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PREFACE 
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Although not officially involved, Alexander Rinnooy Kan probably had 

the strongest influence on both my sc~·entific development and my work. I 

feel deeply grateful for his efforts, enthusiasm, encouragement and guidance, 

and I am glad lo ment·ion that he acted as co-author for a preUmir,a:t.'Y version 

of part II of this work. 

Other individuals whose interest and help stimulated me include Ton 

Vorst (theoretical development in sections 3.3-3.4), prof. dr. J.F. Benders 

(sections 3.1-3.4), prof. Stanley Zionts (part I), Bob Koudenburg (program­

ming assistance), Bert Meyerman (testing assistance), Jaap Spronk, Wim van 

Dam, Gerrit Timmer, Leen Stougie and Guus Boender (various services, in­

cluding coffee, soccer, table tennis and proof reading). 

I thank the Mathematical Centre for the opportunity to publish this 

monograph in their series Mathematical Centre Tracts and all those at the 

Mathematical Centre who have contributed to its technical realization. 





I NTROVUCTI ON 

Operations Research is not so much a coherent structure of theory 

and methods, but more like a collection of techniques applicable to pro­

blems arising in many different areas. 

Mathematical programming, embodying such diverse features as linear, 

integer, nonlinear, geometric, stochastic and dynamic programming, has 

become a major tool of operations research. 

Generally mathematical programming is applied as part for the fol­

lowing process: 

- the practical system to be considered 

- gives rise to an abstract view of it, which may be expressed by a 

mathematical formulation: the model. 

- From the model, a mathematical programming problem is constructed, 

- to which a solution is determined by means of mathematical program-

ming techniques. 

- The solution is translated back into the results for the model; 

- the results are given their (economic) interpretation, which may 

be used to indicate the measures to be taken in practice. 

Considering three levels of abstraction: real world, the model and the 

problem, the process is summarized in figure A. 

Except for the relations between the real world and the model, all 

steps are deductive or can be made along well established paths. There­

fore the quality of the implementation depends heavily on the quality of 

the model. This implies that the modeler's skill and ability are of great 

importance. 
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REAL WORLD 

THE MODEL 

THE PROBLEM 

practical system 

abstraction 

model 

mathematical 
programming 

problem 

mathematical 
programming 

Figure A. Mathematical programming in practice 

implementation 

interpretation 

results 

solution 

Once the mathematical model is obtained, the mathematical program­

ming problem is constructed according to the aspects of the system which 

should be considered and the goals to be achieved. This generally means 

selecting some constraints and variables and (eventually) one or more 

objective functions. It should be stressed that the (mathematical) model 

and the mathematical programming problem generally are not identical. 

The solution to a mathematical programming problem usually is ob­

tained by a standard procedure. Some of these procedures are more effi­

cient than others, which may tempt one to model the practical system in 

such a way that the more efficient procedure may be applied. In doing so 

one should try to strike a balance between the quality of the results 

obtained and the effort spent in obtaining these results. 

The results for the model, obtained via the solution to the mathema­

tical programming problem, should be given a careful interpretation. This 

interpretation, in turn, may indicate which measures, if any 1 are appro­

priate in the real world situation. 

In the scheme described above several loops may occur, especially 

if the practical system is a complicated one or if interactions between 

problem solution and modeling are desired. 
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A major mathematical programming technique is Linear Program.ming (LP), 

used in the process sketched above, if the mathematical programming pro­

blem has linear constraints and a linear objective function. Starting with 

the development of the simplex method by G.B. Dantzig in 1947 a lot of re­

search has been done on methods to obtain the solution to a linear program­

ming problem (e.g. Kantorovich [1939], Dantzig [1963]) and the mathematical 

problems that arise in these methods (e.g. Orchard-Hays [1968], Bartels 

and Golub [1969], Forrest and Tomlin [1972]). The (economic) interpretation 

of the solution to a linear programming problem is also well established by 

the work of e.g. Koopmans [1951], Dorfman et al. [1958]. 

Far less work has been done on the proper forrrrulation of the linear 

programming problem and the inherent computational complexity of linear 

programming. In this work we concentrate on these topics. 

In the first part of this work (chapters 1 through 7) we consider 

questions such as: "how should the LP problem be formulated?" and "can a 

given LP problem be replaced by a simpler one?".One of the main characte­

ristics of an LP problem is the number of (linear) constraints, together 

determining the set of feasible solutions for the problem. Since the size 

of the system can obviously be reduced if there is redundancy in the sys­

tem of linear constraints we study the latter topic in detail, thus ex­

tending our scope beyond linear programming alone. 

We establish the concept of a minimal representation for any system 

of linear constraints, and we show that such a minimal representation is 

obtained if and only if the system contains no implicit equalities and 

redundant constraints. To obtain a minimal representation we develop 

efficient methods (based on the simplex method) to identify implicit 

equalities and redundant constraints. Furthermore we show that the theory 

and methods introduced here provide a generalization of previously known 

theory and methods, all of which can be obtained as special cases. 

In the second part of this work (chapters 8 through 12) we deal with 

questions such as: "how difficult is LP as compared to other problems?" 

and "what is the relation between the size of the LP problem to be solved 

and the number of computations required?". Interest in this aspect of 

linear and other mathematical programming problems is relatively young 

and originated within computer science; it is generally referred to as the 

theory of computational complexity. 
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Results in this area are scattered throughout literature and not 

very accessible tooperational researchers. We have summarized and extended 

these results giving a "state of the art" survey of the computational com­

plexity of li.near programming. 

The two parts of this work relate as follows: 

- results derived in the first part for systems of linear constraints ob­

viously apply to linear programming as well; in fact, these results 

simplify some derivations and proofs in the second part; 

- in the second part we show that the general linear programming problem 

is equivalent to the problem of identifying redundant constraints; 

therefore all results on the complexity of linear programming are 

equally valid for the theoretical complexity of the redundancy problem. 

Throughout this work a basic knowledge of the simplex method is 

assumed. Good textbooks on this topic are Hadley [1962], Simmonnard [1966] 

and Luenberger [1973]. 

No prior knowledge of either computer science or the theory of com­

putational complexity is required. 
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part 1 

REVUNVANCY 
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1. INTROVUCTION AND SURVEY 

Systems of linear equality constraints have been studied extensively, 

but systems of linear inequality constraints excited virtually no interest 

until the advent of game theory in 1944 and linear programming in 1947. 

However, after the formulation of many practical problems as linear pro­

gramming problems (Kantorovich [1939]) and the development of the simplex 

method by G.B. Dantzig [1948] a widespread interest in systems of linear 

constraints arose. 

Only recently the emphasis in these studies has shifted from the 

system as a whole to the individual constraints. Until the early sixties 

systems of linear equalities and inequalities were studied from a "system"­

point of view, in the sense that the system was more important than the 

individual constraints. A number of interesting results were derived for 

the solvability and the geometric properties of a system of linear con­

straints without considering the constraints individually (Farkas [1902], 

Motzkin [1936], Kuhn and Tucker [1956], Tschernikow [1966]). 

From the early sixties on a number of papers were published treating 

the subject from a "constraint"-point of view in the sense that more 

attention is paid to the individual constraints within the system. As a 

consequence redundancy, which is a phenomenon typically related to indivi­

dual constraints within a system, was taken into consideration as well. 

The first paper entirely devoted to redundancy was written by J.C.G. Boot 

in 1962 (Boot [1962]). 

Before proceeding we briefly sketch the general setting of redundan­

cy in systems of linear constraints. A system of linear constraints may 

contain both equality constraints and inequality constraints. A iinear 

equality constraint corresponds to a hyperplane, namely the set of all 

points satisfying the equality. A linear inequality constraint corresponds 

to a halfspace consisting of all points satisfying the inequality. The set 

of all points satisfying the system of linear constraints is the intersec­

tion of all halfspaces and hyperplanes corresponding to the constraints. 

This set is termed the feasible region. The feasible region may be empty, 

if there is no point whi.ch satisfies all individm,l .constraints simulta­

neously. In that case the system is called infeasible. If the system is 

feasible,the feasible region being the intersection of a number of half­

spaces and hyperplanes, is a (not necessarily bounded) convex polytope. 
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For the moment (see definitions 3.1.1 and 3.1.2 for an exact mathe­

matical formulation) we define a redundant constraint as a constraint which 

may be dropped from the system without changing the feasible region. In­

stead of the term "redundant" some authors use other terms: "trivial" 

(Boot [1962)), "superfluous" (Thompson et al. [1966)), "irrelevant" 

(Mattheis [1973)), "inessential" (Zeleny [1974)). From the context of the 

papers it is clear that all mean the same thing with these different 

terms. 

In figures 1.1.A and 1.1.B some redundant constraints are sketched. 

A B 

Figure l. l. Redundant constraints. 
A single arrow (r----.) corresponds to an inequality constraint, double 
arrows (~) correspond to an equality constraint; arrows point at the 
feasible region; constraints marked by an asterix (*) are redundant. 

In chapter 2 we consider the possible origins of redundant con­

straints and the practical consequences of their presence. These practi­

cal aspects are treated both from a mathematical point of view and from 

an information theoretical point of view. 

Chapter 3 contains a new and complete theory of redundancy published 

here. We prove that for any system of linear constraints there exists a 

minimal representation that can be obtained by removing all redundant con­

straints and implicit equalities. This theory is an extension and a gene­

ralization of current theory, since all known results can be derived 
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from it. 

In chapter 4 we describe aZgorithms to identify all redundant con­

straints and implicit equalities. All known methods to eliminate redundan­

cy are shown to be special cases of this approach. 

Chapter 5 contains the results of some computational experiments 

with the algorithms introduced in chapter 4 and a confrontation with em­

pirical data from literature. 

A number of topics closely related to redundancy are considered in 

chapter 6. The most important of these topics is the concept of nonbinding 

constraints; these are nonredundant constraints with the property that 

removing them does not change the set of optimal solutions to a linear 

programming problem. Some relations between nonbinding and redundant con­

straints are established and some ways to identify nonbinding constraints 

are indicated. A second topic is the presence of redundant and nonbinding 

constraints in a duaZ .pair of linear programming problems. We shall draw 

some conclusions for the dual problem, if the primal problem exhibits 

one of these phenomena. 

We conclude this first part by some remarks on the questions whether 

or not redundant constraints should be identified and removed from a gene­

ral linear programming problem and whether or not the minimal representa­

tion of the set of constraints should be obtained. 



Z. PRACTICAL CONSIDERATIONS 

From the nature of redundancy it will be clear that redundant con­

straints can be omitted from a problem. Since redundant constraints are 

often present in problems arising in practice (already noted in Hoffman 

[1955]), we first consider some reasons for the fact that this phenomenon 

occurs. 

These reasons may be distinguished according to the different steps 

from the real-world system to the model and finally the (programming) 

problem. 

(i) The main reason for redundant constraints to originate in the 

step from the real world system to the model is insufficient knowledge 
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of the practical system. This may in turn be caused by superficial consi­

deration of the system or because the system itself is too intricate, too 

big or too difficult to conceive of redundancy as well as other undesirable 

properties such as inconsistency. Furthermore, in determining the mathe­

matical formulation of the model, modelers may want to "play safe" i.e. 

they want to avoid the possibility that they have to return to this stage 

of the process because of an omission that is discovered later on e.g. by 

infeasibility or unboundedness. Therefore they may specify more constraints 

than is strictly necessary. This implies that they obtain a larger model, 

which they prefer as compared to a smaller model, which may have to be 

revised later on. 

This reason causes more redundant constraints to be present as the 

systems involved become larger and more complicated. Then modeling is 

usually done by teams, in which case redundancy may arise since the inter­

actions between the different parts are more difficult to survey. 

(ii) In the step from the model to the problem too, the reasons men­

tioned above (insufficient knowledge, "play safe", teamwork) may cause re­

dundant constraints to be specified. Another reason, which becomes more 

important as the models involved become larger, is the influence of auto­

mation. Often a model is constructed to give rise to several different 

problems. An example of this phenomenon is provided by a system which has 

to be regarded under slightly varying conditions; because of changes in 

the coefficients constraints may change from nonredundant to redundant 

and vice-versa. For example in production planning models a capacity con­

straint is specified because it may become binding in future, but it could 

be redundant at the moment. 
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(iii) In solving the (programming) problem some techniques require 

the specification of extra constraints, which may cause redundancy; these 

techniques include all cutting plane methods for linear- (Dantzig-Wolfe 

decomposition, dual form; Dantzigand Wolfe [1960]), integer- (Gomory 

[1958]), mixed integer- (Benders [1962]) and convex nonlinear programming 

(Kelly [1963]) and all branch and bound methods (e.g. Garfinkel and 

Nemhauser [1972]). In parametric programming (e.g. Gal [1979]) redundant 

constraints may become nonredundant and vice-versa (see Gal [1975 C]J. 

There are many disadvantageous effects caused by the inclusion of 

redundant constraints in systems of linear constraints. The most important 

ones are related to the simplex method of linear programming: 

(a) In general there will be more basic solutions if redundant constraints 

are present in a problem, so the simplex method may require more ite­

rations and even cycling may occur (examples on which the simplex 

method cycles (Dantzig [1963]) all contain redundant constraints). 

Furthermore a phenomenon called "near-cycling" (very small changes in 

the objective function value during a number of iterations) has been 

noted by Thompson et aZ. [1966] to arise more frequently in the pre­

sence of redundant constraints. Finally, redundant constraints may 

worsen the performance of some non-simplex methods (see e.g. Kunzi 

and Tschach [1967]). 

(b) Redundant constraints necessitate more calculations per simplex ite­

ration, for example in the determination of the variable to leave the 

basis. Furthermore they may cause numerical difficulties since redun­

dant constraints often are (nearly) dependent. 

(cl Redundant constraints require storage space, which may be critical if 

the problem can hardly be solved by an in-core code. The extra storage 

space required by redundant constraints may even cause the problem 

solver to rely on other procedures e.g. decomposition (Thompson et al. 

[ 1966]) . 

Note that all disadvantageous effects mentioned above occur in the 

problem solving stage, although the redundancy may be caused much earlier 

in the process. 

From an information theoretic point of view redundant constraints 

may have both an advantageous and a disadvantageous effect. Sometimes 



redundant constraints may express information, that is included in other 

constraints in a very revealing way. Consider for example the system of 

linear constraints: 

-xl - x2 + x3 + x4 s 2 

xl + x2 + x3 + x4 s 8 

- x4 s -2 
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The constraint x 3 s 3 would be redundant in this system (add the first two 

constraints, divide by 2 and add the last constraint: the result is 

x 3 s 3), but conceptually provides useful information about the system in 

the form of an upper bound on x 3 • 

Of course redundant constraints objectively do not add any informa­

tion about the system in the sense that they do not exclude any possibili­

ties (solutions), that would be admitted without these constraints (see 

also Gal [1975 A]). 

On the other hand, just by the sheer fact of their presence in the 

problem, redundant constraints make the impression of being nonredundant 

(nobody would specify redundant constraints, isn't it?). This may be a 

confusing element in the model and obscure the user's view of the system. 

Identification (and removal) of redundant constraints results in 

some simplifications. First, as indicated above, the resulting problem may 

be solved with minimal computational effort. We shall return to this point 

in the next chapters. Second, there is an advantageous effect in an infor­

mation-theoretical sense. Another favorable effect of the identification 

of redundant constraints may be the recognition of the fact that the slacks 

of these constraints may be used in an alternative way in any feasible 

solution (for an example see Zimmerman and Gal [1975] and Telgen [1979 A]). 

For all of these points the extent of the resulting simplifications 

depends on the purpose of specifying the model and the problem. It may 

make quite a difference if it is formulated just to gain insight into a 

system or to find an optimal solution. But in all cases some simplifica­

tions will result. Even the knowledge of the fact that no redundant con­

straints have been specified, may be regarded as a simplification. 
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( 3 .1) 

3. THEORY 

* We consider the system of linear constraints 

{
Ax= a 

Bx ,:; b 

m xn 
in which A E R a 

¾ 
and b E JR 

The rows of A and Bare denoted by Ai and Bi respectively. 

The feasibZe region corresponding to the system (3.1) is defined as: 

s - { x E JR I Ax = a\ 
n Bx ,:; :d 

Throughout it is assumed that there exists a feasible solution to the 

system (3.1), i.e. Sf, 0. 

We define u = (u 1 , ..• , u ) ER¾ as the vector of slack variables 

of.the inequality constraints. ~en the system (3.1) can be written as 

with I an (¾x¾) identity matrix and O a (max¾) matrix of zeroes. We re­

place variables that are not restricted to be nonnegative by the difference 

of two nonnegative variables and premultiply with the inverse of a basis. 

Redefinition of the variables (including u) as x~ or x~, according to their 
J J 

status (N for nonbasic and B for basic) yields the equivalent system 

[Y 

with 
N 

X , 

in which y 0 is the •updated right hand side'. The matrix Y is usually 

referred to as the contracted sinrpZex tabZeau (Dantzig [1963]); for sim­

plicity of notation we assume that Y E JRmxn. 

* Throughout for two vectors y and z, y,:; z is taken to mean yi,:; zi Vi. 



3.1. InequaLi;ti,v., 

Redundant constraints in the system (3.1) are of no interest at all 

in determining the feasible region S. To define redundant inequality con­

straints more formally we denote for any fixed k E (1, ... , ~): 

Definition 3.1.1 

Ax = a 

B.x Sb. 
1. 1. 

Vi t- J 

The constraint Bkx s bk (1 s ks mb) is a redundant inequality in 

the system (3.1) if and only if Sk S. 

Define 

then it is easy to see that Bkx S bk (1 s k $ ~) is a redundant inequa­

lity if and only if 

(3.1.1) 

To see this note that Sk 

equivalent to ( 3. 1 . 1) . 

S if and only if Bkx s bk Vx E Sk, which is 
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If l\ = o, then the inequality is termed weakly redundant, if uk > O 

it is termed strictly redundant. Unless explicitly mentioned otherwise 

the term 'redundant' will be used to indicate constraints that are either 

strictly or weakly redundant. Both kinds of redundant constraints are 

sketched in figure 3.1. 

From the definition of a redundant constraint it is clear that any 

inequality in the system (3.1) can be identified as being redundant or not 

by solving the linear programming problem: 

min bk - Bkx 

(3.1. 2) s.t. Ax = a 

B.x $ b. Vi f- k 
1. 1. 
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Figure 3. l. A weakly redundant constraint (*) and a strictly redundant 
constraint (**) 

Alternatively, redundant inequality constraints can also be identi­

fied by using the 'tur>n-over' lemma: 

LEMMA 3.1.1 ('tum-over' Zerrnna; Boot [1962]) 

The constraint Bkx ~ bk is redundant in the system (3.1) if and onZy 

if the system 

(3.1.3) 

Ax = a 

B.x ~ b. 
'l, 'l, 

Bkx > bk 

is infeasible. 

