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CHAPTER 1 

INTRODUCTION 

1.1. GENERAL INTRODUCTION 

Let f be a density on the real line and let 0 be a real number. Let 

x1, ... ,xn be independent and identically distributed random variables with 

common density f(•-0). We shall consider one of the classical problems in 

statistical inference, to wit the estimation of the location parameter 8 on 

the basis of the observations x1 , ... ,xn. 
This estimation problem is invariant under translation. Hence it is 

natural to estimate the parameter 8 with a translation equivariant estimator 

whenever we want to be impartial with respect to the possible values which 

the parameter can adopt. We note that an estimator of location is called 

translation equivariant if adding a constant to the observations results in 

adding the same constant to the estimate. 

We shall assume that the density f is symmetric about zero. This implies 

that the location parameter 8 coincides with the point of symmetry of the 

distribution of the observations. Furthermore, it follows from this assump­

tion that the estimation problem is not only invariant under translation but 

also under a change of sign. An estimator will be called antisymmetric if 

changing the signs of the observations results in a change of sign of the 

estimate. Henceforth every location estimator will be understood to be trans­

lation equivariant and antisymmetric and we shall be concerned with the per­

formance of such location estimators based on symmetrically distributed ob­

servations. 

Because of the translation equivariance it suffices to study the dis­

tribution of a location estimator for 8 = 0. Because of the antisymmetry of 

the estimator and the symmetry of the underlying density this distribution 

is symmetric about zero and we may therefore restrict attention to the cor­

responding distribution function on [0, 00). 

If the density f is arbitrary but fixed and the sample size n is fixed, 
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most results in the literature relating to the distribution of an estimator 

concern its variance. These results consist of various lower bounds for the 

variance under different sets of conditions. The best known lower bound is 

provided by the Cramer-Rao inequality, which states that, under certain con­

ditions, the product of the variance and the Fisher information contained 

in the observations equals at least one. If the density f is absolutely con­

tinuous with derivative f', then its Fisher information is defined by I(f) = 
f(f'/f) 2f and the Fisher information contained in then observations equals 

nI(f). Hence the Cramer-Rao inequality states that for an arbitrary estima­

tor of location T 
n 

(1.1.1) 

In the sequel we shall assume that f is absolutely continuous with finite 

Fisher information. In view of (1.1.1) it then makes sense to norm estima­

tors by (nI(f))½ and to consider the distribution function of (nI(f))½T 
n 

under f. 

The basis for most results of Chapter 2 is the fact that this distri­

bution function is more spread out than the distribution function Kn' which 

is defined in terms of n and f (see (2.2.8)). The concept of spread we use 

here has been analyzed in BICKEL and LEHMANN (1979). This "spread-inequal­

ity" for the distribution of (nI(f))½T may be considered as a generaliza-
n 

tion of the Cramer-Rao inequality and in fact it implies a sharper version 

of it. It should perhaps be pointed out that unlike the antisymmetry, the 

transl~tion equivariance is essential for the spread-inequality. A particu­

larly simple but striking consequence of this inequality is that for every 
½ 

sample size n, density f and estimator Tn, the distribution of (nI(f)) Tn 

under f is more spread out than the symmetric triangular distribution with 

support (-2,2). This in turn implies that the distribution function of 

(nI(f))½T under flies below 1 - (2-x) 2/B for O ~ x ~ 2. 
n 

In PITMAN (1939) it has been shown that for densities f which satisfy 

a regularity condition, there exists an estimator which has the smallest 

variance obtainable by translation equivariant estimators. Hence, for these 

densities f, the variance of this so-called Pitman estimator provides the 

largest possible lower bound for the variance of an estimator. However, 

the bound thus obtained is rather intractable. Therefore a bound for the 

variance will be established which is easier to handle and which is asymp-
-2 totically optimal to the order n ; see Theorems 2.3.2 and 2.4.2. 
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In contrast with the situation for fixed sample size, where most well­

known results concern only the variance, much is known concerning the first 

order. asymptotic behavior of an arbitrary sequence {T }, n + 00 , of location 
n 

estimators under a density f. For a rather general class of loss functions 

and in a more ·general setting HAJEK (1972) has proved the best possible 

first order asymptotic inequality. In Section 2.4 it will be shown that in 

our location estimation problem this result can also be obtained from our 

finite sample spread-inequality. 

The point of view in Chapter 3 is quite different from the one in Chap­

ter 2. In Chapter 2 we provide upper bounds for the performance Q(Tn 1 f) of 

an arbitrary estimator Tn under an arbitrary density f. Since these bounds 

do not depend on Tn' they also constitute upper bounds for the quantity 

Q(f) sup Q(Tn 1 f), 
T 

n 

which is the performance under f of the best possible estimator under f, 

provided such an estimator exists. The quantity Q(f) is of relevance in the 

statistical situation where the density f is known and where one should 

therefore like to use the optimal estimator relative to this density. In 

Chapter 3 we again discuss upper bounds for Q(Tn 1 f), but now these bounds 

may depend on Tn as well as f. Minimizing such bounds with respect to f we 

obtain upper bounds for 

This quantity is of relevance in the statistical situation where the den­

sity f is unknown and where one wishes to assess the worst possible perfor­

mance of a given estimator Tn. 

In trying to find estimators Tn which perform well over a large class 

of densities f, many authors have constructed so-called adaptive estimators 

of location. These estimators adapt themselves to the underlying density to 

the effect that they are asymptotically optimal for all densities funder 

consideration, in the sense that 

(1.1.2) lim Pf ( (nI (f)) l.:!Tn:,; x) 
n➔oo 

<I> (x) , X E lR, 
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where~ is the standard normal distribution function (see STONE (1975), 

BERAN (1978)). 

The basic idea underlying adaptive estimation is to estimate the under­

lying density - or rather the score function (-I(f))-lf' (•)/f(•) - from the 

data and then use an estimator of location which is appropriate for the es­

timated density. We shall show that this connection between the problem of 

estimating location for an unknown density and that of estimating the score 

function is quite natural. Regardless of how a location estimator is con­

structed, it cannot perform well over a class of densities unless it is pos­

sible to estimate the score function accurately over this class. This is the 

content of Theorem 3.2.1, which states that the Cramer-Rao lower bound of 

(1.1.1) may be increased by an integrated mean square error of an estimator 

of the score function. A close look at this integrated mean square error re­

veals that it cannot be small for two densities simultaneously, if these 

densities are close together but at the same time possess quite different 

score functions. Such pairs of densities do indeed exist and together with 
½ Theorem 3.2.1 their existence proves that the supremum of varf((nI(f)) Tn) 

over all densities f equals at least 2 for every estimator Tn (see Corollary 

3. 2 .1). 

However, the existence of such pairs of densities can also be exploited 

in a simple argument which proves a much stronger result, namely that 

(1.1.3) inf sup Pf((nI(f))½Tn~x) 
f T 

n 

(see Theorem 3.2.2), which implies that 

(1.1.4) ½ 
sup inf varf ( (nI (f)) Tn) 

f T 
n 

00 

X > 0, 

These relations have implications both for the statistical situation where 

the density f is known and for the situation where f is unknown. For example 

(1.1.4) shows that the variance of the normed Pitman estimator is arbitrar­

ily large if f is chosen sufficiently unfavorable. In other words the Cramer­

Rao bound in (1.1.1) is arbitrarily bad for sufficiently unpleasant f. For 

the statistical situation where the density f is unknown this implies that 

the norming constant (nI(f))½ suggested by (1.1.1) and (1.1.2) is not the 

appropriate one for comparing the performances of an estimator under various 

densities. In particular, for an estimator Tn the variance under f of Tn 

should be compared with the variance under f of the Pitman. estimator 'l'f rather 
n 
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than with the Cramer-Rao bound and this should be done for all f simulta­

neously for which the Pitman estimator exists and has a finite variance. This 

comparison is carried out in Theorem 3. 3. 2 for sample size n tending to infinity. 

A natural question concerning adaptive estimators is whether the con­

vergence in (1.1.2) can be uniform inf. In view of (1.1.3) the answer to 

this question has to be negative. The same answer is obtained in Theorem 

3. 3. 1 as a consequence of our spread-inequality. 

1.2. NOTATION AND TECHNICAL REMARKS 

In this section we shall introduce the notation which will be used 

throughout this study and we shall present a couple of technical lemmas 

which will be needed in Chapters 2 and 3. 

Let JR be the real numbers and let 8 be the a-field of Borel subsets. 

By D we denote the set of density functions f with respect to Lebesgue mea­

sure on (JR, 8), which are symmetric about zero and absolutely continuous 

with Radon-Nikodym derivative f' and which have finite Fisher information 

(1. 2.1) I(f) I 2 (f' (x)/f(x)) f(x)dx. 

-00 

We note that I(f) is positive for all f ED. Henceforth we shall call a 

Radon-Nikodym derivative$' of an absolutely continuous function$, the de­

rivative$' of$. The distribution function corresponding to f will be de­

noted by F. 

For all positive integers n, x1 , .•. ,Xn are independent and identically 

distributed random variables with common density f(•-6), 6 E JR, f ED. 

Let the function t : JRn -+ JR be Borel measurable and let 
n 

be an estimator based on x1, ••• ,Xn of the location parameter 6. If for all 

real a and Lebesgue almost all x 1 , ••• ,xn 

then Tn is called translation equivariant. If 
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for Lebesgue almost all x 1 , •.. ,xn' then we shall call Tn antisymmetric. We 

denote by Tn the class of translation equivariant antisymmetric estimators 

of location T. 
n 

If no confusion is possible, the distribution function of 

(1.2. 2) * T 
n 

under f will be denoted by Gn' viz. 

(1.2. 3) G (x) 
n 

The average of the score function 

(1.2.4) 
f' (x) 

I(f)f(x) ' 

X E lR. 

X E lR, 

taken at the observations will be denoted by 

(1.2.5) s 
n 

the normed average by 

(1.2.6) * s 
n 

and the distribution function of this normed average by Hn, viz. 

(1.2.7) H (x) 
n 

X E JR. 

The distribution function K with inverse function 
n 

(1.2.8) 
-1 

K (u) 
n 

u 1 

I (I 
l.:i s 

-1 -1 
Hn (t)dt) ds, U E [0,1], 

will also play an important part. Note that the dependence of Hn and Kn on 

f and the dependence of Gn on f and Tn is suppressed in the notation. 

We shall loosely speak about symmetric distribution functions meaning 

distribution functions of distributions which are symmetric about zero. 

Probabilities, expectations and variances under f(•-0) will be denoted by 

Pf(•-e)( •.. ), Ef(•-e)··· and varf(•-e)··· and, if 0 = 0, by Pf( ••• ), Er·· 
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and varf""" . The standard normal distribution function and its' density will 

be indicated by~ and~ respectively. Finally the indicator function of a 

set A will be denoted by 1A(•) and for all c > 0 the truncation function 

[•Jc is defined by 

(1.2.9) for 

X < -C 

-C:, X:, C 

C < X. 

Throughout this treatise we shall repeatedly use standard resu'!)ts in anal­

ysis. A convergence theorem which is perhaps not generally known is given 

in the following lemma. 

LEMMA 1.2.1. (Vitali's theorem). Let (X,B,µ) be a measure space and let 

{hn} be a sequence in LP(x,B,µ), O < p < 00 • If hn + h µ-almost everywhere 

and 

then 

limsup 
n+ oo 

lim I 
n+oo 

0. 

PROOF. (NOVINGER (1972)). For all real numbers a and b 

By Fatou's lemma it follows that 

liminf 
n + oo 

S #+1 I lhlPdµ - limsup I lhn-h!Pdµ. 
n + oo 

□ 

Let h be a density with respect to Lebesgue measure on (lR, 8) and let 

1)1: lR+lR be a Borel measurable function. We adopt the convention 0. 00 = 0 

and we shall use the notation 
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J 1j>(x)h(x)dx = J 1/>h. 

If f is an absolutely continuous density with derivative f' and 

!11/>f'/flf < 00 , then we have 

(1.2.10) J 1/>(f'/f)f 

and if f' is absolutely continuous with derivative f" and !11/>f"/flf < 00 , 

then 

J 1/>(f"/f)f = J 1/>f". 

We shall repeatedly use this type of cancellation which is valid in view of 

the following lemma. 

LEMMA 1.2.2. Let h: JR-+:m. be an absolutely continuous function with deriva­

tive h' and let a E lR. The Lel::esgue measure of the set {x I h (x) = a, 

h' (x) f O} equals zero. 

PROOF. See Appendix 1. 0 

1 • 3. RELATION TO PREVIOUS WORK 

In the next chapters we shall study the performance of location esti­

mators Tn E Tn under densities f(•-9), 9 E :m., f E D. Because of the trans­

lation equivariance of Tn the equality 

(1.3.1) 

holds for all x E :m. and e E :m. and hence it suffices to investigate the 

behavior of Tn under 9 = 0. We shall mainly be concerned with the follow­

ing four quantities (cf. (1.2.1), (1.2.9), (1.2.3)): 

(1.3.2) 

(1.3.3) C > 0, 

(1.3.4) X > 0, 
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(1.3.5) 

In Lemma 2.2.1 it will be shown that Gn is absolutely continuous. Together 

with the symmetry of f and the antisymmetry· of Tn this implies that Gn is 

symmetric with Gn(O) 
-1 

Gn (u) for½< u ~ 1. 

Let l: lR➔lR be a 

½. Hence it suffices to study Gn(x) for x > 0 and 

symmetric Borel measurable function which is non-

decreasing on [0,oo). The function l will be called a loss function. Let the 

risk Rf(Tn,6) of an estimator of location Tn - not necessarily in Tn - under 

f(•-6) be defined by 

Note, that for all translation equivariant estimators Tn and all 6 E lR we 

have 

and that the quantities (1.3.2), (1.3.3) and (1.3.4) are related to the 

risks corresponding to the loss functions 

(1.3.6) l(y) 

(1.3. 7) l<y> 

(1. 3. 8) l(y) 

2 
y 

C > 0, 

1 < > c lyl l, x,oo X > 0. 

BROWN (1966) shows that in certain situations minimum risk translation 

equivariant estimators of location are admissible. More precisely, if l is 

convex and if there exists a translation equivariant estimator Tn,f,l which 

minimizes Rf(Tn 1 0) over all translation equivariant estimators Tn' then -

under certain regularity conditions - there does not exist an estimator TO 
n 

with 

for all 6 E lR and 
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for at least one e0 E JR. Let Tn = tn(x1 , ... ,Xn) be translation equivariant, 

let 

for all x1 , .•• ,xn' let Tn tn(x1 , ••• ,Xn) and let the loss function l be con­

vex, then 

½ + ½l(-(nI(f)) t (-x1 , .•. ,-x ))} 
n n 

We conclude that for convex loss functions land under certain regularity 

conditions, a minimum risk estimator in Tn is admissible within the class 

of all location estimators. 

Let l be an arbitrary loss function. Since l is bounded from below 

a(f,ll 

With the aid of the infima a(f,l) with las in (1.3.6), (1.3. 7) and (1.3.8), 

bounds may be derived for the quantities (1.3.2) - (1.3.5). However, it is 

clear that these bounds are analytically intractable for most densities 

f ED. For some densities f ED the following result of HORA and BUEHLER 

(1966) may be useful: if for all x 1, ... ,x, t f 0 (x1 , ... ,x) minimizes 
n n, ,..c... n 

f(x.-6)d6 
l. 

and is unique, then the minimum risk translation equivariant estimator 

Tn,f,l exists and equals tn,f,l(x1 , •.• ,Xn). It is easy to verify that Tn,f,l 

is also antisymmetric in this case. Straightforward calculation shows that 

for the loss functions (1.3.6), (1.3.7) and (1.3.8) t f 0 (x1 , ... ,x) has to 
n, ,..(... n 

satisfy the equations 



(1.3.9) 

(1.3.10) 

(1.3.11) 

I 
n 

(t-0) TT f(xi-0)d0 
i=l 

0, 

c(nI(f))-½ 

f e f (x. -0-t) d0 
l. 

