 
hEF 

where it has been used that for all h E F, 

Then we have the following lemma. 

- V (N)e) 
nk 

LEMMA 9.13. Let£> O be such, that L(h)v-v ~ g*e-ee implies 

f and 

L (h} v - v = g*e ( clearly such an £ exists by the finiteness of F). Then 

imply 

sp(vn+1 -v) $ £ and 

Before this lemma is proved, note the following. Since vn - vn (N) e - v 
k k 

tends to zero, there exists a number m such that sp (v m - v) s £ and 

L ( fm) v v + g* e. Then, as a consequence of lemma 9. 13, 

and for all n ~ m . 

But that implies for all q = 1,2, •.. 

(9.24) V 
m+q 

;>._ ;>._ 
v + q;>._g e + P ( f ) • • • P ( f 1 ) (v - v) . 

* m+q m+ m 

So, by lemma 9. 8, sp (v - v) decreases in q exponentially fast to zero. 
m+q 

And also g converges toge exponentially fast, since 
m+q * 
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L(f )V - V 
m+q+l m+q m+q 

L(f 1)v -L(f 1)v+v+g e -v + 
m+q+ m+q m+q+ * m q 

[P (f 1) - I] (v - v) + g e • 
m+q+ m+q - * 

PROOF OF LEMMA 9. 13. 

So, 

sp (vn+l - v) 

And 

since for any two stochastic matrices P 1 and P2 and for any w E lRN one has 

(P 1 - P2 )w ~ - sp(w). Hence also 

9. 6. THE COMMLINI CATI NG CASE 

In section 4 the convergence proof for the unichain case has been given in 

two stages. First the unichain assumption and the strong aperiodicity as­

sumption were used to prove that sp(vn) is bounded (lemmas 9.7-9.9 and 

theorem 9.10). And in the second stage we used the boundedness of {sp(vn)} 

and un ~ g* to prove'that in ➔ g* and that unk ➔ g* (k ➔ 00 ) for some sub­

sequence {unk' k = 0,1, .•. }. From this it will be clear that the method of 

value-oriented successive approximations will converge whenever {sp(vn)} is 

bounded and the gain of the MDP is independent of the initial state (if the 

strong aperiodicity assumption holds). 
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In this section the communicating MDP will be considered. 

An MDP is called comnrunicating if there exists for any two states i and j a 

policy f and a number r such that Pr(f) (i,j) > 0 (cf. BATHER r1973]). 

Many practical problems are communicating, but need not be unichained. On 

the other hand, an MDP may be unichained but not communicating since some 

states may be transient under all policies. 

Throughout this section the MDP considered is assumed to be communicating. 

Clearly, if the MDP is communicating, the gain is independent of the 

initial state. We will show that also in the communicating case {sp(v )} is 
n 

bounded. Therefore, define 

K := max !r(i,a) I 
i,a 

L 
n 

:= min 
iES 

V (i) 
n 

u 
n 

:= max v (i) 
iES n 

n = 0,1, ... , 

8 := min min {p(i,a,j) I p(i,a,j) > O} • 
i,jES aEA 

In order to prove that {sp(vn)} is bounded we need the following lemmas. 

LEMMA 9.15. For aZZ n = 0,1, ... 

(i) 

(ii) 

PROOF. 

(i) For all n 

Hence also 

Ln+l 

0, 1, ... 

+ 

~ - >.i<e + >. 
P (fn+l)vn 

~ - AK + L 
n 

Similarly one obtains (ii). 

~ - >.Ke + L e 
n 

LEMMA 9.16. If sp(vn+N-l) ~ sp(vn), then for aZZ m with n $ m < n+N-1, 

□ 
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PROOF. From lemma 9.15 we obtain 

n+N-2 

- L 
n 

l (L.. 1 - L.. ) - (L 1 - L ) + sp (v ) 
k=n -k+ k m+ m n 

k;qn 

s AK(N-1) + AK(N-2) - (L 1 -L) + sp(v) 
m+ m n 

AK(2N-3) - (L 1 -L) + sp(v) • 
m+ m n 

LEMMA 9.17. If sp(vn+N-l) ~ sp(vn) and vm+l (i) s C+Lm+l for some i Es, 

for some aonstant c and some m with n s m < n+N-1, then 

v c j > s L + al-A e- 1 [ c + 2 AK (N - 1 > J , 
m m 

for aU j E s for w'hiah an aation a E A with p(i,a,j) > O exists (a is the 

aonstant in (9.3)). 

PROOF. For all m = 0,1, ••• 

and 

uv ~ - Ke+ max P(f)vm 
m fEF 

So, 

vm+l (i) ~ (L A-l (f ) (- Ke + max P (f) v ) (i) 
m+l fEF m 

- K + (LA-l (f 1) maxP(f)v l (i) 
m+ fEF m 

- A-1 
AK+ (P (f +l) maxP(f)v ) (i) 

m fEF m 

D 
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Thus also 

C+Lm+l z vm+l (i) z -).K + a"-l max L p(i,a,k)vm(k) + (1-a"- 1)Lm 
aEA kES 

Then lemma 9.16 yields 

Or, 

Hence, if for some j ES and a EA we have p(i,a,j) > 0, so p(i,a,j) z e, 
then certainly 

which proves this lemma. □ 

Next we show that, if sp(vn+N-l) z sp(vn), then sp(vn) cannot be arbitrarily 

large. 

Define 

n = 1,2, ..• ,N-1 . 

Then the following lemma holds. 

PROOF. Let i ES be such that vn+N-l (i) = Ln+N-l' and define the sets 

S(i,t), t = 0,1, ••• ,N-1, by 

S(i,0) := {i} , 

S (i,t+l) := {j E S I there exists a state j E S (i,t) and an 

action a EA such that p(j,a,k) > 0} , 

(t = 0,1, ... ,N-2). 

From p(j,a,j) z a> 0 for all j E Sand a EA we have S(i,t) c S(i,t+l). 

Further it follows from the communicatingness that ultimately S(i,N-1) S 

(cf. the proof of lemma 9.7). Then lemma 9.17 yields (with C = 0) 



for all j c: s ( i, 1) • 

Next we obtain with lemma 9.17 

for all j E S(i,2) • 

Continuing in this way we get 

for all j E S(i,N-1) s . 

Hence 

Finally, it can be shown that also in the communicating case {sp(vn)} is 

bounded. 

THEOREM 9. 19. 
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□ 

sp(vt) s. max {sp(v0) +ZAK(N-2) ,cN-l +2AK(N-1)} for aZZ t=0,1, .... 

PROOF. For all n we either have sp(vn+N-l) < sp(vn) or sp(vn+N-l) ~ sp(vn) • 

But, if sp(vn+N-l) ~ sp(vn)' then (by lemma 9.18) sp(vn) S. CN-l' and thus 

with repeated application of lemma 9.15 

U - L s. U - L + 2 AK 
n+N-1 n+N-1 n+N-2 n+N-2 

s. U - L + 2 AK (N - 1 ) n n sp(v ) + 2AK(N - 1) 
n 

Hence for all n 

sp(v N 1) S. max {sp(v ) , CN 1 + 2AK(N - 1)} , 
n+ - n -

which immediately yields for all t = p + q (N -· 1) , q = 0, 1, ... , and 

p=0,1, ... ,N-2 

Finally, 

p O, 1, ••• ,N-2 

gives for all t = 0,1, •.• 

□ 



178 

So, also in the communicating case, sp(vn) is bounded. And, as has been 

argued at the beginning of this section, that implies that the value­

oriented method converges, i.e., yields bounds on g* and nearly-optimal 

stationary strategies. 

As in section 5, it can be shown that g* is not only a limitpoint of {un} 

but that un converges tog*. (One may verify that lemma 9.13 also holds in 

the communicating case.) However, since in the communicating case (9.13) 

not necessarily holds, we cannot conclude that the convergence is again 

geometric. It is evident that, if there is a unique policy satisfying 

L(f)v = v+g*e, then gn converges to g*e exponentially fast. One might con­

jecture that the rate of convergence of gn to g*e is always geometric. 

9.7. SIMPLY CONNECTEVNESS 

A weaker condition, which still assumes that the gain of the MDP is inde­

pendent of the initial state and, as will be shown, that {sp(vn)} is 

bounded, is the condition of simply connectedness, introduced by PLATZMAN 

[1977]. Platzman used this condition to prove the convergence of the method 

of standard successive approximations. 

An MDP is called simply connected if the state space Sis the union of two 

sets S0 and S, where S 0 is a communicating class (i.e., all states in S0 

can be reached from one another) and Sis transient under any policy. 

Observe that, if the MDP is simply connected, the gain is again independent 

of the initial state. In order to prove that simply connectedness also 

implies that {sp(v )} is bounded again, define 
n 

0 

L := min vn (i) ' L ·= min V (i) 
n 

iES 0 
n 

iES 
n 

0 

vn (i) vn (i) u := max ' u := max n 
iES 0 n 

iES 

0 

Clearly, S is closed under any P(f). Further, let k be the minimal value 

of 2 for which 2.\ + 1 is at least equal to the number of states in S. Then 

for some constant~> 0 and for all i ES and all h 1 , ... ,hk E F 

L PA(hl) ••• PA(hk) (i,j) ~ ~ . 
jES 



Hence for all i ES 

0 

And, since we also have for all i ES 

one may conclude 

Similarly, one shows 

Hence 

(9.25) $ 2kAK + l;(U 0 -L 0
) + (1-0sp(vn) 

n n 

0 0 
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From the preceding section we know that Un - Ln is bounded, so (9. 25) can be 

rewritten as 

n = O, 1, ...• 

From this one easily shows that 

( ) ,- - lKO + 2 'K- (k - 1) ( ) 0 1 Sp Vn $ ~ A + Sp VQ t n = t t••• • 

So, indeed, if the MDP is simply connected, then {sp(vn)} is bounded. Since 

simply connectedness implies constant gain, one may argue in identically 

the same way as in section 6 that the value-oriented method converges. 

Finally, we can make the same remark as at the end of section 6 (with the 

condition of communicatingness replaced by simpiy connectedness). 

9. 8. SOME REMARKS 

(i) The proofs in the preceding sections depend heavily on the strong 

aperiodicity assumption. One might wonder whether mere aperiodicity, as in 

the standard successive approximations case, would not suffice. The follow­

ing example demonstrates one of the problems one can get under the weaker 

assumption: all P(f) are aperiodic (and unichained). 
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EXAMPLE 9 . 21 . S {l,2,3,4,5,6,7}, A(3) A(4) 

A (5) 

A(6) ~ {1,2}, A(l) = A(2) 

A(7) {1}. So there are 

eight different policies which can 

be characterized by the triples 

(a3 ,a4 ,a6 ), where ai is the action 

in state i, i = 3,4,6. Clearly, P(f) 

is unichained and aperiodic for all 

f. Now let us consider, for the case 

A= 2, the sequence of policies 

(1,2,1),(2,1,2),(1,2,1), etc. Then 

the matrix P2 ((1,2,1))P2 ((2,1,2)) =: Q 

is no longer unichained, since Q(1,1) = Q(4,4) = 1. This could never happen 

under the strong aperiodicity assumption. 

Now we will show that this feature gives difficulties for the convergence. 

Choose r ( 1 , 1) = 2, r ( 2, 1) = r (3, 1) = 4, r ( 3, 2) = 6, r ( 4, 1) = 4, r ( 4, 2) = 

= r(5,1) = 6, r(6,1) = 2, r(6,2) = r(7,1) = 0. 

Then the policies (1,2,1) and (2,1,2) both have gain 4 and the optimal gain 

is 4 f for policy (2,2,2). 

Choose v0 = (1,4,2,0,0,0,0)T, then, as will be shown, cycling may occur 

between the nonoptimal policies (1,2,1) and (2,1,2). 

Computing uv0 yields L((a3 ,a4 ,a6)Jv0 = uv0 for all policies (a3 ,a4 ,a6 ) with 
2 a 4 = 2. Choose among the maximizers f 1 = (1,2,1), then v 1 = L (f1)v0 

= (8,10,10,10,8,4,6)T. Now any policy (a3 ,a4 ,a6 ) with a 3 = a6 = 2 satisfies 

L((a3,a4 ,a6 )Jv1 = uv1 . Choosing f 2 = (2,1,2) we get v2 = (17,20,18,16,16, 

16,16)T = V + 16e. 
0 

So, indeed, cycling may occur between the suboptimal policies (1,2,1) and 

(2,1,2) in which case in will not converge tog* (but in= 2 for all n). 

