

Printed at the Mathematical Centrne, 413 Knuislaan, Amsterdam.

The Mathematical Centre , founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and Lts
applications. 1t i8 sponsored by the Netherlands Government through the
Netherlands Onganization fon the Advancement of Pure Research (Z.00.0.).

MATH EMATICAL CENTRE TRACTS 134

PROCEEDINGS INTERNATIONAL
CONFERENCE ON ALGOL 68

J.C. van VLIET (ed.)
H. WUPPER (ed.)

RECHENZENTRUM DER
RUHR-UNIVERS ITAT BOCHUM, BRD, MARCH 30—31, 1981

MATHEMATISCH CENTRUM AMSTERDAM 1981

1980 Mathemafics-subject'classification: 68-06,68B10,68B20

Computing Reviews: 4.22,1.52,4.34,4.12,5.23

INTRODUCTION

"What can we do with ALGOL 68?" is the question raised by the chairman
of the Standing Subcommittee on ALGOL 68 Support in the first contribution
to this conference. The three main topics of the conference suggest three
possible answers to this question: one can teach the language, implement it,
and apply it.

The papers collected in these proceedings deal with various aspects of
teaching, implementation, and applications. They do not attempt to fully
answer the question of what can be done, but they hopefully will provide
some useful pieces of information, both to those who want to learn more
about the.language, and to those who are actually involved in problems in
the areas addressed.

In several respects, ALGOL 68 has not been very successful. It is not
heavily used except at a number of sites in Europe (most notably the UK),
its new terminology has not been widely adopted, it is difficult to implement
(or isn't it). But many people who know the language feel that its use to
write programs reflects only one aspect, and that the more important
advantages stem from its orthogonal design, carefully chosen notation, and
clarity.

ALGOL 68 offers a unified view of both the user program and its environ-

_ment. This combination, together with its carefully chosen notation, offers
a good basis for teaching the language, and for understanding programming
in general. ALGOL 68 is the only language which offers such a complete
setting, which allows one to develop programs independent of the outside
world.

It 'is our firm belief that many of the everyday problems that occur in
programming are easily'sqlved when the benefits of ALGOL 68 are taken into
account. This conference may be regarded as an attempt to reveal some of
these benefits.

The Program Committee for this conference consisted of

H. Ehlich (Ruhr-Universit&t Bochum, BRD)

C.H.A. Koster (University of Nijmegen, The Netherlands)

A.D. McGettrick (University of Strathclyde, Glasgow, UK)

S.G. van der Meulen (University of Utrecht, The Netherlands)

L. Téilling (Université de Rennes, France)

J.C. van Vliet (Mathematical Centre, Amsterdam, The Netherlands)

H. Wupper (Ruhr-Universitdt Bochum, BRD).

11

During the refereeing process, much help was obtained from P. Bakkus,
A. Couvert, D. Grune, P. le Guernic, R.B. Hunter, H. Jonkers, K. Kleine,
L.G.L.T. Meertens, F. Ployette, A. Quere and J. Voiron.

We thank the Director of the computer centre of the Ruhr-Universitédt
Bochum, Prof.Dr. H. Ehlich, and his colleagues, who took care of the local
organization.

We thank the Mathematical Centre for the opportunity to publish these
proceedings in their series Mathematical Centre Tracts and all those at

the Mathematical Centre who have contributed to its technical realization.

J.C. van Vliet

H. Wupper

111

CONTENTS

Session 1 (Monday, March 30, A.M.)

What can we do with ALGOL 68 (invited lecture)

S.G. van der MEULEN .ueeeesssessssssssssesssssesssessssssscsnnssns. 1

Syntactic errors made by beginners using an ALGOL 68 subset

J. ANndré & J. BAXT@ ..veveeesecnssscascsssassnnnans tesesenecsssans 17

A comparative evaluation of ALGOL 68 for programming instruction

P.R. Eggert & R.C. U2galiS ...vceeeeecces cheesccccssseseans ceeeess 33
Session 2 (Monday, March 30, P.M.)

Teaching with ALGOL 68 in Dresden (invited lecture)

G. Stillereeeeececcssscsscnsassscannnns Geessessessessscacnese .. 45

Semantic analysis and synthesis in the ALGOL 68 R 4000 compiler
H. Loeper, H.~-J. Jakel & H. Pi€tSCR +eeeeeeccccasseacsaanncacaases 59
Essay on copying

K. Wrightc...... S ecscesesscsscssessesscssacsacssssnasenannn . 81

On the design of an abstract machine for a portable ALGOL 68 compiler

L.G.L.T. Meertens cerescssccessesessstsscsasssesasnanrene .. 97
_Session 3 (Tuesday, March 31, A.M.)

An implementation of modular compilation in ALGOL 68 (invited lecture)

G.J. Finnie & M.C. ThOMAS «.eeeesssscecssccasasssscssccsossscsssas 119

Programming languages for a course in data structures

V.J. RAayward—SMithceeeeeessoecccsssescsossssscescsccsaasacenes 143

Context-free grammars and derivation trees in ALGOL 68

Ve LINNEMANN «eeeeencsoeeoessssssessssssssssssssasesssssssascsssss 167
Session 4 (Tuesday, March 31, P.M.)

An ALGOL 68 prelude for the implementation of test generation algorithms

S.D. BUtlANd .ueeeeeeeceecccscasescasssssssssssasascsaansnasaensos 183

A programming system for interval arithmetic in ALGOL 68

G. Gunther & G. Marquardteceeeecessceconncoscscsesaassassss 201
X :

Teaching with ALGOL 68, in Manchester (invited lecture)
C.H. LINASEY veveeeieeeecenaesensaseasasaseasassanans eeeeeeeeaae. 217

List of addresses Of QUthOYS ..cecvecceccasssssccscscsassssncsscocansas 231

WHAT CAN WE DO WITH ALGOL 68

S.G. van der MEULEN

ABSTRACT

Despite its power, orthogonal design, and other nice features, ALGOL68
has not become a widely used language. Some possible reasons for this
neglection by the computing community are commented upon. The paper also
gives a short history of the way the language developed, and sketches
a possible future. Finally, the place and tasks of the Subcommittee on

ALGOL68 support are elaborated upon.

1. WHAT CAN WE DO WITH ALGOL68?

The most obvious answer to this question - and also the most natural
one - of course is: We can write programs in it. And, beyond any doubt,
this was precisely what we had in mind - when we designed the language,
went to the limit in an attempt to define it with the utmost rigour, intro-
duced it informally "for the uninitiated reader", implemented it with a keen
eye for possible improvements, reconsidered and revised it with a keen and
open eye for possible implementations, then went to an even further limit in
redefining it with even more rigour and less consideration for the uninitia-
ted, reintroduced it in an informal revision, implemented it again (and now
complete and unabridged) énd started to promulgate it, modelled its transput
cleaning an (in spite of all efforts) still clumsy cluster of often overspe-
cifying I/O- and file-manipulating routines, explored its possibilities
through subsets and supersets and by extending it in its semantic prelude
for particular application areas —-—------ and we wrote papers and books on
it: primers, guides, treatises, conference proceedings and textbooks on
various aspects such as two-level grammars, orthogonalkdesign, recursive
modeé and mode-equivalencing, new implementation techniques, possible ex-
tensions --- and so on etcetera. But did we write programs in it?

An often heard objection is: There are no good compilers. But there
are. And not only on CDC-CYBERs - also on IBM370s, on DEC20 and PDPl1, on
ICLs and other systems. Their availability may leave something to be de-
sired (in no small measure a matter of demand), but they exist and some of
them are pretty good - for teaching purposes or for production aims or for
bothz One of the benefits of an ambitious and well-designed language is,
that the circle of its implementers is limited to competent and ambitious
experts. As to demand'and supply: it is a proven fact that manufacturers
can be coerced into implementing the language (CDC) or supporting an exist-
ing implemeritation (DEC). It is - at least partly - up to those who want to
write programs in it.

Another allegation is: There are no easy (and get-at-able) books on
the language and its use. But again: there are. In the small library of our
small computer science department we have as many titles on ALGOL68 as on
any other programming language, including PASCAL which is a heavily support-
ed language in our university. Yes, but they are difficult for the beginning
programmer. Are they, all of them? It is true that The Report is unreadable

for the non-expert and producing headaches with almost any one else. It is

also true that the other, more or less officially supported IFIP-WG2.1
"companion volume" - the Informal Introduction - is not a primer for the
programming novice: it rather is another (and pretty precise) description
of the whole language, and only informal as compared to that monstrous
monument of formal rigour which is the Report. But it is equally true that
most of the other primers, practical guides, introductions, tutorials and
what else do we have, have been written for and are quite easy readable by
any student and any intellectual who is able to think on a level not below
FORTRAN.

And yet: we don't write programs in it. Or do we? Let us try to de-
limit more or less who are "we". Apparently, the "we" of the first para-
graph is the small group of those who designed the language (IFIP-WG2.1 &
affiliates), implemented it for the first time (the Malvern people of the
Royal Radar Establishment), revised it (WG2.1 & affiliates & many respond-
ers), implemented it again (several groups and even individuals) and wrote
about it (see bibliography) - not so many amongst them actually wrote pro-
grams in it. I now'wake up to the fact that I wrote and tried my first
ALGOL68 program in 1975 (shortly after the release of the CDC-CYBER imple-
mentation). The "we" of the ALGOL68-users is another "we": it is a very
small subset of the total "we" that constitutes the computing community.

I guess that many of you belong to that small subset, an I do (more or
less), and my students and some of my scientific friends, and presumably
_your students and some of your friends, and - a very rough estimate - per-
haps another ten times that total. A very small subset indeed. So, referring
to the computing community - even if confined to the scientific computing
community - we must admit: We don't write programs in ALGOL6S8.

And so the question arises: WHAT CAN WE DO WITH ALGOL68?

2. A PIECE OF HISTORY

Faced with the phenomenon of a programming language which is compara-
tively rarely used for real straightforward programming, but is neverthe-
less neither an obscure language, nor an unimportant language, and trying
to understand this phenomenon, we must know something of its turbulent and’
confusing history. Whenever people start studying the history of computer
science, one of the problems they cannot avoid is why programming language
design always seems to generate so much heat and bitter disputes. And here

is a rich source of material for at least one fascinating thesis on the

interference of scientific controverse and (only psychologically explicable)
personal emotion.

When IFIP-WG2.1 in Munich, december 1968, after a sequence of exhaust-
ing meetings (more and more resembling heavy fought battles) finally accept-
ed the "Final draft report on the algorithmic language ALGOL68" as the basis
for a final "Report on the Algorithmic Language ALGOL68", there was a highly
unfortunate side-output (so to say): a."minority report" of two pages. The
six WG2.1 members undersigning it, certainly had their reasons - they left
the group and found another base of operations in a new working group IFIP-
WG2.3. (Programming Methodology). Their criticism was serious and, from
their standpoiht, in a sense inevitable. Notably, however, it hardly regard-
ed the language as such - it rather was a sharp polemic against the defining
mechanism. And above all: it had been dictated by anger (right or wrong: I
am not writing that historical thesis).

It was a historical accident that it took quite some time before the
160-pages Report could be printed after a last finishing touch of the draft
(Numerische Mathematik, Vol 14, 79-218, 1968), whereas the 2-pages minority
report ran around the computing world in considerably less than eighty days.
- as.could be expected. Consequently, the almost unreadable Report was re-
ceived by a warned (if not biased) community and hardly taken for what it
was: an extremely precise description of a very powerful language in need
of "the crucial tests of implementation and subsequent use" (quotation from
the preface to the Report). Amongst the few who actually read this remark-
able document, and apparently understood it, were those who implemented it
for the first time. Their ALGOL68-R compiler (Royal Radar Establishment,
United Kingdom) - running as early as 1971 - without doubt, saved the lan-
guage.

Reinforced by a fresh new quartet, the authors continued to reconsider
and revise the language, working through a several meters high pile of cor-
rections, improvements, suggestions, proposals etcetera - surprisingly,
those who read the Report appeared to understand it quite well and some-
times showed an even deep understanding. The Malvern-experience, of course,
had a great influence on this painstaking revision process. It was not be-
fore 1973 (WG2.1 meeting in Los Angeles) that the working group accepted a
revised /ALGOL68 and commissioned the (now eight) authors to rewrite the

Report using an enriched form of the two-level grammar.

'And then it took almost two years (of hard work with, and new dis-

coveries in the expressive power of two-level grammar) for doing the job.

The outcome was a much more readable "Revised Report on the Algorithmic
Language ALGOL68", though it remained a visitation for the application
orientated (and thus in particular respects naive) potential reader. The
first edition appeared late in 1975 - shortly after the release of its first
full implementation (on the CDC-CYBER). Not many seem to know that what we
still call ALGOL68, in fact is ALGOL73, which was not available before 1976.
I think it was a psychological mistake nét to call it ALGOL73, or even
ALGOL75. Anyhow, in a rather precise sense, ALGOL68 is an at least five
Years younger language.

In the mean time, however, two very important events took place: PASCAL
conquered the world and - not unlikely - ADA may take over on the longer

run. Again we must ask ourselves: WHAT CAN WE DO WITH ALGOL68 ?
3. A POSSIBLE FUTURE

It is interesting to investigate in which sense ALGOL68 might be con-
ceived as "a language somewhere between PASCAL and ADA". Clearly, histori-
cally, it is entirely wrong: ALGOL68 existed years before the brilliant
didactician and compilerbuilder Niklaus Wirth created PASCAL. Moreover, the
three languages had different (though in some sense also similar) design-
objectives:

- The programming language PASCAL was originally developed for teaching
programming, with an emphasis on the techniques known as structured
programming.

- ALGOL68 is designed to communicate algorithms, to execute them effi-
ciently on a variety of different computers, and to aid in teaching
them to students.

- ADA is a programming language for numerical applications, systems pro-
gramming applications, and applications with real time and concurrent
execution requirements.

On the other hand, PASCAL can be closely approximated by a small subset of
ALGOL68 (Wirth is a wise man, knowing his own and his students limitations),
and ADA (borrowing its notation from PASCAL) borrowed quite a lot of basic
ideas from ALGOL68 (but, alas, not the great binding principle of orthogo-
nal design). It certainly is no act of usurpation when we classify both
PASCAL and ADA under the ALGOL-like languages (though their spiritual fa-
thers seem not to like, or perhaps even not to understand the very spirit

of our ALGOL). A few remarks seem to be relevant in this context:

- PASCAL is not really the great language for programming education. Of
course it is much much better than BASIC, it is a relief after FORTRAN, and
it is an improvement upon ALGOL60 (though certainly not in every respect).
However, if weighed against for example SIMULA67, I would prefer the latter:
the SIMULA class-concept is much more important and interesting for scien-
tific education than the PASCAL-"set".
- PASCAL's frequently advertised strength (i.e. its wise limitations), is
also its weakness. It may be a nice, and easy, and even charming language
for the beginner - but once he knows more or less what is programming about,
he bumps his head against some missing feature (which he cannot create so
easily) and hé has to switch over to other languages for the real program-
ming tasks, the real software design. I also have some difficulty with the
term "easy language": that is not the real issue - what we need are lan-
guages that elucidate the process of program design in-general, and precise-
ly here PASCAL is a too restricted language.
- PASCAL's actual strength is its implementability: it easily beats FORTRAN
in this respect (even with runtime-efficiency). Indeed - recently, as pro-
grammers in business and industry at last have begun to discover the severe
limiﬁations of traditional programming languages, interest in putting PASCAL
to work outside the classroom has increased. But THE important boost for
PASCAL has come from its widespread implementation on microcomputers. PASCAL
is becoming one of the standard languages that every programmer should know,
for THAT reason!
- ADA is too young (and also too undefined at present) to be evaluated with
respect to its design objectives. In view of the military power behind it
(quo vadis) and the inevitable pressure on computer industries as a conse-
quence, ADA will be "doomed to succeed"” (a down-to-earth forecast of Gerhard
~ Goos) . .

Now the situation becomes clearer: whether we like it or not, the fu-
ture computer scientist must be familiar with at least FORTRAN (of course),
PASCAL and ADA (and very likely also some assembler language, and PL/I, and
LISP, and‘SIMULA, and name it yourself). It then is my conjecture, even my
conviction, that a well-chosen subset of ALGOL68 is far and away the best
language to begin with (in scientific education, and in particular at uni-
versities). Here are my arguments:

- A Pascal-size subset of ALGOL68 is easier to learn and to use than

PASCAL itself (orthogonality = inherent logic).

- Such a subset is an excellent starting point for learning the whole
language.

- ALGOL68 is, in a restricted but clear and useful sense, an extensible
language (cf. TORRIX, GRAPHEX68 etc.).

- ALGOL68 has machine-oriented primitives (BITS, BYTES and the usual op-
erations on these): low-level machine-programming can, in no small

. measure, be taught entirely within ALGOL68 (try it!). From there to
any assembler language is hardly more than a few small steps.

And here is my main argument:

- If you have learned one language (A), and have to switch over to an=:
other langﬁage (B), the easiest transitions are always those where
A=ALGOL68. There is only one exception, namely the trivial situation
where B is (in some sufficient sense) a sublanguage of A.

We did a bit of home-cooked sociological research in an attempt to find sup-
port for this statement, asking (over quite some period of time; the inquiry
continues) every student we met learning a new programming language, to give
us an estimate of how difficult/time-consuming it was. The following transi-

tion scheme reflect our findings:

XLGOLss 3> ADA
I S
RO AN
PASCAL ALGOL60 SIMULAG7

e

vy v ! ’ v :
ASSEMBLER #——————— BASIC

@

The digits have more or less the following meaning:

10 = without any difficulty (transition to a sublanguage)
9 = very easy

8 = with a little bit of effort

7 = it took me some time

6 = I had to work on it

5 = I found it difficult

4 = the language I knew did not help me at all

3 = the language I knew was a real source of errors

2 = the language I knew was my main difficulty

1 = I had to unlearn before I could start to learn

For a good understanding: this transition scheme cannot be considered, nor
used, as the outcome of a carefully designed scientific inquiry. It should
also be pointed out, that all transitions are isolated (as soon as a guy-
knows more than one language the inquiry may loose its meaning!). Yet, the
figures seem plausible.

If they are true (and I think there may be quite some truth in them),
then they are important for everyone who has to take decisions in planning
computer science curriculae. Please, do your own inquiries, if you are in
a position where you can find students who started with FORTRAN, or PASCAL,
or ALGOL68, or even with LISP, and have the opportunity to learn one of the

other languages. And tell me about your findings.
4. ALGOL68-EDU

"This is the PASCAL-size subset mentioned above: EDU = Educational
Decision (university of) Utrecht - or simply an abbreviation of EDUcational.
ALGOL68-EDU is the orthogonal span of ALGOL68 without:
label-definition , GOTO , GO , EXIT ,

PAR , SEMA , "
oP , PRIO ,

LONG , SHORT , FLEX , UNION ,
COMPL , BITS , BYTES ,

FORMAT , FILE , CHANNEL ,

and every syntactic construct or operator, that comes in the wake of it.

That is, the following bold-symbols do not occur in the subset:

ARG BIN BITS BYTES CHANNEL COMPL CONJ DIVAB DOWN
ELEM EMPTY EQ EXIT FILE FORMAT GE GO GOTO GT I

IM LE LENG LEVEL LONG LT MINUSAB NE OP OVERAB

PAR PLUSAB PLUSTO PR PRAGMAT PRIO RE SEMA SHL SHORT
SHORTEN SHR TIMESAB UP UNION

we use however:

ti= —i= k= [i= 4=

*k <= >= "

For a detailed description, a 1&-level grammar in syntactic diagrams and
a simple semantic explanation, we refer to the "ALGOL68-EDU REFERENCE MAN-
UAL", presumably available during this conference or soon thereafter.

We now have an almost six-year experience with this subset (known as
SPEEDYGB before it stabilized): about 250 students learned programming with
it. The results seem to be quite satisfactory. Our most difficult group is-
the FORTRAN-programmers who want to take computer science courses and have
to gnléarn their 6lumsy FORTRAN-statement style of writing programs.

~ We do not have an ALGOL68-EDU compiler - we use the full-ALGOL68 im-
Plementation on the CDC-CYBER. We would like to have an ALGOL68-EDU prepro-
cessor (for more didactic error-messages and -warnings), but do not really
need one - many students start to use non-ALGOL68-EDU features from the
full language, anyhow (and right they are). EDU is rather a pedagogical ad-
.vice than a sublanguage in its own right. We believe that an EDU-compiler
will not be an enormous piece of work, and if it is a portable compiler (I
mean really portable) it may become.a milestone in computer science educa-

tion at universities.and a blessing for the language.
5. WHAT CAN WE DO?

Prelimihary question: What did we do?

Immediately after the Los Angeles decision on the revision of the lan-
guage, é standing subcommittee on ALGOL68 MAINTENANCE AND SUPPORT was set
up; it still exists. Its first task became, in the natural course of things,
to assist the 4+2+1+1 group of revising authors in their painstaking labour.
When this at last came to an end (there are ten years between the very first
draft and the final reyision), the subcommittee more and more found its pro-
per working domain:

- Clarification of the Report where necessary.

10

- Correction of printing errors and other mistakes.
- Discussion and final judgement of sublanguages and "super-language'-
feautures.

- Promulgation of the language.
Under "Clarification ——————-—- " we find important pieces of work such as Hans
van Vliet's ALGOL68 TRANSPUT model, and Wilfred Hansen & Hendrik Boom's THE
REPQRT ON THE STANDARD HARDWARE REPRESENTATION FOR ALGOL68. Under "Correc-
tion —-=—=-=- " fall all more or less bureaucratic activities - not particular-
ly amusing, but certainly necessary. Under "Discussion ---—---—- " fall the
more creative activities, such as Peter Hibbard's definition of ALGOL68-S,
and Charles Lindsey & Hendrik Boom's proposal for library modules. Finally,
under "Promulgation -=-=-——--— " we find all other things to be done.

I feel uneasy with regard to this promulgation business. Clearly, there
is something to be done:

- the compilation and updating of a complete ALGOL68 bibliography,

- the registration and updating of all available implementations, and
where they come from, and who maintains them,

-~ the issue of a NEWSLETTER.

'Our host in Bochum - the Ruhr Universitdt - made us an offer, already
more than a year ago: to print and distribute an ALGOL68 NEWSLETTER. Until
now we reacted hesitating and even reluctant - why? You see, we have our
problems, and one of these is the ALGOL BULLETIN.

Should the ALGOL BULLETIN become a newsletter, or rather contain a news-
letter, or should a NEWSLETTER become a new activity? If so, is it then wise
to accept the generous Bochum offer, or should we try to use SIGPLAN NOTICES
(provided they let us use them), or some other well established channel? The
real important question, however, is (and that is the very root of our ambi-
valence): who is taking responsibility for the contents of this newsletter,
and who guarantees regularity in appearance? The subcommittee? Or a subsub-
committee? Or no committee at all - a volunteer?

Being here together for two days, I invite you all to discuss with us
the pro's and con's and why's and how's of a NEWSLETTER and - more generally
- how to promulgate a language if you are a nice crowd of individuals,
rather than a big manufacturer or'a mighty pentagon.

The question is: WHAT CAN WE DO WITH ALGOL68 ?

11

TENTATIVE BIBLIOGRAPHY

This is a very incomplete, and also inaccurate list of titles on ALGOL68.
Its sole purpose is, to encourage the reader to supplement and correct it,

where possible. Please send your contribution(s) to:

S.G. van der MEULEN

Department of computer science
the University of Utrecht
Princetonplein 5, P.O.Box 80.002
3508 TA UTRECHT, The NETHERLANDS

Ammeraal, J., Mini ALGOL 68 User's Guide, IW 32/75, Mathematical Centre,
Amsterdam.

Bacchus, P., J. André and C.H. Pair, Manual of the Algorithmic language
ALGOL68 ,Paris, France.

Bachmann, K.H., Die Programmiersprachen PASCAL und ALGOL68, Akademie-
Verlag, Berlin (DDR), 1976.

Bauer, F.L. and G. Goos, Informatik Teil I und II, Heidelbergse Taschen-
blicher BD. 80, 91, Springer Verlag, Berlin - Heidelberg -
New York, 1971.

Birrell, S.R., ALGOL68C Implementers' .Guide, ALGOL68C technical report, Uni-
versity of Cambridge Computer Laboratory.

Bourne, S.R., ZCODE A simple Machine, ALGOL68C technical report, University
of Cambridge Computer Laboratory.

Bourne, S.R., A.D. Birrell and I. Walker, ALGOL68C Reference Manual, Uni-

versity of Cambridge Computer Laboratory.

Brailsford, D.F. and A.N. Walker, Introductory ALGOL 68 Programming, Ellis
Horwood Publishers, Chichester, 1979.

Branquart, P. et al, An Optimized Translation Process and its Applications
to ALGOL68, Lecture Notes in Computer Science 38, Springer-Verlag,
Berlin, 1976.

Branquart, P., J. Lewi, M. Sintzoff and P.L. Wodon, The Composition of
Semantics in ALGOL68, Communications of the ACM, Nov. 1971,

vol. 14, no. 11.

B

12

Cleaveland, J.C. and R.C. Uzgalis, Grammars for Programming Languages,

Elsevier North Holland, Inc., 1977, Amsterdam.

Colin, A.J.T., Programming and Problem-solving in Algol 68, The MacMillan
Prees Ltd., 1978, London.

Denert, E., G. Ernst and H. Wetzel, GRAPHEX68 - Graphical Language Features
in ALGOL68, Computer and Graphics I (1975) 195-202.

Denert, E. and R. Franck, Datenstrukturen, Bibliographisches Institut AG, 1977
1977, Zirich.

Denert, E., R. Franck, F. Miller and W. Streng, Graphische Sprachenelemente
in ALGOL68, Technische Universitdt Berlin, Fachbereich Informatik,

Bericht nr. 73-01, Jan. 1973.

Differences between Algol 68-R and 68, RRE Internal Document (2nd. Edn.
June, 1973).

Feldman, H., Einfithrung in ALGOL68, Skriptum fiir H6rer aller Fachrichtungen
ab. 1 Semester, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH,

1978, Braunschweig.

Gerbier, A., Mes premiéres constructions de programmes, Lecture Notes in
Computer Science, Vol. 55, Springer-Verlag, New York, Heidelberg,

Berlin, 1977, (in French).

Groupe Algol de 1'AFCET, Manuel du langage algorithmique Algol 68, Hermann,
Paris, 1975.

Groupe Algol de 1'AFCET, Définition du langage algorithmique Algol 68,

Hermann, Paris, 1972.

Gfune, D., The MC Algol 68 Tést Set, Mathematisch Centrum, IW-53, 1975,
Amsterdam.

