

PJu.nte.d a,,t .the. Ma-thematic.a£ Centlt.e., 413 KJr.lJ.,{,61!.a.a.n, ArYl-0.teJu:l.am.

The Ma-thematic.a£ Centlt.e , 6owuled .the 11-.th 06 Fe.btu.uVLy 1946, -i1. a non
p1r.06li -i..n6ti;tuti.on almlng at .the. pJr.omotion 06 pW!.e. ma.-thematicti a.n.d ill,
appUc.atioru,. I.t -i1. -6poru,011.e.d by .the. Ne.theJri.and-6 Gove.11.nme.nt .thll.ough .the.
Ne.thvzland6 011.ga.ru.zation 6011. .the. Advanc.eme.nt 06 PUl!.e. Re.-6e.a1tc.h (Z.W.O.).

MATHEMATICAL CENTRE TRACTS 137

REDUNDANCY AND
LINEAR PROGRAMS

J.TELGEN

MATHEMATISCH CENTRUM AMSTERDAM 1981

1980 Mathematics suBject classification: 52-02, 52A25, 52A40, 68-01 ,'
68C25, 90-02, 90C05

ISBN 90 6196 215 3

•.• and the masses sang in glory:

"Linear programming what a treasure! 11

(Wheelwright and McFarlane [1973])

This work was partly supported by a personal grant from the Ministry of
Education and Sciences (Min. van O & W), a NATO Science Fellowship for the
Netherlands Organization for the Advancement of Pure Research (ZWO) and a
CORE Research Fellowship.

Contents • •••.
Preface • .••.

Introduction.

REDUNDANCY ••

1, Introduction ar,d survey

2. Practical considerations.

3.

4.

Theory ..

3.1. Inequalities

3,2. Equalities .

3.3. Implicit equalities.

3.4. Minimal representation

3.5. Existing theory.

Methods • • .

4.1. Implicit equalities.

4.2. Redundant constraints.

4.3. Minimal representation

4.4. Existing methods

5. Applications

5.1. Results from literature.

5.2. Experimental results

6. Related Topics.

6,1. Nonbinding constraints

6.2. Primal-dual relations.

7. Conclusion. • •

LINEAR PROGRAMS

8. Introduction •.

9. The simplex method.

CONTENTS

10. The complexity of linear programming.

11. LP-equivalent problems.

12. The ellipsoidal method.

13. Conclusion .

References . •

Subject index

Author index •

1,

1, 1, 1,

1

5

6

9

12

13

20

22

27

37

41

41

45

52

54

59

59

61

66

67

73

75

77

78

80

90

93

103

108

113

122

124

PREFACE

This book contains a revised version of a monograph presented at Erasmus

University Rotterdam fo October 1979.

The revision consists of -t;wo parts: first, the occurrence of ever

present minor errors is reduced. Second and most irrrportant, the work is

brought up to date. This required a major revision of the material in the

second part of this work. While the corrrputational corrrplexity of linear

programming was still open at the time the thesis was written, it is

determined by now. An algorithm developed by L.G. Khachian solves linear

programming problems in polynomially bounded time. We are glad to be able

to include this new result in this book.

There are many people that contributed greatly although indirectly to

the realization of this work. First of aU I would Ut:e to thank prof. dr.

ir. H.W. van den Meerendonk for acting as my thesis advisor; prof. dr.dr.
T. Gal (Gernuniversitat Hagen, B.R.D.) gave valuable advice in the early

stages of the thesis and later acted as a referee.

Although not officially involved, Alexander Rinnooy Kan probably had

the strongest influence on both my sc~·entific development and my work. I

feel deeply grateful for his efforts, enthusiasm, encouragement and guidance,

and I am glad lo ment·ion that he acted as co-author for a preUmir,a:t.'Y version

of part II of this work.

Other individuals whose interest and help stimulated me include Ton

Vorst (theoretical development in sections 3.3-3.4), prof. dr. J.F. Benders

(sections 3.1-3.4), prof. Stanley Zionts (part I), Bob Koudenburg (program

ming assistance), Bert Meyerman (testing assistance), Jaap Spronk, Wim van

Dam, Gerrit Timmer, Leen Stougie and Guus Boender (various services, in

cluding coffee, soccer, table tennis and proof reading).

I thank the Mathematical Centre for the opportunity to publish this

monograph in their series Mathematical Centre Tracts and all those at the

Mathematical Centre who have contributed to its technical realization.

I NTROVUCTI ON

Operations Research is not so much a coherent structure of theory

and methods, but more like a collection of techniques applicable to pro

blems arising in many different areas.

Mathematical programming, embodying such diverse features as linear,

integer, nonlinear, geometric, stochastic and dynamic programming, has

become a major tool of operations research.

Generally mathematical programming is applied as part for the fol

lowing process:

- the practical system to be considered

- gives rise to an abstract view of it, which may be expressed by a

mathematical formulation: the model.

- From the model, a mathematical programming problem is constructed,

- to which a solution is determined by means of mathematical program-

ming techniques.

- The solution is translated back into the results for the model;

- the results are given their (economic) interpretation, which may

be used to indicate the measures to be taken in practice.

Considering three levels of abstraction: real world, the model and the

problem, the process is summarized in figure A.

Except for the relations between the real world and the model, all

steps are deductive or can be made along well established paths. There

fore the quality of the implementation depends heavily on the quality of

the model. This implies that the modeler's skill and ability are of great

importance.

2

REAL WORLD

THE MODEL

THE PROBLEM

practical system

abstraction

model

mathematical
programming

problem

mathematical
programming

Figure A. Mathematical programming in practice

implementation

interpretation

results

solution

Once the mathematical model is obtained, the mathematical program

ming problem is constructed according to the aspects of the system which

should be considered and the goals to be achieved. This generally means

selecting some constraints and variables and (eventually) one or more

objective functions. It should be stressed that the (mathematical) model

and the mathematical programming problem generally are not identical.

The solution to a mathematical programming problem usually is ob

tained by a standard procedure. Some of these procedures are more effi

cient than others, which may tempt one to model the practical system in

such a way that the more efficient procedure may be applied. In doing so

one should try to strike a balance between the quality of the results

obtained and the effort spent in obtaining these results.

The results for the model, obtained via the solution to the mathema

tical programming problem, should be given a careful interpretation. This

interpretation, in turn, may indicate which measures, if any 1 are appro

priate in the real world situation.

In the scheme described above several loops may occur, especially

if the practical system is a complicated one or if interactions between

problem solution and modeling are desired.

3

A major mathematical programming technique is Linear Program.ming (LP),

used in the process sketched above, if the mathematical programming pro

blem has linear constraints and a linear objective function. Starting with

the development of the simplex method by G.B. Dantzig in 1947 a lot of re

search has been done on methods to obtain the solution to a linear program

ming problem (e.g. Kantorovich [1939], Dantzig [1963]) and the mathematical

problems that arise in these methods (e.g. Orchard-Hays [1968], Bartels

and Golub [1969], Forrest and Tomlin [1972]). The (economic) interpretation

of the solution to a linear programming problem is also well established by

the work of e.g. Koopmans [1951], Dorfman et al. [1958].

Far less work has been done on the proper forrrrulation of the linear

programming problem and the inherent computational complexity of linear

programming. In this work we concentrate on these topics.

In the first part of this work (chapters 1 through 7) we consider

questions such as: "how should the LP problem be formulated?" and "can a

given LP problem be replaced by a simpler one?".One of the main characte

ristics of an LP problem is the number of (linear) constraints, together

determining the set of feasible solutions for the problem. Since the size

of the system can obviously be reduced if there is redundancy in the sys

tem of linear constraints we study the latter topic in detail, thus ex

tending our scope beyond linear programming alone.

We establish the concept of a minimal representation for any system

of linear constraints, and we show that such a minimal representation is

obtained if and only if the system contains no implicit equalities and

redundant constraints. To obtain a minimal representation we develop

efficient methods (based on the simplex method) to identify implicit

equalities and redundant constraints. Furthermore we show that the theory

and methods introduced here provide a generalization of previously known

theory and methods, all of which can be obtained as special cases.

In the second part of this work (chapters 8 through 12) we deal with

questions such as: "how difficult is LP as compared to other problems?"

and "what is the relation between the size of the LP problem to be solved

and the number of computations required?". Interest in this aspect of

linear and other mathematical programming problems is relatively young

and originated within computer science; it is generally referred to as the

theory of computational complexity.

4

Results in this area are scattered throughout literature and not

very accessible tooperational researchers. We have summarized and extended

these results giving a "state of the art" survey of the computational com

plexity of li.near programming.

The two parts of this work relate as follows:

- results derived in the first part for systems of linear constraints ob

viously apply to linear programming as well; in fact, these results

simplify some derivations and proofs in the second part;

- in the second part we show that the general linear programming problem

is equivalent to the problem of identifying redundant constraints;

therefore all results on the complexity of linear programming are

equally valid for the theoretical complexity of the redundancy problem.

Throughout this work a basic knowledge of the simplex method is

assumed. Good textbooks on this topic are Hadley [1962], Simmonnard [1966]

and Luenberger [1973].

No prior knowledge of either computer science or the theory of com

putational complexity is required.

5

part 1

REVUNVANCY

6

1. INTROVUCTION AND SURVEY

Systems of linear equality constraints have been studied extensively,

but systems of linear inequality constraints excited virtually no interest

until the advent of game theory in 1944 and linear programming in 1947.

However, after the formulation of many practical problems as linear pro

gramming problems (Kantorovich [1939]) and the development of the simplex

method by G.B. Dantzig [1948] a widespread interest in systems of linear

constraints arose.

Only recently the emphasis in these studies has shifted from the

system as a whole to the individual constraints. Until the early sixties

systems of linear equalities and inequalities were studied from a "system"

point of view, in the sense that the system was more important than the

individual constraints. A number of interesting results were derived for

the solvability and the geometric properties of a system of linear con

straints without considering the constraints individually (Farkas [1902],

Motzkin [1936], Kuhn and Tucker [1956], Tschernikow [1966]).

From the early sixties on a number of papers were published treating

the subject from a "constraint"-point of view in the sense that more

attention is paid to the individual constraints within the system. As a

consequence redundancy, which is a phenomenon typically related to indivi

dual constraints within a system, was taken into consideration as well.

The first paper entirely devoted to redundancy was written by J.C.G. Boot

in 1962 (Boot [1962]).

Before proceeding we briefly sketch the general setting of redundan

cy in systems of linear constraints. A system of linear constraints may

contain both equality constraints and inequality constraints. A iinear

equality constraint corresponds to a hyperplane, namely the set of all

points satisfying the equality. A linear inequality constraint corresponds

to a halfspace consisting of all points satisfying the inequality. The set

of all points satisfying the system of linear constraints is the intersec

tion of all halfspaces and hyperplanes corresponding to the constraints.

This set is termed the feasible region. The feasible region may be empty,

if there is no point whi.ch satisfies all individm,l .constraints simulta

neously. In that case the system is called infeasible. If the system is

feasible,the feasible region being the intersection of a number of half

spaces and hyperplanes, is a (not necessarily bounded) convex polytope.

7

For the moment (see definitions 3.1.1 and 3.1.2 for an exact mathe

matical formulation) we define a redundant constraint as a constraint which

may be dropped from the system without changing the feasible region. In

stead of the term "redundant" some authors use other terms: "trivial"

(Boot [1962)), "superfluous" (Thompson et al. [1966)), "irrelevant"

(Mattheis [1973)), "inessential" (Zeleny [1974)). From the context of the

papers it is clear that all mean the same thing with these different

terms.

In figures 1.1.A and 1.1.B some redundant constraints are sketched.

A B

Figure l. l. Redundant constraints.
A single arrow (r----.) corresponds to an inequality constraint, double
arrows (~) correspond to an equality constraint; arrows point at the
feasible region; constraints marked by an asterix (*) are redundant.

In chapter 2 we consider the possible origins of redundant con

straints and the practical consequences of their presence. These practi

cal aspects are treated both from a mathematical point of view and from

an information theoretical point of view.

Chapter 3 contains a new and complete theory of redundancy published

here. We prove that for any system of linear constraints there exists a

minimal representation that can be obtained by removing all redundant con

straints and implicit equalities. This theory is an extension and a gene

ralization of current theory, since all known results can be derived

8

from it.

In chapter 4 we describe aZgorithms to identify all redundant con

straints and implicit equalities. All known methods to eliminate redundan

cy are shown to be special cases of this approach.

Chapter 5 contains the results of some computational experiments

with the algorithms introduced in chapter 4 and a confrontation with em

pirical data from literature.

A number of topics closely related to redundancy are considered in

chapter 6. The most important of these topics is the concept of nonbinding

constraints; these are nonredundant constraints with the property that

removing them does not change the set of optimal solutions to a linear

programming problem. Some relations between nonbinding and redundant con

straints are established and some ways to identify nonbinding constraints

are indicated. A second topic is the presence of redundant and nonbinding

constraints in a duaZ .pair of linear programming problems. We shall draw

some conclusions for the dual problem, if the primal problem exhibits

one of these phenomena.

We conclude this first part by some remarks on the questions whether

or not redundant constraints should be identified and removed from a gene

ral linear programming problem and whether or not the minimal representa

tion of the set of constraints should be obtained.

Z. PRACTICAL CONSIDERATIONS

From the nature of redundancy it will be clear that redundant con

straints can be omitted from a problem. Since redundant constraints are

often present in problems arising in practice (already noted in Hoffman

[1955]), we first consider some reasons for the fact that this phenomenon

occurs.

These reasons may be distinguished according to the different steps

from the real-world system to the model and finally the (programming)

problem.

(i) The main reason for redundant constraints to originate in the

step from the real world system to the model is insufficient knowledge

9

of the practical system. This may in turn be caused by superficial consi

deration of the system or because the system itself is too intricate, too

big or too difficult to conceive of redundancy as well as other undesirable

properties such as inconsistency. Furthermore, in determining the mathe

matical formulation of the model, modelers may want to "play safe" i.e.

they want to avoid the possibility that they have to return to this stage

of the process because of an omission that is discovered later on e.g. by

infeasibility or unboundedness. Therefore they may specify more constraints

than is strictly necessary. This implies that they obtain a larger model,

which they prefer as compared to a smaller model, which may have to be

revised later on.

This reason causes more redundant constraints to be present as the

systems involved become larger and more complicated. Then modeling is

usually done by teams, in which case redundancy may arise since the inter

actions between the different parts are more difficult to survey.

(ii) In the step from the model to the problem too, the reasons men

tioned above (insufficient knowledge, "play safe", teamwork) may cause re

dundant constraints to be specified. Another reason, which becomes more

important as the models involved become larger, is the influence of auto

mation. Often a model is constructed to give rise to several different

problems. An example of this phenomenon is provided by a system which has

to be regarded under slightly varying conditions; because of changes in

the coefficients constraints may change from nonredundant to redundant

and vice-versa. For example in production planning models a capacity con

straint is specified because it may become binding in future, but it could

be redundant at the moment.

10

(iii) In solving the (programming) problem some techniques require

the specification of extra constraints, which may cause redundancy; these

techniques include all cutting plane methods for linear- (Dantzig-Wolfe

decomposition, dual form; Dantzigand Wolfe [1960]), integer- (Gomory

[1958]), mixed integer- (Benders [1962]) and convex nonlinear programming

(Kelly [1963]) and all branch and bound methods (e.g. Garfinkel and

Nemhauser [1972]). In parametric programming (e.g. Gal [1979]) redundant

constraints may become nonredundant and vice-versa (see Gal [1975 C]J.

There are many disadvantageous effects caused by the inclusion of

redundant constraints in systems of linear constraints. The most important

ones are related to the simplex method of linear programming:

(a) In general there will be more basic solutions if redundant constraints

are present in a problem, so the simplex method may require more ite

rations and even cycling may occur (examples on which the simplex

method cycles (Dantzig [1963]) all contain redundant constraints).

Furthermore a phenomenon called "near-cycling" (very small changes in

the objective function value during a number of iterations) has been

noted by Thompson et aZ. [1966] to arise more frequently in the pre

sence of redundant constraints. Finally, redundant constraints may

worsen the performance of some non-simplex methods (see e.g. Kunzi

and Tschach [1967]).

(b) Redundant constraints necessitate more calculations per simplex ite

ration, for example in the determination of the variable to leave the

basis. Furthermore they may cause numerical difficulties since redun

dant constraints often are (nearly) dependent.

(cl Redundant constraints require storage space, which may be critical if

the problem can hardly be solved by an in-core code. The extra storage

space required by redundant constraints may even cause the problem

solver to rely on other procedures e.g. decomposition (Thompson et al.

[1966]) .

Note that all disadvantageous effects mentioned above occur in the

problem solving stage, although the redundancy may be caused much earlier

in the process.

From an information theoretic point of view redundant constraints

may have both an advantageous and a disadvantageous effect. Sometimes

redundant constraints may express information, that is included in other

constraints in a very revealing way. Consider for example the system of

linear constraints:

-xl - x2 + x3 + x4 s 2

xl + x2 + x3 + x4 s 8

- x4 s -2

11

The constraint x 3 s 3 would be redundant in this system (add the first two

constraints, divide by 2 and add the last constraint: the result is

x 3 s 3), but conceptually provides useful information about the system in

the form of an upper bound on x 3 •

Of course redundant constraints objectively do not add any informa

tion about the system in the sense that they do not exclude any possibili

ties (solutions), that would be admitted without these constraints (see

also Gal [1975 A]).

On the other hand, just by the sheer fact of their presence in the

problem, redundant constraints make the impression of being nonredundant

(nobody would specify redundant constraints, isn't it?). This may be a

confusing element in the model and obscure the user's view of the system.

Identification (and removal) of redundant constraints results in

some simplifications. First, as indicated above, the resulting problem may

be solved with minimal computational effort. We shall return to this point

in the next chapters. Second, there is an advantageous effect in an infor

mation-theoretical sense. Another favorable effect of the identification

of redundant constraints may be the recognition of the fact that the slacks

of these constraints may be used in an alternative way in any feasible

solution (for an example see Zimmerman and Gal [1975] and Telgen [1979 A]).

For all of these points the extent of the resulting simplifications

depends on the purpose of specifying the model and the problem. It may

make quite a difference if it is formulated just to gain insight into a

system or to find an optimal solution. But in all cases some simplifica

tions will result. Even the knowledge of the fact that no redundant con

straints have been specified, may be regarded as a simplification.

12

(3 .1)

3. THEORY

* We consider the system of linear constraints

{
Ax= a

Bx ,:; b

m xn
in which A E R a

¾
and b E JR

The rows of A and Bare denoted by Ai and Bi respectively.

The feasibZe region corresponding to the system (3.1) is defined as:

s - { x E JR I Ax = a\
n Bx ,:; :d

Throughout it is assumed that there exists a feasible solution to the

system (3.1), i.e. Sf, 0.

We define u = (u 1 , ..• , u) ER¾ as the vector of slack variables

of.the inequality constraints. ~en the system (3.1) can be written as

with I an (¾x¾) identity matrix and O a (max¾) matrix of zeroes. We re

place variables that are not restricted to be nonnegative by the difference

of two nonnegative variables and premultiply with the inverse of a basis.

Redefinition of the variables (including u) as x~ or x~, according to their
J J

status (N for nonbasic and B for basic) yields the equivalent system

[Y

with
N

X ,

in which y 0 is the •updated right hand side'. The matrix Y is usually

referred to as the contracted sinrpZex tabZeau (Dantzig [1963]); for sim

plicity of notation we assume that Y E JRmxn.

* Throughout for two vectors y and z, y,:; z is taken to mean yi,:; zi Vi.

3.1. InequaLi;ti,v.,

Redundant constraints in the system (3.1) are of no interest at all

in determining the feasible region S. To define redundant inequality con

straints more formally we denote for any fixed k E (1, ... , ~):

Definition 3.1.1

Ax = a

B.x Sb.
1. 1.

Vi t- J

The constraint Bkx s bk (1 s ks mb) is a redundant inequality in

the system (3.1) if and only if Sk S.

Define

then it is easy to see that Bkx S bk (1 s k $ ~) is a redundant inequa

lity if and only if

(3.1.1)

To see this note that Sk

equivalent to (3. 1 . 1) .

S if and only if Bkx s bk Vx E Sk, which is

13

If l\ = o, then the inequality is termed weakly redundant, if uk > O

it is termed strictly redundant. Unless explicitly mentioned otherwise

the term 'redundant' will be used to indicate constraints that are either

strictly or weakly redundant. Both kinds of redundant constraints are

sketched in figure 3.1.

From the definition of a redundant constraint it is clear that any

inequality in the system (3.1) can be identified as being redundant or not

by solving the linear programming problem:

min bk - Bkx

(3.1. 2) s.t. Ax = a

B.x $ b. Vi f- k
1. 1.

14

Figure 3. l. A weakly redundant constraint (*) and a strictly redundant
constraint (**)

Alternatively, redundant inequality constraints can also be identi

fied by using the 'tur>n-over' lemma:

LEMMA 3.1.1 ('tum-over' Zerrnna; Boot [1962])

The constraint Bkx ~ bk is redundant in the system (3.1) if and onZy

if the system

(3.1.3)

Ax = a

B.x ~ b.
'l, 'l,

Bkx > bk

is infeasible.

Proof:

Vi:/ k

IF: If .(3.1. 3) is infeasible and Sk f. 0 (since s f. 0), there is no

x E Sk such that Bkx > bk and therefore i\ 2 0.

ONLY IF: If Bkx ~ bk is redundant, we have Bkx ~ bk

ing Bkx > bk, thus (3.1.3) is infeasible.

Vx E Sk, contradict-

□

15

A direct consequence of the 'turn-over' lemma is the following:

COROLLARY 3.1.1

The constPaint Bkx s bk is stnctly Pedundant in the system (3.1) if

and only if the system

Ax =a

Bix s b.
-z,

Vi :/ k ·

Bkx :2: bk

is infeasible.

Thus a redundant inequality constraint can be identified by checking the

system of linear constraints (3.1.3) for feasibility. In part 2 we shall

show that this problem to~ is computationally equivalent to solving a li

near programming problem.

However in certain situations it can be seen immediately without

solving a linear programming problem whether an inequality is redundant or

not by applying one of the following theorems.

THEOREM 3.1.1 (Zionts [1965], Thompson et al. [1966])

Pi>oof:

The constPaint Bkx s bk is Pedundant in the system (3.1) if thePe is

some basic solution in which uk = xB with y ~ 0 and y . s O Vj. P PO PJ

In a basic solution we have

(3.1.4)
B n

xr = yro - I:
N

y .x.
rJ J j=l

since the value of the x~ can only increase, the sum will be nonpo
J

sitive and because yro :2: O this yields x: = ~ :2: O. D

As a consequence the constraint Bkx s bk is strictly redundant if~

with yro > 0 and yrj SO Vj.