In this example, however, there is some ambiguity in the choice of the maxi­

mizing policies. The question remains whether cycling may occur if we use 

for breaking ties the rule: "do not change an action unless there is a 

strictly better one". 

(ii) For the method of standard successive approximations we have that 

{ v - ng *} is bounded, even if some or all policies are periodic. The n 
following example shows that in the value-oriented method { v - nAg *} may be 

n 
unbounded. 



EXAMPLE 9.22. S {1,2}, A(l) 

r=3 r=4 

{1,2}, A(2) = {1}, r(l,1) = 4, r(l,2) 

r(2,1) = O, p(l,1,2) = p(l,2,1) = 
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3, 

= p(2,1,1) = 1. For the case A= 2, v0 = 0, 

one has L(f1)v0 uv0 for the policy with 

f(l) = 1. Thus v 1 = 4e, and vn = 4ne. 

Since g* = 3, we have vn - Ang*e = - ne 

which is clearly unbounded. 

* (iii) We conjecture that the value-oriented method always converges if g 

is independent of the initial state (provided the strong aperiodicity as­

sumption holds) . 

(iv) Instead of choosing A as a constant in advance one may use a different 

A in each iteration. Probably it is sensible to start with small values of A 

and to let A increase if sp(gn) decreases. 
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CHAPTER 10 

INTRODUCTION TO THE TWO-PERSON ZERO-SUM MARKOV GAME 

In the MDP model there is one decision maker earning rewards from a system 

he (partly) controls. In many real-life situations, however, there are 

several decision makers having conflicting interests, e.g. in economics and 

disarmament. Such decision problems can be modeled as so-called Markov 

games. A special case of these Markov games (MG's) is the two-person zero­

sum MG introduced by SHAPLEY [1953]. In this game there are two decision 

makers who have completely opposite interests. Shapley called these games 

stochastic games. The term Markov game stems from ZACHRISSON [1964]. An 

elementary treatment of two-person zero-sum MG's can be found in Van der WAL 

and WESSELS [1976]. 

Chapters 10-13 deal with two-person zero-sum MG's. In this introductory 

chapter first (section 1) the model of the two-person zero-sum MG is formu­

lated. Next (in section 2) the finite-stage MG is treated, and it is shown 

that one may again restrict the attention to history-independent stategies. 

In section 3 a two-person nonzero-sum MG is considered. It is shown that in 

nonzero-sum games the restriction to history-independent strategies is some­

times rather unrealistic. Section 4 contains an introduction to the infinite­

horizon MG and summarizes the contents of chapters 11-13. 

10. 1. THE MOVEL OF THE TWO- PERSON ZERO-SUM MARKOV GAME 

Informally, the model of the two-person zero-sum MG has already been formu­

lated in section 1.1. Formally, the MG can be introduced along similar lines 

as the MDP in section 1.5. 

The two-person zero-sum MG is characterized by the following objects: A non­

empty finite or countably infinite set S, finite nonempty sets A and B, a 

function p: S x Ax Bx S + [0,1] with l p(i,a,b,j) = 1 for all 
jES 
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(i,a,b) E SxAxB, and a function r: sxAxB+lR.Wethink of Sas the state 

space of some dynamical system which is controlled at discrete points in 

time, t = 0, r, ... , say, and of A and B as the action sets for player I and 

player II, respectively. At each time t the two players, having observed the 

present state of the system (as well as all preceding states and previously 

taken actions) simultaneously choose an action from the sets A and B, 

respectively. As a result of the chosen actions, a by player I and b by 

player II, the system moves to state j with probability p(i,a,b,j) and 

player I receives from player II a (possibly negative) amount r(i,a,b). The 

function pis called the transition laJ.J and the function r the reward 

function. 

Similar as in section 1.5 the sets of strategies for the two players can be 

defined. 

Define the sets of histories of the system: 

H := (S X AX B) n X S , 
n 

n= 1,2, .•.• 

Then a strategy TI for player I is any sequence TI 0 ,TI 1 , ••. such that Tin is a 

transition probability from Hn into A. So for each history hn E Hn the 

function TI determines the probabilities TI ({a} I h) that action a will be n n n 
chosen at time n if hn is the history of the system upto time n. The set of 

history-dependent strategies for player I is denoted by IT. 

Similarly we can define a strategy y for player II. The set of strategies 

for player II is denoted by r. 
In the case of the MDP a very important role has been played by the pure 

Markov strategies. In the game-situation it is clear that in general one 

can not restrict the attention to pure Markov strategies, since already in 

the matrix game one has to consider randomized actions. In the MG the role 

of the pure Markov strategies in the MDP is played by the randomized Markov 

strategies. 

Since no concepts are needed for pure strategies we will use the following 

definitions and notations. 

A policy f for player I is any function from S x A into [0,1] satisfying 

2 f(i,a) 1 for ail i ES. The set of all policies is denoted by FI. 
aEA 
Similarly, a policy h for player II is any map from S x B into [0,1] with 

2 h(i,b) 1, i ES. The set of policies for player II is denoted by FII" 
bEB 
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A strategy rr for player I is called a randomized Markov strategy or shortly 

Markov strategy if the probabilities TT ({a} I h) depend on hn only through 
n n 

the present state. So a Markov strategy for player I is completely charac-

terized by the policies fn satisfying TT n ( { a} I (i 1 , ..• , in)) fn (in, a) , 

n = 0,1, ..• , a EA and (i0 , ... ,in) E Hn. Mostly we write rr (f0 ,f1 , ... ). 

The set of all Markov strategies for player I is denoted by MI. Similarly, 

one defines the set MII of Markov strategies for player II. 

Finally, a stationary strategy for player I is any strategy TT= (f,f1 ,f2 , ... ) 

with fn = f for all n = 1,2, .•• ; notation f(oo), or - if no confusion will 

arise - f. Similar for player II. 

As in section 1.5, any initial state i ES and any pair of strategies TT E IT, 

y E r, define a probability measure on (S x Ax B) 00
, denoted by lP. , and i,rr,y 

a stochastic process {(X ,A ,B ), n = 0,1, •.. }, where Xn is the state of n n n 
the system and An and Bn are the actions chosen at time n by players I and 

II, respectively. The expectation with respect to lP, is denoted by 
]. , 1T, y 

lE. i,rr,y 

10.2. THE FINITE-STAGE MARKOV GAME 

This section deals with the finite-horizon MG. It will be shown that - as 

in the case of the finite-stage MDP - this game can be treated by a dynamic 

programming approach. 

Then-period MG is played as follows: the two players are controlling the 

system at times 0, 1 upto n - 1 only, and if - as a result of the actions at 

time n - 1 - the system reaches state j at time n, then player I receives a 

final payoff v(j), j Es, from player II and the game terminates. 

This game will be called then-stage Markov game with terminal payoff v. 

The total expected n-stage reward for player I in this game, when the 

initial state is i and strategies TT and y are played is defined by 

(10 .1) v (i,rr,y,v) :=JE, l ~

n-1 

n , J.,TT ,y k=O 

provided the expectation at the right-hand side is properly defined. 

The reward for player II is equal to - v n (i, TT, y, v) . 

The ensure that the expectation in (10.1) is properly defined, we make the 

following assumption. 



186 

CONDITION 10.1. For all TIE TI and y Er, 

(i) i E S , 

(ii) + lE, V (x_ ) < oo , 
1.,TI ,y -k 

k 1,2, ... ,n, i ES. 

Strictly speaking we need condition 10.l(ii) fork= n only. However, if 

one wants to use a dynamic programming approach, then (ii) is needed also 

fork= 1, .•. ,n-1. 

Our aim is to show that then-stage MG with terminal payoff v has a value, 

i.e., that for each i ES a real number vn(i,v) exists such that 

(10. 2) sup inf vn(i,TI,y,v) 
TIETI yEf 

inf sup vn(i,TI,y,v) =: vn(i,v) . 
yEf TIETI 

This number vn(i,v) is called the value of the game. 

Further we show that player I has an optimal Markov strategy, i.e., a 

strategy TI(n) satisfying 

(10. 3) V (V) 
n 

for all y E r , 

and that for all£> 0 player II has an £-optimal Markov strategy, i.e., a 

strategy y(n) satisfying 

(10.4) v (v) + Ee 
n 

for all TI E TI • 

We will see later what causes the asymmetry in (10.3) and (10.4). 

The value as well as the (nearly-) optimal Markov strategies will be deter­

mined by a dynamic programming scheme. The approach is very similar to the 

one in section 2.3 for the finite-stage MDP. 

First let us introduce a few more notations. 

For any pair of policies f E FI, h E FII' define the immediate reward 

function r(f,h) by 

(10.5) r(f,h) (i) := l l f(i,a)h(i,b)r(i,a,b) , i E S • 

aEA bEB 

Further, define the operators P(f,h), L(f,h) and U on suitable subsets of 

V (cf. (1.15)) by 



(10.6) 

(10.7) 

and 

(10.8) 

(P(f,h)w) (i) := f(i,a)h(i,b) 

L(f,h)w := r(f,h) + P(f,h)w, 

Uw := max inf L (f,h)w • 
fEF I hEF II 

l p(i,a,b,j)w(j) 
jES 
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i E S , f E FI , h E F II , 

The operator U defined in (10.8) plays the same role in the analysis of the 

MG as the operator U defined in (1.28) does in the MDP. For that reason the 

capital U is used again. Throughout chapters 10-13 the operator U will be 

the one defined in (10.8), so no confusion will arise. 

Observe that in (10.8) we write inf instead of min. The reason for this 
hEFII hEFII 

is the same as the one which causes the asymmetry in (10.3) and (10.4). 

Note that (L(f,h)w) (i) is precisely the expected amount player I will obtain 

in the 1-stage game with terminal payoff v when i is the initial state and 

policies f by player I and h by player II are used. In fact, (L(f,h)w) (i) 

depends off and h only through f(i,•) and h(i,•). 

Also observe that for a given initial state, i say, the 1-stage game is 

merely a matrix game. To solve this game one has to determine the value and 

optimal randomized actions for the matrix game with entries 

(10.9) r(i,a,b) + }: p(i,a,b,j)w(j) . 
jES 

So we see that (Uw) (i) is just the value of the 1-stage game with terminal 

reward wand initial state i. 

There is one small problem: one or more of the entries (10.9) may be equal 

to - 00 (in the situations considered here there are always conditions on w 

that guarantee that the entries in (10.9) are properly defined and that 

they are less that + 00 ) • 

Suppose that player II uses all actions in B with at least some arbitrary 

small probability. Then player I is forced to use only those actions a (if 

any) for which (10.9) is finite for all b EB. Otherwise, player I would 

loose an infinite amount. One easily verifies that this implies that the 

value of the original matrix game is equal to the value of the truncated 

matrix game in which player I can use only those actions a for which (10.9) 

is finite for all b EB. 
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EXAMPLE 10. 2. A B = {1,2}. The notation is as follows: If both players 

take action 1, then player I receives 1; if player I 

L: ~) takes action 2 and player II action 1, then player I 

looses an infinite amount; etc. Clearly, the value of the 

game is 0 and player I has an optimal strategy, namely action 1, whereas 

player II has only an £-optimal strategy, namely use action 1 with proba­

bility e: > 0 and 2 with probability 1 - e:. 

So, if the matrix contains entries equal to - 00 , then player II may have no 

optimal randomized action. This is the reason why we have to write 

in (10.8) and the cause of the asymmetry in (10.3) and (10.4). 

inf 
hc:FII 

It is well-known that the value and optimal randomized actions for a matrix 

game in which all elements are finite can be found by linear programming. 

Now let us consider the following dynamic programming scheme 

(10.10) { 
k = 0, 1, .•. , n-1 

Following the approach of section 2.2 one may prove by induction the follow­

ing results: 

(i) + 
P(f,h)vk < 00 for all f E FI, h E FII and k 0,1, .•. ,n-1. 

(ii) vk < 00 for all k = 1,2, .•• ,n. 

