

P!l)_n.ted a.t .the Mathematic.al Cen.tJie, 413 K/f./.JMlaan, Am6.te.Jtdam.

The Mathematic.al Cen.tJie , 6011.nded .the 11-.th 06 Feb'1.U1V1.IJ 1946, ,u., a non­
p!W 6U w:Ut.u.:tio n aJm.ing a.t .the pJWmo:Uo n o 6 pwr.e ma.the.ma:Ue!i and ill.,
appUc.ationJ.,. 1.t ,u., -6poY11.>01Led by .the Ne.the.Jtland6 Gove.Jtnmen.t .th!Wu.gh .the
Ne..the.Jtland6 O!Lganiza:Uon 6DIL .the Advanc.e.men.t 06 PUILe Re-6e.a!Lc.h {Z.W.0.).

MATHEMATICAL CENTRE TRACTS 134

PROCEEDINGS INTERNATIONAL
CONFERENCE ON ALGOL 68

J.C. van VLIET (ed.)

H. WUPPER (ed.)

RECHENZENTRUM DER

RUHR-UNIVERSITAT BOCHUM, BRD, MARCH 30-31, 1981

MATHEMATISCH CENTRUM AMSTERDAM 1981

1980 Mathematics·subjectclassification: 68-06,68B10,68B20

Co~uting Reviews: 4.22,1.52,4.34,4.12,5.23

l.

INTRODUCTION

"What can we do with ALGOL 68?" is the question raised by the chairman

of the Standing Subcommittee on ALGOL 68 Support in the first contribution

to this conference. The three main topics of the conference suggest three

possible answers to this question: one can teach the language, implement it,

and apply it.

The papers collected in these proceedings deal with various aspects of

teaching, implementation, and applications. They do not attempt to fully

answer the question of what can be done, but they hopefully will provide

some useful pieces of information, both to those who want to learn more

about the,language, and to those who are actually involved in problems in

the areas addressed.

In several respects, ALGOL 68 has not been very successful. It is not

heavily used except at a number of sites in Europe (most notably the UK),

its new terminology has not been widely adopted, it is difficult to implement

(or isn't it). But many people who know the language feel that its use to

write programs reflects only one aspect, and that the more important

advantages stem from its orthogonal design, carefully chosen notation, and

clarity.

ALGOL 68 offers a unified view of both the user program and its environ­

ment. This combination, together with its carefully chosen notation, offers

a good basis for teaching the language, and for understanding programming

in' general. ALGOL 68 is the only language which offers such a complete,

setting, which allows one to develop programs independent of the outside

world.

It ·is our firm belief that many of the everyday problems that occur in

programming are easily.solved when the benefits of ALGOL 68 are taken into

account. This conference may be regarded as an attempt to reveal some of

these benefits.

The Program Committee for this conference consisted of

H. Ehlich (Ruhr-Universitat Bochum, BRD)

C.H.A. Koster (University of Nijmegen, The Netherlands)

A.D. Mc,Gettrick (University of Strathclyde, Glasgow, UK)

S.G. van der Meulen (University of Utrecht, The Netherlands)
I

L. Trilling (Universite de Rennes, France)

J.C. van Vliet (Mathematical Centre, Amsterdam, The Netherlands)

H. Wupper (Ruhr-Universitat Bochum, BRD).

.1..1.

During the refereeing process, much help was obtained from P. Bakkus,

A. Couvert, D. Grune, P. le Guernic, R.B. Hunter, H. Jonkers, K. Kleine,

L.G.L.T. Meertens, F. Ployette, A. Quere and J. Voiron.

We thank the Director of the computer centre of the Ruhr-Universitat

Bochum, Prof.Dr. H. Ehlich, and his colleagues, who took care of the local

organization.

We thank the Mathematical Centre for the opportunity to publish these

proceedings in their series Mathematical Centre Tracts and all those at

the Mathematical Centre who have contributed to its technical realization.

J .c. van Vliet

H. Wupper

.l.l.l

CONTENTS

Session 1 (Monday, March 30, A.M.)

What can we do with ALGOL 68 (invited lecture)

S .G. van der Meu1en • . 1

Syntactic errors made by beginners using an ALGOL 68 subset

J.. Andre & J. Barre 17

A comparative evaluation of ALGOL 68 for programming instruction

P.R. Eggert & R .C. Uzgalis • • • • • • • • • • • • • • .. • 33

Session 2 (Monday, March 30, P.M.)

Teaching with ALGOL 68 in Dresden (invited lecture)

G. Stiller • 45

Semantic analysis and synthesis in the ALGOL 68 R 4000 compiler

H. Loeper, H. -J. Jakel & H. Pietsch ••••••••••••••••• , •••••• • •• • • • 59

Essay on copying

K. Wright • 81

On the design of an abstract machine for a portable ALGOL 68 compiler

L.G.L.T. Meertens • 97

Session 3 (Tuesday, March 31, A.M.)

An implementation of modular compilation in ALGOL 68 (invited lecture)

G .J. Finnie & M .c. Thomas •• 119

Programming languages for a course in data structures

V.J. Rayward-Smith ••• 143

Context-free grammars and derivation trees in ALGOL 68

V. Linnemann • 16 7

Session 4 (Tuesday, March 31, P.M.)

An ALGOL 68 prelude for the implementation of test generation algorithms

S.D. Butland ••• 183

A programming system for interval arithmetic in ALGOL 68

G. Gunther & G. Marquardt • 201

Teaching with ALGOL 68, in Manchester (invited lecture)

C.H. Lindsey 217

List of .addresses of authors ••••• ; •.••••••••••••••••••••••••••••.••••• 231

WHAT CAN WE DO WITH ALGOL 68

S.G. van der MEULEN

ABSTRACT

Despite its power, orthogonal design, and other nice features, ALGOL68

has not become a widely used language. Some possible reasons for this

neglection by the computing community are commented upon. The paper also

gives a short history of the way the language developed, and sketches

a possible future. Finally, the place and tasks of the Subcommittee on

ALGOL68 support are elaborated upon.

2

1. WHAT CAN WE DO WITH ALGOL68?

The most obvious answer to this question - and also the most natural

one - of course is: We can write programs in it. And, beyond any doubt,

this was precisely what we had in mind - when we designed the language,

went to the limit in an attempt to define it with the utmost rigour, intro­

duc~d it informally "for the uninitiated reader", implemented it with a keen

eye for possible improvements, reconsidered and revised it with a keen and

open eye for possible implementations, then went to an even further limit in

redefining it with even more rigour and less consideration for the uninitia­

ted, reintroduced it in an informal revision, implemented it again (and now

complete and unabridged) and started to promulgate it, modelled its transput

cleaning an (in spite of all efforts) still clumsy cluster of often overspe­

cifying I/O- and file-manipulating routines, explored its possibilities

through subsets and supersets and by extending it in its semantic prelude

for particular application areas------- and we wrote papers and books on

it: primers, guides, treatises, conference proceedings and textbooks on

various aspects such as two-level grammars, orthogonal design, recursive

modes and mode-equivalencing, new implementation techniques, possible ex­

tensions --- and so on etcetera. But did we write programs in it?

An often heard objection is: There are no good compilers. But there

are. And not only on CDC-CYBERs - also on IBM370s, on DEC20 and PDP11, on

ICLs and other systems. Their availability may leave something to be de­

sired (in no small measure a matter of demand), but they exist and some of

them are pretty good - for teaching purposes or for production aims or for

both._ One of the benefits of an ambitious and well-designed language is,

that the circle of ~ts implementers is limited to competent and ambitious

experts. As to demand and supply: it is a proven fact that manufacturers

can be coerced into implementing the language (CDC) or supporting an exist­

ing implementation (DEC). It is - at least partly - up to those who want to

write programs in it.

Another ~llegation is: There are no easy (and get-at-able) books on

the language and its use. But again: there are. In the small library of our

small computer science department we have as many titles on ALGOL68 as on

any otQer programming language, including PASCAL which is a heavily support­

ed language in our university. Yes, but they are difficult for the beginning

programmer. Are they, all of them? It is true that The Report is unreadable

for the non-expert and producing headaches with almost any one else. It is

3

also true that the other, more or less officially suppo~ted IFIP-WG2.1

"companion volume" - the Informal Introduction - is not a primer for the

programming novice: it rather is another (and pretty precise) description

of the whole language, and only informal as compared to that monstrous

monument of formal rigour which is the Report. But it is equally true that

most of the other primers, practical guides, introductions, tutorials and

what else do we have, have been written for and are quite easy readable by

any student and any intellectual who is able to think on a level not below

FORTRAN.

And yet: we don't write programs in it. Or do we? Let us try to de­

limit more or less who are "we". Apparently, the "we"_ of the first para­

graph is the small group of those who designed the language (IFIP-WG2.1 &

affiliates), implemented it for the first time (the Malvern people of the

Royal Radar Establishment), revised it (WG2.1 & affiliates & many respond­

ers), implemented it again (several groups and even individuals) and wrote

about it (see bibliography) - not so many amongst them actually wrote pro­

grams in it. I nciw'wake up to the fact that I wrote and tried my first

ALGOL68 program in 1975 (shortly after the release of the CDC-CYBER imple­

mentation). The "we" of the ALGOL68-users is another "we": it is a very

small subset of the total "we" that constitutes tjJ.e computing community.

I guess that many of you belong to that small subset, an I do (more or

less), and my students and some of my scientific friends, and presumably

_your students and some of your friends, and - a very rough estimate - per­

haps another ten times that total. A very small subset indeed. So, referring

to the computing community - even if confined to the scientific computing

commupity - we must admit: We don't write programs in ALGOL68.

And so the que~tion arises: WHAT CAN WE DO WITH ALGOL68?

2. A PIECE OF HISTORY

Faced with the phenomenon of a programming language which is compara­

tively rarely.used for real straightforward programming, but is neverthe­

less neither an obscure language, nor an unimportant language, and trying

to understand this phenomenon, we must know something of its turbulent and

confus~ng history. Whenever people start studying the history of computer

science, one of the problems they cannot avoid is why programming language

design always seems to generate so much heat and bitter disputes. And here

is a rich source of material for at least one fascinating thesis on the

4

interference of scientific controverse and (only psychologically explicable)

personal emotion.

When IFIP-WG2.1 in Munich, december 1968, after a sequence of exhaust­

ing meetings (more and more resembling heavy fought battles) finally accept­

ed the "Final draft report on the algorithmic language ALGOL68" as the basis

for a final "Report on the Algorithmic Language ALGOL68", there was a highly

unfortunate side-output (so to say): a."minority report" of two pages. The

six WG2.1 members undersigning it, certainly had their reasons - they left

the group and found another base of operations in a new working group IFIP­

WG2.3. (Programming Methodology). Their criticism was serious and, from

their standpoint, in a sense inevitable. Notably, however, it hardly regard-

ed the language as such - it rather was a sharp polemic against the defining

mechanism. And above all: it had been dictated by anger (right or wrong: I

am not writing that historical thesis).

It was a historical accident that it took quite some time before the

160-pages Report could be printed after a last finishing touch of the draft

(Nume~ische Mathematik, Vol 14, 79-218, 1968), whereas the 2-pages minority

report ran around the computing world in considerably less than eighty days

- as.could be expected. Consequently, the almost unreadable Report was re­

ceived by a warned (if not biased) community and hardly taken for what it

was: an extremely precise description of a very powerful language in need

of "the crucial tests of implementation and subsequent use" (quotation from

_the preface to the Report). Amongst the few who actually read this remark­

able document, and apparently understood it, were those who implemented it

for the first time. Their ALGOL68-R compiler (Royal Radar Establishment,

United Kingdom) - running as early as 1971 - without doubt, saved the lan­

guage.

Reinforced by a fresh new quartet, the authors continued to reconsider

and revise the language, working through a several meters high pile of cor­

rections, improvements, suggestions, proposals etcetera - surprisingly,

those who read the Report appeared to understand it quite well and some­

times showed an even deep understanding. The Malvern-experience, of course,

had a g~eat influence on this painstaking revision process. It was not be­

fore 1973 (WG2.1 meeting in Los Angeles) that the working group accepted a

revised,ALGOL68 and commissioned the (now eight) authors to rewrite the

Report using an enriched form of the two-level grammar.

And then it took almost two years (of hard work with, and new dis­

coveries in the expressive power of two-level grammar) for doing the job.

5

The outcome was a much more readable "Revised Report on the Algorithmic

Language ALGOL68", though it remained a visitation for the application

orientated (and thus in particular respects naive) potential reader. The

first edition appeared late in 1975 - shortly after the release of its first

full implementation (on the CDC-CYBER). Not many seem to know that what we

still call ALGOL68, in fact is ALGOL73, which was not available before 1976.

I think it was a psychological mistake not to call it ALGOL73, or even

ALGOL75. Anyhow, in a rather precise sense, ALGOL68 is an at least five

years younger language.

In the mean time, however, two very important events took place: PASCAL

conquered the world and - not unlikely - ADA may take over on the longer

run. Again we must ask ourselves: WHAT CAN WE DO WITH ALGOL68?

3. A POSSIBLE FUTURE

It is interesting to investigate in which sense ALGOL68 might be con­

ceived as "a language somewhere between PASCAL and ADA". Clearly, histori­

cally, it is entirely wrong: ALGOL68 existed years before the brilliant

didactician and compilerbuilder Niklaus Wirth created PASCAL. Moreover, the

three languages had different (though in some sense also similar) design­

objectives:

- The programming language PASCAL was originally developed for teaching

programming, with an emphasis on the techniques known as structured

programming.

ALGOL68 is designed to communicate algorithms, to execute them effi­

_ciently on a variety of different computers, and to aid in teaching

them to students.

- ADA is a programming language for numerical applications, systems pro­

gramming applications, and applications with real time and concurrent

execution requirements.

On the other hand, PASCAL can be closely approximated by a small subset of

ALGOL68 (Wirth is a wise man, knowing his own and his students limitations),

and ADA (borrowing its notation from PASCAL) borrowed quite a lot of basic

ideas from ALGOL68 (but, alas, not the great binding principle of orthogo­

nal desagn). It certainly is no act of usurpation when we classify both

PASCAL and ADA under the ALGOL-like languages (though their spiritual fa­

thers seem not to like, or perhaps even not to understand the very spirit

of our ALGOL). A few remarks seem to be relevant in this context:

6

- PASCAL is not really the great language for programming education. Of

course it is much much better than BASIC, it is a relief after FORTRAN, and

it is an improvement upon ALGOL60 (though certainly not in every respect).

However, if weighed against for example SIMULA67, I would prefer the latter:

the SIMULA class-concept is much more important and interesting for scien­

tific education than the PASCAL-"set".

- PASCAL's frequently advertised strength (i.e. its wise limitations), is

also its weakness. It may be a nice, and easy, and even charming language

for the beginner - but once he knows more or less what is programming about,

he bumps his head against some missing feature (which he cannot create so

easily) and he has to switch over to other languages for the real program­

ming tasks, the real software design. I also have some difficulty with the

term "easy language": that is not the real issue - what we need are lan­

guages that elucidate the process of program design in-general, and precise­

ly here PASCAL is a too restricted language.

- PASCAL's actual strength is its implementability: it easily beats FORTRAN

in this respect (even with rll!ltime-efficiency). Indeed - recently, as pro­

grammers in business and industry at last have begun to discover the severe

limitations of traditional programming languages, interest in putting PASCAL

to work outside the classroom has increased. But THE important boost for

PASCAL has come from its widespread implementation on microcomputers. PASCAL

is becoming one of the standard languages that every programmer should know,

for THAT reason!

- ADA is too young (and also too undefined at present) to be evaluated with

respect to its design objectives. In view of the military power behind it

(quo yadis) and the inevitable pressure on computer industries as a conse­

quence, ADA will be "doomed to succeed" (a down-to-earth forecast of Gerhard

Goos).

Now the situation becomes clearer: whether we like it or not, the fu­

ture computer scientist must be familiar with at least FORTRAN (of course),

PASCAL and ADA (and very likely also some assembler language, and PL/I, and

LISP, and SIMULA, and name it yourself). It then is my conjecture, even my

conviction, that a well-chosen subset of ALGOL68 is far and away the best

language to begin with (in scientific education, and in particular at uni­

versities). Here are my arguments:

A Pascal-size subset of ALGOL68 is easier to learn and to use than

PASCAL itself (orthogonality= inherent logic).

Such a subset is an excellent starting point for learning the whole

language.

7

ALGOL68 is, in a restricted but clear and useful sense, an extensible

language (cf. TORRIX, GRAPHEX68 etc.).

- ALGOL68 has machine-oriented primitives (BITS, BYTES and the usual op­

erations on these): low-level machine-programming can, in no small

measure, be taught entirely within ALGOL68 (try it!). From there to

any assembler language is hardly more than a few small steps.

And here is my main argument:

- If you have learned one language (A), and have to switch over to an~:

other language (B), the easiest transitions are always those where

A=ALGOL68. There is only one exception, namely the trivial situation

where Bis (in some sufficient sense) a sublanguage of A.

We did a bit of home-cooked sociological research in an attempt to find sup­

port for this statement, asking (over quite some period of time; the inquiry

continues) every student we met learning a new programming language, to give

us an estimate of· how difficult/time-consuming it was. The following transi­

tion scheme reflect our findings:

LISP

~r © ALGOL68), ADA

8 ~Jr~ @~ @ >

~Jt~ ALGOL60

T
SIMULA67

iii
6

FORTRAN

ili
),, PL/I

~r
ASSEMBLER BASIC

8

The digits have more or less the following meaning:

10 without any difficulty (transition to a sublanguage)

9 very easy

8 with a little bit of effort

7 it took me some time

6 I had to work on it

I found it difficult 5

4

3

2

1

the language I knew did not help me at all

the language I knew was a real source of errors

the language I knew was my main difficulty

I had to unlearn before I could start to learn

For a good understanding: this transition scheme cannot be considered, nor

used, as the outcome of a carefully designed scientific inquiry. It should

also be pointed out, that all transitions are isolated (as soon as a guy

knows more than one language the inquiry may loose its meaning!). Yet, the

figures seem plausible.

If they are true (and I think there may be quite some truth in them),

then they are important for everyone who has to take decisions in planning

computer science curriculae. Please, do your own inquiries, if you are in

a position where you can find students who started with FORTRAN, or PASCA~,

or ALGOL68, or even with LISP, and have the opportunity to learn one of the

other languages. And tell me about your findings.

4. ALGOL68-EDU

This is the PASCAL-size subset mentioned above: EDU= Educational

Decision (university' of) Utrecht - or simply an abbreviation of EDOcational.

ALGOL68-EDU is the orthogonal span of ALGOL68 without:

label-definition, GOTO, GO, EXIT,

PAR, SEMA,

OP I PRIO,

LONG, SHORT, FLEX, UNION,

COMPL, BITS, BYTES,

FpRMAT, FILE, CHANNEL,

and every syntactic construct or operator, that comes in the wake of it.

That is, the following bold-symbols do not occur in the subset:

ARG BIN BITS BYTES CHANNEL COMPL

ELEM EMPT~ EQ EXIT FILE FORMAT GE

IM LE LENG LEVEL LONG LT MINUSAB

CONJ

GO

NE

DIVAB DOWN

GOTO GT I

OP OVERAB

PAR PLUSAB PLUSTO PR PRAGMAT PRIO RE SEMA SHL SHORT

SHORTEN SHR TIMESAB UP UNION

we use however:

+:= -:= *:= /:= +=:

** <= >= ""

For a detailed description, a 1~-level grammar in syntactic diagrams and

9

a simple semantic explanation, we refer to the "ALGOL68-EDU REFERENCE MAN­

UAL", presumably available during this conference or soon thereafter.

We now have an almost six-year experience with this subset (known as

SPEEDY68 before it stabilized): about 250 students learned programming with

it. The results seem to be quite satisfactory. Our most difficult group is·

the FORTRAN-programmers who want to take computer science courses and have

to unlearn their clumsy FORTRAN-statement style of writing programs.

We do not have an ALGOL68-EDU compiler - we use the full-ALGOL68 im­

plementation on the CDC-CYBER. We would like to have an ALGOL68-EDU prepro­

cessor (for more didactic error-messages and -warnings), but do not really

need one - many students start to use non-ALGOL68-EDU features from the

full language, anyhow (and right they are). EDU is rather a pedagogical ad-

.vice than a sublanguage in its own right. We believe that an EDU-compiler

will not be an enormous piece of work, and if it is a portable compiler (I

mean really portable) it may become.a milestone in computer science educa­

tion at universities.and a blessing for the language.

5. WHAT CAN WE DO?

Preliminary question: What did we do?

Immediately after the Los Angeles decision on the revision of the lan­

guage, a standing subcommittee on ALGOL68 MAINTENANCE AND SUPPORT was set

up; it still exists. Its first task became, in the natural course of things,

to assist the 4+2+1+1 group of revising authors in their painstaking labour.

When this at last came to an end (there are ten years between the very first

draft and the final revision), the subcommittee more and more found its pro­

per working domain:

Clarification of the Report where necessary.

10

Correction of printing errors and other mistakes.

- Discussion and final judgement of sublanguages and 11super-.lang1,;1age 11 -

feautures.

Promulgation of the language.

Under "Clarification--------" we find important pieces of work such as Hans

van Vliet's ALGOL68 TRANSPUT model, and Wilfred Hansen & Hendrik Boom's THE

REPQRT ON THE STANDARD HARDWARE REPRESENTATION FOR ALGOL68. Under "Correc­

tion-------" fall all more or less bureaucratic activities - not particular­

ly amusing, but certainly necessary. Under "Discussion-------" fall the

more creative activities, such as Peter Hibbard's definition of ALGOL68-S,

and Charles Lindsey & Hendrik Boom's proposal for library modules. Finally,

under "Promulgation-------" we find all other things to be done.

I feel uneasy with regard to this promulgation business. Clearly, there

is something to be done:

- the compilation and updating of a complete ALGOL68 bibliography,

- the registration and updating of all available implementations, and

where they cbme from, and who maintains them,

- the issue of a NEWSLETTER.

Our host in Bochum - the Ruhr Universitat - made us an offer, already

more than a year ago: to print and distribute an ALGOL68 NEWSLETTER. Until

now we reacted hesitating and even reluctant - why? You see, we have our

problems, and one of these is the ALGOL BULLETIN.

Should the ALGOL BULLETIN become a newsletter, or rather contain a news­

letter, or should a NEWSLETTER become a new activity? If so, is it then wise

to accept the generous Bochum offer, or should we try to use SIGPLAN NOTICES

(prov~ded they let us use them), or some other well established channel? The

real important quest.ion, however, is (and that is the very root of our ambi­

valence): who is taking responsibility for the contents of this newsletter,

and who guarantees regularity in appearance? The subcommittee? Or a subsub­

committee? Or no committee at all - a volunteer?

Being here together for two days, I invite you all to discuss with us

the pro's and .con's and why's and how's of a NEWSLETTER and - more generally

- how to promulgate a language if you are a nice crowd of individuals,

rather than a big manufacturer or..a mighty pentagon.

The question is: WHAT CAN WE DO WITH ALGOL68?

11

TENTATIVE BIBLIOGRAPHY

This is a very incomplete, and also inaccurate list of titles on ALGOL68.

Its sole purpose is, to encourage the reader to supplement and correct it,

where possible. Please send your contribution(s) to:

S.G. van der MEULEN

Department of computer science

the University of Utrecht

Princetonplein 5, P.O.Box 80.002

3508 TA UTRECHT, The NETHERLANDS

Ammeraal, J., Mini ALGOL 68 User's Guide, IW 32/75, Mathematical Centre,

Amsterdam.

Bacchus, P., J •· Andre and C.H. Pair, Manual oE the Algorithmic language,

ALGOL68,Paris, France.

Bachmann, K.H., Die Programmiersprachen PASCAL und ALGOL68, Akademie­

Verlag, Berlin (DDR), 1976.

Bauer, F.L. and G. Goos, Informatik Teil I und II, Heidelbergse Taschen­

bucher BD. 80, 91, Springer Verlag, Berlin - Heidelberg -

New York, 1971.

-Birrell, S.R., ALGOL68C Implementers' .Guide, ALGOL68C technical report, Uni­

versity of Cambridge Computer Laboratory.

Bourne, S.R., ZCODE A simple Machine, ALGOL68C technical report, University

of Cambridge Computer Laboratory.

Bourne, S.R., A.D. Birrell and I. Walker, ALGOL68C Reference Manual, Uni­

versity of Cambridge Computer Laboratory.

Brailsford, D.F. and A.N. Walker, Introductory ALGOL 68 Programming, Ellis

Horwood Publishers, Chichester, 1979.

Branquart, P. et al, An Optimized Translation Process and its Applications

to ALGOL68, Lecture Notes in Computer Science 38, Springer-Verlag,

Berlin, 1976.

Branquart, P., J. Lewi, M. Sintzoff and P.L. wodon, The composition of

Semantics in ALGOL68, Communications of the ACM, Nov. 1971,

vol. 14, no. 11.

12

Cleaveland, J.C. and R.C. Uzgalis, Grammars for Programming Languages,

Elsevier North Holland, Inc., 1977, Amsterdam.

Colin, A.J.T., Programming and Problem-solving in Algol 68, The MacMillan

Prees Ltd., 1978, London.

Denert, E., G. Ernst and H. Wetzel, GRAPHEX68 - Graphical Language Features

in ALGOL68, Computer and Graphics I (1975) 195-202.

Denert, E. and R. Franck, Datenstrukturen, Bibliographisches Institut AG, 1977

1977, Zurich.

Denert, E., R. Franck, F. Muller and w. Streng, Graphische Sprachenelemente

in ALGOL68, Technische Universitat Berlin, Fachbereich Informatik,

Bericht nr. 73-01, Jan. 1973.

Differences between Algol 68-R and 68, RRE Internal Document (2nd. Edn.

June, 1973).

Feldman, H., Einfuhrung in ALGOL68, Skriptum fur Horer aller Fachrichtungen

ab. 1 Semester, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH,

1978, Braunschweig.

Gerbier, A., Mes premieres constructions de programmes, Lecture Notes in

Computer Science, Vol. 55, Springer-Verlag, New York, Heidelberg,

Berlin, 1977, (in French) •

.Groupe Algol de l'AFCET, Manuel du langage algorithmique Algol 68, Hermann,

Paris, 1975.

Groupe Algol de l'AFCET, Definition du langage algorithmique Algol 68,

Hermann, Paris, 1972.

Grune, D., The MC Algol 68 Test Set, Mathematisch Centrum, IW-53, 1975,

Amsterdam.

Grune, D., L.G.L.Th. Meertens and J.C. van Vliet, Grammar-handling Tools

Applied to ALGOL68, Mathematisch Centrum, 1973, Amsterdam.

Hedrick, G.E.(ed.), Proceedings of the 1975 International Conference on

ALGOL68, Oklahoma State University, Stillwater, Oklahoma, June

10-12, 1975.

Hill, u., H. Scheidig and H. Woessner, An Algol 68 Compiler, Technische

Universitat Miinchen and University of British Columbia, 1972.

13

Housden, R.J.W. and V.J. Rayward-Smith, Conference Proceedings "Experience

with Algol 68", 1975, Liverpool.

Kelk, B.C., A plotter package for ALGOL68C, CAD Group Document 90, Computer

Laboratory, University of Cambridge, 1976.

Koch, w., and Ch. Oeters, An Abstract ALGOL 68 Machine and its Application

in a Machine-independent Compiler, J. Muhlbacher (ed.): GI-5.

Jahrestagung (LNCS 34), Springer 1975.

Koster, C.H.A. and Th.A. Zoethout, Systematisch programmeren in algol68,

Kluwer - Deventer 1978.

Learner, A. and A.J. Powell, An introduction to ALGOL68 through problems,

Macmillan Computer Science series, MacMillan Press, London, 1974.

Lindsey, C.H., ALGOL68 with fewer tears, The Computer Journal, Vol. 15, no.2,

1972.

Lindsey, C.H. and S.G. van der Meulen, Informal Introduction to ALGOL68,

revised edition, North Holland Publ. Company, 1977, Amsterdam.

MacGettrick, A.D., ALGOL68 - A first and second course, Cambridge University

Press, 1977.

Maybrey, A., Proceedings of Liverpoo~ Conference on Uses of Algol 68,

March, 1975.

Meertens, L.G.L.T., A Space-saving Technique for Assigning ALGOL 68 Multiple

Values, Mathematical Centre, 1976, Amsterdam.

Meulen, S.G. van der, and P. Kuhling, Programmieren in ALGOL68, Vol. I & II,

Walter de Gruyter, Berlin, 1974, 1976 (in German).

Meulen, S.G. van der, and M. Veldhorst, Torrix; A programming system for

operations on vectors and matrices over arbitrary fields and of

variable size, vol. I., M.C. Tracts no. 86, Mathematical Centre,

1978, Amsterdam.
,

Meulen, S.G. van der (et al), ALGOL68-EDU'" A REFERENCE MANUAL FOR STUDENTS,

RUU-CS-81-••·• University of Utrecht.

Pagan, F.G~, A Practical Guide to ALGOL68, John Wiley & Sons, London.

14

Paillard, J.P. and M. Simonet, Attribute-like W-grammars, The fifth annual

international conference on the implementation and design of

Algorithmic Languages, Rennes, May 1977.

Peck, J.E.L.(ed.), ALGOL68-Implementation, North-Holland Publishing

Company, Amsterdam, 1971.

Peck, J.E.L., An ALGOL68 Companion, Department of Computer Science,

versity of British Columbia, Vancouver 8, B.C., Canada, 1972.

Peck, J.E.L.(ed.), Proceedings of an Informal Conference on ALGOL68-

Implementation, University of British Columbia, Vancouver 8,

B.C. Canada.

Proceedings of International Conference on ALGOL68 Implementation, Utilitas

Mathematica Pubiishing Inc., University of Manitoba, Winnipeg,

1974.

Rayward-Smith, V.J.(ed.), Proc. Conf. on Applications of ALGOL68,

80-90.

Robertson, A. and G.E. Hedrick, A Portable Compiler for an ALGOL68 Subset,

Proceedings of the 1975 International Conference on ALGOL68,

Oklahoma State University, Stillwater, Oklahoma, June 10-12, 1975.

Sigplan Notices, ACM, Vol. 12, Numb. 5, May 1977

1. Wijngaarden, A. van et al., Revised Report on the algorithmic

language ALGOL68.

2. Hibbard, P.G., A sublanguage of AOLGOL68.

3. Hansen, W.J. and H. Boom, The report on the standard hardware

represeptation for ALGOL68.

Sigplan Notices, Proceedings of the Strathclyde Algol 68 Conference, ACM,

vol. 12, numb. 6, June 1977.

Sintzoff, M., A brief review of Algol 68, Algol Bulletin, no. 37, July 1974.

Stiller·, G., ALGOL68-Begriffe und Ausdrucksmittel, B.G. Teubner, Verlags­

gesellschaft, Leipzig, 1974, Lizenzausgabe im R. Oldenbo~g Verlag,

Milnchen, Wien, 1974.
,

Stiller, G., ALGOL68-Datenorganisation, R. Oldenbourg Verlag, Munchen,

Wien, 1976 •.

15

Tanenbaum, A.S., A tutorial on ALGOL68, ACM Computing Surveys 8 (june 1976)

155-180.

vansina, c., Manipulation dynamique de valeurs en algol68, June 76, Memoire

de maitrise en informatique, FNDP Namur, Belgium.

Vliet, J.C. Vah, Algol 68 transput, Mathematical Centre Tracts 110&111, A'dam

Woodward, P.M. and S.G. Bond, ALGOL68-R Users Guide, Division of Computing

and Software Research Royal Radar Establishment (RRE), Malvern,

England, 1972.

Wijngaarden, A. van,et al., Revised Report on the Algorithmic Language A

ALGOL68, M.C. tract 50 Mathematical Centre, 1976, Amsterdam;

Springer Verlag, New York, Heidelberg, Berlin, 1976; Sigplan

Notices, ACM, Vol. 12, Numb. 5, May 1977; Acta Informatica,

Vol. 5, pts. 1, 2, 3, 1975.

Zosel, M.E., A Formal Grammar for the Representation of Modes and its

Application to ALGOL 68, Ph.D. Thesis, University of Washington,

1971.

ABSTRACT

SYNTACTIC ERRORS MADE BY BEGINNERS

USING AN ALGOL 68 SUBSET

J. ANDRE & J. BARRE

17

First year students at the University of Rennes were introduced to

Computer Science by means of an ALGOL 68 subset. This experiment was

followed up on a pedagogical level by an analysis of the syntax errors

made by the students. The analysis enabled us to improve teaching and to

modify certain details in the subset's design. In particular, the results

show that the students do not make more errors in ALGOL 68 than they do in

other languages, with the exception perhaps of errors on representations.

18

1. INTRODUCTION

ALGOL 68 is fascinating because of its orthogonality which, starting

from a limited number of basic concepts, gives a great freedom of expression

to the programmer. But many teachers have remained sceptical as far as its

effective use as an introductory programming language [20]. It's true that

for a long time the lack of pedagogical documents and the presentation of

the design grammar did not help things.

Nevertheless, a team at the University of Rennes, convinced of the

important contribution of the language, defined, implemented and then used

for several years an ALGOL 68 subset to introduce first-year students to

programming.

It seemed interesting to us to follow the difficulties encountered by

the students very closely. This led us to analyse the errors made in their

programs. For material reasons, only syntactic errors were the object of

this study. The most striking result is that the beginner students don't

make more mistakes in ALGOL 68 than they do in other languages (except

perhaps on representations).

After discussing the pedagogical context and the procedures of this

study, results will be analysed and remarks about the definition of languages

and the psychology of their learning will be presented.

2. THE CONTEXT OF THE STUDY

our study took place over two scholastic years (1976-77 and 1977-78).

It was done at the University of Rennes (France) and concerned the DEUG A

(General University Studies Diploma, Mathematics and Physical Science majors)

which correspond to the first year at the University after the "baccalaureat"

(high school diploma). The teaching program was mostly Mathematics (260 hours)

and Physics (160 hours). Computer Science only represents 9% of the test

grade for 37 hours of classes (this situation does not motivate the

students!). So we imposed the three following goals on ourselves:

- to establish as many liaisons as possible with the math program,

- to give to the future users of Computer Science (for applications

in physics, chemistry, •••) the algorithmic bases which are hidden
I .

when confronted by a language like Fortran,

- to present to these students, who have never done Computer Science

(and who maybe never will again) the limits of a computer.

19

The 37 yearly hours of Computer Science were divided as follows:

- 12 hours of lecture classes for the 450 students. This course

presented generalities about Computer Science and computers (archi­

tecture, language, machine •••)

- 25 hours of "directed work", by small groups of 20 students during

which algorithms and an ALGOL 68 subset were taught. The results of

these exercises formed the subject of this study.

3. THE LANGUAGE USED

For an introduction to programming we thought it judicious not to use

the ALGOL 68. ideas in their entirety. An ALGOL 68 subset, called SERA, was

therefore defined and implemented [18].

SERA is a language whose power of expression is similar to that of

ALGOL 60, but with the orthogonality and the syntax of ALGOL 68. Leaving

aside the pedagogical aspects, it should be noted that the advantage of

this language lies in the savings, of time and space, of the SERA compiler

compared to the ALGOL 68 compiler.

4. TEACHING METHODOLOGY

The language concepts, as well as the work of a working group on the
I

process of learning programming (7], enabled us to put forward the following

points:

-1) the emphasis on the distinction between identifiers, values and

references

-2) the association of data structures and control structures:

i) use of variables (and of assignment) only in loops. This

point is especially well adapted to ALGOL 68 thanks to the

identity declaration (but would cause problems in Pascal and

Fortran)

ii) use of the for loop when using arrays.

Each student had to write four programs related to important points

in the teaching program:

- the first having to do with sequentiality, unformatted input and

output,

- the second on conditional clauses and case clauses,

- the third on arrays, loops and procedures,

20

- the fourth on arrays and procedure parameters.

Running the programs on the machine was done with punched cards. The

students coded a form and gave it to the punching department. The corrections

were their (the students) responsibility.

5. ERROR COLLECTION METHOD

A completely automatic system which would have discovered and analysed

mistakes detected at compile time wasn't possible. In fact, if you don't

happen to process an especially intelligent compiler, mistakes are not

always brought to light. Let's consider the following lines:

ref int LETTERCOUNT

LETTERCOUNI : = 0 ;

A:= BC:= C+l;

A regular compiler would report, for the last two lines: UNDECLARED

IDENTIFIER whereas in the first case it's a typing mistake (an I instead of

a T) and in the second there is a semi-colon missing which should separate

the two clauses.

We therefore had to analyse the programs de visu one by one. The

erroneous listings were obtained by simply copying the compiler's output

statements for error-messages on two files, one in normal output, the

other on a special file, globally listed at the end of each batch session.

So only the programs having syntactic errors were analysed, which puts

certain limits on our· study:

we don't have reports of certain expressions which, even if they are

not mistakes, show an incomplete knowledge of the language on the

student's part.

For example:

if A= 0 then B:= B+l else·B:= B fi

WRITE ((LINE))

In the same way,

21

int perimeter length+ Width* 2

comes, in our opinion, more from a syntactic error (bad knowledge of operator

priority rules) than semantic. But such errors could only be discovered

accidentally, on the occasion of a real syntactic error. Their number is

therefore doubtful!

The duplication of output listings was not done at runtime. So we have

neither the accounts for mistakes reported by the runtime system, nor

semantic errors. This also limits the scope of our study because it is known

that syntactic mistakes represent only 20% of programming errors [2,24].

Furthermore, the number of runs per student and per exercise has not been

studied.

6. RESULTS

Our study took place over two years and deals with the analysis of

listings corresponding to four different problems. We will first present

the results relative to the first year:

Number of erroneous programs studied

Number of mistakes discovered

Average number of lines per erroneous program

Average number of mistakes per erroneous program:

6.1. Breakdown of errors

327

708

45

2.16

Table 1 shows the errors found. This classification does not follow the

ALGOL 68 Report [23] but more of a pedagogical order. The details of the

mistakes are given in [1].

6.2. Frequency of errors

Figure 2 presents the breakdown of errors according to their decreas­

ing frequency. More than half the mistakes are punching, representation

or punctuation errors.

22

TYPE OF ERRORS OCCURRENCE TOTAL PERCENTAGE
NUMBER NUMBER

ENVIRONMENT 50 7.0
Language limitations 32
Standard identifier 9
Others 9

MIXED CARDS 14 1.9

PUNCHING 68 9.6
Punching errors 49
Bugs in forms filled out 19

REPRESENTATIONS 171 24.1
Symbols 44
Strings 71
Comments 23
Operators 14
Numbers 1
Others 17

SIMPLE DECLARATIONS 28 3.9
Identifiers 17
Syntax 7
Others 4

CALLS TO WRITE/READ 53 7.5
Balancing 10
Mode 26
Others 17

EXPRESSIONS 27 3.8
Arithmetic 2
String 1
Boolean 15
Parenthesis 9

GENERAL CONTROL STATEMENTS 42 5,9
Clauses 12
Conditional clause 15
Loops 9
Case clause 6

PUNCTUATION 149 21.0
Missing semicolon 108
Extra semicolons 36
Others 5

ARRAYS 16 2.3

PROCEDURES 11 1.6

MODES AND SCOPE 49 6.3
Declaration simple 6
General constructions 17

I Arrays 9
Procedures 17

Table 1 - Distribution of errors found in 1976-77 study

23

Error Number

150

100

i::
0

-.-1
,1..1 a Ill

1:l
,1..1 8' 50

(II "' 1/1 il
Cl) .c:

I ~ ~
4 9 3 6 1 12 8 5 7 10 2 Class number

Fig. 2 - Breakdown of errors according to frequency

Classification number

1. Environment 7. Expressions

2·. Card problems a. General constructions

3. Punching 9. Punctuation

4. Representation 10. Arrays

5. Simple declarations 11. Procedures

6. Calls to WRITE or READ 12. Modes and scope

6.3. Analysis of errors

Even though there are accounts of mistakes made in various other

languages (e.g. BOIES & GOULD [2], GANNON & HORNING [6], LITECKY & DAVIS

[15], YOUNGS [24] •••) it didn't appear worthwhile to make any comparisons

with these studies because they seem to have been done under different

24

conditions than ours.

In this section underlining is used for bolds, except when useful to

exhibit the actual hardware representation.

The first fundamental remark is that it doesn't seem as if ALGOL 68's

syntax is the cause of special errors. It is true that the grammar taught

was not that of the design [23] but was presented in the form of a classic

flowchart. However we will see that even balanced constructions

(if •.• fi, case ••. esac, etc) were the source of very few errors.

Even though the problems proposed to the students were relatively simple,

it can be said that certain specific ALGOL 68 concepts, for instance the

passage of parameters to procedures, resulted in very few errors (less than

2%). Notable, too, the explanation of the mechanism takes much less time

with ALGOL 68 than with Pascal or ALGOL 60.

The choice of the strict form for variable declarations (which set off

these objects very well) was not responsible for a significant amount of

errors (1%).

6.4. Balanced constructions

Balancing in control structures doesn't cause any problem: the repres­

entations used were in French (inspired by [3]). In particular, the choice

of closing keywords didn't mirror those of ALGOL 68 (if •.. fi, etc) but

were all constructed with the prefix!_, abbreviation for fin (end), as

KOVATS [13] now suggests and as it is in ADA [11].

si ... fsi

cas .•. fcas

faire fait

for

if ..• fi

case .•. esac

do od

This orthogonality, and, without doubt, also the fact that the students

were beginners in Computer Science, are probably the reasons why we only

found two examples of bad balancing (if without fi).

Nevertheless, we have to point out that some errors were related to

elif (whose French representation, sinsi, is not any clearer): this symbol

is not very structuring when there are several embedded conditional clauses.

6.5. Mistakes related to WRITE calls

The united modes were not explicitly part of the SERA language. Some

of ALGOL 68's concepts, like the WRITE and READ parameters, were never­

theless connected with them, but could not be clearly explained to the

students.

25

The parameter mode of the WRITE procedure, and that of READ (less often

used), was thus the cause of some parenthesis errors:

WRITE (A,B) instead of WRITE ((A,B)).

We also found several examples of a mistake that is difficult to

explain to debutants (collateral in a weak context not allowing union):

WRITE (if DELTA 0 then ("1 root:", X)

else ("2 roots : ", Xl, X2) fi)

In other respects, several times we found something equivalent to:

(•.•) string WRITE (•••)

This confusion between the WRITE procedure (neutral mode) and the "text"

which is finally printed comes without doubt from the difficulty beginners

have in distinguishing between a procedure which prints a value and a

procedure which returns a value, a difficulty already mentioned by LEITNER &

LEWIS [14].

6.6. The most numerous mistakes

It is therefore not at the level of syntactic constructions, but,

foolishly, at the lexicographic level that the students made the most mis­

takes: as seen in table 2, 50% of the mistakes found have to do with

punctuation or representation problems:

The representation mistakes are the most numerous (around 25%).

Basically, they concern forgetting one or (more often) two quotes for the

symbols te.g. 'BEGIN, END', AND instead of, respectively, 'BEGIN', 'END',

and 'AND'). They are always occasional mistakes (not one program, for

instance, was written completely without quotes). It would be interesting to

26

see how much this rate of mistakes would decrease with the new official rules

which allow the writing of begin as .BEGIN or even BEGIN [8].

The string notations are also the object of many mistakes in particular

forgetting (often systematically in the same program) quotation marks. This

happens, moreover, most frequently in the WRITE parameter, e.g. WRITE (NO

ROOTS), or in an identity declaration, e.g. 'CHAR' ENDOFTEXTE =#instead

of 'CHAR' END OF TEXTE = 11 # 11 •

Co!IDllent notations are the cause of mistakes either in the representation

of co ('CO or CO', etc. instead of 'CO'), or for questions of program

presentation, like

1 REF' 'INT I LETTERC

'REF' 'INT' WORDC

'LOC' 'INT'

'LOC' 'INT'

'CO' LETTER COUNT

WORD COUNT 'CO'

The absence of balancing symbols for certain constructions such as

co!IDllents (co ••• co and not co ••• oc) or certain notations (" •.• "strings

when in ALGOL 60 there were two different symbols) is the reason why some

trivial errors (co forgotten or incorrectly punched) have enormous reper­

cussions on the rest of the program because a permutation occurs between

what is a co!IDllent and what is not, and this happens in almost all languages

(SCOWEN & WHICHMAN [22]), except in ADA [11].