-c(nI(f))-½ 

n 
n 

i=l 

n 
n 

i=l 

-½ f(x.-t+x(nI(f)) ) 
l. 

n 
n 

i=l 

0, 

-½ 
f(x.-t-x(nI(f)) ). 

l. 
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Equation (1.3.9) yields the Pitman estimator (PITMAN (1939)). Although this 

result of HORA and BUEHLER (1966) may simplify the analytical manipulation 

of the infima a(f,l), the bounds thus obtained for (1.3.2) - (1.3.5) remain 

complicated. From the spread-inequality (2.2.8) manageable bounds for the 

quantities (1.3.2) - (1.3.5) will be derived. 

With a few exceptions the bounds available in the literature concern 

the variance (1.3.2). The best known of these is the Cramer-Rao bound given 

in (1.1.1). Many authors have discussed this inequality in more general esti­

mation problems than the one we discuss here. We mention FRECHET (1943), 

C.R. RAO (1945), CRAMER (1946), FABIAN and HANNAN (1977), PITMAN (1978). 

Some of these authors impose regularity conditions to the effect that the 

order of differentiation and integration for certain expressions may be re­

versed. Others assume that the densities f(•-0) are absolutely continuous 

with respect to each other for 0 E lR, i.e. that f is Lebesgue almost every­

where positive on lR. Theorem 2. 3. 1 implies that ( 1. 1. 1) is valid for all 

f ED and T ET. 
n n 

BHATTACHARYYA (1946) arrived at a sequence of bounds which improve the 

Cramer-Rao inequality. Let 

(1.3.12) 

then, fork 

(1.3.13) 

V .. 
l.J 

2,3, .•• , the k-th 

C" det : 

varfTn 2: 
Vk2 

C' det : 

Vkl . 

bound bk(n,f) in this sequence is 

V2k 

Vkk 
bk(n,f) v\j 

Vkk 
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and bk+l (n,f) ~ bk(n,f); see ZACKS (1971) Section 4.2. For the k-th bound 

regularity conditions are needed which involve the k-th derivative off. It 

is easy to see that v11 = nI(f) and v12 = 0. Consequently fork 2, (1.3.13) 

reduces to (1.1.1). In Appendix 2 it will be shown that for all k 

(1.3.14) limsup 
n+oo 

3 -1 
n(bk(n,f)-(nI(f)) )<co 

Hence the bounds given in Theorems 2.3.2 and 2.4.2 constitute nontrivial 

improvements of the Bhattacharyya bounds in an asymptotic sense. 

Another bound has been published by CHAPMAN and ROBBINS (1951). They 

show that for an arbitrary unbiased estimator of location Tn and for any 

density f 

(1.3.15) 

For densities f € D satisfying 

lim e-2 f 
6+0 

2 
(f(x-6) - f(x)) /f(x)dx I (f), 

inequality (1.3.15) is at least as sharp as (1.1.1). A result of the same 

type occurs in Theorem 6. 2 of Chapter 1 of IBRAGIMOV and HAS' MINSKII (1979) • 

This inequality is presented in Theorem 2.3.3 and is at least as sharp as 

(1.1.1) for all f € D. 

BARANKIN (1949) has given bounds for the risks corresponding to the 

loss functions f(y) = lyJs, s > 1. Fors= 2 the Bhattacharyya bounds can 

be derived from these bounds. The risks corresponding to convex loss func­

tions have been studied by M.M. RAO (1961) (see also the comments in KIEFER 

(1962)). For further details concerning the Cramer-Rao inequality and its 

refinements the reader is referred to Section 2 of BLISCHKE, TRUELOVE 

and MUNDLE (1969) and Section 3.2 of BLYTH and ROBERTS (1972). 

For the first order asymptotic behavior under f € D of a sequence {T }, 
n 

n + 00 , of estimators Tn € Tn a number of results are available. A character-

ization of the possible limiting distributions of {(nI(f))~T} under f is n 
given in HAJEK (1970): if G converges to some distribution function G, then 

n 
G equals the convolution 

(1.3.16) G 
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of the standard normal distribution function~ and some distribution func­

tion G0 depending on the choice of {Tn}. Hajek proves this result under the 

so-called local asymptotic normality assumption which is satisfied here in 

view of Theorem A.4 of HAJEK (1972). This result of Hajek has also been 

proved in INAGAKI (1970, 1973) under different assumptions. Note that 

(1.3.16) implies G(x) ~ ~(x), x > 0. 

Another way of saying that the' first order asymptotic behavior of 

{(nI(f))~} under f is worse than the behavior of a standard normal random 
n 

variable is provided by HAJEK (1972). It is proved there that for every loss 

function l 

(1.3.17) liminf 
n+m 

CX) 

Rf(Tn,O) ~ f l(x)<j>(x)dx. 

..co 

This inequality is obtained in Theorem 2.4.1 as a consequence of our spread­

inequality. 

For all f ED there exist sequences {T }, T ET, for which the dis-n n n 
tribution function G0 defined in (1.3.16) is degenerate at O and for which 

(1.3.17) is an equality. For instance the maximum likelihood estimator 0 
n,f 

belongs to T and satisfies (1.1.2). STONE (1975) claims that (1.1.2) with 
- n 

T = 8 is a consequence of Proposition 6 of LE CAM (1970). In STONE (1974) n n,f 
the existence of another sequence {T} satisfying (1.1.2) has been verified. 

n 
As has been noted in Section 1.1, there exist adaptive estimators which 

satisfy (1.1.2) for all f ED simultaneously. The adaptive estimators of 

STONE (1975) and BERAN (1978) have this property. The other adaptive esti­

mators constructed so far fulfill (1.1.2) only for subsets of D. We mention: 

VAN EEDEN (1970), BERAN (1974), SACKS (1975). The adaptive approach has 

originated from STEIN (1956), who showed that asymptotically the problem of 

location estimation is as difficult for unknown f ED as for known f. Re­

views on adaptive estimation have been given by HOGG (1974), BICKEL (1976), 

HUBER (1977). Related estimators, which satisfy (1.1.2) for a finite number 

of densities f ED or which almost satisfy (1.1.2) for a large class of 

densities f ED, have been obtained by BIRNBAUM and LASKA (1967), HOGG 

(1967), WEISS and WOLFOWITZ (1970), JAECKEL (1971), MIKE (1973), JOHNS 

(1974) and WOLFOWITZ (1974). 
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CHAPTER 2 

THE BEHAVIOR OF LOCATION ESTIMATORS UNDER A FIXED DENSITY 

2.1. INTRODUCTION 

This chapter contains results for the statistical situation where the 

density f ED is known. Most of these results are based on the spread­

inequality (2.2.8) which is presented in Section 2.2. Section 2.3 consists 

of inequalities for the quantities (1.3.2) - (1.3.5) for fixed sample size. 

The asymptotic versions of these inequalities constitute the main part of 

Section 2.4. 

2.2. THE SPREAD-INEQUALITY 

In this section we shall present some basic properties of the distri-

bution of an arbitrary estimator of location Tn E Tn under a density f ED. 

Using these properties we shall derive the spread-inequality (2.2.8) and a 

* lower bound for Efl(Tn) for the loss functions l introduced in Section 1.3. 

This lower bound depends on the distribution function K (cf. (1.2.8)). We 
n 

start by establishing expressions for the density of T* and its derivative 
n 

in Lemma 2.2.1 and expressions for the density of Kn and its derivative in 

Lemma 2.2.2. 

LEMMA 2.2.1. For all f ED and all T ET the distribution function G of 
* n n n 

Tn under f is differentiable and has a density gn given by 

(2. 2 .1) y E JR. 

Furthermore gn is differentiable Lebesgue almost everywhere with derivative 

g' and there exists a version Ef (s* I T* = y) of the conditional expectation 
n * * n n 

of Sn under f given Tn = y such that, for Lel:esgue almost ~11 y E JR, 
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(2.2.2) * I * g' (y) = -Ef(S T =y)g (y). 
n n n n 

PROOF. First we note that for 6 > O 

00 00 x+6 

I -1 
16 (f(x+6)-f(x)) ldx = I 6-1, I f' (y)dyldx 

-00 -00 X 

00 x+6 

:5 I I -1 
6 if' (y) ldydx 

--00 X 

00 

I I -1 
6 If' (y) I dxdy 

-00 y-6 

00 

I if'(x)ldx. 

-oo 

Clearly the same is true for 6 < 0. Hence, for all 6 f O and for j = 1, ... ,n, 

I I j-1 n _1 
I TT f(x.+6) TT f(x.)6 (f(x.+6)-f(x.)) ldx 1 ... dx 
i=l i i=J'+1 i J J n JRn 

I i[f' (x.)/f(x.)]~ f(x.) idx1 ... dx. 
J J i=l i n 

The right-hand side of this inequality is bounded by (I(f))½ and therefore 

it is finite. By Vitali's theorem it follows that for j = 1, •.• ,n, 

lim f ... f lj~l f(x.+6) ~ f(x.)6-l(f(x.+6)-f(x.)) 
6+0 JRn i=1 i i=j+l i J J 

n 
-[f'(x.)/f(x.)]TT f(x.)idx 1 ... dx 0, 

J J i=l i n 

and this implies that 

lim f 
6+0 

I n n 
10-1 ( TT f(x.+6) - TT f(x.)) 

i=l i i=l i 

(2. 2. 3) 
n n 

- l [f' (x. )/f (x. )] TT f(x.) ldx1 ... dx 
j=l J J i=1 i n 

(cont'd) 



(2.2.3) 
(cont'd) 

n J ~ lim I 
e+o j=l 

n 
TT 

i=j+l 

n 

-1 
f(x.)0 (f(x.+0)-f(x.)) 

i J J 

-[f' (x.)/f(x.)] TT f(x.) Jdx1 ... dx 
J J i=l i n 

0. 

Now by the translation equivarianc~ of Tn 

n 
{e- 1 ( TT f(x.+(nI(f))-~0) 

i=l 
i 

n 
- TT f(x.))}dx1 ••• dx, 

i=l i n 

and it follows from (2.2.3) that Gn is differentiable with derivative gn 

given by 

n 
{(nI(f))-~ l [f' (x.)/f(x.)J 

j=l J J 

n 
TT f(x.)}dx1 .•. dx. 

i=l i n 

* Since EfSn Oby symmetry, this can be rewritten as follows 

* * Ef(-S 1( J(T )) n - 00 ,y n 

* * EfS (1-1 ( J (T )) n - 00 ,y n 

* 

17 

whic~ lpr:ves (2.2.1). Because Sn is integrable; there exist a v:rsion 

Ef(Sn Tn) of the conditional expectation of Sn under f given Tn and a Borel 

measurable function xn: lR + lR with 

and with 

* I * Ef (S T ) n n 
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for all y E IR. So 

and we see that gn is differentiable Lebesgue almost everywhere with deriva­

tive 

for Lebesgue almost all y E lR. This completes the proof of the lemma. 0 

* LEMMA 2.2.2. Let f ED, let Hn be the distribution function of Sn under f 

and K the distribution function with 
n 

(2.2.4) 
-1 

K (u) 
n 

u 1 

= f (f H: 1 (t)dt)-1ds 

½ s 

for all u E [0,1] (cf. (1.2.7) and (1.2.8)). Then Kn possesses an absolutely 

continuous density kn with derivative k~ given by 

1 

(2.2.5) 

(2.2.6) 

k (x) 
n 

k' (x) 
n 

f 
-1 

Hn (t)dt, 

Kn (x) 

{

-H-l (K (x) )k (x) 
n n n 

0 

for Lebesgue almost all x E lR. 

if k (x) > 0 
n 

if k (x) 0 
n 

* PROOF. We note that the distribution of Sn under f is symmetric with vari-

ance 1 and that consequently for alls E (0,1) 

1 1 

0 < J H:1 (t)dt S (f (H: 1 (t)) 2dt)l.:; = 1. 

s 0 

It follows that K-l is differentiable with a positive 
n 

and finite derivative 

on (0,1). Hence Kn is a symmetric 

tiable with a positive and finite 

distribution function which is differen­

derivative k on (K-1 (0),K-1 (1)) and which 
n n n 

satisfies the equation 
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Kn (x) 1 

(2.2.7) x = J (I H:1 (t)dt)-lds, 

~ s 

for all x E (K-1 (0),K-l(l)). Differentiating (2.2.7) and (2.2.5) we obtain 
n n 

(2.2.5) and (2.2.6). D 

The distribution functions G 
n 

are related by the fact that Gn is 

(2.2.8). BICKEL and LEHMANN (1979) 

all O < u ~ v < 1 , 

and K studied in the preceding lemmas 
n 

more spread out than Kn in the sense of 

call Gn more spread out than Kn if, for 

and they show that for differentiable Gn and Kn this inequality is equiva­

lent to (2.2.8). The spread-inequality (2.2.8) and a consequence of it con­

stitute the main result of this section. 

THEOREM 2.2.1. Let f € D, T E T and let l: ]R +]R be a measurable function, 
n n 

which is symmetric about 0 and nondecreasing on [0, 00 ). For alls E (0,1) the 

inequality 

(2.2.8) 

holds and this implies 

1 

(2.2. 9) E/(T:) ~ J l(K~1 (u))du. 

0 

PROOF. Starting from 

and 

1-s 

1 

f E(l 1 (T*l Is* = H-1 (t))dt, 
(G- (s),oo) n n n 

0 n 

we arrive by the Neyman-Pearson lemma (cf. Theorem 5(ii) with m 1 of Chap-

ter 3 of LEHMANN (1959)) at 

s 

H-l(t)dt. 
n 
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Togetherwith (2.2.1) and (2.2.5) this implies (2.2.8) andhenceforalluE (½,1) 

u I -1 -1 
(gn (Gn (s))) ds 

But this implies 

1 

2 I l (G~1 (u)) du 

½ 

and the proof is complete. D 

1 

2: 2 I l(K~1 (u)) du 

½ 

-1 
K (u). 

n 

COROLLARY 2.2.1. Let Mand m be the distribution function and the density 

of the symmetric triangular distribution with support (-2,2), i.e. 

For f, Tn, lands as in Theorem 2.2.1 we have 

(2.2.10) 

(2.2.11) 

-1 -1 
gn (Gn (s)) $ m(M (s)), 

1 

E/(T~) 2: I l(M-1 (u)du. 

0 

PROOF. From (2.2.5) and 

1 I (H~1 (t)) 2dt ½, 

½ 

we obtain by the Cauchy-Schwarz inequality for s E [½,1) 

1 1 

!, cf dtJ½cf <H~ 1 <t>J 2dtJ½ 

s s 

½ -1 
$ [½(1-s)] m(M (s)). 

By symmetry considerations we arrive at 

(2.2.12) k (K-l(s)) $ m(M-l(s)), 
n n 

S E (0, 1), 

which together with (2.2.8) implies (2.2.10). The proof of (2.2.11) is anal-

ogous to that of (2.2.9). D 



REMARK 2. 2. 1. Let ,e.0 : lR + lR be a measurable function such that ,e.0 (-x) + 

l 0 (x) is a nondecreasing function of x on [0, 00). Then 

X E lR, 
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satisfies the conditions of Theorem 2.2.1 and for all f ED and T ET we 
n n 

obtain by symmetry considerations 

1 

~ I -1 
l(Kn (u))du 

0 0 

Hence (2.2.9) is valid for l 0 also. Other results in this study may be 

similarly extended. Since these extensions are entirely trivial we shall 

not do so and restrict attention to symmetric loss functions l throughout. 