(iii) There exist policies f 0 , ••. ,fn-l for player I satisfying for all 

k = 0, 1, ... , n-1 

(n) Then for the Markov strategy~ 

( 10. 11) 

since, let y 

<!: V 
n for all y E MII 

<!: V 
n 



189 

(iv) There exist for all£> 0 policies hn_ 1, ... ,h0 for player II satisfying 

fork= 0,1, ... ,n-1, 

(n) 
Then for the Markov strategy y (hn_ 1 , ..• ,h0 ) we have 

(10.12) 

since, let TI= (fn_ 1, .•. ,f0 ) E MI be arbitrary, then 

L(fn-1'hn-1) ••• L(fO,hO)vO 

~ -1 
~ L(fn-l'hn_ 1) ·•• L(f 1,h 1) (v1 +e:2 e) 

The line of proof is almost identical to the one in section 2.2 and is 

therefore omitted. 

As a fairly straightforward generalization of the result of DERMAN and 

STRAUCH [1966] (cf. also lemma 2.1) one has that, if one of the players 

uses a Markov strategy, any strategy of the other player can be replaced by 

a (randomized) Markov strategy giving the same marginal distributions for 

the process, see e.g. GROENEWEGEN and WESSELS [1976]. Thus (10.11) and 

(10.12) generalize to ally Er and TIE IT, respectively. 

This yields the following result. 

THEOREM 10.3. If for v condition 10.1 holds, then then-stage MG with 

terminal payoff v can be solved by the dynamic programming scheme (10.10). 

I.e., the game has the value vn = unv, there exists an optimal Markov 

strategy for player I and for aU £ > O there exists an £-optimal Markov 

strategy for player II which can be rletermined from the scheme (10.10). 

PROOF. From the foregoing it is clear that it suffices to prove that vn is 

the value of the game. 

From (10.11) and (10.12) we have 

sup inf vn(TI,y,v) 
TIEIT yEf 

(n) 
? inf vn(TI ,y,v) 

yEf 
? V 

n 
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and for all e: > 0 

inf vn(11,y,v) :,; vn(11,y 
(n) 

,v) :,; +e:e sup sup V 

yEr· 1TE IT 11EIT 
n 

Since clearly 

sup inf vn (11,y,v) :,; inf sup vn(11,y,v) , 
11EIT yd yd 1TEIT 

this yields 

sup inf vn (11 ,y ,v) inf sup vn(11,y,v) V 

1TEIT yEr yd 1TEIT 
n 

which completes the proof. 

Note that, if for all k = 0,1, ... ,n-1 and all a EA and b EB 

l p(i,a,b,j)vk(j) > -oo, 
jES 

then player II has an optimal randomized action in each matrix game and 

hence there exists also for player II an optimal Markov strategy for the 

n-stage MG with terminal payoff v. 

10.3. TWO-PERSON NONZERO-SUM MARKOV GAMES ANV THE RESTRICTION TO MARKOV 
STRATEGIES 

D 

In the preceding section it has been shown that the finite-stage two-person 

zero-sum MG can be solved by a dynamic programming approach. One might 

wonder whether such a dynamic programming approach can also be used in the 

nonzero-sum case. For this it is necessary that one can restrict the atten­

tion to Markov strategies. We will present an example that shows that this 

restriction to Markov strategies may be rather unrealistic. 

In the two-person nonzero-sum MG there is one difference compared to the 

zero-sum case, namely, there are two reward functions. If in state i actions 

a by player I and b by player II are used, then player I receives a reward 

rI(i,a,b) and player.II receives a reward rII(i,a,b). (In the zero-sum case 

we have rI(i,a,b) + rII(i,a,b) = 0.) Further, if there is a terminal payoff 

(as in the finite-stage game), then we have to specify a terminal payoff 

for each of the two players, vI and vII, say. 
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This gives us two n-stage payoff functions, namely 

I . I 
vn (TT,y,v ) 

and 

II II rn-1 v (TT,y,v ) := lE l 
n TT ,y Jc=O 

for players I and II, respectively. 

A'pair of strategies (TT*,y*) is a Nash-equilibrium pair (cf.NASH[1951]) if 

for all TT E II 

and 

II * * II II * II vn (TT ,y ,v ) ~ vn (TT ,y,v ) for ally Er 

So, if the players use TT* and y*, then neither of them can improve his ex­

pected payoff by switching to another strategy. 

The basic element in this game is the so-called bimatrix game. Each bimatrix 

game has at least one Nash-equilibrium pair of randomized actions. With a 

"double" dynamic programming scheme it is possible to obtain also a Nash­

equilibrium pair of Markov strategies for then-stage nonzero-sum game, see 

e.g. Van der WAL and WESSELS [1977]. 

However, there may be several Nash equilibrium pairs and in general diffe­

rent pairs of equilibrium strategies will have different values (this in 

contrast to the zero-sum case where the equilibrium value is unique). 

So, one is not just interested in finding some Nash-equilibrium pair, but 

one wants to have an equilibrium pair for which the equilibrium values are 

(in some sense) acceptable for both players. An extra difficulty is the 

fact that there may also exist equilibrium pairs in Markov strategies that 

cannot be found by a dynamic programming approach and even equilibrium 

pairs in history-dependent strategies. 

This section will be concluded with an example that shows that the values 

corresponding to a Nash-equilibrium pair of history-dependent strategies 

may be superior to the values of all Nash-equilibrium pairs of Markov 

strategies. A similar example for the infinite-horizon case can be found in 
I 

Van der WAL and WESSELS [1977]. 
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EXAMPLE 10.4. 

[''·'' 15,0 

6,0 

s := 

0,15 

6,6 

6,0 

{l}, A 

0,6] 
0,6 

0,0 

B = {1,2,3}. So the game is merely a repeated 

bimatrix game. The rewards are given in the 

bimatrix, where the notation is as follows. 

If both players take action 1, then they both 

receive 10; if player I takes action 1 and 

player II takes action 2, then player I receives 0 and player II receives 

15; etc. 

Let us first consider the case that this bimatrix game is played only once. 

Then it is clear that it is reasonably attractive for both players if they 

both take action 1. However, this is not a Nash-equilibrium pair. Since, if 

your opponent takes action 1, the best you can do is take action 2 which 

yields you 15 instead of 10. The only pairs of Nash-equilibrium strategies 

are the pairs of randomized actions which only use actions 2 and 3. Among 

these, the most attractive pair is the one in which both players take ac­

tion 2, yielding 6 to each of them. 

Now consider the case that this bimatrix game is played twice. It seems 

clear that at the second stage both players should .choose action 2, how­

ever, once we assume this, the two-stage nonzero-sum game reduces to a bi­

matrix game which is almost identical to the one-stage game; the only dif­

ference is that all entries in the bimatrix are enlarged by 6. In this game 

both players will choose again action 2 yielding for the 2-stage game a 

total reward of 12 to each of them. 

But suppose both players use the following strategy: at the first stage 

take action 1; at the second stage take action 2 if the opponent also took 

action 1 at stage 1, otherwise take action 3. Then they both take action 

at stage 1 and action 2 at stage 2, so they both receive 16. As one may 

easily verify, this pair of strategies is indeed a Nash-equilibrium pair. 

So, there exists a Nash-equilibrium pair of history-dependent strategies 

which is superior to all equilibrium pairs in Markov strategies. 

Note that these equilibrium pairs of history-dependent strategies cannot be 

found by an ordinary dynamic programming scheme like (10.10). For this 

reason we will not consider the nonzero-sum MG any further. 
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10.4. INTROVUCTION TO THE a,-STME MARKOV GAME 

The following· three chapters will deal with infinite-horizon two-person 

zero-sum Markov games. As in the case of the MDP two criteria are considered: 

the total expected reward and the average reward per unit time. 

For any two strategies TIE IT and y Er and any initial state i ES the 

total expected reward for player I is defined by 

(10.13) V(i,TI,y) := lE, l r(Xn,An,Bn) , 
1 'TI ,y n=O 

and the average reward per unit time for player I is defined by 

( 10.14) g(i,TI,y) := liminf vn (i,TI,y,O) , 
n +oo 

provided that the expectations are properly defined. 

For player II the total expected reward is of course equal to -v(i,TI,y). 

The average reward for player II is defined equal to -g(i,TI,y) which makes 

the criterion asymmetric, but for the game we will consider this is irrele­

vant. If one would like to have a symmetric criterion, then one can take 

½ liminf + ! limsup. Also, one could take limsup instead of liminf in 

( 10.14) . 

Clearly, 

and 

sup inf v(TI,y) 
TIEIT yEf 

:, inf sup v(TI,y) 
yEf TIEIT 

sup inf g(TI,y) :, inf sup g(TI,y) , 
TIETI yEf yEf TIEIT 

where supinf and infsup are taken componentwise. 

We say that the infinite-horizon game with the criterion of total expected 

* rewards has the value v if 

sup inf V (TI ,y) inf sup V (TI ,y) * V 
TIE IT yEf yEf TIE IT 

Similar, the average~reward MG is said to have the value * g if 

inf g(TI,y) inf g(TI,y) * sup = sup = g 
TIE:IT yEf yEf TIE IT 
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The concept of the (infinite-horizon) MG has been introduced by SHAPLEY 

[1953]. Shapley considered the criterion of total expected rewards. He 

assumed the state space to be finite and further he assumed the existence 

of an unspecified state,* say, with r(*,a,b) = 0, p(*,a,b,*) = 1 and 

p(i,a,b,*) > 0 for all i ES, a EA and b EB. This assumption guarantees 

that the system eventually reaches the state*, and that the income from 

time n onwards decreases exponentially fast if n ➔ oo. So the game can be 

approximated by finite-horizon games, i.e., by the method of standard suc­

cessive approximations. 

Shapley used that fact that in this case U is a contraction mapping to prove 

that the 00-horizon MG has a value v* which is precisely the unique fixed 

* * point of U. Moreover, he proved that policies f and h satisfying 

yield optimal stationary strategies for the 00-stage game: 

The fact that U is a contraction also implies that the method of standard 

* successive approximations yields bounds on v and nearly-optimal stationary 

strategies for the two players, see e.g. CHARNES and SCHROEDER [1967] and 

Van der WAL [1977a]. 

In chapter 11 we consider a generalization of Shapley's model, namely, the 

contracting MG with countable state space, cf. chapter 5. It will turn out 

that many of the results obtained for the contracting MDP can be generalized 

to the contracting game. Several algorithms will be considered, e.g. the 

Gauss-Seidel method, which for the MG has been introduced by KUSHNER and 

CHAMBERLAIN [1969] and the value-oriented approach. 

Another infinite-horizon MG model that has been considered in the literature 

is the so-called positive MG: the game where r(i,a,b) ~ 0 for all i, a and 

b, see e.g. KUSHNER and CHAMBERLAIN [1969] and MAITRA and PARTHASARATHY 

[1971]. Kushner and Chamberlain consider the case that r(i,a,b) is bounded 

away from zero and that player II can terminate the play. Under this condi­

tion they established the existence of a value and nearly-optimal strategies 

that can be found by successive approximations. Maitra and Parthasarathy 

assume that v(TT,y) < 00 for all TT and y and prove (among other things), for 

the case that Sis finite, the existence of a value, of a nearly-optimal 
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stationary strategy for player I and of an optimal stationary strategy for 

player II. 

In chapter li we consider the case that r{i,a,b) is bounded away from zero 

and that at certain bounded costs player II can terminate the play in any 

state. It will be shown that this game has features which are very similar 

to the contracting MG. 

The infinite-horizon MG at the criterion of average reward per unit time 

has been first considered by GILLETTE [1957] for the case of a finite state 

space. He showed that if for some integer r 

for all i,j ES and all fk E FI, hk E FII' k = 1, ... ,r, then the average­

reward MG has a value and optimal stationary strategies for both players 

exist. Also he gives an example in which 

max min g {f ,h) < 

fEFI hEFII 
min max 

hEFII fEFI 
g(f,h) . 

So, in general, there need not exist stationary optimal strategies. 

This example, called the big match, has been further investigated by 

BLACKWELL and FERGUSON [1968]. They showed that also within the set of 

Markov strategies this game has no value, but if one also considers the 

history-dependent strategies, then the game does have a value. Special 

cases of infinite-stage average-reward MG's have also been considered by 

RIOS and YANEZ [1966], ROGERS [1969], SOBEL [1971], KOHLBERG [1974] and 

FEDERGRUEN [1977]. Only recently it has been shown by MONASH [1979] and 

independently by MERTENS and NEYMAN [1980] that every average-reward two­

person zero-sum MG with finite state space has a value. 