Punctuation mistakes are linked to the use of semi-colons. They are

numerous (21%), but far from surprising! They occur with about the same

frequency in COBOL programs written by debutants (LITECKY & DAVIS [15]), but

also in programs written by high-level students in TOPPS and TOPPS II

(GANNON & HORNING [6]).

On this subject, several remarks should be made:

- the logical sequentiality of instructions is not implicated: we only

discovered one absence of a semi-colon to separate two serial clauses in

a single physical line;

- but the students confuse logical and physical sequentiality (explicit for

them because of the physical ends of lines). As a matter of fact, two­

thirds of errors have to do with the absence of semi-colons at the ends

of lines. Several authors (HOLT [10], GANNON & HORNING [6], GANNON [SJ,

PAGAN [19]), have already reported the importance of semi-colons. Some ,
compilers (like those of BCPL or ALGOL 68 at Oxford - cited by MIDDLETON

·[16]) consider that in.certain contexts the physical end of a line cor­

responds to a semi-colon.

27

finally the absence of the empty instruction, like in ALGOL 60, is the

cause of around 40 errors of excessive semi-colons (before else, fi, end,

etc.) i.e. of missing void.

Punching mistakes (and especially those in the identifiers) are less

numerous here than those discovered in COBOL by LITECKY & DAVIS [15]. The

probable reason is that the identifiers are often (as much by the nature of

the problems as by habit) longer in COBOL (where a frequent identifier will

be of the form NEW_PAYROLL_FILE) than those of scientific disciplines

(where the identifiers are in this form: T(I) or X). Fourty percent of the

mistakes come from misuse of the shift key on the IBM 29 card punch machine

(e.g. HDEBUT' and X: = YF instead of 'DEBUT' and X: Y;) and 25% of them

seem to be related to bad handwriting: jFI' instead of 'FI' or P(X'Y)

instead of P(X,Y).

7. FOLLOW-UP OF THE FIRST ANALYSIS

The mistakes cited above correspond to those found in 1976-77. Their

analysis as of the end of the scholastic year allowed us to improve certain

things in the SERA language and in teaching.

We quickly found that two kinds of errors had the SERA language itself

as a cause:

1) the prologue contained procedures defined according to the schema:

proc GET m m READ(X) X)

but in a non-orthogonal way: GETREAL had GETREL as an identifier; and

GETCHAR didn't exist.

2) The comment notation co was 'CO', that is, 4 characters to write or

punch and, therefore, a great amount of possible errors. This symbol was

replaced by# (which is, by the way, legal in ALGOL 68).

In other respects, certain figures in table 2 seemed abnormal and we

make a pedagogical effort in 1977-78 on some special points (in particular

on boolean mode expressions, string notations and WRITE calls).

The 1977-78 listings were, in turn, studied. The same magnitude of

errors w7re found, with, however, appreciable changes for the colums of

table 3:

28

1976/77 1977/78

Modifications of SERA and its compiler
Comment 23 5
Prologue procedures 9 0

Modifications in teaching
Strings 71 39
WRITE call 26 5
Boolean expression 15 5

Table 3: Evolution of errors in terms of improvements brought about in

77-78 to SERA and teaching.

(The 77-78 numbers are adjusted to the total number of 76-77

errors. Percentages would be very low).

8. IDIOSYNCRACIES IN PROGRAMMING LANGUAGES

Programming languages have a certain style that is neither completely

natural, nor completely mathematical. Since programming languages are, all

the same, close to natural languages, debutants have a tendency to not follow

the proposed syntax. This is probably the origin of a certain number of

errors like the following:

if DELTA< 0 WRITE ("NO ROOTS") fi co missing then co

until char do (instead of while char~ do •••)

This latter form has, by the way, been proposed by KNUTH [12].

In the same way mistakes are found that wouldn't be mistakes in other

languages, like:

WRITE X

X:= a.if new char 11_11 then - else+ fib;

Two classes of errors are also attributable to arbitrary choices made

in algorithmic languages which deceive mathematics students. The first is

to limit the sense of and to only logical inclusion. The students then
I --

"naturally" write things like:

if c = 11 11 then count:= 0 and sum+:= 1 fi

WRITE (X and Y)

29

The second class is characterized by the absence of certain notations,

in particular those of set theory from which, excusably, the following:

for 1 S i S n do • • . (i.e. Vi E { 1 : n} do .••) - -
if day 28 or 30 or 31 then ••• (i.e. if day E {28,30,31} •..)

if 2 SC S 80 then

9. CONCLUSION

Pedagogical models or psychological studies of the process of learning

Computer Science have made much progress in the last few years (see, for

example, FURUTA [4], HOC [9], LEITNER [14], YOUNGS [24],

SCHOOMAN & BOLSKY [21]). Nevertheless, it's regrettable that few such

studies have made a distinction between the learning of algorithms and of a

programming language, and that none tackle the languages at the level of

ALGOL 68. It is interesting to bring up again the fact that our pedagogics

were found to be at fault on the one hand for a lack of orthogonality (in

the prologue) and on the other hand because of a hidden concept (the union

mode of the WRITE procedure). In both cases it seemed clear, at least

according to the account of errors, that the students were confused.

Such statistics should be collected for other languages also and should

be extended in such a way as to answer questions like: what is the total

number of runs per student per exercise? How do errors differ if programmers

are not beginners? How many of the errors can be attributed to factors

other than the design of the programming language? And of course they should

be concerned with semantic errors as well.

In conclusion, we should bring up once again the great number of errors

related to representations and say that we think this is due to the fact

that this subject was always scorned by theoreticians. There was an 8-year

waiting period before ALGOL 68 received recommendations (HANSEN & BOOM [8]).

We hope that no other programming language will ever be published without

certain standards.because it is at this level that debutants are the most

sensible.

our experience leads us to believe that ALGOL 68 is a good choice of

an introductory programming language. We can even say that the discovered

30

errors are classic. Also, our experience as teachers has made us sure that

the readability and good construction of the programs obtained is due to

some of ALGOL 68's qualities, such as orthogonality, balanced constructions,

identity declarations which allow for the clarification of the idea of var­

iable, and a unique mechanism for the passage of parameters.

ACKNOWLEDGEMENTS

We would like to thank B. Boussais, J.P. Routeau, F. Ployette and

L. Trilling for their help and our students for their involuntary contribution.

Jean-Pierre Banatre made a number of very helpful suggestions on earlier

drafts of this paper.

REFERENCES

[1] ANDRE, J. & J. BARRE, Analyse des fautes commises par des etudiants

debutant l'informatique par Algol 68, P.I. IRISA no. 104,

Rennes, 1978.

[2] BOIES, S.J. & J.D. GOULD, Syntactic errors in computer programming,

Human Factors .!.§_(3), p. 253-257.

[3] BUFFET, J., P. ARNAL, & A. QUERE, (ed.), Definition du langage

algorithmique Algol 68, Act. sc. et Ind. no. 1338, Herman, Paris

1972.

[4] FURATA, R. & P.R. KEMP, Experimental evaluation of programming languages

features: implications for introductory programming languages,

SIGCSE Bulletin vol • .!.!_, no. 15, Feb. 79, p. 18-21.

[5] GANNON, J.D., An experiment for the evaluation of language features,

Int. J. of Man Machines Studies_§_ (1976), p. 61-73.

[6] GANNON, J.D. & J.J. HORNING, The impact of language design on the

production of reliable software, IEEE Trans. on Soft. Eng.

vol. SE-.!_, no. 2 (June 75), p. 179-191.

[7] GERBIER, A., Mes premieres constructions de programmes, Springer

Verlag Lectures Notes no. 55, 1977.

[8] HANSEN, W. & H. BOOM, The report on the standard hardware representation

for Algol 68, ALGOL Bulletin no. 40 (August 76), p. 24-43.

[9] HOC, J.M., Role of mental representation in learning a programming

language, Int. J. Man Machines Studies~, (1977) p. 87-105.

31

[10] HOLT, R.C., Teaching the fatal disease (or) Introducing computer

programming using PL/I, SIGPLAN Notices vol. 8 no. 5 (May 1973),

p. 8-23.

[11] ICHBIAH, J.D., Reference manual for the Ada programming language,

DOD, July 1980.

[12] KNUTH, D.E., Structured programming with goto statements, ACM Computing

Surveys§. (1974), p. 261-301.

[13] KOVATS, T.A., Program readability, closing Keywords and Prefix-style

Intermediate Keywords, SIGPLAN Notices vol. !l, no. 11 (Nov. 78),

p. 30-42.

[14] LEITNER, H.H. & H.R. LEWIS, Why Johnny can't program a progress report?,

SIGCSE Bulletin vol. !Q_, no. 1 (Feb. 78), p. 266-276.

[15] LITECKY, G.R. & G.B. DAVIS, A study of errors, error-proneness and

error-diagnosis in COBOL, CACM vol . .!.Q., no. 1 (Jan. 76), p. 33-37.

[16] MIDDLETON, M., The importance of syntactic trivia, Letter to the editor,

SIGPLAN Notices vol • .!1_, no. 3 (March 78), p. 17-19.

[17] MUSA, J.D., An exploratory experiment with "foreign" debugging of

programs, Proc. of symposium on computer soft. eng., (New York

April 20-27, 1976), p. 499-511.

[18] NICOLAS, M., M.J. PEDRONO, J. BARRE & L. TRILLING, A first programming

course based on Algol 68, Proc. of the conf. on applications of

Algol 68, Univ. of East Anglia, Norwich 1976.

[19] PAGAN, F.G., Letter to the editor, SIGPLAN Notices vol. g, no. 4

(April 77), p. 3-4.

[20] PAGAN, F.G., Nested sublanguages of Algol 68 for teaching purposes,

SIGPLAN Notices vol. 12_, no. 7-8 (July-Aug. 80), p. 72-81.

[21] SCHOOMAN, M.L. & M.I. BOLSKY, Types, distribution and tests and cor­

rection times for programming errors, Proc. of 1975 Int. Conf.

on reliable software, Los Angeles (April 21-23, 1975), p. 351.

32

[22] SCOWEN, R.S. & B.A. WHICHMANN, The definition of comments in program­

ming languages, Software Practice and Exp. vol. 4 (1974),

p. 181-188.

[23] VAN WIJNGAARDEN, A. , B. MAILLOUX, J. PECK, C . KOSTER, M. SINTZOFF,

C. LINDSEY, L. MEERTENS & R. FISKER (eds.), Revised report on

the algorithmic language Algol 68, SIGPLAN Notices vol. g,
no. 5 (May 77), p. 1-70.

[24] YOUNGS, E .A., Human errors in programming, Int. J. of Man Machines

Studies 6 (1974), p. 361-376.

ABSTRACT

A COMPARATIVE EVALUATION OF ALGOL 68

FOR PROGRAMMING INSTRUCTION

P.R. EGGERT & R.C. UZGALIS

An experiment was performed on a large, intensive programming course

33

to decide whether Algol 68 or PL/I should be used as a primary programming

language. The main criterion used in the selection was the number of com­

piletime and runtime errors encountered during program development. Ex­

cluding the first two programs, in which language learning took place, Algol

68 programs had significantly more trivial syntax errors, although the total

number of compiletime errors was roughly the same. PL/I programs had signi­

ficantly more runtime errors, particularly subscript errors.

34

1 . INTRODUCTION

One of the most commonly claimed benefits of strongly typed languages

is that more errors are caught at compiletime; confirming experimental re­

sults with artificial languages and small sample sizes have been reported in

GANNON [7]. In addition we observed that several errors are common when

students move from a traditional syntax (in our case, PL/I) to the more un­

orthodox syntax of Algol 68; similar results were reported in GANNON [6].

We conducted an experiment testing the first claim on a larger sample with

general-purpose programming languages; in the process we gathered data that

sheds light on difficulties in learning the syntax of Algol 68.

2. BACKGROUND

At UCLA, the second course in computing, Computer Science 20 (or CS20

for short), has traditionally served as an intensive introduction to pro­

gramming and problem-solving. Incoming students typically have had ten weeks

of simple programming experience, and have written programs of at most 100

lines; outgoing students are expected to be mature programmers and often

obtain jobs immediately in local industry. Approximately 40% of CS20's

incoming students do not finish the course. Survivors are highly motivated.

One quarter, incoming students were partitioned into two sections, with

no ability to transfer between sections. One section was taught using PL/I,

the other using Algol 68. Incoming subjects arrived with no knowledge of

Algol 68, and a limited knowledge of PL/I derived from exercises on the PL/C

compiler [2], which gives excellent diagnostics. The first two weeks of the

ten-week course covered language related material: advanced PL/I topics in

the PL/I section, and.most of Algol 68 in the Algol 68 section. The IBM PL/I

optimizing compiler [10] was used for PL/I instructfrm; PL/C was considered

unsuitable because it lacks pointers, and IBM's PL/I checkout compiler was

considered too expensive. The Cambridge Algol68C compiler [1] was modified

to improve its runtime diagnostics to quality approximately that of the PL/I

optimizer's; the resulting compiler is called Calgol 68 [3]. At the time of

the experiment, a major failing of the PL/I optimizing compiler was that ex­

ceeding resource limits caused some or all of the printout to be lost; a
' major failing of Calgol 68 was its many unimplemented features including

multidimensional arrays, unions and formats.

35

Programming problems were run using a locally developed fast-turnaround

batch system using upper-case-only keypunches. The set of attempts by a sub­

ject to solve a given problem will be called a "program" (although "program

development process" might be a more accurate phrase). Each attempt to com­

pile and execute was called a "run"; subjects were given a limited number

of runs, 60, in order to finish the programming problems. Subjects manually

kept summary records of the reason why each run failed; because it was hinted

that the grade depended partly on the accuracy of these records, responses

were of high quality. Part of each response was the system completion code

yielded by the IBM OS/360 MVT operating system; this code served to clarify

ambiguous entries.

Ten problems were assigned with varying point values. Subjects chose

the problems, and could accumulate points up to a maximum of 700. Point

values were calculated on the basis of difficulty observed when the problems

were assigned previously, approximately one point per line of code for a

good solution. Problems were as follows:

aa (150): Use a finite-state machine to follow specified rules for

word abbreviation.

bn (100): Calculate~ by simulation of dropping a needle on a floor

with uniform parallel lines, using the method of Buffon.

er (100): Generate prime numbers using the sieve of Eratosthenes.

f (250): Convert arithmetic expressions involving parentheses and pre­

cedence into machine code.

j (200): Solve the general Instant Insanity TM puzzle.

kt (100): Calculate, by simulation, probability of a randomly touring

knight falling on a given square.

lp (300): Three-dimensional graphics on a line printer.

pm (150): String pattern-matching using a tree algorithm.

s (150): Text formatting.

wm (150): Print a map of the world using several projections.

Subjects chose problems independently of the programming language
I

they used. This can be seen from Table O.

36

Table 0. Problem types and counts

aa

PL/I 27

A 68 23

3. MEASUREMENTS

bn

27

27

er

4

3

f j

7 11

7 9

kt

5

5

lp

23

15

pm

3

2

s

6

2

wm

17

15

total

130

108

The summary error records produced by the subjects were scanned and

reported errors were classified. Subjects typically reported only the er­

rors that caused the run to fail; the two implementations are both unfor­

giving of errors, and so most runs caused only one reported error. If more

than one error was reported in a run, all errors were counted equally. The

programming problems, hereafter called "programs", required a number of

runs for completion. Overall statistics are given in Table 1.

Table 1. Overall statistics

PL/I Algol 68 Pooled s.d.

number of subjects 38 37

number of programs 130 108

mean programs/subject 3.4 2.9 1.3

mean runs/program 10.7 11.0 4.5

number of subjects
35 37

receiving grades

mean grade point average
2.7 2.5 1.4

(0-4 scale)

None of the differences are significant at the 0.05 level of signi­

ficance using at-test. The two sections thus were fairly matched in work

done and quality of performance measured by grades.

Table 2. Categories of runtime errors

Voluntary Compile time
no error
logic error
changed index variable
bad input data

External
compiler error
unimplemented feature
system crash
job control language

Runtime
some runtime error
Resource limit

time limit
storage limit
too much output

Language runtime error
Runtime pointer misuse

runtime REF
dereferencing NIL
scope violation

zerodivide
write on standin
Subscript and stringsize

subscript error
stringsize

Overflow
overflow (hardware)
size (software)

runtime conversion
uninitialized variables
missing case
read past EOF

some syntax
Trivial syntax

I, not OR
a missing *
op used as proc
illegal identifier
used EXIT
Semicolon

some semicolon
missing semicolon
extra semicolon

Comma
some comma
missing comma
extra comma

unclosed comment
String syntax

missing quotes
string across lines
misused' in string

stropping
Syntax structure

some bracketing
if-syntax
missing brackets
do-syntax
format lists

Declaration syntax
misspelled word
array declaration
missing declaration
redeclared tag
forward declaration
bad INIT syntax
for id used outside

Types
some type
used =, not :=
used =, not :=:
"referencing"
Compiletime conversion

some compiletime conv.
int:= real
/ , not %

int MOD real
print(VOID)
compiletime REF

37

38

4. ERROR CATEGORIES

Each error described by a subject was classified as shown in Table 2.

This classification scheme is derived from EGGERT & UZGALIS [4]. A short

phrase at the start of each classification will be used in later tables.

Some of the classes are composed of others: the classes thus have a tree

structure, indicated by indenting in Table 2. Errors incompletely described

by the subjects were put in category names beginning with "some".

The four major categories are Voluntary errors, discovered by the pro­

grammer and not by the system; External errors, which arise from circum­

stances outside the programmer's control; Runtime errors, which include

both Resource errors (violating system limitations) and Language runtime

errors, (violating language rules); and Compiletime errors.

The major null hypothesis tested by this data is that there is no dif­

ference in the two languages between the average number of errors expe­

rienced by a subject during the development of a program. To test this, the

mean observed errors of each type per program were calculated. In Table 3

and subsequent tables, "err" refers to the number of observed errors, "mean"

and "s .d." to the mean and standard deviation of the observed errors per

program for PL/I and Algol 68. The column headed "o:" gives the significance

level for at-test of the difference between the means. Errors that are not

listed have o:>0.10. Errors are listed starting with categories in which Al­

gol 68 programs contained more errors, and ending with categories in which

PL/I programs contained more errors; a horizontal line separates the two

kinds of categories.

As can be seen, the major null hypothesis is decisively rejected in

six major categories. Trivial syntax errors, Compiletime conversion, and

Compiletime errors were far more common in Algol 68 programs; Subscript and

Stringsize errors, Resource limit errors, and Runtime errors were far more

common in PL/I programs. Part of the reason for the extra PL/I Resource

limit errors and, by extension, the extra PL/I Runtime errors, may have

been the deficient PL/I runtime support discussed earlier. The extra Sub­

script and Stringsize errors in PL/I may have arisen because character

strings were not fully implemented in Calgol 68; however, the Algol 68 pro­

grammers were forced to implement strings in terms of arrays, so similar er-,
rors should have resurfaced.

39

Table 3. Error category tabulation, all programs

Categories with no difference at the .10 significance level are omitted.

PL/I (N=130) Algol 68 (N=102)
err mean s.d. err mean s.d. 0: error category

33 .25 .60 188 1.84 2.08 <.01 Trivial syntax
15 .12 .42 121 1.19 1. 73 <.01 Semicolon
6 .05 .24 91 .89 1.54 < .01 some semicolon

445 3.42 2.51 547 5.36 3.10 <.01 Compile time
0 .00 .00 16 .16 .42 < .01 stropping
0 .oo .00 10 .10 .30 <.01 used=, not :=

2 .02 .12 14 .14 .40 <.01 Compile time conversion
0 .00 .00 9 .09 .32 <.01 int := real
0 .00 .oo 9 .09 .32 <.01 unimplemented feature

10 .08 .34 31 .30 .79 <.01 unclosed comment
6 .05 .24 20 .20 .58 < .01 missing semicolon

12 .09 .34 23 .23 .58 <.05 some type
1 .00 .09 11 .11 .56 <.05 missing comma
2 .02 .12 12 .12 .57 <.05 Comma
0 .00 .00 3 .03 .17 <.05 I , not OR
0 .00 .00 3 .03 .17 <.05 string across lines
0 .00 .00 3 .03 .17 <.05 "referencing"
9 .07 .28 17 .17 .47 <.10 if-syntax
8 .06 .35 22 .22 .93 <.10 runtime REF
3 .02 .15 10 .10 .48 < .10 extra semicolon

167 1.28 1.57 91 .89 1.60 <.10 Language runtime error
11 .08 .45 0 .00 .oo <.10 uninitialized variables

129 .99 1.54 57 .56 1.01 <.05 time limit
91 .70 1.16 35 .34 .85 < .01 Subscript & stringsize
24 .18 .67 0 .00 .00 <.01 stringsize
19 .15 .52 0 .00 .00 <.01 bad INIT syntax
21 .16 .53 0 .00 .00 <.01 runtime conversion
25 .19 .59 0 .00 .00 <.01 some compiletime conv.
44 .34 .98 1 .00 .10 < .01 too much output

186 1.43 1.94 68 .67 1.08 <.01 Resource limit
379 2.92 2.76 176 1. 73 1.89 <.01 Runtime

31 .24 .59 0 .oo .oo <.01 format lists

Finally, the Trivial syntax errors may have been due to the process of

learning the language. This possibility is related to the secondary null

hypothesis tested by the data, namely, that there are no differences be­

tween the two languages once the first two programs turned in by each sub­

ject are excluded. When Table 3 is modified to exclude such programs the
I

result is Table 4.

40

Table 4. Error category tabulation, excluding first two programs

Categories with no difference at the .10 significance level are omitted

PL/I (N=60) Algol 68 (N=38)

err meap. s.d. err mean s.d. er. error category

14 .23 .65 37 .97 1. 30 <.01 Trivial syntax
0 .00 .00 6 .16 .44 <.01 int := real
0 .00 .00 4 .11 . 31 <.05 used =, not ·=
0 .00 .00 4 .11 .31 <.05 unimplemented feature
4 .07 .25 10 .26 .60 <.05 some type
0 .00 .00 4 .11 .39 <.05 stropping

15 .25 • 77 22 .58 .86 <.10 Types
2 .03 .18 6 .16 .44 <.10 Compiletime conversion
3 .05 .29 8 .21 .53 < .10 unclosed comment
0 .00 .00 8 .21 .87 <.10 missing comma
4 .07 .31 8 .21 .47 <.10 some semicolon
0 .00 .00 2 .05 .23 <.10 scope violation
0 .00 .00 2 .05 .23 < .10 Runtime pointer misuse
8 .13 .50 14 .37 .79 <.10 Semicolon
2 .03 .18 7 .18 .61 <.10 read past EOF

21-4 3.57 2.84 173 4.55 2.39 < .10 Compile time
1 .02 .13. 8 .21 .87 <.10 Comma

6 .10 .35 0 .00 .00 < .10 format lists
60 1.00 1.16 20 .53 .95 < .05 subscript error

8 .13 .39 0 .00 .00 <.05 runtime conversion
56 .93 1.49 13 .34 .67 <.05 time limit
11 .18 .47 0 .00 .00 <.05 stringsize
33 .55 1. 33 0 .00 .00 <.05 too much output
71 1.18 1.26 20 .53 .95 <.01 Subscript & stringsize
93 1.55 2.20 19 .50 .83 <.01 Resource limit

213 3.55 3.26 72 1.89 1.47 <.01 Runtime

The secondary null hypothesis is rejected in four major categories. Trivial

syntax errors were more common in Algol 68; Subscript and stringsize errors,

Resource limits and Runtime errors were more common in PL/I.

A puzzling observation in the later programs is that subscript errors

were significantly more common in PL/I. This may have arisen from lack of

multidimensional arrays in Calgol 68; to the familiarity with refs that

Algol 68 programmers must learn in order to program, encouraging use of

pointers rather than subscripts; or to the slightly better runtime diag­

nostics of Calgol 68 vs the PL/I optimizer in this area.

Fin~lly, a direct comparison between early errors, in the first two

programs for each Algol 68 subject, and late errors, in subsequent Algol

68 programs, yields Table 5.

41

Table 5. Error category tabulation, early vs late Algol 68 programs

Categories with no difference at the . 10 significance level are omitted •

Early (N=64) Late (N=38)

err mean s.d. err mean s.d. ex: error category

250 3.91 1.67 188 4.95 2.48 < .05 Voluntary
0 .00 .00 2 .05 .23 <.10 do-syntax

146 2.28 .97 105 2.76 1. 70 <.10 no error
94 1.47 Ls1 81 2.13 2.30 <.10 logic error

3 .05 .21 6 .16 .44 <.10 int := real
15 .23 • 77 20 .53 .95 < .10 subscript error
15 • 23 • 77 20 .53 .95 <.10 Subscript & stringsize

7 .11 .40 0 .00 .oo < .10 String syntax
44 .69 1.15 13 .34 .67 <.10 time limit
15 .23 .56 2 .05 .23 <.10 if-syntax
12 .19 .50 1 .03 .16 <.10 misspelled word

374 5.84 3.39 173 4.55 2.39 <.05 Compile time
8 .13 .33 0 .oo .00 <.05 job control language

151 2.36 2.28 37 .97 1.30 <.01 Trivial syntax
83 1.30 1.80 8 .21 .47 <.01 some semicolon

107 1.67 1.94 14 .37 .79 < .01 Semicolon

Voluntary errors went up, probably because subjects attempted harder prob­

lems as time went on. The more subscript errors and fewer time limit errors

may be due in part to the many subjects who picked problem 'bn' early; it

needed no arrays but required many iterations to converge. The do-syntax

errors were primarily a failure to get the control pieces of an Algol 68

do in the right order. The most significant differences occurred in the

Trivial syntax. errors,· particularly- semicolon errors, as would be expected

according to the hypothesis of learning.

5. CONCLUSIONS

In searching for the differences between the languages, it is easy to

overlook the surprising similarities. Despite the disparity between the

two languages, and despite the greater familiarity with PL/I, after two

programs, such important categories as Voluntary errors, logic errors, and

Syntax structure showed no significant difference in later programs. When

teaching,the course, our feeling was that the CS20 students struggled with

the problems far more than with the languages; this seems to be borne out

by the data.

42

From general observation of the class during consulting, there were

some nagging compiletime errors in both languages that deserve attention

when either language is taught or when new languages are designed. The PL/I

format lists and INITialization syntax are too complicated, and the Algol 68

stropping, semicolon rules, and unclosed comments caused especially annoying

reruns. Part of the stropping problem was due to the upper-case-only en­

vironment, but that environment is still the rule in many places. Semicolons

and comments are both the source of unnecessary learning errors in Algol 68.

However, in increasingly common interactive environments, compiletime

errors are unimportant; they represent solved problems. Runtime and Volun­

tary errors are the source of most debugging expense; here Algol 68 was

markedly better than PL/I, despite the handicap of being a new language for

the subjects. Recent research in programming language design has concentrated

on reducing incidence of Runtime and Voluntary errors [5,8,9,11-17]; future

studies should reveal the effect of these designs on software errors.

REFERENCES

[1] BOURNE, S.R., A.D .. BIRRELL & I. WALKER, ALGOL68C Reference Manual,

Cambridge University (1974).

[2] CONWAY, R. & T.R. WILCOX, Design and implementation of a diagnostic

compiler for PL/I, CACM.!.§_, 3 (March 1973), 169-179.

[3] EGGERT, P.R., M.G. KEARNS, A.S. TANENBAUM & R.C. UZGALIS, UCLA Calgol

68 Programmer's Guide, UCLA Computer Science Department (Sep­

tember 1978).

[4] EGGERT, P.R. & R.C. UZGALIS, Taxonomies of software errors and error

detection methods, UCLA Computer Science Department Quarterly 2_,

2 (April 1979), 116-133.

[5] EGGERT, P.R., Detecting software errors before execution, PhD disserta­

tion, UCLA Computer Science Department (September 1980).

[6] GANNON, J.D. & J.J. HORNING, Language design for programming reliabili­

ty, IEEE Trans Software Eng SE-1, 2 (June 1975), 179-191.

[7] GANNON, J.D., An experimental evaluation of data type conventions,

CACM 20, 8 (August 1977), 584-595.

[SJ GOGUEN, J., J. TAROO, N. WILLIAMSON & M. ZAMFIR, A practical method

for testing algebraic specifications, UCLA Computer Science

Department quarterly L 1 (January 1979), 57-80.

[9] GUTTAG, J.V., Notes on data type abstraction (version 2). IEEE Trans

Software Eng SE-§_, 1 (January 1980), 13-23.

43

[10] IBM Corp, OS PL/I checkout and optimizing compilers: language referen­

ce manual, IBM publication SC33-0009-1 (September 1971).

[11] ICHBIAH, J.D., J.G.P. BARNES, J.-C. HELIARD, B. KRIEG-BRUECKNER,

O. ROUBINE & B.A. WICHMANN, Preliminary Ada reference manual,

SIGPLAN Notices_!!, 6 (June 1979), Part A, entire issue.

[12] ICHBIAH, J.D., J.G.P. BARNES, J.-C. HELIARD, B. KRIEG-BRUECKNER,

o. ROUBINE & B.A. WICHMANN, Rationale for·t;he design of the Ada

programming language, SIGPLAN Notices_!!, 6 (June 1979), part B,

entire issue.

[13] LAMPSON, B.W., J.J. HORNING, R.L. LONDON, J.G. MITCHELL & G.J. POPEK,

Report 6n the programming language Euclid, SIGPLAN Notices 12,

2 (February 1977), O, i-ii, 1-79.

[14] LISKOV, B.H., A. SNYDER, R.R. ATKINSON & C. SCHAFFERT, Abstraction

mechanisms in CLU, CACM 20, 8 (August 1977), 564-576.

[15] POPEK, G.J., J.J. HORNING, B.W. LAMPSON, J.G. MITCHELL & R.L. LONDON,

Notes on the design of Euclid, SIGPLAN Notices g, 3 (March 1977),

11-18.

[16] WIRTH, N., Modula: a language for modular programming, Software -

Practice & Experience 7. _ _, 1 (January-February 1977), 3-35.

[17] WULF, W., R.L. LONDON & M. SHAW, Abstraction and verification in

Alphard: introduction to language and methodology, ISI Techni­

cal Report ISI/RR-76-46 (June 1976).

45

TEACHING WITH ALGOL 68 IN DRESDEN

G. STILLER

ABSTRACT

ALGOL 68 has been used in lectures on problem-oriented programming for

approximately 10 years as a prototype of a high level language in the edu­

cation of "engineers for information processing". After a brief description

of the aims of the corresponding branch of study its realization is out­

lined followed by a discussion of instructional and methodological aspects

regarded to be significant for this subject in general and for the appli­

cation of ALGOL 68 in particular.

46

1 . GENERAL REMARKS

After ten year practice in teaching problem-oriented programming, main­

ly on the basis of ALGOL 68, a brief summary of impressions and experiences

seems to be justified. These are predominantly positive. The author and his

team, however, are aware that the subject under discussion is, to a notice­

able extent, subjective and even self-confirming. There are, of course, other

opinions and educational strategies with a different view of some basic

principles, with other advantages and disadvantages and, finally, an also

optimistic estimation of the success. An exchange of thoughts is, conse­

quently, sufficiently motivated.

The training of "engineers for information processing" (comparable with

"software engineers") at the Technical University Dresden lasts 4.5 years

(9 semesters) including practical work in industry: all the 7th semester

(the so-called "Ingenieurpraktikum") is spent in industry, and likewise,

there are 4 weeks prior to the beginning of the studies (the so-called "Be­

rufspraktikum"). Programming disciplines as an important part of the entire

training program amount to~ 22% of the total time available [18]. The main

part of this time is spent on the topics stated in table 1 (additionally,

but not mentioned here, there are lectures on compiler construction, oper­

ating systems programming methodology etc.).

Table 1: Survey of Lectures in Programming

Amount of Time
1)

(hours)

Subject Semester }: Lee- Exer- Prac-
tures cises tice

Fundamentals of Programming 1 64 32 32

Machine Oriented Progr. 2,3,4,5 272 96 96 80

Problem Oriented Prog. 3,4,5 240 88 88 64

1)
2 hours= 85 min; exercises supplement lectures (repetition, explana­
tion etc.), practice means practical programming (writing, punching,
compiling, checking and elaborating programs)

47

Training in (problem oriented) programming is to be based upon a con­

crete language ("model language") that will fulfill well known conditions

like clearness, understandability, typicalness of the state of the art etc.

These properties are often not possessed by languages developed in the scope

of industrial computer application. On the other hand, languages provided

in education are frequently not widely used in industrial practice. There­

fore, we feel obliged to accept a compromise: to take one (training) lan­

guage in order to create or influence the student's view of programming and

to use (more briefly) another one being applied in industry in order to al­

so endow students with the appropriate knowledge. This may be considered

unsatisfactory but, finally, it supports our pronounced intention of achiev­

ing a fair degree of versatility for our graduates. This leads to the fol­

lowing aims as a guide for education [17,8]:

(a) students must be able to write programs (self-evident)

(bl students must obtain a sufficiently universal knowledge of typical

concepts in problem oriented programming (reflected by the model lan­

guage)

(c) students should be able to grasp yet unknown (to them) or new program-

ming languages (or principles) based upon the view and knowledge gained.

From these aims criteria for the choice of a suitable model language have

been derived. (a) is obviously supported by language features like clear­

ness, understandability, simplicity (combined with a certain degree of or­

thogonality). (b) is favoured by generality, universality, whereas (cl re­

quires properties somewhat like a "metalanguage behaviour" in the sense

that the effect (semantics) of constructs in other languages may fairly

well be expressed in terms of the model language. Our choice was in favour

of ALGOL 68 because in our opinion this language satisfies (b) and (c) and

(with certain restrictions) also (a). This resolution was taken comparative­

ly early (1971). So we have been able to train - using ALGOL 68 - each an­

nual course of students from the establishment of our department. It should

be mentioned here that there was a close co-operation with I.O. Kerner who

also performed the lectures of the first course (1971/72) as a host profes­

sor. The use of ALGOL 68 was, however, restricted to lectures and exercises

only. Not until last year did we have an ALGOL 68 compiler available (our

own comp~ler [12] is just now used for the first time for practical program­

ming i.e. for "practice", viz. table 1). This was not too disadvantageous

since ALGOL 60 may be regarded as a (somewhat modified) subset of ALGOL 68,

48

Table 2: Schedule of the Problem Oriented Progr<llllIIling Course

Semester 3 4 5

Parts of ¼ ~
the 1 i.- 2 - ~- 3 -

~ ~ Course ~
~ ~

Topics ALGOL 68 -~.-PL/I ►~+ Special -.
treated

~reliminary subset)---1; ~ ' % Topics

~ " ~
"I"-- --

"7 1-?
--. --. ' --- ' 2. -- -._ ALGOL 60 i i ""

1/,

~ (now:A68L+f z PL/I z
Practice ~- z

~ ~ ~ ~
1/, z z z

Examina 1': ft 1'
Prelimin. 1st Examin. 2nd Exami n.
Certific. (ALGOL 68) (altogeth er)

In this way practical programming has been performed on the basis of ALGOL

60. Tab.2 outlines a schedule of lectures, exercises, practice and examina­

tions for the whole course. Examinations consist of a written exercise (60

min.) and an immediate individual discussion of the results (30 min.) with

the examiner. The scheme outlined in tab.2 determines only a certain struc­

ture filled with the denoted contents, permitting actualizations of the

topics treated, if necessary. It indicates that PL/I serves as the language

for industrial applications, treated after the model language. The students

are supported by some lectures. They have, however, to learn PL/I mainly

by private studies using books. In this way qualities contained in (b) and

(c) are simultaneously acquired, applied and checked. The third part(~ 14

hours lectures) deals with special topics, such as list processing (ALGOL 68

and PL/I), parallel processing (ALGOL 68 with a glance at CONCURRENT PASCAL)

and certain methodological questions.

2. SOME CHARACTERISTICS OF ALGOL 68 AND THEIR INFLUENCE ON TEACHING

ALGOL 68 differs from other comparable languages by strict orthogonal­

ity, a high degree of generalization as well as the consideration of imple­

mentation oriented principles (machine independent and compatible with a

problem-oriented view). We regard this combination of an abstract and

realistic view as constructive but it has, on the other hand, also been an

obvious reason for objections to ALGOL 68 [9].

49

The specific expressive power of ALGOL 68 has even stimulated attempts

to use the language as a metalanguage for denotational semantics [13]. One

can comparatively well explain the meaning of constructs in other languages

by a suitable ALGOL 68 text. This is not to be understood as an attempt to

formalize the semantics (according to [13]) but concerns somehow this idea.

It is (only) intended to illustrate essential properties of language con­

structs by means of a similar text in the model language, often performed

for a special example (for instance: declarations, parameter transfer mech­

anisms, data structuring, component access). In this sense ALGOL 68 ap­

proaches a "unified model" for high level languages. For that reason we like

to speak of "teaching with ALGOL 68", not only teaching the language itself.

Orthogonality strongly supports the correct use of a language since

straightforward rules may be mastered comparatively well and securely. So

it supports appropriate coding of problems and helps to avoid primitive

errors due to inadequate use of the language. This is regarded to be a con­

tribution to programming security that should not be underestimated. It

provides, of course, complete familiarity with the orthogonal rules.

For noninitiated students, however, orthogonality combined with gener­

alizations acts as an initial barrier to understanding due to pronounced

interaction (nesting, pile up) of certain orthogonal constructs: serial

clauses contain units and declarations; declarations contain declarers and

units; units contain declarers and/or serial clauses; declarers may con­

tain units; units may be statements or expressions •.. etc.

It is, consequently, necessary to separate such interactions in the

beginning by preliminary simplifications of some concepts, starting with

an informal prelude, in order to achieve a gradual, incremental understand­

ing. This has very well been demonstrated in [11]. There are, indeed,

several ways of realizing this. After having overcome the initial barrier

all the further understanding proceeds progressively: behind the first

mountains a nearly plain area of active programming is accessed. Such a

preparation for easy understanding is closely related to the question how

a suitable (set of) sublanguage(s) can be derived which fit the given re­

quirement.;3. This is obviously easy with regard to the orthogonal prin­

ciples (omission of unions and flexibility, for instance). Other subsets of

various power can also be derived, possibly with a certain loss of

50

orthogonality. Even the notion "reference", often regarded as the most im­

portant element of ALGOL 68, can be eliminated (after omission of all means

of handling references as values "ref" remains only in formal parameter de­

clarers and may here be understood as a special attribute indicating the

in/out parameter passing mechanism "call by reference").

The power of ALGOL 68 has been satisfactory during all the work in the

past. The extension mechanisms (mode and operation declaration, library

prelude) have proved their worth as comparatively simple but powerful means

to express specialized language features. Nevertheless, for each language

being applied certain (possible or desirable) extensions or modifications

will sooner or later be discussed. In the case of ALGOL 68 it was compara­

tively late that we felt some need to consider extensions, mainly from an

experimental point of view. It seems to be possible to introduce, for in­

stance, such PASCAL descendent [SJ facilities as value ranges (even dynamic)

and enumeration types into ALGOL 68 in a rather concise and clear manner

[6]. Abstract data represent - from the ALGOL 68 point of view - a hybrid

combination of properties of different constructs (structures and proce­

dures, for instance) and may still have some particular features.

If an abstract data type (or "mode") is defined and variables of this

type (mode) are declared and initialized later on this causes copies of the

data type pattern to be written into the respective memory occupied by those

variables. If the data type contains routines these are, of course, to be

copied too. In this connection the "partial parametrization" proposed in

['10] proves to be useful. Apart from a better understanding of the proce­

dure call and the coercion "deproceduring", the yielding of a routine as

the result of another routine (possibly by a partially parametrized call)

gives a compact description of such copying. If such routines are produced

for parallel elaboration this copying is essentially to be understood as a

"physical copying" providing reentrant behaviour. Thus it is possible to

describe semantic features of abstract data [3] and their respective mani­

pulation to a certain extent and sufficiently elegant in terms of (extend­

ed) ALGOL 68 in a manner suitable for training.

3. HOW TEACHING OF ALGOL 68 HAS BEEN PREPARED

The author fully agrees with the opinion stated in [1], namely to

achieve understanding for programming languages mainly from the semantical

point of view. ALGOL 68 supports this too, because a noticeable part of

properties essential for the intended effect of programming belongs to so­

called "internal objects" which is part of the semantics.

51

How do we provide students with useful literature? The strict formali­

zation of the defining report [19] forbids its recommendation as a referen­

ce for learning ALGOL 68. Although there is a lot of additional informal

literature one cannot really do without a certain framework of rules as a

guide for active programming. This renders the application of ALGOL 68 un­

doubtedly more difficult or expensive but it is not a property of the lan­

guage itself.

We have, therefore, prepared {and printed) a summary [16] of data

{tables, rules etc.) as a supplement to lectures. It contains a set of syn­

tactic rules written in an extended Backus-Naur representation supplied with

some information about the context according to the 2VW grammar in a table­

like representation. The following example {tab.3) denotes a simplified rule

for the serial clause without labels and completers, where {D) indicates

Table 3: Simplified rule for the serial clause

O•oo
<serial clause>::= [<phrase>;] • <unit>

(D)

{M)

{P)

moid

context

(void)

strong

moid

context

a {possible) new layer for declarations, {M) and (P) denote the required

mode and syntactic position, respectively. About 25 rules are already suf­

ficient for practical programming. The rules are not intended to replace

the defining report, they are not "exact", but they do their duty rather

well. The rules are discussed within the lectures together with the cor­

responding semantics described in natural language and by drawing boxes as

already proposed in [11] (a simple but very illustrative method) •

Students trained at first in problem oriented programming are strug­

gling against programming on machine oriented level (what's fully under­

standable but, finally, not permissible). Therefore nearly parallel per­

formance of the machine and problem oriented courses has been provided. ,
Nevertheless, students now obstinately try to write loops and alternatives

by means of labels and jumps. Consequently, these means have been omitted

{viz. the above mentioned rule) or, eventually, been postponed to the very

52

end.

The whole of ALGOL 68 is not treated in this way. Unions, longs and

shorts are omitted (but can be included if desired). Flexibility appears

only as a special property of string variables. Transput is restricted

(read, print only). Parallelism is postponed till the third part, as men­

tioned before •

The informal introduction presents a still more restricted but never­

theless powerful sublanguage comparable with ALGOL 60, exceeding it, how­

ever, with respect to structures and procedures. The ALGOL 68 model of a

variable including dereferencing as well as the model of a constant (deno­

tation) is introduced very early. At the beginning only the variable decla­

ration is used for the modes int, real, bool, char, [..] ... and struct(..).

Slice and selection are defined as to permit read and write access via the

subname to one component only. "Void" is introduced at the beginning as a

metalinguistic notion only, in order to define a so-called "void block",

"mode block', "void compound" and "mode compound" by means of simple rules

as preliminary incarnations of the serial clause (to be explained later).

Conditional and loop clauses contain only nested compounds at this stage,

thus postponing the problems of block structure once more.

Procedures are instantly explained to be a representation of subpro­

grams as data with well defined modes. They are correctly declared using

the corresponding identity declaration, which is presented only for that

purpose. Now, for the first time "void" appears as a possible (formal result)

declarer which is intuitively well understood. Parameter transfer is ex­

plained anticipating the semantics of the (still unknown) identity declara­

tion, and anticipating at this point also the idea of a nested block in the

case of parametrized procedures. An intended, intuitive preunderstanding of

the identity declaration is achieved in this way, leading to a somewhat

surprising enlightment when the declaration is later treated and recognized

as an "already known" orthogonal element within the procedure mechanism.