The next lemma will sometimes be helpful to handle the lower bound of 

(2.2.9). 

LEMMA 2. 2. 3. Let f E D and let 1/i: lR + JR be an absolutely continuous func­

tion with derivative 1/i', satisfying 

Then 

(2.2.13) 

1 I w2 (K:1 (u))du < 00 , 

0 

1 

J -1 
11/i' (Kn (u)) ldu < 00 • 

0 

1 

J 1/i' (K:1 (u)) du 

0 

1 

J -1 -1 
Hn (u)1j,{Kn (u))du, 

0 

which implies 

1 

(2.2.14) J 2 -1 
1/i (Kn (u) )du 

0 

PROOF. In view of Lemma 2.2.2 and the assumptions we see that 
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(2.2.15) 

is finite 

(2.2.16) 

00 1 

f 1/J' (x)k (x)dx = 
n f 1/J'(K- 1 (u))du 

n 
-00 0 

and by the Cauchy-Schwarz inequality 

00 1 

f ijJ(x)k~ (x)dx =-f 
0 

is also finite. It follows that the limits in 

that 

f { 1/J' (x) kn (x) +1/J (x) k~ (x) }dx lim 1/J(b)kn(b) -lim lji(a)kn(a) 
b--><x> a+-00 

exist, which together with 

implies that both limits equal zero. Consequently 

f {1/J' (x)k (x) + 1jJ (x)k' (x) }dx = 0. 
n n 

and (2.2.15) and (2.2.16) yield (2.2.13). Applying the Cauchy-Schwarz in-

equality to (2.2.13) we obtain (2.2.14). D 

An analogue of Lemma 2.2.3 with Gn instead of Kn can also be proved. 

The Cramer-Rao inequality is an immediate consequence of it. 

LEMMA 2.2.4. Let f ED, Tn E Tn and let 1/J: R +]R be an absolutely contin­

uous function with derivative 1/J'. If 

then 

(2.2.17) 

which implies 
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(2.2.18) 

PROOF. The proof of Lemma 2.2.3 is valid here too, provided kn and k~ are 

replaced by gn and g~, provided Lemma 2.2.2 is replaced by Lemma 2.2.1 and 

(2.2.16) by 

f 1j) (x) g~ (x) dx □ 

2.3. FIXED SAMPLE SIZE 

In this section inequalities will be presented for the variance, the 

truncated variance, the distribution function and its quantiles for an 

arbitrary estimator of location Tn E Tn under a fixed density f ED and for 

fixed sample size n. 

We start with the variance, for which the Cramer-Rao inequality 

(2.3.1) 

may be obtained from Lemma 2.2.4 by taking 1j) to be the identity. This in­

equality can be sharpened as follows. 

THEOREM 2.3.1. For all f ED and all Tn E Tn with EfJTnl < 00 the inequali­

ties 

1 

(2.3.2) I -1 2 
(Kn (u)) du~ 1 

0 

hold. 

PROOF. The first inequality in (2.3.2) follows from (2.2.9) of Theorem 

2.2.1 with l(x) = x 2 . The second inequality in (2.3.2) follows from (2.2.14) 

of Lemma 2.2.3 with lj)(x) = x. D 

If f ED is such that -f' (X)/f(X) has a normal distribution under f, 

then it is easy to check that K~ 1 ~-land that the second inequality in 

(2.3.2) is an equality. Conversely, it can be shown that equality in the 

second part of (2.3.2) implies normality of -f' (X)/f(X) under f. However, 

we shall not pursue this further because it seems to be more interesting 

to ask in which cases equality holds in (2.3.1). An answer to this question 
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is given in Theorem 2.3.2. This theorem provides a lower bound for the vari­

ance which is strictly greater than the Cramer-Rao bound for all nonnormal 

f ED. For some f ED it is asymptotically the best possible lower bound 
-1 

to order n , as will be shown in Section 2.4. 

For f E D and for an absolutely continuous function ijl: JR + JR with 

derivative 1/J', we define 

(2.3.3) 

a(ijl,f) 

b(ijl,f) 

f (ijlf'/f+ijl') (f'/f)f, 

f 1jl2f' 

c(ijl,f) = f (1jlf'/f+ijl 1 )
2f, 

whenever these integrals exist. For all f ED we define 1f as the set of 

measurable functions 1jJ: JR + :R. for which: 

1. 1jJ is absolutely continuous with derivative 1/1', 

(2.3.4) 
2. 1jJ is symmetric about zero and bounded from below, 

3. b(ijl,f) < 00 I C (ijl,f) < oo, 

4. JijJf = 0. 

From 

(2.3.5) 
2 

(a(ijl,f)) ~ c(ijl,f}I(f) 

we see that for all 1jJ € 1f, a(ijl,f) is finite and 

d (1/J,f) = b(ijl,f) (I(f)i2(n-1) + c(ijl,f)I(f) - (a(ijl,f)) 2 
n 

is nonnegative and finite. For all 1jJ € 1f we define 

= {
0

(a(ijl,f)) 2 /dn (1/J,f) 

en (1/J,f) 

if dn (1/1,f) > 0, 

if dn(ijl,f) 0. 

Furthermore we denote by o0 the set of densities f € D which are twice dif­

ferentiable with derivatives f' and f" and for which 
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ijJf (f'/f,2 - f"/f - I(f) 

belongs to '¥f. 

THEOREM 2.3.2. For all f E D and all T E T with EfJT I < 00 , the inequali-n n n 
ties 

(2.3.6) 

hold. The second inequality of (2.3.6) is an equality iff f is a normal den­

sity. Moreover, for all f E o0 and all Tn E Tn with EflTnl < 00 , the inequali­

ties 

(2. 3. 7) 

hold and en(ijJf,f) = 0 iff f is a normal density. 

* 2 PROOF. Without loss of generality we assume that Ef(Tn) < 00 and we intro-

duce Rf by 

In view of (2.2.17) with 1jJ the identity map, we have 

(2. 3.8) 0 

and 

(2. 3. 9) 

Let d ED be a density which vanishes wherever f vanishes and for which 

f (d/f) 2f < 00 , 

Note that this implies 
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Define 

. -1 
sn,d = (nI (d)) 

n 
l (-d'(Xi)/d(Xi)). 

i=l 

Ford a relation analogous to (2.3.8) holds, hence 

0 = Ed(T -S d)S d n n, n, 

(2.3.10) 

(d(X.)/f(X.))} 
l. l. 

+ (nI(d)I(f})-l I (d'f 1 /i)f - (nI(d))- 1 . 

For arbitrary a., (2.3.8) and (2.3.10) together imply 

n 
E/RiS d TT (d(X.)/f(X.)) -a.S ]} 

n, i=l l. l. n 

= n-½(I(d))- 1 (I(f))-½{I(f) - I (d'f'/f2 )f}. 

If we apply the Cauchy-Schwarz inequality to the left-hand side of this 

equality we obtain 

which for 

yields 

(2.3.11) 

EfR! ~ n- 1 (I(d)}-2 (I(f))-1{r(f) - f(d'f'/f 2 )f} 2 

• {n -1 (I (d)) -2 I (d' /f) 2f[ I (d/f) 2f]n-1 + a.2 (nI (f)) -1 

-2a.(nI(d)I(f))-lI (d'f'/i)f}-1 , 

EfR; ~ {I(f) -I (d"f 1 /i)f}2{r(f) I (d'/f/f[I (d/f) 2f]n-l 

-[J(d'f'/f2 )f] 2 }-l, 
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unless the denominator equals zero. 
-1 

Let w E ~f' let B = -inf w(x) and define dE = f(l+Ew) for EE (0,8 ). 

Then dE is a symmetric absolutely continuous density with Fisher information 

I(d) 
E 

J <f' /f + ECwf' /f+w' J i2 o+Ewl-1f 

-1 ' 2 
::; 2(1-EB) (I(f) +E c(w,f)) < 00 

and therefore dE ED. Moreover, 

J<d/fl 2f 

Jcd~/fl 2f 

2 1 + E b(w,f) < 00 , 

J Cf' /f + ECwf' /f+w•Ji2f 

and hence dE satisfies the conditions imposed on d earlier in the proof. 

Substituting d = dE in (2.3.11) we arrive at 

2 2 2 2 
EfRf ~ E (a(w,f)) {I(f)[I(f) +2Ea(w,f) +E c(w,f)] 

2 n-1 2 -1 
•[l+E b(w,f)] - [I(f) +Ea(w,f)]} , 

which by taking the limit as E + 0 reduces to 

In view of (2.3.9) and the nonnegativity of dn(w,f) this proves (2.3.6). 

If f is a normal density, then the second inequality in (2.3.6) mustbe 
-1 n 

an equality because the left-hand side equals 1 for Tn = n ~i=l Xi. Con-

versely, if the second member of (2.3.6) equals 1 then for all w E ~f, 

a(w,f) = 0 or dn(w,f) = 0. If dn(w,f) = 0, then the equality sign must hold 

in (2.3.5). This means that, for soine c0 E :JR, the differential equation 

wf' + w'f = cof' 

holds Lebesgue almost everywhere on :JR. Hence wf - c0f is constant and be­

cause fwf = O, it follows that c 0 = 0 and a(w,f) = 0. We may therefore 
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assume that a(¢,f) 

Consider 

¢ (x) 
C 

0 for all¢€ ~f and prove normality off. 

C 

2 2 
(c -x ) 1 ( ) (x) - 2 -c,c J 2 2 (c -y )f(y)dy. 

0 

Note that ¢c E ~f for all c > 0 so, that 

C 

0 2 J 
2 2 2 (c -x )(f'(x)/f(x)) f(x)dx 

0 

C C 

- 2I(f) J (c2-x2)f(x)dx - 4 J x(f'(x)/f(x))f(x)dx. 

0 0 

Differentiation of this equality with respect to c yields 

C C 

f' (c) I (f' (x)/f(x)) 2f(x)dx - I(f) I f(x)dx, 

0 0 

for Lebesgue almost all c > 0. This implies that f' may be chosen absolutely 

continuous on (0, 00 ) with derivative f" satisfying 

(2.3.12) 

Lebesgue almost everywhere on those open intervals of (0, 00 ) where f is posi­

tive. So f'/f is a nontrivial linear function and log fa nontrivial qua­

dratic one on these intervals. In view of the continuity and symmetry off, 

f must be positive and log f must be quadratic on the entire real line, i.e. 

f is a normal density. 

Now let f E D0 • Then ¢f E ~f and it remains to prove that the equality 

a(¢f,f) = 0 implies normality off. Since 

J (¢•f• + w f") = J(w f'/f+w•, (f'/f)f + J w (f"/f- (f'/fi2)f f f f f f 

and 
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are finite, both limits in 

f(i/l'f' + 1/1 f")= lim 1/lf(b)f'(b) - lim 1/lf(a)f'(a) 
f f b-+<><> a+-oo 

exist and equal zero. Hence 

and therefore a(i/lf,f) = 0 implies (2.3.12), which was seen to be equivalent 

to normality of f. D 

Theorem 2.3.2 provides the following answer to the question raised 

before. 

COROLLARY 2.3.1. Let f ED. There exists an estimator T ET for which 
n n 

(2.3.1) is an equality iff f is a normal density. 

-1 n 
PROOF. If f is a normal density then with Tn n Li=l Xi the equality sign 

in (2.3.1) holds. Theorem 2.3.2 proves that equality implies normality. D 

The result of this corollary has been given by FRECHET (1943), page 

191, without explicit mention of regularity conditions. It should perhaps 

also be pointed out that it is not a consequence of the theorem of WIJSMAN 

(1973), since one of his assumptions is not satisfied here. Moreover, it is 

not clear that normality follows from the exponentiality as given by 

Wijsman. 

The final result in this section concerning the variance is a generali­

zation of the Cramer-Rao inequality (2.3.1) to all symmetric densities. 

THEOREM 2.3.3. For all densities f with respect to Lebesgue measure on 

(IR, B) which are symmetric about zero, and for all T ET with EflT I < 00 , 
n n n 

(2.3.13) 

where 
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is the Hellinger-affinity of the densities f(•-8) and f. Furthermore, 

(2.3.13) is at least as sharp as (2.3.1) for all f € D. 

PROOF. Without loss of generality we assume that EfT2 < 00 • Because 
n 2 

Ef(•-8)Tn = 8, the Cauchy-Schwarz inequality and the inequality (a+b) $ 

2a2 + 2b2 yield 

f n n 2 
(t (x 1 , ... ,x )-l:.8) ( TT f(x.-8)- TTf(x.))dx1 ..• dx} 

n n i=l 1 i=l 1 n 

f n ½ n ½ 
(t (x1 , ... ,x )-½8)( TT f (x.-8) + TT f (x.)) 

n n i=l 1 i=l 1 

(2.3.14) 
n ½ n ½ 2 

•(TT f(x.-8)-TT f(x.))dx 1 ••• dx} 
i=l 1 i=l 1 n 

{I f 
2 n n 

$ (tn (xl, ... ,xn )-½8) (2 TT f(x.-8)+2 TT f(x.))dx 1 ••• dx} 

lR.n i=l 1 i=l 1 n 

·{f f 
n 

½ 
n 

½ 2 TT f (x. -8) - TT f (x. )) dx1 ••• dx } 
i=l 

J. 
i=1 

i n 
lR.n 

This string of (in)equalities implies (2.3.13). 

Now let f € D. We shall prove that the right-hand side of (2.3.13) 
-1 

equals at least (nI(f)) . To this end we first note that by Fubini's 

theorem for 8 > 0 

00 00 X 

f 
-2 ½ ½ 2 48 (f (x-8) - f (x)) dx = f (8-1 I ½ 2 f' (y)/f (y)dy) dx 

-00 -00 x-e 

00 X l yr f e-1 f 
2 -1 2 

$ (f' (y)) /f(y)dydx = 6 (f' (y)) /f (y) dxdy 

-00 x-6 -00 y 

I(f). 



The same result holds for 0 < O and we arrive at 

(2. 3.15) 

for all 0 E JR. These inequalities imply that 

(2. 3.16) lim ae = 1. 
0-+0 

Combining (2.3.15) and (2.3.16) we conclude the proof of the theorem as 

follows 

-1 n -1 n 
~ lim (I(f)) (1-a)(l-a) (2a -1) 

a+l 

-1 (nI (f)) . 
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□ 

REMARK 2.3.1. Inequality (2.3.13) is a special case of an inequality given 

by IBRAGIMOV and HAS'MINSKII (1979) in Theorem 6.2 of Chapter 1. They show 

in a more general setting that the variance and the expectation of an esti­

mator T under the parametervalues e1 and 92 satisfy the inequality 

(2. 3.17) 

where 

J ½ ½ 2 P = (f0 (x) - f 0 (x)) dx. 
1 2 

The proof of this inequality is based on a generalization of (2.3.14). With 

f 0 (x) = ~=l f(xi-0), T = TnETn, e1 = 0 and 92 = 0 inequality (2.3.17) re­

duces to (2.3.13). 

The main idea in the proof of (2.3.13) also occurs in PITMAN (1978), 

page 71. 

REMARK 2.3.2. Applying the above technique to the equality 
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2 
(1-a+ab ) e 

and optimizing with respect to a one may arrive at 

for all e E :JR, b ~ 0. The choice b 

value of b seems hard to determine. 