In chapter 13 we will study two special cases of the average reward MG for 

which the value of the game is independent of the initial state. And we 

show that in these cases the method of standard successive approximations 

converges, i.e., yields bounds on the value g* and nearly-optimal stationary 

strategies for both players. 
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CHAPTER 11 

THE CONTRACTING MARKOV GAME 

11. 1. INTROVUCTION 

In section 10.2 the finite-stage two-person zero-sum MG has been studied. 

From this analysis it follows that there must also be a lot of similarity 

between the infinite-horizon two-person zero-sum MG at the criterion of 

total expected rewards and the total-reward MDP. In this chapter it will be 

shown how several ideas developed for the contracting MDP can be extended 

to the contracting game. 

In the MG to be considered in this chapter the state space is assumed to be 

countable and the action spaces are finite. Further, the following condition 

is assumed to hold throughout this chapter. 

Contraction assumption 

(11.1) 

(11. 2) 

There exists a nonnegative vectorµ€ V such that 

(i) For some constant M ~ 0 

!r(f,h) I ~ Mµ for all f E FI, h E FII 

(ii) For some constant p, with 0 ~ p < 1, 

P(f,h)µ ~ pµ for all f € FI, h € FII 

We call this infinite-horizon game the contracting MG. 

Taking the functionµ such thatµ(*) = 0 and µ(i) = 1, i #*,it is clear 

that the contracting'MG generalizes Shapley's game (cf. section 10.4). The 

contracting model of this chapter is the same as the one studied in Van der 

WAL and WESSELS [1977]. 

Note also that the contraction assumption is a straightforward generaliza­

tion of the model III assumptions in section 5.2. 
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In the remainder of this introductory section it is shown that the contrac­

tion assumption implies that v(TI,y) is properly defined and finite for all 

TI and y, that the operators L(f,h) and U are contractions on the Banach 

space Vµ with respect to the µ-norm, and that the unique fixed point of U 

within Vµ is the value of the infinite-stage MG, thus generalizing results 

in SHAPLEY [1953]. Next (section 2) the method of standard successive ap­

proximations is considered. Sections 3 and 4 deal with variants of this 

method which can be generated by go-ahead functions, section 5 considers 

generalizations of the policy iteration method and the value-oriented 

method. Finally, section 6 gives some possible extensions, e.g. the exten­

sion of results for the strongly-convergent MDP to strongly-convergent 

games. 

First it will be shown that the contraction assumption implies that for any 

two strategies TIE IT, y Er, the total expected reward v(TI,y) is properly 

defined and that v(TI,y) Evµ. 
abs 

Define for all f E FI and h E FII the operator L (f,h) on Vµ by 

(11.3) Labs(f,h)v =-!r(f,h) I + P(f,h)v. 

It is immediately clear that Labs(f,h), and of course also L(f,h) and U, 

map vµ into itself. 

For example, for any v EVµ, 

IILabs(f,h)vll s lllr(f,h)I + P(f,h)llvll µII s M + pl[vllµ < 00 • µ µ µ 

From the analysis of the finite-stage MDP (S,AxB,p,r) in section 2.3 (we 

let the decision maker choose both a and b) it follows that 

n-1 
sup sup lE L Ir(~ ,J\ ,Bk) I 
TIE IT yEf TI ,y k=O 

Further, 
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Labs(f0 ,h0) •••Labs(f ,h )0 '.o 
n-1 n-1 

Labs(f0 ,h0 ) ••• Labs(f ,h )Mµ 
n-2 n-2 

n-1 
(1+p+ ••• +p )Mµ, 

for all n = 1,2, ... and all f 0 , ... ,fn-l E FI, h0 , ... ,hn-l E FII" 

Hence, letting n tend to infinity, 

( 11. 4) 
-1 

V ( 1T, y) '.o (1 - p) Mµ for all 1T E II , y E r . 

So, v(11,y) is properly defined and belongs to Vµ. 

Next observe that L(f,h) and U are contractions on the Banach space Vµ with 

respect to the µ-norm. Namely, for all f E FI and h E F II and for all v and 

WE V 
lJ 

(11.5) IIL(f,h)v-L(f,h)wll 
lJ 

IIP(f,h) (v-w)IIµ 

'.o IIP(f,hlllv-wll µII '.o pllv-wll . 
lJ lJ lJ 

And let for arbitrary v,w EVµ the policies fv' hv' fw and hw satisfy 

and 

Then 

Similarly, 

Hence, 

(11.6) 

uv-uw 

Uw - uv '.o p II v - wll µ . 
lJ 

'.o pllv -wll µ. 
lJ 

II uv - uwll '.o p II v - wll for all v, w E V 
lJ . lJ lJ 

So, Uhas a unique fixed point in V which is denoted, somewhat prematurely, 
lJ 

* by V • 
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THEOREM 11 • 1 . 

(i) The unique fixed point of the operator U is the value of the 00 -horizon 

Markov game. 

(ii) Let the policies f* and h* satisfy 

(11.7) 

then the stationary strategies f* and g* are optimal in the 00-horizon 

game for players I and II, respectively. 

PROOF. It suffices to prove 

(11.8) 

Let us prove v(rr,g*) $ v* first. 

From (11.7) we have for all rr = (f0 ,f1, ..• ,) E MI and all n 1, 2, ... 

* * * * $ L(f0 ,g ) •••L(f 1,g )(v +llv IIµ) 
n- µ 

* •••L(f g*)v * + pnllv* II µ $ L(f0 ,g ) n-1' µ 

* • •• L(f ,g*)v* + pnllv*II µ $ L(f0 ,g ) 
n-2 µ 

So, with n + 00 , 

* * v(rr,g) $ v for all rr E MI 

Further, it follows from the extension of Derman and Strauch's result by 

GROENEWEGEN and WESSELS [1976] (cf. section 10.2) that 

Hence, 

sup v(rr,g*) = sup v(rr,g*) • 
rrETI 

v(rr,g*) $ v* for all rr E TI. 

Similarly, one proves the second inequality in (11.8). [7 

Theorem 11.1 is merely a straightforward generalization of Shapley's results 

for the finite state space case ([SHAPLEY, 1953]). 



11. 2. THE MITHOV OF STANVARV SUCCESSIVE APPROXIMATIONS 

In this section it will be shown that, as in the case of the contracting 

MDP, the method of standard successive approximations with scrapvalue 

v0 EVµ yields bounds on v* and nearly-optimal stationary strategies for 

the two players. The results of this section can be found in Van der WAL 

and WESSELS [1977] and improve or extend results in CHARNES and SCHROEDER 

[1967] and Van der WAL [1977a]. Compare also section 5.4 with o = 1. 

Standard successive approximations 

(11.9) 

Choose v0 E vµ 

Determine for n 0, 1, ... 

and policies fn E FI and hn E FII satisfying 

* 
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Since U is a contraction we immediately have that vn converges to v inµ-

norm, namely 

llv - v*II 
n µ 

(n ➔ co) • 

In order to show that the standard successive approximation scheme yie,lds 

* bounds on v and nearly-optimal stationary strategies, we need the following 

notations (cf. section 5.4). 

Define 

llwllmax := inf µ 
{c E lR w :, cµ} 

llwllmin := sup µ {c E lR w? cµ} 

p~ax (fl := II max P (f ,h) µII max 

hEFII 
µ 

p~in (f) II min 
min 

:= P(f,h)µII 
· hEFII 

µ 

max(h) := II max P(f,h)µllmax PII 
fEFI 

µ 

for all w EV 
µ 

for all w EV 
µ 

for all f E FI 

for all f E FI 

for all h E FII 

, 
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II min P (f h) II min , µ µ for all h E F II 

and for the policies fn and gn satisfying (11.9) 

(f ) PI,n := 
n 

max(f ) 
PI n 

min (f ) 
PI n 

max(h) 
PII n 

min(h) 
PII n 

if 

if 

if 

if 

llv - v llmin 
n+1 n µ 

< 0 , 

llv -v llmin 
n+1 n µ 

2 0 I 

llv - v II max ;:,, 0 , 
n+1 n µ 

llv - v llmax < 0 • 
n+1 n µ 

Using these notations one has the following results (cf. theorem 5.12). 

THEOREM 11 . 2 

(il For ally er 

v(fn,y) 2 + PI (f) (1-pI (f ))-1llv +1 llmin v n+ 1 , n n , n n n - v n µ µ 

(ii) For all n err 

v(n,hn) $ vn+1 + PII,n(hn) (1-PII,n(hn)l-1llvn+1-vnll:axµ 

(iii) 
-1 min 

PI ( f ) ( 1 - PI ( f )) II v + 1 - v II µ s ,n n ,n n n n µ 
* V -V 

n+1 

PROOF. 

(i) From the result of GROENEWEGEN and WESSELS [1976] it follows that it 

suffices to prove (i) for ally e MII" 

Let y = (ho,h1,···' e MII be arbitrary, then 

(11. 10) 

For all k = 1,2, •.. , 

~ ~ min 
2 L(fn,hol ••• L(f ,hk 1) (v +llv 1 -v II µ) n - n n+ n µ 

Further, 
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min min 
P(f,h)llv 1 -vll µ::::p 1 (f)llv 1 -vll µ 

n n+ n µ ,n n n+ n µ 

Hence, 

(11.11) 

k min 
:::: ... ::::vn+l+(p 1 (f)+ •.. +p 1 (f))llv 1 -vll µ 

,n n ,n n n+ n µ 

So from (11.10) and (11.11) one obtains for ally E M11 

;:;: vn+1 + PI (f) (1-pr (f ))-1llv +1-v llminµ 
,n n ,n n n n µ 

Similarly one proves (ii). Then (iii) follows immediately from (i) and 

(ii). 

Since vn+l - vn tends to zero, if n tends to infinity, it follows from 

theorem 11.2 that the method of standard successive approximations yields 

* 

□ 

good approximations of v and nearly-optimal stationary strategies for both 

players. 

11. 3. GO-AHEAV FUNCTIOMS 

In this section, following the approach of chapter 3, we generate by means 

of nonzero go-ahead functions a set of variants of the method of standard 

successive approximations. 

For the two-person game a go-ahead function is any function o from 

co 

Su U (SxAxB)n u U (SxAxB)n x S into [0,1]. 
n=1 n=1 

The interpretation is the same as for the MDP. E.g., o(i0 ,a0 ,b0 , .•. ,in) 

denotes the probability that the observations of the process will continue 

after the history i 0 ,a0 ,b0 , .•• ,in, given that the observations have not 

been stopped before.· 

A go-ahead function o is called nonzero if 

(11.12) a 0 := inf min min o(i)o(i,a,b) > 0. 
iES aEA bEB 
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In order to describe e.g. the overrelaxation method and to define the L0 and 

U0 operators we have to incorporate the random experiments - the outcomes of 

which determine whether the observation of the process continues - into the 

stochastic process. Therefore we extend the space (S x A x B) 00 to the space 

(S XE XA XB XE) 00 with E := {O,1} again. 

As in section 3.3 one may define for each initial state i Es, any go-ahead 

function o and any pair of strategies TIE IT and y Er the probability mea-
0 sure JP. 
l.,TI,Y 

and the stochastic process {(X ,Y ,A ,B ,Z), n = 0,1, •.. }, n n n n n 
where xn, An and Bn are the state and actions at time n, where Yn = 1 if 

the observations continue after X 
n 

has been observed and yn = 0 otherwise, 

and where Zn= 1 if the observations continue after the selection of An and 

B and z = 0 otherwise. 
n n o o 

The expectation with respect to JP is denoted by lE. 
i,TI,Y l.,TI,Y 

Next define the stopping time -r on (S x E x Ax B x E) 00 by 

So -r denotes again the time upon which the observations of the process are 

stopped. 

Further, we define for any TIE IT, any y Er and any go-ahead function o the 

operators L0 (TI,y) ~nd U0 on Vµ: 

(11. 13) L,-(TI,y)v := lEll l r(X ,A ,B ) [
-r-1 

u TI , y n=O n n n 

with v(X-r) = O, by definition, if -r 00 ; 

(11.14) := sup inf Lll(TI,y)v, 
TIEIT yEf 

where the supinf is taken componentwise. 