Proof: 

Vi:/ k 

IF: If .(3.1. 3) is infeasible and Sk f. 0 (since s f. 0), there is no 

x E Sk such that Bkx > bk and therefore i\ 2 0. 

ONLY IF: If Bkx ~ bk is redundant, we have Bkx ~ bk 

ing Bkx > bk, thus (3.1.3) is infeasible. 

Vx E Sk, contradict-

□ 
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A direct consequence of the 'turn-over' lemma is the following: 

COROLLARY 3.1.1 

The constPaint Bkx s bk is stnctly Pedundant in the system (3.1) if 

and only if the system 

Ax =a 

Bix s b. 
-z, 

Vi :/ k · 

Bkx :2: bk 

is infeasible. 

Thus a redundant inequality constraint can be identified by checking the 

system of linear constraints (3.1.3) for feasibility. In part 2 we shall 

show that this problem to~ is computationally equivalent to solving a li­

near programming problem. 

However in certain situations it can be seen immediately without 

solving a linear programming problem whether an inequality is redundant or 

not by applying one of the following theorems. 

THEOREM 3.1.1 (Zionts [1965], Thompson et al. [1966]) 

Pi>oof: 

The constPaint Bkx s bk is Pedundant in the system (3.1) if thePe is 

some basic solution in which uk = xB with y ~ 0 and y . s O Vj. P PO PJ 

In a basic solution we have 

(3.1.4) 
B n 

xr = yro - I: 
N 

y .x. 
rJ J j=l 

since the value of the x~ can only increase, the sum will be nonpo­
J 

sitive and because yro :2: O this yields x: = ~ :2: O. D 

As a consequence the constraint Bkx s bk is strictly redundant if~ 

with yro > 0 and yrj SO Vj. 

B 
X 

r 
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COROLLARY 3.1.2 (Zionts [1965], Thompson et al. L1966]) 

The constraint Bkx s ~ is redundant in the system 

basic solution uk = xp and there is a row r with 

yrp < 0 

Vj :/ p 

Proof: 

(3.1) if in some 

Pivoting on y yields the situation described in theorem 3.1.1. D 
rp 

Again the constraint in the corollary above is strictly redundant if 

yrp < 0, yrj ~ 0 Vj f p and yro < 0. 

Note that the row in which a slack variable is basic corresponds 

to the criterion row of the linear programming problem (3.1.2). 

THEOREM 3.1.2 (Gal [i9?5 B, 19?8]) 

The constraint Bkx s bk is redundant in the system (3.1) if and only 

if in some basic feasible solution uk = x8 with y . s O Vj. 
r rJ 

Proof: 

IF: In a basic feasible solution y~0 ~ 0. Because yrj 

from (3.1.4) that I\= Yro ~ 0. 

$ 0 Vj, it follows 

ONLY IF: Consider the r-th row as the criterion row for the problem ( 3. 1. 2), 

then if u. ~ O, in the optimal solution we should have y . SO Vj 
k rJ 

and yro ~ 0. 

Since I\= yro the constraint is strictly redundant if yro > 0 and weakly 

redundant if yro = 0 in the above theorem. 

THEOREM 3.1.3 (Eckhardt [19?1]) 

□ 

The constraint Bkx s bk is redundant in the system (3.1) if and only 

if in some basic feasible solution uk = x! with 

Vj 
(3.1.5) 

for some index s :/rand someµ~ O. 



Proof: 

IF: B 
X 

r 

n 
µyso - \1 L 

j=l 

N 
y .x. 

SJ J 

ONLY IF: If the constraint Bkx s bk is redundant, then according to 

theorem 3.1.2 in some basic feasible solution uk = x! with 
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y . s O Vj. Thus forµ= 0 the conditions (3.1.5) are satisfied. D 
rJ 

In some cases it may be easier to identify constraints that are not 

redundant. The following theorems relate to that case. 

THEOREM 3.1.4 (Mattheis [1973], Gal [1975 B, 1978]) 

Proof: 

In a nondegenerate basic feasible solution to the system (3.1) all 

nonbasic variables uk correspond to nonredundant inequality con­

straints. 

For all basic variables we may write 

(3.1.6) 

Since yio > 0 Vi, a small negative value for 

other infeasibilities. Thus 3x E Sk such that 

fore i\ < 0. 

some x~ will not cause 
J 

~(x) < 0 and there-

THEOREM 3.1. 5 

Proof: 

The constraint Bkx s bk is not 

some degenerate basic feasible 

with yio = 0. 

redundant in the system (3.1) if in 

solution uk = xN and y. ~ 0 Vi p i.p 

Consider (3.1.6); a small negative value for x~ will not cause in­
J 

feasibilities in rows for which yio > O; in rows with yio = 0 the 

condition y. ~ 0 prevents new infeasibilities. 
l.p 

□ 

□ 



18 

THEOREM 3.1. 6 (Telgen [1977 A] modified from Gal [1975 BJ) 

The constraint Bkx s bk is not redundant in the system (3.1) if 
B there is some basic feasible solution with uk = xr and 

(3.1. 7) 

Proof: 

is unique for some s. 

Pivoting on yrs determined in (3.1.7) yields a new basic feasible 

solution. If the original solution was nondegenerate, this one is 

nondegenerate too and we can apply theorem 3.1.4 since uk is nonba­

sic. If the new solution is degenerate, the original was degenerate 

too i.e. for some set T we had yto = 0 Vt ET. From the uniqueness 

of (3.1.7) it follows that yts s 0; thus for the new value, denoted 

by a prime, we have 

Vt ET 

and therefore the new solution satisfies the conditions for theorem 

3.1.5. □ 

Note that uniqueness of (3.1.7) is not required to prove that Bkx S bk is 

not strictly redundant. 

The following theorems apply to strictly redundant constraints only. 

THEOREM 3.1.7 

Proof: 

The constraint Bkx s bk is not strictly redundant in the system (3.1) 

if in some basic feasible solution uk is a nonbasic variable. 

Since ~(x) 0, i\_ s 0. □ 

THEOREM 3.1.8 

The constraint Bkx s bk is not strictly redundant in the system (3.1) 
B if in some (degenerate) basic feasible solution xr = uk with Yro = 0. 
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Proof: 

Since ~{x) Q I i\ S 0. □ 

Finally, some more relations between redundancy of a constraint and 

feasibility of a system of linear constraints can be obtained by dualizing 

{3.1.2). As an example we mention 

THEOREM 3.1.9 

The constraint Bkx s bk is ~edundant in the system (3.1) if (JJ1d only 

if the system 

m mb a 
1: w.A. + 1: v.B. = Bk 

i=l 1, 1, i=l 1, 1, 

(3.1.8) ifk 
ma mb 
1: w.a. + 1: vibi s bk 

i=l 1, 1, i=l 
ilk 

v. 
1, 

.!: 0 Vi I k 

is feasib Ze. 

Proof: 

The constraint Bkx s bk is redundant if and only if the optimal 

value of the linear programming problem 

max Bkx 

s.t. Ax= a 

Vi ,fa k 

is smaller than or equal to bk. This is true if and only if the 

corresponding dual problem has an optimal value smaller th~n or 

equal to bk. That, in turn, is true if there is some w ER a and 

v ER~ with the properties {3.1.8). D 
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3 • 2 • E q u.aLW,e,t, 

Similar to the case of inequality constraints in the preceding sec­

tion some equality constraints may be redundant in determining S. We define 

for any fixed k E (1, ••• , ma): 

A.x a. 
l l 

Bx s; b 

Vi ,f. k} 

Definition 3.2.1 

The constraint ¾x = ak is a redundant equality constraint in the 

system (3.1) if and only if Sk = S. 

Note that ¾x = ak may be replaced by 

This implies that an equality constraint is redundant if and only if both 

inequality constraints replacing it are redundant. Therefore sk =Sis 

equivalent to 

X E 

X E 

0 

0 

Again it is not always necessary to solve these linear programming pro­

blems to identify redundant equalities. Denote by r (A} t_he rank of the 

matrix A. 

THEOREM 3.2.1 

Proof: 

The constraint Akx = ak is redunda.nt in the system (3.1) if r(A) 

does not change by removing Ak from A. 

If r(A) does not chaMge by removing Ak from A then r(A) s; ma - 1, 

which implies 3A ER a such that AA= 0 with Ak ,f. 0 and,since S ,f. 0, 
also Aa = 0. Thus 
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m m 
1 

a 
1 

a 
'¾x 

Ak 
I: Ai (Aix) 

Ak 
I: )..iai ~ i=l i=l 

i;,Ek i;,Ek 

and therefore '¾x = ~ Vx E sk, which implies Sk s. D 

COROLLARY 3.2.1 

The system ( 3.1) aontains at least one 'l'edunda:nt equality aonst'l'aint 

if !'(Al < m • a 

P'l'oof: 

If r(A) < ma' at least one of the equality constraints is linearly 

dependent on the others, so it may be removed without changing r(A). 

Then theorem 3.2.1 applies. 

The converse of the corollary is obviously not true since any redundant 

equality may be replaced by two inequalities such as to make r(A) = ma. 

Only under some additional assumptions it can be proved that the system 

(3.1) contains redundant equality constraints if and only if r(A) < ma 

(see section 3.4, theorem 3.4.1). 

D 

Finally note that it is not necessarily true that every equality constraint 

is redundant if r(Al < m • 
a 
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3. 3. Imp,Uc,U e.qu.aLUJ.,v., 

In the preceding section we have seen that one equality constraint 

was replaced by two inequality constraints. This may be done for all 

equality cons.traints. Another way to convert a set of linear equalities in­

to a set of linear inequalities is given by the following theorem. 

THEOREM 3.3.1 (Dantzig [1963]) 

Proof: 

Let l denote the vector (1, 1, ... ., 

Denote the sets above by V and W respectively. Trivially 

\Ix: x EV=> x E w. Suppose now x' E W but x' i V, then Asx' 

for some s (Ax' > a is impossible because x' E W). 

< a 
s 

ms s 
Define n ER a with ni = 1 Vi f sand ns = O; then from Ax:£ a we 

have 

Ax' 
s 

T 
?: l a 

T n a 

which contradicts the assumption that Asx' 

a 
s 

< a . 
s □ 

Conversely to replace inequalities by equalities one usually adds 

slack variables to the inequalities. However this is not always necessary: 

some inequalities may be replaced by equalities without enlarging the di­

mension (number of variables) of the system. Denote 

Definition 3.3.1 

The constraint Bkx :£ bk in the system (3.1) is an irrrplicit equality 

if and only ifs c Vk. 

The concept of implicit equalities is introduced here.· Some similar­

ity exists with the concept of instable inequalities, used in the theory 

of the stability of systems of linear constraints (see e.g. Robinson 

[1975]). Using this concept in relation to redundancy seems to be new and 



enables us to develop a complete theory of redundancy. 

Note that Sc Vk is equivalent to S 

the following argument: 

sk n Vk. This can be seen from 

if s Sk n vk then certainly s C Vk; 

if s c vk then s C (Vk n Sk) since s C Sk. It is trivial that 

Vk n Sk Vk n s and thus (Vk n Sk) CS, implying that S = Vk n Sk. 

Denote 

(3. 3 .1) 

then we can prove 

THEOREM 3. 3. 2 
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The constraint Bkx s bk is an implicit equality in the system (3.1) if 

and only if uk = O. 

Proof: 

IF: From max {uJxl I X E S } = 0 we 
k 

see that Bkx 2 bk Vx E Sk. 

For all X E S we have Bkx s bk; together this yields Bkx = bk 

x E vk Vx Es thus s c vk. 

ONLY IF: If Bkx s bk is an implicit equality then ~(x) 

thus 

implying max {'\ (x) I x E sk} = i\ 0 

In theorem 3.3.2 we may replace i\ 0 by the condition 

max {uk(x) Ix Es} 0 

0 Vx ES 

i.e. 

It is trivial that this condition is implied by max- {uk(x) I x E Sk} = 0; 

the converse follows from the first two lines of the 'ONLY IF' part of the 

proof above. 

Note that by theorem 3.3.2 some similarity is shown betw~en implicit 

equality constraints and redundant inequality constraints. Replacing the 

max operator in (3.3.1) by a min operator yields (3.1.1). 

'i'he following theorems are analogous to theorems 3. 1. 1 and 3 .1. 2 and 

□ 
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are therefore stated without proof. 

THEOREM 3.3.3 (cf. Zionts [1965]) 

The constraint Bkx $ bk is an implicit equality in the system (3.1) 

if in some basic solution uk = x! with Yrj ~ 0 Vj and Yro = O. 

COROLLARY 3.3.1 (cf. Zionts [1965]) 

The constraint Bkx $ bk is an implicit equality in the system (3.1) 

if in a basic solution uk = xN with y > 0 and y . ~ 0 Vj Ip and 
p rp rJ 

Yro = 0 for some row r. 

THEOREM 3.3.4 

The constraint Bkx $ bk is an implicit equality in the system (3.1) 

if and only if in some basic feasible solution uk = x8 with y . ~ 0 Vj 
r rJ 

and Yro = O. 

In some cases a constraint which is not an implicit equality can easily 

be identified by one of the following theorems. 

THEOREM 3. 3. 5 

The constraint Bkx $ bk is not an implicit equality in the system (3.1) 

if in some basic feasible solution uk = xB and y > 0. r ro 

Proof: 

Trivial. 

THEOREM 3.3.6 

The system (3.1) contains no implicit equalities if there exists a 

nondegenerate basic feasible solution. 

Proof: 

□ 

In a nondegenerate basic feasible solution yio > 0 Vi and thus theo­

rem 3.3.5 applies to all basic (slack) variables~- If~ is a non­

basic variable it can be introduced into the basis on a positive level 

by a feasible pivot step and in this new tableau theorem 3.3.5 

applies. □ 
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THEOREM 3.3.7 

The constraint Bkx s bk is not an implicit equality in the system 

(3.1) if in some basic feasible solution ~k = x~ with y. > O for all 
J 1,0 

i with y .. > O. 
1,J 

Proof: 

From the fact that yio > 0 for all i with yij > 0 and 

we see that x~ can attain a small positive value without causing any 
J 

infeasibilities. □ 

THEOREM 3.3.8 

A strictly 1°edundant constraint is not an implicit equality and con­

versely. 

Proof: 

Since i\ ~ i\ we cannot have both i\ 0 and i\ > 0. □ 

Combining this theorem with theorems on strictly redundant constraints 

gives the following corollaries. 

COROLLARY 3. 3. 2 

The constraint Bkx s bk is not an implicit equality in the system 

(3.1) if there is some basic solution in which uk = x8 with y . s 0 
r rJ 

'v'jandy >O. 
PO 

COROLLARY 3.3.3 

The constraint Bkx s bk is not an implicit equality in the system 

(3.1) if there is some basic solution in which x; = uk with 

Yrp < 0 

'v'j :/ p 

for some row r. 
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Finally by dualizing the linear programming problem in (3.3.1) we 

may obtain some theorems that relate the feasibility of a system of linear 

constraints to implicit equalities. As an example we mention: 

THEOREM 3.3.9 

Proof: 

The constraint Bkx s bk is an implicit equality in the system (3.1) 

if and onZy if the system 

ATW + BTV = Bk 
T + bTv aw = bk 

V <'. 0 

is feasibZe. 

The constraint Bkx $ bk is an implicit equality if and only if the 

optimal value of the linear programming problem 

Bx$ b 

is equal to -bk. This is true if and only if the dual problem 

min 
T bTv a w + 

s.t. ATw T 
+ B V Bk 

V <'. 0 

has the same optimal value. That in turn is true if the conditions 

for the theorem are satisfied. □ 



3. 4 ,\U.n,unal 1tep1te6 en,t,a,;t:,w n 

We have seen that the set of feasible solutions Smay be represented 

in various ways i.e. by different sets of linear constraints. For various 

purposes it may be desirable to have a representation that is as small as 

possible. 

Definition 3.4.1 
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A minimal representation of the set Sis a system of linear constraints 

(3.1) such that 

n 
E: R 

with m =ma+~ and every other system describing S has at least m 

constraints. 

In the remainder of this section we establish some relations between 

redundant constraints and implicit equalities and finally prove the main 

redundancy theorem which says that a minimal representation is obtained by 

explicitly stating all implicit equalities and by removing all redundant 

constraints. 

First we introduce some more notation: 

V - {x E: Rn ·Ax = a} 

Vk - {x E: 
JRn Bkx = bk} (as before) 

r - n - m 
a 

It will be convenient to refer to the following conditions by their number: 

{I) r(A) m ; 
a 

A is of full row rank 

(II) u. 
1. 

< 0 'v'i the system ( 3 .1 l contains no redundant inequalities 

(III) u. 
1. 

> 0 'v'i the system (3.1) contains no implicit equalities 

The following three lemmas require some relatively involved mathemati­

cal derivations. 

We denote by lin(S) the smallest linear manifold containing S i.e. the sub­

set of JRn consisting of all linear combinations of vectors from S. 

By S we denote the interior of Sin lin(S). Finally we define 

dim S = dim(lin(S)). 
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LEMMA 3.4.1 

If the system (3.1) satisfies (III) then 

S= XER o { n 

Proof: 

First, suppose x' E JRn is such that Ax'= a and Bx' < b, then around 

x' there is an £-ball o(x', £) such that Bz < b Vz E o(x', £). Any 

z E {o(x', £) n lin(S)} is a linear combination of x' and elements 

from Sand so Az = a thus z ES. Therefore {o(x', £) n lin(S)} cs 
0 

and x' E s. 

For the remainder of the proof it might be helpful to consider the follow­

ing figure. 

Figure 3.2. 

The second part of the proof of lemma 3.4. 1. 

Now suppose x' E ]Rn is such that Ax'= a and B.x' < b. Vi= 2, ... ,m. 
l. l. .b 

but B1x• = b 1 • Since the system (3.1) satisfies (III) there is a point 

z ES with B1z < b 1 • We have to prove that there is a point win any 

{o(x', £) n lin(S)} with w r/. S: 

choose w AX'+ (1-A)z with A= 1 + \£. 

Then B1w (1 + \£)B 1x• - \£B1z 

(1 + \£)b1 - \£bl= b 1 

thus w r/. S. D 

LEMfi!A 3.4.2 (Eckhardt [1975]) (Interior point lerrrna) 

If the system (3.1) satisfies (III) then SI/. 

Proof: 

From (III) we see that for all i there is a point yi ES. such that 
l. 
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1 
~ i 

y =- :t y 
~ i=l 

0 

it is easy to see that Ay a and By< b which means y ES. 