B
X

r

16

COROLLARY 3.1.2 (Zionts [1965], Thompson et al. L1966])

The constraint Bkx s ~ is redundant in the system

basic solution uk = xp and there is a row r with

yrp < 0

Vj :/ p

Proof:

(3.1) if in some

Pivoting on y yields the situation described in theorem 3.1.1. D
rp

Again the constraint in the corollary above is strictly redundant if

yrp < 0, yrj ~ 0 Vj f p and yro < 0.

Note that the row in which a slack variable is basic corresponds

to the criterion row of the linear programming problem (3.1.2).

THEOREM 3.1.2 (Gal [i9?5 B, 19?8])

The constraint Bkx s bk is redundant in the system (3.1) if and only

if in some basic feasible solution uk = x8 with y . s O Vj.
r rJ

Proof:

IF: In a basic feasible solution y~0 ~ 0. Because yrj

from (3.1.4) that I\= Yro ~ 0.

$ 0 Vj, it follows

ONLY IF: Consider the r-th row as the criterion row for the problem (3. 1. 2),

then if u. ~ O, in the optimal solution we should have y . SO Vj
k rJ

and yro ~ 0.

Since I\= yro the constraint is strictly redundant if yro > 0 and weakly

redundant if yro = 0 in the above theorem.

THEOREM 3.1.3 (Eckhardt [19?1])

□

The constraint Bkx s bk is redundant in the system (3.1) if and only

if in some basic feasible solution uk = x! with

Vj
(3.1.5)

for some index s :/rand someµ~ O.

Proof:

IF: B
X

r

n
µyso - \1 L

j=l

N
y .x.

SJ J

ONLY IF: If the constraint Bkx s bk is redundant, then according to

theorem 3.1.2 in some basic feasible solution uk = x! with

17

y . s O Vj. Thus forµ= 0 the conditions (3.1.5) are satisfied. D
rJ

In some cases it may be easier to identify constraints that are not

redundant. The following theorems relate to that case.

THEOREM 3.1.4 (Mattheis [1973], Gal [1975 B, 1978])

Proof:

In a nondegenerate basic feasible solution to the system (3.1) all

nonbasic variables uk correspond to nonredundant inequality con

straints.

For all basic variables we may write

(3.1.6)

Since yio > 0 Vi, a small negative value for

other infeasibilities. Thus 3x E Sk such that

fore i\ < 0.

some x~ will not cause
J

~(x) < 0 and there-

THEOREM 3.1. 5

Proof:

The constraint Bkx s bk is not

some degenerate basic feasible

with yio = 0.

redundant in the system (3.1) if in

solution uk = xN and y. ~ 0 Vi p i.p

Consider (3.1.6); a small negative value for x~ will not cause in
J

feasibilities in rows for which yio > O; in rows with yio = 0 the

condition y. ~ 0 prevents new infeasibilities.
l.p

□

□

18

THEOREM 3.1. 6 (Telgen [1977 A] modified from Gal [1975 BJ)

The constraint Bkx s bk is not redundant in the system (3.1) if
B there is some basic feasible solution with uk = xr and

(3.1. 7)

Proof:

is unique for some s.

Pivoting on yrs determined in (3.1.7) yields a new basic feasible

solution. If the original solution was nondegenerate, this one is

nondegenerate too and we can apply theorem 3.1.4 since uk is nonba

sic. If the new solution is degenerate, the original was degenerate

too i.e. for some set T we had yto = 0 Vt ET. From the uniqueness

of (3.1.7) it follows that yts s 0; thus for the new value, denoted

by a prime, we have

Vt ET

and therefore the new solution satisfies the conditions for theorem

3.1.5. □

Note that uniqueness of (3.1.7) is not required to prove that Bkx S bk is

not strictly redundant.

The following theorems apply to strictly redundant constraints only.

THEOREM 3.1.7

Proof:

The constraint Bkx s bk is not strictly redundant in the system (3.1)

if in some basic feasible solution uk is a nonbasic variable.

Since ~(x) 0, i_ s 0. □

THEOREM 3.1.8

The constraint Bkx s bk is not strictly redundant in the system (3.1)
B if in some (degenerate) basic feasible solution xr = uk with Yro = 0.

19

Proof:

Since ~{x) Q I i\ S 0. □

Finally, some more relations between redundancy of a constraint and

feasibility of a system of linear constraints can be obtained by dualizing

{3.1.2). As an example we mention

THEOREM 3.1.9

The constraint Bkx s bk is ~edundant in the system (3.1) if (JJ1d only

if the system

m mb a
1: w.A. + 1: v.B. = Bk

i=l 1, 1, i=l 1, 1,

(3.1.8) ifk
ma mb
1: w.a. + 1: vibi s bk

i=l 1, 1, i=l
ilk

v.
1,

.!: 0 Vi I k

is feasib Ze.

Proof:

The constraint Bkx s bk is redundant if and only if the optimal

value of the linear programming problem

max Bkx

s.t. Ax= a

Vi ,fa k

is smaller than or equal to bk. This is true if and only if the

corresponding dual problem has an optimal value smaller th~n or

equal to bk. That, in turn, is true if there is some w ER a and

v ER~ with the properties {3.1.8). D

20

3 • 2 • E q u.aLW,e,t,

Similar to the case of inequality constraints in the preceding sec

tion some equality constraints may be redundant in determining S. We define

for any fixed k E (1, ••• , ma):

A.x a.
l l

Bx s; b

Vi ,f. k}

Definition 3.2.1

The constraint ¾x = ak is a redundant equality constraint in the

system (3.1) if and only if Sk = S.

Note that ¾x = ak may be replaced by

This implies that an equality constraint is redundant if and only if both

inequality constraints replacing it are redundant. Therefore sk =Sis

equivalent to

X E

X E

0

0

Again it is not always necessary to solve these linear programming pro

blems to identify redundant equalities. Denote by r (A} t_he rank of the

matrix A.

THEOREM 3.2.1

Proof:

The constraint Akx = ak is redunda.nt in the system (3.1) if r(A)

does not change by removing Ak from A.

If r(A) does not chaMge by removing Ak from A then r(A) s; ma - 1,

which implies 3A ER a such that AA= 0 with Ak ,f. 0 and,since S ,f. 0,
also Aa = 0. Thus

21

m m
1

a
1

a
'¾x

Ak
I: Ai (Aix)

Ak
I:)..iai ~ i=l i=l

i;,Ek i;,Ek

and therefore '¾x = ~ Vx E sk, which implies Sk s. D

COROLLARY 3.2.1

The system (3.1) aontains at least one 'l'edunda:nt equality aonst'l'aint

if !'(Al < m • a

P'l'oof:

If r(A) < ma' at least one of the equality constraints is linearly

dependent on the others, so it may be removed without changing r(A).

Then theorem 3.2.1 applies.

The converse of the corollary is obviously not true since any redundant

equality may be replaced by two inequalities such as to make r(A) = ma.

Only under some additional assumptions it can be proved that the system

(3.1) contains redundant equality constraints if and only if r(A) < ma

(see section 3.4, theorem 3.4.1).

D

Finally note that it is not necessarily true that every equality constraint

is redundant if r(Al < m •
a

22

3. 3. Imp,Uc,U e.qu.aLUJ.,v.,

In the preceding section we have seen that one equality constraint

was replaced by two inequality constraints. This may be done for all

equality cons.traints. Another way to convert a set of linear equalities in

to a set of linear inequalities is given by the following theorem.

THEOREM 3.3.1 (Dantzig [1963])

Proof:

Let l denote the vector (1, 1,,

Denote the sets above by V and W respectively. Trivially

\Ix: x EV=> x E w. Suppose now x' E W but x' i V, then Asx'

for some s (Ax' > a is impossible because x' E W).

< a
s

ms s
Define n ER a with ni = 1 Vi f sand ns = O; then from Ax:£ a we

have

Ax'
s

T
?: l a

T n a

which contradicts the assumption that Asx'

a
s

< a .
s □

Conversely to replace inequalities by equalities one usually adds

slack variables to the inequalities. However this is not always necessary:

some inequalities may be replaced by equalities without enlarging the di

mension (number of variables) of the system. Denote

Definition 3.3.1

The constraint Bkx :£ bk in the system (3.1) is an irrrplicit equality

if and only ifs c Vk.

The concept of implicit equalities is introduced here.· Some similar

ity exists with the concept of instable inequalities, used in the theory

of the stability of systems of linear constraints (see e.g. Robinson

[1975]). Using this concept in relation to redundancy seems to be new and

enables us to develop a complete theory of redundancy.

Note that Sc Vk is equivalent to S

the following argument:

sk n Vk. This can be seen from

if s Sk n vk then certainly s C Vk;

if s c vk then s C (Vk n Sk) since s C Sk. It is trivial that

Vk n Sk Vk n s and thus (Vk n Sk) CS, implying that S = Vk n Sk.

Denote

(3. 3 .1)

then we can prove

THEOREM 3. 3. 2

23

The constraint Bkx s bk is an implicit equality in the system (3.1) if

and only if uk = O.

Proof:

IF: From max {uJxl I X E S } = 0 we
k

see that Bkx 2 bk Vx E Sk.

For all X E S we have Bkx s bk; together this yields Bkx = bk

x E vk Vx Es thus s c vk.

ONLY IF: If Bkx s bk is an implicit equality then ~(x)

thus

implying max {'\ (x) I x E sk} = i\ 0

In theorem 3.3.2 we may replace i\ 0 by the condition

max {uk(x) Ix Es} 0

0 Vx ES

i.e.

It is trivial that this condition is implied by max- {uk(x) I x E Sk} = 0;

the converse follows from the first two lines of the 'ONLY IF' part of the

proof above.

Note that by theorem 3.3.2 some similarity is shown betw~en implicit

equality constraints and redundant inequality constraints. Replacing the

max operator in (3.3.1) by a min operator yields (3.1.1).

'i'he following theorems are analogous to theorems 3. 1. 1 and 3 .1. 2 and

□

24

are therefore stated without proof.

THEOREM 3.3.3 (cf. Zionts [1965])

The constraint Bkx $ bk is an implicit equality in the system (3.1)

if in some basic solution uk = x! with Yrj ~ 0 Vj and Yro = O.

COROLLARY 3.3.1 (cf. Zionts [1965])

The constraint Bkx $ bk is an implicit equality in the system (3.1)

if in a basic solution uk = xN with y > 0 and y . ~ 0 Vj Ip and
p rp rJ

Yro = 0 for some row r.

THEOREM 3.3.4

The constraint Bkx $ bk is an implicit equality in the system (3.1)

if and only if in some basic feasible solution uk = x8 with y . ~ 0 Vj
r rJ

and Yro = O.

In some cases a constraint which is not an implicit equality can easily

be identified by one of the following theorems.

THEOREM 3. 3. 5

The constraint Bkx $ bk is not an implicit equality in the system (3.1)

if in some basic feasible solution uk = xB and y > 0. r ro

Proof:

Trivial.

THEOREM 3.3.6

The system (3.1) contains no implicit equalities if there exists a

nondegenerate basic feasible solution.

Proof:

□

In a nondegenerate basic feasible solution yio > 0 Vi and thus theo

rem 3.3.5 applies to all basic (slack) variables~- If~ is a non

basic variable it can be introduced into the basis on a positive level

by a feasible pivot step and in this new tableau theorem 3.3.5

applies. □

25

THEOREM 3.3.7

The constraint Bkx s bk is not an implicit equality in the system

(3.1) if in some basic feasible solution ~k = x~ with y. > O for all
J 1,0

i with y .. > O.
1,J

Proof:

From the fact that yio > 0 for all i with yij > 0 and

we see that x~ can attain a small positive value without causing any
J

infeasibilities. □

THEOREM 3.3.8

A strictly 1°edundant constraint is not an implicit equality and con

versely.

Proof:

Since i\ ~ i\ we cannot have both i\ 0 and i\ > 0. □

Combining this theorem with theorems on strictly redundant constraints

gives the following corollaries.

COROLLARY 3. 3. 2

The constraint Bkx s bk is not an implicit equality in the system

(3.1) if there is some basic solution in which uk = x8 with y . s 0
r rJ

'v'jandy >O.
PO

COROLLARY 3.3.3

The constraint Bkx s bk is not an implicit equality in the system

(3.1) if there is some basic solution in which x; = uk with

Yrp < 0

'v'j :/ p

for some row r.

26

Finally by dualizing the linear programming problem in (3.3.1) we

may obtain some theorems that relate the feasibility of a system of linear

constraints to implicit equalities. As an example we mention:

THEOREM 3.3.9

Proof:

The constraint Bkx s bk is an implicit equality in the system (3.1)

if and onZy if the system

ATW + BTV = Bk
T + bTv aw = bk

V <'. 0

is feasibZe.

The constraint Bkx $ bk is an implicit equality if and only if the

optimal value of the linear programming problem

Bx$ b

is equal to -bk. This is true if and only if the dual problem

min
T bTv a w +

s.t. ATw T
+ B V Bk

V <'. 0

has the same optimal value. That in turn is true if the conditions

for the theorem are satisfied. □

3. 4 ,\U.n,unal 1tep1te6 en,t,a,;t:,w n

We have seen that the set of feasible solutions Smay be represented

in various ways i.e. by different sets of linear constraints. For various

purposes it may be desirable to have a representation that is as small as

possible.

Definition 3.4.1

27

A minimal representation of the set Sis a system of linear constraints

(3.1) such that

n
E: R

with m =ma+~ and every other system describing S has at least m

constraints.

In the remainder of this section we establish some relations between

redundant constraints and implicit equalities and finally prove the main

redundancy theorem which says that a minimal representation is obtained by

explicitly stating all implicit equalities and by removing all redundant

constraints.

First we introduce some more notation:

V - {x E: Rn ·Ax = a}

Vk - {x E:
JRn Bkx = bk} (as before)

r - n - m
a

It will be convenient to refer to the following conditions by their number:

{I) r(A) m ;
a

A is of full row rank

(II) u.
1.

< 0 'v'i the system (3 .1 l contains no redundant inequalities

(III) u.
1.

> 0 'v'i the system (3.1) contains no implicit equalities

The following three lemmas require some relatively involved mathemati

cal derivations.

We denote by lin(S) the smallest linear manifold containing S i.e. the sub

set of JRn consisting of all linear combinations of vectors from S.

By S we denote the interior of Sin lin(S). Finally we define

dim S = dim(lin(S)).

28

LEMMA 3.4.1

If the system (3.1) satisfies (III) then

S= XER o { n

Proof:

First, suppose x' E JRn is such that Ax'= a and Bx' < b, then around

x' there is an £-ball o(x', £) such that Bz < b Vz E o(x', £). Any

z E {o(x', £) n lin(S)} is a linear combination of x' and elements

from Sand so Az = a thus z ES. Therefore {o(x', £) n lin(S)} cs
0

and x' E s.

For the remainder of the proof it might be helpful to consider the follow

ing figure.

Figure 3.2.

The second part of the proof of lemma 3.4. 1.

Now suppose x' E]Rn is such that Ax'= a and B.x' < b. Vi= 2, ... ,m.
l. l. .b

but B1x• = b 1 • Since the system (3.1) satisfies (III) there is a point

z ES with B1z < b 1 • We have to prove that there is a point win any

{o(x', £) n lin(S)} with w r/. S:

choose w AX'+ (1-A)z with A= 1 + \£.

Then B1w (1 + \£)B 1x• - \£B1z

(1 + \£)b1 - \£bl= b 1

thus w r/. S. D

LEMfi!A 3.4.2 (Eckhardt [1975]) (Interior point lerrrna)

If the system (3.1) satisfies (III) then SI/.

Proof:

From (III) we see that for all i there is a point yi ES. such that
l.

29

1
~ i

y =- :t y
~ i=l

0

it is easy to see that Ay a and By< b which means y ES.

LEMMA 3. 4. 3

If the system (3.1) satisfies (I) and (III) then dim S = n - m = r. a

P!'oof:
0

From the interior point lemma we know that there is a pointy ES

such that {V n o(y, g)} c S. Because of (I) dim(V)

therefore for some basis {a1, ••• , ar} we can write

n - m =rand
a

Furthermore 3o > 0 such that, if !Ail so for all i then

and y, y+oa 1, ..• , y+oar E {V n o(y, g)}

Since oa1, •.• , oar are linearly independent we have

dim{V n o(y, g)} ~ r which implies dim S ~ r.

But since Sc V we also have dim S s r thus dim S r.

Using these lemmas we can prove the following theorems, which apply

to situations in which implicit equalities are explicitly stated as equa

lities. Note that under such an operation the set of feasible solutions

does not change.

THEOREM 3.4.1

The system (3.11 whiah satisfies (III) aontains redundant equalities

if and only if r(A) < m. a

P!'oof:

IF: Follows from corollary 3.2.1.

□

ONLY IF: Suppose r(Al = ma and (III) holds, then dim S = n - ma (lemma

3.4.3}. If there are redundant equalities in the system, we can remove

them and the new system still satisfies (III) and now satisfies (I)

30

n - m' > n - m and this
a a too. Then according to lemma 3.4.3 dim S

contradicts the assumption. □

THEOREM 3.4.2

If the system (3.1) contains exactly one inequality constraint which

is an irrrplicit equality, then this inequality constraint is redundant

as well.

Proof:

Assume the first inequality is an implicit equality: B1x = b 1 Vx ES.

According to the interior point lemma there is any ES such that

Biy < bi Vi= 2, ... , II\,·
Suppose the first inequality is not redundant, then there is a point

z E s1 with Blz > bl.

Take w(A) AZ+ (1-A)y. Since o(y, E) c s 1 and z E s 1 we have

w(Al E s 1 for -½Es As 1. But

B1w(-½) = - ½ B1z + (1 + ½)B1y < - ½Ebl + (1 + ½E)bl = bl

thus the first inequality is not an implicit equality, contradicting

the assumption.

COROLLARY 3. 4.1

□

If in the system (3.1) all implicit equalities are replaced by equali

ty constraints, then the new system contains at least one redundant

equality.

Proof:

Replacing an implicit equality Bix s bi by an equality constraint,

is equivalent to adding the constraint Bix c bi to the system; the

latter constraint is obviously redundant.

Furthermore the last implicit equality is redundant by theorem 3.4.2

and if both Bix s bi and Bix c bi are redundant the equality is re-

dundant as well. D

Now we turn to a number of lemmas which are helpful in proving the

main redundancy theorem.

LEMMA 3. 4.4

If the system (3.1) satisfies (I), (II) and (III), then the system

(3. 4.1)

Ax = a

B1x = b1

Bix s bi Vi = 2, ••• , mb

contains no Pedundant equalities and implicit equalities.

Assume the syitem (3.4.1) contains a redundant equality, then there

is some A€ :Ra such that B1 A A + + A A This yields for
1 1 ••• m m

all x € V

+ A A x m m
a a

+ A a m m
a a

= c (constant)

a a

31

and this leads to a contradiction, since b 1 ~ c contradicts (II)

b 1 s c contradicts (III) for the system (3.1). Therefore r(~) =

and the system (3.4.1) contains no redundant equalities. 1

and

m +1
a

Figure 3.3.

Proving the second part of lemma 3.4.4.

In following the proof that the system contains no implicit equalities,

figure 3.3 might be helpful. According to the interior point lemma

there is some x' € V with Bix' < bi Vi. Since (III) holds for the

system (3°.1) there is some x" € V with B1x 11 > b 1 and Bix" s bi

Vi= 2, ... , ~-

Choose O < A < 1 such that Bl (Ax' + (1-A)x") = bl.

(this is possible: A= (bl - B1x 1)/(B1x 11 - B1x 1))

For all 2 sis~ we have

32

B. (Ax'+ (1-A)x")
1.

AB x' + (1-A)B.x"
i 1.

< Ab. + (1-A)b. b.
1. 1. 1.

So R Ax' + (1-A)x" satisfies

AR = a

'v'i 2, ... , ~

and therefore the system (3.4.1) contains no implicit equalities. D

Figure 3.4 might provide some help in studying the following corollary

and the next lemma.

s

Figure 3.4.

The situation for corollary 3.4.2. and lemma 3.4.5.

COROLLARY 3. 4. 2

If the system (3.1) satisfies {I), (II) and (III) then for any

i E (1, ... , mb) there is a convex set Qi such that Qi c (Sin Vi)

and dim Qi = r - 1.

Proof:

For all x E (Sin Vil we have

Ax = a

B.x b.
1. 1.

B.x ~ b. 'v'j t- i
J J

Take Qi= Sin Vi, then clearly Qi is convex. According to lemma

3.4.4 the conditions for lemma 3.4.3 are satisfied in this new system

and thus dim Qi= r-1. D

LEMMA 3.4.5

If tJze system (3.1) satisfies (III) tJzen for any aonvex set Q with

Q c (S, §; and dim Q = r - 1 there is some Vj with Q c Vj.

Proof:
Suppose no Vj contains Q; then by condition (III) for all j there is

an yj € Q such that

I Ayj
= a

B.yJ < b,
J . J

B.yJ s b. Vi t,. j
l. l.

1 ~ .
Take y = - L yJ then by convexity of Q we have y € Q and

~ j=l

{
Ay = a

By< b

thus y € S, contradicting the fact that Q c (S, S).

33

D

,Note that it may be proved that Q c Vj for exactly one j; this however, is

not required for the following.

LEMMA 3. 4.6

If the system (3.1) satisfies (III) then V ¢ Vj for all j.

Proof:

Suppose there is some j such that V c Vj,then Bjx = bj Vx € v, im

plying max {b.- B.x I x € v} = O. But since Sc V n G this yields
. .J J

max,{bj- Bjx Ix€ s} s O, contradicting (III). D

LEMMA 3. 4. 7

If the system (3.1) satisfies (I), (II) and (III) then Vis the

smallest linear manifold whiah aontains both Qk and Qj (k 1 j;

Qk c (Vk n Sk); Qj c (Vj n Sj); dim Qk = dim Qj = r - 1).

Proof:

The linear manifold V contains Qk and Qj by definition; dim V = r.

Suppose there is another linear manifold W, containing Qk and Qj;

34

since dim Qk = dim Qj = r - 1 we must have dim W ~ r - 1.

If dim W =rand W ~ V then dim (V n W) = r - 1, since (V n W) = W'

contains Qk and Qj; thus W' would also be a linear manifold that con

tains both Qk and Qj. Hence we may restrict ourselves to the case:

dimW=r-1.

Since both Wand Vk are linear manifolds and~ c Vk we have W c Vk;

similarly W c vj. From the assumption we have W c V thus

w c (V n Vk n Vj), but since dim(V n V..)_ = r - 1 (lemma 3.4.3) this

implies (V n Vk) c Vj. The latter is impossible because of the follow

ing (see also figure 3.5):

Figure 3.5.

Proving lemma 3.4.7.

0

Choose some x' Es (interior point lemma) thus Bix < bi Vi.

Choose x" E Sk such that Bkx" > bk which is possible according to (II).

Then there is some O < A < 1 with Bk (Ax' + (1-A)x") = bk.

Define x = AX' + (1-il.)x"; since x € V and x E Vk also x E (V n Vk).

However B.x = AB,x' + (1-A)B.x" <Ab.+ (1-A)b, = bj and therefore
J J J J J

xi vj, thus (Vk n V) ¢ vj. D

At•this point we are fully equipped to prove the main theorem.