1 results in (2.3.13); the optimal 

REMARK 2. 3. 3. In Table 2. 3. 1 the lower bounds for n var f T n provided by 

(2.3.1), (2.3.7), (1.3.15) and (2.3.13) are summarized for a number of sym­

metric densities. In some cases only estimates are given. 

density (2.3.1) (2.3. 7) (1.3.15) (2.3.13) 

2 
normal (21r)-\-~x 1 1 1 1 

logistic 
-x -x -2 

e (l+e ) 3 
7 

3 (l + 35n+73) 3 3 

Laplace 
1 -lxl 
2e 1 not defined ~1 + 4n~6 

>1 1 
- + 9n+3 

Cauchy (1r (l+x2)) -1 2 
25 

2 <1 + 10n+63) 2 ~2 

uniform 
1 

defined not defined 0 >__!_ 
2 1 ( -1, 1) (x) not - 2n 

3 2 1 ~ /2 (l + 48!-2) no name 2 c1-lxll 1(-l,ll <xl IT not defined 0 

~ ---~ ---·-- -- ----~ 

Table 2.3.1. Lower bounds for nvarfTn given by formulas (2.3.1), (2.3.7), 
(L3.15) and (2.3.13) -for selected densities. 

Next we shall study the quantiles of the distribution function Gn. Do­

ing this we shall encounter the symmetric distribution functions Land M 

defined by 
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(2.3.18) 1 [ . ]½ L - (u) = 2z z sin z. 
cosz+zs1.nz' 

U E [J,,1], 

where z is the unique solution in [O,½rr] of the equation 

(2. 3.19) 2 (1-u) (cos z + z sin z) 

and 

3 - cos z 0 

(2.3.20) M -l (u) ½ 2 - 2 [ 2 ( 1-u) J , U E [1,,1]. 

-1 -1 
We note that L (u) and M (u) only depend on u, that L has support (-rr,rr) 

and that M corresponds to the symmetric triangular distribution with support 

(-2,2) (cf. Corollary 2.2.1). 

THEOREM 2.3.4. Let u E (½,1). For all f ED and all T ET 
n n 

(2. 3.21) 

Furthermore 

(2.3.22) inf inf K-l (u) 
fED nElN n 

-1 
L (u). 

PROOF. The first inequality of (2.3.21) 

proof of Theorem 2.2.1. In the same way 
-1 

M (u). Since M does not depend on nor 

has already been established in the 

inequality (2.2.12) implies K-1 (u) ~ 
n 

f, (2.3.22) now yields (2.3.21). Be-

cause of its rather technical character the proof of (2.3.22) is postponed 

to Appendix 3 • D 

-1 -1 -1 n 
If f is a normal density then K = ~ and for T = n Ei=l Xi we 

1 1 n -1 n 
have G~ = ~-. In view of this the lower bound Kn (u) seems to be a reason-

able one. However, it has the disadvantage of being hard to determine in gen­

eral. The other bounds in (2.3.21) do not have this disadvantage, since they 

are independent of the underlying density f ED and of the sample size n. The 
-1 -1 

best possible bound in this sense is L (u) and M (u) has the desirable pro-

perty of being extrPmely simple. The counterpart of Theorem 2.3.4 for the 

distribution functions Gn' Kn' Land M themselves reads as follows. 
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THEOREM 2.3.5. Let x e: (0, 00). For all f € D and all Tn e: Tn 

(2.3.23) G (x) ~ K (x) ~ L(x) ~ M(x). 

Furthermore 

(2.3.24) 

n n 

sup sup Kn (x) = L (x) • 
fe:D ne:lN 

PROOF. This theorem is a straightforward consequence of Theorem 2.3.4. 0 

In Figures 2.3.1 - 2.3.4 and Tables 2.3.2 - 2.3.5 we present some numeri­

cal information concerning Land Mand their densities land m. The standard 

normal distribution serves as a basis for comparison • 

. 040 

.032 

.024 

.016 

.008 

.ooo-+--....... ---------.----.--..----.....----.--..--..... -"'T""-.... 
.oo .so 1.00 1.50 2.00 2.50 3.00 3.50 

Figure 2.3.1. Canparison of the distribution functions Land M (cf. 
(2. 3.18) - (2. 3.20)) with the standard normal distribution 
function<!>. 



X cj, L M L-cj, M-cj, 

.0 .5000 .5000 .5000 .0000 .0000 

.1 .5398 .5484 .5488 .0085 .0089 

.2 .5793 .5935 .5950 .0142 .0157 

. 3 .6179 .6355 .6388 .0175 .0208 

.4 .6554 .6744 .6800 .0190 .0246 

.5 .6915 .7105 .7188 .0190 .0273 

.6 . 7257 .7437 .7550 .0180 .0293 

.7 .7580 .7743 .7888 .0163 .0307 

.8 .7881 .8023 .8200 .0141 .0319 

.9 .8159 .8278 .8488 .0118 .0328 

1.0 .8413 .8510 .8750 .0096 .0337 

1.1 .8643 .8719 .8988 .0076 .0344 

1.2 .8849 .8907 .9200 .0058 .0351 

1.3 .9032 .9076 .9388 .0044 .0356 

1.4 .9192 .9225 .9550 .0033 .0358 

1.5 .9332 .9357 .9688 .0025 .0356 

1.6 .9452 .9473 .9800 .0021 .0348 

1.7 .9554 .9573 .9888 .0019 .0333 

1.8 .9641 .9660 .9950 .0019 .0309 

1.9 .9713 .9733 .9988 .0020 .0275 

2.0 .9772 .9795 1.0000 .0022 .0228 

2.5 .9938 .9966 1.0000 .0028 .0062 

3.0 .9987 1.0000 1.0000 .0013 .0013 

1T .9992 1.0000 1.0000 .0008 .0008 

Table 2.3.2. Comparison of the distribution functions Land M (cf. 
(2.3.18) - (2.3.20)) with the standard normal distribution 
function cj,_ 
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X .oo • 01 .02 .03 .04 .05 .06 .07 .08 .09 

.o .5000 .5050 .5099 .5149 .5197 .5246 .5294 .5342 .5389 .5437 

. 1 .5484 .5530 .5576 .5622 .5668 .5713 .5758 .5803 .5847 .5891 

.2 .5935 .5978 .6021 .6064 .6106 .6148 .6190 .6232 .6273 .6314 

.3 .6355 .6395 .6435 .6475 .6514 .6553 .6592 .6630 .6669 .6707 

.4 .6744 .6782 .6819 .6855 .6892 .6928 .6964 .7000 .7035 . 7070 

.5 • 7105 • 7139 .7174 . 7207 .7241 . 7274 .7308 .7340 .7373 .7405 

.6 .7437 . 7469 .7501 .7532 .7563 .7593 .7624 .7654 .7684 .7713 

.7 .7743 . 7772 .7801 .7829 • 7858 .7886 .7914 .7941 .7969 • 7996 

.8 .8023 .8049 .8076 .8102 .8128 .8153 .8179 .8204 .8229 .8253 

.9 .8278 .8302 .8326 .8350 .8373 .8397 .8420 .8442 .8465 .8487 

1.0 .8510 .8531 .8553 .8575 .8596 .8617 .8638 .8658 .8679 .8699 

1.1 .8719 .8739 .8758 .8778 .8797 .8816 .8834 .8853 .8871 .8889 

1.2 .8907 .8925 .8942 .8960 .8977 .8994 .9010 .9027 . 9043 .9060 

1.3 .9076 .9091 . 9107 . 9122 .9138 .9153 .9167 .9182 . 9197 .9211 

1.4 . 9225 .9239 • 9253 .9267 .9280 .9293 .9306 .9319 . 9332 .9345 

1.5 .9357 • 9369 .9382 • 9393 • 9405 .9417 .9428 • 9440 . 9451 .9462 

1.6 .9473 .9483 .9494 .9504 • 9515 .9525 .9535 . 9545 .9554 .9564 

1. 7 .9573 .9582 .9592 .9601 .9609 .9618 .9627 .9635 • 9643 .9652 

1.8 .9660 .9668 .9675 .9683 .9690 • 9698 .9705 .9712 .9719 .9726 

1.9 .9733 .9740 .9746 .9753 .9759 .9765 .9772 .9778 .9783 .9789 

2.0 .9795 .9800 .9806 .9811 .9817 .9822 .9827 .9832 .9837 .9841 

2.1 .9846 .9851 .9855 . 9859 .9864 .9868 .9872 .9876 .9880 .9884 

2.2 .9888 .9891 .9895 .9898 • 9902 .9905 • 9908 .9912 .9915 • 9918 

2.3 .9921 .9924 .9926 .9929 .9932 • 9934 .9937 .9939 .9942 .9944 

2.4 .9946 • 9949 .9951 .9953 • 9955 .9957 .9959 .9961 .9962 .9964 

2.5 • 9966 .9967 .9969 .9970 .9972 .9973 .9975 .9976 .9977 .9979 

2.6 .9980 .9981 .9982 .9983 .9984 • 9985 .9986 .9987 .9988 .9988 

2.7 .9989 .9990 .9991 .9991 • 9992 .9992 .9993 .9994 .9994 .9995 

2.8 .9995 • 9995 .9996 .9996 .9997 .9997 .9997 .9998 .9998 .9998 

2.9 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 1.0000 

Table 2.3.3. The distribution function L (cf. (2.3.18) and (2.3.19)). In 
rounding off ~ should be read as 4. 



u L-1 u L-1 u L-1 

.5000 .0000 .7500 .6198 .9750 1.9256 

.5500 .1035 .8000 .7916 .9900 2.2347 

.6000 .2151 .8500 .9957 .9990 2.7116 

.6500 . 3364 .9000 1.2537 .. 9999 2.9398 

.7000 .4701 .9500 1.6257 1.0000 3.1416 

Table 2.3.4. Quantiles of the distribution function L (cf. (2.3.18) -
(2.3.19)). 

.6 

.5 l 

-4 -3 -2 -1 0 2 3 4 

Figure 2.3.2. Comparison of the density£. of L (cf. (2.3.18)) with the 
standard normal density$. 
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.6 

-4 -3 -2 -1 0 2 3 4 

Figure 2.3.3. Comparison of the density m of M (cf. (2.3.20)) with the 
standard normal density~-

.10 

.06 

.02 

-.02 

-.06,+--,r-~-,--,---,--"T-""""""T--r-"'""T'-~"""T"-~--~--
0 .so 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

Figure 2.3.4. Comparison of the densities l of Land m of M (cf. (2.3.18) -
(2.3.20)) with the standard normal density~-
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X cj, l m l-cp m-cj, 

.o .3989 .5000 .5000 .1011 .1011 

.1 .3970 .4672 .4750 .0702 .0780 

.2 .3910 .4354 .4500 .0443 .0590 

.3 .3814 .4046 .4250 .0232 .0436 

.4 .3683 .3749 .4000 .0067 .0317 

.5 .3521 .3463 .3750 -.0057 .0229 

.6 .3332 .3188 .3500 -.0144 .0168 

.7 .3123 .2925 .3250 -.0198 .0127 

.8 .2897 .2673 .3000 -.0224 .0103 

.9 .2661 .2432 .2750 -.0229 .0089 

1.0 .2420 .2203 .2500 -.0216 .0080 

1.1 .2179 .1986 .2250 -.0192 .0071 

1.2 .1942 .1781 .2000 -.0161 .0058 

1.3 .1714 .1588 .1750 -.0126 .0036 

1.4 .1497 .1406 .1500 -.0091 .0003 

1.5 .1295 .1236 .1250 -.0059 -.0045 

1.6 .1109 .1078 .1000 -.0031 -.0109 

1. 7 .0940 .0932 .0750 -.0008 -.0190 

1.8 .0790 .0798 .0500 .0008 -.0290 

1.9 .0656 .0674 .0250 .0018 -.0406 

2.0 .0540 .0563 .0000 .0023 -.0540 

2.5 .0175 .0165 .0000 -.0011 -.0175 

3.0 .0044 .0007 .0000 -.0037 -.0044 

1T .0029 .0000 .0000 -.0029 -.0029 

Table 2.3.5. Comparison of the densities l of Land m of M (cf. (2.3.18) -
(2.3.20)) with the standard normal density cj,. 
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Inspection of Table 2.3.2 and Figure 2.3.1 shows that M lies at most 

.036 and L lies at most .019 above the standard normal distribution func­

tion~ on (0, 00). That~ plays a central part here, may be seen from the 

following theorem which is of Berry-Esseen type. 

THEOREM 2.3.6. Let x E (0, 00 ). For all f ED and all Tn E Tn the inequalities 

(2. 3.25) 

hold, where a is a positive constant independent off, n and Tn and where 

is possibly infinite. 

PROOF. By Fubini's theorem we see that, for s E (½,1), 

dydt 

s 0 

-1 
(1-s)H (s) + 

n 
(1-Hn (y) )dy. 

Because the same relation holds for~, we obtain 

1 

I -1 
Hn (t)dt 

s 

1 

I -1 
~ (t)dt + 

-1 -1 
(Hn (s) - ~ (s)) (1-s) 

s 

00 

+ I 
-1 

H (s) 
n 

~-l(s) 

+ I 
H-l(s) 

n 

00 

(1-Hn (y))dy - I (1-~(y))dy 

~-l(s) 

I 
~-l(s) 

(s - Hn (y) )dy, 



41 

which implies (cf. (2.2.5)) 

co 

(2.3.26) f \<I>(y) -H (y)\dy 
n 

<I>-1 (s) 

for alls E (½,1). Let G0 be the symmetric distribution function defined by 

t (X) 

f [<j> (<I>-1 (s)) + f 
½ <I>-l(s) 

-1 !<I>Cy)-H (y) lay] as, 
n 

and let g0 be its density. Then 

-1 
0 $ GO (<l>(z)) $ z 

for all z E (0, 00 ) and g0 is decreasing on (0, 00 ). These properties of G0 and 

g0 imply 

<j>(z) + f !<I>(y) -Hn(y) \dy 

z 

for all z E (0, 00 ) and by integration with respect to z E (O,x) 

s <I>(x) \<I>(y)-H (y)\dzdy 
n 

<I>(x) + J (xAy) !<I>(y) -Hn(y) \dy 

0 

for all x E (Q,o,). Together with (2.3.26) this inequality yields 

(2.3.27) Kn (x) S <I>(x) + J (xAy) I <I>(y) - Hn (y) \dy 

0 

for all x E (0, 00). Theorem V.14 of PETROV (1972) states that for all y € (0, 00 ) 

(2.3.28) -½ -3 I <I>(y) - H (y) I S 2cxpn (l+y) 
n 

holds. Combining (2.3.23), (2.3.27) and (2.3.28) we obtain the theorem. D 

Let us now consider the remaining measure of performance on our list, 

the truncated variance. Strictly speaking we have here a class of measures 

of performance: a class indexed by the truncation constant c > 0. 
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THEOREM 2.3.7. Let c > 0. For all f ED and all T ET the inequalities 
n n 

1 

* I -1 2 ~ (2K (c)-1>2, (2.3.29) var/Tn]c ~ [K (u) J du 
n C n 

1 0 

I -1 2 2 2 3 1 4 2 
(2.3.30) [K (u) J du ~ (C - 3 C + 8 C ) A-

n C 3 
0 

hold. 

PROOF. With l(x) = [x]2 in Theorem 2.2.1 and ~(x) 
C 

[x] in Lemma 2.2.3 we 
C 

obtain (2.3.29). Inequality (2.3.21) yields 

1 1 

(2.3.31) J [K- 1 (u)] 2du ~ J [M- 1 (u)] 2du, 
n C C 

0 0 

which by straightforward computations reduces to (2.3.30). D 

By an analysis similar to the one leading to (2.3.22) it is possible 

to derive an expression for 

1 

(2.3.32) inf inf I [K-1 (u)]2du. 
n C 

fED nElN O 

However, this expression is rather unwieldy and its derivation is highly 

technical. We shall therefore not present this result here. 