The introduction of the identity declaration is to be regarded as an essen­

tial step that should be performed carefully.

The informal part ends up with necessary generalizations and surveys

(serial clause, block structure, unitary clause, coercions, references,

generators, identity declaration, collaterality). These topics can already

be treat~d more concisely, leading to a more formalized overall description

with some repetitions.

4. DISCUSSION

Ten years ago ALGOL 60 was still taught within a total of 32 hours

(lectures only). Now, with the same expense, the preliminary ALGOL 68 sub­

set is treated. It exceeds ALGOL 60, and includes several provisions for

generalizations. The complete ALGOL 68 part required re 52 hours (lectures)

within the last course. We intend to reduce this amount to Ri 44 hours be­

cause more and improved printed material will be available this year for

private studies. In our opinion the expressive power of ALGOL 68 exceeds

that of ALGOL 60 significantly more than the corresponding time for train­

ing seems to indicate. We regard this to be a relative gain in time due to

the orthogonality principle. Nevertheless, this amount is high: it is ob­

viously the price to be payed today in favour of the appropriate horizon

and according to the fact that the whole program development becomes more

and more language-aided and even language-guided [7]. Restrictions, if

necessary, may reduce this amount during education and postpone it to a

later period of work.

What may be told about the results of education? There is, at first,

a quite normal distribution of excellent, good, fair and bad results over

the number of students. "Good" students are usually also successful in

other disciplines, "bad" ones usually not. Successful students are not on­

ly using the language in a proper way but are made fit for original, crea­

tive programming (they have comprehended the whole philosophy).

53

The study of PL/I is also supported by some self-made (and printed)

surveys including a skeleton of rules. A lot of program examples is pre­

sented and explained, usually in relation to corresponding ALGOL 68 solu­

tions.· In this context it is interesting to note that the students very

soon pe~ceive plain differences between both languages mentioned and some­

times they spontaneously utter critical comments. If the education is (par­

tially) responsible for such an ability to properly estimate the character­

istics of a language we are willing to regard this as a success.

The survey and versatility obtained seems to be fair, in any case

better than ten years ago: to become familiar with a language of the FOR­

TRAN, PASCAL or ALGOL 60 size is now one weekend's work. Graduates in

industry have confirmed that they are able to follow continued professional
I

training with less trouble compared to other collaborators with a more con-

ventional level of education in this field.

A weaker point ought to be mentioned, however. Students don't get too

54

much support for programming on the level of operating systems that serve

as PL/I environment. The situation in this field seems unsatisfactory in

general. Much trouble is caused by the subject itself: compilers are often

handled in the environment of operating systems which are completely machine

oriented. Communication with the system then proceeds on a rather low lan­

guage level. It is impossible to cast teaching into such a frame. On the

other hand, the question is important. Users are more and more "programming

within the operating system", i.e. they are activating system actions con­

nected with file handling and transput, event handling, parallelism, sched­

uling etc.

Education has to take this into account but it can be done only on the

basis of a problem oriented solution [2]. Transput and file handling are al­

ready solved in an adequate manner. There is, however, usually an overlap

with lectures on data bases which are mainly leaning upon the COBOL and/or

PL/I philosophy as a predominant orientation in industrial practice. For

the next future we intend to leave this subject to the responsibility of the

courses on data bases, with attention, however, to the further development.

For this reason we shall retain transput facilities on a not too extended

level, also when using our own compiler.

The teaching program outlined in this paper has been discussed serious­

ly, and by general consent, among specialists, who also agreed with our

decision in favour of ALGOL 68 as the training basis in problem-oriented

programming. Nevertheless, in other institutes, universities or sections

different "model languages" have been chosen, for instance PL/I, PASCAL,

ALGOL 60, FORTRAN and even BASIC. The reasons for such decisions may be

various: computational (availabilitry of·compilers); special directions in

research closely related to the use of a specific language which is then,

consequently, also applied in training; more restricted amount of time for

lectures; recommendations of users etc. Our feeling is that these decisions

are, surely, well motivated, as is our own decision: the use of high level

languages is, obviously, in itself a matter of problem orientation. Only

two arguments shall be briefly commented upon in this context.

The first argument states that attention should mainly be payed to the

writing of well-structured programs and this is possible in any language.

This opinion obviously reduces the contributions of high-level languages
,

to the art of programming to certain convenient structuring facilities on-

ly (alternative, loop, subprogram, perhaps some formatting of the program

text). These facilities exist, indeed, in nearly any language (even

assembler) but cover only a small part of what is really to be considered

[20,9].

55

The other opinion prefers effective communication (dialogue) to the

debit of the level of programming (BASIC for instance). We must differ from

this opinion since we regard the dialogue to be another quality that cannot

replace the essential characteristics of high-level languages.

As mentioned before, ALGOL 68 includes certain implementation prin­

ciples condensed in language constructs, rules or notions, which are in this

way made visible at the problem oriented level (in a rather generalized

manner, however).

We know about objections to these specific characteristics. We have

to agree that they somewhat complicate the initial understanding (the al­

ready mentioned "barrier") and that they, to some extent, are dispensable

at a lower grade of education, as frequently required for non-specialists.

Although general reasons for the choice of ALGOL 68 have already been dis­

cussed a few comments should be added to this question.

The principle of utmost simplicity (as an objection also to ALGOL 68)

has not been realized in certain recently designed languages (for instance

PEARL, ADA, CHILL [15,4,14]). Obviously the actually (also by non-specialists)

required expressive power leads to voluminous languages exceeding the in­

tuitive boundary of extreme simplicity. All the more it seems to be neces­

sary to keep languages transparent by stricter orthogonality. ALGOL 68 is

obviously still unique in this respect.

If a certain degree of simplicity or universality is required which is

not met by the model language selected we prefer to take a subset of a more

powerful language rather than to extend a too simple one (the possible deri­

vation·of ALGOL 68 sublanguages has already been discussed). This is in

favour of homogeneity and orthogonality.

Computers have to be adapted to the human mind, not vice versa. This

is a clear vote in favour of problem orientation as a long-term aim. To

which extent this may actually be realized depends on the whole "context"

of programming. This necessarily leads to some compromise.

When an inexperienced programmer has learnt x[i] to be a (subscripted

or component) variable that can be assigned (or can yield) a certain com­

ponent value of an array, he has obtained the information for a correct
I

use of this construct but this is not sufficient for skilled programming

according to the requirements of practice. He has to learn additionally,

either by his own experiences or by e~tra instructions, that this construct

56

behaves quite different from a "normal" variable with respect to its run­

time behaviour and that it obviously is another thing. The ALGOL 68 notion

of a slice is more realistic. A similar question is, whether parameter­

passing mechanisms should be defined within the language or not (copying or

not, etc.). Possibly this knowledge is required since it influences the

portability of programs. The limited accuracy of numerical value representa.;.

tions turns out to even become an essential concept in language design.

It is no secret that information handled by present computers is con­

tained in (referable) locations of a memory of limited size and that this

handling must be programmable and executable economically, considering the

peculiarities of the whole process. As long as certain peculiarities exist

and significantly effect programming they have to be taken into account.

Obviously the question is to which extent some (more pragmatic) in~

structions (or definitions) are excluded from language descriptions in or­

der to hide them from the user in favour of a purely problem oriented view.

The hidden information is then, however, obtained from elsewhere, usually

in a much more machine-oriented manner than is desirabl~, and this really

is no advantage. The ALGOL 68 solution is problem oriented and realistic

in the sense explained above, and it is machine independent. This obviously

reflects an engineering point of view. We have used it with success.

REFERENCES

[1] BAUER, F.L., G. GOOS, Informatik I, Berlin-W.-Heidelberg-New York,

Springer-Verlag 1971, Heidelberger Taschenbucher 81.

[2] ELZER, P., R. ROESSLER, Real Time Languages and Operating Systems,

5th IFAC/IFIP Int. Conf. on Digit. Computer Appl. to Process

Control, van.Nauta Lemke, A.-R. Verbruggen, H.B. (Editors),

North Holland Publ. Co. (Preprints) 1977, Amsterdam.

[3] HEINER, M., G. STILLER, Synchronisation bei Parallelverarbeitung, Tech­

nische Universitiit Dresden, Weiterbildungszentrum fur Mathema­

tische Kybernetik und Rechentechnik, Informationsverarbeitung,

Heft 46/80 (1980).

[4] ICHBIAH, J.D. et al., Preliminary ADA Reference Manual, ACM Sigplan

Notices 14 (1979) No. 6.

[SJ JENSEN, K., N. WIRTH, PASCAL - User Manual and Report, Lecture Notes

in Comp. Sci. .!:.§_ (1974) .

57

[6] KONIG, H., G. STILLER, Einheziehung von Wertebereichen und Aufzahl­

wertarten in das mode-Konzept von ALGOL 68 und ihr zusammenhang

mit dem Begriff der Wertartaquivalenz, Submitted to the conferen­

ce "Algorithmische Sprachen ALGOL" Dresden, Padagogische Hoch­

schule "K.F.W. Wander II", June 1-5, 1981.

[7] LEHMANN, N.J., Sprachlich gestutzte und geleitete EDV-Projektierung,

Technische Universitat Dresden/ Informationen Sektion Mathema­

tik/ WB MKR 07-28-79.

[8] LEHMANN, N.J., G. STILLER, Einige methodische Aspekte der Entwicklung

und Nutzung hoherer Programmiersprachen, Rechentechnik und Daten­

werarbeitung .!l_, 2. Beiheft 1976, 7-10, Berlin, Verlag Die Wirt­

schaft.

[9] LEHMANN, N.J., G. STILLER, Unterstutzung des Programmentwurfs und der

Programmtestung - Folgerungen bezuglich geeigneter Spracharchi­

tektur, Wissenschaftliche Zeitschrift der Technischen Universi­

tat Dresden '!:l.._ (1978), 1135-1144 (Heft 6).

[10] LINDSEY, C.H., Specification of Partial Parametrization Proposal,

ALGOL Bulletin 39, pp. 6-9.

[11] LINDSEY, C.H., S.G. VANDERMEULEN, Informal Introduction to ALGOL 68,

North Holland Publ. Co. 1971 and 1977, Amsterdam.

[12] LOEPER, H., H.-J. JAKEL, H. PIETSCH, Semantic Analysis and Synthesis

in the ALGOL 68 R 4000 Compiler, (These proceedings).

[13] PAGAN, F.G., ALG!)L 68 as a Metalanguage for Denotational Semantics,

The Computer Journal 3.?._ (1979) 1, pp. 63-66.

[14] Proposal for a Recollllllendation for a C.C.I.T.T. High Level Programming

Language (2nd Edition), c.c.I.T.T. Study Group (1977).

[15] Programmiersprache PEARL, Basic PEARL, Beuth-Verlag Berlin~K5ln,

DIN 66253, Teil 1, June 1978.

[16] STILLER, G., Skripte zur Lehrveranstaltung ALGOL 68, Technische Uni­

versitat Dresden, Sektion Informationsverarbeitung, als Manuskript

gedruckt 1976, 1978, 1980.

58

[17] STILLER, G. et al., Lehrprogramm fur das Lehrgebiet Problemorientierte

Programmierungstechnik zur Ausbildung in der Grundstudienrich­

tung Informationsverarbeitung an Universitaten und Hochschulen

der DDR, Herausgeber: Ministerium fur Hoch- und Fachschulwesen

der DDR, Berlin 1978, als Manuskript gedruckt.

[18] Studienplan fur die Grundstudienrichtung Informationsverarbeitung zur

Ausbildung an Universitaten und Hochschulen der DDR, Herausgeber:

Ministerium fur Hoch- und Fachschulwesen der DDR, Berlin 1976,

Bestell-Nr. 338 341 9.

[19] WIJNGAARDEN, A. VAN et al. , Revised Report on the Algorithmic Language

ALGOL 68, ACTA INFORMATICA Vol. 5 Fasc. 1-3 (1975), Berlin-W.­

Heidelberg-New York, Springer-Verlag.

[20] WIRTH, N., On the Design of Programming Languages, in: Rosenfeld, J.L.

(ed.): Information Processing '74, ~ (1974) 386-393, Amsterdam,

North-Holland Puhl. Co. 1974, (Proceedings of the IFIP Conference

1974).

ABSTRACT

SEMANTIC ANALYSIS AND SYNTHESIS

IN THE ALGOL 68 R 4000 COMPILER

H. LOEPER, H.-J. JAKEL, H. PIETSCH

The paper gives a short survey of the implementation of an ALGOL 68

language version on the medium-size Robotron computer R 4000 at the

Department of Information Processing of the Technical University Dresden.

The aim of the implementation is to make an ALGOL 68 compiler available

for teaching in the field of problem-oriented programming, in which

ALGOL 68 is used as a prototype of a high-level language. Therefore, only

few restrictions exist for declarations and units in comparison to the

full ALGOL 68. The user may extend the set of defined standard objects

(modes, procedures, operators) by using a special pragmat. The implemen­

ted ALGOL 68 version makes a modular program structure possible.

Furthermore, the global structure of the compiler is briefly de­

scribed by a short explanation of the five compiler passes. Especially,

the paper deals with the realization of semantic analysis and synthesis

in the ALGOL 68 R 4000 compiler. In this compiler, semantic analysis

and synthesis have been separated sharply from the other tasks of the

compiler by well-defined interfaces:

representation of the syntactic structure of the source program in an

intermediate program,

representation of the meaning of the program in a machine-independent

target program,

- representation of semantic information in the symbol table.

59

The implemented semantic analysis and synthesis are based on the so­

called o-attribute grammars derived from the general attribute grammars,

which were developed by D. Knuth. Their application is described.

o-attribute grammars have only synthesized attributes and, in addition

to these, o-attributes.

60

By using 0-attribute grammars, the linear representation of the syntax

tree of the source program may be translated sequentially into the target

program. A simple and effective method for the realization of 0-attribute

grammars is presented, and explained by an example of an ALGOL 68 lan­

guage construct.

61

1. A SHORT SURVEY OF THE IMPLEMENTED ALGOL 68 LANGUAGE VERSION

In order to ease an estimation of the effectiveness and applicability

of the described semantic analysis and synthesis method, a short survey

of the implemented ALGOL 68 language version is provided before the proper

explanations of the semantic analysis and synthesis. In comparison to the

full ALGOL 68 only few restrictions exist for declarations and units in

ALGOL 68 R 4000. The ALGOL 68 version has generators for the local run­

time stack and the global heap. The realized block concept allows decla­

rations and statements in any sequence within the block (serial clause

with declarations). Blocks and procedure calls may have results of any

mode. Dynamic arrays (multiple values) and structures may be used in the

declaration of new objects without restriction. But there are no flexible

arrays. The data-related reference concept is completely realized.

In comparison to the full ALGOL 68, the following restrictions need

be mentioned:

- There is no parallel processing and no semaphor technique.

The union mode and the conformity case clause are not included in the

language version.

The completer (exit) is not allowed in the serial clause.

- Enclosed clauses are only permissible in strong positions, so that

no balancing is necessary.

- The possibilities of transput, which is realized by special syntactic

constructions, and the format-texts are restricted.

In ALGOL 68 R 4000, main programs and subroutines exist additionally

as modules and may be translated separately. The realized module concept,

which permits a higher clearness in programming and more effective

validation by separate compilation and test of the modules, is very

simple. A main program is always a labeled closed clause, e.g.

extern mpl : begin • • • end

Subroutines have the form of a labeled routinetext, e.g.

extern sp1: (real a, b)real: sqrt(a *a+ b * b).

The subroutine is a module that can be activated in other modules by its

external! identifier (e.g., sp1). The so-called code declaration for proce­

dures and operators, which is derived from the ALGOL 68 identity declara­

tion, and describes the connections between the modules, has been

62

incorporated in ALGOL 68 R 4000. By means of the code declaration a sub­

routine is ascribed to the declared procedure identifier, or to the

declared operator indicator, respectively. The above-given subroutine

may be used in another module by the following code declarations:

proc (real, real) real diagonale = extern spl;

op (real, real) real hypot = extern spl.

Note: subroutines can also be programs written in other languages, and

operators can be overloaded by several code declarations.

The ALGOL 68 R 4000 language and the compiler contain tools for extending

the set of standard declarations (modes, procedures, operators) by the

user. New standard modes, procedures, and overloaded operators of any

priority can be inserted into the standard frame by means of mode decla­

rations, code declarations and priority declarations.

Note: actual bounds in mode declarations for extending the standard frame

must be denotations.

For that purpose, a special pragmat exists, which is a sequence of

discussed declarations enclosed by E:_-symbols. A pragmat can be separately

compiled, but it can also appear before each ALGOL 68 R 4000 program:

<compilable unit>::= <ALGOL 68 R 4000 program>!

<pragmat><ALGOL 68 R 4000 program>!

<pragmat>.

-The compilation of the following pragmat makes the operator hypot with

priority 8 available as a standard operator:

pr op (real, real) real hypot = extern spl;

prio hypot = 8

pr.

After the compilation of a pragmat, the extended symbol tables are or­

ganized in a file which can be read in the next translation process.

Each module possesses one directly subordinated declaration level in re­

lation to this, possibly extended, standard frame. By translating several

pragmats, a repeated extension of the standard frame is possible. Using

a file name of the extended symbol table part, special commands allow

to work,with one of the several special standard frames for classes of

users.

63

2. THE STRUCTURE OF THE COMPILER

The pass division gives one of the most important pieces of infor­

mation about the global structure of a compiler. The pass division depends

on the source language, the level of the target language, the features

of the computer (main store capacity, periphery) and special aims of the

implementation (e.g., optimizing). Lexical and syntactic analysis, code

generation, as well as symbol table organization, semantic analysis

and synthesis are relatively separate tasks in a compiler. The clear

delimitation of the tasks by an appropriate pass division, and by a modu­

lar structure, guarantees the reliability, portability, and adaptability

of the compiler.

In the present ALGOL 68 compiler the lexical analysis (the recogni­

tion of the morphems and their conversion into internal code) is rea­

lized in a separate first pass. The first pass translates the source

program into a program of the so-called syntax language, a sequence

of coded morphems. M:lrphems are the smallest syntactic entities of the

source program that carry meaning. The context-dependent conversion of

some symbols happens in the second pass before the syntactic analysis,

because the context-dependent conversion of certain basic symbols (e.g.,

indicators) into corresponding internal codes is only possible by means

of unlimited right context information.

The syntactic analysis is based on a context-free grammar derived from

the ALGOL 68 definition, and is realized in the second compiler pass by a

precedence-controlled method with bounded context examination. The second

pass delivers an intermediate program which is the right linear represen­

tation of the syntactic program structure (syntax tree).

The semantic analysis is divided in two passes. At first, in the

third pass, the mode information is built up in a mode graph by investi­

gating the syntactic structure of the declarers. After, the equivalence

investigation of the modes, the proper mode checkings (e.g., check of

coercions, operator identification) in the program to be translated

are executed in the fourth pass. The meaning of the program (dynamic

semantics) is provided in a machine-independent target language improving

the portability of the compiler. The fifth pass generates the machine-

' dependent assembly language.

64

A survey of the most important tasks of the five passes is given

below.

1. pass: - morphem recognition and context-dependent lexical analysis

and conversion

- construction of the symbol table

- check of the block structure

2. pass: - context-dependent conversion of some morphems

- determination of the syntax tree

- construction of the symbol table

3. pass: - construction of the mode graph, check of mode equivalence

and well-formedness

completion of the syntax tree by mode and right context in­

formation

4. pass: - semantic analysis and synthesis

operator identification

check of coercions

- generation of the machine-independent target language

5. pass: - generation of the assembly program (macro expansion)

- machine-dependent compile-time checks

The source program with error messages and warnings detected in all

passes is listed after the expansion of the macro-like target program.

Subsequently the program is assembled into the object program. The size

of each of the five passes is at most 20 kByte, so that more than 20 kByte

can be used by the symbol table organization in connection with a virtual

storage management system.

The discussed implementation tries to form a machine-independent

compiler realization by the following premises:

- The use of the system~programming language CDL for all five compiler

passes.

- An unambigious identification of the interfaces to the computer and

its operating system, and the collection of machine-dependent program

sections in special CDL modules.

The s,paration of the machine-independent compiler parts from the

machine-dependent code generation by using a machine-independent target

language. The so-called macro-processor, which translates the target

program into the assembly language, is also written in CDL.

Therefore, the first four passes can be transferred to any other

computer without large modifications; a lot of modules of the fifth pass

can be re-used. Considering the problems of portability, it must be kept

in mind that the ALGOL 68 implementation has a large storage run-time

system and an I/0-System, which are naturally machine-dependent.

Extensive conceptional and programming toil lies in .these components of

the ALGOL 68 programming system.

3. SEMANTIC ANALYSIS AND SYNl'HESIS

3. 1. Preliminary remarks,
I

65

Semantic analysis deals with the compile-time control of such deter­

minations of the language definition that cannot be proved in lexical and

syntactic analysis (static semantics). The semantic synthesis represents

the meaning of the source program machine-independently and uses infor­

mation of the semantic analysis (dynamic semantics). Therefore semantic

analysis and semantic synthesis can be considered as connected tasks of

the compiler, often called evaluation. For the evaluation, three inter­

faces are important: syntactic analysis, symbol table organization, and

code generation:

1) The syntactic structure of the source program is the input information

of the semantic analysis and synthesis. Semantic analysis and synthesis

can be delimited to the syntactic analysis in two ways:

The evaluation is immediately executed for each syntacticallly

~alyzed source program construct, e.g., a sequence of calls

of semantic routines mediates the syntactic structure.

- The syntactic structure of the source program is completely repre­

sented in an intermediate program, which is processed in the seman­

tic analysis and synthesis.

The second variant, which is used in the present ALGOL 68 implemen­

tation, offers the advantage that the evaluation can be formed in­

dependently of special lexical and syntactic analysis methods, especially

those for error recovery and correction.

2) It is efficient to use the symbol table during the analysis of certain

context-dependencies, e.g., during the identification process.

66

A suitable symbol table organization can influence the evaluation

decisively. However, these problems will not be dealt with here in

detail.

3) The result of the evaluation is a target program, which represents the

meaning of the source program.

The semantic analysis and synthesis of the present ALGOL 68 compiler are

realized on the basis of a formal description by the so-called 0-attribute

grammars. From now on we will deal with the representation of the syn­

tactic structure of source programs, with the application of the 0-attri­

bute grammar in the translating process, and with the machine-independent

target language used in the compiler of the implemented ALGOL 68 language

version.

3.2. The representation of the syntactic structure of the source program

Since the syntactic analysis is based on a context-free grammar, the

syntactic structure of a program is a syntax tree. The syntax tree is a

finite directed graph with labelled nodes and arcs.

D 1: The quintuple (K, Z, k0 , f, g) is a syntax~ in relation to the

context-free grammar (V, A, R, s), if

- (K, Z) is a tree with the root k0 ;

- K is the set of nodes which can be subdivided into the disjoint sets

of the terminal nodes Kt and of the nonterminal nodes Kn:

K = Kn U Kt and Kn n Kt=~;

- f is the node labelling function, which labels each node k EK with

a pair (v, r), in which vis a vocabulary symbol or E and r is a

rule, r ER or r = E;

f: K ➔ (VU {E}) x (RU {E}), especially

f: Kt ➔ (Au {E}) X {E},

f: K ➔ (V - A) X R and n

f(k0) (s, r) with r = (s, w) € R and w E

- Z is the set of arcs with Z c K x K, where
n

* V

Vk [k EK ➔ 3k' [k' EK A (k, k') E Z A f(k) = (z, r) A
n

67

- g is the labelling function that attaches a natural number to each

arc in order to arrange the set of direct descendant nodes z+l of
k

each node k € K:
n

g: Z + N

Vk [k € K A f(k) = (z, r) Ar
n

(z, v 1 ••• v ..•• v) € R +
l. n

Vi[1 ~ i ~ n + 3!!k' [k' €KA (k, k') € Z A g((k, k')) i A

f(k') (v., r') Ar•€ RU {e;}JJJ.
l.

The syntax tree can be represented by lists or linear bracket repre­

sentations in the intermediate program. In the ALGOL 68 implementation

discussed here, the right-linear representation of the syntax tree is used.

This representation is well-suited both for tree construction by syntactic

analysis as well as for processing the syntax tree by semantic analysis

and synthesis, because only a sequential file organization is needed, and,

what is more, the storage size is relatively small compared to other

representation methods. The advantage of the right-linear representation

is that a syntactic construct is only then identified when all its constitu­

ents are represented. This principle is profitably applied in the semantic

synthesis, because a target language operation corresponding to a syntactic

construct can not be generated before the constituents of the syntactic

construct are determined.

D 2: The right-linear representation of a syntax tree b0 = (K, Z, k0 , f, g)

is the right~linear representation of the syntax subtree b0 , at which

the right-linear representation of a syntax subtree

b' = (K', z,, kb, f', g') is recursively defined by

rp(b')

if f' (kb) = (a, £) , a € A U { d

rp(b2), •.• , rp (bn)) r if f' (kb) = (v, r),

r = (v, v1v 2 ..• vn) € R

and Vi [1 ~ i ~ n +bi= (Ki, Zi, ki, fi, gi) is a syntax

D 3: The quintuple (K', z•, kb, f', g') is a syntax subtree of the syntax

tree (K, Z, k0 , f, g) in relation to the context-free grammar

68

G = (V, A, R, s) if

- K• z+*
k'

0
z, z n (K' X K·)

- f' f n (K' X (V U {d> X (R u {£}))

g' g n (Z' X N)

+* * Note: Zk = {k': (k, k') E Z}.

A simple example is to explain the above-given definitions of a right­

linear representation of the syntax tree (figure 1). The tokens ref, amind,

aid, j are terminals of the syntactic analysis (morphems) at which amind

represents a used mode indicator and aid a used identifier. The strings of

capitals are metalinguistic variables of the context-free grammar. The

integers represent ordinary numbers of the syntactic rules. For instance, a

syntactic rule of the grammar G = (V, A, R, s) of this example is

r 223 = (FANDC, NDCB amind) ER with FANDC, NDCB EV - A and amind EA.

(NOC, 227)

I
(FNOC, 397)

I
(FD, 396)

~
(CASTB, 109)

(aicl, e:)

-I
(PrM, 112)

(T, 364)

I
(QUART, 80)

I
(UNIT,56)

(CASTE, 108)

ref 187 amind 223 227 397 396 !109 aid 112 364 80 56 108j 107

(PRIM, 107)

Figure 1: Example of a syntax tree and its right-linear representation

69

Nevertheless, a linear representation can only be used if sequential

processing of the syntactic structure is possible in the evaluation. This

condition is not given a priori. But the implementation of the extended

version of ALGOL 68 has shown that right-linear representations of syntax

trees can be translated in a sequential process into macro-like machine­

independent target programs by means of the so-called O-attribute grammars.

3.3. Aspects of the machine-independent target language

The target language generated by the evaluation is the interface

between the machine-independent and machine-dependent part of the compiler.

Such languages are often described in the literature. They have a different

language level. The target language used in the ALGOL 68 R 4000 compiler

is a simple macro-like language. The machine-independent target program

is a sequence of macro-statements with the following general structure

of macro-operators:

macro-identifier

macro-operand which parameterizes the macro-operator.

Macro-operands cannot be macro-statements, so that the target program

has a simple structure. The design of the macro-operators takes into

consideration the following criteria:

1) Generality of macro-operators

The operators are borrowed from the elementary constructs of high-level

programming languages and are defined machine-independently.

2) Simplicity of macro-control-operators

The control structures (alternatives, loops, case clauses) of the source

language are realized by elementary tools of the target language. There

are macro-control-operators only for unconditional and conditional jumps,

for labelling macro-statements, and for realizing subroutine calls.

3) Efficient level of decomposition

Syntaptically .interlocked constructs of the source language are decomposed

by elementary macro-statements of the target language. All implicit

actions of the source program are explicitly represented in the target

70

program by macro-statements. Note: block begins, block ends, and

procedure calls are not decomposed.

4) Symbolic representation of the macro-operands

The operands of the macro-operators are symbolically represented and

can be classified into the following types of operands derived from

the source language objects: denotations, block-dependent objects,

formal objects, actual objects, routine texts, format texts, logical

accumulator, stack.

5) Using mode information

Only elementary source constructs which are defined for an infinite

set of modes are directly represented by macro-operators (e.g., assign­

ment statement, and subroutine calls). These macro-operators are para­

meterized by the modes of the operands of the elementary source con­

s·truct.

6) Using the symbol table

Operand information which is stored in the symbol table and used in

the target language expansion (e.g., mode representations, and deno­

tations) is represented by pointers in the macro-statement. Thus the

size of the target program is reduced and the evaluation is simplified.

By using such a macro-like language, the lexical and syntactic ana­

lysis, and the semantic analysis and synthesis are realized in the compiler

machine-independently for a wide range. 55 macro-operators are defined

in the target language for the implementation of the ALGOL 68 language

version on the R 4000. The following example is to demonstrate the level

and some features of the globally discussed target language.

Example:

Let i be an integral variable. The assignation i:= i + 1 is represented by

the following macro-operators:

CALL BEGIN (BNR, proc(int, int) int, (EX, N+))

VALUE COPY ((AO, BNR, 2) , (KS, 1), int)

DEREFERENCING ((BO, BNRi, BPOSi), ref int, int)

VALUE COPY ((AO, BNR, 1) , (AC), int)

CALL (BNR, proc(int, · int) int,, (EX, N+))

PARAMETER (-(AC), int)

PARAMETER ((KS, 1) , int)

CALL END

MOVE

(BNR, proc (int, int) int, (EX, N+))

((BO, BNRi, BPaSi) , (AC), int)

It is important to know that:

- The modes are represented by pointers to the symbol table.

- BNR is an integral number attached unambigiously to the call.

- (EX, N+) is an external procedure realizing the int-Addition.

- (AO, BNR, 1) and (AO, BNR, 2) are the actual paramaters and actual

objects of the call, respectively.

71

- (BO, BRNi, BPaSi) is the representation of the operandi (block object),

in which BRNi denotes the scope of i and BPaSi the position of i within

this scope.

The results of dereferencing and of the call are stored in the logical

accumulator (AC).

The target language used in the ALGOL 68 R 4000 compiler has a relatively

high level. For instance, the assignation of objects, which can have any

mode, is represented by only one macro-operation of the target language.

This, secures on the one hand a complete machine-independence of the tar­

get language, and on the other hand that the efficient implementation of

the target language is not hindered by a too extensive elementarization.

Naturally, the cost of translating this language into any assembly lan­

guage is not small.

3.4. a-attribute grammars

In the implementation of evaluations by general attribute grammars

as developed by Knuth, the attribute storing and the general represen­

tation· of the syntactic structure of the source program as well as the

algorithms for the calculation of all attributes are expensive. A central

problem in the use of these grammars is the suitable restriction between

characteristics of attribute grammars and the scanning method of the

syntactic structure in order to reduce implementation costs. The a-attri­

bute grammars derived from the general attribute grammars are the result

of investigation in this direction. In the ALGOL 68 R 4000 compiler the

translation of the syntactic structure of ALGOL 68 programs into the

machine-independent target programs is completely described formally by an
I

a-attribute grammar.

72

Compared with the general attribute grammar, the following problems can

be easily solved by restricting to synthesized attributes only:

1) The proof of cyclic dependencies of the attributes is trivial because

there are only synthesized and no inherited attributes.

2) For calculating the attribute values, the syntax tree is to be scanned

from the leaves to the root only once, since the synthesized attributes

of a node are only dependent on the attributes of its direct descendants.

3) From this it follows that the syntax tree can be processed sequentially.

Therefore the use of the simple right-linear representation of the syn­

tactic program structure is profitable.

4) The storage of the attributes can be managed in a stack-oriented manner,

because the attributes of a node are only needed for determining the

attributes of its direct ancestor.

By restricting to synthesized attributes only, a representation of con­

text-dependencies becomes impossible. The evaluation of a language con­

struct can be completed only after all context-dependencies are known, i.e.,

in a higher construct. Such solutions are difficult to attain and not even

efficient. a-attribute grammars, however, allow to determine the attributes

of a node not only by the attributes of its direct descendants, but also by

the attributes of its direct-left context. A direct-left context is suffi­

ciently illustrated by figure 2 that shows part of a syntax tree. In this

figure all nodes k, which can be reached on the path from ki+l to k labelled

with one (ki+l is included), possess the same direct-left context ki.

Figure 2: Part of a syntax tree for the representation of the direct­

left context

Note: all attributes of the node ki are determined before calculating

the attributes of node k resp. ki+l' if the syntax tree is scanned from

bottom to top and from left to right. It is easy to prove that each node

73

k of a syntax tree has at most one node constituting the direct-left

context of the node k. Furthermore, the nodes k, which are on the path

from the root to the node k labelled with one, have no direct-left con­

text. Besides the attributes of the direct descendants of k. the attributes

of the node k. can also be used as so-called 0-attributes in order to cal-
l.

culate the attributes of the node k. Attribute grammars modified in this

manner are called a-attribute grammars.

D.4: The quintuple (AT, V, A, R, S) is an o-attribute grammar of the
a a a

context-free grammar (V, A, R, S), if the following is true:

1. AT is a finite set of attributes.

2. V c V x P(AT) x P(AT) is the attributed vocabulary, in which
a-

exactly one tripel (v, S , A) exists in V for each v EV. S
V V a V

and Ao denote the synthesized and a-attributes, respectively, of
V

the symbol v. S and Au are subsets of AT. The synthesized attri-v V

butes enable information transmission in root direction. The

a-attributes allow the information transmission from left to

right, i.e., depending on the left context. The start symbol

S of the grammar possesses no a-attributes.

Note: P(AT) = {X: X =. AT}.

Let w(a, i) with Os is n describe the value of a synthesized

attribute a of the symbol vi appearing in the i-th position

of the rule (v0 , v 1 •.. vi ••• vn) of the grammar. w(a, 0) denotes

the value of a synthesized attribute a of a terminal and w0 (a)

represents the value of the a-attribute a.

3. A is the attributed alphabet. Each terminal t EA possesses
a

a set F of semantic functions, that determine the values of

the synthesized attributes oft. The values of other synthe­

sized attributes and of a-attributes oft can be arguments of

these functions:

0 0 0 F={f: sES Aw(s, O)=f (w1 , ••. ,w., ••• ,w ,w1 , •.. ,w., ••• ,wp)A
s t s J m J. ,{_

•Wj w(a, Q) A a€ St A 1 $ j $ m A

w~ w0 (a') A a' EA~ A 1 s i S l}.

74

4. Ra is the attributed set of rules. Each rule (v0 , v 1v 2 ..• vn) ER

has a set F of semantic functions that determine the set of synthe­

sized attributes of v 0 • The synthesized attributes of all symbols vi

with OS i Sn of the rule and the 0-attributes of v 0 can be argu­

ments of these functions:

F {f: s ES A w(s, OJ = fs(w1 , ••• , w., ..• ,
S v0 J

wj = w(a,k) A a E S A 1 s j s m A O s k s m A
vk

Contrary to Knuth's attribute grammars, the test of cycles in the 0-attri­

bute grammars is trivial. Cyclic dependencies of attributes on several

nodes cannot arise, because the information transmission is possible only

from bottom to top and from left to right in the syntax tree. Further

conditions must be fulfilled in 0-attribute grammars:

1. Each node with no direct-left context can only be labelled by a vocabu­

lary symbol that does not possess 0-attributes.

2. The 0-attributes of vocabulary symbols must be assigned to the direct-

left context as synthesized attributes.

For a given 0-attribute grammar these conditions can always be proved in

the following steps:

- The sets L and LK are determined for each vocabulary symbol v EV.
V V

L {v': v' EV AV~ v'w Aw Ev*}
V G

LK
V

{v': v' E V A 3r [r

z EV - A AVE L"]}
V

- Condition 1 is exactly fulfilled if the set L8 , where S denotes the

start symbol, contains only symbols to which no o-attributes are

attached

- Condition 2 is exactly fulfilled if for each symbol v, which possesses

0-attributes, the set LK contains only symbols which have these attri­
v

butes as synthesized attributes

Vv [v €VA Vv' [v' € LK ➔ A0 c S ,]].
V V - V

3.5. Determination of the attribute values

75

The evaluation by 0-attribute grammars consists of the determination

of attribute values of all syntax tree nodes. The important advantage of

the o-attribute grammars lies in the possibility to determine the values of

all attributes by sequential reading of the right-linear representation of

the syntax tree. The evaluation by o-attribute grammars uses a stack for

attribute storing which is an efficient storage management scheme, because

attribute values no longer needed are implicitly released. The method of

calculating the attributes can be described as follows:

The right-linear representation of the syntax tree is sequentially

processed from left to right. If a syntax subtree with root k is com­

pletely worked off, then

1. the attribute values of the· direct-descendant of node k are popped

off the stack;

2. the attribute values of the direct-left context of node k are read

from the stack top;

3. the attribute values of node k are calculated by semantic func­

tions of the ruler= (v0 , v 1v 2 ••• vn) € R for f(k) = (v0 , r) and by

the semantic functions of the terminal t EA for f(k) = (t, c);

4. the attribute values of node k are pushed onto the stack.

Because 0-attribute grammars permit a direct dependence of attributes

of a node from the attributes of its direct descendant and its direct­

left context, the use of information of the complete left context is in­

directly possible. The complete left context and all descendants of a

node k are exactly all the nodes which have already been processed. There­

fore, the evaluation by o-attribute grammars is a suitable adaptation to

the scanning method of the right-linear representation of the syntax tree.

76

3.6. The a-attribute grammar of the assignment statement - an example

The following example of the assignment statement vividly demon­

strates the use of a-attribute grammars. The evaluation is based on the

syntac rules

<UNIT>::=< DESTINATION>< UNIT>

<DESTINATION>::=< TERTIARY> becomes token.

The symbols possess the following attributes:

symbol

UNIT

DESTINATION

TERTIARY

synthesized attributes

value

ac-saved

mode-of-ac-outside

scope

destination-mode

mode

value

ac-saved

value

ac-saved

form

mode

0-attributes

mode-of-ac-outside

scope

destination-mode

mode-of-ac-outside

scope

mode-of-ac-outside

scope

The following semantic functions are attached to the syntactic rules.

Attributes with an integral number i > 0 denote the attributes of the

symbol vi of the rule (v0 , v 1v 2 ... vn); attributes with the number 0

denote the a-attributes of the symbol v 0 and attributes without any

number denote the synthesized attributes of the symbol v 0 •

~DESTINATION>::=< TERI'IARY > becomes token

scope:= scope 0

mode:= meek(mode 1, reference)

value:= if mode= mode 1 then value 1 else ac fi

destination-mode:= deref(mode)

ac-saved := if mode= mode 1 then ac-saved 1

else mode-of-ac-outside O # void

fi

mode-of-ac-outside := if value ac then mode

else if ac-saved 1

then void

else mode-of-ac-outside 0

fi

fi

if mode# mode 1

fi

then if, ac-saved 1

then it mode-of-ac-outside O # void

fi

fi;

then GENERATE(SAVE AC(mode-of-ac-outside 0))

generate meek coercion(mode, mode 1, value 1)

,if mode = error-mode

then if mode 1 # error-mode then error("tertiary is no reference") fi

fi

<UNIT>::=< DESTINATION>< UNIT>

value := if destination-mode O = mode 1 then value 1 else ac fi

ac-saved := if mode-of-ac-outside O = void

then false -----
else ac-saved 1 v ac-saved 2 v destination-mode O # mode 1

fi

if value 1 = ac

then if ac-saved 2 ---
then GENERATE(MOVE(stacktop, value 2, destination-mode 1));

GENERATE(RESTORE AC)

else GENERATE(MOVE(value 1, value 2, destination-mode 1))

77

78

fi

else GENERATE(MOVE(value 1, value 2, destination-mode 1))

fi

if destination-mode Of mode 1

fi

then if mode-of-ac-outside Of void

then if , ac-saved 1 II, ac-saved 2

fi

fi;

then GENERATE(SAVE AC(mode-of-ac-outside 0))

generate strong coercion(destination-mode O, mode 1, value 1,

comorf)

if, strong coercion possible(destination-mode 0, mode 1)

then if mode 1 ~ error-mode

fi

then error("no coercion to destination mode")

fi

A detailed explanation of the example would exceed the scope of this

paper. In this context only the note should be made that calls of gene­

rating routines and error routines are applied instead of attributes

for the generation of the target program and for the message of semantic

errors.

4. FINAL REMARKS

In [7], KASTENS only uses the direct ancestors and descendants of a

node in the syntax tree for the attribute evaluation. o-attribute grammars

are derived from s-attribute grammars [7]. S-attribute grammars have

only synthesized attributes. For a suitable representation of context

dependencies the so-called 0-attributes are inserted additionally. With

these O-attributes it is possible to represent dependencies of attributes

of a node in relation to the attributes of the direct-left context. With

this the restriction of attribute dependencies to the scope of one syn­

tactic rule is given up. Therefore, the O-attribute grammars can not be

arranged in the hierarchical classification of attribute grammmars as

given by KASTENS. O-attribute grammars have an a priori predefined

attribute evaluation strategy. The synthesized- and O-attributes may be

79

evaluated in a bottom-up pass if the walk through the syntax tree is con­

sidered. It is not possible to cover right-context dependencies with

o-attribute grammars. Such instances are rare in practice, so that their

handling can for instance be ensured by a suitable symbol-table organiz­

tion. It must be emphasized, however, that the description of the semantic

analysis and synthesis by o-attribute grammars enables an effective,

clear and low-error programming of the corresponding compiler part.

REFERENCES

[lJ BOCHMANN, G., Semantic Evaluation from Left to Right, CACM .!2_, 2 (1976).

[2J BOCHMANN, G & P. WARD, Compiler Writing Systems for Attribute

Grammars, The Computer Journal~, 2 (1977).

[3J JAKEL, H.-J., Erzeugung einer reahnerunabhangigen Zielsprache aus

der rechtslinearen Darstellung syntaktischer Baume,

Dissertation, TU Dresden, 1980.

[4J JAKEL, H.-J. & H. LOEPER, Struktur und Darstellung der Zwischen­

programme des ALGOL 68-R 4000-Compilers, TU Dresden, WBZ MKR/IV

1980, H. 46.

[SJ JAKEL, H.-J., H. LOEPER & W. OTl'ER, Ein Algorithmus zur Behandlung

der Modusaquivalenz in einer Untersprache von ALGOL 68,

EIK !_! (1978), H.4.

[6J KASTENS, u., Ein Ubersetzer-erzeugendes System auf der Basis

attributierter Grammatiken, Dissertation, Universitat

Karlsruhe, 1976.

[7J KASTENS, u., Ordered Attribute Grammars, Acta Informatica !2_, 3 (1980).

[BJ KNUTH, D., Semantics of Context-free Languages, Mathematical Systems

Theory I, 2 (1968) and~, 1 (1971).

[9J KNUTH, D., Examples of Formal Semantics, Lecture Notes in Mathematics

188, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

[l0J KOSTER, c., Using the CDL Compiler-Compiler, in: Compiler Construction,

Lecture Notes in Computer Science 21, Springer-Verlag, Berlin,

Heidelberg, New York 1974.

80

[11] LOEPER, H. & P. BACHMANN, Theorie und Technik der Ubersetzerpro­

gramme hoherer Programmiersprachen, BSB B.G. Teubner Verlags­

gesellschaft, Leipzig, 1980.

[12] LOEPER, H., M. HORN & W. NYDERLE, Investigations on the Application

of a Precedence-Controlled Syntactic Analysis Method to a

Sublanguage of ALGOL 68, EIK .!.!_ (1975), H. 4-6.

[13] LOEPER, H., H.-J. JAKEL & W. OTTER, Anwendung der Automatentheorie

bei der Behandlung der Modusaquivalenz in ALGOL 68, EIT 7

(1977), H. 5.

[14] WIJNGAARDEN, A. VAN, et.al., Revised Report on the Algorithmic

Language ALGOL 68, Acta Informatica 2, 1-3 (1975).