THEOREM J. 4. J (MAIN REDUNDANCY THEOREM)

The system (J.1} is a minimaZ representation of the set S if and

onZy if it aontains no redundant aonstraints and impZiait equaZities.

Proof:
IF: Note that the system (3.1) contains no redundant constraints and im

plicit equalities if and only if the conditions (I), (II) and (III)

are satisfied.

Suppose that there is another system (indicated by primes) that also

represents S but with m' < m; we assume that (I), (II) and (III)

hold for that system as well.

35

First we prove that the number of equalities in both systems is equal.

Then we prove that the sets of points satisfying all equality con

straints are the same for both systems.

According to lemma 3.4.3 dim S = n - ma= r; however also

dim S = n - m' = r' and therefore m = m'. a a a
The smallest linear manifold containing S has dimension n - ma, but

also Sc V and dim V = n - m; therefore Vis the smallest linear
a

manifold containing s. The same is true for V' and thus V' = V.

Now we show that every inequality constraint in one system cbrres

ponds to at least one inequality in the other system,.but no two

correspond to the same inequality. This implies that the number of

inequality constraints in both systems is equal.

Choose i E (1, ••• , D\i); corollary 3.4.2 says that there is some

Qi c (Sin Vi) for this i and according to lemma 3.4.5 there is some

Vi, corresponding to this Qi. Thus, related to any i there is an i'.

Suppose now for if j we have i' = j' thus Vi'= Vj' thus Qi c Vi'

and Q. c V.,; but according to lemma 3.4. 7 the smallest linear mani-
J l.

fold containing both Qi and Qj is V.

Therefore V c Vi' which would be contradicting lemma 3.4.6. Thus for

if j we have i' f j' and thus°\,$ m;,.
In the same way we prove m;, $°\,and thus°\,= m;,.

ONLY IF: Suppose the system (3.1) contains redundant constraints; these

may be removed to obtain a smaller system. This contradicts the fact

that the system is a minimal representation. Suppose the system

(3.1) contains implicit equalities; replacing all of them by equality

constraints would make at least one of them redundant (corollary

3.4.1}, so this one may be removed to obtain a smaller system. Again

this is a contradiction with the minimality of the representation. D

The main redundancy theorem has some nice practical aspects. In fact

it says that given a system of linear constraints one can obtain a mini

mal representation for the same set of solutions, by just leaving out some

(redundant} constraints and replacing inequality signs by equality signs.

Note that the coefficients of the system do not change under these opera

tions.

36

Finally note that although the number of equality and inequality con

straints in the minimal representation is uniquely determined, the minimal

representation in itself is not unique.

37

3.5. EwUng thea~y

Existing theory on redundancy has led to some kind of minimal repre

sentation in only two instances. These will be treated in chronological

order and shown to be special cases of the theory we developed.

The first contribution in this respect was the work of Shefi [1969],

later modified and extended in Luenberger [1973].

Definition 3.5.1 (Shefi [1969], Luenberger [1973])

A minimal similar representation for the convex polyhedral set Tis

a system of linear constraints

d
(3. 5.1)

mdxnd nd md
with D E R , x and O E R and d E R such that:

(il for T

there is a linear invertible mapping L (called a similarity

transformation) that maps lin(T) onto lin(T) such that L(T) T

and L-l (Tl = T;

(ii) md is minimal;

(iii) nd is minimal.

Loosely speaking, this means that a minimal similar representation

of a set Tis a system of linear equalities in nonnegative variables that

determines a set T with the same shape and dimensions as T and does this

in the smallest number of equalities and the smallest number of variables.

The main difference between a minimal representation and a minimal

similar representation is that the latter is embedded in a linear manifold

of smallest possible dimension and is given relative to that linear mani

fold.

Shefi [1969] and Luenberger [1973] indicate a way how to obtain a

minimal similar representation. To achieve this they introduce some termi

nology:

38

- null variables are defined to be zero in every feasible solution; in our

terminology this means that the corresponding inequality constraint is an

implicit equality. Null variables can be removed by striking out the

corresponding column in the matrix D and adding the equality x. = 0.
J

- variables are nonextremal if the corresponding nonnegativity constraint

x. = 0 is redundant. Nonextremal variables can be removed from the system,
J

by eliminating them from a constraint in which they have a nonzero coef-

ficient. Then this constraint can be replaced by a definition of the re

moved variable in terms of the otger variables e.g. if x 1 is nonextremal

and a 11 # 0 then the constraint E a 1 .x. = b 1 may be replaced by
j=l J J

By means of a fairly complex proof Shefi and Luenberger show:

THEOREM 3.5.1 (Shefi [1969], Luenberger [19?3])

Suppose T 1 ¢ and bounded: then the system (3.5.1) is a minimal simi

lar representation of T if and only if it contains no redundant

equations, null variables and nonextremal variables.

We give a new proof of this theorem, using our main redundancy

theorem.

Proof:

IF: If the system (3.5.1) contains no redundant equations, null variables

or nonextremal variables, it satisfies the conditions (I), (II) and

(III), so we can apply the main redundancy theorem and therefore the

system (3.5.1) is a minimal representation.

We have proved that the number of faces of T of dimension equal to

(dim T-1) is fixed and equal to the number of inequality constraints.

Since the number of these faces does not change under a similarity

transformation, we cannot transform T to a space with smaller dimen

sion.

Since we also proved that dim T = nd - md and hence is constant we

cannot find a system with less equations in the same number of varia

bles.

ONLY IF: Assume that the system (3.5.1) is a minimal similar representation.

If it contains a redundant equality, this can be dropped,

contradicting point (ii) of the definition of a minimal similar re

presentation.

If it contains a null variable, point (iii) would be contradicted.

If it contains a nonextremal variable¾' points (ii) and (iii) are

contradicted.

39

□

In fact we proved a somewhat stronger theorem, because we did not use

the boundedness assumption of Shefi [1969] and Luenberger [1973]. This

implies that theorem 3.5.1 is a corollary of our main redundancy theorem,

but not the converse.

In practice the minimal similar representation of a set T may seem

to.be smaller than the minimal representation but this is an illusion. In

fact this constitutes an important point of criticism on the theory of

Shefi [1969] and Luenberger [1973].

In the minimal similar representation a minimal dimension (number of

variables) is required: variables corresponding to dimensions that are

dropped are appended to the system as equalities. Their values can be cal

culated afterwards. However, this is no reason to consider these variables

as not being a part of the system. From a practical point of view there is

no such thing as lowest dimension: all variables specified in the set T

should be present in a minimal representation as well. Therefore the va

riables that are appended to the system in a minimal similar representation,

form an integral part of the system and should also be incorporated in the

minimal representation.

Another way to interprete this point is to consider the minimal si

milar representation as a one-to-one transformation of the original system.

Given this minimal similar representation, nothing can be said about the

original system if the transformation is not known. Therefore the minimal

similar representation is useless without this one-to-one transformation.

This implies that, since the transformation is embedded in the equalities

that are appended to the system, these equalities should be part of a mi

nimal representation,as is done in our theory.

In case equalities appended to the system are considered as a part

of the minimal similar representation, that representation will never be

smaller than our minimal representation, as can be seen from the following

table.

40

Shefi [1969]

Luenberger [1973]

- redundant .equality:

remove 1 equality

- null variable

remove 1 equality x 2 0
p

strike out 1 column in

matrix D

append 1 equality x 0
p

- nonextremal variable x:
q

remove 1 inequality x 2 0
q

use 1 equality to eliminate

x from all equalities.
q

append 1 equality

net result: remove

inequality

Telgen

- redundant equality

remove 1 equality

- implicit equality x 2 0:
p

replace inequality x 2 0
p

by equality x 0
p

- redundant inequality x 2 0
q

remove 1 inequality x 2 0
q

Table 3.1. Relations between the concepts used by Shefi [1969]

and Luenberger [1973] and the concepts used here.

Another important point can also be seen from the table. Whereas our

reductions require no additional calculations, in the theory of Shefi

[1969] and Luenberger [1973] the removal of nonextremal variables requires

extra calculations for all coefficients in the system.

Finally, if necessary a minimal similar representation can readily

be obtained from a minimal representation by forcing all variables that

are not sign restricted to enter into the basis.

Eckhardt [1977] considers systems in which only linear inequality

constraints are present. By defining instahZe inequalities in the same way

as our implicit equalities, Eckhardt [1977] can prove a number of special

cases (m = 0) of our theorems and lemmas.
a

However the minimal representation in Eckhardt [1977] is defined as

a system that contains no redundant constraints. Thus, no attention is paid

to the minimality of the number of constraints. By defining a minimal re

presentation in that way Eckhardt [1977] avoids a confrontation with the

main redundancy theorem.

4. METHOVS

4. 1 • I mp.Ucil e.qua,,lU,i,e1,

Recall from section 3.3 that the constraint Bkx $ bk in the system

(4.1.1) {
Ax= a

Bx Sb

is an implicit equality if

41

This means, that to identify implicit equalities we could solve the linear

programming problem

max bk - Bkx

s.t. Ax = a

B.x $ b.
].].

Vi f. k

for all k E (1, ... ,~),thus solving~ linear programming problems.

However by using theorems 3.3.3 through 3.3.8 a more efficient algo

rithm can be developed. This algorithm, described in detail below can be

sketched as follows: in a basic feasible solution the tableau is scanned

for the existence of the conditions required for the application of theo

rems 3.3.3 through 3.3.8, by which a constraint can be identified as either

an implicit equality or not. Then from the remaining constraints we select

one (e.g. the one with smallest index k) and perform a pivot operation so

as to maximize ~(x). After this constraint has been identified we turn to

the next unidentified one, meanwhile checking all intermediate tableaux as

,we did the first tableau.

Formally the algorithm consists of the following steps:

Algorithm IMPLEQ

Initialize: We assume a basic feasible solution is given and the corres

ponding contracted simplex tableau is set up.

Let G be the set of all indices of constraints which should be

checked for being implicit equalities.

42

Step 1: If the solution is nondegenerate, then by theorem 3.3.6 there are

no implicit equalities: STOP;

Step 2: Check all basic variables x~ ~ with k E G for the property

yio > O;

if this holds then Bkx $ bk is not an implicit equality by theorem

3.3.5 and k should be removed from G;

Step 3: Check all basic variables x~ = uk with k E G for the property

yij ~ 0 Vj;

If this holds the constraint Bkx $ bk is an implicit equality by

theorem 3.3.3 and k should be removed from G;

Step 4: Check all nonbasic variables x: =~with k E G for the property:

y > O, y . ~ 0 Vj f p and y = 0 for some r.
rp rJ ro

If this holds then the constraint Bkx $ bk is an implicit equality

by corollary 3.3.1; remove k from G;
N

Step 5: Check all nonbasic variables xj ~ with k E G for the property:

yio > 0 for all i with yij > O.

If this holds then the constraint Bkx $ bk is not an implicit

equality by theorem 3.3.7; remove k from G;

Step 6: If G = 0: STOP;

Step 7: If there is no basic variable x~ =~with k E G, introduce a non

basic variable x~ =~with k E G ihto the basis, e.g. the one with

the smallest index k; continue with step 1;

Step 8: Select a basic variable x! =~with k E G (e.g. the one with the

smallest index k. Perform a feasible pivot step in column p with

y = min y .. Continue with step 1.
rp j rJ

The IMPLEQ algorithm is finite, since the cardinality of G, denoted

IGI, is nonincreasing. In iterations, in which IGI does not change, the

algorithm max.i,mizes ~(x) for some fixed k E G using the simplex method.

Because the simplex method is finite (if necessary use an anti-cycling

device e.g. Bland [1977]), IGI will decrease after a finite number of steps.

The fact that the IMPLEQ algorithm correctly identifies all implicit

equalities is implied by the correctness of theorems 3.3.3 through 3.3.7.

The flow chart of the IMPLEQ algorithm is given in figure 4.1.

A disadvantage of the IMPLEQ algorithm is the fact that a basic fea

sible solution for the system has to be known before the algorithm can

start. However, in the process of determining such a basic feasible

Figure 4. 1.

The flow chart of the IMPLEQ algorithm; the
numbers indicate the steps

43

INITIALIZE

solution (if necessary) one can apply theorem 3.3.3 and corollaries 3.3.1,

3.3.2 and 3.3.3 to any intermediate tableau, since they do not require a

feasible solution. Then G may be initialized without the indices of the

constraints identified in this preliminary stage.

Furthermore as soon as the constraint Bkx ~ bk has been identified

as an implicit equality, it may be converted into an explicit equality, by

dropping the column in which the associated~ is nonbasic, thus diminish

ing the size of the tableau.

To illustrate the IMPLEQ algorithm consider the example

xl - x2 ~ 0

xl + x2 ~ 1

-xl + 2x2 ~ 0

xl, x2 ~ 0

A basic feasible solution is (x,u)T

simplex tableau is:

0 and the corresponding contracted

44

xl x2 RHS

ul -1 0

u2 1 1 1

u3 -1 2 0

Applying the IMPLEQ algorithm yields:

step 2:

step 8:

step 3:

step 4:

u2 does not correspond.to an implicit equality;

select u 1, pivot on Y32 = 2, yielding the tableau:

ul

xl

u3

xl u3 RHS

ul ½ ½ 0

u2 3/2 -½ 1

x2 -½ ½ 0

corresponds to an implicit equality;

~ 0 is an implicit equality;

corresponds to an implicit equality;

step 8: select x2 , pivot on y 11 = 1, which gives the tableau:

ul u3 RHS

xl 1 1 0

u2 -3 -2 1

x2 1 1 0

step 3: x2 ~ 0 is an implicit equality;

step 6: STOP.

45

4 . Z • Redundant c.o nt,,t,r.a,i_nv.,

Recall from section 3.1 that the constraint Bkx $ bk is redundant in

the system (4.1.1) if and only if

This means that we could identify all inequality constraints to be redun

dant or not by solving the linear programming problem

min bk - Bkx

s.t. Ax= a

B.x $ b. 'v'i ,J k
1. 1.

for all k E (1, ..• ,~),thus solving~ linear programming problems.

A more efficient way to id·entify (all) redundant inequalities .is· given by

the algorithm below, based upon theorems 3.1.l·through 3.1.6.

Basically the algorithm checks the tableau associated with a given basic

feasible solution for the conditions for theorems 3.1.1 to 3.1.6. If

any of these theorems applies some constraints may be identified as redun

dant or not. From the remaining unidentified constraints one is selected

(e.g. the one with smallest index) and its corresponding slack variable is

minimized. All intermediate tableaux obtained in the course of this mini

mization are scanned for the conditions for theorems 3.1.1 through 3.1.6.

After this selected constraint has been identified we turn to the next one

and so on.

The algorithm is described more formally below:

AZgorithm RED.[NQ
'-'

Initialize: We assume a basic feasible solution is given and the correspon

ding contracted simplex tableau is set up. Let H be the set of

all indices of constraints to be identified as either redundant

or nonredundant inequalities.

N
Step l: If the solution is nondegenerate, all~= xj correspond to non-

redundant inequalities (theorem 3.1.4); remove these k from Hand

continue with step 3;

Step 2: Check all nonbasic variables xN
p

yip~ 0 'v'i with yio = 0

~ with k EH for the property

46

If this holds then the constraint Bkx $ bk is not redundant (theo

rem 3.1.5): remove k from H;
B

Step 3: Check all basic variables xi ~ with k EH for the property

y ij s O Vj.

If this holds then the constraint Bkx $ bk is redundant (theorem

3.1.1): remove k from H;

Step 4: Check all basic variables x8
r

uk with k EH for the property

: ro = min { y io I y. > 0 } is unique for some s.
rs i yis is

If this holds the constraint Bkx s bk is not redundant (theorem

3.1.6): remove k from H;

Step 5: If H = 0, then STOP;

Step 6: If there is no basic variable x~ uk with k EH, then introduce

a nonbasic variable x~ =~with k EH (e.g. the one with the

smallest index k) into the basis and continue with step 1;

Step 7: Select a basic variable x~ = uk with k EH (e.g. the one with the

smallest index k) and perform a feasible pivot step in column p

with yip= m~x yij;

continue wittl step 1.

The finiteness of the REDINQ algorithm can be proved along the same

lines as the finiteness of the IMPLEQ algorithm. The cardinality of His

nonincreasing; in iterations in which IHI does not decrease, the algorithm

merely applies the simplex method to minimize uk(x) for some fixed k EH.

Because of the finiteness of the simplex method uk will be determined in

a finite number of steps and then IHI decreases.

The correctness of the REDINQ algorithm is implied by the correctness

of theorems .r'.1.1 through 3.1.6.

As in the case of the IMPLEQ algorithm, the REDINQ algorithm requires

a basic feasible solution to start with; this is a major drawback. How

ever, while looking for this feasible solution we can apply theorem 3.1.1

and corollary 3.1.2 to all intermediate tableaux, since they do not require

a feasible solution. The indices of all constraints that have been identi

fied as redundant or not in this preliminary stage, can be excluded from H.

Furthermore, rows in which uk is basic, while Bkx $ bk is identified

as redundant may be deleted as soon as this identification takes place.

This may reduce the number of computations by diminishing the size of the

tableau.

The flow chart of the REDINQ algorithm is given in figure 4.2.

Figure 4.2.

The flow chart of the REDINQ algorithm;
the numbers refer to the steps

INITIALIZE

To illustrate the use of the REDINQ algorithm we give the following

example. Consider the system:

X -
1 x2 $ 2 (1)

2x1 + x2 $ 7 (2)

xl $ 2 (3)

-xl + 2x2 $ 4 (4)

2x2 $ 5 (5)

xl + x2 $ 4 (6)

xl I x2 ;,, 0 (7,8)

which is shown graphically in figure 4.3.

47

48

Figure 4.3. Example of the REDINQ algorithm

A basic feasible solution is given by (x,u)T 0 and the corres-

ponding contracted simplex tableau is:

xl x2 RHS

ul 1 -1 2

u2 2 1 7

u3 2

u4 -1 2 4

us 2 5
.__,

u6 1 1 4

Applying the REDINQ algorithm yields:

Step 1: x 1 ~ 0 and x2 ~ 0 nonredundant;

Step 4: u3 corresponds to a nonredundant constraint;

Step 7: select u 1, pivot on y 31 = 1 to obtain the tableau:

49

u3 x2 RHS

ul -1 -1 0

u2 -2 1 3

xl 1 2

U4 1 2 6

us 2 5

u6 -1 1 2

Step 3: ul corresponds to a redundant constraint.

Step 4: u6 corresponds to a nonredundant constraint.

Step 7: select u2 , pivot on y62 = 1.

U3 u6 RHS

ul -2 1 2

u2 -1 -1 · 1

xl 1 2

u4 3 -2 2

us 2 -2 1

x2 -1 1 2

Step 1: U3 corresponds to a noniedundant constraint,

Step 3: u2 corresponds to a redundant constraint,

Step 4: us corresponds to a nonredundant constraint,

Step 5: STOP.

If only strictly redundant constraints are required to be identified

a modified variant of the REDINQ algorithm may be used.

AZgoI'ithm STREDINQ

Initialize: We assume a basic feasible solution is given and the corres

ponding contracted simplex tableau is set up.

Let E be the set of all indices of constraints to be identified

as either strictly redundant or not.

Step 1: All nonbasic variables x~ = u. correspond to constraints which are . J K .

not strictly redundant (theorem 3.1.7): remove these k from· E;

Step 2: Check all basic variables x~ =~with k EE for the property

Yio = O;

50

if it holds the constraint Bkx S bk is not strictly redundant

(~heorem 3.1.8): remove these k from E;
B

Step 3: Check all basic variables xi uk with k EE for the property

yij $ 0 v'j;

if it holds the constraint Bkx s bk is strictly redundant (theorem

3.1.2): remove these k from E;

Step 4: Check all basic variables x! uk with k EE for the property

min
i

{ yio I
~ Yis

1.S

if this holds then the constraint is not strictly redundant (theo

rem 3.1.6): remove these k from E;

Step 5: If E = 0, then STOP;
B

Step 6: Select a basic variable xi= uk (e.g. the one with the smallest

index k) and perform a feasible pivot step in column p with

yip = max y ij;

continue with step 2.

The flow chart of the STREDINQ algorithm is given in figure 4.4.

Figure 4.4.

The flow chart of the STRED I NQ algorithm; the numbers
refer to the steps

INITIALIZE

The correctness and finiteness proof for the STREDINQ algorithm is

similar to the one for the REDINQ algorithm.

51

The STREDINQ algorithm too requires a basic feasible solution to

start with. Again in the process of determining such a solution all inter

mediate tableaux can be checked for the conditions of theorem 3.1.1 and

corollary 3.1.2, since these do not require a feasible solution.

Also constraints may be deleted as soon as they have been identified as

strictly redundant, thus diminishing the size of the tableau.

Recall from section 3.2 that the equality constraint Akx

redundant if and only if

{ max {ak - Akx

min {ak - ¾x

X E

X E

0

0

To identify whether an equality constraint is redundant or not, we could

solve these two linear programming problems or use the IMPLEQ and REDINQ

algorithms. However it is usually a more efficient method to state all

implicit equalities explicitly as equalities (after identifying then by

the IMPLEQ algorithm) and then use theorem 3.4.1, which says that the sys

tem contains redundant equalities if and only if r(A) <ma.We can deter

mine r(A) by checking a basic solution (which is at hand if the IMPLEQ

algorithm is used) for an all-zero row. Then from theorem 3.2.1 we know

that the constraint corresponding to this row is redundant and may be re

moved.

52

4 • 3 . M.i.1i.i.mal Jz.epJz.v., entatio n

An algorithm to obtain a minimal representation can be constructed

easily from the IMPLEQ and REDINQ algorithms

Algorithm MINREP

Step 1: Determine a basic feasible solution; while doing so check all in

termediate tableaux for the conditions of theorems 3.3.3 and 3.1.1

and corollaries 3.1.2, 3.3.1, 3.3.2 and 3.3.3.

If redundant constraints are identified remove them, if implicit

equalities are identified replace them by explicit equalities;

Step 2: Apply the IMPLEQ algorithm, where G contains the indices of all

nonidentified constraints; replace all implicit equalities by

explicit equalities;

Step 3: Apply the REDINQ algorithm, where H contains the indices of all

nonidentified constraints; remove redundant inequalities as soon

as they have been identified as such;

Step 4: Remove all redundant equalities.

A slightly more efficient variant of this algorithm can be formulated

by checking all intermediate tableaux, obtained during the application of

the IMPLEQ algorithm for properties by which (non)redundant constraints

can be identified, i.e. applying steps 1, 2, 3 and 4 of the REDINQ algo

rithm to the intermediate tableaux.

The finiteness of the MINREP algorithm follows directly from the

finiteness of the IMPLEQ algorithm and the REDINQ algorithm.