LEMMA 3. 4. 3 

If the system (3.1) satisfies (I) and (III) then dim S = n - m = r. a 

P!'oof: 
0 

From the interior point lemma we know that there is a pointy ES 

such that {V n o(y, g)} c S. Because of (I) dim(V) 

therefore for some basis {a1, ••• , ar} we can write 

n - m =rand 
a 

Furthermore 3o > 0 such that, if !Ail so for all i then 

and y, y+oa 1, ..• , y+oar E {V n o(y, g)} 

Since oa1, •.• , oar are linearly independent we have 

dim{V n o(y, g)} ~ r which implies dim S ~ r. 

But since Sc V we also have dim S s r thus dim S r. 

Using these lemmas we can prove the following theorems, which apply 

to situations in which implicit equalities are explicitly stated as equa­

lities. Note that under such an operation the set of feasible solutions 

does not change. 

THEOREM 3.4.1 

The system (3.11 whiah satisfies (III) aontains redundant equalities 

if and only if r(A) < m. a 

P!'oof: 

IF: Follows from corollary 3.2.1. 

□ 

ONLY IF: Suppose r(Al = ma and (III) holds, then dim S = n - ma (lemma 

3.4.3}. If there are redundant equalities in the system, we can remove 

them and the new system still satisfies (III) and now satisfies (I) 
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n - m' > n - m and this 
a a too. Then according to lemma 3.4.3 dim S 

contradicts the assumption. □ 

THEOREM 3.4.2 

If the system (3.1) contains exactly one inequality constraint which 

is an irrrplicit equality, then this inequality constraint is redundant 

as well. 

Proof: 

Assume the first inequality is an implicit equality: B1x = b 1 Vx ES. 

According to the interior point lemma there is any ES such that 

Biy < bi Vi= 2, ... , II\,· 
Suppose the first inequality is not redundant, then there is a point 

z E s1 with Blz > bl. 

Take w(A) AZ+ (1-A)y. Since o(y, E) c s 1 and z E s 1 we have 

w(Al E s 1 for -½Es As 1. But 

B1w(-½) = - ½ B1z + (1 + ½ )B1y < - ½Ebl + (1 + ½E)bl = bl 

thus the first inequality is not an implicit equality, contradicting 

the assumption. 

COROLLARY 3. 4.1 

□ 

If in the system (3.1) all implicit equalities are replaced by equali­

ty constraints, then the new system contains at least one redundant 

equality. 

Proof: 

Replacing an implicit equality Bix s bi by an equality constraint, 

is equivalent to adding the constraint Bix c bi to the system; the 

latter constraint is obviously redundant. 

Furthermore the last implicit equality is redundant by theorem 3.4.2 

and if both Bix s bi and Bix c bi are redundant the equality is re-

dundant as well. D 

Now we turn to a number of lemmas which are helpful in proving the 

main redundancy theorem. 



LEMMA 3. 4.4 

If the system (3.1) satisfies (I), (II) and (III), then the system 

(3. 4.1) 

Ax = a 

B1x = b1 

Bix s bi Vi = 2, ••• , mb 

contains no Pedundant equalities and implicit equalities. 

Assume the syitem (3.4.1) contains a redundant equality, then there 

is some A€ :Ra such that B1 A A + + A A This yields for 
1 1 ••• m m 

all x € V 

+ A A x m m 
a a 

+ A a m m 
a a 

= c (constant) 

a a 
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and this leads to a contradiction, since b 1 ~ c contradicts (II) 

b 1 s c contradicts (III) for the system (3.1). Therefore r(~) = 

and the system (3.4.1) contains no redundant equalities. 1 

and 

m +1 
a 

Figure 3.3. 

Proving the second part of lemma 3.4.4. 

In following the proof that the system contains no implicit equalities, 

figure 3.3 might be helpful. According to the interior point lemma 

there is some x' € V with Bix' < bi Vi. Since (III) holds for the 

system (3°.1) there is some x" € V with B1x 11 > b 1 and Bix" s bi 

Vi= 2, ... , ~-

Choose O < A < 1 such that Bl (Ax' + (1-A)x") = bl. 

(this is possible: A= (bl - B1x 1 )/(B1x 11 - B1x 1 )) 

For all 2 sis~ we have 
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B. (Ax'+ (1-A)x") 
1. 

AB x' + (1-A)B.x" 
i 1. 

< Ab. + (1-A)b. b. 
1. 1. 1. 

So R Ax' + (1-A)x" satisfies 

AR = a 

'v'i 2, ... , ~ 

and therefore the system (3.4.1) contains no implicit equalities. D 

Figure 3.4 might provide some help in studying the following corollary 

and the next lemma. 

s 

Figure 3.4. 

The situation for corollary 3.4.2. and lemma 3.4.5. 

COROLLARY 3. 4. 2 

If the system (3.1) satisfies {I), (II) and (III) then for any 

i E (1, ... , mb) there is a convex set Qi such that Qi c (Sin Vi) 

and dim Qi = r - 1. 

Proof: 

For all x E (Sin Vil we have 

Ax = a 

B.x b. 
1. 1. 

B.x ~ b. 'v'j t- i 
J J 

Take Qi= Sin Vi, then clearly Qi is convex. According to lemma 

3.4.4 the conditions for lemma 3.4.3 are satisfied in this new system 

and thus dim Qi= r-1. D 



LEMMA 3.4.5 

If tJze system (3.1) satisfies (III) tJzen for any aonvex set Q with 

Q c (S, §; and dim Q = r - 1 there is some Vj with Q c Vj. 

Proof: 
Suppose no Vj contains Q; then by condition (III) for all j there is 

an yj € Q such that 

I Ayj 
= a 

B.yJ < b, 
J . J 

B.yJ s b. Vi t,. j 
l. l. 

1 ~ . 
Take y = - L yJ then by convexity of Q we have y € Q and 

~ j=l 

{ 
Ay = a 

By< b 

thus y € S, contradicting the fact that Q c (S, S). 
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D 

,Note that it may be proved that Q c Vj for exactly one j; this however, is 

not required for the following. 

LEMMA 3. 4.6 

If the system (3.1) satisfies (III) then V ¢ Vj for all j. 

Proof: 

Suppose there is some j such that V c Vj,then Bjx = bj Vx € v, im­

plying max {b.- B.x I x € v} = O. But since Sc V n G this yields 
. .J J 

max,{bj- Bjx Ix€ s} s O, contradicting (III). D 

LEMMA 3. 4. 7 

If the system (3.1) satisfies (I), (II) and (III) then Vis the 

smallest linear manifold whiah aontains both Qk and Qj (k 1 j; 

Qk c (Vk n Sk); Qj c (Vj n Sj); dim Qk = dim Qj = r - 1). 

Proof: 

The linear manifold V contains Qk and Qj by definition; dim V = r. 

Suppose there is another linear manifold W, containing Qk and Qj; 
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since dim Qk = dim Qj = r - 1 we must have dim W ~ r - 1. 

If dim W =rand W ~ V then dim (V n W) = r - 1, since (V n W) = W' 

contains Qk and Qj; thus W' would also be a linear manifold that con­

tains both Qk and Qj. Hence we may restrict ourselves to the case: 

dimW=r-1. 

Since both Wand Vk are linear manifolds and~ c Vk we have W c Vk; 

similarly W c vj. From the assumption we have W c V thus 

w c (V n Vk n Vj), but since dim(V n V..)_ = r - 1 (lemma 3.4.3) this 

implies (V n Vk) c Vj. The latter is impossible because of the follow­

ing (see also figure 3.5): 

Figure 3.5. 

Proving lemma 3.4.7. 

0 

Choose some x' Es (interior point lemma) thus Bix < bi Vi. 

Choose x" E Sk such that Bkx" > bk which is possible according to (II). 

Then there is some O < A < 1 with Bk (Ax' + (1-A)x") = bk. 

Define x = AX' + (1-il.)x"; since x € V and x E Vk also x E (V n Vk). 

However B.x = AB,x' + (1-A)B.x" <Ab.+ (1-A)b, = bj and therefore 
J J J J J 

xi vj, thus (Vk n V) ¢ vj. D 

At•this point we are fully equipped to prove the main theorem. 

THEOREM J. 4. J (MAIN REDUNDANCY THEOREM) 

The system (J.1} is a minimaZ representation of the set S if and 

onZy if it aontains no redundant aonstraints and impZiait equaZities. 

Proof: 
IF: Note that the system (3.1) contains no redundant constraints and im­

plicit equalities if and only if the conditions (I), (II) and (III) 

are satisfied. 

Suppose that there is another system (indicated by primes) that also 



represents S but with m' < m; we assume that (I), (II) and (III) 

hold for that system as well. 
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First we prove that the number of equalities in both systems is equal. 

Then we prove that the sets of points satisfying all equality con­

straints are the same for both systems. 

According to lemma 3.4.3 dim S = n - ma= r; however also 

dim S = n - m' = r' and therefore m = m'. a a a 
The smallest linear manifold containing S has dimension n - ma, but 

also Sc V and dim V = n - m; therefore Vis the smallest linear 
a 

manifold containing s. The same is true for V' and thus V' = V. 

Now we show that every inequality constraint in one system cbrres­

ponds to at least one inequality in the other system,.but no two 

correspond to the same inequality. This implies that the number of 

inequality constraints in both systems is equal. 

Choose i E (1, ••• , D\i); corollary 3.4.2 says that there is some 

Qi c (Sin Vi) for this i and according to lemma 3.4.5 there is some 

Vi, corresponding to this Qi. Thus, related to any i there is an i'. 

Suppose now for if j we have i' = j' thus Vi'= Vj' thus Qi c Vi' 

and Q. c V.,; but according to lemma 3.4. 7 the smallest linear mani-
J l. 

fold containing both Qi and Qj is V. 

Therefore V c Vi' which would be contradicting lemma 3.4.6. Thus for 

if j we have i' f j' and thus°\,$ m;,. 
In the same way we prove m;, $°\,and thus°\,= m;,. 

ONLY IF: Suppose the system (3.1) contains redundant constraints; these 

may be removed to obtain a smaller system. This contradicts the fact 

that the system is a minimal representation. Suppose the system 

(3.1) contains implicit equalities; replacing all of them by equality 

constraints would make at least one of them redundant (corollary 

3.4.1}, so this one may be removed to obtain a smaller system. Again 

this is a contradiction with the minimality of the representation. D 

The main redundancy theorem has some nice practical aspects. In fact 

it says that given a system of linear constraints one can obtain a mini­

mal representation for the same set of solutions, by just leaving out some 

(redundant} constraints and replacing inequality signs by equality signs. 

Note that the coefficients of the system do not change under these opera­

tions. 
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Finally note that although the number of equality and inequality con­

straints in the minimal representation is uniquely determined, the minimal 

representation in itself is not unique. 
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3.5. EwUng thea~y 

Existing theory on redundancy has led to some kind of minimal repre­

sentation in only two instances. These will be treated in chronological 

order and shown to be special cases of the theory we developed. 

The first contribution in this respect was the work of Shefi [1969], 

later modified and extended in Luenberger [1973]. 

Definition 3.5.1 (Shefi [1969], Luenberger [1973]) 

A minimal similar representation for the convex polyhedral set Tis 

a system of linear constraints 

d 
(3. 5.1) 

mdxnd nd md 
with D E R , x and O E R and d E R such that: 

(il for T 

there is a linear invertible mapping L (called a similarity 

transformation) that maps lin(T) onto lin(T) such that L(T) T 

and L-l (Tl = T; 

(ii) md is minimal; 

(iii) nd is minimal. 

Loosely speaking, this means that a minimal similar representation 

of a set Tis a system of linear equalities in nonnegative variables that 

determines a set T with the same shape and dimensions as T and does this 

in the smallest number of equalities and the smallest number of variables. 

The main difference between a minimal representation and a minimal 

similar representation is that the latter is embedded in a linear manifold 

of smallest possible dimension and is given relative to that linear mani­

fold. 

Shefi [1969] and Luenberger [1973] indicate a way how to obtain a 

minimal similar representation. To achieve this they introduce some termi­

nology: 
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- null variables are defined to be zero in every feasible solution; in our 

terminology this means that the corresponding inequality constraint is an 

implicit equality. Null variables can be removed by striking out the 

corresponding column in the matrix D and adding the equality x. = 0. 
J 

- variables are nonextremal if the corresponding nonnegativity constraint 

x. = 0 is redundant. Nonextremal variables can be removed from the system, 
J 

by eliminating them from a constraint in which they have a nonzero coef-

ficient. Then this constraint can be replaced by a definition of the re­

moved variable in terms of the otger variables e.g. if x 1 is nonextremal 

and a 11 # 0 then the constraint E a 1 .x. = b 1 may be replaced by 
j=l J J 

By means of a fairly complex proof Shefi and Luenberger show: 

THEOREM 3.5.1 (Shefi [1969], Luenberger [19?3]) 

Suppose T 1 ¢ and bounded: then the system (3.5.1) is a minimal simi­

lar representation of T if and only if it contains no redundant 

equations, null variables and nonextremal variables. 

We give a new proof of this theorem, using our main redundancy 

theorem. 

Proof: 

IF: If the system (3.5.1) contains no redundant equations, null variables 

or nonextremal variables, it satisfies the conditions (I), (II) and 

(III), so we can apply the main redundancy theorem and therefore the 

system (3.5.1) is a minimal representation. 

We have proved that the number of faces of T of dimension equal to 

(dim T-1) is fixed and equal to the number of inequality constraints. 

Since the number of these faces does not change under a similarity 

transformation, we cannot transform T to a space with smaller dimen­

sion. 

Since we also proved that dim T = nd - md and hence is constant we 

cannot find a system with less equations in the same number of varia­

bles. 

ONLY IF: Assume that the system (3.5.1) is a minimal similar representation. 

If it contains a redundant equality, this can be dropped, 



contradicting point (ii) of the definition of a minimal similar re­

presentation. 

If it contains a null variable, point (iii) would be contradicted. 

If it contains a nonextremal variable¾' points (ii) and (iii) are 

contradicted. 
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□ 

In fact we proved a somewhat stronger theorem, because we did not use 

the boundedness assumption of Shefi [1969] and Luenberger [1973]. This 

implies that theorem 3.5.1 is a corollary of our main redundancy theorem, 

but not the converse. 

In practice the minimal similar representation of a set T may seem 

to.be smaller than the minimal representation but this is an illusion. In 

fact this constitutes an important point of criticism on the theory of 

Shefi [1969] and Luenberger [1973]. 

In the minimal similar representation a minimal dimension (number of 

variables) is required: variables corresponding to dimensions that are 

dropped are appended to the system as equalities. Their values can be cal­

culated afterwards. However, this is no reason to consider these variables 

as not being a part of the system. From a practical point of view there is 

no such thing as lowest dimension: all variables specified in the set T 

should be present in a minimal representation as well. Therefore the va­

riables that are appended to the system in a minimal similar representation, 

form an integral part of the system and should also be incorporated in the 

minimal representation. 

Another way to interprete this point is to consider the minimal si­

milar representation as a one-to-one transformation of the original system. 

Given this minimal similar representation, nothing can be said about the 

original system if the transformation is not known. Therefore the minimal 

similar representation is useless without this one-to-one transformation. 

This implies that, since the transformation is embedded in the equalities 

that are appended to the system, these equalities should be part of a mi­

nimal representation,as is done in our theory. 

In case equalities appended to the system are considered as a part 

of the minimal similar representation, that representation will never be 

smaller than our minimal representation, as can be seen from the following 

table. 
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Shefi [1969] 

Luenberger [1973] 

- redundant .equality: 

remove 1 equality 

- null variable 

remove 1 equality x 2 0 
p 

strike out 1 column in 

matrix D 

append 1 equality x 0 
p 

- nonextremal variable x: 
q 

remove 1 inequality x 2 0 
q 

use 1 equality to eliminate 

x from all equalities. 
q 

append 1 equality 

net result: remove 

inequality 

Telgen 

- redundant equality 

remove 1 equality 

- implicit equality x 2 0: 
p 

replace inequality x 2 0 
p 

by equality x 0 
p 

- redundant inequality x 2 0 
q 

remove 1 inequality x 2 0 
q 

Table 3.1. Relations between the concepts used by Shefi [1969] 

and Luenberger [1973] and the concepts used here. 

Another important point can also be seen from the table. Whereas our 

reductions require no additional calculations, in the theory of Shefi 

[1969] and Luenberger [1973] the removal of nonextremal variables requires 

extra calculations for all coefficients in the system. 

Finally, if necessary a minimal similar representation can readily 

be obtained from a minimal representation by forcing all variables that 

are not sign restricted to enter into the basis. 

Eckhardt [1977] considers systems in which only linear inequality 

constraints are present. By defining instahZe inequalities in the same way 

as our implicit equalities, Eckhardt [1977] can prove a number of special 

cases (m = 0) of our theorems and lemmas. 
a 

However the minimal representation in Eckhardt [1977] is defined as 

a system that contains no redundant constraints. Thus, no attention is paid 

to the minimality of the number of constraints. By defining a minimal re­

presentation in that way Eckhardt [1977] avoids a confrontation with the 

main redundancy theorem. 



4. METHOVS 

4. 1 • I mp.Ucil e.qua,,lU,i,e1, 

Recall from section 3.3 that the constraint Bkx $ bk in the system 

(4.1.1) {
Ax= a 

Bx Sb 

is an implicit equality if 
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This means, that to identify implicit equalities we could solve the linear 

programming problem 

max bk - Bkx 

s.t. Ax = a 

B.x $ b. 
]. ]. 

Vi f. k 

for all k E (1, ... ,~),thus solving~ linear programming problems. 

However by using theorems 3.3.3 through 3.3.8 a more efficient algo­

rithm can be developed. This algorithm, described in detail below can be 

sketched as follows: in a basic feasible solution the tableau is scanned 

for the existence of the conditions required for the application of theo­

rems 3.3.3 through 3.3.8, by which a constraint can be identified as either 

an implicit equality or not. Then from the remaining constraints we select 

one (e.g. the one with smallest index k) and perform a pivot operation so 

as to maximize ~(x). After this constraint has been identified we turn to 

the next unidentified one, meanwhile checking all intermediate tableaux as 

,we did the first tableau. 

Formally the algorithm consists of the following steps: 

Algorithm IMPLEQ 

Initialize: We assume a basic feasible solution is given and the corres­

ponding contracted simplex tableau is set up. 

Let G be the set of all indices of constraints which should be 

checked for being implicit equalities. 
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Step 1: If the solution is nondegenerate, then by theorem 3.3.6 there are 

no implicit equalities: STOP; 

Step 2: Check all basic variables x~ ~ with k E G for the property 

yio > O; 

if this holds then Bkx $ bk is not an implicit equality by theorem 

3.3.5 and k should be removed from G; 

Step 3: Check all basic variables x~ = uk with k E G for the property 

yij ~ 0 Vj; 

If this holds the constraint Bkx $ bk is an implicit equality by 

theorem 3.3.3 and k should be removed from G; 

Step 4: Check all nonbasic variables x: =~with k E G for the property: 

y > O, y . ~ 0 Vj f p and y = 0 for some r. 
rp rJ ro 

If this holds then the constraint Bkx $ bk is an implicit equality 

by corollary 3.3.1; remove k from G; 
N 

Step 5: Check all nonbasic variables xj ~ with k E G for the property: 

yio > 0 for all i with yij > O. 