That Lll(TI,y) and ull are properly defined on Vµ' map Vµ into itself and are, 

if a,-> 0, even contractions on V can be seen as follows. 
u ~ µ 

Define the operator Lll(TI,y) on Vµ by 

(11. 15) L,-(TI,y)v := lEll v(X ) , 
u TI ,y 'r 

Then we can apply lemma 4.22 with v =µon the MDP with state spaces, 

action space Ax B, rewards rand transition law p, to obtain 

(11. 16) Lll(TI,y)µ ~ (1-all)µ + all max max P(f,h)µ ~ [1-all(l -p)]µ 
fEFI hEFII 



Hence 

:,; m0 I lr<x ,A ,B) I + llvll L,.(11,y)µ 
11, y n=O n n n µ u 

-1 
:<;; M(l-p) µ+ llvll/1-cxo(l-p)]µ 

Thus L0 (11,y)v is properly defined on vµ. 

And 

L0 (11,y)v € Vµ for all 11 € IT and y € r, 

whence also 

Further, for all 11 € IT, y €rand v,w € vµ, 

So, if cx 0 > 0, then L0 (11,y) is a contraction on Vµ with respect to theµ­

norm. 
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Similar as in section 1 (the proof of (11.6)) one may show that, if cx0 > 0, 

also u0 is a contraction on Vµ. Hence, for any nonzero o, the operator U0 

has a unique fixed point in vµ, v 0 say. 

* Our next step is to prove that v0 = v, so that it makes sense to use suc-

cessive approximation methods generated by nonzero go-ahead functions. 

We can follow the line of reasoning of section 3.4. First one may show, in 

a similar way, that for all 11 1 and 11 2 € IT 

1 * 2 * * * L0 (11 ,h )v(11 ,h) :<;; sup v(11,h) v 
11€IT 

where h* denotes an optimal policy for player II. 
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Thus for all TIE IT 

and 

Similarly, we obtain for ally Er 

so 

Hence 

(11.17) * V 

* * So v is a fixed point of U0 in vµ which implies v0 = v (o nonzero). 

As a consequence we have for all nonzero go-ahead functions o 

(11.18) * V V E V 
µ 

11.4. STATIONARV GO-AHEAV FUNCTIONS 

In this section it will be shown that as in the case of the contracting MDP 

(cf. section 5.4) any nonzero stationary go-ahead function generates a 

* successive approximation algorithm that yields bounds on v and nearly-

optimal stationary strategies for the two players. 

Similarly as in definition 3.19 a go-ahead funcyion is called stationary if 

for all n = 1,2, ... and all i 0 ,a0 ,b0 ,i 1 , ..• 

and 

First we show that for stationary go-ahead functions one can restrict the 

attention to stationary strategies in the determination of U0v, i.e., we 

show that for every v EVµ there exist policies f E FI and h E FII satis­

fying 

(11.19) for al 1 TI E IT , y E r . 
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To prove this construct the Markov game (S,A,B,p,r) which is essentially 

equivalent to the problem of the determination of U0v as follows (the line 

of reasoning is essentially the same as for the MDP): Assume, without loss 

of generality, o(i) = 1 for all i Es and define 

A := A B := B, 

p(i,a,b,j) := o (i,a,b)p(i,a,b,j) o (i,a,b,j) 

~(i,a,b,*) := 1 - I p(i,a,b,j) , ~(*,a,b,*) 1 , 
jES 

r(i,a,b) := [1-o(i,a,b)]v(i) +o(i,a,b)[r(i,a,b) + 

+ I p(i,a,b,j)[1-o(i,a,b,j)]v(j)], 
jES 

r(*,a,b) := 0 . 

One easily verifies that, with the bounding functionµ on s defined by 

µ(i) = µ(i), i Es, andµ(*) 0, this Markov game is also contracting. So 

it follows from theorem 11.1 that this game has a value and that both 

players have stationary optimal strategies. Then the restrictions of these 

stationary optimal strategies to the states in S, f and h say, satisfy 

(11.19). 

Now consider for a stationary go-ahead function o the following successive 

approximation procedure 

Choose v O E vµ 

Determine for n = 0,1, ... 

(11.20) 
vn+l = Uovn' 

and policies fn and hn satisfying 

* From (11.16) and (11,18) one easily shows that vn converges to v exponen-

tially fast. In order to obtain again, as in theorems 5.12 and 11.2, the 

* MacQueen bounds for v and the strategies fn and hn we need the following 

notations. 
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Define 

max (f) := II max Lo (f ,h) µ11:ax f E FI p I, o , 
hEFII 

min(f) := II min L (f h) llmin f E FI PI, o 
hEFII 

0 , µ µ 

max (h) II max 
~ max 

PII, o := L0 (f,h)µIIµ h E FII , 
fEFI 

min 
II min 

~ min 
PII,o (h) := L0 (f,hlµIIµ h E FII , 

fEFI 

and for the policies fn and gn satisfying (11.20) 

max(f) min 
< 0 if llv 1 -v II , 

p (f ) := 
PI,o n n+ n µ 

I,o,n n 
min(f ) llv -v llmin if ;:,, 0 , 

PI,o n n+l n µ 

max llv -v llmax 0 if ;:,, , PII,o (hn) 
PII,o,n (hn) 

n+l n µ 
:= 

min llv - v II max PII,o (hn) if 
n+l n µ 

< 0 

Then one has the following result (cf. theorem 11.2). 

THEOREM 11.3. Let {v }, {f} and {hn} be the sequences obtained in (11.20). 
n n 

Then we have (o nonzero) 

(iJ for aU y E r, 
-1 min 

V ( fn , Y) ;:,, vn+ 1 + PI r ( f ) ( 1 - PI r ( f )) II v + 1 - v II µ , ,u,n n ,u,n n n n µ 

(ii) for aU ,r E IT, 

(iii) 

< -1 max 
.,. PII r (hn) (1 - PII ,, (h ) ) llv +l - v II µ , u ,n , u ,n n n n u 

PROOF. 

(i) Using the result of GROENEWEGEN and WESSELS [1976] one may easily show 

that 



for ally Er. 

Since further for all nonzero o, all h E FII and all v EVµ 

k v(f ,h) = lim L0 (f ,h)v, 
n k-+<x> n 

the proof follows along the same lines as the proof of theorem 11.2. 

Similarly one obtains (ii), and (iii) follows immediately from (i) and 
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(ii). □ 

In general, the amount of work that has to be done in order to obtain U0v 

is of the same order as the amount needed to solve the original 00-stage 

game. However, for special stationary go-ahead functions, e.g. those corre­

sponding to the "game variants" of the algorithms formulated in section 

3.3, U0v can be computed componentwise by solving simple matrix games. In 

that case the amount of work becomes the same as for the computation of Uv. 

11.5. POLICY ITERATION ANV VALUE-ORIENTEV METHOVS 

In this section it will be shown how the policy iteration method and the 

method of value-oriented standard successive approximations can be genera­

lized for the contracting Markov game. 

For the contracting MG (with finite state space) POLLATSCHEK and AVI-ITZHAK 

[1969] have suggested the following straightforward generalization of 

Howard's policy iteration method. 

Choos·e v0 E vµ. 

Determine for n = 0,1, ••• policies fn and hn satisfying 

(11.21) for all f E fI , h E F II , 

and define 

Pollatschek and Avi-Itzhak proved that under a rather conservative condition 
* 1 vn converges to v. (One may easily show that p < 3 guarantees that vn 



210 

converges to v*.) RAO, CHANDRASEI<ARAN and NAIR [1973] claimed that the 

algorithm would always converge, however, their.proof is incorrect. And, as 

the following· example, given in Van der WAL [1977b], demonstrates, their 

proof cannot be repaired. 

EXAMPLE 11.4. S = {1,2}, A(l) B(l) {1,2}, A(2) B(2) { 1}. 

r(l,a,b) 1 
b 

2 p(l,a,b,1) 1 b 2 

1 3 6 a 
1 i ! a 

2 2 1 2 i ~ 
4 

Further, r(2,1,1) = 0 and p(2,1,1,2) = 1. So, state 2 is absorbing. Taking 

µ such that µ(1) = 1, µ(2) = 0, one immediately sees that the game is con­

tracting. Now, choose v0 = 0. Then, in order to determine policies f 0 and 

h0 satisfying (11.21) for n = 0, one has to solve for state 1 the matrix 

game 

Clearly, this game· has value 3 and the policies f 0 and h0 with f 0 (1,1) = 

= h0 (1,1) = 1 are optimal. So v 1 has v1 (1) = 12, v1 (2) = 0. 

Next, in order to obtain f 1 and ~ 1 we have to solve in state 1 the matrix 

game 

(32 + i•12 

+ !•12 
6 + !•12) = (12 
1+i•12 11 

The value of this game is 10 and the optimal.policies f 1 and h 1 have 

f 1 (1,2) = h 1 (1,2) = 1. So v2 (1) = 4, v2 (2) = 0. 

In the third iteration step one has to solve the matrix game 

6 + ! •4) = (6 7) , 
1 + i•4 5 4 

which has value 6 for the policies f 2 and h2 with f 2 (1,1) = h2 (1,1) = 1. 

Thus v3 (1) = 12 and v3 (2) = 0, and v3 = v1• 

Continuing in this way we get v2n = v2 , v2n+l = v 1 , n = 1,2, •••. So we see 

that in this example Pollatschek and Avi-Itzhak's generalization of 

Howard's policy iteration cycles. 
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Another generalization of Howard's method has been proposed by HOFFMAN and 

KARP [1966] for the average-reward MG. The same idea can also be used for 

the total-reward case, see POLLATSCHEK and AVI-ITZHAK [1969] and RAO, 

CHANDRASEKARAN and NAIR [1973]. 

To describe this algorithm we define for all h E F11 the operator Uh on Vµ 

by 

max L(f,h)v . 
fEFI 

Then Hoffman and Karp's variant can be formulated as follows. 

Choose v0 Evµ. 

Determine for n = 0,1, ... a policy hn satisfying 

L(f,hn)vn ~ Uv for all f E F n 

and determine 

lim 
k 

vn+l := Uh V 

k--
n 

n 

Observe that to obtain vn+l one has to solve a whole MDP exactly, e.g. by 

Howard's policy iteration method. 

However, it is not necessary that one actually determines the value of the MDP. 

As in the MDP we can use a value-oriented variant in which vn+l is taken 
:\ 

equal to Uhnvn for some:\. 

The algorithm then becomes (see Van der WAL [1977b]): 

Choose v0 Evµ and:\ E {1,2, •.. 00}. 

Determine for n = 0,1, .•. a policy hn satisfying 

for all f E F 
(11.22) 

and determine 

For the monotone version of this algorithm, where one starts with a scrap­

value v0 for which uv0 ~ v0 , the convergence proof can be found in Van der 

WAL [1977b]. The line of reasoning is exactly the same as for the MDP (cf. 

theorem 3.22) 
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As has been pointed out by ROTHBLUM [1979] one may follow in the nonmono­

tonic case the line of proof given by Van NUNEN [1976c] for the MDP. 

THEOREM 11.5 (ROTHBLUM [1979]). 

* The sequence {vn} obtained in (11.22) converges to v. 

PROOF. See ROTHBLUM [1979]. 

11.6. THE STRONGLY CONVERGENT MARKOV GAME 

Having seen the large similarity between the contracting MDP and the con­

tracting MG it is natural to ask whether more results for the total-reward 

MDP can be translated to the case of the total-reward MG. 

□ 

That one cannot just translate all results is immediately clear if we con­

sider e.g. lemma 3.1. It is obvious that for the general total-reward MDP 

lemma 3,1 need not hold since the MG is in a sense a combination of a maxi­

mization and a minimization problem. 

However, for the strong-convergence case most results for the MDP also hold 

for the MG. 

An MG is called strongly convergent if there exists a sequence 

(J) = (cpO,cp 1 , ••. ) €~(cf. section 4.1) for which 

(11.23) sup sup lE. l cp (i) !r(X ,A ,B ) I < "' , 
TIElI yEf 1.,1r,y n=O n n n n 

i E S • 

Just as for the MDP, the existence of a function cp €~for which (11.23) is 

finite is equivalent to the following pair of conditions: 

"' 
(i) z * : = sup sup lE l I r ( X , A , B ) I < "' , 

7f€IT yEf 7f ,y n=O n n n 

(ii) 

One may show that the method of standard successive approximations converges 

using the game-equivalent of theorem 4.6 with instead of the operator U an 

operator U defined as 

Uv := sup sup L(1r,y)v 
7f€1I yEf 



Similarly one may translate the results of section 4.2. E.g., if 

L(f,h)v* ~ v* for all h E FII 

then f is an optimal stationary strategy for player I. 
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Further, one may show that for nonzero go-ahead functions o the correspond­

ing method of successive approximations converges, using lemmas 4.21 and 

4.22 and theorem 4.23 with the operator ~o defined by 

:= sup sup L0 (rr,y)v 
TTEil yEf 





CHAPTER 12 

THE POSITIVE MARKOV GAME 
WHICH CAN BE TERMINATED BY THE MINIMIZING PLAYER 

12.1. INTROVUCTION 

In the general positive MG it is assumed that r(i,a,b) is nonnegative for 

all i, a and b. So, for all n = 0,1, ••• , 00 , the expected n-stage reward is 

for any pair of strategies properly defined and so is any successive ap­

proximation scheme with scrapvalue v ~ 0. (By reversing the roles of the 

two players the game can be made to satisfy condition 10.1 for all 
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n = 1,2, ••• , 00 • For historical reasons, however, we prefer to treat the game 

as a positive game.) 