Grune, D., L.G.L.Th. Meertens and J.C. van Vliet, Grammar-handling Tools

Applied to ALGOL68, Mathematisch Centrum, 1973, Amsterdam.

Hedrick, G.E.(éd.); Proceedings of the 1975 International Conference on
ALGOL68, Oklahoma State University, Stillwater, Oklahoma, June
10-12, 1975.

13

Hill, U., H. Scheidig and H. Woessner, An Algol 68 Compiler, Technische

Universitdt Minchen and University of British Columbia, 1972.

Housden, R.J.W. and V.J. Rayward-Smith, Conference Proceedings "Experience

with Algol 68", 1975, Liverpool.

Kelk, B.C., A plotter package for ALGOL68C, CAD Group Document 90, Computer
Laboratory, University of Cambridge, 1976.

Koch, W., and Ch. Oeters, An Abstract ALGOL 68 Machine and its Application
in a Machine-independent Compiler, J. Mihlbacher (ed.): GI-5.
Jahrestagung (LNCS 34), Springer 1975.

Koster, C.H.A. and Th.A. Zoethout, Systematisch programmeren in algolé68,

Kluwer - Deventer 1978.

Learner, A. and A.J. Powell, An introduction to ALGOL68 through problems,

Macmillan Computer Science series, MacMillan Press, London, 1974.

Lindsey, C.H., ALGOL68 with fewer tears, The Computer Journal, Vol. 15, no.2,
1972.

Lindsey, C.H. and S.G. van der Meulen, Informal Introduction to ALGOL6S8,
revised edition, North Holland Publ. Company, 1977, Amsterdam.

MacGettrick, A.D., ALGOL68 - A first and second course, Cambridge University
Press, 1977.

Maybrey, A., Proceedings of Liverpool Conference on Uses of Algol 68,
March, 1975.

Meerténs, L.G.L.T., A Space-saving Technique for Assigning ALGOL 68 Multiple
Values, Mathematical Centre, 1976, Amsterdam.

Meulen, S.G. van der, and P. Kihling, Programmieren in ALGOL68, Vol. I & II,
Walter de Gruyter, Berlin, 1974, 1976 (in German).

Meulen, S.G. van der, and M. Veldhorst, Torrix; A programming system for
' operations on vectors and matrices over arbitrary fields and of
variable size, vol. I., M.C. Tracts no. 86, Mathematical Centre,

’1978, Amsterdam.
! ‘ .
Meulen, S.G. van der (et al), ALGOL68~EDU " A REFERENCE MANUAL FOR STUDENTS,

RUU-CS-81-%% ., University of Utrecht.

Pagan, F.G., A Practical Guide to ALGOL68, John Wiley & Sons, London.

14

Paillard, J.P. and M. Simonet, Attribute-like W-grammars, The fifth annual
international conference on the implementation and design of

Algorithmic Languages, Rennes, May 1977.

Peck, J.E.L. (ed.), ALGOL68-Implementation, North-Holland Publishing
Company, Amsterdam, 1971.

Peck, J.E.L., An ALGOL68 Companion, Department of Computer Science,
versity of British Columbia, Vancouver 8, B.C., Canada, 1972.

Peck, J.E.L.(ed.), Proceedings of an Informal Conference on ALGOL68-
Implementation, University of British Columbia, VYancouver 8,

B.C. Canada.

Proceedlngs of International Conference on ALGOL68 Implementation, Utilitas
Mathematlca Publishing Inc., University of Manitoba, Winnipeg,
1974.

Rayward-Smith, V.J.(ed.), Proc. Conf. on Applications of ALGOL68,
80-90.

Robertson, A. and G.E. Hedrick, A Portable Compiler for an ALGOL68 Subset,
Proceedings of the 1975 International Conference on ALGOL6S,
Oklahoma State University, Stillwater, Oklahoma, June 10-12, 1975.

Sigplan Notices, ACM, Vol. 12, Numb. 5, May 1977
1. Wijngaarden, A. van et al., Revised Report on the algorithmic
language ALGOL68.
2. Hibbard, P.G., A sublanguage of AOLGOL68.
3. Eansen, W.J. and H. Boom, The report on the standard hardware

representation for ALGOL6S.

Sigplan Notices, Pioceédings of the Strathclyde Algol 68 Conference, ACM,
vol. 12, numb. 6, June 1977.

Sintzoff, M., A brief review of Algol 68, Algol Bulletin, no. 37, July 1974.

stiller, G., ALGOL68-Begriffe und Ausdrucksmittel, B.G. Teubner, Verlags-
gesellschaft, Leipzig, 1974, Lizenzausgabe im R. Oldenbourg Verlag,
Minchen, Wien, 1974.

! : .
- Stiller, G., ALGOL68-Datenorganisation, R. Oldenbourg Verlag, Minchen,
Wien, 1976.

15

Tanenbaum, A.S., A tutorial on ALGOL68, ACM Computing Surveys 8 (june 1976)
155-180.

Vansina, C., Manipulation dynamique de valeurs en algol68, June 76, Mémoire

de maitrise en informatique, FNDP Namur, Belgium.
Vliet, J.C. Vanh, Algol 68 transput, Mathematical Centre Tracts 110&l111, A'dam

Woodward, P.M. and S.G. Bond, ALGOL68-R Users Guide, Division of Computing
and Software Research Royal Radar Establishment (RRE), Malvern,
England, 1972.

Wijngaarden, A. van,et al., Revised Report on the Algorithmic Language A
ALGOL68, M.LC. tract 50 Mathematical Centre, 1976, Amsterdam;
Springer Verlag, New York, Heidelberg, Berlin, 1976; Sigplan
Notices, ACM, Vol. 12, Numb. 5, May 1977; Acta Informatica,
Vol. 5, pts. 1, 2, 3, 1975.

Zosel, M.E., A Formal Grammar for the Representation of Modes and its
‘ Application to ALGOL 68, Ph.D. Thesis, University of Washington,
1971.

17

SYNTACTIC ERRORS MADE BY BEGINNERS
USING AN ALGOL 68 SUBSET

J. ANDRE & J. BARRE

ABSTRACT

First year students at the University of Rennes were introduced to
Computer Science by means of an ALGOL 68 subset. This experiment was
followed up on a pedagogical level by an analysis of the syntax errors
made by. the students. The analysis enabled us to improve teaching and to
modify certain details in the subset's design. In particular, the results
show that the students do not make more errors in ALGOL 68 than they do in

other languages, with the exception perhaps of errors on representations.

18

1. INTRODUCTION

ALGOL 68 is fascinating because of its orthogonality which, starting
from a limited number of basic concepts, gives a great freedom of expression
to the programmer. But many teachers have remained sceptical as far as its
effective use as an introductory programming language [20]. It's true that
for a long time the lack of pedagogical documents and the presentation of
the design grammar did not help things.

Nevertheless, a team at the University of Rennes, convinced of the
important contribution of the language, defined, implemented and then used
for several years an ALGOL 68 subset to introduce first-year students to
programming.

It seemed interesting to us to follow the difficulties encountered by
the students very closely. This led us to analyse the errors made in their
programs. For material reasons, only syntactic errors were the object of
this study. The most striking result is that the beginner students don't
make more mistakes in ALGOL 68 than they do in other languages (except
perhaps on representations).

After discussing the pedagogical context and the procedures of this
study, results will be analysed and remarks about the definition of languages

and the psychology of their learning will be presented.
2. THE CONTEXT OF THE STUDY

Our study took place over two scholastic years (1976-77 and 1977-78).
It was done at the University of Rennes (France) and concerned the DEUG A
(General University Studies Diploma, Mathematics and Physical Science majors)
which correspond to the first year at the University after the "baccalauréat"
(high school diploma). The teaching program was mostly Mathematics (260 hours)
and Physics (160 hours). Computer Science only represents 9% of the test
grade for 37 hours of classes (this situation does not motivate the .
students!). So we imposed the three following goals on ourselves:
- to establish as many liaisons as possible with the math program,
- to give to the future users of Computer Science (for applications
in physics, chemistry, ...) the algorithmic bases which are hidden
;hen confronted by a language like Fortran,
- to present to these students, who have never done Computer Science

(and who maybe never will again) the limits of a computer.

19

The 37 yearly hours of Computer Science were divided as follows:

- 12 hours of lecture classes for the 450 students. This course
presented generalities about Computer Science and computers (archi-
tecture, language, machine ...)

- 25 hours of "directed work", by small groups of 20 students during
which algorithms and an ALGOL 68 subset were taught. The results of

these exercises formed the subject of this study.
3. THE LANGUAGE USED

For an introduction to programming we thought it judicious not to use
the ALGOL 68 ideas in their entirety. An ALGOL 68 subset, called SERA, was
therefore defined and implemented [18].

SERA is a language whose power of expression is similar to that of
ALGOL 60, but with the orthogonality and the syntax of ALGOL 68. Leaving
aside the pedagogical aspects, it should be noted that the advantage of
this language lies in the savings, of time and space, of the SERA compiler

compared to the ALGOL 68 compiler.
4., TEACHING METHODOLOGY

The language concepts, as well as the work of a working group on the
process of learning programming t?], enabled us to put forward the following
points:

-1) the emphasis on the distinction between identifiers, values and

references

-2) the association of data structures and control structures:

i) wuse of variables (and of assignment) only in loops. This
point is eépecially well adapted to ALGOL 68 thanks to the
identity declaration (but would cause problems in Pascal and
Fortran)

ii) use of the for loop when using arrays.

Each student had to write four programs related to important points
in the teaching program:

- the first having to do with sequentiality, unformatted input and

oﬁtput,

- the second on conditional clauses and case clauses,

- the third on arrays, loops and procedures,

20

- the fourth on arrays and procedure parameters.
Running the programs on the machine was done with punched cards. The
students coded a form and gave it to the punching department. The corrections

were their (the students) responsibility.
5. ERROR COLLECTION METHOD

A completely automatic system which would have discovered and analysed
mistakes detected at compile time wasn't possible. In fact, if you don't
happen to process an especially intelligent compiler, mistakes are not

always brought to light. Let's consider the following lines:

ref int A, B, C = loc int;

ref int LETTERCOUNT = loc int;
LETTERCOUNI := 0;

A:= B C:= C+1;

A regular compiler would report, for the last two lines: UNDECLARED
IDENTIFIER whereas in the first case it's a typing mistake (an I instead of
a T) and in the second there is a semi-colon missing which should separate
the two clauses.

We therefore had to analyse the programs de visu one by one. The
erroneous listings were obtained by simply copying the compiler's output
statements for error-messages on two files, one in normal output, the
other on a special file, globally listed at the end of each batch session.

So only the programs having syntactic errors were analysed, which puts
certain limits on our‘study:

- we don't have reports of certain expressions which, even if they are

not mistakes, show an incomplete knowledge of the language on the
student's part.

For example:

-if A = 0 then B:= B+l else B:= B fi
WRITE ((LINE))

In the same way,

21

int perimeter = length + Width * 2

comes, in our opinion, more from a syntactic error (bad knowledge of operator
priority rules) than semantic. But such errors could only be discovered
accidentally, on the occasion of a real syntactic error. Their number is
therefore doubtful!

vThe duplication of output listings was not done at runtime. So we have
neither the accounts for mistakes reported by the runtime system, nor
semantic errors. This also limits the scope of our study because it is known
that syntactic mistakes represent only 20% of programming errors [2,24].
Furthermore, the number of runs per student and per exercise has not been
studied.

6. RESULTS
Our study took place over two years and deals with the analysis of

listings corresponding to four different problems. We will first present

the results relative to the first year:

Number of erroneous programs studied : 327
Number of mistakes discovered : 708
Average number of lines per erroneous program : 45
Average number of mistakes per erroneous program: 2.16

6.1. Breakdown of errors

Table 1 shows the errors found. This classification does not follow the
ALGOL 68 Report [23] but more of a pedagogical order. The details of the

mistakes are given in [1].

6.2. Frequency of errors

Figure 2 presents the breakdown of errors according to their decreas-
ing frequency. More than half the mistakes are punching, representation

or punctuation errors.

TYPE OF ERRORS OCCURRENCE TOTAL PERCENTAGE
NUMBER NUMBER
ENVIRONMENT 50 7.0
Language limitations 32
Standard identifier 9
Others 9
MIXED CARDS 14 1.9
PUNCHING 68 9.6
Punching errors 49
Bugs in forms filled out 19
REPRESENTATIONS 171 24.1
Symbols 44
Strings 71
Comments 23
Operators 14
Numbers 1
Others 17
SIMPLE DECLARATIONS 28 3.9
Identifiers 17
Syntax 7
Others 4
CALLS TO WRITE/READ 53 7.5
Balancing 10
Mode 26
Others 17
EXPRESSIONS 27 3.8
Arithmetic 2
String 1
Boolean 15
Parenthesis 9
GENERAL CONTROL STATEMENTS 42 5.9
Clauses 12
Conditional clause 15
Loops 9
Case clause 6
PUNCTUATION . 149 21.0
Missing semicolon 108
Extra semicolons 36
others 5
ARRAYS 16 2.3
PROCEDURES 11 1.6
MODES AND SCOPE 49 6.3
Declaration simple 6
General constructions 17
! Arrays 9
Procedures 17

Table 1 - Distribution of errors found in 1976-77 study

23

Error Number

A
150]
100 ~
=
)
b
213
% | 2
50 1 u =] ol
o | P <
4 | g 3]
9|8 |5
gla | &
4 9 3 6 |1 12| 8 5 7 10l 2 11 ?iéss number

Fig. 2 - Breakdown of errors according to frequency

Classification number

1. Environment 7. Expressions

2. Card problems 8. General constructions
3. Punching ‘) 9. Punctuation

4. Representation 10. Arrays

5. Simple declarations 11. Procedures

6. Calls to WRITE or READ 12, Modes and scope

6.3. Analysis of errors

Even though there are accounts of mistakes made in various other
languaged (e.g. BOIES & GOULD [2], GANNON & HORNING [6], LITECKY & DAVIS
(151, vounes [24] ...) it didn't appear worthwhile to make any comparisons

with these studies because they seem to have been done under different

24

conditions than ours.

In this section underlining is used for bolds, except when useful to
exhibit the actual hardware representation.

The first fundamental remark is that it doesn't seem as if ALGOL 68's
syntax is the cause of special errors. It is true that the grammar taught
was not that of the design [23] but was presented in the form of a classic
flowchart. However we will see that even balanced constructions
(if ... fi, case ... esac, etc) were the source of very few errors.

Even though the problems proposed to the students were relatively simple,
it can be said that certain specific ALGOL 68 concepts, for instance the
passage of parameters to procedures, resulted in very few errors (less than
2%) . Notable, too, the explanation of the mechanism takes much less time
with ALGOL 68 than with Pascal or ALGOL 60.

The choice of the strict form for variable declarations (which set off
these objects very well) was not responsible for a significant amount of

errors (1%).

6.4. Balanced constructions

Balancing in control structures doesn't cause any problem: the repres-
entations used were in French (inspired by [3]). In particular, the choice
of closing keywords didn't mirror those of ALGOL 68 (if ... fi, etc) but
were all constructed with the prefix f, abbreviation for fin (end), as

KOVATS [13] now suggests and as it is in ADA [11].

si ... fsi if ... fi
cas ... fcas for case ... esac

faire ... fait do ... od

This orthogonality, and, without doubt, also the fact that the students
were beginners in Computer Science, are probably the reasons why we only
found two examples of bad balancing (if without fi).

Nevertheless, we have to point out that some errors were related to
elif (whose French representation, sinsi, is not any clearer): this symbol

is not very structuring when there are several embedded conditional clauses.
'

25

6.5. Mistakes related to WRITE calls

The united modes were not explicitly part of the SERA language. Some
of ALGOL 68's concepts, like the WRITE and READ parameters, were never-
theless connected with them, but could not be clearly explained to the
students.

The parameter mode of the WRITE procedure, and that of READ (less often

used) , was thus the cause of some parenthesis errors:
WRITE (A,B) instead of WRITE ((A,B)).

We also found several examples of a mistake that is difficult to

explain to debutants (collateral in a weak context not allowing union) :

WRITE (if DELTA = O then ("1 root :", X)
else ("2 roots :", X1, X2) f})

In other respécts, several times we found something equivalent to:
roc P = (...) string : WRITE (...)

This confusion between the WRITE procedure (neutral mode) and the "text"
which is finally printed comes without doubt from the difficulty beginners
have in distinguishing between a procedure which prints a value and a
procedure which returns a value, a difficulty already mentioned by LEITNER &
LEWIs [14].

6.6. The most numerous mistakes

It is therefore not at the level of syntactic constructions, but,
foolishly, at the lexicographic level that the students made the most mis-
takes: as seen in table 2, 50% of the mistakes found have to do with

punctuation or representation problems:

The representation mistakes are the most numerous (around 25%).

Basically, they concern forgetting one or (more often) two quotes for the
symbols (e.g. 'BEGIN, END', AND instead of, respectively, 'BEGIN', 'END',
and 'AND'). They are always occasional mistakes (not one program, for

instance, was written completely without quotes). It would be interesting to

26

see how much this rate of mistakes would decrease with the new official rules
which allow the writing of begin as .BEGIN or even BEGIN [8].

The string notations are also the object of many mistakes in particular

forgetting (often systematically in the same program) quotation marks. This
happens, moreover, most frequently in the WRITE parameter, e.g. WRITE (NO
ROOTS), or in an identity declaration, e.g. 'CHAR' ENDOFTEXTE = # instead
of 'CHAR' END OF TEXTE = "#".

Comment notations are the cause of mistakes either in the representation

of co ('CO or CO', etc. instead of 'CO'), or for questions of program

presentation, like

'REF' 'INT' LETTERC = 'LOC' 'INT' ; 'CO' LETTER COUNT
'REF' 'INT' WORDC

'Loc' 'INT' ; WORD COUNT 'CO'

The absence of balancing symbols for certain constructions such as
comments (co ... co and not co ... oc) or certain notations (" ... " strings
when in ALGOL 60 there were two different symbols) is the reason why some
trivial errors (co forgotten or incorrectly punched) have enormous reper-
cussions on the rest of the program because a permutation occurs between
what is a comment and what is not, and this happens in almost all languages
(SCOWEN & WHICHMAN [221), except in ADA [11].

Punctuation mistakes are linked to the use of semi-colons. They are

numerous (21%), but far from surprising! They occur with about the same

frequency in COBOL programs written by debutants (LITECKY & DAVIS [15]), but

also in programs written by high-level students in TOPPS and TOPPS II

(GANNON & HORNING [61]).

On this subject, several remarks should be made:

- the logical sequentiality of instructions is not implicated: we only
discovered one absence of a semi-colon to separate two serial clauses in
a single physical line;

- but the students confuse logical and physical sequentiality (explicit for
them because of the physical ends of lines). As a matter of fact, two-
thirds of errors have to do with the absence of semi-colons at the ends
of lines. Several authors (HOLT [10], GANNON & HORNING [6], GANNON [5],
PAGAN [19]), have already reported the importance of semi-colons. Some
compil;rs (like those of BCPL or ALGOL 68 at Oxford - cited by MIDDLETON
L16]) consider that in. certain contexts the physical end of a line cor-

responds to a semi-colon.

27

- finally the absence of the empty instruction, like in ALGOL 60, is the
cause of around 40 errors of excessive semi-colons (before else, fi, end,
etc.) i.e. of missing void.

Punching mistakes (and especially those in the identifiers) are less

numerous here than those discovered in COBOL by LITECKY & DAVIS [15]. The
probable reason is that the identifiers are often (as much by the nature of
the problems as by habit) longer in COBOL (where a frequent identifier will
be of the form NEW _PAYROLL FILE) than those of scientific disciplines
(where the identifiers are in this form: T(I) or X). Fourty percent of the
mistakes come from misuse of the shift key on the IBM 29 card punch machine
(e.g. HDEBUT' and X: = YF instead of 'DEBUT' and X: = Y;) and 25% of them
seem to be related to bad handwriting: [FI' instead of 'FI' or P(X'Y)
instead of P(X,Y).

7. FOLLOW-UP OF THE FIRST ANALYSIS

The mistakes cited above correspond to those found in 1976-77. Their
analysis as of the end of the scholastic year allowed us to improve certain
things in the SERA language and in teaching.

We quickly found that two kinds of errors had the SERA language itself
as a cause:

1) the prologue contained procedures defined according to the schema:
proc GET m = m-: (m X ; READ(X) ; X)

but in a non-orthogonal way: GETREAL had GETREL as an identifier; and
GETCHAR didn't exist.

2) The comment notatibn_gg_was 'CO', that is, 4 characters to write or
punch and, therefore, a great amount of possible errors. This symbol was
replaced by # (which is, by the way, legal in ALGOL 68).

In other respects, certain figures in table 2 seemed abnormal and we
make a pedagogical effort in 1977-78 on some special points (in particular
on boolean mode expressions, string notations and WRITE calls).

The 1977-78 listings were, in turn, studied. The same magnitude of
errors were found, with, however, appreciable changes for the colums of
table 3:

28

1976/77 1977/78

Modifiéations of SERA and its compiler

Comment 23 5

Prologue procedures 9 0
Modifications in teaching

Strings 71 39

WRITE call) 26 5

Boolean expression 15 5

Table 3: Evolution of errors in terms of improvements brought about in
77-78 to SERA and teaching.
(The 77-78 numbers are adjusted to the total number of 76-77

errors. Percentages would be very low) .
8. IDIOSYNCRACIES IN PROGRAMMING LANGUAGES

Programming languages have a certain style that is neither completely
natural, nor completely mathematical. Since programming languages are, all
the same, close to natural languages, debutants have a tendency to not follow
the proposed syntax. This is probably the origin of a certain number of

errors like the following:

if DELTA < 0 WRITE ("NO ROOTS") fi co missing then co

until char = "." do ... (instead of while char £ """ gg_...)

This latter form has, by the way, been proposed by XKNUTH [12].
In the same way mistakes are found that wouldn't be mistakes in other

languages, like:

WRITE X

X:= a.if new char = "-" then - else + fi b;

Two classes of errors are also attributable to arbitrary choices made
in algorithmic languages which deceive mathematics students. The first is
to limit the sense of and to only logical inclusion. The students then

, ancé

"naturally" write things like:

29

if ¢ =" " then count:= 0 and sum +:= 1 fi

"WRITE (X and Y)

The second class is characterized by the absence of certain notations,

in particular those of set theory from which, excusably, the following:

for 1 <i <ndo ... (i.e. Vi e {1 : n} do ...)
if day = 28 or 30 or 31 then ... (i.e. if day e {28,30,31} ...)
if 2 < C < 80 then ...

9. CONCLUSION

Pedagogical models or psychological studies of the process of learning
Computer Science have made much progress in the last few years (see, for
example, FURUTA [4], Hoc [9], LEITNER [14], voungs [241],

SCHOOMAN & BOLSKY [21]). Nevertheless, it's regrettable that few such
studies have made a distinction between the learning of algorithms and of a
programming language, and that none tackle the languages at the level of
ALGOL 68. It is interesting to bring up again the fact that our pedagogics
were found to be at fault on the one hand for a lack of orthogonality (in
the prologue) and on the other hand because of a hidden concept (the union
mode of the WRITE procedure). In both cases it seemed clear, at least
according to the account of errors, that the students were confused.

Such statistics should be collected for other languages also and should
be extended in such a way as to answer questions like: what is the total
number of runs per student per exercise? How do errors differ if programmers
are not beginners? How many of the errors can be attributed to factors
other than the design of the programming language? And of course they should
be concerned with semantic errors as well.

In conclusion, we should bring up once again the great number of errors
related to representations and say that we think this is due to the fact
that this subject was always scorned by theoreticians. There was an 8-year
waiting period before ALGOL 68 received recommendations (HANSEN & BOOM [sh.
We hope that no other programming language will ever be published without
certain standards.because it is at this level that debutants are the most
sensiblet

Our experience leads us to believe that ALGOL 68 is a good choice of

an introductory programming language. We can even say that the discovered

30

errors are classic. Also, our experience as teachers has made us sure that
the readability and good construction of the programs obtained is due to
some of ALGOL 68's qualities, such as orthogonality, balanced constructions,
identity declarations which allow for the clarification of the idea of var-

iable, and a unique mechanism for the passage of parameters.

ACKNOWLEDGEMENTS

We would like to thank B. Boussais, J.P. Routeau, F. Ployette and
L. Trilling for their help and our students for their involuntary contribution.
Jean-Pierre Bandtre made a number of very helpful suggestions on earlier

drafts of this paper.
REFERENCES

[11 ANDRﬁ, J. & J. BARRE, Analyse des fautes commises par des étudiants
débutant 1'informatique par Algol 68, P.I. IRISA no. 104,
Rennes, 1978.

[2]1 BOIES, S.J. & J.D. GOULD, Syntactic errors in computer programming,
Human Factors 19]3), p. 253-257.

[3] BUFFET, J., P. ARNAL, & A. QUERE, (ed.), Définition du langage
algorithmique Algol 68, Act. sc. et Ind. no. 1338, Herman, Paris
1972.

[4] FURATA, R. & P.R. KEMP, Experimental evaluation of programming languages
features: implications for introductory programming 1énguages,

SIGCSE Bulletin vol. 11, no. 15, Feb. 79, p. 18-21.

[5] GANNON, J.D., An experiment for the evaluation of language features,
Int. J. of Man Machines Studies 8 (1976), p. 61-73.

[6] GANNON, J.D. & J.J. HORNING, The impact of language design on the
production of reliable software, IEEE Trans. on Soft. Eng.

vol. SE-1, no. 2 (June 75), p. 179-191.

[7] GERBIER, A., Mes premiéres constructions de programmes, Springer

Verlag Lectures Notes no. 55, 1977.

[8] HANSEN, W. & H. BOOM, The report on the standard hardware representation
for Algol 68, ALGOL Bulletin no. 40 (August 76), p. 24-43.

31

[9] HOC, J.M., Role of mental representation in learning a programming

language, Int. J. Man Machines Studies 9, (1977) p. 87-105.

[10] HOLT, R.C., Teaching the fatal disease (or) Introducing computer
programming using PL/I, SIGPLAN Notices vol. 8 no. 5 (May 1973),
p. 8-23.

[11] ICHBIAH, J.D., Reference manual for the Ada programming language,
DOD, July 1980.

[12] XNUTH, D.E., Structured programming with goto statements, ACM Computing
Surveys 6 (1974), p. 261-301.

[13] xovATS, T.A., Program readability, closing Keywords and Prefix-style
Intermediate Keywords, SIGPLAN Notices vol. 13, no. 11 (Nov. 78),
p. 30-42.