Regarding the correctness of the MINREP algorithm we know that the result

ing system contains no redundant constraints because these were removed in

steps 3 and 4 0 The resulting system could contain implicit equalities only

if these were created in steps 3 and 4, since all implicit equalities were

removed in step 2. However removing redundant constraints can not cause

implicit equalities to originate; if max{~(x) x ES}> 0 then certainly

max{~(x) I x E Sj} > 0 and also max{~(x) I x E Sj} > 0. Thus the result

ing system contains no implicit equalities and hence is a minimal repre

sentation by the main redundancy theorem.

Note that the order in which the steps 2, 3 and 4 are given in the

algorithm is essential. Checking for implicit equalities should precede

checking for redundancy. Otherwise there is no guarantee that a minimal

53

representation is obtained: replacing implicit equalities by explicit

equalities after application of the IMPLEQ algorithm causes some constraints

to become redundant (cf. theorem 3.4.1).

54

4.4. Ewting mdhod.6

The methods described in the preceding sections are general for two

reasons: firstly all implicit equalities and all redundant constraints can

be identified with these methods. Secondly all methods known from the lite

rature can be shown to be special cases of the methods introduced here. In

the following we review these methods briefly (see also Telgen [1977 c]).

From the literature no methods are known to identify implicit equali

ties or to obtain a minimal representation. Wolfe [1955] describes a method

to reduce a problem to a 'simplest problem in standard form'. However the

meaning of this expression is not clearly defined although it certainly

does not correspond to a minimal representation.

Shefi [1969] gives an algorithm to obtain a minimal similar represen

tation. This algorithm amounts to solving the linear programming problems

max{~(xl j x E Sk} and min{~(x) j x E Sk} for all k. Since the feasible

region changes every time a nonextremal variable or a null variable is

removed, the calculations may have to be repeated a number of times. There-

f th 1 "th h t 1 t 1 t 2 d t t 2 1· ore ea gori m as o so ve a eas nd an a mos nd inear program-

ming problems of size comparable to the original system.

Redundant equality constraints are usually identified by checking

for r(A) <ma.The fact that this is not a necessary condition for an

equality constraint to be redundant, seems to be recognized here for the

first time (theorem 3.2.1 and theorem 3.4.1). Therefore our method to iden

tify redundant equality constraints by first stating explicitly the impli

cit equalities is a generalization of the usual method.

In the remainder of this section we concentrate on methods to iden

tify redundant inequality constraints. We distinguish between three classes

of methods according to the goals for which they may be used.

(i) deterministic methods: to determine whether or not a certain con

straint is redundant. As an extension of these methods, we can check

which constraints of a given set of constraints are redundant and

which are not.

(ii) probabilistic methods: to check a system for conditions by which

possibly some constraints can be identified as redundant or not. The

result of these methods are correct, but it is not known a priori

which constraints can be identified.

(iii) heu:t'istia methods: to check a system for conditions by which, under

some assumptions, some constraints can be identified as redundant

or not. The results of these methods are conditional upon the -

validity of the assumptions.

A number of deterministic methods to identify redundant inequality

constraints may be derived from the 'turn-over' lemma.

Boot [1962, 1964] proposed to determine the feasibility of the

system

Ax = a

(4.4.1) Vi~ k

by considering a related system in which the last constraint is replaced

by

(4.4.2) (E > O; sufficiently small)

55

Then this equality can be substituted in all other constraints by elimina

ting some variable. The feasibility of the remaining system can be deter

mined by standard methods.

Thompson et at. [1966] tried to improve the computational performance

of this method by considering the constraint (4.4.2) as an inequality with

slack variable -E. Then this slack variable is kept in the basis on the

same value and the remaining system is solved. In this way some computa

tional improvements are achieved.

But as well as in Boot's original scheme, for every inequality con

straint that is to be identified as being redundant or not, the feasibili

ty of a system of linear constraints has to be tested. In practice this

means that a linear programming problem has to be solved for every con

straint that should be checked for redundancy. To some extent this is true

for our method as well. However in our method a number of other constraints

may be identified without extra computations, as we are working towards

identifying a given constraint.

Furthermore it should be noted that the original system (4.4.1) and

the modified system including (4.4.2) are not equivalent with respect to

56

the redundancy of the constraint Bkx ~bk.If the modified system is fea

sible, the original system is feasible too and hence the k-th constraint

is not redundant. However the constraint is redundant if the original sys

tem (4.4.1) is infeasible and that may be concluded only if the modified

system is infeasible for all£> 0. Finally the choice of a particular

£ > 0, which should be small, may cause numerical difficulties.

Since determining the feasibility of the system (4.4.1) is essen

tially the same as determining ·l\: = min{~(x) I x E Sk}, these methods,

based on the 'turn-over' lemma, require the same computations as the REDINQ

algorithm for one fixed k. However if more constraints have to be identi

fied the REDINQ algorithm is clearly superior.

Some deterministic methods to identify redundant constraints have

been developed from methods to find all extreme points of a convex poly

hedron (e.g. Balinsky.[1961J, Shefi [1969J, Mattheis [1973J, Greenberg

[1975J, Holm and Klein [1975J). In these methods all basic feasible solu

tions (extreme points of the convex polyhedron) are checked for the condi

tions for theorem 3.1.2. If these hold for some constraint, then this

constraint is identified as redundant (step 3 of the REDINQ algorithm).

In this way all extreme points are checked. Only if also all feasible bases

are checked, the conclusion may be drawn that the unidentified constraints

are nonredundant. Clearly the REDINQ algorithm is more general and compu

tationally superior to these methods.

Following an idea of Lisy [1971J, Gal [1975 BJ presented a determi

nistic method to identify redundant inequality constraints. The method of

Gal [1975 BJ concentrates on strictly redundant constraints although weak

ly redundant constraints are sometimes identified too. The method can be

considered as0 a variant of the STREDINQ algorithm in which step 2 is omit

ed and step 4 stated slightly less general (see also Gal [1978]). Among

the constraints that are identified as nonredundant there may be some

weakly redundant ones, because step 1 of the algorithm does not distinguish

between nonredundant and weakly redundant constraints. Therefore, although

quite similar, the method of Gal [1975 B, 1978J is less general than the

method introduced here.

In the literature most methods to identify redundant constraints are

probabilistic methods.

57

One of the earliest proposals for a probabilistic method is due to

Llewellyn [1964]. Llewellyn gives some rules to identify a special class

of redundant constraints,namely those constraints that are redundant by

one other constraint and nonnegativity constraints on all variables. The

same rules were reintroduced in a different format in Zeleny (1974]. Eck

hardt [1971] showed that theorem 3.1.3 provided a generalization of these

rules. However it was not recognized that the rules Llewellyn [1964] gave

were incorrect; they only hold if restricted to some special cases, e.g.

all coefficients greater than or equal to zero. In these special cases the

rules of Llewellyn [1964] can be shown to be an immediate consequence of

our theorem 3.1.2. A detailed treatment is given in Telgen [1977 B].

Zionts [1965] and Thompson et ai. (1966] introduced the concept of a

definitional constraint, which is a constraint that satisfies the condi

tions of our theorem 3.1.1. The method they propose consists of scanning

each tableau for a row satisfying these conditions, and for rows in which

these conditions can be satisfied after one iteration (corollary 3.1.2).

If the tableau exhibits these properties some constraints can be identi

fied.

Thompson et ai. [1966] describe a Monte Carlo technique, in which

situations as described above are constructed by generating random combi

nations of all rows of the tableau.

Tischer [1968] and independently Brearly et ai. [1975] give an ex

tensive list of simple methods to identify redundant inequalities. These

methods can be seen as an application of the REDINQ algorithm if only one

constraint at a time and all bounds on the variables are taken into con

sideration.

Another probabilistic method has recently been suggested by Boneh and

Golan [1979]. Basically in their method a direction is generated randomly

in a given feasible solution; then it is determined which constraint

is reached first if one follows this direction from the given point. The

constraint that is reached first is not redundant (this follows from the

'turn-over' lemma). This procedure is repeated a great number of times

and after that all nonidentified constraints are considered to be redun

dant. Thus the method is always correct in classifying nonredundant con

straints, whereas the probability that constraints are classified

58

incorrectly as redundant decreases as the number of randomly generated di

rections increases. Since the method of Boneh and Golan [1979] does not

use the linearity of the constraints, it is applicable to systems of non

linear constraints as well.

Heuristic methods are applications of rules that are valid only if

certain conditions are satisfied. These conditions are not checked a

priori, either because it is impossible or because it is too laborious.

Therefore the results should be validated aposteriori or interpreted very

carefully.

Dantzig [1955] proposes to use all kinds of experience, intuition,

ideas and information to predict which constraints will not be binding in

the optimal solution. Then the slack variables of these constraints can be

forced into the basis and marked as being no candidate for leaving the ba

sis. These slack varia.bles, or rather these constraints are placed behind

a "curtain" where they do not affect the subsequent solution procedure. Of

course a similar thing can be done with constraints that are predicted to

be binding in the optimal solution; their slack variables are placed behind

a curtain from where they are temporarily not allowed to enter into the

basis (for a detailed treatment see e.g. Orchard-Hays [1968]).

Apart from the fact that this technique may be profitable for the

computing speed and storage needed (everything behind the curtains may be

stored in secondary memory) it may be used to obtain a good starting solu

tion (crashing) and to select a pivot. It should be noted that more cur

tains can be used at the same time, separating variables with different

probabilities to enter the basis. This may depend on the available a

priori information, but also on the solution path being followed.

A solution path is called convex if every two dimensional projection

of the path ox;thogonal to each hyperplane corresponding to a constraint,

is convex. Zionts [1965] and Thompson et al. [1966] proved that, if the

solution path is convex, and a variable enters, leaves and reenters the

basis in a series of iterations, the variable will be basic in the optimal

solution. If a variable leaves, enters and again leaves the basis, then

it will have a zero value in the optimal solution. However there is no

simple way known to ensure a convex solution path or to check whether

the solution path is convex.

59

5. APPLICATIONS

5 • 1 Re.& uU.6 6Mm U:t.e/1.a..tWte

The number of redundant constraints and implicit equalities in a pro

blem depends on various factors such as: the kind of problem, experience

of the problem and model formulator, size of the problem etc. Therefore in

general it is not possible to predict the rate of reduction in the number

of constraints that can be achieved in a particular problem.

Very few experimental results on this question are reported in lite

rature. Zionts [1965] performed some computational tests with the proba

bilistic and heuristic methods he proposed on a number of practical linear

programming problems. Size reductions ranging up to 50% were noted, but

the time required to obtain these reductions together with the time re

quired to solve the reduced problem usually was not significantly better

(and sometimes significantly worse) than the time required to solve the

original problem.

Thompson et aZ. [1966] stated that size reductions of 50% are not un

usual for small problems and they hoped that results on larger problems

would be even more significant. They considered linear programming problems

and applied the probabilistic methods they gave to both the primal and the

dual problem. With this procedure results on 5 practical problems ranging

in size from 9x20 to 55x104, show size reductions ranging from 30% to 75%.

Tischer [1968] mentions a large number of empirical results on prac

tical linear programming problems (production planning). The size reduc

tions with the very simple rules he uses go up to 99%, but these figures

are considered to be somewhat unrealistic since nonnegativity constraints

and bounds on the variables are explicitly stated as constraints in the

original formulation.

However most of the methods used are also described by Brearly et

aZ. [1975] tovbe part of the REDUCE routines available in advanced commer

cial LP packages such as MPSX/370 and APEX III, in which they are thought

to be useful.

Brown [1977] supports this observation by reporting some computatio

nal results using a similar set of simple rules, from which he concludes

that 'preprocessing' (scanning for size reductions with simple methods)

should be done on any problem. This conclusion is based on both prac_tical,

computational and (information) theoretical arguments.

60

All the percentages mentioned so far are conservative since the me

thods used do not identify all redundant constraints (only probabilistic

and heuristic methods were used). However the size reductions will not be

that dramatic in all practical problems, but the fact that reductions are

almost always possible is agreed upon by many practitioners (Hofmann [1955],

Zionts [1965], Thompson et aZ. [1966], Brearly et aZ. [1975], Brown [1977]).

Even more rare than experimental results with methods to identify

redundant constraints are applications of these methods to practical pro

blems reported in literature. The author is aware of only three:

Firstly, the probabilistic and heuristic methods of Zionts [1965]

are applied to a blast furnace burdening problem, a customer order combi

nation problem (both with favorable result) and to a raw material alloca

tion problem (unfavorable result), all reported in Zionts [1965].

Secondly, the deterministic method of Boot [1962] is used by Van Ame

rongen [1978] on a number of small machine generated constraint sets for

a nonlinear programming problem, arising in the context of network flow

scheduling of electricity. In these small problems (25x6) reductions were

huge (80% on the average) at reasonable costs.

Thirdly, Boneh and Golan [1979] reported of a problem instance that

was amenable only after application of their method. In this problem of 34

linear and 34 quadratic constraints in 25 variables, a size reduction of

45% was achieved.

61

5. 2 ExpeJume.n.ta,l 11..e.J., u1,t1,

For a comparison of methods to identify redundant constraints at least

two factors should be regarded: (i) the number of constraints identified

as redundant or not and (ii) the effort spent in trying to identify redun

dant constraints, measured in computer time or number of computations.

The REDINQ algorithm can only be compared to the deterministic method

of Boot [1962] (or the modified version of Thompson et al. [1966]) with

regard to the second factor; the effectiveness of these methods is the

same. It will be clear that the REDINQ algorithm is superior to these

other methods especially if more than one constraint has to be identified.

The method of Gal [1975 B , 1978] cannot be compared to the methods

mentioned above in the same way because it does not always identify weakly

redundant constraints in a correct way. Based on this observation we con

sider the REDINQ algorithm to be superior.

Comparing the REDINQ algorithm to probabilistic methods is not an

easy task, since the REDINQ algorithm will generally perform better re

garding (i) but worse regarding (ii).

The same reasoning applies to heuristic methods, but the relative

simplicity of the heuristic methods (the advantage it has regarding (ii))

should outweigh the extra computations required to check the conditions

or the uncertainty inherent to a heuristic method. Since this last aspect

is very much problem dependent we concentrate on a comparison of the

REDINQ algorithm and probabilistic methods.*

As representatives of the probabilistic methods we chose the methods

introduced in Zionts [1965] and Thompson et aZ. [1966] and the methods in

corporated in the REDUCE option of the IBM MPSX/370 package, described in

Brearly et aZ. [1975].

We programmed the REDINQ algorithm in PL/I using IBM's MPSX features.

The experiments with the REDINQ algorithm and the REDUCE option were per

formed on the IBM 370/158 computer of Technical University Delft using the

PL/I optimizing compiler. The probabilistic method of Thompson et al.

[1966] was programmed in Algol by B.G. Meyerman. Tests with this method

were performed on the Control Data Cyber 74-16 of the University of

Groningen using a CDC Algol 60 compiler version 3.1.

All problems used in the experiments are linear programming problems

* A large scale comparison of many methods to identify redundant con
straints is currently in progress (Telgen and Zionts [1980]).

62

emerging from practice. Some statistics are given in table 5.1.

size+
x,

problem, density, kind of problem source
i
1

[1977] A 16X20 15. 70 % queueing theory Kotiah and Steinberg
page 110, reformulated using
theorem 3.3.1

B l22x15 10.57 % production planning Meyerman [1979]

C 36x23 7.80 % production planning Meyerman [1966]

D 24x5 15.26 % production planning Tischer [1968] page 323

E b5X26 10.47 % production planning Tischer [1968] pp.335-336

F 9x20 55.42 % diet problem Dantzig [1963] pp.553-555
quoted from Stigler

G

H

28X25

14x12

6.96 %

14.06 %

production planning Nijkamp and Spronk [1978]

disbursement problerr Nijkamp and Spronk [1978]

+ number of inequalities x number of nonnegative variables

x including a slack variable for each constraint

Table 5.1. Testproblems

Concerning these testproblems we make the following remarks. Problem

A is known to be a numerically difficult problem; in Kotiah and Steinberg

[1977] it is reported to have cycled with MPS. Problems G and H have alter

native optimal solutions.

The experiments consisted of solving the testproblems with five dif

ferent strategies:

(i) straightforward use ofIBM's MPSX package with the PRIMAL option;

(ii) first apply IBM's REDUCE option and then solve the problem with the

PRIMAL option of the MPSX package;

(iii) first find a feasible solution with the MPSX package, then apply the

REDINQ algorithm and remove all redundant constraints and after that

solve the problem using the PRIMAL option of the MPSX package;

(iv) apply the probabilistic method of Thompson et aZ. [1966] to all in

termediate tableaux and remove redundant constraints, while solving

the problem with a standard simplex program (Algol 60);

(v) solve the problem with a standard simplex program (Algol 60).

The results of our experiments are given in table 5.2.

A B C D E F G H

(i) iterations phase I 33 0 0 4 0 2 4 7
iterations phase II 4 7 21 4 28 7 0 0
CPU time IBM 370/158 5.33 3.71 4.30 4.28 6.04 4.04 3.94 3.56

(ii) iterations phase I 11 4 8 0 6 2 0 5
iterations phase II 8 6 17 4 13 7 0 0
CPU time IBM 370/158 5.71 4. 78 5.47 4.67 7.45 4.97 5.13 4.81
matrix passes 2 3 2 2 2 2 2 2
free variables 7 1 4 4 4 0 3 4
redundant constraints 0 4 0 0 0 0 0 0

(iii) iterations phase I 33 0 0 4 0 21) 4 7
iterations phase II 4 7 14 4 26 6 0 0
CPU time IBM 370/158 6.45 4.60 6. 72 4.63 34.19 3.98 5.53 4.23
iterations REDINQ 41 16 37 30 171 12 28 9
free variables 11 1 4 4 4 0 8 7
redundant constraints 0 13 1 13 34 0 0 5

(iv) iterations phase I 16 0 0 4 0 25 14 5
iterations phase II 2 7 21 7 40 2 0 0
CPU time Cyber 74-16 3.236 1.145 7 .129 1.647 28.581 3.628 5.63? 1.140
free variables 2 0 4 4 0 0 22 0
redundant constraints 0 2 0 0 8 0 152)

(v) iterations phase I * 0 0 4 0 25 4 7
iterations phase II 7 19 7 32 3 0 0
CPU time Cyber 74-16 0.741 4. 775 1. 301 21.902 2.102 1.210 0.493

* terminated due to numerical problems
1)

differences caused by different reinversion time
2)

larger than in row (iii) since the constraint cTx ~ z
0

(z0 is present solution value) is
added to every intermediate tableau

Table 5.2. Experimental results
°' w

64

Regarding the CPU times reported here it should be kept in mind that

they were obtained in a time-sharing environment. Therefore they may be in

fluenced by external factors and should not be given absolute values. For

a fair comparison of the methods the number of extra iterations (or matrix

passes) should be taken into consideration as well.

From table 5.2 we see that the number of redundant constraints in the

testproblems usually is considerably larger than the number identified by

the REDUCE option of MPSX or the method of Thompson et al. [1966]. Iden

tifying all redundant constraints by the REDINQ algorithm sometimes reduces

the number of phase II iterations, but generally requires a number of ex

tra iterations and consequently more CPU time than solving the problem

directly with MPSX.

Whether or not the identification of all redundant constraints is

worth this extra time (effort) is an open question, that has to be decided

upon for each individual problem. However, if an LP problem has to be

solved more than once, as is the case in many practical situations, identi

fying all (or part) of the redundant constraints is more attractive.

The method of Thompson et al. [1966] does not identify all redundant

constraints, but it may be useful since it requires no extra iterations.

A major disadvantage of both the REDINQ algorithm and the method of

Thompson et al. [1966] is the fact that they requir~ information about

all coefficients of the tableau. Since all modern LP packages use some

variant of the product form of the inverse (PFI) simplex algorithm, this

is a rather costly demand. Since the REDUCE option does not require this

information it has a great advantage above the other two methods. However

for special purposes or small problems the REDINQ algorithm may still be

attractive as illustrated by our testproblems.

The performance of the REDINQ algorithm is sketched in figure 5.1,

where a typical pattern for the relation between iterations of the REDINQ

algorithm and the number of constraints identified is given.

A practical variant of the REDINQ algorithm could be to stop the al

gorithm·after some prefixed number of iterations, depending on the amount

of time one wants to spend on the identification of redundant constraints.

number of
constraints

20

18

16

14

12

10

8

6

4

2

unidentified

I
I

I
I

I

, ___ ,_

I
I

I
I

,..-.,.-;trictly redundant.,.
I

,/✓------ ..-' weaklt redundant _______ _

65

.,..,.-

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of iterations in the REDINQ algorithm

Figure 5.1. The performance of the REDINQ algorithm on testproblem B (37 constraints)

66

6. RELATEV TOPICS

Until now we considered mainly systems of linear constraints. In this

chapter we add a linear objective function and consider the ZineaP program
ming problem:

(6.1) T
max c x

subject to Ax= a

Bx :,; b

It should be stressed that the concepts of a redundant constraint and ,
an implicit equality are independent of the.objective function. Therefore

everything developed and proved in the preceding chapters applies to the

constraint set of (6.1) as well.

6 • 1 No nbindlng c.o YI!.) .tluun.:U

Apart from redundant constraints which can always be omitted from a

linear programming problem, there is another kind of constraints that can

be omitted from the linear programming problem for some classes of objec

tive functions. These constraints are called nonbinding constraints; some

examples are sketched in figure 6.1.

(*)

(*)

(*)

67

Figure 6. l. Nonbinding constraints; the objective function is indicated by a double
arrow(⇒) pointing in the direction of improvement; nonbinding constraints
are indicated by an asterix (*)

In stating a formal definition of a nonbinding constraint we use the

notation:

~= max{cTx I XE. s}

z - {x E s I T z} C X =

Zk {x Sk
T z} - E. C X

Zk {x Sk T z} - E. C X

Definition 6.1.1

The constraint Bkx $ bk is nonbinding in the system (6.1) if and only

if it is nonredundant and Z = zk.

68

Definition 6.1. 2

The constraint Akx = ak is nonbinding in the system (6.1) if and

only if it is nonredundant and Z = Zk.

Definition 6.1.3

A constraint is binding in the system (6.1) if and only if it is

neither redundant nor nonbinding.

These definitions are not equivalent to the ones given in literature.

Sometimes even other terms are used: inaative (Hoffman [1955]), nondefining

(Llewellyn [1964]) and reZative red:unda,nt (Zimmerman and Gal [1975]); for

a Qetailed motivation and treatment we refer to Telgen [1977 C].

Both inequality and equality constraints can be nonbinding: examples

of nonbinding inequality constraints were given in figure 6.1, a non~inding

equality constraint is_ sketched in figure 6. 2.

Figure 6.2. A nonbinding equality constraint (indicated by(*))

Note that any nonbinding constraint may be removed from the system:

this does not affect the optimal solution(s). But not all nonbinding con

straints may be removed at the same time, since by removing one another

can become b~ding. This can be seen from figures 6.2 and 6.3.

Removing nonbinding constraints may even cause weakly redundant con

straints to become binding. Consider figures 6.2 and 6.4.

In conclusion we have four types of constraints:

(a) ~trictly redundant constraints;

(b) weakly redundant constraints;

(c) nonbinding constraints;

(d) binding constraints.