If this holds then the constraint Bkx $ bk is not an implicit 

equality by theorem 3.3.7; remove k from G; 

Step 6: If G = 0: STOP; 

Step 7: If there is no basic variable x~ =~with k E G, introduce a non­

basic variable x~ =~with k E G ihto the basis, e.g. the one with 

the smallest index k; continue with step 1; 

Step 8: Select a basic variable x! =~with k E G (e.g. the one with the 

smallest index k. Perform a feasible pivot step in column p with 

y = min y .. Continue with step 1. 
rp j rJ 

The IMPLEQ algorithm is finite, since the cardinality of G, denoted 

IGI, is nonincreasing. In iterations, in which IGI does not change, the 

algorithm max.i,mizes ~(x) for some fixed k E G using the simplex method. 

Because the simplex method is finite (if necessary use an anti-cycling 

device e.g. Bland [1977]), IGI will decrease after a finite number of steps. 

The fact that the IMPLEQ algorithm correctly identifies all implicit 

equalities is implied by the correctness of theorems 3.3.3 through 3.3.7. 

The flow chart of the IMPLEQ algorithm is given in figure 4.1. 

A disadvantage of the IMPLEQ algorithm is the fact that a basic fea­

sible solution for the system has to be known before the algorithm can 

start. However, in the process of determining such a basic feasible 



Figure 4. 1. 

The flow chart of the IMPLEQ algorithm; the 
numbers indicate the steps 
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INITIALIZE 

solution (if necessary) one can apply theorem 3.3.3 and corollaries 3.3.1, 

3.3.2 and 3.3.3 to any intermediate tableau, since they do not require a 

feasible solution. Then G may be initialized without the indices of the 

constraints identified in this preliminary stage. 

Furthermore as soon as the constraint Bkx ~ bk has been identified 

as an implicit equality, it may be converted into an explicit equality, by 

dropping the column in which the associated~ is nonbasic, thus diminish­

ing the size of the tableau. 

To illustrate the IMPLEQ algorithm consider the example 

xl - x2 ~ 0 

xl + x2 ~ 1 

-xl + 2x2 ~ 0 

xl, x2 ~ 0 

A basic feasible solution is (x,u)T 

simplex tableau is: 

0 and the corresponding contracted 
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xl x2 RHS 

ul -1 0 

u2 1 1 1 

u3 -1 2 0 

Applying the IMPLEQ algorithm yields: 

step 2: 

step 8: 

step 3: 

step 4: 

u2 does not correspond.to an implicit equality; 

select u 1, pivot on Y32 = 2, yielding the tableau: 

ul 

xl 

u3 

xl u3 RHS 

ul ½ ½ 0 

u2 3/2 -½ 1 

x2 -½ ½ 0 

corresponds to an implicit equality; 

~ 0 is an implicit equality; 

corresponds to an implicit equality; 

step 8: select x2 , pivot on y 11 = 1, which gives the tableau: 

ul u3 RHS 

xl 1 1 0 

u2 -3 -2 1 

x2 1 1 0 

step 3: x2 ~ 0 is an implicit equality; 

step 6: STOP. 
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4 . Z • Redundant c.o nt,,t,r.a,i_nv., 

Recall from section 3.1 that the constraint Bkx $ bk is redundant in 

the system (4.1.1) if and only if 

This means that we could identify all inequality constraints to be redun­

dant or not by solving the linear programming problem 

min bk - Bkx 

s.t. Ax= a 

B.x $ b. 'v'i ,J k 
1. 1. 

for all k E (1, ..• ,~),thus solving~ linear programming problems. 

A more efficient way to id·entify (all) redundant inequalities .is· given by 

the algorithm below, based upon theorems 3.1.l·through 3.1.6. 

Basically the algorithm checks the tableau associated with a given basic 

feasible solution for the conditions for theorems 3.1.1 to 3.1.6. If 

any of these theorems applies some constraints may be identified as redun­

dant or not. From the remaining unidentified constraints one is selected 

(e.g. the one with smallest index) and its corresponding slack variable is 

minimized. All intermediate tableaux obtained in the course of this mini­

mization are scanned for the conditions for theorems 3.1.1 through 3.1.6. 

After this selected constraint has been identified we turn to the next one 

and so on. 

The algorithm is described more formally below: 

AZgorithm RED.[NQ 
'-' 

Initialize: We assume a basic feasible solution is given and the correspon­

ding contracted simplex tableau is set up. Let H be the set of 

all indices of constraints to be identified as either redundant 

or nonredundant inequalities. 

N 
Step l: If the solution is nondegenerate, all~= xj correspond to non-

redundant inequalities (theorem 3.1.4); remove these k from Hand 

continue with step 3; 

Step 2: Check all nonbasic variables xN 
p 

yip~ 0 'v'i with yio = 0 

~ with k EH for the property 
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If this holds then the constraint Bkx $ bk is not redundant (theo­

rem 3.1.5): remove k from H; 
B 

Step 3: Check all basic variables xi ~ with k EH for the property 

y ij s O Vj. 

If this holds then the constraint Bkx $ bk is redundant (theorem 

3.1.1): remove k from H; 

Step 4: Check all basic variables x8 
r 

uk with k EH for the property 

: ro = min { y io I y. > 0 } is unique for some s. 
rs i yis is 

If this holds the constraint Bkx s bk is not redundant (theorem 

3.1.6): remove k from H; 

Step 5: If H = 0, then STOP; 

Step 6: If there is no basic variable x~ uk with k EH, then introduce 

a nonbasic variable x~ =~with k EH (e.g. the one with the 

smallest index k) into the basis and continue with step 1; 

Step 7: Select a basic variable x~ = uk with k EH (e.g. the one with the 

smallest index k) and perform a feasible pivot step in column p 

with yip= m~x yij; 

continue wittl step 1. 

The finiteness of the REDINQ algorithm can be proved along the same 

lines as the finiteness of the IMPLEQ algorithm. The cardinality of His 

nonincreasing; in iterations in which IHI does not decrease, the algorithm 

merely applies the simplex method to minimize uk(x) for some fixed k EH. 

Because of the finiteness of the simplex method uk will be determined in 

a finite number of steps and then IHI decreases. 

The correctness of the REDINQ algorithm is implied by the correctness 

of theorems .r'.1.1 through 3.1.6. 

As in the case of the IMPLEQ algorithm, the REDINQ algorithm requires 

a basic feasible solution to start with; this is a major drawback. How­

ever, while looking for this feasible solution we can apply theorem 3.1.1 

and corollary 3.1.2 to all intermediate tableaux, since they do not require 

a feasible solution. The indices of all constraints that have been identi­

fied as redundant or not in this preliminary stage, can be excluded from H. 

Furthermore, rows in which uk is basic, while Bkx $ bk is identified 

as redundant may be deleted as soon as this identification takes place. 



This may reduce the number of computations by diminishing the size of the 

tableau. 

The flow chart of the REDINQ algorithm is given in figure 4.2. 

Figure 4.2. 

The flow chart of the REDINQ algorithm; 
the numbers refer to the steps 

INITIALIZE 

To illustrate the use of the REDINQ algorithm we give the following 

example. Consider the system: 

X -
1 x2 $ 2 ( 1) 

2x1 + x2 $ 7 (2) 

xl $ 2 (3) 

-xl + 2x2 $ 4 (4) 

2x2 $ 5 (5) 

xl + x2 $ 4 (6) 

xl I x2 ;,, 0 (7,8) 

which is shown graphically in figure 4.3. 
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Figure 4.3. Example of the REDINQ algorithm 

A basic feasible solution is given by (x,u)T 0 and the corres-

ponding contracted simplex tableau is: 

xl x2 RHS 

ul 1 -1 2 

u2 2 1 7 

u3 2 

u4 -1 2 4 

us 2 5 
.__, 

u6 1 1 4 

Applying the REDINQ algorithm yields: 

Step 1: x 1 ~ 0 and x2 ~ 0 nonredundant; 

Step 4: u3 corresponds to a nonredundant constraint; 

Step 7: select u 1, pivot on y 31 = 1 to obtain the tableau: 
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u3 x2 RHS 

ul -1 -1 0 

u2 -2 1 3 

xl 1 2 

U4 1 2 6 

us 2 5 

u6 -1 1 2 

Step 3: ul corresponds to a redundant constraint. 

Step 4: u6 corresponds to a nonredundant constraint. 

Step 7: select u2 , pivot on y62 = 1. 

U3 u6 RHS 

ul -2 1 2 

u2 -1 -1 · 1 

xl 1 2 

u4 3 -2 2 

us 2 -2 1 

x2 -1 1 2 

Step 1: U3 corresponds to a noniedundant constraint, 

Step 3: u2 corresponds to a redundant constraint, 

Step 4: us corresponds to a nonredundant constraint, 

Step 5: STOP. 

If only strictly redundant constraints are required to be identified 

a modified variant of the REDINQ algorithm may be used. 

AZgoI'ithm STREDINQ 

Initialize: We assume a basic feasible solution is given and the corres­

ponding contracted simplex tableau is set up. 

Let E be the set of all indices of constraints to be identified 

as either strictly redundant or not. 

Step 1: All nonbasic variables x~ = u. correspond to constraints which are . J K . 

not strictly redundant (theorem 3.1.7): remove these k from· E; 

Step 2: Check all basic variables x~ =~with k EE for the property 

Yio = O; 
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if it holds the constraint Bkx S bk is not strictly redundant 

(~heorem 3.1.8): remove these k from E; 
B 

Step 3: Check all basic variables xi uk with k EE for the property 

yij $ 0 v'j; 

if it holds the constraint Bkx s bk is strictly redundant (theorem 

3.1.2): remove these k from E; 

Step 4: Check all basic variables x! uk with k EE for the property 

min 
i 

{ yio I 
~ Yis 

1.S 

if this holds then the constraint is not strictly redundant (theo­

rem 3.1.6): remove these k from E; 

Step 5: If E = 0, then STOP; 
B 

Step 6: Select a basic variable xi= uk (e.g. the one with the smallest 

index k) and perform a feasible pivot step in column p with 

yip = max y ij; 

continue with step 2. 

The flow chart of the STREDINQ algorithm is given in figure 4.4. 

Figure 4.4. 

The flow chart of the STRED I NQ algorithm; the numbers 
refer to the steps 

INITIALIZE 



The correctness and finiteness proof for the STREDINQ algorithm is 

similar to the one for the REDINQ algorithm. 
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The STREDINQ algorithm too requires a basic feasible solution to 

start with. Again in the process of determining such a solution all inter­

mediate tableaux can be checked for the conditions of theorem 3.1.1 and 

corollary 3.1.2, since these do not require a feasible solution. 

Also constraints may be deleted as soon as they have been identified as 

strictly redundant, thus diminishing the size of the tableau. 

Recall from section 3.2 that the equality constraint Akx 

redundant if and only if 

{ max {ak - Akx 

min {ak - ¾x 

X E 

X E 

0 

0 

To identify whether an equality constraint is redundant or not, we could 

solve these two linear programming problems or use the IMPLEQ and REDINQ 

algorithms. However it is usually a more efficient method to state all 

implicit equalities explicitly as equalities (after identifying then by 

the IMPLEQ algorithm) and then use theorem 3.4.1, which says that the sys­

tem contains redundant equalities if and only if r(A) <ma.We can deter­

mine r(A) by checking a basic solution (which is at hand if the IMPLEQ 

algorithm is used) for an all-zero row. Then from theorem 3.2.1 we know 

that the constraint corresponding to this row is redundant and may be re­

moved. 
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4 • 3 . M.i.1i.i.mal Jz.epJz.v., entatio n 

An algorithm to obtain a minimal representation can be constructed 

easily from the IMPLEQ and REDINQ algorithms 

Algorithm MINREP 

Step 1: Determine a basic feasible solution; while doing so check all in­

termediate tableaux for the conditions of theorems 3.3.3 and 3.1.1 

and corollaries 3.1.2, 3.3.1, 3.3.2 and 3.3.3. 

If redundant constraints are identified remove them, if implicit 

equalities are identified replace them by explicit equalities; 

Step 2: Apply the IMPLEQ algorithm, where G contains the indices of all 

nonidentified constraints; replace all implicit equalities by 

explicit equalities; 

Step 3: Apply the REDINQ algorithm, where H contains the indices of all 

nonidentified constraints; remove redundant inequalities as soon 

as they have been identified as such; 

Step 4: Remove all redundant equalities. 

A slightly more efficient variant of this algorithm can be formulated 

by checking all intermediate tableaux, obtained during the application of 

the IMPLEQ algorithm for properties by which (non)redundant constraints 

can be identified, i.e. applying steps 1, 2, 3 and 4 of the REDINQ algo­

rithm to the intermediate tableaux. 

The finiteness of the MINREP algorithm follows directly from the 

finiteness of the IMPLEQ algorithm and the REDINQ algorithm. 

Regarding the correctness of the MINREP algorithm we know that the result­

ing system contains no redundant constraints because these were removed in 

steps 3 and 4 0 The resulting system could contain implicit equalities only 

if these were created in steps 3 and 4, since all implicit equalities were 

removed in step 2. However removing redundant constraints can not cause 

implicit equalities to originate; if max{~(x) x ES}> 0 then certainly 

max{~(x) I x E Sj} > 0 and also max{~(x) I x E Sj} > 0. Thus the result­

ing system contains no implicit equalities and hence is a minimal repre­

sentation by the main redundancy theorem. 

Note that the order in which the steps 2, 3 and 4 are given in the 

algorithm is essential. Checking for implicit equalities should precede 

checking for redundancy. Otherwise there is no guarantee that a minimal 
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representation is obtained: replacing implicit equalities by explicit 

equalities after application of the IMPLEQ algorithm causes some constraints 

to become redundant (cf. theorem 3.4.1). 
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4.4. Ewting mdhod.6 

The methods described in the preceding sections are general for two 

reasons: firstly all implicit equalities and all redundant constraints can 

be identified with these methods. Secondly all methods known from the lite­

rature can be shown to be special cases of the methods introduced here. In 

the following we review these methods briefly (see also Telgen [1977 c]). 

From the literature no methods are known to identify implicit equali­

ties or to obtain a minimal representation. Wolfe [1955] describes a method 

to reduce a problem to a 'simplest problem in standard form'. However the 

meaning of this expression is not clearly defined although it certainly 

does not correspond to a minimal representation. 

Shefi [1969] gives an algorithm to obtain a minimal similar represen­

tation. This algorithm amounts to solving the linear programming problems 

max{~(xl j x E Sk} and min{~(x) j x E Sk} for all k. Since the feasible 

region changes every time a nonextremal variable or a null variable is 

removed, the calculations may have to be repeated a number of times. There-

f th 1 "th h t 1 t 1 t 2 d t t 2 1· ore ea gori m as o so ve a eas nd an a mos nd inear program-

ming problems of size comparable to the original system. 

Redundant equality constraints are usually identified by checking 

for r(A) <ma.The fact that this is not a necessary condition for an 

equality constraint to be redundant, seems to be recognized here for the 

first time (theorem 3.2.1 and theorem 3.4.1). Therefore our method to iden­

tify redundant equality constraints by first stating explicitly the impli­

cit equalities is a generalization of the usual method. 

In the remainder of this section we concentrate on methods to iden­

tify redundant inequality constraints. We distinguish between three classes 

of methods according to the goals for which they may be used. 

(i) deterministic methods: to determine whether or not a certain con­

straint is redundant. As an extension of these methods, we can check 

which constraints of a given set of constraints are redundant and 

which are not. 

(ii) probabilistic methods: to check a system for conditions by which 

possibly some constraints can be identified as redundant or not. The 

result of these methods are correct, but it is not known a priori 



which constraints can be identified. 

(iii) heu:t'istia methods: to check a system for conditions by which, under 

some assumptions, some constraints can be identified as redundant 

or not. The results of these methods are conditional upon the -

validity of the assumptions. 

A number of deterministic methods to identify redundant inequality 

constraints may be derived from the 'turn-over' lemma. 

Boot [1962, 1964] proposed to determine the feasibility of the 

system 

Ax = a 

(4.4.1) Vi~ k 

by considering a related system in which the last constraint is replaced 

by 

(4.4.2) (E > O; sufficiently small) 
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Then this equality can be substituted in all other constraints by elimina­

ting some variable. The feasibility of the remaining system can be deter­

mined by standard methods. 

Thompson et at. [1966] tried to improve the computational performance 

of this method by considering the constraint (4.4.2) as an inequality with 

slack variable -E. Then this slack variable is kept in the basis on the 

same value and the remaining system is solved. In this way some computa­

tional improvements are achieved. 

But as well as in Boot's original scheme, for every inequality con­

straint that is to be identified as being redundant or not, the feasibili­

ty of a system of linear constraints has to be tested. In practice this 

means that a linear programming problem has to be solved for every con­

straint that should be checked for redundancy. To some extent this is true 

for our method as well. However in our method a number of other constraints 

may be identified without extra computations, as we are working towards 

identifying a given constraint. 

Furthermore it should be noted that the original system (4.4.1) and 

the modified system including (4.4.2) are not equivalent with respect to 
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the redundancy of the constraint Bkx ~bk.If the modified system is fea­

sible, the original system is feasible too and hence the k-th constraint 

is not redundant. However the constraint is redundant if the original sys­

tem (4.4.1) is infeasible and that may be concluded only if the modified 

system is infeasible for all£> 0. Finally the choice of a particular 

£ > 0, which should be small, may cause numerical difficulties. 

Since determining the feasibility of the system (4.4.1) is essen­

tially the same as determining ·l\: = min{~(x) I x E Sk}, these methods, 

based on the 'turn-over' lemma, require the same computations as the REDINQ 

algorithm for one fixed k. However if more constraints have to be identi­

fied the REDINQ algorithm is clearly superior. 

Some deterministic methods to identify redundant constraints have 

been developed from methods to find all extreme points of a convex poly­

hedron (e.g. Balinsky.[1961J, Shefi [1969J, Mattheis [1973J, Greenberg 

[1975J, Holm and Klein [1975J). In these methods all basic feasible solu­

tions (extreme points of the convex polyhedron) are checked for the condi­

tions for theorem 3.1.2. If these hold for some constraint, then this 

constraint is identified as redundant (step 3 of the REDINQ algorithm). 

In this way all extreme points are checked. Only if also all feasible bases 

are checked, the conclusion may be drawn that the unidentified constraints 

are nonredundant. Clearly the REDINQ algorithm is more general and compu­

tationally superior to these methods. 