[14] LEITNER, H.H. & H.R. LEWIS, Why Johnny can't program a progress report?,
SIGCSE Bulletin vol. 10, no. 1 (Feb. 78), p. 266-276.

[15] LITECKY, G.R. & G.B. DAVIS, A study of errors, error-proneness and
error-diagnosis in COBOL, CACM vol. 10, no. 1 (Jan. 76), p. 33-37.

[16] MIDDLETON, M., The importance of syntactic trivia, Letter to the editor,
SIGPLAN Notices vol. 13, no. 3 (March 78), p. 17-19.

[17] MUsSA, J.D., An exploratory experiment with "foreign" debugging of
programs, Proc. of symposium on computer soft. eng., (New York

April 20-27, 1976), p. 499-511.

[18] NICOLAS, M., M.J. PEDRONO, J. BARRE & L. TRILLING, A first programming
course based on Algol 68, Proc. of the conf. on applications of

Algol 68, Univ. of East Anglia, Norwich 1976.

[19] PAGAN, F.G., Letter to the editor, SIGPLAN Notices vol. 12, no. 4
(April 77), p. 3-4.

[20] PAGAN, F.G., Nested sublanguages of Algol 68 for teaching purposes,

SIGPLAN Notices vol. 15, no. 7-8 (July-Aug. 80), p. 72-81.

[21] SCHOOMAN, M.L. & M.I. BOLSKY, Types, distribution and tests and cor-
rection times for programming errors, Proc. of 1975 Int. Conf.

on reliable software, Los Angeles (April 21-23, 1975), p. 351.

32

[22] SCOWEN, R.S. & B.A. WHICHMANN, The definition of comments in program-
ming languages, Software Practice and Exp. vol. 4 (1974),
p. 181-188.

[23] VAN WIJNGAARDEN, A., B. MAILLOUX, J. PECK, C. KOSTER, M. SINTZOFF,
C. LINDSEY, L. MEERTENS & R. FISKER (eds.), Revised report on
the algorithmic language Algol 68, SIGPLAN Notices vol. 12,
no. 5 (May 77), p. 1-70.

[24] YOUNGS, E.A., Human errors in programming, Int. J. of Man Machines

Studies 6 (1974), p. 361-376.

33

A COMPARATIVE EVALUATION OF ALGOL 68
FOR PROGRAMMING INSTRUCTION

P.R. EGGERT & R.C. UZGALIS

ABSTRACT

An experiment was performed on a large, intensive programming course
to decide whether Algol 68 or PL/I should be used as a primary programming
language. The main criterion used in the selection was the number of com-
piletime and runtime errors encountered during program development. Ex-
cluding the first two programs, in which language learning took place, Algol
68 programs had significantly more trivial syntax errors, although the total
number of compiletime errors was roughly the same. PL/I programs had signi-

ficantly more runtime errors, particularly subscript errors.

34
1. INTRODUCTION

One of the most commonly claimed benefits of strongly typed languages
is that more errors are caught at compiletime; confirming experimental re-
sults with artificial languages and small sample sizes have been reported in
GANNON [7]. In addition we observed that several errors are common when
students move from a traditional syntax (in our case, PL/I) to the more un-
orthodox syntax of Algol 68; similar results were reported in GANNON [6].

We conducted an experiment testing the first claim on a larger sample with
general-purpose programming languages; in the process we gathered data that

sheds light on difficulties in learning the syntax of Algol 68.
2. BACKGROUND

At UCLA, the second course in computing, Computer Science 20 (or CS20
for short), has traditionally served as an intensive introduction to pro-
gramming and problem-solving. Incoming students typically have had ten weeks
of simple programming experience, and have written programs of at most 100
lihes; outgoing students are expected to be mature programmers and often
obtain jobs immediately in local industry. Approximately 40% of CS20's
incoming students do not finish the course. Survivors are highly motivated.

One quarter, incoming students were partitioned into two sections, with
no ability to transfer between sections. One section was taught using PL/I,
the other using Algol 68. Incoming subjects arrived with no knowledge of
Algol 68, and a limited knowledge of PL/I derived from exercises on the PL/C
compiler [2], which gives excellent diagnostics. The first two weeks of the
ten-week course covered language related material: advanced PL/I topics in
the PL/I section, and most of Algol 68 in the Algol 68 section. The IBM PL/I
optimizing compiler [10] was used for PL/I instruction; PL/C was considered
unsuitable because it lacks pointers, and IBM's PL/I checkout compiler was
considered too expensive. The Cambridge Algol68C compiler [1] was modified
to improve its runtime diagnostics to quality approximately that of the PL/I
optimizer's; thé resulting compiler is called Calgol 68 [3]. At the time of
the experiment, a major failing of the PL/I optimizing compiler was that ex-
ceeding resource limits caused some or all of the printout to be lost; a
major failing of Calgol 68 was its many unimplemented features including

multidimensional arrays, unions and formats.

35

Programming problems were run using a locally developed fast-turnaround
batch system using upper-case-only keypunches. The set of attempts by a sub-
ject to solve a given problem will be called a "program" (although "program
development process" might be a more accurate phrase). Each attempt to com-
pile and execute was called a "run"; subjects were given a limited number
of runs, 60, in order to finish the programming problems. Subjects manually
kept summary records of the reason why each run failed; because it was hinted
that the grade depended partly on the accuracy of these records, responses
were of high quality. Part of each response was the system completion code
yielded by the IBM 0S/360 MVT operating system; this code served to clarify
ambiguous entries.

Ten problems were assigned with varying point values. Subjects chose
the problems, and could accumulate points up to a maximum of 700. Point
values were calculated on the basis of difficulty observed when the problems
were assigned previously, approximately one point per line of code for a

good solution. Problems were as follows:

aa (150): Use a finite-state machine to follow specified rules for

word abbreviation.

bn (100): Calculate m by simulation of dropping a needle on a floor

with uniform parallel lines, using the method of Buffon.
er (100): Generate prime numbers using the sieve of Eratosthenes.

£ (250): Convert arithmetic expressions involving parentheses and pre-

cedence into machine code.
j (200): Solve the general Instant Insanity ™ puzzle.

kt (100) : Calculate, by simulation, probability of a randomly touring

knight falling dn a given square.

1p (300): Three-dimensional graphics on a line printer.

pm (150): String pattern-matching using a tree algorithm.

s (150): Text formatting.

wm (150): Print a map of the world using several projections.

Subjects chose problems independently of the programming language

they usea. This can be seen from Table O.

36

Table 0. Problem types and counts

aa bn er £ 3 kt

PL/I 27 27 4 7 11 5
A 68 23 27 3 7 9 5

lp pm
23 3
15 2

s
6
2

wm total
17 130
15 108

3. MEASUREMENTS

The summary error records produced by the subjects were scanned and

reported errors were classified. Subjects typically reported only the er-

rors that caused the run to fail; the two implementations are both unfor-

giving of errors, and so most runs caused only one reported error. If more

than one error was reported in a run, all errors were counted equally. The

programming problems, hereafter called "programs", required a number of

runs for completion. Overall statistics are given in Table 1.

Table 1. Overall statistics

PL/I
number of subjects 38
number of programs 130
mean programs/subject 3.4
mean runs/program 10.7
number of subjects 35

receiving grades

mean grade point average 2.7

(0-4 scale)

Algol 68
37
108
2.9
11.0

37

2.5

Pooled s.d.

1.4

None of the differences are significant at the 0.05 level of

signi-

ficance using a t-test. The two sections thus were fairly matched in work

done and quality of performance measured by grades.

37

Table 2. Categories of runtime errors

Voluntary
no error
logic error
changed index variable
bad input data

External
compiler error
unimplemented feature
system crash
job control language

Runtime
some runtime error
Resource limit
time limit
storage limit
too much output
Language runtime error

Runtime pointer misuse

runtime REF

dereferencing NIL

scope violation
zerodivide
write on standin

Subscript and stringsize

subscript error
stringsize
Overflow

overflow (hardware)

size (software)
runtime conversion

uninitialized variables

missing case
read past EOF

Compiletime
some syntax
Trivial syntax

|, not OR
a missing *
op used as proc
illegal identifier
used EXIT
Semicolon
some semicolon
missing semicolon
extra semicolon
Comma
some comma
missing comma
extra comma
unclosed comment
String syntax
missing quotes
string across lines
misused ' in string
stropping

Syntax structure

some bracketing
if-syntax
missing brackets
do-syntax
format lists

Declaration syntax

misspelled word
array declaration
missing declaration
redeclared tag
forward declaration
bad INIT syntax

for id used outside

Types

some type
used =, not :=
used =, not :=:
"referencing"
Compiletime conversion
some compiletime conv.
int := real
/ , not %
int MOD real
print(VOID)
compiletime REF

38

4. ERROR CATEGORIES

Each error described by a subject was classified as shown in Table 2.
This classification scheme is derived from EGGERT & UZGALIS [4]. A short
phrase at the start of each classification will be used in later tables.
Some of the classes are composed of others: the classes thus have a tree
structure, indicated by indenting in Table 2. Errors incompletely described
by the subjects were put in category names beginning with "some".

The four major categories are Voluntary errors, discovered by the pro-

grammer and not by the system; External errors, which arise from circum-

stances outside the programmer's control; Runtime errors, which include

both Resource errors (violating system limitations) and Language runtime

errors, (violating language rules); and Compiletime errors.

The major null hypothesis tested by this data is that there is no dif-
ference in the two languages between the average number of errors expe-
rienced by a subject during the development of a program. To test this, the
mean observed errors of each type per program were calculated. In Table 3
and subsequent tables, "err" refers to the number of observed errors, "mean"
and "s.d." to the mean and standard deviation of the observed errors per
program for PL/I and Algol 68. The column headed "&" gives the significance
level for a t-test of the difference between the means. Errors that are not
listed have «>0.10. Errors are listed starting with categories in which Al-
gol 68 programs contained more errors, and ending with categories in which
PL/I programs contained more errors; a horizontal line separates the two
kinds of categories.

As can be seen, the major null hypothesis is decisively rejected in
six major categories. Trivial syntax errors, Compiletime conversion, and
Compiletime errors were far more common in Algol 68 programs; Subscript and
Stringsize errors, Resource limit errors, and Runtime errors were far more
common in PL/I programs. Part of the reason for the extra PL/I Resource
limit errors and, by extension, the extra PL/I Runtime errors, may have
been the deficient PL/I runtime support discussed earlier. The extra Sub-
script and Stringsize errors in PL/I may have arisen because character
strings were not fully implemented in Calgol 68; however, the Algol 68 pro-
grammers were forced to implement strings in terms of arrays, so similar er-

]
rors should have resurfaced.

39

Table 3.

Error category tabulation, all programs

Algol 68 (N=102)

Categories with no difference at the .10 significance level are omitted.
PL/I (N=130)

31

.24

err mean s.d. err mean s.d. @ error category
33 .25 .60 188 1.84 2.08 <.01 Trivial syntax
15 .12 .42 121 1.19 1.73 <.01 Semicolon
6 .05 .24 91 .89 1.54 <.01 some semicolon
445 3.42 2.51 547 5.36 3.10 <.01 Compiletime
0 .00 .00 16 .16 .42 <.01 stropping
0 .00 .00 10 .10 .30 <.01 used =, not :=
2 .02 .12 14 .14 .40 <.01 Compiletime conversion
0 .00 .00 9 .09 .32 <.01 int := real
0 .00 .00 9 .09 .32 <.01 unimplemented feature
10 .08 .34 31 .30 .79 <.01 unclosed comment
6 .05 .24 20 .20 .58 <.01 missing semicolon
12 .09 .34 23 .23 .58 <.05 some type
1 .00 .09 11 .11 .56 <.05 missing comma
2 .02 .12 12 .12 .57 <.05 Comma
0 .00 .00 3 .03 .17 <.05 |, not OR
0. .00 .00 3 .03 .17 <.05 string across lines
0 .00 .00 3 .03 .17 <.05 "referencing"
9 .07 .28 17 .17 .47 <.10 if-syntax
8 .06 .35 22 .22 .93 <.10 runtime REF
3 .02 .15 10 .10 .48 <.10 extra semicolon
167 1.28 1.57 91 .89 1.60 <.10 Language runtime error
11 .08 .45 0 .00 .00 <.10 uninitialized variables
129 .99 1.54 57 .56 1.01 <.05 time limit
91 .70 1.16 35 .34 .85 <.01 Subscript & stringsize
24 .18 .67 0 .00 .00 <.01 stringsize
19 .15 .52 0 .00 .00 <.01 bad INIT syntax
21 .16 .53 0 .00 .00 <.01 runtime conversion
25 .19 .59 0 .00 .00 <.01 some compiletime conv.
44 .34 .98 1 .00 .10 <.01 too much output
186 1.43 1.9 68 .67 1.08 <.01 Resource limit
379 2.92 2.76 176 1.73 1.89 <.01 Runtime
.59 0 .00 .00 <.01

format lists

Finally, the Trivial syntax errors may have been due to the process of

learning the language. This possibility is related to the secondary null

hypothesis tested by the data, namely, that there are no differences be-

tween the two languages once the first two programs turned in by each sub-

ject are excluded. When Table 3 is modified to exclude such programs the
result is Table 4.

40

Table 4. Error category tabulation, excluding first two programs
Categories with no difference at the .10 significance level are omitted
PL/I (N=60) Algol 68 (N=38)
err mean s.d. erxr mean s.d. [error category
14 .23 .65 37 .97 1.30 <.01 Trivial syntax
0 .00 .00 6 .16 .44 <.01 int := real
0 .00 .00 4 .11 .31 <.05 used =, not :=
0 .00 .00 4 .11 .31 <.05 unimplemented feature
4 .07 .25 10 .26 .60 <.05 some type
0 .00 .00 4 .11 .39 <.05 stropping
15 .25 .77 22 .58 .86 <.10 Types
2 .03 .18 6 .16 .44 <.10 Compiletime conversion
3 .05 .29 8 .21 .53 <.10 unclosed comment
0 .00 .00 8 .21 .87 <.10 missing comma
4 .07 .31 8 .21 .47 <.10 some semicolon
0 .00 .00 2 .05 .23 <.10 scope violation
0 .00 .00 2 .05 .23 <.10 Runtime pointer misuse
8 .13 .50 14 .37 .79 <.10 Semicolon
2 .03 .18 7 .18 .61 <.10 read past EOF
214 3.57 2.84 173 4.55 2.39 <.10 Compiletime
1 .02 .13 8 .21 .87 <.10 Comma
6 .10 .35 0 .00 .00 <.10 format lists
60 1.00 1.1e6 20 .53 .95 <.05 subscript error
8 .13 .39 0 .00 .00 <.05 runtime conversion
56 .93 1.49 13 .34 .67 <.05 time limit
11 .18 .47 0 .00 .00 <.05 stringsize
33 .55 1.33 0 .00 .00 <.05 too much output
71 1.18 1.2 20 .53 .95 <.01 Subscript & stringsize
93 1.55 2.20 19 .50 .83 <.01 Resource limit
213 3.55 3.26 72 1.89 1.47 <.01 Runtime

The secondary null hypothesis is rejected in four major categories. Trivial
syntax.errors were more common in Algol 68; Subscript and stringsize errors,
Resource limits and Rﬁntime errors were more common in PL/I.

A puzzling observation in the later programs is that subscript errors
were significantly more common in PL/I. This may have arisen from lack of
multidimensional arrays in Calgol 68; to the familiarity with refs that
Algol 68 programmers must learn in order to program, encouraging use of
pointers rather than subscripts; or to the slightly better runtime diag-
nostics of Calgol 68 vs the PL/I optimizer in this area.

Finqlly, a direct comparison between early errors, in the first two
programs for each Algol 68 subject, and late errors, in subsequent Algol

68 programs, yields Table 5.

41

Table 5. Error category tabulation, early vs late Algol 68 programs

Categories with no difference at the .10 significance level are omitted.

Early (N=64) Late (N=38)
err mean s.d. err mean s.d. @ error category
250 3.91 1.67 188 4.95 2.48 <.05 Voluntary

0 .00 .00 2 .05 .23 <.10 do-syntax
146 2.28 .97 105 2.76 1.70 <.10 no error

94 1.47 1.51 81 2.13 2.30 <.10 logic error

3 .05 .21 6 .16 .44 <.10 int := real

15 .23 .77 20 .53 .95 <.10 subscript error

15 .23 .77 20 .53 .95 <.10 Subscript & stringsize

7 11 .40 0 .00 .00 <.10 String syntax

44 .69 1.15 13 .34 .67 <.10 time limit

15 .23 .56 2 .05 .23 <.10 if-syntax

12 .19 .50 1 .03 .16 <.10 misspelled word
374 5.84 3.39 173 4.55 2.39 <.05 Compiletime

8 .13 .33 0 .00 .00 <.05 job control language
151 2.36 2.28 37 .97 1.30 <.01 Trivial syntax

83 1.30 1.80 8 .21 .47 <.01 some semicolon
107 1.67 1.94 14 .37 .79 <.01 Semicolon

Voluntary errors went up, probably because subjects attempted harder prob-
lems as time went on. The more subscript errors and fewer time limit errors
may be due in part to the many subjects who picked problem 'bn' early; it
needed no arrays but required many iterations to converge. The do-syntax
errors were primarily a failure to get the control pieces of an Algol 68
gé_in the right order. The most significant differences occurred in the
Trivial syntax.errors, particularly semicolon errors, as would be expected

according to the hypothesis of learning.
5. CONCLUSIONS

In searching for the differences between the languages, it is easy to
overlook the surprising similarities. Despite the disparity between the
two languages, and despite the greater familiarity with PL/I, after two
programs, such important cdtegories as Voluntary errors, logic errors, and
Syntax structure showed no significant difference in later programs. When
teaching ,the course, our feeling was that the CS20 students struggled with
the problems far more than with the languages; this seems to be borne out

by the data.

42

From general observation of the class during consulting, there were
some nagging compiletime errors in both languages that deserve attention
when either language is taught or when new languages are designed. The PL/I
format lists and INITialization syntax are too complicated, and the Algol 68
stropping, semicolon rules, and unclosed comments caused especially annoying
reruns. Part of the stropping problem was due to the upper-case-only en-
vironment, but that environment is still the rule in many places. Semicolons
and comments are both the source of unnecessary learning errors in Algol 68.

However, in increasingly common interactive environments, compiletime
errors are unimportant; they represent solved problems. Runtime and Volun-
tary errors are the source of most debugging expense; here Algol 68 was
markedly better than PL/I, despite the handicap of being a new language for
the subjects. Recent research in programming language design has concentrated
on reducing incidence of Runtime and Voluntary errors [5,8,9,11-17]; future

studies should reveal the effect of these designs -on software errors.

REFERENCES

[1] BOURNE, S.R., A.D..BIRRELL & I. WALKER, ALGOL68C Reference Manual,
Cambridge University (1974).

[2] cONwWAY, R. & T.R. WILCOX, Design and implementation of a diagnostic
compiler for PL/I, CACM 16, 3 (March 1973), 169-179.

[3] EGGERT, P.R., M.G. KEARNS, A.S. TANENBAUM & R.C. UZGALIS, UCLA Calgol
68 Programmer's Guide, UCLA Computer Science Department (Sep-

tember 1978).

[4] EGGERT, P.R. & R.C. UZGALIS, Taxonomies of software errors and error
detection methods, UCLA Computer Science Department Quarterly 7,
2 (April 1979), 116-133.

[5] EGGERT, P.R., Detecting software errors before execution, PhD disserta-

tion, UCLA Computer Science Department (September 1980).

[6] GANNON, J.D. & J.J. HORNING, Language design for programming reliabili-
ty, IEEE Trans Software Eng SE-1, 2 (June 1975), 179-191.

[7] GANNON, J.D., An experimental evaluation of data type conventions,

CACM 20, 8 (August 1977), 584-595.

43

[8] GOGUEN, J., J. TARDO, N. WILLIAMSON & M. ZAMFIR, A practical method
for testing algebraic specifications, UCLA Computer Science

Department quarterly 7, 1 (January 1979), 57-80.

[9] GUTTAG, J.V., Notes on data type abstraction (version 2). IEEE Trans
Software Eng SE-6, 1 (January 1980), 13-23.

[10] IBM Corp, 0S PL/I checkout and optimizing compilers: language referen-
ce manual, IBM publication SC33-0009-1 (September 1971).

[11] ICHBIAH, J.D., J.G.P. BARNES, J.-C. HELIARD, B. KRIEG-BRUECKNER,
O. ROUBINE & B.A. WICHMANN, Preliminary Ada reference manual,
SIGPLAN Notices 14, 6 (June 1979), Part A, entire issue.

[12] ICHBIAH, J.D., J.G.P. BARNES, J.-C. HELIARD, B. KRIEG-BRUECKNER,
O. ROUBINE & B.A. WICHMANN, Rationale for the design of the Ada

programming language, SIGPLAN Notices 14, 6 (June 1979), part B,
entire issue.

[13] LaMPSON, B.W., J.J. HORNING, R.L. LONDON, J.G. MITCHELL & G.J. POPEK,
Report on the programming language Euclid, SIGPLAN Notices 12,
2 (February 1977), 0, i-ii, 1-79.

[14] niskov, B.H., A. SNYDER, R.R. ATKINSON & C. SCHAFFERT, Abstraction
mechanisms in CLU, CACM 29! 8 (August 1977), 564-576.

[15] POPEK, G.J., J.J. HORNING, B.W. LAMPSON, J.G. MITCHELL & R.L. LONDON,
Notes on the design of Euclid, SIGPLAN Notices 12, 3 (March 1977),
11-18.

[16] WIRTH, N., Modula: a language for modular programming, Software -
Practice & Experience 7, 1 (January-February 1977), 3-35.

[17] WULF, W., R.L. LONDON & M. SHAW, Abstraction and verification in
Alphard: introduction to language and methodology, ISI Techni-
cal Report ISI/RR-76-46 (June 1976).

45

TEACHING WITH ALGOL 68 IN DRESDEN

G. STILLER

ABSTRACT

ALGOL 68 has been used in lectures on problem-oriented programming for
approximately 10 years as a prototype of a high level language in the edu-
cation of "engineers for information processing". After a brief description
of the aims of the corresponding branch of study its realization is out-
lined followed by a discussion of instructional and methodological aspects
regarded to be significant for this subject in general and for the appli-
cation of ALGOL 68 in particular.

46

1. GENERAL REMARKS

After ten year practice in teaching problem-oriented programming, main-
ly on the basis of ALGOL 68, a brief summary of impressions and experiences
seems to be justified. These are predominantly positive. The author and his
team, however, are aware that the subject under discussion is, to a notice-
able extent, subjective and even self-confirming. There are, of course, other
opinions and educational strategies with a different view of some basic
principles, with other advantages and disadvantages and, finally, an also
optimistic estimation of the success. An exchange of thoughts is, conse-
quently, sufficiently motivated.

The training of "engineers for information processing” (comparable with
"software engineers") at the Technical University Dresden lasts 4.5 years
(9 semesters) including practical work in industry: all the 7th semester
(the so-called "Ingenieurpraktikum") is spent in industry, and likewise,
there are 4 weeks prior to the beginning of the studies (the so-called "Be-
rufspraktikum") . Programming disciplines as an important part of the entire
training program amount to ™ 22% of the total time available [18]. The main
part of this time is spent on the topics stated in table 1 (additionally,
but not mentioned here, there are lectures on compiler construction, oper-

ating systems programming methodology etc.).

Table 1: Survey of Lectures in Programming

Amount of Time (hours1))
Subject Semester 2 Lec- Exer- Prac-
i tures cises tice
Fundamentals of Programming 1 64 32 32 -
Machine Oriented Progr. 2,3,4,5 272 926 96 80
Problem Oriented Prog. 3,4,5 240 88 88 64

1) . .
. 2 hours = 85 min; exercises supplement lectures (repetition, explana-
tion etc.), practice means practical programming (writing, punching,

compiling, checking and elaborating programs)
!

47

Training in (problem oriented) programming is to be based upon a con-
crete language ("model language") that will fulfill well known conditions
like clearness, understandability, typicalness of the state of the art etc.
These properties are often not possessed by languages developed in the scope
of industrial computer application. On the other hand, languages provided
in education are frequently not widely used in industrial practice. There-
fore, we feel obliged to accept a compromise: to take one (training) lan-
guage in order to create or influence the student's view of programming and
to use (more briefly) another one being applied in industry in order to al-
so endow students with the appropriate knowledge. This may be considered
unsatisfactory but, finally, it supports our pronounced intention of achiev-
ing a fair degree of versatility for our graduates. This leads to the fol-
lowing aims as a guide for education [17,8]:

(a) students must be able to write programs (self-evident)

(b) students must obtain a sufficiently universal knowledge of typical
concepts in problem oriented programming (reflected by the model lan-
guage) _

(c) students should be able to grasp yet unknown (to them) or new program-

ming languages (or principles) based upon the view and knowledge gained.

From these aims criteria for the choice of a suitable model language have
been derived. (a) is obviously supported by language features like clear-
ness, understandability, simplicity (combined with a certain degree of or-
thogonality). (b) is favoured by generality, universality, whereas (c) re-
qﬁires properties somewhat like a "metalanguage behaviour" in the sense

that the effect (semantics) of constructs in other languages may fairly
well be expressed in terms of the model language. Our choice was in favour
of ALGéL 68 because ip our opinion this language satisfies (b) and (c) and
(with certain restrictions) also (a). This resolution was taken comparative-
ly early (1971). So we have been able to train - using ALGOL 68 - each an-
nual course of students from the establishment of our department. It should
be menticned here that there was a close co-operation with I.O. Kerner who
also performed the lectures of the first course (1971/72) as a host profes-
sor. The use of ALGOL 68 was, however, restricted to lectures and exercises
only. Not until last year did we have an ALGOL 68 compiler available (our
own compijler [12] is just now used for the first time for practical program-
ming i.e. for "practice", viz. table 1). This was not too disadvantageous

since ALGOL 60 may be regarded as a (somewhat modified) subset of ALGOL 68.