We refer to (a) u (b) as redundant constraints and to (cl u (d) as non

redundant or aative constraints (Thompson et aZ. [1966] and Zeleny [1974]

____ i}' __ ---

figure 6.3. The interior of the pyramid (or wigwam) is the feasible region S.

Figure 6.4.

Each of the constraints all passing through the point T is nonbinding;
however they may not be removed al I at the same time

Constraint (*) is nonbinding, but removing
it causes constraint (**) to change from
weakly redundant to binding

use the term: 'essential'). Further it is worth noting that (cl and (d)

are not complementary.

69

There are no deterministic methods to identify nonbinding constraints

without finding the optimal solution to the problem. However all heuristic

methods to identify redundant constraints (described in section 4.4) can

also be used to identify nonbinding constraints.

A probabilistic method to identify nonbinding constraints if a fea

sible solution x0 is available, is the following:

70

identify all redundant constraints in the system:

Ax a

Bx :Sb
T To

C X ~ C X

If there were nonbinding constraints in the original system, some of them

may have been converted into redundant constraints. In this way nonbinding

constraints "at the lower boundary of the feasible region" may be identi

fied. Clearly if cTxo = 2 all nonbinding constraints will be identified by

this method.

In general however it is not true that constraints "at the lower

boundary of the feasible region" are nonbinding as Scolnik [1973] impli

citly assumed. The popularity of this assumption is probably due to the

fact that a constraint "at the lower boundary of the feasible region" can

be recognized rather simply. In the problem (6.1) the constraint Bkx :S bk

is such a constraint if it forms an obtuse angle~ with the objective

function, so cos~< 0, but this implies cTBk < 0 which can easily be

checked.

A counterexample to the hypothesis that a constraint "at the lower

boundary of the feasible region" is nonbinding is provided by the problem:

max x2

(6.1.1) s.t. -xl - x2 $ -2

xl + 3x2 $ 4

xl' x2 ~ 0

which is shown graphically in figure 6.5.

V

Figure 6.5.

Problem (6. l. l.)

2

0

(*)

2 3 4 5

T
According to c Bk< 0 the constraint marked by (*) is "at the lower boun-

dary of the feasible region", but it is binding.

By identifying redundant constraints in both the primal and the dual

problem and removing them, sometimes nonbinding constraints turn into re

dundant constraints (Thompson et al. [1966]). As an example consider the

problem:

max xl

(6.1.2) s.t. xl + x2 s 2

xl + 2x2 s 3 (*)

xl, x2 2: 0

which is shown graphically in figure 6.6.

Figure 6.6.

'Problem (6. 1.2.)
0

s

2

I
I
I

~

3 4

71

It is easily seen that the constraint marked by (*) is nonbinding (and not

redundant). In the dual problem

min 2y1 + 3y2

s.t. Y1 + Y2 2: 1

yl + 2y2 2: 0 (+)

Y1, Y2 2: 0

it is trivial that the constraint marked by (+) is redundant. Removing

this constraint from the dual problem and thus.deleting x2 in the primal

problem, yields the new primal problem:

max xl

s.t. xl s 2

xl s 3 (*)

xl 2: 0

72

and now the constraint marked by (*) is clearly redundant.

Thus, by identifying and removing redundant constraints in both the

primal and the dual problem some nonbinding constraints may be identified.

It would be an interesting topic for further research to check whether

this property can be used to solve the linear programming problem, as it

did in our example.

Finally, by using the Tucker formulation of the linear programming

problem (6.1):

Ax a

Bx ::, b
T

Au+ BTv = C

V ~ 0
T bTv T

a u + ::, C X

some constraints will be converted from nonbinding into redundant con

straints, so they may be identified as such.

73

6 • 2 P tu.mal- dual. Jtei.o.tio n;.,

Considering linear programming problems instead of systems of linear

constraints, allows us to study redundancy in the dual pair of linear pro

gramming problems. Of course everything developed so far for the primal

problem can be applied to the dual problem too, thus enlarging the scope

of the theory and methods considerably.

But what does it imply for the dual problem if a constraint is re

dundant in the primal problem and vice versa? Here we list some results on

questions like this one assuming that a finite optimal solution to the

linear programming problem exists (see Charnes et al. [1962] for the re

lation between boundedness of the feasible region and redundancy in the

primal-dual context) ..

In any solution to the linear programming problem (and thus in the

optimal solution too) a strictly redundant inequality in the primal pro

blem has uk > 0, which implies by the complementary slackness theorem

(see e.g. Dantzig [1963]), that the corresponding dual variable vk = 0

in the optimal solution. Hence this variable may be deleted from the dual

problem. Another way to interprete this result is to say that vk ~ 0 is

an implicit equality in the dual problem.

By a similar reasoning we can show that implicit equalities in the primal

problem correspond to redundant nonnegativity constraints on the dual

variables.

For weakly redundant constraints and redundant equality constraints

we cannot derive such a strong result. In these cases we know only that

there exists an optimal solution to the dual problem, in which the values

of the dual variables corresponding to these constraints are zero. This

is easily seen from the fact that the problem has the same optimal solu

tion with or without these redundant constraints. However we cannot guaran-
'J

tee that there does not exist another optimal solution with nonzero values

for the corresponding dual variables.

By definition dropping nonbinding constraints from the problem does

not change the set of optimal solutions. Therefore, just like for weakly

redundant constraints, there exists an optimal solution to the dual problem

such that the dual variables corresponding to nonbinding constraints in

the primal problem, have a zero value.

Finally, binding constraints in the primal problem do not seem to

have a clear-cut counterpart in the dual problem, since the corresponding

74

dual variables may have both zero and nonzero values. Only if we assume

that both the primal and the dual problem have a unique optimal solution,

we may say that the dual variables corresponding to binding constraints

in the primal problem have a nonzero value in the optimal solution.

75

7. CONCLUSION

In the preceding chapters we developed a new and complete theory of

redundancy. We introduced the concepts of an implicit equality and a mini

mal representation. We proved that a minimal representation is obtained

by removing all implicit equalities and redundant constraints from a sys

tem.

Furthermore we introduced some· new and general methods to identify

both redundant constraints and implicit equalities. Preliminary computa

tional experience shows that these methods perform relatively well.

What is the consequence of these developments? The question whether

or not redundant constraints should be identified and removed from a given

linear programming problem cannot be answered in general. It is useful

to identify redundant constraints if the resulting simplification out

weighs the effort spent in identifying them. However both the effort spent

and the resulting simplification cannot be accurately estimated in advance.

Therefore the fruitfulness of scanning for redundant constraints is in

practice an open question.

An approach that might provide some more insight into this problem,

is through computational complexity theory. That is the topic of the

second part of this work.

The question whether or not a minimal representation of the feasible

region should be determined cannot be answered in general too. Moreover

since the minimal representation is not unique, there might be some prefe

rence for one minimal representation above another one e.g. based on·

computational arguments. Therefore one has to decide for each individual

system whethe't or not to determine a minimal representation.

However in any case the theory and methods developed here enable us

for theoretical purposes to assume that a system is in a minimal repre

sentation without loss of generality.

77

part 2

LINEAR PROGRAMS

78

8. INTROVUCTION

The development of linear programming started about thirty years ago

when G.B. Dantzig and others formulated the simpZex meth.od. Various surveys

confirm that it is still the operations research technique most widely used

in practice. Its fields of application range from oil refinery management

to hospital diet planning; problems with thousands of variables and con

straints are solved routinely by sophisticated commercial codes.

Beyond any doubt the simplex method and linear programming have been

eminently successful from a practical point of view. It is therefore perhaps

surprising that various fundamental theoretical questions concerning linear

programming have remained open for a very long time. Several of these

questions are related to the inherent computational complexity of linear

programming problems and the surprising success of the simplex method in

solving these problems~

The recent spectacular development by L.G. Khachian of a new method

for linear programming motivates the reexamination of these questions. Our

starting point will be the theoretical quality of the simplex method.

Generally, algorithms for combinatorial problems such as linear programming

have been labeled good when the computational effort required to solve them

is bounded by a polynomial function of problem size. In Chapter 9 we give

a more precise formulation of this criterion; it has turned out to be a

very satisfactory one, both from a theoretical and from a practical point

of view, and problems for which such a good algorithm exists can properly

be labeled easy ones. In the same section we recall that in spite of its

practical performance the simplex method is not a good algorithm in this

formal sense; for all the major variations on the method a class of problems

can be constructed for which the number of simplex iterations increases

exponentially·yith problem size. This result does not contradict the

empirical observation that on the average the number of iterations in the

simplex method is a linear function of problem size. It does underline the

fact that no satisfactory explanation for this phenomenon has been put

forward so far.

It follows that the simplex method cannot be invoked to justify the

inclusion of linear programming among the formally easy combinatorial

problems. Would it perhaps be possible to show that a polynomially bounded

algorithm does not exist or is unlikely to exist in the case of linear

programming? The most promising technique to establish such a result is

79

provided by the theory of NP-corrrpleteness. If it could be proved that

linear programming belongs to the class of NP-complete problems, this

would imply that the problem is computationally equivalent to a host of

problems notorious for their computational intractability, such as 0-1

programming and the travelling salesman problem. A polynomially bounded

algorithm for its solution could then be used to solve all these notoriously

hard problems in polynomial time as well, and hence such an algorithm is

very unlikely to exist.

However, there has always been strong circumstantial evidence against

the possibility of settling the computational complexity of linear pro

gramming in this way. We briefly review this evidence in Chapter 10. Con

sequently, a certain effort was spent on exploring the possibility that

linear programming might be easier than all the hard (NP-complete) problems,

yet harder than all the easy (polynomially solvable) ones. In the course

of this exploration a large list of problems was assembled that were com

putationally equivalent to linear programming and hence would share the

above property. A few of these problems are reviewed in Chapter 11.

This was the situation when in 1979 Khachian published his ellipsoidal

algorithm. Its most important theoretical property is that it provides a

polynomially bounded solution method for linear programming, at last

establishing the formal equivalent of the empirical fact that linear prog

ramming is indeed an easy problem. Perhaps not surprisingly, the ellipsoidal

method is completely different from the simplex method; it solves a system

of linear inequalities by constructing a series of increasingly smaller

ellipsoids, whose centers converge to a feasible solution if one exists.

This reflects an approach to the linear programming problem that is

highly non-combinatorial and closer in spirit to ideas from nonlinear and

nondifferentiable optimization. We describe the algorithm in some detail

in Chapter 12 ;._;

It is already becoming apparent that Khachian's approach could have

fascinating further applications within combinatorial optimization.

These applications and other theoretical consequences are explored in

Chapter 13. In the same chapter we discuss the practical relevance of the

new method: is it likely to replace the simplex method in the long run

or is Khachian's contribution merely a theoretical one? It is probably too

early to give a definite answer to such questions, but in ,any case a whole

new and extremely useful research area has been opened up, and many addi

tional exciting results can be expected in the near future.

80

9. THE SIMPLEX METHOV

Let us start by introducing some concepts from the theory of

computational complexity, without going into the details of deterministic

and non-deterministic Turing machines and their language recognition

capacities (the interested reader is referred to Aho et al. [1974]}.

These details are not required for the exposition below; a simplified

treatment will suffice to explain the main implications of the theory.

An algorithm for a certain problem is termed 'good' if it solves an

instance of that problem in a number of computations that is bounded from

above by a polynomial function of the size of the problem instance

(Edmonds [1965)). The size of a problem instance is defined as the length

of the input string, under any reasonable encoding of the problem data

e.g. a binary one. Inf.ormally we say that an algorithm is 'good' if it runs

in polynomial time.

This broad definition has attractive theoretical features: it is

fairly insensitive to the choice of a particular theoretical model of com

putation and yet it captures the crucial difference between an efficient

algorithm and one that demands an exponentially increasing computational

effort. Moreover, the algorithms labelled good by virtue of the above

definition have generally had polynomial bounds of low degree and work so

well in practice that their positive qualification is amply deserved.

(9. 1)

(9. 2)

(9. 3)

The current standard way to solve the linear programming problem

maximize

subject to

and

T
C X

Ax~ b

X 2: 0

with c e: Rn, x e: Rn, be: Rm and A e: Rmxn, is by means of the sirrrplex method,

developed by Dantzig and others in 1947. The simplex method constructs

a path along the edges of the polytype defined by (9.2) and (9.3) in such a

way that the consecutive extreme points have nondecreasing objective

function values attached to them. In each iteration, the method examines

if further improvement in the objective function is attainable by moving

from the current extreme point to one of its neighbours; if so, one of

theseneighboursis selected by means of a pivot selection rule and a pivot

81

step is executed. To determine the theoretical quality of the simplex method

it suffices to analyze the number of steps in the path, because the number

of computations carried out for each extreme point is clearly polynomially

bounded. Since the number of extreme points is bounded from above by(~), an

obvious upper bound* on the number of simplex iterations is O(nm). This

bound is clearly exponential in m.

On the other hand, in practice the number of iterations in the sim

plex method usually ranges from m to 3m, as verified in many experiments

(see e.g. Wolfe and Cutler [1963], Quandt and Kuhn [1964]). The difference

between practical performance and theoretical upper bound has caused Gale

[1969] to speak of 'a large and embarassing gap between what has been ob

served and what has been proved', which 'has stood as a challenge to

workers in the field for twenty years now and remains, in my opinion, the

principal open question in the theory of linear computation'. Three years

later, in a landmark contribution, Klee and Minty [1972] showed that the

above obvious upper bound on the number of iterations may actually be

attained on certain classes of linear programming problems. We shall discuss

their result in some detail.

The basic construction to show this is extremely simple: it uses the

fact that a hypercube can be perturbed slightly so as to contain a path that

visits all 2n vertices and along which the last coordinate x is always
n

increasing. If the pivot selection rule is simply one under which any

neighbouring vertex that yields an improvement may be chosen, and if the

objective function is taken equal to xn' then we obtain the required

counterexample against polynomially bounded behaviour.

The perturbation technique is illustrated for the cases n=2 and n=3

in Figures 1 and 3 respectively. Note that the 3-dimensional example is

constructed by first forming the Cartesian product of the two-dimensional

example and tM interval [0,1], as in Figure 2. It is then further per

turbed as in Figure 3 to obtain the required sequence of nondecreasing x 3
coordinates.

*The conjecture that a smaller upper bound of ;(min) existed (Saaty [1963])

was proven to be false (Quandt and·Kuhn [1964]; Goldman and Kleinman [1964]).

82

Xz

Figure l

Figure 2

-•- I -i-
i
I
I
I
I
I
I
I
I ..,;--,-.::-

_,,.---;:-•.f.i'.J""
.---:,~:::..":-- .. --- -
Figure 3

Xz

)
_____ --

)
Xz

83

Obviously this particular counterexample does not work for a dif

ferent choice of pivot selection rule. However, similar, albeit more com

plicated, constructions have been presented for almost every pivot selection

rule that has been suggested so far.

For these cases we introduce the notion of a reversible simplex path,

which is a path that will be followed in reverse order if we replace the

'max' operator by a 'min' operator and start in the optimal solution under

the former. Define the maximum numbe·r of steps in a normal and a reversible

simplex path for a linear programming problem with n variables and m con

straints as M(n,m) and R(n,m) respectively, then clearly

(9.4) M(n,m) 2' R(n,m)

To prove that M(n,m) is not polynomially bounded it suffices to show

that R(n,m) is exponential. To this end Klee and Minty [1972] constructed a

class of polyhedra on which

(9.5) R(n+2, m+k+l) 2' k R(n,m) + k-1

Then by induction on n we can prove that

(9.6) liminf
n-+<x>

The proof is as follows:

L liminf
n-+<x>

R(n+2, ml
[½Cn+2l]

m

from (9.5) with k~m it follows that:

L ;,, liminf
n+oo

and by induction we have

m R(n,m) + m-1

(2ml (2m) [½n]

1

liminf
n-+<x>

R(n+2, 2m+l)

(2m+ll [½n]+l

liminf
n-+<x>

R(n,m)
7n/2T m

84

This completes the proof of (9.6) which in turn implies that

R(n,m) = Q(m[n/2]) and hence M(n,m) = O(m[n/2]).

To prove that there is a class of linear programming problems on

which (9.S) is true, we have to construct a polyhedron on which it holds.

Klee and Minty [1972] use the polyhedron V and its perturbation W sketched

in figure 9.4.

Figure 9.4.

The po I ytopes V and W
0

\ 1
\

\Wo -- - -- -- --- - -- -- - - ----- -----------

In this figure k should be considered a parameter denoting the number of

faces of the polyhedra V and W. Furhter note that the xn+l coordinates of vi,

i even, are larger than those of wi, while the opposite is true for i odd.

Finally the line segments (vi,vi+l) are parallel to (wi,wi+l) for all

i=l, •.• ,k-1. Consider a polyhedron P with a reversible simplex path p 0 , ••. ,pt

of length R(n,m) for objective function cTx with cTp0=o and cTpt=l. We form

the Cartesian product vxp, which is perturbed to obtain the (combinatorially

equivalent) polyhedron Q. The perturbation is accomplished by defining the

xn+l and xn+2 coordinates attributed to all points pEP as

This operation is illustrated in Figure 9.5 where P [0,1].

X

~---------------~P10

I --------- ---------r--,
T I "
I
I
I
I
I

PI l

Figure 9.5. The perturbed Cartesian product Vx(0,1) on which the simplex
method passes through almost all extreme points

85

Finally, by suitable choices of the scales of the variables, one can guaran

tee that the simplex method with the pivot selected to maximize the objec

tive function value improvement per unit change in the variable introduced

into the basis, starting in (:o), follows the reversible simplex path on P
1 l

while staying in the (perturbed) v1 position of the xn+l and xn+2 coordin-

ates, i.e. follows the path

Then the simplex method leads to(:;) and back again to(:~) following the

reversible simplex path. Since this process repeats itself fort= 1,2, •.. ,k,

inequality (9.) follows.

It is not directly clear how to translate this geometrical construc

tion into algebraic terms. However a particularly elegant example of an

exponential number of iterations in the simplex method was given by Avis

and Chvatal [1978]. The simplex method requires 2n-l steps on the problem:

86

max

s.t r 1

I 2. 101

I 2.102

. I

0

1

2. 10 1

0

0

1

J

X
n

The construction by Klee and Minty [1972] leaves open the possibil

ity that the simplex method with another pivot selection criterion is

polynomially bounded. Jeroslow [1973] formulated a counterexample for

one of the major candidates: selecting the pivot to maximize the improve

ment in the objective function value per iteration.

Instead of the polytopes V and W sketched in figure 9.4 slightly

different polytopes V' and W' are obtained by introducing parallellograms

in between ev~ry two trapezoids as sketched in figure 9.6.

_Figure 9.6.

The polytopes V' and W'
v;

Q Yo "'•

I ""I Vs v,•
VJ / \ \
/ / \ \

I I \ \
I I \ \

I I \ \
I I \ \

I I \ \
I I \ \

I I \ \
/ I \ \

I I
I I

I I
w: ~

Then in the same way in which figure 9.5 was constructed from

figure 9.4, Jeroslow constructed the cartesian product V'xP; for the

purpose of illustration again we take P = [0,1].

I

⇒ I

Figure 9.7. The perturbed cartesian product V' x [O, l]

From this figure one can verify that the path is followed as

indicated by the heavily drawn lines, if the pivot is selected as as to

maximize objective function improvement in each step. Thus we have shown

that for this pivot selection rule too a polyhedron can be constructed

such that almost all extreme points are visited. In fact Jeroslow [1973]

proved that for this pivot selection rule (indicated by a prime)

R' (n+2, m+4k+3) ~ 2k R' (n,m) + 4k

This implies that

87

and this variant of the simplex method is not polynomially bounded either.

88

In view of relatively good performance (as far as the number of

iterations is concerned) of the simplex method with the pivot selection

rule of maximizing gradient in the space of all variables, as reported

by Quandt and Kuhn [1964] and Crowder and Hattingh [1974] some hope has

been held that this method might be polynomially bounded. However,

Goldfarb and Sit [1978] were able to construct a counterexample to this

conjecture as well; it is somewhat similar to the construction by Klee and

Minty [1972], but requires larger perturbations.

Jeroslow [1973] indicated that it is possible to extend his result

to still other pivot selection rules such as maximizing objective function

improvement pert (t~l) iterations.

A pivot selection rule for which no counterexample for polynomial be

haviour has been constructed so far, is suggested in Zadeh [1980]. Accord

ing to that tule, pivots are chosen to introduce variables into the basis

that have been basic in the smallest number of previous extreme points.

However, as yet it has only been conjectured and not proved that there

is no pivot selection rule for the simplex method that yields a polynomially

bounded algorithm. Moreover practical linear programming problems seem to be

of a type that can be solved efficiently by the simplex method (Liebling [1973]

None the less, we are forced to conclude that almost all the major

variants of the simplex method exhibit exponential behaviour in the worst

case, in spite of their excellent average case behaviour. No satisfactory

explanation of this discrepancy has been put forward. In principle, it

might be possible to prove expected polynomial time behaviour of the simplex

method by specifying an appropriate probability distribution over all

instances of the linear programming problem. This has indeed been attempted,

given various definitions of random polytopes~ without much success (cf.

Borgwardt [1978], Sulanke and Wintgen [1972]). In this sense, the 'large and

embarrassing gap' alluded to above still exists.

Recently, Dantzig [1980] showed that certain probabilistic assump

tions about the behaviour of the simplex method can imply polynomially

bounded expected running time, but unfortunately it has not been possible

so far to relate all these assumptions to a probability distribution over

problem instances.

The only conclusion that we can draw from the O(nm) bound on the

number of simplex iterations is that the linear programming problem is

solvable in polynomial time for every fixed constant value of m (or, by

duality, of n). Thus, the two-dimensional problem can be solved in 0(m2)

89

time. However this is not optimal as was proved by Shames and Hoey r1976].

They consider convex polygons as represented by their extreme points in

consecutive order. This representation enables one to find the intersection

of 2 convex polygons with k sides in O(kl time (Shames [1975]). It is

then easy to prove that the common intersection of m halfplanes can be

found in O(m log ml time: let Hi i = 1, ... , m be the halfplanes, then

m
n

i=l
H,

1.

Since both terms in the parentheses are convex polygonal regions of at most

m/2 sides, they can be intersected in O(m) time. If T(m) is the time

required to form the intersection of n halfplanes this yields

T(ml 2 T(m/2l + O(ml

and therefore

T(ml O(m log ml.

Shames and Hoey [1976] also proved optimality of this result by

showing that an algorithm for determining the common intersection of n

halfplanes can sort numbers, for which problem an O(m log m) lower

bound has been established. The construction is simple: given n real

numbers x 1 ... xm' let Hi be the halfplane containing the origin defined

by a line of slope xi, that is tangent to the unit circle. The inter

section of these halfplanes is a convex polygon, whose successive edges

are ordered by slope. Once the intersection polygon is formed, we can

immediately read off the xi in the proper order, so O(m log ml comparisons

must have bee<); performed.