Theorem 2.3.7 implies Theorem 2.3.1 as 

c + 00 in (2.3.29). If f is a normal density 

bound of (2.3.29) is the best possible one. 

may be seen by taking limits as 

then K-l =~-land the first 
n 

The final theorem of this section 

presents two lower bounds for the second expression in (2.3.29) and therefore 

* for the truncated variance of Tn. They have the following properties. The 

first one is optimal if the underlying density f ED is normal. It depends 

on f ED and n E lN, but it seems easier to handle than the first lower bound 

of (2.3.29) itself (cf. Corollary 2.3.1). The second one is independent off 

and n. It improves the bound of (2.3.30) for c > 1.3479 and tends to 1 as 

C -+ oo. 

THEOREM 2.3.8. Let c > 0 and define 

J (x) 
C 

X I exp{½(y2-c2)}dy 

0 



for x E JR. If n E N and f E D, then 

1 C 

f [K~1 (u)]~du <?: 2(1-exp{-~c2 }) -4 J (x-Jc(x))(l-Hn(x))dx 

0 0 

(2.3.33) - 4 f (c-J (c)) (1-H (x) )dx 
C n 

C 

2 
> 2(1-(cA~)) (1-exp{-~c }) • 

PROOF. Let b > 0. It is easy to check that 

Since for all reals x and y 

we obtain the inequality 

(2.3.34) 

for all u E (0,1). Integrating over (0,1) and applying (2.2.13) of Lemma 

2.2.3, we arrive at 

or 

0 

1 

<! 4(Kn (b)-1) + 1 + J 
0 

b oo 

2 f x 2dKn(x) +2 f (b2+2)dKn(x) <?: 1+2 f (x-b) 2dHn(x). 

b 0 b 

43 
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Since this inequality is valid for all b > 0, we may integrate both sides 

with respect to b after multiplication by the nonnegative weight function 

2 2 
bexp{½(b -c )}l(O,c)(b). 

Making use of Fubini's theorem we see that this results in the inequality 

(2.3.35) 

C 00 

+ 2 I I 
0 b 

2 
2: 1 - exp{-½c } 

2 2 2 
(x-b) dHn(x)bexp {½(b -c )}db. 

Fubini's theorem may be applied again to prove that for all b 2: 0 

(2. 3.36) 

and 

(2.3.37) 

Since 

00 00 X 00 00 

J 
2 

(x-b) dH (x) 
J J 2(y-b)dydHn(x) J J dHn (x) 2 (y-b) dy n 

b b b by 

00 

2 J (1-Hn (y)) (y-b)dy 

b 

C 00 

f I 2 2 2 
(x-b) dHn (x)b exp {½(b -c ) }db 

0 b 

C X 

I J 
2 2 

2\r-b)bexp {½(b -c )}db(l-Hn(x))dx 

0 0 

00 C 

+ I I 2 2 
2 (x-b)b exp {½(b -c ) }db(l-Hn (x) )dx 

C 0 

C 00 

-2 f (x-Jc(x)) (1-Hn(x))dx - 2 J (c-Jc(c)) (1-Hn(x))dx 

0 

+ 2(1-exp{-½c2 }) I 
0 

C 

x(l-H (x)) dx. 
n 
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we arrive at the first inequality of (2.3.33) by combining (2.3.35), (2.3.37) 

and (2.3.36) for b = 0. Furthermore the inequality 

(2. 3. 38) 

holds for all x > 0. Hence 

C 

(2.3.39) I (x-J (x) )(1-H (x))dx + 
C n I (c-J (cl) (1-H (x))dx 

C n 
0 C 

(XAc) (1-H (x))dx. 
n 

By (2.3.36) the integral on the right in (2.3.39) may be bounded by 

"' I x(1-H (x))dx = .!. · n 4 ' 

0 

another bound for the same quantity is 

Hence 

(2.3.40) 

(1-H (x) )dx = c 
n 

"'"' 

4 I (xAc) (1-Hn(x))dx s (2c) A 1, 

0 

j J dxdHn(y) 

0 0 

and by combining (2.3.39) and (2.3.40) we obtain the second inequality of 

(2.3.33). □ 

REMARK 2.3.4. Let f ED and let 

1 

cr = (I [K-1 (u)] 2du)½. 
C n C 

0 

Clearly, for c > 0, 
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(2. 3. 41) 
2 

a 
C 

C oo 

2 f x2kn(x)dx + 2 J 
0 C 

where the strict inequality sign applies because kn is nonincreasing on (0,oo) 

(cf. (2.2.5)). On the other hand (2.3.29) implies 

(2. 3.42) a ~ 2K (cl - 1. 
C n 

Combining (2.3.41) and (2.3.42) we arrive at 

a 
C 

~ 1-2(1-K (cl)> 1-c-2cr2 , 
n C 

which implies 

(2. 3.43) 
2 a > 
C 

4 

This bound is comparable in simplicity to (2.3.30) and the second bound of 

(2.3.33). It improves (2.3.30) for large values of c and (2.3.33) for small 

ones. However, (2.3.43) is worse than the maximum of (2.3.30) and (2.3.33). 

The lower bounds for cr 2 of (2.3.30), (2.3.33) and (2.3.43) are compared with 
C 

each other and with 

(2.3.44) 

in Figure 2.3.5 and Table 2.3.6. 

Together with a Berry-Esseen bound Theorem 2.3.8 yields the following 

inequality. 

COROLLARY 2.3.2. Let f ED and let a and p be as defined in Theorem 2.3.6. 

If T E T , then 
n n 

(2.3.45) 

1 2 

J [~-1(u)]2du _ 4 -½ c(l-exp{-½c }) 
c apn l+c 

0 
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1.00 

.80 

D 

.60 

.40 

.20 

. 00 +-:::....,..-~-..----.-""T""-~--.--..,...-....... --r--.---,.---.---.------.-...... -.....----. 
0 .50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 

Figure 2.3.5. Lower bounds for the truncated variance plotted as functions 
of the truncation constant and compared with the truncated 
variance of a standard normal random variable. The correspon­
dence between the letters A - D in the plot and the formulas 
in the text is as follows: A ➔ (2.3.44), B ➔ (2.3.33), 
C ➔ (2.3.43), D ➔ (2.3.30). 

C A B C D 
(2.3.44) (2.3.33) (2.3.43) (2.3.30) 

.25 .0542 • 0462 .0487 .0526 

• 50 .1851 .1175 .1524 .1745 

.75 .3500 .2452 .2701 .3208 

LOO .5161 .3935 .3820 .4583 

1.25 .6622 .5422 .4800 .5656 

1.50 • 7785 .6753 .5625 .6328 

1.75 .8633 .7837 .6306 .6619 

2.00 .9205 .8647 .6863 .6667 

2.50 .9776 .9561 .7690 .6667 

3.00 .9950 .9889 .8251 .6667 

3.50 .9991 .9978 .8639 .6667 

4.00 .9999 .9997 .8916 .6667 

Table 2.3.6. Lower bounds for the truncated variance tabulated as functions 
of the truncation constant c and compared with the truncated 
variance of a standard normal random variable. The letters A- D 
correspond to those in Figure 2.3.5. 
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PROOF. If Hn =~,then Hn =Kn=~ and (2.3.34) becomes an equality. It fol­

lows that there is also equality in the first part of (2.3.33), viz. 

Therefore, 

C 

2(1-exp{-½c2 }) - 4 f (x-Jc(x)) (1-~(x))dx 

0 

00 

- 4 f (c-Jc (c)) (1-~(x))dx. 

C 

combining (2. 3.28) and the first inequality of (2.3.33) we 

1 1 C 

f 
-1 2 

[Kn (u) ]cdu ;;: f 
-1 2 

[~ (u)]cdu - -½ f Ba.pn { -3 (x-J (x)) (l+x) dx 
C 

0 0 0 

obtain 

(c-J (c)) (l+x) - 3 dx}. 
C 

C 

Applying (2.3.38) to the right-hand side of this inequality we arrive at 

(2.3.45) by straightforward computation. D 

2.4. ASYMPTOTICS 

The asymptotic behavior of an arbitrary sequence {Tn} of location esti­

mators Tn € Tn, n = 1,2, ..• under a fixed density f € D will be considered 

in this section. 

Let l: JR + JR be a loss function, i.e. l is symmetric about zero and 
-nondecreasing on [0, 00 ). From Theorems A.4 and 4.1 of HAJEK (1972) it follows 

that the asymptotic inequality 

(2.4.1) liminf 
n+oo 

00 

El(<) ;;: f l(x)cf,(x)dx 

holds. Clearly this is the best possible first order asymptotic result. Here 

we shall demonstrate the strength of the finite sample inequality (2.2.9) of 

Theorem 2.2.1 by showing that it yields (2.4.1) by a simple limiting argument. 

In doing so we incidentally provide an alternative route to (2.4.1). 

We shall need the following lemma. 

LEMMA 2. 4 .1. Let F n, n = 1, 2, ••• be distribution functions on JR, which are 

symmetric about zero and which have variance 1. If there exists a distribu­

tion function F with 



(2.4.2) lim Fn(x) = F(x), 
n-+oo 

for all continuity points x of F then, for all u E (0,1), 

u 1 

(2.4.3) I <f 
½ s 

PROOF. In terms of F-l the Bienayme-Chebychev inequality reads as follows 
n 

1 

½ = f (F~1 (s)) 2ds ~ 
½ 

for all t E (½,1), or 

(2.4.4) 

for all t E (½,1). From Satz 2.11 of WITTING and NOLLE (1970) it follows 

that 

(2.4.5) 

for Lebesgue almost all t E (0,1). By the dominated convergence theorem 

(2.4.4) and (2.4.5) imply that 

1 1 

lim f F~1 (t)dt = f F-1 (t)dt 
n-+oo 

(2.4.6) 

s s 

for alls E (½,1). Let now u E (½,1) be fixed. If 

1 I F-1 (t)dt > o, 
u 

then there exist in view of (2.4.6) an£> 0 and an integer n8 such that 

1 I F~1 (t)dt ~ £ 

u 

for all n ~ n 8 , which implies 

1 

<J F~1 (t)dt)-i ~ £-l 

s 

49 



50 

for all n ~ n£ and alls E (½,u]. Again applying the dominated convergence 

theorem we see that this inequality and (2.4.6) yield (2.4.3). If 

1 

J -1 
F (t)dt = 0 

u 

then 

1 

J -1 
F (t)dt 0 

s 

for alls E (½,1) and by Fatou's lemma we have 

u 1 u 1 

liminf J (J F:1 (t)dt)-lds ~ f (J 
½ s ½ s 

-1 -1 
F (t)dt) ds 

From symmetry considerations the validity of (2.4.3) for all u E (0,1) fol-

lows. D 

We are now able to prove the main result of this section. 

THEOREM 2.4.1. For all f ED, all sequences {T }, T ET, n = 1,2, •.• and 
n n n 

each loss function l (i.e. l is symmetric about zero and nondecreasing on 

[0, 00)) the asymptotic inequality 

(2.4. 7) 

holds. 

liminf 
n+oo 

00 

EJ(T:) ~ J l(x)q>(x)dx 

PROOF. For all f ED it follows from the central limit theorem that H con­
n 

verges to<!> pointwise. In view of Lemma 2.4.1 this implies 

u 1 

lim K:1 (u) = J <J <!>-1 (t)dt)-1ds = <!>-l(u) 

n+oo ½ s 

(2.4.8) 

for all u E (0,1). Hence by (2.2.9) of Theorem 2.2.1 and by Fatou's lemma 

we have 

1 1 

* I -1 
J 

-1 
liminf EJ(Tn) ~ liminf l(Kn (u) )du ~ liminf l(K (u))du 
n+oo n+oo n+oo n 

0 0 

1 1 I l(lim 
-1 I -1 K . (u) }du £.(<!> (u) )du, 
n 

0 n+oo 0 
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where the first equality holds, since l has countably many discontinuities.□ 

For the four measures of performance we have considered in the preced­

ing section Theorem 2.4.1 has the following consequences. 

COROLLARY 2.4.1. For all f ED and all sequences {Tn}, Tn E Tn, n 

(2.4.9) 

(2.4.10) 

for all c > 

(2.4.11) 

for all u E 

(2.4.12) 

liminf 
n+co 

liminf 
n+co 

o, 

liminf 
n+co 

(I:!, 1) 

limsup 
n+co 

for all x > O. 

* varfTn ~ 1 

* 2 2 Ef[Tn]c ~ 1 + 2(c -1) (1-4>(c)) - 2ccp (c) 

G-l (u) 
n 

~ 4>-1 (u) 

and 

1, 2, ••. 

PROOF. (2.4.9), (2.4.10) and (2.4.12) follow illlillediately from Theorem 2.4.1 

by making appropriate choices for land (2.4.11) is a consequence of 

(2.4.12). D 

Theorem 2.4.1 gives a first order asymptotic result for a large class 

of loss functions. For the variance a second order asymptotic result can be 

obtained from Theorem 2.3.2. 

THEOREM 2.4.2. Let f E D be twice differentiable with derivatives f' and f", 

let 

be absolutely continuous with derivative wf' and let {T }, T ET, be a se-n n n 
quence of estimators with Ef!Tnl < 00 , n = 1,2, •.•• If wf is bounded on fi-

nite intervals and if Jw!f < 00 , then 

(2.4.13) liminf 
n+co 
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PROOF. Let f and ij,f be as in the theorem. Because Jij,ff is finite, ff" is 

finite. Together with 

this implies that both limits in 

f f" = lim f' (b) - lim f' (a) 
b-l-00 a-co 

exist and equal zero. Hence 

(2.4.14) 

For y > 0 we define 

-1 
xy(x) = l[O,y](lxl) + (2-JxJy )1(y, 2y)<lxl), 

J(y) = I ij,f~f, 

Note that 

which implies that the above definitions are proper and that 

(2.4.15) lim J(y) 
y..-

o. 

Because ij,f is continuous and ij,f is bounded on finite intervals, ij,y and 

ij,' are bounded on JR. By partial integration it follows that (cf. (2.3.3)) 
y 

(2.4.16) a(ij, ,f) = f (ij, f'/f+ij,•) (f'/f)f = J 1j, (f'/f) 2f + J ip•f• y y y y y 

I ip { (f' /f) 2 -fll /f}f + lim $,, (.b) f-' (J;i) - lim 1j, (a) f' (a) = f iJ, ij,ff. 
y b-l-<X> -'· · a-co y Y 



Furthermore (cf. (2.3.3)) 

(2.4.17) 

(2.4.18) 

b(I/I ,f) 
y 

c(ljl ,f) = 
y 

< co 

and it is not difficult to verify that ljly € ~f (cf. (2.3.4)). 