48

Table 2: Schedule of the Problem Oriented Programming Course

Semester 3 4 5
Parts of /?
the < 1 >%<— 2 —Py < 3 >
Course Z
Topics ¢————————— ALGOL 68 —)é*—PL/I < Special ———
treated 7 AN Topics
l~fpreliminary subset] % NI Z
7 Nz
© 4 .
~ AN
~
> - A
2 ALGOL 60 4% 4 X\ %
7 : 72 |7 7
Practice Z< (now:268)_y.7 D PL/T ,_______-,g
7 2 7 Z
% 7 Z 7
Examin. ﬁ ﬂ‘ ﬁ
Prelimin. 1st Examin. 2nd Examin.
Certific. (ALGOL 68) (altogether)

In this way practical programming has been performed on the basis of ALGOL
60. Tab.2 outlines a schedule of lectures, exercises, practice and examina-
tions for the whole course. Examinations consist of a written exercise (60
min.) and an immediate individual discussion of the results (30 min.) with
the examiner. The scheme outlined in tab.2 determines only a certain struc-
ture filled with the denoted contents, permitting actualizations of the
tppics treated, if necessary. It indicates that PL/I serves as the language
for industrial applications, treated after the model language. The students
are supported by some lectures. They have, however, to learn PL/I mainly

by priyate studies using books. In this way qualities contained in (b) and
(c) are simultaneously acquired, applied and checked. The third part (» 14
hours lectures) deals with special topics, such as list processing (ALGOL 68
and PL/I), parallel processing (ALGOL 68 with a glance at CONCURRENT PASCAL)

and certain methodological questions.
2. SOME CHARACTERISTICS OF ALGOL 68 AND THEIR INFLUENCE ON TEACHING

ALGOL 68 differs from other comparable languages by strict orthogonal-
ity, a high degree of generalization as well as the consideration of imple-
mentation oriented principles (machine independent and compatible with a

problem-oriented view). We regard this combination of an abstract and

49

realistic view as constructive but it has, on the other hand, also been an
obvious reason for objections to ALGOL 68 [9].

The specific expressive power of ALGOL 68 has even stimulated attempts
to use the language as a metalanguage for denotational semantics [13]. One
can comparatively well explain the meaning of constructs in other languages
by a suitable ALGOL 68 text. This is not to be understood as an attempt to
formalize the semantics (according to [13]) but concerns somehow this idea.
It is (only) intended to illustrate essential properties of language con-
structs by means of a similar text in the model language, often performed
for a special example (for instance: declarations, parameter transfer mech-
anisms, data structuring, component access). In this sense ALGOL 68 ap-
proaches a "unified model" for high level languages. For that reason we like
to speak of "teaching with ALGOL 68", not only teaching the language itself.

Orthogonality strongly supports the correct use of a language since
straightforward rules may be mastered comparatively well and securely. So
it supports appropriate coding of problems and helps to avoid primitive
errors due to inadequate use of the language. This is regarded to be a con-
tribution to programming security that should not be underestimated. It
provides, of course, complete familiarity with the orthogonal rules.

For noninitiated students, however, orthogonality combined with gener-
alizations acts as an initial barrier to understanding due to pronounced
interaction (nesting, pile up) of certain orthogonal constructs: serial
clauses contain units and declarations; declarations contain declarers and
uhits; units contain declarers and/or serial clauses; declarers may con-
tain units; units may be statements or expressions ... etc.

It is, consequently, necessary to separate such interactions in the
beginnfng by preliminary simplifications of some concepts, starting with
an informal prelude, in order to achieve a gradual, incremental understand-
ing. This has very well been demonstrated in [11]. There are, indeed,
several ways of realizing this. After having overcome the initial barrier
all the further understanding proceeds progressively: behind the first
mountains a nearly plain area of active programming is accessed. Such a
preparation for easy understanding is closely related to the question how
a suitable (set of) sublanguage(s) can be derived which fit the given re-
quirement§. This is obviously easy with regard to the orthogonal prin-
ciples (omission of unions and flexibility, for instance). Other subsets of

various power can also be derived, possibly with a certain loss of

50

orthogonality. Even the notion "reference", often regarded as the most im-
portant element of ALGOL 68, can be eliminated (after omission of all means
of handling references as values "ref" remains only in formal parameter de-
clarers and may here be understood as a special attribute indicating the
in/out parameter passing mechanism "call by reference").

The power of ALGOL 68 has been satisfactory during all the work in the
past. The extension mechanisms (mode and operation declaration, library
prelude) have proved their worth as comparatively simple but powerful means
to express specialized language features. Nevertheless, for each language
being applied certain (possible or desirable) extensions or modifications
will sooner or later be discussed. In the case of ALGOL 68 it was compara-
tively late that we felt some need to consider extensions, mainly from an
experimental point of view. It seems to be possible to introduce, for in-
stance, such PASCAL descendent [5] facilities as value ranges (even dynamic)
and enumeration types into ALGOL 68 in a rather concise and clear manner
[6]. Abstract data represent - from the ALGOL 68 point of view - a hybrid
combination of properties of different constructs (structures and proce-
dures, for instance) and may still have some particular features.

If an abstract data type (or "mode") is defined and variables of this
type (mode) are declared and initialized later on this causes copies of the
data type pattern to be written into the respective memory occupied by those
variables. If the data type contains routines these are, of course, to be
copied too. In this connection the "partial parametrization" proposed in
[10] proves to be useful. Apart from a better understanding of the proce-
dure call and the coercion "deproceduring", the yielding of a routine as
the result of another routine (possibly by a partially parametrized call)
gives a compact description of such copying. If such routines are produced
for parallel elaboration this copying is essentially to be understood as a
"physical copying" providing reentrant behaviour. Thus it is possible to
describe semantic features of abstract data [3] and their respective mani-
pulation to a certain extent and sufficiently elegant in terms of (extend-

ed) ALGOL 68 in a manner suitable for training.

3. HOW TEACHING OF ALGOL 68 HAS BEEN PREPARED
!
The author fully agrees with the opinion stated in [1], namely to
achieve understanding for programming languages mainly from the semantical

point of view. ALGOL 68 supports this too, because a noticeable part of

51

properties essential for the intended effect of programming belongs to so-
called "internal objects" which is part of the semantics.

How do we provide students with useful literature? The strict formali-
zation of the defining report [19] forbids its recommendation as a referen-
ce for learning ALGOL 68. Although there is a lot of additional informal
literature one cannot really do without a certain framework of rules as a
guide for active programming. This renders the application of ALGOL 68 un-
doubtedly more difficult or expensive but it is not a property of the lan-
guage itself.

We have, therefore, prepared (and printed) a summary [16] of data
(tables, rules etc.) as a supplement to lectures. It contains a set of syn-
tactic rules written in an extended Backus-Naur representation supplied with
some information about the context according to the 2VW grammar in a table-
like representation. The following example (tab.3) denotes a simplified rule

for the serial clause without labels and completers, where (D) indicates

Table 3: Simplified rule for the serial clause

<serial clause> ::= [<phrase> ;] O <unit>
(D) \ /
(M) moid (void) moid
(P) context strong context

a (possible) new layer for declarations, (M) and (P) denote the required
mode and syntactic position, respectively. About 25 rules are already suf-
ficient for practical programming. The rules are not intended to replace
the defining report, they are not "exact", but they do their duty rather
well. The rules are diséussed within the lectures together with the cor-
responding semantics described in natural language and by drawing boxes as
already proposed in [11] (a simple but very illustrative method) .

Studenté trained at first in problem oriented programming are strug-
gling against programming on machine oriented level (what's fully under-
standable but, finally, not permissible). Therefore nearly parallel per-
formance of the machine and problem oriented courses has been provided.
Nevertheiess, students now obstinately try to write loops and alternatives
by means of labels and jumps. Consequently, these means have been omitted

(viz. the above mentioned rule) or, eventually, been postponed to the very

52

end.

The whole of ALGOL 68 is not treated in this way. Unions, longs and
shorts are omitted (but can be included if desired). Flexibility appears
only as a special property of string variables. Transput is restricted
(read, print only). Parallelism is postponed till the third part, as men-
tioned before.

The informal introduction presents a still more restricted but never-
theless powerful sublanguage comparable with ALGOL 60, exceeding it, how-
ever, with respect to structures and procedures. The ALGOL 68 model of a
variable including dereferencing as well as the model of a constant (deno-
tation) is introduced very early. At the beginning only the variable decla-
ration is used for the modes int, real, bool, char, [..]... and struct(..).
Slice and selection are defined as to permit read and write access via the
subname to one component only. "Void" is introduced at the beginning as a
metalinguistic notion only, in order to define a so-called "void block",
"mode block', "void compound" and "mode compound” by means of simple rules
as preliminary incarnations of the serial clause (to be explained later).
Conditional and loép clauses contain only nested compounds at this stage,
thus postponing the problems of block structure once more.

Procedures are instantly explained to be a representation of subpro-
grams as data with well defined modes. They are correctly declared using
the corresponding identity declaration, which is presented only for that
purpose. Now, for the first time "void" appears as a possible (formal result)
declarer which is intuitively well understood. Parameter transfer is ex-
plained anticipating the semantics of the (still unknown) identity declara-
tion, and anticipating at this point also the idea of a nested block in the
case of parametrized procedures. An intended, intuitive preunderstanding of
the identity declaration is achieved in this way, leading to a somewhat
surprising enlightment when the declaration is later treated and recognized
as an "already known" orthogonal element within the procedure mechanism.
The introduction of the identity declaration is to be regarded as an essen-
tial step that should be performed carefully.

The informal part ends up with necessary generalizations and surveys
(serial clause, block structure, unitary clause, coercions, references,
generators, identity declaration, collaterality). These topics can already
be treatéd more concisely, leading to a more formalized overall description

with some repetitions.

53

4. DISCUSSION

Ten years ago ALGOL 60 was still taught within a total of 32 hours
(lectures only). Now, with the same expense, the preliminary ALGOL 68 sub-
set is treated. It exceeds ALGOL 60, and includes several provisions for
generalizations. The complete ALGOL 68 part required & 52 hours (lectures)
within the last course. We intend to reduce this amount to & 44 hours be-
cause more and improved printed material will be available this year for
private studies. In our opinion the expressive power of ALGOL 68 exceeds
that of ALGOL 60 significantly more than the corresponding time for train-
ing seems to indicate. We regard this to be a relative gain in time due to
the orthogonality principle. Nevertheless, this amount is high: it is ob-
viously the price to be payed today in favour of the appropriate horizon
and according to the fact that the whole program development becomes more
and more language-aided and even language-guided [7]. Restrictions, if
necessary, may reduce this amount during education and postpone it to a
later period of work.

What may be told about the results of education? There is, at first,

a quite normal distribution of excellent, good, fair and bad results over
the number of students. "Good" students are usually also successful in
other disciplines, "bad" ones usually not. Successful students are not on-
ly using the language in a proper way but are made fit for original, crea-
tive programming (they have comprehended the whole philosophy) .

The study of PL/I is also supported by some self-made (and printed)
surveys including a skeleton of rules. A lot of program examples is pre-
sented and explained, usually in relation to corresponding ALGOL 68 solu-
tions.” In this context it is interesting to note that the students very
soon perceive plain differences between both languages mentioned and some-
times they spontaneously utter critical comments. If the education is (par-
tially) responsible for such an ability to properly estimate the character-
istics of a language we are willing to regard this as a success.

The survey and versatility obtained seems to be fair, in any case
better than ten years ago: to become familiar with a language of the FOR-
TRAN, PASCAL or ALGOL 60 size is now one weekend's work. Graduates in
industry have confirmed that they are able to follow continued professional
traininé with less trouble compared to other collaborators with a more con-
ventional level of education in this field.

A weaker point ought to be mentioned, however. Students don't get too

54

much support for programming on the level of operating systems that serve
as PL/I environment. The situation in this field seems unsatisfactory in
general. Much trouble is caused by the subject itself: compilers are often
handled in the environment of operating systems which are completely machine
oriented. Communication with the system then proceeds on a rather low lan-
guage level. It is impossible to cast teaching into such a frame. On the
other hand, the question is important. Users are more and more "programming
within the operating system", i.e. they are activating system actions con-
nected with file handling and transput, event handling, parallelism, sched-
uling etc.

Education has to take this into account but it can be done only on the
basis of a problem oriented solution [2]. Transput and file handling are al-
ready solved in an adequate manner. There is, however, usually an overlap
with lectures on data bases which are mainly leaning upon the COBOL and/or
PL/I philosophy as a predominant orientation in industrial practice. For
the next future we intend to leave this subject to the responsibility of the
courses on data bases, with attention, however, to the further development.
For this reason we éhall retain transput facilities on a not too extended
level, also when using our own compiler.

The teaching program outlined in this paper has been discussed serious-
ly, and by general consent, among specialists, who also agreed with our
decision in favour of ALGOL 68 as the training basis in problem-oriented
programming. Nevertheless, in other institutes, universities or sections
different "model languages" have been chosen, for instance PL/I, PASCAL,
ALGOL 60, FORTRAN and even BASIC. The reasons for such decisions may be
various: computational (availability of -compilers); special directions in
research closely related to the use of a specific language which is then,
consequently, also applied in training; more restricted amount of time for
lectures; recommendatioﬁs of users etc. Our feeling is that these decisions
are, surely, well motivated, as is our own decision: the use of high level
languages is, obviously, in itself a matter of problem orientation. Only
two arguments shall be briefly commented upon in this context.

The first argument states that attention should mainly be payed to the
writing of well-structured programs and this is possible in any language.
This opinion obviously reduces the contributions of high-level languages
to the aft of programming to certain convenient structuring facilities on-
ly (alternative, loop, subprogram, perhaps some formatting of the program

text) . These facilities exist, indeed, in nearly any language (even

55

assembler) but cover only a small part of what is really to be considered
[20,91].

The other opinion prefers effective communication (dialogue) to the
debit of the level of programming (BASIC for instance). We must differ from
this opinion since we regard the dialogue to be another quality that cannot
replace the essential characteristics of high-level languages.

As mentioned before, ALGOL 68 includes certain implementation prin-
ciples condensed in language constructs, rules or notions, which are in this
way made visible at the problem oriented level (in a rather generalized
manner, however).

We know about objections to these specific characteristics. We have
to agree that they somewhat complicate the initial understanding (the al-
ready mentioned "barrier") and that they, to some extent, are dispensable
at a lower grade of education, as frequently required for non-specialists.
Although general reasons for the choice of ALGOL 68 have already been dis-
cussed a few comments should be added to this question.

The principle of utmost simplicity (as an objection also to ALGOL 68)
has not been realized in certain recently designed languages (for instance
PEARL, ADA, CHILL [15,4,14]). Obviously the actually (also by non-specialists)
required expressive power leads to voluminous languages exceeding the in-
tuitive boundary of extreme simplicity. All the more it seems to be neces-
sary to keep languages transparent by stricter orthogonality. ALGOL 68 is
obviously still unique in this respect.

If a certain degree of simplicity or universality is required which is
not met by the model language selected we prefer to take a subset of a more
powerful language rather than to extend a too simple one (the possible deri-
vation ‘of ALGOL 68 sublanguages has already been discussed). This is in
favour of homogeneity and orthogonality.

Computers have to be adapted to the human mind, not vice versa. This
is a clear vote in favour of problem orientation as a long-term aim. To
which extent this may actually be realized depends on the whole "context"
of programming. This necessarily leads to some compromise.

When an inexperienced programmer has learnt x[i] to be a (subscripted
or component) variable that can be assigned (or can yield) a certain com-
ponent value of an array, he has obtained the information for a correct
use of tﬁis construct but this is not sufficient for skilled programming
according to the requirements of practice. He has to learn additionally,

either by his own experiences or by extra instructions, that this construct

56

behaves quite different from a "normal" variable with respect to its run-
time behaviour and that it obviously is another thing. The ALGOL 68 notion
of a slice is more realistic. A similar question is, whether parameter-
passing mechanisms should be defined within the language or not (copying or
not, etc.). Possibly this knowledge is required since it influences the
portability of programs. The limited accuracy of numerical value representa-
tions turns out to even become an essential concept in language design.

It is no secret that information handled by present computers is con-
tained in (referable) locations of a memory of limited size and that this
handling must be programmable and executable economically, considering the
peculiarities of the whole process. As long as certain peculiarities exist
and significantly effect programming they have to be taken into account.

Obviously the question is to which extent some (more pragmatic) in-—
structions (or definitions) are excluded from language descriptions in or-
der to hide them from the user in favour of a purely problem oriented view.
The hidden information is then, however, obtained from elsewhere, usually
in a much more machine—oriented manner than is desirable, and this really
is no advantage. The ALGOL 68 solution is problem oriented and realistic
in the sense explained above, and it is machine independent. This obviously

reflects an engineering point of view. We have used it with success.

REFERENCES

[1] BAUER, F.L., G. GOOS, Informatik I, Berlin-W.-Heidelberg-New York,

Springer-Verlag 1971, Heidelberger Taschenbiicher 81.

[2] ELZER, P., R. ROESSLER, Real Time Languages and Operating Systems,
. 5th IFAC/IFIP Int. Conf. on Digit. Computer Appl. to Process
Control, vén‘Nauta Lemke, A.-R. Verbruggen, H.B. (Editors),
North Holland Publ. Co. (Preprints) 1977, Amsterdam.

[3] HEINER, M., G. STILLER, Synchronisation bei Parallelverarbeitung, Tech-
nische Universitdt Dresden, Weiterbildungszentrum flir Mathema-
tische Kybernetik und Rechentechnik, Informationsverarbeitung,

Heft 46/80 (1980).

[4] ICHBIAH, J.D. et al., Preliminary ADA Reference Manual, ACM Sigplan
!
Notices 14 (1979) No. 6.

57

[5] JENSEN, K., N. WIRTH, PASCAL - User Manual and Report, Lecture Notes
in Comp. Sci. 18 (1974).

[6] KONIG, H., G. STILLER, Einbeziehung von Wertebereichen und Aufzahl-
wertarten in das mode-Konzept von ALGOL 68 und ihr Zusammenhang
mit dem Begriff der Wertartaquivalenz, Submitted to the conferen-
ce "Algorithmische Sprachen ALGOL" Dresden, Padagogische Hoch-
schule "K.F.W. Wander II", June 1-5, 1981.

[7] LEHMANN, N.J., Sprachlich gestiitzte und geleitete EDV-Projektierung,
Technische Universitdt Dresden / Informationen Sektion Mathema-

tik / WB MKR 07-28-79.

[8] LEHMANN, N.J., G. STILLER, Einige methodische Aspekte der Entwicklung
und Nutzung héherer Programmiersprachen, Rechentechnik und Daten-
verarbeitung 13, 2. Beiheft 1976, 7-10, Berlin, Verlag Die Wirt-
schaft.

[9] LEHMANN, N.J., G. STILLER, Unterstiitzung des Programmentwurfs und der
Programmtestung - Folgerungen beziiglich geeigneter Spracharchi-
tektur, Wissenschaftliche Zeitschrift der Technischen Universi-

tat Dresden 27 (1978), 1135-1144 (Heft 6).

[10] LINDSEY, C.H., Specification of Partial Parametrization Proposal,
ALGOL Bulletin 39, pp. 6-9.

[11] LINDSEY, C.H., S.G. VAN DER MEULEN, Informal Introduction to ALGOL 68,
North Holland Publ. Co. 1971 and 1977, Amsterdam.

[12] LOEPER, H., H.-J. JAKEL, H. PIETSCH, Semantic Analysis and Synthesis
in the ALGOL 68 R 4000 Compiler, (These proceedings) .

[13] PAGAN, F.G., ALGOL 68 as a Metalanguage for Denotational Semantics,
The Computer Journal 22 (1979) 1, pp. 63-66.

[14] Proposal for a Recommendation for a C.C.I.T.T. High Level Programming
Language (2nd Edition), C.C.I.T.T. Study Group (1977).

[15] Programmiersprache PEARL, Basic PEARL, Beuth-Verlag Berlin-K&ln,
DIN 66253, Teil 1, June 1978.

[16] STILLER, G., Skripte zur Lehrveranstaltung ALGOL 68, Technische Uni-
+ versitdt Dresden, Sektion Informationsverarbeitung, als Manuskript

gedruckt 1976, 1978, 1980.

58

[17] STILLER, G. et al., Lehrprogramm fur das Lehrgebiet Problemorientierte
Programmierungstechnik zur Ausbildung in der Grundstudienrich-
tung Informationsverarbeitung an Universitdten und Hochschulen
der DDR, Herausgeber: Ministerium fiir Hoch- und Fachschulwesen

der DDR, Berlin 1978, als Manuskript gedruckt.

[18] studienplan fiir die Grundstudienrichtung Informationsverarbeitung zur
Ausbildung an Universitdten und Hochschulen der DDR, Herausgeber:
Ministerium fir Hoch- und Fachschulwesen der DDR, Berlin 1976,

Bestell-Nr. 338 341 9.

[19] WIJNGAARDEN, A. VAN et al., Revised Report on the Algorithmic Language
ALGOL 68, ACTA INFORMATICA Vol. 5 Fasc. 1-3 (1975), Berlin-W.-
Heidelberg-New York, Springer-Verlag.

[20] WIRTH, N., On the Design of Programming Languages, in: Rosenfeld, J.L.
(ed.) : Information Processing '74, 2 (1974) 386-393, Amsterdam,
North-Holland Publ. Co. 1974, (Proceedings of the IFIP Conference
1974) .

59

SEMANTIC ANALYSIS AND SYNTHESIS
IN THE ALGOL 68 R 4000 COMPILER

H. LOEPER, H.-J. JAKEL, H. PIETSCH

ABSTRACT

The paper gives a short survey of the implementation of an ALGOL 68
language version on the medium-size Robotron computer R 4000 at the
Department of Information Processing of the Technical University Dresden.
The aim of the implementation is to make an ALGOL 68 compiler available
for teaching in the field of problem-oriented programming, in which
ALGOL 68 is used as a prototype of a high-level language. Therefore, only
few restrictions exist for declarations and units in comparison to the
full ALGOL 68. The user may extend the set of defined standard objects
(modes, procedures, operators) by using a special pragmat. The implemen-
ted ALGOL 68 version makes a modular program structure possible.

Furthermore, the global structure of the compiler is briefly de-
scribed by a short explanation of the five compiler passes. Especially,
fhe paper deals with the realization of semantic analysis and synthesis
in the ALGOL 68 R 4000 compiler. In this compiler, semantic analysis
and synthesis have been separated sharply from the other tasks of the
compiler by well—defined interfaces:

- representation of the syntactic structure of the source program in an
intermediate program,

- representation of the meaning of the program in a machine-independent
target program,

- representation of semantic information in the symbol table.

The implemented semantic analysis and synthesis are based on the so-
called O-attribute grammars derived from the general attribute grammars,
which weére developed by D. Knuth. Their application is described.

O-attribute grammars have only synthesized attributes and, in addition

to these, O-attributes.

60

By using O-attribute grammars, the linear representation of the syntax
tree of the source program may be translated sequentially into the target
program. A simple and effective method for the realiza?ion of O-attribute
grammars is presented, and explained by an example of an ALGOL 68 lan-

guage construct.

61
1. A SHORT SURVEY OF THE IMPLEMENTED ALGOL 68 LANGUAGE VERSION

In order to ease an estimation of the effectiveness and applicability
of the described semantic analysis and synthesis method, a short survey
of the implemented ALGOL 68 language version is provided before the proper
explanations of the semantic analysis and synthesis. In comparison to the
full ALGOL 68 only few restrictions exist for declarations and units in
ALGOL 68 R 4000. The ALGOL 68 version has generators for the local run-
time stack and the global heap. The realized block concept allows decla-
rations and statements in any sequence within the block (serial clause
with declarations). Blocks and procedure calls may have results of any
mode. Dynamic arrays (multiple values) and structures may be used in the
declaration of new objects without restriction. But there are no flexible
arrays. The data-related reference concept is completely realized.

In comparison to the full ALGOL 68, the following restrictions need
be mentioned:

- There is no parallel processing and no semaphor technique.

— The union mode and the conformity case clause are not included in the
language version.

- The completer (EEEE) is not allowed in the serial clause.

- Enclosed clauses are only permissible in strong positions, so that
no balancing is necessary.

- The possibilities of transput, which is realized by special syntactic

constructions, and the format-texts are restricted.

In ALGOL 68 R 4000, main programs and subroutines exist additionally
as modules and may be translated separately. The realized module concept,
which §ermits a higher clearness in programming and more effective
validation by separaée compilation and test of the modules, is very

simple. A main program is always a labeled closed clause, e.g.
extern mpl: begin ... end .

Subroutines have the form of a labeled routinetext, e.qg.
extern spi:'(gggl a, b)real: sqrt(a * a + b *x b).

The subroutine is a module that can be activated in other modules by its
external identifier (e.g., spl). The so-called code declaration for proce-
dures and operators, which is derived from the ALGOL 68 identity declara-

tion, and describes the connections between the modules, has been

62

incorporated in ALGOL 68 R 4000. By means of the code declaration a sub-
routine is ascribed to the declared procedure identifier, or to the
declared operator indicator, respectively. The above-given subroutine

may be used in another module by the following code declarations:

proc (real, real) real diagonale = extern spl;

op (real, real) real hypot = extern spl.

Note: subroutines can also be programs written in other languages, and

operators can be overloaded by several code declarations.

The ALGOL 68 R 4000 language and the compiler contain tools for extending
the set of standard declarations (modes, procedures, operators) by the
user. New standard modes, procedures, and overloaded operators of any
priority can be inserted into the standard frame by means of mode decla-
rations, code declarations and priority declarations.
Note: actual bounds in mode declarations for extending the standard frame
must be denotations.

For that purpose, a special pragmat exists, which is a sequence of
discussed declarations enclosed by pr-symbols. A pragmat can be separately
compiled, but it can also appear before each ALGOL 68 R 4000 program:

<compilable unit> ::= <ALGOL 68 R 4000 program> |
<pragmat><ALGOL 68 R 4000 program” |

<pragmat>.

-The compilation of the following pragmat makes the operator hypot with

priority 8 available as a standard operator:

pr op (real, real) real hypot = extern spl;
- prio hypot = 8
pr. .

After the compilation of a pragmat, the extended symbol tables are or-
ganized in a file which can be read in the next translation process.

Each module possesses one directly subordinated declaration level in re-
lation to this, possibly extended, standard frame. By translating several
pragmats, a repeated extension of the standard frame is possible. Using
a file name of the extended symbol table part, special commands allow

to work: with one of the several special standard frames for classes of

users.

63
2. THE STRUCTURE OF THE COMPILER

The pass division gives one of the most important pieces of infor-
mation about the global structure of a compiler. The pass division depends
on the source language, the level of the target language, the features
of the computer (main store capacity, periphery) and special aims of the
implementation (e.g., optimizing). Lexical and syntactic analysis, code
generation, as well as symbol table organization, semantic analysis
and synthesis are relatively separate tasks in a compiler. The clear
delimitation of the tasks by an appropriate pass division, and by a modu-
lar structure, guarantees the reliability, portability, and adaptability
of the compiler.