81

ESSAY ON COPYING

K. WRIGHT

ABSTRACT

When working with large data structures it is more efficient to copy

a pointer to the structure than to copy the structure itself. Avoiding

copies of large values can have a huge impact on the efficiency of some

programs. The psychological impact of copying can exceed even its actual

importance. I have found that almost without exception users react with

utter horror to the suggestion that an array may be copied, even when this

is obviously necessary for semantic consistency. Moreover the fear of co­

pying warps the programming style of many people, leading them, for example,

to create variable parameters which are not intended to vary. This paper

explores the copying requirements of the definition of ALGOL 68 and tech­

niques for reducing the amount of copying done.

82

1. PREVIOUS WORK

In spite of the importance of this subject for any implementation of

ALGOL 68 there seems to be very little discussion of it in the publicly

available literature.

BRANQUART et al. [3] have published a very complete description of the

translation of every construct of ALGOL 68. This of course includes a de­

scription of when copying is done, but the discussion of this point is

spread throughout the book. The scheme used there apparently works, but they

do not explicitly describe how it was developed or what the alternatives

are.

PETER SZOKE [4] discusses copying requirements and gives several

pathological examples. Much of the discussion centers on programs in which

assignation and dereferencing of the same name proceed collaterally. He

wants to ensure that the result computed will be one of the set of possible

results if copying were done as described by the (original) Report but with

assignation and dereferencing treated as inseparable actions. In our view

this is not mandated by the Revised Report, which refuses to specify what

actions are inseparable.

P.G. HIBBARD et.al. [5] describe an implementation of ALGOL 68 that is

designed to minimize the copying required for the most common operations.

This implementation strategy is so unusual that the body of this paper

does not consider it, but so important that it is discussed briefly in the

appendix.

MARK RAIN [2] has suggested an alternative language with a different

scheme of defining variables and pointers in an attempt to sidestep this

issue. ·S.G. VANDERMEULEN [6,7] has proposed a similar scheme as a strict

extension to ALGOL 68; Both proposals involve the introduction of an un­

modifiable reference to a value.

Neither proposal is formalized sufficiently to make the implications

clear. In general the idea of a read only variable makes me uneasy. It

seems to involve either run time checks of variability before each assign­

ment, or the possibility of modifying a supposedly constant value through

assignments to global variables or pointers. There may be a way around

these difficulties, but I do not know what it is. I believe the ALGOL 68

definiti6n of names is elegant and adequate from an abstract point of view.

If one does not intend to assign to a name, then the name is nothing but

an indirect method of accessing another value. The value could as well be

accessed directly. It is unfortunately difficult to specify just when co­

pying is needed to support the abstraction. This difficulty alone may be

sufficient reason to adopt a different scheme in a language meant to be a

replacement for assembler.

83

There are two cases in which ALGOL 68 is too restrictive in its treat­

ment of names. The first, as VANDERMEULEN [6] points out, is the problem

of flexible and transient names. It remains to be seen whether it is names

or multiple values that need adjustment. The second is the impossibility of

constructing recursive modes without inserting spurious ref's (or proc's).

Perhaps we should allow declarations such as:

mode tree= struct(string val, union(tree, void) left, right);

void leaf = empty;

tree t = ("root", ("branch", leaf, leaf), leaf)

A complete exploration of these ideas would lead us far astray.

2. GENERAL PRINCIPLES

We define an "un-optimized" implementation as one in which each action

prescribed by the Revised Report is translated in the same way regardless

of the context in which it occurs. There is not a unique unoptimized imple­

mentation even when the particular features of storage layout are ignored.

The appendix describes an alternative un-optimized implementation. The

existence of such alternative implementations demonstrates t.~at there is

no hope of deducing the requirements for copying directly from the Revised

Report. There are a few arbitrary decisions that must be made at the very

outset_.

In the body of this paper we limit consideration to a traditional im­

plementation strategy. A name is represented by an address; some locations

associated with that address contain a bit pattern representing the value

to which it refers.

The primary action that requires a copy of a value is assignation.

The bit pattern representing the value yielded by the source must be copied

to the address representing the name yielded by the destination. Once the

decision has been made that assignation will be implemented by holding the

address which represents the name fixed and overwriting the contents of

that address, it follows that some precaution will be needed to ensure

that the value already stored there will not be lost if it is still needed.

84

For this reason a copy will also be required when a name is dereferenced.

Dereferencing is performed by copying the value referred to by the

name onto the top of the stack (or some other safe place). The value must

be copied since, in general, it is possible for the name to be altered while

the value obtained is still in use. If a copy were not made altering the

name would overwrite the value, causing it to change unexpectedly.

For example:

loc thing var:= initial value;

thing val= var; #var is dereferenced, its value is called 'va1 1 #

var:= another value;

#Here we should have val= initial value. This requires that the

initial value have been saved somewhere.#

Notice that the identity declaration itself does not require a copy

of the value. Had we written:

thing vall

thing val2

some value;

vall; #vall is not a name, and is not dereferenced.#

no copy would have been required. Vall in this case is not a name, and

therefore can not be altered. Thus it does not matter whether a new copy of

the value is made, or only one copy is kept simply remembering that both

vall and val2 access that same value. This is a major reason for prefering

an identity declaration to an assignation where there is no intention to

assign a different value. Similarly no copy is needed in the other cases

when a value is ascribed to an identifier, i.e. when passing parameters or

elaborating a conformity clause.

Given that the language definition does not require a copy to be done

when an identity definition is elaborated, it is natural to try to arrange

the storage layout in such a way that no copy is needed in order to do the

ascription. This can, in fact, be arranged if there is an identifier stack

in each stack frame set aside to hold the values ascribed to identifiers in

the environ represented by that stack frame, and if there is a working

stack set aside to hold intermediate results of the elaboration of con­

structs within that environ. All that is necessary is to place the working

stack immediately following the identifier stack. Then after the elabora-,
tion of the source of the identity definition the yield is the only result

on the working stack. The size of the identifier stack can then be increased

to include. the newly created value, and the working stack moved up above

the other end of the value.

85

In addition to copies made when assigning or dereferencing many imple­

mentations make copies of arguments to be passed to procedures or of results

yielded. These copies are not in any way implied by the language definition,

but are done only to allow procedures to communicate, to avoid holes in the

stack, or for similar reasons. Since these copies are made solely for the

convenience of the implementation it is always safe to eliminate them if

some more convenient scheme is found. We are primarily interested in ex­

ploring the requirements of the language definition that are independent

of the physical layout of storage, and so these copies will be, for the

most part, ignored.

It may be possible to avoid making the copy of the value both during

dereferencing and assignation. In the case of dereferencing this is done by

remembering that the value which should have been yielded by the dereferen­

ce action is actually still stored at the address of the name. In the case

of assigning it is done by "moving the name", that is by remembering that

the name now corresponds to the address at which the value is already lo­

cated (thus changing the bit pattern used to represent the name). In either

case this "remembering" may be done at compile time by updating the symbol

table to reflect the actual positions of the objects in storage, or at run

time by creating pointers to the objects in known locations. Which of these

will be done depends upon the scheme used to locate objects in the run-time

environment.

Moving a name means changing the address which represents the name. In

addition the representation of all its subnames must be changed, since these

are generally required to have some fixed relationship to the name. In ad­

dition we must ensure· that the scope of the name is not changed.

When a copy which is called for by the un-optimized implementation is

omitted, whether during assignation or dereferencing, the situation which

results is the same. We have a name which refers to a value which is ac­

cessable independently of that name. We call such a name an alias. If we

create an alias we must ensure the following rule.

Correct aliasing rule: An alias may not be altered.

Thete are two approaches to ensuring that this rule is enforced. We

can ensure before creating any alias that there will be no occasion to

alter the aliased name while the value is still accessi,ble, or we can

86

ensure before doing any assignation that the name to be assigned to is de­

aliased.

De-aliasing implies either moving the name or copying the value to which

it refers. In either case we must ensure that all identifiers which access

that moved object will now access the copy, and all names which refer to

the moved object refer to the copy. Moving the name will be quite difficult

at this point since there has been plenty of time for further references to

the name to have been created. In addition we need a run-time check when

assigning to ensure that the name assigned to is not an alias. If the de­

cision were made to try to de-alias at run time the result would be very

much like the implementation described in the appendix. In this case it

would probably be much simpler to adopt the model of computation described

there. Therefore we will concentrate on finding conditions which will be

sufficient to ensure at the time an alias is created that it will not be

altered.

One approach to doing this would be to do complete global flow analysis

of the program to determine what names might be altered or required by each

construct. The techniques for doing this are fairly well known, but diffi­

cult to apply. We will try the alternate approach of using information

which the compiler is likely to already have available. In particular we

make heavy use of mode and scope information. Before specifying such con­

ditions we define some new terms.

3·. DEFINITIONS

A name N is "descended from" a name M if N is a subname of Mor de­

scended from a subname of M. TWo names are "related" if they are the same

name, or if there is a name from which they are both descended.

A name is "altered" if it is made to refer to a value (possibly other

than the one to which it originally referred). This can be done by assign­

ing to the name, or by assigning to some name related to the name. TWo

names "overlap" if assignment to one of them can alter the other. Over­

lapping names are necessarily related but the converse is not true.

TWo modes overlap if there could be two overlapping names which have

those respective modes. The precise conditions for this are best expressed

grammatically.

a) where REF to MODEl overlaps REF to MODE2:

where MODEl stows MODE3 and MODE2 equivalent ROWS of MODE3;

where MODE2 stows MODE3 and MODEl equivalent ROWS of MODE3.

b) where MODE4 stows MODE6:

where MODE4 equivalent MODE6, where true;

where MODE4 equivalent FLEXETY ROWS2 of MODES,

where MODES stows MODE6;

where MODE4 equivalent structured with

PROPSETY 1 MODES PROPSETY2 mode,

where MODES stows MODE6.

87

The predicate "where MODE4 stows MODE6" holds if MODE4 might be the

mode of some stowed value which contains a value of MODE6. To determine if

two modes overlap we must check if either mode is that of a name referring

to a row of some mode stowed in the other mode. This is to account for the

possibility that overlapping names might be produced by selecting from and

subscripting a name referring to a row of structures, and also the possibil­

ity of rowing a name selected from a structure.

The "representation" of a value is a specific bit pattern that the im­

plementation uses for that value. There may be more than one "instance" of

the representation of a given value in storage at once. In addition to the

representations which are explicitly stored there may be some representa­

tions which are stored only as (usually short) algorithms for their con­

struction. For example a name is represented by an address, but that

address may be stored only in the form of a register number and displace­

ment within some instruction in the program. Integral values may be stored

only in load immediate instructions.

The Revised Report says that names, procedures, and values composed

from them are the only values whose scope is limited. Nevertheless particu­

lar instances of the representation of a value may be stored on the stack

and thus may have a limited lifetime. To describe this situation we intro­

duce the concept of the scope of an instance. The scope of an instance is

an indication of how long the instance will be in use. The scope of an in­

stance stored on the stack is no older than the scope of the environ in

which the action which yielded the instance took place. If the value is

required'outside that scope the compiler will of course be forced to gener­

ate code to create a copy of the instance in some older stack frame. The

exact scope of an instance will depend upon the compiler; all we require

88

is that the scope be defined in such a way that the compiler will never

produce instructions which attempt to make use of an instance after its

scope has expired.

The scope of an alias is the scope of the aliased name or the scope

of the instance of the value refered to by the aliased name, whichever is

newer.

We say that a construct "can alter" a name if the compiler can not

determine that the elaboration of that construct will not alter the name.

Obviously this relation depends upon the compiler as well as the construct

and the name. A more complex compiler will have a better knowledge of what

can actually occur.

We want to be able to determine whether a given name will be altered.

This task is not hopeless because ALGOL 68 does not allow names to be com­

puted at will. Only a few actions can yield a name not related to the param­

eters of the action. Even these few actions are constrained to yield names

that bear a definite relation to their parameters.

We say that a value V "exposes" a name N if there is some sequence of

actions which, given V, yield a name which overlaps N. We say a construct

exposes name N if the construct yields a name which exposes N.

Since a procedure call may result (indirectly) in a name being altered

it is important to be able to determine what procedure is yielded by some

constructs. Fortunately the production of new procedures is even more con­

strained than the production of new names. The definition of "exposes" will

therefore be extended to procedures. A value V "exposes" a procedure if

there is some sequence of actions which, given V, yield the procedure.

We say that one mode exposes another if a value of the first mode

could expose a value of the second mode.

where MODE exposes MODE2:

where MODE equivalent PLAIN, where false;

where MODE equivalent REF to MODE1,

where MODE1 exposes MODE2 or MODE overlaps MODE2;

where MODE equivalent FLEXETY ROWS of MODE1,

where MODE1 exposes MODE2;

where MODE equivalent structured with FIELDS mode,

where MODE1 field TAG resides' in FIELDS and

MODE1 exposes MODE2;

where MODE equivalent procedure PARAMETY yielding MODE1,

where MODE1 exposes MODE2 or MODE equivalent MODE2;

where MODE equivalent union of MOODS mode,

where MOODS contains MODE1 and MODE1 exposes MODE2.

4. CONDITIONS FOR SAFETY

A proposed alias is unsafe if some construct elaborated within the

89

scope of the alias and subsequent to its creation can alter the aliased name.

It is not required to worry about constructs which can alter the name, but

are elaborated collaterally with the creation of the alias. This is because

the Revised Report does not specify what actions are inseparable and does

not specify the intermediate states of the action of assigning. We inter­

pret this to mean that the result of a dereference and an assignment to the

same name, or of two collateral assignations to the same name, is totally

undefined. For example, if on some computer it is expedient to set a storage

location to zero by loading the accumulator from that location and then doing

a subtract from memory operation it may happen that (k:= 0, k:= 0) has the

effect of negating k. In fact if the compiler can reliably determine that a

name actually will be altered by a collateral action it would be helpful to

print a warning message to the effect that the collateral actions interfere

with each other.

{As an aside - the result of (a[i]:= 1, a[j]:= 2) is clearly undefined

if i = j. The Revised Report describes assignment to a subname as equivalent

to assigning to the entire name a multiple value which differs in one ele­

ment. Taken literally this implies that the above collateral assignation is

undefined even if if j. Is this a reasonable interpretation?}

To be safe we must avoid creating an alias unless we determine that it

can not be altered. For this reason the following conditions are stated

negatively. Of course the conditions given could be strengthened if the

compiler is made more complex. A simpler compiler could check only some

weaker conditions. The conditions stated below should give the general idea.

The only action which can alter anything directly is an assignation.

In addition a call, formula, or deprocedured form can alter a name if the

called procedure contains an assignation. An actual stowed declarer may

also alter a name if the computation of the bounds involves an assignation.

Such a declarer can be viewed as a procedure without parameters. We will

90

use the word "invocation" to describe a call, formula, deprocedured form,

or actual stowed declarer.

An assignation can not alter the name N if the destination does not over­

lap N.

An invocation can not alter a name N if all of the following hold

1) none of its actual parameters (operands) expose N

2) none of its actual parameters expose a procedure that globally alters

N

3) the called procedure does not globally alter N

A construct can not yield a name which overlaps N if any if the following

conditions hold

1) the mode of N does not overlap the mode of the construct

2) the scope of the yield of the construct is not the same as the scope

of N

3) in case the construct is a

a) serial clause - the last unit can not overlap N

b) assignation - the destination can not overlap N

c) selection - the secondary can not overlap N

d) slice - the primary can not overlap N

e) invocation - N is newer than the procedure and none of the actual

arguments can expose N

f) cast - the enclosed clause can not overlap N

g) generator - N is not derived from the same generator

h) applied identifier - the corresponding defining identifier occured

in an identity definition the source of which can not overlap V

(variable de-finitions and routine definitions can be treated as

identity definitions. Without global flow analysis we are stymied

by a parameter definition)

i) dereferenced form - N has never been assigned to a pointer

j) rowed form - the coercend can not overlap N

k) all others - can not

A construct can not expose a name or procedure V if any of the fol­

lowing holds

1) the mode of the construct does not expose the mode of V

2) the scope of the yield of the construct is older than the scope of V

91

3) in case the construct is a

a) serial clause - the final unit can not expose V

b) invocation - the procedure can not expose V and none of the actual

arguments can expose V

c) selection - secondary can not expose V

d) slice - primary can not expose V

e) routine text - its unit can not expose V

f) cast - the enclosed clause can not expose V

g) rowed form - coercend can not expose V

h) dereferenced form - coercend can not expose V

i) united form - coercend can not expose V

j) applied identifier - the corresponding defining identifier occured

in an identity definition the source of which can not expose V

(the remarks made in the rules for overlapping also apply here)

k) all others - can not

Each of these sets of conditions translate directly into an algorithm

which proc~eds by recursively decomposing the construct. At each step either

the mode or the scope of the construct may allow us to conclude that the

given condition can not hold. Eventually the complexity of testing may be­

come so great that we simply give up and make the safe assumption that the

condition can hold.

A procedure can not globally alter a name N if one of the following is

true:

1) the routine text of the procedure is known and it contains no assigna­

tions or calls which can alter N.

2) the scope of the procedure is older than the scope of N

3) the program contains no routine texts that both

a) contain a construct which can alter N, and

b) have the same mode as the procedure

5. EXAMPLES

We now give several examples of the application of the rules stated

above.

Consider the case of a simple assignation of the form "destination:=

source", where the source and destination both yield names. Here it is

very often the case that the copy associated with the dereference of the

92

source is superfluous. Since the value yielded by the dereference becomes

inaccessable as soon as the assignation is complete, an alias is safe when­

ever the assignation itself does not alter the source. That is, whenever

the names yielded by the source and destination do not overlap.

The example a[l:3]:= a[2:4] shows that the copy may be needed. (An al­

ternate method of addressing this particular problem is to insert dynamic

checks in the assignation to move the value in a particular order depending

upon the way in which the slices overlap.)

If the yield of the assignation is not immediately voided it may also

be required to copy the destination before assigning. This is because the

Report specifies that the yield of the assignation is the yield of elab­

orating the destination before the actual assignation is done. Thus the

assignation "destination:= source" must be treated as though it were written:

(ref thing n = destination, thing w = source; n:= w; n)

If the elaboration of the destination involves dereferencing it is possible

that when the assignment is done it overwrites the dereferenced location.

If so the contents of that location must be saved. The following example

demonstrating this possibility is due to SZOKE [4].

(mode node = struct(int val, ref node link);

loc node n:= (1, n);

ref node x

x is n)

ref node (link of n) := (2, loc node) ;

This should yield true, but without copying the destination it will go

wrong. This is because link of n overlaps ref node(link of n). If no copy

is taken when link 6f n is dereferenced then it becomes an alias which un­

fortunately is altere.d by the assignment to the related name yielded by

ref node (link of n) .

If x yields a name, but the procedure p requires a value of the mode

referred to by x then in the call p(x, ...) we may want to alias x. The

scope of this alias will be that of the environ established by the call.

Thus the copy associated with the dereference of x may be omitted if the

call of p can not alter x. This is undoubtedly the most important appli­

cation of these optimizations.
'

Even though the alias created when the copy is omitted during an as­

signation is the same as that created when the copy is omitted during

93

dereferencing, it is much more difficult to remove the copy involved in as­

signment than that in dereferencing. If the name is moved all names which

refer to it, or to subnames of it, must be changed, and all identifiers

which access it must be made to access the new value. This is impractical

unless it can be shown that there are no such names or identifiers.

If the name has just recently been generated this is particularily

easy to show. This suggests an implementation of variable definitions with

initialization which proceeds by elaborating the source and then, leaving

the result where it lies, generating the name onto it. This makes the trans­

lation of a variable definition with initialization exactly like an identi­

ty definition, except that the variable identifier accesses the address of

the newly allocated location rather than the contents.

Consider the possibility of elaborating assignations at compile time.

In 'thing v:= expr' if 'expr' can be elaborated at compile time, the name

may be moved to the location in the 'constant' table where the value is

stored. This is safe if the scope of the instance in the table can be limit­

ed to the scope of elaboration of the assignation. The value is actually

created and stored at compile time (say in the primal environ). In order to

treat the scope of the instance as so limited we must ensure that the ad­

dress of the instance can only be used once, during the elaboration of the

assignation.

Note that in a multi-user environment where programs may be shared

between users, any shared program must be considered to be part of a routine

text which may be called by several users. In such a situation this optimi­

zation is prevented unless each user gets a separate instance of the "con­

stant" table.

6. APPENDIX

The language of the Revised Report is abstract enough that it is pos­

sible to imagine several totally different approaches to implementation on

a random access machine. To illustrate this we describe an implementation

in which the translation of the relation "to refer to" of the Revised Report

differs from that in most current implementations of ALGOL 68. This approach

was developed and used by P.G. HIBBARD et al. and is more fully described

in [SJ.

94

For every value created during the elaboration of the program one or

more blocks of storage are allocated. The size and number of these blocks

depends upon the mode of the value (and the bounds if it is a multiple

value}; the contents depend upon the particular value. We will call these

blocks of storage "value blocks". The value is then represented by a single

pointer to the value block. If the value is not a name then the contents of

the value block are never altered. It is therefore never necessary to copy

without change the contents of a value block. If the yield of some action

already exists in some value block then it is always safe to use it.

If the value is a name then the value block contains a pointer that

points to the value block of the value to which it refers. That pointer is

changed when a new value is assigned to the name. Assignment does not change

the value block of the value, it only replaces a pointer to it in the value

block of the name. The value block of a subname contains a pointer to the

parent name together with an offset or index. Assignment to a subname is

implemented according to the letter of the Revised Report; i.e. a new stowed

value is created which differs from the one originally refered to by the

parent name in only one element. The parent name is then made to refer to

that new value.

In its un-optimized version this implementation scheme is outrageously

inefficient. A few optimizations can improve it to the point where it is

competitive with the more traditional implementations. The most important

of these optimizations is to keep a reference count with each block of

storage. If the reference count of the original value referred to by the

parent name is equal to one when a subname is assigned to, then instead of

copying nearly the whole value and deleting the old one (which will no lon­

ger be referenced at all), the value block is updated in place.

The reason for describing this implementation strategy is to illustrate

the point that there are a number of arbitrary decisions which must be made

at the very outset which greatly affect the relative cost of various actions.

It is only after choosing a particular model of un-optimized computation

that it is possible to begin inserting optimizations which depend upon the

context of the action. It is an impressive accomplishment to have written

a language definition which makes the intended semantics clear enough that

it is p~ssible to discuss optimization while still allowing for such diver­

gent approaches to implementation.

95

REFERENCES

[l] VAN WIJNGAARDEN, A. et al., Revised Report on the Algorithmic Language

ALGOL 68, Springer-Verlag, 1976.

[2] RAIN, M., Some formal aspects of Mary, ALGOL Bulletin 34 (July 1972),

p. 45-81.

[3] BRANQUART, P., J.P. CARDINAEL, J. LEWI, J.P. DELESCAILLE &

M. VANBEGIN, An optimized translation process and its applica­

tion to ALGOL 68, Springer-Verlag, 1976.

[4] SZOKE, P., Some remarks on new instances and garbage collection, in

Proceedings of the Strathclyde ALGOL 68 Conference, SIGPLAN No­

tices g, 6 (June 1977).

[SJ HIBBARD, P.G., P. KNUEVEN & B.W. LEVERETT, A stackless run-time im­

plementation scheme, in Proceedings of the Fourth International

Conference on the Design and Implementation of Algorithmic Lan­

guages,. (ed. R.B.K. Dewar) , Courant Institute of Math. Sc.,

New York, 1976.

[6] VANDERMEULEN, S.G. & M. VELDHORST, Torrix I, Mathematisch Centrum, Am­

sterdam 1978.

[7] VAN DER MEULEN, S.G., ALGOL 68 Might-Have-Beens, in Proceedings of the

Strathclyde ALGOL 68 Conference, SIGPLAN Notices g, 6 (June 1977).

ABSTRACT

ON THE DESIGN OF AN ABSTRACT MACHINE

FOR A PORTABLE ALGOL 68 COMPILER

L.G.L.T. MEERTENS

This paper indicates a line of reasoning, the cut principle, that may

be applied in the design of an abstract machine for a portable ALGOL 68

compiler.

97

98

1 . INTRODUCTION

A portable program is a program that can be moved to a variety of com­

puters with relatively little effort. The effort has to be compared to the

effort of creating a brand-new program. One may have portable editors, com­

pilers, and even operating systems. For compilers we run into a problem.

Usually, moving a program implies that its meaning remains the same. But if

the meaning of (the program which is) the compiler is unaffected in the act

of moving it to another computer, it will not generate code for that com­

puter. One simply obtains a cross-compiler. In fact, this is the easier part

of moving a compiler.

One approach is to make the code-generation part of the compiler 'adapt­

able'. If the idea is that the compiler, together with some documentation,

can be mailed elsewhere, one should realize that this strategy requires a

thorough understanding of the working of the compiler by the recipient. Al­

so, adapting the code generation does not suffice. The run-time environment

must still be created. The assumptions concerning the environment underly­

ing the code generation must be stated very clearly. A special way of making

the code generator adaptable is to parametrize it: number of registers, size

of words, etc. Though promising on paper, this approach is not really practi­

cable. The variety among computers and their particulars are such that they

are not readily expressible by means of a manageable number of parameters.

Feeding a formalized description of the target computer may be sensible for

a compiler-compiler, but would give rise to excruciatingly slow code genera­

tion for a direct compiler.

Another approach will be followed here. Design a 'machine-independent

abstract machine' ('MIAM') that can be modeled on a variety of computers

with moderate effort. Let the compiler generate object programs in MIAM

code. The definition of the MIAM and its code provides a clear interface,

both for the compiler writer and for the recipient of the compiler. If,

moreover, the compiler itself is available in MIAM code (e.g., by writing

it in its source language and once performing a bootstrap), the moving of

the compiler and the adaptation to the new target combine into one act.

The construction of an ALGOL 68 compiler is a complex task. Even if

one does' not aim at portability, the definition of an intermediate abstract

machine may help to reduce the complexity. The compiler design is then

factored into two parts. So, in designing a portable ALGOL 68 compiler,

there are two distinct reasons for introducing an abstract machine. The

99

desiderata (in terms of the abstract machine) for these two reasons are not

a priori the same. An interesting question, especially from a practical point

of view, is whether they can be combined and, if necessary, reconciled.

This paper investigates this question and indicates a line of reasoning,

the cut principle, that may be applied in the design of an abstract machine

for a portable ALGOL 68 compiler. This principle is next illustrated in a

number of design decisions for a specific MIAM. (The fact that the source

language is ALGOL 68 is extremely relevant for these decisions themselves,

but far less so for the cut principle. It is expected that the same prin­

ciple would provide guidance in the design of, say, a PL/I or ADA MIAM.)

Also, the issue of providing a proper run-time support system is addressed.

2. DESIDERATA FOR THE ABSTRACT MACHINE

If the desiderata stemming from the two reasons for introducing an

abstract machine (portability and reduction of complexity) do not comply,

the portability desiderata should be weighed more strongly. This follows

immediately from the essence of the portability idea. Moreover, should the

two sets of desiderata turn out really irreconcilable, one should not hesi­

tate to introduce two distinct abstract machines. But, as we shall see, the

situation is not that bad.

As for portability, the MIAM should, in a sense, be as close as pos­

sible to the computers in the variety under consideration. Unless this

variety is extremely restricted, it is not helpful to look at the 'union'

or the 'intersection' of these computers. The first would yield an unwieldy

monstr_osi ty for the MIAM, whereas the second is bound to be empty. Rather,

one should attempt to find the center in the space of abstract properties

of the computers: an idealized architecture. For example, an indexing fa­

cility is common to a great variety of computers, but the actual details

differ considerably. The MIAM should then contain an idealized indexing

capability. Because of the presence of the indexing facility, the MIAM

falls, in this respect, in the union of abstract properties. But, since we

have an idealized version, it falls in the intersection too. So the proper

abstraction is that in which the union and the intersection coincide as

much as ,possible. The greater the variety considered, the higher the ab­

straction required, up to the level where portability becomes a pipe-dream.

100

Now, consider the problem of reducing design complexity. For the moment

we assume that a fixed target computer is given. This is the solid ground

atop of which the compiler is to be erected. At the other end, the 'ceiling',

we have the 'hypothetical computer' in terms of which the semantics of

ALGOL 68 is defined. We want to construct a well-chosen mid-level.

In the design of the compiler, a good many problems have to be solved.

The hypothetical computer is able to climb up and down the 'program tree'

in order to elaborate 'constructs' (parts of the tree descended from one

node in the parse tree). Typically, a construct C is composed from other

constructs, and in order to elaborate Cits component constructs have to

be elaborated first. These elaborations, which are performed 'collaterally',

yield values, and from these values the yield of C is obtained. The hypo­

thetical computer is able to deal with objects of arbitrary size and does

not worry about relinquishing objects that have become inaccessible. In

contrast, most typical present-day computers proceed essentially by serial

execution of instructions. They have an essentially linear memory of small,

fixed-size cells that are limited in number. Each instruction modifies one,

or at most a few, of these cells. So typical problems that have to be ad­

dressed are the serializing of collaterality, modeling large objects in

terms of cells, and designing a storage-allocation regime. For reasons of

efficiency, an attempt must be made not to duplicate, copy or shift objects

unnecessarily. It must be possible to free storage whose occupant has ex­

pired. These are but a few of the problems.

The details of the solution will, of course, depend on the actual

target computer. Still, the solution of the major problems should, prefer­

ably, not depend on peculiar features of the hardware. On the contrary, one

should·make a strong effort to abstract from the details of the computer.

This entails a potential loss of optimality. But a well-chosen partitioning

should provide a support in designing code generation which more than com­

pensates for this loss. Stronger even, it should direct one to spending

one's optimizing efforts where they are most worth-while. The optimizations

which are typical for ALGOL 68 and which require understanding of the

global behaviour of constructs can be designed without distraction or hin­

drance by unimportant details. The 'peephole' optimizations, depending on

the target computer, can be found relative to the (comparatively simple)

specifications of the abstract machine, without danger of entanglement in

intricate interaction between ALGOL 68-dependent and machine-dependent

101

properties.

So the abstract machine should be abstract in the sense that it re­

flects the typical low-level properties of the target computer (such as the

linearity of a memory of cells), but in an idealized form, with the gory

details stripped off. Now, if this is desirable if the actual target is

known, it is compulsory if the target is still floating.

So a strong convergence displays itself between the two sets of de­

siderata. Whatever the reason for introducing an abstract machine before

the final production of code for an actual target computer, in either case

we want the abstract machine to model, in an idealized way, typical abstract

properties of the target computers •. And the abstraction criteria are essen­

tially the same. Still, we do not have a good criterion which of the count­

less abstract properties we may choose to perceive (they are not present in

the variety of computers in an objective sense) should be included in the

MIAM. Before this issue is addressed, however, we should first turn our at­

tention to an issue that has been disregarded until now.

3. THE RUN-TIME SUPPORT SYSTEM

In compiling a statement such as 'i:=j+k' the code generated for an

actual computer might be something in the spirit of

LOAD descriptor of i;
LOAD descriptor of j;
CALL dereference subroutine;
LOAD descriptor of k;
CALL dereference subroutine;
LOAD descriptor of+;
CALL call subroutine;
CALL assign subroutine.

Might be. But this code will be frightfully inefficient. Most compiler

writers will prefer trying to generate less treacly code. By generating

straight in-line code not only does one do away with the overhead of the

subroutine-call mechanism, but also with the overhead of interpreting, in­

side the subroutine, the situation met. Moreover, if one does a reasonable

job, the resultant code is most likely less,bulky too.

Conclusion: no subroutine calls. But this conclusion is unwarranted.

Just consider the garbage collection capability needed for a full ALGOL 68

implementation. One surely would not want to have an in-line version of

102

the garbage collector at all positions in the code where the process might

run out of memory. In other cases the choice may be less clear-cut, but still

a good point can be made for a call instead of in-line code, e.g., for com­

puting sines.

The collection of subroutines created this way forms the run-time sup­

port system. It 'supports' the object code. Abstractly viewed, the computer

has been 'enhanced' by adding new capabilities in the form of new instruc­

tions. This means that the design of a MIAM is not so straightforward a task

as one might conclude from the considerations of the previous section. New

properties may be added more or less at will. Also, a new problem is raised

(already hinted at in the introduction): that of the portability of the run­

time system. The design and implementation of such a system is no mean task;

if it is left to the recipient of the portable compiler, the portability is

seriously impaired. For the time being it will be assumed that this problem

has been solved in some way.

4. COMPILATION AS SYMBOLIC INTERPRETATION

One of the objections that is voiced, time and again, against the

'traditional' operational style of describing the semantics of programming

languages, is that the description may obscure some very clever way of ob­

taining the same net effect. True as this may be, a 'reasonable' operational

description is also a good handhold for the compiler writer. The process of

code generation may be viewed as the symbolic execution of the source pro­

gram by interpreting it, step by step, in accordance with the semantics. The

'low-level' facts that can be found out statically are derived during this

symbolic execution. Where actual execution would be necessary, code is

emitted, as modified by the facts already found. This idea is described in

HANSON [7] with the misnomer ' lazy evaluation' • (An appropriate term would

be 'lazy code generation' •) Essentially the same idea is implemented by the

'mvalues' of BOOM [2]. It is a special case of the more general 'partial

computation principle' described in ERSHOV [SJ.

The code obtained this way does not take, in each case, the most com­

plicated situation conceivable into account, but is customized to the ac­

tual complexity of the situation at hand. This is important, since the

actual complexity tends to be rather small in the majority of cases

(GRUNE [6]). One of the most important contributors to code simplification

is the 'mode' of a construct, being a static summary of dynamic properties

103

of the possible yields. Other code improvements that are obtained in this

way are the omission of scope checks or checks on nil in assignment and de­

referencing in the majority of cases.

It should be stressed that each compiler writer applies the partial

computation principle - either aware or unaware-. It is the very essence

of compiling. The advantage of taking the viewpoint described in this section

is that the consequences of design decisions become clearer. The decision to

add a capability to the run-time support system is then the decision to stop

symbolic interpretation at that level and to interpret, instead, at run time.

5. THE CUT PRINCIPLE

In designing a MIAM for ALGOL 68 we are faced with decisions of the

form: should this capability be included as a 'primitive' property of the

MIAM, or should it be modeled in terms of lower-level properties. For the

code generator, the mid-level interface which is determined by the MIAM is

its perception of solid ground. The 'substratum', where MIAM properties are

expressed in lower-level primitives, is hidden to it. The actual MIAM

properties must be used to model the properties of the hypothetical com­

puter. This modeling is performed explicitly in the 'upper world'. (In the

perception of the ALGOL 68 programmer, the world of the code generator is,

of course, below the ground.)

The collection of these decisions makes a cut in the set of (potential­

ly) realizable MIAM properties that may play a role in modeling the hypo­

thetical computer. In many cases it is immediately obvious whether a par­

ticular item should be placed in the substratum, or be left to the upper

world for realization. For example, multiplication of real numbers should

be buried in the substratum. Computing the factorial function - even for

the hypothetical computer only a potential capability - does not have a

place in the MIAM.

In other cases things are not so clear. Take, e.g., slicing. This is

not so primitive as real multiplication, but it is a pretty fundamental

operation that is easily isolated. An other example is assignment. Some

copying capability must need be present in the MIAM. But for what objects?

For 'bytes'? For multiple values? Note that the notion of a copy is foreign

to the 'revised' hypothetical computer. (To my taste, rightly so: the task

of making copies follows from invariants of the modeling, not from the

semantics itself. Not taking copies is only an optimization with respect

104

to a strategy for maintaining these invariants. So the revised semantics are

an instance of the value of a less 'operational' description.)

Some principle to guide the decisions would be very helpful. It is here

that the symbolic interpretation idea steps in. In order to follow this

idea, the compositions expressed in the semantics must be modeled in terms

of the MIAM. So, for example, stowed (structured and multiple) values must

be modeled by composite objects. The decision how to perform this composi­

tion belongs to the upper worLd. ~11erefore, the 'underworld' should be com­

pletely unaware of the way of composition; its task is to realize the ground

on which the code generator canoe constructed, and it must, therefore, be

completely insensitive to upper world desiqn decisions. In some sense, this

is a·ciosure property of the upper world: once a property of the hypothetical

computer is placed above the ground, it takes other properties with it.

We now have a criterion for deciding when to assign properties to one

side of the cut. But when are properties assigned to the substratum? Keeping

in line with the tradition of computer science, we choose for a minimal

closure: if this is not prevented by the principles already set forth,

properties needed to model the hypothetical computer are assigned to the

MIAM. This is, in fact, very reasonable. Otherwise the design of the code

generation would have to create new abstractions from the. MIAM primitives,

thereby creating effectively a new, higher-level, MIAM. Now, the only ab­

stractions supported by the code generation are those that are meaningful

in terms of the hypothetical computer.

Summing this up, we have the

Cut Principle: Composite properties of the hypothetical computer are not

properties of the MIAM. No property of the MIAM depends on the way of model­

ing such composite properties. Within these limits, MIAM properties are as

high-level as possible.

Simple as this principle may sound, it should be clear that it is not

a straightforward yes-or-no test. Its application will be illustrated on

various decisions.

6. MODELING ALGOL 68 VALUES

The•primitive values of the MIAM are almost the same as those of ALGOL

68: integers and real numbers of different lengths, truth values, characters.

Primitive 'pointers' are used to model names, but also for other purposes.

105

A new primitive value is the label. A routine may then be modeled by a pair,

consisting of a label (for the construct of the scene) and a pointer (for

the environ). Other than in the definition of ALGOL 68, L BITS and L BYTES

are treated as primitive; their compositeness in the definition is con­

sidered a descriptional artefact. Strings are treated as multiple values,

though.

According to the cut principle, composite values must be modeled by

composition in the MIAM. The MIAM primitives must not depend on particular

preferred ways of modeling. Therefore, the MIAM must have some general form

of composition. To this purpose, 'offsets' are used. An offset, added to a

pointer, gives a new pointer. Offsets are static entities, not run-time ob­

jects (like field-selectors in ALGOL 68); they are defined in pseudo-in­

structions in the MIAM-code. A cascade of such instructions allows to map a

sequence of objects on an 'area' of memory. As a by-product, a static type

is assigned to the thus composed sequence of types.

This can be used to model structured values, but also other composite

objects, such as locales and environs, multiple values (consisting of a

descriptor and a pointer to an area for the elements), routines and para­

meter passing.

By defining several maps for the same area, unions can be accommodated,

and space may be assigned efficiently for the 'work stack' of anonymous

temporary yields.

This idealized version takes the possibility into account that in the

actual target computer some types cannot be assigned to just any address,

but only to, say, addresses that are a multiple of four. Also, it does not

assume that the mode of addressing is the same for different types. If a

type with multiple-of~four addresses would leave holes, e.g., because the

values use only· three.cells, these holes can be used in principle also.

(Computers do exist where this would be useful.)

Some further primitives of the MIAM allow to map a sequence (of unspec­

ified length) of objects of one same type on an area and to access dyna­

mically the k-th object. By using this, together with the primitives men­

tioned above, a complete modeling of ALGOL 68 multiple values can be made.

106

7. STORAGE ALLOCATION

Given the fact that maps may be set up for accessing objects in a given

area, we still need primitives for obtaining (access to) areas as a whole.

The storage allocation regime must allow storage to be freed when an area

has become inaccessible. In contrast to ALGOL 60, a stack regime is not

sufficient, for three reasons:

(a) Because of the parallel actions, environs may have to be switched, so

that at least a 'cactus stack' is needed;

(b) The size of objects in a 'stack frame' might increase unboundedly, be­

cause of flexible multiple values;

(c) Objects may be created whose life-time exceeds that of the current stack

frame, because of global-generators.

So another storage allocation regime is needed, e.g., one supported

by a memory management system allowing garbage collection. Not only does the

semantics of ALGOL 68 require a more general regime; it also allows reali­

zation by means of a memory management system that is simpler and more effi­

cient than the most general system. The scope restrictions of ALGOL 68 are

relevant here. For these to be exploited, they must be inherited in some

sense by the MIAM, giving rise to invariants. Since memory management is

then based on these invariants, they obviously define some interface be­

tween the upper-world modeling of the ALGOL 68 semantic actions when ab­

stracting from memory management (assuming, e.g., an unlimited resource of

areas) and the memory management support. According to the cut principle,

the memory management operations that respect these invariants should not

be abstracted from MIAM primitives, but must be MIAM primitives themselves.

The main primitives obtained this way are instructions for obtaining

access to a fresh area, as it were newly created. Areas can be used to

model locales and generators. (The sample-generators in variable-defini­

tions can usually be accommodated in a locale, using an obvious optimization.

On the other hand, it is convenient to use a separate area for unions and

for the dynamic part of multiple values always, even if no generator is in­

volved.) Areas that are used to model locales must be 'chained' explicitly,

using two pointers (playing the role of 'upon' and 'around' in the ALGOL 68

semantics).

The usual mechanism for efficient access to various active locales i.n

a 'block-structured' programming language is the display. Although a

107

display can be modeled with the MIAM primitives already described, this

would be rather costly. On the other hand, introducing the display as a

MIAM primitive constitutes a violation of the cut principle, since it would

be a choice for one particular way of modeling a composite property of the

hypothetical computer. Fortunately, it is quite simple to do away with the

display (DEWAR [4]). The display is simply an array of the addresses of

locales present in the 'around' (lexicographic) chain. It obviates the cost­

ly process of following that chain backwards each time for a non-local ac­

cess. On the other hand, it requires the. maintenance of an invariant, which

is certainly not negligible in cost. The idea that allows to dispense with

the display can be sketched in terms of ALGOL 68: a text of the form

BEGIN AMODE x

BEGIN

BEGIN
text using (x)

END

END

END

is compiled as though the source text had read

.BEGIN AMODE x

BEGIN

END

END.

BEGIN AMODE x' = x; ...
text using (x')

END

108

The cost of following the around chain is incurred only once, at the inner

identity-definition. Obvious variations on and refinements of this scheme

are possible, but need not concern us at the moment. Notice, however, that

the inner range now using x' may be contained in a routine-text. This works

fine, but some care has to be exercised in order that no undue restriction

of the scope of the routine results (because of the 'necessary environ').

Some attempts to assess the cost of a refined version of this scheme

compared to the traditional solution suggested quite strongly that having

no display is the more efficient approach.

8. PARALLELISM

One of the assumptions in the design of the MIAM is that the actual

target computer has one processor. This permits a major simplification. Col­

lateral elaboration must be modeled in terms of serial execution. (It ap­

pears, anyway, that programmers tend not to write constructs permitting col­

laterality except where they have little choice.)

A special case of collaterality is given by parallel actions. These

can be synchronized by semaphores. If these are to be serialized (which is

desirable anyway, for it keeps memory management simple), MIAM programs must

be able to switch environs in the middle of a block. Now, in the hypotheti­

cal computer, there is no such thing as the 'currently active' process.

Applying the cut principle, we find that the notion of a process and the

capability of process switching should be MIAM primitives.

9. FLOW OF CONTROL

ALGOL 68 features a variety of constructs for governing the flow of

control. The corresponding actions are composed of 'Steps'. So the cut

principle suggests that these actions do not correspond to MIAM primitives,

but are also modeled by more primitive actions: the simple and the condi­

tional parameter.

In fact, the MIAM has a large variety of conditional jumps. This sim­

plifies the modeling of various actions of the hypothetical computer. The

standa~d relational operators are only available through these primitives;

e.g., an assignment like

p:= X > 0

109

has to be compiled as though the source text has

p := IF x > 0 THEN TRUE ELSE FALSE FI.

(This decision is, of course, independent of the cut principle. It simply

reduces the number of MIAM primitives.)

10. ASSIGNMENT

The modeling of composite values belongs to the realm of upperworld

decisions and assignment in the MIAM depends on the way of modeling chosen.

So, by the cut principle, full-fledged assignment cannot be a primitive.

Instead, symbolic execution of assignment generates the code for copying

values, tailored to the mode of the value. Some obvious optimizations for

going through multiple values can be generated immediately in the object

code. Also, in some cases a pointer may (or must) simply be copied, whereas

in an other case the object pointed to has to be copied. Keeping track of

this is clearly an upper-world task.