·By the dominated convergence theorem (2.4.16) and (2.4.14) 

(2.4.19) 

Similarly 

(2.4.20) lim b(ljl ,f) = lim[ f w;if- (J(y)) 2] = I w;f. 
y-- y y-- ·y 
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Without loss of generality we may assume that fw;f > 0, because otherwise 

(2.4.13) is trivial. Combining (2.3.6) of Theorem 2.3.2, (2.4.17), (2.4.18), 

(2.4.19) and (2.4.20) we arrive at 

liminf 
n+co y--

= (I(f))-2 f ljl;f. □ 

In Chapter 5 of ALBERS (1974) it has been shown that for all f € D1 the 

maximum likelihood estimator 0 f satisfies 
n, 

as n + co. Here o1 is the set of densities satisfying the conditions of Lemmas 

5.2.1 and 5.2.2 of ALBERS (1974). It is easy to verify that o 1 c D and that 

every f E o 1 satisfies the conditions of our Theorem 2.4.2. Consequently, if 

the performance of estimators is measured by their variance, then the per­

formance of the maximum likelihood estimator is asymptotically optimal with 

respect to the bound (2.4.13) for all f E o 1 • It also follows that the bound 

(2.4.13) is sharp for all f E o 1• The asymptotic optimality to this order of 

the maximum likelihood estimator has been proved in a different setting and 

by a different technique in PFANZAGL and WEFELMEYER (1978, 1979). 
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Theorem 2.4.2 also shows that the second order asymptotic behavior de­

pends on the second derivative off. Hence there is no point in extending 

Theorems 2.3.6 and 2.4.1 by computing asymptotic expansions for K and K- 1 , 
k n n 

since in such expansions only coefficients of the form f(f'/f) f, k € JN, 

would play a part. One way to introduce the second derivative off into in­

equalities like the spread-inequality (2.2.8) is to consider 

We shall pursue this point elsewhere. 
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CHAPTER 3 

THE BEHAVIOR OF LOCATION ESTIMATORS OVER A CLASS OF DENSITIES 

3.1 INTRODUCTION 

This chapter contains results which are applicable in the statistical 

situation where the density f ED is unknown. For the variance of an estima­

tor a fixed sample size inequality is given in Section 3.2 (cf. Theorem 

3.2.1) and an asymptotic comparison with the variance of Pitman estimators 

is made in Section 3.3 (cf. Theorem 3.3.2). A fixed sample size inequality 

for the distribution function of an estimator is proved in Section 3.2 (cf. 

Theorem 3.2.2) and the possible limit distributions of an estimator under 

sequences· {f }, f ED, n + 00 , are studied in Section 3.3 (cf. Theorem 3.3.1). 
n n 

3.2. FIXED SAMPLE SIZE 

Let n E lN and T ET. In this section we shall study the behavior on 
n n 

D of 

and 

X € JR. 

In Theorem 3.2.1 we establish a lower bound for the normed variance 

nI(f)varfTn' which is the sum of 

(1) the Cramer-Rao bound (2.3.1), 

(2) a term involving the integrated mean square error under f of a statistic 

Zn(•) which may serve as an estimator of the score function Jf(•) (cf. 

(1.2.4)). 
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Here the statistic Zn(•) is defined by 

n 
(3.2.1) Zn (x) = l Ef (T I I x1 I , ••. , Ix I , x. = x) , 

i=l n n 1 
X E JR. 

Note that Zn(•) does not depend on f and that it is derived from the location 

estimator Tn. Hence the behavior on D of the lower bound (3.2.2) depends on 

Tn. As has already been indicated in Section 1.1, the inequality (3.2.2) 

shows that an estimator T ET can not perform well over a class of densi-
n n 

ties f unless it is possible to estimate the score function Jf(•) accurately 

over this class. 

In order to avoid assumptions like Ef!Tnl < 00 we shall consider EfT~ 

instead of varfTn. 

THEOREM 3.2.1. Let f ED, let T ET be an estimator of location and let 
n n 

Zn(•) be the associated estimator of Jf(•) defined in (3.2.1). Then 

(3.2.2) 

PROOF. Let f ED, n E lN and Tn E Tn be fixed. Without loss of generality we 
2 

may assume that EfTn < 00 • Let (cf. (1.2.5)) 

s n 
-1 

n 

n 
R l Ef(R I lx1 1, .•• ,lxnl' sgn Xi). 

i=1 

For all 1/J: {-1,1} + JR and for i 1, ... ,n 

and 

0. 



57 

This implies that conditionally on lx11, ••• ,1xn1' R is the projection of R 

on the linear space of sums of functions of sgn Xi' i = 1, •.• ,n. Consequently 

n 
= Ef( l {Ef<RI lx1 1, ••• ,lx I, sgn x.J}2 I !x1 1, ••. ,lx IJ. 

i=l n i n 

By taking expectations it follows that 

n -1 2 
~ Ef( l {Ef(Tn I lx1 1, ••• ,lxnl' sgn X.) -n Jf(X.)} l 

i=1 1 1 

00 

Ef(f J1 {Ef(Tn I lx1 1, ... ,lxnl, xi =x) -n-1Jf(x)} 2f(x)dx) 
-00 

(3. 2. 3) 

-00 

With Rf= (nI(f))½R the formulas (1.2.2), (1.2.6), (2.3.9) and (3.2.3) yield 

(3.2. 2). □ 

Let us now study the lower bound of (3.2.2) and let us ignore the spe­

cial structure (3.2.1) of the estimator Z (•) of the score function. Then 
n 

the theorem merely asserts the existence of an estimator Zn(•) such that 

(3.2.2) holds. It is clear that there does not exist an estimator Zn(•) for 

which the integrated mean square error vanishes uniformly on D. In fact the 

supremum on D of the integrated mean square error equals at least 1, which 

is the content of the following result. 

COROLLARY 3.2.1. For all T € T 
n n 

(3.2.4) 

PROOF. Consider a density f € D with distribution function F and let 

I -1 
t:, = { o O < o < ½, 0 < f (F ( o)) < 1 }. 
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For all o E ~ we define 

(3.2.5) 

where-

for F-l(o) 

F-l(l-o) < X 

Then, for o E ~, f 0 is an absolutely continuous symmetric density with 

(3.2.6) 

and 

F-l (1-o) 

for F-l (o) 

F-l(l-o) 

-1 
X < F (o) 

< X < F-l (1-o) 

< X 

(3.2.7) ao I (f' (x)/f(x)) 2f(x)dx + 2aoo-l < oo. 

F-l (o) 

It follows that f 0 ED. 

Now, for all a E (0,1), all o E ~ and all estimators 

we have 
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2: aI(f0)Ef0 ( f {Zn (x) - Jf0 (x) }2f 0 (x)dx) 

-00 

(3.2.8) 

The integrand of the last integral attains its minimum for 

unless both {~=l f 0 (xi)}f0 (x) and {~=l f(xi)}f(x) equal zero. Substituting 

this expression in (3.2.8) we find that (3.2.2) of Theorem 3.2.1 yields 

(3.2.9) 
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(3.2.9) 
(cont'd) 

~ f f {I(f)/I(f0)-1} 2J!(x)a(1-a)I(f0)I(f){ialf(xi)} 

(F-l(o),F-l(l~o))n+l 

F-l(l-o) 

• (1-2o)n I 
F-l(o) 

In view of the continuity off there exists a sequence {o(m)} in & with 

(3.2.10) lim o(m) 
m--

o. 

For such a sequence 

(3.2.11) 1, 

(3.2.12) 

which together with (3.2.9) implies 

* 2 sup nI(f )E T ~ 1 + (1-a). 
f*ED f* n 

Since the last inequality holds for all a E (0,1), (3.2.4) follows. D 

Corollary 3.2.1 yields the greatest lower bound for 

which one can obtain from Theorem 3.2.1 if one ignores the special structure 

of Zn(•). To see this it suffices to note that for Zn(x) = 0 the right-hand 

side of (3.2.2) equals 2 for all f ED. However 

= co 
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for all T ET, because for all x > 0 and all T ET 
n n n n 

The last equality follows immediately from the fact that there exist subsets 

* D of D with 

(3.2.13) X > 0. 

* The existence of subsets D of D for which (3.2.13) is valid, is intu-

* itively clear from the following reasoning. There exist densities f and f 

in D for which I(f*)/I(f) is arbitrarily large and for which at the same time 

* the joint densities of a sample x1 , ... ,Xn under f and fare almost indistin-

guishable. As a consequence of the latter phenomenon it is impossible to 

estimate the location parameter considerably better under f* than under f on 

the basis of n observations. Because I(f*) is arbitrarily much larger than 

I(f) this implies that 

is arbitrarily much closer to~ than 

For a precise formulation of these assertions we need two definitions. 

* Let dn(f ,f) be the total variation distance between then-fold products of 

f* and f, viz. 

(3.2.14) d (f* ,f) 
n 

:Rn 

We write d(f*,f) for d1 (f*,f). Furthermore we shall call a subset n* of D 

irregular iff for every e > 0 and every o > 0 there exists a pair of densities 

f* E o* and f ED such that 

* (3.2.15) d(f ,f) < e, 

We may now formulate our result as follows (cf. KLAASSEN (1979)). 
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* * THEOREM 3.2.2. Let x E (0, 00 ), n E lN and D c D. If D is irregular (cf. 

(3. 2.15)), t:hen 

(3.2.16) inf 

* * f ED 

and hence for all T ET 
n n 

inf 

* * f ED 

PROOF. Let E > 0, o > 0 and let D* be irregular. Then there exists a pair 

f* ED* and f ED with d(f*,f) < E and I(f)/I(f*) < o. For these f* and f 

and for all T ET and x > 0 we have 
n n 

(3.2.17) 

From (2.2.10) we see that 

(3.2.18) y E lR. 

Combining (3.2.17) and (3.2.18) we arrive at 

Because E and o may be chosen arbitrarily small this string of inequalities 

proves the theorem. D 

Theorem 3.2.2 would be meaningless if no subsets of D would be irregular. 

We settle this point in the following lemma. 

LEMMA 3.2.1. For each f ED t:here exists a sequence {f }, f ED, m= 1,2, •.• , 
m m 

with 

(3.2.19) 0, 
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(3.2.20) lim I(f } = m. 
m-+m m 

Hence D itself as well as its subsets of the form 

* I * {f ED d(f ,f) < n} 

are irregular for all n > 0 and f ED. 

REMARK 3.2.1. Let f ED be fixed and let fm ED oscillate very rapidly around 

f with a very small amplitude. Then f'/f is arbitrarily large on a set of m m 
positive f-measure, whereas d(fm,f} is arbitrarily small. Hence the truth of 

Lemma 3.2.1 is intuitively clear. However, we shall prove it in a computation­

ally simpler way by choosing fm = fo(m) as defined by (3.2.5) and (3.2.10). 

PROOF OF LEMMA 3.2.1. Let f ED be fixed and let fo ED be as defined in 

(3.2.5}. Then 

F- 1 (1-o} F-l(o) 

(3.2.21} d(f0,f) s ~ f 11-ao lf(x)dx + f (fo (x) + f(x))dx 

F-l(o) 

Furthermore, let the sequence {o(m)}, o(m) E ~, m = 1,2, ••• , be chosen as in 

(3.2.10} -implying the validity of (3.2.11) and (3.2.12) - and define fm = 
fo(m)' m = 1,2, •••• Combining (3.2.10), (3.2.11), (3.2.12) and (3.2.21) we 

obtain (3.2.19) and (3.2.20) and thereby the lemma. D 

From Lemma 3.2.1 we may not conclude that every irregular subset of D 

has to contain a sequence {f} satisfying (3.2.20). The next lennna shows that 
m 

every irregular set does indeed possess at least countably many densities, 

but it also shows that these densities do not necessarily have unequal Fisher 

information. 

LEMMA 3.2.2. The set 

{fEDII(f) 1} 

is irregular. Furthermore, if o* is irregular then it contains infinitely 

many densities. 
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PROOF. Let f 0 and f 1 belong to D and let cr 

X > 0. 

* Now f and f belong to D and 

* I (f ) 1. 

Also 

From this observation and from the existence of irregular subsets of D the 

irregularity of the set {f ED I I(f) = 1} follows. 

* Let f ED and E > 0 be fixed and define 

In order to prove the second statement of the lemma it suffices to prove 

that (cf. (3.2.15)) 

(3.2.22) inf I(f) > 0. 
fED(e:,f*) 

Because I(•) is lower semi-continuous on D with the metric d(•,•) (see Theo­

rem 3 of HUBER (1964)) it attains its minimum on the compact set D(e:,f*) at 

f 0, say. Since f 0 ED, the Fisher information I(f0 ) is positive which implies 

(3.2.22). □ 

3.3. ASYMPTOTICS 

Let {T }, T ET, n = 1,2, •.• be a sequence of location estimators and n n n 
consider the distribution functions and variances of {T} under the densities n 
in D. In this section we shall study the behavior on D of these quantities 

for sample size n tending to infinity. 

First of all, one might wish to consider the following characteristics 

of this behavior 
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(3.3.1) inf liminf Pf ( (nI (f)) ½Tn :,; x), X > 0, 
fe:D n+oo 

(3. 3. 2) limsup inf Pf ( (nI (f)) ~n :,; x), X > 0. 
n+oo fe:D 

For the adaptive estimators of STONE (1975) and BERAN (1978) the quantity 

(3.3.1) equals ~(x) and in view of Theorem 3.2.2 and Lemma 3.2.1 the quantity 

(3.3.2) equals½ for all sequences {T }, T e: T, n = 1,2, •.• n n n 
Let {fn}, fn e: D, n 1,2, ••• be a sequence of densities and define the 

distribution functions Gn' Hn and Kn as in (1.2.3), (1.2.7) and (1.2.8) with 

f replaced by fn. In Theorem 3.3.1 we shall consider yet another quantity 

like (3.3.1) and (3.3.2), viz. 

(3. 3.3) limsup Gn (x) 
n+oo 

as well as the quantity 

1 

(3.3.4) lim liminf I 
c--- n +oo 0 

limsup Pf ((nI(f ))½T < x) n n - ' 
n+oo n 

-1 2 [G (u)] du. 
n C 

X > 0, 

HODGES and LEHMANN (1956) have noted that (3.3.4) equals the variance of the 

limit distribution of Gn if this limit distribution and its variance exist, 

that this variance equals at most the limit of the variances of Gn' i.e. 

1 

(3.3.5) lim liminf I [G-1 (u)] 2du:,; 
n C 

c..- n+oo 0 

1 

liminf I 
n+oo 

0 

and that strict inequality in (3.3.5) may occur. 

If F, Fn, n = 1,2, ••• are distribution functions such that 

lim Fn(x) = F(x) 
n..-

for all continuity points x of F, then the sequence {F} converges weakly to n 
Fas n + 00 which we shall denote by 

(3.3.6) 
w 

F ➔ F. 
n 

With this notation we may formulate the results concerning (3.3.3) and (3.3.4) 

as follows. 
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THEOREM 3.3.1. Let {f }, f ED, n = 1,2, •.• be a sequence of densities and 
n n 

suppose that the sequence {H} converges weakly to a distribution function 
n 

H. If K is the distribution function defined by 

(3.3. 7) 

u 1 

K- 1 (u) = I cf H- 1 (t)dt)-1ds, 

½ s 

U E (0,1), 

and if {T } , T E T , n = 1, 2, ••• is a sequence of location estimators then 
n n n 

(3.3.8) U E (½,1), 

and consequently 

1 1 

f 
-1 2 I -1 2 

(3. 3. 9) lim liminf [G (u)] du ~ (K (u)) du. 
n C c-+<><> n +oo 

0 0 

Furthermore 

1 

(3.3.10) I -1 2 (K (u)) du~ 1 

0 

and equality holds iff H = ~-

PROOF. Lemma 2.4.1 implies 

-1 -1 
lim Kn (u) = K (u), 
n-+<><> 

U E (0,1). 

Together with the first inequality in (2.3.21) this implies (3.3.8) which 
w 

by Fatou's lemma yields (3.3.9). Since Hn-+ H we have by Satz 2.11 of 

WITTING and NOLLE (1970) and by Fatou's lemma 

1 1 I (H- 1 (u)) 2du ~ 1: I (H:1 (u)) 2du 

0 n O 

(3.3.11) 1. 