In the present ALGOL 68 compiler the lexical analysis (the recogni-
tion of the morphems and their conversion into internal code) is rea-
lized in a separate first pass. The first pass translates the source
program into a program of the so-called syntax language, a sequence
of coded morphems. Morphems are the smallest syntactic entities of the
source program that carry meaning. The context-dependent conversion of
some symbols happens in the second pass before the syntactic analysis,
because the context-dependent conversion of certain basic symbols (e.g.,
indicators) into corresponding internal codes is only possible by means
of unlimited right context information.

The syntactic analysis is based on a context-free grammar derived from
the ALGOL 68 definition, and is realized in the second compiler pass by a
precedence-controlled method with bounded context examination. The second
pass delivers an intermediate program which is the right linear represen-
tation of the syntactic program structure (syntax tree).

The semantic anélysis is divided in two passes. At first, in the
third pass, the mode information is built up in a mode graph by investi-
gating the syntactic structure of the declarers. After the equivalence
investigation of the modes, the proper mode checkings (e.g., check of
coercions, operator identification) in the program to be translated
are executed in the fourth pass. The meaning of the program (dynamic
semantics) is provided in a machine-independent target language improving
the portability of the compiler. The fifth pass generates the machine-
dependen% assembly language.

64

A survey of the most important tasks of the five passes is given

below.
1. pass: - morphem recognition and context-dependent lexical analysis
and conversion
- construction of the symbol table
- check of the block structure
2. pass: - context-dependent conversion of some morphems

- determination of the syntax tree

- construction of the symbol table

3. pass: - construction of the mode graph, check of mode equivalence
and well-formedness
- completion of the syntax tree by mode and right context in-

formation

4. pass: - semantic analysis and synthesis
— operator identification
- check of coercions

- generation of the machine-independent target language

5. pass: - generation of the assembly program (macro expansion)

- machine-dependent compile-time checks

The source program with error messages and warnings detected in all
passes is listed after the expansion of the macro-like target program.
Subsequently the program is assembled into the object program. The size
of each of the five passes is at most 20 kByte, so that more than 20 kByte
can be used by the symbol table organization in connection with a virtual
storage management system.

The discussed implementation tries to form a machine-independent

compiler realization by the following premises:

- The use of the system-programming language CDL for all five compiler
passes.

- An unambigious identification of the interfaces to the computer and
its operating system, and the collection of machine-dependent program
sections in special CDL modules.

- The s?paration of the machine-independent compiler parts from the
machine-dependent code generation by using a machine-independent target

language. The so-called macro-processor, which translates the target

65

program into the assembly language, is also written in CDL.

Therefore, the first four passes can be transferred to any other
computer without large modifications; a lot of modules of the fifth pass
can be re-used. Considering the problems of portability, it must be kept
in mind that the ALGOL 68 implementation has a large storage run-time
system and an I/O-System, which are naturally machine-dependent.
Extensive conceptional and programming toil lies in these components of

the ALGOL 68 programming system.

3. SEMANTIC ANALYSIS AND SYNTHESIS

3.1. Preliminary remarks

Semantic‘analysis deals with the compile-time control of such deter-
minations of the language definition that cannot be proved in lexical and
syntactic analysis (static semantics). The semantic synthesis represents
the meaning of the source program machine-independently and uses infor-
mation of the semantic analysis (dynamic semantics). Therefore semantic
analysis and semantic synthesis can be considered as connected tasks of
the compiler, often called evaluation. For the evaluation, three inter-
faces are important: syntactic analysis, symbol table organization, and

code generation:

1) The syntactic structure of the source program is the input information
of the semantic analysis and synthesis. Semantic analysis and synthesis
can be delimited to the syntactic analysis in two ways:

- The evaluation is immediately executed for each syntacticallly
analyzed source program construct, e€.g., a sequence of calls
of semantic routines mediates the syntactic structure.

- The syntactic structure of the source program is completely repre-
sented in an intermediate program, which is processed in the seman-

tic analysis and synthesis.

The second variant, which is used in the present ALGOL 68 implemen-
tation, offers the advantage that the evaluation can be formed in-
dependently of special lexical and syntactic analysis methods, especially

those for error recovery and correction.

!
2) It is efficient to use the symbol table during the analysis of certain

context-dependencies, e.g., during the identification process.

66

A suitable symbol table organization can influence the evaluation
decisively. However, these problems will not be dealt with here in

detail.

3) The result of the evaluation is a target program, which represents the

meaning of the source program.

The semantic analysis and synthesis of the present ALGOL 68 compiler are
realized on the basis of a formal description by the so-called O-attribute
grammars. From now on we will deal with the representation of the syn-
tactic structure of source programs, with the application of the O-attri-
bute grammar in the translating process, and with the machine-independent
target language used in the compiler of the implemented ALGOL 68 language

version.

3.2. The representation of the syntactic structure of the source program

Since the syntactic analysis is based on a context~free grammar, the
syntactic structure of a program is a syntax tree. The syntax tree is a

finite directed graph with labelled nodes and arcs.

D 1: The quintuple (K, Z, kO’ f, g) is a syntax tree in relation to the
context-free grammar (V, A, R, s), if
- (K, 2) is a tree with the root kO;
- K is the set of nodes which can be subdivided into the disjoint sets

of the terminal nodes Kt and of the nonterminal nodes Kn:
K = Kn U Kt and Kn n Kt = ¢;

- £ is the node labelling function, which labels each node k € K with
a pair (v, r), in which v is a vocabulary symbol or € and r is a
rule, r € Ror r = ¢;

f: K> (VU {e}) x (RU {e}), especially
£: K> (AU {e]) x {e},
£: K > (V- A) xR and
*
f(ko) = (s, r) withr = (s, w) e Randw e V ;

- Z is the set of arcs with Z S-Kn x K, where
!

vk [k € Kn +3k' [k' e KA (k, k') € Z A £f(k) = (2, ¥) A

r = (z, v,v ...vn) e R A card(Zzl) = nl].

1°2

67

- g is the labelling function that attaches a natural number to each
+
arc in order to arrange the set of direct descendant nodes Zk1 of

each node k € Kn:
g: Z->N
Vk [k e K A £(k) = (2, ¥) Ar = (2, V,...V,...V.) € R >
n 1 i n
Vil1 £ i <n>31!k' [k' e KA (k, k") € Z Ag((k, k")) =i A

£(k'")

(vyrx') Axt e R U {e}11].

The syntax tree can be represented by lists or linear bracket repre-
sentations in the intermediate program. In the ALGOL 68 implementation
discussed here, the right-linear representation of the syntax tree is used.
This representation is well-suited both for tree construction by syntactic
analysis as well as for processing the syntax tree by semantic analysis
and synthesis, because only a sequential file organization is needed, and,
what is more, the storage size is relatively small compared to other
representation methods. The advantage of the right-linear representation
is that a syntactic construct is only then identified when all its constitu-
ents are represented. This principle is profitably applied in the semantic
synthesis, because a target language operation corresponding to a syntactic
construct can not be generated before the constituents of the syntactic

construct are determined.

D 2: The right-linear representation of a syntax tree b, = (K, Z, kO' £, 9)

0
is the right-linear representation of the syntax subtree bo, at which

the right-linear representation of a syntax subtree

b' = (K', Z', k', £', g') is recursively defined by

Al
ol
a Cif f'(ké) = (a, e), a e AU {e}
rp(b') =
(rp(bl), rp(by)s «ne rp(b))r if £'(ky) = (v, x),
r = (v, v1v2...vn) e R
and Vi [1 € i <n-~> bi = (Ki, Zi' ki’ fi' gi) is a syntax
subtree of b0 with the root ki e K' A (k', ki) e 1I' A
v = 3
' g((kol ki)) l].
D 3: The quintuple (K', Z', 6, f', g') is a syntax subtree of the syntax

tree (K, Z, k f, g) in relation to the context-free grammar

OI

68

G=(V, A, R, s) if

- kb e K
%
-k =2
ko
-2'=272n (K x K")
-f'=£f£0n (K" x (VU {eh) x (RU {e}))

-g''=gN (Z'xN)

Note: Z;*= {k': (k, k") € 7).

A simple example is to explain the above-given definitions of a right-
linear representation of the syntax tree (figure 1). The tokens ref, amind,
t aid, j are terminals of the syntactic analysis (morphems) at which amind
represents a used mode indicator and aid a used identifier. The strings of
capitals are metalinguistic variables of the context-free grammar. The
integers represent ordinary numbers of the syntactic rules. For instance, a

syntactic rule of the grammar G = (V, A, R, s) of this example is

r,,5 = (FANDC, NDCB amind) € R with FANDC, NDCB € V - A and amind € A.
(xef, ¢ (amind, €) « e (aid, €) (1.e)
| I
(NDCB, 187) (pTM, 112)
(FAINDC, 223) (T, 364)
(NDC, 227) (QL'IART, 80)
(FNDC, 397) (UNIT, 56)
|
(FD, 396)
\
(casTB, 109)
(CASTE, 108)

(PRIM, 107)

ref 187 amind 223 227 397 396 109 aid 112 364 80 56 108] 107

Figure 1: Example of a syntax tree and its right-linear representation

69

Nevertheless, a linear representation can only be used if sequential
processing of the syntactic structure is possible in the evaluation. This
condition is not given a priori. But the implementation of the extended
version of ALGOL 68 has shown that right-linear representations of syntax
trees can be translated in a sequential process into macro-like machine-

independent target programs by means of the so-called QO-attribute grammars.

3.3. Aspects of the machine-independent target language

The target language generated by the evaluation is the interface
between the machine-independent and machine-dependent part of the compiler.
Such languages are often described in the literature. They have a different
language level. The target language used in the ALGOL 68 R 4000 compiler
is a simple macro-like language. The machine-independent target program
is a sequence of macro-statements with the following general structure
of macro-operators:

m, = mopi(opdil, opdi roeee t opdi)

2 n
mop, macro-identifier

opdj macro-operand which parameterizes the macro-operator.

Macro-operands cannot be macro-statements, so that the target program
has a simple structure. The design of the macro-operators takes into

consideration the following criteria:

1) Generality of macro-operators

The operators are borrowed from the elementary constructs of high-level

programming languages and are defined machine-independently.

2) Simplicity of macfo—control—operators

The control structures (alternatives, loops, case clauses) of the source
language are realized by elementary tools of the target language. There
are macro-control-operators only for unconditional and conditional jumps,

for labelling macro-statements, and for realizing subroutine calls.

3) Efficient level of decomposition

Syntactically interlocked constructs of the source language are decomposed
!
by elementary macro-statements of the target language. All implicit

actions of the source program are explicitly represented in the target

70

program by macro-statements. Note: block begins, block ends, and

procedure calls are not decomposed.

4) Symbolic representation of the macro-operands

The operands of the macro-operators are symbolically represented and
can be classified into the following types of operands derived from
the source language objects: denotations, block-dependent objects,

formal objects, actual objects, routine texts, format texts, logical

accumulator, stack.

5) Using mode information

Only elementary source constructs which are defined for an infinite

set of modes are directly represented by macro-operators (e.g., assign-
ment statement, and subroutine calls). These macro-operators are para-
meterized by the modes of the operands of the elementary source con-

struct.

6) Using the symbol table

Operand information which is stored in the symbol table and used in
the target language expansion (e.g., mode representations, and deno-
tations) is represented by pointers in the macro-statement. Thus the

size of the target program is reduced and the evaluation is simplified.

By using such a macro-like language, the lexical and syntactic ana-
lysis, and the semantic analysis and synthesis are realized in the compiler
machine-independently for a wide range. 55 macro-operators are defined
in the target language for the implementation of the ALGOL 68 language
version on the R 4000. The following example is to demonstrate the level

and some features of the globally discussed target language.

Example:

Let i be an integral variable. The assignation i:= i + 1 is represented by

the following macro-operators:

CALL BEGIN (BNR, proc(int, int) int, (EX, N+))
VALUE COPY ((a0, BNR, 2), (KS, 1), int)

DEREFERENCING ((BO, BNRi, BPOSi), ref int, int)

VALUE COPY ((a0, BNR, 1), (AC), int)

!
CALL (BNR, proc(int, int) int,: (EX, N+))
PARAMETER ({(AC), int)

PARAMETER ((ks, 1), int)

71

CALL END (BNR, proc (int, int) int, (EX, N+))
MOVE ((BO, BNRi, BPOSi), (AC), int)

It is important to know that:

- The modes are represented by pointers to the symbol table.

- BNR is an integral number attached unambigiously to the call.

- (EX, N+) is an external procedure realizing the int-addition.

- (A0, BNR, 1) and (A0, BNR, 2) are the actual paramaters and actual
objects of the call, respectively.

- (BO, BRNi, BPOSi) is the representation of the operand i (block object),
in which BRNi denotes the scope of i and BPOSi the position of i within
this scope.

— The results of dereferencing and of the call are stored in the logical

accumulator (AC).

The target language used in the ALGOL 68 R 4000 compiler has a relatively
high level. For instance, the assignation of objects, which can have any

mode, is represented by only one macro-operation of the target language.

This, secures on the one hand a complete machine-independence of the tar-
get language, and on the other hand that the efficient implementation of

the target language is not hindered by a too extensive elementarization.

Naturally, the cost of translating this language into any assembly lan-

guage is not small,

3.4. O-attribute grammars

In the implementation of evaluations by general attribute grammars
as developed by Knuth, the attribute storing and the general represen-
tation of the syntactic structure of the source program as well as the
algorithms for the cdlcplation of all attributes are expensive. A central
problem in the use of these grammars is the suitable restriction between
characteristics of attribute grammars and the scanning method of the
syntactic structure in order to reduce implementation costs. The O-attri-
bute grammars derived from the general attribute grammars are the result
of investigation in this direction. In the ALGOL 68 R 4000 compiler the
translation of the syntactic structure of ALGOL 68 programs into the
machine-independent target programs is completely described formally by an

!
O-attribute grammar.

72

Compared with the general attribute grammar, the following problems can

be easily solved by restricting to synthesized attributes only:

1) The proof of cyclic dependencies of the attributes is trivial because
there are only synthesized and no inherited attributes.

2) For calculating the attribute values, the syntax tree is to be scanned
from the leaves to the root only once, since the synthesized attributes
of a node are only dependent on the attributes of its direct descendants.

3) From this it follows that the syntax tree can be processed sequentially.
Therefore the use of the simple right-linear representation of the syn-
tactic program structure is profitable.

4) The storage of the attributes can be managed in a stack-oriented manner,
because the attributes of a node are only needed for determining the

attributes of its direct ancestor.

By restricting to synthesized attributes only, a representation of con-
text-dependencies becomes impossible. The evaluation of a language con-
struct can be completed only after all context-dependencies are known, i.e.,
in a higher construct. Such solutions are difficult to attain and not even
efficient. O-attribute grammars, however, allow to determine the attributes
of a node not only by the attributes of its direct descendants, but also by
the attributes of its direct-left context. A direct-left context is suffi-
ciently illustrated by figure 2 that shows part of a syntax tree. In this
figure all nodes k, which can be reached on the path from ki+ to k labelled

1

with one (ki+ is included), possess the same direct-left context ki'

1

Figure 2: Part of a syntax tree for the representation of the direct-
!

left context

73

Note: all attributes of the node ki are determined before calculating

the attributes of node k resp. ki+1' if the syntax tree is scanned from
bottom to top and from left to right. It is easy to prove that each node

k of a syntax tree has at most one node constituting the direct-left
context of the node k. Furthermore, the nodes k, which are on the path
from the root to the node k labelled with one, have no direct-left con-
text. Besides the attributes of the direct descendants of k., the attributes
of the node ki can also be used as so-called O-attributes in order to cal-
culate the attributes of the node k. Attribute grammars modified in this

manner are called O-attribute grammars.

D.4: The quintuple (AT, Va, Aa’ Ra’ S) is an O-attribute grammar of the
context-free grammar (V, A, R, S), if the following is true:

1. AT is a finite set of attributes.

2. Va c V x P(AT) x P(AT) is the attributed vocabulary, in which
exactly one tripel (v, Sv' Av) exists in Va for each v € V. Sv
and Az denote the synthesized and O-attributes, respectively, of
the symbol v. Sv and A; are subsets of AT. The synthesized attri-
butes enable information transmission in root direction. The
O-attributes allow the information transmission from left to
right, i.e., depending on the left context. The start symbol
S of the grammar possesses no O-attributes.

Note: P(AT) = {X: X c AT}.

Let w(a, i) with O £ i £ n describe the value of a synthesized
attribute a of the symbol vi appearing in the i-th position

of the rule (vo, vl...vi...vn) of the grammar. w(a, 0) denotes
the value of a synthesized attribute a of a terminal and wo(a)
represents the value of the O-attribute a.

3. Aa is the attributed alphabet. Each terminal t € A possesses
a set F of semantic functions, that determine the values of
the synthesized attributes of t. The values of other synthe-
sized attributes and of O-attributes of t can be arguments of

these functions:

o
F={f; seStAwm,0)=f;wy.”,wy.n,%ww

o o
ceer W, penes Wy) A
1' ’ lI ’ Z

IA

rw, = w(a, 0) A ace St A1 j <mA

IA

i <A},

£
1]

w(a') Aa' e A: Al

74

4. Ra is the attributed set of rules. Each rule (VO, V1V2"'vn) e R
has a set F of semantic functions that determine the set of synthe-
sized attributes of vo. The synthesized attributes of all symbols \f
with O £ i £ n of the rule and the O-attributes of v, can be argu-

ments of these functions:

F = {fs: s € Sv A w(s, 0) = fs(wl""' W.peeer W 4 w?,..., Wy enn, W) A

0 J m i L
w, =w(a,k) AaeS A1<j<mAO<k<mA
J \'
k
wo = w(a') Aa' e A° A1l <i< k).
i v
0
Contrary to Knuth's attribute grammars, the test of cycles in the O-attri-
bute grammars is trivial. Cyclic dependencies of attributes on several
nodes cannot arise, because the information transmission is possible only
from bottom to top and from left to right in the syntax tree. Further

conditions must be fulfilled in O-attribute grammars:

1. Each node with no direct-left context can only be labelled by a vocabu-
lary symbol that does not possess O-attributes.
2. The O-attributes of vocabulary symbols must be assigned to the direct-

left context as synthesized attributes.

For a given O-attribute grammar these conditions can always be proved in

the following steps:

- The sets LV and LKV are determined for each vocabulary symbol v ¢ V.

* *
LV ={v':v' el Av s viw Awe V')

LKv ={v': v' e VA 3xr [r = (z, wlv'v"w2) e R A Wi W, € v* A

zel -Aavel , 1}
v

- Condition 1 is exactly fulfilled if the set LS' where S denotes the
start symbol, contains only symbols to which no O-attributes are
attached

'

v [v el +A° =g]
S v

75
- Condition 2 is exactly fulfilled if for each symbol v, which possesses
O-attributes, the set LKV contains only symbols which have these attri-
butes as synthesized attributes

wilvelaw [v'elK A% csS 11.
v v —"v

3.5. Determination of the attribute values

The evaluation by O-attribute grammars consists of the determination
of attribute values of all syntax tree nodes. The important advantage of
the O-attribute grammars lies in the possibility to determine the values of
all attributes by sequential reading of the right-linear representation of
the syntax tree. The evaluation by O-attribute grammars uses a stack for
attribute storing which is an efficient storage management scheme, because
attribute values no longer needed are implicitly released. The method of
calculating the attributes can be described as follows:

The right-linear representation of the syntax tree is sequentially
processed from left to right. If a syntax subtree with root k is com-

pletely worked off, then

1. the attribute values of the direct-descendant of node k are popped
off the stack;

2. the attribute values of the direct-left context of node k are read
from the stack top;

3. the attribute values of node k are calculated by seﬁantic func-

v

tions of the rule r = (vo, v "'Vn) € R for £(k) = (vo, r) and by

172
the semantic functions of the terminal t € A for f(k) = (t, €);

4. the attribute values of node k are pushed onto the stack.

Because O-attribute grammars permit a direct dependence of attributes

of a node from the attributes of its direct descendant and its direct-
left context, the use of information of the complete left context is in-
directly possible. The complete left context and all descendants of a

node k are exactly all the nodes which have already been processed. There-
fore, the evaluation by O-attribute grammars is a suitable adaptation to

the scanning method of the right-linear representation of the syntax tree.

76

3.6. The O-attribute grammar of the assignment statement - an example

The following example of the assignment statement vividly demon-
strates the use of O-attribute grammars. The evaluation is based on the

syntac rules

< UNIT > :: = < DESTINATION > < UNIT >
< DESTINATION > ::= < TERTIARY > becomes token.

The symbols possess the following attributes:

symbol synthesized attributes O-attributes
UNIT value mode-of-ac-outside
ac-saved scope
destination-mode
DESTINATION mode-of-ac-outside mode-of-ac-outside
scope scope
destination-mode
mode
value
ac-saved
TERTIARY value mode-of-ac-outside
ac-saved scope
form
mode

The following semantic functions are attached to the syntactic rules.
Attributes with an integral number i > O denote the attributes of the

symbol vi of the rule (vo, V1V2 ...Vn); attributes with the number 0

denote the O-attributes of the symbol v, and attributes without any

0
number denote the synthesized attributes of the symbol Vae

< DESTINATION > ::= < TERTIARY > becomes token
scope := scope 0

mode := meek(mode 1, reference)

value := if mode = mode 1 then value 1 else ac fi
destination-mode := deref (mode)

ac-saved := if mode = mode 1 then ac-saved 1

else mode-of-ac-outside 0 # void
fi
mode-of-ac-outside := if value = ac then mode
else if ac-saved 1
then void

else mode-of-ac-outside 0

fi
if mode # mode 1
then if 4 ac-saved 1
then if mode-of-ac-outside 0 # void
then GENERATE (SAVE AC(mode-of-ac-outside 0))
fi
fi;

generate meek coercion(mode, mode 1, value 1)

if mode = error-mode

then if mode 1 # error-mode then error("tertiary is no reference") fi

< UNIT > ::= < DESTINATION > < UNIT >

value := if destination-mode O = mode 1 then value 1 else ac fi
ac-saved := if mode-of-ac-outside 0 = void

then false

else ac-saved 1 V ac-saved 2 V destination-mode 0 # mode 1

fi
if value 1 = ac
then if ac-saved 2
' then GENERATE (MOVE (stacktop, value 2, destination-mode 1));
GENERATE (RESTORE AC)

else GENERATE(MOVE (value 1, value 2, destination-mode 1))

77

78

£i
else GENERATE (MOVE (value 1, value 2, destination-mode 1))

if destination-mode 0 # mode 1
then if mode-of-ac-outside 0 # void
then if - ac-saved 1A~ ac-saved 2
then GENERATE (SAVE AC (mode-of-ac-outside 0))
i
fi;
generate strong coercion(destination-mode 0, mode 1, value 1,

comorf)

if - strong coercion possible(destination-mode 0, mode 1)
then if mode 1 # error-mode
then error ("no coercion to destination mode")
fi

fi

A detailed explanation of the example would exceed the scope of this
paper. In this context only the note should be made that calls of gene-
rating routines and error routines are applied instead of attributes
for the generation of the target program and for the message of semantic

errors.

4. FINAL REMARKS

In [7], KASTENS only uses the direct ancestors and descendants of a
node in the syntax tree for the attribute evaluation. O-attribute grammars
are derived from S-attribute grammars [7]. S-attribute grammars have
only synthesized attributes. For a suitable representation of context
dependencies the so-called O-attributes are inserted additionally. With
these O-attributes it is possible to represent dependencies of attributes
of a node in relation to the attributes of the direct-left context. With
this the restriction of attribute dependencies to the scope of one syn-
tactic rule is given up. Therefore, the O-attribute grammars can not be
arranged in the hierarchical classification of attribute grammmars as
given by KASTENS. O-attribute grammars have an a priori predefined

attribute evaluation strategy. The synthesized- and O-attributes may be

79

evaluated in a bottom-up pass if the walk through the syntax tree is con-

sidered. It is not possible to cover right-context dependencies with

O-attribute grammars. Such instances are rare in practice, so that their

handling can for instance be ensured by a suitable symbol-table organiz-

tion. It must be emphasized, however, that the description of the semantic

analysis and synthesis by O-attribute grammars enables an effective,

clear and low-error programming of the corresponding compiler part.

REFERENCES

[1] BOCHMANN, G., Semantic Evaluation from Left to Right, CACM 19, 2 (1976).

[2] BOCHMANN, G & P. WARD, Compiler Writing Systems for Attribute
Grammars, The Computer Journal 21, 2 (1977).

[3] JAKEL, H.-J., Erzeugung einer rechnerunabhingigen Zielsprache aus
der rechtslinearen Darstellung syntaktischer B&ume,
Dissertation, TU Dresden, 1980.

[4] JAKEL, H.~-J. & H. LOEPER, Struktur und Darstellung der Zwischen-
programme des ALGOL 68-R 4000-Compilers, TU Dresden, WBZ MKR/IV
1980, H. 46.

[5] JAKEL, H.-J., H. LOEPER & W. OTTER, Ein Algorithmus zur Behandlung
der Modusaquivalenz in einer Untersprache von ALGOL 68,
EIK 14 (1978), H.4.

[6]1 KASTENS, U., Ein Ubersetzer-erzeugendes System auf der Basis
attributierter Grammatiken, Dissertation, Universitat
Karlsruhe, 1976.

[7] KASTENS, U., Ordered Attribute Grammars, Acta Informatica 10, 3 (1980).

[8] KNUTH, D., Semantics of Context-free Languages, Mathematical Systems
Theory 2, 2 (1968) and 5, 1 (1971).

[9] KNUTH, D., Examples of Formal Semantics, Lecture Notes in Mathematics
188, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

[10] KOSTER, C., Using the CDL Compiler-Compiler, in: Compiler Construction,

Lecture Notes in Computer Science 21, Springer-Verlag, Berlin,

Heidelberg, New York 1974.

80

[11] LOEPER, H. & P. BACHMANN, Theorie und Technik der ﬁbersetzerpro-
gramme hoherer Programmiersprachen, BSB B.G. Teubner Verlags-—

gesellschaft, Leipzig, 1980.

[12] LOEPER, H., M. HORN & W. NYDERLE, Investigations on the Application
of a Precedence-Controlled Syntactic Analysis Method to a

Sublanguage of ALGOL 68, EIK 11 (1975), H. 4-6.

[13] LOEPER, H., H.-J. JAKEL & W. OTTER, Anwendung der Automatentheorie
bei der Behandlung der Modusaquivalenz in ALGOL 68, EIT 7
(1977), H. 5.

[14] WIJNGAARDEN, A. VAN, et.al., Revised Report on the Algorithmic
Language ALGOL 68, Acta Informatica 5, 1-3 (1975).