Therefore, the MIAM has only a copy primitive that is primitive in more

than one sense. This choice is dictated by the cut principle for another

reason also: assignment is already a composite action in the hypothetical

computer.

11. INSTRUCTION FORMAT

The design of a machine as discussed here entails many more decisions

than can be related to the cut principle. One of these decisions is that a

MIAM program is built from 'instructions' of a classical type. Much can be

said in favour of intermediate graph representations, and the cut principle

would still be applicable. On the other hand, it is not particularly hard to

build such a graph representation (including data flow analysis) from a

MIAM program, which may be viewed as a concrete linearized representation

of a graph.

However, the idea is that more or less conventional techniques, like

macro processing (with the necessary bells and whistles), should be appli-
' cable to the problem of transforming MIAM code to actual target code. The

general format of a MIAM instruction is given by:

instruction: keyword, comma, argument list, semicolon.

110

Most instructions have three or fewer arguments. At most one of these ar­

guments is used to determine an access where the result of an operation is

stored; such an argument is always the last one of the list. Some typical

examples of instructions will be given, and some (in fact most) possibili­

ties for arguments will be illustrated in these examples. The particular

design choices made will not be defended; in many cases they are just some

choice, neither better nor worse than other sensible choices.

(a) COPY, INT1, I6.2, T4;

This is a copy instruction. The first argument indicates that the ob­

ject to be copied is a LONG INT (the '1' stands for the 'size'). The in­

teger can be found by adding the sixth offset to the current top locale

pointer next the second offset to a pointer found there. (In ALGOL-like

style, M[M[T+off6]+off2].) The 'I' corresponds to 'indirect'. The '6' and

'2' are effectively tags denoting offsets. The copy has to be deposited at

the site pointed to by a pointer in the top locale, found by applying an

offset known by '4'. (Not at the fourth 'field' of the top locale; there is

no implicit 'upreferencing' of result arguments.)

COPY, PTR, &I6.2, &SS;

The '&' takes off one level of indirection. Not the integer would be

copied, but a pointer to it. Similarly, '*' adds one level of indirection

The use of'&' and'*' is severely limited; e.g., '&&'or'**' is always

illegal. The result is deposited in the topmost-but-one locale. (Only the

top two locales and the bottom locale have the privilege of being access­

ible by arguments of a special form. It might appear that the use of 'S'

violates the cut principle. But its meaning is defined independent of the

fact that the MIAM is used to model ALGOL 68. The MIAM leaves, e.g., a

good deal of freedom in modeling ALGOL 68 parameter passing, but S-arguments

are very convenient for many ways of passing information from the caller to

called MIAM code.)

In this instruction, it is clear from the appearance of the second ar­

gument that a pointer is involved. In fact, the first argument of a copy

instruction is always redundant, but it is nice to have the relevant infor­

mation locally available.

The execution could conceivably result in a scope violation. Remember

111

that the MIAM has inherited the scope concept. In a sensibl~ implementation

of the MIAM this should not be checked. The idea is that there exists a con­

tract between the code generator and the MIAM. The code generator guarantees

that it will never generate code that might result in a dynamically unde­

fined situation. In return, the MIAM promises speedy execution. If the code

generator cannot find a proof that the scope restrictions are satisfied, it

has to emit explicit code for a dynamic scope_ check.

(c) IFIS, W13, X, A3;

This instruction compares pointers; it may be used to model':=:'. The

'W' indicates that the argument concerns a temporary object that will never

be inspected again. Otherwise, it is equivalent to 'T'. 'X' is a literal,

roughly corresponding to NIL. The last argument is a label, but of a special

kind. A jump to an A-label causes the execution of the program to be abort­

ed •. The number may be used to generate an appropriate error message.

(d) SCOPE, T13, &T14;

The first argument of a scope instruction determines a point.er. The

'scope' (an integer) of the area into which the pointer is pointing, is

delivered in the position given by the last argument.

(e) SPAWN, 3, LBS, L9O, &T15;

A parallel action descriptor is created, using the labels given as

arguments. The spawn instruction has a variable number of arguments. The

first argument is a literal and determines the length of the variable part

of the list.

These examples give some idea of the flavour. Many combinations of

arguments are excluded (syntactically). For example, the following is il­

legal:

COPY, LAB, A3, *SS;

A-labels may only be ,used if the jump to the label cannot be deferred.

Also, '*' cannot appe,ar in a result argument; it is one level of indirection

112

too many. Thus, the MIAM is not orthogonal in design. The unorthogonalities

have been chosen in such a way that it is expected that they are not cumber­

some in the design of the code generation, and will often be helpful in the

implementation of the code transformer. If the latter is not the case, it

may be helpful that these unorthogonali ties are pure restrictions, not quirks.

So there exists an orthogonal closure of the MIAM. An implementation of that

orthogonal closure is a valid implementation of the MIAM.

12. SOME EXPERIMENTS

In order to obtain an idea how efficient this approach is, some pieces

of ALGOL 68 text were translated by hand into MIAM code, and next from MIAM

code to actual machine code. These program fragments were chosen to incor­

porate some of the heavily used constructs (GRUNE [6]). An attempt was made

to simulate rather simple-minded algorithms.

For the ALGOL 68S compiler on the PDPll/45 a speed-up was observed of

a factor of 5.9. This high factor can be explained by the fact that the

ALGOL 68S object code used subroutine calls rather extensively. Also, the

length of the code was decreased by some 6 percent.

For the CDC ALGOL 68 compiler on the Cyber 72 the code was sped up by

a factor of 1.5, but at the expense of a code-length increase of 8 percent.

The fact that speed-up was obtained here was a surprise; the CDC compiler

was designed very specifically for the (rather anomalous) family of CDC

computers to which the Cybers belong. On the other hand, the precision sug­

gested by the figures quoted is misleading; it may well be that the MIAM

approach would behave less well on a larger variety of programs.

13. CONSTRUCTING A PORTABLE RUN-TIME SYSTEM

ALGOL 68 programs are embedded in the standard environment created

by the 'standard-prelude' • An approach to make this environment portable

is to use the separate-compilation facility. This is most important for

the transput. Instead of the text given in the Revised Report, the imple­

mentation model of ALGOL 68 Transput (VAN VLIET [13]) should be used. This

approach requires extending ALGOL 68 with some additional capabilities,

enabled ~nly during compilation of the standard-prelude.

A quite different matter is the construction of a portable runtime

support system for the 'enhanced' MIAM. This is possible by modeling the

MIAM again on a lower-level (but still machine-independent and abstract)

computer. This 'MIAC' already has many of the properties of the MIAM, but

113

of course not those that are expressed in terms of the MIAC. The recipient

of the compiler still has to model most MIAM instructions directly on his

actual computer, but the 'hard' ones are obtained by implementing the MIAC.

In this way parallel processing can be described, and also a complete memory

management system.

The description of a complete memory management system for the MIAM in

terms of MIAC code clearly demonstrated that (at least as far as memory

management was concerned) the cut made by the MIAM was the proper one. First

of all, the desideratum of reduction of complexity was entirely complied

with. It turned out possible to single out all properties of the MIAM rele­

vant to the memory management problem and to describe them in a simple ab­

stract model of the MIAM. This abstract model, being free of details ir­

relevant to memory management, enables one to study the problem of memory

management in isolation. A firm hold on the problem is thus obtained and

possible solutions are more easily surveyed. Furthermore, invariants of the

system can be proved in the model without great difficulty and be used sub­

sequently to increase efficiency. The correctness of the entire memory

management system can even be proved without excessive effort (JONKERs· [9]).

The desideratum of portability was also satisfied, in the sense that

an efficient machine-independent memory management system for the MIAM could

be described in MIAC code. This system uses a modified version of the clas­

sical ~pproach with a stack and a heap. Storage for all areas other than

those corresponding to global-generators is allocated on the stack. This

immediately implies that the stack is not a pure stack, because the stack

behaviour may be obstructed as a consequence of the use of flexible mul­

tiple values or parallel actions (see Section 7). By popping inaccessible

stack areas from the top of the stack as soon as they occur there, the

stack behaviour is maintained as much as possible, however. If finally a

clash between stack and heap occurs, the amount of garbage in the stack

can be determined with relatively little effort. If that amount is large,

as compared with the size of the store, the stack is compacted. Due to the

inheritance of the ALGOL 68 scope restrictions by the MIAM, this compaction

is strictly local to the stack (no pointers in the heap need be updated)

114

and can be quite efficient (JONKERS [8]). If the amount is relatively small,

a full garbage collection is performed and both the stack and the heap are

compacted. This also requires a marking phase and is considerably more ex­

pensive than a mere stack compaction.

14. RELATED WORK

There exists an equivalence between (abstract) machines and (program­

ming) languages. Each design of an intermediate code is, in some sense, at

the same time the design of an abstract machine, and vice versa. Often the

choice between the two in presentation is only a matter of emphasis.

In the abstract machines designed for implementing ALGOL 68, a major

distinction can be made between 'high'- and 'low'-level machines, in two

respects. One distinction is with respect to the language level: an abstract

machine has a high level if its primitives are clearly and directly related

to ALGOL 68. The other distinction is with respect to the machine itself:

it has a low level if its architecture is close to a computer. (The latter

distinction is becoming increasingly fuzzy.)

The intermediate code in the implementation described by BRANQUART

et al. [3] and the abstract machine of KOCH & OETERS [10] are high-level in

both respects; mapping these on conventional architecture still entails

much work, but a good efficiency can be reached. Direct hardware implemen­

t;ation is just becoming feasible.

The abstract machines described in TANENBAUM [12] and LANE [11] have

a high language-level and a low machine-level. Built in hardware, they

would relate to ALGOL 68 as the Burroughs B6600 and B6700 to ALGOL 60. Im­

plementation on conve~tional machines is relatively easy, but only tech­

niques like micro-programming or emulation can prevent a substantial loss of

efficiency.

Low-level in both respects is ZCODE, described by WALKER, BOURNE &

BIRRELL [14]. The MIAM described here fits best in this category. However,

in both respects it has a curious mixture of high- and low-level properties.

For example, the scope concept is directly related to ALGOL 68, and the

existence of parallel action descriptors as a primitive is unconventional.

ZCODE is'an object code for ALGOL 68C and does not cover the full language.

Moreover, it has been designed with machines with very regular registers in

mind. Its use for other machines presents severe difficulties (BIRRELL [1]).

115

No assumption about registers, or even their existence, is made in the MIAM.

Still another possibility is to use an abstract machine that has not

been specifically designed for ALGOL 68, such as JANUS. For the problems

one may encounter with this approach, see BOOM [2].

15. CONCLUSION

A sketch has been presented of the design of an abstract machine for

an ALGOL 68 compiler that serves two purposes at the same time: achieving

a high degree of portability, and reducing the complexity of the design of

the code generator. It appears that this abstract machine may be implement­

ed quite efficiently on many present-day computers.

If one views the abstract-concrete scale as one that scores the rec­

ognizability of the ALGOL 68 origin, the machine described has a curious

mixture of 'high'- and 'low'-level properties. And yet, the design has been

guided by one single principle. Indeed, if one views the distinction be­

tween 'abstract' and 'concrete' in terms of commitment, then the abstract

machine is abstract in the sense that it attempts not to commit the compiler

writer in the freedom of developing a code-generation strategy, including

the optimizations that are reasonable for an ALGOL 68 implementation, nor

the recipient of the portable compiler in the approach, including optimiza­

tion, for realizing it on the actual target computer.

A 'feasibility proof' for the MIAM has not been given. Such a proof

would consist of the construction of an ALGOL 68 compiler with the MIAM as

target, together with the construction of 'code transformers' from MIAM

code to a variety of actual computers. One problem that has come up should

be mentioned. In mapping the MIAM to machines with registers, one should

hope to be able to keep variables temporarily in registers in loops (e.g.

the internal variables used for controlling the traversal of multiple

values). To do this, it must be proved that these variables are not affect­

ed in the mean-time by other instructions: their result arguments may not

be an 'alias' of the variables concerned. In many cases the necessary in­

formation is readily available on the ALGOL 68 level, but is buried in the

MIAM code. It seems possible to retrieve it, but this appears to require

the use of algorithmic analysis techniques that are more complicated than

was intended for code transformation. Adorning the MIAM code with the in­

formation from the ALGOL 68 level threatens not only the cut principle,

116

but the whole idea of having a clean interface. A partial, probably satis­

factory, solution, complying with the cut principle, would be to give some

offsets a new attribute, indicating that non-transient pointers to locale

sites corresponding to these offsets will never be set up.

It is conceivable, and in fact likely, that during the construction of

a feasibility proof other problems will present themselves.

Acknowledgement. The present research has been strongly influenced by stu­

dying the systematic treatment of BRANQUART et al. [3].

REFERENCES

[l] BIRRELL, A.D., Problems in implementing ALGOL 68C, in Proc. of the

1975 Int. Conf. on ALGOL 68, G.E. Hedrick, ed., Oklahoma State

University, Stillwater, 1976.

[2] BOOM, H., Code generation in ALGOL 68H: an overview, Report IW 103,

Mathematical Centre, Amsterdam, 1978.

[3] BRANQUART, P., J.-P. CARDINAEL, J. LEWI, J.-P. DELESCAILLE & M. VANBEGIN,

An Optimized Translation Process and its Application to ALGOL 68,

Lecture Notes in Computer Science~, Springer, 1976.

[4] DEWAR, R.B.K., oral communication, March 1979.

[5] ERSHOV, A.P., On the partial computation principle, Information Process­

ing Letters.§._ (1977) 38-41.

[6] GRUNE, D., Some statistics on ALGOL 68 programs, SIGPLAN Notices_!!,

7 (June 1979) 38-46.

[7] HANSON, D.R., Code improvement via lazy evaluation, Information Pro­

cessing Letters.!..!:._ (1980) 163-167.

[BJ JONKERS, H.B.M., A fast garbage compaction algorithm, Information Pro­

cessing Letters~ (1979) 26-30.

[9] JONKERS, H.B.M., Designing a machine-independent storage management

system, Report IW 148, Mathematical Centre, Amsterdam, 1980.

GO]KOCH, W. & C. OETERS, An abstract ALGOL 68 machine and its application

in a machine-independent compiler, in GI-5. Jahrestagung,

J. Muhlbacher, ed., Lecture Notes in Computer Science 1!,
Springer, 1975.

117

[11] LANE, H.J., An ALGOL 68 machine and translator, UCLA-ENG-7369, Comp.

Science Dept., UCLA, Los Angeles, 1973.

[12] TANENBAUM, A.S., Design and implementation of an ALGOL 68 virtual ma­

chine, Report IW 4, Mathematical Centre, Amsterdam, 1973.

[13] VAN V,LIET, J.C., ALGOL 68 Transput, Part II, An Implementation Model,

Tract 111, Mathematical Centre, Amsterdam, 1979.

[14] WALKER, I., S.R. BOURNE & A.D. BIRRELL, ALGOL 68C Implementation Guide,

Comp. Lab., Cambridge, 1974.

AN IMPLEMENTATION OF MODULAR COMPILATION IN ALGOL 68

G.J. FINNIE & M.C. THOMAS

ABSTRACT

This paper describes the modules and separate compilation facility

of the RS family of Algol 68 compilers, and shows how it has been imple-­

mented in the RS Algol 68 compiler for ICL 2900 series machines. Although

the major part of the paper concentrates on the implementation within the

119

ICL compiler, the paper starts with a view of the user requirement for

modules and separate compilation, and with some discussion of the facilities

provided by the RS system and how they compare with the official IFIP scheme.

120

1. INTRODUCTION

Modular compilation systems have been around in one form or another for

many years, with schemes ranging from the totally permissive library mechan­

isms of FORTRAN to the restrictive ideas of Simula. Ideas about modularity

and its place in the programming process developed rapidly in the years which

followed the publication of the Algol 68 Report, yet unfortunately no modular

compilation proposal was included in the 1974 revision. As a result a number

of alternative schemes for Algol 68 modular compilation facilities have

been implemented, and only recently has an official recommendation been

published [2]. As yet there are no implementations of the recommendation

(although we understand that the CDC compiler will be enhanced to follow the

recommendation soon).

The publication of the definition of Ada has stimulated interest in

modular compilation and separate compilation, and this interest has been

further fuelled by the commitment of NAG Ltd to produce a proper Algol 68

NAG library. Although this library will be implemented initially in the

ICL Algol 68 compiler (2900 Algol 68, a member of the RS family of

revised Report compilers) it is obviously highly desirable that the library

is readily usable with all the major Algol 68 compilers.

No modern programming language can be considered suitable for serious

use on major programming projects unless it provides facilities for secure

modular program development. Most current implementations of Algol 68

provide such facilities; as yet, few implementations of other languages do

so. Unfortunately the Algol 68 position is marred by the differences in the

implementation of these facilities in different compilers.

This paper describes the modules and separate compilation facility of

the RS family of Algol 68 compilers, and shows how it has been implemented

in the RS Algol 68 compiler for ICL 2900 series machines. Although the major

part of the paper concentrates on the implementation within the ICL compiler,

the paper starts with a view of the user requirement for modules and separate

compilation, and with some discussion of the facilities provided by the RS

system and how they compare with the official IFIP scheme.

2. A USER'S VIEW OF MODULAR COMPILATION SYSTEMS

This section of the paper provides a background to the subjective

121

assessment of the RS modular compilation scheme which follows. It will

readily be apparent that in two areas at least, one of the present authors

disagrees fundamentally with the authors of the IFIP recommendation for

modular compilation, and with the designer and implementors of the RS system

as well.

In what follows, the topic of 'modular compilation' (where program

text is constructed in lexically-parallel modules with special visibility

rules) will be treated as if it were largely identical with 'separate

compilation' (where the resulting modules are presented to the compiler as

separate compilation units). The view is taken that forcing the programmer

to compile each module individually to filestore imposes no great inconven­

ience and that the resulting simplification of the user-interface more than

justifies it. However, the point is essentially trivial and should not

obscure what follows.

2.1. Modular compilation facilities

A modular compilation system should assist the programmer by easing

the development of software in 'natural' modules whilst providing the

visibility rules and checking which prevent common errors.

A good modular compilation system should provide:

separate compilation of declarations of any program object (declara­

tions modules).

~ separate compilation of nested closed clauses (cf [2]).

a natural mechanism for compiling procedures to be called with para­

meters from outside the language environment.

mechanisms to ensure that necessary recompilations of dependent modules

are done after a change, and that unnecessary recompilations are avoided.

mechanisms whereby multiple library preludes can be provided, in a way

which allows the programmer to decide whether they are to be used

separately or in some combination.

no silly restrictions and no surprises.

The visibility of identifiers across module boundaries should be under

the control of the implementor of the module containing their declarations.

There mu'st be no way in which the user of a precompiled module can gain

access to identifiers which were not made public by the module's implementor.

122

2.2. The problems

Two problems commonly arise in the implementation of modules systems.

The first concerns the scope of declarations in 'declarations modules' and

the related subject of when two separate copies of a declarations module

will exist in a program, and when two or more applications of a declarations

module identifier actually identify the same instance of the module. Consid­

er for example the following program fragments (written using the RS

syntax):

DECS d1:

INT a

KEEP a

FINISH

DECS d2 USE dl :

PROC p = INT:a;

INT b

KEEP p,b

FINISH

PROGRAM w USE dl,d2

BEGIN

END

FINISH

How many copies of d1 are invoked (and therefore how many INTs have

been declared)? It is easy to invent examples where it is desired that the

DECS module be shared: it is equally easy to invent examples where such

sharing would be disastrous. The requirement is clear - both alternatives

must be available, but the default must be the safe one. This means that

DECS modules must only be shared if the programmer has explicitly requested

that this be done.

That this is the correct decision can be seen clearly if the case of a

library-~relude providing simulation facilities is considered. It is

perfectly possible that such a prelude will use a random number generator

for its own internal purposes, and that such a random number generator will

itself be available as a library declarations module. A typical module might

look as follows:

DECS normal random:

REAL last random:= 0.4919723;

PROC random= REAL: (••••• last random •••••

KEEP last random, random, ••• , ••.

FINISH

last random:= ..•.••);

This module has side-effects; it has internal memory.

123

Suppose now that the user of the library-prelude also has a need for a

random number generator, and knows of the library version. It can be made

available by a simple 'USE normal random' but if now the DECS module is

shared (i.e. a single instance of 'last random' is used by prelude and prog­

ram), the program is likely to behave incorrectly.

Advocates of module sharing will argue that the fault lies with the

author of the DECS module: it should have been written so that the user was

forced to declare a local 'last random', so that the module had no side­

effects and could safely be shared. This is to miss the point. Firstly, it

is the duty of a language designer to make language features error-resistant,

if possible. Secondly, the DECS module above is the natural way to express

the random number generator, leading to tidier programs in most cases.

Certainly the NAG implementors were very resistant to the idea that the side­

effect-free form should be used. Finally, there is a philosophical objection.

Sharing modules in this way violates the information-hiding interface between

the prelude and the user program, requiring that the user knows something

about the implementation of the prelude, and increasing the coupling between

the modules.

If the module has no side-effects and can safely be shared this is easy

to determine at compile-time and the compiler should be required to perform

the optimisation. If the module is intended to be shared, its name, or the

identifiers to be used in common, should be passed explicitly through the

module interface (or KEEPlist). The scope of such declarations is then the

same as if they had been included in the program at the point of the USE

that invoked them; this is a safe rule and one that is easy to explain and

remember.

124

2.3. Problem two - communication outside the language environment

The second problem concerns the case where the Algol 68 program is

required to be a procedure which is called from another language. The Report

does not define a syntax for the necessary 'prograro-with-parameters-return­

ing-MOID', yet this is a frequent requirement once Algol 68 is used in

earnest. It arises immediately if Algol 68 is used as a systems programming

language in a system which is not wholly written in Algol 68. It also

arises in applications programming wherever it is desirable to use Algol 68

for some routines but impracticable to write the whole application (or,

particularly, the main program) in Algol 68. The problem is not entirely

one to do with modular compilation, yet it is related both in the users'

minds and in the detail of the necessary implementation.

The problems are not straightforward. Firstly there must be an accept­

able syntax (the solutions adopted by RS implementations will be described

later). Secondly there must be a mechanism for the prelude and postlude code

to be elaborated at the appropriate time. (It is very embarrassing to have

to find a way to write an Algol 68 procedure to do transput which avoids

the standard files being opened and closed each time the procedure is

called.) Thirdly, it becomes desirable to be able to generate objects which

have a scope so global that they can survive control returning outside Algol

68 to the calling routine. Finally it should still be possible to write

routines in a modular way, using a hierarchy of nested closed-clause modules.

Some of these closed-clause modules may be user or library preludes, so

that the externally visible parameter interface would not necessarily be

associated with the outermost module. Possible solutions to this can be

designed, but it is important that only one level in the hierarchy is

allowed access to the parameter interface, and then only in one place,

otherwise unsafe side effects may occur.

These problems have been solved in different ways by different imple­

mentors, but it would be useful if there were an agreed standard for future

implementors to follow.

The next section of this paper describes the RS modular compilation

system facilities and syntax. It will be seen that the solutions adopted

to both these problems fail the requirements outlined above. A later section

comments'briefly on these failures and compares the solutions with the IFIP

recommended scheme.

3. FACILITIES OF THE RS MODULAR COMPILATION SYSTEM

3.1. Introduction

The RS modular compilation system is designed to provide a powerful

and secure method of program development.

125

Three types of module are provided; declarations modules which enable

modes, procedures and other items to be declared and compiled in advance of

their use in other modules; closed clause modules which may be complete

programs or may be nested within another and have 'holes' where inner

modules are later to be inserted; composition modules which assemble a

number of closed clause modules together. Closed clause and composition

modules are collectively known as program modules, in distinction to

declarations modules which can never form a complete program on their own.

3.2. Keeplists

The programmer defines which indicators declared in one module are

available to another using keeplists, and checks are made that these defined

interfaces are adhered to. The keeplist is written as a sequence of indica­

tors separated by commas. When an operator is included, the modes of its

operands must also be specified in brackets after the operator name, in

order to distinguish between different versions of the operator. For example,

MATRIX,* (REAL, MATRIX), ml, m2

3.3. Declarations modules

T_he simplest form of declarations module is

DECS decstitle:

body

KEEP keeplist

FINISH

Here decstitle is some identifier to name the module, body (which is not

enclosed by BEGIN and END) consists of Algol 68 declarations and other

phrases useful for initialisation purposes, and keeplist is as described

earlier., Indicators in the keeplist may be used by other closed clause or

declarations modules; access to the keeplist of a declarations module is

acquired by the USE clause so that the heading of a declarations module

that uses one or more others becomes

126

DECS decstitle USE decstitlelist:

where decstitlelist names the other modules required, separated by coP.lIJ1as.

There is only one instance of each declarations module and it may be

used by any number of other modules. In order to free the user from having

to consider the order of elaboration of a set of declarations modules and

to prevent side-effects, the restriction is enforced that the outer level

of a declarations module may not contain procedure calls or labels, nor use

any references kept from another module.

3.4. Closed clause modules

A simple program will normally consist of a single closed clause module,

possibly supported by one or more declarations modules, taking the form

PROGRAM progtitle USE decstitlelist

closed clause

FINISH

where progtitle is an identifier to name the module and the USE clause is

only required if declarations modules are used.

More complex programs may be broken down into simpler components and

written as a hierarchy of nested closed clause modules. The HERE clause

(treated as a VOID unitary clause) is used to specify a 'hole' in a module

and the indicators to be made available to the module filling the hole. It

takes the form

HERE holename (keeplist)

where holename is some identifier to name the hole, and keeplist, as before,

specifies the kept indicators.

If a module contains holes, their names must be listed in the module

heading, and if the module is to be nested within another it must specify,

through a CONTEXT clause, the name of the hole in which it is to fit, so

that the general form of the closed clause module is

PROGRAM (holenamelist) progtitle1

CONTEXT holename IN progtitle2

USE decstitlelist

closed clause including HERE clauses

FINISH

127

3.5. Composition modules

A composition module contains no actual Algol 68 text of its own; it

merely provides a specification for the assembly of a hierarchy of previously

compiled closed clause modules. The form of a composition module is

PROGRAM progtitle

COMPOSE nest

FINISH

where progtitle is an identifier to name the composition module itself and

nest specifies the modules to be assembled by pairing up formal holenames

with actual modulenames as demonstrated in the following example.

Given a program module starting

PROGRAM (xl, x2) x

and a set of inner modules with the headings

PROGRAM a CONTEXT xl IN x

PROGRAM (bl) b CONTEXT x2 IN x

PROGRAM c CONTEXT bl IN b

then the following composition module would specify their assembly

PROGRAM comp

COMPOSE x (xl

FINISH

a, x2 b(bl c))

A composition module does not contain a CONTEXT clause; the context that

applies to it is the one specified in its outermost closed clause module.

3.6. Partial composit~on

A composition need not fill all the holes in its constituent modules;

it may leave some to be filled in a later composition. A composition module

that contains unfilled holes is known as a partial composition, and is

specified by pairing one or more of the constituent holenames not with an

actual module name but with a new holename of its own, introduced by the

symbol HERE. Thus, if we omit module c from the example in the previous

section,,we obtain the partial composition

PROGRAM (h) pcomp

COMPOSE x(xl = a, x2

FINISH

b(bl HERE h))

128

No explicit keeplist is written for a hole in a partial composition;

the available indicators are defined to be all those kept en route from

the outermost module to the symbol HERE in the composition so that in the

above example the context 'h IN pcomp' provides all the indicators kept

at 'x2 IN x' as well as those at 'bl IN b'. This combination of keeplists

is the main purpose of partial composition, effectively allowing a module

to be compiled in several contexts simultaneously, a facility which

is useful when a program must run inside several independent environmental

packages such as might be provided for simulation or graph-plotting.

3.7. Declarations modules in a context

Declarations modules, like closed. clause modules, may include a CONTEXT

clause in their heading which will provide access to indicators kept

at the specified hole. In order to use such a declarations module, the

using module must also have access to those same kept indicators, and

therefore the context specified by the using module must either be the same

as that of the declarations module or be a dependent context resulting from

partial composition (which as we have seen would supply the same kept indi­

cators and more besides).

The context of a declarations module also determines its lifetime. For

example, with the set of modules

PROGRAM (h) pl

BEGIN

TO 20 DO HERE h(•••) OD;

END

FINISH

DECS dl CONTEXT h in pl:

INT i := 0

KEEP i

FINISH

DECS d2:

INT j:= 0

KEEP j

FINISH

PROGRAM p2 CONTEXT h IN pl USE dl, d2

BEGIN

print ((i +:= 1, j +:= 1))

END

FINISH

the value of i printed is always 1, whereas that of j will range from 1

to 20, since a new instance of module dl (but not of d2) is created each

time the hole his entered.

3.8. Preludes and the void context

129

Any closed clause or declarations module that has no explicit context

specification is regarded as being compiled in the context of the standard

prelude, which may be thought of as a closed clause module within which

programs are automatically composed by the compiler.

It is clearly desirable that items from the standard prelude are

available not only to the outermost level of a program but also to any

nested modules. This idea has been generalised to arrive at the notion of a

prelude as a truly outermost module with certain special properties which

may be exploited in order to set up non-standard preludes for particular

applications. These are

(i) Items kept at a hole in a prelude and from any declarations modules

at that context are available to all dependent modules to any depth

of nesting.

(ii) A closed clause module that specifies a prelude context may be composed

within the prelude or within any dependent context.

A closed clause module is designated as a prelude by the special context

specification CONTEXT_VOID.

Declarations modules may also specify CONTEXT VOID in which case they

may be used by any other module. This is the limiting case of the general

rule given in 3.7 for the use of declarations modules in a context.

4. THE ICL 2900 IMPLEMENTATION: COMPILE-TIME

4.1. The RS compiling system

The RS compiling system is described in detail in [1]. Basically it may

be regarded as shown in Diagram 1. The RS compiler itself, which is complet-

130

ely machine-independent, is conceptually surrounded by a 'shell' which

provides the necessary interfaces to the host system, for example procedures

to read lines of Algol 68 source, to output error messages and, more

important to the current discussion, to obtain information about already

compiled modules. These 'shell' procedures, which are actually passed as

parameters to the RS compiler, must be provided by each separate implementor

of an RS system, in addition to the machine-dependent 'translator' which

is responsible for converting the 'stream language' output by the RS compiler

into object code for a particular machine. (Further details of the 'stream

language' may be found in [1]).

The 'shell' interfaces concerned with modular compilation are

give module details - provides the RS compiler with information about the

properties of some specified module

give spec - provides the RS compiler with information about a

keeplist

The stream language, passed from the RS compiler to the translator via the

procedure 'output', contains elements which provide information pertinent

to modules, including both information about the current compilation (such

Algol 68

Source

error
messages

faults

RS
input

Compiler
output

specifications

1£_----------r---------~ streams
previously
compiled
modules

library of compiled modules

Diagram 1 - The RS compiling system

Translator

new object
module

as the name and type of the current module) and information about other

modules, {such as details of available kept identifiers).

4.2. Storing module information

131

The facilities of the RS modular compilation scheme clearly imply that

when a module is compiled, the object file produced must contain not only the

instructions to be obeyed at run-time but also information to allow the

module to be utilised during the compilation of some subsequent module. For

example, the object file associated with a declarations module must contain,

in some form or another, a description of the module's keeplist so that

when that module is named in a USE statement the compiler can determine what

items are included in the keeplist and check that the second module is

using them correctly.

In terms of OMF, the 2900 Object Module Format, the logical place to

store this sort of information is in the 'diagnostic data records' which are

held at the end of an object file.

The compiler writer is completely free to decide the format of these

records, their primary purpose being to provide information for a post­

mortem report in the event of a run-time error. Since the diagnostic data

records are not accessed by the 2900 loader, additional information that

is required only at compile-time may be stored there without introducing

any overhead on program loading.

Information used at run-time by the modular compilation system is

stored in the Procedure Linkage Table {PLT) area of each module. This area

is used in the standard way to hold inter- and intra-module linkage

information, for example external references which are 'fixed up' by the

loader to virtual addresses when the module is loaded.

4.3. Information written to object module

When a module is compiled, the following information is written to the

diagnostic data records of the object file created, for use during the

subsequent compilation of other modules:

{i) a description of the properties of the module as a whole, including

- the name of the module

whether the module is a declarations module or a program module, and,

if the latter, the number of holes it contains

132

- the name of the surrounding context of the module (both holename

an:d modulename)

- the name of the prelude context of the module, if different from the

above.

(ii) a specification of each of the keeplists provided by the module; for

a declarations module there will be only one of these, for a program

module one for each hole in the module. Except for a keeplist as­

sociated with a hole in a partial composition, the specification is

a coded representation of the identifiers, modes, etc, in the keep­

list. The translator can treat this as a single character string

since the RS compiler is responsible for the encoding and decoding

of this information. For the partial composition case, where the ac­

tual keeplist available is the concatenation of several individual

keeplists (see 3.6 above) the names of the contributing contexts are

instead recorded as the specification of the composite keeplist.

The details necessary to construct the above information are obtained by

the translator from elements of the stream language output by the RS com­

piler.

A unique name is also generated for each keeplist specification and for

the module itself. These names are also written to the information in the

object file to provide a 'time-stamping' facility for compatibility

checking. (See 4. 5 below.)

4 ._4. Use of module information

The module information stored in the object file is utilised as follows:

(a) When the RS compiler encounters a CONTEXT statement in the source

program, it calls the shell procedures 'give module details' and 'give

spec' which prompt the shell to search the filestore for the named

program module and to extract the specification of the keeplist as­

sociated with the named hole. The objects in the keeplist are then

determined and effectively treated as though they had been declared

in the current compilation. If the keeplist is a composite one (i.e.

the context is a hole in a partial composition) then the process is

invoked recursively for each contributing context. The name of the

prelude context to be associated with the current compilation is ob-
'

tained from the prelude context recorded in the module named in the

CONTEXT statement, and its specification is also found and processed

in a similar way.

133

(bl Similarly, a USE statement causes the compiler to locate (via the

shell) the named declarations module, extract its keeplist specifi­

cation and 'declare' the associated identifiers, etc. The context of

the declarations module is checked to be consistent with the rules

described earlier (3.7).

(cl When a composition module is compiled, all the modules named are

located and their context specifications checked to ensure that they

can be put together in the specified way. The context information

pertaining to the outermost module is carried across to the resultant

composition module.

4.5. Unique names for compatibility checking

To ensure complete compatibility of modules, a unique name is generated

for each keeplist in a module and also for the module itself. The names are

constructed from the time of day down to a resolution of 128 microseconds,

which. is considered to be sufficiently 'unique' for this purpose. On suc­

cessful compilation of a module,the translator searches for a previous

version of that module and, if one can be found, compares its interfaces

(keeplists, context, etc) with those of the new module. If a keeplist is

identical in the two modules (i.e. contains the same identifiers, with the

same modes, in the same order), then the unique name of the old keeplist is

carried over to the new one, a new unique name being created otherwise

(or of course if no previous module was found). The unique name of the

module itself is only carried forward if all its interfaces (including

contexts, number of holes, etc.) are identical with the old version.

The purpose of this scheme is to ensure that when a module is

recompiled and any of_the external interfaces to the module have been

changed, then any previously compiled modules dependent on those interfaces

must also be recompiled. Conversely, if a module is recompiled without

changing its interfaces, there is no need to recompile any dependent modules.

The RS compiler performs certain compatibility checks, for example

that the context of a used declarations module is compatible with that of

the using module, or that the modules named in a composition can be as­

sembled in the specified way. However, these checks use only the names as

they app~ar in the source program; the translator additionally checks the

corresponding unique names to ensure complete compatibility.

134

Run-time compatibility is also ensured by the use of module unique

names. The unique name is made an alias of the object file and all external

references from one module to another are via the unique name rather than the

user's name for the module. This means that if a module has been changed

incompatibly and recompiled then any dependent modules cannot pick up

the incompatible version until they too have been recompiled.

4.6. Access to the standard prelude

The standard prelude for the 2900 Algol 68 system is itself, like most

of the product, written in Algol 68 and uses the modular compilation system.

It consists of two parts

(i) A closed clause module with a single hole, this hole being the place

where the user program is to be called. The module declares and opens

files standin, standout and standback and declares the procedures that

operate on these files (read, print, etc). It also initialises the

2900 diagnostic subsystem to allow run-time errors to be handled

properly.

(ii) A set of declarations modules which provide declarations of all the

other items of the Algol 68 standard prelude (other t~ansput proce­

dures, mathematical functions, environment enquiries, etc). The mod­

ules are all at CONTEXT VOID so that any other module, regardless of

its own context, may access them. Only those modules that are actually

required by a program need be loaded when the program is run.

As part of the construction of the complete compilation system, the keep­

lists and module information of the standard prelude modules are processed

by a special utility program to build up a lookup table of the items they

contain. This table is utilised by the compiler directly (via the shell) so

that there is no need to access the actual modules at compile time; the

items effectively become 'built-in' to the compiler. The utility program

used for creating the lookup table is also issued to installation management

thus providing the facility to extend or replace the standard prelude with

an 'installation prelude'.

4.7. Automatic composition

In order to cut down the work required by the user, the translator

will under certain circumstances perform an automatic composition of the

module being compiled. In particular, the process is applied to automati-

135

cally compose simple programs within the standard prelude.

Automatic composition is only possible if the module is a program

module that contains no holes and each of its succP.ssively enclosing contexts

out to the outermost level (CONTEXT VOID) is derived from a module with

exactly one hole. In other words, the module must be the last (innermost)

in a complete set of modules, each nested one within another. In such cases,

the modules required for the composition can be determined unambiguously

by the translator.

The process operates by finding each successively enclosing context

until the outermost level is reached. At each stage a check is made that

the module concerned has only one hole and, by checking unique names, that

it is compatible with the module filling the hole. The process is abandoned

if any of these checks fail or if any of the modules cannot be found.

4.8. Separate compilation of procedures

The RS implementors' documentation does not currently define a syntax

for -the compilation of Algol 68 programs which are callable as procedures

with parameters passed from outside Algol 68. As a result two different

solutions have been adopted.

Currie, in his implementation for the FLEX machine, has made the

parameter interface to procedures KEPT by DECS modules visible to the oper­

ating system. This solution relies on the nature of the FLEX system and in

particular on the abolition of all scope restrictions on the FLEX machine

[3].

The ICL 2900 and Honeywell Multics compilers have adopted the solution

that where a program consists simply of BEGIN routine-text END then the

routine will be entered directly at run-time. Thus a separate compilation

of

(real a) real: (••••..)

would be achieved by

PROGRAM p (

(REAL a) REAL: (••.•••))

FINISH

A CONTEXT and USE-list may be specified as usual.

Note that LINDSEY & BOOM [2] do not address this requirement.

136

4.9. Module Sharing

As explained in 3.7 above, the scope of a DECS module is determined by

its CONTEXT. This means that within any CONTEXT only one copy of a DECS

module will ever exist and all USEs for this module will identify the same

instance. As will be explained later, this involves action at run-time to

ensure that DECS module bodies are elaborated at the correct point in the

module hierarchy.

The LINDSEY & BOOM scheme [2] shares modules whenever it can be detec­

ted statically that this is possible. In most, but not all, cases this will

lead to the same result as in the 2900 compiler implementation. Unfortu­

nately (in the view of one of us) this creates exactly the unsafe sharing

and the unnatural programming style deprecated earlier.

5. RUN-TIME ASPECTS

5.1. The Module Controller

The control of run-time aspects of the modular compilation system is

carried out by a special module known as the Module Controller.

The semantics of declarations modules, in particular the rules con­

cerning the lifetime of declarations modules in a context, imply that, at

least in a stackbased system, the body of a declarations module must be

elaborated at the time that its context is created, which is not necessar­

ily the point at which it is first used by another module. Consequently,

one of the main functions of the Module Controller is to ensure that dec­

larations modules are elaborated at the right time and in the right order.

The information required by the Module Controller is obtained from

the Procedure Linkage Table (PLT) area of each of the modules to be run.

These areas contain external references from one module to another and

their structure enables the relationship of modules in a composition and

the declarations modules used to be determined. All runnable programs

contain as part of their entry sequence a call to the Module Controller,

making available to it the PLT of the top-level composition, now of course

loaded into virtual store and with all external references resolved.

The PLT reflects the structure of the hierarchy of modules to be run,

and is essentially a tree structure starting from an object of mode COMP,

where

MODE COMP

CCMODULE

USED

DECSMODULE

137

STRUCT (REF CCMODULE body, REF [] COMP holes),

STRUCT (CCODE code, REF [] USED decs),

STRUCT (REF DECSMODULE d, INT level),

STRUCT (DCODE code, REF [] USED decs);

The modes CCODE and DCODE represent the code to be executed for a

closed clause module and declarations module respectively. The mode USED

provides information about declarations modules used, including the

level of their context relative to the context of the using module.

The Module Controller traverses this structure and creates a new

structure in which the declarations modules, instead of being attached to

the modules which use them, are associated with the holes defining their

contexts. CONTEXT VOID declarations modules are treated as a special case

and added to a separate list. The revised structure can be regarded as

an object of mode NEWCOMP, where

MODE NEWCOMP

HOLE

STRUCT (REF CCODE code, REF [] HOLE holes),

STRUCT (REF NEWCOMP body, REF [] DCODE decs);

The declarations modules at each context (represented in the 'decs'

field of a HOLE) are sorted so that if any module uses another at the same

context, then the latter precedes the former in the list, thus reflecting

the order in which the modules must be elaborated. The case of mutually

recursive declarations modules (an error) is also detected at this stage.

In fact the actual data structures involved are more complicated than

those described here (which take no account of, for example, partial

composition) but the description is sufficient to give an idea of the pro­

cess involved.

5.2. Running the modules

After constructing the revised data structure described above, the

Module Controller performs the execution of the complete program by tra­

versing this structure, calling each module at the appropriate place. First

of all the CONTEXT VOID declarations modules are elaborated, followed by

the outermost closed clause module (of necessity CONTEXT VOID and normally

the sta~dard prelude module). Each time a hole is reached, a procedure in

the Module Controller is called to elaborate declarations modules at the

new context and then call the closed clause module filling the hole.

138

5.3. Use of the stack

The 2900 Series has a stack-based architecture and the standard pro­

cedure call and exit mechanism assumes the use of separate 'stackframes'

for each procedure, with link information and procedure parameters in

defined locations at the base of each frame. The current stackframe is

defined by two dedicated registers Local Name Base (LNB) and Stack Front (SF),

and on normal procedure exit these are reset to their previous values,

effectively deleting the newer stackframe and reverting to the older one.

The 2900 Algol 68 implementation uses this mechanism not only for

procedure and operator calls but also for calls to external modules. How­

ever, the normal exit mechanism cannot be used with declarations modules

since it is necessary to retain their outermost stackframe. (Note that it

is not sufficient merely to retain the items in the keeplist because kept

procedures may require access to local data which is not kept.) The method

adopted is to explicitly reset LNB and jump to the return address without

resetting SF. This means that the stackframe of the declarations module

becomes absorbed in that of the procedure (in the Module Controller) that

invoked it. This special exit applies only of course when the module it­

self is elaborated, and not on calls to kept procedures.

5.4. Access to keeplists

The items made available to a module from other modules must necessar­

ily originate in keeplists. Each keeplist may be either from a declarations

module or from a module contributing to the local or prelude context.

The items from each of the keeplists available to a module are always

copied into its own outer stackframe so as to make access to those items

more efficient (this ·being particularly desirable for standard prelude

items). The module obtains the address of each keeplist (the items in which

are always in consecutive stack locations) through pointers set up in its

own stackframe by the Module Controller, effectively as parameters to the

module.