Following an idea of Lisy [1971J, Gal [1975 BJ presented a determi­

nistic method to identify redundant inequality constraints. The method of 

Gal [1975 BJ concentrates on strictly redundant constraints although weak­

ly redundant constraints are sometimes identified too. The method can be 

considered as0 a variant of the STREDINQ algorithm in which step 2 is omit­

ed and step 4 stated slightly less general (see also Gal [1978]). Among 

the constraints that are identified as nonredundant there may be some 

weakly redundant ones, because step 1 of the algorithm does not distinguish 

between nonredundant and weakly redundant constraints. Therefore, although 

quite similar, the method of Gal [1975 B, 1978J is less general than the 

method introduced here. 

In the literature most methods to identify redundant constraints are 

probabilistic methods. 
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One of the earliest proposals for a probabilistic method is due to 

Llewellyn [1964]. Llewellyn gives some rules to identify a special class 

of redundant constraints,namely those constraints that are redundant by 

one other constraint and nonnegativity constraints on all variables. The 

same rules were reintroduced in a different format in Zeleny (1974]. Eck­

hardt [1971] showed that theorem 3.1.3 provided a generalization of these 

rules. However it was not recognized that the rules Llewellyn [1964] gave 

were incorrect; they only hold if restricted to some special cases, e.g. 

all coefficients greater than or equal to zero. In these special cases the 

rules of Llewellyn [1964] can be shown to be an immediate consequence of 

our theorem 3.1.2. A detailed treatment is given in Telgen [1977 B]. 

Zionts [1965] and Thompson et ai. (1966] introduced the concept of a 

definitional constraint, which is a constraint that satisfies the condi­

tions of our theorem 3.1.1. The method they propose consists of scanning 

each tableau for a row satisfying these conditions, and for rows in which 

these conditions can be satisfied after one iteration (corollary 3.1.2). 

If the tableau exhibits these properties some constraints can be identi­

fied. 

Thompson et ai. [1966] describe a Monte Carlo technique, in which 

situations as described above are constructed by generating random combi­

nations of all rows of the tableau. 

Tischer [1968] and independently Brearly et ai. [1975] give an ex­

tensive list of simple methods to identify redundant inequalities. These 

methods can be seen as an application of the REDINQ algorithm if only one 

constraint at a time and all bounds on the variables are taken into con­

sideration. 

Another probabilistic method has recently been suggested by Boneh and 

Golan [1979]. Basically in their method a direction is generated randomly 

in a given feasible solution; then it is determined which constraint 

is reached first if one follows this direction from the given point. The 

constraint that is reached first is not redundant (this follows from the 

'turn-over' lemma). This procedure is repeated a great number of times 

and after that all nonidentified constraints are considered to be redun­

dant. Thus the method is always correct in classifying nonredundant con­

straints, whereas the probability that constraints are classified 
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incorrectly as redundant decreases as the number of randomly generated di­

rections increases. Since the method of Boneh and Golan [1979] does not 

use the linearity of the constraints, it is applicable to systems of non­

linear constraints as well. 

Heuristic methods are applications of rules that are valid only if 

certain conditions are satisfied. These conditions are not checked a 

priori, either because it is impossible or because it is too laborious. 

Therefore the results should be validated aposteriori or interpreted very 

carefully. 

Dantzig [1955] proposes to use all kinds of experience, intuition, 

ideas and information to predict which constraints will not be binding in 

the optimal solution. Then the slack variables of these constraints can be 

forced into the basis and marked as being no candidate for leaving the ba­

sis. These slack varia.bles, or rather these constraints are placed behind 

a "curtain" where they do not affect the subsequent solution procedure. Of 

course a similar thing can be done with constraints that are predicted to 

be binding in the optimal solution; their slack variables are placed behind 

a curtain from where they are temporarily not allowed to enter into the 

basis (for a detailed treatment see e.g. Orchard-Hays [1968]). 

Apart from the fact that this technique may be profitable for the 

computing speed and storage needed (everything behind the curtains may be 

stored in secondary memory) it may be used to obtain a good starting solu­

tion (crashing) and to select a pivot. It should be noted that more cur­

tains can be used at the same time, separating variables with different 

probabilities to enter the basis. This may depend on the available a 

priori information, but also on the solution path being followed. 

A solution path is called convex if every two dimensional projection 

of the path ox;thogonal to each hyperplane corresponding to a constraint, 

is convex. Zionts [1965] and Thompson et al. [1966] proved that, if the 

solution path is convex, and a variable enters, leaves and reenters the 

basis in a series of iterations, the variable will be basic in the optimal 

solution. If a variable leaves, enters and again leaves the basis, then 

it will have a zero value in the optimal solution. However there is no 

simple way known to ensure a convex solution path or to check whether 

the solution path is convex. 
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5. APPLICATIONS 

5 • 1 Re.& uU.6 6Mm U:t.e/1.a..tWte 

The number of redundant constraints and implicit equalities in a pro­

blem depends on various factors such as: the kind of problem, experience 

of the problem and model formulator, size of the problem etc. Therefore in 

general it is not possible to predict the rate of reduction in the number 

of constraints that can be achieved in a particular problem. 

Very few experimental results on this question are reported in lite­

rature. Zionts [1965] performed some computational tests with the proba­

bilistic and heuristic methods he proposed on a number of practical linear 

programming problems. Size reductions ranging up to 50% were noted, but 

the time required to obtain these reductions together with the time re­

quired to solve the reduced problem usually was not significantly better 

(and sometimes significantly worse) than the time required to solve the 

original problem. 

Thompson et aZ. [1966] stated that size reductions of 50% are not un­

usual for small problems and they hoped that results on larger problems 

would be even more significant. They considered linear programming problems 

and applied the probabilistic methods they gave to both the primal and the 

dual problem. With this procedure results on 5 practical problems ranging 

in size from 9x20 to 55x104, show size reductions ranging from 30% to 75%. 

Tischer [1968] mentions a large number of empirical results on prac­

tical linear programming problems (production planning). The size reduc­

tions with the very simple rules he uses go up to 99%, but these figures 

are considered to be somewhat unrealistic since nonnegativity constraints 

and bounds on the variables are explicitly stated as constraints in the 

original formulation. 

However most of the methods used are also described by Brearly et 

aZ. [1975] tovbe part of the REDUCE routines available in advanced commer­

cial LP packages such as MPSX/370 and APEX III, in which they are thought 

to be useful. 

Brown [1977] supports this observation by reporting some computatio­

nal results using a similar set of simple rules, from which he concludes 

that 'preprocessing' (scanning for size reductions with simple methods) 

should be done on any problem. This conclusion is based on both prac_tical, 

computational and (information) theoretical arguments. 
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All the percentages mentioned so far are conservative since the me­

thods used do not identify all redundant constraints (only probabilistic 

and heuristic methods were used). However the size reductions will not be 

that dramatic in all practical problems, but the fact that reductions are 

almost always possible is agreed upon by many practitioners (Hofmann [1955], 

Zionts [1965], Thompson et aZ. [1966], Brearly et aZ. [1975], Brown [1977]). 

Even more rare than experimental results with methods to identify 

redundant constraints are applications of these methods to practical pro­

blems reported in literature. The author is aware of only three: 

Firstly, the probabilistic and heuristic methods of Zionts [1965] 

are applied to a blast furnace burdening problem, a customer order combi­

nation problem (both with favorable result) and to a raw material alloca­

tion problem (unfavorable result), all reported in Zionts [1965]. 

Secondly, the deterministic method of Boot [1962] is used by Van Ame­

rongen [1978] on a number of small machine generated constraint sets for 

a nonlinear programming problem, arising in the context of network flow 

scheduling of electricity. In these small problems (25x6) reductions were 

huge (80% on the average) at reasonable costs. 

Thirdly, Boneh and Golan [1979] reported of a problem instance that 

was amenable only after application of their method. In this problem of 34 

linear and 34 quadratic constraints in 25 variables, a size reduction of 

45% was achieved. 
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5. 2 ExpeJume.n.ta,l 11..e.J., u1,t1, 

For a comparison of methods to identify redundant constraints at least 

two factors should be regarded: (i) the number of constraints identified 

as redundant or not and (ii) the effort spent in trying to identify redun­

dant constraints, measured in computer time or number of computations. 

The REDINQ algorithm can only be compared to the deterministic method 

of Boot [1962] (or the modified version of Thompson et al. [1966]) with 

regard to the second factor; the effectiveness of these methods is the 

same. It will be clear that the REDINQ algorithm is superior to these 

other methods especially if more than one constraint has to be identified. 

The method of Gal [1975 B , 1978] cannot be compared to the methods 

mentioned above in the same way because it does not always identify weakly 

redundant constraints in a correct way. Based on this observation we con­

sider the REDINQ algorithm to be superior. 

Comparing the REDINQ algorithm to probabilistic methods is not an 

easy task, since the REDINQ algorithm will generally perform better re­

garding (i) but worse regarding (ii). 

The same reasoning applies to heuristic methods, but the relative 

simplicity of the heuristic methods (the advantage it has regarding (ii)) 

should outweigh the extra computations required to check the conditions 

or the uncertainty inherent to a heuristic method. Since this last aspect 

is very much problem dependent we concentrate on a comparison of the 

REDINQ algorithm and probabilistic methods.* 

As representatives of the probabilistic methods we chose the methods 

introduced in Zionts [1965] and Thompson et aZ. [1966] and the methods in­

corporated in the REDUCE option of the IBM MPSX/370 package, described in 

Brearly et aZ. [1975]. 

We programmed the REDINQ algorithm in PL/I using IBM's MPSX features. 

The experiments with the REDINQ algorithm and the REDUCE option were per­

formed on the IBM 370/158 computer of Technical University Delft using the 

PL/I optimizing compiler. The probabilistic method of Thompson et al. 

[1966] was programmed in Algol by B.G. Meyerman. Tests with this method 

were performed on the Control Data Cyber 74-16 of the University of 

Groningen using a CDC Algol 60 compiler version 3.1. 

All problems used in the experiments are linear programming problems 

* A large scale comparison of many methods to identify redundant con­
straints is currently in progress (Telgen and Zionts [1980]). 
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emerging from practice. Some statistics are given in table 5.1. 

size+ 
x, 

problem, density, kind of problem source 
i 
1 

[ 1977] A 16X20 15. 70 % queueing theory Kotiah and Steinberg 
page 110, reformulated using 
theorem 3.3.1 

B l22x15 10.57 % production planning Meyerman [1979] 

C 36x23 7.80 % production planning Meyerman [ 1966] 

D 24x5 15.26 % production planning Tischer [ 1968] page 323 

E b5X26 10.47 % production planning Tischer [1968] pp.335-336 

F 9x20 55.42 % diet problem Dantzig [1963] pp.553-555 
quoted from Stigler 

G 

H 

28X25 

14x12 

6.96 % 

14.06 % 

production planning Nijkamp and Spronk [1978] 

disbursement problerr Nijkamp and Spronk [1978] 

+ number of inequalities x number of nonnegative variables 

x including a slack variable for each constraint 

Table 5.1. Testproblems 

Concerning these testproblems we make the following remarks. Problem 

A is known to be a numerically difficult problem; in Kotiah and Steinberg 

[1977] it is reported to have cycled with MPS. Problems G and H have alter­

native optimal solutions. 

The experiments consisted of solving the testproblems with five dif­

ferent strategies: 

(i) straightforward use ofIBM's MPSX package with the PRIMAL option; 

(ii) first apply IBM's REDUCE option and then solve the problem with the 

PRIMAL option of the MPSX package; 

(iii) first find a feasible solution with the MPSX package, then apply the 

REDINQ algorithm and remove all redundant constraints and after that 

solve the problem using the PRIMAL option of the MPSX package; 

(iv) apply the probabilistic method of Thompson et aZ. [1966] to all in­

termediate tableaux and remove redundant constraints, while solving 

the problem with a standard simplex program (Algol 60); 

(v) solve the problem with a standard simplex program (Algol 60). 

The results of our experiments are given in table 5.2. 



A B C D E F G H 

(i) iterations phase I 33 0 0 4 0 2 4 7 
iterations phase II 4 7 21 4 28 7 0 0 
CPU time IBM 370/158 5.33 3.71 4.30 4.28 6.04 4.04 3.94 3.56 

(ii) iterations phase I 11 4 8 0 6 2 0 5 
iterations phase II 8 6 17 4 13 7 0 0 
CPU time IBM 370/158 5.71 4. 78 5.47 4.67 7.45 4.97 5.13 4.81 
matrix passes 2 3 2 2 2 2 2 2 
free variables 7 1 4 4 4 0 3 4 
redundant constraints 0 4 0 0 0 0 0 0 

(iii) iterations phase I 33 0 0 4 0 21) 4 7 
iterations phase II 4 7 14 4 26 6 0 0 
CPU time IBM 370/158 6.45 4.60 6. 72 4.63 34.19 3.98 5.53 4.23 
iterations REDINQ 41 16 37 30 171 12 28 9 
free variables 11 1 4 4 4 0 8 7 
redundant constraints 0 13 1 13 34 0 0 5 

(iv) iterations phase I 16 0 0 4 0 25 14 5 
iterations phase II 2 7 21 7 40 2 0 0 
CPU time Cyber 74-16 3.236 1.145 7 .129 1.647 28.581 3.628 5.63? 1.140 
free variables 2 0 4 4 0 0 22 0 
redundant constraints 0 2 0 0 8 0 152 ) 

(v) iterations phase I * 0 0 4 0 25 4 7 
iterations phase II 7 19 7 32 3 0 0 
CPU time Cyber 74-16 0.741 4. 775 1. 301 21.902 2.102 1.210 0.493 

* terminated due to numerical problems 
1) 

differences caused by different reinversion time 
2) 

larger than in row (iii) since the constraint cTx ~ z 
0 

(z0 is present solution value) is 
added to every intermediate tableau 

Table 5.2. Experimental results 
°' w 
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Regarding the CPU times reported here it should be kept in mind that 

they were obtained in a time-sharing environment. Therefore they may be in­

fluenced by external factors and should not be given absolute values. For 

a fair comparison of the methods the number of extra iterations (or matrix 

passes) should be taken into consideration as well. 

From table 5.2 we see that the number of redundant constraints in the 

testproblems usually is considerably larger than the number identified by 

the REDUCE option of MPSX or the method of Thompson et al. [1966]. Iden­

tifying all redundant constraints by the REDINQ algorithm sometimes reduces 

the number of phase II iterations, but generally requires a number of ex­

tra iterations and consequently more CPU time than solving the problem 

directly with MPSX. 

Whether or not the identification of all redundant constraints is 

worth this extra time (effort) is an open question, that has to be decided 

upon for each individual problem. However, if an LP problem has to be 

solved more than once, as is the case in many practical situations, identi­

fying all (or part) of the redundant constraints is more attractive. 

The method of Thompson et al. [1966] does not identify all redundant 

constraints, but it may be useful since it requires no extra iterations. 

A major disadvantage of both the REDINQ algorithm and the method of 

Thompson et al. [1966] is the fact that they requir~ information about 

all coefficients of the tableau. Since all modern LP packages use some 

variant of the product form of the inverse (PFI) simplex algorithm, this 

is a rather costly demand. Since the REDUCE option does not require this 

information it has a great advantage above the other two methods. However 

for special purposes or small problems the REDINQ algorithm may still be 

attractive as illustrated by our testproblems. 

The performance of the REDINQ algorithm is sketched in figure 5.1, 

where a typical pattern for the relation between iterations of the REDINQ 

algorithm and the number of constraints identified is given. 

A practical variant of the REDINQ algorithm could be to stop the al­

gorithm·after some prefixed number of iterations, depending on the amount 

of time one wants to spend on the identification of redundant constraints. 
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number of iterations in the REDINQ algorithm 

Figure 5.1. The performance of the REDINQ algorithm on testproblem B (37 constraints) 
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6. RELATEV TOPICS 

Until now we considered mainly systems of linear constraints. In this 

chapter we add a linear objective function and consider the ZineaP program­
ming problem: 

(6.1) T 
max c x 

subject to Ax= a 

Bx :,; b 

It should be stressed that the concepts of a redundant constraint and , 
an implicit equality are independent of the.objective function. Therefore 

everything developed and proved in the preceding chapters applies to the 

constraint set of (6.1) as well. 



6 • 1 No nbindlng c.o YI!.) .tluun.:U 

Apart from redundant constraints which can always be omitted from a 

linear programming problem, there is another kind of constraints that can 

be omitted from the linear programming problem for some classes of objec­

tive functions. These constraints are called nonbinding constraints; some 

examples are sketched in figure 6.1. 

( *) 

(*) 

(*) 
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Figure 6. l. Nonbinding constraints; the objective function is indicated by a double 
arrow(⇒) pointing in the direction of improvement; nonbinding constraints 
are indicated by an asterix (*) 

In stating a formal definition of a nonbinding constraint we use the 

notation: 

~= max{cTx I XE. s} 

z - {x E s I T z} C X = 

Zk {x Sk 
T z} - E. C X 

Zk {x Sk T z} - E. C X 

Definition 6.1.1 

The constraint Bkx $ bk is nonbinding in the system (6.1) if and only 

if it is nonredundant and Z = zk. 
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Definition 6.1. 2 

The constraint Akx = ak is nonbinding in the system (6.1) if and 

only if it is nonredundant and Z = Zk. 

Definition 6.1.3 

A constraint is binding in the system (6.1) if and only if it is 

neither redundant nor nonbinding. 

These definitions are not equivalent to the ones given in literature. 

Sometimes even other terms are used: inaative (Hoffman [1955]), nondefining 

(Llewellyn [1964]) and reZative red:unda,nt (Zimmerman and Gal [1975]); for 

a Qetailed motivation and treatment we refer to Telgen [1977 C]. 

Both inequality and equality constraints can be nonbinding: examples 

of nonbinding inequality constraints were given in figure 6.1, a non~inding 

equality constraint is_ sketched in figure 6. 2. 

Figure 6.2. A nonbinding equality constraint (indicated by(*)) 

Note that any nonbinding constraint may be removed from the system: 

this does not affect the optimal solution(s). But not all nonbinding con­

straints may be removed at the same time, since by removing one another 

can become b~ding. This can be seen from figures 6.2 and 6.3. 

Removing nonbinding constraints may even cause weakly redundant con­

straints to become binding. Consider figures 6.2 and 6.4. 

In conclusion we have four types of constraints: 

(a) ~trictly redundant constraints; 

(b) weakly redundant constraints; 

(c) nonbinding constraints; 

(d) binding constraints. 

We refer to (a) u (b) as redundant constraints and to (cl u (d) as non­

redundant or aative constraints (Thompson et aZ. [1966] and Zeleny [1974] 



____ i}' __ ---

figure 6.3. The interior of the pyramid (or wigwam) is the feasible region S. 

Figure 6.4. 