81

ESSAY ON COPYING

K. WRIGHT

ABSTRACT

When working with large data structures it is more efficient to copy
a pointer to the structure than to copy the structure itself. Avoiding
copies of large values can have a huge impact on the efficiency of some
programs. The psychological impact of copying can exceed even its actual
importance. I have found that almost without exception users react with
utter horror to the suggestion that an array may be copied, even when this
is obviously necessary for semantic consistency. Moreover the fear of co-
pying warps the programming style of many people, leading them, for example,
to create variable parameters which are not intended to vary. This paper
explores the copying requirements of the definition of ALGOL 68 and tech-

niques for reducing the amount of copying done.

82

1. PREVIOUS WORK

In spite of the importance of this subject for any implementation of
ALGOL 68 there seems to be very little discussion of it in the publicly
available literature.

BRANQUART et al. [3] have published a very complete description of the
translation of every construct of ALGOL 68. This of course includes a de-
scription of when copying is done, but the discussion of this point is
spread throughout the book. The scheme used there apparently works, but they
do not explicitly describe how it was developed or what the alternatives
are.

PETER SZOKE [4] discusses copying requirements and gives several
pathological examples. Much of the discussion centers on programs in which
assignation and dereferencing of the same name proceed collaterally. He
wants to ensure that the result computed will be one of the set of possible
results if copying were done as described by the (original) Report but with
assignation and dereferencing treated as inseparable actions. In our view
this is not mandatéd by the Revised Report, which refuses to specify what
actions are inseparable.

P.G. HIBBARD et.al. [5] describe an implementation of ALGOL 68 that is
designed to minimize the copying required for the most common operations.
This implementation strategy is so unusual that the body of this paper
does not consider it, but so important that it is discussed briefly in the
appendix.

MARK RAIN [2] has suggested an alternative language with a different
scheme of defining variables and pointers in an attempt to sidestep this
issue.-S.G. VAN DER MEULEN [6,7] has proposed a similar scheme as a strict
extension to ALGOL 68. Both proposals involve the introduction of an un-
modifiable reference to a value.

Neither proposal is formalized sufficiently to make the implications
clear. In general the idea of a read only variable makes me uneasy. It
seems to involve either run time checks of variability before each assign-
ment, or the possibility of modifying a supposedly constant value through
assignments to global variables or pointers. There may be a way around
these difficulties, but I do not know what it is. I believe the ALGOL 68
definition of names is elegant and adequate from an abstract point of view.
If one does not intend to assign to a name, then the name is nothing but

an indirect method of accessing another value. The value could as well be

83

accessed directly. It is unfortunately difficult to specify just when co-
pying is needed to support the abstraction. This difficulty alone may be
sufficient reason to adopt a different scheme in a language meant to be a
replacement for assembler.

There are two cases in which ALGOL 68 is too restrictive in its treat-
ment of names. The first, as VAN DER MEULEN [6] points out, is the problem
of flexible and transient names. It remains to be seen whether it is names
or multiple values that need adjustment. The second is the impossibility of
constructing recursive modes without inserting spurious ref's (or proc's).

Perhaps we should allow declarations such as:

mode tree = struct(string val, union(tree, void) left, right);

void leaf = empty;

tree t = ("root", ("branch", leaf, leaf), leaf)

A complete exploration of these ideas would lead us far astray.
2. GENERAL PRINCIPLES

We define an "un-optimized" implementation as one in which each action
prescribed by the Revised Report is translated in the same way regardless
of the context in which it occurs. There is not a unique unoptimized imple-
mentation even when the particular features of storage layout are ignored.
The appendix describes an alternative un-optimized implementation. The
existence of such alternative implementations demonstrates that there is
no hope of deducing the requirements for copying directly from the Revised
Report. There are a few arbitrary decisions that must be made at the very
outset.

In the body of this paper we limit consideration to a traditional im-
plementation strategy. A name is represented by an address; some locations
associated with that address contain a bit pattern representing the value
to which it refers.

The primary action that requires a copy of a value is assignation.

The bit pattern representing the value yielded by the source must be copied
to the address representing the name yielded by the destination. Once the
decision has been made that assignation will be implemented by holding the
address which represents the name fixed and overwriting the contents of
that address, it follows that some precaution will be needed to ensure

that the value already stored there will not be lost if it is still needed.

84

For this reason a copy will also be required when a name is dereferenced.
Dereferencing is performed by copying the value referred to by the

name onto the top of the stack (or some other safe place). The value must

be copied since, in general, it is possible for the name to be altered while

the value obtained is still in use. If a copy were not made altering the

name would overwrite the value, causing it to change unexpectedly.

For example:

loc thing var:= initial value;

thing val = var; #var is dereferenced, its value is called 'val'¥
var:= another value;

#Here we should have val = initial value. This requires that the

initial value have been saved somewhere.#

Notice that the identity declaration itself does not require a copy

of the value. Had we written:

thing vall = some value;

thing val2 = vall; #vall is not a name, and is not dereferenced.#

no copy would have been required. vall in this case is not a name, and
therefore can not be altered. Thus it does not matter whether a new copy of
the value is made, or only one copy is kept simply remembering that both
vall and val2 access that same value. This is a major reason for prefering
an identity declaration to an assignation where there is no intention to
assign a different value. Similarly no copy is needed in the other cases
when a value is ascribed to an identifier, i.e. when passing parameters or
elaborating a conformity clause.

Given that the language definition does not require a copy to be done
when an identity definition is elaborated, it is natural to try to arrange
the storage layout in sﬁch a way that no copy is needed in order to do the
ascription. This can, in fact, be arranged if there is an identifier stack
in each stack frame set aside to hold the values ascribed to identifiers in
the environ represented by that stack frame, and if there is a working
stack set aside to hold intermediate results of the elaboration of con-
structs within that environ. All that is necessary is to place the working
stack immediately following the identifier stack. Then after the elabora-
tion of %he source of the identity definition the yield is the only result

on the working stack. The size of the identifier stack can then be increased

85

to include the newly created value, and the working stack moved up above
the other end of the value.

In addition to copies made when assigning or dereferencing many imple-
mentations make copies of arguments to be passed to procedures or of results
yielded. These copies are not in any way implied by the language definition,
but are done only to allow procedures to communicate, to avoid holes in the
stack, or for similar reasons. Since these copies are made solely for the
convenience of the implementation it is always safe to eliminate them if
some more convenient scheme is found. We are primarily interested in ex-
ploring the requirements of the language definition that are independent
of the physical layout of storage, and so these copies will be, for the
most part, ignored.

It may be possible to avoid making the copy of the value both during
dereferencing and assignation. In the case of dereferencing this is done by
remembering that the value which should have been yielded by the dereferen-
ce action is actually still stored at the address of the name. In the case
of assigning it is done by "moving the name", that is by remembering that
the name now corresponds to the address at which the value is already lo-
cated (thus changing the bit pattern used to represent the name). In either
case this "remembering" may be done at compile time by updating the symbol
table to reflect the actual positions of the objects in storage, or at run
time by creating pointers to the objects in known locations. Which of these
will be done depends upon the scheme used to locate objects in the run-time
environment.

Moving a name means changing the address which represents the name. In
addition the representation of all its subnames must be changed, since these
are generally required to have some fixed relationship to the name. In ad-
dition we must ensure that the scope of the name is not changed.

When a copy which is called for by the un-optimized implementation is
omitted, whether during assignation or dereferencing, the situation which
results is the same. We have a name which refers to a value which is ac-
cessable independently of that name. We call such a name an alias. If we

create an alias we must ensure the following rule.
Correct aliasing rule: An alias may not be altered.

Thete are two approaches to ensuring that this rule is enforced. We
can ensure before creating any alias that there will be no occasion to

alter the aliased name while the value is still accessible, or we can

s

86

ensure before doing any assignation that the name to be assigned to is de-
aliased.

De-aliasing implies either moving the name or copying the value to which
it refers. In either case we must ensure that all identifiers which access
that moved object will now access the copy, and all names which refer to
the moved object refer to the copy. Moving the name will be quite difficult
at this point since there has been plenty of time for further references to
the name to have been created. In addition we need a run-time check when
assigning to ensure that the name assigned to is not an alias. If the de-
cision were made to try to de-alias at run time the result would be very
much like the implementation described in the appendix. In this case it
Would probably be much simpler to adopt the model of computation described
there. Therefore we will concentrate on finding conditions which will be
sufficient to ensure at the time an alias is created that it will not be
altered.

One approach to doing this would be to do complete global flow analysis
of the program to determine what names might be altered or required by each
construct. The techniques for doing this are fairly well known, but diffi-
cult to apply. We will try the alternate approach of using information
which the compiler is likely to already have available. In particular we
make heavy use of mode and scope information. Before specifying such con-

ditions we define some new terms.
3. DEFINITIONS

A name N is "descended from" a name M if N is a subname of M cor de-
scended from a subname of M. Two names are "related" if they are the same
name, or if there is a name from which they are both descended.

A name is "altered" if it is made to refer to a value (possibly other
than the one to which it originally referred). This can be done by assign-
ing to the name, or by assigning to some name related to the name. Two
names "overlap" if assignment to one of them can alter the other. Over-
lapping names are necessarily related but the converse is not true.

Two modes overlap if there could be two overlapping names which have
those reépective modes. The precise conditions for this are best expressed

grammatically.

87

a) where REF to MODEl overlaps REF to MODE2:
where MODE1 stows MODE3 and MODE2 equivalent ROWS of MODE3;
where MODE2 stows MODE3 and MODE1 equivalent ROWS of MODE3.
b) where MODE4 stows MODEG :
where MODE4 equivalent MODE6, where true;
where MODE4 equivalent FLEXETY ROWS2 of MODES5,
where MODES5 stows MODEG6;
where MODE4 equivalent structured with
PROPSETY1 MODE5 PROPSETY2 mode,
where MODE5 stows MODE6 .

The predicate "where MODE4 stows MODE6" holds if MODE4 might be the
mode of some stowed value which contains a value of MODE6. To determine if
two modes overlap we must check if either mode is that of a name referring
to a row of some mode stowed in the other mode. This is to account for the
possibility that overlapping names might be produced by selecting from and
subscripting a name referring to a row of structures, and also the possibil-

ity of rowing a name selected from a structure.

The "representation" of a value is a specific bit pattern that the im-
plementation uses for that value. There may be more than one "instance" of
the representation of a given value in storage at once. In addition to the
representations which are explic¢itly stored there may be some representa-
tions which are stored only as (usually short) algorithms for their con-
struction. For example a name is represented by an address, but that
address may be stored only in the form of a register number and displace-
ment within some instruction in the program. Integral values may be stored
only in load immediate instructions.

The Revised Report says that names, procedures, and values composed
from them are the only values whose scope is limited. Nevertheless particu-
lar instances of the representation of a value may be stored on the stack
and thus may have a limited lifetime. To describe this situation we intro-
duce the concept of the scope of an instance. The scope of an instance is
an indication of how long the instance will be in use. The scope of an in-
stance stored on the stack is no older than the scope of the environ in
which the action which yielded the instance took place. If the value is
required'outside that scope the compiler will of coursé be férced to gener-
ate code to create a copy of the instance in some older stack frame. The

exact scope of an instance will depend upon the compiler; all we require

88

is that the scope be defined in such a way that the compiler will never
produce instructions which attempt to make use of an instance after its
scope has expired.

The scope of an alias is the scope of the aliased name or the scope
of the instance of the value refered to by the aliased name, whichever is
newer.

We say that a construct "can alter" a name if the compiler can not
determine that the elaboration of that construct will not alter the name.
Obviously this relation depends upon the compiler as well as the construct
and the name. A more complex compiler will have a better knowledge of what
can actually occur.

We want to be able to determine whether a given name will be altered.
This task is not hopeless because ALGOL 68 does not allow names to be com-
puted at will. Only a few actions can yield a name not related to the param-
eters of the action. Even these few actions are constrained to yield names
that bear a definite relation to their parameters.

We say that a value V "exposes" a name N if there is some sequence of
actions which, givén V, yield a name which overlaps N. We say a construct
exposes name N if the construct yields a name which exposes N.

Since a procedure call may result (indirectly) in a name being altered
it is important to be able to determine what procedure is yielded by some
constructs. Fortunately the production of new procedures is even more con-
strained than the production of new names. The definition of "exposes" will
therefore be extended to procedures. A value V "exposes" a procedure if
there is some sequence of actions which, given V, yield the procedure.

We say that one mode exposes another if a value of the first mode

could expose a value of the second mode.

where MODE exposes‘MODE2:
where MODE equivalent PLAIN, where false;
where MODE equivalent REF to MODE],
where MODE1 exposes MODE2 or MODE overlaps MODE2;
where MODE equivalent FLEXETY ROWS of MODE1,
where MODE1 exposes MODE2;
where MODE equivalent structured with FIELDS mode,
'

where MODE1 field TAG resides' in FIELDS and
MODE1 exposes MODE2Z;

89

where MODE equivalent procedure PARAMETY yielding MODEL,
where MODE1 exposes MODEZ2 or MODE equivalent MODE2;
where MODE equivalent union of MOODS mode,

where MOODS contains MODEl1 and MODE1 exposes MODE2.
4. CONDITIONS FOR SAFETY

A proposed alias is unsafe if some construct elaborated within the
scope of the alias and subsequent to its creation can alter the aliased name.
It is not required to worry about constructs which can alter the name, but
are elaborated collaterally with the creation of the alias. This is because
the Revised Report does not specify what actions are inseparable and does
not specify the intermediate states of the action of assigning. We inter-
pret this to mean that the result of a dereference and an assignment to the
same name, or of two collateral assignations to the same name, is totally
undefined. For example, if on some computer it is expedient to set a storage
location to zero by loading the accumulator from that location and then doing
a subtract from memory operation it may happen that (k:= 0, k:= 0) has the
effect of negating k. In fact if the compiler can reliably determine that a
name actually will be altered by a collateral action it would be helpful to
print a warning message to the effect that the collateral actions interfere
with each other.

{As an aside - the result of (alil:= 1, alj]:= 2) is clearly undefined
if i = j. The Revised Report describes assignment to a subname as equivalent
to assigning to the entire name a multiple value which differs in one ele-
ment. Taken literally this implies that the above collateral assignation is
undefined even if i # j. Is this a reasonable interpretation?}

To be safe we mﬁst avoid creating an alias unless we determine that it
can not be altered. For this reason the following conditions are stated
negatively. Of course the conditions given could be strengthened if the
compiler is made more complex. A simpler compiler could check only some

weaker conditions. The conditions stated below should give the general idea.

The only action which can alter anything directly is an assignation.
In addition a call, formula, or deprocedured form can alter a name if the
called procedure contains an assignation. An actual stowed declarer may
also alter a name if the computation of the bounds involves an assignation.

Such a declarer can be viewed as a procedure without parameters. We will

90

use the word "invocation" to describe a call, formula, deprocedured form,

or actual stowed declarer.

An assignation can not alter the name N if the destination does not over-

lap N.

An invocation can not alter a name N if all of the following hold

1) none of its actual parameters (operands) expose N

2) none of its actual parameters expose a procedure that globally alters
N

3) the called procedure does not globally alter N

A construct can not yield a name which overlaps N if any if the following
conditions hold
1) the mode of N does not overlap the mode of the construct
2) the scope of the yield of the construct is not the same as the scope
of N
3) in case the construct is a
a) serial clause - the last unit can not overlap N
b) assignation - the destination can not overlap N
c) selection - the secondary can not overlap N
d) slice - the primary can not overlap N
e) invocation - N is newer than the procedure and none of the actual
arguments can expose N
f) cast - the enclosed clause can not overlap N
g) generator - N is not derived from the same generator
h) applied identifier - the corresponding defining identifier occured
in an identity definition the source of which can not overlap V
(variable definitions and routine definitions can be treated as
identity definitions. Without global flow analysis we are stymied
by a parameter definition)
i) dereferenced form - N has never been assigned to a pointer
j) rowed form - the coercend can not overlap N

k) all others - can not

A construct can not expose a name or procedure V if any of the fol-
lowing holds
1) thevmode of the construct does not expose the mode of V

2) the scope of the yield of the construct is older than the scope of V

91

3) in case the construct is a

a)

b)

c)
4)
e)
£)
g)
h)
i)

3)

k)

serial clause - the final unit can not expose V

invocation - the procedure can not expose V and none of the actual
arguments can expose V

selection - secondary can not expose V

slice - primary can not expose V

routine text - its unit can not expose V

cast - the enclosed clause can not expose V

rowed form - coercend can not expose V

dereferenced form - coercend can not expose V

united form - coercend can not expose V

applied identifier - the corresponding defining identifier occured
in an identity definition the source of which can not expose V
(the remarks made in the rules for overlapping also apply here)

all others - can not

Each of these sets of conditions translate directly into an algorithm

which proceeds by recursively decomposing the construct. At each step either

the mode or the scope of the construct may allow us to conclude that the

given condition can not hold. Eventually the complexity of testing may be-

come so great that we simply give up and make the safe assumption that the

condition can hold.

A procedure can not globally alter a name N if one of the following is

true:

1) the routine text of the procedure is known and it contains no assigna-

tions or calls which can alter N.

2) the scope of the procedure is older than the scope of N

3) the program contains no routine texts that both

a) contain a construct which can alter N, and
b) have the same mode as the procedure
5. EXAMPLES

We now give several examples of the application of the rules stated

above.

Conéider the case of a simple assignation of the form "destination:=

source", where the source and destination both yield names. Here it is

very often the case that the copy associated with the dereference of the

92

source is superfluous. Since the value yielded by the dereference becomes
inaccessable as soon as the assignation is complete, an alias is safe when-
ever the assignation itself does not alter the source. That is, whenever
the names yielded by the source and destination do not overlap.

The example al[1:3]:= a[2:4] shows that the copy may be needed. (An al-
ternate method of addressing this particular problem is to insert dynamic
checks in the assignation to move the value in a particular order depending
upon the way in which the slices overlap.)

If the yield of the assignation is not immediately voided it may also
be required to copy the destination before assigning. This is because the
Report specifies that the yield of the assignation is the yield of elab-
orating the destination before the actual assignation is done. Thus the

assignation "destination:= source"” must be treated as though it were written:
(ref thing n = destination, thing w = source; n:= w; n)

If the elaboration of the destination involves dereferencing it is possible
that when the assignment is done it overwrites the dereferenced location.
If so the contents of that location must be saved. The following example

demonstrating this possibility is due to SZOKE [4].

(mode node = struct(int val, ref node 1link);

(1, n);

loc node n:
ref node x = ref node(link of n) := (2, loc node) ;

X is n)

This should yield true, but without copying the destination it will go
wrong. This is because link of n overlaps ref node(link of n). If no copy
is taken when link of n is dereferenced then it becomes an alias which un-
fortunately is altered by the assignment to the related name yielded by
ref node(link of n).

4

If x yields a name, but the procedure p requires a value of the mode
referred to by x then in the call p(x, ...) we may want to alias x. The
scope of this alias will be that of the environ established by the call.
Thus the copy associated with the dereference of x may be omitted if the
call of p can not alter x. This is undoubtedly the most important appli-

cation of these optimizations.

Even though the alias created when the copy is omitted during an as-

signation is the same as that created when the copy is omitted during

93

dereferencing, it is much more difficult to remove the copy involved in as-
signment than that in dereferencing. If the name is moved all names which
refer to it, or to subnames of it, must be changed, and all identifiers
which access it must be made to access the new value. This is impractical
unless it can be shown that there are no such names or identifiers.

If the name has just recently been generated this is particularily
easy to show. This suggests an implementation of variable definitions with
initialization which proceeds by elaborating the source and then, leaving
the result where it lies, generating the name onto it. This makes the trans-
lation of a variable definition with initialization exactly like an identi-
ty definition, except that the variable identifier accesses the address of
the newly allocated location rather than the contents.

Consider the possibility of elaborating assignations at compile time.
In 'thing v:= expr' if 'expr' can be elaborated at compile time, the name
may be moved to the location in the 'constant' table where the value is
stored. This is safe if the scope of the instance in the table can be limit-
ed to the scope of elaboration of the assignation. The value is actually
created and stored-at compile time (say in the primal environ). In order to
treat the scope of the instance as so limited we must ensure that the ad-
dress of the instance can only be used once, during the elaboration of the
assignation.

Note that in a multi-user environment where programs may be shared
between users, any shared program must be considered to be part of a routine
text which may be called by several users. In such a situation this optimi-
zation is prevented unless each user gets a separate instance of the "con-

stant" table.
6. APPENDIX

The language of the Revised Report is abstract enough that it is pos-
sible to imagine several totally different approaches to implementation on
a random access machine. To illustrate this we describe an implementation
in which the translation of the relation "to refer to" of the Revised Report
differs from that in most current implementations of ALGOL 68, This approach
was developed and used by P.G. HIBBARD et al. and is more fully described
in [5]-’

94

For every value created during the elaboration of the program one or
more blocks of storage are allocated. The size and number of these blocks
depends upon the mode of the value (and the bounds if it is a multiple
value); the contents depend upon the particular value. We will call these
blocks of storage "value blocks". The value is then represented by a single
pointer to the value block. If the value is not a name then the contents of
the value block are never altered. It is therefore never necessary to copy
without change the contents of a value block. If the yield of some action
already exists in some value block then it is always safe to use it.

If the value is a name then the value block contains a pointer that
points to the value block of the value to which it refers. That pointer is
changed when a new value is assigned to the name. Assignment does not change
the value block of the value, it only replaces a pointer to it in the value
block of the name. The value block of a subname contains a pointer to the
parent name together with an offset or index. Assignment to a subname is
implemented according to the letter of the Revised Report; i.e. a new stowed
value is created which differs from the one originally refered to by the
parent name in only one element. The parent name is then made to refer to
that new value.

In its un-optimized version this implementation scheme is outrageously
inefficient. A few optimizations can improve it to the point where it is
competitive with the more traditional implementations. The most important
of these optimizations is to keep a reference count with each block of
étorage. If the reference count of the original value referred to by the
parent name is equal to one when a subname is assigned to, then instead of
copying nearly the whole value and deleting the old one (which will no lon-
ger be referenced at all), the value block is updated in place.

The reason for describing this implementation strategy is to illustrate
the point that there are a number of arbitrary decisions which must be made
at the very outset which greatly affect the relative cost of various actions.
It is only after choosing a particular model of un-optimized computation
that it is possible to begin inserting optimizations which depend upon the
context of the action. It is an impressive accomplishment to have written
a language definition which makes the intended semantics clear enough that
it is pqssible to discuss optimization while still allowing for such diver-

gent approaches to implementation.

95

REFERENCES

[1] VAN WIJNGAARDEN, A. et al., Revised Report on the Algorithmic Language
ALGOL 68, Springer-Verlag, 1976.

[2] RAIN, M., Some formal aspects of Mary, ALGOL Bulletin 34 (July 1972),
p. 45-81.

[3] BRANQUART, P., J.P. CARDINAEL, J. LEWI, J.P. DELESCAILLE &
M. VANBEGIN, An optimized translation process and its applica-

tion to ALGOL 68, Springer-Verlag, 1976.

[4] SzokE, P., Some remarks on new instances and garbage collection, in
Proceedings of the Strathclyde ALGOL 68 Conference, SIGPLAN No-
tices 12, 6 (June 1977).

[5] HIBBARD, P.G., P. KNUEVEN & B.W. LEVERETT, A stackless run-time im-
plementation scheme, in Proceedings of the Fourth International
Conference on the Design and Implementation of Algorithmic Lan-
guages,. (ed. R.B.K. Dewar) , Courant Institute of Math. Sc.,

New York, 1976.

[6] VAN DER MEULEN, S.G. & M. VELDHORST, Torrix I, Mathematisch Centrum, Am-
sterdam 1978.

[7] vaN DER MEULEN, S.G., ALGOL 68 Might-Have-Beens, in Proceedings of the
Strathclyde ALGOL 68 Conference, SIGPLAN Notices 12, 6 (June 1977).

97

ON THE DESIGN OF AN ABSTRACT MACHINE
FOR A PORTABLE ALGOL 68 COMPILER

L.G.L.T. MEERTENS

ABSTRACT

This paper indicates a line of reasoning, the cut principle, that may
be applied in the design of an abstract machine for a portable ALGOL 68

compiler.

98

1. INTRODUCTION

A portable program is a program that can be moved to a variety of com-
puters with relatively little effort. The effort has to be compared to the
effort of creating a brand-new program. One may have portable editors, com-
pilers, and even operating systems. For compilers we run into a problem.
Usually, moving a program implies that its meaning remains the same. But if
the meaning of (the program which is) the compiler is unaffected in the act
of moving it to another computer, it will not generate code for that com-
puter. One simply obtains a cross-compiler. In fact, this is the easier part
of moving a compiler.

One approach is to make the code-generation part of the compiler 'adapt-
able'. If the idea is that the compiler, together with some documentation,
can be mailed elsewhere, one should realize that this strategy requires a
thorough understanding of the working of the compiler by the recipient. Al-
so, adapting the code generation does not suffice. The run-time environment
must still be created. The assumptions concerning the environment underly-
ing the code generation must be stated very clearly. A special way of making
the code generator adaptable is to parametrize it: number of registers, size
of words, etc. Though promising on paper, this approach is not really practi-
cable. The variety among computers and their particulars are such that they
are not readily expressible by means of a manageable number of parameters.
Feeding a formalized description of the target computer may be sensible for
a compiler-compiler, but would give rise to excruciatingly slow code genera-
tion for a direct compiler.

Another approach will be followed here. Design a 'machine-independent
abstract machine' ('MIAM') that can be modeled on a variety of computers
with moderate effort. Let the compiler generate object programs in MIAM
code. The definition of the MIAM and its code provides a clear interface,
both for the compiler writer and for the recipient of the compiler. If,
moreover, the compiler itself is available in MIAM code (e.g., by writing
it in its source language and once performing a bootstrap), the moving of

the compiler and the adaptation to the new target combine into one act.

The construction of an ALGOL 68 compiler is a complex task. Even if
one does' not aim at portability, the definition of an intermediate abstract
machine may help to reduce the complexity. The compiler design is then
factored into two parts. So, in designing a portable ALGOL 68 compiler,

there are two distinct reasons for introducing an abstract machine. The

99

desiderata (in terms of the abstract machine) for these two reasons are not
a priori the same. An interesting question, especially from a practical point
of view, is whether they can be combined and, if necessary, reconciled.

This paper investigates this question and indicates a line of reasoning,
the cut principle, that may be applied in the design of an abstract machine
for a portable ALGOL 68 compiler. This principle is next illustrated in a
number of design decisions for a specific MIAM. (The fact that the source
language is ALGOL 68 is extremely relevant for these decisions themselves,
but far less so for the cut principle. It is expected that the same prin-
ciple would provide guidance in the design of, say, a PL/I or ADA MIAM.)