Since the linear programming problem can be solved by calculating

the objective function value in all (at most ml extreme points, which can

be done in linear time, the two-dimensional linear programming problem

can be solved in o(m log ml time.

One might be tempted to hope that extending the above method to

higher dimensions will yield better upper bounds for linear programming

than the simplex method does. However it turns out not to be efficient

to determine all extreme points and then calculate the objective function

values, since the number of extreme points grows exponentially with the

number of variables.

90

1 . THE COMPLEXITY OF LINEAR PROGRAMMING

In view of the apparent impossibility to solve linear programming

problems in polynomial time, it became more and more tempting to aim for a

proof that a worst-case exponential solution method such as the simplex

algorithm is likely to be unavoidable. A suitable theoretical framework

for such a proof was provided by S.A. Cook [1971] and R.M. Karp [1972] in

their pathbreaking work on computational complexity theory.

The theory of NP-completeness deals with the complexity of recogni

tion problems, i.e. questions that require a yes/no answer. This, incident

ally, is not a serious restriction: optimization problems such as linear

programming ((9. 1) - (9. 3)) can be formulated as recognition porblems by asking

for the existence of a feasible solution with objective function value at

least equal to a given threshold y. A recognition problem is now said to

belong to the class .p of easy problems, if for any instance the answer to

the yes/no question can be provided in polynomially bounded time. It belongs

to the class NP if a proposed positive answer to the question can be veri

fied for correctness in polynomially bounded time. Thus, the recognition

version of linear programming trivially belongs to NP: given x E Rn, it is

possible to verify in O(nm) time, whether

(11.1)
{

CTX ;?: y

Ax $ b

X <': 0

From the above definitions, it is obvious that P '.:_NP.To compare

the relative difficuly of problems in NP, we next introduce the notion of

problem reducibility. Problem P' is said to be reducible to problem P

(notation: P' ~ P) if for any instance of P' an instance of P can be ~on

structed in polynomial time such that solving the instance of P will solve

the instance of P' as well. Informally, the reducibility of P' to P implies

that P' can be considered as a special case of P, so that Pis at least as

hard as P'. Pis now called NP-corrrplete if P' « P for every P' ~ NP. In

that case, Pis at least as hard as any other problem in NP. Thus, the

NP-complete problems are the most difficult problems in NP, and every prob

lem in NP is a special case of such an NP-complete problem.

Suppose that it could be proved that linear programming, as formulat-

91

ed above, is an NP-complete problem. In that case, a polynomially bounded

algorithm for its solution could be used to solve not only linear programm

ing but every single problem in NP in polynomial time: for any instance of

a problem in NP, one could first construct the corresponding linear programm

ing instance and then solve the latter problem, with both steps being poly

nomially bounded. However, NP contains many notoriously difficult problems,

none of which is likely to be polynomially solvable. The conclusion is that

if any problem (and linear progrannning in particular) is NP-complete, it is

unlikely to admit of a formally good algorithm.

One of the nice features of NP-completeness theory is that many of

the problems that are notorious in practice for their computational intrac

atability can indeed be proved to be NP-complete, including such classical

ones as the 0-1 progrannning problem and the travelling salesman problem

(see Garey and Johnson [1979] for a survey of these results and of the

- surprisingly simple - proof techniques). As in the case of good algorithms,

this yields overwhelming empirical justification for a theoretical concept:

the NP-complete problems can properly be called the truly hard ones. By

itself, this already argues against NP-completeness of linear programming.

In spite of its theoretical deficiencies, the simplex method works so well

that linear progrannning cannot be called hard from any practical point of

view.

The scepsis about the possibility of proving NP-completeness for

linear progrannning can be motivated from a more theoretical point of view

as well. The recognition version of linear programming amounts to no more

than asking for a feasible solution to a system of linea:r> inequalities

(11.1). The problem complementary to thiij one would amont to asking for

verification that no such feasible solution exists. In view of the Farkas

lemma, these two questions are computationally equivalent. Now, if linear

programming WQUld be NP-complete, a similar equivalence would hold between

every other NP-complete problem and its complement. For all of these prob

lems, however, the complements are not even known to belong to NP:
If NP-completeness of linear progrannning is unlikely and polynomial

solvability hard to establish, is there then perhaps a third possibility?

Somewhat surprisingly, the answer to this question is positive: under

the (as yet unproven!) assumption that Pf NP, it has been p~ssible to

prove that there exists an infinite hierarchy of problems between the class

P and the class of the NP-complete ones (Ladner [1975]). Linear programming ap

peared to be a natural candidate for this ubtermediate position. But as yet only

92

artificially constructed problems have been shown to be members of this

intermediate class.

The classes P and NP are certainly not the only classes of interest.

There are for example the class PSPACE, which contains all problems solvable

in polynomial space, and the class LOGSPACE, which contains all problems

solvable in space linear in the logarithm of problem size. It is not hard

to see that LOGSPACE.::. P, but whether the inclusion is a proper one or not

is not yet determined (see Garey and Johnson [1979] for a more detailed

treatment). This is of some interest for the complexity of linear programm

ing because Dobkin et aZ. [1979] showed that linear programming is LOGSPACE
hard for P, which means that, if linear programming is solvable in space

O (log kn) for some fixed k, then all problems in Pare solvable in space
k' O (log n) for some fixed k'.

93

11. LP-EQUIVALENT PROBLEMS

In the course of investigating the computational complexity of

linear programming, it became obvious that whatever would be true for linear

programming would also be true for a class of problems computationally

equivalent to linear programming (equivalent, in the sense of being mutually
. ~ * reducible to each other). We shall call these problems LP-equ~Va&ent.

The starting point for establishing LP-equivalent problems are the

following two formulations of the linear programming problem:

LINEAR PROGRAMMING-OPTIMIZATION (LP-OPT):

Given: An integer (mxn)-matrix A, an integer m-vector band an integer

n-vector c.

Question: Find a rational h-vector x such that Ax Sb and cTx is maximal.

LINEAR PROGRAMMING-RECOGNITION (LP-REC):

Given: An integer (mxn)-matrix A, an integer m-vector b, an integer

d . 0
n-vector can an integer z

Question: Is there a rational n-vector x such that Ax Sb and cTx ~ z0?

First note that the integrality assumption is made to exclude

irrational coefficients, since they would imply an infinitely large

problem size and hence render our definition of a 'good' algorithm

meanipgless. Clearly rational coefficients are not excluded by this

assumption, since the problem can always be rescaled so as to make these

integer.-

Second we have stated both the optimization problem and the

recognition p_r.oblem to facilitate proving LP-equivalence for a number of

other problems. First we show that these problems themselves are

equivalent:

*

Clearly LP-REC~ LP-OPT.

To prove LP-OPT~ LP-REC, suppose we have a 'good' algorithm for LP-REC;

then LP-OPT could be solved in polynomial time as follows:

- First check wl-tether Ax s b admits of a feasible solution. If

not, LP-OPT has no solution.

Dobkin and Reiss [1978] use the confusing term LP-complete problems.

94

- Next, determine whether the system is unbounded by applying the
. . 0 m+n+2

LP-REC algorithm with z = (m.q) + 1, where q is the largest

absolute value of an integer from A, b or c.

Since no finite optimal solution exists with objective function

value larger than zO (Papadimitriou [1979]), feasibility of this

system implies an unbounded solution to the LP-OPT problem.

- Finally, determine the objective function value of the optimal

solution by a polynomially bounded search over rationals

(Papadimitriou [1979], Reiss [1979]). In the same way the values

of the variables can be determined.

Now we list some prominent LP-equivalent problems typical of many other

problems:

LINEAR INEQUALITIES (LI):

Given: An integer (mxn)-matrix A and an integer m-vector b.

Question: Does a rational n-vector x exist such that Ax~ b?

STRICT LINEAR INEQUALITIES (SLI):

Given: An integer (mxn)-matrix A and an integer m-vector b.

Question: Does a rational n-vector x exist, such that Ax< b?

LINEAR PROGRAMMING COMPLEMENT (LPC):

Given: An integer (mxn)-matrix A, an integer n-vector c, an integer
0

m-vector b, and an integer z.

Question: Is there no rational n-vector x such that Ax~ band cTx ~ zO?

STRICT REDUNDANCY (ST-RED)

Given: An int~ger (mxn)-matri~ A and an integer m-vector b.

Question: Is the constraint

Ax~ b?

WEAK REDUNDANCY (W-RED):

'- a 1jxJ. ~ b 1 strictly redundant in the system
j=l

Given: An integer (mxn)-matrix A and an integer m-vector b.
n

Question: Is the constraint L a 1jxj ~ b 1 weakly redundant in the system
j=l

Ax ~ b?

IMPLICIT EQUALITY (IEQ):

Given: An integer (mxn)-matrix A and an integer m-vector b
n

Question: Is the constraint r a 1 jxj :;; bl an implicit equality in the
j=l

system Ax:;; b?

Geometrical counterparts to all of these. problems can readily be

obtained by replacing constraints by hyperplanes and using fundamental

duality theory of linear programming. Perhaps not so obvious is the

relation with some other geometrical problems:

EXTREME POINT (EP);

· f . 0 1 n . m Given: A set o points p, p, p in R.
O O 1 n

Question: Is p an extreme point of the convex hull of p, p, ... p?

BOUNDEDNESS (BND);

Given: A set of halfspaces H1 , ... Hm in Rn.

Question: Is H
m

n Hi bounded?
i=l

POINT-SET SEPARATION (P-S SEP);

Given: Points p
0 1 2 n , p , p , ... p in

Question: Is p
0 separable from p

1
I

exist such that
0

is on p

m
R .
2

p I

one

other side of the hyperplane?

... ,
side

n
p I

and

A still less obvious LP-equivalent problem is:

DIRECTED TWO COMMODITY FLOW (D2CF);

i.e. does a hyperplane
1 2 n

p , p , ... p on the

Given: A dire.c.ted graph G = (V ,E) in which two vertices are denoted

sources and two vertices are denoted sinks, with capacities on all

edges and an integer f.

Question: Is there a flow from sources to sinks, such that the capacities

are not exceeded and the flow is greater than f?

95

We shall prove that all of the problems above are LP-equivalent. To

illustrate our proofs the basic scheme of reductions is given in figure

11.1; an arrow pointing from problem P to problem Q indicates that we

shall prove P ~ Q.

96

Figure 11.1. Reductions between LP-equivolent problems: symbols refer to the
proof in the text

The following reductions suffice to prove LP-equivalence of all problems

above:

(al LP-REC= LI:

trivial

(bl SLI - LI:

it can be shown that there is a polynomially bounded scalar a(A,bl

that Ax:, b has a solution if and only if

Ax< b + a(A,bl

has a solution (see Gil.cs and Lovasz [1979]l.

(cl LP-REC= LPC:

trivial, used in phase I of the simplex method.

(dl ST-RED~ LP-REC:

immediate from the definition of a strictly redundant constraint

(Telgen [1977A]l.

such

(e) LPC ac ST-RED:

In the LPC problem

JAX s b
1 T 0
LC X 2: Z

we may assume that Ax s bis feasible (can be checked as LI which is

LP equivalent).

Then LPC is infeasible if and only if the constraint cTx s zO is

strictly redundant in the system

{ Ax s b
T 0

C X S Z

To see this note that cTx s zO is strictly redundant if and only if

cTx < zo V x with Ax s b.

(f) EP ac LPC:
O . 0 1 n

The point p is an extreme point in the convex hull of p, p, ... , p

if and only if
n
L

j=l

n
L

j=l
11

-L
j=l

(g) P-S SEP= EP:

there

A.Pj
J

A.
J

A.
J

A.
J

is no A = (Al'
0

2: p

2: 0 V j 1' •••I

s 1

s -1

0 . f 2 The point p is separable romp, p,

A) E Rn such that
n

n

pn if and only if po is
0

an extreme point for the convex hull of p ,
1 n

p ' ... ' p .

(h) BND ac EP:

Denote every Hi as {x E Rn
n
L

j=l
a . . x.
iJ J

s b.},
i

then H = {x E Rn I Ax s b}.

His bounded if and only if

H' = {x E Rn I Ax s O}

is bounded, which is true if and only if the origin is an extreme

point with respect to the points

Vi 1, ... , m

97

98

(i) ST-RED oc BND:
n

The constraint I a 1J.xj $ b 1 is strictly redundant in the system
j=l

Ax $ b if the system
n
I a 1jxj $ - bl

j=l
n
I aijxj $ b. V i 2, ... , m

j=l
J.

is infeasible.

Adding a maximizing (null) objective function and dualizing we obtain

the problem:
m

min - blyl + r. b,y.
i=2

J. J.

m
s.t. - aljy 1 + I aijyi 2 0 V j 1, , n

i=2

y, 2 0 V i 1, , Ill
J.

Since this problem always has a feasible solution (y=O), the former

system is infeasible if and only if the system

m

- blyl + I
i=2

Ill

b.y.
J. J.

- aljyl + ~ aijyi :2: 0
i=2

is unbounded.

(j) ST-RED oc W-RED
n

V j 1, •.. , n

Vi 1, ... , m

The constraint I a 1 jxJ. $ b 1 is strictly redundant in the system
j=l

Ax$ b if and only if it is not weakly redundant and not binding.

Checking the latter is an LI problem and since LI= ST-RED, this

suffices to prove ST-RED oc W-RED.

(k) W-RED = IEQ:
n

The constraint I a 1 .x. $ b 1 is weakly redundant in the, system
j=l J J n

Ax$ b if and only if the constraint I a 1 .x. 2 b 1 is an implicit
j=l J J

equality in the system

n
L a 1jxj ;,: bl

j=l

n
L a . . x. :<; b. V i 2, ••••I m

j=l 1.J J 1.

(1) W-RED ~ LP-OPT:

Trivial from the definition of weakly redundant constraints.

(m) D2CF ~ LP-REC:

see e.g. Ford and Fulkerson [1962].

(n) LP~ D2CF:

We shall sketch the fairly complex proof due to Itai [1977]. The

starting point is the LINEAR EQUALITIES (LE) problem, which can be

seen to be LP-equivalent by standard transformations.

99

An [i,u] LE problem is defined as an LE problem with all coeffi

cients being integers betweeni and u. First, it is shown that

LE~ [-2,2] LE by bitwise decomposition of all constraints, i.e. a

constraint La .. x.
j 1.J J

b. is rewritten as
1.

k .
r. [Z: 2 a~k]x.
j k i J

in which all aik and b! are either -1, 0 or 1. Now we may replace this

single constraint by a system of constraints in which the coefficients

of all powers of two are equalled:

j bi
~ aikxj - 2 (yk - zk) + (yk-1 - zk-1) = k Vk

The terms in yk and zk take into account the transfers from one

equation to the next one. If Mis the largest coefficent in the matrix

the maximal number of constraints in the new system is log M. Since

this is p9lynomial we have LE~ [-2,2] LE.

It is easy to see that [-2,2] LE~ [-1,1] LE since we can

replace variables x. with coefficents of+ 2 by±_ (x'. + x'.) and add
J J J

the extra constraint x'. - x'.' = 0.
J J

The reduction to flow problems can be achieved by considering

the problem:

HOMOLOGOUS FLOW (HOMFLOW);

Given: A graph G = (V,E), in which one vertex is denoted as source

and one as sink, capacity constraints on the edges and some

sets of homologous edges i.e. sets of edges, through which the

100

flow has to be equal.

Question: Is there a feasible flow in this network?

Itai [1977] proved [-1,1] LE~ HOMFLOW by considering the network

given in the following figure:

Figure 11.2. The network used in proving [-1, 1] LE a: HOMFLOW

In this figure a part of a network is shown which corresponds

to one constraint i in the [-1,1] LE problem: for every variable j
i

there is a vertex v. which is connected
J

to the value of a .. ; other vertices and
l.J

in the figure. An additional vertex s =

with v~, v! or v= 1 according

edges are defined as sketched

zO is introduced as the

source of the network, while zm is the sink.
i i i i

The edgeit · (V 1 , y) and (V _ 1, y) are homologous for all i, as well as

the set of edges:

(zO ,v~), (z 1 ,v~), •.... , (zk-l ,v;) for all j.

i i
Furthermore the edges (v1,z) have a fixed minimal and maximal

capacity of bi for all i.

Then it is easily seen that a solution to HOMFLOW in this

network, given by the flows through the edges (z0 ,v~) for all j,
J

determines a solution to [-1,1] LE.

By introducing a second commodity and a special kind of edges

we can get around the homology requirement. An edge is called

101

selective if only one specific commodity may pass through it. Selective

edges may be used to simulate homologous edges. If the edges (1,2) and

(3,4) are homologous, we apply the construction given in the following

figure.

Figure 11.3. Simulating homologous flow with selective edges (c is a large constant)

The commodity that may pass through the edge is indicated

above the edge, while the capacity is indicated below the edge (where

necessary). Now it is easily verified that the flows from 1 to 2 and from

3 to 4 must be equal. The selective edges in turn can be simulated by

introducing an extra source and sink for the selected commodity i and

replacing the selective edge (1,2) with capacity (l,u) by the structure

given in the following figure.

(I, u) (o, u-1) (I, u)

(u, u) (u, u)

Figure 11.4. Simulating a selective edge (1, 2), through which only commodity i passes

In this way Itai [1977] showed that linear programming reduces

to finding a feasible flow in a directed two commodity flow problem

with constraints on the capacities of all edges; thus LP~ D2CF.

Itai [1977] noted that, since the reductions used never rely on the

fact that 2 commodities are involved, the result can be extended tom

commodities (m~2) which means that the directed multi commodity flow

102

problem is also LP-equivalent.

Single commodity flow problems in a directed network are solvable

quite efficiently and membership of P for the directed single commodity

flow problem has been proved (Edmonds and Karp [1972]). Therefore it is

interesting to ask which linear programming problems may be converted

into a single commodity flow problem, such as the transportation and

assignment problem, since that would enable us to solve those LP problems

in polynomial time.

However it is not always straightforward to check whether a given

linear programming problem has an underlying network structure; constraints

and variables may have to be combined, added, redefined etc. to reveal

the network structure. Usually the only clue as to how this should be done,

can be obtained from considering the practical background of the problem.

Recently Bixby_ and Cunningham [1980] and Musalem r1979J developed

algorithms to detect the possibility of conversion and to perform the

conversion in polynomially bounded time. The method of Bixby and Cunningham

[1990] tries to convert the incidence matrix of the rows to a graphic

matroid. If it succeeds, the graphic matroid is used to scale the problem.

Musalem [1979] scales the problem to a (-1;·+1,0) ·matrix and then builds a tree,

edge by edge, to reveal the partial. ordering related to the hidden network

structure.

103

12. THE ELLIPSOIVAL METHOV

The announcement by Khachian [1979] of a polynomially bounded

method for linear progrannning fell upon skeptical ears: in 1973, H.D. Scolnik

surprised the participants at the Stanford Mathematical Progrannning

Symposium with a similar claim, and it required quite an effort to detect

the fatal flaws in his algorithm (Gay [1974], White [1974]). It took about

three months for Khachian's work to reach Western researchers. Again three

months later, P. Gacs and L. Lovasz [1979] supplied the proofs that were

missing in the original manuscript and established the validity of the

algorithm. The new developments attracted a lot of publicity; some amusing

background information is provided in Lawler [1980 J.

In describing Khachian's approach it is most convenient to start from

the strict linear inequalities problem: find x such that

n
(12.1) :I:j=l aijxj < bi (i 1, ... ,ml ,

whose equivalence to linear progrannning was noted in the previous section.

Khachian's method will be polynomial in the size of a problem instance,

measured here by n, m and by the number L of bits needed to store the

numerical problem data:

L
n

:I:. 1]=

t
!'l

(log I aij I + 1) + :I:i=l (log I bi I + 1) + log nm + 1.

It should be observed that running time bounds that are data depend

ent in that they involve the logarithms of numerical problem data occur

for other problems as well (such as the linear transportation problem,

Edmonds [1965]) and that they are perfectly acceptable from a theoretical

point of view.,

Now, for the strict linear inequalities problem (12.1), upper and

lower bounds on the volume of the set of feasible solutions can be provided

as follows:

(1) if (12. 1) is feasible, a solution can be found within the hypersphere

{x : lxl :S 2L};

(2) if (12.1) is feasible, the volume of the set of solutions inside the

hypercube {x : Ix.I :S 2L} is at least 2-(n+l)L.
J

These results belong to folklore and can be proved using Cramer's

Rule (see also Gacs and Lovasz [1979]). Note that observation (2) reflects

the fact that the set of solutions to (12.1), if nonempty, must have a

strictly positive volume.

Khachian's method can now be summarized as follows. In the k - th

step of the method, we will have obtained a (hyper)ellipsoid such that if

there exists a feasible solution to (12.1), it is contained in this ellip

soid. The center of the ellipsoid¾ is tested for feasibility. If¾ is

feasible, we stop. If not, we select a constraint from (12.1) that is

violated by xk, and construct a hyperplane parallel to this constraint

through¾· This hyperplane cuts the ellipsoid into two halves, one of which

certainly does not contain a feasible solution. We now construct a new

ellipsoid that circumscribes the other semi-ellipsoid, and move on to the

(k+l) - st step.

Observations (1) and (2) allow us to initialize the method with a

unit hypersphere of radius n\2L around the origin and to terminate the

process if the volume of the new ellipsoid becomes smaller than 2-(n+l)L;

in the latter case, no feasible solution exists. It follows that the number

of steps will be determined by the ratio of the volume of two successive

ellipsoids.

For a precise description, assume that the k - th ellipsoid is given

as

(12.2) {x

Suppose that the current center¾ of (12.2) violates the constraint

a~x < b .• The hyperplane parallel to this constraint through x. is given
i T i T k

by aix = ai¾" To construct the (k+1) - st ellipsoid, consider a

hyperplane parallel to the violated constraint of the form a~x
i

with 0 > 0 chosen in such a way that the hyperplane is tangent to the
T

ellipsoid at the feasible side of aix

given by

bi. The point of tangency x'k is

The new ellipsoid is now uniquely determined by the following four require

ments (Figure 12.1):

(a) its center ¾+l is located on the line connecting¾ to x'k;

(b)

(c)

T T
it touches aix =ail\:+ 8 in x'k;

T T . h it intersects aix = ail\: int e same

old ellipsoid did;

lower-dimensional ellipsoid as

105

(d) it has minimal volume over all ellipsoids satisfying (a), (b) and (c).

a 1x=b. o'.x=o1xk
I I I

◄ _,,,_---
/

.....
' /

/ '\ I

' I \ I \

I \
\ I \ I

ff \
I
I
I
I

xk+l xk I

I
I
I

I
I
I

I I
\ I

' I
\ I
\ /

Ek+l' I
\ I

\ I

'
I

' '- ___ .,,,,,,..,,,,,,...,,.

Fig:ure 12.1. The ellipsoidal method.

By making use of the crucial property that problem (12.1) is invar

iant under affine transformations, it is easy to deduce update formulae

expressing•¾+l and Ek+l in terms of¾ and Ek as a consequence of the above

four requirements. The current ellipsoid is first transformed into a unit

sphere around the origin;ai can then be assumed to be a unit vector. After a

106

simple calculation, followed by the inverse of the above transformation, one

obtains:

(12. 3)
1 Ekai

~+1 ~- n+1
/a~Eka.

l. l.