The Module Controller maintains dynamically, for each existing context,

a table of pointers to the keeplists associated with that context, viz. the

keeplist of the context itself and the keeplists of the declarations modules

at the context. The tables for successively nested contexts are chained

together so that composite keeplists resulting from partial compositions

may be found. When a hole in a closed clause module is reached, its keeplist

139

is constructed on the stack and a procedure in the Module Controller is

entered, passing as parameters a pointer to the keeplist and the internal

number associated with the hole. This procedure creates a new keeplist

table which is added to the end of the current chain and initially contains

only the pointer to the hole keeplist. The declarations modules at the new

context are then elaborated in turn, each returning a pointer to its keep­

list which is added to the table, and finally the closed clause module fil­

ling the hole is itself elaborated. Each module called is given pointers

to the new table (defining its local context) and to the table defining its

prelude context. It is also given an index table to enable it to extract

only the keeplists of those declarations modules that it actually requires.

6. EXAMPLE OF A SET OF RS MODULES

It is instructive to take an example set of RS modules and consider

what happens both at compile-time and run-time. Take, for example, a set

of modules with headings

(a) DECS dl

(b) DECS d2 USE dl :

(cl PROGRAM (hl, h2) p USE dl

(d) PROGRAM pl CONTEXT hl IN p USE d2

(e) DECS d3 CONTEXT h2 IN p :

(f) PROGRAM p2 CONTEXT h2 IN p USE d2, d3

(g) PROGRAM c COMPOSE p(hl = pl, h2 = p2)

The modules may be compiled in the order shown, but the required order

is not completely fixed. For example, it is immaterial which of the modules

p or d2 is compiled first, though both must be compiled before pl.

During each compilation, the compiler examines the specifications of

the previously compiled modules named in the CONTEXT and USE clauses. For

example, when compiling pl, the specifications of modules d2 and p, and of

hole h1, will be read. Finally, when the composition c is compiled, modules

p, pl and p2 are examined and found suitable for combination in the specj_­

fied way. The standard prelude is also included automatically as the outer­

most module in the composition.

When the program is to be run the Module Controller (initially entered

from module c) examines the relationship between each of the modules, as

recorded in their PLTs. The declarations modules are then associated with

140

their correct levels; for example, module d2, instead of being attached

to modules pl and p2, is 'floated up' to the hole defining its context,

in this case the default context corresponding to the hole in the standard

prelude.

The Module Controller then proceeds to elaborate the modules as

required. Firstly, the standard prelude is entered, and the standard files

are opened. At the point corresponding to the hole for the user program,

the Module Controller is entered again. Modules dl and d2 are then elabo­

rated (in that order), each module containing a non-standard exit to pre­

serve its stackframe, before module pis called. A similar process occurs

at each of the holes in p, so that at hole h2, module d3 is elaborated

followed by p2. Each module called is given a set of pointers to enable

it to locate the keeplists it requires.

On exit from each closed clause module, control passes back through

the Module Controller to the surrounding closed clause module, until even­

tually a return is made to the standard prelude module which closes the

standard files and returns to JCL level.

7. POSTLUDE

It will be seen that the facilities provided by the RS system are

broadly equivalent to those proposed by LINDSEY & BOOM. We very much

regret that the definition [2] was not available to the implementors of the

RS compiler in time to be adopted; however, since compatibility between

RS implementations is seen as most important, future RS implementations will

certainly keep to the RS syntax.

Nevertheless the ICL 2900 compiler implementation shows that modular

and separate compilation facilities similar to those proposed by LINDSEY

& BOOM can be implemented quite efficiently in a production-quality compiler.

The problems of module sharing and "programs with parameters" remain.

It is to be hoped that the considerable effort going into Ada design and

implementation will lead to further developments in both these areas, and

that the designers of the next generation of Algorithmic Languages adopt

a consistent set of secure and convenient solutions.

ACKNOWLEDGEMENTS

The RS compilation system was designed by I. Currie and J. Morison

at RSRE, Malvern, England.

141

The ICL 2900 RS implementation was designed by M. Austin, G. Finnie,

R.L. Hutchings, J. Rees, E.W. Taylor and M.C. Thomas at Oxford University

and SWURCC, England.

Everything written about the RS compiler owes an immeasurable debt to

S.G. Bond and P.M. Woodward, for the influence of their experience and

instincts on the design,and particularly for the clarity and elegance of

their documentation and explanations.

REFERENCES

[1] BOND, S.G. & P.M. WOODWARD, Introduction to the RS portable ALGOL 68

compiler, (RSRE Technical Note 802).

[2] LINDSEY, C.H. & H.J. BOOM, A Modules and Separate Compilation Facility

for ALGOL 68, ALGOL Bulletin 43.

[3] CURRIE, I., Personal Communication, RSRE Malvern UK.

143

PROGRAMMING LANGUAGES FOR A COURSE IN DATA STRUCTURES

V.J. RAYWARD - SMITH

ABSTRACT

The case is made for using Algol 68 as a core language in the teaching

of a post foundation data structures course.

144

1. INTRODUCTION

Most universities that offer a degree in Computing run a post founda­

tion course on data structures. The precise content of this course may vary

but it usually includes all the material in CS2 and CS7 of Curriculum '78 [8].

When teaching the course it is important to introduce to the student various

facilities in diverse programming languages to enable him to understand and

manipulate all types of data structure. The teacher of such a course is faced

with a dilemma; too many new programming languages confuse the student and

yet many data structures appear to demand specialist treatment (e.g. ICON [14]

or SNOBOL [15] for string processing, LISP [39] for list processing). In this

paper, a case is made for using Algol 68 [38] for the main programming

language for the course and restricting these specialist languages to an

appreciation.

It is generally agreed that any programming language used in the teaching

of data structures or algorithm design and analysis must support structured

programming [10] and recursion. This is certainly supported by looking at

those textbooks published in the last decade which might be used as course

material (see Table 1). Many of these claim that since no suitable language

exists for the manipulation of all data structures, the best option is to

use a specially designed Algol-like language. However, if a real programming

language is used as the core language for the course then the advantages are

obvious. Any such language must be supported by good compilers with clear

error diagnostics together with adequate literature suitable for student use.

For these reasons we can sadly discount both ADA [22,33] and Simula 67 [3].

The main contestants for the core language appear to be PL/I [1], Algol 68

[38] and Pascal [23]. Each of these can claim to have been derived to a

greater or lesser extent from Algol 60 and each is block structured, has

high level control structures including recursion and has typed data. A

considerable amount of literature exists which compares these and other

programming languages in general [2,27,28,31,32,36,37]. The purpose of this

paper is to focus attention on data structures and the suitability of a

language for the teaching thereof.

Without doubt, Pascal is the easiest of the three languages mentioned

above to learn while both PL/I and Algol 68 require more effort even if only

because of their increased range of facilities. Pascal also has the advantage

of being particularly easy to compile and is currently available on cheap

Table 1

A selection of books on data structures published in the last decade.

Author Publisher Title

A.T. Berztiss Academic Press Data structures:
theory and practice

M. Elson Science Research Data structures
Associates

C. C. Gotlieb & Prentice Hall Data types and
L. R. Gotlieb

M.C. Harrison

E. Horowitz
& s. Sahni

H.A. Maurer

J.L. Pfaltz

Scott, Foresman
and Company

Computer Science
Press

Prentice-Hall

McGraw-Hill

M. Shave McGraw-Hill

J.P. Tremblay & McGraw-Hill
P. G. Sorenson

structures

Data structures
and programming

Fundamentals of
data structures

Data structures
and programming
techniques

Computer data
structures

Oa ta structures

An introduction
to data structures
with applications

Year of Main programming
Publication language used in text

197 5 FORTRAN

1975 A high-level hypo­
thetical programming
lanquaqe* (+ LISP,
SNOBOL)

1978 Algol-like

1973

1976

1977

1978

1975

1976

FORTRAN and PL/ I

Algol-like

PL/I

Algol-like

Algol W

PL/I

* unfortunately the rather limited control structures in the language result in a
proliferation of the infernal GOTO.

145

micro-processors such as Apple II. Thus it is likely to become even more

widely.adopted than it is at present and is already being used in British

schools and technical· colleges as well as in universities. The simplicity of

Pascal also makes for good error diagnostics and thus it is not surprising

that the language is becoming widely accepted as an introductory programming

language both in Europe and USA. At the post foundation level, one can expect

students to have already acquired a proficiency in at least one programming

language. With increasing probability, this programming language will be

Pascal. At UEA, we have found that we can successfully convert such students

to be reasonably proficient programmers in elementary Algol 68 in just six ,
contact hours. This can only be achieved if the teachers concerned do not

fall into the pitfall of teaching advanced facilities. For example, a teacher

might expect to cover the material in the first five chapters of McGettrick's

146

excellent book [26] although much of chapter four is probably best. delayed

until the course moves on to a discussion of arrays and record structures.

Alternative introductory texts are [5,6]. A similar strategy could be expec­

ted to work introducing students to PL/I using any of a much greater selec­

tion of introductory texts [7,11,21, to name but a few] but more time would

probably be required partly because of the difficulty of learning all the

default mechanisms of the language. If a student's first programming

language does not support structured programming then conversion to Algol

68 or PL/I can be expected to be more traumatic and to take longer. Even

introducing Pascal may then be a difficult task, although at UEA we have

found that students of moderate ability who have only used FORTRAN and

COBOL still find Pascal an easy language. A student with the undoubted

benefit of the knowledge of Algol 68 or PL/I can be expected to acquire

Pascal from one of the introductory texts [e.g. 12,35] with little more

than bedtime reading.

One of the key concepts to be included either explicitly or implicitly

in a data structures course is that of extensibility. As Brian Meek defines

it [27], a truly extensible language would allow the programmer means within

the syntax to define his own keywords, his own meanings for them and his

own language constructs. At a lower level, extensibility implies that the

core facilities of the language are general enough to provide means of

designing special facilities for use in particular applications. Algol 68

meets this need by providing the programmer facilities for defining his own

modes and operators. In a data structures course such facilities are in­

valuable (see, for example, sections 2.3 and 2.6 of this paper). PL/I does

not offer such facilities but rather tries to provide everything the pro­

grammer might need. Not only is this approach bound to fail but it also makes

the language too large and overly difficult to master.

2. DATA STRUCTURES

In this section, the facilities to construct and manipulate some examples

of data structures in the three languages, PL/I, Algol 68 and Pascal, are

discussed and compared. Particular emphasis is placed on fundamental differ­

ences which will affect teaching.
I

147

2.1. Atoms

A complex data structure can be viewed as being composed of simpler

data structures which in their turn may be further composed of even simpler

structures. Eventually, however, without going into machine representation,

the constituent parts can be broken down no further and these parts are

called atoms. Atoms correspond to Algol 68 objects of primitive mode bool,

int, real and char. Any programming language offers basic facilities for

creating, storing and manipulating atomic information but even at this level,

the three languages under consideration differ.

The main difference between PL/I and Algol 68 is the inclusion in PL/I

of attributes for arithmetic data items other than modes. For example, an

object of mode REAL has to also have its base, scale and precision either

specified or assumed by default. Boolean values and character values also

differ in that in PL/I a Boolean is not a primitive object being regarded

rather as a BIT string of length 1 and similarly a simple character is

regarded as a CHARACTER string of length 1.

Pascal, like Algol 68, is a typed language and makes clear distinctions

between constants with read-only access and variables with both read and

write access. The atoms of Pascal include objects of type Boolean, integer,

real and char but also there is a facility whereby the programmer can define

his own unstructured type called a declared scalar type. For example,

type days

var d :

(mon,tues,wed,thurs,fri,sat,sun);

days

declares a variable d which can refer to any of the values mon through to

sun. Boolean is also regarded as a scalar type by defining

type boolean= (false,true)

Scalar types in Pascal can be defined as above by enumerating all the

possible values or a type can be defined as a subrange of any other already

defined scalar type, e.g.

~ workday = mon . . fri

defines workday as a subrange of days. Subranges of integers and characters

can also be used but not of reals. As pointed out in [4], scalar types can be

handled in any programming language by suitable encoding. Moreover, given

suitable ascription, the coding can look quite similar to that of Pascal. To

illustrate this claim, the days example might be written in Algol 68 as

148

mode days= int;

days mon = 1, tues

sat= 6,sun = 7;

days d

2,wed =3,thurs 4,fri 5,

This is clearly still not as good as the Pascal version since Pascal offers

both better protection for the programmer and the potential for better stor­

age utilization as well as the closing of the gap between data structures and

the real world objects which they represent. Proposals for extending Algol 68

to include facilities for manipulating scalar types on lines similar to that

proposed by Hoare [16] have been made in [4].

2.2. Arrays

The facilities for creating and manipulating arrays in Algol 68 and

PL/I are remarkably similar. Both languages allow arrays of arbitrary dimen­

sion and elements which may be non-atomic. Moreover, the bounds of the array,

each determined by an expression whose value is available at allocation time,

may take negative as well as positive integer values. Elements of arrays are

selected using subscripts in the usual way although in Algol 68 they are en­

closed in square brackets while in PL/I round brackets are used so that the

syntactic form of an array reference in PL/I is identical with that of a func­

tion call. Both languages permit a subarray of a multidimensional array to be

obtained by fixing some subscripts. For example, if A is a two-dimensional

array then .in PL/I, the cross section A(3,*) would denote the third row while

in Algol 68 this would be denoted by the slice A[3,]. In PL/I, however, the

cross section cannot itself be subscripted but in Algol 68 the slice can.

Algol 68 also offers the trimming facility for extracting a subarray; no such

facility exists in PL/I. PL/I and Algol 68 both allow assignment of arrays

which may include cross sections/slices providing the arrays on the left and

right side of the assignment have the same shape and size. PL/I will also

accept array names as components in a general expression on the right-hand

side of an array assignment. For example, if A,B are two real vectors of the

same shape and size, then the PL/I assignment A= 2*B will result in each ai

being assigned the value of 2*bi. Although Algol 68 does not automatically

provide such overloading facilities, an operator can be defined in Algol 68

as having differing effects dependent on the mode of its operands. Thus, .in

this example, the operator* could be defined in Algol 68 as follows [see 25].

(real r, []real u) [] real:

¢ the product of a scalar and a vector¢

(int m = lwb u, n = upb u;

loc [m:n] real ru;

for i from m ton do ru [i]:= r * u [i] od;

ru)

149

When teaching about arrays, it is necessary to talk about headers and

to illustrate how headers are created and altered as a result of particular

pieces of code. In the course given at UEA [20], diagrams are used not un­

like the abstract model of arrays described in [2].

In Pascal, facilities for handling arrays are rather basic. The major

criticism is that the bounds of the array must be known at compile time

which is certainly a retrograde step being reminiscent of FORTRAN and

included for ease of compilation rather than for programmer convenience.

Like PL/I, the array must have a fixed number of components there being no

equivalent of the Algol 68 flex facility. More seriously, there are no

facilities for slicing or trimming arrays although as with Algol 68 and PL/I,

arrays can be used in assignment statements. The one advantage Pascal has

over Algol 68 and PL/I is that the index does not have to be integer-valued.

An array can be indexed by any scalar type. Thus, the following is a valid

Pascal declaration and assignment.

sick: array [days] of boolean;

sick[mon]:= true

Pascal also offers limited facilities for handling packed arrays which

means the compiler will economize storage requirements at the expense of

additional execution time. These are more general than those provided in

Algol 68 through the bits and bytes modes.

2.3. Sets

The dominant concept in mathematics is that of a set yet in programming

languages facilities for directly representing sets are rarely offered.

Many algorithms, especially in combinatorial applications, are expressed

in terms of sets so to some programmers this is a real handicap. The usual

techniqme to overcome this lack of means of direct representation is the

use of vectors of bits to represent sets.

Pascal is one of the few languages which does offer facilities for

150

directly representing sets. Sets can be defined by either enumerating the

set elements or by constructing new sets from other sets using operators+

(union),* (intersection) or - (set difference). Relational operators

applicable to set operands in Pascal enable tests for (in)equality and set

inclusion. The operator in is used to test for set membership. Although

Pascal does not specify a maximum cardinality for the sets it manipulates,

implementors of the language have imposed such a limit. Clearly, it is

required that all basic set operations are relatively fast and the best way

of achieving this is to represent sets by vectors of bits. The vectors are

usually some fixed multiple of the wordlength which dictates an upper bound

on the cardinality of the set. If the set is larger than this then the set

is best represented as an array of sets.

The drawback in representing sets as vectors of bits is that the

universe must be fixed so that the position of a bit representing a given

element in the vector can be determined. Alternative techniques which may be

more suitable according to the particular application are representing sets

as linearly linked structures or by using hash tables. It is relatively easy

(and a good student exercise) to design and implement an Algol 68 library

prelude for set manipulation. The library prelude can be based on any re­

presentation of sets and could even use more than one. Once the library pre­

lude has been established, the Algol 68 programmer has all the necessary

facilities for manipulating sets and need not himself trouble about the

method of representation. No such protection can be offered for the poor

PL/I programmer.

2.4. Record structures

Facilities for creating and manipulating record structures are fairly

similar in all three of the languages under discussion. In this section,

attention is focused on structures which do not include pointers, discussion

of that topic being delayed until section 2.7.

Both Algol 68 and Pascal essentially view a record structure as a one­

level concept but allow substructures to any depth. PL/I, on the one hand,

defines a record structure in a way similar to COBOL's data division by

numbering the individual levels, e.g. by prefixing 1 to the structure

151

name, 2 to variables at the next level, etc. Thus, the record structure

described by the tree in Figure 1 may be defined in Algol 68 by the declara­

tion:

struct (struct ([1:2]char title,initials,

[1:10]char family) name,

[1:3]char department) employee

and in Pascal by a similar type declaration. In PL/I, the same structure

would be defined using the DECLARE statement:

DECLARE 1 EMPLOYEE,

2 NAME,

3 TITLE CHAR(2),

3 INITIALS CHAR(2),

3 FAMILY CHAR(10),

2 DEPARTMENT CHAR(3);

PL/I and Pascal select the fields using a top-down method while Algol

68 (like COBOL) uses a bottom up

EMPLOYEE

~
TITLE INITIALS FAMILY

Figure 1

Thus, in PL/I, the title of the employee is retrieved using

EMPLOYEE.NAME.TITLE while in Algol 68, title of name of employee is used.

In PL/I, if no ambiguities arise, a substructure can be referenced using

just the substructure's name and not using the qualified form. Hence, in

our example, simply TITLE may be sufficient. Unfortunately, Algol 68

insists on the fully qualified form and this can result in untidy and

unnecesparily lengthy code. Pascal overcomes the problem using a with

statement. Within the component statement of a with, one can denote a

field of the record variable appearing after·the with using only

its field identifier. In all these languages, one can assign to and

152

compute with the fields of a structure and also manipulate structures in

their entirety. Also, unlike COBOL, all three languages allow arrays of

structures.

In some circumstances, records may vary in structure even though they

are said to be of the same type. For example, a record describing an employee

may include a field CAR if and only if the employee has a certain DEPARTMENT.

In Pascal, such a record type would be specified as consisting of several

variants. This means that different variables, although said to be of the

same type, may assume structures which differ in either the number and/or

types of components. In Algol 68, this can be achieved using union but no

such facility exists in PL/I.

2.5. Files

The student on a data structures course will need to have experience of

both sequential and direct access files and to have a general understanding

of peripheral devices and the means by which programs can obtain access to

such devices. Most students reading for a computer science degree will also

be undertaking a course on data processing where this particular topic will

be treated in far more detail. Nevertheless, it is dangerous to omit files

as they are an important type of data structure and cannot be omitted from

a course purporting to study that topic.

In Algol 68, the central concept is that of a book which consists of a

sequence of characters organised into lines which in turn are organised into

pages. Any book has a logical end and an identification label to distinguish

it f:i::om other books. A book may be referred to within a program by a field

of a structured value with special mode file. The field selectors for file,

however, are not available to the programmer who is therefore given a set

of predefined procedures for their manipulation. The program accesses a book

by means of a channel which may limit the number of pages, lines and

characters of the book. Initially every particular program is provided with

one book to be read via stand in channel, one to be written to via stand

out channel and one to be used as a standard backup via stand back channel.

These are opened in the standard prelude but the programmer can open further

files and other channels as he wishes. Books can be accessed either

sequenti~lly or using random access. Moreover, the file may be compressible,

which means pages may have a variable number of lines and lines a variable

number of characters. Transput may be either as characters or in binary form

153

and can be formatted or not. Algol 68 thus has a number of basic facilities

for manipulating external files which together with a suitable library pre­

lude can make it an attractive language rven for commercial data processing.

If peripheral devices are not to be used, then internal books are used.

These are of mode ref[] char, ref[][] char or ref[][][] char. For example,

[5] [50] [120] char bk; declares a book, bk, of five pages each of fifty

lines of one hundred and twenty characters. Internal books are only used for

character transput and are not compressible.

The Algol 68 programmer is always clear whether a book to which he is

referring is or is not stored on an external device. The unfortunate Pascal

programmer does not know how the files are associated with secondary stor­

age and peripherals, the details of which are completely implementation

dependent. A file in Pascal simply specifies a structure consisting of a

sequence of components all of which are of the same type. Thus,

type f = file of integer

specifies a file of integers. Associated with the file variable, f, is a

buffer variable ft of the component type, in this case integer. ft can be

considered a "window" through which one can inspect existing components or

append new components via the basic file handling operators of reset,

rewrite, get, put, read and write. There are two standard files, input and

output. If read and write are used without indication of a file parameter

then, by default, files input and output are, respectively, assumed. These

files and also any others existing outside the program must be passed as

parameters in the program heading. The only facilities offered in pure

Pascal for manipulating segmented files are those for textfiles, i.e. files

whose components are characters. Such files are divided into lines using

special textfile operators. In Pascal 6000-3.4 [23] facilities exist for

manipulating more general segmented files.

Like Algol 68, PL/I has extensive facilities for reading and writing

data. The Data files of PL/I are one of three types - input, which supplies

data to the program, output, which stores the result of the program or

update which, to a certain extent, does both. There are also two distinct

contexts in which the data files are used: STREAM I/0 where data are con­

sidered to form a continuous sequence (or stream) of individual values and

RECORD I/0 where the data are considered to be a collection of records.

Under STREAM I/0, it is the individual value rather than the individual

record which is the fundamental unit of input or output. STREAM I/0

154

is essentially sequential but RECORD I/O also allows indexed files and

varieties of direct access files including those with hardware keys.

In PL/I, there are three types of STREAM I/O called LIST-directed,

EDIT-directed and DATA-directed. The LIST-directed techniques are used for

sequences of data values in free format, separated from each other by

blanks. They correspond to Algol 68 formatless transput. Algol 68 formatted

transput is provided by EDIT-directed I/O where the data is a sequence of

records identically formatted. DATA-directed format has no direct Algol 68

counterpart and is available merely to save the necessity of unnecessary

formatting. In this case, the data consists of a stream of items of the

form <name>= <value>.

In RECORD I/O, there are two different modes of accessing files:

SEQUENTIAL input and output, and DIRECT input, output and update. The PL/I

file declaration of the form

DECLARE filename FILE RECORD f SEQUENTIAL l
l. J DIRECT { ::.::T}

UPDATE

is used to define a file's attributes. Constructs are provided for processing

INPUT and OUTPUT RECORD files SEQUENTIALly and for processing RECORD files

DIRECTly whether for INPUT, OUTPUT or UPDATE providing that each record in

such a file has an associated uniquely identifying key field.

2.6. Strings

Pascal, PL/I and Algol 68 all have facilities for manipulating vectors

of fixed length as described in section 2.3. The essential difference between

a string and such a vector is that its length is variable; this concept of

a string most often arises in the context of character handling and thus

this section will concentrate on character strings. In Pascal, there are no

facilities for handling such strings - to the Pascal programmer a string is

just a packed, fixed length array of characters. PL/I and Algol 68, however,

do recognise the distinction between strings and vectors although there is

a fundame,ntal difference in their approaches. The PL/I declaration

DECLARES CHAR(l0) VARYING;

155

defines Sas a variable length string, with a maximum of ten characters.

The current length of Sis given by LENGTH(S) and can never exceed 10.

Any attempt to assign a longer string to Swill result in the assigned

string being truncated to be of ten characters. In Algol 68, the declaration

flex [1:10] chars

initially allocates sufficient space to store up to 10 characters but during

execution this length will be automatically extended or contracted such

that any string assigned to scan be accommodated. The declaration

strings

is equivalent in Algol 68 to

flex [1 : 0] char s

In [19], Housden lists the fundamental string operations and constructs

an abstract model for string manipulation. PL/I and Algol 68 both match up

to this ideal only in part. Both provide facilities for creation of strings

as outlined above, both have facilities for interrogating the length of a

string (LENGTH in PL/I, upb in Algol 68), and both provide a concatenation

operation <J J in PL/I,+ in Algol 68). It is in the manipulation of sub­

strings that most of the difficulties arise.

The PL/I substring selector function SUBSTR has the general form

SUBSTR(S,I,J) and when applied to a string S with integers I,J such that

1 ~I~ J ~ LENGTH(S) provides access to the Ith through to the Jth charac­

ters of s. No copies of the string are made; SUBSTR essentially provides

addressability and thus the length of SUBSTR(S,I,J) is fixed at J - I+ 1.

If a string of length greater than this is assigned to SUBSTR(S,I,J) it is

truncated and similarly a string shorter than this is padded with blanks.

Thus a substring of a string is itself not a string (not being variable

in length)! This is also true in Algol 68 if a substring is accessed using

a trimmed array. However, in [19], Housden describes an Algol 68 library

prelude which provides a facility for defining and manipulating substrings

which are truly variable in length.

For searching for a given string within a subject string, PL/I provides

the function INDEX. INDEX returns the index to the start of the leftmost

substring of its first argument that matches its second argument. If no

such match exists, 0 is returned. In Algol 68, the procedure char in string

156

of mode proc (char, ref int, string) bool is provided. When applied to

argument (c,i,s) the procedure delivers true if c is contained ins, in

which case the index of its first occurrence ins is assigned to i and

otherwise delivers false. An Algol 68 procedure equivalent to the PL/I

INDEX is not provided but is easy to write, see [19].

In the last decade, the specialist language for describing string

manipulation algorithms has been SNOBOL [15] and a course on data structures

will probably include an appreciation of that language and in particular of

patterns and pattern matching. If the core language for the data structures

course is Algol 68, then the teacher is particularly fortunate. He need

not go into unnecessary details of SNOBOL syntax - all the string process­

ing and pattern matching facilities of SNOBOL are available in a library

prelude written by HOUSDEN and KOTARSKI [18]. Experience with Algol 68

patterns has been reported in [34] where it is used to write a logic teach­

ing package. More recently, ICON [14] has been receiving considerable

interest as a potential successor of SNOBOL4. By employing generators which

are capable of producing alternative values, together with a goal-driven

method of expression evaluation, ICON provides the string processing

facilities of SNOBOL4 without the complexities associated with patterns.

It would be an interesting and worthwhile exercise to produce an Algol 68

library prelude for ICON-like string processing.

2.7. Lists

To represent any linked structure the programmer must use pointers.

This can be achieved implicitly by the use of array indices but this

technique offers very little protection to the programmer and debugging

can be a horrendous t~sk. The three languages under consideration all

recognise this fact and provide facilities which enable the programmer to

manipulate storage addresses.

Any Algol 68 programmer has to master the use of references early in

his programming life - in fact, as soon as he wishes to use a variable

rather than a constant. Orthogonality of the language implies that any

valid Algol 68 mode, amode, can be prefixed by ref to produce another valid

mode, ref amode, and each of these modes are distinct. Thus ref real is

different from ref int and different again from ref ref real. Any variable

whose mode begins with two successive refs represents a pointer. For example,

157

declares an object c of mode ref char and a pointer p of mode ref ::ef char

which points to the space referred to by c. Any pointer variable can be

assigned nil which means that it points to no space. In Algol 68, :=: (or is)

and :f:(or isnt) provide the facility for testing whether two objects both

of the same mode, ref amode, are or are not identical. Linked structures are

defined in Algol 68 using record structures containing reference modes

and are manipulated using pointer variables. The following code illustrates

the use of Algol 68 references to construct and manipulate a simple linear

linked list of characters.

mode item struct (char val, ref item next);

mode list= ref item;

list empty= nil;

list l := empty;

proc push

f inserts cat the head of the list f
l := heap item := (c,l);

proc pop= char:

f delivers the head of land resets l to its tail f
if l is empty then print (("failpop" ,newline)) ;skip

else char c

fi

val of l; l := next of l; c

This example illustrates the use of the Algol 68 heap generator, heap item.

When this was encountered, storage for an object of mode item was reserved

not on the main stack as was used for l but in a different region of store

called the heap. Space created by heap generators remains available as

long as required and the programmer does not have to explicitly release

space no longer required. This implies that any Algol 68 implementation

must use some form of garbage collection to retrieve redundant space on

the heap.

The use of pointers may come naturally to the Algol 68 programmer but

for the PL/I programmer it entails the study of additional features not

necessarily regarded as part of the core of the language. Indeed, the

whole facility enabling the manipulation of BASED variables and POINTERS

was only added to PL/I late in its development. Every PL/I variable has a

storage class attribute (see Table 2) which, unless explicitly declared,

is assigned AUTOMATIC by default. In PL/I, POINTER is a single data type

and can be regarded as being equivalent to the Algol 68 mode which is the

158

union of all references. Thus, POINTERs do not offer so much protection to

the programmer as Algol 68 references but can avoid the complexities of

using the Algol 68 union in general list processing.

The simplest use of POINTER is illustrated by the code

DECLARE P POINTER, C CHARACTER(l);

P = ADDR(C);

which assigns to P the address of c. This is equivalent to the Algol 68

code char c; ref char p := c. Corresponding to the Algol 68 nil, there is

a special value NULL which is not the address of any data in the computer

and can be assigned to any POINTER variable.

Storage Class

STATIC

AUTOMATIC

CONTROLLED

BASED

Table 2

Storage Class Attributes in PL/I

Description

Storage is allocated once only and any

initial value is assigned when the program

is loaded for execution.

Storage is allocated and any initial

value is reassigned each time the

procedure or block containing the

declaration begins execution.

Storage is allocated for the variable

upon execution of an ALLOCATE statement.

Several instances of a variable, X, may

exist since a new instance is defined each

time ALLOCATE Xis executed. A reference

to X then refers to the most recently

allocated instance of X and the next most

recently allocated instance is accessible

only after a FREE Xis executed.

As in CONTROLLED case, storage is allocated

by the program but unlike the CONTROLLED

case, all existing copies of a BASED

variable may be referenced at any time

using a POINTER variable.

159

In list processing, it is the use of POINTERs which point to BASED variables

which is most important. Taking the example programmed in Algol 68 above,

the corresponding PL/I declaration would be

DECLARE 1 ITEM BASED,

2 VAL CHARACTER(l),

2 NEXT POINTER;

Each item in the list has to have its memory explicitly allocated by a

statement such as

ALLOCATE ITEM SET(P);

This statement allocates storage suitable for an item and sets the pointer

P to its address. Each time the statement is executed, a new memory area

will be allocated and P will be assigned the address of the new memory

area. Since, in this application the items are to be linked together, after

the first execution of the statement, Pis assigned to an initial pointer, L,

by

L = P;

The pointer field should be set to NULL using

L +NEXT= NULL;

Subsequently, if L points to the current head of the list, the new item can

be pushed onto the list using

P +NEXT= L;

L = P;

The explicit allocation and release of storage for BASED variables in PL/I,

although awkward for. the programmer, _does obviate the necessity of a garbage

collector.

Pascal, like Algol 68, distinguishes between its pointer values accord­

ing to the ~ (mode) of object to which they refer. A pointer type, in

Pascal, pointing to elements of type t, is said to be bound tot. The value

nil is an element of every pointer type and points to no element at all.

The Pascal declaration

var p: t char -,-
declares pas a pointer variable bound to char. This means that pis a ref­

erence to a variable of type char and pt is used to denote that variable.

160

The deferencing coercion of Algol 68 is made quite explicit by the use of

the upward arrow (and what a pity it is not a downward facing arrow which

would make it so much easier to explain).

A variable pointed to by a pointer type is created using the standard

procedure new. The call new(p) allocates a variable of the correct type and

assigns its address top. The Pascal operator<>, corresponding to the

Algol 68:t:, enables the programmer to test for inequality of pointer types.

The Pascal code for our example is:

type link

item

var l: link;

titem;

record

val: char;

next: link

procedure push (var c: char);

~ p: link;

begin new(p);

pt.val:= c; pt.next:= f;

f:=p

end; {push}

function pop: char;

begin if f <> nil then

begin pop:= ft.val;

f:= ft.next

end

end {pop}

The space allocated to dynamic variables in Pascal accessed through a

pointer remains available as long as it can be accessed and is not explicit­

ly released by the programmer. Although implementations vary, Pascal promises

no garbage collection and thus, when list processing, the Pascal programmer

may well be advised to maintain an explicit list of free items and avoid the

use of new altogether. Pascal does have one advantage over Algol 68 - the

facilities provided for creating the correct amount of space for a variant

structure and delivering a pointer to the space means that there is no need
I

for an equivalent to the cumbersome Algol 68 union in general list processing.

Euclid [24] is an interesting language based on Pascal and primarily

161

designed to allow program verification. For this reason the use of pointers

is severely constrained in Euclid; all pointers must refer to dynamic

variables which are allocated as part of a collection. A collection is a

group of variables of the same type and just as an index value uniquely

determines an element of an array so a pointer into a collection uniquely

determines a variable of that collection.

3. CONCLUSIONS

In Section 2, the traditional core items in a data structures course

have been considered and the facilities for their manipulation in the

languages PL/I, Algol 68 and Pascal have been reviewed. No language is per­

fect for the teaching of all these topics but, overall, Algol 68 does appear

to be the best (see Table 3). Its real strength is extensibility; where

Algol 68 lacks explicit facilities, they can easily be incorporated as a

library prelude, e.g. [4,13,18]. This paper has not been written to suggest

that only Algol 68 should be taught in the course; it is essential to review

many languages in a data structures course, comparing and contrasting each

of their facilities. Certainly most of the languages mentioned in this paper

need to be mentioned but it is not necessary for the student to program in

many of them. In fact, if the student can program well in Algol 68, that is

Table 3.

A com2arison of the languages

FACILITY PL/I Algol 68 Pascal

Availability of compilers 0 0 +

Ease of learning 0 +

Literature + 0 0

manipulation of:

atomic information 0 0 +

arrays + +

sets 0 +

record structures 0 + +

files + 0

'character strings 0 0

linked structures + 0

+ = good; 0 = fair; - poor.

162

probably sufficient. The orthogonality of the language means that the modes

of operators and functions associate them directly with the data structures

on which they act. This results in the students readily appreciating the

important concept of abstract data types as illustrated by the class con­

struct in Simula [3,9].

As claimed in [33], the ADA language has been designed with three

overriding concerns: (i) a recognition of the importance of program

reliability and maintenance, (ii) a concern for programming as a human

activity and (iii) efficiency. The difficulties of achieving all these

goals simultaneously are immense and the design of ADA has been influenced

by a large number of programming languages but most obviously by Pascal

and its various derivatives (e.g. Euclid). It has preserved the clarity of

Pascal but nevertheless has most of the facilities described in this paper

for the manipulation of data structures. In particular, the package module

provides a useful construct for abstract data types with the facility of

information hiding whereby the user may be prevented access to some of the

internal entities. Looking into the future, one sees an increasing use of

parallel processing for which both Algol 68 and PL/I offer limited facilities

although these are seldom implemented. ADA tasking offers facilities similar

to Hoare's communicating sequential processes [17]. In summary, ADA appears

to be a possible successor to Algol 68 as a core language but, at this

stage of ADA's development, there are still many questions to be answered.

Until we have working compilers and some experience of the language, the

practicality of ADA in a teaching environment is difficult to assess. The

next three years should answer these questions and if ADA proves as versa­

tile a language as its designers hope, it will be adopted widely in both

academic and commercial circles. Algol 68 has never achieved that claim -

although accepted by academics as a useful teaching and research tool, the

non-academic world remains hostile to a language which it sees as an in­

efficient monster serviced by a cult of devotees headed by mysterious high

priests who understand two-level grammars. Although exaggerated, much of

this criticism is fair, the language (like PL/I) does require a large com­

piler, does attract devotees and the report is quasi-incomprehensible. Per­

haps it should be accepted that the full language is mainly for academics

where its usefulness in teaching at the post foundation level and in

research can be fully explored. This paper has been a contribution to the

campaign for the use of Algol 68 in such an environment. At the foundation

163

level, Algol 68 cannot be recommended. The extensibility of the language

means that a novice programmer will undoubtedly fall into the pitfall

of using constructs which he cannot be expected to understand nor appreciate.

One solution to this problem is the adoption of an Algol 68 subset with a

suitably efficient compiler. Designing such a subset whilst preserving

orthogonality is not an easy task although some notable attempts have

been made [e.g. 30].

REFERENCES

[1] ANSI X3-53, Programming language PL/I, (1976).

[2] BARRON, D.W., An introduction to the study of programming languages,

(Cambridge Univ. Press, 1977).

[3] BIRTWISTLE, G.M., 0.-J. DAHL, B. MYHRHAUG & K. NYGAARD, SIMULA BEGIN,

(Auerbach Publishers Inc., Philadelphia, 1973).

[4] BLACK, A. & V.J. RAYWARD-SMITH, Algol H - A superlanguage of Algol 68,

Algol Bulletin, 42, (May, 1978).

[SJ BRAILSFORD, D.F. & A.N. WALKER, Introductory Algol 68 programming,

(Ellis Horwood, Chichester, 1979).

[6] COLIN, A.J.T., Programming and problem-solving in Algol 68, (Macmillan,

London, 1978).

[7] CONWAY, R. & D. GRIES, An introduction to programming: A structural

approach using PL/I and PL/C, (Winthrop, Englewood Cliffs,

N.J.< 1973).

[8] CURRICULUM COMMITTEE ON COMPUTER SERVICE, Curriculum '78 - Recommenda­

tions for the undergraduate program in computer science, CACM

22: 3 (March 1979), 147-166.

[9] DAHL, 0.-J. & C.A.R. HOARE, Hierarchical program structures, in

Structured programming, by 0.-J. Dahl, E.W. Dijkstra &

C.A.R. Hoare, (Academic Press, London, 1972).

[10] DIJKSTRA, E.W., Notes on structured programming, in Structured pro­

gramming, by 0.-J. Dahl, E.W. Dijkstra & C.A.R. Hoare, (Academic

Press, London, 1972).

164

[11] FIKE, C.T., PL/I for scientific programmers, (Prentice-Hall,

Englewood Cliffs, N.J., 1970).

[12] FINDLAY, W. & D.A. WATT, Pascal: an introduction to methodical pro­

gramming, (Pitman, 1978).

[13] GARSIDE, G.R. & P.E. PINTELAS, An Algol 68 package for implementing

graph algorithms, Computer Journal, 23: 3 (August, 1980)

237-242.

[14] GRISWOLD, R.E., D.R. HANSON & J.T. KORB, The Icon programming language:

an overview, SIGPLAN Notices,_!!: 4 (April, 1979) 18-31.

[15] GRISWOLD, R.E., J.F. POAGE & I.P. POLONSKY, The SNOBOL4 programming

language, 2nd edition, (Prentice-Hall, Englewood Cliffs,

N.J., 1971).

[16] HOARE, C.A.R., Notes on data structuring, in Structured programming,

by o.-J. Dahl, E.W. Dijkstra & C.A.R. Hoare, (Academic Press,

London, 1972).

[17] HOARE, C.A.R., Communicating sequential processes, CACM 21: 8 (August,

1978) 666-677.

[18] HOUSDEN, R.J.W. & N. KOTARSKI, Character string pattern matching in

Algol 68, SIGPLAN Notices g: 6 (June, 1977) 144-152.

[19] HOUSDEN, R.J.W., On string concepts and their implementation, Computer

Journal 18: 2 (1975), 150-156.

[20] HOUSDEN, R.J.W. & V.J. RAYWARD-SMITH, An information structures course

based on Algol 68-R, paper presented at the Conference on Ex­

perience with Algol 68, Liverpool University, 1975 (copies

available from the authors).

[21] HUGHES, J., PL/I programming, (Wiley, Chichester, 1973).

[22] ICHBIAH, J.D. et al., Rationale for the design of the ADA programming

language, SIGPLAN Notices 14: 6B (June, 1979).

[23] JENSEN, K. & N. WIRTH, Pascal: user manual and report, second edition,

(Springer-Verlag, New York, 1975).

165

[24] LAMPSON, B.W., J.J. HORNING, R.L. LONDON, J.G. MITCHELL & G.J. POPEK,

Report on the programming language Euclid, SIGPLAN Notices 12:

2 (February, 1977) 1-79.

[25] LINDSEY, C.H. & S.G. VANDERMEULEN, Informal introduction to Algol 68

(North-Holland, London, 1977).

[26] McGE'l'l'RICK, A.D., Algol 68: A first and second course, (Cambridge

Univ. Press, 1978).

[27] MEEK, B., Fortran, PL/I and the Algols, (Macmillan, London, 1978).

[28] NICHOLLS, J.E., The structure and design of programming languages,

(Addison-Wesley, Mass., 1975).

[29] PAGAN, F.G., A practical guide to Algol 68, (Wiley, Chichester, 1976).

[30] PAGAN, F.G., Nested sublanguages of Algol 68 for teaching purposes,

SIGPLAN Notices _!2: 7 and 8 (July-August, 1980) 72-81.

[31] PETERSON, W.W., Introduction to programming languages, (Prentice-Hall,

Englewood Cliffs, N.J., 1974).

[32] PRA'l'l', T.W., Programming languages: design and implementation,

(Prentice-Hall, Englewood Cliffs, N.J., 1975).

[33] Preliminary ADA Reference Manual, SIGPLAN Notices_!!: 6A (June, 1979).

[34] RAYWARD~SMITH, V.J., The use of Algol 68 pattern matching to describe

a formal logic system, Algol Bulletin 44 (May, 1979).

[35] SCHNEIDER, G.M., s.w. WEINGART & D.M. PERLMAN, An introduction to pro­

gramming and problem solving with Pascal, (Wiley, Chichester,

1978).

[36] TUCKER, A.B., Programming languages, (McGraw-Hill, New York, 1977).

[37] VALENTINE, S.H., Comparative notes on Algol 68 and PL/I, Computer

Journal !Z_: 4 (1974), 325-331.

[38] VAN WIJNGAARDEN, A., et.al., Revised report on the algorithmic

language Algol 68, (Springer-Verlag, New York, 1976).

[39] WEISSMAN, C., LISP 1.5 primer, (Dickenson Publishing Co., Belmont,

California, 1967).

167

CONTEXT-FREE GRAMMARS AND DERIVATION TREES IN ALGOL 68*)

V.LINNEMANN

ABSTRACT

It is shown how context-free grammars and corresponding derivation

trees can be used by application programmers if adequate language tools are

provided. These language tools are applicable to symbol manipulation prob­

lems, especially formula manipulation, and to prog:,:-am generators. The lan­

guage tools are defined on the basis of ALGOL 68, and they have the remarkable

property that syntactically and semantically correct programs operate only

on syntactically correct derivation trees.

*) This work was supported by a scholarship from the German Academic
Exchange Service and was undertaken while the author was with the
Computer Systems Research Group of the University of Toronto.

168

1 . INTRODUCTION

This paper deals with language tools for generating and manipulating of

syntactical structures, esp. programs written in high-level languages. In

order to show what is meant by this two small problems are given in this

introduction which can be solved in only a rather cumbersome way by using

conventional programming methods. In addition, conventional programming

languages do not aid very much in detecting errors as soon as possible, i.e.

at compile-time.

Let us assume we have a very simple programming language which contains

only arithmetic expressions and whose syntax is given as follows (the empty

word is denoted by E):

<expr>

<term>

<factor>

<number>

<id>

<idhead>

<idtail>

<idtailel>

<letter>

<digit>

: := <expr> + <term> I <term>

: := <term> * <factor> I <factor>

: := <number> I <id> I (<expr>)

: := <digit> <number> I <digit>

: := <idhead> <idtail>

: := <letter>

: := <idtailel> <idtail> I E

: := <letter> I <digit>

::= alblcl .•. lz

::= 0lll21314ISl61718l9

The identifiers <id> in this language denote variables which contain input

values. The output of a program in this language is the value of the arith­

metic expression. Now let us assume we want to write a program which reads

an integer value n and produces a program

i.e. we want to write a very simple program generator, for example for n 2

the program should print the program

((a0 * x + al) * x + a2).