By Fubini's theorem (see also Lemma 2.2.3) 

1 1 u 1 

(3.3.12) f H- 1 (u)K-1 (u)du = 2 I I H-1 (u)[J H- 1 (t)dt]-1dsdu 

0 1-:; 1-:; s 

1 1 1 

2 I cf H-1 (u)du][I H- 1 (t)dt]-1ds 1. 

1-:; s s 
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Applying the Cauchy-Schwarz inequality to (3.3.12) and combining the result 

with (3.3.11) we arrive at 

1 1 

(3.3.13) f (K-1 (u)) 2du ~ [J (H-1 (u)) 2du]-l ~ 1, 

0 0 

where both equality signs hold iff for some a> 0 

u 1 

(3.3.14) 

(3.3.15) 

aH- 1 (u) = K- 1 (u) = I cf H-1 (t)dt)-1ds, 

~ s 

1. 

u e: (0,1), 

Differentiating (3.3.14) twice we see that (3.3.14) and (3.3.15) are equiva-

lent to H wand the proof is complete. D 

w 
If fn = f is fixed then by the central limit theorem Hn ➔ wand conse-

quently the conclusions of Theorem 3.3.1 hold with H = K = w. Furthermore 

(3.3.8) with K-l w- 1 implies (2.4.7). Hence Theorem 3.3.1 is an extension 

of Theorem 2.4.1 and this extension is nontrivial only if H can differ from 

w. That this is indeed possible is a consequence of the following lemma. 

LEMMA 3.3.1. Let H0 be the set of distribution functions H for which there 

exists a sequence {f }, f ED, n = 1,2, .•• , such that the associated se-
n n 

quence {Hn} converges weakly to H. Furthermore, let H1 be the set of sym-

metric infinitely divisible distribution functions with variance not greater 

than 1. Then H0 and H1 coincide. 

PROOF. Let HE H0 • It is clear that His symmetric and, in view of (3.3.11), 

that its variance belongs to [0,1]. From e.g. Theorem IV.1 of PETROV (1972) 

it follows that His infinitely divisible. Hence H0 c H1 • Let HE H1 • From 

Theorem II.6 of PETROV (1972) we conclude that a function$: JR ➔ JR is the 

cumulant generating function of a symmetric infinitely divisible distribu­

tion with a finite variance iff it admits the representation 

(3.3.16) $Ct)= a. I x-2 (costx-1)dL(x), t € JR, 

where a. E [0, 00 ) and Lis a symmetric distribution function and where the 

function under the integral sign equals -~t2 for x = O. Dividing (3.3.16) 

by n we see that there exist independent identically and also symmetrically 
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n 
distributed random variables xn1 ,xn2 ,. 2.,xnn' such that Ei=l Xni has distri-

bution function H, n = 1,2, •••• Let cr E [0,1] be the variance of Hand let 

Ynl'Yn2 , ••• ,Ynn be independent random variables which are independent of 

xn1 , ••• ,xnn and for which 

1 - n-2 

½ 2 ½ 
P(Y . =n (1-cr ) ) 

Ill. 

if cr2 < 1 and 

P(Y . = 0) 1 
ni 

½ 2 ½ 
P (Y . = -n ( 1-cr ) ) 

ni 
-2 

½n 

if cr2 = 1, i = 1, ••• ,n and n = 1,2, •••• Then E:=l Yni + 0 in probability 
n 

as n + 00 • So Ei=l (Xni+Yni) converges in distribution to Has n + 00 and 

n 
var(}: 

i=l 
(X ,+Y .) ) 

Ill. ni 1. 

It follows from the next lemma that there exist fn ED, such that for eachn 

-(nI(f ))-½f, (X)/f (X) 
n n n 

has under f the same distribution as X . + Y . , i n ni ni 
1, .•• ,n. This proves 

/-11 c /-10 and thereby the lemma. D 

LEMMA 3.3.2. Let H be a symmetric distribution function with variance 1, then 

there exists a density f ED with I(f) = 1 such that -f' (X)/f(X) has distri­

bution function H under f. 

PROOF. Let H be as in the lemma. The distribution function F, defined by 

u 1 

F-1 (u) = I cf H- 1 (t)dt)-1ds 

½ s 

for u E [0,1], is symmetric and possesses an absolutely continuous density 

f with derivative f'. Its score function satisfies 
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for Lebesgue almost all u E [0,1]; see also Lemma 2.2.2 and its proof. So 

1 

I(f) = J (H-1 (u)) 2du = 1 

0 

and f ED. Finally, if u has a uniform distribution on [0,1] then 

-1 -1 
P(-f' (F (U) )/f(F (U)):,; z) 

holds for all z E lR. 0 

Let {T }, T ET, and {D }, D c D, n = 1,2, ••• be sequences of estima-
n n n n n 

tors and subsets of D respectively. In the second part of this section we 

shall study asymptotic properties of the sequence of sets {EfT2 If ED}. 
n n 

First we consider for a fixed f ED and for a fixed sample size n the quan-

tity 

Provided that f does not behave too badly, this infimum is finite and is 

attained by the so-called Pitman estimator (cf. (1.3.9)) 

(3.3.17) 

1:.,, e ~=1f(xi-0)d0 

1:.,, ~=l f(xi-0)d0 

for those (x1 , .•• ,xn) E lRn for which the right-hand side is well-defined; 

see PITMAN (1939), page 400. The estimator Tf may be considered as the Bayes 
n 

estimator with the Lebesgue measure on lR as an improper prior distribution 

and with squared error loss. We note that there exist densities f ED such 

that 

(3.3.18) P (Tf is undefined) > 0; 
f n 

see Appendix 4. 
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In the proof of Theorem 3.3.2 we shall encounter a slightly more general 

situation. Let A be an index set and let f\ ED for all\ EA. Letµ be a cr­

finite measure on A with respect to some a-algebra of subsets of A and sup­

pose that f\(y) is jointly measurable with respect to\ and y. Finally, let 

h be a density with respect toµ on A and let 

(3.3.19) 
r:"'e!A ~=1 f\(xi-0)h(\)dµ(\)d0 

!:.,, f A ~=1 f\ (xi-0)h(\)dµ(\)d0 

for those (x1 , ••• ,xn) E :mn for which the right-hand side is well-defined. 

LEMMA 3.3.3. Let n be fixed, let A,µ, hand f\ be as above. If (cf. 

(3.3.19)) 

then 

(3.3.20) inf 
T ET 

n n 

undefined)h(\)dµ(\) 0, 

< 00, 

I Ef\T! h(\)dµ(\) = f Ef\ (T~) 2h(\)dµ(\). 

A A 

PROOF. See the first half of Section 4.7 of FERGUSON (1967). 0 

If A consists of one element we are back again in the situation of 

PITMAN (1939) and it follows that for all Tn E Tn and for all f ED for which 

T! is properly defined and for which Ef(T!) 2 is finite, the inequality 

(3.3.21) 

holds. Therefore it makes sense to consider for all f ED, n E.lN and Tn E Tn 

the efficiency of Tn w{i:, ,:;r:f: f ::: •: d:::M~) " O =d Ef (T!) 2 < •' 

(3.3.22) ef (T ) = EfTn 
,n n 

1 otherwise. 



It is intuitively clear that for all n E lN and T ET 
n n 

inf ef (T) < 1. 
fED ,n n 
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The following theorem shows that this strict inequality also holds as n tends 

to infinity, even when the infimum is taken on neighborhoods of a normal 

density which shrink with increasing n. 

THEOREM 3.3.2. With ef (T) as defined in (3.3.22) the asymptotic inequality ,n n 

(3.3.23) limsup sup 
n+ 00 T ET 

n n 

inf ef (T) < 1 
fED ,n n 

holds. More precisely: if p and cr are positive numbers and if Dn, V and~ 

are defined by 

(3.3.24) 

(3.3.25) 

(3.3.26) 

where 

(3.3.27) 

(3.3.28) 

I 2 -1 {f ED l$I(f)$1+p, ff /<j>:,l+crn }, 

sup 
(e:,o)EV 

00 2 

[
f n exp {o (c cos [e:nJ+s sin [e:n]) -½o }<I> (n)dn]2 

-00 e: e: 
½E ------~--------------- , 

1+!00 exp{o(c cos [e:nJ+s sin [e:nJ)-½o 2}<1>(n)dn 
-"" £ e: 

and where u0 , U 1 and U 2 are independent standard normal random variables, 

then 

(3.3.29) limsup sup 
n+ 00 T ET 

n n 

inf ef (T ) :,; 1!.- < 1. 
fED ,n n ., 

n 

REMARK 3.3.1. Analogous to (3.3.22) one may define the efficiency of Tn with 

respect to the Cramer-Rao bound as 

* ef (T) ,n n 
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As has already been indicated in Section 1.1 (see (1.1.4) and the comment 

following it) the results of Section 3.2 suggest that the variance of an 

estimator should be compared with the variance of the Pitman estimator rather 

* than with the Cramer-Rao bound. For this reason, ef (T) and not ef (T) 
,n n ,n n 

is studied in Theorem 3.3.2. Here we shall state without proof the analogues 

* of (3.3.23) and (3.3.29) for ef (T ). In the notation of Theorem 3.3.2 we ,n n 
have 

* (3.3.30) limsup sup inf ef (T ) 0, 
n+oo T ET fED 

,n n 
n n 

* 1 
(3.3.31) limsup sup inf ef (T ) = l+p 

n+oo T ET fED 
,n n 

n n n 

For the proof of Theorem 3.3.2 a number of lemmas are needed. 

h fA 
LEMMA 3.3.4. Let A,µ, h, fA and Tn be as in Lemma 3.3.3 and let Tn, A EA, 

be as defi.ned in (3.3.17). If 

I PfA (T:A is undefined)h(A)dµ(A) 0 

A 

and if the assumptions of Lemma 3.3.3 hold then 

(3.3.32) inf f {Ef T2 
T ET , An 

n n n 

J h fA 2 
Ef (T -T ) h(A)dµ(A). 

A n n 
A 

PROOF. Let f ED and let T! be as in (3.3.17) with Ef(T~) 2 < 00 • 

satisfies E T2 < 00 , then for all a E lR f n 

If T ET 
n n 

f 
T aT + (1-a)T ET 
n,a n n n 

and in view of (3.3.21) 

2 f 2 
Ef(T ) - Ef(T ) n,a n 

Consequently 



and hence 

Together with (3.3.20) this implies 

f h fA 2 
= Ef (T -T ) h(A)dµ(A). 

A n n 
A 

□ 

LEMMA 3.3.5. Let a,E,o,a1,a2 , ••• be positive numbers with 

(3.3.33) lim a = a n 
.n-+«> 
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and let u0 , u1 , u2 and Y1 ,Y2, ••• be independent standard normal random vari­

ables. Define 

(3.3.34) 

(3.3.35) 

(3.3.36) 

- -1 
Y = n 

C n,E 

s 
n,E 

n 
l Yi, 

i=l 
n 

<~>-~ I 
i=l 

n 
<~n>-~ I 

i=l 

and define the function 1/1 ~: (0 ,"') x 'JR2 + JR by 
E,u 

(3.3.37) 1/1 ~<a,x,y) E,u 

a J"' n exp{o (x cos [En]+y sin [En]) }cf> (n)dn _.., 

l+a J"' exp{o (x cos [En]+y sin [En]) }cf> (n)dn -
If C and S are as defined in (3.3.27) and (3.3.28), then 

E E 

(3.3.38) 
2 2 liminf E(l/1 ~<a ,c ,s )) ~ E(l/1 ~<a,c ,s )) • 

n+m E,u n n,E n,E E,u E E 
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PROOF. First we shall prove that (C ,S ) converges in distribution to 
n,e: n,e: 

(Ce:,Se:) as n ➔ 00 , which we shall denote by 

(3.3.39) 

Let a, band c be real numbers and define 

½ ½ ½ . ½ Y. (a,b,c) = 2 a cos[e:n Y.] + 2 b sin[e:n Y,] + cY., 
i,n J. J. J. 

i = 1,2, •••. 

By the Riemann-Lebesgue lemma (see Lemma XV.4.3 of FELLER (1971)) 

00 

(3.3.40) lim ½ lim (2n)½a I cos[rn\Jqi(y)dy n EY. (a,b,c) 
n➔oo 

i,n n-+m 
-00 

00 

lim 
½ -1 I y sin[rn \J</> (y) dy 2 e: a 

n-+m 
-oo 

0 

and 

lim E(Y, (a,b,c)) 2 
i,n 

n➔oo 

lim f 2 2 ½ 2 . 2 ½ (2a cos [e:n y]+2b sin [e:n y] 

(3. 3.41) 
2 2 ½ (a -b )cos[2e:n y]qi(y)dy 

From (3.3.40), (3.3.41) and Lindeberg's theorem (cf. Theorem 7.2 in Chapter 

1 of BILLINGSLEY (1968)) it follows that 

n 
(3.3.42) I 

i=l 

V 2 2 2 ½ 
Y, (a,b,c) ➔ (a +b +c) z, 
i,n 

where Z is a standard normal random variable. Note that Lindeberg's condition 

is easy to verify here since sine and cosine are bounded functions. Define 

(A ,B ,n°½) 
n,e: n,e: 

n 

I 
i=1 

J., -½ 
cos[rn -Y. ], (½n) 

J. 

n ½ ½-l sin[rn Yi ],n Y). 
i=l 



By the Cramer-Wold device (see Theorem 7.7 in Chapter 1 of BILLINGSLEY 

(1968)) it follows from (3.3.42) that 

(3.3.43) 

Since 

½- 1l (A ,B ,n Y) ~ (UO,u1,U2). n,e: n,e: 

C A cos[e:n½Y] + B sin[e:n~], 
n,e: n,e: n,e: 

the convergence in (3.3.39) follows from (3.3.43). 

Since we:,o is continuous (3.3.33) and (3.3.39) yield 

V w ,,(a ,c ,s ) + w ,,(a,c ,s ), e:,u n n,e: n,e: e:,u e: e: 

which implies 

limE[w 0 (a ,C ,S )]2 
n~ e:, n n,e: n,e: c 

and consequently (3.3.38) holds true. 

2 E[w ,,(a,C ,S )] e:,u e: e: C 

□ 
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This section is closed by a proof of Theorem 3.3.2 in which use is made 

of a sequence of densities which oscillate around a fixed density (cf. Remark 

3. 2.1). 

PROOF OF THEOREM 3.3.2. Let p, cr, on, Ce:, Se: and V be as in the theorem, let 

(e:,o) € V and let 

00 

(3.3.44) 

-00 

(3.3.45) 

-~ ~ -1 exp{(~n) ocos[e:n y]}~(y)dy] , 

-~ ½ B exp{(~n) ocos[e:n x]}~(x), 
n 

X € JR. 

Then fn is a symmetric absolutely continuous density with derivative f~ and 

(3.3.46) -f' (x)/f (x) = x + 2~e:osin[e:n~x], 
n n 

It follows from the Riemann-Lebesgue lelllll)a that 

X € JR. 
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(3.3.47) 

(3.3.48) lim f (x+/\:cSsin[En~xJ/cp(x)dx 
n-+oo 

-00 

Together with (3.3.46) these relations imply 

(3.3.49) lim I(f ) 
n 

Similarly we obtain from (3.3.47) 

(3.3.50) I 2 2 -1 -2 2 -1 limn[( fn/cj>)-1] = lim n[(l+l:icS n ) (1+2cS n )-1] 
n-+oo n-+oo 

It follows from (3.3.24), (3.3.25), (3.3.49) and (3.3.50) that fn E Dn if n 

is sufficiently large. 