In this chapter we shall analyze a special positive MG having the following 

properties: 

( 12.1) 

(i) there is a specific state,* say, for which r(*,a,b) 0 and 

p(*,a,b,*) = 1 for all a EA, b EB; 

(ii) there is a constant c > 0 such that r(i,a,b) ~ c for all 

i #*and all a EA and b EB; 

(iii) there exists a constant c ~ c and in each state i ES an 

action, b(i) say, for player II such that p(i,a,b(i),*) = 1 

and r(i,a,b(i)) s C for all a EA. 

So, the state* is absorbing and the actual play can be considered to have 

stopped once state* has been reached. Further, as long as the system has 

not yet reached*, player II looses at least an amount of c in each step. 

However, by taking at time O the appropriate action in the initial state he 

can force the system into state*, thus restricting his total loss to at 

most c. 
This is a special case of the positive MG considered by KUSHNER and 

CHAMBERLAIN [1969]. 
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In the sequel it will be shown that the method of standard successive ap­

proximations yields bounds for the value of the game and nearly-optimal 

stationary strategies for the two players. As we will see, this specific 

positive game has a very similar structure as the contracting MG. The 

results of this chapter can be found in Van der WAL [1979]. Part of the 

results were already given by KUSHNER and CHAMBERLAIN [1969]. 

First let us consider in some detail the general positive MG with 

r(i,a,b) 2!: 0 for all a e: A, be: Band A and B finite. 

For this game consider the following standard successive approximation 

scheme: 

{ 
Define v0 := o. 

(12. 2) Determine for n o, 1, ••• 

vn+l Uv n 

From the nonnegativity of the reward structure it follows that UO 2!: 0. So, 

by the monotonicity of u, the sequence vn converges monotonically to a 

- not necessarily finite - limit, v00 say: 

lim v n n-+oo 

Since A and Bare finite, it follows that for all i ES the value of the 

matrix game with entries 

r(i,a,b) + l p (i,a,b,j)vn (j) , 
jES 

ae:A,be:B, 

converges to the value of the matrix game with entries 

r(i,a,b) + l p(i,a,b,j)v00 (j) , 
jES 

,a E A, b E B , 

even if some of the entries are equal to + co (cf. section 10.2). 

So for all i ES 

Vn+l (i) + (Uv00 ) (i) (n + co) , 

which implies 

(12.3) Uv = v 
00 00 

From (12.3) it is almost immediate that v00 is the value of the infinite­

stage positive MG and that player II has an optimal stationary strategy. 
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Namely, by playing an optimal strategy for then-stage game first and play­

ing an arbitrary strategy thereafter, player I guarantees himself an ex­

pected income of at least v. Thus 
n 

sup inf v(rr,y) ~ lim vn 
TTETI yEf n_, 

(12.4) V 
co 

On the other hand, there exists a policy h* for player II satisfying 

Hence 

(12.5) 

* L(f,h )v ~ v 

* v(rr,h) 

co co 

~ V 
co 

for all f E FI . 

for all rr E TI • 

To prove (12.5) observe that 

v(rr,h*l = lim v (rr,h*,oi 
n 

and that (cf. section 10.2) 

Now it follows from (12.4) and (12.5) that v is the value of the infinite-
co 

stage game and that h* is an optimal stationary strategy for player II. 

The value of the game is further denoted by v*. 

For the positive MDP, ORNSTEIN [1969] has proved the existence of a uni­

formly £-optimal strategy in the multiplicative sense, see theorem 2.23. 

This result has been partly generalized to the case of positive games by 

KUMAR and SHIAU [1979]. To be precise, they proved that, if v* is bounded, 

a stationary strategy f exists such that 

v(f,y) ::c: v* - Ee for all y E r 

* Although vn converges to v the scheme (12.2) is in general not of much 

* use, since it does not provide an upper bound on v and there is no possi-

bility to recognize whether e.g. the policies obtained at then-stage of 

the successive approximation scheme are nearly optimal. Therefore, we 

further consider the specific positive MG satisfying properties (12.l(i)­

(iii)). 

In the sequel we will not explicitly incorporate the specific state* into 

the state space and further Swill denote the set of states unequal to*· 

So, in the sequel we have defective transition probabilities. The reason 
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for doing this is that it somewhat simplifies our notations. Further, the 

game is said to have terminated if the system has reached* (left S). 

In section 3 it will be shown that the method of standard successive approx-

* imations yields arbitrary close bounds on v and nearly-optimal stationary 

strategies for the two players. Before we can do this, first some results 

have to be derived concerning the duration of the game (time till absorption 

in*). This will be done in section 2. 

12.2. SOME PRELIMINARY RESULTS 

This section studies for a number of situations the asymptotic behaviour of 

the probability that the actual play has not yet been terminated. 

Leth be the policy for player II that takes in each state i the specific 

action b(i) that terminates the play immediately. Then, clearly, 

(12.6) Uv cs; sup L (f ,h) v cs; Ce 
fE:FI 

for all v ~ 0 • 

and 

(12. 7) v* '.5 sup v(TI,h) cs; Ce. 
TIE IT 

Also, by (12.l(ii)), 

( 12. 8) * v ~ UO ~ ce 

Denote for all i Es, TIE IT and y Er by pn(i,TI,y) the probability that, 

given the initial state i and the strategies .TI and y, the system has not yet 

reached the absorbing state* at time n, n 1, 2, ..•. 

Further, let yn(v) be an arbitrary optimal strategy for player II in the 

n-stage game with terminal payoff v, and let yn(TI,v) be an optimal strategy 

for player II if it is already known that player I will use strategy TI. 

Then we have the following lemma. 

LEMMA 12.1. If v ~ o; then for aZZ TIE IT 

(i) pn(i,TI,yn(v)) '.5 min {1, C/ (nc+min v(i)}, 
iES 

(ii) pn (i,TI,yn (TI,v)) :,; min {1 , C / (nc + min v(i)} 
iES 



PROOF. 

(i) Clearly, 

vn(i,1r,yn(v),v) ::>: p (i,1r,y (v)) (nc+min v(i)) . 
n n iES 

By (12.6) also Unv $ Ce, so 

Hence, 

Ce::>: p (i,TT,Y (v)) (nc+min v(i)) , 
n n iES 

from which (i) follows immdiately. 

(ii) The proof of (ii) is similar. 

So, 

In corollary 12.4 we will see that for certain specific strategies yn(v) 

the probability pn(i,1r,yn(v)) decreases even exponentially fast. 

Lemma 12.1 enables us to prove the following results. 

THEOREM 12. 2. 
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□ 

(i) Any strategy f* with L(f*,h)v* ::>: v* for aZZ h E F11 is optimal for the 

00-stage game, i.e., 

v(f*,y) ::>: v* for aZZ y E r . 

(ii) For aZZ v ::>: O 

PROOF. 

(i) By (12. 7), 

* * * * v (i) $ vn (i,f ,yn (f ,0) ,v ) 

So, by lemma 12.l(ii), 
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Hence for ally Er 

* * v(f ,y) = lim vn(f ,y,0) * * 2 lim vn(f ,yn(f ,0) ,0) 
n--.oo n--.oo 

(ii) Clearly, for all v 2 0, 

* V 

so it suffices to prove 

limsup Unv:;; v* 
n +oo 

By (12.6) it is even sufficient to prove that 

n * limsup u Ce :;; v 
n +oo 

Let 1r (n) be an optimal strategy for player I in the n-stage game 

with terminal payoff Ce. Then 

n (n) * (U Ce) (i) :;; vn (i,1r ,h ,Ce) 

(n) * * (n) * * 
:;; vn(i,1r ,h ,v) + pn(i,1r ,h ,v )C 

(n + oo) 

The latter inequality follows from the optimality of h* for then-stage 
* n * * game with terminal payoff v with U v = v and lemma 12.l(i). 

Hence 

n+oo n+oo 

which completes the proof. D 

* If one wants to find bounds on v and nearly-optimal stationary strategies 

for the two players, then the inequalities in lemma 12.1 are too weak. We 

will show that for certain optimal n-stage strategies yn(v) the probability 

pn(i,1r,yn(v)) tends to zero exponentially fast. 

Let v 2 0 be arbitrary and let {hv} be a sequence of policies satisfying 
n 

for all f E FI n=0,1, .... 
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Define 

* Then yn(v) is not only optimal in then-stage MG with terminal payoff v but 
* n-k yn(v) is also optimal in the k-stage MG with terminal payoff U v for all 

k < n. 

Define further for all v 2 0 and all n = 0,1, ... 

pn(v) := min {1,C/ (nc+rnin v(i)} 
iE:S 

Then for all n,m 2 0, all TIE IT and all v 2 0 

(12.9) 

Now we can prove that p (i,TI,y*(v)) decreases exponentially fast. n n 

LE~.MA 12.3. For all n,m 2 O, for all TIE IT and all v 2 0 

i E S • 

PROOF. From lemma 11.l(i) and (12.9) we have for all i ES 

$ l lPi,TI,y* (v) (Xn=j) l sup lP. ' *() (Xm=k) 
j ES n+m kE S TI 'E IT J 'TI 'Y m v 

$ p (i,TI ,y* (v) )p {v) . 
n n+m m □ 

Since v 2 w implies pn(v) 2 pn(w), lemma 12.3 yields the following corollary. 

COROLLARY 12 . 4 • If v 2 0 and n = km + Jl, k , Jl , m 

If moreover Uv 2 v, then 

p (i,TI,y*(v)) 
n n 

PROOF. Straightforward. 

0,1, ... , then for all TI 

□ 
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12. 3. BOUNVS ON v* ANV NEARLY-OPTIMAL STATIONARY STRATEGIES 

* Corollary 12.4 enables us to obtain a better upperbound on v 

THEOREM 12.5. Let v EV satisfy Os vs Uv a:nd Zet m be such that pm(v) < 1. 

Then 

* -1 Uv s v s Uv + ( 1 - pm (v) ) 
m 

l pk(v)iluv-vilee. 
k=l 

PROOF. By theorem 12.2(ii) we have 

v* lim Unv = Uv + I (Un+lv - Unv) 
n-;.oo n=l 

* So, by the monotonicity of U, we have v ~ Uv. 

Further, let the policies f; satisfy for all h E FII 

t=0,1, ... , 

and define 

n = 1, 2, .... 

Then for all n = 1,2, ... 

Hence, by corollary 11.4 

0, 

* l * * 
V $ Uv + sup Pn (i ,11n+l (v} ,y n (v)) iluv - vile e 

n=l iES 

0, 

$ Uv + l p (v) iluv - vii e 
n=l 

n e 

'0, m t 
$ Uv + l l (pm (v)) pk (v) lluv - vile e 

t=0 k=l 

-1 m 
uv + ( 1 - pm (v)) l pk (v) lluv - vile e 

k=l 
□ 
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n * Since for all v 0 ? 0 we have u v 0 + v (theorem 12.2(ii)) also 
n+1 n 

U v0 - u v 0 + 0 (n + 00). From the proof of theorem 12.2 one easily sees 
. n * 

that the convergence of U v 0 to v is uniform in the initial state, hence 

II n+1 n I U v 0 - U v 0 le tends to zero if n tends to infinity. So theorem 12.5 can 

* n be used to obtain good bounds on v (take v = U v 0 for n sufficiently large). 

The fact that if v? 0 all sensible strategies for player II terminate the 

n-stage game with terminal payoff v, also leads to the following result. 