Such a program generator could be written in ALGOL 68 (see [2] or [12]) as

follows:

BEGIN

INT n; read(n);

TO n DO print("(") OD;

print("a0");

FOR i TO n

DO

print(("* x + a", i, ")"))

OD

END

169

One area where program generators are required is the area 'Automatic

Programming' where programs are assembled automatically using more or less

descriptive statements of the problem to be solved (see WILLIAMS [13], MANNA

[8] or GOLDBERG [1]). If program generators are written in such a straight­

forward way, the following disadvantages become obvious:

a) The programming task is kind of awkward, esp. counting the brackets

is not very convenient.

b) The syntactical correctness of the generated programs is not guaranteed,

for example if we replace the statement

TO n DO print("(") OD

by the statement

TO n-1 DO print("(") OD

the program remains correct as far as the language specifications for ALGOL 68

are concerned, i.e. the compiler accepts and translates the program, but the

arithmetic expression_s which can be generated show a bracket mismatch.

ALGOL 68 was designed as a general-purpose language. If you want to design a

special-purpose language for program generation, then special features become

appropriate such that the syntactical correctness of all generated programs

can already be checked by the compiler which compiles the program generator.

As far as the example is concerned this means that the language tools do not

allow writing programs which generate expressions with a bracket mismatch.

This paper shall show how such language tools can be defined by using methods

from the, theory of formal languages.

The second example is a simple formula manipulation problem. Suppose

we want to write a program which reads an arithmetic expression which con-

170

tains the variable x. The program is supposed to produce the formal deriva­

tion using the variable x conforming to the rules of usual mathematics. For

example the input

should produce the output

1 * X + 1 * X.

If we try to write a program for this problem using a conventional programm­

ing language we have to do a lot of programming only for reading the expres­

sion, checking it and transforming it into an appropriate internal form, i.e.

we have to write a parser manually. In order to avoid this additional language

tools shall be provided in the sequel.

2. A SYNTAX-ORIENTED APPROACH

The new programming tools shall be explained in terms of the simple

programming language mentioned in the introduction. The language tools shall

be added to the programming language ALGOL 68, the tools can be definea for

other base programming languages which allow a static type checking in a

similar way.

By usiag the grammar for simple arithmetic expressions mentioned in the

introduction, we add some new data types to ALGOL 68. The new types and the

corresponding values are summarized in the following table:

Type

EXPR

Values

L(<expr>) - set of all words of terminal symbols derivable from

<expr>, i.e. set of all correct expressions

TERM L (<term>)

FACTOR L(<factor>)

NUMBER L(<number>)

ID L(<id>)

IDHEAD L(<idhead>)

IDTAIL L(<idtail>)

IDTAILEL' L(<idtailel>)

LETTER L(<letter>)

DIGIT L(<digit>)

171

That means, we define new data types corresponding one-to-one to the nonter­

minal syriliols of the underlying grammar. Values of these types are computed

by a language construction called generating expression, for example generat­

ing expressions for values of type EXPR look like

EXPR GEN a NEG.

a is a string which is derivable starting with the nonterminal <expr> by

means of the underlying grammar, but adequate syntactical positions can be

occupied by values of the new data types, separated by the separators {and}.

For example the following piece of program contains valid generating expres­

sions:

EXPR e; TERM t; CO a variable e of type EXPR and a variable t of

type TERM are declared CO

e:= EXPR GEN x + y NEG; CO e gets the expression x + y CO

t:= TERM GEN v * w NEG; CO t gets the term v * w CO

e:= EXPR GEN {e} +a+ b + {t} NEG CO e gets the expression

x + y +a+ b + v * w co

In order to define formally the syntactical positions where the insertion of

values in generating expressions is allowed, we augment the grammar by the

following rules:

<expr> : := {EXPR}

<term> : := {TERM}

<factor> : := {FACTOR}

<idhead> : := {ID}

<idtailel> : := {IDTAIL} I {ID}

For example the symbol {EXPR} stands for the set of all ALGOL-68 expressions

which deliver a value of type EXPR, enclosed in {and}. By means of the

augmented grammar the set of all correct generating expressions is formally

defined. We shall call such a grammar a generating grammar. In addition to

generating expressions we introduce a monadic operator idt which takes INT­

values and delivers a corresponding IDTAIL-value by computing the decimal

notation. Using these tools, we can solve the first problem mentioned in the
I

introduction, namely generating polynomial expressions, as follows (We use

one obvious abbrevation.: The specification of the type of a generating ex­

pression is omitted where it is uniquely defined by using the context, for

example

172

FACTOR f:= GEN a0 NEG

stands for

FACTOR f:= FACTOR GEN a0 NEG):

BEGIN

INT n; read(n);

FACTOR f:= GEN a0 NEG;

FOR i TO n

DO

f:= GEN ({f} * x + a {idt i}) NEG

OD;

print(f)

END.

It is obvious that only correct expressions can be generated if the new

language tools are used, for example an assignment

f:= GEN ({f} * x + a {idt i} NEG

is syntactically wrong because of one missing bracket, and the compiler can

detect this error. Moreover, parenthesis structures appear always statically

in the program generator and not dynamically as in the solution mentioned in

the introduction. This avoids bracket counting and enhances readability.

Clearly, the concept is not limited to the simple expression grammar, gener­

ating grammars can be defined for "real" programming languages.

Additional operators, like idt in the example, can be defined by special

statements in addition to the generating grammar, for example by

COP idt INT, STRING TO IDTAIL,

which means that the operator idt should convert an INT - or STRING - input­

value to the same format as if the value would be printed (i.e. decimal no­

tation), check whether it is derivable starting with <idtail> and deliver a

corresponding IDTAIL-value. The implementation of these operators can be

derived automatically by using such a definition. Saying it in another way,

you can view a generating grammar and corresponding COP-Declarations as a

new way of defining special data types.

Now let us turn to the second problem mentioned in the introduction. We

generalize the proposed language tools for program generation as follows:

173

1) The corresponding values of the new types are not only strings but deriva­

tion trees corresponding to the underlying grammar; that means strings with

appropriate syntactic information. The generating expressions generate deri­

vation trees instead of simple strings, and if a value of a new data type is

read, an appropriate derivation tree is constructed.

2) In order to work with these trees we need an additional tool for travers­

ing a tree which preserves the property of static types. This tool is called

root inspection and it shall be described by means of examples using the

expression grammar from the introduction:

Assume we declare

EXPR e, el; TERM t1, t2;

Then the expression

ROOT e INTO (el: t1, t2)

is a root inspection, and it works as follows:

The input tree is the tree stored in the variable e. If this tree is a tree

<expr>

/\·~
<expr> + <term>

i.e. if the first alternative for the nonterminal <expr> is used, then the

root inspection delivers the INT-value 1, el gets as value the <expr>-subtree

on the left, t1 gets •the <term>-subtree on the right.

If the tree in the variable e is a tree

<expr>

I
<term>

i.e. if the second alternative for the nonterminal <expr> is used, the root

inspection delivers the value 2 and the <term>-subtree is put into the vari­

able t2. Root inspections for the other data types are defined in a similar

way.

174

For the sake of simplicity we define in addition to root inspections

a dyadic operator top. This operator can be called as follows:

a top b,

where a delivers a variable of type A, b delivers a value of type B, and A

is the data type which corresponds to the nonterminal <A>, Bis the data

type which corresponds to the nonterminal . top works as follows:

a top b delivers the boolean value TRUE if bis a tree which corresponds to

a derivation

* + * + cr.

In this case, the subtree which corresponds to <A>+* cr is assigned to the

variable a (if several trees exist, the smallest one is chosen). If b doesn't

satisfy this condition, the boolean value FALSE is delivered and a remains

unchanged.

It is obvious that root inspections and the top-operator can be used

for traversing derivation trees and that derivation trees are always correct

corresponding to the underlying grammar.

In addition, the ALGOL 68 procedures "read" and "print" can be used for

variables of the new data types. "read" reads a string terminated by the

symbol NEG and tries to produce a corresponding derivation tree. If this is

not possible, a runtime error occurs, otherwise the tree is assigned to the

variable. The procedure "print" prints the leaves of the tree from left to

right.

The problem of computing the formal derivation of an expression mentioned

in the introduction can now be solved as follows:

BEGIN

PROC exprderivation

BEGIN

EXPR e; TERM t;

CASE

(EXPR el) EXPR:

ROOT el INTO (e: t, t)

IN

GEN {exprderivation(e)} + {termderivation(t)} NEG,

GEN {termderivation(t)} NEG

ESAC

END;

PROC termderivation

BEGIN

TERM t; FACTOR f;

CASE

(TERM tl) TERM:

ROOT tl INTO (t:f,f)

IN

GEN ({termderivation(t)} * {f} +

{factorderivation(f)} * {t}

NEG,

GEN {factorderivation(f)} NEG

ESAC'

END;

oP cfactor
BEGIN

(EXPR e) FACTOR:

co cfactor puts brackets around e if e isn't already a factor co
FACTOR f;

IF

f top e

THEN

f

ELSE

GEN ({e}) NEG

FI

END;

PROC factorderivation

BEGIN

EXPR e;

CASE

(FACTOR fl) FACTOR:

ROOT fl INTO (, , e)

IN

GENO NEG,

IF fl "x" THEN GEN 1 NEG ELSE GEN .0 NEG FI,

cfactor (exprderivation(e))

ESAC

END;

175

176

CO Mainprogram CO

EXPR e; read(e);

e:= exprderivation(e);

print(e)

END

This example shows how to combine generating expressions and root in­

spections: The root inspections analyze the tree, and the generating expres­

sions use this information for generating another tree. It is important that

the compiler can do many checks very easily, due to the static types it can

guarantee that the program works only with correct trees corresponding to

the underlying grammar, no runtime checks are required for example to check

how many subtrees a tree has or how the root of the tree is labelled.

The next example gives an idea of how to construct a translator using

the described tools. Let us assume we want to write a translator which trans­

lates a simple arithmetic expression into a corresponding program for a stack

machine. In addition, the translator is supposed to fold constant subexpres­

sions by computing the value at compile time. We augment the generating

grammar from the previous example by the following rules:

<stackexpr> ::= <stackexpr> <stackexpr> <operator>

LOAD <id> I LOAD <number> I {STACKEXPR}

<operator> ::=ADDI MULT

The procedure fold which does the folding of constant subexpressions is de­

fined as follows, the procedure compute which computes the value of a con­

stant subexpression is omitted:

PROC. fold

BEGIN

(STACKEXPR e) STACKEXPR:

STACKEXPR oprl, opr2; OPERATOR op; ID id; NUMBER numberl, number2;

IF

ROOT e INTO (oprl: opr2: op, ,) 1

THEN

IF ROOT oprl INTO (, , numberl) = 3 and

ROOT opr2 INTO (,., number2) ='3

THEN'

numberl:= compute(nur.lberl,, number2, op);

GEN LOAD {number1} NEG

ELSE

FI

ELSE

FI

END

e

e

Now we can write the translator, the procedure expr is the solution:

PROC expr = (EXPR el) STACKEXPR:

BEGIN

TERM t; EXPR e;

CASE ROOT el INTO (e: t, t)

IN

fold(GEN {expr(e)} {term(t)} ADD NEG),

term(t)

ESAC

END;

PROC term = (TERM tl) STACKEXPR:

BEGIN

FACTOR f; TERM t;

CASE ROOT tl INTO (t: f, f)

IN

fold(GEN {term(t)} {factor(f)} MULT NEG),

factor(f)

ESAG

END;

PROC factor (FACTOR fl) STACKEXPR:

BEGIN

EXPR e; ID id; NUMBER nu;

CASE ROOT fl INTO (nu, id, e)

IN

GEN LOAD {nu} NEG,

GEN LOAD {id} NEG,

exprr(e)

ESAC

END

177

178

For the input (2 * 3 + c * d) * e expr delivers the STACI<EXPR-value

LOAD 6 LOAD c LOAD d MULT ADD LOAD e MULT.

3. IMPLEMENTATION ISSUE~

In order to be able to do syntax checks in linear time it is necessary

to restrict the type of the underlying grammars. This restriction depends on

the availability of parser generators. If, for example, an LL1 generator is

available, one would allow only LL1 grammars for the definition of the new

data types. This parser generator, perhaps in a modified form, would be used

to generate a translation procedure for translating generating expressions

and for the "read" procedure.

As far as derivation trees are concerned, it is .obvious that the imple­

mentation of generating expressions in a straightforward manner, i.e. by

copying and substituting complete trees, is a rat.her slow and memory consuming

operation. -This can be avoided by using pointers and by using trees in a re­

cursive manner. This will be clarified by an example:

Assume the compiler has to translate the following program, one of the previ­

ous examples:

BEGIN

END.

INT n; read(n);

FACTOR f := GEN a0 NEG;

FOR i TO n

DO

f := GEN ({f} * x + a {idt i}) NEG

OD;

print(f)

The compiler generates tree structures corresponding one-to-one to the gen­

erating expressions in the program as follows:

1) GEN aO NEG

<factor>
I

/id>~

<idhead> <idtail>

I I ~
<letter> <idtailel> <idtail>

/ dil. a < git>
I
0

£

Thiq tree is called tl.

2) GEN ({f} * x + a {idt i}) NEG

---------- <fac{or> -------------

(. /<ejpr>~)

/r> + <term>'__

/
<term>, <factor>

I ~ . \
<tel> * <facjtor> /d>~

179

<factor> /id>"" <idhiad> <idtail>~

cb <idhead> <idtail> <letter> <idjilel> <idtail>

<le~ter> ! l @ l
I

X

This tree is called t2.

,The circled numbers are indices for runtime arrays where pointers for

the actual subtrees are stored. A variable of one of the new data types con­

tains a pointer pointing to a tree structure and a (possibly empty) pointer

pointing to an array where pointers to subtrees are stored which have been

substituted during run-time. The circled numbers are indices for these

arrays.
I

A trace for the example program would show the following contents for

the variable f:

180

a) Initialization:

pointer to tl l==-------:J
This content is called f 0 •

b) After the first run through the loop: I pointer to t2! >i---------------~

This content is called f 1

c) After the second run through the loop:

pointer to t2J

The implementation of root inspections is straightforward.

generated
by idt

generated
by idt

The implementation techniques are described in more detail in [7].

4. CONCLUDING REMARKS

The basic ideas for incorporating context-free grammars and derivation

trees into high-level languages with a static type concept, esp. ALGOL• 68

have been introduced. Due to space limitations, many issues were not treated

here. For example, in [5] and [7] methods are given for inserting operators

l·ike i dt automatically, and a generating grammar for ALGOL 68 is given in [5]

thus providing the basis for writing program generators for ALGOL-68 programs

and thus showing that the tools are useful not only for artificial programm­

ing languages but also for existing ones. In [7] a method is given for gener­

ating lists, for example statement lists, in a more descriptive manner.

Hopefully this paper has shown that it makes sense to use methods from

the theory of formal languages in order to provide type-safe programming

tools by using static type-checking methods for writing program generators

and programs which manipulate syntactic structures.

ACKNOWLEDGEMENT

I w~uld like to thank Prof. E.C.R. Hehner from the University of

Toronto for critical comments.

181

REFERENCES

[1] GOLDBERG, P.C., Automatic programming, in: Programming Methodology 4th

Informatics Symposium IBM Germany, Wildbad 1974, Lecture Notes in

Computer Science _3l, 1974, 347-361.

[2] LINDSEY, C.H. & S.G. VANDERMEULEN, Informa.1 Introduction to ALGOL 68

North Holland/American Elsevier 1977.

[3] LINNEMANN, v., Syntaxgesteuerte Generierung von ALGOL-68-Programmen

Informatik-Bericht Nr. 7706 Techn. Univ. Braunschweig (West

Germany), Nov. 1977.

[4] LINNEMANN, V., Syntaxgesteuerte Generierung von ALGOL-68-R-Programmen,

in K. Alber (ed.): 5. Fachtagung Programmiersprachen der GI,

Braunschweig, West Germany 1978, Informatik-Fachbericht 12,

145-156. An Abstract of this paper can be found in English in:

Zentralblatt fur Mathematik und ihre Grenzgebiete, vol. 373,

19. Nov. 1978, p. 427, no. 68015,

[5] LINNEMANN, v., Sprachelemente zur Generierung und Umformung syntaktischer

Strukturen auf der Basis von ALGOL-68 und deren theoretische Unter­

suchung, Doctoral Dissertation Techn. Univ. Braunschweig, West

Germany 1979.

[6] LINNEMANN, V., Kontextfreie Grammatiken und Ableitungsba.ume als Hilfs­

mittel bei der Programmierung, Angewandte Informatik 2/1980, 60-66.

[7] LINNEMANN, V., Context-free grammars and derivation trees as programming

tools, Technical Report CSRG-117, Computer Systems Research Group

Univ. of Toronto, Canada, August 1980.

[8] MANNA, Z. & R.A. WALDINGER, A deductive approach to program synthesis,

ACM Transactions on Programming Languages Vol. 2 No. 1 (Jan. 1980)

90-121.

[9] MAURER, H. & w. STUCKY, Ein Vorschlag fur die Verwendung syntaxorien­

tierter Methoden in hoheren Programmiersprachen, Angewandte Infor­

matik 5/1976, 189-195.

182

[10] SALOMAA, A., Formal Languages, Academic Press 1973.

[11] SILVERBERG, B.A., Using a grammatical formalism as a programming lan·­

guage, Technical Report CSRG-88 Computer Systems Research Group

University of Toronto, Canada, January 1978.

[12] WIJNGAARDEN, A. VAN et al., Revised Report on the Algorithmic Language

ALGOL 68, Springer 1976.

[13] WILLIAMS, M.H., A question-answering system for automatic program

synthesis, SIGPLAN-Notices Vol. U, No. 7 (July 1978) 63-68.

ABSTRACT

AN ALGOL 68 PRELUDE FOR THE IMPLEMENTATION

OF TEST GENERATION ALGORITHMS

S.D. BUTLAND

183

This paper describes a set of software tools used in the development

of algorithms to generate diagnostic test patterns for digital networks.

Data structures, operators and procedures have been. defined in ALGOL

68 to facilitate the implementation of test generation algorithms. All in­

ternal data organisation is handled by library procedures, and the algo­

rithms themselves operate on conceptual objects rather than on components

characteristic of individual logic families. A deliberate attempt has been

made to generalise the algorithms and their corresponding data structures,

to permit extension to arbitrary elemental logic functions.

The problem of test generation is seen to be one of reverse simulation.

Whereas most simulation procedures operate on a stimulus/response mode,

test generation procedures define a 'response' - required internal condi­

tions sufficient to propagate a fault or set of faults to the outputs of a

network - and then seek to identify input conditions sufficient to generate

these internal conditions. Extensive use is made of list processing tech­

niques both in the initial search for paths through which faults are to be

propagated, and also to determine the mutual consistency of a given set of

proposed internal conditions.

184

1 . INTRODUCTION

The problem of test generation can be stated fairly simply: Given a

network of inter connected logic elements, and a set of potential faults

associated with each element and with each connection, define a set of in­

put conditions sufficient to test for the presence of each fault. A fault

is covered by a set of tests if for at least one input condition generated,

its presence will necessarily cause the output function realised by the

network to differ from the fault-free network.

In this discussion the following terminology will be used:

element an individual logic node.

gate type a functional unit. The term gate type is used to describe

the general structure and behaviour of a class of elements.

Simple gate types realise the functions AND NOR EQUIVALENCE

etc., but more complex functions can also be realised e.g.

flip-flops.

line

A gate type can also describe the behaviour of a group of

elements.

a connection between elements.

time slice a sequential network is modelled as a cascade of identical­

ly structured combinational networks. Each copy of the net­

work describes its state at a separate interval in time

(time slice), having both external (primary) inputs and in­

ternal inputs (feed-back lines).

See esp. [1] ch. 3.

logic value the basic logic values used will be ¢, 1 and x (don't care) .

However, other values may be defined, e.g. enable and dis­

able logic values are described in terms of a change of

state from~ to 1 and are used in describing the behaviour

of a flip-flop.

linestate a linestate is a structured object (t, l, v) specifying a

time slice t, a line i and a logic value v.

2. THE PROBLEM OF TEST GENERATION

,
The most successful methods used to solve the problem of test genera-

tion have taken the general form:

1. Identify a fault to be detected.

2. Establish internal linestates sufficient to propagate the fault se­

lected to the primary output level.

3. Identify input linestates sufficient to generate the required inter­

nal conditions. [1,2,4-6]

The problem of the derivation of test sequences is not a simple one,

and entails the solution of many sub-problems. For example

185

* the identification of internal conditions sufficient to detect a fault;

* the derivation of all implications of an arbitrary set of internal

conditions;

* the selection of one of potentially many input patterns sufficient to

realise required internal conditions;

* the representation of a sequential network in which a single elemental

fault may occur more than once in a sequence of input patterns;

* the simulation of the behaviour of a network both fault-free and faulty;

* the development of diagnostic procedures.

Additional constraints may also be placed on the test generation pro­

cedures. For example, it may be required to derive

* a near-minimal test set

* tests which explicitly distinguish faults from each other.

* tests which cover multiple faults.

3. CHARACTERISTICS OF SOFTWARE FACILITIES REQUIRED

A software environment is required in which algorithms can be develop­

ed to resolve problems arising in the process of test generation. It would

seem to be highly advantageous for the algorithms to operate on conceptual

objects rather than on specific and limited hardware representations of net­

work functions. To this end a set of data structures and their associated

operators and procedures have been developed in ALGOL 68 with the following

objectives:

* to handle an unlimited set of elemental functions;

* to avoid any specific reference to the way in which a network is re­

presented in store. Algorithms are designed to operate on objects like

gatetypes elements and llnestates, and these are delivered by basic

procedures when requested. Thus the internal representation of a net­

work, accessed directly by the library procedures, can be altered

186

without affecting the algorithms themselves.

* to handle an open-ended set of logic values. 5-[6] and 9-[4,5] value

logic systems have already been defined to represent the behaviour of

a potentially faulty network. Further work is in hand at the Universi­

ty of Bradford on the analysis of indeterminable logic values in a

sequential network [3]. It is anticipated that extensions of multiple­

value logic systems may prove a rich area for further development in

the context of test generation.

The general relationship between the data specifying a network and an algo­

rithm is given in fig. 1.

It should be noted that the original specification of a network can be

given in various formats, and that this data is then structured in a standard

data format comprising 2 separate sections:

The gate definition defines the gate types used in the network.

Information about each gate~ includes a specification of the

characteristics of an element of that type. This includes

i) the structure of an element (how many inputs, how many outputs, whether

an input is triggered by an enable signal etc.)

ii) the physical properties of an element (delay value)

iii) the logical function realised by an element (in the form of a truth

table).

The network definition defines the constituent elements of a network

and their type, the inter-connections, and the primary inputs and primary

outputs etc.

4. FUNCTIONS PERFORMED BY THE TEST GENERATION PRELUDE MAGNUM

The prelude MAGNUM has been designed

* to insulate the programmer designing test generation procedures from

both external and internal representations of a network for which tests

are to be derived;

* to provide a set of basic data types, operators and procedures;

* to permit the possibility of over-riding some of the default operators

and procedures.
I

Each of these features will be discussed in turn.

r-­
co

Original raw data.
Potentially
from a variety
of sources

(/ D/

Q

pre-processor
to set up
data file
in standard
format

gate definition
characteristics of
separate
gatetyp~~

(a~
/ 0 ~[-- ~

network definition
containing:
lists of elements
names of lines
list of primary
outputs
etc.

ALGOL 68
prelude

internal
],ists,
pointers
etc.

fig. 1 relationship between user program manipulating objects like elements and
linestates and their external and internal representation.

User
program

Algorithm written
in ALGOL 68.
Uses objects
which are Parcelled
up and delivered
from store by
the Prelude

188

4.1. Internal and external representation of data

The code executed by the prelude MAGNUM before entry to the user pro­

gram reads in the data constituting the gate definitions and the network

definition, sets up internal representations of that data, and generates

appropriate indexes etc. (c.f. fig.1).

Thus the specification of then elemental functions used in a network

are read in and set up in an array [l:n] gatetype gates, where gatetype is

-·.defined as:

mode gatetype = ~ ([1: 12] char £ giving a 12 character name £,

ref [,] int schema £ referencing an appropriate truth table £,

int cycrange £defining the# of time-slices covered by the gate

type £,

delay£ defining the delay value£,

nops £#of output waveforms£, •....•..);

Other privately defined selectors describe the structure of the data

in the network definition, and the relative time slice for which the logic

values are valid (c.f. figs. 2a,2b).

Publicly available variables describing the general characteristics

of the data constituting the network under analysis include:

int nlines £ # of lines £,

nels C # of elements £,

npops C 'fl of primary outputs £,

npips C # of primary inputs £,

maxcycs c max. # of time slices £,

[l:npops] int pops ca row containing the line numbers of primary outputs£;

[l:npips] int pips ca row containing the line numbers of primary inputs£;

rig. 2a. a 2-input, AND/NAND gate

inputs :~:outputs

Selector Reference

name "AND/NAND"

schema C d a b

1 0 1 1

0 1 0 X

0 1 X 0

cycrange 1

delay 3

nops 2

Privately available information includes a specification that each of the

logic values is considered to operate over the same time-slice, and the

charac·teristics of each line a - d are:

line characteristic

a input

b input

C output

d inverse output

189

190

Fig. 2b. a J-K flip flop

Selector

Schema

where 0
0'
E
D

~

cycrange
delay
nops

refers
refers
refers
refers
refers

to the
to the p
to 'enabl
to 'disab
to logic

s

R

3
10

2

0

0

Reference

"JKFF"

1
~ X X

1 X X

X X X
X X X

C s R
D D
D D
D D
D D
D D

E D D
D D D
D D D

D E D
D D E

Privately available information includes a specification of the relative

time slice appropriate to each signal and the characteristics of each line:

line characteristic time slice

J input 2
K input 2
C trigger input 1/2
s trigger input 1/2
R trigger input 1/2
0 output 3

0 inverse output 3

0' previous output 2

4.2. Basic data types, operators and procedures

4.2.1. Data types

In addition to the mode gatetype specified in 4 .1, other modes· are

defined. Some of the more frequently used modes include:

mode element= struct

191

(int gatetype £ defines which element in "gates" defines

the functional characteristics of the

element (see 4.1) £,

ref[] int inputs£ row of the input lines£,

outputs crow of the output lines c);

mode linestate = struct

int cycle£ defines time slice£,

line c defines line number £,

value c defines logic value c);

4.2.2. Procedures and operators

A selection of procedures available in MAGNUM is described here to

indicate the manner in which the user program can identify and manipulate

objects.

4.2.2.1. Procedures to identify elements

proc backref = (int l) int:

c delivers the element number of which line l is the

output. The value delivered refers as follows:

<0 l is an inverse output. abs backref(l) gives the

element number of which l is the inverse output.

=0 l is a primary input

>0 gives the element of which l is the output£

proc frontrefs = (int l) [] int:

c delivers a row of all element numbers fed by l £

proc findel = (inti) element:

c delivers element i c

192

4.2.2.2. Manipulation of logic values

Multiple value logic systems have been developed independently in the

context of test generation in order to describe

i) the behaviour of a faulty network [4-6].

ii) internal logic conditions which cannot in principle be determined [3].

iii) the behaviour of trigger signals in which a change of state is required

to activate a logic block (c.f. fig. 2b above).

A software environment designed to facilitate the development of further

algorithms must be capable of handling an open ended set of logic values.

The prelude therefore represents separate logic values in an n-valued logic

system by integers in the range 1-n. It assumes a basic 10-valued logic

system, but permits the introduction of other systems (see 4.3 below).

The following basic procedure delivers an appropriate logic value:

proc findval = (int t, l) int: c delivers the logic value of line l
at time t c

Values are set using the procedure

proc setval = (linestate ls, int newval) void:

where ls gives the current known value of a line at a

given time slice, and newval defines the new value to

be assigned.

The following procedures are defined to operate on logical values:

proc compatible= (int vall, va12) bool:

which delivers true if values are consistent with each other and

false otherwise.

proc cover = (int vall, va12) int:

this procedure delivers the value covering vall and val2, where vall

is thought of as containing val2, but not vice-versa.

proc intersect= (int vall, val2) int:

this procedure delivers the common value between vall and val2.

4.2.2.3. Manipulation of functional characteristics

A central procedure FACTOTUM is used which takes as arguments an ele­

ment, a 'schema (truth table), the time slice corresponding to the output,

and a procedure.

193

The current known state vector

A central item of data used in many distinct operations is a row of

linestates, describing the current known state of lines on an element.

See fig. 3.

fig.3 Formation of a current known state vector

----1

[: -~ D-x 4 at time slice 4

.,___l_L-=====--===---===--.-, -~
((4,1,fll), (4,2,x), (4,3,x), (4,4,x))

It should be noted that the number of linestate elements in a current

known state vector corresponds to the number of columns in the truth

table defining the function of the element.

Factotum forms the current known state vector of the element at the ---------
time slice given, and activates the procedure specified with parameters

giving the element number, the time slice, the schema and the current known

state vector. -------
The formal specification of factotum is:

proc factotum= (element e, [,] int schema, int time,

proc (int, int, [,] int, [] linestate) void f) void:

This procedure is used whenever the functional characteristics of an

element are to be examined. For example, to determine whether any further

implications can be derived from the current known state vector associated

with a given element in a given time slice, the truth table associated with

that element is examined. All rows covering the logical values so far estab­

lished are identified.

If there are no such rows, then there exists no pattern of input and

output values which are consistent with the values currently holding, and

an inconsistent set of linestates has been established within the network.

If a set of rows is identified then the values in each of the columns are

intersected in turn. If the intersection of these values is non-null, then
I

the common value can be established.

194

This procedure takes the general form:

proc implication= (int time, elno, [,] int schema, [] linestate ckls) void:

£ the following example demonstrates the general characteristics of the

procedure making no ostensible use of the parameters "time" and "elno".

These are however used to determine whether certain computations have

already been performed to eliminate identical computation. Their use

would, however, only confuse the essential characteristics of the al­

gorithm:

the truth table "Schema" is examined row by row and compared with

the corresponding values established in the current known linestate

vector ckls. All rows in schema covering ckls are identified, and these

are then examined by columns to identify common values.

£
begin

[l:~ schema] int common c to hold indices of rows covering ckls £;

int ctcom:= ~ c counts# of rows found£;

for i to ~ schema do c look at each row in turn £

bool in:= true £ set false if row not covered by schema [i, J £;

for j to ckls while in do £ examine each known value in turn £

in:= consistent(val of ips[j], schema[i, j])

od c 'in' is set false if any value not consistent in row£;

if in then common [ctcom plusab lJ:= i fi

od;

if ctcom /=~then

for j to upb ckls do £ examine columns of each possible row £

int comval:= schema[com[l], j];

for i from 2 to ctcom do

comval:= intersect(schema[com[i], j], comval)

if comval /= logx then setval(ckls[j], comval) fi

od

else

inconsistent value found

fi

This procedure is involved for element eat time slice t by

factotum(e, schema of gates[type of e], t, implication)

4.3. Extensions to further logic values

195

The prelude MAGNUM has been designed with a view to being used in the

development of further test generation algorithms which may require an ex­

tension or complete replacement of the logic values used in the current

system.

Some of the internal procedures themselves manipulate logic values, so

an environment is required in which the default logic handling procedures

can be replaced by new ones. This is ensured by designing the interal pro­

cedures so that they use ref proc s rather than procedures themselves. The

user may therefore design his own procedures to use an original set of logic

values, and may reset the default procedures to those of his own. Examples

of how new logic values may be introduced are given below:

Publicly accessible procedures

proc compatible = (int val 1, val2) bool:

proc cover = (int vall, val2) int:

proc intersect = (int vall, va12) int:

These procedures described in 4.2.2.2 above define the relationship

between pairs of logic values. The procedures used by internal processes

are thus defined:

proc (int, int) bool. compat; compat:= compatible;

proc (int, int) int cov; cov:= cover;

proc (int, int) int inter; inter:= intersect;

These default settings can be over-ridden by statements of the form:

compat:= new procl;

cov:= new proc2;

inter:= new proc3;

Publicly accessible procedure:

proc valch = (int val) []char:

delivers a row of characters by which a value is represented on output.

The characters delivered by default correspond to those given in 4.2.2.2.

The procedure used by internal processes is:

196

proc (int) [] char vrep; vrep:= valch;

If different values are to be represented, these may be handled by

defining a new procedure to deliver a row of characters, and obeying an

assignment of the form:

vrep:= new procedure;

Publicly accessible procedure:

This procedure takes as a parameter an object of mode pointers which

defines the state of various lists before the latest set of assignments

have been made. It works through these lists, determining the consistency

(or otherwise) of the assignments just made with each other and with other

conditions already holding in the network.

"Consistent" is set to an internal procedure which handles logic values

currently in use. New consistency procedures can be defined, and the assign­

ment

consistent:= new consistency procedure

will ensure that a new procedure will be used.

Default

procedure

compatible

cover

intersect

(see 4.2.2.2

above)

proc valch =
(int v) []char:

this delivers a row

of characters by

which a value is

represented on

output. The

characters de­

livered correspond

to 0, *1 9J(D)

etc.

Internally referenced

procedure/s

proc (int, int) bool compat;

proc (int, int) int cov;

proc (int, int) int inter;

197

Comment

The relationship

between any pair

of logic values,

represented by dis­

crete integers, can

be re-defined, and

the default procedure

will be over-ridden

by a statement of

the form:

compat:= new procl;

cov:= new proc2;

inter:= new proc3;

If different values

are to be represent­

ed, these may be

handled by defining

a new procedure to

deliver a row of

characters and an

assignment of the

form vrep:= new

procedure

Other characteristics of ALGOL 68 used in the process of test generation

The above example demonstrates the facility within ALGOL 68 to struc­

ture daqt in a form appropriate to an algorithm, and to provide basic pro­

cedures to manipulate such data. These characteristics are common to many

198

other applications, but other features of the language make it singularly

appropriate as a vehicle for the solution of problems relating to test

generation.

Recursion Many of the sub-problems to be solved in the general con­

text of test-generation are much simplified if recursive facilities are

used.

For example, the procedure to search backwards through the network

for a previously untested fault entails establishing a proposed set of con­

ditions at a node (an element), and then examining other elements feeding

that node. If inconsistent values are postulated at any stage of the search,

or if a path is abandoned, the network must be set to the state it was in

before establishing the rejected path. This process is much simplified if a

recursive procedure is used, where each level of recursion contains its own

information about the state of the network on entry.

List processing

When a path is traced through the network, each further extension may

require the specification of a set of linestates whose length is unknown.

This information is most conveniently represented as a linked list, thus

avoiding the need to set an upper limit on the number of implications which

may be established for any path section.

Bit manipulation

While the internal structure of data held in store is of no public

concern, information can be packed in bit form and accessed by the prelude.

This preserves the generality of the facilities offered, since they are all

at the 'object' level, but also offers the possibility of efficient data

storage where this is a major problem.

Summary

A set of modes and procedures have been developed in ALGOL 68 to permit

the development of test generation algorithms. A deliberate attempt has

been made to provide facilities which are not specifically tied to any hard­

ware representation of elemental functions, and to be capable of handling

an unlimited range of logic values. The functional characteristics of ele­

ments are described externally to the library in the form of a truth table.

This offers complete generality, since both combinational and sequential

elemental types can be handled, but only at the expense of processor time.

199

The real advantage of this approach is seen in its extension to complex

elemental functions, where the behaviour of a group of elements can be

described and manipulated as a single functional unit.

It is anticipated that these procedures can be used to design and de­

velop alternative test generation strategies, with a view to comparing their

effectiveness for different structured networks.

REFERENCES

[l] BREUER, M.A. & A.D. FRIEDMAN, Diagnosis and Reliable Design of Digital

Systems, Pitman 1977.

[2] BUTLAND, S.D., Determining the mutual consistency of internal line­

states within a network, Computers and Electrical Engineering,

Vol. 6 pp. 69-78, 1978.

[3] BUTLAND, S.D., Indeterminable Logic States in the Simulation of Digital

Networks, To be presented at United Kingdom Simulation Council

Conference on Computer Simulation, Harrogate, May 1981.

[4] CHA, C.W., W.E. DONATH & F. OZGUNER, 9-v Algorithm for Test Pattern

Generation of Combinational Digital Circuits, IEEE Transactions

on Computers, Vol. C-27 No. 3 March 1978, pp. 193-200.

[5] MUTH, P., A 9-Valued Circuit Model to Generate Tests for Sequential

Circuits, Presented at Symp. Fault-Tolerant Computing, June 1975,

Paris.

[6] ROTH, J.P., et al., Programmed algorithms to compute tests to detect

and distinguish between failures in logic circuits, IEEE Trans­

actions on Computers, Vol. C-16 pp. 567-579, Oct. 1967.

[7] THOMAS, J.J., Authorised diagnostic test programs for digital networks,

Computer Design pp. 63-67 Aug. 1971.

201

A PROGRAMMING SYSTEM FOR INTERVAL ARITHMETIC IN ALGOL 68

G. GUNTHER & G. MARQUARDT

ABSTRACT

The problem of error bounds in digital computation is solved here by

using interval arithmetic. A short description of the underlying theory is

given. It is shown how easily the interval arithmetic can be implemented in

ALGOL 68 yielding an efficient and easy to use interval programming system

for real values. Two extensions of this package are presented, a complex

interval arithmetic and a system with vector and matrix operations (TORRIX­

INTVAL).

202

1 . INTRODUCTION

One possibility of determining the error in digital computation is the

application of interval analysis. Instead of operating with real numbers,

intervals are used. They are represented by two real numbers, a lower and

an upper bound for the exact value. By this method different kinds of errors

can be taken into account: roundoff errors, errors in conversion of real

numbers, uncertainty in input data, inaccuracies in mathematical formulas.

Some important properties of interval arithmetic will be outlined, more

detailed information can be found in [1] or [2].

The set of real interval numbers is

I (JR) _ { [a, b] I a :;;; b, a E JR, b E JR}.

The basic arithmetic operations between intervals are defined in the

following way:

(1.1)

Let@ E {+, -, *, /}, then

[a, b] ® [c, d] {x ® y Ix E [a, b], y E [c, d]}

with O i [c, d] for the division.

If x E [a, b] and y E [c, d] are the two exact but unknown real numbers,

then [a, b] ® [c, d] contains the exact result x ® y, as can be shown.

When the real variables of a real-valued function fare replaced by

intervals and the real operations are replaced by the corresponding interval

operations, one gets the interval extension F off. The relation

F([a, b]) 2 {f(x) I x E [a, b]} holds.

If f is defined and continuous on [a, b], then F([a, b]) will again be an

interval.

For practical computation rules derived from definition (1.1) are more

useful than the definition itself:

(1.2) [a, b] + [c, d] [a+ c, b + d]

(1. 3) [a, b] - [c, d] [a - d, b - c]

203

(1.4) [a, b] * [c, d] [min(ac, ad, be, bd), max(ac, ad, be, bd)]

(1.5) [a, b] / [c, d] = [a, b] * [1/d, 1/c].

The operation is undefined for OE [c, d].

The implementation of the operators* and/ can be simplified by examin­

ing the signs of the endpoints. Details of this case analysis can be found

in [3].

One problem in interval analysis is the so-called dependency of inter­

vals. For example, in real arithmetic, x * x x2 but this is not true for

intervals: if X = [-2, 2], then X * X = {x * y Ix Ex, y Ex}= [-4, 4]

and x2 = {x2 Ix Ex}= [0, 4]. In cases like this, it is comparatively

easy to eliminate dependency, but in most cases it is not, for instance,

computing x•sin(X), where xis a small interval containing 0.

Since the operations in (1.2) - (1.5) contain real (infinite-precision)

arithmetic, they cannot be implemented on a digital computer. Thus it is

necessary, to round correctly the results obtained by the common computer

arithmetic. The optimal rounding procedure maps the left endpoint x to the

smallest machine representable real number less than or equal to x (Vx) and

the right one y to the largest machine representable number greater than or

equal toy (6y). So the final result is guaranteed to contain the exact

real arithmetic result. Consequently, for example, the formula (1.2) would

be modified to

[a, b] + [c, d] = [V(a + c), 6(b + d)]

(A complete discussion about different kinds of rounding may be found in

KULISCH [4].)

Due to these problems, the interval equivalent of a stable real algo­

rithm might eventually be unstable in the sense, that the result intervals

may become unacceptably wide. But for a lot of problems stable interval

algorithms have been constructed.

There are different implementations of interval arithmetic. Two of

them are the TRIPLEX-ALGOL-Compiler [3], developed at the University of

Karlsruhe, and a FORTRAN subroutine package [SJ, developed at the University

of Wisconsin, compatible to the AUGMENT precompiler [6].

2. AIMS

our aim is to develop an easy to use programming system for interval

204

arithmetic. It is desirable for the user to handle the interval objects

in the same manner as the integer or real objects. Thus an interval program

must have the same structure as any other program except that the data type

real is .substituted by the data type for intervals. For practical applica­

tions it is desirable that the following features should be implemented:

(i) A data type for intervals (intval)

(ii) The operator symbols+, -, *, /, ** for the interval arithmetic

(iii) The relational and logical operators for intervals, e.g.

=, #, <, ~, >, ~, disjct, c, E

(iv) special operators, e.g. width, halfwidth, sup, inf, mid, n, u

(v) standard functions, e.g. sin, cos, exp, sqrt

(vi) denotations for interval constants

(vii) special interval constants, e.g. intvalpi, maxintval

(viii) input-output routines for interval objects

3. REALIZATION

Inspired by the richness and flexibility of ALGOL 68, we decided to

use ALGOL 68 as implementation language for our interval system.

Particularly the following features of ALGOL 68 support the implementa­

tion:

(i) The data type (mode) intval can be defined by the mode declara­

tion:

mode intval = struct(real inf, sup)

(ii) ALGOL 68 allows the definition of operators and the use of opera­

tor symbols, e.g.+,-,*,/,**, for different data types and

also between them in mixed mode expressions. By that the items

(ii) - (iv) of the general requests in section 2 can be fulfilled.

(iii) Aided by the orthogonality of ALGOL 68 we can realize easily

most of the other requests, e.g. functions and procedures for

intervals can be defined, the structure display can be used as

denotation for intval constants, special constants can be defined,

each interval object can be handled as a whole, and in addition

the parts can be selected. Thus the remaining requests are satis­

fied.

(iv) ALGOL 68 is extensible by means of library preludes. In con­

sequence our work to develop an interval system in ALGOL 68 was

205

reduced to the creation of an interval library prelude.

4. PROBLEMS AND REQUIREMENTS

The shortcomings of our system are caused by the fact that the mode

intval is user defined and not a standard mode like the modes real, int,

compl. Therefore some operations which have to be done at compilation time

cannot be implemented. The main deficiencies are:

(i) No automatic widening from real to intval. Thus intval i:= 1.0 is

not allowed. We have to use a special operator:

intval i:= widen 1.0

or an intval denotation

intval i:= (1.0, 1.0)

(ii) No correct conversions of intval denotations. The statement

i:= (0.1, 0.1)

is handling a point interval, which in this case does not contain

the proper value because of the internal representations of real

numbers. Thus it is necessary to have special conversions for

the lower and upper bounds of intval denotations during compila­

tion time.

We can circumvent this problem by means of string denotations:

i:= widen "0.1"

because it is possible to convert the string "0.1" correctly by

a runtime routine. But this solution seems too clumsy to us,

and is not implemented in our system.

(iii) No correct conversion from real to intval objects. The mixed

mode operations between intval and real objects, e.g. in the

expression

i + 0.1 (i to be an intval variable)

cannot be compiled correctly, because it is not possible to

convert 0.1 to the corresponding interval value during compila­

tion.