Since all f ED are bounded and since for all f ED and all x E lR 
n 

"' "' 

the Pitman estimator Tf is well-defined for all f ED and n E IN (cf. 
n n 

(3.3.17)). Furthermore we obtain from (3.3.21) and (3.3.24) that for all 

f E D 
n 

"' 
(3.3.51) 1 + f x2 (f(x) - cj,(x))dx 

"' 
s; 1 + [ f x4cj,(x}dx]l:i[(J f 2/cp)-d·~ s; 1 + (3cr)\-l:i_ 

Henceforth we shall write 

f 
T n = Tn, 

n n 

y 

It follows from (3.3.22) and (3.3.51) that for sufficiently large n 



(3.3.52) 

sup 
T ET n n 

inf ef (T ) 
fED ,n n 

n 

= {1 + inf 
T ET 

n n 

!;'; {1 + inf 
T ET 

n n 

sup 
fED 

n 
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Applying Lemma 3.3.4 with A = {O,n}, µ counting measure on A, h(O) = h(n) = ½, 

f O =$and fn as in (3.3.45), we obtain from (3.3.52) 

(3.3.53) 

where 

(3.3.54) 

sup 
T ET 

n n 

inf ef (T ) 
fED ,n n 

n 

( 00 e [½ ~=l $ (xi-e )+½ ~=l fn cxi-eJ ]de 

1:(X)[½ ~=1 $(Xi-a)+½ ~=1 fn(Xi-0)]d0 

is well-defined. Note that 

(3.3.55) 
n 
I xi= x 

i=l 

and that by the translation equivariance of Th 
n 

(3.3.56) 

- ''' (Sn C S ) - o/g,o n' n,E' n,E' 
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where~ r is defined in (3.3.37) and where C and S are defined as in E,u n,E n,E 

(3.3.35) and (3.3.36) with Yi and Y replaced by Xi and X. Because (cf. 

(3. 3.47)) 

(3.3.55), (3.3.56) and Lemma 3.3.5 yield 

(3.3.57) 

Combining (3.3.53), (3.3.57), (3.3.55) and (3.3.51) we arrive at the first 

inequality in (3.3.29) with, as defined in (3.3.26). 

It remains to show that, is positive. Since by the dominated conver­

gence theorem 

"' 
1, 

there exists an EO > 0 with 

¾ -1 ¾ Hence for o0 e: (0,cr A (E0 p ) ) 

aay I nexp{oo(xcos[Eon]+ysin[Eon])H,(n)dnl 

-"' (x,y)=0 

= o0 J n sin[E0n]cf>(n)dn f, o 

-"' 
and the positivity of, follows. D 



APPENDIX 1 

PROOF OF LEMMA 1.2.2 

Let a and h be as in the lelllllla and let h' be a version of the Radon­

Nikidym derivative of h. Let A be the Lebesgue measure on JR and define 

N {x € JR I h(x) = a}, 

NO {x € JR I h(x) a, h' (x) ,f 0}, 

Nl {x € JR I h (x) = a, h is differentiable at x with 

lim 
h (x+y) -h (x) 

= h' (x)}. 
y4-0 

y 

In view of Theorem 18.3 of HEWITT and STROMBERG (1965) 
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Because his continuous, N is closed and it follows from Theorem 6.66 of 

HEWITT and STROMBERG (1965) that there exist sets C and P with C countable, 

P perfect and N = cu P. We note that if N1 n P = !11, then (A.1.1) implies 

We shall therefore assume that N1 n P ,f !11. Let x € N1 n P, then there 

exists a sequence{~} with~ ,f x, ~ € P and 

lim ~ x. 
k-►<:o 

Consequently 

h' (x) 

and hence 

h(~)-h(x) 
lim ----­
k-- xk-x 

0 
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Together with (A.1.1) we arrive at 



APPENDIX 2 

ASYMPTOTIC BEHAVIOR OF BHATTACHARYYA BOUNDS 

LEMMA A.2.1. Let k 'be an integer larger than 1 and let f ED be k times 

differentiable with 

i O, ••• ,k, 

81 

where f(i) is the i-th derivative off. Then the quantities V .• , 1:;;i,j:;;k, 
l.J 

and bk(n,f) as defined in (1.3.12) and (1.3.13) exist and are finite. 

Furthermore 

(A.2.1) -1 O -2 bk(n,f) = (nI(f)) (1+ (n )) as n->- 00 • 

PROOF. Let lNO be the set of nonnegative integers. Define for 1:;; l:;; i:::; n, 

n 
A(i,n) I I 

m=l 

For a 

a = i}, 
m 

n -l}. 

It is not difficult to see that for all (x1 , ... ,xn) E lRn 

di n 
- TI f(x -0) I 
d0i m=l m 0=0 

and that consequently 

(-l)i+jE { ( I 

c-1> i I 
aEA(i,n) 

. n (a ) 
( 1 ) TI f m (x ) 
a m=l m 

. n (a) 
f m (X ) ]) V .. 

l.J f 
aEA(i,n) 

(~) [m!J1 m 

(A.2.2) 
. n (b ) n 

f(X )J-2 } . ( I (~) [m!J1 f m (Xm) ]) [m!J1 
bEA(j,n) 

m 

(-l)i+j l l 
aEA(i,n) bEA(j,n) 
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with 

I (a,b) = f (f (a) /f) (f (bl /fl f, 0 s a, b s k. 

Note that (cf. the proof of (2.4.14)) 

I (a,b) I(b,a), 0 Sa, b S k, 

I(a,0) 0, 1 S a S k, 

I(0,0) 1, 

I(l,1) I (fl • 

Hence, if rf 1 I(a ,b) # 0, then a = 0 iff b = 0, 1 Sm Sn. It follows 
- m m m m 

(see Section IV.2 of FELLER (1968)) that, for 1 sis j s k, 

(A.2.3) 
i l 

(-ll µ(ll <l-µJjJ $ I I <~i [ I 
l=l aEAl(i,n) µ=0 

µ 

i l 
(-llv(ll <l-vJiJ[ 

l 
(-ll µ<ll <l-µJ jJ .,.. I [ ti I I l V l=l v=O µ=0 

Together with (A.2.2) this yields 

(A.2.4) 
iAj 

V •. = 0 (n ) , 
1.J 

1 s i, j S k, 

where i A j denotes the smaller of i and j. Note that 

(A.2.5) 

I I 
aEAi (i,n) bEA(i,n) 

I (i:)2(I(f))i 
aEAi (i,n) 

and that (cf. (A.2.3)) 

µ 
i 0 (n ) • 



(A.2.6) 
i-1 

:,; I 
l=l 

l 
I 

v=O 

Combining (A.2.2), (A.2.5) and (A.2.6) we arrive at 

(A.2. 7) 1 :,; i :,; k, 

i.e. Vii is exactly of the order ni. The symmetry off implies that for 

1 :,; i, j :5 k with i + j odd 

(A.2.8) 0. 

(A.2.9) 

Now 

(A.2.10) 
k 

:,; I i 
i=l 

permutations of the numbers 

¼(k+l) 

with equality iff im jm for all m, 1:,; m:,; k. Furthermore 

k 
L (imAjm) ½k(k+l)-1 

m=l 

iff there exists and t with 

(A.2.11) i -1 
t 
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and with im jm for all m, 1:,; m ~ k, m Is, m It. If (A.2.11) holds then 

is+ js is odd and in view of (A.2.8) 

(A.2.12) 
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It follows from (A.2.9), (A.2.10), (A.2.7), (A.2.11) and (A.2.12) that 

unless i 
m 

jm' 1 $ m $ k, in which case 

k k 

m!Jl V .. 
l.mJm i!Jl vii 

is exactly of the order n 
~k (k+l) 

Hence 

(A.2.13) 

and likewise 

(A.2.14) 

Finally (A.2.13) and (A.2.14) imply 

which completes the proof of the lemma. □ 
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APPENDIX 3 

GREATEST UNIFORM LOWER BOUND FOR QUANTILES 

Let L be the distribution function defined by (2.3.18) and (2.3.19) 

and let u E (½,1) be fixed. We shall prove here that (cf. Theorem 2.3.4 and 

(1. 2. 8)) 

(A.3.1) inf inf K-l (u) 
fED nElN n 

-1 
L (u). 

By H we denote the class of symmetric distribution functions with vari­

ance 1. In view of Lemma 3.3.2 and (1.2.8), (A.3.1) is equivalent to 

(A.3.2) 

u 1 

inf f (I H-1 (t)dt)-1ds 
HEH½ s 

-1 = L (u). 

Fix HEH and define 

1 

a= (1-u)-l I H-1 (t)dt, 

u 

u 

b J (H-1 (t)) 2dt + (1-u)a2 , 

½ 

0 st s 1-u 

for 1-u <ts u 

u<tSl. 

Then H0 E H, 

and hence 

(A.3.3) 

1 

b $ I (H-l (t) >2dt 

½ 

u 1 

f (I H~1(t)dt)-1ds 

½ s 

u 1 

J((2b)-½ I H- 1 (t)dt)-1ds 

½ s 

u 1 

sf (f H- 1 (t)dt)-1ds. 

½ s 
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Let~ be the class of nondecreasing functions w: [½,1] + [0, 00 ) with 

W(½) = 0, W constant on (u,1] and 

(A. 3. 4) 

1 

I l<t)dt ½. 

½ 

The map A:~+ [0, 00) is defined by 

u 1 

(A. 3. 5) A(W) = f cf w(t)dt)-1ds. 

½ s 

It follows from (A.3.3) that (A.3.2) is equivalent to 

(A. 3. 6) 
-1 

inf A(W) = L (u). 
wE'I' 

For all w0,w1 E ~ and all a E JR we define 

1 

(A. 3. 7) p 2 f w0 <t>w1 <t>dt, 

½ 

(A. 3. 8) y (a) 

(A. 3. 9) 

If a E (0,1) and 

1 

[1 - 2a(1-a) (1-p) ]½, 

(A.3.10> f cw 0 <t> -w1 ct» 2dt > o, 

½ 

then p E (0,1), y(a) E [{½(l+p)}\1), w E ~ and 
a 

by Jensen's inequality 

u 1 1 

A(wa) = y(a) I [(1-a) I Wo(t)dt+a I W1 (t)dt]- 1ds 

½ s s 

(A. 3. 11) 



We shall exhibit in (A.3.19) a function w0 E f such that for all w1 E f 

(cf. (A.3.9)) 

(A.3.12) o. 

It follows from (A.3.11) that this w0 satisfies 

(A.3.13) inf A(W) = A(w 0). 
WEf 

Because for all w E f and alls E [½,u] 

1 

(A.3.14) 1 - u ~ I W (t) dt ~ ½, 

s 

we obtain by the dominated convergence theorem 

~ A<w > I = -c1-pJA<w0> 
da a a=O 

u 1 1 1 

(A.3.15) + J cf •o(t)dt-f •1 (t)dt][I •o<t)dt]-2ds 

½ s s s 

1 u 1 1 
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2A(wo> I •o<s>w1 (s)ds- I [ I •1 (t)dt][ I •o<t)dt]-2ds. 

½ ½ s s 

As we shall see, we can take w0 to be absolutely continuous with derivative 

Wo• Since all WE fare bounded, viz. 

we arrive by partial integration at 

1 u 1 

(A.3.16} I •o<s>w1<s)ds = I •o<s)[I •1(t)dt]ds. 

½ ½ s 

Combining (A.3.15) and (A.3.16) we see that (A.3.12) holds, if 

(A.3.17) o. 



88 

Let A-l be the inverse function of the strictly increasing function 

A: :m + :m given by 

(A.3.18) 2 -1 
A(x) = arctg x + x(l+x) . 

We define the function 1jJ0 : [½,1] + [0, 00 ) by 

rt ½ = r,A (n (t-½)) ,, t < u 

(A.3.19) 1/Jo<tl 
-1 r,A (n (u-½)) u ,, t ,, 1, 

where 

r, (cos z + z sin z) ½(z sin z)-½, 

n 2 (cos z + z sin z) (sin z) -l 

and z as in (2.3.19). As we shall verify below, 1jJ0 is an absolutely contin­

uous function in 1 satisfying 

(A.3.20) 

(A.3.21) 

1 

2A(l/J0>w0(s) = [f 1jJ0 (t)dtJ-2 , 

s 
-1 

A(ljJO) = L (u). 

½ < s < u, 

Combining (A.3.20), (A.3.17), (A.3.12), (A.3.13) and (A.3.21) we arrive at 

(A.3.6) or equivalently (A.3.1). 

It is easy to see that 1/JO is an absolutely continuous nondecreasing 

function on [½,1] with 1jJ0 (½)=0and 1jJ0 constant on (u,1]. It remains to check 

that 1/Jo satisfies (A.3.4), (A.3.20) and (A.3.21). In view of (2.3.19) 

n (u-½) - A (tg z) 

2 (cos z + z sin z) (sin z) -l {½ - ½cos 3z (cos z + z sin z) -l} 

2 -1 - { z + tg z (1 + tg z) } 

2 2 
cotg z + z - cos z cotg z - z - cos z tg z O 



and hence 

(A. 3. 22) 
-1 

!J. (n Cu-½}} tg z. 

Since 

d 2 -2 
dx !J. (X} = 2 ( 1 + X } , 

the substitution !J.-1 (n(t-½)} = x and (A.3.22) imply 

1 tgz 

I w~(t}dt = , 2n-1 

½ 

I 2 2 -2 2 2 
2x (1+x) dx + (1-u)I; tg z. 

0 

Subs ti tu ting x = tg y we see that 

tg z 

I 2 2 -2 
2x (1+x) dx 

0 

z 

= I 2 sin2y dy = 
0 

and consequently that (cf. (2.3.19)) 

1 

z - sin z cos z 

f w~<t>dt 

½ 

2 -1 2 2 
I; n (z-sinzcosz) + (1-u)i; tg z 

-1 3 -1 2 
½z (z-sinzcosz) + ½cos z(zsinz) tg z ½ 
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which shows that w0 satisfies (A.3.4). In an analogous way we obtain for all 

s € (½,u) 

1 tg z 

f w0 <t}dt 

s 

-1 
i;n I 2 -2 

2x ( 1+x } dx + (1-u) i;tg z 

-1 
!J. (n (s-½)) 

(A.3.23) 

-1 
and again by the substitution !J. (n(s-½}) = x we arrive at 

(A.3.24) 
tr z -1 2 -1 2 -2 -1 

= J i; n(l+x )2n (1+x) dx = 21; z 
-1 

= L (u) 

0 

which implies (A.3.21). From (A.3.19), (A.3.23) and (A.3.24) we see that for 

all s € (½,u) 
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s 

equals zero iff 

and indeed this relation holds. Consequently ~O satisfies (A.3.20) and the 

proof is complete. 
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APPENDIX 4 

NONEXISTENCE OF PITMAN ESTIMATORS 

In this appendix we shall construct a density f ED such that for all 

positive integers n (cf. (3.3.18)) 

(A.4'.1) p (Tf is undefined) > 0. 
f n 

This density f is given in (A.4.4) in the proof of the following lemma which 

implies (A.4.1). 

LEMMA A.4.1. Let e > 0. There exists a density f ED such that fox all posi­

tive integers n 

(A.4.2) 

(A.4.3) J 9.TT1 f(x.-9)d9 
1.= l. 

0 

Ix. I ~ e, i = 1, •.• ,n. 
l. 

PROOF. Without loss of generality we may assume that e < 1. We take 

k = 1,2, ••• 

and we define the functions ijik: IR + IR and f: lR + lR by 

2 
a0 (1-lxl) 1 (x), 

(-1,1) 

k 1,2, .•. , 

(A.4.4) f (x) 

Straightforward computations show that fork 0, 1, ••. 
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and hence 

f f(x)dx 1. 

Furthermore f is a symmetric absolutely continuous density with 

I(f) = s.f f f(x)dx = 12 

and consequently f ED. Finally 

1, ... ,n, 

f eiBl f(xi-0)d0 

0 

1-£ 
00 n 
I f 

k n 2 ;;: (2k +y) ak i!Jl (1-Jy-x. J) dy 
J. k=l -1~ £ 

1-£ 
00 f 2kka~k -2n 

n 
I i!Jl 

2 ;;: (1-£-y) dy 
k=l 

0 

2(1-£)2n+lan oo _____ o I 
2n+1 k=l 

k(k-2n) = 001 

which proves the lemma. D 
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