THEOREM 12.6. If for some v? Owe have 

L(f,h)v ? v for aU h E FII , 

then 

v(f,y) ? min L(f,h)v? v for ally Er . 
hEFII 

PROOF. Let yn(f,O) = (hn_ 1 , .•. ,h0 ) be an optimal reply to f for player II 

in then-stage game with terminal payoff O, then for ally Er 

? L(f,hn_ 1J ••• L(f,h0 )v - sup p(i,f,yn(f,O))llvlle 
iES 

? L(f,hn_ 1)v - sup p(i,f,yn (f,O) l l!vlle . 
iES 

The result now follows with lemma 11.l(i) by letting n tend to infinity. D 

* . COROLLARY 12.7. Let f sat~sfy 

* * * L(f ,hlv ? v for all h E FII 

then the strategy f* is optimal for player I for the infinite-stage game: 

* * v(f ,y) ? v for ally Er .. 

Further we see that theorem 12.6 in combination with theorem 12.5 enables 

us to obtain from a ~onotone standard successive approximation scheme a 

nearly-optimal stationary strategy for player I. 

Next it will be shown how a nearly-optimal stationary strategy for player 

II can be found. 
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THEOREM 12.8. Let v E V a:nd h E FII satisfy 

(i) ae $ V $ Ce for some a > o, 
(ii) L ( f, h) V $ V + Ee for some 0 $ E < c a:nd aZZ f E Fr. 

Then a constant p, with o $ $ 1 
C - E , - -c- , eX?,sts p 

P(f,h)v $ pv for aZZ f E FI, 

which implies 

(12.10) v(TI,h) $ 
-1 

max L(f,h)v + p(l - p) 
fEFI 

PROOF. For all f E FI we have 

E -v 
a 

satisfying 

for aZZ '1T E II • 

P(f,h)v = L(f,h)v-r(f,h) $ v+Ee-ce $ pv, 

for some p $ 1 C-E 
C 

Now let '1T = (f0 ,f1 , .•• ) be an arbitrary Markov strategy for player I (it 

suffices to consider only Markov strategies), then 

n-1 E 
$ L(f0 ,h) • • • L(fn_2 ,h)v + p a V 

2 n-1 L(f0 ,h)v + (p +p + .•. +p ) E -v 
a 

E -v 
a 

Letting n tend to infinity and taking the maximum with respect to f 0 yields 

(12.10). 

Clearly the right hand side in (12.10) is also an upperbound on v* and this 

remains true if max L ( f ,h) v is replaced by Uv. 
fEFI 

Now consider the successive approximation scheme: 

{ 
Choose VQ ;c: 0 such that uv0 ;c: VQ' 

Determine for n o, 1, ... 

V 
n+l Uv n 

n 
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n * Then, since U v0 converges to v uniformly in the initial state and since 
Un+l n v0 ~ u v0 by the monotonicity of u, we can apply theorems 12.5, 12.6 

. n * and 12.8 with v = U v0 for n sufficiently large to obtain good bounds on v 

and nearly-optimal stationary strategies for the two players. 

Note that the function v in theorem 12.8 is strongly excessive with respect 

to the set of transition "matrices" P(f,h), where h - the policy mentioned 

in the theorem - is held fixed. So the resulting MDP with h fixed is con­

tracting in the sense of chapter 5 and (12.10) is rather similar to theorem 

5.12 (ii). 

* To obtain a lowerbound on v we have used Uv ~ v (theorem 12.5). Also for 

the near-optimality off in theorem 12.6 the monotonicity has been used. 

The following theorem demonstrates how in the nonmonotonic case as well a 

* lowerbound on v and a nearly-optimal stationary strategy for player I can 

be found. 

THEOREM 12.9. Let the policy f E FI satisfy for some v, with O ~ v ~ Ce, 

L(f,h)v ~ v-Ee for all h E FII, 

where E ~ O is some constant, then 

(12.11) v(f,y) ~ min L(f,h)v - E (C-2c)C e for all y E r . 
hEFII c 

PROOF. Let the stationary strategy h be an optimal reply to fin the ~-stage 

game. That such an optimal stationary strategy exists follows from the fact 

that if player I uses a fixed stationary strategy, then the remaining mini­

mization problem for player II is an MDP. (Formally, this needs a proof 

since player II may choose his actions dependent of previous actions of 

player I, but this will not be worked out here.) Considered as a maximiza­

tion problem this is a negative MDP for which by corollary 2.17 an optimal 

stationary strategy exists. 

Define 

v := v(f,h) 

Then L(f,h)v = v, which yields 

P(f,h)'; ~ v-ce 

So, with ce ~ v ~ Ce, thus ";;c ~ e, also 
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C ~ 
P(f,h)v :o v - Cv 

One easily argues that 

so 

v(f,h) n ~ lim L (f,h)v . 
n->«> 

Further, 

n ~ n-1 ~ n-1 ~ n-1 ~ 
L (f,h)v ~ L (f,h) (v-e:e) = L (f,h)v - P (f,h)e:e 

~ n-1 ~ 
~ ••. ~ L(f,h)v - e:[P(f,h) + •.. +P (f,h)]e • 

Withe :o c- 1; (from v ~ ce) it follows that 

So for all n 

n~1 C (1 - c)k Ln(f,h)v ~ L(f,h)v - e: l c C e • 
k=1 

Thus, letting n tend to infinity, it follows from the optimality of h that 

v(f,y) ~ 
(C - c)C 

min L(f,h)v - e: 2 e 

hEFII c 

for all y E r . D 

* The right hand side in (12.11) is clearly also a lowerbound on v, so theo-

* rems 12.8 and 12.9 can be combined to obtain good bounds on v and nearly-

optimal stationary strategies for both players. 



CHAPTER 13 

SUCCESSIVE APPROXIMATIONS FOR 

THE AVERAGE-REWARD MARKOV GAME 

13.1. INTROVLJCTION ANV SOME PRELIMINARIES 
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This chapter deals with the average-reward Markov game with finite state 

space S := {1,2, ••• ,N} and finite action spaces A and B for players I and 

II, respectively. In general, these games neither have a value within the 

class of stationary strategies nor within the class of Markov strategies. 

This has been shown by GILLETTE [1957] and by BLACKWELL and FERGUSON [1968], 

respectively. Gillette, and afterwards HOFFMAN and KARP [1966] have proved 

that the game does have a value within the class of stationary strategies, 

if for each pair of stationary strategies the underlying Markov chain is 

irreducible. This condition has been weakened by ROGERS [1969] and by SOBEL 

[1971], who still demand the underlying Markov chains to be unichained but 

allow for some transient states. FEDERGRUEN [1980] has shown that the uni­

chain restriction may be replaced by the condition that the underlying 

Markov chains corresponding to a pair of (pure) stationary strategies all 

have the same number of irreducible subchains. Only recently MONASH [1979], 

and independently MERTENS and NEYMAN [1980], _have shown that every average­

reward MG with finite state and action spaces has a value within the class 

I of history-dependent strategies. 

In this chapter we consider for two situations the method of standard suc­

cessive approximations: 

1 
Choose v0 ,;: "JR.N. 

(13 .1) Determine for n 0, 1, ••• 

vn+l Uv n 
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In the first case it is assumed that for each pair of pure stationary stra­

tegies the underlying Markov chain is unichained. In the second case it is 

assumed that the functional equation 

(13 .2) Uv V + ge 

has a solution v E RN, g E R, say. 

In both cases we further assume the strong aperiodicity assumption to hold, 

i.e., for some a> 0 

(13. 3) P(f,h) ~ al for all f E F1 , h E F11 

At the end of this section it will be shown that the latter assumption is 

- as in the case of the MDP - no real restriction. 

In section 2 we will see that the unichain assumption implies that the 

function equation (13.2) has a solution, so the first case is merely an 

example of the second. The fact that (13.2) has a solution (~,g*) implies 

(corollary 13.2) that the game has a value independent of the initial state, 

namely g* e, and that both players have optimal stationary strategies. So, 

in the two cases considered here, the value of the game will be independent 

of the initial state. This value is further denoted by g*e. 

In sections 2 (the unichain case) and 3 (the case that (13.2) has a solu~ 

tion) it is shown that the method of standard successive approximations 

formulated in (13.1) yields good bounds on the value of the game and nearly­

optimal stationary strategies for the two players. 

The results of this chapter can be found in Van der WAL [1980b]. 

Before we are going to study the unichain case some preliminaries are con­

sidered. 

First observe that, since Sis finite, 

r(i,a,b) + l p(i,a,b,j)v(j) 
jES 

is finite for all v E RN, all a EA, b EB and all i Es. Hence one may 

write for all v EV 

Uv = max min L(f,h)v • 
fEF I hEF II 

So, both players have optimal policies in the 1-stage game with terminal 

payoff v. 
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Since in the two situations treated in this chapter the value of the game is 

independent of the initial state the following basic lemma (cf. lemma 6.8) 

is very useful. 

LEMMA 13.1. Let v E EN be a,r,bitrory, then 

(i) inf g(f,y) <!: min min (L(f,h)v-v) (i)e 
yd hEFII iES 

(ii) sup g(11,h) ~ max max (L(f,h)v-v) (i)e . 
11ETI fEFI iES 

PROOF. We only prove (i), the proof of (ii) being similar. 

Let player I play the stationary strategy f, then the extension of the 

Derman and Strauch theorem by GROENEWEGEN and WESSELS [1976] says that 

player II may restrict himself to Markov strategies. So, let y = (h0 ,h1, ••. ) 

be an arbitrary Markov strategy for player II. Then 

(13.4) 

Further, 

(13.5) 

g(f,y) = liminf n- 1 v (f,y,O) 
n 

n +cc 

-1 
liminf n vn (f,y,v) 

n+cc 

• (L(f,hn-l v - v) 

• min min (L(f,h)v-v) (i)e 
hEFII iES 

L (f ,ho) • • • L (f ,hn-2) v + min min (L (f ,h) v - v) (i) e 
hEFII iES 

.?: .?: v + n min min (L(f,h)v-v) (i)e 
hEFII iES 

Now (i) follows immediately from (13.4) and (13.5). [] 
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Lemma 13.1 yields the following corollary. 

COROLLARY 13 . 2 . 

(i) If for some g E JR and v E J!l we have 

then g*e is the value of the game, and policies fv and hv satisfying 

yield optimal stationary strategies for players I and II, respectively. 

(ii) Let v E :nl be arbitrary and the policies fv and hv satisfy 

then f and h are both sp(Uv-v)-optimaZ. I.e., let g* denote the 
V V 

value of the game, then 

* g(fv,y) 2 g - sp(Uv-v)e for ally E f 

and 

* g(7T,hv) ~ g + sp(Uv-v)e for all 7T E II. 

(iii) For au V E V 

min (Uv-v) (i)e ~ g* ~ max (Uv-v) (i)e . 
iES iES 

PROOF. The proof follows immediately from 

and 

* g 2 inf g(fv,y) 2 min (Uv - v) (i) e 
yEf iES 

* g ~ sup g (11 ,h ) ~ max (Uv - v) (i) e 
7TEJI V iES 

min (Uv - v) (i) e + sp (Uv - v) e . 
iES 

□ 

So corollary 13.2(ii,) and (iii) show that it makes sense to study the suc­

cessive approximation scheme (13.1) if the value of the game is independent 

of the initial state. And further that the method yields good bounds for 

* the value g and nearly-optimal stationary strategies for the two players if 
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(13.6) 

In the next two sections we will use the strong aperiodicity assumption to 

prove that (13.6) holds for the two cases we are interested in. 

Before this will be done, we first show that the strong aperiodicity as­

sumption - as in the MDP case - is not a serious restriction. 

Let our MG be characterized by (S,A,B,p,r), then one may use the data­

transformation of SCHWEITZER [1971] again (cf. section 6.3) to obtain an 

equivalent MG characterized by (S,A,B,p,r) with 

p(i,a,b,i) :=a.+ (1-a)p(i,a,b,i) , 

p(i,a,b,j) := (1-a)p(i,a,b,j) 

r(i,a,b) := (1-a)r(i,a,b) 

j -f i ' 

for all i ES, a EA, b EB, where a. is some constant with O <a< 1. 