Also, the issue of providing a proper run-time support system is addressed.

2. DESIDERATA FOR THE ABSTRACT MACHINE

If the desiderata stemming from the two reasons for introducing an
abstract machine (portability and reduction of complexity) do not comply,
the portability desiderata should be weighed more strongly. This follows
immediately from the essence of the portability idea. Moreover, should the
two sets of desiderata turn out really irreconcilable, one should not hesi-
tate to introduce two distinct abstract machines. But, as we shall see, the

situation is not that bad.

As for portability, the MIAM should, in a sense, be as close as pos-
sible to the computers in the variety under consideration. Unless this
variety is extremely restricted, it is not helpful to look at the 'union'
or the 'intersection' of these computers. The first would yield an unwieldy
monstrosity for the MIAM, whereas the second is bound to be empty. Rather,
one should attempt to find the center in the space of abstract properties
of the computers: an idealized architecture. For example, an indexing fa-
cility is common to a great variety of computers, but the actual details
differ considerably. The MIAM should then contain an idealized indexing
capability. Because of the presence of the indexing facility, the MIAM
falls, in this respect, in the union of abstract properties. But, since we
have an idealized version, it falls in the intersection too. So the proper
abstraction is that in which the union and the intersection coincide as
much as ppossible. The greater the variety considered, the higher the ab-

straction required, up to the level where portability becomes a pipe-dream.

100

Now, consider the problem of reducing design complexity. For the moment
we assume that a fixed target computer is given. This is the solid ground
atop of which the compiler is to be erected. At the other end, the 'ceiling’,
we have the 'hypothetical computer' in terms of which the semantics of
ALGOL 68 is defined. We want to construct a well-chosen mid-level.

In the design of the compiler, a good many problems have to be solved.
The hypothetical computer is able to climb up and down the 'program tree'
in order to elaborate 'constructs' (parts of the tree descended from one
node in the parse tree). Typically, a construct C is composed from other
constructs, and in order to elaborate C its component constructs have to
be elaborated first. These elaborations, which are performed 'collaterally',
yield values, and from these values the yield of C is obtained. The hypo-
thetical computer is able to deal with objects of arbitrary size and does
not worry about relinquishing objects that have become inaccessible. In
contrast, most typical present-day computers proceed essentially by serial
execution of instructions. They have an essentially linear memory of small,
fixed-size cells that are limited in number. Each instruction modifies one,
or at most a few, 6f these cells. So typical problems that have to be ad-
dressed are the serializing of collaterality, modeling large objects in
terms of cells, and designing a storage-allocation regime. For reasons of
efficiency, an attempt must be made not to duplicate, copy or shift objects
unnecessarily. It must be possible to free storage whose occupant has ex-
pired. These are but a few of the problems.

The details of the solution will, of course, depend on the actual
target computer. Still, the solution of the major problems should, prefer-
ably, not depend on peculiar features of the hardware. On the contrary, one
should make a strong effort to abstract from the details of the computer.
This entails a potential loss of optimality. But a well-chosen partitioning
should provide a support in designing code generation which more than com-
pensates for this loss. Stronger even, it should direct one to spending
one's optimizing efforts where they are most worth-while. The optimizations
which are typical for ALGOL 68 and which require understanding of the
global behaviour of constructs can be designed without distraction or hin-
drance by unimportant details. The 'peephole' optimizations, depending on
the target computer, can be found relative to the (comparatively simple)
specificétions of the abstract machine, without danger of entanglement in

intricate interaction between ALGOL 68-dependent and machine-dependent

101

properties.

So the abstract machine should be abstract in the sense that it re-
flects the typical low-level properties of the target computer (such as the
linearity of a memory of cells), but in an idealized form, with the gory
details stripped off. Now, if this is desirable if the actual target is

known, it is compulsory if the target is still floating.

So a strong convergence displays itself between the two sets of de-
siderata. Whatever the reason for introducing an abstract machine before
the final production of code for an actual target computer, in either case
we want the abstract machine to model, in an idealized way, typical abstract
properties of the target computers. And the abstraction criteria are essen-
tially the same. Still, we do not have a good criterion which of the count-
less abstract properties we may choose to perceive (they are not present in
the variety of computers in an objective sense) should be included in the
MIAM. Before this issue is addressed, however, we should first turn our at-

tention to an issue that has been disregarded until now.
3. THE RUN-TIME SUPPORT SYSTEM

In compiling a statement such as 'i:=j+k' the code generated for an

actual computer might be something in the spirit of

LOAD descriptor of i;

LOAD descriptor of j;

CALL dereference subroutine;
LOAD descriptor of k;

CALL dereference subroutine;
LOAD descriptor of +;

CALL call subroutine;

CALL assign subroutine.

Might be. But this code will be frightfully inefficient. Most compiler
writers will prefer trying to generate less treacly code. By generating
straight in-line code not only does one do away with the overhead of the
subroutine-call mechanism, but also with the overhead of interpreting, in-
side the subroutine, the situation met. Moreover, if one does a reasonable
job, the resultant code is most likely less bulky too.

‘Conclusion: no subroutine calls. But this conclusion is unwarranted.
Just consider the garbage collection capability needed for a full ALGOL 68

implementation. One surely would not want to have an in-line version of

102

the garbage collector at all positions in the code where the process might
run out of memory. In other cases the choice may be less clear-cut, but still
a good point can be made for a call instead of in-line code, e.g., for com-
puting sines.

The collection of subroutines created this way forms the run-time sup-
port system. It 'supports' the object code. Abstractly viewed, the computer
has been 'enhanced' by adding new capabilities in the form of new instruc-
tions. This means that the design of a MIAM is not so straightforward a task
as one might conclude from the considerations of the previous section. New
properties may be added more or less at will. Also, a new problem is raised
(already hinted at in the introduction): that of the portability of the run-
time system. The design and implementation of such a system is no mean task;
if it is left to the recipient of the portable compiler, the portability is
seriously impaired. For the time being it will be assumed that this problem

has been solved in some way.
4. COMPILATION AS SYMBOLIC INTERPRETATION

One of the objections that is voiced, time and again, against the
'traditional' operational style of describing the semantics of programming
languages, is that the description may obscure some very clever way of ob-
taining the same net effect. True as this may be, a 'reasonable' operational
description is also a good handhold for the compiler writer. The process of
code generation may be viewed as the symbolic execution of the source pro-
gram by interpreting it, step by step, in accordance with the semantics. The
'low-level' facts that can be found out statically are derived during this
symbolic execution. Where actual execution would be necessary, code is
emitted, as modified by the facts already found. This idea is described in
HANSON [7] with the misnomer 'lazy evaluation'. (An appropriate term would
be 'lazy code generation'.) Essentially the same idea is implemented by the
'mvalues' of BOOM [2]. It is a special case of the more general 'partial
computation principle' described in ERSHOV [5].

The code obtained this way does not take, in each case, the most com-
plicated situation conceivable into account, but is customized to the ac-
tual complexity of the situation at hand. This is important, since the
actual c&mplexity tends to be rather small in the majority of cases
(GRUNE [6]). One of the most important contributors to code simplification

is the 'mode' of a construct, being a static summary of dynamic properties

103

of the possible yields. Other code improvements that are obtained in this
way are the omission of scope checks or checks on nil in assignment and de-
referencing in the majority of cases.

It should be stressed that each compiler writer applies the partial
computation principle - either aware or unaware -. It is the very essence
of compiling. The advantage of taking the viewpoint described in this section
is that the consequences of design decisions become clearer. The decision to
add a capability to the run-time support system is then the decision to stop

symbolic interpretation at that level and to interpret, instead, at run time.
5. THE CUT PRINCIPLE

In designing a MIAM for ALGOL 68 we are faced with decisions of the
form: should this capability be included as a 'primitive' property of the
MIAM, or should it be modeled in terms of lower-level properties. For the
code generator, the mid-level interface which is determined by the MIAM is
its perception of solid ground. The 'substratum', where MIAM properties are
expressed in lower;level primitives, is hidden to it. The actual MIAM
properties must be used to model the properties of the hypothetical com-
puter. This modeling is performed explicitly in the 'upper world'. (In the
perception of the ALGOL 68 programmer, the world of the code generator is,
of course, below the ground.)

The collection of these decisions makes a cut in the set of (potential-
ly) realizable MIAM properties that may play a role in modeling the hypo-
thetical computer. In many cases it is immediately obvious whether a par-
ticular item should be placed in the substratum, or be left to the upper
world for realization. For example, multiplication of real numbers should
be buried in the substratum. Computing the factorial function - even for
the hypothetical computer only a potential capability - does not have a
place in the MIAM.

In other cases things are not so clear. Take, e.g., slicing. This is
not so primitive as real multiplication, but it is a pretty fundamental
operation that is easily isolated. An other example is assignment. Some
copying capability must need be present in the MIAM. But for what objects?
For 'bytes'? For multiple values? Note that the notion of a copy is foreign
to the '}evised' hypothetical computer. (To my taste, rightly so: the task
of making copies follows from invariants of the modeling, not from the

semantics itself. Not taking copies is only an optimization with respect

104

to a strategy for maintaining these invariants. So the revised semantics are
an instance of the value of a less 'operational' description.)

Some principle to guide the decisions would be very helpful. It is here
that the symbolic interpretation idea steps in. In order to follow this
idea, the compositions expressed in the semantics must be modeled in terms
of the MIAM. So, for example, stowed (structured and multiple) values must
be modeled by composite objects. The decision how to perform this composi-
tion belongs to the upper worlid. Therefore, the 'underworld' should be com-
pletely unaware of the way of composition; its task is to realize the ground
on which the code generator can be constructed, and it must, therefore, be
completely insensitive to upper world design decisions. In some sense, this
is a’ closure property of the upper world: once a property of the hypothetical
computer is placed above the ground, it takes other properties with it.

We now have a criterion for deciding when to assign properties to one
side of the cut. But when are properties assigned to the substratum? Keeping
in line with the tradition of computer science, we choose for a minimal
closure: if this is not prevented by the principles already set forth,
properties needed to model the hypothetical computer are assigned to the
MIAM. This is, in fact, very reasonable. Otherwise the design of the code
generation would have to create new abstractions from the MIAM primitives,
thereby creating effectively a new, higher-level, MIAM. Now, the only ab-
stractions supported by the code generation are those that are meaningful
in terms of the hypothetical computer.

Summing this up, we have the

Cut Principle: Composite properties of the hypothetical computer are not
properties of the MIAM. No property of the MIAM depends on the way of model-
ing such composite properties. Within these limits, MIAM properties are as

high-level as possible. .

Simple as this principle may sound, it should be clear that it is not
a straightforward yes—-or-no test. Its application will be illustrated on

various decisions.
6. MODELING ALGOL 68 VALUES
The ‘primitive values of the MIAM are almost the same as those of ALGOL

68: integers and real numbers of different lengths, truth values, characters.

Primitive 'pointers' are used to model names, but also for other purposes.

105

A new primitive value is the label. A routine may then be modeled by a pair,
consisting of a label (for the construct of the scene) and a pointer (for
the environ). Other than in the definition of ALGOL 68, L BITS and L BYTES
are treated as primitive; their compositeness in the definition is con-
sidered a descriptional artefact. Strings are treated as multiple values,
though.

According to the cut principle, composite values must be modeled by
composition in the MIAM. The MIAM primitives must not depend on particular
preferred ways of modeling. Therefore, the MIAM must have some general form
of composition. To this purpose, 'offsets' are used. An offset, added to a
pointer, gives a new pointer. Offsets are static entities, not run-time ob-
jects (like field-selectors in ALGOL 68); they are defined in pseudo-in-
structions in the MIAM-code. A cascade of such instructions allows to map a
sequence of objects on an 'area' of memory. As a by-product, a static type
is assigned to the thus composed sequence of types.

This can be used to model structured values, but also other composite
objects, such as locales and environs, multiple values (consisting of a
descriptor and a pointer to an area for the elements), routines and para-
meter passing.

By defining several maps for the same area, unions can be accommodated,
and space may be assigned efficiently for the 'work stack' of anonymous

temporary yields.

) This idealized version takes the possibility into account that in the
actual target computer some types cannot be assigned to just any address,
but only to, say, addresses that are a multiple of four. Also, it does not
assume that the mode of addressing is the same for different types. If a
type with multiple-of-four addresses would leave holes, e.g., because the
values use only three cells, these holes can be used in principle also.

(Computers do exist where this would be useful.)

Some further primitives of the MIAM allow to map a sequence (of unspec-
ified length) of objects of one same type on an area and to access dyna-
mically the k-th object. By using this, together with the primitives men-

tioned above, a complete modeling of ALGOL 68 multiple values can be made.

106

7. STORAGE ALLOCATION

Given the fact that maps may be set up for accessing objects in a given
area, we still need primitives for obtaining (access to) areas as a whole.
The storage allocation regime must allow storage to be freed when an area
has become inaccessible. In contrast to ALGOL 60, a stack regime is not
sufficient, for three reasons:

(a) Because of the parallel actions, environs may have to be switched, so
that at least a 'cactus stack' is needed;

(b) The size of objects in a 'stack frame' might increase unboundedly, be-
cause of flexible multiple values;

(c) Objects may be created whose life-time exceeds that of the current stack

frame, because of global-generators.

So another storage allocation regime is needed, e.g., one supported
by a memory management system allowing garbage collection. Not only does the
semantics of ALGOL 68 require a more general regime; it also allows reali-
zation by means of a memory management system that is simpler and more effi-
cient than the most general system. The scope restrictions of ALGOL 68 are
relevant here. For these to be exploited, they must be inherited in some
sense by the MIAM, giving rise to invariants. Since memory management is
then based on these invariants, they obviously define some interface be-
tween the upper-world modeling of the ALGOL 68 semantic actions when ab-
stracting from memory management (assuming, e.g., an unlimited resource of
areas) and the memory management support. According to the cut principle,
the memory management operations that respect these invariants should not
be abstracted from MIAM primitives, but must be MIAM primitives themselves.

The main primitives obtained this way are instructions for obtaining
access to a fresh area, as it were newly created. Areas can be used to
model locales and generators. (The sample-generators in variable-defini-
tions can usually be accommodated in a locale, using an obvious optimization.
On the other hand, it is convenient to use a separate area for unions and
for the dynamic part of multiple values always, even if no generator is in-
volved.) Areas that are used to model locales must be 'chained' explicitly,
using two pointers (playing the role of 'upon' and 'around' in the ALGOL 68
semantics) .

The usual mechanism for efficient access to various active locales in

a 'block-structured' programming language is the display. Although a

107

display can be modeled with the MIAM primitives already described, this
would be rather costly. On the other hand, introducing the display as a
MIAM primitive constitutes a violation of the cut principle, since it would
be a choice for one particular way of modeling a composite property of the
hypothetical computer. Fortunately, it is quite simple to do away with the
display (DEWAR [4]). The display is simply an array of the addresses of
locales present in the 'around' (lexicographic) chain. It obviates the cost-
ly process of following that chain backwards each time for a non-local ac-
cess. On the other hand, it requires the maintenance of an invariant, which
is certainly not negligible in cost. The idea that allows to dispense with

the display can be sketched in terms of ALGOL 68: a text of the form

BEGIN AMODE X = ...;

BEGIN ...
"BEGIN ...
text using (x)
END

END
is compiled as though the source text had read

.BEGIN AMODE X = ...;

BEGIN ...

BEGIN AMODE X' = X; ...
text using (x')

END

END.

108

The cost of following the around chain is incurred only once, at the inner
identity-definition. Obvious variations on and refinements of this scheme
are possible, but need not concern us at the moment. Notice, however, that
the inner range now using x' may be contained in a routine-text. This works
fine, but some care has to be exercised in order that no undue restriction
of the scope of the routine results (because of the 'necessary environ').
Some attempts to assess the cost of a refined version of this scheme
compared to the traditional solution suggested quite strongly that having

no display is the more efficient approach.
8. PARALLELISM

One of the assumptions in the design of the MIAM is that the actual
target computer has one processor. This permits a major simplification. Col-
lateral elaboration must be modeled in terms of serial execution. (It ap-
pears, anyway, that programmers tend not to write constructs permitting col-
laterality exéept where they have little choice.)

A special case of collaterality is given by parallel actions. These
can be synchronized by semaphores. If these are to be serialized (which is
desirable anyway, for it keeps memory management simple), MIAM programs must
be able to switch environs in the middle of a block. Now, in the hypotheti-
cal computer, there is no such thing as the 'currently active' process.
Applying the cut principle, we find that the notion of a process and the

capability of process switching should be MIAM primitives.
9. FLOW OF CONTROL

ALGOL 68 features a variety of constructs for governing the flow of
control. The corresponding actions are composed of 'Steps'. So the cut
principle suggests that these actions do not correspond to MIAM primitives,
but are also modeled by more primitive actions: the simple and the condi-
tional parameter.

In fact, the MIAM has a large variety of conditional jumps. This sim-
plifies the modeling of various actions of the hypothetical computer. The
standard relational operators are only available through these primitives;

e.g., an assignment like

p:=x >0

109
has to be compiled as though the source text has

p:= IF x > 0 THEN TRUE ELSE FALSE FI.

(This decision is, of course, independent of the cut principle. It simply

reduces the number of MIAM primitives.)
10. ASSIGNMENT

The modeling of composite values belongs to the realm of upperworld
decisions and assignment in the MIAM depends on the way of modeling chosen.
So, by the cut principle, full-fledged assignment cannot be a primitive.
Instead, symbolic execution of assignment generates the code for copying
values, tailored to the mode of the value. Some obvious optimizations for
going through multiple values can be generated immediately in the object
code. Also, in some cases a pointer may (or must) simply be copied, whereas
in an other case the object pointed to has to be copied. Keeping track of
this is clearly an upper-world task.

Therefore, the MIAM has only a copy primitive that is primitive in more
than one sense. This choice is dictated by the cut principle for another
reason also: assignment is already a composite action in the hypothetical

computer.
11. INSTRUCTION FORMAT

The design of a machine as discussed here entails many more decisions
than can be related to the cut principle. One of these decisions is that a
MIAM program is built"from 'instructions' of a classical type. Much can be
said in favour of intermediate graph representations, and the cut principle
would still be applicable. On the other hand, it is not particularly hard to
build such a graph representation (including data flow analysis) from a
MIAM program, which may be viewed as a concrete linearized representation
of a graph.

However, the idea is that more or less conventional techniques, like
macro processing (with the necessary bells and whistlesf, should be appli-
cable tolthe problem of transforming MIAM code to actual target code. The

general format of a MIAM instruction is given by:

instruction: keyword, comma, argument list, semicolon.

110

Most instructions have three or fewer arguments. At most one of these ar-
guments is used to determine an access where the result of an operation is
stored; such an argument is always the last one of the list. Some typical
examples of instructions will be given, and some (in fact most) possibili-
ties for arguments will be illustrated in these examples. The particular

design choices made will not be defended; in many cases they are just some

choice, neither better nor worse than other sensible choices.
(a) COPY, INT1, I6.2, T4;

This is a copy instruction. The first argument indicates that the ob-
ject to be copied is a LONG INT (the '1' stands for the 'size'). The in-
teger can be found by adding the sixth offset to the current top locale
pointer next the second offset to a pointer found there. (In ALGOL-like
style, M[M[T+off6]+0off2].) The 'I' corresponds to 'indirect'. The '6' and
'2' are effectively tags denoting offsets. The copy has to be deposited at
the site pointed to by a pointer in the top locale, found by applying an
offset known by '4'. (Not at the fourth 'field' of the top locale; there is

no implicit 'upreferencing' of result arguments.)
(b) COPY, PTR, &I6.2, &S5;

The '&' takes off one level of indirection. Not the integer would be
copied, but a pointer to it. Similarly, '*' adds one level of indirection
The use of '&' and '*' is severely limited; e.g., '&&' or '**' is always
illegal. The result is deposited in the topmost-but-one locale. (Only the
top two locales and the bottom locale have the privilege of being access-
ible by arguments of a special form. It might appear that the use of 'S’
violates the cut princible. But its meaning is defined independent of the
fact that the MIAM is used to model ALGOL 68. The MIAM leaves, e.g., a
good deal of freedom in modeling ALGOL 68 parameter passing, but S-arguments
are very convenient for many ways of passing information from the caller to
called MIAM code.)

In this instruction, it is clear from the appearance of the second ar-
gument that a pointer is involved. In fact, the first argument of a copy
instruction is always redundant, but it is nice to have the relevant infor-
mation locally available.

The execution could conceivably result in a scope violation. Remember

111

that the MIAM has inherited the scope concept. In a sensible implementation
of the MIAM this should not be checked. The idea is that there exists a con-
tract between the code generator and the MIAM. The code generator guarantees
that it will never generate code that might result in a dynamically unde-
fined situation. In return, the MIAM promises speedy execution. If the code
generator cannot find a proof that the scope restrictions are satisfied, it

has to emit explicit code for a dynamic scope, check.
(c) IFIS, W13, X, A3;

This instruction compares pointers; it may be used to model ':=:'. The
'W' indicates that the argument concerns a temporary object that will never
be inspected again. Otherwise, it is equivalent to 'T'. 'X' is a literal,
roughly corresponding to NIL. The last argument is a label, but of a special
kind. A jump to an A-label causes the execution of the program to be abort-

ed. The number may be used to generate an appropriate error message.
(d) SCOPE, T13, &T14;

The first argument of a scope instruction determines a pointer. The
'scope' (an integer) of the area into which the pointer is pointing, is

delivered in the position given by the last argument.
(e) SPAWN, 3, L88, L90, &T15;

A parallel action descriptor is created, using the labels given as
arguments. The spawn instruction has a variable number of arguments. The
first argument is a literal and determines the length of the variable part

of the list.

These examples give some idea of the flavour. Many combinations of
arguments are excluded (syntactically). For example, the following is il-

legal:

COPY, LAB, A3, *S5;
A-labels may only be used if the jump to the label cannot be deferred.

Also, '*' cannot appear in a result argument; it is one level of indirection

112

too many. Thus, the MIAM is not orthogonal in design. The unorthogonalities
have been chosen in such a way that it is expected that they are not cumber-
some in the design of the code generation, and will often be helpful in the
implementation of the code transformer. If the latter is not the case, it

may be helpful that these unorthogonalities are pure restrictions, not quirks.
So there exists an orthogonal closure of the MIAM. An implementation of that

orthogonal closure is a valid implementation of the MIAM.
12. SOME EXPERIMENTS

In order to obtain an idea how efficient this approach is, some pieces
of ALGOL 68 text were translated by hand into MIAM code, and next from MIAM
code to actual machine code. These program fragments were chosen to incor-
porate some of the heavily used constructs (GRUNE [6]). An attempt was made
to simulate rather simple-minded algorithms.

For the ALGOL 68S compiler on the PDP11/45 a speed-up was cbserved of
a factor of 5.9. This high factor can be explained by the fact that the
ALGOL 68S object code uses subroutine calls rather extensively. Also, the
length of the code was decreased by some 6 percent.

For the CDC ALGOL 68 compiler on the Cyber 72 the code was sped up by
a factor of 1.5, but at the expense of a code-length increase of 8 percent.
The fact that speed-up was obtained here was a surprise; the CDC compiler
was designed very specifically for the (rather anomalous) family of CDC
computers to which the Cybers belong. On the other hand, the precision sug-
gested by the figures quoted is misleading; it may well be that the MIAM

approach would behave less well on a larger variety of programs.
13. CONSTRUCTING A PORTABLE RUN-TIME SYSTEM

ALGOL 68 programs are embedded in the standard environment created
by the 'standard-prelude'. An approach to make this environment portable
is to use the separate-compilation facility. This is most important for
the transput. Instead of the text given in the Revised Report, the imple-
mentation model of ALGOL 68 Transput (VAN VLIET [13]) should be used. This
approach requires extending ALGOL 68 with some additional capabilities,

enabled Bnly during compilation of the standard-prelude.

A quite different matter is the construction of a portable runtime
support system for the 'enhanced' MIAM. This is possible by modeling the
MIAM again on a lower-level (but $till machine-independent and abstract)
computer. This 'MIAC' already has many of the properties of the MIAM, but
of course not those that are expressed in terms of the MIAC. The recipient
of the compiler still has to model most MIAM instructions directly on his
actual computer, but the 'hard' ones are obtained by implementing the MIAC.
In this way parallel processing can be described, and also a complete memory

management system.

The description of a complete memory management system for the MIAM in
terms of MIAC code clearly demonstrated that (at least as far as memory
management was concerned) the cut made by the MIAM was the proper one. First
of all, the desideratum of reduction of complexity was entirely complied
with. It turned out possible to single out all properties of the MIAM rele-
vant to the memory management problem and to describe them in a simple ab-
stract model of the MIAM. This abstract model, being free of details ir-
relevant to memory management, enables one to study the problem of memory
management in isolation. A firm hold on the problem is thus obtained and
possible solutions are more easily surveyed. Furthermore, invariants of the
system can be proved in the model without great difficulty and be used sub-
sequently to increase efficiency. The correctness of the entire memory
management system can even be proved without excessive effort (JONKERS [9]).

The desideratum of portability was also satisfied, in the sense that
an efficient machine-independent memory management system for the MIAM could
be described in MIAC code. This system uses a modified version of the clas-
sical approach with a stack and a heap. Storage for all areas other than
those corresponding to global-generators is allocated on the stack. This
immediately implies that the stack is not a pure stack, because the stack
behaviour may be obstructed as a consequence of the use of flexible mul-
tiple values or parallel actions (see Section 7). By popping inaccessible
stack areas from the top of the stack as soon as they occur there, the
stack behaviour is maintained as much as possible, however. If finally a
clash between stack and heap occurs, the amount of garbage in the stack
can be determined with relatively little effort. If that amount is large,
as compared with the size of the store, the stack is compacted. Due to the
inheritance of the ALGOL 68 scope restrictions by the MIAM, this compaction
is strictly local to the stack (no pointers in the heap need be updated)

114

and can be quite efficient (JONKERS [8]). If the amount is relatively small,
a full garbage collection is performed and both the stack and the heap are
compacted. This also requires a marking phase and is considerably more ex-

pensive than a mere stack compaction.

14. RELATED WORK

There exists an equivalence between (abstract) machines and (program-
ming) languages. Each design of an intermediate code is, in some sense, at
the same time the design of an abstract machine, and vice versa. Often the

choice between the two in presentation is only a matter of emphasis.

In the abstract machines designed for implementing ALGOL 68, a major
distinction can be made between 'high'-~ and 'low'-level machines, in two
respects. One distinction is with respect to the language level: an abstract
machine has a high level if its primitives are clearly and directly related
to ALGOL 68. The other distinction is with respect to the machine itself:
it has a low level if its architecture is close to a computer. (The latter
distinction is becoming increasingly fuzzy.)