(12.4)

T
2 (2 (Ekai) (Ekai) \ n

Ek+1 -2- \ Ek n+1
a~Ekai

}
n -1

The affine transformation referred to above can now also be used

to calculate the (affinely invariant) ratio of two successive volumes.

Straightforward calculation yields that this ratio is equal to

2 (n-1)/2
(n \

\ n2-1)
(12.5)

n
n+1

2 2 1/(n2-1) -1/(n+1)
Since n /(n -1) s e and n/(n+1) s e , an upper bound on (12.5)

is given by

(n-1)/(2(n2-1)) - 1/(n+1)
e

It is now an easy matter to verify that it takes at most 4(n+1) 2L itera

tions to reduce the volume of the initial hypersphere to less than

2-(n+l)L · f b · (2) h' . ld 1 . lb d • In view o o servat1.on , t 1.s y1.e s a po ynom1.a oun on

the number of iterations that can occur in the worst case.

Finally we note that t..here is one computational issue that we have

ignored so far: the precision required to perform the calculations (cf.

the square root appearing in (12.3)). Without going into technical details,

we simply meni!on that all above statements about the algorithm remain

f -10nL
correct if a precision o e is maintained throughout the execution

(Stone [1980]).

It is a result such as the latter one that immediately raises doubts

about the practical usefulness of the algorithm. Maintaining the precision

cited above would be an impossible task on a real computer, in spite of the

polynomial bound on the number of bits that would be required. Similarly,

the worst case bound on the number of iterations of 4(n+1) 2L seems imposs~
3

ibly large as well: if n = 10, m = 10 and each coefficient requires no

more than 10 bits, about 108 iterations could be necessary! Obviously,

107

polynomial bounds can still be very large indeed (Dantzig [1979]).

Is there any hope that the ellipsoidal method will eventually turn

out to be an empirically good one as was the case with its polynomially

bounded predecessors? Or are its merits purely theoretical? This question,

as well as the theoretical implications of Khachian's result, will be dis

cussed in the final section.

108

13. CONCLUSION

There is no doubt that the ellipsoidal method is a remarkable one, if

only for the fact that it represents an approach to linear programming

which is radically different from the simplex method. A typical feature of

the latter method is that it is very much a combinatorial one: it can

easily be generalized to work over arbitrary ordered fields and has led to

the study of purely combinatorial structures such as oriented matroids

(Bland and Las Vergnas [1976]). The ellipsoidal method, on the other hand,

crucially depends on the metric structure of Rn. It is this metric struc

ture, combined with the convexity (rather than the linearity) of the con

straints that makes the algorithm work. It is not surprising, therefore,

that in a subsequent publication Khachian et al. [1979] showed that the

method can be extended to solve convex quadratic programmin,g problems in

polynomial time as well.

The ellipsoidal method itself is closely related to methods of non

linear programming, and in particular to methods of nondifferentiable op

timization: the basic features of the approach can be traced back to

earlier work in the latter field by N.Z. Shor [1970A, 1970B], and in par

ticular the algorithm itself is a straightforward implementation of a

technique proposed by A. Nemirovskii and D. Yudin [1979]. In its description,

the method bears a resemblance to the early conjugate gradient methods that

may be more than superficial; in spirit, it is close to the well known

projection methods to solve systems of linear inequalities, in which in

each iteration the current point is projected on or just over a violated

constraint until feasibility is achieved (Agmon [1954] and Motzkin and

Schoenberg [1954]). One crucial weakness of the latter methods has always

been that the direction of projection is rather arbitrarily chosen to be

orthogonal. S~ch a choice is not affinely invariant, which results in worst

case exponential convergence (Telgen [1980]). The direction chosen in the

ellipsoidal method apparently avoids this pitfall.

Although the ellipsoidal method is not combinatorial in nature, it

nevertheless is likely to have very interesting theoretical implications

for combinatorial optimization problems. This is due to the fact that all

that is required to execute a step of the algorithm is identification of a

single violated constraint, or more generally, the construction of a hyper

plane separating the center of the current ellipsoid from the set of feasible

solutions. It may be possible to construct such a hyperplane in polynomially

109

bounded time, even in cases where the polytope of feasible solutions is

only defined implicitly and has an exponential number of facets. Such a

situation occurs exactly for many combinatorial problems, for which a good

theoretical characterization of the convex hull of feasible integer solutions

is known. In such cases, the ellipsoidal method may yield the long suspected

link between the existence of such a characterization and the existence of

a polynomially bounded algorithm (albeit one whose immediate practical use

fulness is doubtful). Several examples of a successful attack on combinator

ial problems along those lines can be found in Gr8tschelet al. [1980]; see

also Karp and Papadimitriou [1980].

It is less obvious whether the ellipsoidal method will yield new,

computationally attractive methods to solve linear inequalities in 0-1

variables. In any case, this problem is NP-complete and a polynomial running

time bound is extremely unlikely.

What about the practical usefulness of the ellipsoidal method as a

tool to solve linear inequality systems or linear programming problems?

As mentioned in the previous section, the outlook is gloomy at first glance.

At the same time, some immediate improvements to the naive implementation

described earlier are also apparent. For instance, rather than enclosing

the entire feasible half of the old ellipsoid defined by the hyperplane

a:x = a: x. by the new one, we can restrict ourselves to the part cut off
1 1 k

by the original violated constraint a:x = b. (Figure 13.1). The update
1 1

formulae (12.3) and (12.4) are easily adapted to the use of such deep cuts:

110

with

◄

Ek+l 1
/...--..,

\ I
\ I

I \
I \
I \
I \
I \
I I

' I
I I

I

xk+I
I
I xk
)

' I
I I
I I I I I I \ I \ I

\ I \ I \ I

' I
\

'
...... __ .,,

Figure 13.1. A "deep cut".

2 2
n 0-:ak)

n2-1

2 (1-nak)

(n+l) (1-ak))

111

Although this change does not affect the worst case behavior of the

method, it can be expected to yield a considerable improvement in practice.

By way of a second simple improvement, it is also very easy to

verify if the current ellipsoid is contained completely in the feasible or

in the infeasible halfspace defined by a constraint. In the former case,

the constraint is redundant; in the latter case, there are no feasible

solutions. Application of the latter idea in practice always allows termina

tion long before the worst case number of iterations is reached. Further

improvements may be achievable by using well chosen convex combinations of

constraints rather than the original ones {cf. Goldfarb and Todd [1980]).

Although the theoretical precision required by the ellipsoidal method

is clearly ridiculous and unnecessary from a practical point of view, the

first computational experiments with the method did reveal that it suffered

from numerical instability, due to the appearance of very elongated degen

erate ellipsoids. Rescaling a problem, if done frequently, will not be of

much help, but maintaining Ek in decomposed form has turned out to be quite

effective. Two such deaorrrpositions are now available: in the simplest one,
T

Ek= JkJk, with

An LDLT decomposition, with L lower triangular and D diagonal, has also

been developed and is given in Goldfarb and Todd [1980].

The straightforward improvements described above already represent

substantial improvements in the computational performance of the ellipsoidal

method as applied to linear inequality systems, but not yet to the point

where the ellipsoidal method can successfully challenge the performance of

simplex method.on these problems. It is less obvious how to solve linear

programming problems by Khachian's approach other than by attacking the

complete set of Kuhn-Tucker conditions. A promising approach appears to
T T

be to introduce the constraint c x ~ c ~ instead of a violated one as soon

as the center of the ellipsoid becomes feasible {Goldfarb and Todd [1980]).

It would then be possible, for instance, to move in the direction of the

gradient and even to execute a few simplex steps, thus arriving at a truly

hybrid approach. Ultimately, an e-optimal solution can be guaranteed in

polynomial time {Gr~tschel et al. [1980]).

The only conclusion that can be drawn at this point is that the

112

ellipsoidal method raises as many new questions as it solves old ones:

On the theoretical side, one would like to know in addition to the points

mentioned above if, for instance, data dependent running time bounds and the

appearance of quadratic forms are truly unavoidable in solving linear

programming problems efficiently. On the practical side, the challenge is

obviously to apply the method in suitable practical circumstances, for

instance when the huge initial hypersphere required theoretically can be

replaced by a much smaller one by means of ad hoc arguments. Certainly, the

field of a linear programming has received new impetus from these develop

ments; many more exciting ones can be expected in the near future.

REFERENCES

AGMON, S. (1954), The relaxation method for linear inequalities, Canadian

Journal of Mathematics.§_, 382-392.

113

AHO, A.V., J.E. HOPCROFT and J.D. ULLMAN (1974), The design and analysis of

computer algorithms, Addison-Wesley.

AMERONGEN, R.A.M. van (1977), Methoden voor vermogensherverdeling in elek

trische energievoorzieningssystemen in (potentieel) overbelaste

situaties, Afstudeerverslag T.H. Delft, afdeling elektrotechniek.

ANTOSIEWICZ, H.A. (ed.) (1955), Proceedings of the second symposium in linear

programming, Washington D.C.

AVIS, D. and V. CHVATAL (1978), Notes on Bland's pivoting rule, Mathematical

Programming Study, Vol. Jl, 24-34.

BALINSKY, M.L. (1961), An algorithm for finding all vertices of convex poly

hedral sets, Journal of Soc. for Industr. Appl. Math • .2_ (1), 72-88.

BARTELS, R.H. and G.H. GOLUB (1969), The simplex method of linear programming

using LU decomposition, Comm. ACM 11_, 266-268.

BENDERS, J.F. (1962), Partitioning procedures for solving mixed variables

programming problems, Numerische Mathematik!, 238-252.

BIXBY, R.E. and W.H. CUNNINGHAM (1980), Converting linear programs to network

problems, Mathematics of Operations Research.!?_ (3), 321-357.

BLAND, R.G. (1977), New finite pivoting rules for the simplex method, Mathe

matics of Operations Research I, 103-107.

BLAND, R.G. and M. LAS VERGNAS (1976), Orientability of Matroids, Discussion

paper 7633, CORE.

BONEH, A. and A. GOLAN (1979), Constraints redundancy and feasible region

boundedness by random feasible points generator, Technical report,

Technion, Haifa.

BOOT, J.C.G. (1962), On trivial and binding constraints in programming prob

lems, Management Science.§_ (4), 419-441.

BOOT, J.C.G. (1964), Quadratic programming, North-Holland.

BORGWARDT, K.H. (1978), Untersuchungen zur Asymptotik der mittleren Schritt

zahl von Simplexverfahren in der linearen Optimierung, Operations

114

Research Verfahren 28, 332-345.

BREARLY, A.L., G. MITRA and H.P. WILLIAMS (1975), Analysis of mathematical

programming problems prior to applying the simplex algorithm,

Mathematical Programming.§_, 54-83.

BROWN, G.G. (1977), Preprocessing optimization models, Transcript from a

lecture held at University of Tennessee, Knoxville.

CHARNES, A., W.W. COOPER and G.L. THOMPSON (1962), Some properties of

redundant constraints and extraneous variables in direct and dual

linear programming problems, Operations Research _!Q_ (5), 711-723.

COOK, S.A. (1971), The complexity of theorem proving procedures, in:

Proceedings of the 3rd ACM annual symposium on the theory of

computing, 151-158.

CROWDER, H. and J.M. HATTINGH (1975), Partially normalized pivot selection

in linear programming, Mathematical Programming Study i_, 12-25.

DANTZIG, G.B. (1948), Programming in a linear structure, Comptroller USAF,

Washington D.C.

DANTZIG, G.B. (1955), Upper bounds, secondary constraints and block-trian

gularity, Econometrika _?l (2), 174-183.

DANTZIG, G.B. (1963), Linear programming and extensions, Princeton.

DANTZIG, G.B. (1979), Comments on Khachian's algorithm for linear program

ming, Technical report SOL 79-22, Department of Operations

Research, Stanford University.

DANTZIG, G.B. (1980), Expected number of steps of the simplex method for a

linear program with a convexity constraint, Technical report

SOL 80-3, Department of Operations Research, Stanford University.

DANTZIG, G.B. and P. WOLFE (1960), The decomposition principle for linear

programs, Operations Research.§_, 101-111.

DOBKIN, D., R.J. LIPTON and S. REISS (.••.), Linear programming is Log-space

hard for P, Information Processing letters.§_ (2), 96-97.

DOBKIN, D. and S.P. REISS (1978), The complexity of linear programming,

Technical report no. 69, Yale University, Department of Computer

Science.

DORFMAN, R., P. SAMUELSON and R.M. SOLOW (1958), Linear programming and

economic analysis, McGraw Hill.

ECKHARDT, U. (1971), Redundante Ungleichungen bei linearen Ungleichungs

systemen, Unternehmensforschung g, 279-286.

ECKHARDT, U. (1975), Theorems on the dimension of convex sets, Linear

algebra and its applications g, 63-76.

ECKHARDT, U. (1977), Semidefinite lineare Komplementarprobleme, Habilita

tionsschrift RWTH Aachen.

EDMONDS, J. (1965), Paths, trees and flowers, Canadian Journal of Mathe

matics 12., 449-467.

EDMONDS, J. and R.M. KARP (1972), Theoretical improvements in algorithm

efficiency for network flow problems, Journal of the ACM ..!2..,
248-264.

FARKAS, J. (1902), Uber die Theorie der einfachen Ungleichungen, J. reine

angew. Math. 124, 1-27.

115

FORD, L.R. and D.R. FULKERSON (1962), Flows in networks, Princeton Univer

sity Press.

FORREST, J.J.H. and J.A. TOMLIN (1972), Updating triangular factors of the

basis to maintain sparsity in the product-form simplex method,

Mathematical Programming I, 263-278.

GACS, P. and L. LOVASZ (1979), Khachian's algorithm for linear programming,

Technical report STAN-CS-79-750, Computer Science Department,

Stanford University.

GAL, T. (1975a), Redundancy reduction in the restrictions set given in the

form of linear inequalities, Progress in Cybernetics and Systems

Research, I, 177-179.

GAL, T. (1975b), Zur Identifikation redundanter Nebenbedingungen in

linearen Programmen, Zeitschrift fur Operations Research ..!2_,

19-28.

GAL, T. (1975c), A note on redundancy and linear parametric programming,

Operational Research Quarterly 26 (4), 735-742.

GAL, T. (1978), Redundancy in systems of linear inequalities revisited,

Discussion paper no. 19, Fern-Universitat, Hagen.

GAL, T. (1979), Postoptimal analysis, parametric programming and related

116

topics, McGraw Hill.

GALE, D. (1969), How to solve linear inequalities, American Mathematical

Montly 76, 589-599.

GAREY, M.R. and D.S. JOHNSON (1979), Computers and intractability: a guide

to the theory of NP-completeness, Freeman.

GARFINKEL, R.S. and G.L. NEMHAUSER (1972), Integer programming, John Wiley.

GAY, D.M. (1974), On Scolnik's proposed polynomial-time linear programming

algorithm, SIGMAP Newsletter no. 15.

GOLDFARB, D. and W.Y. SIT (1978), Worst case behaviour of the steepest edge

simplex method, to appear in Discrete Applied Mathematics.

GOLDFARB, D. and M.J. TODD (1980), Modifications and implementation of

the Shor-Khachian method for linear programming, Technical

report 446., School of Operations Research and Industrial Engi

neering, Cornell University.

GOLDMAN, A.J. and D. KLEINMAN (1964), Examples relating. to the simplex

method, Operations Research g, 159-161.

GOMORY, R.E. (1958), Essentials of an algorithm for integer solutions to

linear programs, Bull. Amer. Math. Soc. 64 (5), 275-278.

GREENBERG, H. (1975), An algorithm for determining redundant inequalities

and all solutions to convex polyhedra, Numerische Mathematik 24,

19-26.

GROTSCHEL, M., L. LOVASZ and A. SCHRIJVER (1980), The ellipsoid method and

its consequences in combinatorial optimization, Technical report,

Bonn University.

HADLEY, G. (1962), Linear programming, Addison-Wesley.

HOFFMAN, A.J. (1955), How to solve a linear programming problem, in:

H.A. Antosiewicz (ed.) (1955), 397-423.

HOLM, S. and D. KLEIN (1975), Size reduction of linear programs with special

structure, working paper, Odense University.

ITAI, A. (1977), Two commodity flow, Technical report no. 103, Technion,

Israel Institute of Technology, Computer Science Department.

JEROSLOW, R.G. (1973), The simplex algorithm with the pitvot rule of

maximizing criterion improvement, Discrete Mathematics i_, 367-377.

117

JEROSLOW, R.G. (1975), Some relaxation methods for linear inequalities,

Management Sciences Research, Report no. 366 R, Carnegie-Mellon

University.

KANTOROVICH, L. (1939), Mathematical methods in the organization and plan

ning of production, reprinted in Management Science (1960) .§_,

366-422.

KARP, R.M. (1972), Reducibility among combinatorial problems, in: Miller

and Thatcher (eds), Complexity of computer computations, Plenum

Press.

KARP, R.M. and C.H. PAPADIMITRIOU. (1980), On linear characterizations of

combinatorial optimization problems.

KARWAN, M.J., J. TELGEN ands. ZIONTS (1981), Redundancy in Mathematical

Progralllllling, Springer Verlag.

KELLY, J.E. (1963), The cutting plane method for solving c:onvex programs,

J. Soc. Ind. Appl. Math • .§_ (4), 703-712.

KHACHIAN, L.G. (1979), Polynomial algorithm for linear progrannning, Doklady

Akademiia Nauk USSR, Mathematika 244 (5), 1093-1096. English

translation in: Soviet Mathematics Doklady 20 (1) (1979), 191-194.

KHACHIAN, L.G., M.K. KOZLOV and S.P. TARASOV (1979), Polynomial Solvability

of convex quadratic programming, Doklady Akademiia Nauk, USSR,

248 (5). English translation in: Soviet Mathematics Doklady 20

(5) (1979).

KLEE, V. and G.J. MINTY (1972), How good is the simplex algorithm? in:

0. Shisha (ed.), Inequalities IV, Academic Press, 159-175.

KOOPMANS, T.C. (1951), Activity analysis of production and allocation,

Cowles connnission monograph 13, John Wiley.

KOTIAH, T.C.T. and D.I. STEINBERG (1977), Occurrences of cycling and other

phenomena arising in a class of linear progralllllling models, Comm.

of the A.C.M. ~ (2), 107-112.

KUHN, H.W. and A.W. TUCKER (eds) (1956), Linear inequalities and related

systems, Princeton.

KUNZI, H.P. and H. 'TSCHACH (1967), Numerische Betrachtungen zur linearen

Optimierung, Operations Research Verfahren, III, 270-285.

118

LADNER, R.E. (1975), On the structure of polynomial time reducibility,

Journal of the ACM 22, 155-171.

LAWLER, E.L. (1976) Combinatorial optimization: networks and matroids, Holt,

Rinehart and Winston.

LAWLER, E.L. (1980), The great mathematical sputnik of 1979, to appear in

The Sciences.

LIEBLING, T.M. (1973), On the number of iterations of the simplex method,

Operations Research Verfahren .!2_, 248-264.

LISY, J. (1971), Metody pro nalezini redundantnich omezeni v ulohach

linearniho programovani, Ekonomicko Matematicky Obzor 7 (3),

285-298.

LLEWELLYN, R.W. (1964), Linear programming, Holt, Rinehart and Winston.

LUENBERGER, D.G. (1973)_, Introduction to linear and non-linear programming,

Addison-Wesley.

MATTHEIS, T.H. (1973), An algorithm for determining irrelevant constraints

and all vertices in systems of linear inequalities, Operations

Research~, 247-260.

MEYERMAN, G.L. (1966), Betekenis van een aantal cultuurtechnische factoren

voor de ontwikkelingsmogelijkheden van veenkoloniale akkerbouw

bedrijven, Dissertation, Agricultural University Wageningen.

MEYERMAN, B.G. (1979), Private communication.

MOTZKIN, T.S. (1936), Beitrage zur Theorie der linearen Ungleichungen,

Dissertation, Basel.

MOTZKIN, T.S. and I.J. SCHOENBERG (1954), The relaxation method for linear

in~qualities, Canadian Journal of Mathematics§_, 393-404.

MUSALEM, S. (1979), Converting linear models to network models, Ph.D.

Dissertation, UCLA.

NEMIROVSKII, A. and D. YUDIN (1979), Complexity of problems and efficiency

of methods for minimization (in Russian), Moscow.

NIJKAMP, P. and J. SPRONK (1978), Three cases in multiple criteria decision

making: an interactive multiple goal programming approach,

Report 7822 Centre for Research in Business Economics, Erasmus

University Rotterdam.

119

ORCHARD-HAYS, W. (1968), Advanced linear programming computing techniques,

McGraw Hill.

PAPADIMITRIOU, C.H. (1979), Efficient search for rationals, Information

Processing Letters~ (1), 1-4.

QUANDT, R.E. and H.W. KUHN (1964), On upper bounds for the number of itera

tions in solving linear programs, Operations Research g,
161-165.

REISS, S.P. (1979), Rational search, Information Processing Letters 8 (2),

89-90.

ROBINSON, S.M. (1975), Stability theory for systems of inequalities, SIAM

J. Numer. Anal. g (5), 754-769.

SAATY, T.L. (1963), A conjecture concerning the smallest bound on the number

of iterations in linear programming, Operations Research.!.!_,

151-153.

SCOLNIK, H.D. (1973), A new approach to linear programming, SIGMAP News

letter, no. 14, 35-42.

SHAMOS, M.I. (1975), Geometric complexity, Proceedings of the 7th annual

ACM SIGACT Symposium, 224-233.

SHAMOS, M.I. and D. HOEY (1976), Geometric intersection problems, in:

Proceedings of the 17th annual symposium on foundations of

Computer Science.

SHEFI, A. (1969), Reduction of linear inequality constraints and determina

tion of all feasible extreme points, Dissertation, Stanford.

SHOR, N.Z. (1970a), Utilization of the operation of space dilatation in the

minimization of convex functions, Kibernetika §_ (1), 6-12.

Engiish translation in: Cybernetics§_ (1) (1970), 7-15).

SHOR, N.Z. (1970b), Convergence rate of the gradient descent method with

dilatation of the space, Kibernetika §_ (2), 80-85. English

translation in: Cybernetics§_ (2) (1970), 102-108.

SIMMONNARD, M. (1966), Linear programming, translated by W.S. Jewell,

Prentice-Hall.

SPRONK, J. and J. TELGEN (1979), A note on multiple objective programming

and redundancy, Report no. 7906, Centre for Research in Business

Economics, Erasmus University Rotterdam.

120

STONE, R.E. (1980), Khachiyan's algorithm with finite precision, Working

paper 80-1, Department of Operations Research, Stanford University.

SULANKE, R. and P. WINTGEN (1972), Zufallige konvexe Polyeder in In-dimensio

nalen euklideschen Raum, Periodica Mathematica Hungaria 1, 215-221.