Writing E, u and g for the operators Land U and the function gin the 

transformed MG, we obtain 

L(f,h)v-v (1-a)r(f,h) + [aI+(l-a.)P(f,h)]v-v 

(1-a)[r(f,h) +P(f,h)v-v] = (1-a) (L(f,h)v-v) 

Whence, with 1 - a. > 0, also 

f:rv - v = (1 - a.) (Uv - v) 

So, if the functional equation (13.2) of the original MG has a solution, 

(g*,v) say, then the functional equation (13.2) of the transformed game, 

f:rv = v+ge, has a solution ((1-a)g*,v). So (1-a)g*e is the value of the 

transformed game. 

Conversely, if Uv = v + g* e, then Uv 

example the policy f satisfy 

v + 

for all h E FII 

Further, let for 

which implies by corollary 13.2(ii) that f is £-optimal in the transformed 
- -1 

game. Then f is (1 - a.) £ -optimal in the original game as follows from 

corollary 13.2(ii), with 

L(f,h)v-v= (1-a)- 1 (i(f,h)v-v) 
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So we see that the two problems are equivalent with respect to those fea­

tures that interest us: the value and (nearly-) optimal stationary strate­

gies. 

13.2. THE UN1CHAINE1J MARKOV GAME 

In this section we consider the unichained MG, i.e., the case that for each 

pair of pure stationary strategies the underlying Markov chain consists of 

one recurrent subchain and possibly some transient states. Further it is 

assumed that the strong aperiodicity assumption, (13.3), holds. 

It is shown that in this case the method of standard successive approxima­

tions (13.1) converges, i.e., that 

The line of reasoning is similar as in section 9.4. First we derive a 

scrambling condition like lemma 9.7 from which, along the lines of lemma 

9.8, it follows that sp(vn+l -vn) converges to zero even exponentially fast. 

LEMMA 13.3. There.exists a constant n, with O < n ~ 1, such that for all 

TI,n € MI and y,y € MII and for all i,j € s 

(13.7) }: min {JP. (XN 1 =k) ,JP. __ (X 1 =k)};:: n. 
kE S l. , TI , y - l. , TI , y N-

(Recall that N is the number of states ins.) 

~- The proof is very similar to the proof of lemma 9.7. 

First it is shown that the left hand side in (13.7) is positive for any 

four pure Markov strategies TI= (f1,f2 , ••• ), TI= (f1,f2 , ••• ), 

y = (h1,h2 , ••• ) and y = (h1,h2 , ••• ). 

Fix these four strategies and define for all i € S and all n 0, 1, ••• ,N-1 

the sets S(i,n) and sci,nl by 

S (i,O) := S(i,O) := {i} 

S(i,n) := {j € s P(f1 ,h1) • • • P (fn,hn) > O} n = 1, •.• ,N-1 

sci,nl := {j € s P(fl,hl) • • • P c1 h > n' n > O} , n = 1, ..• ,N-1 



Clearly the sets S(i,n) and S(i,n) are monotonically nondecreasing inn. 

For example, if j E S(i,n), then 

and, by the strong aperiodicity assumption, 

so also 

hence j E S(i,n+l) 

Further, if S(i,n) S(i,n+l) [S(i,m) S(i,m+l)], then the set S(i,n) 

[S(i,m+l)] is closed under P(fn+l'hn+l) [P(fm+l'hm+l)]. 
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In order to prove that the left hand side in (13.7) is positive, we have to 

prove that the intersectien 

S(i,N-1) n S(j,N-1) 

is nonempty for all i,j ES. 

Suppose to the contrary that for some pair (i0 ,j 0) this intersection is 

empty. Then for some n,m < N-1 

and 

and further S(i0 ,n) and S(j 0 ,m) are disjoint. 

But this implies that we can construct from fn+l and fm+l and from hn+l and 

hm+l policies f and h for which P(f,h) has at least two nonempty disjoint 

subchains, which contradicts the unichain assumption. 

Hence 

S (i,N-1) n S (j ,N-1) 

is nonempty for all i,j Es. 

Since there are only finitely many pure (N-1)-stage Markov strategies there 

must exist a constant n > 0 for which (13.7) holds for all pure Markov 

strategies TI, TI, y and y. Moreover, it can be shown that the minimum of the 

left hand side of (13.7) within the set of Markov strategies is equal to 

the minimum within the set of pure Markov strategies. So the proof is com-

plete. □ 
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Next, this lemma will be used to prove that sp(vn+l -vn) tends to zero ex­

ponentially fast. 

Let {fk} and {hk} be sequences of policies satisfying for all k 0 I 1, • • • 

Then for all n 

( 13 .8) V -V 
n+2 n+l 

So, 

(13.9) V -v 
n+N n+N-1 

Similarly, 

(13.10) v - v ~ P (f ,h ) • • • P (f h ·) (v - v ) 
n+N n+N-1 n+N-2 n+N-1 n' n+l n+1 n 

Now let 11, 11, y and y denote the (N-1)-stage Markov strategies 

(fn+N-l'fn+N-2•···,fn+l)' (fn+N-2 1 ···•fn)' (hn+N-2'"""' h n) aI1d 

(hn+N- 1 , ••• ,hn+l), respectively. Then we have from (13.9) and (13.10) for 

all i, j E S 

$ l [lP, (XN 1 =k) - lP. ~ ~ (X 1 =k)](v 1 -v }(k) 
kE S 1., 11, y - J , 11, y N- n+ n 

l [lP. (XN 1 =k)-min{lP. (XN 1 =k),lP. ~ _(XN 1 =k).}](vn+l-vn)(k)+ 
kES 1.,11 ,y - 1.,11 ,y - . J ,11 ,y -

- l [lP. ~ ~ (X 1 = k) - min {lP. (X 1 = k) , lP. ~ ~ (X 1 = k)}] (v 1 - v ) (k) 
kES J,11,y -~- 1.,ir,y N- J,11,y N- n+ n 

$ l [lP. (XN 1=k)-min{lP, (XN 1=k), lP. ~ _(XN 1=k)}]max(v 1 -v) (Q,) + 
kES 1.,11,y - 1.,11,y - J,11,y - Q,ES n+ n 

- l [lP. ~ -(XN 1=k)-min{lP. (XN 1=k),lP. ~ -(XN 1=k)}]min(v+1 -v )(Q,) 
kE s J, 11, y - ' 1., 11, y - J, 11, y - Q,E s n n 

[1- l min{lP. (XN 1 =k) ,lP. ~ ~ (XN 1 =k)}] sp(v 1 -v). 
kES 1.,11,y - J,11,y - n+ n 
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Hence for all n = 0,1, ... 

( 13. 11) 

where n is the constant in lemma 13.3. 

This immediately leads to 

THEOREM 13.4. If the Markov game is u:nichained and the strong aperiodicity 

assumption holds, then we have for the standard successive approximat-ion 

scheme (13.1) 

(i) 

with n the constant in lemma 13.3. 

Further, for some v* Ev, 

n 

(ii) 

and 

(iii) 

V 
n 

ng*e + v* + 0((1-n)N-l) (n + 00 ) 

* Uv 

PROOF. (i) follows immediately from (13.11). Then (ii) follows from (i) and 

(iii) follows from (ii). That the constant involved is equal tog* is imme-

diate from corollary 13.2. 

So, if the MG is unichained and the strong aperiodicity assumption holds 

(for example as a result of Schweitzer's datatransformation), then the 

method of standard successive approximations yields an c-band on the value 

of the game and E-optimal stationary strategies for both players for all 

c > 0 and this even exponentially fast. 

13. 3. THE FUNCTIONAL EQUATION Uv v + qe HAS A SOLUTION 

□ 

In this section it will be shown that, if the functional equation Uv = v + ge 

has a solution, * (g*,v) say, and if the strong aperiodicity assumption 

holds, then vn+l - vn converges to g*e. By corollary 13.2 this implies that 

the method of standard successive approximations (13.1) yields a good ap­

proximation of the value of the game and nearly-optimal stationary strate­

gies for the two players. 
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The line of reasoning will be similar to the one in chapter 9. A different 

proof can be found in Van der WAL [1980b]. 

Define for all n = 0,1, ... 

(13.12) gn := V -v 
n+1 n I 

( 13 .13) R, := min gn (i) n 
iES 

(13.14) u := max g (i) 
n 

iES 
n 

It will be shown that {R.n} is monotonically nondecreasing with limit g* and 

that {un} is monotonically nonincreasing also with limit g*. 

Therefore we first need the following lemma. 

LEMMA 13.5. For aU v,w E lRN 

min (v - w) (i) e s Uv - Uw s max (v - w) (i) e , 
iES iES 

so 

sp (Uv - Uw) s sp (v - w) . 

PROOF. Let fv, hv'- fw and hw satisfy for all f E FI and h E F II 

and 

Then 

Similarly one establishes the second inequality. 

~min (v-w)(i)e. 
iES 

□ 

From this lemma one immediately obtains the following corollary. 

COROLLARY 13 • 6 • 

(i) For all n = 0,1, •.. 

(ii) sp (v ) is bounded in n. 
n 



PROOF. (i) follows from lemma 13.5 with v 

13.2. 

vn+l and w 

(ii) 
n n n * n * 

sp(U vol ,s; sp(U vo-u V) + sp(U V) 

vn and corollary 

Now we will follow the line of reasoning in section 9.4 to prove that 

2* := lim 2n is equal tog*. 
n-+oo 

From an inequality like (13.10) one immediately obtains for all n and k 

Especially, if 

then (cf. (9.17) and (9.18)) for all O ,s; p ,s; q 

where the last inequality follows from corollary 13.6(i). 

So for all O ,s; p ,s; q 

,5; Cl -p ( 2 - 2 ) + 2 ,5; Cl -q ( 2 - 2 ) + 2 
* m m * m m 

Hence, cf. (9.19), 

( 13 .15) v (i 0l - v (i0 l 
m+q m 

On the other hand we have u ~ g* for all n. Hence, there n 
exists 

jQ E s which has gm+k (jol ~ for at least 
-1 

q of the indices g* N 

m +k E {m,m+l, .•. ,m+q-1}. So for this state jo 

(13.16) 

Together, (13.15) and (13.16) yield 

(13.17) 

a state 

237 
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Now we can prove 

PROOF. The proof is practically identical to the proof of theorem 9.11. We 

therefore delete it. 

THEOREM 13.8. 

PROOF. From lemma 13.7 we have already 

lim min (vn+l - vn) (i) = g* . 
n->= iES 

Similarly to lemma 13.7 one may prove that also 

which completes the proof. 

□ 

□ 

So we see that, if the functional equation Uv = v + ge has a solution and if 

the strong aperiodicity assumption holds, then the method of standard suc­

cessive approximations yields an £-band on the value of the game and nearly­

optimal stationary strategies for both players. 
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SYMBOL 1NVl:X 

* ck (f) 111 z 16 

e 14 z (i,rr) 66 
{f) 

f 11 z * 66 
{f) 

g(i,rr) 13 

* g 13,193 A 9 

g(i,rr,y) 193 A 11 
n 

p(i,a,j) 9 B 183 

p(i,a,b,j) 183 B 185 
n 

r(i,a) 10 C(f) 113 

r(f) 15 E 51 

r(i,a,b) 184 F 11 

r(f,h) 186 FI 184 

u(i,rr) 12 FII 184 

* u 16 L(f) 15 

v(i,rr) 12 L+ (f) 15 

* Labs (f) V 12,193 15 

vn(i,rr) 12 Lo (11) 52 

vn(i,11,v) 22 + 
Lo (,r) 52 

vs(i,rr) 12 Lts(rr) 52 

v(i,rr,y) 193 L(f,h) 187 

vn(i,rr,y,v) . 185 M 11 

w(i,rr) 16 MI 185 

* w 16 MII 185 

Z (i ,11) 16 P(f) 15 
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* p (f) 110 ]P. 
1., 11 

P(f,h) 187 ]P~ 51 
1.,11 

RM 10 ]P. 185 
1.,11,y 

s 9 lR 13 

u 15, 187 

~ u 15 ao 57,203 

u+ 15 s 12 

uabs 15 y 184 

uo 52,204 0 50,203 

u+ 
0 52 " 61 

uabs 
0 53 11 10,184 

V 14 T 34, 52,204 

V 14 (jJ 66 

V 15 
\l 

v+ 15 r 184 
\J 

X 11 IT 10 I 184 n 

y 52 <p 66 
n 

z 52 
n 

II II 15 
]J 

11 f >,, h, f 'r h 112 
,11 

0 
JE. 

1.,11 
52 p 'q- Q, p 'r- Q 113 

JE, 
1.,11 ,Y 

185 v;,-w 143 
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