Each of the constraints all passing through the point T is nonbinding; 
however they may not be removed al I at the same time 

Constraint (*) is nonbinding, but removing 
it causes constraint (**) to change from 
weakly redundant to binding 

use the term: 'essential'). Further it is worth noting that (cl and (d) 

are not complementary. 
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There are no deterministic methods to identify nonbinding constraints 

without finding the optimal solution to the problem. However all heuristic 

methods to identify redundant constraints (described in section 4.4) can 

also be used to identify nonbinding constraints. 

A probabilistic method to identify nonbinding constraints if a fea­

sible solution x0 is available, is the following: 
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identify all redundant constraints in the system: 

Ax a 

Bx :Sb 
T To 

C X ~ C X 

If there were nonbinding constraints in the original system, some of them 

may have been converted into redundant constraints. In this way nonbinding 

constraints "at the lower boundary of the feasible region" may be identi­

fied. Clearly if cTxo = 2 all nonbinding constraints will be identified by 

this method. 

In general however it is not true that constraints "at the lower 

boundary of the feasible region" are nonbinding as Scolnik [1973] impli­

citly assumed. The popularity of this assumption is probably due to the 

fact that a constraint "at the lower boundary of the feasible region" can 

be recognized rather simply. In the problem (6.1) the constraint Bkx :S bk 

is such a constraint if it forms an obtuse angle~ with the objective 

function, so cos~< 0, but this implies cTBk < 0 which can easily be 

checked. 

A counterexample to the hypothesis that a constraint "at the lower 

boundary of the feasible region" is nonbinding is provided by the problem: 

max x2 

(6.1.1) s.t. -xl - x2 $ -2 

xl + 3x2 $ 4 

xl' x2 ~ 0 

which is shown graphically in figure 6.5. 

V 

Figure 6.5. 

Problem (6. l. l.) 

2 

0 

(*) 

2 3 4 5 
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According to c Bk< 0 the constraint marked by (*) is "at the lower boun-

dary of the feasible region", but it is binding. 

By identifying redundant constraints in both the primal and the dual 

problem and removing them, sometimes nonbinding constraints turn into re­

dundant constraints (Thompson et al. [1966]). As an example consider the 

problem: 

max xl 

(6.1.2) s.t. xl + x2 s 2 

xl + 2x2 s 3 (*) 

xl, x2 2: 0 

which is shown graphically in figure 6.6. 

Figure 6.6. 

'Problem (6. 1.2.) 
0 

s 

2 

I 
I 
I 

~ 

3 4 
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It is easily seen that the constraint marked by (*) is nonbinding (and not 

redundant). In the dual problem 

min 2y1 + 3y2 

s.t. Y1 + Y2 2: 1 

yl + 2y2 2: 0 (+) 

Y1, Y2 2: 0 

it is trivial that the constraint marked by (+) is redundant. Removing 

this constraint from the dual problem and thus.deleting x2 in the primal 

problem, yields the new primal problem: 

max xl 

s.t. xl s 2 

xl s 3 (*) 

xl 2: 0 
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and now the constraint marked by (*) is clearly redundant. 

Thus, by identifying and removing redundant constraints in both the 

primal and the dual problem some nonbinding constraints may be identified. 

It would be an interesting topic for further research to check whether 

this property can be used to solve the linear programming problem, as it 

did in our example. 

Finally, by using the Tucker formulation of the linear programming 

problem (6.1): 

Ax a 

Bx ::, b 
T 

Au+ BTv = C 

V ~ 0 
T bTv T 

a u + ::, C X 

some constraints will be converted from nonbinding into redundant con­

straints, so they may be identified as such. 
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6 • 2 P tu.mal- dual. Jtei.o.tio n;., 

Considering linear programming problems instead of systems of linear 

constraints, allows us to study redundancy in the dual pair of linear pro­

gramming problems. Of course everything developed so far for the primal 

problem can be applied to the dual problem too, thus enlarging the scope 

of the theory and methods considerably. 

But what does it imply for the dual problem if a constraint is re­

dundant in the primal problem and vice versa? Here we list some results on 

questions like this one assuming that a finite optimal solution to the 

linear programming problem exists (see Charnes et al. [1962] for the re­

lation between boundedness of the feasible region and redundancy in the 

primal-dual context) .. 

In any solution to the linear programming problem (and thus in the 

optimal solution too) a strictly redundant inequality in the primal pro­

blem has uk > 0, which implies by the complementary slackness theorem 

(see e.g. Dantzig [1963]), that the corresponding dual variable vk = 0 

in the optimal solution. Hence this variable may be deleted from the dual 

problem. Another way to interprete this result is to say that vk ~ 0 is 

an implicit equality in the dual problem. 

By a similar reasoning we can show that implicit equalities in the primal 

problem correspond to redundant nonnegativity constraints on the dual 

variables. 

For weakly redundant constraints and redundant equality constraints 

we cannot derive such a strong result. In these cases we know only that 

there exists an optimal solution to the dual problem, in which the values 

of the dual variables corresponding to these constraints are zero. This 

is easily seen from the fact that the problem has the same optimal solu­

tion with or without these redundant constraints. However we cannot guaran-
'J 

tee that there does not exist another optimal solution with nonzero values 

for the corresponding dual variables. 

By definition dropping nonbinding constraints from the problem does 

not change the set of optimal solutions. Therefore, just like for weakly 

redundant constraints, there exists an optimal solution to the dual problem 

such that the dual variables corresponding to nonbinding constraints in 

the primal problem, have a zero value. 

Finally, binding constraints in the primal problem do not seem to 

have a clear-cut counterpart in the dual problem, since the corresponding 
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dual variables may have both zero and nonzero values. Only if we assume 

that both the primal and the dual problem have a unique optimal solution, 

we may say that the dual variables corresponding to binding constraints 

in the primal problem have a nonzero value in the optimal solution. 
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7. CONCLUSION 

In the preceding chapters we developed a new and complete theory of 

redundancy. We introduced the concepts of an implicit equality and a mini­

mal representation. We proved that a minimal representation is obtained 

by removing all implicit equalities and redundant constraints from a sys­

tem. 

Furthermore we introduced some· new and general methods to identify 

both redundant constraints and implicit equalities. Preliminary computa­

tional experience shows that these methods perform relatively well. 

What is the consequence of these developments? The question whether 

or not redundant constraints should be identified and removed from a given 

linear programming problem cannot be answered in general. It is useful 

to identify redundant constraints if the resulting simplification out­

weighs the effort spent in identifying them. However both the effort spent 

and the resulting simplification cannot be accurately estimated in advance. 

Therefore the fruitfulness of scanning for redundant constraints is in 

practice an open question. 

An approach that might provide some more insight into this problem, 

is through computational complexity theory. That is the topic of the 

second part of this work. 

The question whether or not a minimal representation of the feasible 

region should be determined cannot be answered in general too. Moreover 

since the minimal representation is not unique, there might be some prefe­

rence for one minimal representation above another one e.g. based on· 

computational arguments. Therefore one has to decide for each individual 

system whethe't or not to determine a minimal representation. 

However in any case the theory and methods developed here enable us 

for theoretical purposes to assume that a system is in a minimal repre­

sentation without loss of generality. 
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part 2 

LINEAR PROGRAMS 
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8. INTROVUCTION 

The development of linear programming started about thirty years ago 

when G.B. Dantzig and others formulated the simpZex meth.od. Various surveys 

confirm that it is still the operations research technique most widely used 

in practice. Its fields of application range from oil refinery management 

to hospital diet planning; problems with thousands of variables and con­

straints are solved routinely by sophisticated commercial codes. 

Beyond any doubt the simplex method and linear programming have been 

eminently successful from a practical point of view. It is therefore perhaps 

surprising that various fundamental theoretical questions concerning linear 

programming have remained open for a very long time. Several of these 

questions are related to the inherent computational complexity of linear 

programming problems and the surprising success of the simplex method in 

solving these problems~ 

The recent spectacular development by L.G. Khachian of a new method 

for linear programming motivates the reexamination of these questions. Our 

starting point will be the theoretical quality of the simplex method. 

Generally, algorithms for combinatorial problems such as linear programming 

have been labeled good when the computational effort required to solve them 

is bounded by a polynomial function of problem size. In Chapter 9 we give 

a more precise formulation of this criterion; it has turned out to be a 

very satisfactory one, both from a theoretical and from a practical point 

of view, and problems for which such a good algorithm exists can properly 

be labeled easy ones. In the same section we recall that in spite of its 

practical performance the simplex method is not a good algorithm in this 

formal sense; for all the major variations on the method a class of problems 

can be constructed for which the number of simplex iterations increases 

exponentially·yith problem size. This result does not contradict the 

empirical observation that on the average the number of iterations in the 

simplex method is a linear function of problem size. It does underline the 

fact that no satisfactory explanation for this phenomenon has been put 

forward so far. 

It follows that the simplex method cannot be invoked to justify the 

inclusion of linear programming among the formally easy combinatorial 

problems. Would it perhaps be possible to show that a polynomially bounded 

algorithm does not exist or is unlikely to exist in the case of linear 

programming? The most promising technique to establish such a result is 
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provided by the theory of NP-corrrpleteness. If it could be proved that 

linear programming belongs to the class of NP-complete problems, this 

would imply that the problem is computationally equivalent to a host of 

problems notorious for their computational intractability, such as 0-1 

programming and the travelling salesman problem. A polynomially bounded 

algorithm for its solution could then be used to solve all these notoriously 

hard problems in polynomial time as well, and hence such an algorithm is 

very unlikely to exist. 

However, there has always been strong circumstantial evidence against 

the possibility of settling the computational complexity of linear pro­

gramming in this way. We briefly review this evidence in Chapter 10. Con­

sequently, a certain effort was spent on exploring the possibility that 

linear programming might be easier than all the hard (NP-complete) problems, 

yet harder than all the easy (polynomially solvable) ones. In the course 

of this exploration a large list of problems was assembled that were com­

putationally equivalent to linear programming and hence would share the 

above property. A few of these problems are reviewed in Chapter 11. 

This was the situation when in 1979 Khachian published his ellipsoidal 

algorithm. Its most important theoretical property is that it provides a 

polynomially bounded solution method for linear programming, at last 

establishing the formal equivalent of the empirical fact that linear prog­

ramming is indeed an easy problem. Perhaps not surprisingly, the ellipsoidal 

method is completely different from the simplex method; it solves a system 

of linear inequalities by constructing a series of increasingly smaller 

ellipsoids, whose centers converge to a feasible solution if one exists. 

This reflects an approach to the linear programming problem that is 

highly non-combinatorial and closer in spirit to ideas from nonlinear and 

nondifferentiable optimization. We describe the algorithm in some detail 

in Chapter 12 ;._; 

It is already becoming apparent that Khachian's approach could have 

fascinating further applications within combinatorial optimization. 

These applications and other theoretical consequences are explored in 

Chapter 13. In the same chapter we discuss the practical relevance of the 

new method: is it likely to replace the simplex method in the long run 

or is Khachian's contribution merely a theoretical one? It is probably too 

early to give a definite answer to such questions, but in ,any case a whole 

new and extremely useful research area has been opened up, and many addi­

tional exciting results can be expected in the near future. 
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9. THE SIMPLEX METHOV 

Let us start by introducing some concepts from the theory of 

computational complexity, without going into the details of deterministic 

and non-deterministic Turing machines and their language recognition 

capacities (the interested reader is referred to Aho et al. [1974]}. 

These details are not required for the exposition below; a simplified 

treatment will suffice to explain the main implications of the theory. 

An algorithm for a certain problem is termed 'good' if it solves an 

instance of that problem in a number of computations that is bounded from 

above by a polynomial function of the size of the problem instance 

(Edmonds [1965)). The size of a problem instance is defined as the length 

of the input string, under any reasonable encoding of the problem data 

e.g. a binary one. Inf.ormally we say that an algorithm is 'good' if it runs 

in polynomial time. 

This broad definition has attractive theoretical features: it is 

fairly insensitive to the choice of a particular theoretical model of com­

putation and yet it captures the crucial difference between an efficient 

algorithm and one that demands an exponentially increasing computational 

effort. Moreover, the algorithms labelled good by virtue of the above 

definition have generally had polynomial bounds of low degree and work so 

well in practice that their positive qualification is amply deserved. 

(9. 1) 

(9. 2) 

(9. 3) 

The current standard way to solve the linear programming problem 

maximize 

subject to 

and 

T 
C X 

Ax~ b 

X 2: 0 

with c e: Rn, x e: Rn, be: Rm and A e: Rmxn, is by means of the sirrrplex method, 

developed by Dantzig and others in 1947. The simplex method constructs 

a path along the edges of the polytype defined by (9.2) and (9.3) in such a 

way that the consecutive extreme points have nondecreasing objective 

function values attached to them. In each iteration, the method examines 

if further improvement in the objective function is attainable by moving 

from the current extreme point to one of its neighbours; if so, one of 

theseneighboursis selected by means of a pivot selection rule and a pivot 
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step is executed. To determine the theoretical quality of the simplex method 

it suffices to analyze the number of steps in the path, because the number 

of computations carried out for each extreme point is clearly polynomially 

bounded. Since the number of extreme points is bounded from above by(~), an 

obvious upper bound* on the number of simplex iterations is O(nm). This 

bound is clearly exponential in m. 

On the other hand, in practice the number of iterations in the sim­

plex method usually ranges from m to 3m, as verified in many experiments 

(see e.g. Wolfe and Cutler [1963], Quandt and Kuhn [1964]). The difference 

between practical performance and theoretical upper bound has caused Gale 

[1969] to speak of 'a large and embarassing gap between what has been ob­

served and what has been proved', which 'has stood as a challenge to 

workers in the field for twenty years now and remains, in my opinion, the 

principal open question in the theory of linear computation'. Three years 

later, in a landmark contribution, Klee and Minty [1972] showed that the 

above obvious upper bound on the number of iterations may actually be 

attained on certain classes of linear programming problems. We shall discuss 

their result in some detail. 

The basic construction to show this is extremely simple: it uses the 

fact that a hypercube can be perturbed slightly so as to contain a path that 

visits all 2n vertices and along which the last coordinate x is always 
n 

increasing. If the pivot selection rule is simply one under which any 

neighbouring vertex that yields an improvement may be chosen, and if the 

objective function is taken equal to xn' then we obtain the required 

counterexample against polynomially bounded behaviour. 

The perturbation technique is illustrated for the cases n=2 and n=3 

in Figures 1 and 3 respectively. Note that the 3-dimensional example is 

constructed by first forming the Cartesian product of the two-dimensional 

example and tM interval [0,1], as in Figure 2. It is then further per­

turbed as in Figure 3 to obtain the required sequence of nondecreasing x 3 
coordinates. 

*The conjecture that a smaller upper bound of ;(min) existed (Saaty [1963]) 

was proven to be false (Quandt and·Kuhn [1964]; Goldman and Kleinman [1964]). 
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Obviously this particular counterexample does not work for a dif­

ferent choice of pivot selection rule. However, similar, albeit more com­

plicated, constructions have been presented for almost every pivot selection 

rule that has been suggested so far. 

For these cases we introduce the notion of a reversible simplex path, 

which is a path that will be followed in reverse order if we replace the 

'max' operator by a 'min' operator and start in the optimal solution under 

the former. Define the maximum numbe·r of steps in a normal and a reversible 

simplex path for a linear programming problem with n variables and m con­

straints as M(n,m) and R(n,m) respectively, then clearly 

(9.4) M(n,m) 2' R(n,m) 

To prove that M(n,m) is not polynomially bounded it suffices to show 

that R(n,m) is exponential. To this end Klee and Minty [1972] constructed a 

class of polyhedra on which 

(9.5) R(n+2, m+k+l) 2' k R(n,m) + k-1 

Then by induction on n we can prove that 

(9.6) liminf 
n-+<x> 

The proof is as follows: 

L liminf 
n-+<x> 

R(n+2, ml 
[½Cn+2l] 

m 

from (9.5) with k~m it follows that: 

L ;,, liminf 
n+oo 

and by induction we have 

m R(n,m) + m-1 

(2ml (2m) [½n] 

1 

liminf 
n-+<x> 

R(n+2, 2m+l) 

(2m+ll [½n]+l 

liminf 
n-+<x> 

R(n,m) 
7n/2T m 
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This completes the proof of (9.6) which in turn implies that 

R(n,m) = Q(m[n/2]) and hence M(n,m) = O(m[n/2]). 

To prove that there is a class of linear programming problems on 

which (9.S) is true, we have to construct a polyhedron on which it holds. 

Klee and Minty [1972] use the polyhedron V and its perturbation W sketched 

in figure 9.4. 

Figure 9.4. 

The po I ytopes V and W 
0 

\ 1 
\ 

\Wo -- - -- -- --- - -- -- - - ----- -----------

In this figure k should be considered a parameter denoting the number of 

faces of the polyhedra V and W. Furhter note that the xn+l coordinates of vi, 

i even, are larger than those of wi, while the opposite is true for i odd. 

Finally the line segments (vi,vi+l) are parallel to (wi,wi+l) for all 

i=l, •.• ,k-1. Consider a polyhedron P with a reversible simplex path p 0 , ••. ,pt 

of length R(n,m) for objective function cTx with cTp0=o and cTpt=l. We form 

the Cartesian product vxp, which is perturbed to obtain the (combinatorially 

equivalent) polyhedron Q. The perturbation is accomplished by defining the 

xn+l and xn+2 coordinates attributed to all points pEP as 

This operation is illustrated in Figure 9.5 where P [0,1]. 
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Figure 9.5. The perturbed Cartesian product Vx(0,1) on which the simplex 
method passes through almost all extreme points 
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Finally, by suitable choices of the scales of the variables, one can guaran­

tee that the simplex method with the pivot selected to maximize the objec­

tive function value improvement per unit change in the variable introduced 

into the basis, starting in (:o ), follows the reversible simplex path on P 
1 l 

while staying in the (perturbed) v1 position of the xn+l and xn+2 coordin-

ates, i.e. follows the path 

Then the simplex method leads to(:;) and back again to(:~) following the 

reversible simplex path. Since this process repeats itself fort= 1,2, •.. ,k, 

inequality (9. ) follows. 

It is not directly clear how to translate this geometrical construc­

tion into algebraic terms. However a particularly elegant example of an 

exponential number of iterations in the simplex method was given by Avis 

and Chvatal [1978]. The simplex method requires 2n-l steps on the problem: 
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The construction by Klee and Minty [1972] leaves open the possibil­

ity that the simplex method with another pivot selection criterion is 

polynomially bounded. Jeroslow [1973] formulated a counterexample for 

one of the major candidates: selecting the pivot to maximize the improve­

ment in the objective function value per iteration. 

Instead of the polytopes V and W sketched in figure 9.4 slightly 

different polytopes V' and W' are obtained by introducing parallellograms 

in between ev~ry two trapezoids as sketched in figure 9.6. 

_Figure 9.6. 