The intermediate code in the implementation described by BRANQUART
et al. [3] and the abstract machine of KOCH & OETERS [10] are high-level in
both respects; mapping these on conventional architecture still entails
much work, but a good efficiency can be reached. Direct hardware implemen-
tation is just becoming feasible.

The abstract machines described in TANENBAUM [12] and LANE [11] have
a high language-level and a low machine-level. Built in hardware, they
would relate to ALGOL 68 as the Burroughs B6600 and B6700 to ALGOL 60. Im-
plementation on conventional machines is relatively easy, but only tech-
niques like micro-programming or emulation can prevent a substantial loss of
efficiency.

Low-level in both respects is ZCODE, described by WALKER, BOURNE &
BIRRELL [14]. The MIAM described here fits best in this category. However,
in both respects it has a curious mixture of high- and low-level properties.
For example, the scope concept is directly related to ALGOL 68, and the
existence of parallel action descriptors as a primitive is unconventional.
ZCODE is' an object code for ALGOL 68C and does not cover the full language.
Moreover, it has been designed with machines with very regular registers in

mind. Its use for other machines presents severe difficulties (BIRRELL [1]).

115

No assumption about registers, or even their existence, is made in the MIAM.
Still another possibility is to use an abstract machine that has not
been specifically designed for ALGOL 68, such as JANUS. For the problems

one may encounter with this approach, see BOOM [2].
15. CONCLUSION

A sketch has been presented of the design of an abstract machine for
an ALGOL 68 compiler that serves two purposes at the same time: achieving
a high degree of portability, and reducing the complexity of the design of
the code generator. It appears that this abstract machine may be implement-
ed quite efficiently on many present-day computers.

If one views the abstract-concrete scale as one that scores the rec-
ognizability of the ALGOL 68 origin, the machine described has a curious
mixture of 'high'- and 'low'-level properties. And yet, the design has been
guided by one single principle. Indeed, if one views the distinction be-
tween 'abstract' and 'concrete' in terms of commitment, then the abstract
machine is abstract in the sense that it attempts not to commit the compiler
writer in the freedom of developing a code-generation strategy, including
the optimizations that are reasonable for an ALGOL 68 implementation, nor
the recipient of the portable compiler in the approach, including optimiza-

tion, for realizing it on the actual target computer.

A 'feasibility proof' for the MIAM has not been given. Such a proof
would consist of the construction of an ALGOL 68 compiler with the MIAM as
target, together with the construction of 'code transformers' from MIAM
code to a variety of actual computers. One problem that has come up should
be mentioned. In mapping the MIAM to machines with registers, one should
hope to be able to keepvvariables temporarily in registers in loops (e.g.
the internal variables used for controlling the traversal of multiple
values). To do this, it must be proved that these variables are not affect-
ed in the mean-time by other instructions: their result arguments may not
be an 'alias' of the variables concerned. In many cases the necessary in-
formation is readily available on the ALGOL 68 level, but is buried in the
MIAM code. It seems possible to retrieve it, but this appears to require
the use of algorithmic analysis techniques that are more complicated than
was intended for code transformation. Adorning the MIAM code with the in-

formation from the ALGOL 68 level threatens not only the cut principle,

116

but the whole idea of having a clean interface. A partial, probably satis-
factory, solution, complying with the cut principle, would be to give some
offsets a new attribute, indicating that non-transient pointers to locale
sites corresponding to these offsets will never be set up.

It is conceivable, and in fact likely, that during the construction of

a feasibility proof other problems will present themselves.

Acknowledgement. The present research has been strongly influenced by stu-

dying the systematic treatment of BRANQUART et al. [3].

REFERENCES

[1] BIRRELL, A.D., Problems in implementing ALGOL 68C, in Proc. of the
1975 Int. Conf. on ALGOL 68, G.E. Hedrick, ed., Oklahoma State
University, Stillwater, 1976.

[2] BooM, H., Code generation in ALGOL 68H: an overview, Report IW 103,
Mathematical Centre, Amsterdam, 1978.

[3] BRANQUART, P., J.-P. CARDINAEL, J. LEWI, J.-P. DELESCAILLE & M. VANBEGIN,

An Optimized Translation Process and its Application to ALGOL 68,

Lecture Notes in Computer Science 38, Springer, 1976.
[4] DEWAR, R.B.K., oral communication, March 1979.

[5] ERSHOV, A.P., On the partial computation principle, Information Process-

ing Letters 6 (1977) 38-41.

[6] GRUNE, D., Some statistics on ALGOL 68 programs, SIGPLAN Notices 14,
7 (June 1979) 38-46.

[7] HANSON, D.R., Code improvement via lazy evaluation, Information Pro-

cessing Letters 11 (1980) 163-167.

[8] JONKERS, H.B.M., A fast garbage compaction algorithm, Information Pro-
cessing Letters 9 (1979) 26-30.

[9] JONKERS, H.B.M., Designing a machine-independent storage management

system, Report IW 148, Mathematical Centre, Amsterdam, 1980.

[I0JKOCH, W. & C. OETERS, An abstract ALGOL 68 machine and its application
! in a machine-independent compiler, in GI-5. Jahrestagung,
J. Mihlbacher, ed., Lecture Notes in Computer Science §£!

Springer, 1975.

[11] LANE, H.J., An ALGOL 68 machine and translator, UCLA-ENG-7369, Comp.
Science Dept., UCLA, Los Angeles, 1973.

[12] TANENBAUM, A.S., Design and implementation of an ALGOL 68 virtual ma-
chine, Report IW 4, Mathematical Centre, Amsterdam, 1973.

[13] vaN VLIET, J.C., ALGOL 68 Transput, Part II, An Implementation Model,
Tract 111, Mathematical Centre, Amsterdam, 1979.

[14] WALKER, I., S.R. BOURNE & A.D. BIRRELL, ALGOL 68C Implementation Guide,
Comp. Lab., Cambridge, 1974.

119

AN IMPLEMENTATION OF MODULAR COMPILATION IN ALGOL 68

G.J. FINNIE & M.C. THOMAS

ABSTRACT

This paper describes the modules and separate compilation facility
of the RS family of Algol 68 compilers, and shows how it has been imple-
mented in the RS Algol 68 compiler for ICL 2900 series machines. Although
the major part of the paper concentrates on the implementation within the
ICL compiler, the paper starts with a view of the user requirement for
modules and separate compilation, and with some discussion of the facilities

provided by the RS system and how they compare with the official IFIP scheme.

120

1. INTRODUCTION

Modular compilation systems have been around in one form or another for
many years, with schemes ranging from the totally permissive library mechan-
isms of FORTRAN to the restrictive ideas of Simula. Ideas about modularity
and its place in the programming process developed rapidly in the years which
followed the publication of the Algol 68 Report, yet unfortunately no modular
compilation proposal was included in the 1974 revision. As a result a number
of alternative schemes for Algol 68 modular compilation facilities have
been implemented, and only recently has an official recommendation been
published [2]. As yet there are no implementations of the recommendation
(although we understand that the CDC compiler will be enhanced to follow the
recommendation soon) .

The publication of the definition of Ada has stimulated interest in
modular compilation and separate compilation, and this interest has been
further fuelled by the commitment of NAG Ltd to produce a proper Algol 68
NAG library. Although this library will be implemented initially in the
ICL Algol 68 compiler (2900 Algol 68, a member of the RS family of
revised Report compilers) it is obviously highly desirable that the library
is readily usable with all the major Algol 68 compilers.

No modern programming language can be considered suitable for serious
use on major programming projects unless it provides facilities for secure
modular program development. Most current implementations of Algol 68
provide such facilities; as yet, few implementations of other languages do
so. Unfortunately the Algol 68 position is marred by the differences in the
implementation of these facilities in different compilers.

This paper describes the modules and separate compilation facility of
the RS family of Algol 68 compilers, and shows how it has been implemented
in the RS Algol 68 compiler for ICL 2900 series machines. Although the major
part of the paper concentrates on the implementation within the ICL compiler,
the paper starts with a view of the user requirement for modules and separate
compilation, and with some discussion of the facilities provided by the RS

system and how they compare with the official IFIP scheme.

2. A USER'S VIEW OF MODULAR COMPILATION SYSTEMS

This section of the paper provides a background to the subjective

121

assessment of the RS modular compilation scheme which follows. It will
readily be apparent that in two areas at least, one of the present authors
disagrees fundamentally with the authors of the IFIP recommendation for
modular compilation, and with the designer and implementors of the RS system
as well.

In what follows, the topic of 'modular compilation' (where program
text is constructed in lexically-parallel modules with special visibility
rules) will be treated as if it were largely identical with 'separate
compilation' (where the resulting modules are presented to the compiler as
separate compilation units). The view is taken that forcing the programmer
to compile each module individually to filestore imposes no great inconven-
ience and that the resulting simplification of the user-interface more than
justifies it. However, the point is essentially trivial and should not

obscure what follows.

2.1. Modular compilation facilities

A modular compilation system should assist the programmer by easing
the development of software in 'natural' modules whilst providing the
visibility rules and checking which prevent common errors.

A good modular compilation system should provide:

- separate compilation of declarations of any program object (declara-
tions modules).

- separate compilation of nested closed clauses (cf [2]).

- a natural mechanism for compiling procedures to be called with para-
meters from outside the language environment.

- mechanisms to ensure that necessary recompilations of dependent modules
are done after a change, and that unnecessary recompilations are avoided.

- mechanisms whereby multiple library preludes can be provided, in a way
which allows the programmer to decide whether they are to be used
separately or in some combination.

- no silly restrictions and no surprises.

The visibility of identifiers across module boundaries should be under
the control of the implementor of the module containing their declarations.
There must be no way in which the user of a precompiled module can gain

access to identifiers which were not made public by the module's implementor.

122

2.2. The problems

Two problems commonly arise in the implementation of modules systems.
The first concerns the scope of declarations in 'declarations modules' and
the related subject of when two separate copies of a declarations module
will exist in a program, and when two or more applications of a declarations
module identifier actually identify the same instance of the module. Consid-
er for example the following program fragments (written using the RS

syntax) :

DECS dl:
INT a
KEEP a

FINISH

DECS d2 USE dl:
PROC p = INT:a;
INT b
KEEP p,b

FINISH

PROGRAM w USE d1,d2
BEGIN

END
FINISH

How many copies of Al are invoked (and therefore how many INTs have
been declared)? It is‘easy to invent examples where it is desired that the
DECS module be shared: it is equally easy to invent examples where such
sharing would be disastrous. The requirement is clear - both alternatives
must be available, but the default must be the safe one. This means that
DECS modules must only be shared if the programmer has explicitly requested
that this be done.

That this is the correct decision can be seen clearly if the case of a
library-prelude providing simulation facilities is considered. It is
perfectly possible that such a prelude will use a random number generator
for its own internal purposes, and that such a random number generator will

itself be available as a library declarations module. A typical module might

123

look as follows:

DECS normal random:

REAL last random := 0.4919723;

PROC random = REAL: (..... last random..... ; last random :=);
KEEP last random, random, ... , ...

FINISH

This module has side-effects; it has internal memory.

Suppose now that the user of the library-prelude also has a need for a
random number generator, and knows of the library version. It can be made
available by a simple 'USE normal random' but if now the DECS module is
shared (i.e. a single instance of 'last random' is used by prelude and prog-
ram) , the program is likely to behave incorrectly.

Advocates of module sharing will argue that the fault lies with the
author of the DECS module: it should have been written so that the user was
forced to declare a local 'last random', so that the module had no side-
effects and could safely be shared. This is to miss the point. Firstly, it
is the duty of a language designer to make language features error-resistant,
if possible. Secondly, the DECS module above is the natural way to express
the random number generator, leading to tidier programs in most cases.
Certainly the NAG implementors were very resistant to the idea that the side-
effect-free form should be used. Finally, there is a philosophical objection.
Sharing modules in this way violétes the information-hiding interface between
the prelude and the user program, requiring that the user knows something
about the implementation of the prelude, and increasing the coupling between
the modules.

If the module has no side-effects and can safely be shared this is easy
to determine at compile-time and the compiler should be required to perform
the optimisation. If the module is intended to be shared, its name, or the
identifiers to be used in common, should be passed explicitly through the
module interface (or KEEPlist). The scope of such declarations is then the
same as if they had been included in the program at the point of the USE
that invoked them; this is a safe rule and one that is easy to explain and

remember.

124

2.3. Problem two - communication outside the language environment

The second problem concerns the case where the Algol 68 program is
required to be a procedure which is called from another language. The Report
does not define a syntax for the necessary 'program-with-parameters-return-
ing-MOID', yet this is a frequent requirement once Algol 68 is used in
earnest. It arises immediately if Algol 68 is used as a systems programming
language in a system which is not wholly written in Algol 68. It also
arises in applications programming wherever it is desirable to use Algol 68
for some routines but impracticable to write the whole application (or,
particularly, the main program) in Algol 68. The problem is not entirely
one to do with modular compilation, yet it is related both in the users'
minds and in the detail of the necessary implementation.

The problems are not straightforward. Firstly there must be an accept-
able syntax (the solutions adopted by RS implementations will be described
later). Secondly there must be a mechanism for the prelude and postlude code
to be elaborated at the appropriate time. (It is very embarrassing to have
to find a way to write an Algol 68 procedure to do transput which avoids
the standard files being opened and closed each time the procedure is
called.) Thirdly, it becomes desirable to be able to generate objects which
have a scope so global that they can survive control returning outside Algol
68 to the calling routine. Finally it should still be possible to write
routines in a modular way, using a hierarchy of nested closed-clause modules.
Some of these closed-clause modules may be user or library preludes, so
that the externally visible parameter interface would not necessarily be
associated with the outermost module. Possible solutions to this can be
designed, but it is important that only one level in the hierarchy is
allowed access to the parameter interface, and then only in one place,
otherwise unsafe side effects may occur.

These problems have been solved in different ways by different imple-
mentors, but it would be useful if there were an agreed standard for future
implementors to follow.

The next section of this paper describes the RS modular compilation
system facilities and syntax. It will be seen that the solutions adopted
to both these problems fail the requirements outlined above. A later section
comments’ briefly on these failures and compares the solutions with the IFIP

recommended scheme.

125

3. FACILITIES OF THE RS MODULAR COMPILATION SYSTEM

3.1. Introduction

The RS modular compilation system is designed to provide a powerful
and secure method of program development.

Three types of module are provided; declarations modules which enable
modes, procedures and other items to be declared and compiled in advance of
their use in other modules; closed clause modules which may be complete
programs or may be nested within another and have 'holes' where inner
modules are later to be inserted; composition modules which assemble a
number of closed clause modules together. Closed clause and composition
modules are collectively known as program modules, in distinction to

declarations modules which can never form a complete program on their own.

3.2. Keeplists

The programmer defines which indicators declared in one module are
available to another using keeplists, and checks are made that these defined
interfaces are adhered to. The keeplist is written as a sequence of indica-
tors separated by commas. When an operator is included, the modes of its
operands must also be specified in brackets after the operator name, in

order to distinguish between different versions of the operator. For example,

MATRIX, * (REAL, MATRIX), ml, m2

3.3. Declarations modules

The simplest form of declarations module is

DECS decstitle:
body

KEEP keeplist
FINISH

Here decstitle is some identifier to name the module, body (which is not
enclosed by BEGIN and END) consists of Algol 68 declarations and other
phrases useful for initialisation purposes, and keeplist is as described
earlier. Indicators in the keeplist may be used by other closed clause or
declarations modules; access to the keeplist of a declarations module is
acquired by the USE clause so that the heading of a declarations module

that uses one or more others becomes

126

DECS decstitle USE decstitlelist:

where decstitlelist names the other modules required, separated by cormas.
There is only one instance of each declarations module and it may be
used by any number of other modules. In order to free the user from having
to consider the order of elaboration of a set of declarations modules and
to prevent side-effects, the restriction is enforced that the outer level
of a declarations module may not contain procedure calls or labels, nor use

any references kept from another module.

3.4. Closed clause modules

A simple program will normally consist of a single closed clause module,

possibly supported by one or more declarations modules, taking the form

PROGRAM progtitle USE decstitlelist

closed clause

FINISH

where progtitle is an identifier to name the module and the USE clause is
only required if declarations modules are used.

More complex programs may be broken down into simpler components and
written as a hierarchy of nested closed clause modules. The HERE clause
(treated as a VOID unitary clause) is used to specify a 'hole' in a module
and the indicators to be made available to the module filling the hole. It
takes the form

HERE holename (keeplist)

where holename is some identifier to name the hole, and keeplist, as before,
specifies the kept indicators.

If a module contains holes, their names must be listed in the module
%eading, and if the modﬁle is to be nested within another it must specify,
through a CONTEXT clause, the name of the hole in which it is to fit, so

that the general form of the closed clause module is

PROGRAM (holenamelist) progtitlel

CONTEXT holename IN progtitle2

USE decstitlelist
closed clause including HERE clauses

FINISH

127

3.5. Composition modules

A composition module contains no actual Algol 68 text of its own; it
merely provides a specification for the assembly of a hierarchy of previously

compiled closed clause modules. The form of a composition module is

PROGRAM progtitle
COMPOSE nest
FINISH

where progtitle is an identifier to name the composition module itself and
nest specifies the modules to be assembled by pairing up formal holenames
with actual modulenames as demonstrated in the following example.

Given a program module starting
PROGRAM (x1, x2) x
and a set of inner modules with the headings
PROGRAM a CONTEXT x1 IN x
PROGRAM (bl) b CONTEXT x2 IN x
PROGRAM c CONTEXT bl IN b
then the following composition module would specify their assembly

PROGRAM comp
COMPOSE x (x1 = a, x2 = b(bl = ¢))
FINISH

A composition module does not contain a CONTEXT clause; the context that

applies to it is the one specified in its outermost closed clause module.

3.6. Partial composition

A composition need not fill all the holes in its constituent modules;
it may leave some to be filled in a Lgter composition. A composition module
that contains unfilled holes is known(as a partial composition, and is
specified by pairing one or more of the constituent holenames not with an
actual module name but with a new holename of its own, introduced by the
symbol HERE. Thus, if we omit module ¢ from the example in the previous

section, we obtain the partial composition

PROGRAM (h) pcomp
COMPOSE x(x1 = a, x2 = b(bl = HERE h))
FINISH

128

No explicit keeplist is written for a hole in a partial composition;
the available indicators are defined to be all those kept en route from
the outermost module to the symbol HERE in the composition so that in the
above example the context 'h IN pcomp' provides all the indicators kept
at 'x2 IN x' as well as those at 'bl IN b'. This combination of keeplists
is the main purpose of partial composition, effectively allowing a module
to be compiled in several contexts simultaneously, a facility which
is useful when a program must run inside several independent environmental

packages such as might be provided for simulation or graph-plotting.

3.7. Declarations modules in a context

Declarations modules, like closed clause modules, may include a CONTEXT
clause in their heading which will provide access to indicators kept
at the specified hole. In order to use such a declarations module, the
using module must also have access to those same kept indicators, and
therefore the context specified by the using module must either be the same
as that of the declarations module or be a dependent context resulting from
partial composition (which as we have seen would supply the same kept indi-
cators and more besides).

The context of a declarations module also determines its lifetime. For

example, with the set of modules

PROGRAM (h) pl
BEGIN
TO 20 DO HERE h(...) OD;
END
FINISH

DECS dl CONTEXT h in pl:
INT i := 0

KEEP i

FINISH

DECS d2:
INT j:= 0
KEEP j
FINISH

129

PROGRAM p2 CONTEXT h IN pl USE 41, 42
BEGIN
print ((i +:=1, j +:= 1))
END
FINISH

the value of i printed is always 1, whereas that of j will range from 1
to 20, since a new instance of module d1 (but not of d2) is created each

time the hole h is entered.

3.8. Preludes and the void context

Any closed clause or declarations module that has no explicit context
specification is regarded as being compiled in the context of the standard
prelude, which may be thought of as a closed clause module within which
programs are automatically composed by the compiler.

It is clearly desirable that items from the standard prelude are
available not only to the outermost level of a program but also to any
nested modules. This idea has been generalised to arrive at the notion of a
prelude as a truly outermost module with certain special properties which
may be exploited in order to set up non-standard preludes for particular
applications. These are
(i) 1Items kept at a hole in a prelude and from any declarations modules

at that context are available to all dependent modules to any depth
] of nesting.

(ii) A closed clause module that specifies a prelude context may be composed
within the prelude or within any dependent context.

A closed clause module is designated as a prelude by the special context

specification CONTEXT VOID.

Declarations modules may also specify CONTEXT VOID in which case they
may be used by any other module. This is the limiting case of the general

rule given in 3.7 for the use of declarations modules in a context.

4. THE ICL 2900 IMPLEMENTATION: COMPILE-TIME

4.1. The RS compiling system

The RS compiling system is described in detail in [1]. Basically it may

be regarded as shown in Diagram 1. The RS compiler itself, which is complet-

130

ely machine-independent, is conceptually surrounded by a 'shell' which
provides the necessary interfaces to the host system, for example procedures
to read lines of Algol 68 source, to output error messages and, more
important to the current discussion, to obtain information about already
compiled modules. These 'shell' procedures, which are actually passed as
parameters to the RS compiler, must be provided by each separate implementor
of an RS system, in addition to the machine-dependent 'translator' which

is responsible for converting the 'stream language' output by the RS compiler
into object code for a particular machine. (Further details of the 'stream
language' may be found in [1]).

The 'shell' interfaces concerned with modular compilation are

give module details - provides the RS compiler with information about the
properties of some specified module
give spec - provides the RS compiler with information about a

keeplist

The stream language, passed from the RS compiler to the translator via the
procedure 'output', contains elements which provide information pertinent

to modules, including both information about the current compilation (such

error
messages
>
faults >
Algol 68 RS >
— | input . output Translator
j Compiler -
Source el
>
L]
-
»
specifications
'
streams
preV}ously new object
compiled
module
modules
! . .
library of compiled modules

Diagram 1 - The RS compiling system

131

as the name and type of the current module) and information about other

modules, (such as details of available kept identifiers).

4.2. Storing module information

The facilities of the RS modular compilation scheme clearly imply that
when a module is compiled, the object file produced must contain not only the
instructions to be obeyed at run-time but also information to allow the
module to be utilised during the compilation of some subsequent module. For
example, the object file associated with a declarations module must contain,
in some form or another, a description of the module's keeplist so that
when that module is named in a USE statement the compiler can determine what
items are included in the keeplist and check that the second module is
using them correctly.

In terms of OMF, the 2900 Object Module Format, the logical place to
store this sort of information is in the 'diagnostic data records' which are
héld at the end of an object file.

The compiler writer is completely free to decide the format of these
records, their primary purpose being to provide information for a post-
mortem report in the event of a run-time error. Since the diagnostic data
records are not accessed by the 2900 loader, additional information that
is required only at compile-time may be stored there without introducing
any overhead on program loading.

Information used at run-time by the modular compilation system is
étored in the Procedure Linkage Table (PLT) area of each module. This area
is used in the standard way to hold inter- and intra-module linkage
information, for example external references which are 'fixed up' by the

loader to virtual addresses when the module is loaded.

4.3. Information written to object module

When a module is compiled, the following information is written to the
diagnostic data records of the object file created, for use during the
subsequent compilation of other modules:

(1) a description of the properties of the module as a whole, including
- the name of the module
- whether the module is a declarations module or a program module, and,

if the latter, the number of holes it contains

132

(ii)

- the name of the surrounding context of the module (both holename

and modulename)

- the name of the prelude context of the moduie, if different from the

above.
a specification of each of the keeplists provided by the module; for
a declarations module there will be only one of these, for a program
module one for each hole in the module. Except for a keeplist as-
sociated with a hole in a partial composition, the specification is
a coded representation of the identifiers, modes, etc, in the keep-
list. The translator can treat this as a single character string
since the RS compiler is responsible for the encoding and decoding
of this information. For the partial composition case, where the ac-
tual keeplist available is the concatenation of several individual
keeplists (see 3.6 above) the names of the contributing contexts are

instead recorded as the specification of the composite keeplist.

The details necessary to construct the above information are obtained by

the translator from elements of the stream language output by the RS com-

piler.

A unique name is also generated for each keeplist specification and for

the module itself. These names are also written to the information in the

object file to provide a 'time-stamping' facility for compatibility

checking. (See 4.5 below.)

4.4.

(a)

Use of module information

The module information stored in the object file is utilised as follows:

When the RS compiler encounters a CONTEXT statement in the source
prbgram, it calls the shell procedures 'give module details' and 'give
spec' which prompf the shell to search the filestore for the named
program module and to extract the specification of the keeplist as-
sociated with the named hole. The objects in the keeplist are then
determined and effectively treated as though they had been declared
in the current compilation. If the keeplist is a composite one (i.e.
the context is a hole in a partial composition) then the process is
invoked recursively for each contributing context. The name of the
prelgde context to be associated with the current compilation is ob-
tained from the prelude context recorded in the module named in the
CONTEXT statement, and its specification is also found and processed

in a similar way.

133

(b) Similarly, a USE statement causes the compiler to locate (via the
shell) the named declarations module, extract its keeplist specifi-
cation and 'declare' the associated identifiers, etc. The context of
the declarations module is checked to be consistent with the rules
described earlier (3.7).

(c) When a composition module is compiled, all the modules named are
located and their context specifications checked to ensure that they
can be put together in the specified way. The context information
pertaining to the outermost module is carried across to the resultant

composition module.

4.5. Unique names for compatibility checking

To ensure complete compatibility of modules, a unique name is generated
for each keeplist in a module and also for the module itself. The names are
constructed from the time of day down to a resolution of 128 microseconds,
which is considered to be sufficiently 'unique' for this purpose. On suc-
cessful compilation of a module,the translator searches for a previous
version of that module and, if one can be found, compares its interfaces
(keeplists, context, etc) with those of the new module. If a keeplist is
identical in the two modules (i.e. contains the same identifiers, with the
same modes, in the same order), then the unique name of the old keeplist is
carried over to the new one, a new unique name being created otherwise
(or of course if no previous module was found). The unique name of the
module itself is only carried forward if all its interfaces (including
contexts, number of holes, etc.) are identical with the old version.

Tbe purpose of this scheme is to ensure that when a module is
recompiled and any of the external interfaces to the module have been
changed, then any previously compiled modules dependent on those interfaces
must also be recompiled. Conversely, if a module is recompiled without
changing its interfaces, there is no need to recompile any dependent modules.

The RS compiler performs certain compatibility checks, for example
that the context of a used declarations module is compatible with that of
the using module, or that the modules named in a composition can<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>