TELGEN, J. (1977a), On redundancy in systems of linear inequalities, Report

7718, Econometric Institute, Erasmus University Rotterdam.

TELGEN, J. (1977b), On R.W. Llewellyn's rules to identify redundant con

straints in systems of linear inequalities, Report 7719, Econo

metric Institute, Erasmus University Rotterdam; also in Zeit

schrift fur Operations Research Q (5) (1979), 197-206.

TELGEN, J. (1977c), Redundant and non-binding constraints in linear program

ming problems, Report 7720, Econometric Institute, Erasmus Uni

versity Rotterdam.

TELGEN, J. (1979), Overbodige en niet-bindende restricties in lineaire pro

grammeringsproblemen, Bedrijfskunde 2.!._ (2), 168-173.

TELGEN, J. (1980), On relaxation methods for systems of linear inequalities,

Working paper 92, College of Business Administration, University

of Tennessee, Knoxville.

THOMPSON, G.L., F.M. TONGE and S. ZIONTS (1966), Techniques for removing

non-binding constraints and extraneous variables from linear

programming problems, Management Science g (7), 588-608.

TISCHER, H.J. (1968), Mathematische Verfahren zur Reduzierung der Zeilen

und Spaltenzahl linearer Optimierungsaufgaben, Zentralinstitut

fur Fertigungstechnik des Maschinenbaues, Karl Marx Stadt.

TSCHERNIKOW, S.N. (1966), Lineare Ungleichungen, VEB Deutscher Verlag der

Wissenschaften, translated by H. Weinert.

WHEELWRIGHT, E.L. andB. McFARLANE (1971), The chinese road to socialism,

Monthly Review Press.

WHITE, W.W. (1974), A commentary on the new approach to linear programming,

SIGMAP Newsletter no. 15.

WOLFE, P. (1955}, Reduction of systems of linear relations (abstract),

in: H.A. Antosiewicz (ed.) (1955), 449-451.

WOLFE, P. and L. CUTLER (1963), Experiments in linear programming, in:

121

Graves and Wolfe (eds), Recent advances in mathematical program

ming.

ZADEH, N. (1980), What is the worst case behaviour of the simplex method?,

Technical report 27, Department of Operations Research, Stanford

University.

ZELENY, M. (1974), Linear multiobjective programming, Lecture Notes in

Economics and Mathematical systems 95, Springer Verlag.

ZIMMERMAN, H.J. and T. (1975), Redundanz und ihre Bedeutung fur betrieb-

liche Optimierungsentscheidungen, Zeitschrift fur Betriebswirt

schaft 45 (4), 221-236.

ZIONTS, s. (1965), Size reduction techniques of linear programming and their

application, Ph.D. thesis, Carnegie Institute of Technology.

122

SUBJECT INDEX

abstraction: 1
active constraint: 68
affine transformations: 105,106
algorithm: 8,41-58,75,78-112
automation: 9
average case: 88

basic feasible solution: 16-18,24,25,
41-43,45,46,48-50,52,56

basic solution: 10,15,16,24,25,51
basis: 10,12,29,46,55,56,58,85,88
binding constraint: 9,58,68,71,73,74
bounded: 38,39
boundedness: 95-98
branch and bound: 10

cardinality: 42,46
combinatorial optimization: 78,79,108
complementary problem: 91
complementary slackness: 73,74
computational complexity: 3,4,75,78-112
computer science: 3,4
conjugate gradient method: 108
crashing: 58
criterion function: 16
curtain: 58
cutting plane method: 10
cycling: 10,42

feasible region: 3,6,7,12,13,27,29,
54,70,73,103

feasible solution: 3,11,12,38,43,46,
57,69,79,93,103,104,109

ame theory: 6
eometric programming: 1
eometry: 6

'good' algorithm: 78,91,93

alfplane: 89
alfspace: 6,111

'hard' problem: 79,91
euristic method: 55,58-61,69
omologous edge: 99-101
omologous flow: 99,100
ype:rplane: 6,58,95,108

'mplicit equality: 3,7,8,22-27,29-32,
34,35,38,40-44,51-54,58,73,75,
95-98

inactive constraint: 68
inconsistency: 9
inequality constraint: 6,7,12-20,22,

30,35,36,38,40
inessential constraint: 7
infeasible: 6,9,14,15,17,25,56,97,111
information theory: 7,10,11,59
instable inequality: 22,40

decomposition: 10,111 integer programming: 1,10,79,91
deep cut: 109-111 'interior point' lemma: 28-31,34
definitional constraint: 57 irrelevant constraint: 7
degenerate solution: 17,18,24,42,45,llliteration: 10,41,42,45,46,50,58,63,
deterministic method: 54-56,61,69 64,78,80-89,106
dimension: 22,27,29,32,34,35,37-39
directed two commodity flow:

95,99-102
duality: 8, 10., 19 ,26 ,59, 71, 73, 74 ,95 ,98
dynamic programming: 1

'easy' problem: 78,79,90
ellipsoidal method: 79,103-112
equality constraint: 6,7,20-22,35,36,

39,40
equivalent (polynomially): 91,93
essential constraint: 68,69
experiments: 8,59-65,75
extreme point: 56,80,81,87,89,95-97

face: 38
feasibility: 15,19,26,55,56,97,104,108

language recognition: 80
linear equalities: 99
linear inequalities: 79,91,94-99,108

linear manifold: 27,33-35,37
linear programming: 1,3,4,6,10,13,15,

16,20,26,41,45,51,54,55,59,61-65,
77-112

linear prog-complement: 91,94-97
linear prog-optimization: 93-96
linear prog-recognition: 91,93-96
LOGSPACE: 92
LP-equivalent: 92,93-103

main redundancy theorem: 27,30,34,35,
38-40,52

mathematical programming: 1-4
matroid: 102,108
minimal representation: 3,8,27-40,

52-54,70
minimal similar representation:

37-40,54
model: 1-4,9,59
MPSX: 61-64

near-cycling: 10
network flow: 60,78,99-102
nonbinding constraint: 8,67-74
nondefining constraint: 68
nondifferentiable optimization: 79,10
nonextremal variable: 38,40,54
nonlinear programming: 1,10,58,60,

79 I 108
NP: 90,91,92
NP-complete problem: 79,90,91,109
null variable: 38,40,54

objective function: 2,3,10,66-74,
80-89,94,98

operations research: 4,78
optimal solution: 8,11,16,58,62,68,

69,73,74
optimal value: 26

P: 90,92
pivot: 16,18,24,41,42,44-46,48-50,

58,80-89
point-set operation: 95-97
polygon: 89
polyhedron: 56,83,84,87
polynomially bounded: 78-112
polytope: 6,80,109
preprocessing: 59
PRIMAL: 62-69
probabilistic method: 54,56,57,59-61,

69
production planning: 9,59,62
projection method: 108
PSPACE: 92

quadratic programming: 108
queueing theory: 62

random polytopes: 88
recognition problem: 90
REDUCE: 61-64
reducible: 90,95
redundancy: 3,4,6-75,94-98
redundant constraint: 3,4,6-75,96,

98 I 111

123

redundant equality constraint: 20,21,
29-31,38,40,51,54

redundant inequality constraint: 13,
14-17,23,30,40,45-50,51,54-57,
96,98,111

relative redundant constraint: 68
reversible simplex path: 83,84,85

selective edge: 101
separable: 95
similarity transformation: 37-39
simplex method: 3,4,6,20,41-43,45,46,

49,61,62,64,78-89,90,91,96,
108,111

size of a problem: 3,59,78,80,92,103
slack: 11,12,16,22,45,55,58,62,73
solution path: 58
solvability: 6
sorting: 88
stability: 22
stochastic programming: 1
storage space: 10,58
strict linear inequalities: 94,96,103
strict redundancy: 13-16,18,25,49,50,

56,68,73,94-98
superfluous constraint: 7

tableau: 12,24,41,43-46,48-50,52,
57,62-64

test problems: 62-64
trivial constraint: 7
Tucker formulation: 72
Turing machine: 80
'turn-over' lemma: 14,15,55-57

unbounded: 9,38,39,73,94

weak redundancy: 13,14,16,56,61,68,
74,94-98

worst case: 88

124

AGMON, S.: 108
AHO, A.V.: 80
AMERONGEN, R.A.M. VAN: 60
AVIS, D.: 85

BALINSKY: M.L.: 56
BARTELS, R.H.: 3
BENDERS, J.F.: 10
BIXBY, R.E.: 102
BLAND, R.G.: 42,108
BONEH, A.: 57,58,60
BOOT, J.C.G.: 6,7,14,55,60,61
BORGWARDT, K.H.: 88
BREARLY, A.L.: 57,59-61
BROWN, G.G.: 59,60

CHARNES, A.: 73
CHVATAL, V.: 85
COOK, S.A.: 90
COOPER, W.W.: 73
CROWDER, H.P.: 88
CUNNINGHAM, W.H.: 102
CUTLER, L.: 81

AUTHOR INVEX

HADLEY, G.: 4
HATTINGH, J.M.: 88
HOEY, D.: 89
HOFFMAN, A.J.: 60,68
HOLM, S.: 56
HOPCROFT, J.E.: 80

ITAI, A.: 99,100,101

JEROSLOW, R.G.: 86,87,88
JOHNSON, D.S.: 91,92

KANTOROVICH, L.: 3,6
KARP, R.M.: 90,102,109
KELLY, J.E.: 10
KHACHIAN, L.G.: 78,79,103,104,107,

108,111
KLEE, V.: 81,83,84,86,88
KLEIN, D.: 56
KLEINMAN, D.: 81
KOOPMANS, T.C.: 3
KOTIAH, T.C.T.: 62
KOZLOV, M.K.: 108

DANTZIG, G.B.: 3,6,10,12,22,58,62,73,
KUHN, H.W.: 6,81,88,111
Kl.lNZI, H.P.: 10

78,80,88,107
DOBKIN, D.: 92,93
DORFMAN, R. :3

ECKHARDT, U.: 16,28,40,57
EDMONDS, J.: 80,102,103

FARKAS, J.: 6,91
FORD, L.R.: 99
FORREST, J.J.H.: 3
FULKERSON, D.R.: 99

GACS, P.: 96,1,03,104
GAL, T.: 10,11,16-18,56,61,68
GALE, D.: 81
GAREY, M.R.: 91,92
GARFINKEL, R.S.: 10
GAY, D.M.: 103
GOLAN, A.: 57,58,60
GOLDFARB, D.: 88,111
GOLDMAN, A.J.: 81
GOLUB, G.H.: 3
GOMORY, R.E.: 10
GREENBERG, H.: 56
GRfuSCHEL, M.: 109,111

LADNER, R.E.: 91
LAS VERGNAS, M.: 108
LAWLER, E.L.: 103
LIEBLING, T.M.: 88
LIPTON, R.J.: 92
LISY, J.: 56
LLEWELLYN, R.W.: 57,68
LOVASZ, L.: 96,103,104,109,111
LUENBERGER, D.G.: 96,103,104,109,111

MATTHEIS, T.H.: 7,17,56
MCFARLANE, B. : V
MEYERMAN, B.G.: 61,62
MEYERMAN, G.L.: 62
MINTY, G.J.: 81,83,84,86,88
MITRA, G.: 57,59-61
MOTZKIN, TH.S.: 6,108
MUSALEM, S.: 102

NEMHAUSER, G.L.: 10
NEMIROVSKII, A.: 108
NIJKAMP, P. 62

ORCHARD-HAYS, W.: 3,58

PAPADIMITRIOU, C.H.: 94, 109

QUANDT, R.E.: 81,88

REISS, S.P.: 92,93,94
ROBINSON, S.M.: 22

SAATY, T.L.: 81
SAMUELSON, P.A.: 3
SCHOENBERG, I.J.: 108
SCHRIJVER, A.: 109,111
SCOLNIK, H.D.: 70,103
SHAMOS, M.I.: 89
SHEFI, A.: 37-40,54,56
SHOR, N.Z.: 108
SIMMONNARD, M.: 4
SIT, W. Y. : 88
SOLOW, R.M.: 3
SPRONK, J. : 62
STEINBERG, D.I.: 62
STIGLER: 62
STONE, R.E.: 106
SULANKE, R.: 88

TARASOV, S.P.: 108
TELGEN, J.: 11,18,54,57,61,68,

96, 108

125

THOMPSON, G.L.: 7,10,15,16,55,57-64,
68,71,73

TISCHER, H.J.: 57,59,62
TODD, M.J.: 111
TOMLIN, J .A.: 2
TONGE, F.M.: 7,10,15,16,55,57-64,

68, 71
TSCHACH, H.: 10
TSCHERNIKOW, S.N.: 6
TUCKER, A.W.: 6,72,111

ULLMAN, J.D.: 80

WHEELWRIGHT, E.L.: V

WHITE, W.W.: 103
WILLIAMS, H.P.: 57,59-61
WINTGEN, P. : 88
WOLFE, P.: 10,54,81

YUDIN, D.: 108

ZADEH, N. : 88
ZELENY, M.: 7,57,68
ZIMMERMAN, H.J.: 11,68
ZIONTS, S.: 7,10,15,16,24,55,57-64

68,71

TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

(An asterisk before the MCT number indicates that the tract is under prep
aration).

A leaflet containing an order form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands. Orders should be sent to the same
address.

MCT IT. VAN DER WALT, Fixed and almost fixed points, 1963.
ISBN 90 6196 002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II:
Probabilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 OSI 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 I.

MCT 7 W.R. VAN ZWET, Convex transfoT'mations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964.
ISBN 90 6196 008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT JO E.M. DE JAGER, Applications of distrubutions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT II A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964.
ISBN 90 6196 Oil 8.

MCT 12 J.A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, FoT'rrlal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics,
1966. ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, FoT'rrlal definition of programming languages with an
application to the definition of ALGOL 60, 1967.
ISBN 90 6196 022 3.

MCT 17 R.P. VANDERIET, Fol'ITrUZa manipulation in A.LGOL 60, part 1; · 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Fol'ITrUla manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968.
ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J. W. DE BAKKER, Recursive procedures, 1971 . ISBN 90 6 I 96 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 I.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Exercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric
distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak con
vergence of sample extremes, 1970. ISBN 90 6196 054 I.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and
related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N. S. KROONENBERG, Cardinal functions in
ivpology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196 064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound
words, 1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972.
ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972.
ISBN 90 6196 076 2.

MCT 42 w. VERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 O.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973.
ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and limit laws 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VANDERIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 I.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B,J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(eds), Revised report on the algorithmic language ALGOL 68,
1976. ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 1: Theory of
designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 I.

MCT 56 M. HALL JR. & J,H. VAN LINT (eds), Combinatorics, part 2: Graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 IOI 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

*MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1,
ISBN 90 6196 109 2.

*MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2,
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 Ill 4.

4.

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196 112 2.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical approach,
1975. ISBN 90 6196 113 O.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expansions, 1976. ISBN 90 6196 114 9.

*MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2, ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: Semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides, 1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 X.

~!CT 74 H.J.J. TE RIELE, A theoretical and computational study of generalized
aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
·spaces, 1977. ISBN 90 6 I 96 132 7.

MCT 76 M. REM, Associations and the closure statement, 1976.
ISBN 90 6196 135 I.

MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests
in exponential families, 1977. ISBN 90 6196 134 3.

MCT 78 E. DEJONGE & A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Errrpirical di'.str-ibutions and r-ank statistics,
1977. ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A numer-ical study of stiff two-point boundaxy pr>oblems,
1977. ISBN 90 6196 146 7.

MCT 81 K. R. APT & J. W. DE BAKKER·. (eds)·, Foundations of corrrputer> science II,
part 1, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of corrrputer> science II,
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L.S. BENTREM JUTTING, Checking Landau's "Grundlagen" in the
AUTOMATH system, 1979. ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The tr-anslation of the elements of Euclid fr-om the
Ar-abic into Latin by HeY'ITlann of Car-inthia (?) books vii-xii,
1977. ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercorrrpactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VANDERMEULEN & M. VELDHORST, Tor-r-ix I, A pr>ogr>amming system
for> operations on vector>s and matrices over- ar-bitr-ary fields
and of variable_ size. 1978. ISBN 90 6196 152 1.

*MCT 87 S.G. VAN DER MEULEN & M. VELDHORST, Tor>r>ix II,
ISBN 90 6196 153 X.

MCT 88 A. SCHRIJVER, Matr-oids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Corrrplex Fourier> tr-ansfoY'ITlation and analytic functionals
with unbounded car-r>ier>s, 1978. ISBN 90 6196 155 6.

MCT 90 L.P.J. GROENEWEGEN, Char-acter>ization of optimal str-ategies in dynamic
games, 1981. ISBN 90 6196 156 4.

MCT 91 J.M. GEYSEL, Tr>anscendence in fields of positive char>acteristic,
1979. ISBN 90 6196 157 2.

MCT 92 P.J. WEEDA, Finite gener>alized Mar>kov pr-ogrcarrming, 1979.
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS & J. WESSELS (eds), Mar-kov decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous appr-oximations in tr-anscendental number>
t~eory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian contr>ol of Mar-kov chains, 1978.
ISBN 90 6196 163 7.

MCT 96 P.M.B. VITANYI, Lindenmayer systems: Structur>e, languages, and
gr-owth functions, 1980. ISBN 90 6196 164 5.

*MCT 97 A. FEDERGRUEN, Mar-kovian contr-ol problems; functional equations
and algorithms, • ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular> per>turbations of hyper-bolic type, 1.978.
ISBN 90 6196 166 I.

MCT 99 J .K. LENSTRA, A.II.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
be-tween computer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (eds), Proceedings
bicentenniaZ congress of the Wiskundig Genootschap, part 1, 1979.
ISBN 90 6196 168 8.

MCT IO I P. C. BAAYEN, D. VAN DUL ST & J. OOSTERHOFF (e.d s) , Proceedings
bicentenniaZ congress of the Wiskundig Genootschap, part 2, 1979.
ISBN 90 6196 169 6.

MCT 102 D. VAN DULST, RefZexive and superrefZexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, CZassifying infiniteZy divisibZe distributions by
functionaZ equations, 1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generaZizations of metrizabiZity, 1979.
ISBN 90 6196 173 4.

*MCT 105 R. HELMERS, Edgeworth expansions for Zinear combinations of order
statistics, . ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 7,

MCT 107 c. DEN HEIJER, The numericaZ soZution of nonZineo,r operator
equations by imbedding methods, 1979. ISBN 90 6196 175 0.

MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Foundations of computer
science III, part I, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 transput, part I: HistoricaZ review and
discussion of the impZementation modeZ, 1979. ISBN 90 6196 178 5.

MCT Ill J.C. VAN VLIET, ALGOL 68 transput, part II: An impZementation modeZ,
1979. ISBN 90 6196 179 3.

HCT 112 H.C.P. BERBEE, Random waZks with stationary increments and renewaZ
theory, 1979. ISBN 90 6196 182 3.

}ICT 113 T.A.B. SNIJDERS, Asymptotic optimaZity theory for testing probZems
with restricted aZternatives, 1979. ISBN 90 6196 183 1.

MCT 114 A.J.E.M. JANSSEN, AppZication of the Wigner distribution to harmonic
anaZysis of generaZized stochastic processes, 1979.
ISBN 90 6196 184 X •.

MCT 115 P.C. BAAYEN & J. VAN MILL (eds), TopoZogicaZ Structures II, part 1,
1979. ISBN 90 6196 185 5.

MCT 116 P.C. BAAYEN & J. VAN MILL (eds), TopoZogicaZ Structures II, part 2,
1979. ISBN 90 6196 186 6.

!·l.CT 117 P.J.M. KALLENBERG, Branching processes with continuous state space,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENEROOM, Large deviations and asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F.J. PETERS, Sparse matrices and substructures, with a novel imple
mentation of finite element algorithms, 1980. ISBN 90 6196 192 O.

MCT 120 W.P.M. DE RUYTER, On the asymptotic analysis of large-scale ocean
circulation, 1980. ISBN 90 6196 192 9.

MCT 121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory, 1980.
ISBN 90 6196 194 7.

MCT 122 J.C.P. BUS, Numerical solution of systems of nonlinear equations,
1980, ISBN 90 6196 195 5.

MCT 123 I. YUHASZ, Cardinal functions in topology - ten years later, 1980.
ISBN 90 6196 196 3.

MCT 124 R.D. GILL, Censoring and stochastic integrals, 1980.
ISBN 90 6196 197 1.

MCT 125 R. EISING, 2-D systems, an algebraic approach, 1980.
ISBN 90 6196 198 X.

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear programming, 1980.
ISBN 90 6196 199 8.

MCT 127 J.W. KLOP, Combinatory reduction systems, 1980. ISBN 90 6196 200 5.

MCT 128 A.J.J. TALMAN, Variable dimension fixed point algorithms and
triangulations, 1980. ISBN 90 6196 201 3.

MCT 129 G. VANDERLAAN, Simplicial fixed point algorithms, 1980.
ISBN 90 6196 202 1.

MCT 130 P.J.W. TEN HAGEN et al., ILP Inter'JTlediate language for pictures,
1980. ISBN 90 6196 204 8.

MCT 131 R.J.R. BACK, Correctness preserving program refinements:
Proof theory and applications, 1980. ISBN 90 6196 207 2.

MCT 132 H.M. MULDER, The interval function of a graph, 1980.
ISBN 90 6196 208 O.

MCT 133 C.A.J, KLAASSEN,Statistical perfor'/Tlance of location estimators, 1981.
ISBN 90 6196 209 9.

MCT 134 J.C. VAN VLIET & H. WUPPER (eds), Proceedings international confer
ence on ALGOL 68, 1981. ISBN 90 6196 210 2.

MCT 135 J.A.G.. GROENENDIJK, T.M.V. JANSSEN & M.J.B. STOKHOF (eds), For'ITlal
methods in the study of language, part I, 1981 • ISBN 90 6196 2 IJ O.

MCT 136 J.A.G. GROENENDIJK, T.M.V. JANSSEN & M.J.B. STOKHOF (eds), For'ITlal
methods in the study of language, part II, 1981. ISBN 90 6196 213 7.

MCT 137 J. TELGEN, Redundancy and linear programs, 1981.
ISBN 90 6196 215 3.

MCT 138 H.A. LAUWERIER, Mathematical models of epidemics, 1981.
ISBN 90 6196 216 I.

MCT 139 J. VAN DER WAL, Stochastic dynamic programming, successive approx
imations and nearly optimal strategies for Markov decision
processes and Markov games, 1980. ISBN 90 6196 218 8.

MCT 140 J.H. VAN GELDROP, A mathematical, theory of pu:t'e exchange economies
uJithout the no-critical-point hypothesis, 1981.
ISBN 90 6196 219 6.

MCT 141 G.E. WELTERS, Abel-Jacobi isogenies for certain types of Pano three
folds, 1981.
ISBN 90 6196 227 7.

MCT 142 R.R. BENNETT & D.J. LUTZER (eds), Topology and order struatu:t'es,
part I, 1981.
ISBN 90 6196 228 5.

An asterisk before the number means "to appear".