The polytopes V' and W' 
v; 

Q Yo "'• 

I ""I Vs v,• 
VJ / \ \ 
/ / \ \ 

I I \ \ 
I I \ \ 

I I \ \ 
I I \ \ 

I I \ \ 
I I \ \ 

I I \ \ 
/ I \ \ 

I I 
I I 

I I 
w: ~ 



Then in the same way in which figure 9.5 was constructed from 

figure 9.4, Jeroslow constructed the cartesian product V'xP; for the 

purpose of illustration again we take P = [0,1]. 

I 

⇒ I 

Figure 9.7. The perturbed cartesian product V' x [O, l] 

From this figure one can verify that the path is followed as 

indicated by the heavily drawn lines, if the pivot is selected as as to 

maximize objective function improvement in each step. Thus we have shown 

that for this pivot selection rule too a polyhedron can be constructed 

such that almost all extreme points are visited. In fact Jeroslow [1973] 

proved that for this pivot selection rule (indicated by a prime) 

R' (n+2, m+4k+3) ~ 2k R' (n,m) + 4k 

This implies that 
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and this variant of the simplex method is not polynomially bounded either. 
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In view of relatively good performance (as far as the number of 

iterations is concerned) of the simplex method with the pivot selection 

rule of maximizing gradient in the space of all variables, as reported 

by Quandt and Kuhn [1964] and Crowder and Hattingh [1974] some hope has 

been held that this method might be polynomially bounded. However, 

Goldfarb and Sit [1978] were able to construct a counterexample to this 

conjecture as well; it is somewhat similar to the construction by Klee and 

Minty [1972], but requires larger perturbations. 

Jeroslow [1973] indicated that it is possible to extend his result 

to still other pivot selection rules such as maximizing objective function 

improvement pert (t~l) iterations. 

A pivot selection rule for which no counterexample for polynomial be­

haviour has been constructed so far, is suggested in Zadeh [1980]. Accord­

ing to that tule, pivots are chosen to introduce variables into the basis 

that have been basic in the smallest number of previous extreme points. 

However, as yet it has only been conjectured and not proved that there 

is no pivot selection rule for the simplex method that yields a polynomially 

bounded algorithm. Moreover practical linear programming problems seem to be 

of a type that can be solved efficiently by the simplex method (Liebling [1973] 

None the less, we are forced to conclude that almost all the major 

variants of the simplex method exhibit exponential behaviour in the worst 

case, in spite of their excellent average case behaviour. No satisfactory 

explanation of this discrepancy has been put forward. In principle, it 

might be possible to prove expected polynomial time behaviour of the simplex 

method by specifying an appropriate probability distribution over all 

instances of the linear programming problem. This has indeed been attempted, 

given various definitions of random polytopes~ without much success (cf. 

Borgwardt [1978], Sulanke and Wintgen [1972]). In this sense, the 'large and 

embarrassing gap' alluded to above still exists. 

Recently, Dantzig [1980] showed that certain probabilistic assump­

tions about the behaviour of the simplex method can imply polynomially 

bounded expected running time, but unfortunately it has not been possible 

so far to relate all these assumptions to a probability distribution over 

problem instances. 

The only conclusion that we can draw from the O(nm) bound on the 

number of simplex iterations is that the linear programming problem is 

solvable in polynomial time for every fixed constant value of m (or, by 

duality, of n). Thus, the two-dimensional problem can be solved in 0(m2 ) 
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time. However this is not optimal as was proved by Shames and Hoey r1976]. 

They consider convex polygons as represented by their extreme points in 

consecutive order. This representation enables one to find the intersection 

of 2 convex polygons with k sides in O(kl time (Shames [1975]). It is 

then easy to prove that the common intersection of m halfplanes can be 

found in O(m log ml time: let Hi i = 1, ... , m be the halfplanes, then 

m 
n 

i=l 
H, 

1. 

Since both terms in the parentheses are convex polygonal regions of at most 

m/2 sides, they can be intersected in O(m) time. If T(m) is the time 

required to form the intersection of n halfplanes this yields 

T(ml 2 T(m/2l + O(ml 

and therefore 

T(ml O(m log ml. 

Shames and Hoey [1976] also proved optimality of this result by 

showing that an algorithm for determining the common intersection of n 

halfplanes can sort numbers, for which problem an O(m log m) lower 

bound has been established. The construction is simple: given n real 

numbers x 1 ... xm' let Hi be the halfplane containing the origin defined 

by a line of slope xi, that is tangent to the unit circle. The inter­

section of these halfplanes is a convex polygon, whose successive edges 

are ordered by slope. Once the intersection polygon is formed, we can 

immediately read off the xi in the proper order, so O(m log ml comparisons 

must have bee<); performed. 

Since the linear programming problem can be solved by calculating 

the objective function value in all (at most ml extreme points, which can 

be done in linear time, the two-dimensional linear programming problem 

can be solved in o(m log ml time. 

One might be tempted to hope that extending the above method to 

higher dimensions will yield better upper bounds for linear programming 

than the simplex method does. However it turns out not to be efficient 

to determine all extreme points and then calculate the objective function 

values, since the number of extreme points grows exponentially with the 

number of variables. 
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1 . THE COMPLEXITY OF LINEAR PROGRAMMING 

In view of the apparent impossibility to solve linear programming 

problems in polynomial time, it became more and more tempting to aim for a 

proof that a worst-case exponential solution method such as the simplex 

algorithm is likely to be unavoidable. A suitable theoretical framework 

for such a proof was provided by S.A. Cook [1971] and R.M. Karp [1972] in 

their pathbreaking work on computational complexity theory. 

The theory of NP-completeness deals with the complexity of recogni­

tion problems, i.e. questions that require a yes/no answer. This, incident­

ally, is not a serious restriction: optimization problems such as linear 

programming ( (9. 1) - (9. 3) ) can be formulated as recognition porblems by asking 

for the existence of a feasible solution with objective function value at 

least equal to a given threshold y. A recognition problem is now said to 

belong to the class .p of easy problems, if for any instance the answer to 

the yes/no question can be provided in polynomially bounded time. It belongs 

to the class NP if a proposed positive answer to the question can be veri­

fied for correctness in polynomially bounded time. Thus, the recognition 

version of linear programming trivially belongs to NP: given x E Rn, it is 

possible to verify in O(nm) time, whether 

(11.1) 
{ 

CTX ;?: y 

Ax $ b 

X <': 0 

From the above definitions, it is obvious that P '.:_NP.To compare 

the relative difficuly of problems in NP, we next introduce the notion of 

problem reducibility. Problem P' is said to be reducible to problem P 

(notation: P' ~ P) if for any instance of P' an instance of P can be ~on­

structed in polynomial time such that solving the instance of P will solve 

the instance of P' as well. Informally, the reducibility of P' to P implies 

that P' can be considered as a special case of P, so that Pis at least as 

hard as P'. Pis now called NP-corrrplete if P' « P for every P' ~ NP. In 

that case, Pis at least as hard as any other problem in NP. Thus, the 

NP-complete problems are the most difficult problems in NP, and every prob­

lem in NP is a special case of such an NP-complete problem. 

Suppose that it could be proved that linear programming, as formulat-
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ed above, is an NP-complete problem. In that case, a polynomially bounded 

algorithm for its solution could be used to solve not only linear programm­

ing but every single problem in NP in polynomial time: for any instance of 

a problem in NP, one could first construct the corresponding linear programm­

ing instance and then solve the latter problem, with both steps being poly­

nomially bounded. However, NP contains many notoriously difficult problems, 

none of which is likely to be polynomially solvable. The conclusion is that 

if any problem (and linear progrannning in particular) is NP-complete, it is 

unlikely to admit of a formally good algorithm. 

One of the nice features of NP-completeness theory is that many of 

the problems that are notorious in practice for their computational intrac­

atability can indeed be proved to be NP-complete, including such classical 

ones as the 0-1 progrannning problem and the travelling salesman problem 

(see Garey and Johnson [1979] for a survey of these results and of the 

- surprisingly simple - proof techniques). As in the case of good algorithms, 

this yields overwhelming empirical justification for a theoretical concept: 

the NP-complete problems can properly be called the truly hard ones. By 

itself, this already argues against NP-completeness of linear programming. 

In spite of its theoretical deficiencies, the simplex method works so well 

that linear progrannning cannot be called hard from any practical point of 

view. 

The scepsis about the possibility of proving NP-completeness for 

linear progrannning can be motivated from a more theoretical point of view 

as well. The recognition version of linear programming amounts to no more 

than asking for a feasible solution to a system of linea:r> inequalities 

(11.1). The problem complementary to thiij one would amont to asking for 

verification that no such feasible solution exists. In view of the Farkas 

lemma, these two questions are computationally equivalent. Now, if linear 

programming WQUld be NP-complete, a similar equivalence would hold between 

every other NP-complete problem and its complement. For all of these prob­

lems, however, the complements are not even known to belong to NP: 
If NP-completeness of linear progrannning is unlikely and polynomial 

solvability hard to establish, is there then perhaps a third possibility? 

Somewhat surprisingly, the answer to this question is positive: under 

the (as yet unproven!) assumption that Pf NP, it has been p~ssible to 

prove that there exists an infinite hierarchy of problems between the class 

P and the class of the NP-complete ones (Ladner [1975]). Linear programming ap­

peared to be a natural candidate for this ubtermediate position. But as yet only 
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artificially constructed problems have been shown to be members of this 

intermediate class. 

The classes P and NP are certainly not the only classes of interest. 

There are for example the class PSPACE, which contains all problems solvable 

in polynomial space, and the class LOGSPACE, which contains all problems 

solvable in space linear in the logarithm of problem size. It is not hard 

to see that LOGSPACE.::. P, but whether the inclusion is a proper one or not 

is not yet determined (see Garey and Johnson [1979] for a more detailed 

treatment). This is of some interest for the complexity of linear programm­

ing because Dobkin et aZ. [1979] showed that linear programming is LOGSPACE­
hard for P, which means that, if linear programming is solvable in space 

O (log kn) for some fixed k, then all problems in Pare solvable in space 
k' O (log n) for some fixed k'. 
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11. LP-EQUIVALENT PROBLEMS 

In the course of investigating the computational complexity of 

linear programming, it became obvious that whatever would be true for linear 

programming would also be true for a class of problems computationally 

equivalent to linear programming (equivalent, in the sense of being mutually 
. ~ * reducible to each other). We shall call these problems LP-equ~Va&ent. 

The starting point for establishing LP-equivalent problems are the 

following two formulations of the linear programming problem: 

LINEAR PROGRAMMING-OPTIMIZATION (LP-OPT): 

Given: An integer (mxn)-matrix A, an integer m-vector band an integer 

n-vector c. 

Question: Find a rational h-vector x such that Ax Sb and cTx is maximal. 

LINEAR PROGRAMMING-RECOGNITION (LP-REC): 

Given: An integer (mxn)-matrix A, an integer m-vector b, an integer 

d . 0 
n-vector can an integer z 

Question: Is there a rational n-vector x such that Ax Sb and cTx ~ z0? 

First note that the integrality assumption is made to exclude 

irrational coefficients, since they would imply an infinitely large 

problem size and hence render our definition of a 'good' algorithm 

meanipgless. Clearly rational coefficients are not excluded by this 

assumption, since the problem can always be rescaled so as to make these 

integer.-

Second we have stated both the optimization problem and the 

recognition p_r.oblem to facilitate proving LP-equivalence for a number of 

other problems. First we show that these problems themselves are 

equivalent: 

* 

Clearly LP-REC~ LP-OPT. 

To prove LP-OPT~ LP-REC, suppose we have a 'good' algorithm for LP-REC; 

then LP-OPT could be solved in polynomial time as follows: 

- First check wl-tether Ax s b admits of a feasible solution. If 

not, LP-OPT has no solution. 

Dobkin and Reiss [1978] use the confusing term LP-complete problems. 
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- Next, determine whether the system is unbounded by applying the 
. . 0 m+n+2 

LP-REC algorithm with z = (m.q) + 1, where q is the largest 

absolute value of an integer from A, b or c. 

Since no finite optimal solution exists with objective function 

value larger than zO (Papadimitriou [1979]), feasibility of this 

system implies an unbounded solution to the LP-OPT problem. 

- Finally, determine the objective function value of the optimal 

solution by a polynomially bounded search over rationals 

(Papadimitriou [1979], Reiss [1979]). In the same way the values 

of the variables can be determined. 

Now we list some prominent LP-equivalent problems typical of many other 

problems: 

LINEAR INEQUALITIES (LI): 

Given: An integer (mxn)-matrix A and an integer m-vector b. 

Question: Does a rational n-vector x exist such that Ax~ b? 

STRICT LINEAR INEQUALITIES (SLI): 

Given: An integer (mxn)-matrix A and an integer m-vector b. 

Question: Does a rational n-vector x exist, such that Ax< b? 

LINEAR PROGRAMMING COMPLEMENT (LPC): 

Given: An integer (mxn)-matrix A, an integer n-vector c, an integer 
0 

m-vector b, and an integer z. 

Question: Is there no rational n-vector x such that Ax~ band cTx ~ zO? 

STRICT REDUNDANCY (ST-RED) 

Given: An int~ger (mxn)-matri~ A and an integer m-vector b. 

Question: Is the constraint 

Ax~ b? 

WEAK REDUNDANCY (W-RED): 

'- a 1jxJ. ~ b 1 strictly redundant in the system 
j=l 

Given: An integer (mxn)-matrix A and an integer m-vector b. 
n 

Question: Is the constraint L a 1jxj ~ b 1 weakly redundant in the system 
j=l 

Ax ~ b? 



IMPLICIT EQUALITY (IEQ): 

Given: An integer (mxn)-matrix A and an integer m-vector b 
n 

Question: Is the constraint r a 1 jxj :;; bl an implicit equality in the 
j=l 

system Ax:;; b? 

Geometrical counterparts to all of these. problems can readily be 

obtained by replacing constraints by hyperplanes and using fundamental 

duality theory of linear programming. Perhaps not so obvious is the 

relation with some other geometrical problems: 

EXTREME POINT (EP); 

· f . 0 1 n . m Given: A set o points p, p, p in R. 
O O 1 n 

Question: Is p an extreme point of the convex hull of p, p, ... p? 

BOUNDEDNESS (BND); 

Given: A set of halfspaces H1 , ... Hm in Rn. 

Question: Is H 
m 

n Hi bounded? 
i=l 

POINT-SET SEPARATION (P-S SEP); 

Given: Points p 
0 1 2 n , p , p , ... p in 

Question: Is p 
0 separable from p 

1 
I 

exist such that 
0 

is on p 

m 
R . 
2 

p I 

one 

other side of the hyperplane? 

... , 
side 

n 
p I 

and 

A still less obvious LP-equivalent problem is: 

DIRECTED TWO COMMODITY FLOW (D2CF); 

i.e. does a hyperplane 
1 2 n 

p , p , ... p on the 

Given: A dire.c.ted graph G = (V ,E) in which two vertices are denoted 

sources and two vertices are denoted sinks, with capacities on all 

edges and an integer f. 

Question: Is there a flow from sources to sinks, such that the capacities 

are not exceeded and the flow is greater than f? 
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We shall prove that all of the problems above are LP-equivalent. To 

illustrate our proofs the basic scheme of reductions is given in figure 

11.1; an arrow pointing from problem P to problem Q indicates that we 

shall prove P ~ Q. 
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Figure 11.1. Reductions between LP-equivolent problems: symbols refer to the 
proof in the text 

The following reductions suffice to prove LP-equivalence of all problems 

above: 

(al LP-REC= LI: 

trivial 

(bl SLI - LI: 

it can be shown that there is a polynomially bounded scalar a(A,bl 

that Ax:, b has a solution if and only if 

Ax< b + a(A,bl 

has a solution (see Gil.cs and Lovasz [1979]l. 

(cl LP-REC= LPC: 

trivial, used in phase I of the simplex method. 

(dl ST-RED~ LP-REC: 

immediate from the definition of a strictly redundant constraint 

(Telgen [1977A]l. 

such 



(e) LPC ac ST-RED: 

In the LPC problem 

JAX s b 
1 T 0 
LC X 2: Z 

we may assume that Ax s bis feasible (can be checked as LI which is 

LP equivalent). 

Then LPC is infeasible if and only if the constraint cTx s zO is 

strictly redundant in the system 

{ Ax s b 
T 0 

C X S Z 

To see this note that cTx s zO is strictly redundant if and only if 

cTx < zo V x with Ax s b. 

(f) EP ac LPC: 
O . 0 1 n 

The point p is an extreme point in the convex hull of p, p, ... , p 

if and only if 
n 
L 

j=l 

n 
L 

j=l 
11 

-L 
j=l 

(g) P-S SEP= EP: 

there 

A.Pj 
J 

A. 
J 

A. 
J 

A. 
J 

is no A = (Al' 
0 

2: p 

2: 0 V j 1' •••I 

s 1 

s -1 

0 . f 2 The point p is separable romp, p, 

A) E Rn such that 
n 

n 

pn if and only if po is 
0 

an extreme point for the convex hull of p , 
1 n 

p ' ... ' p . 

(h) BND ac EP: 

Denote every Hi as {x E Rn 
n 
L 

j=l 
a . . x. 
iJ J 

s b.}, 
i 

then H = {x E Rn I Ax s b}. 

His bounded if and only if 

H' = {x E Rn I Ax s O} 

is bounded, which is true if and only if the origin is an extreme 

point with respect to the points 

Vi 1, ... , m 

97 
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(i) ST-RED oc BND: 
n 

The constraint I a 1J.xj $ b 1 is strictly redundant in the system 
j=l 

Ax $ b if the system 
n 
I a 1jxj $ - bl 

j=l 
n 
I aijxj $ b. V i 2, ... , m 

j=l 
J. 

is infeasible. 

Adding a maximizing (null) objective function and dualizing we obtain 

the problem: 
m 

min - blyl + r. b,y. 
i=2 

J. J. 

m 
s.t. - aljy 1 + I aijyi 2 0 V j 1, .... , n 

i=2 

y, 2 0 V i 1, .... , Ill 
J. 

Since this problem always has a feasible solution (y=O), the former 

system is infeasible if and only if the system 

m 

- blyl + I 
i=2 

Ill 

b.y. 
J. J. 

- aljyl + ~ aijyi :2: 0 
i=2 

is unbounded. 

(j) ST-RED oc W-RED 
n 

V j 1, •.. , n 

Vi 1, ... , m 

The constraint I a 1 jxJ. $ b 1 is strictly redundant in the system 
j=l 

Ax$ b if and only if it is not weakly redundant and not binding. 

Checking the latter is an LI problem and since LI= ST-RED, this 

suffices to prove ST-RED oc W-RED. 