A circumvention is rounding the bounds down respectively up to

the nearest representable machine number. This guarantees that

206

the correct value is included in the interval.

The rounding operations can be easily realized in ALGOL 68, as

shown later. In our system these operations are implicitly per­

formed for the mixed mode operations between intval and real ob­

jects and for the operators widen and comp (compose) applied to

real objects. We can explicitly use the operations by the oper­

ators~ and down. (See appendix)

(iv) No appropriate transput routines for intervals.

Because an intval object is composed of two floating-point

numbers and because the transput modes simplin and simplout

are not extendable by the user, the standard transput routines

"read" and "print" transmit two real numbers without any special

conversion for the lower and upper bounds. For output it would

be more readable if intval numbers were printed with special

delimiting characters like square brackets:

e.g. [+ 1.998, + 2.004]

In correspondence to that the intval numbers should be marked

with brackets for input, too:

input data: [1.0], [-10.0, + 10.0]

The formatted transput also needs a special "format pattern"

for intval objects. To overcome that we shall introduce special

routines like "inintval" and "outintval".

(v) A minor deficiency is that the identifiers for the standard

functions like sqrt, sin, cos etc. have to be changed to intval­

sqrt, intvalsin, intvalcos etc. for interval arguments.

(vi) In addition, some extensions of the arithmetic in ALGOL 68 would

be helpful and would facilitate the implementation of interval

systems:

- a concept of exception handling (invalid operation, underflow,

overflow),

a better way to define the precision of floating-point numbers,

- special values (invalid numbers, infinities).

Th~ other implementation-problems are dependent on the hardware. At

the moment the floating-point arithmetic on different machines is so vary­

ing that it is impossible to develop a fully portable interval package. The

207

problems of numerical computations are explained in detail by KULISCH [4].

To permit the implementation of both rigorous and tight bounds of the inter­

vals it is necessary to realize the operations of the directed rounding

towards±~. These rounding operations are also proposed in the IEEE float­

ing-point standard [10] in addition to the usual rounding operations like

"rounding to the nearest" and "rounding to zero" (truncation).

On the other hand, the interval arithmetic seems so important to us that

the computer manufacturers should realize the interval operations directly

by hardware. The costs for such arithmetic units would be low, considering

the present hardware prices.

5. IMPLEMENTATION

In our implementation for CDC CYBER machines we have simulated the

optimal directed rounding by taking advantage of the fact that on the CYBER

machine the result of a floating-point operation is available in double

precision. The implementation of the arithmetic interval operations like

+, -, *, /, ** is based on the routines of WIPPERMANN [3] developed for the

TRIPLEX arithmetic, for the standard functions like intvalsin, intvalexp

etc. we took the proposels of HERZBERGER [7].

An advantage of the CDC CYBER ALGOL 68 compiler is the possibility to

define inline operators, so that we can directly define which machine

instructions have to be generated by the code generator. The usage of in­

Line operators is a very powerful tool for efficient code generation and a

way to define operations not expressible in ALGOL 68.

On the other hand, this implementation is machine dependent. Another

possibility would be to take the algorithms of ALEFELD & HERZBERGER [1] to

implement the basic machine interval arithmetic operations. They are depend­

ing on the kind of rounding used and on the behaviour in the neighbourhood

of zero. This implementation would be fully transportable, but the result­

ing interval bounds are not the best possible approximations.

The algorithms used are based on the operators up and down. The

transportability is guaranteed by the fact that they can be expressed in

ALGOL 68: e.g.

~ of a real positive number xis defined by

(real x) real: (1 + smallreal) * x

208

6. EXTENSIONS

6.1 Complex-valued interval arithmetic

Since it is possible in ALGOL 68 to extend existing preludes by defini­

tions of new data types, a complex error arithmetic can easily be implemented

as extension of our INTVAL system. It was done by using the circular arith­

metic of GARGANTINI & HENRICI [11]. A complex interval in that arithmetic

is represented by a circle, i.e. its midpoint and its radius.

Concerning the precision, the user can select between three preludes

for this arithmetic. The first prelude (standard) contains the center

(xm, ym) in double precision and the radius in single precision, the second

one uses only single precision, the third one contains both variables in

double precision.

The first (standard) prelude is the one regarded in the next section.

For the implementation of the circular arithmetic a real interval

arithmetic in double precision was developed. The corresponding data type

of an interval of that kind is defined as

mode longintval

In this case, simple rounding procedures (up, down) must be used because of

hard-ware properties.

The complex interval describes a disk. Its data type is

with the center (xm, .ym) and the radius rad.

The definitions of the arithmetic operators are known from [11]. The

result Z of an arithmetic operation between two disks K1 and K2 is performed

in the following way: the centers of K1 and K2 are regarded as (point)

long real intervals and the appropriate long inverval operations are applied.

The center of Z is then composed of the midpoints of the two intervals and

their widths are added to the radius of z. The implementation of the complex

standard functions is easily done, because the programs are known from [12].

209

6.2 TORRIX-INTVAL

An extension of the system in a different respect is to complement it

by vector and matrix operations.

As a basis we can use TORRIX, a programming system for operations on

vectors and matrices over arbitrary fields, developed by VANDERMEULEN &

VELDHORST [8]. TORRIX can be implemented as a library prelude in ALGOL 68.

In the standard system the underlying scalar system is set to the mode real.

our next project will be to develop a TORRIX-INTVAL system. The trans­

formation can easily be done by defining

mode seal= intval

and then recompiling the TORRIX routines with the INTVAL system.

7. EXAMPLES

The first example is intended to demonstrate how easily a program can

be transformed from a real to an intval version.

real version:

begin

comment

pi, as computed by the archimedean algorithm: approximation of the

perimeter of a circle by inscribed and circumscribed n-cornered

regular polygons comment

int n, k:= 0;

real perout, perin, piout, piin, s, side;

print((newpage, "RESULTS:", newline,"", 8 *"*",newline, newline,

8 * II 11, "N", 4 * 11 ", "PI - PIIN", 4 * It II , II PI - PIOUT",

newline, 8 *" ", 30 *"=",newline, newline));

real r = 3.0; real r2 2 * r, rr = r ** 2;

side:= r * sqrt(3.0);

to 15 do

k +:= 1;

n:= 3 * 2 ** k;

s:= side* 0.5;

side:= sqrt(2 * rr - r2 * sqrt(rr - s ** 2));

210

end

perin:= n * side;

perout:= perin / (sqrt(l - (side/ r2) ** 2));

piin:= perin / r2;

piout:= perout / r2;

print((4 * " ", whole(n, -6), 3 * " ", float((pi - piin), 10, 3, 3),

4 * " ", float((pi - piout), 10, 3, 3), newline))

od

RESULTS:

N

3072
6144

12288
24576
49152

PI - PIIN

+5.442E -7
+1.221E -7
-2.968E -8
-2.573E -7
-1.472E -6

PI - PIOUT

-1.099E -6
-2.886E -7
-1.324E -7
-2.830E -7
-1.478E -6

This program has been an exercise for students. They were surprised to

notice that the algorithm is not convergent to "pi". The cause for this is

obviously the propagation of rounding errors.

The transformation to the intval version is accomplished by replacing

the modes of the variables and applying the appropriate standard function.

Furthermore the widen operator has to be inserted.

Intval version:

begin

comment

pi, as computed.by the archimedean algorithm: approximation of the

perimeter of a circle by inscribed and circumscribed n - cornered

regular polygons comment

int n, k:= O;

intval perout, perin, piout, piin, s, side;

intval solnew, solold:= maxintval;

intval r widen 3.0; intval r2 = 2 * r, rr

s~de:= r * intvalsqrt(widen 3.0);

while

k +:= 1;

r ** 2;

end

n:= 3 * 2 ** k;

s:= side* 0.5;

side:= intvalsqrt(2 * rr - r2 * intvalsqrt(rr - s ** 2));

perin:= n * side;

perout:= perin / (intvalsqrt(1 - (side/ r2) ** 2);

piin:= perin / r2;

piout:= perout / r2;

solnew:= solold intsct (piin ~ piout);

solold ne solnew

do

solold:= solnew

k:= 3 * 2 ** (k - 1);

print ((newline, "RESULT: 11 , newline, 11 " I 7 * 11 *", newline, newline,

11 N = 11 , whole(k, -6), newline,

"BEST INTERVAL= [11 , inf of solnew, 11

newline, newline))

RESULT:

N = 6144

II , , sup of solnew, If J",

BEST INTERVAL= [+3.1415924745664E +O, +3.1415929990960E +OJ

As opposed to the real version, it is now quite simple to find a

stopping criterion.

211

The second example shows how to combine real and interval algorithms:

begin_

NEWTON - ALGORITHM: XN. l = XN - F(XN) / DERIV(XN) #
. r + r

proc f = (real x) real: (real y = x * x; x - (1 - y) / (3 + y));

proc if = (intval x) intval: (intval y = x ** 2; x - (1 - y) / (3 + y));

proc deriv = (real x) real: (real y = 3 + x * x; 1 + 8 * x / (y * y));

proc ideriv (intval x) intval: (intval y = 3 + x ** 2; 1 + 8 * x / y ** 2);

real x, x1;

real xO = 0.0, eps = 1.0e-7, int max= 20;

print(('1 RESULTS:", newline, " 11 , 8 * 11 * 11 , newline, newline,

'" STARTING VALUE XO = ", fixed(xO, 5, 2),

EPS =", float(eps, 8, 1, 3), newline, newline,

212

"STEP", 10*" ", "X", 25 *" ", "F(X)", newline, "", 52 * "-",

newline));

x:= xO;

form while

xl := x;

real dl = deriv(xl); if abs dl < eps then stop fi;

x:= xl - f(xl) / dl;

print((" ", whole(m, -2), 6 * " ", x, 3 * " ", f(x), newline));

abs (x - xl) > eps and m < max

do skip od;

#LAST STEP WITH INTERVALS#

intval ix:= (x, x); ~ idl

ix-:= if(ix) / idl;

ideriv(ix);

print((newline, "INTERVAL STEP: ", newline,

"IX

"F(IX)

[", inf ix, ",", sup ix, "]", newline,

[", infif(ix), ", ", supif(ix), "]",

newline, newline))

end

RESULTS:

STARl'I~G VALUE XO +o.oo

STEP X

1 +3.3333333333333E -1

2 +2.9600000000000E -1

3 +2.9559779074107E -1

4 +2.9559774252209E -1

INTERVAL STEP:#

IX

F(IX)

[+2.9559774252208E -1,

[-3.5527136788005E -15,

EPS =+1.0E -7

F(X)

+4.7619047619047E -2

+5.0211425254965E -4

+6.0181692518313E -8

+1.7763568394003E -15

+2.9559774252209E -1]

+1.7763568394003E -15]

The intention of this combination of algorithms is to get an approximate

solution in real arithmetic and to determine or improve it's exactness by

interval arithmetic steps, until tight bounds for the exact solution are

found. +n this way, execution time can be reduced as opposed to an algorithm

213

using only interval operations, while the interval arithmetic precision is

preserved.

8. CONCLUDING REMARKS

Summarizing our experience we can state that we have found in ALGOL 68

a tool well suited for the implementation of an efficient and easy to use

interval programming system without great expenditure. Nevertheless, in order

to be more helpful for the user, it should be accompanied by a program

library containing interval algorithms for all important applications.

APPENDIX

Operators and Procedures implemented in the Interval Package

Arithmetic operators

name l mode of arguments l priority l result mode
-------------~----------------------L---------L---------------

+

*, I
**, up

+:=, plusab

-:=, minusab

*:=, timesab

/:=, divab

1 I
(intval, intval) 1 l
(real, intval) I
(intval, real) 6 I
(int, intval) I
(intval, int) l

like +

like +

(intval, int)

(ref intval,
(ref intval,
(ref intval,

like +:=

like +:=

like +:=

intval)
real)
int)

10

6

7

8

1

1

1

1

I
I
I

intval

intval

ref intval ------

214

Relational operators

mode of arguments : priority J result mode f meaning

----i~----------------t----------r-------------+-----------------
name

' I (intval, intval) : 5 : bool [a!, a2] < [bl, b2]
I I

I 5 I
I I

I 5 I
I I

like < I 5 I
I I
I I

like < l 4 I
I I

like < I 4 I

Interval standard-functions

name

intvalsin
intvalcos
intvalsqrt
intvalexp
intvalln
intvalarctan
intvalacrsin
intvalarccos

mode of argument! result mode
------------------r--------------

intval I intval
--- I

I
I
I
I
I
I

:
I
I
I
I
I
I

a2 < bl

[a!, a2] > [bl, b2]
al > b2

Special interval operators

name mode of a·rguments: prio~ f result model meaning
---------1----------i-------i------------i--
~
inf
mid
width
iiaI"fwidth
bad
ok
elem
subset

~
!!!!ii
round
entier
abs
intsct
disjct

point
widen
widen

~

(intval) 1 10 real !right endpoint of the interval
(intval) 10 real : left endpoint of the interval
(intval) 10 real :midpoint: (~ X - inf X) / 2, rounded up
(intval) 10 real :~ X - inf x, rounded up
(intval) 10 real : (~ X - inf X) / 2, rounded up
(intval) 10 bool : inf X > ~ X

(intval) 10 bool : inf X ,; ~ X

(real, intval) 7 bool I element of X
(intval, intval) 7 bool : X contained in Y
(intval) : 10 real :magnitude: ~(abs(x))
(intval) : 10 real :magnitude: inf(abs(x))

lE:~:~! ! ig ;;Ll 'i:!~~=i=~;;;::Pxl
(intval, intval) ! 9 intval set-theoreticintersection of X and Y
(intval, intval)I 9 bool disjunction
(intval, intval) 8 intval union of X and Y
real 1 C real rounds up to the nearest larger machine number
real 10 real rounds down to the nearest smaller machine

real
real
Int""

(real, real)

(int, int)
(real,int)
(int, real)

10
10
10

9

intval
intval
intval
intval

[x, xl
[down x, ~ xl
[x,"x]
compose:
if the operands are real, then
~• down is applied

number

ACKNOWLEDGEMENT

We wish to express our thanks to Dipl.-Math. J. Dehnhardt from the

University of Hannover for his helpful comments on our concepts, and to

G. Mensching, who did part of the programming and testing of the system.

REFERENCES

215

[1] ALEFELD, G. & J. HERZBERGER, Einfuhrung in die Intervallrechnung, 1974.

[2] MOORE, R.E., Interval analysis, 1966.

[3] WIPPERMANN, H.-w., Realisierung einer Intervall-Arithmetik in einem

ALGOL 60 System, Elektronische Rechenanlagen 9 (1967), H. 5,

p. 224-233.

[4] KULISCH, u., Grundlagen des Numerischen Rechnens, Reihe Informatik/19,

1976.

[5] YOHE, J.M., Software for interval arithmetic: A reasonably portable

package, ACM Trans. on Math. Software, vol.~, no. 1, March 1979.

[6] CRARY, F.D., A versatile precompiler for nonstandard arithmetics,

ACM Trans. on math. software, vol.~, no. 2, June 1979.

[7] HERZBERGER, J., Intervallmassige Auswertung von Standardfunktionen in

ALGOL 60, Computing~. 1970, p. 377-384.

[8] VANDERMEULEN, S.G. & M. VELDHORST, TORRIX vol. 1, Mathematical Centre

Tracts 86, Amsterdam 1978.

[9] CURNOW, H.J. & B,A. WICHMANN, A synthetic benchmark, Computer Journal,

1976, vol. 1.2_, no. 1, p. 43-49.

[10] COONEN, J. et.al. Proposed IEEE floating-point standard, ACM Signum

Newsletter, Special issue, October 1979.

[11] GARGANTINI, I. & P. HENRICI, Circular arithmetic and the determination

of polynomial zeros, Numer. Mathematik~ (1972), p. 305-320.

[12] BORSKEN, N.C., Komplexe Kreis-Standard-Funktionen, Freiberger lntervall­

, Berichte 78/2.

217

TEACHING WITH ALGOL 68, IN MANCHESTER

C.H. LINDSEY

ABSTRACT

If approached with care, ALGOL 68 provides an excellent vehicle for

teaching the art of programming. Students should be encouraged to think

about the visual shape of the language, of their programs and of their data,

and suitable visual aids for all of these must be provided. Copious sample

programs should be exhibited, to illustrate all the paradigms which are the

programmer's stock-in-trade.

There are some specific features of ALGOL 68 which have traditionally

been regarded as "difficult", for example, variable-declarations, names,

subnames, formal- and actual-declarers, and scope. The answer to these

problems lies in a careful choice of the order in which language features

are introduced, the particular options which are recommended for use, and

the models of behaviour with which they are explained. There are also some

features of the language which ought not to be explained at all. The paper

contains specific proposals in all these areas.

218

1. INTRODUCTION

ALGOL 68 is an excellent vehicle for teaching programming because it

contains nearly all the tools which a student should know about, and it

provides them in a way which encourages a well-structured style of

programming. Even if he never uses ALGOL 68 in the outside world, he will

still have learnt much, and be a better programmer as a result of it.

Programming is an art. And teaching the art of programming is yet

another art. And the chief difficulty of that art lies in understanding

why the students seem to be so stupid. If the teacher can get inside the

student's mind, he will find many things that surprise him - for example

that the uninitiated student does not naturally think recursively, or

even orthogonally, and that for these reasons he would far rather learn

BASIC whose concepts, in the short term, are so deceptively simple. Again,

the concepts of an orthogonal language are so neatly interrelated that

there is no starting point whereat teaching may begin, and writing even

the simplest program involves, in principle, nearly every concept in the

language. Nevertheless, the rate at which students can absorb new concepts

is limited, and really rather low, and concepts must therefore somehow be

packaged up into small doses.

In teaching programming, there are essentially three things to be

taught:

1) Program structure

or how to view programs as hierarchies of refinements.

2) Paradigms

or how to turn real-world problems into program structures.

3) Programming languages

or how to turn program structures into programs.

Inevitably, teaching the chosen programming language is going to take up

most of the actual time; nevertheless, it is the least important of the

three. I shall therefore consider these topics in the order given but, as

inevitably, it will be number 3 that will occupy the bulk of this paper.

219

2. PROGRAM STRUCTURE

It came as a distinct surprise to me to discover, some years ago,

that computer scientists come in two varieties - the "Verbalizers" and the

"Visualizers".

The verbalizers solve every problem by inventing a name for it, and

invent an implementation of the name later. So, they write their programs

with great numbers of procedures, whose bodies are mostly calls on other

procedures.

The visualizers, on the other hand, delight in drawing little boxes

and depicting relationships or movements between them. Their programs

consist of very long procedures, indented almost out of sight into the

right-hand margin.

To find largest element of array a

largest so far:= - infinity

for i from lwb a to ~ a

largest so
y

argest so far := a[i]

return largest so far

Fig. 1 Example of a Structure Chart.

220

I am an unashamed visualizer. Hierarchical program structures need

to be diagrammed. They can of course be drawn as tree structures, but I

prefer a contour model which I call "Structure Charts" [4]. Fig. 1 shows

an example of such a chart. There are different shapes of box for the

three customary program compositions, and each corresponds to a particular

type of ENCLOSED-clause in ALGOL 68. Fig. 2 shows this correspondence for

the choice-box. Observe that the conditional-clause comes complete with

indentation. Indentation is not optional. The students are taught that

this is how a conditional-clause is written, and it is only later that

they discover that the compiler doesn't really care. The visual impact

of a well-indented program can tell you as much about how it is meant to

work as the actual keywords used. In case the students contrive to get

their indentation wrong, they are provided with an indenting program.

action

to be

taken

action

to be

taken

if some unit yielding a bool

then-----

else

fi

Fig.2 Choice Box and corresponding ALGOL 68 text.

Observe also that, at least in the case of beginners unbesmirched by

other programming languages, students are taught to put their go~on-

symbols at the beginning of a line. Apart from making it easier to edit

in an extra statement at the end of a serial-clause (a much more common

requirement than to insert an extra phrase at the beginning), this has sig­

nificant didactic advantage. The indentation structure is emphasised, the

start and the extent of each new statement is clearly flagged (hence students

are less likely to try to talk about "then-statements" and "else-state­

ments"), and the habit is cultivated of not writing a go-on-symbol until

one is ready to write a unit to be gone-on to. It also helps to emphasise

the idea of seral composition if these symbols are pronounced as "go-on",

rather than as "semicolon", each time they are written. Fig.3 shows the

program from Fig.1 laid out in this way.

proc find largest= ([] real a) real:

loc real largest so far:= - max real

for i from lwb a to upb a

do real element= a[i]

od

if element> largest so far

then largest so far:= element

fi

largest so far

Fig. 3 Program layout with go-on-symbols at the start of the line

221

Program structure is closely related to Syntax. Students must certain­

ly be shown some model of the Syntax in order to drive home its recursive

and orthogonal nature (although persuading them actually to consult the

model when constructing programs is another matter). Obviously, the 2-

level Van Wijngaarden Grammar is too much to show on day one (it may be a

fine thing to teach later). At this point, the verbalizers introduce some

variant of BNF, but I prefer a visual representation such as those given

by WATT [8] or LINDSEY [5,6], of which Fig.4 is an example. I find it

particularly convenient to have a large wall chart and to refer to it

frequently. It is an advantage if the chosen model can indicate some at

least of the second level of the grammar, such as the strengths of the

contexts and the modes yielded or expected by the various constructs.

balanced
MO[D

serlal-clausz-""7-..._--------------,,.----.,----------...--+

daclar:al: ton

stron~ .!LQ..]_J;l

un I I:

stron~ .!LQ..]_J;l

unll:

label

Fig. 4. Example of notation for Syntax Charts.

222

3. PARADIGMS

Those of us who have been writing programs for many years find our­

selves writing the same piece of code in different contexts so many times,

that we are apt to imagine that our particular "paradigm" is the obvious

way to do the given job. To the student who has just met such amazingly

new concepts as the array and the loop-clause for the first time, nothing

is obvious - not even the paradigm for finding the largest element of an

array given in Fig.1. In his Turing Award lecture, FLOYD [3] made this

point very strongly. A repertoire of basic paradigms must be taught. It

is too much to expect the student to discover them all for himself (and

there is also the risk that he will discover bad ways of doing things

instead).

Of course, teaching Paradigms and teaching the language constructs

with which to implement them can go hand i.n hand. The book by ANDREW COLIN

L2] adopts this technique with great success. The important thing is

that students should see as many realistic programs as possible developed

before their very eyes preferably, in the early stages, with a computer

online to the lecture room with TV monitors connected to the VDU.

The paradigms to be taught include both activities (searching arrays,

summing series, looking up tables) and data structures (lists, queues,

trees of various sorts). Most paradigms apply equally to all programming

languages, but there are some which are specific to ALGOL 68, of which

examples are given in Section 4.3 below.

4.SOME SPECIFIC ALGOL 68 PROB~EMS

Every language has its weak points which, unless taught very care­

fully, will cause difficulty to the students. In ALGOL 68 the points to

watch are:

variable-declarations

(with which are associated assignations)

identity-declarations

(and when to introduce them)

nam,=s

(with which are associated dereferencing and generators)

subnames
(also known as the "bend")

multiple values

(or should they be called "arrays")

scope

(and how not to confuse it with "reach").

4.1. Values and ascription

It is well recognised that teaching variable-declarations is the

foremost of these. At one extreme lies the school of thought [1] which

exhibits the mysterious

223

almost on day one, whilst at the other extreme are those who try not to

mention ref at all. I prefer to leave the whole subject for a while and to

talk about a concept that is especially important to ALGOL 68 and which

is already familiar to the student, namely the concept of "values", which

result from the elaboration of "expressions". Fortunately, the notation

for formulas and denotations in ALGOL 68 is so like that of conventional

algebra that its detailed syntax need not be taught (at least not in the

first instance). Next, the student should be shown how to ascribe values

to identifiers in identity-declarations, and already he knows enough to

write simple, but meaningful, programs (to solve quadratic equations with

real roots, for example). Now he can be taught conditional-clauses (as

constructs that yield values), and likewise case-clauses (because they

are so similar). Quite complex programs can now be exhibited (to compute

the date of Easter, for example).

4.2. Variables and assignations

So far, there has been no mention of variables, nor of assignations,

nor of data input. Early programming languages made the mistake of sup­

posing that these were indeed the fundamental concepts upon which all

computing must inevitably be based •. They are not. On the contrary, they

are dangerous, complex, misleading and, above all, addictive. (Consider,

for example, the complications of the usual axiomatic definition of ,
assignation, and the difficulties of correctness proofs when variables

are passed by reference). They should not be used unless there is good

reason to do so (which, of course, there often is).

224

It is my experience that the programs that students write are all

modeled on the first program that they ever saw. I used to show, as their

very first example, something like the following.

program to read two numbers and to print their sum and

difference#

loc int x, y

here point out carefully that x and y exist, but that their

values are "undefined" at this point#

read((x,y))

now they have sensible values#

print ((x+y, x-y))

Result: every time they declare a variable (even for local use inside a

procedure), they follow it with a 'read' "just make sure that it has a

defined value". Moral: if you want them to use identity-declarations and

expression-oriented programming in appropriate situations, teach them that

style of programming first. And if, as a byproduct, they get the idea

that variables and assignations are an "advanced" feature of the language

(and therefore "difficult"), well, they might just be right. Many text­

books make the mistake of leaving identity-declarations until nearly the

end, which is the surest way to give students a bad impression of them.

Nevertheless, the time for teaching variables must soon come. The

idea to instil is that space in which to keep variables is a valuable

commodity, and that it can only be "manufactured" to order. The best way

is to insist that the loc symbol is included in every variable-declaration

(indeed, my compiler issues a long and wordy warning if ever you leave it

out). Thus, variable~declarations are clearly distinguished from identity­

declarations, you teach that "loc int" means "please manufacture space to

hold an int variable", and you illustrate the variable-declaration

loc int tom:= 99

by drawing the picture in fig.5, carefully pointing out that 'tom' knows

"where" the variable is kept, and that he is very fortunate and privileged

to be th'e sole repository of this valuable piece of information. Although

the diagram obviously contains room to show the ref int value that is

really accessed by 'tom' enough is enough for now, and that part of the

225

story can wait for another day. It suffices that the correct foundations

have been laid. Now assignations can be taught (with emphasis on "what"

value is assigned to "where"). And observe that the initialized form of the

variable-declaration was taught first, because it is the one that should

normally be used. It is easy to explain later that the initialization is

optional and, perhaps at the same time, to introduce 'read'.

tom

99

Fig. 5 Van der Meulen diagram for loc int tom : = 99.

And, in spite of all your efforts, your students will hereforth

still use uninitialized variable-declarations, assignations and condition­

~1-statemehts for everything, and will write

if b=c then a:= true else a:=

when what they really meant was

a:= b=c

Such is life!

4.3. Names

false fi

Eventually, how~ver, "names" must be taught. The first problem is

one of terminology. The Report gives us the term "name", but the man-in­

the-street is undoubtedly going to confuse this with "identifier" espe­

cially as, in most situations, they turn out to be almost the same thing.

Other languages have used the terms "pointer", "access" and "reference"

for the same concept. I think I would have preferred "reference", but I

have not dared to put my preference into practice as yet.

How the concept is introduced depends upon what the students need to

know. Fo~ beginners, especially where it is not intended to teach the

whole of ALGOL 68, it is best to teach ref in the first place as a special

kind of formal-parameter, just like the~ parameter of PASCAL.

226

I like to teach that calling a procedure is like giving a job to a special­

ist subcontractor. You give him some values and he returns a result. For

a ref parameter, I say that you give him a long piece of ribbon pointing

to your variable (thus allowing him to share that valuable piece of

information formerly known only to 'tom'), which gives him the right to

alter your variable as well as to inspect it. Later, it can be explained

how this piece of ribbon can also be ascribed to suitable identifiers or

assigned to suitable variables.

For more mature students who are studying the full language, it may

be better to introduce the class of ref modes at an earlier stage,

showing how to construct ref mode variables which refer to other variables

already declared. This leads on to generators and the construction of

lists, trees and the like (and

ref real x = loc real

appears as an interesting oddity which helps to tie the various concepts

together). The wisdom of including loc in every variable-declaration is

now apparent, because it is possible to say that "loc int" always means

just the same as "ref int", except that it has the additional side effect

of creating space.

At this point, one must teach the concept of what the authors of the

original Report called the "bend" (because that is what it drove them

round) and which, in the Revised Report, is called a "subname". This is

one of the most important features of ALGOL 68, and at the same time

the most difficult to teach. It is the idea that, when you select (slice)

from the name referring to a structure (an array), what you get is a

subname referring to the selected field (element(s)). At this stage, a

visual model is essential, and the appropriate model is the van der Meulen

diagram [5] or [7].

Consider the program fragment in Fig.6. Fig.7 shows the Van der

Meulen diagram corresponding to the unit ptr := next of ptr. It is my

practice to divide the diagram with a dotted line. Everything below this

line is some sort of variable which has been specifically brought into

existence by use of the word loc (or maybe heap). The shapes above the

line represent the yields of the external objects written within them.

If the external object is an identifier, it continues to access the

same value within its reach. Other external objects are transient, and may

mode link = struct(string name, ref ~ next)

ref link nolink = nil # 7 # -----
loc ~ link start:=£ some suitable initialization c

~ ref ref~ ptr := start # 2 #

string insertion=£ name to be inserted£

~ (ptr ~ nolink I insertion < name £!_ ptr

do ptr := next of ptr od

~ ref link (ptr) := heap link := (insertion, ptr) # 4 #

Fig. 6 Program fragment to illustrate Subnames.

227

be removed from the diagram once they have been used. The students should

be shown many such diagrams, illustrating the use of subnames in various

guises. This particular diagram also affords an opportunity to discuss

weak dereferencing.

'

c ________)

' ' -------------------~ ' ' '

c ________)

- a subname

_Fig.7 Van der Meulen diagram for ptr := next of ptr in Fig. 6.

228

Fig.6 also illustrates four specific paradigms, peculiar to ALGOL 68,

which the students should know about.

1 # Whenever a new struct is invented, it is wise to declare a private

version of nil to refer to it. This avoids the traps inherent in

using nil in identity-relations.

2 # This is the so called "3 ref trick" (because the mode of 'ptr' has

three refs in it). It should be used whenever a list or a tree is

to be searched with the intention of inserting a new node at the

found location. Perhaps it is unfair to refer to such an important

technique as a "trick", but there is nothing like a good name to

encourage students to remember an idea.

3 # This brief-conditional-clause, with one part permanently yielding

~, is the standard way to avoid testing the non-existent link

beyond the end of the chain.

4 # The standard way to insert a new node in a list or tree.

4.4. Arrays

We have another problem of terminology in the case of "multiple

values". Here, however, the rest of the world is unanimous in describing

them as "arrays", and there is notl'ting to be gained by trying to resist.

My chief difficulty with arrays has been to persuade students to distin­

guish between formal- and actual-declarers. I explainded to them ad

nauseum that an "actual"-declarer is used when they want to obtain "actual"

space for an "actual" ·object in the "actual" core store of their "actual"

computer. Finally, I modified my compiler so as to parse fully both types

of declarer in all contexts. This enables it then to emit very specific

error messages when they get it wrong.

4.5. Scope

Another confusion of terminology arises with "scope". Unfortunately,

in all ot)'ler languages, "scope" denotes a purely static concept which,

in ALGOL 68, should be referred to as "reach".

Contrariwise, in ALGOL 68, "scope" is a dynamic problem with which the

229

other languages do not have to cope. It can only be convincingly explained

to students in terms of the run-time stack which they are to presume their

implementor will keep. And one has to explain to them that other lan­

guages use the same word differently, and apologise for ALGOL 68 having

got it wrong.

5. SOME SPECIFIC ALGOL 68 NON-PROBLEMS

The above are some problems that! have encountered in teaching ALGOL

68. Here now are some non-problems.

The Report and 2-level grammars are non-problems, because one does

not teach them (at least, not until they fully understand the language).

Balancing is a non-problem because the normal user will probably

make use of it without being in the least aware that he is doing anything

unusual. Implementors and language designers need to know about it, but

not users.

Mode equivalence is another non-problem, for the same reason.

The sublanguage ALGOL 68S is a non-problem. Although my students use

an ALGOL 68S compiler for their exercises, I teach tliem the full language,

and simply refrain from setting problems that require the missing features.

Hardly any of them notices.

6. COMPILERS

The teaching of ALGOL 68 must be supported by the provision of a

friendly compiler. A friendly compiler is as valuable as an extra teacher

in the class. At compile time, it should give error messages that are

closely related to the error that the student actually made, couched in

terms with which he is familiar. Implementors should be a.ware that the

average user is likely to be unfamiliar with all but a small percentage

of the many paranotions defined in the Report.

"missing in-part in chooser-choice-using-boolean-bold-clause",

although correct, is unlikely to be as readily understood as

"no 'units after then in conditional-clause".

Also, the parser should recover quickly after all errors.

230

At runtime, checking should be exceedingly thorough. In addition

to obvious matters like array-bound checks and scope violations, all

misuses of uninitialized variables and of nil should be cleanly caught.

The reporting of the error should be followed by a clear printout of the

stack, giving each identifier in use together with its mode and value -

which should include the fields of each structure and some at least (say

the first 3 and the last 3) of the elements of each array.

7. CONCLUSION

Many people, whilst appreciating its powers, are afraid of teaching

ALGOL 68 because it is "too complicated". Indeed there are difficulties;

they·are bigger than molehills but they are certainly not mountains. And

in any case, the way to deal with mountains is to go around them. I hope

that I have been able, in this paper, to show some of the ways around.

REFERENCES

[1] BR,~ILSFORD, D.F.& A.N. WALKER, Introductory ALGOL 68 Programming,

Ellis Horwood'Ltd., 1979.

[2] COLIN, A.J.T., Programming and Problem-solving in ALGOL 68,

Macmillan, 1978.

[3] FLOYD, R.w., 1978 ACM Turing Award Lecture: The Paradigms of Program­

ming, Comm. ACM 22, 8 (Aug. 1979), p455.

[4] LINDSEY, C.H., Structure Charts - A Structured Alternative to

Flowcharts_, SIGPLAN Notices, ~! 11, (Nov. 1977), p36.

[SJ LINDSEY, C.H. & S.G·. VAN DER MEULEN, Informal Introduction to

ALGOL 68, Revised Edition, Revised reprint 1980, North Holland,

1980.

[6] LINDSEY,C.H., ALGOL 68 Syntax Chart on microfiche, ALGOL Bulletin,

AB46.S.1.

[7] STILLER G., ALGOL 68 - Begriffe und Ausdrucksmittel,

BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1974.

[8] PECK,J.E.L., M. SINTZOFF & J.M. WATT, ALGOL 68 Syntax Chart,

ALGOL Bulletin, AB37.4.7.

LIST OF ADDRESSES OF AQ~ORS

1. S.G. VANDERMEULEN

2. J. ANDRE:

J. BARRE

3. P.R. EGGERT

R.C. UZGALIS

4. G. STILLER

5. H. LOEPER
H.-J. JAKEL
H. PIETSCH

6.· K. WRIGHT

7. L.G.L.T. MEERTENS

8. G.J. FINNIE
M.C. THOMAS

9. V.J. RAYWARD-SMITH

Department of Computer Science
University of Utrecht ,;:, ·
Princetonplein 5
3584 CC Utrecht
The Netherlands

IRISA/INRIA-LaboratoirE,l dei' R~nhes'
35042 Rennes Cedex "
France

IRISA-Universite de Rennes
35042 Rennes Cedex
France

,:, Department of Computer Science
. University of California
Santa Barbara, CA 93106
USA

Computer Science Department
University of California
Los Angeles, CA 90024

Department of Information Processing
Technical University Dresden
Mommsenstrasse 13
8027 Dresden
GDR

Department of Information Processing
Technical University Dresden
Mommsenstrasse 13
8027 Dresden
GDR

Data General Corporation
Route 9
Westboro, Ma 01580
USA

Mathematical Centre
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

South West Universities
Regional Computer Centre
Claverton Down
Bath, BA2 7AY
UK

School of Computing Studies and Ac­
countancy
University of East Anglia
Norwich, NR4 7TJ
UK

232

10. V. LINNEMANN

11. S.D. BUTLAND

12. G. GUNTHER
G. MARQUARDT

13. C.H. LINDSEY

Dwostrasse 169 A
2870 Delmenhorst
BRD

Computing Laboratory
University of Bradford
Bradford West Yorkshire BD7 lDP
UK

Regionales Rechenzentrum fur
Niedersachsen bei der Universitat
Hannover
Wunstorfer Strasse 14
3000 Hannover 91
BRD

Department of Computer Science
University of Manchester
Manchester M13 9PL
UK

TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

(An asterisk before the MCT number indicates that the tract is under prep­
aration),

A leaflet containing an order form and abstracts of all publications men­
tioned below is available at the Mathematisch Centrum, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands. Orders should be sent to the same
address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963.
ISBN 90 6196 002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964, ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II:
Probabilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 I.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964.
ISBN 90 6196 008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distrubutions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964.
ISBN 90 6196 011 8.

MCT 12 J.A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54,

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics,
1966. ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967.
ISBN 90 6196 022 3.

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1; 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968.
ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Exercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric
distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak con­
vergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 ·F.W. STEUTEL, Preservation of infinite divisibility under mixing and
related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196 064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound
words, 1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972.
ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972.
ISBN 90 6196 076 2.

HCT 42 W. VERVAAT, Success epochs in BernouUi trials (with applications in
number theory), 1972. ISBN 90 6196 077 O.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973.
ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and Zimit laws 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VANDERIET, ABC ALGOL, A portable language for formula manipu­
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VANDERIET, ABC ALGOL, A portable language for formula manipu­
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 I.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(eds), Revised report on the algorithmic language ALGOL 68,
1976. ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53· M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 _6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 1: Theory of
designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 2: Graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (eds), Combinatorics, part 3: Combina­
torial group theory, 1974. ISBN 90 6196 IOI 7.

MCT 58 w. ALBERS, Asymptotic expansions and the deficiency concept in sta-
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6 I 96 I 08 4.

*MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1,
ISBN 90 6196 109 2.

*MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2,
ISBN 90 6196 I 10 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 Ill 4,

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196 112 2.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical approach,
1975. ISBN 90 6196 113 O.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen­
function expansions, 1976. ISBN 90 6196 114 9.

*MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2, ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: Semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides, 1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 X.

HCT 74- H.J.J. TE RIELE, A theoretical and computational study of generalized
aliquot .sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associations and the closure statement, 1976.
ISBN 90 6196 135 I.

MCT 77 w.c.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests
in exponential families, 1977. ISBN 90 6196 134 3.

MCT 78 E. DEJONGE & A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

· MCT 79 M.C.A. VAN ZUIJLEN, Errrpiriaat distributions and rank statistias,
1977. ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A nwneriaat study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.

MCT 8 I K. R. APT & J. W. DE BAKKER'. (eds h Founda,tions of aomputer saienae II,
part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Founda,tions of aomputer saienae II,
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L. S. BENTHEM JUTTING, Cheaking Landa,u 's "Grundtagen II in the
AUTOMATH system, 1979. ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euatid from the
Arabia into Latin by Hermann of Car>inthia (?) books vii-xii,
1977. ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Superaompaatness and Waltman spaaes, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VANDERMEULEN & M. VELDHORST, Torrix I, A prograrmting system
for operations on veators and matriaes over arbitrary fields
and of variable size. 1978. ISBN 90 6196 152 I.

*MCT 87 S.G. VANDERMEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 X.

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Complex Fourier transformation and anatytia funationats
uJith unbounded aarriers, 1978. ISBN 90 6196 155 6.

*MCT 90 L.P.J. GROENEWEGEN, Charaaterization of optimal strategies in dynamic
games, • ISBN 90 6196 156 4.

MCT 91 J.M. GEYSEL, Transaendenae in fields of positive charaateristia,
1979. ISBN 90 6196 157 2.

MCT 92 P.J. WEEDA, Finite generalized Markov prograrmiing, 1979.
ISBN 90 6196 158 O.

MCT 93 H.C. TIJMS & J. WESSELS (eds), Markov deaision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations in transaendentat number
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

MCT 96 P.M.B. VITANYI, Lindenmayer systems: Structure, languages, and
gr()l,)th functions, 1980. ISBN 90 6196 164 5.

*MCT 97 A. FEDERGRUEN, Markovian aontrot problems; funationat equations
and algorithms, • ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 I.

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
be-tween computer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT JOO P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 1, 1979.
ISBN 90 6196 168 8.

MCT IOI P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 2, 1979.
ISBN 90 6196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations, 1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability, 1979.
ISBN 90 6196 173 4.

*MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, • ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 7.

MCT 107 c. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 0.

MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Foundations of computer
science III, part I, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 transput, part I: Historical review and
discussion of the implementation model, 1979. ISBN 90 6196 178 5.

MCT Ill J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

MCT 112 H.C.P. BERBEE, Random walks with stationary increments and renewal
theory, 1979. ISBN 90 6196 182 3.

HGT 1)3 T.A.B. SNIJDERS, Asymptotic optimality theory for testing problems
with restricted alternatives, 1979. ISBN 90 6196 183 1.

MCT 114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stochastic processes, 1979.
ISBN 90 6196 184 x.

MCT I I 5 P. C. BAAYEN & J. VAN MILL (eds), Topological Structures II, part I '
1979. ISBN 90 6196 185 5.

MCT 116 P.C. BAAYEN & J. VAN MILL (eds), Topological Structures II, part 2,
1979. ISBN 90 6196 186 6.

~-1CT 117 P.J.M. KALLENBERG, Branching processes with continuous state space,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENEFOOM, Large deviations and asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F.J. PETERS, Sparse matrices and substructures, with a novel imple­
mentation of finite element algorithms, 1980. ISBN 90 6196 192 O.

MCT 120 W.P.M. DE RUYTER, On the asymptotic analysis of large-scale ocean
circulation, 1980. ISBN 90 6196 192 9.

MCT 121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory, 1980.
ISBN 90 6196 194 7.

MCT 122 J.C.P. BUS, Numerical soluUon of systems of nonlinear equations,
1980. ISBN 90 6196 195 5.

MCT 123 I. YUHASZ, Cardinal functions in topology - ten years later, 1980.
ISBN 90 6196 196 3.

MCT 124 R.D. GILL, Censoring and stochastic integrals, 1980.
ISBN 90 6196 197 I.

MCT 125 R. EISING, 2-D systems, an algebraic approach, 1980.
ISBN 90 6196 198 X.

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear programming, 1980.

MCT 127

MCT 128

MCT 129

MCT 130

MCT 131

MCT 132

MCT 133

MCT 134

MCT 135

MCT 136

ISBN 90 6196 199 8.

J.W. KLOP, Combinatory reduction systems, 1980. ISBN 90 6196 200 5.

A.J.J. TALMAN, Variable dimension fixed point algorithms and
triangulations, 1980. ISBN 90 6196 201 3.

G. VANDERLAAN, Simplicial fixed point algorithms, 1980.
ISBN 90 6196 202 1.

P.J.W. TEN HAGEN et al., ILP InteI'171ediate language for pictures,
1980. ISBN 90 6196 204 8.

R.J.R. BACK, Correctness preserving program refinements:
Proof theory and applications, 1980. ISBN 90 6196 207 2.

H.M. MULDER, The interval function of a graph, 1980.
ISBN 90 6196 208 0.

C.A.J, KLAASSEN,Statistical perfoI'171ance of location estimators, 1981,
ISBN 90 6196 209 9.

J.C. VAN VLIET & H. WUPPER (eds), Proceedings international confer­
ence on ALGOL 68, 1981. ISBN 90 6196 210 2.

J.A.G. GROENENDIJK, T.M.V. JANSSEN & M.J.B. STOKHOF (eds), FoI'171al
methods in the study of language, part I, 1981. ISBN 90 6196 213 7.

J.A.G. GROENENDIJK, T.M.V. JANSSEN & M.J.B. STOKHOF (eds), FoI'171al
methods in the study of language, part II, 1981. ISBN 906196 213 7.