(k) W-RED = IEQ: 
n 

The constraint I a 1 .x. $ b 1 is weakly redundant in the, system 
j=l J J n 

Ax$ b if and only if the constraint I a 1 .x. 2 b 1 is an implicit 
j=l J J 

equality in the system 



n 
L a 1jxj ;,: bl 

j=l 

n 
L a . . x. :<; b. V i 2, ••••I m 

j=l 1.J J 1. 

(1) W-RED ~ LP-OPT: 

Trivial from the definition of weakly redundant constraints. 

(m) D2CF ~ LP-REC: 

see e.g. Ford and Fulkerson [1962]. 

(n) LP~ D2CF: 

We shall sketch the fairly complex proof due to Itai [1977]. The 

starting point is the LINEAR EQUALITIES (LE) problem, which can be 

seen to be LP-equivalent by standard transformations. 
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An [i,u] LE problem is defined as an LE problem with all coeffi­

cients being integers betweeni and u. First, it is shown that 

LE~ [-2,2] LE by bitwise decomposition of all constraints, i.e. a 

constraint La .. x. 
j 1.J J 

b. is rewritten as 
1. 

k . 
r. [Z: 2 a~k]x. 
j k i J 

in which all aik and b! are either -1, 0 or 1. Now we may replace this 

single constraint by a system of constraints in which the coefficients 

of all powers of two are equalled: 

j bi 
~ aikxj - 2 (yk - zk) + (yk-1 - zk-1) = k Vk 

The terms in yk and zk take into account the transfers from one 

equation to the next one. If Mis the largest coefficent in the matrix 

the maximal number of constraints in the new system is log M. Since 

this is p9lynomial we have LE~ [-2,2] LE. 

It is easy to see that [-2,2] LE~ [-1,1] LE since we can 

replace variables x. with coefficents of+ 2 by±_ (x'. + x'.) and add 
J J J 

the extra constraint x'. - x'.' = 0. 
J J 

The reduction to flow problems can be achieved by considering 

the problem: 

HOMOLOGOUS FLOW (HOMFLOW); 

Given: A graph G = (V,E), in which one vertex is denoted as source 

and one as sink, capacity constraints on the edges and some 

sets of homologous edges i.e. sets of edges, through which the 
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flow has to be equal. 

Question: Is there a feasible flow in this network? 

Itai [1977] proved [-1,1] LE~ HOMFLOW by considering the network 

given in the following figure: 

Figure 11.2. The network used in proving [-1, 1] LE a: HOMFLOW 

In this figure a part of a network is shown which corresponds 

to one constraint i in the [-1,1] LE problem: for every variable j 
i 

there is a vertex v. which is connected 
J 

to the value of a .. ; other vertices and 
l.J 

in the figure. An additional vertex s = 

with v~, v! or v= 1 according 

edges are defined as sketched 

zO is introduced as the 

source of the network, while zm is the sink. 
i i i i 

The edgeit · (V 1 , y ) and (V _ 1, y ) are homologous for all i, as well as 

the set of edges: 

(zO ,v~), (z 1 ,v~), •.... , (zk-l ,v;) for all j. 

i i 
Furthermore the edges (v1,z) have a fixed minimal and maximal 

capacity of bi for all i. 

Then it is easily seen that a solution to HOMFLOW in this 

network, given by the flows through the edges (z0 ,v~) for all j, 
J 

determines a solution to [-1,1] LE. 



By introducing a second commodity and a special kind of edges 

we can get around the homology requirement. An edge is called 
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selective if only one specific commodity may pass through it. Selective 

edges may be used to simulate homologous edges. If the edges (1,2) and 

(3,4) are homologous, we apply the construction given in the following 

figure. 

Figure 11.3. Simulating homologous flow with selective edges (c is a large constant) 

The commodity that may pass through the edge is indicated 

above the edge, while the capacity is indicated below the edge (where 

necessary). Now it is easily verified that the flows from 1 to 2 and from 

3 to 4 must be equal. The selective edges in turn can be simulated by 

introducing an extra source and sink for the selected commodity i and 

replacing the selective edge (1,2) with capacity (l,u) by the structure 

given in the following figure. 

(I, u) (o, u-1) (I, u) 

(u, u) (u, u) 

Figure 11.4. Simulating a selective edge (1, 2), through which only commodity i passes 

In this way Itai [1977] showed that linear programming reduces 

to finding a feasible flow in a directed two commodity flow problem 

with constraints on the capacities of all edges; thus LP~ D2CF. 

Itai [1977] noted that, since the reductions used never rely on the 

fact that 2 commodities are involved, the result can be extended tom 

commodities (m~2) which means that the directed multi commodity flow 
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problem is also LP-equivalent. 

Single commodity flow problems in a directed network are solvable 

quite efficiently and membership of P for the directed single commodity 

flow problem has been proved (Edmonds and Karp [1972]). Therefore it is 

interesting to ask which linear programming problems may be converted 

into a single commodity flow problem, such as the transportation and 

assignment problem, since that would enable us to solve those LP problems 

in polynomial time. 

However it is not always straightforward to check whether a given 

linear programming problem has an underlying network structure; constraints 

and variables may have to be combined, added, redefined etc. to reveal 

the network structure. Usually the only clue as to how this should be done, 

can be obtained from considering the practical background of the problem. 

Recently Bixby_ and Cunningham [1980] and Musalem r1979J developed 

algorithms to detect the possibility of conversion and to perform the 

conversion in polynomially bounded time. The method of Bixby and Cunningham 

[1990] tries to convert the incidence matrix of the rows to a graphic 

matroid. If it succeeds, the graphic matroid is used to scale the problem. 

Musalem [1979] scales the problem to a (-1;·+1,0) ·matrix and then builds a tree, 

edge by edge, to reveal the partial. ordering related to the hidden network 

structure. 
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12. THE ELLIPSOIVAL METHOV 

The announcement by Khachian [1979] of a polynomially bounded 

method for linear progrannning fell upon skeptical ears: in 1973, H.D. Scolnik 

surprised the participants at the Stanford Mathematical Progrannning 

Symposium with a similar claim, and it required quite an effort to detect 

the fatal flaws in his algorithm (Gay [1974], White [1974]). It took about 

three months for Khachian's work to reach Western researchers. Again three 

months later, P. Gacs and L. Lovasz [1979] supplied the proofs that were 

missing in the original manuscript and established the validity of the 

algorithm. The new developments attracted a lot of publicity; some amusing 

background information is provided in Lawler [ 1980 J. 

In describing Khachian's approach it is most convenient to start from 

the strict linear inequalities problem: find x such that 

n 
(12.1) :I:j=l aijxj < bi (i 1, ... ,ml , 

whose equivalence to linear progrannning was noted in the previous section. 

Khachian's method will be polynomial in the size of a problem instance, 

measured here by n, m and by the number L of bits needed to store the 

numerical problem data: 

L 
n 

:I:. 1 ]= 

t 
!'l 

(log I aij I + 1) + :I:i=l (log I bi I + 1) + log nm + 1. 

It should be observed that running time bounds that are data depend­

ent in that they involve the logarithms of numerical problem data occur 

for other problems as well (such as the linear transportation problem, 

Edmonds [1965]) and that they are perfectly acceptable from a theoretical 

point of view., 

Now, for the strict linear inequalities problem (12.1), upper and 

lower bounds on the volume of the set of feasible solutions can be provided 

as follows: 

(1) if ( 12. 1) is feasible, a solution can be found within the hypersphere 

{x : lxl :S 2L}; 

(2) if (12.1) is feasible, the volume of the set of solutions inside the 

hypercube {x : Ix.I :S 2L} is at least 2-(n+l)L. 
J 



These results belong to folklore and can be proved using Cramer's 

Rule (see also Gacs and Lovasz [1979]). Note that observation (2) reflects 

the fact that the set of solutions to (12.1), if nonempty, must have a 

strictly positive volume. 

Khachian's method can now be summarized as follows. In the k - th 

step of the method, we will have obtained a (hyper)ellipsoid such that if 

there exists a feasible solution to (12.1), it is contained in this ellip­

soid. The center of the ellipsoid¾ is tested for feasibility. If¾ is 

feasible, we stop. If not, we select a constraint from (12.1) that is 

violated by xk, and construct a hyperplane parallel to this constraint 

through¾· This hyperplane cuts the ellipsoid into two halves, one of which 

certainly does not contain a feasible solution. We now construct a new 

ellipsoid that circumscribes the other semi-ellipsoid, and move on to the 

(k+l) - st step. 

Observations (1) and (2) allow us to initialize the method with a 

unit hypersphere of radius n\2L around the origin and to terminate the 

process if the volume of the new ellipsoid becomes smaller than 2-(n+l)L; 

in the latter case, no feasible solution exists. It follows that the number 

of steps will be determined by the ratio of the volume of two successive 

ellipsoids. 

For a precise description, assume that the k - th ellipsoid is given 

as 

(12.2) {x 

Suppose that the current center¾ of (12.2) violates the constraint 

a~x < b .• The hyperplane parallel to this constraint through x. is given 
i T i T k 

by aix = ai¾" To construct the (k+1) - st ellipsoid, consider a 

hyperplane parallel to the violated constraint of the form a~x 
i 

with 0 > 0 chosen in such a way that the hyperplane is tangent to the 
T 

ellipsoid at the feasible side of aix 

given by 

bi. The point of tangency x'k is 

The new ellipsoid is now uniquely determined by the following four require­

ments (Figure 12.1): 



(a) its center ¾+l is located on the line connecting¾ to x'k; 

(b) 

(c) 

T T 
it touches aix =ail\:+ 8 in x'k; 

T T . h it intersects aix = ail\: int e same 

old ellipsoid did; 

lower-dimensional ellipsoid as 
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(d) it has minimal volume over all ellipsoids satisfying (a), (b) and (c). 

a 1x=b. o'.x=o1xk 
I I I 

◄ _,,,_--- ...... 
/ 

..... 
' / 

/ '\ I 

' I \ I \ 

I \ 
\ I \ I 

ff \ 
I 
I 
I 
I 

xk+l xk I 

I 
I 
I 

I 
I 
I 

I I 
\ I 

' I 
\ I 
\ / 

Ek+l' I 
\ I 

\ I 

' 
I 

' '- ...... ___ .,,,,,,..,,,,,,...,,. 

Fig:ure 12.1. The ellipsoidal method. 

By making use of the crucial property that problem (12.1) is invar­

iant under affine transformations, it is easy to deduce update formulae 

expressing•¾+l and Ek+l in terms of¾ and Ek as a consequence of the above 

four requirements. The current ellipsoid is first transformed into a unit 

sphere around the origin;ai can then be assumed to be a unit vector. After a 
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simple calculation, followed by the inverse of the above transformation, one 

obtains: 

( 12. 3) 
1 Ekai 

~+1 ~- n+1 
/a~Eka. 

l. l. 

(12.4) 

T 
2 ( 2 (Ekai) (Ekai) \ n 

Ek+1 -2- \ Ek n+1 
a~Ekai 

} 
n -1 

The affine transformation referred to above can now also be used 

to calculate the (affinely invariant) ratio of two successive volumes. 

Straightforward calculation yields that this ratio is equal to 

2 (n-1)/2 
( n \ 

\ n2-1) 
(12.5) 

n 
n+1 

2 2 1/(n2-1) -1/(n+1) 
Since n /(n -1) s e and n/(n+1) s e , an upper bound on (12.5) 

is given by 

(n-1)/(2(n2-1)) - 1/(n+1) 
e 

It is now an easy matter to verify that it takes at most 4(n+1) 2L itera­

tions to reduce the volume of the initial hypersphere to less than 

2-(n+l)L · f b · (2) h' . ld 1 . lb d • In view o o servat1.on , t 1.s y1.e s a po ynom1.a oun on 

the number of iterations that can occur in the worst case. 

Finally we note that t..here is one computational issue that we have 

ignored so far: the precision required to perform the calculations (cf. 

the square root appearing in (12.3)). Without going into technical details, 

we simply meni!on that all above statements about the algorithm remain 

f -10nL 
correct if a precision o e is maintained throughout the execution 

(Stone [1980]). 

It is a result such as the latter one that immediately raises doubts 

about the practical usefulness of the algorithm. Maintaining the precision 

cited above would be an impossible task on a real computer, in spite of the 

polynomial bound on the number of bits that would be required. Similarly, 

the worst case bound on the number of iterations of 4(n+1) 2L seems imposs~ 
3 

ibly large as well: if n = 10, m = 10 and each coefficient requires no 

more than 10 bits, about 108 iterations could be necessary! Obviously, 
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polynomial bounds can still be very large indeed (Dantzig [1979]). 

Is there any hope that the ellipsoidal method will eventually turn 

out to be an empirically good one as was the case with its polynomially 

bounded predecessors? Or are its merits purely theoretical? This question, 

as well as the theoretical implications of Khachian's result, will be dis­

cussed in the final section. 
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13. CONCLUSION 

There is no doubt that the ellipsoidal method is a remarkable one, if 

only for the fact that it represents an approach to linear programming 

which is radically different from the simplex method. A typical feature of 

the latter method is that it is very much a combinatorial one: it can 

easily be generalized to work over arbitrary ordered fields and has led to 

the study of purely combinatorial structures such as oriented matroids 

(Bland and Las Vergnas [1976]). The ellipsoidal method, on the other hand, 

crucially depends on the metric structure of Rn. It is this metric struc­

ture, combined with the convexity (rather than the linearity) of the con­

straints that makes the algorithm work. It is not surprising, therefore, 

that in a subsequent publication Khachian et al. [1979] showed that the 

method can be extended to solve convex quadratic programmin,g problems in 

polynomial time as well. 

The ellipsoidal method itself is closely related to methods of non­

linear programming, and in particular to methods of nondifferentiable op­

timization: the basic features of the approach can be traced back to 

earlier work in the latter field by N.Z. Shor [1970A, 1970B], and in par­

ticular the algorithm itself is a straightforward implementation of a 

technique proposed by A. Nemirovskii and D. Yudin [1979]. In its description, 

the method bears a resemblance to the early conjugate gradient methods that 

may be more than superficial; in spirit, it is close to the well known 

projection methods to solve systems of linear inequalities, in which in 

each iteration the current point is projected on or just over a violated 

constraint until feasibility is achieved (Agmon [1954] and Motzkin and 

Schoenberg [1954]). One crucial weakness of the latter methods has always 

been that the direction of projection is rather arbitrarily chosen to be 

orthogonal. S~ch a choice is not affinely invariant, which results in worst 

case exponential convergence (Telgen [1980]). The direction chosen in the 

ellipsoidal method apparently avoids this pitfall. 

Although the ellipsoidal method is not combinatorial in nature, it 

nevertheless is likely to have very interesting theoretical implications 

for combinatorial optimization problems. This is due to the fact that all 

that is required to execute a step of the algorithm is identification of a 

single violated constraint, or more generally, the construction of a hyper­

plane separating the center of the current ellipsoid from the set of feasible 

solutions. It may be possible to construct such a hyperplane in polynomially 
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bounded time, even in cases where the polytope of feasible solutions is 

only defined implicitly and has an exponential number of facets. Such a 

situation occurs exactly for many combinatorial problems, for which a good 

theoretical characterization of the convex hull of feasible integer solutions 

is known. In such cases, the ellipsoidal method may yield the long suspected 

link between the existence of such a characterization and the existence of 

a polynomially bounded algorithm (albeit one whose immediate practical use­

fulness is doubtful). Several examples of a successful attack on combinator­

ial problems along those lines can be found in Gr8tschelet al. [1980]; see 

also Karp and Papadimitriou [1980]. 

It is less obvious whether the ellipsoidal method will yield new, 

computationally attractive methods to solve linear inequalities in 0-1 

variables. In any case, this problem is NP-complete and a polynomial running 

time bound is extremely unlikely. 

What about the practical usefulness of the ellipsoidal method as a 

tool to solve linear inequality systems or linear programming problems? 

As mentioned in the previous section, the outlook is gloomy at first glance. 

At the same time, some immediate improvements to the naive implementation 

described earlier are also apparent. For instance, rather than enclosing 

the entire feasible half of the old ellipsoid defined by the hyperplane 

a:x = a: x. by the new one, we can restrict ourselves to the part cut off 
1 1 k 

by the original violated constraint a:x = b. (Figure 13.1). The update 
1 1 

formulae (12.3) and (12.4) are easily adapted to the use of such deep cuts: 
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Figure 13.1. A "deep cut". 
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Although this change does not affect the worst case behavior of the 

method, it can be expected to yield a considerable improvement in practice. 

By way of a second simple improvement, it is also very easy to 

verify if the current ellipsoid is contained completely in the feasible or 

in the infeasible halfspace defined by a constraint. In the former case, 

the constraint is redundant; in the latter case, there are no feasible 

solutions. Application of the latter idea in practice always allows termina­

tion long before the worst case number of iterations is reached. Further 

improvements may be achievable by using well chosen convex combinations of 

constraints rather than the original ones {cf. Goldfarb and Todd [1980]). 

Although the theoretical precision required by the ellipsoidal method 

is clearly ridiculous and unnecessary from a practical point of view, the 

first computational experiments with the method did reveal that it suffered 

from numerical instability, due to the appearance of very elongated degen­

erate ellipsoids. Rescaling a problem, if done frequently, will not be of 

much help, but maintaining Ek in decomposed form has turned out to be quite 

effective. Two such deaorrrpositions are now available: in the simplest one, 
T 

Ek= JkJk, with 

An LDLT decomposition, with L lower triangular and D diagonal, has also 

been developed and is given in Goldfarb and Todd [1980]. 

The straightforward improvements described above already represent 

substantial improvements in the computational performance of the ellipsoidal 

method as applied to linear inequality systems, but not yet to the point 

where the ellipsoidal method can successfully challenge the performance of 

simplex method.on these problems. It is less obvious how to solve linear 

programming problems by Khachian's approach other than by attacking the 

complete set of Kuhn-Tucker conditions. A promising approach appears to 
T T 

be to introduce the constraint c x ~ c ~ instead of a violated one as soon 

as the center of the ellipsoid becomes feasible {Goldfarb and Todd [1980]). 

It would then be possible, for instance, to move in the direction of the 

gradient and even to execute a few simplex steps, thus arriving at a truly 

hybrid approach. Ultimately, an e-optimal solution can be guaranteed in 

polynomial time {Gr~tschel et al. [1980]). 

The only conclusion that can be drawn at this point is that the 
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ellipsoidal method raises as many new questions as it solves old ones: 

On the theoretical side, one would like to know in addition to the points 

mentioned above if, for instance, data dependent running time bounds and the 

appearance of quadratic forms are truly unavoidable in solving linear 

programming problems efficiently. On the practical side, the challenge is 

obviously to apply the method in suitable practical circumstances, for 

instance when the huge initial hypersphere required theoretically can be 

replaced by a much smaller one by means of ad hoc arguments. Certainly, the 

field of a linear programming has received new impetus from these develop­

ments; many more exciting ones can be expected in the near future. 
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